xref: /linux/net/core/dev.c (revision a81ab36bf52d0ca3a32251a923be1dbced726141)
1 /*
2  * 	NET3	Protocol independent device support routines.
3  *
4  *		This program is free software; you can redistribute it and/or
5  *		modify it under the terms of the GNU General Public License
6  *		as published by the Free Software Foundation; either version
7  *		2 of the License, or (at your option) any later version.
8  *
9  *	Derived from the non IP parts of dev.c 1.0.19
10  * 		Authors:	Ross Biro
11  *				Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *				Mark Evans, <evansmp@uhura.aston.ac.uk>
13  *
14  *	Additional Authors:
15  *		Florian la Roche <rzsfl@rz.uni-sb.de>
16  *		Alan Cox <gw4pts@gw4pts.ampr.org>
17  *		David Hinds <dahinds@users.sourceforge.net>
18  *		Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19  *		Adam Sulmicki <adam@cfar.umd.edu>
20  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
21  *
22  *	Changes:
23  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
24  *              			to 2 if register_netdev gets called
25  *              			before net_dev_init & also removed a
26  *              			few lines of code in the process.
27  *		Alan Cox	:	device private ioctl copies fields back.
28  *		Alan Cox	:	Transmit queue code does relevant
29  *					stunts to keep the queue safe.
30  *		Alan Cox	:	Fixed double lock.
31  *		Alan Cox	:	Fixed promisc NULL pointer trap
32  *		????????	:	Support the full private ioctl range
33  *		Alan Cox	:	Moved ioctl permission check into
34  *					drivers
35  *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
36  *		Alan Cox	:	100 backlog just doesn't cut it when
37  *					you start doing multicast video 8)
38  *		Alan Cox	:	Rewrote net_bh and list manager.
39  *		Alan Cox	: 	Fix ETH_P_ALL echoback lengths.
40  *		Alan Cox	:	Took out transmit every packet pass
41  *					Saved a few bytes in the ioctl handler
42  *		Alan Cox	:	Network driver sets packet type before
43  *					calling netif_rx. Saves a function
44  *					call a packet.
45  *		Alan Cox	:	Hashed net_bh()
46  *		Richard Kooijman:	Timestamp fixes.
47  *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
48  *		Alan Cox	:	Device lock protection.
49  *		Alan Cox	: 	Fixed nasty side effect of device close
50  *					changes.
51  *		Rudi Cilibrasi	:	Pass the right thing to
52  *					set_mac_address()
53  *		Dave Miller	:	32bit quantity for the device lock to
54  *					make it work out on a Sparc.
55  *		Bjorn Ekwall	:	Added KERNELD hack.
56  *		Alan Cox	:	Cleaned up the backlog initialise.
57  *		Craig Metz	:	SIOCGIFCONF fix if space for under
58  *					1 device.
59  *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
60  *					is no device open function.
61  *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
62  *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
63  *		Cyrus Durgin	:	Cleaned for KMOD
64  *		Adam Sulmicki   :	Bug Fix : Network Device Unload
65  *					A network device unload needs to purge
66  *					the backlog queue.
67  *	Paul Rusty Russell	:	SIOCSIFNAME
68  *              Pekka Riikonen  :	Netdev boot-time settings code
69  *              Andrew Morton   :       Make unregister_netdevice wait
70  *              			indefinitely on dev->refcnt
71  * 		J Hadi Salim	:	- Backlog queue sampling
72  *				        - netif_rx() feedback
73  */
74 
75 #include <asm/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/mutex.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/notifier.h>
96 #include <linux/skbuff.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <linux/rtnetlink.h>
100 #include <linux/stat.h>
101 #include <net/dst.h>
102 #include <net/pkt_sched.h>
103 #include <net/checksum.h>
104 #include <net/xfrm.h>
105 #include <linux/highmem.h>
106 #include <linux/init.h>
107 #include <linux/module.h>
108 #include <linux/netpoll.h>
109 #include <linux/rcupdate.h>
110 #include <linux/delay.h>
111 #include <net/iw_handler.h>
112 #include <asm/current.h>
113 #include <linux/audit.h>
114 #include <linux/dmaengine.h>
115 #include <linux/err.h>
116 #include <linux/ctype.h>
117 #include <linux/if_arp.h>
118 #include <linux/if_vlan.h>
119 #include <linux/ip.h>
120 #include <net/ip.h>
121 #include <linux/ipv6.h>
122 #include <linux/in.h>
123 #include <linux/jhash.h>
124 #include <linux/random.h>
125 #include <trace/events/napi.h>
126 #include <trace/events/net.h>
127 #include <trace/events/skb.h>
128 #include <linux/pci.h>
129 #include <linux/inetdevice.h>
130 #include <linux/cpu_rmap.h>
131 #include <linux/static_key.h>
132 #include <linux/hashtable.h>
133 #include <linux/vmalloc.h>
134 #include <linux/if_macvlan.h>
135 
136 #include "net-sysfs.h"
137 
138 /* Instead of increasing this, you should create a hash table. */
139 #define MAX_GRO_SKBS 8
140 
141 /* This should be increased if a protocol with a bigger head is added. */
142 #define GRO_MAX_HEAD (MAX_HEADER + 128)
143 
144 static DEFINE_SPINLOCK(ptype_lock);
145 static DEFINE_SPINLOCK(offload_lock);
146 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
147 struct list_head ptype_all __read_mostly;	/* Taps */
148 static struct list_head offload_base __read_mostly;
149 
150 static int netif_rx_internal(struct sk_buff *skb);
151 
152 /*
153  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
154  * semaphore.
155  *
156  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
157  *
158  * Writers must hold the rtnl semaphore while they loop through the
159  * dev_base_head list, and hold dev_base_lock for writing when they do the
160  * actual updates.  This allows pure readers to access the list even
161  * while a writer is preparing to update it.
162  *
163  * To put it another way, dev_base_lock is held for writing only to
164  * protect against pure readers; the rtnl semaphore provides the
165  * protection against other writers.
166  *
167  * See, for example usages, register_netdevice() and
168  * unregister_netdevice(), which must be called with the rtnl
169  * semaphore held.
170  */
171 DEFINE_RWLOCK(dev_base_lock);
172 EXPORT_SYMBOL(dev_base_lock);
173 
174 /* protects napi_hash addition/deletion and napi_gen_id */
175 static DEFINE_SPINLOCK(napi_hash_lock);
176 
177 static unsigned int napi_gen_id;
178 static DEFINE_HASHTABLE(napi_hash, 8);
179 
180 static seqcount_t devnet_rename_seq;
181 
182 static inline void dev_base_seq_inc(struct net *net)
183 {
184 	while (++net->dev_base_seq == 0);
185 }
186 
187 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
188 {
189 	unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
190 
191 	return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
192 }
193 
194 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
195 {
196 	return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
197 }
198 
199 static inline void rps_lock(struct softnet_data *sd)
200 {
201 #ifdef CONFIG_RPS
202 	spin_lock(&sd->input_pkt_queue.lock);
203 #endif
204 }
205 
206 static inline void rps_unlock(struct softnet_data *sd)
207 {
208 #ifdef CONFIG_RPS
209 	spin_unlock(&sd->input_pkt_queue.lock);
210 #endif
211 }
212 
213 /* Device list insertion */
214 static void list_netdevice(struct net_device *dev)
215 {
216 	struct net *net = dev_net(dev);
217 
218 	ASSERT_RTNL();
219 
220 	write_lock_bh(&dev_base_lock);
221 	list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
222 	hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
223 	hlist_add_head_rcu(&dev->index_hlist,
224 			   dev_index_hash(net, dev->ifindex));
225 	write_unlock_bh(&dev_base_lock);
226 
227 	dev_base_seq_inc(net);
228 }
229 
230 /* Device list removal
231  * caller must respect a RCU grace period before freeing/reusing dev
232  */
233 static void unlist_netdevice(struct net_device *dev)
234 {
235 	ASSERT_RTNL();
236 
237 	/* Unlink dev from the device chain */
238 	write_lock_bh(&dev_base_lock);
239 	list_del_rcu(&dev->dev_list);
240 	hlist_del_rcu(&dev->name_hlist);
241 	hlist_del_rcu(&dev->index_hlist);
242 	write_unlock_bh(&dev_base_lock);
243 
244 	dev_base_seq_inc(dev_net(dev));
245 }
246 
247 /*
248  *	Our notifier list
249  */
250 
251 static RAW_NOTIFIER_HEAD(netdev_chain);
252 
253 /*
254  *	Device drivers call our routines to queue packets here. We empty the
255  *	queue in the local softnet handler.
256  */
257 
258 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
259 EXPORT_PER_CPU_SYMBOL(softnet_data);
260 
261 #ifdef CONFIG_LOCKDEP
262 /*
263  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
264  * according to dev->type
265  */
266 static const unsigned short netdev_lock_type[] =
267 	{ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
268 	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
269 	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
270 	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
271 	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
272 	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
273 	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
274 	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
275 	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
276 	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
277 	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
278 	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
279 	 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
280 	 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
281 	 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
282 
283 static const char *const netdev_lock_name[] =
284 	{"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
285 	 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
286 	 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
287 	 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
288 	 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
289 	 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
290 	 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
291 	 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
292 	 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
293 	 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
294 	 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
295 	 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
296 	 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
297 	 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
298 	 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
299 
300 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
301 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
302 
303 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
304 {
305 	int i;
306 
307 	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
308 		if (netdev_lock_type[i] == dev_type)
309 			return i;
310 	/* the last key is used by default */
311 	return ARRAY_SIZE(netdev_lock_type) - 1;
312 }
313 
314 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
315 						 unsigned short dev_type)
316 {
317 	int i;
318 
319 	i = netdev_lock_pos(dev_type);
320 	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
321 				   netdev_lock_name[i]);
322 }
323 
324 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
325 {
326 	int i;
327 
328 	i = netdev_lock_pos(dev->type);
329 	lockdep_set_class_and_name(&dev->addr_list_lock,
330 				   &netdev_addr_lock_key[i],
331 				   netdev_lock_name[i]);
332 }
333 #else
334 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
335 						 unsigned short dev_type)
336 {
337 }
338 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
339 {
340 }
341 #endif
342 
343 /*******************************************************************************
344 
345 		Protocol management and registration routines
346 
347 *******************************************************************************/
348 
349 /*
350  *	Add a protocol ID to the list. Now that the input handler is
351  *	smarter we can dispense with all the messy stuff that used to be
352  *	here.
353  *
354  *	BEWARE!!! Protocol handlers, mangling input packets,
355  *	MUST BE last in hash buckets and checking protocol handlers
356  *	MUST start from promiscuous ptype_all chain in net_bh.
357  *	It is true now, do not change it.
358  *	Explanation follows: if protocol handler, mangling packet, will
359  *	be the first on list, it is not able to sense, that packet
360  *	is cloned and should be copied-on-write, so that it will
361  *	change it and subsequent readers will get broken packet.
362  *							--ANK (980803)
363  */
364 
365 static inline struct list_head *ptype_head(const struct packet_type *pt)
366 {
367 	if (pt->type == htons(ETH_P_ALL))
368 		return &ptype_all;
369 	else
370 		return &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
371 }
372 
373 /**
374  *	dev_add_pack - add packet handler
375  *	@pt: packet type declaration
376  *
377  *	Add a protocol handler to the networking stack. The passed &packet_type
378  *	is linked into kernel lists and may not be freed until it has been
379  *	removed from the kernel lists.
380  *
381  *	This call does not sleep therefore it can not
382  *	guarantee all CPU's that are in middle of receiving packets
383  *	will see the new packet type (until the next received packet).
384  */
385 
386 void dev_add_pack(struct packet_type *pt)
387 {
388 	struct list_head *head = ptype_head(pt);
389 
390 	spin_lock(&ptype_lock);
391 	list_add_rcu(&pt->list, head);
392 	spin_unlock(&ptype_lock);
393 }
394 EXPORT_SYMBOL(dev_add_pack);
395 
396 /**
397  *	__dev_remove_pack	 - remove packet handler
398  *	@pt: packet type declaration
399  *
400  *	Remove a protocol handler that was previously added to the kernel
401  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
402  *	from the kernel lists and can be freed or reused once this function
403  *	returns.
404  *
405  *      The packet type might still be in use by receivers
406  *	and must not be freed until after all the CPU's have gone
407  *	through a quiescent state.
408  */
409 void __dev_remove_pack(struct packet_type *pt)
410 {
411 	struct list_head *head = ptype_head(pt);
412 	struct packet_type *pt1;
413 
414 	spin_lock(&ptype_lock);
415 
416 	list_for_each_entry(pt1, head, list) {
417 		if (pt == pt1) {
418 			list_del_rcu(&pt->list);
419 			goto out;
420 		}
421 	}
422 
423 	pr_warn("dev_remove_pack: %p not found\n", pt);
424 out:
425 	spin_unlock(&ptype_lock);
426 }
427 EXPORT_SYMBOL(__dev_remove_pack);
428 
429 /**
430  *	dev_remove_pack	 - remove packet handler
431  *	@pt: packet type declaration
432  *
433  *	Remove a protocol handler that was previously added to the kernel
434  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
435  *	from the kernel lists and can be freed or reused once this function
436  *	returns.
437  *
438  *	This call sleeps to guarantee that no CPU is looking at the packet
439  *	type after return.
440  */
441 void dev_remove_pack(struct packet_type *pt)
442 {
443 	__dev_remove_pack(pt);
444 
445 	synchronize_net();
446 }
447 EXPORT_SYMBOL(dev_remove_pack);
448 
449 
450 /**
451  *	dev_add_offload - register offload handlers
452  *	@po: protocol offload declaration
453  *
454  *	Add protocol offload handlers to the networking stack. The passed
455  *	&proto_offload is linked into kernel lists and may not be freed until
456  *	it has been removed from the kernel lists.
457  *
458  *	This call does not sleep therefore it can not
459  *	guarantee all CPU's that are in middle of receiving packets
460  *	will see the new offload handlers (until the next received packet).
461  */
462 void dev_add_offload(struct packet_offload *po)
463 {
464 	struct list_head *head = &offload_base;
465 
466 	spin_lock(&offload_lock);
467 	list_add_rcu(&po->list, head);
468 	spin_unlock(&offload_lock);
469 }
470 EXPORT_SYMBOL(dev_add_offload);
471 
472 /**
473  *	__dev_remove_offload	 - remove offload handler
474  *	@po: packet offload declaration
475  *
476  *	Remove a protocol offload handler that was previously added to the
477  *	kernel offload handlers by dev_add_offload(). The passed &offload_type
478  *	is removed from the kernel lists and can be freed or reused once this
479  *	function returns.
480  *
481  *      The packet type might still be in use by receivers
482  *	and must not be freed until after all the CPU's have gone
483  *	through a quiescent state.
484  */
485 static void __dev_remove_offload(struct packet_offload *po)
486 {
487 	struct list_head *head = &offload_base;
488 	struct packet_offload *po1;
489 
490 	spin_lock(&offload_lock);
491 
492 	list_for_each_entry(po1, head, list) {
493 		if (po == po1) {
494 			list_del_rcu(&po->list);
495 			goto out;
496 		}
497 	}
498 
499 	pr_warn("dev_remove_offload: %p not found\n", po);
500 out:
501 	spin_unlock(&offload_lock);
502 }
503 
504 /**
505  *	dev_remove_offload	 - remove packet offload handler
506  *	@po: packet offload declaration
507  *
508  *	Remove a packet offload handler that was previously added to the kernel
509  *	offload handlers by dev_add_offload(). The passed &offload_type is
510  *	removed from the kernel lists and can be freed or reused once this
511  *	function returns.
512  *
513  *	This call sleeps to guarantee that no CPU is looking at the packet
514  *	type after return.
515  */
516 void dev_remove_offload(struct packet_offload *po)
517 {
518 	__dev_remove_offload(po);
519 
520 	synchronize_net();
521 }
522 EXPORT_SYMBOL(dev_remove_offload);
523 
524 /******************************************************************************
525 
526 		      Device Boot-time Settings Routines
527 
528 *******************************************************************************/
529 
530 /* Boot time configuration table */
531 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
532 
533 /**
534  *	netdev_boot_setup_add	- add new setup entry
535  *	@name: name of the device
536  *	@map: configured settings for the device
537  *
538  *	Adds new setup entry to the dev_boot_setup list.  The function
539  *	returns 0 on error and 1 on success.  This is a generic routine to
540  *	all netdevices.
541  */
542 static int netdev_boot_setup_add(char *name, struct ifmap *map)
543 {
544 	struct netdev_boot_setup *s;
545 	int i;
546 
547 	s = dev_boot_setup;
548 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
549 		if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
550 			memset(s[i].name, 0, sizeof(s[i].name));
551 			strlcpy(s[i].name, name, IFNAMSIZ);
552 			memcpy(&s[i].map, map, sizeof(s[i].map));
553 			break;
554 		}
555 	}
556 
557 	return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
558 }
559 
560 /**
561  *	netdev_boot_setup_check	- check boot time settings
562  *	@dev: the netdevice
563  *
564  * 	Check boot time settings for the device.
565  *	The found settings are set for the device to be used
566  *	later in the device probing.
567  *	Returns 0 if no settings found, 1 if they are.
568  */
569 int netdev_boot_setup_check(struct net_device *dev)
570 {
571 	struct netdev_boot_setup *s = dev_boot_setup;
572 	int i;
573 
574 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
575 		if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
576 		    !strcmp(dev->name, s[i].name)) {
577 			dev->irq 	= s[i].map.irq;
578 			dev->base_addr 	= s[i].map.base_addr;
579 			dev->mem_start 	= s[i].map.mem_start;
580 			dev->mem_end 	= s[i].map.mem_end;
581 			return 1;
582 		}
583 	}
584 	return 0;
585 }
586 EXPORT_SYMBOL(netdev_boot_setup_check);
587 
588 
589 /**
590  *	netdev_boot_base	- get address from boot time settings
591  *	@prefix: prefix for network device
592  *	@unit: id for network device
593  *
594  * 	Check boot time settings for the base address of device.
595  *	The found settings are set for the device to be used
596  *	later in the device probing.
597  *	Returns 0 if no settings found.
598  */
599 unsigned long netdev_boot_base(const char *prefix, int unit)
600 {
601 	const struct netdev_boot_setup *s = dev_boot_setup;
602 	char name[IFNAMSIZ];
603 	int i;
604 
605 	sprintf(name, "%s%d", prefix, unit);
606 
607 	/*
608 	 * If device already registered then return base of 1
609 	 * to indicate not to probe for this interface
610 	 */
611 	if (__dev_get_by_name(&init_net, name))
612 		return 1;
613 
614 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
615 		if (!strcmp(name, s[i].name))
616 			return s[i].map.base_addr;
617 	return 0;
618 }
619 
620 /*
621  * Saves at boot time configured settings for any netdevice.
622  */
623 int __init netdev_boot_setup(char *str)
624 {
625 	int ints[5];
626 	struct ifmap map;
627 
628 	str = get_options(str, ARRAY_SIZE(ints), ints);
629 	if (!str || !*str)
630 		return 0;
631 
632 	/* Save settings */
633 	memset(&map, 0, sizeof(map));
634 	if (ints[0] > 0)
635 		map.irq = ints[1];
636 	if (ints[0] > 1)
637 		map.base_addr = ints[2];
638 	if (ints[0] > 2)
639 		map.mem_start = ints[3];
640 	if (ints[0] > 3)
641 		map.mem_end = ints[4];
642 
643 	/* Add new entry to the list */
644 	return netdev_boot_setup_add(str, &map);
645 }
646 
647 __setup("netdev=", netdev_boot_setup);
648 
649 /*******************************************************************************
650 
651 			    Device Interface Subroutines
652 
653 *******************************************************************************/
654 
655 /**
656  *	__dev_get_by_name	- find a device by its name
657  *	@net: the applicable net namespace
658  *	@name: name to find
659  *
660  *	Find an interface by name. Must be called under RTNL semaphore
661  *	or @dev_base_lock. If the name is found a pointer to the device
662  *	is returned. If the name is not found then %NULL is returned. The
663  *	reference counters are not incremented so the caller must be
664  *	careful with locks.
665  */
666 
667 struct net_device *__dev_get_by_name(struct net *net, const char *name)
668 {
669 	struct net_device *dev;
670 	struct hlist_head *head = dev_name_hash(net, name);
671 
672 	hlist_for_each_entry(dev, head, name_hlist)
673 		if (!strncmp(dev->name, name, IFNAMSIZ))
674 			return dev;
675 
676 	return NULL;
677 }
678 EXPORT_SYMBOL(__dev_get_by_name);
679 
680 /**
681  *	dev_get_by_name_rcu	- find a device by its name
682  *	@net: the applicable net namespace
683  *	@name: name to find
684  *
685  *	Find an interface by name.
686  *	If the name is found a pointer to the device is returned.
687  * 	If the name is not found then %NULL is returned.
688  *	The reference counters are not incremented so the caller must be
689  *	careful with locks. The caller must hold RCU lock.
690  */
691 
692 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
693 {
694 	struct net_device *dev;
695 	struct hlist_head *head = dev_name_hash(net, name);
696 
697 	hlist_for_each_entry_rcu(dev, head, name_hlist)
698 		if (!strncmp(dev->name, name, IFNAMSIZ))
699 			return dev;
700 
701 	return NULL;
702 }
703 EXPORT_SYMBOL(dev_get_by_name_rcu);
704 
705 /**
706  *	dev_get_by_name		- find a device by its name
707  *	@net: the applicable net namespace
708  *	@name: name to find
709  *
710  *	Find an interface by name. This can be called from any
711  *	context and does its own locking. The returned handle has
712  *	the usage count incremented and the caller must use dev_put() to
713  *	release it when it is no longer needed. %NULL is returned if no
714  *	matching device is found.
715  */
716 
717 struct net_device *dev_get_by_name(struct net *net, const char *name)
718 {
719 	struct net_device *dev;
720 
721 	rcu_read_lock();
722 	dev = dev_get_by_name_rcu(net, name);
723 	if (dev)
724 		dev_hold(dev);
725 	rcu_read_unlock();
726 	return dev;
727 }
728 EXPORT_SYMBOL(dev_get_by_name);
729 
730 /**
731  *	__dev_get_by_index - find a device by its ifindex
732  *	@net: the applicable net namespace
733  *	@ifindex: index of device
734  *
735  *	Search for an interface by index. Returns %NULL if the device
736  *	is not found or a pointer to the device. The device has not
737  *	had its reference counter increased so the caller must be careful
738  *	about locking. The caller must hold either the RTNL semaphore
739  *	or @dev_base_lock.
740  */
741 
742 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
743 {
744 	struct net_device *dev;
745 	struct hlist_head *head = dev_index_hash(net, ifindex);
746 
747 	hlist_for_each_entry(dev, head, index_hlist)
748 		if (dev->ifindex == ifindex)
749 			return dev;
750 
751 	return NULL;
752 }
753 EXPORT_SYMBOL(__dev_get_by_index);
754 
755 /**
756  *	dev_get_by_index_rcu - find a device by its ifindex
757  *	@net: the applicable net namespace
758  *	@ifindex: index of device
759  *
760  *	Search for an interface by index. Returns %NULL if the device
761  *	is not found or a pointer to the device. The device has not
762  *	had its reference counter increased so the caller must be careful
763  *	about locking. The caller must hold RCU lock.
764  */
765 
766 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
767 {
768 	struct net_device *dev;
769 	struct hlist_head *head = dev_index_hash(net, ifindex);
770 
771 	hlist_for_each_entry_rcu(dev, head, index_hlist)
772 		if (dev->ifindex == ifindex)
773 			return dev;
774 
775 	return NULL;
776 }
777 EXPORT_SYMBOL(dev_get_by_index_rcu);
778 
779 
780 /**
781  *	dev_get_by_index - find a device by its ifindex
782  *	@net: the applicable net namespace
783  *	@ifindex: index of device
784  *
785  *	Search for an interface by index. Returns NULL if the device
786  *	is not found or a pointer to the device. The device returned has
787  *	had a reference added and the pointer is safe until the user calls
788  *	dev_put to indicate they have finished with it.
789  */
790 
791 struct net_device *dev_get_by_index(struct net *net, int ifindex)
792 {
793 	struct net_device *dev;
794 
795 	rcu_read_lock();
796 	dev = dev_get_by_index_rcu(net, ifindex);
797 	if (dev)
798 		dev_hold(dev);
799 	rcu_read_unlock();
800 	return dev;
801 }
802 EXPORT_SYMBOL(dev_get_by_index);
803 
804 /**
805  *	netdev_get_name - get a netdevice name, knowing its ifindex.
806  *	@net: network namespace
807  *	@name: a pointer to the buffer where the name will be stored.
808  *	@ifindex: the ifindex of the interface to get the name from.
809  *
810  *	The use of raw_seqcount_begin() and cond_resched() before
811  *	retrying is required as we want to give the writers a chance
812  *	to complete when CONFIG_PREEMPT is not set.
813  */
814 int netdev_get_name(struct net *net, char *name, int ifindex)
815 {
816 	struct net_device *dev;
817 	unsigned int seq;
818 
819 retry:
820 	seq = raw_seqcount_begin(&devnet_rename_seq);
821 	rcu_read_lock();
822 	dev = dev_get_by_index_rcu(net, ifindex);
823 	if (!dev) {
824 		rcu_read_unlock();
825 		return -ENODEV;
826 	}
827 
828 	strcpy(name, dev->name);
829 	rcu_read_unlock();
830 	if (read_seqcount_retry(&devnet_rename_seq, seq)) {
831 		cond_resched();
832 		goto retry;
833 	}
834 
835 	return 0;
836 }
837 
838 /**
839  *	dev_getbyhwaddr_rcu - find a device by its hardware address
840  *	@net: the applicable net namespace
841  *	@type: media type of device
842  *	@ha: hardware address
843  *
844  *	Search for an interface by MAC address. Returns NULL if the device
845  *	is not found or a pointer to the device.
846  *	The caller must hold RCU or RTNL.
847  *	The returned device has not had its ref count increased
848  *	and the caller must therefore be careful about locking
849  *
850  */
851 
852 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
853 				       const char *ha)
854 {
855 	struct net_device *dev;
856 
857 	for_each_netdev_rcu(net, dev)
858 		if (dev->type == type &&
859 		    !memcmp(dev->dev_addr, ha, dev->addr_len))
860 			return dev;
861 
862 	return NULL;
863 }
864 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
865 
866 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
867 {
868 	struct net_device *dev;
869 
870 	ASSERT_RTNL();
871 	for_each_netdev(net, dev)
872 		if (dev->type == type)
873 			return dev;
874 
875 	return NULL;
876 }
877 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
878 
879 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
880 {
881 	struct net_device *dev, *ret = NULL;
882 
883 	rcu_read_lock();
884 	for_each_netdev_rcu(net, dev)
885 		if (dev->type == type) {
886 			dev_hold(dev);
887 			ret = dev;
888 			break;
889 		}
890 	rcu_read_unlock();
891 	return ret;
892 }
893 EXPORT_SYMBOL(dev_getfirstbyhwtype);
894 
895 /**
896  *	dev_get_by_flags_rcu - find any device with given flags
897  *	@net: the applicable net namespace
898  *	@if_flags: IFF_* values
899  *	@mask: bitmask of bits in if_flags to check
900  *
901  *	Search for any interface with the given flags. Returns NULL if a device
902  *	is not found or a pointer to the device. Must be called inside
903  *	rcu_read_lock(), and result refcount is unchanged.
904  */
905 
906 struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short if_flags,
907 				    unsigned short mask)
908 {
909 	struct net_device *dev, *ret;
910 
911 	ret = NULL;
912 	for_each_netdev_rcu(net, dev) {
913 		if (((dev->flags ^ if_flags) & mask) == 0) {
914 			ret = dev;
915 			break;
916 		}
917 	}
918 	return ret;
919 }
920 EXPORT_SYMBOL(dev_get_by_flags_rcu);
921 
922 /**
923  *	dev_valid_name - check if name is okay for network device
924  *	@name: name string
925  *
926  *	Network device names need to be valid file names to
927  *	to allow sysfs to work.  We also disallow any kind of
928  *	whitespace.
929  */
930 bool dev_valid_name(const char *name)
931 {
932 	if (*name == '\0')
933 		return false;
934 	if (strlen(name) >= IFNAMSIZ)
935 		return false;
936 	if (!strcmp(name, ".") || !strcmp(name, ".."))
937 		return false;
938 
939 	while (*name) {
940 		if (*name == '/' || isspace(*name))
941 			return false;
942 		name++;
943 	}
944 	return true;
945 }
946 EXPORT_SYMBOL(dev_valid_name);
947 
948 /**
949  *	__dev_alloc_name - allocate a name for a device
950  *	@net: network namespace to allocate the device name in
951  *	@name: name format string
952  *	@buf:  scratch buffer and result name string
953  *
954  *	Passed a format string - eg "lt%d" it will try and find a suitable
955  *	id. It scans list of devices to build up a free map, then chooses
956  *	the first empty slot. The caller must hold the dev_base or rtnl lock
957  *	while allocating the name and adding the device in order to avoid
958  *	duplicates.
959  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
960  *	Returns the number of the unit assigned or a negative errno code.
961  */
962 
963 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
964 {
965 	int i = 0;
966 	const char *p;
967 	const int max_netdevices = 8*PAGE_SIZE;
968 	unsigned long *inuse;
969 	struct net_device *d;
970 
971 	p = strnchr(name, IFNAMSIZ-1, '%');
972 	if (p) {
973 		/*
974 		 * Verify the string as this thing may have come from
975 		 * the user.  There must be either one "%d" and no other "%"
976 		 * characters.
977 		 */
978 		if (p[1] != 'd' || strchr(p + 2, '%'))
979 			return -EINVAL;
980 
981 		/* Use one page as a bit array of possible slots */
982 		inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
983 		if (!inuse)
984 			return -ENOMEM;
985 
986 		for_each_netdev(net, d) {
987 			if (!sscanf(d->name, name, &i))
988 				continue;
989 			if (i < 0 || i >= max_netdevices)
990 				continue;
991 
992 			/*  avoid cases where sscanf is not exact inverse of printf */
993 			snprintf(buf, IFNAMSIZ, name, i);
994 			if (!strncmp(buf, d->name, IFNAMSIZ))
995 				set_bit(i, inuse);
996 		}
997 
998 		i = find_first_zero_bit(inuse, max_netdevices);
999 		free_page((unsigned long) inuse);
1000 	}
1001 
1002 	if (buf != name)
1003 		snprintf(buf, IFNAMSIZ, name, i);
1004 	if (!__dev_get_by_name(net, buf))
1005 		return i;
1006 
1007 	/* It is possible to run out of possible slots
1008 	 * when the name is long and there isn't enough space left
1009 	 * for the digits, or if all bits are used.
1010 	 */
1011 	return -ENFILE;
1012 }
1013 
1014 /**
1015  *	dev_alloc_name - allocate a name for a device
1016  *	@dev: device
1017  *	@name: name format string
1018  *
1019  *	Passed a format string - eg "lt%d" it will try and find a suitable
1020  *	id. It scans list of devices to build up a free map, then chooses
1021  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1022  *	while allocating the name and adding the device in order to avoid
1023  *	duplicates.
1024  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1025  *	Returns the number of the unit assigned or a negative errno code.
1026  */
1027 
1028 int dev_alloc_name(struct net_device *dev, const char *name)
1029 {
1030 	char buf[IFNAMSIZ];
1031 	struct net *net;
1032 	int ret;
1033 
1034 	BUG_ON(!dev_net(dev));
1035 	net = dev_net(dev);
1036 	ret = __dev_alloc_name(net, name, buf);
1037 	if (ret >= 0)
1038 		strlcpy(dev->name, buf, IFNAMSIZ);
1039 	return ret;
1040 }
1041 EXPORT_SYMBOL(dev_alloc_name);
1042 
1043 static int dev_alloc_name_ns(struct net *net,
1044 			     struct net_device *dev,
1045 			     const char *name)
1046 {
1047 	char buf[IFNAMSIZ];
1048 	int ret;
1049 
1050 	ret = __dev_alloc_name(net, name, buf);
1051 	if (ret >= 0)
1052 		strlcpy(dev->name, buf, IFNAMSIZ);
1053 	return ret;
1054 }
1055 
1056 static int dev_get_valid_name(struct net *net,
1057 			      struct net_device *dev,
1058 			      const char *name)
1059 {
1060 	BUG_ON(!net);
1061 
1062 	if (!dev_valid_name(name))
1063 		return -EINVAL;
1064 
1065 	if (strchr(name, '%'))
1066 		return dev_alloc_name_ns(net, dev, name);
1067 	else if (__dev_get_by_name(net, name))
1068 		return -EEXIST;
1069 	else if (dev->name != name)
1070 		strlcpy(dev->name, name, IFNAMSIZ);
1071 
1072 	return 0;
1073 }
1074 
1075 /**
1076  *	dev_change_name - change name of a device
1077  *	@dev: device
1078  *	@newname: name (or format string) must be at least IFNAMSIZ
1079  *
1080  *	Change name of a device, can pass format strings "eth%d".
1081  *	for wildcarding.
1082  */
1083 int dev_change_name(struct net_device *dev, const char *newname)
1084 {
1085 	char oldname[IFNAMSIZ];
1086 	int err = 0;
1087 	int ret;
1088 	struct net *net;
1089 
1090 	ASSERT_RTNL();
1091 	BUG_ON(!dev_net(dev));
1092 
1093 	net = dev_net(dev);
1094 	if (dev->flags & IFF_UP)
1095 		return -EBUSY;
1096 
1097 	write_seqcount_begin(&devnet_rename_seq);
1098 
1099 	if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1100 		write_seqcount_end(&devnet_rename_seq);
1101 		return 0;
1102 	}
1103 
1104 	memcpy(oldname, dev->name, IFNAMSIZ);
1105 
1106 	err = dev_get_valid_name(net, dev, newname);
1107 	if (err < 0) {
1108 		write_seqcount_end(&devnet_rename_seq);
1109 		return err;
1110 	}
1111 
1112 rollback:
1113 	ret = device_rename(&dev->dev, dev->name);
1114 	if (ret) {
1115 		memcpy(dev->name, oldname, IFNAMSIZ);
1116 		write_seqcount_end(&devnet_rename_seq);
1117 		return ret;
1118 	}
1119 
1120 	write_seqcount_end(&devnet_rename_seq);
1121 
1122 	netdev_adjacent_rename_links(dev, oldname);
1123 
1124 	write_lock_bh(&dev_base_lock);
1125 	hlist_del_rcu(&dev->name_hlist);
1126 	write_unlock_bh(&dev_base_lock);
1127 
1128 	synchronize_rcu();
1129 
1130 	write_lock_bh(&dev_base_lock);
1131 	hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1132 	write_unlock_bh(&dev_base_lock);
1133 
1134 	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1135 	ret = notifier_to_errno(ret);
1136 
1137 	if (ret) {
1138 		/* err >= 0 after dev_alloc_name() or stores the first errno */
1139 		if (err >= 0) {
1140 			err = ret;
1141 			write_seqcount_begin(&devnet_rename_seq);
1142 			memcpy(dev->name, oldname, IFNAMSIZ);
1143 			memcpy(oldname, newname, IFNAMSIZ);
1144 			goto rollback;
1145 		} else {
1146 			pr_err("%s: name change rollback failed: %d\n",
1147 			       dev->name, ret);
1148 		}
1149 	}
1150 
1151 	return err;
1152 }
1153 
1154 /**
1155  *	dev_set_alias - change ifalias of a device
1156  *	@dev: device
1157  *	@alias: name up to IFALIASZ
1158  *	@len: limit of bytes to copy from info
1159  *
1160  *	Set ifalias for a device,
1161  */
1162 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1163 {
1164 	char *new_ifalias;
1165 
1166 	ASSERT_RTNL();
1167 
1168 	if (len >= IFALIASZ)
1169 		return -EINVAL;
1170 
1171 	if (!len) {
1172 		kfree(dev->ifalias);
1173 		dev->ifalias = NULL;
1174 		return 0;
1175 	}
1176 
1177 	new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1178 	if (!new_ifalias)
1179 		return -ENOMEM;
1180 	dev->ifalias = new_ifalias;
1181 
1182 	strlcpy(dev->ifalias, alias, len+1);
1183 	return len;
1184 }
1185 
1186 
1187 /**
1188  *	netdev_features_change - device changes features
1189  *	@dev: device to cause notification
1190  *
1191  *	Called to indicate a device has changed features.
1192  */
1193 void netdev_features_change(struct net_device *dev)
1194 {
1195 	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1196 }
1197 EXPORT_SYMBOL(netdev_features_change);
1198 
1199 /**
1200  *	netdev_state_change - device changes state
1201  *	@dev: device to cause notification
1202  *
1203  *	Called to indicate a device has changed state. This function calls
1204  *	the notifier chains for netdev_chain and sends a NEWLINK message
1205  *	to the routing socket.
1206  */
1207 void netdev_state_change(struct net_device *dev)
1208 {
1209 	if (dev->flags & IFF_UP) {
1210 		call_netdevice_notifiers(NETDEV_CHANGE, dev);
1211 		rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1212 	}
1213 }
1214 EXPORT_SYMBOL(netdev_state_change);
1215 
1216 /**
1217  * 	netdev_notify_peers - notify network peers about existence of @dev
1218  * 	@dev: network device
1219  *
1220  * Generate traffic such that interested network peers are aware of
1221  * @dev, such as by generating a gratuitous ARP. This may be used when
1222  * a device wants to inform the rest of the network about some sort of
1223  * reconfiguration such as a failover event or virtual machine
1224  * migration.
1225  */
1226 void netdev_notify_peers(struct net_device *dev)
1227 {
1228 	rtnl_lock();
1229 	call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1230 	rtnl_unlock();
1231 }
1232 EXPORT_SYMBOL(netdev_notify_peers);
1233 
1234 static int __dev_open(struct net_device *dev)
1235 {
1236 	const struct net_device_ops *ops = dev->netdev_ops;
1237 	int ret;
1238 
1239 	ASSERT_RTNL();
1240 
1241 	if (!netif_device_present(dev))
1242 		return -ENODEV;
1243 
1244 	/* Block netpoll from trying to do any rx path servicing.
1245 	 * If we don't do this there is a chance ndo_poll_controller
1246 	 * or ndo_poll may be running while we open the device
1247 	 */
1248 	netpoll_rx_disable(dev);
1249 
1250 	ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1251 	ret = notifier_to_errno(ret);
1252 	if (ret)
1253 		return ret;
1254 
1255 	set_bit(__LINK_STATE_START, &dev->state);
1256 
1257 	if (ops->ndo_validate_addr)
1258 		ret = ops->ndo_validate_addr(dev);
1259 
1260 	if (!ret && ops->ndo_open)
1261 		ret = ops->ndo_open(dev);
1262 
1263 	netpoll_rx_enable(dev);
1264 
1265 	if (ret)
1266 		clear_bit(__LINK_STATE_START, &dev->state);
1267 	else {
1268 		dev->flags |= IFF_UP;
1269 		net_dmaengine_get();
1270 		dev_set_rx_mode(dev);
1271 		dev_activate(dev);
1272 		add_device_randomness(dev->dev_addr, dev->addr_len);
1273 	}
1274 
1275 	return ret;
1276 }
1277 
1278 /**
1279  *	dev_open	- prepare an interface for use.
1280  *	@dev:	device to open
1281  *
1282  *	Takes a device from down to up state. The device's private open
1283  *	function is invoked and then the multicast lists are loaded. Finally
1284  *	the device is moved into the up state and a %NETDEV_UP message is
1285  *	sent to the netdev notifier chain.
1286  *
1287  *	Calling this function on an active interface is a nop. On a failure
1288  *	a negative errno code is returned.
1289  */
1290 int dev_open(struct net_device *dev)
1291 {
1292 	int ret;
1293 
1294 	if (dev->flags & IFF_UP)
1295 		return 0;
1296 
1297 	ret = __dev_open(dev);
1298 	if (ret < 0)
1299 		return ret;
1300 
1301 	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1302 	call_netdevice_notifiers(NETDEV_UP, dev);
1303 
1304 	return ret;
1305 }
1306 EXPORT_SYMBOL(dev_open);
1307 
1308 static int __dev_close_many(struct list_head *head)
1309 {
1310 	struct net_device *dev;
1311 
1312 	ASSERT_RTNL();
1313 	might_sleep();
1314 
1315 	list_for_each_entry(dev, head, close_list) {
1316 		call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1317 
1318 		clear_bit(__LINK_STATE_START, &dev->state);
1319 
1320 		/* Synchronize to scheduled poll. We cannot touch poll list, it
1321 		 * can be even on different cpu. So just clear netif_running().
1322 		 *
1323 		 * dev->stop() will invoke napi_disable() on all of it's
1324 		 * napi_struct instances on this device.
1325 		 */
1326 		smp_mb__after_clear_bit(); /* Commit netif_running(). */
1327 	}
1328 
1329 	dev_deactivate_many(head);
1330 
1331 	list_for_each_entry(dev, head, close_list) {
1332 		const struct net_device_ops *ops = dev->netdev_ops;
1333 
1334 		/*
1335 		 *	Call the device specific close. This cannot fail.
1336 		 *	Only if device is UP
1337 		 *
1338 		 *	We allow it to be called even after a DETACH hot-plug
1339 		 *	event.
1340 		 */
1341 		if (ops->ndo_stop)
1342 			ops->ndo_stop(dev);
1343 
1344 		dev->flags &= ~IFF_UP;
1345 		net_dmaengine_put();
1346 	}
1347 
1348 	return 0;
1349 }
1350 
1351 static int __dev_close(struct net_device *dev)
1352 {
1353 	int retval;
1354 	LIST_HEAD(single);
1355 
1356 	/* Temporarily disable netpoll until the interface is down */
1357 	netpoll_rx_disable(dev);
1358 
1359 	list_add(&dev->close_list, &single);
1360 	retval = __dev_close_many(&single);
1361 	list_del(&single);
1362 
1363 	netpoll_rx_enable(dev);
1364 	return retval;
1365 }
1366 
1367 static int dev_close_many(struct list_head *head)
1368 {
1369 	struct net_device *dev, *tmp;
1370 
1371 	/* Remove the devices that don't need to be closed */
1372 	list_for_each_entry_safe(dev, tmp, head, close_list)
1373 		if (!(dev->flags & IFF_UP))
1374 			list_del_init(&dev->close_list);
1375 
1376 	__dev_close_many(head);
1377 
1378 	list_for_each_entry_safe(dev, tmp, head, close_list) {
1379 		rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1380 		call_netdevice_notifiers(NETDEV_DOWN, dev);
1381 		list_del_init(&dev->close_list);
1382 	}
1383 
1384 	return 0;
1385 }
1386 
1387 /**
1388  *	dev_close - shutdown an interface.
1389  *	@dev: device to shutdown
1390  *
1391  *	This function moves an active device into down state. A
1392  *	%NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1393  *	is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1394  *	chain.
1395  */
1396 int dev_close(struct net_device *dev)
1397 {
1398 	if (dev->flags & IFF_UP) {
1399 		LIST_HEAD(single);
1400 
1401 		/* Block netpoll rx while the interface is going down */
1402 		netpoll_rx_disable(dev);
1403 
1404 		list_add(&dev->close_list, &single);
1405 		dev_close_many(&single);
1406 		list_del(&single);
1407 
1408 		netpoll_rx_enable(dev);
1409 	}
1410 	return 0;
1411 }
1412 EXPORT_SYMBOL(dev_close);
1413 
1414 
1415 /**
1416  *	dev_disable_lro - disable Large Receive Offload on a device
1417  *	@dev: device
1418  *
1419  *	Disable Large Receive Offload (LRO) on a net device.  Must be
1420  *	called under RTNL.  This is needed if received packets may be
1421  *	forwarded to another interface.
1422  */
1423 void dev_disable_lro(struct net_device *dev)
1424 {
1425 	/*
1426 	 * If we're trying to disable lro on a vlan device
1427 	 * use the underlying physical device instead
1428 	 */
1429 	if (is_vlan_dev(dev))
1430 		dev = vlan_dev_real_dev(dev);
1431 
1432 	/* the same for macvlan devices */
1433 	if (netif_is_macvlan(dev))
1434 		dev = macvlan_dev_real_dev(dev);
1435 
1436 	dev->wanted_features &= ~NETIF_F_LRO;
1437 	netdev_update_features(dev);
1438 
1439 	if (unlikely(dev->features & NETIF_F_LRO))
1440 		netdev_WARN(dev, "failed to disable LRO!\n");
1441 }
1442 EXPORT_SYMBOL(dev_disable_lro);
1443 
1444 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1445 				   struct net_device *dev)
1446 {
1447 	struct netdev_notifier_info info;
1448 
1449 	netdev_notifier_info_init(&info, dev);
1450 	return nb->notifier_call(nb, val, &info);
1451 }
1452 
1453 static int dev_boot_phase = 1;
1454 
1455 /**
1456  *	register_netdevice_notifier - register a network notifier block
1457  *	@nb: notifier
1458  *
1459  *	Register a notifier to be called when network device events occur.
1460  *	The notifier passed is linked into the kernel structures and must
1461  *	not be reused until it has been unregistered. A negative errno code
1462  *	is returned on a failure.
1463  *
1464  * 	When registered all registration and up events are replayed
1465  *	to the new notifier to allow device to have a race free
1466  *	view of the network device list.
1467  */
1468 
1469 int register_netdevice_notifier(struct notifier_block *nb)
1470 {
1471 	struct net_device *dev;
1472 	struct net_device *last;
1473 	struct net *net;
1474 	int err;
1475 
1476 	rtnl_lock();
1477 	err = raw_notifier_chain_register(&netdev_chain, nb);
1478 	if (err)
1479 		goto unlock;
1480 	if (dev_boot_phase)
1481 		goto unlock;
1482 	for_each_net(net) {
1483 		for_each_netdev(net, dev) {
1484 			err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1485 			err = notifier_to_errno(err);
1486 			if (err)
1487 				goto rollback;
1488 
1489 			if (!(dev->flags & IFF_UP))
1490 				continue;
1491 
1492 			call_netdevice_notifier(nb, NETDEV_UP, dev);
1493 		}
1494 	}
1495 
1496 unlock:
1497 	rtnl_unlock();
1498 	return err;
1499 
1500 rollback:
1501 	last = dev;
1502 	for_each_net(net) {
1503 		for_each_netdev(net, dev) {
1504 			if (dev == last)
1505 				goto outroll;
1506 
1507 			if (dev->flags & IFF_UP) {
1508 				call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1509 							dev);
1510 				call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1511 			}
1512 			call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1513 		}
1514 	}
1515 
1516 outroll:
1517 	raw_notifier_chain_unregister(&netdev_chain, nb);
1518 	goto unlock;
1519 }
1520 EXPORT_SYMBOL(register_netdevice_notifier);
1521 
1522 /**
1523  *	unregister_netdevice_notifier - unregister a network notifier block
1524  *	@nb: notifier
1525  *
1526  *	Unregister a notifier previously registered by
1527  *	register_netdevice_notifier(). The notifier is unlinked into the
1528  *	kernel structures and may then be reused. A negative errno code
1529  *	is returned on a failure.
1530  *
1531  * 	After unregistering unregister and down device events are synthesized
1532  *	for all devices on the device list to the removed notifier to remove
1533  *	the need for special case cleanup code.
1534  */
1535 
1536 int unregister_netdevice_notifier(struct notifier_block *nb)
1537 {
1538 	struct net_device *dev;
1539 	struct net *net;
1540 	int err;
1541 
1542 	rtnl_lock();
1543 	err = raw_notifier_chain_unregister(&netdev_chain, nb);
1544 	if (err)
1545 		goto unlock;
1546 
1547 	for_each_net(net) {
1548 		for_each_netdev(net, dev) {
1549 			if (dev->flags & IFF_UP) {
1550 				call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1551 							dev);
1552 				call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1553 			}
1554 			call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1555 		}
1556 	}
1557 unlock:
1558 	rtnl_unlock();
1559 	return err;
1560 }
1561 EXPORT_SYMBOL(unregister_netdevice_notifier);
1562 
1563 /**
1564  *	call_netdevice_notifiers_info - call all network notifier blocks
1565  *	@val: value passed unmodified to notifier function
1566  *	@dev: net_device pointer passed unmodified to notifier function
1567  *	@info: notifier information data
1568  *
1569  *	Call all network notifier blocks.  Parameters and return value
1570  *	are as for raw_notifier_call_chain().
1571  */
1572 
1573 static int call_netdevice_notifiers_info(unsigned long val,
1574 					 struct net_device *dev,
1575 					 struct netdev_notifier_info *info)
1576 {
1577 	ASSERT_RTNL();
1578 	netdev_notifier_info_init(info, dev);
1579 	return raw_notifier_call_chain(&netdev_chain, val, info);
1580 }
1581 
1582 /**
1583  *	call_netdevice_notifiers - call all network notifier blocks
1584  *      @val: value passed unmodified to notifier function
1585  *      @dev: net_device pointer passed unmodified to notifier function
1586  *
1587  *	Call all network notifier blocks.  Parameters and return value
1588  *	are as for raw_notifier_call_chain().
1589  */
1590 
1591 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1592 {
1593 	struct netdev_notifier_info info;
1594 
1595 	return call_netdevice_notifiers_info(val, dev, &info);
1596 }
1597 EXPORT_SYMBOL(call_netdevice_notifiers);
1598 
1599 static struct static_key netstamp_needed __read_mostly;
1600 #ifdef HAVE_JUMP_LABEL
1601 /* We are not allowed to call static_key_slow_dec() from irq context
1602  * If net_disable_timestamp() is called from irq context, defer the
1603  * static_key_slow_dec() calls.
1604  */
1605 static atomic_t netstamp_needed_deferred;
1606 #endif
1607 
1608 void net_enable_timestamp(void)
1609 {
1610 #ifdef HAVE_JUMP_LABEL
1611 	int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1612 
1613 	if (deferred) {
1614 		while (--deferred)
1615 			static_key_slow_dec(&netstamp_needed);
1616 		return;
1617 	}
1618 #endif
1619 	static_key_slow_inc(&netstamp_needed);
1620 }
1621 EXPORT_SYMBOL(net_enable_timestamp);
1622 
1623 void net_disable_timestamp(void)
1624 {
1625 #ifdef HAVE_JUMP_LABEL
1626 	if (in_interrupt()) {
1627 		atomic_inc(&netstamp_needed_deferred);
1628 		return;
1629 	}
1630 #endif
1631 	static_key_slow_dec(&netstamp_needed);
1632 }
1633 EXPORT_SYMBOL(net_disable_timestamp);
1634 
1635 static inline void net_timestamp_set(struct sk_buff *skb)
1636 {
1637 	skb->tstamp.tv64 = 0;
1638 	if (static_key_false(&netstamp_needed))
1639 		__net_timestamp(skb);
1640 }
1641 
1642 #define net_timestamp_check(COND, SKB)			\
1643 	if (static_key_false(&netstamp_needed)) {		\
1644 		if ((COND) && !(SKB)->tstamp.tv64)	\
1645 			__net_timestamp(SKB);		\
1646 	}						\
1647 
1648 static inline bool is_skb_forwardable(struct net_device *dev,
1649 				      struct sk_buff *skb)
1650 {
1651 	unsigned int len;
1652 
1653 	if (!(dev->flags & IFF_UP))
1654 		return false;
1655 
1656 	len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1657 	if (skb->len <= len)
1658 		return true;
1659 
1660 	/* if TSO is enabled, we don't care about the length as the packet
1661 	 * could be forwarded without being segmented before
1662 	 */
1663 	if (skb_is_gso(skb))
1664 		return true;
1665 
1666 	return false;
1667 }
1668 
1669 /**
1670  * dev_forward_skb - loopback an skb to another netif
1671  *
1672  * @dev: destination network device
1673  * @skb: buffer to forward
1674  *
1675  * return values:
1676  *	NET_RX_SUCCESS	(no congestion)
1677  *	NET_RX_DROP     (packet was dropped, but freed)
1678  *
1679  * dev_forward_skb can be used for injecting an skb from the
1680  * start_xmit function of one device into the receive queue
1681  * of another device.
1682  *
1683  * The receiving device may be in another namespace, so
1684  * we have to clear all information in the skb that could
1685  * impact namespace isolation.
1686  */
1687 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1688 {
1689 	if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
1690 		if (skb_copy_ubufs(skb, GFP_ATOMIC)) {
1691 			atomic_long_inc(&dev->rx_dropped);
1692 			kfree_skb(skb);
1693 			return NET_RX_DROP;
1694 		}
1695 	}
1696 
1697 	if (unlikely(!is_skb_forwardable(dev, skb))) {
1698 		atomic_long_inc(&dev->rx_dropped);
1699 		kfree_skb(skb);
1700 		return NET_RX_DROP;
1701 	}
1702 
1703 	skb_scrub_packet(skb, true);
1704 	skb->protocol = eth_type_trans(skb, dev);
1705 
1706 	return netif_rx_internal(skb);
1707 }
1708 EXPORT_SYMBOL_GPL(dev_forward_skb);
1709 
1710 static inline int deliver_skb(struct sk_buff *skb,
1711 			      struct packet_type *pt_prev,
1712 			      struct net_device *orig_dev)
1713 {
1714 	if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1715 		return -ENOMEM;
1716 	atomic_inc(&skb->users);
1717 	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1718 }
1719 
1720 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1721 {
1722 	if (!ptype->af_packet_priv || !skb->sk)
1723 		return false;
1724 
1725 	if (ptype->id_match)
1726 		return ptype->id_match(ptype, skb->sk);
1727 	else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1728 		return true;
1729 
1730 	return false;
1731 }
1732 
1733 /*
1734  *	Support routine. Sends outgoing frames to any network
1735  *	taps currently in use.
1736  */
1737 
1738 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1739 {
1740 	struct packet_type *ptype;
1741 	struct sk_buff *skb2 = NULL;
1742 	struct packet_type *pt_prev = NULL;
1743 
1744 	rcu_read_lock();
1745 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
1746 		/* Never send packets back to the socket
1747 		 * they originated from - MvS (miquels@drinkel.ow.org)
1748 		 */
1749 		if ((ptype->dev == dev || !ptype->dev) &&
1750 		    (!skb_loop_sk(ptype, skb))) {
1751 			if (pt_prev) {
1752 				deliver_skb(skb2, pt_prev, skb->dev);
1753 				pt_prev = ptype;
1754 				continue;
1755 			}
1756 
1757 			skb2 = skb_clone(skb, GFP_ATOMIC);
1758 			if (!skb2)
1759 				break;
1760 
1761 			net_timestamp_set(skb2);
1762 
1763 			/* skb->nh should be correctly
1764 			   set by sender, so that the second statement is
1765 			   just protection against buggy protocols.
1766 			 */
1767 			skb_reset_mac_header(skb2);
1768 
1769 			if (skb_network_header(skb2) < skb2->data ||
1770 			    skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1771 				net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1772 						     ntohs(skb2->protocol),
1773 						     dev->name);
1774 				skb_reset_network_header(skb2);
1775 			}
1776 
1777 			skb2->transport_header = skb2->network_header;
1778 			skb2->pkt_type = PACKET_OUTGOING;
1779 			pt_prev = ptype;
1780 		}
1781 	}
1782 	if (pt_prev)
1783 		pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1784 	rcu_read_unlock();
1785 }
1786 
1787 /**
1788  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1789  * @dev: Network device
1790  * @txq: number of queues available
1791  *
1792  * If real_num_tx_queues is changed the tc mappings may no longer be
1793  * valid. To resolve this verify the tc mapping remains valid and if
1794  * not NULL the mapping. With no priorities mapping to this
1795  * offset/count pair it will no longer be used. In the worst case TC0
1796  * is invalid nothing can be done so disable priority mappings. If is
1797  * expected that drivers will fix this mapping if they can before
1798  * calling netif_set_real_num_tx_queues.
1799  */
1800 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1801 {
1802 	int i;
1803 	struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1804 
1805 	/* If TC0 is invalidated disable TC mapping */
1806 	if (tc->offset + tc->count > txq) {
1807 		pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1808 		dev->num_tc = 0;
1809 		return;
1810 	}
1811 
1812 	/* Invalidated prio to tc mappings set to TC0 */
1813 	for (i = 1; i < TC_BITMASK + 1; i++) {
1814 		int q = netdev_get_prio_tc_map(dev, i);
1815 
1816 		tc = &dev->tc_to_txq[q];
1817 		if (tc->offset + tc->count > txq) {
1818 			pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1819 				i, q);
1820 			netdev_set_prio_tc_map(dev, i, 0);
1821 		}
1822 	}
1823 }
1824 
1825 #ifdef CONFIG_XPS
1826 static DEFINE_MUTEX(xps_map_mutex);
1827 #define xmap_dereference(P)		\
1828 	rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
1829 
1830 static struct xps_map *remove_xps_queue(struct xps_dev_maps *dev_maps,
1831 					int cpu, u16 index)
1832 {
1833 	struct xps_map *map = NULL;
1834 	int pos;
1835 
1836 	if (dev_maps)
1837 		map = xmap_dereference(dev_maps->cpu_map[cpu]);
1838 
1839 	for (pos = 0; map && pos < map->len; pos++) {
1840 		if (map->queues[pos] == index) {
1841 			if (map->len > 1) {
1842 				map->queues[pos] = map->queues[--map->len];
1843 			} else {
1844 				RCU_INIT_POINTER(dev_maps->cpu_map[cpu], NULL);
1845 				kfree_rcu(map, rcu);
1846 				map = NULL;
1847 			}
1848 			break;
1849 		}
1850 	}
1851 
1852 	return map;
1853 }
1854 
1855 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
1856 {
1857 	struct xps_dev_maps *dev_maps;
1858 	int cpu, i;
1859 	bool active = false;
1860 
1861 	mutex_lock(&xps_map_mutex);
1862 	dev_maps = xmap_dereference(dev->xps_maps);
1863 
1864 	if (!dev_maps)
1865 		goto out_no_maps;
1866 
1867 	for_each_possible_cpu(cpu) {
1868 		for (i = index; i < dev->num_tx_queues; i++) {
1869 			if (!remove_xps_queue(dev_maps, cpu, i))
1870 				break;
1871 		}
1872 		if (i == dev->num_tx_queues)
1873 			active = true;
1874 	}
1875 
1876 	if (!active) {
1877 		RCU_INIT_POINTER(dev->xps_maps, NULL);
1878 		kfree_rcu(dev_maps, rcu);
1879 	}
1880 
1881 	for (i = index; i < dev->num_tx_queues; i++)
1882 		netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
1883 					     NUMA_NO_NODE);
1884 
1885 out_no_maps:
1886 	mutex_unlock(&xps_map_mutex);
1887 }
1888 
1889 static struct xps_map *expand_xps_map(struct xps_map *map,
1890 				      int cpu, u16 index)
1891 {
1892 	struct xps_map *new_map;
1893 	int alloc_len = XPS_MIN_MAP_ALLOC;
1894 	int i, pos;
1895 
1896 	for (pos = 0; map && pos < map->len; pos++) {
1897 		if (map->queues[pos] != index)
1898 			continue;
1899 		return map;
1900 	}
1901 
1902 	/* Need to add queue to this CPU's existing map */
1903 	if (map) {
1904 		if (pos < map->alloc_len)
1905 			return map;
1906 
1907 		alloc_len = map->alloc_len * 2;
1908 	}
1909 
1910 	/* Need to allocate new map to store queue on this CPU's map */
1911 	new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
1912 			       cpu_to_node(cpu));
1913 	if (!new_map)
1914 		return NULL;
1915 
1916 	for (i = 0; i < pos; i++)
1917 		new_map->queues[i] = map->queues[i];
1918 	new_map->alloc_len = alloc_len;
1919 	new_map->len = pos;
1920 
1921 	return new_map;
1922 }
1923 
1924 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
1925 			u16 index)
1926 {
1927 	struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
1928 	struct xps_map *map, *new_map;
1929 	int maps_sz = max_t(unsigned int, XPS_DEV_MAPS_SIZE, L1_CACHE_BYTES);
1930 	int cpu, numa_node_id = -2;
1931 	bool active = false;
1932 
1933 	mutex_lock(&xps_map_mutex);
1934 
1935 	dev_maps = xmap_dereference(dev->xps_maps);
1936 
1937 	/* allocate memory for queue storage */
1938 	for_each_online_cpu(cpu) {
1939 		if (!cpumask_test_cpu(cpu, mask))
1940 			continue;
1941 
1942 		if (!new_dev_maps)
1943 			new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
1944 		if (!new_dev_maps) {
1945 			mutex_unlock(&xps_map_mutex);
1946 			return -ENOMEM;
1947 		}
1948 
1949 		map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
1950 				 NULL;
1951 
1952 		map = expand_xps_map(map, cpu, index);
1953 		if (!map)
1954 			goto error;
1955 
1956 		RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
1957 	}
1958 
1959 	if (!new_dev_maps)
1960 		goto out_no_new_maps;
1961 
1962 	for_each_possible_cpu(cpu) {
1963 		if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
1964 			/* add queue to CPU maps */
1965 			int pos = 0;
1966 
1967 			map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
1968 			while ((pos < map->len) && (map->queues[pos] != index))
1969 				pos++;
1970 
1971 			if (pos == map->len)
1972 				map->queues[map->len++] = index;
1973 #ifdef CONFIG_NUMA
1974 			if (numa_node_id == -2)
1975 				numa_node_id = cpu_to_node(cpu);
1976 			else if (numa_node_id != cpu_to_node(cpu))
1977 				numa_node_id = -1;
1978 #endif
1979 		} else if (dev_maps) {
1980 			/* fill in the new device map from the old device map */
1981 			map = xmap_dereference(dev_maps->cpu_map[cpu]);
1982 			RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
1983 		}
1984 
1985 	}
1986 
1987 	rcu_assign_pointer(dev->xps_maps, new_dev_maps);
1988 
1989 	/* Cleanup old maps */
1990 	if (dev_maps) {
1991 		for_each_possible_cpu(cpu) {
1992 			new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
1993 			map = xmap_dereference(dev_maps->cpu_map[cpu]);
1994 			if (map && map != new_map)
1995 				kfree_rcu(map, rcu);
1996 		}
1997 
1998 		kfree_rcu(dev_maps, rcu);
1999 	}
2000 
2001 	dev_maps = new_dev_maps;
2002 	active = true;
2003 
2004 out_no_new_maps:
2005 	/* update Tx queue numa node */
2006 	netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2007 				     (numa_node_id >= 0) ? numa_node_id :
2008 				     NUMA_NO_NODE);
2009 
2010 	if (!dev_maps)
2011 		goto out_no_maps;
2012 
2013 	/* removes queue from unused CPUs */
2014 	for_each_possible_cpu(cpu) {
2015 		if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu))
2016 			continue;
2017 
2018 		if (remove_xps_queue(dev_maps, cpu, index))
2019 			active = true;
2020 	}
2021 
2022 	/* free map if not active */
2023 	if (!active) {
2024 		RCU_INIT_POINTER(dev->xps_maps, NULL);
2025 		kfree_rcu(dev_maps, rcu);
2026 	}
2027 
2028 out_no_maps:
2029 	mutex_unlock(&xps_map_mutex);
2030 
2031 	return 0;
2032 error:
2033 	/* remove any maps that we added */
2034 	for_each_possible_cpu(cpu) {
2035 		new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2036 		map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2037 				 NULL;
2038 		if (new_map && new_map != map)
2039 			kfree(new_map);
2040 	}
2041 
2042 	mutex_unlock(&xps_map_mutex);
2043 
2044 	kfree(new_dev_maps);
2045 	return -ENOMEM;
2046 }
2047 EXPORT_SYMBOL(netif_set_xps_queue);
2048 
2049 #endif
2050 /*
2051  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2052  * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2053  */
2054 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2055 {
2056 	int rc;
2057 
2058 	if (txq < 1 || txq > dev->num_tx_queues)
2059 		return -EINVAL;
2060 
2061 	if (dev->reg_state == NETREG_REGISTERED ||
2062 	    dev->reg_state == NETREG_UNREGISTERING) {
2063 		ASSERT_RTNL();
2064 
2065 		rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2066 						  txq);
2067 		if (rc)
2068 			return rc;
2069 
2070 		if (dev->num_tc)
2071 			netif_setup_tc(dev, txq);
2072 
2073 		if (txq < dev->real_num_tx_queues) {
2074 			qdisc_reset_all_tx_gt(dev, txq);
2075 #ifdef CONFIG_XPS
2076 			netif_reset_xps_queues_gt(dev, txq);
2077 #endif
2078 		}
2079 	}
2080 
2081 	dev->real_num_tx_queues = txq;
2082 	return 0;
2083 }
2084 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2085 
2086 #ifdef CONFIG_RPS
2087 /**
2088  *	netif_set_real_num_rx_queues - set actual number of RX queues used
2089  *	@dev: Network device
2090  *	@rxq: Actual number of RX queues
2091  *
2092  *	This must be called either with the rtnl_lock held or before
2093  *	registration of the net device.  Returns 0 on success, or a
2094  *	negative error code.  If called before registration, it always
2095  *	succeeds.
2096  */
2097 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2098 {
2099 	int rc;
2100 
2101 	if (rxq < 1 || rxq > dev->num_rx_queues)
2102 		return -EINVAL;
2103 
2104 	if (dev->reg_state == NETREG_REGISTERED) {
2105 		ASSERT_RTNL();
2106 
2107 		rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2108 						  rxq);
2109 		if (rc)
2110 			return rc;
2111 	}
2112 
2113 	dev->real_num_rx_queues = rxq;
2114 	return 0;
2115 }
2116 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2117 #endif
2118 
2119 /**
2120  * netif_get_num_default_rss_queues - default number of RSS queues
2121  *
2122  * This routine should set an upper limit on the number of RSS queues
2123  * used by default by multiqueue devices.
2124  */
2125 int netif_get_num_default_rss_queues(void)
2126 {
2127 	return min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2128 }
2129 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2130 
2131 static inline void __netif_reschedule(struct Qdisc *q)
2132 {
2133 	struct softnet_data *sd;
2134 	unsigned long flags;
2135 
2136 	local_irq_save(flags);
2137 	sd = &__get_cpu_var(softnet_data);
2138 	q->next_sched = NULL;
2139 	*sd->output_queue_tailp = q;
2140 	sd->output_queue_tailp = &q->next_sched;
2141 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
2142 	local_irq_restore(flags);
2143 }
2144 
2145 void __netif_schedule(struct Qdisc *q)
2146 {
2147 	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2148 		__netif_reschedule(q);
2149 }
2150 EXPORT_SYMBOL(__netif_schedule);
2151 
2152 struct dev_kfree_skb_cb {
2153 	enum skb_free_reason reason;
2154 };
2155 
2156 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2157 {
2158 	return (struct dev_kfree_skb_cb *)skb->cb;
2159 }
2160 
2161 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2162 {
2163 	unsigned long flags;
2164 
2165 	if (likely(atomic_read(&skb->users) == 1)) {
2166 		smp_rmb();
2167 		atomic_set(&skb->users, 0);
2168 	} else if (likely(!atomic_dec_and_test(&skb->users))) {
2169 		return;
2170 	}
2171 	get_kfree_skb_cb(skb)->reason = reason;
2172 	local_irq_save(flags);
2173 	skb->next = __this_cpu_read(softnet_data.completion_queue);
2174 	__this_cpu_write(softnet_data.completion_queue, skb);
2175 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
2176 	local_irq_restore(flags);
2177 }
2178 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2179 
2180 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2181 {
2182 	if (in_irq() || irqs_disabled())
2183 		__dev_kfree_skb_irq(skb, reason);
2184 	else
2185 		dev_kfree_skb(skb);
2186 }
2187 EXPORT_SYMBOL(__dev_kfree_skb_any);
2188 
2189 
2190 /**
2191  * netif_device_detach - mark device as removed
2192  * @dev: network device
2193  *
2194  * Mark device as removed from system and therefore no longer available.
2195  */
2196 void netif_device_detach(struct net_device *dev)
2197 {
2198 	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2199 	    netif_running(dev)) {
2200 		netif_tx_stop_all_queues(dev);
2201 	}
2202 }
2203 EXPORT_SYMBOL(netif_device_detach);
2204 
2205 /**
2206  * netif_device_attach - mark device as attached
2207  * @dev: network device
2208  *
2209  * Mark device as attached from system and restart if needed.
2210  */
2211 void netif_device_attach(struct net_device *dev)
2212 {
2213 	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2214 	    netif_running(dev)) {
2215 		netif_tx_wake_all_queues(dev);
2216 		__netdev_watchdog_up(dev);
2217 	}
2218 }
2219 EXPORT_SYMBOL(netif_device_attach);
2220 
2221 static void skb_warn_bad_offload(const struct sk_buff *skb)
2222 {
2223 	static const netdev_features_t null_features = 0;
2224 	struct net_device *dev = skb->dev;
2225 	const char *driver = "";
2226 
2227 	if (!net_ratelimit())
2228 		return;
2229 
2230 	if (dev && dev->dev.parent)
2231 		driver = dev_driver_string(dev->dev.parent);
2232 
2233 	WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2234 	     "gso_type=%d ip_summed=%d\n",
2235 	     driver, dev ? &dev->features : &null_features,
2236 	     skb->sk ? &skb->sk->sk_route_caps : &null_features,
2237 	     skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2238 	     skb_shinfo(skb)->gso_type, skb->ip_summed);
2239 }
2240 
2241 /*
2242  * Invalidate hardware checksum when packet is to be mangled, and
2243  * complete checksum manually on outgoing path.
2244  */
2245 int skb_checksum_help(struct sk_buff *skb)
2246 {
2247 	__wsum csum;
2248 	int ret = 0, offset;
2249 
2250 	if (skb->ip_summed == CHECKSUM_COMPLETE)
2251 		goto out_set_summed;
2252 
2253 	if (unlikely(skb_shinfo(skb)->gso_size)) {
2254 		skb_warn_bad_offload(skb);
2255 		return -EINVAL;
2256 	}
2257 
2258 	/* Before computing a checksum, we should make sure no frag could
2259 	 * be modified by an external entity : checksum could be wrong.
2260 	 */
2261 	if (skb_has_shared_frag(skb)) {
2262 		ret = __skb_linearize(skb);
2263 		if (ret)
2264 			goto out;
2265 	}
2266 
2267 	offset = skb_checksum_start_offset(skb);
2268 	BUG_ON(offset >= skb_headlen(skb));
2269 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
2270 
2271 	offset += skb->csum_offset;
2272 	BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2273 
2274 	if (skb_cloned(skb) &&
2275 	    !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2276 		ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2277 		if (ret)
2278 			goto out;
2279 	}
2280 
2281 	*(__sum16 *)(skb->data + offset) = csum_fold(csum);
2282 out_set_summed:
2283 	skb->ip_summed = CHECKSUM_NONE;
2284 out:
2285 	return ret;
2286 }
2287 EXPORT_SYMBOL(skb_checksum_help);
2288 
2289 __be16 skb_network_protocol(struct sk_buff *skb)
2290 {
2291 	__be16 type = skb->protocol;
2292 	int vlan_depth = ETH_HLEN;
2293 
2294 	/* Tunnel gso handlers can set protocol to ethernet. */
2295 	if (type == htons(ETH_P_TEB)) {
2296 		struct ethhdr *eth;
2297 
2298 		if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2299 			return 0;
2300 
2301 		eth = (struct ethhdr *)skb_mac_header(skb);
2302 		type = eth->h_proto;
2303 	}
2304 
2305 	while (type == htons(ETH_P_8021Q) || type == htons(ETH_P_8021AD)) {
2306 		struct vlan_hdr *vh;
2307 
2308 		if (unlikely(!pskb_may_pull(skb, vlan_depth + VLAN_HLEN)))
2309 			return 0;
2310 
2311 		vh = (struct vlan_hdr *)(skb->data + vlan_depth);
2312 		type = vh->h_vlan_encapsulated_proto;
2313 		vlan_depth += VLAN_HLEN;
2314 	}
2315 
2316 	return type;
2317 }
2318 
2319 /**
2320  *	skb_mac_gso_segment - mac layer segmentation handler.
2321  *	@skb: buffer to segment
2322  *	@features: features for the output path (see dev->features)
2323  */
2324 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2325 				    netdev_features_t features)
2326 {
2327 	struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2328 	struct packet_offload *ptype;
2329 	__be16 type = skb_network_protocol(skb);
2330 
2331 	if (unlikely(!type))
2332 		return ERR_PTR(-EINVAL);
2333 
2334 	__skb_pull(skb, skb->mac_len);
2335 
2336 	rcu_read_lock();
2337 	list_for_each_entry_rcu(ptype, &offload_base, list) {
2338 		if (ptype->type == type && ptype->callbacks.gso_segment) {
2339 			if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
2340 				int err;
2341 
2342 				err = ptype->callbacks.gso_send_check(skb);
2343 				segs = ERR_PTR(err);
2344 				if (err || skb_gso_ok(skb, features))
2345 					break;
2346 				__skb_push(skb, (skb->data -
2347 						 skb_network_header(skb)));
2348 			}
2349 			segs = ptype->callbacks.gso_segment(skb, features);
2350 			break;
2351 		}
2352 	}
2353 	rcu_read_unlock();
2354 
2355 	__skb_push(skb, skb->data - skb_mac_header(skb));
2356 
2357 	return segs;
2358 }
2359 EXPORT_SYMBOL(skb_mac_gso_segment);
2360 
2361 
2362 /* openvswitch calls this on rx path, so we need a different check.
2363  */
2364 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2365 {
2366 	if (tx_path)
2367 		return skb->ip_summed != CHECKSUM_PARTIAL;
2368 	else
2369 		return skb->ip_summed == CHECKSUM_NONE;
2370 }
2371 
2372 /**
2373  *	__skb_gso_segment - Perform segmentation on skb.
2374  *	@skb: buffer to segment
2375  *	@features: features for the output path (see dev->features)
2376  *	@tx_path: whether it is called in TX path
2377  *
2378  *	This function segments the given skb and returns a list of segments.
2379  *
2380  *	It may return NULL if the skb requires no segmentation.  This is
2381  *	only possible when GSO is used for verifying header integrity.
2382  */
2383 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2384 				  netdev_features_t features, bool tx_path)
2385 {
2386 	if (unlikely(skb_needs_check(skb, tx_path))) {
2387 		int err;
2388 
2389 		skb_warn_bad_offload(skb);
2390 
2391 		if (skb_header_cloned(skb) &&
2392 		    (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
2393 			return ERR_PTR(err);
2394 	}
2395 
2396 	SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2397 	SKB_GSO_CB(skb)->encap_level = 0;
2398 
2399 	skb_reset_mac_header(skb);
2400 	skb_reset_mac_len(skb);
2401 
2402 	return skb_mac_gso_segment(skb, features);
2403 }
2404 EXPORT_SYMBOL(__skb_gso_segment);
2405 
2406 /* Take action when hardware reception checksum errors are detected. */
2407 #ifdef CONFIG_BUG
2408 void netdev_rx_csum_fault(struct net_device *dev)
2409 {
2410 	if (net_ratelimit()) {
2411 		pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2412 		dump_stack();
2413 	}
2414 }
2415 EXPORT_SYMBOL(netdev_rx_csum_fault);
2416 #endif
2417 
2418 /* Actually, we should eliminate this check as soon as we know, that:
2419  * 1. IOMMU is present and allows to map all the memory.
2420  * 2. No high memory really exists on this machine.
2421  */
2422 
2423 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2424 {
2425 #ifdef CONFIG_HIGHMEM
2426 	int i;
2427 	if (!(dev->features & NETIF_F_HIGHDMA)) {
2428 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2429 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2430 			if (PageHighMem(skb_frag_page(frag)))
2431 				return 1;
2432 		}
2433 	}
2434 
2435 	if (PCI_DMA_BUS_IS_PHYS) {
2436 		struct device *pdev = dev->dev.parent;
2437 
2438 		if (!pdev)
2439 			return 0;
2440 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2441 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2442 			dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2443 			if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2444 				return 1;
2445 		}
2446 	}
2447 #endif
2448 	return 0;
2449 }
2450 
2451 struct dev_gso_cb {
2452 	void (*destructor)(struct sk_buff *skb);
2453 };
2454 
2455 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
2456 
2457 static void dev_gso_skb_destructor(struct sk_buff *skb)
2458 {
2459 	struct dev_gso_cb *cb;
2460 
2461 	kfree_skb_list(skb->next);
2462 	skb->next = NULL;
2463 
2464 	cb = DEV_GSO_CB(skb);
2465 	if (cb->destructor)
2466 		cb->destructor(skb);
2467 }
2468 
2469 /**
2470  *	dev_gso_segment - Perform emulated hardware segmentation on skb.
2471  *	@skb: buffer to segment
2472  *	@features: device features as applicable to this skb
2473  *
2474  *	This function segments the given skb and stores the list of segments
2475  *	in skb->next.
2476  */
2477 static int dev_gso_segment(struct sk_buff *skb, netdev_features_t features)
2478 {
2479 	struct sk_buff *segs;
2480 
2481 	segs = skb_gso_segment(skb, features);
2482 
2483 	/* Verifying header integrity only. */
2484 	if (!segs)
2485 		return 0;
2486 
2487 	if (IS_ERR(segs))
2488 		return PTR_ERR(segs);
2489 
2490 	skb->next = segs;
2491 	DEV_GSO_CB(skb)->destructor = skb->destructor;
2492 	skb->destructor = dev_gso_skb_destructor;
2493 
2494 	return 0;
2495 }
2496 
2497 static netdev_features_t harmonize_features(struct sk_buff *skb,
2498 	netdev_features_t features)
2499 {
2500 	if (skb->ip_summed != CHECKSUM_NONE &&
2501 	    !can_checksum_protocol(features, skb_network_protocol(skb))) {
2502 		features &= ~NETIF_F_ALL_CSUM;
2503 	} else if (illegal_highdma(skb->dev, skb)) {
2504 		features &= ~NETIF_F_SG;
2505 	}
2506 
2507 	return features;
2508 }
2509 
2510 netdev_features_t netif_skb_features(struct sk_buff *skb)
2511 {
2512 	__be16 protocol = skb->protocol;
2513 	netdev_features_t features = skb->dev->features;
2514 
2515 	if (skb_shinfo(skb)->gso_segs > skb->dev->gso_max_segs)
2516 		features &= ~NETIF_F_GSO_MASK;
2517 
2518 	if (protocol == htons(ETH_P_8021Q) || protocol == htons(ETH_P_8021AD)) {
2519 		struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
2520 		protocol = veh->h_vlan_encapsulated_proto;
2521 	} else if (!vlan_tx_tag_present(skb)) {
2522 		return harmonize_features(skb, features);
2523 	}
2524 
2525 	features &= (skb->dev->vlan_features | NETIF_F_HW_VLAN_CTAG_TX |
2526 					       NETIF_F_HW_VLAN_STAG_TX);
2527 
2528 	if (protocol == htons(ETH_P_8021Q) || protocol == htons(ETH_P_8021AD))
2529 		features &= NETIF_F_SG | NETIF_F_HIGHDMA | NETIF_F_FRAGLIST |
2530 				NETIF_F_GEN_CSUM | NETIF_F_HW_VLAN_CTAG_TX |
2531 				NETIF_F_HW_VLAN_STAG_TX;
2532 
2533 	return harmonize_features(skb, features);
2534 }
2535 EXPORT_SYMBOL(netif_skb_features);
2536 
2537 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
2538 			struct netdev_queue *txq)
2539 {
2540 	const struct net_device_ops *ops = dev->netdev_ops;
2541 	int rc = NETDEV_TX_OK;
2542 	unsigned int skb_len;
2543 
2544 	if (likely(!skb->next)) {
2545 		netdev_features_t features;
2546 
2547 		/*
2548 		 * If device doesn't need skb->dst, release it right now while
2549 		 * its hot in this cpu cache
2550 		 */
2551 		if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2552 			skb_dst_drop(skb);
2553 
2554 		features = netif_skb_features(skb);
2555 
2556 		if (vlan_tx_tag_present(skb) &&
2557 		    !vlan_hw_offload_capable(features, skb->vlan_proto)) {
2558 			skb = __vlan_put_tag(skb, skb->vlan_proto,
2559 					     vlan_tx_tag_get(skb));
2560 			if (unlikely(!skb))
2561 				goto out;
2562 
2563 			skb->vlan_tci = 0;
2564 		}
2565 
2566 		/* If encapsulation offload request, verify we are testing
2567 		 * hardware encapsulation features instead of standard
2568 		 * features for the netdev
2569 		 */
2570 		if (skb->encapsulation)
2571 			features &= dev->hw_enc_features;
2572 
2573 		if (netif_needs_gso(skb, features)) {
2574 			if (unlikely(dev_gso_segment(skb, features)))
2575 				goto out_kfree_skb;
2576 			if (skb->next)
2577 				goto gso;
2578 		} else {
2579 			if (skb_needs_linearize(skb, features) &&
2580 			    __skb_linearize(skb))
2581 				goto out_kfree_skb;
2582 
2583 			/* If packet is not checksummed and device does not
2584 			 * support checksumming for this protocol, complete
2585 			 * checksumming here.
2586 			 */
2587 			if (skb->ip_summed == CHECKSUM_PARTIAL) {
2588 				if (skb->encapsulation)
2589 					skb_set_inner_transport_header(skb,
2590 						skb_checksum_start_offset(skb));
2591 				else
2592 					skb_set_transport_header(skb,
2593 						skb_checksum_start_offset(skb));
2594 				if (!(features & NETIF_F_ALL_CSUM) &&
2595 				     skb_checksum_help(skb))
2596 					goto out_kfree_skb;
2597 			}
2598 		}
2599 
2600 		if (!list_empty(&ptype_all))
2601 			dev_queue_xmit_nit(skb, dev);
2602 
2603 		skb_len = skb->len;
2604 		trace_net_dev_start_xmit(skb, dev);
2605 		rc = ops->ndo_start_xmit(skb, dev);
2606 		trace_net_dev_xmit(skb, rc, dev, skb_len);
2607 		if (rc == NETDEV_TX_OK)
2608 			txq_trans_update(txq);
2609 		return rc;
2610 	}
2611 
2612 gso:
2613 	do {
2614 		struct sk_buff *nskb = skb->next;
2615 
2616 		skb->next = nskb->next;
2617 		nskb->next = NULL;
2618 
2619 		if (!list_empty(&ptype_all))
2620 			dev_queue_xmit_nit(nskb, dev);
2621 
2622 		skb_len = nskb->len;
2623 		trace_net_dev_start_xmit(nskb, dev);
2624 		rc = ops->ndo_start_xmit(nskb, dev);
2625 		trace_net_dev_xmit(nskb, rc, dev, skb_len);
2626 		if (unlikely(rc != NETDEV_TX_OK)) {
2627 			if (rc & ~NETDEV_TX_MASK)
2628 				goto out_kfree_gso_skb;
2629 			nskb->next = skb->next;
2630 			skb->next = nskb;
2631 			return rc;
2632 		}
2633 		txq_trans_update(txq);
2634 		if (unlikely(netif_xmit_stopped(txq) && skb->next))
2635 			return NETDEV_TX_BUSY;
2636 	} while (skb->next);
2637 
2638 out_kfree_gso_skb:
2639 	if (likely(skb->next == NULL)) {
2640 		skb->destructor = DEV_GSO_CB(skb)->destructor;
2641 		consume_skb(skb);
2642 		return rc;
2643 	}
2644 out_kfree_skb:
2645 	kfree_skb(skb);
2646 out:
2647 	return rc;
2648 }
2649 EXPORT_SYMBOL_GPL(dev_hard_start_xmit);
2650 
2651 static void qdisc_pkt_len_init(struct sk_buff *skb)
2652 {
2653 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
2654 
2655 	qdisc_skb_cb(skb)->pkt_len = skb->len;
2656 
2657 	/* To get more precise estimation of bytes sent on wire,
2658 	 * we add to pkt_len the headers size of all segments
2659 	 */
2660 	if (shinfo->gso_size)  {
2661 		unsigned int hdr_len;
2662 		u16 gso_segs = shinfo->gso_segs;
2663 
2664 		/* mac layer + network layer */
2665 		hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
2666 
2667 		/* + transport layer */
2668 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
2669 			hdr_len += tcp_hdrlen(skb);
2670 		else
2671 			hdr_len += sizeof(struct udphdr);
2672 
2673 		if (shinfo->gso_type & SKB_GSO_DODGY)
2674 			gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
2675 						shinfo->gso_size);
2676 
2677 		qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
2678 	}
2679 }
2680 
2681 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2682 				 struct net_device *dev,
2683 				 struct netdev_queue *txq)
2684 {
2685 	spinlock_t *root_lock = qdisc_lock(q);
2686 	bool contended;
2687 	int rc;
2688 
2689 	qdisc_pkt_len_init(skb);
2690 	qdisc_calculate_pkt_len(skb, q);
2691 	/*
2692 	 * Heuristic to force contended enqueues to serialize on a
2693 	 * separate lock before trying to get qdisc main lock.
2694 	 * This permits __QDISC_STATE_RUNNING owner to get the lock more often
2695 	 * and dequeue packets faster.
2696 	 */
2697 	contended = qdisc_is_running(q);
2698 	if (unlikely(contended))
2699 		spin_lock(&q->busylock);
2700 
2701 	spin_lock(root_lock);
2702 	if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2703 		kfree_skb(skb);
2704 		rc = NET_XMIT_DROP;
2705 	} else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2706 		   qdisc_run_begin(q)) {
2707 		/*
2708 		 * This is a work-conserving queue; there are no old skbs
2709 		 * waiting to be sent out; and the qdisc is not running -
2710 		 * xmit the skb directly.
2711 		 */
2712 		if (!(dev->priv_flags & IFF_XMIT_DST_RELEASE))
2713 			skb_dst_force(skb);
2714 
2715 		qdisc_bstats_update(q, skb);
2716 
2717 		if (sch_direct_xmit(skb, q, dev, txq, root_lock)) {
2718 			if (unlikely(contended)) {
2719 				spin_unlock(&q->busylock);
2720 				contended = false;
2721 			}
2722 			__qdisc_run(q);
2723 		} else
2724 			qdisc_run_end(q);
2725 
2726 		rc = NET_XMIT_SUCCESS;
2727 	} else {
2728 		skb_dst_force(skb);
2729 		rc = q->enqueue(skb, q) & NET_XMIT_MASK;
2730 		if (qdisc_run_begin(q)) {
2731 			if (unlikely(contended)) {
2732 				spin_unlock(&q->busylock);
2733 				contended = false;
2734 			}
2735 			__qdisc_run(q);
2736 		}
2737 	}
2738 	spin_unlock(root_lock);
2739 	if (unlikely(contended))
2740 		spin_unlock(&q->busylock);
2741 	return rc;
2742 }
2743 
2744 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
2745 static void skb_update_prio(struct sk_buff *skb)
2746 {
2747 	struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
2748 
2749 	if (!skb->priority && skb->sk && map) {
2750 		unsigned int prioidx = skb->sk->sk_cgrp_prioidx;
2751 
2752 		if (prioidx < map->priomap_len)
2753 			skb->priority = map->priomap[prioidx];
2754 	}
2755 }
2756 #else
2757 #define skb_update_prio(skb)
2758 #endif
2759 
2760 static DEFINE_PER_CPU(int, xmit_recursion);
2761 #define RECURSION_LIMIT 10
2762 
2763 /**
2764  *	dev_loopback_xmit - loop back @skb
2765  *	@skb: buffer to transmit
2766  */
2767 int dev_loopback_xmit(struct sk_buff *skb)
2768 {
2769 	skb_reset_mac_header(skb);
2770 	__skb_pull(skb, skb_network_offset(skb));
2771 	skb->pkt_type = PACKET_LOOPBACK;
2772 	skb->ip_summed = CHECKSUM_UNNECESSARY;
2773 	WARN_ON(!skb_dst(skb));
2774 	skb_dst_force(skb);
2775 	netif_rx_ni(skb);
2776 	return 0;
2777 }
2778 EXPORT_SYMBOL(dev_loopback_xmit);
2779 
2780 /**
2781  *	dev_queue_xmit - transmit a buffer
2782  *	@skb: buffer to transmit
2783  *
2784  *	Queue a buffer for transmission to a network device. The caller must
2785  *	have set the device and priority and built the buffer before calling
2786  *	this function. The function can be called from an interrupt.
2787  *
2788  *	A negative errno code is returned on a failure. A success does not
2789  *	guarantee the frame will be transmitted as it may be dropped due
2790  *	to congestion or traffic shaping.
2791  *
2792  * -----------------------------------------------------------------------------------
2793  *      I notice this method can also return errors from the queue disciplines,
2794  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
2795  *      be positive.
2796  *
2797  *      Regardless of the return value, the skb is consumed, so it is currently
2798  *      difficult to retry a send to this method.  (You can bump the ref count
2799  *      before sending to hold a reference for retry if you are careful.)
2800  *
2801  *      When calling this method, interrupts MUST be enabled.  This is because
2802  *      the BH enable code must have IRQs enabled so that it will not deadlock.
2803  *          --BLG
2804  */
2805 int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
2806 {
2807 	struct net_device *dev = skb->dev;
2808 	struct netdev_queue *txq;
2809 	struct Qdisc *q;
2810 	int rc = -ENOMEM;
2811 
2812 	skb_reset_mac_header(skb);
2813 
2814 	/* Disable soft irqs for various locks below. Also
2815 	 * stops preemption for RCU.
2816 	 */
2817 	rcu_read_lock_bh();
2818 
2819 	skb_update_prio(skb);
2820 
2821 	txq = netdev_pick_tx(dev, skb, accel_priv);
2822 	q = rcu_dereference_bh(txq->qdisc);
2823 
2824 #ifdef CONFIG_NET_CLS_ACT
2825 	skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
2826 #endif
2827 	trace_net_dev_queue(skb);
2828 	if (q->enqueue) {
2829 		rc = __dev_xmit_skb(skb, q, dev, txq);
2830 		goto out;
2831 	}
2832 
2833 	/* The device has no queue. Common case for software devices:
2834 	   loopback, all the sorts of tunnels...
2835 
2836 	   Really, it is unlikely that netif_tx_lock protection is necessary
2837 	   here.  (f.e. loopback and IP tunnels are clean ignoring statistics
2838 	   counters.)
2839 	   However, it is possible, that they rely on protection
2840 	   made by us here.
2841 
2842 	   Check this and shot the lock. It is not prone from deadlocks.
2843 	   Either shot noqueue qdisc, it is even simpler 8)
2844 	 */
2845 	if (dev->flags & IFF_UP) {
2846 		int cpu = smp_processor_id(); /* ok because BHs are off */
2847 
2848 		if (txq->xmit_lock_owner != cpu) {
2849 
2850 			if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
2851 				goto recursion_alert;
2852 
2853 			HARD_TX_LOCK(dev, txq, cpu);
2854 
2855 			if (!netif_xmit_stopped(txq)) {
2856 				__this_cpu_inc(xmit_recursion);
2857 				rc = dev_hard_start_xmit(skb, dev, txq);
2858 				__this_cpu_dec(xmit_recursion);
2859 				if (dev_xmit_complete(rc)) {
2860 					HARD_TX_UNLOCK(dev, txq);
2861 					goto out;
2862 				}
2863 			}
2864 			HARD_TX_UNLOCK(dev, txq);
2865 			net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
2866 					     dev->name);
2867 		} else {
2868 			/* Recursion is detected! It is possible,
2869 			 * unfortunately
2870 			 */
2871 recursion_alert:
2872 			net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
2873 					     dev->name);
2874 		}
2875 	}
2876 
2877 	rc = -ENETDOWN;
2878 	rcu_read_unlock_bh();
2879 
2880 	kfree_skb(skb);
2881 	return rc;
2882 out:
2883 	rcu_read_unlock_bh();
2884 	return rc;
2885 }
2886 
2887 int dev_queue_xmit(struct sk_buff *skb)
2888 {
2889 	return __dev_queue_xmit(skb, NULL);
2890 }
2891 EXPORT_SYMBOL(dev_queue_xmit);
2892 
2893 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
2894 {
2895 	return __dev_queue_xmit(skb, accel_priv);
2896 }
2897 EXPORT_SYMBOL(dev_queue_xmit_accel);
2898 
2899 
2900 /*=======================================================================
2901 			Receiver routines
2902   =======================================================================*/
2903 
2904 int netdev_max_backlog __read_mostly = 1000;
2905 EXPORT_SYMBOL(netdev_max_backlog);
2906 
2907 int netdev_tstamp_prequeue __read_mostly = 1;
2908 int netdev_budget __read_mostly = 300;
2909 int weight_p __read_mostly = 64;            /* old backlog weight */
2910 
2911 /* Called with irq disabled */
2912 static inline void ____napi_schedule(struct softnet_data *sd,
2913 				     struct napi_struct *napi)
2914 {
2915 	list_add_tail(&napi->poll_list, &sd->poll_list);
2916 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
2917 }
2918 
2919 #ifdef CONFIG_RPS
2920 
2921 /* One global table that all flow-based protocols share. */
2922 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
2923 EXPORT_SYMBOL(rps_sock_flow_table);
2924 
2925 struct static_key rps_needed __read_mostly;
2926 
2927 static struct rps_dev_flow *
2928 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2929 	    struct rps_dev_flow *rflow, u16 next_cpu)
2930 {
2931 	if (next_cpu != RPS_NO_CPU) {
2932 #ifdef CONFIG_RFS_ACCEL
2933 		struct netdev_rx_queue *rxqueue;
2934 		struct rps_dev_flow_table *flow_table;
2935 		struct rps_dev_flow *old_rflow;
2936 		u32 flow_id;
2937 		u16 rxq_index;
2938 		int rc;
2939 
2940 		/* Should we steer this flow to a different hardware queue? */
2941 		if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
2942 		    !(dev->features & NETIF_F_NTUPLE))
2943 			goto out;
2944 		rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
2945 		if (rxq_index == skb_get_rx_queue(skb))
2946 			goto out;
2947 
2948 		rxqueue = dev->_rx + rxq_index;
2949 		flow_table = rcu_dereference(rxqueue->rps_flow_table);
2950 		if (!flow_table)
2951 			goto out;
2952 		flow_id = skb->rxhash & flow_table->mask;
2953 		rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
2954 							rxq_index, flow_id);
2955 		if (rc < 0)
2956 			goto out;
2957 		old_rflow = rflow;
2958 		rflow = &flow_table->flows[flow_id];
2959 		rflow->filter = rc;
2960 		if (old_rflow->filter == rflow->filter)
2961 			old_rflow->filter = RPS_NO_FILTER;
2962 	out:
2963 #endif
2964 		rflow->last_qtail =
2965 			per_cpu(softnet_data, next_cpu).input_queue_head;
2966 	}
2967 
2968 	rflow->cpu = next_cpu;
2969 	return rflow;
2970 }
2971 
2972 /*
2973  * get_rps_cpu is called from netif_receive_skb and returns the target
2974  * CPU from the RPS map of the receiving queue for a given skb.
2975  * rcu_read_lock must be held on entry.
2976  */
2977 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2978 		       struct rps_dev_flow **rflowp)
2979 {
2980 	struct netdev_rx_queue *rxqueue;
2981 	struct rps_map *map;
2982 	struct rps_dev_flow_table *flow_table;
2983 	struct rps_sock_flow_table *sock_flow_table;
2984 	int cpu = -1;
2985 	u16 tcpu;
2986 
2987 	if (skb_rx_queue_recorded(skb)) {
2988 		u16 index = skb_get_rx_queue(skb);
2989 		if (unlikely(index >= dev->real_num_rx_queues)) {
2990 			WARN_ONCE(dev->real_num_rx_queues > 1,
2991 				  "%s received packet on queue %u, but number "
2992 				  "of RX queues is %u\n",
2993 				  dev->name, index, dev->real_num_rx_queues);
2994 			goto done;
2995 		}
2996 		rxqueue = dev->_rx + index;
2997 	} else
2998 		rxqueue = dev->_rx;
2999 
3000 	map = rcu_dereference(rxqueue->rps_map);
3001 	if (map) {
3002 		if (map->len == 1 &&
3003 		    !rcu_access_pointer(rxqueue->rps_flow_table)) {
3004 			tcpu = map->cpus[0];
3005 			if (cpu_online(tcpu))
3006 				cpu = tcpu;
3007 			goto done;
3008 		}
3009 	} else if (!rcu_access_pointer(rxqueue->rps_flow_table)) {
3010 		goto done;
3011 	}
3012 
3013 	skb_reset_network_header(skb);
3014 	if (!skb_get_hash(skb))
3015 		goto done;
3016 
3017 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
3018 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
3019 	if (flow_table && sock_flow_table) {
3020 		u16 next_cpu;
3021 		struct rps_dev_flow *rflow;
3022 
3023 		rflow = &flow_table->flows[skb->rxhash & flow_table->mask];
3024 		tcpu = rflow->cpu;
3025 
3026 		next_cpu = sock_flow_table->ents[skb->rxhash &
3027 		    sock_flow_table->mask];
3028 
3029 		/*
3030 		 * If the desired CPU (where last recvmsg was done) is
3031 		 * different from current CPU (one in the rx-queue flow
3032 		 * table entry), switch if one of the following holds:
3033 		 *   - Current CPU is unset (equal to RPS_NO_CPU).
3034 		 *   - Current CPU is offline.
3035 		 *   - The current CPU's queue tail has advanced beyond the
3036 		 *     last packet that was enqueued using this table entry.
3037 		 *     This guarantees that all previous packets for the flow
3038 		 *     have been dequeued, thus preserving in order delivery.
3039 		 */
3040 		if (unlikely(tcpu != next_cpu) &&
3041 		    (tcpu == RPS_NO_CPU || !cpu_online(tcpu) ||
3042 		     ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
3043 		      rflow->last_qtail)) >= 0)) {
3044 			tcpu = next_cpu;
3045 			rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
3046 		}
3047 
3048 		if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) {
3049 			*rflowp = rflow;
3050 			cpu = tcpu;
3051 			goto done;
3052 		}
3053 	}
3054 
3055 	if (map) {
3056 		tcpu = map->cpus[((u64) skb->rxhash * map->len) >> 32];
3057 
3058 		if (cpu_online(tcpu)) {
3059 			cpu = tcpu;
3060 			goto done;
3061 		}
3062 	}
3063 
3064 done:
3065 	return cpu;
3066 }
3067 
3068 #ifdef CONFIG_RFS_ACCEL
3069 
3070 /**
3071  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3072  * @dev: Device on which the filter was set
3073  * @rxq_index: RX queue index
3074  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3075  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3076  *
3077  * Drivers that implement ndo_rx_flow_steer() should periodically call
3078  * this function for each installed filter and remove the filters for
3079  * which it returns %true.
3080  */
3081 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3082 			 u32 flow_id, u16 filter_id)
3083 {
3084 	struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3085 	struct rps_dev_flow_table *flow_table;
3086 	struct rps_dev_flow *rflow;
3087 	bool expire = true;
3088 	int cpu;
3089 
3090 	rcu_read_lock();
3091 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
3092 	if (flow_table && flow_id <= flow_table->mask) {
3093 		rflow = &flow_table->flows[flow_id];
3094 		cpu = ACCESS_ONCE(rflow->cpu);
3095 		if (rflow->filter == filter_id && cpu != RPS_NO_CPU &&
3096 		    ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3097 			   rflow->last_qtail) <
3098 		     (int)(10 * flow_table->mask)))
3099 			expire = false;
3100 	}
3101 	rcu_read_unlock();
3102 	return expire;
3103 }
3104 EXPORT_SYMBOL(rps_may_expire_flow);
3105 
3106 #endif /* CONFIG_RFS_ACCEL */
3107 
3108 /* Called from hardirq (IPI) context */
3109 static void rps_trigger_softirq(void *data)
3110 {
3111 	struct softnet_data *sd = data;
3112 
3113 	____napi_schedule(sd, &sd->backlog);
3114 	sd->received_rps++;
3115 }
3116 
3117 #endif /* CONFIG_RPS */
3118 
3119 /*
3120  * Check if this softnet_data structure is another cpu one
3121  * If yes, queue it to our IPI list and return 1
3122  * If no, return 0
3123  */
3124 static int rps_ipi_queued(struct softnet_data *sd)
3125 {
3126 #ifdef CONFIG_RPS
3127 	struct softnet_data *mysd = &__get_cpu_var(softnet_data);
3128 
3129 	if (sd != mysd) {
3130 		sd->rps_ipi_next = mysd->rps_ipi_list;
3131 		mysd->rps_ipi_list = sd;
3132 
3133 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
3134 		return 1;
3135 	}
3136 #endif /* CONFIG_RPS */
3137 	return 0;
3138 }
3139 
3140 #ifdef CONFIG_NET_FLOW_LIMIT
3141 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3142 #endif
3143 
3144 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3145 {
3146 #ifdef CONFIG_NET_FLOW_LIMIT
3147 	struct sd_flow_limit *fl;
3148 	struct softnet_data *sd;
3149 	unsigned int old_flow, new_flow;
3150 
3151 	if (qlen < (netdev_max_backlog >> 1))
3152 		return false;
3153 
3154 	sd = &__get_cpu_var(softnet_data);
3155 
3156 	rcu_read_lock();
3157 	fl = rcu_dereference(sd->flow_limit);
3158 	if (fl) {
3159 		new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
3160 		old_flow = fl->history[fl->history_head];
3161 		fl->history[fl->history_head] = new_flow;
3162 
3163 		fl->history_head++;
3164 		fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3165 
3166 		if (likely(fl->buckets[old_flow]))
3167 			fl->buckets[old_flow]--;
3168 
3169 		if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3170 			fl->count++;
3171 			rcu_read_unlock();
3172 			return true;
3173 		}
3174 	}
3175 	rcu_read_unlock();
3176 #endif
3177 	return false;
3178 }
3179 
3180 /*
3181  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3182  * queue (may be a remote CPU queue).
3183  */
3184 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3185 			      unsigned int *qtail)
3186 {
3187 	struct softnet_data *sd;
3188 	unsigned long flags;
3189 	unsigned int qlen;
3190 
3191 	sd = &per_cpu(softnet_data, cpu);
3192 
3193 	local_irq_save(flags);
3194 
3195 	rps_lock(sd);
3196 	qlen = skb_queue_len(&sd->input_pkt_queue);
3197 	if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
3198 		if (skb_queue_len(&sd->input_pkt_queue)) {
3199 enqueue:
3200 			__skb_queue_tail(&sd->input_pkt_queue, skb);
3201 			input_queue_tail_incr_save(sd, qtail);
3202 			rps_unlock(sd);
3203 			local_irq_restore(flags);
3204 			return NET_RX_SUCCESS;
3205 		}
3206 
3207 		/* Schedule NAPI for backlog device
3208 		 * We can use non atomic operation since we own the queue lock
3209 		 */
3210 		if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3211 			if (!rps_ipi_queued(sd))
3212 				____napi_schedule(sd, &sd->backlog);
3213 		}
3214 		goto enqueue;
3215 	}
3216 
3217 	sd->dropped++;
3218 	rps_unlock(sd);
3219 
3220 	local_irq_restore(flags);
3221 
3222 	atomic_long_inc(&skb->dev->rx_dropped);
3223 	kfree_skb(skb);
3224 	return NET_RX_DROP;
3225 }
3226 
3227 static int netif_rx_internal(struct sk_buff *skb)
3228 {
3229 	int ret;
3230 
3231 	/* if netpoll wants it, pretend we never saw it */
3232 	if (netpoll_rx(skb))
3233 		return NET_RX_DROP;
3234 
3235 	net_timestamp_check(netdev_tstamp_prequeue, skb);
3236 
3237 	trace_netif_rx(skb);
3238 #ifdef CONFIG_RPS
3239 	if (static_key_false(&rps_needed)) {
3240 		struct rps_dev_flow voidflow, *rflow = &voidflow;
3241 		int cpu;
3242 
3243 		preempt_disable();
3244 		rcu_read_lock();
3245 
3246 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
3247 		if (cpu < 0)
3248 			cpu = smp_processor_id();
3249 
3250 		ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3251 
3252 		rcu_read_unlock();
3253 		preempt_enable();
3254 	} else
3255 #endif
3256 	{
3257 		unsigned int qtail;
3258 		ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3259 		put_cpu();
3260 	}
3261 	return ret;
3262 }
3263 
3264 /**
3265  *	netif_rx	-	post buffer to the network code
3266  *	@skb: buffer to post
3267  *
3268  *	This function receives a packet from a device driver and queues it for
3269  *	the upper (protocol) levels to process.  It always succeeds. The buffer
3270  *	may be dropped during processing for congestion control or by the
3271  *	protocol layers.
3272  *
3273  *	return values:
3274  *	NET_RX_SUCCESS	(no congestion)
3275  *	NET_RX_DROP     (packet was dropped)
3276  *
3277  */
3278 
3279 int netif_rx(struct sk_buff *skb)
3280 {
3281 	trace_netif_rx_entry(skb);
3282 
3283 	return netif_rx_internal(skb);
3284 }
3285 EXPORT_SYMBOL(netif_rx);
3286 
3287 int netif_rx_ni(struct sk_buff *skb)
3288 {
3289 	int err;
3290 
3291 	trace_netif_rx_ni_entry(skb);
3292 
3293 	preempt_disable();
3294 	err = netif_rx_internal(skb);
3295 	if (local_softirq_pending())
3296 		do_softirq();
3297 	preempt_enable();
3298 
3299 	return err;
3300 }
3301 EXPORT_SYMBOL(netif_rx_ni);
3302 
3303 static void net_tx_action(struct softirq_action *h)
3304 {
3305 	struct softnet_data *sd = &__get_cpu_var(softnet_data);
3306 
3307 	if (sd->completion_queue) {
3308 		struct sk_buff *clist;
3309 
3310 		local_irq_disable();
3311 		clist = sd->completion_queue;
3312 		sd->completion_queue = NULL;
3313 		local_irq_enable();
3314 
3315 		while (clist) {
3316 			struct sk_buff *skb = clist;
3317 			clist = clist->next;
3318 
3319 			WARN_ON(atomic_read(&skb->users));
3320 			if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
3321 				trace_consume_skb(skb);
3322 			else
3323 				trace_kfree_skb(skb, net_tx_action);
3324 			__kfree_skb(skb);
3325 		}
3326 	}
3327 
3328 	if (sd->output_queue) {
3329 		struct Qdisc *head;
3330 
3331 		local_irq_disable();
3332 		head = sd->output_queue;
3333 		sd->output_queue = NULL;
3334 		sd->output_queue_tailp = &sd->output_queue;
3335 		local_irq_enable();
3336 
3337 		while (head) {
3338 			struct Qdisc *q = head;
3339 			spinlock_t *root_lock;
3340 
3341 			head = head->next_sched;
3342 
3343 			root_lock = qdisc_lock(q);
3344 			if (spin_trylock(root_lock)) {
3345 				smp_mb__before_clear_bit();
3346 				clear_bit(__QDISC_STATE_SCHED,
3347 					  &q->state);
3348 				qdisc_run(q);
3349 				spin_unlock(root_lock);
3350 			} else {
3351 				if (!test_bit(__QDISC_STATE_DEACTIVATED,
3352 					      &q->state)) {
3353 					__netif_reschedule(q);
3354 				} else {
3355 					smp_mb__before_clear_bit();
3356 					clear_bit(__QDISC_STATE_SCHED,
3357 						  &q->state);
3358 				}
3359 			}
3360 		}
3361 	}
3362 }
3363 
3364 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
3365     (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
3366 /* This hook is defined here for ATM LANE */
3367 int (*br_fdb_test_addr_hook)(struct net_device *dev,
3368 			     unsigned char *addr) __read_mostly;
3369 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3370 #endif
3371 
3372 #ifdef CONFIG_NET_CLS_ACT
3373 /* TODO: Maybe we should just force sch_ingress to be compiled in
3374  * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
3375  * a compare and 2 stores extra right now if we dont have it on
3376  * but have CONFIG_NET_CLS_ACT
3377  * NOTE: This doesn't stop any functionality; if you dont have
3378  * the ingress scheduler, you just can't add policies on ingress.
3379  *
3380  */
3381 static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq)
3382 {
3383 	struct net_device *dev = skb->dev;
3384 	u32 ttl = G_TC_RTTL(skb->tc_verd);
3385 	int result = TC_ACT_OK;
3386 	struct Qdisc *q;
3387 
3388 	if (unlikely(MAX_RED_LOOP < ttl++)) {
3389 		net_warn_ratelimited("Redir loop detected Dropping packet (%d->%d)\n",
3390 				     skb->skb_iif, dev->ifindex);
3391 		return TC_ACT_SHOT;
3392 	}
3393 
3394 	skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
3395 	skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
3396 
3397 	q = rxq->qdisc;
3398 	if (q != &noop_qdisc) {
3399 		spin_lock(qdisc_lock(q));
3400 		if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
3401 			result = qdisc_enqueue_root(skb, q);
3402 		spin_unlock(qdisc_lock(q));
3403 	}
3404 
3405 	return result;
3406 }
3407 
3408 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
3409 					 struct packet_type **pt_prev,
3410 					 int *ret, struct net_device *orig_dev)
3411 {
3412 	struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue);
3413 
3414 	if (!rxq || rxq->qdisc == &noop_qdisc)
3415 		goto out;
3416 
3417 	if (*pt_prev) {
3418 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
3419 		*pt_prev = NULL;
3420 	}
3421 
3422 	switch (ing_filter(skb, rxq)) {
3423 	case TC_ACT_SHOT:
3424 	case TC_ACT_STOLEN:
3425 		kfree_skb(skb);
3426 		return NULL;
3427 	}
3428 
3429 out:
3430 	skb->tc_verd = 0;
3431 	return skb;
3432 }
3433 #endif
3434 
3435 /**
3436  *	netdev_rx_handler_register - register receive handler
3437  *	@dev: device to register a handler for
3438  *	@rx_handler: receive handler to register
3439  *	@rx_handler_data: data pointer that is used by rx handler
3440  *
3441  *	Register a receive hander for a device. This handler will then be
3442  *	called from __netif_receive_skb. A negative errno code is returned
3443  *	on a failure.
3444  *
3445  *	The caller must hold the rtnl_mutex.
3446  *
3447  *	For a general description of rx_handler, see enum rx_handler_result.
3448  */
3449 int netdev_rx_handler_register(struct net_device *dev,
3450 			       rx_handler_func_t *rx_handler,
3451 			       void *rx_handler_data)
3452 {
3453 	ASSERT_RTNL();
3454 
3455 	if (dev->rx_handler)
3456 		return -EBUSY;
3457 
3458 	/* Note: rx_handler_data must be set before rx_handler */
3459 	rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
3460 	rcu_assign_pointer(dev->rx_handler, rx_handler);
3461 
3462 	return 0;
3463 }
3464 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3465 
3466 /**
3467  *	netdev_rx_handler_unregister - unregister receive handler
3468  *	@dev: device to unregister a handler from
3469  *
3470  *	Unregister a receive handler from a device.
3471  *
3472  *	The caller must hold the rtnl_mutex.
3473  */
3474 void netdev_rx_handler_unregister(struct net_device *dev)
3475 {
3476 
3477 	ASSERT_RTNL();
3478 	RCU_INIT_POINTER(dev->rx_handler, NULL);
3479 	/* a reader seeing a non NULL rx_handler in a rcu_read_lock()
3480 	 * section has a guarantee to see a non NULL rx_handler_data
3481 	 * as well.
3482 	 */
3483 	synchronize_net();
3484 	RCU_INIT_POINTER(dev->rx_handler_data, NULL);
3485 }
3486 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
3487 
3488 /*
3489  * Limit the use of PFMEMALLOC reserves to those protocols that implement
3490  * the special handling of PFMEMALLOC skbs.
3491  */
3492 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
3493 {
3494 	switch (skb->protocol) {
3495 	case __constant_htons(ETH_P_ARP):
3496 	case __constant_htons(ETH_P_IP):
3497 	case __constant_htons(ETH_P_IPV6):
3498 	case __constant_htons(ETH_P_8021Q):
3499 	case __constant_htons(ETH_P_8021AD):
3500 		return true;
3501 	default:
3502 		return false;
3503 	}
3504 }
3505 
3506 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
3507 {
3508 	struct packet_type *ptype, *pt_prev;
3509 	rx_handler_func_t *rx_handler;
3510 	struct net_device *orig_dev;
3511 	struct net_device *null_or_dev;
3512 	bool deliver_exact = false;
3513 	int ret = NET_RX_DROP;
3514 	__be16 type;
3515 
3516 	net_timestamp_check(!netdev_tstamp_prequeue, skb);
3517 
3518 	trace_netif_receive_skb(skb);
3519 
3520 	/* if we've gotten here through NAPI, check netpoll */
3521 	if (netpoll_receive_skb(skb))
3522 		goto out;
3523 
3524 	orig_dev = skb->dev;
3525 
3526 	skb_reset_network_header(skb);
3527 	if (!skb_transport_header_was_set(skb))
3528 		skb_reset_transport_header(skb);
3529 	skb_reset_mac_len(skb);
3530 
3531 	pt_prev = NULL;
3532 
3533 	rcu_read_lock();
3534 
3535 another_round:
3536 	skb->skb_iif = skb->dev->ifindex;
3537 
3538 	__this_cpu_inc(softnet_data.processed);
3539 
3540 	if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
3541 	    skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
3542 		skb = vlan_untag(skb);
3543 		if (unlikely(!skb))
3544 			goto unlock;
3545 	}
3546 
3547 #ifdef CONFIG_NET_CLS_ACT
3548 	if (skb->tc_verd & TC_NCLS) {
3549 		skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
3550 		goto ncls;
3551 	}
3552 #endif
3553 
3554 	if (pfmemalloc)
3555 		goto skip_taps;
3556 
3557 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
3558 		if (!ptype->dev || ptype->dev == skb->dev) {
3559 			if (pt_prev)
3560 				ret = deliver_skb(skb, pt_prev, orig_dev);
3561 			pt_prev = ptype;
3562 		}
3563 	}
3564 
3565 skip_taps:
3566 #ifdef CONFIG_NET_CLS_ACT
3567 	skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
3568 	if (!skb)
3569 		goto unlock;
3570 ncls:
3571 #endif
3572 
3573 	if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
3574 		goto drop;
3575 
3576 	if (vlan_tx_tag_present(skb)) {
3577 		if (pt_prev) {
3578 			ret = deliver_skb(skb, pt_prev, orig_dev);
3579 			pt_prev = NULL;
3580 		}
3581 		if (vlan_do_receive(&skb))
3582 			goto another_round;
3583 		else if (unlikely(!skb))
3584 			goto unlock;
3585 	}
3586 
3587 	rx_handler = rcu_dereference(skb->dev->rx_handler);
3588 	if (rx_handler) {
3589 		if (pt_prev) {
3590 			ret = deliver_skb(skb, pt_prev, orig_dev);
3591 			pt_prev = NULL;
3592 		}
3593 		switch (rx_handler(&skb)) {
3594 		case RX_HANDLER_CONSUMED:
3595 			ret = NET_RX_SUCCESS;
3596 			goto unlock;
3597 		case RX_HANDLER_ANOTHER:
3598 			goto another_round;
3599 		case RX_HANDLER_EXACT:
3600 			deliver_exact = true;
3601 		case RX_HANDLER_PASS:
3602 			break;
3603 		default:
3604 			BUG();
3605 		}
3606 	}
3607 
3608 	if (unlikely(vlan_tx_tag_present(skb))) {
3609 		if (vlan_tx_tag_get_id(skb))
3610 			skb->pkt_type = PACKET_OTHERHOST;
3611 		/* Note: we might in the future use prio bits
3612 		 * and set skb->priority like in vlan_do_receive()
3613 		 * For the time being, just ignore Priority Code Point
3614 		 */
3615 		skb->vlan_tci = 0;
3616 	}
3617 
3618 	/* deliver only exact match when indicated */
3619 	null_or_dev = deliver_exact ? skb->dev : NULL;
3620 
3621 	type = skb->protocol;
3622 	list_for_each_entry_rcu(ptype,
3623 			&ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
3624 		if (ptype->type == type &&
3625 		    (ptype->dev == null_or_dev || ptype->dev == skb->dev ||
3626 		     ptype->dev == orig_dev)) {
3627 			if (pt_prev)
3628 				ret = deliver_skb(skb, pt_prev, orig_dev);
3629 			pt_prev = ptype;
3630 		}
3631 	}
3632 
3633 	if (pt_prev) {
3634 		if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
3635 			goto drop;
3636 		else
3637 			ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
3638 	} else {
3639 drop:
3640 		atomic_long_inc(&skb->dev->rx_dropped);
3641 		kfree_skb(skb);
3642 		/* Jamal, now you will not able to escape explaining
3643 		 * me how you were going to use this. :-)
3644 		 */
3645 		ret = NET_RX_DROP;
3646 	}
3647 
3648 unlock:
3649 	rcu_read_unlock();
3650 out:
3651 	return ret;
3652 }
3653 
3654 static int __netif_receive_skb(struct sk_buff *skb)
3655 {
3656 	int ret;
3657 
3658 	if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
3659 		unsigned long pflags = current->flags;
3660 
3661 		/*
3662 		 * PFMEMALLOC skbs are special, they should
3663 		 * - be delivered to SOCK_MEMALLOC sockets only
3664 		 * - stay away from userspace
3665 		 * - have bounded memory usage
3666 		 *
3667 		 * Use PF_MEMALLOC as this saves us from propagating the allocation
3668 		 * context down to all allocation sites.
3669 		 */
3670 		current->flags |= PF_MEMALLOC;
3671 		ret = __netif_receive_skb_core(skb, true);
3672 		tsk_restore_flags(current, pflags, PF_MEMALLOC);
3673 	} else
3674 		ret = __netif_receive_skb_core(skb, false);
3675 
3676 	return ret;
3677 }
3678 
3679 static int netif_receive_skb_internal(struct sk_buff *skb)
3680 {
3681 	net_timestamp_check(netdev_tstamp_prequeue, skb);
3682 
3683 	if (skb_defer_rx_timestamp(skb))
3684 		return NET_RX_SUCCESS;
3685 
3686 #ifdef CONFIG_RPS
3687 	if (static_key_false(&rps_needed)) {
3688 		struct rps_dev_flow voidflow, *rflow = &voidflow;
3689 		int cpu, ret;
3690 
3691 		rcu_read_lock();
3692 
3693 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
3694 
3695 		if (cpu >= 0) {
3696 			ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3697 			rcu_read_unlock();
3698 			return ret;
3699 		}
3700 		rcu_read_unlock();
3701 	}
3702 #endif
3703 	return __netif_receive_skb(skb);
3704 }
3705 
3706 /**
3707  *	netif_receive_skb - process receive buffer from network
3708  *	@skb: buffer to process
3709  *
3710  *	netif_receive_skb() is the main receive data processing function.
3711  *	It always succeeds. The buffer may be dropped during processing
3712  *	for congestion control or by the protocol layers.
3713  *
3714  *	This function may only be called from softirq context and interrupts
3715  *	should be enabled.
3716  *
3717  *	Return values (usually ignored):
3718  *	NET_RX_SUCCESS: no congestion
3719  *	NET_RX_DROP: packet was dropped
3720  */
3721 int netif_receive_skb(struct sk_buff *skb)
3722 {
3723 	trace_netif_receive_skb_entry(skb);
3724 
3725 	return netif_receive_skb_internal(skb);
3726 }
3727 EXPORT_SYMBOL(netif_receive_skb);
3728 
3729 /* Network device is going away, flush any packets still pending
3730  * Called with irqs disabled.
3731  */
3732 static void flush_backlog(void *arg)
3733 {
3734 	struct net_device *dev = arg;
3735 	struct softnet_data *sd = &__get_cpu_var(softnet_data);
3736 	struct sk_buff *skb, *tmp;
3737 
3738 	rps_lock(sd);
3739 	skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
3740 		if (skb->dev == dev) {
3741 			__skb_unlink(skb, &sd->input_pkt_queue);
3742 			kfree_skb(skb);
3743 			input_queue_head_incr(sd);
3744 		}
3745 	}
3746 	rps_unlock(sd);
3747 
3748 	skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
3749 		if (skb->dev == dev) {
3750 			__skb_unlink(skb, &sd->process_queue);
3751 			kfree_skb(skb);
3752 			input_queue_head_incr(sd);
3753 		}
3754 	}
3755 }
3756 
3757 static int napi_gro_complete(struct sk_buff *skb)
3758 {
3759 	struct packet_offload *ptype;
3760 	__be16 type = skb->protocol;
3761 	struct list_head *head = &offload_base;
3762 	int err = -ENOENT;
3763 
3764 	BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
3765 
3766 	if (NAPI_GRO_CB(skb)->count == 1) {
3767 		skb_shinfo(skb)->gso_size = 0;
3768 		goto out;
3769 	}
3770 
3771 	rcu_read_lock();
3772 	list_for_each_entry_rcu(ptype, head, list) {
3773 		if (ptype->type != type || !ptype->callbacks.gro_complete)
3774 			continue;
3775 
3776 		err = ptype->callbacks.gro_complete(skb, 0);
3777 		break;
3778 	}
3779 	rcu_read_unlock();
3780 
3781 	if (err) {
3782 		WARN_ON(&ptype->list == head);
3783 		kfree_skb(skb);
3784 		return NET_RX_SUCCESS;
3785 	}
3786 
3787 out:
3788 	return netif_receive_skb_internal(skb);
3789 }
3790 
3791 /* napi->gro_list contains packets ordered by age.
3792  * youngest packets at the head of it.
3793  * Complete skbs in reverse order to reduce latencies.
3794  */
3795 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
3796 {
3797 	struct sk_buff *skb, *prev = NULL;
3798 
3799 	/* scan list and build reverse chain */
3800 	for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
3801 		skb->prev = prev;
3802 		prev = skb;
3803 	}
3804 
3805 	for (skb = prev; skb; skb = prev) {
3806 		skb->next = NULL;
3807 
3808 		if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
3809 			return;
3810 
3811 		prev = skb->prev;
3812 		napi_gro_complete(skb);
3813 		napi->gro_count--;
3814 	}
3815 
3816 	napi->gro_list = NULL;
3817 }
3818 EXPORT_SYMBOL(napi_gro_flush);
3819 
3820 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
3821 {
3822 	struct sk_buff *p;
3823 	unsigned int maclen = skb->dev->hard_header_len;
3824 
3825 	for (p = napi->gro_list; p; p = p->next) {
3826 		unsigned long diffs;
3827 
3828 		diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
3829 		diffs |= p->vlan_tci ^ skb->vlan_tci;
3830 		if (maclen == ETH_HLEN)
3831 			diffs |= compare_ether_header(skb_mac_header(p),
3832 						      skb_gro_mac_header(skb));
3833 		else if (!diffs)
3834 			diffs = memcmp(skb_mac_header(p),
3835 				       skb_gro_mac_header(skb),
3836 				       maclen);
3837 		NAPI_GRO_CB(p)->same_flow = !diffs;
3838 		NAPI_GRO_CB(p)->flush = 0;
3839 	}
3840 }
3841 
3842 static void skb_gro_reset_offset(struct sk_buff *skb)
3843 {
3844 	const struct skb_shared_info *pinfo = skb_shinfo(skb);
3845 	const skb_frag_t *frag0 = &pinfo->frags[0];
3846 
3847 	NAPI_GRO_CB(skb)->data_offset = 0;
3848 	NAPI_GRO_CB(skb)->frag0 = NULL;
3849 	NAPI_GRO_CB(skb)->frag0_len = 0;
3850 
3851 	if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
3852 	    pinfo->nr_frags &&
3853 	    !PageHighMem(skb_frag_page(frag0))) {
3854 		NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
3855 		NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0);
3856 	}
3857 }
3858 
3859 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3860 {
3861 	struct sk_buff **pp = NULL;
3862 	struct packet_offload *ptype;
3863 	__be16 type = skb->protocol;
3864 	struct list_head *head = &offload_base;
3865 	int same_flow;
3866 	enum gro_result ret;
3867 
3868 	if (!(skb->dev->features & NETIF_F_GRO) || netpoll_rx_on(skb))
3869 		goto normal;
3870 
3871 	if (skb_is_gso(skb) || skb_has_frag_list(skb))
3872 		goto normal;
3873 
3874 	skb_gro_reset_offset(skb);
3875 	gro_list_prepare(napi, skb);
3876 	NAPI_GRO_CB(skb)->csum = skb->csum; /* Needed for CHECKSUM_COMPLETE */
3877 
3878 	rcu_read_lock();
3879 	list_for_each_entry_rcu(ptype, head, list) {
3880 		if (ptype->type != type || !ptype->callbacks.gro_receive)
3881 			continue;
3882 
3883 		skb_set_network_header(skb, skb_gro_offset(skb));
3884 		skb_reset_mac_len(skb);
3885 		NAPI_GRO_CB(skb)->same_flow = 0;
3886 		NAPI_GRO_CB(skb)->flush = 0;
3887 		NAPI_GRO_CB(skb)->free = 0;
3888 
3889 		pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
3890 		break;
3891 	}
3892 	rcu_read_unlock();
3893 
3894 	if (&ptype->list == head)
3895 		goto normal;
3896 
3897 	same_flow = NAPI_GRO_CB(skb)->same_flow;
3898 	ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
3899 
3900 	if (pp) {
3901 		struct sk_buff *nskb = *pp;
3902 
3903 		*pp = nskb->next;
3904 		nskb->next = NULL;
3905 		napi_gro_complete(nskb);
3906 		napi->gro_count--;
3907 	}
3908 
3909 	if (same_flow)
3910 		goto ok;
3911 
3912 	if (NAPI_GRO_CB(skb)->flush)
3913 		goto normal;
3914 
3915 	if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
3916 		struct sk_buff *nskb = napi->gro_list;
3917 
3918 		/* locate the end of the list to select the 'oldest' flow */
3919 		while (nskb->next) {
3920 			pp = &nskb->next;
3921 			nskb = *pp;
3922 		}
3923 		*pp = NULL;
3924 		nskb->next = NULL;
3925 		napi_gro_complete(nskb);
3926 	} else {
3927 		napi->gro_count++;
3928 	}
3929 	NAPI_GRO_CB(skb)->count = 1;
3930 	NAPI_GRO_CB(skb)->age = jiffies;
3931 	skb_shinfo(skb)->gso_size = skb_gro_len(skb);
3932 	skb->next = napi->gro_list;
3933 	napi->gro_list = skb;
3934 	ret = GRO_HELD;
3935 
3936 pull:
3937 	if (skb_headlen(skb) < skb_gro_offset(skb)) {
3938 		int grow = skb_gro_offset(skb) - skb_headlen(skb);
3939 
3940 		BUG_ON(skb->end - skb->tail < grow);
3941 
3942 		memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
3943 
3944 		skb->tail += grow;
3945 		skb->data_len -= grow;
3946 
3947 		skb_shinfo(skb)->frags[0].page_offset += grow;
3948 		skb_frag_size_sub(&skb_shinfo(skb)->frags[0], grow);
3949 
3950 		if (unlikely(!skb_frag_size(&skb_shinfo(skb)->frags[0]))) {
3951 			skb_frag_unref(skb, 0);
3952 			memmove(skb_shinfo(skb)->frags,
3953 				skb_shinfo(skb)->frags + 1,
3954 				--skb_shinfo(skb)->nr_frags * sizeof(skb_frag_t));
3955 		}
3956 	}
3957 
3958 ok:
3959 	return ret;
3960 
3961 normal:
3962 	ret = GRO_NORMAL;
3963 	goto pull;
3964 }
3965 
3966 struct packet_offload *gro_find_receive_by_type(__be16 type)
3967 {
3968 	struct list_head *offload_head = &offload_base;
3969 	struct packet_offload *ptype;
3970 
3971 	list_for_each_entry_rcu(ptype, offload_head, list) {
3972 		if (ptype->type != type || !ptype->callbacks.gro_receive)
3973 			continue;
3974 		return ptype;
3975 	}
3976 	return NULL;
3977 }
3978 
3979 struct packet_offload *gro_find_complete_by_type(__be16 type)
3980 {
3981 	struct list_head *offload_head = &offload_base;
3982 	struct packet_offload *ptype;
3983 
3984 	list_for_each_entry_rcu(ptype, offload_head, list) {
3985 		if (ptype->type != type || !ptype->callbacks.gro_complete)
3986 			continue;
3987 		return ptype;
3988 	}
3989 	return NULL;
3990 }
3991 
3992 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
3993 {
3994 	switch (ret) {
3995 	case GRO_NORMAL:
3996 		if (netif_receive_skb_internal(skb))
3997 			ret = GRO_DROP;
3998 		break;
3999 
4000 	case GRO_DROP:
4001 		kfree_skb(skb);
4002 		break;
4003 
4004 	case GRO_MERGED_FREE:
4005 		if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
4006 			kmem_cache_free(skbuff_head_cache, skb);
4007 		else
4008 			__kfree_skb(skb);
4009 		break;
4010 
4011 	case GRO_HELD:
4012 	case GRO_MERGED:
4013 		break;
4014 	}
4015 
4016 	return ret;
4017 }
4018 
4019 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4020 {
4021 	trace_napi_gro_receive_entry(skb);
4022 
4023 	return napi_skb_finish(dev_gro_receive(napi, skb), skb);
4024 }
4025 EXPORT_SYMBOL(napi_gro_receive);
4026 
4027 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
4028 {
4029 	__skb_pull(skb, skb_headlen(skb));
4030 	/* restore the reserve we had after netdev_alloc_skb_ip_align() */
4031 	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
4032 	skb->vlan_tci = 0;
4033 	skb->dev = napi->dev;
4034 	skb->skb_iif = 0;
4035 
4036 	napi->skb = skb;
4037 }
4038 
4039 struct sk_buff *napi_get_frags(struct napi_struct *napi)
4040 {
4041 	struct sk_buff *skb = napi->skb;
4042 
4043 	if (!skb) {
4044 		skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD);
4045 		napi->skb = skb;
4046 	}
4047 	return skb;
4048 }
4049 EXPORT_SYMBOL(napi_get_frags);
4050 
4051 static gro_result_t napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb,
4052 			       gro_result_t ret)
4053 {
4054 	switch (ret) {
4055 	case GRO_NORMAL:
4056 		if (netif_receive_skb_internal(skb))
4057 			ret = GRO_DROP;
4058 		break;
4059 
4060 	case GRO_DROP:
4061 	case GRO_MERGED_FREE:
4062 		napi_reuse_skb(napi, skb);
4063 		break;
4064 
4065 	case GRO_HELD:
4066 	case GRO_MERGED:
4067 		break;
4068 	}
4069 
4070 	return ret;
4071 }
4072 
4073 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
4074 {
4075 	struct sk_buff *skb = napi->skb;
4076 
4077 	napi->skb = NULL;
4078 
4079 	if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr)))) {
4080 		napi_reuse_skb(napi, skb);
4081 		return NULL;
4082 	}
4083 	skb->protocol = eth_type_trans(skb, skb->dev);
4084 
4085 	return skb;
4086 }
4087 
4088 gro_result_t napi_gro_frags(struct napi_struct *napi)
4089 {
4090 	struct sk_buff *skb = napi_frags_skb(napi);
4091 
4092 	if (!skb)
4093 		return GRO_DROP;
4094 
4095 	trace_napi_gro_frags_entry(skb);
4096 
4097 	return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
4098 }
4099 EXPORT_SYMBOL(napi_gro_frags);
4100 
4101 /*
4102  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
4103  * Note: called with local irq disabled, but exits with local irq enabled.
4104  */
4105 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
4106 {
4107 #ifdef CONFIG_RPS
4108 	struct softnet_data *remsd = sd->rps_ipi_list;
4109 
4110 	if (remsd) {
4111 		sd->rps_ipi_list = NULL;
4112 
4113 		local_irq_enable();
4114 
4115 		/* Send pending IPI's to kick RPS processing on remote cpus. */
4116 		while (remsd) {
4117 			struct softnet_data *next = remsd->rps_ipi_next;
4118 
4119 			if (cpu_online(remsd->cpu))
4120 				__smp_call_function_single(remsd->cpu,
4121 							   &remsd->csd, 0);
4122 			remsd = next;
4123 		}
4124 	} else
4125 #endif
4126 		local_irq_enable();
4127 }
4128 
4129 static int process_backlog(struct napi_struct *napi, int quota)
4130 {
4131 	int work = 0;
4132 	struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
4133 
4134 #ifdef CONFIG_RPS
4135 	/* Check if we have pending ipi, its better to send them now,
4136 	 * not waiting net_rx_action() end.
4137 	 */
4138 	if (sd->rps_ipi_list) {
4139 		local_irq_disable();
4140 		net_rps_action_and_irq_enable(sd);
4141 	}
4142 #endif
4143 	napi->weight = weight_p;
4144 	local_irq_disable();
4145 	while (work < quota) {
4146 		struct sk_buff *skb;
4147 		unsigned int qlen;
4148 
4149 		while ((skb = __skb_dequeue(&sd->process_queue))) {
4150 			local_irq_enable();
4151 			__netif_receive_skb(skb);
4152 			local_irq_disable();
4153 			input_queue_head_incr(sd);
4154 			if (++work >= quota) {
4155 				local_irq_enable();
4156 				return work;
4157 			}
4158 		}
4159 
4160 		rps_lock(sd);
4161 		qlen = skb_queue_len(&sd->input_pkt_queue);
4162 		if (qlen)
4163 			skb_queue_splice_tail_init(&sd->input_pkt_queue,
4164 						   &sd->process_queue);
4165 
4166 		if (qlen < quota - work) {
4167 			/*
4168 			 * Inline a custom version of __napi_complete().
4169 			 * only current cpu owns and manipulates this napi,
4170 			 * and NAPI_STATE_SCHED is the only possible flag set on backlog.
4171 			 * we can use a plain write instead of clear_bit(),
4172 			 * and we dont need an smp_mb() memory barrier.
4173 			 */
4174 			list_del(&napi->poll_list);
4175 			napi->state = 0;
4176 
4177 			quota = work + qlen;
4178 		}
4179 		rps_unlock(sd);
4180 	}
4181 	local_irq_enable();
4182 
4183 	return work;
4184 }
4185 
4186 /**
4187  * __napi_schedule - schedule for receive
4188  * @n: entry to schedule
4189  *
4190  * The entry's receive function will be scheduled to run
4191  */
4192 void __napi_schedule(struct napi_struct *n)
4193 {
4194 	unsigned long flags;
4195 
4196 	local_irq_save(flags);
4197 	____napi_schedule(&__get_cpu_var(softnet_data), n);
4198 	local_irq_restore(flags);
4199 }
4200 EXPORT_SYMBOL(__napi_schedule);
4201 
4202 void __napi_complete(struct napi_struct *n)
4203 {
4204 	BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
4205 	BUG_ON(n->gro_list);
4206 
4207 	list_del(&n->poll_list);
4208 	smp_mb__before_clear_bit();
4209 	clear_bit(NAPI_STATE_SCHED, &n->state);
4210 }
4211 EXPORT_SYMBOL(__napi_complete);
4212 
4213 void napi_complete(struct napi_struct *n)
4214 {
4215 	unsigned long flags;
4216 
4217 	/*
4218 	 * don't let napi dequeue from the cpu poll list
4219 	 * just in case its running on a different cpu
4220 	 */
4221 	if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
4222 		return;
4223 
4224 	napi_gro_flush(n, false);
4225 	local_irq_save(flags);
4226 	__napi_complete(n);
4227 	local_irq_restore(flags);
4228 }
4229 EXPORT_SYMBOL(napi_complete);
4230 
4231 /* must be called under rcu_read_lock(), as we dont take a reference */
4232 struct napi_struct *napi_by_id(unsigned int napi_id)
4233 {
4234 	unsigned int hash = napi_id % HASH_SIZE(napi_hash);
4235 	struct napi_struct *napi;
4236 
4237 	hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
4238 		if (napi->napi_id == napi_id)
4239 			return napi;
4240 
4241 	return NULL;
4242 }
4243 EXPORT_SYMBOL_GPL(napi_by_id);
4244 
4245 void napi_hash_add(struct napi_struct *napi)
4246 {
4247 	if (!test_and_set_bit(NAPI_STATE_HASHED, &napi->state)) {
4248 
4249 		spin_lock(&napi_hash_lock);
4250 
4251 		/* 0 is not a valid id, we also skip an id that is taken
4252 		 * we expect both events to be extremely rare
4253 		 */
4254 		napi->napi_id = 0;
4255 		while (!napi->napi_id) {
4256 			napi->napi_id = ++napi_gen_id;
4257 			if (napi_by_id(napi->napi_id))
4258 				napi->napi_id = 0;
4259 		}
4260 
4261 		hlist_add_head_rcu(&napi->napi_hash_node,
4262 			&napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
4263 
4264 		spin_unlock(&napi_hash_lock);
4265 	}
4266 }
4267 EXPORT_SYMBOL_GPL(napi_hash_add);
4268 
4269 /* Warning : caller is responsible to make sure rcu grace period
4270  * is respected before freeing memory containing @napi
4271  */
4272 void napi_hash_del(struct napi_struct *napi)
4273 {
4274 	spin_lock(&napi_hash_lock);
4275 
4276 	if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state))
4277 		hlist_del_rcu(&napi->napi_hash_node);
4278 
4279 	spin_unlock(&napi_hash_lock);
4280 }
4281 EXPORT_SYMBOL_GPL(napi_hash_del);
4282 
4283 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
4284 		    int (*poll)(struct napi_struct *, int), int weight)
4285 {
4286 	INIT_LIST_HEAD(&napi->poll_list);
4287 	napi->gro_count = 0;
4288 	napi->gro_list = NULL;
4289 	napi->skb = NULL;
4290 	napi->poll = poll;
4291 	if (weight > NAPI_POLL_WEIGHT)
4292 		pr_err_once("netif_napi_add() called with weight %d on device %s\n",
4293 			    weight, dev->name);
4294 	napi->weight = weight;
4295 	list_add(&napi->dev_list, &dev->napi_list);
4296 	napi->dev = dev;
4297 #ifdef CONFIG_NETPOLL
4298 	spin_lock_init(&napi->poll_lock);
4299 	napi->poll_owner = -1;
4300 #endif
4301 	set_bit(NAPI_STATE_SCHED, &napi->state);
4302 }
4303 EXPORT_SYMBOL(netif_napi_add);
4304 
4305 void netif_napi_del(struct napi_struct *napi)
4306 {
4307 	list_del_init(&napi->dev_list);
4308 	napi_free_frags(napi);
4309 
4310 	kfree_skb_list(napi->gro_list);
4311 	napi->gro_list = NULL;
4312 	napi->gro_count = 0;
4313 }
4314 EXPORT_SYMBOL(netif_napi_del);
4315 
4316 static void net_rx_action(struct softirq_action *h)
4317 {
4318 	struct softnet_data *sd = &__get_cpu_var(softnet_data);
4319 	unsigned long time_limit = jiffies + 2;
4320 	int budget = netdev_budget;
4321 	void *have;
4322 
4323 	local_irq_disable();
4324 
4325 	while (!list_empty(&sd->poll_list)) {
4326 		struct napi_struct *n;
4327 		int work, weight;
4328 
4329 		/* If softirq window is exhuasted then punt.
4330 		 * Allow this to run for 2 jiffies since which will allow
4331 		 * an average latency of 1.5/HZ.
4332 		 */
4333 		if (unlikely(budget <= 0 || time_after_eq(jiffies, time_limit)))
4334 			goto softnet_break;
4335 
4336 		local_irq_enable();
4337 
4338 		/* Even though interrupts have been re-enabled, this
4339 		 * access is safe because interrupts can only add new
4340 		 * entries to the tail of this list, and only ->poll()
4341 		 * calls can remove this head entry from the list.
4342 		 */
4343 		n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list);
4344 
4345 		have = netpoll_poll_lock(n);
4346 
4347 		weight = n->weight;
4348 
4349 		/* This NAPI_STATE_SCHED test is for avoiding a race
4350 		 * with netpoll's poll_napi().  Only the entity which
4351 		 * obtains the lock and sees NAPI_STATE_SCHED set will
4352 		 * actually make the ->poll() call.  Therefore we avoid
4353 		 * accidentally calling ->poll() when NAPI is not scheduled.
4354 		 */
4355 		work = 0;
4356 		if (test_bit(NAPI_STATE_SCHED, &n->state)) {
4357 			work = n->poll(n, weight);
4358 			trace_napi_poll(n);
4359 		}
4360 
4361 		WARN_ON_ONCE(work > weight);
4362 
4363 		budget -= work;
4364 
4365 		local_irq_disable();
4366 
4367 		/* Drivers must not modify the NAPI state if they
4368 		 * consume the entire weight.  In such cases this code
4369 		 * still "owns" the NAPI instance and therefore can
4370 		 * move the instance around on the list at-will.
4371 		 */
4372 		if (unlikely(work == weight)) {
4373 			if (unlikely(napi_disable_pending(n))) {
4374 				local_irq_enable();
4375 				napi_complete(n);
4376 				local_irq_disable();
4377 			} else {
4378 				if (n->gro_list) {
4379 					/* flush too old packets
4380 					 * If HZ < 1000, flush all packets.
4381 					 */
4382 					local_irq_enable();
4383 					napi_gro_flush(n, HZ >= 1000);
4384 					local_irq_disable();
4385 				}
4386 				list_move_tail(&n->poll_list, &sd->poll_list);
4387 			}
4388 		}
4389 
4390 		netpoll_poll_unlock(have);
4391 	}
4392 out:
4393 	net_rps_action_and_irq_enable(sd);
4394 
4395 #ifdef CONFIG_NET_DMA
4396 	/*
4397 	 * There may not be any more sk_buffs coming right now, so push
4398 	 * any pending DMA copies to hardware
4399 	 */
4400 	dma_issue_pending_all();
4401 #endif
4402 
4403 	return;
4404 
4405 softnet_break:
4406 	sd->time_squeeze++;
4407 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4408 	goto out;
4409 }
4410 
4411 struct netdev_adjacent {
4412 	struct net_device *dev;
4413 
4414 	/* upper master flag, there can only be one master device per list */
4415 	bool master;
4416 
4417 	/* counter for the number of times this device was added to us */
4418 	u16 ref_nr;
4419 
4420 	/* private field for the users */
4421 	void *private;
4422 
4423 	struct list_head list;
4424 	struct rcu_head rcu;
4425 };
4426 
4427 static struct netdev_adjacent *__netdev_find_adj(struct net_device *dev,
4428 						 struct net_device *adj_dev,
4429 						 struct list_head *adj_list)
4430 {
4431 	struct netdev_adjacent *adj;
4432 
4433 	list_for_each_entry(adj, adj_list, list) {
4434 		if (adj->dev == adj_dev)
4435 			return adj;
4436 	}
4437 	return NULL;
4438 }
4439 
4440 /**
4441  * netdev_has_upper_dev - Check if device is linked to an upper device
4442  * @dev: device
4443  * @upper_dev: upper device to check
4444  *
4445  * Find out if a device is linked to specified upper device and return true
4446  * in case it is. Note that this checks only immediate upper device,
4447  * not through a complete stack of devices. The caller must hold the RTNL lock.
4448  */
4449 bool netdev_has_upper_dev(struct net_device *dev,
4450 			  struct net_device *upper_dev)
4451 {
4452 	ASSERT_RTNL();
4453 
4454 	return __netdev_find_adj(dev, upper_dev, &dev->all_adj_list.upper);
4455 }
4456 EXPORT_SYMBOL(netdev_has_upper_dev);
4457 
4458 /**
4459  * netdev_has_any_upper_dev - Check if device is linked to some device
4460  * @dev: device
4461  *
4462  * Find out if a device is linked to an upper device and return true in case
4463  * it is. The caller must hold the RTNL lock.
4464  */
4465 static bool netdev_has_any_upper_dev(struct net_device *dev)
4466 {
4467 	ASSERT_RTNL();
4468 
4469 	return !list_empty(&dev->all_adj_list.upper);
4470 }
4471 
4472 /**
4473  * netdev_master_upper_dev_get - Get master upper device
4474  * @dev: device
4475  *
4476  * Find a master upper device and return pointer to it or NULL in case
4477  * it's not there. The caller must hold the RTNL lock.
4478  */
4479 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
4480 {
4481 	struct netdev_adjacent *upper;
4482 
4483 	ASSERT_RTNL();
4484 
4485 	if (list_empty(&dev->adj_list.upper))
4486 		return NULL;
4487 
4488 	upper = list_first_entry(&dev->adj_list.upper,
4489 				 struct netdev_adjacent, list);
4490 	if (likely(upper->master))
4491 		return upper->dev;
4492 	return NULL;
4493 }
4494 EXPORT_SYMBOL(netdev_master_upper_dev_get);
4495 
4496 void *netdev_adjacent_get_private(struct list_head *adj_list)
4497 {
4498 	struct netdev_adjacent *adj;
4499 
4500 	adj = list_entry(adj_list, struct netdev_adjacent, list);
4501 
4502 	return adj->private;
4503 }
4504 EXPORT_SYMBOL(netdev_adjacent_get_private);
4505 
4506 /**
4507  * netdev_all_upper_get_next_dev_rcu - Get the next dev from upper list
4508  * @dev: device
4509  * @iter: list_head ** of the current position
4510  *
4511  * Gets the next device from the dev's upper list, starting from iter
4512  * position. The caller must hold RCU read lock.
4513  */
4514 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
4515 						     struct list_head **iter)
4516 {
4517 	struct netdev_adjacent *upper;
4518 
4519 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
4520 
4521 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4522 
4523 	if (&upper->list == &dev->all_adj_list.upper)
4524 		return NULL;
4525 
4526 	*iter = &upper->list;
4527 
4528 	return upper->dev;
4529 }
4530 EXPORT_SYMBOL(netdev_all_upper_get_next_dev_rcu);
4531 
4532 /**
4533  * netdev_lower_get_next_private - Get the next ->private from the
4534  *				   lower neighbour list
4535  * @dev: device
4536  * @iter: list_head ** of the current position
4537  *
4538  * Gets the next netdev_adjacent->private from the dev's lower neighbour
4539  * list, starting from iter position. The caller must hold either hold the
4540  * RTNL lock or its own locking that guarantees that the neighbour lower
4541  * list will remain unchainged.
4542  */
4543 void *netdev_lower_get_next_private(struct net_device *dev,
4544 				    struct list_head **iter)
4545 {
4546 	struct netdev_adjacent *lower;
4547 
4548 	lower = list_entry(*iter, struct netdev_adjacent, list);
4549 
4550 	if (&lower->list == &dev->adj_list.lower)
4551 		return NULL;
4552 
4553 	if (iter)
4554 		*iter = lower->list.next;
4555 
4556 	return lower->private;
4557 }
4558 EXPORT_SYMBOL(netdev_lower_get_next_private);
4559 
4560 /**
4561  * netdev_lower_get_next_private_rcu - Get the next ->private from the
4562  *				       lower neighbour list, RCU
4563  *				       variant
4564  * @dev: device
4565  * @iter: list_head ** of the current position
4566  *
4567  * Gets the next netdev_adjacent->private from the dev's lower neighbour
4568  * list, starting from iter position. The caller must hold RCU read lock.
4569  */
4570 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
4571 					struct list_head **iter)
4572 {
4573 	struct netdev_adjacent *lower;
4574 
4575 	WARN_ON_ONCE(!rcu_read_lock_held());
4576 
4577 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4578 
4579 	if (&lower->list == &dev->adj_list.lower)
4580 		return NULL;
4581 
4582 	if (iter)
4583 		*iter = &lower->list;
4584 
4585 	return lower->private;
4586 }
4587 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
4588 
4589 /**
4590  * netdev_lower_get_first_private_rcu - Get the first ->private from the
4591  *				       lower neighbour list, RCU
4592  *				       variant
4593  * @dev: device
4594  *
4595  * Gets the first netdev_adjacent->private from the dev's lower neighbour
4596  * list. The caller must hold RCU read lock.
4597  */
4598 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
4599 {
4600 	struct netdev_adjacent *lower;
4601 
4602 	lower = list_first_or_null_rcu(&dev->adj_list.lower,
4603 			struct netdev_adjacent, list);
4604 	if (lower)
4605 		return lower->private;
4606 	return NULL;
4607 }
4608 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
4609 
4610 /**
4611  * netdev_master_upper_dev_get_rcu - Get master upper device
4612  * @dev: device
4613  *
4614  * Find a master upper device and return pointer to it or NULL in case
4615  * it's not there. The caller must hold the RCU read lock.
4616  */
4617 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
4618 {
4619 	struct netdev_adjacent *upper;
4620 
4621 	upper = list_first_or_null_rcu(&dev->adj_list.upper,
4622 				       struct netdev_adjacent, list);
4623 	if (upper && likely(upper->master))
4624 		return upper->dev;
4625 	return NULL;
4626 }
4627 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
4628 
4629 int netdev_adjacent_sysfs_add(struct net_device *dev,
4630 			      struct net_device *adj_dev,
4631 			      struct list_head *dev_list)
4632 {
4633 	char linkname[IFNAMSIZ+7];
4634 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
4635 		"upper_%s" : "lower_%s", adj_dev->name);
4636 	return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
4637 				 linkname);
4638 }
4639 void netdev_adjacent_sysfs_del(struct net_device *dev,
4640 			       char *name,
4641 			       struct list_head *dev_list)
4642 {
4643 	char linkname[IFNAMSIZ+7];
4644 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
4645 		"upper_%s" : "lower_%s", name);
4646 	sysfs_remove_link(&(dev->dev.kobj), linkname);
4647 }
4648 
4649 #define netdev_adjacent_is_neigh_list(dev, dev_list) \
4650 		(dev_list == &dev->adj_list.upper || \
4651 		 dev_list == &dev->adj_list.lower)
4652 
4653 static int __netdev_adjacent_dev_insert(struct net_device *dev,
4654 					struct net_device *adj_dev,
4655 					struct list_head *dev_list,
4656 					void *private, bool master)
4657 {
4658 	struct netdev_adjacent *adj;
4659 	int ret;
4660 
4661 	adj = __netdev_find_adj(dev, adj_dev, dev_list);
4662 
4663 	if (adj) {
4664 		adj->ref_nr++;
4665 		return 0;
4666 	}
4667 
4668 	adj = kmalloc(sizeof(*adj), GFP_KERNEL);
4669 	if (!adj)
4670 		return -ENOMEM;
4671 
4672 	adj->dev = adj_dev;
4673 	adj->master = master;
4674 	adj->ref_nr = 1;
4675 	adj->private = private;
4676 	dev_hold(adj_dev);
4677 
4678 	pr_debug("dev_hold for %s, because of link added from %s to %s\n",
4679 		 adj_dev->name, dev->name, adj_dev->name);
4680 
4681 	if (netdev_adjacent_is_neigh_list(dev, dev_list)) {
4682 		ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
4683 		if (ret)
4684 			goto free_adj;
4685 	}
4686 
4687 	/* Ensure that master link is always the first item in list. */
4688 	if (master) {
4689 		ret = sysfs_create_link(&(dev->dev.kobj),
4690 					&(adj_dev->dev.kobj), "master");
4691 		if (ret)
4692 			goto remove_symlinks;
4693 
4694 		list_add_rcu(&adj->list, dev_list);
4695 	} else {
4696 		list_add_tail_rcu(&adj->list, dev_list);
4697 	}
4698 
4699 	return 0;
4700 
4701 remove_symlinks:
4702 	if (netdev_adjacent_is_neigh_list(dev, dev_list))
4703 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
4704 free_adj:
4705 	kfree(adj);
4706 	dev_put(adj_dev);
4707 
4708 	return ret;
4709 }
4710 
4711 static void __netdev_adjacent_dev_remove(struct net_device *dev,
4712 					 struct net_device *adj_dev,
4713 					 struct list_head *dev_list)
4714 {
4715 	struct netdev_adjacent *adj;
4716 
4717 	adj = __netdev_find_adj(dev, adj_dev, dev_list);
4718 
4719 	if (!adj) {
4720 		pr_err("tried to remove device %s from %s\n",
4721 		       dev->name, adj_dev->name);
4722 		BUG();
4723 	}
4724 
4725 	if (adj->ref_nr > 1) {
4726 		pr_debug("%s to %s ref_nr-- = %d\n", dev->name, adj_dev->name,
4727 			 adj->ref_nr-1);
4728 		adj->ref_nr--;
4729 		return;
4730 	}
4731 
4732 	if (adj->master)
4733 		sysfs_remove_link(&(dev->dev.kobj), "master");
4734 
4735 	if (netdev_adjacent_is_neigh_list(dev, dev_list))
4736 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
4737 
4738 	list_del_rcu(&adj->list);
4739 	pr_debug("dev_put for %s, because link removed from %s to %s\n",
4740 		 adj_dev->name, dev->name, adj_dev->name);
4741 	dev_put(adj_dev);
4742 	kfree_rcu(adj, rcu);
4743 }
4744 
4745 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
4746 					    struct net_device *upper_dev,
4747 					    struct list_head *up_list,
4748 					    struct list_head *down_list,
4749 					    void *private, bool master)
4750 {
4751 	int ret;
4752 
4753 	ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, private,
4754 					   master);
4755 	if (ret)
4756 		return ret;
4757 
4758 	ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, private,
4759 					   false);
4760 	if (ret) {
4761 		__netdev_adjacent_dev_remove(dev, upper_dev, up_list);
4762 		return ret;
4763 	}
4764 
4765 	return 0;
4766 }
4767 
4768 static int __netdev_adjacent_dev_link(struct net_device *dev,
4769 				      struct net_device *upper_dev)
4770 {
4771 	return __netdev_adjacent_dev_link_lists(dev, upper_dev,
4772 						&dev->all_adj_list.upper,
4773 						&upper_dev->all_adj_list.lower,
4774 						NULL, false);
4775 }
4776 
4777 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
4778 					       struct net_device *upper_dev,
4779 					       struct list_head *up_list,
4780 					       struct list_head *down_list)
4781 {
4782 	__netdev_adjacent_dev_remove(dev, upper_dev, up_list);
4783 	__netdev_adjacent_dev_remove(upper_dev, dev, down_list);
4784 }
4785 
4786 static void __netdev_adjacent_dev_unlink(struct net_device *dev,
4787 					 struct net_device *upper_dev)
4788 {
4789 	__netdev_adjacent_dev_unlink_lists(dev, upper_dev,
4790 					   &dev->all_adj_list.upper,
4791 					   &upper_dev->all_adj_list.lower);
4792 }
4793 
4794 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
4795 						struct net_device *upper_dev,
4796 						void *private, bool master)
4797 {
4798 	int ret = __netdev_adjacent_dev_link(dev, upper_dev);
4799 
4800 	if (ret)
4801 		return ret;
4802 
4803 	ret = __netdev_adjacent_dev_link_lists(dev, upper_dev,
4804 					       &dev->adj_list.upper,
4805 					       &upper_dev->adj_list.lower,
4806 					       private, master);
4807 	if (ret) {
4808 		__netdev_adjacent_dev_unlink(dev, upper_dev);
4809 		return ret;
4810 	}
4811 
4812 	return 0;
4813 }
4814 
4815 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
4816 						   struct net_device *upper_dev)
4817 {
4818 	__netdev_adjacent_dev_unlink(dev, upper_dev);
4819 	__netdev_adjacent_dev_unlink_lists(dev, upper_dev,
4820 					   &dev->adj_list.upper,
4821 					   &upper_dev->adj_list.lower);
4822 }
4823 
4824 static int __netdev_upper_dev_link(struct net_device *dev,
4825 				   struct net_device *upper_dev, bool master,
4826 				   void *private)
4827 {
4828 	struct netdev_adjacent *i, *j, *to_i, *to_j;
4829 	int ret = 0;
4830 
4831 	ASSERT_RTNL();
4832 
4833 	if (dev == upper_dev)
4834 		return -EBUSY;
4835 
4836 	/* To prevent loops, check if dev is not upper device to upper_dev. */
4837 	if (__netdev_find_adj(upper_dev, dev, &upper_dev->all_adj_list.upper))
4838 		return -EBUSY;
4839 
4840 	if (__netdev_find_adj(dev, upper_dev, &dev->all_adj_list.upper))
4841 		return -EEXIST;
4842 
4843 	if (master && netdev_master_upper_dev_get(dev))
4844 		return -EBUSY;
4845 
4846 	ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, private,
4847 						   master);
4848 	if (ret)
4849 		return ret;
4850 
4851 	/* Now that we linked these devs, make all the upper_dev's
4852 	 * all_adj_list.upper visible to every dev's all_adj_list.lower an
4853 	 * versa, and don't forget the devices itself. All of these
4854 	 * links are non-neighbours.
4855 	 */
4856 	list_for_each_entry(i, &dev->all_adj_list.lower, list) {
4857 		list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
4858 			pr_debug("Interlinking %s with %s, non-neighbour\n",
4859 				 i->dev->name, j->dev->name);
4860 			ret = __netdev_adjacent_dev_link(i->dev, j->dev);
4861 			if (ret)
4862 				goto rollback_mesh;
4863 		}
4864 	}
4865 
4866 	/* add dev to every upper_dev's upper device */
4867 	list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
4868 		pr_debug("linking %s's upper device %s with %s\n",
4869 			 upper_dev->name, i->dev->name, dev->name);
4870 		ret = __netdev_adjacent_dev_link(dev, i->dev);
4871 		if (ret)
4872 			goto rollback_upper_mesh;
4873 	}
4874 
4875 	/* add upper_dev to every dev's lower device */
4876 	list_for_each_entry(i, &dev->all_adj_list.lower, list) {
4877 		pr_debug("linking %s's lower device %s with %s\n", dev->name,
4878 			 i->dev->name, upper_dev->name);
4879 		ret = __netdev_adjacent_dev_link(i->dev, upper_dev);
4880 		if (ret)
4881 			goto rollback_lower_mesh;
4882 	}
4883 
4884 	call_netdevice_notifiers(NETDEV_CHANGEUPPER, dev);
4885 	return 0;
4886 
4887 rollback_lower_mesh:
4888 	to_i = i;
4889 	list_for_each_entry(i, &dev->all_adj_list.lower, list) {
4890 		if (i == to_i)
4891 			break;
4892 		__netdev_adjacent_dev_unlink(i->dev, upper_dev);
4893 	}
4894 
4895 	i = NULL;
4896 
4897 rollback_upper_mesh:
4898 	to_i = i;
4899 	list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
4900 		if (i == to_i)
4901 			break;
4902 		__netdev_adjacent_dev_unlink(dev, i->dev);
4903 	}
4904 
4905 	i = j = NULL;
4906 
4907 rollback_mesh:
4908 	to_i = i;
4909 	to_j = j;
4910 	list_for_each_entry(i, &dev->all_adj_list.lower, list) {
4911 		list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
4912 			if (i == to_i && j == to_j)
4913 				break;
4914 			__netdev_adjacent_dev_unlink(i->dev, j->dev);
4915 		}
4916 		if (i == to_i)
4917 			break;
4918 	}
4919 
4920 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
4921 
4922 	return ret;
4923 }
4924 
4925 /**
4926  * netdev_upper_dev_link - Add a link to the upper device
4927  * @dev: device
4928  * @upper_dev: new upper device
4929  *
4930  * Adds a link to device which is upper to this one. The caller must hold
4931  * the RTNL lock. On a failure a negative errno code is returned.
4932  * On success the reference counts are adjusted and the function
4933  * returns zero.
4934  */
4935 int netdev_upper_dev_link(struct net_device *dev,
4936 			  struct net_device *upper_dev)
4937 {
4938 	return __netdev_upper_dev_link(dev, upper_dev, false, NULL);
4939 }
4940 EXPORT_SYMBOL(netdev_upper_dev_link);
4941 
4942 /**
4943  * netdev_master_upper_dev_link - Add a master link to the upper device
4944  * @dev: device
4945  * @upper_dev: new upper device
4946  *
4947  * Adds a link to device which is upper to this one. In this case, only
4948  * one master upper device can be linked, although other non-master devices
4949  * might be linked as well. The caller must hold the RTNL lock.
4950  * On a failure a negative errno code is returned. On success the reference
4951  * counts are adjusted and the function returns zero.
4952  */
4953 int netdev_master_upper_dev_link(struct net_device *dev,
4954 				 struct net_device *upper_dev)
4955 {
4956 	return __netdev_upper_dev_link(dev, upper_dev, true, NULL);
4957 }
4958 EXPORT_SYMBOL(netdev_master_upper_dev_link);
4959 
4960 int netdev_master_upper_dev_link_private(struct net_device *dev,
4961 					 struct net_device *upper_dev,
4962 					 void *private)
4963 {
4964 	return __netdev_upper_dev_link(dev, upper_dev, true, private);
4965 }
4966 EXPORT_SYMBOL(netdev_master_upper_dev_link_private);
4967 
4968 /**
4969  * netdev_upper_dev_unlink - Removes a link to upper device
4970  * @dev: device
4971  * @upper_dev: new upper device
4972  *
4973  * Removes a link to device which is upper to this one. The caller must hold
4974  * the RTNL lock.
4975  */
4976 void netdev_upper_dev_unlink(struct net_device *dev,
4977 			     struct net_device *upper_dev)
4978 {
4979 	struct netdev_adjacent *i, *j;
4980 	ASSERT_RTNL();
4981 
4982 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
4983 
4984 	/* Here is the tricky part. We must remove all dev's lower
4985 	 * devices from all upper_dev's upper devices and vice
4986 	 * versa, to maintain the graph relationship.
4987 	 */
4988 	list_for_each_entry(i, &dev->all_adj_list.lower, list)
4989 		list_for_each_entry(j, &upper_dev->all_adj_list.upper, list)
4990 			__netdev_adjacent_dev_unlink(i->dev, j->dev);
4991 
4992 	/* remove also the devices itself from lower/upper device
4993 	 * list
4994 	 */
4995 	list_for_each_entry(i, &dev->all_adj_list.lower, list)
4996 		__netdev_adjacent_dev_unlink(i->dev, upper_dev);
4997 
4998 	list_for_each_entry(i, &upper_dev->all_adj_list.upper, list)
4999 		__netdev_adjacent_dev_unlink(dev, i->dev);
5000 
5001 	call_netdevice_notifiers(NETDEV_CHANGEUPPER, dev);
5002 }
5003 EXPORT_SYMBOL(netdev_upper_dev_unlink);
5004 
5005 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
5006 {
5007 	struct netdev_adjacent *iter;
5008 
5009 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
5010 		netdev_adjacent_sysfs_del(iter->dev, oldname,
5011 					  &iter->dev->adj_list.lower);
5012 		netdev_adjacent_sysfs_add(iter->dev, dev,
5013 					  &iter->dev->adj_list.lower);
5014 	}
5015 
5016 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
5017 		netdev_adjacent_sysfs_del(iter->dev, oldname,
5018 					  &iter->dev->adj_list.upper);
5019 		netdev_adjacent_sysfs_add(iter->dev, dev,
5020 					  &iter->dev->adj_list.upper);
5021 	}
5022 }
5023 
5024 void *netdev_lower_dev_get_private(struct net_device *dev,
5025 				   struct net_device *lower_dev)
5026 {
5027 	struct netdev_adjacent *lower;
5028 
5029 	if (!lower_dev)
5030 		return NULL;
5031 	lower = __netdev_find_adj(dev, lower_dev, &dev->adj_list.lower);
5032 	if (!lower)
5033 		return NULL;
5034 
5035 	return lower->private;
5036 }
5037 EXPORT_SYMBOL(netdev_lower_dev_get_private);
5038 
5039 static void dev_change_rx_flags(struct net_device *dev, int flags)
5040 {
5041 	const struct net_device_ops *ops = dev->netdev_ops;
5042 
5043 	if (ops->ndo_change_rx_flags)
5044 		ops->ndo_change_rx_flags(dev, flags);
5045 }
5046 
5047 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
5048 {
5049 	unsigned int old_flags = dev->flags;
5050 	kuid_t uid;
5051 	kgid_t gid;
5052 
5053 	ASSERT_RTNL();
5054 
5055 	dev->flags |= IFF_PROMISC;
5056 	dev->promiscuity += inc;
5057 	if (dev->promiscuity == 0) {
5058 		/*
5059 		 * Avoid overflow.
5060 		 * If inc causes overflow, untouch promisc and return error.
5061 		 */
5062 		if (inc < 0)
5063 			dev->flags &= ~IFF_PROMISC;
5064 		else {
5065 			dev->promiscuity -= inc;
5066 			pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
5067 				dev->name);
5068 			return -EOVERFLOW;
5069 		}
5070 	}
5071 	if (dev->flags != old_flags) {
5072 		pr_info("device %s %s promiscuous mode\n",
5073 			dev->name,
5074 			dev->flags & IFF_PROMISC ? "entered" : "left");
5075 		if (audit_enabled) {
5076 			current_uid_gid(&uid, &gid);
5077 			audit_log(current->audit_context, GFP_ATOMIC,
5078 				AUDIT_ANOM_PROMISCUOUS,
5079 				"dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
5080 				dev->name, (dev->flags & IFF_PROMISC),
5081 				(old_flags & IFF_PROMISC),
5082 				from_kuid(&init_user_ns, audit_get_loginuid(current)),
5083 				from_kuid(&init_user_ns, uid),
5084 				from_kgid(&init_user_ns, gid),
5085 				audit_get_sessionid(current));
5086 		}
5087 
5088 		dev_change_rx_flags(dev, IFF_PROMISC);
5089 	}
5090 	if (notify)
5091 		__dev_notify_flags(dev, old_flags, IFF_PROMISC);
5092 	return 0;
5093 }
5094 
5095 /**
5096  *	dev_set_promiscuity	- update promiscuity count on a device
5097  *	@dev: device
5098  *	@inc: modifier
5099  *
5100  *	Add or remove promiscuity from a device. While the count in the device
5101  *	remains above zero the interface remains promiscuous. Once it hits zero
5102  *	the device reverts back to normal filtering operation. A negative inc
5103  *	value is used to drop promiscuity on the device.
5104  *	Return 0 if successful or a negative errno code on error.
5105  */
5106 int dev_set_promiscuity(struct net_device *dev, int inc)
5107 {
5108 	unsigned int old_flags = dev->flags;
5109 	int err;
5110 
5111 	err = __dev_set_promiscuity(dev, inc, true);
5112 	if (err < 0)
5113 		return err;
5114 	if (dev->flags != old_flags)
5115 		dev_set_rx_mode(dev);
5116 	return err;
5117 }
5118 EXPORT_SYMBOL(dev_set_promiscuity);
5119 
5120 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
5121 {
5122 	unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
5123 
5124 	ASSERT_RTNL();
5125 
5126 	dev->flags |= IFF_ALLMULTI;
5127 	dev->allmulti += inc;
5128 	if (dev->allmulti == 0) {
5129 		/*
5130 		 * Avoid overflow.
5131 		 * If inc causes overflow, untouch allmulti and return error.
5132 		 */
5133 		if (inc < 0)
5134 			dev->flags &= ~IFF_ALLMULTI;
5135 		else {
5136 			dev->allmulti -= inc;
5137 			pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
5138 				dev->name);
5139 			return -EOVERFLOW;
5140 		}
5141 	}
5142 	if (dev->flags ^ old_flags) {
5143 		dev_change_rx_flags(dev, IFF_ALLMULTI);
5144 		dev_set_rx_mode(dev);
5145 		if (notify)
5146 			__dev_notify_flags(dev, old_flags,
5147 					   dev->gflags ^ old_gflags);
5148 	}
5149 	return 0;
5150 }
5151 
5152 /**
5153  *	dev_set_allmulti	- update allmulti count on a device
5154  *	@dev: device
5155  *	@inc: modifier
5156  *
5157  *	Add or remove reception of all multicast frames to a device. While the
5158  *	count in the device remains above zero the interface remains listening
5159  *	to all interfaces. Once it hits zero the device reverts back to normal
5160  *	filtering operation. A negative @inc value is used to drop the counter
5161  *	when releasing a resource needing all multicasts.
5162  *	Return 0 if successful or a negative errno code on error.
5163  */
5164 
5165 int dev_set_allmulti(struct net_device *dev, int inc)
5166 {
5167 	return __dev_set_allmulti(dev, inc, true);
5168 }
5169 EXPORT_SYMBOL(dev_set_allmulti);
5170 
5171 /*
5172  *	Upload unicast and multicast address lists to device and
5173  *	configure RX filtering. When the device doesn't support unicast
5174  *	filtering it is put in promiscuous mode while unicast addresses
5175  *	are present.
5176  */
5177 void __dev_set_rx_mode(struct net_device *dev)
5178 {
5179 	const struct net_device_ops *ops = dev->netdev_ops;
5180 
5181 	/* dev_open will call this function so the list will stay sane. */
5182 	if (!(dev->flags&IFF_UP))
5183 		return;
5184 
5185 	if (!netif_device_present(dev))
5186 		return;
5187 
5188 	if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
5189 		/* Unicast addresses changes may only happen under the rtnl,
5190 		 * therefore calling __dev_set_promiscuity here is safe.
5191 		 */
5192 		if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
5193 			__dev_set_promiscuity(dev, 1, false);
5194 			dev->uc_promisc = true;
5195 		} else if (netdev_uc_empty(dev) && dev->uc_promisc) {
5196 			__dev_set_promiscuity(dev, -1, false);
5197 			dev->uc_promisc = false;
5198 		}
5199 	}
5200 
5201 	if (ops->ndo_set_rx_mode)
5202 		ops->ndo_set_rx_mode(dev);
5203 }
5204 
5205 void dev_set_rx_mode(struct net_device *dev)
5206 {
5207 	netif_addr_lock_bh(dev);
5208 	__dev_set_rx_mode(dev);
5209 	netif_addr_unlock_bh(dev);
5210 }
5211 
5212 /**
5213  *	dev_get_flags - get flags reported to userspace
5214  *	@dev: device
5215  *
5216  *	Get the combination of flag bits exported through APIs to userspace.
5217  */
5218 unsigned int dev_get_flags(const struct net_device *dev)
5219 {
5220 	unsigned int flags;
5221 
5222 	flags = (dev->flags & ~(IFF_PROMISC |
5223 				IFF_ALLMULTI |
5224 				IFF_RUNNING |
5225 				IFF_LOWER_UP |
5226 				IFF_DORMANT)) |
5227 		(dev->gflags & (IFF_PROMISC |
5228 				IFF_ALLMULTI));
5229 
5230 	if (netif_running(dev)) {
5231 		if (netif_oper_up(dev))
5232 			flags |= IFF_RUNNING;
5233 		if (netif_carrier_ok(dev))
5234 			flags |= IFF_LOWER_UP;
5235 		if (netif_dormant(dev))
5236 			flags |= IFF_DORMANT;
5237 	}
5238 
5239 	return flags;
5240 }
5241 EXPORT_SYMBOL(dev_get_flags);
5242 
5243 int __dev_change_flags(struct net_device *dev, unsigned int flags)
5244 {
5245 	unsigned int old_flags = dev->flags;
5246 	int ret;
5247 
5248 	ASSERT_RTNL();
5249 
5250 	/*
5251 	 *	Set the flags on our device.
5252 	 */
5253 
5254 	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
5255 			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
5256 			       IFF_AUTOMEDIA)) |
5257 		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
5258 				    IFF_ALLMULTI));
5259 
5260 	/*
5261 	 *	Load in the correct multicast list now the flags have changed.
5262 	 */
5263 
5264 	if ((old_flags ^ flags) & IFF_MULTICAST)
5265 		dev_change_rx_flags(dev, IFF_MULTICAST);
5266 
5267 	dev_set_rx_mode(dev);
5268 
5269 	/*
5270 	 *	Have we downed the interface. We handle IFF_UP ourselves
5271 	 *	according to user attempts to set it, rather than blindly
5272 	 *	setting it.
5273 	 */
5274 
5275 	ret = 0;
5276 	if ((old_flags ^ flags) & IFF_UP) {	/* Bit is different  ? */
5277 		ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
5278 
5279 		if (!ret)
5280 			dev_set_rx_mode(dev);
5281 	}
5282 
5283 	if ((flags ^ dev->gflags) & IFF_PROMISC) {
5284 		int inc = (flags & IFF_PROMISC) ? 1 : -1;
5285 		unsigned int old_flags = dev->flags;
5286 
5287 		dev->gflags ^= IFF_PROMISC;
5288 
5289 		if (__dev_set_promiscuity(dev, inc, false) >= 0)
5290 			if (dev->flags != old_flags)
5291 				dev_set_rx_mode(dev);
5292 	}
5293 
5294 	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
5295 	   is important. Some (broken) drivers set IFF_PROMISC, when
5296 	   IFF_ALLMULTI is requested not asking us and not reporting.
5297 	 */
5298 	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
5299 		int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
5300 
5301 		dev->gflags ^= IFF_ALLMULTI;
5302 		__dev_set_allmulti(dev, inc, false);
5303 	}
5304 
5305 	return ret;
5306 }
5307 
5308 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
5309 			unsigned int gchanges)
5310 {
5311 	unsigned int changes = dev->flags ^ old_flags;
5312 
5313 	if (gchanges)
5314 		rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
5315 
5316 	if (changes & IFF_UP) {
5317 		if (dev->flags & IFF_UP)
5318 			call_netdevice_notifiers(NETDEV_UP, dev);
5319 		else
5320 			call_netdevice_notifiers(NETDEV_DOWN, dev);
5321 	}
5322 
5323 	if (dev->flags & IFF_UP &&
5324 	    (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
5325 		struct netdev_notifier_change_info change_info;
5326 
5327 		change_info.flags_changed = changes;
5328 		call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
5329 					      &change_info.info);
5330 	}
5331 }
5332 
5333 /**
5334  *	dev_change_flags - change device settings
5335  *	@dev: device
5336  *	@flags: device state flags
5337  *
5338  *	Change settings on device based state flags. The flags are
5339  *	in the userspace exported format.
5340  */
5341 int dev_change_flags(struct net_device *dev, unsigned int flags)
5342 {
5343 	int ret;
5344 	unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
5345 
5346 	ret = __dev_change_flags(dev, flags);
5347 	if (ret < 0)
5348 		return ret;
5349 
5350 	changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
5351 	__dev_notify_flags(dev, old_flags, changes);
5352 	return ret;
5353 }
5354 EXPORT_SYMBOL(dev_change_flags);
5355 
5356 static int __dev_set_mtu(struct net_device *dev, int new_mtu)
5357 {
5358 	const struct net_device_ops *ops = dev->netdev_ops;
5359 
5360 	if (ops->ndo_change_mtu)
5361 		return ops->ndo_change_mtu(dev, new_mtu);
5362 
5363 	dev->mtu = new_mtu;
5364 	return 0;
5365 }
5366 
5367 /**
5368  *	dev_set_mtu - Change maximum transfer unit
5369  *	@dev: device
5370  *	@new_mtu: new transfer unit
5371  *
5372  *	Change the maximum transfer size of the network device.
5373  */
5374 int dev_set_mtu(struct net_device *dev, int new_mtu)
5375 {
5376 	int err, orig_mtu;
5377 
5378 	if (new_mtu == dev->mtu)
5379 		return 0;
5380 
5381 	/*	MTU must be positive.	 */
5382 	if (new_mtu < 0)
5383 		return -EINVAL;
5384 
5385 	if (!netif_device_present(dev))
5386 		return -ENODEV;
5387 
5388 	orig_mtu = dev->mtu;
5389 	err = __dev_set_mtu(dev, new_mtu);
5390 
5391 	if (!err) {
5392 		err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
5393 		err = notifier_to_errno(err);
5394 		if (err) {
5395 			/* setting mtu back and notifying everyone again,
5396 			 * so that they have a chance to revert changes.
5397 			 */
5398 			__dev_set_mtu(dev, orig_mtu);
5399 			call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
5400 		}
5401 	}
5402 	return err;
5403 }
5404 EXPORT_SYMBOL(dev_set_mtu);
5405 
5406 /**
5407  *	dev_set_group - Change group this device belongs to
5408  *	@dev: device
5409  *	@new_group: group this device should belong to
5410  */
5411 void dev_set_group(struct net_device *dev, int new_group)
5412 {
5413 	dev->group = new_group;
5414 }
5415 EXPORT_SYMBOL(dev_set_group);
5416 
5417 /**
5418  *	dev_set_mac_address - Change Media Access Control Address
5419  *	@dev: device
5420  *	@sa: new address
5421  *
5422  *	Change the hardware (MAC) address of the device
5423  */
5424 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
5425 {
5426 	const struct net_device_ops *ops = dev->netdev_ops;
5427 	int err;
5428 
5429 	if (!ops->ndo_set_mac_address)
5430 		return -EOPNOTSUPP;
5431 	if (sa->sa_family != dev->type)
5432 		return -EINVAL;
5433 	if (!netif_device_present(dev))
5434 		return -ENODEV;
5435 	err = ops->ndo_set_mac_address(dev, sa);
5436 	if (err)
5437 		return err;
5438 	dev->addr_assign_type = NET_ADDR_SET;
5439 	call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
5440 	add_device_randomness(dev->dev_addr, dev->addr_len);
5441 	return 0;
5442 }
5443 EXPORT_SYMBOL(dev_set_mac_address);
5444 
5445 /**
5446  *	dev_change_carrier - Change device carrier
5447  *	@dev: device
5448  *	@new_carrier: new value
5449  *
5450  *	Change device carrier
5451  */
5452 int dev_change_carrier(struct net_device *dev, bool new_carrier)
5453 {
5454 	const struct net_device_ops *ops = dev->netdev_ops;
5455 
5456 	if (!ops->ndo_change_carrier)
5457 		return -EOPNOTSUPP;
5458 	if (!netif_device_present(dev))
5459 		return -ENODEV;
5460 	return ops->ndo_change_carrier(dev, new_carrier);
5461 }
5462 EXPORT_SYMBOL(dev_change_carrier);
5463 
5464 /**
5465  *	dev_get_phys_port_id - Get device physical port ID
5466  *	@dev: device
5467  *	@ppid: port ID
5468  *
5469  *	Get device physical port ID
5470  */
5471 int dev_get_phys_port_id(struct net_device *dev,
5472 			 struct netdev_phys_port_id *ppid)
5473 {
5474 	const struct net_device_ops *ops = dev->netdev_ops;
5475 
5476 	if (!ops->ndo_get_phys_port_id)
5477 		return -EOPNOTSUPP;
5478 	return ops->ndo_get_phys_port_id(dev, ppid);
5479 }
5480 EXPORT_SYMBOL(dev_get_phys_port_id);
5481 
5482 /**
5483  *	dev_new_index	-	allocate an ifindex
5484  *	@net: the applicable net namespace
5485  *
5486  *	Returns a suitable unique value for a new device interface
5487  *	number.  The caller must hold the rtnl semaphore or the
5488  *	dev_base_lock to be sure it remains unique.
5489  */
5490 static int dev_new_index(struct net *net)
5491 {
5492 	int ifindex = net->ifindex;
5493 	for (;;) {
5494 		if (++ifindex <= 0)
5495 			ifindex = 1;
5496 		if (!__dev_get_by_index(net, ifindex))
5497 			return net->ifindex = ifindex;
5498 	}
5499 }
5500 
5501 /* Delayed registration/unregisteration */
5502 static LIST_HEAD(net_todo_list);
5503 static DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
5504 
5505 static void net_set_todo(struct net_device *dev)
5506 {
5507 	list_add_tail(&dev->todo_list, &net_todo_list);
5508 	dev_net(dev)->dev_unreg_count++;
5509 }
5510 
5511 static void rollback_registered_many(struct list_head *head)
5512 {
5513 	struct net_device *dev, *tmp;
5514 	LIST_HEAD(close_head);
5515 
5516 	BUG_ON(dev_boot_phase);
5517 	ASSERT_RTNL();
5518 
5519 	list_for_each_entry_safe(dev, tmp, head, unreg_list) {
5520 		/* Some devices call without registering
5521 		 * for initialization unwind. Remove those
5522 		 * devices and proceed with the remaining.
5523 		 */
5524 		if (dev->reg_state == NETREG_UNINITIALIZED) {
5525 			pr_debug("unregister_netdevice: device %s/%p never was registered\n",
5526 				 dev->name, dev);
5527 
5528 			WARN_ON(1);
5529 			list_del(&dev->unreg_list);
5530 			continue;
5531 		}
5532 		dev->dismantle = true;
5533 		BUG_ON(dev->reg_state != NETREG_REGISTERED);
5534 	}
5535 
5536 	/* If device is running, close it first. */
5537 	list_for_each_entry(dev, head, unreg_list)
5538 		list_add_tail(&dev->close_list, &close_head);
5539 	dev_close_many(&close_head);
5540 
5541 	list_for_each_entry(dev, head, unreg_list) {
5542 		/* And unlink it from device chain. */
5543 		unlist_netdevice(dev);
5544 
5545 		dev->reg_state = NETREG_UNREGISTERING;
5546 	}
5547 
5548 	synchronize_net();
5549 
5550 	list_for_each_entry(dev, head, unreg_list) {
5551 		/* Shutdown queueing discipline. */
5552 		dev_shutdown(dev);
5553 
5554 
5555 		/* Notify protocols, that we are about to destroy
5556 		   this device. They should clean all the things.
5557 		*/
5558 		call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5559 
5560 		if (!dev->rtnl_link_ops ||
5561 		    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5562 			rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
5563 
5564 		/*
5565 		 *	Flush the unicast and multicast chains
5566 		 */
5567 		dev_uc_flush(dev);
5568 		dev_mc_flush(dev);
5569 
5570 		if (dev->netdev_ops->ndo_uninit)
5571 			dev->netdev_ops->ndo_uninit(dev);
5572 
5573 		/* Notifier chain MUST detach us all upper devices. */
5574 		WARN_ON(netdev_has_any_upper_dev(dev));
5575 
5576 		/* Remove entries from kobject tree */
5577 		netdev_unregister_kobject(dev);
5578 #ifdef CONFIG_XPS
5579 		/* Remove XPS queueing entries */
5580 		netif_reset_xps_queues_gt(dev, 0);
5581 #endif
5582 	}
5583 
5584 	synchronize_net();
5585 
5586 	list_for_each_entry(dev, head, unreg_list)
5587 		dev_put(dev);
5588 }
5589 
5590 static void rollback_registered(struct net_device *dev)
5591 {
5592 	LIST_HEAD(single);
5593 
5594 	list_add(&dev->unreg_list, &single);
5595 	rollback_registered_many(&single);
5596 	list_del(&single);
5597 }
5598 
5599 static netdev_features_t netdev_fix_features(struct net_device *dev,
5600 	netdev_features_t features)
5601 {
5602 	/* Fix illegal checksum combinations */
5603 	if ((features & NETIF_F_HW_CSUM) &&
5604 	    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5605 		netdev_warn(dev, "mixed HW and IP checksum settings.\n");
5606 		features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
5607 	}
5608 
5609 	/* TSO requires that SG is present as well. */
5610 	if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
5611 		netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
5612 		features &= ~NETIF_F_ALL_TSO;
5613 	}
5614 
5615 	if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
5616 					!(features & NETIF_F_IP_CSUM)) {
5617 		netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
5618 		features &= ~NETIF_F_TSO;
5619 		features &= ~NETIF_F_TSO_ECN;
5620 	}
5621 
5622 	if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
5623 					 !(features & NETIF_F_IPV6_CSUM)) {
5624 		netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
5625 		features &= ~NETIF_F_TSO6;
5626 	}
5627 
5628 	/* TSO ECN requires that TSO is present as well. */
5629 	if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
5630 		features &= ~NETIF_F_TSO_ECN;
5631 
5632 	/* Software GSO depends on SG. */
5633 	if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
5634 		netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
5635 		features &= ~NETIF_F_GSO;
5636 	}
5637 
5638 	/* UFO needs SG and checksumming */
5639 	if (features & NETIF_F_UFO) {
5640 		/* maybe split UFO into V4 and V6? */
5641 		if (!((features & NETIF_F_GEN_CSUM) ||
5642 		    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))
5643 			    == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5644 			netdev_dbg(dev,
5645 				"Dropping NETIF_F_UFO since no checksum offload features.\n");
5646 			features &= ~NETIF_F_UFO;
5647 		}
5648 
5649 		if (!(features & NETIF_F_SG)) {
5650 			netdev_dbg(dev,
5651 				"Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
5652 			features &= ~NETIF_F_UFO;
5653 		}
5654 	}
5655 
5656 	return features;
5657 }
5658 
5659 int __netdev_update_features(struct net_device *dev)
5660 {
5661 	netdev_features_t features;
5662 	int err = 0;
5663 
5664 	ASSERT_RTNL();
5665 
5666 	features = netdev_get_wanted_features(dev);
5667 
5668 	if (dev->netdev_ops->ndo_fix_features)
5669 		features = dev->netdev_ops->ndo_fix_features(dev, features);
5670 
5671 	/* driver might be less strict about feature dependencies */
5672 	features = netdev_fix_features(dev, features);
5673 
5674 	if (dev->features == features)
5675 		return 0;
5676 
5677 	netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
5678 		&dev->features, &features);
5679 
5680 	if (dev->netdev_ops->ndo_set_features)
5681 		err = dev->netdev_ops->ndo_set_features(dev, features);
5682 
5683 	if (unlikely(err < 0)) {
5684 		netdev_err(dev,
5685 			"set_features() failed (%d); wanted %pNF, left %pNF\n",
5686 			err, &features, &dev->features);
5687 		return -1;
5688 	}
5689 
5690 	if (!err)
5691 		dev->features = features;
5692 
5693 	return 1;
5694 }
5695 
5696 /**
5697  *	netdev_update_features - recalculate device features
5698  *	@dev: the device to check
5699  *
5700  *	Recalculate dev->features set and send notifications if it
5701  *	has changed. Should be called after driver or hardware dependent
5702  *	conditions might have changed that influence the features.
5703  */
5704 void netdev_update_features(struct net_device *dev)
5705 {
5706 	if (__netdev_update_features(dev))
5707 		netdev_features_change(dev);
5708 }
5709 EXPORT_SYMBOL(netdev_update_features);
5710 
5711 /**
5712  *	netdev_change_features - recalculate device features
5713  *	@dev: the device to check
5714  *
5715  *	Recalculate dev->features set and send notifications even
5716  *	if they have not changed. Should be called instead of
5717  *	netdev_update_features() if also dev->vlan_features might
5718  *	have changed to allow the changes to be propagated to stacked
5719  *	VLAN devices.
5720  */
5721 void netdev_change_features(struct net_device *dev)
5722 {
5723 	__netdev_update_features(dev);
5724 	netdev_features_change(dev);
5725 }
5726 EXPORT_SYMBOL(netdev_change_features);
5727 
5728 /**
5729  *	netif_stacked_transfer_operstate -	transfer operstate
5730  *	@rootdev: the root or lower level device to transfer state from
5731  *	@dev: the device to transfer operstate to
5732  *
5733  *	Transfer operational state from root to device. This is normally
5734  *	called when a stacking relationship exists between the root
5735  *	device and the device(a leaf device).
5736  */
5737 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
5738 					struct net_device *dev)
5739 {
5740 	if (rootdev->operstate == IF_OPER_DORMANT)
5741 		netif_dormant_on(dev);
5742 	else
5743 		netif_dormant_off(dev);
5744 
5745 	if (netif_carrier_ok(rootdev)) {
5746 		if (!netif_carrier_ok(dev))
5747 			netif_carrier_on(dev);
5748 	} else {
5749 		if (netif_carrier_ok(dev))
5750 			netif_carrier_off(dev);
5751 	}
5752 }
5753 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
5754 
5755 #ifdef CONFIG_RPS
5756 static int netif_alloc_rx_queues(struct net_device *dev)
5757 {
5758 	unsigned int i, count = dev->num_rx_queues;
5759 	struct netdev_rx_queue *rx;
5760 
5761 	BUG_ON(count < 1);
5762 
5763 	rx = kcalloc(count, sizeof(struct netdev_rx_queue), GFP_KERNEL);
5764 	if (!rx)
5765 		return -ENOMEM;
5766 
5767 	dev->_rx = rx;
5768 
5769 	for (i = 0; i < count; i++)
5770 		rx[i].dev = dev;
5771 	return 0;
5772 }
5773 #endif
5774 
5775 static void netdev_init_one_queue(struct net_device *dev,
5776 				  struct netdev_queue *queue, void *_unused)
5777 {
5778 	/* Initialize queue lock */
5779 	spin_lock_init(&queue->_xmit_lock);
5780 	netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
5781 	queue->xmit_lock_owner = -1;
5782 	netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
5783 	queue->dev = dev;
5784 #ifdef CONFIG_BQL
5785 	dql_init(&queue->dql, HZ);
5786 #endif
5787 }
5788 
5789 static void netif_free_tx_queues(struct net_device *dev)
5790 {
5791 	if (is_vmalloc_addr(dev->_tx))
5792 		vfree(dev->_tx);
5793 	else
5794 		kfree(dev->_tx);
5795 }
5796 
5797 static int netif_alloc_netdev_queues(struct net_device *dev)
5798 {
5799 	unsigned int count = dev->num_tx_queues;
5800 	struct netdev_queue *tx;
5801 	size_t sz = count * sizeof(*tx);
5802 
5803 	BUG_ON(count < 1 || count > 0xffff);
5804 
5805 	tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
5806 	if (!tx) {
5807 		tx = vzalloc(sz);
5808 		if (!tx)
5809 			return -ENOMEM;
5810 	}
5811 	dev->_tx = tx;
5812 
5813 	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
5814 	spin_lock_init(&dev->tx_global_lock);
5815 
5816 	return 0;
5817 }
5818 
5819 /**
5820  *	register_netdevice	- register a network device
5821  *	@dev: device to register
5822  *
5823  *	Take a completed network device structure and add it to the kernel
5824  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5825  *	chain. 0 is returned on success. A negative errno code is returned
5826  *	on a failure to set up the device, or if the name is a duplicate.
5827  *
5828  *	Callers must hold the rtnl semaphore. You may want
5829  *	register_netdev() instead of this.
5830  *
5831  *	BUGS:
5832  *	The locking appears insufficient to guarantee two parallel registers
5833  *	will not get the same name.
5834  */
5835 
5836 int register_netdevice(struct net_device *dev)
5837 {
5838 	int ret;
5839 	struct net *net = dev_net(dev);
5840 
5841 	BUG_ON(dev_boot_phase);
5842 	ASSERT_RTNL();
5843 
5844 	might_sleep();
5845 
5846 	/* When net_device's are persistent, this will be fatal. */
5847 	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
5848 	BUG_ON(!net);
5849 
5850 	spin_lock_init(&dev->addr_list_lock);
5851 	netdev_set_addr_lockdep_class(dev);
5852 
5853 	dev->iflink = -1;
5854 
5855 	ret = dev_get_valid_name(net, dev, dev->name);
5856 	if (ret < 0)
5857 		goto out;
5858 
5859 	/* Init, if this function is available */
5860 	if (dev->netdev_ops->ndo_init) {
5861 		ret = dev->netdev_ops->ndo_init(dev);
5862 		if (ret) {
5863 			if (ret > 0)
5864 				ret = -EIO;
5865 			goto out;
5866 		}
5867 	}
5868 
5869 	if (((dev->hw_features | dev->features) &
5870 	     NETIF_F_HW_VLAN_CTAG_FILTER) &&
5871 	    (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
5872 	     !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
5873 		netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
5874 		ret = -EINVAL;
5875 		goto err_uninit;
5876 	}
5877 
5878 	ret = -EBUSY;
5879 	if (!dev->ifindex)
5880 		dev->ifindex = dev_new_index(net);
5881 	else if (__dev_get_by_index(net, dev->ifindex))
5882 		goto err_uninit;
5883 
5884 	if (dev->iflink == -1)
5885 		dev->iflink = dev->ifindex;
5886 
5887 	/* Transfer changeable features to wanted_features and enable
5888 	 * software offloads (GSO and GRO).
5889 	 */
5890 	dev->hw_features |= NETIF_F_SOFT_FEATURES;
5891 	dev->features |= NETIF_F_SOFT_FEATURES;
5892 	dev->wanted_features = dev->features & dev->hw_features;
5893 
5894 	if (!(dev->flags & IFF_LOOPBACK)) {
5895 		dev->hw_features |= NETIF_F_NOCACHE_COPY;
5896 	}
5897 
5898 	/* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
5899 	 */
5900 	dev->vlan_features |= NETIF_F_HIGHDMA;
5901 
5902 	/* Make NETIF_F_SG inheritable to tunnel devices.
5903 	 */
5904 	dev->hw_enc_features |= NETIF_F_SG;
5905 
5906 	/* Make NETIF_F_SG inheritable to MPLS.
5907 	 */
5908 	dev->mpls_features |= NETIF_F_SG;
5909 
5910 	ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
5911 	ret = notifier_to_errno(ret);
5912 	if (ret)
5913 		goto err_uninit;
5914 
5915 	ret = netdev_register_kobject(dev);
5916 	if (ret)
5917 		goto err_uninit;
5918 	dev->reg_state = NETREG_REGISTERED;
5919 
5920 	__netdev_update_features(dev);
5921 
5922 	/*
5923 	 *	Default initial state at registry is that the
5924 	 *	device is present.
5925 	 */
5926 
5927 	set_bit(__LINK_STATE_PRESENT, &dev->state);
5928 
5929 	linkwatch_init_dev(dev);
5930 
5931 	dev_init_scheduler(dev);
5932 	dev_hold(dev);
5933 	list_netdevice(dev);
5934 	add_device_randomness(dev->dev_addr, dev->addr_len);
5935 
5936 	/* If the device has permanent device address, driver should
5937 	 * set dev_addr and also addr_assign_type should be set to
5938 	 * NET_ADDR_PERM (default value).
5939 	 */
5940 	if (dev->addr_assign_type == NET_ADDR_PERM)
5941 		memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
5942 
5943 	/* Notify protocols, that a new device appeared. */
5944 	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
5945 	ret = notifier_to_errno(ret);
5946 	if (ret) {
5947 		rollback_registered(dev);
5948 		dev->reg_state = NETREG_UNREGISTERED;
5949 	}
5950 	/*
5951 	 *	Prevent userspace races by waiting until the network
5952 	 *	device is fully setup before sending notifications.
5953 	 */
5954 	if (!dev->rtnl_link_ops ||
5955 	    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5956 		rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
5957 
5958 out:
5959 	return ret;
5960 
5961 err_uninit:
5962 	if (dev->netdev_ops->ndo_uninit)
5963 		dev->netdev_ops->ndo_uninit(dev);
5964 	goto out;
5965 }
5966 EXPORT_SYMBOL(register_netdevice);
5967 
5968 /**
5969  *	init_dummy_netdev	- init a dummy network device for NAPI
5970  *	@dev: device to init
5971  *
5972  *	This takes a network device structure and initialize the minimum
5973  *	amount of fields so it can be used to schedule NAPI polls without
5974  *	registering a full blown interface. This is to be used by drivers
5975  *	that need to tie several hardware interfaces to a single NAPI
5976  *	poll scheduler due to HW limitations.
5977  */
5978 int init_dummy_netdev(struct net_device *dev)
5979 {
5980 	/* Clear everything. Note we don't initialize spinlocks
5981 	 * are they aren't supposed to be taken by any of the
5982 	 * NAPI code and this dummy netdev is supposed to be
5983 	 * only ever used for NAPI polls
5984 	 */
5985 	memset(dev, 0, sizeof(struct net_device));
5986 
5987 	/* make sure we BUG if trying to hit standard
5988 	 * register/unregister code path
5989 	 */
5990 	dev->reg_state = NETREG_DUMMY;
5991 
5992 	/* NAPI wants this */
5993 	INIT_LIST_HEAD(&dev->napi_list);
5994 
5995 	/* a dummy interface is started by default */
5996 	set_bit(__LINK_STATE_PRESENT, &dev->state);
5997 	set_bit(__LINK_STATE_START, &dev->state);
5998 
5999 	/* Note : We dont allocate pcpu_refcnt for dummy devices,
6000 	 * because users of this 'device' dont need to change
6001 	 * its refcount.
6002 	 */
6003 
6004 	return 0;
6005 }
6006 EXPORT_SYMBOL_GPL(init_dummy_netdev);
6007 
6008 
6009 /**
6010  *	register_netdev	- register a network device
6011  *	@dev: device to register
6012  *
6013  *	Take a completed network device structure and add it to the kernel
6014  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
6015  *	chain. 0 is returned on success. A negative errno code is returned
6016  *	on a failure to set up the device, or if the name is a duplicate.
6017  *
6018  *	This is a wrapper around register_netdevice that takes the rtnl semaphore
6019  *	and expands the device name if you passed a format string to
6020  *	alloc_netdev.
6021  */
6022 int register_netdev(struct net_device *dev)
6023 {
6024 	int err;
6025 
6026 	rtnl_lock();
6027 	err = register_netdevice(dev);
6028 	rtnl_unlock();
6029 	return err;
6030 }
6031 EXPORT_SYMBOL(register_netdev);
6032 
6033 int netdev_refcnt_read(const struct net_device *dev)
6034 {
6035 	int i, refcnt = 0;
6036 
6037 	for_each_possible_cpu(i)
6038 		refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
6039 	return refcnt;
6040 }
6041 EXPORT_SYMBOL(netdev_refcnt_read);
6042 
6043 /**
6044  * netdev_wait_allrefs - wait until all references are gone.
6045  * @dev: target net_device
6046  *
6047  * This is called when unregistering network devices.
6048  *
6049  * Any protocol or device that holds a reference should register
6050  * for netdevice notification, and cleanup and put back the
6051  * reference if they receive an UNREGISTER event.
6052  * We can get stuck here if buggy protocols don't correctly
6053  * call dev_put.
6054  */
6055 static void netdev_wait_allrefs(struct net_device *dev)
6056 {
6057 	unsigned long rebroadcast_time, warning_time;
6058 	int refcnt;
6059 
6060 	linkwatch_forget_dev(dev);
6061 
6062 	rebroadcast_time = warning_time = jiffies;
6063 	refcnt = netdev_refcnt_read(dev);
6064 
6065 	while (refcnt != 0) {
6066 		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
6067 			rtnl_lock();
6068 
6069 			/* Rebroadcast unregister notification */
6070 			call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6071 
6072 			__rtnl_unlock();
6073 			rcu_barrier();
6074 			rtnl_lock();
6075 
6076 			call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6077 			if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
6078 				     &dev->state)) {
6079 				/* We must not have linkwatch events
6080 				 * pending on unregister. If this
6081 				 * happens, we simply run the queue
6082 				 * unscheduled, resulting in a noop
6083 				 * for this device.
6084 				 */
6085 				linkwatch_run_queue();
6086 			}
6087 
6088 			__rtnl_unlock();
6089 
6090 			rebroadcast_time = jiffies;
6091 		}
6092 
6093 		msleep(250);
6094 
6095 		refcnt = netdev_refcnt_read(dev);
6096 
6097 		if (time_after(jiffies, warning_time + 10 * HZ)) {
6098 			pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
6099 				 dev->name, refcnt);
6100 			warning_time = jiffies;
6101 		}
6102 	}
6103 }
6104 
6105 /* The sequence is:
6106  *
6107  *	rtnl_lock();
6108  *	...
6109  *	register_netdevice(x1);
6110  *	register_netdevice(x2);
6111  *	...
6112  *	unregister_netdevice(y1);
6113  *	unregister_netdevice(y2);
6114  *      ...
6115  *	rtnl_unlock();
6116  *	free_netdev(y1);
6117  *	free_netdev(y2);
6118  *
6119  * We are invoked by rtnl_unlock().
6120  * This allows us to deal with problems:
6121  * 1) We can delete sysfs objects which invoke hotplug
6122  *    without deadlocking with linkwatch via keventd.
6123  * 2) Since we run with the RTNL semaphore not held, we can sleep
6124  *    safely in order to wait for the netdev refcnt to drop to zero.
6125  *
6126  * We must not return until all unregister events added during
6127  * the interval the lock was held have been completed.
6128  */
6129 void netdev_run_todo(void)
6130 {
6131 	struct list_head list;
6132 
6133 	/* Snapshot list, allow later requests */
6134 	list_replace_init(&net_todo_list, &list);
6135 
6136 	__rtnl_unlock();
6137 
6138 
6139 	/* Wait for rcu callbacks to finish before next phase */
6140 	if (!list_empty(&list))
6141 		rcu_barrier();
6142 
6143 	while (!list_empty(&list)) {
6144 		struct net_device *dev
6145 			= list_first_entry(&list, struct net_device, todo_list);
6146 		list_del(&dev->todo_list);
6147 
6148 		rtnl_lock();
6149 		call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6150 		__rtnl_unlock();
6151 
6152 		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
6153 			pr_err("network todo '%s' but state %d\n",
6154 			       dev->name, dev->reg_state);
6155 			dump_stack();
6156 			continue;
6157 		}
6158 
6159 		dev->reg_state = NETREG_UNREGISTERED;
6160 
6161 		on_each_cpu(flush_backlog, dev, 1);
6162 
6163 		netdev_wait_allrefs(dev);
6164 
6165 		/* paranoia */
6166 		BUG_ON(netdev_refcnt_read(dev));
6167 		WARN_ON(rcu_access_pointer(dev->ip_ptr));
6168 		WARN_ON(rcu_access_pointer(dev->ip6_ptr));
6169 		WARN_ON(dev->dn_ptr);
6170 
6171 		if (dev->destructor)
6172 			dev->destructor(dev);
6173 
6174 		/* Report a network device has been unregistered */
6175 		rtnl_lock();
6176 		dev_net(dev)->dev_unreg_count--;
6177 		__rtnl_unlock();
6178 		wake_up(&netdev_unregistering_wq);
6179 
6180 		/* Free network device */
6181 		kobject_put(&dev->dev.kobj);
6182 	}
6183 }
6184 
6185 /* Convert net_device_stats to rtnl_link_stats64.  They have the same
6186  * fields in the same order, with only the type differing.
6187  */
6188 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
6189 			     const struct net_device_stats *netdev_stats)
6190 {
6191 #if BITS_PER_LONG == 64
6192 	BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
6193 	memcpy(stats64, netdev_stats, sizeof(*stats64));
6194 #else
6195 	size_t i, n = sizeof(*stats64) / sizeof(u64);
6196 	const unsigned long *src = (const unsigned long *)netdev_stats;
6197 	u64 *dst = (u64 *)stats64;
6198 
6199 	BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
6200 		     sizeof(*stats64) / sizeof(u64));
6201 	for (i = 0; i < n; i++)
6202 		dst[i] = src[i];
6203 #endif
6204 }
6205 EXPORT_SYMBOL(netdev_stats_to_stats64);
6206 
6207 /**
6208  *	dev_get_stats	- get network device statistics
6209  *	@dev: device to get statistics from
6210  *	@storage: place to store stats
6211  *
6212  *	Get network statistics from device. Return @storage.
6213  *	The device driver may provide its own method by setting
6214  *	dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
6215  *	otherwise the internal statistics structure is used.
6216  */
6217 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
6218 					struct rtnl_link_stats64 *storage)
6219 {
6220 	const struct net_device_ops *ops = dev->netdev_ops;
6221 
6222 	if (ops->ndo_get_stats64) {
6223 		memset(storage, 0, sizeof(*storage));
6224 		ops->ndo_get_stats64(dev, storage);
6225 	} else if (ops->ndo_get_stats) {
6226 		netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
6227 	} else {
6228 		netdev_stats_to_stats64(storage, &dev->stats);
6229 	}
6230 	storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
6231 	return storage;
6232 }
6233 EXPORT_SYMBOL(dev_get_stats);
6234 
6235 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
6236 {
6237 	struct netdev_queue *queue = dev_ingress_queue(dev);
6238 
6239 #ifdef CONFIG_NET_CLS_ACT
6240 	if (queue)
6241 		return queue;
6242 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
6243 	if (!queue)
6244 		return NULL;
6245 	netdev_init_one_queue(dev, queue, NULL);
6246 	queue->qdisc = &noop_qdisc;
6247 	queue->qdisc_sleeping = &noop_qdisc;
6248 	rcu_assign_pointer(dev->ingress_queue, queue);
6249 #endif
6250 	return queue;
6251 }
6252 
6253 static const struct ethtool_ops default_ethtool_ops;
6254 
6255 void netdev_set_default_ethtool_ops(struct net_device *dev,
6256 				    const struct ethtool_ops *ops)
6257 {
6258 	if (dev->ethtool_ops == &default_ethtool_ops)
6259 		dev->ethtool_ops = ops;
6260 }
6261 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
6262 
6263 void netdev_freemem(struct net_device *dev)
6264 {
6265 	char *addr = (char *)dev - dev->padded;
6266 
6267 	if (is_vmalloc_addr(addr))
6268 		vfree(addr);
6269 	else
6270 		kfree(addr);
6271 }
6272 
6273 /**
6274  *	alloc_netdev_mqs - allocate network device
6275  *	@sizeof_priv:	size of private data to allocate space for
6276  *	@name:		device name format string
6277  *	@setup:		callback to initialize device
6278  *	@txqs:		the number of TX subqueues to allocate
6279  *	@rxqs:		the number of RX subqueues to allocate
6280  *
6281  *	Allocates a struct net_device with private data area for driver use
6282  *	and performs basic initialization.  Also allocates subquue structs
6283  *	for each queue on the device.
6284  */
6285 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
6286 		void (*setup)(struct net_device *),
6287 		unsigned int txqs, unsigned int rxqs)
6288 {
6289 	struct net_device *dev;
6290 	size_t alloc_size;
6291 	struct net_device *p;
6292 
6293 	BUG_ON(strlen(name) >= sizeof(dev->name));
6294 
6295 	if (txqs < 1) {
6296 		pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
6297 		return NULL;
6298 	}
6299 
6300 #ifdef CONFIG_RPS
6301 	if (rxqs < 1) {
6302 		pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
6303 		return NULL;
6304 	}
6305 #endif
6306 
6307 	alloc_size = sizeof(struct net_device);
6308 	if (sizeof_priv) {
6309 		/* ensure 32-byte alignment of private area */
6310 		alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
6311 		alloc_size += sizeof_priv;
6312 	}
6313 	/* ensure 32-byte alignment of whole construct */
6314 	alloc_size += NETDEV_ALIGN - 1;
6315 
6316 	p = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6317 	if (!p)
6318 		p = vzalloc(alloc_size);
6319 	if (!p)
6320 		return NULL;
6321 
6322 	dev = PTR_ALIGN(p, NETDEV_ALIGN);
6323 	dev->padded = (char *)dev - (char *)p;
6324 
6325 	dev->pcpu_refcnt = alloc_percpu(int);
6326 	if (!dev->pcpu_refcnt)
6327 		goto free_dev;
6328 
6329 	if (dev_addr_init(dev))
6330 		goto free_pcpu;
6331 
6332 	dev_mc_init(dev);
6333 	dev_uc_init(dev);
6334 
6335 	dev_net_set(dev, &init_net);
6336 
6337 	dev->gso_max_size = GSO_MAX_SIZE;
6338 	dev->gso_max_segs = GSO_MAX_SEGS;
6339 
6340 	INIT_LIST_HEAD(&dev->napi_list);
6341 	INIT_LIST_HEAD(&dev->unreg_list);
6342 	INIT_LIST_HEAD(&dev->close_list);
6343 	INIT_LIST_HEAD(&dev->link_watch_list);
6344 	INIT_LIST_HEAD(&dev->adj_list.upper);
6345 	INIT_LIST_HEAD(&dev->adj_list.lower);
6346 	INIT_LIST_HEAD(&dev->all_adj_list.upper);
6347 	INIT_LIST_HEAD(&dev->all_adj_list.lower);
6348 	dev->priv_flags = IFF_XMIT_DST_RELEASE;
6349 	setup(dev);
6350 
6351 	dev->num_tx_queues = txqs;
6352 	dev->real_num_tx_queues = txqs;
6353 	if (netif_alloc_netdev_queues(dev))
6354 		goto free_all;
6355 
6356 #ifdef CONFIG_RPS
6357 	dev->num_rx_queues = rxqs;
6358 	dev->real_num_rx_queues = rxqs;
6359 	if (netif_alloc_rx_queues(dev))
6360 		goto free_all;
6361 #endif
6362 
6363 	strcpy(dev->name, name);
6364 	dev->group = INIT_NETDEV_GROUP;
6365 	if (!dev->ethtool_ops)
6366 		dev->ethtool_ops = &default_ethtool_ops;
6367 	return dev;
6368 
6369 free_all:
6370 	free_netdev(dev);
6371 	return NULL;
6372 
6373 free_pcpu:
6374 	free_percpu(dev->pcpu_refcnt);
6375 	netif_free_tx_queues(dev);
6376 #ifdef CONFIG_RPS
6377 	kfree(dev->_rx);
6378 #endif
6379 
6380 free_dev:
6381 	netdev_freemem(dev);
6382 	return NULL;
6383 }
6384 EXPORT_SYMBOL(alloc_netdev_mqs);
6385 
6386 /**
6387  *	free_netdev - free network device
6388  *	@dev: device
6389  *
6390  *	This function does the last stage of destroying an allocated device
6391  * 	interface. The reference to the device object is released.
6392  *	If this is the last reference then it will be freed.
6393  */
6394 void free_netdev(struct net_device *dev)
6395 {
6396 	struct napi_struct *p, *n;
6397 
6398 	release_net(dev_net(dev));
6399 
6400 	netif_free_tx_queues(dev);
6401 #ifdef CONFIG_RPS
6402 	kfree(dev->_rx);
6403 #endif
6404 
6405 	kfree(rcu_dereference_protected(dev->ingress_queue, 1));
6406 
6407 	/* Flush device addresses */
6408 	dev_addr_flush(dev);
6409 
6410 	list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
6411 		netif_napi_del(p);
6412 
6413 	free_percpu(dev->pcpu_refcnt);
6414 	dev->pcpu_refcnt = NULL;
6415 
6416 	/*  Compatibility with error handling in drivers */
6417 	if (dev->reg_state == NETREG_UNINITIALIZED) {
6418 		netdev_freemem(dev);
6419 		return;
6420 	}
6421 
6422 	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
6423 	dev->reg_state = NETREG_RELEASED;
6424 
6425 	/* will free via device release */
6426 	put_device(&dev->dev);
6427 }
6428 EXPORT_SYMBOL(free_netdev);
6429 
6430 /**
6431  *	synchronize_net -  Synchronize with packet receive processing
6432  *
6433  *	Wait for packets currently being received to be done.
6434  *	Does not block later packets from starting.
6435  */
6436 void synchronize_net(void)
6437 {
6438 	might_sleep();
6439 	if (rtnl_is_locked())
6440 		synchronize_rcu_expedited();
6441 	else
6442 		synchronize_rcu();
6443 }
6444 EXPORT_SYMBOL(synchronize_net);
6445 
6446 /**
6447  *	unregister_netdevice_queue - remove device from the kernel
6448  *	@dev: device
6449  *	@head: list
6450  *
6451  *	This function shuts down a device interface and removes it
6452  *	from the kernel tables.
6453  *	If head not NULL, device is queued to be unregistered later.
6454  *
6455  *	Callers must hold the rtnl semaphore.  You may want
6456  *	unregister_netdev() instead of this.
6457  */
6458 
6459 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
6460 {
6461 	ASSERT_RTNL();
6462 
6463 	if (head) {
6464 		list_move_tail(&dev->unreg_list, head);
6465 	} else {
6466 		rollback_registered(dev);
6467 		/* Finish processing unregister after unlock */
6468 		net_set_todo(dev);
6469 	}
6470 }
6471 EXPORT_SYMBOL(unregister_netdevice_queue);
6472 
6473 /**
6474  *	unregister_netdevice_many - unregister many devices
6475  *	@head: list of devices
6476  */
6477 void unregister_netdevice_many(struct list_head *head)
6478 {
6479 	struct net_device *dev;
6480 
6481 	if (!list_empty(head)) {
6482 		rollback_registered_many(head);
6483 		list_for_each_entry(dev, head, unreg_list)
6484 			net_set_todo(dev);
6485 	}
6486 }
6487 EXPORT_SYMBOL(unregister_netdevice_many);
6488 
6489 /**
6490  *	unregister_netdev - remove device from the kernel
6491  *	@dev: device
6492  *
6493  *	This function shuts down a device interface and removes it
6494  *	from the kernel tables.
6495  *
6496  *	This is just a wrapper for unregister_netdevice that takes
6497  *	the rtnl semaphore.  In general you want to use this and not
6498  *	unregister_netdevice.
6499  */
6500 void unregister_netdev(struct net_device *dev)
6501 {
6502 	rtnl_lock();
6503 	unregister_netdevice(dev);
6504 	rtnl_unlock();
6505 }
6506 EXPORT_SYMBOL(unregister_netdev);
6507 
6508 /**
6509  *	dev_change_net_namespace - move device to different nethost namespace
6510  *	@dev: device
6511  *	@net: network namespace
6512  *	@pat: If not NULL name pattern to try if the current device name
6513  *	      is already taken in the destination network namespace.
6514  *
6515  *	This function shuts down a device interface and moves it
6516  *	to a new network namespace. On success 0 is returned, on
6517  *	a failure a netagive errno code is returned.
6518  *
6519  *	Callers must hold the rtnl semaphore.
6520  */
6521 
6522 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
6523 {
6524 	int err;
6525 
6526 	ASSERT_RTNL();
6527 
6528 	/* Don't allow namespace local devices to be moved. */
6529 	err = -EINVAL;
6530 	if (dev->features & NETIF_F_NETNS_LOCAL)
6531 		goto out;
6532 
6533 	/* Ensure the device has been registrered */
6534 	if (dev->reg_state != NETREG_REGISTERED)
6535 		goto out;
6536 
6537 	/* Get out if there is nothing todo */
6538 	err = 0;
6539 	if (net_eq(dev_net(dev), net))
6540 		goto out;
6541 
6542 	/* Pick the destination device name, and ensure
6543 	 * we can use it in the destination network namespace.
6544 	 */
6545 	err = -EEXIST;
6546 	if (__dev_get_by_name(net, dev->name)) {
6547 		/* We get here if we can't use the current device name */
6548 		if (!pat)
6549 			goto out;
6550 		if (dev_get_valid_name(net, dev, pat) < 0)
6551 			goto out;
6552 	}
6553 
6554 	/*
6555 	 * And now a mini version of register_netdevice unregister_netdevice.
6556 	 */
6557 
6558 	/* If device is running close it first. */
6559 	dev_close(dev);
6560 
6561 	/* And unlink it from device chain */
6562 	err = -ENODEV;
6563 	unlist_netdevice(dev);
6564 
6565 	synchronize_net();
6566 
6567 	/* Shutdown queueing discipline. */
6568 	dev_shutdown(dev);
6569 
6570 	/* Notify protocols, that we are about to destroy
6571 	   this device. They should clean all the things.
6572 
6573 	   Note that dev->reg_state stays at NETREG_REGISTERED.
6574 	   This is wanted because this way 8021q and macvlan know
6575 	   the device is just moving and can keep their slaves up.
6576 	*/
6577 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6578 	rcu_barrier();
6579 	call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6580 	rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
6581 
6582 	/*
6583 	 *	Flush the unicast and multicast chains
6584 	 */
6585 	dev_uc_flush(dev);
6586 	dev_mc_flush(dev);
6587 
6588 	/* Send a netdev-removed uevent to the old namespace */
6589 	kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
6590 
6591 	/* Actually switch the network namespace */
6592 	dev_net_set(dev, net);
6593 
6594 	/* If there is an ifindex conflict assign a new one */
6595 	if (__dev_get_by_index(net, dev->ifindex)) {
6596 		int iflink = (dev->iflink == dev->ifindex);
6597 		dev->ifindex = dev_new_index(net);
6598 		if (iflink)
6599 			dev->iflink = dev->ifindex;
6600 	}
6601 
6602 	/* Send a netdev-add uevent to the new namespace */
6603 	kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
6604 
6605 	/* Fixup kobjects */
6606 	err = device_rename(&dev->dev, dev->name);
6607 	WARN_ON(err);
6608 
6609 	/* Add the device back in the hashes */
6610 	list_netdevice(dev);
6611 
6612 	/* Notify protocols, that a new device appeared. */
6613 	call_netdevice_notifiers(NETDEV_REGISTER, dev);
6614 
6615 	/*
6616 	 *	Prevent userspace races by waiting until the network
6617 	 *	device is fully setup before sending notifications.
6618 	 */
6619 	rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
6620 
6621 	synchronize_net();
6622 	err = 0;
6623 out:
6624 	return err;
6625 }
6626 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
6627 
6628 static int dev_cpu_callback(struct notifier_block *nfb,
6629 			    unsigned long action,
6630 			    void *ocpu)
6631 {
6632 	struct sk_buff **list_skb;
6633 	struct sk_buff *skb;
6634 	unsigned int cpu, oldcpu = (unsigned long)ocpu;
6635 	struct softnet_data *sd, *oldsd;
6636 
6637 	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
6638 		return NOTIFY_OK;
6639 
6640 	local_irq_disable();
6641 	cpu = smp_processor_id();
6642 	sd = &per_cpu(softnet_data, cpu);
6643 	oldsd = &per_cpu(softnet_data, oldcpu);
6644 
6645 	/* Find end of our completion_queue. */
6646 	list_skb = &sd->completion_queue;
6647 	while (*list_skb)
6648 		list_skb = &(*list_skb)->next;
6649 	/* Append completion queue from offline CPU. */
6650 	*list_skb = oldsd->completion_queue;
6651 	oldsd->completion_queue = NULL;
6652 
6653 	/* Append output queue from offline CPU. */
6654 	if (oldsd->output_queue) {
6655 		*sd->output_queue_tailp = oldsd->output_queue;
6656 		sd->output_queue_tailp = oldsd->output_queue_tailp;
6657 		oldsd->output_queue = NULL;
6658 		oldsd->output_queue_tailp = &oldsd->output_queue;
6659 	}
6660 	/* Append NAPI poll list from offline CPU. */
6661 	if (!list_empty(&oldsd->poll_list)) {
6662 		list_splice_init(&oldsd->poll_list, &sd->poll_list);
6663 		raise_softirq_irqoff(NET_RX_SOFTIRQ);
6664 	}
6665 
6666 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
6667 	local_irq_enable();
6668 
6669 	/* Process offline CPU's input_pkt_queue */
6670 	while ((skb = __skb_dequeue(&oldsd->process_queue))) {
6671 		netif_rx_internal(skb);
6672 		input_queue_head_incr(oldsd);
6673 	}
6674 	while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) {
6675 		netif_rx_internal(skb);
6676 		input_queue_head_incr(oldsd);
6677 	}
6678 
6679 	return NOTIFY_OK;
6680 }
6681 
6682 
6683 /**
6684  *	netdev_increment_features - increment feature set by one
6685  *	@all: current feature set
6686  *	@one: new feature set
6687  *	@mask: mask feature set
6688  *
6689  *	Computes a new feature set after adding a device with feature set
6690  *	@one to the master device with current feature set @all.  Will not
6691  *	enable anything that is off in @mask. Returns the new feature set.
6692  */
6693 netdev_features_t netdev_increment_features(netdev_features_t all,
6694 	netdev_features_t one, netdev_features_t mask)
6695 {
6696 	if (mask & NETIF_F_GEN_CSUM)
6697 		mask |= NETIF_F_ALL_CSUM;
6698 	mask |= NETIF_F_VLAN_CHALLENGED;
6699 
6700 	all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask;
6701 	all &= one | ~NETIF_F_ALL_FOR_ALL;
6702 
6703 	/* If one device supports hw checksumming, set for all. */
6704 	if (all & NETIF_F_GEN_CSUM)
6705 		all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
6706 
6707 	return all;
6708 }
6709 EXPORT_SYMBOL(netdev_increment_features);
6710 
6711 static struct hlist_head * __net_init netdev_create_hash(void)
6712 {
6713 	int i;
6714 	struct hlist_head *hash;
6715 
6716 	hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
6717 	if (hash != NULL)
6718 		for (i = 0; i < NETDEV_HASHENTRIES; i++)
6719 			INIT_HLIST_HEAD(&hash[i]);
6720 
6721 	return hash;
6722 }
6723 
6724 /* Initialize per network namespace state */
6725 static int __net_init netdev_init(struct net *net)
6726 {
6727 	if (net != &init_net)
6728 		INIT_LIST_HEAD(&net->dev_base_head);
6729 
6730 	net->dev_name_head = netdev_create_hash();
6731 	if (net->dev_name_head == NULL)
6732 		goto err_name;
6733 
6734 	net->dev_index_head = netdev_create_hash();
6735 	if (net->dev_index_head == NULL)
6736 		goto err_idx;
6737 
6738 	return 0;
6739 
6740 err_idx:
6741 	kfree(net->dev_name_head);
6742 err_name:
6743 	return -ENOMEM;
6744 }
6745 
6746 /**
6747  *	netdev_drivername - network driver for the device
6748  *	@dev: network device
6749  *
6750  *	Determine network driver for device.
6751  */
6752 const char *netdev_drivername(const struct net_device *dev)
6753 {
6754 	const struct device_driver *driver;
6755 	const struct device *parent;
6756 	const char *empty = "";
6757 
6758 	parent = dev->dev.parent;
6759 	if (!parent)
6760 		return empty;
6761 
6762 	driver = parent->driver;
6763 	if (driver && driver->name)
6764 		return driver->name;
6765 	return empty;
6766 }
6767 
6768 static int __netdev_printk(const char *level, const struct net_device *dev,
6769 			   struct va_format *vaf)
6770 {
6771 	int r;
6772 
6773 	if (dev && dev->dev.parent) {
6774 		r = dev_printk_emit(level[1] - '0',
6775 				    dev->dev.parent,
6776 				    "%s %s %s: %pV",
6777 				    dev_driver_string(dev->dev.parent),
6778 				    dev_name(dev->dev.parent),
6779 				    netdev_name(dev), vaf);
6780 	} else if (dev) {
6781 		r = printk("%s%s: %pV", level, netdev_name(dev), vaf);
6782 	} else {
6783 		r = printk("%s(NULL net_device): %pV", level, vaf);
6784 	}
6785 
6786 	return r;
6787 }
6788 
6789 int netdev_printk(const char *level, const struct net_device *dev,
6790 		  const char *format, ...)
6791 {
6792 	struct va_format vaf;
6793 	va_list args;
6794 	int r;
6795 
6796 	va_start(args, format);
6797 
6798 	vaf.fmt = format;
6799 	vaf.va = &args;
6800 
6801 	r = __netdev_printk(level, dev, &vaf);
6802 
6803 	va_end(args);
6804 
6805 	return r;
6806 }
6807 EXPORT_SYMBOL(netdev_printk);
6808 
6809 #define define_netdev_printk_level(func, level)			\
6810 int func(const struct net_device *dev, const char *fmt, ...)	\
6811 {								\
6812 	int r;							\
6813 	struct va_format vaf;					\
6814 	va_list args;						\
6815 								\
6816 	va_start(args, fmt);					\
6817 								\
6818 	vaf.fmt = fmt;						\
6819 	vaf.va = &args;						\
6820 								\
6821 	r = __netdev_printk(level, dev, &vaf);			\
6822 								\
6823 	va_end(args);						\
6824 								\
6825 	return r;						\
6826 }								\
6827 EXPORT_SYMBOL(func);
6828 
6829 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
6830 define_netdev_printk_level(netdev_alert, KERN_ALERT);
6831 define_netdev_printk_level(netdev_crit, KERN_CRIT);
6832 define_netdev_printk_level(netdev_err, KERN_ERR);
6833 define_netdev_printk_level(netdev_warn, KERN_WARNING);
6834 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
6835 define_netdev_printk_level(netdev_info, KERN_INFO);
6836 
6837 static void __net_exit netdev_exit(struct net *net)
6838 {
6839 	kfree(net->dev_name_head);
6840 	kfree(net->dev_index_head);
6841 }
6842 
6843 static struct pernet_operations __net_initdata netdev_net_ops = {
6844 	.init = netdev_init,
6845 	.exit = netdev_exit,
6846 };
6847 
6848 static void __net_exit default_device_exit(struct net *net)
6849 {
6850 	struct net_device *dev, *aux;
6851 	/*
6852 	 * Push all migratable network devices back to the
6853 	 * initial network namespace
6854 	 */
6855 	rtnl_lock();
6856 	for_each_netdev_safe(net, dev, aux) {
6857 		int err;
6858 		char fb_name[IFNAMSIZ];
6859 
6860 		/* Ignore unmoveable devices (i.e. loopback) */
6861 		if (dev->features & NETIF_F_NETNS_LOCAL)
6862 			continue;
6863 
6864 		/* Leave virtual devices for the generic cleanup */
6865 		if (dev->rtnl_link_ops)
6866 			continue;
6867 
6868 		/* Push remaining network devices to init_net */
6869 		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
6870 		err = dev_change_net_namespace(dev, &init_net, fb_name);
6871 		if (err) {
6872 			pr_emerg("%s: failed to move %s to init_net: %d\n",
6873 				 __func__, dev->name, err);
6874 			BUG();
6875 		}
6876 	}
6877 	rtnl_unlock();
6878 }
6879 
6880 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
6881 {
6882 	/* Return with the rtnl_lock held when there are no network
6883 	 * devices unregistering in any network namespace in net_list.
6884 	 */
6885 	struct net *net;
6886 	bool unregistering;
6887 	DEFINE_WAIT(wait);
6888 
6889 	for (;;) {
6890 		prepare_to_wait(&netdev_unregistering_wq, &wait,
6891 				TASK_UNINTERRUPTIBLE);
6892 		unregistering = false;
6893 		rtnl_lock();
6894 		list_for_each_entry(net, net_list, exit_list) {
6895 			if (net->dev_unreg_count > 0) {
6896 				unregistering = true;
6897 				break;
6898 			}
6899 		}
6900 		if (!unregistering)
6901 			break;
6902 		__rtnl_unlock();
6903 		schedule();
6904 	}
6905 	finish_wait(&netdev_unregistering_wq, &wait);
6906 }
6907 
6908 static void __net_exit default_device_exit_batch(struct list_head *net_list)
6909 {
6910 	/* At exit all network devices most be removed from a network
6911 	 * namespace.  Do this in the reverse order of registration.
6912 	 * Do this across as many network namespaces as possible to
6913 	 * improve batching efficiency.
6914 	 */
6915 	struct net_device *dev;
6916 	struct net *net;
6917 	LIST_HEAD(dev_kill_list);
6918 
6919 	/* To prevent network device cleanup code from dereferencing
6920 	 * loopback devices or network devices that have been freed
6921 	 * wait here for all pending unregistrations to complete,
6922 	 * before unregistring the loopback device and allowing the
6923 	 * network namespace be freed.
6924 	 *
6925 	 * The netdev todo list containing all network devices
6926 	 * unregistrations that happen in default_device_exit_batch
6927 	 * will run in the rtnl_unlock() at the end of
6928 	 * default_device_exit_batch.
6929 	 */
6930 	rtnl_lock_unregistering(net_list);
6931 	list_for_each_entry(net, net_list, exit_list) {
6932 		for_each_netdev_reverse(net, dev) {
6933 			if (dev->rtnl_link_ops)
6934 				dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
6935 			else
6936 				unregister_netdevice_queue(dev, &dev_kill_list);
6937 		}
6938 	}
6939 	unregister_netdevice_many(&dev_kill_list);
6940 	list_del(&dev_kill_list);
6941 	rtnl_unlock();
6942 }
6943 
6944 static struct pernet_operations __net_initdata default_device_ops = {
6945 	.exit = default_device_exit,
6946 	.exit_batch = default_device_exit_batch,
6947 };
6948 
6949 /*
6950  *	Initialize the DEV module. At boot time this walks the device list and
6951  *	unhooks any devices that fail to initialise (normally hardware not
6952  *	present) and leaves us with a valid list of present and active devices.
6953  *
6954  */
6955 
6956 /*
6957  *       This is called single threaded during boot, so no need
6958  *       to take the rtnl semaphore.
6959  */
6960 static int __init net_dev_init(void)
6961 {
6962 	int i, rc = -ENOMEM;
6963 
6964 	BUG_ON(!dev_boot_phase);
6965 
6966 	if (dev_proc_init())
6967 		goto out;
6968 
6969 	if (netdev_kobject_init())
6970 		goto out;
6971 
6972 	INIT_LIST_HEAD(&ptype_all);
6973 	for (i = 0; i < PTYPE_HASH_SIZE; i++)
6974 		INIT_LIST_HEAD(&ptype_base[i]);
6975 
6976 	INIT_LIST_HEAD(&offload_base);
6977 
6978 	if (register_pernet_subsys(&netdev_net_ops))
6979 		goto out;
6980 
6981 	/*
6982 	 *	Initialise the packet receive queues.
6983 	 */
6984 
6985 	for_each_possible_cpu(i) {
6986 		struct softnet_data *sd = &per_cpu(softnet_data, i);
6987 
6988 		memset(sd, 0, sizeof(*sd));
6989 		skb_queue_head_init(&sd->input_pkt_queue);
6990 		skb_queue_head_init(&sd->process_queue);
6991 		sd->completion_queue = NULL;
6992 		INIT_LIST_HEAD(&sd->poll_list);
6993 		sd->output_queue = NULL;
6994 		sd->output_queue_tailp = &sd->output_queue;
6995 #ifdef CONFIG_RPS
6996 		sd->csd.func = rps_trigger_softirq;
6997 		sd->csd.info = sd;
6998 		sd->csd.flags = 0;
6999 		sd->cpu = i;
7000 #endif
7001 
7002 		sd->backlog.poll = process_backlog;
7003 		sd->backlog.weight = weight_p;
7004 		sd->backlog.gro_list = NULL;
7005 		sd->backlog.gro_count = 0;
7006 
7007 #ifdef CONFIG_NET_FLOW_LIMIT
7008 		sd->flow_limit = NULL;
7009 #endif
7010 	}
7011 
7012 	dev_boot_phase = 0;
7013 
7014 	/* The loopback device is special if any other network devices
7015 	 * is present in a network namespace the loopback device must
7016 	 * be present. Since we now dynamically allocate and free the
7017 	 * loopback device ensure this invariant is maintained by
7018 	 * keeping the loopback device as the first device on the
7019 	 * list of network devices.  Ensuring the loopback devices
7020 	 * is the first device that appears and the last network device
7021 	 * that disappears.
7022 	 */
7023 	if (register_pernet_device(&loopback_net_ops))
7024 		goto out;
7025 
7026 	if (register_pernet_device(&default_device_ops))
7027 		goto out;
7028 
7029 	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
7030 	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
7031 
7032 	hotcpu_notifier(dev_cpu_callback, 0);
7033 	dst_init();
7034 	rc = 0;
7035 out:
7036 	return rc;
7037 }
7038 
7039 subsys_initcall(net_dev_init);
7040