1 /* 2 * NET3 Protocol independent device support routines. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public License 6 * as published by the Free Software Foundation; either version 7 * 2 of the License, or (at your option) any later version. 8 * 9 * Derived from the non IP parts of dev.c 1.0.19 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Mark Evans, <evansmp@uhura.aston.ac.uk> 13 * 14 * Additional Authors: 15 * Florian la Roche <rzsfl@rz.uni-sb.de> 16 * Alan Cox <gw4pts@gw4pts.ampr.org> 17 * David Hinds <dahinds@users.sourceforge.net> 18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> 19 * Adam Sulmicki <adam@cfar.umd.edu> 20 * Pekka Riikonen <priikone@poesidon.pspt.fi> 21 * 22 * Changes: 23 * D.J. Barrow : Fixed bug where dev->refcnt gets set 24 * to 2 if register_netdev gets called 25 * before net_dev_init & also removed a 26 * few lines of code in the process. 27 * Alan Cox : device private ioctl copies fields back. 28 * Alan Cox : Transmit queue code does relevant 29 * stunts to keep the queue safe. 30 * Alan Cox : Fixed double lock. 31 * Alan Cox : Fixed promisc NULL pointer trap 32 * ???????? : Support the full private ioctl range 33 * Alan Cox : Moved ioctl permission check into 34 * drivers 35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI 36 * Alan Cox : 100 backlog just doesn't cut it when 37 * you start doing multicast video 8) 38 * Alan Cox : Rewrote net_bh and list manager. 39 * Alan Cox : Fix ETH_P_ALL echoback lengths. 40 * Alan Cox : Took out transmit every packet pass 41 * Saved a few bytes in the ioctl handler 42 * Alan Cox : Network driver sets packet type before 43 * calling netif_rx. Saves a function 44 * call a packet. 45 * Alan Cox : Hashed net_bh() 46 * Richard Kooijman: Timestamp fixes. 47 * Alan Cox : Wrong field in SIOCGIFDSTADDR 48 * Alan Cox : Device lock protection. 49 * Alan Cox : Fixed nasty side effect of device close 50 * changes. 51 * Rudi Cilibrasi : Pass the right thing to 52 * set_mac_address() 53 * Dave Miller : 32bit quantity for the device lock to 54 * make it work out on a Sparc. 55 * Bjorn Ekwall : Added KERNELD hack. 56 * Alan Cox : Cleaned up the backlog initialise. 57 * Craig Metz : SIOCGIFCONF fix if space for under 58 * 1 device. 59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there 60 * is no device open function. 61 * Andi Kleen : Fix error reporting for SIOCGIFCONF 62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF 63 * Cyrus Durgin : Cleaned for KMOD 64 * Adam Sulmicki : Bug Fix : Network Device Unload 65 * A network device unload needs to purge 66 * the backlog queue. 67 * Paul Rusty Russell : SIOCSIFNAME 68 * Pekka Riikonen : Netdev boot-time settings code 69 * Andrew Morton : Make unregister_netdevice wait 70 * indefinitely on dev->refcnt 71 * J Hadi Salim : - Backlog queue sampling 72 * - netif_rx() feedback 73 */ 74 75 #include <asm/uaccess.h> 76 #include <linux/bitops.h> 77 #include <linux/capability.h> 78 #include <linux/cpu.h> 79 #include <linux/types.h> 80 #include <linux/kernel.h> 81 #include <linux/hash.h> 82 #include <linux/slab.h> 83 #include <linux/sched.h> 84 #include <linux/mutex.h> 85 #include <linux/string.h> 86 #include <linux/mm.h> 87 #include <linux/socket.h> 88 #include <linux/sockios.h> 89 #include <linux/errno.h> 90 #include <linux/interrupt.h> 91 #include <linux/if_ether.h> 92 #include <linux/netdevice.h> 93 #include <linux/etherdevice.h> 94 #include <linux/ethtool.h> 95 #include <linux/notifier.h> 96 #include <linux/skbuff.h> 97 #include <net/net_namespace.h> 98 #include <net/sock.h> 99 #include <linux/rtnetlink.h> 100 #include <linux/stat.h> 101 #include <net/dst.h> 102 #include <net/pkt_sched.h> 103 #include <net/checksum.h> 104 #include <net/xfrm.h> 105 #include <linux/highmem.h> 106 #include <linux/init.h> 107 #include <linux/module.h> 108 #include <linux/netpoll.h> 109 #include <linux/rcupdate.h> 110 #include <linux/delay.h> 111 #include <net/iw_handler.h> 112 #include <asm/current.h> 113 #include <linux/audit.h> 114 #include <linux/dmaengine.h> 115 #include <linux/err.h> 116 #include <linux/ctype.h> 117 #include <linux/if_arp.h> 118 #include <linux/if_vlan.h> 119 #include <linux/ip.h> 120 #include <net/ip.h> 121 #include <linux/ipv6.h> 122 #include <linux/in.h> 123 #include <linux/jhash.h> 124 #include <linux/random.h> 125 #include <trace/events/napi.h> 126 #include <trace/events/net.h> 127 #include <trace/events/skb.h> 128 #include <linux/pci.h> 129 #include <linux/inetdevice.h> 130 #include <linux/cpu_rmap.h> 131 #include <linux/static_key.h> 132 #include <linux/hashtable.h> 133 #include <linux/vmalloc.h> 134 #include <linux/if_macvlan.h> 135 136 #include "net-sysfs.h" 137 138 /* Instead of increasing this, you should create a hash table. */ 139 #define MAX_GRO_SKBS 8 140 141 /* This should be increased if a protocol with a bigger head is added. */ 142 #define GRO_MAX_HEAD (MAX_HEADER + 128) 143 144 static DEFINE_SPINLOCK(ptype_lock); 145 static DEFINE_SPINLOCK(offload_lock); 146 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly; 147 struct list_head ptype_all __read_mostly; /* Taps */ 148 static struct list_head offload_base __read_mostly; 149 150 static int netif_rx_internal(struct sk_buff *skb); 151 152 /* 153 * The @dev_base_head list is protected by @dev_base_lock and the rtnl 154 * semaphore. 155 * 156 * Pure readers hold dev_base_lock for reading, or rcu_read_lock() 157 * 158 * Writers must hold the rtnl semaphore while they loop through the 159 * dev_base_head list, and hold dev_base_lock for writing when they do the 160 * actual updates. This allows pure readers to access the list even 161 * while a writer is preparing to update it. 162 * 163 * To put it another way, dev_base_lock is held for writing only to 164 * protect against pure readers; the rtnl semaphore provides the 165 * protection against other writers. 166 * 167 * See, for example usages, register_netdevice() and 168 * unregister_netdevice(), which must be called with the rtnl 169 * semaphore held. 170 */ 171 DEFINE_RWLOCK(dev_base_lock); 172 EXPORT_SYMBOL(dev_base_lock); 173 174 /* protects napi_hash addition/deletion and napi_gen_id */ 175 static DEFINE_SPINLOCK(napi_hash_lock); 176 177 static unsigned int napi_gen_id; 178 static DEFINE_HASHTABLE(napi_hash, 8); 179 180 static seqcount_t devnet_rename_seq; 181 182 static inline void dev_base_seq_inc(struct net *net) 183 { 184 while (++net->dev_base_seq == 0); 185 } 186 187 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name) 188 { 189 unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ)); 190 191 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)]; 192 } 193 194 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex) 195 { 196 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)]; 197 } 198 199 static inline void rps_lock(struct softnet_data *sd) 200 { 201 #ifdef CONFIG_RPS 202 spin_lock(&sd->input_pkt_queue.lock); 203 #endif 204 } 205 206 static inline void rps_unlock(struct softnet_data *sd) 207 { 208 #ifdef CONFIG_RPS 209 spin_unlock(&sd->input_pkt_queue.lock); 210 #endif 211 } 212 213 /* Device list insertion */ 214 static void list_netdevice(struct net_device *dev) 215 { 216 struct net *net = dev_net(dev); 217 218 ASSERT_RTNL(); 219 220 write_lock_bh(&dev_base_lock); 221 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head); 222 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name)); 223 hlist_add_head_rcu(&dev->index_hlist, 224 dev_index_hash(net, dev->ifindex)); 225 write_unlock_bh(&dev_base_lock); 226 227 dev_base_seq_inc(net); 228 } 229 230 /* Device list removal 231 * caller must respect a RCU grace period before freeing/reusing dev 232 */ 233 static void unlist_netdevice(struct net_device *dev) 234 { 235 ASSERT_RTNL(); 236 237 /* Unlink dev from the device chain */ 238 write_lock_bh(&dev_base_lock); 239 list_del_rcu(&dev->dev_list); 240 hlist_del_rcu(&dev->name_hlist); 241 hlist_del_rcu(&dev->index_hlist); 242 write_unlock_bh(&dev_base_lock); 243 244 dev_base_seq_inc(dev_net(dev)); 245 } 246 247 /* 248 * Our notifier list 249 */ 250 251 static RAW_NOTIFIER_HEAD(netdev_chain); 252 253 /* 254 * Device drivers call our routines to queue packets here. We empty the 255 * queue in the local softnet handler. 256 */ 257 258 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 259 EXPORT_PER_CPU_SYMBOL(softnet_data); 260 261 #ifdef CONFIG_LOCKDEP 262 /* 263 * register_netdevice() inits txq->_xmit_lock and sets lockdep class 264 * according to dev->type 265 */ 266 static const unsigned short netdev_lock_type[] = 267 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25, 268 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET, 269 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM, 270 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP, 271 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD, 272 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25, 273 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP, 274 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD, 275 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI, 276 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE, 277 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET, 278 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL, 279 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM, 280 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE, 281 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE}; 282 283 static const char *const netdev_lock_name[] = 284 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25", 285 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET", 286 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM", 287 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP", 288 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD", 289 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25", 290 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP", 291 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD", 292 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI", 293 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE", 294 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET", 295 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL", 296 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM", 297 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE", 298 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"}; 299 300 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)]; 301 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)]; 302 303 static inline unsigned short netdev_lock_pos(unsigned short dev_type) 304 { 305 int i; 306 307 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++) 308 if (netdev_lock_type[i] == dev_type) 309 return i; 310 /* the last key is used by default */ 311 return ARRAY_SIZE(netdev_lock_type) - 1; 312 } 313 314 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 315 unsigned short dev_type) 316 { 317 int i; 318 319 i = netdev_lock_pos(dev_type); 320 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i], 321 netdev_lock_name[i]); 322 } 323 324 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 325 { 326 int i; 327 328 i = netdev_lock_pos(dev->type); 329 lockdep_set_class_and_name(&dev->addr_list_lock, 330 &netdev_addr_lock_key[i], 331 netdev_lock_name[i]); 332 } 333 #else 334 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 335 unsigned short dev_type) 336 { 337 } 338 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 339 { 340 } 341 #endif 342 343 /******************************************************************************* 344 345 Protocol management and registration routines 346 347 *******************************************************************************/ 348 349 /* 350 * Add a protocol ID to the list. Now that the input handler is 351 * smarter we can dispense with all the messy stuff that used to be 352 * here. 353 * 354 * BEWARE!!! Protocol handlers, mangling input packets, 355 * MUST BE last in hash buckets and checking protocol handlers 356 * MUST start from promiscuous ptype_all chain in net_bh. 357 * It is true now, do not change it. 358 * Explanation follows: if protocol handler, mangling packet, will 359 * be the first on list, it is not able to sense, that packet 360 * is cloned and should be copied-on-write, so that it will 361 * change it and subsequent readers will get broken packet. 362 * --ANK (980803) 363 */ 364 365 static inline struct list_head *ptype_head(const struct packet_type *pt) 366 { 367 if (pt->type == htons(ETH_P_ALL)) 368 return &ptype_all; 369 else 370 return &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK]; 371 } 372 373 /** 374 * dev_add_pack - add packet handler 375 * @pt: packet type declaration 376 * 377 * Add a protocol handler to the networking stack. The passed &packet_type 378 * is linked into kernel lists and may not be freed until it has been 379 * removed from the kernel lists. 380 * 381 * This call does not sleep therefore it can not 382 * guarantee all CPU's that are in middle of receiving packets 383 * will see the new packet type (until the next received packet). 384 */ 385 386 void dev_add_pack(struct packet_type *pt) 387 { 388 struct list_head *head = ptype_head(pt); 389 390 spin_lock(&ptype_lock); 391 list_add_rcu(&pt->list, head); 392 spin_unlock(&ptype_lock); 393 } 394 EXPORT_SYMBOL(dev_add_pack); 395 396 /** 397 * __dev_remove_pack - remove packet handler 398 * @pt: packet type declaration 399 * 400 * Remove a protocol handler that was previously added to the kernel 401 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 402 * from the kernel lists and can be freed or reused once this function 403 * returns. 404 * 405 * The packet type might still be in use by receivers 406 * and must not be freed until after all the CPU's have gone 407 * through a quiescent state. 408 */ 409 void __dev_remove_pack(struct packet_type *pt) 410 { 411 struct list_head *head = ptype_head(pt); 412 struct packet_type *pt1; 413 414 spin_lock(&ptype_lock); 415 416 list_for_each_entry(pt1, head, list) { 417 if (pt == pt1) { 418 list_del_rcu(&pt->list); 419 goto out; 420 } 421 } 422 423 pr_warn("dev_remove_pack: %p not found\n", pt); 424 out: 425 spin_unlock(&ptype_lock); 426 } 427 EXPORT_SYMBOL(__dev_remove_pack); 428 429 /** 430 * dev_remove_pack - remove packet handler 431 * @pt: packet type declaration 432 * 433 * Remove a protocol handler that was previously added to the kernel 434 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 435 * from the kernel lists and can be freed or reused once this function 436 * returns. 437 * 438 * This call sleeps to guarantee that no CPU is looking at the packet 439 * type after return. 440 */ 441 void dev_remove_pack(struct packet_type *pt) 442 { 443 __dev_remove_pack(pt); 444 445 synchronize_net(); 446 } 447 EXPORT_SYMBOL(dev_remove_pack); 448 449 450 /** 451 * dev_add_offload - register offload handlers 452 * @po: protocol offload declaration 453 * 454 * Add protocol offload handlers to the networking stack. The passed 455 * &proto_offload is linked into kernel lists and may not be freed until 456 * it has been removed from the kernel lists. 457 * 458 * This call does not sleep therefore it can not 459 * guarantee all CPU's that are in middle of receiving packets 460 * will see the new offload handlers (until the next received packet). 461 */ 462 void dev_add_offload(struct packet_offload *po) 463 { 464 struct list_head *head = &offload_base; 465 466 spin_lock(&offload_lock); 467 list_add_rcu(&po->list, head); 468 spin_unlock(&offload_lock); 469 } 470 EXPORT_SYMBOL(dev_add_offload); 471 472 /** 473 * __dev_remove_offload - remove offload handler 474 * @po: packet offload declaration 475 * 476 * Remove a protocol offload handler that was previously added to the 477 * kernel offload handlers by dev_add_offload(). The passed &offload_type 478 * is removed from the kernel lists and can be freed or reused once this 479 * function returns. 480 * 481 * The packet type might still be in use by receivers 482 * and must not be freed until after all the CPU's have gone 483 * through a quiescent state. 484 */ 485 static void __dev_remove_offload(struct packet_offload *po) 486 { 487 struct list_head *head = &offload_base; 488 struct packet_offload *po1; 489 490 spin_lock(&offload_lock); 491 492 list_for_each_entry(po1, head, list) { 493 if (po == po1) { 494 list_del_rcu(&po->list); 495 goto out; 496 } 497 } 498 499 pr_warn("dev_remove_offload: %p not found\n", po); 500 out: 501 spin_unlock(&offload_lock); 502 } 503 504 /** 505 * dev_remove_offload - remove packet offload handler 506 * @po: packet offload declaration 507 * 508 * Remove a packet offload handler that was previously added to the kernel 509 * offload handlers by dev_add_offload(). The passed &offload_type is 510 * removed from the kernel lists and can be freed or reused once this 511 * function returns. 512 * 513 * This call sleeps to guarantee that no CPU is looking at the packet 514 * type after return. 515 */ 516 void dev_remove_offload(struct packet_offload *po) 517 { 518 __dev_remove_offload(po); 519 520 synchronize_net(); 521 } 522 EXPORT_SYMBOL(dev_remove_offload); 523 524 /****************************************************************************** 525 526 Device Boot-time Settings Routines 527 528 *******************************************************************************/ 529 530 /* Boot time configuration table */ 531 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX]; 532 533 /** 534 * netdev_boot_setup_add - add new setup entry 535 * @name: name of the device 536 * @map: configured settings for the device 537 * 538 * Adds new setup entry to the dev_boot_setup list. The function 539 * returns 0 on error and 1 on success. This is a generic routine to 540 * all netdevices. 541 */ 542 static int netdev_boot_setup_add(char *name, struct ifmap *map) 543 { 544 struct netdev_boot_setup *s; 545 int i; 546 547 s = dev_boot_setup; 548 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 549 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') { 550 memset(s[i].name, 0, sizeof(s[i].name)); 551 strlcpy(s[i].name, name, IFNAMSIZ); 552 memcpy(&s[i].map, map, sizeof(s[i].map)); 553 break; 554 } 555 } 556 557 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1; 558 } 559 560 /** 561 * netdev_boot_setup_check - check boot time settings 562 * @dev: the netdevice 563 * 564 * Check boot time settings for the device. 565 * The found settings are set for the device to be used 566 * later in the device probing. 567 * Returns 0 if no settings found, 1 if they are. 568 */ 569 int netdev_boot_setup_check(struct net_device *dev) 570 { 571 struct netdev_boot_setup *s = dev_boot_setup; 572 int i; 573 574 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 575 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' && 576 !strcmp(dev->name, s[i].name)) { 577 dev->irq = s[i].map.irq; 578 dev->base_addr = s[i].map.base_addr; 579 dev->mem_start = s[i].map.mem_start; 580 dev->mem_end = s[i].map.mem_end; 581 return 1; 582 } 583 } 584 return 0; 585 } 586 EXPORT_SYMBOL(netdev_boot_setup_check); 587 588 589 /** 590 * netdev_boot_base - get address from boot time settings 591 * @prefix: prefix for network device 592 * @unit: id for network device 593 * 594 * Check boot time settings for the base address of device. 595 * The found settings are set for the device to be used 596 * later in the device probing. 597 * Returns 0 if no settings found. 598 */ 599 unsigned long netdev_boot_base(const char *prefix, int unit) 600 { 601 const struct netdev_boot_setup *s = dev_boot_setup; 602 char name[IFNAMSIZ]; 603 int i; 604 605 sprintf(name, "%s%d", prefix, unit); 606 607 /* 608 * If device already registered then return base of 1 609 * to indicate not to probe for this interface 610 */ 611 if (__dev_get_by_name(&init_net, name)) 612 return 1; 613 614 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) 615 if (!strcmp(name, s[i].name)) 616 return s[i].map.base_addr; 617 return 0; 618 } 619 620 /* 621 * Saves at boot time configured settings for any netdevice. 622 */ 623 int __init netdev_boot_setup(char *str) 624 { 625 int ints[5]; 626 struct ifmap map; 627 628 str = get_options(str, ARRAY_SIZE(ints), ints); 629 if (!str || !*str) 630 return 0; 631 632 /* Save settings */ 633 memset(&map, 0, sizeof(map)); 634 if (ints[0] > 0) 635 map.irq = ints[1]; 636 if (ints[0] > 1) 637 map.base_addr = ints[2]; 638 if (ints[0] > 2) 639 map.mem_start = ints[3]; 640 if (ints[0] > 3) 641 map.mem_end = ints[4]; 642 643 /* Add new entry to the list */ 644 return netdev_boot_setup_add(str, &map); 645 } 646 647 __setup("netdev=", netdev_boot_setup); 648 649 /******************************************************************************* 650 651 Device Interface Subroutines 652 653 *******************************************************************************/ 654 655 /** 656 * __dev_get_by_name - find a device by its name 657 * @net: the applicable net namespace 658 * @name: name to find 659 * 660 * Find an interface by name. Must be called under RTNL semaphore 661 * or @dev_base_lock. If the name is found a pointer to the device 662 * is returned. If the name is not found then %NULL is returned. The 663 * reference counters are not incremented so the caller must be 664 * careful with locks. 665 */ 666 667 struct net_device *__dev_get_by_name(struct net *net, const char *name) 668 { 669 struct net_device *dev; 670 struct hlist_head *head = dev_name_hash(net, name); 671 672 hlist_for_each_entry(dev, head, name_hlist) 673 if (!strncmp(dev->name, name, IFNAMSIZ)) 674 return dev; 675 676 return NULL; 677 } 678 EXPORT_SYMBOL(__dev_get_by_name); 679 680 /** 681 * dev_get_by_name_rcu - find a device by its name 682 * @net: the applicable net namespace 683 * @name: name to find 684 * 685 * Find an interface by name. 686 * If the name is found a pointer to the device is returned. 687 * If the name is not found then %NULL is returned. 688 * The reference counters are not incremented so the caller must be 689 * careful with locks. The caller must hold RCU lock. 690 */ 691 692 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name) 693 { 694 struct net_device *dev; 695 struct hlist_head *head = dev_name_hash(net, name); 696 697 hlist_for_each_entry_rcu(dev, head, name_hlist) 698 if (!strncmp(dev->name, name, IFNAMSIZ)) 699 return dev; 700 701 return NULL; 702 } 703 EXPORT_SYMBOL(dev_get_by_name_rcu); 704 705 /** 706 * dev_get_by_name - find a device by its name 707 * @net: the applicable net namespace 708 * @name: name to find 709 * 710 * Find an interface by name. This can be called from any 711 * context and does its own locking. The returned handle has 712 * the usage count incremented and the caller must use dev_put() to 713 * release it when it is no longer needed. %NULL is returned if no 714 * matching device is found. 715 */ 716 717 struct net_device *dev_get_by_name(struct net *net, const char *name) 718 { 719 struct net_device *dev; 720 721 rcu_read_lock(); 722 dev = dev_get_by_name_rcu(net, name); 723 if (dev) 724 dev_hold(dev); 725 rcu_read_unlock(); 726 return dev; 727 } 728 EXPORT_SYMBOL(dev_get_by_name); 729 730 /** 731 * __dev_get_by_index - find a device by its ifindex 732 * @net: the applicable net namespace 733 * @ifindex: index of device 734 * 735 * Search for an interface by index. Returns %NULL if the device 736 * is not found or a pointer to the device. The device has not 737 * had its reference counter increased so the caller must be careful 738 * about locking. The caller must hold either the RTNL semaphore 739 * or @dev_base_lock. 740 */ 741 742 struct net_device *__dev_get_by_index(struct net *net, int ifindex) 743 { 744 struct net_device *dev; 745 struct hlist_head *head = dev_index_hash(net, ifindex); 746 747 hlist_for_each_entry(dev, head, index_hlist) 748 if (dev->ifindex == ifindex) 749 return dev; 750 751 return NULL; 752 } 753 EXPORT_SYMBOL(__dev_get_by_index); 754 755 /** 756 * dev_get_by_index_rcu - find a device by its ifindex 757 * @net: the applicable net namespace 758 * @ifindex: index of device 759 * 760 * Search for an interface by index. Returns %NULL if the device 761 * is not found or a pointer to the device. The device has not 762 * had its reference counter increased so the caller must be careful 763 * about locking. The caller must hold RCU lock. 764 */ 765 766 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex) 767 { 768 struct net_device *dev; 769 struct hlist_head *head = dev_index_hash(net, ifindex); 770 771 hlist_for_each_entry_rcu(dev, head, index_hlist) 772 if (dev->ifindex == ifindex) 773 return dev; 774 775 return NULL; 776 } 777 EXPORT_SYMBOL(dev_get_by_index_rcu); 778 779 780 /** 781 * dev_get_by_index - find a device by its ifindex 782 * @net: the applicable net namespace 783 * @ifindex: index of device 784 * 785 * Search for an interface by index. Returns NULL if the device 786 * is not found or a pointer to the device. The device returned has 787 * had a reference added and the pointer is safe until the user calls 788 * dev_put to indicate they have finished with it. 789 */ 790 791 struct net_device *dev_get_by_index(struct net *net, int ifindex) 792 { 793 struct net_device *dev; 794 795 rcu_read_lock(); 796 dev = dev_get_by_index_rcu(net, ifindex); 797 if (dev) 798 dev_hold(dev); 799 rcu_read_unlock(); 800 return dev; 801 } 802 EXPORT_SYMBOL(dev_get_by_index); 803 804 /** 805 * netdev_get_name - get a netdevice name, knowing its ifindex. 806 * @net: network namespace 807 * @name: a pointer to the buffer where the name will be stored. 808 * @ifindex: the ifindex of the interface to get the name from. 809 * 810 * The use of raw_seqcount_begin() and cond_resched() before 811 * retrying is required as we want to give the writers a chance 812 * to complete when CONFIG_PREEMPT is not set. 813 */ 814 int netdev_get_name(struct net *net, char *name, int ifindex) 815 { 816 struct net_device *dev; 817 unsigned int seq; 818 819 retry: 820 seq = raw_seqcount_begin(&devnet_rename_seq); 821 rcu_read_lock(); 822 dev = dev_get_by_index_rcu(net, ifindex); 823 if (!dev) { 824 rcu_read_unlock(); 825 return -ENODEV; 826 } 827 828 strcpy(name, dev->name); 829 rcu_read_unlock(); 830 if (read_seqcount_retry(&devnet_rename_seq, seq)) { 831 cond_resched(); 832 goto retry; 833 } 834 835 return 0; 836 } 837 838 /** 839 * dev_getbyhwaddr_rcu - find a device by its hardware address 840 * @net: the applicable net namespace 841 * @type: media type of device 842 * @ha: hardware address 843 * 844 * Search for an interface by MAC address. Returns NULL if the device 845 * is not found or a pointer to the device. 846 * The caller must hold RCU or RTNL. 847 * The returned device has not had its ref count increased 848 * and the caller must therefore be careful about locking 849 * 850 */ 851 852 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 853 const char *ha) 854 { 855 struct net_device *dev; 856 857 for_each_netdev_rcu(net, dev) 858 if (dev->type == type && 859 !memcmp(dev->dev_addr, ha, dev->addr_len)) 860 return dev; 861 862 return NULL; 863 } 864 EXPORT_SYMBOL(dev_getbyhwaddr_rcu); 865 866 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type) 867 { 868 struct net_device *dev; 869 870 ASSERT_RTNL(); 871 for_each_netdev(net, dev) 872 if (dev->type == type) 873 return dev; 874 875 return NULL; 876 } 877 EXPORT_SYMBOL(__dev_getfirstbyhwtype); 878 879 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type) 880 { 881 struct net_device *dev, *ret = NULL; 882 883 rcu_read_lock(); 884 for_each_netdev_rcu(net, dev) 885 if (dev->type == type) { 886 dev_hold(dev); 887 ret = dev; 888 break; 889 } 890 rcu_read_unlock(); 891 return ret; 892 } 893 EXPORT_SYMBOL(dev_getfirstbyhwtype); 894 895 /** 896 * dev_get_by_flags_rcu - find any device with given flags 897 * @net: the applicable net namespace 898 * @if_flags: IFF_* values 899 * @mask: bitmask of bits in if_flags to check 900 * 901 * Search for any interface with the given flags. Returns NULL if a device 902 * is not found or a pointer to the device. Must be called inside 903 * rcu_read_lock(), and result refcount is unchanged. 904 */ 905 906 struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short if_flags, 907 unsigned short mask) 908 { 909 struct net_device *dev, *ret; 910 911 ret = NULL; 912 for_each_netdev_rcu(net, dev) { 913 if (((dev->flags ^ if_flags) & mask) == 0) { 914 ret = dev; 915 break; 916 } 917 } 918 return ret; 919 } 920 EXPORT_SYMBOL(dev_get_by_flags_rcu); 921 922 /** 923 * dev_valid_name - check if name is okay for network device 924 * @name: name string 925 * 926 * Network device names need to be valid file names to 927 * to allow sysfs to work. We also disallow any kind of 928 * whitespace. 929 */ 930 bool dev_valid_name(const char *name) 931 { 932 if (*name == '\0') 933 return false; 934 if (strlen(name) >= IFNAMSIZ) 935 return false; 936 if (!strcmp(name, ".") || !strcmp(name, "..")) 937 return false; 938 939 while (*name) { 940 if (*name == '/' || isspace(*name)) 941 return false; 942 name++; 943 } 944 return true; 945 } 946 EXPORT_SYMBOL(dev_valid_name); 947 948 /** 949 * __dev_alloc_name - allocate a name for a device 950 * @net: network namespace to allocate the device name in 951 * @name: name format string 952 * @buf: scratch buffer and result name string 953 * 954 * Passed a format string - eg "lt%d" it will try and find a suitable 955 * id. It scans list of devices to build up a free map, then chooses 956 * the first empty slot. The caller must hold the dev_base or rtnl lock 957 * while allocating the name and adding the device in order to avoid 958 * duplicates. 959 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 960 * Returns the number of the unit assigned or a negative errno code. 961 */ 962 963 static int __dev_alloc_name(struct net *net, const char *name, char *buf) 964 { 965 int i = 0; 966 const char *p; 967 const int max_netdevices = 8*PAGE_SIZE; 968 unsigned long *inuse; 969 struct net_device *d; 970 971 p = strnchr(name, IFNAMSIZ-1, '%'); 972 if (p) { 973 /* 974 * Verify the string as this thing may have come from 975 * the user. There must be either one "%d" and no other "%" 976 * characters. 977 */ 978 if (p[1] != 'd' || strchr(p + 2, '%')) 979 return -EINVAL; 980 981 /* Use one page as a bit array of possible slots */ 982 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC); 983 if (!inuse) 984 return -ENOMEM; 985 986 for_each_netdev(net, d) { 987 if (!sscanf(d->name, name, &i)) 988 continue; 989 if (i < 0 || i >= max_netdevices) 990 continue; 991 992 /* avoid cases where sscanf is not exact inverse of printf */ 993 snprintf(buf, IFNAMSIZ, name, i); 994 if (!strncmp(buf, d->name, IFNAMSIZ)) 995 set_bit(i, inuse); 996 } 997 998 i = find_first_zero_bit(inuse, max_netdevices); 999 free_page((unsigned long) inuse); 1000 } 1001 1002 if (buf != name) 1003 snprintf(buf, IFNAMSIZ, name, i); 1004 if (!__dev_get_by_name(net, buf)) 1005 return i; 1006 1007 /* It is possible to run out of possible slots 1008 * when the name is long and there isn't enough space left 1009 * for the digits, or if all bits are used. 1010 */ 1011 return -ENFILE; 1012 } 1013 1014 /** 1015 * dev_alloc_name - allocate a name for a device 1016 * @dev: device 1017 * @name: name format string 1018 * 1019 * Passed a format string - eg "lt%d" it will try and find a suitable 1020 * id. It scans list of devices to build up a free map, then chooses 1021 * the first empty slot. The caller must hold the dev_base or rtnl lock 1022 * while allocating the name and adding the device in order to avoid 1023 * duplicates. 1024 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 1025 * Returns the number of the unit assigned or a negative errno code. 1026 */ 1027 1028 int dev_alloc_name(struct net_device *dev, const char *name) 1029 { 1030 char buf[IFNAMSIZ]; 1031 struct net *net; 1032 int ret; 1033 1034 BUG_ON(!dev_net(dev)); 1035 net = dev_net(dev); 1036 ret = __dev_alloc_name(net, name, buf); 1037 if (ret >= 0) 1038 strlcpy(dev->name, buf, IFNAMSIZ); 1039 return ret; 1040 } 1041 EXPORT_SYMBOL(dev_alloc_name); 1042 1043 static int dev_alloc_name_ns(struct net *net, 1044 struct net_device *dev, 1045 const char *name) 1046 { 1047 char buf[IFNAMSIZ]; 1048 int ret; 1049 1050 ret = __dev_alloc_name(net, name, buf); 1051 if (ret >= 0) 1052 strlcpy(dev->name, buf, IFNAMSIZ); 1053 return ret; 1054 } 1055 1056 static int dev_get_valid_name(struct net *net, 1057 struct net_device *dev, 1058 const char *name) 1059 { 1060 BUG_ON(!net); 1061 1062 if (!dev_valid_name(name)) 1063 return -EINVAL; 1064 1065 if (strchr(name, '%')) 1066 return dev_alloc_name_ns(net, dev, name); 1067 else if (__dev_get_by_name(net, name)) 1068 return -EEXIST; 1069 else if (dev->name != name) 1070 strlcpy(dev->name, name, IFNAMSIZ); 1071 1072 return 0; 1073 } 1074 1075 /** 1076 * dev_change_name - change name of a device 1077 * @dev: device 1078 * @newname: name (or format string) must be at least IFNAMSIZ 1079 * 1080 * Change name of a device, can pass format strings "eth%d". 1081 * for wildcarding. 1082 */ 1083 int dev_change_name(struct net_device *dev, const char *newname) 1084 { 1085 char oldname[IFNAMSIZ]; 1086 int err = 0; 1087 int ret; 1088 struct net *net; 1089 1090 ASSERT_RTNL(); 1091 BUG_ON(!dev_net(dev)); 1092 1093 net = dev_net(dev); 1094 if (dev->flags & IFF_UP) 1095 return -EBUSY; 1096 1097 write_seqcount_begin(&devnet_rename_seq); 1098 1099 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) { 1100 write_seqcount_end(&devnet_rename_seq); 1101 return 0; 1102 } 1103 1104 memcpy(oldname, dev->name, IFNAMSIZ); 1105 1106 err = dev_get_valid_name(net, dev, newname); 1107 if (err < 0) { 1108 write_seqcount_end(&devnet_rename_seq); 1109 return err; 1110 } 1111 1112 rollback: 1113 ret = device_rename(&dev->dev, dev->name); 1114 if (ret) { 1115 memcpy(dev->name, oldname, IFNAMSIZ); 1116 write_seqcount_end(&devnet_rename_seq); 1117 return ret; 1118 } 1119 1120 write_seqcount_end(&devnet_rename_seq); 1121 1122 netdev_adjacent_rename_links(dev, oldname); 1123 1124 write_lock_bh(&dev_base_lock); 1125 hlist_del_rcu(&dev->name_hlist); 1126 write_unlock_bh(&dev_base_lock); 1127 1128 synchronize_rcu(); 1129 1130 write_lock_bh(&dev_base_lock); 1131 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name)); 1132 write_unlock_bh(&dev_base_lock); 1133 1134 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev); 1135 ret = notifier_to_errno(ret); 1136 1137 if (ret) { 1138 /* err >= 0 after dev_alloc_name() or stores the first errno */ 1139 if (err >= 0) { 1140 err = ret; 1141 write_seqcount_begin(&devnet_rename_seq); 1142 memcpy(dev->name, oldname, IFNAMSIZ); 1143 memcpy(oldname, newname, IFNAMSIZ); 1144 goto rollback; 1145 } else { 1146 pr_err("%s: name change rollback failed: %d\n", 1147 dev->name, ret); 1148 } 1149 } 1150 1151 return err; 1152 } 1153 1154 /** 1155 * dev_set_alias - change ifalias of a device 1156 * @dev: device 1157 * @alias: name up to IFALIASZ 1158 * @len: limit of bytes to copy from info 1159 * 1160 * Set ifalias for a device, 1161 */ 1162 int dev_set_alias(struct net_device *dev, const char *alias, size_t len) 1163 { 1164 char *new_ifalias; 1165 1166 ASSERT_RTNL(); 1167 1168 if (len >= IFALIASZ) 1169 return -EINVAL; 1170 1171 if (!len) { 1172 kfree(dev->ifalias); 1173 dev->ifalias = NULL; 1174 return 0; 1175 } 1176 1177 new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL); 1178 if (!new_ifalias) 1179 return -ENOMEM; 1180 dev->ifalias = new_ifalias; 1181 1182 strlcpy(dev->ifalias, alias, len+1); 1183 return len; 1184 } 1185 1186 1187 /** 1188 * netdev_features_change - device changes features 1189 * @dev: device to cause notification 1190 * 1191 * Called to indicate a device has changed features. 1192 */ 1193 void netdev_features_change(struct net_device *dev) 1194 { 1195 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev); 1196 } 1197 EXPORT_SYMBOL(netdev_features_change); 1198 1199 /** 1200 * netdev_state_change - device changes state 1201 * @dev: device to cause notification 1202 * 1203 * Called to indicate a device has changed state. This function calls 1204 * the notifier chains for netdev_chain and sends a NEWLINK message 1205 * to the routing socket. 1206 */ 1207 void netdev_state_change(struct net_device *dev) 1208 { 1209 if (dev->flags & IFF_UP) { 1210 call_netdevice_notifiers(NETDEV_CHANGE, dev); 1211 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL); 1212 } 1213 } 1214 EXPORT_SYMBOL(netdev_state_change); 1215 1216 /** 1217 * netdev_notify_peers - notify network peers about existence of @dev 1218 * @dev: network device 1219 * 1220 * Generate traffic such that interested network peers are aware of 1221 * @dev, such as by generating a gratuitous ARP. This may be used when 1222 * a device wants to inform the rest of the network about some sort of 1223 * reconfiguration such as a failover event or virtual machine 1224 * migration. 1225 */ 1226 void netdev_notify_peers(struct net_device *dev) 1227 { 1228 rtnl_lock(); 1229 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev); 1230 rtnl_unlock(); 1231 } 1232 EXPORT_SYMBOL(netdev_notify_peers); 1233 1234 static int __dev_open(struct net_device *dev) 1235 { 1236 const struct net_device_ops *ops = dev->netdev_ops; 1237 int ret; 1238 1239 ASSERT_RTNL(); 1240 1241 if (!netif_device_present(dev)) 1242 return -ENODEV; 1243 1244 /* Block netpoll from trying to do any rx path servicing. 1245 * If we don't do this there is a chance ndo_poll_controller 1246 * or ndo_poll may be running while we open the device 1247 */ 1248 netpoll_rx_disable(dev); 1249 1250 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev); 1251 ret = notifier_to_errno(ret); 1252 if (ret) 1253 return ret; 1254 1255 set_bit(__LINK_STATE_START, &dev->state); 1256 1257 if (ops->ndo_validate_addr) 1258 ret = ops->ndo_validate_addr(dev); 1259 1260 if (!ret && ops->ndo_open) 1261 ret = ops->ndo_open(dev); 1262 1263 netpoll_rx_enable(dev); 1264 1265 if (ret) 1266 clear_bit(__LINK_STATE_START, &dev->state); 1267 else { 1268 dev->flags |= IFF_UP; 1269 net_dmaengine_get(); 1270 dev_set_rx_mode(dev); 1271 dev_activate(dev); 1272 add_device_randomness(dev->dev_addr, dev->addr_len); 1273 } 1274 1275 return ret; 1276 } 1277 1278 /** 1279 * dev_open - prepare an interface for use. 1280 * @dev: device to open 1281 * 1282 * Takes a device from down to up state. The device's private open 1283 * function is invoked and then the multicast lists are loaded. Finally 1284 * the device is moved into the up state and a %NETDEV_UP message is 1285 * sent to the netdev notifier chain. 1286 * 1287 * Calling this function on an active interface is a nop. On a failure 1288 * a negative errno code is returned. 1289 */ 1290 int dev_open(struct net_device *dev) 1291 { 1292 int ret; 1293 1294 if (dev->flags & IFF_UP) 1295 return 0; 1296 1297 ret = __dev_open(dev); 1298 if (ret < 0) 1299 return ret; 1300 1301 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL); 1302 call_netdevice_notifiers(NETDEV_UP, dev); 1303 1304 return ret; 1305 } 1306 EXPORT_SYMBOL(dev_open); 1307 1308 static int __dev_close_many(struct list_head *head) 1309 { 1310 struct net_device *dev; 1311 1312 ASSERT_RTNL(); 1313 might_sleep(); 1314 1315 list_for_each_entry(dev, head, close_list) { 1316 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev); 1317 1318 clear_bit(__LINK_STATE_START, &dev->state); 1319 1320 /* Synchronize to scheduled poll. We cannot touch poll list, it 1321 * can be even on different cpu. So just clear netif_running(). 1322 * 1323 * dev->stop() will invoke napi_disable() on all of it's 1324 * napi_struct instances on this device. 1325 */ 1326 smp_mb__after_clear_bit(); /* Commit netif_running(). */ 1327 } 1328 1329 dev_deactivate_many(head); 1330 1331 list_for_each_entry(dev, head, close_list) { 1332 const struct net_device_ops *ops = dev->netdev_ops; 1333 1334 /* 1335 * Call the device specific close. This cannot fail. 1336 * Only if device is UP 1337 * 1338 * We allow it to be called even after a DETACH hot-plug 1339 * event. 1340 */ 1341 if (ops->ndo_stop) 1342 ops->ndo_stop(dev); 1343 1344 dev->flags &= ~IFF_UP; 1345 net_dmaengine_put(); 1346 } 1347 1348 return 0; 1349 } 1350 1351 static int __dev_close(struct net_device *dev) 1352 { 1353 int retval; 1354 LIST_HEAD(single); 1355 1356 /* Temporarily disable netpoll until the interface is down */ 1357 netpoll_rx_disable(dev); 1358 1359 list_add(&dev->close_list, &single); 1360 retval = __dev_close_many(&single); 1361 list_del(&single); 1362 1363 netpoll_rx_enable(dev); 1364 return retval; 1365 } 1366 1367 static int dev_close_many(struct list_head *head) 1368 { 1369 struct net_device *dev, *tmp; 1370 1371 /* Remove the devices that don't need to be closed */ 1372 list_for_each_entry_safe(dev, tmp, head, close_list) 1373 if (!(dev->flags & IFF_UP)) 1374 list_del_init(&dev->close_list); 1375 1376 __dev_close_many(head); 1377 1378 list_for_each_entry_safe(dev, tmp, head, close_list) { 1379 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL); 1380 call_netdevice_notifiers(NETDEV_DOWN, dev); 1381 list_del_init(&dev->close_list); 1382 } 1383 1384 return 0; 1385 } 1386 1387 /** 1388 * dev_close - shutdown an interface. 1389 * @dev: device to shutdown 1390 * 1391 * This function moves an active device into down state. A 1392 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device 1393 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier 1394 * chain. 1395 */ 1396 int dev_close(struct net_device *dev) 1397 { 1398 if (dev->flags & IFF_UP) { 1399 LIST_HEAD(single); 1400 1401 /* Block netpoll rx while the interface is going down */ 1402 netpoll_rx_disable(dev); 1403 1404 list_add(&dev->close_list, &single); 1405 dev_close_many(&single); 1406 list_del(&single); 1407 1408 netpoll_rx_enable(dev); 1409 } 1410 return 0; 1411 } 1412 EXPORT_SYMBOL(dev_close); 1413 1414 1415 /** 1416 * dev_disable_lro - disable Large Receive Offload on a device 1417 * @dev: device 1418 * 1419 * Disable Large Receive Offload (LRO) on a net device. Must be 1420 * called under RTNL. This is needed if received packets may be 1421 * forwarded to another interface. 1422 */ 1423 void dev_disable_lro(struct net_device *dev) 1424 { 1425 /* 1426 * If we're trying to disable lro on a vlan device 1427 * use the underlying physical device instead 1428 */ 1429 if (is_vlan_dev(dev)) 1430 dev = vlan_dev_real_dev(dev); 1431 1432 /* the same for macvlan devices */ 1433 if (netif_is_macvlan(dev)) 1434 dev = macvlan_dev_real_dev(dev); 1435 1436 dev->wanted_features &= ~NETIF_F_LRO; 1437 netdev_update_features(dev); 1438 1439 if (unlikely(dev->features & NETIF_F_LRO)) 1440 netdev_WARN(dev, "failed to disable LRO!\n"); 1441 } 1442 EXPORT_SYMBOL(dev_disable_lro); 1443 1444 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val, 1445 struct net_device *dev) 1446 { 1447 struct netdev_notifier_info info; 1448 1449 netdev_notifier_info_init(&info, dev); 1450 return nb->notifier_call(nb, val, &info); 1451 } 1452 1453 static int dev_boot_phase = 1; 1454 1455 /** 1456 * register_netdevice_notifier - register a network notifier block 1457 * @nb: notifier 1458 * 1459 * Register a notifier to be called when network device events occur. 1460 * The notifier passed is linked into the kernel structures and must 1461 * not be reused until it has been unregistered. A negative errno code 1462 * is returned on a failure. 1463 * 1464 * When registered all registration and up events are replayed 1465 * to the new notifier to allow device to have a race free 1466 * view of the network device list. 1467 */ 1468 1469 int register_netdevice_notifier(struct notifier_block *nb) 1470 { 1471 struct net_device *dev; 1472 struct net_device *last; 1473 struct net *net; 1474 int err; 1475 1476 rtnl_lock(); 1477 err = raw_notifier_chain_register(&netdev_chain, nb); 1478 if (err) 1479 goto unlock; 1480 if (dev_boot_phase) 1481 goto unlock; 1482 for_each_net(net) { 1483 for_each_netdev(net, dev) { 1484 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev); 1485 err = notifier_to_errno(err); 1486 if (err) 1487 goto rollback; 1488 1489 if (!(dev->flags & IFF_UP)) 1490 continue; 1491 1492 call_netdevice_notifier(nb, NETDEV_UP, dev); 1493 } 1494 } 1495 1496 unlock: 1497 rtnl_unlock(); 1498 return err; 1499 1500 rollback: 1501 last = dev; 1502 for_each_net(net) { 1503 for_each_netdev(net, dev) { 1504 if (dev == last) 1505 goto outroll; 1506 1507 if (dev->flags & IFF_UP) { 1508 call_netdevice_notifier(nb, NETDEV_GOING_DOWN, 1509 dev); 1510 call_netdevice_notifier(nb, NETDEV_DOWN, dev); 1511 } 1512 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev); 1513 } 1514 } 1515 1516 outroll: 1517 raw_notifier_chain_unregister(&netdev_chain, nb); 1518 goto unlock; 1519 } 1520 EXPORT_SYMBOL(register_netdevice_notifier); 1521 1522 /** 1523 * unregister_netdevice_notifier - unregister a network notifier block 1524 * @nb: notifier 1525 * 1526 * Unregister a notifier previously registered by 1527 * register_netdevice_notifier(). The notifier is unlinked into the 1528 * kernel structures and may then be reused. A negative errno code 1529 * is returned on a failure. 1530 * 1531 * After unregistering unregister and down device events are synthesized 1532 * for all devices on the device list to the removed notifier to remove 1533 * the need for special case cleanup code. 1534 */ 1535 1536 int unregister_netdevice_notifier(struct notifier_block *nb) 1537 { 1538 struct net_device *dev; 1539 struct net *net; 1540 int err; 1541 1542 rtnl_lock(); 1543 err = raw_notifier_chain_unregister(&netdev_chain, nb); 1544 if (err) 1545 goto unlock; 1546 1547 for_each_net(net) { 1548 for_each_netdev(net, dev) { 1549 if (dev->flags & IFF_UP) { 1550 call_netdevice_notifier(nb, NETDEV_GOING_DOWN, 1551 dev); 1552 call_netdevice_notifier(nb, NETDEV_DOWN, dev); 1553 } 1554 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev); 1555 } 1556 } 1557 unlock: 1558 rtnl_unlock(); 1559 return err; 1560 } 1561 EXPORT_SYMBOL(unregister_netdevice_notifier); 1562 1563 /** 1564 * call_netdevice_notifiers_info - call all network notifier blocks 1565 * @val: value passed unmodified to notifier function 1566 * @dev: net_device pointer passed unmodified to notifier function 1567 * @info: notifier information data 1568 * 1569 * Call all network notifier blocks. Parameters and return value 1570 * are as for raw_notifier_call_chain(). 1571 */ 1572 1573 static int call_netdevice_notifiers_info(unsigned long val, 1574 struct net_device *dev, 1575 struct netdev_notifier_info *info) 1576 { 1577 ASSERT_RTNL(); 1578 netdev_notifier_info_init(info, dev); 1579 return raw_notifier_call_chain(&netdev_chain, val, info); 1580 } 1581 1582 /** 1583 * call_netdevice_notifiers - call all network notifier blocks 1584 * @val: value passed unmodified to notifier function 1585 * @dev: net_device pointer passed unmodified to notifier function 1586 * 1587 * Call all network notifier blocks. Parameters and return value 1588 * are as for raw_notifier_call_chain(). 1589 */ 1590 1591 int call_netdevice_notifiers(unsigned long val, struct net_device *dev) 1592 { 1593 struct netdev_notifier_info info; 1594 1595 return call_netdevice_notifiers_info(val, dev, &info); 1596 } 1597 EXPORT_SYMBOL(call_netdevice_notifiers); 1598 1599 static struct static_key netstamp_needed __read_mostly; 1600 #ifdef HAVE_JUMP_LABEL 1601 /* We are not allowed to call static_key_slow_dec() from irq context 1602 * If net_disable_timestamp() is called from irq context, defer the 1603 * static_key_slow_dec() calls. 1604 */ 1605 static atomic_t netstamp_needed_deferred; 1606 #endif 1607 1608 void net_enable_timestamp(void) 1609 { 1610 #ifdef HAVE_JUMP_LABEL 1611 int deferred = atomic_xchg(&netstamp_needed_deferred, 0); 1612 1613 if (deferred) { 1614 while (--deferred) 1615 static_key_slow_dec(&netstamp_needed); 1616 return; 1617 } 1618 #endif 1619 static_key_slow_inc(&netstamp_needed); 1620 } 1621 EXPORT_SYMBOL(net_enable_timestamp); 1622 1623 void net_disable_timestamp(void) 1624 { 1625 #ifdef HAVE_JUMP_LABEL 1626 if (in_interrupt()) { 1627 atomic_inc(&netstamp_needed_deferred); 1628 return; 1629 } 1630 #endif 1631 static_key_slow_dec(&netstamp_needed); 1632 } 1633 EXPORT_SYMBOL(net_disable_timestamp); 1634 1635 static inline void net_timestamp_set(struct sk_buff *skb) 1636 { 1637 skb->tstamp.tv64 = 0; 1638 if (static_key_false(&netstamp_needed)) 1639 __net_timestamp(skb); 1640 } 1641 1642 #define net_timestamp_check(COND, SKB) \ 1643 if (static_key_false(&netstamp_needed)) { \ 1644 if ((COND) && !(SKB)->tstamp.tv64) \ 1645 __net_timestamp(SKB); \ 1646 } \ 1647 1648 static inline bool is_skb_forwardable(struct net_device *dev, 1649 struct sk_buff *skb) 1650 { 1651 unsigned int len; 1652 1653 if (!(dev->flags & IFF_UP)) 1654 return false; 1655 1656 len = dev->mtu + dev->hard_header_len + VLAN_HLEN; 1657 if (skb->len <= len) 1658 return true; 1659 1660 /* if TSO is enabled, we don't care about the length as the packet 1661 * could be forwarded without being segmented before 1662 */ 1663 if (skb_is_gso(skb)) 1664 return true; 1665 1666 return false; 1667 } 1668 1669 /** 1670 * dev_forward_skb - loopback an skb to another netif 1671 * 1672 * @dev: destination network device 1673 * @skb: buffer to forward 1674 * 1675 * return values: 1676 * NET_RX_SUCCESS (no congestion) 1677 * NET_RX_DROP (packet was dropped, but freed) 1678 * 1679 * dev_forward_skb can be used for injecting an skb from the 1680 * start_xmit function of one device into the receive queue 1681 * of another device. 1682 * 1683 * The receiving device may be in another namespace, so 1684 * we have to clear all information in the skb that could 1685 * impact namespace isolation. 1686 */ 1687 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 1688 { 1689 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) { 1690 if (skb_copy_ubufs(skb, GFP_ATOMIC)) { 1691 atomic_long_inc(&dev->rx_dropped); 1692 kfree_skb(skb); 1693 return NET_RX_DROP; 1694 } 1695 } 1696 1697 if (unlikely(!is_skb_forwardable(dev, skb))) { 1698 atomic_long_inc(&dev->rx_dropped); 1699 kfree_skb(skb); 1700 return NET_RX_DROP; 1701 } 1702 1703 skb_scrub_packet(skb, true); 1704 skb->protocol = eth_type_trans(skb, dev); 1705 1706 return netif_rx_internal(skb); 1707 } 1708 EXPORT_SYMBOL_GPL(dev_forward_skb); 1709 1710 static inline int deliver_skb(struct sk_buff *skb, 1711 struct packet_type *pt_prev, 1712 struct net_device *orig_dev) 1713 { 1714 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC))) 1715 return -ENOMEM; 1716 atomic_inc(&skb->users); 1717 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 1718 } 1719 1720 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb) 1721 { 1722 if (!ptype->af_packet_priv || !skb->sk) 1723 return false; 1724 1725 if (ptype->id_match) 1726 return ptype->id_match(ptype, skb->sk); 1727 else if ((struct sock *)ptype->af_packet_priv == skb->sk) 1728 return true; 1729 1730 return false; 1731 } 1732 1733 /* 1734 * Support routine. Sends outgoing frames to any network 1735 * taps currently in use. 1736 */ 1737 1738 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev) 1739 { 1740 struct packet_type *ptype; 1741 struct sk_buff *skb2 = NULL; 1742 struct packet_type *pt_prev = NULL; 1743 1744 rcu_read_lock(); 1745 list_for_each_entry_rcu(ptype, &ptype_all, list) { 1746 /* Never send packets back to the socket 1747 * they originated from - MvS (miquels@drinkel.ow.org) 1748 */ 1749 if ((ptype->dev == dev || !ptype->dev) && 1750 (!skb_loop_sk(ptype, skb))) { 1751 if (pt_prev) { 1752 deliver_skb(skb2, pt_prev, skb->dev); 1753 pt_prev = ptype; 1754 continue; 1755 } 1756 1757 skb2 = skb_clone(skb, GFP_ATOMIC); 1758 if (!skb2) 1759 break; 1760 1761 net_timestamp_set(skb2); 1762 1763 /* skb->nh should be correctly 1764 set by sender, so that the second statement is 1765 just protection against buggy protocols. 1766 */ 1767 skb_reset_mac_header(skb2); 1768 1769 if (skb_network_header(skb2) < skb2->data || 1770 skb_network_header(skb2) > skb_tail_pointer(skb2)) { 1771 net_crit_ratelimited("protocol %04x is buggy, dev %s\n", 1772 ntohs(skb2->protocol), 1773 dev->name); 1774 skb_reset_network_header(skb2); 1775 } 1776 1777 skb2->transport_header = skb2->network_header; 1778 skb2->pkt_type = PACKET_OUTGOING; 1779 pt_prev = ptype; 1780 } 1781 } 1782 if (pt_prev) 1783 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev); 1784 rcu_read_unlock(); 1785 } 1786 1787 /** 1788 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change 1789 * @dev: Network device 1790 * @txq: number of queues available 1791 * 1792 * If real_num_tx_queues is changed the tc mappings may no longer be 1793 * valid. To resolve this verify the tc mapping remains valid and if 1794 * not NULL the mapping. With no priorities mapping to this 1795 * offset/count pair it will no longer be used. In the worst case TC0 1796 * is invalid nothing can be done so disable priority mappings. If is 1797 * expected that drivers will fix this mapping if they can before 1798 * calling netif_set_real_num_tx_queues. 1799 */ 1800 static void netif_setup_tc(struct net_device *dev, unsigned int txq) 1801 { 1802 int i; 1803 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 1804 1805 /* If TC0 is invalidated disable TC mapping */ 1806 if (tc->offset + tc->count > txq) { 1807 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n"); 1808 dev->num_tc = 0; 1809 return; 1810 } 1811 1812 /* Invalidated prio to tc mappings set to TC0 */ 1813 for (i = 1; i < TC_BITMASK + 1; i++) { 1814 int q = netdev_get_prio_tc_map(dev, i); 1815 1816 tc = &dev->tc_to_txq[q]; 1817 if (tc->offset + tc->count > txq) { 1818 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n", 1819 i, q); 1820 netdev_set_prio_tc_map(dev, i, 0); 1821 } 1822 } 1823 } 1824 1825 #ifdef CONFIG_XPS 1826 static DEFINE_MUTEX(xps_map_mutex); 1827 #define xmap_dereference(P) \ 1828 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex)) 1829 1830 static struct xps_map *remove_xps_queue(struct xps_dev_maps *dev_maps, 1831 int cpu, u16 index) 1832 { 1833 struct xps_map *map = NULL; 1834 int pos; 1835 1836 if (dev_maps) 1837 map = xmap_dereference(dev_maps->cpu_map[cpu]); 1838 1839 for (pos = 0; map && pos < map->len; pos++) { 1840 if (map->queues[pos] == index) { 1841 if (map->len > 1) { 1842 map->queues[pos] = map->queues[--map->len]; 1843 } else { 1844 RCU_INIT_POINTER(dev_maps->cpu_map[cpu], NULL); 1845 kfree_rcu(map, rcu); 1846 map = NULL; 1847 } 1848 break; 1849 } 1850 } 1851 1852 return map; 1853 } 1854 1855 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index) 1856 { 1857 struct xps_dev_maps *dev_maps; 1858 int cpu, i; 1859 bool active = false; 1860 1861 mutex_lock(&xps_map_mutex); 1862 dev_maps = xmap_dereference(dev->xps_maps); 1863 1864 if (!dev_maps) 1865 goto out_no_maps; 1866 1867 for_each_possible_cpu(cpu) { 1868 for (i = index; i < dev->num_tx_queues; i++) { 1869 if (!remove_xps_queue(dev_maps, cpu, i)) 1870 break; 1871 } 1872 if (i == dev->num_tx_queues) 1873 active = true; 1874 } 1875 1876 if (!active) { 1877 RCU_INIT_POINTER(dev->xps_maps, NULL); 1878 kfree_rcu(dev_maps, rcu); 1879 } 1880 1881 for (i = index; i < dev->num_tx_queues; i++) 1882 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i), 1883 NUMA_NO_NODE); 1884 1885 out_no_maps: 1886 mutex_unlock(&xps_map_mutex); 1887 } 1888 1889 static struct xps_map *expand_xps_map(struct xps_map *map, 1890 int cpu, u16 index) 1891 { 1892 struct xps_map *new_map; 1893 int alloc_len = XPS_MIN_MAP_ALLOC; 1894 int i, pos; 1895 1896 for (pos = 0; map && pos < map->len; pos++) { 1897 if (map->queues[pos] != index) 1898 continue; 1899 return map; 1900 } 1901 1902 /* Need to add queue to this CPU's existing map */ 1903 if (map) { 1904 if (pos < map->alloc_len) 1905 return map; 1906 1907 alloc_len = map->alloc_len * 2; 1908 } 1909 1910 /* Need to allocate new map to store queue on this CPU's map */ 1911 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL, 1912 cpu_to_node(cpu)); 1913 if (!new_map) 1914 return NULL; 1915 1916 for (i = 0; i < pos; i++) 1917 new_map->queues[i] = map->queues[i]; 1918 new_map->alloc_len = alloc_len; 1919 new_map->len = pos; 1920 1921 return new_map; 1922 } 1923 1924 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask, 1925 u16 index) 1926 { 1927 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL; 1928 struct xps_map *map, *new_map; 1929 int maps_sz = max_t(unsigned int, XPS_DEV_MAPS_SIZE, L1_CACHE_BYTES); 1930 int cpu, numa_node_id = -2; 1931 bool active = false; 1932 1933 mutex_lock(&xps_map_mutex); 1934 1935 dev_maps = xmap_dereference(dev->xps_maps); 1936 1937 /* allocate memory for queue storage */ 1938 for_each_online_cpu(cpu) { 1939 if (!cpumask_test_cpu(cpu, mask)) 1940 continue; 1941 1942 if (!new_dev_maps) 1943 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL); 1944 if (!new_dev_maps) { 1945 mutex_unlock(&xps_map_mutex); 1946 return -ENOMEM; 1947 } 1948 1949 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) : 1950 NULL; 1951 1952 map = expand_xps_map(map, cpu, index); 1953 if (!map) 1954 goto error; 1955 1956 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map); 1957 } 1958 1959 if (!new_dev_maps) 1960 goto out_no_new_maps; 1961 1962 for_each_possible_cpu(cpu) { 1963 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) { 1964 /* add queue to CPU maps */ 1965 int pos = 0; 1966 1967 map = xmap_dereference(new_dev_maps->cpu_map[cpu]); 1968 while ((pos < map->len) && (map->queues[pos] != index)) 1969 pos++; 1970 1971 if (pos == map->len) 1972 map->queues[map->len++] = index; 1973 #ifdef CONFIG_NUMA 1974 if (numa_node_id == -2) 1975 numa_node_id = cpu_to_node(cpu); 1976 else if (numa_node_id != cpu_to_node(cpu)) 1977 numa_node_id = -1; 1978 #endif 1979 } else if (dev_maps) { 1980 /* fill in the new device map from the old device map */ 1981 map = xmap_dereference(dev_maps->cpu_map[cpu]); 1982 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map); 1983 } 1984 1985 } 1986 1987 rcu_assign_pointer(dev->xps_maps, new_dev_maps); 1988 1989 /* Cleanup old maps */ 1990 if (dev_maps) { 1991 for_each_possible_cpu(cpu) { 1992 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]); 1993 map = xmap_dereference(dev_maps->cpu_map[cpu]); 1994 if (map && map != new_map) 1995 kfree_rcu(map, rcu); 1996 } 1997 1998 kfree_rcu(dev_maps, rcu); 1999 } 2000 2001 dev_maps = new_dev_maps; 2002 active = true; 2003 2004 out_no_new_maps: 2005 /* update Tx queue numa node */ 2006 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index), 2007 (numa_node_id >= 0) ? numa_node_id : 2008 NUMA_NO_NODE); 2009 2010 if (!dev_maps) 2011 goto out_no_maps; 2012 2013 /* removes queue from unused CPUs */ 2014 for_each_possible_cpu(cpu) { 2015 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) 2016 continue; 2017 2018 if (remove_xps_queue(dev_maps, cpu, index)) 2019 active = true; 2020 } 2021 2022 /* free map if not active */ 2023 if (!active) { 2024 RCU_INIT_POINTER(dev->xps_maps, NULL); 2025 kfree_rcu(dev_maps, rcu); 2026 } 2027 2028 out_no_maps: 2029 mutex_unlock(&xps_map_mutex); 2030 2031 return 0; 2032 error: 2033 /* remove any maps that we added */ 2034 for_each_possible_cpu(cpu) { 2035 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]); 2036 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) : 2037 NULL; 2038 if (new_map && new_map != map) 2039 kfree(new_map); 2040 } 2041 2042 mutex_unlock(&xps_map_mutex); 2043 2044 kfree(new_dev_maps); 2045 return -ENOMEM; 2046 } 2047 EXPORT_SYMBOL(netif_set_xps_queue); 2048 2049 #endif 2050 /* 2051 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues 2052 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed. 2053 */ 2054 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq) 2055 { 2056 int rc; 2057 2058 if (txq < 1 || txq > dev->num_tx_queues) 2059 return -EINVAL; 2060 2061 if (dev->reg_state == NETREG_REGISTERED || 2062 dev->reg_state == NETREG_UNREGISTERING) { 2063 ASSERT_RTNL(); 2064 2065 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues, 2066 txq); 2067 if (rc) 2068 return rc; 2069 2070 if (dev->num_tc) 2071 netif_setup_tc(dev, txq); 2072 2073 if (txq < dev->real_num_tx_queues) { 2074 qdisc_reset_all_tx_gt(dev, txq); 2075 #ifdef CONFIG_XPS 2076 netif_reset_xps_queues_gt(dev, txq); 2077 #endif 2078 } 2079 } 2080 2081 dev->real_num_tx_queues = txq; 2082 return 0; 2083 } 2084 EXPORT_SYMBOL(netif_set_real_num_tx_queues); 2085 2086 #ifdef CONFIG_RPS 2087 /** 2088 * netif_set_real_num_rx_queues - set actual number of RX queues used 2089 * @dev: Network device 2090 * @rxq: Actual number of RX queues 2091 * 2092 * This must be called either with the rtnl_lock held or before 2093 * registration of the net device. Returns 0 on success, or a 2094 * negative error code. If called before registration, it always 2095 * succeeds. 2096 */ 2097 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq) 2098 { 2099 int rc; 2100 2101 if (rxq < 1 || rxq > dev->num_rx_queues) 2102 return -EINVAL; 2103 2104 if (dev->reg_state == NETREG_REGISTERED) { 2105 ASSERT_RTNL(); 2106 2107 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues, 2108 rxq); 2109 if (rc) 2110 return rc; 2111 } 2112 2113 dev->real_num_rx_queues = rxq; 2114 return 0; 2115 } 2116 EXPORT_SYMBOL(netif_set_real_num_rx_queues); 2117 #endif 2118 2119 /** 2120 * netif_get_num_default_rss_queues - default number of RSS queues 2121 * 2122 * This routine should set an upper limit on the number of RSS queues 2123 * used by default by multiqueue devices. 2124 */ 2125 int netif_get_num_default_rss_queues(void) 2126 { 2127 return min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus()); 2128 } 2129 EXPORT_SYMBOL(netif_get_num_default_rss_queues); 2130 2131 static inline void __netif_reschedule(struct Qdisc *q) 2132 { 2133 struct softnet_data *sd; 2134 unsigned long flags; 2135 2136 local_irq_save(flags); 2137 sd = &__get_cpu_var(softnet_data); 2138 q->next_sched = NULL; 2139 *sd->output_queue_tailp = q; 2140 sd->output_queue_tailp = &q->next_sched; 2141 raise_softirq_irqoff(NET_TX_SOFTIRQ); 2142 local_irq_restore(flags); 2143 } 2144 2145 void __netif_schedule(struct Qdisc *q) 2146 { 2147 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state)) 2148 __netif_reschedule(q); 2149 } 2150 EXPORT_SYMBOL(__netif_schedule); 2151 2152 struct dev_kfree_skb_cb { 2153 enum skb_free_reason reason; 2154 }; 2155 2156 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb) 2157 { 2158 return (struct dev_kfree_skb_cb *)skb->cb; 2159 } 2160 2161 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason) 2162 { 2163 unsigned long flags; 2164 2165 if (likely(atomic_read(&skb->users) == 1)) { 2166 smp_rmb(); 2167 atomic_set(&skb->users, 0); 2168 } else if (likely(!atomic_dec_and_test(&skb->users))) { 2169 return; 2170 } 2171 get_kfree_skb_cb(skb)->reason = reason; 2172 local_irq_save(flags); 2173 skb->next = __this_cpu_read(softnet_data.completion_queue); 2174 __this_cpu_write(softnet_data.completion_queue, skb); 2175 raise_softirq_irqoff(NET_TX_SOFTIRQ); 2176 local_irq_restore(flags); 2177 } 2178 EXPORT_SYMBOL(__dev_kfree_skb_irq); 2179 2180 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason) 2181 { 2182 if (in_irq() || irqs_disabled()) 2183 __dev_kfree_skb_irq(skb, reason); 2184 else 2185 dev_kfree_skb(skb); 2186 } 2187 EXPORT_SYMBOL(__dev_kfree_skb_any); 2188 2189 2190 /** 2191 * netif_device_detach - mark device as removed 2192 * @dev: network device 2193 * 2194 * Mark device as removed from system and therefore no longer available. 2195 */ 2196 void netif_device_detach(struct net_device *dev) 2197 { 2198 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) && 2199 netif_running(dev)) { 2200 netif_tx_stop_all_queues(dev); 2201 } 2202 } 2203 EXPORT_SYMBOL(netif_device_detach); 2204 2205 /** 2206 * netif_device_attach - mark device as attached 2207 * @dev: network device 2208 * 2209 * Mark device as attached from system and restart if needed. 2210 */ 2211 void netif_device_attach(struct net_device *dev) 2212 { 2213 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) && 2214 netif_running(dev)) { 2215 netif_tx_wake_all_queues(dev); 2216 __netdev_watchdog_up(dev); 2217 } 2218 } 2219 EXPORT_SYMBOL(netif_device_attach); 2220 2221 static void skb_warn_bad_offload(const struct sk_buff *skb) 2222 { 2223 static const netdev_features_t null_features = 0; 2224 struct net_device *dev = skb->dev; 2225 const char *driver = ""; 2226 2227 if (!net_ratelimit()) 2228 return; 2229 2230 if (dev && dev->dev.parent) 2231 driver = dev_driver_string(dev->dev.parent); 2232 2233 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d " 2234 "gso_type=%d ip_summed=%d\n", 2235 driver, dev ? &dev->features : &null_features, 2236 skb->sk ? &skb->sk->sk_route_caps : &null_features, 2237 skb->len, skb->data_len, skb_shinfo(skb)->gso_size, 2238 skb_shinfo(skb)->gso_type, skb->ip_summed); 2239 } 2240 2241 /* 2242 * Invalidate hardware checksum when packet is to be mangled, and 2243 * complete checksum manually on outgoing path. 2244 */ 2245 int skb_checksum_help(struct sk_buff *skb) 2246 { 2247 __wsum csum; 2248 int ret = 0, offset; 2249 2250 if (skb->ip_summed == CHECKSUM_COMPLETE) 2251 goto out_set_summed; 2252 2253 if (unlikely(skb_shinfo(skb)->gso_size)) { 2254 skb_warn_bad_offload(skb); 2255 return -EINVAL; 2256 } 2257 2258 /* Before computing a checksum, we should make sure no frag could 2259 * be modified by an external entity : checksum could be wrong. 2260 */ 2261 if (skb_has_shared_frag(skb)) { 2262 ret = __skb_linearize(skb); 2263 if (ret) 2264 goto out; 2265 } 2266 2267 offset = skb_checksum_start_offset(skb); 2268 BUG_ON(offset >= skb_headlen(skb)); 2269 csum = skb_checksum(skb, offset, skb->len - offset, 0); 2270 2271 offset += skb->csum_offset; 2272 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb)); 2273 2274 if (skb_cloned(skb) && 2275 !skb_clone_writable(skb, offset + sizeof(__sum16))) { 2276 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 2277 if (ret) 2278 goto out; 2279 } 2280 2281 *(__sum16 *)(skb->data + offset) = csum_fold(csum); 2282 out_set_summed: 2283 skb->ip_summed = CHECKSUM_NONE; 2284 out: 2285 return ret; 2286 } 2287 EXPORT_SYMBOL(skb_checksum_help); 2288 2289 __be16 skb_network_protocol(struct sk_buff *skb) 2290 { 2291 __be16 type = skb->protocol; 2292 int vlan_depth = ETH_HLEN; 2293 2294 /* Tunnel gso handlers can set protocol to ethernet. */ 2295 if (type == htons(ETH_P_TEB)) { 2296 struct ethhdr *eth; 2297 2298 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr)))) 2299 return 0; 2300 2301 eth = (struct ethhdr *)skb_mac_header(skb); 2302 type = eth->h_proto; 2303 } 2304 2305 while (type == htons(ETH_P_8021Q) || type == htons(ETH_P_8021AD)) { 2306 struct vlan_hdr *vh; 2307 2308 if (unlikely(!pskb_may_pull(skb, vlan_depth + VLAN_HLEN))) 2309 return 0; 2310 2311 vh = (struct vlan_hdr *)(skb->data + vlan_depth); 2312 type = vh->h_vlan_encapsulated_proto; 2313 vlan_depth += VLAN_HLEN; 2314 } 2315 2316 return type; 2317 } 2318 2319 /** 2320 * skb_mac_gso_segment - mac layer segmentation handler. 2321 * @skb: buffer to segment 2322 * @features: features for the output path (see dev->features) 2323 */ 2324 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb, 2325 netdev_features_t features) 2326 { 2327 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT); 2328 struct packet_offload *ptype; 2329 __be16 type = skb_network_protocol(skb); 2330 2331 if (unlikely(!type)) 2332 return ERR_PTR(-EINVAL); 2333 2334 __skb_pull(skb, skb->mac_len); 2335 2336 rcu_read_lock(); 2337 list_for_each_entry_rcu(ptype, &offload_base, list) { 2338 if (ptype->type == type && ptype->callbacks.gso_segment) { 2339 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) { 2340 int err; 2341 2342 err = ptype->callbacks.gso_send_check(skb); 2343 segs = ERR_PTR(err); 2344 if (err || skb_gso_ok(skb, features)) 2345 break; 2346 __skb_push(skb, (skb->data - 2347 skb_network_header(skb))); 2348 } 2349 segs = ptype->callbacks.gso_segment(skb, features); 2350 break; 2351 } 2352 } 2353 rcu_read_unlock(); 2354 2355 __skb_push(skb, skb->data - skb_mac_header(skb)); 2356 2357 return segs; 2358 } 2359 EXPORT_SYMBOL(skb_mac_gso_segment); 2360 2361 2362 /* openvswitch calls this on rx path, so we need a different check. 2363 */ 2364 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path) 2365 { 2366 if (tx_path) 2367 return skb->ip_summed != CHECKSUM_PARTIAL; 2368 else 2369 return skb->ip_summed == CHECKSUM_NONE; 2370 } 2371 2372 /** 2373 * __skb_gso_segment - Perform segmentation on skb. 2374 * @skb: buffer to segment 2375 * @features: features for the output path (see dev->features) 2376 * @tx_path: whether it is called in TX path 2377 * 2378 * This function segments the given skb and returns a list of segments. 2379 * 2380 * It may return NULL if the skb requires no segmentation. This is 2381 * only possible when GSO is used for verifying header integrity. 2382 */ 2383 struct sk_buff *__skb_gso_segment(struct sk_buff *skb, 2384 netdev_features_t features, bool tx_path) 2385 { 2386 if (unlikely(skb_needs_check(skb, tx_path))) { 2387 int err; 2388 2389 skb_warn_bad_offload(skb); 2390 2391 if (skb_header_cloned(skb) && 2392 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))) 2393 return ERR_PTR(err); 2394 } 2395 2396 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb); 2397 SKB_GSO_CB(skb)->encap_level = 0; 2398 2399 skb_reset_mac_header(skb); 2400 skb_reset_mac_len(skb); 2401 2402 return skb_mac_gso_segment(skb, features); 2403 } 2404 EXPORT_SYMBOL(__skb_gso_segment); 2405 2406 /* Take action when hardware reception checksum errors are detected. */ 2407 #ifdef CONFIG_BUG 2408 void netdev_rx_csum_fault(struct net_device *dev) 2409 { 2410 if (net_ratelimit()) { 2411 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>"); 2412 dump_stack(); 2413 } 2414 } 2415 EXPORT_SYMBOL(netdev_rx_csum_fault); 2416 #endif 2417 2418 /* Actually, we should eliminate this check as soon as we know, that: 2419 * 1. IOMMU is present and allows to map all the memory. 2420 * 2. No high memory really exists on this machine. 2421 */ 2422 2423 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb) 2424 { 2425 #ifdef CONFIG_HIGHMEM 2426 int i; 2427 if (!(dev->features & NETIF_F_HIGHDMA)) { 2428 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2429 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2430 if (PageHighMem(skb_frag_page(frag))) 2431 return 1; 2432 } 2433 } 2434 2435 if (PCI_DMA_BUS_IS_PHYS) { 2436 struct device *pdev = dev->dev.parent; 2437 2438 if (!pdev) 2439 return 0; 2440 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2441 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2442 dma_addr_t addr = page_to_phys(skb_frag_page(frag)); 2443 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask) 2444 return 1; 2445 } 2446 } 2447 #endif 2448 return 0; 2449 } 2450 2451 struct dev_gso_cb { 2452 void (*destructor)(struct sk_buff *skb); 2453 }; 2454 2455 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb) 2456 2457 static void dev_gso_skb_destructor(struct sk_buff *skb) 2458 { 2459 struct dev_gso_cb *cb; 2460 2461 kfree_skb_list(skb->next); 2462 skb->next = NULL; 2463 2464 cb = DEV_GSO_CB(skb); 2465 if (cb->destructor) 2466 cb->destructor(skb); 2467 } 2468 2469 /** 2470 * dev_gso_segment - Perform emulated hardware segmentation on skb. 2471 * @skb: buffer to segment 2472 * @features: device features as applicable to this skb 2473 * 2474 * This function segments the given skb and stores the list of segments 2475 * in skb->next. 2476 */ 2477 static int dev_gso_segment(struct sk_buff *skb, netdev_features_t features) 2478 { 2479 struct sk_buff *segs; 2480 2481 segs = skb_gso_segment(skb, features); 2482 2483 /* Verifying header integrity only. */ 2484 if (!segs) 2485 return 0; 2486 2487 if (IS_ERR(segs)) 2488 return PTR_ERR(segs); 2489 2490 skb->next = segs; 2491 DEV_GSO_CB(skb)->destructor = skb->destructor; 2492 skb->destructor = dev_gso_skb_destructor; 2493 2494 return 0; 2495 } 2496 2497 static netdev_features_t harmonize_features(struct sk_buff *skb, 2498 netdev_features_t features) 2499 { 2500 if (skb->ip_summed != CHECKSUM_NONE && 2501 !can_checksum_protocol(features, skb_network_protocol(skb))) { 2502 features &= ~NETIF_F_ALL_CSUM; 2503 } else if (illegal_highdma(skb->dev, skb)) { 2504 features &= ~NETIF_F_SG; 2505 } 2506 2507 return features; 2508 } 2509 2510 netdev_features_t netif_skb_features(struct sk_buff *skb) 2511 { 2512 __be16 protocol = skb->protocol; 2513 netdev_features_t features = skb->dev->features; 2514 2515 if (skb_shinfo(skb)->gso_segs > skb->dev->gso_max_segs) 2516 features &= ~NETIF_F_GSO_MASK; 2517 2518 if (protocol == htons(ETH_P_8021Q) || protocol == htons(ETH_P_8021AD)) { 2519 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data; 2520 protocol = veh->h_vlan_encapsulated_proto; 2521 } else if (!vlan_tx_tag_present(skb)) { 2522 return harmonize_features(skb, features); 2523 } 2524 2525 features &= (skb->dev->vlan_features | NETIF_F_HW_VLAN_CTAG_TX | 2526 NETIF_F_HW_VLAN_STAG_TX); 2527 2528 if (protocol == htons(ETH_P_8021Q) || protocol == htons(ETH_P_8021AD)) 2529 features &= NETIF_F_SG | NETIF_F_HIGHDMA | NETIF_F_FRAGLIST | 2530 NETIF_F_GEN_CSUM | NETIF_F_HW_VLAN_CTAG_TX | 2531 NETIF_F_HW_VLAN_STAG_TX; 2532 2533 return harmonize_features(skb, features); 2534 } 2535 EXPORT_SYMBOL(netif_skb_features); 2536 2537 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev, 2538 struct netdev_queue *txq) 2539 { 2540 const struct net_device_ops *ops = dev->netdev_ops; 2541 int rc = NETDEV_TX_OK; 2542 unsigned int skb_len; 2543 2544 if (likely(!skb->next)) { 2545 netdev_features_t features; 2546 2547 /* 2548 * If device doesn't need skb->dst, release it right now while 2549 * its hot in this cpu cache 2550 */ 2551 if (dev->priv_flags & IFF_XMIT_DST_RELEASE) 2552 skb_dst_drop(skb); 2553 2554 features = netif_skb_features(skb); 2555 2556 if (vlan_tx_tag_present(skb) && 2557 !vlan_hw_offload_capable(features, skb->vlan_proto)) { 2558 skb = __vlan_put_tag(skb, skb->vlan_proto, 2559 vlan_tx_tag_get(skb)); 2560 if (unlikely(!skb)) 2561 goto out; 2562 2563 skb->vlan_tci = 0; 2564 } 2565 2566 /* If encapsulation offload request, verify we are testing 2567 * hardware encapsulation features instead of standard 2568 * features for the netdev 2569 */ 2570 if (skb->encapsulation) 2571 features &= dev->hw_enc_features; 2572 2573 if (netif_needs_gso(skb, features)) { 2574 if (unlikely(dev_gso_segment(skb, features))) 2575 goto out_kfree_skb; 2576 if (skb->next) 2577 goto gso; 2578 } else { 2579 if (skb_needs_linearize(skb, features) && 2580 __skb_linearize(skb)) 2581 goto out_kfree_skb; 2582 2583 /* If packet is not checksummed and device does not 2584 * support checksumming for this protocol, complete 2585 * checksumming here. 2586 */ 2587 if (skb->ip_summed == CHECKSUM_PARTIAL) { 2588 if (skb->encapsulation) 2589 skb_set_inner_transport_header(skb, 2590 skb_checksum_start_offset(skb)); 2591 else 2592 skb_set_transport_header(skb, 2593 skb_checksum_start_offset(skb)); 2594 if (!(features & NETIF_F_ALL_CSUM) && 2595 skb_checksum_help(skb)) 2596 goto out_kfree_skb; 2597 } 2598 } 2599 2600 if (!list_empty(&ptype_all)) 2601 dev_queue_xmit_nit(skb, dev); 2602 2603 skb_len = skb->len; 2604 trace_net_dev_start_xmit(skb, dev); 2605 rc = ops->ndo_start_xmit(skb, dev); 2606 trace_net_dev_xmit(skb, rc, dev, skb_len); 2607 if (rc == NETDEV_TX_OK) 2608 txq_trans_update(txq); 2609 return rc; 2610 } 2611 2612 gso: 2613 do { 2614 struct sk_buff *nskb = skb->next; 2615 2616 skb->next = nskb->next; 2617 nskb->next = NULL; 2618 2619 if (!list_empty(&ptype_all)) 2620 dev_queue_xmit_nit(nskb, dev); 2621 2622 skb_len = nskb->len; 2623 trace_net_dev_start_xmit(nskb, dev); 2624 rc = ops->ndo_start_xmit(nskb, dev); 2625 trace_net_dev_xmit(nskb, rc, dev, skb_len); 2626 if (unlikely(rc != NETDEV_TX_OK)) { 2627 if (rc & ~NETDEV_TX_MASK) 2628 goto out_kfree_gso_skb; 2629 nskb->next = skb->next; 2630 skb->next = nskb; 2631 return rc; 2632 } 2633 txq_trans_update(txq); 2634 if (unlikely(netif_xmit_stopped(txq) && skb->next)) 2635 return NETDEV_TX_BUSY; 2636 } while (skb->next); 2637 2638 out_kfree_gso_skb: 2639 if (likely(skb->next == NULL)) { 2640 skb->destructor = DEV_GSO_CB(skb)->destructor; 2641 consume_skb(skb); 2642 return rc; 2643 } 2644 out_kfree_skb: 2645 kfree_skb(skb); 2646 out: 2647 return rc; 2648 } 2649 EXPORT_SYMBOL_GPL(dev_hard_start_xmit); 2650 2651 static void qdisc_pkt_len_init(struct sk_buff *skb) 2652 { 2653 const struct skb_shared_info *shinfo = skb_shinfo(skb); 2654 2655 qdisc_skb_cb(skb)->pkt_len = skb->len; 2656 2657 /* To get more precise estimation of bytes sent on wire, 2658 * we add to pkt_len the headers size of all segments 2659 */ 2660 if (shinfo->gso_size) { 2661 unsigned int hdr_len; 2662 u16 gso_segs = shinfo->gso_segs; 2663 2664 /* mac layer + network layer */ 2665 hdr_len = skb_transport_header(skb) - skb_mac_header(skb); 2666 2667 /* + transport layer */ 2668 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) 2669 hdr_len += tcp_hdrlen(skb); 2670 else 2671 hdr_len += sizeof(struct udphdr); 2672 2673 if (shinfo->gso_type & SKB_GSO_DODGY) 2674 gso_segs = DIV_ROUND_UP(skb->len - hdr_len, 2675 shinfo->gso_size); 2676 2677 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len; 2678 } 2679 } 2680 2681 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q, 2682 struct net_device *dev, 2683 struct netdev_queue *txq) 2684 { 2685 spinlock_t *root_lock = qdisc_lock(q); 2686 bool contended; 2687 int rc; 2688 2689 qdisc_pkt_len_init(skb); 2690 qdisc_calculate_pkt_len(skb, q); 2691 /* 2692 * Heuristic to force contended enqueues to serialize on a 2693 * separate lock before trying to get qdisc main lock. 2694 * This permits __QDISC_STATE_RUNNING owner to get the lock more often 2695 * and dequeue packets faster. 2696 */ 2697 contended = qdisc_is_running(q); 2698 if (unlikely(contended)) 2699 spin_lock(&q->busylock); 2700 2701 spin_lock(root_lock); 2702 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) { 2703 kfree_skb(skb); 2704 rc = NET_XMIT_DROP; 2705 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) && 2706 qdisc_run_begin(q)) { 2707 /* 2708 * This is a work-conserving queue; there are no old skbs 2709 * waiting to be sent out; and the qdisc is not running - 2710 * xmit the skb directly. 2711 */ 2712 if (!(dev->priv_flags & IFF_XMIT_DST_RELEASE)) 2713 skb_dst_force(skb); 2714 2715 qdisc_bstats_update(q, skb); 2716 2717 if (sch_direct_xmit(skb, q, dev, txq, root_lock)) { 2718 if (unlikely(contended)) { 2719 spin_unlock(&q->busylock); 2720 contended = false; 2721 } 2722 __qdisc_run(q); 2723 } else 2724 qdisc_run_end(q); 2725 2726 rc = NET_XMIT_SUCCESS; 2727 } else { 2728 skb_dst_force(skb); 2729 rc = q->enqueue(skb, q) & NET_XMIT_MASK; 2730 if (qdisc_run_begin(q)) { 2731 if (unlikely(contended)) { 2732 spin_unlock(&q->busylock); 2733 contended = false; 2734 } 2735 __qdisc_run(q); 2736 } 2737 } 2738 spin_unlock(root_lock); 2739 if (unlikely(contended)) 2740 spin_unlock(&q->busylock); 2741 return rc; 2742 } 2743 2744 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO) 2745 static void skb_update_prio(struct sk_buff *skb) 2746 { 2747 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap); 2748 2749 if (!skb->priority && skb->sk && map) { 2750 unsigned int prioidx = skb->sk->sk_cgrp_prioidx; 2751 2752 if (prioidx < map->priomap_len) 2753 skb->priority = map->priomap[prioidx]; 2754 } 2755 } 2756 #else 2757 #define skb_update_prio(skb) 2758 #endif 2759 2760 static DEFINE_PER_CPU(int, xmit_recursion); 2761 #define RECURSION_LIMIT 10 2762 2763 /** 2764 * dev_loopback_xmit - loop back @skb 2765 * @skb: buffer to transmit 2766 */ 2767 int dev_loopback_xmit(struct sk_buff *skb) 2768 { 2769 skb_reset_mac_header(skb); 2770 __skb_pull(skb, skb_network_offset(skb)); 2771 skb->pkt_type = PACKET_LOOPBACK; 2772 skb->ip_summed = CHECKSUM_UNNECESSARY; 2773 WARN_ON(!skb_dst(skb)); 2774 skb_dst_force(skb); 2775 netif_rx_ni(skb); 2776 return 0; 2777 } 2778 EXPORT_SYMBOL(dev_loopback_xmit); 2779 2780 /** 2781 * dev_queue_xmit - transmit a buffer 2782 * @skb: buffer to transmit 2783 * 2784 * Queue a buffer for transmission to a network device. The caller must 2785 * have set the device and priority and built the buffer before calling 2786 * this function. The function can be called from an interrupt. 2787 * 2788 * A negative errno code is returned on a failure. A success does not 2789 * guarantee the frame will be transmitted as it may be dropped due 2790 * to congestion or traffic shaping. 2791 * 2792 * ----------------------------------------------------------------------------------- 2793 * I notice this method can also return errors from the queue disciplines, 2794 * including NET_XMIT_DROP, which is a positive value. So, errors can also 2795 * be positive. 2796 * 2797 * Regardless of the return value, the skb is consumed, so it is currently 2798 * difficult to retry a send to this method. (You can bump the ref count 2799 * before sending to hold a reference for retry if you are careful.) 2800 * 2801 * When calling this method, interrupts MUST be enabled. This is because 2802 * the BH enable code must have IRQs enabled so that it will not deadlock. 2803 * --BLG 2804 */ 2805 int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv) 2806 { 2807 struct net_device *dev = skb->dev; 2808 struct netdev_queue *txq; 2809 struct Qdisc *q; 2810 int rc = -ENOMEM; 2811 2812 skb_reset_mac_header(skb); 2813 2814 /* Disable soft irqs for various locks below. Also 2815 * stops preemption for RCU. 2816 */ 2817 rcu_read_lock_bh(); 2818 2819 skb_update_prio(skb); 2820 2821 txq = netdev_pick_tx(dev, skb, accel_priv); 2822 q = rcu_dereference_bh(txq->qdisc); 2823 2824 #ifdef CONFIG_NET_CLS_ACT 2825 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS); 2826 #endif 2827 trace_net_dev_queue(skb); 2828 if (q->enqueue) { 2829 rc = __dev_xmit_skb(skb, q, dev, txq); 2830 goto out; 2831 } 2832 2833 /* The device has no queue. Common case for software devices: 2834 loopback, all the sorts of tunnels... 2835 2836 Really, it is unlikely that netif_tx_lock protection is necessary 2837 here. (f.e. loopback and IP tunnels are clean ignoring statistics 2838 counters.) 2839 However, it is possible, that they rely on protection 2840 made by us here. 2841 2842 Check this and shot the lock. It is not prone from deadlocks. 2843 Either shot noqueue qdisc, it is even simpler 8) 2844 */ 2845 if (dev->flags & IFF_UP) { 2846 int cpu = smp_processor_id(); /* ok because BHs are off */ 2847 2848 if (txq->xmit_lock_owner != cpu) { 2849 2850 if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT) 2851 goto recursion_alert; 2852 2853 HARD_TX_LOCK(dev, txq, cpu); 2854 2855 if (!netif_xmit_stopped(txq)) { 2856 __this_cpu_inc(xmit_recursion); 2857 rc = dev_hard_start_xmit(skb, dev, txq); 2858 __this_cpu_dec(xmit_recursion); 2859 if (dev_xmit_complete(rc)) { 2860 HARD_TX_UNLOCK(dev, txq); 2861 goto out; 2862 } 2863 } 2864 HARD_TX_UNLOCK(dev, txq); 2865 net_crit_ratelimited("Virtual device %s asks to queue packet!\n", 2866 dev->name); 2867 } else { 2868 /* Recursion is detected! It is possible, 2869 * unfortunately 2870 */ 2871 recursion_alert: 2872 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n", 2873 dev->name); 2874 } 2875 } 2876 2877 rc = -ENETDOWN; 2878 rcu_read_unlock_bh(); 2879 2880 kfree_skb(skb); 2881 return rc; 2882 out: 2883 rcu_read_unlock_bh(); 2884 return rc; 2885 } 2886 2887 int dev_queue_xmit(struct sk_buff *skb) 2888 { 2889 return __dev_queue_xmit(skb, NULL); 2890 } 2891 EXPORT_SYMBOL(dev_queue_xmit); 2892 2893 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv) 2894 { 2895 return __dev_queue_xmit(skb, accel_priv); 2896 } 2897 EXPORT_SYMBOL(dev_queue_xmit_accel); 2898 2899 2900 /*======================================================================= 2901 Receiver routines 2902 =======================================================================*/ 2903 2904 int netdev_max_backlog __read_mostly = 1000; 2905 EXPORT_SYMBOL(netdev_max_backlog); 2906 2907 int netdev_tstamp_prequeue __read_mostly = 1; 2908 int netdev_budget __read_mostly = 300; 2909 int weight_p __read_mostly = 64; /* old backlog weight */ 2910 2911 /* Called with irq disabled */ 2912 static inline void ____napi_schedule(struct softnet_data *sd, 2913 struct napi_struct *napi) 2914 { 2915 list_add_tail(&napi->poll_list, &sd->poll_list); 2916 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 2917 } 2918 2919 #ifdef CONFIG_RPS 2920 2921 /* One global table that all flow-based protocols share. */ 2922 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly; 2923 EXPORT_SYMBOL(rps_sock_flow_table); 2924 2925 struct static_key rps_needed __read_mostly; 2926 2927 static struct rps_dev_flow * 2928 set_rps_cpu(struct net_device *dev, struct sk_buff *skb, 2929 struct rps_dev_flow *rflow, u16 next_cpu) 2930 { 2931 if (next_cpu != RPS_NO_CPU) { 2932 #ifdef CONFIG_RFS_ACCEL 2933 struct netdev_rx_queue *rxqueue; 2934 struct rps_dev_flow_table *flow_table; 2935 struct rps_dev_flow *old_rflow; 2936 u32 flow_id; 2937 u16 rxq_index; 2938 int rc; 2939 2940 /* Should we steer this flow to a different hardware queue? */ 2941 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap || 2942 !(dev->features & NETIF_F_NTUPLE)) 2943 goto out; 2944 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu); 2945 if (rxq_index == skb_get_rx_queue(skb)) 2946 goto out; 2947 2948 rxqueue = dev->_rx + rxq_index; 2949 flow_table = rcu_dereference(rxqueue->rps_flow_table); 2950 if (!flow_table) 2951 goto out; 2952 flow_id = skb->rxhash & flow_table->mask; 2953 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb, 2954 rxq_index, flow_id); 2955 if (rc < 0) 2956 goto out; 2957 old_rflow = rflow; 2958 rflow = &flow_table->flows[flow_id]; 2959 rflow->filter = rc; 2960 if (old_rflow->filter == rflow->filter) 2961 old_rflow->filter = RPS_NO_FILTER; 2962 out: 2963 #endif 2964 rflow->last_qtail = 2965 per_cpu(softnet_data, next_cpu).input_queue_head; 2966 } 2967 2968 rflow->cpu = next_cpu; 2969 return rflow; 2970 } 2971 2972 /* 2973 * get_rps_cpu is called from netif_receive_skb and returns the target 2974 * CPU from the RPS map of the receiving queue for a given skb. 2975 * rcu_read_lock must be held on entry. 2976 */ 2977 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb, 2978 struct rps_dev_flow **rflowp) 2979 { 2980 struct netdev_rx_queue *rxqueue; 2981 struct rps_map *map; 2982 struct rps_dev_flow_table *flow_table; 2983 struct rps_sock_flow_table *sock_flow_table; 2984 int cpu = -1; 2985 u16 tcpu; 2986 2987 if (skb_rx_queue_recorded(skb)) { 2988 u16 index = skb_get_rx_queue(skb); 2989 if (unlikely(index >= dev->real_num_rx_queues)) { 2990 WARN_ONCE(dev->real_num_rx_queues > 1, 2991 "%s received packet on queue %u, but number " 2992 "of RX queues is %u\n", 2993 dev->name, index, dev->real_num_rx_queues); 2994 goto done; 2995 } 2996 rxqueue = dev->_rx + index; 2997 } else 2998 rxqueue = dev->_rx; 2999 3000 map = rcu_dereference(rxqueue->rps_map); 3001 if (map) { 3002 if (map->len == 1 && 3003 !rcu_access_pointer(rxqueue->rps_flow_table)) { 3004 tcpu = map->cpus[0]; 3005 if (cpu_online(tcpu)) 3006 cpu = tcpu; 3007 goto done; 3008 } 3009 } else if (!rcu_access_pointer(rxqueue->rps_flow_table)) { 3010 goto done; 3011 } 3012 3013 skb_reset_network_header(skb); 3014 if (!skb_get_hash(skb)) 3015 goto done; 3016 3017 flow_table = rcu_dereference(rxqueue->rps_flow_table); 3018 sock_flow_table = rcu_dereference(rps_sock_flow_table); 3019 if (flow_table && sock_flow_table) { 3020 u16 next_cpu; 3021 struct rps_dev_flow *rflow; 3022 3023 rflow = &flow_table->flows[skb->rxhash & flow_table->mask]; 3024 tcpu = rflow->cpu; 3025 3026 next_cpu = sock_flow_table->ents[skb->rxhash & 3027 sock_flow_table->mask]; 3028 3029 /* 3030 * If the desired CPU (where last recvmsg was done) is 3031 * different from current CPU (one in the rx-queue flow 3032 * table entry), switch if one of the following holds: 3033 * - Current CPU is unset (equal to RPS_NO_CPU). 3034 * - Current CPU is offline. 3035 * - The current CPU's queue tail has advanced beyond the 3036 * last packet that was enqueued using this table entry. 3037 * This guarantees that all previous packets for the flow 3038 * have been dequeued, thus preserving in order delivery. 3039 */ 3040 if (unlikely(tcpu != next_cpu) && 3041 (tcpu == RPS_NO_CPU || !cpu_online(tcpu) || 3042 ((int)(per_cpu(softnet_data, tcpu).input_queue_head - 3043 rflow->last_qtail)) >= 0)) { 3044 tcpu = next_cpu; 3045 rflow = set_rps_cpu(dev, skb, rflow, next_cpu); 3046 } 3047 3048 if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) { 3049 *rflowp = rflow; 3050 cpu = tcpu; 3051 goto done; 3052 } 3053 } 3054 3055 if (map) { 3056 tcpu = map->cpus[((u64) skb->rxhash * map->len) >> 32]; 3057 3058 if (cpu_online(tcpu)) { 3059 cpu = tcpu; 3060 goto done; 3061 } 3062 } 3063 3064 done: 3065 return cpu; 3066 } 3067 3068 #ifdef CONFIG_RFS_ACCEL 3069 3070 /** 3071 * rps_may_expire_flow - check whether an RFS hardware filter may be removed 3072 * @dev: Device on which the filter was set 3073 * @rxq_index: RX queue index 3074 * @flow_id: Flow ID passed to ndo_rx_flow_steer() 3075 * @filter_id: Filter ID returned by ndo_rx_flow_steer() 3076 * 3077 * Drivers that implement ndo_rx_flow_steer() should periodically call 3078 * this function for each installed filter and remove the filters for 3079 * which it returns %true. 3080 */ 3081 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, 3082 u32 flow_id, u16 filter_id) 3083 { 3084 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index; 3085 struct rps_dev_flow_table *flow_table; 3086 struct rps_dev_flow *rflow; 3087 bool expire = true; 3088 int cpu; 3089 3090 rcu_read_lock(); 3091 flow_table = rcu_dereference(rxqueue->rps_flow_table); 3092 if (flow_table && flow_id <= flow_table->mask) { 3093 rflow = &flow_table->flows[flow_id]; 3094 cpu = ACCESS_ONCE(rflow->cpu); 3095 if (rflow->filter == filter_id && cpu != RPS_NO_CPU && 3096 ((int)(per_cpu(softnet_data, cpu).input_queue_head - 3097 rflow->last_qtail) < 3098 (int)(10 * flow_table->mask))) 3099 expire = false; 3100 } 3101 rcu_read_unlock(); 3102 return expire; 3103 } 3104 EXPORT_SYMBOL(rps_may_expire_flow); 3105 3106 #endif /* CONFIG_RFS_ACCEL */ 3107 3108 /* Called from hardirq (IPI) context */ 3109 static void rps_trigger_softirq(void *data) 3110 { 3111 struct softnet_data *sd = data; 3112 3113 ____napi_schedule(sd, &sd->backlog); 3114 sd->received_rps++; 3115 } 3116 3117 #endif /* CONFIG_RPS */ 3118 3119 /* 3120 * Check if this softnet_data structure is another cpu one 3121 * If yes, queue it to our IPI list and return 1 3122 * If no, return 0 3123 */ 3124 static int rps_ipi_queued(struct softnet_data *sd) 3125 { 3126 #ifdef CONFIG_RPS 3127 struct softnet_data *mysd = &__get_cpu_var(softnet_data); 3128 3129 if (sd != mysd) { 3130 sd->rps_ipi_next = mysd->rps_ipi_list; 3131 mysd->rps_ipi_list = sd; 3132 3133 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 3134 return 1; 3135 } 3136 #endif /* CONFIG_RPS */ 3137 return 0; 3138 } 3139 3140 #ifdef CONFIG_NET_FLOW_LIMIT 3141 int netdev_flow_limit_table_len __read_mostly = (1 << 12); 3142 #endif 3143 3144 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen) 3145 { 3146 #ifdef CONFIG_NET_FLOW_LIMIT 3147 struct sd_flow_limit *fl; 3148 struct softnet_data *sd; 3149 unsigned int old_flow, new_flow; 3150 3151 if (qlen < (netdev_max_backlog >> 1)) 3152 return false; 3153 3154 sd = &__get_cpu_var(softnet_data); 3155 3156 rcu_read_lock(); 3157 fl = rcu_dereference(sd->flow_limit); 3158 if (fl) { 3159 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1); 3160 old_flow = fl->history[fl->history_head]; 3161 fl->history[fl->history_head] = new_flow; 3162 3163 fl->history_head++; 3164 fl->history_head &= FLOW_LIMIT_HISTORY - 1; 3165 3166 if (likely(fl->buckets[old_flow])) 3167 fl->buckets[old_flow]--; 3168 3169 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) { 3170 fl->count++; 3171 rcu_read_unlock(); 3172 return true; 3173 } 3174 } 3175 rcu_read_unlock(); 3176 #endif 3177 return false; 3178 } 3179 3180 /* 3181 * enqueue_to_backlog is called to queue an skb to a per CPU backlog 3182 * queue (may be a remote CPU queue). 3183 */ 3184 static int enqueue_to_backlog(struct sk_buff *skb, int cpu, 3185 unsigned int *qtail) 3186 { 3187 struct softnet_data *sd; 3188 unsigned long flags; 3189 unsigned int qlen; 3190 3191 sd = &per_cpu(softnet_data, cpu); 3192 3193 local_irq_save(flags); 3194 3195 rps_lock(sd); 3196 qlen = skb_queue_len(&sd->input_pkt_queue); 3197 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) { 3198 if (skb_queue_len(&sd->input_pkt_queue)) { 3199 enqueue: 3200 __skb_queue_tail(&sd->input_pkt_queue, skb); 3201 input_queue_tail_incr_save(sd, qtail); 3202 rps_unlock(sd); 3203 local_irq_restore(flags); 3204 return NET_RX_SUCCESS; 3205 } 3206 3207 /* Schedule NAPI for backlog device 3208 * We can use non atomic operation since we own the queue lock 3209 */ 3210 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) { 3211 if (!rps_ipi_queued(sd)) 3212 ____napi_schedule(sd, &sd->backlog); 3213 } 3214 goto enqueue; 3215 } 3216 3217 sd->dropped++; 3218 rps_unlock(sd); 3219 3220 local_irq_restore(flags); 3221 3222 atomic_long_inc(&skb->dev->rx_dropped); 3223 kfree_skb(skb); 3224 return NET_RX_DROP; 3225 } 3226 3227 static int netif_rx_internal(struct sk_buff *skb) 3228 { 3229 int ret; 3230 3231 /* if netpoll wants it, pretend we never saw it */ 3232 if (netpoll_rx(skb)) 3233 return NET_RX_DROP; 3234 3235 net_timestamp_check(netdev_tstamp_prequeue, skb); 3236 3237 trace_netif_rx(skb); 3238 #ifdef CONFIG_RPS 3239 if (static_key_false(&rps_needed)) { 3240 struct rps_dev_flow voidflow, *rflow = &voidflow; 3241 int cpu; 3242 3243 preempt_disable(); 3244 rcu_read_lock(); 3245 3246 cpu = get_rps_cpu(skb->dev, skb, &rflow); 3247 if (cpu < 0) 3248 cpu = smp_processor_id(); 3249 3250 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 3251 3252 rcu_read_unlock(); 3253 preempt_enable(); 3254 } else 3255 #endif 3256 { 3257 unsigned int qtail; 3258 ret = enqueue_to_backlog(skb, get_cpu(), &qtail); 3259 put_cpu(); 3260 } 3261 return ret; 3262 } 3263 3264 /** 3265 * netif_rx - post buffer to the network code 3266 * @skb: buffer to post 3267 * 3268 * This function receives a packet from a device driver and queues it for 3269 * the upper (protocol) levels to process. It always succeeds. The buffer 3270 * may be dropped during processing for congestion control or by the 3271 * protocol layers. 3272 * 3273 * return values: 3274 * NET_RX_SUCCESS (no congestion) 3275 * NET_RX_DROP (packet was dropped) 3276 * 3277 */ 3278 3279 int netif_rx(struct sk_buff *skb) 3280 { 3281 trace_netif_rx_entry(skb); 3282 3283 return netif_rx_internal(skb); 3284 } 3285 EXPORT_SYMBOL(netif_rx); 3286 3287 int netif_rx_ni(struct sk_buff *skb) 3288 { 3289 int err; 3290 3291 trace_netif_rx_ni_entry(skb); 3292 3293 preempt_disable(); 3294 err = netif_rx_internal(skb); 3295 if (local_softirq_pending()) 3296 do_softirq(); 3297 preempt_enable(); 3298 3299 return err; 3300 } 3301 EXPORT_SYMBOL(netif_rx_ni); 3302 3303 static void net_tx_action(struct softirq_action *h) 3304 { 3305 struct softnet_data *sd = &__get_cpu_var(softnet_data); 3306 3307 if (sd->completion_queue) { 3308 struct sk_buff *clist; 3309 3310 local_irq_disable(); 3311 clist = sd->completion_queue; 3312 sd->completion_queue = NULL; 3313 local_irq_enable(); 3314 3315 while (clist) { 3316 struct sk_buff *skb = clist; 3317 clist = clist->next; 3318 3319 WARN_ON(atomic_read(&skb->users)); 3320 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED)) 3321 trace_consume_skb(skb); 3322 else 3323 trace_kfree_skb(skb, net_tx_action); 3324 __kfree_skb(skb); 3325 } 3326 } 3327 3328 if (sd->output_queue) { 3329 struct Qdisc *head; 3330 3331 local_irq_disable(); 3332 head = sd->output_queue; 3333 sd->output_queue = NULL; 3334 sd->output_queue_tailp = &sd->output_queue; 3335 local_irq_enable(); 3336 3337 while (head) { 3338 struct Qdisc *q = head; 3339 spinlock_t *root_lock; 3340 3341 head = head->next_sched; 3342 3343 root_lock = qdisc_lock(q); 3344 if (spin_trylock(root_lock)) { 3345 smp_mb__before_clear_bit(); 3346 clear_bit(__QDISC_STATE_SCHED, 3347 &q->state); 3348 qdisc_run(q); 3349 spin_unlock(root_lock); 3350 } else { 3351 if (!test_bit(__QDISC_STATE_DEACTIVATED, 3352 &q->state)) { 3353 __netif_reschedule(q); 3354 } else { 3355 smp_mb__before_clear_bit(); 3356 clear_bit(__QDISC_STATE_SCHED, 3357 &q->state); 3358 } 3359 } 3360 } 3361 } 3362 } 3363 3364 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \ 3365 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE)) 3366 /* This hook is defined here for ATM LANE */ 3367 int (*br_fdb_test_addr_hook)(struct net_device *dev, 3368 unsigned char *addr) __read_mostly; 3369 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook); 3370 #endif 3371 3372 #ifdef CONFIG_NET_CLS_ACT 3373 /* TODO: Maybe we should just force sch_ingress to be compiled in 3374 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions 3375 * a compare and 2 stores extra right now if we dont have it on 3376 * but have CONFIG_NET_CLS_ACT 3377 * NOTE: This doesn't stop any functionality; if you dont have 3378 * the ingress scheduler, you just can't add policies on ingress. 3379 * 3380 */ 3381 static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq) 3382 { 3383 struct net_device *dev = skb->dev; 3384 u32 ttl = G_TC_RTTL(skb->tc_verd); 3385 int result = TC_ACT_OK; 3386 struct Qdisc *q; 3387 3388 if (unlikely(MAX_RED_LOOP < ttl++)) { 3389 net_warn_ratelimited("Redir loop detected Dropping packet (%d->%d)\n", 3390 skb->skb_iif, dev->ifindex); 3391 return TC_ACT_SHOT; 3392 } 3393 3394 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl); 3395 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS); 3396 3397 q = rxq->qdisc; 3398 if (q != &noop_qdisc) { 3399 spin_lock(qdisc_lock(q)); 3400 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) 3401 result = qdisc_enqueue_root(skb, q); 3402 spin_unlock(qdisc_lock(q)); 3403 } 3404 3405 return result; 3406 } 3407 3408 static inline struct sk_buff *handle_ing(struct sk_buff *skb, 3409 struct packet_type **pt_prev, 3410 int *ret, struct net_device *orig_dev) 3411 { 3412 struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue); 3413 3414 if (!rxq || rxq->qdisc == &noop_qdisc) 3415 goto out; 3416 3417 if (*pt_prev) { 3418 *ret = deliver_skb(skb, *pt_prev, orig_dev); 3419 *pt_prev = NULL; 3420 } 3421 3422 switch (ing_filter(skb, rxq)) { 3423 case TC_ACT_SHOT: 3424 case TC_ACT_STOLEN: 3425 kfree_skb(skb); 3426 return NULL; 3427 } 3428 3429 out: 3430 skb->tc_verd = 0; 3431 return skb; 3432 } 3433 #endif 3434 3435 /** 3436 * netdev_rx_handler_register - register receive handler 3437 * @dev: device to register a handler for 3438 * @rx_handler: receive handler to register 3439 * @rx_handler_data: data pointer that is used by rx handler 3440 * 3441 * Register a receive hander for a device. This handler will then be 3442 * called from __netif_receive_skb. A negative errno code is returned 3443 * on a failure. 3444 * 3445 * The caller must hold the rtnl_mutex. 3446 * 3447 * For a general description of rx_handler, see enum rx_handler_result. 3448 */ 3449 int netdev_rx_handler_register(struct net_device *dev, 3450 rx_handler_func_t *rx_handler, 3451 void *rx_handler_data) 3452 { 3453 ASSERT_RTNL(); 3454 3455 if (dev->rx_handler) 3456 return -EBUSY; 3457 3458 /* Note: rx_handler_data must be set before rx_handler */ 3459 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data); 3460 rcu_assign_pointer(dev->rx_handler, rx_handler); 3461 3462 return 0; 3463 } 3464 EXPORT_SYMBOL_GPL(netdev_rx_handler_register); 3465 3466 /** 3467 * netdev_rx_handler_unregister - unregister receive handler 3468 * @dev: device to unregister a handler from 3469 * 3470 * Unregister a receive handler from a device. 3471 * 3472 * The caller must hold the rtnl_mutex. 3473 */ 3474 void netdev_rx_handler_unregister(struct net_device *dev) 3475 { 3476 3477 ASSERT_RTNL(); 3478 RCU_INIT_POINTER(dev->rx_handler, NULL); 3479 /* a reader seeing a non NULL rx_handler in a rcu_read_lock() 3480 * section has a guarantee to see a non NULL rx_handler_data 3481 * as well. 3482 */ 3483 synchronize_net(); 3484 RCU_INIT_POINTER(dev->rx_handler_data, NULL); 3485 } 3486 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister); 3487 3488 /* 3489 * Limit the use of PFMEMALLOC reserves to those protocols that implement 3490 * the special handling of PFMEMALLOC skbs. 3491 */ 3492 static bool skb_pfmemalloc_protocol(struct sk_buff *skb) 3493 { 3494 switch (skb->protocol) { 3495 case __constant_htons(ETH_P_ARP): 3496 case __constant_htons(ETH_P_IP): 3497 case __constant_htons(ETH_P_IPV6): 3498 case __constant_htons(ETH_P_8021Q): 3499 case __constant_htons(ETH_P_8021AD): 3500 return true; 3501 default: 3502 return false; 3503 } 3504 } 3505 3506 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc) 3507 { 3508 struct packet_type *ptype, *pt_prev; 3509 rx_handler_func_t *rx_handler; 3510 struct net_device *orig_dev; 3511 struct net_device *null_or_dev; 3512 bool deliver_exact = false; 3513 int ret = NET_RX_DROP; 3514 __be16 type; 3515 3516 net_timestamp_check(!netdev_tstamp_prequeue, skb); 3517 3518 trace_netif_receive_skb(skb); 3519 3520 /* if we've gotten here through NAPI, check netpoll */ 3521 if (netpoll_receive_skb(skb)) 3522 goto out; 3523 3524 orig_dev = skb->dev; 3525 3526 skb_reset_network_header(skb); 3527 if (!skb_transport_header_was_set(skb)) 3528 skb_reset_transport_header(skb); 3529 skb_reset_mac_len(skb); 3530 3531 pt_prev = NULL; 3532 3533 rcu_read_lock(); 3534 3535 another_round: 3536 skb->skb_iif = skb->dev->ifindex; 3537 3538 __this_cpu_inc(softnet_data.processed); 3539 3540 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) || 3541 skb->protocol == cpu_to_be16(ETH_P_8021AD)) { 3542 skb = vlan_untag(skb); 3543 if (unlikely(!skb)) 3544 goto unlock; 3545 } 3546 3547 #ifdef CONFIG_NET_CLS_ACT 3548 if (skb->tc_verd & TC_NCLS) { 3549 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd); 3550 goto ncls; 3551 } 3552 #endif 3553 3554 if (pfmemalloc) 3555 goto skip_taps; 3556 3557 list_for_each_entry_rcu(ptype, &ptype_all, list) { 3558 if (!ptype->dev || ptype->dev == skb->dev) { 3559 if (pt_prev) 3560 ret = deliver_skb(skb, pt_prev, orig_dev); 3561 pt_prev = ptype; 3562 } 3563 } 3564 3565 skip_taps: 3566 #ifdef CONFIG_NET_CLS_ACT 3567 skb = handle_ing(skb, &pt_prev, &ret, orig_dev); 3568 if (!skb) 3569 goto unlock; 3570 ncls: 3571 #endif 3572 3573 if (pfmemalloc && !skb_pfmemalloc_protocol(skb)) 3574 goto drop; 3575 3576 if (vlan_tx_tag_present(skb)) { 3577 if (pt_prev) { 3578 ret = deliver_skb(skb, pt_prev, orig_dev); 3579 pt_prev = NULL; 3580 } 3581 if (vlan_do_receive(&skb)) 3582 goto another_round; 3583 else if (unlikely(!skb)) 3584 goto unlock; 3585 } 3586 3587 rx_handler = rcu_dereference(skb->dev->rx_handler); 3588 if (rx_handler) { 3589 if (pt_prev) { 3590 ret = deliver_skb(skb, pt_prev, orig_dev); 3591 pt_prev = NULL; 3592 } 3593 switch (rx_handler(&skb)) { 3594 case RX_HANDLER_CONSUMED: 3595 ret = NET_RX_SUCCESS; 3596 goto unlock; 3597 case RX_HANDLER_ANOTHER: 3598 goto another_round; 3599 case RX_HANDLER_EXACT: 3600 deliver_exact = true; 3601 case RX_HANDLER_PASS: 3602 break; 3603 default: 3604 BUG(); 3605 } 3606 } 3607 3608 if (unlikely(vlan_tx_tag_present(skb))) { 3609 if (vlan_tx_tag_get_id(skb)) 3610 skb->pkt_type = PACKET_OTHERHOST; 3611 /* Note: we might in the future use prio bits 3612 * and set skb->priority like in vlan_do_receive() 3613 * For the time being, just ignore Priority Code Point 3614 */ 3615 skb->vlan_tci = 0; 3616 } 3617 3618 /* deliver only exact match when indicated */ 3619 null_or_dev = deliver_exact ? skb->dev : NULL; 3620 3621 type = skb->protocol; 3622 list_for_each_entry_rcu(ptype, 3623 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) { 3624 if (ptype->type == type && 3625 (ptype->dev == null_or_dev || ptype->dev == skb->dev || 3626 ptype->dev == orig_dev)) { 3627 if (pt_prev) 3628 ret = deliver_skb(skb, pt_prev, orig_dev); 3629 pt_prev = ptype; 3630 } 3631 } 3632 3633 if (pt_prev) { 3634 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC))) 3635 goto drop; 3636 else 3637 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 3638 } else { 3639 drop: 3640 atomic_long_inc(&skb->dev->rx_dropped); 3641 kfree_skb(skb); 3642 /* Jamal, now you will not able to escape explaining 3643 * me how you were going to use this. :-) 3644 */ 3645 ret = NET_RX_DROP; 3646 } 3647 3648 unlock: 3649 rcu_read_unlock(); 3650 out: 3651 return ret; 3652 } 3653 3654 static int __netif_receive_skb(struct sk_buff *skb) 3655 { 3656 int ret; 3657 3658 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) { 3659 unsigned long pflags = current->flags; 3660 3661 /* 3662 * PFMEMALLOC skbs are special, they should 3663 * - be delivered to SOCK_MEMALLOC sockets only 3664 * - stay away from userspace 3665 * - have bounded memory usage 3666 * 3667 * Use PF_MEMALLOC as this saves us from propagating the allocation 3668 * context down to all allocation sites. 3669 */ 3670 current->flags |= PF_MEMALLOC; 3671 ret = __netif_receive_skb_core(skb, true); 3672 tsk_restore_flags(current, pflags, PF_MEMALLOC); 3673 } else 3674 ret = __netif_receive_skb_core(skb, false); 3675 3676 return ret; 3677 } 3678 3679 static int netif_receive_skb_internal(struct sk_buff *skb) 3680 { 3681 net_timestamp_check(netdev_tstamp_prequeue, skb); 3682 3683 if (skb_defer_rx_timestamp(skb)) 3684 return NET_RX_SUCCESS; 3685 3686 #ifdef CONFIG_RPS 3687 if (static_key_false(&rps_needed)) { 3688 struct rps_dev_flow voidflow, *rflow = &voidflow; 3689 int cpu, ret; 3690 3691 rcu_read_lock(); 3692 3693 cpu = get_rps_cpu(skb->dev, skb, &rflow); 3694 3695 if (cpu >= 0) { 3696 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 3697 rcu_read_unlock(); 3698 return ret; 3699 } 3700 rcu_read_unlock(); 3701 } 3702 #endif 3703 return __netif_receive_skb(skb); 3704 } 3705 3706 /** 3707 * netif_receive_skb - process receive buffer from network 3708 * @skb: buffer to process 3709 * 3710 * netif_receive_skb() is the main receive data processing function. 3711 * It always succeeds. The buffer may be dropped during processing 3712 * for congestion control or by the protocol layers. 3713 * 3714 * This function may only be called from softirq context and interrupts 3715 * should be enabled. 3716 * 3717 * Return values (usually ignored): 3718 * NET_RX_SUCCESS: no congestion 3719 * NET_RX_DROP: packet was dropped 3720 */ 3721 int netif_receive_skb(struct sk_buff *skb) 3722 { 3723 trace_netif_receive_skb_entry(skb); 3724 3725 return netif_receive_skb_internal(skb); 3726 } 3727 EXPORT_SYMBOL(netif_receive_skb); 3728 3729 /* Network device is going away, flush any packets still pending 3730 * Called with irqs disabled. 3731 */ 3732 static void flush_backlog(void *arg) 3733 { 3734 struct net_device *dev = arg; 3735 struct softnet_data *sd = &__get_cpu_var(softnet_data); 3736 struct sk_buff *skb, *tmp; 3737 3738 rps_lock(sd); 3739 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) { 3740 if (skb->dev == dev) { 3741 __skb_unlink(skb, &sd->input_pkt_queue); 3742 kfree_skb(skb); 3743 input_queue_head_incr(sd); 3744 } 3745 } 3746 rps_unlock(sd); 3747 3748 skb_queue_walk_safe(&sd->process_queue, skb, tmp) { 3749 if (skb->dev == dev) { 3750 __skb_unlink(skb, &sd->process_queue); 3751 kfree_skb(skb); 3752 input_queue_head_incr(sd); 3753 } 3754 } 3755 } 3756 3757 static int napi_gro_complete(struct sk_buff *skb) 3758 { 3759 struct packet_offload *ptype; 3760 __be16 type = skb->protocol; 3761 struct list_head *head = &offload_base; 3762 int err = -ENOENT; 3763 3764 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb)); 3765 3766 if (NAPI_GRO_CB(skb)->count == 1) { 3767 skb_shinfo(skb)->gso_size = 0; 3768 goto out; 3769 } 3770 3771 rcu_read_lock(); 3772 list_for_each_entry_rcu(ptype, head, list) { 3773 if (ptype->type != type || !ptype->callbacks.gro_complete) 3774 continue; 3775 3776 err = ptype->callbacks.gro_complete(skb, 0); 3777 break; 3778 } 3779 rcu_read_unlock(); 3780 3781 if (err) { 3782 WARN_ON(&ptype->list == head); 3783 kfree_skb(skb); 3784 return NET_RX_SUCCESS; 3785 } 3786 3787 out: 3788 return netif_receive_skb_internal(skb); 3789 } 3790 3791 /* napi->gro_list contains packets ordered by age. 3792 * youngest packets at the head of it. 3793 * Complete skbs in reverse order to reduce latencies. 3794 */ 3795 void napi_gro_flush(struct napi_struct *napi, bool flush_old) 3796 { 3797 struct sk_buff *skb, *prev = NULL; 3798 3799 /* scan list and build reverse chain */ 3800 for (skb = napi->gro_list; skb != NULL; skb = skb->next) { 3801 skb->prev = prev; 3802 prev = skb; 3803 } 3804 3805 for (skb = prev; skb; skb = prev) { 3806 skb->next = NULL; 3807 3808 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies) 3809 return; 3810 3811 prev = skb->prev; 3812 napi_gro_complete(skb); 3813 napi->gro_count--; 3814 } 3815 3816 napi->gro_list = NULL; 3817 } 3818 EXPORT_SYMBOL(napi_gro_flush); 3819 3820 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb) 3821 { 3822 struct sk_buff *p; 3823 unsigned int maclen = skb->dev->hard_header_len; 3824 3825 for (p = napi->gro_list; p; p = p->next) { 3826 unsigned long diffs; 3827 3828 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev; 3829 diffs |= p->vlan_tci ^ skb->vlan_tci; 3830 if (maclen == ETH_HLEN) 3831 diffs |= compare_ether_header(skb_mac_header(p), 3832 skb_gro_mac_header(skb)); 3833 else if (!diffs) 3834 diffs = memcmp(skb_mac_header(p), 3835 skb_gro_mac_header(skb), 3836 maclen); 3837 NAPI_GRO_CB(p)->same_flow = !diffs; 3838 NAPI_GRO_CB(p)->flush = 0; 3839 } 3840 } 3841 3842 static void skb_gro_reset_offset(struct sk_buff *skb) 3843 { 3844 const struct skb_shared_info *pinfo = skb_shinfo(skb); 3845 const skb_frag_t *frag0 = &pinfo->frags[0]; 3846 3847 NAPI_GRO_CB(skb)->data_offset = 0; 3848 NAPI_GRO_CB(skb)->frag0 = NULL; 3849 NAPI_GRO_CB(skb)->frag0_len = 0; 3850 3851 if (skb_mac_header(skb) == skb_tail_pointer(skb) && 3852 pinfo->nr_frags && 3853 !PageHighMem(skb_frag_page(frag0))) { 3854 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0); 3855 NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0); 3856 } 3857 } 3858 3859 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 3860 { 3861 struct sk_buff **pp = NULL; 3862 struct packet_offload *ptype; 3863 __be16 type = skb->protocol; 3864 struct list_head *head = &offload_base; 3865 int same_flow; 3866 enum gro_result ret; 3867 3868 if (!(skb->dev->features & NETIF_F_GRO) || netpoll_rx_on(skb)) 3869 goto normal; 3870 3871 if (skb_is_gso(skb) || skb_has_frag_list(skb)) 3872 goto normal; 3873 3874 skb_gro_reset_offset(skb); 3875 gro_list_prepare(napi, skb); 3876 NAPI_GRO_CB(skb)->csum = skb->csum; /* Needed for CHECKSUM_COMPLETE */ 3877 3878 rcu_read_lock(); 3879 list_for_each_entry_rcu(ptype, head, list) { 3880 if (ptype->type != type || !ptype->callbacks.gro_receive) 3881 continue; 3882 3883 skb_set_network_header(skb, skb_gro_offset(skb)); 3884 skb_reset_mac_len(skb); 3885 NAPI_GRO_CB(skb)->same_flow = 0; 3886 NAPI_GRO_CB(skb)->flush = 0; 3887 NAPI_GRO_CB(skb)->free = 0; 3888 3889 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb); 3890 break; 3891 } 3892 rcu_read_unlock(); 3893 3894 if (&ptype->list == head) 3895 goto normal; 3896 3897 same_flow = NAPI_GRO_CB(skb)->same_flow; 3898 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED; 3899 3900 if (pp) { 3901 struct sk_buff *nskb = *pp; 3902 3903 *pp = nskb->next; 3904 nskb->next = NULL; 3905 napi_gro_complete(nskb); 3906 napi->gro_count--; 3907 } 3908 3909 if (same_flow) 3910 goto ok; 3911 3912 if (NAPI_GRO_CB(skb)->flush) 3913 goto normal; 3914 3915 if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) { 3916 struct sk_buff *nskb = napi->gro_list; 3917 3918 /* locate the end of the list to select the 'oldest' flow */ 3919 while (nskb->next) { 3920 pp = &nskb->next; 3921 nskb = *pp; 3922 } 3923 *pp = NULL; 3924 nskb->next = NULL; 3925 napi_gro_complete(nskb); 3926 } else { 3927 napi->gro_count++; 3928 } 3929 NAPI_GRO_CB(skb)->count = 1; 3930 NAPI_GRO_CB(skb)->age = jiffies; 3931 skb_shinfo(skb)->gso_size = skb_gro_len(skb); 3932 skb->next = napi->gro_list; 3933 napi->gro_list = skb; 3934 ret = GRO_HELD; 3935 3936 pull: 3937 if (skb_headlen(skb) < skb_gro_offset(skb)) { 3938 int grow = skb_gro_offset(skb) - skb_headlen(skb); 3939 3940 BUG_ON(skb->end - skb->tail < grow); 3941 3942 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow); 3943 3944 skb->tail += grow; 3945 skb->data_len -= grow; 3946 3947 skb_shinfo(skb)->frags[0].page_offset += grow; 3948 skb_frag_size_sub(&skb_shinfo(skb)->frags[0], grow); 3949 3950 if (unlikely(!skb_frag_size(&skb_shinfo(skb)->frags[0]))) { 3951 skb_frag_unref(skb, 0); 3952 memmove(skb_shinfo(skb)->frags, 3953 skb_shinfo(skb)->frags + 1, 3954 --skb_shinfo(skb)->nr_frags * sizeof(skb_frag_t)); 3955 } 3956 } 3957 3958 ok: 3959 return ret; 3960 3961 normal: 3962 ret = GRO_NORMAL; 3963 goto pull; 3964 } 3965 3966 struct packet_offload *gro_find_receive_by_type(__be16 type) 3967 { 3968 struct list_head *offload_head = &offload_base; 3969 struct packet_offload *ptype; 3970 3971 list_for_each_entry_rcu(ptype, offload_head, list) { 3972 if (ptype->type != type || !ptype->callbacks.gro_receive) 3973 continue; 3974 return ptype; 3975 } 3976 return NULL; 3977 } 3978 3979 struct packet_offload *gro_find_complete_by_type(__be16 type) 3980 { 3981 struct list_head *offload_head = &offload_base; 3982 struct packet_offload *ptype; 3983 3984 list_for_each_entry_rcu(ptype, offload_head, list) { 3985 if (ptype->type != type || !ptype->callbacks.gro_complete) 3986 continue; 3987 return ptype; 3988 } 3989 return NULL; 3990 } 3991 3992 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb) 3993 { 3994 switch (ret) { 3995 case GRO_NORMAL: 3996 if (netif_receive_skb_internal(skb)) 3997 ret = GRO_DROP; 3998 break; 3999 4000 case GRO_DROP: 4001 kfree_skb(skb); 4002 break; 4003 4004 case GRO_MERGED_FREE: 4005 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) 4006 kmem_cache_free(skbuff_head_cache, skb); 4007 else 4008 __kfree_skb(skb); 4009 break; 4010 4011 case GRO_HELD: 4012 case GRO_MERGED: 4013 break; 4014 } 4015 4016 return ret; 4017 } 4018 4019 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 4020 { 4021 trace_napi_gro_receive_entry(skb); 4022 4023 return napi_skb_finish(dev_gro_receive(napi, skb), skb); 4024 } 4025 EXPORT_SYMBOL(napi_gro_receive); 4026 4027 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb) 4028 { 4029 __skb_pull(skb, skb_headlen(skb)); 4030 /* restore the reserve we had after netdev_alloc_skb_ip_align() */ 4031 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb)); 4032 skb->vlan_tci = 0; 4033 skb->dev = napi->dev; 4034 skb->skb_iif = 0; 4035 4036 napi->skb = skb; 4037 } 4038 4039 struct sk_buff *napi_get_frags(struct napi_struct *napi) 4040 { 4041 struct sk_buff *skb = napi->skb; 4042 4043 if (!skb) { 4044 skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD); 4045 napi->skb = skb; 4046 } 4047 return skb; 4048 } 4049 EXPORT_SYMBOL(napi_get_frags); 4050 4051 static gro_result_t napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb, 4052 gro_result_t ret) 4053 { 4054 switch (ret) { 4055 case GRO_NORMAL: 4056 if (netif_receive_skb_internal(skb)) 4057 ret = GRO_DROP; 4058 break; 4059 4060 case GRO_DROP: 4061 case GRO_MERGED_FREE: 4062 napi_reuse_skb(napi, skb); 4063 break; 4064 4065 case GRO_HELD: 4066 case GRO_MERGED: 4067 break; 4068 } 4069 4070 return ret; 4071 } 4072 4073 static struct sk_buff *napi_frags_skb(struct napi_struct *napi) 4074 { 4075 struct sk_buff *skb = napi->skb; 4076 4077 napi->skb = NULL; 4078 4079 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr)))) { 4080 napi_reuse_skb(napi, skb); 4081 return NULL; 4082 } 4083 skb->protocol = eth_type_trans(skb, skb->dev); 4084 4085 return skb; 4086 } 4087 4088 gro_result_t napi_gro_frags(struct napi_struct *napi) 4089 { 4090 struct sk_buff *skb = napi_frags_skb(napi); 4091 4092 if (!skb) 4093 return GRO_DROP; 4094 4095 trace_napi_gro_frags_entry(skb); 4096 4097 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb)); 4098 } 4099 EXPORT_SYMBOL(napi_gro_frags); 4100 4101 /* 4102 * net_rps_action_and_irq_enable sends any pending IPI's for rps. 4103 * Note: called with local irq disabled, but exits with local irq enabled. 4104 */ 4105 static void net_rps_action_and_irq_enable(struct softnet_data *sd) 4106 { 4107 #ifdef CONFIG_RPS 4108 struct softnet_data *remsd = sd->rps_ipi_list; 4109 4110 if (remsd) { 4111 sd->rps_ipi_list = NULL; 4112 4113 local_irq_enable(); 4114 4115 /* Send pending IPI's to kick RPS processing on remote cpus. */ 4116 while (remsd) { 4117 struct softnet_data *next = remsd->rps_ipi_next; 4118 4119 if (cpu_online(remsd->cpu)) 4120 __smp_call_function_single(remsd->cpu, 4121 &remsd->csd, 0); 4122 remsd = next; 4123 } 4124 } else 4125 #endif 4126 local_irq_enable(); 4127 } 4128 4129 static int process_backlog(struct napi_struct *napi, int quota) 4130 { 4131 int work = 0; 4132 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog); 4133 4134 #ifdef CONFIG_RPS 4135 /* Check if we have pending ipi, its better to send them now, 4136 * not waiting net_rx_action() end. 4137 */ 4138 if (sd->rps_ipi_list) { 4139 local_irq_disable(); 4140 net_rps_action_and_irq_enable(sd); 4141 } 4142 #endif 4143 napi->weight = weight_p; 4144 local_irq_disable(); 4145 while (work < quota) { 4146 struct sk_buff *skb; 4147 unsigned int qlen; 4148 4149 while ((skb = __skb_dequeue(&sd->process_queue))) { 4150 local_irq_enable(); 4151 __netif_receive_skb(skb); 4152 local_irq_disable(); 4153 input_queue_head_incr(sd); 4154 if (++work >= quota) { 4155 local_irq_enable(); 4156 return work; 4157 } 4158 } 4159 4160 rps_lock(sd); 4161 qlen = skb_queue_len(&sd->input_pkt_queue); 4162 if (qlen) 4163 skb_queue_splice_tail_init(&sd->input_pkt_queue, 4164 &sd->process_queue); 4165 4166 if (qlen < quota - work) { 4167 /* 4168 * Inline a custom version of __napi_complete(). 4169 * only current cpu owns and manipulates this napi, 4170 * and NAPI_STATE_SCHED is the only possible flag set on backlog. 4171 * we can use a plain write instead of clear_bit(), 4172 * and we dont need an smp_mb() memory barrier. 4173 */ 4174 list_del(&napi->poll_list); 4175 napi->state = 0; 4176 4177 quota = work + qlen; 4178 } 4179 rps_unlock(sd); 4180 } 4181 local_irq_enable(); 4182 4183 return work; 4184 } 4185 4186 /** 4187 * __napi_schedule - schedule for receive 4188 * @n: entry to schedule 4189 * 4190 * The entry's receive function will be scheduled to run 4191 */ 4192 void __napi_schedule(struct napi_struct *n) 4193 { 4194 unsigned long flags; 4195 4196 local_irq_save(flags); 4197 ____napi_schedule(&__get_cpu_var(softnet_data), n); 4198 local_irq_restore(flags); 4199 } 4200 EXPORT_SYMBOL(__napi_schedule); 4201 4202 void __napi_complete(struct napi_struct *n) 4203 { 4204 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state)); 4205 BUG_ON(n->gro_list); 4206 4207 list_del(&n->poll_list); 4208 smp_mb__before_clear_bit(); 4209 clear_bit(NAPI_STATE_SCHED, &n->state); 4210 } 4211 EXPORT_SYMBOL(__napi_complete); 4212 4213 void napi_complete(struct napi_struct *n) 4214 { 4215 unsigned long flags; 4216 4217 /* 4218 * don't let napi dequeue from the cpu poll list 4219 * just in case its running on a different cpu 4220 */ 4221 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state))) 4222 return; 4223 4224 napi_gro_flush(n, false); 4225 local_irq_save(flags); 4226 __napi_complete(n); 4227 local_irq_restore(flags); 4228 } 4229 EXPORT_SYMBOL(napi_complete); 4230 4231 /* must be called under rcu_read_lock(), as we dont take a reference */ 4232 struct napi_struct *napi_by_id(unsigned int napi_id) 4233 { 4234 unsigned int hash = napi_id % HASH_SIZE(napi_hash); 4235 struct napi_struct *napi; 4236 4237 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node) 4238 if (napi->napi_id == napi_id) 4239 return napi; 4240 4241 return NULL; 4242 } 4243 EXPORT_SYMBOL_GPL(napi_by_id); 4244 4245 void napi_hash_add(struct napi_struct *napi) 4246 { 4247 if (!test_and_set_bit(NAPI_STATE_HASHED, &napi->state)) { 4248 4249 spin_lock(&napi_hash_lock); 4250 4251 /* 0 is not a valid id, we also skip an id that is taken 4252 * we expect both events to be extremely rare 4253 */ 4254 napi->napi_id = 0; 4255 while (!napi->napi_id) { 4256 napi->napi_id = ++napi_gen_id; 4257 if (napi_by_id(napi->napi_id)) 4258 napi->napi_id = 0; 4259 } 4260 4261 hlist_add_head_rcu(&napi->napi_hash_node, 4262 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]); 4263 4264 spin_unlock(&napi_hash_lock); 4265 } 4266 } 4267 EXPORT_SYMBOL_GPL(napi_hash_add); 4268 4269 /* Warning : caller is responsible to make sure rcu grace period 4270 * is respected before freeing memory containing @napi 4271 */ 4272 void napi_hash_del(struct napi_struct *napi) 4273 { 4274 spin_lock(&napi_hash_lock); 4275 4276 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) 4277 hlist_del_rcu(&napi->napi_hash_node); 4278 4279 spin_unlock(&napi_hash_lock); 4280 } 4281 EXPORT_SYMBOL_GPL(napi_hash_del); 4282 4283 void netif_napi_add(struct net_device *dev, struct napi_struct *napi, 4284 int (*poll)(struct napi_struct *, int), int weight) 4285 { 4286 INIT_LIST_HEAD(&napi->poll_list); 4287 napi->gro_count = 0; 4288 napi->gro_list = NULL; 4289 napi->skb = NULL; 4290 napi->poll = poll; 4291 if (weight > NAPI_POLL_WEIGHT) 4292 pr_err_once("netif_napi_add() called with weight %d on device %s\n", 4293 weight, dev->name); 4294 napi->weight = weight; 4295 list_add(&napi->dev_list, &dev->napi_list); 4296 napi->dev = dev; 4297 #ifdef CONFIG_NETPOLL 4298 spin_lock_init(&napi->poll_lock); 4299 napi->poll_owner = -1; 4300 #endif 4301 set_bit(NAPI_STATE_SCHED, &napi->state); 4302 } 4303 EXPORT_SYMBOL(netif_napi_add); 4304 4305 void netif_napi_del(struct napi_struct *napi) 4306 { 4307 list_del_init(&napi->dev_list); 4308 napi_free_frags(napi); 4309 4310 kfree_skb_list(napi->gro_list); 4311 napi->gro_list = NULL; 4312 napi->gro_count = 0; 4313 } 4314 EXPORT_SYMBOL(netif_napi_del); 4315 4316 static void net_rx_action(struct softirq_action *h) 4317 { 4318 struct softnet_data *sd = &__get_cpu_var(softnet_data); 4319 unsigned long time_limit = jiffies + 2; 4320 int budget = netdev_budget; 4321 void *have; 4322 4323 local_irq_disable(); 4324 4325 while (!list_empty(&sd->poll_list)) { 4326 struct napi_struct *n; 4327 int work, weight; 4328 4329 /* If softirq window is exhuasted then punt. 4330 * Allow this to run for 2 jiffies since which will allow 4331 * an average latency of 1.5/HZ. 4332 */ 4333 if (unlikely(budget <= 0 || time_after_eq(jiffies, time_limit))) 4334 goto softnet_break; 4335 4336 local_irq_enable(); 4337 4338 /* Even though interrupts have been re-enabled, this 4339 * access is safe because interrupts can only add new 4340 * entries to the tail of this list, and only ->poll() 4341 * calls can remove this head entry from the list. 4342 */ 4343 n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list); 4344 4345 have = netpoll_poll_lock(n); 4346 4347 weight = n->weight; 4348 4349 /* This NAPI_STATE_SCHED test is for avoiding a race 4350 * with netpoll's poll_napi(). Only the entity which 4351 * obtains the lock and sees NAPI_STATE_SCHED set will 4352 * actually make the ->poll() call. Therefore we avoid 4353 * accidentally calling ->poll() when NAPI is not scheduled. 4354 */ 4355 work = 0; 4356 if (test_bit(NAPI_STATE_SCHED, &n->state)) { 4357 work = n->poll(n, weight); 4358 trace_napi_poll(n); 4359 } 4360 4361 WARN_ON_ONCE(work > weight); 4362 4363 budget -= work; 4364 4365 local_irq_disable(); 4366 4367 /* Drivers must not modify the NAPI state if they 4368 * consume the entire weight. In such cases this code 4369 * still "owns" the NAPI instance and therefore can 4370 * move the instance around on the list at-will. 4371 */ 4372 if (unlikely(work == weight)) { 4373 if (unlikely(napi_disable_pending(n))) { 4374 local_irq_enable(); 4375 napi_complete(n); 4376 local_irq_disable(); 4377 } else { 4378 if (n->gro_list) { 4379 /* flush too old packets 4380 * If HZ < 1000, flush all packets. 4381 */ 4382 local_irq_enable(); 4383 napi_gro_flush(n, HZ >= 1000); 4384 local_irq_disable(); 4385 } 4386 list_move_tail(&n->poll_list, &sd->poll_list); 4387 } 4388 } 4389 4390 netpoll_poll_unlock(have); 4391 } 4392 out: 4393 net_rps_action_and_irq_enable(sd); 4394 4395 #ifdef CONFIG_NET_DMA 4396 /* 4397 * There may not be any more sk_buffs coming right now, so push 4398 * any pending DMA copies to hardware 4399 */ 4400 dma_issue_pending_all(); 4401 #endif 4402 4403 return; 4404 4405 softnet_break: 4406 sd->time_squeeze++; 4407 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 4408 goto out; 4409 } 4410 4411 struct netdev_adjacent { 4412 struct net_device *dev; 4413 4414 /* upper master flag, there can only be one master device per list */ 4415 bool master; 4416 4417 /* counter for the number of times this device was added to us */ 4418 u16 ref_nr; 4419 4420 /* private field for the users */ 4421 void *private; 4422 4423 struct list_head list; 4424 struct rcu_head rcu; 4425 }; 4426 4427 static struct netdev_adjacent *__netdev_find_adj(struct net_device *dev, 4428 struct net_device *adj_dev, 4429 struct list_head *adj_list) 4430 { 4431 struct netdev_adjacent *adj; 4432 4433 list_for_each_entry(adj, adj_list, list) { 4434 if (adj->dev == adj_dev) 4435 return adj; 4436 } 4437 return NULL; 4438 } 4439 4440 /** 4441 * netdev_has_upper_dev - Check if device is linked to an upper device 4442 * @dev: device 4443 * @upper_dev: upper device to check 4444 * 4445 * Find out if a device is linked to specified upper device and return true 4446 * in case it is. Note that this checks only immediate upper device, 4447 * not through a complete stack of devices. The caller must hold the RTNL lock. 4448 */ 4449 bool netdev_has_upper_dev(struct net_device *dev, 4450 struct net_device *upper_dev) 4451 { 4452 ASSERT_RTNL(); 4453 4454 return __netdev_find_adj(dev, upper_dev, &dev->all_adj_list.upper); 4455 } 4456 EXPORT_SYMBOL(netdev_has_upper_dev); 4457 4458 /** 4459 * netdev_has_any_upper_dev - Check if device is linked to some device 4460 * @dev: device 4461 * 4462 * Find out if a device is linked to an upper device and return true in case 4463 * it is. The caller must hold the RTNL lock. 4464 */ 4465 static bool netdev_has_any_upper_dev(struct net_device *dev) 4466 { 4467 ASSERT_RTNL(); 4468 4469 return !list_empty(&dev->all_adj_list.upper); 4470 } 4471 4472 /** 4473 * netdev_master_upper_dev_get - Get master upper device 4474 * @dev: device 4475 * 4476 * Find a master upper device and return pointer to it or NULL in case 4477 * it's not there. The caller must hold the RTNL lock. 4478 */ 4479 struct net_device *netdev_master_upper_dev_get(struct net_device *dev) 4480 { 4481 struct netdev_adjacent *upper; 4482 4483 ASSERT_RTNL(); 4484 4485 if (list_empty(&dev->adj_list.upper)) 4486 return NULL; 4487 4488 upper = list_first_entry(&dev->adj_list.upper, 4489 struct netdev_adjacent, list); 4490 if (likely(upper->master)) 4491 return upper->dev; 4492 return NULL; 4493 } 4494 EXPORT_SYMBOL(netdev_master_upper_dev_get); 4495 4496 void *netdev_adjacent_get_private(struct list_head *adj_list) 4497 { 4498 struct netdev_adjacent *adj; 4499 4500 adj = list_entry(adj_list, struct netdev_adjacent, list); 4501 4502 return adj->private; 4503 } 4504 EXPORT_SYMBOL(netdev_adjacent_get_private); 4505 4506 /** 4507 * netdev_all_upper_get_next_dev_rcu - Get the next dev from upper list 4508 * @dev: device 4509 * @iter: list_head ** of the current position 4510 * 4511 * Gets the next device from the dev's upper list, starting from iter 4512 * position. The caller must hold RCU read lock. 4513 */ 4514 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev, 4515 struct list_head **iter) 4516 { 4517 struct netdev_adjacent *upper; 4518 4519 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); 4520 4521 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 4522 4523 if (&upper->list == &dev->all_adj_list.upper) 4524 return NULL; 4525 4526 *iter = &upper->list; 4527 4528 return upper->dev; 4529 } 4530 EXPORT_SYMBOL(netdev_all_upper_get_next_dev_rcu); 4531 4532 /** 4533 * netdev_lower_get_next_private - Get the next ->private from the 4534 * lower neighbour list 4535 * @dev: device 4536 * @iter: list_head ** of the current position 4537 * 4538 * Gets the next netdev_adjacent->private from the dev's lower neighbour 4539 * list, starting from iter position. The caller must hold either hold the 4540 * RTNL lock or its own locking that guarantees that the neighbour lower 4541 * list will remain unchainged. 4542 */ 4543 void *netdev_lower_get_next_private(struct net_device *dev, 4544 struct list_head **iter) 4545 { 4546 struct netdev_adjacent *lower; 4547 4548 lower = list_entry(*iter, struct netdev_adjacent, list); 4549 4550 if (&lower->list == &dev->adj_list.lower) 4551 return NULL; 4552 4553 if (iter) 4554 *iter = lower->list.next; 4555 4556 return lower->private; 4557 } 4558 EXPORT_SYMBOL(netdev_lower_get_next_private); 4559 4560 /** 4561 * netdev_lower_get_next_private_rcu - Get the next ->private from the 4562 * lower neighbour list, RCU 4563 * variant 4564 * @dev: device 4565 * @iter: list_head ** of the current position 4566 * 4567 * Gets the next netdev_adjacent->private from the dev's lower neighbour 4568 * list, starting from iter position. The caller must hold RCU read lock. 4569 */ 4570 void *netdev_lower_get_next_private_rcu(struct net_device *dev, 4571 struct list_head **iter) 4572 { 4573 struct netdev_adjacent *lower; 4574 4575 WARN_ON_ONCE(!rcu_read_lock_held()); 4576 4577 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 4578 4579 if (&lower->list == &dev->adj_list.lower) 4580 return NULL; 4581 4582 if (iter) 4583 *iter = &lower->list; 4584 4585 return lower->private; 4586 } 4587 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu); 4588 4589 /** 4590 * netdev_lower_get_first_private_rcu - Get the first ->private from the 4591 * lower neighbour list, RCU 4592 * variant 4593 * @dev: device 4594 * 4595 * Gets the first netdev_adjacent->private from the dev's lower neighbour 4596 * list. The caller must hold RCU read lock. 4597 */ 4598 void *netdev_lower_get_first_private_rcu(struct net_device *dev) 4599 { 4600 struct netdev_adjacent *lower; 4601 4602 lower = list_first_or_null_rcu(&dev->adj_list.lower, 4603 struct netdev_adjacent, list); 4604 if (lower) 4605 return lower->private; 4606 return NULL; 4607 } 4608 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu); 4609 4610 /** 4611 * netdev_master_upper_dev_get_rcu - Get master upper device 4612 * @dev: device 4613 * 4614 * Find a master upper device and return pointer to it or NULL in case 4615 * it's not there. The caller must hold the RCU read lock. 4616 */ 4617 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev) 4618 { 4619 struct netdev_adjacent *upper; 4620 4621 upper = list_first_or_null_rcu(&dev->adj_list.upper, 4622 struct netdev_adjacent, list); 4623 if (upper && likely(upper->master)) 4624 return upper->dev; 4625 return NULL; 4626 } 4627 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu); 4628 4629 int netdev_adjacent_sysfs_add(struct net_device *dev, 4630 struct net_device *adj_dev, 4631 struct list_head *dev_list) 4632 { 4633 char linkname[IFNAMSIZ+7]; 4634 sprintf(linkname, dev_list == &dev->adj_list.upper ? 4635 "upper_%s" : "lower_%s", adj_dev->name); 4636 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj), 4637 linkname); 4638 } 4639 void netdev_adjacent_sysfs_del(struct net_device *dev, 4640 char *name, 4641 struct list_head *dev_list) 4642 { 4643 char linkname[IFNAMSIZ+7]; 4644 sprintf(linkname, dev_list == &dev->adj_list.upper ? 4645 "upper_%s" : "lower_%s", name); 4646 sysfs_remove_link(&(dev->dev.kobj), linkname); 4647 } 4648 4649 #define netdev_adjacent_is_neigh_list(dev, dev_list) \ 4650 (dev_list == &dev->adj_list.upper || \ 4651 dev_list == &dev->adj_list.lower) 4652 4653 static int __netdev_adjacent_dev_insert(struct net_device *dev, 4654 struct net_device *adj_dev, 4655 struct list_head *dev_list, 4656 void *private, bool master) 4657 { 4658 struct netdev_adjacent *adj; 4659 int ret; 4660 4661 adj = __netdev_find_adj(dev, adj_dev, dev_list); 4662 4663 if (adj) { 4664 adj->ref_nr++; 4665 return 0; 4666 } 4667 4668 adj = kmalloc(sizeof(*adj), GFP_KERNEL); 4669 if (!adj) 4670 return -ENOMEM; 4671 4672 adj->dev = adj_dev; 4673 adj->master = master; 4674 adj->ref_nr = 1; 4675 adj->private = private; 4676 dev_hold(adj_dev); 4677 4678 pr_debug("dev_hold for %s, because of link added from %s to %s\n", 4679 adj_dev->name, dev->name, adj_dev->name); 4680 4681 if (netdev_adjacent_is_neigh_list(dev, dev_list)) { 4682 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list); 4683 if (ret) 4684 goto free_adj; 4685 } 4686 4687 /* Ensure that master link is always the first item in list. */ 4688 if (master) { 4689 ret = sysfs_create_link(&(dev->dev.kobj), 4690 &(adj_dev->dev.kobj), "master"); 4691 if (ret) 4692 goto remove_symlinks; 4693 4694 list_add_rcu(&adj->list, dev_list); 4695 } else { 4696 list_add_tail_rcu(&adj->list, dev_list); 4697 } 4698 4699 return 0; 4700 4701 remove_symlinks: 4702 if (netdev_adjacent_is_neigh_list(dev, dev_list)) 4703 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list); 4704 free_adj: 4705 kfree(adj); 4706 dev_put(adj_dev); 4707 4708 return ret; 4709 } 4710 4711 static void __netdev_adjacent_dev_remove(struct net_device *dev, 4712 struct net_device *adj_dev, 4713 struct list_head *dev_list) 4714 { 4715 struct netdev_adjacent *adj; 4716 4717 adj = __netdev_find_adj(dev, adj_dev, dev_list); 4718 4719 if (!adj) { 4720 pr_err("tried to remove device %s from %s\n", 4721 dev->name, adj_dev->name); 4722 BUG(); 4723 } 4724 4725 if (adj->ref_nr > 1) { 4726 pr_debug("%s to %s ref_nr-- = %d\n", dev->name, adj_dev->name, 4727 adj->ref_nr-1); 4728 adj->ref_nr--; 4729 return; 4730 } 4731 4732 if (adj->master) 4733 sysfs_remove_link(&(dev->dev.kobj), "master"); 4734 4735 if (netdev_adjacent_is_neigh_list(dev, dev_list)) 4736 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list); 4737 4738 list_del_rcu(&adj->list); 4739 pr_debug("dev_put for %s, because link removed from %s to %s\n", 4740 adj_dev->name, dev->name, adj_dev->name); 4741 dev_put(adj_dev); 4742 kfree_rcu(adj, rcu); 4743 } 4744 4745 static int __netdev_adjacent_dev_link_lists(struct net_device *dev, 4746 struct net_device *upper_dev, 4747 struct list_head *up_list, 4748 struct list_head *down_list, 4749 void *private, bool master) 4750 { 4751 int ret; 4752 4753 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, private, 4754 master); 4755 if (ret) 4756 return ret; 4757 4758 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, private, 4759 false); 4760 if (ret) { 4761 __netdev_adjacent_dev_remove(dev, upper_dev, up_list); 4762 return ret; 4763 } 4764 4765 return 0; 4766 } 4767 4768 static int __netdev_adjacent_dev_link(struct net_device *dev, 4769 struct net_device *upper_dev) 4770 { 4771 return __netdev_adjacent_dev_link_lists(dev, upper_dev, 4772 &dev->all_adj_list.upper, 4773 &upper_dev->all_adj_list.lower, 4774 NULL, false); 4775 } 4776 4777 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev, 4778 struct net_device *upper_dev, 4779 struct list_head *up_list, 4780 struct list_head *down_list) 4781 { 4782 __netdev_adjacent_dev_remove(dev, upper_dev, up_list); 4783 __netdev_adjacent_dev_remove(upper_dev, dev, down_list); 4784 } 4785 4786 static void __netdev_adjacent_dev_unlink(struct net_device *dev, 4787 struct net_device *upper_dev) 4788 { 4789 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 4790 &dev->all_adj_list.upper, 4791 &upper_dev->all_adj_list.lower); 4792 } 4793 4794 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev, 4795 struct net_device *upper_dev, 4796 void *private, bool master) 4797 { 4798 int ret = __netdev_adjacent_dev_link(dev, upper_dev); 4799 4800 if (ret) 4801 return ret; 4802 4803 ret = __netdev_adjacent_dev_link_lists(dev, upper_dev, 4804 &dev->adj_list.upper, 4805 &upper_dev->adj_list.lower, 4806 private, master); 4807 if (ret) { 4808 __netdev_adjacent_dev_unlink(dev, upper_dev); 4809 return ret; 4810 } 4811 4812 return 0; 4813 } 4814 4815 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev, 4816 struct net_device *upper_dev) 4817 { 4818 __netdev_adjacent_dev_unlink(dev, upper_dev); 4819 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 4820 &dev->adj_list.upper, 4821 &upper_dev->adj_list.lower); 4822 } 4823 4824 static int __netdev_upper_dev_link(struct net_device *dev, 4825 struct net_device *upper_dev, bool master, 4826 void *private) 4827 { 4828 struct netdev_adjacent *i, *j, *to_i, *to_j; 4829 int ret = 0; 4830 4831 ASSERT_RTNL(); 4832 4833 if (dev == upper_dev) 4834 return -EBUSY; 4835 4836 /* To prevent loops, check if dev is not upper device to upper_dev. */ 4837 if (__netdev_find_adj(upper_dev, dev, &upper_dev->all_adj_list.upper)) 4838 return -EBUSY; 4839 4840 if (__netdev_find_adj(dev, upper_dev, &dev->all_adj_list.upper)) 4841 return -EEXIST; 4842 4843 if (master && netdev_master_upper_dev_get(dev)) 4844 return -EBUSY; 4845 4846 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, private, 4847 master); 4848 if (ret) 4849 return ret; 4850 4851 /* Now that we linked these devs, make all the upper_dev's 4852 * all_adj_list.upper visible to every dev's all_adj_list.lower an 4853 * versa, and don't forget the devices itself. All of these 4854 * links are non-neighbours. 4855 */ 4856 list_for_each_entry(i, &dev->all_adj_list.lower, list) { 4857 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) { 4858 pr_debug("Interlinking %s with %s, non-neighbour\n", 4859 i->dev->name, j->dev->name); 4860 ret = __netdev_adjacent_dev_link(i->dev, j->dev); 4861 if (ret) 4862 goto rollback_mesh; 4863 } 4864 } 4865 4866 /* add dev to every upper_dev's upper device */ 4867 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) { 4868 pr_debug("linking %s's upper device %s with %s\n", 4869 upper_dev->name, i->dev->name, dev->name); 4870 ret = __netdev_adjacent_dev_link(dev, i->dev); 4871 if (ret) 4872 goto rollback_upper_mesh; 4873 } 4874 4875 /* add upper_dev to every dev's lower device */ 4876 list_for_each_entry(i, &dev->all_adj_list.lower, list) { 4877 pr_debug("linking %s's lower device %s with %s\n", dev->name, 4878 i->dev->name, upper_dev->name); 4879 ret = __netdev_adjacent_dev_link(i->dev, upper_dev); 4880 if (ret) 4881 goto rollback_lower_mesh; 4882 } 4883 4884 call_netdevice_notifiers(NETDEV_CHANGEUPPER, dev); 4885 return 0; 4886 4887 rollback_lower_mesh: 4888 to_i = i; 4889 list_for_each_entry(i, &dev->all_adj_list.lower, list) { 4890 if (i == to_i) 4891 break; 4892 __netdev_adjacent_dev_unlink(i->dev, upper_dev); 4893 } 4894 4895 i = NULL; 4896 4897 rollback_upper_mesh: 4898 to_i = i; 4899 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) { 4900 if (i == to_i) 4901 break; 4902 __netdev_adjacent_dev_unlink(dev, i->dev); 4903 } 4904 4905 i = j = NULL; 4906 4907 rollback_mesh: 4908 to_i = i; 4909 to_j = j; 4910 list_for_each_entry(i, &dev->all_adj_list.lower, list) { 4911 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) { 4912 if (i == to_i && j == to_j) 4913 break; 4914 __netdev_adjacent_dev_unlink(i->dev, j->dev); 4915 } 4916 if (i == to_i) 4917 break; 4918 } 4919 4920 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 4921 4922 return ret; 4923 } 4924 4925 /** 4926 * netdev_upper_dev_link - Add a link to the upper device 4927 * @dev: device 4928 * @upper_dev: new upper device 4929 * 4930 * Adds a link to device which is upper to this one. The caller must hold 4931 * the RTNL lock. On a failure a negative errno code is returned. 4932 * On success the reference counts are adjusted and the function 4933 * returns zero. 4934 */ 4935 int netdev_upper_dev_link(struct net_device *dev, 4936 struct net_device *upper_dev) 4937 { 4938 return __netdev_upper_dev_link(dev, upper_dev, false, NULL); 4939 } 4940 EXPORT_SYMBOL(netdev_upper_dev_link); 4941 4942 /** 4943 * netdev_master_upper_dev_link - Add a master link to the upper device 4944 * @dev: device 4945 * @upper_dev: new upper device 4946 * 4947 * Adds a link to device which is upper to this one. In this case, only 4948 * one master upper device can be linked, although other non-master devices 4949 * might be linked as well. The caller must hold the RTNL lock. 4950 * On a failure a negative errno code is returned. On success the reference 4951 * counts are adjusted and the function returns zero. 4952 */ 4953 int netdev_master_upper_dev_link(struct net_device *dev, 4954 struct net_device *upper_dev) 4955 { 4956 return __netdev_upper_dev_link(dev, upper_dev, true, NULL); 4957 } 4958 EXPORT_SYMBOL(netdev_master_upper_dev_link); 4959 4960 int netdev_master_upper_dev_link_private(struct net_device *dev, 4961 struct net_device *upper_dev, 4962 void *private) 4963 { 4964 return __netdev_upper_dev_link(dev, upper_dev, true, private); 4965 } 4966 EXPORT_SYMBOL(netdev_master_upper_dev_link_private); 4967 4968 /** 4969 * netdev_upper_dev_unlink - Removes a link to upper device 4970 * @dev: device 4971 * @upper_dev: new upper device 4972 * 4973 * Removes a link to device which is upper to this one. The caller must hold 4974 * the RTNL lock. 4975 */ 4976 void netdev_upper_dev_unlink(struct net_device *dev, 4977 struct net_device *upper_dev) 4978 { 4979 struct netdev_adjacent *i, *j; 4980 ASSERT_RTNL(); 4981 4982 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 4983 4984 /* Here is the tricky part. We must remove all dev's lower 4985 * devices from all upper_dev's upper devices and vice 4986 * versa, to maintain the graph relationship. 4987 */ 4988 list_for_each_entry(i, &dev->all_adj_list.lower, list) 4989 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) 4990 __netdev_adjacent_dev_unlink(i->dev, j->dev); 4991 4992 /* remove also the devices itself from lower/upper device 4993 * list 4994 */ 4995 list_for_each_entry(i, &dev->all_adj_list.lower, list) 4996 __netdev_adjacent_dev_unlink(i->dev, upper_dev); 4997 4998 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) 4999 __netdev_adjacent_dev_unlink(dev, i->dev); 5000 5001 call_netdevice_notifiers(NETDEV_CHANGEUPPER, dev); 5002 } 5003 EXPORT_SYMBOL(netdev_upper_dev_unlink); 5004 5005 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname) 5006 { 5007 struct netdev_adjacent *iter; 5008 5009 list_for_each_entry(iter, &dev->adj_list.upper, list) { 5010 netdev_adjacent_sysfs_del(iter->dev, oldname, 5011 &iter->dev->adj_list.lower); 5012 netdev_adjacent_sysfs_add(iter->dev, dev, 5013 &iter->dev->adj_list.lower); 5014 } 5015 5016 list_for_each_entry(iter, &dev->adj_list.lower, list) { 5017 netdev_adjacent_sysfs_del(iter->dev, oldname, 5018 &iter->dev->adj_list.upper); 5019 netdev_adjacent_sysfs_add(iter->dev, dev, 5020 &iter->dev->adj_list.upper); 5021 } 5022 } 5023 5024 void *netdev_lower_dev_get_private(struct net_device *dev, 5025 struct net_device *lower_dev) 5026 { 5027 struct netdev_adjacent *lower; 5028 5029 if (!lower_dev) 5030 return NULL; 5031 lower = __netdev_find_adj(dev, lower_dev, &dev->adj_list.lower); 5032 if (!lower) 5033 return NULL; 5034 5035 return lower->private; 5036 } 5037 EXPORT_SYMBOL(netdev_lower_dev_get_private); 5038 5039 static void dev_change_rx_flags(struct net_device *dev, int flags) 5040 { 5041 const struct net_device_ops *ops = dev->netdev_ops; 5042 5043 if (ops->ndo_change_rx_flags) 5044 ops->ndo_change_rx_flags(dev, flags); 5045 } 5046 5047 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify) 5048 { 5049 unsigned int old_flags = dev->flags; 5050 kuid_t uid; 5051 kgid_t gid; 5052 5053 ASSERT_RTNL(); 5054 5055 dev->flags |= IFF_PROMISC; 5056 dev->promiscuity += inc; 5057 if (dev->promiscuity == 0) { 5058 /* 5059 * Avoid overflow. 5060 * If inc causes overflow, untouch promisc and return error. 5061 */ 5062 if (inc < 0) 5063 dev->flags &= ~IFF_PROMISC; 5064 else { 5065 dev->promiscuity -= inc; 5066 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n", 5067 dev->name); 5068 return -EOVERFLOW; 5069 } 5070 } 5071 if (dev->flags != old_flags) { 5072 pr_info("device %s %s promiscuous mode\n", 5073 dev->name, 5074 dev->flags & IFF_PROMISC ? "entered" : "left"); 5075 if (audit_enabled) { 5076 current_uid_gid(&uid, &gid); 5077 audit_log(current->audit_context, GFP_ATOMIC, 5078 AUDIT_ANOM_PROMISCUOUS, 5079 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u", 5080 dev->name, (dev->flags & IFF_PROMISC), 5081 (old_flags & IFF_PROMISC), 5082 from_kuid(&init_user_ns, audit_get_loginuid(current)), 5083 from_kuid(&init_user_ns, uid), 5084 from_kgid(&init_user_ns, gid), 5085 audit_get_sessionid(current)); 5086 } 5087 5088 dev_change_rx_flags(dev, IFF_PROMISC); 5089 } 5090 if (notify) 5091 __dev_notify_flags(dev, old_flags, IFF_PROMISC); 5092 return 0; 5093 } 5094 5095 /** 5096 * dev_set_promiscuity - update promiscuity count on a device 5097 * @dev: device 5098 * @inc: modifier 5099 * 5100 * Add or remove promiscuity from a device. While the count in the device 5101 * remains above zero the interface remains promiscuous. Once it hits zero 5102 * the device reverts back to normal filtering operation. A negative inc 5103 * value is used to drop promiscuity on the device. 5104 * Return 0 if successful or a negative errno code on error. 5105 */ 5106 int dev_set_promiscuity(struct net_device *dev, int inc) 5107 { 5108 unsigned int old_flags = dev->flags; 5109 int err; 5110 5111 err = __dev_set_promiscuity(dev, inc, true); 5112 if (err < 0) 5113 return err; 5114 if (dev->flags != old_flags) 5115 dev_set_rx_mode(dev); 5116 return err; 5117 } 5118 EXPORT_SYMBOL(dev_set_promiscuity); 5119 5120 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify) 5121 { 5122 unsigned int old_flags = dev->flags, old_gflags = dev->gflags; 5123 5124 ASSERT_RTNL(); 5125 5126 dev->flags |= IFF_ALLMULTI; 5127 dev->allmulti += inc; 5128 if (dev->allmulti == 0) { 5129 /* 5130 * Avoid overflow. 5131 * If inc causes overflow, untouch allmulti and return error. 5132 */ 5133 if (inc < 0) 5134 dev->flags &= ~IFF_ALLMULTI; 5135 else { 5136 dev->allmulti -= inc; 5137 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n", 5138 dev->name); 5139 return -EOVERFLOW; 5140 } 5141 } 5142 if (dev->flags ^ old_flags) { 5143 dev_change_rx_flags(dev, IFF_ALLMULTI); 5144 dev_set_rx_mode(dev); 5145 if (notify) 5146 __dev_notify_flags(dev, old_flags, 5147 dev->gflags ^ old_gflags); 5148 } 5149 return 0; 5150 } 5151 5152 /** 5153 * dev_set_allmulti - update allmulti count on a device 5154 * @dev: device 5155 * @inc: modifier 5156 * 5157 * Add or remove reception of all multicast frames to a device. While the 5158 * count in the device remains above zero the interface remains listening 5159 * to all interfaces. Once it hits zero the device reverts back to normal 5160 * filtering operation. A negative @inc value is used to drop the counter 5161 * when releasing a resource needing all multicasts. 5162 * Return 0 if successful or a negative errno code on error. 5163 */ 5164 5165 int dev_set_allmulti(struct net_device *dev, int inc) 5166 { 5167 return __dev_set_allmulti(dev, inc, true); 5168 } 5169 EXPORT_SYMBOL(dev_set_allmulti); 5170 5171 /* 5172 * Upload unicast and multicast address lists to device and 5173 * configure RX filtering. When the device doesn't support unicast 5174 * filtering it is put in promiscuous mode while unicast addresses 5175 * are present. 5176 */ 5177 void __dev_set_rx_mode(struct net_device *dev) 5178 { 5179 const struct net_device_ops *ops = dev->netdev_ops; 5180 5181 /* dev_open will call this function so the list will stay sane. */ 5182 if (!(dev->flags&IFF_UP)) 5183 return; 5184 5185 if (!netif_device_present(dev)) 5186 return; 5187 5188 if (!(dev->priv_flags & IFF_UNICAST_FLT)) { 5189 /* Unicast addresses changes may only happen under the rtnl, 5190 * therefore calling __dev_set_promiscuity here is safe. 5191 */ 5192 if (!netdev_uc_empty(dev) && !dev->uc_promisc) { 5193 __dev_set_promiscuity(dev, 1, false); 5194 dev->uc_promisc = true; 5195 } else if (netdev_uc_empty(dev) && dev->uc_promisc) { 5196 __dev_set_promiscuity(dev, -1, false); 5197 dev->uc_promisc = false; 5198 } 5199 } 5200 5201 if (ops->ndo_set_rx_mode) 5202 ops->ndo_set_rx_mode(dev); 5203 } 5204 5205 void dev_set_rx_mode(struct net_device *dev) 5206 { 5207 netif_addr_lock_bh(dev); 5208 __dev_set_rx_mode(dev); 5209 netif_addr_unlock_bh(dev); 5210 } 5211 5212 /** 5213 * dev_get_flags - get flags reported to userspace 5214 * @dev: device 5215 * 5216 * Get the combination of flag bits exported through APIs to userspace. 5217 */ 5218 unsigned int dev_get_flags(const struct net_device *dev) 5219 { 5220 unsigned int flags; 5221 5222 flags = (dev->flags & ~(IFF_PROMISC | 5223 IFF_ALLMULTI | 5224 IFF_RUNNING | 5225 IFF_LOWER_UP | 5226 IFF_DORMANT)) | 5227 (dev->gflags & (IFF_PROMISC | 5228 IFF_ALLMULTI)); 5229 5230 if (netif_running(dev)) { 5231 if (netif_oper_up(dev)) 5232 flags |= IFF_RUNNING; 5233 if (netif_carrier_ok(dev)) 5234 flags |= IFF_LOWER_UP; 5235 if (netif_dormant(dev)) 5236 flags |= IFF_DORMANT; 5237 } 5238 5239 return flags; 5240 } 5241 EXPORT_SYMBOL(dev_get_flags); 5242 5243 int __dev_change_flags(struct net_device *dev, unsigned int flags) 5244 { 5245 unsigned int old_flags = dev->flags; 5246 int ret; 5247 5248 ASSERT_RTNL(); 5249 5250 /* 5251 * Set the flags on our device. 5252 */ 5253 5254 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP | 5255 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL | 5256 IFF_AUTOMEDIA)) | 5257 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC | 5258 IFF_ALLMULTI)); 5259 5260 /* 5261 * Load in the correct multicast list now the flags have changed. 5262 */ 5263 5264 if ((old_flags ^ flags) & IFF_MULTICAST) 5265 dev_change_rx_flags(dev, IFF_MULTICAST); 5266 5267 dev_set_rx_mode(dev); 5268 5269 /* 5270 * Have we downed the interface. We handle IFF_UP ourselves 5271 * according to user attempts to set it, rather than blindly 5272 * setting it. 5273 */ 5274 5275 ret = 0; 5276 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */ 5277 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev); 5278 5279 if (!ret) 5280 dev_set_rx_mode(dev); 5281 } 5282 5283 if ((flags ^ dev->gflags) & IFF_PROMISC) { 5284 int inc = (flags & IFF_PROMISC) ? 1 : -1; 5285 unsigned int old_flags = dev->flags; 5286 5287 dev->gflags ^= IFF_PROMISC; 5288 5289 if (__dev_set_promiscuity(dev, inc, false) >= 0) 5290 if (dev->flags != old_flags) 5291 dev_set_rx_mode(dev); 5292 } 5293 5294 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI 5295 is important. Some (broken) drivers set IFF_PROMISC, when 5296 IFF_ALLMULTI is requested not asking us and not reporting. 5297 */ 5298 if ((flags ^ dev->gflags) & IFF_ALLMULTI) { 5299 int inc = (flags & IFF_ALLMULTI) ? 1 : -1; 5300 5301 dev->gflags ^= IFF_ALLMULTI; 5302 __dev_set_allmulti(dev, inc, false); 5303 } 5304 5305 return ret; 5306 } 5307 5308 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags, 5309 unsigned int gchanges) 5310 { 5311 unsigned int changes = dev->flags ^ old_flags; 5312 5313 if (gchanges) 5314 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC); 5315 5316 if (changes & IFF_UP) { 5317 if (dev->flags & IFF_UP) 5318 call_netdevice_notifiers(NETDEV_UP, dev); 5319 else 5320 call_netdevice_notifiers(NETDEV_DOWN, dev); 5321 } 5322 5323 if (dev->flags & IFF_UP && 5324 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) { 5325 struct netdev_notifier_change_info change_info; 5326 5327 change_info.flags_changed = changes; 5328 call_netdevice_notifiers_info(NETDEV_CHANGE, dev, 5329 &change_info.info); 5330 } 5331 } 5332 5333 /** 5334 * dev_change_flags - change device settings 5335 * @dev: device 5336 * @flags: device state flags 5337 * 5338 * Change settings on device based state flags. The flags are 5339 * in the userspace exported format. 5340 */ 5341 int dev_change_flags(struct net_device *dev, unsigned int flags) 5342 { 5343 int ret; 5344 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags; 5345 5346 ret = __dev_change_flags(dev, flags); 5347 if (ret < 0) 5348 return ret; 5349 5350 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags); 5351 __dev_notify_flags(dev, old_flags, changes); 5352 return ret; 5353 } 5354 EXPORT_SYMBOL(dev_change_flags); 5355 5356 static int __dev_set_mtu(struct net_device *dev, int new_mtu) 5357 { 5358 const struct net_device_ops *ops = dev->netdev_ops; 5359 5360 if (ops->ndo_change_mtu) 5361 return ops->ndo_change_mtu(dev, new_mtu); 5362 5363 dev->mtu = new_mtu; 5364 return 0; 5365 } 5366 5367 /** 5368 * dev_set_mtu - Change maximum transfer unit 5369 * @dev: device 5370 * @new_mtu: new transfer unit 5371 * 5372 * Change the maximum transfer size of the network device. 5373 */ 5374 int dev_set_mtu(struct net_device *dev, int new_mtu) 5375 { 5376 int err, orig_mtu; 5377 5378 if (new_mtu == dev->mtu) 5379 return 0; 5380 5381 /* MTU must be positive. */ 5382 if (new_mtu < 0) 5383 return -EINVAL; 5384 5385 if (!netif_device_present(dev)) 5386 return -ENODEV; 5387 5388 orig_mtu = dev->mtu; 5389 err = __dev_set_mtu(dev, new_mtu); 5390 5391 if (!err) { 5392 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev); 5393 err = notifier_to_errno(err); 5394 if (err) { 5395 /* setting mtu back and notifying everyone again, 5396 * so that they have a chance to revert changes. 5397 */ 5398 __dev_set_mtu(dev, orig_mtu); 5399 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev); 5400 } 5401 } 5402 return err; 5403 } 5404 EXPORT_SYMBOL(dev_set_mtu); 5405 5406 /** 5407 * dev_set_group - Change group this device belongs to 5408 * @dev: device 5409 * @new_group: group this device should belong to 5410 */ 5411 void dev_set_group(struct net_device *dev, int new_group) 5412 { 5413 dev->group = new_group; 5414 } 5415 EXPORT_SYMBOL(dev_set_group); 5416 5417 /** 5418 * dev_set_mac_address - Change Media Access Control Address 5419 * @dev: device 5420 * @sa: new address 5421 * 5422 * Change the hardware (MAC) address of the device 5423 */ 5424 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa) 5425 { 5426 const struct net_device_ops *ops = dev->netdev_ops; 5427 int err; 5428 5429 if (!ops->ndo_set_mac_address) 5430 return -EOPNOTSUPP; 5431 if (sa->sa_family != dev->type) 5432 return -EINVAL; 5433 if (!netif_device_present(dev)) 5434 return -ENODEV; 5435 err = ops->ndo_set_mac_address(dev, sa); 5436 if (err) 5437 return err; 5438 dev->addr_assign_type = NET_ADDR_SET; 5439 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 5440 add_device_randomness(dev->dev_addr, dev->addr_len); 5441 return 0; 5442 } 5443 EXPORT_SYMBOL(dev_set_mac_address); 5444 5445 /** 5446 * dev_change_carrier - Change device carrier 5447 * @dev: device 5448 * @new_carrier: new value 5449 * 5450 * Change device carrier 5451 */ 5452 int dev_change_carrier(struct net_device *dev, bool new_carrier) 5453 { 5454 const struct net_device_ops *ops = dev->netdev_ops; 5455 5456 if (!ops->ndo_change_carrier) 5457 return -EOPNOTSUPP; 5458 if (!netif_device_present(dev)) 5459 return -ENODEV; 5460 return ops->ndo_change_carrier(dev, new_carrier); 5461 } 5462 EXPORT_SYMBOL(dev_change_carrier); 5463 5464 /** 5465 * dev_get_phys_port_id - Get device physical port ID 5466 * @dev: device 5467 * @ppid: port ID 5468 * 5469 * Get device physical port ID 5470 */ 5471 int dev_get_phys_port_id(struct net_device *dev, 5472 struct netdev_phys_port_id *ppid) 5473 { 5474 const struct net_device_ops *ops = dev->netdev_ops; 5475 5476 if (!ops->ndo_get_phys_port_id) 5477 return -EOPNOTSUPP; 5478 return ops->ndo_get_phys_port_id(dev, ppid); 5479 } 5480 EXPORT_SYMBOL(dev_get_phys_port_id); 5481 5482 /** 5483 * dev_new_index - allocate an ifindex 5484 * @net: the applicable net namespace 5485 * 5486 * Returns a suitable unique value for a new device interface 5487 * number. The caller must hold the rtnl semaphore or the 5488 * dev_base_lock to be sure it remains unique. 5489 */ 5490 static int dev_new_index(struct net *net) 5491 { 5492 int ifindex = net->ifindex; 5493 for (;;) { 5494 if (++ifindex <= 0) 5495 ifindex = 1; 5496 if (!__dev_get_by_index(net, ifindex)) 5497 return net->ifindex = ifindex; 5498 } 5499 } 5500 5501 /* Delayed registration/unregisteration */ 5502 static LIST_HEAD(net_todo_list); 5503 static DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq); 5504 5505 static void net_set_todo(struct net_device *dev) 5506 { 5507 list_add_tail(&dev->todo_list, &net_todo_list); 5508 dev_net(dev)->dev_unreg_count++; 5509 } 5510 5511 static void rollback_registered_many(struct list_head *head) 5512 { 5513 struct net_device *dev, *tmp; 5514 LIST_HEAD(close_head); 5515 5516 BUG_ON(dev_boot_phase); 5517 ASSERT_RTNL(); 5518 5519 list_for_each_entry_safe(dev, tmp, head, unreg_list) { 5520 /* Some devices call without registering 5521 * for initialization unwind. Remove those 5522 * devices and proceed with the remaining. 5523 */ 5524 if (dev->reg_state == NETREG_UNINITIALIZED) { 5525 pr_debug("unregister_netdevice: device %s/%p never was registered\n", 5526 dev->name, dev); 5527 5528 WARN_ON(1); 5529 list_del(&dev->unreg_list); 5530 continue; 5531 } 5532 dev->dismantle = true; 5533 BUG_ON(dev->reg_state != NETREG_REGISTERED); 5534 } 5535 5536 /* If device is running, close it first. */ 5537 list_for_each_entry(dev, head, unreg_list) 5538 list_add_tail(&dev->close_list, &close_head); 5539 dev_close_many(&close_head); 5540 5541 list_for_each_entry(dev, head, unreg_list) { 5542 /* And unlink it from device chain. */ 5543 unlist_netdevice(dev); 5544 5545 dev->reg_state = NETREG_UNREGISTERING; 5546 } 5547 5548 synchronize_net(); 5549 5550 list_for_each_entry(dev, head, unreg_list) { 5551 /* Shutdown queueing discipline. */ 5552 dev_shutdown(dev); 5553 5554 5555 /* Notify protocols, that we are about to destroy 5556 this device. They should clean all the things. 5557 */ 5558 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 5559 5560 if (!dev->rtnl_link_ops || 5561 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 5562 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL); 5563 5564 /* 5565 * Flush the unicast and multicast chains 5566 */ 5567 dev_uc_flush(dev); 5568 dev_mc_flush(dev); 5569 5570 if (dev->netdev_ops->ndo_uninit) 5571 dev->netdev_ops->ndo_uninit(dev); 5572 5573 /* Notifier chain MUST detach us all upper devices. */ 5574 WARN_ON(netdev_has_any_upper_dev(dev)); 5575 5576 /* Remove entries from kobject tree */ 5577 netdev_unregister_kobject(dev); 5578 #ifdef CONFIG_XPS 5579 /* Remove XPS queueing entries */ 5580 netif_reset_xps_queues_gt(dev, 0); 5581 #endif 5582 } 5583 5584 synchronize_net(); 5585 5586 list_for_each_entry(dev, head, unreg_list) 5587 dev_put(dev); 5588 } 5589 5590 static void rollback_registered(struct net_device *dev) 5591 { 5592 LIST_HEAD(single); 5593 5594 list_add(&dev->unreg_list, &single); 5595 rollback_registered_many(&single); 5596 list_del(&single); 5597 } 5598 5599 static netdev_features_t netdev_fix_features(struct net_device *dev, 5600 netdev_features_t features) 5601 { 5602 /* Fix illegal checksum combinations */ 5603 if ((features & NETIF_F_HW_CSUM) && 5604 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 5605 netdev_warn(dev, "mixed HW and IP checksum settings.\n"); 5606 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 5607 } 5608 5609 /* TSO requires that SG is present as well. */ 5610 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) { 5611 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n"); 5612 features &= ~NETIF_F_ALL_TSO; 5613 } 5614 5615 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) && 5616 !(features & NETIF_F_IP_CSUM)) { 5617 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n"); 5618 features &= ~NETIF_F_TSO; 5619 features &= ~NETIF_F_TSO_ECN; 5620 } 5621 5622 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) && 5623 !(features & NETIF_F_IPV6_CSUM)) { 5624 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n"); 5625 features &= ~NETIF_F_TSO6; 5626 } 5627 5628 /* TSO ECN requires that TSO is present as well. */ 5629 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN) 5630 features &= ~NETIF_F_TSO_ECN; 5631 5632 /* Software GSO depends on SG. */ 5633 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) { 5634 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n"); 5635 features &= ~NETIF_F_GSO; 5636 } 5637 5638 /* UFO needs SG and checksumming */ 5639 if (features & NETIF_F_UFO) { 5640 /* maybe split UFO into V4 and V6? */ 5641 if (!((features & NETIF_F_GEN_CSUM) || 5642 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM)) 5643 == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 5644 netdev_dbg(dev, 5645 "Dropping NETIF_F_UFO since no checksum offload features.\n"); 5646 features &= ~NETIF_F_UFO; 5647 } 5648 5649 if (!(features & NETIF_F_SG)) { 5650 netdev_dbg(dev, 5651 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n"); 5652 features &= ~NETIF_F_UFO; 5653 } 5654 } 5655 5656 return features; 5657 } 5658 5659 int __netdev_update_features(struct net_device *dev) 5660 { 5661 netdev_features_t features; 5662 int err = 0; 5663 5664 ASSERT_RTNL(); 5665 5666 features = netdev_get_wanted_features(dev); 5667 5668 if (dev->netdev_ops->ndo_fix_features) 5669 features = dev->netdev_ops->ndo_fix_features(dev, features); 5670 5671 /* driver might be less strict about feature dependencies */ 5672 features = netdev_fix_features(dev, features); 5673 5674 if (dev->features == features) 5675 return 0; 5676 5677 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n", 5678 &dev->features, &features); 5679 5680 if (dev->netdev_ops->ndo_set_features) 5681 err = dev->netdev_ops->ndo_set_features(dev, features); 5682 5683 if (unlikely(err < 0)) { 5684 netdev_err(dev, 5685 "set_features() failed (%d); wanted %pNF, left %pNF\n", 5686 err, &features, &dev->features); 5687 return -1; 5688 } 5689 5690 if (!err) 5691 dev->features = features; 5692 5693 return 1; 5694 } 5695 5696 /** 5697 * netdev_update_features - recalculate device features 5698 * @dev: the device to check 5699 * 5700 * Recalculate dev->features set and send notifications if it 5701 * has changed. Should be called after driver or hardware dependent 5702 * conditions might have changed that influence the features. 5703 */ 5704 void netdev_update_features(struct net_device *dev) 5705 { 5706 if (__netdev_update_features(dev)) 5707 netdev_features_change(dev); 5708 } 5709 EXPORT_SYMBOL(netdev_update_features); 5710 5711 /** 5712 * netdev_change_features - recalculate device features 5713 * @dev: the device to check 5714 * 5715 * Recalculate dev->features set and send notifications even 5716 * if they have not changed. Should be called instead of 5717 * netdev_update_features() if also dev->vlan_features might 5718 * have changed to allow the changes to be propagated to stacked 5719 * VLAN devices. 5720 */ 5721 void netdev_change_features(struct net_device *dev) 5722 { 5723 __netdev_update_features(dev); 5724 netdev_features_change(dev); 5725 } 5726 EXPORT_SYMBOL(netdev_change_features); 5727 5728 /** 5729 * netif_stacked_transfer_operstate - transfer operstate 5730 * @rootdev: the root or lower level device to transfer state from 5731 * @dev: the device to transfer operstate to 5732 * 5733 * Transfer operational state from root to device. This is normally 5734 * called when a stacking relationship exists between the root 5735 * device and the device(a leaf device). 5736 */ 5737 void netif_stacked_transfer_operstate(const struct net_device *rootdev, 5738 struct net_device *dev) 5739 { 5740 if (rootdev->operstate == IF_OPER_DORMANT) 5741 netif_dormant_on(dev); 5742 else 5743 netif_dormant_off(dev); 5744 5745 if (netif_carrier_ok(rootdev)) { 5746 if (!netif_carrier_ok(dev)) 5747 netif_carrier_on(dev); 5748 } else { 5749 if (netif_carrier_ok(dev)) 5750 netif_carrier_off(dev); 5751 } 5752 } 5753 EXPORT_SYMBOL(netif_stacked_transfer_operstate); 5754 5755 #ifdef CONFIG_RPS 5756 static int netif_alloc_rx_queues(struct net_device *dev) 5757 { 5758 unsigned int i, count = dev->num_rx_queues; 5759 struct netdev_rx_queue *rx; 5760 5761 BUG_ON(count < 1); 5762 5763 rx = kcalloc(count, sizeof(struct netdev_rx_queue), GFP_KERNEL); 5764 if (!rx) 5765 return -ENOMEM; 5766 5767 dev->_rx = rx; 5768 5769 for (i = 0; i < count; i++) 5770 rx[i].dev = dev; 5771 return 0; 5772 } 5773 #endif 5774 5775 static void netdev_init_one_queue(struct net_device *dev, 5776 struct netdev_queue *queue, void *_unused) 5777 { 5778 /* Initialize queue lock */ 5779 spin_lock_init(&queue->_xmit_lock); 5780 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type); 5781 queue->xmit_lock_owner = -1; 5782 netdev_queue_numa_node_write(queue, NUMA_NO_NODE); 5783 queue->dev = dev; 5784 #ifdef CONFIG_BQL 5785 dql_init(&queue->dql, HZ); 5786 #endif 5787 } 5788 5789 static void netif_free_tx_queues(struct net_device *dev) 5790 { 5791 if (is_vmalloc_addr(dev->_tx)) 5792 vfree(dev->_tx); 5793 else 5794 kfree(dev->_tx); 5795 } 5796 5797 static int netif_alloc_netdev_queues(struct net_device *dev) 5798 { 5799 unsigned int count = dev->num_tx_queues; 5800 struct netdev_queue *tx; 5801 size_t sz = count * sizeof(*tx); 5802 5803 BUG_ON(count < 1 || count > 0xffff); 5804 5805 tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT); 5806 if (!tx) { 5807 tx = vzalloc(sz); 5808 if (!tx) 5809 return -ENOMEM; 5810 } 5811 dev->_tx = tx; 5812 5813 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL); 5814 spin_lock_init(&dev->tx_global_lock); 5815 5816 return 0; 5817 } 5818 5819 /** 5820 * register_netdevice - register a network device 5821 * @dev: device to register 5822 * 5823 * Take a completed network device structure and add it to the kernel 5824 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 5825 * chain. 0 is returned on success. A negative errno code is returned 5826 * on a failure to set up the device, or if the name is a duplicate. 5827 * 5828 * Callers must hold the rtnl semaphore. You may want 5829 * register_netdev() instead of this. 5830 * 5831 * BUGS: 5832 * The locking appears insufficient to guarantee two parallel registers 5833 * will not get the same name. 5834 */ 5835 5836 int register_netdevice(struct net_device *dev) 5837 { 5838 int ret; 5839 struct net *net = dev_net(dev); 5840 5841 BUG_ON(dev_boot_phase); 5842 ASSERT_RTNL(); 5843 5844 might_sleep(); 5845 5846 /* When net_device's are persistent, this will be fatal. */ 5847 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED); 5848 BUG_ON(!net); 5849 5850 spin_lock_init(&dev->addr_list_lock); 5851 netdev_set_addr_lockdep_class(dev); 5852 5853 dev->iflink = -1; 5854 5855 ret = dev_get_valid_name(net, dev, dev->name); 5856 if (ret < 0) 5857 goto out; 5858 5859 /* Init, if this function is available */ 5860 if (dev->netdev_ops->ndo_init) { 5861 ret = dev->netdev_ops->ndo_init(dev); 5862 if (ret) { 5863 if (ret > 0) 5864 ret = -EIO; 5865 goto out; 5866 } 5867 } 5868 5869 if (((dev->hw_features | dev->features) & 5870 NETIF_F_HW_VLAN_CTAG_FILTER) && 5871 (!dev->netdev_ops->ndo_vlan_rx_add_vid || 5872 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) { 5873 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n"); 5874 ret = -EINVAL; 5875 goto err_uninit; 5876 } 5877 5878 ret = -EBUSY; 5879 if (!dev->ifindex) 5880 dev->ifindex = dev_new_index(net); 5881 else if (__dev_get_by_index(net, dev->ifindex)) 5882 goto err_uninit; 5883 5884 if (dev->iflink == -1) 5885 dev->iflink = dev->ifindex; 5886 5887 /* Transfer changeable features to wanted_features and enable 5888 * software offloads (GSO and GRO). 5889 */ 5890 dev->hw_features |= NETIF_F_SOFT_FEATURES; 5891 dev->features |= NETIF_F_SOFT_FEATURES; 5892 dev->wanted_features = dev->features & dev->hw_features; 5893 5894 if (!(dev->flags & IFF_LOOPBACK)) { 5895 dev->hw_features |= NETIF_F_NOCACHE_COPY; 5896 } 5897 5898 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices. 5899 */ 5900 dev->vlan_features |= NETIF_F_HIGHDMA; 5901 5902 /* Make NETIF_F_SG inheritable to tunnel devices. 5903 */ 5904 dev->hw_enc_features |= NETIF_F_SG; 5905 5906 /* Make NETIF_F_SG inheritable to MPLS. 5907 */ 5908 dev->mpls_features |= NETIF_F_SG; 5909 5910 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev); 5911 ret = notifier_to_errno(ret); 5912 if (ret) 5913 goto err_uninit; 5914 5915 ret = netdev_register_kobject(dev); 5916 if (ret) 5917 goto err_uninit; 5918 dev->reg_state = NETREG_REGISTERED; 5919 5920 __netdev_update_features(dev); 5921 5922 /* 5923 * Default initial state at registry is that the 5924 * device is present. 5925 */ 5926 5927 set_bit(__LINK_STATE_PRESENT, &dev->state); 5928 5929 linkwatch_init_dev(dev); 5930 5931 dev_init_scheduler(dev); 5932 dev_hold(dev); 5933 list_netdevice(dev); 5934 add_device_randomness(dev->dev_addr, dev->addr_len); 5935 5936 /* If the device has permanent device address, driver should 5937 * set dev_addr and also addr_assign_type should be set to 5938 * NET_ADDR_PERM (default value). 5939 */ 5940 if (dev->addr_assign_type == NET_ADDR_PERM) 5941 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len); 5942 5943 /* Notify protocols, that a new device appeared. */ 5944 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev); 5945 ret = notifier_to_errno(ret); 5946 if (ret) { 5947 rollback_registered(dev); 5948 dev->reg_state = NETREG_UNREGISTERED; 5949 } 5950 /* 5951 * Prevent userspace races by waiting until the network 5952 * device is fully setup before sending notifications. 5953 */ 5954 if (!dev->rtnl_link_ops || 5955 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 5956 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL); 5957 5958 out: 5959 return ret; 5960 5961 err_uninit: 5962 if (dev->netdev_ops->ndo_uninit) 5963 dev->netdev_ops->ndo_uninit(dev); 5964 goto out; 5965 } 5966 EXPORT_SYMBOL(register_netdevice); 5967 5968 /** 5969 * init_dummy_netdev - init a dummy network device for NAPI 5970 * @dev: device to init 5971 * 5972 * This takes a network device structure and initialize the minimum 5973 * amount of fields so it can be used to schedule NAPI polls without 5974 * registering a full blown interface. This is to be used by drivers 5975 * that need to tie several hardware interfaces to a single NAPI 5976 * poll scheduler due to HW limitations. 5977 */ 5978 int init_dummy_netdev(struct net_device *dev) 5979 { 5980 /* Clear everything. Note we don't initialize spinlocks 5981 * are they aren't supposed to be taken by any of the 5982 * NAPI code and this dummy netdev is supposed to be 5983 * only ever used for NAPI polls 5984 */ 5985 memset(dev, 0, sizeof(struct net_device)); 5986 5987 /* make sure we BUG if trying to hit standard 5988 * register/unregister code path 5989 */ 5990 dev->reg_state = NETREG_DUMMY; 5991 5992 /* NAPI wants this */ 5993 INIT_LIST_HEAD(&dev->napi_list); 5994 5995 /* a dummy interface is started by default */ 5996 set_bit(__LINK_STATE_PRESENT, &dev->state); 5997 set_bit(__LINK_STATE_START, &dev->state); 5998 5999 /* Note : We dont allocate pcpu_refcnt for dummy devices, 6000 * because users of this 'device' dont need to change 6001 * its refcount. 6002 */ 6003 6004 return 0; 6005 } 6006 EXPORT_SYMBOL_GPL(init_dummy_netdev); 6007 6008 6009 /** 6010 * register_netdev - register a network device 6011 * @dev: device to register 6012 * 6013 * Take a completed network device structure and add it to the kernel 6014 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 6015 * chain. 0 is returned on success. A negative errno code is returned 6016 * on a failure to set up the device, or if the name is a duplicate. 6017 * 6018 * This is a wrapper around register_netdevice that takes the rtnl semaphore 6019 * and expands the device name if you passed a format string to 6020 * alloc_netdev. 6021 */ 6022 int register_netdev(struct net_device *dev) 6023 { 6024 int err; 6025 6026 rtnl_lock(); 6027 err = register_netdevice(dev); 6028 rtnl_unlock(); 6029 return err; 6030 } 6031 EXPORT_SYMBOL(register_netdev); 6032 6033 int netdev_refcnt_read(const struct net_device *dev) 6034 { 6035 int i, refcnt = 0; 6036 6037 for_each_possible_cpu(i) 6038 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i); 6039 return refcnt; 6040 } 6041 EXPORT_SYMBOL(netdev_refcnt_read); 6042 6043 /** 6044 * netdev_wait_allrefs - wait until all references are gone. 6045 * @dev: target net_device 6046 * 6047 * This is called when unregistering network devices. 6048 * 6049 * Any protocol or device that holds a reference should register 6050 * for netdevice notification, and cleanup and put back the 6051 * reference if they receive an UNREGISTER event. 6052 * We can get stuck here if buggy protocols don't correctly 6053 * call dev_put. 6054 */ 6055 static void netdev_wait_allrefs(struct net_device *dev) 6056 { 6057 unsigned long rebroadcast_time, warning_time; 6058 int refcnt; 6059 6060 linkwatch_forget_dev(dev); 6061 6062 rebroadcast_time = warning_time = jiffies; 6063 refcnt = netdev_refcnt_read(dev); 6064 6065 while (refcnt != 0) { 6066 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) { 6067 rtnl_lock(); 6068 6069 /* Rebroadcast unregister notification */ 6070 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 6071 6072 __rtnl_unlock(); 6073 rcu_barrier(); 6074 rtnl_lock(); 6075 6076 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev); 6077 if (test_bit(__LINK_STATE_LINKWATCH_PENDING, 6078 &dev->state)) { 6079 /* We must not have linkwatch events 6080 * pending on unregister. If this 6081 * happens, we simply run the queue 6082 * unscheduled, resulting in a noop 6083 * for this device. 6084 */ 6085 linkwatch_run_queue(); 6086 } 6087 6088 __rtnl_unlock(); 6089 6090 rebroadcast_time = jiffies; 6091 } 6092 6093 msleep(250); 6094 6095 refcnt = netdev_refcnt_read(dev); 6096 6097 if (time_after(jiffies, warning_time + 10 * HZ)) { 6098 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n", 6099 dev->name, refcnt); 6100 warning_time = jiffies; 6101 } 6102 } 6103 } 6104 6105 /* The sequence is: 6106 * 6107 * rtnl_lock(); 6108 * ... 6109 * register_netdevice(x1); 6110 * register_netdevice(x2); 6111 * ... 6112 * unregister_netdevice(y1); 6113 * unregister_netdevice(y2); 6114 * ... 6115 * rtnl_unlock(); 6116 * free_netdev(y1); 6117 * free_netdev(y2); 6118 * 6119 * We are invoked by rtnl_unlock(). 6120 * This allows us to deal with problems: 6121 * 1) We can delete sysfs objects which invoke hotplug 6122 * without deadlocking with linkwatch via keventd. 6123 * 2) Since we run with the RTNL semaphore not held, we can sleep 6124 * safely in order to wait for the netdev refcnt to drop to zero. 6125 * 6126 * We must not return until all unregister events added during 6127 * the interval the lock was held have been completed. 6128 */ 6129 void netdev_run_todo(void) 6130 { 6131 struct list_head list; 6132 6133 /* Snapshot list, allow later requests */ 6134 list_replace_init(&net_todo_list, &list); 6135 6136 __rtnl_unlock(); 6137 6138 6139 /* Wait for rcu callbacks to finish before next phase */ 6140 if (!list_empty(&list)) 6141 rcu_barrier(); 6142 6143 while (!list_empty(&list)) { 6144 struct net_device *dev 6145 = list_first_entry(&list, struct net_device, todo_list); 6146 list_del(&dev->todo_list); 6147 6148 rtnl_lock(); 6149 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev); 6150 __rtnl_unlock(); 6151 6152 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) { 6153 pr_err("network todo '%s' but state %d\n", 6154 dev->name, dev->reg_state); 6155 dump_stack(); 6156 continue; 6157 } 6158 6159 dev->reg_state = NETREG_UNREGISTERED; 6160 6161 on_each_cpu(flush_backlog, dev, 1); 6162 6163 netdev_wait_allrefs(dev); 6164 6165 /* paranoia */ 6166 BUG_ON(netdev_refcnt_read(dev)); 6167 WARN_ON(rcu_access_pointer(dev->ip_ptr)); 6168 WARN_ON(rcu_access_pointer(dev->ip6_ptr)); 6169 WARN_ON(dev->dn_ptr); 6170 6171 if (dev->destructor) 6172 dev->destructor(dev); 6173 6174 /* Report a network device has been unregistered */ 6175 rtnl_lock(); 6176 dev_net(dev)->dev_unreg_count--; 6177 __rtnl_unlock(); 6178 wake_up(&netdev_unregistering_wq); 6179 6180 /* Free network device */ 6181 kobject_put(&dev->dev.kobj); 6182 } 6183 } 6184 6185 /* Convert net_device_stats to rtnl_link_stats64. They have the same 6186 * fields in the same order, with only the type differing. 6187 */ 6188 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 6189 const struct net_device_stats *netdev_stats) 6190 { 6191 #if BITS_PER_LONG == 64 6192 BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats)); 6193 memcpy(stats64, netdev_stats, sizeof(*stats64)); 6194 #else 6195 size_t i, n = sizeof(*stats64) / sizeof(u64); 6196 const unsigned long *src = (const unsigned long *)netdev_stats; 6197 u64 *dst = (u64 *)stats64; 6198 6199 BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) != 6200 sizeof(*stats64) / sizeof(u64)); 6201 for (i = 0; i < n; i++) 6202 dst[i] = src[i]; 6203 #endif 6204 } 6205 EXPORT_SYMBOL(netdev_stats_to_stats64); 6206 6207 /** 6208 * dev_get_stats - get network device statistics 6209 * @dev: device to get statistics from 6210 * @storage: place to store stats 6211 * 6212 * Get network statistics from device. Return @storage. 6213 * The device driver may provide its own method by setting 6214 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats; 6215 * otherwise the internal statistics structure is used. 6216 */ 6217 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 6218 struct rtnl_link_stats64 *storage) 6219 { 6220 const struct net_device_ops *ops = dev->netdev_ops; 6221 6222 if (ops->ndo_get_stats64) { 6223 memset(storage, 0, sizeof(*storage)); 6224 ops->ndo_get_stats64(dev, storage); 6225 } else if (ops->ndo_get_stats) { 6226 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev)); 6227 } else { 6228 netdev_stats_to_stats64(storage, &dev->stats); 6229 } 6230 storage->rx_dropped += atomic_long_read(&dev->rx_dropped); 6231 return storage; 6232 } 6233 EXPORT_SYMBOL(dev_get_stats); 6234 6235 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev) 6236 { 6237 struct netdev_queue *queue = dev_ingress_queue(dev); 6238 6239 #ifdef CONFIG_NET_CLS_ACT 6240 if (queue) 6241 return queue; 6242 queue = kzalloc(sizeof(*queue), GFP_KERNEL); 6243 if (!queue) 6244 return NULL; 6245 netdev_init_one_queue(dev, queue, NULL); 6246 queue->qdisc = &noop_qdisc; 6247 queue->qdisc_sleeping = &noop_qdisc; 6248 rcu_assign_pointer(dev->ingress_queue, queue); 6249 #endif 6250 return queue; 6251 } 6252 6253 static const struct ethtool_ops default_ethtool_ops; 6254 6255 void netdev_set_default_ethtool_ops(struct net_device *dev, 6256 const struct ethtool_ops *ops) 6257 { 6258 if (dev->ethtool_ops == &default_ethtool_ops) 6259 dev->ethtool_ops = ops; 6260 } 6261 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops); 6262 6263 void netdev_freemem(struct net_device *dev) 6264 { 6265 char *addr = (char *)dev - dev->padded; 6266 6267 if (is_vmalloc_addr(addr)) 6268 vfree(addr); 6269 else 6270 kfree(addr); 6271 } 6272 6273 /** 6274 * alloc_netdev_mqs - allocate network device 6275 * @sizeof_priv: size of private data to allocate space for 6276 * @name: device name format string 6277 * @setup: callback to initialize device 6278 * @txqs: the number of TX subqueues to allocate 6279 * @rxqs: the number of RX subqueues to allocate 6280 * 6281 * Allocates a struct net_device with private data area for driver use 6282 * and performs basic initialization. Also allocates subquue structs 6283 * for each queue on the device. 6284 */ 6285 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 6286 void (*setup)(struct net_device *), 6287 unsigned int txqs, unsigned int rxqs) 6288 { 6289 struct net_device *dev; 6290 size_t alloc_size; 6291 struct net_device *p; 6292 6293 BUG_ON(strlen(name) >= sizeof(dev->name)); 6294 6295 if (txqs < 1) { 6296 pr_err("alloc_netdev: Unable to allocate device with zero queues\n"); 6297 return NULL; 6298 } 6299 6300 #ifdef CONFIG_RPS 6301 if (rxqs < 1) { 6302 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n"); 6303 return NULL; 6304 } 6305 #endif 6306 6307 alloc_size = sizeof(struct net_device); 6308 if (sizeof_priv) { 6309 /* ensure 32-byte alignment of private area */ 6310 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN); 6311 alloc_size += sizeof_priv; 6312 } 6313 /* ensure 32-byte alignment of whole construct */ 6314 alloc_size += NETDEV_ALIGN - 1; 6315 6316 p = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT); 6317 if (!p) 6318 p = vzalloc(alloc_size); 6319 if (!p) 6320 return NULL; 6321 6322 dev = PTR_ALIGN(p, NETDEV_ALIGN); 6323 dev->padded = (char *)dev - (char *)p; 6324 6325 dev->pcpu_refcnt = alloc_percpu(int); 6326 if (!dev->pcpu_refcnt) 6327 goto free_dev; 6328 6329 if (dev_addr_init(dev)) 6330 goto free_pcpu; 6331 6332 dev_mc_init(dev); 6333 dev_uc_init(dev); 6334 6335 dev_net_set(dev, &init_net); 6336 6337 dev->gso_max_size = GSO_MAX_SIZE; 6338 dev->gso_max_segs = GSO_MAX_SEGS; 6339 6340 INIT_LIST_HEAD(&dev->napi_list); 6341 INIT_LIST_HEAD(&dev->unreg_list); 6342 INIT_LIST_HEAD(&dev->close_list); 6343 INIT_LIST_HEAD(&dev->link_watch_list); 6344 INIT_LIST_HEAD(&dev->adj_list.upper); 6345 INIT_LIST_HEAD(&dev->adj_list.lower); 6346 INIT_LIST_HEAD(&dev->all_adj_list.upper); 6347 INIT_LIST_HEAD(&dev->all_adj_list.lower); 6348 dev->priv_flags = IFF_XMIT_DST_RELEASE; 6349 setup(dev); 6350 6351 dev->num_tx_queues = txqs; 6352 dev->real_num_tx_queues = txqs; 6353 if (netif_alloc_netdev_queues(dev)) 6354 goto free_all; 6355 6356 #ifdef CONFIG_RPS 6357 dev->num_rx_queues = rxqs; 6358 dev->real_num_rx_queues = rxqs; 6359 if (netif_alloc_rx_queues(dev)) 6360 goto free_all; 6361 #endif 6362 6363 strcpy(dev->name, name); 6364 dev->group = INIT_NETDEV_GROUP; 6365 if (!dev->ethtool_ops) 6366 dev->ethtool_ops = &default_ethtool_ops; 6367 return dev; 6368 6369 free_all: 6370 free_netdev(dev); 6371 return NULL; 6372 6373 free_pcpu: 6374 free_percpu(dev->pcpu_refcnt); 6375 netif_free_tx_queues(dev); 6376 #ifdef CONFIG_RPS 6377 kfree(dev->_rx); 6378 #endif 6379 6380 free_dev: 6381 netdev_freemem(dev); 6382 return NULL; 6383 } 6384 EXPORT_SYMBOL(alloc_netdev_mqs); 6385 6386 /** 6387 * free_netdev - free network device 6388 * @dev: device 6389 * 6390 * This function does the last stage of destroying an allocated device 6391 * interface. The reference to the device object is released. 6392 * If this is the last reference then it will be freed. 6393 */ 6394 void free_netdev(struct net_device *dev) 6395 { 6396 struct napi_struct *p, *n; 6397 6398 release_net(dev_net(dev)); 6399 6400 netif_free_tx_queues(dev); 6401 #ifdef CONFIG_RPS 6402 kfree(dev->_rx); 6403 #endif 6404 6405 kfree(rcu_dereference_protected(dev->ingress_queue, 1)); 6406 6407 /* Flush device addresses */ 6408 dev_addr_flush(dev); 6409 6410 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list) 6411 netif_napi_del(p); 6412 6413 free_percpu(dev->pcpu_refcnt); 6414 dev->pcpu_refcnt = NULL; 6415 6416 /* Compatibility with error handling in drivers */ 6417 if (dev->reg_state == NETREG_UNINITIALIZED) { 6418 netdev_freemem(dev); 6419 return; 6420 } 6421 6422 BUG_ON(dev->reg_state != NETREG_UNREGISTERED); 6423 dev->reg_state = NETREG_RELEASED; 6424 6425 /* will free via device release */ 6426 put_device(&dev->dev); 6427 } 6428 EXPORT_SYMBOL(free_netdev); 6429 6430 /** 6431 * synchronize_net - Synchronize with packet receive processing 6432 * 6433 * Wait for packets currently being received to be done. 6434 * Does not block later packets from starting. 6435 */ 6436 void synchronize_net(void) 6437 { 6438 might_sleep(); 6439 if (rtnl_is_locked()) 6440 synchronize_rcu_expedited(); 6441 else 6442 synchronize_rcu(); 6443 } 6444 EXPORT_SYMBOL(synchronize_net); 6445 6446 /** 6447 * unregister_netdevice_queue - remove device from the kernel 6448 * @dev: device 6449 * @head: list 6450 * 6451 * This function shuts down a device interface and removes it 6452 * from the kernel tables. 6453 * If head not NULL, device is queued to be unregistered later. 6454 * 6455 * Callers must hold the rtnl semaphore. You may want 6456 * unregister_netdev() instead of this. 6457 */ 6458 6459 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head) 6460 { 6461 ASSERT_RTNL(); 6462 6463 if (head) { 6464 list_move_tail(&dev->unreg_list, head); 6465 } else { 6466 rollback_registered(dev); 6467 /* Finish processing unregister after unlock */ 6468 net_set_todo(dev); 6469 } 6470 } 6471 EXPORT_SYMBOL(unregister_netdevice_queue); 6472 6473 /** 6474 * unregister_netdevice_many - unregister many devices 6475 * @head: list of devices 6476 */ 6477 void unregister_netdevice_many(struct list_head *head) 6478 { 6479 struct net_device *dev; 6480 6481 if (!list_empty(head)) { 6482 rollback_registered_many(head); 6483 list_for_each_entry(dev, head, unreg_list) 6484 net_set_todo(dev); 6485 } 6486 } 6487 EXPORT_SYMBOL(unregister_netdevice_many); 6488 6489 /** 6490 * unregister_netdev - remove device from the kernel 6491 * @dev: device 6492 * 6493 * This function shuts down a device interface and removes it 6494 * from the kernel tables. 6495 * 6496 * This is just a wrapper for unregister_netdevice that takes 6497 * the rtnl semaphore. In general you want to use this and not 6498 * unregister_netdevice. 6499 */ 6500 void unregister_netdev(struct net_device *dev) 6501 { 6502 rtnl_lock(); 6503 unregister_netdevice(dev); 6504 rtnl_unlock(); 6505 } 6506 EXPORT_SYMBOL(unregister_netdev); 6507 6508 /** 6509 * dev_change_net_namespace - move device to different nethost namespace 6510 * @dev: device 6511 * @net: network namespace 6512 * @pat: If not NULL name pattern to try if the current device name 6513 * is already taken in the destination network namespace. 6514 * 6515 * This function shuts down a device interface and moves it 6516 * to a new network namespace. On success 0 is returned, on 6517 * a failure a netagive errno code is returned. 6518 * 6519 * Callers must hold the rtnl semaphore. 6520 */ 6521 6522 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat) 6523 { 6524 int err; 6525 6526 ASSERT_RTNL(); 6527 6528 /* Don't allow namespace local devices to be moved. */ 6529 err = -EINVAL; 6530 if (dev->features & NETIF_F_NETNS_LOCAL) 6531 goto out; 6532 6533 /* Ensure the device has been registrered */ 6534 if (dev->reg_state != NETREG_REGISTERED) 6535 goto out; 6536 6537 /* Get out if there is nothing todo */ 6538 err = 0; 6539 if (net_eq(dev_net(dev), net)) 6540 goto out; 6541 6542 /* Pick the destination device name, and ensure 6543 * we can use it in the destination network namespace. 6544 */ 6545 err = -EEXIST; 6546 if (__dev_get_by_name(net, dev->name)) { 6547 /* We get here if we can't use the current device name */ 6548 if (!pat) 6549 goto out; 6550 if (dev_get_valid_name(net, dev, pat) < 0) 6551 goto out; 6552 } 6553 6554 /* 6555 * And now a mini version of register_netdevice unregister_netdevice. 6556 */ 6557 6558 /* If device is running close it first. */ 6559 dev_close(dev); 6560 6561 /* And unlink it from device chain */ 6562 err = -ENODEV; 6563 unlist_netdevice(dev); 6564 6565 synchronize_net(); 6566 6567 /* Shutdown queueing discipline. */ 6568 dev_shutdown(dev); 6569 6570 /* Notify protocols, that we are about to destroy 6571 this device. They should clean all the things. 6572 6573 Note that dev->reg_state stays at NETREG_REGISTERED. 6574 This is wanted because this way 8021q and macvlan know 6575 the device is just moving and can keep their slaves up. 6576 */ 6577 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 6578 rcu_barrier(); 6579 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev); 6580 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL); 6581 6582 /* 6583 * Flush the unicast and multicast chains 6584 */ 6585 dev_uc_flush(dev); 6586 dev_mc_flush(dev); 6587 6588 /* Send a netdev-removed uevent to the old namespace */ 6589 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE); 6590 6591 /* Actually switch the network namespace */ 6592 dev_net_set(dev, net); 6593 6594 /* If there is an ifindex conflict assign a new one */ 6595 if (__dev_get_by_index(net, dev->ifindex)) { 6596 int iflink = (dev->iflink == dev->ifindex); 6597 dev->ifindex = dev_new_index(net); 6598 if (iflink) 6599 dev->iflink = dev->ifindex; 6600 } 6601 6602 /* Send a netdev-add uevent to the new namespace */ 6603 kobject_uevent(&dev->dev.kobj, KOBJ_ADD); 6604 6605 /* Fixup kobjects */ 6606 err = device_rename(&dev->dev, dev->name); 6607 WARN_ON(err); 6608 6609 /* Add the device back in the hashes */ 6610 list_netdevice(dev); 6611 6612 /* Notify protocols, that a new device appeared. */ 6613 call_netdevice_notifiers(NETDEV_REGISTER, dev); 6614 6615 /* 6616 * Prevent userspace races by waiting until the network 6617 * device is fully setup before sending notifications. 6618 */ 6619 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL); 6620 6621 synchronize_net(); 6622 err = 0; 6623 out: 6624 return err; 6625 } 6626 EXPORT_SYMBOL_GPL(dev_change_net_namespace); 6627 6628 static int dev_cpu_callback(struct notifier_block *nfb, 6629 unsigned long action, 6630 void *ocpu) 6631 { 6632 struct sk_buff **list_skb; 6633 struct sk_buff *skb; 6634 unsigned int cpu, oldcpu = (unsigned long)ocpu; 6635 struct softnet_data *sd, *oldsd; 6636 6637 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN) 6638 return NOTIFY_OK; 6639 6640 local_irq_disable(); 6641 cpu = smp_processor_id(); 6642 sd = &per_cpu(softnet_data, cpu); 6643 oldsd = &per_cpu(softnet_data, oldcpu); 6644 6645 /* Find end of our completion_queue. */ 6646 list_skb = &sd->completion_queue; 6647 while (*list_skb) 6648 list_skb = &(*list_skb)->next; 6649 /* Append completion queue from offline CPU. */ 6650 *list_skb = oldsd->completion_queue; 6651 oldsd->completion_queue = NULL; 6652 6653 /* Append output queue from offline CPU. */ 6654 if (oldsd->output_queue) { 6655 *sd->output_queue_tailp = oldsd->output_queue; 6656 sd->output_queue_tailp = oldsd->output_queue_tailp; 6657 oldsd->output_queue = NULL; 6658 oldsd->output_queue_tailp = &oldsd->output_queue; 6659 } 6660 /* Append NAPI poll list from offline CPU. */ 6661 if (!list_empty(&oldsd->poll_list)) { 6662 list_splice_init(&oldsd->poll_list, &sd->poll_list); 6663 raise_softirq_irqoff(NET_RX_SOFTIRQ); 6664 } 6665 6666 raise_softirq_irqoff(NET_TX_SOFTIRQ); 6667 local_irq_enable(); 6668 6669 /* Process offline CPU's input_pkt_queue */ 6670 while ((skb = __skb_dequeue(&oldsd->process_queue))) { 6671 netif_rx_internal(skb); 6672 input_queue_head_incr(oldsd); 6673 } 6674 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) { 6675 netif_rx_internal(skb); 6676 input_queue_head_incr(oldsd); 6677 } 6678 6679 return NOTIFY_OK; 6680 } 6681 6682 6683 /** 6684 * netdev_increment_features - increment feature set by one 6685 * @all: current feature set 6686 * @one: new feature set 6687 * @mask: mask feature set 6688 * 6689 * Computes a new feature set after adding a device with feature set 6690 * @one to the master device with current feature set @all. Will not 6691 * enable anything that is off in @mask. Returns the new feature set. 6692 */ 6693 netdev_features_t netdev_increment_features(netdev_features_t all, 6694 netdev_features_t one, netdev_features_t mask) 6695 { 6696 if (mask & NETIF_F_GEN_CSUM) 6697 mask |= NETIF_F_ALL_CSUM; 6698 mask |= NETIF_F_VLAN_CHALLENGED; 6699 6700 all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask; 6701 all &= one | ~NETIF_F_ALL_FOR_ALL; 6702 6703 /* If one device supports hw checksumming, set for all. */ 6704 if (all & NETIF_F_GEN_CSUM) 6705 all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM); 6706 6707 return all; 6708 } 6709 EXPORT_SYMBOL(netdev_increment_features); 6710 6711 static struct hlist_head * __net_init netdev_create_hash(void) 6712 { 6713 int i; 6714 struct hlist_head *hash; 6715 6716 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL); 6717 if (hash != NULL) 6718 for (i = 0; i < NETDEV_HASHENTRIES; i++) 6719 INIT_HLIST_HEAD(&hash[i]); 6720 6721 return hash; 6722 } 6723 6724 /* Initialize per network namespace state */ 6725 static int __net_init netdev_init(struct net *net) 6726 { 6727 if (net != &init_net) 6728 INIT_LIST_HEAD(&net->dev_base_head); 6729 6730 net->dev_name_head = netdev_create_hash(); 6731 if (net->dev_name_head == NULL) 6732 goto err_name; 6733 6734 net->dev_index_head = netdev_create_hash(); 6735 if (net->dev_index_head == NULL) 6736 goto err_idx; 6737 6738 return 0; 6739 6740 err_idx: 6741 kfree(net->dev_name_head); 6742 err_name: 6743 return -ENOMEM; 6744 } 6745 6746 /** 6747 * netdev_drivername - network driver for the device 6748 * @dev: network device 6749 * 6750 * Determine network driver for device. 6751 */ 6752 const char *netdev_drivername(const struct net_device *dev) 6753 { 6754 const struct device_driver *driver; 6755 const struct device *parent; 6756 const char *empty = ""; 6757 6758 parent = dev->dev.parent; 6759 if (!parent) 6760 return empty; 6761 6762 driver = parent->driver; 6763 if (driver && driver->name) 6764 return driver->name; 6765 return empty; 6766 } 6767 6768 static int __netdev_printk(const char *level, const struct net_device *dev, 6769 struct va_format *vaf) 6770 { 6771 int r; 6772 6773 if (dev && dev->dev.parent) { 6774 r = dev_printk_emit(level[1] - '0', 6775 dev->dev.parent, 6776 "%s %s %s: %pV", 6777 dev_driver_string(dev->dev.parent), 6778 dev_name(dev->dev.parent), 6779 netdev_name(dev), vaf); 6780 } else if (dev) { 6781 r = printk("%s%s: %pV", level, netdev_name(dev), vaf); 6782 } else { 6783 r = printk("%s(NULL net_device): %pV", level, vaf); 6784 } 6785 6786 return r; 6787 } 6788 6789 int netdev_printk(const char *level, const struct net_device *dev, 6790 const char *format, ...) 6791 { 6792 struct va_format vaf; 6793 va_list args; 6794 int r; 6795 6796 va_start(args, format); 6797 6798 vaf.fmt = format; 6799 vaf.va = &args; 6800 6801 r = __netdev_printk(level, dev, &vaf); 6802 6803 va_end(args); 6804 6805 return r; 6806 } 6807 EXPORT_SYMBOL(netdev_printk); 6808 6809 #define define_netdev_printk_level(func, level) \ 6810 int func(const struct net_device *dev, const char *fmt, ...) \ 6811 { \ 6812 int r; \ 6813 struct va_format vaf; \ 6814 va_list args; \ 6815 \ 6816 va_start(args, fmt); \ 6817 \ 6818 vaf.fmt = fmt; \ 6819 vaf.va = &args; \ 6820 \ 6821 r = __netdev_printk(level, dev, &vaf); \ 6822 \ 6823 va_end(args); \ 6824 \ 6825 return r; \ 6826 } \ 6827 EXPORT_SYMBOL(func); 6828 6829 define_netdev_printk_level(netdev_emerg, KERN_EMERG); 6830 define_netdev_printk_level(netdev_alert, KERN_ALERT); 6831 define_netdev_printk_level(netdev_crit, KERN_CRIT); 6832 define_netdev_printk_level(netdev_err, KERN_ERR); 6833 define_netdev_printk_level(netdev_warn, KERN_WARNING); 6834 define_netdev_printk_level(netdev_notice, KERN_NOTICE); 6835 define_netdev_printk_level(netdev_info, KERN_INFO); 6836 6837 static void __net_exit netdev_exit(struct net *net) 6838 { 6839 kfree(net->dev_name_head); 6840 kfree(net->dev_index_head); 6841 } 6842 6843 static struct pernet_operations __net_initdata netdev_net_ops = { 6844 .init = netdev_init, 6845 .exit = netdev_exit, 6846 }; 6847 6848 static void __net_exit default_device_exit(struct net *net) 6849 { 6850 struct net_device *dev, *aux; 6851 /* 6852 * Push all migratable network devices back to the 6853 * initial network namespace 6854 */ 6855 rtnl_lock(); 6856 for_each_netdev_safe(net, dev, aux) { 6857 int err; 6858 char fb_name[IFNAMSIZ]; 6859 6860 /* Ignore unmoveable devices (i.e. loopback) */ 6861 if (dev->features & NETIF_F_NETNS_LOCAL) 6862 continue; 6863 6864 /* Leave virtual devices for the generic cleanup */ 6865 if (dev->rtnl_link_ops) 6866 continue; 6867 6868 /* Push remaining network devices to init_net */ 6869 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex); 6870 err = dev_change_net_namespace(dev, &init_net, fb_name); 6871 if (err) { 6872 pr_emerg("%s: failed to move %s to init_net: %d\n", 6873 __func__, dev->name, err); 6874 BUG(); 6875 } 6876 } 6877 rtnl_unlock(); 6878 } 6879 6880 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list) 6881 { 6882 /* Return with the rtnl_lock held when there are no network 6883 * devices unregistering in any network namespace in net_list. 6884 */ 6885 struct net *net; 6886 bool unregistering; 6887 DEFINE_WAIT(wait); 6888 6889 for (;;) { 6890 prepare_to_wait(&netdev_unregistering_wq, &wait, 6891 TASK_UNINTERRUPTIBLE); 6892 unregistering = false; 6893 rtnl_lock(); 6894 list_for_each_entry(net, net_list, exit_list) { 6895 if (net->dev_unreg_count > 0) { 6896 unregistering = true; 6897 break; 6898 } 6899 } 6900 if (!unregistering) 6901 break; 6902 __rtnl_unlock(); 6903 schedule(); 6904 } 6905 finish_wait(&netdev_unregistering_wq, &wait); 6906 } 6907 6908 static void __net_exit default_device_exit_batch(struct list_head *net_list) 6909 { 6910 /* At exit all network devices most be removed from a network 6911 * namespace. Do this in the reverse order of registration. 6912 * Do this across as many network namespaces as possible to 6913 * improve batching efficiency. 6914 */ 6915 struct net_device *dev; 6916 struct net *net; 6917 LIST_HEAD(dev_kill_list); 6918 6919 /* To prevent network device cleanup code from dereferencing 6920 * loopback devices or network devices that have been freed 6921 * wait here for all pending unregistrations to complete, 6922 * before unregistring the loopback device and allowing the 6923 * network namespace be freed. 6924 * 6925 * The netdev todo list containing all network devices 6926 * unregistrations that happen in default_device_exit_batch 6927 * will run in the rtnl_unlock() at the end of 6928 * default_device_exit_batch. 6929 */ 6930 rtnl_lock_unregistering(net_list); 6931 list_for_each_entry(net, net_list, exit_list) { 6932 for_each_netdev_reverse(net, dev) { 6933 if (dev->rtnl_link_ops) 6934 dev->rtnl_link_ops->dellink(dev, &dev_kill_list); 6935 else 6936 unregister_netdevice_queue(dev, &dev_kill_list); 6937 } 6938 } 6939 unregister_netdevice_many(&dev_kill_list); 6940 list_del(&dev_kill_list); 6941 rtnl_unlock(); 6942 } 6943 6944 static struct pernet_operations __net_initdata default_device_ops = { 6945 .exit = default_device_exit, 6946 .exit_batch = default_device_exit_batch, 6947 }; 6948 6949 /* 6950 * Initialize the DEV module. At boot time this walks the device list and 6951 * unhooks any devices that fail to initialise (normally hardware not 6952 * present) and leaves us with a valid list of present and active devices. 6953 * 6954 */ 6955 6956 /* 6957 * This is called single threaded during boot, so no need 6958 * to take the rtnl semaphore. 6959 */ 6960 static int __init net_dev_init(void) 6961 { 6962 int i, rc = -ENOMEM; 6963 6964 BUG_ON(!dev_boot_phase); 6965 6966 if (dev_proc_init()) 6967 goto out; 6968 6969 if (netdev_kobject_init()) 6970 goto out; 6971 6972 INIT_LIST_HEAD(&ptype_all); 6973 for (i = 0; i < PTYPE_HASH_SIZE; i++) 6974 INIT_LIST_HEAD(&ptype_base[i]); 6975 6976 INIT_LIST_HEAD(&offload_base); 6977 6978 if (register_pernet_subsys(&netdev_net_ops)) 6979 goto out; 6980 6981 /* 6982 * Initialise the packet receive queues. 6983 */ 6984 6985 for_each_possible_cpu(i) { 6986 struct softnet_data *sd = &per_cpu(softnet_data, i); 6987 6988 memset(sd, 0, sizeof(*sd)); 6989 skb_queue_head_init(&sd->input_pkt_queue); 6990 skb_queue_head_init(&sd->process_queue); 6991 sd->completion_queue = NULL; 6992 INIT_LIST_HEAD(&sd->poll_list); 6993 sd->output_queue = NULL; 6994 sd->output_queue_tailp = &sd->output_queue; 6995 #ifdef CONFIG_RPS 6996 sd->csd.func = rps_trigger_softirq; 6997 sd->csd.info = sd; 6998 sd->csd.flags = 0; 6999 sd->cpu = i; 7000 #endif 7001 7002 sd->backlog.poll = process_backlog; 7003 sd->backlog.weight = weight_p; 7004 sd->backlog.gro_list = NULL; 7005 sd->backlog.gro_count = 0; 7006 7007 #ifdef CONFIG_NET_FLOW_LIMIT 7008 sd->flow_limit = NULL; 7009 #endif 7010 } 7011 7012 dev_boot_phase = 0; 7013 7014 /* The loopback device is special if any other network devices 7015 * is present in a network namespace the loopback device must 7016 * be present. Since we now dynamically allocate and free the 7017 * loopback device ensure this invariant is maintained by 7018 * keeping the loopback device as the first device on the 7019 * list of network devices. Ensuring the loopback devices 7020 * is the first device that appears and the last network device 7021 * that disappears. 7022 */ 7023 if (register_pernet_device(&loopback_net_ops)) 7024 goto out; 7025 7026 if (register_pernet_device(&default_device_ops)) 7027 goto out; 7028 7029 open_softirq(NET_TX_SOFTIRQ, net_tx_action); 7030 open_softirq(NET_RX_SOFTIRQ, net_rx_action); 7031 7032 hotcpu_notifier(dev_cpu_callback, 0); 7033 dst_init(); 7034 rc = 0; 7035 out: 7036 return rc; 7037 } 7038 7039 subsys_initcall(net_dev_init); 7040