xref: /linux/net/core/dev.c (revision a7ddedc84c59a645ef970b992f7cda5bffc70cc0)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *      NET3    Protocol independent device support routines.
4  *
5  *	Derived from the non IP parts of dev.c 1.0.19
6  *              Authors:	Ross Biro
7  *				Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8  *				Mark Evans, <evansmp@uhura.aston.ac.uk>
9  *
10  *	Additional Authors:
11  *		Florian la Roche <rzsfl@rz.uni-sb.de>
12  *		Alan Cox <gw4pts@gw4pts.ampr.org>
13  *		David Hinds <dahinds@users.sourceforge.net>
14  *		Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15  *		Adam Sulmicki <adam@cfar.umd.edu>
16  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
17  *
18  *	Changes:
19  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
20  *                                      to 2 if register_netdev gets called
21  *                                      before net_dev_init & also removed a
22  *                                      few lines of code in the process.
23  *		Alan Cox	:	device private ioctl copies fields back.
24  *		Alan Cox	:	Transmit queue code does relevant
25  *					stunts to keep the queue safe.
26  *		Alan Cox	:	Fixed double lock.
27  *		Alan Cox	:	Fixed promisc NULL pointer trap
28  *		????????	:	Support the full private ioctl range
29  *		Alan Cox	:	Moved ioctl permission check into
30  *					drivers
31  *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
32  *		Alan Cox	:	100 backlog just doesn't cut it when
33  *					you start doing multicast video 8)
34  *		Alan Cox	:	Rewrote net_bh and list manager.
35  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
36  *		Alan Cox	:	Took out transmit every packet pass
37  *					Saved a few bytes in the ioctl handler
38  *		Alan Cox	:	Network driver sets packet type before
39  *					calling netif_rx. Saves a function
40  *					call a packet.
41  *		Alan Cox	:	Hashed net_bh()
42  *		Richard Kooijman:	Timestamp fixes.
43  *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
44  *		Alan Cox	:	Device lock protection.
45  *              Alan Cox        :       Fixed nasty side effect of device close
46  *					changes.
47  *		Rudi Cilibrasi	:	Pass the right thing to
48  *					set_mac_address()
49  *		Dave Miller	:	32bit quantity for the device lock to
50  *					make it work out on a Sparc.
51  *		Bjorn Ekwall	:	Added KERNELD hack.
52  *		Alan Cox	:	Cleaned up the backlog initialise.
53  *		Craig Metz	:	SIOCGIFCONF fix if space for under
54  *					1 device.
55  *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
56  *					is no device open function.
57  *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
58  *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
59  *		Cyrus Durgin	:	Cleaned for KMOD
60  *		Adam Sulmicki   :	Bug Fix : Network Device Unload
61  *					A network device unload needs to purge
62  *					the backlog queue.
63  *	Paul Rusty Russell	:	SIOCSIFNAME
64  *              Pekka Riikonen  :	Netdev boot-time settings code
65  *              Andrew Morton   :       Make unregister_netdevice wait
66  *                                      indefinitely on dev->refcnt
67  *              J Hadi Salim    :       - Backlog queue sampling
68  *				        - netif_rx() feedback
69  */
70 
71 #include <linux/uaccess.h>
72 #include <linux/bitmap.h>
73 #include <linux/capability.h>
74 #include <linux/cpu.h>
75 #include <linux/types.h>
76 #include <linux/kernel.h>
77 #include <linux/hash.h>
78 #include <linux/slab.h>
79 #include <linux/sched.h>
80 #include <linux/sched/isolation.h>
81 #include <linux/sched/mm.h>
82 #include <linux/smpboot.h>
83 #include <linux/mutex.h>
84 #include <linux/rwsem.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/ethtool_netlink.h>
96 #include <linux/skbuff.h>
97 #include <linux/kthread.h>
98 #include <linux/bpf.h>
99 #include <linux/bpf_trace.h>
100 #include <net/net_namespace.h>
101 #include <net/sock.h>
102 #include <net/busy_poll.h>
103 #include <linux/rtnetlink.h>
104 #include <linux/stat.h>
105 #include <net/dsa.h>
106 #include <net/dst.h>
107 #include <net/dst_metadata.h>
108 #include <net/gro.h>
109 #include <net/netdev_queues.h>
110 #include <net/pkt_sched.h>
111 #include <net/pkt_cls.h>
112 #include <net/checksum.h>
113 #include <net/xfrm.h>
114 #include <net/tcx.h>
115 #include <linux/highmem.h>
116 #include <linux/init.h>
117 #include <linux/module.h>
118 #include <linux/netpoll.h>
119 #include <linux/rcupdate.h>
120 #include <linux/delay.h>
121 #include <net/iw_handler.h>
122 #include <asm/current.h>
123 #include <linux/audit.h>
124 #include <linux/dmaengine.h>
125 #include <linux/err.h>
126 #include <linux/ctype.h>
127 #include <linux/if_arp.h>
128 #include <linux/if_vlan.h>
129 #include <linux/ip.h>
130 #include <net/ip.h>
131 #include <net/mpls.h>
132 #include <linux/ipv6.h>
133 #include <linux/in.h>
134 #include <linux/jhash.h>
135 #include <linux/random.h>
136 #include <trace/events/napi.h>
137 #include <trace/events/net.h>
138 #include <trace/events/skb.h>
139 #include <trace/events/qdisc.h>
140 #include <trace/events/xdp.h>
141 #include <linux/inetdevice.h>
142 #include <linux/cpu_rmap.h>
143 #include <linux/static_key.h>
144 #include <linux/hashtable.h>
145 #include <linux/vmalloc.h>
146 #include <linux/if_macvlan.h>
147 #include <linux/errqueue.h>
148 #include <linux/hrtimer.h>
149 #include <linux/netfilter_netdev.h>
150 #include <linux/crash_dump.h>
151 #include <linux/sctp.h>
152 #include <net/udp_tunnel.h>
153 #include <linux/net_namespace.h>
154 #include <linux/indirect_call_wrapper.h>
155 #include <net/devlink.h>
156 #include <linux/pm_runtime.h>
157 #include <linux/prandom.h>
158 #include <linux/once_lite.h>
159 #include <net/netdev_lock.h>
160 #include <net/netdev_rx_queue.h>
161 #include <net/page_pool/types.h>
162 #include <net/page_pool/helpers.h>
163 #include <net/page_pool/memory_provider.h>
164 #include <net/rps.h>
165 #include <linux/phy_link_topology.h>
166 
167 #include "dev.h"
168 #include "devmem.h"
169 #include "net-sysfs.h"
170 
171 static DEFINE_SPINLOCK(ptype_lock);
172 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
173 
174 static int netif_rx_internal(struct sk_buff *skb);
175 static int call_netdevice_notifiers_extack(unsigned long val,
176 					   struct net_device *dev,
177 					   struct netlink_ext_ack *extack);
178 
179 static DEFINE_MUTEX(ifalias_mutex);
180 
181 /* protects napi_hash addition/deletion and napi_gen_id */
182 static DEFINE_SPINLOCK(napi_hash_lock);
183 
184 static unsigned int napi_gen_id = NR_CPUS;
185 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
186 
187 static inline void dev_base_seq_inc(struct net *net)
188 {
189 	unsigned int val = net->dev_base_seq + 1;
190 
191 	WRITE_ONCE(net->dev_base_seq, val ?: 1);
192 }
193 
194 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
195 {
196 	unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
197 
198 	return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
199 }
200 
201 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
202 {
203 	return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
204 }
205 
206 #ifndef CONFIG_PREEMPT_RT
207 
208 static DEFINE_STATIC_KEY_FALSE(use_backlog_threads_key);
209 
210 static int __init setup_backlog_napi_threads(char *arg)
211 {
212 	static_branch_enable(&use_backlog_threads_key);
213 	return 0;
214 }
215 early_param("thread_backlog_napi", setup_backlog_napi_threads);
216 
217 static bool use_backlog_threads(void)
218 {
219 	return static_branch_unlikely(&use_backlog_threads_key);
220 }
221 
222 #else
223 
224 static bool use_backlog_threads(void)
225 {
226 	return true;
227 }
228 
229 #endif
230 
231 static inline void backlog_lock_irq_save(struct softnet_data *sd,
232 					 unsigned long *flags)
233 {
234 	if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads())
235 		spin_lock_irqsave(&sd->input_pkt_queue.lock, *flags);
236 	else
237 		local_irq_save(*flags);
238 }
239 
240 static inline void backlog_lock_irq_disable(struct softnet_data *sd)
241 {
242 	if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads())
243 		spin_lock_irq(&sd->input_pkt_queue.lock);
244 	else
245 		local_irq_disable();
246 }
247 
248 static inline void backlog_unlock_irq_restore(struct softnet_data *sd,
249 					      unsigned long *flags)
250 {
251 	if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads())
252 		spin_unlock_irqrestore(&sd->input_pkt_queue.lock, *flags);
253 	else
254 		local_irq_restore(*flags);
255 }
256 
257 static inline void backlog_unlock_irq_enable(struct softnet_data *sd)
258 {
259 	if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads())
260 		spin_unlock_irq(&sd->input_pkt_queue.lock);
261 	else
262 		local_irq_enable();
263 }
264 
265 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
266 						       const char *name)
267 {
268 	struct netdev_name_node *name_node;
269 
270 	name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
271 	if (!name_node)
272 		return NULL;
273 	INIT_HLIST_NODE(&name_node->hlist);
274 	name_node->dev = dev;
275 	name_node->name = name;
276 	return name_node;
277 }
278 
279 static struct netdev_name_node *
280 netdev_name_node_head_alloc(struct net_device *dev)
281 {
282 	struct netdev_name_node *name_node;
283 
284 	name_node = netdev_name_node_alloc(dev, dev->name);
285 	if (!name_node)
286 		return NULL;
287 	INIT_LIST_HEAD(&name_node->list);
288 	return name_node;
289 }
290 
291 static void netdev_name_node_free(struct netdev_name_node *name_node)
292 {
293 	kfree(name_node);
294 }
295 
296 static void netdev_name_node_add(struct net *net,
297 				 struct netdev_name_node *name_node)
298 {
299 	hlist_add_head_rcu(&name_node->hlist,
300 			   dev_name_hash(net, name_node->name));
301 }
302 
303 static void netdev_name_node_del(struct netdev_name_node *name_node)
304 {
305 	hlist_del_rcu(&name_node->hlist);
306 }
307 
308 static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
309 							const char *name)
310 {
311 	struct hlist_head *head = dev_name_hash(net, name);
312 	struct netdev_name_node *name_node;
313 
314 	hlist_for_each_entry(name_node, head, hlist)
315 		if (!strcmp(name_node->name, name))
316 			return name_node;
317 	return NULL;
318 }
319 
320 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
321 							    const char *name)
322 {
323 	struct hlist_head *head = dev_name_hash(net, name);
324 	struct netdev_name_node *name_node;
325 
326 	hlist_for_each_entry_rcu(name_node, head, hlist)
327 		if (!strcmp(name_node->name, name))
328 			return name_node;
329 	return NULL;
330 }
331 
332 bool netdev_name_in_use(struct net *net, const char *name)
333 {
334 	return netdev_name_node_lookup(net, name);
335 }
336 EXPORT_SYMBOL(netdev_name_in_use);
337 
338 int netdev_name_node_alt_create(struct net_device *dev, const char *name)
339 {
340 	struct netdev_name_node *name_node;
341 	struct net *net = dev_net(dev);
342 
343 	name_node = netdev_name_node_lookup(net, name);
344 	if (name_node)
345 		return -EEXIST;
346 	name_node = netdev_name_node_alloc(dev, name);
347 	if (!name_node)
348 		return -ENOMEM;
349 	netdev_name_node_add(net, name_node);
350 	/* The node that holds dev->name acts as a head of per-device list. */
351 	list_add_tail_rcu(&name_node->list, &dev->name_node->list);
352 
353 	return 0;
354 }
355 
356 static void netdev_name_node_alt_free(struct rcu_head *head)
357 {
358 	struct netdev_name_node *name_node =
359 		container_of(head, struct netdev_name_node, rcu);
360 
361 	kfree(name_node->name);
362 	netdev_name_node_free(name_node);
363 }
364 
365 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
366 {
367 	netdev_name_node_del(name_node);
368 	list_del(&name_node->list);
369 	call_rcu(&name_node->rcu, netdev_name_node_alt_free);
370 }
371 
372 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
373 {
374 	struct netdev_name_node *name_node;
375 	struct net *net = dev_net(dev);
376 
377 	name_node = netdev_name_node_lookup(net, name);
378 	if (!name_node)
379 		return -ENOENT;
380 	/* lookup might have found our primary name or a name belonging
381 	 * to another device.
382 	 */
383 	if (name_node == dev->name_node || name_node->dev != dev)
384 		return -EINVAL;
385 
386 	__netdev_name_node_alt_destroy(name_node);
387 	return 0;
388 }
389 
390 static void netdev_name_node_alt_flush(struct net_device *dev)
391 {
392 	struct netdev_name_node *name_node, *tmp;
393 
394 	list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list) {
395 		list_del(&name_node->list);
396 		netdev_name_node_alt_free(&name_node->rcu);
397 	}
398 }
399 
400 /* Device list insertion */
401 static void list_netdevice(struct net_device *dev)
402 {
403 	struct netdev_name_node *name_node;
404 	struct net *net = dev_net(dev);
405 
406 	ASSERT_RTNL();
407 
408 	list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
409 	netdev_name_node_add(net, dev->name_node);
410 	hlist_add_head_rcu(&dev->index_hlist,
411 			   dev_index_hash(net, dev->ifindex));
412 
413 	netdev_for_each_altname(dev, name_node)
414 		netdev_name_node_add(net, name_node);
415 
416 	/* We reserved the ifindex, this can't fail */
417 	WARN_ON(xa_store(&net->dev_by_index, dev->ifindex, dev, GFP_KERNEL));
418 
419 	dev_base_seq_inc(net);
420 }
421 
422 /* Device list removal
423  * caller must respect a RCU grace period before freeing/reusing dev
424  */
425 static void unlist_netdevice(struct net_device *dev)
426 {
427 	struct netdev_name_node *name_node;
428 	struct net *net = dev_net(dev);
429 
430 	ASSERT_RTNL();
431 
432 	xa_erase(&net->dev_by_index, dev->ifindex);
433 
434 	netdev_for_each_altname(dev, name_node)
435 		netdev_name_node_del(name_node);
436 
437 	/* Unlink dev from the device chain */
438 	list_del_rcu(&dev->dev_list);
439 	netdev_name_node_del(dev->name_node);
440 	hlist_del_rcu(&dev->index_hlist);
441 
442 	dev_base_seq_inc(dev_net(dev));
443 }
444 
445 /*
446  *	Our notifier list
447  */
448 
449 static RAW_NOTIFIER_HEAD(netdev_chain);
450 
451 /*
452  *	Device drivers call our routines to queue packets here. We empty the
453  *	queue in the local softnet handler.
454  */
455 
456 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data) = {
457 	.process_queue_bh_lock = INIT_LOCAL_LOCK(process_queue_bh_lock),
458 };
459 EXPORT_PER_CPU_SYMBOL(softnet_data);
460 
461 /* Page_pool has a lockless array/stack to alloc/recycle pages.
462  * PP consumers must pay attention to run APIs in the appropriate context
463  * (e.g. NAPI context).
464  */
465 DEFINE_PER_CPU(struct page_pool_bh, system_page_pool) = {
466 	.bh_lock = INIT_LOCAL_LOCK(bh_lock),
467 };
468 
469 #ifdef CONFIG_LOCKDEP
470 /*
471  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
472  * according to dev->type
473  */
474 static const unsigned short netdev_lock_type[] = {
475 	 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
476 	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
477 	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
478 	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
479 	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
480 	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
481 	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
482 	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
483 	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
484 	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
485 	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
486 	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
487 	 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
488 	 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
489 	 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
490 
491 static const char *const netdev_lock_name[] = {
492 	"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
493 	"_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
494 	"_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
495 	"_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
496 	"_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
497 	"_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
498 	"_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
499 	"_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
500 	"_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
501 	"_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
502 	"_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
503 	"_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
504 	"_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
505 	"_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
506 	"_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
507 
508 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
509 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
510 
511 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
512 {
513 	int i;
514 
515 	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
516 		if (netdev_lock_type[i] == dev_type)
517 			return i;
518 	/* the last key is used by default */
519 	return ARRAY_SIZE(netdev_lock_type) - 1;
520 }
521 
522 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
523 						 unsigned short dev_type)
524 {
525 	int i;
526 
527 	i = netdev_lock_pos(dev_type);
528 	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
529 				   netdev_lock_name[i]);
530 }
531 
532 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
533 {
534 	int i;
535 
536 	i = netdev_lock_pos(dev->type);
537 	lockdep_set_class_and_name(&dev->addr_list_lock,
538 				   &netdev_addr_lock_key[i],
539 				   netdev_lock_name[i]);
540 }
541 #else
542 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
543 						 unsigned short dev_type)
544 {
545 }
546 
547 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
548 {
549 }
550 #endif
551 
552 /*******************************************************************************
553  *
554  *		Protocol management and registration routines
555  *
556  *******************************************************************************/
557 
558 
559 /*
560  *	Add a protocol ID to the list. Now that the input handler is
561  *	smarter we can dispense with all the messy stuff that used to be
562  *	here.
563  *
564  *	BEWARE!!! Protocol handlers, mangling input packets,
565  *	MUST BE last in hash buckets and checking protocol handlers
566  *	MUST start from promiscuous ptype_all chain in net_bh.
567  *	It is true now, do not change it.
568  *	Explanation follows: if protocol handler, mangling packet, will
569  *	be the first on list, it is not able to sense, that packet
570  *	is cloned and should be copied-on-write, so that it will
571  *	change it and subsequent readers will get broken packet.
572  *							--ANK (980803)
573  */
574 
575 static inline struct list_head *ptype_head(const struct packet_type *pt)
576 {
577 	if (pt->type == htons(ETH_P_ALL)) {
578 		if (!pt->af_packet_net && !pt->dev)
579 			return NULL;
580 
581 		return pt->dev ? &pt->dev->ptype_all :
582 				 &pt->af_packet_net->ptype_all;
583 	}
584 
585 	if (pt->dev)
586 		return &pt->dev->ptype_specific;
587 
588 	return pt->af_packet_net ? &pt->af_packet_net->ptype_specific :
589 				 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
590 }
591 
592 /**
593  *	dev_add_pack - add packet handler
594  *	@pt: packet type declaration
595  *
596  *	Add a protocol handler to the networking stack. The passed &packet_type
597  *	is linked into kernel lists and may not be freed until it has been
598  *	removed from the kernel lists.
599  *
600  *	This call does not sleep therefore it can not
601  *	guarantee all CPU's that are in middle of receiving packets
602  *	will see the new packet type (until the next received packet).
603  */
604 
605 void dev_add_pack(struct packet_type *pt)
606 {
607 	struct list_head *head = ptype_head(pt);
608 
609 	if (WARN_ON_ONCE(!head))
610 		return;
611 
612 	spin_lock(&ptype_lock);
613 	list_add_rcu(&pt->list, head);
614 	spin_unlock(&ptype_lock);
615 }
616 EXPORT_SYMBOL(dev_add_pack);
617 
618 /**
619  *	__dev_remove_pack	 - remove packet handler
620  *	@pt: packet type declaration
621  *
622  *	Remove a protocol handler that was previously added to the kernel
623  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
624  *	from the kernel lists and can be freed or reused once this function
625  *	returns.
626  *
627  *      The packet type might still be in use by receivers
628  *	and must not be freed until after all the CPU's have gone
629  *	through a quiescent state.
630  */
631 void __dev_remove_pack(struct packet_type *pt)
632 {
633 	struct list_head *head = ptype_head(pt);
634 	struct packet_type *pt1;
635 
636 	if (!head)
637 		return;
638 
639 	spin_lock(&ptype_lock);
640 
641 	list_for_each_entry(pt1, head, list) {
642 		if (pt == pt1) {
643 			list_del_rcu(&pt->list);
644 			goto out;
645 		}
646 	}
647 
648 	pr_warn("dev_remove_pack: %p not found\n", pt);
649 out:
650 	spin_unlock(&ptype_lock);
651 }
652 EXPORT_SYMBOL(__dev_remove_pack);
653 
654 /**
655  *	dev_remove_pack	 - remove packet handler
656  *	@pt: packet type declaration
657  *
658  *	Remove a protocol handler that was previously added to the kernel
659  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
660  *	from the kernel lists and can be freed or reused once this function
661  *	returns.
662  *
663  *	This call sleeps to guarantee that no CPU is looking at the packet
664  *	type after return.
665  */
666 void dev_remove_pack(struct packet_type *pt)
667 {
668 	__dev_remove_pack(pt);
669 
670 	synchronize_net();
671 }
672 EXPORT_SYMBOL(dev_remove_pack);
673 
674 
675 /*******************************************************************************
676  *
677  *			    Device Interface Subroutines
678  *
679  *******************************************************************************/
680 
681 /**
682  *	dev_get_iflink	- get 'iflink' value of a interface
683  *	@dev: targeted interface
684  *
685  *	Indicates the ifindex the interface is linked to.
686  *	Physical interfaces have the same 'ifindex' and 'iflink' values.
687  */
688 
689 int dev_get_iflink(const struct net_device *dev)
690 {
691 	if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
692 		return dev->netdev_ops->ndo_get_iflink(dev);
693 
694 	return READ_ONCE(dev->ifindex);
695 }
696 EXPORT_SYMBOL(dev_get_iflink);
697 
698 /**
699  *	dev_fill_metadata_dst - Retrieve tunnel egress information.
700  *	@dev: targeted interface
701  *	@skb: The packet.
702  *
703  *	For better visibility of tunnel traffic OVS needs to retrieve
704  *	egress tunnel information for a packet. Following API allows
705  *	user to get this info.
706  */
707 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
708 {
709 	struct ip_tunnel_info *info;
710 
711 	if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
712 		return -EINVAL;
713 
714 	info = skb_tunnel_info_unclone(skb);
715 	if (!info)
716 		return -ENOMEM;
717 	if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
718 		return -EINVAL;
719 
720 	return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
721 }
722 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
723 
724 static struct net_device_path *dev_fwd_path(struct net_device_path_stack *stack)
725 {
726 	int k = stack->num_paths++;
727 
728 	if (WARN_ON_ONCE(k >= NET_DEVICE_PATH_STACK_MAX))
729 		return NULL;
730 
731 	return &stack->path[k];
732 }
733 
734 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
735 			  struct net_device_path_stack *stack)
736 {
737 	const struct net_device *last_dev;
738 	struct net_device_path_ctx ctx = {
739 		.dev	= dev,
740 	};
741 	struct net_device_path *path;
742 	int ret = 0;
743 
744 	memcpy(ctx.daddr, daddr, sizeof(ctx.daddr));
745 	stack->num_paths = 0;
746 	while (ctx.dev && ctx.dev->netdev_ops->ndo_fill_forward_path) {
747 		last_dev = ctx.dev;
748 		path = dev_fwd_path(stack);
749 		if (!path)
750 			return -1;
751 
752 		memset(path, 0, sizeof(struct net_device_path));
753 		ret = ctx.dev->netdev_ops->ndo_fill_forward_path(&ctx, path);
754 		if (ret < 0)
755 			return -1;
756 
757 		if (WARN_ON_ONCE(last_dev == ctx.dev))
758 			return -1;
759 	}
760 
761 	if (!ctx.dev)
762 		return ret;
763 
764 	path = dev_fwd_path(stack);
765 	if (!path)
766 		return -1;
767 	path->type = DEV_PATH_ETHERNET;
768 	path->dev = ctx.dev;
769 
770 	return ret;
771 }
772 EXPORT_SYMBOL_GPL(dev_fill_forward_path);
773 
774 /* must be called under rcu_read_lock(), as we dont take a reference */
775 static struct napi_struct *napi_by_id(unsigned int napi_id)
776 {
777 	unsigned int hash = napi_id % HASH_SIZE(napi_hash);
778 	struct napi_struct *napi;
779 
780 	hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
781 		if (napi->napi_id == napi_id)
782 			return napi;
783 
784 	return NULL;
785 }
786 
787 /* must be called under rcu_read_lock(), as we dont take a reference */
788 static struct napi_struct *
789 netdev_napi_by_id(struct net *net, unsigned int napi_id)
790 {
791 	struct napi_struct *napi;
792 
793 	napi = napi_by_id(napi_id);
794 	if (!napi)
795 		return NULL;
796 
797 	if (WARN_ON_ONCE(!napi->dev))
798 		return NULL;
799 	if (!net_eq(net, dev_net(napi->dev)))
800 		return NULL;
801 
802 	return napi;
803 }
804 
805 /**
806  *	netdev_napi_by_id_lock() - find a device by NAPI ID and lock it
807  *	@net: the applicable net namespace
808  *	@napi_id: ID of a NAPI of a target device
809  *
810  *	Find a NAPI instance with @napi_id. Lock its device.
811  *	The device must be in %NETREG_REGISTERED state for lookup to succeed.
812  *	netdev_unlock() must be called to release it.
813  *
814  *	Return: pointer to NAPI, its device with lock held, NULL if not found.
815  */
816 struct napi_struct *
817 netdev_napi_by_id_lock(struct net *net, unsigned int napi_id)
818 {
819 	struct napi_struct *napi;
820 	struct net_device *dev;
821 
822 	rcu_read_lock();
823 	napi = netdev_napi_by_id(net, napi_id);
824 	if (!napi || READ_ONCE(napi->dev->reg_state) != NETREG_REGISTERED) {
825 		rcu_read_unlock();
826 		return NULL;
827 	}
828 
829 	dev = napi->dev;
830 	dev_hold(dev);
831 	rcu_read_unlock();
832 
833 	dev = __netdev_put_lock(dev, net);
834 	if (!dev)
835 		return NULL;
836 
837 	rcu_read_lock();
838 	napi = netdev_napi_by_id(net, napi_id);
839 	if (napi && napi->dev != dev)
840 		napi = NULL;
841 	rcu_read_unlock();
842 
843 	if (!napi)
844 		netdev_unlock(dev);
845 	return napi;
846 }
847 
848 /**
849  *	__dev_get_by_name	- find a device by its name
850  *	@net: the applicable net namespace
851  *	@name: name to find
852  *
853  *	Find an interface by name. Must be called under RTNL semaphore.
854  *	If the name is found a pointer to the device is returned.
855  *	If the name is not found then %NULL is returned. The
856  *	reference counters are not incremented so the caller must be
857  *	careful with locks.
858  */
859 
860 struct net_device *__dev_get_by_name(struct net *net, const char *name)
861 {
862 	struct netdev_name_node *node_name;
863 
864 	node_name = netdev_name_node_lookup(net, name);
865 	return node_name ? node_name->dev : NULL;
866 }
867 EXPORT_SYMBOL(__dev_get_by_name);
868 
869 /**
870  * dev_get_by_name_rcu	- find a device by its name
871  * @net: the applicable net namespace
872  * @name: name to find
873  *
874  * Find an interface by name.
875  * If the name is found a pointer to the device is returned.
876  * If the name is not found then %NULL is returned.
877  * The reference counters are not incremented so the caller must be
878  * careful with locks. The caller must hold RCU lock.
879  */
880 
881 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
882 {
883 	struct netdev_name_node *node_name;
884 
885 	node_name = netdev_name_node_lookup_rcu(net, name);
886 	return node_name ? node_name->dev : NULL;
887 }
888 EXPORT_SYMBOL(dev_get_by_name_rcu);
889 
890 /* Deprecated for new users, call netdev_get_by_name() instead */
891 struct net_device *dev_get_by_name(struct net *net, const char *name)
892 {
893 	struct net_device *dev;
894 
895 	rcu_read_lock();
896 	dev = dev_get_by_name_rcu(net, name);
897 	dev_hold(dev);
898 	rcu_read_unlock();
899 	return dev;
900 }
901 EXPORT_SYMBOL(dev_get_by_name);
902 
903 /**
904  *	netdev_get_by_name() - find a device by its name
905  *	@net: the applicable net namespace
906  *	@name: name to find
907  *	@tracker: tracking object for the acquired reference
908  *	@gfp: allocation flags for the tracker
909  *
910  *	Find an interface by name. This can be called from any
911  *	context and does its own locking. The returned handle has
912  *	the usage count incremented and the caller must use netdev_put() to
913  *	release it when it is no longer needed. %NULL is returned if no
914  *	matching device is found.
915  */
916 struct net_device *netdev_get_by_name(struct net *net, const char *name,
917 				      netdevice_tracker *tracker, gfp_t gfp)
918 {
919 	struct net_device *dev;
920 
921 	dev = dev_get_by_name(net, name);
922 	if (dev)
923 		netdev_tracker_alloc(dev, tracker, gfp);
924 	return dev;
925 }
926 EXPORT_SYMBOL(netdev_get_by_name);
927 
928 /**
929  *	__dev_get_by_index - find a device by its ifindex
930  *	@net: the applicable net namespace
931  *	@ifindex: index of device
932  *
933  *	Search for an interface by index. Returns %NULL if the device
934  *	is not found or a pointer to the device. The device has not
935  *	had its reference counter increased so the caller must be careful
936  *	about locking. The caller must hold the RTNL semaphore.
937  */
938 
939 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
940 {
941 	struct net_device *dev;
942 	struct hlist_head *head = dev_index_hash(net, ifindex);
943 
944 	hlist_for_each_entry(dev, head, index_hlist)
945 		if (dev->ifindex == ifindex)
946 			return dev;
947 
948 	return NULL;
949 }
950 EXPORT_SYMBOL(__dev_get_by_index);
951 
952 /**
953  *	dev_get_by_index_rcu - find a device by its ifindex
954  *	@net: the applicable net namespace
955  *	@ifindex: index of device
956  *
957  *	Search for an interface by index. Returns %NULL if the device
958  *	is not found or a pointer to the device. The device has not
959  *	had its reference counter increased so the caller must be careful
960  *	about locking. The caller must hold RCU lock.
961  */
962 
963 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
964 {
965 	struct net_device *dev;
966 	struct hlist_head *head = dev_index_hash(net, ifindex);
967 
968 	hlist_for_each_entry_rcu(dev, head, index_hlist)
969 		if (dev->ifindex == ifindex)
970 			return dev;
971 
972 	return NULL;
973 }
974 EXPORT_SYMBOL(dev_get_by_index_rcu);
975 
976 /* Deprecated for new users, call netdev_get_by_index() instead */
977 struct net_device *dev_get_by_index(struct net *net, int ifindex)
978 {
979 	struct net_device *dev;
980 
981 	rcu_read_lock();
982 	dev = dev_get_by_index_rcu(net, ifindex);
983 	dev_hold(dev);
984 	rcu_read_unlock();
985 	return dev;
986 }
987 EXPORT_SYMBOL(dev_get_by_index);
988 
989 /**
990  *	netdev_get_by_index() - find a device by its ifindex
991  *	@net: the applicable net namespace
992  *	@ifindex: index of device
993  *	@tracker: tracking object for the acquired reference
994  *	@gfp: allocation flags for the tracker
995  *
996  *	Search for an interface by index. Returns NULL if the device
997  *	is not found or a pointer to the device. The device returned has
998  *	had a reference added and the pointer is safe until the user calls
999  *	netdev_put() to indicate they have finished with it.
1000  */
1001 struct net_device *netdev_get_by_index(struct net *net, int ifindex,
1002 				       netdevice_tracker *tracker, gfp_t gfp)
1003 {
1004 	struct net_device *dev;
1005 
1006 	dev = dev_get_by_index(net, ifindex);
1007 	if (dev)
1008 		netdev_tracker_alloc(dev, tracker, gfp);
1009 	return dev;
1010 }
1011 EXPORT_SYMBOL(netdev_get_by_index);
1012 
1013 /**
1014  *	dev_get_by_napi_id - find a device by napi_id
1015  *	@napi_id: ID of the NAPI struct
1016  *
1017  *	Search for an interface by NAPI ID. Returns %NULL if the device
1018  *	is not found or a pointer to the device. The device has not had
1019  *	its reference counter increased so the caller must be careful
1020  *	about locking. The caller must hold RCU lock.
1021  */
1022 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
1023 {
1024 	struct napi_struct *napi;
1025 
1026 	WARN_ON_ONCE(!rcu_read_lock_held());
1027 
1028 	if (!napi_id_valid(napi_id))
1029 		return NULL;
1030 
1031 	napi = napi_by_id(napi_id);
1032 
1033 	return napi ? napi->dev : NULL;
1034 }
1035 
1036 /* Release the held reference on the net_device, and if the net_device
1037  * is still registered try to lock the instance lock. If device is being
1038  * unregistered NULL will be returned (but the reference has been released,
1039  * either way!)
1040  *
1041  * This helper is intended for locking net_device after it has been looked up
1042  * using a lockless lookup helper. Lock prevents the instance from going away.
1043  */
1044 struct net_device *__netdev_put_lock(struct net_device *dev, struct net *net)
1045 {
1046 	netdev_lock(dev);
1047 	if (dev->reg_state > NETREG_REGISTERED ||
1048 	    dev->moving_ns || !net_eq(dev_net(dev), net)) {
1049 		netdev_unlock(dev);
1050 		dev_put(dev);
1051 		return NULL;
1052 	}
1053 	dev_put(dev);
1054 	return dev;
1055 }
1056 
1057 static struct net_device *
1058 __netdev_put_lock_ops_compat(struct net_device *dev, struct net *net)
1059 {
1060 	netdev_lock_ops_compat(dev);
1061 	if (dev->reg_state > NETREG_REGISTERED ||
1062 	    dev->moving_ns || !net_eq(dev_net(dev), net)) {
1063 		netdev_unlock_ops_compat(dev);
1064 		dev_put(dev);
1065 		return NULL;
1066 	}
1067 	dev_put(dev);
1068 	return dev;
1069 }
1070 
1071 /**
1072  *	netdev_get_by_index_lock() - find a device by its ifindex
1073  *	@net: the applicable net namespace
1074  *	@ifindex: index of device
1075  *
1076  *	Search for an interface by index. If a valid device
1077  *	with @ifindex is found it will be returned with netdev->lock held.
1078  *	netdev_unlock() must be called to release it.
1079  *
1080  *	Return: pointer to a device with lock held, NULL if not found.
1081  */
1082 struct net_device *netdev_get_by_index_lock(struct net *net, int ifindex)
1083 {
1084 	struct net_device *dev;
1085 
1086 	dev = dev_get_by_index(net, ifindex);
1087 	if (!dev)
1088 		return NULL;
1089 
1090 	return __netdev_put_lock(dev, net);
1091 }
1092 
1093 struct net_device *
1094 netdev_get_by_index_lock_ops_compat(struct net *net, int ifindex)
1095 {
1096 	struct net_device *dev;
1097 
1098 	dev = dev_get_by_index(net, ifindex);
1099 	if (!dev)
1100 		return NULL;
1101 
1102 	return __netdev_put_lock_ops_compat(dev, net);
1103 }
1104 
1105 struct net_device *
1106 netdev_xa_find_lock(struct net *net, struct net_device *dev,
1107 		    unsigned long *index)
1108 {
1109 	if (dev)
1110 		netdev_unlock(dev);
1111 
1112 	do {
1113 		rcu_read_lock();
1114 		dev = xa_find(&net->dev_by_index, index, ULONG_MAX, XA_PRESENT);
1115 		if (!dev) {
1116 			rcu_read_unlock();
1117 			return NULL;
1118 		}
1119 		dev_hold(dev);
1120 		rcu_read_unlock();
1121 
1122 		dev = __netdev_put_lock(dev, net);
1123 		if (dev)
1124 			return dev;
1125 
1126 		(*index)++;
1127 	} while (true);
1128 }
1129 
1130 struct net_device *
1131 netdev_xa_find_lock_ops_compat(struct net *net, struct net_device *dev,
1132 			       unsigned long *index)
1133 {
1134 	if (dev)
1135 		netdev_unlock_ops_compat(dev);
1136 
1137 	do {
1138 		rcu_read_lock();
1139 		dev = xa_find(&net->dev_by_index, index, ULONG_MAX, XA_PRESENT);
1140 		if (!dev) {
1141 			rcu_read_unlock();
1142 			return NULL;
1143 		}
1144 		dev_hold(dev);
1145 		rcu_read_unlock();
1146 
1147 		dev = __netdev_put_lock_ops_compat(dev, net);
1148 		if (dev)
1149 			return dev;
1150 
1151 		(*index)++;
1152 	} while (true);
1153 }
1154 
1155 static DEFINE_SEQLOCK(netdev_rename_lock);
1156 
1157 void netdev_copy_name(struct net_device *dev, char *name)
1158 {
1159 	unsigned int seq;
1160 
1161 	do {
1162 		seq = read_seqbegin(&netdev_rename_lock);
1163 		strscpy(name, dev->name, IFNAMSIZ);
1164 	} while (read_seqretry(&netdev_rename_lock, seq));
1165 }
1166 
1167 /**
1168  *	netdev_get_name - get a netdevice name, knowing its ifindex.
1169  *	@net: network namespace
1170  *	@name: a pointer to the buffer where the name will be stored.
1171  *	@ifindex: the ifindex of the interface to get the name from.
1172  */
1173 int netdev_get_name(struct net *net, char *name, int ifindex)
1174 {
1175 	struct net_device *dev;
1176 	int ret;
1177 
1178 	rcu_read_lock();
1179 
1180 	dev = dev_get_by_index_rcu(net, ifindex);
1181 	if (!dev) {
1182 		ret = -ENODEV;
1183 		goto out;
1184 	}
1185 
1186 	netdev_copy_name(dev, name);
1187 
1188 	ret = 0;
1189 out:
1190 	rcu_read_unlock();
1191 	return ret;
1192 }
1193 
1194 static bool dev_addr_cmp(struct net_device *dev, unsigned short type,
1195 			 const char *ha)
1196 {
1197 	return dev->type == type && !memcmp(dev->dev_addr, ha, dev->addr_len);
1198 }
1199 
1200 /**
1201  *	dev_getbyhwaddr_rcu - find a device by its hardware address
1202  *	@net: the applicable net namespace
1203  *	@type: media type of device
1204  *	@ha: hardware address
1205  *
1206  *	Search for an interface by MAC address. Returns NULL if the device
1207  *	is not found or a pointer to the device.
1208  *	The caller must hold RCU.
1209  *	The returned device has not had its ref count increased
1210  *	and the caller must therefore be careful about locking
1211  *
1212  */
1213 
1214 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
1215 				       const char *ha)
1216 {
1217 	struct net_device *dev;
1218 
1219 	for_each_netdev_rcu(net, dev)
1220 		if (dev_addr_cmp(dev, type, ha))
1221 			return dev;
1222 
1223 	return NULL;
1224 }
1225 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
1226 
1227 /**
1228  * dev_getbyhwaddr() - find a device by its hardware address
1229  * @net: the applicable net namespace
1230  * @type: media type of device
1231  * @ha: hardware address
1232  *
1233  * Similar to dev_getbyhwaddr_rcu(), but the owner needs to hold
1234  * rtnl_lock.
1235  *
1236  * Context: rtnl_lock() must be held.
1237  * Return: pointer to the net_device, or NULL if not found
1238  */
1239 struct net_device *dev_getbyhwaddr(struct net *net, unsigned short type,
1240 				   const char *ha)
1241 {
1242 	struct net_device *dev;
1243 
1244 	ASSERT_RTNL();
1245 	for_each_netdev(net, dev)
1246 		if (dev_addr_cmp(dev, type, ha))
1247 			return dev;
1248 
1249 	return NULL;
1250 }
1251 EXPORT_SYMBOL(dev_getbyhwaddr);
1252 
1253 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
1254 {
1255 	struct net_device *dev, *ret = NULL;
1256 
1257 	rcu_read_lock();
1258 	for_each_netdev_rcu(net, dev)
1259 		if (dev->type == type) {
1260 			dev_hold(dev);
1261 			ret = dev;
1262 			break;
1263 		}
1264 	rcu_read_unlock();
1265 	return ret;
1266 }
1267 EXPORT_SYMBOL(dev_getfirstbyhwtype);
1268 
1269 /**
1270  * netdev_get_by_flags_rcu - find any device with given flags
1271  * @net: the applicable net namespace
1272  * @tracker: tracking object for the acquired reference
1273  * @if_flags: IFF_* values
1274  * @mask: bitmask of bits in if_flags to check
1275  *
1276  * Search for any interface with the given flags.
1277  *
1278  * Context: rcu_read_lock() must be held.
1279  * Returns: NULL if a device is not found or a pointer to the device.
1280  */
1281 struct net_device *netdev_get_by_flags_rcu(struct net *net, netdevice_tracker *tracker,
1282 					   unsigned short if_flags, unsigned short mask)
1283 {
1284 	struct net_device *dev;
1285 
1286 	for_each_netdev_rcu(net, dev) {
1287 		if (((READ_ONCE(dev->flags) ^ if_flags) & mask) == 0) {
1288 			netdev_hold(dev, tracker, GFP_ATOMIC);
1289 			return dev;
1290 		}
1291 	}
1292 
1293 	return NULL;
1294 }
1295 EXPORT_IPV6_MOD(netdev_get_by_flags_rcu);
1296 
1297 /**
1298  *	dev_valid_name - check if name is okay for network device
1299  *	@name: name string
1300  *
1301  *	Network device names need to be valid file names to
1302  *	allow sysfs to work.  We also disallow any kind of
1303  *	whitespace.
1304  */
1305 bool dev_valid_name(const char *name)
1306 {
1307 	if (*name == '\0')
1308 		return false;
1309 	if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1310 		return false;
1311 	if (!strcmp(name, ".") || !strcmp(name, ".."))
1312 		return false;
1313 
1314 	while (*name) {
1315 		if (*name == '/' || *name == ':' || isspace(*name))
1316 			return false;
1317 		name++;
1318 	}
1319 	return true;
1320 }
1321 EXPORT_SYMBOL(dev_valid_name);
1322 
1323 /**
1324  *	__dev_alloc_name - allocate a name for a device
1325  *	@net: network namespace to allocate the device name in
1326  *	@name: name format string
1327  *	@res: result name string
1328  *
1329  *	Passed a format string - eg "lt%d" it will try and find a suitable
1330  *	id. It scans list of devices to build up a free map, then chooses
1331  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1332  *	while allocating the name and adding the device in order to avoid
1333  *	duplicates.
1334  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1335  *	Returns the number of the unit assigned or a negative errno code.
1336  */
1337 
1338 static int __dev_alloc_name(struct net *net, const char *name, char *res)
1339 {
1340 	int i = 0;
1341 	const char *p;
1342 	const int max_netdevices = 8*PAGE_SIZE;
1343 	unsigned long *inuse;
1344 	struct net_device *d;
1345 	char buf[IFNAMSIZ];
1346 
1347 	/* Verify the string as this thing may have come from the user.
1348 	 * There must be one "%d" and no other "%" characters.
1349 	 */
1350 	p = strchr(name, '%');
1351 	if (!p || p[1] != 'd' || strchr(p + 2, '%'))
1352 		return -EINVAL;
1353 
1354 	/* Use one page as a bit array of possible slots */
1355 	inuse = bitmap_zalloc(max_netdevices, GFP_ATOMIC);
1356 	if (!inuse)
1357 		return -ENOMEM;
1358 
1359 	for_each_netdev(net, d) {
1360 		struct netdev_name_node *name_node;
1361 
1362 		netdev_for_each_altname(d, name_node) {
1363 			if (!sscanf(name_node->name, name, &i))
1364 				continue;
1365 			if (i < 0 || i >= max_netdevices)
1366 				continue;
1367 
1368 			/* avoid cases where sscanf is not exact inverse of printf */
1369 			snprintf(buf, IFNAMSIZ, name, i);
1370 			if (!strncmp(buf, name_node->name, IFNAMSIZ))
1371 				__set_bit(i, inuse);
1372 		}
1373 		if (!sscanf(d->name, name, &i))
1374 			continue;
1375 		if (i < 0 || i >= max_netdevices)
1376 			continue;
1377 
1378 		/* avoid cases where sscanf is not exact inverse of printf */
1379 		snprintf(buf, IFNAMSIZ, name, i);
1380 		if (!strncmp(buf, d->name, IFNAMSIZ))
1381 			__set_bit(i, inuse);
1382 	}
1383 
1384 	i = find_first_zero_bit(inuse, max_netdevices);
1385 	bitmap_free(inuse);
1386 	if (i == max_netdevices)
1387 		return -ENFILE;
1388 
1389 	/* 'res' and 'name' could overlap, use 'buf' as an intermediate buffer */
1390 	strscpy(buf, name, IFNAMSIZ);
1391 	snprintf(res, IFNAMSIZ, buf, i);
1392 	return i;
1393 }
1394 
1395 /* Returns negative errno or allocated unit id (see __dev_alloc_name()) */
1396 static int dev_prep_valid_name(struct net *net, struct net_device *dev,
1397 			       const char *want_name, char *out_name,
1398 			       int dup_errno)
1399 {
1400 	if (!dev_valid_name(want_name))
1401 		return -EINVAL;
1402 
1403 	if (strchr(want_name, '%'))
1404 		return __dev_alloc_name(net, want_name, out_name);
1405 
1406 	if (netdev_name_in_use(net, want_name))
1407 		return -dup_errno;
1408 	if (out_name != want_name)
1409 		strscpy(out_name, want_name, IFNAMSIZ);
1410 	return 0;
1411 }
1412 
1413 /**
1414  *	dev_alloc_name - allocate a name for a device
1415  *	@dev: device
1416  *	@name: name format string
1417  *
1418  *	Passed a format string - eg "lt%d" it will try and find a suitable
1419  *	id. It scans list of devices to build up a free map, then chooses
1420  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1421  *	while allocating the name and adding the device in order to avoid
1422  *	duplicates.
1423  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1424  *	Returns the number of the unit assigned or a negative errno code.
1425  */
1426 
1427 int dev_alloc_name(struct net_device *dev, const char *name)
1428 {
1429 	return dev_prep_valid_name(dev_net(dev), dev, name, dev->name, ENFILE);
1430 }
1431 EXPORT_SYMBOL(dev_alloc_name);
1432 
1433 static int dev_get_valid_name(struct net *net, struct net_device *dev,
1434 			      const char *name)
1435 {
1436 	int ret;
1437 
1438 	ret = dev_prep_valid_name(net, dev, name, dev->name, EEXIST);
1439 	return ret < 0 ? ret : 0;
1440 }
1441 
1442 int netif_change_name(struct net_device *dev, const char *newname)
1443 {
1444 	struct net *net = dev_net(dev);
1445 	unsigned char old_assign_type;
1446 	char oldname[IFNAMSIZ];
1447 	int err = 0;
1448 	int ret;
1449 
1450 	ASSERT_RTNL_NET(net);
1451 
1452 	if (!strncmp(newname, dev->name, IFNAMSIZ))
1453 		return 0;
1454 
1455 	memcpy(oldname, dev->name, IFNAMSIZ);
1456 
1457 	write_seqlock_bh(&netdev_rename_lock);
1458 	err = dev_get_valid_name(net, dev, newname);
1459 	write_sequnlock_bh(&netdev_rename_lock);
1460 
1461 	if (err < 0)
1462 		return err;
1463 
1464 	if (oldname[0] && !strchr(oldname, '%'))
1465 		netdev_info(dev, "renamed from %s%s\n", oldname,
1466 			    dev->flags & IFF_UP ? " (while UP)" : "");
1467 
1468 	old_assign_type = dev->name_assign_type;
1469 	WRITE_ONCE(dev->name_assign_type, NET_NAME_RENAMED);
1470 
1471 rollback:
1472 	ret = device_rename(&dev->dev, dev->name);
1473 	if (ret) {
1474 		write_seqlock_bh(&netdev_rename_lock);
1475 		memcpy(dev->name, oldname, IFNAMSIZ);
1476 		write_sequnlock_bh(&netdev_rename_lock);
1477 		WRITE_ONCE(dev->name_assign_type, old_assign_type);
1478 		return ret;
1479 	}
1480 
1481 	netdev_adjacent_rename_links(dev, oldname);
1482 
1483 	netdev_name_node_del(dev->name_node);
1484 
1485 	synchronize_net();
1486 
1487 	netdev_name_node_add(net, dev->name_node);
1488 
1489 	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1490 	ret = notifier_to_errno(ret);
1491 
1492 	if (ret) {
1493 		/* err >= 0 after dev_alloc_name() or stores the first errno */
1494 		if (err >= 0) {
1495 			err = ret;
1496 			write_seqlock_bh(&netdev_rename_lock);
1497 			memcpy(dev->name, oldname, IFNAMSIZ);
1498 			write_sequnlock_bh(&netdev_rename_lock);
1499 			memcpy(oldname, newname, IFNAMSIZ);
1500 			WRITE_ONCE(dev->name_assign_type, old_assign_type);
1501 			old_assign_type = NET_NAME_RENAMED;
1502 			goto rollback;
1503 		} else {
1504 			netdev_err(dev, "name change rollback failed: %d\n",
1505 				   ret);
1506 		}
1507 	}
1508 
1509 	return err;
1510 }
1511 
1512 int netif_set_alias(struct net_device *dev, const char *alias, size_t len)
1513 {
1514 	struct dev_ifalias *new_alias = NULL;
1515 
1516 	if (len >= IFALIASZ)
1517 		return -EINVAL;
1518 
1519 	if (len) {
1520 		new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1521 		if (!new_alias)
1522 			return -ENOMEM;
1523 
1524 		memcpy(new_alias->ifalias, alias, len);
1525 		new_alias->ifalias[len] = 0;
1526 	}
1527 
1528 	mutex_lock(&ifalias_mutex);
1529 	new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1530 					mutex_is_locked(&ifalias_mutex));
1531 	mutex_unlock(&ifalias_mutex);
1532 
1533 	if (new_alias)
1534 		kfree_rcu(new_alias, rcuhead);
1535 
1536 	return len;
1537 }
1538 
1539 /**
1540  *	dev_get_alias - get ifalias of a device
1541  *	@dev: device
1542  *	@name: buffer to store name of ifalias
1543  *	@len: size of buffer
1544  *
1545  *	get ifalias for a device.  Caller must make sure dev cannot go
1546  *	away,  e.g. rcu read lock or own a reference count to device.
1547  */
1548 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1549 {
1550 	const struct dev_ifalias *alias;
1551 	int ret = 0;
1552 
1553 	rcu_read_lock();
1554 	alias = rcu_dereference(dev->ifalias);
1555 	if (alias)
1556 		ret = snprintf(name, len, "%s", alias->ifalias);
1557 	rcu_read_unlock();
1558 
1559 	return ret;
1560 }
1561 
1562 /**
1563  *	netdev_features_change - device changes features
1564  *	@dev: device to cause notification
1565  *
1566  *	Called to indicate a device has changed features.
1567  */
1568 void netdev_features_change(struct net_device *dev)
1569 {
1570 	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1571 }
1572 EXPORT_SYMBOL(netdev_features_change);
1573 
1574 void netif_state_change(struct net_device *dev)
1575 {
1576 	netdev_ops_assert_locked_or_invisible(dev);
1577 
1578 	if (dev->flags & IFF_UP) {
1579 		struct netdev_notifier_change_info change_info = {
1580 			.info.dev = dev,
1581 		};
1582 
1583 		call_netdevice_notifiers_info(NETDEV_CHANGE,
1584 					      &change_info.info);
1585 		rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL, 0, NULL);
1586 	}
1587 }
1588 
1589 /**
1590  * __netdev_notify_peers - notify network peers about existence of @dev,
1591  * to be called when rtnl lock is already held.
1592  * @dev: network device
1593  *
1594  * Generate traffic such that interested network peers are aware of
1595  * @dev, such as by generating a gratuitous ARP. This may be used when
1596  * a device wants to inform the rest of the network about some sort of
1597  * reconfiguration such as a failover event or virtual machine
1598  * migration.
1599  */
1600 void __netdev_notify_peers(struct net_device *dev)
1601 {
1602 	ASSERT_RTNL();
1603 	call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1604 	call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1605 }
1606 EXPORT_SYMBOL(__netdev_notify_peers);
1607 
1608 /**
1609  * netdev_notify_peers - notify network peers about existence of @dev
1610  * @dev: network device
1611  *
1612  * Generate traffic such that interested network peers are aware of
1613  * @dev, such as by generating a gratuitous ARP. This may be used when
1614  * a device wants to inform the rest of the network about some sort of
1615  * reconfiguration such as a failover event or virtual machine
1616  * migration.
1617  */
1618 void netdev_notify_peers(struct net_device *dev)
1619 {
1620 	rtnl_lock();
1621 	__netdev_notify_peers(dev);
1622 	rtnl_unlock();
1623 }
1624 EXPORT_SYMBOL(netdev_notify_peers);
1625 
1626 static int napi_threaded_poll(void *data);
1627 
1628 static int napi_kthread_create(struct napi_struct *n)
1629 {
1630 	int err = 0;
1631 
1632 	/* Create and wake up the kthread once to put it in
1633 	 * TASK_INTERRUPTIBLE mode to avoid the blocked task
1634 	 * warning and work with loadavg.
1635 	 */
1636 	n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d",
1637 				n->dev->name, n->napi_id);
1638 	if (IS_ERR(n->thread)) {
1639 		err = PTR_ERR(n->thread);
1640 		pr_err("kthread_run failed with err %d\n", err);
1641 		n->thread = NULL;
1642 	}
1643 
1644 	return err;
1645 }
1646 
1647 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1648 {
1649 	const struct net_device_ops *ops = dev->netdev_ops;
1650 	int ret;
1651 
1652 	ASSERT_RTNL();
1653 	dev_addr_check(dev);
1654 
1655 	if (!netif_device_present(dev)) {
1656 		/* may be detached because parent is runtime-suspended */
1657 		if (dev->dev.parent)
1658 			pm_runtime_resume(dev->dev.parent);
1659 		if (!netif_device_present(dev))
1660 			return -ENODEV;
1661 	}
1662 
1663 	/* Block netpoll from trying to do any rx path servicing.
1664 	 * If we don't do this there is a chance ndo_poll_controller
1665 	 * or ndo_poll may be running while we open the device
1666 	 */
1667 	netpoll_poll_disable(dev);
1668 
1669 	ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1670 	ret = notifier_to_errno(ret);
1671 	if (ret)
1672 		return ret;
1673 
1674 	set_bit(__LINK_STATE_START, &dev->state);
1675 
1676 	netdev_ops_assert_locked(dev);
1677 
1678 	if (ops->ndo_validate_addr)
1679 		ret = ops->ndo_validate_addr(dev);
1680 
1681 	if (!ret && ops->ndo_open)
1682 		ret = ops->ndo_open(dev);
1683 
1684 	netpoll_poll_enable(dev);
1685 
1686 	if (ret)
1687 		clear_bit(__LINK_STATE_START, &dev->state);
1688 	else {
1689 		netif_set_up(dev, true);
1690 		dev_set_rx_mode(dev);
1691 		dev_activate(dev);
1692 		add_device_randomness(dev->dev_addr, dev->addr_len);
1693 	}
1694 
1695 	return ret;
1696 }
1697 
1698 int netif_open(struct net_device *dev, struct netlink_ext_ack *extack)
1699 {
1700 	int ret;
1701 
1702 	if (dev->flags & IFF_UP)
1703 		return 0;
1704 
1705 	ret = __dev_open(dev, extack);
1706 	if (ret < 0)
1707 		return ret;
1708 
1709 	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL);
1710 	call_netdevice_notifiers(NETDEV_UP, dev);
1711 
1712 	return ret;
1713 }
1714 
1715 static void __dev_close_many(struct list_head *head)
1716 {
1717 	struct net_device *dev;
1718 
1719 	ASSERT_RTNL();
1720 	might_sleep();
1721 
1722 	list_for_each_entry(dev, head, close_list) {
1723 		/* Temporarily disable netpoll until the interface is down */
1724 		netpoll_poll_disable(dev);
1725 
1726 		call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1727 
1728 		clear_bit(__LINK_STATE_START, &dev->state);
1729 
1730 		/* Synchronize to scheduled poll. We cannot touch poll list, it
1731 		 * can be even on different cpu. So just clear netif_running().
1732 		 *
1733 		 * dev->stop() will invoke napi_disable() on all of it's
1734 		 * napi_struct instances on this device.
1735 		 */
1736 		smp_mb__after_atomic(); /* Commit netif_running(). */
1737 	}
1738 
1739 	dev_deactivate_many(head);
1740 
1741 	list_for_each_entry(dev, head, close_list) {
1742 		const struct net_device_ops *ops = dev->netdev_ops;
1743 
1744 		/*
1745 		 *	Call the device specific close. This cannot fail.
1746 		 *	Only if device is UP
1747 		 *
1748 		 *	We allow it to be called even after a DETACH hot-plug
1749 		 *	event.
1750 		 */
1751 
1752 		netdev_ops_assert_locked(dev);
1753 
1754 		if (ops->ndo_stop)
1755 			ops->ndo_stop(dev);
1756 
1757 		netif_set_up(dev, false);
1758 		netpoll_poll_enable(dev);
1759 	}
1760 }
1761 
1762 static void __dev_close(struct net_device *dev)
1763 {
1764 	LIST_HEAD(single);
1765 
1766 	list_add(&dev->close_list, &single);
1767 	__dev_close_many(&single);
1768 	list_del(&single);
1769 }
1770 
1771 void netif_close_many(struct list_head *head, bool unlink)
1772 {
1773 	struct net_device *dev, *tmp;
1774 
1775 	/* Remove the devices that don't need to be closed */
1776 	list_for_each_entry_safe(dev, tmp, head, close_list)
1777 		if (!(dev->flags & IFF_UP))
1778 			list_del_init(&dev->close_list);
1779 
1780 	__dev_close_many(head);
1781 
1782 	list_for_each_entry_safe(dev, tmp, head, close_list) {
1783 		rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL);
1784 		call_netdevice_notifiers(NETDEV_DOWN, dev);
1785 		if (unlink)
1786 			list_del_init(&dev->close_list);
1787 	}
1788 }
1789 EXPORT_SYMBOL_NS_GPL(netif_close_many, "NETDEV_INTERNAL");
1790 
1791 void netif_close(struct net_device *dev)
1792 {
1793 	if (dev->flags & IFF_UP) {
1794 		LIST_HEAD(single);
1795 
1796 		list_add(&dev->close_list, &single);
1797 		netif_close_many(&single, true);
1798 		list_del(&single);
1799 	}
1800 }
1801 EXPORT_SYMBOL(netif_close);
1802 
1803 void netif_disable_lro(struct net_device *dev)
1804 {
1805 	struct net_device *lower_dev;
1806 	struct list_head *iter;
1807 
1808 	dev->wanted_features &= ~NETIF_F_LRO;
1809 	netdev_update_features(dev);
1810 
1811 	if (unlikely(dev->features & NETIF_F_LRO))
1812 		netdev_WARN(dev, "failed to disable LRO!\n");
1813 
1814 	netdev_for_each_lower_dev(dev, lower_dev, iter) {
1815 		netdev_lock_ops(lower_dev);
1816 		netif_disable_lro(lower_dev);
1817 		netdev_unlock_ops(lower_dev);
1818 	}
1819 }
1820 EXPORT_IPV6_MOD(netif_disable_lro);
1821 
1822 /**
1823  *	dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1824  *	@dev: device
1825  *
1826  *	Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1827  *	called under RTNL.  This is needed if Generic XDP is installed on
1828  *	the device.
1829  */
1830 static void dev_disable_gro_hw(struct net_device *dev)
1831 {
1832 	dev->wanted_features &= ~NETIF_F_GRO_HW;
1833 	netdev_update_features(dev);
1834 
1835 	if (unlikely(dev->features & NETIF_F_GRO_HW))
1836 		netdev_WARN(dev, "failed to disable GRO_HW!\n");
1837 }
1838 
1839 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1840 {
1841 #define N(val) 						\
1842 	case NETDEV_##val:				\
1843 		return "NETDEV_" __stringify(val);
1844 	switch (cmd) {
1845 	N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1846 	N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1847 	N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1848 	N(POST_INIT) N(PRE_UNINIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN)
1849 	N(CHANGEUPPER) N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA)
1850 	N(BONDING_INFO) N(PRECHANGEUPPER) N(CHANGELOWERSTATE)
1851 	N(UDP_TUNNEL_PUSH_INFO) N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1852 	N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1853 	N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1854 	N(PRE_CHANGEADDR) N(OFFLOAD_XSTATS_ENABLE) N(OFFLOAD_XSTATS_DISABLE)
1855 	N(OFFLOAD_XSTATS_REPORT_USED) N(OFFLOAD_XSTATS_REPORT_DELTA)
1856 	N(XDP_FEAT_CHANGE)
1857 	}
1858 #undef N
1859 	return "UNKNOWN_NETDEV_EVENT";
1860 }
1861 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1862 
1863 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1864 				   struct net_device *dev)
1865 {
1866 	struct netdev_notifier_info info = {
1867 		.dev = dev,
1868 	};
1869 
1870 	return nb->notifier_call(nb, val, &info);
1871 }
1872 
1873 static int call_netdevice_register_notifiers(struct notifier_block *nb,
1874 					     struct net_device *dev)
1875 {
1876 	int err;
1877 
1878 	err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1879 	err = notifier_to_errno(err);
1880 	if (err)
1881 		return err;
1882 
1883 	if (!(dev->flags & IFF_UP))
1884 		return 0;
1885 
1886 	call_netdevice_notifier(nb, NETDEV_UP, dev);
1887 	return 0;
1888 }
1889 
1890 static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1891 						struct net_device *dev)
1892 {
1893 	if (dev->flags & IFF_UP) {
1894 		call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1895 					dev);
1896 		call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1897 	}
1898 	call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1899 }
1900 
1901 static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1902 						 struct net *net)
1903 {
1904 	struct net_device *dev;
1905 	int err;
1906 
1907 	for_each_netdev(net, dev) {
1908 		netdev_lock_ops(dev);
1909 		err = call_netdevice_register_notifiers(nb, dev);
1910 		netdev_unlock_ops(dev);
1911 		if (err)
1912 			goto rollback;
1913 	}
1914 	return 0;
1915 
1916 rollback:
1917 	for_each_netdev_continue_reverse(net, dev)
1918 		call_netdevice_unregister_notifiers(nb, dev);
1919 	return err;
1920 }
1921 
1922 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1923 						    struct net *net)
1924 {
1925 	struct net_device *dev;
1926 
1927 	for_each_netdev(net, dev)
1928 		call_netdevice_unregister_notifiers(nb, dev);
1929 }
1930 
1931 static int dev_boot_phase = 1;
1932 
1933 /**
1934  * register_netdevice_notifier - register a network notifier block
1935  * @nb: notifier
1936  *
1937  * Register a notifier to be called when network device events occur.
1938  * The notifier passed is linked into the kernel structures and must
1939  * not be reused until it has been unregistered. A negative errno code
1940  * is returned on a failure.
1941  *
1942  * When registered all registration and up events are replayed
1943  * to the new notifier to allow device to have a race free
1944  * view of the network device list.
1945  */
1946 
1947 int register_netdevice_notifier(struct notifier_block *nb)
1948 {
1949 	struct net *net;
1950 	int err;
1951 
1952 	/* Close race with setup_net() and cleanup_net() */
1953 	down_write(&pernet_ops_rwsem);
1954 
1955 	/* When RTNL is removed, we need protection for netdev_chain. */
1956 	rtnl_lock();
1957 
1958 	err = raw_notifier_chain_register(&netdev_chain, nb);
1959 	if (err)
1960 		goto unlock;
1961 	if (dev_boot_phase)
1962 		goto unlock;
1963 	for_each_net(net) {
1964 		__rtnl_net_lock(net);
1965 		err = call_netdevice_register_net_notifiers(nb, net);
1966 		__rtnl_net_unlock(net);
1967 		if (err)
1968 			goto rollback;
1969 	}
1970 
1971 unlock:
1972 	rtnl_unlock();
1973 	up_write(&pernet_ops_rwsem);
1974 	return err;
1975 
1976 rollback:
1977 	for_each_net_continue_reverse(net) {
1978 		__rtnl_net_lock(net);
1979 		call_netdevice_unregister_net_notifiers(nb, net);
1980 		__rtnl_net_unlock(net);
1981 	}
1982 
1983 	raw_notifier_chain_unregister(&netdev_chain, nb);
1984 	goto unlock;
1985 }
1986 EXPORT_SYMBOL(register_netdevice_notifier);
1987 
1988 /**
1989  * unregister_netdevice_notifier - unregister a network notifier block
1990  * @nb: notifier
1991  *
1992  * Unregister a notifier previously registered by
1993  * register_netdevice_notifier(). The notifier is unlinked into the
1994  * kernel structures and may then be reused. A negative errno code
1995  * is returned on a failure.
1996  *
1997  * After unregistering unregister and down device events are synthesized
1998  * for all devices on the device list to the removed notifier to remove
1999  * the need for special case cleanup code.
2000  */
2001 
2002 int unregister_netdevice_notifier(struct notifier_block *nb)
2003 {
2004 	struct net *net;
2005 	int err;
2006 
2007 	/* Close race with setup_net() and cleanup_net() */
2008 	down_write(&pernet_ops_rwsem);
2009 	rtnl_lock();
2010 	err = raw_notifier_chain_unregister(&netdev_chain, nb);
2011 	if (err)
2012 		goto unlock;
2013 
2014 	for_each_net(net) {
2015 		__rtnl_net_lock(net);
2016 		call_netdevice_unregister_net_notifiers(nb, net);
2017 		__rtnl_net_unlock(net);
2018 	}
2019 
2020 unlock:
2021 	rtnl_unlock();
2022 	up_write(&pernet_ops_rwsem);
2023 	return err;
2024 }
2025 EXPORT_SYMBOL(unregister_netdevice_notifier);
2026 
2027 static int __register_netdevice_notifier_net(struct net *net,
2028 					     struct notifier_block *nb,
2029 					     bool ignore_call_fail)
2030 {
2031 	int err;
2032 
2033 	err = raw_notifier_chain_register(&net->netdev_chain, nb);
2034 	if (err)
2035 		return err;
2036 	if (dev_boot_phase)
2037 		return 0;
2038 
2039 	err = call_netdevice_register_net_notifiers(nb, net);
2040 	if (err && !ignore_call_fail)
2041 		goto chain_unregister;
2042 
2043 	return 0;
2044 
2045 chain_unregister:
2046 	raw_notifier_chain_unregister(&net->netdev_chain, nb);
2047 	return err;
2048 }
2049 
2050 static int __unregister_netdevice_notifier_net(struct net *net,
2051 					       struct notifier_block *nb)
2052 {
2053 	int err;
2054 
2055 	err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
2056 	if (err)
2057 		return err;
2058 
2059 	call_netdevice_unregister_net_notifiers(nb, net);
2060 	return 0;
2061 }
2062 
2063 /**
2064  * register_netdevice_notifier_net - register a per-netns network notifier block
2065  * @net: network namespace
2066  * @nb: notifier
2067  *
2068  * Register a notifier to be called when network device events occur.
2069  * The notifier passed is linked into the kernel structures and must
2070  * not be reused until it has been unregistered. A negative errno code
2071  * is returned on a failure.
2072  *
2073  * When registered all registration and up events are replayed
2074  * to the new notifier to allow device to have a race free
2075  * view of the network device list.
2076  */
2077 
2078 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
2079 {
2080 	int err;
2081 
2082 	rtnl_net_lock(net);
2083 	err = __register_netdevice_notifier_net(net, nb, false);
2084 	rtnl_net_unlock(net);
2085 
2086 	return err;
2087 }
2088 EXPORT_SYMBOL(register_netdevice_notifier_net);
2089 
2090 /**
2091  * unregister_netdevice_notifier_net - unregister a per-netns
2092  *                                     network notifier block
2093  * @net: network namespace
2094  * @nb: notifier
2095  *
2096  * Unregister a notifier previously registered by
2097  * register_netdevice_notifier_net(). The notifier is unlinked from the
2098  * kernel structures and may then be reused. A negative errno code
2099  * is returned on a failure.
2100  *
2101  * After unregistering unregister and down device events are synthesized
2102  * for all devices on the device list to the removed notifier to remove
2103  * the need for special case cleanup code.
2104  */
2105 
2106 int unregister_netdevice_notifier_net(struct net *net,
2107 				      struct notifier_block *nb)
2108 {
2109 	int err;
2110 
2111 	rtnl_net_lock(net);
2112 	err = __unregister_netdevice_notifier_net(net, nb);
2113 	rtnl_net_unlock(net);
2114 
2115 	return err;
2116 }
2117 EXPORT_SYMBOL(unregister_netdevice_notifier_net);
2118 
2119 static void __move_netdevice_notifier_net(struct net *src_net,
2120 					  struct net *dst_net,
2121 					  struct notifier_block *nb)
2122 {
2123 	__unregister_netdevice_notifier_net(src_net, nb);
2124 	__register_netdevice_notifier_net(dst_net, nb, true);
2125 }
2126 
2127 static void rtnl_net_dev_lock(struct net_device *dev)
2128 {
2129 	bool again;
2130 
2131 	do {
2132 		struct net *net;
2133 
2134 		again = false;
2135 
2136 		/* netns might be being dismantled. */
2137 		rcu_read_lock();
2138 		net = dev_net_rcu(dev);
2139 		net_passive_inc(net);
2140 		rcu_read_unlock();
2141 
2142 		rtnl_net_lock(net);
2143 
2144 #ifdef CONFIG_NET_NS
2145 		/* dev might have been moved to another netns. */
2146 		if (!net_eq(net, rcu_access_pointer(dev->nd_net.net))) {
2147 			rtnl_net_unlock(net);
2148 			net_passive_dec(net);
2149 			again = true;
2150 		}
2151 #endif
2152 	} while (again);
2153 }
2154 
2155 static void rtnl_net_dev_unlock(struct net_device *dev)
2156 {
2157 	struct net *net = dev_net(dev);
2158 
2159 	rtnl_net_unlock(net);
2160 	net_passive_dec(net);
2161 }
2162 
2163 int register_netdevice_notifier_dev_net(struct net_device *dev,
2164 					struct notifier_block *nb,
2165 					struct netdev_net_notifier *nn)
2166 {
2167 	int err;
2168 
2169 	rtnl_net_dev_lock(dev);
2170 	err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
2171 	if (!err) {
2172 		nn->nb = nb;
2173 		list_add(&nn->list, &dev->net_notifier_list);
2174 	}
2175 	rtnl_net_dev_unlock(dev);
2176 
2177 	return err;
2178 }
2179 EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
2180 
2181 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
2182 					  struct notifier_block *nb,
2183 					  struct netdev_net_notifier *nn)
2184 {
2185 	int err;
2186 
2187 	rtnl_net_dev_lock(dev);
2188 	list_del(&nn->list);
2189 	err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
2190 	rtnl_net_dev_unlock(dev);
2191 
2192 	return err;
2193 }
2194 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
2195 
2196 static void move_netdevice_notifiers_dev_net(struct net_device *dev,
2197 					     struct net *net)
2198 {
2199 	struct netdev_net_notifier *nn;
2200 
2201 	list_for_each_entry(nn, &dev->net_notifier_list, list)
2202 		__move_netdevice_notifier_net(dev_net(dev), net, nn->nb);
2203 }
2204 
2205 /**
2206  *	call_netdevice_notifiers_info - call all network notifier blocks
2207  *	@val: value passed unmodified to notifier function
2208  *	@info: notifier information data
2209  *
2210  *	Call all network notifier blocks.  Parameters and return value
2211  *	are as for raw_notifier_call_chain().
2212  */
2213 
2214 int call_netdevice_notifiers_info(unsigned long val,
2215 				  struct netdev_notifier_info *info)
2216 {
2217 	struct net *net = dev_net(info->dev);
2218 	int ret;
2219 
2220 	ASSERT_RTNL();
2221 
2222 	/* Run per-netns notifier block chain first, then run the global one.
2223 	 * Hopefully, one day, the global one is going to be removed after
2224 	 * all notifier block registrators get converted to be per-netns.
2225 	 */
2226 	ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
2227 	if (ret & NOTIFY_STOP_MASK)
2228 		return ret;
2229 	return raw_notifier_call_chain(&netdev_chain, val, info);
2230 }
2231 
2232 /**
2233  *	call_netdevice_notifiers_info_robust - call per-netns notifier blocks
2234  *	                                       for and rollback on error
2235  *	@val_up: value passed unmodified to notifier function
2236  *	@val_down: value passed unmodified to the notifier function when
2237  *	           recovering from an error on @val_up
2238  *	@info: notifier information data
2239  *
2240  *	Call all per-netns network notifier blocks, but not notifier blocks on
2241  *	the global notifier chain. Parameters and return value are as for
2242  *	raw_notifier_call_chain_robust().
2243  */
2244 
2245 static int
2246 call_netdevice_notifiers_info_robust(unsigned long val_up,
2247 				     unsigned long val_down,
2248 				     struct netdev_notifier_info *info)
2249 {
2250 	struct net *net = dev_net(info->dev);
2251 
2252 	ASSERT_RTNL();
2253 
2254 	return raw_notifier_call_chain_robust(&net->netdev_chain,
2255 					      val_up, val_down, info);
2256 }
2257 
2258 static int call_netdevice_notifiers_extack(unsigned long val,
2259 					   struct net_device *dev,
2260 					   struct netlink_ext_ack *extack)
2261 {
2262 	struct netdev_notifier_info info = {
2263 		.dev = dev,
2264 		.extack = extack,
2265 	};
2266 
2267 	return call_netdevice_notifiers_info(val, &info);
2268 }
2269 
2270 /**
2271  *	call_netdevice_notifiers - call all network notifier blocks
2272  *      @val: value passed unmodified to notifier function
2273  *      @dev: net_device pointer passed unmodified to notifier function
2274  *
2275  *	Call all network notifier blocks.  Parameters and return value
2276  *	are as for raw_notifier_call_chain().
2277  */
2278 
2279 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
2280 {
2281 	return call_netdevice_notifiers_extack(val, dev, NULL);
2282 }
2283 EXPORT_SYMBOL(call_netdevice_notifiers);
2284 
2285 /**
2286  *	call_netdevice_notifiers_mtu - call all network notifier blocks
2287  *	@val: value passed unmodified to notifier function
2288  *	@dev: net_device pointer passed unmodified to notifier function
2289  *	@arg: additional u32 argument passed to the notifier function
2290  *
2291  *	Call all network notifier blocks.  Parameters and return value
2292  *	are as for raw_notifier_call_chain().
2293  */
2294 static int call_netdevice_notifiers_mtu(unsigned long val,
2295 					struct net_device *dev, u32 arg)
2296 {
2297 	struct netdev_notifier_info_ext info = {
2298 		.info.dev = dev,
2299 		.ext.mtu = arg,
2300 	};
2301 
2302 	BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2303 
2304 	return call_netdevice_notifiers_info(val, &info.info);
2305 }
2306 
2307 #ifdef CONFIG_NET_INGRESS
2308 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2309 
2310 void net_inc_ingress_queue(void)
2311 {
2312 	static_branch_inc(&ingress_needed_key);
2313 }
2314 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2315 
2316 void net_dec_ingress_queue(void)
2317 {
2318 	static_branch_dec(&ingress_needed_key);
2319 }
2320 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2321 #endif
2322 
2323 #ifdef CONFIG_NET_EGRESS
2324 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2325 
2326 void net_inc_egress_queue(void)
2327 {
2328 	static_branch_inc(&egress_needed_key);
2329 }
2330 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2331 
2332 void net_dec_egress_queue(void)
2333 {
2334 	static_branch_dec(&egress_needed_key);
2335 }
2336 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2337 #endif
2338 
2339 #ifdef CONFIG_NET_CLS_ACT
2340 DEFINE_STATIC_KEY_FALSE(tcf_sw_enabled_key);
2341 EXPORT_SYMBOL(tcf_sw_enabled_key);
2342 #endif
2343 
2344 DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2345 EXPORT_SYMBOL(netstamp_needed_key);
2346 #ifdef CONFIG_JUMP_LABEL
2347 static atomic_t netstamp_needed_deferred;
2348 static atomic_t netstamp_wanted;
2349 static void netstamp_clear(struct work_struct *work)
2350 {
2351 	int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2352 	int wanted;
2353 
2354 	wanted = atomic_add_return(deferred, &netstamp_wanted);
2355 	if (wanted > 0)
2356 		static_branch_enable(&netstamp_needed_key);
2357 	else
2358 		static_branch_disable(&netstamp_needed_key);
2359 }
2360 static DECLARE_WORK(netstamp_work, netstamp_clear);
2361 #endif
2362 
2363 void net_enable_timestamp(void)
2364 {
2365 #ifdef CONFIG_JUMP_LABEL
2366 	int wanted = atomic_read(&netstamp_wanted);
2367 
2368 	while (wanted > 0) {
2369 		if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted + 1))
2370 			return;
2371 	}
2372 	atomic_inc(&netstamp_needed_deferred);
2373 	schedule_work(&netstamp_work);
2374 #else
2375 	static_branch_inc(&netstamp_needed_key);
2376 #endif
2377 }
2378 EXPORT_SYMBOL(net_enable_timestamp);
2379 
2380 void net_disable_timestamp(void)
2381 {
2382 #ifdef CONFIG_JUMP_LABEL
2383 	int wanted = atomic_read(&netstamp_wanted);
2384 
2385 	while (wanted > 1) {
2386 		if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted - 1))
2387 			return;
2388 	}
2389 	atomic_dec(&netstamp_needed_deferred);
2390 	schedule_work(&netstamp_work);
2391 #else
2392 	static_branch_dec(&netstamp_needed_key);
2393 #endif
2394 }
2395 EXPORT_SYMBOL(net_disable_timestamp);
2396 
2397 static inline void net_timestamp_set(struct sk_buff *skb)
2398 {
2399 	skb->tstamp = 0;
2400 	skb->tstamp_type = SKB_CLOCK_REALTIME;
2401 	if (static_branch_unlikely(&netstamp_needed_key))
2402 		skb->tstamp = ktime_get_real();
2403 }
2404 
2405 #define net_timestamp_check(COND, SKB)				\
2406 	if (static_branch_unlikely(&netstamp_needed_key)) {	\
2407 		if ((COND) && !(SKB)->tstamp)			\
2408 			(SKB)->tstamp = ktime_get_real();	\
2409 	}							\
2410 
2411 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2412 {
2413 	return __is_skb_forwardable(dev, skb, true);
2414 }
2415 EXPORT_SYMBOL_GPL(is_skb_forwardable);
2416 
2417 static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb,
2418 			      bool check_mtu)
2419 {
2420 	int ret = ____dev_forward_skb(dev, skb, check_mtu);
2421 
2422 	if (likely(!ret)) {
2423 		skb->protocol = eth_type_trans(skb, dev);
2424 		skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2425 	}
2426 
2427 	return ret;
2428 }
2429 
2430 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2431 {
2432 	return __dev_forward_skb2(dev, skb, true);
2433 }
2434 EXPORT_SYMBOL_GPL(__dev_forward_skb);
2435 
2436 /**
2437  * dev_forward_skb - loopback an skb to another netif
2438  *
2439  * @dev: destination network device
2440  * @skb: buffer to forward
2441  *
2442  * return values:
2443  *	NET_RX_SUCCESS	(no congestion)
2444  *	NET_RX_DROP     (packet was dropped, but freed)
2445  *
2446  * dev_forward_skb can be used for injecting an skb from the
2447  * start_xmit function of one device into the receive queue
2448  * of another device.
2449  *
2450  * The receiving device may be in another namespace, so
2451  * we have to clear all information in the skb that could
2452  * impact namespace isolation.
2453  */
2454 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2455 {
2456 	return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2457 }
2458 EXPORT_SYMBOL_GPL(dev_forward_skb);
2459 
2460 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb)
2461 {
2462 	return __dev_forward_skb2(dev, skb, false) ?: netif_rx_internal(skb);
2463 }
2464 
2465 static inline int deliver_skb(struct sk_buff *skb,
2466 			      struct packet_type *pt_prev,
2467 			      struct net_device *orig_dev)
2468 {
2469 	if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2470 		return -ENOMEM;
2471 	refcount_inc(&skb->users);
2472 	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2473 }
2474 
2475 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2476 					  struct packet_type **pt,
2477 					  struct net_device *orig_dev,
2478 					  __be16 type,
2479 					  struct list_head *ptype_list)
2480 {
2481 	struct packet_type *ptype, *pt_prev = *pt;
2482 
2483 	list_for_each_entry_rcu(ptype, ptype_list, list) {
2484 		if (ptype->type != type)
2485 			continue;
2486 		if (pt_prev)
2487 			deliver_skb(skb, pt_prev, orig_dev);
2488 		pt_prev = ptype;
2489 	}
2490 	*pt = pt_prev;
2491 }
2492 
2493 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2494 {
2495 	if (!ptype->af_packet_priv || !skb->sk)
2496 		return false;
2497 
2498 	if (ptype->id_match)
2499 		return ptype->id_match(ptype, skb->sk);
2500 	else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2501 		return true;
2502 
2503 	return false;
2504 }
2505 
2506 /**
2507  * dev_nit_active_rcu - return true if any network interface taps are in use
2508  *
2509  * The caller must hold the RCU lock
2510  *
2511  * @dev: network device to check for the presence of taps
2512  */
2513 bool dev_nit_active_rcu(const struct net_device *dev)
2514 {
2515 	/* Callers may hold either RCU or RCU BH lock */
2516 	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
2517 
2518 	return !list_empty(&dev_net(dev)->ptype_all) ||
2519 	       !list_empty(&dev->ptype_all);
2520 }
2521 EXPORT_SYMBOL_GPL(dev_nit_active_rcu);
2522 
2523 /*
2524  *	Support routine. Sends outgoing frames to any network
2525  *	taps currently in use.
2526  */
2527 
2528 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2529 {
2530 	struct packet_type *ptype, *pt_prev = NULL;
2531 	struct list_head *ptype_list;
2532 	struct sk_buff *skb2 = NULL;
2533 
2534 	rcu_read_lock();
2535 	ptype_list = &dev_net_rcu(dev)->ptype_all;
2536 again:
2537 	list_for_each_entry_rcu(ptype, ptype_list, list) {
2538 		if (READ_ONCE(ptype->ignore_outgoing))
2539 			continue;
2540 
2541 		/* Never send packets back to the socket
2542 		 * they originated from - MvS (miquels@drinkel.ow.org)
2543 		 */
2544 		if (skb_loop_sk(ptype, skb))
2545 			continue;
2546 
2547 		if (pt_prev) {
2548 			deliver_skb(skb2, pt_prev, skb->dev);
2549 			pt_prev = ptype;
2550 			continue;
2551 		}
2552 
2553 		/* need to clone skb, done only once */
2554 		skb2 = skb_clone(skb, GFP_ATOMIC);
2555 		if (!skb2)
2556 			goto out_unlock;
2557 
2558 		net_timestamp_set(skb2);
2559 
2560 		/* skb->nh should be correctly
2561 		 * set by sender, so that the second statement is
2562 		 * just protection against buggy protocols.
2563 		 */
2564 		skb_reset_mac_header(skb2);
2565 
2566 		if (skb_network_header(skb2) < skb2->data ||
2567 		    skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2568 			net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2569 					     ntohs(skb2->protocol),
2570 					     dev->name);
2571 			skb_reset_network_header(skb2);
2572 		}
2573 
2574 		skb2->transport_header = skb2->network_header;
2575 		skb2->pkt_type = PACKET_OUTGOING;
2576 		pt_prev = ptype;
2577 	}
2578 
2579 	if (ptype_list != &dev->ptype_all) {
2580 		ptype_list = &dev->ptype_all;
2581 		goto again;
2582 	}
2583 out_unlock:
2584 	if (pt_prev) {
2585 		if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2586 			pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2587 		else
2588 			kfree_skb(skb2);
2589 	}
2590 	rcu_read_unlock();
2591 }
2592 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2593 
2594 /**
2595  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2596  * @dev: Network device
2597  * @txq: number of queues available
2598  *
2599  * If real_num_tx_queues is changed the tc mappings may no longer be
2600  * valid. To resolve this verify the tc mapping remains valid and if
2601  * not NULL the mapping. With no priorities mapping to this
2602  * offset/count pair it will no longer be used. In the worst case TC0
2603  * is invalid nothing can be done so disable priority mappings. If is
2604  * expected that drivers will fix this mapping if they can before
2605  * calling netif_set_real_num_tx_queues.
2606  */
2607 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2608 {
2609 	int i;
2610 	struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2611 
2612 	/* If TC0 is invalidated disable TC mapping */
2613 	if (tc->offset + tc->count > txq) {
2614 		netdev_warn(dev, "Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2615 		dev->num_tc = 0;
2616 		return;
2617 	}
2618 
2619 	/* Invalidated prio to tc mappings set to TC0 */
2620 	for (i = 1; i < TC_BITMASK + 1; i++) {
2621 		int q = netdev_get_prio_tc_map(dev, i);
2622 
2623 		tc = &dev->tc_to_txq[q];
2624 		if (tc->offset + tc->count > txq) {
2625 			netdev_warn(dev, "Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2626 				    i, q);
2627 			netdev_set_prio_tc_map(dev, i, 0);
2628 		}
2629 	}
2630 }
2631 
2632 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2633 {
2634 	if (dev->num_tc) {
2635 		struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2636 		int i;
2637 
2638 		/* walk through the TCs and see if it falls into any of them */
2639 		for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2640 			if ((txq - tc->offset) < tc->count)
2641 				return i;
2642 		}
2643 
2644 		/* didn't find it, just return -1 to indicate no match */
2645 		return -1;
2646 	}
2647 
2648 	return 0;
2649 }
2650 EXPORT_SYMBOL(netdev_txq_to_tc);
2651 
2652 #ifdef CONFIG_XPS
2653 static struct static_key xps_needed __read_mostly;
2654 static struct static_key xps_rxqs_needed __read_mostly;
2655 static DEFINE_MUTEX(xps_map_mutex);
2656 #define xmap_dereference(P)		\
2657 	rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2658 
2659 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2660 			     struct xps_dev_maps *old_maps, int tci, u16 index)
2661 {
2662 	struct xps_map *map = NULL;
2663 	int pos;
2664 
2665 	map = xmap_dereference(dev_maps->attr_map[tci]);
2666 	if (!map)
2667 		return false;
2668 
2669 	for (pos = map->len; pos--;) {
2670 		if (map->queues[pos] != index)
2671 			continue;
2672 
2673 		if (map->len > 1) {
2674 			map->queues[pos] = map->queues[--map->len];
2675 			break;
2676 		}
2677 
2678 		if (old_maps)
2679 			RCU_INIT_POINTER(old_maps->attr_map[tci], NULL);
2680 		RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2681 		kfree_rcu(map, rcu);
2682 		return false;
2683 	}
2684 
2685 	return true;
2686 }
2687 
2688 static bool remove_xps_queue_cpu(struct net_device *dev,
2689 				 struct xps_dev_maps *dev_maps,
2690 				 int cpu, u16 offset, u16 count)
2691 {
2692 	int num_tc = dev_maps->num_tc;
2693 	bool active = false;
2694 	int tci;
2695 
2696 	for (tci = cpu * num_tc; num_tc--; tci++) {
2697 		int i, j;
2698 
2699 		for (i = count, j = offset; i--; j++) {
2700 			if (!remove_xps_queue(dev_maps, NULL, tci, j))
2701 				break;
2702 		}
2703 
2704 		active |= i < 0;
2705 	}
2706 
2707 	return active;
2708 }
2709 
2710 static void reset_xps_maps(struct net_device *dev,
2711 			   struct xps_dev_maps *dev_maps,
2712 			   enum xps_map_type type)
2713 {
2714 	static_key_slow_dec_cpuslocked(&xps_needed);
2715 	if (type == XPS_RXQS)
2716 		static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2717 
2718 	RCU_INIT_POINTER(dev->xps_maps[type], NULL);
2719 
2720 	kfree_rcu(dev_maps, rcu);
2721 }
2722 
2723 static void clean_xps_maps(struct net_device *dev, enum xps_map_type type,
2724 			   u16 offset, u16 count)
2725 {
2726 	struct xps_dev_maps *dev_maps;
2727 	bool active = false;
2728 	int i, j;
2729 
2730 	dev_maps = xmap_dereference(dev->xps_maps[type]);
2731 	if (!dev_maps)
2732 		return;
2733 
2734 	for (j = 0; j < dev_maps->nr_ids; j++)
2735 		active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, count);
2736 	if (!active)
2737 		reset_xps_maps(dev, dev_maps, type);
2738 
2739 	if (type == XPS_CPUS) {
2740 		for (i = offset + (count - 1); count--; i--)
2741 			netdev_queue_numa_node_write(
2742 				netdev_get_tx_queue(dev, i), NUMA_NO_NODE);
2743 	}
2744 }
2745 
2746 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2747 				   u16 count)
2748 {
2749 	if (!static_key_false(&xps_needed))
2750 		return;
2751 
2752 	cpus_read_lock();
2753 	mutex_lock(&xps_map_mutex);
2754 
2755 	if (static_key_false(&xps_rxqs_needed))
2756 		clean_xps_maps(dev, XPS_RXQS, offset, count);
2757 
2758 	clean_xps_maps(dev, XPS_CPUS, offset, count);
2759 
2760 	mutex_unlock(&xps_map_mutex);
2761 	cpus_read_unlock();
2762 }
2763 
2764 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2765 {
2766 	netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2767 }
2768 
2769 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2770 				      u16 index, bool is_rxqs_map)
2771 {
2772 	struct xps_map *new_map;
2773 	int alloc_len = XPS_MIN_MAP_ALLOC;
2774 	int i, pos;
2775 
2776 	for (pos = 0; map && pos < map->len; pos++) {
2777 		if (map->queues[pos] != index)
2778 			continue;
2779 		return map;
2780 	}
2781 
2782 	/* Need to add tx-queue to this CPU's/rx-queue's existing map */
2783 	if (map) {
2784 		if (pos < map->alloc_len)
2785 			return map;
2786 
2787 		alloc_len = map->alloc_len * 2;
2788 	}
2789 
2790 	/* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2791 	 *  map
2792 	 */
2793 	if (is_rxqs_map)
2794 		new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2795 	else
2796 		new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2797 				       cpu_to_node(attr_index));
2798 	if (!new_map)
2799 		return NULL;
2800 
2801 	for (i = 0; i < pos; i++)
2802 		new_map->queues[i] = map->queues[i];
2803 	new_map->alloc_len = alloc_len;
2804 	new_map->len = pos;
2805 
2806 	return new_map;
2807 }
2808 
2809 /* Copy xps maps at a given index */
2810 static void xps_copy_dev_maps(struct xps_dev_maps *dev_maps,
2811 			      struct xps_dev_maps *new_dev_maps, int index,
2812 			      int tc, bool skip_tc)
2813 {
2814 	int i, tci = index * dev_maps->num_tc;
2815 	struct xps_map *map;
2816 
2817 	/* copy maps belonging to foreign traffic classes */
2818 	for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2819 		if (i == tc && skip_tc)
2820 			continue;
2821 
2822 		/* fill in the new device map from the old device map */
2823 		map = xmap_dereference(dev_maps->attr_map[tci]);
2824 		RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2825 	}
2826 }
2827 
2828 /* Must be called under cpus_read_lock */
2829 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2830 			  u16 index, enum xps_map_type type)
2831 {
2832 	struct xps_dev_maps *dev_maps, *new_dev_maps = NULL, *old_dev_maps = NULL;
2833 	const unsigned long *online_mask = NULL;
2834 	bool active = false, copy = false;
2835 	int i, j, tci, numa_node_id = -2;
2836 	int maps_sz, num_tc = 1, tc = 0;
2837 	struct xps_map *map, *new_map;
2838 	unsigned int nr_ids;
2839 
2840 	WARN_ON_ONCE(index >= dev->num_tx_queues);
2841 
2842 	if (dev->num_tc) {
2843 		/* Do not allow XPS on subordinate device directly */
2844 		num_tc = dev->num_tc;
2845 		if (num_tc < 0)
2846 			return -EINVAL;
2847 
2848 		/* If queue belongs to subordinate dev use its map */
2849 		dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2850 
2851 		tc = netdev_txq_to_tc(dev, index);
2852 		if (tc < 0)
2853 			return -EINVAL;
2854 	}
2855 
2856 	mutex_lock(&xps_map_mutex);
2857 
2858 	dev_maps = xmap_dereference(dev->xps_maps[type]);
2859 	if (type == XPS_RXQS) {
2860 		maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2861 		nr_ids = dev->num_rx_queues;
2862 	} else {
2863 		maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2864 		if (num_possible_cpus() > 1)
2865 			online_mask = cpumask_bits(cpu_online_mask);
2866 		nr_ids = nr_cpu_ids;
2867 	}
2868 
2869 	if (maps_sz < L1_CACHE_BYTES)
2870 		maps_sz = L1_CACHE_BYTES;
2871 
2872 	/* The old dev_maps could be larger or smaller than the one we're
2873 	 * setting up now, as dev->num_tc or nr_ids could have been updated in
2874 	 * between. We could try to be smart, but let's be safe instead and only
2875 	 * copy foreign traffic classes if the two map sizes match.
2876 	 */
2877 	if (dev_maps &&
2878 	    dev_maps->num_tc == num_tc && dev_maps->nr_ids == nr_ids)
2879 		copy = true;
2880 
2881 	/* allocate memory for queue storage */
2882 	for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2883 	     j < nr_ids;) {
2884 		if (!new_dev_maps) {
2885 			new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2886 			if (!new_dev_maps) {
2887 				mutex_unlock(&xps_map_mutex);
2888 				return -ENOMEM;
2889 			}
2890 
2891 			new_dev_maps->nr_ids = nr_ids;
2892 			new_dev_maps->num_tc = num_tc;
2893 		}
2894 
2895 		tci = j * num_tc + tc;
2896 		map = copy ? xmap_dereference(dev_maps->attr_map[tci]) : NULL;
2897 
2898 		map = expand_xps_map(map, j, index, type == XPS_RXQS);
2899 		if (!map)
2900 			goto error;
2901 
2902 		RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2903 	}
2904 
2905 	if (!new_dev_maps)
2906 		goto out_no_new_maps;
2907 
2908 	if (!dev_maps) {
2909 		/* Increment static keys at most once per type */
2910 		static_key_slow_inc_cpuslocked(&xps_needed);
2911 		if (type == XPS_RXQS)
2912 			static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2913 	}
2914 
2915 	for (j = 0; j < nr_ids; j++) {
2916 		bool skip_tc = false;
2917 
2918 		tci = j * num_tc + tc;
2919 		if (netif_attr_test_mask(j, mask, nr_ids) &&
2920 		    netif_attr_test_online(j, online_mask, nr_ids)) {
2921 			/* add tx-queue to CPU/rx-queue maps */
2922 			int pos = 0;
2923 
2924 			skip_tc = true;
2925 
2926 			map = xmap_dereference(new_dev_maps->attr_map[tci]);
2927 			while ((pos < map->len) && (map->queues[pos] != index))
2928 				pos++;
2929 
2930 			if (pos == map->len)
2931 				map->queues[map->len++] = index;
2932 #ifdef CONFIG_NUMA
2933 			if (type == XPS_CPUS) {
2934 				if (numa_node_id == -2)
2935 					numa_node_id = cpu_to_node(j);
2936 				else if (numa_node_id != cpu_to_node(j))
2937 					numa_node_id = -1;
2938 			}
2939 #endif
2940 		}
2941 
2942 		if (copy)
2943 			xps_copy_dev_maps(dev_maps, new_dev_maps, j, tc,
2944 					  skip_tc);
2945 	}
2946 
2947 	rcu_assign_pointer(dev->xps_maps[type], new_dev_maps);
2948 
2949 	/* Cleanup old maps */
2950 	if (!dev_maps)
2951 		goto out_no_old_maps;
2952 
2953 	for (j = 0; j < dev_maps->nr_ids; j++) {
2954 		for (i = num_tc, tci = j * dev_maps->num_tc; i--; tci++) {
2955 			map = xmap_dereference(dev_maps->attr_map[tci]);
2956 			if (!map)
2957 				continue;
2958 
2959 			if (copy) {
2960 				new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2961 				if (map == new_map)
2962 					continue;
2963 			}
2964 
2965 			RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2966 			kfree_rcu(map, rcu);
2967 		}
2968 	}
2969 
2970 	old_dev_maps = dev_maps;
2971 
2972 out_no_old_maps:
2973 	dev_maps = new_dev_maps;
2974 	active = true;
2975 
2976 out_no_new_maps:
2977 	if (type == XPS_CPUS)
2978 		/* update Tx queue numa node */
2979 		netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2980 					     (numa_node_id >= 0) ?
2981 					     numa_node_id : NUMA_NO_NODE);
2982 
2983 	if (!dev_maps)
2984 		goto out_no_maps;
2985 
2986 	/* removes tx-queue from unused CPUs/rx-queues */
2987 	for (j = 0; j < dev_maps->nr_ids; j++) {
2988 		tci = j * dev_maps->num_tc;
2989 
2990 		for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2991 			if (i == tc &&
2992 			    netif_attr_test_mask(j, mask, dev_maps->nr_ids) &&
2993 			    netif_attr_test_online(j, online_mask, dev_maps->nr_ids))
2994 				continue;
2995 
2996 			active |= remove_xps_queue(dev_maps,
2997 						   copy ? old_dev_maps : NULL,
2998 						   tci, index);
2999 		}
3000 	}
3001 
3002 	if (old_dev_maps)
3003 		kfree_rcu(old_dev_maps, rcu);
3004 
3005 	/* free map if not active */
3006 	if (!active)
3007 		reset_xps_maps(dev, dev_maps, type);
3008 
3009 out_no_maps:
3010 	mutex_unlock(&xps_map_mutex);
3011 
3012 	return 0;
3013 error:
3014 	/* remove any maps that we added */
3015 	for (j = 0; j < nr_ids; j++) {
3016 		for (i = num_tc, tci = j * num_tc; i--; tci++) {
3017 			new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
3018 			map = copy ?
3019 			      xmap_dereference(dev_maps->attr_map[tci]) :
3020 			      NULL;
3021 			if (new_map && new_map != map)
3022 				kfree(new_map);
3023 		}
3024 	}
3025 
3026 	mutex_unlock(&xps_map_mutex);
3027 
3028 	kfree(new_dev_maps);
3029 	return -ENOMEM;
3030 }
3031 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
3032 
3033 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
3034 			u16 index)
3035 {
3036 	int ret;
3037 
3038 	cpus_read_lock();
3039 	ret =  __netif_set_xps_queue(dev, cpumask_bits(mask), index, XPS_CPUS);
3040 	cpus_read_unlock();
3041 
3042 	return ret;
3043 }
3044 EXPORT_SYMBOL(netif_set_xps_queue);
3045 
3046 #endif
3047 static void netdev_unbind_all_sb_channels(struct net_device *dev)
3048 {
3049 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
3050 
3051 	/* Unbind any subordinate channels */
3052 	while (txq-- != &dev->_tx[0]) {
3053 		if (txq->sb_dev)
3054 			netdev_unbind_sb_channel(dev, txq->sb_dev);
3055 	}
3056 }
3057 
3058 void netdev_reset_tc(struct net_device *dev)
3059 {
3060 #ifdef CONFIG_XPS
3061 	netif_reset_xps_queues_gt(dev, 0);
3062 #endif
3063 	netdev_unbind_all_sb_channels(dev);
3064 
3065 	/* Reset TC configuration of device */
3066 	dev->num_tc = 0;
3067 	memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
3068 	memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
3069 }
3070 EXPORT_SYMBOL(netdev_reset_tc);
3071 
3072 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
3073 {
3074 	if (tc >= dev->num_tc)
3075 		return -EINVAL;
3076 
3077 #ifdef CONFIG_XPS
3078 	netif_reset_xps_queues(dev, offset, count);
3079 #endif
3080 	dev->tc_to_txq[tc].count = count;
3081 	dev->tc_to_txq[tc].offset = offset;
3082 	return 0;
3083 }
3084 EXPORT_SYMBOL(netdev_set_tc_queue);
3085 
3086 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
3087 {
3088 	if (num_tc > TC_MAX_QUEUE)
3089 		return -EINVAL;
3090 
3091 #ifdef CONFIG_XPS
3092 	netif_reset_xps_queues_gt(dev, 0);
3093 #endif
3094 	netdev_unbind_all_sb_channels(dev);
3095 
3096 	dev->num_tc = num_tc;
3097 	return 0;
3098 }
3099 EXPORT_SYMBOL(netdev_set_num_tc);
3100 
3101 void netdev_unbind_sb_channel(struct net_device *dev,
3102 			      struct net_device *sb_dev)
3103 {
3104 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
3105 
3106 #ifdef CONFIG_XPS
3107 	netif_reset_xps_queues_gt(sb_dev, 0);
3108 #endif
3109 	memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
3110 	memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
3111 
3112 	while (txq-- != &dev->_tx[0]) {
3113 		if (txq->sb_dev == sb_dev)
3114 			txq->sb_dev = NULL;
3115 	}
3116 }
3117 EXPORT_SYMBOL(netdev_unbind_sb_channel);
3118 
3119 int netdev_bind_sb_channel_queue(struct net_device *dev,
3120 				 struct net_device *sb_dev,
3121 				 u8 tc, u16 count, u16 offset)
3122 {
3123 	/* Make certain the sb_dev and dev are already configured */
3124 	if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
3125 		return -EINVAL;
3126 
3127 	/* We cannot hand out queues we don't have */
3128 	if ((offset + count) > dev->real_num_tx_queues)
3129 		return -EINVAL;
3130 
3131 	/* Record the mapping */
3132 	sb_dev->tc_to_txq[tc].count = count;
3133 	sb_dev->tc_to_txq[tc].offset = offset;
3134 
3135 	/* Provide a way for Tx queue to find the tc_to_txq map or
3136 	 * XPS map for itself.
3137 	 */
3138 	while (count--)
3139 		netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
3140 
3141 	return 0;
3142 }
3143 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
3144 
3145 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
3146 {
3147 	/* Do not use a multiqueue device to represent a subordinate channel */
3148 	if (netif_is_multiqueue(dev))
3149 		return -ENODEV;
3150 
3151 	/* We allow channels 1 - 32767 to be used for subordinate channels.
3152 	 * Channel 0 is meant to be "native" mode and used only to represent
3153 	 * the main root device. We allow writing 0 to reset the device back
3154 	 * to normal mode after being used as a subordinate channel.
3155 	 */
3156 	if (channel > S16_MAX)
3157 		return -EINVAL;
3158 
3159 	dev->num_tc = -channel;
3160 
3161 	return 0;
3162 }
3163 EXPORT_SYMBOL(netdev_set_sb_channel);
3164 
3165 /*
3166  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
3167  * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
3168  */
3169 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
3170 {
3171 	bool disabling;
3172 	int rc;
3173 
3174 	disabling = txq < dev->real_num_tx_queues;
3175 
3176 	if (txq < 1 || txq > dev->num_tx_queues)
3177 		return -EINVAL;
3178 
3179 	if (dev->reg_state == NETREG_REGISTERED ||
3180 	    dev->reg_state == NETREG_UNREGISTERING) {
3181 		netdev_ops_assert_locked(dev);
3182 
3183 		rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
3184 						  txq);
3185 		if (rc)
3186 			return rc;
3187 
3188 		if (dev->num_tc)
3189 			netif_setup_tc(dev, txq);
3190 
3191 		net_shaper_set_real_num_tx_queues(dev, txq);
3192 
3193 		dev_qdisc_change_real_num_tx(dev, txq);
3194 
3195 		dev->real_num_tx_queues = txq;
3196 
3197 		if (disabling) {
3198 			synchronize_net();
3199 			qdisc_reset_all_tx_gt(dev, txq);
3200 #ifdef CONFIG_XPS
3201 			netif_reset_xps_queues_gt(dev, txq);
3202 #endif
3203 		}
3204 	} else {
3205 		dev->real_num_tx_queues = txq;
3206 	}
3207 
3208 	return 0;
3209 }
3210 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
3211 
3212 /**
3213  *	netif_set_real_num_rx_queues - set actual number of RX queues used
3214  *	@dev: Network device
3215  *	@rxq: Actual number of RX queues
3216  *
3217  *	This must be called either with the rtnl_lock held or before
3218  *	registration of the net device.  Returns 0 on success, or a
3219  *	negative error code.  If called before registration, it always
3220  *	succeeds.
3221  */
3222 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
3223 {
3224 	int rc;
3225 
3226 	if (rxq < 1 || rxq > dev->num_rx_queues)
3227 		return -EINVAL;
3228 
3229 	if (dev->reg_state == NETREG_REGISTERED) {
3230 		netdev_ops_assert_locked(dev);
3231 
3232 		rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
3233 						  rxq);
3234 		if (rc)
3235 			return rc;
3236 	}
3237 
3238 	dev->real_num_rx_queues = rxq;
3239 	return 0;
3240 }
3241 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
3242 
3243 /**
3244  *	netif_set_real_num_queues - set actual number of RX and TX queues used
3245  *	@dev: Network device
3246  *	@txq: Actual number of TX queues
3247  *	@rxq: Actual number of RX queues
3248  *
3249  *	Set the real number of both TX and RX queues.
3250  *	Does nothing if the number of queues is already correct.
3251  */
3252 int netif_set_real_num_queues(struct net_device *dev,
3253 			      unsigned int txq, unsigned int rxq)
3254 {
3255 	unsigned int old_rxq = dev->real_num_rx_queues;
3256 	int err;
3257 
3258 	if (txq < 1 || txq > dev->num_tx_queues ||
3259 	    rxq < 1 || rxq > dev->num_rx_queues)
3260 		return -EINVAL;
3261 
3262 	/* Start from increases, so the error path only does decreases -
3263 	 * decreases can't fail.
3264 	 */
3265 	if (rxq > dev->real_num_rx_queues) {
3266 		err = netif_set_real_num_rx_queues(dev, rxq);
3267 		if (err)
3268 			return err;
3269 	}
3270 	if (txq > dev->real_num_tx_queues) {
3271 		err = netif_set_real_num_tx_queues(dev, txq);
3272 		if (err)
3273 			goto undo_rx;
3274 	}
3275 	if (rxq < dev->real_num_rx_queues)
3276 		WARN_ON(netif_set_real_num_rx_queues(dev, rxq));
3277 	if (txq < dev->real_num_tx_queues)
3278 		WARN_ON(netif_set_real_num_tx_queues(dev, txq));
3279 
3280 	return 0;
3281 undo_rx:
3282 	WARN_ON(netif_set_real_num_rx_queues(dev, old_rxq));
3283 	return err;
3284 }
3285 EXPORT_SYMBOL(netif_set_real_num_queues);
3286 
3287 /**
3288  * netif_set_tso_max_size() - set the max size of TSO frames supported
3289  * @dev:	netdev to update
3290  * @size:	max skb->len of a TSO frame
3291  *
3292  * Set the limit on the size of TSO super-frames the device can handle.
3293  * Unless explicitly set the stack will assume the value of
3294  * %GSO_LEGACY_MAX_SIZE.
3295  */
3296 void netif_set_tso_max_size(struct net_device *dev, unsigned int size)
3297 {
3298 	dev->tso_max_size = min(GSO_MAX_SIZE, size);
3299 	if (size < READ_ONCE(dev->gso_max_size))
3300 		netif_set_gso_max_size(dev, size);
3301 	if (size < READ_ONCE(dev->gso_ipv4_max_size))
3302 		netif_set_gso_ipv4_max_size(dev, size);
3303 }
3304 EXPORT_SYMBOL(netif_set_tso_max_size);
3305 
3306 /**
3307  * netif_set_tso_max_segs() - set the max number of segs supported for TSO
3308  * @dev:	netdev to update
3309  * @segs:	max number of TCP segments
3310  *
3311  * Set the limit on the number of TCP segments the device can generate from
3312  * a single TSO super-frame.
3313  * Unless explicitly set the stack will assume the value of %GSO_MAX_SEGS.
3314  */
3315 void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs)
3316 {
3317 	dev->tso_max_segs = segs;
3318 	if (segs < READ_ONCE(dev->gso_max_segs))
3319 		netif_set_gso_max_segs(dev, segs);
3320 }
3321 EXPORT_SYMBOL(netif_set_tso_max_segs);
3322 
3323 /**
3324  * netif_inherit_tso_max() - copy all TSO limits from a lower device to an upper
3325  * @to:		netdev to update
3326  * @from:	netdev from which to copy the limits
3327  */
3328 void netif_inherit_tso_max(struct net_device *to, const struct net_device *from)
3329 {
3330 	netif_set_tso_max_size(to, from->tso_max_size);
3331 	netif_set_tso_max_segs(to, from->tso_max_segs);
3332 }
3333 EXPORT_SYMBOL(netif_inherit_tso_max);
3334 
3335 /**
3336  * netif_get_num_default_rss_queues - default number of RSS queues
3337  *
3338  * Default value is the number of physical cores if there are only 1 or 2, or
3339  * divided by 2 if there are more.
3340  */
3341 int netif_get_num_default_rss_queues(void)
3342 {
3343 	cpumask_var_t cpus;
3344 	int cpu, count = 0;
3345 
3346 	if (unlikely(is_kdump_kernel() || !zalloc_cpumask_var(&cpus, GFP_KERNEL)))
3347 		return 1;
3348 
3349 	cpumask_copy(cpus, cpu_online_mask);
3350 	for_each_cpu(cpu, cpus) {
3351 		++count;
3352 		cpumask_andnot(cpus, cpus, topology_sibling_cpumask(cpu));
3353 	}
3354 	free_cpumask_var(cpus);
3355 
3356 	return count > 2 ? DIV_ROUND_UP(count, 2) : count;
3357 }
3358 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3359 
3360 static void __netif_reschedule(struct Qdisc *q)
3361 {
3362 	struct softnet_data *sd;
3363 	unsigned long flags;
3364 
3365 	local_irq_save(flags);
3366 	sd = this_cpu_ptr(&softnet_data);
3367 	q->next_sched = NULL;
3368 	*sd->output_queue_tailp = q;
3369 	sd->output_queue_tailp = &q->next_sched;
3370 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
3371 	local_irq_restore(flags);
3372 }
3373 
3374 void __netif_schedule(struct Qdisc *q)
3375 {
3376 	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3377 		__netif_reschedule(q);
3378 }
3379 EXPORT_SYMBOL(__netif_schedule);
3380 
3381 struct dev_kfree_skb_cb {
3382 	enum skb_drop_reason reason;
3383 };
3384 
3385 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
3386 {
3387 	return (struct dev_kfree_skb_cb *)skb->cb;
3388 }
3389 
3390 void netif_schedule_queue(struct netdev_queue *txq)
3391 {
3392 	rcu_read_lock();
3393 	if (!netif_xmit_stopped(txq)) {
3394 		struct Qdisc *q = rcu_dereference(txq->qdisc);
3395 
3396 		__netif_schedule(q);
3397 	}
3398 	rcu_read_unlock();
3399 }
3400 EXPORT_SYMBOL(netif_schedule_queue);
3401 
3402 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3403 {
3404 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3405 		struct Qdisc *q;
3406 
3407 		rcu_read_lock();
3408 		q = rcu_dereference(dev_queue->qdisc);
3409 		__netif_schedule(q);
3410 		rcu_read_unlock();
3411 	}
3412 }
3413 EXPORT_SYMBOL(netif_tx_wake_queue);
3414 
3415 void dev_kfree_skb_irq_reason(struct sk_buff *skb, enum skb_drop_reason reason)
3416 {
3417 	unsigned long flags;
3418 
3419 	if (unlikely(!skb))
3420 		return;
3421 
3422 	if (likely(refcount_read(&skb->users) == 1)) {
3423 		smp_rmb();
3424 		refcount_set(&skb->users, 0);
3425 	} else if (likely(!refcount_dec_and_test(&skb->users))) {
3426 		return;
3427 	}
3428 	get_kfree_skb_cb(skb)->reason = reason;
3429 	local_irq_save(flags);
3430 	skb->next = __this_cpu_read(softnet_data.completion_queue);
3431 	__this_cpu_write(softnet_data.completion_queue, skb);
3432 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
3433 	local_irq_restore(flags);
3434 }
3435 EXPORT_SYMBOL(dev_kfree_skb_irq_reason);
3436 
3437 void dev_kfree_skb_any_reason(struct sk_buff *skb, enum skb_drop_reason reason)
3438 {
3439 	if (in_hardirq() || irqs_disabled())
3440 		dev_kfree_skb_irq_reason(skb, reason);
3441 	else
3442 		kfree_skb_reason(skb, reason);
3443 }
3444 EXPORT_SYMBOL(dev_kfree_skb_any_reason);
3445 
3446 
3447 /**
3448  * netif_device_detach - mark device as removed
3449  * @dev: network device
3450  *
3451  * Mark device as removed from system and therefore no longer available.
3452  */
3453 void netif_device_detach(struct net_device *dev)
3454 {
3455 	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3456 	    netif_running(dev)) {
3457 		netif_tx_stop_all_queues(dev);
3458 	}
3459 }
3460 EXPORT_SYMBOL(netif_device_detach);
3461 
3462 /**
3463  * netif_device_attach - mark device as attached
3464  * @dev: network device
3465  *
3466  * Mark device as attached from system and restart if needed.
3467  */
3468 void netif_device_attach(struct net_device *dev)
3469 {
3470 	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3471 	    netif_running(dev)) {
3472 		netif_tx_wake_all_queues(dev);
3473 		netdev_watchdog_up(dev);
3474 	}
3475 }
3476 EXPORT_SYMBOL(netif_device_attach);
3477 
3478 /*
3479  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3480  * to be used as a distribution range.
3481  */
3482 static u16 skb_tx_hash(const struct net_device *dev,
3483 		       const struct net_device *sb_dev,
3484 		       struct sk_buff *skb)
3485 {
3486 	u32 hash;
3487 	u16 qoffset = 0;
3488 	u16 qcount = dev->real_num_tx_queues;
3489 
3490 	if (dev->num_tc) {
3491 		u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3492 
3493 		qoffset = sb_dev->tc_to_txq[tc].offset;
3494 		qcount = sb_dev->tc_to_txq[tc].count;
3495 		if (unlikely(!qcount)) {
3496 			net_warn_ratelimited("%s: invalid qcount, qoffset %u for tc %u\n",
3497 					     sb_dev->name, qoffset, tc);
3498 			qoffset = 0;
3499 			qcount = dev->real_num_tx_queues;
3500 		}
3501 	}
3502 
3503 	if (skb_rx_queue_recorded(skb)) {
3504 		DEBUG_NET_WARN_ON_ONCE(qcount == 0);
3505 		hash = skb_get_rx_queue(skb);
3506 		if (hash >= qoffset)
3507 			hash -= qoffset;
3508 		while (unlikely(hash >= qcount))
3509 			hash -= qcount;
3510 		return hash + qoffset;
3511 	}
3512 
3513 	return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3514 }
3515 
3516 void skb_warn_bad_offload(const struct sk_buff *skb)
3517 {
3518 	static const netdev_features_t null_features;
3519 	struct net_device *dev = skb->dev;
3520 	const char *name = "";
3521 
3522 	if (!net_ratelimit())
3523 		return;
3524 
3525 	if (dev) {
3526 		if (dev->dev.parent)
3527 			name = dev_driver_string(dev->dev.parent);
3528 		else
3529 			name = netdev_name(dev);
3530 	}
3531 	skb_dump(KERN_WARNING, skb, false);
3532 	WARN(1, "%s: caps=(%pNF, %pNF)\n",
3533 	     name, dev ? &dev->features : &null_features,
3534 	     skb->sk ? &skb->sk->sk_route_caps : &null_features);
3535 }
3536 
3537 /*
3538  * Invalidate hardware checksum when packet is to be mangled, and
3539  * complete checksum manually on outgoing path.
3540  */
3541 int skb_checksum_help(struct sk_buff *skb)
3542 {
3543 	__wsum csum;
3544 	int ret = 0, offset;
3545 
3546 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3547 		goto out_set_summed;
3548 
3549 	if (unlikely(skb_is_gso(skb))) {
3550 		skb_warn_bad_offload(skb);
3551 		return -EINVAL;
3552 	}
3553 
3554 	if (!skb_frags_readable(skb)) {
3555 		return -EFAULT;
3556 	}
3557 
3558 	/* Before computing a checksum, we should make sure no frag could
3559 	 * be modified by an external entity : checksum could be wrong.
3560 	 */
3561 	if (skb_has_shared_frag(skb)) {
3562 		ret = __skb_linearize(skb);
3563 		if (ret)
3564 			goto out;
3565 	}
3566 
3567 	offset = skb_checksum_start_offset(skb);
3568 	ret = -EINVAL;
3569 	if (unlikely(offset >= skb_headlen(skb))) {
3570 		DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3571 		WARN_ONCE(true, "offset (%d) >= skb_headlen() (%u)\n",
3572 			  offset, skb_headlen(skb));
3573 		goto out;
3574 	}
3575 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
3576 
3577 	offset += skb->csum_offset;
3578 	if (unlikely(offset + sizeof(__sum16) > skb_headlen(skb))) {
3579 		DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3580 		WARN_ONCE(true, "offset+2 (%zu) > skb_headlen() (%u)\n",
3581 			  offset + sizeof(__sum16), skb_headlen(skb));
3582 		goto out;
3583 	}
3584 	ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3585 	if (ret)
3586 		goto out;
3587 
3588 	*(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3589 out_set_summed:
3590 	skb->ip_summed = CHECKSUM_NONE;
3591 out:
3592 	return ret;
3593 }
3594 EXPORT_SYMBOL(skb_checksum_help);
3595 
3596 #ifdef CONFIG_NET_CRC32C
3597 int skb_crc32c_csum_help(struct sk_buff *skb)
3598 {
3599 	u32 crc;
3600 	int ret = 0, offset, start;
3601 
3602 	if (skb->ip_summed != CHECKSUM_PARTIAL)
3603 		goto out;
3604 
3605 	if (unlikely(skb_is_gso(skb)))
3606 		goto out;
3607 
3608 	/* Before computing a checksum, we should make sure no frag could
3609 	 * be modified by an external entity : checksum could be wrong.
3610 	 */
3611 	if (unlikely(skb_has_shared_frag(skb))) {
3612 		ret = __skb_linearize(skb);
3613 		if (ret)
3614 			goto out;
3615 	}
3616 	start = skb_checksum_start_offset(skb);
3617 	offset = start + offsetof(struct sctphdr, checksum);
3618 	if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3619 		ret = -EINVAL;
3620 		goto out;
3621 	}
3622 
3623 	ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3624 	if (ret)
3625 		goto out;
3626 
3627 	crc = ~skb_crc32c(skb, start, skb->len - start, ~0);
3628 	*(__le32 *)(skb->data + offset) = cpu_to_le32(crc);
3629 	skb_reset_csum_not_inet(skb);
3630 out:
3631 	return ret;
3632 }
3633 EXPORT_SYMBOL(skb_crc32c_csum_help);
3634 #endif /* CONFIG_NET_CRC32C */
3635 
3636 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3637 {
3638 	__be16 type = skb->protocol;
3639 
3640 	/* Tunnel gso handlers can set protocol to ethernet. */
3641 	if (type == htons(ETH_P_TEB)) {
3642 		struct ethhdr *eth;
3643 
3644 		if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3645 			return 0;
3646 
3647 		eth = (struct ethhdr *)skb->data;
3648 		type = eth->h_proto;
3649 	}
3650 
3651 	return vlan_get_protocol_and_depth(skb, type, depth);
3652 }
3653 
3654 
3655 /* Take action when hardware reception checksum errors are detected. */
3656 #ifdef CONFIG_BUG
3657 static void do_netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3658 {
3659 	netdev_err(dev, "hw csum failure\n");
3660 	skb_dump(KERN_ERR, skb, true);
3661 	dump_stack();
3662 }
3663 
3664 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3665 {
3666 	DO_ONCE_LITE(do_netdev_rx_csum_fault, dev, skb);
3667 }
3668 EXPORT_SYMBOL(netdev_rx_csum_fault);
3669 #endif
3670 
3671 /* XXX: check that highmem exists at all on the given machine. */
3672 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3673 {
3674 #ifdef CONFIG_HIGHMEM
3675 	int i;
3676 
3677 	if (!(dev->features & NETIF_F_HIGHDMA)) {
3678 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3679 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3680 			struct page *page = skb_frag_page(frag);
3681 
3682 			if (page && PageHighMem(page))
3683 				return 1;
3684 		}
3685 	}
3686 #endif
3687 	return 0;
3688 }
3689 
3690 /* If MPLS offload request, verify we are testing hardware MPLS features
3691  * instead of standard features for the netdev.
3692  */
3693 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3694 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3695 					   netdev_features_t features,
3696 					   __be16 type)
3697 {
3698 	if (eth_p_mpls(type))
3699 		features &= skb->dev->mpls_features;
3700 
3701 	return features;
3702 }
3703 #else
3704 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3705 					   netdev_features_t features,
3706 					   __be16 type)
3707 {
3708 	return features;
3709 }
3710 #endif
3711 
3712 static netdev_features_t harmonize_features(struct sk_buff *skb,
3713 	netdev_features_t features)
3714 {
3715 	__be16 type;
3716 
3717 	type = skb_network_protocol(skb, NULL);
3718 	features = net_mpls_features(skb, features, type);
3719 
3720 	if (skb->ip_summed != CHECKSUM_NONE &&
3721 	    !can_checksum_protocol(features, type)) {
3722 		features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3723 	}
3724 	if (illegal_highdma(skb->dev, skb))
3725 		features &= ~NETIF_F_SG;
3726 
3727 	return features;
3728 }
3729 
3730 netdev_features_t passthru_features_check(struct sk_buff *skb,
3731 					  struct net_device *dev,
3732 					  netdev_features_t features)
3733 {
3734 	return features;
3735 }
3736 EXPORT_SYMBOL(passthru_features_check);
3737 
3738 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3739 					     struct net_device *dev,
3740 					     netdev_features_t features)
3741 {
3742 	return vlan_features_check(skb, features);
3743 }
3744 
3745 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3746 					    struct net_device *dev,
3747 					    netdev_features_t features)
3748 {
3749 	u16 gso_segs = skb_shinfo(skb)->gso_segs;
3750 
3751 	if (gso_segs > READ_ONCE(dev->gso_max_segs))
3752 		return features & ~NETIF_F_GSO_MASK;
3753 
3754 	if (unlikely(skb->len >= netif_get_gso_max_size(dev, skb)))
3755 		return features & ~NETIF_F_GSO_MASK;
3756 
3757 	if (!skb_shinfo(skb)->gso_type) {
3758 		skb_warn_bad_offload(skb);
3759 		return features & ~NETIF_F_GSO_MASK;
3760 	}
3761 
3762 	/* Support for GSO partial features requires software
3763 	 * intervention before we can actually process the packets
3764 	 * so we need to strip support for any partial features now
3765 	 * and we can pull them back in after we have partially
3766 	 * segmented the frame.
3767 	 */
3768 	if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3769 		features &= ~dev->gso_partial_features;
3770 
3771 	/* Make sure to clear the IPv4 ID mangling feature if the
3772 	 * IPv4 header has the potential to be fragmented.
3773 	 */
3774 	if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3775 		struct iphdr *iph = skb->encapsulation ?
3776 				    inner_ip_hdr(skb) : ip_hdr(skb);
3777 
3778 		if (!(iph->frag_off & htons(IP_DF)))
3779 			features &= ~NETIF_F_TSO_MANGLEID;
3780 	}
3781 
3782 	/* NETIF_F_IPV6_CSUM does not support IPv6 extension headers,
3783 	 * so neither does TSO that depends on it.
3784 	 */
3785 	if (features & NETIF_F_IPV6_CSUM &&
3786 	    (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6 ||
3787 	     (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4 &&
3788 	      vlan_get_protocol(skb) == htons(ETH_P_IPV6))) &&
3789 	    skb_transport_header_was_set(skb) &&
3790 	    skb_network_header_len(skb) != sizeof(struct ipv6hdr) &&
3791 	    !ipv6_has_hopopt_jumbo(skb))
3792 		features &= ~(NETIF_F_IPV6_CSUM | NETIF_F_TSO6 | NETIF_F_GSO_UDP_L4);
3793 
3794 	return features;
3795 }
3796 
3797 netdev_features_t netif_skb_features(struct sk_buff *skb)
3798 {
3799 	struct net_device *dev = skb->dev;
3800 	netdev_features_t features = dev->features;
3801 
3802 	if (skb_is_gso(skb))
3803 		features = gso_features_check(skb, dev, features);
3804 
3805 	/* If encapsulation offload request, verify we are testing
3806 	 * hardware encapsulation features instead of standard
3807 	 * features for the netdev
3808 	 */
3809 	if (skb->encapsulation)
3810 		features &= dev->hw_enc_features;
3811 
3812 	if (skb_vlan_tagged(skb))
3813 		features = netdev_intersect_features(features,
3814 						     dev->vlan_features |
3815 						     NETIF_F_HW_VLAN_CTAG_TX |
3816 						     NETIF_F_HW_VLAN_STAG_TX);
3817 
3818 	if (dev->netdev_ops->ndo_features_check)
3819 		features &= dev->netdev_ops->ndo_features_check(skb, dev,
3820 								features);
3821 	else
3822 		features &= dflt_features_check(skb, dev, features);
3823 
3824 	return harmonize_features(skb, features);
3825 }
3826 EXPORT_SYMBOL(netif_skb_features);
3827 
3828 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3829 		    struct netdev_queue *txq, bool more)
3830 {
3831 	unsigned int len;
3832 	int rc;
3833 
3834 	if (dev_nit_active_rcu(dev))
3835 		dev_queue_xmit_nit(skb, dev);
3836 
3837 	len = skb->len;
3838 	trace_net_dev_start_xmit(skb, dev);
3839 	rc = netdev_start_xmit(skb, dev, txq, more);
3840 	trace_net_dev_xmit(skb, rc, dev, len);
3841 
3842 	return rc;
3843 }
3844 
3845 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3846 				    struct netdev_queue *txq, int *ret)
3847 {
3848 	struct sk_buff *skb = first;
3849 	int rc = NETDEV_TX_OK;
3850 
3851 	while (skb) {
3852 		struct sk_buff *next = skb->next;
3853 
3854 		skb_mark_not_on_list(skb);
3855 		rc = xmit_one(skb, dev, txq, next != NULL);
3856 		if (unlikely(!dev_xmit_complete(rc))) {
3857 			skb->next = next;
3858 			goto out;
3859 		}
3860 
3861 		skb = next;
3862 		if (netif_tx_queue_stopped(txq) && skb) {
3863 			rc = NETDEV_TX_BUSY;
3864 			break;
3865 		}
3866 	}
3867 
3868 out:
3869 	*ret = rc;
3870 	return skb;
3871 }
3872 
3873 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3874 					  netdev_features_t features)
3875 {
3876 	if (skb_vlan_tag_present(skb) &&
3877 	    !vlan_hw_offload_capable(features, skb->vlan_proto))
3878 		skb = __vlan_hwaccel_push_inside(skb);
3879 	return skb;
3880 }
3881 
3882 int skb_csum_hwoffload_help(struct sk_buff *skb,
3883 			    const netdev_features_t features)
3884 {
3885 	if (unlikely(skb_csum_is_sctp(skb)))
3886 		return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3887 			skb_crc32c_csum_help(skb);
3888 
3889 	if (features & NETIF_F_HW_CSUM)
3890 		return 0;
3891 
3892 	if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
3893 		if (vlan_get_protocol(skb) == htons(ETH_P_IPV6) &&
3894 		    skb_network_header_len(skb) != sizeof(struct ipv6hdr) &&
3895 		    !ipv6_has_hopopt_jumbo(skb))
3896 			goto sw_checksum;
3897 
3898 		switch (skb->csum_offset) {
3899 		case offsetof(struct tcphdr, check):
3900 		case offsetof(struct udphdr, check):
3901 			return 0;
3902 		}
3903 	}
3904 
3905 sw_checksum:
3906 	return skb_checksum_help(skb);
3907 }
3908 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3909 
3910 static struct sk_buff *validate_xmit_unreadable_skb(struct sk_buff *skb,
3911 						    struct net_device *dev)
3912 {
3913 	struct skb_shared_info *shinfo;
3914 	struct net_iov *niov;
3915 
3916 	if (likely(skb_frags_readable(skb)))
3917 		goto out;
3918 
3919 	if (!dev->netmem_tx)
3920 		goto out_free;
3921 
3922 	shinfo = skb_shinfo(skb);
3923 
3924 	if (shinfo->nr_frags > 0) {
3925 		niov = netmem_to_net_iov(skb_frag_netmem(&shinfo->frags[0]));
3926 		if (net_is_devmem_iov(niov) &&
3927 		    net_devmem_iov_binding(niov)->dev != dev)
3928 			goto out_free;
3929 	}
3930 
3931 out:
3932 	return skb;
3933 
3934 out_free:
3935 	kfree_skb(skb);
3936 	return NULL;
3937 }
3938 
3939 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3940 {
3941 	netdev_features_t features;
3942 
3943 	skb = validate_xmit_unreadable_skb(skb, dev);
3944 	if (unlikely(!skb))
3945 		goto out_null;
3946 
3947 	features = netif_skb_features(skb);
3948 	skb = validate_xmit_vlan(skb, features);
3949 	if (unlikely(!skb))
3950 		goto out_null;
3951 
3952 	skb = sk_validate_xmit_skb(skb, dev);
3953 	if (unlikely(!skb))
3954 		goto out_null;
3955 
3956 	if (netif_needs_gso(skb, features)) {
3957 		struct sk_buff *segs;
3958 
3959 		segs = skb_gso_segment(skb, features);
3960 		if (IS_ERR(segs)) {
3961 			goto out_kfree_skb;
3962 		} else if (segs) {
3963 			consume_skb(skb);
3964 			skb = segs;
3965 		}
3966 	} else {
3967 		if (skb_needs_linearize(skb, features) &&
3968 		    __skb_linearize(skb))
3969 			goto out_kfree_skb;
3970 
3971 		/* If packet is not checksummed and device does not
3972 		 * support checksumming for this protocol, complete
3973 		 * checksumming here.
3974 		 */
3975 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
3976 			if (skb->encapsulation)
3977 				skb_set_inner_transport_header(skb,
3978 							       skb_checksum_start_offset(skb));
3979 			else
3980 				skb_set_transport_header(skb,
3981 							 skb_checksum_start_offset(skb));
3982 			if (skb_csum_hwoffload_help(skb, features))
3983 				goto out_kfree_skb;
3984 		}
3985 	}
3986 
3987 	skb = validate_xmit_xfrm(skb, features, again);
3988 
3989 	return skb;
3990 
3991 out_kfree_skb:
3992 	kfree_skb(skb);
3993 out_null:
3994 	dev_core_stats_tx_dropped_inc(dev);
3995 	return NULL;
3996 }
3997 
3998 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3999 {
4000 	struct sk_buff *next, *head = NULL, *tail;
4001 
4002 	for (; skb != NULL; skb = next) {
4003 		next = skb->next;
4004 		skb_mark_not_on_list(skb);
4005 
4006 		/* in case skb won't be segmented, point to itself */
4007 		skb->prev = skb;
4008 
4009 		skb = validate_xmit_skb(skb, dev, again);
4010 		if (!skb)
4011 			continue;
4012 
4013 		if (!head)
4014 			head = skb;
4015 		else
4016 			tail->next = skb;
4017 		/* If skb was segmented, skb->prev points to
4018 		 * the last segment. If not, it still contains skb.
4019 		 */
4020 		tail = skb->prev;
4021 	}
4022 	return head;
4023 }
4024 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
4025 
4026 static void qdisc_pkt_len_init(struct sk_buff *skb)
4027 {
4028 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
4029 
4030 	qdisc_skb_cb(skb)->pkt_len = skb->len;
4031 
4032 	/* To get more precise estimation of bytes sent on wire,
4033 	 * we add to pkt_len the headers size of all segments
4034 	 */
4035 	if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
4036 		u16 gso_segs = shinfo->gso_segs;
4037 		unsigned int hdr_len;
4038 
4039 		/* mac layer + network layer */
4040 		if (!skb->encapsulation)
4041 			hdr_len = skb_transport_offset(skb);
4042 		else
4043 			hdr_len = skb_inner_transport_offset(skb);
4044 
4045 		/* + transport layer */
4046 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
4047 			const struct tcphdr *th;
4048 			struct tcphdr _tcphdr;
4049 
4050 			th = skb_header_pointer(skb, hdr_len,
4051 						sizeof(_tcphdr), &_tcphdr);
4052 			if (likely(th))
4053 				hdr_len += __tcp_hdrlen(th);
4054 		} else if (shinfo->gso_type & SKB_GSO_UDP_L4) {
4055 			struct udphdr _udphdr;
4056 
4057 			if (skb_header_pointer(skb, hdr_len,
4058 					       sizeof(_udphdr), &_udphdr))
4059 				hdr_len += sizeof(struct udphdr);
4060 		}
4061 
4062 		if (unlikely(shinfo->gso_type & SKB_GSO_DODGY)) {
4063 			int payload = skb->len - hdr_len;
4064 
4065 			/* Malicious packet. */
4066 			if (payload <= 0)
4067 				return;
4068 			gso_segs = DIV_ROUND_UP(payload, shinfo->gso_size);
4069 		}
4070 		qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
4071 	}
4072 }
4073 
4074 static int dev_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *q,
4075 			     struct sk_buff **to_free,
4076 			     struct netdev_queue *txq)
4077 {
4078 	int rc;
4079 
4080 	rc = q->enqueue(skb, q, to_free) & NET_XMIT_MASK;
4081 	if (rc == NET_XMIT_SUCCESS)
4082 		trace_qdisc_enqueue(q, txq, skb);
4083 	return rc;
4084 }
4085 
4086 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
4087 				 struct net_device *dev,
4088 				 struct netdev_queue *txq)
4089 {
4090 	spinlock_t *root_lock = qdisc_lock(q);
4091 	struct sk_buff *to_free = NULL;
4092 	bool contended;
4093 	int rc;
4094 
4095 	qdisc_calculate_pkt_len(skb, q);
4096 
4097 	tcf_set_drop_reason(skb, SKB_DROP_REASON_QDISC_DROP);
4098 
4099 	if (q->flags & TCQ_F_NOLOCK) {
4100 		if (q->flags & TCQ_F_CAN_BYPASS && nolock_qdisc_is_empty(q) &&
4101 		    qdisc_run_begin(q)) {
4102 			/* Retest nolock_qdisc_is_empty() within the protection
4103 			 * of q->seqlock to protect from racing with requeuing.
4104 			 */
4105 			if (unlikely(!nolock_qdisc_is_empty(q))) {
4106 				rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
4107 				__qdisc_run(q);
4108 				qdisc_run_end(q);
4109 
4110 				goto no_lock_out;
4111 			}
4112 
4113 			qdisc_bstats_cpu_update(q, skb);
4114 			if (sch_direct_xmit(skb, q, dev, txq, NULL, true) &&
4115 			    !nolock_qdisc_is_empty(q))
4116 				__qdisc_run(q);
4117 
4118 			qdisc_run_end(q);
4119 			return NET_XMIT_SUCCESS;
4120 		}
4121 
4122 		rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
4123 		qdisc_run(q);
4124 
4125 no_lock_out:
4126 		if (unlikely(to_free))
4127 			kfree_skb_list_reason(to_free,
4128 					      tcf_get_drop_reason(to_free));
4129 		return rc;
4130 	}
4131 
4132 	if (unlikely(READ_ONCE(q->owner) == smp_processor_id())) {
4133 		kfree_skb_reason(skb, SKB_DROP_REASON_TC_RECLASSIFY_LOOP);
4134 		return NET_XMIT_DROP;
4135 	}
4136 	/*
4137 	 * Heuristic to force contended enqueues to serialize on a
4138 	 * separate lock before trying to get qdisc main lock.
4139 	 * This permits qdisc->running owner to get the lock more
4140 	 * often and dequeue packets faster.
4141 	 * On PREEMPT_RT it is possible to preempt the qdisc owner during xmit
4142 	 * and then other tasks will only enqueue packets. The packets will be
4143 	 * sent after the qdisc owner is scheduled again. To prevent this
4144 	 * scenario the task always serialize on the lock.
4145 	 */
4146 	contended = qdisc_is_running(q) || IS_ENABLED(CONFIG_PREEMPT_RT);
4147 	if (unlikely(contended))
4148 		spin_lock(&q->busylock);
4149 
4150 	spin_lock(root_lock);
4151 	if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
4152 		__qdisc_drop(skb, &to_free);
4153 		rc = NET_XMIT_DROP;
4154 	} else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
4155 		   qdisc_run_begin(q)) {
4156 		/*
4157 		 * This is a work-conserving queue; there are no old skbs
4158 		 * waiting to be sent out; and the qdisc is not running -
4159 		 * xmit the skb directly.
4160 		 */
4161 
4162 		qdisc_bstats_update(q, skb);
4163 
4164 		if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
4165 			if (unlikely(contended)) {
4166 				spin_unlock(&q->busylock);
4167 				contended = false;
4168 			}
4169 			__qdisc_run(q);
4170 		}
4171 
4172 		qdisc_run_end(q);
4173 		rc = NET_XMIT_SUCCESS;
4174 	} else {
4175 		WRITE_ONCE(q->owner, smp_processor_id());
4176 		rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
4177 		WRITE_ONCE(q->owner, -1);
4178 		if (qdisc_run_begin(q)) {
4179 			if (unlikely(contended)) {
4180 				spin_unlock(&q->busylock);
4181 				contended = false;
4182 			}
4183 			__qdisc_run(q);
4184 			qdisc_run_end(q);
4185 		}
4186 	}
4187 	spin_unlock(root_lock);
4188 	if (unlikely(to_free))
4189 		kfree_skb_list_reason(to_free,
4190 				      tcf_get_drop_reason(to_free));
4191 	if (unlikely(contended))
4192 		spin_unlock(&q->busylock);
4193 	return rc;
4194 }
4195 
4196 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
4197 static void skb_update_prio(struct sk_buff *skb)
4198 {
4199 	const struct netprio_map *map;
4200 	const struct sock *sk;
4201 	unsigned int prioidx;
4202 
4203 	if (skb->priority)
4204 		return;
4205 	map = rcu_dereference_bh(skb->dev->priomap);
4206 	if (!map)
4207 		return;
4208 	sk = skb_to_full_sk(skb);
4209 	if (!sk)
4210 		return;
4211 
4212 	prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
4213 
4214 	if (prioidx < map->priomap_len)
4215 		skb->priority = map->priomap[prioidx];
4216 }
4217 #else
4218 #define skb_update_prio(skb)
4219 #endif
4220 
4221 /**
4222  *	dev_loopback_xmit - loop back @skb
4223  *	@net: network namespace this loopback is happening in
4224  *	@sk:  sk needed to be a netfilter okfn
4225  *	@skb: buffer to transmit
4226  */
4227 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
4228 {
4229 	skb_reset_mac_header(skb);
4230 	__skb_pull(skb, skb_network_offset(skb));
4231 	skb->pkt_type = PACKET_LOOPBACK;
4232 	if (skb->ip_summed == CHECKSUM_NONE)
4233 		skb->ip_summed = CHECKSUM_UNNECESSARY;
4234 	DEBUG_NET_WARN_ON_ONCE(!skb_dst(skb));
4235 	skb_dst_force(skb);
4236 	netif_rx(skb);
4237 	return 0;
4238 }
4239 EXPORT_SYMBOL(dev_loopback_xmit);
4240 
4241 #ifdef CONFIG_NET_EGRESS
4242 static struct netdev_queue *
4243 netdev_tx_queue_mapping(struct net_device *dev, struct sk_buff *skb)
4244 {
4245 	int qm = skb_get_queue_mapping(skb);
4246 
4247 	return netdev_get_tx_queue(dev, netdev_cap_txqueue(dev, qm));
4248 }
4249 
4250 #ifndef CONFIG_PREEMPT_RT
4251 static bool netdev_xmit_txqueue_skipped(void)
4252 {
4253 	return __this_cpu_read(softnet_data.xmit.skip_txqueue);
4254 }
4255 
4256 void netdev_xmit_skip_txqueue(bool skip)
4257 {
4258 	__this_cpu_write(softnet_data.xmit.skip_txqueue, skip);
4259 }
4260 EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue);
4261 
4262 #else
4263 static bool netdev_xmit_txqueue_skipped(void)
4264 {
4265 	return current->net_xmit.skip_txqueue;
4266 }
4267 
4268 void netdev_xmit_skip_txqueue(bool skip)
4269 {
4270 	current->net_xmit.skip_txqueue = skip;
4271 }
4272 EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue);
4273 #endif
4274 #endif /* CONFIG_NET_EGRESS */
4275 
4276 #ifdef CONFIG_NET_XGRESS
4277 static int tc_run(struct tcx_entry *entry, struct sk_buff *skb,
4278 		  enum skb_drop_reason *drop_reason)
4279 {
4280 	int ret = TC_ACT_UNSPEC;
4281 #ifdef CONFIG_NET_CLS_ACT
4282 	struct mini_Qdisc *miniq = rcu_dereference_bh(entry->miniq);
4283 	struct tcf_result res;
4284 
4285 	if (!miniq)
4286 		return ret;
4287 
4288 	/* Global bypass */
4289 	if (!static_branch_likely(&tcf_sw_enabled_key))
4290 		return ret;
4291 
4292 	/* Block-wise bypass */
4293 	if (tcf_block_bypass_sw(miniq->block))
4294 		return ret;
4295 
4296 	tc_skb_cb(skb)->mru = 0;
4297 	tc_skb_cb(skb)->post_ct = false;
4298 	tcf_set_drop_reason(skb, *drop_reason);
4299 
4300 	mini_qdisc_bstats_cpu_update(miniq, skb);
4301 	ret = tcf_classify(skb, miniq->block, miniq->filter_list, &res, false);
4302 	/* Only tcf related quirks below. */
4303 	switch (ret) {
4304 	case TC_ACT_SHOT:
4305 		*drop_reason = tcf_get_drop_reason(skb);
4306 		mini_qdisc_qstats_cpu_drop(miniq);
4307 		break;
4308 	case TC_ACT_OK:
4309 	case TC_ACT_RECLASSIFY:
4310 		skb->tc_index = TC_H_MIN(res.classid);
4311 		break;
4312 	}
4313 #endif /* CONFIG_NET_CLS_ACT */
4314 	return ret;
4315 }
4316 
4317 static DEFINE_STATIC_KEY_FALSE(tcx_needed_key);
4318 
4319 void tcx_inc(void)
4320 {
4321 	static_branch_inc(&tcx_needed_key);
4322 }
4323 
4324 void tcx_dec(void)
4325 {
4326 	static_branch_dec(&tcx_needed_key);
4327 }
4328 
4329 static __always_inline enum tcx_action_base
4330 tcx_run(const struct bpf_mprog_entry *entry, struct sk_buff *skb,
4331 	const bool needs_mac)
4332 {
4333 	const struct bpf_mprog_fp *fp;
4334 	const struct bpf_prog *prog;
4335 	int ret = TCX_NEXT;
4336 
4337 	if (needs_mac)
4338 		__skb_push(skb, skb->mac_len);
4339 	bpf_mprog_foreach_prog(entry, fp, prog) {
4340 		bpf_compute_data_pointers(skb);
4341 		ret = bpf_prog_run(prog, skb);
4342 		if (ret != TCX_NEXT)
4343 			break;
4344 	}
4345 	if (needs_mac)
4346 		__skb_pull(skb, skb->mac_len);
4347 	return tcx_action_code(skb, ret);
4348 }
4349 
4350 static __always_inline struct sk_buff *
4351 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4352 		   struct net_device *orig_dev, bool *another)
4353 {
4354 	struct bpf_mprog_entry *entry = rcu_dereference_bh(skb->dev->tcx_ingress);
4355 	enum skb_drop_reason drop_reason = SKB_DROP_REASON_TC_INGRESS;
4356 	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
4357 	int sch_ret;
4358 
4359 	if (!entry)
4360 		return skb;
4361 
4362 	bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
4363 	if (*pt_prev) {
4364 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
4365 		*pt_prev = NULL;
4366 	}
4367 
4368 	qdisc_skb_cb(skb)->pkt_len = skb->len;
4369 	tcx_set_ingress(skb, true);
4370 
4371 	if (static_branch_unlikely(&tcx_needed_key)) {
4372 		sch_ret = tcx_run(entry, skb, true);
4373 		if (sch_ret != TC_ACT_UNSPEC)
4374 			goto ingress_verdict;
4375 	}
4376 	sch_ret = tc_run(tcx_entry(entry), skb, &drop_reason);
4377 ingress_verdict:
4378 	switch (sch_ret) {
4379 	case TC_ACT_REDIRECT:
4380 		/* skb_mac_header check was done by BPF, so we can safely
4381 		 * push the L2 header back before redirecting to another
4382 		 * netdev.
4383 		 */
4384 		__skb_push(skb, skb->mac_len);
4385 		if (skb_do_redirect(skb) == -EAGAIN) {
4386 			__skb_pull(skb, skb->mac_len);
4387 			*another = true;
4388 			break;
4389 		}
4390 		*ret = NET_RX_SUCCESS;
4391 		bpf_net_ctx_clear(bpf_net_ctx);
4392 		return NULL;
4393 	case TC_ACT_SHOT:
4394 		kfree_skb_reason(skb, drop_reason);
4395 		*ret = NET_RX_DROP;
4396 		bpf_net_ctx_clear(bpf_net_ctx);
4397 		return NULL;
4398 	/* used by tc_run */
4399 	case TC_ACT_STOLEN:
4400 	case TC_ACT_QUEUED:
4401 	case TC_ACT_TRAP:
4402 		consume_skb(skb);
4403 		fallthrough;
4404 	case TC_ACT_CONSUMED:
4405 		*ret = NET_RX_SUCCESS;
4406 		bpf_net_ctx_clear(bpf_net_ctx);
4407 		return NULL;
4408 	}
4409 	bpf_net_ctx_clear(bpf_net_ctx);
4410 
4411 	return skb;
4412 }
4413 
4414 static __always_inline struct sk_buff *
4415 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
4416 {
4417 	struct bpf_mprog_entry *entry = rcu_dereference_bh(dev->tcx_egress);
4418 	enum skb_drop_reason drop_reason = SKB_DROP_REASON_TC_EGRESS;
4419 	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
4420 	int sch_ret;
4421 
4422 	if (!entry)
4423 		return skb;
4424 
4425 	bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
4426 
4427 	/* qdisc_skb_cb(skb)->pkt_len & tcx_set_ingress() was
4428 	 * already set by the caller.
4429 	 */
4430 	if (static_branch_unlikely(&tcx_needed_key)) {
4431 		sch_ret = tcx_run(entry, skb, false);
4432 		if (sch_ret != TC_ACT_UNSPEC)
4433 			goto egress_verdict;
4434 	}
4435 	sch_ret = tc_run(tcx_entry(entry), skb, &drop_reason);
4436 egress_verdict:
4437 	switch (sch_ret) {
4438 	case TC_ACT_REDIRECT:
4439 		/* No need to push/pop skb's mac_header here on egress! */
4440 		skb_do_redirect(skb);
4441 		*ret = NET_XMIT_SUCCESS;
4442 		bpf_net_ctx_clear(bpf_net_ctx);
4443 		return NULL;
4444 	case TC_ACT_SHOT:
4445 		kfree_skb_reason(skb, drop_reason);
4446 		*ret = NET_XMIT_DROP;
4447 		bpf_net_ctx_clear(bpf_net_ctx);
4448 		return NULL;
4449 	/* used by tc_run */
4450 	case TC_ACT_STOLEN:
4451 	case TC_ACT_QUEUED:
4452 	case TC_ACT_TRAP:
4453 		consume_skb(skb);
4454 		fallthrough;
4455 	case TC_ACT_CONSUMED:
4456 		*ret = NET_XMIT_SUCCESS;
4457 		bpf_net_ctx_clear(bpf_net_ctx);
4458 		return NULL;
4459 	}
4460 	bpf_net_ctx_clear(bpf_net_ctx);
4461 
4462 	return skb;
4463 }
4464 #else
4465 static __always_inline struct sk_buff *
4466 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4467 		   struct net_device *orig_dev, bool *another)
4468 {
4469 	return skb;
4470 }
4471 
4472 static __always_inline struct sk_buff *
4473 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
4474 {
4475 	return skb;
4476 }
4477 #endif /* CONFIG_NET_XGRESS */
4478 
4479 #ifdef CONFIG_XPS
4480 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
4481 			       struct xps_dev_maps *dev_maps, unsigned int tci)
4482 {
4483 	int tc = netdev_get_prio_tc_map(dev, skb->priority);
4484 	struct xps_map *map;
4485 	int queue_index = -1;
4486 
4487 	if (tc >= dev_maps->num_tc || tci >= dev_maps->nr_ids)
4488 		return queue_index;
4489 
4490 	tci *= dev_maps->num_tc;
4491 	tci += tc;
4492 
4493 	map = rcu_dereference(dev_maps->attr_map[tci]);
4494 	if (map) {
4495 		if (map->len == 1)
4496 			queue_index = map->queues[0];
4497 		else
4498 			queue_index = map->queues[reciprocal_scale(
4499 						skb_get_hash(skb), map->len)];
4500 		if (unlikely(queue_index >= dev->real_num_tx_queues))
4501 			queue_index = -1;
4502 	}
4503 	return queue_index;
4504 }
4505 #endif
4506 
4507 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
4508 			 struct sk_buff *skb)
4509 {
4510 #ifdef CONFIG_XPS
4511 	struct xps_dev_maps *dev_maps;
4512 	struct sock *sk = skb->sk;
4513 	int queue_index = -1;
4514 
4515 	if (!static_key_false(&xps_needed))
4516 		return -1;
4517 
4518 	rcu_read_lock();
4519 	if (!static_key_false(&xps_rxqs_needed))
4520 		goto get_cpus_map;
4521 
4522 	dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_RXQS]);
4523 	if (dev_maps) {
4524 		int tci = sk_rx_queue_get(sk);
4525 
4526 		if (tci >= 0)
4527 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4528 							  tci);
4529 	}
4530 
4531 get_cpus_map:
4532 	if (queue_index < 0) {
4533 		dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_CPUS]);
4534 		if (dev_maps) {
4535 			unsigned int tci = skb->sender_cpu - 1;
4536 
4537 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4538 							  tci);
4539 		}
4540 	}
4541 	rcu_read_unlock();
4542 
4543 	return queue_index;
4544 #else
4545 	return -1;
4546 #endif
4547 }
4548 
4549 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
4550 		     struct net_device *sb_dev)
4551 {
4552 	return 0;
4553 }
4554 EXPORT_SYMBOL(dev_pick_tx_zero);
4555 
4556 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
4557 		     struct net_device *sb_dev)
4558 {
4559 	struct sock *sk = skb->sk;
4560 	int queue_index = sk_tx_queue_get(sk);
4561 
4562 	sb_dev = sb_dev ? : dev;
4563 
4564 	if (queue_index < 0 || skb->ooo_okay ||
4565 	    queue_index >= dev->real_num_tx_queues) {
4566 		int new_index = get_xps_queue(dev, sb_dev, skb);
4567 
4568 		if (new_index < 0)
4569 			new_index = skb_tx_hash(dev, sb_dev, skb);
4570 
4571 		if (queue_index != new_index && sk &&
4572 		    sk_fullsock(sk) &&
4573 		    rcu_access_pointer(sk->sk_dst_cache))
4574 			sk_tx_queue_set(sk, new_index);
4575 
4576 		queue_index = new_index;
4577 	}
4578 
4579 	return queue_index;
4580 }
4581 EXPORT_SYMBOL(netdev_pick_tx);
4582 
4583 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
4584 					 struct sk_buff *skb,
4585 					 struct net_device *sb_dev)
4586 {
4587 	int queue_index = 0;
4588 
4589 #ifdef CONFIG_XPS
4590 	u32 sender_cpu = skb->sender_cpu - 1;
4591 
4592 	if (sender_cpu >= (u32)NR_CPUS)
4593 		skb->sender_cpu = raw_smp_processor_id() + 1;
4594 #endif
4595 
4596 	if (dev->real_num_tx_queues != 1) {
4597 		const struct net_device_ops *ops = dev->netdev_ops;
4598 
4599 		if (ops->ndo_select_queue)
4600 			queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
4601 		else
4602 			queue_index = netdev_pick_tx(dev, skb, sb_dev);
4603 
4604 		queue_index = netdev_cap_txqueue(dev, queue_index);
4605 	}
4606 
4607 	skb_set_queue_mapping(skb, queue_index);
4608 	return netdev_get_tx_queue(dev, queue_index);
4609 }
4610 
4611 /**
4612  * __dev_queue_xmit() - transmit a buffer
4613  * @skb:	buffer to transmit
4614  * @sb_dev:	suboordinate device used for L2 forwarding offload
4615  *
4616  * Queue a buffer for transmission to a network device. The caller must
4617  * have set the device and priority and built the buffer before calling
4618  * this function. The function can be called from an interrupt.
4619  *
4620  * When calling this method, interrupts MUST be enabled. This is because
4621  * the BH enable code must have IRQs enabled so that it will not deadlock.
4622  *
4623  * Regardless of the return value, the skb is consumed, so it is currently
4624  * difficult to retry a send to this method. (You can bump the ref count
4625  * before sending to hold a reference for retry if you are careful.)
4626  *
4627  * Return:
4628  * * 0				- buffer successfully transmitted
4629  * * positive qdisc return code	- NET_XMIT_DROP etc.
4630  * * negative errno		- other errors
4631  */
4632 int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
4633 {
4634 	struct net_device *dev = skb->dev;
4635 	struct netdev_queue *txq = NULL;
4636 	struct Qdisc *q;
4637 	int rc = -ENOMEM;
4638 	bool again = false;
4639 
4640 	skb_reset_mac_header(skb);
4641 	skb_assert_len(skb);
4642 
4643 	if (unlikely(skb_shinfo(skb)->tx_flags &
4644 		     (SKBTX_SCHED_TSTAMP | SKBTX_BPF)))
4645 		__skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED);
4646 
4647 	/* Disable soft irqs for various locks below. Also
4648 	 * stops preemption for RCU.
4649 	 */
4650 	rcu_read_lock_bh();
4651 
4652 	skb_update_prio(skb);
4653 
4654 	qdisc_pkt_len_init(skb);
4655 	tcx_set_ingress(skb, false);
4656 #ifdef CONFIG_NET_EGRESS
4657 	if (static_branch_unlikely(&egress_needed_key)) {
4658 		if (nf_hook_egress_active()) {
4659 			skb = nf_hook_egress(skb, &rc, dev);
4660 			if (!skb)
4661 				goto out;
4662 		}
4663 
4664 		netdev_xmit_skip_txqueue(false);
4665 
4666 		nf_skip_egress(skb, true);
4667 		skb = sch_handle_egress(skb, &rc, dev);
4668 		if (!skb)
4669 			goto out;
4670 		nf_skip_egress(skb, false);
4671 
4672 		if (netdev_xmit_txqueue_skipped())
4673 			txq = netdev_tx_queue_mapping(dev, skb);
4674 	}
4675 #endif
4676 	/* If device/qdisc don't need skb->dst, release it right now while
4677 	 * its hot in this cpu cache.
4678 	 */
4679 	if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4680 		skb_dst_drop(skb);
4681 	else
4682 		skb_dst_force(skb);
4683 
4684 	if (!txq)
4685 		txq = netdev_core_pick_tx(dev, skb, sb_dev);
4686 
4687 	q = rcu_dereference_bh(txq->qdisc);
4688 
4689 	trace_net_dev_queue(skb);
4690 	if (q->enqueue) {
4691 		rc = __dev_xmit_skb(skb, q, dev, txq);
4692 		goto out;
4693 	}
4694 
4695 	/* The device has no queue. Common case for software devices:
4696 	 * loopback, all the sorts of tunnels...
4697 
4698 	 * Really, it is unlikely that netif_tx_lock protection is necessary
4699 	 * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
4700 	 * counters.)
4701 	 * However, it is possible, that they rely on protection
4702 	 * made by us here.
4703 
4704 	 * Check this and shot the lock. It is not prone from deadlocks.
4705 	 *Either shot noqueue qdisc, it is even simpler 8)
4706 	 */
4707 	if (dev->flags & IFF_UP) {
4708 		int cpu = smp_processor_id(); /* ok because BHs are off */
4709 
4710 		/* Other cpus might concurrently change txq->xmit_lock_owner
4711 		 * to -1 or to their cpu id, but not to our id.
4712 		 */
4713 		if (READ_ONCE(txq->xmit_lock_owner) != cpu) {
4714 			if (dev_xmit_recursion())
4715 				goto recursion_alert;
4716 
4717 			skb = validate_xmit_skb(skb, dev, &again);
4718 			if (!skb)
4719 				goto out;
4720 
4721 			HARD_TX_LOCK(dev, txq, cpu);
4722 
4723 			if (!netif_xmit_stopped(txq)) {
4724 				dev_xmit_recursion_inc();
4725 				skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4726 				dev_xmit_recursion_dec();
4727 				if (dev_xmit_complete(rc)) {
4728 					HARD_TX_UNLOCK(dev, txq);
4729 					goto out;
4730 				}
4731 			}
4732 			HARD_TX_UNLOCK(dev, txq);
4733 			net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4734 					     dev->name);
4735 		} else {
4736 			/* Recursion is detected! It is possible,
4737 			 * unfortunately
4738 			 */
4739 recursion_alert:
4740 			net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4741 					     dev->name);
4742 		}
4743 	}
4744 
4745 	rc = -ENETDOWN;
4746 	rcu_read_unlock_bh();
4747 
4748 	dev_core_stats_tx_dropped_inc(dev);
4749 	kfree_skb_list(skb);
4750 	return rc;
4751 out:
4752 	rcu_read_unlock_bh();
4753 	return rc;
4754 }
4755 EXPORT_SYMBOL(__dev_queue_xmit);
4756 
4757 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4758 {
4759 	struct net_device *dev = skb->dev;
4760 	struct sk_buff *orig_skb = skb;
4761 	struct netdev_queue *txq;
4762 	int ret = NETDEV_TX_BUSY;
4763 	bool again = false;
4764 
4765 	if (unlikely(!netif_running(dev) ||
4766 		     !netif_carrier_ok(dev)))
4767 		goto drop;
4768 
4769 	skb = validate_xmit_skb_list(skb, dev, &again);
4770 	if (skb != orig_skb)
4771 		goto drop;
4772 
4773 	skb_set_queue_mapping(skb, queue_id);
4774 	txq = skb_get_tx_queue(dev, skb);
4775 
4776 	local_bh_disable();
4777 
4778 	dev_xmit_recursion_inc();
4779 	HARD_TX_LOCK(dev, txq, smp_processor_id());
4780 	if (!netif_xmit_frozen_or_drv_stopped(txq))
4781 		ret = netdev_start_xmit(skb, dev, txq, false);
4782 	HARD_TX_UNLOCK(dev, txq);
4783 	dev_xmit_recursion_dec();
4784 
4785 	local_bh_enable();
4786 	return ret;
4787 drop:
4788 	dev_core_stats_tx_dropped_inc(dev);
4789 	kfree_skb_list(skb);
4790 	return NET_XMIT_DROP;
4791 }
4792 EXPORT_SYMBOL(__dev_direct_xmit);
4793 
4794 /*************************************************************************
4795  *			Receiver routines
4796  *************************************************************************/
4797 static DEFINE_PER_CPU(struct task_struct *, backlog_napi);
4798 
4799 int weight_p __read_mostly = 64;           /* old backlog weight */
4800 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
4801 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
4802 
4803 /* Called with irq disabled */
4804 static inline void ____napi_schedule(struct softnet_data *sd,
4805 				     struct napi_struct *napi)
4806 {
4807 	struct task_struct *thread;
4808 
4809 	lockdep_assert_irqs_disabled();
4810 
4811 	if (test_bit(NAPI_STATE_THREADED, &napi->state)) {
4812 		/* Paired with smp_mb__before_atomic() in
4813 		 * napi_enable()/netif_set_threaded().
4814 		 * Use READ_ONCE() to guarantee a complete
4815 		 * read on napi->thread. Only call
4816 		 * wake_up_process() when it's not NULL.
4817 		 */
4818 		thread = READ_ONCE(napi->thread);
4819 		if (thread) {
4820 			if (use_backlog_threads() && thread == raw_cpu_read(backlog_napi))
4821 				goto use_local_napi;
4822 
4823 			set_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
4824 			wake_up_process(thread);
4825 			return;
4826 		}
4827 	}
4828 
4829 use_local_napi:
4830 	DEBUG_NET_WARN_ON_ONCE(!list_empty(&napi->poll_list));
4831 	list_add_tail(&napi->poll_list, &sd->poll_list);
4832 	WRITE_ONCE(napi->list_owner, smp_processor_id());
4833 	/* If not called from net_rx_action()
4834 	 * we have to raise NET_RX_SOFTIRQ.
4835 	 */
4836 	if (!sd->in_net_rx_action)
4837 		raise_softirq_irqoff(NET_RX_SOFTIRQ);
4838 }
4839 
4840 #ifdef CONFIG_RPS
4841 
4842 struct static_key_false rps_needed __read_mostly;
4843 EXPORT_SYMBOL(rps_needed);
4844 struct static_key_false rfs_needed __read_mostly;
4845 EXPORT_SYMBOL(rfs_needed);
4846 
4847 static u32 rfs_slot(u32 hash, const struct rps_dev_flow_table *flow_table)
4848 {
4849 	return hash_32(hash, flow_table->log);
4850 }
4851 
4852 #ifdef CONFIG_RFS_ACCEL
4853 /**
4854  * rps_flow_is_active - check whether the flow is recently active.
4855  * @rflow: Specific flow to check activity.
4856  * @flow_table: per-queue flowtable that @rflow belongs to.
4857  * @cpu: CPU saved in @rflow.
4858  *
4859  * If the CPU has processed many packets since the flow's last activity
4860  * (beyond 10 times the table size), the flow is considered stale.
4861  *
4862  * Return: true if flow was recently active.
4863  */
4864 static bool rps_flow_is_active(struct rps_dev_flow *rflow,
4865 			       struct rps_dev_flow_table *flow_table,
4866 			       unsigned int cpu)
4867 {
4868 	unsigned int flow_last_active;
4869 	unsigned int sd_input_head;
4870 
4871 	if (cpu >= nr_cpu_ids)
4872 		return false;
4873 
4874 	sd_input_head = READ_ONCE(per_cpu(softnet_data, cpu).input_queue_head);
4875 	flow_last_active = READ_ONCE(rflow->last_qtail);
4876 
4877 	return (int)(sd_input_head - flow_last_active) <
4878 		(int)(10 << flow_table->log);
4879 }
4880 #endif
4881 
4882 static struct rps_dev_flow *
4883 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4884 	    struct rps_dev_flow *rflow, u16 next_cpu, u32 hash,
4885 	    u32 flow_id)
4886 {
4887 	if (next_cpu < nr_cpu_ids) {
4888 		u32 head;
4889 #ifdef CONFIG_RFS_ACCEL
4890 		struct netdev_rx_queue *rxqueue;
4891 		struct rps_dev_flow_table *flow_table;
4892 		struct rps_dev_flow *old_rflow;
4893 		struct rps_dev_flow *tmp_rflow;
4894 		unsigned int tmp_cpu;
4895 		u16 rxq_index;
4896 		int rc;
4897 
4898 		/* Should we steer this flow to a different hardware queue? */
4899 		if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4900 		    !(dev->features & NETIF_F_NTUPLE))
4901 			goto out;
4902 		rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4903 		if (rxq_index == skb_get_rx_queue(skb))
4904 			goto out;
4905 
4906 		rxqueue = dev->_rx + rxq_index;
4907 		flow_table = rcu_dereference(rxqueue->rps_flow_table);
4908 		if (!flow_table)
4909 			goto out;
4910 
4911 		tmp_rflow = &flow_table->flows[flow_id];
4912 		tmp_cpu = READ_ONCE(tmp_rflow->cpu);
4913 
4914 		if (READ_ONCE(tmp_rflow->filter) != RPS_NO_FILTER) {
4915 			if (rps_flow_is_active(tmp_rflow, flow_table,
4916 					       tmp_cpu)) {
4917 				if (hash != READ_ONCE(tmp_rflow->hash) ||
4918 				    next_cpu == tmp_cpu)
4919 					goto out;
4920 			}
4921 		}
4922 
4923 		rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4924 							rxq_index, flow_id);
4925 		if (rc < 0)
4926 			goto out;
4927 
4928 		old_rflow = rflow;
4929 		rflow = tmp_rflow;
4930 		WRITE_ONCE(rflow->filter, rc);
4931 		WRITE_ONCE(rflow->hash, hash);
4932 
4933 		if (old_rflow->filter == rc)
4934 			WRITE_ONCE(old_rflow->filter, RPS_NO_FILTER);
4935 	out:
4936 #endif
4937 		head = READ_ONCE(per_cpu(softnet_data, next_cpu).input_queue_head);
4938 		rps_input_queue_tail_save(&rflow->last_qtail, head);
4939 	}
4940 
4941 	WRITE_ONCE(rflow->cpu, next_cpu);
4942 	return rflow;
4943 }
4944 
4945 /*
4946  * get_rps_cpu is called from netif_receive_skb and returns the target
4947  * CPU from the RPS map of the receiving queue for a given skb.
4948  * rcu_read_lock must be held on entry.
4949  */
4950 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4951 		       struct rps_dev_flow **rflowp)
4952 {
4953 	const struct rps_sock_flow_table *sock_flow_table;
4954 	struct netdev_rx_queue *rxqueue = dev->_rx;
4955 	struct rps_dev_flow_table *flow_table;
4956 	struct rps_map *map;
4957 	int cpu = -1;
4958 	u32 flow_id;
4959 	u32 tcpu;
4960 	u32 hash;
4961 
4962 	if (skb_rx_queue_recorded(skb)) {
4963 		u16 index = skb_get_rx_queue(skb);
4964 
4965 		if (unlikely(index >= dev->real_num_rx_queues)) {
4966 			WARN_ONCE(dev->real_num_rx_queues > 1,
4967 				  "%s received packet on queue %u, but number "
4968 				  "of RX queues is %u\n",
4969 				  dev->name, index, dev->real_num_rx_queues);
4970 			goto done;
4971 		}
4972 		rxqueue += index;
4973 	}
4974 
4975 	/* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4976 
4977 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
4978 	map = rcu_dereference(rxqueue->rps_map);
4979 	if (!flow_table && !map)
4980 		goto done;
4981 
4982 	skb_reset_network_header(skb);
4983 	hash = skb_get_hash(skb);
4984 	if (!hash)
4985 		goto done;
4986 
4987 	sock_flow_table = rcu_dereference(net_hotdata.rps_sock_flow_table);
4988 	if (flow_table && sock_flow_table) {
4989 		struct rps_dev_flow *rflow;
4990 		u32 next_cpu;
4991 		u32 ident;
4992 
4993 		/* First check into global flow table if there is a match.
4994 		 * This READ_ONCE() pairs with WRITE_ONCE() from rps_record_sock_flow().
4995 		 */
4996 		ident = READ_ONCE(sock_flow_table->ents[hash & sock_flow_table->mask]);
4997 		if ((ident ^ hash) & ~net_hotdata.rps_cpu_mask)
4998 			goto try_rps;
4999 
5000 		next_cpu = ident & net_hotdata.rps_cpu_mask;
5001 
5002 		/* OK, now we know there is a match,
5003 		 * we can look at the local (per receive queue) flow table
5004 		 */
5005 		flow_id = rfs_slot(hash, flow_table);
5006 		rflow = &flow_table->flows[flow_id];
5007 		tcpu = rflow->cpu;
5008 
5009 		/*
5010 		 * If the desired CPU (where last recvmsg was done) is
5011 		 * different from current CPU (one in the rx-queue flow
5012 		 * table entry), switch if one of the following holds:
5013 		 *   - Current CPU is unset (>= nr_cpu_ids).
5014 		 *   - Current CPU is offline.
5015 		 *   - The current CPU's queue tail has advanced beyond the
5016 		 *     last packet that was enqueued using this table entry.
5017 		 *     This guarantees that all previous packets for the flow
5018 		 *     have been dequeued, thus preserving in order delivery.
5019 		 */
5020 		if (unlikely(tcpu != next_cpu) &&
5021 		    (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
5022 		     ((int)(READ_ONCE(per_cpu(softnet_data, tcpu).input_queue_head) -
5023 		      rflow->last_qtail)) >= 0)) {
5024 			tcpu = next_cpu;
5025 			rflow = set_rps_cpu(dev, skb, rflow, next_cpu, hash,
5026 					    flow_id);
5027 		}
5028 
5029 		if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
5030 			*rflowp = rflow;
5031 			cpu = tcpu;
5032 			goto done;
5033 		}
5034 	}
5035 
5036 try_rps:
5037 
5038 	if (map) {
5039 		tcpu = map->cpus[reciprocal_scale(hash, map->len)];
5040 		if (cpu_online(tcpu)) {
5041 			cpu = tcpu;
5042 			goto done;
5043 		}
5044 	}
5045 
5046 done:
5047 	return cpu;
5048 }
5049 
5050 #ifdef CONFIG_RFS_ACCEL
5051 
5052 /**
5053  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
5054  * @dev: Device on which the filter was set
5055  * @rxq_index: RX queue index
5056  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
5057  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
5058  *
5059  * Drivers that implement ndo_rx_flow_steer() should periodically call
5060  * this function for each installed filter and remove the filters for
5061  * which it returns %true.
5062  */
5063 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
5064 			 u32 flow_id, u16 filter_id)
5065 {
5066 	struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
5067 	struct rps_dev_flow_table *flow_table;
5068 	struct rps_dev_flow *rflow;
5069 	bool expire = true;
5070 
5071 	rcu_read_lock();
5072 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
5073 	if (flow_table && flow_id < (1UL << flow_table->log)) {
5074 		unsigned int cpu;
5075 
5076 		rflow = &flow_table->flows[flow_id];
5077 		cpu = READ_ONCE(rflow->cpu);
5078 		if (READ_ONCE(rflow->filter) == filter_id &&
5079 		    rps_flow_is_active(rflow, flow_table, cpu))
5080 			expire = false;
5081 	}
5082 	rcu_read_unlock();
5083 	return expire;
5084 }
5085 EXPORT_SYMBOL(rps_may_expire_flow);
5086 
5087 #endif /* CONFIG_RFS_ACCEL */
5088 
5089 /* Called from hardirq (IPI) context */
5090 static void rps_trigger_softirq(void *data)
5091 {
5092 	struct softnet_data *sd = data;
5093 
5094 	____napi_schedule(sd, &sd->backlog);
5095 	/* Pairs with READ_ONCE() in softnet_seq_show() */
5096 	WRITE_ONCE(sd->received_rps, sd->received_rps + 1);
5097 }
5098 
5099 #endif /* CONFIG_RPS */
5100 
5101 /* Called from hardirq (IPI) context */
5102 static void trigger_rx_softirq(void *data)
5103 {
5104 	struct softnet_data *sd = data;
5105 
5106 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
5107 	smp_store_release(&sd->defer_ipi_scheduled, 0);
5108 }
5109 
5110 /*
5111  * After we queued a packet into sd->input_pkt_queue,
5112  * we need to make sure this queue is serviced soon.
5113  *
5114  * - If this is another cpu queue, link it to our rps_ipi_list,
5115  *   and make sure we will process rps_ipi_list from net_rx_action().
5116  *
5117  * - If this is our own queue, NAPI schedule our backlog.
5118  *   Note that this also raises NET_RX_SOFTIRQ.
5119  */
5120 static void napi_schedule_rps(struct softnet_data *sd)
5121 {
5122 	struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
5123 
5124 #ifdef CONFIG_RPS
5125 	if (sd != mysd) {
5126 		if (use_backlog_threads()) {
5127 			__napi_schedule_irqoff(&sd->backlog);
5128 			return;
5129 		}
5130 
5131 		sd->rps_ipi_next = mysd->rps_ipi_list;
5132 		mysd->rps_ipi_list = sd;
5133 
5134 		/* If not called from net_rx_action() or napi_threaded_poll()
5135 		 * we have to raise NET_RX_SOFTIRQ.
5136 		 */
5137 		if (!mysd->in_net_rx_action && !mysd->in_napi_threaded_poll)
5138 			__raise_softirq_irqoff(NET_RX_SOFTIRQ);
5139 		return;
5140 	}
5141 #endif /* CONFIG_RPS */
5142 	__napi_schedule_irqoff(&mysd->backlog);
5143 }
5144 
5145 void kick_defer_list_purge(struct softnet_data *sd, unsigned int cpu)
5146 {
5147 	unsigned long flags;
5148 
5149 	if (use_backlog_threads()) {
5150 		backlog_lock_irq_save(sd, &flags);
5151 
5152 		if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state))
5153 			__napi_schedule_irqoff(&sd->backlog);
5154 
5155 		backlog_unlock_irq_restore(sd, &flags);
5156 
5157 	} else if (!cmpxchg(&sd->defer_ipi_scheduled, 0, 1)) {
5158 		smp_call_function_single_async(cpu, &sd->defer_csd);
5159 	}
5160 }
5161 
5162 #ifdef CONFIG_NET_FLOW_LIMIT
5163 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
5164 #endif
5165 
5166 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
5167 {
5168 #ifdef CONFIG_NET_FLOW_LIMIT
5169 	struct sd_flow_limit *fl;
5170 	struct softnet_data *sd;
5171 	unsigned int old_flow, new_flow;
5172 
5173 	if (qlen < (READ_ONCE(net_hotdata.max_backlog) >> 1))
5174 		return false;
5175 
5176 	sd = this_cpu_ptr(&softnet_data);
5177 
5178 	rcu_read_lock();
5179 	fl = rcu_dereference(sd->flow_limit);
5180 	if (fl) {
5181 		new_flow = hash_32(skb_get_hash(skb), fl->log_buckets);
5182 		old_flow = fl->history[fl->history_head];
5183 		fl->history[fl->history_head] = new_flow;
5184 
5185 		fl->history_head++;
5186 		fl->history_head &= FLOW_LIMIT_HISTORY - 1;
5187 
5188 		if (likely(fl->buckets[old_flow]))
5189 			fl->buckets[old_flow]--;
5190 
5191 		if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
5192 			/* Pairs with READ_ONCE() in softnet_seq_show() */
5193 			WRITE_ONCE(fl->count, fl->count + 1);
5194 			rcu_read_unlock();
5195 			return true;
5196 		}
5197 	}
5198 	rcu_read_unlock();
5199 #endif
5200 	return false;
5201 }
5202 
5203 /*
5204  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
5205  * queue (may be a remote CPU queue).
5206  */
5207 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
5208 			      unsigned int *qtail)
5209 {
5210 	enum skb_drop_reason reason;
5211 	struct softnet_data *sd;
5212 	unsigned long flags;
5213 	unsigned int qlen;
5214 	int max_backlog;
5215 	u32 tail;
5216 
5217 	reason = SKB_DROP_REASON_DEV_READY;
5218 	if (!netif_running(skb->dev))
5219 		goto bad_dev;
5220 
5221 	reason = SKB_DROP_REASON_CPU_BACKLOG;
5222 	sd = &per_cpu(softnet_data, cpu);
5223 
5224 	qlen = skb_queue_len_lockless(&sd->input_pkt_queue);
5225 	max_backlog = READ_ONCE(net_hotdata.max_backlog);
5226 	if (unlikely(qlen > max_backlog))
5227 		goto cpu_backlog_drop;
5228 	backlog_lock_irq_save(sd, &flags);
5229 	qlen = skb_queue_len(&sd->input_pkt_queue);
5230 	if (qlen <= max_backlog && !skb_flow_limit(skb, qlen)) {
5231 		if (!qlen) {
5232 			/* Schedule NAPI for backlog device. We can use
5233 			 * non atomic operation as we own the queue lock.
5234 			 */
5235 			if (!__test_and_set_bit(NAPI_STATE_SCHED,
5236 						&sd->backlog.state))
5237 				napi_schedule_rps(sd);
5238 		}
5239 		__skb_queue_tail(&sd->input_pkt_queue, skb);
5240 		tail = rps_input_queue_tail_incr(sd);
5241 		backlog_unlock_irq_restore(sd, &flags);
5242 
5243 		/* save the tail outside of the critical section */
5244 		rps_input_queue_tail_save(qtail, tail);
5245 		return NET_RX_SUCCESS;
5246 	}
5247 
5248 	backlog_unlock_irq_restore(sd, &flags);
5249 
5250 cpu_backlog_drop:
5251 	atomic_inc(&sd->dropped);
5252 bad_dev:
5253 	dev_core_stats_rx_dropped_inc(skb->dev);
5254 	kfree_skb_reason(skb, reason);
5255 	return NET_RX_DROP;
5256 }
5257 
5258 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
5259 {
5260 	struct net_device *dev = skb->dev;
5261 	struct netdev_rx_queue *rxqueue;
5262 
5263 	rxqueue = dev->_rx;
5264 
5265 	if (skb_rx_queue_recorded(skb)) {
5266 		u16 index = skb_get_rx_queue(skb);
5267 
5268 		if (unlikely(index >= dev->real_num_rx_queues)) {
5269 			WARN_ONCE(dev->real_num_rx_queues > 1,
5270 				  "%s received packet on queue %u, but number "
5271 				  "of RX queues is %u\n",
5272 				  dev->name, index, dev->real_num_rx_queues);
5273 
5274 			return rxqueue; /* Return first rxqueue */
5275 		}
5276 		rxqueue += index;
5277 	}
5278 	return rxqueue;
5279 }
5280 
5281 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp,
5282 			     const struct bpf_prog *xdp_prog)
5283 {
5284 	void *orig_data, *orig_data_end, *hard_start;
5285 	struct netdev_rx_queue *rxqueue;
5286 	bool orig_bcast, orig_host;
5287 	u32 mac_len, frame_sz;
5288 	__be16 orig_eth_type;
5289 	struct ethhdr *eth;
5290 	u32 metalen, act;
5291 	int off;
5292 
5293 	/* The XDP program wants to see the packet starting at the MAC
5294 	 * header.
5295 	 */
5296 	mac_len = skb->data - skb_mac_header(skb);
5297 	hard_start = skb->data - skb_headroom(skb);
5298 
5299 	/* SKB "head" area always have tailroom for skb_shared_info */
5300 	frame_sz = (void *)skb_end_pointer(skb) - hard_start;
5301 	frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
5302 
5303 	rxqueue = netif_get_rxqueue(skb);
5304 	xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq);
5305 	xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len,
5306 			 skb_headlen(skb) + mac_len, true);
5307 	if (skb_is_nonlinear(skb)) {
5308 		skb_shinfo(skb)->xdp_frags_size = skb->data_len;
5309 		xdp_buff_set_frags_flag(xdp);
5310 	} else {
5311 		xdp_buff_clear_frags_flag(xdp);
5312 	}
5313 
5314 	orig_data_end = xdp->data_end;
5315 	orig_data = xdp->data;
5316 	eth = (struct ethhdr *)xdp->data;
5317 	orig_host = ether_addr_equal_64bits(eth->h_dest, skb->dev->dev_addr);
5318 	orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
5319 	orig_eth_type = eth->h_proto;
5320 
5321 	act = bpf_prog_run_xdp(xdp_prog, xdp);
5322 
5323 	/* check if bpf_xdp_adjust_head was used */
5324 	off = xdp->data - orig_data;
5325 	if (off) {
5326 		if (off > 0)
5327 			__skb_pull(skb, off);
5328 		else if (off < 0)
5329 			__skb_push(skb, -off);
5330 
5331 		skb->mac_header += off;
5332 		skb_reset_network_header(skb);
5333 	}
5334 
5335 	/* check if bpf_xdp_adjust_tail was used */
5336 	off = xdp->data_end - orig_data_end;
5337 	if (off != 0) {
5338 		skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
5339 		skb->len += off; /* positive on grow, negative on shrink */
5340 	}
5341 
5342 	/* XDP frag metadata (e.g. nr_frags) are updated in eBPF helpers
5343 	 * (e.g. bpf_xdp_adjust_tail), we need to update data_len here.
5344 	 */
5345 	if (xdp_buff_has_frags(xdp))
5346 		skb->data_len = skb_shinfo(skb)->xdp_frags_size;
5347 	else
5348 		skb->data_len = 0;
5349 
5350 	/* check if XDP changed eth hdr such SKB needs update */
5351 	eth = (struct ethhdr *)xdp->data;
5352 	if ((orig_eth_type != eth->h_proto) ||
5353 	    (orig_host != ether_addr_equal_64bits(eth->h_dest,
5354 						  skb->dev->dev_addr)) ||
5355 	    (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
5356 		__skb_push(skb, ETH_HLEN);
5357 		skb->pkt_type = PACKET_HOST;
5358 		skb->protocol = eth_type_trans(skb, skb->dev);
5359 	}
5360 
5361 	/* Redirect/Tx gives L2 packet, code that will reuse skb must __skb_pull
5362 	 * before calling us again on redirect path. We do not call do_redirect
5363 	 * as we leave that up to the caller.
5364 	 *
5365 	 * Caller is responsible for managing lifetime of skb (i.e. calling
5366 	 * kfree_skb in response to actions it cannot handle/XDP_DROP).
5367 	 */
5368 	switch (act) {
5369 	case XDP_REDIRECT:
5370 	case XDP_TX:
5371 		__skb_push(skb, mac_len);
5372 		break;
5373 	case XDP_PASS:
5374 		metalen = xdp->data - xdp->data_meta;
5375 		if (metalen)
5376 			skb_metadata_set(skb, metalen);
5377 		break;
5378 	}
5379 
5380 	return act;
5381 }
5382 
5383 static int
5384 netif_skb_check_for_xdp(struct sk_buff **pskb, const struct bpf_prog *prog)
5385 {
5386 	struct sk_buff *skb = *pskb;
5387 	int err, hroom, troom;
5388 
5389 	local_lock_nested_bh(&system_page_pool.bh_lock);
5390 	err = skb_cow_data_for_xdp(this_cpu_read(system_page_pool.pool), pskb, prog);
5391 	local_unlock_nested_bh(&system_page_pool.bh_lock);
5392 	if (!err)
5393 		return 0;
5394 
5395 	/* In case we have to go down the path and also linearize,
5396 	 * then lets do the pskb_expand_head() work just once here.
5397 	 */
5398 	hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
5399 	troom = skb->tail + skb->data_len - skb->end;
5400 	err = pskb_expand_head(skb,
5401 			       hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
5402 			       troom > 0 ? troom + 128 : 0, GFP_ATOMIC);
5403 	if (err)
5404 		return err;
5405 
5406 	return skb_linearize(skb);
5407 }
5408 
5409 static u32 netif_receive_generic_xdp(struct sk_buff **pskb,
5410 				     struct xdp_buff *xdp,
5411 				     const struct bpf_prog *xdp_prog)
5412 {
5413 	struct sk_buff *skb = *pskb;
5414 	u32 mac_len, act = XDP_DROP;
5415 
5416 	/* Reinjected packets coming from act_mirred or similar should
5417 	 * not get XDP generic processing.
5418 	 */
5419 	if (skb_is_redirected(skb))
5420 		return XDP_PASS;
5421 
5422 	/* XDP packets must have sufficient headroom of XDP_PACKET_HEADROOM
5423 	 * bytes. This is the guarantee that also native XDP provides,
5424 	 * thus we need to do it here as well.
5425 	 */
5426 	mac_len = skb->data - skb_mac_header(skb);
5427 	__skb_push(skb, mac_len);
5428 
5429 	if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
5430 	    skb_headroom(skb) < XDP_PACKET_HEADROOM) {
5431 		if (netif_skb_check_for_xdp(pskb, xdp_prog))
5432 			goto do_drop;
5433 	}
5434 
5435 	__skb_pull(*pskb, mac_len);
5436 
5437 	act = bpf_prog_run_generic_xdp(*pskb, xdp, xdp_prog);
5438 	switch (act) {
5439 	case XDP_REDIRECT:
5440 	case XDP_TX:
5441 	case XDP_PASS:
5442 		break;
5443 	default:
5444 		bpf_warn_invalid_xdp_action((*pskb)->dev, xdp_prog, act);
5445 		fallthrough;
5446 	case XDP_ABORTED:
5447 		trace_xdp_exception((*pskb)->dev, xdp_prog, act);
5448 		fallthrough;
5449 	case XDP_DROP:
5450 	do_drop:
5451 		kfree_skb(*pskb);
5452 		break;
5453 	}
5454 
5455 	return act;
5456 }
5457 
5458 /* When doing generic XDP we have to bypass the qdisc layer and the
5459  * network taps in order to match in-driver-XDP behavior. This also means
5460  * that XDP packets are able to starve other packets going through a qdisc,
5461  * and DDOS attacks will be more effective. In-driver-XDP use dedicated TX
5462  * queues, so they do not have this starvation issue.
5463  */
5464 void generic_xdp_tx(struct sk_buff *skb, const struct bpf_prog *xdp_prog)
5465 {
5466 	struct net_device *dev = skb->dev;
5467 	struct netdev_queue *txq;
5468 	bool free_skb = true;
5469 	int cpu, rc;
5470 
5471 	txq = netdev_core_pick_tx(dev, skb, NULL);
5472 	cpu = smp_processor_id();
5473 	HARD_TX_LOCK(dev, txq, cpu);
5474 	if (!netif_xmit_frozen_or_drv_stopped(txq)) {
5475 		rc = netdev_start_xmit(skb, dev, txq, 0);
5476 		if (dev_xmit_complete(rc))
5477 			free_skb = false;
5478 	}
5479 	HARD_TX_UNLOCK(dev, txq);
5480 	if (free_skb) {
5481 		trace_xdp_exception(dev, xdp_prog, XDP_TX);
5482 		dev_core_stats_tx_dropped_inc(dev);
5483 		kfree_skb(skb);
5484 	}
5485 }
5486 
5487 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
5488 
5489 int do_xdp_generic(const struct bpf_prog *xdp_prog, struct sk_buff **pskb)
5490 {
5491 	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
5492 
5493 	if (xdp_prog) {
5494 		struct xdp_buff xdp;
5495 		u32 act;
5496 		int err;
5497 
5498 		bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
5499 		act = netif_receive_generic_xdp(pskb, &xdp, xdp_prog);
5500 		if (act != XDP_PASS) {
5501 			switch (act) {
5502 			case XDP_REDIRECT:
5503 				err = xdp_do_generic_redirect((*pskb)->dev, *pskb,
5504 							      &xdp, xdp_prog);
5505 				if (err)
5506 					goto out_redir;
5507 				break;
5508 			case XDP_TX:
5509 				generic_xdp_tx(*pskb, xdp_prog);
5510 				break;
5511 			}
5512 			bpf_net_ctx_clear(bpf_net_ctx);
5513 			return XDP_DROP;
5514 		}
5515 		bpf_net_ctx_clear(bpf_net_ctx);
5516 	}
5517 	return XDP_PASS;
5518 out_redir:
5519 	bpf_net_ctx_clear(bpf_net_ctx);
5520 	kfree_skb_reason(*pskb, SKB_DROP_REASON_XDP);
5521 	return XDP_DROP;
5522 }
5523 EXPORT_SYMBOL_GPL(do_xdp_generic);
5524 
5525 static int netif_rx_internal(struct sk_buff *skb)
5526 {
5527 	int ret;
5528 
5529 	net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue), skb);
5530 
5531 	trace_netif_rx(skb);
5532 
5533 #ifdef CONFIG_RPS
5534 	if (static_branch_unlikely(&rps_needed)) {
5535 		struct rps_dev_flow voidflow, *rflow = &voidflow;
5536 		int cpu;
5537 
5538 		rcu_read_lock();
5539 
5540 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
5541 		if (cpu < 0)
5542 			cpu = smp_processor_id();
5543 
5544 		ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5545 
5546 		rcu_read_unlock();
5547 	} else
5548 #endif
5549 	{
5550 		unsigned int qtail;
5551 
5552 		ret = enqueue_to_backlog(skb, smp_processor_id(), &qtail);
5553 	}
5554 	return ret;
5555 }
5556 
5557 /**
5558  *	__netif_rx	-	Slightly optimized version of netif_rx
5559  *	@skb: buffer to post
5560  *
5561  *	This behaves as netif_rx except that it does not disable bottom halves.
5562  *	As a result this function may only be invoked from the interrupt context
5563  *	(either hard or soft interrupt).
5564  */
5565 int __netif_rx(struct sk_buff *skb)
5566 {
5567 	int ret;
5568 
5569 	lockdep_assert_once(hardirq_count() | softirq_count());
5570 
5571 	trace_netif_rx_entry(skb);
5572 	ret = netif_rx_internal(skb);
5573 	trace_netif_rx_exit(ret);
5574 	return ret;
5575 }
5576 EXPORT_SYMBOL(__netif_rx);
5577 
5578 /**
5579  *	netif_rx	-	post buffer to the network code
5580  *	@skb: buffer to post
5581  *
5582  *	This function receives a packet from a device driver and queues it for
5583  *	the upper (protocol) levels to process via the backlog NAPI device. It
5584  *	always succeeds. The buffer may be dropped during processing for
5585  *	congestion control or by the protocol layers.
5586  *	The network buffer is passed via the backlog NAPI device. Modern NIC
5587  *	driver should use NAPI and GRO.
5588  *	This function can used from interrupt and from process context. The
5589  *	caller from process context must not disable interrupts before invoking
5590  *	this function.
5591  *
5592  *	return values:
5593  *	NET_RX_SUCCESS	(no congestion)
5594  *	NET_RX_DROP     (packet was dropped)
5595  *
5596  */
5597 int netif_rx(struct sk_buff *skb)
5598 {
5599 	bool need_bh_off = !(hardirq_count() | softirq_count());
5600 	int ret;
5601 
5602 	if (need_bh_off)
5603 		local_bh_disable();
5604 	trace_netif_rx_entry(skb);
5605 	ret = netif_rx_internal(skb);
5606 	trace_netif_rx_exit(ret);
5607 	if (need_bh_off)
5608 		local_bh_enable();
5609 	return ret;
5610 }
5611 EXPORT_SYMBOL(netif_rx);
5612 
5613 static __latent_entropy void net_tx_action(void)
5614 {
5615 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5616 
5617 	if (sd->completion_queue) {
5618 		struct sk_buff *clist;
5619 
5620 		local_irq_disable();
5621 		clist = sd->completion_queue;
5622 		sd->completion_queue = NULL;
5623 		local_irq_enable();
5624 
5625 		while (clist) {
5626 			struct sk_buff *skb = clist;
5627 
5628 			clist = clist->next;
5629 
5630 			WARN_ON(refcount_read(&skb->users));
5631 			if (likely(get_kfree_skb_cb(skb)->reason == SKB_CONSUMED))
5632 				trace_consume_skb(skb, net_tx_action);
5633 			else
5634 				trace_kfree_skb(skb, net_tx_action,
5635 						get_kfree_skb_cb(skb)->reason, NULL);
5636 
5637 			if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
5638 				__kfree_skb(skb);
5639 			else
5640 				__napi_kfree_skb(skb,
5641 						 get_kfree_skb_cb(skb)->reason);
5642 		}
5643 	}
5644 
5645 	if (sd->output_queue) {
5646 		struct Qdisc *head;
5647 
5648 		local_irq_disable();
5649 		head = sd->output_queue;
5650 		sd->output_queue = NULL;
5651 		sd->output_queue_tailp = &sd->output_queue;
5652 		local_irq_enable();
5653 
5654 		rcu_read_lock();
5655 
5656 		while (head) {
5657 			struct Qdisc *q = head;
5658 			spinlock_t *root_lock = NULL;
5659 
5660 			head = head->next_sched;
5661 
5662 			/* We need to make sure head->next_sched is read
5663 			 * before clearing __QDISC_STATE_SCHED
5664 			 */
5665 			smp_mb__before_atomic();
5666 
5667 			if (!(q->flags & TCQ_F_NOLOCK)) {
5668 				root_lock = qdisc_lock(q);
5669 				spin_lock(root_lock);
5670 			} else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED,
5671 						     &q->state))) {
5672 				/* There is a synchronize_net() between
5673 				 * STATE_DEACTIVATED flag being set and
5674 				 * qdisc_reset()/some_qdisc_is_busy() in
5675 				 * dev_deactivate(), so we can safely bail out
5676 				 * early here to avoid data race between
5677 				 * qdisc_deactivate() and some_qdisc_is_busy()
5678 				 * for lockless qdisc.
5679 				 */
5680 				clear_bit(__QDISC_STATE_SCHED, &q->state);
5681 				continue;
5682 			}
5683 
5684 			clear_bit(__QDISC_STATE_SCHED, &q->state);
5685 			qdisc_run(q);
5686 			if (root_lock)
5687 				spin_unlock(root_lock);
5688 		}
5689 
5690 		rcu_read_unlock();
5691 	}
5692 
5693 	xfrm_dev_backlog(sd);
5694 }
5695 
5696 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
5697 /* This hook is defined here for ATM LANE */
5698 int (*br_fdb_test_addr_hook)(struct net_device *dev,
5699 			     unsigned char *addr) __read_mostly;
5700 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
5701 #endif
5702 
5703 /**
5704  *	netdev_is_rx_handler_busy - check if receive handler is registered
5705  *	@dev: device to check
5706  *
5707  *	Check if a receive handler is already registered for a given device.
5708  *	Return true if there one.
5709  *
5710  *	The caller must hold the rtnl_mutex.
5711  */
5712 bool netdev_is_rx_handler_busy(struct net_device *dev)
5713 {
5714 	ASSERT_RTNL();
5715 	return dev && rtnl_dereference(dev->rx_handler);
5716 }
5717 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
5718 
5719 /**
5720  *	netdev_rx_handler_register - register receive handler
5721  *	@dev: device to register a handler for
5722  *	@rx_handler: receive handler to register
5723  *	@rx_handler_data: data pointer that is used by rx handler
5724  *
5725  *	Register a receive handler for a device. This handler will then be
5726  *	called from __netif_receive_skb. A negative errno code is returned
5727  *	on a failure.
5728  *
5729  *	The caller must hold the rtnl_mutex.
5730  *
5731  *	For a general description of rx_handler, see enum rx_handler_result.
5732  */
5733 int netdev_rx_handler_register(struct net_device *dev,
5734 			       rx_handler_func_t *rx_handler,
5735 			       void *rx_handler_data)
5736 {
5737 	if (netdev_is_rx_handler_busy(dev))
5738 		return -EBUSY;
5739 
5740 	if (dev->priv_flags & IFF_NO_RX_HANDLER)
5741 		return -EINVAL;
5742 
5743 	/* Note: rx_handler_data must be set before rx_handler */
5744 	rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
5745 	rcu_assign_pointer(dev->rx_handler, rx_handler);
5746 
5747 	return 0;
5748 }
5749 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5750 
5751 /**
5752  *	netdev_rx_handler_unregister - unregister receive handler
5753  *	@dev: device to unregister a handler from
5754  *
5755  *	Unregister a receive handler from a device.
5756  *
5757  *	The caller must hold the rtnl_mutex.
5758  */
5759 void netdev_rx_handler_unregister(struct net_device *dev)
5760 {
5761 
5762 	ASSERT_RTNL();
5763 	RCU_INIT_POINTER(dev->rx_handler, NULL);
5764 	/* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5765 	 * section has a guarantee to see a non NULL rx_handler_data
5766 	 * as well.
5767 	 */
5768 	synchronize_net();
5769 	RCU_INIT_POINTER(dev->rx_handler_data, NULL);
5770 }
5771 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5772 
5773 /*
5774  * Limit the use of PFMEMALLOC reserves to those protocols that implement
5775  * the special handling of PFMEMALLOC skbs.
5776  */
5777 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5778 {
5779 	switch (skb->protocol) {
5780 	case htons(ETH_P_ARP):
5781 	case htons(ETH_P_IP):
5782 	case htons(ETH_P_IPV6):
5783 	case htons(ETH_P_8021Q):
5784 	case htons(ETH_P_8021AD):
5785 		return true;
5786 	default:
5787 		return false;
5788 	}
5789 }
5790 
5791 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5792 			     int *ret, struct net_device *orig_dev)
5793 {
5794 	if (nf_hook_ingress_active(skb)) {
5795 		int ingress_retval;
5796 
5797 		if (*pt_prev) {
5798 			*ret = deliver_skb(skb, *pt_prev, orig_dev);
5799 			*pt_prev = NULL;
5800 		}
5801 
5802 		rcu_read_lock();
5803 		ingress_retval = nf_hook_ingress(skb);
5804 		rcu_read_unlock();
5805 		return ingress_retval;
5806 	}
5807 	return 0;
5808 }
5809 
5810 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
5811 				    struct packet_type **ppt_prev)
5812 {
5813 	enum skb_drop_reason drop_reason = SKB_DROP_REASON_UNHANDLED_PROTO;
5814 	struct packet_type *ptype, *pt_prev;
5815 	rx_handler_func_t *rx_handler;
5816 	struct sk_buff *skb = *pskb;
5817 	struct net_device *orig_dev;
5818 	bool deliver_exact = false;
5819 	int ret = NET_RX_DROP;
5820 	__be16 type;
5821 
5822 	net_timestamp_check(!READ_ONCE(net_hotdata.tstamp_prequeue), skb);
5823 
5824 	trace_netif_receive_skb(skb);
5825 
5826 	orig_dev = skb->dev;
5827 
5828 	skb_reset_network_header(skb);
5829 #if !defined(CONFIG_DEBUG_NET)
5830 	/* We plan to no longer reset the transport header here.
5831 	 * Give some time to fuzzers and dev build to catch bugs
5832 	 * in network stacks.
5833 	 */
5834 	if (!skb_transport_header_was_set(skb))
5835 		skb_reset_transport_header(skb);
5836 #endif
5837 	skb_reset_mac_len(skb);
5838 
5839 	pt_prev = NULL;
5840 
5841 another_round:
5842 	skb->skb_iif = skb->dev->ifindex;
5843 
5844 	__this_cpu_inc(softnet_data.processed);
5845 
5846 	if (static_branch_unlikely(&generic_xdp_needed_key)) {
5847 		int ret2;
5848 
5849 		migrate_disable();
5850 		ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog),
5851 				      &skb);
5852 		migrate_enable();
5853 
5854 		if (ret2 != XDP_PASS) {
5855 			ret = NET_RX_DROP;
5856 			goto out;
5857 		}
5858 	}
5859 
5860 	if (eth_type_vlan(skb->protocol)) {
5861 		skb = skb_vlan_untag(skb);
5862 		if (unlikely(!skb))
5863 			goto out;
5864 	}
5865 
5866 	if (skb_skip_tc_classify(skb))
5867 		goto skip_classify;
5868 
5869 	if (pfmemalloc)
5870 		goto skip_taps;
5871 
5872 	list_for_each_entry_rcu(ptype, &dev_net_rcu(skb->dev)->ptype_all,
5873 				list) {
5874 		if (pt_prev)
5875 			ret = deliver_skb(skb, pt_prev, orig_dev);
5876 		pt_prev = ptype;
5877 	}
5878 
5879 	list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5880 		if (pt_prev)
5881 			ret = deliver_skb(skb, pt_prev, orig_dev);
5882 		pt_prev = ptype;
5883 	}
5884 
5885 skip_taps:
5886 #ifdef CONFIG_NET_INGRESS
5887 	if (static_branch_unlikely(&ingress_needed_key)) {
5888 		bool another = false;
5889 
5890 		nf_skip_egress(skb, true);
5891 		skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev,
5892 					 &another);
5893 		if (another)
5894 			goto another_round;
5895 		if (!skb)
5896 			goto out;
5897 
5898 		nf_skip_egress(skb, false);
5899 		if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5900 			goto out;
5901 	}
5902 #endif
5903 	skb_reset_redirect(skb);
5904 skip_classify:
5905 	if (pfmemalloc && !skb_pfmemalloc_protocol(skb)) {
5906 		drop_reason = SKB_DROP_REASON_PFMEMALLOC;
5907 		goto drop;
5908 	}
5909 
5910 	if (skb_vlan_tag_present(skb)) {
5911 		if (pt_prev) {
5912 			ret = deliver_skb(skb, pt_prev, orig_dev);
5913 			pt_prev = NULL;
5914 		}
5915 		if (vlan_do_receive(&skb))
5916 			goto another_round;
5917 		else if (unlikely(!skb))
5918 			goto out;
5919 	}
5920 
5921 	rx_handler = rcu_dereference(skb->dev->rx_handler);
5922 	if (rx_handler) {
5923 		if (pt_prev) {
5924 			ret = deliver_skb(skb, pt_prev, orig_dev);
5925 			pt_prev = NULL;
5926 		}
5927 		switch (rx_handler(&skb)) {
5928 		case RX_HANDLER_CONSUMED:
5929 			ret = NET_RX_SUCCESS;
5930 			goto out;
5931 		case RX_HANDLER_ANOTHER:
5932 			goto another_round;
5933 		case RX_HANDLER_EXACT:
5934 			deliver_exact = true;
5935 			break;
5936 		case RX_HANDLER_PASS:
5937 			break;
5938 		default:
5939 			BUG();
5940 		}
5941 	}
5942 
5943 	if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) {
5944 check_vlan_id:
5945 		if (skb_vlan_tag_get_id(skb)) {
5946 			/* Vlan id is non 0 and vlan_do_receive() above couldn't
5947 			 * find vlan device.
5948 			 */
5949 			skb->pkt_type = PACKET_OTHERHOST;
5950 		} else if (eth_type_vlan(skb->protocol)) {
5951 			/* Outer header is 802.1P with vlan 0, inner header is
5952 			 * 802.1Q or 802.1AD and vlan_do_receive() above could
5953 			 * not find vlan dev for vlan id 0.
5954 			 */
5955 			__vlan_hwaccel_clear_tag(skb);
5956 			skb = skb_vlan_untag(skb);
5957 			if (unlikely(!skb))
5958 				goto out;
5959 			if (vlan_do_receive(&skb))
5960 				/* After stripping off 802.1P header with vlan 0
5961 				 * vlan dev is found for inner header.
5962 				 */
5963 				goto another_round;
5964 			else if (unlikely(!skb))
5965 				goto out;
5966 			else
5967 				/* We have stripped outer 802.1P vlan 0 header.
5968 				 * But could not find vlan dev.
5969 				 * check again for vlan id to set OTHERHOST.
5970 				 */
5971 				goto check_vlan_id;
5972 		}
5973 		/* Note: we might in the future use prio bits
5974 		 * and set skb->priority like in vlan_do_receive()
5975 		 * For the time being, just ignore Priority Code Point
5976 		 */
5977 		__vlan_hwaccel_clear_tag(skb);
5978 	}
5979 
5980 	type = skb->protocol;
5981 
5982 	/* deliver only exact match when indicated */
5983 	if (likely(!deliver_exact)) {
5984 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5985 				       &ptype_base[ntohs(type) &
5986 						   PTYPE_HASH_MASK]);
5987 
5988 		/* orig_dev and skb->dev could belong to different netns;
5989 		 * Even in such case we need to traverse only the list
5990 		 * coming from skb->dev, as the ptype owner (packet socket)
5991 		 * will use dev_net(skb->dev) to do namespace filtering.
5992 		 */
5993 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5994 				       &dev_net_rcu(skb->dev)->ptype_specific);
5995 	}
5996 
5997 	deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5998 			       &orig_dev->ptype_specific);
5999 
6000 	if (unlikely(skb->dev != orig_dev)) {
6001 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
6002 				       &skb->dev->ptype_specific);
6003 	}
6004 
6005 	if (pt_prev) {
6006 		*ppt_prev = pt_prev;
6007 	} else {
6008 drop:
6009 		if (!deliver_exact)
6010 			dev_core_stats_rx_dropped_inc(skb->dev);
6011 		else
6012 			dev_core_stats_rx_nohandler_inc(skb->dev);
6013 
6014 		kfree_skb_reason(skb, drop_reason);
6015 		/* Jamal, now you will not able to escape explaining
6016 		 * me how you were going to use this. :-)
6017 		 */
6018 		ret = NET_RX_DROP;
6019 	}
6020 
6021 out:
6022 	/* The invariant here is that if *ppt_prev is not NULL
6023 	 * then skb should also be non-NULL.
6024 	 *
6025 	 * Apparently *ppt_prev assignment above holds this invariant due to
6026 	 * skb dereferencing near it.
6027 	 */
6028 	*pskb = skb;
6029 	return ret;
6030 }
6031 
6032 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
6033 {
6034 	struct net_device *orig_dev = skb->dev;
6035 	struct packet_type *pt_prev = NULL;
6036 	int ret;
6037 
6038 	ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
6039 	if (pt_prev)
6040 		ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
6041 					 skb->dev, pt_prev, orig_dev);
6042 	return ret;
6043 }
6044 
6045 /**
6046  *	netif_receive_skb_core - special purpose version of netif_receive_skb
6047  *	@skb: buffer to process
6048  *
6049  *	More direct receive version of netif_receive_skb().  It should
6050  *	only be used by callers that have a need to skip RPS and Generic XDP.
6051  *	Caller must also take care of handling if ``(page_is_)pfmemalloc``.
6052  *
6053  *	This function may only be called from softirq context and interrupts
6054  *	should be enabled.
6055  *
6056  *	Return values (usually ignored):
6057  *	NET_RX_SUCCESS: no congestion
6058  *	NET_RX_DROP: packet was dropped
6059  */
6060 int netif_receive_skb_core(struct sk_buff *skb)
6061 {
6062 	int ret;
6063 
6064 	rcu_read_lock();
6065 	ret = __netif_receive_skb_one_core(skb, false);
6066 	rcu_read_unlock();
6067 
6068 	return ret;
6069 }
6070 EXPORT_SYMBOL(netif_receive_skb_core);
6071 
6072 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
6073 						  struct packet_type *pt_prev,
6074 						  struct net_device *orig_dev)
6075 {
6076 	struct sk_buff *skb, *next;
6077 
6078 	if (!pt_prev)
6079 		return;
6080 	if (list_empty(head))
6081 		return;
6082 	if (pt_prev->list_func != NULL)
6083 		INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
6084 				   ip_list_rcv, head, pt_prev, orig_dev);
6085 	else
6086 		list_for_each_entry_safe(skb, next, head, list) {
6087 			skb_list_del_init(skb);
6088 			pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
6089 		}
6090 }
6091 
6092 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
6093 {
6094 	/* Fast-path assumptions:
6095 	 * - There is no RX handler.
6096 	 * - Only one packet_type matches.
6097 	 * If either of these fails, we will end up doing some per-packet
6098 	 * processing in-line, then handling the 'last ptype' for the whole
6099 	 * sublist.  This can't cause out-of-order delivery to any single ptype,
6100 	 * because the 'last ptype' must be constant across the sublist, and all
6101 	 * other ptypes are handled per-packet.
6102 	 */
6103 	/* Current (common) ptype of sublist */
6104 	struct packet_type *pt_curr = NULL;
6105 	/* Current (common) orig_dev of sublist */
6106 	struct net_device *od_curr = NULL;
6107 	struct sk_buff *skb, *next;
6108 	LIST_HEAD(sublist);
6109 
6110 	list_for_each_entry_safe(skb, next, head, list) {
6111 		struct net_device *orig_dev = skb->dev;
6112 		struct packet_type *pt_prev = NULL;
6113 
6114 		skb_list_del_init(skb);
6115 		__netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
6116 		if (!pt_prev)
6117 			continue;
6118 		if (pt_curr != pt_prev || od_curr != orig_dev) {
6119 			/* dispatch old sublist */
6120 			__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
6121 			/* start new sublist */
6122 			INIT_LIST_HEAD(&sublist);
6123 			pt_curr = pt_prev;
6124 			od_curr = orig_dev;
6125 		}
6126 		list_add_tail(&skb->list, &sublist);
6127 	}
6128 
6129 	/* dispatch final sublist */
6130 	__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
6131 }
6132 
6133 static int __netif_receive_skb(struct sk_buff *skb)
6134 {
6135 	int ret;
6136 
6137 	if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
6138 		unsigned int noreclaim_flag;
6139 
6140 		/*
6141 		 * PFMEMALLOC skbs are special, they should
6142 		 * - be delivered to SOCK_MEMALLOC sockets only
6143 		 * - stay away from userspace
6144 		 * - have bounded memory usage
6145 		 *
6146 		 * Use PF_MEMALLOC as this saves us from propagating the allocation
6147 		 * context down to all allocation sites.
6148 		 */
6149 		noreclaim_flag = memalloc_noreclaim_save();
6150 		ret = __netif_receive_skb_one_core(skb, true);
6151 		memalloc_noreclaim_restore(noreclaim_flag);
6152 	} else
6153 		ret = __netif_receive_skb_one_core(skb, false);
6154 
6155 	return ret;
6156 }
6157 
6158 static void __netif_receive_skb_list(struct list_head *head)
6159 {
6160 	unsigned long noreclaim_flag = 0;
6161 	struct sk_buff *skb, *next;
6162 	bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
6163 
6164 	list_for_each_entry_safe(skb, next, head, list) {
6165 		if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
6166 			struct list_head sublist;
6167 
6168 			/* Handle the previous sublist */
6169 			list_cut_before(&sublist, head, &skb->list);
6170 			if (!list_empty(&sublist))
6171 				__netif_receive_skb_list_core(&sublist, pfmemalloc);
6172 			pfmemalloc = !pfmemalloc;
6173 			/* See comments in __netif_receive_skb */
6174 			if (pfmemalloc)
6175 				noreclaim_flag = memalloc_noreclaim_save();
6176 			else
6177 				memalloc_noreclaim_restore(noreclaim_flag);
6178 		}
6179 	}
6180 	/* Handle the remaining sublist */
6181 	if (!list_empty(head))
6182 		__netif_receive_skb_list_core(head, pfmemalloc);
6183 	/* Restore pflags */
6184 	if (pfmemalloc)
6185 		memalloc_noreclaim_restore(noreclaim_flag);
6186 }
6187 
6188 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
6189 {
6190 	struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
6191 	struct bpf_prog *new = xdp->prog;
6192 	int ret = 0;
6193 
6194 	switch (xdp->command) {
6195 	case XDP_SETUP_PROG:
6196 		rcu_assign_pointer(dev->xdp_prog, new);
6197 		if (old)
6198 			bpf_prog_put(old);
6199 
6200 		if (old && !new) {
6201 			static_branch_dec(&generic_xdp_needed_key);
6202 		} else if (new && !old) {
6203 			static_branch_inc(&generic_xdp_needed_key);
6204 			netif_disable_lro(dev);
6205 			dev_disable_gro_hw(dev);
6206 		}
6207 		break;
6208 
6209 	default:
6210 		ret = -EINVAL;
6211 		break;
6212 	}
6213 
6214 	return ret;
6215 }
6216 
6217 static int netif_receive_skb_internal(struct sk_buff *skb)
6218 {
6219 	int ret;
6220 
6221 	net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue), skb);
6222 
6223 	if (skb_defer_rx_timestamp(skb))
6224 		return NET_RX_SUCCESS;
6225 
6226 	rcu_read_lock();
6227 #ifdef CONFIG_RPS
6228 	if (static_branch_unlikely(&rps_needed)) {
6229 		struct rps_dev_flow voidflow, *rflow = &voidflow;
6230 		int cpu = get_rps_cpu(skb->dev, skb, &rflow);
6231 
6232 		if (cpu >= 0) {
6233 			ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
6234 			rcu_read_unlock();
6235 			return ret;
6236 		}
6237 	}
6238 #endif
6239 	ret = __netif_receive_skb(skb);
6240 	rcu_read_unlock();
6241 	return ret;
6242 }
6243 
6244 void netif_receive_skb_list_internal(struct list_head *head)
6245 {
6246 	struct sk_buff *skb, *next;
6247 	LIST_HEAD(sublist);
6248 
6249 	list_for_each_entry_safe(skb, next, head, list) {
6250 		net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue),
6251 				    skb);
6252 		skb_list_del_init(skb);
6253 		if (!skb_defer_rx_timestamp(skb))
6254 			list_add_tail(&skb->list, &sublist);
6255 	}
6256 	list_splice_init(&sublist, head);
6257 
6258 	rcu_read_lock();
6259 #ifdef CONFIG_RPS
6260 	if (static_branch_unlikely(&rps_needed)) {
6261 		list_for_each_entry_safe(skb, next, head, list) {
6262 			struct rps_dev_flow voidflow, *rflow = &voidflow;
6263 			int cpu = get_rps_cpu(skb->dev, skb, &rflow);
6264 
6265 			if (cpu >= 0) {
6266 				/* Will be handled, remove from list */
6267 				skb_list_del_init(skb);
6268 				enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
6269 			}
6270 		}
6271 	}
6272 #endif
6273 	__netif_receive_skb_list(head);
6274 	rcu_read_unlock();
6275 }
6276 
6277 /**
6278  *	netif_receive_skb - process receive buffer from network
6279  *	@skb: buffer to process
6280  *
6281  *	netif_receive_skb() is the main receive data processing function.
6282  *	It always succeeds. The buffer may be dropped during processing
6283  *	for congestion control or by the protocol layers.
6284  *
6285  *	This function may only be called from softirq context and interrupts
6286  *	should be enabled.
6287  *
6288  *	Return values (usually ignored):
6289  *	NET_RX_SUCCESS: no congestion
6290  *	NET_RX_DROP: packet was dropped
6291  */
6292 int netif_receive_skb(struct sk_buff *skb)
6293 {
6294 	int ret;
6295 
6296 	trace_netif_receive_skb_entry(skb);
6297 
6298 	ret = netif_receive_skb_internal(skb);
6299 	trace_netif_receive_skb_exit(ret);
6300 
6301 	return ret;
6302 }
6303 EXPORT_SYMBOL(netif_receive_skb);
6304 
6305 /**
6306  *	netif_receive_skb_list - process many receive buffers from network
6307  *	@head: list of skbs to process.
6308  *
6309  *	Since return value of netif_receive_skb() is normally ignored, and
6310  *	wouldn't be meaningful for a list, this function returns void.
6311  *
6312  *	This function may only be called from softirq context and interrupts
6313  *	should be enabled.
6314  */
6315 void netif_receive_skb_list(struct list_head *head)
6316 {
6317 	struct sk_buff *skb;
6318 
6319 	if (list_empty(head))
6320 		return;
6321 	if (trace_netif_receive_skb_list_entry_enabled()) {
6322 		list_for_each_entry(skb, head, list)
6323 			trace_netif_receive_skb_list_entry(skb);
6324 	}
6325 	netif_receive_skb_list_internal(head);
6326 	trace_netif_receive_skb_list_exit(0);
6327 }
6328 EXPORT_SYMBOL(netif_receive_skb_list);
6329 
6330 /* Network device is going away, flush any packets still pending */
6331 static void flush_backlog(struct work_struct *work)
6332 {
6333 	struct sk_buff *skb, *tmp;
6334 	struct sk_buff_head list;
6335 	struct softnet_data *sd;
6336 
6337 	__skb_queue_head_init(&list);
6338 	local_bh_disable();
6339 	sd = this_cpu_ptr(&softnet_data);
6340 
6341 	backlog_lock_irq_disable(sd);
6342 	skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
6343 		if (READ_ONCE(skb->dev->reg_state) == NETREG_UNREGISTERING) {
6344 			__skb_unlink(skb, &sd->input_pkt_queue);
6345 			__skb_queue_tail(&list, skb);
6346 			rps_input_queue_head_incr(sd);
6347 		}
6348 	}
6349 	backlog_unlock_irq_enable(sd);
6350 
6351 	local_lock_nested_bh(&softnet_data.process_queue_bh_lock);
6352 	skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
6353 		if (READ_ONCE(skb->dev->reg_state) == NETREG_UNREGISTERING) {
6354 			__skb_unlink(skb, &sd->process_queue);
6355 			__skb_queue_tail(&list, skb);
6356 			rps_input_queue_head_incr(sd);
6357 		}
6358 	}
6359 	local_unlock_nested_bh(&softnet_data.process_queue_bh_lock);
6360 	local_bh_enable();
6361 
6362 	__skb_queue_purge_reason(&list, SKB_DROP_REASON_DEV_READY);
6363 }
6364 
6365 static bool flush_required(int cpu)
6366 {
6367 #if IS_ENABLED(CONFIG_RPS)
6368 	struct softnet_data *sd = &per_cpu(softnet_data, cpu);
6369 	bool do_flush;
6370 
6371 	backlog_lock_irq_disable(sd);
6372 
6373 	/* as insertion into process_queue happens with the rps lock held,
6374 	 * process_queue access may race only with dequeue
6375 	 */
6376 	do_flush = !skb_queue_empty(&sd->input_pkt_queue) ||
6377 		   !skb_queue_empty_lockless(&sd->process_queue);
6378 	backlog_unlock_irq_enable(sd);
6379 
6380 	return do_flush;
6381 #endif
6382 	/* without RPS we can't safely check input_pkt_queue: during a
6383 	 * concurrent remote skb_queue_splice() we can detect as empty both
6384 	 * input_pkt_queue and process_queue even if the latter could end-up
6385 	 * containing a lot of packets.
6386 	 */
6387 	return true;
6388 }
6389 
6390 struct flush_backlogs {
6391 	cpumask_t		flush_cpus;
6392 	struct work_struct	w[];
6393 };
6394 
6395 static struct flush_backlogs *flush_backlogs_alloc(void)
6396 {
6397 	return kmalloc(struct_size_t(struct flush_backlogs, w, nr_cpu_ids),
6398 		       GFP_KERNEL);
6399 }
6400 
6401 static struct flush_backlogs *flush_backlogs_fallback;
6402 static DEFINE_MUTEX(flush_backlogs_mutex);
6403 
6404 static void flush_all_backlogs(void)
6405 {
6406 	struct flush_backlogs *ptr = flush_backlogs_alloc();
6407 	unsigned int cpu;
6408 
6409 	if (!ptr) {
6410 		mutex_lock(&flush_backlogs_mutex);
6411 		ptr = flush_backlogs_fallback;
6412 	}
6413 	cpumask_clear(&ptr->flush_cpus);
6414 
6415 	cpus_read_lock();
6416 
6417 	for_each_online_cpu(cpu) {
6418 		if (flush_required(cpu)) {
6419 			INIT_WORK(&ptr->w[cpu], flush_backlog);
6420 			queue_work_on(cpu, system_highpri_wq, &ptr->w[cpu]);
6421 			__cpumask_set_cpu(cpu, &ptr->flush_cpus);
6422 		}
6423 	}
6424 
6425 	/* we can have in flight packet[s] on the cpus we are not flushing,
6426 	 * synchronize_net() in unregister_netdevice_many() will take care of
6427 	 * them.
6428 	 */
6429 	for_each_cpu(cpu, &ptr->flush_cpus)
6430 		flush_work(&ptr->w[cpu]);
6431 
6432 	cpus_read_unlock();
6433 
6434 	if (ptr != flush_backlogs_fallback)
6435 		kfree(ptr);
6436 	else
6437 		mutex_unlock(&flush_backlogs_mutex);
6438 }
6439 
6440 static void net_rps_send_ipi(struct softnet_data *remsd)
6441 {
6442 #ifdef CONFIG_RPS
6443 	while (remsd) {
6444 		struct softnet_data *next = remsd->rps_ipi_next;
6445 
6446 		if (cpu_online(remsd->cpu))
6447 			smp_call_function_single_async(remsd->cpu, &remsd->csd);
6448 		remsd = next;
6449 	}
6450 #endif
6451 }
6452 
6453 /*
6454  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
6455  * Note: called with local irq disabled, but exits with local irq enabled.
6456  */
6457 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
6458 {
6459 #ifdef CONFIG_RPS
6460 	struct softnet_data *remsd = sd->rps_ipi_list;
6461 
6462 	if (!use_backlog_threads() && remsd) {
6463 		sd->rps_ipi_list = NULL;
6464 
6465 		local_irq_enable();
6466 
6467 		/* Send pending IPI's to kick RPS processing on remote cpus. */
6468 		net_rps_send_ipi(remsd);
6469 	} else
6470 #endif
6471 		local_irq_enable();
6472 }
6473 
6474 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
6475 {
6476 #ifdef CONFIG_RPS
6477 	return !use_backlog_threads() && sd->rps_ipi_list;
6478 #else
6479 	return false;
6480 #endif
6481 }
6482 
6483 static int process_backlog(struct napi_struct *napi, int quota)
6484 {
6485 	struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
6486 	bool again = true;
6487 	int work = 0;
6488 
6489 	/* Check if we have pending ipi, its better to send them now,
6490 	 * not waiting net_rx_action() end.
6491 	 */
6492 	if (sd_has_rps_ipi_waiting(sd)) {
6493 		local_irq_disable();
6494 		net_rps_action_and_irq_enable(sd);
6495 	}
6496 
6497 	napi->weight = READ_ONCE(net_hotdata.dev_rx_weight);
6498 	while (again) {
6499 		struct sk_buff *skb;
6500 
6501 		local_lock_nested_bh(&softnet_data.process_queue_bh_lock);
6502 		while ((skb = __skb_dequeue(&sd->process_queue))) {
6503 			local_unlock_nested_bh(&softnet_data.process_queue_bh_lock);
6504 			rcu_read_lock();
6505 			__netif_receive_skb(skb);
6506 			rcu_read_unlock();
6507 			if (++work >= quota) {
6508 				rps_input_queue_head_add(sd, work);
6509 				return work;
6510 			}
6511 
6512 			local_lock_nested_bh(&softnet_data.process_queue_bh_lock);
6513 		}
6514 		local_unlock_nested_bh(&softnet_data.process_queue_bh_lock);
6515 
6516 		backlog_lock_irq_disable(sd);
6517 		if (skb_queue_empty(&sd->input_pkt_queue)) {
6518 			/*
6519 			 * Inline a custom version of __napi_complete().
6520 			 * only current cpu owns and manipulates this napi,
6521 			 * and NAPI_STATE_SCHED is the only possible flag set
6522 			 * on backlog.
6523 			 * We can use a plain write instead of clear_bit(),
6524 			 * and we dont need an smp_mb() memory barrier.
6525 			 */
6526 			napi->state &= NAPIF_STATE_THREADED;
6527 			again = false;
6528 		} else {
6529 			local_lock_nested_bh(&softnet_data.process_queue_bh_lock);
6530 			skb_queue_splice_tail_init(&sd->input_pkt_queue,
6531 						   &sd->process_queue);
6532 			local_unlock_nested_bh(&softnet_data.process_queue_bh_lock);
6533 		}
6534 		backlog_unlock_irq_enable(sd);
6535 	}
6536 
6537 	if (work)
6538 		rps_input_queue_head_add(sd, work);
6539 	return work;
6540 }
6541 
6542 /**
6543  * __napi_schedule - schedule for receive
6544  * @n: entry to schedule
6545  *
6546  * The entry's receive function will be scheduled to run.
6547  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
6548  */
6549 void __napi_schedule(struct napi_struct *n)
6550 {
6551 	unsigned long flags;
6552 
6553 	local_irq_save(flags);
6554 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
6555 	local_irq_restore(flags);
6556 }
6557 EXPORT_SYMBOL(__napi_schedule);
6558 
6559 /**
6560  *	napi_schedule_prep - check if napi can be scheduled
6561  *	@n: napi context
6562  *
6563  * Test if NAPI routine is already running, and if not mark
6564  * it as running.  This is used as a condition variable to
6565  * insure only one NAPI poll instance runs.  We also make
6566  * sure there is no pending NAPI disable.
6567  */
6568 bool napi_schedule_prep(struct napi_struct *n)
6569 {
6570 	unsigned long new, val = READ_ONCE(n->state);
6571 
6572 	do {
6573 		if (unlikely(val & NAPIF_STATE_DISABLE))
6574 			return false;
6575 		new = val | NAPIF_STATE_SCHED;
6576 
6577 		/* Sets STATE_MISSED bit if STATE_SCHED was already set
6578 		 * This was suggested by Alexander Duyck, as compiler
6579 		 * emits better code than :
6580 		 * if (val & NAPIF_STATE_SCHED)
6581 		 *     new |= NAPIF_STATE_MISSED;
6582 		 */
6583 		new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6584 						   NAPIF_STATE_MISSED;
6585 	} while (!try_cmpxchg(&n->state, &val, new));
6586 
6587 	return !(val & NAPIF_STATE_SCHED);
6588 }
6589 EXPORT_SYMBOL(napi_schedule_prep);
6590 
6591 /**
6592  * __napi_schedule_irqoff - schedule for receive
6593  * @n: entry to schedule
6594  *
6595  * Variant of __napi_schedule() assuming hard irqs are masked.
6596  *
6597  * On PREEMPT_RT enabled kernels this maps to __napi_schedule()
6598  * because the interrupt disabled assumption might not be true
6599  * due to force-threaded interrupts and spinlock substitution.
6600  */
6601 void __napi_schedule_irqoff(struct napi_struct *n)
6602 {
6603 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6604 		____napi_schedule(this_cpu_ptr(&softnet_data), n);
6605 	else
6606 		__napi_schedule(n);
6607 }
6608 EXPORT_SYMBOL(__napi_schedule_irqoff);
6609 
6610 bool napi_complete_done(struct napi_struct *n, int work_done)
6611 {
6612 	unsigned long flags, val, new, timeout = 0;
6613 	bool ret = true;
6614 
6615 	/*
6616 	 * 1) Don't let napi dequeue from the cpu poll list
6617 	 *    just in case its running on a different cpu.
6618 	 * 2) If we are busy polling, do nothing here, we have
6619 	 *    the guarantee we will be called later.
6620 	 */
6621 	if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6622 				 NAPIF_STATE_IN_BUSY_POLL)))
6623 		return false;
6624 
6625 	if (work_done) {
6626 		if (n->gro.bitmask)
6627 			timeout = napi_get_gro_flush_timeout(n);
6628 		n->defer_hard_irqs_count = napi_get_defer_hard_irqs(n);
6629 	}
6630 	if (n->defer_hard_irqs_count > 0) {
6631 		n->defer_hard_irqs_count--;
6632 		timeout = napi_get_gro_flush_timeout(n);
6633 		if (timeout)
6634 			ret = false;
6635 	}
6636 
6637 	/*
6638 	 * When the NAPI instance uses a timeout and keeps postponing
6639 	 * it, we need to bound somehow the time packets are kept in
6640 	 * the GRO layer.
6641 	 */
6642 	gro_flush_normal(&n->gro, !!timeout);
6643 
6644 	if (unlikely(!list_empty(&n->poll_list))) {
6645 		/* If n->poll_list is not empty, we need to mask irqs */
6646 		local_irq_save(flags);
6647 		list_del_init(&n->poll_list);
6648 		local_irq_restore(flags);
6649 	}
6650 	WRITE_ONCE(n->list_owner, -1);
6651 
6652 	val = READ_ONCE(n->state);
6653 	do {
6654 		WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6655 
6656 		new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED |
6657 			      NAPIF_STATE_SCHED_THREADED |
6658 			      NAPIF_STATE_PREFER_BUSY_POLL);
6659 
6660 		/* If STATE_MISSED was set, leave STATE_SCHED set,
6661 		 * because we will call napi->poll() one more time.
6662 		 * This C code was suggested by Alexander Duyck to help gcc.
6663 		 */
6664 		new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6665 						    NAPIF_STATE_SCHED;
6666 	} while (!try_cmpxchg(&n->state, &val, new));
6667 
6668 	if (unlikely(val & NAPIF_STATE_MISSED)) {
6669 		__napi_schedule(n);
6670 		return false;
6671 	}
6672 
6673 	if (timeout)
6674 		hrtimer_start(&n->timer, ns_to_ktime(timeout),
6675 			      HRTIMER_MODE_REL_PINNED);
6676 	return ret;
6677 }
6678 EXPORT_SYMBOL(napi_complete_done);
6679 
6680 static void skb_defer_free_flush(struct softnet_data *sd)
6681 {
6682 	struct sk_buff *skb, *next;
6683 
6684 	/* Paired with WRITE_ONCE() in skb_attempt_defer_free() */
6685 	if (!READ_ONCE(sd->defer_list))
6686 		return;
6687 
6688 	spin_lock(&sd->defer_lock);
6689 	skb = sd->defer_list;
6690 	sd->defer_list = NULL;
6691 	sd->defer_count = 0;
6692 	spin_unlock(&sd->defer_lock);
6693 
6694 	while (skb != NULL) {
6695 		next = skb->next;
6696 		napi_consume_skb(skb, 1);
6697 		skb = next;
6698 	}
6699 }
6700 
6701 #if defined(CONFIG_NET_RX_BUSY_POLL)
6702 
6703 static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule)
6704 {
6705 	if (!skip_schedule) {
6706 		gro_normal_list(&napi->gro);
6707 		__napi_schedule(napi);
6708 		return;
6709 	}
6710 
6711 	/* Flush too old packets. If HZ < 1000, flush all packets */
6712 	gro_flush_normal(&napi->gro, HZ >= 1000);
6713 
6714 	clear_bit(NAPI_STATE_SCHED, &napi->state);
6715 }
6716 
6717 enum {
6718 	NAPI_F_PREFER_BUSY_POLL	= 1,
6719 	NAPI_F_END_ON_RESCHED	= 2,
6720 };
6721 
6722 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock,
6723 			   unsigned flags, u16 budget)
6724 {
6725 	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
6726 	bool skip_schedule = false;
6727 	unsigned long timeout;
6728 	int rc;
6729 
6730 	/* Busy polling means there is a high chance device driver hard irq
6731 	 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6732 	 * set in napi_schedule_prep().
6733 	 * Since we are about to call napi->poll() once more, we can safely
6734 	 * clear NAPI_STATE_MISSED.
6735 	 *
6736 	 * Note: x86 could use a single "lock and ..." instruction
6737 	 * to perform these two clear_bit()
6738 	 */
6739 	clear_bit(NAPI_STATE_MISSED, &napi->state);
6740 	clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6741 
6742 	local_bh_disable();
6743 	bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
6744 
6745 	if (flags & NAPI_F_PREFER_BUSY_POLL) {
6746 		napi->defer_hard_irqs_count = napi_get_defer_hard_irqs(napi);
6747 		timeout = napi_get_gro_flush_timeout(napi);
6748 		if (napi->defer_hard_irqs_count && timeout) {
6749 			hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED);
6750 			skip_schedule = true;
6751 		}
6752 	}
6753 
6754 	/* All we really want here is to re-enable device interrupts.
6755 	 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6756 	 */
6757 	rc = napi->poll(napi, budget);
6758 	/* We can't gro_normal_list() here, because napi->poll() might have
6759 	 * rearmed the napi (napi_complete_done()) in which case it could
6760 	 * already be running on another CPU.
6761 	 */
6762 	trace_napi_poll(napi, rc, budget);
6763 	netpoll_poll_unlock(have_poll_lock);
6764 	if (rc == budget)
6765 		__busy_poll_stop(napi, skip_schedule);
6766 	bpf_net_ctx_clear(bpf_net_ctx);
6767 	local_bh_enable();
6768 }
6769 
6770 static void __napi_busy_loop(unsigned int napi_id,
6771 		      bool (*loop_end)(void *, unsigned long),
6772 		      void *loop_end_arg, unsigned flags, u16 budget)
6773 {
6774 	unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6775 	int (*napi_poll)(struct napi_struct *napi, int budget);
6776 	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
6777 	void *have_poll_lock = NULL;
6778 	struct napi_struct *napi;
6779 
6780 	WARN_ON_ONCE(!rcu_read_lock_held());
6781 
6782 restart:
6783 	napi_poll = NULL;
6784 
6785 	napi = napi_by_id(napi_id);
6786 	if (!napi)
6787 		return;
6788 
6789 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6790 		preempt_disable();
6791 	for (;;) {
6792 		int work = 0;
6793 
6794 		local_bh_disable();
6795 		bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
6796 		if (!napi_poll) {
6797 			unsigned long val = READ_ONCE(napi->state);
6798 
6799 			/* If multiple threads are competing for this napi,
6800 			 * we avoid dirtying napi->state as much as we can.
6801 			 */
6802 			if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6803 				   NAPIF_STATE_IN_BUSY_POLL)) {
6804 				if (flags & NAPI_F_PREFER_BUSY_POLL)
6805 					set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6806 				goto count;
6807 			}
6808 			if (cmpxchg(&napi->state, val,
6809 				    val | NAPIF_STATE_IN_BUSY_POLL |
6810 					  NAPIF_STATE_SCHED) != val) {
6811 				if (flags & NAPI_F_PREFER_BUSY_POLL)
6812 					set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6813 				goto count;
6814 			}
6815 			have_poll_lock = netpoll_poll_lock(napi);
6816 			napi_poll = napi->poll;
6817 		}
6818 		work = napi_poll(napi, budget);
6819 		trace_napi_poll(napi, work, budget);
6820 		gro_normal_list(&napi->gro);
6821 count:
6822 		if (work > 0)
6823 			__NET_ADD_STATS(dev_net(napi->dev),
6824 					LINUX_MIB_BUSYPOLLRXPACKETS, work);
6825 		skb_defer_free_flush(this_cpu_ptr(&softnet_data));
6826 		bpf_net_ctx_clear(bpf_net_ctx);
6827 		local_bh_enable();
6828 
6829 		if (!loop_end || loop_end(loop_end_arg, start_time))
6830 			break;
6831 
6832 		if (unlikely(need_resched())) {
6833 			if (flags & NAPI_F_END_ON_RESCHED)
6834 				break;
6835 			if (napi_poll)
6836 				busy_poll_stop(napi, have_poll_lock, flags, budget);
6837 			if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6838 				preempt_enable();
6839 			rcu_read_unlock();
6840 			cond_resched();
6841 			rcu_read_lock();
6842 			if (loop_end(loop_end_arg, start_time))
6843 				return;
6844 			goto restart;
6845 		}
6846 		cpu_relax();
6847 	}
6848 	if (napi_poll)
6849 		busy_poll_stop(napi, have_poll_lock, flags, budget);
6850 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6851 		preempt_enable();
6852 }
6853 
6854 void napi_busy_loop_rcu(unsigned int napi_id,
6855 			bool (*loop_end)(void *, unsigned long),
6856 			void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6857 {
6858 	unsigned flags = NAPI_F_END_ON_RESCHED;
6859 
6860 	if (prefer_busy_poll)
6861 		flags |= NAPI_F_PREFER_BUSY_POLL;
6862 
6863 	__napi_busy_loop(napi_id, loop_end, loop_end_arg, flags, budget);
6864 }
6865 
6866 void napi_busy_loop(unsigned int napi_id,
6867 		    bool (*loop_end)(void *, unsigned long),
6868 		    void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6869 {
6870 	unsigned flags = prefer_busy_poll ? NAPI_F_PREFER_BUSY_POLL : 0;
6871 
6872 	rcu_read_lock();
6873 	__napi_busy_loop(napi_id, loop_end, loop_end_arg, flags, budget);
6874 	rcu_read_unlock();
6875 }
6876 EXPORT_SYMBOL(napi_busy_loop);
6877 
6878 void napi_suspend_irqs(unsigned int napi_id)
6879 {
6880 	struct napi_struct *napi;
6881 
6882 	rcu_read_lock();
6883 	napi = napi_by_id(napi_id);
6884 	if (napi) {
6885 		unsigned long timeout = napi_get_irq_suspend_timeout(napi);
6886 
6887 		if (timeout)
6888 			hrtimer_start(&napi->timer, ns_to_ktime(timeout),
6889 				      HRTIMER_MODE_REL_PINNED);
6890 	}
6891 	rcu_read_unlock();
6892 }
6893 
6894 void napi_resume_irqs(unsigned int napi_id)
6895 {
6896 	struct napi_struct *napi;
6897 
6898 	rcu_read_lock();
6899 	napi = napi_by_id(napi_id);
6900 	if (napi) {
6901 		/* If irq_suspend_timeout is set to 0 between the call to
6902 		 * napi_suspend_irqs and now, the original value still
6903 		 * determines the safety timeout as intended and napi_watchdog
6904 		 * will resume irq processing.
6905 		 */
6906 		if (napi_get_irq_suspend_timeout(napi)) {
6907 			local_bh_disable();
6908 			napi_schedule(napi);
6909 			local_bh_enable();
6910 		}
6911 	}
6912 	rcu_read_unlock();
6913 }
6914 
6915 #endif /* CONFIG_NET_RX_BUSY_POLL */
6916 
6917 static void __napi_hash_add_with_id(struct napi_struct *napi,
6918 				    unsigned int napi_id)
6919 {
6920 	napi->gro.cached_napi_id = napi_id;
6921 
6922 	WRITE_ONCE(napi->napi_id, napi_id);
6923 	hlist_add_head_rcu(&napi->napi_hash_node,
6924 			   &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6925 }
6926 
6927 static void napi_hash_add_with_id(struct napi_struct *napi,
6928 				  unsigned int napi_id)
6929 {
6930 	unsigned long flags;
6931 
6932 	spin_lock_irqsave(&napi_hash_lock, flags);
6933 	WARN_ON_ONCE(napi_by_id(napi_id));
6934 	__napi_hash_add_with_id(napi, napi_id);
6935 	spin_unlock_irqrestore(&napi_hash_lock, flags);
6936 }
6937 
6938 static void napi_hash_add(struct napi_struct *napi)
6939 {
6940 	unsigned long flags;
6941 
6942 	if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state))
6943 		return;
6944 
6945 	spin_lock_irqsave(&napi_hash_lock, flags);
6946 
6947 	/* 0..NR_CPUS range is reserved for sender_cpu use */
6948 	do {
6949 		if (unlikely(!napi_id_valid(++napi_gen_id)))
6950 			napi_gen_id = MIN_NAPI_ID;
6951 	} while (napi_by_id(napi_gen_id));
6952 
6953 	__napi_hash_add_with_id(napi, napi_gen_id);
6954 
6955 	spin_unlock_irqrestore(&napi_hash_lock, flags);
6956 }
6957 
6958 /* Warning : caller is responsible to make sure rcu grace period
6959  * is respected before freeing memory containing @napi
6960  */
6961 static void napi_hash_del(struct napi_struct *napi)
6962 {
6963 	unsigned long flags;
6964 
6965 	spin_lock_irqsave(&napi_hash_lock, flags);
6966 
6967 	hlist_del_init_rcu(&napi->napi_hash_node);
6968 
6969 	spin_unlock_irqrestore(&napi_hash_lock, flags);
6970 }
6971 
6972 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6973 {
6974 	struct napi_struct *napi;
6975 
6976 	napi = container_of(timer, struct napi_struct, timer);
6977 
6978 	/* Note : we use a relaxed variant of napi_schedule_prep() not setting
6979 	 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6980 	 */
6981 	if (!napi_disable_pending(napi) &&
6982 	    !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) {
6983 		clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6984 		__napi_schedule_irqoff(napi);
6985 	}
6986 
6987 	return HRTIMER_NORESTART;
6988 }
6989 
6990 static void napi_stop_kthread(struct napi_struct *napi)
6991 {
6992 	unsigned long val, new;
6993 
6994 	/* Wait until the napi STATE_THREADED is unset. */
6995 	while (true) {
6996 		val = READ_ONCE(napi->state);
6997 
6998 		/* If napi kthread own this napi or the napi is idle,
6999 		 * STATE_THREADED can be unset here.
7000 		 */
7001 		if ((val & NAPIF_STATE_SCHED_THREADED) ||
7002 		    !(val & NAPIF_STATE_SCHED)) {
7003 			new = val & (~NAPIF_STATE_THREADED);
7004 		} else {
7005 			msleep(20);
7006 			continue;
7007 		}
7008 
7009 		if (try_cmpxchg(&napi->state, &val, new))
7010 			break;
7011 	}
7012 
7013 	/* Once STATE_THREADED is unset, wait for SCHED_THREADED to be unset by
7014 	 * the kthread.
7015 	 */
7016 	while (true) {
7017 		if (!test_bit(NAPIF_STATE_SCHED_THREADED, &napi->state))
7018 			break;
7019 
7020 		msleep(20);
7021 	}
7022 
7023 	kthread_stop(napi->thread);
7024 	napi->thread = NULL;
7025 }
7026 
7027 int napi_set_threaded(struct napi_struct *napi,
7028 		      enum netdev_napi_threaded threaded)
7029 {
7030 	if (threaded) {
7031 		if (!napi->thread) {
7032 			int err = napi_kthread_create(napi);
7033 
7034 			if (err)
7035 				return err;
7036 		}
7037 	}
7038 
7039 	if (napi->config)
7040 		napi->config->threaded = threaded;
7041 
7042 	/* Setting/unsetting threaded mode on a napi might not immediately
7043 	 * take effect, if the current napi instance is actively being
7044 	 * polled. In this case, the switch between threaded mode and
7045 	 * softirq mode will happen in the next round of napi_schedule().
7046 	 * This should not cause hiccups/stalls to the live traffic.
7047 	 */
7048 	if (!threaded && napi->thread) {
7049 		napi_stop_kthread(napi);
7050 	} else {
7051 		/* Make sure kthread is created before THREADED bit is set. */
7052 		smp_mb__before_atomic();
7053 		assign_bit(NAPI_STATE_THREADED, &napi->state, threaded);
7054 	}
7055 
7056 	return 0;
7057 }
7058 
7059 int netif_set_threaded(struct net_device *dev,
7060 		       enum netdev_napi_threaded threaded)
7061 {
7062 	struct napi_struct *napi;
7063 	int i, err = 0;
7064 
7065 	netdev_assert_locked_or_invisible(dev);
7066 
7067 	if (threaded) {
7068 		list_for_each_entry(napi, &dev->napi_list, dev_list) {
7069 			if (!napi->thread) {
7070 				err = napi_kthread_create(napi);
7071 				if (err) {
7072 					threaded = NETDEV_NAPI_THREADED_DISABLED;
7073 					break;
7074 				}
7075 			}
7076 		}
7077 	}
7078 
7079 	WRITE_ONCE(dev->threaded, threaded);
7080 
7081 	/* The error should not occur as the kthreads are already created. */
7082 	list_for_each_entry(napi, &dev->napi_list, dev_list)
7083 		WARN_ON_ONCE(napi_set_threaded(napi, threaded));
7084 
7085 	/* Override the config for all NAPIs even if currently not listed */
7086 	for (i = 0; i < dev->num_napi_configs; i++)
7087 		dev->napi_config[i].threaded = threaded;
7088 
7089 	return err;
7090 }
7091 
7092 /**
7093  * netif_threaded_enable() - enable threaded NAPIs
7094  * @dev: net_device instance
7095  *
7096  * Enable threaded mode for the NAPI instances of the device. This may be useful
7097  * for devices where multiple NAPI instances get scheduled by a single
7098  * interrupt. Threaded NAPI allows moving the NAPI processing to cores other
7099  * than the core where IRQ is mapped.
7100  *
7101  * This function should be called before @dev is registered.
7102  */
7103 void netif_threaded_enable(struct net_device *dev)
7104 {
7105 	WARN_ON_ONCE(netif_set_threaded(dev, NETDEV_NAPI_THREADED_ENABLED));
7106 }
7107 EXPORT_SYMBOL(netif_threaded_enable);
7108 
7109 /**
7110  * netif_queue_set_napi - Associate queue with the napi
7111  * @dev: device to which NAPI and queue belong
7112  * @queue_index: Index of queue
7113  * @type: queue type as RX or TX
7114  * @napi: NAPI context, pass NULL to clear previously set NAPI
7115  *
7116  * Set queue with its corresponding napi context. This should be done after
7117  * registering the NAPI handler for the queue-vector and the queues have been
7118  * mapped to the corresponding interrupt vector.
7119  */
7120 void netif_queue_set_napi(struct net_device *dev, unsigned int queue_index,
7121 			  enum netdev_queue_type type, struct napi_struct *napi)
7122 {
7123 	struct netdev_rx_queue *rxq;
7124 	struct netdev_queue *txq;
7125 
7126 	if (WARN_ON_ONCE(napi && !napi->dev))
7127 		return;
7128 	netdev_ops_assert_locked_or_invisible(dev);
7129 
7130 	switch (type) {
7131 	case NETDEV_QUEUE_TYPE_RX:
7132 		rxq = __netif_get_rx_queue(dev, queue_index);
7133 		rxq->napi = napi;
7134 		return;
7135 	case NETDEV_QUEUE_TYPE_TX:
7136 		txq = netdev_get_tx_queue(dev, queue_index);
7137 		txq->napi = napi;
7138 		return;
7139 	default:
7140 		return;
7141 	}
7142 }
7143 EXPORT_SYMBOL(netif_queue_set_napi);
7144 
7145 static void
7146 netif_napi_irq_notify(struct irq_affinity_notify *notify,
7147 		      const cpumask_t *mask)
7148 {
7149 	struct napi_struct *napi =
7150 		container_of(notify, struct napi_struct, notify);
7151 #ifdef CONFIG_RFS_ACCEL
7152 	struct cpu_rmap *rmap = napi->dev->rx_cpu_rmap;
7153 	int err;
7154 #endif
7155 
7156 	if (napi->config && napi->dev->irq_affinity_auto)
7157 		cpumask_copy(&napi->config->affinity_mask, mask);
7158 
7159 #ifdef CONFIG_RFS_ACCEL
7160 	if (napi->dev->rx_cpu_rmap_auto) {
7161 		err = cpu_rmap_update(rmap, napi->napi_rmap_idx, mask);
7162 		if (err)
7163 			netdev_warn(napi->dev, "RMAP update failed (%d)\n",
7164 				    err);
7165 	}
7166 #endif
7167 }
7168 
7169 #ifdef CONFIG_RFS_ACCEL
7170 static void netif_napi_affinity_release(struct kref *ref)
7171 {
7172 	struct napi_struct *napi =
7173 		container_of(ref, struct napi_struct, notify.kref);
7174 	struct cpu_rmap *rmap = napi->dev->rx_cpu_rmap;
7175 
7176 	netdev_assert_locked(napi->dev);
7177 	WARN_ON(test_and_clear_bit(NAPI_STATE_HAS_NOTIFIER,
7178 				   &napi->state));
7179 
7180 	if (!napi->dev->rx_cpu_rmap_auto)
7181 		return;
7182 	rmap->obj[napi->napi_rmap_idx] = NULL;
7183 	napi->napi_rmap_idx = -1;
7184 	cpu_rmap_put(rmap);
7185 }
7186 
7187 int netif_enable_cpu_rmap(struct net_device *dev, unsigned int num_irqs)
7188 {
7189 	if (dev->rx_cpu_rmap_auto)
7190 		return 0;
7191 
7192 	dev->rx_cpu_rmap = alloc_irq_cpu_rmap(num_irqs);
7193 	if (!dev->rx_cpu_rmap)
7194 		return -ENOMEM;
7195 
7196 	dev->rx_cpu_rmap_auto = true;
7197 	return 0;
7198 }
7199 EXPORT_SYMBOL(netif_enable_cpu_rmap);
7200 
7201 static void netif_del_cpu_rmap(struct net_device *dev)
7202 {
7203 	struct cpu_rmap *rmap = dev->rx_cpu_rmap;
7204 
7205 	if (!dev->rx_cpu_rmap_auto)
7206 		return;
7207 
7208 	/* Free the rmap */
7209 	cpu_rmap_put(rmap);
7210 	dev->rx_cpu_rmap = NULL;
7211 	dev->rx_cpu_rmap_auto = false;
7212 }
7213 
7214 #else
7215 static void netif_napi_affinity_release(struct kref *ref)
7216 {
7217 }
7218 
7219 int netif_enable_cpu_rmap(struct net_device *dev, unsigned int num_irqs)
7220 {
7221 	return 0;
7222 }
7223 EXPORT_SYMBOL(netif_enable_cpu_rmap);
7224 
7225 static void netif_del_cpu_rmap(struct net_device *dev)
7226 {
7227 }
7228 #endif
7229 
7230 void netif_set_affinity_auto(struct net_device *dev)
7231 {
7232 	unsigned int i, maxqs, numa;
7233 
7234 	maxqs = max(dev->num_tx_queues, dev->num_rx_queues);
7235 	numa = dev_to_node(&dev->dev);
7236 
7237 	for (i = 0; i < maxqs; i++)
7238 		cpumask_set_cpu(cpumask_local_spread(i, numa),
7239 				&dev->napi_config[i].affinity_mask);
7240 
7241 	dev->irq_affinity_auto = true;
7242 }
7243 EXPORT_SYMBOL(netif_set_affinity_auto);
7244 
7245 void netif_napi_set_irq_locked(struct napi_struct *napi, int irq)
7246 {
7247 	int rc;
7248 
7249 	netdev_assert_locked_or_invisible(napi->dev);
7250 
7251 	if (napi->irq == irq)
7252 		return;
7253 
7254 	/* Remove existing resources */
7255 	if (test_and_clear_bit(NAPI_STATE_HAS_NOTIFIER, &napi->state))
7256 		irq_set_affinity_notifier(napi->irq, NULL);
7257 
7258 	napi->irq = irq;
7259 	if (irq < 0 ||
7260 	    (!napi->dev->rx_cpu_rmap_auto && !napi->dev->irq_affinity_auto))
7261 		return;
7262 
7263 	/* Abort for buggy drivers */
7264 	if (napi->dev->irq_affinity_auto && WARN_ON_ONCE(!napi->config))
7265 		return;
7266 
7267 #ifdef CONFIG_RFS_ACCEL
7268 	if (napi->dev->rx_cpu_rmap_auto) {
7269 		rc = cpu_rmap_add(napi->dev->rx_cpu_rmap, napi);
7270 		if (rc < 0)
7271 			return;
7272 
7273 		cpu_rmap_get(napi->dev->rx_cpu_rmap);
7274 		napi->napi_rmap_idx = rc;
7275 	}
7276 #endif
7277 
7278 	/* Use core IRQ notifier */
7279 	napi->notify.notify = netif_napi_irq_notify;
7280 	napi->notify.release = netif_napi_affinity_release;
7281 	rc = irq_set_affinity_notifier(irq, &napi->notify);
7282 	if (rc) {
7283 		netdev_warn(napi->dev, "Unable to set IRQ notifier (%d)\n",
7284 			    rc);
7285 		goto put_rmap;
7286 	}
7287 
7288 	set_bit(NAPI_STATE_HAS_NOTIFIER, &napi->state);
7289 	return;
7290 
7291 put_rmap:
7292 #ifdef CONFIG_RFS_ACCEL
7293 	if (napi->dev->rx_cpu_rmap_auto) {
7294 		napi->dev->rx_cpu_rmap->obj[napi->napi_rmap_idx] = NULL;
7295 		cpu_rmap_put(napi->dev->rx_cpu_rmap);
7296 		napi->napi_rmap_idx = -1;
7297 	}
7298 #endif
7299 	napi->notify.notify = NULL;
7300 	napi->notify.release = NULL;
7301 }
7302 EXPORT_SYMBOL(netif_napi_set_irq_locked);
7303 
7304 static void napi_restore_config(struct napi_struct *n)
7305 {
7306 	n->defer_hard_irqs = n->config->defer_hard_irqs;
7307 	n->gro_flush_timeout = n->config->gro_flush_timeout;
7308 	n->irq_suspend_timeout = n->config->irq_suspend_timeout;
7309 
7310 	if (n->dev->irq_affinity_auto &&
7311 	    test_bit(NAPI_STATE_HAS_NOTIFIER, &n->state))
7312 		irq_set_affinity(n->irq, &n->config->affinity_mask);
7313 
7314 	/* a NAPI ID might be stored in the config, if so use it. if not, use
7315 	 * napi_hash_add to generate one for us.
7316 	 */
7317 	if (n->config->napi_id) {
7318 		napi_hash_add_with_id(n, n->config->napi_id);
7319 	} else {
7320 		napi_hash_add(n);
7321 		n->config->napi_id = n->napi_id;
7322 	}
7323 
7324 	WARN_ON_ONCE(napi_set_threaded(n, n->config->threaded));
7325 }
7326 
7327 static void napi_save_config(struct napi_struct *n)
7328 {
7329 	n->config->defer_hard_irqs = n->defer_hard_irqs;
7330 	n->config->gro_flush_timeout = n->gro_flush_timeout;
7331 	n->config->irq_suspend_timeout = n->irq_suspend_timeout;
7332 	napi_hash_del(n);
7333 }
7334 
7335 /* Netlink wants the NAPI list to be sorted by ID, if adding a NAPI which will
7336  * inherit an existing ID try to insert it at the right position.
7337  */
7338 static void
7339 netif_napi_dev_list_add(struct net_device *dev, struct napi_struct *napi)
7340 {
7341 	unsigned int new_id, pos_id;
7342 	struct list_head *higher;
7343 	struct napi_struct *pos;
7344 
7345 	new_id = UINT_MAX;
7346 	if (napi->config && napi->config->napi_id)
7347 		new_id = napi->config->napi_id;
7348 
7349 	higher = &dev->napi_list;
7350 	list_for_each_entry(pos, &dev->napi_list, dev_list) {
7351 		if (napi_id_valid(pos->napi_id))
7352 			pos_id = pos->napi_id;
7353 		else if (pos->config)
7354 			pos_id = pos->config->napi_id;
7355 		else
7356 			pos_id = UINT_MAX;
7357 
7358 		if (pos_id <= new_id)
7359 			break;
7360 		higher = &pos->dev_list;
7361 	}
7362 	list_add_rcu(&napi->dev_list, higher); /* adds after higher */
7363 }
7364 
7365 /* Double check that napi_get_frags() allocates skbs with
7366  * skb->head being backed by slab, not a page fragment.
7367  * This is to make sure bug fixed in 3226b158e67c
7368  * ("net: avoid 32 x truesize under-estimation for tiny skbs")
7369  * does not accidentally come back.
7370  */
7371 static void napi_get_frags_check(struct napi_struct *napi)
7372 {
7373 	struct sk_buff *skb;
7374 
7375 	local_bh_disable();
7376 	skb = napi_get_frags(napi);
7377 	WARN_ON_ONCE(skb && skb->head_frag);
7378 	napi_free_frags(napi);
7379 	local_bh_enable();
7380 }
7381 
7382 void netif_napi_add_weight_locked(struct net_device *dev,
7383 				  struct napi_struct *napi,
7384 				  int (*poll)(struct napi_struct *, int),
7385 				  int weight)
7386 {
7387 	netdev_assert_locked(dev);
7388 	if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state)))
7389 		return;
7390 
7391 	INIT_LIST_HEAD(&napi->poll_list);
7392 	INIT_HLIST_NODE(&napi->napi_hash_node);
7393 	hrtimer_setup(&napi->timer, napi_watchdog, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
7394 	gro_init(&napi->gro);
7395 	napi->skb = NULL;
7396 	napi->poll = poll;
7397 	if (weight > NAPI_POLL_WEIGHT)
7398 		netdev_err_once(dev, "%s() called with weight %d\n", __func__,
7399 				weight);
7400 	napi->weight = weight;
7401 	napi->dev = dev;
7402 #ifdef CONFIG_NETPOLL
7403 	napi->poll_owner = -1;
7404 #endif
7405 	napi->list_owner = -1;
7406 	set_bit(NAPI_STATE_SCHED, &napi->state);
7407 	set_bit(NAPI_STATE_NPSVC, &napi->state);
7408 	netif_napi_dev_list_add(dev, napi);
7409 
7410 	/* default settings from sysfs are applied to all NAPIs. any per-NAPI
7411 	 * configuration will be loaded in napi_enable
7412 	 */
7413 	napi_set_defer_hard_irqs(napi, READ_ONCE(dev->napi_defer_hard_irqs));
7414 	napi_set_gro_flush_timeout(napi, READ_ONCE(dev->gro_flush_timeout));
7415 
7416 	napi_get_frags_check(napi);
7417 	/* Create kthread for this napi if dev->threaded is set.
7418 	 * Clear dev->threaded if kthread creation failed so that
7419 	 * threaded mode will not be enabled in napi_enable().
7420 	 */
7421 	if (napi_get_threaded_config(dev, napi))
7422 		if (napi_kthread_create(napi))
7423 			dev->threaded = NETDEV_NAPI_THREADED_DISABLED;
7424 	netif_napi_set_irq_locked(napi, -1);
7425 }
7426 EXPORT_SYMBOL(netif_napi_add_weight_locked);
7427 
7428 void napi_disable_locked(struct napi_struct *n)
7429 {
7430 	unsigned long val, new;
7431 
7432 	might_sleep();
7433 	netdev_assert_locked(n->dev);
7434 
7435 	set_bit(NAPI_STATE_DISABLE, &n->state);
7436 
7437 	val = READ_ONCE(n->state);
7438 	do {
7439 		while (val & (NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC)) {
7440 			usleep_range(20, 200);
7441 			val = READ_ONCE(n->state);
7442 		}
7443 
7444 		new = val | NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC;
7445 		new &= ~(NAPIF_STATE_THREADED | NAPIF_STATE_PREFER_BUSY_POLL);
7446 	} while (!try_cmpxchg(&n->state, &val, new));
7447 
7448 	hrtimer_cancel(&n->timer);
7449 
7450 	if (n->config)
7451 		napi_save_config(n);
7452 	else
7453 		napi_hash_del(n);
7454 
7455 	clear_bit(NAPI_STATE_DISABLE, &n->state);
7456 }
7457 EXPORT_SYMBOL(napi_disable_locked);
7458 
7459 /**
7460  * napi_disable() - prevent NAPI from scheduling
7461  * @n: NAPI context
7462  *
7463  * Stop NAPI from being scheduled on this context.
7464  * Waits till any outstanding processing completes.
7465  * Takes netdev_lock() for associated net_device.
7466  */
7467 void napi_disable(struct napi_struct *n)
7468 {
7469 	netdev_lock(n->dev);
7470 	napi_disable_locked(n);
7471 	netdev_unlock(n->dev);
7472 }
7473 EXPORT_SYMBOL(napi_disable);
7474 
7475 void napi_enable_locked(struct napi_struct *n)
7476 {
7477 	unsigned long new, val = READ_ONCE(n->state);
7478 
7479 	if (n->config)
7480 		napi_restore_config(n);
7481 	else
7482 		napi_hash_add(n);
7483 
7484 	do {
7485 		BUG_ON(!test_bit(NAPI_STATE_SCHED, &val));
7486 
7487 		new = val & ~(NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC);
7488 		if (n->dev->threaded && n->thread)
7489 			new |= NAPIF_STATE_THREADED;
7490 	} while (!try_cmpxchg(&n->state, &val, new));
7491 }
7492 EXPORT_SYMBOL(napi_enable_locked);
7493 
7494 /**
7495  * napi_enable() - enable NAPI scheduling
7496  * @n: NAPI context
7497  *
7498  * Enable scheduling of a NAPI instance.
7499  * Must be paired with napi_disable().
7500  * Takes netdev_lock() for associated net_device.
7501  */
7502 void napi_enable(struct napi_struct *n)
7503 {
7504 	netdev_lock(n->dev);
7505 	napi_enable_locked(n);
7506 	netdev_unlock(n->dev);
7507 }
7508 EXPORT_SYMBOL(napi_enable);
7509 
7510 /* Must be called in process context */
7511 void __netif_napi_del_locked(struct napi_struct *napi)
7512 {
7513 	netdev_assert_locked(napi->dev);
7514 
7515 	if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state))
7516 		return;
7517 
7518 	/* Make sure NAPI is disabled (or was never enabled). */
7519 	WARN_ON(!test_bit(NAPI_STATE_SCHED, &napi->state));
7520 
7521 	if (test_and_clear_bit(NAPI_STATE_HAS_NOTIFIER, &napi->state))
7522 		irq_set_affinity_notifier(napi->irq, NULL);
7523 
7524 	if (napi->config) {
7525 		napi->index = -1;
7526 		napi->config = NULL;
7527 	}
7528 
7529 	list_del_rcu(&napi->dev_list);
7530 	napi_free_frags(napi);
7531 
7532 	gro_cleanup(&napi->gro);
7533 
7534 	if (napi->thread) {
7535 		kthread_stop(napi->thread);
7536 		napi->thread = NULL;
7537 	}
7538 }
7539 EXPORT_SYMBOL(__netif_napi_del_locked);
7540 
7541 static int __napi_poll(struct napi_struct *n, bool *repoll)
7542 {
7543 	int work, weight;
7544 
7545 	weight = n->weight;
7546 
7547 	/* This NAPI_STATE_SCHED test is for avoiding a race
7548 	 * with netpoll's poll_napi().  Only the entity which
7549 	 * obtains the lock and sees NAPI_STATE_SCHED set will
7550 	 * actually make the ->poll() call.  Therefore we avoid
7551 	 * accidentally calling ->poll() when NAPI is not scheduled.
7552 	 */
7553 	work = 0;
7554 	if (napi_is_scheduled(n)) {
7555 		work = n->poll(n, weight);
7556 		trace_napi_poll(n, work, weight);
7557 
7558 		xdp_do_check_flushed(n);
7559 	}
7560 
7561 	if (unlikely(work > weight))
7562 		netdev_err_once(n->dev, "NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
7563 				n->poll, work, weight);
7564 
7565 	if (likely(work < weight))
7566 		return work;
7567 
7568 	/* Drivers must not modify the NAPI state if they
7569 	 * consume the entire weight.  In such cases this code
7570 	 * still "owns" the NAPI instance and therefore can
7571 	 * move the instance around on the list at-will.
7572 	 */
7573 	if (unlikely(napi_disable_pending(n))) {
7574 		napi_complete(n);
7575 		return work;
7576 	}
7577 
7578 	/* The NAPI context has more processing work, but busy-polling
7579 	 * is preferred. Exit early.
7580 	 */
7581 	if (napi_prefer_busy_poll(n)) {
7582 		if (napi_complete_done(n, work)) {
7583 			/* If timeout is not set, we need to make sure
7584 			 * that the NAPI is re-scheduled.
7585 			 */
7586 			napi_schedule(n);
7587 		}
7588 		return work;
7589 	}
7590 
7591 	/* Flush too old packets. If HZ < 1000, flush all packets */
7592 	gro_flush_normal(&n->gro, HZ >= 1000);
7593 
7594 	/* Some drivers may have called napi_schedule
7595 	 * prior to exhausting their budget.
7596 	 */
7597 	if (unlikely(!list_empty(&n->poll_list))) {
7598 		pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
7599 			     n->dev ? n->dev->name : "backlog");
7600 		return work;
7601 	}
7602 
7603 	*repoll = true;
7604 
7605 	return work;
7606 }
7607 
7608 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
7609 {
7610 	bool do_repoll = false;
7611 	void *have;
7612 	int work;
7613 
7614 	list_del_init(&n->poll_list);
7615 
7616 	have = netpoll_poll_lock(n);
7617 
7618 	work = __napi_poll(n, &do_repoll);
7619 
7620 	if (do_repoll) {
7621 #if defined(CONFIG_DEBUG_NET)
7622 		if (unlikely(!napi_is_scheduled(n)))
7623 			pr_crit("repoll requested for device %s %ps but napi is not scheduled.\n",
7624 				n->dev->name, n->poll);
7625 #endif
7626 		list_add_tail(&n->poll_list, repoll);
7627 	}
7628 	netpoll_poll_unlock(have);
7629 
7630 	return work;
7631 }
7632 
7633 static int napi_thread_wait(struct napi_struct *napi)
7634 {
7635 	set_current_state(TASK_INTERRUPTIBLE);
7636 
7637 	while (!kthread_should_stop()) {
7638 		/* Testing SCHED_THREADED bit here to make sure the current
7639 		 * kthread owns this napi and could poll on this napi.
7640 		 * Testing SCHED bit is not enough because SCHED bit might be
7641 		 * set by some other busy poll thread or by napi_disable().
7642 		 */
7643 		if (test_bit(NAPI_STATE_SCHED_THREADED, &napi->state)) {
7644 			WARN_ON(!list_empty(&napi->poll_list));
7645 			__set_current_state(TASK_RUNNING);
7646 			return 0;
7647 		}
7648 
7649 		schedule();
7650 		set_current_state(TASK_INTERRUPTIBLE);
7651 	}
7652 	__set_current_state(TASK_RUNNING);
7653 
7654 	return -1;
7655 }
7656 
7657 static void napi_threaded_poll_loop(struct napi_struct *napi)
7658 {
7659 	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
7660 	struct softnet_data *sd;
7661 	unsigned long last_qs = jiffies;
7662 
7663 	for (;;) {
7664 		bool repoll = false;
7665 		void *have;
7666 
7667 		local_bh_disable();
7668 		bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
7669 
7670 		sd = this_cpu_ptr(&softnet_data);
7671 		sd->in_napi_threaded_poll = true;
7672 
7673 		have = netpoll_poll_lock(napi);
7674 		__napi_poll(napi, &repoll);
7675 		netpoll_poll_unlock(have);
7676 
7677 		sd->in_napi_threaded_poll = false;
7678 		barrier();
7679 
7680 		if (sd_has_rps_ipi_waiting(sd)) {
7681 			local_irq_disable();
7682 			net_rps_action_and_irq_enable(sd);
7683 		}
7684 		skb_defer_free_flush(sd);
7685 		bpf_net_ctx_clear(bpf_net_ctx);
7686 		local_bh_enable();
7687 
7688 		if (!repoll)
7689 			break;
7690 
7691 		rcu_softirq_qs_periodic(last_qs);
7692 		cond_resched();
7693 	}
7694 }
7695 
7696 static int napi_threaded_poll(void *data)
7697 {
7698 	struct napi_struct *napi = data;
7699 
7700 	while (!napi_thread_wait(napi))
7701 		napi_threaded_poll_loop(napi);
7702 
7703 	return 0;
7704 }
7705 
7706 static __latent_entropy void net_rx_action(void)
7707 {
7708 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
7709 	unsigned long time_limit = jiffies +
7710 		usecs_to_jiffies(READ_ONCE(net_hotdata.netdev_budget_usecs));
7711 	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
7712 	int budget = READ_ONCE(net_hotdata.netdev_budget);
7713 	LIST_HEAD(list);
7714 	LIST_HEAD(repoll);
7715 
7716 	bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
7717 start:
7718 	sd->in_net_rx_action = true;
7719 	local_irq_disable();
7720 	list_splice_init(&sd->poll_list, &list);
7721 	local_irq_enable();
7722 
7723 	for (;;) {
7724 		struct napi_struct *n;
7725 
7726 		skb_defer_free_flush(sd);
7727 
7728 		if (list_empty(&list)) {
7729 			if (list_empty(&repoll)) {
7730 				sd->in_net_rx_action = false;
7731 				barrier();
7732 				/* We need to check if ____napi_schedule()
7733 				 * had refilled poll_list while
7734 				 * sd->in_net_rx_action was true.
7735 				 */
7736 				if (!list_empty(&sd->poll_list))
7737 					goto start;
7738 				if (!sd_has_rps_ipi_waiting(sd))
7739 					goto end;
7740 			}
7741 			break;
7742 		}
7743 
7744 		n = list_first_entry(&list, struct napi_struct, poll_list);
7745 		budget -= napi_poll(n, &repoll);
7746 
7747 		/* If softirq window is exhausted then punt.
7748 		 * Allow this to run for 2 jiffies since which will allow
7749 		 * an average latency of 1.5/HZ.
7750 		 */
7751 		if (unlikely(budget <= 0 ||
7752 			     time_after_eq(jiffies, time_limit))) {
7753 			/* Pairs with READ_ONCE() in softnet_seq_show() */
7754 			WRITE_ONCE(sd->time_squeeze, sd->time_squeeze + 1);
7755 			break;
7756 		}
7757 	}
7758 
7759 	local_irq_disable();
7760 
7761 	list_splice_tail_init(&sd->poll_list, &list);
7762 	list_splice_tail(&repoll, &list);
7763 	list_splice(&list, &sd->poll_list);
7764 	if (!list_empty(&sd->poll_list))
7765 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
7766 	else
7767 		sd->in_net_rx_action = false;
7768 
7769 	net_rps_action_and_irq_enable(sd);
7770 end:
7771 	bpf_net_ctx_clear(bpf_net_ctx);
7772 }
7773 
7774 struct netdev_adjacent {
7775 	struct net_device *dev;
7776 	netdevice_tracker dev_tracker;
7777 
7778 	/* upper master flag, there can only be one master device per list */
7779 	bool master;
7780 
7781 	/* lookup ignore flag */
7782 	bool ignore;
7783 
7784 	/* counter for the number of times this device was added to us */
7785 	u16 ref_nr;
7786 
7787 	/* private field for the users */
7788 	void *private;
7789 
7790 	struct list_head list;
7791 	struct rcu_head rcu;
7792 };
7793 
7794 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
7795 						 struct list_head *adj_list)
7796 {
7797 	struct netdev_adjacent *adj;
7798 
7799 	list_for_each_entry(adj, adj_list, list) {
7800 		if (adj->dev == adj_dev)
7801 			return adj;
7802 	}
7803 	return NULL;
7804 }
7805 
7806 static int ____netdev_has_upper_dev(struct net_device *upper_dev,
7807 				    struct netdev_nested_priv *priv)
7808 {
7809 	struct net_device *dev = (struct net_device *)priv->data;
7810 
7811 	return upper_dev == dev;
7812 }
7813 
7814 /**
7815  * netdev_has_upper_dev - Check if device is linked to an upper device
7816  * @dev: device
7817  * @upper_dev: upper device to check
7818  *
7819  * Find out if a device is linked to specified upper device and return true
7820  * in case it is. Note that this checks only immediate upper device,
7821  * not through a complete stack of devices. The caller must hold the RTNL lock.
7822  */
7823 bool netdev_has_upper_dev(struct net_device *dev,
7824 			  struct net_device *upper_dev)
7825 {
7826 	struct netdev_nested_priv priv = {
7827 		.data = (void *)upper_dev,
7828 	};
7829 
7830 	ASSERT_RTNL();
7831 
7832 	return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
7833 					     &priv);
7834 }
7835 EXPORT_SYMBOL(netdev_has_upper_dev);
7836 
7837 /**
7838  * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device
7839  * @dev: device
7840  * @upper_dev: upper device to check
7841  *
7842  * Find out if a device is linked to specified upper device and return true
7843  * in case it is. Note that this checks the entire upper device chain.
7844  * The caller must hold rcu lock.
7845  */
7846 
7847 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
7848 				  struct net_device *upper_dev)
7849 {
7850 	struct netdev_nested_priv priv = {
7851 		.data = (void *)upper_dev,
7852 	};
7853 
7854 	return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
7855 					       &priv);
7856 }
7857 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
7858 
7859 /**
7860  * netdev_has_any_upper_dev - Check if device is linked to some device
7861  * @dev: device
7862  *
7863  * Find out if a device is linked to an upper device and return true in case
7864  * it is. The caller must hold the RTNL lock.
7865  */
7866 bool netdev_has_any_upper_dev(struct net_device *dev)
7867 {
7868 	ASSERT_RTNL();
7869 
7870 	return !list_empty(&dev->adj_list.upper);
7871 }
7872 EXPORT_SYMBOL(netdev_has_any_upper_dev);
7873 
7874 /**
7875  * netdev_master_upper_dev_get - Get master upper device
7876  * @dev: device
7877  *
7878  * Find a master upper device and return pointer to it or NULL in case
7879  * it's not there. The caller must hold the RTNL lock.
7880  */
7881 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
7882 {
7883 	struct netdev_adjacent *upper;
7884 
7885 	ASSERT_RTNL();
7886 
7887 	if (list_empty(&dev->adj_list.upper))
7888 		return NULL;
7889 
7890 	upper = list_first_entry(&dev->adj_list.upper,
7891 				 struct netdev_adjacent, list);
7892 	if (likely(upper->master))
7893 		return upper->dev;
7894 	return NULL;
7895 }
7896 EXPORT_SYMBOL(netdev_master_upper_dev_get);
7897 
7898 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
7899 {
7900 	struct netdev_adjacent *upper;
7901 
7902 	ASSERT_RTNL();
7903 
7904 	if (list_empty(&dev->adj_list.upper))
7905 		return NULL;
7906 
7907 	upper = list_first_entry(&dev->adj_list.upper,
7908 				 struct netdev_adjacent, list);
7909 	if (likely(upper->master) && !upper->ignore)
7910 		return upper->dev;
7911 	return NULL;
7912 }
7913 
7914 /**
7915  * netdev_has_any_lower_dev - Check if device is linked to some device
7916  * @dev: device
7917  *
7918  * Find out if a device is linked to a lower device and return true in case
7919  * it is. The caller must hold the RTNL lock.
7920  */
7921 static bool netdev_has_any_lower_dev(struct net_device *dev)
7922 {
7923 	ASSERT_RTNL();
7924 
7925 	return !list_empty(&dev->adj_list.lower);
7926 }
7927 
7928 void *netdev_adjacent_get_private(struct list_head *adj_list)
7929 {
7930 	struct netdev_adjacent *adj;
7931 
7932 	adj = list_entry(adj_list, struct netdev_adjacent, list);
7933 
7934 	return adj->private;
7935 }
7936 EXPORT_SYMBOL(netdev_adjacent_get_private);
7937 
7938 /**
7939  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
7940  * @dev: device
7941  * @iter: list_head ** of the current position
7942  *
7943  * Gets the next device from the dev's upper list, starting from iter
7944  * position. The caller must hold RCU read lock.
7945  */
7946 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
7947 						 struct list_head **iter)
7948 {
7949 	struct netdev_adjacent *upper;
7950 
7951 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7952 
7953 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7954 
7955 	if (&upper->list == &dev->adj_list.upper)
7956 		return NULL;
7957 
7958 	*iter = &upper->list;
7959 
7960 	return upper->dev;
7961 }
7962 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
7963 
7964 static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
7965 						  struct list_head **iter,
7966 						  bool *ignore)
7967 {
7968 	struct netdev_adjacent *upper;
7969 
7970 	upper = list_entry((*iter)->next, struct netdev_adjacent, list);
7971 
7972 	if (&upper->list == &dev->adj_list.upper)
7973 		return NULL;
7974 
7975 	*iter = &upper->list;
7976 	*ignore = upper->ignore;
7977 
7978 	return upper->dev;
7979 }
7980 
7981 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
7982 						    struct list_head **iter)
7983 {
7984 	struct netdev_adjacent *upper;
7985 
7986 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7987 
7988 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7989 
7990 	if (&upper->list == &dev->adj_list.upper)
7991 		return NULL;
7992 
7993 	*iter = &upper->list;
7994 
7995 	return upper->dev;
7996 }
7997 
7998 static int __netdev_walk_all_upper_dev(struct net_device *dev,
7999 				       int (*fn)(struct net_device *dev,
8000 					 struct netdev_nested_priv *priv),
8001 				       struct netdev_nested_priv *priv)
8002 {
8003 	struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
8004 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
8005 	int ret, cur = 0;
8006 	bool ignore;
8007 
8008 	now = dev;
8009 	iter = &dev->adj_list.upper;
8010 
8011 	while (1) {
8012 		if (now != dev) {
8013 			ret = fn(now, priv);
8014 			if (ret)
8015 				return ret;
8016 		}
8017 
8018 		next = NULL;
8019 		while (1) {
8020 			udev = __netdev_next_upper_dev(now, &iter, &ignore);
8021 			if (!udev)
8022 				break;
8023 			if (ignore)
8024 				continue;
8025 
8026 			next = udev;
8027 			niter = &udev->adj_list.upper;
8028 			dev_stack[cur] = now;
8029 			iter_stack[cur++] = iter;
8030 			break;
8031 		}
8032 
8033 		if (!next) {
8034 			if (!cur)
8035 				return 0;
8036 			next = dev_stack[--cur];
8037 			niter = iter_stack[cur];
8038 		}
8039 
8040 		now = next;
8041 		iter = niter;
8042 	}
8043 
8044 	return 0;
8045 }
8046 
8047 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
8048 				  int (*fn)(struct net_device *dev,
8049 					    struct netdev_nested_priv *priv),
8050 				  struct netdev_nested_priv *priv)
8051 {
8052 	struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
8053 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
8054 	int ret, cur = 0;
8055 
8056 	now = dev;
8057 	iter = &dev->adj_list.upper;
8058 
8059 	while (1) {
8060 		if (now != dev) {
8061 			ret = fn(now, priv);
8062 			if (ret)
8063 				return ret;
8064 		}
8065 
8066 		next = NULL;
8067 		while (1) {
8068 			udev = netdev_next_upper_dev_rcu(now, &iter);
8069 			if (!udev)
8070 				break;
8071 
8072 			next = udev;
8073 			niter = &udev->adj_list.upper;
8074 			dev_stack[cur] = now;
8075 			iter_stack[cur++] = iter;
8076 			break;
8077 		}
8078 
8079 		if (!next) {
8080 			if (!cur)
8081 				return 0;
8082 			next = dev_stack[--cur];
8083 			niter = iter_stack[cur];
8084 		}
8085 
8086 		now = next;
8087 		iter = niter;
8088 	}
8089 
8090 	return 0;
8091 }
8092 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
8093 
8094 static bool __netdev_has_upper_dev(struct net_device *dev,
8095 				   struct net_device *upper_dev)
8096 {
8097 	struct netdev_nested_priv priv = {
8098 		.flags = 0,
8099 		.data = (void *)upper_dev,
8100 	};
8101 
8102 	ASSERT_RTNL();
8103 
8104 	return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
8105 					   &priv);
8106 }
8107 
8108 /**
8109  * netdev_lower_get_next_private - Get the next ->private from the
8110  *				   lower neighbour list
8111  * @dev: device
8112  * @iter: list_head ** of the current position
8113  *
8114  * Gets the next netdev_adjacent->private from the dev's lower neighbour
8115  * list, starting from iter position. The caller must hold either hold the
8116  * RTNL lock or its own locking that guarantees that the neighbour lower
8117  * list will remain unchanged.
8118  */
8119 void *netdev_lower_get_next_private(struct net_device *dev,
8120 				    struct list_head **iter)
8121 {
8122 	struct netdev_adjacent *lower;
8123 
8124 	lower = list_entry(*iter, struct netdev_adjacent, list);
8125 
8126 	if (&lower->list == &dev->adj_list.lower)
8127 		return NULL;
8128 
8129 	*iter = lower->list.next;
8130 
8131 	return lower->private;
8132 }
8133 EXPORT_SYMBOL(netdev_lower_get_next_private);
8134 
8135 /**
8136  * netdev_lower_get_next_private_rcu - Get the next ->private from the
8137  *				       lower neighbour list, RCU
8138  *				       variant
8139  * @dev: device
8140  * @iter: list_head ** of the current position
8141  *
8142  * Gets the next netdev_adjacent->private from the dev's lower neighbour
8143  * list, starting from iter position. The caller must hold RCU read lock.
8144  */
8145 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
8146 					struct list_head **iter)
8147 {
8148 	struct netdev_adjacent *lower;
8149 
8150 	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
8151 
8152 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
8153 
8154 	if (&lower->list == &dev->adj_list.lower)
8155 		return NULL;
8156 
8157 	*iter = &lower->list;
8158 
8159 	return lower->private;
8160 }
8161 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
8162 
8163 /**
8164  * netdev_lower_get_next - Get the next device from the lower neighbour
8165  *                         list
8166  * @dev: device
8167  * @iter: list_head ** of the current position
8168  *
8169  * Gets the next netdev_adjacent from the dev's lower neighbour
8170  * list, starting from iter position. The caller must hold RTNL lock or
8171  * its own locking that guarantees that the neighbour lower
8172  * list will remain unchanged.
8173  */
8174 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
8175 {
8176 	struct netdev_adjacent *lower;
8177 
8178 	lower = list_entry(*iter, struct netdev_adjacent, list);
8179 
8180 	if (&lower->list == &dev->adj_list.lower)
8181 		return NULL;
8182 
8183 	*iter = lower->list.next;
8184 
8185 	return lower->dev;
8186 }
8187 EXPORT_SYMBOL(netdev_lower_get_next);
8188 
8189 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
8190 						struct list_head **iter)
8191 {
8192 	struct netdev_adjacent *lower;
8193 
8194 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
8195 
8196 	if (&lower->list == &dev->adj_list.lower)
8197 		return NULL;
8198 
8199 	*iter = &lower->list;
8200 
8201 	return lower->dev;
8202 }
8203 
8204 static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
8205 						  struct list_head **iter,
8206 						  bool *ignore)
8207 {
8208 	struct netdev_adjacent *lower;
8209 
8210 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
8211 
8212 	if (&lower->list == &dev->adj_list.lower)
8213 		return NULL;
8214 
8215 	*iter = &lower->list;
8216 	*ignore = lower->ignore;
8217 
8218 	return lower->dev;
8219 }
8220 
8221 int netdev_walk_all_lower_dev(struct net_device *dev,
8222 			      int (*fn)(struct net_device *dev,
8223 					struct netdev_nested_priv *priv),
8224 			      struct netdev_nested_priv *priv)
8225 {
8226 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
8227 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
8228 	int ret, cur = 0;
8229 
8230 	now = dev;
8231 	iter = &dev->adj_list.lower;
8232 
8233 	while (1) {
8234 		if (now != dev) {
8235 			ret = fn(now, priv);
8236 			if (ret)
8237 				return ret;
8238 		}
8239 
8240 		next = NULL;
8241 		while (1) {
8242 			ldev = netdev_next_lower_dev(now, &iter);
8243 			if (!ldev)
8244 				break;
8245 
8246 			next = ldev;
8247 			niter = &ldev->adj_list.lower;
8248 			dev_stack[cur] = now;
8249 			iter_stack[cur++] = iter;
8250 			break;
8251 		}
8252 
8253 		if (!next) {
8254 			if (!cur)
8255 				return 0;
8256 			next = dev_stack[--cur];
8257 			niter = iter_stack[cur];
8258 		}
8259 
8260 		now = next;
8261 		iter = niter;
8262 	}
8263 
8264 	return 0;
8265 }
8266 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
8267 
8268 static int __netdev_walk_all_lower_dev(struct net_device *dev,
8269 				       int (*fn)(struct net_device *dev,
8270 					 struct netdev_nested_priv *priv),
8271 				       struct netdev_nested_priv *priv)
8272 {
8273 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
8274 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
8275 	int ret, cur = 0;
8276 	bool ignore;
8277 
8278 	now = dev;
8279 	iter = &dev->adj_list.lower;
8280 
8281 	while (1) {
8282 		if (now != dev) {
8283 			ret = fn(now, priv);
8284 			if (ret)
8285 				return ret;
8286 		}
8287 
8288 		next = NULL;
8289 		while (1) {
8290 			ldev = __netdev_next_lower_dev(now, &iter, &ignore);
8291 			if (!ldev)
8292 				break;
8293 			if (ignore)
8294 				continue;
8295 
8296 			next = ldev;
8297 			niter = &ldev->adj_list.lower;
8298 			dev_stack[cur] = now;
8299 			iter_stack[cur++] = iter;
8300 			break;
8301 		}
8302 
8303 		if (!next) {
8304 			if (!cur)
8305 				return 0;
8306 			next = dev_stack[--cur];
8307 			niter = iter_stack[cur];
8308 		}
8309 
8310 		now = next;
8311 		iter = niter;
8312 	}
8313 
8314 	return 0;
8315 }
8316 
8317 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
8318 					     struct list_head **iter)
8319 {
8320 	struct netdev_adjacent *lower;
8321 
8322 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
8323 	if (&lower->list == &dev->adj_list.lower)
8324 		return NULL;
8325 
8326 	*iter = &lower->list;
8327 
8328 	return lower->dev;
8329 }
8330 EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
8331 
8332 static u8 __netdev_upper_depth(struct net_device *dev)
8333 {
8334 	struct net_device *udev;
8335 	struct list_head *iter;
8336 	u8 max_depth = 0;
8337 	bool ignore;
8338 
8339 	for (iter = &dev->adj_list.upper,
8340 	     udev = __netdev_next_upper_dev(dev, &iter, &ignore);
8341 	     udev;
8342 	     udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
8343 		if (ignore)
8344 			continue;
8345 		if (max_depth < udev->upper_level)
8346 			max_depth = udev->upper_level;
8347 	}
8348 
8349 	return max_depth;
8350 }
8351 
8352 static u8 __netdev_lower_depth(struct net_device *dev)
8353 {
8354 	struct net_device *ldev;
8355 	struct list_head *iter;
8356 	u8 max_depth = 0;
8357 	bool ignore;
8358 
8359 	for (iter = &dev->adj_list.lower,
8360 	     ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
8361 	     ldev;
8362 	     ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
8363 		if (ignore)
8364 			continue;
8365 		if (max_depth < ldev->lower_level)
8366 			max_depth = ldev->lower_level;
8367 	}
8368 
8369 	return max_depth;
8370 }
8371 
8372 static int __netdev_update_upper_level(struct net_device *dev,
8373 				       struct netdev_nested_priv *__unused)
8374 {
8375 	dev->upper_level = __netdev_upper_depth(dev) + 1;
8376 	return 0;
8377 }
8378 
8379 #ifdef CONFIG_LOCKDEP
8380 static LIST_HEAD(net_unlink_list);
8381 
8382 static void net_unlink_todo(struct net_device *dev)
8383 {
8384 	if (list_empty(&dev->unlink_list))
8385 		list_add_tail(&dev->unlink_list, &net_unlink_list);
8386 }
8387 #endif
8388 
8389 static int __netdev_update_lower_level(struct net_device *dev,
8390 				       struct netdev_nested_priv *priv)
8391 {
8392 	dev->lower_level = __netdev_lower_depth(dev) + 1;
8393 
8394 #ifdef CONFIG_LOCKDEP
8395 	if (!priv)
8396 		return 0;
8397 
8398 	if (priv->flags & NESTED_SYNC_IMM)
8399 		dev->nested_level = dev->lower_level - 1;
8400 	if (priv->flags & NESTED_SYNC_TODO)
8401 		net_unlink_todo(dev);
8402 #endif
8403 	return 0;
8404 }
8405 
8406 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
8407 				  int (*fn)(struct net_device *dev,
8408 					    struct netdev_nested_priv *priv),
8409 				  struct netdev_nested_priv *priv)
8410 {
8411 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
8412 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
8413 	int ret, cur = 0;
8414 
8415 	now = dev;
8416 	iter = &dev->adj_list.lower;
8417 
8418 	while (1) {
8419 		if (now != dev) {
8420 			ret = fn(now, priv);
8421 			if (ret)
8422 				return ret;
8423 		}
8424 
8425 		next = NULL;
8426 		while (1) {
8427 			ldev = netdev_next_lower_dev_rcu(now, &iter);
8428 			if (!ldev)
8429 				break;
8430 
8431 			next = ldev;
8432 			niter = &ldev->adj_list.lower;
8433 			dev_stack[cur] = now;
8434 			iter_stack[cur++] = iter;
8435 			break;
8436 		}
8437 
8438 		if (!next) {
8439 			if (!cur)
8440 				return 0;
8441 			next = dev_stack[--cur];
8442 			niter = iter_stack[cur];
8443 		}
8444 
8445 		now = next;
8446 		iter = niter;
8447 	}
8448 
8449 	return 0;
8450 }
8451 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
8452 
8453 /**
8454  * netdev_lower_get_first_private_rcu - Get the first ->private from the
8455  *				       lower neighbour list, RCU
8456  *				       variant
8457  * @dev: device
8458  *
8459  * Gets the first netdev_adjacent->private from the dev's lower neighbour
8460  * list. The caller must hold RCU read lock.
8461  */
8462 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
8463 {
8464 	struct netdev_adjacent *lower;
8465 
8466 	lower = list_first_or_null_rcu(&dev->adj_list.lower,
8467 			struct netdev_adjacent, list);
8468 	if (lower)
8469 		return lower->private;
8470 	return NULL;
8471 }
8472 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
8473 
8474 /**
8475  * netdev_master_upper_dev_get_rcu - Get master upper device
8476  * @dev: device
8477  *
8478  * Find a master upper device and return pointer to it or NULL in case
8479  * it's not there. The caller must hold the RCU read lock.
8480  */
8481 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
8482 {
8483 	struct netdev_adjacent *upper;
8484 
8485 	upper = list_first_or_null_rcu(&dev->adj_list.upper,
8486 				       struct netdev_adjacent, list);
8487 	if (upper && likely(upper->master))
8488 		return upper->dev;
8489 	return NULL;
8490 }
8491 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
8492 
8493 static int netdev_adjacent_sysfs_add(struct net_device *dev,
8494 			      struct net_device *adj_dev,
8495 			      struct list_head *dev_list)
8496 {
8497 	char linkname[IFNAMSIZ+7];
8498 
8499 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
8500 		"upper_%s" : "lower_%s", adj_dev->name);
8501 	return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
8502 				 linkname);
8503 }
8504 static void netdev_adjacent_sysfs_del(struct net_device *dev,
8505 			       char *name,
8506 			       struct list_head *dev_list)
8507 {
8508 	char linkname[IFNAMSIZ+7];
8509 
8510 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
8511 		"upper_%s" : "lower_%s", name);
8512 	sysfs_remove_link(&(dev->dev.kobj), linkname);
8513 }
8514 
8515 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
8516 						 struct net_device *adj_dev,
8517 						 struct list_head *dev_list)
8518 {
8519 	return (dev_list == &dev->adj_list.upper ||
8520 		dev_list == &dev->adj_list.lower) &&
8521 		net_eq(dev_net(dev), dev_net(adj_dev));
8522 }
8523 
8524 static int __netdev_adjacent_dev_insert(struct net_device *dev,
8525 					struct net_device *adj_dev,
8526 					struct list_head *dev_list,
8527 					void *private, bool master)
8528 {
8529 	struct netdev_adjacent *adj;
8530 	int ret;
8531 
8532 	adj = __netdev_find_adj(adj_dev, dev_list);
8533 
8534 	if (adj) {
8535 		adj->ref_nr += 1;
8536 		pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
8537 			 dev->name, adj_dev->name, adj->ref_nr);
8538 
8539 		return 0;
8540 	}
8541 
8542 	adj = kmalloc(sizeof(*adj), GFP_KERNEL);
8543 	if (!adj)
8544 		return -ENOMEM;
8545 
8546 	adj->dev = adj_dev;
8547 	adj->master = master;
8548 	adj->ref_nr = 1;
8549 	adj->private = private;
8550 	adj->ignore = false;
8551 	netdev_hold(adj_dev, &adj->dev_tracker, GFP_KERNEL);
8552 
8553 	pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
8554 		 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
8555 
8556 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
8557 		ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
8558 		if (ret)
8559 			goto free_adj;
8560 	}
8561 
8562 	/* Ensure that master link is always the first item in list. */
8563 	if (master) {
8564 		ret = sysfs_create_link(&(dev->dev.kobj),
8565 					&(adj_dev->dev.kobj), "master");
8566 		if (ret)
8567 			goto remove_symlinks;
8568 
8569 		list_add_rcu(&adj->list, dev_list);
8570 	} else {
8571 		list_add_tail_rcu(&adj->list, dev_list);
8572 	}
8573 
8574 	return 0;
8575 
8576 remove_symlinks:
8577 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
8578 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
8579 free_adj:
8580 	netdev_put(adj_dev, &adj->dev_tracker);
8581 	kfree(adj);
8582 
8583 	return ret;
8584 }
8585 
8586 static void __netdev_adjacent_dev_remove(struct net_device *dev,
8587 					 struct net_device *adj_dev,
8588 					 u16 ref_nr,
8589 					 struct list_head *dev_list)
8590 {
8591 	struct netdev_adjacent *adj;
8592 
8593 	pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
8594 		 dev->name, adj_dev->name, ref_nr);
8595 
8596 	adj = __netdev_find_adj(adj_dev, dev_list);
8597 
8598 	if (!adj) {
8599 		pr_err("Adjacency does not exist for device %s from %s\n",
8600 		       dev->name, adj_dev->name);
8601 		WARN_ON(1);
8602 		return;
8603 	}
8604 
8605 	if (adj->ref_nr > ref_nr) {
8606 		pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
8607 			 dev->name, adj_dev->name, ref_nr,
8608 			 adj->ref_nr - ref_nr);
8609 		adj->ref_nr -= ref_nr;
8610 		return;
8611 	}
8612 
8613 	if (adj->master)
8614 		sysfs_remove_link(&(dev->dev.kobj), "master");
8615 
8616 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
8617 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
8618 
8619 	list_del_rcu(&adj->list);
8620 	pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
8621 		 adj_dev->name, dev->name, adj_dev->name);
8622 	netdev_put(adj_dev, &adj->dev_tracker);
8623 	kfree_rcu(adj, rcu);
8624 }
8625 
8626 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
8627 					    struct net_device *upper_dev,
8628 					    struct list_head *up_list,
8629 					    struct list_head *down_list,
8630 					    void *private, bool master)
8631 {
8632 	int ret;
8633 
8634 	ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
8635 					   private, master);
8636 	if (ret)
8637 		return ret;
8638 
8639 	ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
8640 					   private, false);
8641 	if (ret) {
8642 		__netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
8643 		return ret;
8644 	}
8645 
8646 	return 0;
8647 }
8648 
8649 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
8650 					       struct net_device *upper_dev,
8651 					       u16 ref_nr,
8652 					       struct list_head *up_list,
8653 					       struct list_head *down_list)
8654 {
8655 	__netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
8656 	__netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
8657 }
8658 
8659 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
8660 						struct net_device *upper_dev,
8661 						void *private, bool master)
8662 {
8663 	return __netdev_adjacent_dev_link_lists(dev, upper_dev,
8664 						&dev->adj_list.upper,
8665 						&upper_dev->adj_list.lower,
8666 						private, master);
8667 }
8668 
8669 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
8670 						   struct net_device *upper_dev)
8671 {
8672 	__netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
8673 					   &dev->adj_list.upper,
8674 					   &upper_dev->adj_list.lower);
8675 }
8676 
8677 static int __netdev_upper_dev_link(struct net_device *dev,
8678 				   struct net_device *upper_dev, bool master,
8679 				   void *upper_priv, void *upper_info,
8680 				   struct netdev_nested_priv *priv,
8681 				   struct netlink_ext_ack *extack)
8682 {
8683 	struct netdev_notifier_changeupper_info changeupper_info = {
8684 		.info = {
8685 			.dev = dev,
8686 			.extack = extack,
8687 		},
8688 		.upper_dev = upper_dev,
8689 		.master = master,
8690 		.linking = true,
8691 		.upper_info = upper_info,
8692 	};
8693 	struct net_device *master_dev;
8694 	int ret = 0;
8695 
8696 	ASSERT_RTNL();
8697 
8698 	if (dev == upper_dev)
8699 		return -EBUSY;
8700 
8701 	/* To prevent loops, check if dev is not upper device to upper_dev. */
8702 	if (__netdev_has_upper_dev(upper_dev, dev))
8703 		return -EBUSY;
8704 
8705 	if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
8706 		return -EMLINK;
8707 
8708 	if (!master) {
8709 		if (__netdev_has_upper_dev(dev, upper_dev))
8710 			return -EEXIST;
8711 	} else {
8712 		master_dev = __netdev_master_upper_dev_get(dev);
8713 		if (master_dev)
8714 			return master_dev == upper_dev ? -EEXIST : -EBUSY;
8715 	}
8716 
8717 	ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
8718 					    &changeupper_info.info);
8719 	ret = notifier_to_errno(ret);
8720 	if (ret)
8721 		return ret;
8722 
8723 	ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
8724 						   master);
8725 	if (ret)
8726 		return ret;
8727 
8728 	ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
8729 					    &changeupper_info.info);
8730 	ret = notifier_to_errno(ret);
8731 	if (ret)
8732 		goto rollback;
8733 
8734 	__netdev_update_upper_level(dev, NULL);
8735 	__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
8736 
8737 	__netdev_update_lower_level(upper_dev, priv);
8738 	__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
8739 				    priv);
8740 
8741 	return 0;
8742 
8743 rollback:
8744 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
8745 
8746 	return ret;
8747 }
8748 
8749 /**
8750  * netdev_upper_dev_link - Add a link to the upper device
8751  * @dev: device
8752  * @upper_dev: new upper device
8753  * @extack: netlink extended ack
8754  *
8755  * Adds a link to device which is upper to this one. The caller must hold
8756  * the RTNL lock. On a failure a negative errno code is returned.
8757  * On success the reference counts are adjusted and the function
8758  * returns zero.
8759  */
8760 int netdev_upper_dev_link(struct net_device *dev,
8761 			  struct net_device *upper_dev,
8762 			  struct netlink_ext_ack *extack)
8763 {
8764 	struct netdev_nested_priv priv = {
8765 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8766 		.data = NULL,
8767 	};
8768 
8769 	return __netdev_upper_dev_link(dev, upper_dev, false,
8770 				       NULL, NULL, &priv, extack);
8771 }
8772 EXPORT_SYMBOL(netdev_upper_dev_link);
8773 
8774 /**
8775  * netdev_master_upper_dev_link - Add a master link to the upper device
8776  * @dev: device
8777  * @upper_dev: new upper device
8778  * @upper_priv: upper device private
8779  * @upper_info: upper info to be passed down via notifier
8780  * @extack: netlink extended ack
8781  *
8782  * Adds a link to device which is upper to this one. In this case, only
8783  * one master upper device can be linked, although other non-master devices
8784  * might be linked as well. The caller must hold the RTNL lock.
8785  * On a failure a negative errno code is returned. On success the reference
8786  * counts are adjusted and the function returns zero.
8787  */
8788 int netdev_master_upper_dev_link(struct net_device *dev,
8789 				 struct net_device *upper_dev,
8790 				 void *upper_priv, void *upper_info,
8791 				 struct netlink_ext_ack *extack)
8792 {
8793 	struct netdev_nested_priv priv = {
8794 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8795 		.data = NULL,
8796 	};
8797 
8798 	return __netdev_upper_dev_link(dev, upper_dev, true,
8799 				       upper_priv, upper_info, &priv, extack);
8800 }
8801 EXPORT_SYMBOL(netdev_master_upper_dev_link);
8802 
8803 static void __netdev_upper_dev_unlink(struct net_device *dev,
8804 				      struct net_device *upper_dev,
8805 				      struct netdev_nested_priv *priv)
8806 {
8807 	struct netdev_notifier_changeupper_info changeupper_info = {
8808 		.info = {
8809 			.dev = dev,
8810 		},
8811 		.upper_dev = upper_dev,
8812 		.linking = false,
8813 	};
8814 
8815 	ASSERT_RTNL();
8816 
8817 	changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
8818 
8819 	call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
8820 				      &changeupper_info.info);
8821 
8822 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
8823 
8824 	call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
8825 				      &changeupper_info.info);
8826 
8827 	__netdev_update_upper_level(dev, NULL);
8828 	__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
8829 
8830 	__netdev_update_lower_level(upper_dev, priv);
8831 	__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
8832 				    priv);
8833 }
8834 
8835 /**
8836  * netdev_upper_dev_unlink - Removes a link to upper device
8837  * @dev: device
8838  * @upper_dev: new upper device
8839  *
8840  * Removes a link to device which is upper to this one. The caller must hold
8841  * the RTNL lock.
8842  */
8843 void netdev_upper_dev_unlink(struct net_device *dev,
8844 			     struct net_device *upper_dev)
8845 {
8846 	struct netdev_nested_priv priv = {
8847 		.flags = NESTED_SYNC_TODO,
8848 		.data = NULL,
8849 	};
8850 
8851 	__netdev_upper_dev_unlink(dev, upper_dev, &priv);
8852 }
8853 EXPORT_SYMBOL(netdev_upper_dev_unlink);
8854 
8855 static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
8856 				      struct net_device *lower_dev,
8857 				      bool val)
8858 {
8859 	struct netdev_adjacent *adj;
8860 
8861 	adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
8862 	if (adj)
8863 		adj->ignore = val;
8864 
8865 	adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
8866 	if (adj)
8867 		adj->ignore = val;
8868 }
8869 
8870 static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
8871 					struct net_device *lower_dev)
8872 {
8873 	__netdev_adjacent_dev_set(upper_dev, lower_dev, true);
8874 }
8875 
8876 static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
8877 				       struct net_device *lower_dev)
8878 {
8879 	__netdev_adjacent_dev_set(upper_dev, lower_dev, false);
8880 }
8881 
8882 int netdev_adjacent_change_prepare(struct net_device *old_dev,
8883 				   struct net_device *new_dev,
8884 				   struct net_device *dev,
8885 				   struct netlink_ext_ack *extack)
8886 {
8887 	struct netdev_nested_priv priv = {
8888 		.flags = 0,
8889 		.data = NULL,
8890 	};
8891 	int err;
8892 
8893 	if (!new_dev)
8894 		return 0;
8895 
8896 	if (old_dev && new_dev != old_dev)
8897 		netdev_adjacent_dev_disable(dev, old_dev);
8898 	err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv,
8899 				      extack);
8900 	if (err) {
8901 		if (old_dev && new_dev != old_dev)
8902 			netdev_adjacent_dev_enable(dev, old_dev);
8903 		return err;
8904 	}
8905 
8906 	return 0;
8907 }
8908 EXPORT_SYMBOL(netdev_adjacent_change_prepare);
8909 
8910 void netdev_adjacent_change_commit(struct net_device *old_dev,
8911 				   struct net_device *new_dev,
8912 				   struct net_device *dev)
8913 {
8914 	struct netdev_nested_priv priv = {
8915 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8916 		.data = NULL,
8917 	};
8918 
8919 	if (!new_dev || !old_dev)
8920 		return;
8921 
8922 	if (new_dev == old_dev)
8923 		return;
8924 
8925 	netdev_adjacent_dev_enable(dev, old_dev);
8926 	__netdev_upper_dev_unlink(old_dev, dev, &priv);
8927 }
8928 EXPORT_SYMBOL(netdev_adjacent_change_commit);
8929 
8930 void netdev_adjacent_change_abort(struct net_device *old_dev,
8931 				  struct net_device *new_dev,
8932 				  struct net_device *dev)
8933 {
8934 	struct netdev_nested_priv priv = {
8935 		.flags = 0,
8936 		.data = NULL,
8937 	};
8938 
8939 	if (!new_dev)
8940 		return;
8941 
8942 	if (old_dev && new_dev != old_dev)
8943 		netdev_adjacent_dev_enable(dev, old_dev);
8944 
8945 	__netdev_upper_dev_unlink(new_dev, dev, &priv);
8946 }
8947 EXPORT_SYMBOL(netdev_adjacent_change_abort);
8948 
8949 /**
8950  * netdev_bonding_info_change - Dispatch event about slave change
8951  * @dev: device
8952  * @bonding_info: info to dispatch
8953  *
8954  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
8955  * The caller must hold the RTNL lock.
8956  */
8957 void netdev_bonding_info_change(struct net_device *dev,
8958 				struct netdev_bonding_info *bonding_info)
8959 {
8960 	struct netdev_notifier_bonding_info info = {
8961 		.info.dev = dev,
8962 	};
8963 
8964 	memcpy(&info.bonding_info, bonding_info,
8965 	       sizeof(struct netdev_bonding_info));
8966 	call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
8967 				      &info.info);
8968 }
8969 EXPORT_SYMBOL(netdev_bonding_info_change);
8970 
8971 static int netdev_offload_xstats_enable_l3(struct net_device *dev,
8972 					   struct netlink_ext_ack *extack)
8973 {
8974 	struct netdev_notifier_offload_xstats_info info = {
8975 		.info.dev = dev,
8976 		.info.extack = extack,
8977 		.type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
8978 	};
8979 	int err;
8980 	int rc;
8981 
8982 	dev->offload_xstats_l3 = kzalloc(sizeof(*dev->offload_xstats_l3),
8983 					 GFP_KERNEL);
8984 	if (!dev->offload_xstats_l3)
8985 		return -ENOMEM;
8986 
8987 	rc = call_netdevice_notifiers_info_robust(NETDEV_OFFLOAD_XSTATS_ENABLE,
8988 						  NETDEV_OFFLOAD_XSTATS_DISABLE,
8989 						  &info.info);
8990 	err = notifier_to_errno(rc);
8991 	if (err)
8992 		goto free_stats;
8993 
8994 	return 0;
8995 
8996 free_stats:
8997 	kfree(dev->offload_xstats_l3);
8998 	dev->offload_xstats_l3 = NULL;
8999 	return err;
9000 }
9001 
9002 int netdev_offload_xstats_enable(struct net_device *dev,
9003 				 enum netdev_offload_xstats_type type,
9004 				 struct netlink_ext_ack *extack)
9005 {
9006 	ASSERT_RTNL();
9007 
9008 	if (netdev_offload_xstats_enabled(dev, type))
9009 		return -EALREADY;
9010 
9011 	switch (type) {
9012 	case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
9013 		return netdev_offload_xstats_enable_l3(dev, extack);
9014 	}
9015 
9016 	WARN_ON(1);
9017 	return -EINVAL;
9018 }
9019 EXPORT_SYMBOL(netdev_offload_xstats_enable);
9020 
9021 static void netdev_offload_xstats_disable_l3(struct net_device *dev)
9022 {
9023 	struct netdev_notifier_offload_xstats_info info = {
9024 		.info.dev = dev,
9025 		.type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
9026 	};
9027 
9028 	call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_DISABLE,
9029 				      &info.info);
9030 	kfree(dev->offload_xstats_l3);
9031 	dev->offload_xstats_l3 = NULL;
9032 }
9033 
9034 int netdev_offload_xstats_disable(struct net_device *dev,
9035 				  enum netdev_offload_xstats_type type)
9036 {
9037 	ASSERT_RTNL();
9038 
9039 	if (!netdev_offload_xstats_enabled(dev, type))
9040 		return -EALREADY;
9041 
9042 	switch (type) {
9043 	case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
9044 		netdev_offload_xstats_disable_l3(dev);
9045 		return 0;
9046 	}
9047 
9048 	WARN_ON(1);
9049 	return -EINVAL;
9050 }
9051 EXPORT_SYMBOL(netdev_offload_xstats_disable);
9052 
9053 static void netdev_offload_xstats_disable_all(struct net_device *dev)
9054 {
9055 	netdev_offload_xstats_disable(dev, NETDEV_OFFLOAD_XSTATS_TYPE_L3);
9056 }
9057 
9058 static struct rtnl_hw_stats64 *
9059 netdev_offload_xstats_get_ptr(const struct net_device *dev,
9060 			      enum netdev_offload_xstats_type type)
9061 {
9062 	switch (type) {
9063 	case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
9064 		return dev->offload_xstats_l3;
9065 	}
9066 
9067 	WARN_ON(1);
9068 	return NULL;
9069 }
9070 
9071 bool netdev_offload_xstats_enabled(const struct net_device *dev,
9072 				   enum netdev_offload_xstats_type type)
9073 {
9074 	ASSERT_RTNL();
9075 
9076 	return netdev_offload_xstats_get_ptr(dev, type);
9077 }
9078 EXPORT_SYMBOL(netdev_offload_xstats_enabled);
9079 
9080 struct netdev_notifier_offload_xstats_ru {
9081 	bool used;
9082 };
9083 
9084 struct netdev_notifier_offload_xstats_rd {
9085 	struct rtnl_hw_stats64 stats;
9086 	bool used;
9087 };
9088 
9089 static void netdev_hw_stats64_add(struct rtnl_hw_stats64 *dest,
9090 				  const struct rtnl_hw_stats64 *src)
9091 {
9092 	dest->rx_packets	  += src->rx_packets;
9093 	dest->tx_packets	  += src->tx_packets;
9094 	dest->rx_bytes		  += src->rx_bytes;
9095 	dest->tx_bytes		  += src->tx_bytes;
9096 	dest->rx_errors		  += src->rx_errors;
9097 	dest->tx_errors		  += src->tx_errors;
9098 	dest->rx_dropped	  += src->rx_dropped;
9099 	dest->tx_dropped	  += src->tx_dropped;
9100 	dest->multicast		  += src->multicast;
9101 }
9102 
9103 static int netdev_offload_xstats_get_used(struct net_device *dev,
9104 					  enum netdev_offload_xstats_type type,
9105 					  bool *p_used,
9106 					  struct netlink_ext_ack *extack)
9107 {
9108 	struct netdev_notifier_offload_xstats_ru report_used = {};
9109 	struct netdev_notifier_offload_xstats_info info = {
9110 		.info.dev = dev,
9111 		.info.extack = extack,
9112 		.type = type,
9113 		.report_used = &report_used,
9114 	};
9115 	int rc;
9116 
9117 	WARN_ON(!netdev_offload_xstats_enabled(dev, type));
9118 	rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_USED,
9119 					   &info.info);
9120 	*p_used = report_used.used;
9121 	return notifier_to_errno(rc);
9122 }
9123 
9124 static int netdev_offload_xstats_get_stats(struct net_device *dev,
9125 					   enum netdev_offload_xstats_type type,
9126 					   struct rtnl_hw_stats64 *p_stats,
9127 					   bool *p_used,
9128 					   struct netlink_ext_ack *extack)
9129 {
9130 	struct netdev_notifier_offload_xstats_rd report_delta = {};
9131 	struct netdev_notifier_offload_xstats_info info = {
9132 		.info.dev = dev,
9133 		.info.extack = extack,
9134 		.type = type,
9135 		.report_delta = &report_delta,
9136 	};
9137 	struct rtnl_hw_stats64 *stats;
9138 	int rc;
9139 
9140 	stats = netdev_offload_xstats_get_ptr(dev, type);
9141 	if (WARN_ON(!stats))
9142 		return -EINVAL;
9143 
9144 	rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_DELTA,
9145 					   &info.info);
9146 
9147 	/* Cache whatever we got, even if there was an error, otherwise the
9148 	 * successful stats retrievals would get lost.
9149 	 */
9150 	netdev_hw_stats64_add(stats, &report_delta.stats);
9151 
9152 	if (p_stats)
9153 		*p_stats = *stats;
9154 	*p_used = report_delta.used;
9155 
9156 	return notifier_to_errno(rc);
9157 }
9158 
9159 int netdev_offload_xstats_get(struct net_device *dev,
9160 			      enum netdev_offload_xstats_type type,
9161 			      struct rtnl_hw_stats64 *p_stats, bool *p_used,
9162 			      struct netlink_ext_ack *extack)
9163 {
9164 	ASSERT_RTNL();
9165 
9166 	if (p_stats)
9167 		return netdev_offload_xstats_get_stats(dev, type, p_stats,
9168 						       p_used, extack);
9169 	else
9170 		return netdev_offload_xstats_get_used(dev, type, p_used,
9171 						      extack);
9172 }
9173 EXPORT_SYMBOL(netdev_offload_xstats_get);
9174 
9175 void
9176 netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *report_delta,
9177 				   const struct rtnl_hw_stats64 *stats)
9178 {
9179 	report_delta->used = true;
9180 	netdev_hw_stats64_add(&report_delta->stats, stats);
9181 }
9182 EXPORT_SYMBOL(netdev_offload_xstats_report_delta);
9183 
9184 void
9185 netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *report_used)
9186 {
9187 	report_used->used = true;
9188 }
9189 EXPORT_SYMBOL(netdev_offload_xstats_report_used);
9190 
9191 void netdev_offload_xstats_push_delta(struct net_device *dev,
9192 				      enum netdev_offload_xstats_type type,
9193 				      const struct rtnl_hw_stats64 *p_stats)
9194 {
9195 	struct rtnl_hw_stats64 *stats;
9196 
9197 	ASSERT_RTNL();
9198 
9199 	stats = netdev_offload_xstats_get_ptr(dev, type);
9200 	if (WARN_ON(!stats))
9201 		return;
9202 
9203 	netdev_hw_stats64_add(stats, p_stats);
9204 }
9205 EXPORT_SYMBOL(netdev_offload_xstats_push_delta);
9206 
9207 /**
9208  * netdev_get_xmit_slave - Get the xmit slave of master device
9209  * @dev: device
9210  * @skb: The packet
9211  * @all_slaves: assume all the slaves are active
9212  *
9213  * The reference counters are not incremented so the caller must be
9214  * careful with locks. The caller must hold RCU lock.
9215  * %NULL is returned if no slave is found.
9216  */
9217 
9218 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
9219 					 struct sk_buff *skb,
9220 					 bool all_slaves)
9221 {
9222 	const struct net_device_ops *ops = dev->netdev_ops;
9223 
9224 	if (!ops->ndo_get_xmit_slave)
9225 		return NULL;
9226 	return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
9227 }
9228 EXPORT_SYMBOL(netdev_get_xmit_slave);
9229 
9230 static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev,
9231 						  struct sock *sk)
9232 {
9233 	const struct net_device_ops *ops = dev->netdev_ops;
9234 
9235 	if (!ops->ndo_sk_get_lower_dev)
9236 		return NULL;
9237 	return ops->ndo_sk_get_lower_dev(dev, sk);
9238 }
9239 
9240 /**
9241  * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket
9242  * @dev: device
9243  * @sk: the socket
9244  *
9245  * %NULL is returned if no lower device is found.
9246  */
9247 
9248 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
9249 					    struct sock *sk)
9250 {
9251 	struct net_device *lower;
9252 
9253 	lower = netdev_sk_get_lower_dev(dev, sk);
9254 	while (lower) {
9255 		dev = lower;
9256 		lower = netdev_sk_get_lower_dev(dev, sk);
9257 	}
9258 
9259 	return dev;
9260 }
9261 EXPORT_SYMBOL(netdev_sk_get_lowest_dev);
9262 
9263 static void netdev_adjacent_add_links(struct net_device *dev)
9264 {
9265 	struct netdev_adjacent *iter;
9266 
9267 	struct net *net = dev_net(dev);
9268 
9269 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
9270 		if (!net_eq(net, dev_net(iter->dev)))
9271 			continue;
9272 		netdev_adjacent_sysfs_add(iter->dev, dev,
9273 					  &iter->dev->adj_list.lower);
9274 		netdev_adjacent_sysfs_add(dev, iter->dev,
9275 					  &dev->adj_list.upper);
9276 	}
9277 
9278 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
9279 		if (!net_eq(net, dev_net(iter->dev)))
9280 			continue;
9281 		netdev_adjacent_sysfs_add(iter->dev, dev,
9282 					  &iter->dev->adj_list.upper);
9283 		netdev_adjacent_sysfs_add(dev, iter->dev,
9284 					  &dev->adj_list.lower);
9285 	}
9286 }
9287 
9288 static void netdev_adjacent_del_links(struct net_device *dev)
9289 {
9290 	struct netdev_adjacent *iter;
9291 
9292 	struct net *net = dev_net(dev);
9293 
9294 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
9295 		if (!net_eq(net, dev_net(iter->dev)))
9296 			continue;
9297 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
9298 					  &iter->dev->adj_list.lower);
9299 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
9300 					  &dev->adj_list.upper);
9301 	}
9302 
9303 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
9304 		if (!net_eq(net, dev_net(iter->dev)))
9305 			continue;
9306 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
9307 					  &iter->dev->adj_list.upper);
9308 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
9309 					  &dev->adj_list.lower);
9310 	}
9311 }
9312 
9313 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
9314 {
9315 	struct netdev_adjacent *iter;
9316 
9317 	struct net *net = dev_net(dev);
9318 
9319 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
9320 		if (!net_eq(net, dev_net(iter->dev)))
9321 			continue;
9322 		netdev_adjacent_sysfs_del(iter->dev, oldname,
9323 					  &iter->dev->adj_list.lower);
9324 		netdev_adjacent_sysfs_add(iter->dev, dev,
9325 					  &iter->dev->adj_list.lower);
9326 	}
9327 
9328 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
9329 		if (!net_eq(net, dev_net(iter->dev)))
9330 			continue;
9331 		netdev_adjacent_sysfs_del(iter->dev, oldname,
9332 					  &iter->dev->adj_list.upper);
9333 		netdev_adjacent_sysfs_add(iter->dev, dev,
9334 					  &iter->dev->adj_list.upper);
9335 	}
9336 }
9337 
9338 void *netdev_lower_dev_get_private(struct net_device *dev,
9339 				   struct net_device *lower_dev)
9340 {
9341 	struct netdev_adjacent *lower;
9342 
9343 	if (!lower_dev)
9344 		return NULL;
9345 	lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
9346 	if (!lower)
9347 		return NULL;
9348 
9349 	return lower->private;
9350 }
9351 EXPORT_SYMBOL(netdev_lower_dev_get_private);
9352 
9353 
9354 /**
9355  * netdev_lower_state_changed - Dispatch event about lower device state change
9356  * @lower_dev: device
9357  * @lower_state_info: state to dispatch
9358  *
9359  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
9360  * The caller must hold the RTNL lock.
9361  */
9362 void netdev_lower_state_changed(struct net_device *lower_dev,
9363 				void *lower_state_info)
9364 {
9365 	struct netdev_notifier_changelowerstate_info changelowerstate_info = {
9366 		.info.dev = lower_dev,
9367 	};
9368 
9369 	ASSERT_RTNL();
9370 	changelowerstate_info.lower_state_info = lower_state_info;
9371 	call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
9372 				      &changelowerstate_info.info);
9373 }
9374 EXPORT_SYMBOL(netdev_lower_state_changed);
9375 
9376 static void dev_change_rx_flags(struct net_device *dev, int flags)
9377 {
9378 	const struct net_device_ops *ops = dev->netdev_ops;
9379 
9380 	if (ops->ndo_change_rx_flags)
9381 		ops->ndo_change_rx_flags(dev, flags);
9382 }
9383 
9384 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
9385 {
9386 	unsigned int old_flags = dev->flags;
9387 	unsigned int promiscuity, flags;
9388 	kuid_t uid;
9389 	kgid_t gid;
9390 
9391 	ASSERT_RTNL();
9392 
9393 	promiscuity = dev->promiscuity + inc;
9394 	if (promiscuity == 0) {
9395 		/*
9396 		 * Avoid overflow.
9397 		 * If inc causes overflow, untouch promisc and return error.
9398 		 */
9399 		if (unlikely(inc > 0)) {
9400 			netdev_warn(dev, "promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n");
9401 			return -EOVERFLOW;
9402 		}
9403 		flags = old_flags & ~IFF_PROMISC;
9404 	} else {
9405 		flags = old_flags | IFF_PROMISC;
9406 	}
9407 	WRITE_ONCE(dev->promiscuity, promiscuity);
9408 	if (flags != old_flags) {
9409 		WRITE_ONCE(dev->flags, flags);
9410 		netdev_info(dev, "%s promiscuous mode\n",
9411 			    dev->flags & IFF_PROMISC ? "entered" : "left");
9412 		if (audit_enabled) {
9413 			current_uid_gid(&uid, &gid);
9414 			audit_log(audit_context(), GFP_ATOMIC,
9415 				  AUDIT_ANOM_PROMISCUOUS,
9416 				  "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
9417 				  dev->name, (dev->flags & IFF_PROMISC),
9418 				  (old_flags & IFF_PROMISC),
9419 				  from_kuid(&init_user_ns, audit_get_loginuid(current)),
9420 				  from_kuid(&init_user_ns, uid),
9421 				  from_kgid(&init_user_ns, gid),
9422 				  audit_get_sessionid(current));
9423 		}
9424 
9425 		dev_change_rx_flags(dev, IFF_PROMISC);
9426 	}
9427 	if (notify) {
9428 		/* The ops lock is only required to ensure consistent locking
9429 		 * for `NETDEV_CHANGE` notifiers. This function is sometimes
9430 		 * called without the lock, even for devices that are ops
9431 		 * locked, such as in `dev_uc_sync_multiple` when using
9432 		 * bonding or teaming.
9433 		 */
9434 		netdev_ops_assert_locked(dev);
9435 		__dev_notify_flags(dev, old_flags, IFF_PROMISC, 0, NULL);
9436 	}
9437 	return 0;
9438 }
9439 
9440 int netif_set_promiscuity(struct net_device *dev, int inc)
9441 {
9442 	unsigned int old_flags = dev->flags;
9443 	int err;
9444 
9445 	err = __dev_set_promiscuity(dev, inc, true);
9446 	if (err < 0)
9447 		return err;
9448 	if (dev->flags != old_flags)
9449 		dev_set_rx_mode(dev);
9450 	return err;
9451 }
9452 
9453 int netif_set_allmulti(struct net_device *dev, int inc, bool notify)
9454 {
9455 	unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
9456 	unsigned int allmulti, flags;
9457 
9458 	ASSERT_RTNL();
9459 
9460 	allmulti = dev->allmulti + inc;
9461 	if (allmulti == 0) {
9462 		/*
9463 		 * Avoid overflow.
9464 		 * If inc causes overflow, untouch allmulti and return error.
9465 		 */
9466 		if (unlikely(inc > 0)) {
9467 			netdev_warn(dev, "allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n");
9468 			return -EOVERFLOW;
9469 		}
9470 		flags = old_flags & ~IFF_ALLMULTI;
9471 	} else {
9472 		flags = old_flags | IFF_ALLMULTI;
9473 	}
9474 	WRITE_ONCE(dev->allmulti, allmulti);
9475 	if (flags != old_flags) {
9476 		WRITE_ONCE(dev->flags, flags);
9477 		netdev_info(dev, "%s allmulticast mode\n",
9478 			    dev->flags & IFF_ALLMULTI ? "entered" : "left");
9479 		dev_change_rx_flags(dev, IFF_ALLMULTI);
9480 		dev_set_rx_mode(dev);
9481 		if (notify)
9482 			__dev_notify_flags(dev, old_flags,
9483 					   dev->gflags ^ old_gflags, 0, NULL);
9484 	}
9485 	return 0;
9486 }
9487 
9488 /*
9489  *	Upload unicast and multicast address lists to device and
9490  *	configure RX filtering. When the device doesn't support unicast
9491  *	filtering it is put in promiscuous mode while unicast addresses
9492  *	are present.
9493  */
9494 void __dev_set_rx_mode(struct net_device *dev)
9495 {
9496 	const struct net_device_ops *ops = dev->netdev_ops;
9497 
9498 	/* dev_open will call this function so the list will stay sane. */
9499 	if (!(dev->flags&IFF_UP))
9500 		return;
9501 
9502 	if (!netif_device_present(dev))
9503 		return;
9504 
9505 	if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
9506 		/* Unicast addresses changes may only happen under the rtnl,
9507 		 * therefore calling __dev_set_promiscuity here is safe.
9508 		 */
9509 		if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
9510 			__dev_set_promiscuity(dev, 1, false);
9511 			dev->uc_promisc = true;
9512 		} else if (netdev_uc_empty(dev) && dev->uc_promisc) {
9513 			__dev_set_promiscuity(dev, -1, false);
9514 			dev->uc_promisc = false;
9515 		}
9516 	}
9517 
9518 	if (ops->ndo_set_rx_mode)
9519 		ops->ndo_set_rx_mode(dev);
9520 }
9521 
9522 void dev_set_rx_mode(struct net_device *dev)
9523 {
9524 	netif_addr_lock_bh(dev);
9525 	__dev_set_rx_mode(dev);
9526 	netif_addr_unlock_bh(dev);
9527 }
9528 
9529 /**
9530  * netif_get_flags() - get flags reported to userspace
9531  * @dev: device
9532  *
9533  * Get the combination of flag bits exported through APIs to userspace.
9534  */
9535 unsigned int netif_get_flags(const struct net_device *dev)
9536 {
9537 	unsigned int flags;
9538 
9539 	flags = (READ_ONCE(dev->flags) & ~(IFF_PROMISC |
9540 				IFF_ALLMULTI |
9541 				IFF_RUNNING |
9542 				IFF_LOWER_UP |
9543 				IFF_DORMANT)) |
9544 		(READ_ONCE(dev->gflags) & (IFF_PROMISC |
9545 				IFF_ALLMULTI));
9546 
9547 	if (netif_running(dev)) {
9548 		if (netif_oper_up(dev))
9549 			flags |= IFF_RUNNING;
9550 		if (netif_carrier_ok(dev))
9551 			flags |= IFF_LOWER_UP;
9552 		if (netif_dormant(dev))
9553 			flags |= IFF_DORMANT;
9554 	}
9555 
9556 	return flags;
9557 }
9558 EXPORT_SYMBOL(netif_get_flags);
9559 
9560 int __dev_change_flags(struct net_device *dev, unsigned int flags,
9561 		       struct netlink_ext_ack *extack)
9562 {
9563 	unsigned int old_flags = dev->flags;
9564 	int ret;
9565 
9566 	ASSERT_RTNL();
9567 
9568 	/*
9569 	 *	Set the flags on our device.
9570 	 */
9571 
9572 	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
9573 			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
9574 			       IFF_AUTOMEDIA)) |
9575 		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
9576 				    IFF_ALLMULTI));
9577 
9578 	/*
9579 	 *	Load in the correct multicast list now the flags have changed.
9580 	 */
9581 
9582 	if ((old_flags ^ flags) & IFF_MULTICAST)
9583 		dev_change_rx_flags(dev, IFF_MULTICAST);
9584 
9585 	dev_set_rx_mode(dev);
9586 
9587 	/*
9588 	 *	Have we downed the interface. We handle IFF_UP ourselves
9589 	 *	according to user attempts to set it, rather than blindly
9590 	 *	setting it.
9591 	 */
9592 
9593 	ret = 0;
9594 	if ((old_flags ^ flags) & IFF_UP) {
9595 		if (old_flags & IFF_UP)
9596 			__dev_close(dev);
9597 		else
9598 			ret = __dev_open(dev, extack);
9599 	}
9600 
9601 	if ((flags ^ dev->gflags) & IFF_PROMISC) {
9602 		int inc = (flags & IFF_PROMISC) ? 1 : -1;
9603 		old_flags = dev->flags;
9604 
9605 		dev->gflags ^= IFF_PROMISC;
9606 
9607 		if (__dev_set_promiscuity(dev, inc, false) >= 0)
9608 			if (dev->flags != old_flags)
9609 				dev_set_rx_mode(dev);
9610 	}
9611 
9612 	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
9613 	 * is important. Some (broken) drivers set IFF_PROMISC, when
9614 	 * IFF_ALLMULTI is requested not asking us and not reporting.
9615 	 */
9616 	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
9617 		int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
9618 
9619 		dev->gflags ^= IFF_ALLMULTI;
9620 		netif_set_allmulti(dev, inc, false);
9621 	}
9622 
9623 	return ret;
9624 }
9625 
9626 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
9627 			unsigned int gchanges, u32 portid,
9628 			const struct nlmsghdr *nlh)
9629 {
9630 	unsigned int changes = dev->flags ^ old_flags;
9631 
9632 	if (gchanges)
9633 		rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC, portid, nlh);
9634 
9635 	if (changes & IFF_UP) {
9636 		if (dev->flags & IFF_UP)
9637 			call_netdevice_notifiers(NETDEV_UP, dev);
9638 		else
9639 			call_netdevice_notifiers(NETDEV_DOWN, dev);
9640 	}
9641 
9642 	if (dev->flags & IFF_UP &&
9643 	    (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
9644 		struct netdev_notifier_change_info change_info = {
9645 			.info = {
9646 				.dev = dev,
9647 			},
9648 			.flags_changed = changes,
9649 		};
9650 
9651 		call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
9652 	}
9653 }
9654 
9655 int netif_change_flags(struct net_device *dev, unsigned int flags,
9656 		       struct netlink_ext_ack *extack)
9657 {
9658 	int ret;
9659 	unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
9660 
9661 	ret = __dev_change_flags(dev, flags, extack);
9662 	if (ret < 0)
9663 		return ret;
9664 
9665 	changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
9666 	__dev_notify_flags(dev, old_flags, changes, 0, NULL);
9667 	return ret;
9668 }
9669 
9670 int __netif_set_mtu(struct net_device *dev, int new_mtu)
9671 {
9672 	const struct net_device_ops *ops = dev->netdev_ops;
9673 
9674 	if (ops->ndo_change_mtu)
9675 		return ops->ndo_change_mtu(dev, new_mtu);
9676 
9677 	/* Pairs with all the lockless reads of dev->mtu in the stack */
9678 	WRITE_ONCE(dev->mtu, new_mtu);
9679 	return 0;
9680 }
9681 EXPORT_SYMBOL_NS_GPL(__netif_set_mtu, "NETDEV_INTERNAL");
9682 
9683 int dev_validate_mtu(struct net_device *dev, int new_mtu,
9684 		     struct netlink_ext_ack *extack)
9685 {
9686 	/* MTU must be positive, and in range */
9687 	if (new_mtu < 0 || new_mtu < dev->min_mtu) {
9688 		NL_SET_ERR_MSG(extack, "mtu less than device minimum");
9689 		return -EINVAL;
9690 	}
9691 
9692 	if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
9693 		NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
9694 		return -EINVAL;
9695 	}
9696 	return 0;
9697 }
9698 
9699 /**
9700  * netif_set_mtu_ext() - Change maximum transfer unit
9701  * @dev: device
9702  * @new_mtu: new transfer unit
9703  * @extack: netlink extended ack
9704  *
9705  * Change the maximum transfer size of the network device.
9706  *
9707  * Return: 0 on success, -errno on failure.
9708  */
9709 int netif_set_mtu_ext(struct net_device *dev, int new_mtu,
9710 		      struct netlink_ext_ack *extack)
9711 {
9712 	int err, orig_mtu;
9713 
9714 	netdev_ops_assert_locked(dev);
9715 
9716 	if (new_mtu == dev->mtu)
9717 		return 0;
9718 
9719 	err = dev_validate_mtu(dev, new_mtu, extack);
9720 	if (err)
9721 		return err;
9722 
9723 	if (!netif_device_present(dev))
9724 		return -ENODEV;
9725 
9726 	err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
9727 	err = notifier_to_errno(err);
9728 	if (err)
9729 		return err;
9730 
9731 	orig_mtu = dev->mtu;
9732 	err = __netif_set_mtu(dev, new_mtu);
9733 
9734 	if (!err) {
9735 		err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
9736 						   orig_mtu);
9737 		err = notifier_to_errno(err);
9738 		if (err) {
9739 			/* setting mtu back and notifying everyone again,
9740 			 * so that they have a chance to revert changes.
9741 			 */
9742 			__netif_set_mtu(dev, orig_mtu);
9743 			call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
9744 						     new_mtu);
9745 		}
9746 	}
9747 	return err;
9748 }
9749 
9750 int netif_set_mtu(struct net_device *dev, int new_mtu)
9751 {
9752 	struct netlink_ext_ack extack;
9753 	int err;
9754 
9755 	memset(&extack, 0, sizeof(extack));
9756 	err = netif_set_mtu_ext(dev, new_mtu, &extack);
9757 	if (err && extack._msg)
9758 		net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
9759 	return err;
9760 }
9761 EXPORT_SYMBOL(netif_set_mtu);
9762 
9763 int netif_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
9764 {
9765 	unsigned int orig_len = dev->tx_queue_len;
9766 	int res;
9767 
9768 	if (new_len != (unsigned int)new_len)
9769 		return -ERANGE;
9770 
9771 	if (new_len != orig_len) {
9772 		WRITE_ONCE(dev->tx_queue_len, new_len);
9773 		res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
9774 		res = notifier_to_errno(res);
9775 		if (res)
9776 			goto err_rollback;
9777 		res = dev_qdisc_change_tx_queue_len(dev);
9778 		if (res)
9779 			goto err_rollback;
9780 	}
9781 
9782 	return 0;
9783 
9784 err_rollback:
9785 	netdev_err(dev, "refused to change device tx_queue_len\n");
9786 	WRITE_ONCE(dev->tx_queue_len, orig_len);
9787 	return res;
9788 }
9789 
9790 void netif_set_group(struct net_device *dev, int new_group)
9791 {
9792 	dev->group = new_group;
9793 }
9794 
9795 /**
9796  * netif_pre_changeaddr_notify() - Call NETDEV_PRE_CHANGEADDR.
9797  * @dev: device
9798  * @addr: new address
9799  * @extack: netlink extended ack
9800  *
9801  * Return: 0 on success, -errno on failure.
9802  */
9803 int netif_pre_changeaddr_notify(struct net_device *dev, const char *addr,
9804 				struct netlink_ext_ack *extack)
9805 {
9806 	struct netdev_notifier_pre_changeaddr_info info = {
9807 		.info.dev = dev,
9808 		.info.extack = extack,
9809 		.dev_addr = addr,
9810 	};
9811 	int rc;
9812 
9813 	rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
9814 	return notifier_to_errno(rc);
9815 }
9816 EXPORT_SYMBOL_NS_GPL(netif_pre_changeaddr_notify, "NETDEV_INTERNAL");
9817 
9818 int netif_set_mac_address(struct net_device *dev, struct sockaddr_storage *ss,
9819 			  struct netlink_ext_ack *extack)
9820 {
9821 	const struct net_device_ops *ops = dev->netdev_ops;
9822 	int err;
9823 
9824 	if (!ops->ndo_set_mac_address)
9825 		return -EOPNOTSUPP;
9826 	if (ss->ss_family != dev->type)
9827 		return -EINVAL;
9828 	if (!netif_device_present(dev))
9829 		return -ENODEV;
9830 	err = netif_pre_changeaddr_notify(dev, ss->__data, extack);
9831 	if (err)
9832 		return err;
9833 	if (memcmp(dev->dev_addr, ss->__data, dev->addr_len)) {
9834 		err = ops->ndo_set_mac_address(dev, ss);
9835 		if (err)
9836 			return err;
9837 	}
9838 	dev->addr_assign_type = NET_ADDR_SET;
9839 	call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
9840 	add_device_randomness(dev->dev_addr, dev->addr_len);
9841 	return 0;
9842 }
9843 
9844 DECLARE_RWSEM(dev_addr_sem);
9845 
9846 /* "sa" is a true struct sockaddr with limited "sa_data" member. */
9847 int netif_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name)
9848 {
9849 	size_t size = sizeof(sa->sa_data_min);
9850 	struct net_device *dev;
9851 	int ret = 0;
9852 
9853 	down_read(&dev_addr_sem);
9854 	rcu_read_lock();
9855 
9856 	dev = dev_get_by_name_rcu(net, dev_name);
9857 	if (!dev) {
9858 		ret = -ENODEV;
9859 		goto unlock;
9860 	}
9861 	if (!dev->addr_len)
9862 		memset(sa->sa_data, 0, size);
9863 	else
9864 		memcpy(sa->sa_data, dev->dev_addr,
9865 		       min_t(size_t, size, dev->addr_len));
9866 	sa->sa_family = dev->type;
9867 
9868 unlock:
9869 	rcu_read_unlock();
9870 	up_read(&dev_addr_sem);
9871 	return ret;
9872 }
9873 EXPORT_SYMBOL_NS_GPL(netif_get_mac_address, "NETDEV_INTERNAL");
9874 
9875 int netif_change_carrier(struct net_device *dev, bool new_carrier)
9876 {
9877 	const struct net_device_ops *ops = dev->netdev_ops;
9878 
9879 	if (!ops->ndo_change_carrier)
9880 		return -EOPNOTSUPP;
9881 	if (!netif_device_present(dev))
9882 		return -ENODEV;
9883 	return ops->ndo_change_carrier(dev, new_carrier);
9884 }
9885 
9886 /**
9887  *	dev_get_phys_port_id - Get device physical port ID
9888  *	@dev: device
9889  *	@ppid: port ID
9890  *
9891  *	Get device physical port ID
9892  */
9893 int dev_get_phys_port_id(struct net_device *dev,
9894 			 struct netdev_phys_item_id *ppid)
9895 {
9896 	const struct net_device_ops *ops = dev->netdev_ops;
9897 
9898 	if (!ops->ndo_get_phys_port_id)
9899 		return -EOPNOTSUPP;
9900 	return ops->ndo_get_phys_port_id(dev, ppid);
9901 }
9902 
9903 /**
9904  *	dev_get_phys_port_name - Get device physical port name
9905  *	@dev: device
9906  *	@name: port name
9907  *	@len: limit of bytes to copy to name
9908  *
9909  *	Get device physical port name
9910  */
9911 int dev_get_phys_port_name(struct net_device *dev,
9912 			   char *name, size_t len)
9913 {
9914 	const struct net_device_ops *ops = dev->netdev_ops;
9915 	int err;
9916 
9917 	if (ops->ndo_get_phys_port_name) {
9918 		err = ops->ndo_get_phys_port_name(dev, name, len);
9919 		if (err != -EOPNOTSUPP)
9920 			return err;
9921 	}
9922 	return devlink_compat_phys_port_name_get(dev, name, len);
9923 }
9924 
9925 /**
9926  * netif_get_port_parent_id() - Get the device's port parent identifier
9927  * @dev: network device
9928  * @ppid: pointer to a storage for the port's parent identifier
9929  * @recurse: allow/disallow recursion to lower devices
9930  *
9931  * Get the devices's port parent identifier.
9932  *
9933  * Return: 0 on success, -errno on failure.
9934  */
9935 int netif_get_port_parent_id(struct net_device *dev,
9936 			     struct netdev_phys_item_id *ppid, bool recurse)
9937 {
9938 	const struct net_device_ops *ops = dev->netdev_ops;
9939 	struct netdev_phys_item_id first = { };
9940 	struct net_device *lower_dev;
9941 	struct list_head *iter;
9942 	int err;
9943 
9944 	if (ops->ndo_get_port_parent_id) {
9945 		err = ops->ndo_get_port_parent_id(dev, ppid);
9946 		if (err != -EOPNOTSUPP)
9947 			return err;
9948 	}
9949 
9950 	err = devlink_compat_switch_id_get(dev, ppid);
9951 	if (!recurse || err != -EOPNOTSUPP)
9952 		return err;
9953 
9954 	netdev_for_each_lower_dev(dev, lower_dev, iter) {
9955 		err = netif_get_port_parent_id(lower_dev, ppid, true);
9956 		if (err)
9957 			break;
9958 		if (!first.id_len)
9959 			first = *ppid;
9960 		else if (memcmp(&first, ppid, sizeof(*ppid)))
9961 			return -EOPNOTSUPP;
9962 	}
9963 
9964 	return err;
9965 }
9966 EXPORT_SYMBOL(netif_get_port_parent_id);
9967 
9968 /**
9969  *	netdev_port_same_parent_id - Indicate if two network devices have
9970  *	the same port parent identifier
9971  *	@a: first network device
9972  *	@b: second network device
9973  */
9974 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
9975 {
9976 	struct netdev_phys_item_id a_id = { };
9977 	struct netdev_phys_item_id b_id = { };
9978 
9979 	if (netif_get_port_parent_id(a, &a_id, true) ||
9980 	    netif_get_port_parent_id(b, &b_id, true))
9981 		return false;
9982 
9983 	return netdev_phys_item_id_same(&a_id, &b_id);
9984 }
9985 EXPORT_SYMBOL(netdev_port_same_parent_id);
9986 
9987 int netif_change_proto_down(struct net_device *dev, bool proto_down)
9988 {
9989 	if (!dev->change_proto_down)
9990 		return -EOPNOTSUPP;
9991 	if (!netif_device_present(dev))
9992 		return -ENODEV;
9993 	if (proto_down)
9994 		netif_carrier_off(dev);
9995 	else
9996 		netif_carrier_on(dev);
9997 	WRITE_ONCE(dev->proto_down, proto_down);
9998 	return 0;
9999 }
10000 
10001 /**
10002  *	netdev_change_proto_down_reason_locked - proto down reason
10003  *
10004  *	@dev: device
10005  *	@mask: proto down mask
10006  *	@value: proto down value
10007  */
10008 void netdev_change_proto_down_reason_locked(struct net_device *dev,
10009 					    unsigned long mask, u32 value)
10010 {
10011 	u32 proto_down_reason;
10012 	int b;
10013 
10014 	if (!mask) {
10015 		proto_down_reason = value;
10016 	} else {
10017 		proto_down_reason = dev->proto_down_reason;
10018 		for_each_set_bit(b, &mask, 32) {
10019 			if (value & (1 << b))
10020 				proto_down_reason |= BIT(b);
10021 			else
10022 				proto_down_reason &= ~BIT(b);
10023 		}
10024 	}
10025 	WRITE_ONCE(dev->proto_down_reason, proto_down_reason);
10026 }
10027 
10028 struct bpf_xdp_link {
10029 	struct bpf_link link;
10030 	struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
10031 	int flags;
10032 };
10033 
10034 static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags)
10035 {
10036 	if (flags & XDP_FLAGS_HW_MODE)
10037 		return XDP_MODE_HW;
10038 	if (flags & XDP_FLAGS_DRV_MODE)
10039 		return XDP_MODE_DRV;
10040 	if (flags & XDP_FLAGS_SKB_MODE)
10041 		return XDP_MODE_SKB;
10042 	return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB;
10043 }
10044 
10045 static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
10046 {
10047 	switch (mode) {
10048 	case XDP_MODE_SKB:
10049 		return generic_xdp_install;
10050 	case XDP_MODE_DRV:
10051 	case XDP_MODE_HW:
10052 		return dev->netdev_ops->ndo_bpf;
10053 	default:
10054 		return NULL;
10055 	}
10056 }
10057 
10058 static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
10059 					 enum bpf_xdp_mode mode)
10060 {
10061 	return dev->xdp_state[mode].link;
10062 }
10063 
10064 static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
10065 				     enum bpf_xdp_mode mode)
10066 {
10067 	struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
10068 
10069 	if (link)
10070 		return link->link.prog;
10071 	return dev->xdp_state[mode].prog;
10072 }
10073 
10074 u8 dev_xdp_prog_count(struct net_device *dev)
10075 {
10076 	u8 count = 0;
10077 	int i;
10078 
10079 	for (i = 0; i < __MAX_XDP_MODE; i++)
10080 		if (dev->xdp_state[i].prog || dev->xdp_state[i].link)
10081 			count++;
10082 	return count;
10083 }
10084 EXPORT_SYMBOL_GPL(dev_xdp_prog_count);
10085 
10086 u8 dev_xdp_sb_prog_count(struct net_device *dev)
10087 {
10088 	u8 count = 0;
10089 	int i;
10090 
10091 	for (i = 0; i < __MAX_XDP_MODE; i++)
10092 		if (dev->xdp_state[i].prog &&
10093 		    !dev->xdp_state[i].prog->aux->xdp_has_frags)
10094 			count++;
10095 	return count;
10096 }
10097 
10098 int netif_xdp_propagate(struct net_device *dev, struct netdev_bpf *bpf)
10099 {
10100 	if (!dev->netdev_ops->ndo_bpf)
10101 		return -EOPNOTSUPP;
10102 
10103 	if (dev->cfg->hds_config == ETHTOOL_TCP_DATA_SPLIT_ENABLED &&
10104 	    bpf->command == XDP_SETUP_PROG &&
10105 	    bpf->prog && !bpf->prog->aux->xdp_has_frags) {
10106 		NL_SET_ERR_MSG(bpf->extack,
10107 			       "unable to propagate XDP to device using tcp-data-split");
10108 		return -EBUSY;
10109 	}
10110 
10111 	if (dev_get_min_mp_channel_count(dev)) {
10112 		NL_SET_ERR_MSG(bpf->extack, "unable to propagate XDP to device using memory provider");
10113 		return -EBUSY;
10114 	}
10115 
10116 	return dev->netdev_ops->ndo_bpf(dev, bpf);
10117 }
10118 EXPORT_SYMBOL_GPL(netif_xdp_propagate);
10119 
10120 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
10121 {
10122 	struct bpf_prog *prog = dev_xdp_prog(dev, mode);
10123 
10124 	return prog ? prog->aux->id : 0;
10125 }
10126 
10127 static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
10128 			     struct bpf_xdp_link *link)
10129 {
10130 	dev->xdp_state[mode].link = link;
10131 	dev->xdp_state[mode].prog = NULL;
10132 }
10133 
10134 static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
10135 			     struct bpf_prog *prog)
10136 {
10137 	dev->xdp_state[mode].link = NULL;
10138 	dev->xdp_state[mode].prog = prog;
10139 }
10140 
10141 static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
10142 			   bpf_op_t bpf_op, struct netlink_ext_ack *extack,
10143 			   u32 flags, struct bpf_prog *prog)
10144 {
10145 	struct netdev_bpf xdp;
10146 	int err;
10147 
10148 	netdev_ops_assert_locked(dev);
10149 
10150 	if (dev->cfg->hds_config == ETHTOOL_TCP_DATA_SPLIT_ENABLED &&
10151 	    prog && !prog->aux->xdp_has_frags) {
10152 		NL_SET_ERR_MSG(extack, "unable to install XDP to device using tcp-data-split");
10153 		return -EBUSY;
10154 	}
10155 
10156 	if (dev_get_min_mp_channel_count(dev)) {
10157 		NL_SET_ERR_MSG(extack, "unable to install XDP to device using memory provider");
10158 		return -EBUSY;
10159 	}
10160 
10161 	memset(&xdp, 0, sizeof(xdp));
10162 	xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
10163 	xdp.extack = extack;
10164 	xdp.flags = flags;
10165 	xdp.prog = prog;
10166 
10167 	/* Drivers assume refcnt is already incremented (i.e, prog pointer is
10168 	 * "moved" into driver), so they don't increment it on their own, but
10169 	 * they do decrement refcnt when program is detached or replaced.
10170 	 * Given net_device also owns link/prog, we need to bump refcnt here
10171 	 * to prevent drivers from underflowing it.
10172 	 */
10173 	if (prog)
10174 		bpf_prog_inc(prog);
10175 	err = bpf_op(dev, &xdp);
10176 	if (err) {
10177 		if (prog)
10178 			bpf_prog_put(prog);
10179 		return err;
10180 	}
10181 
10182 	if (mode != XDP_MODE_HW)
10183 		bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog);
10184 
10185 	return 0;
10186 }
10187 
10188 static void dev_xdp_uninstall(struct net_device *dev)
10189 {
10190 	struct bpf_xdp_link *link;
10191 	struct bpf_prog *prog;
10192 	enum bpf_xdp_mode mode;
10193 	bpf_op_t bpf_op;
10194 
10195 	ASSERT_RTNL();
10196 
10197 	for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
10198 		prog = dev_xdp_prog(dev, mode);
10199 		if (!prog)
10200 			continue;
10201 
10202 		bpf_op = dev_xdp_bpf_op(dev, mode);
10203 		if (!bpf_op)
10204 			continue;
10205 
10206 		WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
10207 
10208 		/* auto-detach link from net device */
10209 		link = dev_xdp_link(dev, mode);
10210 		if (link)
10211 			link->dev = NULL;
10212 		else
10213 			bpf_prog_put(prog);
10214 
10215 		dev_xdp_set_link(dev, mode, NULL);
10216 	}
10217 }
10218 
10219 static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
10220 			  struct bpf_xdp_link *link, struct bpf_prog *new_prog,
10221 			  struct bpf_prog *old_prog, u32 flags)
10222 {
10223 	unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES);
10224 	struct bpf_prog *cur_prog;
10225 	struct net_device *upper;
10226 	struct list_head *iter;
10227 	enum bpf_xdp_mode mode;
10228 	bpf_op_t bpf_op;
10229 	int err;
10230 
10231 	ASSERT_RTNL();
10232 
10233 	/* either link or prog attachment, never both */
10234 	if (link && (new_prog || old_prog))
10235 		return -EINVAL;
10236 	/* link supports only XDP mode flags */
10237 	if (link && (flags & ~XDP_FLAGS_MODES)) {
10238 		NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
10239 		return -EINVAL;
10240 	}
10241 	/* just one XDP mode bit should be set, zero defaults to drv/skb mode */
10242 	if (num_modes > 1) {
10243 		NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
10244 		return -EINVAL;
10245 	}
10246 	/* avoid ambiguity if offload + drv/skb mode progs are both loaded */
10247 	if (!num_modes && dev_xdp_prog_count(dev) > 1) {
10248 		NL_SET_ERR_MSG(extack,
10249 			       "More than one program loaded, unset mode is ambiguous");
10250 		return -EINVAL;
10251 	}
10252 	/* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
10253 	if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
10254 		NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
10255 		return -EINVAL;
10256 	}
10257 
10258 	mode = dev_xdp_mode(dev, flags);
10259 	/* can't replace attached link */
10260 	if (dev_xdp_link(dev, mode)) {
10261 		NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
10262 		return -EBUSY;
10263 	}
10264 
10265 	/* don't allow if an upper device already has a program */
10266 	netdev_for_each_upper_dev_rcu(dev, upper, iter) {
10267 		if (dev_xdp_prog_count(upper) > 0) {
10268 			NL_SET_ERR_MSG(extack, "Cannot attach when an upper device already has a program");
10269 			return -EEXIST;
10270 		}
10271 	}
10272 
10273 	cur_prog = dev_xdp_prog(dev, mode);
10274 	/* can't replace attached prog with link */
10275 	if (link && cur_prog) {
10276 		NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
10277 		return -EBUSY;
10278 	}
10279 	if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
10280 		NL_SET_ERR_MSG(extack, "Active program does not match expected");
10281 		return -EEXIST;
10282 	}
10283 
10284 	/* put effective new program into new_prog */
10285 	if (link)
10286 		new_prog = link->link.prog;
10287 
10288 	if (new_prog) {
10289 		bool offload = mode == XDP_MODE_HW;
10290 		enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
10291 					       ? XDP_MODE_DRV : XDP_MODE_SKB;
10292 
10293 		if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
10294 			NL_SET_ERR_MSG(extack, "XDP program already attached");
10295 			return -EBUSY;
10296 		}
10297 		if (!offload && dev_xdp_prog(dev, other_mode)) {
10298 			NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
10299 			return -EEXIST;
10300 		}
10301 		if (!offload && bpf_prog_is_offloaded(new_prog->aux)) {
10302 			NL_SET_ERR_MSG(extack, "Using offloaded program without HW_MODE flag is not supported");
10303 			return -EINVAL;
10304 		}
10305 		if (bpf_prog_is_dev_bound(new_prog->aux) && !bpf_offload_dev_match(new_prog, dev)) {
10306 			NL_SET_ERR_MSG(extack, "Program bound to different device");
10307 			return -EINVAL;
10308 		}
10309 		if (bpf_prog_is_dev_bound(new_prog->aux) && mode == XDP_MODE_SKB) {
10310 			NL_SET_ERR_MSG(extack, "Can't attach device-bound programs in generic mode");
10311 			return -EINVAL;
10312 		}
10313 		if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
10314 			NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
10315 			return -EINVAL;
10316 		}
10317 		if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
10318 			NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
10319 			return -EINVAL;
10320 		}
10321 	}
10322 
10323 	/* don't call drivers if the effective program didn't change */
10324 	if (new_prog != cur_prog) {
10325 		bpf_op = dev_xdp_bpf_op(dev, mode);
10326 		if (!bpf_op) {
10327 			NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
10328 			return -EOPNOTSUPP;
10329 		}
10330 
10331 		err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog);
10332 		if (err)
10333 			return err;
10334 	}
10335 
10336 	if (link)
10337 		dev_xdp_set_link(dev, mode, link);
10338 	else
10339 		dev_xdp_set_prog(dev, mode, new_prog);
10340 	if (cur_prog)
10341 		bpf_prog_put(cur_prog);
10342 
10343 	return 0;
10344 }
10345 
10346 static int dev_xdp_attach_link(struct net_device *dev,
10347 			       struct netlink_ext_ack *extack,
10348 			       struct bpf_xdp_link *link)
10349 {
10350 	return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags);
10351 }
10352 
10353 static int dev_xdp_detach_link(struct net_device *dev,
10354 			       struct netlink_ext_ack *extack,
10355 			       struct bpf_xdp_link *link)
10356 {
10357 	enum bpf_xdp_mode mode;
10358 	bpf_op_t bpf_op;
10359 
10360 	ASSERT_RTNL();
10361 
10362 	mode = dev_xdp_mode(dev, link->flags);
10363 	if (dev_xdp_link(dev, mode) != link)
10364 		return -EINVAL;
10365 
10366 	bpf_op = dev_xdp_bpf_op(dev, mode);
10367 	WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
10368 	dev_xdp_set_link(dev, mode, NULL);
10369 	return 0;
10370 }
10371 
10372 static void bpf_xdp_link_release(struct bpf_link *link)
10373 {
10374 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
10375 
10376 	rtnl_lock();
10377 
10378 	/* if racing with net_device's tear down, xdp_link->dev might be
10379 	 * already NULL, in which case link was already auto-detached
10380 	 */
10381 	if (xdp_link->dev) {
10382 		netdev_lock_ops(xdp_link->dev);
10383 		WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
10384 		netdev_unlock_ops(xdp_link->dev);
10385 		xdp_link->dev = NULL;
10386 	}
10387 
10388 	rtnl_unlock();
10389 }
10390 
10391 static int bpf_xdp_link_detach(struct bpf_link *link)
10392 {
10393 	bpf_xdp_link_release(link);
10394 	return 0;
10395 }
10396 
10397 static void bpf_xdp_link_dealloc(struct bpf_link *link)
10398 {
10399 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
10400 
10401 	kfree(xdp_link);
10402 }
10403 
10404 static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link,
10405 				     struct seq_file *seq)
10406 {
10407 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
10408 	u32 ifindex = 0;
10409 
10410 	rtnl_lock();
10411 	if (xdp_link->dev)
10412 		ifindex = xdp_link->dev->ifindex;
10413 	rtnl_unlock();
10414 
10415 	seq_printf(seq, "ifindex:\t%u\n", ifindex);
10416 }
10417 
10418 static int bpf_xdp_link_fill_link_info(const struct bpf_link *link,
10419 				       struct bpf_link_info *info)
10420 {
10421 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
10422 	u32 ifindex = 0;
10423 
10424 	rtnl_lock();
10425 	if (xdp_link->dev)
10426 		ifindex = xdp_link->dev->ifindex;
10427 	rtnl_unlock();
10428 
10429 	info->xdp.ifindex = ifindex;
10430 	return 0;
10431 }
10432 
10433 static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
10434 			       struct bpf_prog *old_prog)
10435 {
10436 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
10437 	enum bpf_xdp_mode mode;
10438 	bpf_op_t bpf_op;
10439 	int err = 0;
10440 
10441 	rtnl_lock();
10442 
10443 	/* link might have been auto-released already, so fail */
10444 	if (!xdp_link->dev) {
10445 		err = -ENOLINK;
10446 		goto out_unlock;
10447 	}
10448 
10449 	if (old_prog && link->prog != old_prog) {
10450 		err = -EPERM;
10451 		goto out_unlock;
10452 	}
10453 	old_prog = link->prog;
10454 	if (old_prog->type != new_prog->type ||
10455 	    old_prog->expected_attach_type != new_prog->expected_attach_type) {
10456 		err = -EINVAL;
10457 		goto out_unlock;
10458 	}
10459 
10460 	if (old_prog == new_prog) {
10461 		/* no-op, don't disturb drivers */
10462 		bpf_prog_put(new_prog);
10463 		goto out_unlock;
10464 	}
10465 
10466 	netdev_lock_ops(xdp_link->dev);
10467 	mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags);
10468 	bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode);
10469 	err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL,
10470 			      xdp_link->flags, new_prog);
10471 	netdev_unlock_ops(xdp_link->dev);
10472 	if (err)
10473 		goto out_unlock;
10474 
10475 	old_prog = xchg(&link->prog, new_prog);
10476 	bpf_prog_put(old_prog);
10477 
10478 out_unlock:
10479 	rtnl_unlock();
10480 	return err;
10481 }
10482 
10483 static const struct bpf_link_ops bpf_xdp_link_lops = {
10484 	.release = bpf_xdp_link_release,
10485 	.dealloc = bpf_xdp_link_dealloc,
10486 	.detach = bpf_xdp_link_detach,
10487 	.show_fdinfo = bpf_xdp_link_show_fdinfo,
10488 	.fill_link_info = bpf_xdp_link_fill_link_info,
10489 	.update_prog = bpf_xdp_link_update,
10490 };
10491 
10492 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
10493 {
10494 	struct net *net = current->nsproxy->net_ns;
10495 	struct bpf_link_primer link_primer;
10496 	struct netlink_ext_ack extack = {};
10497 	struct bpf_xdp_link *link;
10498 	struct net_device *dev;
10499 	int err, fd;
10500 
10501 	rtnl_lock();
10502 	dev = dev_get_by_index(net, attr->link_create.target_ifindex);
10503 	if (!dev) {
10504 		rtnl_unlock();
10505 		return -EINVAL;
10506 	}
10507 
10508 	link = kzalloc(sizeof(*link), GFP_USER);
10509 	if (!link) {
10510 		err = -ENOMEM;
10511 		goto unlock;
10512 	}
10513 
10514 	bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog,
10515 		      attr->link_create.attach_type);
10516 	link->dev = dev;
10517 	link->flags = attr->link_create.flags;
10518 
10519 	err = bpf_link_prime(&link->link, &link_primer);
10520 	if (err) {
10521 		kfree(link);
10522 		goto unlock;
10523 	}
10524 
10525 	netdev_lock_ops(dev);
10526 	err = dev_xdp_attach_link(dev, &extack, link);
10527 	netdev_unlock_ops(dev);
10528 	rtnl_unlock();
10529 
10530 	if (err) {
10531 		link->dev = NULL;
10532 		bpf_link_cleanup(&link_primer);
10533 		trace_bpf_xdp_link_attach_failed(extack._msg);
10534 		goto out_put_dev;
10535 	}
10536 
10537 	fd = bpf_link_settle(&link_primer);
10538 	/* link itself doesn't hold dev's refcnt to not complicate shutdown */
10539 	dev_put(dev);
10540 	return fd;
10541 
10542 unlock:
10543 	rtnl_unlock();
10544 
10545 out_put_dev:
10546 	dev_put(dev);
10547 	return err;
10548 }
10549 
10550 /**
10551  *	dev_change_xdp_fd - set or clear a bpf program for a device rx path
10552  *	@dev: device
10553  *	@extack: netlink extended ack
10554  *	@fd: new program fd or negative value to clear
10555  *	@expected_fd: old program fd that userspace expects to replace or clear
10556  *	@flags: xdp-related flags
10557  *
10558  *	Set or clear a bpf program for a device
10559  */
10560 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
10561 		      int fd, int expected_fd, u32 flags)
10562 {
10563 	enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags);
10564 	struct bpf_prog *new_prog = NULL, *old_prog = NULL;
10565 	int err;
10566 
10567 	ASSERT_RTNL();
10568 
10569 	if (fd >= 0) {
10570 		new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
10571 						 mode != XDP_MODE_SKB);
10572 		if (IS_ERR(new_prog))
10573 			return PTR_ERR(new_prog);
10574 	}
10575 
10576 	if (expected_fd >= 0) {
10577 		old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP,
10578 						 mode != XDP_MODE_SKB);
10579 		if (IS_ERR(old_prog)) {
10580 			err = PTR_ERR(old_prog);
10581 			old_prog = NULL;
10582 			goto err_out;
10583 		}
10584 	}
10585 
10586 	err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
10587 
10588 err_out:
10589 	if (err && new_prog)
10590 		bpf_prog_put(new_prog);
10591 	if (old_prog)
10592 		bpf_prog_put(old_prog);
10593 	return err;
10594 }
10595 
10596 u32 dev_get_min_mp_channel_count(const struct net_device *dev)
10597 {
10598 	int i;
10599 
10600 	netdev_ops_assert_locked(dev);
10601 
10602 	for (i = dev->real_num_rx_queues - 1; i >= 0; i--)
10603 		if (dev->_rx[i].mp_params.mp_priv)
10604 			/* The channel count is the idx plus 1. */
10605 			return i + 1;
10606 
10607 	return 0;
10608 }
10609 
10610 /**
10611  * dev_index_reserve() - allocate an ifindex in a namespace
10612  * @net: the applicable net namespace
10613  * @ifindex: requested ifindex, pass %0 to get one allocated
10614  *
10615  * Allocate a ifindex for a new device. Caller must either use the ifindex
10616  * to store the device (via list_netdevice()) or call dev_index_release()
10617  * to give the index up.
10618  *
10619  * Return: a suitable unique value for a new device interface number or -errno.
10620  */
10621 static int dev_index_reserve(struct net *net, u32 ifindex)
10622 {
10623 	int err;
10624 
10625 	if (ifindex > INT_MAX) {
10626 		DEBUG_NET_WARN_ON_ONCE(1);
10627 		return -EINVAL;
10628 	}
10629 
10630 	if (!ifindex)
10631 		err = xa_alloc_cyclic(&net->dev_by_index, &ifindex, NULL,
10632 				      xa_limit_31b, &net->ifindex, GFP_KERNEL);
10633 	else
10634 		err = xa_insert(&net->dev_by_index, ifindex, NULL, GFP_KERNEL);
10635 	if (err < 0)
10636 		return err;
10637 
10638 	return ifindex;
10639 }
10640 
10641 static void dev_index_release(struct net *net, int ifindex)
10642 {
10643 	/* Expect only unused indexes, unlist_netdevice() removes the used */
10644 	WARN_ON(xa_erase(&net->dev_by_index, ifindex));
10645 }
10646 
10647 static bool from_cleanup_net(void)
10648 {
10649 #ifdef CONFIG_NET_NS
10650 	return current == READ_ONCE(cleanup_net_task);
10651 #else
10652 	return false;
10653 #endif
10654 }
10655 
10656 /* Delayed registration/unregisteration */
10657 LIST_HEAD(net_todo_list);
10658 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
10659 atomic_t dev_unreg_count = ATOMIC_INIT(0);
10660 
10661 static void net_set_todo(struct net_device *dev)
10662 {
10663 	list_add_tail(&dev->todo_list, &net_todo_list);
10664 }
10665 
10666 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
10667 	struct net_device *upper, netdev_features_t features)
10668 {
10669 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
10670 	netdev_features_t feature;
10671 	int feature_bit;
10672 
10673 	for_each_netdev_feature(upper_disables, feature_bit) {
10674 		feature = __NETIF_F_BIT(feature_bit);
10675 		if (!(upper->wanted_features & feature)
10676 		    && (features & feature)) {
10677 			netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
10678 				   &feature, upper->name);
10679 			features &= ~feature;
10680 		}
10681 	}
10682 
10683 	return features;
10684 }
10685 
10686 static void netdev_sync_lower_features(struct net_device *upper,
10687 	struct net_device *lower, netdev_features_t features)
10688 {
10689 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
10690 	netdev_features_t feature;
10691 	int feature_bit;
10692 
10693 	for_each_netdev_feature(upper_disables, feature_bit) {
10694 		feature = __NETIF_F_BIT(feature_bit);
10695 		if (!(features & feature) && (lower->features & feature)) {
10696 			netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
10697 				   &feature, lower->name);
10698 			netdev_lock_ops(lower);
10699 			lower->wanted_features &= ~feature;
10700 			__netdev_update_features(lower);
10701 
10702 			if (unlikely(lower->features & feature))
10703 				netdev_WARN(upper, "failed to disable %pNF on %s!\n",
10704 					    &feature, lower->name);
10705 			else
10706 				netdev_features_change(lower);
10707 			netdev_unlock_ops(lower);
10708 		}
10709 	}
10710 }
10711 
10712 static bool netdev_has_ip_or_hw_csum(netdev_features_t features)
10713 {
10714 	netdev_features_t ip_csum_mask = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
10715 	bool ip_csum = (features & ip_csum_mask) == ip_csum_mask;
10716 	bool hw_csum = features & NETIF_F_HW_CSUM;
10717 
10718 	return ip_csum || hw_csum;
10719 }
10720 
10721 static netdev_features_t netdev_fix_features(struct net_device *dev,
10722 	netdev_features_t features)
10723 {
10724 	/* Fix illegal checksum combinations */
10725 	if ((features & NETIF_F_HW_CSUM) &&
10726 	    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
10727 		netdev_warn(dev, "mixed HW and IP checksum settings.\n");
10728 		features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
10729 	}
10730 
10731 	/* TSO requires that SG is present as well. */
10732 	if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
10733 		netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
10734 		features &= ~NETIF_F_ALL_TSO;
10735 	}
10736 
10737 	if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
10738 					!(features & NETIF_F_IP_CSUM)) {
10739 		netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
10740 		features &= ~NETIF_F_TSO;
10741 		features &= ~NETIF_F_TSO_ECN;
10742 	}
10743 
10744 	if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
10745 					 !(features & NETIF_F_IPV6_CSUM)) {
10746 		netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
10747 		features &= ~NETIF_F_TSO6;
10748 	}
10749 
10750 	/* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
10751 	if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
10752 		features &= ~NETIF_F_TSO_MANGLEID;
10753 
10754 	/* TSO ECN requires that TSO is present as well. */
10755 	if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
10756 		features &= ~NETIF_F_TSO_ECN;
10757 
10758 	/* Software GSO depends on SG. */
10759 	if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
10760 		netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
10761 		features &= ~NETIF_F_GSO;
10762 	}
10763 
10764 	/* GSO partial features require GSO partial be set */
10765 	if ((features & dev->gso_partial_features) &&
10766 	    !(features & NETIF_F_GSO_PARTIAL)) {
10767 		netdev_dbg(dev,
10768 			   "Dropping partially supported GSO features since no GSO partial.\n");
10769 		features &= ~dev->gso_partial_features;
10770 	}
10771 
10772 	if (!(features & NETIF_F_RXCSUM)) {
10773 		/* NETIF_F_GRO_HW implies doing RXCSUM since every packet
10774 		 * successfully merged by hardware must also have the
10775 		 * checksum verified by hardware.  If the user does not
10776 		 * want to enable RXCSUM, logically, we should disable GRO_HW.
10777 		 */
10778 		if (features & NETIF_F_GRO_HW) {
10779 			netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
10780 			features &= ~NETIF_F_GRO_HW;
10781 		}
10782 	}
10783 
10784 	/* LRO/HW-GRO features cannot be combined with RX-FCS */
10785 	if (features & NETIF_F_RXFCS) {
10786 		if (features & NETIF_F_LRO) {
10787 			netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
10788 			features &= ~NETIF_F_LRO;
10789 		}
10790 
10791 		if (features & NETIF_F_GRO_HW) {
10792 			netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
10793 			features &= ~NETIF_F_GRO_HW;
10794 		}
10795 	}
10796 
10797 	if ((features & NETIF_F_GRO_HW) && (features & NETIF_F_LRO)) {
10798 		netdev_dbg(dev, "Dropping LRO feature since HW-GRO is requested.\n");
10799 		features &= ~NETIF_F_LRO;
10800 	}
10801 
10802 	if ((features & NETIF_F_HW_TLS_TX) && !netdev_has_ip_or_hw_csum(features)) {
10803 		netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n");
10804 		features &= ~NETIF_F_HW_TLS_TX;
10805 	}
10806 
10807 	if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) {
10808 		netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n");
10809 		features &= ~NETIF_F_HW_TLS_RX;
10810 	}
10811 
10812 	if ((features & NETIF_F_GSO_UDP_L4) && !netdev_has_ip_or_hw_csum(features)) {
10813 		netdev_dbg(dev, "Dropping USO feature since no CSUM feature.\n");
10814 		features &= ~NETIF_F_GSO_UDP_L4;
10815 	}
10816 
10817 	return features;
10818 }
10819 
10820 int __netdev_update_features(struct net_device *dev)
10821 {
10822 	struct net_device *upper, *lower;
10823 	netdev_features_t features;
10824 	struct list_head *iter;
10825 	int err = -1;
10826 
10827 	ASSERT_RTNL();
10828 	netdev_ops_assert_locked(dev);
10829 
10830 	features = netdev_get_wanted_features(dev);
10831 
10832 	if (dev->netdev_ops->ndo_fix_features)
10833 		features = dev->netdev_ops->ndo_fix_features(dev, features);
10834 
10835 	/* driver might be less strict about feature dependencies */
10836 	features = netdev_fix_features(dev, features);
10837 
10838 	/* some features can't be enabled if they're off on an upper device */
10839 	netdev_for_each_upper_dev_rcu(dev, upper, iter)
10840 		features = netdev_sync_upper_features(dev, upper, features);
10841 
10842 	if (dev->features == features)
10843 		goto sync_lower;
10844 
10845 	netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
10846 		&dev->features, &features);
10847 
10848 	if (dev->netdev_ops->ndo_set_features)
10849 		err = dev->netdev_ops->ndo_set_features(dev, features);
10850 	else
10851 		err = 0;
10852 
10853 	if (unlikely(err < 0)) {
10854 		netdev_err(dev,
10855 			"set_features() failed (%d); wanted %pNF, left %pNF\n",
10856 			err, &features, &dev->features);
10857 		/* return non-0 since some features might have changed and
10858 		 * it's better to fire a spurious notification than miss it
10859 		 */
10860 		return -1;
10861 	}
10862 
10863 sync_lower:
10864 	/* some features must be disabled on lower devices when disabled
10865 	 * on an upper device (think: bonding master or bridge)
10866 	 */
10867 	netdev_for_each_lower_dev(dev, lower, iter)
10868 		netdev_sync_lower_features(dev, lower, features);
10869 
10870 	if (!err) {
10871 		netdev_features_t diff = features ^ dev->features;
10872 
10873 		if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
10874 			/* udp_tunnel_{get,drop}_rx_info both need
10875 			 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
10876 			 * device, or they won't do anything.
10877 			 * Thus we need to update dev->features
10878 			 * *before* calling udp_tunnel_get_rx_info,
10879 			 * but *after* calling udp_tunnel_drop_rx_info.
10880 			 */
10881 			udp_tunnel_nic_lock(dev);
10882 			if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
10883 				dev->features = features;
10884 				udp_tunnel_get_rx_info(dev);
10885 			} else {
10886 				udp_tunnel_drop_rx_info(dev);
10887 			}
10888 			udp_tunnel_nic_unlock(dev);
10889 		}
10890 
10891 		if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
10892 			if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
10893 				dev->features = features;
10894 				err |= vlan_get_rx_ctag_filter_info(dev);
10895 			} else {
10896 				vlan_drop_rx_ctag_filter_info(dev);
10897 			}
10898 		}
10899 
10900 		if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
10901 			if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
10902 				dev->features = features;
10903 				err |= vlan_get_rx_stag_filter_info(dev);
10904 			} else {
10905 				vlan_drop_rx_stag_filter_info(dev);
10906 			}
10907 		}
10908 
10909 		dev->features = features;
10910 	}
10911 
10912 	return err < 0 ? 0 : 1;
10913 }
10914 
10915 /**
10916  *	netdev_update_features - recalculate device features
10917  *	@dev: the device to check
10918  *
10919  *	Recalculate dev->features set and send notifications if it
10920  *	has changed. Should be called after driver or hardware dependent
10921  *	conditions might have changed that influence the features.
10922  */
10923 void netdev_update_features(struct net_device *dev)
10924 {
10925 	if (__netdev_update_features(dev))
10926 		netdev_features_change(dev);
10927 }
10928 EXPORT_SYMBOL(netdev_update_features);
10929 
10930 /**
10931  *	netdev_change_features - recalculate device features
10932  *	@dev: the device to check
10933  *
10934  *	Recalculate dev->features set and send notifications even
10935  *	if they have not changed. Should be called instead of
10936  *	netdev_update_features() if also dev->vlan_features might
10937  *	have changed to allow the changes to be propagated to stacked
10938  *	VLAN devices.
10939  */
10940 void netdev_change_features(struct net_device *dev)
10941 {
10942 	__netdev_update_features(dev);
10943 	netdev_features_change(dev);
10944 }
10945 EXPORT_SYMBOL(netdev_change_features);
10946 
10947 /**
10948  *	netif_stacked_transfer_operstate -	transfer operstate
10949  *	@rootdev: the root or lower level device to transfer state from
10950  *	@dev: the device to transfer operstate to
10951  *
10952  *	Transfer operational state from root to device. This is normally
10953  *	called when a stacking relationship exists between the root
10954  *	device and the device(a leaf device).
10955  */
10956 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
10957 					struct net_device *dev)
10958 {
10959 	if (rootdev->operstate == IF_OPER_DORMANT)
10960 		netif_dormant_on(dev);
10961 	else
10962 		netif_dormant_off(dev);
10963 
10964 	if (rootdev->operstate == IF_OPER_TESTING)
10965 		netif_testing_on(dev);
10966 	else
10967 		netif_testing_off(dev);
10968 
10969 	if (netif_carrier_ok(rootdev))
10970 		netif_carrier_on(dev);
10971 	else
10972 		netif_carrier_off(dev);
10973 }
10974 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
10975 
10976 static int netif_alloc_rx_queues(struct net_device *dev)
10977 {
10978 	unsigned int i, count = dev->num_rx_queues;
10979 	struct netdev_rx_queue *rx;
10980 	size_t sz = count * sizeof(*rx);
10981 	int err = 0;
10982 
10983 	BUG_ON(count < 1);
10984 
10985 	rx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10986 	if (!rx)
10987 		return -ENOMEM;
10988 
10989 	dev->_rx = rx;
10990 
10991 	for (i = 0; i < count; i++) {
10992 		rx[i].dev = dev;
10993 
10994 		/* XDP RX-queue setup */
10995 		err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0);
10996 		if (err < 0)
10997 			goto err_rxq_info;
10998 	}
10999 	return 0;
11000 
11001 err_rxq_info:
11002 	/* Rollback successful reg's and free other resources */
11003 	while (i--)
11004 		xdp_rxq_info_unreg(&rx[i].xdp_rxq);
11005 	kvfree(dev->_rx);
11006 	dev->_rx = NULL;
11007 	return err;
11008 }
11009 
11010 static void netif_free_rx_queues(struct net_device *dev)
11011 {
11012 	unsigned int i, count = dev->num_rx_queues;
11013 
11014 	/* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
11015 	if (!dev->_rx)
11016 		return;
11017 
11018 	for (i = 0; i < count; i++)
11019 		xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
11020 
11021 	kvfree(dev->_rx);
11022 }
11023 
11024 static void netdev_init_one_queue(struct net_device *dev,
11025 				  struct netdev_queue *queue, void *_unused)
11026 {
11027 	/* Initialize queue lock */
11028 	spin_lock_init(&queue->_xmit_lock);
11029 	netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
11030 	queue->xmit_lock_owner = -1;
11031 	netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
11032 	queue->dev = dev;
11033 #ifdef CONFIG_BQL
11034 	dql_init(&queue->dql, HZ);
11035 #endif
11036 }
11037 
11038 static void netif_free_tx_queues(struct net_device *dev)
11039 {
11040 	kvfree(dev->_tx);
11041 }
11042 
11043 static int netif_alloc_netdev_queues(struct net_device *dev)
11044 {
11045 	unsigned int count = dev->num_tx_queues;
11046 	struct netdev_queue *tx;
11047 	size_t sz = count * sizeof(*tx);
11048 
11049 	if (count < 1 || count > 0xffff)
11050 		return -EINVAL;
11051 
11052 	tx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
11053 	if (!tx)
11054 		return -ENOMEM;
11055 
11056 	dev->_tx = tx;
11057 
11058 	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
11059 	spin_lock_init(&dev->tx_global_lock);
11060 
11061 	return 0;
11062 }
11063 
11064 void netif_tx_stop_all_queues(struct net_device *dev)
11065 {
11066 	unsigned int i;
11067 
11068 	for (i = 0; i < dev->num_tx_queues; i++) {
11069 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
11070 
11071 		netif_tx_stop_queue(txq);
11072 	}
11073 }
11074 EXPORT_SYMBOL(netif_tx_stop_all_queues);
11075 
11076 static int netdev_do_alloc_pcpu_stats(struct net_device *dev)
11077 {
11078 	void __percpu *v;
11079 
11080 	/* Drivers implementing ndo_get_peer_dev must support tstat
11081 	 * accounting, so that skb_do_redirect() can bump the dev's
11082 	 * RX stats upon network namespace switch.
11083 	 */
11084 	if (dev->netdev_ops->ndo_get_peer_dev &&
11085 	    dev->pcpu_stat_type != NETDEV_PCPU_STAT_TSTATS)
11086 		return -EOPNOTSUPP;
11087 
11088 	switch (dev->pcpu_stat_type) {
11089 	case NETDEV_PCPU_STAT_NONE:
11090 		return 0;
11091 	case NETDEV_PCPU_STAT_LSTATS:
11092 		v = dev->lstats = netdev_alloc_pcpu_stats(struct pcpu_lstats);
11093 		break;
11094 	case NETDEV_PCPU_STAT_TSTATS:
11095 		v = dev->tstats = netdev_alloc_pcpu_stats(struct pcpu_sw_netstats);
11096 		break;
11097 	case NETDEV_PCPU_STAT_DSTATS:
11098 		v = dev->dstats = netdev_alloc_pcpu_stats(struct pcpu_dstats);
11099 		break;
11100 	default:
11101 		return -EINVAL;
11102 	}
11103 
11104 	return v ? 0 : -ENOMEM;
11105 }
11106 
11107 static void netdev_do_free_pcpu_stats(struct net_device *dev)
11108 {
11109 	switch (dev->pcpu_stat_type) {
11110 	case NETDEV_PCPU_STAT_NONE:
11111 		return;
11112 	case NETDEV_PCPU_STAT_LSTATS:
11113 		free_percpu(dev->lstats);
11114 		break;
11115 	case NETDEV_PCPU_STAT_TSTATS:
11116 		free_percpu(dev->tstats);
11117 		break;
11118 	case NETDEV_PCPU_STAT_DSTATS:
11119 		free_percpu(dev->dstats);
11120 		break;
11121 	}
11122 }
11123 
11124 static void netdev_free_phy_link_topology(struct net_device *dev)
11125 {
11126 	struct phy_link_topology *topo = dev->link_topo;
11127 
11128 	if (IS_ENABLED(CONFIG_PHYLIB) && topo) {
11129 		xa_destroy(&topo->phys);
11130 		kfree(topo);
11131 		dev->link_topo = NULL;
11132 	}
11133 }
11134 
11135 /**
11136  * register_netdevice() - register a network device
11137  * @dev: device to register
11138  *
11139  * Take a prepared network device structure and make it externally accessible.
11140  * A %NETDEV_REGISTER message is sent to the netdev notifier chain.
11141  * Callers must hold the rtnl lock - you may want register_netdev()
11142  * instead of this.
11143  */
11144 int register_netdevice(struct net_device *dev)
11145 {
11146 	int ret;
11147 	struct net *net = dev_net(dev);
11148 
11149 	BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
11150 		     NETDEV_FEATURE_COUNT);
11151 	BUG_ON(dev_boot_phase);
11152 	ASSERT_RTNL();
11153 
11154 	might_sleep();
11155 
11156 	/* When net_device's are persistent, this will be fatal. */
11157 	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
11158 	BUG_ON(!net);
11159 
11160 	ret = ethtool_check_ops(dev->ethtool_ops);
11161 	if (ret)
11162 		return ret;
11163 
11164 	/* rss ctx ID 0 is reserved for the default context, start from 1 */
11165 	xa_init_flags(&dev->ethtool->rss_ctx, XA_FLAGS_ALLOC1);
11166 	mutex_init(&dev->ethtool->rss_lock);
11167 
11168 	spin_lock_init(&dev->addr_list_lock);
11169 	netdev_set_addr_lockdep_class(dev);
11170 
11171 	ret = dev_get_valid_name(net, dev, dev->name);
11172 	if (ret < 0)
11173 		goto out;
11174 
11175 	ret = -ENOMEM;
11176 	dev->name_node = netdev_name_node_head_alloc(dev);
11177 	if (!dev->name_node)
11178 		goto out;
11179 
11180 	/* Init, if this function is available */
11181 	if (dev->netdev_ops->ndo_init) {
11182 		ret = dev->netdev_ops->ndo_init(dev);
11183 		if (ret) {
11184 			if (ret > 0)
11185 				ret = -EIO;
11186 			goto err_free_name;
11187 		}
11188 	}
11189 
11190 	if (((dev->hw_features | dev->features) &
11191 	     NETIF_F_HW_VLAN_CTAG_FILTER) &&
11192 	    (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
11193 	     !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
11194 		netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
11195 		ret = -EINVAL;
11196 		goto err_uninit;
11197 	}
11198 
11199 	ret = netdev_do_alloc_pcpu_stats(dev);
11200 	if (ret)
11201 		goto err_uninit;
11202 
11203 	ret = dev_index_reserve(net, dev->ifindex);
11204 	if (ret < 0)
11205 		goto err_free_pcpu;
11206 	dev->ifindex = ret;
11207 
11208 	/* Transfer changeable features to wanted_features and enable
11209 	 * software offloads (GSO and GRO).
11210 	 */
11211 	dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
11212 	dev->features |= NETIF_F_SOFT_FEATURES;
11213 
11214 	if (dev->udp_tunnel_nic_info) {
11215 		dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
11216 		dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
11217 	}
11218 
11219 	dev->wanted_features = dev->features & dev->hw_features;
11220 
11221 	if (!(dev->flags & IFF_LOOPBACK))
11222 		dev->hw_features |= NETIF_F_NOCACHE_COPY;
11223 
11224 	/* If IPv4 TCP segmentation offload is supported we should also
11225 	 * allow the device to enable segmenting the frame with the option
11226 	 * of ignoring a static IP ID value.  This doesn't enable the
11227 	 * feature itself but allows the user to enable it later.
11228 	 */
11229 	if (dev->hw_features & NETIF_F_TSO)
11230 		dev->hw_features |= NETIF_F_TSO_MANGLEID;
11231 	if (dev->vlan_features & NETIF_F_TSO)
11232 		dev->vlan_features |= NETIF_F_TSO_MANGLEID;
11233 	if (dev->mpls_features & NETIF_F_TSO)
11234 		dev->mpls_features |= NETIF_F_TSO_MANGLEID;
11235 	if (dev->hw_enc_features & NETIF_F_TSO)
11236 		dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
11237 
11238 	/* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
11239 	 */
11240 	dev->vlan_features |= NETIF_F_HIGHDMA;
11241 
11242 	/* Make NETIF_F_SG inheritable to tunnel devices.
11243 	 */
11244 	dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
11245 
11246 	/* Make NETIF_F_SG inheritable to MPLS.
11247 	 */
11248 	dev->mpls_features |= NETIF_F_SG;
11249 
11250 	ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
11251 	ret = notifier_to_errno(ret);
11252 	if (ret)
11253 		goto err_ifindex_release;
11254 
11255 	ret = netdev_register_kobject(dev);
11256 
11257 	netdev_lock(dev);
11258 	WRITE_ONCE(dev->reg_state, ret ? NETREG_UNREGISTERED : NETREG_REGISTERED);
11259 	netdev_unlock(dev);
11260 
11261 	if (ret)
11262 		goto err_uninit_notify;
11263 
11264 	netdev_lock_ops(dev);
11265 	__netdev_update_features(dev);
11266 	netdev_unlock_ops(dev);
11267 
11268 	/*
11269 	 *	Default initial state at registry is that the
11270 	 *	device is present.
11271 	 */
11272 
11273 	set_bit(__LINK_STATE_PRESENT, &dev->state);
11274 
11275 	linkwatch_init_dev(dev);
11276 
11277 	dev_init_scheduler(dev);
11278 
11279 	netdev_hold(dev, &dev->dev_registered_tracker, GFP_KERNEL);
11280 	list_netdevice(dev);
11281 
11282 	add_device_randomness(dev->dev_addr, dev->addr_len);
11283 
11284 	/* If the device has permanent device address, driver should
11285 	 * set dev_addr and also addr_assign_type should be set to
11286 	 * NET_ADDR_PERM (default value).
11287 	 */
11288 	if (dev->addr_assign_type == NET_ADDR_PERM)
11289 		memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
11290 
11291 	/* Notify protocols, that a new device appeared. */
11292 	netdev_lock_ops(dev);
11293 	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
11294 	netdev_unlock_ops(dev);
11295 	ret = notifier_to_errno(ret);
11296 	if (ret) {
11297 		/* Expect explicit free_netdev() on failure */
11298 		dev->needs_free_netdev = false;
11299 		unregister_netdevice_queue(dev, NULL);
11300 		goto out;
11301 	}
11302 	/*
11303 	 *	Prevent userspace races by waiting until the network
11304 	 *	device is fully setup before sending notifications.
11305 	 */
11306 	if (!(dev->rtnl_link_ops && dev->rtnl_link_initializing))
11307 		rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL);
11308 
11309 out:
11310 	return ret;
11311 
11312 err_uninit_notify:
11313 	call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev);
11314 err_ifindex_release:
11315 	dev_index_release(net, dev->ifindex);
11316 err_free_pcpu:
11317 	netdev_do_free_pcpu_stats(dev);
11318 err_uninit:
11319 	if (dev->netdev_ops->ndo_uninit)
11320 		dev->netdev_ops->ndo_uninit(dev);
11321 	if (dev->priv_destructor)
11322 		dev->priv_destructor(dev);
11323 err_free_name:
11324 	netdev_name_node_free(dev->name_node);
11325 	goto out;
11326 }
11327 EXPORT_SYMBOL(register_netdevice);
11328 
11329 /* Initialize the core of a dummy net device.
11330  * The setup steps dummy netdevs need which normal netdevs get by going
11331  * through register_netdevice().
11332  */
11333 static void init_dummy_netdev(struct net_device *dev)
11334 {
11335 	/* make sure we BUG if trying to hit standard
11336 	 * register/unregister code path
11337 	 */
11338 	dev->reg_state = NETREG_DUMMY;
11339 
11340 	/* a dummy interface is started by default */
11341 	set_bit(__LINK_STATE_PRESENT, &dev->state);
11342 	set_bit(__LINK_STATE_START, &dev->state);
11343 
11344 	/* Note : We dont allocate pcpu_refcnt for dummy devices,
11345 	 * because users of this 'device' dont need to change
11346 	 * its refcount.
11347 	 */
11348 }
11349 
11350 /**
11351  *	register_netdev	- register a network device
11352  *	@dev: device to register
11353  *
11354  *	Take a completed network device structure and add it to the kernel
11355  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
11356  *	chain. 0 is returned on success. A negative errno code is returned
11357  *	on a failure to set up the device, or if the name is a duplicate.
11358  *
11359  *	This is a wrapper around register_netdevice that takes the rtnl semaphore
11360  *	and expands the device name if you passed a format string to
11361  *	alloc_netdev.
11362  */
11363 int register_netdev(struct net_device *dev)
11364 {
11365 	struct net *net = dev_net(dev);
11366 	int err;
11367 
11368 	if (rtnl_net_lock_killable(net))
11369 		return -EINTR;
11370 
11371 	err = register_netdevice(dev);
11372 
11373 	rtnl_net_unlock(net);
11374 
11375 	return err;
11376 }
11377 EXPORT_SYMBOL(register_netdev);
11378 
11379 int netdev_refcnt_read(const struct net_device *dev)
11380 {
11381 #ifdef CONFIG_PCPU_DEV_REFCNT
11382 	int i, refcnt = 0;
11383 
11384 	for_each_possible_cpu(i)
11385 		refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
11386 	return refcnt;
11387 #else
11388 	return refcount_read(&dev->dev_refcnt);
11389 #endif
11390 }
11391 EXPORT_SYMBOL(netdev_refcnt_read);
11392 
11393 int netdev_unregister_timeout_secs __read_mostly = 10;
11394 
11395 #define WAIT_REFS_MIN_MSECS 1
11396 #define WAIT_REFS_MAX_MSECS 250
11397 /**
11398  * netdev_wait_allrefs_any - wait until all references are gone.
11399  * @list: list of net_devices to wait on
11400  *
11401  * This is called when unregistering network devices.
11402  *
11403  * Any protocol or device that holds a reference should register
11404  * for netdevice notification, and cleanup and put back the
11405  * reference if they receive an UNREGISTER event.
11406  * We can get stuck here if buggy protocols don't correctly
11407  * call dev_put.
11408  */
11409 static struct net_device *netdev_wait_allrefs_any(struct list_head *list)
11410 {
11411 	unsigned long rebroadcast_time, warning_time;
11412 	struct net_device *dev;
11413 	int wait = 0;
11414 
11415 	rebroadcast_time = warning_time = jiffies;
11416 
11417 	list_for_each_entry(dev, list, todo_list)
11418 		if (netdev_refcnt_read(dev) == 1)
11419 			return dev;
11420 
11421 	while (true) {
11422 		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
11423 			rtnl_lock();
11424 
11425 			/* Rebroadcast unregister notification */
11426 			list_for_each_entry(dev, list, todo_list)
11427 				call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11428 
11429 			__rtnl_unlock();
11430 			rcu_barrier();
11431 			rtnl_lock();
11432 
11433 			list_for_each_entry(dev, list, todo_list)
11434 				if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
11435 					     &dev->state)) {
11436 					/* We must not have linkwatch events
11437 					 * pending on unregister. If this
11438 					 * happens, we simply run the queue
11439 					 * unscheduled, resulting in a noop
11440 					 * for this device.
11441 					 */
11442 					linkwatch_run_queue();
11443 					break;
11444 				}
11445 
11446 			__rtnl_unlock();
11447 
11448 			rebroadcast_time = jiffies;
11449 		}
11450 
11451 		rcu_barrier();
11452 
11453 		if (!wait) {
11454 			wait = WAIT_REFS_MIN_MSECS;
11455 		} else {
11456 			msleep(wait);
11457 			wait = min(wait << 1, WAIT_REFS_MAX_MSECS);
11458 		}
11459 
11460 		list_for_each_entry(dev, list, todo_list)
11461 			if (netdev_refcnt_read(dev) == 1)
11462 				return dev;
11463 
11464 		if (time_after(jiffies, warning_time +
11465 			       READ_ONCE(netdev_unregister_timeout_secs) * HZ)) {
11466 			list_for_each_entry(dev, list, todo_list) {
11467 				pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
11468 					 dev->name, netdev_refcnt_read(dev));
11469 				ref_tracker_dir_print(&dev->refcnt_tracker, 10);
11470 			}
11471 
11472 			warning_time = jiffies;
11473 		}
11474 	}
11475 }
11476 
11477 /* The sequence is:
11478  *
11479  *	rtnl_lock();
11480  *	...
11481  *	register_netdevice(x1);
11482  *	register_netdevice(x2);
11483  *	...
11484  *	unregister_netdevice(y1);
11485  *	unregister_netdevice(y2);
11486  *      ...
11487  *	rtnl_unlock();
11488  *	free_netdev(y1);
11489  *	free_netdev(y2);
11490  *
11491  * We are invoked by rtnl_unlock().
11492  * This allows us to deal with problems:
11493  * 1) We can delete sysfs objects which invoke hotplug
11494  *    without deadlocking with linkwatch via keventd.
11495  * 2) Since we run with the RTNL semaphore not held, we can sleep
11496  *    safely in order to wait for the netdev refcnt to drop to zero.
11497  *
11498  * We must not return until all unregister events added during
11499  * the interval the lock was held have been completed.
11500  */
11501 void netdev_run_todo(void)
11502 {
11503 	struct net_device *dev, *tmp;
11504 	struct list_head list;
11505 	int cnt;
11506 #ifdef CONFIG_LOCKDEP
11507 	struct list_head unlink_list;
11508 
11509 	list_replace_init(&net_unlink_list, &unlink_list);
11510 
11511 	while (!list_empty(&unlink_list)) {
11512 		dev = list_first_entry(&unlink_list, struct net_device,
11513 				       unlink_list);
11514 		list_del_init(&dev->unlink_list);
11515 		dev->nested_level = dev->lower_level - 1;
11516 	}
11517 #endif
11518 
11519 	/* Snapshot list, allow later requests */
11520 	list_replace_init(&net_todo_list, &list);
11521 
11522 	__rtnl_unlock();
11523 
11524 	/* Wait for rcu callbacks to finish before next phase */
11525 	if (!list_empty(&list))
11526 		rcu_barrier();
11527 
11528 	list_for_each_entry_safe(dev, tmp, &list, todo_list) {
11529 		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
11530 			netdev_WARN(dev, "run_todo but not unregistering\n");
11531 			list_del(&dev->todo_list);
11532 			continue;
11533 		}
11534 
11535 		netdev_lock(dev);
11536 		WRITE_ONCE(dev->reg_state, NETREG_UNREGISTERED);
11537 		netdev_unlock(dev);
11538 		linkwatch_sync_dev(dev);
11539 	}
11540 
11541 	cnt = 0;
11542 	while (!list_empty(&list)) {
11543 		dev = netdev_wait_allrefs_any(&list);
11544 		list_del(&dev->todo_list);
11545 
11546 		/* paranoia */
11547 		BUG_ON(netdev_refcnt_read(dev) != 1);
11548 		BUG_ON(!list_empty(&dev->ptype_all));
11549 		BUG_ON(!list_empty(&dev->ptype_specific));
11550 		WARN_ON(rcu_access_pointer(dev->ip_ptr));
11551 		WARN_ON(rcu_access_pointer(dev->ip6_ptr));
11552 
11553 		netdev_do_free_pcpu_stats(dev);
11554 		if (dev->priv_destructor)
11555 			dev->priv_destructor(dev);
11556 		if (dev->needs_free_netdev)
11557 			free_netdev(dev);
11558 
11559 		cnt++;
11560 
11561 		/* Free network device */
11562 		kobject_put(&dev->dev.kobj);
11563 	}
11564 	if (cnt && atomic_sub_and_test(cnt, &dev_unreg_count))
11565 		wake_up(&netdev_unregistering_wq);
11566 }
11567 
11568 /* Collate per-cpu network dstats statistics
11569  *
11570  * Read per-cpu network statistics from dev->dstats and populate the related
11571  * fields in @s.
11572  */
11573 static void dev_fetch_dstats(struct rtnl_link_stats64 *s,
11574 			     const struct pcpu_dstats __percpu *dstats)
11575 {
11576 	int cpu;
11577 
11578 	for_each_possible_cpu(cpu) {
11579 		u64 rx_packets, rx_bytes, rx_drops;
11580 		u64 tx_packets, tx_bytes, tx_drops;
11581 		const struct pcpu_dstats *stats;
11582 		unsigned int start;
11583 
11584 		stats = per_cpu_ptr(dstats, cpu);
11585 		do {
11586 			start = u64_stats_fetch_begin(&stats->syncp);
11587 			rx_packets = u64_stats_read(&stats->rx_packets);
11588 			rx_bytes   = u64_stats_read(&stats->rx_bytes);
11589 			rx_drops   = u64_stats_read(&stats->rx_drops);
11590 			tx_packets = u64_stats_read(&stats->tx_packets);
11591 			tx_bytes   = u64_stats_read(&stats->tx_bytes);
11592 			tx_drops   = u64_stats_read(&stats->tx_drops);
11593 		} while (u64_stats_fetch_retry(&stats->syncp, start));
11594 
11595 		s->rx_packets += rx_packets;
11596 		s->rx_bytes   += rx_bytes;
11597 		s->rx_dropped += rx_drops;
11598 		s->tx_packets += tx_packets;
11599 		s->tx_bytes   += tx_bytes;
11600 		s->tx_dropped += tx_drops;
11601 	}
11602 }
11603 
11604 /* ndo_get_stats64 implementation for dtstats-based accounting.
11605  *
11606  * Populate @s from dev->stats and dev->dstats. This is used internally by the
11607  * core for NETDEV_PCPU_STAT_DSTAT-type stats collection.
11608  */
11609 static void dev_get_dstats64(const struct net_device *dev,
11610 			     struct rtnl_link_stats64 *s)
11611 {
11612 	netdev_stats_to_stats64(s, &dev->stats);
11613 	dev_fetch_dstats(s, dev->dstats);
11614 }
11615 
11616 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
11617  * all the same fields in the same order as net_device_stats, with only
11618  * the type differing, but rtnl_link_stats64 may have additional fields
11619  * at the end for newer counters.
11620  */
11621 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
11622 			     const struct net_device_stats *netdev_stats)
11623 {
11624 	size_t i, n = sizeof(*netdev_stats) / sizeof(atomic_long_t);
11625 	const atomic_long_t *src = (atomic_long_t *)netdev_stats;
11626 	u64 *dst = (u64 *)stats64;
11627 
11628 	BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
11629 	for (i = 0; i < n; i++)
11630 		dst[i] = (unsigned long)atomic_long_read(&src[i]);
11631 	/* zero out counters that only exist in rtnl_link_stats64 */
11632 	memset((char *)stats64 + n * sizeof(u64), 0,
11633 	       sizeof(*stats64) - n * sizeof(u64));
11634 }
11635 EXPORT_SYMBOL(netdev_stats_to_stats64);
11636 
11637 static __cold struct net_device_core_stats __percpu *netdev_core_stats_alloc(
11638 		struct net_device *dev)
11639 {
11640 	struct net_device_core_stats __percpu *p;
11641 
11642 	p = alloc_percpu_gfp(struct net_device_core_stats,
11643 			     GFP_ATOMIC | __GFP_NOWARN);
11644 
11645 	if (p && cmpxchg(&dev->core_stats, NULL, p))
11646 		free_percpu(p);
11647 
11648 	/* This READ_ONCE() pairs with the cmpxchg() above */
11649 	return READ_ONCE(dev->core_stats);
11650 }
11651 
11652 noinline void netdev_core_stats_inc(struct net_device *dev, u32 offset)
11653 {
11654 	/* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
11655 	struct net_device_core_stats __percpu *p = READ_ONCE(dev->core_stats);
11656 	unsigned long __percpu *field;
11657 
11658 	if (unlikely(!p)) {
11659 		p = netdev_core_stats_alloc(dev);
11660 		if (!p)
11661 			return;
11662 	}
11663 
11664 	field = (unsigned long __percpu *)((void __percpu *)p + offset);
11665 	this_cpu_inc(*field);
11666 }
11667 EXPORT_SYMBOL_GPL(netdev_core_stats_inc);
11668 
11669 /**
11670  *	dev_get_stats	- get network device statistics
11671  *	@dev: device to get statistics from
11672  *	@storage: place to store stats
11673  *
11674  *	Get network statistics from device. Return @storage.
11675  *	The device driver may provide its own method by setting
11676  *	dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
11677  *	otherwise the internal statistics structure is used.
11678  */
11679 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
11680 					struct rtnl_link_stats64 *storage)
11681 {
11682 	const struct net_device_ops *ops = dev->netdev_ops;
11683 	const struct net_device_core_stats __percpu *p;
11684 
11685 	/*
11686 	 * IPv{4,6} and udp tunnels share common stat helpers and use
11687 	 * different stat type (NETDEV_PCPU_STAT_TSTATS vs
11688 	 * NETDEV_PCPU_STAT_DSTATS). Ensure the accounting is consistent.
11689 	 */
11690 	BUILD_BUG_ON(offsetof(struct pcpu_sw_netstats, rx_bytes) !=
11691 		     offsetof(struct pcpu_dstats, rx_bytes));
11692 	BUILD_BUG_ON(offsetof(struct pcpu_sw_netstats, rx_packets) !=
11693 		     offsetof(struct pcpu_dstats, rx_packets));
11694 	BUILD_BUG_ON(offsetof(struct pcpu_sw_netstats, tx_bytes) !=
11695 		     offsetof(struct pcpu_dstats, tx_bytes));
11696 	BUILD_BUG_ON(offsetof(struct pcpu_sw_netstats, tx_packets) !=
11697 		     offsetof(struct pcpu_dstats, tx_packets));
11698 
11699 	if (ops->ndo_get_stats64) {
11700 		memset(storage, 0, sizeof(*storage));
11701 		ops->ndo_get_stats64(dev, storage);
11702 	} else if (ops->ndo_get_stats) {
11703 		netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
11704 	} else if (dev->pcpu_stat_type == NETDEV_PCPU_STAT_TSTATS) {
11705 		dev_get_tstats64(dev, storage);
11706 	} else if (dev->pcpu_stat_type == NETDEV_PCPU_STAT_DSTATS) {
11707 		dev_get_dstats64(dev, storage);
11708 	} else {
11709 		netdev_stats_to_stats64(storage, &dev->stats);
11710 	}
11711 
11712 	/* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
11713 	p = READ_ONCE(dev->core_stats);
11714 	if (p) {
11715 		const struct net_device_core_stats *core_stats;
11716 		int i;
11717 
11718 		for_each_possible_cpu(i) {
11719 			core_stats = per_cpu_ptr(p, i);
11720 			storage->rx_dropped += READ_ONCE(core_stats->rx_dropped);
11721 			storage->tx_dropped += READ_ONCE(core_stats->tx_dropped);
11722 			storage->rx_nohandler += READ_ONCE(core_stats->rx_nohandler);
11723 			storage->rx_otherhost_dropped += READ_ONCE(core_stats->rx_otherhost_dropped);
11724 		}
11725 	}
11726 	return storage;
11727 }
11728 EXPORT_SYMBOL(dev_get_stats);
11729 
11730 /**
11731  *	dev_fetch_sw_netstats - get per-cpu network device statistics
11732  *	@s: place to store stats
11733  *	@netstats: per-cpu network stats to read from
11734  *
11735  *	Read per-cpu network statistics and populate the related fields in @s.
11736  */
11737 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
11738 			   const struct pcpu_sw_netstats __percpu *netstats)
11739 {
11740 	int cpu;
11741 
11742 	for_each_possible_cpu(cpu) {
11743 		u64 rx_packets, rx_bytes, tx_packets, tx_bytes;
11744 		const struct pcpu_sw_netstats *stats;
11745 		unsigned int start;
11746 
11747 		stats = per_cpu_ptr(netstats, cpu);
11748 		do {
11749 			start = u64_stats_fetch_begin(&stats->syncp);
11750 			rx_packets = u64_stats_read(&stats->rx_packets);
11751 			rx_bytes   = u64_stats_read(&stats->rx_bytes);
11752 			tx_packets = u64_stats_read(&stats->tx_packets);
11753 			tx_bytes   = u64_stats_read(&stats->tx_bytes);
11754 		} while (u64_stats_fetch_retry(&stats->syncp, start));
11755 
11756 		s->rx_packets += rx_packets;
11757 		s->rx_bytes   += rx_bytes;
11758 		s->tx_packets += tx_packets;
11759 		s->tx_bytes   += tx_bytes;
11760 	}
11761 }
11762 EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats);
11763 
11764 /**
11765  *	dev_get_tstats64 - ndo_get_stats64 implementation
11766  *	@dev: device to get statistics from
11767  *	@s: place to store stats
11768  *
11769  *	Populate @s from dev->stats and dev->tstats. Can be used as
11770  *	ndo_get_stats64() callback.
11771  */
11772 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s)
11773 {
11774 	netdev_stats_to_stats64(s, &dev->stats);
11775 	dev_fetch_sw_netstats(s, dev->tstats);
11776 }
11777 EXPORT_SYMBOL_GPL(dev_get_tstats64);
11778 
11779 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
11780 {
11781 	struct netdev_queue *queue = dev_ingress_queue(dev);
11782 
11783 #ifdef CONFIG_NET_CLS_ACT
11784 	if (queue)
11785 		return queue;
11786 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
11787 	if (!queue)
11788 		return NULL;
11789 	netdev_init_one_queue(dev, queue, NULL);
11790 	RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
11791 	RCU_INIT_POINTER(queue->qdisc_sleeping, &noop_qdisc);
11792 	rcu_assign_pointer(dev->ingress_queue, queue);
11793 #endif
11794 	return queue;
11795 }
11796 
11797 static const struct ethtool_ops default_ethtool_ops;
11798 
11799 void netdev_set_default_ethtool_ops(struct net_device *dev,
11800 				    const struct ethtool_ops *ops)
11801 {
11802 	if (dev->ethtool_ops == &default_ethtool_ops)
11803 		dev->ethtool_ops = ops;
11804 }
11805 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
11806 
11807 /**
11808  * netdev_sw_irq_coalesce_default_on() - enable SW IRQ coalescing by default
11809  * @dev: netdev to enable the IRQ coalescing on
11810  *
11811  * Sets a conservative default for SW IRQ coalescing. Users can use
11812  * sysfs attributes to override the default values.
11813  */
11814 void netdev_sw_irq_coalesce_default_on(struct net_device *dev)
11815 {
11816 	WARN_ON(dev->reg_state == NETREG_REGISTERED);
11817 
11818 	if (!IS_ENABLED(CONFIG_PREEMPT_RT)) {
11819 		netdev_set_gro_flush_timeout(dev, 20000);
11820 		netdev_set_defer_hard_irqs(dev, 1);
11821 	}
11822 }
11823 EXPORT_SYMBOL_GPL(netdev_sw_irq_coalesce_default_on);
11824 
11825 /**
11826  * alloc_netdev_mqs - allocate network device
11827  * @sizeof_priv: size of private data to allocate space for
11828  * @name: device name format string
11829  * @name_assign_type: origin of device name
11830  * @setup: callback to initialize device
11831  * @txqs: the number of TX subqueues to allocate
11832  * @rxqs: the number of RX subqueues to allocate
11833  *
11834  * Allocates a struct net_device with private data area for driver use
11835  * and performs basic initialization.  Also allocates subqueue structs
11836  * for each queue on the device.
11837  */
11838 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
11839 		unsigned char name_assign_type,
11840 		void (*setup)(struct net_device *),
11841 		unsigned int txqs, unsigned int rxqs)
11842 {
11843 	struct net_device *dev;
11844 	size_t napi_config_sz;
11845 	unsigned int maxqs;
11846 
11847 	BUG_ON(strlen(name) >= sizeof(dev->name));
11848 
11849 	if (txqs < 1) {
11850 		pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
11851 		return NULL;
11852 	}
11853 
11854 	if (rxqs < 1) {
11855 		pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
11856 		return NULL;
11857 	}
11858 
11859 	maxqs = max(txqs, rxqs);
11860 
11861 	dev = kvzalloc(struct_size(dev, priv, sizeof_priv),
11862 		       GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
11863 	if (!dev)
11864 		return NULL;
11865 
11866 	dev->priv_len = sizeof_priv;
11867 
11868 	ref_tracker_dir_init(&dev->refcnt_tracker, 128, "netdev");
11869 #ifdef CONFIG_PCPU_DEV_REFCNT
11870 	dev->pcpu_refcnt = alloc_percpu(int);
11871 	if (!dev->pcpu_refcnt)
11872 		goto free_dev;
11873 	__dev_hold(dev);
11874 #else
11875 	refcount_set(&dev->dev_refcnt, 1);
11876 #endif
11877 
11878 	if (dev_addr_init(dev))
11879 		goto free_pcpu;
11880 
11881 	dev_mc_init(dev);
11882 	dev_uc_init(dev);
11883 
11884 	dev_net_set(dev, &init_net);
11885 
11886 	dev->gso_max_size = GSO_LEGACY_MAX_SIZE;
11887 	dev->xdp_zc_max_segs = 1;
11888 	dev->gso_max_segs = GSO_MAX_SEGS;
11889 	dev->gro_max_size = GRO_LEGACY_MAX_SIZE;
11890 	dev->gso_ipv4_max_size = GSO_LEGACY_MAX_SIZE;
11891 	dev->gro_ipv4_max_size = GRO_LEGACY_MAX_SIZE;
11892 	dev->tso_max_size = TSO_LEGACY_MAX_SIZE;
11893 	dev->tso_max_segs = TSO_MAX_SEGS;
11894 	dev->upper_level = 1;
11895 	dev->lower_level = 1;
11896 #ifdef CONFIG_LOCKDEP
11897 	dev->nested_level = 0;
11898 	INIT_LIST_HEAD(&dev->unlink_list);
11899 #endif
11900 
11901 	INIT_LIST_HEAD(&dev->napi_list);
11902 	INIT_LIST_HEAD(&dev->unreg_list);
11903 	INIT_LIST_HEAD(&dev->close_list);
11904 	INIT_LIST_HEAD(&dev->link_watch_list);
11905 	INIT_LIST_HEAD(&dev->adj_list.upper);
11906 	INIT_LIST_HEAD(&dev->adj_list.lower);
11907 	INIT_LIST_HEAD(&dev->ptype_all);
11908 	INIT_LIST_HEAD(&dev->ptype_specific);
11909 	INIT_LIST_HEAD(&dev->net_notifier_list);
11910 #ifdef CONFIG_NET_SCHED
11911 	hash_init(dev->qdisc_hash);
11912 #endif
11913 
11914 	mutex_init(&dev->lock);
11915 
11916 	dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
11917 	setup(dev);
11918 
11919 	if (!dev->tx_queue_len) {
11920 		dev->priv_flags |= IFF_NO_QUEUE;
11921 		dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
11922 	}
11923 
11924 	dev->num_tx_queues = txqs;
11925 	dev->real_num_tx_queues = txqs;
11926 	if (netif_alloc_netdev_queues(dev))
11927 		goto free_all;
11928 
11929 	dev->num_rx_queues = rxqs;
11930 	dev->real_num_rx_queues = rxqs;
11931 	if (netif_alloc_rx_queues(dev))
11932 		goto free_all;
11933 	dev->ethtool = kzalloc(sizeof(*dev->ethtool), GFP_KERNEL_ACCOUNT);
11934 	if (!dev->ethtool)
11935 		goto free_all;
11936 
11937 	dev->cfg = kzalloc(sizeof(*dev->cfg), GFP_KERNEL_ACCOUNT);
11938 	if (!dev->cfg)
11939 		goto free_all;
11940 	dev->cfg_pending = dev->cfg;
11941 
11942 	dev->num_napi_configs = maxqs;
11943 	napi_config_sz = array_size(maxqs, sizeof(*dev->napi_config));
11944 	dev->napi_config = kvzalloc(napi_config_sz, GFP_KERNEL_ACCOUNT);
11945 	if (!dev->napi_config)
11946 		goto free_all;
11947 
11948 	strscpy(dev->name, name);
11949 	dev->name_assign_type = name_assign_type;
11950 	dev->group = INIT_NETDEV_GROUP;
11951 	if (!dev->ethtool_ops)
11952 		dev->ethtool_ops = &default_ethtool_ops;
11953 
11954 	nf_hook_netdev_init(dev);
11955 
11956 	return dev;
11957 
11958 free_all:
11959 	free_netdev(dev);
11960 	return NULL;
11961 
11962 free_pcpu:
11963 #ifdef CONFIG_PCPU_DEV_REFCNT
11964 	free_percpu(dev->pcpu_refcnt);
11965 free_dev:
11966 #endif
11967 	kvfree(dev);
11968 	return NULL;
11969 }
11970 EXPORT_SYMBOL(alloc_netdev_mqs);
11971 
11972 static void netdev_napi_exit(struct net_device *dev)
11973 {
11974 	if (!list_empty(&dev->napi_list)) {
11975 		struct napi_struct *p, *n;
11976 
11977 		netdev_lock(dev);
11978 		list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
11979 			__netif_napi_del_locked(p);
11980 		netdev_unlock(dev);
11981 
11982 		synchronize_net();
11983 	}
11984 
11985 	kvfree(dev->napi_config);
11986 }
11987 
11988 /**
11989  * free_netdev - free network device
11990  * @dev: device
11991  *
11992  * This function does the last stage of destroying an allocated device
11993  * interface. The reference to the device object is released. If this
11994  * is the last reference then it will be freed.Must be called in process
11995  * context.
11996  */
11997 void free_netdev(struct net_device *dev)
11998 {
11999 	might_sleep();
12000 
12001 	/* When called immediately after register_netdevice() failed the unwind
12002 	 * handling may still be dismantling the device. Handle that case by
12003 	 * deferring the free.
12004 	 */
12005 	if (dev->reg_state == NETREG_UNREGISTERING) {
12006 		ASSERT_RTNL();
12007 		dev->needs_free_netdev = true;
12008 		return;
12009 	}
12010 
12011 	WARN_ON(dev->cfg != dev->cfg_pending);
12012 	kfree(dev->cfg);
12013 	kfree(dev->ethtool);
12014 	netif_free_tx_queues(dev);
12015 	netif_free_rx_queues(dev);
12016 
12017 	kfree(rcu_dereference_protected(dev->ingress_queue, 1));
12018 
12019 	/* Flush device addresses */
12020 	dev_addr_flush(dev);
12021 
12022 	netdev_napi_exit(dev);
12023 
12024 	netif_del_cpu_rmap(dev);
12025 
12026 	ref_tracker_dir_exit(&dev->refcnt_tracker);
12027 #ifdef CONFIG_PCPU_DEV_REFCNT
12028 	free_percpu(dev->pcpu_refcnt);
12029 	dev->pcpu_refcnt = NULL;
12030 #endif
12031 	free_percpu(dev->core_stats);
12032 	dev->core_stats = NULL;
12033 	free_percpu(dev->xdp_bulkq);
12034 	dev->xdp_bulkq = NULL;
12035 
12036 	netdev_free_phy_link_topology(dev);
12037 
12038 	mutex_destroy(&dev->lock);
12039 
12040 	/*  Compatibility with error handling in drivers */
12041 	if (dev->reg_state == NETREG_UNINITIALIZED ||
12042 	    dev->reg_state == NETREG_DUMMY) {
12043 		kvfree(dev);
12044 		return;
12045 	}
12046 
12047 	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
12048 	WRITE_ONCE(dev->reg_state, NETREG_RELEASED);
12049 
12050 	/* will free via device release */
12051 	put_device(&dev->dev);
12052 }
12053 EXPORT_SYMBOL(free_netdev);
12054 
12055 /**
12056  * alloc_netdev_dummy - Allocate and initialize a dummy net device.
12057  * @sizeof_priv: size of private data to allocate space for
12058  *
12059  * Return: the allocated net_device on success, NULL otherwise
12060  */
12061 struct net_device *alloc_netdev_dummy(int sizeof_priv)
12062 {
12063 	return alloc_netdev(sizeof_priv, "dummy#", NET_NAME_UNKNOWN,
12064 			    init_dummy_netdev);
12065 }
12066 EXPORT_SYMBOL_GPL(alloc_netdev_dummy);
12067 
12068 /**
12069  *	synchronize_net -  Synchronize with packet receive processing
12070  *
12071  *	Wait for packets currently being received to be done.
12072  *	Does not block later packets from starting.
12073  */
12074 void synchronize_net(void)
12075 {
12076 	might_sleep();
12077 	if (from_cleanup_net() || rtnl_is_locked())
12078 		synchronize_rcu_expedited();
12079 	else
12080 		synchronize_rcu();
12081 }
12082 EXPORT_SYMBOL(synchronize_net);
12083 
12084 static void netdev_rss_contexts_free(struct net_device *dev)
12085 {
12086 	struct ethtool_rxfh_context *ctx;
12087 	unsigned long context;
12088 
12089 	mutex_lock(&dev->ethtool->rss_lock);
12090 	xa_for_each(&dev->ethtool->rss_ctx, context, ctx) {
12091 		xa_erase(&dev->ethtool->rss_ctx, context);
12092 		dev->ethtool_ops->remove_rxfh_context(dev, ctx, context, NULL);
12093 		kfree(ctx);
12094 	}
12095 	xa_destroy(&dev->ethtool->rss_ctx);
12096 	mutex_unlock(&dev->ethtool->rss_lock);
12097 }
12098 
12099 /**
12100  *	unregister_netdevice_queue - remove device from the kernel
12101  *	@dev: device
12102  *	@head: list
12103  *
12104  *	This function shuts down a device interface and removes it
12105  *	from the kernel tables.
12106  *	If head not NULL, device is queued to be unregistered later.
12107  *
12108  *	Callers must hold the rtnl semaphore.  You may want
12109  *	unregister_netdev() instead of this.
12110  */
12111 
12112 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
12113 {
12114 	ASSERT_RTNL();
12115 
12116 	if (head) {
12117 		list_move_tail(&dev->unreg_list, head);
12118 	} else {
12119 		LIST_HEAD(single);
12120 
12121 		list_add(&dev->unreg_list, &single);
12122 		unregister_netdevice_many(&single);
12123 	}
12124 }
12125 EXPORT_SYMBOL(unregister_netdevice_queue);
12126 
12127 static void dev_memory_provider_uninstall(struct net_device *dev)
12128 {
12129 	unsigned int i;
12130 
12131 	for (i = 0; i < dev->real_num_rx_queues; i++) {
12132 		struct netdev_rx_queue *rxq = &dev->_rx[i];
12133 		struct pp_memory_provider_params *p = &rxq->mp_params;
12134 
12135 		if (p->mp_ops && p->mp_ops->uninstall)
12136 			p->mp_ops->uninstall(rxq->mp_params.mp_priv, rxq);
12137 	}
12138 }
12139 
12140 void unregister_netdevice_many_notify(struct list_head *head,
12141 				      u32 portid, const struct nlmsghdr *nlh)
12142 {
12143 	struct net_device *dev, *tmp;
12144 	LIST_HEAD(close_head);
12145 	int cnt = 0;
12146 
12147 	BUG_ON(dev_boot_phase);
12148 	ASSERT_RTNL();
12149 
12150 	if (list_empty(head))
12151 		return;
12152 
12153 	list_for_each_entry_safe(dev, tmp, head, unreg_list) {
12154 		/* Some devices call without registering
12155 		 * for initialization unwind. Remove those
12156 		 * devices and proceed with the remaining.
12157 		 */
12158 		if (dev->reg_state == NETREG_UNINITIALIZED) {
12159 			pr_debug("unregister_netdevice: device %s/%p never was registered\n",
12160 				 dev->name, dev);
12161 
12162 			WARN_ON(1);
12163 			list_del(&dev->unreg_list);
12164 			continue;
12165 		}
12166 		dev->dismantle = true;
12167 		BUG_ON(dev->reg_state != NETREG_REGISTERED);
12168 	}
12169 
12170 	/* If device is running, close it first. Start with ops locked... */
12171 	list_for_each_entry(dev, head, unreg_list) {
12172 		if (netdev_need_ops_lock(dev)) {
12173 			list_add_tail(&dev->close_list, &close_head);
12174 			netdev_lock(dev);
12175 		}
12176 	}
12177 	netif_close_many(&close_head, true);
12178 	/* ... now unlock them and go over the rest. */
12179 	list_for_each_entry(dev, head, unreg_list) {
12180 		if (netdev_need_ops_lock(dev))
12181 			netdev_unlock(dev);
12182 		else
12183 			list_add_tail(&dev->close_list, &close_head);
12184 	}
12185 	netif_close_many(&close_head, true);
12186 
12187 	list_for_each_entry(dev, head, unreg_list) {
12188 		/* And unlink it from device chain. */
12189 		unlist_netdevice(dev);
12190 		netdev_lock(dev);
12191 		WRITE_ONCE(dev->reg_state, NETREG_UNREGISTERING);
12192 		netdev_unlock(dev);
12193 	}
12194 	flush_all_backlogs();
12195 
12196 	synchronize_net();
12197 
12198 	list_for_each_entry(dev, head, unreg_list) {
12199 		struct sk_buff *skb = NULL;
12200 
12201 		/* Shutdown queueing discipline. */
12202 		netdev_lock_ops(dev);
12203 		dev_shutdown(dev);
12204 		dev_tcx_uninstall(dev);
12205 		dev_xdp_uninstall(dev);
12206 		dev_memory_provider_uninstall(dev);
12207 		netdev_unlock_ops(dev);
12208 		bpf_dev_bound_netdev_unregister(dev);
12209 
12210 		netdev_offload_xstats_disable_all(dev);
12211 
12212 		/* Notify protocols, that we are about to destroy
12213 		 * this device. They should clean all the things.
12214 		 */
12215 		call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
12216 
12217 		if (!(dev->rtnl_link_ops && dev->rtnl_link_initializing))
12218 			skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
12219 						     GFP_KERNEL, NULL, 0,
12220 						     portid, nlh);
12221 
12222 		/*
12223 		 *	Flush the unicast and multicast chains
12224 		 */
12225 		dev_uc_flush(dev);
12226 		dev_mc_flush(dev);
12227 
12228 		netdev_name_node_alt_flush(dev);
12229 		netdev_name_node_free(dev->name_node);
12230 
12231 		netdev_rss_contexts_free(dev);
12232 
12233 		call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev);
12234 
12235 		if (dev->netdev_ops->ndo_uninit)
12236 			dev->netdev_ops->ndo_uninit(dev);
12237 
12238 		mutex_destroy(&dev->ethtool->rss_lock);
12239 
12240 		net_shaper_flush_netdev(dev);
12241 
12242 		if (skb)
12243 			rtmsg_ifinfo_send(skb, dev, GFP_KERNEL, portid, nlh);
12244 
12245 		/* Notifier chain MUST detach us all upper devices. */
12246 		WARN_ON(netdev_has_any_upper_dev(dev));
12247 		WARN_ON(netdev_has_any_lower_dev(dev));
12248 
12249 		/* Remove entries from kobject tree */
12250 		netdev_unregister_kobject(dev);
12251 #ifdef CONFIG_XPS
12252 		/* Remove XPS queueing entries */
12253 		netif_reset_xps_queues_gt(dev, 0);
12254 #endif
12255 	}
12256 
12257 	synchronize_net();
12258 
12259 	list_for_each_entry(dev, head, unreg_list) {
12260 		netdev_put(dev, &dev->dev_registered_tracker);
12261 		net_set_todo(dev);
12262 		cnt++;
12263 	}
12264 	atomic_add(cnt, &dev_unreg_count);
12265 
12266 	list_del(head);
12267 }
12268 
12269 /**
12270  *	unregister_netdevice_many - unregister many devices
12271  *	@head: list of devices
12272  *
12273  *  Note: As most callers use a stack allocated list_head,
12274  *  we force a list_del() to make sure stack won't be corrupted later.
12275  */
12276 void unregister_netdevice_many(struct list_head *head)
12277 {
12278 	unregister_netdevice_many_notify(head, 0, NULL);
12279 }
12280 EXPORT_SYMBOL(unregister_netdevice_many);
12281 
12282 /**
12283  *	unregister_netdev - remove device from the kernel
12284  *	@dev: device
12285  *
12286  *	This function shuts down a device interface and removes it
12287  *	from the kernel tables.
12288  *
12289  *	This is just a wrapper for unregister_netdevice that takes
12290  *	the rtnl semaphore.  In general you want to use this and not
12291  *	unregister_netdevice.
12292  */
12293 void unregister_netdev(struct net_device *dev)
12294 {
12295 	rtnl_net_dev_lock(dev);
12296 	unregister_netdevice(dev);
12297 	rtnl_net_dev_unlock(dev);
12298 }
12299 EXPORT_SYMBOL(unregister_netdev);
12300 
12301 int __dev_change_net_namespace(struct net_device *dev, struct net *net,
12302 			       const char *pat, int new_ifindex,
12303 			       struct netlink_ext_ack *extack)
12304 {
12305 	struct netdev_name_node *name_node;
12306 	struct net *net_old = dev_net(dev);
12307 	char new_name[IFNAMSIZ] = {};
12308 	int err, new_nsid;
12309 
12310 	ASSERT_RTNL();
12311 
12312 	/* Don't allow namespace local devices to be moved. */
12313 	err = -EINVAL;
12314 	if (dev->netns_immutable) {
12315 		NL_SET_ERR_MSG(extack, "The interface netns is immutable");
12316 		goto out;
12317 	}
12318 
12319 	/* Ensure the device has been registered */
12320 	if (dev->reg_state != NETREG_REGISTERED) {
12321 		NL_SET_ERR_MSG(extack, "The interface isn't registered");
12322 		goto out;
12323 	}
12324 
12325 	/* Get out if there is nothing todo */
12326 	err = 0;
12327 	if (net_eq(net_old, net))
12328 		goto out;
12329 
12330 	/* Pick the destination device name, and ensure
12331 	 * we can use it in the destination network namespace.
12332 	 */
12333 	err = -EEXIST;
12334 	if (netdev_name_in_use(net, dev->name)) {
12335 		/* We get here if we can't use the current device name */
12336 		if (!pat) {
12337 			NL_SET_ERR_MSG(extack,
12338 				       "An interface with the same name exists in the target netns");
12339 			goto out;
12340 		}
12341 		err = dev_prep_valid_name(net, dev, pat, new_name, EEXIST);
12342 		if (err < 0) {
12343 			NL_SET_ERR_MSG_FMT(extack,
12344 					   "Unable to use '%s' for the new interface name in the target netns",
12345 					   pat);
12346 			goto out;
12347 		}
12348 	}
12349 	/* Check that none of the altnames conflicts. */
12350 	err = -EEXIST;
12351 	netdev_for_each_altname(dev, name_node) {
12352 		if (netdev_name_in_use(net, name_node->name)) {
12353 			NL_SET_ERR_MSG_FMT(extack,
12354 					   "An interface with the altname %s exists in the target netns",
12355 					   name_node->name);
12356 			goto out;
12357 		}
12358 	}
12359 
12360 	/* Check that new_ifindex isn't used yet. */
12361 	if (new_ifindex) {
12362 		err = dev_index_reserve(net, new_ifindex);
12363 		if (err < 0) {
12364 			NL_SET_ERR_MSG_FMT(extack,
12365 					   "The ifindex %d is not available in the target netns",
12366 					   new_ifindex);
12367 			goto out;
12368 		}
12369 	} else {
12370 		/* If there is an ifindex conflict assign a new one */
12371 		err = dev_index_reserve(net, dev->ifindex);
12372 		if (err == -EBUSY)
12373 			err = dev_index_reserve(net, 0);
12374 		if (err < 0) {
12375 			NL_SET_ERR_MSG(extack,
12376 				       "Unable to allocate a new ifindex in the target netns");
12377 			goto out;
12378 		}
12379 		new_ifindex = err;
12380 	}
12381 
12382 	/*
12383 	 * And now a mini version of register_netdevice unregister_netdevice.
12384 	 */
12385 
12386 	netdev_lock_ops(dev);
12387 	/* If device is running close it first. */
12388 	netif_close(dev);
12389 	/* And unlink it from device chain */
12390 	unlist_netdevice(dev);
12391 
12392 	if (!netdev_need_ops_lock(dev))
12393 		netdev_lock(dev);
12394 	dev->moving_ns = true;
12395 	netdev_unlock(dev);
12396 
12397 	synchronize_net();
12398 
12399 	/* Shutdown queueing discipline. */
12400 	netdev_lock_ops(dev);
12401 	dev_shutdown(dev);
12402 	netdev_unlock_ops(dev);
12403 
12404 	/* Notify protocols, that we are about to destroy
12405 	 * this device. They should clean all the things.
12406 	 *
12407 	 * Note that dev->reg_state stays at NETREG_REGISTERED.
12408 	 * This is wanted because this way 8021q and macvlan know
12409 	 * the device is just moving and can keep their slaves up.
12410 	 */
12411 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
12412 	rcu_barrier();
12413 
12414 	new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
12415 
12416 	rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
12417 			    new_ifindex);
12418 
12419 	/*
12420 	 *	Flush the unicast and multicast chains
12421 	 */
12422 	dev_uc_flush(dev);
12423 	dev_mc_flush(dev);
12424 
12425 	/* Send a netdev-removed uevent to the old namespace */
12426 	kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
12427 	netdev_adjacent_del_links(dev);
12428 
12429 	/* Move per-net netdevice notifiers that are following the netdevice */
12430 	move_netdevice_notifiers_dev_net(dev, net);
12431 
12432 	/* Actually switch the network namespace */
12433 	netdev_lock(dev);
12434 	dev_net_set(dev, net);
12435 	netdev_unlock(dev);
12436 	dev->ifindex = new_ifindex;
12437 
12438 	if (new_name[0]) {
12439 		/* Rename the netdev to prepared name */
12440 		write_seqlock_bh(&netdev_rename_lock);
12441 		strscpy(dev->name, new_name, IFNAMSIZ);
12442 		write_sequnlock_bh(&netdev_rename_lock);
12443 	}
12444 
12445 	/* Fixup kobjects */
12446 	dev_set_uevent_suppress(&dev->dev, 1);
12447 	err = device_rename(&dev->dev, dev->name);
12448 	dev_set_uevent_suppress(&dev->dev, 0);
12449 	WARN_ON(err);
12450 
12451 	/* Send a netdev-add uevent to the new namespace */
12452 	kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
12453 	netdev_adjacent_add_links(dev);
12454 
12455 	/* Adapt owner in case owning user namespace of target network
12456 	 * namespace is different from the original one.
12457 	 */
12458 	err = netdev_change_owner(dev, net_old, net);
12459 	WARN_ON(err);
12460 
12461 	netdev_lock(dev);
12462 	dev->moving_ns = false;
12463 	if (!netdev_need_ops_lock(dev))
12464 		netdev_unlock(dev);
12465 
12466 	/* Add the device back in the hashes */
12467 	list_netdevice(dev);
12468 	/* Notify protocols, that a new device appeared. */
12469 	call_netdevice_notifiers(NETDEV_REGISTER, dev);
12470 	netdev_unlock_ops(dev);
12471 
12472 	/*
12473 	 *	Prevent userspace races by waiting until the network
12474 	 *	device is fully setup before sending notifications.
12475 	 */
12476 	rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL);
12477 
12478 	synchronize_net();
12479 	err = 0;
12480 out:
12481 	return err;
12482 }
12483 
12484 static int dev_cpu_dead(unsigned int oldcpu)
12485 {
12486 	struct sk_buff **list_skb;
12487 	struct sk_buff *skb;
12488 	unsigned int cpu;
12489 	struct softnet_data *sd, *oldsd, *remsd = NULL;
12490 
12491 	local_irq_disable();
12492 	cpu = smp_processor_id();
12493 	sd = &per_cpu(softnet_data, cpu);
12494 	oldsd = &per_cpu(softnet_data, oldcpu);
12495 
12496 	/* Find end of our completion_queue. */
12497 	list_skb = &sd->completion_queue;
12498 	while (*list_skb)
12499 		list_skb = &(*list_skb)->next;
12500 	/* Append completion queue from offline CPU. */
12501 	*list_skb = oldsd->completion_queue;
12502 	oldsd->completion_queue = NULL;
12503 
12504 	/* Append output queue from offline CPU. */
12505 	if (oldsd->output_queue) {
12506 		*sd->output_queue_tailp = oldsd->output_queue;
12507 		sd->output_queue_tailp = oldsd->output_queue_tailp;
12508 		oldsd->output_queue = NULL;
12509 		oldsd->output_queue_tailp = &oldsd->output_queue;
12510 	}
12511 	/* Append NAPI poll list from offline CPU, with one exception :
12512 	 * process_backlog() must be called by cpu owning percpu backlog.
12513 	 * We properly handle process_queue & input_pkt_queue later.
12514 	 */
12515 	while (!list_empty(&oldsd->poll_list)) {
12516 		struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
12517 							    struct napi_struct,
12518 							    poll_list);
12519 
12520 		list_del_init(&napi->poll_list);
12521 		if (napi->poll == process_backlog)
12522 			napi->state &= NAPIF_STATE_THREADED;
12523 		else
12524 			____napi_schedule(sd, napi);
12525 	}
12526 
12527 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
12528 	local_irq_enable();
12529 
12530 	if (!use_backlog_threads()) {
12531 #ifdef CONFIG_RPS
12532 		remsd = oldsd->rps_ipi_list;
12533 		oldsd->rps_ipi_list = NULL;
12534 #endif
12535 		/* send out pending IPI's on offline CPU */
12536 		net_rps_send_ipi(remsd);
12537 	}
12538 
12539 	/* Process offline CPU's input_pkt_queue */
12540 	while ((skb = __skb_dequeue(&oldsd->process_queue))) {
12541 		netif_rx(skb);
12542 		rps_input_queue_head_incr(oldsd);
12543 	}
12544 	while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
12545 		netif_rx(skb);
12546 		rps_input_queue_head_incr(oldsd);
12547 	}
12548 
12549 	return 0;
12550 }
12551 
12552 /**
12553  *	netdev_increment_features - increment feature set by one
12554  *	@all: current feature set
12555  *	@one: new feature set
12556  *	@mask: mask feature set
12557  *
12558  *	Computes a new feature set after adding a device with feature set
12559  *	@one to the master device with current feature set @all.  Will not
12560  *	enable anything that is off in @mask. Returns the new feature set.
12561  */
12562 netdev_features_t netdev_increment_features(netdev_features_t all,
12563 	netdev_features_t one, netdev_features_t mask)
12564 {
12565 	if (mask & NETIF_F_HW_CSUM)
12566 		mask |= NETIF_F_CSUM_MASK;
12567 	mask |= NETIF_F_VLAN_CHALLENGED;
12568 
12569 	all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
12570 	all &= one | ~NETIF_F_ALL_FOR_ALL;
12571 
12572 	/* If one device supports hw checksumming, set for all. */
12573 	if (all & NETIF_F_HW_CSUM)
12574 		all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
12575 
12576 	return all;
12577 }
12578 EXPORT_SYMBOL(netdev_increment_features);
12579 
12580 static struct hlist_head * __net_init netdev_create_hash(void)
12581 {
12582 	int i;
12583 	struct hlist_head *hash;
12584 
12585 	hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
12586 	if (hash != NULL)
12587 		for (i = 0; i < NETDEV_HASHENTRIES; i++)
12588 			INIT_HLIST_HEAD(&hash[i]);
12589 
12590 	return hash;
12591 }
12592 
12593 /* Initialize per network namespace state */
12594 static int __net_init netdev_init(struct net *net)
12595 {
12596 	BUILD_BUG_ON(GRO_HASH_BUCKETS >
12597 		     BITS_PER_BYTE * sizeof_field(struct gro_node, bitmask));
12598 
12599 	INIT_LIST_HEAD(&net->dev_base_head);
12600 
12601 	net->dev_name_head = netdev_create_hash();
12602 	if (net->dev_name_head == NULL)
12603 		goto err_name;
12604 
12605 	net->dev_index_head = netdev_create_hash();
12606 	if (net->dev_index_head == NULL)
12607 		goto err_idx;
12608 
12609 	xa_init_flags(&net->dev_by_index, XA_FLAGS_ALLOC1);
12610 
12611 	RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
12612 
12613 	return 0;
12614 
12615 err_idx:
12616 	kfree(net->dev_name_head);
12617 err_name:
12618 	return -ENOMEM;
12619 }
12620 
12621 /**
12622  *	netdev_drivername - network driver for the device
12623  *	@dev: network device
12624  *
12625  *	Determine network driver for device.
12626  */
12627 const char *netdev_drivername(const struct net_device *dev)
12628 {
12629 	const struct device_driver *driver;
12630 	const struct device *parent;
12631 	const char *empty = "";
12632 
12633 	parent = dev->dev.parent;
12634 	if (!parent)
12635 		return empty;
12636 
12637 	driver = parent->driver;
12638 	if (driver && driver->name)
12639 		return driver->name;
12640 	return empty;
12641 }
12642 
12643 static void __netdev_printk(const char *level, const struct net_device *dev,
12644 			    struct va_format *vaf)
12645 {
12646 	if (dev && dev->dev.parent) {
12647 		dev_printk_emit(level[1] - '0',
12648 				dev->dev.parent,
12649 				"%s %s %s%s: %pV",
12650 				dev_driver_string(dev->dev.parent),
12651 				dev_name(dev->dev.parent),
12652 				netdev_name(dev), netdev_reg_state(dev),
12653 				vaf);
12654 	} else if (dev) {
12655 		printk("%s%s%s: %pV",
12656 		       level, netdev_name(dev), netdev_reg_state(dev), vaf);
12657 	} else {
12658 		printk("%s(NULL net_device): %pV", level, vaf);
12659 	}
12660 }
12661 
12662 void netdev_printk(const char *level, const struct net_device *dev,
12663 		   const char *format, ...)
12664 {
12665 	struct va_format vaf;
12666 	va_list args;
12667 
12668 	va_start(args, format);
12669 
12670 	vaf.fmt = format;
12671 	vaf.va = &args;
12672 
12673 	__netdev_printk(level, dev, &vaf);
12674 
12675 	va_end(args);
12676 }
12677 EXPORT_SYMBOL(netdev_printk);
12678 
12679 #define define_netdev_printk_level(func, level)			\
12680 void func(const struct net_device *dev, const char *fmt, ...)	\
12681 {								\
12682 	struct va_format vaf;					\
12683 	va_list args;						\
12684 								\
12685 	va_start(args, fmt);					\
12686 								\
12687 	vaf.fmt = fmt;						\
12688 	vaf.va = &args;						\
12689 								\
12690 	__netdev_printk(level, dev, &vaf);			\
12691 								\
12692 	va_end(args);						\
12693 }								\
12694 EXPORT_SYMBOL(func);
12695 
12696 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
12697 define_netdev_printk_level(netdev_alert, KERN_ALERT);
12698 define_netdev_printk_level(netdev_crit, KERN_CRIT);
12699 define_netdev_printk_level(netdev_err, KERN_ERR);
12700 define_netdev_printk_level(netdev_warn, KERN_WARNING);
12701 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
12702 define_netdev_printk_level(netdev_info, KERN_INFO);
12703 
12704 static void __net_exit netdev_exit(struct net *net)
12705 {
12706 	kfree(net->dev_name_head);
12707 	kfree(net->dev_index_head);
12708 	xa_destroy(&net->dev_by_index);
12709 	if (net != &init_net)
12710 		WARN_ON_ONCE(!list_empty(&net->dev_base_head));
12711 }
12712 
12713 static struct pernet_operations __net_initdata netdev_net_ops = {
12714 	.init = netdev_init,
12715 	.exit = netdev_exit,
12716 };
12717 
12718 static void __net_exit default_device_exit_net(struct net *net)
12719 {
12720 	struct netdev_name_node *name_node, *tmp;
12721 	struct net_device *dev, *aux;
12722 	/*
12723 	 * Push all migratable network devices back to the
12724 	 * initial network namespace
12725 	 */
12726 	ASSERT_RTNL();
12727 	for_each_netdev_safe(net, dev, aux) {
12728 		int err;
12729 		char fb_name[IFNAMSIZ];
12730 
12731 		/* Ignore unmoveable devices (i.e. loopback) */
12732 		if (dev->netns_immutable)
12733 			continue;
12734 
12735 		/* Leave virtual devices for the generic cleanup */
12736 		if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund)
12737 			continue;
12738 
12739 		/* Push remaining network devices to init_net */
12740 		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
12741 		if (netdev_name_in_use(&init_net, fb_name))
12742 			snprintf(fb_name, IFNAMSIZ, "dev%%d");
12743 
12744 		netdev_for_each_altname_safe(dev, name_node, tmp)
12745 			if (netdev_name_in_use(&init_net, name_node->name))
12746 				__netdev_name_node_alt_destroy(name_node);
12747 
12748 		err = dev_change_net_namespace(dev, &init_net, fb_name);
12749 		if (err) {
12750 			pr_emerg("%s: failed to move %s to init_net: %d\n",
12751 				 __func__, dev->name, err);
12752 			BUG();
12753 		}
12754 	}
12755 }
12756 
12757 static void __net_exit default_device_exit_batch(struct list_head *net_list)
12758 {
12759 	/* At exit all network devices most be removed from a network
12760 	 * namespace.  Do this in the reverse order of registration.
12761 	 * Do this across as many network namespaces as possible to
12762 	 * improve batching efficiency.
12763 	 */
12764 	struct net_device *dev;
12765 	struct net *net;
12766 	LIST_HEAD(dev_kill_list);
12767 
12768 	rtnl_lock();
12769 	list_for_each_entry(net, net_list, exit_list) {
12770 		default_device_exit_net(net);
12771 		cond_resched();
12772 	}
12773 
12774 	list_for_each_entry(net, net_list, exit_list) {
12775 		for_each_netdev_reverse(net, dev) {
12776 			if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
12777 				dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
12778 			else
12779 				unregister_netdevice_queue(dev, &dev_kill_list);
12780 		}
12781 	}
12782 	unregister_netdevice_many(&dev_kill_list);
12783 	rtnl_unlock();
12784 }
12785 
12786 static struct pernet_operations __net_initdata default_device_ops = {
12787 	.exit_batch = default_device_exit_batch,
12788 };
12789 
12790 static void __init net_dev_struct_check(void)
12791 {
12792 	/* TX read-mostly hotpath */
12793 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, priv_flags_fast);
12794 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, netdev_ops);
12795 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, header_ops);
12796 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, _tx);
12797 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, real_num_tx_queues);
12798 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_max_size);
12799 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_ipv4_max_size);
12800 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_max_segs);
12801 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_partial_features);
12802 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, num_tc);
12803 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, mtu);
12804 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, needed_headroom);
12805 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, tc_to_txq);
12806 #ifdef CONFIG_XPS
12807 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, xps_maps);
12808 #endif
12809 #ifdef CONFIG_NETFILTER_EGRESS
12810 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, nf_hooks_egress);
12811 #endif
12812 #ifdef CONFIG_NET_XGRESS
12813 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, tcx_egress);
12814 #endif
12815 	CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_tx, 160);
12816 
12817 	/* TXRX read-mostly hotpath */
12818 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, lstats);
12819 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, state);
12820 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, flags);
12821 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, hard_header_len);
12822 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, features);
12823 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, ip6_ptr);
12824 	CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_txrx, 46);
12825 
12826 	/* RX read-mostly hotpath */
12827 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, ptype_specific);
12828 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, ifindex);
12829 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, real_num_rx_queues);
12830 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, _rx);
12831 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_max_size);
12832 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_ipv4_max_size);
12833 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, rx_handler);
12834 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, rx_handler_data);
12835 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, nd_net);
12836 #ifdef CONFIG_NETPOLL
12837 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, npinfo);
12838 #endif
12839 #ifdef CONFIG_NET_XGRESS
12840 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, tcx_ingress);
12841 #endif
12842 	CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_rx, 92);
12843 }
12844 
12845 /*
12846  *	Initialize the DEV module. At boot time this walks the device list and
12847  *	unhooks any devices that fail to initialise (normally hardware not
12848  *	present) and leaves us with a valid list of present and active devices.
12849  *
12850  */
12851 
12852 /* We allocate 256 pages for each CPU if PAGE_SHIFT is 12 */
12853 #define SYSTEM_PERCPU_PAGE_POOL_SIZE	((1 << 20) / PAGE_SIZE)
12854 
12855 static int net_page_pool_create(int cpuid)
12856 {
12857 #if IS_ENABLED(CONFIG_PAGE_POOL)
12858 	struct page_pool_params page_pool_params = {
12859 		.pool_size = SYSTEM_PERCPU_PAGE_POOL_SIZE,
12860 		.flags = PP_FLAG_SYSTEM_POOL,
12861 		.nid = cpu_to_mem(cpuid),
12862 	};
12863 	struct page_pool *pp_ptr;
12864 	int err;
12865 
12866 	pp_ptr = page_pool_create_percpu(&page_pool_params, cpuid);
12867 	if (IS_ERR(pp_ptr))
12868 		return -ENOMEM;
12869 
12870 	err = xdp_reg_page_pool(pp_ptr);
12871 	if (err) {
12872 		page_pool_destroy(pp_ptr);
12873 		return err;
12874 	}
12875 
12876 	per_cpu(system_page_pool.pool, cpuid) = pp_ptr;
12877 #endif
12878 	return 0;
12879 }
12880 
12881 static int backlog_napi_should_run(unsigned int cpu)
12882 {
12883 	struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu);
12884 	struct napi_struct *napi = &sd->backlog;
12885 
12886 	return test_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
12887 }
12888 
12889 static void run_backlog_napi(unsigned int cpu)
12890 {
12891 	struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu);
12892 
12893 	napi_threaded_poll_loop(&sd->backlog);
12894 }
12895 
12896 static void backlog_napi_setup(unsigned int cpu)
12897 {
12898 	struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu);
12899 	struct napi_struct *napi = &sd->backlog;
12900 
12901 	napi->thread = this_cpu_read(backlog_napi);
12902 	set_bit(NAPI_STATE_THREADED, &napi->state);
12903 }
12904 
12905 static struct smp_hotplug_thread backlog_threads = {
12906 	.store			= &backlog_napi,
12907 	.thread_should_run	= backlog_napi_should_run,
12908 	.thread_fn		= run_backlog_napi,
12909 	.thread_comm		= "backlog_napi/%u",
12910 	.setup			= backlog_napi_setup,
12911 };
12912 
12913 /*
12914  *       This is called single threaded during boot, so no need
12915  *       to take the rtnl semaphore.
12916  */
12917 static int __init net_dev_init(void)
12918 {
12919 	int i, rc = -ENOMEM;
12920 
12921 	BUG_ON(!dev_boot_phase);
12922 
12923 	net_dev_struct_check();
12924 
12925 	if (dev_proc_init())
12926 		goto out;
12927 
12928 	if (netdev_kobject_init())
12929 		goto out;
12930 
12931 	for (i = 0; i < PTYPE_HASH_SIZE; i++)
12932 		INIT_LIST_HEAD(&ptype_base[i]);
12933 
12934 	if (register_pernet_subsys(&netdev_net_ops))
12935 		goto out;
12936 
12937 	/*
12938 	 *	Initialise the packet receive queues.
12939 	 */
12940 
12941 	flush_backlogs_fallback = flush_backlogs_alloc();
12942 	if (!flush_backlogs_fallback)
12943 		goto out;
12944 
12945 	for_each_possible_cpu(i) {
12946 		struct softnet_data *sd = &per_cpu(softnet_data, i);
12947 
12948 		skb_queue_head_init(&sd->input_pkt_queue);
12949 		skb_queue_head_init(&sd->process_queue);
12950 #ifdef CONFIG_XFRM_OFFLOAD
12951 		skb_queue_head_init(&sd->xfrm_backlog);
12952 #endif
12953 		INIT_LIST_HEAD(&sd->poll_list);
12954 		sd->output_queue_tailp = &sd->output_queue;
12955 #ifdef CONFIG_RPS
12956 		INIT_CSD(&sd->csd, rps_trigger_softirq, sd);
12957 		sd->cpu = i;
12958 #endif
12959 		INIT_CSD(&sd->defer_csd, trigger_rx_softirq, sd);
12960 		spin_lock_init(&sd->defer_lock);
12961 
12962 		gro_init(&sd->backlog.gro);
12963 		sd->backlog.poll = process_backlog;
12964 		sd->backlog.weight = weight_p;
12965 		INIT_LIST_HEAD(&sd->backlog.poll_list);
12966 
12967 		if (net_page_pool_create(i))
12968 			goto out;
12969 	}
12970 	if (use_backlog_threads())
12971 		smpboot_register_percpu_thread(&backlog_threads);
12972 
12973 	dev_boot_phase = 0;
12974 
12975 	/* The loopback device is special if any other network devices
12976 	 * is present in a network namespace the loopback device must
12977 	 * be present. Since we now dynamically allocate and free the
12978 	 * loopback device ensure this invariant is maintained by
12979 	 * keeping the loopback device as the first device on the
12980 	 * list of network devices.  Ensuring the loopback devices
12981 	 * is the first device that appears and the last network device
12982 	 * that disappears.
12983 	 */
12984 	if (register_pernet_device(&loopback_net_ops))
12985 		goto out;
12986 
12987 	if (register_pernet_device(&default_device_ops))
12988 		goto out;
12989 
12990 	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
12991 	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
12992 
12993 	rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
12994 				       NULL, dev_cpu_dead);
12995 	WARN_ON(rc < 0);
12996 	rc = 0;
12997 
12998 	/* avoid static key IPIs to isolated CPUs */
12999 	if (housekeeping_enabled(HK_TYPE_MISC))
13000 		net_enable_timestamp();
13001 out:
13002 	if (rc < 0) {
13003 		for_each_possible_cpu(i) {
13004 			struct page_pool *pp_ptr;
13005 
13006 			pp_ptr = per_cpu(system_page_pool.pool, i);
13007 			if (!pp_ptr)
13008 				continue;
13009 
13010 			xdp_unreg_page_pool(pp_ptr);
13011 			page_pool_destroy(pp_ptr);
13012 			per_cpu(system_page_pool.pool, i) = NULL;
13013 		}
13014 	}
13015 
13016 	return rc;
13017 }
13018 
13019 subsys_initcall(net_dev_init);
13020