xref: /linux/net/core/dev.c (revision a55719847da0a780baa84d0baee745358f144c39)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *      NET3    Protocol independent device support routines.
4  *
5  *	Derived from the non IP parts of dev.c 1.0.19
6  *              Authors:	Ross Biro
7  *				Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8  *				Mark Evans, <evansmp@uhura.aston.ac.uk>
9  *
10  *	Additional Authors:
11  *		Florian la Roche <rzsfl@rz.uni-sb.de>
12  *		Alan Cox <gw4pts@gw4pts.ampr.org>
13  *		David Hinds <dahinds@users.sourceforge.net>
14  *		Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15  *		Adam Sulmicki <adam@cfar.umd.edu>
16  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
17  *
18  *	Changes:
19  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
20  *                                      to 2 if register_netdev gets called
21  *                                      before net_dev_init & also removed a
22  *                                      few lines of code in the process.
23  *		Alan Cox	:	device private ioctl copies fields back.
24  *		Alan Cox	:	Transmit queue code does relevant
25  *					stunts to keep the queue safe.
26  *		Alan Cox	:	Fixed double lock.
27  *		Alan Cox	:	Fixed promisc NULL pointer trap
28  *		????????	:	Support the full private ioctl range
29  *		Alan Cox	:	Moved ioctl permission check into
30  *					drivers
31  *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
32  *		Alan Cox	:	100 backlog just doesn't cut it when
33  *					you start doing multicast video 8)
34  *		Alan Cox	:	Rewrote net_bh and list manager.
35  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
36  *		Alan Cox	:	Took out transmit every packet pass
37  *					Saved a few bytes in the ioctl handler
38  *		Alan Cox	:	Network driver sets packet type before
39  *					calling netif_rx. Saves a function
40  *					call a packet.
41  *		Alan Cox	:	Hashed net_bh()
42  *		Richard Kooijman:	Timestamp fixes.
43  *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
44  *		Alan Cox	:	Device lock protection.
45  *              Alan Cox        :       Fixed nasty side effect of device close
46  *					changes.
47  *		Rudi Cilibrasi	:	Pass the right thing to
48  *					set_mac_address()
49  *		Dave Miller	:	32bit quantity for the device lock to
50  *					make it work out on a Sparc.
51  *		Bjorn Ekwall	:	Added KERNELD hack.
52  *		Alan Cox	:	Cleaned up the backlog initialise.
53  *		Craig Metz	:	SIOCGIFCONF fix if space for under
54  *					1 device.
55  *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
56  *					is no device open function.
57  *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
58  *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
59  *		Cyrus Durgin	:	Cleaned for KMOD
60  *		Adam Sulmicki   :	Bug Fix : Network Device Unload
61  *					A network device unload needs to purge
62  *					the backlog queue.
63  *	Paul Rusty Russell	:	SIOCSIFNAME
64  *              Pekka Riikonen  :	Netdev boot-time settings code
65  *              Andrew Morton   :       Make unregister_netdevice wait
66  *                                      indefinitely on dev->refcnt
67  *              J Hadi Salim    :       - Backlog queue sampling
68  *				        - netif_rx() feedback
69  */
70 
71 #include <linux/uaccess.h>
72 #include <linux/bitmap.h>
73 #include <linux/capability.h>
74 #include <linux/cpu.h>
75 #include <linux/types.h>
76 #include <linux/kernel.h>
77 #include <linux/hash.h>
78 #include <linux/slab.h>
79 #include <linux/sched.h>
80 #include <linux/sched/mm.h>
81 #include <linux/mutex.h>
82 #include <linux/rwsem.h>
83 #include <linux/string.h>
84 #include <linux/mm.h>
85 #include <linux/socket.h>
86 #include <linux/sockios.h>
87 #include <linux/errno.h>
88 #include <linux/interrupt.h>
89 #include <linux/if_ether.h>
90 #include <linux/netdevice.h>
91 #include <linux/etherdevice.h>
92 #include <linux/ethtool.h>
93 #include <linux/skbuff.h>
94 #include <linux/kthread.h>
95 #include <linux/bpf.h>
96 #include <linux/bpf_trace.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <net/busy_poll.h>
100 #include <linux/rtnetlink.h>
101 #include <linux/stat.h>
102 #include <net/dsa.h>
103 #include <net/dst.h>
104 #include <net/dst_metadata.h>
105 #include <net/gro.h>
106 #include <net/pkt_sched.h>
107 #include <net/pkt_cls.h>
108 #include <net/checksum.h>
109 #include <net/xfrm.h>
110 #include <net/tcx.h>
111 #include <linux/highmem.h>
112 #include <linux/init.h>
113 #include <linux/module.h>
114 #include <linux/netpoll.h>
115 #include <linux/rcupdate.h>
116 #include <linux/delay.h>
117 #include <net/iw_handler.h>
118 #include <asm/current.h>
119 #include <linux/audit.h>
120 #include <linux/dmaengine.h>
121 #include <linux/err.h>
122 #include <linux/ctype.h>
123 #include <linux/if_arp.h>
124 #include <linux/if_vlan.h>
125 #include <linux/ip.h>
126 #include <net/ip.h>
127 #include <net/mpls.h>
128 #include <linux/ipv6.h>
129 #include <linux/in.h>
130 #include <linux/jhash.h>
131 #include <linux/random.h>
132 #include <trace/events/napi.h>
133 #include <trace/events/net.h>
134 #include <trace/events/skb.h>
135 #include <trace/events/qdisc.h>
136 #include <trace/events/xdp.h>
137 #include <linux/inetdevice.h>
138 #include <linux/cpu_rmap.h>
139 #include <linux/static_key.h>
140 #include <linux/hashtable.h>
141 #include <linux/vmalloc.h>
142 #include <linux/if_macvlan.h>
143 #include <linux/errqueue.h>
144 #include <linux/hrtimer.h>
145 #include <linux/netfilter_netdev.h>
146 #include <linux/crash_dump.h>
147 #include <linux/sctp.h>
148 #include <net/udp_tunnel.h>
149 #include <linux/net_namespace.h>
150 #include <linux/indirect_call_wrapper.h>
151 #include <net/devlink.h>
152 #include <linux/pm_runtime.h>
153 #include <linux/prandom.h>
154 #include <linux/once_lite.h>
155 #include <net/netdev_rx_queue.h>
156 
157 #include "dev.h"
158 #include "net-sysfs.h"
159 
160 static DEFINE_SPINLOCK(ptype_lock);
161 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
162 struct list_head ptype_all __read_mostly;	/* Taps */
163 
164 static int netif_rx_internal(struct sk_buff *skb);
165 static int call_netdevice_notifiers_extack(unsigned long val,
166 					   struct net_device *dev,
167 					   struct netlink_ext_ack *extack);
168 static struct napi_struct *napi_by_id(unsigned int napi_id);
169 
170 /*
171  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
172  * semaphore.
173  *
174  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
175  *
176  * Writers must hold the rtnl semaphore while they loop through the
177  * dev_base_head list, and hold dev_base_lock for writing when they do the
178  * actual updates.  This allows pure readers to access the list even
179  * while a writer is preparing to update it.
180  *
181  * To put it another way, dev_base_lock is held for writing only to
182  * protect against pure readers; the rtnl semaphore provides the
183  * protection against other writers.
184  *
185  * See, for example usages, register_netdevice() and
186  * unregister_netdevice(), which must be called with the rtnl
187  * semaphore held.
188  */
189 DEFINE_RWLOCK(dev_base_lock);
190 EXPORT_SYMBOL(dev_base_lock);
191 
192 static DEFINE_MUTEX(ifalias_mutex);
193 
194 /* protects napi_hash addition/deletion and napi_gen_id */
195 static DEFINE_SPINLOCK(napi_hash_lock);
196 
197 static unsigned int napi_gen_id = NR_CPUS;
198 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
199 
200 static DECLARE_RWSEM(devnet_rename_sem);
201 
202 static inline void dev_base_seq_inc(struct net *net)
203 {
204 	while (++net->dev_base_seq == 0)
205 		;
206 }
207 
208 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
209 {
210 	unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
211 
212 	return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
213 }
214 
215 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
216 {
217 	return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
218 }
219 
220 static inline void rps_lock_irqsave(struct softnet_data *sd,
221 				    unsigned long *flags)
222 {
223 	if (IS_ENABLED(CONFIG_RPS))
224 		spin_lock_irqsave(&sd->input_pkt_queue.lock, *flags);
225 	else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
226 		local_irq_save(*flags);
227 }
228 
229 static inline void rps_lock_irq_disable(struct softnet_data *sd)
230 {
231 	if (IS_ENABLED(CONFIG_RPS))
232 		spin_lock_irq(&sd->input_pkt_queue.lock);
233 	else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
234 		local_irq_disable();
235 }
236 
237 static inline void rps_unlock_irq_restore(struct softnet_data *sd,
238 					  unsigned long *flags)
239 {
240 	if (IS_ENABLED(CONFIG_RPS))
241 		spin_unlock_irqrestore(&sd->input_pkt_queue.lock, *flags);
242 	else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
243 		local_irq_restore(*flags);
244 }
245 
246 static inline void rps_unlock_irq_enable(struct softnet_data *sd)
247 {
248 	if (IS_ENABLED(CONFIG_RPS))
249 		spin_unlock_irq(&sd->input_pkt_queue.lock);
250 	else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
251 		local_irq_enable();
252 }
253 
254 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
255 						       const char *name)
256 {
257 	struct netdev_name_node *name_node;
258 
259 	name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
260 	if (!name_node)
261 		return NULL;
262 	INIT_HLIST_NODE(&name_node->hlist);
263 	name_node->dev = dev;
264 	name_node->name = name;
265 	return name_node;
266 }
267 
268 static struct netdev_name_node *
269 netdev_name_node_head_alloc(struct net_device *dev)
270 {
271 	struct netdev_name_node *name_node;
272 
273 	name_node = netdev_name_node_alloc(dev, dev->name);
274 	if (!name_node)
275 		return NULL;
276 	INIT_LIST_HEAD(&name_node->list);
277 	return name_node;
278 }
279 
280 static void netdev_name_node_free(struct netdev_name_node *name_node)
281 {
282 	kfree(name_node);
283 }
284 
285 static void netdev_name_node_add(struct net *net,
286 				 struct netdev_name_node *name_node)
287 {
288 	hlist_add_head_rcu(&name_node->hlist,
289 			   dev_name_hash(net, name_node->name));
290 }
291 
292 static void netdev_name_node_del(struct netdev_name_node *name_node)
293 {
294 	hlist_del_rcu(&name_node->hlist);
295 }
296 
297 static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
298 							const char *name)
299 {
300 	struct hlist_head *head = dev_name_hash(net, name);
301 	struct netdev_name_node *name_node;
302 
303 	hlist_for_each_entry(name_node, head, hlist)
304 		if (!strcmp(name_node->name, name))
305 			return name_node;
306 	return NULL;
307 }
308 
309 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
310 							    const char *name)
311 {
312 	struct hlist_head *head = dev_name_hash(net, name);
313 	struct netdev_name_node *name_node;
314 
315 	hlist_for_each_entry_rcu(name_node, head, hlist)
316 		if (!strcmp(name_node->name, name))
317 			return name_node;
318 	return NULL;
319 }
320 
321 bool netdev_name_in_use(struct net *net, const char *name)
322 {
323 	return netdev_name_node_lookup(net, name);
324 }
325 EXPORT_SYMBOL(netdev_name_in_use);
326 
327 int netdev_name_node_alt_create(struct net_device *dev, const char *name)
328 {
329 	struct netdev_name_node *name_node;
330 	struct net *net = dev_net(dev);
331 
332 	name_node = netdev_name_node_lookup(net, name);
333 	if (name_node)
334 		return -EEXIST;
335 	name_node = netdev_name_node_alloc(dev, name);
336 	if (!name_node)
337 		return -ENOMEM;
338 	netdev_name_node_add(net, name_node);
339 	/* The node that holds dev->name acts as a head of per-device list. */
340 	list_add_tail(&name_node->list, &dev->name_node->list);
341 
342 	return 0;
343 }
344 
345 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
346 {
347 	list_del(&name_node->list);
348 	kfree(name_node->name);
349 	netdev_name_node_free(name_node);
350 }
351 
352 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
353 {
354 	struct netdev_name_node *name_node;
355 	struct net *net = dev_net(dev);
356 
357 	name_node = netdev_name_node_lookup(net, name);
358 	if (!name_node)
359 		return -ENOENT;
360 	/* lookup might have found our primary name or a name belonging
361 	 * to another device.
362 	 */
363 	if (name_node == dev->name_node || name_node->dev != dev)
364 		return -EINVAL;
365 
366 	netdev_name_node_del(name_node);
367 	synchronize_rcu();
368 	__netdev_name_node_alt_destroy(name_node);
369 
370 	return 0;
371 }
372 
373 static void netdev_name_node_alt_flush(struct net_device *dev)
374 {
375 	struct netdev_name_node *name_node, *tmp;
376 
377 	list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list)
378 		__netdev_name_node_alt_destroy(name_node);
379 }
380 
381 /* Device list insertion */
382 static void list_netdevice(struct net_device *dev)
383 {
384 	struct netdev_name_node *name_node;
385 	struct net *net = dev_net(dev);
386 
387 	ASSERT_RTNL();
388 
389 	write_lock(&dev_base_lock);
390 	list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
391 	netdev_name_node_add(net, dev->name_node);
392 	hlist_add_head_rcu(&dev->index_hlist,
393 			   dev_index_hash(net, dev->ifindex));
394 	write_unlock(&dev_base_lock);
395 
396 	netdev_for_each_altname(dev, name_node)
397 		netdev_name_node_add(net, name_node);
398 
399 	/* We reserved the ifindex, this can't fail */
400 	WARN_ON(xa_store(&net->dev_by_index, dev->ifindex, dev, GFP_KERNEL));
401 
402 	dev_base_seq_inc(net);
403 }
404 
405 /* Device list removal
406  * caller must respect a RCU grace period before freeing/reusing dev
407  */
408 static void unlist_netdevice(struct net_device *dev, bool lock)
409 {
410 	struct netdev_name_node *name_node;
411 	struct net *net = dev_net(dev);
412 
413 	ASSERT_RTNL();
414 
415 	xa_erase(&net->dev_by_index, dev->ifindex);
416 
417 	netdev_for_each_altname(dev, name_node)
418 		netdev_name_node_del(name_node);
419 
420 	/* Unlink dev from the device chain */
421 	if (lock)
422 		write_lock(&dev_base_lock);
423 	list_del_rcu(&dev->dev_list);
424 	netdev_name_node_del(dev->name_node);
425 	hlist_del_rcu(&dev->index_hlist);
426 	if (lock)
427 		write_unlock(&dev_base_lock);
428 
429 	dev_base_seq_inc(dev_net(dev));
430 }
431 
432 /*
433  *	Our notifier list
434  */
435 
436 static RAW_NOTIFIER_HEAD(netdev_chain);
437 
438 /*
439  *	Device drivers call our routines to queue packets here. We empty the
440  *	queue in the local softnet handler.
441  */
442 
443 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
444 EXPORT_PER_CPU_SYMBOL(softnet_data);
445 
446 #ifdef CONFIG_LOCKDEP
447 /*
448  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
449  * according to dev->type
450  */
451 static const unsigned short netdev_lock_type[] = {
452 	 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
453 	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
454 	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
455 	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
456 	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
457 	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
458 	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
459 	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
460 	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
461 	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
462 	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
463 	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
464 	 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
465 	 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
466 	 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
467 
468 static const char *const netdev_lock_name[] = {
469 	"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
470 	"_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
471 	"_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
472 	"_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
473 	"_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
474 	"_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
475 	"_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
476 	"_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
477 	"_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
478 	"_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
479 	"_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
480 	"_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
481 	"_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
482 	"_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
483 	"_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
484 
485 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
486 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
487 
488 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
489 {
490 	int i;
491 
492 	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
493 		if (netdev_lock_type[i] == dev_type)
494 			return i;
495 	/* the last key is used by default */
496 	return ARRAY_SIZE(netdev_lock_type) - 1;
497 }
498 
499 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
500 						 unsigned short dev_type)
501 {
502 	int i;
503 
504 	i = netdev_lock_pos(dev_type);
505 	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
506 				   netdev_lock_name[i]);
507 }
508 
509 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
510 {
511 	int i;
512 
513 	i = netdev_lock_pos(dev->type);
514 	lockdep_set_class_and_name(&dev->addr_list_lock,
515 				   &netdev_addr_lock_key[i],
516 				   netdev_lock_name[i]);
517 }
518 #else
519 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
520 						 unsigned short dev_type)
521 {
522 }
523 
524 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
525 {
526 }
527 #endif
528 
529 /*******************************************************************************
530  *
531  *		Protocol management and registration routines
532  *
533  *******************************************************************************/
534 
535 
536 /*
537  *	Add a protocol ID to the list. Now that the input handler is
538  *	smarter we can dispense with all the messy stuff that used to be
539  *	here.
540  *
541  *	BEWARE!!! Protocol handlers, mangling input packets,
542  *	MUST BE last in hash buckets and checking protocol handlers
543  *	MUST start from promiscuous ptype_all chain in net_bh.
544  *	It is true now, do not change it.
545  *	Explanation follows: if protocol handler, mangling packet, will
546  *	be the first on list, it is not able to sense, that packet
547  *	is cloned and should be copied-on-write, so that it will
548  *	change it and subsequent readers will get broken packet.
549  *							--ANK (980803)
550  */
551 
552 static inline struct list_head *ptype_head(const struct packet_type *pt)
553 {
554 	if (pt->type == htons(ETH_P_ALL))
555 		return pt->dev ? &pt->dev->ptype_all : &ptype_all;
556 	else
557 		return pt->dev ? &pt->dev->ptype_specific :
558 				 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
559 }
560 
561 /**
562  *	dev_add_pack - add packet handler
563  *	@pt: packet type declaration
564  *
565  *	Add a protocol handler to the networking stack. The passed &packet_type
566  *	is linked into kernel lists and may not be freed until it has been
567  *	removed from the kernel lists.
568  *
569  *	This call does not sleep therefore it can not
570  *	guarantee all CPU's that are in middle of receiving packets
571  *	will see the new packet type (until the next received packet).
572  */
573 
574 void dev_add_pack(struct packet_type *pt)
575 {
576 	struct list_head *head = ptype_head(pt);
577 
578 	spin_lock(&ptype_lock);
579 	list_add_rcu(&pt->list, head);
580 	spin_unlock(&ptype_lock);
581 }
582 EXPORT_SYMBOL(dev_add_pack);
583 
584 /**
585  *	__dev_remove_pack	 - remove packet handler
586  *	@pt: packet type declaration
587  *
588  *	Remove a protocol handler that was previously added to the kernel
589  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
590  *	from the kernel lists and can be freed or reused once this function
591  *	returns.
592  *
593  *      The packet type might still be in use by receivers
594  *	and must not be freed until after all the CPU's have gone
595  *	through a quiescent state.
596  */
597 void __dev_remove_pack(struct packet_type *pt)
598 {
599 	struct list_head *head = ptype_head(pt);
600 	struct packet_type *pt1;
601 
602 	spin_lock(&ptype_lock);
603 
604 	list_for_each_entry(pt1, head, list) {
605 		if (pt == pt1) {
606 			list_del_rcu(&pt->list);
607 			goto out;
608 		}
609 	}
610 
611 	pr_warn("dev_remove_pack: %p not found\n", pt);
612 out:
613 	spin_unlock(&ptype_lock);
614 }
615 EXPORT_SYMBOL(__dev_remove_pack);
616 
617 /**
618  *	dev_remove_pack	 - remove packet handler
619  *	@pt: packet type declaration
620  *
621  *	Remove a protocol handler that was previously added to the kernel
622  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
623  *	from the kernel lists and can be freed or reused once this function
624  *	returns.
625  *
626  *	This call sleeps to guarantee that no CPU is looking at the packet
627  *	type after return.
628  */
629 void dev_remove_pack(struct packet_type *pt)
630 {
631 	__dev_remove_pack(pt);
632 
633 	synchronize_net();
634 }
635 EXPORT_SYMBOL(dev_remove_pack);
636 
637 
638 /*******************************************************************************
639  *
640  *			    Device Interface Subroutines
641  *
642  *******************************************************************************/
643 
644 /**
645  *	dev_get_iflink	- get 'iflink' value of a interface
646  *	@dev: targeted interface
647  *
648  *	Indicates the ifindex the interface is linked to.
649  *	Physical interfaces have the same 'ifindex' and 'iflink' values.
650  */
651 
652 int dev_get_iflink(const struct net_device *dev)
653 {
654 	if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
655 		return dev->netdev_ops->ndo_get_iflink(dev);
656 
657 	return dev->ifindex;
658 }
659 EXPORT_SYMBOL(dev_get_iflink);
660 
661 /**
662  *	dev_fill_metadata_dst - Retrieve tunnel egress information.
663  *	@dev: targeted interface
664  *	@skb: The packet.
665  *
666  *	For better visibility of tunnel traffic OVS needs to retrieve
667  *	egress tunnel information for a packet. Following API allows
668  *	user to get this info.
669  */
670 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
671 {
672 	struct ip_tunnel_info *info;
673 
674 	if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
675 		return -EINVAL;
676 
677 	info = skb_tunnel_info_unclone(skb);
678 	if (!info)
679 		return -ENOMEM;
680 	if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
681 		return -EINVAL;
682 
683 	return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
684 }
685 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
686 
687 static struct net_device_path *dev_fwd_path(struct net_device_path_stack *stack)
688 {
689 	int k = stack->num_paths++;
690 
691 	if (WARN_ON_ONCE(k >= NET_DEVICE_PATH_STACK_MAX))
692 		return NULL;
693 
694 	return &stack->path[k];
695 }
696 
697 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
698 			  struct net_device_path_stack *stack)
699 {
700 	const struct net_device *last_dev;
701 	struct net_device_path_ctx ctx = {
702 		.dev	= dev,
703 	};
704 	struct net_device_path *path;
705 	int ret = 0;
706 
707 	memcpy(ctx.daddr, daddr, sizeof(ctx.daddr));
708 	stack->num_paths = 0;
709 	while (ctx.dev && ctx.dev->netdev_ops->ndo_fill_forward_path) {
710 		last_dev = ctx.dev;
711 		path = dev_fwd_path(stack);
712 		if (!path)
713 			return -1;
714 
715 		memset(path, 0, sizeof(struct net_device_path));
716 		ret = ctx.dev->netdev_ops->ndo_fill_forward_path(&ctx, path);
717 		if (ret < 0)
718 			return -1;
719 
720 		if (WARN_ON_ONCE(last_dev == ctx.dev))
721 			return -1;
722 	}
723 
724 	if (!ctx.dev)
725 		return ret;
726 
727 	path = dev_fwd_path(stack);
728 	if (!path)
729 		return -1;
730 	path->type = DEV_PATH_ETHERNET;
731 	path->dev = ctx.dev;
732 
733 	return ret;
734 }
735 EXPORT_SYMBOL_GPL(dev_fill_forward_path);
736 
737 /**
738  *	__dev_get_by_name	- find a device by its name
739  *	@net: the applicable net namespace
740  *	@name: name to find
741  *
742  *	Find an interface by name. Must be called under RTNL semaphore
743  *	or @dev_base_lock. If the name is found a pointer to the device
744  *	is returned. If the name is not found then %NULL is returned. The
745  *	reference counters are not incremented so the caller must be
746  *	careful with locks.
747  */
748 
749 struct net_device *__dev_get_by_name(struct net *net, const char *name)
750 {
751 	struct netdev_name_node *node_name;
752 
753 	node_name = netdev_name_node_lookup(net, name);
754 	return node_name ? node_name->dev : NULL;
755 }
756 EXPORT_SYMBOL(__dev_get_by_name);
757 
758 /**
759  * dev_get_by_name_rcu	- find a device by its name
760  * @net: the applicable net namespace
761  * @name: name to find
762  *
763  * Find an interface by name.
764  * If the name is found a pointer to the device is returned.
765  * If the name is not found then %NULL is returned.
766  * The reference counters are not incremented so the caller must be
767  * careful with locks. The caller must hold RCU lock.
768  */
769 
770 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
771 {
772 	struct netdev_name_node *node_name;
773 
774 	node_name = netdev_name_node_lookup_rcu(net, name);
775 	return node_name ? node_name->dev : NULL;
776 }
777 EXPORT_SYMBOL(dev_get_by_name_rcu);
778 
779 /* Deprecated for new users, call netdev_get_by_name() instead */
780 struct net_device *dev_get_by_name(struct net *net, const char *name)
781 {
782 	struct net_device *dev;
783 
784 	rcu_read_lock();
785 	dev = dev_get_by_name_rcu(net, name);
786 	dev_hold(dev);
787 	rcu_read_unlock();
788 	return dev;
789 }
790 EXPORT_SYMBOL(dev_get_by_name);
791 
792 /**
793  *	netdev_get_by_name() - find a device by its name
794  *	@net: the applicable net namespace
795  *	@name: name to find
796  *	@tracker: tracking object for the acquired reference
797  *	@gfp: allocation flags for the tracker
798  *
799  *	Find an interface by name. This can be called from any
800  *	context and does its own locking. The returned handle has
801  *	the usage count incremented and the caller must use netdev_put() to
802  *	release it when it is no longer needed. %NULL is returned if no
803  *	matching device is found.
804  */
805 struct net_device *netdev_get_by_name(struct net *net, const char *name,
806 				      netdevice_tracker *tracker, gfp_t gfp)
807 {
808 	struct net_device *dev;
809 
810 	dev = dev_get_by_name(net, name);
811 	if (dev)
812 		netdev_tracker_alloc(dev, tracker, gfp);
813 	return dev;
814 }
815 EXPORT_SYMBOL(netdev_get_by_name);
816 
817 /**
818  *	__dev_get_by_index - find a device by its ifindex
819  *	@net: the applicable net namespace
820  *	@ifindex: index of device
821  *
822  *	Search for an interface by index. Returns %NULL if the device
823  *	is not found or a pointer to the device. The device has not
824  *	had its reference counter increased so the caller must be careful
825  *	about locking. The caller must hold either the RTNL semaphore
826  *	or @dev_base_lock.
827  */
828 
829 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
830 {
831 	struct net_device *dev;
832 	struct hlist_head *head = dev_index_hash(net, ifindex);
833 
834 	hlist_for_each_entry(dev, head, index_hlist)
835 		if (dev->ifindex == ifindex)
836 			return dev;
837 
838 	return NULL;
839 }
840 EXPORT_SYMBOL(__dev_get_by_index);
841 
842 /**
843  *	dev_get_by_index_rcu - find a device by its ifindex
844  *	@net: the applicable net namespace
845  *	@ifindex: index of device
846  *
847  *	Search for an interface by index. Returns %NULL if the device
848  *	is not found or a pointer to the device. The device has not
849  *	had its reference counter increased so the caller must be careful
850  *	about locking. The caller must hold RCU lock.
851  */
852 
853 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
854 {
855 	struct net_device *dev;
856 	struct hlist_head *head = dev_index_hash(net, ifindex);
857 
858 	hlist_for_each_entry_rcu(dev, head, index_hlist)
859 		if (dev->ifindex == ifindex)
860 			return dev;
861 
862 	return NULL;
863 }
864 EXPORT_SYMBOL(dev_get_by_index_rcu);
865 
866 /* Deprecated for new users, call netdev_get_by_index() instead */
867 struct net_device *dev_get_by_index(struct net *net, int ifindex)
868 {
869 	struct net_device *dev;
870 
871 	rcu_read_lock();
872 	dev = dev_get_by_index_rcu(net, ifindex);
873 	dev_hold(dev);
874 	rcu_read_unlock();
875 	return dev;
876 }
877 EXPORT_SYMBOL(dev_get_by_index);
878 
879 /**
880  *	netdev_get_by_index() - find a device by its ifindex
881  *	@net: the applicable net namespace
882  *	@ifindex: index of device
883  *	@tracker: tracking object for the acquired reference
884  *	@gfp: allocation flags for the tracker
885  *
886  *	Search for an interface by index. Returns NULL if the device
887  *	is not found or a pointer to the device. The device returned has
888  *	had a reference added and the pointer is safe until the user calls
889  *	netdev_put() to indicate they have finished with it.
890  */
891 struct net_device *netdev_get_by_index(struct net *net, int ifindex,
892 				       netdevice_tracker *tracker, gfp_t gfp)
893 {
894 	struct net_device *dev;
895 
896 	dev = dev_get_by_index(net, ifindex);
897 	if (dev)
898 		netdev_tracker_alloc(dev, tracker, gfp);
899 	return dev;
900 }
901 EXPORT_SYMBOL(netdev_get_by_index);
902 
903 /**
904  *	dev_get_by_napi_id - find a device by napi_id
905  *	@napi_id: ID of the NAPI struct
906  *
907  *	Search for an interface by NAPI ID. Returns %NULL if the device
908  *	is not found or a pointer to the device. The device has not had
909  *	its reference counter increased so the caller must be careful
910  *	about locking. The caller must hold RCU lock.
911  */
912 
913 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
914 {
915 	struct napi_struct *napi;
916 
917 	WARN_ON_ONCE(!rcu_read_lock_held());
918 
919 	if (napi_id < MIN_NAPI_ID)
920 		return NULL;
921 
922 	napi = napi_by_id(napi_id);
923 
924 	return napi ? napi->dev : NULL;
925 }
926 EXPORT_SYMBOL(dev_get_by_napi_id);
927 
928 /**
929  *	netdev_get_name - get a netdevice name, knowing its ifindex.
930  *	@net: network namespace
931  *	@name: a pointer to the buffer where the name will be stored.
932  *	@ifindex: the ifindex of the interface to get the name from.
933  */
934 int netdev_get_name(struct net *net, char *name, int ifindex)
935 {
936 	struct net_device *dev;
937 	int ret;
938 
939 	down_read(&devnet_rename_sem);
940 	rcu_read_lock();
941 
942 	dev = dev_get_by_index_rcu(net, ifindex);
943 	if (!dev) {
944 		ret = -ENODEV;
945 		goto out;
946 	}
947 
948 	strcpy(name, dev->name);
949 
950 	ret = 0;
951 out:
952 	rcu_read_unlock();
953 	up_read(&devnet_rename_sem);
954 	return ret;
955 }
956 
957 /**
958  *	dev_getbyhwaddr_rcu - find a device by its hardware address
959  *	@net: the applicable net namespace
960  *	@type: media type of device
961  *	@ha: hardware address
962  *
963  *	Search for an interface by MAC address. Returns NULL if the device
964  *	is not found or a pointer to the device.
965  *	The caller must hold RCU or RTNL.
966  *	The returned device has not had its ref count increased
967  *	and the caller must therefore be careful about locking
968  *
969  */
970 
971 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
972 				       const char *ha)
973 {
974 	struct net_device *dev;
975 
976 	for_each_netdev_rcu(net, dev)
977 		if (dev->type == type &&
978 		    !memcmp(dev->dev_addr, ha, dev->addr_len))
979 			return dev;
980 
981 	return NULL;
982 }
983 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
984 
985 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
986 {
987 	struct net_device *dev, *ret = NULL;
988 
989 	rcu_read_lock();
990 	for_each_netdev_rcu(net, dev)
991 		if (dev->type == type) {
992 			dev_hold(dev);
993 			ret = dev;
994 			break;
995 		}
996 	rcu_read_unlock();
997 	return ret;
998 }
999 EXPORT_SYMBOL(dev_getfirstbyhwtype);
1000 
1001 /**
1002  *	__dev_get_by_flags - find any device with given flags
1003  *	@net: the applicable net namespace
1004  *	@if_flags: IFF_* values
1005  *	@mask: bitmask of bits in if_flags to check
1006  *
1007  *	Search for any interface with the given flags. Returns NULL if a device
1008  *	is not found or a pointer to the device. Must be called inside
1009  *	rtnl_lock(), and result refcount is unchanged.
1010  */
1011 
1012 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1013 				      unsigned short mask)
1014 {
1015 	struct net_device *dev, *ret;
1016 
1017 	ASSERT_RTNL();
1018 
1019 	ret = NULL;
1020 	for_each_netdev(net, dev) {
1021 		if (((dev->flags ^ if_flags) & mask) == 0) {
1022 			ret = dev;
1023 			break;
1024 		}
1025 	}
1026 	return ret;
1027 }
1028 EXPORT_SYMBOL(__dev_get_by_flags);
1029 
1030 /**
1031  *	dev_valid_name - check if name is okay for network device
1032  *	@name: name string
1033  *
1034  *	Network device names need to be valid file names to
1035  *	allow sysfs to work.  We also disallow any kind of
1036  *	whitespace.
1037  */
1038 bool dev_valid_name(const char *name)
1039 {
1040 	if (*name == '\0')
1041 		return false;
1042 	if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1043 		return false;
1044 	if (!strcmp(name, ".") || !strcmp(name, ".."))
1045 		return false;
1046 
1047 	while (*name) {
1048 		if (*name == '/' || *name == ':' || isspace(*name))
1049 			return false;
1050 		name++;
1051 	}
1052 	return true;
1053 }
1054 EXPORT_SYMBOL(dev_valid_name);
1055 
1056 /**
1057  *	__dev_alloc_name - allocate a name for a device
1058  *	@net: network namespace to allocate the device name in
1059  *	@name: name format string
1060  *	@res: result name string
1061  *
1062  *	Passed a format string - eg "lt%d" it will try and find a suitable
1063  *	id. It scans list of devices to build up a free map, then chooses
1064  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1065  *	while allocating the name and adding the device in order to avoid
1066  *	duplicates.
1067  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1068  *	Returns the number of the unit assigned or a negative errno code.
1069  */
1070 
1071 static int __dev_alloc_name(struct net *net, const char *name, char *res)
1072 {
1073 	int i = 0;
1074 	const char *p;
1075 	const int max_netdevices = 8*PAGE_SIZE;
1076 	unsigned long *inuse;
1077 	struct net_device *d;
1078 	char buf[IFNAMSIZ];
1079 
1080 	/* Verify the string as this thing may have come from the user.
1081 	 * There must be one "%d" and no other "%" characters.
1082 	 */
1083 	p = strchr(name, '%');
1084 	if (!p || p[1] != 'd' || strchr(p + 2, '%'))
1085 		return -EINVAL;
1086 
1087 	/* Use one page as a bit array of possible slots */
1088 	inuse = bitmap_zalloc(max_netdevices, GFP_ATOMIC);
1089 	if (!inuse)
1090 		return -ENOMEM;
1091 
1092 	for_each_netdev(net, d) {
1093 		struct netdev_name_node *name_node;
1094 
1095 		netdev_for_each_altname(d, name_node) {
1096 			if (!sscanf(name_node->name, name, &i))
1097 				continue;
1098 			if (i < 0 || i >= max_netdevices)
1099 				continue;
1100 
1101 			/* avoid cases where sscanf is not exact inverse of printf */
1102 			snprintf(buf, IFNAMSIZ, name, i);
1103 			if (!strncmp(buf, name_node->name, IFNAMSIZ))
1104 				__set_bit(i, inuse);
1105 		}
1106 		if (!sscanf(d->name, name, &i))
1107 			continue;
1108 		if (i < 0 || i >= max_netdevices)
1109 			continue;
1110 
1111 		/* avoid cases where sscanf is not exact inverse of printf */
1112 		snprintf(buf, IFNAMSIZ, name, i);
1113 		if (!strncmp(buf, d->name, IFNAMSIZ))
1114 			__set_bit(i, inuse);
1115 	}
1116 
1117 	i = find_first_zero_bit(inuse, max_netdevices);
1118 	bitmap_free(inuse);
1119 	if (i == max_netdevices)
1120 		return -ENFILE;
1121 
1122 	/* 'res' and 'name' could overlap, use 'buf' as an intermediate buffer */
1123 	strscpy(buf, name, IFNAMSIZ);
1124 	snprintf(res, IFNAMSIZ, buf, i);
1125 	return i;
1126 }
1127 
1128 /* Returns negative errno or allocated unit id (see __dev_alloc_name()) */
1129 static int dev_prep_valid_name(struct net *net, struct net_device *dev,
1130 			       const char *want_name, char *out_name,
1131 			       int dup_errno)
1132 {
1133 	if (!dev_valid_name(want_name))
1134 		return -EINVAL;
1135 
1136 	if (strchr(want_name, '%'))
1137 		return __dev_alloc_name(net, want_name, out_name);
1138 
1139 	if (netdev_name_in_use(net, want_name))
1140 		return -dup_errno;
1141 	if (out_name != want_name)
1142 		strscpy(out_name, want_name, IFNAMSIZ);
1143 	return 0;
1144 }
1145 
1146 /**
1147  *	dev_alloc_name - allocate a name for a device
1148  *	@dev: device
1149  *	@name: name format string
1150  *
1151  *	Passed a format string - eg "lt%d" it will try and find a suitable
1152  *	id. It scans list of devices to build up a free map, then chooses
1153  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1154  *	while allocating the name and adding the device in order to avoid
1155  *	duplicates.
1156  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1157  *	Returns the number of the unit assigned or a negative errno code.
1158  */
1159 
1160 int dev_alloc_name(struct net_device *dev, const char *name)
1161 {
1162 	return dev_prep_valid_name(dev_net(dev), dev, name, dev->name, ENFILE);
1163 }
1164 EXPORT_SYMBOL(dev_alloc_name);
1165 
1166 static int dev_get_valid_name(struct net *net, struct net_device *dev,
1167 			      const char *name)
1168 {
1169 	int ret;
1170 
1171 	ret = dev_prep_valid_name(net, dev, name, dev->name, EEXIST);
1172 	return ret < 0 ? ret : 0;
1173 }
1174 
1175 /**
1176  *	dev_change_name - change name of a device
1177  *	@dev: device
1178  *	@newname: name (or format string) must be at least IFNAMSIZ
1179  *
1180  *	Change name of a device, can pass format strings "eth%d".
1181  *	for wildcarding.
1182  */
1183 int dev_change_name(struct net_device *dev, const char *newname)
1184 {
1185 	unsigned char old_assign_type;
1186 	char oldname[IFNAMSIZ];
1187 	int err = 0;
1188 	int ret;
1189 	struct net *net;
1190 
1191 	ASSERT_RTNL();
1192 	BUG_ON(!dev_net(dev));
1193 
1194 	net = dev_net(dev);
1195 
1196 	down_write(&devnet_rename_sem);
1197 
1198 	if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1199 		up_write(&devnet_rename_sem);
1200 		return 0;
1201 	}
1202 
1203 	memcpy(oldname, dev->name, IFNAMSIZ);
1204 
1205 	err = dev_get_valid_name(net, dev, newname);
1206 	if (err < 0) {
1207 		up_write(&devnet_rename_sem);
1208 		return err;
1209 	}
1210 
1211 	if (oldname[0] && !strchr(oldname, '%'))
1212 		netdev_info(dev, "renamed from %s%s\n", oldname,
1213 			    dev->flags & IFF_UP ? " (while UP)" : "");
1214 
1215 	old_assign_type = dev->name_assign_type;
1216 	dev->name_assign_type = NET_NAME_RENAMED;
1217 
1218 rollback:
1219 	ret = device_rename(&dev->dev, dev->name);
1220 	if (ret) {
1221 		memcpy(dev->name, oldname, IFNAMSIZ);
1222 		dev->name_assign_type = old_assign_type;
1223 		up_write(&devnet_rename_sem);
1224 		return ret;
1225 	}
1226 
1227 	up_write(&devnet_rename_sem);
1228 
1229 	netdev_adjacent_rename_links(dev, oldname);
1230 
1231 	write_lock(&dev_base_lock);
1232 	netdev_name_node_del(dev->name_node);
1233 	write_unlock(&dev_base_lock);
1234 
1235 	synchronize_rcu();
1236 
1237 	write_lock(&dev_base_lock);
1238 	netdev_name_node_add(net, dev->name_node);
1239 	write_unlock(&dev_base_lock);
1240 
1241 	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1242 	ret = notifier_to_errno(ret);
1243 
1244 	if (ret) {
1245 		/* err >= 0 after dev_alloc_name() or stores the first errno */
1246 		if (err >= 0) {
1247 			err = ret;
1248 			down_write(&devnet_rename_sem);
1249 			memcpy(dev->name, oldname, IFNAMSIZ);
1250 			memcpy(oldname, newname, IFNAMSIZ);
1251 			dev->name_assign_type = old_assign_type;
1252 			old_assign_type = NET_NAME_RENAMED;
1253 			goto rollback;
1254 		} else {
1255 			netdev_err(dev, "name change rollback failed: %d\n",
1256 				   ret);
1257 		}
1258 	}
1259 
1260 	return err;
1261 }
1262 
1263 /**
1264  *	dev_set_alias - change ifalias of a device
1265  *	@dev: device
1266  *	@alias: name up to IFALIASZ
1267  *	@len: limit of bytes to copy from info
1268  *
1269  *	Set ifalias for a device,
1270  */
1271 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1272 {
1273 	struct dev_ifalias *new_alias = NULL;
1274 
1275 	if (len >= IFALIASZ)
1276 		return -EINVAL;
1277 
1278 	if (len) {
1279 		new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1280 		if (!new_alias)
1281 			return -ENOMEM;
1282 
1283 		memcpy(new_alias->ifalias, alias, len);
1284 		new_alias->ifalias[len] = 0;
1285 	}
1286 
1287 	mutex_lock(&ifalias_mutex);
1288 	new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1289 					mutex_is_locked(&ifalias_mutex));
1290 	mutex_unlock(&ifalias_mutex);
1291 
1292 	if (new_alias)
1293 		kfree_rcu(new_alias, rcuhead);
1294 
1295 	return len;
1296 }
1297 EXPORT_SYMBOL(dev_set_alias);
1298 
1299 /**
1300  *	dev_get_alias - get ifalias of a device
1301  *	@dev: device
1302  *	@name: buffer to store name of ifalias
1303  *	@len: size of buffer
1304  *
1305  *	get ifalias for a device.  Caller must make sure dev cannot go
1306  *	away,  e.g. rcu read lock or own a reference count to device.
1307  */
1308 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1309 {
1310 	const struct dev_ifalias *alias;
1311 	int ret = 0;
1312 
1313 	rcu_read_lock();
1314 	alias = rcu_dereference(dev->ifalias);
1315 	if (alias)
1316 		ret = snprintf(name, len, "%s", alias->ifalias);
1317 	rcu_read_unlock();
1318 
1319 	return ret;
1320 }
1321 
1322 /**
1323  *	netdev_features_change - device changes features
1324  *	@dev: device to cause notification
1325  *
1326  *	Called to indicate a device has changed features.
1327  */
1328 void netdev_features_change(struct net_device *dev)
1329 {
1330 	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1331 }
1332 EXPORT_SYMBOL(netdev_features_change);
1333 
1334 /**
1335  *	netdev_state_change - device changes state
1336  *	@dev: device to cause notification
1337  *
1338  *	Called to indicate a device has changed state. This function calls
1339  *	the notifier chains for netdev_chain and sends a NEWLINK message
1340  *	to the routing socket.
1341  */
1342 void netdev_state_change(struct net_device *dev)
1343 {
1344 	if (dev->flags & IFF_UP) {
1345 		struct netdev_notifier_change_info change_info = {
1346 			.info.dev = dev,
1347 		};
1348 
1349 		call_netdevice_notifiers_info(NETDEV_CHANGE,
1350 					      &change_info.info);
1351 		rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL, 0, NULL);
1352 	}
1353 }
1354 EXPORT_SYMBOL(netdev_state_change);
1355 
1356 /**
1357  * __netdev_notify_peers - notify network peers about existence of @dev,
1358  * to be called when rtnl lock is already held.
1359  * @dev: network device
1360  *
1361  * Generate traffic such that interested network peers are aware of
1362  * @dev, such as by generating a gratuitous ARP. This may be used when
1363  * a device wants to inform the rest of the network about some sort of
1364  * reconfiguration such as a failover event or virtual machine
1365  * migration.
1366  */
1367 void __netdev_notify_peers(struct net_device *dev)
1368 {
1369 	ASSERT_RTNL();
1370 	call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1371 	call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1372 }
1373 EXPORT_SYMBOL(__netdev_notify_peers);
1374 
1375 /**
1376  * netdev_notify_peers - notify network peers about existence of @dev
1377  * @dev: network device
1378  *
1379  * Generate traffic such that interested network peers are aware of
1380  * @dev, such as by generating a gratuitous ARP. This may be used when
1381  * a device wants to inform the rest of the network about some sort of
1382  * reconfiguration such as a failover event or virtual machine
1383  * migration.
1384  */
1385 void netdev_notify_peers(struct net_device *dev)
1386 {
1387 	rtnl_lock();
1388 	__netdev_notify_peers(dev);
1389 	rtnl_unlock();
1390 }
1391 EXPORT_SYMBOL(netdev_notify_peers);
1392 
1393 static int napi_threaded_poll(void *data);
1394 
1395 static int napi_kthread_create(struct napi_struct *n)
1396 {
1397 	int err = 0;
1398 
1399 	/* Create and wake up the kthread once to put it in
1400 	 * TASK_INTERRUPTIBLE mode to avoid the blocked task
1401 	 * warning and work with loadavg.
1402 	 */
1403 	n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d",
1404 				n->dev->name, n->napi_id);
1405 	if (IS_ERR(n->thread)) {
1406 		err = PTR_ERR(n->thread);
1407 		pr_err("kthread_run failed with err %d\n", err);
1408 		n->thread = NULL;
1409 	}
1410 
1411 	return err;
1412 }
1413 
1414 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1415 {
1416 	const struct net_device_ops *ops = dev->netdev_ops;
1417 	int ret;
1418 
1419 	ASSERT_RTNL();
1420 	dev_addr_check(dev);
1421 
1422 	if (!netif_device_present(dev)) {
1423 		/* may be detached because parent is runtime-suspended */
1424 		if (dev->dev.parent)
1425 			pm_runtime_resume(dev->dev.parent);
1426 		if (!netif_device_present(dev))
1427 			return -ENODEV;
1428 	}
1429 
1430 	/* Block netpoll from trying to do any rx path servicing.
1431 	 * If we don't do this there is a chance ndo_poll_controller
1432 	 * or ndo_poll may be running while we open the device
1433 	 */
1434 	netpoll_poll_disable(dev);
1435 
1436 	ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1437 	ret = notifier_to_errno(ret);
1438 	if (ret)
1439 		return ret;
1440 
1441 	set_bit(__LINK_STATE_START, &dev->state);
1442 
1443 	if (ops->ndo_validate_addr)
1444 		ret = ops->ndo_validate_addr(dev);
1445 
1446 	if (!ret && ops->ndo_open)
1447 		ret = ops->ndo_open(dev);
1448 
1449 	netpoll_poll_enable(dev);
1450 
1451 	if (ret)
1452 		clear_bit(__LINK_STATE_START, &dev->state);
1453 	else {
1454 		dev->flags |= IFF_UP;
1455 		dev_set_rx_mode(dev);
1456 		dev_activate(dev);
1457 		add_device_randomness(dev->dev_addr, dev->addr_len);
1458 	}
1459 
1460 	return ret;
1461 }
1462 
1463 /**
1464  *	dev_open	- prepare an interface for use.
1465  *	@dev: device to open
1466  *	@extack: netlink extended ack
1467  *
1468  *	Takes a device from down to up state. The device's private open
1469  *	function is invoked and then the multicast lists are loaded. Finally
1470  *	the device is moved into the up state and a %NETDEV_UP message is
1471  *	sent to the netdev notifier chain.
1472  *
1473  *	Calling this function on an active interface is a nop. On a failure
1474  *	a negative errno code is returned.
1475  */
1476 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1477 {
1478 	int ret;
1479 
1480 	if (dev->flags & IFF_UP)
1481 		return 0;
1482 
1483 	ret = __dev_open(dev, extack);
1484 	if (ret < 0)
1485 		return ret;
1486 
1487 	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL);
1488 	call_netdevice_notifiers(NETDEV_UP, dev);
1489 
1490 	return ret;
1491 }
1492 EXPORT_SYMBOL(dev_open);
1493 
1494 static void __dev_close_many(struct list_head *head)
1495 {
1496 	struct net_device *dev;
1497 
1498 	ASSERT_RTNL();
1499 	might_sleep();
1500 
1501 	list_for_each_entry(dev, head, close_list) {
1502 		/* Temporarily disable netpoll until the interface is down */
1503 		netpoll_poll_disable(dev);
1504 
1505 		call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1506 
1507 		clear_bit(__LINK_STATE_START, &dev->state);
1508 
1509 		/* Synchronize to scheduled poll. We cannot touch poll list, it
1510 		 * can be even on different cpu. So just clear netif_running().
1511 		 *
1512 		 * dev->stop() will invoke napi_disable() on all of it's
1513 		 * napi_struct instances on this device.
1514 		 */
1515 		smp_mb__after_atomic(); /* Commit netif_running(). */
1516 	}
1517 
1518 	dev_deactivate_many(head);
1519 
1520 	list_for_each_entry(dev, head, close_list) {
1521 		const struct net_device_ops *ops = dev->netdev_ops;
1522 
1523 		/*
1524 		 *	Call the device specific close. This cannot fail.
1525 		 *	Only if device is UP
1526 		 *
1527 		 *	We allow it to be called even after a DETACH hot-plug
1528 		 *	event.
1529 		 */
1530 		if (ops->ndo_stop)
1531 			ops->ndo_stop(dev);
1532 
1533 		dev->flags &= ~IFF_UP;
1534 		netpoll_poll_enable(dev);
1535 	}
1536 }
1537 
1538 static void __dev_close(struct net_device *dev)
1539 {
1540 	LIST_HEAD(single);
1541 
1542 	list_add(&dev->close_list, &single);
1543 	__dev_close_many(&single);
1544 	list_del(&single);
1545 }
1546 
1547 void dev_close_many(struct list_head *head, bool unlink)
1548 {
1549 	struct net_device *dev, *tmp;
1550 
1551 	/* Remove the devices that don't need to be closed */
1552 	list_for_each_entry_safe(dev, tmp, head, close_list)
1553 		if (!(dev->flags & IFF_UP))
1554 			list_del_init(&dev->close_list);
1555 
1556 	__dev_close_many(head);
1557 
1558 	list_for_each_entry_safe(dev, tmp, head, close_list) {
1559 		rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL);
1560 		call_netdevice_notifiers(NETDEV_DOWN, dev);
1561 		if (unlink)
1562 			list_del_init(&dev->close_list);
1563 	}
1564 }
1565 EXPORT_SYMBOL(dev_close_many);
1566 
1567 /**
1568  *	dev_close - shutdown an interface.
1569  *	@dev: device to shutdown
1570  *
1571  *	This function moves an active device into down state. A
1572  *	%NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1573  *	is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1574  *	chain.
1575  */
1576 void dev_close(struct net_device *dev)
1577 {
1578 	if (dev->flags & IFF_UP) {
1579 		LIST_HEAD(single);
1580 
1581 		list_add(&dev->close_list, &single);
1582 		dev_close_many(&single, true);
1583 		list_del(&single);
1584 	}
1585 }
1586 EXPORT_SYMBOL(dev_close);
1587 
1588 
1589 /**
1590  *	dev_disable_lro - disable Large Receive Offload on a device
1591  *	@dev: device
1592  *
1593  *	Disable Large Receive Offload (LRO) on a net device.  Must be
1594  *	called under RTNL.  This is needed if received packets may be
1595  *	forwarded to another interface.
1596  */
1597 void dev_disable_lro(struct net_device *dev)
1598 {
1599 	struct net_device *lower_dev;
1600 	struct list_head *iter;
1601 
1602 	dev->wanted_features &= ~NETIF_F_LRO;
1603 	netdev_update_features(dev);
1604 
1605 	if (unlikely(dev->features & NETIF_F_LRO))
1606 		netdev_WARN(dev, "failed to disable LRO!\n");
1607 
1608 	netdev_for_each_lower_dev(dev, lower_dev, iter)
1609 		dev_disable_lro(lower_dev);
1610 }
1611 EXPORT_SYMBOL(dev_disable_lro);
1612 
1613 /**
1614  *	dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1615  *	@dev: device
1616  *
1617  *	Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1618  *	called under RTNL.  This is needed if Generic XDP is installed on
1619  *	the device.
1620  */
1621 static void dev_disable_gro_hw(struct net_device *dev)
1622 {
1623 	dev->wanted_features &= ~NETIF_F_GRO_HW;
1624 	netdev_update_features(dev);
1625 
1626 	if (unlikely(dev->features & NETIF_F_GRO_HW))
1627 		netdev_WARN(dev, "failed to disable GRO_HW!\n");
1628 }
1629 
1630 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1631 {
1632 #define N(val) 						\
1633 	case NETDEV_##val:				\
1634 		return "NETDEV_" __stringify(val);
1635 	switch (cmd) {
1636 	N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1637 	N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1638 	N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1639 	N(POST_INIT) N(PRE_UNINIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN)
1640 	N(CHANGEUPPER) N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA)
1641 	N(BONDING_INFO) N(PRECHANGEUPPER) N(CHANGELOWERSTATE)
1642 	N(UDP_TUNNEL_PUSH_INFO) N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1643 	N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1644 	N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1645 	N(PRE_CHANGEADDR) N(OFFLOAD_XSTATS_ENABLE) N(OFFLOAD_XSTATS_DISABLE)
1646 	N(OFFLOAD_XSTATS_REPORT_USED) N(OFFLOAD_XSTATS_REPORT_DELTA)
1647 	N(XDP_FEAT_CHANGE)
1648 	}
1649 #undef N
1650 	return "UNKNOWN_NETDEV_EVENT";
1651 }
1652 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1653 
1654 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1655 				   struct net_device *dev)
1656 {
1657 	struct netdev_notifier_info info = {
1658 		.dev = dev,
1659 	};
1660 
1661 	return nb->notifier_call(nb, val, &info);
1662 }
1663 
1664 static int call_netdevice_register_notifiers(struct notifier_block *nb,
1665 					     struct net_device *dev)
1666 {
1667 	int err;
1668 
1669 	err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1670 	err = notifier_to_errno(err);
1671 	if (err)
1672 		return err;
1673 
1674 	if (!(dev->flags & IFF_UP))
1675 		return 0;
1676 
1677 	call_netdevice_notifier(nb, NETDEV_UP, dev);
1678 	return 0;
1679 }
1680 
1681 static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1682 						struct net_device *dev)
1683 {
1684 	if (dev->flags & IFF_UP) {
1685 		call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1686 					dev);
1687 		call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1688 	}
1689 	call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1690 }
1691 
1692 static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1693 						 struct net *net)
1694 {
1695 	struct net_device *dev;
1696 	int err;
1697 
1698 	for_each_netdev(net, dev) {
1699 		err = call_netdevice_register_notifiers(nb, dev);
1700 		if (err)
1701 			goto rollback;
1702 	}
1703 	return 0;
1704 
1705 rollback:
1706 	for_each_netdev_continue_reverse(net, dev)
1707 		call_netdevice_unregister_notifiers(nb, dev);
1708 	return err;
1709 }
1710 
1711 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1712 						    struct net *net)
1713 {
1714 	struct net_device *dev;
1715 
1716 	for_each_netdev(net, dev)
1717 		call_netdevice_unregister_notifiers(nb, dev);
1718 }
1719 
1720 static int dev_boot_phase = 1;
1721 
1722 /**
1723  * register_netdevice_notifier - register a network notifier block
1724  * @nb: notifier
1725  *
1726  * Register a notifier to be called when network device events occur.
1727  * The notifier passed is linked into the kernel structures and must
1728  * not be reused until it has been unregistered. A negative errno code
1729  * is returned on a failure.
1730  *
1731  * When registered all registration and up events are replayed
1732  * to the new notifier to allow device to have a race free
1733  * view of the network device list.
1734  */
1735 
1736 int register_netdevice_notifier(struct notifier_block *nb)
1737 {
1738 	struct net *net;
1739 	int err;
1740 
1741 	/* Close race with setup_net() and cleanup_net() */
1742 	down_write(&pernet_ops_rwsem);
1743 	rtnl_lock();
1744 	err = raw_notifier_chain_register(&netdev_chain, nb);
1745 	if (err)
1746 		goto unlock;
1747 	if (dev_boot_phase)
1748 		goto unlock;
1749 	for_each_net(net) {
1750 		err = call_netdevice_register_net_notifiers(nb, net);
1751 		if (err)
1752 			goto rollback;
1753 	}
1754 
1755 unlock:
1756 	rtnl_unlock();
1757 	up_write(&pernet_ops_rwsem);
1758 	return err;
1759 
1760 rollback:
1761 	for_each_net_continue_reverse(net)
1762 		call_netdevice_unregister_net_notifiers(nb, net);
1763 
1764 	raw_notifier_chain_unregister(&netdev_chain, nb);
1765 	goto unlock;
1766 }
1767 EXPORT_SYMBOL(register_netdevice_notifier);
1768 
1769 /**
1770  * unregister_netdevice_notifier - unregister a network notifier block
1771  * @nb: notifier
1772  *
1773  * Unregister a notifier previously registered by
1774  * register_netdevice_notifier(). The notifier is unlinked into the
1775  * kernel structures and may then be reused. A negative errno code
1776  * is returned on a failure.
1777  *
1778  * After unregistering unregister and down device events are synthesized
1779  * for all devices on the device list to the removed notifier to remove
1780  * the need for special case cleanup code.
1781  */
1782 
1783 int unregister_netdevice_notifier(struct notifier_block *nb)
1784 {
1785 	struct net *net;
1786 	int err;
1787 
1788 	/* Close race with setup_net() and cleanup_net() */
1789 	down_write(&pernet_ops_rwsem);
1790 	rtnl_lock();
1791 	err = raw_notifier_chain_unregister(&netdev_chain, nb);
1792 	if (err)
1793 		goto unlock;
1794 
1795 	for_each_net(net)
1796 		call_netdevice_unregister_net_notifiers(nb, net);
1797 
1798 unlock:
1799 	rtnl_unlock();
1800 	up_write(&pernet_ops_rwsem);
1801 	return err;
1802 }
1803 EXPORT_SYMBOL(unregister_netdevice_notifier);
1804 
1805 static int __register_netdevice_notifier_net(struct net *net,
1806 					     struct notifier_block *nb,
1807 					     bool ignore_call_fail)
1808 {
1809 	int err;
1810 
1811 	err = raw_notifier_chain_register(&net->netdev_chain, nb);
1812 	if (err)
1813 		return err;
1814 	if (dev_boot_phase)
1815 		return 0;
1816 
1817 	err = call_netdevice_register_net_notifiers(nb, net);
1818 	if (err && !ignore_call_fail)
1819 		goto chain_unregister;
1820 
1821 	return 0;
1822 
1823 chain_unregister:
1824 	raw_notifier_chain_unregister(&net->netdev_chain, nb);
1825 	return err;
1826 }
1827 
1828 static int __unregister_netdevice_notifier_net(struct net *net,
1829 					       struct notifier_block *nb)
1830 {
1831 	int err;
1832 
1833 	err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
1834 	if (err)
1835 		return err;
1836 
1837 	call_netdevice_unregister_net_notifiers(nb, net);
1838 	return 0;
1839 }
1840 
1841 /**
1842  * register_netdevice_notifier_net - register a per-netns network notifier block
1843  * @net: network namespace
1844  * @nb: notifier
1845  *
1846  * Register a notifier to be called when network device events occur.
1847  * The notifier passed is linked into the kernel structures and must
1848  * not be reused until it has been unregistered. A negative errno code
1849  * is returned on a failure.
1850  *
1851  * When registered all registration and up events are replayed
1852  * to the new notifier to allow device to have a race free
1853  * view of the network device list.
1854  */
1855 
1856 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
1857 {
1858 	int err;
1859 
1860 	rtnl_lock();
1861 	err = __register_netdevice_notifier_net(net, nb, false);
1862 	rtnl_unlock();
1863 	return err;
1864 }
1865 EXPORT_SYMBOL(register_netdevice_notifier_net);
1866 
1867 /**
1868  * unregister_netdevice_notifier_net - unregister a per-netns
1869  *                                     network notifier block
1870  * @net: network namespace
1871  * @nb: notifier
1872  *
1873  * Unregister a notifier previously registered by
1874  * register_netdevice_notifier_net(). The notifier is unlinked from the
1875  * kernel structures and may then be reused. A negative errno code
1876  * is returned on a failure.
1877  *
1878  * After unregistering unregister and down device events are synthesized
1879  * for all devices on the device list to the removed notifier to remove
1880  * the need for special case cleanup code.
1881  */
1882 
1883 int unregister_netdevice_notifier_net(struct net *net,
1884 				      struct notifier_block *nb)
1885 {
1886 	int err;
1887 
1888 	rtnl_lock();
1889 	err = __unregister_netdevice_notifier_net(net, nb);
1890 	rtnl_unlock();
1891 	return err;
1892 }
1893 EXPORT_SYMBOL(unregister_netdevice_notifier_net);
1894 
1895 static void __move_netdevice_notifier_net(struct net *src_net,
1896 					  struct net *dst_net,
1897 					  struct notifier_block *nb)
1898 {
1899 	__unregister_netdevice_notifier_net(src_net, nb);
1900 	__register_netdevice_notifier_net(dst_net, nb, true);
1901 }
1902 
1903 int register_netdevice_notifier_dev_net(struct net_device *dev,
1904 					struct notifier_block *nb,
1905 					struct netdev_net_notifier *nn)
1906 {
1907 	int err;
1908 
1909 	rtnl_lock();
1910 	err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
1911 	if (!err) {
1912 		nn->nb = nb;
1913 		list_add(&nn->list, &dev->net_notifier_list);
1914 	}
1915 	rtnl_unlock();
1916 	return err;
1917 }
1918 EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
1919 
1920 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
1921 					  struct notifier_block *nb,
1922 					  struct netdev_net_notifier *nn)
1923 {
1924 	int err;
1925 
1926 	rtnl_lock();
1927 	list_del(&nn->list);
1928 	err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
1929 	rtnl_unlock();
1930 	return err;
1931 }
1932 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
1933 
1934 static void move_netdevice_notifiers_dev_net(struct net_device *dev,
1935 					     struct net *net)
1936 {
1937 	struct netdev_net_notifier *nn;
1938 
1939 	list_for_each_entry(nn, &dev->net_notifier_list, list)
1940 		__move_netdevice_notifier_net(dev_net(dev), net, nn->nb);
1941 }
1942 
1943 /**
1944  *	call_netdevice_notifiers_info - call all network notifier blocks
1945  *	@val: value passed unmodified to notifier function
1946  *	@info: notifier information data
1947  *
1948  *	Call all network notifier blocks.  Parameters and return value
1949  *	are as for raw_notifier_call_chain().
1950  */
1951 
1952 int call_netdevice_notifiers_info(unsigned long val,
1953 				  struct netdev_notifier_info *info)
1954 {
1955 	struct net *net = dev_net(info->dev);
1956 	int ret;
1957 
1958 	ASSERT_RTNL();
1959 
1960 	/* Run per-netns notifier block chain first, then run the global one.
1961 	 * Hopefully, one day, the global one is going to be removed after
1962 	 * all notifier block registrators get converted to be per-netns.
1963 	 */
1964 	ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
1965 	if (ret & NOTIFY_STOP_MASK)
1966 		return ret;
1967 	return raw_notifier_call_chain(&netdev_chain, val, info);
1968 }
1969 
1970 /**
1971  *	call_netdevice_notifiers_info_robust - call per-netns notifier blocks
1972  *	                                       for and rollback on error
1973  *	@val_up: value passed unmodified to notifier function
1974  *	@val_down: value passed unmodified to the notifier function when
1975  *	           recovering from an error on @val_up
1976  *	@info: notifier information data
1977  *
1978  *	Call all per-netns network notifier blocks, but not notifier blocks on
1979  *	the global notifier chain. Parameters and return value are as for
1980  *	raw_notifier_call_chain_robust().
1981  */
1982 
1983 static int
1984 call_netdevice_notifiers_info_robust(unsigned long val_up,
1985 				     unsigned long val_down,
1986 				     struct netdev_notifier_info *info)
1987 {
1988 	struct net *net = dev_net(info->dev);
1989 
1990 	ASSERT_RTNL();
1991 
1992 	return raw_notifier_call_chain_robust(&net->netdev_chain,
1993 					      val_up, val_down, info);
1994 }
1995 
1996 static int call_netdevice_notifiers_extack(unsigned long val,
1997 					   struct net_device *dev,
1998 					   struct netlink_ext_ack *extack)
1999 {
2000 	struct netdev_notifier_info info = {
2001 		.dev = dev,
2002 		.extack = extack,
2003 	};
2004 
2005 	return call_netdevice_notifiers_info(val, &info);
2006 }
2007 
2008 /**
2009  *	call_netdevice_notifiers - call all network notifier blocks
2010  *      @val: value passed unmodified to notifier function
2011  *      @dev: net_device pointer passed unmodified to notifier function
2012  *
2013  *	Call all network notifier blocks.  Parameters and return value
2014  *	are as for raw_notifier_call_chain().
2015  */
2016 
2017 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
2018 {
2019 	return call_netdevice_notifiers_extack(val, dev, NULL);
2020 }
2021 EXPORT_SYMBOL(call_netdevice_notifiers);
2022 
2023 /**
2024  *	call_netdevice_notifiers_mtu - call all network notifier blocks
2025  *	@val: value passed unmodified to notifier function
2026  *	@dev: net_device pointer passed unmodified to notifier function
2027  *	@arg: additional u32 argument passed to the notifier function
2028  *
2029  *	Call all network notifier blocks.  Parameters and return value
2030  *	are as for raw_notifier_call_chain().
2031  */
2032 static int call_netdevice_notifiers_mtu(unsigned long val,
2033 					struct net_device *dev, u32 arg)
2034 {
2035 	struct netdev_notifier_info_ext info = {
2036 		.info.dev = dev,
2037 		.ext.mtu = arg,
2038 	};
2039 
2040 	BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2041 
2042 	return call_netdevice_notifiers_info(val, &info.info);
2043 }
2044 
2045 #ifdef CONFIG_NET_INGRESS
2046 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2047 
2048 void net_inc_ingress_queue(void)
2049 {
2050 	static_branch_inc(&ingress_needed_key);
2051 }
2052 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2053 
2054 void net_dec_ingress_queue(void)
2055 {
2056 	static_branch_dec(&ingress_needed_key);
2057 }
2058 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2059 #endif
2060 
2061 #ifdef CONFIG_NET_EGRESS
2062 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2063 
2064 void net_inc_egress_queue(void)
2065 {
2066 	static_branch_inc(&egress_needed_key);
2067 }
2068 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2069 
2070 void net_dec_egress_queue(void)
2071 {
2072 	static_branch_dec(&egress_needed_key);
2073 }
2074 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2075 #endif
2076 
2077 DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2078 EXPORT_SYMBOL(netstamp_needed_key);
2079 #ifdef CONFIG_JUMP_LABEL
2080 static atomic_t netstamp_needed_deferred;
2081 static atomic_t netstamp_wanted;
2082 static void netstamp_clear(struct work_struct *work)
2083 {
2084 	int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2085 	int wanted;
2086 
2087 	wanted = atomic_add_return(deferred, &netstamp_wanted);
2088 	if (wanted > 0)
2089 		static_branch_enable(&netstamp_needed_key);
2090 	else
2091 		static_branch_disable(&netstamp_needed_key);
2092 }
2093 static DECLARE_WORK(netstamp_work, netstamp_clear);
2094 #endif
2095 
2096 void net_enable_timestamp(void)
2097 {
2098 #ifdef CONFIG_JUMP_LABEL
2099 	int wanted = atomic_read(&netstamp_wanted);
2100 
2101 	while (wanted > 0) {
2102 		if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted + 1))
2103 			return;
2104 	}
2105 	atomic_inc(&netstamp_needed_deferred);
2106 	schedule_work(&netstamp_work);
2107 #else
2108 	static_branch_inc(&netstamp_needed_key);
2109 #endif
2110 }
2111 EXPORT_SYMBOL(net_enable_timestamp);
2112 
2113 void net_disable_timestamp(void)
2114 {
2115 #ifdef CONFIG_JUMP_LABEL
2116 	int wanted = atomic_read(&netstamp_wanted);
2117 
2118 	while (wanted > 1) {
2119 		if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted - 1))
2120 			return;
2121 	}
2122 	atomic_dec(&netstamp_needed_deferred);
2123 	schedule_work(&netstamp_work);
2124 #else
2125 	static_branch_dec(&netstamp_needed_key);
2126 #endif
2127 }
2128 EXPORT_SYMBOL(net_disable_timestamp);
2129 
2130 static inline void net_timestamp_set(struct sk_buff *skb)
2131 {
2132 	skb->tstamp = 0;
2133 	skb->mono_delivery_time = 0;
2134 	if (static_branch_unlikely(&netstamp_needed_key))
2135 		skb->tstamp = ktime_get_real();
2136 }
2137 
2138 #define net_timestamp_check(COND, SKB)				\
2139 	if (static_branch_unlikely(&netstamp_needed_key)) {	\
2140 		if ((COND) && !(SKB)->tstamp)			\
2141 			(SKB)->tstamp = ktime_get_real();	\
2142 	}							\
2143 
2144 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2145 {
2146 	return __is_skb_forwardable(dev, skb, true);
2147 }
2148 EXPORT_SYMBOL_GPL(is_skb_forwardable);
2149 
2150 static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb,
2151 			      bool check_mtu)
2152 {
2153 	int ret = ____dev_forward_skb(dev, skb, check_mtu);
2154 
2155 	if (likely(!ret)) {
2156 		skb->protocol = eth_type_trans(skb, dev);
2157 		skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2158 	}
2159 
2160 	return ret;
2161 }
2162 
2163 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2164 {
2165 	return __dev_forward_skb2(dev, skb, true);
2166 }
2167 EXPORT_SYMBOL_GPL(__dev_forward_skb);
2168 
2169 /**
2170  * dev_forward_skb - loopback an skb to another netif
2171  *
2172  * @dev: destination network device
2173  * @skb: buffer to forward
2174  *
2175  * return values:
2176  *	NET_RX_SUCCESS	(no congestion)
2177  *	NET_RX_DROP     (packet was dropped, but freed)
2178  *
2179  * dev_forward_skb can be used for injecting an skb from the
2180  * start_xmit function of one device into the receive queue
2181  * of another device.
2182  *
2183  * The receiving device may be in another namespace, so
2184  * we have to clear all information in the skb that could
2185  * impact namespace isolation.
2186  */
2187 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2188 {
2189 	return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2190 }
2191 EXPORT_SYMBOL_GPL(dev_forward_skb);
2192 
2193 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb)
2194 {
2195 	return __dev_forward_skb2(dev, skb, false) ?: netif_rx_internal(skb);
2196 }
2197 
2198 static inline int deliver_skb(struct sk_buff *skb,
2199 			      struct packet_type *pt_prev,
2200 			      struct net_device *orig_dev)
2201 {
2202 	if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2203 		return -ENOMEM;
2204 	refcount_inc(&skb->users);
2205 	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2206 }
2207 
2208 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2209 					  struct packet_type **pt,
2210 					  struct net_device *orig_dev,
2211 					  __be16 type,
2212 					  struct list_head *ptype_list)
2213 {
2214 	struct packet_type *ptype, *pt_prev = *pt;
2215 
2216 	list_for_each_entry_rcu(ptype, ptype_list, list) {
2217 		if (ptype->type != type)
2218 			continue;
2219 		if (pt_prev)
2220 			deliver_skb(skb, pt_prev, orig_dev);
2221 		pt_prev = ptype;
2222 	}
2223 	*pt = pt_prev;
2224 }
2225 
2226 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2227 {
2228 	if (!ptype->af_packet_priv || !skb->sk)
2229 		return false;
2230 
2231 	if (ptype->id_match)
2232 		return ptype->id_match(ptype, skb->sk);
2233 	else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2234 		return true;
2235 
2236 	return false;
2237 }
2238 
2239 /**
2240  * dev_nit_active - return true if any network interface taps are in use
2241  *
2242  * @dev: network device to check for the presence of taps
2243  */
2244 bool dev_nit_active(struct net_device *dev)
2245 {
2246 	return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
2247 }
2248 EXPORT_SYMBOL_GPL(dev_nit_active);
2249 
2250 /*
2251  *	Support routine. Sends outgoing frames to any network
2252  *	taps currently in use.
2253  */
2254 
2255 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2256 {
2257 	struct packet_type *ptype;
2258 	struct sk_buff *skb2 = NULL;
2259 	struct packet_type *pt_prev = NULL;
2260 	struct list_head *ptype_list = &ptype_all;
2261 
2262 	rcu_read_lock();
2263 again:
2264 	list_for_each_entry_rcu(ptype, ptype_list, list) {
2265 		if (ptype->ignore_outgoing)
2266 			continue;
2267 
2268 		/* Never send packets back to the socket
2269 		 * they originated from - MvS (miquels@drinkel.ow.org)
2270 		 */
2271 		if (skb_loop_sk(ptype, skb))
2272 			continue;
2273 
2274 		if (pt_prev) {
2275 			deliver_skb(skb2, pt_prev, skb->dev);
2276 			pt_prev = ptype;
2277 			continue;
2278 		}
2279 
2280 		/* need to clone skb, done only once */
2281 		skb2 = skb_clone(skb, GFP_ATOMIC);
2282 		if (!skb2)
2283 			goto out_unlock;
2284 
2285 		net_timestamp_set(skb2);
2286 
2287 		/* skb->nh should be correctly
2288 		 * set by sender, so that the second statement is
2289 		 * just protection against buggy protocols.
2290 		 */
2291 		skb_reset_mac_header(skb2);
2292 
2293 		if (skb_network_header(skb2) < skb2->data ||
2294 		    skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2295 			net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2296 					     ntohs(skb2->protocol),
2297 					     dev->name);
2298 			skb_reset_network_header(skb2);
2299 		}
2300 
2301 		skb2->transport_header = skb2->network_header;
2302 		skb2->pkt_type = PACKET_OUTGOING;
2303 		pt_prev = ptype;
2304 	}
2305 
2306 	if (ptype_list == &ptype_all) {
2307 		ptype_list = &dev->ptype_all;
2308 		goto again;
2309 	}
2310 out_unlock:
2311 	if (pt_prev) {
2312 		if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2313 			pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2314 		else
2315 			kfree_skb(skb2);
2316 	}
2317 	rcu_read_unlock();
2318 }
2319 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2320 
2321 /**
2322  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2323  * @dev: Network device
2324  * @txq: number of queues available
2325  *
2326  * If real_num_tx_queues is changed the tc mappings may no longer be
2327  * valid. To resolve this verify the tc mapping remains valid and if
2328  * not NULL the mapping. With no priorities mapping to this
2329  * offset/count pair it will no longer be used. In the worst case TC0
2330  * is invalid nothing can be done so disable priority mappings. If is
2331  * expected that drivers will fix this mapping if they can before
2332  * calling netif_set_real_num_tx_queues.
2333  */
2334 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2335 {
2336 	int i;
2337 	struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2338 
2339 	/* If TC0 is invalidated disable TC mapping */
2340 	if (tc->offset + tc->count > txq) {
2341 		netdev_warn(dev, "Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2342 		dev->num_tc = 0;
2343 		return;
2344 	}
2345 
2346 	/* Invalidated prio to tc mappings set to TC0 */
2347 	for (i = 1; i < TC_BITMASK + 1; i++) {
2348 		int q = netdev_get_prio_tc_map(dev, i);
2349 
2350 		tc = &dev->tc_to_txq[q];
2351 		if (tc->offset + tc->count > txq) {
2352 			netdev_warn(dev, "Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2353 				    i, q);
2354 			netdev_set_prio_tc_map(dev, i, 0);
2355 		}
2356 	}
2357 }
2358 
2359 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2360 {
2361 	if (dev->num_tc) {
2362 		struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2363 		int i;
2364 
2365 		/* walk through the TCs and see if it falls into any of them */
2366 		for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2367 			if ((txq - tc->offset) < tc->count)
2368 				return i;
2369 		}
2370 
2371 		/* didn't find it, just return -1 to indicate no match */
2372 		return -1;
2373 	}
2374 
2375 	return 0;
2376 }
2377 EXPORT_SYMBOL(netdev_txq_to_tc);
2378 
2379 #ifdef CONFIG_XPS
2380 static struct static_key xps_needed __read_mostly;
2381 static struct static_key xps_rxqs_needed __read_mostly;
2382 static DEFINE_MUTEX(xps_map_mutex);
2383 #define xmap_dereference(P)		\
2384 	rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2385 
2386 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2387 			     struct xps_dev_maps *old_maps, int tci, u16 index)
2388 {
2389 	struct xps_map *map = NULL;
2390 	int pos;
2391 
2392 	map = xmap_dereference(dev_maps->attr_map[tci]);
2393 	if (!map)
2394 		return false;
2395 
2396 	for (pos = map->len; pos--;) {
2397 		if (map->queues[pos] != index)
2398 			continue;
2399 
2400 		if (map->len > 1) {
2401 			map->queues[pos] = map->queues[--map->len];
2402 			break;
2403 		}
2404 
2405 		if (old_maps)
2406 			RCU_INIT_POINTER(old_maps->attr_map[tci], NULL);
2407 		RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2408 		kfree_rcu(map, rcu);
2409 		return false;
2410 	}
2411 
2412 	return true;
2413 }
2414 
2415 static bool remove_xps_queue_cpu(struct net_device *dev,
2416 				 struct xps_dev_maps *dev_maps,
2417 				 int cpu, u16 offset, u16 count)
2418 {
2419 	int num_tc = dev_maps->num_tc;
2420 	bool active = false;
2421 	int tci;
2422 
2423 	for (tci = cpu * num_tc; num_tc--; tci++) {
2424 		int i, j;
2425 
2426 		for (i = count, j = offset; i--; j++) {
2427 			if (!remove_xps_queue(dev_maps, NULL, tci, j))
2428 				break;
2429 		}
2430 
2431 		active |= i < 0;
2432 	}
2433 
2434 	return active;
2435 }
2436 
2437 static void reset_xps_maps(struct net_device *dev,
2438 			   struct xps_dev_maps *dev_maps,
2439 			   enum xps_map_type type)
2440 {
2441 	static_key_slow_dec_cpuslocked(&xps_needed);
2442 	if (type == XPS_RXQS)
2443 		static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2444 
2445 	RCU_INIT_POINTER(dev->xps_maps[type], NULL);
2446 
2447 	kfree_rcu(dev_maps, rcu);
2448 }
2449 
2450 static void clean_xps_maps(struct net_device *dev, enum xps_map_type type,
2451 			   u16 offset, u16 count)
2452 {
2453 	struct xps_dev_maps *dev_maps;
2454 	bool active = false;
2455 	int i, j;
2456 
2457 	dev_maps = xmap_dereference(dev->xps_maps[type]);
2458 	if (!dev_maps)
2459 		return;
2460 
2461 	for (j = 0; j < dev_maps->nr_ids; j++)
2462 		active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, count);
2463 	if (!active)
2464 		reset_xps_maps(dev, dev_maps, type);
2465 
2466 	if (type == XPS_CPUS) {
2467 		for (i = offset + (count - 1); count--; i--)
2468 			netdev_queue_numa_node_write(
2469 				netdev_get_tx_queue(dev, i), NUMA_NO_NODE);
2470 	}
2471 }
2472 
2473 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2474 				   u16 count)
2475 {
2476 	if (!static_key_false(&xps_needed))
2477 		return;
2478 
2479 	cpus_read_lock();
2480 	mutex_lock(&xps_map_mutex);
2481 
2482 	if (static_key_false(&xps_rxqs_needed))
2483 		clean_xps_maps(dev, XPS_RXQS, offset, count);
2484 
2485 	clean_xps_maps(dev, XPS_CPUS, offset, count);
2486 
2487 	mutex_unlock(&xps_map_mutex);
2488 	cpus_read_unlock();
2489 }
2490 
2491 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2492 {
2493 	netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2494 }
2495 
2496 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2497 				      u16 index, bool is_rxqs_map)
2498 {
2499 	struct xps_map *new_map;
2500 	int alloc_len = XPS_MIN_MAP_ALLOC;
2501 	int i, pos;
2502 
2503 	for (pos = 0; map && pos < map->len; pos++) {
2504 		if (map->queues[pos] != index)
2505 			continue;
2506 		return map;
2507 	}
2508 
2509 	/* Need to add tx-queue to this CPU's/rx-queue's existing map */
2510 	if (map) {
2511 		if (pos < map->alloc_len)
2512 			return map;
2513 
2514 		alloc_len = map->alloc_len * 2;
2515 	}
2516 
2517 	/* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2518 	 *  map
2519 	 */
2520 	if (is_rxqs_map)
2521 		new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2522 	else
2523 		new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2524 				       cpu_to_node(attr_index));
2525 	if (!new_map)
2526 		return NULL;
2527 
2528 	for (i = 0; i < pos; i++)
2529 		new_map->queues[i] = map->queues[i];
2530 	new_map->alloc_len = alloc_len;
2531 	new_map->len = pos;
2532 
2533 	return new_map;
2534 }
2535 
2536 /* Copy xps maps at a given index */
2537 static void xps_copy_dev_maps(struct xps_dev_maps *dev_maps,
2538 			      struct xps_dev_maps *new_dev_maps, int index,
2539 			      int tc, bool skip_tc)
2540 {
2541 	int i, tci = index * dev_maps->num_tc;
2542 	struct xps_map *map;
2543 
2544 	/* copy maps belonging to foreign traffic classes */
2545 	for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2546 		if (i == tc && skip_tc)
2547 			continue;
2548 
2549 		/* fill in the new device map from the old device map */
2550 		map = xmap_dereference(dev_maps->attr_map[tci]);
2551 		RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2552 	}
2553 }
2554 
2555 /* Must be called under cpus_read_lock */
2556 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2557 			  u16 index, enum xps_map_type type)
2558 {
2559 	struct xps_dev_maps *dev_maps, *new_dev_maps = NULL, *old_dev_maps = NULL;
2560 	const unsigned long *online_mask = NULL;
2561 	bool active = false, copy = false;
2562 	int i, j, tci, numa_node_id = -2;
2563 	int maps_sz, num_tc = 1, tc = 0;
2564 	struct xps_map *map, *new_map;
2565 	unsigned int nr_ids;
2566 
2567 	WARN_ON_ONCE(index >= dev->num_tx_queues);
2568 
2569 	if (dev->num_tc) {
2570 		/* Do not allow XPS on subordinate device directly */
2571 		num_tc = dev->num_tc;
2572 		if (num_tc < 0)
2573 			return -EINVAL;
2574 
2575 		/* If queue belongs to subordinate dev use its map */
2576 		dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2577 
2578 		tc = netdev_txq_to_tc(dev, index);
2579 		if (tc < 0)
2580 			return -EINVAL;
2581 	}
2582 
2583 	mutex_lock(&xps_map_mutex);
2584 
2585 	dev_maps = xmap_dereference(dev->xps_maps[type]);
2586 	if (type == XPS_RXQS) {
2587 		maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2588 		nr_ids = dev->num_rx_queues;
2589 	} else {
2590 		maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2591 		if (num_possible_cpus() > 1)
2592 			online_mask = cpumask_bits(cpu_online_mask);
2593 		nr_ids = nr_cpu_ids;
2594 	}
2595 
2596 	if (maps_sz < L1_CACHE_BYTES)
2597 		maps_sz = L1_CACHE_BYTES;
2598 
2599 	/* The old dev_maps could be larger or smaller than the one we're
2600 	 * setting up now, as dev->num_tc or nr_ids could have been updated in
2601 	 * between. We could try to be smart, but let's be safe instead and only
2602 	 * copy foreign traffic classes if the two map sizes match.
2603 	 */
2604 	if (dev_maps &&
2605 	    dev_maps->num_tc == num_tc && dev_maps->nr_ids == nr_ids)
2606 		copy = true;
2607 
2608 	/* allocate memory for queue storage */
2609 	for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2610 	     j < nr_ids;) {
2611 		if (!new_dev_maps) {
2612 			new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2613 			if (!new_dev_maps) {
2614 				mutex_unlock(&xps_map_mutex);
2615 				return -ENOMEM;
2616 			}
2617 
2618 			new_dev_maps->nr_ids = nr_ids;
2619 			new_dev_maps->num_tc = num_tc;
2620 		}
2621 
2622 		tci = j * num_tc + tc;
2623 		map = copy ? xmap_dereference(dev_maps->attr_map[tci]) : NULL;
2624 
2625 		map = expand_xps_map(map, j, index, type == XPS_RXQS);
2626 		if (!map)
2627 			goto error;
2628 
2629 		RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2630 	}
2631 
2632 	if (!new_dev_maps)
2633 		goto out_no_new_maps;
2634 
2635 	if (!dev_maps) {
2636 		/* Increment static keys at most once per type */
2637 		static_key_slow_inc_cpuslocked(&xps_needed);
2638 		if (type == XPS_RXQS)
2639 			static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2640 	}
2641 
2642 	for (j = 0; j < nr_ids; j++) {
2643 		bool skip_tc = false;
2644 
2645 		tci = j * num_tc + tc;
2646 		if (netif_attr_test_mask(j, mask, nr_ids) &&
2647 		    netif_attr_test_online(j, online_mask, nr_ids)) {
2648 			/* add tx-queue to CPU/rx-queue maps */
2649 			int pos = 0;
2650 
2651 			skip_tc = true;
2652 
2653 			map = xmap_dereference(new_dev_maps->attr_map[tci]);
2654 			while ((pos < map->len) && (map->queues[pos] != index))
2655 				pos++;
2656 
2657 			if (pos == map->len)
2658 				map->queues[map->len++] = index;
2659 #ifdef CONFIG_NUMA
2660 			if (type == XPS_CPUS) {
2661 				if (numa_node_id == -2)
2662 					numa_node_id = cpu_to_node(j);
2663 				else if (numa_node_id != cpu_to_node(j))
2664 					numa_node_id = -1;
2665 			}
2666 #endif
2667 		}
2668 
2669 		if (copy)
2670 			xps_copy_dev_maps(dev_maps, new_dev_maps, j, tc,
2671 					  skip_tc);
2672 	}
2673 
2674 	rcu_assign_pointer(dev->xps_maps[type], new_dev_maps);
2675 
2676 	/* Cleanup old maps */
2677 	if (!dev_maps)
2678 		goto out_no_old_maps;
2679 
2680 	for (j = 0; j < dev_maps->nr_ids; j++) {
2681 		for (i = num_tc, tci = j * dev_maps->num_tc; i--; tci++) {
2682 			map = xmap_dereference(dev_maps->attr_map[tci]);
2683 			if (!map)
2684 				continue;
2685 
2686 			if (copy) {
2687 				new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2688 				if (map == new_map)
2689 					continue;
2690 			}
2691 
2692 			RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2693 			kfree_rcu(map, rcu);
2694 		}
2695 	}
2696 
2697 	old_dev_maps = dev_maps;
2698 
2699 out_no_old_maps:
2700 	dev_maps = new_dev_maps;
2701 	active = true;
2702 
2703 out_no_new_maps:
2704 	if (type == XPS_CPUS)
2705 		/* update Tx queue numa node */
2706 		netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2707 					     (numa_node_id >= 0) ?
2708 					     numa_node_id : NUMA_NO_NODE);
2709 
2710 	if (!dev_maps)
2711 		goto out_no_maps;
2712 
2713 	/* removes tx-queue from unused CPUs/rx-queues */
2714 	for (j = 0; j < dev_maps->nr_ids; j++) {
2715 		tci = j * dev_maps->num_tc;
2716 
2717 		for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2718 			if (i == tc &&
2719 			    netif_attr_test_mask(j, mask, dev_maps->nr_ids) &&
2720 			    netif_attr_test_online(j, online_mask, dev_maps->nr_ids))
2721 				continue;
2722 
2723 			active |= remove_xps_queue(dev_maps,
2724 						   copy ? old_dev_maps : NULL,
2725 						   tci, index);
2726 		}
2727 	}
2728 
2729 	if (old_dev_maps)
2730 		kfree_rcu(old_dev_maps, rcu);
2731 
2732 	/* free map if not active */
2733 	if (!active)
2734 		reset_xps_maps(dev, dev_maps, type);
2735 
2736 out_no_maps:
2737 	mutex_unlock(&xps_map_mutex);
2738 
2739 	return 0;
2740 error:
2741 	/* remove any maps that we added */
2742 	for (j = 0; j < nr_ids; j++) {
2743 		for (i = num_tc, tci = j * num_tc; i--; tci++) {
2744 			new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2745 			map = copy ?
2746 			      xmap_dereference(dev_maps->attr_map[tci]) :
2747 			      NULL;
2748 			if (new_map && new_map != map)
2749 				kfree(new_map);
2750 		}
2751 	}
2752 
2753 	mutex_unlock(&xps_map_mutex);
2754 
2755 	kfree(new_dev_maps);
2756 	return -ENOMEM;
2757 }
2758 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2759 
2760 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2761 			u16 index)
2762 {
2763 	int ret;
2764 
2765 	cpus_read_lock();
2766 	ret =  __netif_set_xps_queue(dev, cpumask_bits(mask), index, XPS_CPUS);
2767 	cpus_read_unlock();
2768 
2769 	return ret;
2770 }
2771 EXPORT_SYMBOL(netif_set_xps_queue);
2772 
2773 #endif
2774 static void netdev_unbind_all_sb_channels(struct net_device *dev)
2775 {
2776 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2777 
2778 	/* Unbind any subordinate channels */
2779 	while (txq-- != &dev->_tx[0]) {
2780 		if (txq->sb_dev)
2781 			netdev_unbind_sb_channel(dev, txq->sb_dev);
2782 	}
2783 }
2784 
2785 void netdev_reset_tc(struct net_device *dev)
2786 {
2787 #ifdef CONFIG_XPS
2788 	netif_reset_xps_queues_gt(dev, 0);
2789 #endif
2790 	netdev_unbind_all_sb_channels(dev);
2791 
2792 	/* Reset TC configuration of device */
2793 	dev->num_tc = 0;
2794 	memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2795 	memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2796 }
2797 EXPORT_SYMBOL(netdev_reset_tc);
2798 
2799 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2800 {
2801 	if (tc >= dev->num_tc)
2802 		return -EINVAL;
2803 
2804 #ifdef CONFIG_XPS
2805 	netif_reset_xps_queues(dev, offset, count);
2806 #endif
2807 	dev->tc_to_txq[tc].count = count;
2808 	dev->tc_to_txq[tc].offset = offset;
2809 	return 0;
2810 }
2811 EXPORT_SYMBOL(netdev_set_tc_queue);
2812 
2813 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2814 {
2815 	if (num_tc > TC_MAX_QUEUE)
2816 		return -EINVAL;
2817 
2818 #ifdef CONFIG_XPS
2819 	netif_reset_xps_queues_gt(dev, 0);
2820 #endif
2821 	netdev_unbind_all_sb_channels(dev);
2822 
2823 	dev->num_tc = num_tc;
2824 	return 0;
2825 }
2826 EXPORT_SYMBOL(netdev_set_num_tc);
2827 
2828 void netdev_unbind_sb_channel(struct net_device *dev,
2829 			      struct net_device *sb_dev)
2830 {
2831 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2832 
2833 #ifdef CONFIG_XPS
2834 	netif_reset_xps_queues_gt(sb_dev, 0);
2835 #endif
2836 	memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2837 	memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2838 
2839 	while (txq-- != &dev->_tx[0]) {
2840 		if (txq->sb_dev == sb_dev)
2841 			txq->sb_dev = NULL;
2842 	}
2843 }
2844 EXPORT_SYMBOL(netdev_unbind_sb_channel);
2845 
2846 int netdev_bind_sb_channel_queue(struct net_device *dev,
2847 				 struct net_device *sb_dev,
2848 				 u8 tc, u16 count, u16 offset)
2849 {
2850 	/* Make certain the sb_dev and dev are already configured */
2851 	if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2852 		return -EINVAL;
2853 
2854 	/* We cannot hand out queues we don't have */
2855 	if ((offset + count) > dev->real_num_tx_queues)
2856 		return -EINVAL;
2857 
2858 	/* Record the mapping */
2859 	sb_dev->tc_to_txq[tc].count = count;
2860 	sb_dev->tc_to_txq[tc].offset = offset;
2861 
2862 	/* Provide a way for Tx queue to find the tc_to_txq map or
2863 	 * XPS map for itself.
2864 	 */
2865 	while (count--)
2866 		netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2867 
2868 	return 0;
2869 }
2870 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2871 
2872 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2873 {
2874 	/* Do not use a multiqueue device to represent a subordinate channel */
2875 	if (netif_is_multiqueue(dev))
2876 		return -ENODEV;
2877 
2878 	/* We allow channels 1 - 32767 to be used for subordinate channels.
2879 	 * Channel 0 is meant to be "native" mode and used only to represent
2880 	 * the main root device. We allow writing 0 to reset the device back
2881 	 * to normal mode after being used as a subordinate channel.
2882 	 */
2883 	if (channel > S16_MAX)
2884 		return -EINVAL;
2885 
2886 	dev->num_tc = -channel;
2887 
2888 	return 0;
2889 }
2890 EXPORT_SYMBOL(netdev_set_sb_channel);
2891 
2892 /*
2893  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2894  * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2895  */
2896 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2897 {
2898 	bool disabling;
2899 	int rc;
2900 
2901 	disabling = txq < dev->real_num_tx_queues;
2902 
2903 	if (txq < 1 || txq > dev->num_tx_queues)
2904 		return -EINVAL;
2905 
2906 	if (dev->reg_state == NETREG_REGISTERED ||
2907 	    dev->reg_state == NETREG_UNREGISTERING) {
2908 		ASSERT_RTNL();
2909 
2910 		rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2911 						  txq);
2912 		if (rc)
2913 			return rc;
2914 
2915 		if (dev->num_tc)
2916 			netif_setup_tc(dev, txq);
2917 
2918 		dev_qdisc_change_real_num_tx(dev, txq);
2919 
2920 		dev->real_num_tx_queues = txq;
2921 
2922 		if (disabling) {
2923 			synchronize_net();
2924 			qdisc_reset_all_tx_gt(dev, txq);
2925 #ifdef CONFIG_XPS
2926 			netif_reset_xps_queues_gt(dev, txq);
2927 #endif
2928 		}
2929 	} else {
2930 		dev->real_num_tx_queues = txq;
2931 	}
2932 
2933 	return 0;
2934 }
2935 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2936 
2937 #ifdef CONFIG_SYSFS
2938 /**
2939  *	netif_set_real_num_rx_queues - set actual number of RX queues used
2940  *	@dev: Network device
2941  *	@rxq: Actual number of RX queues
2942  *
2943  *	This must be called either with the rtnl_lock held or before
2944  *	registration of the net device.  Returns 0 on success, or a
2945  *	negative error code.  If called before registration, it always
2946  *	succeeds.
2947  */
2948 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2949 {
2950 	int rc;
2951 
2952 	if (rxq < 1 || rxq > dev->num_rx_queues)
2953 		return -EINVAL;
2954 
2955 	if (dev->reg_state == NETREG_REGISTERED) {
2956 		ASSERT_RTNL();
2957 
2958 		rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2959 						  rxq);
2960 		if (rc)
2961 			return rc;
2962 	}
2963 
2964 	dev->real_num_rx_queues = rxq;
2965 	return 0;
2966 }
2967 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2968 #endif
2969 
2970 /**
2971  *	netif_set_real_num_queues - set actual number of RX and TX queues used
2972  *	@dev: Network device
2973  *	@txq: Actual number of TX queues
2974  *	@rxq: Actual number of RX queues
2975  *
2976  *	Set the real number of both TX and RX queues.
2977  *	Does nothing if the number of queues is already correct.
2978  */
2979 int netif_set_real_num_queues(struct net_device *dev,
2980 			      unsigned int txq, unsigned int rxq)
2981 {
2982 	unsigned int old_rxq = dev->real_num_rx_queues;
2983 	int err;
2984 
2985 	if (txq < 1 || txq > dev->num_tx_queues ||
2986 	    rxq < 1 || rxq > dev->num_rx_queues)
2987 		return -EINVAL;
2988 
2989 	/* Start from increases, so the error path only does decreases -
2990 	 * decreases can't fail.
2991 	 */
2992 	if (rxq > dev->real_num_rx_queues) {
2993 		err = netif_set_real_num_rx_queues(dev, rxq);
2994 		if (err)
2995 			return err;
2996 	}
2997 	if (txq > dev->real_num_tx_queues) {
2998 		err = netif_set_real_num_tx_queues(dev, txq);
2999 		if (err)
3000 			goto undo_rx;
3001 	}
3002 	if (rxq < dev->real_num_rx_queues)
3003 		WARN_ON(netif_set_real_num_rx_queues(dev, rxq));
3004 	if (txq < dev->real_num_tx_queues)
3005 		WARN_ON(netif_set_real_num_tx_queues(dev, txq));
3006 
3007 	return 0;
3008 undo_rx:
3009 	WARN_ON(netif_set_real_num_rx_queues(dev, old_rxq));
3010 	return err;
3011 }
3012 EXPORT_SYMBOL(netif_set_real_num_queues);
3013 
3014 /**
3015  * netif_set_tso_max_size() - set the max size of TSO frames supported
3016  * @dev:	netdev to update
3017  * @size:	max skb->len of a TSO frame
3018  *
3019  * Set the limit on the size of TSO super-frames the device can handle.
3020  * Unless explicitly set the stack will assume the value of
3021  * %GSO_LEGACY_MAX_SIZE.
3022  */
3023 void netif_set_tso_max_size(struct net_device *dev, unsigned int size)
3024 {
3025 	dev->tso_max_size = min(GSO_MAX_SIZE, size);
3026 	if (size < READ_ONCE(dev->gso_max_size))
3027 		netif_set_gso_max_size(dev, size);
3028 	if (size < READ_ONCE(dev->gso_ipv4_max_size))
3029 		netif_set_gso_ipv4_max_size(dev, size);
3030 }
3031 EXPORT_SYMBOL(netif_set_tso_max_size);
3032 
3033 /**
3034  * netif_set_tso_max_segs() - set the max number of segs supported for TSO
3035  * @dev:	netdev to update
3036  * @segs:	max number of TCP segments
3037  *
3038  * Set the limit on the number of TCP segments the device can generate from
3039  * a single TSO super-frame.
3040  * Unless explicitly set the stack will assume the value of %GSO_MAX_SEGS.
3041  */
3042 void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs)
3043 {
3044 	dev->tso_max_segs = segs;
3045 	if (segs < READ_ONCE(dev->gso_max_segs))
3046 		netif_set_gso_max_segs(dev, segs);
3047 }
3048 EXPORT_SYMBOL(netif_set_tso_max_segs);
3049 
3050 /**
3051  * netif_inherit_tso_max() - copy all TSO limits from a lower device to an upper
3052  * @to:		netdev to update
3053  * @from:	netdev from which to copy the limits
3054  */
3055 void netif_inherit_tso_max(struct net_device *to, const struct net_device *from)
3056 {
3057 	netif_set_tso_max_size(to, from->tso_max_size);
3058 	netif_set_tso_max_segs(to, from->tso_max_segs);
3059 }
3060 EXPORT_SYMBOL(netif_inherit_tso_max);
3061 
3062 /**
3063  * netif_get_num_default_rss_queues - default number of RSS queues
3064  *
3065  * Default value is the number of physical cores if there are only 1 or 2, or
3066  * divided by 2 if there are more.
3067  */
3068 int netif_get_num_default_rss_queues(void)
3069 {
3070 	cpumask_var_t cpus;
3071 	int cpu, count = 0;
3072 
3073 	if (unlikely(is_kdump_kernel() || !zalloc_cpumask_var(&cpus, GFP_KERNEL)))
3074 		return 1;
3075 
3076 	cpumask_copy(cpus, cpu_online_mask);
3077 	for_each_cpu(cpu, cpus) {
3078 		++count;
3079 		cpumask_andnot(cpus, cpus, topology_sibling_cpumask(cpu));
3080 	}
3081 	free_cpumask_var(cpus);
3082 
3083 	return count > 2 ? DIV_ROUND_UP(count, 2) : count;
3084 }
3085 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3086 
3087 static void __netif_reschedule(struct Qdisc *q)
3088 {
3089 	struct softnet_data *sd;
3090 	unsigned long flags;
3091 
3092 	local_irq_save(flags);
3093 	sd = this_cpu_ptr(&softnet_data);
3094 	q->next_sched = NULL;
3095 	*sd->output_queue_tailp = q;
3096 	sd->output_queue_tailp = &q->next_sched;
3097 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
3098 	local_irq_restore(flags);
3099 }
3100 
3101 void __netif_schedule(struct Qdisc *q)
3102 {
3103 	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3104 		__netif_reschedule(q);
3105 }
3106 EXPORT_SYMBOL(__netif_schedule);
3107 
3108 struct dev_kfree_skb_cb {
3109 	enum skb_drop_reason reason;
3110 };
3111 
3112 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
3113 {
3114 	return (struct dev_kfree_skb_cb *)skb->cb;
3115 }
3116 
3117 void netif_schedule_queue(struct netdev_queue *txq)
3118 {
3119 	rcu_read_lock();
3120 	if (!netif_xmit_stopped(txq)) {
3121 		struct Qdisc *q = rcu_dereference(txq->qdisc);
3122 
3123 		__netif_schedule(q);
3124 	}
3125 	rcu_read_unlock();
3126 }
3127 EXPORT_SYMBOL(netif_schedule_queue);
3128 
3129 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3130 {
3131 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3132 		struct Qdisc *q;
3133 
3134 		rcu_read_lock();
3135 		q = rcu_dereference(dev_queue->qdisc);
3136 		__netif_schedule(q);
3137 		rcu_read_unlock();
3138 	}
3139 }
3140 EXPORT_SYMBOL(netif_tx_wake_queue);
3141 
3142 void dev_kfree_skb_irq_reason(struct sk_buff *skb, enum skb_drop_reason reason)
3143 {
3144 	unsigned long flags;
3145 
3146 	if (unlikely(!skb))
3147 		return;
3148 
3149 	if (likely(refcount_read(&skb->users) == 1)) {
3150 		smp_rmb();
3151 		refcount_set(&skb->users, 0);
3152 	} else if (likely(!refcount_dec_and_test(&skb->users))) {
3153 		return;
3154 	}
3155 	get_kfree_skb_cb(skb)->reason = reason;
3156 	local_irq_save(flags);
3157 	skb->next = __this_cpu_read(softnet_data.completion_queue);
3158 	__this_cpu_write(softnet_data.completion_queue, skb);
3159 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
3160 	local_irq_restore(flags);
3161 }
3162 EXPORT_SYMBOL(dev_kfree_skb_irq_reason);
3163 
3164 void dev_kfree_skb_any_reason(struct sk_buff *skb, enum skb_drop_reason reason)
3165 {
3166 	if (in_hardirq() || irqs_disabled())
3167 		dev_kfree_skb_irq_reason(skb, reason);
3168 	else
3169 		kfree_skb_reason(skb, reason);
3170 }
3171 EXPORT_SYMBOL(dev_kfree_skb_any_reason);
3172 
3173 
3174 /**
3175  * netif_device_detach - mark device as removed
3176  * @dev: network device
3177  *
3178  * Mark device as removed from system and therefore no longer available.
3179  */
3180 void netif_device_detach(struct net_device *dev)
3181 {
3182 	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3183 	    netif_running(dev)) {
3184 		netif_tx_stop_all_queues(dev);
3185 	}
3186 }
3187 EXPORT_SYMBOL(netif_device_detach);
3188 
3189 /**
3190  * netif_device_attach - mark device as attached
3191  * @dev: network device
3192  *
3193  * Mark device as attached from system and restart if needed.
3194  */
3195 void netif_device_attach(struct net_device *dev)
3196 {
3197 	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3198 	    netif_running(dev)) {
3199 		netif_tx_wake_all_queues(dev);
3200 		__netdev_watchdog_up(dev);
3201 	}
3202 }
3203 EXPORT_SYMBOL(netif_device_attach);
3204 
3205 /*
3206  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3207  * to be used as a distribution range.
3208  */
3209 static u16 skb_tx_hash(const struct net_device *dev,
3210 		       const struct net_device *sb_dev,
3211 		       struct sk_buff *skb)
3212 {
3213 	u32 hash;
3214 	u16 qoffset = 0;
3215 	u16 qcount = dev->real_num_tx_queues;
3216 
3217 	if (dev->num_tc) {
3218 		u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3219 
3220 		qoffset = sb_dev->tc_to_txq[tc].offset;
3221 		qcount = sb_dev->tc_to_txq[tc].count;
3222 		if (unlikely(!qcount)) {
3223 			net_warn_ratelimited("%s: invalid qcount, qoffset %u for tc %u\n",
3224 					     sb_dev->name, qoffset, tc);
3225 			qoffset = 0;
3226 			qcount = dev->real_num_tx_queues;
3227 		}
3228 	}
3229 
3230 	if (skb_rx_queue_recorded(skb)) {
3231 		DEBUG_NET_WARN_ON_ONCE(qcount == 0);
3232 		hash = skb_get_rx_queue(skb);
3233 		if (hash >= qoffset)
3234 			hash -= qoffset;
3235 		while (unlikely(hash >= qcount))
3236 			hash -= qcount;
3237 		return hash + qoffset;
3238 	}
3239 
3240 	return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3241 }
3242 
3243 void skb_warn_bad_offload(const struct sk_buff *skb)
3244 {
3245 	static const netdev_features_t null_features;
3246 	struct net_device *dev = skb->dev;
3247 	const char *name = "";
3248 
3249 	if (!net_ratelimit())
3250 		return;
3251 
3252 	if (dev) {
3253 		if (dev->dev.parent)
3254 			name = dev_driver_string(dev->dev.parent);
3255 		else
3256 			name = netdev_name(dev);
3257 	}
3258 	skb_dump(KERN_WARNING, skb, false);
3259 	WARN(1, "%s: caps=(%pNF, %pNF)\n",
3260 	     name, dev ? &dev->features : &null_features,
3261 	     skb->sk ? &skb->sk->sk_route_caps : &null_features);
3262 }
3263 
3264 /*
3265  * Invalidate hardware checksum when packet is to be mangled, and
3266  * complete checksum manually on outgoing path.
3267  */
3268 int skb_checksum_help(struct sk_buff *skb)
3269 {
3270 	__wsum csum;
3271 	int ret = 0, offset;
3272 
3273 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3274 		goto out_set_summed;
3275 
3276 	if (unlikely(skb_is_gso(skb))) {
3277 		skb_warn_bad_offload(skb);
3278 		return -EINVAL;
3279 	}
3280 
3281 	/* Before computing a checksum, we should make sure no frag could
3282 	 * be modified by an external entity : checksum could be wrong.
3283 	 */
3284 	if (skb_has_shared_frag(skb)) {
3285 		ret = __skb_linearize(skb);
3286 		if (ret)
3287 			goto out;
3288 	}
3289 
3290 	offset = skb_checksum_start_offset(skb);
3291 	ret = -EINVAL;
3292 	if (unlikely(offset >= skb_headlen(skb))) {
3293 		DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3294 		WARN_ONCE(true, "offset (%d) >= skb_headlen() (%u)\n",
3295 			  offset, skb_headlen(skb));
3296 		goto out;
3297 	}
3298 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
3299 
3300 	offset += skb->csum_offset;
3301 	if (unlikely(offset + sizeof(__sum16) > skb_headlen(skb))) {
3302 		DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3303 		WARN_ONCE(true, "offset+2 (%zu) > skb_headlen() (%u)\n",
3304 			  offset + sizeof(__sum16), skb_headlen(skb));
3305 		goto out;
3306 	}
3307 	ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3308 	if (ret)
3309 		goto out;
3310 
3311 	*(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3312 out_set_summed:
3313 	skb->ip_summed = CHECKSUM_NONE;
3314 out:
3315 	return ret;
3316 }
3317 EXPORT_SYMBOL(skb_checksum_help);
3318 
3319 int skb_crc32c_csum_help(struct sk_buff *skb)
3320 {
3321 	__le32 crc32c_csum;
3322 	int ret = 0, offset, start;
3323 
3324 	if (skb->ip_summed != CHECKSUM_PARTIAL)
3325 		goto out;
3326 
3327 	if (unlikely(skb_is_gso(skb)))
3328 		goto out;
3329 
3330 	/* Before computing a checksum, we should make sure no frag could
3331 	 * be modified by an external entity : checksum could be wrong.
3332 	 */
3333 	if (unlikely(skb_has_shared_frag(skb))) {
3334 		ret = __skb_linearize(skb);
3335 		if (ret)
3336 			goto out;
3337 	}
3338 	start = skb_checksum_start_offset(skb);
3339 	offset = start + offsetof(struct sctphdr, checksum);
3340 	if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3341 		ret = -EINVAL;
3342 		goto out;
3343 	}
3344 
3345 	ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3346 	if (ret)
3347 		goto out;
3348 
3349 	crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3350 						  skb->len - start, ~(__u32)0,
3351 						  crc32c_csum_stub));
3352 	*(__le32 *)(skb->data + offset) = crc32c_csum;
3353 	skb_reset_csum_not_inet(skb);
3354 out:
3355 	return ret;
3356 }
3357 
3358 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3359 {
3360 	__be16 type = skb->protocol;
3361 
3362 	/* Tunnel gso handlers can set protocol to ethernet. */
3363 	if (type == htons(ETH_P_TEB)) {
3364 		struct ethhdr *eth;
3365 
3366 		if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3367 			return 0;
3368 
3369 		eth = (struct ethhdr *)skb->data;
3370 		type = eth->h_proto;
3371 	}
3372 
3373 	return vlan_get_protocol_and_depth(skb, type, depth);
3374 }
3375 
3376 
3377 /* Take action when hardware reception checksum errors are detected. */
3378 #ifdef CONFIG_BUG
3379 static void do_netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3380 {
3381 	netdev_err(dev, "hw csum failure\n");
3382 	skb_dump(KERN_ERR, skb, true);
3383 	dump_stack();
3384 }
3385 
3386 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3387 {
3388 	DO_ONCE_LITE(do_netdev_rx_csum_fault, dev, skb);
3389 }
3390 EXPORT_SYMBOL(netdev_rx_csum_fault);
3391 #endif
3392 
3393 /* XXX: check that highmem exists at all on the given machine. */
3394 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3395 {
3396 #ifdef CONFIG_HIGHMEM
3397 	int i;
3398 
3399 	if (!(dev->features & NETIF_F_HIGHDMA)) {
3400 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3401 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3402 
3403 			if (PageHighMem(skb_frag_page(frag)))
3404 				return 1;
3405 		}
3406 	}
3407 #endif
3408 	return 0;
3409 }
3410 
3411 /* If MPLS offload request, verify we are testing hardware MPLS features
3412  * instead of standard features for the netdev.
3413  */
3414 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3415 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3416 					   netdev_features_t features,
3417 					   __be16 type)
3418 {
3419 	if (eth_p_mpls(type))
3420 		features &= skb->dev->mpls_features;
3421 
3422 	return features;
3423 }
3424 #else
3425 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3426 					   netdev_features_t features,
3427 					   __be16 type)
3428 {
3429 	return features;
3430 }
3431 #endif
3432 
3433 static netdev_features_t harmonize_features(struct sk_buff *skb,
3434 	netdev_features_t features)
3435 {
3436 	__be16 type;
3437 
3438 	type = skb_network_protocol(skb, NULL);
3439 	features = net_mpls_features(skb, features, type);
3440 
3441 	if (skb->ip_summed != CHECKSUM_NONE &&
3442 	    !can_checksum_protocol(features, type)) {
3443 		features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3444 	}
3445 	if (illegal_highdma(skb->dev, skb))
3446 		features &= ~NETIF_F_SG;
3447 
3448 	return features;
3449 }
3450 
3451 netdev_features_t passthru_features_check(struct sk_buff *skb,
3452 					  struct net_device *dev,
3453 					  netdev_features_t features)
3454 {
3455 	return features;
3456 }
3457 EXPORT_SYMBOL(passthru_features_check);
3458 
3459 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3460 					     struct net_device *dev,
3461 					     netdev_features_t features)
3462 {
3463 	return vlan_features_check(skb, features);
3464 }
3465 
3466 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3467 					    struct net_device *dev,
3468 					    netdev_features_t features)
3469 {
3470 	u16 gso_segs = skb_shinfo(skb)->gso_segs;
3471 
3472 	if (gso_segs > READ_ONCE(dev->gso_max_segs))
3473 		return features & ~NETIF_F_GSO_MASK;
3474 
3475 	if (unlikely(skb->len >= READ_ONCE(dev->gso_max_size)))
3476 		return features & ~NETIF_F_GSO_MASK;
3477 
3478 	if (!skb_shinfo(skb)->gso_type) {
3479 		skb_warn_bad_offload(skb);
3480 		return features & ~NETIF_F_GSO_MASK;
3481 	}
3482 
3483 	/* Support for GSO partial features requires software
3484 	 * intervention before we can actually process the packets
3485 	 * so we need to strip support for any partial features now
3486 	 * and we can pull them back in after we have partially
3487 	 * segmented the frame.
3488 	 */
3489 	if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3490 		features &= ~dev->gso_partial_features;
3491 
3492 	/* Make sure to clear the IPv4 ID mangling feature if the
3493 	 * IPv4 header has the potential to be fragmented.
3494 	 */
3495 	if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3496 		struct iphdr *iph = skb->encapsulation ?
3497 				    inner_ip_hdr(skb) : ip_hdr(skb);
3498 
3499 		if (!(iph->frag_off & htons(IP_DF)))
3500 			features &= ~NETIF_F_TSO_MANGLEID;
3501 	}
3502 
3503 	return features;
3504 }
3505 
3506 netdev_features_t netif_skb_features(struct sk_buff *skb)
3507 {
3508 	struct net_device *dev = skb->dev;
3509 	netdev_features_t features = dev->features;
3510 
3511 	if (skb_is_gso(skb))
3512 		features = gso_features_check(skb, dev, features);
3513 
3514 	/* If encapsulation offload request, verify we are testing
3515 	 * hardware encapsulation features instead of standard
3516 	 * features for the netdev
3517 	 */
3518 	if (skb->encapsulation)
3519 		features &= dev->hw_enc_features;
3520 
3521 	if (skb_vlan_tagged(skb))
3522 		features = netdev_intersect_features(features,
3523 						     dev->vlan_features |
3524 						     NETIF_F_HW_VLAN_CTAG_TX |
3525 						     NETIF_F_HW_VLAN_STAG_TX);
3526 
3527 	if (dev->netdev_ops->ndo_features_check)
3528 		features &= dev->netdev_ops->ndo_features_check(skb, dev,
3529 								features);
3530 	else
3531 		features &= dflt_features_check(skb, dev, features);
3532 
3533 	return harmonize_features(skb, features);
3534 }
3535 EXPORT_SYMBOL(netif_skb_features);
3536 
3537 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3538 		    struct netdev_queue *txq, bool more)
3539 {
3540 	unsigned int len;
3541 	int rc;
3542 
3543 	if (dev_nit_active(dev))
3544 		dev_queue_xmit_nit(skb, dev);
3545 
3546 	len = skb->len;
3547 	trace_net_dev_start_xmit(skb, dev);
3548 	rc = netdev_start_xmit(skb, dev, txq, more);
3549 	trace_net_dev_xmit(skb, rc, dev, len);
3550 
3551 	return rc;
3552 }
3553 
3554 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3555 				    struct netdev_queue *txq, int *ret)
3556 {
3557 	struct sk_buff *skb = first;
3558 	int rc = NETDEV_TX_OK;
3559 
3560 	while (skb) {
3561 		struct sk_buff *next = skb->next;
3562 
3563 		skb_mark_not_on_list(skb);
3564 		rc = xmit_one(skb, dev, txq, next != NULL);
3565 		if (unlikely(!dev_xmit_complete(rc))) {
3566 			skb->next = next;
3567 			goto out;
3568 		}
3569 
3570 		skb = next;
3571 		if (netif_tx_queue_stopped(txq) && skb) {
3572 			rc = NETDEV_TX_BUSY;
3573 			break;
3574 		}
3575 	}
3576 
3577 out:
3578 	*ret = rc;
3579 	return skb;
3580 }
3581 
3582 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3583 					  netdev_features_t features)
3584 {
3585 	if (skb_vlan_tag_present(skb) &&
3586 	    !vlan_hw_offload_capable(features, skb->vlan_proto))
3587 		skb = __vlan_hwaccel_push_inside(skb);
3588 	return skb;
3589 }
3590 
3591 int skb_csum_hwoffload_help(struct sk_buff *skb,
3592 			    const netdev_features_t features)
3593 {
3594 	if (unlikely(skb_csum_is_sctp(skb)))
3595 		return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3596 			skb_crc32c_csum_help(skb);
3597 
3598 	if (features & NETIF_F_HW_CSUM)
3599 		return 0;
3600 
3601 	if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
3602 		switch (skb->csum_offset) {
3603 		case offsetof(struct tcphdr, check):
3604 		case offsetof(struct udphdr, check):
3605 			return 0;
3606 		}
3607 	}
3608 
3609 	return skb_checksum_help(skb);
3610 }
3611 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3612 
3613 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3614 {
3615 	netdev_features_t features;
3616 
3617 	features = netif_skb_features(skb);
3618 	skb = validate_xmit_vlan(skb, features);
3619 	if (unlikely(!skb))
3620 		goto out_null;
3621 
3622 	skb = sk_validate_xmit_skb(skb, dev);
3623 	if (unlikely(!skb))
3624 		goto out_null;
3625 
3626 	if (netif_needs_gso(skb, features)) {
3627 		struct sk_buff *segs;
3628 
3629 		segs = skb_gso_segment(skb, features);
3630 		if (IS_ERR(segs)) {
3631 			goto out_kfree_skb;
3632 		} else if (segs) {
3633 			consume_skb(skb);
3634 			skb = segs;
3635 		}
3636 	} else {
3637 		if (skb_needs_linearize(skb, features) &&
3638 		    __skb_linearize(skb))
3639 			goto out_kfree_skb;
3640 
3641 		/* If packet is not checksummed and device does not
3642 		 * support checksumming for this protocol, complete
3643 		 * checksumming here.
3644 		 */
3645 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
3646 			if (skb->encapsulation)
3647 				skb_set_inner_transport_header(skb,
3648 							       skb_checksum_start_offset(skb));
3649 			else
3650 				skb_set_transport_header(skb,
3651 							 skb_checksum_start_offset(skb));
3652 			if (skb_csum_hwoffload_help(skb, features))
3653 				goto out_kfree_skb;
3654 		}
3655 	}
3656 
3657 	skb = validate_xmit_xfrm(skb, features, again);
3658 
3659 	return skb;
3660 
3661 out_kfree_skb:
3662 	kfree_skb(skb);
3663 out_null:
3664 	dev_core_stats_tx_dropped_inc(dev);
3665 	return NULL;
3666 }
3667 
3668 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3669 {
3670 	struct sk_buff *next, *head = NULL, *tail;
3671 
3672 	for (; skb != NULL; skb = next) {
3673 		next = skb->next;
3674 		skb_mark_not_on_list(skb);
3675 
3676 		/* in case skb wont be segmented, point to itself */
3677 		skb->prev = skb;
3678 
3679 		skb = validate_xmit_skb(skb, dev, again);
3680 		if (!skb)
3681 			continue;
3682 
3683 		if (!head)
3684 			head = skb;
3685 		else
3686 			tail->next = skb;
3687 		/* If skb was segmented, skb->prev points to
3688 		 * the last segment. If not, it still contains skb.
3689 		 */
3690 		tail = skb->prev;
3691 	}
3692 	return head;
3693 }
3694 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3695 
3696 static void qdisc_pkt_len_init(struct sk_buff *skb)
3697 {
3698 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
3699 
3700 	qdisc_skb_cb(skb)->pkt_len = skb->len;
3701 
3702 	/* To get more precise estimation of bytes sent on wire,
3703 	 * we add to pkt_len the headers size of all segments
3704 	 */
3705 	if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3706 		u16 gso_segs = shinfo->gso_segs;
3707 		unsigned int hdr_len;
3708 
3709 		/* mac layer + network layer */
3710 		hdr_len = skb_transport_offset(skb);
3711 
3712 		/* + transport layer */
3713 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3714 			const struct tcphdr *th;
3715 			struct tcphdr _tcphdr;
3716 
3717 			th = skb_header_pointer(skb, hdr_len,
3718 						sizeof(_tcphdr), &_tcphdr);
3719 			if (likely(th))
3720 				hdr_len += __tcp_hdrlen(th);
3721 		} else {
3722 			struct udphdr _udphdr;
3723 
3724 			if (skb_header_pointer(skb, hdr_len,
3725 					       sizeof(_udphdr), &_udphdr))
3726 				hdr_len += sizeof(struct udphdr);
3727 		}
3728 
3729 		if (shinfo->gso_type & SKB_GSO_DODGY)
3730 			gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3731 						shinfo->gso_size);
3732 
3733 		qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3734 	}
3735 }
3736 
3737 static int dev_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *q,
3738 			     struct sk_buff **to_free,
3739 			     struct netdev_queue *txq)
3740 {
3741 	int rc;
3742 
3743 	rc = q->enqueue(skb, q, to_free) & NET_XMIT_MASK;
3744 	if (rc == NET_XMIT_SUCCESS)
3745 		trace_qdisc_enqueue(q, txq, skb);
3746 	return rc;
3747 }
3748 
3749 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3750 				 struct net_device *dev,
3751 				 struct netdev_queue *txq)
3752 {
3753 	spinlock_t *root_lock = qdisc_lock(q);
3754 	struct sk_buff *to_free = NULL;
3755 	bool contended;
3756 	int rc;
3757 
3758 	qdisc_calculate_pkt_len(skb, q);
3759 
3760 	if (q->flags & TCQ_F_NOLOCK) {
3761 		if (q->flags & TCQ_F_CAN_BYPASS && nolock_qdisc_is_empty(q) &&
3762 		    qdisc_run_begin(q)) {
3763 			/* Retest nolock_qdisc_is_empty() within the protection
3764 			 * of q->seqlock to protect from racing with requeuing.
3765 			 */
3766 			if (unlikely(!nolock_qdisc_is_empty(q))) {
3767 				rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3768 				__qdisc_run(q);
3769 				qdisc_run_end(q);
3770 
3771 				goto no_lock_out;
3772 			}
3773 
3774 			qdisc_bstats_cpu_update(q, skb);
3775 			if (sch_direct_xmit(skb, q, dev, txq, NULL, true) &&
3776 			    !nolock_qdisc_is_empty(q))
3777 				__qdisc_run(q);
3778 
3779 			qdisc_run_end(q);
3780 			return NET_XMIT_SUCCESS;
3781 		}
3782 
3783 		rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3784 		qdisc_run(q);
3785 
3786 no_lock_out:
3787 		if (unlikely(to_free))
3788 			kfree_skb_list_reason(to_free,
3789 					      SKB_DROP_REASON_QDISC_DROP);
3790 		return rc;
3791 	}
3792 
3793 	/*
3794 	 * Heuristic to force contended enqueues to serialize on a
3795 	 * separate lock before trying to get qdisc main lock.
3796 	 * This permits qdisc->running owner to get the lock more
3797 	 * often and dequeue packets faster.
3798 	 * On PREEMPT_RT it is possible to preempt the qdisc owner during xmit
3799 	 * and then other tasks will only enqueue packets. The packets will be
3800 	 * sent after the qdisc owner is scheduled again. To prevent this
3801 	 * scenario the task always serialize on the lock.
3802 	 */
3803 	contended = qdisc_is_running(q) || IS_ENABLED(CONFIG_PREEMPT_RT);
3804 	if (unlikely(contended))
3805 		spin_lock(&q->busylock);
3806 
3807 	spin_lock(root_lock);
3808 	if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3809 		__qdisc_drop(skb, &to_free);
3810 		rc = NET_XMIT_DROP;
3811 	} else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3812 		   qdisc_run_begin(q)) {
3813 		/*
3814 		 * This is a work-conserving queue; there are no old skbs
3815 		 * waiting to be sent out; and the qdisc is not running -
3816 		 * xmit the skb directly.
3817 		 */
3818 
3819 		qdisc_bstats_update(q, skb);
3820 
3821 		if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3822 			if (unlikely(contended)) {
3823 				spin_unlock(&q->busylock);
3824 				contended = false;
3825 			}
3826 			__qdisc_run(q);
3827 		}
3828 
3829 		qdisc_run_end(q);
3830 		rc = NET_XMIT_SUCCESS;
3831 	} else {
3832 		rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3833 		if (qdisc_run_begin(q)) {
3834 			if (unlikely(contended)) {
3835 				spin_unlock(&q->busylock);
3836 				contended = false;
3837 			}
3838 			__qdisc_run(q);
3839 			qdisc_run_end(q);
3840 		}
3841 	}
3842 	spin_unlock(root_lock);
3843 	if (unlikely(to_free))
3844 		kfree_skb_list_reason(to_free, SKB_DROP_REASON_QDISC_DROP);
3845 	if (unlikely(contended))
3846 		spin_unlock(&q->busylock);
3847 	return rc;
3848 }
3849 
3850 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3851 static void skb_update_prio(struct sk_buff *skb)
3852 {
3853 	const struct netprio_map *map;
3854 	const struct sock *sk;
3855 	unsigned int prioidx;
3856 
3857 	if (skb->priority)
3858 		return;
3859 	map = rcu_dereference_bh(skb->dev->priomap);
3860 	if (!map)
3861 		return;
3862 	sk = skb_to_full_sk(skb);
3863 	if (!sk)
3864 		return;
3865 
3866 	prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3867 
3868 	if (prioidx < map->priomap_len)
3869 		skb->priority = map->priomap[prioidx];
3870 }
3871 #else
3872 #define skb_update_prio(skb)
3873 #endif
3874 
3875 /**
3876  *	dev_loopback_xmit - loop back @skb
3877  *	@net: network namespace this loopback is happening in
3878  *	@sk:  sk needed to be a netfilter okfn
3879  *	@skb: buffer to transmit
3880  */
3881 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3882 {
3883 	skb_reset_mac_header(skb);
3884 	__skb_pull(skb, skb_network_offset(skb));
3885 	skb->pkt_type = PACKET_LOOPBACK;
3886 	if (skb->ip_summed == CHECKSUM_NONE)
3887 		skb->ip_summed = CHECKSUM_UNNECESSARY;
3888 	DEBUG_NET_WARN_ON_ONCE(!skb_dst(skb));
3889 	skb_dst_force(skb);
3890 	netif_rx(skb);
3891 	return 0;
3892 }
3893 EXPORT_SYMBOL(dev_loopback_xmit);
3894 
3895 #ifdef CONFIG_NET_EGRESS
3896 static struct netdev_queue *
3897 netdev_tx_queue_mapping(struct net_device *dev, struct sk_buff *skb)
3898 {
3899 	int qm = skb_get_queue_mapping(skb);
3900 
3901 	return netdev_get_tx_queue(dev, netdev_cap_txqueue(dev, qm));
3902 }
3903 
3904 static bool netdev_xmit_txqueue_skipped(void)
3905 {
3906 	return __this_cpu_read(softnet_data.xmit.skip_txqueue);
3907 }
3908 
3909 void netdev_xmit_skip_txqueue(bool skip)
3910 {
3911 	__this_cpu_write(softnet_data.xmit.skip_txqueue, skip);
3912 }
3913 EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue);
3914 #endif /* CONFIG_NET_EGRESS */
3915 
3916 #ifdef CONFIG_NET_XGRESS
3917 static int tc_run(struct tcx_entry *entry, struct sk_buff *skb,
3918 		  enum skb_drop_reason *drop_reason)
3919 {
3920 	int ret = TC_ACT_UNSPEC;
3921 #ifdef CONFIG_NET_CLS_ACT
3922 	struct mini_Qdisc *miniq = rcu_dereference_bh(entry->miniq);
3923 	struct tcf_result res;
3924 
3925 	if (!miniq)
3926 		return ret;
3927 
3928 	tc_skb_cb(skb)->mru = 0;
3929 	tc_skb_cb(skb)->post_ct = false;
3930 	res.drop_reason = *drop_reason;
3931 
3932 	mini_qdisc_bstats_cpu_update(miniq, skb);
3933 	ret = tcf_classify(skb, miniq->block, miniq->filter_list, &res, false);
3934 	/* Only tcf related quirks below. */
3935 	switch (ret) {
3936 	case TC_ACT_SHOT:
3937 		*drop_reason = res.drop_reason;
3938 		mini_qdisc_qstats_cpu_drop(miniq);
3939 		break;
3940 	case TC_ACT_OK:
3941 	case TC_ACT_RECLASSIFY:
3942 		skb->tc_index = TC_H_MIN(res.classid);
3943 		break;
3944 	}
3945 #endif /* CONFIG_NET_CLS_ACT */
3946 	return ret;
3947 }
3948 
3949 static DEFINE_STATIC_KEY_FALSE(tcx_needed_key);
3950 
3951 void tcx_inc(void)
3952 {
3953 	static_branch_inc(&tcx_needed_key);
3954 }
3955 
3956 void tcx_dec(void)
3957 {
3958 	static_branch_dec(&tcx_needed_key);
3959 }
3960 
3961 static __always_inline enum tcx_action_base
3962 tcx_run(const struct bpf_mprog_entry *entry, struct sk_buff *skb,
3963 	const bool needs_mac)
3964 {
3965 	const struct bpf_mprog_fp *fp;
3966 	const struct bpf_prog *prog;
3967 	int ret = TCX_NEXT;
3968 
3969 	if (needs_mac)
3970 		__skb_push(skb, skb->mac_len);
3971 	bpf_mprog_foreach_prog(entry, fp, prog) {
3972 		bpf_compute_data_pointers(skb);
3973 		ret = bpf_prog_run(prog, skb);
3974 		if (ret != TCX_NEXT)
3975 			break;
3976 	}
3977 	if (needs_mac)
3978 		__skb_pull(skb, skb->mac_len);
3979 	return tcx_action_code(skb, ret);
3980 }
3981 
3982 static __always_inline struct sk_buff *
3983 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
3984 		   struct net_device *orig_dev, bool *another)
3985 {
3986 	struct bpf_mprog_entry *entry = rcu_dereference_bh(skb->dev->tcx_ingress);
3987 	enum skb_drop_reason drop_reason = SKB_DROP_REASON_TC_INGRESS;
3988 	int sch_ret;
3989 
3990 	if (!entry)
3991 		return skb;
3992 	if (*pt_prev) {
3993 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
3994 		*pt_prev = NULL;
3995 	}
3996 
3997 	qdisc_skb_cb(skb)->pkt_len = skb->len;
3998 	tcx_set_ingress(skb, true);
3999 
4000 	if (static_branch_unlikely(&tcx_needed_key)) {
4001 		sch_ret = tcx_run(entry, skb, true);
4002 		if (sch_ret != TC_ACT_UNSPEC)
4003 			goto ingress_verdict;
4004 	}
4005 	sch_ret = tc_run(tcx_entry(entry), skb, &drop_reason);
4006 ingress_verdict:
4007 	switch (sch_ret) {
4008 	case TC_ACT_REDIRECT:
4009 		/* skb_mac_header check was done by BPF, so we can safely
4010 		 * push the L2 header back before redirecting to another
4011 		 * netdev.
4012 		 */
4013 		__skb_push(skb, skb->mac_len);
4014 		if (skb_do_redirect(skb) == -EAGAIN) {
4015 			__skb_pull(skb, skb->mac_len);
4016 			*another = true;
4017 			break;
4018 		}
4019 		*ret = NET_RX_SUCCESS;
4020 		return NULL;
4021 	case TC_ACT_SHOT:
4022 		kfree_skb_reason(skb, drop_reason);
4023 		*ret = NET_RX_DROP;
4024 		return NULL;
4025 	/* used by tc_run */
4026 	case TC_ACT_STOLEN:
4027 	case TC_ACT_QUEUED:
4028 	case TC_ACT_TRAP:
4029 		consume_skb(skb);
4030 		fallthrough;
4031 	case TC_ACT_CONSUMED:
4032 		*ret = NET_RX_SUCCESS;
4033 		return NULL;
4034 	}
4035 
4036 	return skb;
4037 }
4038 
4039 static __always_inline struct sk_buff *
4040 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
4041 {
4042 	struct bpf_mprog_entry *entry = rcu_dereference_bh(dev->tcx_egress);
4043 	enum skb_drop_reason drop_reason = SKB_DROP_REASON_TC_EGRESS;
4044 	int sch_ret;
4045 
4046 	if (!entry)
4047 		return skb;
4048 
4049 	/* qdisc_skb_cb(skb)->pkt_len & tcx_set_ingress() was
4050 	 * already set by the caller.
4051 	 */
4052 	if (static_branch_unlikely(&tcx_needed_key)) {
4053 		sch_ret = tcx_run(entry, skb, false);
4054 		if (sch_ret != TC_ACT_UNSPEC)
4055 			goto egress_verdict;
4056 	}
4057 	sch_ret = tc_run(tcx_entry(entry), skb, &drop_reason);
4058 egress_verdict:
4059 	switch (sch_ret) {
4060 	case TC_ACT_REDIRECT:
4061 		/* No need to push/pop skb's mac_header here on egress! */
4062 		skb_do_redirect(skb);
4063 		*ret = NET_XMIT_SUCCESS;
4064 		return NULL;
4065 	case TC_ACT_SHOT:
4066 		kfree_skb_reason(skb, drop_reason);
4067 		*ret = NET_XMIT_DROP;
4068 		return NULL;
4069 	/* used by tc_run */
4070 	case TC_ACT_STOLEN:
4071 	case TC_ACT_QUEUED:
4072 	case TC_ACT_TRAP:
4073 		consume_skb(skb);
4074 		fallthrough;
4075 	case TC_ACT_CONSUMED:
4076 		*ret = NET_XMIT_SUCCESS;
4077 		return NULL;
4078 	}
4079 
4080 	return skb;
4081 }
4082 #else
4083 static __always_inline struct sk_buff *
4084 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4085 		   struct net_device *orig_dev, bool *another)
4086 {
4087 	return skb;
4088 }
4089 
4090 static __always_inline struct sk_buff *
4091 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
4092 {
4093 	return skb;
4094 }
4095 #endif /* CONFIG_NET_XGRESS */
4096 
4097 #ifdef CONFIG_XPS
4098 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
4099 			       struct xps_dev_maps *dev_maps, unsigned int tci)
4100 {
4101 	int tc = netdev_get_prio_tc_map(dev, skb->priority);
4102 	struct xps_map *map;
4103 	int queue_index = -1;
4104 
4105 	if (tc >= dev_maps->num_tc || tci >= dev_maps->nr_ids)
4106 		return queue_index;
4107 
4108 	tci *= dev_maps->num_tc;
4109 	tci += tc;
4110 
4111 	map = rcu_dereference(dev_maps->attr_map[tci]);
4112 	if (map) {
4113 		if (map->len == 1)
4114 			queue_index = map->queues[0];
4115 		else
4116 			queue_index = map->queues[reciprocal_scale(
4117 						skb_get_hash(skb), map->len)];
4118 		if (unlikely(queue_index >= dev->real_num_tx_queues))
4119 			queue_index = -1;
4120 	}
4121 	return queue_index;
4122 }
4123 #endif
4124 
4125 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
4126 			 struct sk_buff *skb)
4127 {
4128 #ifdef CONFIG_XPS
4129 	struct xps_dev_maps *dev_maps;
4130 	struct sock *sk = skb->sk;
4131 	int queue_index = -1;
4132 
4133 	if (!static_key_false(&xps_needed))
4134 		return -1;
4135 
4136 	rcu_read_lock();
4137 	if (!static_key_false(&xps_rxqs_needed))
4138 		goto get_cpus_map;
4139 
4140 	dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_RXQS]);
4141 	if (dev_maps) {
4142 		int tci = sk_rx_queue_get(sk);
4143 
4144 		if (tci >= 0)
4145 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4146 							  tci);
4147 	}
4148 
4149 get_cpus_map:
4150 	if (queue_index < 0) {
4151 		dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_CPUS]);
4152 		if (dev_maps) {
4153 			unsigned int tci = skb->sender_cpu - 1;
4154 
4155 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4156 							  tci);
4157 		}
4158 	}
4159 	rcu_read_unlock();
4160 
4161 	return queue_index;
4162 #else
4163 	return -1;
4164 #endif
4165 }
4166 
4167 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
4168 		     struct net_device *sb_dev)
4169 {
4170 	return 0;
4171 }
4172 EXPORT_SYMBOL(dev_pick_tx_zero);
4173 
4174 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
4175 		       struct net_device *sb_dev)
4176 {
4177 	return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
4178 }
4179 EXPORT_SYMBOL(dev_pick_tx_cpu_id);
4180 
4181 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
4182 		     struct net_device *sb_dev)
4183 {
4184 	struct sock *sk = skb->sk;
4185 	int queue_index = sk_tx_queue_get(sk);
4186 
4187 	sb_dev = sb_dev ? : dev;
4188 
4189 	if (queue_index < 0 || skb->ooo_okay ||
4190 	    queue_index >= dev->real_num_tx_queues) {
4191 		int new_index = get_xps_queue(dev, sb_dev, skb);
4192 
4193 		if (new_index < 0)
4194 			new_index = skb_tx_hash(dev, sb_dev, skb);
4195 
4196 		if (queue_index != new_index && sk &&
4197 		    sk_fullsock(sk) &&
4198 		    rcu_access_pointer(sk->sk_dst_cache))
4199 			sk_tx_queue_set(sk, new_index);
4200 
4201 		queue_index = new_index;
4202 	}
4203 
4204 	return queue_index;
4205 }
4206 EXPORT_SYMBOL(netdev_pick_tx);
4207 
4208 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
4209 					 struct sk_buff *skb,
4210 					 struct net_device *sb_dev)
4211 {
4212 	int queue_index = 0;
4213 
4214 #ifdef CONFIG_XPS
4215 	u32 sender_cpu = skb->sender_cpu - 1;
4216 
4217 	if (sender_cpu >= (u32)NR_CPUS)
4218 		skb->sender_cpu = raw_smp_processor_id() + 1;
4219 #endif
4220 
4221 	if (dev->real_num_tx_queues != 1) {
4222 		const struct net_device_ops *ops = dev->netdev_ops;
4223 
4224 		if (ops->ndo_select_queue)
4225 			queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
4226 		else
4227 			queue_index = netdev_pick_tx(dev, skb, sb_dev);
4228 
4229 		queue_index = netdev_cap_txqueue(dev, queue_index);
4230 	}
4231 
4232 	skb_set_queue_mapping(skb, queue_index);
4233 	return netdev_get_tx_queue(dev, queue_index);
4234 }
4235 
4236 /**
4237  * __dev_queue_xmit() - transmit a buffer
4238  * @skb:	buffer to transmit
4239  * @sb_dev:	suboordinate device used for L2 forwarding offload
4240  *
4241  * Queue a buffer for transmission to a network device. The caller must
4242  * have set the device and priority and built the buffer before calling
4243  * this function. The function can be called from an interrupt.
4244  *
4245  * When calling this method, interrupts MUST be enabled. This is because
4246  * the BH enable code must have IRQs enabled so that it will not deadlock.
4247  *
4248  * Regardless of the return value, the skb is consumed, so it is currently
4249  * difficult to retry a send to this method. (You can bump the ref count
4250  * before sending to hold a reference for retry if you are careful.)
4251  *
4252  * Return:
4253  * * 0				- buffer successfully transmitted
4254  * * positive qdisc return code	- NET_XMIT_DROP etc.
4255  * * negative errno		- other errors
4256  */
4257 int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
4258 {
4259 	struct net_device *dev = skb->dev;
4260 	struct netdev_queue *txq = NULL;
4261 	struct Qdisc *q;
4262 	int rc = -ENOMEM;
4263 	bool again = false;
4264 
4265 	skb_reset_mac_header(skb);
4266 	skb_assert_len(skb);
4267 
4268 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
4269 		__skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED);
4270 
4271 	/* Disable soft irqs for various locks below. Also
4272 	 * stops preemption for RCU.
4273 	 */
4274 	rcu_read_lock_bh();
4275 
4276 	skb_update_prio(skb);
4277 
4278 	qdisc_pkt_len_init(skb);
4279 	tcx_set_ingress(skb, false);
4280 #ifdef CONFIG_NET_EGRESS
4281 	if (static_branch_unlikely(&egress_needed_key)) {
4282 		if (nf_hook_egress_active()) {
4283 			skb = nf_hook_egress(skb, &rc, dev);
4284 			if (!skb)
4285 				goto out;
4286 		}
4287 
4288 		netdev_xmit_skip_txqueue(false);
4289 
4290 		nf_skip_egress(skb, true);
4291 		skb = sch_handle_egress(skb, &rc, dev);
4292 		if (!skb)
4293 			goto out;
4294 		nf_skip_egress(skb, false);
4295 
4296 		if (netdev_xmit_txqueue_skipped())
4297 			txq = netdev_tx_queue_mapping(dev, skb);
4298 	}
4299 #endif
4300 	/* If device/qdisc don't need skb->dst, release it right now while
4301 	 * its hot in this cpu cache.
4302 	 */
4303 	if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4304 		skb_dst_drop(skb);
4305 	else
4306 		skb_dst_force(skb);
4307 
4308 	if (!txq)
4309 		txq = netdev_core_pick_tx(dev, skb, sb_dev);
4310 
4311 	q = rcu_dereference_bh(txq->qdisc);
4312 
4313 	trace_net_dev_queue(skb);
4314 	if (q->enqueue) {
4315 		rc = __dev_xmit_skb(skb, q, dev, txq);
4316 		goto out;
4317 	}
4318 
4319 	/* The device has no queue. Common case for software devices:
4320 	 * loopback, all the sorts of tunnels...
4321 
4322 	 * Really, it is unlikely that netif_tx_lock protection is necessary
4323 	 * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
4324 	 * counters.)
4325 	 * However, it is possible, that they rely on protection
4326 	 * made by us here.
4327 
4328 	 * Check this and shot the lock. It is not prone from deadlocks.
4329 	 *Either shot noqueue qdisc, it is even simpler 8)
4330 	 */
4331 	if (dev->flags & IFF_UP) {
4332 		int cpu = smp_processor_id(); /* ok because BHs are off */
4333 
4334 		/* Other cpus might concurrently change txq->xmit_lock_owner
4335 		 * to -1 or to their cpu id, but not to our id.
4336 		 */
4337 		if (READ_ONCE(txq->xmit_lock_owner) != cpu) {
4338 			if (dev_xmit_recursion())
4339 				goto recursion_alert;
4340 
4341 			skb = validate_xmit_skb(skb, dev, &again);
4342 			if (!skb)
4343 				goto out;
4344 
4345 			HARD_TX_LOCK(dev, txq, cpu);
4346 
4347 			if (!netif_xmit_stopped(txq)) {
4348 				dev_xmit_recursion_inc();
4349 				skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4350 				dev_xmit_recursion_dec();
4351 				if (dev_xmit_complete(rc)) {
4352 					HARD_TX_UNLOCK(dev, txq);
4353 					goto out;
4354 				}
4355 			}
4356 			HARD_TX_UNLOCK(dev, txq);
4357 			net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4358 					     dev->name);
4359 		} else {
4360 			/* Recursion is detected! It is possible,
4361 			 * unfortunately
4362 			 */
4363 recursion_alert:
4364 			net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4365 					     dev->name);
4366 		}
4367 	}
4368 
4369 	rc = -ENETDOWN;
4370 	rcu_read_unlock_bh();
4371 
4372 	dev_core_stats_tx_dropped_inc(dev);
4373 	kfree_skb_list(skb);
4374 	return rc;
4375 out:
4376 	rcu_read_unlock_bh();
4377 	return rc;
4378 }
4379 EXPORT_SYMBOL(__dev_queue_xmit);
4380 
4381 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4382 {
4383 	struct net_device *dev = skb->dev;
4384 	struct sk_buff *orig_skb = skb;
4385 	struct netdev_queue *txq;
4386 	int ret = NETDEV_TX_BUSY;
4387 	bool again = false;
4388 
4389 	if (unlikely(!netif_running(dev) ||
4390 		     !netif_carrier_ok(dev)))
4391 		goto drop;
4392 
4393 	skb = validate_xmit_skb_list(skb, dev, &again);
4394 	if (skb != orig_skb)
4395 		goto drop;
4396 
4397 	skb_set_queue_mapping(skb, queue_id);
4398 	txq = skb_get_tx_queue(dev, skb);
4399 
4400 	local_bh_disable();
4401 
4402 	dev_xmit_recursion_inc();
4403 	HARD_TX_LOCK(dev, txq, smp_processor_id());
4404 	if (!netif_xmit_frozen_or_drv_stopped(txq))
4405 		ret = netdev_start_xmit(skb, dev, txq, false);
4406 	HARD_TX_UNLOCK(dev, txq);
4407 	dev_xmit_recursion_dec();
4408 
4409 	local_bh_enable();
4410 	return ret;
4411 drop:
4412 	dev_core_stats_tx_dropped_inc(dev);
4413 	kfree_skb_list(skb);
4414 	return NET_XMIT_DROP;
4415 }
4416 EXPORT_SYMBOL(__dev_direct_xmit);
4417 
4418 /*************************************************************************
4419  *			Receiver routines
4420  *************************************************************************/
4421 
4422 int netdev_max_backlog __read_mostly = 1000;
4423 EXPORT_SYMBOL(netdev_max_backlog);
4424 
4425 int netdev_tstamp_prequeue __read_mostly = 1;
4426 unsigned int sysctl_skb_defer_max __read_mostly = 64;
4427 int netdev_budget __read_mostly = 300;
4428 /* Must be at least 2 jiffes to guarantee 1 jiffy timeout */
4429 unsigned int __read_mostly netdev_budget_usecs = 2 * USEC_PER_SEC / HZ;
4430 int weight_p __read_mostly = 64;           /* old backlog weight */
4431 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
4432 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
4433 int dev_rx_weight __read_mostly = 64;
4434 int dev_tx_weight __read_mostly = 64;
4435 
4436 /* Called with irq disabled */
4437 static inline void ____napi_schedule(struct softnet_data *sd,
4438 				     struct napi_struct *napi)
4439 {
4440 	struct task_struct *thread;
4441 
4442 	lockdep_assert_irqs_disabled();
4443 
4444 	if (test_bit(NAPI_STATE_THREADED, &napi->state)) {
4445 		/* Paired with smp_mb__before_atomic() in
4446 		 * napi_enable()/dev_set_threaded().
4447 		 * Use READ_ONCE() to guarantee a complete
4448 		 * read on napi->thread. Only call
4449 		 * wake_up_process() when it's not NULL.
4450 		 */
4451 		thread = READ_ONCE(napi->thread);
4452 		if (thread) {
4453 			/* Avoid doing set_bit() if the thread is in
4454 			 * INTERRUPTIBLE state, cause napi_thread_wait()
4455 			 * makes sure to proceed with napi polling
4456 			 * if the thread is explicitly woken from here.
4457 			 */
4458 			if (READ_ONCE(thread->__state) != TASK_INTERRUPTIBLE)
4459 				set_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
4460 			wake_up_process(thread);
4461 			return;
4462 		}
4463 	}
4464 
4465 	list_add_tail(&napi->poll_list, &sd->poll_list);
4466 	WRITE_ONCE(napi->list_owner, smp_processor_id());
4467 	/* If not called from net_rx_action()
4468 	 * we have to raise NET_RX_SOFTIRQ.
4469 	 */
4470 	if (!sd->in_net_rx_action)
4471 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4472 }
4473 
4474 #ifdef CONFIG_RPS
4475 
4476 /* One global table that all flow-based protocols share. */
4477 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
4478 EXPORT_SYMBOL(rps_sock_flow_table);
4479 u32 rps_cpu_mask __read_mostly;
4480 EXPORT_SYMBOL(rps_cpu_mask);
4481 
4482 struct static_key_false rps_needed __read_mostly;
4483 EXPORT_SYMBOL(rps_needed);
4484 struct static_key_false rfs_needed __read_mostly;
4485 EXPORT_SYMBOL(rfs_needed);
4486 
4487 static struct rps_dev_flow *
4488 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4489 	    struct rps_dev_flow *rflow, u16 next_cpu)
4490 {
4491 	if (next_cpu < nr_cpu_ids) {
4492 #ifdef CONFIG_RFS_ACCEL
4493 		struct netdev_rx_queue *rxqueue;
4494 		struct rps_dev_flow_table *flow_table;
4495 		struct rps_dev_flow *old_rflow;
4496 		u32 flow_id;
4497 		u16 rxq_index;
4498 		int rc;
4499 
4500 		/* Should we steer this flow to a different hardware queue? */
4501 		if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4502 		    !(dev->features & NETIF_F_NTUPLE))
4503 			goto out;
4504 		rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4505 		if (rxq_index == skb_get_rx_queue(skb))
4506 			goto out;
4507 
4508 		rxqueue = dev->_rx + rxq_index;
4509 		flow_table = rcu_dereference(rxqueue->rps_flow_table);
4510 		if (!flow_table)
4511 			goto out;
4512 		flow_id = skb_get_hash(skb) & flow_table->mask;
4513 		rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4514 							rxq_index, flow_id);
4515 		if (rc < 0)
4516 			goto out;
4517 		old_rflow = rflow;
4518 		rflow = &flow_table->flows[flow_id];
4519 		rflow->filter = rc;
4520 		if (old_rflow->filter == rflow->filter)
4521 			old_rflow->filter = RPS_NO_FILTER;
4522 	out:
4523 #endif
4524 		rflow->last_qtail =
4525 			per_cpu(softnet_data, next_cpu).input_queue_head;
4526 	}
4527 
4528 	rflow->cpu = next_cpu;
4529 	return rflow;
4530 }
4531 
4532 /*
4533  * get_rps_cpu is called from netif_receive_skb and returns the target
4534  * CPU from the RPS map of the receiving queue for a given skb.
4535  * rcu_read_lock must be held on entry.
4536  */
4537 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4538 		       struct rps_dev_flow **rflowp)
4539 {
4540 	const struct rps_sock_flow_table *sock_flow_table;
4541 	struct netdev_rx_queue *rxqueue = dev->_rx;
4542 	struct rps_dev_flow_table *flow_table;
4543 	struct rps_map *map;
4544 	int cpu = -1;
4545 	u32 tcpu;
4546 	u32 hash;
4547 
4548 	if (skb_rx_queue_recorded(skb)) {
4549 		u16 index = skb_get_rx_queue(skb);
4550 
4551 		if (unlikely(index >= dev->real_num_rx_queues)) {
4552 			WARN_ONCE(dev->real_num_rx_queues > 1,
4553 				  "%s received packet on queue %u, but number "
4554 				  "of RX queues is %u\n",
4555 				  dev->name, index, dev->real_num_rx_queues);
4556 			goto done;
4557 		}
4558 		rxqueue += index;
4559 	}
4560 
4561 	/* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4562 
4563 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
4564 	map = rcu_dereference(rxqueue->rps_map);
4565 	if (!flow_table && !map)
4566 		goto done;
4567 
4568 	skb_reset_network_header(skb);
4569 	hash = skb_get_hash(skb);
4570 	if (!hash)
4571 		goto done;
4572 
4573 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
4574 	if (flow_table && sock_flow_table) {
4575 		struct rps_dev_flow *rflow;
4576 		u32 next_cpu;
4577 		u32 ident;
4578 
4579 		/* First check into global flow table if there is a match.
4580 		 * This READ_ONCE() pairs with WRITE_ONCE() from rps_record_sock_flow().
4581 		 */
4582 		ident = READ_ONCE(sock_flow_table->ents[hash & sock_flow_table->mask]);
4583 		if ((ident ^ hash) & ~rps_cpu_mask)
4584 			goto try_rps;
4585 
4586 		next_cpu = ident & rps_cpu_mask;
4587 
4588 		/* OK, now we know there is a match,
4589 		 * we can look at the local (per receive queue) flow table
4590 		 */
4591 		rflow = &flow_table->flows[hash & flow_table->mask];
4592 		tcpu = rflow->cpu;
4593 
4594 		/*
4595 		 * If the desired CPU (where last recvmsg was done) is
4596 		 * different from current CPU (one in the rx-queue flow
4597 		 * table entry), switch if one of the following holds:
4598 		 *   - Current CPU is unset (>= nr_cpu_ids).
4599 		 *   - Current CPU is offline.
4600 		 *   - The current CPU's queue tail has advanced beyond the
4601 		 *     last packet that was enqueued using this table entry.
4602 		 *     This guarantees that all previous packets for the flow
4603 		 *     have been dequeued, thus preserving in order delivery.
4604 		 */
4605 		if (unlikely(tcpu != next_cpu) &&
4606 		    (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4607 		     ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4608 		      rflow->last_qtail)) >= 0)) {
4609 			tcpu = next_cpu;
4610 			rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4611 		}
4612 
4613 		if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4614 			*rflowp = rflow;
4615 			cpu = tcpu;
4616 			goto done;
4617 		}
4618 	}
4619 
4620 try_rps:
4621 
4622 	if (map) {
4623 		tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4624 		if (cpu_online(tcpu)) {
4625 			cpu = tcpu;
4626 			goto done;
4627 		}
4628 	}
4629 
4630 done:
4631 	return cpu;
4632 }
4633 
4634 #ifdef CONFIG_RFS_ACCEL
4635 
4636 /**
4637  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4638  * @dev: Device on which the filter was set
4639  * @rxq_index: RX queue index
4640  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4641  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4642  *
4643  * Drivers that implement ndo_rx_flow_steer() should periodically call
4644  * this function for each installed filter and remove the filters for
4645  * which it returns %true.
4646  */
4647 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4648 			 u32 flow_id, u16 filter_id)
4649 {
4650 	struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4651 	struct rps_dev_flow_table *flow_table;
4652 	struct rps_dev_flow *rflow;
4653 	bool expire = true;
4654 	unsigned int cpu;
4655 
4656 	rcu_read_lock();
4657 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
4658 	if (flow_table && flow_id <= flow_table->mask) {
4659 		rflow = &flow_table->flows[flow_id];
4660 		cpu = READ_ONCE(rflow->cpu);
4661 		if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4662 		    ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4663 			   rflow->last_qtail) <
4664 		     (int)(10 * flow_table->mask)))
4665 			expire = false;
4666 	}
4667 	rcu_read_unlock();
4668 	return expire;
4669 }
4670 EXPORT_SYMBOL(rps_may_expire_flow);
4671 
4672 #endif /* CONFIG_RFS_ACCEL */
4673 
4674 /* Called from hardirq (IPI) context */
4675 static void rps_trigger_softirq(void *data)
4676 {
4677 	struct softnet_data *sd = data;
4678 
4679 	____napi_schedule(sd, &sd->backlog);
4680 	sd->received_rps++;
4681 }
4682 
4683 #endif /* CONFIG_RPS */
4684 
4685 /* Called from hardirq (IPI) context */
4686 static void trigger_rx_softirq(void *data)
4687 {
4688 	struct softnet_data *sd = data;
4689 
4690 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4691 	smp_store_release(&sd->defer_ipi_scheduled, 0);
4692 }
4693 
4694 /*
4695  * After we queued a packet into sd->input_pkt_queue,
4696  * we need to make sure this queue is serviced soon.
4697  *
4698  * - If this is another cpu queue, link it to our rps_ipi_list,
4699  *   and make sure we will process rps_ipi_list from net_rx_action().
4700  *
4701  * - If this is our own queue, NAPI schedule our backlog.
4702  *   Note that this also raises NET_RX_SOFTIRQ.
4703  */
4704 static void napi_schedule_rps(struct softnet_data *sd)
4705 {
4706 	struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4707 
4708 #ifdef CONFIG_RPS
4709 	if (sd != mysd) {
4710 		sd->rps_ipi_next = mysd->rps_ipi_list;
4711 		mysd->rps_ipi_list = sd;
4712 
4713 		/* If not called from net_rx_action() or napi_threaded_poll()
4714 		 * we have to raise NET_RX_SOFTIRQ.
4715 		 */
4716 		if (!mysd->in_net_rx_action && !mysd->in_napi_threaded_poll)
4717 			__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4718 		return;
4719 	}
4720 #endif /* CONFIG_RPS */
4721 	__napi_schedule_irqoff(&mysd->backlog);
4722 }
4723 
4724 #ifdef CONFIG_NET_FLOW_LIMIT
4725 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4726 #endif
4727 
4728 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4729 {
4730 #ifdef CONFIG_NET_FLOW_LIMIT
4731 	struct sd_flow_limit *fl;
4732 	struct softnet_data *sd;
4733 	unsigned int old_flow, new_flow;
4734 
4735 	if (qlen < (READ_ONCE(netdev_max_backlog) >> 1))
4736 		return false;
4737 
4738 	sd = this_cpu_ptr(&softnet_data);
4739 
4740 	rcu_read_lock();
4741 	fl = rcu_dereference(sd->flow_limit);
4742 	if (fl) {
4743 		new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4744 		old_flow = fl->history[fl->history_head];
4745 		fl->history[fl->history_head] = new_flow;
4746 
4747 		fl->history_head++;
4748 		fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4749 
4750 		if (likely(fl->buckets[old_flow]))
4751 			fl->buckets[old_flow]--;
4752 
4753 		if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4754 			fl->count++;
4755 			rcu_read_unlock();
4756 			return true;
4757 		}
4758 	}
4759 	rcu_read_unlock();
4760 #endif
4761 	return false;
4762 }
4763 
4764 /*
4765  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4766  * queue (may be a remote CPU queue).
4767  */
4768 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4769 			      unsigned int *qtail)
4770 {
4771 	enum skb_drop_reason reason;
4772 	struct softnet_data *sd;
4773 	unsigned long flags;
4774 	unsigned int qlen;
4775 
4776 	reason = SKB_DROP_REASON_NOT_SPECIFIED;
4777 	sd = &per_cpu(softnet_data, cpu);
4778 
4779 	rps_lock_irqsave(sd, &flags);
4780 	if (!netif_running(skb->dev))
4781 		goto drop;
4782 	qlen = skb_queue_len(&sd->input_pkt_queue);
4783 	if (qlen <= READ_ONCE(netdev_max_backlog) && !skb_flow_limit(skb, qlen)) {
4784 		if (qlen) {
4785 enqueue:
4786 			__skb_queue_tail(&sd->input_pkt_queue, skb);
4787 			input_queue_tail_incr_save(sd, qtail);
4788 			rps_unlock_irq_restore(sd, &flags);
4789 			return NET_RX_SUCCESS;
4790 		}
4791 
4792 		/* Schedule NAPI for backlog device
4793 		 * We can use non atomic operation since we own the queue lock
4794 		 */
4795 		if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state))
4796 			napi_schedule_rps(sd);
4797 		goto enqueue;
4798 	}
4799 	reason = SKB_DROP_REASON_CPU_BACKLOG;
4800 
4801 drop:
4802 	sd->dropped++;
4803 	rps_unlock_irq_restore(sd, &flags);
4804 
4805 	dev_core_stats_rx_dropped_inc(skb->dev);
4806 	kfree_skb_reason(skb, reason);
4807 	return NET_RX_DROP;
4808 }
4809 
4810 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4811 {
4812 	struct net_device *dev = skb->dev;
4813 	struct netdev_rx_queue *rxqueue;
4814 
4815 	rxqueue = dev->_rx;
4816 
4817 	if (skb_rx_queue_recorded(skb)) {
4818 		u16 index = skb_get_rx_queue(skb);
4819 
4820 		if (unlikely(index >= dev->real_num_rx_queues)) {
4821 			WARN_ONCE(dev->real_num_rx_queues > 1,
4822 				  "%s received packet on queue %u, but number "
4823 				  "of RX queues is %u\n",
4824 				  dev->name, index, dev->real_num_rx_queues);
4825 
4826 			return rxqueue; /* Return first rxqueue */
4827 		}
4828 		rxqueue += index;
4829 	}
4830 	return rxqueue;
4831 }
4832 
4833 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp,
4834 			     struct bpf_prog *xdp_prog)
4835 {
4836 	void *orig_data, *orig_data_end, *hard_start;
4837 	struct netdev_rx_queue *rxqueue;
4838 	bool orig_bcast, orig_host;
4839 	u32 mac_len, frame_sz;
4840 	__be16 orig_eth_type;
4841 	struct ethhdr *eth;
4842 	u32 metalen, act;
4843 	int off;
4844 
4845 	/* The XDP program wants to see the packet starting at the MAC
4846 	 * header.
4847 	 */
4848 	mac_len = skb->data - skb_mac_header(skb);
4849 	hard_start = skb->data - skb_headroom(skb);
4850 
4851 	/* SKB "head" area always have tailroom for skb_shared_info */
4852 	frame_sz = (void *)skb_end_pointer(skb) - hard_start;
4853 	frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
4854 
4855 	rxqueue = netif_get_rxqueue(skb);
4856 	xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq);
4857 	xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len,
4858 			 skb_headlen(skb) + mac_len, true);
4859 
4860 	orig_data_end = xdp->data_end;
4861 	orig_data = xdp->data;
4862 	eth = (struct ethhdr *)xdp->data;
4863 	orig_host = ether_addr_equal_64bits(eth->h_dest, skb->dev->dev_addr);
4864 	orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4865 	orig_eth_type = eth->h_proto;
4866 
4867 	act = bpf_prog_run_xdp(xdp_prog, xdp);
4868 
4869 	/* check if bpf_xdp_adjust_head was used */
4870 	off = xdp->data - orig_data;
4871 	if (off) {
4872 		if (off > 0)
4873 			__skb_pull(skb, off);
4874 		else if (off < 0)
4875 			__skb_push(skb, -off);
4876 
4877 		skb->mac_header += off;
4878 		skb_reset_network_header(skb);
4879 	}
4880 
4881 	/* check if bpf_xdp_adjust_tail was used */
4882 	off = xdp->data_end - orig_data_end;
4883 	if (off != 0) {
4884 		skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4885 		skb->len += off; /* positive on grow, negative on shrink */
4886 	}
4887 
4888 	/* check if XDP changed eth hdr such SKB needs update */
4889 	eth = (struct ethhdr *)xdp->data;
4890 	if ((orig_eth_type != eth->h_proto) ||
4891 	    (orig_host != ether_addr_equal_64bits(eth->h_dest,
4892 						  skb->dev->dev_addr)) ||
4893 	    (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4894 		__skb_push(skb, ETH_HLEN);
4895 		skb->pkt_type = PACKET_HOST;
4896 		skb->protocol = eth_type_trans(skb, skb->dev);
4897 	}
4898 
4899 	/* Redirect/Tx gives L2 packet, code that will reuse skb must __skb_pull
4900 	 * before calling us again on redirect path. We do not call do_redirect
4901 	 * as we leave that up to the caller.
4902 	 *
4903 	 * Caller is responsible for managing lifetime of skb (i.e. calling
4904 	 * kfree_skb in response to actions it cannot handle/XDP_DROP).
4905 	 */
4906 	switch (act) {
4907 	case XDP_REDIRECT:
4908 	case XDP_TX:
4909 		__skb_push(skb, mac_len);
4910 		break;
4911 	case XDP_PASS:
4912 		metalen = xdp->data - xdp->data_meta;
4913 		if (metalen)
4914 			skb_metadata_set(skb, metalen);
4915 		break;
4916 	}
4917 
4918 	return act;
4919 }
4920 
4921 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4922 				     struct xdp_buff *xdp,
4923 				     struct bpf_prog *xdp_prog)
4924 {
4925 	u32 act = XDP_DROP;
4926 
4927 	/* Reinjected packets coming from act_mirred or similar should
4928 	 * not get XDP generic processing.
4929 	 */
4930 	if (skb_is_redirected(skb))
4931 		return XDP_PASS;
4932 
4933 	/* XDP packets must be linear and must have sufficient headroom
4934 	 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4935 	 * native XDP provides, thus we need to do it here as well.
4936 	 */
4937 	if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
4938 	    skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4939 		int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4940 		int troom = skb->tail + skb->data_len - skb->end;
4941 
4942 		/* In case we have to go down the path and also linearize,
4943 		 * then lets do the pskb_expand_head() work just once here.
4944 		 */
4945 		if (pskb_expand_head(skb,
4946 				     hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4947 				     troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4948 			goto do_drop;
4949 		if (skb_linearize(skb))
4950 			goto do_drop;
4951 	}
4952 
4953 	act = bpf_prog_run_generic_xdp(skb, xdp, xdp_prog);
4954 	switch (act) {
4955 	case XDP_REDIRECT:
4956 	case XDP_TX:
4957 	case XDP_PASS:
4958 		break;
4959 	default:
4960 		bpf_warn_invalid_xdp_action(skb->dev, xdp_prog, act);
4961 		fallthrough;
4962 	case XDP_ABORTED:
4963 		trace_xdp_exception(skb->dev, xdp_prog, act);
4964 		fallthrough;
4965 	case XDP_DROP:
4966 	do_drop:
4967 		kfree_skb(skb);
4968 		break;
4969 	}
4970 
4971 	return act;
4972 }
4973 
4974 /* When doing generic XDP we have to bypass the qdisc layer and the
4975  * network taps in order to match in-driver-XDP behavior. This also means
4976  * that XDP packets are able to starve other packets going through a qdisc,
4977  * and DDOS attacks will be more effective. In-driver-XDP use dedicated TX
4978  * queues, so they do not have this starvation issue.
4979  */
4980 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4981 {
4982 	struct net_device *dev = skb->dev;
4983 	struct netdev_queue *txq;
4984 	bool free_skb = true;
4985 	int cpu, rc;
4986 
4987 	txq = netdev_core_pick_tx(dev, skb, NULL);
4988 	cpu = smp_processor_id();
4989 	HARD_TX_LOCK(dev, txq, cpu);
4990 	if (!netif_xmit_frozen_or_drv_stopped(txq)) {
4991 		rc = netdev_start_xmit(skb, dev, txq, 0);
4992 		if (dev_xmit_complete(rc))
4993 			free_skb = false;
4994 	}
4995 	HARD_TX_UNLOCK(dev, txq);
4996 	if (free_skb) {
4997 		trace_xdp_exception(dev, xdp_prog, XDP_TX);
4998 		dev_core_stats_tx_dropped_inc(dev);
4999 		kfree_skb(skb);
5000 	}
5001 }
5002 
5003 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
5004 
5005 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
5006 {
5007 	if (xdp_prog) {
5008 		struct xdp_buff xdp;
5009 		u32 act;
5010 		int err;
5011 
5012 		act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
5013 		if (act != XDP_PASS) {
5014 			switch (act) {
5015 			case XDP_REDIRECT:
5016 				err = xdp_do_generic_redirect(skb->dev, skb,
5017 							      &xdp, xdp_prog);
5018 				if (err)
5019 					goto out_redir;
5020 				break;
5021 			case XDP_TX:
5022 				generic_xdp_tx(skb, xdp_prog);
5023 				break;
5024 			}
5025 			return XDP_DROP;
5026 		}
5027 	}
5028 	return XDP_PASS;
5029 out_redir:
5030 	kfree_skb_reason(skb, SKB_DROP_REASON_XDP);
5031 	return XDP_DROP;
5032 }
5033 EXPORT_SYMBOL_GPL(do_xdp_generic);
5034 
5035 static int netif_rx_internal(struct sk_buff *skb)
5036 {
5037 	int ret;
5038 
5039 	net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb);
5040 
5041 	trace_netif_rx(skb);
5042 
5043 #ifdef CONFIG_RPS
5044 	if (static_branch_unlikely(&rps_needed)) {
5045 		struct rps_dev_flow voidflow, *rflow = &voidflow;
5046 		int cpu;
5047 
5048 		rcu_read_lock();
5049 
5050 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
5051 		if (cpu < 0)
5052 			cpu = smp_processor_id();
5053 
5054 		ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5055 
5056 		rcu_read_unlock();
5057 	} else
5058 #endif
5059 	{
5060 		unsigned int qtail;
5061 
5062 		ret = enqueue_to_backlog(skb, smp_processor_id(), &qtail);
5063 	}
5064 	return ret;
5065 }
5066 
5067 /**
5068  *	__netif_rx	-	Slightly optimized version of netif_rx
5069  *	@skb: buffer to post
5070  *
5071  *	This behaves as netif_rx except that it does not disable bottom halves.
5072  *	As a result this function may only be invoked from the interrupt context
5073  *	(either hard or soft interrupt).
5074  */
5075 int __netif_rx(struct sk_buff *skb)
5076 {
5077 	int ret;
5078 
5079 	lockdep_assert_once(hardirq_count() | softirq_count());
5080 
5081 	trace_netif_rx_entry(skb);
5082 	ret = netif_rx_internal(skb);
5083 	trace_netif_rx_exit(ret);
5084 	return ret;
5085 }
5086 EXPORT_SYMBOL(__netif_rx);
5087 
5088 /**
5089  *	netif_rx	-	post buffer to the network code
5090  *	@skb: buffer to post
5091  *
5092  *	This function receives a packet from a device driver and queues it for
5093  *	the upper (protocol) levels to process via the backlog NAPI device. It
5094  *	always succeeds. The buffer may be dropped during processing for
5095  *	congestion control or by the protocol layers.
5096  *	The network buffer is passed via the backlog NAPI device. Modern NIC
5097  *	driver should use NAPI and GRO.
5098  *	This function can used from interrupt and from process context. The
5099  *	caller from process context must not disable interrupts before invoking
5100  *	this function.
5101  *
5102  *	return values:
5103  *	NET_RX_SUCCESS	(no congestion)
5104  *	NET_RX_DROP     (packet was dropped)
5105  *
5106  */
5107 int netif_rx(struct sk_buff *skb)
5108 {
5109 	bool need_bh_off = !(hardirq_count() | softirq_count());
5110 	int ret;
5111 
5112 	if (need_bh_off)
5113 		local_bh_disable();
5114 	trace_netif_rx_entry(skb);
5115 	ret = netif_rx_internal(skb);
5116 	trace_netif_rx_exit(ret);
5117 	if (need_bh_off)
5118 		local_bh_enable();
5119 	return ret;
5120 }
5121 EXPORT_SYMBOL(netif_rx);
5122 
5123 static __latent_entropy void net_tx_action(struct softirq_action *h)
5124 {
5125 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5126 
5127 	if (sd->completion_queue) {
5128 		struct sk_buff *clist;
5129 
5130 		local_irq_disable();
5131 		clist = sd->completion_queue;
5132 		sd->completion_queue = NULL;
5133 		local_irq_enable();
5134 
5135 		while (clist) {
5136 			struct sk_buff *skb = clist;
5137 
5138 			clist = clist->next;
5139 
5140 			WARN_ON(refcount_read(&skb->users));
5141 			if (likely(get_kfree_skb_cb(skb)->reason == SKB_CONSUMED))
5142 				trace_consume_skb(skb, net_tx_action);
5143 			else
5144 				trace_kfree_skb(skb, net_tx_action,
5145 						get_kfree_skb_cb(skb)->reason);
5146 
5147 			if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
5148 				__kfree_skb(skb);
5149 			else
5150 				__napi_kfree_skb(skb,
5151 						 get_kfree_skb_cb(skb)->reason);
5152 		}
5153 	}
5154 
5155 	if (sd->output_queue) {
5156 		struct Qdisc *head;
5157 
5158 		local_irq_disable();
5159 		head = sd->output_queue;
5160 		sd->output_queue = NULL;
5161 		sd->output_queue_tailp = &sd->output_queue;
5162 		local_irq_enable();
5163 
5164 		rcu_read_lock();
5165 
5166 		while (head) {
5167 			struct Qdisc *q = head;
5168 			spinlock_t *root_lock = NULL;
5169 
5170 			head = head->next_sched;
5171 
5172 			/* We need to make sure head->next_sched is read
5173 			 * before clearing __QDISC_STATE_SCHED
5174 			 */
5175 			smp_mb__before_atomic();
5176 
5177 			if (!(q->flags & TCQ_F_NOLOCK)) {
5178 				root_lock = qdisc_lock(q);
5179 				spin_lock(root_lock);
5180 			} else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED,
5181 						     &q->state))) {
5182 				/* There is a synchronize_net() between
5183 				 * STATE_DEACTIVATED flag being set and
5184 				 * qdisc_reset()/some_qdisc_is_busy() in
5185 				 * dev_deactivate(), so we can safely bail out
5186 				 * early here to avoid data race between
5187 				 * qdisc_deactivate() and some_qdisc_is_busy()
5188 				 * for lockless qdisc.
5189 				 */
5190 				clear_bit(__QDISC_STATE_SCHED, &q->state);
5191 				continue;
5192 			}
5193 
5194 			clear_bit(__QDISC_STATE_SCHED, &q->state);
5195 			qdisc_run(q);
5196 			if (root_lock)
5197 				spin_unlock(root_lock);
5198 		}
5199 
5200 		rcu_read_unlock();
5201 	}
5202 
5203 	xfrm_dev_backlog(sd);
5204 }
5205 
5206 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
5207 /* This hook is defined here for ATM LANE */
5208 int (*br_fdb_test_addr_hook)(struct net_device *dev,
5209 			     unsigned char *addr) __read_mostly;
5210 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
5211 #endif
5212 
5213 /**
5214  *	netdev_is_rx_handler_busy - check if receive handler is registered
5215  *	@dev: device to check
5216  *
5217  *	Check if a receive handler is already registered for a given device.
5218  *	Return true if there one.
5219  *
5220  *	The caller must hold the rtnl_mutex.
5221  */
5222 bool netdev_is_rx_handler_busy(struct net_device *dev)
5223 {
5224 	ASSERT_RTNL();
5225 	return dev && rtnl_dereference(dev->rx_handler);
5226 }
5227 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
5228 
5229 /**
5230  *	netdev_rx_handler_register - register receive handler
5231  *	@dev: device to register a handler for
5232  *	@rx_handler: receive handler to register
5233  *	@rx_handler_data: data pointer that is used by rx handler
5234  *
5235  *	Register a receive handler for a device. This handler will then be
5236  *	called from __netif_receive_skb. A negative errno code is returned
5237  *	on a failure.
5238  *
5239  *	The caller must hold the rtnl_mutex.
5240  *
5241  *	For a general description of rx_handler, see enum rx_handler_result.
5242  */
5243 int netdev_rx_handler_register(struct net_device *dev,
5244 			       rx_handler_func_t *rx_handler,
5245 			       void *rx_handler_data)
5246 {
5247 	if (netdev_is_rx_handler_busy(dev))
5248 		return -EBUSY;
5249 
5250 	if (dev->priv_flags & IFF_NO_RX_HANDLER)
5251 		return -EINVAL;
5252 
5253 	/* Note: rx_handler_data must be set before rx_handler */
5254 	rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
5255 	rcu_assign_pointer(dev->rx_handler, rx_handler);
5256 
5257 	return 0;
5258 }
5259 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5260 
5261 /**
5262  *	netdev_rx_handler_unregister - unregister receive handler
5263  *	@dev: device to unregister a handler from
5264  *
5265  *	Unregister a receive handler from a device.
5266  *
5267  *	The caller must hold the rtnl_mutex.
5268  */
5269 void netdev_rx_handler_unregister(struct net_device *dev)
5270 {
5271 
5272 	ASSERT_RTNL();
5273 	RCU_INIT_POINTER(dev->rx_handler, NULL);
5274 	/* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5275 	 * section has a guarantee to see a non NULL rx_handler_data
5276 	 * as well.
5277 	 */
5278 	synchronize_net();
5279 	RCU_INIT_POINTER(dev->rx_handler_data, NULL);
5280 }
5281 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5282 
5283 /*
5284  * Limit the use of PFMEMALLOC reserves to those protocols that implement
5285  * the special handling of PFMEMALLOC skbs.
5286  */
5287 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5288 {
5289 	switch (skb->protocol) {
5290 	case htons(ETH_P_ARP):
5291 	case htons(ETH_P_IP):
5292 	case htons(ETH_P_IPV6):
5293 	case htons(ETH_P_8021Q):
5294 	case htons(ETH_P_8021AD):
5295 		return true;
5296 	default:
5297 		return false;
5298 	}
5299 }
5300 
5301 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5302 			     int *ret, struct net_device *orig_dev)
5303 {
5304 	if (nf_hook_ingress_active(skb)) {
5305 		int ingress_retval;
5306 
5307 		if (*pt_prev) {
5308 			*ret = deliver_skb(skb, *pt_prev, orig_dev);
5309 			*pt_prev = NULL;
5310 		}
5311 
5312 		rcu_read_lock();
5313 		ingress_retval = nf_hook_ingress(skb);
5314 		rcu_read_unlock();
5315 		return ingress_retval;
5316 	}
5317 	return 0;
5318 }
5319 
5320 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
5321 				    struct packet_type **ppt_prev)
5322 {
5323 	struct packet_type *ptype, *pt_prev;
5324 	rx_handler_func_t *rx_handler;
5325 	struct sk_buff *skb = *pskb;
5326 	struct net_device *orig_dev;
5327 	bool deliver_exact = false;
5328 	int ret = NET_RX_DROP;
5329 	__be16 type;
5330 
5331 	net_timestamp_check(!READ_ONCE(netdev_tstamp_prequeue), skb);
5332 
5333 	trace_netif_receive_skb(skb);
5334 
5335 	orig_dev = skb->dev;
5336 
5337 	skb_reset_network_header(skb);
5338 	if (!skb_transport_header_was_set(skb))
5339 		skb_reset_transport_header(skb);
5340 	skb_reset_mac_len(skb);
5341 
5342 	pt_prev = NULL;
5343 
5344 another_round:
5345 	skb->skb_iif = skb->dev->ifindex;
5346 
5347 	__this_cpu_inc(softnet_data.processed);
5348 
5349 	if (static_branch_unlikely(&generic_xdp_needed_key)) {
5350 		int ret2;
5351 
5352 		migrate_disable();
5353 		ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
5354 		migrate_enable();
5355 
5356 		if (ret2 != XDP_PASS) {
5357 			ret = NET_RX_DROP;
5358 			goto out;
5359 		}
5360 	}
5361 
5362 	if (eth_type_vlan(skb->protocol)) {
5363 		skb = skb_vlan_untag(skb);
5364 		if (unlikely(!skb))
5365 			goto out;
5366 	}
5367 
5368 	if (skb_skip_tc_classify(skb))
5369 		goto skip_classify;
5370 
5371 	if (pfmemalloc)
5372 		goto skip_taps;
5373 
5374 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
5375 		if (pt_prev)
5376 			ret = deliver_skb(skb, pt_prev, orig_dev);
5377 		pt_prev = ptype;
5378 	}
5379 
5380 	list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5381 		if (pt_prev)
5382 			ret = deliver_skb(skb, pt_prev, orig_dev);
5383 		pt_prev = ptype;
5384 	}
5385 
5386 skip_taps:
5387 #ifdef CONFIG_NET_INGRESS
5388 	if (static_branch_unlikely(&ingress_needed_key)) {
5389 		bool another = false;
5390 
5391 		nf_skip_egress(skb, true);
5392 		skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev,
5393 					 &another);
5394 		if (another)
5395 			goto another_round;
5396 		if (!skb)
5397 			goto out;
5398 
5399 		nf_skip_egress(skb, false);
5400 		if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5401 			goto out;
5402 	}
5403 #endif
5404 	skb_reset_redirect(skb);
5405 skip_classify:
5406 	if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
5407 		goto drop;
5408 
5409 	if (skb_vlan_tag_present(skb)) {
5410 		if (pt_prev) {
5411 			ret = deliver_skb(skb, pt_prev, orig_dev);
5412 			pt_prev = NULL;
5413 		}
5414 		if (vlan_do_receive(&skb))
5415 			goto another_round;
5416 		else if (unlikely(!skb))
5417 			goto out;
5418 	}
5419 
5420 	rx_handler = rcu_dereference(skb->dev->rx_handler);
5421 	if (rx_handler) {
5422 		if (pt_prev) {
5423 			ret = deliver_skb(skb, pt_prev, orig_dev);
5424 			pt_prev = NULL;
5425 		}
5426 		switch (rx_handler(&skb)) {
5427 		case RX_HANDLER_CONSUMED:
5428 			ret = NET_RX_SUCCESS;
5429 			goto out;
5430 		case RX_HANDLER_ANOTHER:
5431 			goto another_round;
5432 		case RX_HANDLER_EXACT:
5433 			deliver_exact = true;
5434 			break;
5435 		case RX_HANDLER_PASS:
5436 			break;
5437 		default:
5438 			BUG();
5439 		}
5440 	}
5441 
5442 	if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) {
5443 check_vlan_id:
5444 		if (skb_vlan_tag_get_id(skb)) {
5445 			/* Vlan id is non 0 and vlan_do_receive() above couldn't
5446 			 * find vlan device.
5447 			 */
5448 			skb->pkt_type = PACKET_OTHERHOST;
5449 		} else if (eth_type_vlan(skb->protocol)) {
5450 			/* Outer header is 802.1P with vlan 0, inner header is
5451 			 * 802.1Q or 802.1AD and vlan_do_receive() above could
5452 			 * not find vlan dev for vlan id 0.
5453 			 */
5454 			__vlan_hwaccel_clear_tag(skb);
5455 			skb = skb_vlan_untag(skb);
5456 			if (unlikely(!skb))
5457 				goto out;
5458 			if (vlan_do_receive(&skb))
5459 				/* After stripping off 802.1P header with vlan 0
5460 				 * vlan dev is found for inner header.
5461 				 */
5462 				goto another_round;
5463 			else if (unlikely(!skb))
5464 				goto out;
5465 			else
5466 				/* We have stripped outer 802.1P vlan 0 header.
5467 				 * But could not find vlan dev.
5468 				 * check again for vlan id to set OTHERHOST.
5469 				 */
5470 				goto check_vlan_id;
5471 		}
5472 		/* Note: we might in the future use prio bits
5473 		 * and set skb->priority like in vlan_do_receive()
5474 		 * For the time being, just ignore Priority Code Point
5475 		 */
5476 		__vlan_hwaccel_clear_tag(skb);
5477 	}
5478 
5479 	type = skb->protocol;
5480 
5481 	/* deliver only exact match when indicated */
5482 	if (likely(!deliver_exact)) {
5483 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5484 				       &ptype_base[ntohs(type) &
5485 						   PTYPE_HASH_MASK]);
5486 	}
5487 
5488 	deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5489 			       &orig_dev->ptype_specific);
5490 
5491 	if (unlikely(skb->dev != orig_dev)) {
5492 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5493 				       &skb->dev->ptype_specific);
5494 	}
5495 
5496 	if (pt_prev) {
5497 		if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
5498 			goto drop;
5499 		*ppt_prev = pt_prev;
5500 	} else {
5501 drop:
5502 		if (!deliver_exact)
5503 			dev_core_stats_rx_dropped_inc(skb->dev);
5504 		else
5505 			dev_core_stats_rx_nohandler_inc(skb->dev);
5506 		kfree_skb_reason(skb, SKB_DROP_REASON_UNHANDLED_PROTO);
5507 		/* Jamal, now you will not able to escape explaining
5508 		 * me how you were going to use this. :-)
5509 		 */
5510 		ret = NET_RX_DROP;
5511 	}
5512 
5513 out:
5514 	/* The invariant here is that if *ppt_prev is not NULL
5515 	 * then skb should also be non-NULL.
5516 	 *
5517 	 * Apparently *ppt_prev assignment above holds this invariant due to
5518 	 * skb dereferencing near it.
5519 	 */
5520 	*pskb = skb;
5521 	return ret;
5522 }
5523 
5524 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5525 {
5526 	struct net_device *orig_dev = skb->dev;
5527 	struct packet_type *pt_prev = NULL;
5528 	int ret;
5529 
5530 	ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5531 	if (pt_prev)
5532 		ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5533 					 skb->dev, pt_prev, orig_dev);
5534 	return ret;
5535 }
5536 
5537 /**
5538  *	netif_receive_skb_core - special purpose version of netif_receive_skb
5539  *	@skb: buffer to process
5540  *
5541  *	More direct receive version of netif_receive_skb().  It should
5542  *	only be used by callers that have a need to skip RPS and Generic XDP.
5543  *	Caller must also take care of handling if ``(page_is_)pfmemalloc``.
5544  *
5545  *	This function may only be called from softirq context and interrupts
5546  *	should be enabled.
5547  *
5548  *	Return values (usually ignored):
5549  *	NET_RX_SUCCESS: no congestion
5550  *	NET_RX_DROP: packet was dropped
5551  */
5552 int netif_receive_skb_core(struct sk_buff *skb)
5553 {
5554 	int ret;
5555 
5556 	rcu_read_lock();
5557 	ret = __netif_receive_skb_one_core(skb, false);
5558 	rcu_read_unlock();
5559 
5560 	return ret;
5561 }
5562 EXPORT_SYMBOL(netif_receive_skb_core);
5563 
5564 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5565 						  struct packet_type *pt_prev,
5566 						  struct net_device *orig_dev)
5567 {
5568 	struct sk_buff *skb, *next;
5569 
5570 	if (!pt_prev)
5571 		return;
5572 	if (list_empty(head))
5573 		return;
5574 	if (pt_prev->list_func != NULL)
5575 		INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5576 				   ip_list_rcv, head, pt_prev, orig_dev);
5577 	else
5578 		list_for_each_entry_safe(skb, next, head, list) {
5579 			skb_list_del_init(skb);
5580 			pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5581 		}
5582 }
5583 
5584 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5585 {
5586 	/* Fast-path assumptions:
5587 	 * - There is no RX handler.
5588 	 * - Only one packet_type matches.
5589 	 * If either of these fails, we will end up doing some per-packet
5590 	 * processing in-line, then handling the 'last ptype' for the whole
5591 	 * sublist.  This can't cause out-of-order delivery to any single ptype,
5592 	 * because the 'last ptype' must be constant across the sublist, and all
5593 	 * other ptypes are handled per-packet.
5594 	 */
5595 	/* Current (common) ptype of sublist */
5596 	struct packet_type *pt_curr = NULL;
5597 	/* Current (common) orig_dev of sublist */
5598 	struct net_device *od_curr = NULL;
5599 	struct list_head sublist;
5600 	struct sk_buff *skb, *next;
5601 
5602 	INIT_LIST_HEAD(&sublist);
5603 	list_for_each_entry_safe(skb, next, head, list) {
5604 		struct net_device *orig_dev = skb->dev;
5605 		struct packet_type *pt_prev = NULL;
5606 
5607 		skb_list_del_init(skb);
5608 		__netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5609 		if (!pt_prev)
5610 			continue;
5611 		if (pt_curr != pt_prev || od_curr != orig_dev) {
5612 			/* dispatch old sublist */
5613 			__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5614 			/* start new sublist */
5615 			INIT_LIST_HEAD(&sublist);
5616 			pt_curr = pt_prev;
5617 			od_curr = orig_dev;
5618 		}
5619 		list_add_tail(&skb->list, &sublist);
5620 	}
5621 
5622 	/* dispatch final sublist */
5623 	__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5624 }
5625 
5626 static int __netif_receive_skb(struct sk_buff *skb)
5627 {
5628 	int ret;
5629 
5630 	if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5631 		unsigned int noreclaim_flag;
5632 
5633 		/*
5634 		 * PFMEMALLOC skbs are special, they should
5635 		 * - be delivered to SOCK_MEMALLOC sockets only
5636 		 * - stay away from userspace
5637 		 * - have bounded memory usage
5638 		 *
5639 		 * Use PF_MEMALLOC as this saves us from propagating the allocation
5640 		 * context down to all allocation sites.
5641 		 */
5642 		noreclaim_flag = memalloc_noreclaim_save();
5643 		ret = __netif_receive_skb_one_core(skb, true);
5644 		memalloc_noreclaim_restore(noreclaim_flag);
5645 	} else
5646 		ret = __netif_receive_skb_one_core(skb, false);
5647 
5648 	return ret;
5649 }
5650 
5651 static void __netif_receive_skb_list(struct list_head *head)
5652 {
5653 	unsigned long noreclaim_flag = 0;
5654 	struct sk_buff *skb, *next;
5655 	bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5656 
5657 	list_for_each_entry_safe(skb, next, head, list) {
5658 		if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5659 			struct list_head sublist;
5660 
5661 			/* Handle the previous sublist */
5662 			list_cut_before(&sublist, head, &skb->list);
5663 			if (!list_empty(&sublist))
5664 				__netif_receive_skb_list_core(&sublist, pfmemalloc);
5665 			pfmemalloc = !pfmemalloc;
5666 			/* See comments in __netif_receive_skb */
5667 			if (pfmemalloc)
5668 				noreclaim_flag = memalloc_noreclaim_save();
5669 			else
5670 				memalloc_noreclaim_restore(noreclaim_flag);
5671 		}
5672 	}
5673 	/* Handle the remaining sublist */
5674 	if (!list_empty(head))
5675 		__netif_receive_skb_list_core(head, pfmemalloc);
5676 	/* Restore pflags */
5677 	if (pfmemalloc)
5678 		memalloc_noreclaim_restore(noreclaim_flag);
5679 }
5680 
5681 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5682 {
5683 	struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5684 	struct bpf_prog *new = xdp->prog;
5685 	int ret = 0;
5686 
5687 	switch (xdp->command) {
5688 	case XDP_SETUP_PROG:
5689 		rcu_assign_pointer(dev->xdp_prog, new);
5690 		if (old)
5691 			bpf_prog_put(old);
5692 
5693 		if (old && !new) {
5694 			static_branch_dec(&generic_xdp_needed_key);
5695 		} else if (new && !old) {
5696 			static_branch_inc(&generic_xdp_needed_key);
5697 			dev_disable_lro(dev);
5698 			dev_disable_gro_hw(dev);
5699 		}
5700 		break;
5701 
5702 	default:
5703 		ret = -EINVAL;
5704 		break;
5705 	}
5706 
5707 	return ret;
5708 }
5709 
5710 static int netif_receive_skb_internal(struct sk_buff *skb)
5711 {
5712 	int ret;
5713 
5714 	net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb);
5715 
5716 	if (skb_defer_rx_timestamp(skb))
5717 		return NET_RX_SUCCESS;
5718 
5719 	rcu_read_lock();
5720 #ifdef CONFIG_RPS
5721 	if (static_branch_unlikely(&rps_needed)) {
5722 		struct rps_dev_flow voidflow, *rflow = &voidflow;
5723 		int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5724 
5725 		if (cpu >= 0) {
5726 			ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5727 			rcu_read_unlock();
5728 			return ret;
5729 		}
5730 	}
5731 #endif
5732 	ret = __netif_receive_skb(skb);
5733 	rcu_read_unlock();
5734 	return ret;
5735 }
5736 
5737 void netif_receive_skb_list_internal(struct list_head *head)
5738 {
5739 	struct sk_buff *skb, *next;
5740 	struct list_head sublist;
5741 
5742 	INIT_LIST_HEAD(&sublist);
5743 	list_for_each_entry_safe(skb, next, head, list) {
5744 		net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb);
5745 		skb_list_del_init(skb);
5746 		if (!skb_defer_rx_timestamp(skb))
5747 			list_add_tail(&skb->list, &sublist);
5748 	}
5749 	list_splice_init(&sublist, head);
5750 
5751 	rcu_read_lock();
5752 #ifdef CONFIG_RPS
5753 	if (static_branch_unlikely(&rps_needed)) {
5754 		list_for_each_entry_safe(skb, next, head, list) {
5755 			struct rps_dev_flow voidflow, *rflow = &voidflow;
5756 			int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5757 
5758 			if (cpu >= 0) {
5759 				/* Will be handled, remove from list */
5760 				skb_list_del_init(skb);
5761 				enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5762 			}
5763 		}
5764 	}
5765 #endif
5766 	__netif_receive_skb_list(head);
5767 	rcu_read_unlock();
5768 }
5769 
5770 /**
5771  *	netif_receive_skb - process receive buffer from network
5772  *	@skb: buffer to process
5773  *
5774  *	netif_receive_skb() is the main receive data processing function.
5775  *	It always succeeds. The buffer may be dropped during processing
5776  *	for congestion control or by the protocol layers.
5777  *
5778  *	This function may only be called from softirq context and interrupts
5779  *	should be enabled.
5780  *
5781  *	Return values (usually ignored):
5782  *	NET_RX_SUCCESS: no congestion
5783  *	NET_RX_DROP: packet was dropped
5784  */
5785 int netif_receive_skb(struct sk_buff *skb)
5786 {
5787 	int ret;
5788 
5789 	trace_netif_receive_skb_entry(skb);
5790 
5791 	ret = netif_receive_skb_internal(skb);
5792 	trace_netif_receive_skb_exit(ret);
5793 
5794 	return ret;
5795 }
5796 EXPORT_SYMBOL(netif_receive_skb);
5797 
5798 /**
5799  *	netif_receive_skb_list - process many receive buffers from network
5800  *	@head: list of skbs to process.
5801  *
5802  *	Since return value of netif_receive_skb() is normally ignored, and
5803  *	wouldn't be meaningful for a list, this function returns void.
5804  *
5805  *	This function may only be called from softirq context and interrupts
5806  *	should be enabled.
5807  */
5808 void netif_receive_skb_list(struct list_head *head)
5809 {
5810 	struct sk_buff *skb;
5811 
5812 	if (list_empty(head))
5813 		return;
5814 	if (trace_netif_receive_skb_list_entry_enabled()) {
5815 		list_for_each_entry(skb, head, list)
5816 			trace_netif_receive_skb_list_entry(skb);
5817 	}
5818 	netif_receive_skb_list_internal(head);
5819 	trace_netif_receive_skb_list_exit(0);
5820 }
5821 EXPORT_SYMBOL(netif_receive_skb_list);
5822 
5823 static DEFINE_PER_CPU(struct work_struct, flush_works);
5824 
5825 /* Network device is going away, flush any packets still pending */
5826 static void flush_backlog(struct work_struct *work)
5827 {
5828 	struct sk_buff *skb, *tmp;
5829 	struct softnet_data *sd;
5830 
5831 	local_bh_disable();
5832 	sd = this_cpu_ptr(&softnet_data);
5833 
5834 	rps_lock_irq_disable(sd);
5835 	skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5836 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5837 			__skb_unlink(skb, &sd->input_pkt_queue);
5838 			dev_kfree_skb_irq(skb);
5839 			input_queue_head_incr(sd);
5840 		}
5841 	}
5842 	rps_unlock_irq_enable(sd);
5843 
5844 	skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5845 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5846 			__skb_unlink(skb, &sd->process_queue);
5847 			kfree_skb(skb);
5848 			input_queue_head_incr(sd);
5849 		}
5850 	}
5851 	local_bh_enable();
5852 }
5853 
5854 static bool flush_required(int cpu)
5855 {
5856 #if IS_ENABLED(CONFIG_RPS)
5857 	struct softnet_data *sd = &per_cpu(softnet_data, cpu);
5858 	bool do_flush;
5859 
5860 	rps_lock_irq_disable(sd);
5861 
5862 	/* as insertion into process_queue happens with the rps lock held,
5863 	 * process_queue access may race only with dequeue
5864 	 */
5865 	do_flush = !skb_queue_empty(&sd->input_pkt_queue) ||
5866 		   !skb_queue_empty_lockless(&sd->process_queue);
5867 	rps_unlock_irq_enable(sd);
5868 
5869 	return do_flush;
5870 #endif
5871 	/* without RPS we can't safely check input_pkt_queue: during a
5872 	 * concurrent remote skb_queue_splice() we can detect as empty both
5873 	 * input_pkt_queue and process_queue even if the latter could end-up
5874 	 * containing a lot of packets.
5875 	 */
5876 	return true;
5877 }
5878 
5879 static void flush_all_backlogs(void)
5880 {
5881 	static cpumask_t flush_cpus;
5882 	unsigned int cpu;
5883 
5884 	/* since we are under rtnl lock protection we can use static data
5885 	 * for the cpumask and avoid allocating on stack the possibly
5886 	 * large mask
5887 	 */
5888 	ASSERT_RTNL();
5889 
5890 	cpus_read_lock();
5891 
5892 	cpumask_clear(&flush_cpus);
5893 	for_each_online_cpu(cpu) {
5894 		if (flush_required(cpu)) {
5895 			queue_work_on(cpu, system_highpri_wq,
5896 				      per_cpu_ptr(&flush_works, cpu));
5897 			cpumask_set_cpu(cpu, &flush_cpus);
5898 		}
5899 	}
5900 
5901 	/* we can have in flight packet[s] on the cpus we are not flushing,
5902 	 * synchronize_net() in unregister_netdevice_many() will take care of
5903 	 * them
5904 	 */
5905 	for_each_cpu(cpu, &flush_cpus)
5906 		flush_work(per_cpu_ptr(&flush_works, cpu));
5907 
5908 	cpus_read_unlock();
5909 }
5910 
5911 static void net_rps_send_ipi(struct softnet_data *remsd)
5912 {
5913 #ifdef CONFIG_RPS
5914 	while (remsd) {
5915 		struct softnet_data *next = remsd->rps_ipi_next;
5916 
5917 		if (cpu_online(remsd->cpu))
5918 			smp_call_function_single_async(remsd->cpu, &remsd->csd);
5919 		remsd = next;
5920 	}
5921 #endif
5922 }
5923 
5924 /*
5925  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
5926  * Note: called with local irq disabled, but exits with local irq enabled.
5927  */
5928 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
5929 {
5930 #ifdef CONFIG_RPS
5931 	struct softnet_data *remsd = sd->rps_ipi_list;
5932 
5933 	if (remsd) {
5934 		sd->rps_ipi_list = NULL;
5935 
5936 		local_irq_enable();
5937 
5938 		/* Send pending IPI's to kick RPS processing on remote cpus. */
5939 		net_rps_send_ipi(remsd);
5940 	} else
5941 #endif
5942 		local_irq_enable();
5943 }
5944 
5945 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
5946 {
5947 #ifdef CONFIG_RPS
5948 	return sd->rps_ipi_list != NULL;
5949 #else
5950 	return false;
5951 #endif
5952 }
5953 
5954 static int process_backlog(struct napi_struct *napi, int quota)
5955 {
5956 	struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
5957 	bool again = true;
5958 	int work = 0;
5959 
5960 	/* Check if we have pending ipi, its better to send them now,
5961 	 * not waiting net_rx_action() end.
5962 	 */
5963 	if (sd_has_rps_ipi_waiting(sd)) {
5964 		local_irq_disable();
5965 		net_rps_action_and_irq_enable(sd);
5966 	}
5967 
5968 	napi->weight = READ_ONCE(dev_rx_weight);
5969 	while (again) {
5970 		struct sk_buff *skb;
5971 
5972 		while ((skb = __skb_dequeue(&sd->process_queue))) {
5973 			rcu_read_lock();
5974 			__netif_receive_skb(skb);
5975 			rcu_read_unlock();
5976 			input_queue_head_incr(sd);
5977 			if (++work >= quota)
5978 				return work;
5979 
5980 		}
5981 
5982 		rps_lock_irq_disable(sd);
5983 		if (skb_queue_empty(&sd->input_pkt_queue)) {
5984 			/*
5985 			 * Inline a custom version of __napi_complete().
5986 			 * only current cpu owns and manipulates this napi,
5987 			 * and NAPI_STATE_SCHED is the only possible flag set
5988 			 * on backlog.
5989 			 * We can use a plain write instead of clear_bit(),
5990 			 * and we dont need an smp_mb() memory barrier.
5991 			 */
5992 			napi->state = 0;
5993 			again = false;
5994 		} else {
5995 			skb_queue_splice_tail_init(&sd->input_pkt_queue,
5996 						   &sd->process_queue);
5997 		}
5998 		rps_unlock_irq_enable(sd);
5999 	}
6000 
6001 	return work;
6002 }
6003 
6004 /**
6005  * __napi_schedule - schedule for receive
6006  * @n: entry to schedule
6007  *
6008  * The entry's receive function will be scheduled to run.
6009  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
6010  */
6011 void __napi_schedule(struct napi_struct *n)
6012 {
6013 	unsigned long flags;
6014 
6015 	local_irq_save(flags);
6016 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
6017 	local_irq_restore(flags);
6018 }
6019 EXPORT_SYMBOL(__napi_schedule);
6020 
6021 /**
6022  *	napi_schedule_prep - check if napi can be scheduled
6023  *	@n: napi context
6024  *
6025  * Test if NAPI routine is already running, and if not mark
6026  * it as running.  This is used as a condition variable to
6027  * insure only one NAPI poll instance runs.  We also make
6028  * sure there is no pending NAPI disable.
6029  */
6030 bool napi_schedule_prep(struct napi_struct *n)
6031 {
6032 	unsigned long new, val = READ_ONCE(n->state);
6033 
6034 	do {
6035 		if (unlikely(val & NAPIF_STATE_DISABLE))
6036 			return false;
6037 		new = val | NAPIF_STATE_SCHED;
6038 
6039 		/* Sets STATE_MISSED bit if STATE_SCHED was already set
6040 		 * This was suggested by Alexander Duyck, as compiler
6041 		 * emits better code than :
6042 		 * if (val & NAPIF_STATE_SCHED)
6043 		 *     new |= NAPIF_STATE_MISSED;
6044 		 */
6045 		new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6046 						   NAPIF_STATE_MISSED;
6047 	} while (!try_cmpxchg(&n->state, &val, new));
6048 
6049 	return !(val & NAPIF_STATE_SCHED);
6050 }
6051 EXPORT_SYMBOL(napi_schedule_prep);
6052 
6053 /**
6054  * __napi_schedule_irqoff - schedule for receive
6055  * @n: entry to schedule
6056  *
6057  * Variant of __napi_schedule() assuming hard irqs are masked.
6058  *
6059  * On PREEMPT_RT enabled kernels this maps to __napi_schedule()
6060  * because the interrupt disabled assumption might not be true
6061  * due to force-threaded interrupts and spinlock substitution.
6062  */
6063 void __napi_schedule_irqoff(struct napi_struct *n)
6064 {
6065 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6066 		____napi_schedule(this_cpu_ptr(&softnet_data), n);
6067 	else
6068 		__napi_schedule(n);
6069 }
6070 EXPORT_SYMBOL(__napi_schedule_irqoff);
6071 
6072 bool napi_complete_done(struct napi_struct *n, int work_done)
6073 {
6074 	unsigned long flags, val, new, timeout = 0;
6075 	bool ret = true;
6076 
6077 	/*
6078 	 * 1) Don't let napi dequeue from the cpu poll list
6079 	 *    just in case its running on a different cpu.
6080 	 * 2) If we are busy polling, do nothing here, we have
6081 	 *    the guarantee we will be called later.
6082 	 */
6083 	if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6084 				 NAPIF_STATE_IN_BUSY_POLL)))
6085 		return false;
6086 
6087 	if (work_done) {
6088 		if (n->gro_bitmask)
6089 			timeout = READ_ONCE(n->dev->gro_flush_timeout);
6090 		n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs);
6091 	}
6092 	if (n->defer_hard_irqs_count > 0) {
6093 		n->defer_hard_irqs_count--;
6094 		timeout = READ_ONCE(n->dev->gro_flush_timeout);
6095 		if (timeout)
6096 			ret = false;
6097 	}
6098 	if (n->gro_bitmask) {
6099 		/* When the NAPI instance uses a timeout and keeps postponing
6100 		 * it, we need to bound somehow the time packets are kept in
6101 		 * the GRO layer
6102 		 */
6103 		napi_gro_flush(n, !!timeout);
6104 	}
6105 
6106 	gro_normal_list(n);
6107 
6108 	if (unlikely(!list_empty(&n->poll_list))) {
6109 		/* If n->poll_list is not empty, we need to mask irqs */
6110 		local_irq_save(flags);
6111 		list_del_init(&n->poll_list);
6112 		local_irq_restore(flags);
6113 	}
6114 	WRITE_ONCE(n->list_owner, -1);
6115 
6116 	val = READ_ONCE(n->state);
6117 	do {
6118 		WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6119 
6120 		new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED |
6121 			      NAPIF_STATE_SCHED_THREADED |
6122 			      NAPIF_STATE_PREFER_BUSY_POLL);
6123 
6124 		/* If STATE_MISSED was set, leave STATE_SCHED set,
6125 		 * because we will call napi->poll() one more time.
6126 		 * This C code was suggested by Alexander Duyck to help gcc.
6127 		 */
6128 		new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6129 						    NAPIF_STATE_SCHED;
6130 	} while (!try_cmpxchg(&n->state, &val, new));
6131 
6132 	if (unlikely(val & NAPIF_STATE_MISSED)) {
6133 		__napi_schedule(n);
6134 		return false;
6135 	}
6136 
6137 	if (timeout)
6138 		hrtimer_start(&n->timer, ns_to_ktime(timeout),
6139 			      HRTIMER_MODE_REL_PINNED);
6140 	return ret;
6141 }
6142 EXPORT_SYMBOL(napi_complete_done);
6143 
6144 /* must be called under rcu_read_lock(), as we dont take a reference */
6145 static struct napi_struct *napi_by_id(unsigned int napi_id)
6146 {
6147 	unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6148 	struct napi_struct *napi;
6149 
6150 	hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6151 		if (napi->napi_id == napi_id)
6152 			return napi;
6153 
6154 	return NULL;
6155 }
6156 
6157 #if defined(CONFIG_NET_RX_BUSY_POLL)
6158 
6159 static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule)
6160 {
6161 	if (!skip_schedule) {
6162 		gro_normal_list(napi);
6163 		__napi_schedule(napi);
6164 		return;
6165 	}
6166 
6167 	if (napi->gro_bitmask) {
6168 		/* flush too old packets
6169 		 * If HZ < 1000, flush all packets.
6170 		 */
6171 		napi_gro_flush(napi, HZ >= 1000);
6172 	}
6173 
6174 	gro_normal_list(napi);
6175 	clear_bit(NAPI_STATE_SCHED, &napi->state);
6176 }
6177 
6178 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock, bool prefer_busy_poll,
6179 			   u16 budget)
6180 {
6181 	bool skip_schedule = false;
6182 	unsigned long timeout;
6183 	int rc;
6184 
6185 	/* Busy polling means there is a high chance device driver hard irq
6186 	 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6187 	 * set in napi_schedule_prep().
6188 	 * Since we are about to call napi->poll() once more, we can safely
6189 	 * clear NAPI_STATE_MISSED.
6190 	 *
6191 	 * Note: x86 could use a single "lock and ..." instruction
6192 	 * to perform these two clear_bit()
6193 	 */
6194 	clear_bit(NAPI_STATE_MISSED, &napi->state);
6195 	clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6196 
6197 	local_bh_disable();
6198 
6199 	if (prefer_busy_poll) {
6200 		napi->defer_hard_irqs_count = READ_ONCE(napi->dev->napi_defer_hard_irqs);
6201 		timeout = READ_ONCE(napi->dev->gro_flush_timeout);
6202 		if (napi->defer_hard_irqs_count && timeout) {
6203 			hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED);
6204 			skip_schedule = true;
6205 		}
6206 	}
6207 
6208 	/* All we really want here is to re-enable device interrupts.
6209 	 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6210 	 */
6211 	rc = napi->poll(napi, budget);
6212 	/* We can't gro_normal_list() here, because napi->poll() might have
6213 	 * rearmed the napi (napi_complete_done()) in which case it could
6214 	 * already be running on another CPU.
6215 	 */
6216 	trace_napi_poll(napi, rc, budget);
6217 	netpoll_poll_unlock(have_poll_lock);
6218 	if (rc == budget)
6219 		__busy_poll_stop(napi, skip_schedule);
6220 	local_bh_enable();
6221 }
6222 
6223 void napi_busy_loop(unsigned int napi_id,
6224 		    bool (*loop_end)(void *, unsigned long),
6225 		    void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6226 {
6227 	unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6228 	int (*napi_poll)(struct napi_struct *napi, int budget);
6229 	void *have_poll_lock = NULL;
6230 	struct napi_struct *napi;
6231 
6232 restart:
6233 	napi_poll = NULL;
6234 
6235 	rcu_read_lock();
6236 
6237 	napi = napi_by_id(napi_id);
6238 	if (!napi)
6239 		goto out;
6240 
6241 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6242 		preempt_disable();
6243 	for (;;) {
6244 		int work = 0;
6245 
6246 		local_bh_disable();
6247 		if (!napi_poll) {
6248 			unsigned long val = READ_ONCE(napi->state);
6249 
6250 			/* If multiple threads are competing for this napi,
6251 			 * we avoid dirtying napi->state as much as we can.
6252 			 */
6253 			if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6254 				   NAPIF_STATE_IN_BUSY_POLL)) {
6255 				if (prefer_busy_poll)
6256 					set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6257 				goto count;
6258 			}
6259 			if (cmpxchg(&napi->state, val,
6260 				    val | NAPIF_STATE_IN_BUSY_POLL |
6261 					  NAPIF_STATE_SCHED) != val) {
6262 				if (prefer_busy_poll)
6263 					set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6264 				goto count;
6265 			}
6266 			have_poll_lock = netpoll_poll_lock(napi);
6267 			napi_poll = napi->poll;
6268 		}
6269 		work = napi_poll(napi, budget);
6270 		trace_napi_poll(napi, work, budget);
6271 		gro_normal_list(napi);
6272 count:
6273 		if (work > 0)
6274 			__NET_ADD_STATS(dev_net(napi->dev),
6275 					LINUX_MIB_BUSYPOLLRXPACKETS, work);
6276 		local_bh_enable();
6277 
6278 		if (!loop_end || loop_end(loop_end_arg, start_time))
6279 			break;
6280 
6281 		if (unlikely(need_resched())) {
6282 			if (napi_poll)
6283 				busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6284 			if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6285 				preempt_enable();
6286 			rcu_read_unlock();
6287 			cond_resched();
6288 			if (loop_end(loop_end_arg, start_time))
6289 				return;
6290 			goto restart;
6291 		}
6292 		cpu_relax();
6293 	}
6294 	if (napi_poll)
6295 		busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6296 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6297 		preempt_enable();
6298 out:
6299 	rcu_read_unlock();
6300 }
6301 EXPORT_SYMBOL(napi_busy_loop);
6302 
6303 #endif /* CONFIG_NET_RX_BUSY_POLL */
6304 
6305 static void napi_hash_add(struct napi_struct *napi)
6306 {
6307 	if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state))
6308 		return;
6309 
6310 	spin_lock(&napi_hash_lock);
6311 
6312 	/* 0..NR_CPUS range is reserved for sender_cpu use */
6313 	do {
6314 		if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6315 			napi_gen_id = MIN_NAPI_ID;
6316 	} while (napi_by_id(napi_gen_id));
6317 	napi->napi_id = napi_gen_id;
6318 
6319 	hlist_add_head_rcu(&napi->napi_hash_node,
6320 			   &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6321 
6322 	spin_unlock(&napi_hash_lock);
6323 }
6324 
6325 /* Warning : caller is responsible to make sure rcu grace period
6326  * is respected before freeing memory containing @napi
6327  */
6328 static void napi_hash_del(struct napi_struct *napi)
6329 {
6330 	spin_lock(&napi_hash_lock);
6331 
6332 	hlist_del_init_rcu(&napi->napi_hash_node);
6333 
6334 	spin_unlock(&napi_hash_lock);
6335 }
6336 
6337 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6338 {
6339 	struct napi_struct *napi;
6340 
6341 	napi = container_of(timer, struct napi_struct, timer);
6342 
6343 	/* Note : we use a relaxed variant of napi_schedule_prep() not setting
6344 	 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6345 	 */
6346 	if (!napi_disable_pending(napi) &&
6347 	    !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) {
6348 		clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6349 		__napi_schedule_irqoff(napi);
6350 	}
6351 
6352 	return HRTIMER_NORESTART;
6353 }
6354 
6355 static void init_gro_hash(struct napi_struct *napi)
6356 {
6357 	int i;
6358 
6359 	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6360 		INIT_LIST_HEAD(&napi->gro_hash[i].list);
6361 		napi->gro_hash[i].count = 0;
6362 	}
6363 	napi->gro_bitmask = 0;
6364 }
6365 
6366 int dev_set_threaded(struct net_device *dev, bool threaded)
6367 {
6368 	struct napi_struct *napi;
6369 	int err = 0;
6370 
6371 	if (dev->threaded == threaded)
6372 		return 0;
6373 
6374 	if (threaded) {
6375 		list_for_each_entry(napi, &dev->napi_list, dev_list) {
6376 			if (!napi->thread) {
6377 				err = napi_kthread_create(napi);
6378 				if (err) {
6379 					threaded = false;
6380 					break;
6381 				}
6382 			}
6383 		}
6384 	}
6385 
6386 	dev->threaded = threaded;
6387 
6388 	/* Make sure kthread is created before THREADED bit
6389 	 * is set.
6390 	 */
6391 	smp_mb__before_atomic();
6392 
6393 	/* Setting/unsetting threaded mode on a napi might not immediately
6394 	 * take effect, if the current napi instance is actively being
6395 	 * polled. In this case, the switch between threaded mode and
6396 	 * softirq mode will happen in the next round of napi_schedule().
6397 	 * This should not cause hiccups/stalls to the live traffic.
6398 	 */
6399 	list_for_each_entry(napi, &dev->napi_list, dev_list)
6400 		assign_bit(NAPI_STATE_THREADED, &napi->state, threaded);
6401 
6402 	return err;
6403 }
6404 EXPORT_SYMBOL(dev_set_threaded);
6405 
6406 void netif_napi_add_weight(struct net_device *dev, struct napi_struct *napi,
6407 			   int (*poll)(struct napi_struct *, int), int weight)
6408 {
6409 	if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state)))
6410 		return;
6411 
6412 	INIT_LIST_HEAD(&napi->poll_list);
6413 	INIT_HLIST_NODE(&napi->napi_hash_node);
6414 	hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6415 	napi->timer.function = napi_watchdog;
6416 	init_gro_hash(napi);
6417 	napi->skb = NULL;
6418 	INIT_LIST_HEAD(&napi->rx_list);
6419 	napi->rx_count = 0;
6420 	napi->poll = poll;
6421 	if (weight > NAPI_POLL_WEIGHT)
6422 		netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6423 				weight);
6424 	napi->weight = weight;
6425 	napi->dev = dev;
6426 #ifdef CONFIG_NETPOLL
6427 	napi->poll_owner = -1;
6428 #endif
6429 	napi->list_owner = -1;
6430 	set_bit(NAPI_STATE_SCHED, &napi->state);
6431 	set_bit(NAPI_STATE_NPSVC, &napi->state);
6432 	list_add_rcu(&napi->dev_list, &dev->napi_list);
6433 	napi_hash_add(napi);
6434 	napi_get_frags_check(napi);
6435 	/* Create kthread for this napi if dev->threaded is set.
6436 	 * Clear dev->threaded if kthread creation failed so that
6437 	 * threaded mode will not be enabled in napi_enable().
6438 	 */
6439 	if (dev->threaded && napi_kthread_create(napi))
6440 		dev->threaded = 0;
6441 }
6442 EXPORT_SYMBOL(netif_napi_add_weight);
6443 
6444 void napi_disable(struct napi_struct *n)
6445 {
6446 	unsigned long val, new;
6447 
6448 	might_sleep();
6449 	set_bit(NAPI_STATE_DISABLE, &n->state);
6450 
6451 	val = READ_ONCE(n->state);
6452 	do {
6453 		while (val & (NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC)) {
6454 			usleep_range(20, 200);
6455 			val = READ_ONCE(n->state);
6456 		}
6457 
6458 		new = val | NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC;
6459 		new &= ~(NAPIF_STATE_THREADED | NAPIF_STATE_PREFER_BUSY_POLL);
6460 	} while (!try_cmpxchg(&n->state, &val, new));
6461 
6462 	hrtimer_cancel(&n->timer);
6463 
6464 	clear_bit(NAPI_STATE_DISABLE, &n->state);
6465 }
6466 EXPORT_SYMBOL(napi_disable);
6467 
6468 /**
6469  *	napi_enable - enable NAPI scheduling
6470  *	@n: NAPI context
6471  *
6472  * Resume NAPI from being scheduled on this context.
6473  * Must be paired with napi_disable.
6474  */
6475 void napi_enable(struct napi_struct *n)
6476 {
6477 	unsigned long new, val = READ_ONCE(n->state);
6478 
6479 	do {
6480 		BUG_ON(!test_bit(NAPI_STATE_SCHED, &val));
6481 
6482 		new = val & ~(NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC);
6483 		if (n->dev->threaded && n->thread)
6484 			new |= NAPIF_STATE_THREADED;
6485 	} while (!try_cmpxchg(&n->state, &val, new));
6486 }
6487 EXPORT_SYMBOL(napi_enable);
6488 
6489 static void flush_gro_hash(struct napi_struct *napi)
6490 {
6491 	int i;
6492 
6493 	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6494 		struct sk_buff *skb, *n;
6495 
6496 		list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6497 			kfree_skb(skb);
6498 		napi->gro_hash[i].count = 0;
6499 	}
6500 }
6501 
6502 /* Must be called in process context */
6503 void __netif_napi_del(struct napi_struct *napi)
6504 {
6505 	if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state))
6506 		return;
6507 
6508 	napi_hash_del(napi);
6509 	list_del_rcu(&napi->dev_list);
6510 	napi_free_frags(napi);
6511 
6512 	flush_gro_hash(napi);
6513 	napi->gro_bitmask = 0;
6514 
6515 	if (napi->thread) {
6516 		kthread_stop(napi->thread);
6517 		napi->thread = NULL;
6518 	}
6519 }
6520 EXPORT_SYMBOL(__netif_napi_del);
6521 
6522 static int __napi_poll(struct napi_struct *n, bool *repoll)
6523 {
6524 	int work, weight;
6525 
6526 	weight = n->weight;
6527 
6528 	/* This NAPI_STATE_SCHED test is for avoiding a race
6529 	 * with netpoll's poll_napi().  Only the entity which
6530 	 * obtains the lock and sees NAPI_STATE_SCHED set will
6531 	 * actually make the ->poll() call.  Therefore we avoid
6532 	 * accidentally calling ->poll() when NAPI is not scheduled.
6533 	 */
6534 	work = 0;
6535 	if (napi_is_scheduled(n)) {
6536 		work = n->poll(n, weight);
6537 		trace_napi_poll(n, work, weight);
6538 
6539 		xdp_do_check_flushed(n);
6540 	}
6541 
6542 	if (unlikely(work > weight))
6543 		netdev_err_once(n->dev, "NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
6544 				n->poll, work, weight);
6545 
6546 	if (likely(work < weight))
6547 		return work;
6548 
6549 	/* Drivers must not modify the NAPI state if they
6550 	 * consume the entire weight.  In such cases this code
6551 	 * still "owns" the NAPI instance and therefore can
6552 	 * move the instance around on the list at-will.
6553 	 */
6554 	if (unlikely(napi_disable_pending(n))) {
6555 		napi_complete(n);
6556 		return work;
6557 	}
6558 
6559 	/* The NAPI context has more processing work, but busy-polling
6560 	 * is preferred. Exit early.
6561 	 */
6562 	if (napi_prefer_busy_poll(n)) {
6563 		if (napi_complete_done(n, work)) {
6564 			/* If timeout is not set, we need to make sure
6565 			 * that the NAPI is re-scheduled.
6566 			 */
6567 			napi_schedule(n);
6568 		}
6569 		return work;
6570 	}
6571 
6572 	if (n->gro_bitmask) {
6573 		/* flush too old packets
6574 		 * If HZ < 1000, flush all packets.
6575 		 */
6576 		napi_gro_flush(n, HZ >= 1000);
6577 	}
6578 
6579 	gro_normal_list(n);
6580 
6581 	/* Some drivers may have called napi_schedule
6582 	 * prior to exhausting their budget.
6583 	 */
6584 	if (unlikely(!list_empty(&n->poll_list))) {
6585 		pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6586 			     n->dev ? n->dev->name : "backlog");
6587 		return work;
6588 	}
6589 
6590 	*repoll = true;
6591 
6592 	return work;
6593 }
6594 
6595 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6596 {
6597 	bool do_repoll = false;
6598 	void *have;
6599 	int work;
6600 
6601 	list_del_init(&n->poll_list);
6602 
6603 	have = netpoll_poll_lock(n);
6604 
6605 	work = __napi_poll(n, &do_repoll);
6606 
6607 	if (do_repoll)
6608 		list_add_tail(&n->poll_list, repoll);
6609 
6610 	netpoll_poll_unlock(have);
6611 
6612 	return work;
6613 }
6614 
6615 static int napi_thread_wait(struct napi_struct *napi)
6616 {
6617 	bool woken = false;
6618 
6619 	set_current_state(TASK_INTERRUPTIBLE);
6620 
6621 	while (!kthread_should_stop()) {
6622 		/* Testing SCHED_THREADED bit here to make sure the current
6623 		 * kthread owns this napi and could poll on this napi.
6624 		 * Testing SCHED bit is not enough because SCHED bit might be
6625 		 * set by some other busy poll thread or by napi_disable().
6626 		 */
6627 		if (test_bit(NAPI_STATE_SCHED_THREADED, &napi->state) || woken) {
6628 			WARN_ON(!list_empty(&napi->poll_list));
6629 			__set_current_state(TASK_RUNNING);
6630 			return 0;
6631 		}
6632 
6633 		schedule();
6634 		/* woken being true indicates this thread owns this napi. */
6635 		woken = true;
6636 		set_current_state(TASK_INTERRUPTIBLE);
6637 	}
6638 	__set_current_state(TASK_RUNNING);
6639 
6640 	return -1;
6641 }
6642 
6643 static void skb_defer_free_flush(struct softnet_data *sd)
6644 {
6645 	struct sk_buff *skb, *next;
6646 
6647 	/* Paired with WRITE_ONCE() in skb_attempt_defer_free() */
6648 	if (!READ_ONCE(sd->defer_list))
6649 		return;
6650 
6651 	spin_lock(&sd->defer_lock);
6652 	skb = sd->defer_list;
6653 	sd->defer_list = NULL;
6654 	sd->defer_count = 0;
6655 	spin_unlock(&sd->defer_lock);
6656 
6657 	while (skb != NULL) {
6658 		next = skb->next;
6659 		napi_consume_skb(skb, 1);
6660 		skb = next;
6661 	}
6662 }
6663 
6664 static int napi_threaded_poll(void *data)
6665 {
6666 	struct napi_struct *napi = data;
6667 	struct softnet_data *sd;
6668 	void *have;
6669 
6670 	while (!napi_thread_wait(napi)) {
6671 		for (;;) {
6672 			bool repoll = false;
6673 
6674 			local_bh_disable();
6675 			sd = this_cpu_ptr(&softnet_data);
6676 			sd->in_napi_threaded_poll = true;
6677 
6678 			have = netpoll_poll_lock(napi);
6679 			__napi_poll(napi, &repoll);
6680 			netpoll_poll_unlock(have);
6681 
6682 			sd->in_napi_threaded_poll = false;
6683 			barrier();
6684 
6685 			if (sd_has_rps_ipi_waiting(sd)) {
6686 				local_irq_disable();
6687 				net_rps_action_and_irq_enable(sd);
6688 			}
6689 			skb_defer_free_flush(sd);
6690 			local_bh_enable();
6691 
6692 			if (!repoll)
6693 				break;
6694 
6695 			cond_resched();
6696 		}
6697 	}
6698 	return 0;
6699 }
6700 
6701 static __latent_entropy void net_rx_action(struct softirq_action *h)
6702 {
6703 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
6704 	unsigned long time_limit = jiffies +
6705 		usecs_to_jiffies(READ_ONCE(netdev_budget_usecs));
6706 	int budget = READ_ONCE(netdev_budget);
6707 	LIST_HEAD(list);
6708 	LIST_HEAD(repoll);
6709 
6710 start:
6711 	sd->in_net_rx_action = true;
6712 	local_irq_disable();
6713 	list_splice_init(&sd->poll_list, &list);
6714 	local_irq_enable();
6715 
6716 	for (;;) {
6717 		struct napi_struct *n;
6718 
6719 		skb_defer_free_flush(sd);
6720 
6721 		if (list_empty(&list)) {
6722 			if (list_empty(&repoll)) {
6723 				sd->in_net_rx_action = false;
6724 				barrier();
6725 				/* We need to check if ____napi_schedule()
6726 				 * had refilled poll_list while
6727 				 * sd->in_net_rx_action was true.
6728 				 */
6729 				if (!list_empty(&sd->poll_list))
6730 					goto start;
6731 				if (!sd_has_rps_ipi_waiting(sd))
6732 					goto end;
6733 			}
6734 			break;
6735 		}
6736 
6737 		n = list_first_entry(&list, struct napi_struct, poll_list);
6738 		budget -= napi_poll(n, &repoll);
6739 
6740 		/* If softirq window is exhausted then punt.
6741 		 * Allow this to run for 2 jiffies since which will allow
6742 		 * an average latency of 1.5/HZ.
6743 		 */
6744 		if (unlikely(budget <= 0 ||
6745 			     time_after_eq(jiffies, time_limit))) {
6746 			sd->time_squeeze++;
6747 			break;
6748 		}
6749 	}
6750 
6751 	local_irq_disable();
6752 
6753 	list_splice_tail_init(&sd->poll_list, &list);
6754 	list_splice_tail(&repoll, &list);
6755 	list_splice(&list, &sd->poll_list);
6756 	if (!list_empty(&sd->poll_list))
6757 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
6758 	else
6759 		sd->in_net_rx_action = false;
6760 
6761 	net_rps_action_and_irq_enable(sd);
6762 end:;
6763 }
6764 
6765 struct netdev_adjacent {
6766 	struct net_device *dev;
6767 	netdevice_tracker dev_tracker;
6768 
6769 	/* upper master flag, there can only be one master device per list */
6770 	bool master;
6771 
6772 	/* lookup ignore flag */
6773 	bool ignore;
6774 
6775 	/* counter for the number of times this device was added to us */
6776 	u16 ref_nr;
6777 
6778 	/* private field for the users */
6779 	void *private;
6780 
6781 	struct list_head list;
6782 	struct rcu_head rcu;
6783 };
6784 
6785 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
6786 						 struct list_head *adj_list)
6787 {
6788 	struct netdev_adjacent *adj;
6789 
6790 	list_for_each_entry(adj, adj_list, list) {
6791 		if (adj->dev == adj_dev)
6792 			return adj;
6793 	}
6794 	return NULL;
6795 }
6796 
6797 static int ____netdev_has_upper_dev(struct net_device *upper_dev,
6798 				    struct netdev_nested_priv *priv)
6799 {
6800 	struct net_device *dev = (struct net_device *)priv->data;
6801 
6802 	return upper_dev == dev;
6803 }
6804 
6805 /**
6806  * netdev_has_upper_dev - Check if device is linked to an upper device
6807  * @dev: device
6808  * @upper_dev: upper device to check
6809  *
6810  * Find out if a device is linked to specified upper device and return true
6811  * in case it is. Note that this checks only immediate upper device,
6812  * not through a complete stack of devices. The caller must hold the RTNL lock.
6813  */
6814 bool netdev_has_upper_dev(struct net_device *dev,
6815 			  struct net_device *upper_dev)
6816 {
6817 	struct netdev_nested_priv priv = {
6818 		.data = (void *)upper_dev,
6819 	};
6820 
6821 	ASSERT_RTNL();
6822 
6823 	return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6824 					     &priv);
6825 }
6826 EXPORT_SYMBOL(netdev_has_upper_dev);
6827 
6828 /**
6829  * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device
6830  * @dev: device
6831  * @upper_dev: upper device to check
6832  *
6833  * Find out if a device is linked to specified upper device and return true
6834  * in case it is. Note that this checks the entire upper device chain.
6835  * The caller must hold rcu lock.
6836  */
6837 
6838 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
6839 				  struct net_device *upper_dev)
6840 {
6841 	struct netdev_nested_priv priv = {
6842 		.data = (void *)upper_dev,
6843 	};
6844 
6845 	return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6846 					       &priv);
6847 }
6848 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
6849 
6850 /**
6851  * netdev_has_any_upper_dev - Check if device is linked to some device
6852  * @dev: device
6853  *
6854  * Find out if a device is linked to an upper device and return true in case
6855  * it is. The caller must hold the RTNL lock.
6856  */
6857 bool netdev_has_any_upper_dev(struct net_device *dev)
6858 {
6859 	ASSERT_RTNL();
6860 
6861 	return !list_empty(&dev->adj_list.upper);
6862 }
6863 EXPORT_SYMBOL(netdev_has_any_upper_dev);
6864 
6865 /**
6866  * netdev_master_upper_dev_get - Get master upper device
6867  * @dev: device
6868  *
6869  * Find a master upper device and return pointer to it or NULL in case
6870  * it's not there. The caller must hold the RTNL lock.
6871  */
6872 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
6873 {
6874 	struct netdev_adjacent *upper;
6875 
6876 	ASSERT_RTNL();
6877 
6878 	if (list_empty(&dev->adj_list.upper))
6879 		return NULL;
6880 
6881 	upper = list_first_entry(&dev->adj_list.upper,
6882 				 struct netdev_adjacent, list);
6883 	if (likely(upper->master))
6884 		return upper->dev;
6885 	return NULL;
6886 }
6887 EXPORT_SYMBOL(netdev_master_upper_dev_get);
6888 
6889 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
6890 {
6891 	struct netdev_adjacent *upper;
6892 
6893 	ASSERT_RTNL();
6894 
6895 	if (list_empty(&dev->adj_list.upper))
6896 		return NULL;
6897 
6898 	upper = list_first_entry(&dev->adj_list.upper,
6899 				 struct netdev_adjacent, list);
6900 	if (likely(upper->master) && !upper->ignore)
6901 		return upper->dev;
6902 	return NULL;
6903 }
6904 
6905 /**
6906  * netdev_has_any_lower_dev - Check if device is linked to some device
6907  * @dev: device
6908  *
6909  * Find out if a device is linked to a lower device and return true in case
6910  * it is. The caller must hold the RTNL lock.
6911  */
6912 static bool netdev_has_any_lower_dev(struct net_device *dev)
6913 {
6914 	ASSERT_RTNL();
6915 
6916 	return !list_empty(&dev->adj_list.lower);
6917 }
6918 
6919 void *netdev_adjacent_get_private(struct list_head *adj_list)
6920 {
6921 	struct netdev_adjacent *adj;
6922 
6923 	adj = list_entry(adj_list, struct netdev_adjacent, list);
6924 
6925 	return adj->private;
6926 }
6927 EXPORT_SYMBOL(netdev_adjacent_get_private);
6928 
6929 /**
6930  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
6931  * @dev: device
6932  * @iter: list_head ** of the current position
6933  *
6934  * Gets the next device from the dev's upper list, starting from iter
6935  * position. The caller must hold RCU read lock.
6936  */
6937 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
6938 						 struct list_head **iter)
6939 {
6940 	struct netdev_adjacent *upper;
6941 
6942 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6943 
6944 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6945 
6946 	if (&upper->list == &dev->adj_list.upper)
6947 		return NULL;
6948 
6949 	*iter = &upper->list;
6950 
6951 	return upper->dev;
6952 }
6953 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
6954 
6955 static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
6956 						  struct list_head **iter,
6957 						  bool *ignore)
6958 {
6959 	struct netdev_adjacent *upper;
6960 
6961 	upper = list_entry((*iter)->next, struct netdev_adjacent, list);
6962 
6963 	if (&upper->list == &dev->adj_list.upper)
6964 		return NULL;
6965 
6966 	*iter = &upper->list;
6967 	*ignore = upper->ignore;
6968 
6969 	return upper->dev;
6970 }
6971 
6972 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
6973 						    struct list_head **iter)
6974 {
6975 	struct netdev_adjacent *upper;
6976 
6977 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6978 
6979 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6980 
6981 	if (&upper->list == &dev->adj_list.upper)
6982 		return NULL;
6983 
6984 	*iter = &upper->list;
6985 
6986 	return upper->dev;
6987 }
6988 
6989 static int __netdev_walk_all_upper_dev(struct net_device *dev,
6990 				       int (*fn)(struct net_device *dev,
6991 					 struct netdev_nested_priv *priv),
6992 				       struct netdev_nested_priv *priv)
6993 {
6994 	struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
6995 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
6996 	int ret, cur = 0;
6997 	bool ignore;
6998 
6999 	now = dev;
7000 	iter = &dev->adj_list.upper;
7001 
7002 	while (1) {
7003 		if (now != dev) {
7004 			ret = fn(now, priv);
7005 			if (ret)
7006 				return ret;
7007 		}
7008 
7009 		next = NULL;
7010 		while (1) {
7011 			udev = __netdev_next_upper_dev(now, &iter, &ignore);
7012 			if (!udev)
7013 				break;
7014 			if (ignore)
7015 				continue;
7016 
7017 			next = udev;
7018 			niter = &udev->adj_list.upper;
7019 			dev_stack[cur] = now;
7020 			iter_stack[cur++] = iter;
7021 			break;
7022 		}
7023 
7024 		if (!next) {
7025 			if (!cur)
7026 				return 0;
7027 			next = dev_stack[--cur];
7028 			niter = iter_stack[cur];
7029 		}
7030 
7031 		now = next;
7032 		iter = niter;
7033 	}
7034 
7035 	return 0;
7036 }
7037 
7038 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
7039 				  int (*fn)(struct net_device *dev,
7040 					    struct netdev_nested_priv *priv),
7041 				  struct netdev_nested_priv *priv)
7042 {
7043 	struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7044 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7045 	int ret, cur = 0;
7046 
7047 	now = dev;
7048 	iter = &dev->adj_list.upper;
7049 
7050 	while (1) {
7051 		if (now != dev) {
7052 			ret = fn(now, priv);
7053 			if (ret)
7054 				return ret;
7055 		}
7056 
7057 		next = NULL;
7058 		while (1) {
7059 			udev = netdev_next_upper_dev_rcu(now, &iter);
7060 			if (!udev)
7061 				break;
7062 
7063 			next = udev;
7064 			niter = &udev->adj_list.upper;
7065 			dev_stack[cur] = now;
7066 			iter_stack[cur++] = iter;
7067 			break;
7068 		}
7069 
7070 		if (!next) {
7071 			if (!cur)
7072 				return 0;
7073 			next = dev_stack[--cur];
7074 			niter = iter_stack[cur];
7075 		}
7076 
7077 		now = next;
7078 		iter = niter;
7079 	}
7080 
7081 	return 0;
7082 }
7083 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
7084 
7085 static bool __netdev_has_upper_dev(struct net_device *dev,
7086 				   struct net_device *upper_dev)
7087 {
7088 	struct netdev_nested_priv priv = {
7089 		.flags = 0,
7090 		.data = (void *)upper_dev,
7091 	};
7092 
7093 	ASSERT_RTNL();
7094 
7095 	return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
7096 					   &priv);
7097 }
7098 
7099 /**
7100  * netdev_lower_get_next_private - Get the next ->private from the
7101  *				   lower neighbour list
7102  * @dev: device
7103  * @iter: list_head ** of the current position
7104  *
7105  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7106  * list, starting from iter position. The caller must hold either hold the
7107  * RTNL lock or its own locking that guarantees that the neighbour lower
7108  * list will remain unchanged.
7109  */
7110 void *netdev_lower_get_next_private(struct net_device *dev,
7111 				    struct list_head **iter)
7112 {
7113 	struct netdev_adjacent *lower;
7114 
7115 	lower = list_entry(*iter, struct netdev_adjacent, list);
7116 
7117 	if (&lower->list == &dev->adj_list.lower)
7118 		return NULL;
7119 
7120 	*iter = lower->list.next;
7121 
7122 	return lower->private;
7123 }
7124 EXPORT_SYMBOL(netdev_lower_get_next_private);
7125 
7126 /**
7127  * netdev_lower_get_next_private_rcu - Get the next ->private from the
7128  *				       lower neighbour list, RCU
7129  *				       variant
7130  * @dev: device
7131  * @iter: list_head ** of the current position
7132  *
7133  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7134  * list, starting from iter position. The caller must hold RCU read lock.
7135  */
7136 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
7137 					struct list_head **iter)
7138 {
7139 	struct netdev_adjacent *lower;
7140 
7141 	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
7142 
7143 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7144 
7145 	if (&lower->list == &dev->adj_list.lower)
7146 		return NULL;
7147 
7148 	*iter = &lower->list;
7149 
7150 	return lower->private;
7151 }
7152 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
7153 
7154 /**
7155  * netdev_lower_get_next - Get the next device from the lower neighbour
7156  *                         list
7157  * @dev: device
7158  * @iter: list_head ** of the current position
7159  *
7160  * Gets the next netdev_adjacent from the dev's lower neighbour
7161  * list, starting from iter position. The caller must hold RTNL lock or
7162  * its own locking that guarantees that the neighbour lower
7163  * list will remain unchanged.
7164  */
7165 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
7166 {
7167 	struct netdev_adjacent *lower;
7168 
7169 	lower = list_entry(*iter, struct netdev_adjacent, list);
7170 
7171 	if (&lower->list == &dev->adj_list.lower)
7172 		return NULL;
7173 
7174 	*iter = lower->list.next;
7175 
7176 	return lower->dev;
7177 }
7178 EXPORT_SYMBOL(netdev_lower_get_next);
7179 
7180 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7181 						struct list_head **iter)
7182 {
7183 	struct netdev_adjacent *lower;
7184 
7185 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7186 
7187 	if (&lower->list == &dev->adj_list.lower)
7188 		return NULL;
7189 
7190 	*iter = &lower->list;
7191 
7192 	return lower->dev;
7193 }
7194 
7195 static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7196 						  struct list_head **iter,
7197 						  bool *ignore)
7198 {
7199 	struct netdev_adjacent *lower;
7200 
7201 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7202 
7203 	if (&lower->list == &dev->adj_list.lower)
7204 		return NULL;
7205 
7206 	*iter = &lower->list;
7207 	*ignore = lower->ignore;
7208 
7209 	return lower->dev;
7210 }
7211 
7212 int netdev_walk_all_lower_dev(struct net_device *dev,
7213 			      int (*fn)(struct net_device *dev,
7214 					struct netdev_nested_priv *priv),
7215 			      struct netdev_nested_priv *priv)
7216 {
7217 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7218 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7219 	int ret, cur = 0;
7220 
7221 	now = dev;
7222 	iter = &dev->adj_list.lower;
7223 
7224 	while (1) {
7225 		if (now != dev) {
7226 			ret = fn(now, priv);
7227 			if (ret)
7228 				return ret;
7229 		}
7230 
7231 		next = NULL;
7232 		while (1) {
7233 			ldev = netdev_next_lower_dev(now, &iter);
7234 			if (!ldev)
7235 				break;
7236 
7237 			next = ldev;
7238 			niter = &ldev->adj_list.lower;
7239 			dev_stack[cur] = now;
7240 			iter_stack[cur++] = iter;
7241 			break;
7242 		}
7243 
7244 		if (!next) {
7245 			if (!cur)
7246 				return 0;
7247 			next = dev_stack[--cur];
7248 			niter = iter_stack[cur];
7249 		}
7250 
7251 		now = next;
7252 		iter = niter;
7253 	}
7254 
7255 	return 0;
7256 }
7257 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
7258 
7259 static int __netdev_walk_all_lower_dev(struct net_device *dev,
7260 				       int (*fn)(struct net_device *dev,
7261 					 struct netdev_nested_priv *priv),
7262 				       struct netdev_nested_priv *priv)
7263 {
7264 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7265 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7266 	int ret, cur = 0;
7267 	bool ignore;
7268 
7269 	now = dev;
7270 	iter = &dev->adj_list.lower;
7271 
7272 	while (1) {
7273 		if (now != dev) {
7274 			ret = fn(now, priv);
7275 			if (ret)
7276 				return ret;
7277 		}
7278 
7279 		next = NULL;
7280 		while (1) {
7281 			ldev = __netdev_next_lower_dev(now, &iter, &ignore);
7282 			if (!ldev)
7283 				break;
7284 			if (ignore)
7285 				continue;
7286 
7287 			next = ldev;
7288 			niter = &ldev->adj_list.lower;
7289 			dev_stack[cur] = now;
7290 			iter_stack[cur++] = iter;
7291 			break;
7292 		}
7293 
7294 		if (!next) {
7295 			if (!cur)
7296 				return 0;
7297 			next = dev_stack[--cur];
7298 			niter = iter_stack[cur];
7299 		}
7300 
7301 		now = next;
7302 		iter = niter;
7303 	}
7304 
7305 	return 0;
7306 }
7307 
7308 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
7309 					     struct list_head **iter)
7310 {
7311 	struct netdev_adjacent *lower;
7312 
7313 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7314 	if (&lower->list == &dev->adj_list.lower)
7315 		return NULL;
7316 
7317 	*iter = &lower->list;
7318 
7319 	return lower->dev;
7320 }
7321 EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
7322 
7323 static u8 __netdev_upper_depth(struct net_device *dev)
7324 {
7325 	struct net_device *udev;
7326 	struct list_head *iter;
7327 	u8 max_depth = 0;
7328 	bool ignore;
7329 
7330 	for (iter = &dev->adj_list.upper,
7331 	     udev = __netdev_next_upper_dev(dev, &iter, &ignore);
7332 	     udev;
7333 	     udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
7334 		if (ignore)
7335 			continue;
7336 		if (max_depth < udev->upper_level)
7337 			max_depth = udev->upper_level;
7338 	}
7339 
7340 	return max_depth;
7341 }
7342 
7343 static u8 __netdev_lower_depth(struct net_device *dev)
7344 {
7345 	struct net_device *ldev;
7346 	struct list_head *iter;
7347 	u8 max_depth = 0;
7348 	bool ignore;
7349 
7350 	for (iter = &dev->adj_list.lower,
7351 	     ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
7352 	     ldev;
7353 	     ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
7354 		if (ignore)
7355 			continue;
7356 		if (max_depth < ldev->lower_level)
7357 			max_depth = ldev->lower_level;
7358 	}
7359 
7360 	return max_depth;
7361 }
7362 
7363 static int __netdev_update_upper_level(struct net_device *dev,
7364 				       struct netdev_nested_priv *__unused)
7365 {
7366 	dev->upper_level = __netdev_upper_depth(dev) + 1;
7367 	return 0;
7368 }
7369 
7370 #ifdef CONFIG_LOCKDEP
7371 static LIST_HEAD(net_unlink_list);
7372 
7373 static void net_unlink_todo(struct net_device *dev)
7374 {
7375 	if (list_empty(&dev->unlink_list))
7376 		list_add_tail(&dev->unlink_list, &net_unlink_list);
7377 }
7378 #endif
7379 
7380 static int __netdev_update_lower_level(struct net_device *dev,
7381 				       struct netdev_nested_priv *priv)
7382 {
7383 	dev->lower_level = __netdev_lower_depth(dev) + 1;
7384 
7385 #ifdef CONFIG_LOCKDEP
7386 	if (!priv)
7387 		return 0;
7388 
7389 	if (priv->flags & NESTED_SYNC_IMM)
7390 		dev->nested_level = dev->lower_level - 1;
7391 	if (priv->flags & NESTED_SYNC_TODO)
7392 		net_unlink_todo(dev);
7393 #endif
7394 	return 0;
7395 }
7396 
7397 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7398 				  int (*fn)(struct net_device *dev,
7399 					    struct netdev_nested_priv *priv),
7400 				  struct netdev_nested_priv *priv)
7401 {
7402 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7403 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7404 	int ret, cur = 0;
7405 
7406 	now = dev;
7407 	iter = &dev->adj_list.lower;
7408 
7409 	while (1) {
7410 		if (now != dev) {
7411 			ret = fn(now, priv);
7412 			if (ret)
7413 				return ret;
7414 		}
7415 
7416 		next = NULL;
7417 		while (1) {
7418 			ldev = netdev_next_lower_dev_rcu(now, &iter);
7419 			if (!ldev)
7420 				break;
7421 
7422 			next = ldev;
7423 			niter = &ldev->adj_list.lower;
7424 			dev_stack[cur] = now;
7425 			iter_stack[cur++] = iter;
7426 			break;
7427 		}
7428 
7429 		if (!next) {
7430 			if (!cur)
7431 				return 0;
7432 			next = dev_stack[--cur];
7433 			niter = iter_stack[cur];
7434 		}
7435 
7436 		now = next;
7437 		iter = niter;
7438 	}
7439 
7440 	return 0;
7441 }
7442 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
7443 
7444 /**
7445  * netdev_lower_get_first_private_rcu - Get the first ->private from the
7446  *				       lower neighbour list, RCU
7447  *				       variant
7448  * @dev: device
7449  *
7450  * Gets the first netdev_adjacent->private from the dev's lower neighbour
7451  * list. The caller must hold RCU read lock.
7452  */
7453 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
7454 {
7455 	struct netdev_adjacent *lower;
7456 
7457 	lower = list_first_or_null_rcu(&dev->adj_list.lower,
7458 			struct netdev_adjacent, list);
7459 	if (lower)
7460 		return lower->private;
7461 	return NULL;
7462 }
7463 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
7464 
7465 /**
7466  * netdev_master_upper_dev_get_rcu - Get master upper device
7467  * @dev: device
7468  *
7469  * Find a master upper device and return pointer to it or NULL in case
7470  * it's not there. The caller must hold the RCU read lock.
7471  */
7472 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
7473 {
7474 	struct netdev_adjacent *upper;
7475 
7476 	upper = list_first_or_null_rcu(&dev->adj_list.upper,
7477 				       struct netdev_adjacent, list);
7478 	if (upper && likely(upper->master))
7479 		return upper->dev;
7480 	return NULL;
7481 }
7482 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
7483 
7484 static int netdev_adjacent_sysfs_add(struct net_device *dev,
7485 			      struct net_device *adj_dev,
7486 			      struct list_head *dev_list)
7487 {
7488 	char linkname[IFNAMSIZ+7];
7489 
7490 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
7491 		"upper_%s" : "lower_%s", adj_dev->name);
7492 	return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
7493 				 linkname);
7494 }
7495 static void netdev_adjacent_sysfs_del(struct net_device *dev,
7496 			       char *name,
7497 			       struct list_head *dev_list)
7498 {
7499 	char linkname[IFNAMSIZ+7];
7500 
7501 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
7502 		"upper_%s" : "lower_%s", name);
7503 	sysfs_remove_link(&(dev->dev.kobj), linkname);
7504 }
7505 
7506 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
7507 						 struct net_device *adj_dev,
7508 						 struct list_head *dev_list)
7509 {
7510 	return (dev_list == &dev->adj_list.upper ||
7511 		dev_list == &dev->adj_list.lower) &&
7512 		net_eq(dev_net(dev), dev_net(adj_dev));
7513 }
7514 
7515 static int __netdev_adjacent_dev_insert(struct net_device *dev,
7516 					struct net_device *adj_dev,
7517 					struct list_head *dev_list,
7518 					void *private, bool master)
7519 {
7520 	struct netdev_adjacent *adj;
7521 	int ret;
7522 
7523 	adj = __netdev_find_adj(adj_dev, dev_list);
7524 
7525 	if (adj) {
7526 		adj->ref_nr += 1;
7527 		pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7528 			 dev->name, adj_dev->name, adj->ref_nr);
7529 
7530 		return 0;
7531 	}
7532 
7533 	adj = kmalloc(sizeof(*adj), GFP_KERNEL);
7534 	if (!adj)
7535 		return -ENOMEM;
7536 
7537 	adj->dev = adj_dev;
7538 	adj->master = master;
7539 	adj->ref_nr = 1;
7540 	adj->private = private;
7541 	adj->ignore = false;
7542 	netdev_hold(adj_dev, &adj->dev_tracker, GFP_KERNEL);
7543 
7544 	pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7545 		 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
7546 
7547 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
7548 		ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
7549 		if (ret)
7550 			goto free_adj;
7551 	}
7552 
7553 	/* Ensure that master link is always the first item in list. */
7554 	if (master) {
7555 		ret = sysfs_create_link(&(dev->dev.kobj),
7556 					&(adj_dev->dev.kobj), "master");
7557 		if (ret)
7558 			goto remove_symlinks;
7559 
7560 		list_add_rcu(&adj->list, dev_list);
7561 	} else {
7562 		list_add_tail_rcu(&adj->list, dev_list);
7563 	}
7564 
7565 	return 0;
7566 
7567 remove_symlinks:
7568 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7569 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7570 free_adj:
7571 	netdev_put(adj_dev, &adj->dev_tracker);
7572 	kfree(adj);
7573 
7574 	return ret;
7575 }
7576 
7577 static void __netdev_adjacent_dev_remove(struct net_device *dev,
7578 					 struct net_device *adj_dev,
7579 					 u16 ref_nr,
7580 					 struct list_head *dev_list)
7581 {
7582 	struct netdev_adjacent *adj;
7583 
7584 	pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
7585 		 dev->name, adj_dev->name, ref_nr);
7586 
7587 	adj = __netdev_find_adj(adj_dev, dev_list);
7588 
7589 	if (!adj) {
7590 		pr_err("Adjacency does not exist for device %s from %s\n",
7591 		       dev->name, adj_dev->name);
7592 		WARN_ON(1);
7593 		return;
7594 	}
7595 
7596 	if (adj->ref_nr > ref_nr) {
7597 		pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
7598 			 dev->name, adj_dev->name, ref_nr,
7599 			 adj->ref_nr - ref_nr);
7600 		adj->ref_nr -= ref_nr;
7601 		return;
7602 	}
7603 
7604 	if (adj->master)
7605 		sysfs_remove_link(&(dev->dev.kobj), "master");
7606 
7607 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7608 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7609 
7610 	list_del_rcu(&adj->list);
7611 	pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
7612 		 adj_dev->name, dev->name, adj_dev->name);
7613 	netdev_put(adj_dev, &adj->dev_tracker);
7614 	kfree_rcu(adj, rcu);
7615 }
7616 
7617 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
7618 					    struct net_device *upper_dev,
7619 					    struct list_head *up_list,
7620 					    struct list_head *down_list,
7621 					    void *private, bool master)
7622 {
7623 	int ret;
7624 
7625 	ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
7626 					   private, master);
7627 	if (ret)
7628 		return ret;
7629 
7630 	ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
7631 					   private, false);
7632 	if (ret) {
7633 		__netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
7634 		return ret;
7635 	}
7636 
7637 	return 0;
7638 }
7639 
7640 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
7641 					       struct net_device *upper_dev,
7642 					       u16 ref_nr,
7643 					       struct list_head *up_list,
7644 					       struct list_head *down_list)
7645 {
7646 	__netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
7647 	__netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
7648 }
7649 
7650 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
7651 						struct net_device *upper_dev,
7652 						void *private, bool master)
7653 {
7654 	return __netdev_adjacent_dev_link_lists(dev, upper_dev,
7655 						&dev->adj_list.upper,
7656 						&upper_dev->adj_list.lower,
7657 						private, master);
7658 }
7659 
7660 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
7661 						   struct net_device *upper_dev)
7662 {
7663 	__netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
7664 					   &dev->adj_list.upper,
7665 					   &upper_dev->adj_list.lower);
7666 }
7667 
7668 static int __netdev_upper_dev_link(struct net_device *dev,
7669 				   struct net_device *upper_dev, bool master,
7670 				   void *upper_priv, void *upper_info,
7671 				   struct netdev_nested_priv *priv,
7672 				   struct netlink_ext_ack *extack)
7673 {
7674 	struct netdev_notifier_changeupper_info changeupper_info = {
7675 		.info = {
7676 			.dev = dev,
7677 			.extack = extack,
7678 		},
7679 		.upper_dev = upper_dev,
7680 		.master = master,
7681 		.linking = true,
7682 		.upper_info = upper_info,
7683 	};
7684 	struct net_device *master_dev;
7685 	int ret = 0;
7686 
7687 	ASSERT_RTNL();
7688 
7689 	if (dev == upper_dev)
7690 		return -EBUSY;
7691 
7692 	/* To prevent loops, check if dev is not upper device to upper_dev. */
7693 	if (__netdev_has_upper_dev(upper_dev, dev))
7694 		return -EBUSY;
7695 
7696 	if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
7697 		return -EMLINK;
7698 
7699 	if (!master) {
7700 		if (__netdev_has_upper_dev(dev, upper_dev))
7701 			return -EEXIST;
7702 	} else {
7703 		master_dev = __netdev_master_upper_dev_get(dev);
7704 		if (master_dev)
7705 			return master_dev == upper_dev ? -EEXIST : -EBUSY;
7706 	}
7707 
7708 	ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7709 					    &changeupper_info.info);
7710 	ret = notifier_to_errno(ret);
7711 	if (ret)
7712 		return ret;
7713 
7714 	ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
7715 						   master);
7716 	if (ret)
7717 		return ret;
7718 
7719 	ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7720 					    &changeupper_info.info);
7721 	ret = notifier_to_errno(ret);
7722 	if (ret)
7723 		goto rollback;
7724 
7725 	__netdev_update_upper_level(dev, NULL);
7726 	__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7727 
7728 	__netdev_update_lower_level(upper_dev, priv);
7729 	__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7730 				    priv);
7731 
7732 	return 0;
7733 
7734 rollback:
7735 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7736 
7737 	return ret;
7738 }
7739 
7740 /**
7741  * netdev_upper_dev_link - Add a link to the upper device
7742  * @dev: device
7743  * @upper_dev: new upper device
7744  * @extack: netlink extended ack
7745  *
7746  * Adds a link to device which is upper to this one. The caller must hold
7747  * the RTNL lock. On a failure a negative errno code is returned.
7748  * On success the reference counts are adjusted and the function
7749  * returns zero.
7750  */
7751 int netdev_upper_dev_link(struct net_device *dev,
7752 			  struct net_device *upper_dev,
7753 			  struct netlink_ext_ack *extack)
7754 {
7755 	struct netdev_nested_priv priv = {
7756 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7757 		.data = NULL,
7758 	};
7759 
7760 	return __netdev_upper_dev_link(dev, upper_dev, false,
7761 				       NULL, NULL, &priv, extack);
7762 }
7763 EXPORT_SYMBOL(netdev_upper_dev_link);
7764 
7765 /**
7766  * netdev_master_upper_dev_link - Add a master link to the upper device
7767  * @dev: device
7768  * @upper_dev: new upper device
7769  * @upper_priv: upper device private
7770  * @upper_info: upper info to be passed down via notifier
7771  * @extack: netlink extended ack
7772  *
7773  * Adds a link to device which is upper to this one. In this case, only
7774  * one master upper device can be linked, although other non-master devices
7775  * might be linked as well. The caller must hold the RTNL lock.
7776  * On a failure a negative errno code is returned. On success the reference
7777  * counts are adjusted and the function returns zero.
7778  */
7779 int netdev_master_upper_dev_link(struct net_device *dev,
7780 				 struct net_device *upper_dev,
7781 				 void *upper_priv, void *upper_info,
7782 				 struct netlink_ext_ack *extack)
7783 {
7784 	struct netdev_nested_priv priv = {
7785 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7786 		.data = NULL,
7787 	};
7788 
7789 	return __netdev_upper_dev_link(dev, upper_dev, true,
7790 				       upper_priv, upper_info, &priv, extack);
7791 }
7792 EXPORT_SYMBOL(netdev_master_upper_dev_link);
7793 
7794 static void __netdev_upper_dev_unlink(struct net_device *dev,
7795 				      struct net_device *upper_dev,
7796 				      struct netdev_nested_priv *priv)
7797 {
7798 	struct netdev_notifier_changeupper_info changeupper_info = {
7799 		.info = {
7800 			.dev = dev,
7801 		},
7802 		.upper_dev = upper_dev,
7803 		.linking = false,
7804 	};
7805 
7806 	ASSERT_RTNL();
7807 
7808 	changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
7809 
7810 	call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7811 				      &changeupper_info.info);
7812 
7813 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7814 
7815 	call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7816 				      &changeupper_info.info);
7817 
7818 	__netdev_update_upper_level(dev, NULL);
7819 	__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7820 
7821 	__netdev_update_lower_level(upper_dev, priv);
7822 	__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7823 				    priv);
7824 }
7825 
7826 /**
7827  * netdev_upper_dev_unlink - Removes a link to upper device
7828  * @dev: device
7829  * @upper_dev: new upper device
7830  *
7831  * Removes a link to device which is upper to this one. The caller must hold
7832  * the RTNL lock.
7833  */
7834 void netdev_upper_dev_unlink(struct net_device *dev,
7835 			     struct net_device *upper_dev)
7836 {
7837 	struct netdev_nested_priv priv = {
7838 		.flags = NESTED_SYNC_TODO,
7839 		.data = NULL,
7840 	};
7841 
7842 	__netdev_upper_dev_unlink(dev, upper_dev, &priv);
7843 }
7844 EXPORT_SYMBOL(netdev_upper_dev_unlink);
7845 
7846 static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
7847 				      struct net_device *lower_dev,
7848 				      bool val)
7849 {
7850 	struct netdev_adjacent *adj;
7851 
7852 	adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
7853 	if (adj)
7854 		adj->ignore = val;
7855 
7856 	adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
7857 	if (adj)
7858 		adj->ignore = val;
7859 }
7860 
7861 static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
7862 					struct net_device *lower_dev)
7863 {
7864 	__netdev_adjacent_dev_set(upper_dev, lower_dev, true);
7865 }
7866 
7867 static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
7868 				       struct net_device *lower_dev)
7869 {
7870 	__netdev_adjacent_dev_set(upper_dev, lower_dev, false);
7871 }
7872 
7873 int netdev_adjacent_change_prepare(struct net_device *old_dev,
7874 				   struct net_device *new_dev,
7875 				   struct net_device *dev,
7876 				   struct netlink_ext_ack *extack)
7877 {
7878 	struct netdev_nested_priv priv = {
7879 		.flags = 0,
7880 		.data = NULL,
7881 	};
7882 	int err;
7883 
7884 	if (!new_dev)
7885 		return 0;
7886 
7887 	if (old_dev && new_dev != old_dev)
7888 		netdev_adjacent_dev_disable(dev, old_dev);
7889 	err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv,
7890 				      extack);
7891 	if (err) {
7892 		if (old_dev && new_dev != old_dev)
7893 			netdev_adjacent_dev_enable(dev, old_dev);
7894 		return err;
7895 	}
7896 
7897 	return 0;
7898 }
7899 EXPORT_SYMBOL(netdev_adjacent_change_prepare);
7900 
7901 void netdev_adjacent_change_commit(struct net_device *old_dev,
7902 				   struct net_device *new_dev,
7903 				   struct net_device *dev)
7904 {
7905 	struct netdev_nested_priv priv = {
7906 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7907 		.data = NULL,
7908 	};
7909 
7910 	if (!new_dev || !old_dev)
7911 		return;
7912 
7913 	if (new_dev == old_dev)
7914 		return;
7915 
7916 	netdev_adjacent_dev_enable(dev, old_dev);
7917 	__netdev_upper_dev_unlink(old_dev, dev, &priv);
7918 }
7919 EXPORT_SYMBOL(netdev_adjacent_change_commit);
7920 
7921 void netdev_adjacent_change_abort(struct net_device *old_dev,
7922 				  struct net_device *new_dev,
7923 				  struct net_device *dev)
7924 {
7925 	struct netdev_nested_priv priv = {
7926 		.flags = 0,
7927 		.data = NULL,
7928 	};
7929 
7930 	if (!new_dev)
7931 		return;
7932 
7933 	if (old_dev && new_dev != old_dev)
7934 		netdev_adjacent_dev_enable(dev, old_dev);
7935 
7936 	__netdev_upper_dev_unlink(new_dev, dev, &priv);
7937 }
7938 EXPORT_SYMBOL(netdev_adjacent_change_abort);
7939 
7940 /**
7941  * netdev_bonding_info_change - Dispatch event about slave change
7942  * @dev: device
7943  * @bonding_info: info to dispatch
7944  *
7945  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
7946  * The caller must hold the RTNL lock.
7947  */
7948 void netdev_bonding_info_change(struct net_device *dev,
7949 				struct netdev_bonding_info *bonding_info)
7950 {
7951 	struct netdev_notifier_bonding_info info = {
7952 		.info.dev = dev,
7953 	};
7954 
7955 	memcpy(&info.bonding_info, bonding_info,
7956 	       sizeof(struct netdev_bonding_info));
7957 	call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
7958 				      &info.info);
7959 }
7960 EXPORT_SYMBOL(netdev_bonding_info_change);
7961 
7962 static int netdev_offload_xstats_enable_l3(struct net_device *dev,
7963 					   struct netlink_ext_ack *extack)
7964 {
7965 	struct netdev_notifier_offload_xstats_info info = {
7966 		.info.dev = dev,
7967 		.info.extack = extack,
7968 		.type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
7969 	};
7970 	int err;
7971 	int rc;
7972 
7973 	dev->offload_xstats_l3 = kzalloc(sizeof(*dev->offload_xstats_l3),
7974 					 GFP_KERNEL);
7975 	if (!dev->offload_xstats_l3)
7976 		return -ENOMEM;
7977 
7978 	rc = call_netdevice_notifiers_info_robust(NETDEV_OFFLOAD_XSTATS_ENABLE,
7979 						  NETDEV_OFFLOAD_XSTATS_DISABLE,
7980 						  &info.info);
7981 	err = notifier_to_errno(rc);
7982 	if (err)
7983 		goto free_stats;
7984 
7985 	return 0;
7986 
7987 free_stats:
7988 	kfree(dev->offload_xstats_l3);
7989 	dev->offload_xstats_l3 = NULL;
7990 	return err;
7991 }
7992 
7993 int netdev_offload_xstats_enable(struct net_device *dev,
7994 				 enum netdev_offload_xstats_type type,
7995 				 struct netlink_ext_ack *extack)
7996 {
7997 	ASSERT_RTNL();
7998 
7999 	if (netdev_offload_xstats_enabled(dev, type))
8000 		return -EALREADY;
8001 
8002 	switch (type) {
8003 	case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8004 		return netdev_offload_xstats_enable_l3(dev, extack);
8005 	}
8006 
8007 	WARN_ON(1);
8008 	return -EINVAL;
8009 }
8010 EXPORT_SYMBOL(netdev_offload_xstats_enable);
8011 
8012 static void netdev_offload_xstats_disable_l3(struct net_device *dev)
8013 {
8014 	struct netdev_notifier_offload_xstats_info info = {
8015 		.info.dev = dev,
8016 		.type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
8017 	};
8018 
8019 	call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_DISABLE,
8020 				      &info.info);
8021 	kfree(dev->offload_xstats_l3);
8022 	dev->offload_xstats_l3 = NULL;
8023 }
8024 
8025 int netdev_offload_xstats_disable(struct net_device *dev,
8026 				  enum netdev_offload_xstats_type type)
8027 {
8028 	ASSERT_RTNL();
8029 
8030 	if (!netdev_offload_xstats_enabled(dev, type))
8031 		return -EALREADY;
8032 
8033 	switch (type) {
8034 	case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8035 		netdev_offload_xstats_disable_l3(dev);
8036 		return 0;
8037 	}
8038 
8039 	WARN_ON(1);
8040 	return -EINVAL;
8041 }
8042 EXPORT_SYMBOL(netdev_offload_xstats_disable);
8043 
8044 static void netdev_offload_xstats_disable_all(struct net_device *dev)
8045 {
8046 	netdev_offload_xstats_disable(dev, NETDEV_OFFLOAD_XSTATS_TYPE_L3);
8047 }
8048 
8049 static struct rtnl_hw_stats64 *
8050 netdev_offload_xstats_get_ptr(const struct net_device *dev,
8051 			      enum netdev_offload_xstats_type type)
8052 {
8053 	switch (type) {
8054 	case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8055 		return dev->offload_xstats_l3;
8056 	}
8057 
8058 	WARN_ON(1);
8059 	return NULL;
8060 }
8061 
8062 bool netdev_offload_xstats_enabled(const struct net_device *dev,
8063 				   enum netdev_offload_xstats_type type)
8064 {
8065 	ASSERT_RTNL();
8066 
8067 	return netdev_offload_xstats_get_ptr(dev, type);
8068 }
8069 EXPORT_SYMBOL(netdev_offload_xstats_enabled);
8070 
8071 struct netdev_notifier_offload_xstats_ru {
8072 	bool used;
8073 };
8074 
8075 struct netdev_notifier_offload_xstats_rd {
8076 	struct rtnl_hw_stats64 stats;
8077 	bool used;
8078 };
8079 
8080 static void netdev_hw_stats64_add(struct rtnl_hw_stats64 *dest,
8081 				  const struct rtnl_hw_stats64 *src)
8082 {
8083 	dest->rx_packets	  += src->rx_packets;
8084 	dest->tx_packets	  += src->tx_packets;
8085 	dest->rx_bytes		  += src->rx_bytes;
8086 	dest->tx_bytes		  += src->tx_bytes;
8087 	dest->rx_errors		  += src->rx_errors;
8088 	dest->tx_errors		  += src->tx_errors;
8089 	dest->rx_dropped	  += src->rx_dropped;
8090 	dest->tx_dropped	  += src->tx_dropped;
8091 	dest->multicast		  += src->multicast;
8092 }
8093 
8094 static int netdev_offload_xstats_get_used(struct net_device *dev,
8095 					  enum netdev_offload_xstats_type type,
8096 					  bool *p_used,
8097 					  struct netlink_ext_ack *extack)
8098 {
8099 	struct netdev_notifier_offload_xstats_ru report_used = {};
8100 	struct netdev_notifier_offload_xstats_info info = {
8101 		.info.dev = dev,
8102 		.info.extack = extack,
8103 		.type = type,
8104 		.report_used = &report_used,
8105 	};
8106 	int rc;
8107 
8108 	WARN_ON(!netdev_offload_xstats_enabled(dev, type));
8109 	rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_USED,
8110 					   &info.info);
8111 	*p_used = report_used.used;
8112 	return notifier_to_errno(rc);
8113 }
8114 
8115 static int netdev_offload_xstats_get_stats(struct net_device *dev,
8116 					   enum netdev_offload_xstats_type type,
8117 					   struct rtnl_hw_stats64 *p_stats,
8118 					   bool *p_used,
8119 					   struct netlink_ext_ack *extack)
8120 {
8121 	struct netdev_notifier_offload_xstats_rd report_delta = {};
8122 	struct netdev_notifier_offload_xstats_info info = {
8123 		.info.dev = dev,
8124 		.info.extack = extack,
8125 		.type = type,
8126 		.report_delta = &report_delta,
8127 	};
8128 	struct rtnl_hw_stats64 *stats;
8129 	int rc;
8130 
8131 	stats = netdev_offload_xstats_get_ptr(dev, type);
8132 	if (WARN_ON(!stats))
8133 		return -EINVAL;
8134 
8135 	rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_DELTA,
8136 					   &info.info);
8137 
8138 	/* Cache whatever we got, even if there was an error, otherwise the
8139 	 * successful stats retrievals would get lost.
8140 	 */
8141 	netdev_hw_stats64_add(stats, &report_delta.stats);
8142 
8143 	if (p_stats)
8144 		*p_stats = *stats;
8145 	*p_used = report_delta.used;
8146 
8147 	return notifier_to_errno(rc);
8148 }
8149 
8150 int netdev_offload_xstats_get(struct net_device *dev,
8151 			      enum netdev_offload_xstats_type type,
8152 			      struct rtnl_hw_stats64 *p_stats, bool *p_used,
8153 			      struct netlink_ext_ack *extack)
8154 {
8155 	ASSERT_RTNL();
8156 
8157 	if (p_stats)
8158 		return netdev_offload_xstats_get_stats(dev, type, p_stats,
8159 						       p_used, extack);
8160 	else
8161 		return netdev_offload_xstats_get_used(dev, type, p_used,
8162 						      extack);
8163 }
8164 EXPORT_SYMBOL(netdev_offload_xstats_get);
8165 
8166 void
8167 netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *report_delta,
8168 				   const struct rtnl_hw_stats64 *stats)
8169 {
8170 	report_delta->used = true;
8171 	netdev_hw_stats64_add(&report_delta->stats, stats);
8172 }
8173 EXPORT_SYMBOL(netdev_offload_xstats_report_delta);
8174 
8175 void
8176 netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *report_used)
8177 {
8178 	report_used->used = true;
8179 }
8180 EXPORT_SYMBOL(netdev_offload_xstats_report_used);
8181 
8182 void netdev_offload_xstats_push_delta(struct net_device *dev,
8183 				      enum netdev_offload_xstats_type type,
8184 				      const struct rtnl_hw_stats64 *p_stats)
8185 {
8186 	struct rtnl_hw_stats64 *stats;
8187 
8188 	ASSERT_RTNL();
8189 
8190 	stats = netdev_offload_xstats_get_ptr(dev, type);
8191 	if (WARN_ON(!stats))
8192 		return;
8193 
8194 	netdev_hw_stats64_add(stats, p_stats);
8195 }
8196 EXPORT_SYMBOL(netdev_offload_xstats_push_delta);
8197 
8198 /**
8199  * netdev_get_xmit_slave - Get the xmit slave of master device
8200  * @dev: device
8201  * @skb: The packet
8202  * @all_slaves: assume all the slaves are active
8203  *
8204  * The reference counters are not incremented so the caller must be
8205  * careful with locks. The caller must hold RCU lock.
8206  * %NULL is returned if no slave is found.
8207  */
8208 
8209 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
8210 					 struct sk_buff *skb,
8211 					 bool all_slaves)
8212 {
8213 	const struct net_device_ops *ops = dev->netdev_ops;
8214 
8215 	if (!ops->ndo_get_xmit_slave)
8216 		return NULL;
8217 	return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
8218 }
8219 EXPORT_SYMBOL(netdev_get_xmit_slave);
8220 
8221 static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev,
8222 						  struct sock *sk)
8223 {
8224 	const struct net_device_ops *ops = dev->netdev_ops;
8225 
8226 	if (!ops->ndo_sk_get_lower_dev)
8227 		return NULL;
8228 	return ops->ndo_sk_get_lower_dev(dev, sk);
8229 }
8230 
8231 /**
8232  * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket
8233  * @dev: device
8234  * @sk: the socket
8235  *
8236  * %NULL is returned if no lower device is found.
8237  */
8238 
8239 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
8240 					    struct sock *sk)
8241 {
8242 	struct net_device *lower;
8243 
8244 	lower = netdev_sk_get_lower_dev(dev, sk);
8245 	while (lower) {
8246 		dev = lower;
8247 		lower = netdev_sk_get_lower_dev(dev, sk);
8248 	}
8249 
8250 	return dev;
8251 }
8252 EXPORT_SYMBOL(netdev_sk_get_lowest_dev);
8253 
8254 static void netdev_adjacent_add_links(struct net_device *dev)
8255 {
8256 	struct netdev_adjacent *iter;
8257 
8258 	struct net *net = dev_net(dev);
8259 
8260 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
8261 		if (!net_eq(net, dev_net(iter->dev)))
8262 			continue;
8263 		netdev_adjacent_sysfs_add(iter->dev, dev,
8264 					  &iter->dev->adj_list.lower);
8265 		netdev_adjacent_sysfs_add(dev, iter->dev,
8266 					  &dev->adj_list.upper);
8267 	}
8268 
8269 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
8270 		if (!net_eq(net, dev_net(iter->dev)))
8271 			continue;
8272 		netdev_adjacent_sysfs_add(iter->dev, dev,
8273 					  &iter->dev->adj_list.upper);
8274 		netdev_adjacent_sysfs_add(dev, iter->dev,
8275 					  &dev->adj_list.lower);
8276 	}
8277 }
8278 
8279 static void netdev_adjacent_del_links(struct net_device *dev)
8280 {
8281 	struct netdev_adjacent *iter;
8282 
8283 	struct net *net = dev_net(dev);
8284 
8285 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
8286 		if (!net_eq(net, dev_net(iter->dev)))
8287 			continue;
8288 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
8289 					  &iter->dev->adj_list.lower);
8290 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
8291 					  &dev->adj_list.upper);
8292 	}
8293 
8294 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
8295 		if (!net_eq(net, dev_net(iter->dev)))
8296 			continue;
8297 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
8298 					  &iter->dev->adj_list.upper);
8299 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
8300 					  &dev->adj_list.lower);
8301 	}
8302 }
8303 
8304 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
8305 {
8306 	struct netdev_adjacent *iter;
8307 
8308 	struct net *net = dev_net(dev);
8309 
8310 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
8311 		if (!net_eq(net, dev_net(iter->dev)))
8312 			continue;
8313 		netdev_adjacent_sysfs_del(iter->dev, oldname,
8314 					  &iter->dev->adj_list.lower);
8315 		netdev_adjacent_sysfs_add(iter->dev, dev,
8316 					  &iter->dev->adj_list.lower);
8317 	}
8318 
8319 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
8320 		if (!net_eq(net, dev_net(iter->dev)))
8321 			continue;
8322 		netdev_adjacent_sysfs_del(iter->dev, oldname,
8323 					  &iter->dev->adj_list.upper);
8324 		netdev_adjacent_sysfs_add(iter->dev, dev,
8325 					  &iter->dev->adj_list.upper);
8326 	}
8327 }
8328 
8329 void *netdev_lower_dev_get_private(struct net_device *dev,
8330 				   struct net_device *lower_dev)
8331 {
8332 	struct netdev_adjacent *lower;
8333 
8334 	if (!lower_dev)
8335 		return NULL;
8336 	lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
8337 	if (!lower)
8338 		return NULL;
8339 
8340 	return lower->private;
8341 }
8342 EXPORT_SYMBOL(netdev_lower_dev_get_private);
8343 
8344 
8345 /**
8346  * netdev_lower_state_changed - Dispatch event about lower device state change
8347  * @lower_dev: device
8348  * @lower_state_info: state to dispatch
8349  *
8350  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
8351  * The caller must hold the RTNL lock.
8352  */
8353 void netdev_lower_state_changed(struct net_device *lower_dev,
8354 				void *lower_state_info)
8355 {
8356 	struct netdev_notifier_changelowerstate_info changelowerstate_info = {
8357 		.info.dev = lower_dev,
8358 	};
8359 
8360 	ASSERT_RTNL();
8361 	changelowerstate_info.lower_state_info = lower_state_info;
8362 	call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
8363 				      &changelowerstate_info.info);
8364 }
8365 EXPORT_SYMBOL(netdev_lower_state_changed);
8366 
8367 static void dev_change_rx_flags(struct net_device *dev, int flags)
8368 {
8369 	const struct net_device_ops *ops = dev->netdev_ops;
8370 
8371 	if (ops->ndo_change_rx_flags)
8372 		ops->ndo_change_rx_flags(dev, flags);
8373 }
8374 
8375 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
8376 {
8377 	unsigned int old_flags = dev->flags;
8378 	kuid_t uid;
8379 	kgid_t gid;
8380 
8381 	ASSERT_RTNL();
8382 
8383 	dev->flags |= IFF_PROMISC;
8384 	dev->promiscuity += inc;
8385 	if (dev->promiscuity == 0) {
8386 		/*
8387 		 * Avoid overflow.
8388 		 * If inc causes overflow, untouch promisc and return error.
8389 		 */
8390 		if (inc < 0)
8391 			dev->flags &= ~IFF_PROMISC;
8392 		else {
8393 			dev->promiscuity -= inc;
8394 			netdev_warn(dev, "promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n");
8395 			return -EOVERFLOW;
8396 		}
8397 	}
8398 	if (dev->flags != old_flags) {
8399 		netdev_info(dev, "%s promiscuous mode\n",
8400 			    dev->flags & IFF_PROMISC ? "entered" : "left");
8401 		if (audit_enabled) {
8402 			current_uid_gid(&uid, &gid);
8403 			audit_log(audit_context(), GFP_ATOMIC,
8404 				  AUDIT_ANOM_PROMISCUOUS,
8405 				  "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
8406 				  dev->name, (dev->flags & IFF_PROMISC),
8407 				  (old_flags & IFF_PROMISC),
8408 				  from_kuid(&init_user_ns, audit_get_loginuid(current)),
8409 				  from_kuid(&init_user_ns, uid),
8410 				  from_kgid(&init_user_ns, gid),
8411 				  audit_get_sessionid(current));
8412 		}
8413 
8414 		dev_change_rx_flags(dev, IFF_PROMISC);
8415 	}
8416 	if (notify)
8417 		__dev_notify_flags(dev, old_flags, IFF_PROMISC, 0, NULL);
8418 	return 0;
8419 }
8420 
8421 /**
8422  *	dev_set_promiscuity	- update promiscuity count on a device
8423  *	@dev: device
8424  *	@inc: modifier
8425  *
8426  *	Add or remove promiscuity from a device. While the count in the device
8427  *	remains above zero the interface remains promiscuous. Once it hits zero
8428  *	the device reverts back to normal filtering operation. A negative inc
8429  *	value is used to drop promiscuity on the device.
8430  *	Return 0 if successful or a negative errno code on error.
8431  */
8432 int dev_set_promiscuity(struct net_device *dev, int inc)
8433 {
8434 	unsigned int old_flags = dev->flags;
8435 	int err;
8436 
8437 	err = __dev_set_promiscuity(dev, inc, true);
8438 	if (err < 0)
8439 		return err;
8440 	if (dev->flags != old_flags)
8441 		dev_set_rx_mode(dev);
8442 	return err;
8443 }
8444 EXPORT_SYMBOL(dev_set_promiscuity);
8445 
8446 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
8447 {
8448 	unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
8449 
8450 	ASSERT_RTNL();
8451 
8452 	dev->flags |= IFF_ALLMULTI;
8453 	dev->allmulti += inc;
8454 	if (dev->allmulti == 0) {
8455 		/*
8456 		 * Avoid overflow.
8457 		 * If inc causes overflow, untouch allmulti and return error.
8458 		 */
8459 		if (inc < 0)
8460 			dev->flags &= ~IFF_ALLMULTI;
8461 		else {
8462 			dev->allmulti -= inc;
8463 			netdev_warn(dev, "allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n");
8464 			return -EOVERFLOW;
8465 		}
8466 	}
8467 	if (dev->flags ^ old_flags) {
8468 		netdev_info(dev, "%s allmulticast mode\n",
8469 			    dev->flags & IFF_ALLMULTI ? "entered" : "left");
8470 		dev_change_rx_flags(dev, IFF_ALLMULTI);
8471 		dev_set_rx_mode(dev);
8472 		if (notify)
8473 			__dev_notify_flags(dev, old_flags,
8474 					   dev->gflags ^ old_gflags, 0, NULL);
8475 	}
8476 	return 0;
8477 }
8478 
8479 /**
8480  *	dev_set_allmulti	- update allmulti count on a device
8481  *	@dev: device
8482  *	@inc: modifier
8483  *
8484  *	Add or remove reception of all multicast frames to a device. While the
8485  *	count in the device remains above zero the interface remains listening
8486  *	to all interfaces. Once it hits zero the device reverts back to normal
8487  *	filtering operation. A negative @inc value is used to drop the counter
8488  *	when releasing a resource needing all multicasts.
8489  *	Return 0 if successful or a negative errno code on error.
8490  */
8491 
8492 int dev_set_allmulti(struct net_device *dev, int inc)
8493 {
8494 	return __dev_set_allmulti(dev, inc, true);
8495 }
8496 EXPORT_SYMBOL(dev_set_allmulti);
8497 
8498 /*
8499  *	Upload unicast and multicast address lists to device and
8500  *	configure RX filtering. When the device doesn't support unicast
8501  *	filtering it is put in promiscuous mode while unicast addresses
8502  *	are present.
8503  */
8504 void __dev_set_rx_mode(struct net_device *dev)
8505 {
8506 	const struct net_device_ops *ops = dev->netdev_ops;
8507 
8508 	/* dev_open will call this function so the list will stay sane. */
8509 	if (!(dev->flags&IFF_UP))
8510 		return;
8511 
8512 	if (!netif_device_present(dev))
8513 		return;
8514 
8515 	if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
8516 		/* Unicast addresses changes may only happen under the rtnl,
8517 		 * therefore calling __dev_set_promiscuity here is safe.
8518 		 */
8519 		if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
8520 			__dev_set_promiscuity(dev, 1, false);
8521 			dev->uc_promisc = true;
8522 		} else if (netdev_uc_empty(dev) && dev->uc_promisc) {
8523 			__dev_set_promiscuity(dev, -1, false);
8524 			dev->uc_promisc = false;
8525 		}
8526 	}
8527 
8528 	if (ops->ndo_set_rx_mode)
8529 		ops->ndo_set_rx_mode(dev);
8530 }
8531 
8532 void dev_set_rx_mode(struct net_device *dev)
8533 {
8534 	netif_addr_lock_bh(dev);
8535 	__dev_set_rx_mode(dev);
8536 	netif_addr_unlock_bh(dev);
8537 }
8538 
8539 /**
8540  *	dev_get_flags - get flags reported to userspace
8541  *	@dev: device
8542  *
8543  *	Get the combination of flag bits exported through APIs to userspace.
8544  */
8545 unsigned int dev_get_flags(const struct net_device *dev)
8546 {
8547 	unsigned int flags;
8548 
8549 	flags = (dev->flags & ~(IFF_PROMISC |
8550 				IFF_ALLMULTI |
8551 				IFF_RUNNING |
8552 				IFF_LOWER_UP |
8553 				IFF_DORMANT)) |
8554 		(dev->gflags & (IFF_PROMISC |
8555 				IFF_ALLMULTI));
8556 
8557 	if (netif_running(dev)) {
8558 		if (netif_oper_up(dev))
8559 			flags |= IFF_RUNNING;
8560 		if (netif_carrier_ok(dev))
8561 			flags |= IFF_LOWER_UP;
8562 		if (netif_dormant(dev))
8563 			flags |= IFF_DORMANT;
8564 	}
8565 
8566 	return flags;
8567 }
8568 EXPORT_SYMBOL(dev_get_flags);
8569 
8570 int __dev_change_flags(struct net_device *dev, unsigned int flags,
8571 		       struct netlink_ext_ack *extack)
8572 {
8573 	unsigned int old_flags = dev->flags;
8574 	int ret;
8575 
8576 	ASSERT_RTNL();
8577 
8578 	/*
8579 	 *	Set the flags on our device.
8580 	 */
8581 
8582 	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
8583 			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
8584 			       IFF_AUTOMEDIA)) |
8585 		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
8586 				    IFF_ALLMULTI));
8587 
8588 	/*
8589 	 *	Load in the correct multicast list now the flags have changed.
8590 	 */
8591 
8592 	if ((old_flags ^ flags) & IFF_MULTICAST)
8593 		dev_change_rx_flags(dev, IFF_MULTICAST);
8594 
8595 	dev_set_rx_mode(dev);
8596 
8597 	/*
8598 	 *	Have we downed the interface. We handle IFF_UP ourselves
8599 	 *	according to user attempts to set it, rather than blindly
8600 	 *	setting it.
8601 	 */
8602 
8603 	ret = 0;
8604 	if ((old_flags ^ flags) & IFF_UP) {
8605 		if (old_flags & IFF_UP)
8606 			__dev_close(dev);
8607 		else
8608 			ret = __dev_open(dev, extack);
8609 	}
8610 
8611 	if ((flags ^ dev->gflags) & IFF_PROMISC) {
8612 		int inc = (flags & IFF_PROMISC) ? 1 : -1;
8613 		unsigned int old_flags = dev->flags;
8614 
8615 		dev->gflags ^= IFF_PROMISC;
8616 
8617 		if (__dev_set_promiscuity(dev, inc, false) >= 0)
8618 			if (dev->flags != old_flags)
8619 				dev_set_rx_mode(dev);
8620 	}
8621 
8622 	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
8623 	 * is important. Some (broken) drivers set IFF_PROMISC, when
8624 	 * IFF_ALLMULTI is requested not asking us and not reporting.
8625 	 */
8626 	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
8627 		int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
8628 
8629 		dev->gflags ^= IFF_ALLMULTI;
8630 		__dev_set_allmulti(dev, inc, false);
8631 	}
8632 
8633 	return ret;
8634 }
8635 
8636 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
8637 			unsigned int gchanges, u32 portid,
8638 			const struct nlmsghdr *nlh)
8639 {
8640 	unsigned int changes = dev->flags ^ old_flags;
8641 
8642 	if (gchanges)
8643 		rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC, portid, nlh);
8644 
8645 	if (changes & IFF_UP) {
8646 		if (dev->flags & IFF_UP)
8647 			call_netdevice_notifiers(NETDEV_UP, dev);
8648 		else
8649 			call_netdevice_notifiers(NETDEV_DOWN, dev);
8650 	}
8651 
8652 	if (dev->flags & IFF_UP &&
8653 	    (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
8654 		struct netdev_notifier_change_info change_info = {
8655 			.info = {
8656 				.dev = dev,
8657 			},
8658 			.flags_changed = changes,
8659 		};
8660 
8661 		call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
8662 	}
8663 }
8664 
8665 /**
8666  *	dev_change_flags - change device settings
8667  *	@dev: device
8668  *	@flags: device state flags
8669  *	@extack: netlink extended ack
8670  *
8671  *	Change settings on device based state flags. The flags are
8672  *	in the userspace exported format.
8673  */
8674 int dev_change_flags(struct net_device *dev, unsigned int flags,
8675 		     struct netlink_ext_ack *extack)
8676 {
8677 	int ret;
8678 	unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
8679 
8680 	ret = __dev_change_flags(dev, flags, extack);
8681 	if (ret < 0)
8682 		return ret;
8683 
8684 	changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
8685 	__dev_notify_flags(dev, old_flags, changes, 0, NULL);
8686 	return ret;
8687 }
8688 EXPORT_SYMBOL(dev_change_flags);
8689 
8690 int __dev_set_mtu(struct net_device *dev, int new_mtu)
8691 {
8692 	const struct net_device_ops *ops = dev->netdev_ops;
8693 
8694 	if (ops->ndo_change_mtu)
8695 		return ops->ndo_change_mtu(dev, new_mtu);
8696 
8697 	/* Pairs with all the lockless reads of dev->mtu in the stack */
8698 	WRITE_ONCE(dev->mtu, new_mtu);
8699 	return 0;
8700 }
8701 EXPORT_SYMBOL(__dev_set_mtu);
8702 
8703 int dev_validate_mtu(struct net_device *dev, int new_mtu,
8704 		     struct netlink_ext_ack *extack)
8705 {
8706 	/* MTU must be positive, and in range */
8707 	if (new_mtu < 0 || new_mtu < dev->min_mtu) {
8708 		NL_SET_ERR_MSG(extack, "mtu less than device minimum");
8709 		return -EINVAL;
8710 	}
8711 
8712 	if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
8713 		NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
8714 		return -EINVAL;
8715 	}
8716 	return 0;
8717 }
8718 
8719 /**
8720  *	dev_set_mtu_ext - Change maximum transfer unit
8721  *	@dev: device
8722  *	@new_mtu: new transfer unit
8723  *	@extack: netlink extended ack
8724  *
8725  *	Change the maximum transfer size of the network device.
8726  */
8727 int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
8728 		    struct netlink_ext_ack *extack)
8729 {
8730 	int err, orig_mtu;
8731 
8732 	if (new_mtu == dev->mtu)
8733 		return 0;
8734 
8735 	err = dev_validate_mtu(dev, new_mtu, extack);
8736 	if (err)
8737 		return err;
8738 
8739 	if (!netif_device_present(dev))
8740 		return -ENODEV;
8741 
8742 	err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
8743 	err = notifier_to_errno(err);
8744 	if (err)
8745 		return err;
8746 
8747 	orig_mtu = dev->mtu;
8748 	err = __dev_set_mtu(dev, new_mtu);
8749 
8750 	if (!err) {
8751 		err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8752 						   orig_mtu);
8753 		err = notifier_to_errno(err);
8754 		if (err) {
8755 			/* setting mtu back and notifying everyone again,
8756 			 * so that they have a chance to revert changes.
8757 			 */
8758 			__dev_set_mtu(dev, orig_mtu);
8759 			call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8760 						     new_mtu);
8761 		}
8762 	}
8763 	return err;
8764 }
8765 
8766 int dev_set_mtu(struct net_device *dev, int new_mtu)
8767 {
8768 	struct netlink_ext_ack extack;
8769 	int err;
8770 
8771 	memset(&extack, 0, sizeof(extack));
8772 	err = dev_set_mtu_ext(dev, new_mtu, &extack);
8773 	if (err && extack._msg)
8774 		net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
8775 	return err;
8776 }
8777 EXPORT_SYMBOL(dev_set_mtu);
8778 
8779 /**
8780  *	dev_change_tx_queue_len - Change TX queue length of a netdevice
8781  *	@dev: device
8782  *	@new_len: new tx queue length
8783  */
8784 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
8785 {
8786 	unsigned int orig_len = dev->tx_queue_len;
8787 	int res;
8788 
8789 	if (new_len != (unsigned int)new_len)
8790 		return -ERANGE;
8791 
8792 	if (new_len != orig_len) {
8793 		dev->tx_queue_len = new_len;
8794 		res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
8795 		res = notifier_to_errno(res);
8796 		if (res)
8797 			goto err_rollback;
8798 		res = dev_qdisc_change_tx_queue_len(dev);
8799 		if (res)
8800 			goto err_rollback;
8801 	}
8802 
8803 	return 0;
8804 
8805 err_rollback:
8806 	netdev_err(dev, "refused to change device tx_queue_len\n");
8807 	dev->tx_queue_len = orig_len;
8808 	return res;
8809 }
8810 
8811 /**
8812  *	dev_set_group - Change group this device belongs to
8813  *	@dev: device
8814  *	@new_group: group this device should belong to
8815  */
8816 void dev_set_group(struct net_device *dev, int new_group)
8817 {
8818 	dev->group = new_group;
8819 }
8820 
8821 /**
8822  *	dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
8823  *	@dev: device
8824  *	@addr: new address
8825  *	@extack: netlink extended ack
8826  */
8827 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
8828 			      struct netlink_ext_ack *extack)
8829 {
8830 	struct netdev_notifier_pre_changeaddr_info info = {
8831 		.info.dev = dev,
8832 		.info.extack = extack,
8833 		.dev_addr = addr,
8834 	};
8835 	int rc;
8836 
8837 	rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
8838 	return notifier_to_errno(rc);
8839 }
8840 EXPORT_SYMBOL(dev_pre_changeaddr_notify);
8841 
8842 /**
8843  *	dev_set_mac_address - Change Media Access Control Address
8844  *	@dev: device
8845  *	@sa: new address
8846  *	@extack: netlink extended ack
8847  *
8848  *	Change the hardware (MAC) address of the device
8849  */
8850 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
8851 			struct netlink_ext_ack *extack)
8852 {
8853 	const struct net_device_ops *ops = dev->netdev_ops;
8854 	int err;
8855 
8856 	if (!ops->ndo_set_mac_address)
8857 		return -EOPNOTSUPP;
8858 	if (sa->sa_family != dev->type)
8859 		return -EINVAL;
8860 	if (!netif_device_present(dev))
8861 		return -ENODEV;
8862 	err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
8863 	if (err)
8864 		return err;
8865 	if (memcmp(dev->dev_addr, sa->sa_data, dev->addr_len)) {
8866 		err = ops->ndo_set_mac_address(dev, sa);
8867 		if (err)
8868 			return err;
8869 	}
8870 	dev->addr_assign_type = NET_ADDR_SET;
8871 	call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
8872 	add_device_randomness(dev->dev_addr, dev->addr_len);
8873 	return 0;
8874 }
8875 EXPORT_SYMBOL(dev_set_mac_address);
8876 
8877 static DECLARE_RWSEM(dev_addr_sem);
8878 
8879 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
8880 			     struct netlink_ext_ack *extack)
8881 {
8882 	int ret;
8883 
8884 	down_write(&dev_addr_sem);
8885 	ret = dev_set_mac_address(dev, sa, extack);
8886 	up_write(&dev_addr_sem);
8887 	return ret;
8888 }
8889 EXPORT_SYMBOL(dev_set_mac_address_user);
8890 
8891 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name)
8892 {
8893 	size_t size = sizeof(sa->sa_data_min);
8894 	struct net_device *dev;
8895 	int ret = 0;
8896 
8897 	down_read(&dev_addr_sem);
8898 	rcu_read_lock();
8899 
8900 	dev = dev_get_by_name_rcu(net, dev_name);
8901 	if (!dev) {
8902 		ret = -ENODEV;
8903 		goto unlock;
8904 	}
8905 	if (!dev->addr_len)
8906 		memset(sa->sa_data, 0, size);
8907 	else
8908 		memcpy(sa->sa_data, dev->dev_addr,
8909 		       min_t(size_t, size, dev->addr_len));
8910 	sa->sa_family = dev->type;
8911 
8912 unlock:
8913 	rcu_read_unlock();
8914 	up_read(&dev_addr_sem);
8915 	return ret;
8916 }
8917 EXPORT_SYMBOL(dev_get_mac_address);
8918 
8919 /**
8920  *	dev_change_carrier - Change device carrier
8921  *	@dev: device
8922  *	@new_carrier: new value
8923  *
8924  *	Change device carrier
8925  */
8926 int dev_change_carrier(struct net_device *dev, bool new_carrier)
8927 {
8928 	const struct net_device_ops *ops = dev->netdev_ops;
8929 
8930 	if (!ops->ndo_change_carrier)
8931 		return -EOPNOTSUPP;
8932 	if (!netif_device_present(dev))
8933 		return -ENODEV;
8934 	return ops->ndo_change_carrier(dev, new_carrier);
8935 }
8936 
8937 /**
8938  *	dev_get_phys_port_id - Get device physical port ID
8939  *	@dev: device
8940  *	@ppid: port ID
8941  *
8942  *	Get device physical port ID
8943  */
8944 int dev_get_phys_port_id(struct net_device *dev,
8945 			 struct netdev_phys_item_id *ppid)
8946 {
8947 	const struct net_device_ops *ops = dev->netdev_ops;
8948 
8949 	if (!ops->ndo_get_phys_port_id)
8950 		return -EOPNOTSUPP;
8951 	return ops->ndo_get_phys_port_id(dev, ppid);
8952 }
8953 
8954 /**
8955  *	dev_get_phys_port_name - Get device physical port name
8956  *	@dev: device
8957  *	@name: port name
8958  *	@len: limit of bytes to copy to name
8959  *
8960  *	Get device physical port name
8961  */
8962 int dev_get_phys_port_name(struct net_device *dev,
8963 			   char *name, size_t len)
8964 {
8965 	const struct net_device_ops *ops = dev->netdev_ops;
8966 	int err;
8967 
8968 	if (ops->ndo_get_phys_port_name) {
8969 		err = ops->ndo_get_phys_port_name(dev, name, len);
8970 		if (err != -EOPNOTSUPP)
8971 			return err;
8972 	}
8973 	return devlink_compat_phys_port_name_get(dev, name, len);
8974 }
8975 
8976 /**
8977  *	dev_get_port_parent_id - Get the device's port parent identifier
8978  *	@dev: network device
8979  *	@ppid: pointer to a storage for the port's parent identifier
8980  *	@recurse: allow/disallow recursion to lower devices
8981  *
8982  *	Get the devices's port parent identifier
8983  */
8984 int dev_get_port_parent_id(struct net_device *dev,
8985 			   struct netdev_phys_item_id *ppid,
8986 			   bool recurse)
8987 {
8988 	const struct net_device_ops *ops = dev->netdev_ops;
8989 	struct netdev_phys_item_id first = { };
8990 	struct net_device *lower_dev;
8991 	struct list_head *iter;
8992 	int err;
8993 
8994 	if (ops->ndo_get_port_parent_id) {
8995 		err = ops->ndo_get_port_parent_id(dev, ppid);
8996 		if (err != -EOPNOTSUPP)
8997 			return err;
8998 	}
8999 
9000 	err = devlink_compat_switch_id_get(dev, ppid);
9001 	if (!recurse || err != -EOPNOTSUPP)
9002 		return err;
9003 
9004 	netdev_for_each_lower_dev(dev, lower_dev, iter) {
9005 		err = dev_get_port_parent_id(lower_dev, ppid, true);
9006 		if (err)
9007 			break;
9008 		if (!first.id_len)
9009 			first = *ppid;
9010 		else if (memcmp(&first, ppid, sizeof(*ppid)))
9011 			return -EOPNOTSUPP;
9012 	}
9013 
9014 	return err;
9015 }
9016 EXPORT_SYMBOL(dev_get_port_parent_id);
9017 
9018 /**
9019  *	netdev_port_same_parent_id - Indicate if two network devices have
9020  *	the same port parent identifier
9021  *	@a: first network device
9022  *	@b: second network device
9023  */
9024 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
9025 {
9026 	struct netdev_phys_item_id a_id = { };
9027 	struct netdev_phys_item_id b_id = { };
9028 
9029 	if (dev_get_port_parent_id(a, &a_id, true) ||
9030 	    dev_get_port_parent_id(b, &b_id, true))
9031 		return false;
9032 
9033 	return netdev_phys_item_id_same(&a_id, &b_id);
9034 }
9035 EXPORT_SYMBOL(netdev_port_same_parent_id);
9036 
9037 static void netdev_dpll_pin_assign(struct net_device *dev, struct dpll_pin *dpll_pin)
9038 {
9039 #if IS_ENABLED(CONFIG_DPLL)
9040 	rtnl_lock();
9041 	dev->dpll_pin = dpll_pin;
9042 	rtnl_unlock();
9043 #endif
9044 }
9045 
9046 void netdev_dpll_pin_set(struct net_device *dev, struct dpll_pin *dpll_pin)
9047 {
9048 	WARN_ON(!dpll_pin);
9049 	netdev_dpll_pin_assign(dev, dpll_pin);
9050 }
9051 EXPORT_SYMBOL(netdev_dpll_pin_set);
9052 
9053 void netdev_dpll_pin_clear(struct net_device *dev)
9054 {
9055 	netdev_dpll_pin_assign(dev, NULL);
9056 }
9057 EXPORT_SYMBOL(netdev_dpll_pin_clear);
9058 
9059 /**
9060  *	dev_change_proto_down - set carrier according to proto_down.
9061  *
9062  *	@dev: device
9063  *	@proto_down: new value
9064  */
9065 int dev_change_proto_down(struct net_device *dev, bool proto_down)
9066 {
9067 	if (!(dev->priv_flags & IFF_CHANGE_PROTO_DOWN))
9068 		return -EOPNOTSUPP;
9069 	if (!netif_device_present(dev))
9070 		return -ENODEV;
9071 	if (proto_down)
9072 		netif_carrier_off(dev);
9073 	else
9074 		netif_carrier_on(dev);
9075 	dev->proto_down = proto_down;
9076 	return 0;
9077 }
9078 
9079 /**
9080  *	dev_change_proto_down_reason - proto down reason
9081  *
9082  *	@dev: device
9083  *	@mask: proto down mask
9084  *	@value: proto down value
9085  */
9086 void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
9087 				  u32 value)
9088 {
9089 	int b;
9090 
9091 	if (!mask) {
9092 		dev->proto_down_reason = value;
9093 	} else {
9094 		for_each_set_bit(b, &mask, 32) {
9095 			if (value & (1 << b))
9096 				dev->proto_down_reason |= BIT(b);
9097 			else
9098 				dev->proto_down_reason &= ~BIT(b);
9099 		}
9100 	}
9101 }
9102 
9103 struct bpf_xdp_link {
9104 	struct bpf_link link;
9105 	struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
9106 	int flags;
9107 };
9108 
9109 static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags)
9110 {
9111 	if (flags & XDP_FLAGS_HW_MODE)
9112 		return XDP_MODE_HW;
9113 	if (flags & XDP_FLAGS_DRV_MODE)
9114 		return XDP_MODE_DRV;
9115 	if (flags & XDP_FLAGS_SKB_MODE)
9116 		return XDP_MODE_SKB;
9117 	return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB;
9118 }
9119 
9120 static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
9121 {
9122 	switch (mode) {
9123 	case XDP_MODE_SKB:
9124 		return generic_xdp_install;
9125 	case XDP_MODE_DRV:
9126 	case XDP_MODE_HW:
9127 		return dev->netdev_ops->ndo_bpf;
9128 	default:
9129 		return NULL;
9130 	}
9131 }
9132 
9133 static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
9134 					 enum bpf_xdp_mode mode)
9135 {
9136 	return dev->xdp_state[mode].link;
9137 }
9138 
9139 static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
9140 				     enum bpf_xdp_mode mode)
9141 {
9142 	struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
9143 
9144 	if (link)
9145 		return link->link.prog;
9146 	return dev->xdp_state[mode].prog;
9147 }
9148 
9149 u8 dev_xdp_prog_count(struct net_device *dev)
9150 {
9151 	u8 count = 0;
9152 	int i;
9153 
9154 	for (i = 0; i < __MAX_XDP_MODE; i++)
9155 		if (dev->xdp_state[i].prog || dev->xdp_state[i].link)
9156 			count++;
9157 	return count;
9158 }
9159 EXPORT_SYMBOL_GPL(dev_xdp_prog_count);
9160 
9161 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
9162 {
9163 	struct bpf_prog *prog = dev_xdp_prog(dev, mode);
9164 
9165 	return prog ? prog->aux->id : 0;
9166 }
9167 
9168 static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
9169 			     struct bpf_xdp_link *link)
9170 {
9171 	dev->xdp_state[mode].link = link;
9172 	dev->xdp_state[mode].prog = NULL;
9173 }
9174 
9175 static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
9176 			     struct bpf_prog *prog)
9177 {
9178 	dev->xdp_state[mode].link = NULL;
9179 	dev->xdp_state[mode].prog = prog;
9180 }
9181 
9182 static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
9183 			   bpf_op_t bpf_op, struct netlink_ext_ack *extack,
9184 			   u32 flags, struct bpf_prog *prog)
9185 {
9186 	struct netdev_bpf xdp;
9187 	int err;
9188 
9189 	memset(&xdp, 0, sizeof(xdp));
9190 	xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
9191 	xdp.extack = extack;
9192 	xdp.flags = flags;
9193 	xdp.prog = prog;
9194 
9195 	/* Drivers assume refcnt is already incremented (i.e, prog pointer is
9196 	 * "moved" into driver), so they don't increment it on their own, but
9197 	 * they do decrement refcnt when program is detached or replaced.
9198 	 * Given net_device also owns link/prog, we need to bump refcnt here
9199 	 * to prevent drivers from underflowing it.
9200 	 */
9201 	if (prog)
9202 		bpf_prog_inc(prog);
9203 	err = bpf_op(dev, &xdp);
9204 	if (err) {
9205 		if (prog)
9206 			bpf_prog_put(prog);
9207 		return err;
9208 	}
9209 
9210 	if (mode != XDP_MODE_HW)
9211 		bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog);
9212 
9213 	return 0;
9214 }
9215 
9216 static void dev_xdp_uninstall(struct net_device *dev)
9217 {
9218 	struct bpf_xdp_link *link;
9219 	struct bpf_prog *prog;
9220 	enum bpf_xdp_mode mode;
9221 	bpf_op_t bpf_op;
9222 
9223 	ASSERT_RTNL();
9224 
9225 	for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
9226 		prog = dev_xdp_prog(dev, mode);
9227 		if (!prog)
9228 			continue;
9229 
9230 		bpf_op = dev_xdp_bpf_op(dev, mode);
9231 		if (!bpf_op)
9232 			continue;
9233 
9234 		WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9235 
9236 		/* auto-detach link from net device */
9237 		link = dev_xdp_link(dev, mode);
9238 		if (link)
9239 			link->dev = NULL;
9240 		else
9241 			bpf_prog_put(prog);
9242 
9243 		dev_xdp_set_link(dev, mode, NULL);
9244 	}
9245 }
9246 
9247 static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
9248 			  struct bpf_xdp_link *link, struct bpf_prog *new_prog,
9249 			  struct bpf_prog *old_prog, u32 flags)
9250 {
9251 	unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES);
9252 	struct bpf_prog *cur_prog;
9253 	struct net_device *upper;
9254 	struct list_head *iter;
9255 	enum bpf_xdp_mode mode;
9256 	bpf_op_t bpf_op;
9257 	int err;
9258 
9259 	ASSERT_RTNL();
9260 
9261 	/* either link or prog attachment, never both */
9262 	if (link && (new_prog || old_prog))
9263 		return -EINVAL;
9264 	/* link supports only XDP mode flags */
9265 	if (link && (flags & ~XDP_FLAGS_MODES)) {
9266 		NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
9267 		return -EINVAL;
9268 	}
9269 	/* just one XDP mode bit should be set, zero defaults to drv/skb mode */
9270 	if (num_modes > 1) {
9271 		NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
9272 		return -EINVAL;
9273 	}
9274 	/* avoid ambiguity if offload + drv/skb mode progs are both loaded */
9275 	if (!num_modes && dev_xdp_prog_count(dev) > 1) {
9276 		NL_SET_ERR_MSG(extack,
9277 			       "More than one program loaded, unset mode is ambiguous");
9278 		return -EINVAL;
9279 	}
9280 	/* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
9281 	if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
9282 		NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
9283 		return -EINVAL;
9284 	}
9285 
9286 	mode = dev_xdp_mode(dev, flags);
9287 	/* can't replace attached link */
9288 	if (dev_xdp_link(dev, mode)) {
9289 		NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
9290 		return -EBUSY;
9291 	}
9292 
9293 	/* don't allow if an upper device already has a program */
9294 	netdev_for_each_upper_dev_rcu(dev, upper, iter) {
9295 		if (dev_xdp_prog_count(upper) > 0) {
9296 			NL_SET_ERR_MSG(extack, "Cannot attach when an upper device already has a program");
9297 			return -EEXIST;
9298 		}
9299 	}
9300 
9301 	cur_prog = dev_xdp_prog(dev, mode);
9302 	/* can't replace attached prog with link */
9303 	if (link && cur_prog) {
9304 		NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
9305 		return -EBUSY;
9306 	}
9307 	if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
9308 		NL_SET_ERR_MSG(extack, "Active program does not match expected");
9309 		return -EEXIST;
9310 	}
9311 
9312 	/* put effective new program into new_prog */
9313 	if (link)
9314 		new_prog = link->link.prog;
9315 
9316 	if (new_prog) {
9317 		bool offload = mode == XDP_MODE_HW;
9318 		enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
9319 					       ? XDP_MODE_DRV : XDP_MODE_SKB;
9320 
9321 		if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
9322 			NL_SET_ERR_MSG(extack, "XDP program already attached");
9323 			return -EBUSY;
9324 		}
9325 		if (!offload && dev_xdp_prog(dev, other_mode)) {
9326 			NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
9327 			return -EEXIST;
9328 		}
9329 		if (!offload && bpf_prog_is_offloaded(new_prog->aux)) {
9330 			NL_SET_ERR_MSG(extack, "Using offloaded program without HW_MODE flag is not supported");
9331 			return -EINVAL;
9332 		}
9333 		if (bpf_prog_is_dev_bound(new_prog->aux) && !bpf_offload_dev_match(new_prog, dev)) {
9334 			NL_SET_ERR_MSG(extack, "Program bound to different device");
9335 			return -EINVAL;
9336 		}
9337 		if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
9338 			NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
9339 			return -EINVAL;
9340 		}
9341 		if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
9342 			NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
9343 			return -EINVAL;
9344 		}
9345 	}
9346 
9347 	/* don't call drivers if the effective program didn't change */
9348 	if (new_prog != cur_prog) {
9349 		bpf_op = dev_xdp_bpf_op(dev, mode);
9350 		if (!bpf_op) {
9351 			NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
9352 			return -EOPNOTSUPP;
9353 		}
9354 
9355 		err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog);
9356 		if (err)
9357 			return err;
9358 	}
9359 
9360 	if (link)
9361 		dev_xdp_set_link(dev, mode, link);
9362 	else
9363 		dev_xdp_set_prog(dev, mode, new_prog);
9364 	if (cur_prog)
9365 		bpf_prog_put(cur_prog);
9366 
9367 	return 0;
9368 }
9369 
9370 static int dev_xdp_attach_link(struct net_device *dev,
9371 			       struct netlink_ext_ack *extack,
9372 			       struct bpf_xdp_link *link)
9373 {
9374 	return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags);
9375 }
9376 
9377 static int dev_xdp_detach_link(struct net_device *dev,
9378 			       struct netlink_ext_ack *extack,
9379 			       struct bpf_xdp_link *link)
9380 {
9381 	enum bpf_xdp_mode mode;
9382 	bpf_op_t bpf_op;
9383 
9384 	ASSERT_RTNL();
9385 
9386 	mode = dev_xdp_mode(dev, link->flags);
9387 	if (dev_xdp_link(dev, mode) != link)
9388 		return -EINVAL;
9389 
9390 	bpf_op = dev_xdp_bpf_op(dev, mode);
9391 	WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9392 	dev_xdp_set_link(dev, mode, NULL);
9393 	return 0;
9394 }
9395 
9396 static void bpf_xdp_link_release(struct bpf_link *link)
9397 {
9398 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9399 
9400 	rtnl_lock();
9401 
9402 	/* if racing with net_device's tear down, xdp_link->dev might be
9403 	 * already NULL, in which case link was already auto-detached
9404 	 */
9405 	if (xdp_link->dev) {
9406 		WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
9407 		xdp_link->dev = NULL;
9408 	}
9409 
9410 	rtnl_unlock();
9411 }
9412 
9413 static int bpf_xdp_link_detach(struct bpf_link *link)
9414 {
9415 	bpf_xdp_link_release(link);
9416 	return 0;
9417 }
9418 
9419 static void bpf_xdp_link_dealloc(struct bpf_link *link)
9420 {
9421 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9422 
9423 	kfree(xdp_link);
9424 }
9425 
9426 static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link,
9427 				     struct seq_file *seq)
9428 {
9429 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9430 	u32 ifindex = 0;
9431 
9432 	rtnl_lock();
9433 	if (xdp_link->dev)
9434 		ifindex = xdp_link->dev->ifindex;
9435 	rtnl_unlock();
9436 
9437 	seq_printf(seq, "ifindex:\t%u\n", ifindex);
9438 }
9439 
9440 static int bpf_xdp_link_fill_link_info(const struct bpf_link *link,
9441 				       struct bpf_link_info *info)
9442 {
9443 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9444 	u32 ifindex = 0;
9445 
9446 	rtnl_lock();
9447 	if (xdp_link->dev)
9448 		ifindex = xdp_link->dev->ifindex;
9449 	rtnl_unlock();
9450 
9451 	info->xdp.ifindex = ifindex;
9452 	return 0;
9453 }
9454 
9455 static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
9456 			       struct bpf_prog *old_prog)
9457 {
9458 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9459 	enum bpf_xdp_mode mode;
9460 	bpf_op_t bpf_op;
9461 	int err = 0;
9462 
9463 	rtnl_lock();
9464 
9465 	/* link might have been auto-released already, so fail */
9466 	if (!xdp_link->dev) {
9467 		err = -ENOLINK;
9468 		goto out_unlock;
9469 	}
9470 
9471 	if (old_prog && link->prog != old_prog) {
9472 		err = -EPERM;
9473 		goto out_unlock;
9474 	}
9475 	old_prog = link->prog;
9476 	if (old_prog->type != new_prog->type ||
9477 	    old_prog->expected_attach_type != new_prog->expected_attach_type) {
9478 		err = -EINVAL;
9479 		goto out_unlock;
9480 	}
9481 
9482 	if (old_prog == new_prog) {
9483 		/* no-op, don't disturb drivers */
9484 		bpf_prog_put(new_prog);
9485 		goto out_unlock;
9486 	}
9487 
9488 	mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags);
9489 	bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode);
9490 	err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL,
9491 			      xdp_link->flags, new_prog);
9492 	if (err)
9493 		goto out_unlock;
9494 
9495 	old_prog = xchg(&link->prog, new_prog);
9496 	bpf_prog_put(old_prog);
9497 
9498 out_unlock:
9499 	rtnl_unlock();
9500 	return err;
9501 }
9502 
9503 static const struct bpf_link_ops bpf_xdp_link_lops = {
9504 	.release = bpf_xdp_link_release,
9505 	.dealloc = bpf_xdp_link_dealloc,
9506 	.detach = bpf_xdp_link_detach,
9507 	.show_fdinfo = bpf_xdp_link_show_fdinfo,
9508 	.fill_link_info = bpf_xdp_link_fill_link_info,
9509 	.update_prog = bpf_xdp_link_update,
9510 };
9511 
9512 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
9513 {
9514 	struct net *net = current->nsproxy->net_ns;
9515 	struct bpf_link_primer link_primer;
9516 	struct netlink_ext_ack extack = {};
9517 	struct bpf_xdp_link *link;
9518 	struct net_device *dev;
9519 	int err, fd;
9520 
9521 	rtnl_lock();
9522 	dev = dev_get_by_index(net, attr->link_create.target_ifindex);
9523 	if (!dev) {
9524 		rtnl_unlock();
9525 		return -EINVAL;
9526 	}
9527 
9528 	link = kzalloc(sizeof(*link), GFP_USER);
9529 	if (!link) {
9530 		err = -ENOMEM;
9531 		goto unlock;
9532 	}
9533 
9534 	bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog);
9535 	link->dev = dev;
9536 	link->flags = attr->link_create.flags;
9537 
9538 	err = bpf_link_prime(&link->link, &link_primer);
9539 	if (err) {
9540 		kfree(link);
9541 		goto unlock;
9542 	}
9543 
9544 	err = dev_xdp_attach_link(dev, &extack, link);
9545 	rtnl_unlock();
9546 
9547 	if (err) {
9548 		link->dev = NULL;
9549 		bpf_link_cleanup(&link_primer);
9550 		trace_bpf_xdp_link_attach_failed(extack._msg);
9551 		goto out_put_dev;
9552 	}
9553 
9554 	fd = bpf_link_settle(&link_primer);
9555 	/* link itself doesn't hold dev's refcnt to not complicate shutdown */
9556 	dev_put(dev);
9557 	return fd;
9558 
9559 unlock:
9560 	rtnl_unlock();
9561 
9562 out_put_dev:
9563 	dev_put(dev);
9564 	return err;
9565 }
9566 
9567 /**
9568  *	dev_change_xdp_fd - set or clear a bpf program for a device rx path
9569  *	@dev: device
9570  *	@extack: netlink extended ack
9571  *	@fd: new program fd or negative value to clear
9572  *	@expected_fd: old program fd that userspace expects to replace or clear
9573  *	@flags: xdp-related flags
9574  *
9575  *	Set or clear a bpf program for a device
9576  */
9577 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
9578 		      int fd, int expected_fd, u32 flags)
9579 {
9580 	enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags);
9581 	struct bpf_prog *new_prog = NULL, *old_prog = NULL;
9582 	int err;
9583 
9584 	ASSERT_RTNL();
9585 
9586 	if (fd >= 0) {
9587 		new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
9588 						 mode != XDP_MODE_SKB);
9589 		if (IS_ERR(new_prog))
9590 			return PTR_ERR(new_prog);
9591 	}
9592 
9593 	if (expected_fd >= 0) {
9594 		old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP,
9595 						 mode != XDP_MODE_SKB);
9596 		if (IS_ERR(old_prog)) {
9597 			err = PTR_ERR(old_prog);
9598 			old_prog = NULL;
9599 			goto err_out;
9600 		}
9601 	}
9602 
9603 	err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
9604 
9605 err_out:
9606 	if (err && new_prog)
9607 		bpf_prog_put(new_prog);
9608 	if (old_prog)
9609 		bpf_prog_put(old_prog);
9610 	return err;
9611 }
9612 
9613 /**
9614  * dev_index_reserve() - allocate an ifindex in a namespace
9615  * @net: the applicable net namespace
9616  * @ifindex: requested ifindex, pass %0 to get one allocated
9617  *
9618  * Allocate a ifindex for a new device. Caller must either use the ifindex
9619  * to store the device (via list_netdevice()) or call dev_index_release()
9620  * to give the index up.
9621  *
9622  * Return: a suitable unique value for a new device interface number or -errno.
9623  */
9624 static int dev_index_reserve(struct net *net, u32 ifindex)
9625 {
9626 	int err;
9627 
9628 	if (ifindex > INT_MAX) {
9629 		DEBUG_NET_WARN_ON_ONCE(1);
9630 		return -EINVAL;
9631 	}
9632 
9633 	if (!ifindex)
9634 		err = xa_alloc_cyclic(&net->dev_by_index, &ifindex, NULL,
9635 				      xa_limit_31b, &net->ifindex, GFP_KERNEL);
9636 	else
9637 		err = xa_insert(&net->dev_by_index, ifindex, NULL, GFP_KERNEL);
9638 	if (err < 0)
9639 		return err;
9640 
9641 	return ifindex;
9642 }
9643 
9644 static void dev_index_release(struct net *net, int ifindex)
9645 {
9646 	/* Expect only unused indexes, unlist_netdevice() removes the used */
9647 	WARN_ON(xa_erase(&net->dev_by_index, ifindex));
9648 }
9649 
9650 /* Delayed registration/unregisteration */
9651 LIST_HEAD(net_todo_list);
9652 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
9653 
9654 static void net_set_todo(struct net_device *dev)
9655 {
9656 	list_add_tail(&dev->todo_list, &net_todo_list);
9657 	atomic_inc(&dev_net(dev)->dev_unreg_count);
9658 }
9659 
9660 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
9661 	struct net_device *upper, netdev_features_t features)
9662 {
9663 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9664 	netdev_features_t feature;
9665 	int feature_bit;
9666 
9667 	for_each_netdev_feature(upper_disables, feature_bit) {
9668 		feature = __NETIF_F_BIT(feature_bit);
9669 		if (!(upper->wanted_features & feature)
9670 		    && (features & feature)) {
9671 			netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
9672 				   &feature, upper->name);
9673 			features &= ~feature;
9674 		}
9675 	}
9676 
9677 	return features;
9678 }
9679 
9680 static void netdev_sync_lower_features(struct net_device *upper,
9681 	struct net_device *lower, netdev_features_t features)
9682 {
9683 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9684 	netdev_features_t feature;
9685 	int feature_bit;
9686 
9687 	for_each_netdev_feature(upper_disables, feature_bit) {
9688 		feature = __NETIF_F_BIT(feature_bit);
9689 		if (!(features & feature) && (lower->features & feature)) {
9690 			netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
9691 				   &feature, lower->name);
9692 			lower->wanted_features &= ~feature;
9693 			__netdev_update_features(lower);
9694 
9695 			if (unlikely(lower->features & feature))
9696 				netdev_WARN(upper, "failed to disable %pNF on %s!\n",
9697 					    &feature, lower->name);
9698 			else
9699 				netdev_features_change(lower);
9700 		}
9701 	}
9702 }
9703 
9704 static netdev_features_t netdev_fix_features(struct net_device *dev,
9705 	netdev_features_t features)
9706 {
9707 	/* Fix illegal checksum combinations */
9708 	if ((features & NETIF_F_HW_CSUM) &&
9709 	    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
9710 		netdev_warn(dev, "mixed HW and IP checksum settings.\n");
9711 		features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
9712 	}
9713 
9714 	/* TSO requires that SG is present as well. */
9715 	if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
9716 		netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
9717 		features &= ~NETIF_F_ALL_TSO;
9718 	}
9719 
9720 	if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
9721 					!(features & NETIF_F_IP_CSUM)) {
9722 		netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
9723 		features &= ~NETIF_F_TSO;
9724 		features &= ~NETIF_F_TSO_ECN;
9725 	}
9726 
9727 	if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
9728 					 !(features & NETIF_F_IPV6_CSUM)) {
9729 		netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
9730 		features &= ~NETIF_F_TSO6;
9731 	}
9732 
9733 	/* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
9734 	if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
9735 		features &= ~NETIF_F_TSO_MANGLEID;
9736 
9737 	/* TSO ECN requires that TSO is present as well. */
9738 	if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
9739 		features &= ~NETIF_F_TSO_ECN;
9740 
9741 	/* Software GSO depends on SG. */
9742 	if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
9743 		netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
9744 		features &= ~NETIF_F_GSO;
9745 	}
9746 
9747 	/* GSO partial features require GSO partial be set */
9748 	if ((features & dev->gso_partial_features) &&
9749 	    !(features & NETIF_F_GSO_PARTIAL)) {
9750 		netdev_dbg(dev,
9751 			   "Dropping partially supported GSO features since no GSO partial.\n");
9752 		features &= ~dev->gso_partial_features;
9753 	}
9754 
9755 	if (!(features & NETIF_F_RXCSUM)) {
9756 		/* NETIF_F_GRO_HW implies doing RXCSUM since every packet
9757 		 * successfully merged by hardware must also have the
9758 		 * checksum verified by hardware.  If the user does not
9759 		 * want to enable RXCSUM, logically, we should disable GRO_HW.
9760 		 */
9761 		if (features & NETIF_F_GRO_HW) {
9762 			netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
9763 			features &= ~NETIF_F_GRO_HW;
9764 		}
9765 	}
9766 
9767 	/* LRO/HW-GRO features cannot be combined with RX-FCS */
9768 	if (features & NETIF_F_RXFCS) {
9769 		if (features & NETIF_F_LRO) {
9770 			netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
9771 			features &= ~NETIF_F_LRO;
9772 		}
9773 
9774 		if (features & NETIF_F_GRO_HW) {
9775 			netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
9776 			features &= ~NETIF_F_GRO_HW;
9777 		}
9778 	}
9779 
9780 	if ((features & NETIF_F_GRO_HW) && (features & NETIF_F_LRO)) {
9781 		netdev_dbg(dev, "Dropping LRO feature since HW-GRO is requested.\n");
9782 		features &= ~NETIF_F_LRO;
9783 	}
9784 
9785 	if (features & NETIF_F_HW_TLS_TX) {
9786 		bool ip_csum = (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) ==
9787 			(NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
9788 		bool hw_csum = features & NETIF_F_HW_CSUM;
9789 
9790 		if (!ip_csum && !hw_csum) {
9791 			netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n");
9792 			features &= ~NETIF_F_HW_TLS_TX;
9793 		}
9794 	}
9795 
9796 	if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) {
9797 		netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n");
9798 		features &= ~NETIF_F_HW_TLS_RX;
9799 	}
9800 
9801 	return features;
9802 }
9803 
9804 int __netdev_update_features(struct net_device *dev)
9805 {
9806 	struct net_device *upper, *lower;
9807 	netdev_features_t features;
9808 	struct list_head *iter;
9809 	int err = -1;
9810 
9811 	ASSERT_RTNL();
9812 
9813 	features = netdev_get_wanted_features(dev);
9814 
9815 	if (dev->netdev_ops->ndo_fix_features)
9816 		features = dev->netdev_ops->ndo_fix_features(dev, features);
9817 
9818 	/* driver might be less strict about feature dependencies */
9819 	features = netdev_fix_features(dev, features);
9820 
9821 	/* some features can't be enabled if they're off on an upper device */
9822 	netdev_for_each_upper_dev_rcu(dev, upper, iter)
9823 		features = netdev_sync_upper_features(dev, upper, features);
9824 
9825 	if (dev->features == features)
9826 		goto sync_lower;
9827 
9828 	netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
9829 		&dev->features, &features);
9830 
9831 	if (dev->netdev_ops->ndo_set_features)
9832 		err = dev->netdev_ops->ndo_set_features(dev, features);
9833 	else
9834 		err = 0;
9835 
9836 	if (unlikely(err < 0)) {
9837 		netdev_err(dev,
9838 			"set_features() failed (%d); wanted %pNF, left %pNF\n",
9839 			err, &features, &dev->features);
9840 		/* return non-0 since some features might have changed and
9841 		 * it's better to fire a spurious notification than miss it
9842 		 */
9843 		return -1;
9844 	}
9845 
9846 sync_lower:
9847 	/* some features must be disabled on lower devices when disabled
9848 	 * on an upper device (think: bonding master or bridge)
9849 	 */
9850 	netdev_for_each_lower_dev(dev, lower, iter)
9851 		netdev_sync_lower_features(dev, lower, features);
9852 
9853 	if (!err) {
9854 		netdev_features_t diff = features ^ dev->features;
9855 
9856 		if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
9857 			/* udp_tunnel_{get,drop}_rx_info both need
9858 			 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
9859 			 * device, or they won't do anything.
9860 			 * Thus we need to update dev->features
9861 			 * *before* calling udp_tunnel_get_rx_info,
9862 			 * but *after* calling udp_tunnel_drop_rx_info.
9863 			 */
9864 			if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
9865 				dev->features = features;
9866 				udp_tunnel_get_rx_info(dev);
9867 			} else {
9868 				udp_tunnel_drop_rx_info(dev);
9869 			}
9870 		}
9871 
9872 		if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
9873 			if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
9874 				dev->features = features;
9875 				err |= vlan_get_rx_ctag_filter_info(dev);
9876 			} else {
9877 				vlan_drop_rx_ctag_filter_info(dev);
9878 			}
9879 		}
9880 
9881 		if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
9882 			if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
9883 				dev->features = features;
9884 				err |= vlan_get_rx_stag_filter_info(dev);
9885 			} else {
9886 				vlan_drop_rx_stag_filter_info(dev);
9887 			}
9888 		}
9889 
9890 		dev->features = features;
9891 	}
9892 
9893 	return err < 0 ? 0 : 1;
9894 }
9895 
9896 /**
9897  *	netdev_update_features - recalculate device features
9898  *	@dev: the device to check
9899  *
9900  *	Recalculate dev->features set and send notifications if it
9901  *	has changed. Should be called after driver or hardware dependent
9902  *	conditions might have changed that influence the features.
9903  */
9904 void netdev_update_features(struct net_device *dev)
9905 {
9906 	if (__netdev_update_features(dev))
9907 		netdev_features_change(dev);
9908 }
9909 EXPORT_SYMBOL(netdev_update_features);
9910 
9911 /**
9912  *	netdev_change_features - recalculate device features
9913  *	@dev: the device to check
9914  *
9915  *	Recalculate dev->features set and send notifications even
9916  *	if they have not changed. Should be called instead of
9917  *	netdev_update_features() if also dev->vlan_features might
9918  *	have changed to allow the changes to be propagated to stacked
9919  *	VLAN devices.
9920  */
9921 void netdev_change_features(struct net_device *dev)
9922 {
9923 	__netdev_update_features(dev);
9924 	netdev_features_change(dev);
9925 }
9926 EXPORT_SYMBOL(netdev_change_features);
9927 
9928 /**
9929  *	netif_stacked_transfer_operstate -	transfer operstate
9930  *	@rootdev: the root or lower level device to transfer state from
9931  *	@dev: the device to transfer operstate to
9932  *
9933  *	Transfer operational state from root to device. This is normally
9934  *	called when a stacking relationship exists between the root
9935  *	device and the device(a leaf device).
9936  */
9937 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
9938 					struct net_device *dev)
9939 {
9940 	if (rootdev->operstate == IF_OPER_DORMANT)
9941 		netif_dormant_on(dev);
9942 	else
9943 		netif_dormant_off(dev);
9944 
9945 	if (rootdev->operstate == IF_OPER_TESTING)
9946 		netif_testing_on(dev);
9947 	else
9948 		netif_testing_off(dev);
9949 
9950 	if (netif_carrier_ok(rootdev))
9951 		netif_carrier_on(dev);
9952 	else
9953 		netif_carrier_off(dev);
9954 }
9955 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
9956 
9957 static int netif_alloc_rx_queues(struct net_device *dev)
9958 {
9959 	unsigned int i, count = dev->num_rx_queues;
9960 	struct netdev_rx_queue *rx;
9961 	size_t sz = count * sizeof(*rx);
9962 	int err = 0;
9963 
9964 	BUG_ON(count < 1);
9965 
9966 	rx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
9967 	if (!rx)
9968 		return -ENOMEM;
9969 
9970 	dev->_rx = rx;
9971 
9972 	for (i = 0; i < count; i++) {
9973 		rx[i].dev = dev;
9974 
9975 		/* XDP RX-queue setup */
9976 		err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0);
9977 		if (err < 0)
9978 			goto err_rxq_info;
9979 	}
9980 	return 0;
9981 
9982 err_rxq_info:
9983 	/* Rollback successful reg's and free other resources */
9984 	while (i--)
9985 		xdp_rxq_info_unreg(&rx[i].xdp_rxq);
9986 	kvfree(dev->_rx);
9987 	dev->_rx = NULL;
9988 	return err;
9989 }
9990 
9991 static void netif_free_rx_queues(struct net_device *dev)
9992 {
9993 	unsigned int i, count = dev->num_rx_queues;
9994 
9995 	/* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
9996 	if (!dev->_rx)
9997 		return;
9998 
9999 	for (i = 0; i < count; i++)
10000 		xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
10001 
10002 	kvfree(dev->_rx);
10003 }
10004 
10005 static void netdev_init_one_queue(struct net_device *dev,
10006 				  struct netdev_queue *queue, void *_unused)
10007 {
10008 	/* Initialize queue lock */
10009 	spin_lock_init(&queue->_xmit_lock);
10010 	netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
10011 	queue->xmit_lock_owner = -1;
10012 	netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
10013 	queue->dev = dev;
10014 #ifdef CONFIG_BQL
10015 	dql_init(&queue->dql, HZ);
10016 #endif
10017 }
10018 
10019 static void netif_free_tx_queues(struct net_device *dev)
10020 {
10021 	kvfree(dev->_tx);
10022 }
10023 
10024 static int netif_alloc_netdev_queues(struct net_device *dev)
10025 {
10026 	unsigned int count = dev->num_tx_queues;
10027 	struct netdev_queue *tx;
10028 	size_t sz = count * sizeof(*tx);
10029 
10030 	if (count < 1 || count > 0xffff)
10031 		return -EINVAL;
10032 
10033 	tx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10034 	if (!tx)
10035 		return -ENOMEM;
10036 
10037 	dev->_tx = tx;
10038 
10039 	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
10040 	spin_lock_init(&dev->tx_global_lock);
10041 
10042 	return 0;
10043 }
10044 
10045 void netif_tx_stop_all_queues(struct net_device *dev)
10046 {
10047 	unsigned int i;
10048 
10049 	for (i = 0; i < dev->num_tx_queues; i++) {
10050 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
10051 
10052 		netif_tx_stop_queue(txq);
10053 	}
10054 }
10055 EXPORT_SYMBOL(netif_tx_stop_all_queues);
10056 
10057 static int netdev_do_alloc_pcpu_stats(struct net_device *dev)
10058 {
10059 	void __percpu *v;
10060 
10061 	/* Drivers implementing ndo_get_peer_dev must support tstat
10062 	 * accounting, so that skb_do_redirect() can bump the dev's
10063 	 * RX stats upon network namespace switch.
10064 	 */
10065 	if (dev->netdev_ops->ndo_get_peer_dev &&
10066 	    dev->pcpu_stat_type != NETDEV_PCPU_STAT_TSTATS)
10067 		return -EOPNOTSUPP;
10068 
10069 	switch (dev->pcpu_stat_type) {
10070 	case NETDEV_PCPU_STAT_NONE:
10071 		return 0;
10072 	case NETDEV_PCPU_STAT_LSTATS:
10073 		v = dev->lstats = netdev_alloc_pcpu_stats(struct pcpu_lstats);
10074 		break;
10075 	case NETDEV_PCPU_STAT_TSTATS:
10076 		v = dev->tstats = netdev_alloc_pcpu_stats(struct pcpu_sw_netstats);
10077 		break;
10078 	case NETDEV_PCPU_STAT_DSTATS:
10079 		v = dev->dstats = netdev_alloc_pcpu_stats(struct pcpu_dstats);
10080 		break;
10081 	default:
10082 		return -EINVAL;
10083 	}
10084 
10085 	return v ? 0 : -ENOMEM;
10086 }
10087 
10088 static void netdev_do_free_pcpu_stats(struct net_device *dev)
10089 {
10090 	switch (dev->pcpu_stat_type) {
10091 	case NETDEV_PCPU_STAT_NONE:
10092 		return;
10093 	case NETDEV_PCPU_STAT_LSTATS:
10094 		free_percpu(dev->lstats);
10095 		break;
10096 	case NETDEV_PCPU_STAT_TSTATS:
10097 		free_percpu(dev->tstats);
10098 		break;
10099 	case NETDEV_PCPU_STAT_DSTATS:
10100 		free_percpu(dev->dstats);
10101 		break;
10102 	}
10103 }
10104 
10105 /**
10106  * register_netdevice() - register a network device
10107  * @dev: device to register
10108  *
10109  * Take a prepared network device structure and make it externally accessible.
10110  * A %NETDEV_REGISTER message is sent to the netdev notifier chain.
10111  * Callers must hold the rtnl lock - you may want register_netdev()
10112  * instead of this.
10113  */
10114 int register_netdevice(struct net_device *dev)
10115 {
10116 	int ret;
10117 	struct net *net = dev_net(dev);
10118 
10119 	BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
10120 		     NETDEV_FEATURE_COUNT);
10121 	BUG_ON(dev_boot_phase);
10122 	ASSERT_RTNL();
10123 
10124 	might_sleep();
10125 
10126 	/* When net_device's are persistent, this will be fatal. */
10127 	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
10128 	BUG_ON(!net);
10129 
10130 	ret = ethtool_check_ops(dev->ethtool_ops);
10131 	if (ret)
10132 		return ret;
10133 
10134 	spin_lock_init(&dev->addr_list_lock);
10135 	netdev_set_addr_lockdep_class(dev);
10136 
10137 	ret = dev_get_valid_name(net, dev, dev->name);
10138 	if (ret < 0)
10139 		goto out;
10140 
10141 	ret = -ENOMEM;
10142 	dev->name_node = netdev_name_node_head_alloc(dev);
10143 	if (!dev->name_node)
10144 		goto out;
10145 
10146 	/* Init, if this function is available */
10147 	if (dev->netdev_ops->ndo_init) {
10148 		ret = dev->netdev_ops->ndo_init(dev);
10149 		if (ret) {
10150 			if (ret > 0)
10151 				ret = -EIO;
10152 			goto err_free_name;
10153 		}
10154 	}
10155 
10156 	if (((dev->hw_features | dev->features) &
10157 	     NETIF_F_HW_VLAN_CTAG_FILTER) &&
10158 	    (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
10159 	     !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
10160 		netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
10161 		ret = -EINVAL;
10162 		goto err_uninit;
10163 	}
10164 
10165 	ret = netdev_do_alloc_pcpu_stats(dev);
10166 	if (ret)
10167 		goto err_uninit;
10168 
10169 	ret = dev_index_reserve(net, dev->ifindex);
10170 	if (ret < 0)
10171 		goto err_free_pcpu;
10172 	dev->ifindex = ret;
10173 
10174 	/* Transfer changeable features to wanted_features and enable
10175 	 * software offloads (GSO and GRO).
10176 	 */
10177 	dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
10178 	dev->features |= NETIF_F_SOFT_FEATURES;
10179 
10180 	if (dev->udp_tunnel_nic_info) {
10181 		dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10182 		dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10183 	}
10184 
10185 	dev->wanted_features = dev->features & dev->hw_features;
10186 
10187 	if (!(dev->flags & IFF_LOOPBACK))
10188 		dev->hw_features |= NETIF_F_NOCACHE_COPY;
10189 
10190 	/* If IPv4 TCP segmentation offload is supported we should also
10191 	 * allow the device to enable segmenting the frame with the option
10192 	 * of ignoring a static IP ID value.  This doesn't enable the
10193 	 * feature itself but allows the user to enable it later.
10194 	 */
10195 	if (dev->hw_features & NETIF_F_TSO)
10196 		dev->hw_features |= NETIF_F_TSO_MANGLEID;
10197 	if (dev->vlan_features & NETIF_F_TSO)
10198 		dev->vlan_features |= NETIF_F_TSO_MANGLEID;
10199 	if (dev->mpls_features & NETIF_F_TSO)
10200 		dev->mpls_features |= NETIF_F_TSO_MANGLEID;
10201 	if (dev->hw_enc_features & NETIF_F_TSO)
10202 		dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
10203 
10204 	/* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
10205 	 */
10206 	dev->vlan_features |= NETIF_F_HIGHDMA;
10207 
10208 	/* Make NETIF_F_SG inheritable to tunnel devices.
10209 	 */
10210 	dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
10211 
10212 	/* Make NETIF_F_SG inheritable to MPLS.
10213 	 */
10214 	dev->mpls_features |= NETIF_F_SG;
10215 
10216 	ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
10217 	ret = notifier_to_errno(ret);
10218 	if (ret)
10219 		goto err_ifindex_release;
10220 
10221 	ret = netdev_register_kobject(dev);
10222 	write_lock(&dev_base_lock);
10223 	dev->reg_state = ret ? NETREG_UNREGISTERED : NETREG_REGISTERED;
10224 	write_unlock(&dev_base_lock);
10225 	if (ret)
10226 		goto err_uninit_notify;
10227 
10228 	__netdev_update_features(dev);
10229 
10230 	/*
10231 	 *	Default initial state at registry is that the
10232 	 *	device is present.
10233 	 */
10234 
10235 	set_bit(__LINK_STATE_PRESENT, &dev->state);
10236 
10237 	linkwatch_init_dev(dev);
10238 
10239 	dev_init_scheduler(dev);
10240 
10241 	netdev_hold(dev, &dev->dev_registered_tracker, GFP_KERNEL);
10242 	list_netdevice(dev);
10243 
10244 	add_device_randomness(dev->dev_addr, dev->addr_len);
10245 
10246 	/* If the device has permanent device address, driver should
10247 	 * set dev_addr and also addr_assign_type should be set to
10248 	 * NET_ADDR_PERM (default value).
10249 	 */
10250 	if (dev->addr_assign_type == NET_ADDR_PERM)
10251 		memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
10252 
10253 	/* Notify protocols, that a new device appeared. */
10254 	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
10255 	ret = notifier_to_errno(ret);
10256 	if (ret) {
10257 		/* Expect explicit free_netdev() on failure */
10258 		dev->needs_free_netdev = false;
10259 		unregister_netdevice_queue(dev, NULL);
10260 		goto out;
10261 	}
10262 	/*
10263 	 *	Prevent userspace races by waiting until the network
10264 	 *	device is fully setup before sending notifications.
10265 	 */
10266 	if (!dev->rtnl_link_ops ||
10267 	    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10268 		rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL);
10269 
10270 out:
10271 	return ret;
10272 
10273 err_uninit_notify:
10274 	call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev);
10275 err_ifindex_release:
10276 	dev_index_release(net, dev->ifindex);
10277 err_free_pcpu:
10278 	netdev_do_free_pcpu_stats(dev);
10279 err_uninit:
10280 	if (dev->netdev_ops->ndo_uninit)
10281 		dev->netdev_ops->ndo_uninit(dev);
10282 	if (dev->priv_destructor)
10283 		dev->priv_destructor(dev);
10284 err_free_name:
10285 	netdev_name_node_free(dev->name_node);
10286 	goto out;
10287 }
10288 EXPORT_SYMBOL(register_netdevice);
10289 
10290 /**
10291  *	init_dummy_netdev	- init a dummy network device for NAPI
10292  *	@dev: device to init
10293  *
10294  *	This takes a network device structure and initialize the minimum
10295  *	amount of fields so it can be used to schedule NAPI polls without
10296  *	registering a full blown interface. This is to be used by drivers
10297  *	that need to tie several hardware interfaces to a single NAPI
10298  *	poll scheduler due to HW limitations.
10299  */
10300 int init_dummy_netdev(struct net_device *dev)
10301 {
10302 	/* Clear everything. Note we don't initialize spinlocks
10303 	 * are they aren't supposed to be taken by any of the
10304 	 * NAPI code and this dummy netdev is supposed to be
10305 	 * only ever used for NAPI polls
10306 	 */
10307 	memset(dev, 0, sizeof(struct net_device));
10308 
10309 	/* make sure we BUG if trying to hit standard
10310 	 * register/unregister code path
10311 	 */
10312 	dev->reg_state = NETREG_DUMMY;
10313 
10314 	/* NAPI wants this */
10315 	INIT_LIST_HEAD(&dev->napi_list);
10316 
10317 	/* a dummy interface is started by default */
10318 	set_bit(__LINK_STATE_PRESENT, &dev->state);
10319 	set_bit(__LINK_STATE_START, &dev->state);
10320 
10321 	/* napi_busy_loop stats accounting wants this */
10322 	dev_net_set(dev, &init_net);
10323 
10324 	/* Note : We dont allocate pcpu_refcnt for dummy devices,
10325 	 * because users of this 'device' dont need to change
10326 	 * its refcount.
10327 	 */
10328 
10329 	return 0;
10330 }
10331 EXPORT_SYMBOL_GPL(init_dummy_netdev);
10332 
10333 
10334 /**
10335  *	register_netdev	- register a network device
10336  *	@dev: device to register
10337  *
10338  *	Take a completed network device structure and add it to the kernel
10339  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10340  *	chain. 0 is returned on success. A negative errno code is returned
10341  *	on a failure to set up the device, or if the name is a duplicate.
10342  *
10343  *	This is a wrapper around register_netdevice that takes the rtnl semaphore
10344  *	and expands the device name if you passed a format string to
10345  *	alloc_netdev.
10346  */
10347 int register_netdev(struct net_device *dev)
10348 {
10349 	int err;
10350 
10351 	if (rtnl_lock_killable())
10352 		return -EINTR;
10353 	err = register_netdevice(dev);
10354 	rtnl_unlock();
10355 	return err;
10356 }
10357 EXPORT_SYMBOL(register_netdev);
10358 
10359 int netdev_refcnt_read(const struct net_device *dev)
10360 {
10361 #ifdef CONFIG_PCPU_DEV_REFCNT
10362 	int i, refcnt = 0;
10363 
10364 	for_each_possible_cpu(i)
10365 		refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
10366 	return refcnt;
10367 #else
10368 	return refcount_read(&dev->dev_refcnt);
10369 #endif
10370 }
10371 EXPORT_SYMBOL(netdev_refcnt_read);
10372 
10373 int netdev_unregister_timeout_secs __read_mostly = 10;
10374 
10375 #define WAIT_REFS_MIN_MSECS 1
10376 #define WAIT_REFS_MAX_MSECS 250
10377 /**
10378  * netdev_wait_allrefs_any - wait until all references are gone.
10379  * @list: list of net_devices to wait on
10380  *
10381  * This is called when unregistering network devices.
10382  *
10383  * Any protocol or device that holds a reference should register
10384  * for netdevice notification, and cleanup and put back the
10385  * reference if they receive an UNREGISTER event.
10386  * We can get stuck here if buggy protocols don't correctly
10387  * call dev_put.
10388  */
10389 static struct net_device *netdev_wait_allrefs_any(struct list_head *list)
10390 {
10391 	unsigned long rebroadcast_time, warning_time;
10392 	struct net_device *dev;
10393 	int wait = 0;
10394 
10395 	rebroadcast_time = warning_time = jiffies;
10396 
10397 	list_for_each_entry(dev, list, todo_list)
10398 		if (netdev_refcnt_read(dev) == 1)
10399 			return dev;
10400 
10401 	while (true) {
10402 		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
10403 			rtnl_lock();
10404 
10405 			/* Rebroadcast unregister notification */
10406 			list_for_each_entry(dev, list, todo_list)
10407 				call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10408 
10409 			__rtnl_unlock();
10410 			rcu_barrier();
10411 			rtnl_lock();
10412 
10413 			list_for_each_entry(dev, list, todo_list)
10414 				if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
10415 					     &dev->state)) {
10416 					/* We must not have linkwatch events
10417 					 * pending on unregister. If this
10418 					 * happens, we simply run the queue
10419 					 * unscheduled, resulting in a noop
10420 					 * for this device.
10421 					 */
10422 					linkwatch_run_queue();
10423 					break;
10424 				}
10425 
10426 			__rtnl_unlock();
10427 
10428 			rebroadcast_time = jiffies;
10429 		}
10430 
10431 		if (!wait) {
10432 			rcu_barrier();
10433 			wait = WAIT_REFS_MIN_MSECS;
10434 		} else {
10435 			msleep(wait);
10436 			wait = min(wait << 1, WAIT_REFS_MAX_MSECS);
10437 		}
10438 
10439 		list_for_each_entry(dev, list, todo_list)
10440 			if (netdev_refcnt_read(dev) == 1)
10441 				return dev;
10442 
10443 		if (time_after(jiffies, warning_time +
10444 			       READ_ONCE(netdev_unregister_timeout_secs) * HZ)) {
10445 			list_for_each_entry(dev, list, todo_list) {
10446 				pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
10447 					 dev->name, netdev_refcnt_read(dev));
10448 				ref_tracker_dir_print(&dev->refcnt_tracker, 10);
10449 			}
10450 
10451 			warning_time = jiffies;
10452 		}
10453 	}
10454 }
10455 
10456 /* The sequence is:
10457  *
10458  *	rtnl_lock();
10459  *	...
10460  *	register_netdevice(x1);
10461  *	register_netdevice(x2);
10462  *	...
10463  *	unregister_netdevice(y1);
10464  *	unregister_netdevice(y2);
10465  *      ...
10466  *	rtnl_unlock();
10467  *	free_netdev(y1);
10468  *	free_netdev(y2);
10469  *
10470  * We are invoked by rtnl_unlock().
10471  * This allows us to deal with problems:
10472  * 1) We can delete sysfs objects which invoke hotplug
10473  *    without deadlocking with linkwatch via keventd.
10474  * 2) Since we run with the RTNL semaphore not held, we can sleep
10475  *    safely in order to wait for the netdev refcnt to drop to zero.
10476  *
10477  * We must not return until all unregister events added during
10478  * the interval the lock was held have been completed.
10479  */
10480 void netdev_run_todo(void)
10481 {
10482 	struct net_device *dev, *tmp;
10483 	struct list_head list;
10484 #ifdef CONFIG_LOCKDEP
10485 	struct list_head unlink_list;
10486 
10487 	list_replace_init(&net_unlink_list, &unlink_list);
10488 
10489 	while (!list_empty(&unlink_list)) {
10490 		struct net_device *dev = list_first_entry(&unlink_list,
10491 							  struct net_device,
10492 							  unlink_list);
10493 		list_del_init(&dev->unlink_list);
10494 		dev->nested_level = dev->lower_level - 1;
10495 	}
10496 #endif
10497 
10498 	/* Snapshot list, allow later requests */
10499 	list_replace_init(&net_todo_list, &list);
10500 
10501 	__rtnl_unlock();
10502 
10503 	/* Wait for rcu callbacks to finish before next phase */
10504 	if (!list_empty(&list))
10505 		rcu_barrier();
10506 
10507 	list_for_each_entry_safe(dev, tmp, &list, todo_list) {
10508 		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
10509 			netdev_WARN(dev, "run_todo but not unregistering\n");
10510 			list_del(&dev->todo_list);
10511 			continue;
10512 		}
10513 
10514 		write_lock(&dev_base_lock);
10515 		dev->reg_state = NETREG_UNREGISTERED;
10516 		write_unlock(&dev_base_lock);
10517 		linkwatch_forget_dev(dev);
10518 	}
10519 
10520 	while (!list_empty(&list)) {
10521 		dev = netdev_wait_allrefs_any(&list);
10522 		list_del(&dev->todo_list);
10523 
10524 		/* paranoia */
10525 		BUG_ON(netdev_refcnt_read(dev) != 1);
10526 		BUG_ON(!list_empty(&dev->ptype_all));
10527 		BUG_ON(!list_empty(&dev->ptype_specific));
10528 		WARN_ON(rcu_access_pointer(dev->ip_ptr));
10529 		WARN_ON(rcu_access_pointer(dev->ip6_ptr));
10530 
10531 		netdev_do_free_pcpu_stats(dev);
10532 		if (dev->priv_destructor)
10533 			dev->priv_destructor(dev);
10534 		if (dev->needs_free_netdev)
10535 			free_netdev(dev);
10536 
10537 		if (atomic_dec_and_test(&dev_net(dev)->dev_unreg_count))
10538 			wake_up(&netdev_unregistering_wq);
10539 
10540 		/* Free network device */
10541 		kobject_put(&dev->dev.kobj);
10542 	}
10543 }
10544 
10545 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
10546  * all the same fields in the same order as net_device_stats, with only
10547  * the type differing, but rtnl_link_stats64 may have additional fields
10548  * at the end for newer counters.
10549  */
10550 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
10551 			     const struct net_device_stats *netdev_stats)
10552 {
10553 	size_t i, n = sizeof(*netdev_stats) / sizeof(atomic_long_t);
10554 	const atomic_long_t *src = (atomic_long_t *)netdev_stats;
10555 	u64 *dst = (u64 *)stats64;
10556 
10557 	BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
10558 	for (i = 0; i < n; i++)
10559 		dst[i] = (unsigned long)atomic_long_read(&src[i]);
10560 	/* zero out counters that only exist in rtnl_link_stats64 */
10561 	memset((char *)stats64 + n * sizeof(u64), 0,
10562 	       sizeof(*stats64) - n * sizeof(u64));
10563 }
10564 EXPORT_SYMBOL(netdev_stats_to_stats64);
10565 
10566 static __cold struct net_device_core_stats __percpu *netdev_core_stats_alloc(
10567 		struct net_device *dev)
10568 {
10569 	struct net_device_core_stats __percpu *p;
10570 
10571 	p = alloc_percpu_gfp(struct net_device_core_stats,
10572 			     GFP_ATOMIC | __GFP_NOWARN);
10573 
10574 	if (p && cmpxchg(&dev->core_stats, NULL, p))
10575 		free_percpu(p);
10576 
10577 	/* This READ_ONCE() pairs with the cmpxchg() above */
10578 	return READ_ONCE(dev->core_stats);
10579 }
10580 
10581 noinline void netdev_core_stats_inc(struct net_device *dev, u32 offset)
10582 {
10583 	/* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
10584 	struct net_device_core_stats __percpu *p = READ_ONCE(dev->core_stats);
10585 	unsigned long __percpu *field;
10586 
10587 	if (unlikely(!p)) {
10588 		p = netdev_core_stats_alloc(dev);
10589 		if (!p)
10590 			return;
10591 	}
10592 
10593 	field = (__force unsigned long __percpu *)((__force void *)p + offset);
10594 	this_cpu_inc(*field);
10595 }
10596 EXPORT_SYMBOL_GPL(netdev_core_stats_inc);
10597 
10598 /**
10599  *	dev_get_stats	- get network device statistics
10600  *	@dev: device to get statistics from
10601  *	@storage: place to store stats
10602  *
10603  *	Get network statistics from device. Return @storage.
10604  *	The device driver may provide its own method by setting
10605  *	dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
10606  *	otherwise the internal statistics structure is used.
10607  */
10608 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
10609 					struct rtnl_link_stats64 *storage)
10610 {
10611 	const struct net_device_ops *ops = dev->netdev_ops;
10612 	const struct net_device_core_stats __percpu *p;
10613 
10614 	if (ops->ndo_get_stats64) {
10615 		memset(storage, 0, sizeof(*storage));
10616 		ops->ndo_get_stats64(dev, storage);
10617 	} else if (ops->ndo_get_stats) {
10618 		netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
10619 	} else {
10620 		netdev_stats_to_stats64(storage, &dev->stats);
10621 	}
10622 
10623 	/* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
10624 	p = READ_ONCE(dev->core_stats);
10625 	if (p) {
10626 		const struct net_device_core_stats *core_stats;
10627 		int i;
10628 
10629 		for_each_possible_cpu(i) {
10630 			core_stats = per_cpu_ptr(p, i);
10631 			storage->rx_dropped += READ_ONCE(core_stats->rx_dropped);
10632 			storage->tx_dropped += READ_ONCE(core_stats->tx_dropped);
10633 			storage->rx_nohandler += READ_ONCE(core_stats->rx_nohandler);
10634 			storage->rx_otherhost_dropped += READ_ONCE(core_stats->rx_otherhost_dropped);
10635 		}
10636 	}
10637 	return storage;
10638 }
10639 EXPORT_SYMBOL(dev_get_stats);
10640 
10641 /**
10642  *	dev_fetch_sw_netstats - get per-cpu network device statistics
10643  *	@s: place to store stats
10644  *	@netstats: per-cpu network stats to read from
10645  *
10646  *	Read per-cpu network statistics and populate the related fields in @s.
10647  */
10648 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
10649 			   const struct pcpu_sw_netstats __percpu *netstats)
10650 {
10651 	int cpu;
10652 
10653 	for_each_possible_cpu(cpu) {
10654 		u64 rx_packets, rx_bytes, tx_packets, tx_bytes;
10655 		const struct pcpu_sw_netstats *stats;
10656 		unsigned int start;
10657 
10658 		stats = per_cpu_ptr(netstats, cpu);
10659 		do {
10660 			start = u64_stats_fetch_begin(&stats->syncp);
10661 			rx_packets = u64_stats_read(&stats->rx_packets);
10662 			rx_bytes   = u64_stats_read(&stats->rx_bytes);
10663 			tx_packets = u64_stats_read(&stats->tx_packets);
10664 			tx_bytes   = u64_stats_read(&stats->tx_bytes);
10665 		} while (u64_stats_fetch_retry(&stats->syncp, start));
10666 
10667 		s->rx_packets += rx_packets;
10668 		s->rx_bytes   += rx_bytes;
10669 		s->tx_packets += tx_packets;
10670 		s->tx_bytes   += tx_bytes;
10671 	}
10672 }
10673 EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats);
10674 
10675 /**
10676  *	dev_get_tstats64 - ndo_get_stats64 implementation
10677  *	@dev: device to get statistics from
10678  *	@s: place to store stats
10679  *
10680  *	Populate @s from dev->stats and dev->tstats. Can be used as
10681  *	ndo_get_stats64() callback.
10682  */
10683 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s)
10684 {
10685 	netdev_stats_to_stats64(s, &dev->stats);
10686 	dev_fetch_sw_netstats(s, dev->tstats);
10687 }
10688 EXPORT_SYMBOL_GPL(dev_get_tstats64);
10689 
10690 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
10691 {
10692 	struct netdev_queue *queue = dev_ingress_queue(dev);
10693 
10694 #ifdef CONFIG_NET_CLS_ACT
10695 	if (queue)
10696 		return queue;
10697 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
10698 	if (!queue)
10699 		return NULL;
10700 	netdev_init_one_queue(dev, queue, NULL);
10701 	RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
10702 	RCU_INIT_POINTER(queue->qdisc_sleeping, &noop_qdisc);
10703 	rcu_assign_pointer(dev->ingress_queue, queue);
10704 #endif
10705 	return queue;
10706 }
10707 
10708 static const struct ethtool_ops default_ethtool_ops;
10709 
10710 void netdev_set_default_ethtool_ops(struct net_device *dev,
10711 				    const struct ethtool_ops *ops)
10712 {
10713 	if (dev->ethtool_ops == &default_ethtool_ops)
10714 		dev->ethtool_ops = ops;
10715 }
10716 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
10717 
10718 /**
10719  * netdev_sw_irq_coalesce_default_on() - enable SW IRQ coalescing by default
10720  * @dev: netdev to enable the IRQ coalescing on
10721  *
10722  * Sets a conservative default for SW IRQ coalescing. Users can use
10723  * sysfs attributes to override the default values.
10724  */
10725 void netdev_sw_irq_coalesce_default_on(struct net_device *dev)
10726 {
10727 	WARN_ON(dev->reg_state == NETREG_REGISTERED);
10728 
10729 	if (!IS_ENABLED(CONFIG_PREEMPT_RT)) {
10730 		dev->gro_flush_timeout = 20000;
10731 		dev->napi_defer_hard_irqs = 1;
10732 	}
10733 }
10734 EXPORT_SYMBOL_GPL(netdev_sw_irq_coalesce_default_on);
10735 
10736 void netdev_freemem(struct net_device *dev)
10737 {
10738 	char *addr = (char *)dev - dev->padded;
10739 
10740 	kvfree(addr);
10741 }
10742 
10743 /**
10744  * alloc_netdev_mqs - allocate network device
10745  * @sizeof_priv: size of private data to allocate space for
10746  * @name: device name format string
10747  * @name_assign_type: origin of device name
10748  * @setup: callback to initialize device
10749  * @txqs: the number of TX subqueues to allocate
10750  * @rxqs: the number of RX subqueues to allocate
10751  *
10752  * Allocates a struct net_device with private data area for driver use
10753  * and performs basic initialization.  Also allocates subqueue structs
10754  * for each queue on the device.
10755  */
10756 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
10757 		unsigned char name_assign_type,
10758 		void (*setup)(struct net_device *),
10759 		unsigned int txqs, unsigned int rxqs)
10760 {
10761 	struct net_device *dev;
10762 	unsigned int alloc_size;
10763 	struct net_device *p;
10764 
10765 	BUG_ON(strlen(name) >= sizeof(dev->name));
10766 
10767 	if (txqs < 1) {
10768 		pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
10769 		return NULL;
10770 	}
10771 
10772 	if (rxqs < 1) {
10773 		pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
10774 		return NULL;
10775 	}
10776 
10777 	alloc_size = sizeof(struct net_device);
10778 	if (sizeof_priv) {
10779 		/* ensure 32-byte alignment of private area */
10780 		alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
10781 		alloc_size += sizeof_priv;
10782 	}
10783 	/* ensure 32-byte alignment of whole construct */
10784 	alloc_size += NETDEV_ALIGN - 1;
10785 
10786 	p = kvzalloc(alloc_size, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10787 	if (!p)
10788 		return NULL;
10789 
10790 	dev = PTR_ALIGN(p, NETDEV_ALIGN);
10791 	dev->padded = (char *)dev - (char *)p;
10792 
10793 	ref_tracker_dir_init(&dev->refcnt_tracker, 128, name);
10794 #ifdef CONFIG_PCPU_DEV_REFCNT
10795 	dev->pcpu_refcnt = alloc_percpu(int);
10796 	if (!dev->pcpu_refcnt)
10797 		goto free_dev;
10798 	__dev_hold(dev);
10799 #else
10800 	refcount_set(&dev->dev_refcnt, 1);
10801 #endif
10802 
10803 	if (dev_addr_init(dev))
10804 		goto free_pcpu;
10805 
10806 	dev_mc_init(dev);
10807 	dev_uc_init(dev);
10808 
10809 	dev_net_set(dev, &init_net);
10810 
10811 	dev->gso_max_size = GSO_LEGACY_MAX_SIZE;
10812 	dev->xdp_zc_max_segs = 1;
10813 	dev->gso_max_segs = GSO_MAX_SEGS;
10814 	dev->gro_max_size = GRO_LEGACY_MAX_SIZE;
10815 	dev->gso_ipv4_max_size = GSO_LEGACY_MAX_SIZE;
10816 	dev->gro_ipv4_max_size = GRO_LEGACY_MAX_SIZE;
10817 	dev->tso_max_size = TSO_LEGACY_MAX_SIZE;
10818 	dev->tso_max_segs = TSO_MAX_SEGS;
10819 	dev->upper_level = 1;
10820 	dev->lower_level = 1;
10821 #ifdef CONFIG_LOCKDEP
10822 	dev->nested_level = 0;
10823 	INIT_LIST_HEAD(&dev->unlink_list);
10824 #endif
10825 
10826 	INIT_LIST_HEAD(&dev->napi_list);
10827 	INIT_LIST_HEAD(&dev->unreg_list);
10828 	INIT_LIST_HEAD(&dev->close_list);
10829 	INIT_LIST_HEAD(&dev->link_watch_list);
10830 	INIT_LIST_HEAD(&dev->adj_list.upper);
10831 	INIT_LIST_HEAD(&dev->adj_list.lower);
10832 	INIT_LIST_HEAD(&dev->ptype_all);
10833 	INIT_LIST_HEAD(&dev->ptype_specific);
10834 	INIT_LIST_HEAD(&dev->net_notifier_list);
10835 #ifdef CONFIG_NET_SCHED
10836 	hash_init(dev->qdisc_hash);
10837 #endif
10838 	dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
10839 	setup(dev);
10840 
10841 	if (!dev->tx_queue_len) {
10842 		dev->priv_flags |= IFF_NO_QUEUE;
10843 		dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
10844 	}
10845 
10846 	dev->num_tx_queues = txqs;
10847 	dev->real_num_tx_queues = txqs;
10848 	if (netif_alloc_netdev_queues(dev))
10849 		goto free_all;
10850 
10851 	dev->num_rx_queues = rxqs;
10852 	dev->real_num_rx_queues = rxqs;
10853 	if (netif_alloc_rx_queues(dev))
10854 		goto free_all;
10855 
10856 	strcpy(dev->name, name);
10857 	dev->name_assign_type = name_assign_type;
10858 	dev->group = INIT_NETDEV_GROUP;
10859 	if (!dev->ethtool_ops)
10860 		dev->ethtool_ops = &default_ethtool_ops;
10861 
10862 	nf_hook_netdev_init(dev);
10863 
10864 	return dev;
10865 
10866 free_all:
10867 	free_netdev(dev);
10868 	return NULL;
10869 
10870 free_pcpu:
10871 #ifdef CONFIG_PCPU_DEV_REFCNT
10872 	free_percpu(dev->pcpu_refcnt);
10873 free_dev:
10874 #endif
10875 	netdev_freemem(dev);
10876 	return NULL;
10877 }
10878 EXPORT_SYMBOL(alloc_netdev_mqs);
10879 
10880 /**
10881  * free_netdev - free network device
10882  * @dev: device
10883  *
10884  * This function does the last stage of destroying an allocated device
10885  * interface. The reference to the device object is released. If this
10886  * is the last reference then it will be freed.Must be called in process
10887  * context.
10888  */
10889 void free_netdev(struct net_device *dev)
10890 {
10891 	struct napi_struct *p, *n;
10892 
10893 	might_sleep();
10894 
10895 	/* When called immediately after register_netdevice() failed the unwind
10896 	 * handling may still be dismantling the device. Handle that case by
10897 	 * deferring the free.
10898 	 */
10899 	if (dev->reg_state == NETREG_UNREGISTERING) {
10900 		ASSERT_RTNL();
10901 		dev->needs_free_netdev = true;
10902 		return;
10903 	}
10904 
10905 	netif_free_tx_queues(dev);
10906 	netif_free_rx_queues(dev);
10907 
10908 	kfree(rcu_dereference_protected(dev->ingress_queue, 1));
10909 
10910 	/* Flush device addresses */
10911 	dev_addr_flush(dev);
10912 
10913 	list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
10914 		netif_napi_del(p);
10915 
10916 	ref_tracker_dir_exit(&dev->refcnt_tracker);
10917 #ifdef CONFIG_PCPU_DEV_REFCNT
10918 	free_percpu(dev->pcpu_refcnt);
10919 	dev->pcpu_refcnt = NULL;
10920 #endif
10921 	free_percpu(dev->core_stats);
10922 	dev->core_stats = NULL;
10923 	free_percpu(dev->xdp_bulkq);
10924 	dev->xdp_bulkq = NULL;
10925 
10926 	/*  Compatibility with error handling in drivers */
10927 	if (dev->reg_state == NETREG_UNINITIALIZED) {
10928 		netdev_freemem(dev);
10929 		return;
10930 	}
10931 
10932 	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
10933 	dev->reg_state = NETREG_RELEASED;
10934 
10935 	/* will free via device release */
10936 	put_device(&dev->dev);
10937 }
10938 EXPORT_SYMBOL(free_netdev);
10939 
10940 /**
10941  *	synchronize_net -  Synchronize with packet receive processing
10942  *
10943  *	Wait for packets currently being received to be done.
10944  *	Does not block later packets from starting.
10945  */
10946 void synchronize_net(void)
10947 {
10948 	might_sleep();
10949 	if (rtnl_is_locked())
10950 		synchronize_rcu_expedited();
10951 	else
10952 		synchronize_rcu();
10953 }
10954 EXPORT_SYMBOL(synchronize_net);
10955 
10956 /**
10957  *	unregister_netdevice_queue - remove device from the kernel
10958  *	@dev: device
10959  *	@head: list
10960  *
10961  *	This function shuts down a device interface and removes it
10962  *	from the kernel tables.
10963  *	If head not NULL, device is queued to be unregistered later.
10964  *
10965  *	Callers must hold the rtnl semaphore.  You may want
10966  *	unregister_netdev() instead of this.
10967  */
10968 
10969 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
10970 {
10971 	ASSERT_RTNL();
10972 
10973 	if (head) {
10974 		list_move_tail(&dev->unreg_list, head);
10975 	} else {
10976 		LIST_HEAD(single);
10977 
10978 		list_add(&dev->unreg_list, &single);
10979 		unregister_netdevice_many(&single);
10980 	}
10981 }
10982 EXPORT_SYMBOL(unregister_netdevice_queue);
10983 
10984 void unregister_netdevice_many_notify(struct list_head *head,
10985 				      u32 portid, const struct nlmsghdr *nlh)
10986 {
10987 	struct net_device *dev, *tmp;
10988 	LIST_HEAD(close_head);
10989 
10990 	BUG_ON(dev_boot_phase);
10991 	ASSERT_RTNL();
10992 
10993 	if (list_empty(head))
10994 		return;
10995 
10996 	list_for_each_entry_safe(dev, tmp, head, unreg_list) {
10997 		/* Some devices call without registering
10998 		 * for initialization unwind. Remove those
10999 		 * devices and proceed with the remaining.
11000 		 */
11001 		if (dev->reg_state == NETREG_UNINITIALIZED) {
11002 			pr_debug("unregister_netdevice: device %s/%p never was registered\n",
11003 				 dev->name, dev);
11004 
11005 			WARN_ON(1);
11006 			list_del(&dev->unreg_list);
11007 			continue;
11008 		}
11009 		dev->dismantle = true;
11010 		BUG_ON(dev->reg_state != NETREG_REGISTERED);
11011 	}
11012 
11013 	/* If device is running, close it first. */
11014 	list_for_each_entry(dev, head, unreg_list)
11015 		list_add_tail(&dev->close_list, &close_head);
11016 	dev_close_many(&close_head, true);
11017 
11018 	list_for_each_entry(dev, head, unreg_list) {
11019 		/* And unlink it from device chain. */
11020 		write_lock(&dev_base_lock);
11021 		unlist_netdevice(dev, false);
11022 		dev->reg_state = NETREG_UNREGISTERING;
11023 		write_unlock(&dev_base_lock);
11024 	}
11025 	flush_all_backlogs();
11026 
11027 	synchronize_net();
11028 
11029 	list_for_each_entry(dev, head, unreg_list) {
11030 		struct sk_buff *skb = NULL;
11031 
11032 		/* Shutdown queueing discipline. */
11033 		dev_shutdown(dev);
11034 		dev_tcx_uninstall(dev);
11035 		dev_xdp_uninstall(dev);
11036 		bpf_dev_bound_netdev_unregister(dev);
11037 
11038 		netdev_offload_xstats_disable_all(dev);
11039 
11040 		/* Notify protocols, that we are about to destroy
11041 		 * this device. They should clean all the things.
11042 		 */
11043 		call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11044 
11045 		if (!dev->rtnl_link_ops ||
11046 		    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
11047 			skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
11048 						     GFP_KERNEL, NULL, 0,
11049 						     portid, nlh);
11050 
11051 		/*
11052 		 *	Flush the unicast and multicast chains
11053 		 */
11054 		dev_uc_flush(dev);
11055 		dev_mc_flush(dev);
11056 
11057 		netdev_name_node_alt_flush(dev);
11058 		netdev_name_node_free(dev->name_node);
11059 
11060 		call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev);
11061 
11062 		if (dev->netdev_ops->ndo_uninit)
11063 			dev->netdev_ops->ndo_uninit(dev);
11064 
11065 		if (skb)
11066 			rtmsg_ifinfo_send(skb, dev, GFP_KERNEL, portid, nlh);
11067 
11068 		/* Notifier chain MUST detach us all upper devices. */
11069 		WARN_ON(netdev_has_any_upper_dev(dev));
11070 		WARN_ON(netdev_has_any_lower_dev(dev));
11071 
11072 		/* Remove entries from kobject tree */
11073 		netdev_unregister_kobject(dev);
11074 #ifdef CONFIG_XPS
11075 		/* Remove XPS queueing entries */
11076 		netif_reset_xps_queues_gt(dev, 0);
11077 #endif
11078 	}
11079 
11080 	synchronize_net();
11081 
11082 	list_for_each_entry(dev, head, unreg_list) {
11083 		netdev_put(dev, &dev->dev_registered_tracker);
11084 		net_set_todo(dev);
11085 	}
11086 
11087 	list_del(head);
11088 }
11089 
11090 /**
11091  *	unregister_netdevice_many - unregister many devices
11092  *	@head: list of devices
11093  *
11094  *  Note: As most callers use a stack allocated list_head,
11095  *  we force a list_del() to make sure stack wont be corrupted later.
11096  */
11097 void unregister_netdevice_many(struct list_head *head)
11098 {
11099 	unregister_netdevice_many_notify(head, 0, NULL);
11100 }
11101 EXPORT_SYMBOL(unregister_netdevice_many);
11102 
11103 /**
11104  *	unregister_netdev - remove device from the kernel
11105  *	@dev: device
11106  *
11107  *	This function shuts down a device interface and removes it
11108  *	from the kernel tables.
11109  *
11110  *	This is just a wrapper for unregister_netdevice that takes
11111  *	the rtnl semaphore.  In general you want to use this and not
11112  *	unregister_netdevice.
11113  */
11114 void unregister_netdev(struct net_device *dev)
11115 {
11116 	rtnl_lock();
11117 	unregister_netdevice(dev);
11118 	rtnl_unlock();
11119 }
11120 EXPORT_SYMBOL(unregister_netdev);
11121 
11122 /**
11123  *	__dev_change_net_namespace - move device to different nethost namespace
11124  *	@dev: device
11125  *	@net: network namespace
11126  *	@pat: If not NULL name pattern to try if the current device name
11127  *	      is already taken in the destination network namespace.
11128  *	@new_ifindex: If not zero, specifies device index in the target
11129  *	              namespace.
11130  *
11131  *	This function shuts down a device interface and moves it
11132  *	to a new network namespace. On success 0 is returned, on
11133  *	a failure a netagive errno code is returned.
11134  *
11135  *	Callers must hold the rtnl semaphore.
11136  */
11137 
11138 int __dev_change_net_namespace(struct net_device *dev, struct net *net,
11139 			       const char *pat, int new_ifindex)
11140 {
11141 	struct netdev_name_node *name_node;
11142 	struct net *net_old = dev_net(dev);
11143 	char new_name[IFNAMSIZ] = {};
11144 	int err, new_nsid;
11145 
11146 	ASSERT_RTNL();
11147 
11148 	/* Don't allow namespace local devices to be moved. */
11149 	err = -EINVAL;
11150 	if (dev->features & NETIF_F_NETNS_LOCAL)
11151 		goto out;
11152 
11153 	/* Ensure the device has been registrered */
11154 	if (dev->reg_state != NETREG_REGISTERED)
11155 		goto out;
11156 
11157 	/* Get out if there is nothing todo */
11158 	err = 0;
11159 	if (net_eq(net_old, net))
11160 		goto out;
11161 
11162 	/* Pick the destination device name, and ensure
11163 	 * we can use it in the destination network namespace.
11164 	 */
11165 	err = -EEXIST;
11166 	if (netdev_name_in_use(net, dev->name)) {
11167 		/* We get here if we can't use the current device name */
11168 		if (!pat)
11169 			goto out;
11170 		err = dev_prep_valid_name(net, dev, pat, new_name, EEXIST);
11171 		if (err < 0)
11172 			goto out;
11173 	}
11174 	/* Check that none of the altnames conflicts. */
11175 	err = -EEXIST;
11176 	netdev_for_each_altname(dev, name_node)
11177 		if (netdev_name_in_use(net, name_node->name))
11178 			goto out;
11179 
11180 	/* Check that new_ifindex isn't used yet. */
11181 	if (new_ifindex) {
11182 		err = dev_index_reserve(net, new_ifindex);
11183 		if (err < 0)
11184 			goto out;
11185 	} else {
11186 		/* If there is an ifindex conflict assign a new one */
11187 		err = dev_index_reserve(net, dev->ifindex);
11188 		if (err == -EBUSY)
11189 			err = dev_index_reserve(net, 0);
11190 		if (err < 0)
11191 			goto out;
11192 		new_ifindex = err;
11193 	}
11194 
11195 	/*
11196 	 * And now a mini version of register_netdevice unregister_netdevice.
11197 	 */
11198 
11199 	/* If device is running close it first. */
11200 	dev_close(dev);
11201 
11202 	/* And unlink it from device chain */
11203 	unlist_netdevice(dev, true);
11204 
11205 	synchronize_net();
11206 
11207 	/* Shutdown queueing discipline. */
11208 	dev_shutdown(dev);
11209 
11210 	/* Notify protocols, that we are about to destroy
11211 	 * this device. They should clean all the things.
11212 	 *
11213 	 * Note that dev->reg_state stays at NETREG_REGISTERED.
11214 	 * This is wanted because this way 8021q and macvlan know
11215 	 * the device is just moving and can keep their slaves up.
11216 	 */
11217 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11218 	rcu_barrier();
11219 
11220 	new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
11221 
11222 	rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
11223 			    new_ifindex);
11224 
11225 	/*
11226 	 *	Flush the unicast and multicast chains
11227 	 */
11228 	dev_uc_flush(dev);
11229 	dev_mc_flush(dev);
11230 
11231 	/* Send a netdev-removed uevent to the old namespace */
11232 	kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
11233 	netdev_adjacent_del_links(dev);
11234 
11235 	/* Move per-net netdevice notifiers that are following the netdevice */
11236 	move_netdevice_notifiers_dev_net(dev, net);
11237 
11238 	/* Actually switch the network namespace */
11239 	dev_net_set(dev, net);
11240 	dev->ifindex = new_ifindex;
11241 
11242 	/* Send a netdev-add uevent to the new namespace */
11243 	kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
11244 	netdev_adjacent_add_links(dev);
11245 
11246 	if (new_name[0]) /* Rename the netdev to prepared name */
11247 		strscpy(dev->name, new_name, IFNAMSIZ);
11248 
11249 	/* Fixup kobjects */
11250 	err = device_rename(&dev->dev, dev->name);
11251 	WARN_ON(err);
11252 
11253 	/* Adapt owner in case owning user namespace of target network
11254 	 * namespace is different from the original one.
11255 	 */
11256 	err = netdev_change_owner(dev, net_old, net);
11257 	WARN_ON(err);
11258 
11259 	/* Add the device back in the hashes */
11260 	list_netdevice(dev);
11261 
11262 	/* Notify protocols, that a new device appeared. */
11263 	call_netdevice_notifiers(NETDEV_REGISTER, dev);
11264 
11265 	/*
11266 	 *	Prevent userspace races by waiting until the network
11267 	 *	device is fully setup before sending notifications.
11268 	 */
11269 	rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL);
11270 
11271 	synchronize_net();
11272 	err = 0;
11273 out:
11274 	return err;
11275 }
11276 EXPORT_SYMBOL_GPL(__dev_change_net_namespace);
11277 
11278 static int dev_cpu_dead(unsigned int oldcpu)
11279 {
11280 	struct sk_buff **list_skb;
11281 	struct sk_buff *skb;
11282 	unsigned int cpu;
11283 	struct softnet_data *sd, *oldsd, *remsd = NULL;
11284 
11285 	local_irq_disable();
11286 	cpu = smp_processor_id();
11287 	sd = &per_cpu(softnet_data, cpu);
11288 	oldsd = &per_cpu(softnet_data, oldcpu);
11289 
11290 	/* Find end of our completion_queue. */
11291 	list_skb = &sd->completion_queue;
11292 	while (*list_skb)
11293 		list_skb = &(*list_skb)->next;
11294 	/* Append completion queue from offline CPU. */
11295 	*list_skb = oldsd->completion_queue;
11296 	oldsd->completion_queue = NULL;
11297 
11298 	/* Append output queue from offline CPU. */
11299 	if (oldsd->output_queue) {
11300 		*sd->output_queue_tailp = oldsd->output_queue;
11301 		sd->output_queue_tailp = oldsd->output_queue_tailp;
11302 		oldsd->output_queue = NULL;
11303 		oldsd->output_queue_tailp = &oldsd->output_queue;
11304 	}
11305 	/* Append NAPI poll list from offline CPU, with one exception :
11306 	 * process_backlog() must be called by cpu owning percpu backlog.
11307 	 * We properly handle process_queue & input_pkt_queue later.
11308 	 */
11309 	while (!list_empty(&oldsd->poll_list)) {
11310 		struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
11311 							    struct napi_struct,
11312 							    poll_list);
11313 
11314 		list_del_init(&napi->poll_list);
11315 		if (napi->poll == process_backlog)
11316 			napi->state = 0;
11317 		else
11318 			____napi_schedule(sd, napi);
11319 	}
11320 
11321 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
11322 	local_irq_enable();
11323 
11324 #ifdef CONFIG_RPS
11325 	remsd = oldsd->rps_ipi_list;
11326 	oldsd->rps_ipi_list = NULL;
11327 #endif
11328 	/* send out pending IPI's on offline CPU */
11329 	net_rps_send_ipi(remsd);
11330 
11331 	/* Process offline CPU's input_pkt_queue */
11332 	while ((skb = __skb_dequeue(&oldsd->process_queue))) {
11333 		netif_rx(skb);
11334 		input_queue_head_incr(oldsd);
11335 	}
11336 	while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
11337 		netif_rx(skb);
11338 		input_queue_head_incr(oldsd);
11339 	}
11340 
11341 	return 0;
11342 }
11343 
11344 /**
11345  *	netdev_increment_features - increment feature set by one
11346  *	@all: current feature set
11347  *	@one: new feature set
11348  *	@mask: mask feature set
11349  *
11350  *	Computes a new feature set after adding a device with feature set
11351  *	@one to the master device with current feature set @all.  Will not
11352  *	enable anything that is off in @mask. Returns the new feature set.
11353  */
11354 netdev_features_t netdev_increment_features(netdev_features_t all,
11355 	netdev_features_t one, netdev_features_t mask)
11356 {
11357 	if (mask & NETIF_F_HW_CSUM)
11358 		mask |= NETIF_F_CSUM_MASK;
11359 	mask |= NETIF_F_VLAN_CHALLENGED;
11360 
11361 	all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
11362 	all &= one | ~NETIF_F_ALL_FOR_ALL;
11363 
11364 	/* If one device supports hw checksumming, set for all. */
11365 	if (all & NETIF_F_HW_CSUM)
11366 		all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
11367 
11368 	return all;
11369 }
11370 EXPORT_SYMBOL(netdev_increment_features);
11371 
11372 static struct hlist_head * __net_init netdev_create_hash(void)
11373 {
11374 	int i;
11375 	struct hlist_head *hash;
11376 
11377 	hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
11378 	if (hash != NULL)
11379 		for (i = 0; i < NETDEV_HASHENTRIES; i++)
11380 			INIT_HLIST_HEAD(&hash[i]);
11381 
11382 	return hash;
11383 }
11384 
11385 /* Initialize per network namespace state */
11386 static int __net_init netdev_init(struct net *net)
11387 {
11388 	BUILD_BUG_ON(GRO_HASH_BUCKETS >
11389 		     8 * sizeof_field(struct napi_struct, gro_bitmask));
11390 
11391 	INIT_LIST_HEAD(&net->dev_base_head);
11392 
11393 	net->dev_name_head = netdev_create_hash();
11394 	if (net->dev_name_head == NULL)
11395 		goto err_name;
11396 
11397 	net->dev_index_head = netdev_create_hash();
11398 	if (net->dev_index_head == NULL)
11399 		goto err_idx;
11400 
11401 	xa_init_flags(&net->dev_by_index, XA_FLAGS_ALLOC1);
11402 
11403 	RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
11404 
11405 	return 0;
11406 
11407 err_idx:
11408 	kfree(net->dev_name_head);
11409 err_name:
11410 	return -ENOMEM;
11411 }
11412 
11413 /**
11414  *	netdev_drivername - network driver for the device
11415  *	@dev: network device
11416  *
11417  *	Determine network driver for device.
11418  */
11419 const char *netdev_drivername(const struct net_device *dev)
11420 {
11421 	const struct device_driver *driver;
11422 	const struct device *parent;
11423 	const char *empty = "";
11424 
11425 	parent = dev->dev.parent;
11426 	if (!parent)
11427 		return empty;
11428 
11429 	driver = parent->driver;
11430 	if (driver && driver->name)
11431 		return driver->name;
11432 	return empty;
11433 }
11434 
11435 static void __netdev_printk(const char *level, const struct net_device *dev,
11436 			    struct va_format *vaf)
11437 {
11438 	if (dev && dev->dev.parent) {
11439 		dev_printk_emit(level[1] - '0',
11440 				dev->dev.parent,
11441 				"%s %s %s%s: %pV",
11442 				dev_driver_string(dev->dev.parent),
11443 				dev_name(dev->dev.parent),
11444 				netdev_name(dev), netdev_reg_state(dev),
11445 				vaf);
11446 	} else if (dev) {
11447 		printk("%s%s%s: %pV",
11448 		       level, netdev_name(dev), netdev_reg_state(dev), vaf);
11449 	} else {
11450 		printk("%s(NULL net_device): %pV", level, vaf);
11451 	}
11452 }
11453 
11454 void netdev_printk(const char *level, const struct net_device *dev,
11455 		   const char *format, ...)
11456 {
11457 	struct va_format vaf;
11458 	va_list args;
11459 
11460 	va_start(args, format);
11461 
11462 	vaf.fmt = format;
11463 	vaf.va = &args;
11464 
11465 	__netdev_printk(level, dev, &vaf);
11466 
11467 	va_end(args);
11468 }
11469 EXPORT_SYMBOL(netdev_printk);
11470 
11471 #define define_netdev_printk_level(func, level)			\
11472 void func(const struct net_device *dev, const char *fmt, ...)	\
11473 {								\
11474 	struct va_format vaf;					\
11475 	va_list args;						\
11476 								\
11477 	va_start(args, fmt);					\
11478 								\
11479 	vaf.fmt = fmt;						\
11480 	vaf.va = &args;						\
11481 								\
11482 	__netdev_printk(level, dev, &vaf);			\
11483 								\
11484 	va_end(args);						\
11485 }								\
11486 EXPORT_SYMBOL(func);
11487 
11488 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
11489 define_netdev_printk_level(netdev_alert, KERN_ALERT);
11490 define_netdev_printk_level(netdev_crit, KERN_CRIT);
11491 define_netdev_printk_level(netdev_err, KERN_ERR);
11492 define_netdev_printk_level(netdev_warn, KERN_WARNING);
11493 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
11494 define_netdev_printk_level(netdev_info, KERN_INFO);
11495 
11496 static void __net_exit netdev_exit(struct net *net)
11497 {
11498 	kfree(net->dev_name_head);
11499 	kfree(net->dev_index_head);
11500 	xa_destroy(&net->dev_by_index);
11501 	if (net != &init_net)
11502 		WARN_ON_ONCE(!list_empty(&net->dev_base_head));
11503 }
11504 
11505 static struct pernet_operations __net_initdata netdev_net_ops = {
11506 	.init = netdev_init,
11507 	.exit = netdev_exit,
11508 };
11509 
11510 static void __net_exit default_device_exit_net(struct net *net)
11511 {
11512 	struct net_device *dev, *aux;
11513 	/*
11514 	 * Push all migratable network devices back to the
11515 	 * initial network namespace
11516 	 */
11517 	ASSERT_RTNL();
11518 	for_each_netdev_safe(net, dev, aux) {
11519 		int err;
11520 		char fb_name[IFNAMSIZ];
11521 
11522 		/* Ignore unmoveable devices (i.e. loopback) */
11523 		if (dev->features & NETIF_F_NETNS_LOCAL)
11524 			continue;
11525 
11526 		/* Leave virtual devices for the generic cleanup */
11527 		if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund)
11528 			continue;
11529 
11530 		/* Push remaining network devices to init_net */
11531 		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
11532 		if (netdev_name_in_use(&init_net, fb_name))
11533 			snprintf(fb_name, IFNAMSIZ, "dev%%d");
11534 		err = dev_change_net_namespace(dev, &init_net, fb_name);
11535 		if (err) {
11536 			pr_emerg("%s: failed to move %s to init_net: %d\n",
11537 				 __func__, dev->name, err);
11538 			BUG();
11539 		}
11540 	}
11541 }
11542 
11543 static void __net_exit default_device_exit_batch(struct list_head *net_list)
11544 {
11545 	/* At exit all network devices most be removed from a network
11546 	 * namespace.  Do this in the reverse order of registration.
11547 	 * Do this across as many network namespaces as possible to
11548 	 * improve batching efficiency.
11549 	 */
11550 	struct net_device *dev;
11551 	struct net *net;
11552 	LIST_HEAD(dev_kill_list);
11553 
11554 	rtnl_lock();
11555 	list_for_each_entry(net, net_list, exit_list) {
11556 		default_device_exit_net(net);
11557 		cond_resched();
11558 	}
11559 
11560 	list_for_each_entry(net, net_list, exit_list) {
11561 		for_each_netdev_reverse(net, dev) {
11562 			if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
11563 				dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
11564 			else
11565 				unregister_netdevice_queue(dev, &dev_kill_list);
11566 		}
11567 	}
11568 	unregister_netdevice_many(&dev_kill_list);
11569 	rtnl_unlock();
11570 }
11571 
11572 static struct pernet_operations __net_initdata default_device_ops = {
11573 	.exit_batch = default_device_exit_batch,
11574 };
11575 
11576 /*
11577  *	Initialize the DEV module. At boot time this walks the device list and
11578  *	unhooks any devices that fail to initialise (normally hardware not
11579  *	present) and leaves us with a valid list of present and active devices.
11580  *
11581  */
11582 
11583 /*
11584  *       This is called single threaded during boot, so no need
11585  *       to take the rtnl semaphore.
11586  */
11587 static int __init net_dev_init(void)
11588 {
11589 	int i, rc = -ENOMEM;
11590 
11591 	BUG_ON(!dev_boot_phase);
11592 
11593 	if (dev_proc_init())
11594 		goto out;
11595 
11596 	if (netdev_kobject_init())
11597 		goto out;
11598 
11599 	INIT_LIST_HEAD(&ptype_all);
11600 	for (i = 0; i < PTYPE_HASH_SIZE; i++)
11601 		INIT_LIST_HEAD(&ptype_base[i]);
11602 
11603 	if (register_pernet_subsys(&netdev_net_ops))
11604 		goto out;
11605 
11606 	/*
11607 	 *	Initialise the packet receive queues.
11608 	 */
11609 
11610 	for_each_possible_cpu(i) {
11611 		struct work_struct *flush = per_cpu_ptr(&flush_works, i);
11612 		struct softnet_data *sd = &per_cpu(softnet_data, i);
11613 
11614 		INIT_WORK(flush, flush_backlog);
11615 
11616 		skb_queue_head_init(&sd->input_pkt_queue);
11617 		skb_queue_head_init(&sd->process_queue);
11618 #ifdef CONFIG_XFRM_OFFLOAD
11619 		skb_queue_head_init(&sd->xfrm_backlog);
11620 #endif
11621 		INIT_LIST_HEAD(&sd->poll_list);
11622 		sd->output_queue_tailp = &sd->output_queue;
11623 #ifdef CONFIG_RPS
11624 		INIT_CSD(&sd->csd, rps_trigger_softirq, sd);
11625 		sd->cpu = i;
11626 #endif
11627 		INIT_CSD(&sd->defer_csd, trigger_rx_softirq, sd);
11628 		spin_lock_init(&sd->defer_lock);
11629 
11630 		init_gro_hash(&sd->backlog);
11631 		sd->backlog.poll = process_backlog;
11632 		sd->backlog.weight = weight_p;
11633 	}
11634 
11635 	dev_boot_phase = 0;
11636 
11637 	/* The loopback device is special if any other network devices
11638 	 * is present in a network namespace the loopback device must
11639 	 * be present. Since we now dynamically allocate and free the
11640 	 * loopback device ensure this invariant is maintained by
11641 	 * keeping the loopback device as the first device on the
11642 	 * list of network devices.  Ensuring the loopback devices
11643 	 * is the first device that appears and the last network device
11644 	 * that disappears.
11645 	 */
11646 	if (register_pernet_device(&loopback_net_ops))
11647 		goto out;
11648 
11649 	if (register_pernet_device(&default_device_ops))
11650 		goto out;
11651 
11652 	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
11653 	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
11654 
11655 	rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
11656 				       NULL, dev_cpu_dead);
11657 	WARN_ON(rc < 0);
11658 	rc = 0;
11659 out:
11660 	return rc;
11661 }
11662 
11663 subsys_initcall(net_dev_init);
11664