1 /* 2 * NET3 Protocol independent device support routines. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public License 6 * as published by the Free Software Foundation; either version 7 * 2 of the License, or (at your option) any later version. 8 * 9 * Derived from the non IP parts of dev.c 1.0.19 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Mark Evans, <evansmp@uhura.aston.ac.uk> 13 * 14 * Additional Authors: 15 * Florian la Roche <rzsfl@rz.uni-sb.de> 16 * Alan Cox <gw4pts@gw4pts.ampr.org> 17 * David Hinds <dahinds@users.sourceforge.net> 18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> 19 * Adam Sulmicki <adam@cfar.umd.edu> 20 * Pekka Riikonen <priikone@poesidon.pspt.fi> 21 * 22 * Changes: 23 * D.J. Barrow : Fixed bug where dev->refcnt gets set 24 * to 2 if register_netdev gets called 25 * before net_dev_init & also removed a 26 * few lines of code in the process. 27 * Alan Cox : device private ioctl copies fields back. 28 * Alan Cox : Transmit queue code does relevant 29 * stunts to keep the queue safe. 30 * Alan Cox : Fixed double lock. 31 * Alan Cox : Fixed promisc NULL pointer trap 32 * ???????? : Support the full private ioctl range 33 * Alan Cox : Moved ioctl permission check into 34 * drivers 35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI 36 * Alan Cox : 100 backlog just doesn't cut it when 37 * you start doing multicast video 8) 38 * Alan Cox : Rewrote net_bh and list manager. 39 * Alan Cox : Fix ETH_P_ALL echoback lengths. 40 * Alan Cox : Took out transmit every packet pass 41 * Saved a few bytes in the ioctl handler 42 * Alan Cox : Network driver sets packet type before 43 * calling netif_rx. Saves a function 44 * call a packet. 45 * Alan Cox : Hashed net_bh() 46 * Richard Kooijman: Timestamp fixes. 47 * Alan Cox : Wrong field in SIOCGIFDSTADDR 48 * Alan Cox : Device lock protection. 49 * Alan Cox : Fixed nasty side effect of device close 50 * changes. 51 * Rudi Cilibrasi : Pass the right thing to 52 * set_mac_address() 53 * Dave Miller : 32bit quantity for the device lock to 54 * make it work out on a Sparc. 55 * Bjorn Ekwall : Added KERNELD hack. 56 * Alan Cox : Cleaned up the backlog initialise. 57 * Craig Metz : SIOCGIFCONF fix if space for under 58 * 1 device. 59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there 60 * is no device open function. 61 * Andi Kleen : Fix error reporting for SIOCGIFCONF 62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF 63 * Cyrus Durgin : Cleaned for KMOD 64 * Adam Sulmicki : Bug Fix : Network Device Unload 65 * A network device unload needs to purge 66 * the backlog queue. 67 * Paul Rusty Russell : SIOCSIFNAME 68 * Pekka Riikonen : Netdev boot-time settings code 69 * Andrew Morton : Make unregister_netdevice wait 70 * indefinitely on dev->refcnt 71 * J Hadi Salim : - Backlog queue sampling 72 * - netif_rx() feedback 73 */ 74 75 #include <asm/uaccess.h> 76 #include <linux/bitops.h> 77 #include <linux/capability.h> 78 #include <linux/cpu.h> 79 #include <linux/types.h> 80 #include <linux/kernel.h> 81 #include <linux/hash.h> 82 #include <linux/slab.h> 83 #include <linux/sched.h> 84 #include <linux/mutex.h> 85 #include <linux/string.h> 86 #include <linux/mm.h> 87 #include <linux/socket.h> 88 #include <linux/sockios.h> 89 #include <linux/errno.h> 90 #include <linux/interrupt.h> 91 #include <linux/if_ether.h> 92 #include <linux/netdevice.h> 93 #include <linux/etherdevice.h> 94 #include <linux/ethtool.h> 95 #include <linux/notifier.h> 96 #include <linux/skbuff.h> 97 #include <net/net_namespace.h> 98 #include <net/sock.h> 99 #include <linux/rtnetlink.h> 100 #include <linux/proc_fs.h> 101 #include <linux/seq_file.h> 102 #include <linux/stat.h> 103 #include <net/dst.h> 104 #include <net/pkt_sched.h> 105 #include <net/checksum.h> 106 #include <net/xfrm.h> 107 #include <linux/highmem.h> 108 #include <linux/init.h> 109 #include <linux/kmod.h> 110 #include <linux/module.h> 111 #include <linux/netpoll.h> 112 #include <linux/rcupdate.h> 113 #include <linux/delay.h> 114 #include <net/wext.h> 115 #include <net/iw_handler.h> 116 #include <asm/current.h> 117 #include <linux/audit.h> 118 #include <linux/dmaengine.h> 119 #include <linux/err.h> 120 #include <linux/ctype.h> 121 #include <linux/if_arp.h> 122 #include <linux/if_vlan.h> 123 #include <linux/ip.h> 124 #include <net/ip.h> 125 #include <linux/ipv6.h> 126 #include <linux/in.h> 127 #include <linux/jhash.h> 128 #include <linux/random.h> 129 #include <trace/events/napi.h> 130 #include <trace/events/net.h> 131 #include <trace/events/skb.h> 132 #include <linux/pci.h> 133 #include <linux/inetdevice.h> 134 #include <linux/cpu_rmap.h> 135 #include <linux/net_tstamp.h> 136 #include <linux/static_key.h> 137 #include <net/flow_keys.h> 138 139 #include "net-sysfs.h" 140 141 /* Instead of increasing this, you should create a hash table. */ 142 #define MAX_GRO_SKBS 8 143 144 /* This should be increased if a protocol with a bigger head is added. */ 145 #define GRO_MAX_HEAD (MAX_HEADER + 128) 146 147 /* 148 * The list of packet types we will receive (as opposed to discard) 149 * and the routines to invoke. 150 * 151 * Why 16. Because with 16 the only overlap we get on a hash of the 152 * low nibble of the protocol value is RARP/SNAP/X.25. 153 * 154 * NOTE: That is no longer true with the addition of VLAN tags. Not 155 * sure which should go first, but I bet it won't make much 156 * difference if we are running VLANs. The good news is that 157 * this protocol won't be in the list unless compiled in, so 158 * the average user (w/out VLANs) will not be adversely affected. 159 * --BLG 160 * 161 * 0800 IP 162 * 8100 802.1Q VLAN 163 * 0001 802.3 164 * 0002 AX.25 165 * 0004 802.2 166 * 8035 RARP 167 * 0005 SNAP 168 * 0805 X.25 169 * 0806 ARP 170 * 8137 IPX 171 * 0009 Localtalk 172 * 86DD IPv6 173 */ 174 175 #define PTYPE_HASH_SIZE (16) 176 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1) 177 178 static DEFINE_SPINLOCK(ptype_lock); 179 static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly; 180 static struct list_head ptype_all __read_mostly; /* Taps */ 181 182 /* 183 * The @dev_base_head list is protected by @dev_base_lock and the rtnl 184 * semaphore. 185 * 186 * Pure readers hold dev_base_lock for reading, or rcu_read_lock() 187 * 188 * Writers must hold the rtnl semaphore while they loop through the 189 * dev_base_head list, and hold dev_base_lock for writing when they do the 190 * actual updates. This allows pure readers to access the list even 191 * while a writer is preparing to update it. 192 * 193 * To put it another way, dev_base_lock is held for writing only to 194 * protect against pure readers; the rtnl semaphore provides the 195 * protection against other writers. 196 * 197 * See, for example usages, register_netdevice() and 198 * unregister_netdevice(), which must be called with the rtnl 199 * semaphore held. 200 */ 201 DEFINE_RWLOCK(dev_base_lock); 202 EXPORT_SYMBOL(dev_base_lock); 203 204 static inline void dev_base_seq_inc(struct net *net) 205 { 206 while (++net->dev_base_seq == 0); 207 } 208 209 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name) 210 { 211 unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ)); 212 213 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)]; 214 } 215 216 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex) 217 { 218 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)]; 219 } 220 221 static inline void rps_lock(struct softnet_data *sd) 222 { 223 #ifdef CONFIG_RPS 224 spin_lock(&sd->input_pkt_queue.lock); 225 #endif 226 } 227 228 static inline void rps_unlock(struct softnet_data *sd) 229 { 230 #ifdef CONFIG_RPS 231 spin_unlock(&sd->input_pkt_queue.lock); 232 #endif 233 } 234 235 /* Device list insertion */ 236 static int list_netdevice(struct net_device *dev) 237 { 238 struct net *net = dev_net(dev); 239 240 ASSERT_RTNL(); 241 242 write_lock_bh(&dev_base_lock); 243 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head); 244 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name)); 245 hlist_add_head_rcu(&dev->index_hlist, 246 dev_index_hash(net, dev->ifindex)); 247 write_unlock_bh(&dev_base_lock); 248 249 dev_base_seq_inc(net); 250 251 return 0; 252 } 253 254 /* Device list removal 255 * caller must respect a RCU grace period before freeing/reusing dev 256 */ 257 static void unlist_netdevice(struct net_device *dev) 258 { 259 ASSERT_RTNL(); 260 261 /* Unlink dev from the device chain */ 262 write_lock_bh(&dev_base_lock); 263 list_del_rcu(&dev->dev_list); 264 hlist_del_rcu(&dev->name_hlist); 265 hlist_del_rcu(&dev->index_hlist); 266 write_unlock_bh(&dev_base_lock); 267 268 dev_base_seq_inc(dev_net(dev)); 269 } 270 271 /* 272 * Our notifier list 273 */ 274 275 static RAW_NOTIFIER_HEAD(netdev_chain); 276 277 /* 278 * Device drivers call our routines to queue packets here. We empty the 279 * queue in the local softnet handler. 280 */ 281 282 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 283 EXPORT_PER_CPU_SYMBOL(softnet_data); 284 285 #ifdef CONFIG_LOCKDEP 286 /* 287 * register_netdevice() inits txq->_xmit_lock and sets lockdep class 288 * according to dev->type 289 */ 290 static const unsigned short netdev_lock_type[] = 291 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25, 292 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET, 293 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM, 294 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP, 295 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD, 296 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25, 297 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP, 298 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD, 299 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI, 300 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE, 301 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET, 302 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL, 303 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM, 304 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE, 305 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE}; 306 307 static const char *const netdev_lock_name[] = 308 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25", 309 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET", 310 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM", 311 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP", 312 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD", 313 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25", 314 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP", 315 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD", 316 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI", 317 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE", 318 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET", 319 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL", 320 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM", 321 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE", 322 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"}; 323 324 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)]; 325 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)]; 326 327 static inline unsigned short netdev_lock_pos(unsigned short dev_type) 328 { 329 int i; 330 331 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++) 332 if (netdev_lock_type[i] == dev_type) 333 return i; 334 /* the last key is used by default */ 335 return ARRAY_SIZE(netdev_lock_type) - 1; 336 } 337 338 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 339 unsigned short dev_type) 340 { 341 int i; 342 343 i = netdev_lock_pos(dev_type); 344 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i], 345 netdev_lock_name[i]); 346 } 347 348 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 349 { 350 int i; 351 352 i = netdev_lock_pos(dev->type); 353 lockdep_set_class_and_name(&dev->addr_list_lock, 354 &netdev_addr_lock_key[i], 355 netdev_lock_name[i]); 356 } 357 #else 358 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 359 unsigned short dev_type) 360 { 361 } 362 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 363 { 364 } 365 #endif 366 367 /******************************************************************************* 368 369 Protocol management and registration routines 370 371 *******************************************************************************/ 372 373 /* 374 * Add a protocol ID to the list. Now that the input handler is 375 * smarter we can dispense with all the messy stuff that used to be 376 * here. 377 * 378 * BEWARE!!! Protocol handlers, mangling input packets, 379 * MUST BE last in hash buckets and checking protocol handlers 380 * MUST start from promiscuous ptype_all chain in net_bh. 381 * It is true now, do not change it. 382 * Explanation follows: if protocol handler, mangling packet, will 383 * be the first on list, it is not able to sense, that packet 384 * is cloned and should be copied-on-write, so that it will 385 * change it and subsequent readers will get broken packet. 386 * --ANK (980803) 387 */ 388 389 static inline struct list_head *ptype_head(const struct packet_type *pt) 390 { 391 if (pt->type == htons(ETH_P_ALL)) 392 return &ptype_all; 393 else 394 return &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK]; 395 } 396 397 /** 398 * dev_add_pack - add packet handler 399 * @pt: packet type declaration 400 * 401 * Add a protocol handler to the networking stack. The passed &packet_type 402 * is linked into kernel lists and may not be freed until it has been 403 * removed from the kernel lists. 404 * 405 * This call does not sleep therefore it can not 406 * guarantee all CPU's that are in middle of receiving packets 407 * will see the new packet type (until the next received packet). 408 */ 409 410 void dev_add_pack(struct packet_type *pt) 411 { 412 struct list_head *head = ptype_head(pt); 413 414 spin_lock(&ptype_lock); 415 list_add_rcu(&pt->list, head); 416 spin_unlock(&ptype_lock); 417 } 418 EXPORT_SYMBOL(dev_add_pack); 419 420 /** 421 * __dev_remove_pack - remove packet handler 422 * @pt: packet type declaration 423 * 424 * Remove a protocol handler that was previously added to the kernel 425 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 426 * from the kernel lists and can be freed or reused once this function 427 * returns. 428 * 429 * The packet type might still be in use by receivers 430 * and must not be freed until after all the CPU's have gone 431 * through a quiescent state. 432 */ 433 void __dev_remove_pack(struct packet_type *pt) 434 { 435 struct list_head *head = ptype_head(pt); 436 struct packet_type *pt1; 437 438 spin_lock(&ptype_lock); 439 440 list_for_each_entry(pt1, head, list) { 441 if (pt == pt1) { 442 list_del_rcu(&pt->list); 443 goto out; 444 } 445 } 446 447 pr_warn("dev_remove_pack: %p not found\n", pt); 448 out: 449 spin_unlock(&ptype_lock); 450 } 451 EXPORT_SYMBOL(__dev_remove_pack); 452 453 /** 454 * dev_remove_pack - remove packet handler 455 * @pt: packet type declaration 456 * 457 * Remove a protocol handler that was previously added to the kernel 458 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 459 * from the kernel lists and can be freed or reused once this function 460 * returns. 461 * 462 * This call sleeps to guarantee that no CPU is looking at the packet 463 * type after return. 464 */ 465 void dev_remove_pack(struct packet_type *pt) 466 { 467 __dev_remove_pack(pt); 468 469 synchronize_net(); 470 } 471 EXPORT_SYMBOL(dev_remove_pack); 472 473 /****************************************************************************** 474 475 Device Boot-time Settings Routines 476 477 *******************************************************************************/ 478 479 /* Boot time configuration table */ 480 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX]; 481 482 /** 483 * netdev_boot_setup_add - add new setup entry 484 * @name: name of the device 485 * @map: configured settings for the device 486 * 487 * Adds new setup entry to the dev_boot_setup list. The function 488 * returns 0 on error and 1 on success. This is a generic routine to 489 * all netdevices. 490 */ 491 static int netdev_boot_setup_add(char *name, struct ifmap *map) 492 { 493 struct netdev_boot_setup *s; 494 int i; 495 496 s = dev_boot_setup; 497 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 498 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') { 499 memset(s[i].name, 0, sizeof(s[i].name)); 500 strlcpy(s[i].name, name, IFNAMSIZ); 501 memcpy(&s[i].map, map, sizeof(s[i].map)); 502 break; 503 } 504 } 505 506 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1; 507 } 508 509 /** 510 * netdev_boot_setup_check - check boot time settings 511 * @dev: the netdevice 512 * 513 * Check boot time settings for the device. 514 * The found settings are set for the device to be used 515 * later in the device probing. 516 * Returns 0 if no settings found, 1 if they are. 517 */ 518 int netdev_boot_setup_check(struct net_device *dev) 519 { 520 struct netdev_boot_setup *s = dev_boot_setup; 521 int i; 522 523 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 524 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' && 525 !strcmp(dev->name, s[i].name)) { 526 dev->irq = s[i].map.irq; 527 dev->base_addr = s[i].map.base_addr; 528 dev->mem_start = s[i].map.mem_start; 529 dev->mem_end = s[i].map.mem_end; 530 return 1; 531 } 532 } 533 return 0; 534 } 535 EXPORT_SYMBOL(netdev_boot_setup_check); 536 537 538 /** 539 * netdev_boot_base - get address from boot time settings 540 * @prefix: prefix for network device 541 * @unit: id for network device 542 * 543 * Check boot time settings for the base address of device. 544 * The found settings are set for the device to be used 545 * later in the device probing. 546 * Returns 0 if no settings found. 547 */ 548 unsigned long netdev_boot_base(const char *prefix, int unit) 549 { 550 const struct netdev_boot_setup *s = dev_boot_setup; 551 char name[IFNAMSIZ]; 552 int i; 553 554 sprintf(name, "%s%d", prefix, unit); 555 556 /* 557 * If device already registered then return base of 1 558 * to indicate not to probe for this interface 559 */ 560 if (__dev_get_by_name(&init_net, name)) 561 return 1; 562 563 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) 564 if (!strcmp(name, s[i].name)) 565 return s[i].map.base_addr; 566 return 0; 567 } 568 569 /* 570 * Saves at boot time configured settings for any netdevice. 571 */ 572 int __init netdev_boot_setup(char *str) 573 { 574 int ints[5]; 575 struct ifmap map; 576 577 str = get_options(str, ARRAY_SIZE(ints), ints); 578 if (!str || !*str) 579 return 0; 580 581 /* Save settings */ 582 memset(&map, 0, sizeof(map)); 583 if (ints[0] > 0) 584 map.irq = ints[1]; 585 if (ints[0] > 1) 586 map.base_addr = ints[2]; 587 if (ints[0] > 2) 588 map.mem_start = ints[3]; 589 if (ints[0] > 3) 590 map.mem_end = ints[4]; 591 592 /* Add new entry to the list */ 593 return netdev_boot_setup_add(str, &map); 594 } 595 596 __setup("netdev=", netdev_boot_setup); 597 598 /******************************************************************************* 599 600 Device Interface Subroutines 601 602 *******************************************************************************/ 603 604 /** 605 * __dev_get_by_name - find a device by its name 606 * @net: the applicable net namespace 607 * @name: name to find 608 * 609 * Find an interface by name. Must be called under RTNL semaphore 610 * or @dev_base_lock. If the name is found a pointer to the device 611 * is returned. If the name is not found then %NULL is returned. The 612 * reference counters are not incremented so the caller must be 613 * careful with locks. 614 */ 615 616 struct net_device *__dev_get_by_name(struct net *net, const char *name) 617 { 618 struct hlist_node *p; 619 struct net_device *dev; 620 struct hlist_head *head = dev_name_hash(net, name); 621 622 hlist_for_each_entry(dev, p, head, name_hlist) 623 if (!strncmp(dev->name, name, IFNAMSIZ)) 624 return dev; 625 626 return NULL; 627 } 628 EXPORT_SYMBOL(__dev_get_by_name); 629 630 /** 631 * dev_get_by_name_rcu - find a device by its name 632 * @net: the applicable net namespace 633 * @name: name to find 634 * 635 * Find an interface by name. 636 * If the name is found a pointer to the device is returned. 637 * If the name is not found then %NULL is returned. 638 * The reference counters are not incremented so the caller must be 639 * careful with locks. The caller must hold RCU lock. 640 */ 641 642 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name) 643 { 644 struct hlist_node *p; 645 struct net_device *dev; 646 struct hlist_head *head = dev_name_hash(net, name); 647 648 hlist_for_each_entry_rcu(dev, p, head, name_hlist) 649 if (!strncmp(dev->name, name, IFNAMSIZ)) 650 return dev; 651 652 return NULL; 653 } 654 EXPORT_SYMBOL(dev_get_by_name_rcu); 655 656 /** 657 * dev_get_by_name - find a device by its name 658 * @net: the applicable net namespace 659 * @name: name to find 660 * 661 * Find an interface by name. This can be called from any 662 * context and does its own locking. The returned handle has 663 * the usage count incremented and the caller must use dev_put() to 664 * release it when it is no longer needed. %NULL is returned if no 665 * matching device is found. 666 */ 667 668 struct net_device *dev_get_by_name(struct net *net, const char *name) 669 { 670 struct net_device *dev; 671 672 rcu_read_lock(); 673 dev = dev_get_by_name_rcu(net, name); 674 if (dev) 675 dev_hold(dev); 676 rcu_read_unlock(); 677 return dev; 678 } 679 EXPORT_SYMBOL(dev_get_by_name); 680 681 /** 682 * __dev_get_by_index - find a device by its ifindex 683 * @net: the applicable net namespace 684 * @ifindex: index of device 685 * 686 * Search for an interface by index. Returns %NULL if the device 687 * is not found or a pointer to the device. The device has not 688 * had its reference counter increased so the caller must be careful 689 * about locking. The caller must hold either the RTNL semaphore 690 * or @dev_base_lock. 691 */ 692 693 struct net_device *__dev_get_by_index(struct net *net, int ifindex) 694 { 695 struct hlist_node *p; 696 struct net_device *dev; 697 struct hlist_head *head = dev_index_hash(net, ifindex); 698 699 hlist_for_each_entry(dev, p, head, index_hlist) 700 if (dev->ifindex == ifindex) 701 return dev; 702 703 return NULL; 704 } 705 EXPORT_SYMBOL(__dev_get_by_index); 706 707 /** 708 * dev_get_by_index_rcu - find a device by its ifindex 709 * @net: the applicable net namespace 710 * @ifindex: index of device 711 * 712 * Search for an interface by index. Returns %NULL if the device 713 * is not found or a pointer to the device. The device has not 714 * had its reference counter increased so the caller must be careful 715 * about locking. The caller must hold RCU lock. 716 */ 717 718 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex) 719 { 720 struct hlist_node *p; 721 struct net_device *dev; 722 struct hlist_head *head = dev_index_hash(net, ifindex); 723 724 hlist_for_each_entry_rcu(dev, p, head, index_hlist) 725 if (dev->ifindex == ifindex) 726 return dev; 727 728 return NULL; 729 } 730 EXPORT_SYMBOL(dev_get_by_index_rcu); 731 732 733 /** 734 * dev_get_by_index - find a device by its ifindex 735 * @net: the applicable net namespace 736 * @ifindex: index of device 737 * 738 * Search for an interface by index. Returns NULL if the device 739 * is not found or a pointer to the device. The device returned has 740 * had a reference added and the pointer is safe until the user calls 741 * dev_put to indicate they have finished with it. 742 */ 743 744 struct net_device *dev_get_by_index(struct net *net, int ifindex) 745 { 746 struct net_device *dev; 747 748 rcu_read_lock(); 749 dev = dev_get_by_index_rcu(net, ifindex); 750 if (dev) 751 dev_hold(dev); 752 rcu_read_unlock(); 753 return dev; 754 } 755 EXPORT_SYMBOL(dev_get_by_index); 756 757 /** 758 * dev_getbyhwaddr_rcu - find a device by its hardware address 759 * @net: the applicable net namespace 760 * @type: media type of device 761 * @ha: hardware address 762 * 763 * Search for an interface by MAC address. Returns NULL if the device 764 * is not found or a pointer to the device. 765 * The caller must hold RCU or RTNL. 766 * The returned device has not had its ref count increased 767 * and the caller must therefore be careful about locking 768 * 769 */ 770 771 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 772 const char *ha) 773 { 774 struct net_device *dev; 775 776 for_each_netdev_rcu(net, dev) 777 if (dev->type == type && 778 !memcmp(dev->dev_addr, ha, dev->addr_len)) 779 return dev; 780 781 return NULL; 782 } 783 EXPORT_SYMBOL(dev_getbyhwaddr_rcu); 784 785 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type) 786 { 787 struct net_device *dev; 788 789 ASSERT_RTNL(); 790 for_each_netdev(net, dev) 791 if (dev->type == type) 792 return dev; 793 794 return NULL; 795 } 796 EXPORT_SYMBOL(__dev_getfirstbyhwtype); 797 798 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type) 799 { 800 struct net_device *dev, *ret = NULL; 801 802 rcu_read_lock(); 803 for_each_netdev_rcu(net, dev) 804 if (dev->type == type) { 805 dev_hold(dev); 806 ret = dev; 807 break; 808 } 809 rcu_read_unlock(); 810 return ret; 811 } 812 EXPORT_SYMBOL(dev_getfirstbyhwtype); 813 814 /** 815 * dev_get_by_flags_rcu - find any device with given flags 816 * @net: the applicable net namespace 817 * @if_flags: IFF_* values 818 * @mask: bitmask of bits in if_flags to check 819 * 820 * Search for any interface with the given flags. Returns NULL if a device 821 * is not found or a pointer to the device. Must be called inside 822 * rcu_read_lock(), and result refcount is unchanged. 823 */ 824 825 struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short if_flags, 826 unsigned short mask) 827 { 828 struct net_device *dev, *ret; 829 830 ret = NULL; 831 for_each_netdev_rcu(net, dev) { 832 if (((dev->flags ^ if_flags) & mask) == 0) { 833 ret = dev; 834 break; 835 } 836 } 837 return ret; 838 } 839 EXPORT_SYMBOL(dev_get_by_flags_rcu); 840 841 /** 842 * dev_valid_name - check if name is okay for network device 843 * @name: name string 844 * 845 * Network device names need to be valid file names to 846 * to allow sysfs to work. We also disallow any kind of 847 * whitespace. 848 */ 849 bool dev_valid_name(const char *name) 850 { 851 if (*name == '\0') 852 return false; 853 if (strlen(name) >= IFNAMSIZ) 854 return false; 855 if (!strcmp(name, ".") || !strcmp(name, "..")) 856 return false; 857 858 while (*name) { 859 if (*name == '/' || isspace(*name)) 860 return false; 861 name++; 862 } 863 return true; 864 } 865 EXPORT_SYMBOL(dev_valid_name); 866 867 /** 868 * __dev_alloc_name - allocate a name for a device 869 * @net: network namespace to allocate the device name in 870 * @name: name format string 871 * @buf: scratch buffer and result name string 872 * 873 * Passed a format string - eg "lt%d" it will try and find a suitable 874 * id. It scans list of devices to build up a free map, then chooses 875 * the first empty slot. The caller must hold the dev_base or rtnl lock 876 * while allocating the name and adding the device in order to avoid 877 * duplicates. 878 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 879 * Returns the number of the unit assigned or a negative errno code. 880 */ 881 882 static int __dev_alloc_name(struct net *net, const char *name, char *buf) 883 { 884 int i = 0; 885 const char *p; 886 const int max_netdevices = 8*PAGE_SIZE; 887 unsigned long *inuse; 888 struct net_device *d; 889 890 p = strnchr(name, IFNAMSIZ-1, '%'); 891 if (p) { 892 /* 893 * Verify the string as this thing may have come from 894 * the user. There must be either one "%d" and no other "%" 895 * characters. 896 */ 897 if (p[1] != 'd' || strchr(p + 2, '%')) 898 return -EINVAL; 899 900 /* Use one page as a bit array of possible slots */ 901 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC); 902 if (!inuse) 903 return -ENOMEM; 904 905 for_each_netdev(net, d) { 906 if (!sscanf(d->name, name, &i)) 907 continue; 908 if (i < 0 || i >= max_netdevices) 909 continue; 910 911 /* avoid cases where sscanf is not exact inverse of printf */ 912 snprintf(buf, IFNAMSIZ, name, i); 913 if (!strncmp(buf, d->name, IFNAMSIZ)) 914 set_bit(i, inuse); 915 } 916 917 i = find_first_zero_bit(inuse, max_netdevices); 918 free_page((unsigned long) inuse); 919 } 920 921 if (buf != name) 922 snprintf(buf, IFNAMSIZ, name, i); 923 if (!__dev_get_by_name(net, buf)) 924 return i; 925 926 /* It is possible to run out of possible slots 927 * when the name is long and there isn't enough space left 928 * for the digits, or if all bits are used. 929 */ 930 return -ENFILE; 931 } 932 933 /** 934 * dev_alloc_name - allocate a name for a device 935 * @dev: device 936 * @name: name format string 937 * 938 * Passed a format string - eg "lt%d" it will try and find a suitable 939 * id. It scans list of devices to build up a free map, then chooses 940 * the first empty slot. The caller must hold the dev_base or rtnl lock 941 * while allocating the name and adding the device in order to avoid 942 * duplicates. 943 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 944 * Returns the number of the unit assigned or a negative errno code. 945 */ 946 947 int dev_alloc_name(struct net_device *dev, const char *name) 948 { 949 char buf[IFNAMSIZ]; 950 struct net *net; 951 int ret; 952 953 BUG_ON(!dev_net(dev)); 954 net = dev_net(dev); 955 ret = __dev_alloc_name(net, name, buf); 956 if (ret >= 0) 957 strlcpy(dev->name, buf, IFNAMSIZ); 958 return ret; 959 } 960 EXPORT_SYMBOL(dev_alloc_name); 961 962 static int dev_get_valid_name(struct net_device *dev, const char *name) 963 { 964 struct net *net; 965 966 BUG_ON(!dev_net(dev)); 967 net = dev_net(dev); 968 969 if (!dev_valid_name(name)) 970 return -EINVAL; 971 972 if (strchr(name, '%')) 973 return dev_alloc_name(dev, name); 974 else if (__dev_get_by_name(net, name)) 975 return -EEXIST; 976 else if (dev->name != name) 977 strlcpy(dev->name, name, IFNAMSIZ); 978 979 return 0; 980 } 981 982 /** 983 * dev_change_name - change name of a device 984 * @dev: device 985 * @newname: name (or format string) must be at least IFNAMSIZ 986 * 987 * Change name of a device, can pass format strings "eth%d". 988 * for wildcarding. 989 */ 990 int dev_change_name(struct net_device *dev, const char *newname) 991 { 992 char oldname[IFNAMSIZ]; 993 int err = 0; 994 int ret; 995 struct net *net; 996 997 ASSERT_RTNL(); 998 BUG_ON(!dev_net(dev)); 999 1000 net = dev_net(dev); 1001 if (dev->flags & IFF_UP) 1002 return -EBUSY; 1003 1004 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) 1005 return 0; 1006 1007 memcpy(oldname, dev->name, IFNAMSIZ); 1008 1009 err = dev_get_valid_name(dev, newname); 1010 if (err < 0) 1011 return err; 1012 1013 rollback: 1014 ret = device_rename(&dev->dev, dev->name); 1015 if (ret) { 1016 memcpy(dev->name, oldname, IFNAMSIZ); 1017 return ret; 1018 } 1019 1020 write_lock_bh(&dev_base_lock); 1021 hlist_del_rcu(&dev->name_hlist); 1022 write_unlock_bh(&dev_base_lock); 1023 1024 synchronize_rcu(); 1025 1026 write_lock_bh(&dev_base_lock); 1027 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name)); 1028 write_unlock_bh(&dev_base_lock); 1029 1030 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev); 1031 ret = notifier_to_errno(ret); 1032 1033 if (ret) { 1034 /* err >= 0 after dev_alloc_name() or stores the first errno */ 1035 if (err >= 0) { 1036 err = ret; 1037 memcpy(dev->name, oldname, IFNAMSIZ); 1038 goto rollback; 1039 } else { 1040 pr_err("%s: name change rollback failed: %d\n", 1041 dev->name, ret); 1042 } 1043 } 1044 1045 return err; 1046 } 1047 1048 /** 1049 * dev_set_alias - change ifalias of a device 1050 * @dev: device 1051 * @alias: name up to IFALIASZ 1052 * @len: limit of bytes to copy from info 1053 * 1054 * Set ifalias for a device, 1055 */ 1056 int dev_set_alias(struct net_device *dev, const char *alias, size_t len) 1057 { 1058 ASSERT_RTNL(); 1059 1060 if (len >= IFALIASZ) 1061 return -EINVAL; 1062 1063 if (!len) { 1064 if (dev->ifalias) { 1065 kfree(dev->ifalias); 1066 dev->ifalias = NULL; 1067 } 1068 return 0; 1069 } 1070 1071 dev->ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL); 1072 if (!dev->ifalias) 1073 return -ENOMEM; 1074 1075 strlcpy(dev->ifalias, alias, len+1); 1076 return len; 1077 } 1078 1079 1080 /** 1081 * netdev_features_change - device changes features 1082 * @dev: device to cause notification 1083 * 1084 * Called to indicate a device has changed features. 1085 */ 1086 void netdev_features_change(struct net_device *dev) 1087 { 1088 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev); 1089 } 1090 EXPORT_SYMBOL(netdev_features_change); 1091 1092 /** 1093 * netdev_state_change - device changes state 1094 * @dev: device to cause notification 1095 * 1096 * Called to indicate a device has changed state. This function calls 1097 * the notifier chains for netdev_chain and sends a NEWLINK message 1098 * to the routing socket. 1099 */ 1100 void netdev_state_change(struct net_device *dev) 1101 { 1102 if (dev->flags & IFF_UP) { 1103 call_netdevice_notifiers(NETDEV_CHANGE, dev); 1104 rtmsg_ifinfo(RTM_NEWLINK, dev, 0); 1105 } 1106 } 1107 EXPORT_SYMBOL(netdev_state_change); 1108 1109 int netdev_bonding_change(struct net_device *dev, unsigned long event) 1110 { 1111 return call_netdevice_notifiers(event, dev); 1112 } 1113 EXPORT_SYMBOL(netdev_bonding_change); 1114 1115 /** 1116 * dev_load - load a network module 1117 * @net: the applicable net namespace 1118 * @name: name of interface 1119 * 1120 * If a network interface is not present and the process has suitable 1121 * privileges this function loads the module. If module loading is not 1122 * available in this kernel then it becomes a nop. 1123 */ 1124 1125 void dev_load(struct net *net, const char *name) 1126 { 1127 struct net_device *dev; 1128 int no_module; 1129 1130 rcu_read_lock(); 1131 dev = dev_get_by_name_rcu(net, name); 1132 rcu_read_unlock(); 1133 1134 no_module = !dev; 1135 if (no_module && capable(CAP_NET_ADMIN)) 1136 no_module = request_module("netdev-%s", name); 1137 if (no_module && capable(CAP_SYS_MODULE)) { 1138 if (!request_module("%s", name)) 1139 pr_err("Loading kernel module for a network device with CAP_SYS_MODULE (deprecated). Use CAP_NET_ADMIN and alias netdev-%s instead.\n", 1140 name); 1141 } 1142 } 1143 EXPORT_SYMBOL(dev_load); 1144 1145 static int __dev_open(struct net_device *dev) 1146 { 1147 const struct net_device_ops *ops = dev->netdev_ops; 1148 int ret; 1149 1150 ASSERT_RTNL(); 1151 1152 if (!netif_device_present(dev)) 1153 return -ENODEV; 1154 1155 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev); 1156 ret = notifier_to_errno(ret); 1157 if (ret) 1158 return ret; 1159 1160 set_bit(__LINK_STATE_START, &dev->state); 1161 1162 if (ops->ndo_validate_addr) 1163 ret = ops->ndo_validate_addr(dev); 1164 1165 if (!ret && ops->ndo_open) 1166 ret = ops->ndo_open(dev); 1167 1168 if (ret) 1169 clear_bit(__LINK_STATE_START, &dev->state); 1170 else { 1171 dev->flags |= IFF_UP; 1172 net_dmaengine_get(); 1173 dev_set_rx_mode(dev); 1174 dev_activate(dev); 1175 } 1176 1177 return ret; 1178 } 1179 1180 /** 1181 * dev_open - prepare an interface for use. 1182 * @dev: device to open 1183 * 1184 * Takes a device from down to up state. The device's private open 1185 * function is invoked and then the multicast lists are loaded. Finally 1186 * the device is moved into the up state and a %NETDEV_UP message is 1187 * sent to the netdev notifier chain. 1188 * 1189 * Calling this function on an active interface is a nop. On a failure 1190 * a negative errno code is returned. 1191 */ 1192 int dev_open(struct net_device *dev) 1193 { 1194 int ret; 1195 1196 if (dev->flags & IFF_UP) 1197 return 0; 1198 1199 ret = __dev_open(dev); 1200 if (ret < 0) 1201 return ret; 1202 1203 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING); 1204 call_netdevice_notifiers(NETDEV_UP, dev); 1205 1206 return ret; 1207 } 1208 EXPORT_SYMBOL(dev_open); 1209 1210 static int __dev_close_many(struct list_head *head) 1211 { 1212 struct net_device *dev; 1213 1214 ASSERT_RTNL(); 1215 might_sleep(); 1216 1217 list_for_each_entry(dev, head, unreg_list) { 1218 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev); 1219 1220 clear_bit(__LINK_STATE_START, &dev->state); 1221 1222 /* Synchronize to scheduled poll. We cannot touch poll list, it 1223 * can be even on different cpu. So just clear netif_running(). 1224 * 1225 * dev->stop() will invoke napi_disable() on all of it's 1226 * napi_struct instances on this device. 1227 */ 1228 smp_mb__after_clear_bit(); /* Commit netif_running(). */ 1229 } 1230 1231 dev_deactivate_many(head); 1232 1233 list_for_each_entry(dev, head, unreg_list) { 1234 const struct net_device_ops *ops = dev->netdev_ops; 1235 1236 /* 1237 * Call the device specific close. This cannot fail. 1238 * Only if device is UP 1239 * 1240 * We allow it to be called even after a DETACH hot-plug 1241 * event. 1242 */ 1243 if (ops->ndo_stop) 1244 ops->ndo_stop(dev); 1245 1246 dev->flags &= ~IFF_UP; 1247 net_dmaengine_put(); 1248 } 1249 1250 return 0; 1251 } 1252 1253 static int __dev_close(struct net_device *dev) 1254 { 1255 int retval; 1256 LIST_HEAD(single); 1257 1258 list_add(&dev->unreg_list, &single); 1259 retval = __dev_close_many(&single); 1260 list_del(&single); 1261 return retval; 1262 } 1263 1264 static int dev_close_many(struct list_head *head) 1265 { 1266 struct net_device *dev, *tmp; 1267 LIST_HEAD(tmp_list); 1268 1269 list_for_each_entry_safe(dev, tmp, head, unreg_list) 1270 if (!(dev->flags & IFF_UP)) 1271 list_move(&dev->unreg_list, &tmp_list); 1272 1273 __dev_close_many(head); 1274 1275 list_for_each_entry(dev, head, unreg_list) { 1276 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING); 1277 call_netdevice_notifiers(NETDEV_DOWN, dev); 1278 } 1279 1280 /* rollback_registered_many needs the complete original list */ 1281 list_splice(&tmp_list, head); 1282 return 0; 1283 } 1284 1285 /** 1286 * dev_close - shutdown an interface. 1287 * @dev: device to shutdown 1288 * 1289 * This function moves an active device into down state. A 1290 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device 1291 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier 1292 * chain. 1293 */ 1294 int dev_close(struct net_device *dev) 1295 { 1296 if (dev->flags & IFF_UP) { 1297 LIST_HEAD(single); 1298 1299 list_add(&dev->unreg_list, &single); 1300 dev_close_many(&single); 1301 list_del(&single); 1302 } 1303 return 0; 1304 } 1305 EXPORT_SYMBOL(dev_close); 1306 1307 1308 /** 1309 * dev_disable_lro - disable Large Receive Offload on a device 1310 * @dev: device 1311 * 1312 * Disable Large Receive Offload (LRO) on a net device. Must be 1313 * called under RTNL. This is needed if received packets may be 1314 * forwarded to another interface. 1315 */ 1316 void dev_disable_lro(struct net_device *dev) 1317 { 1318 /* 1319 * If we're trying to disable lro on a vlan device 1320 * use the underlying physical device instead 1321 */ 1322 if (is_vlan_dev(dev)) 1323 dev = vlan_dev_real_dev(dev); 1324 1325 dev->wanted_features &= ~NETIF_F_LRO; 1326 netdev_update_features(dev); 1327 1328 if (unlikely(dev->features & NETIF_F_LRO)) 1329 netdev_WARN(dev, "failed to disable LRO!\n"); 1330 } 1331 EXPORT_SYMBOL(dev_disable_lro); 1332 1333 1334 static int dev_boot_phase = 1; 1335 1336 /** 1337 * register_netdevice_notifier - register a network notifier block 1338 * @nb: notifier 1339 * 1340 * Register a notifier to be called when network device events occur. 1341 * The notifier passed is linked into the kernel structures and must 1342 * not be reused until it has been unregistered. A negative errno code 1343 * is returned on a failure. 1344 * 1345 * When registered all registration and up events are replayed 1346 * to the new notifier to allow device to have a race free 1347 * view of the network device list. 1348 */ 1349 1350 int register_netdevice_notifier(struct notifier_block *nb) 1351 { 1352 struct net_device *dev; 1353 struct net_device *last; 1354 struct net *net; 1355 int err; 1356 1357 rtnl_lock(); 1358 err = raw_notifier_chain_register(&netdev_chain, nb); 1359 if (err) 1360 goto unlock; 1361 if (dev_boot_phase) 1362 goto unlock; 1363 for_each_net(net) { 1364 for_each_netdev(net, dev) { 1365 err = nb->notifier_call(nb, NETDEV_REGISTER, dev); 1366 err = notifier_to_errno(err); 1367 if (err) 1368 goto rollback; 1369 1370 if (!(dev->flags & IFF_UP)) 1371 continue; 1372 1373 nb->notifier_call(nb, NETDEV_UP, dev); 1374 } 1375 } 1376 1377 unlock: 1378 rtnl_unlock(); 1379 return err; 1380 1381 rollback: 1382 last = dev; 1383 for_each_net(net) { 1384 for_each_netdev(net, dev) { 1385 if (dev == last) 1386 goto outroll; 1387 1388 if (dev->flags & IFF_UP) { 1389 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev); 1390 nb->notifier_call(nb, NETDEV_DOWN, dev); 1391 } 1392 nb->notifier_call(nb, NETDEV_UNREGISTER, dev); 1393 nb->notifier_call(nb, NETDEV_UNREGISTER_BATCH, dev); 1394 } 1395 } 1396 1397 outroll: 1398 raw_notifier_chain_unregister(&netdev_chain, nb); 1399 goto unlock; 1400 } 1401 EXPORT_SYMBOL(register_netdevice_notifier); 1402 1403 /** 1404 * unregister_netdevice_notifier - unregister a network notifier block 1405 * @nb: notifier 1406 * 1407 * Unregister a notifier previously registered by 1408 * register_netdevice_notifier(). The notifier is unlinked into the 1409 * kernel structures and may then be reused. A negative errno code 1410 * is returned on a failure. 1411 * 1412 * After unregistering unregister and down device events are synthesized 1413 * for all devices on the device list to the removed notifier to remove 1414 * the need for special case cleanup code. 1415 */ 1416 1417 int unregister_netdevice_notifier(struct notifier_block *nb) 1418 { 1419 struct net_device *dev; 1420 struct net *net; 1421 int err; 1422 1423 rtnl_lock(); 1424 err = raw_notifier_chain_unregister(&netdev_chain, nb); 1425 if (err) 1426 goto unlock; 1427 1428 for_each_net(net) { 1429 for_each_netdev(net, dev) { 1430 if (dev->flags & IFF_UP) { 1431 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev); 1432 nb->notifier_call(nb, NETDEV_DOWN, dev); 1433 } 1434 nb->notifier_call(nb, NETDEV_UNREGISTER, dev); 1435 nb->notifier_call(nb, NETDEV_UNREGISTER_BATCH, dev); 1436 } 1437 } 1438 unlock: 1439 rtnl_unlock(); 1440 return err; 1441 } 1442 EXPORT_SYMBOL(unregister_netdevice_notifier); 1443 1444 /** 1445 * call_netdevice_notifiers - call all network notifier blocks 1446 * @val: value passed unmodified to notifier function 1447 * @dev: net_device pointer passed unmodified to notifier function 1448 * 1449 * Call all network notifier blocks. Parameters and return value 1450 * are as for raw_notifier_call_chain(). 1451 */ 1452 1453 int call_netdevice_notifiers(unsigned long val, struct net_device *dev) 1454 { 1455 ASSERT_RTNL(); 1456 return raw_notifier_call_chain(&netdev_chain, val, dev); 1457 } 1458 EXPORT_SYMBOL(call_netdevice_notifiers); 1459 1460 static struct static_key netstamp_needed __read_mostly; 1461 #ifdef HAVE_JUMP_LABEL 1462 /* We are not allowed to call static_key_slow_dec() from irq context 1463 * If net_disable_timestamp() is called from irq context, defer the 1464 * static_key_slow_dec() calls. 1465 */ 1466 static atomic_t netstamp_needed_deferred; 1467 #endif 1468 1469 void net_enable_timestamp(void) 1470 { 1471 #ifdef HAVE_JUMP_LABEL 1472 int deferred = atomic_xchg(&netstamp_needed_deferred, 0); 1473 1474 if (deferred) { 1475 while (--deferred) 1476 static_key_slow_dec(&netstamp_needed); 1477 return; 1478 } 1479 #endif 1480 WARN_ON(in_interrupt()); 1481 static_key_slow_inc(&netstamp_needed); 1482 } 1483 EXPORT_SYMBOL(net_enable_timestamp); 1484 1485 void net_disable_timestamp(void) 1486 { 1487 #ifdef HAVE_JUMP_LABEL 1488 if (in_interrupt()) { 1489 atomic_inc(&netstamp_needed_deferred); 1490 return; 1491 } 1492 #endif 1493 static_key_slow_dec(&netstamp_needed); 1494 } 1495 EXPORT_SYMBOL(net_disable_timestamp); 1496 1497 static inline void net_timestamp_set(struct sk_buff *skb) 1498 { 1499 skb->tstamp.tv64 = 0; 1500 if (static_key_false(&netstamp_needed)) 1501 __net_timestamp(skb); 1502 } 1503 1504 #define net_timestamp_check(COND, SKB) \ 1505 if (static_key_false(&netstamp_needed)) { \ 1506 if ((COND) && !(SKB)->tstamp.tv64) \ 1507 __net_timestamp(SKB); \ 1508 } \ 1509 1510 static int net_hwtstamp_validate(struct ifreq *ifr) 1511 { 1512 struct hwtstamp_config cfg; 1513 enum hwtstamp_tx_types tx_type; 1514 enum hwtstamp_rx_filters rx_filter; 1515 int tx_type_valid = 0; 1516 int rx_filter_valid = 0; 1517 1518 if (copy_from_user(&cfg, ifr->ifr_data, sizeof(cfg))) 1519 return -EFAULT; 1520 1521 if (cfg.flags) /* reserved for future extensions */ 1522 return -EINVAL; 1523 1524 tx_type = cfg.tx_type; 1525 rx_filter = cfg.rx_filter; 1526 1527 switch (tx_type) { 1528 case HWTSTAMP_TX_OFF: 1529 case HWTSTAMP_TX_ON: 1530 case HWTSTAMP_TX_ONESTEP_SYNC: 1531 tx_type_valid = 1; 1532 break; 1533 } 1534 1535 switch (rx_filter) { 1536 case HWTSTAMP_FILTER_NONE: 1537 case HWTSTAMP_FILTER_ALL: 1538 case HWTSTAMP_FILTER_SOME: 1539 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT: 1540 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC: 1541 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ: 1542 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: 1543 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: 1544 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: 1545 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT: 1546 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC: 1547 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ: 1548 case HWTSTAMP_FILTER_PTP_V2_EVENT: 1549 case HWTSTAMP_FILTER_PTP_V2_SYNC: 1550 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ: 1551 rx_filter_valid = 1; 1552 break; 1553 } 1554 1555 if (!tx_type_valid || !rx_filter_valid) 1556 return -ERANGE; 1557 1558 return 0; 1559 } 1560 1561 static inline bool is_skb_forwardable(struct net_device *dev, 1562 struct sk_buff *skb) 1563 { 1564 unsigned int len; 1565 1566 if (!(dev->flags & IFF_UP)) 1567 return false; 1568 1569 len = dev->mtu + dev->hard_header_len + VLAN_HLEN; 1570 if (skb->len <= len) 1571 return true; 1572 1573 /* if TSO is enabled, we don't care about the length as the packet 1574 * could be forwarded without being segmented before 1575 */ 1576 if (skb_is_gso(skb)) 1577 return true; 1578 1579 return false; 1580 } 1581 1582 /** 1583 * dev_forward_skb - loopback an skb to another netif 1584 * 1585 * @dev: destination network device 1586 * @skb: buffer to forward 1587 * 1588 * return values: 1589 * NET_RX_SUCCESS (no congestion) 1590 * NET_RX_DROP (packet was dropped, but freed) 1591 * 1592 * dev_forward_skb can be used for injecting an skb from the 1593 * start_xmit function of one device into the receive queue 1594 * of another device. 1595 * 1596 * The receiving device may be in another namespace, so 1597 * we have to clear all information in the skb that could 1598 * impact namespace isolation. 1599 */ 1600 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 1601 { 1602 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) { 1603 if (skb_copy_ubufs(skb, GFP_ATOMIC)) { 1604 atomic_long_inc(&dev->rx_dropped); 1605 kfree_skb(skb); 1606 return NET_RX_DROP; 1607 } 1608 } 1609 1610 skb_orphan(skb); 1611 nf_reset(skb); 1612 1613 if (unlikely(!is_skb_forwardable(dev, skb))) { 1614 atomic_long_inc(&dev->rx_dropped); 1615 kfree_skb(skb); 1616 return NET_RX_DROP; 1617 } 1618 skb->skb_iif = 0; 1619 skb->dev = dev; 1620 skb_dst_drop(skb); 1621 skb->tstamp.tv64 = 0; 1622 skb->pkt_type = PACKET_HOST; 1623 skb->protocol = eth_type_trans(skb, dev); 1624 skb->mark = 0; 1625 secpath_reset(skb); 1626 nf_reset(skb); 1627 return netif_rx(skb); 1628 } 1629 EXPORT_SYMBOL_GPL(dev_forward_skb); 1630 1631 static inline int deliver_skb(struct sk_buff *skb, 1632 struct packet_type *pt_prev, 1633 struct net_device *orig_dev) 1634 { 1635 atomic_inc(&skb->users); 1636 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 1637 } 1638 1639 /* 1640 * Support routine. Sends outgoing frames to any network 1641 * taps currently in use. 1642 */ 1643 1644 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev) 1645 { 1646 struct packet_type *ptype; 1647 struct sk_buff *skb2 = NULL; 1648 struct packet_type *pt_prev = NULL; 1649 1650 rcu_read_lock(); 1651 list_for_each_entry_rcu(ptype, &ptype_all, list) { 1652 /* Never send packets back to the socket 1653 * they originated from - MvS (miquels@drinkel.ow.org) 1654 */ 1655 if ((ptype->dev == dev || !ptype->dev) && 1656 (ptype->af_packet_priv == NULL || 1657 (struct sock *)ptype->af_packet_priv != skb->sk)) { 1658 if (pt_prev) { 1659 deliver_skb(skb2, pt_prev, skb->dev); 1660 pt_prev = ptype; 1661 continue; 1662 } 1663 1664 skb2 = skb_clone(skb, GFP_ATOMIC); 1665 if (!skb2) 1666 break; 1667 1668 net_timestamp_set(skb2); 1669 1670 /* skb->nh should be correctly 1671 set by sender, so that the second statement is 1672 just protection against buggy protocols. 1673 */ 1674 skb_reset_mac_header(skb2); 1675 1676 if (skb_network_header(skb2) < skb2->data || 1677 skb2->network_header > skb2->tail) { 1678 net_crit_ratelimited("protocol %04x is buggy, dev %s\n", 1679 ntohs(skb2->protocol), 1680 dev->name); 1681 skb_reset_network_header(skb2); 1682 } 1683 1684 skb2->transport_header = skb2->network_header; 1685 skb2->pkt_type = PACKET_OUTGOING; 1686 pt_prev = ptype; 1687 } 1688 } 1689 if (pt_prev) 1690 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev); 1691 rcu_read_unlock(); 1692 } 1693 1694 /* netif_setup_tc - Handle tc mappings on real_num_tx_queues change 1695 * @dev: Network device 1696 * @txq: number of queues available 1697 * 1698 * If real_num_tx_queues is changed the tc mappings may no longer be 1699 * valid. To resolve this verify the tc mapping remains valid and if 1700 * not NULL the mapping. With no priorities mapping to this 1701 * offset/count pair it will no longer be used. In the worst case TC0 1702 * is invalid nothing can be done so disable priority mappings. If is 1703 * expected that drivers will fix this mapping if they can before 1704 * calling netif_set_real_num_tx_queues. 1705 */ 1706 static void netif_setup_tc(struct net_device *dev, unsigned int txq) 1707 { 1708 int i; 1709 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 1710 1711 /* If TC0 is invalidated disable TC mapping */ 1712 if (tc->offset + tc->count > txq) { 1713 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n"); 1714 dev->num_tc = 0; 1715 return; 1716 } 1717 1718 /* Invalidated prio to tc mappings set to TC0 */ 1719 for (i = 1; i < TC_BITMASK + 1; i++) { 1720 int q = netdev_get_prio_tc_map(dev, i); 1721 1722 tc = &dev->tc_to_txq[q]; 1723 if (tc->offset + tc->count > txq) { 1724 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n", 1725 i, q); 1726 netdev_set_prio_tc_map(dev, i, 0); 1727 } 1728 } 1729 } 1730 1731 /* 1732 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues 1733 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed. 1734 */ 1735 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq) 1736 { 1737 int rc; 1738 1739 if (txq < 1 || txq > dev->num_tx_queues) 1740 return -EINVAL; 1741 1742 if (dev->reg_state == NETREG_REGISTERED || 1743 dev->reg_state == NETREG_UNREGISTERING) { 1744 ASSERT_RTNL(); 1745 1746 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues, 1747 txq); 1748 if (rc) 1749 return rc; 1750 1751 if (dev->num_tc) 1752 netif_setup_tc(dev, txq); 1753 1754 if (txq < dev->real_num_tx_queues) 1755 qdisc_reset_all_tx_gt(dev, txq); 1756 } 1757 1758 dev->real_num_tx_queues = txq; 1759 return 0; 1760 } 1761 EXPORT_SYMBOL(netif_set_real_num_tx_queues); 1762 1763 #ifdef CONFIG_RPS 1764 /** 1765 * netif_set_real_num_rx_queues - set actual number of RX queues used 1766 * @dev: Network device 1767 * @rxq: Actual number of RX queues 1768 * 1769 * This must be called either with the rtnl_lock held or before 1770 * registration of the net device. Returns 0 on success, or a 1771 * negative error code. If called before registration, it always 1772 * succeeds. 1773 */ 1774 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq) 1775 { 1776 int rc; 1777 1778 if (rxq < 1 || rxq > dev->num_rx_queues) 1779 return -EINVAL; 1780 1781 if (dev->reg_state == NETREG_REGISTERED) { 1782 ASSERT_RTNL(); 1783 1784 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues, 1785 rxq); 1786 if (rc) 1787 return rc; 1788 } 1789 1790 dev->real_num_rx_queues = rxq; 1791 return 0; 1792 } 1793 EXPORT_SYMBOL(netif_set_real_num_rx_queues); 1794 #endif 1795 1796 static inline void __netif_reschedule(struct Qdisc *q) 1797 { 1798 struct softnet_data *sd; 1799 unsigned long flags; 1800 1801 local_irq_save(flags); 1802 sd = &__get_cpu_var(softnet_data); 1803 q->next_sched = NULL; 1804 *sd->output_queue_tailp = q; 1805 sd->output_queue_tailp = &q->next_sched; 1806 raise_softirq_irqoff(NET_TX_SOFTIRQ); 1807 local_irq_restore(flags); 1808 } 1809 1810 void __netif_schedule(struct Qdisc *q) 1811 { 1812 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state)) 1813 __netif_reschedule(q); 1814 } 1815 EXPORT_SYMBOL(__netif_schedule); 1816 1817 void dev_kfree_skb_irq(struct sk_buff *skb) 1818 { 1819 if (atomic_dec_and_test(&skb->users)) { 1820 struct softnet_data *sd; 1821 unsigned long flags; 1822 1823 local_irq_save(flags); 1824 sd = &__get_cpu_var(softnet_data); 1825 skb->next = sd->completion_queue; 1826 sd->completion_queue = skb; 1827 raise_softirq_irqoff(NET_TX_SOFTIRQ); 1828 local_irq_restore(flags); 1829 } 1830 } 1831 EXPORT_SYMBOL(dev_kfree_skb_irq); 1832 1833 void dev_kfree_skb_any(struct sk_buff *skb) 1834 { 1835 if (in_irq() || irqs_disabled()) 1836 dev_kfree_skb_irq(skb); 1837 else 1838 dev_kfree_skb(skb); 1839 } 1840 EXPORT_SYMBOL(dev_kfree_skb_any); 1841 1842 1843 /** 1844 * netif_device_detach - mark device as removed 1845 * @dev: network device 1846 * 1847 * Mark device as removed from system and therefore no longer available. 1848 */ 1849 void netif_device_detach(struct net_device *dev) 1850 { 1851 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) && 1852 netif_running(dev)) { 1853 netif_tx_stop_all_queues(dev); 1854 } 1855 } 1856 EXPORT_SYMBOL(netif_device_detach); 1857 1858 /** 1859 * netif_device_attach - mark device as attached 1860 * @dev: network device 1861 * 1862 * Mark device as attached from system and restart if needed. 1863 */ 1864 void netif_device_attach(struct net_device *dev) 1865 { 1866 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) && 1867 netif_running(dev)) { 1868 netif_tx_wake_all_queues(dev); 1869 __netdev_watchdog_up(dev); 1870 } 1871 } 1872 EXPORT_SYMBOL(netif_device_attach); 1873 1874 static void skb_warn_bad_offload(const struct sk_buff *skb) 1875 { 1876 static const netdev_features_t null_features = 0; 1877 struct net_device *dev = skb->dev; 1878 const char *driver = ""; 1879 1880 if (dev && dev->dev.parent) 1881 driver = dev_driver_string(dev->dev.parent); 1882 1883 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d " 1884 "gso_type=%d ip_summed=%d\n", 1885 driver, dev ? &dev->features : &null_features, 1886 skb->sk ? &skb->sk->sk_route_caps : &null_features, 1887 skb->len, skb->data_len, skb_shinfo(skb)->gso_size, 1888 skb_shinfo(skb)->gso_type, skb->ip_summed); 1889 } 1890 1891 /* 1892 * Invalidate hardware checksum when packet is to be mangled, and 1893 * complete checksum manually on outgoing path. 1894 */ 1895 int skb_checksum_help(struct sk_buff *skb) 1896 { 1897 __wsum csum; 1898 int ret = 0, offset; 1899 1900 if (skb->ip_summed == CHECKSUM_COMPLETE) 1901 goto out_set_summed; 1902 1903 if (unlikely(skb_shinfo(skb)->gso_size)) { 1904 skb_warn_bad_offload(skb); 1905 return -EINVAL; 1906 } 1907 1908 offset = skb_checksum_start_offset(skb); 1909 BUG_ON(offset >= skb_headlen(skb)); 1910 csum = skb_checksum(skb, offset, skb->len - offset, 0); 1911 1912 offset += skb->csum_offset; 1913 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb)); 1914 1915 if (skb_cloned(skb) && 1916 !skb_clone_writable(skb, offset + sizeof(__sum16))) { 1917 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 1918 if (ret) 1919 goto out; 1920 } 1921 1922 *(__sum16 *)(skb->data + offset) = csum_fold(csum); 1923 out_set_summed: 1924 skb->ip_summed = CHECKSUM_NONE; 1925 out: 1926 return ret; 1927 } 1928 EXPORT_SYMBOL(skb_checksum_help); 1929 1930 /** 1931 * skb_gso_segment - Perform segmentation on skb. 1932 * @skb: buffer to segment 1933 * @features: features for the output path (see dev->features) 1934 * 1935 * This function segments the given skb and returns a list of segments. 1936 * 1937 * It may return NULL if the skb requires no segmentation. This is 1938 * only possible when GSO is used for verifying header integrity. 1939 */ 1940 struct sk_buff *skb_gso_segment(struct sk_buff *skb, 1941 netdev_features_t features) 1942 { 1943 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT); 1944 struct packet_type *ptype; 1945 __be16 type = skb->protocol; 1946 int vlan_depth = ETH_HLEN; 1947 int err; 1948 1949 while (type == htons(ETH_P_8021Q)) { 1950 struct vlan_hdr *vh; 1951 1952 if (unlikely(!pskb_may_pull(skb, vlan_depth + VLAN_HLEN))) 1953 return ERR_PTR(-EINVAL); 1954 1955 vh = (struct vlan_hdr *)(skb->data + vlan_depth); 1956 type = vh->h_vlan_encapsulated_proto; 1957 vlan_depth += VLAN_HLEN; 1958 } 1959 1960 skb_reset_mac_header(skb); 1961 skb->mac_len = skb->network_header - skb->mac_header; 1962 __skb_pull(skb, skb->mac_len); 1963 1964 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) { 1965 skb_warn_bad_offload(skb); 1966 1967 if (skb_header_cloned(skb) && 1968 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))) 1969 return ERR_PTR(err); 1970 } 1971 1972 rcu_read_lock(); 1973 list_for_each_entry_rcu(ptype, 1974 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) { 1975 if (ptype->type == type && !ptype->dev && ptype->gso_segment) { 1976 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) { 1977 err = ptype->gso_send_check(skb); 1978 segs = ERR_PTR(err); 1979 if (err || skb_gso_ok(skb, features)) 1980 break; 1981 __skb_push(skb, (skb->data - 1982 skb_network_header(skb))); 1983 } 1984 segs = ptype->gso_segment(skb, features); 1985 break; 1986 } 1987 } 1988 rcu_read_unlock(); 1989 1990 __skb_push(skb, skb->data - skb_mac_header(skb)); 1991 1992 return segs; 1993 } 1994 EXPORT_SYMBOL(skb_gso_segment); 1995 1996 /* Take action when hardware reception checksum errors are detected. */ 1997 #ifdef CONFIG_BUG 1998 void netdev_rx_csum_fault(struct net_device *dev) 1999 { 2000 if (net_ratelimit()) { 2001 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>"); 2002 dump_stack(); 2003 } 2004 } 2005 EXPORT_SYMBOL(netdev_rx_csum_fault); 2006 #endif 2007 2008 /* Actually, we should eliminate this check as soon as we know, that: 2009 * 1. IOMMU is present and allows to map all the memory. 2010 * 2. No high memory really exists on this machine. 2011 */ 2012 2013 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb) 2014 { 2015 #ifdef CONFIG_HIGHMEM 2016 int i; 2017 if (!(dev->features & NETIF_F_HIGHDMA)) { 2018 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2019 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2020 if (PageHighMem(skb_frag_page(frag))) 2021 return 1; 2022 } 2023 } 2024 2025 if (PCI_DMA_BUS_IS_PHYS) { 2026 struct device *pdev = dev->dev.parent; 2027 2028 if (!pdev) 2029 return 0; 2030 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2031 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2032 dma_addr_t addr = page_to_phys(skb_frag_page(frag)); 2033 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask) 2034 return 1; 2035 } 2036 } 2037 #endif 2038 return 0; 2039 } 2040 2041 struct dev_gso_cb { 2042 void (*destructor)(struct sk_buff *skb); 2043 }; 2044 2045 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb) 2046 2047 static void dev_gso_skb_destructor(struct sk_buff *skb) 2048 { 2049 struct dev_gso_cb *cb; 2050 2051 do { 2052 struct sk_buff *nskb = skb->next; 2053 2054 skb->next = nskb->next; 2055 nskb->next = NULL; 2056 kfree_skb(nskb); 2057 } while (skb->next); 2058 2059 cb = DEV_GSO_CB(skb); 2060 if (cb->destructor) 2061 cb->destructor(skb); 2062 } 2063 2064 /** 2065 * dev_gso_segment - Perform emulated hardware segmentation on skb. 2066 * @skb: buffer to segment 2067 * @features: device features as applicable to this skb 2068 * 2069 * This function segments the given skb and stores the list of segments 2070 * in skb->next. 2071 */ 2072 static int dev_gso_segment(struct sk_buff *skb, netdev_features_t features) 2073 { 2074 struct sk_buff *segs; 2075 2076 segs = skb_gso_segment(skb, features); 2077 2078 /* Verifying header integrity only. */ 2079 if (!segs) 2080 return 0; 2081 2082 if (IS_ERR(segs)) 2083 return PTR_ERR(segs); 2084 2085 skb->next = segs; 2086 DEV_GSO_CB(skb)->destructor = skb->destructor; 2087 skb->destructor = dev_gso_skb_destructor; 2088 2089 return 0; 2090 } 2091 2092 /* 2093 * Try to orphan skb early, right before transmission by the device. 2094 * We cannot orphan skb if tx timestamp is requested or the sk-reference 2095 * is needed on driver level for other reasons, e.g. see net/can/raw.c 2096 */ 2097 static inline void skb_orphan_try(struct sk_buff *skb) 2098 { 2099 struct sock *sk = skb->sk; 2100 2101 if (sk && !skb_shinfo(skb)->tx_flags) { 2102 /* skb_tx_hash() wont be able to get sk. 2103 * We copy sk_hash into skb->rxhash 2104 */ 2105 if (!skb->rxhash) 2106 skb->rxhash = sk->sk_hash; 2107 skb_orphan(skb); 2108 } 2109 } 2110 2111 static bool can_checksum_protocol(netdev_features_t features, __be16 protocol) 2112 { 2113 return ((features & NETIF_F_GEN_CSUM) || 2114 ((features & NETIF_F_V4_CSUM) && 2115 protocol == htons(ETH_P_IP)) || 2116 ((features & NETIF_F_V6_CSUM) && 2117 protocol == htons(ETH_P_IPV6)) || 2118 ((features & NETIF_F_FCOE_CRC) && 2119 protocol == htons(ETH_P_FCOE))); 2120 } 2121 2122 static netdev_features_t harmonize_features(struct sk_buff *skb, 2123 __be16 protocol, netdev_features_t features) 2124 { 2125 if (!can_checksum_protocol(features, protocol)) { 2126 features &= ~NETIF_F_ALL_CSUM; 2127 features &= ~NETIF_F_SG; 2128 } else if (illegal_highdma(skb->dev, skb)) { 2129 features &= ~NETIF_F_SG; 2130 } 2131 2132 return features; 2133 } 2134 2135 netdev_features_t netif_skb_features(struct sk_buff *skb) 2136 { 2137 __be16 protocol = skb->protocol; 2138 netdev_features_t features = skb->dev->features; 2139 2140 if (protocol == htons(ETH_P_8021Q)) { 2141 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data; 2142 protocol = veh->h_vlan_encapsulated_proto; 2143 } else if (!vlan_tx_tag_present(skb)) { 2144 return harmonize_features(skb, protocol, features); 2145 } 2146 2147 features &= (skb->dev->vlan_features | NETIF_F_HW_VLAN_TX); 2148 2149 if (protocol != htons(ETH_P_8021Q)) { 2150 return harmonize_features(skb, protocol, features); 2151 } else { 2152 features &= NETIF_F_SG | NETIF_F_HIGHDMA | NETIF_F_FRAGLIST | 2153 NETIF_F_GEN_CSUM | NETIF_F_HW_VLAN_TX; 2154 return harmonize_features(skb, protocol, features); 2155 } 2156 } 2157 EXPORT_SYMBOL(netif_skb_features); 2158 2159 /* 2160 * Returns true if either: 2161 * 1. skb has frag_list and the device doesn't support FRAGLIST, or 2162 * 2. skb is fragmented and the device does not support SG, or if 2163 * at least one of fragments is in highmem and device does not 2164 * support DMA from it. 2165 */ 2166 static inline int skb_needs_linearize(struct sk_buff *skb, 2167 int features) 2168 { 2169 return skb_is_nonlinear(skb) && 2170 ((skb_has_frag_list(skb) && 2171 !(features & NETIF_F_FRAGLIST)) || 2172 (skb_shinfo(skb)->nr_frags && 2173 !(features & NETIF_F_SG))); 2174 } 2175 2176 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev, 2177 struct netdev_queue *txq) 2178 { 2179 const struct net_device_ops *ops = dev->netdev_ops; 2180 int rc = NETDEV_TX_OK; 2181 unsigned int skb_len; 2182 2183 if (likely(!skb->next)) { 2184 netdev_features_t features; 2185 2186 /* 2187 * If device doesn't need skb->dst, release it right now while 2188 * its hot in this cpu cache 2189 */ 2190 if (dev->priv_flags & IFF_XMIT_DST_RELEASE) 2191 skb_dst_drop(skb); 2192 2193 if (!list_empty(&ptype_all)) 2194 dev_queue_xmit_nit(skb, dev); 2195 2196 skb_orphan_try(skb); 2197 2198 features = netif_skb_features(skb); 2199 2200 if (vlan_tx_tag_present(skb) && 2201 !(features & NETIF_F_HW_VLAN_TX)) { 2202 skb = __vlan_put_tag(skb, vlan_tx_tag_get(skb)); 2203 if (unlikely(!skb)) 2204 goto out; 2205 2206 skb->vlan_tci = 0; 2207 } 2208 2209 if (netif_needs_gso(skb, features)) { 2210 if (unlikely(dev_gso_segment(skb, features))) 2211 goto out_kfree_skb; 2212 if (skb->next) 2213 goto gso; 2214 } else { 2215 if (skb_needs_linearize(skb, features) && 2216 __skb_linearize(skb)) 2217 goto out_kfree_skb; 2218 2219 /* If packet is not checksummed and device does not 2220 * support checksumming for this protocol, complete 2221 * checksumming here. 2222 */ 2223 if (skb->ip_summed == CHECKSUM_PARTIAL) { 2224 skb_set_transport_header(skb, 2225 skb_checksum_start_offset(skb)); 2226 if (!(features & NETIF_F_ALL_CSUM) && 2227 skb_checksum_help(skb)) 2228 goto out_kfree_skb; 2229 } 2230 } 2231 2232 skb_len = skb->len; 2233 rc = ops->ndo_start_xmit(skb, dev); 2234 trace_net_dev_xmit(skb, rc, dev, skb_len); 2235 if (rc == NETDEV_TX_OK) 2236 txq_trans_update(txq); 2237 return rc; 2238 } 2239 2240 gso: 2241 do { 2242 struct sk_buff *nskb = skb->next; 2243 2244 skb->next = nskb->next; 2245 nskb->next = NULL; 2246 2247 /* 2248 * If device doesn't need nskb->dst, release it right now while 2249 * its hot in this cpu cache 2250 */ 2251 if (dev->priv_flags & IFF_XMIT_DST_RELEASE) 2252 skb_dst_drop(nskb); 2253 2254 skb_len = nskb->len; 2255 rc = ops->ndo_start_xmit(nskb, dev); 2256 trace_net_dev_xmit(nskb, rc, dev, skb_len); 2257 if (unlikely(rc != NETDEV_TX_OK)) { 2258 if (rc & ~NETDEV_TX_MASK) 2259 goto out_kfree_gso_skb; 2260 nskb->next = skb->next; 2261 skb->next = nskb; 2262 return rc; 2263 } 2264 txq_trans_update(txq); 2265 if (unlikely(netif_xmit_stopped(txq) && skb->next)) 2266 return NETDEV_TX_BUSY; 2267 } while (skb->next); 2268 2269 out_kfree_gso_skb: 2270 if (likely(skb->next == NULL)) 2271 skb->destructor = DEV_GSO_CB(skb)->destructor; 2272 out_kfree_skb: 2273 kfree_skb(skb); 2274 out: 2275 return rc; 2276 } 2277 2278 static u32 hashrnd __read_mostly; 2279 2280 /* 2281 * Returns a Tx hash based on the given packet descriptor a Tx queues' number 2282 * to be used as a distribution range. 2283 */ 2284 u16 __skb_tx_hash(const struct net_device *dev, const struct sk_buff *skb, 2285 unsigned int num_tx_queues) 2286 { 2287 u32 hash; 2288 u16 qoffset = 0; 2289 u16 qcount = num_tx_queues; 2290 2291 if (skb_rx_queue_recorded(skb)) { 2292 hash = skb_get_rx_queue(skb); 2293 while (unlikely(hash >= num_tx_queues)) 2294 hash -= num_tx_queues; 2295 return hash; 2296 } 2297 2298 if (dev->num_tc) { 2299 u8 tc = netdev_get_prio_tc_map(dev, skb->priority); 2300 qoffset = dev->tc_to_txq[tc].offset; 2301 qcount = dev->tc_to_txq[tc].count; 2302 } 2303 2304 if (skb->sk && skb->sk->sk_hash) 2305 hash = skb->sk->sk_hash; 2306 else 2307 hash = (__force u16) skb->protocol ^ skb->rxhash; 2308 hash = jhash_1word(hash, hashrnd); 2309 2310 return (u16) (((u64) hash * qcount) >> 32) + qoffset; 2311 } 2312 EXPORT_SYMBOL(__skb_tx_hash); 2313 2314 static inline u16 dev_cap_txqueue(struct net_device *dev, u16 queue_index) 2315 { 2316 if (unlikely(queue_index >= dev->real_num_tx_queues)) { 2317 net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n", 2318 dev->name, queue_index, 2319 dev->real_num_tx_queues); 2320 return 0; 2321 } 2322 return queue_index; 2323 } 2324 2325 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb) 2326 { 2327 #ifdef CONFIG_XPS 2328 struct xps_dev_maps *dev_maps; 2329 struct xps_map *map; 2330 int queue_index = -1; 2331 2332 rcu_read_lock(); 2333 dev_maps = rcu_dereference(dev->xps_maps); 2334 if (dev_maps) { 2335 map = rcu_dereference( 2336 dev_maps->cpu_map[raw_smp_processor_id()]); 2337 if (map) { 2338 if (map->len == 1) 2339 queue_index = map->queues[0]; 2340 else { 2341 u32 hash; 2342 if (skb->sk && skb->sk->sk_hash) 2343 hash = skb->sk->sk_hash; 2344 else 2345 hash = (__force u16) skb->protocol ^ 2346 skb->rxhash; 2347 hash = jhash_1word(hash, hashrnd); 2348 queue_index = map->queues[ 2349 ((u64)hash * map->len) >> 32]; 2350 } 2351 if (unlikely(queue_index >= dev->real_num_tx_queues)) 2352 queue_index = -1; 2353 } 2354 } 2355 rcu_read_unlock(); 2356 2357 return queue_index; 2358 #else 2359 return -1; 2360 #endif 2361 } 2362 2363 static struct netdev_queue *dev_pick_tx(struct net_device *dev, 2364 struct sk_buff *skb) 2365 { 2366 int queue_index; 2367 const struct net_device_ops *ops = dev->netdev_ops; 2368 2369 if (dev->real_num_tx_queues == 1) 2370 queue_index = 0; 2371 else if (ops->ndo_select_queue) { 2372 queue_index = ops->ndo_select_queue(dev, skb); 2373 queue_index = dev_cap_txqueue(dev, queue_index); 2374 } else { 2375 struct sock *sk = skb->sk; 2376 queue_index = sk_tx_queue_get(sk); 2377 2378 if (queue_index < 0 || skb->ooo_okay || 2379 queue_index >= dev->real_num_tx_queues) { 2380 int old_index = queue_index; 2381 2382 queue_index = get_xps_queue(dev, skb); 2383 if (queue_index < 0) 2384 queue_index = skb_tx_hash(dev, skb); 2385 2386 if (queue_index != old_index && sk) { 2387 struct dst_entry *dst = 2388 rcu_dereference_check(sk->sk_dst_cache, 1); 2389 2390 if (dst && skb_dst(skb) == dst) 2391 sk_tx_queue_set(sk, queue_index); 2392 } 2393 } 2394 } 2395 2396 skb_set_queue_mapping(skb, queue_index); 2397 return netdev_get_tx_queue(dev, queue_index); 2398 } 2399 2400 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q, 2401 struct net_device *dev, 2402 struct netdev_queue *txq) 2403 { 2404 spinlock_t *root_lock = qdisc_lock(q); 2405 bool contended; 2406 int rc; 2407 2408 qdisc_skb_cb(skb)->pkt_len = skb->len; 2409 qdisc_calculate_pkt_len(skb, q); 2410 /* 2411 * Heuristic to force contended enqueues to serialize on a 2412 * separate lock before trying to get qdisc main lock. 2413 * This permits __QDISC_STATE_RUNNING owner to get the lock more often 2414 * and dequeue packets faster. 2415 */ 2416 contended = qdisc_is_running(q); 2417 if (unlikely(contended)) 2418 spin_lock(&q->busylock); 2419 2420 spin_lock(root_lock); 2421 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) { 2422 kfree_skb(skb); 2423 rc = NET_XMIT_DROP; 2424 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) && 2425 qdisc_run_begin(q)) { 2426 /* 2427 * This is a work-conserving queue; there are no old skbs 2428 * waiting to be sent out; and the qdisc is not running - 2429 * xmit the skb directly. 2430 */ 2431 if (!(dev->priv_flags & IFF_XMIT_DST_RELEASE)) 2432 skb_dst_force(skb); 2433 2434 qdisc_bstats_update(q, skb); 2435 2436 if (sch_direct_xmit(skb, q, dev, txq, root_lock)) { 2437 if (unlikely(contended)) { 2438 spin_unlock(&q->busylock); 2439 contended = false; 2440 } 2441 __qdisc_run(q); 2442 } else 2443 qdisc_run_end(q); 2444 2445 rc = NET_XMIT_SUCCESS; 2446 } else { 2447 skb_dst_force(skb); 2448 rc = q->enqueue(skb, q) & NET_XMIT_MASK; 2449 if (qdisc_run_begin(q)) { 2450 if (unlikely(contended)) { 2451 spin_unlock(&q->busylock); 2452 contended = false; 2453 } 2454 __qdisc_run(q); 2455 } 2456 } 2457 spin_unlock(root_lock); 2458 if (unlikely(contended)) 2459 spin_unlock(&q->busylock); 2460 return rc; 2461 } 2462 2463 #if IS_ENABLED(CONFIG_NETPRIO_CGROUP) 2464 static void skb_update_prio(struct sk_buff *skb) 2465 { 2466 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap); 2467 2468 if ((!skb->priority) && (skb->sk) && map) 2469 skb->priority = map->priomap[skb->sk->sk_cgrp_prioidx]; 2470 } 2471 #else 2472 #define skb_update_prio(skb) 2473 #endif 2474 2475 static DEFINE_PER_CPU(int, xmit_recursion); 2476 #define RECURSION_LIMIT 10 2477 2478 /** 2479 * dev_queue_xmit - transmit a buffer 2480 * @skb: buffer to transmit 2481 * 2482 * Queue a buffer for transmission to a network device. The caller must 2483 * have set the device and priority and built the buffer before calling 2484 * this function. The function can be called from an interrupt. 2485 * 2486 * A negative errno code is returned on a failure. A success does not 2487 * guarantee the frame will be transmitted as it may be dropped due 2488 * to congestion or traffic shaping. 2489 * 2490 * ----------------------------------------------------------------------------------- 2491 * I notice this method can also return errors from the queue disciplines, 2492 * including NET_XMIT_DROP, which is a positive value. So, errors can also 2493 * be positive. 2494 * 2495 * Regardless of the return value, the skb is consumed, so it is currently 2496 * difficult to retry a send to this method. (You can bump the ref count 2497 * before sending to hold a reference for retry if you are careful.) 2498 * 2499 * When calling this method, interrupts MUST be enabled. This is because 2500 * the BH enable code must have IRQs enabled so that it will not deadlock. 2501 * --BLG 2502 */ 2503 int dev_queue_xmit(struct sk_buff *skb) 2504 { 2505 struct net_device *dev = skb->dev; 2506 struct netdev_queue *txq; 2507 struct Qdisc *q; 2508 int rc = -ENOMEM; 2509 2510 /* Disable soft irqs for various locks below. Also 2511 * stops preemption for RCU. 2512 */ 2513 rcu_read_lock_bh(); 2514 2515 skb_update_prio(skb); 2516 2517 txq = dev_pick_tx(dev, skb); 2518 q = rcu_dereference_bh(txq->qdisc); 2519 2520 #ifdef CONFIG_NET_CLS_ACT 2521 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS); 2522 #endif 2523 trace_net_dev_queue(skb); 2524 if (q->enqueue) { 2525 rc = __dev_xmit_skb(skb, q, dev, txq); 2526 goto out; 2527 } 2528 2529 /* The device has no queue. Common case for software devices: 2530 loopback, all the sorts of tunnels... 2531 2532 Really, it is unlikely that netif_tx_lock protection is necessary 2533 here. (f.e. loopback and IP tunnels are clean ignoring statistics 2534 counters.) 2535 However, it is possible, that they rely on protection 2536 made by us here. 2537 2538 Check this and shot the lock. It is not prone from deadlocks. 2539 Either shot noqueue qdisc, it is even simpler 8) 2540 */ 2541 if (dev->flags & IFF_UP) { 2542 int cpu = smp_processor_id(); /* ok because BHs are off */ 2543 2544 if (txq->xmit_lock_owner != cpu) { 2545 2546 if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT) 2547 goto recursion_alert; 2548 2549 HARD_TX_LOCK(dev, txq, cpu); 2550 2551 if (!netif_xmit_stopped(txq)) { 2552 __this_cpu_inc(xmit_recursion); 2553 rc = dev_hard_start_xmit(skb, dev, txq); 2554 __this_cpu_dec(xmit_recursion); 2555 if (dev_xmit_complete(rc)) { 2556 HARD_TX_UNLOCK(dev, txq); 2557 goto out; 2558 } 2559 } 2560 HARD_TX_UNLOCK(dev, txq); 2561 net_crit_ratelimited("Virtual device %s asks to queue packet!\n", 2562 dev->name); 2563 } else { 2564 /* Recursion is detected! It is possible, 2565 * unfortunately 2566 */ 2567 recursion_alert: 2568 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n", 2569 dev->name); 2570 } 2571 } 2572 2573 rc = -ENETDOWN; 2574 rcu_read_unlock_bh(); 2575 2576 kfree_skb(skb); 2577 return rc; 2578 out: 2579 rcu_read_unlock_bh(); 2580 return rc; 2581 } 2582 EXPORT_SYMBOL(dev_queue_xmit); 2583 2584 2585 /*======================================================================= 2586 Receiver routines 2587 =======================================================================*/ 2588 2589 int netdev_max_backlog __read_mostly = 1000; 2590 int netdev_tstamp_prequeue __read_mostly = 1; 2591 int netdev_budget __read_mostly = 300; 2592 int weight_p __read_mostly = 64; /* old backlog weight */ 2593 2594 /* Called with irq disabled */ 2595 static inline void ____napi_schedule(struct softnet_data *sd, 2596 struct napi_struct *napi) 2597 { 2598 list_add_tail(&napi->poll_list, &sd->poll_list); 2599 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 2600 } 2601 2602 /* 2603 * __skb_get_rxhash: calculate a flow hash based on src/dst addresses 2604 * and src/dst port numbers. Sets rxhash in skb to non-zero hash value 2605 * on success, zero indicates no valid hash. Also, sets l4_rxhash in skb 2606 * if hash is a canonical 4-tuple hash over transport ports. 2607 */ 2608 void __skb_get_rxhash(struct sk_buff *skb) 2609 { 2610 struct flow_keys keys; 2611 u32 hash; 2612 2613 if (!skb_flow_dissect(skb, &keys)) 2614 return; 2615 2616 if (keys.ports) { 2617 if ((__force u16)keys.port16[1] < (__force u16)keys.port16[0]) 2618 swap(keys.port16[0], keys.port16[1]); 2619 skb->l4_rxhash = 1; 2620 } 2621 2622 /* get a consistent hash (same value on both flow directions) */ 2623 if ((__force u32)keys.dst < (__force u32)keys.src) 2624 swap(keys.dst, keys.src); 2625 2626 hash = jhash_3words((__force u32)keys.dst, 2627 (__force u32)keys.src, 2628 (__force u32)keys.ports, hashrnd); 2629 if (!hash) 2630 hash = 1; 2631 2632 skb->rxhash = hash; 2633 } 2634 EXPORT_SYMBOL(__skb_get_rxhash); 2635 2636 #ifdef CONFIG_RPS 2637 2638 /* One global table that all flow-based protocols share. */ 2639 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly; 2640 EXPORT_SYMBOL(rps_sock_flow_table); 2641 2642 struct static_key rps_needed __read_mostly; 2643 2644 static struct rps_dev_flow * 2645 set_rps_cpu(struct net_device *dev, struct sk_buff *skb, 2646 struct rps_dev_flow *rflow, u16 next_cpu) 2647 { 2648 if (next_cpu != RPS_NO_CPU) { 2649 #ifdef CONFIG_RFS_ACCEL 2650 struct netdev_rx_queue *rxqueue; 2651 struct rps_dev_flow_table *flow_table; 2652 struct rps_dev_flow *old_rflow; 2653 u32 flow_id; 2654 u16 rxq_index; 2655 int rc; 2656 2657 /* Should we steer this flow to a different hardware queue? */ 2658 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap || 2659 !(dev->features & NETIF_F_NTUPLE)) 2660 goto out; 2661 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu); 2662 if (rxq_index == skb_get_rx_queue(skb)) 2663 goto out; 2664 2665 rxqueue = dev->_rx + rxq_index; 2666 flow_table = rcu_dereference(rxqueue->rps_flow_table); 2667 if (!flow_table) 2668 goto out; 2669 flow_id = skb->rxhash & flow_table->mask; 2670 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb, 2671 rxq_index, flow_id); 2672 if (rc < 0) 2673 goto out; 2674 old_rflow = rflow; 2675 rflow = &flow_table->flows[flow_id]; 2676 rflow->filter = rc; 2677 if (old_rflow->filter == rflow->filter) 2678 old_rflow->filter = RPS_NO_FILTER; 2679 out: 2680 #endif 2681 rflow->last_qtail = 2682 per_cpu(softnet_data, next_cpu).input_queue_head; 2683 } 2684 2685 rflow->cpu = next_cpu; 2686 return rflow; 2687 } 2688 2689 /* 2690 * get_rps_cpu is called from netif_receive_skb and returns the target 2691 * CPU from the RPS map of the receiving queue for a given skb. 2692 * rcu_read_lock must be held on entry. 2693 */ 2694 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb, 2695 struct rps_dev_flow **rflowp) 2696 { 2697 struct netdev_rx_queue *rxqueue; 2698 struct rps_map *map; 2699 struct rps_dev_flow_table *flow_table; 2700 struct rps_sock_flow_table *sock_flow_table; 2701 int cpu = -1; 2702 u16 tcpu; 2703 2704 if (skb_rx_queue_recorded(skb)) { 2705 u16 index = skb_get_rx_queue(skb); 2706 if (unlikely(index >= dev->real_num_rx_queues)) { 2707 WARN_ONCE(dev->real_num_rx_queues > 1, 2708 "%s received packet on queue %u, but number " 2709 "of RX queues is %u\n", 2710 dev->name, index, dev->real_num_rx_queues); 2711 goto done; 2712 } 2713 rxqueue = dev->_rx + index; 2714 } else 2715 rxqueue = dev->_rx; 2716 2717 map = rcu_dereference(rxqueue->rps_map); 2718 if (map) { 2719 if (map->len == 1 && 2720 !rcu_access_pointer(rxqueue->rps_flow_table)) { 2721 tcpu = map->cpus[0]; 2722 if (cpu_online(tcpu)) 2723 cpu = tcpu; 2724 goto done; 2725 } 2726 } else if (!rcu_access_pointer(rxqueue->rps_flow_table)) { 2727 goto done; 2728 } 2729 2730 skb_reset_network_header(skb); 2731 if (!skb_get_rxhash(skb)) 2732 goto done; 2733 2734 flow_table = rcu_dereference(rxqueue->rps_flow_table); 2735 sock_flow_table = rcu_dereference(rps_sock_flow_table); 2736 if (flow_table && sock_flow_table) { 2737 u16 next_cpu; 2738 struct rps_dev_flow *rflow; 2739 2740 rflow = &flow_table->flows[skb->rxhash & flow_table->mask]; 2741 tcpu = rflow->cpu; 2742 2743 next_cpu = sock_flow_table->ents[skb->rxhash & 2744 sock_flow_table->mask]; 2745 2746 /* 2747 * If the desired CPU (where last recvmsg was done) is 2748 * different from current CPU (one in the rx-queue flow 2749 * table entry), switch if one of the following holds: 2750 * - Current CPU is unset (equal to RPS_NO_CPU). 2751 * - Current CPU is offline. 2752 * - The current CPU's queue tail has advanced beyond the 2753 * last packet that was enqueued using this table entry. 2754 * This guarantees that all previous packets for the flow 2755 * have been dequeued, thus preserving in order delivery. 2756 */ 2757 if (unlikely(tcpu != next_cpu) && 2758 (tcpu == RPS_NO_CPU || !cpu_online(tcpu) || 2759 ((int)(per_cpu(softnet_data, tcpu).input_queue_head - 2760 rflow->last_qtail)) >= 0)) 2761 rflow = set_rps_cpu(dev, skb, rflow, next_cpu); 2762 2763 if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) { 2764 *rflowp = rflow; 2765 cpu = tcpu; 2766 goto done; 2767 } 2768 } 2769 2770 if (map) { 2771 tcpu = map->cpus[((u64) skb->rxhash * map->len) >> 32]; 2772 2773 if (cpu_online(tcpu)) { 2774 cpu = tcpu; 2775 goto done; 2776 } 2777 } 2778 2779 done: 2780 return cpu; 2781 } 2782 2783 #ifdef CONFIG_RFS_ACCEL 2784 2785 /** 2786 * rps_may_expire_flow - check whether an RFS hardware filter may be removed 2787 * @dev: Device on which the filter was set 2788 * @rxq_index: RX queue index 2789 * @flow_id: Flow ID passed to ndo_rx_flow_steer() 2790 * @filter_id: Filter ID returned by ndo_rx_flow_steer() 2791 * 2792 * Drivers that implement ndo_rx_flow_steer() should periodically call 2793 * this function for each installed filter and remove the filters for 2794 * which it returns %true. 2795 */ 2796 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, 2797 u32 flow_id, u16 filter_id) 2798 { 2799 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index; 2800 struct rps_dev_flow_table *flow_table; 2801 struct rps_dev_flow *rflow; 2802 bool expire = true; 2803 int cpu; 2804 2805 rcu_read_lock(); 2806 flow_table = rcu_dereference(rxqueue->rps_flow_table); 2807 if (flow_table && flow_id <= flow_table->mask) { 2808 rflow = &flow_table->flows[flow_id]; 2809 cpu = ACCESS_ONCE(rflow->cpu); 2810 if (rflow->filter == filter_id && cpu != RPS_NO_CPU && 2811 ((int)(per_cpu(softnet_data, cpu).input_queue_head - 2812 rflow->last_qtail) < 2813 (int)(10 * flow_table->mask))) 2814 expire = false; 2815 } 2816 rcu_read_unlock(); 2817 return expire; 2818 } 2819 EXPORT_SYMBOL(rps_may_expire_flow); 2820 2821 #endif /* CONFIG_RFS_ACCEL */ 2822 2823 /* Called from hardirq (IPI) context */ 2824 static void rps_trigger_softirq(void *data) 2825 { 2826 struct softnet_data *sd = data; 2827 2828 ____napi_schedule(sd, &sd->backlog); 2829 sd->received_rps++; 2830 } 2831 2832 #endif /* CONFIG_RPS */ 2833 2834 /* 2835 * Check if this softnet_data structure is another cpu one 2836 * If yes, queue it to our IPI list and return 1 2837 * If no, return 0 2838 */ 2839 static int rps_ipi_queued(struct softnet_data *sd) 2840 { 2841 #ifdef CONFIG_RPS 2842 struct softnet_data *mysd = &__get_cpu_var(softnet_data); 2843 2844 if (sd != mysd) { 2845 sd->rps_ipi_next = mysd->rps_ipi_list; 2846 mysd->rps_ipi_list = sd; 2847 2848 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 2849 return 1; 2850 } 2851 #endif /* CONFIG_RPS */ 2852 return 0; 2853 } 2854 2855 /* 2856 * enqueue_to_backlog is called to queue an skb to a per CPU backlog 2857 * queue (may be a remote CPU queue). 2858 */ 2859 static int enqueue_to_backlog(struct sk_buff *skb, int cpu, 2860 unsigned int *qtail) 2861 { 2862 struct softnet_data *sd; 2863 unsigned long flags; 2864 2865 sd = &per_cpu(softnet_data, cpu); 2866 2867 local_irq_save(flags); 2868 2869 rps_lock(sd); 2870 if (skb_queue_len(&sd->input_pkt_queue) <= netdev_max_backlog) { 2871 if (skb_queue_len(&sd->input_pkt_queue)) { 2872 enqueue: 2873 __skb_queue_tail(&sd->input_pkt_queue, skb); 2874 input_queue_tail_incr_save(sd, qtail); 2875 rps_unlock(sd); 2876 local_irq_restore(flags); 2877 return NET_RX_SUCCESS; 2878 } 2879 2880 /* Schedule NAPI for backlog device 2881 * We can use non atomic operation since we own the queue lock 2882 */ 2883 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) { 2884 if (!rps_ipi_queued(sd)) 2885 ____napi_schedule(sd, &sd->backlog); 2886 } 2887 goto enqueue; 2888 } 2889 2890 sd->dropped++; 2891 rps_unlock(sd); 2892 2893 local_irq_restore(flags); 2894 2895 atomic_long_inc(&skb->dev->rx_dropped); 2896 kfree_skb(skb); 2897 return NET_RX_DROP; 2898 } 2899 2900 /** 2901 * netif_rx - post buffer to the network code 2902 * @skb: buffer to post 2903 * 2904 * This function receives a packet from a device driver and queues it for 2905 * the upper (protocol) levels to process. It always succeeds. The buffer 2906 * may be dropped during processing for congestion control or by the 2907 * protocol layers. 2908 * 2909 * return values: 2910 * NET_RX_SUCCESS (no congestion) 2911 * NET_RX_DROP (packet was dropped) 2912 * 2913 */ 2914 2915 int netif_rx(struct sk_buff *skb) 2916 { 2917 int ret; 2918 2919 /* if netpoll wants it, pretend we never saw it */ 2920 if (netpoll_rx(skb)) 2921 return NET_RX_DROP; 2922 2923 net_timestamp_check(netdev_tstamp_prequeue, skb); 2924 2925 trace_netif_rx(skb); 2926 #ifdef CONFIG_RPS 2927 if (static_key_false(&rps_needed)) { 2928 struct rps_dev_flow voidflow, *rflow = &voidflow; 2929 int cpu; 2930 2931 preempt_disable(); 2932 rcu_read_lock(); 2933 2934 cpu = get_rps_cpu(skb->dev, skb, &rflow); 2935 if (cpu < 0) 2936 cpu = smp_processor_id(); 2937 2938 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 2939 2940 rcu_read_unlock(); 2941 preempt_enable(); 2942 } else 2943 #endif 2944 { 2945 unsigned int qtail; 2946 ret = enqueue_to_backlog(skb, get_cpu(), &qtail); 2947 put_cpu(); 2948 } 2949 return ret; 2950 } 2951 EXPORT_SYMBOL(netif_rx); 2952 2953 int netif_rx_ni(struct sk_buff *skb) 2954 { 2955 int err; 2956 2957 preempt_disable(); 2958 err = netif_rx(skb); 2959 if (local_softirq_pending()) 2960 do_softirq(); 2961 preempt_enable(); 2962 2963 return err; 2964 } 2965 EXPORT_SYMBOL(netif_rx_ni); 2966 2967 static void net_tx_action(struct softirq_action *h) 2968 { 2969 struct softnet_data *sd = &__get_cpu_var(softnet_data); 2970 2971 if (sd->completion_queue) { 2972 struct sk_buff *clist; 2973 2974 local_irq_disable(); 2975 clist = sd->completion_queue; 2976 sd->completion_queue = NULL; 2977 local_irq_enable(); 2978 2979 while (clist) { 2980 struct sk_buff *skb = clist; 2981 clist = clist->next; 2982 2983 WARN_ON(atomic_read(&skb->users)); 2984 trace_kfree_skb(skb, net_tx_action); 2985 __kfree_skb(skb); 2986 } 2987 } 2988 2989 if (sd->output_queue) { 2990 struct Qdisc *head; 2991 2992 local_irq_disable(); 2993 head = sd->output_queue; 2994 sd->output_queue = NULL; 2995 sd->output_queue_tailp = &sd->output_queue; 2996 local_irq_enable(); 2997 2998 while (head) { 2999 struct Qdisc *q = head; 3000 spinlock_t *root_lock; 3001 3002 head = head->next_sched; 3003 3004 root_lock = qdisc_lock(q); 3005 if (spin_trylock(root_lock)) { 3006 smp_mb__before_clear_bit(); 3007 clear_bit(__QDISC_STATE_SCHED, 3008 &q->state); 3009 qdisc_run(q); 3010 spin_unlock(root_lock); 3011 } else { 3012 if (!test_bit(__QDISC_STATE_DEACTIVATED, 3013 &q->state)) { 3014 __netif_reschedule(q); 3015 } else { 3016 smp_mb__before_clear_bit(); 3017 clear_bit(__QDISC_STATE_SCHED, 3018 &q->state); 3019 } 3020 } 3021 } 3022 } 3023 } 3024 3025 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \ 3026 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE)) 3027 /* This hook is defined here for ATM LANE */ 3028 int (*br_fdb_test_addr_hook)(struct net_device *dev, 3029 unsigned char *addr) __read_mostly; 3030 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook); 3031 #endif 3032 3033 #ifdef CONFIG_NET_CLS_ACT 3034 /* TODO: Maybe we should just force sch_ingress to be compiled in 3035 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions 3036 * a compare and 2 stores extra right now if we dont have it on 3037 * but have CONFIG_NET_CLS_ACT 3038 * NOTE: This doesn't stop any functionality; if you dont have 3039 * the ingress scheduler, you just can't add policies on ingress. 3040 * 3041 */ 3042 static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq) 3043 { 3044 struct net_device *dev = skb->dev; 3045 u32 ttl = G_TC_RTTL(skb->tc_verd); 3046 int result = TC_ACT_OK; 3047 struct Qdisc *q; 3048 3049 if (unlikely(MAX_RED_LOOP < ttl++)) { 3050 net_warn_ratelimited("Redir loop detected Dropping packet (%d->%d)\n", 3051 skb->skb_iif, dev->ifindex); 3052 return TC_ACT_SHOT; 3053 } 3054 3055 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl); 3056 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS); 3057 3058 q = rxq->qdisc; 3059 if (q != &noop_qdisc) { 3060 spin_lock(qdisc_lock(q)); 3061 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) 3062 result = qdisc_enqueue_root(skb, q); 3063 spin_unlock(qdisc_lock(q)); 3064 } 3065 3066 return result; 3067 } 3068 3069 static inline struct sk_buff *handle_ing(struct sk_buff *skb, 3070 struct packet_type **pt_prev, 3071 int *ret, struct net_device *orig_dev) 3072 { 3073 struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue); 3074 3075 if (!rxq || rxq->qdisc == &noop_qdisc) 3076 goto out; 3077 3078 if (*pt_prev) { 3079 *ret = deliver_skb(skb, *pt_prev, orig_dev); 3080 *pt_prev = NULL; 3081 } 3082 3083 switch (ing_filter(skb, rxq)) { 3084 case TC_ACT_SHOT: 3085 case TC_ACT_STOLEN: 3086 kfree_skb(skb); 3087 return NULL; 3088 } 3089 3090 out: 3091 skb->tc_verd = 0; 3092 return skb; 3093 } 3094 #endif 3095 3096 /** 3097 * netdev_rx_handler_register - register receive handler 3098 * @dev: device to register a handler for 3099 * @rx_handler: receive handler to register 3100 * @rx_handler_data: data pointer that is used by rx handler 3101 * 3102 * Register a receive hander for a device. This handler will then be 3103 * called from __netif_receive_skb. A negative errno code is returned 3104 * on a failure. 3105 * 3106 * The caller must hold the rtnl_mutex. 3107 * 3108 * For a general description of rx_handler, see enum rx_handler_result. 3109 */ 3110 int netdev_rx_handler_register(struct net_device *dev, 3111 rx_handler_func_t *rx_handler, 3112 void *rx_handler_data) 3113 { 3114 ASSERT_RTNL(); 3115 3116 if (dev->rx_handler) 3117 return -EBUSY; 3118 3119 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data); 3120 rcu_assign_pointer(dev->rx_handler, rx_handler); 3121 3122 return 0; 3123 } 3124 EXPORT_SYMBOL_GPL(netdev_rx_handler_register); 3125 3126 /** 3127 * netdev_rx_handler_unregister - unregister receive handler 3128 * @dev: device to unregister a handler from 3129 * 3130 * Unregister a receive hander from a device. 3131 * 3132 * The caller must hold the rtnl_mutex. 3133 */ 3134 void netdev_rx_handler_unregister(struct net_device *dev) 3135 { 3136 3137 ASSERT_RTNL(); 3138 RCU_INIT_POINTER(dev->rx_handler, NULL); 3139 RCU_INIT_POINTER(dev->rx_handler_data, NULL); 3140 } 3141 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister); 3142 3143 static int __netif_receive_skb(struct sk_buff *skb) 3144 { 3145 struct packet_type *ptype, *pt_prev; 3146 rx_handler_func_t *rx_handler; 3147 struct net_device *orig_dev; 3148 struct net_device *null_or_dev; 3149 bool deliver_exact = false; 3150 int ret = NET_RX_DROP; 3151 __be16 type; 3152 3153 net_timestamp_check(!netdev_tstamp_prequeue, skb); 3154 3155 trace_netif_receive_skb(skb); 3156 3157 /* if we've gotten here through NAPI, check netpoll */ 3158 if (netpoll_receive_skb(skb)) 3159 return NET_RX_DROP; 3160 3161 if (!skb->skb_iif) 3162 skb->skb_iif = skb->dev->ifindex; 3163 orig_dev = skb->dev; 3164 3165 skb_reset_network_header(skb); 3166 skb_reset_transport_header(skb); 3167 skb_reset_mac_len(skb); 3168 3169 pt_prev = NULL; 3170 3171 rcu_read_lock(); 3172 3173 another_round: 3174 3175 __this_cpu_inc(softnet_data.processed); 3176 3177 if (skb->protocol == cpu_to_be16(ETH_P_8021Q)) { 3178 skb = vlan_untag(skb); 3179 if (unlikely(!skb)) 3180 goto out; 3181 } 3182 3183 #ifdef CONFIG_NET_CLS_ACT 3184 if (skb->tc_verd & TC_NCLS) { 3185 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd); 3186 goto ncls; 3187 } 3188 #endif 3189 3190 list_for_each_entry_rcu(ptype, &ptype_all, list) { 3191 if (!ptype->dev || ptype->dev == skb->dev) { 3192 if (pt_prev) 3193 ret = deliver_skb(skb, pt_prev, orig_dev); 3194 pt_prev = ptype; 3195 } 3196 } 3197 3198 #ifdef CONFIG_NET_CLS_ACT 3199 skb = handle_ing(skb, &pt_prev, &ret, orig_dev); 3200 if (!skb) 3201 goto out; 3202 ncls: 3203 #endif 3204 3205 rx_handler = rcu_dereference(skb->dev->rx_handler); 3206 if (vlan_tx_tag_present(skb)) { 3207 if (pt_prev) { 3208 ret = deliver_skb(skb, pt_prev, orig_dev); 3209 pt_prev = NULL; 3210 } 3211 if (vlan_do_receive(&skb, !rx_handler)) 3212 goto another_round; 3213 else if (unlikely(!skb)) 3214 goto out; 3215 } 3216 3217 if (rx_handler) { 3218 if (pt_prev) { 3219 ret = deliver_skb(skb, pt_prev, orig_dev); 3220 pt_prev = NULL; 3221 } 3222 switch (rx_handler(&skb)) { 3223 case RX_HANDLER_CONSUMED: 3224 goto out; 3225 case RX_HANDLER_ANOTHER: 3226 goto another_round; 3227 case RX_HANDLER_EXACT: 3228 deliver_exact = true; 3229 case RX_HANDLER_PASS: 3230 break; 3231 default: 3232 BUG(); 3233 } 3234 } 3235 3236 /* deliver only exact match when indicated */ 3237 null_or_dev = deliver_exact ? skb->dev : NULL; 3238 3239 type = skb->protocol; 3240 list_for_each_entry_rcu(ptype, 3241 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) { 3242 if (ptype->type == type && 3243 (ptype->dev == null_or_dev || ptype->dev == skb->dev || 3244 ptype->dev == orig_dev)) { 3245 if (pt_prev) 3246 ret = deliver_skb(skb, pt_prev, orig_dev); 3247 pt_prev = ptype; 3248 } 3249 } 3250 3251 if (pt_prev) { 3252 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 3253 } else { 3254 atomic_long_inc(&skb->dev->rx_dropped); 3255 kfree_skb(skb); 3256 /* Jamal, now you will not able to escape explaining 3257 * me how you were going to use this. :-) 3258 */ 3259 ret = NET_RX_DROP; 3260 } 3261 3262 out: 3263 rcu_read_unlock(); 3264 return ret; 3265 } 3266 3267 /** 3268 * netif_receive_skb - process receive buffer from network 3269 * @skb: buffer to process 3270 * 3271 * netif_receive_skb() is the main receive data processing function. 3272 * It always succeeds. The buffer may be dropped during processing 3273 * for congestion control or by the protocol layers. 3274 * 3275 * This function may only be called from softirq context and interrupts 3276 * should be enabled. 3277 * 3278 * Return values (usually ignored): 3279 * NET_RX_SUCCESS: no congestion 3280 * NET_RX_DROP: packet was dropped 3281 */ 3282 int netif_receive_skb(struct sk_buff *skb) 3283 { 3284 net_timestamp_check(netdev_tstamp_prequeue, skb); 3285 3286 if (skb_defer_rx_timestamp(skb)) 3287 return NET_RX_SUCCESS; 3288 3289 #ifdef CONFIG_RPS 3290 if (static_key_false(&rps_needed)) { 3291 struct rps_dev_flow voidflow, *rflow = &voidflow; 3292 int cpu, ret; 3293 3294 rcu_read_lock(); 3295 3296 cpu = get_rps_cpu(skb->dev, skb, &rflow); 3297 3298 if (cpu >= 0) { 3299 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 3300 rcu_read_unlock(); 3301 return ret; 3302 } 3303 rcu_read_unlock(); 3304 } 3305 #endif 3306 return __netif_receive_skb(skb); 3307 } 3308 EXPORT_SYMBOL(netif_receive_skb); 3309 3310 /* Network device is going away, flush any packets still pending 3311 * Called with irqs disabled. 3312 */ 3313 static void flush_backlog(void *arg) 3314 { 3315 struct net_device *dev = arg; 3316 struct softnet_data *sd = &__get_cpu_var(softnet_data); 3317 struct sk_buff *skb, *tmp; 3318 3319 rps_lock(sd); 3320 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) { 3321 if (skb->dev == dev) { 3322 __skb_unlink(skb, &sd->input_pkt_queue); 3323 kfree_skb(skb); 3324 input_queue_head_incr(sd); 3325 } 3326 } 3327 rps_unlock(sd); 3328 3329 skb_queue_walk_safe(&sd->process_queue, skb, tmp) { 3330 if (skb->dev == dev) { 3331 __skb_unlink(skb, &sd->process_queue); 3332 kfree_skb(skb); 3333 input_queue_head_incr(sd); 3334 } 3335 } 3336 } 3337 3338 static int napi_gro_complete(struct sk_buff *skb) 3339 { 3340 struct packet_type *ptype; 3341 __be16 type = skb->protocol; 3342 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK]; 3343 int err = -ENOENT; 3344 3345 if (NAPI_GRO_CB(skb)->count == 1) { 3346 skb_shinfo(skb)->gso_size = 0; 3347 goto out; 3348 } 3349 3350 rcu_read_lock(); 3351 list_for_each_entry_rcu(ptype, head, list) { 3352 if (ptype->type != type || ptype->dev || !ptype->gro_complete) 3353 continue; 3354 3355 err = ptype->gro_complete(skb); 3356 break; 3357 } 3358 rcu_read_unlock(); 3359 3360 if (err) { 3361 WARN_ON(&ptype->list == head); 3362 kfree_skb(skb); 3363 return NET_RX_SUCCESS; 3364 } 3365 3366 out: 3367 return netif_receive_skb(skb); 3368 } 3369 3370 inline void napi_gro_flush(struct napi_struct *napi) 3371 { 3372 struct sk_buff *skb, *next; 3373 3374 for (skb = napi->gro_list; skb; skb = next) { 3375 next = skb->next; 3376 skb->next = NULL; 3377 napi_gro_complete(skb); 3378 } 3379 3380 napi->gro_count = 0; 3381 napi->gro_list = NULL; 3382 } 3383 EXPORT_SYMBOL(napi_gro_flush); 3384 3385 enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 3386 { 3387 struct sk_buff **pp = NULL; 3388 struct packet_type *ptype; 3389 __be16 type = skb->protocol; 3390 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK]; 3391 int same_flow; 3392 int mac_len; 3393 enum gro_result ret; 3394 3395 if (!(skb->dev->features & NETIF_F_GRO) || netpoll_rx_on(skb)) 3396 goto normal; 3397 3398 if (skb_is_gso(skb) || skb_has_frag_list(skb)) 3399 goto normal; 3400 3401 rcu_read_lock(); 3402 list_for_each_entry_rcu(ptype, head, list) { 3403 if (ptype->type != type || ptype->dev || !ptype->gro_receive) 3404 continue; 3405 3406 skb_set_network_header(skb, skb_gro_offset(skb)); 3407 mac_len = skb->network_header - skb->mac_header; 3408 skb->mac_len = mac_len; 3409 NAPI_GRO_CB(skb)->same_flow = 0; 3410 NAPI_GRO_CB(skb)->flush = 0; 3411 NAPI_GRO_CB(skb)->free = 0; 3412 3413 pp = ptype->gro_receive(&napi->gro_list, skb); 3414 break; 3415 } 3416 rcu_read_unlock(); 3417 3418 if (&ptype->list == head) 3419 goto normal; 3420 3421 same_flow = NAPI_GRO_CB(skb)->same_flow; 3422 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED; 3423 3424 if (pp) { 3425 struct sk_buff *nskb = *pp; 3426 3427 *pp = nskb->next; 3428 nskb->next = NULL; 3429 napi_gro_complete(nskb); 3430 napi->gro_count--; 3431 } 3432 3433 if (same_flow) 3434 goto ok; 3435 3436 if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS) 3437 goto normal; 3438 3439 napi->gro_count++; 3440 NAPI_GRO_CB(skb)->count = 1; 3441 skb_shinfo(skb)->gso_size = skb_gro_len(skb); 3442 skb->next = napi->gro_list; 3443 napi->gro_list = skb; 3444 ret = GRO_HELD; 3445 3446 pull: 3447 if (skb_headlen(skb) < skb_gro_offset(skb)) { 3448 int grow = skb_gro_offset(skb) - skb_headlen(skb); 3449 3450 BUG_ON(skb->end - skb->tail < grow); 3451 3452 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow); 3453 3454 skb->tail += grow; 3455 skb->data_len -= grow; 3456 3457 skb_shinfo(skb)->frags[0].page_offset += grow; 3458 skb_frag_size_sub(&skb_shinfo(skb)->frags[0], grow); 3459 3460 if (unlikely(!skb_frag_size(&skb_shinfo(skb)->frags[0]))) { 3461 skb_frag_unref(skb, 0); 3462 memmove(skb_shinfo(skb)->frags, 3463 skb_shinfo(skb)->frags + 1, 3464 --skb_shinfo(skb)->nr_frags * sizeof(skb_frag_t)); 3465 } 3466 } 3467 3468 ok: 3469 return ret; 3470 3471 normal: 3472 ret = GRO_NORMAL; 3473 goto pull; 3474 } 3475 EXPORT_SYMBOL(dev_gro_receive); 3476 3477 static inline gro_result_t 3478 __napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 3479 { 3480 struct sk_buff *p; 3481 unsigned int maclen = skb->dev->hard_header_len; 3482 3483 for (p = napi->gro_list; p; p = p->next) { 3484 unsigned long diffs; 3485 3486 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev; 3487 diffs |= p->vlan_tci ^ skb->vlan_tci; 3488 if (maclen == ETH_HLEN) 3489 diffs |= compare_ether_header(skb_mac_header(p), 3490 skb_gro_mac_header(skb)); 3491 else if (!diffs) 3492 diffs = memcmp(skb_mac_header(p), 3493 skb_gro_mac_header(skb), 3494 maclen); 3495 NAPI_GRO_CB(p)->same_flow = !diffs; 3496 NAPI_GRO_CB(p)->flush = 0; 3497 } 3498 3499 return dev_gro_receive(napi, skb); 3500 } 3501 3502 gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb) 3503 { 3504 switch (ret) { 3505 case GRO_NORMAL: 3506 if (netif_receive_skb(skb)) 3507 ret = GRO_DROP; 3508 break; 3509 3510 case GRO_DROP: 3511 kfree_skb(skb); 3512 break; 3513 3514 case GRO_MERGED_FREE: 3515 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) 3516 kmem_cache_free(skbuff_head_cache, skb); 3517 else 3518 __kfree_skb(skb); 3519 break; 3520 3521 case GRO_HELD: 3522 case GRO_MERGED: 3523 break; 3524 } 3525 3526 return ret; 3527 } 3528 EXPORT_SYMBOL(napi_skb_finish); 3529 3530 void skb_gro_reset_offset(struct sk_buff *skb) 3531 { 3532 NAPI_GRO_CB(skb)->data_offset = 0; 3533 NAPI_GRO_CB(skb)->frag0 = NULL; 3534 NAPI_GRO_CB(skb)->frag0_len = 0; 3535 3536 if (skb->mac_header == skb->tail && 3537 !PageHighMem(skb_frag_page(&skb_shinfo(skb)->frags[0]))) { 3538 NAPI_GRO_CB(skb)->frag0 = 3539 skb_frag_address(&skb_shinfo(skb)->frags[0]); 3540 NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(&skb_shinfo(skb)->frags[0]); 3541 } 3542 } 3543 EXPORT_SYMBOL(skb_gro_reset_offset); 3544 3545 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 3546 { 3547 skb_gro_reset_offset(skb); 3548 3549 return napi_skb_finish(__napi_gro_receive(napi, skb), skb); 3550 } 3551 EXPORT_SYMBOL(napi_gro_receive); 3552 3553 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb) 3554 { 3555 __skb_pull(skb, skb_headlen(skb)); 3556 /* restore the reserve we had after netdev_alloc_skb_ip_align() */ 3557 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb)); 3558 skb->vlan_tci = 0; 3559 skb->dev = napi->dev; 3560 skb->skb_iif = 0; 3561 3562 napi->skb = skb; 3563 } 3564 3565 struct sk_buff *napi_get_frags(struct napi_struct *napi) 3566 { 3567 struct sk_buff *skb = napi->skb; 3568 3569 if (!skb) { 3570 skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD); 3571 if (skb) 3572 napi->skb = skb; 3573 } 3574 return skb; 3575 } 3576 EXPORT_SYMBOL(napi_get_frags); 3577 3578 gro_result_t napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb, 3579 gro_result_t ret) 3580 { 3581 switch (ret) { 3582 case GRO_NORMAL: 3583 case GRO_HELD: 3584 skb->protocol = eth_type_trans(skb, skb->dev); 3585 3586 if (ret == GRO_HELD) 3587 skb_gro_pull(skb, -ETH_HLEN); 3588 else if (netif_receive_skb(skb)) 3589 ret = GRO_DROP; 3590 break; 3591 3592 case GRO_DROP: 3593 case GRO_MERGED_FREE: 3594 napi_reuse_skb(napi, skb); 3595 break; 3596 3597 case GRO_MERGED: 3598 break; 3599 } 3600 3601 return ret; 3602 } 3603 EXPORT_SYMBOL(napi_frags_finish); 3604 3605 struct sk_buff *napi_frags_skb(struct napi_struct *napi) 3606 { 3607 struct sk_buff *skb = napi->skb; 3608 struct ethhdr *eth; 3609 unsigned int hlen; 3610 unsigned int off; 3611 3612 napi->skb = NULL; 3613 3614 skb_reset_mac_header(skb); 3615 skb_gro_reset_offset(skb); 3616 3617 off = skb_gro_offset(skb); 3618 hlen = off + sizeof(*eth); 3619 eth = skb_gro_header_fast(skb, off); 3620 if (skb_gro_header_hard(skb, hlen)) { 3621 eth = skb_gro_header_slow(skb, hlen, off); 3622 if (unlikely(!eth)) { 3623 napi_reuse_skb(napi, skb); 3624 skb = NULL; 3625 goto out; 3626 } 3627 } 3628 3629 skb_gro_pull(skb, sizeof(*eth)); 3630 3631 /* 3632 * This works because the only protocols we care about don't require 3633 * special handling. We'll fix it up properly at the end. 3634 */ 3635 skb->protocol = eth->h_proto; 3636 3637 out: 3638 return skb; 3639 } 3640 EXPORT_SYMBOL(napi_frags_skb); 3641 3642 gro_result_t napi_gro_frags(struct napi_struct *napi) 3643 { 3644 struct sk_buff *skb = napi_frags_skb(napi); 3645 3646 if (!skb) 3647 return GRO_DROP; 3648 3649 return napi_frags_finish(napi, skb, __napi_gro_receive(napi, skb)); 3650 } 3651 EXPORT_SYMBOL(napi_gro_frags); 3652 3653 /* 3654 * net_rps_action sends any pending IPI's for rps. 3655 * Note: called with local irq disabled, but exits with local irq enabled. 3656 */ 3657 static void net_rps_action_and_irq_enable(struct softnet_data *sd) 3658 { 3659 #ifdef CONFIG_RPS 3660 struct softnet_data *remsd = sd->rps_ipi_list; 3661 3662 if (remsd) { 3663 sd->rps_ipi_list = NULL; 3664 3665 local_irq_enable(); 3666 3667 /* Send pending IPI's to kick RPS processing on remote cpus. */ 3668 while (remsd) { 3669 struct softnet_data *next = remsd->rps_ipi_next; 3670 3671 if (cpu_online(remsd->cpu)) 3672 __smp_call_function_single(remsd->cpu, 3673 &remsd->csd, 0); 3674 remsd = next; 3675 } 3676 } else 3677 #endif 3678 local_irq_enable(); 3679 } 3680 3681 static int process_backlog(struct napi_struct *napi, int quota) 3682 { 3683 int work = 0; 3684 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog); 3685 3686 #ifdef CONFIG_RPS 3687 /* Check if we have pending ipi, its better to send them now, 3688 * not waiting net_rx_action() end. 3689 */ 3690 if (sd->rps_ipi_list) { 3691 local_irq_disable(); 3692 net_rps_action_and_irq_enable(sd); 3693 } 3694 #endif 3695 napi->weight = weight_p; 3696 local_irq_disable(); 3697 while (work < quota) { 3698 struct sk_buff *skb; 3699 unsigned int qlen; 3700 3701 while ((skb = __skb_dequeue(&sd->process_queue))) { 3702 local_irq_enable(); 3703 __netif_receive_skb(skb); 3704 local_irq_disable(); 3705 input_queue_head_incr(sd); 3706 if (++work >= quota) { 3707 local_irq_enable(); 3708 return work; 3709 } 3710 } 3711 3712 rps_lock(sd); 3713 qlen = skb_queue_len(&sd->input_pkt_queue); 3714 if (qlen) 3715 skb_queue_splice_tail_init(&sd->input_pkt_queue, 3716 &sd->process_queue); 3717 3718 if (qlen < quota - work) { 3719 /* 3720 * Inline a custom version of __napi_complete(). 3721 * only current cpu owns and manipulates this napi, 3722 * and NAPI_STATE_SCHED is the only possible flag set on backlog. 3723 * we can use a plain write instead of clear_bit(), 3724 * and we dont need an smp_mb() memory barrier. 3725 */ 3726 list_del(&napi->poll_list); 3727 napi->state = 0; 3728 3729 quota = work + qlen; 3730 } 3731 rps_unlock(sd); 3732 } 3733 local_irq_enable(); 3734 3735 return work; 3736 } 3737 3738 /** 3739 * __napi_schedule - schedule for receive 3740 * @n: entry to schedule 3741 * 3742 * The entry's receive function will be scheduled to run 3743 */ 3744 void __napi_schedule(struct napi_struct *n) 3745 { 3746 unsigned long flags; 3747 3748 local_irq_save(flags); 3749 ____napi_schedule(&__get_cpu_var(softnet_data), n); 3750 local_irq_restore(flags); 3751 } 3752 EXPORT_SYMBOL(__napi_schedule); 3753 3754 void __napi_complete(struct napi_struct *n) 3755 { 3756 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state)); 3757 BUG_ON(n->gro_list); 3758 3759 list_del(&n->poll_list); 3760 smp_mb__before_clear_bit(); 3761 clear_bit(NAPI_STATE_SCHED, &n->state); 3762 } 3763 EXPORT_SYMBOL(__napi_complete); 3764 3765 void napi_complete(struct napi_struct *n) 3766 { 3767 unsigned long flags; 3768 3769 /* 3770 * don't let napi dequeue from the cpu poll list 3771 * just in case its running on a different cpu 3772 */ 3773 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state))) 3774 return; 3775 3776 napi_gro_flush(n); 3777 local_irq_save(flags); 3778 __napi_complete(n); 3779 local_irq_restore(flags); 3780 } 3781 EXPORT_SYMBOL(napi_complete); 3782 3783 void netif_napi_add(struct net_device *dev, struct napi_struct *napi, 3784 int (*poll)(struct napi_struct *, int), int weight) 3785 { 3786 INIT_LIST_HEAD(&napi->poll_list); 3787 napi->gro_count = 0; 3788 napi->gro_list = NULL; 3789 napi->skb = NULL; 3790 napi->poll = poll; 3791 napi->weight = weight; 3792 list_add(&napi->dev_list, &dev->napi_list); 3793 napi->dev = dev; 3794 #ifdef CONFIG_NETPOLL 3795 spin_lock_init(&napi->poll_lock); 3796 napi->poll_owner = -1; 3797 #endif 3798 set_bit(NAPI_STATE_SCHED, &napi->state); 3799 } 3800 EXPORT_SYMBOL(netif_napi_add); 3801 3802 void netif_napi_del(struct napi_struct *napi) 3803 { 3804 struct sk_buff *skb, *next; 3805 3806 list_del_init(&napi->dev_list); 3807 napi_free_frags(napi); 3808 3809 for (skb = napi->gro_list; skb; skb = next) { 3810 next = skb->next; 3811 skb->next = NULL; 3812 kfree_skb(skb); 3813 } 3814 3815 napi->gro_list = NULL; 3816 napi->gro_count = 0; 3817 } 3818 EXPORT_SYMBOL(netif_napi_del); 3819 3820 static void net_rx_action(struct softirq_action *h) 3821 { 3822 struct softnet_data *sd = &__get_cpu_var(softnet_data); 3823 unsigned long time_limit = jiffies + 2; 3824 int budget = netdev_budget; 3825 void *have; 3826 3827 local_irq_disable(); 3828 3829 while (!list_empty(&sd->poll_list)) { 3830 struct napi_struct *n; 3831 int work, weight; 3832 3833 /* If softirq window is exhuasted then punt. 3834 * Allow this to run for 2 jiffies since which will allow 3835 * an average latency of 1.5/HZ. 3836 */ 3837 if (unlikely(budget <= 0 || time_after(jiffies, time_limit))) 3838 goto softnet_break; 3839 3840 local_irq_enable(); 3841 3842 /* Even though interrupts have been re-enabled, this 3843 * access is safe because interrupts can only add new 3844 * entries to the tail of this list, and only ->poll() 3845 * calls can remove this head entry from the list. 3846 */ 3847 n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list); 3848 3849 have = netpoll_poll_lock(n); 3850 3851 weight = n->weight; 3852 3853 /* This NAPI_STATE_SCHED test is for avoiding a race 3854 * with netpoll's poll_napi(). Only the entity which 3855 * obtains the lock and sees NAPI_STATE_SCHED set will 3856 * actually make the ->poll() call. Therefore we avoid 3857 * accidentally calling ->poll() when NAPI is not scheduled. 3858 */ 3859 work = 0; 3860 if (test_bit(NAPI_STATE_SCHED, &n->state)) { 3861 work = n->poll(n, weight); 3862 trace_napi_poll(n); 3863 } 3864 3865 WARN_ON_ONCE(work > weight); 3866 3867 budget -= work; 3868 3869 local_irq_disable(); 3870 3871 /* Drivers must not modify the NAPI state if they 3872 * consume the entire weight. In such cases this code 3873 * still "owns" the NAPI instance and therefore can 3874 * move the instance around on the list at-will. 3875 */ 3876 if (unlikely(work == weight)) { 3877 if (unlikely(napi_disable_pending(n))) { 3878 local_irq_enable(); 3879 napi_complete(n); 3880 local_irq_disable(); 3881 } else 3882 list_move_tail(&n->poll_list, &sd->poll_list); 3883 } 3884 3885 netpoll_poll_unlock(have); 3886 } 3887 out: 3888 net_rps_action_and_irq_enable(sd); 3889 3890 #ifdef CONFIG_NET_DMA 3891 /* 3892 * There may not be any more sk_buffs coming right now, so push 3893 * any pending DMA copies to hardware 3894 */ 3895 dma_issue_pending_all(); 3896 #endif 3897 3898 return; 3899 3900 softnet_break: 3901 sd->time_squeeze++; 3902 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 3903 goto out; 3904 } 3905 3906 static gifconf_func_t *gifconf_list[NPROTO]; 3907 3908 /** 3909 * register_gifconf - register a SIOCGIF handler 3910 * @family: Address family 3911 * @gifconf: Function handler 3912 * 3913 * Register protocol dependent address dumping routines. The handler 3914 * that is passed must not be freed or reused until it has been replaced 3915 * by another handler. 3916 */ 3917 int register_gifconf(unsigned int family, gifconf_func_t *gifconf) 3918 { 3919 if (family >= NPROTO) 3920 return -EINVAL; 3921 gifconf_list[family] = gifconf; 3922 return 0; 3923 } 3924 EXPORT_SYMBOL(register_gifconf); 3925 3926 3927 /* 3928 * Map an interface index to its name (SIOCGIFNAME) 3929 */ 3930 3931 /* 3932 * We need this ioctl for efficient implementation of the 3933 * if_indextoname() function required by the IPv6 API. Without 3934 * it, we would have to search all the interfaces to find a 3935 * match. --pb 3936 */ 3937 3938 static int dev_ifname(struct net *net, struct ifreq __user *arg) 3939 { 3940 struct net_device *dev; 3941 struct ifreq ifr; 3942 3943 /* 3944 * Fetch the caller's info block. 3945 */ 3946 3947 if (copy_from_user(&ifr, arg, sizeof(struct ifreq))) 3948 return -EFAULT; 3949 3950 rcu_read_lock(); 3951 dev = dev_get_by_index_rcu(net, ifr.ifr_ifindex); 3952 if (!dev) { 3953 rcu_read_unlock(); 3954 return -ENODEV; 3955 } 3956 3957 strcpy(ifr.ifr_name, dev->name); 3958 rcu_read_unlock(); 3959 3960 if (copy_to_user(arg, &ifr, sizeof(struct ifreq))) 3961 return -EFAULT; 3962 return 0; 3963 } 3964 3965 /* 3966 * Perform a SIOCGIFCONF call. This structure will change 3967 * size eventually, and there is nothing I can do about it. 3968 * Thus we will need a 'compatibility mode'. 3969 */ 3970 3971 static int dev_ifconf(struct net *net, char __user *arg) 3972 { 3973 struct ifconf ifc; 3974 struct net_device *dev; 3975 char __user *pos; 3976 int len; 3977 int total; 3978 int i; 3979 3980 /* 3981 * Fetch the caller's info block. 3982 */ 3983 3984 if (copy_from_user(&ifc, arg, sizeof(struct ifconf))) 3985 return -EFAULT; 3986 3987 pos = ifc.ifc_buf; 3988 len = ifc.ifc_len; 3989 3990 /* 3991 * Loop over the interfaces, and write an info block for each. 3992 */ 3993 3994 total = 0; 3995 for_each_netdev(net, dev) { 3996 for (i = 0; i < NPROTO; i++) { 3997 if (gifconf_list[i]) { 3998 int done; 3999 if (!pos) 4000 done = gifconf_list[i](dev, NULL, 0); 4001 else 4002 done = gifconf_list[i](dev, pos + total, 4003 len - total); 4004 if (done < 0) 4005 return -EFAULT; 4006 total += done; 4007 } 4008 } 4009 } 4010 4011 /* 4012 * All done. Write the updated control block back to the caller. 4013 */ 4014 ifc.ifc_len = total; 4015 4016 /* 4017 * Both BSD and Solaris return 0 here, so we do too. 4018 */ 4019 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0; 4020 } 4021 4022 #ifdef CONFIG_PROC_FS 4023 4024 #define BUCKET_SPACE (32 - NETDEV_HASHBITS - 1) 4025 4026 #define get_bucket(x) ((x) >> BUCKET_SPACE) 4027 #define get_offset(x) ((x) & ((1 << BUCKET_SPACE) - 1)) 4028 #define set_bucket_offset(b, o) ((b) << BUCKET_SPACE | (o)) 4029 4030 static inline struct net_device *dev_from_same_bucket(struct seq_file *seq, loff_t *pos) 4031 { 4032 struct net *net = seq_file_net(seq); 4033 struct net_device *dev; 4034 struct hlist_node *p; 4035 struct hlist_head *h; 4036 unsigned int count = 0, offset = get_offset(*pos); 4037 4038 h = &net->dev_name_head[get_bucket(*pos)]; 4039 hlist_for_each_entry_rcu(dev, p, h, name_hlist) { 4040 if (++count == offset) 4041 return dev; 4042 } 4043 4044 return NULL; 4045 } 4046 4047 static inline struct net_device *dev_from_bucket(struct seq_file *seq, loff_t *pos) 4048 { 4049 struct net_device *dev; 4050 unsigned int bucket; 4051 4052 do { 4053 dev = dev_from_same_bucket(seq, pos); 4054 if (dev) 4055 return dev; 4056 4057 bucket = get_bucket(*pos) + 1; 4058 *pos = set_bucket_offset(bucket, 1); 4059 } while (bucket < NETDEV_HASHENTRIES); 4060 4061 return NULL; 4062 } 4063 4064 /* 4065 * This is invoked by the /proc filesystem handler to display a device 4066 * in detail. 4067 */ 4068 void *dev_seq_start(struct seq_file *seq, loff_t *pos) 4069 __acquires(RCU) 4070 { 4071 rcu_read_lock(); 4072 if (!*pos) 4073 return SEQ_START_TOKEN; 4074 4075 if (get_bucket(*pos) >= NETDEV_HASHENTRIES) 4076 return NULL; 4077 4078 return dev_from_bucket(seq, pos); 4079 } 4080 4081 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos) 4082 { 4083 ++*pos; 4084 return dev_from_bucket(seq, pos); 4085 } 4086 4087 void dev_seq_stop(struct seq_file *seq, void *v) 4088 __releases(RCU) 4089 { 4090 rcu_read_unlock(); 4091 } 4092 4093 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev) 4094 { 4095 struct rtnl_link_stats64 temp; 4096 const struct rtnl_link_stats64 *stats = dev_get_stats(dev, &temp); 4097 4098 seq_printf(seq, "%6s: %7llu %7llu %4llu %4llu %4llu %5llu %10llu %9llu " 4099 "%8llu %7llu %4llu %4llu %4llu %5llu %7llu %10llu\n", 4100 dev->name, stats->rx_bytes, stats->rx_packets, 4101 stats->rx_errors, 4102 stats->rx_dropped + stats->rx_missed_errors, 4103 stats->rx_fifo_errors, 4104 stats->rx_length_errors + stats->rx_over_errors + 4105 stats->rx_crc_errors + stats->rx_frame_errors, 4106 stats->rx_compressed, stats->multicast, 4107 stats->tx_bytes, stats->tx_packets, 4108 stats->tx_errors, stats->tx_dropped, 4109 stats->tx_fifo_errors, stats->collisions, 4110 stats->tx_carrier_errors + 4111 stats->tx_aborted_errors + 4112 stats->tx_window_errors + 4113 stats->tx_heartbeat_errors, 4114 stats->tx_compressed); 4115 } 4116 4117 /* 4118 * Called from the PROCfs module. This now uses the new arbitrary sized 4119 * /proc/net interface to create /proc/net/dev 4120 */ 4121 static int dev_seq_show(struct seq_file *seq, void *v) 4122 { 4123 if (v == SEQ_START_TOKEN) 4124 seq_puts(seq, "Inter-| Receive " 4125 " | Transmit\n" 4126 " face |bytes packets errs drop fifo frame " 4127 "compressed multicast|bytes packets errs " 4128 "drop fifo colls carrier compressed\n"); 4129 else 4130 dev_seq_printf_stats(seq, v); 4131 return 0; 4132 } 4133 4134 static struct softnet_data *softnet_get_online(loff_t *pos) 4135 { 4136 struct softnet_data *sd = NULL; 4137 4138 while (*pos < nr_cpu_ids) 4139 if (cpu_online(*pos)) { 4140 sd = &per_cpu(softnet_data, *pos); 4141 break; 4142 } else 4143 ++*pos; 4144 return sd; 4145 } 4146 4147 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos) 4148 { 4149 return softnet_get_online(pos); 4150 } 4151 4152 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos) 4153 { 4154 ++*pos; 4155 return softnet_get_online(pos); 4156 } 4157 4158 static void softnet_seq_stop(struct seq_file *seq, void *v) 4159 { 4160 } 4161 4162 static int softnet_seq_show(struct seq_file *seq, void *v) 4163 { 4164 struct softnet_data *sd = v; 4165 4166 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x %08x\n", 4167 sd->processed, sd->dropped, sd->time_squeeze, 0, 4168 0, 0, 0, 0, /* was fastroute */ 4169 sd->cpu_collision, sd->received_rps); 4170 return 0; 4171 } 4172 4173 static const struct seq_operations dev_seq_ops = { 4174 .start = dev_seq_start, 4175 .next = dev_seq_next, 4176 .stop = dev_seq_stop, 4177 .show = dev_seq_show, 4178 }; 4179 4180 static int dev_seq_open(struct inode *inode, struct file *file) 4181 { 4182 return seq_open_net(inode, file, &dev_seq_ops, 4183 sizeof(struct seq_net_private)); 4184 } 4185 4186 static const struct file_operations dev_seq_fops = { 4187 .owner = THIS_MODULE, 4188 .open = dev_seq_open, 4189 .read = seq_read, 4190 .llseek = seq_lseek, 4191 .release = seq_release_net, 4192 }; 4193 4194 static const struct seq_operations softnet_seq_ops = { 4195 .start = softnet_seq_start, 4196 .next = softnet_seq_next, 4197 .stop = softnet_seq_stop, 4198 .show = softnet_seq_show, 4199 }; 4200 4201 static int softnet_seq_open(struct inode *inode, struct file *file) 4202 { 4203 return seq_open(file, &softnet_seq_ops); 4204 } 4205 4206 static const struct file_operations softnet_seq_fops = { 4207 .owner = THIS_MODULE, 4208 .open = softnet_seq_open, 4209 .read = seq_read, 4210 .llseek = seq_lseek, 4211 .release = seq_release, 4212 }; 4213 4214 static void *ptype_get_idx(loff_t pos) 4215 { 4216 struct packet_type *pt = NULL; 4217 loff_t i = 0; 4218 int t; 4219 4220 list_for_each_entry_rcu(pt, &ptype_all, list) { 4221 if (i == pos) 4222 return pt; 4223 ++i; 4224 } 4225 4226 for (t = 0; t < PTYPE_HASH_SIZE; t++) { 4227 list_for_each_entry_rcu(pt, &ptype_base[t], list) { 4228 if (i == pos) 4229 return pt; 4230 ++i; 4231 } 4232 } 4233 return NULL; 4234 } 4235 4236 static void *ptype_seq_start(struct seq_file *seq, loff_t *pos) 4237 __acquires(RCU) 4238 { 4239 rcu_read_lock(); 4240 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN; 4241 } 4242 4243 static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos) 4244 { 4245 struct packet_type *pt; 4246 struct list_head *nxt; 4247 int hash; 4248 4249 ++*pos; 4250 if (v == SEQ_START_TOKEN) 4251 return ptype_get_idx(0); 4252 4253 pt = v; 4254 nxt = pt->list.next; 4255 if (pt->type == htons(ETH_P_ALL)) { 4256 if (nxt != &ptype_all) 4257 goto found; 4258 hash = 0; 4259 nxt = ptype_base[0].next; 4260 } else 4261 hash = ntohs(pt->type) & PTYPE_HASH_MASK; 4262 4263 while (nxt == &ptype_base[hash]) { 4264 if (++hash >= PTYPE_HASH_SIZE) 4265 return NULL; 4266 nxt = ptype_base[hash].next; 4267 } 4268 found: 4269 return list_entry(nxt, struct packet_type, list); 4270 } 4271 4272 static void ptype_seq_stop(struct seq_file *seq, void *v) 4273 __releases(RCU) 4274 { 4275 rcu_read_unlock(); 4276 } 4277 4278 static int ptype_seq_show(struct seq_file *seq, void *v) 4279 { 4280 struct packet_type *pt = v; 4281 4282 if (v == SEQ_START_TOKEN) 4283 seq_puts(seq, "Type Device Function\n"); 4284 else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) { 4285 if (pt->type == htons(ETH_P_ALL)) 4286 seq_puts(seq, "ALL "); 4287 else 4288 seq_printf(seq, "%04x", ntohs(pt->type)); 4289 4290 seq_printf(seq, " %-8s %pF\n", 4291 pt->dev ? pt->dev->name : "", pt->func); 4292 } 4293 4294 return 0; 4295 } 4296 4297 static const struct seq_operations ptype_seq_ops = { 4298 .start = ptype_seq_start, 4299 .next = ptype_seq_next, 4300 .stop = ptype_seq_stop, 4301 .show = ptype_seq_show, 4302 }; 4303 4304 static int ptype_seq_open(struct inode *inode, struct file *file) 4305 { 4306 return seq_open_net(inode, file, &ptype_seq_ops, 4307 sizeof(struct seq_net_private)); 4308 } 4309 4310 static const struct file_operations ptype_seq_fops = { 4311 .owner = THIS_MODULE, 4312 .open = ptype_seq_open, 4313 .read = seq_read, 4314 .llseek = seq_lseek, 4315 .release = seq_release_net, 4316 }; 4317 4318 4319 static int __net_init dev_proc_net_init(struct net *net) 4320 { 4321 int rc = -ENOMEM; 4322 4323 if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops)) 4324 goto out; 4325 if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops)) 4326 goto out_dev; 4327 if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops)) 4328 goto out_softnet; 4329 4330 if (wext_proc_init(net)) 4331 goto out_ptype; 4332 rc = 0; 4333 out: 4334 return rc; 4335 out_ptype: 4336 proc_net_remove(net, "ptype"); 4337 out_softnet: 4338 proc_net_remove(net, "softnet_stat"); 4339 out_dev: 4340 proc_net_remove(net, "dev"); 4341 goto out; 4342 } 4343 4344 static void __net_exit dev_proc_net_exit(struct net *net) 4345 { 4346 wext_proc_exit(net); 4347 4348 proc_net_remove(net, "ptype"); 4349 proc_net_remove(net, "softnet_stat"); 4350 proc_net_remove(net, "dev"); 4351 } 4352 4353 static struct pernet_operations __net_initdata dev_proc_ops = { 4354 .init = dev_proc_net_init, 4355 .exit = dev_proc_net_exit, 4356 }; 4357 4358 static int __init dev_proc_init(void) 4359 { 4360 return register_pernet_subsys(&dev_proc_ops); 4361 } 4362 #else 4363 #define dev_proc_init() 0 4364 #endif /* CONFIG_PROC_FS */ 4365 4366 4367 /** 4368 * netdev_set_master - set up master pointer 4369 * @slave: slave device 4370 * @master: new master device 4371 * 4372 * Changes the master device of the slave. Pass %NULL to break the 4373 * bonding. The caller must hold the RTNL semaphore. On a failure 4374 * a negative errno code is returned. On success the reference counts 4375 * are adjusted and the function returns zero. 4376 */ 4377 int netdev_set_master(struct net_device *slave, struct net_device *master) 4378 { 4379 struct net_device *old = slave->master; 4380 4381 ASSERT_RTNL(); 4382 4383 if (master) { 4384 if (old) 4385 return -EBUSY; 4386 dev_hold(master); 4387 } 4388 4389 slave->master = master; 4390 4391 if (old) 4392 dev_put(old); 4393 return 0; 4394 } 4395 EXPORT_SYMBOL(netdev_set_master); 4396 4397 /** 4398 * netdev_set_bond_master - set up bonding master/slave pair 4399 * @slave: slave device 4400 * @master: new master device 4401 * 4402 * Changes the master device of the slave. Pass %NULL to break the 4403 * bonding. The caller must hold the RTNL semaphore. On a failure 4404 * a negative errno code is returned. On success %RTM_NEWLINK is sent 4405 * to the routing socket and the function returns zero. 4406 */ 4407 int netdev_set_bond_master(struct net_device *slave, struct net_device *master) 4408 { 4409 int err; 4410 4411 ASSERT_RTNL(); 4412 4413 err = netdev_set_master(slave, master); 4414 if (err) 4415 return err; 4416 if (master) 4417 slave->flags |= IFF_SLAVE; 4418 else 4419 slave->flags &= ~IFF_SLAVE; 4420 4421 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE); 4422 return 0; 4423 } 4424 EXPORT_SYMBOL(netdev_set_bond_master); 4425 4426 static void dev_change_rx_flags(struct net_device *dev, int flags) 4427 { 4428 const struct net_device_ops *ops = dev->netdev_ops; 4429 4430 if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags) 4431 ops->ndo_change_rx_flags(dev, flags); 4432 } 4433 4434 static int __dev_set_promiscuity(struct net_device *dev, int inc) 4435 { 4436 unsigned int old_flags = dev->flags; 4437 uid_t uid; 4438 gid_t gid; 4439 4440 ASSERT_RTNL(); 4441 4442 dev->flags |= IFF_PROMISC; 4443 dev->promiscuity += inc; 4444 if (dev->promiscuity == 0) { 4445 /* 4446 * Avoid overflow. 4447 * If inc causes overflow, untouch promisc and return error. 4448 */ 4449 if (inc < 0) 4450 dev->flags &= ~IFF_PROMISC; 4451 else { 4452 dev->promiscuity -= inc; 4453 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n", 4454 dev->name); 4455 return -EOVERFLOW; 4456 } 4457 } 4458 if (dev->flags != old_flags) { 4459 pr_info("device %s %s promiscuous mode\n", 4460 dev->name, 4461 dev->flags & IFF_PROMISC ? "entered" : "left"); 4462 if (audit_enabled) { 4463 current_uid_gid(&uid, &gid); 4464 audit_log(current->audit_context, GFP_ATOMIC, 4465 AUDIT_ANOM_PROMISCUOUS, 4466 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u", 4467 dev->name, (dev->flags & IFF_PROMISC), 4468 (old_flags & IFF_PROMISC), 4469 audit_get_loginuid(current), 4470 uid, gid, 4471 audit_get_sessionid(current)); 4472 } 4473 4474 dev_change_rx_flags(dev, IFF_PROMISC); 4475 } 4476 return 0; 4477 } 4478 4479 /** 4480 * dev_set_promiscuity - update promiscuity count on a device 4481 * @dev: device 4482 * @inc: modifier 4483 * 4484 * Add or remove promiscuity from a device. While the count in the device 4485 * remains above zero the interface remains promiscuous. Once it hits zero 4486 * the device reverts back to normal filtering operation. A negative inc 4487 * value is used to drop promiscuity on the device. 4488 * Return 0 if successful or a negative errno code on error. 4489 */ 4490 int dev_set_promiscuity(struct net_device *dev, int inc) 4491 { 4492 unsigned int old_flags = dev->flags; 4493 int err; 4494 4495 err = __dev_set_promiscuity(dev, inc); 4496 if (err < 0) 4497 return err; 4498 if (dev->flags != old_flags) 4499 dev_set_rx_mode(dev); 4500 return err; 4501 } 4502 EXPORT_SYMBOL(dev_set_promiscuity); 4503 4504 /** 4505 * dev_set_allmulti - update allmulti count on a device 4506 * @dev: device 4507 * @inc: modifier 4508 * 4509 * Add or remove reception of all multicast frames to a device. While the 4510 * count in the device remains above zero the interface remains listening 4511 * to all interfaces. Once it hits zero the device reverts back to normal 4512 * filtering operation. A negative @inc value is used to drop the counter 4513 * when releasing a resource needing all multicasts. 4514 * Return 0 if successful or a negative errno code on error. 4515 */ 4516 4517 int dev_set_allmulti(struct net_device *dev, int inc) 4518 { 4519 unsigned int old_flags = dev->flags; 4520 4521 ASSERT_RTNL(); 4522 4523 dev->flags |= IFF_ALLMULTI; 4524 dev->allmulti += inc; 4525 if (dev->allmulti == 0) { 4526 /* 4527 * Avoid overflow. 4528 * If inc causes overflow, untouch allmulti and return error. 4529 */ 4530 if (inc < 0) 4531 dev->flags &= ~IFF_ALLMULTI; 4532 else { 4533 dev->allmulti -= inc; 4534 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n", 4535 dev->name); 4536 return -EOVERFLOW; 4537 } 4538 } 4539 if (dev->flags ^ old_flags) { 4540 dev_change_rx_flags(dev, IFF_ALLMULTI); 4541 dev_set_rx_mode(dev); 4542 } 4543 return 0; 4544 } 4545 EXPORT_SYMBOL(dev_set_allmulti); 4546 4547 /* 4548 * Upload unicast and multicast address lists to device and 4549 * configure RX filtering. When the device doesn't support unicast 4550 * filtering it is put in promiscuous mode while unicast addresses 4551 * are present. 4552 */ 4553 void __dev_set_rx_mode(struct net_device *dev) 4554 { 4555 const struct net_device_ops *ops = dev->netdev_ops; 4556 4557 /* dev_open will call this function so the list will stay sane. */ 4558 if (!(dev->flags&IFF_UP)) 4559 return; 4560 4561 if (!netif_device_present(dev)) 4562 return; 4563 4564 if (!(dev->priv_flags & IFF_UNICAST_FLT)) { 4565 /* Unicast addresses changes may only happen under the rtnl, 4566 * therefore calling __dev_set_promiscuity here is safe. 4567 */ 4568 if (!netdev_uc_empty(dev) && !dev->uc_promisc) { 4569 __dev_set_promiscuity(dev, 1); 4570 dev->uc_promisc = true; 4571 } else if (netdev_uc_empty(dev) && dev->uc_promisc) { 4572 __dev_set_promiscuity(dev, -1); 4573 dev->uc_promisc = false; 4574 } 4575 } 4576 4577 if (ops->ndo_set_rx_mode) 4578 ops->ndo_set_rx_mode(dev); 4579 } 4580 4581 void dev_set_rx_mode(struct net_device *dev) 4582 { 4583 netif_addr_lock_bh(dev); 4584 __dev_set_rx_mode(dev); 4585 netif_addr_unlock_bh(dev); 4586 } 4587 4588 /** 4589 * dev_get_flags - get flags reported to userspace 4590 * @dev: device 4591 * 4592 * Get the combination of flag bits exported through APIs to userspace. 4593 */ 4594 unsigned int dev_get_flags(const struct net_device *dev) 4595 { 4596 unsigned int flags; 4597 4598 flags = (dev->flags & ~(IFF_PROMISC | 4599 IFF_ALLMULTI | 4600 IFF_RUNNING | 4601 IFF_LOWER_UP | 4602 IFF_DORMANT)) | 4603 (dev->gflags & (IFF_PROMISC | 4604 IFF_ALLMULTI)); 4605 4606 if (netif_running(dev)) { 4607 if (netif_oper_up(dev)) 4608 flags |= IFF_RUNNING; 4609 if (netif_carrier_ok(dev)) 4610 flags |= IFF_LOWER_UP; 4611 if (netif_dormant(dev)) 4612 flags |= IFF_DORMANT; 4613 } 4614 4615 return flags; 4616 } 4617 EXPORT_SYMBOL(dev_get_flags); 4618 4619 int __dev_change_flags(struct net_device *dev, unsigned int flags) 4620 { 4621 unsigned int old_flags = dev->flags; 4622 int ret; 4623 4624 ASSERT_RTNL(); 4625 4626 /* 4627 * Set the flags on our device. 4628 */ 4629 4630 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP | 4631 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL | 4632 IFF_AUTOMEDIA)) | 4633 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC | 4634 IFF_ALLMULTI)); 4635 4636 /* 4637 * Load in the correct multicast list now the flags have changed. 4638 */ 4639 4640 if ((old_flags ^ flags) & IFF_MULTICAST) 4641 dev_change_rx_flags(dev, IFF_MULTICAST); 4642 4643 dev_set_rx_mode(dev); 4644 4645 /* 4646 * Have we downed the interface. We handle IFF_UP ourselves 4647 * according to user attempts to set it, rather than blindly 4648 * setting it. 4649 */ 4650 4651 ret = 0; 4652 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */ 4653 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev); 4654 4655 if (!ret) 4656 dev_set_rx_mode(dev); 4657 } 4658 4659 if ((flags ^ dev->gflags) & IFF_PROMISC) { 4660 int inc = (flags & IFF_PROMISC) ? 1 : -1; 4661 4662 dev->gflags ^= IFF_PROMISC; 4663 dev_set_promiscuity(dev, inc); 4664 } 4665 4666 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI 4667 is important. Some (broken) drivers set IFF_PROMISC, when 4668 IFF_ALLMULTI is requested not asking us and not reporting. 4669 */ 4670 if ((flags ^ dev->gflags) & IFF_ALLMULTI) { 4671 int inc = (flags & IFF_ALLMULTI) ? 1 : -1; 4672 4673 dev->gflags ^= IFF_ALLMULTI; 4674 dev_set_allmulti(dev, inc); 4675 } 4676 4677 return ret; 4678 } 4679 4680 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags) 4681 { 4682 unsigned int changes = dev->flags ^ old_flags; 4683 4684 if (changes & IFF_UP) { 4685 if (dev->flags & IFF_UP) 4686 call_netdevice_notifiers(NETDEV_UP, dev); 4687 else 4688 call_netdevice_notifiers(NETDEV_DOWN, dev); 4689 } 4690 4691 if (dev->flags & IFF_UP && 4692 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) 4693 call_netdevice_notifiers(NETDEV_CHANGE, dev); 4694 } 4695 4696 /** 4697 * dev_change_flags - change device settings 4698 * @dev: device 4699 * @flags: device state flags 4700 * 4701 * Change settings on device based state flags. The flags are 4702 * in the userspace exported format. 4703 */ 4704 int dev_change_flags(struct net_device *dev, unsigned int flags) 4705 { 4706 int ret; 4707 unsigned int changes, old_flags = dev->flags; 4708 4709 ret = __dev_change_flags(dev, flags); 4710 if (ret < 0) 4711 return ret; 4712 4713 changes = old_flags ^ dev->flags; 4714 if (changes) 4715 rtmsg_ifinfo(RTM_NEWLINK, dev, changes); 4716 4717 __dev_notify_flags(dev, old_flags); 4718 return ret; 4719 } 4720 EXPORT_SYMBOL(dev_change_flags); 4721 4722 /** 4723 * dev_set_mtu - Change maximum transfer unit 4724 * @dev: device 4725 * @new_mtu: new transfer unit 4726 * 4727 * Change the maximum transfer size of the network device. 4728 */ 4729 int dev_set_mtu(struct net_device *dev, int new_mtu) 4730 { 4731 const struct net_device_ops *ops = dev->netdev_ops; 4732 int err; 4733 4734 if (new_mtu == dev->mtu) 4735 return 0; 4736 4737 /* MTU must be positive. */ 4738 if (new_mtu < 0) 4739 return -EINVAL; 4740 4741 if (!netif_device_present(dev)) 4742 return -ENODEV; 4743 4744 err = 0; 4745 if (ops->ndo_change_mtu) 4746 err = ops->ndo_change_mtu(dev, new_mtu); 4747 else 4748 dev->mtu = new_mtu; 4749 4750 if (!err && dev->flags & IFF_UP) 4751 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev); 4752 return err; 4753 } 4754 EXPORT_SYMBOL(dev_set_mtu); 4755 4756 /** 4757 * dev_set_group - Change group this device belongs to 4758 * @dev: device 4759 * @new_group: group this device should belong to 4760 */ 4761 void dev_set_group(struct net_device *dev, int new_group) 4762 { 4763 dev->group = new_group; 4764 } 4765 EXPORT_SYMBOL(dev_set_group); 4766 4767 /** 4768 * dev_set_mac_address - Change Media Access Control Address 4769 * @dev: device 4770 * @sa: new address 4771 * 4772 * Change the hardware (MAC) address of the device 4773 */ 4774 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa) 4775 { 4776 const struct net_device_ops *ops = dev->netdev_ops; 4777 int err; 4778 4779 if (!ops->ndo_set_mac_address) 4780 return -EOPNOTSUPP; 4781 if (sa->sa_family != dev->type) 4782 return -EINVAL; 4783 if (!netif_device_present(dev)) 4784 return -ENODEV; 4785 err = ops->ndo_set_mac_address(dev, sa); 4786 if (!err) 4787 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 4788 return err; 4789 } 4790 EXPORT_SYMBOL(dev_set_mac_address); 4791 4792 /* 4793 * Perform the SIOCxIFxxx calls, inside rcu_read_lock() 4794 */ 4795 static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd) 4796 { 4797 int err; 4798 struct net_device *dev = dev_get_by_name_rcu(net, ifr->ifr_name); 4799 4800 if (!dev) 4801 return -ENODEV; 4802 4803 switch (cmd) { 4804 case SIOCGIFFLAGS: /* Get interface flags */ 4805 ifr->ifr_flags = (short) dev_get_flags(dev); 4806 return 0; 4807 4808 case SIOCGIFMETRIC: /* Get the metric on the interface 4809 (currently unused) */ 4810 ifr->ifr_metric = 0; 4811 return 0; 4812 4813 case SIOCGIFMTU: /* Get the MTU of a device */ 4814 ifr->ifr_mtu = dev->mtu; 4815 return 0; 4816 4817 case SIOCGIFHWADDR: 4818 if (!dev->addr_len) 4819 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data); 4820 else 4821 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr, 4822 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len)); 4823 ifr->ifr_hwaddr.sa_family = dev->type; 4824 return 0; 4825 4826 case SIOCGIFSLAVE: 4827 err = -EINVAL; 4828 break; 4829 4830 case SIOCGIFMAP: 4831 ifr->ifr_map.mem_start = dev->mem_start; 4832 ifr->ifr_map.mem_end = dev->mem_end; 4833 ifr->ifr_map.base_addr = dev->base_addr; 4834 ifr->ifr_map.irq = dev->irq; 4835 ifr->ifr_map.dma = dev->dma; 4836 ifr->ifr_map.port = dev->if_port; 4837 return 0; 4838 4839 case SIOCGIFINDEX: 4840 ifr->ifr_ifindex = dev->ifindex; 4841 return 0; 4842 4843 case SIOCGIFTXQLEN: 4844 ifr->ifr_qlen = dev->tx_queue_len; 4845 return 0; 4846 4847 default: 4848 /* dev_ioctl() should ensure this case 4849 * is never reached 4850 */ 4851 WARN_ON(1); 4852 err = -ENOTTY; 4853 break; 4854 4855 } 4856 return err; 4857 } 4858 4859 /* 4860 * Perform the SIOCxIFxxx calls, inside rtnl_lock() 4861 */ 4862 static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd) 4863 { 4864 int err; 4865 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name); 4866 const struct net_device_ops *ops; 4867 4868 if (!dev) 4869 return -ENODEV; 4870 4871 ops = dev->netdev_ops; 4872 4873 switch (cmd) { 4874 case SIOCSIFFLAGS: /* Set interface flags */ 4875 return dev_change_flags(dev, ifr->ifr_flags); 4876 4877 case SIOCSIFMETRIC: /* Set the metric on the interface 4878 (currently unused) */ 4879 return -EOPNOTSUPP; 4880 4881 case SIOCSIFMTU: /* Set the MTU of a device */ 4882 return dev_set_mtu(dev, ifr->ifr_mtu); 4883 4884 case SIOCSIFHWADDR: 4885 return dev_set_mac_address(dev, &ifr->ifr_hwaddr); 4886 4887 case SIOCSIFHWBROADCAST: 4888 if (ifr->ifr_hwaddr.sa_family != dev->type) 4889 return -EINVAL; 4890 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data, 4891 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len)); 4892 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 4893 return 0; 4894 4895 case SIOCSIFMAP: 4896 if (ops->ndo_set_config) { 4897 if (!netif_device_present(dev)) 4898 return -ENODEV; 4899 return ops->ndo_set_config(dev, &ifr->ifr_map); 4900 } 4901 return -EOPNOTSUPP; 4902 4903 case SIOCADDMULTI: 4904 if (!ops->ndo_set_rx_mode || 4905 ifr->ifr_hwaddr.sa_family != AF_UNSPEC) 4906 return -EINVAL; 4907 if (!netif_device_present(dev)) 4908 return -ENODEV; 4909 return dev_mc_add_global(dev, ifr->ifr_hwaddr.sa_data); 4910 4911 case SIOCDELMULTI: 4912 if (!ops->ndo_set_rx_mode || 4913 ifr->ifr_hwaddr.sa_family != AF_UNSPEC) 4914 return -EINVAL; 4915 if (!netif_device_present(dev)) 4916 return -ENODEV; 4917 return dev_mc_del_global(dev, ifr->ifr_hwaddr.sa_data); 4918 4919 case SIOCSIFTXQLEN: 4920 if (ifr->ifr_qlen < 0) 4921 return -EINVAL; 4922 dev->tx_queue_len = ifr->ifr_qlen; 4923 return 0; 4924 4925 case SIOCSIFNAME: 4926 ifr->ifr_newname[IFNAMSIZ-1] = '\0'; 4927 return dev_change_name(dev, ifr->ifr_newname); 4928 4929 case SIOCSHWTSTAMP: 4930 err = net_hwtstamp_validate(ifr); 4931 if (err) 4932 return err; 4933 /* fall through */ 4934 4935 /* 4936 * Unknown or private ioctl 4937 */ 4938 default: 4939 if ((cmd >= SIOCDEVPRIVATE && 4940 cmd <= SIOCDEVPRIVATE + 15) || 4941 cmd == SIOCBONDENSLAVE || 4942 cmd == SIOCBONDRELEASE || 4943 cmd == SIOCBONDSETHWADDR || 4944 cmd == SIOCBONDSLAVEINFOQUERY || 4945 cmd == SIOCBONDINFOQUERY || 4946 cmd == SIOCBONDCHANGEACTIVE || 4947 cmd == SIOCGMIIPHY || 4948 cmd == SIOCGMIIREG || 4949 cmd == SIOCSMIIREG || 4950 cmd == SIOCBRADDIF || 4951 cmd == SIOCBRDELIF || 4952 cmd == SIOCSHWTSTAMP || 4953 cmd == SIOCWANDEV) { 4954 err = -EOPNOTSUPP; 4955 if (ops->ndo_do_ioctl) { 4956 if (netif_device_present(dev)) 4957 err = ops->ndo_do_ioctl(dev, ifr, cmd); 4958 else 4959 err = -ENODEV; 4960 } 4961 } else 4962 err = -EINVAL; 4963 4964 } 4965 return err; 4966 } 4967 4968 /* 4969 * This function handles all "interface"-type I/O control requests. The actual 4970 * 'doing' part of this is dev_ifsioc above. 4971 */ 4972 4973 /** 4974 * dev_ioctl - network device ioctl 4975 * @net: the applicable net namespace 4976 * @cmd: command to issue 4977 * @arg: pointer to a struct ifreq in user space 4978 * 4979 * Issue ioctl functions to devices. This is normally called by the 4980 * user space syscall interfaces but can sometimes be useful for 4981 * other purposes. The return value is the return from the syscall if 4982 * positive or a negative errno code on error. 4983 */ 4984 4985 int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg) 4986 { 4987 struct ifreq ifr; 4988 int ret; 4989 char *colon; 4990 4991 /* One special case: SIOCGIFCONF takes ifconf argument 4992 and requires shared lock, because it sleeps writing 4993 to user space. 4994 */ 4995 4996 if (cmd == SIOCGIFCONF) { 4997 rtnl_lock(); 4998 ret = dev_ifconf(net, (char __user *) arg); 4999 rtnl_unlock(); 5000 return ret; 5001 } 5002 if (cmd == SIOCGIFNAME) 5003 return dev_ifname(net, (struct ifreq __user *)arg); 5004 5005 if (copy_from_user(&ifr, arg, sizeof(struct ifreq))) 5006 return -EFAULT; 5007 5008 ifr.ifr_name[IFNAMSIZ-1] = 0; 5009 5010 colon = strchr(ifr.ifr_name, ':'); 5011 if (colon) 5012 *colon = 0; 5013 5014 /* 5015 * See which interface the caller is talking about. 5016 */ 5017 5018 switch (cmd) { 5019 /* 5020 * These ioctl calls: 5021 * - can be done by all. 5022 * - atomic and do not require locking. 5023 * - return a value 5024 */ 5025 case SIOCGIFFLAGS: 5026 case SIOCGIFMETRIC: 5027 case SIOCGIFMTU: 5028 case SIOCGIFHWADDR: 5029 case SIOCGIFSLAVE: 5030 case SIOCGIFMAP: 5031 case SIOCGIFINDEX: 5032 case SIOCGIFTXQLEN: 5033 dev_load(net, ifr.ifr_name); 5034 rcu_read_lock(); 5035 ret = dev_ifsioc_locked(net, &ifr, cmd); 5036 rcu_read_unlock(); 5037 if (!ret) { 5038 if (colon) 5039 *colon = ':'; 5040 if (copy_to_user(arg, &ifr, 5041 sizeof(struct ifreq))) 5042 ret = -EFAULT; 5043 } 5044 return ret; 5045 5046 case SIOCETHTOOL: 5047 dev_load(net, ifr.ifr_name); 5048 rtnl_lock(); 5049 ret = dev_ethtool(net, &ifr); 5050 rtnl_unlock(); 5051 if (!ret) { 5052 if (colon) 5053 *colon = ':'; 5054 if (copy_to_user(arg, &ifr, 5055 sizeof(struct ifreq))) 5056 ret = -EFAULT; 5057 } 5058 return ret; 5059 5060 /* 5061 * These ioctl calls: 5062 * - require superuser power. 5063 * - require strict serialization. 5064 * - return a value 5065 */ 5066 case SIOCGMIIPHY: 5067 case SIOCGMIIREG: 5068 case SIOCSIFNAME: 5069 if (!capable(CAP_NET_ADMIN)) 5070 return -EPERM; 5071 dev_load(net, ifr.ifr_name); 5072 rtnl_lock(); 5073 ret = dev_ifsioc(net, &ifr, cmd); 5074 rtnl_unlock(); 5075 if (!ret) { 5076 if (colon) 5077 *colon = ':'; 5078 if (copy_to_user(arg, &ifr, 5079 sizeof(struct ifreq))) 5080 ret = -EFAULT; 5081 } 5082 return ret; 5083 5084 /* 5085 * These ioctl calls: 5086 * - require superuser power. 5087 * - require strict serialization. 5088 * - do not return a value 5089 */ 5090 case SIOCSIFFLAGS: 5091 case SIOCSIFMETRIC: 5092 case SIOCSIFMTU: 5093 case SIOCSIFMAP: 5094 case SIOCSIFHWADDR: 5095 case SIOCSIFSLAVE: 5096 case SIOCADDMULTI: 5097 case SIOCDELMULTI: 5098 case SIOCSIFHWBROADCAST: 5099 case SIOCSIFTXQLEN: 5100 case SIOCSMIIREG: 5101 case SIOCBONDENSLAVE: 5102 case SIOCBONDRELEASE: 5103 case SIOCBONDSETHWADDR: 5104 case SIOCBONDCHANGEACTIVE: 5105 case SIOCBRADDIF: 5106 case SIOCBRDELIF: 5107 case SIOCSHWTSTAMP: 5108 if (!capable(CAP_NET_ADMIN)) 5109 return -EPERM; 5110 /* fall through */ 5111 case SIOCBONDSLAVEINFOQUERY: 5112 case SIOCBONDINFOQUERY: 5113 dev_load(net, ifr.ifr_name); 5114 rtnl_lock(); 5115 ret = dev_ifsioc(net, &ifr, cmd); 5116 rtnl_unlock(); 5117 return ret; 5118 5119 case SIOCGIFMEM: 5120 /* Get the per device memory space. We can add this but 5121 * currently do not support it */ 5122 case SIOCSIFMEM: 5123 /* Set the per device memory buffer space. 5124 * Not applicable in our case */ 5125 case SIOCSIFLINK: 5126 return -ENOTTY; 5127 5128 /* 5129 * Unknown or private ioctl. 5130 */ 5131 default: 5132 if (cmd == SIOCWANDEV || 5133 (cmd >= SIOCDEVPRIVATE && 5134 cmd <= SIOCDEVPRIVATE + 15)) { 5135 dev_load(net, ifr.ifr_name); 5136 rtnl_lock(); 5137 ret = dev_ifsioc(net, &ifr, cmd); 5138 rtnl_unlock(); 5139 if (!ret && copy_to_user(arg, &ifr, 5140 sizeof(struct ifreq))) 5141 ret = -EFAULT; 5142 return ret; 5143 } 5144 /* Take care of Wireless Extensions */ 5145 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) 5146 return wext_handle_ioctl(net, &ifr, cmd, arg); 5147 return -ENOTTY; 5148 } 5149 } 5150 5151 5152 /** 5153 * dev_new_index - allocate an ifindex 5154 * @net: the applicable net namespace 5155 * 5156 * Returns a suitable unique value for a new device interface 5157 * number. The caller must hold the rtnl semaphore or the 5158 * dev_base_lock to be sure it remains unique. 5159 */ 5160 static int dev_new_index(struct net *net) 5161 { 5162 static int ifindex; 5163 for (;;) { 5164 if (++ifindex <= 0) 5165 ifindex = 1; 5166 if (!__dev_get_by_index(net, ifindex)) 5167 return ifindex; 5168 } 5169 } 5170 5171 /* Delayed registration/unregisteration */ 5172 static LIST_HEAD(net_todo_list); 5173 5174 static void net_set_todo(struct net_device *dev) 5175 { 5176 list_add_tail(&dev->todo_list, &net_todo_list); 5177 } 5178 5179 static void rollback_registered_many(struct list_head *head) 5180 { 5181 struct net_device *dev, *tmp; 5182 5183 BUG_ON(dev_boot_phase); 5184 ASSERT_RTNL(); 5185 5186 list_for_each_entry_safe(dev, tmp, head, unreg_list) { 5187 /* Some devices call without registering 5188 * for initialization unwind. Remove those 5189 * devices and proceed with the remaining. 5190 */ 5191 if (dev->reg_state == NETREG_UNINITIALIZED) { 5192 pr_debug("unregister_netdevice: device %s/%p never was registered\n", 5193 dev->name, dev); 5194 5195 WARN_ON(1); 5196 list_del(&dev->unreg_list); 5197 continue; 5198 } 5199 dev->dismantle = true; 5200 BUG_ON(dev->reg_state != NETREG_REGISTERED); 5201 } 5202 5203 /* If device is running, close it first. */ 5204 dev_close_many(head); 5205 5206 list_for_each_entry(dev, head, unreg_list) { 5207 /* And unlink it from device chain. */ 5208 unlist_netdevice(dev); 5209 5210 dev->reg_state = NETREG_UNREGISTERING; 5211 } 5212 5213 synchronize_net(); 5214 5215 list_for_each_entry(dev, head, unreg_list) { 5216 /* Shutdown queueing discipline. */ 5217 dev_shutdown(dev); 5218 5219 5220 /* Notify protocols, that we are about to destroy 5221 this device. They should clean all the things. 5222 */ 5223 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 5224 5225 if (!dev->rtnl_link_ops || 5226 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 5227 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U); 5228 5229 /* 5230 * Flush the unicast and multicast chains 5231 */ 5232 dev_uc_flush(dev); 5233 dev_mc_flush(dev); 5234 5235 if (dev->netdev_ops->ndo_uninit) 5236 dev->netdev_ops->ndo_uninit(dev); 5237 5238 /* Notifier chain MUST detach us from master device. */ 5239 WARN_ON(dev->master); 5240 5241 /* Remove entries from kobject tree */ 5242 netdev_unregister_kobject(dev); 5243 } 5244 5245 /* Process any work delayed until the end of the batch */ 5246 dev = list_first_entry(head, struct net_device, unreg_list); 5247 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev); 5248 5249 synchronize_net(); 5250 5251 list_for_each_entry(dev, head, unreg_list) 5252 dev_put(dev); 5253 } 5254 5255 static void rollback_registered(struct net_device *dev) 5256 { 5257 LIST_HEAD(single); 5258 5259 list_add(&dev->unreg_list, &single); 5260 rollback_registered_many(&single); 5261 list_del(&single); 5262 } 5263 5264 static netdev_features_t netdev_fix_features(struct net_device *dev, 5265 netdev_features_t features) 5266 { 5267 /* Fix illegal checksum combinations */ 5268 if ((features & NETIF_F_HW_CSUM) && 5269 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 5270 netdev_warn(dev, "mixed HW and IP checksum settings.\n"); 5271 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 5272 } 5273 5274 /* Fix illegal SG+CSUM combinations. */ 5275 if ((features & NETIF_F_SG) && 5276 !(features & NETIF_F_ALL_CSUM)) { 5277 netdev_dbg(dev, 5278 "Dropping NETIF_F_SG since no checksum feature.\n"); 5279 features &= ~NETIF_F_SG; 5280 } 5281 5282 /* TSO requires that SG is present as well. */ 5283 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) { 5284 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n"); 5285 features &= ~NETIF_F_ALL_TSO; 5286 } 5287 5288 /* TSO ECN requires that TSO is present as well. */ 5289 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN) 5290 features &= ~NETIF_F_TSO_ECN; 5291 5292 /* Software GSO depends on SG. */ 5293 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) { 5294 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n"); 5295 features &= ~NETIF_F_GSO; 5296 } 5297 5298 /* UFO needs SG and checksumming */ 5299 if (features & NETIF_F_UFO) { 5300 /* maybe split UFO into V4 and V6? */ 5301 if (!((features & NETIF_F_GEN_CSUM) || 5302 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM)) 5303 == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 5304 netdev_dbg(dev, 5305 "Dropping NETIF_F_UFO since no checksum offload features.\n"); 5306 features &= ~NETIF_F_UFO; 5307 } 5308 5309 if (!(features & NETIF_F_SG)) { 5310 netdev_dbg(dev, 5311 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n"); 5312 features &= ~NETIF_F_UFO; 5313 } 5314 } 5315 5316 return features; 5317 } 5318 5319 int __netdev_update_features(struct net_device *dev) 5320 { 5321 netdev_features_t features; 5322 int err = 0; 5323 5324 ASSERT_RTNL(); 5325 5326 features = netdev_get_wanted_features(dev); 5327 5328 if (dev->netdev_ops->ndo_fix_features) 5329 features = dev->netdev_ops->ndo_fix_features(dev, features); 5330 5331 /* driver might be less strict about feature dependencies */ 5332 features = netdev_fix_features(dev, features); 5333 5334 if (dev->features == features) 5335 return 0; 5336 5337 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n", 5338 &dev->features, &features); 5339 5340 if (dev->netdev_ops->ndo_set_features) 5341 err = dev->netdev_ops->ndo_set_features(dev, features); 5342 5343 if (unlikely(err < 0)) { 5344 netdev_err(dev, 5345 "set_features() failed (%d); wanted %pNF, left %pNF\n", 5346 err, &features, &dev->features); 5347 return -1; 5348 } 5349 5350 if (!err) 5351 dev->features = features; 5352 5353 return 1; 5354 } 5355 5356 /** 5357 * netdev_update_features - recalculate device features 5358 * @dev: the device to check 5359 * 5360 * Recalculate dev->features set and send notifications if it 5361 * has changed. Should be called after driver or hardware dependent 5362 * conditions might have changed that influence the features. 5363 */ 5364 void netdev_update_features(struct net_device *dev) 5365 { 5366 if (__netdev_update_features(dev)) 5367 netdev_features_change(dev); 5368 } 5369 EXPORT_SYMBOL(netdev_update_features); 5370 5371 /** 5372 * netdev_change_features - recalculate device features 5373 * @dev: the device to check 5374 * 5375 * Recalculate dev->features set and send notifications even 5376 * if they have not changed. Should be called instead of 5377 * netdev_update_features() if also dev->vlan_features might 5378 * have changed to allow the changes to be propagated to stacked 5379 * VLAN devices. 5380 */ 5381 void netdev_change_features(struct net_device *dev) 5382 { 5383 __netdev_update_features(dev); 5384 netdev_features_change(dev); 5385 } 5386 EXPORT_SYMBOL(netdev_change_features); 5387 5388 /** 5389 * netif_stacked_transfer_operstate - transfer operstate 5390 * @rootdev: the root or lower level device to transfer state from 5391 * @dev: the device to transfer operstate to 5392 * 5393 * Transfer operational state from root to device. This is normally 5394 * called when a stacking relationship exists between the root 5395 * device and the device(a leaf device). 5396 */ 5397 void netif_stacked_transfer_operstate(const struct net_device *rootdev, 5398 struct net_device *dev) 5399 { 5400 if (rootdev->operstate == IF_OPER_DORMANT) 5401 netif_dormant_on(dev); 5402 else 5403 netif_dormant_off(dev); 5404 5405 if (netif_carrier_ok(rootdev)) { 5406 if (!netif_carrier_ok(dev)) 5407 netif_carrier_on(dev); 5408 } else { 5409 if (netif_carrier_ok(dev)) 5410 netif_carrier_off(dev); 5411 } 5412 } 5413 EXPORT_SYMBOL(netif_stacked_transfer_operstate); 5414 5415 #ifdef CONFIG_RPS 5416 static int netif_alloc_rx_queues(struct net_device *dev) 5417 { 5418 unsigned int i, count = dev->num_rx_queues; 5419 struct netdev_rx_queue *rx; 5420 5421 BUG_ON(count < 1); 5422 5423 rx = kcalloc(count, sizeof(struct netdev_rx_queue), GFP_KERNEL); 5424 if (!rx) { 5425 pr_err("netdev: Unable to allocate %u rx queues\n", count); 5426 return -ENOMEM; 5427 } 5428 dev->_rx = rx; 5429 5430 for (i = 0; i < count; i++) 5431 rx[i].dev = dev; 5432 return 0; 5433 } 5434 #endif 5435 5436 static void netdev_init_one_queue(struct net_device *dev, 5437 struct netdev_queue *queue, void *_unused) 5438 { 5439 /* Initialize queue lock */ 5440 spin_lock_init(&queue->_xmit_lock); 5441 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type); 5442 queue->xmit_lock_owner = -1; 5443 netdev_queue_numa_node_write(queue, NUMA_NO_NODE); 5444 queue->dev = dev; 5445 #ifdef CONFIG_BQL 5446 dql_init(&queue->dql, HZ); 5447 #endif 5448 } 5449 5450 static int netif_alloc_netdev_queues(struct net_device *dev) 5451 { 5452 unsigned int count = dev->num_tx_queues; 5453 struct netdev_queue *tx; 5454 5455 BUG_ON(count < 1); 5456 5457 tx = kcalloc(count, sizeof(struct netdev_queue), GFP_KERNEL); 5458 if (!tx) { 5459 pr_err("netdev: Unable to allocate %u tx queues\n", count); 5460 return -ENOMEM; 5461 } 5462 dev->_tx = tx; 5463 5464 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL); 5465 spin_lock_init(&dev->tx_global_lock); 5466 5467 return 0; 5468 } 5469 5470 /** 5471 * register_netdevice - register a network device 5472 * @dev: device to register 5473 * 5474 * Take a completed network device structure and add it to the kernel 5475 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 5476 * chain. 0 is returned on success. A negative errno code is returned 5477 * on a failure to set up the device, or if the name is a duplicate. 5478 * 5479 * Callers must hold the rtnl semaphore. You may want 5480 * register_netdev() instead of this. 5481 * 5482 * BUGS: 5483 * The locking appears insufficient to guarantee two parallel registers 5484 * will not get the same name. 5485 */ 5486 5487 int register_netdevice(struct net_device *dev) 5488 { 5489 int ret; 5490 struct net *net = dev_net(dev); 5491 5492 BUG_ON(dev_boot_phase); 5493 ASSERT_RTNL(); 5494 5495 might_sleep(); 5496 5497 /* When net_device's are persistent, this will be fatal. */ 5498 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED); 5499 BUG_ON(!net); 5500 5501 spin_lock_init(&dev->addr_list_lock); 5502 netdev_set_addr_lockdep_class(dev); 5503 5504 dev->iflink = -1; 5505 5506 ret = dev_get_valid_name(dev, dev->name); 5507 if (ret < 0) 5508 goto out; 5509 5510 /* Init, if this function is available */ 5511 if (dev->netdev_ops->ndo_init) { 5512 ret = dev->netdev_ops->ndo_init(dev); 5513 if (ret) { 5514 if (ret > 0) 5515 ret = -EIO; 5516 goto out; 5517 } 5518 } 5519 5520 dev->ifindex = dev_new_index(net); 5521 if (dev->iflink == -1) 5522 dev->iflink = dev->ifindex; 5523 5524 /* Transfer changeable features to wanted_features and enable 5525 * software offloads (GSO and GRO). 5526 */ 5527 dev->hw_features |= NETIF_F_SOFT_FEATURES; 5528 dev->features |= NETIF_F_SOFT_FEATURES; 5529 dev->wanted_features = dev->features & dev->hw_features; 5530 5531 /* Turn on no cache copy if HW is doing checksum */ 5532 if (!(dev->flags & IFF_LOOPBACK)) { 5533 dev->hw_features |= NETIF_F_NOCACHE_COPY; 5534 if (dev->features & NETIF_F_ALL_CSUM) { 5535 dev->wanted_features |= NETIF_F_NOCACHE_COPY; 5536 dev->features |= NETIF_F_NOCACHE_COPY; 5537 } 5538 } 5539 5540 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices. 5541 */ 5542 dev->vlan_features |= NETIF_F_HIGHDMA; 5543 5544 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev); 5545 ret = notifier_to_errno(ret); 5546 if (ret) 5547 goto err_uninit; 5548 5549 ret = netdev_register_kobject(dev); 5550 if (ret) 5551 goto err_uninit; 5552 dev->reg_state = NETREG_REGISTERED; 5553 5554 __netdev_update_features(dev); 5555 5556 /* 5557 * Default initial state at registry is that the 5558 * device is present. 5559 */ 5560 5561 set_bit(__LINK_STATE_PRESENT, &dev->state); 5562 5563 dev_init_scheduler(dev); 5564 dev_hold(dev); 5565 list_netdevice(dev); 5566 5567 /* Notify protocols, that a new device appeared. */ 5568 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev); 5569 ret = notifier_to_errno(ret); 5570 if (ret) { 5571 rollback_registered(dev); 5572 dev->reg_state = NETREG_UNREGISTERED; 5573 } 5574 /* 5575 * Prevent userspace races by waiting until the network 5576 * device is fully setup before sending notifications. 5577 */ 5578 if (!dev->rtnl_link_ops || 5579 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 5580 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U); 5581 5582 out: 5583 return ret; 5584 5585 err_uninit: 5586 if (dev->netdev_ops->ndo_uninit) 5587 dev->netdev_ops->ndo_uninit(dev); 5588 goto out; 5589 } 5590 EXPORT_SYMBOL(register_netdevice); 5591 5592 /** 5593 * init_dummy_netdev - init a dummy network device for NAPI 5594 * @dev: device to init 5595 * 5596 * This takes a network device structure and initialize the minimum 5597 * amount of fields so it can be used to schedule NAPI polls without 5598 * registering a full blown interface. This is to be used by drivers 5599 * that need to tie several hardware interfaces to a single NAPI 5600 * poll scheduler due to HW limitations. 5601 */ 5602 int init_dummy_netdev(struct net_device *dev) 5603 { 5604 /* Clear everything. Note we don't initialize spinlocks 5605 * are they aren't supposed to be taken by any of the 5606 * NAPI code and this dummy netdev is supposed to be 5607 * only ever used for NAPI polls 5608 */ 5609 memset(dev, 0, sizeof(struct net_device)); 5610 5611 /* make sure we BUG if trying to hit standard 5612 * register/unregister code path 5613 */ 5614 dev->reg_state = NETREG_DUMMY; 5615 5616 /* NAPI wants this */ 5617 INIT_LIST_HEAD(&dev->napi_list); 5618 5619 /* a dummy interface is started by default */ 5620 set_bit(__LINK_STATE_PRESENT, &dev->state); 5621 set_bit(__LINK_STATE_START, &dev->state); 5622 5623 /* Note : We dont allocate pcpu_refcnt for dummy devices, 5624 * because users of this 'device' dont need to change 5625 * its refcount. 5626 */ 5627 5628 return 0; 5629 } 5630 EXPORT_SYMBOL_GPL(init_dummy_netdev); 5631 5632 5633 /** 5634 * register_netdev - register a network device 5635 * @dev: device to register 5636 * 5637 * Take a completed network device structure and add it to the kernel 5638 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 5639 * chain. 0 is returned on success. A negative errno code is returned 5640 * on a failure to set up the device, or if the name is a duplicate. 5641 * 5642 * This is a wrapper around register_netdevice that takes the rtnl semaphore 5643 * and expands the device name if you passed a format string to 5644 * alloc_netdev. 5645 */ 5646 int register_netdev(struct net_device *dev) 5647 { 5648 int err; 5649 5650 rtnl_lock(); 5651 err = register_netdevice(dev); 5652 rtnl_unlock(); 5653 return err; 5654 } 5655 EXPORT_SYMBOL(register_netdev); 5656 5657 int netdev_refcnt_read(const struct net_device *dev) 5658 { 5659 int i, refcnt = 0; 5660 5661 for_each_possible_cpu(i) 5662 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i); 5663 return refcnt; 5664 } 5665 EXPORT_SYMBOL(netdev_refcnt_read); 5666 5667 /* 5668 * netdev_wait_allrefs - wait until all references are gone. 5669 * 5670 * This is called when unregistering network devices. 5671 * 5672 * Any protocol or device that holds a reference should register 5673 * for netdevice notification, and cleanup and put back the 5674 * reference if they receive an UNREGISTER event. 5675 * We can get stuck here if buggy protocols don't correctly 5676 * call dev_put. 5677 */ 5678 static void netdev_wait_allrefs(struct net_device *dev) 5679 { 5680 unsigned long rebroadcast_time, warning_time; 5681 int refcnt; 5682 5683 linkwatch_forget_dev(dev); 5684 5685 rebroadcast_time = warning_time = jiffies; 5686 refcnt = netdev_refcnt_read(dev); 5687 5688 while (refcnt != 0) { 5689 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) { 5690 rtnl_lock(); 5691 5692 /* Rebroadcast unregister notification */ 5693 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 5694 /* don't resend NETDEV_UNREGISTER_BATCH, _BATCH users 5695 * should have already handle it the first time */ 5696 5697 if (test_bit(__LINK_STATE_LINKWATCH_PENDING, 5698 &dev->state)) { 5699 /* We must not have linkwatch events 5700 * pending on unregister. If this 5701 * happens, we simply run the queue 5702 * unscheduled, resulting in a noop 5703 * for this device. 5704 */ 5705 linkwatch_run_queue(); 5706 } 5707 5708 __rtnl_unlock(); 5709 5710 rebroadcast_time = jiffies; 5711 } 5712 5713 msleep(250); 5714 5715 refcnt = netdev_refcnt_read(dev); 5716 5717 if (time_after(jiffies, warning_time + 10 * HZ)) { 5718 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n", 5719 dev->name, refcnt); 5720 warning_time = jiffies; 5721 } 5722 } 5723 } 5724 5725 /* The sequence is: 5726 * 5727 * rtnl_lock(); 5728 * ... 5729 * register_netdevice(x1); 5730 * register_netdevice(x2); 5731 * ... 5732 * unregister_netdevice(y1); 5733 * unregister_netdevice(y2); 5734 * ... 5735 * rtnl_unlock(); 5736 * free_netdev(y1); 5737 * free_netdev(y2); 5738 * 5739 * We are invoked by rtnl_unlock(). 5740 * This allows us to deal with problems: 5741 * 1) We can delete sysfs objects which invoke hotplug 5742 * without deadlocking with linkwatch via keventd. 5743 * 2) Since we run with the RTNL semaphore not held, we can sleep 5744 * safely in order to wait for the netdev refcnt to drop to zero. 5745 * 5746 * We must not return until all unregister events added during 5747 * the interval the lock was held have been completed. 5748 */ 5749 void netdev_run_todo(void) 5750 { 5751 struct list_head list; 5752 5753 /* Snapshot list, allow later requests */ 5754 list_replace_init(&net_todo_list, &list); 5755 5756 __rtnl_unlock(); 5757 5758 /* Wait for rcu callbacks to finish before attempting to drain 5759 * the device list. This usually avoids a 250ms wait. 5760 */ 5761 if (!list_empty(&list)) 5762 rcu_barrier(); 5763 5764 while (!list_empty(&list)) { 5765 struct net_device *dev 5766 = list_first_entry(&list, struct net_device, todo_list); 5767 list_del(&dev->todo_list); 5768 5769 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) { 5770 pr_err("network todo '%s' but state %d\n", 5771 dev->name, dev->reg_state); 5772 dump_stack(); 5773 continue; 5774 } 5775 5776 dev->reg_state = NETREG_UNREGISTERED; 5777 5778 on_each_cpu(flush_backlog, dev, 1); 5779 5780 netdev_wait_allrefs(dev); 5781 5782 /* paranoia */ 5783 BUG_ON(netdev_refcnt_read(dev)); 5784 WARN_ON(rcu_access_pointer(dev->ip_ptr)); 5785 WARN_ON(rcu_access_pointer(dev->ip6_ptr)); 5786 WARN_ON(dev->dn_ptr); 5787 5788 if (dev->destructor) 5789 dev->destructor(dev); 5790 5791 /* Free network device */ 5792 kobject_put(&dev->dev.kobj); 5793 } 5794 } 5795 5796 /* Convert net_device_stats to rtnl_link_stats64. They have the same 5797 * fields in the same order, with only the type differing. 5798 */ 5799 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 5800 const struct net_device_stats *netdev_stats) 5801 { 5802 #if BITS_PER_LONG == 64 5803 BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats)); 5804 memcpy(stats64, netdev_stats, sizeof(*stats64)); 5805 #else 5806 size_t i, n = sizeof(*stats64) / sizeof(u64); 5807 const unsigned long *src = (const unsigned long *)netdev_stats; 5808 u64 *dst = (u64 *)stats64; 5809 5810 BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) != 5811 sizeof(*stats64) / sizeof(u64)); 5812 for (i = 0; i < n; i++) 5813 dst[i] = src[i]; 5814 #endif 5815 } 5816 EXPORT_SYMBOL(netdev_stats_to_stats64); 5817 5818 /** 5819 * dev_get_stats - get network device statistics 5820 * @dev: device to get statistics from 5821 * @storage: place to store stats 5822 * 5823 * Get network statistics from device. Return @storage. 5824 * The device driver may provide its own method by setting 5825 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats; 5826 * otherwise the internal statistics structure is used. 5827 */ 5828 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 5829 struct rtnl_link_stats64 *storage) 5830 { 5831 const struct net_device_ops *ops = dev->netdev_ops; 5832 5833 if (ops->ndo_get_stats64) { 5834 memset(storage, 0, sizeof(*storage)); 5835 ops->ndo_get_stats64(dev, storage); 5836 } else if (ops->ndo_get_stats) { 5837 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev)); 5838 } else { 5839 netdev_stats_to_stats64(storage, &dev->stats); 5840 } 5841 storage->rx_dropped += atomic_long_read(&dev->rx_dropped); 5842 return storage; 5843 } 5844 EXPORT_SYMBOL(dev_get_stats); 5845 5846 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev) 5847 { 5848 struct netdev_queue *queue = dev_ingress_queue(dev); 5849 5850 #ifdef CONFIG_NET_CLS_ACT 5851 if (queue) 5852 return queue; 5853 queue = kzalloc(sizeof(*queue), GFP_KERNEL); 5854 if (!queue) 5855 return NULL; 5856 netdev_init_one_queue(dev, queue, NULL); 5857 queue->qdisc = &noop_qdisc; 5858 queue->qdisc_sleeping = &noop_qdisc; 5859 rcu_assign_pointer(dev->ingress_queue, queue); 5860 #endif 5861 return queue; 5862 } 5863 5864 /** 5865 * alloc_netdev_mqs - allocate network device 5866 * @sizeof_priv: size of private data to allocate space for 5867 * @name: device name format string 5868 * @setup: callback to initialize device 5869 * @txqs: the number of TX subqueues to allocate 5870 * @rxqs: the number of RX subqueues to allocate 5871 * 5872 * Allocates a struct net_device with private data area for driver use 5873 * and performs basic initialization. Also allocates subquue structs 5874 * for each queue on the device. 5875 */ 5876 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 5877 void (*setup)(struct net_device *), 5878 unsigned int txqs, unsigned int rxqs) 5879 { 5880 struct net_device *dev; 5881 size_t alloc_size; 5882 struct net_device *p; 5883 5884 BUG_ON(strlen(name) >= sizeof(dev->name)); 5885 5886 if (txqs < 1) { 5887 pr_err("alloc_netdev: Unable to allocate device with zero queues\n"); 5888 return NULL; 5889 } 5890 5891 #ifdef CONFIG_RPS 5892 if (rxqs < 1) { 5893 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n"); 5894 return NULL; 5895 } 5896 #endif 5897 5898 alloc_size = sizeof(struct net_device); 5899 if (sizeof_priv) { 5900 /* ensure 32-byte alignment of private area */ 5901 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN); 5902 alloc_size += sizeof_priv; 5903 } 5904 /* ensure 32-byte alignment of whole construct */ 5905 alloc_size += NETDEV_ALIGN - 1; 5906 5907 p = kzalloc(alloc_size, GFP_KERNEL); 5908 if (!p) { 5909 pr_err("alloc_netdev: Unable to allocate device\n"); 5910 return NULL; 5911 } 5912 5913 dev = PTR_ALIGN(p, NETDEV_ALIGN); 5914 dev->padded = (char *)dev - (char *)p; 5915 5916 dev->pcpu_refcnt = alloc_percpu(int); 5917 if (!dev->pcpu_refcnt) 5918 goto free_p; 5919 5920 if (dev_addr_init(dev)) 5921 goto free_pcpu; 5922 5923 dev_mc_init(dev); 5924 dev_uc_init(dev); 5925 5926 dev_net_set(dev, &init_net); 5927 5928 dev->gso_max_size = GSO_MAX_SIZE; 5929 5930 INIT_LIST_HEAD(&dev->napi_list); 5931 INIT_LIST_HEAD(&dev->unreg_list); 5932 INIT_LIST_HEAD(&dev->link_watch_list); 5933 dev->priv_flags = IFF_XMIT_DST_RELEASE; 5934 setup(dev); 5935 5936 dev->num_tx_queues = txqs; 5937 dev->real_num_tx_queues = txqs; 5938 if (netif_alloc_netdev_queues(dev)) 5939 goto free_all; 5940 5941 #ifdef CONFIG_RPS 5942 dev->num_rx_queues = rxqs; 5943 dev->real_num_rx_queues = rxqs; 5944 if (netif_alloc_rx_queues(dev)) 5945 goto free_all; 5946 #endif 5947 5948 strcpy(dev->name, name); 5949 dev->group = INIT_NETDEV_GROUP; 5950 return dev; 5951 5952 free_all: 5953 free_netdev(dev); 5954 return NULL; 5955 5956 free_pcpu: 5957 free_percpu(dev->pcpu_refcnt); 5958 kfree(dev->_tx); 5959 #ifdef CONFIG_RPS 5960 kfree(dev->_rx); 5961 #endif 5962 5963 free_p: 5964 kfree(p); 5965 return NULL; 5966 } 5967 EXPORT_SYMBOL(alloc_netdev_mqs); 5968 5969 /** 5970 * free_netdev - free network device 5971 * @dev: device 5972 * 5973 * This function does the last stage of destroying an allocated device 5974 * interface. The reference to the device object is released. 5975 * If this is the last reference then it will be freed. 5976 */ 5977 void free_netdev(struct net_device *dev) 5978 { 5979 struct napi_struct *p, *n; 5980 5981 release_net(dev_net(dev)); 5982 5983 kfree(dev->_tx); 5984 #ifdef CONFIG_RPS 5985 kfree(dev->_rx); 5986 #endif 5987 5988 kfree(rcu_dereference_protected(dev->ingress_queue, 1)); 5989 5990 /* Flush device addresses */ 5991 dev_addr_flush(dev); 5992 5993 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list) 5994 netif_napi_del(p); 5995 5996 free_percpu(dev->pcpu_refcnt); 5997 dev->pcpu_refcnt = NULL; 5998 5999 /* Compatibility with error handling in drivers */ 6000 if (dev->reg_state == NETREG_UNINITIALIZED) { 6001 kfree((char *)dev - dev->padded); 6002 return; 6003 } 6004 6005 BUG_ON(dev->reg_state != NETREG_UNREGISTERED); 6006 dev->reg_state = NETREG_RELEASED; 6007 6008 /* will free via device release */ 6009 put_device(&dev->dev); 6010 } 6011 EXPORT_SYMBOL(free_netdev); 6012 6013 /** 6014 * synchronize_net - Synchronize with packet receive processing 6015 * 6016 * Wait for packets currently being received to be done. 6017 * Does not block later packets from starting. 6018 */ 6019 void synchronize_net(void) 6020 { 6021 might_sleep(); 6022 if (rtnl_is_locked()) 6023 synchronize_rcu_expedited(); 6024 else 6025 synchronize_rcu(); 6026 } 6027 EXPORT_SYMBOL(synchronize_net); 6028 6029 /** 6030 * unregister_netdevice_queue - remove device from the kernel 6031 * @dev: device 6032 * @head: list 6033 * 6034 * This function shuts down a device interface and removes it 6035 * from the kernel tables. 6036 * If head not NULL, device is queued to be unregistered later. 6037 * 6038 * Callers must hold the rtnl semaphore. You may want 6039 * unregister_netdev() instead of this. 6040 */ 6041 6042 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head) 6043 { 6044 ASSERT_RTNL(); 6045 6046 if (head) { 6047 list_move_tail(&dev->unreg_list, head); 6048 } else { 6049 rollback_registered(dev); 6050 /* Finish processing unregister after unlock */ 6051 net_set_todo(dev); 6052 } 6053 } 6054 EXPORT_SYMBOL(unregister_netdevice_queue); 6055 6056 /** 6057 * unregister_netdevice_many - unregister many devices 6058 * @head: list of devices 6059 */ 6060 void unregister_netdevice_many(struct list_head *head) 6061 { 6062 struct net_device *dev; 6063 6064 if (!list_empty(head)) { 6065 rollback_registered_many(head); 6066 list_for_each_entry(dev, head, unreg_list) 6067 net_set_todo(dev); 6068 } 6069 } 6070 EXPORT_SYMBOL(unregister_netdevice_many); 6071 6072 /** 6073 * unregister_netdev - remove device from the kernel 6074 * @dev: device 6075 * 6076 * This function shuts down a device interface and removes it 6077 * from the kernel tables. 6078 * 6079 * This is just a wrapper for unregister_netdevice that takes 6080 * the rtnl semaphore. In general you want to use this and not 6081 * unregister_netdevice. 6082 */ 6083 void unregister_netdev(struct net_device *dev) 6084 { 6085 rtnl_lock(); 6086 unregister_netdevice(dev); 6087 rtnl_unlock(); 6088 } 6089 EXPORT_SYMBOL(unregister_netdev); 6090 6091 /** 6092 * dev_change_net_namespace - move device to different nethost namespace 6093 * @dev: device 6094 * @net: network namespace 6095 * @pat: If not NULL name pattern to try if the current device name 6096 * is already taken in the destination network namespace. 6097 * 6098 * This function shuts down a device interface and moves it 6099 * to a new network namespace. On success 0 is returned, on 6100 * a failure a netagive errno code is returned. 6101 * 6102 * Callers must hold the rtnl semaphore. 6103 */ 6104 6105 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat) 6106 { 6107 int err; 6108 6109 ASSERT_RTNL(); 6110 6111 /* Don't allow namespace local devices to be moved. */ 6112 err = -EINVAL; 6113 if (dev->features & NETIF_F_NETNS_LOCAL) 6114 goto out; 6115 6116 /* Ensure the device has been registrered */ 6117 err = -EINVAL; 6118 if (dev->reg_state != NETREG_REGISTERED) 6119 goto out; 6120 6121 /* Get out if there is nothing todo */ 6122 err = 0; 6123 if (net_eq(dev_net(dev), net)) 6124 goto out; 6125 6126 /* Pick the destination device name, and ensure 6127 * we can use it in the destination network namespace. 6128 */ 6129 err = -EEXIST; 6130 if (__dev_get_by_name(net, dev->name)) { 6131 /* We get here if we can't use the current device name */ 6132 if (!pat) 6133 goto out; 6134 if (dev_get_valid_name(dev, pat) < 0) 6135 goto out; 6136 } 6137 6138 /* 6139 * And now a mini version of register_netdevice unregister_netdevice. 6140 */ 6141 6142 /* If device is running close it first. */ 6143 dev_close(dev); 6144 6145 /* And unlink it from device chain */ 6146 err = -ENODEV; 6147 unlist_netdevice(dev); 6148 6149 synchronize_net(); 6150 6151 /* Shutdown queueing discipline. */ 6152 dev_shutdown(dev); 6153 6154 /* Notify protocols, that we are about to destroy 6155 this device. They should clean all the things. 6156 6157 Note that dev->reg_state stays at NETREG_REGISTERED. 6158 This is wanted because this way 8021q and macvlan know 6159 the device is just moving and can keep their slaves up. 6160 */ 6161 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 6162 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev); 6163 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U); 6164 6165 /* 6166 * Flush the unicast and multicast chains 6167 */ 6168 dev_uc_flush(dev); 6169 dev_mc_flush(dev); 6170 6171 /* Actually switch the network namespace */ 6172 dev_net_set(dev, net); 6173 6174 /* If there is an ifindex conflict assign a new one */ 6175 if (__dev_get_by_index(net, dev->ifindex)) { 6176 int iflink = (dev->iflink == dev->ifindex); 6177 dev->ifindex = dev_new_index(net); 6178 if (iflink) 6179 dev->iflink = dev->ifindex; 6180 } 6181 6182 /* Fixup kobjects */ 6183 err = device_rename(&dev->dev, dev->name); 6184 WARN_ON(err); 6185 6186 /* Add the device back in the hashes */ 6187 list_netdevice(dev); 6188 6189 /* Notify protocols, that a new device appeared. */ 6190 call_netdevice_notifiers(NETDEV_REGISTER, dev); 6191 6192 /* 6193 * Prevent userspace races by waiting until the network 6194 * device is fully setup before sending notifications. 6195 */ 6196 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U); 6197 6198 synchronize_net(); 6199 err = 0; 6200 out: 6201 return err; 6202 } 6203 EXPORT_SYMBOL_GPL(dev_change_net_namespace); 6204 6205 static int dev_cpu_callback(struct notifier_block *nfb, 6206 unsigned long action, 6207 void *ocpu) 6208 { 6209 struct sk_buff **list_skb; 6210 struct sk_buff *skb; 6211 unsigned int cpu, oldcpu = (unsigned long)ocpu; 6212 struct softnet_data *sd, *oldsd; 6213 6214 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN) 6215 return NOTIFY_OK; 6216 6217 local_irq_disable(); 6218 cpu = smp_processor_id(); 6219 sd = &per_cpu(softnet_data, cpu); 6220 oldsd = &per_cpu(softnet_data, oldcpu); 6221 6222 /* Find end of our completion_queue. */ 6223 list_skb = &sd->completion_queue; 6224 while (*list_skb) 6225 list_skb = &(*list_skb)->next; 6226 /* Append completion queue from offline CPU. */ 6227 *list_skb = oldsd->completion_queue; 6228 oldsd->completion_queue = NULL; 6229 6230 /* Append output queue from offline CPU. */ 6231 if (oldsd->output_queue) { 6232 *sd->output_queue_tailp = oldsd->output_queue; 6233 sd->output_queue_tailp = oldsd->output_queue_tailp; 6234 oldsd->output_queue = NULL; 6235 oldsd->output_queue_tailp = &oldsd->output_queue; 6236 } 6237 /* Append NAPI poll list from offline CPU. */ 6238 if (!list_empty(&oldsd->poll_list)) { 6239 list_splice_init(&oldsd->poll_list, &sd->poll_list); 6240 raise_softirq_irqoff(NET_RX_SOFTIRQ); 6241 } 6242 6243 raise_softirq_irqoff(NET_TX_SOFTIRQ); 6244 local_irq_enable(); 6245 6246 /* Process offline CPU's input_pkt_queue */ 6247 while ((skb = __skb_dequeue(&oldsd->process_queue))) { 6248 netif_rx(skb); 6249 input_queue_head_incr(oldsd); 6250 } 6251 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) { 6252 netif_rx(skb); 6253 input_queue_head_incr(oldsd); 6254 } 6255 6256 return NOTIFY_OK; 6257 } 6258 6259 6260 /** 6261 * netdev_increment_features - increment feature set by one 6262 * @all: current feature set 6263 * @one: new feature set 6264 * @mask: mask feature set 6265 * 6266 * Computes a new feature set after adding a device with feature set 6267 * @one to the master device with current feature set @all. Will not 6268 * enable anything that is off in @mask. Returns the new feature set. 6269 */ 6270 netdev_features_t netdev_increment_features(netdev_features_t all, 6271 netdev_features_t one, netdev_features_t mask) 6272 { 6273 if (mask & NETIF_F_GEN_CSUM) 6274 mask |= NETIF_F_ALL_CSUM; 6275 mask |= NETIF_F_VLAN_CHALLENGED; 6276 6277 all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask; 6278 all &= one | ~NETIF_F_ALL_FOR_ALL; 6279 6280 /* If one device supports hw checksumming, set for all. */ 6281 if (all & NETIF_F_GEN_CSUM) 6282 all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM); 6283 6284 return all; 6285 } 6286 EXPORT_SYMBOL(netdev_increment_features); 6287 6288 static struct hlist_head *netdev_create_hash(void) 6289 { 6290 int i; 6291 struct hlist_head *hash; 6292 6293 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL); 6294 if (hash != NULL) 6295 for (i = 0; i < NETDEV_HASHENTRIES; i++) 6296 INIT_HLIST_HEAD(&hash[i]); 6297 6298 return hash; 6299 } 6300 6301 /* Initialize per network namespace state */ 6302 static int __net_init netdev_init(struct net *net) 6303 { 6304 INIT_LIST_HEAD(&net->dev_base_head); 6305 6306 net->dev_name_head = netdev_create_hash(); 6307 if (net->dev_name_head == NULL) 6308 goto err_name; 6309 6310 net->dev_index_head = netdev_create_hash(); 6311 if (net->dev_index_head == NULL) 6312 goto err_idx; 6313 6314 return 0; 6315 6316 err_idx: 6317 kfree(net->dev_name_head); 6318 err_name: 6319 return -ENOMEM; 6320 } 6321 6322 /** 6323 * netdev_drivername - network driver for the device 6324 * @dev: network device 6325 * 6326 * Determine network driver for device. 6327 */ 6328 const char *netdev_drivername(const struct net_device *dev) 6329 { 6330 const struct device_driver *driver; 6331 const struct device *parent; 6332 const char *empty = ""; 6333 6334 parent = dev->dev.parent; 6335 if (!parent) 6336 return empty; 6337 6338 driver = parent->driver; 6339 if (driver && driver->name) 6340 return driver->name; 6341 return empty; 6342 } 6343 6344 int __netdev_printk(const char *level, const struct net_device *dev, 6345 struct va_format *vaf) 6346 { 6347 int r; 6348 6349 if (dev && dev->dev.parent) 6350 r = dev_printk(level, dev->dev.parent, "%s: %pV", 6351 netdev_name(dev), vaf); 6352 else if (dev) 6353 r = printk("%s%s: %pV", level, netdev_name(dev), vaf); 6354 else 6355 r = printk("%s(NULL net_device): %pV", level, vaf); 6356 6357 return r; 6358 } 6359 EXPORT_SYMBOL(__netdev_printk); 6360 6361 int netdev_printk(const char *level, const struct net_device *dev, 6362 const char *format, ...) 6363 { 6364 struct va_format vaf; 6365 va_list args; 6366 int r; 6367 6368 va_start(args, format); 6369 6370 vaf.fmt = format; 6371 vaf.va = &args; 6372 6373 r = __netdev_printk(level, dev, &vaf); 6374 va_end(args); 6375 6376 return r; 6377 } 6378 EXPORT_SYMBOL(netdev_printk); 6379 6380 #define define_netdev_printk_level(func, level) \ 6381 int func(const struct net_device *dev, const char *fmt, ...) \ 6382 { \ 6383 int r; \ 6384 struct va_format vaf; \ 6385 va_list args; \ 6386 \ 6387 va_start(args, fmt); \ 6388 \ 6389 vaf.fmt = fmt; \ 6390 vaf.va = &args; \ 6391 \ 6392 r = __netdev_printk(level, dev, &vaf); \ 6393 va_end(args); \ 6394 \ 6395 return r; \ 6396 } \ 6397 EXPORT_SYMBOL(func); 6398 6399 define_netdev_printk_level(netdev_emerg, KERN_EMERG); 6400 define_netdev_printk_level(netdev_alert, KERN_ALERT); 6401 define_netdev_printk_level(netdev_crit, KERN_CRIT); 6402 define_netdev_printk_level(netdev_err, KERN_ERR); 6403 define_netdev_printk_level(netdev_warn, KERN_WARNING); 6404 define_netdev_printk_level(netdev_notice, KERN_NOTICE); 6405 define_netdev_printk_level(netdev_info, KERN_INFO); 6406 6407 static void __net_exit netdev_exit(struct net *net) 6408 { 6409 kfree(net->dev_name_head); 6410 kfree(net->dev_index_head); 6411 } 6412 6413 static struct pernet_operations __net_initdata netdev_net_ops = { 6414 .init = netdev_init, 6415 .exit = netdev_exit, 6416 }; 6417 6418 static void __net_exit default_device_exit(struct net *net) 6419 { 6420 struct net_device *dev, *aux; 6421 /* 6422 * Push all migratable network devices back to the 6423 * initial network namespace 6424 */ 6425 rtnl_lock(); 6426 for_each_netdev_safe(net, dev, aux) { 6427 int err; 6428 char fb_name[IFNAMSIZ]; 6429 6430 /* Ignore unmoveable devices (i.e. loopback) */ 6431 if (dev->features & NETIF_F_NETNS_LOCAL) 6432 continue; 6433 6434 /* Leave virtual devices for the generic cleanup */ 6435 if (dev->rtnl_link_ops) 6436 continue; 6437 6438 /* Push remaining network devices to init_net */ 6439 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex); 6440 err = dev_change_net_namespace(dev, &init_net, fb_name); 6441 if (err) { 6442 pr_emerg("%s: failed to move %s to init_net: %d\n", 6443 __func__, dev->name, err); 6444 BUG(); 6445 } 6446 } 6447 rtnl_unlock(); 6448 } 6449 6450 static void __net_exit default_device_exit_batch(struct list_head *net_list) 6451 { 6452 /* At exit all network devices most be removed from a network 6453 * namespace. Do this in the reverse order of registration. 6454 * Do this across as many network namespaces as possible to 6455 * improve batching efficiency. 6456 */ 6457 struct net_device *dev; 6458 struct net *net; 6459 LIST_HEAD(dev_kill_list); 6460 6461 rtnl_lock(); 6462 list_for_each_entry(net, net_list, exit_list) { 6463 for_each_netdev_reverse(net, dev) { 6464 if (dev->rtnl_link_ops) 6465 dev->rtnl_link_ops->dellink(dev, &dev_kill_list); 6466 else 6467 unregister_netdevice_queue(dev, &dev_kill_list); 6468 } 6469 } 6470 unregister_netdevice_many(&dev_kill_list); 6471 list_del(&dev_kill_list); 6472 rtnl_unlock(); 6473 } 6474 6475 static struct pernet_operations __net_initdata default_device_ops = { 6476 .exit = default_device_exit, 6477 .exit_batch = default_device_exit_batch, 6478 }; 6479 6480 /* 6481 * Initialize the DEV module. At boot time this walks the device list and 6482 * unhooks any devices that fail to initialise (normally hardware not 6483 * present) and leaves us with a valid list of present and active devices. 6484 * 6485 */ 6486 6487 /* 6488 * This is called single threaded during boot, so no need 6489 * to take the rtnl semaphore. 6490 */ 6491 static int __init net_dev_init(void) 6492 { 6493 int i, rc = -ENOMEM; 6494 6495 BUG_ON(!dev_boot_phase); 6496 6497 if (dev_proc_init()) 6498 goto out; 6499 6500 if (netdev_kobject_init()) 6501 goto out; 6502 6503 INIT_LIST_HEAD(&ptype_all); 6504 for (i = 0; i < PTYPE_HASH_SIZE; i++) 6505 INIT_LIST_HEAD(&ptype_base[i]); 6506 6507 if (register_pernet_subsys(&netdev_net_ops)) 6508 goto out; 6509 6510 /* 6511 * Initialise the packet receive queues. 6512 */ 6513 6514 for_each_possible_cpu(i) { 6515 struct softnet_data *sd = &per_cpu(softnet_data, i); 6516 6517 memset(sd, 0, sizeof(*sd)); 6518 skb_queue_head_init(&sd->input_pkt_queue); 6519 skb_queue_head_init(&sd->process_queue); 6520 sd->completion_queue = NULL; 6521 INIT_LIST_HEAD(&sd->poll_list); 6522 sd->output_queue = NULL; 6523 sd->output_queue_tailp = &sd->output_queue; 6524 #ifdef CONFIG_RPS 6525 sd->csd.func = rps_trigger_softirq; 6526 sd->csd.info = sd; 6527 sd->csd.flags = 0; 6528 sd->cpu = i; 6529 #endif 6530 6531 sd->backlog.poll = process_backlog; 6532 sd->backlog.weight = weight_p; 6533 sd->backlog.gro_list = NULL; 6534 sd->backlog.gro_count = 0; 6535 } 6536 6537 dev_boot_phase = 0; 6538 6539 /* The loopback device is special if any other network devices 6540 * is present in a network namespace the loopback device must 6541 * be present. Since we now dynamically allocate and free the 6542 * loopback device ensure this invariant is maintained by 6543 * keeping the loopback device as the first device on the 6544 * list of network devices. Ensuring the loopback devices 6545 * is the first device that appears and the last network device 6546 * that disappears. 6547 */ 6548 if (register_pernet_device(&loopback_net_ops)) 6549 goto out; 6550 6551 if (register_pernet_device(&default_device_ops)) 6552 goto out; 6553 6554 open_softirq(NET_TX_SOFTIRQ, net_tx_action); 6555 open_softirq(NET_RX_SOFTIRQ, net_rx_action); 6556 6557 hotcpu_notifier(dev_cpu_callback, 0); 6558 dst_init(); 6559 dev_mcast_init(); 6560 rc = 0; 6561 out: 6562 return rc; 6563 } 6564 6565 subsys_initcall(net_dev_init); 6566 6567 static int __init initialize_hashrnd(void) 6568 { 6569 get_random_bytes(&hashrnd, sizeof(hashrnd)); 6570 return 0; 6571 } 6572 6573 late_initcall_sync(initialize_hashrnd); 6574 6575