xref: /linux/net/core/dev.c (revision a4cc96d1f0170b779c32c6b2cc58764f5d2cdef0)
1 /*
2  * 	NET3	Protocol independent device support routines.
3  *
4  *		This program is free software; you can redistribute it and/or
5  *		modify it under the terms of the GNU General Public License
6  *		as published by the Free Software Foundation; either version
7  *		2 of the License, or (at your option) any later version.
8  *
9  *	Derived from the non IP parts of dev.c 1.0.19
10  * 		Authors:	Ross Biro
11  *				Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *				Mark Evans, <evansmp@uhura.aston.ac.uk>
13  *
14  *	Additional Authors:
15  *		Florian la Roche <rzsfl@rz.uni-sb.de>
16  *		Alan Cox <gw4pts@gw4pts.ampr.org>
17  *		David Hinds <dahinds@users.sourceforge.net>
18  *		Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19  *		Adam Sulmicki <adam@cfar.umd.edu>
20  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
21  *
22  *	Changes:
23  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
24  *              			to 2 if register_netdev gets called
25  *              			before net_dev_init & also removed a
26  *              			few lines of code in the process.
27  *		Alan Cox	:	device private ioctl copies fields back.
28  *		Alan Cox	:	Transmit queue code does relevant
29  *					stunts to keep the queue safe.
30  *		Alan Cox	:	Fixed double lock.
31  *		Alan Cox	:	Fixed promisc NULL pointer trap
32  *		????????	:	Support the full private ioctl range
33  *		Alan Cox	:	Moved ioctl permission check into
34  *					drivers
35  *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
36  *		Alan Cox	:	100 backlog just doesn't cut it when
37  *					you start doing multicast video 8)
38  *		Alan Cox	:	Rewrote net_bh and list manager.
39  *		Alan Cox	: 	Fix ETH_P_ALL echoback lengths.
40  *		Alan Cox	:	Took out transmit every packet pass
41  *					Saved a few bytes in the ioctl handler
42  *		Alan Cox	:	Network driver sets packet type before
43  *					calling netif_rx. Saves a function
44  *					call a packet.
45  *		Alan Cox	:	Hashed net_bh()
46  *		Richard Kooijman:	Timestamp fixes.
47  *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
48  *		Alan Cox	:	Device lock protection.
49  *		Alan Cox	: 	Fixed nasty side effect of device close
50  *					changes.
51  *		Rudi Cilibrasi	:	Pass the right thing to
52  *					set_mac_address()
53  *		Dave Miller	:	32bit quantity for the device lock to
54  *					make it work out on a Sparc.
55  *		Bjorn Ekwall	:	Added KERNELD hack.
56  *		Alan Cox	:	Cleaned up the backlog initialise.
57  *		Craig Metz	:	SIOCGIFCONF fix if space for under
58  *					1 device.
59  *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
60  *					is no device open function.
61  *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
62  *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
63  *		Cyrus Durgin	:	Cleaned for KMOD
64  *		Adam Sulmicki   :	Bug Fix : Network Device Unload
65  *					A network device unload needs to purge
66  *					the backlog queue.
67  *	Paul Rusty Russell	:	SIOCSIFNAME
68  *              Pekka Riikonen  :	Netdev boot-time settings code
69  *              Andrew Morton   :       Make unregister_netdevice wait
70  *              			indefinitely on dev->refcnt
71  * 		J Hadi Salim	:	- Backlog queue sampling
72  *				        - netif_rx() feedback
73  */
74 
75 #include <asm/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/mutex.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/notifier.h>
96 #include <linux/skbuff.h>
97 #include <linux/bpf.h>
98 #include <net/net_namespace.h>
99 #include <net/sock.h>
100 #include <net/busy_poll.h>
101 #include <linux/rtnetlink.h>
102 #include <linux/stat.h>
103 #include <net/dst.h>
104 #include <net/dst_metadata.h>
105 #include <net/pkt_sched.h>
106 #include <net/checksum.h>
107 #include <net/xfrm.h>
108 #include <linux/highmem.h>
109 #include <linux/init.h>
110 #include <linux/module.h>
111 #include <linux/netpoll.h>
112 #include <linux/rcupdate.h>
113 #include <linux/delay.h>
114 #include <net/iw_handler.h>
115 #include <asm/current.h>
116 #include <linux/audit.h>
117 #include <linux/dmaengine.h>
118 #include <linux/err.h>
119 #include <linux/ctype.h>
120 #include <linux/if_arp.h>
121 #include <linux/if_vlan.h>
122 #include <linux/ip.h>
123 #include <net/ip.h>
124 #include <net/mpls.h>
125 #include <linux/ipv6.h>
126 #include <linux/in.h>
127 #include <linux/jhash.h>
128 #include <linux/random.h>
129 #include <trace/events/napi.h>
130 #include <trace/events/net.h>
131 #include <trace/events/skb.h>
132 #include <linux/pci.h>
133 #include <linux/inetdevice.h>
134 #include <linux/cpu_rmap.h>
135 #include <linux/static_key.h>
136 #include <linux/hashtable.h>
137 #include <linux/vmalloc.h>
138 #include <linux/if_macvlan.h>
139 #include <linux/errqueue.h>
140 #include <linux/hrtimer.h>
141 #include <linux/netfilter_ingress.h>
142 #include <linux/sctp.h>
143 #include <linux/crash_dump.h>
144 
145 #include "net-sysfs.h"
146 
147 /* Instead of increasing this, you should create a hash table. */
148 #define MAX_GRO_SKBS 8
149 
150 /* This should be increased if a protocol with a bigger head is added. */
151 #define GRO_MAX_HEAD (MAX_HEADER + 128)
152 
153 static DEFINE_SPINLOCK(ptype_lock);
154 static DEFINE_SPINLOCK(offload_lock);
155 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
156 struct list_head ptype_all __read_mostly;	/* Taps */
157 static struct list_head offload_base __read_mostly;
158 
159 static int netif_rx_internal(struct sk_buff *skb);
160 static int call_netdevice_notifiers_info(unsigned long val,
161 					 struct net_device *dev,
162 					 struct netdev_notifier_info *info);
163 
164 /*
165  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
166  * semaphore.
167  *
168  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
169  *
170  * Writers must hold the rtnl semaphore while they loop through the
171  * dev_base_head list, and hold dev_base_lock for writing when they do the
172  * actual updates.  This allows pure readers to access the list even
173  * while a writer is preparing to update it.
174  *
175  * To put it another way, dev_base_lock is held for writing only to
176  * protect against pure readers; the rtnl semaphore provides the
177  * protection against other writers.
178  *
179  * See, for example usages, register_netdevice() and
180  * unregister_netdevice(), which must be called with the rtnl
181  * semaphore held.
182  */
183 DEFINE_RWLOCK(dev_base_lock);
184 EXPORT_SYMBOL(dev_base_lock);
185 
186 /* protects napi_hash addition/deletion and napi_gen_id */
187 static DEFINE_SPINLOCK(napi_hash_lock);
188 
189 static unsigned int napi_gen_id = NR_CPUS;
190 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
191 
192 static seqcount_t devnet_rename_seq;
193 
194 static inline void dev_base_seq_inc(struct net *net)
195 {
196 	while (++net->dev_base_seq == 0);
197 }
198 
199 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
200 {
201 	unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
202 
203 	return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
204 }
205 
206 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
207 {
208 	return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
209 }
210 
211 static inline void rps_lock(struct softnet_data *sd)
212 {
213 #ifdef CONFIG_RPS
214 	spin_lock(&sd->input_pkt_queue.lock);
215 #endif
216 }
217 
218 static inline void rps_unlock(struct softnet_data *sd)
219 {
220 #ifdef CONFIG_RPS
221 	spin_unlock(&sd->input_pkt_queue.lock);
222 #endif
223 }
224 
225 /* Device list insertion */
226 static void list_netdevice(struct net_device *dev)
227 {
228 	struct net *net = dev_net(dev);
229 
230 	ASSERT_RTNL();
231 
232 	write_lock_bh(&dev_base_lock);
233 	list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
234 	hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
235 	hlist_add_head_rcu(&dev->index_hlist,
236 			   dev_index_hash(net, dev->ifindex));
237 	write_unlock_bh(&dev_base_lock);
238 
239 	dev_base_seq_inc(net);
240 }
241 
242 /* Device list removal
243  * caller must respect a RCU grace period before freeing/reusing dev
244  */
245 static void unlist_netdevice(struct net_device *dev)
246 {
247 	ASSERT_RTNL();
248 
249 	/* Unlink dev from the device chain */
250 	write_lock_bh(&dev_base_lock);
251 	list_del_rcu(&dev->dev_list);
252 	hlist_del_rcu(&dev->name_hlist);
253 	hlist_del_rcu(&dev->index_hlist);
254 	write_unlock_bh(&dev_base_lock);
255 
256 	dev_base_seq_inc(dev_net(dev));
257 }
258 
259 /*
260  *	Our notifier list
261  */
262 
263 static RAW_NOTIFIER_HEAD(netdev_chain);
264 
265 /*
266  *	Device drivers call our routines to queue packets here. We empty the
267  *	queue in the local softnet handler.
268  */
269 
270 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
271 EXPORT_PER_CPU_SYMBOL(softnet_data);
272 
273 #ifdef CONFIG_LOCKDEP
274 /*
275  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
276  * according to dev->type
277  */
278 static const unsigned short netdev_lock_type[] =
279 	{ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
280 	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
281 	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
282 	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
283 	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
284 	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
285 	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
286 	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
287 	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
288 	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
289 	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
290 	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
291 	 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
292 	 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
293 	 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
294 
295 static const char *const netdev_lock_name[] =
296 	{"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
297 	 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
298 	 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
299 	 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
300 	 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
301 	 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
302 	 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
303 	 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
304 	 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
305 	 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
306 	 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
307 	 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
308 	 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
309 	 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
310 	 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
311 
312 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
313 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
314 
315 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
316 {
317 	int i;
318 
319 	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
320 		if (netdev_lock_type[i] == dev_type)
321 			return i;
322 	/* the last key is used by default */
323 	return ARRAY_SIZE(netdev_lock_type) - 1;
324 }
325 
326 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
327 						 unsigned short dev_type)
328 {
329 	int i;
330 
331 	i = netdev_lock_pos(dev_type);
332 	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
333 				   netdev_lock_name[i]);
334 }
335 
336 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
337 {
338 	int i;
339 
340 	i = netdev_lock_pos(dev->type);
341 	lockdep_set_class_and_name(&dev->addr_list_lock,
342 				   &netdev_addr_lock_key[i],
343 				   netdev_lock_name[i]);
344 }
345 #else
346 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
347 						 unsigned short dev_type)
348 {
349 }
350 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
351 {
352 }
353 #endif
354 
355 /*******************************************************************************
356 
357 		Protocol management and registration routines
358 
359 *******************************************************************************/
360 
361 /*
362  *	Add a protocol ID to the list. Now that the input handler is
363  *	smarter we can dispense with all the messy stuff that used to be
364  *	here.
365  *
366  *	BEWARE!!! Protocol handlers, mangling input packets,
367  *	MUST BE last in hash buckets and checking protocol handlers
368  *	MUST start from promiscuous ptype_all chain in net_bh.
369  *	It is true now, do not change it.
370  *	Explanation follows: if protocol handler, mangling packet, will
371  *	be the first on list, it is not able to sense, that packet
372  *	is cloned and should be copied-on-write, so that it will
373  *	change it and subsequent readers will get broken packet.
374  *							--ANK (980803)
375  */
376 
377 static inline struct list_head *ptype_head(const struct packet_type *pt)
378 {
379 	if (pt->type == htons(ETH_P_ALL))
380 		return pt->dev ? &pt->dev->ptype_all : &ptype_all;
381 	else
382 		return pt->dev ? &pt->dev->ptype_specific :
383 				 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
384 }
385 
386 /**
387  *	dev_add_pack - add packet handler
388  *	@pt: packet type declaration
389  *
390  *	Add a protocol handler to the networking stack. The passed &packet_type
391  *	is linked into kernel lists and may not be freed until it has been
392  *	removed from the kernel lists.
393  *
394  *	This call does not sleep therefore it can not
395  *	guarantee all CPU's that are in middle of receiving packets
396  *	will see the new packet type (until the next received packet).
397  */
398 
399 void dev_add_pack(struct packet_type *pt)
400 {
401 	struct list_head *head = ptype_head(pt);
402 
403 	spin_lock(&ptype_lock);
404 	list_add_rcu(&pt->list, head);
405 	spin_unlock(&ptype_lock);
406 }
407 EXPORT_SYMBOL(dev_add_pack);
408 
409 /**
410  *	__dev_remove_pack	 - remove packet handler
411  *	@pt: packet type declaration
412  *
413  *	Remove a protocol handler that was previously added to the kernel
414  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
415  *	from the kernel lists and can be freed or reused once this function
416  *	returns.
417  *
418  *      The packet type might still be in use by receivers
419  *	and must not be freed until after all the CPU's have gone
420  *	through a quiescent state.
421  */
422 void __dev_remove_pack(struct packet_type *pt)
423 {
424 	struct list_head *head = ptype_head(pt);
425 	struct packet_type *pt1;
426 
427 	spin_lock(&ptype_lock);
428 
429 	list_for_each_entry(pt1, head, list) {
430 		if (pt == pt1) {
431 			list_del_rcu(&pt->list);
432 			goto out;
433 		}
434 	}
435 
436 	pr_warn("dev_remove_pack: %p not found\n", pt);
437 out:
438 	spin_unlock(&ptype_lock);
439 }
440 EXPORT_SYMBOL(__dev_remove_pack);
441 
442 /**
443  *	dev_remove_pack	 - remove packet handler
444  *	@pt: packet type declaration
445  *
446  *	Remove a protocol handler that was previously added to the kernel
447  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
448  *	from the kernel lists and can be freed or reused once this function
449  *	returns.
450  *
451  *	This call sleeps to guarantee that no CPU is looking at the packet
452  *	type after return.
453  */
454 void dev_remove_pack(struct packet_type *pt)
455 {
456 	__dev_remove_pack(pt);
457 
458 	synchronize_net();
459 }
460 EXPORT_SYMBOL(dev_remove_pack);
461 
462 
463 /**
464  *	dev_add_offload - register offload handlers
465  *	@po: protocol offload declaration
466  *
467  *	Add protocol offload handlers to the networking stack. The passed
468  *	&proto_offload is linked into kernel lists and may not be freed until
469  *	it has been removed from the kernel lists.
470  *
471  *	This call does not sleep therefore it can not
472  *	guarantee all CPU's that are in middle of receiving packets
473  *	will see the new offload handlers (until the next received packet).
474  */
475 void dev_add_offload(struct packet_offload *po)
476 {
477 	struct packet_offload *elem;
478 
479 	spin_lock(&offload_lock);
480 	list_for_each_entry(elem, &offload_base, list) {
481 		if (po->priority < elem->priority)
482 			break;
483 	}
484 	list_add_rcu(&po->list, elem->list.prev);
485 	spin_unlock(&offload_lock);
486 }
487 EXPORT_SYMBOL(dev_add_offload);
488 
489 /**
490  *	__dev_remove_offload	 - remove offload handler
491  *	@po: packet offload declaration
492  *
493  *	Remove a protocol offload handler that was previously added to the
494  *	kernel offload handlers by dev_add_offload(). The passed &offload_type
495  *	is removed from the kernel lists and can be freed or reused once this
496  *	function returns.
497  *
498  *      The packet type might still be in use by receivers
499  *	and must not be freed until after all the CPU's have gone
500  *	through a quiescent state.
501  */
502 static void __dev_remove_offload(struct packet_offload *po)
503 {
504 	struct list_head *head = &offload_base;
505 	struct packet_offload *po1;
506 
507 	spin_lock(&offload_lock);
508 
509 	list_for_each_entry(po1, head, list) {
510 		if (po == po1) {
511 			list_del_rcu(&po->list);
512 			goto out;
513 		}
514 	}
515 
516 	pr_warn("dev_remove_offload: %p not found\n", po);
517 out:
518 	spin_unlock(&offload_lock);
519 }
520 
521 /**
522  *	dev_remove_offload	 - remove packet offload handler
523  *	@po: packet offload declaration
524  *
525  *	Remove a packet offload handler that was previously added to the kernel
526  *	offload handlers by dev_add_offload(). The passed &offload_type is
527  *	removed from the kernel lists and can be freed or reused once this
528  *	function returns.
529  *
530  *	This call sleeps to guarantee that no CPU is looking at the packet
531  *	type after return.
532  */
533 void dev_remove_offload(struct packet_offload *po)
534 {
535 	__dev_remove_offload(po);
536 
537 	synchronize_net();
538 }
539 EXPORT_SYMBOL(dev_remove_offload);
540 
541 /******************************************************************************
542 
543 		      Device Boot-time Settings Routines
544 
545 *******************************************************************************/
546 
547 /* Boot time configuration table */
548 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
549 
550 /**
551  *	netdev_boot_setup_add	- add new setup entry
552  *	@name: name of the device
553  *	@map: configured settings for the device
554  *
555  *	Adds new setup entry to the dev_boot_setup list.  The function
556  *	returns 0 on error and 1 on success.  This is a generic routine to
557  *	all netdevices.
558  */
559 static int netdev_boot_setup_add(char *name, struct ifmap *map)
560 {
561 	struct netdev_boot_setup *s;
562 	int i;
563 
564 	s = dev_boot_setup;
565 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
566 		if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
567 			memset(s[i].name, 0, sizeof(s[i].name));
568 			strlcpy(s[i].name, name, IFNAMSIZ);
569 			memcpy(&s[i].map, map, sizeof(s[i].map));
570 			break;
571 		}
572 	}
573 
574 	return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
575 }
576 
577 /**
578  *	netdev_boot_setup_check	- check boot time settings
579  *	@dev: the netdevice
580  *
581  * 	Check boot time settings for the device.
582  *	The found settings are set for the device to be used
583  *	later in the device probing.
584  *	Returns 0 if no settings found, 1 if they are.
585  */
586 int netdev_boot_setup_check(struct net_device *dev)
587 {
588 	struct netdev_boot_setup *s = dev_boot_setup;
589 	int i;
590 
591 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
592 		if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
593 		    !strcmp(dev->name, s[i].name)) {
594 			dev->irq 	= s[i].map.irq;
595 			dev->base_addr 	= s[i].map.base_addr;
596 			dev->mem_start 	= s[i].map.mem_start;
597 			dev->mem_end 	= s[i].map.mem_end;
598 			return 1;
599 		}
600 	}
601 	return 0;
602 }
603 EXPORT_SYMBOL(netdev_boot_setup_check);
604 
605 
606 /**
607  *	netdev_boot_base	- get address from boot time settings
608  *	@prefix: prefix for network device
609  *	@unit: id for network device
610  *
611  * 	Check boot time settings for the base address of device.
612  *	The found settings are set for the device to be used
613  *	later in the device probing.
614  *	Returns 0 if no settings found.
615  */
616 unsigned long netdev_boot_base(const char *prefix, int unit)
617 {
618 	const struct netdev_boot_setup *s = dev_boot_setup;
619 	char name[IFNAMSIZ];
620 	int i;
621 
622 	sprintf(name, "%s%d", prefix, unit);
623 
624 	/*
625 	 * If device already registered then return base of 1
626 	 * to indicate not to probe for this interface
627 	 */
628 	if (__dev_get_by_name(&init_net, name))
629 		return 1;
630 
631 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
632 		if (!strcmp(name, s[i].name))
633 			return s[i].map.base_addr;
634 	return 0;
635 }
636 
637 /*
638  * Saves at boot time configured settings for any netdevice.
639  */
640 int __init netdev_boot_setup(char *str)
641 {
642 	int ints[5];
643 	struct ifmap map;
644 
645 	str = get_options(str, ARRAY_SIZE(ints), ints);
646 	if (!str || !*str)
647 		return 0;
648 
649 	/* Save settings */
650 	memset(&map, 0, sizeof(map));
651 	if (ints[0] > 0)
652 		map.irq = ints[1];
653 	if (ints[0] > 1)
654 		map.base_addr = ints[2];
655 	if (ints[0] > 2)
656 		map.mem_start = ints[3];
657 	if (ints[0] > 3)
658 		map.mem_end = ints[4];
659 
660 	/* Add new entry to the list */
661 	return netdev_boot_setup_add(str, &map);
662 }
663 
664 __setup("netdev=", netdev_boot_setup);
665 
666 /*******************************************************************************
667 
668 			    Device Interface Subroutines
669 
670 *******************************************************************************/
671 
672 /**
673  *	dev_get_iflink	- get 'iflink' value of a interface
674  *	@dev: targeted interface
675  *
676  *	Indicates the ifindex the interface is linked to.
677  *	Physical interfaces have the same 'ifindex' and 'iflink' values.
678  */
679 
680 int dev_get_iflink(const struct net_device *dev)
681 {
682 	if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
683 		return dev->netdev_ops->ndo_get_iflink(dev);
684 
685 	return dev->ifindex;
686 }
687 EXPORT_SYMBOL(dev_get_iflink);
688 
689 /**
690  *	dev_fill_metadata_dst - Retrieve tunnel egress information.
691  *	@dev: targeted interface
692  *	@skb: The packet.
693  *
694  *	For better visibility of tunnel traffic OVS needs to retrieve
695  *	egress tunnel information for a packet. Following API allows
696  *	user to get this info.
697  */
698 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
699 {
700 	struct ip_tunnel_info *info;
701 
702 	if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
703 		return -EINVAL;
704 
705 	info = skb_tunnel_info_unclone(skb);
706 	if (!info)
707 		return -ENOMEM;
708 	if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
709 		return -EINVAL;
710 
711 	return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
712 }
713 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
714 
715 /**
716  *	__dev_get_by_name	- find a device by its name
717  *	@net: the applicable net namespace
718  *	@name: name to find
719  *
720  *	Find an interface by name. Must be called under RTNL semaphore
721  *	or @dev_base_lock. If the name is found a pointer to the device
722  *	is returned. If the name is not found then %NULL is returned. The
723  *	reference counters are not incremented so the caller must be
724  *	careful with locks.
725  */
726 
727 struct net_device *__dev_get_by_name(struct net *net, const char *name)
728 {
729 	struct net_device *dev;
730 	struct hlist_head *head = dev_name_hash(net, name);
731 
732 	hlist_for_each_entry(dev, head, name_hlist)
733 		if (!strncmp(dev->name, name, IFNAMSIZ))
734 			return dev;
735 
736 	return NULL;
737 }
738 EXPORT_SYMBOL(__dev_get_by_name);
739 
740 /**
741  *	dev_get_by_name_rcu	- find a device by its name
742  *	@net: the applicable net namespace
743  *	@name: name to find
744  *
745  *	Find an interface by name.
746  *	If the name is found a pointer to the device is returned.
747  * 	If the name is not found then %NULL is returned.
748  *	The reference counters are not incremented so the caller must be
749  *	careful with locks. The caller must hold RCU lock.
750  */
751 
752 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
753 {
754 	struct net_device *dev;
755 	struct hlist_head *head = dev_name_hash(net, name);
756 
757 	hlist_for_each_entry_rcu(dev, head, name_hlist)
758 		if (!strncmp(dev->name, name, IFNAMSIZ))
759 			return dev;
760 
761 	return NULL;
762 }
763 EXPORT_SYMBOL(dev_get_by_name_rcu);
764 
765 /**
766  *	dev_get_by_name		- find a device by its name
767  *	@net: the applicable net namespace
768  *	@name: name to find
769  *
770  *	Find an interface by name. This can be called from any
771  *	context and does its own locking. The returned handle has
772  *	the usage count incremented and the caller must use dev_put() to
773  *	release it when it is no longer needed. %NULL is returned if no
774  *	matching device is found.
775  */
776 
777 struct net_device *dev_get_by_name(struct net *net, const char *name)
778 {
779 	struct net_device *dev;
780 
781 	rcu_read_lock();
782 	dev = dev_get_by_name_rcu(net, name);
783 	if (dev)
784 		dev_hold(dev);
785 	rcu_read_unlock();
786 	return dev;
787 }
788 EXPORT_SYMBOL(dev_get_by_name);
789 
790 /**
791  *	__dev_get_by_index - find a device by its ifindex
792  *	@net: the applicable net namespace
793  *	@ifindex: index of device
794  *
795  *	Search for an interface by index. Returns %NULL if the device
796  *	is not found or a pointer to the device. The device has not
797  *	had its reference counter increased so the caller must be careful
798  *	about locking. The caller must hold either the RTNL semaphore
799  *	or @dev_base_lock.
800  */
801 
802 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
803 {
804 	struct net_device *dev;
805 	struct hlist_head *head = dev_index_hash(net, ifindex);
806 
807 	hlist_for_each_entry(dev, head, index_hlist)
808 		if (dev->ifindex == ifindex)
809 			return dev;
810 
811 	return NULL;
812 }
813 EXPORT_SYMBOL(__dev_get_by_index);
814 
815 /**
816  *	dev_get_by_index_rcu - find a device by its ifindex
817  *	@net: the applicable net namespace
818  *	@ifindex: index of device
819  *
820  *	Search for an interface by index. Returns %NULL if the device
821  *	is not found or a pointer to the device. The device has not
822  *	had its reference counter increased so the caller must be careful
823  *	about locking. The caller must hold RCU lock.
824  */
825 
826 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
827 {
828 	struct net_device *dev;
829 	struct hlist_head *head = dev_index_hash(net, ifindex);
830 
831 	hlist_for_each_entry_rcu(dev, head, index_hlist)
832 		if (dev->ifindex == ifindex)
833 			return dev;
834 
835 	return NULL;
836 }
837 EXPORT_SYMBOL(dev_get_by_index_rcu);
838 
839 
840 /**
841  *	dev_get_by_index - find a device by its ifindex
842  *	@net: the applicable net namespace
843  *	@ifindex: index of device
844  *
845  *	Search for an interface by index. Returns NULL if the device
846  *	is not found or a pointer to the device. The device returned has
847  *	had a reference added and the pointer is safe until the user calls
848  *	dev_put to indicate they have finished with it.
849  */
850 
851 struct net_device *dev_get_by_index(struct net *net, int ifindex)
852 {
853 	struct net_device *dev;
854 
855 	rcu_read_lock();
856 	dev = dev_get_by_index_rcu(net, ifindex);
857 	if (dev)
858 		dev_hold(dev);
859 	rcu_read_unlock();
860 	return dev;
861 }
862 EXPORT_SYMBOL(dev_get_by_index);
863 
864 /**
865  *	netdev_get_name - get a netdevice name, knowing its ifindex.
866  *	@net: network namespace
867  *	@name: a pointer to the buffer where the name will be stored.
868  *	@ifindex: the ifindex of the interface to get the name from.
869  *
870  *	The use of raw_seqcount_begin() and cond_resched() before
871  *	retrying is required as we want to give the writers a chance
872  *	to complete when CONFIG_PREEMPT is not set.
873  */
874 int netdev_get_name(struct net *net, char *name, int ifindex)
875 {
876 	struct net_device *dev;
877 	unsigned int seq;
878 
879 retry:
880 	seq = raw_seqcount_begin(&devnet_rename_seq);
881 	rcu_read_lock();
882 	dev = dev_get_by_index_rcu(net, ifindex);
883 	if (!dev) {
884 		rcu_read_unlock();
885 		return -ENODEV;
886 	}
887 
888 	strcpy(name, dev->name);
889 	rcu_read_unlock();
890 	if (read_seqcount_retry(&devnet_rename_seq, seq)) {
891 		cond_resched();
892 		goto retry;
893 	}
894 
895 	return 0;
896 }
897 
898 /**
899  *	dev_getbyhwaddr_rcu - find a device by its hardware address
900  *	@net: the applicable net namespace
901  *	@type: media type of device
902  *	@ha: hardware address
903  *
904  *	Search for an interface by MAC address. Returns NULL if the device
905  *	is not found or a pointer to the device.
906  *	The caller must hold RCU or RTNL.
907  *	The returned device has not had its ref count increased
908  *	and the caller must therefore be careful about locking
909  *
910  */
911 
912 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
913 				       const char *ha)
914 {
915 	struct net_device *dev;
916 
917 	for_each_netdev_rcu(net, dev)
918 		if (dev->type == type &&
919 		    !memcmp(dev->dev_addr, ha, dev->addr_len))
920 			return dev;
921 
922 	return NULL;
923 }
924 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
925 
926 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
927 {
928 	struct net_device *dev;
929 
930 	ASSERT_RTNL();
931 	for_each_netdev(net, dev)
932 		if (dev->type == type)
933 			return dev;
934 
935 	return NULL;
936 }
937 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
938 
939 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
940 {
941 	struct net_device *dev, *ret = NULL;
942 
943 	rcu_read_lock();
944 	for_each_netdev_rcu(net, dev)
945 		if (dev->type == type) {
946 			dev_hold(dev);
947 			ret = dev;
948 			break;
949 		}
950 	rcu_read_unlock();
951 	return ret;
952 }
953 EXPORT_SYMBOL(dev_getfirstbyhwtype);
954 
955 /**
956  *	__dev_get_by_flags - find any device with given flags
957  *	@net: the applicable net namespace
958  *	@if_flags: IFF_* values
959  *	@mask: bitmask of bits in if_flags to check
960  *
961  *	Search for any interface with the given flags. Returns NULL if a device
962  *	is not found or a pointer to the device. Must be called inside
963  *	rtnl_lock(), and result refcount is unchanged.
964  */
965 
966 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
967 				      unsigned short mask)
968 {
969 	struct net_device *dev, *ret;
970 
971 	ASSERT_RTNL();
972 
973 	ret = NULL;
974 	for_each_netdev(net, dev) {
975 		if (((dev->flags ^ if_flags) & mask) == 0) {
976 			ret = dev;
977 			break;
978 		}
979 	}
980 	return ret;
981 }
982 EXPORT_SYMBOL(__dev_get_by_flags);
983 
984 /**
985  *	dev_valid_name - check if name is okay for network device
986  *	@name: name string
987  *
988  *	Network device names need to be valid file names to
989  *	to allow sysfs to work.  We also disallow any kind of
990  *	whitespace.
991  */
992 bool dev_valid_name(const char *name)
993 {
994 	if (*name == '\0')
995 		return false;
996 	if (strlen(name) >= IFNAMSIZ)
997 		return false;
998 	if (!strcmp(name, ".") || !strcmp(name, ".."))
999 		return false;
1000 
1001 	while (*name) {
1002 		if (*name == '/' || *name == ':' || isspace(*name))
1003 			return false;
1004 		name++;
1005 	}
1006 	return true;
1007 }
1008 EXPORT_SYMBOL(dev_valid_name);
1009 
1010 /**
1011  *	__dev_alloc_name - allocate a name for a device
1012  *	@net: network namespace to allocate the device name in
1013  *	@name: name format string
1014  *	@buf:  scratch buffer and result name string
1015  *
1016  *	Passed a format string - eg "lt%d" it will try and find a suitable
1017  *	id. It scans list of devices to build up a free map, then chooses
1018  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1019  *	while allocating the name and adding the device in order to avoid
1020  *	duplicates.
1021  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1022  *	Returns the number of the unit assigned or a negative errno code.
1023  */
1024 
1025 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1026 {
1027 	int i = 0;
1028 	const char *p;
1029 	const int max_netdevices = 8*PAGE_SIZE;
1030 	unsigned long *inuse;
1031 	struct net_device *d;
1032 
1033 	p = strnchr(name, IFNAMSIZ-1, '%');
1034 	if (p) {
1035 		/*
1036 		 * Verify the string as this thing may have come from
1037 		 * the user.  There must be either one "%d" and no other "%"
1038 		 * characters.
1039 		 */
1040 		if (p[1] != 'd' || strchr(p + 2, '%'))
1041 			return -EINVAL;
1042 
1043 		/* Use one page as a bit array of possible slots */
1044 		inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1045 		if (!inuse)
1046 			return -ENOMEM;
1047 
1048 		for_each_netdev(net, d) {
1049 			if (!sscanf(d->name, name, &i))
1050 				continue;
1051 			if (i < 0 || i >= max_netdevices)
1052 				continue;
1053 
1054 			/*  avoid cases where sscanf is not exact inverse of printf */
1055 			snprintf(buf, IFNAMSIZ, name, i);
1056 			if (!strncmp(buf, d->name, IFNAMSIZ))
1057 				set_bit(i, inuse);
1058 		}
1059 
1060 		i = find_first_zero_bit(inuse, max_netdevices);
1061 		free_page((unsigned long) inuse);
1062 	}
1063 
1064 	if (buf != name)
1065 		snprintf(buf, IFNAMSIZ, name, i);
1066 	if (!__dev_get_by_name(net, buf))
1067 		return i;
1068 
1069 	/* It is possible to run out of possible slots
1070 	 * when the name is long and there isn't enough space left
1071 	 * for the digits, or if all bits are used.
1072 	 */
1073 	return -ENFILE;
1074 }
1075 
1076 /**
1077  *	dev_alloc_name - allocate a name for a device
1078  *	@dev: device
1079  *	@name: name format string
1080  *
1081  *	Passed a format string - eg "lt%d" it will try and find a suitable
1082  *	id. It scans list of devices to build up a free map, then chooses
1083  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1084  *	while allocating the name and adding the device in order to avoid
1085  *	duplicates.
1086  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1087  *	Returns the number of the unit assigned or a negative errno code.
1088  */
1089 
1090 int dev_alloc_name(struct net_device *dev, const char *name)
1091 {
1092 	char buf[IFNAMSIZ];
1093 	struct net *net;
1094 	int ret;
1095 
1096 	BUG_ON(!dev_net(dev));
1097 	net = dev_net(dev);
1098 	ret = __dev_alloc_name(net, name, buf);
1099 	if (ret >= 0)
1100 		strlcpy(dev->name, buf, IFNAMSIZ);
1101 	return ret;
1102 }
1103 EXPORT_SYMBOL(dev_alloc_name);
1104 
1105 static int dev_alloc_name_ns(struct net *net,
1106 			     struct net_device *dev,
1107 			     const char *name)
1108 {
1109 	char buf[IFNAMSIZ];
1110 	int ret;
1111 
1112 	ret = __dev_alloc_name(net, name, buf);
1113 	if (ret >= 0)
1114 		strlcpy(dev->name, buf, IFNAMSIZ);
1115 	return ret;
1116 }
1117 
1118 static int dev_get_valid_name(struct net *net,
1119 			      struct net_device *dev,
1120 			      const char *name)
1121 {
1122 	BUG_ON(!net);
1123 
1124 	if (!dev_valid_name(name))
1125 		return -EINVAL;
1126 
1127 	if (strchr(name, '%'))
1128 		return dev_alloc_name_ns(net, dev, name);
1129 	else if (__dev_get_by_name(net, name))
1130 		return -EEXIST;
1131 	else if (dev->name != name)
1132 		strlcpy(dev->name, name, IFNAMSIZ);
1133 
1134 	return 0;
1135 }
1136 
1137 /**
1138  *	dev_change_name - change name of a device
1139  *	@dev: device
1140  *	@newname: name (or format string) must be at least IFNAMSIZ
1141  *
1142  *	Change name of a device, can pass format strings "eth%d".
1143  *	for wildcarding.
1144  */
1145 int dev_change_name(struct net_device *dev, const char *newname)
1146 {
1147 	unsigned char old_assign_type;
1148 	char oldname[IFNAMSIZ];
1149 	int err = 0;
1150 	int ret;
1151 	struct net *net;
1152 
1153 	ASSERT_RTNL();
1154 	BUG_ON(!dev_net(dev));
1155 
1156 	net = dev_net(dev);
1157 	if (dev->flags & IFF_UP)
1158 		return -EBUSY;
1159 
1160 	write_seqcount_begin(&devnet_rename_seq);
1161 
1162 	if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1163 		write_seqcount_end(&devnet_rename_seq);
1164 		return 0;
1165 	}
1166 
1167 	memcpy(oldname, dev->name, IFNAMSIZ);
1168 
1169 	err = dev_get_valid_name(net, dev, newname);
1170 	if (err < 0) {
1171 		write_seqcount_end(&devnet_rename_seq);
1172 		return err;
1173 	}
1174 
1175 	if (oldname[0] && !strchr(oldname, '%'))
1176 		netdev_info(dev, "renamed from %s\n", oldname);
1177 
1178 	old_assign_type = dev->name_assign_type;
1179 	dev->name_assign_type = NET_NAME_RENAMED;
1180 
1181 rollback:
1182 	ret = device_rename(&dev->dev, dev->name);
1183 	if (ret) {
1184 		memcpy(dev->name, oldname, IFNAMSIZ);
1185 		dev->name_assign_type = old_assign_type;
1186 		write_seqcount_end(&devnet_rename_seq);
1187 		return ret;
1188 	}
1189 
1190 	write_seqcount_end(&devnet_rename_seq);
1191 
1192 	netdev_adjacent_rename_links(dev, oldname);
1193 
1194 	write_lock_bh(&dev_base_lock);
1195 	hlist_del_rcu(&dev->name_hlist);
1196 	write_unlock_bh(&dev_base_lock);
1197 
1198 	synchronize_rcu();
1199 
1200 	write_lock_bh(&dev_base_lock);
1201 	hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1202 	write_unlock_bh(&dev_base_lock);
1203 
1204 	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1205 	ret = notifier_to_errno(ret);
1206 
1207 	if (ret) {
1208 		/* err >= 0 after dev_alloc_name() or stores the first errno */
1209 		if (err >= 0) {
1210 			err = ret;
1211 			write_seqcount_begin(&devnet_rename_seq);
1212 			memcpy(dev->name, oldname, IFNAMSIZ);
1213 			memcpy(oldname, newname, IFNAMSIZ);
1214 			dev->name_assign_type = old_assign_type;
1215 			old_assign_type = NET_NAME_RENAMED;
1216 			goto rollback;
1217 		} else {
1218 			pr_err("%s: name change rollback failed: %d\n",
1219 			       dev->name, ret);
1220 		}
1221 	}
1222 
1223 	return err;
1224 }
1225 
1226 /**
1227  *	dev_set_alias - change ifalias of a device
1228  *	@dev: device
1229  *	@alias: name up to IFALIASZ
1230  *	@len: limit of bytes to copy from info
1231  *
1232  *	Set ifalias for a device,
1233  */
1234 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1235 {
1236 	char *new_ifalias;
1237 
1238 	ASSERT_RTNL();
1239 
1240 	if (len >= IFALIASZ)
1241 		return -EINVAL;
1242 
1243 	if (!len) {
1244 		kfree(dev->ifalias);
1245 		dev->ifalias = NULL;
1246 		return 0;
1247 	}
1248 
1249 	new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1250 	if (!new_ifalias)
1251 		return -ENOMEM;
1252 	dev->ifalias = new_ifalias;
1253 
1254 	strlcpy(dev->ifalias, alias, len+1);
1255 	return len;
1256 }
1257 
1258 
1259 /**
1260  *	netdev_features_change - device changes features
1261  *	@dev: device to cause notification
1262  *
1263  *	Called to indicate a device has changed features.
1264  */
1265 void netdev_features_change(struct net_device *dev)
1266 {
1267 	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1268 }
1269 EXPORT_SYMBOL(netdev_features_change);
1270 
1271 /**
1272  *	netdev_state_change - device changes state
1273  *	@dev: device to cause notification
1274  *
1275  *	Called to indicate a device has changed state. This function calls
1276  *	the notifier chains for netdev_chain and sends a NEWLINK message
1277  *	to the routing socket.
1278  */
1279 void netdev_state_change(struct net_device *dev)
1280 {
1281 	if (dev->flags & IFF_UP) {
1282 		struct netdev_notifier_change_info change_info;
1283 
1284 		change_info.flags_changed = 0;
1285 		call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
1286 					      &change_info.info);
1287 		rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1288 	}
1289 }
1290 EXPORT_SYMBOL(netdev_state_change);
1291 
1292 /**
1293  * 	netdev_notify_peers - notify network peers about existence of @dev
1294  * 	@dev: network device
1295  *
1296  * Generate traffic such that interested network peers are aware of
1297  * @dev, such as by generating a gratuitous ARP. This may be used when
1298  * a device wants to inform the rest of the network about some sort of
1299  * reconfiguration such as a failover event or virtual machine
1300  * migration.
1301  */
1302 void netdev_notify_peers(struct net_device *dev)
1303 {
1304 	rtnl_lock();
1305 	call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1306 	rtnl_unlock();
1307 }
1308 EXPORT_SYMBOL(netdev_notify_peers);
1309 
1310 static int __dev_open(struct net_device *dev)
1311 {
1312 	const struct net_device_ops *ops = dev->netdev_ops;
1313 	int ret;
1314 
1315 	ASSERT_RTNL();
1316 
1317 	if (!netif_device_present(dev))
1318 		return -ENODEV;
1319 
1320 	/* Block netpoll from trying to do any rx path servicing.
1321 	 * If we don't do this there is a chance ndo_poll_controller
1322 	 * or ndo_poll may be running while we open the device
1323 	 */
1324 	netpoll_poll_disable(dev);
1325 
1326 	ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1327 	ret = notifier_to_errno(ret);
1328 	if (ret)
1329 		return ret;
1330 
1331 	set_bit(__LINK_STATE_START, &dev->state);
1332 
1333 	if (ops->ndo_validate_addr)
1334 		ret = ops->ndo_validate_addr(dev);
1335 
1336 	if (!ret && ops->ndo_open)
1337 		ret = ops->ndo_open(dev);
1338 
1339 	netpoll_poll_enable(dev);
1340 
1341 	if (ret)
1342 		clear_bit(__LINK_STATE_START, &dev->state);
1343 	else {
1344 		dev->flags |= IFF_UP;
1345 		dev_set_rx_mode(dev);
1346 		dev_activate(dev);
1347 		add_device_randomness(dev->dev_addr, dev->addr_len);
1348 	}
1349 
1350 	return ret;
1351 }
1352 
1353 /**
1354  *	dev_open	- prepare an interface for use.
1355  *	@dev:	device to open
1356  *
1357  *	Takes a device from down to up state. The device's private open
1358  *	function is invoked and then the multicast lists are loaded. Finally
1359  *	the device is moved into the up state and a %NETDEV_UP message is
1360  *	sent to the netdev notifier chain.
1361  *
1362  *	Calling this function on an active interface is a nop. On a failure
1363  *	a negative errno code is returned.
1364  */
1365 int dev_open(struct net_device *dev)
1366 {
1367 	int ret;
1368 
1369 	if (dev->flags & IFF_UP)
1370 		return 0;
1371 
1372 	ret = __dev_open(dev);
1373 	if (ret < 0)
1374 		return ret;
1375 
1376 	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1377 	call_netdevice_notifiers(NETDEV_UP, dev);
1378 
1379 	return ret;
1380 }
1381 EXPORT_SYMBOL(dev_open);
1382 
1383 static int __dev_close_many(struct list_head *head)
1384 {
1385 	struct net_device *dev;
1386 
1387 	ASSERT_RTNL();
1388 	might_sleep();
1389 
1390 	list_for_each_entry(dev, head, close_list) {
1391 		/* Temporarily disable netpoll until the interface is down */
1392 		netpoll_poll_disable(dev);
1393 
1394 		call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1395 
1396 		clear_bit(__LINK_STATE_START, &dev->state);
1397 
1398 		/* Synchronize to scheduled poll. We cannot touch poll list, it
1399 		 * can be even on different cpu. So just clear netif_running().
1400 		 *
1401 		 * dev->stop() will invoke napi_disable() on all of it's
1402 		 * napi_struct instances on this device.
1403 		 */
1404 		smp_mb__after_atomic(); /* Commit netif_running(). */
1405 	}
1406 
1407 	dev_deactivate_many(head);
1408 
1409 	list_for_each_entry(dev, head, close_list) {
1410 		const struct net_device_ops *ops = dev->netdev_ops;
1411 
1412 		/*
1413 		 *	Call the device specific close. This cannot fail.
1414 		 *	Only if device is UP
1415 		 *
1416 		 *	We allow it to be called even after a DETACH hot-plug
1417 		 *	event.
1418 		 */
1419 		if (ops->ndo_stop)
1420 			ops->ndo_stop(dev);
1421 
1422 		dev->flags &= ~IFF_UP;
1423 		netpoll_poll_enable(dev);
1424 	}
1425 
1426 	return 0;
1427 }
1428 
1429 static int __dev_close(struct net_device *dev)
1430 {
1431 	int retval;
1432 	LIST_HEAD(single);
1433 
1434 	list_add(&dev->close_list, &single);
1435 	retval = __dev_close_many(&single);
1436 	list_del(&single);
1437 
1438 	return retval;
1439 }
1440 
1441 int dev_close_many(struct list_head *head, bool unlink)
1442 {
1443 	struct net_device *dev, *tmp;
1444 
1445 	/* Remove the devices that don't need to be closed */
1446 	list_for_each_entry_safe(dev, tmp, head, close_list)
1447 		if (!(dev->flags & IFF_UP))
1448 			list_del_init(&dev->close_list);
1449 
1450 	__dev_close_many(head);
1451 
1452 	list_for_each_entry_safe(dev, tmp, head, close_list) {
1453 		rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1454 		call_netdevice_notifiers(NETDEV_DOWN, dev);
1455 		if (unlink)
1456 			list_del_init(&dev->close_list);
1457 	}
1458 
1459 	return 0;
1460 }
1461 EXPORT_SYMBOL(dev_close_many);
1462 
1463 /**
1464  *	dev_close - shutdown an interface.
1465  *	@dev: device to shutdown
1466  *
1467  *	This function moves an active device into down state. A
1468  *	%NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1469  *	is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1470  *	chain.
1471  */
1472 int dev_close(struct net_device *dev)
1473 {
1474 	if (dev->flags & IFF_UP) {
1475 		LIST_HEAD(single);
1476 
1477 		list_add(&dev->close_list, &single);
1478 		dev_close_many(&single, true);
1479 		list_del(&single);
1480 	}
1481 	return 0;
1482 }
1483 EXPORT_SYMBOL(dev_close);
1484 
1485 
1486 /**
1487  *	dev_disable_lro - disable Large Receive Offload on a device
1488  *	@dev: device
1489  *
1490  *	Disable Large Receive Offload (LRO) on a net device.  Must be
1491  *	called under RTNL.  This is needed if received packets may be
1492  *	forwarded to another interface.
1493  */
1494 void dev_disable_lro(struct net_device *dev)
1495 {
1496 	struct net_device *lower_dev;
1497 	struct list_head *iter;
1498 
1499 	dev->wanted_features &= ~NETIF_F_LRO;
1500 	netdev_update_features(dev);
1501 
1502 	if (unlikely(dev->features & NETIF_F_LRO))
1503 		netdev_WARN(dev, "failed to disable LRO!\n");
1504 
1505 	netdev_for_each_lower_dev(dev, lower_dev, iter)
1506 		dev_disable_lro(lower_dev);
1507 }
1508 EXPORT_SYMBOL(dev_disable_lro);
1509 
1510 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1511 				   struct net_device *dev)
1512 {
1513 	struct netdev_notifier_info info;
1514 
1515 	netdev_notifier_info_init(&info, dev);
1516 	return nb->notifier_call(nb, val, &info);
1517 }
1518 
1519 static int dev_boot_phase = 1;
1520 
1521 /**
1522  *	register_netdevice_notifier - register a network notifier block
1523  *	@nb: notifier
1524  *
1525  *	Register a notifier to be called when network device events occur.
1526  *	The notifier passed is linked into the kernel structures and must
1527  *	not be reused until it has been unregistered. A negative errno code
1528  *	is returned on a failure.
1529  *
1530  * 	When registered all registration and up events are replayed
1531  *	to the new notifier to allow device to have a race free
1532  *	view of the network device list.
1533  */
1534 
1535 int register_netdevice_notifier(struct notifier_block *nb)
1536 {
1537 	struct net_device *dev;
1538 	struct net_device *last;
1539 	struct net *net;
1540 	int err;
1541 
1542 	rtnl_lock();
1543 	err = raw_notifier_chain_register(&netdev_chain, nb);
1544 	if (err)
1545 		goto unlock;
1546 	if (dev_boot_phase)
1547 		goto unlock;
1548 	for_each_net(net) {
1549 		for_each_netdev(net, dev) {
1550 			err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1551 			err = notifier_to_errno(err);
1552 			if (err)
1553 				goto rollback;
1554 
1555 			if (!(dev->flags & IFF_UP))
1556 				continue;
1557 
1558 			call_netdevice_notifier(nb, NETDEV_UP, dev);
1559 		}
1560 	}
1561 
1562 unlock:
1563 	rtnl_unlock();
1564 	return err;
1565 
1566 rollback:
1567 	last = dev;
1568 	for_each_net(net) {
1569 		for_each_netdev(net, dev) {
1570 			if (dev == last)
1571 				goto outroll;
1572 
1573 			if (dev->flags & IFF_UP) {
1574 				call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1575 							dev);
1576 				call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1577 			}
1578 			call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1579 		}
1580 	}
1581 
1582 outroll:
1583 	raw_notifier_chain_unregister(&netdev_chain, nb);
1584 	goto unlock;
1585 }
1586 EXPORT_SYMBOL(register_netdevice_notifier);
1587 
1588 /**
1589  *	unregister_netdevice_notifier - unregister a network notifier block
1590  *	@nb: notifier
1591  *
1592  *	Unregister a notifier previously registered by
1593  *	register_netdevice_notifier(). The notifier is unlinked into the
1594  *	kernel structures and may then be reused. A negative errno code
1595  *	is returned on a failure.
1596  *
1597  * 	After unregistering unregister and down device events are synthesized
1598  *	for all devices on the device list to the removed notifier to remove
1599  *	the need for special case cleanup code.
1600  */
1601 
1602 int unregister_netdevice_notifier(struct notifier_block *nb)
1603 {
1604 	struct net_device *dev;
1605 	struct net *net;
1606 	int err;
1607 
1608 	rtnl_lock();
1609 	err = raw_notifier_chain_unregister(&netdev_chain, nb);
1610 	if (err)
1611 		goto unlock;
1612 
1613 	for_each_net(net) {
1614 		for_each_netdev(net, dev) {
1615 			if (dev->flags & IFF_UP) {
1616 				call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1617 							dev);
1618 				call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1619 			}
1620 			call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1621 		}
1622 	}
1623 unlock:
1624 	rtnl_unlock();
1625 	return err;
1626 }
1627 EXPORT_SYMBOL(unregister_netdevice_notifier);
1628 
1629 /**
1630  *	call_netdevice_notifiers_info - call all network notifier blocks
1631  *	@val: value passed unmodified to notifier function
1632  *	@dev: net_device pointer passed unmodified to notifier function
1633  *	@info: notifier information data
1634  *
1635  *	Call all network notifier blocks.  Parameters and return value
1636  *	are as for raw_notifier_call_chain().
1637  */
1638 
1639 static int call_netdevice_notifiers_info(unsigned long val,
1640 					 struct net_device *dev,
1641 					 struct netdev_notifier_info *info)
1642 {
1643 	ASSERT_RTNL();
1644 	netdev_notifier_info_init(info, dev);
1645 	return raw_notifier_call_chain(&netdev_chain, val, info);
1646 }
1647 
1648 /**
1649  *	call_netdevice_notifiers - call all network notifier blocks
1650  *      @val: value passed unmodified to notifier function
1651  *      @dev: net_device pointer passed unmodified to notifier function
1652  *
1653  *	Call all network notifier blocks.  Parameters and return value
1654  *	are as for raw_notifier_call_chain().
1655  */
1656 
1657 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1658 {
1659 	struct netdev_notifier_info info;
1660 
1661 	return call_netdevice_notifiers_info(val, dev, &info);
1662 }
1663 EXPORT_SYMBOL(call_netdevice_notifiers);
1664 
1665 #ifdef CONFIG_NET_INGRESS
1666 static struct static_key ingress_needed __read_mostly;
1667 
1668 void net_inc_ingress_queue(void)
1669 {
1670 	static_key_slow_inc(&ingress_needed);
1671 }
1672 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1673 
1674 void net_dec_ingress_queue(void)
1675 {
1676 	static_key_slow_dec(&ingress_needed);
1677 }
1678 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1679 #endif
1680 
1681 #ifdef CONFIG_NET_EGRESS
1682 static struct static_key egress_needed __read_mostly;
1683 
1684 void net_inc_egress_queue(void)
1685 {
1686 	static_key_slow_inc(&egress_needed);
1687 }
1688 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
1689 
1690 void net_dec_egress_queue(void)
1691 {
1692 	static_key_slow_dec(&egress_needed);
1693 }
1694 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
1695 #endif
1696 
1697 static struct static_key netstamp_needed __read_mostly;
1698 #ifdef HAVE_JUMP_LABEL
1699 /* We are not allowed to call static_key_slow_dec() from irq context
1700  * If net_disable_timestamp() is called from irq context, defer the
1701  * static_key_slow_dec() calls.
1702  */
1703 static atomic_t netstamp_needed_deferred;
1704 #endif
1705 
1706 void net_enable_timestamp(void)
1707 {
1708 #ifdef HAVE_JUMP_LABEL
1709 	int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1710 
1711 	if (deferred) {
1712 		while (--deferred)
1713 			static_key_slow_dec(&netstamp_needed);
1714 		return;
1715 	}
1716 #endif
1717 	static_key_slow_inc(&netstamp_needed);
1718 }
1719 EXPORT_SYMBOL(net_enable_timestamp);
1720 
1721 void net_disable_timestamp(void)
1722 {
1723 #ifdef HAVE_JUMP_LABEL
1724 	if (in_interrupt()) {
1725 		atomic_inc(&netstamp_needed_deferred);
1726 		return;
1727 	}
1728 #endif
1729 	static_key_slow_dec(&netstamp_needed);
1730 }
1731 EXPORT_SYMBOL(net_disable_timestamp);
1732 
1733 static inline void net_timestamp_set(struct sk_buff *skb)
1734 {
1735 	skb->tstamp.tv64 = 0;
1736 	if (static_key_false(&netstamp_needed))
1737 		__net_timestamp(skb);
1738 }
1739 
1740 #define net_timestamp_check(COND, SKB)			\
1741 	if (static_key_false(&netstamp_needed)) {		\
1742 		if ((COND) && !(SKB)->tstamp.tv64)	\
1743 			__net_timestamp(SKB);		\
1744 	}						\
1745 
1746 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
1747 {
1748 	unsigned int len;
1749 
1750 	if (!(dev->flags & IFF_UP))
1751 		return false;
1752 
1753 	len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1754 	if (skb->len <= len)
1755 		return true;
1756 
1757 	/* if TSO is enabled, we don't care about the length as the packet
1758 	 * could be forwarded without being segmented before
1759 	 */
1760 	if (skb_is_gso(skb))
1761 		return true;
1762 
1763 	return false;
1764 }
1765 EXPORT_SYMBOL_GPL(is_skb_forwardable);
1766 
1767 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1768 {
1769 	if (skb_orphan_frags(skb, GFP_ATOMIC) ||
1770 	    unlikely(!is_skb_forwardable(dev, skb))) {
1771 		atomic_long_inc(&dev->rx_dropped);
1772 		kfree_skb(skb);
1773 		return NET_RX_DROP;
1774 	}
1775 
1776 	skb_scrub_packet(skb, true);
1777 	skb->priority = 0;
1778 	skb->protocol = eth_type_trans(skb, dev);
1779 	skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1780 
1781 	return 0;
1782 }
1783 EXPORT_SYMBOL_GPL(__dev_forward_skb);
1784 
1785 /**
1786  * dev_forward_skb - loopback an skb to another netif
1787  *
1788  * @dev: destination network device
1789  * @skb: buffer to forward
1790  *
1791  * return values:
1792  *	NET_RX_SUCCESS	(no congestion)
1793  *	NET_RX_DROP     (packet was dropped, but freed)
1794  *
1795  * dev_forward_skb can be used for injecting an skb from the
1796  * start_xmit function of one device into the receive queue
1797  * of another device.
1798  *
1799  * The receiving device may be in another namespace, so
1800  * we have to clear all information in the skb that could
1801  * impact namespace isolation.
1802  */
1803 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1804 {
1805 	return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1806 }
1807 EXPORT_SYMBOL_GPL(dev_forward_skb);
1808 
1809 static inline int deliver_skb(struct sk_buff *skb,
1810 			      struct packet_type *pt_prev,
1811 			      struct net_device *orig_dev)
1812 {
1813 	if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1814 		return -ENOMEM;
1815 	atomic_inc(&skb->users);
1816 	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1817 }
1818 
1819 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1820 					  struct packet_type **pt,
1821 					  struct net_device *orig_dev,
1822 					  __be16 type,
1823 					  struct list_head *ptype_list)
1824 {
1825 	struct packet_type *ptype, *pt_prev = *pt;
1826 
1827 	list_for_each_entry_rcu(ptype, ptype_list, list) {
1828 		if (ptype->type != type)
1829 			continue;
1830 		if (pt_prev)
1831 			deliver_skb(skb, pt_prev, orig_dev);
1832 		pt_prev = ptype;
1833 	}
1834 	*pt = pt_prev;
1835 }
1836 
1837 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1838 {
1839 	if (!ptype->af_packet_priv || !skb->sk)
1840 		return false;
1841 
1842 	if (ptype->id_match)
1843 		return ptype->id_match(ptype, skb->sk);
1844 	else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1845 		return true;
1846 
1847 	return false;
1848 }
1849 
1850 /*
1851  *	Support routine. Sends outgoing frames to any network
1852  *	taps currently in use.
1853  */
1854 
1855 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1856 {
1857 	struct packet_type *ptype;
1858 	struct sk_buff *skb2 = NULL;
1859 	struct packet_type *pt_prev = NULL;
1860 	struct list_head *ptype_list = &ptype_all;
1861 
1862 	rcu_read_lock();
1863 again:
1864 	list_for_each_entry_rcu(ptype, ptype_list, list) {
1865 		/* Never send packets back to the socket
1866 		 * they originated from - MvS (miquels@drinkel.ow.org)
1867 		 */
1868 		if (skb_loop_sk(ptype, skb))
1869 			continue;
1870 
1871 		if (pt_prev) {
1872 			deliver_skb(skb2, pt_prev, skb->dev);
1873 			pt_prev = ptype;
1874 			continue;
1875 		}
1876 
1877 		/* need to clone skb, done only once */
1878 		skb2 = skb_clone(skb, GFP_ATOMIC);
1879 		if (!skb2)
1880 			goto out_unlock;
1881 
1882 		net_timestamp_set(skb2);
1883 
1884 		/* skb->nh should be correctly
1885 		 * set by sender, so that the second statement is
1886 		 * just protection against buggy protocols.
1887 		 */
1888 		skb_reset_mac_header(skb2);
1889 
1890 		if (skb_network_header(skb2) < skb2->data ||
1891 		    skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1892 			net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1893 					     ntohs(skb2->protocol),
1894 					     dev->name);
1895 			skb_reset_network_header(skb2);
1896 		}
1897 
1898 		skb2->transport_header = skb2->network_header;
1899 		skb2->pkt_type = PACKET_OUTGOING;
1900 		pt_prev = ptype;
1901 	}
1902 
1903 	if (ptype_list == &ptype_all) {
1904 		ptype_list = &dev->ptype_all;
1905 		goto again;
1906 	}
1907 out_unlock:
1908 	if (pt_prev)
1909 		pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1910 	rcu_read_unlock();
1911 }
1912 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
1913 
1914 /**
1915  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1916  * @dev: Network device
1917  * @txq: number of queues available
1918  *
1919  * If real_num_tx_queues is changed the tc mappings may no longer be
1920  * valid. To resolve this verify the tc mapping remains valid and if
1921  * not NULL the mapping. With no priorities mapping to this
1922  * offset/count pair it will no longer be used. In the worst case TC0
1923  * is invalid nothing can be done so disable priority mappings. If is
1924  * expected that drivers will fix this mapping if they can before
1925  * calling netif_set_real_num_tx_queues.
1926  */
1927 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1928 {
1929 	int i;
1930 	struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1931 
1932 	/* If TC0 is invalidated disable TC mapping */
1933 	if (tc->offset + tc->count > txq) {
1934 		pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1935 		dev->num_tc = 0;
1936 		return;
1937 	}
1938 
1939 	/* Invalidated prio to tc mappings set to TC0 */
1940 	for (i = 1; i < TC_BITMASK + 1; i++) {
1941 		int q = netdev_get_prio_tc_map(dev, i);
1942 
1943 		tc = &dev->tc_to_txq[q];
1944 		if (tc->offset + tc->count > txq) {
1945 			pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1946 				i, q);
1947 			netdev_set_prio_tc_map(dev, i, 0);
1948 		}
1949 	}
1950 }
1951 
1952 #ifdef CONFIG_XPS
1953 static DEFINE_MUTEX(xps_map_mutex);
1954 #define xmap_dereference(P)		\
1955 	rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
1956 
1957 static struct xps_map *remove_xps_queue(struct xps_dev_maps *dev_maps,
1958 					int cpu, u16 index)
1959 {
1960 	struct xps_map *map = NULL;
1961 	int pos;
1962 
1963 	if (dev_maps)
1964 		map = xmap_dereference(dev_maps->cpu_map[cpu]);
1965 
1966 	for (pos = 0; map && pos < map->len; pos++) {
1967 		if (map->queues[pos] == index) {
1968 			if (map->len > 1) {
1969 				map->queues[pos] = map->queues[--map->len];
1970 			} else {
1971 				RCU_INIT_POINTER(dev_maps->cpu_map[cpu], NULL);
1972 				kfree_rcu(map, rcu);
1973 				map = NULL;
1974 			}
1975 			break;
1976 		}
1977 	}
1978 
1979 	return map;
1980 }
1981 
1982 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
1983 {
1984 	struct xps_dev_maps *dev_maps;
1985 	int cpu, i;
1986 	bool active = false;
1987 
1988 	mutex_lock(&xps_map_mutex);
1989 	dev_maps = xmap_dereference(dev->xps_maps);
1990 
1991 	if (!dev_maps)
1992 		goto out_no_maps;
1993 
1994 	for_each_possible_cpu(cpu) {
1995 		for (i = index; i < dev->num_tx_queues; i++) {
1996 			if (!remove_xps_queue(dev_maps, cpu, i))
1997 				break;
1998 		}
1999 		if (i == dev->num_tx_queues)
2000 			active = true;
2001 	}
2002 
2003 	if (!active) {
2004 		RCU_INIT_POINTER(dev->xps_maps, NULL);
2005 		kfree_rcu(dev_maps, rcu);
2006 	}
2007 
2008 	for (i = index; i < dev->num_tx_queues; i++)
2009 		netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
2010 					     NUMA_NO_NODE);
2011 
2012 out_no_maps:
2013 	mutex_unlock(&xps_map_mutex);
2014 }
2015 
2016 static struct xps_map *expand_xps_map(struct xps_map *map,
2017 				      int cpu, u16 index)
2018 {
2019 	struct xps_map *new_map;
2020 	int alloc_len = XPS_MIN_MAP_ALLOC;
2021 	int i, pos;
2022 
2023 	for (pos = 0; map && pos < map->len; pos++) {
2024 		if (map->queues[pos] != index)
2025 			continue;
2026 		return map;
2027 	}
2028 
2029 	/* Need to add queue to this CPU's existing map */
2030 	if (map) {
2031 		if (pos < map->alloc_len)
2032 			return map;
2033 
2034 		alloc_len = map->alloc_len * 2;
2035 	}
2036 
2037 	/* Need to allocate new map to store queue on this CPU's map */
2038 	new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2039 			       cpu_to_node(cpu));
2040 	if (!new_map)
2041 		return NULL;
2042 
2043 	for (i = 0; i < pos; i++)
2044 		new_map->queues[i] = map->queues[i];
2045 	new_map->alloc_len = alloc_len;
2046 	new_map->len = pos;
2047 
2048 	return new_map;
2049 }
2050 
2051 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2052 			u16 index)
2053 {
2054 	struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2055 	struct xps_map *map, *new_map;
2056 	int maps_sz = max_t(unsigned int, XPS_DEV_MAPS_SIZE, L1_CACHE_BYTES);
2057 	int cpu, numa_node_id = -2;
2058 	bool active = false;
2059 
2060 	mutex_lock(&xps_map_mutex);
2061 
2062 	dev_maps = xmap_dereference(dev->xps_maps);
2063 
2064 	/* allocate memory for queue storage */
2065 	for_each_online_cpu(cpu) {
2066 		if (!cpumask_test_cpu(cpu, mask))
2067 			continue;
2068 
2069 		if (!new_dev_maps)
2070 			new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2071 		if (!new_dev_maps) {
2072 			mutex_unlock(&xps_map_mutex);
2073 			return -ENOMEM;
2074 		}
2075 
2076 		map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2077 				 NULL;
2078 
2079 		map = expand_xps_map(map, cpu, index);
2080 		if (!map)
2081 			goto error;
2082 
2083 		RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
2084 	}
2085 
2086 	if (!new_dev_maps)
2087 		goto out_no_new_maps;
2088 
2089 	for_each_possible_cpu(cpu) {
2090 		if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
2091 			/* add queue to CPU maps */
2092 			int pos = 0;
2093 
2094 			map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2095 			while ((pos < map->len) && (map->queues[pos] != index))
2096 				pos++;
2097 
2098 			if (pos == map->len)
2099 				map->queues[map->len++] = index;
2100 #ifdef CONFIG_NUMA
2101 			if (numa_node_id == -2)
2102 				numa_node_id = cpu_to_node(cpu);
2103 			else if (numa_node_id != cpu_to_node(cpu))
2104 				numa_node_id = -1;
2105 #endif
2106 		} else if (dev_maps) {
2107 			/* fill in the new device map from the old device map */
2108 			map = xmap_dereference(dev_maps->cpu_map[cpu]);
2109 			RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
2110 		}
2111 
2112 	}
2113 
2114 	rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2115 
2116 	/* Cleanup old maps */
2117 	if (dev_maps) {
2118 		for_each_possible_cpu(cpu) {
2119 			new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2120 			map = xmap_dereference(dev_maps->cpu_map[cpu]);
2121 			if (map && map != new_map)
2122 				kfree_rcu(map, rcu);
2123 		}
2124 
2125 		kfree_rcu(dev_maps, rcu);
2126 	}
2127 
2128 	dev_maps = new_dev_maps;
2129 	active = true;
2130 
2131 out_no_new_maps:
2132 	/* update Tx queue numa node */
2133 	netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2134 				     (numa_node_id >= 0) ? numa_node_id :
2135 				     NUMA_NO_NODE);
2136 
2137 	if (!dev_maps)
2138 		goto out_no_maps;
2139 
2140 	/* removes queue from unused CPUs */
2141 	for_each_possible_cpu(cpu) {
2142 		if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu))
2143 			continue;
2144 
2145 		if (remove_xps_queue(dev_maps, cpu, index))
2146 			active = true;
2147 	}
2148 
2149 	/* free map if not active */
2150 	if (!active) {
2151 		RCU_INIT_POINTER(dev->xps_maps, NULL);
2152 		kfree_rcu(dev_maps, rcu);
2153 	}
2154 
2155 out_no_maps:
2156 	mutex_unlock(&xps_map_mutex);
2157 
2158 	return 0;
2159 error:
2160 	/* remove any maps that we added */
2161 	for_each_possible_cpu(cpu) {
2162 		new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2163 		map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2164 				 NULL;
2165 		if (new_map && new_map != map)
2166 			kfree(new_map);
2167 	}
2168 
2169 	mutex_unlock(&xps_map_mutex);
2170 
2171 	kfree(new_dev_maps);
2172 	return -ENOMEM;
2173 }
2174 EXPORT_SYMBOL(netif_set_xps_queue);
2175 
2176 #endif
2177 /*
2178  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2179  * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2180  */
2181 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2182 {
2183 	int rc;
2184 
2185 	if (txq < 1 || txq > dev->num_tx_queues)
2186 		return -EINVAL;
2187 
2188 	if (dev->reg_state == NETREG_REGISTERED ||
2189 	    dev->reg_state == NETREG_UNREGISTERING) {
2190 		ASSERT_RTNL();
2191 
2192 		rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2193 						  txq);
2194 		if (rc)
2195 			return rc;
2196 
2197 		if (dev->num_tc)
2198 			netif_setup_tc(dev, txq);
2199 
2200 		if (txq < dev->real_num_tx_queues) {
2201 			qdisc_reset_all_tx_gt(dev, txq);
2202 #ifdef CONFIG_XPS
2203 			netif_reset_xps_queues_gt(dev, txq);
2204 #endif
2205 		}
2206 	}
2207 
2208 	dev->real_num_tx_queues = txq;
2209 	return 0;
2210 }
2211 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2212 
2213 #ifdef CONFIG_SYSFS
2214 /**
2215  *	netif_set_real_num_rx_queues - set actual number of RX queues used
2216  *	@dev: Network device
2217  *	@rxq: Actual number of RX queues
2218  *
2219  *	This must be called either with the rtnl_lock held or before
2220  *	registration of the net device.  Returns 0 on success, or a
2221  *	negative error code.  If called before registration, it always
2222  *	succeeds.
2223  */
2224 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2225 {
2226 	int rc;
2227 
2228 	if (rxq < 1 || rxq > dev->num_rx_queues)
2229 		return -EINVAL;
2230 
2231 	if (dev->reg_state == NETREG_REGISTERED) {
2232 		ASSERT_RTNL();
2233 
2234 		rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2235 						  rxq);
2236 		if (rc)
2237 			return rc;
2238 	}
2239 
2240 	dev->real_num_rx_queues = rxq;
2241 	return 0;
2242 }
2243 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2244 #endif
2245 
2246 /**
2247  * netif_get_num_default_rss_queues - default number of RSS queues
2248  *
2249  * This routine should set an upper limit on the number of RSS queues
2250  * used by default by multiqueue devices.
2251  */
2252 int netif_get_num_default_rss_queues(void)
2253 {
2254 	return is_kdump_kernel() ?
2255 		1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2256 }
2257 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2258 
2259 static void __netif_reschedule(struct Qdisc *q)
2260 {
2261 	struct softnet_data *sd;
2262 	unsigned long flags;
2263 
2264 	local_irq_save(flags);
2265 	sd = this_cpu_ptr(&softnet_data);
2266 	q->next_sched = NULL;
2267 	*sd->output_queue_tailp = q;
2268 	sd->output_queue_tailp = &q->next_sched;
2269 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
2270 	local_irq_restore(flags);
2271 }
2272 
2273 void __netif_schedule(struct Qdisc *q)
2274 {
2275 	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2276 		__netif_reschedule(q);
2277 }
2278 EXPORT_SYMBOL(__netif_schedule);
2279 
2280 struct dev_kfree_skb_cb {
2281 	enum skb_free_reason reason;
2282 };
2283 
2284 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2285 {
2286 	return (struct dev_kfree_skb_cb *)skb->cb;
2287 }
2288 
2289 void netif_schedule_queue(struct netdev_queue *txq)
2290 {
2291 	rcu_read_lock();
2292 	if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2293 		struct Qdisc *q = rcu_dereference(txq->qdisc);
2294 
2295 		__netif_schedule(q);
2296 	}
2297 	rcu_read_unlock();
2298 }
2299 EXPORT_SYMBOL(netif_schedule_queue);
2300 
2301 /**
2302  *	netif_wake_subqueue - allow sending packets on subqueue
2303  *	@dev: network device
2304  *	@queue_index: sub queue index
2305  *
2306  * Resume individual transmit queue of a device with multiple transmit queues.
2307  */
2308 void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
2309 {
2310 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2311 
2312 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &txq->state)) {
2313 		struct Qdisc *q;
2314 
2315 		rcu_read_lock();
2316 		q = rcu_dereference(txq->qdisc);
2317 		__netif_schedule(q);
2318 		rcu_read_unlock();
2319 	}
2320 }
2321 EXPORT_SYMBOL(netif_wake_subqueue);
2322 
2323 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2324 {
2325 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2326 		struct Qdisc *q;
2327 
2328 		rcu_read_lock();
2329 		q = rcu_dereference(dev_queue->qdisc);
2330 		__netif_schedule(q);
2331 		rcu_read_unlock();
2332 	}
2333 }
2334 EXPORT_SYMBOL(netif_tx_wake_queue);
2335 
2336 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2337 {
2338 	unsigned long flags;
2339 
2340 	if (likely(atomic_read(&skb->users) == 1)) {
2341 		smp_rmb();
2342 		atomic_set(&skb->users, 0);
2343 	} else if (likely(!atomic_dec_and_test(&skb->users))) {
2344 		return;
2345 	}
2346 	get_kfree_skb_cb(skb)->reason = reason;
2347 	local_irq_save(flags);
2348 	skb->next = __this_cpu_read(softnet_data.completion_queue);
2349 	__this_cpu_write(softnet_data.completion_queue, skb);
2350 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
2351 	local_irq_restore(flags);
2352 }
2353 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2354 
2355 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2356 {
2357 	if (in_irq() || irqs_disabled())
2358 		__dev_kfree_skb_irq(skb, reason);
2359 	else
2360 		dev_kfree_skb(skb);
2361 }
2362 EXPORT_SYMBOL(__dev_kfree_skb_any);
2363 
2364 
2365 /**
2366  * netif_device_detach - mark device as removed
2367  * @dev: network device
2368  *
2369  * Mark device as removed from system and therefore no longer available.
2370  */
2371 void netif_device_detach(struct net_device *dev)
2372 {
2373 	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2374 	    netif_running(dev)) {
2375 		netif_tx_stop_all_queues(dev);
2376 	}
2377 }
2378 EXPORT_SYMBOL(netif_device_detach);
2379 
2380 /**
2381  * netif_device_attach - mark device as attached
2382  * @dev: network device
2383  *
2384  * Mark device as attached from system and restart if needed.
2385  */
2386 void netif_device_attach(struct net_device *dev)
2387 {
2388 	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2389 	    netif_running(dev)) {
2390 		netif_tx_wake_all_queues(dev);
2391 		__netdev_watchdog_up(dev);
2392 	}
2393 }
2394 EXPORT_SYMBOL(netif_device_attach);
2395 
2396 /*
2397  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2398  * to be used as a distribution range.
2399  */
2400 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
2401 		  unsigned int num_tx_queues)
2402 {
2403 	u32 hash;
2404 	u16 qoffset = 0;
2405 	u16 qcount = num_tx_queues;
2406 
2407 	if (skb_rx_queue_recorded(skb)) {
2408 		hash = skb_get_rx_queue(skb);
2409 		while (unlikely(hash >= num_tx_queues))
2410 			hash -= num_tx_queues;
2411 		return hash;
2412 	}
2413 
2414 	if (dev->num_tc) {
2415 		u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2416 		qoffset = dev->tc_to_txq[tc].offset;
2417 		qcount = dev->tc_to_txq[tc].count;
2418 	}
2419 
2420 	return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2421 }
2422 EXPORT_SYMBOL(__skb_tx_hash);
2423 
2424 static void skb_warn_bad_offload(const struct sk_buff *skb)
2425 {
2426 	static const netdev_features_t null_features;
2427 	struct net_device *dev = skb->dev;
2428 	const char *name = "";
2429 
2430 	if (!net_ratelimit())
2431 		return;
2432 
2433 	if (dev) {
2434 		if (dev->dev.parent)
2435 			name = dev_driver_string(dev->dev.parent);
2436 		else
2437 			name = netdev_name(dev);
2438 	}
2439 	WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2440 	     "gso_type=%d ip_summed=%d\n",
2441 	     name, dev ? &dev->features : &null_features,
2442 	     skb->sk ? &skb->sk->sk_route_caps : &null_features,
2443 	     skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2444 	     skb_shinfo(skb)->gso_type, skb->ip_summed);
2445 }
2446 
2447 /*
2448  * Invalidate hardware checksum when packet is to be mangled, and
2449  * complete checksum manually on outgoing path.
2450  */
2451 int skb_checksum_help(struct sk_buff *skb)
2452 {
2453 	__wsum csum;
2454 	int ret = 0, offset;
2455 
2456 	if (skb->ip_summed == CHECKSUM_COMPLETE)
2457 		goto out_set_summed;
2458 
2459 	if (unlikely(skb_shinfo(skb)->gso_size)) {
2460 		skb_warn_bad_offload(skb);
2461 		return -EINVAL;
2462 	}
2463 
2464 	/* Before computing a checksum, we should make sure no frag could
2465 	 * be modified by an external entity : checksum could be wrong.
2466 	 */
2467 	if (skb_has_shared_frag(skb)) {
2468 		ret = __skb_linearize(skb);
2469 		if (ret)
2470 			goto out;
2471 	}
2472 
2473 	offset = skb_checksum_start_offset(skb);
2474 	BUG_ON(offset >= skb_headlen(skb));
2475 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
2476 
2477 	offset += skb->csum_offset;
2478 	BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2479 
2480 	if (skb_cloned(skb) &&
2481 	    !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2482 		ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2483 		if (ret)
2484 			goto out;
2485 	}
2486 
2487 	*(__sum16 *)(skb->data + offset) = csum_fold(csum);
2488 out_set_summed:
2489 	skb->ip_summed = CHECKSUM_NONE;
2490 out:
2491 	return ret;
2492 }
2493 EXPORT_SYMBOL(skb_checksum_help);
2494 
2495 /* skb_csum_offload_check - Driver helper function to determine if a device
2496  * with limited checksum offload capabilities is able to offload the checksum
2497  * for a given packet.
2498  *
2499  * Arguments:
2500  *   skb - sk_buff for the packet in question
2501  *   spec - contains the description of what device can offload
2502  *   csum_encapped - returns true if the checksum being offloaded is
2503  *	      encpasulated. That is it is checksum for the transport header
2504  *	      in the inner headers.
2505  *   checksum_help - when set indicates that helper function should
2506  *	      call skb_checksum_help if offload checks fail
2507  *
2508  * Returns:
2509  *   true: Packet has passed the checksum checks and should be offloadable to
2510  *	   the device (a driver may still need to check for additional
2511  *	   restrictions of its device)
2512  *   false: Checksum is not offloadable. If checksum_help was set then
2513  *	   skb_checksum_help was called to resolve checksum for non-GSO
2514  *	   packets and when IP protocol is not SCTP
2515  */
2516 bool __skb_csum_offload_chk(struct sk_buff *skb,
2517 			    const struct skb_csum_offl_spec *spec,
2518 			    bool *csum_encapped,
2519 			    bool csum_help)
2520 {
2521 	struct iphdr *iph;
2522 	struct ipv6hdr *ipv6;
2523 	void *nhdr;
2524 	int protocol;
2525 	u8 ip_proto;
2526 
2527 	if (skb->protocol == htons(ETH_P_8021Q) ||
2528 	    skb->protocol == htons(ETH_P_8021AD)) {
2529 		if (!spec->vlan_okay)
2530 			goto need_help;
2531 	}
2532 
2533 	/* We check whether the checksum refers to a transport layer checksum in
2534 	 * the outermost header or an encapsulated transport layer checksum that
2535 	 * corresponds to the inner headers of the skb. If the checksum is for
2536 	 * something else in the packet we need help.
2537 	 */
2538 	if (skb_checksum_start_offset(skb) == skb_transport_offset(skb)) {
2539 		/* Non-encapsulated checksum */
2540 		protocol = eproto_to_ipproto(vlan_get_protocol(skb));
2541 		nhdr = skb_network_header(skb);
2542 		*csum_encapped = false;
2543 		if (spec->no_not_encapped)
2544 			goto need_help;
2545 	} else if (skb->encapsulation && spec->encap_okay &&
2546 		   skb_checksum_start_offset(skb) ==
2547 		   skb_inner_transport_offset(skb)) {
2548 		/* Encapsulated checksum */
2549 		*csum_encapped = true;
2550 		switch (skb->inner_protocol_type) {
2551 		case ENCAP_TYPE_ETHER:
2552 			protocol = eproto_to_ipproto(skb->inner_protocol);
2553 			break;
2554 		case ENCAP_TYPE_IPPROTO:
2555 			protocol = skb->inner_protocol;
2556 			break;
2557 		}
2558 		nhdr = skb_inner_network_header(skb);
2559 	} else {
2560 		goto need_help;
2561 	}
2562 
2563 	switch (protocol) {
2564 	case IPPROTO_IP:
2565 		if (!spec->ipv4_okay)
2566 			goto need_help;
2567 		iph = nhdr;
2568 		ip_proto = iph->protocol;
2569 		if (iph->ihl != 5 && !spec->ip_options_okay)
2570 			goto need_help;
2571 		break;
2572 	case IPPROTO_IPV6:
2573 		if (!spec->ipv6_okay)
2574 			goto need_help;
2575 		if (spec->no_encapped_ipv6 && *csum_encapped)
2576 			goto need_help;
2577 		ipv6 = nhdr;
2578 		nhdr += sizeof(*ipv6);
2579 		ip_proto = ipv6->nexthdr;
2580 		break;
2581 	default:
2582 		goto need_help;
2583 	}
2584 
2585 ip_proto_again:
2586 	switch (ip_proto) {
2587 	case IPPROTO_TCP:
2588 		if (!spec->tcp_okay ||
2589 		    skb->csum_offset != offsetof(struct tcphdr, check))
2590 			goto need_help;
2591 		break;
2592 	case IPPROTO_UDP:
2593 		if (!spec->udp_okay ||
2594 		    skb->csum_offset != offsetof(struct udphdr, check))
2595 			goto need_help;
2596 		break;
2597 	case IPPROTO_SCTP:
2598 		if (!spec->sctp_okay ||
2599 		    skb->csum_offset != offsetof(struct sctphdr, checksum))
2600 			goto cant_help;
2601 		break;
2602 	case NEXTHDR_HOP:
2603 	case NEXTHDR_ROUTING:
2604 	case NEXTHDR_DEST: {
2605 		u8 *opthdr = nhdr;
2606 
2607 		if (protocol != IPPROTO_IPV6 || !spec->ext_hdrs_okay)
2608 			goto need_help;
2609 
2610 		ip_proto = opthdr[0];
2611 		nhdr += (opthdr[1] + 1) << 3;
2612 
2613 		goto ip_proto_again;
2614 	}
2615 	default:
2616 		goto need_help;
2617 	}
2618 
2619 	/* Passed the tests for offloading checksum */
2620 	return true;
2621 
2622 need_help:
2623 	if (csum_help && !skb_shinfo(skb)->gso_size)
2624 		skb_checksum_help(skb);
2625 cant_help:
2626 	return false;
2627 }
2628 EXPORT_SYMBOL(__skb_csum_offload_chk);
2629 
2630 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2631 {
2632 	__be16 type = skb->protocol;
2633 
2634 	/* Tunnel gso handlers can set protocol to ethernet. */
2635 	if (type == htons(ETH_P_TEB)) {
2636 		struct ethhdr *eth;
2637 
2638 		if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2639 			return 0;
2640 
2641 		eth = (struct ethhdr *)skb_mac_header(skb);
2642 		type = eth->h_proto;
2643 	}
2644 
2645 	return __vlan_get_protocol(skb, type, depth);
2646 }
2647 
2648 /**
2649  *	skb_mac_gso_segment - mac layer segmentation handler.
2650  *	@skb: buffer to segment
2651  *	@features: features for the output path (see dev->features)
2652  */
2653 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2654 				    netdev_features_t features)
2655 {
2656 	struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2657 	struct packet_offload *ptype;
2658 	int vlan_depth = skb->mac_len;
2659 	__be16 type = skb_network_protocol(skb, &vlan_depth);
2660 
2661 	if (unlikely(!type))
2662 		return ERR_PTR(-EINVAL);
2663 
2664 	__skb_pull(skb, vlan_depth);
2665 
2666 	rcu_read_lock();
2667 	list_for_each_entry_rcu(ptype, &offload_base, list) {
2668 		if (ptype->type == type && ptype->callbacks.gso_segment) {
2669 			segs = ptype->callbacks.gso_segment(skb, features);
2670 			break;
2671 		}
2672 	}
2673 	rcu_read_unlock();
2674 
2675 	__skb_push(skb, skb->data - skb_mac_header(skb));
2676 
2677 	return segs;
2678 }
2679 EXPORT_SYMBOL(skb_mac_gso_segment);
2680 
2681 
2682 /* openvswitch calls this on rx path, so we need a different check.
2683  */
2684 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2685 {
2686 	if (tx_path)
2687 		return skb->ip_summed != CHECKSUM_PARTIAL;
2688 	else
2689 		return skb->ip_summed == CHECKSUM_NONE;
2690 }
2691 
2692 /**
2693  *	__skb_gso_segment - Perform segmentation on skb.
2694  *	@skb: buffer to segment
2695  *	@features: features for the output path (see dev->features)
2696  *	@tx_path: whether it is called in TX path
2697  *
2698  *	This function segments the given skb and returns a list of segments.
2699  *
2700  *	It may return NULL if the skb requires no segmentation.  This is
2701  *	only possible when GSO is used for verifying header integrity.
2702  *
2703  *	Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
2704  */
2705 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2706 				  netdev_features_t features, bool tx_path)
2707 {
2708 	if (unlikely(skb_needs_check(skb, tx_path))) {
2709 		int err;
2710 
2711 		skb_warn_bad_offload(skb);
2712 
2713 		err = skb_cow_head(skb, 0);
2714 		if (err < 0)
2715 			return ERR_PTR(err);
2716 	}
2717 
2718 	/* Only report GSO partial support if it will enable us to
2719 	 * support segmentation on this frame without needing additional
2720 	 * work.
2721 	 */
2722 	if (features & NETIF_F_GSO_PARTIAL) {
2723 		netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
2724 		struct net_device *dev = skb->dev;
2725 
2726 		partial_features |= dev->features & dev->gso_partial_features;
2727 		if (!skb_gso_ok(skb, features | partial_features))
2728 			features &= ~NETIF_F_GSO_PARTIAL;
2729 	}
2730 
2731 	BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
2732 		     sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
2733 
2734 	SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2735 	SKB_GSO_CB(skb)->encap_level = 0;
2736 
2737 	skb_reset_mac_header(skb);
2738 	skb_reset_mac_len(skb);
2739 
2740 	return skb_mac_gso_segment(skb, features);
2741 }
2742 EXPORT_SYMBOL(__skb_gso_segment);
2743 
2744 /* Take action when hardware reception checksum errors are detected. */
2745 #ifdef CONFIG_BUG
2746 void netdev_rx_csum_fault(struct net_device *dev)
2747 {
2748 	if (net_ratelimit()) {
2749 		pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2750 		dump_stack();
2751 	}
2752 }
2753 EXPORT_SYMBOL(netdev_rx_csum_fault);
2754 #endif
2755 
2756 /* Actually, we should eliminate this check as soon as we know, that:
2757  * 1. IOMMU is present and allows to map all the memory.
2758  * 2. No high memory really exists on this machine.
2759  */
2760 
2761 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2762 {
2763 #ifdef CONFIG_HIGHMEM
2764 	int i;
2765 	if (!(dev->features & NETIF_F_HIGHDMA)) {
2766 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2767 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2768 			if (PageHighMem(skb_frag_page(frag)))
2769 				return 1;
2770 		}
2771 	}
2772 
2773 	if (PCI_DMA_BUS_IS_PHYS) {
2774 		struct device *pdev = dev->dev.parent;
2775 
2776 		if (!pdev)
2777 			return 0;
2778 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2779 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2780 			dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2781 			if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2782 				return 1;
2783 		}
2784 	}
2785 #endif
2786 	return 0;
2787 }
2788 
2789 /* If MPLS offload request, verify we are testing hardware MPLS features
2790  * instead of standard features for the netdev.
2791  */
2792 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
2793 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2794 					   netdev_features_t features,
2795 					   __be16 type)
2796 {
2797 	if (eth_p_mpls(type))
2798 		features &= skb->dev->mpls_features;
2799 
2800 	return features;
2801 }
2802 #else
2803 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2804 					   netdev_features_t features,
2805 					   __be16 type)
2806 {
2807 	return features;
2808 }
2809 #endif
2810 
2811 static netdev_features_t harmonize_features(struct sk_buff *skb,
2812 	netdev_features_t features)
2813 {
2814 	int tmp;
2815 	__be16 type;
2816 
2817 	type = skb_network_protocol(skb, &tmp);
2818 	features = net_mpls_features(skb, features, type);
2819 
2820 	if (skb->ip_summed != CHECKSUM_NONE &&
2821 	    !can_checksum_protocol(features, type)) {
2822 		features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
2823 	} else if (illegal_highdma(skb->dev, skb)) {
2824 		features &= ~NETIF_F_SG;
2825 	}
2826 
2827 	return features;
2828 }
2829 
2830 netdev_features_t passthru_features_check(struct sk_buff *skb,
2831 					  struct net_device *dev,
2832 					  netdev_features_t features)
2833 {
2834 	return features;
2835 }
2836 EXPORT_SYMBOL(passthru_features_check);
2837 
2838 static netdev_features_t dflt_features_check(const struct sk_buff *skb,
2839 					     struct net_device *dev,
2840 					     netdev_features_t features)
2841 {
2842 	return vlan_features_check(skb, features);
2843 }
2844 
2845 static netdev_features_t gso_features_check(const struct sk_buff *skb,
2846 					    struct net_device *dev,
2847 					    netdev_features_t features)
2848 {
2849 	u16 gso_segs = skb_shinfo(skb)->gso_segs;
2850 
2851 	if (gso_segs > dev->gso_max_segs)
2852 		return features & ~NETIF_F_GSO_MASK;
2853 
2854 	/* Support for GSO partial features requires software
2855 	 * intervention before we can actually process the packets
2856 	 * so we need to strip support for any partial features now
2857 	 * and we can pull them back in after we have partially
2858 	 * segmented the frame.
2859 	 */
2860 	if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
2861 		features &= ~dev->gso_partial_features;
2862 
2863 	/* Make sure to clear the IPv4 ID mangling feature if the
2864 	 * IPv4 header has the potential to be fragmented.
2865 	 */
2866 	if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
2867 		struct iphdr *iph = skb->encapsulation ?
2868 				    inner_ip_hdr(skb) : ip_hdr(skb);
2869 
2870 		if (!(iph->frag_off & htons(IP_DF)))
2871 			features &= ~NETIF_F_TSO_MANGLEID;
2872 	}
2873 
2874 	return features;
2875 }
2876 
2877 netdev_features_t netif_skb_features(struct sk_buff *skb)
2878 {
2879 	struct net_device *dev = skb->dev;
2880 	netdev_features_t features = dev->features;
2881 
2882 	if (skb_is_gso(skb))
2883 		features = gso_features_check(skb, dev, features);
2884 
2885 	/* If encapsulation offload request, verify we are testing
2886 	 * hardware encapsulation features instead of standard
2887 	 * features for the netdev
2888 	 */
2889 	if (skb->encapsulation)
2890 		features &= dev->hw_enc_features;
2891 
2892 	if (skb_vlan_tagged(skb))
2893 		features = netdev_intersect_features(features,
2894 						     dev->vlan_features |
2895 						     NETIF_F_HW_VLAN_CTAG_TX |
2896 						     NETIF_F_HW_VLAN_STAG_TX);
2897 
2898 	if (dev->netdev_ops->ndo_features_check)
2899 		features &= dev->netdev_ops->ndo_features_check(skb, dev,
2900 								features);
2901 	else
2902 		features &= dflt_features_check(skb, dev, features);
2903 
2904 	return harmonize_features(skb, features);
2905 }
2906 EXPORT_SYMBOL(netif_skb_features);
2907 
2908 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
2909 		    struct netdev_queue *txq, bool more)
2910 {
2911 	unsigned int len;
2912 	int rc;
2913 
2914 	if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all))
2915 		dev_queue_xmit_nit(skb, dev);
2916 
2917 	len = skb->len;
2918 	trace_net_dev_start_xmit(skb, dev);
2919 	rc = netdev_start_xmit(skb, dev, txq, more);
2920 	trace_net_dev_xmit(skb, rc, dev, len);
2921 
2922 	return rc;
2923 }
2924 
2925 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
2926 				    struct netdev_queue *txq, int *ret)
2927 {
2928 	struct sk_buff *skb = first;
2929 	int rc = NETDEV_TX_OK;
2930 
2931 	while (skb) {
2932 		struct sk_buff *next = skb->next;
2933 
2934 		skb->next = NULL;
2935 		rc = xmit_one(skb, dev, txq, next != NULL);
2936 		if (unlikely(!dev_xmit_complete(rc))) {
2937 			skb->next = next;
2938 			goto out;
2939 		}
2940 
2941 		skb = next;
2942 		if (netif_xmit_stopped(txq) && skb) {
2943 			rc = NETDEV_TX_BUSY;
2944 			break;
2945 		}
2946 	}
2947 
2948 out:
2949 	*ret = rc;
2950 	return skb;
2951 }
2952 
2953 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
2954 					  netdev_features_t features)
2955 {
2956 	if (skb_vlan_tag_present(skb) &&
2957 	    !vlan_hw_offload_capable(features, skb->vlan_proto))
2958 		skb = __vlan_hwaccel_push_inside(skb);
2959 	return skb;
2960 }
2961 
2962 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev)
2963 {
2964 	netdev_features_t features;
2965 
2966 	features = netif_skb_features(skb);
2967 	skb = validate_xmit_vlan(skb, features);
2968 	if (unlikely(!skb))
2969 		goto out_null;
2970 
2971 	if (netif_needs_gso(skb, features)) {
2972 		struct sk_buff *segs;
2973 
2974 		segs = skb_gso_segment(skb, features);
2975 		if (IS_ERR(segs)) {
2976 			goto out_kfree_skb;
2977 		} else if (segs) {
2978 			consume_skb(skb);
2979 			skb = segs;
2980 		}
2981 	} else {
2982 		if (skb_needs_linearize(skb, features) &&
2983 		    __skb_linearize(skb))
2984 			goto out_kfree_skb;
2985 
2986 		/* If packet is not checksummed and device does not
2987 		 * support checksumming for this protocol, complete
2988 		 * checksumming here.
2989 		 */
2990 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
2991 			if (skb->encapsulation)
2992 				skb_set_inner_transport_header(skb,
2993 							       skb_checksum_start_offset(skb));
2994 			else
2995 				skb_set_transport_header(skb,
2996 							 skb_checksum_start_offset(skb));
2997 			if (!(features & NETIF_F_CSUM_MASK) &&
2998 			    skb_checksum_help(skb))
2999 				goto out_kfree_skb;
3000 		}
3001 	}
3002 
3003 	return skb;
3004 
3005 out_kfree_skb:
3006 	kfree_skb(skb);
3007 out_null:
3008 	atomic_long_inc(&dev->tx_dropped);
3009 	return NULL;
3010 }
3011 
3012 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev)
3013 {
3014 	struct sk_buff *next, *head = NULL, *tail;
3015 
3016 	for (; skb != NULL; skb = next) {
3017 		next = skb->next;
3018 		skb->next = NULL;
3019 
3020 		/* in case skb wont be segmented, point to itself */
3021 		skb->prev = skb;
3022 
3023 		skb = validate_xmit_skb(skb, dev);
3024 		if (!skb)
3025 			continue;
3026 
3027 		if (!head)
3028 			head = skb;
3029 		else
3030 			tail->next = skb;
3031 		/* If skb was segmented, skb->prev points to
3032 		 * the last segment. If not, it still contains skb.
3033 		 */
3034 		tail = skb->prev;
3035 	}
3036 	return head;
3037 }
3038 
3039 static void qdisc_pkt_len_init(struct sk_buff *skb)
3040 {
3041 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
3042 
3043 	qdisc_skb_cb(skb)->pkt_len = skb->len;
3044 
3045 	/* To get more precise estimation of bytes sent on wire,
3046 	 * we add to pkt_len the headers size of all segments
3047 	 */
3048 	if (shinfo->gso_size)  {
3049 		unsigned int hdr_len;
3050 		u16 gso_segs = shinfo->gso_segs;
3051 
3052 		/* mac layer + network layer */
3053 		hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3054 
3055 		/* + transport layer */
3056 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
3057 			hdr_len += tcp_hdrlen(skb);
3058 		else
3059 			hdr_len += sizeof(struct udphdr);
3060 
3061 		if (shinfo->gso_type & SKB_GSO_DODGY)
3062 			gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3063 						shinfo->gso_size);
3064 
3065 		qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3066 	}
3067 }
3068 
3069 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3070 				 struct net_device *dev,
3071 				 struct netdev_queue *txq)
3072 {
3073 	spinlock_t *root_lock = qdisc_lock(q);
3074 	struct sk_buff *to_free = NULL;
3075 	bool contended;
3076 	int rc;
3077 
3078 	qdisc_calculate_pkt_len(skb, q);
3079 	/*
3080 	 * Heuristic to force contended enqueues to serialize on a
3081 	 * separate lock before trying to get qdisc main lock.
3082 	 * This permits qdisc->running owner to get the lock more
3083 	 * often and dequeue packets faster.
3084 	 */
3085 	contended = qdisc_is_running(q);
3086 	if (unlikely(contended))
3087 		spin_lock(&q->busylock);
3088 
3089 	spin_lock(root_lock);
3090 	if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3091 		__qdisc_drop(skb, &to_free);
3092 		rc = NET_XMIT_DROP;
3093 	} else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3094 		   qdisc_run_begin(q)) {
3095 		/*
3096 		 * This is a work-conserving queue; there are no old skbs
3097 		 * waiting to be sent out; and the qdisc is not running -
3098 		 * xmit the skb directly.
3099 		 */
3100 
3101 		qdisc_bstats_update(q, skb);
3102 
3103 		if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3104 			if (unlikely(contended)) {
3105 				spin_unlock(&q->busylock);
3106 				contended = false;
3107 			}
3108 			__qdisc_run(q);
3109 		} else
3110 			qdisc_run_end(q);
3111 
3112 		rc = NET_XMIT_SUCCESS;
3113 	} else {
3114 		rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3115 		if (qdisc_run_begin(q)) {
3116 			if (unlikely(contended)) {
3117 				spin_unlock(&q->busylock);
3118 				contended = false;
3119 			}
3120 			__qdisc_run(q);
3121 		}
3122 	}
3123 	spin_unlock(root_lock);
3124 	if (unlikely(to_free))
3125 		kfree_skb_list(to_free);
3126 	if (unlikely(contended))
3127 		spin_unlock(&q->busylock);
3128 	return rc;
3129 }
3130 
3131 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3132 static void skb_update_prio(struct sk_buff *skb)
3133 {
3134 	struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
3135 
3136 	if (!skb->priority && skb->sk && map) {
3137 		unsigned int prioidx =
3138 			sock_cgroup_prioidx(&skb->sk->sk_cgrp_data);
3139 
3140 		if (prioidx < map->priomap_len)
3141 			skb->priority = map->priomap[prioidx];
3142 	}
3143 }
3144 #else
3145 #define skb_update_prio(skb)
3146 #endif
3147 
3148 DEFINE_PER_CPU(int, xmit_recursion);
3149 EXPORT_SYMBOL(xmit_recursion);
3150 
3151 /**
3152  *	dev_loopback_xmit - loop back @skb
3153  *	@net: network namespace this loopback is happening in
3154  *	@sk:  sk needed to be a netfilter okfn
3155  *	@skb: buffer to transmit
3156  */
3157 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3158 {
3159 	skb_reset_mac_header(skb);
3160 	__skb_pull(skb, skb_network_offset(skb));
3161 	skb->pkt_type = PACKET_LOOPBACK;
3162 	skb->ip_summed = CHECKSUM_UNNECESSARY;
3163 	WARN_ON(!skb_dst(skb));
3164 	skb_dst_force(skb);
3165 	netif_rx_ni(skb);
3166 	return 0;
3167 }
3168 EXPORT_SYMBOL(dev_loopback_xmit);
3169 
3170 #ifdef CONFIG_NET_EGRESS
3171 static struct sk_buff *
3172 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3173 {
3174 	struct tcf_proto *cl = rcu_dereference_bh(dev->egress_cl_list);
3175 	struct tcf_result cl_res;
3176 
3177 	if (!cl)
3178 		return skb;
3179 
3180 	/* skb->tc_verd and qdisc_skb_cb(skb)->pkt_len were already set
3181 	 * earlier by the caller.
3182 	 */
3183 	qdisc_bstats_cpu_update(cl->q, skb);
3184 
3185 	switch (tc_classify(skb, cl, &cl_res, false)) {
3186 	case TC_ACT_OK:
3187 	case TC_ACT_RECLASSIFY:
3188 		skb->tc_index = TC_H_MIN(cl_res.classid);
3189 		break;
3190 	case TC_ACT_SHOT:
3191 		qdisc_qstats_cpu_drop(cl->q);
3192 		*ret = NET_XMIT_DROP;
3193 		kfree_skb(skb);
3194 		return NULL;
3195 	case TC_ACT_STOLEN:
3196 	case TC_ACT_QUEUED:
3197 		*ret = NET_XMIT_SUCCESS;
3198 		consume_skb(skb);
3199 		return NULL;
3200 	case TC_ACT_REDIRECT:
3201 		/* No need to push/pop skb's mac_header here on egress! */
3202 		skb_do_redirect(skb);
3203 		*ret = NET_XMIT_SUCCESS;
3204 		return NULL;
3205 	default:
3206 		break;
3207 	}
3208 
3209 	return skb;
3210 }
3211 #endif /* CONFIG_NET_EGRESS */
3212 
3213 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
3214 {
3215 #ifdef CONFIG_XPS
3216 	struct xps_dev_maps *dev_maps;
3217 	struct xps_map *map;
3218 	int queue_index = -1;
3219 
3220 	rcu_read_lock();
3221 	dev_maps = rcu_dereference(dev->xps_maps);
3222 	if (dev_maps) {
3223 		map = rcu_dereference(
3224 		    dev_maps->cpu_map[skb->sender_cpu - 1]);
3225 		if (map) {
3226 			if (map->len == 1)
3227 				queue_index = map->queues[0];
3228 			else
3229 				queue_index = map->queues[reciprocal_scale(skb_get_hash(skb),
3230 									   map->len)];
3231 			if (unlikely(queue_index >= dev->real_num_tx_queues))
3232 				queue_index = -1;
3233 		}
3234 	}
3235 	rcu_read_unlock();
3236 
3237 	return queue_index;
3238 #else
3239 	return -1;
3240 #endif
3241 }
3242 
3243 static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb)
3244 {
3245 	struct sock *sk = skb->sk;
3246 	int queue_index = sk_tx_queue_get(sk);
3247 
3248 	if (queue_index < 0 || skb->ooo_okay ||
3249 	    queue_index >= dev->real_num_tx_queues) {
3250 		int new_index = get_xps_queue(dev, skb);
3251 		if (new_index < 0)
3252 			new_index = skb_tx_hash(dev, skb);
3253 
3254 		if (queue_index != new_index && sk &&
3255 		    sk_fullsock(sk) &&
3256 		    rcu_access_pointer(sk->sk_dst_cache))
3257 			sk_tx_queue_set(sk, new_index);
3258 
3259 		queue_index = new_index;
3260 	}
3261 
3262 	return queue_index;
3263 }
3264 
3265 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
3266 				    struct sk_buff *skb,
3267 				    void *accel_priv)
3268 {
3269 	int queue_index = 0;
3270 
3271 #ifdef CONFIG_XPS
3272 	u32 sender_cpu = skb->sender_cpu - 1;
3273 
3274 	if (sender_cpu >= (u32)NR_CPUS)
3275 		skb->sender_cpu = raw_smp_processor_id() + 1;
3276 #endif
3277 
3278 	if (dev->real_num_tx_queues != 1) {
3279 		const struct net_device_ops *ops = dev->netdev_ops;
3280 		if (ops->ndo_select_queue)
3281 			queue_index = ops->ndo_select_queue(dev, skb, accel_priv,
3282 							    __netdev_pick_tx);
3283 		else
3284 			queue_index = __netdev_pick_tx(dev, skb);
3285 
3286 		if (!accel_priv)
3287 			queue_index = netdev_cap_txqueue(dev, queue_index);
3288 	}
3289 
3290 	skb_set_queue_mapping(skb, queue_index);
3291 	return netdev_get_tx_queue(dev, queue_index);
3292 }
3293 
3294 /**
3295  *	__dev_queue_xmit - transmit a buffer
3296  *	@skb: buffer to transmit
3297  *	@accel_priv: private data used for L2 forwarding offload
3298  *
3299  *	Queue a buffer for transmission to a network device. The caller must
3300  *	have set the device and priority and built the buffer before calling
3301  *	this function. The function can be called from an interrupt.
3302  *
3303  *	A negative errno code is returned on a failure. A success does not
3304  *	guarantee the frame will be transmitted as it may be dropped due
3305  *	to congestion or traffic shaping.
3306  *
3307  * -----------------------------------------------------------------------------------
3308  *      I notice this method can also return errors from the queue disciplines,
3309  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
3310  *      be positive.
3311  *
3312  *      Regardless of the return value, the skb is consumed, so it is currently
3313  *      difficult to retry a send to this method.  (You can bump the ref count
3314  *      before sending to hold a reference for retry if you are careful.)
3315  *
3316  *      When calling this method, interrupts MUST be enabled.  This is because
3317  *      the BH enable code must have IRQs enabled so that it will not deadlock.
3318  *          --BLG
3319  */
3320 static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
3321 {
3322 	struct net_device *dev = skb->dev;
3323 	struct netdev_queue *txq;
3324 	struct Qdisc *q;
3325 	int rc = -ENOMEM;
3326 
3327 	skb_reset_mac_header(skb);
3328 
3329 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3330 		__skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3331 
3332 	/* Disable soft irqs for various locks below. Also
3333 	 * stops preemption for RCU.
3334 	 */
3335 	rcu_read_lock_bh();
3336 
3337 	skb_update_prio(skb);
3338 
3339 	qdisc_pkt_len_init(skb);
3340 #ifdef CONFIG_NET_CLS_ACT
3341 	skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
3342 # ifdef CONFIG_NET_EGRESS
3343 	if (static_key_false(&egress_needed)) {
3344 		skb = sch_handle_egress(skb, &rc, dev);
3345 		if (!skb)
3346 			goto out;
3347 	}
3348 # endif
3349 #endif
3350 	/* If device/qdisc don't need skb->dst, release it right now while
3351 	 * its hot in this cpu cache.
3352 	 */
3353 	if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3354 		skb_dst_drop(skb);
3355 	else
3356 		skb_dst_force(skb);
3357 
3358 	txq = netdev_pick_tx(dev, skb, accel_priv);
3359 	q = rcu_dereference_bh(txq->qdisc);
3360 
3361 	trace_net_dev_queue(skb);
3362 	if (q->enqueue) {
3363 		rc = __dev_xmit_skb(skb, q, dev, txq);
3364 		goto out;
3365 	}
3366 
3367 	/* The device has no queue. Common case for software devices:
3368 	   loopback, all the sorts of tunnels...
3369 
3370 	   Really, it is unlikely that netif_tx_lock protection is necessary
3371 	   here.  (f.e. loopback and IP tunnels are clean ignoring statistics
3372 	   counters.)
3373 	   However, it is possible, that they rely on protection
3374 	   made by us here.
3375 
3376 	   Check this and shot the lock. It is not prone from deadlocks.
3377 	   Either shot noqueue qdisc, it is even simpler 8)
3378 	 */
3379 	if (dev->flags & IFF_UP) {
3380 		int cpu = smp_processor_id(); /* ok because BHs are off */
3381 
3382 		if (txq->xmit_lock_owner != cpu) {
3383 			if (unlikely(__this_cpu_read(xmit_recursion) >
3384 				     XMIT_RECURSION_LIMIT))
3385 				goto recursion_alert;
3386 
3387 			skb = validate_xmit_skb(skb, dev);
3388 			if (!skb)
3389 				goto out;
3390 
3391 			HARD_TX_LOCK(dev, txq, cpu);
3392 
3393 			if (!netif_xmit_stopped(txq)) {
3394 				__this_cpu_inc(xmit_recursion);
3395 				skb = dev_hard_start_xmit(skb, dev, txq, &rc);
3396 				__this_cpu_dec(xmit_recursion);
3397 				if (dev_xmit_complete(rc)) {
3398 					HARD_TX_UNLOCK(dev, txq);
3399 					goto out;
3400 				}
3401 			}
3402 			HARD_TX_UNLOCK(dev, txq);
3403 			net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3404 					     dev->name);
3405 		} else {
3406 			/* Recursion is detected! It is possible,
3407 			 * unfortunately
3408 			 */
3409 recursion_alert:
3410 			net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3411 					     dev->name);
3412 		}
3413 	}
3414 
3415 	rc = -ENETDOWN;
3416 	rcu_read_unlock_bh();
3417 
3418 	atomic_long_inc(&dev->tx_dropped);
3419 	kfree_skb_list(skb);
3420 	return rc;
3421 out:
3422 	rcu_read_unlock_bh();
3423 	return rc;
3424 }
3425 
3426 int dev_queue_xmit(struct sk_buff *skb)
3427 {
3428 	return __dev_queue_xmit(skb, NULL);
3429 }
3430 EXPORT_SYMBOL(dev_queue_xmit);
3431 
3432 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
3433 {
3434 	return __dev_queue_xmit(skb, accel_priv);
3435 }
3436 EXPORT_SYMBOL(dev_queue_xmit_accel);
3437 
3438 
3439 /*=======================================================================
3440 			Receiver routines
3441   =======================================================================*/
3442 
3443 int netdev_max_backlog __read_mostly = 1000;
3444 EXPORT_SYMBOL(netdev_max_backlog);
3445 
3446 int netdev_tstamp_prequeue __read_mostly = 1;
3447 int netdev_budget __read_mostly = 300;
3448 int weight_p __read_mostly = 64;            /* old backlog weight */
3449 
3450 /* Called with irq disabled */
3451 static inline void ____napi_schedule(struct softnet_data *sd,
3452 				     struct napi_struct *napi)
3453 {
3454 	list_add_tail(&napi->poll_list, &sd->poll_list);
3455 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
3456 }
3457 
3458 #ifdef CONFIG_RPS
3459 
3460 /* One global table that all flow-based protocols share. */
3461 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3462 EXPORT_SYMBOL(rps_sock_flow_table);
3463 u32 rps_cpu_mask __read_mostly;
3464 EXPORT_SYMBOL(rps_cpu_mask);
3465 
3466 struct static_key rps_needed __read_mostly;
3467 EXPORT_SYMBOL(rps_needed);
3468 
3469 static struct rps_dev_flow *
3470 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3471 	    struct rps_dev_flow *rflow, u16 next_cpu)
3472 {
3473 	if (next_cpu < nr_cpu_ids) {
3474 #ifdef CONFIG_RFS_ACCEL
3475 		struct netdev_rx_queue *rxqueue;
3476 		struct rps_dev_flow_table *flow_table;
3477 		struct rps_dev_flow *old_rflow;
3478 		u32 flow_id;
3479 		u16 rxq_index;
3480 		int rc;
3481 
3482 		/* Should we steer this flow to a different hardware queue? */
3483 		if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3484 		    !(dev->features & NETIF_F_NTUPLE))
3485 			goto out;
3486 		rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3487 		if (rxq_index == skb_get_rx_queue(skb))
3488 			goto out;
3489 
3490 		rxqueue = dev->_rx + rxq_index;
3491 		flow_table = rcu_dereference(rxqueue->rps_flow_table);
3492 		if (!flow_table)
3493 			goto out;
3494 		flow_id = skb_get_hash(skb) & flow_table->mask;
3495 		rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3496 							rxq_index, flow_id);
3497 		if (rc < 0)
3498 			goto out;
3499 		old_rflow = rflow;
3500 		rflow = &flow_table->flows[flow_id];
3501 		rflow->filter = rc;
3502 		if (old_rflow->filter == rflow->filter)
3503 			old_rflow->filter = RPS_NO_FILTER;
3504 	out:
3505 #endif
3506 		rflow->last_qtail =
3507 			per_cpu(softnet_data, next_cpu).input_queue_head;
3508 	}
3509 
3510 	rflow->cpu = next_cpu;
3511 	return rflow;
3512 }
3513 
3514 /*
3515  * get_rps_cpu is called from netif_receive_skb and returns the target
3516  * CPU from the RPS map of the receiving queue for a given skb.
3517  * rcu_read_lock must be held on entry.
3518  */
3519 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3520 		       struct rps_dev_flow **rflowp)
3521 {
3522 	const struct rps_sock_flow_table *sock_flow_table;
3523 	struct netdev_rx_queue *rxqueue = dev->_rx;
3524 	struct rps_dev_flow_table *flow_table;
3525 	struct rps_map *map;
3526 	int cpu = -1;
3527 	u32 tcpu;
3528 	u32 hash;
3529 
3530 	if (skb_rx_queue_recorded(skb)) {
3531 		u16 index = skb_get_rx_queue(skb);
3532 
3533 		if (unlikely(index >= dev->real_num_rx_queues)) {
3534 			WARN_ONCE(dev->real_num_rx_queues > 1,
3535 				  "%s received packet on queue %u, but number "
3536 				  "of RX queues is %u\n",
3537 				  dev->name, index, dev->real_num_rx_queues);
3538 			goto done;
3539 		}
3540 		rxqueue += index;
3541 	}
3542 
3543 	/* Avoid computing hash if RFS/RPS is not active for this rxqueue */
3544 
3545 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
3546 	map = rcu_dereference(rxqueue->rps_map);
3547 	if (!flow_table && !map)
3548 		goto done;
3549 
3550 	skb_reset_network_header(skb);
3551 	hash = skb_get_hash(skb);
3552 	if (!hash)
3553 		goto done;
3554 
3555 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
3556 	if (flow_table && sock_flow_table) {
3557 		struct rps_dev_flow *rflow;
3558 		u32 next_cpu;
3559 		u32 ident;
3560 
3561 		/* First check into global flow table if there is a match */
3562 		ident = sock_flow_table->ents[hash & sock_flow_table->mask];
3563 		if ((ident ^ hash) & ~rps_cpu_mask)
3564 			goto try_rps;
3565 
3566 		next_cpu = ident & rps_cpu_mask;
3567 
3568 		/* OK, now we know there is a match,
3569 		 * we can look at the local (per receive queue) flow table
3570 		 */
3571 		rflow = &flow_table->flows[hash & flow_table->mask];
3572 		tcpu = rflow->cpu;
3573 
3574 		/*
3575 		 * If the desired CPU (where last recvmsg was done) is
3576 		 * different from current CPU (one in the rx-queue flow
3577 		 * table entry), switch if one of the following holds:
3578 		 *   - Current CPU is unset (>= nr_cpu_ids).
3579 		 *   - Current CPU is offline.
3580 		 *   - The current CPU's queue tail has advanced beyond the
3581 		 *     last packet that was enqueued using this table entry.
3582 		 *     This guarantees that all previous packets for the flow
3583 		 *     have been dequeued, thus preserving in order delivery.
3584 		 */
3585 		if (unlikely(tcpu != next_cpu) &&
3586 		    (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
3587 		     ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
3588 		      rflow->last_qtail)) >= 0)) {
3589 			tcpu = next_cpu;
3590 			rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
3591 		}
3592 
3593 		if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
3594 			*rflowp = rflow;
3595 			cpu = tcpu;
3596 			goto done;
3597 		}
3598 	}
3599 
3600 try_rps:
3601 
3602 	if (map) {
3603 		tcpu = map->cpus[reciprocal_scale(hash, map->len)];
3604 		if (cpu_online(tcpu)) {
3605 			cpu = tcpu;
3606 			goto done;
3607 		}
3608 	}
3609 
3610 done:
3611 	return cpu;
3612 }
3613 
3614 #ifdef CONFIG_RFS_ACCEL
3615 
3616 /**
3617  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3618  * @dev: Device on which the filter was set
3619  * @rxq_index: RX queue index
3620  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3621  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3622  *
3623  * Drivers that implement ndo_rx_flow_steer() should periodically call
3624  * this function for each installed filter and remove the filters for
3625  * which it returns %true.
3626  */
3627 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3628 			 u32 flow_id, u16 filter_id)
3629 {
3630 	struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3631 	struct rps_dev_flow_table *flow_table;
3632 	struct rps_dev_flow *rflow;
3633 	bool expire = true;
3634 	unsigned int cpu;
3635 
3636 	rcu_read_lock();
3637 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
3638 	if (flow_table && flow_id <= flow_table->mask) {
3639 		rflow = &flow_table->flows[flow_id];
3640 		cpu = ACCESS_ONCE(rflow->cpu);
3641 		if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
3642 		    ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3643 			   rflow->last_qtail) <
3644 		     (int)(10 * flow_table->mask)))
3645 			expire = false;
3646 	}
3647 	rcu_read_unlock();
3648 	return expire;
3649 }
3650 EXPORT_SYMBOL(rps_may_expire_flow);
3651 
3652 #endif /* CONFIG_RFS_ACCEL */
3653 
3654 /* Called from hardirq (IPI) context */
3655 static void rps_trigger_softirq(void *data)
3656 {
3657 	struct softnet_data *sd = data;
3658 
3659 	____napi_schedule(sd, &sd->backlog);
3660 	sd->received_rps++;
3661 }
3662 
3663 #endif /* CONFIG_RPS */
3664 
3665 /*
3666  * Check if this softnet_data structure is another cpu one
3667  * If yes, queue it to our IPI list and return 1
3668  * If no, return 0
3669  */
3670 static int rps_ipi_queued(struct softnet_data *sd)
3671 {
3672 #ifdef CONFIG_RPS
3673 	struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
3674 
3675 	if (sd != mysd) {
3676 		sd->rps_ipi_next = mysd->rps_ipi_list;
3677 		mysd->rps_ipi_list = sd;
3678 
3679 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
3680 		return 1;
3681 	}
3682 #endif /* CONFIG_RPS */
3683 	return 0;
3684 }
3685 
3686 #ifdef CONFIG_NET_FLOW_LIMIT
3687 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3688 #endif
3689 
3690 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3691 {
3692 #ifdef CONFIG_NET_FLOW_LIMIT
3693 	struct sd_flow_limit *fl;
3694 	struct softnet_data *sd;
3695 	unsigned int old_flow, new_flow;
3696 
3697 	if (qlen < (netdev_max_backlog >> 1))
3698 		return false;
3699 
3700 	sd = this_cpu_ptr(&softnet_data);
3701 
3702 	rcu_read_lock();
3703 	fl = rcu_dereference(sd->flow_limit);
3704 	if (fl) {
3705 		new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
3706 		old_flow = fl->history[fl->history_head];
3707 		fl->history[fl->history_head] = new_flow;
3708 
3709 		fl->history_head++;
3710 		fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3711 
3712 		if (likely(fl->buckets[old_flow]))
3713 			fl->buckets[old_flow]--;
3714 
3715 		if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3716 			fl->count++;
3717 			rcu_read_unlock();
3718 			return true;
3719 		}
3720 	}
3721 	rcu_read_unlock();
3722 #endif
3723 	return false;
3724 }
3725 
3726 /*
3727  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3728  * queue (may be a remote CPU queue).
3729  */
3730 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3731 			      unsigned int *qtail)
3732 {
3733 	struct softnet_data *sd;
3734 	unsigned long flags;
3735 	unsigned int qlen;
3736 
3737 	sd = &per_cpu(softnet_data, cpu);
3738 
3739 	local_irq_save(flags);
3740 
3741 	rps_lock(sd);
3742 	if (!netif_running(skb->dev))
3743 		goto drop;
3744 	qlen = skb_queue_len(&sd->input_pkt_queue);
3745 	if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
3746 		if (qlen) {
3747 enqueue:
3748 			__skb_queue_tail(&sd->input_pkt_queue, skb);
3749 			input_queue_tail_incr_save(sd, qtail);
3750 			rps_unlock(sd);
3751 			local_irq_restore(flags);
3752 			return NET_RX_SUCCESS;
3753 		}
3754 
3755 		/* Schedule NAPI for backlog device
3756 		 * We can use non atomic operation since we own the queue lock
3757 		 */
3758 		if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3759 			if (!rps_ipi_queued(sd))
3760 				____napi_schedule(sd, &sd->backlog);
3761 		}
3762 		goto enqueue;
3763 	}
3764 
3765 drop:
3766 	sd->dropped++;
3767 	rps_unlock(sd);
3768 
3769 	local_irq_restore(flags);
3770 
3771 	atomic_long_inc(&skb->dev->rx_dropped);
3772 	kfree_skb(skb);
3773 	return NET_RX_DROP;
3774 }
3775 
3776 static int netif_rx_internal(struct sk_buff *skb)
3777 {
3778 	int ret;
3779 
3780 	net_timestamp_check(netdev_tstamp_prequeue, skb);
3781 
3782 	trace_netif_rx(skb);
3783 #ifdef CONFIG_RPS
3784 	if (static_key_false(&rps_needed)) {
3785 		struct rps_dev_flow voidflow, *rflow = &voidflow;
3786 		int cpu;
3787 
3788 		preempt_disable();
3789 		rcu_read_lock();
3790 
3791 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
3792 		if (cpu < 0)
3793 			cpu = smp_processor_id();
3794 
3795 		ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3796 
3797 		rcu_read_unlock();
3798 		preempt_enable();
3799 	} else
3800 #endif
3801 	{
3802 		unsigned int qtail;
3803 		ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3804 		put_cpu();
3805 	}
3806 	return ret;
3807 }
3808 
3809 /**
3810  *	netif_rx	-	post buffer to the network code
3811  *	@skb: buffer to post
3812  *
3813  *	This function receives a packet from a device driver and queues it for
3814  *	the upper (protocol) levels to process.  It always succeeds. The buffer
3815  *	may be dropped during processing for congestion control or by the
3816  *	protocol layers.
3817  *
3818  *	return values:
3819  *	NET_RX_SUCCESS	(no congestion)
3820  *	NET_RX_DROP     (packet was dropped)
3821  *
3822  */
3823 
3824 int netif_rx(struct sk_buff *skb)
3825 {
3826 	trace_netif_rx_entry(skb);
3827 
3828 	return netif_rx_internal(skb);
3829 }
3830 EXPORT_SYMBOL(netif_rx);
3831 
3832 int netif_rx_ni(struct sk_buff *skb)
3833 {
3834 	int err;
3835 
3836 	trace_netif_rx_ni_entry(skb);
3837 
3838 	preempt_disable();
3839 	err = netif_rx_internal(skb);
3840 	if (local_softirq_pending())
3841 		do_softirq();
3842 	preempt_enable();
3843 
3844 	return err;
3845 }
3846 EXPORT_SYMBOL(netif_rx_ni);
3847 
3848 static void net_tx_action(struct softirq_action *h)
3849 {
3850 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
3851 
3852 	if (sd->completion_queue) {
3853 		struct sk_buff *clist;
3854 
3855 		local_irq_disable();
3856 		clist = sd->completion_queue;
3857 		sd->completion_queue = NULL;
3858 		local_irq_enable();
3859 
3860 		while (clist) {
3861 			struct sk_buff *skb = clist;
3862 			clist = clist->next;
3863 
3864 			WARN_ON(atomic_read(&skb->users));
3865 			if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
3866 				trace_consume_skb(skb);
3867 			else
3868 				trace_kfree_skb(skb, net_tx_action);
3869 
3870 			if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
3871 				__kfree_skb(skb);
3872 			else
3873 				__kfree_skb_defer(skb);
3874 		}
3875 
3876 		__kfree_skb_flush();
3877 	}
3878 
3879 	if (sd->output_queue) {
3880 		struct Qdisc *head;
3881 
3882 		local_irq_disable();
3883 		head = sd->output_queue;
3884 		sd->output_queue = NULL;
3885 		sd->output_queue_tailp = &sd->output_queue;
3886 		local_irq_enable();
3887 
3888 		while (head) {
3889 			struct Qdisc *q = head;
3890 			spinlock_t *root_lock;
3891 
3892 			head = head->next_sched;
3893 
3894 			root_lock = qdisc_lock(q);
3895 			spin_lock(root_lock);
3896 			/* We need to make sure head->next_sched is read
3897 			 * before clearing __QDISC_STATE_SCHED
3898 			 */
3899 			smp_mb__before_atomic();
3900 			clear_bit(__QDISC_STATE_SCHED, &q->state);
3901 			qdisc_run(q);
3902 			spin_unlock(root_lock);
3903 		}
3904 	}
3905 }
3906 
3907 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
3908 /* This hook is defined here for ATM LANE */
3909 int (*br_fdb_test_addr_hook)(struct net_device *dev,
3910 			     unsigned char *addr) __read_mostly;
3911 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3912 #endif
3913 
3914 static inline struct sk_buff *
3915 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
3916 		   struct net_device *orig_dev)
3917 {
3918 #ifdef CONFIG_NET_CLS_ACT
3919 	struct tcf_proto *cl = rcu_dereference_bh(skb->dev->ingress_cl_list);
3920 	struct tcf_result cl_res;
3921 
3922 	/* If there's at least one ingress present somewhere (so
3923 	 * we get here via enabled static key), remaining devices
3924 	 * that are not configured with an ingress qdisc will bail
3925 	 * out here.
3926 	 */
3927 	if (!cl)
3928 		return skb;
3929 	if (*pt_prev) {
3930 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
3931 		*pt_prev = NULL;
3932 	}
3933 
3934 	qdisc_skb_cb(skb)->pkt_len = skb->len;
3935 	skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
3936 	qdisc_bstats_cpu_update(cl->q, skb);
3937 
3938 	switch (tc_classify(skb, cl, &cl_res, false)) {
3939 	case TC_ACT_OK:
3940 	case TC_ACT_RECLASSIFY:
3941 		skb->tc_index = TC_H_MIN(cl_res.classid);
3942 		break;
3943 	case TC_ACT_SHOT:
3944 		qdisc_qstats_cpu_drop(cl->q);
3945 		kfree_skb(skb);
3946 		return NULL;
3947 	case TC_ACT_STOLEN:
3948 	case TC_ACT_QUEUED:
3949 		consume_skb(skb);
3950 		return NULL;
3951 	case TC_ACT_REDIRECT:
3952 		/* skb_mac_header check was done by cls/act_bpf, so
3953 		 * we can safely push the L2 header back before
3954 		 * redirecting to another netdev
3955 		 */
3956 		__skb_push(skb, skb->mac_len);
3957 		skb_do_redirect(skb);
3958 		return NULL;
3959 	default:
3960 		break;
3961 	}
3962 #endif /* CONFIG_NET_CLS_ACT */
3963 	return skb;
3964 }
3965 
3966 /**
3967  *	netdev_is_rx_handler_busy - check if receive handler is registered
3968  *	@dev: device to check
3969  *
3970  *	Check if a receive handler is already registered for a given device.
3971  *	Return true if there one.
3972  *
3973  *	The caller must hold the rtnl_mutex.
3974  */
3975 bool netdev_is_rx_handler_busy(struct net_device *dev)
3976 {
3977 	ASSERT_RTNL();
3978 	return dev && rtnl_dereference(dev->rx_handler);
3979 }
3980 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
3981 
3982 /**
3983  *	netdev_rx_handler_register - register receive handler
3984  *	@dev: device to register a handler for
3985  *	@rx_handler: receive handler to register
3986  *	@rx_handler_data: data pointer that is used by rx handler
3987  *
3988  *	Register a receive handler for a device. This handler will then be
3989  *	called from __netif_receive_skb. A negative errno code is returned
3990  *	on a failure.
3991  *
3992  *	The caller must hold the rtnl_mutex.
3993  *
3994  *	For a general description of rx_handler, see enum rx_handler_result.
3995  */
3996 int netdev_rx_handler_register(struct net_device *dev,
3997 			       rx_handler_func_t *rx_handler,
3998 			       void *rx_handler_data)
3999 {
4000 	ASSERT_RTNL();
4001 
4002 	if (dev->rx_handler)
4003 		return -EBUSY;
4004 
4005 	/* Note: rx_handler_data must be set before rx_handler */
4006 	rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
4007 	rcu_assign_pointer(dev->rx_handler, rx_handler);
4008 
4009 	return 0;
4010 }
4011 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
4012 
4013 /**
4014  *	netdev_rx_handler_unregister - unregister receive handler
4015  *	@dev: device to unregister a handler from
4016  *
4017  *	Unregister a receive handler from a device.
4018  *
4019  *	The caller must hold the rtnl_mutex.
4020  */
4021 void netdev_rx_handler_unregister(struct net_device *dev)
4022 {
4023 
4024 	ASSERT_RTNL();
4025 	RCU_INIT_POINTER(dev->rx_handler, NULL);
4026 	/* a reader seeing a non NULL rx_handler in a rcu_read_lock()
4027 	 * section has a guarantee to see a non NULL rx_handler_data
4028 	 * as well.
4029 	 */
4030 	synchronize_net();
4031 	RCU_INIT_POINTER(dev->rx_handler_data, NULL);
4032 }
4033 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
4034 
4035 /*
4036  * Limit the use of PFMEMALLOC reserves to those protocols that implement
4037  * the special handling of PFMEMALLOC skbs.
4038  */
4039 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
4040 {
4041 	switch (skb->protocol) {
4042 	case htons(ETH_P_ARP):
4043 	case htons(ETH_P_IP):
4044 	case htons(ETH_P_IPV6):
4045 	case htons(ETH_P_8021Q):
4046 	case htons(ETH_P_8021AD):
4047 		return true;
4048 	default:
4049 		return false;
4050 	}
4051 }
4052 
4053 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
4054 			     int *ret, struct net_device *orig_dev)
4055 {
4056 #ifdef CONFIG_NETFILTER_INGRESS
4057 	if (nf_hook_ingress_active(skb)) {
4058 		int ingress_retval;
4059 
4060 		if (*pt_prev) {
4061 			*ret = deliver_skb(skb, *pt_prev, orig_dev);
4062 			*pt_prev = NULL;
4063 		}
4064 
4065 		rcu_read_lock();
4066 		ingress_retval = nf_hook_ingress(skb);
4067 		rcu_read_unlock();
4068 		return ingress_retval;
4069 	}
4070 #endif /* CONFIG_NETFILTER_INGRESS */
4071 	return 0;
4072 }
4073 
4074 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
4075 {
4076 	struct packet_type *ptype, *pt_prev;
4077 	rx_handler_func_t *rx_handler;
4078 	struct net_device *orig_dev;
4079 	bool deliver_exact = false;
4080 	int ret = NET_RX_DROP;
4081 	__be16 type;
4082 
4083 	net_timestamp_check(!netdev_tstamp_prequeue, skb);
4084 
4085 	trace_netif_receive_skb(skb);
4086 
4087 	orig_dev = skb->dev;
4088 
4089 	skb_reset_network_header(skb);
4090 	if (!skb_transport_header_was_set(skb))
4091 		skb_reset_transport_header(skb);
4092 	skb_reset_mac_len(skb);
4093 
4094 	pt_prev = NULL;
4095 
4096 another_round:
4097 	skb->skb_iif = skb->dev->ifindex;
4098 
4099 	__this_cpu_inc(softnet_data.processed);
4100 
4101 	if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4102 	    skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
4103 		skb = skb_vlan_untag(skb);
4104 		if (unlikely(!skb))
4105 			goto out;
4106 	}
4107 
4108 #ifdef CONFIG_NET_CLS_ACT
4109 	if (skb->tc_verd & TC_NCLS) {
4110 		skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
4111 		goto ncls;
4112 	}
4113 #endif
4114 
4115 	if (pfmemalloc)
4116 		goto skip_taps;
4117 
4118 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
4119 		if (pt_prev)
4120 			ret = deliver_skb(skb, pt_prev, orig_dev);
4121 		pt_prev = ptype;
4122 	}
4123 
4124 	list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
4125 		if (pt_prev)
4126 			ret = deliver_skb(skb, pt_prev, orig_dev);
4127 		pt_prev = ptype;
4128 	}
4129 
4130 skip_taps:
4131 #ifdef CONFIG_NET_INGRESS
4132 	if (static_key_false(&ingress_needed)) {
4133 		skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
4134 		if (!skb)
4135 			goto out;
4136 
4137 		if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
4138 			goto out;
4139 	}
4140 #endif
4141 #ifdef CONFIG_NET_CLS_ACT
4142 	skb->tc_verd = 0;
4143 ncls:
4144 #endif
4145 	if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
4146 		goto drop;
4147 
4148 	if (skb_vlan_tag_present(skb)) {
4149 		if (pt_prev) {
4150 			ret = deliver_skb(skb, pt_prev, orig_dev);
4151 			pt_prev = NULL;
4152 		}
4153 		if (vlan_do_receive(&skb))
4154 			goto another_round;
4155 		else if (unlikely(!skb))
4156 			goto out;
4157 	}
4158 
4159 	rx_handler = rcu_dereference(skb->dev->rx_handler);
4160 	if (rx_handler) {
4161 		if (pt_prev) {
4162 			ret = deliver_skb(skb, pt_prev, orig_dev);
4163 			pt_prev = NULL;
4164 		}
4165 		switch (rx_handler(&skb)) {
4166 		case RX_HANDLER_CONSUMED:
4167 			ret = NET_RX_SUCCESS;
4168 			goto out;
4169 		case RX_HANDLER_ANOTHER:
4170 			goto another_round;
4171 		case RX_HANDLER_EXACT:
4172 			deliver_exact = true;
4173 		case RX_HANDLER_PASS:
4174 			break;
4175 		default:
4176 			BUG();
4177 		}
4178 	}
4179 
4180 	if (unlikely(skb_vlan_tag_present(skb))) {
4181 		if (skb_vlan_tag_get_id(skb))
4182 			skb->pkt_type = PACKET_OTHERHOST;
4183 		/* Note: we might in the future use prio bits
4184 		 * and set skb->priority like in vlan_do_receive()
4185 		 * For the time being, just ignore Priority Code Point
4186 		 */
4187 		skb->vlan_tci = 0;
4188 	}
4189 
4190 	type = skb->protocol;
4191 
4192 	/* deliver only exact match when indicated */
4193 	if (likely(!deliver_exact)) {
4194 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4195 				       &ptype_base[ntohs(type) &
4196 						   PTYPE_HASH_MASK]);
4197 	}
4198 
4199 	deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4200 			       &orig_dev->ptype_specific);
4201 
4202 	if (unlikely(skb->dev != orig_dev)) {
4203 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4204 				       &skb->dev->ptype_specific);
4205 	}
4206 
4207 	if (pt_prev) {
4208 		if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
4209 			goto drop;
4210 		else
4211 			ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
4212 	} else {
4213 drop:
4214 		if (!deliver_exact)
4215 			atomic_long_inc(&skb->dev->rx_dropped);
4216 		else
4217 			atomic_long_inc(&skb->dev->rx_nohandler);
4218 		kfree_skb(skb);
4219 		/* Jamal, now you will not able to escape explaining
4220 		 * me how you were going to use this. :-)
4221 		 */
4222 		ret = NET_RX_DROP;
4223 	}
4224 
4225 out:
4226 	return ret;
4227 }
4228 
4229 static int __netif_receive_skb(struct sk_buff *skb)
4230 {
4231 	int ret;
4232 
4233 	if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
4234 		unsigned long pflags = current->flags;
4235 
4236 		/*
4237 		 * PFMEMALLOC skbs are special, they should
4238 		 * - be delivered to SOCK_MEMALLOC sockets only
4239 		 * - stay away from userspace
4240 		 * - have bounded memory usage
4241 		 *
4242 		 * Use PF_MEMALLOC as this saves us from propagating the allocation
4243 		 * context down to all allocation sites.
4244 		 */
4245 		current->flags |= PF_MEMALLOC;
4246 		ret = __netif_receive_skb_core(skb, true);
4247 		tsk_restore_flags(current, pflags, PF_MEMALLOC);
4248 	} else
4249 		ret = __netif_receive_skb_core(skb, false);
4250 
4251 	return ret;
4252 }
4253 
4254 static int netif_receive_skb_internal(struct sk_buff *skb)
4255 {
4256 	int ret;
4257 
4258 	net_timestamp_check(netdev_tstamp_prequeue, skb);
4259 
4260 	if (skb_defer_rx_timestamp(skb))
4261 		return NET_RX_SUCCESS;
4262 
4263 	rcu_read_lock();
4264 
4265 #ifdef CONFIG_RPS
4266 	if (static_key_false(&rps_needed)) {
4267 		struct rps_dev_flow voidflow, *rflow = &voidflow;
4268 		int cpu = get_rps_cpu(skb->dev, skb, &rflow);
4269 
4270 		if (cpu >= 0) {
4271 			ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4272 			rcu_read_unlock();
4273 			return ret;
4274 		}
4275 	}
4276 #endif
4277 	ret = __netif_receive_skb(skb);
4278 	rcu_read_unlock();
4279 	return ret;
4280 }
4281 
4282 /**
4283  *	netif_receive_skb - process receive buffer from network
4284  *	@skb: buffer to process
4285  *
4286  *	netif_receive_skb() is the main receive data processing function.
4287  *	It always succeeds. The buffer may be dropped during processing
4288  *	for congestion control or by the protocol layers.
4289  *
4290  *	This function may only be called from softirq context and interrupts
4291  *	should be enabled.
4292  *
4293  *	Return values (usually ignored):
4294  *	NET_RX_SUCCESS: no congestion
4295  *	NET_RX_DROP: packet was dropped
4296  */
4297 int netif_receive_skb(struct sk_buff *skb)
4298 {
4299 	trace_netif_receive_skb_entry(skb);
4300 
4301 	return netif_receive_skb_internal(skb);
4302 }
4303 EXPORT_SYMBOL(netif_receive_skb);
4304 
4305 DEFINE_PER_CPU(struct work_struct, flush_works);
4306 
4307 /* Network device is going away, flush any packets still pending */
4308 static void flush_backlog(struct work_struct *work)
4309 {
4310 	struct sk_buff *skb, *tmp;
4311 	struct softnet_data *sd;
4312 
4313 	local_bh_disable();
4314 	sd = this_cpu_ptr(&softnet_data);
4315 
4316 	local_irq_disable();
4317 	rps_lock(sd);
4318 	skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
4319 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
4320 			__skb_unlink(skb, &sd->input_pkt_queue);
4321 			kfree_skb(skb);
4322 			input_queue_head_incr(sd);
4323 		}
4324 	}
4325 	rps_unlock(sd);
4326 	local_irq_enable();
4327 
4328 	skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
4329 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
4330 			__skb_unlink(skb, &sd->process_queue);
4331 			kfree_skb(skb);
4332 			input_queue_head_incr(sd);
4333 		}
4334 	}
4335 	local_bh_enable();
4336 }
4337 
4338 static void flush_all_backlogs(void)
4339 {
4340 	unsigned int cpu;
4341 
4342 	get_online_cpus();
4343 
4344 	for_each_online_cpu(cpu)
4345 		queue_work_on(cpu, system_highpri_wq,
4346 			      per_cpu_ptr(&flush_works, cpu));
4347 
4348 	for_each_online_cpu(cpu)
4349 		flush_work(per_cpu_ptr(&flush_works, cpu));
4350 
4351 	put_online_cpus();
4352 }
4353 
4354 static int napi_gro_complete(struct sk_buff *skb)
4355 {
4356 	struct packet_offload *ptype;
4357 	__be16 type = skb->protocol;
4358 	struct list_head *head = &offload_base;
4359 	int err = -ENOENT;
4360 
4361 	BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
4362 
4363 	if (NAPI_GRO_CB(skb)->count == 1) {
4364 		skb_shinfo(skb)->gso_size = 0;
4365 		goto out;
4366 	}
4367 
4368 	rcu_read_lock();
4369 	list_for_each_entry_rcu(ptype, head, list) {
4370 		if (ptype->type != type || !ptype->callbacks.gro_complete)
4371 			continue;
4372 
4373 		err = ptype->callbacks.gro_complete(skb, 0);
4374 		break;
4375 	}
4376 	rcu_read_unlock();
4377 
4378 	if (err) {
4379 		WARN_ON(&ptype->list == head);
4380 		kfree_skb(skb);
4381 		return NET_RX_SUCCESS;
4382 	}
4383 
4384 out:
4385 	return netif_receive_skb_internal(skb);
4386 }
4387 
4388 /* napi->gro_list contains packets ordered by age.
4389  * youngest packets at the head of it.
4390  * Complete skbs in reverse order to reduce latencies.
4391  */
4392 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
4393 {
4394 	struct sk_buff *skb, *prev = NULL;
4395 
4396 	/* scan list and build reverse chain */
4397 	for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
4398 		skb->prev = prev;
4399 		prev = skb;
4400 	}
4401 
4402 	for (skb = prev; skb; skb = prev) {
4403 		skb->next = NULL;
4404 
4405 		if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
4406 			return;
4407 
4408 		prev = skb->prev;
4409 		napi_gro_complete(skb);
4410 		napi->gro_count--;
4411 	}
4412 
4413 	napi->gro_list = NULL;
4414 }
4415 EXPORT_SYMBOL(napi_gro_flush);
4416 
4417 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
4418 {
4419 	struct sk_buff *p;
4420 	unsigned int maclen = skb->dev->hard_header_len;
4421 	u32 hash = skb_get_hash_raw(skb);
4422 
4423 	for (p = napi->gro_list; p; p = p->next) {
4424 		unsigned long diffs;
4425 
4426 		NAPI_GRO_CB(p)->flush = 0;
4427 
4428 		if (hash != skb_get_hash_raw(p)) {
4429 			NAPI_GRO_CB(p)->same_flow = 0;
4430 			continue;
4431 		}
4432 
4433 		diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
4434 		diffs |= p->vlan_tci ^ skb->vlan_tci;
4435 		diffs |= skb_metadata_dst_cmp(p, skb);
4436 		if (maclen == ETH_HLEN)
4437 			diffs |= compare_ether_header(skb_mac_header(p),
4438 						      skb_mac_header(skb));
4439 		else if (!diffs)
4440 			diffs = memcmp(skb_mac_header(p),
4441 				       skb_mac_header(skb),
4442 				       maclen);
4443 		NAPI_GRO_CB(p)->same_flow = !diffs;
4444 	}
4445 }
4446 
4447 static void skb_gro_reset_offset(struct sk_buff *skb)
4448 {
4449 	const struct skb_shared_info *pinfo = skb_shinfo(skb);
4450 	const skb_frag_t *frag0 = &pinfo->frags[0];
4451 
4452 	NAPI_GRO_CB(skb)->data_offset = 0;
4453 	NAPI_GRO_CB(skb)->frag0 = NULL;
4454 	NAPI_GRO_CB(skb)->frag0_len = 0;
4455 
4456 	if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
4457 	    pinfo->nr_frags &&
4458 	    !PageHighMem(skb_frag_page(frag0))) {
4459 		NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
4460 		NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0);
4461 	}
4462 }
4463 
4464 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
4465 {
4466 	struct skb_shared_info *pinfo = skb_shinfo(skb);
4467 
4468 	BUG_ON(skb->end - skb->tail < grow);
4469 
4470 	memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
4471 
4472 	skb->data_len -= grow;
4473 	skb->tail += grow;
4474 
4475 	pinfo->frags[0].page_offset += grow;
4476 	skb_frag_size_sub(&pinfo->frags[0], grow);
4477 
4478 	if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
4479 		skb_frag_unref(skb, 0);
4480 		memmove(pinfo->frags, pinfo->frags + 1,
4481 			--pinfo->nr_frags * sizeof(pinfo->frags[0]));
4482 	}
4483 }
4484 
4485 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4486 {
4487 	struct sk_buff **pp = NULL;
4488 	struct packet_offload *ptype;
4489 	__be16 type = skb->protocol;
4490 	struct list_head *head = &offload_base;
4491 	int same_flow;
4492 	enum gro_result ret;
4493 	int grow;
4494 
4495 	if (!(skb->dev->features & NETIF_F_GRO))
4496 		goto normal;
4497 
4498 	if (skb_is_gso(skb) || skb_has_frag_list(skb) || skb->csum_bad)
4499 		goto normal;
4500 
4501 	gro_list_prepare(napi, skb);
4502 
4503 	rcu_read_lock();
4504 	list_for_each_entry_rcu(ptype, head, list) {
4505 		if (ptype->type != type || !ptype->callbacks.gro_receive)
4506 			continue;
4507 
4508 		skb_set_network_header(skb, skb_gro_offset(skb));
4509 		skb_reset_mac_len(skb);
4510 		NAPI_GRO_CB(skb)->same_flow = 0;
4511 		NAPI_GRO_CB(skb)->flush = 0;
4512 		NAPI_GRO_CB(skb)->free = 0;
4513 		NAPI_GRO_CB(skb)->encap_mark = 0;
4514 		NAPI_GRO_CB(skb)->is_fou = 0;
4515 		NAPI_GRO_CB(skb)->is_atomic = 1;
4516 		NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
4517 
4518 		/* Setup for GRO checksum validation */
4519 		switch (skb->ip_summed) {
4520 		case CHECKSUM_COMPLETE:
4521 			NAPI_GRO_CB(skb)->csum = skb->csum;
4522 			NAPI_GRO_CB(skb)->csum_valid = 1;
4523 			NAPI_GRO_CB(skb)->csum_cnt = 0;
4524 			break;
4525 		case CHECKSUM_UNNECESSARY:
4526 			NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
4527 			NAPI_GRO_CB(skb)->csum_valid = 0;
4528 			break;
4529 		default:
4530 			NAPI_GRO_CB(skb)->csum_cnt = 0;
4531 			NAPI_GRO_CB(skb)->csum_valid = 0;
4532 		}
4533 
4534 		pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
4535 		break;
4536 	}
4537 	rcu_read_unlock();
4538 
4539 	if (&ptype->list == head)
4540 		goto normal;
4541 
4542 	same_flow = NAPI_GRO_CB(skb)->same_flow;
4543 	ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
4544 
4545 	if (pp) {
4546 		struct sk_buff *nskb = *pp;
4547 
4548 		*pp = nskb->next;
4549 		nskb->next = NULL;
4550 		napi_gro_complete(nskb);
4551 		napi->gro_count--;
4552 	}
4553 
4554 	if (same_flow)
4555 		goto ok;
4556 
4557 	if (NAPI_GRO_CB(skb)->flush)
4558 		goto normal;
4559 
4560 	if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
4561 		struct sk_buff *nskb = napi->gro_list;
4562 
4563 		/* locate the end of the list to select the 'oldest' flow */
4564 		while (nskb->next) {
4565 			pp = &nskb->next;
4566 			nskb = *pp;
4567 		}
4568 		*pp = NULL;
4569 		nskb->next = NULL;
4570 		napi_gro_complete(nskb);
4571 	} else {
4572 		napi->gro_count++;
4573 	}
4574 	NAPI_GRO_CB(skb)->count = 1;
4575 	NAPI_GRO_CB(skb)->age = jiffies;
4576 	NAPI_GRO_CB(skb)->last = skb;
4577 	skb_shinfo(skb)->gso_size = skb_gro_len(skb);
4578 	skb->next = napi->gro_list;
4579 	napi->gro_list = skb;
4580 	ret = GRO_HELD;
4581 
4582 pull:
4583 	grow = skb_gro_offset(skb) - skb_headlen(skb);
4584 	if (grow > 0)
4585 		gro_pull_from_frag0(skb, grow);
4586 ok:
4587 	return ret;
4588 
4589 normal:
4590 	ret = GRO_NORMAL;
4591 	goto pull;
4592 }
4593 
4594 struct packet_offload *gro_find_receive_by_type(__be16 type)
4595 {
4596 	struct list_head *offload_head = &offload_base;
4597 	struct packet_offload *ptype;
4598 
4599 	list_for_each_entry_rcu(ptype, offload_head, list) {
4600 		if (ptype->type != type || !ptype->callbacks.gro_receive)
4601 			continue;
4602 		return ptype;
4603 	}
4604 	return NULL;
4605 }
4606 EXPORT_SYMBOL(gro_find_receive_by_type);
4607 
4608 struct packet_offload *gro_find_complete_by_type(__be16 type)
4609 {
4610 	struct list_head *offload_head = &offload_base;
4611 	struct packet_offload *ptype;
4612 
4613 	list_for_each_entry_rcu(ptype, offload_head, list) {
4614 		if (ptype->type != type || !ptype->callbacks.gro_complete)
4615 			continue;
4616 		return ptype;
4617 	}
4618 	return NULL;
4619 }
4620 EXPORT_SYMBOL(gro_find_complete_by_type);
4621 
4622 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
4623 {
4624 	switch (ret) {
4625 	case GRO_NORMAL:
4626 		if (netif_receive_skb_internal(skb))
4627 			ret = GRO_DROP;
4628 		break;
4629 
4630 	case GRO_DROP:
4631 		kfree_skb(skb);
4632 		break;
4633 
4634 	case GRO_MERGED_FREE:
4635 		if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) {
4636 			skb_dst_drop(skb);
4637 			kmem_cache_free(skbuff_head_cache, skb);
4638 		} else {
4639 			__kfree_skb(skb);
4640 		}
4641 		break;
4642 
4643 	case GRO_HELD:
4644 	case GRO_MERGED:
4645 		break;
4646 	}
4647 
4648 	return ret;
4649 }
4650 
4651 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4652 {
4653 	skb_mark_napi_id(skb, napi);
4654 	trace_napi_gro_receive_entry(skb);
4655 
4656 	skb_gro_reset_offset(skb);
4657 
4658 	return napi_skb_finish(dev_gro_receive(napi, skb), skb);
4659 }
4660 EXPORT_SYMBOL(napi_gro_receive);
4661 
4662 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
4663 {
4664 	if (unlikely(skb->pfmemalloc)) {
4665 		consume_skb(skb);
4666 		return;
4667 	}
4668 	__skb_pull(skb, skb_headlen(skb));
4669 	/* restore the reserve we had after netdev_alloc_skb_ip_align() */
4670 	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
4671 	skb->vlan_tci = 0;
4672 	skb->dev = napi->dev;
4673 	skb->skb_iif = 0;
4674 	skb->encapsulation = 0;
4675 	skb_shinfo(skb)->gso_type = 0;
4676 	skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
4677 
4678 	napi->skb = skb;
4679 }
4680 
4681 struct sk_buff *napi_get_frags(struct napi_struct *napi)
4682 {
4683 	struct sk_buff *skb = napi->skb;
4684 
4685 	if (!skb) {
4686 		skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
4687 		if (skb) {
4688 			napi->skb = skb;
4689 			skb_mark_napi_id(skb, napi);
4690 		}
4691 	}
4692 	return skb;
4693 }
4694 EXPORT_SYMBOL(napi_get_frags);
4695 
4696 static gro_result_t napi_frags_finish(struct napi_struct *napi,
4697 				      struct sk_buff *skb,
4698 				      gro_result_t ret)
4699 {
4700 	switch (ret) {
4701 	case GRO_NORMAL:
4702 	case GRO_HELD:
4703 		__skb_push(skb, ETH_HLEN);
4704 		skb->protocol = eth_type_trans(skb, skb->dev);
4705 		if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
4706 			ret = GRO_DROP;
4707 		break;
4708 
4709 	case GRO_DROP:
4710 	case GRO_MERGED_FREE:
4711 		napi_reuse_skb(napi, skb);
4712 		break;
4713 
4714 	case GRO_MERGED:
4715 		break;
4716 	}
4717 
4718 	return ret;
4719 }
4720 
4721 /* Upper GRO stack assumes network header starts at gro_offset=0
4722  * Drivers could call both napi_gro_frags() and napi_gro_receive()
4723  * We copy ethernet header into skb->data to have a common layout.
4724  */
4725 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
4726 {
4727 	struct sk_buff *skb = napi->skb;
4728 	const struct ethhdr *eth;
4729 	unsigned int hlen = sizeof(*eth);
4730 
4731 	napi->skb = NULL;
4732 
4733 	skb_reset_mac_header(skb);
4734 	skb_gro_reset_offset(skb);
4735 
4736 	eth = skb_gro_header_fast(skb, 0);
4737 	if (unlikely(skb_gro_header_hard(skb, hlen))) {
4738 		eth = skb_gro_header_slow(skb, hlen, 0);
4739 		if (unlikely(!eth)) {
4740 			net_warn_ratelimited("%s: dropping impossible skb from %s\n",
4741 					     __func__, napi->dev->name);
4742 			napi_reuse_skb(napi, skb);
4743 			return NULL;
4744 		}
4745 	} else {
4746 		gro_pull_from_frag0(skb, hlen);
4747 		NAPI_GRO_CB(skb)->frag0 += hlen;
4748 		NAPI_GRO_CB(skb)->frag0_len -= hlen;
4749 	}
4750 	__skb_pull(skb, hlen);
4751 
4752 	/*
4753 	 * This works because the only protocols we care about don't require
4754 	 * special handling.
4755 	 * We'll fix it up properly in napi_frags_finish()
4756 	 */
4757 	skb->protocol = eth->h_proto;
4758 
4759 	return skb;
4760 }
4761 
4762 gro_result_t napi_gro_frags(struct napi_struct *napi)
4763 {
4764 	struct sk_buff *skb = napi_frags_skb(napi);
4765 
4766 	if (!skb)
4767 		return GRO_DROP;
4768 
4769 	trace_napi_gro_frags_entry(skb);
4770 
4771 	return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
4772 }
4773 EXPORT_SYMBOL(napi_gro_frags);
4774 
4775 /* Compute the checksum from gro_offset and return the folded value
4776  * after adding in any pseudo checksum.
4777  */
4778 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
4779 {
4780 	__wsum wsum;
4781 	__sum16 sum;
4782 
4783 	wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
4784 
4785 	/* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
4786 	sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
4787 	if (likely(!sum)) {
4788 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
4789 		    !skb->csum_complete_sw)
4790 			netdev_rx_csum_fault(skb->dev);
4791 	}
4792 
4793 	NAPI_GRO_CB(skb)->csum = wsum;
4794 	NAPI_GRO_CB(skb)->csum_valid = 1;
4795 
4796 	return sum;
4797 }
4798 EXPORT_SYMBOL(__skb_gro_checksum_complete);
4799 
4800 /*
4801  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
4802  * Note: called with local irq disabled, but exits with local irq enabled.
4803  */
4804 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
4805 {
4806 #ifdef CONFIG_RPS
4807 	struct softnet_data *remsd = sd->rps_ipi_list;
4808 
4809 	if (remsd) {
4810 		sd->rps_ipi_list = NULL;
4811 
4812 		local_irq_enable();
4813 
4814 		/* Send pending IPI's to kick RPS processing on remote cpus. */
4815 		while (remsd) {
4816 			struct softnet_data *next = remsd->rps_ipi_next;
4817 
4818 			if (cpu_online(remsd->cpu))
4819 				smp_call_function_single_async(remsd->cpu,
4820 							   &remsd->csd);
4821 			remsd = next;
4822 		}
4823 	} else
4824 #endif
4825 		local_irq_enable();
4826 }
4827 
4828 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
4829 {
4830 #ifdef CONFIG_RPS
4831 	return sd->rps_ipi_list != NULL;
4832 #else
4833 	return false;
4834 #endif
4835 }
4836 
4837 static int process_backlog(struct napi_struct *napi, int quota)
4838 {
4839 	struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
4840 	bool again = true;
4841 	int work = 0;
4842 
4843 	/* Check if we have pending ipi, its better to send them now,
4844 	 * not waiting net_rx_action() end.
4845 	 */
4846 	if (sd_has_rps_ipi_waiting(sd)) {
4847 		local_irq_disable();
4848 		net_rps_action_and_irq_enable(sd);
4849 	}
4850 
4851 	napi->weight = weight_p;
4852 	while (again) {
4853 		struct sk_buff *skb;
4854 
4855 		while ((skb = __skb_dequeue(&sd->process_queue))) {
4856 			rcu_read_lock();
4857 			__netif_receive_skb(skb);
4858 			rcu_read_unlock();
4859 			input_queue_head_incr(sd);
4860 			if (++work >= quota)
4861 				return work;
4862 
4863 		}
4864 
4865 		local_irq_disable();
4866 		rps_lock(sd);
4867 		if (skb_queue_empty(&sd->input_pkt_queue)) {
4868 			/*
4869 			 * Inline a custom version of __napi_complete().
4870 			 * only current cpu owns and manipulates this napi,
4871 			 * and NAPI_STATE_SCHED is the only possible flag set
4872 			 * on backlog.
4873 			 * We can use a plain write instead of clear_bit(),
4874 			 * and we dont need an smp_mb() memory barrier.
4875 			 */
4876 			napi->state = 0;
4877 			again = false;
4878 		} else {
4879 			skb_queue_splice_tail_init(&sd->input_pkt_queue,
4880 						   &sd->process_queue);
4881 		}
4882 		rps_unlock(sd);
4883 		local_irq_enable();
4884 	}
4885 
4886 	return work;
4887 }
4888 
4889 /**
4890  * __napi_schedule - schedule for receive
4891  * @n: entry to schedule
4892  *
4893  * The entry's receive function will be scheduled to run.
4894  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
4895  */
4896 void __napi_schedule(struct napi_struct *n)
4897 {
4898 	unsigned long flags;
4899 
4900 	local_irq_save(flags);
4901 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
4902 	local_irq_restore(flags);
4903 }
4904 EXPORT_SYMBOL(__napi_schedule);
4905 
4906 /**
4907  * __napi_schedule_irqoff - schedule for receive
4908  * @n: entry to schedule
4909  *
4910  * Variant of __napi_schedule() assuming hard irqs are masked
4911  */
4912 void __napi_schedule_irqoff(struct napi_struct *n)
4913 {
4914 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
4915 }
4916 EXPORT_SYMBOL(__napi_schedule_irqoff);
4917 
4918 void __napi_complete(struct napi_struct *n)
4919 {
4920 	BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
4921 
4922 	list_del_init(&n->poll_list);
4923 	smp_mb__before_atomic();
4924 	clear_bit(NAPI_STATE_SCHED, &n->state);
4925 }
4926 EXPORT_SYMBOL(__napi_complete);
4927 
4928 void napi_complete_done(struct napi_struct *n, int work_done)
4929 {
4930 	unsigned long flags;
4931 
4932 	/*
4933 	 * don't let napi dequeue from the cpu poll list
4934 	 * just in case its running on a different cpu
4935 	 */
4936 	if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
4937 		return;
4938 
4939 	if (n->gro_list) {
4940 		unsigned long timeout = 0;
4941 
4942 		if (work_done)
4943 			timeout = n->dev->gro_flush_timeout;
4944 
4945 		if (timeout)
4946 			hrtimer_start(&n->timer, ns_to_ktime(timeout),
4947 				      HRTIMER_MODE_REL_PINNED);
4948 		else
4949 			napi_gro_flush(n, false);
4950 	}
4951 	if (likely(list_empty(&n->poll_list))) {
4952 		WARN_ON_ONCE(!test_and_clear_bit(NAPI_STATE_SCHED, &n->state));
4953 	} else {
4954 		/* If n->poll_list is not empty, we need to mask irqs */
4955 		local_irq_save(flags);
4956 		__napi_complete(n);
4957 		local_irq_restore(flags);
4958 	}
4959 }
4960 EXPORT_SYMBOL(napi_complete_done);
4961 
4962 /* must be called under rcu_read_lock(), as we dont take a reference */
4963 static struct napi_struct *napi_by_id(unsigned int napi_id)
4964 {
4965 	unsigned int hash = napi_id % HASH_SIZE(napi_hash);
4966 	struct napi_struct *napi;
4967 
4968 	hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
4969 		if (napi->napi_id == napi_id)
4970 			return napi;
4971 
4972 	return NULL;
4973 }
4974 
4975 #if defined(CONFIG_NET_RX_BUSY_POLL)
4976 #define BUSY_POLL_BUDGET 8
4977 bool sk_busy_loop(struct sock *sk, int nonblock)
4978 {
4979 	unsigned long end_time = !nonblock ? sk_busy_loop_end_time(sk) : 0;
4980 	int (*busy_poll)(struct napi_struct *dev);
4981 	struct napi_struct *napi;
4982 	int rc = false;
4983 
4984 	rcu_read_lock();
4985 
4986 	napi = napi_by_id(sk->sk_napi_id);
4987 	if (!napi)
4988 		goto out;
4989 
4990 	/* Note: ndo_busy_poll method is optional in linux-4.5 */
4991 	busy_poll = napi->dev->netdev_ops->ndo_busy_poll;
4992 
4993 	do {
4994 		rc = 0;
4995 		local_bh_disable();
4996 		if (busy_poll) {
4997 			rc = busy_poll(napi);
4998 		} else if (napi_schedule_prep(napi)) {
4999 			void *have = netpoll_poll_lock(napi);
5000 
5001 			if (test_bit(NAPI_STATE_SCHED, &napi->state)) {
5002 				rc = napi->poll(napi, BUSY_POLL_BUDGET);
5003 				trace_napi_poll(napi, rc, BUSY_POLL_BUDGET);
5004 				if (rc == BUSY_POLL_BUDGET) {
5005 					napi_complete_done(napi, rc);
5006 					napi_schedule(napi);
5007 				}
5008 			}
5009 			netpoll_poll_unlock(have);
5010 		}
5011 		if (rc > 0)
5012 			__NET_ADD_STATS(sock_net(sk),
5013 					LINUX_MIB_BUSYPOLLRXPACKETS, rc);
5014 		local_bh_enable();
5015 
5016 		if (rc == LL_FLUSH_FAILED)
5017 			break; /* permanent failure */
5018 
5019 		cpu_relax();
5020 	} while (!nonblock && skb_queue_empty(&sk->sk_receive_queue) &&
5021 		 !need_resched() && !busy_loop_timeout(end_time));
5022 
5023 	rc = !skb_queue_empty(&sk->sk_receive_queue);
5024 out:
5025 	rcu_read_unlock();
5026 	return rc;
5027 }
5028 EXPORT_SYMBOL(sk_busy_loop);
5029 
5030 #endif /* CONFIG_NET_RX_BUSY_POLL */
5031 
5032 void napi_hash_add(struct napi_struct *napi)
5033 {
5034 	if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
5035 	    test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
5036 		return;
5037 
5038 	spin_lock(&napi_hash_lock);
5039 
5040 	/* 0..NR_CPUS+1 range is reserved for sender_cpu use */
5041 	do {
5042 		if (unlikely(++napi_gen_id < NR_CPUS + 1))
5043 			napi_gen_id = NR_CPUS + 1;
5044 	} while (napi_by_id(napi_gen_id));
5045 	napi->napi_id = napi_gen_id;
5046 
5047 	hlist_add_head_rcu(&napi->napi_hash_node,
5048 			   &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
5049 
5050 	spin_unlock(&napi_hash_lock);
5051 }
5052 EXPORT_SYMBOL_GPL(napi_hash_add);
5053 
5054 /* Warning : caller is responsible to make sure rcu grace period
5055  * is respected before freeing memory containing @napi
5056  */
5057 bool napi_hash_del(struct napi_struct *napi)
5058 {
5059 	bool rcu_sync_needed = false;
5060 
5061 	spin_lock(&napi_hash_lock);
5062 
5063 	if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
5064 		rcu_sync_needed = true;
5065 		hlist_del_rcu(&napi->napi_hash_node);
5066 	}
5067 	spin_unlock(&napi_hash_lock);
5068 	return rcu_sync_needed;
5069 }
5070 EXPORT_SYMBOL_GPL(napi_hash_del);
5071 
5072 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
5073 {
5074 	struct napi_struct *napi;
5075 
5076 	napi = container_of(timer, struct napi_struct, timer);
5077 	if (napi->gro_list)
5078 		napi_schedule(napi);
5079 
5080 	return HRTIMER_NORESTART;
5081 }
5082 
5083 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
5084 		    int (*poll)(struct napi_struct *, int), int weight)
5085 {
5086 	INIT_LIST_HEAD(&napi->poll_list);
5087 	hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
5088 	napi->timer.function = napi_watchdog;
5089 	napi->gro_count = 0;
5090 	napi->gro_list = NULL;
5091 	napi->skb = NULL;
5092 	napi->poll = poll;
5093 	if (weight > NAPI_POLL_WEIGHT)
5094 		pr_err_once("netif_napi_add() called with weight %d on device %s\n",
5095 			    weight, dev->name);
5096 	napi->weight = weight;
5097 	list_add(&napi->dev_list, &dev->napi_list);
5098 	napi->dev = dev;
5099 #ifdef CONFIG_NETPOLL
5100 	spin_lock_init(&napi->poll_lock);
5101 	napi->poll_owner = -1;
5102 #endif
5103 	set_bit(NAPI_STATE_SCHED, &napi->state);
5104 	napi_hash_add(napi);
5105 }
5106 EXPORT_SYMBOL(netif_napi_add);
5107 
5108 void napi_disable(struct napi_struct *n)
5109 {
5110 	might_sleep();
5111 	set_bit(NAPI_STATE_DISABLE, &n->state);
5112 
5113 	while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
5114 		msleep(1);
5115 	while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
5116 		msleep(1);
5117 
5118 	hrtimer_cancel(&n->timer);
5119 
5120 	clear_bit(NAPI_STATE_DISABLE, &n->state);
5121 }
5122 EXPORT_SYMBOL(napi_disable);
5123 
5124 /* Must be called in process context */
5125 void netif_napi_del(struct napi_struct *napi)
5126 {
5127 	might_sleep();
5128 	if (napi_hash_del(napi))
5129 		synchronize_net();
5130 	list_del_init(&napi->dev_list);
5131 	napi_free_frags(napi);
5132 
5133 	kfree_skb_list(napi->gro_list);
5134 	napi->gro_list = NULL;
5135 	napi->gro_count = 0;
5136 }
5137 EXPORT_SYMBOL(netif_napi_del);
5138 
5139 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
5140 {
5141 	void *have;
5142 	int work, weight;
5143 
5144 	list_del_init(&n->poll_list);
5145 
5146 	have = netpoll_poll_lock(n);
5147 
5148 	weight = n->weight;
5149 
5150 	/* This NAPI_STATE_SCHED test is for avoiding a race
5151 	 * with netpoll's poll_napi().  Only the entity which
5152 	 * obtains the lock and sees NAPI_STATE_SCHED set will
5153 	 * actually make the ->poll() call.  Therefore we avoid
5154 	 * accidentally calling ->poll() when NAPI is not scheduled.
5155 	 */
5156 	work = 0;
5157 	if (test_bit(NAPI_STATE_SCHED, &n->state)) {
5158 		work = n->poll(n, weight);
5159 		trace_napi_poll(n, work, weight);
5160 	}
5161 
5162 	WARN_ON_ONCE(work > weight);
5163 
5164 	if (likely(work < weight))
5165 		goto out_unlock;
5166 
5167 	/* Drivers must not modify the NAPI state if they
5168 	 * consume the entire weight.  In such cases this code
5169 	 * still "owns" the NAPI instance and therefore can
5170 	 * move the instance around on the list at-will.
5171 	 */
5172 	if (unlikely(napi_disable_pending(n))) {
5173 		napi_complete(n);
5174 		goto out_unlock;
5175 	}
5176 
5177 	if (n->gro_list) {
5178 		/* flush too old packets
5179 		 * If HZ < 1000, flush all packets.
5180 		 */
5181 		napi_gro_flush(n, HZ >= 1000);
5182 	}
5183 
5184 	/* Some drivers may have called napi_schedule
5185 	 * prior to exhausting their budget.
5186 	 */
5187 	if (unlikely(!list_empty(&n->poll_list))) {
5188 		pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
5189 			     n->dev ? n->dev->name : "backlog");
5190 		goto out_unlock;
5191 	}
5192 
5193 	list_add_tail(&n->poll_list, repoll);
5194 
5195 out_unlock:
5196 	netpoll_poll_unlock(have);
5197 
5198 	return work;
5199 }
5200 
5201 static void net_rx_action(struct softirq_action *h)
5202 {
5203 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5204 	unsigned long time_limit = jiffies + 2;
5205 	int budget = netdev_budget;
5206 	LIST_HEAD(list);
5207 	LIST_HEAD(repoll);
5208 
5209 	local_irq_disable();
5210 	list_splice_init(&sd->poll_list, &list);
5211 	local_irq_enable();
5212 
5213 	for (;;) {
5214 		struct napi_struct *n;
5215 
5216 		if (list_empty(&list)) {
5217 			if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
5218 				return;
5219 			break;
5220 		}
5221 
5222 		n = list_first_entry(&list, struct napi_struct, poll_list);
5223 		budget -= napi_poll(n, &repoll);
5224 
5225 		/* If softirq window is exhausted then punt.
5226 		 * Allow this to run for 2 jiffies since which will allow
5227 		 * an average latency of 1.5/HZ.
5228 		 */
5229 		if (unlikely(budget <= 0 ||
5230 			     time_after_eq(jiffies, time_limit))) {
5231 			sd->time_squeeze++;
5232 			break;
5233 		}
5234 	}
5235 
5236 	__kfree_skb_flush();
5237 	local_irq_disable();
5238 
5239 	list_splice_tail_init(&sd->poll_list, &list);
5240 	list_splice_tail(&repoll, &list);
5241 	list_splice(&list, &sd->poll_list);
5242 	if (!list_empty(&sd->poll_list))
5243 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
5244 
5245 	net_rps_action_and_irq_enable(sd);
5246 }
5247 
5248 struct netdev_adjacent {
5249 	struct net_device *dev;
5250 
5251 	/* upper master flag, there can only be one master device per list */
5252 	bool master;
5253 
5254 	/* counter for the number of times this device was added to us */
5255 	u16 ref_nr;
5256 
5257 	/* private field for the users */
5258 	void *private;
5259 
5260 	struct list_head list;
5261 	struct rcu_head rcu;
5262 };
5263 
5264 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
5265 						 struct list_head *adj_list)
5266 {
5267 	struct netdev_adjacent *adj;
5268 
5269 	list_for_each_entry(adj, adj_list, list) {
5270 		if (adj->dev == adj_dev)
5271 			return adj;
5272 	}
5273 	return NULL;
5274 }
5275 
5276 /**
5277  * netdev_has_upper_dev - Check if device is linked to an upper device
5278  * @dev: device
5279  * @upper_dev: upper device to check
5280  *
5281  * Find out if a device is linked to specified upper device and return true
5282  * in case it is. Note that this checks only immediate upper device,
5283  * not through a complete stack of devices. The caller must hold the RTNL lock.
5284  */
5285 bool netdev_has_upper_dev(struct net_device *dev,
5286 			  struct net_device *upper_dev)
5287 {
5288 	ASSERT_RTNL();
5289 
5290 	return __netdev_find_adj(upper_dev, &dev->all_adj_list.upper);
5291 }
5292 EXPORT_SYMBOL(netdev_has_upper_dev);
5293 
5294 /**
5295  * netdev_has_any_upper_dev - Check if device is linked to some device
5296  * @dev: device
5297  *
5298  * Find out if a device is linked to an upper device and return true in case
5299  * it is. The caller must hold the RTNL lock.
5300  */
5301 static bool netdev_has_any_upper_dev(struct net_device *dev)
5302 {
5303 	ASSERT_RTNL();
5304 
5305 	return !list_empty(&dev->all_adj_list.upper);
5306 }
5307 
5308 /**
5309  * netdev_master_upper_dev_get - Get master upper device
5310  * @dev: device
5311  *
5312  * Find a master upper device and return pointer to it or NULL in case
5313  * it's not there. The caller must hold the RTNL lock.
5314  */
5315 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
5316 {
5317 	struct netdev_adjacent *upper;
5318 
5319 	ASSERT_RTNL();
5320 
5321 	if (list_empty(&dev->adj_list.upper))
5322 		return NULL;
5323 
5324 	upper = list_first_entry(&dev->adj_list.upper,
5325 				 struct netdev_adjacent, list);
5326 	if (likely(upper->master))
5327 		return upper->dev;
5328 	return NULL;
5329 }
5330 EXPORT_SYMBOL(netdev_master_upper_dev_get);
5331 
5332 void *netdev_adjacent_get_private(struct list_head *adj_list)
5333 {
5334 	struct netdev_adjacent *adj;
5335 
5336 	adj = list_entry(adj_list, struct netdev_adjacent, list);
5337 
5338 	return adj->private;
5339 }
5340 EXPORT_SYMBOL(netdev_adjacent_get_private);
5341 
5342 /**
5343  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
5344  * @dev: device
5345  * @iter: list_head ** of the current position
5346  *
5347  * Gets the next device from the dev's upper list, starting from iter
5348  * position. The caller must hold RCU read lock.
5349  */
5350 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
5351 						 struct list_head **iter)
5352 {
5353 	struct netdev_adjacent *upper;
5354 
5355 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5356 
5357 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5358 
5359 	if (&upper->list == &dev->adj_list.upper)
5360 		return NULL;
5361 
5362 	*iter = &upper->list;
5363 
5364 	return upper->dev;
5365 }
5366 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
5367 
5368 /**
5369  * netdev_all_upper_get_next_dev_rcu - Get the next dev from upper list
5370  * @dev: device
5371  * @iter: list_head ** of the current position
5372  *
5373  * Gets the next device from the dev's upper list, starting from iter
5374  * position. The caller must hold RCU read lock.
5375  */
5376 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
5377 						     struct list_head **iter)
5378 {
5379 	struct netdev_adjacent *upper;
5380 
5381 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5382 
5383 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5384 
5385 	if (&upper->list == &dev->all_adj_list.upper)
5386 		return NULL;
5387 
5388 	*iter = &upper->list;
5389 
5390 	return upper->dev;
5391 }
5392 EXPORT_SYMBOL(netdev_all_upper_get_next_dev_rcu);
5393 
5394 /**
5395  * netdev_lower_get_next_private - Get the next ->private from the
5396  *				   lower neighbour list
5397  * @dev: device
5398  * @iter: list_head ** of the current position
5399  *
5400  * Gets the next netdev_adjacent->private from the dev's lower neighbour
5401  * list, starting from iter position. The caller must hold either hold the
5402  * RTNL lock or its own locking that guarantees that the neighbour lower
5403  * list will remain unchanged.
5404  */
5405 void *netdev_lower_get_next_private(struct net_device *dev,
5406 				    struct list_head **iter)
5407 {
5408 	struct netdev_adjacent *lower;
5409 
5410 	lower = list_entry(*iter, struct netdev_adjacent, list);
5411 
5412 	if (&lower->list == &dev->adj_list.lower)
5413 		return NULL;
5414 
5415 	*iter = lower->list.next;
5416 
5417 	return lower->private;
5418 }
5419 EXPORT_SYMBOL(netdev_lower_get_next_private);
5420 
5421 /**
5422  * netdev_lower_get_next_private_rcu - Get the next ->private from the
5423  *				       lower neighbour list, RCU
5424  *				       variant
5425  * @dev: device
5426  * @iter: list_head ** of the current position
5427  *
5428  * Gets the next netdev_adjacent->private from the dev's lower neighbour
5429  * list, starting from iter position. The caller must hold RCU read lock.
5430  */
5431 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
5432 					struct list_head **iter)
5433 {
5434 	struct netdev_adjacent *lower;
5435 
5436 	WARN_ON_ONCE(!rcu_read_lock_held());
5437 
5438 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5439 
5440 	if (&lower->list == &dev->adj_list.lower)
5441 		return NULL;
5442 
5443 	*iter = &lower->list;
5444 
5445 	return lower->private;
5446 }
5447 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
5448 
5449 /**
5450  * netdev_lower_get_next - Get the next device from the lower neighbour
5451  *                         list
5452  * @dev: device
5453  * @iter: list_head ** of the current position
5454  *
5455  * Gets the next netdev_adjacent from the dev's lower neighbour
5456  * list, starting from iter position. The caller must hold RTNL lock or
5457  * its own locking that guarantees that the neighbour lower
5458  * list will remain unchanged.
5459  */
5460 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
5461 {
5462 	struct netdev_adjacent *lower;
5463 
5464 	lower = list_entry(*iter, struct netdev_adjacent, list);
5465 
5466 	if (&lower->list == &dev->adj_list.lower)
5467 		return NULL;
5468 
5469 	*iter = lower->list.next;
5470 
5471 	return lower->dev;
5472 }
5473 EXPORT_SYMBOL(netdev_lower_get_next);
5474 
5475 /**
5476  * netdev_all_lower_get_next - Get the next device from all lower neighbour list
5477  * @dev: device
5478  * @iter: list_head ** of the current position
5479  *
5480  * Gets the next netdev_adjacent from the dev's all lower neighbour
5481  * list, starting from iter position. The caller must hold RTNL lock or
5482  * its own locking that guarantees that the neighbour all lower
5483  * list will remain unchanged.
5484  */
5485 struct net_device *netdev_all_lower_get_next(struct net_device *dev, struct list_head **iter)
5486 {
5487 	struct netdev_adjacent *lower;
5488 
5489 	lower = list_entry(*iter, struct netdev_adjacent, list);
5490 
5491 	if (&lower->list == &dev->all_adj_list.lower)
5492 		return NULL;
5493 
5494 	*iter = lower->list.next;
5495 
5496 	return lower->dev;
5497 }
5498 EXPORT_SYMBOL(netdev_all_lower_get_next);
5499 
5500 /**
5501  * netdev_all_lower_get_next_rcu - Get the next device from all
5502  *				   lower neighbour list, RCU variant
5503  * @dev: device
5504  * @iter: list_head ** of the current position
5505  *
5506  * Gets the next netdev_adjacent from the dev's all lower neighbour
5507  * list, starting from iter position. The caller must hold RCU read lock.
5508  */
5509 struct net_device *netdev_all_lower_get_next_rcu(struct net_device *dev,
5510 						 struct list_head **iter)
5511 {
5512 	struct netdev_adjacent *lower;
5513 
5514 	lower = list_first_or_null_rcu(&dev->all_adj_list.lower,
5515 				       struct netdev_adjacent, list);
5516 
5517 	return lower ? lower->dev : NULL;
5518 }
5519 EXPORT_SYMBOL(netdev_all_lower_get_next_rcu);
5520 
5521 /**
5522  * netdev_lower_get_first_private_rcu - Get the first ->private from the
5523  *				       lower neighbour list, RCU
5524  *				       variant
5525  * @dev: device
5526  *
5527  * Gets the first netdev_adjacent->private from the dev's lower neighbour
5528  * list. The caller must hold RCU read lock.
5529  */
5530 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
5531 {
5532 	struct netdev_adjacent *lower;
5533 
5534 	lower = list_first_or_null_rcu(&dev->adj_list.lower,
5535 			struct netdev_adjacent, list);
5536 	if (lower)
5537 		return lower->private;
5538 	return NULL;
5539 }
5540 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
5541 
5542 /**
5543  * netdev_master_upper_dev_get_rcu - Get master upper device
5544  * @dev: device
5545  *
5546  * Find a master upper device and return pointer to it or NULL in case
5547  * it's not there. The caller must hold the RCU read lock.
5548  */
5549 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
5550 {
5551 	struct netdev_adjacent *upper;
5552 
5553 	upper = list_first_or_null_rcu(&dev->adj_list.upper,
5554 				       struct netdev_adjacent, list);
5555 	if (upper && likely(upper->master))
5556 		return upper->dev;
5557 	return NULL;
5558 }
5559 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
5560 
5561 static int netdev_adjacent_sysfs_add(struct net_device *dev,
5562 			      struct net_device *adj_dev,
5563 			      struct list_head *dev_list)
5564 {
5565 	char linkname[IFNAMSIZ+7];
5566 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
5567 		"upper_%s" : "lower_%s", adj_dev->name);
5568 	return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
5569 				 linkname);
5570 }
5571 static void netdev_adjacent_sysfs_del(struct net_device *dev,
5572 			       char *name,
5573 			       struct list_head *dev_list)
5574 {
5575 	char linkname[IFNAMSIZ+7];
5576 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
5577 		"upper_%s" : "lower_%s", name);
5578 	sysfs_remove_link(&(dev->dev.kobj), linkname);
5579 }
5580 
5581 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
5582 						 struct net_device *adj_dev,
5583 						 struct list_head *dev_list)
5584 {
5585 	return (dev_list == &dev->adj_list.upper ||
5586 		dev_list == &dev->adj_list.lower) &&
5587 		net_eq(dev_net(dev), dev_net(adj_dev));
5588 }
5589 
5590 static int __netdev_adjacent_dev_insert(struct net_device *dev,
5591 					struct net_device *adj_dev,
5592 					struct list_head *dev_list,
5593 					void *private, bool master)
5594 {
5595 	struct netdev_adjacent *adj;
5596 	int ret;
5597 
5598 	adj = __netdev_find_adj(adj_dev, dev_list);
5599 
5600 	if (adj) {
5601 		adj->ref_nr++;
5602 		return 0;
5603 	}
5604 
5605 	adj = kmalloc(sizeof(*adj), GFP_KERNEL);
5606 	if (!adj)
5607 		return -ENOMEM;
5608 
5609 	adj->dev = adj_dev;
5610 	adj->master = master;
5611 	adj->ref_nr = 1;
5612 	adj->private = private;
5613 	dev_hold(adj_dev);
5614 
5615 	pr_debug("dev_hold for %s, because of link added from %s to %s\n",
5616 		 adj_dev->name, dev->name, adj_dev->name);
5617 
5618 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
5619 		ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
5620 		if (ret)
5621 			goto free_adj;
5622 	}
5623 
5624 	/* Ensure that master link is always the first item in list. */
5625 	if (master) {
5626 		ret = sysfs_create_link(&(dev->dev.kobj),
5627 					&(adj_dev->dev.kobj), "master");
5628 		if (ret)
5629 			goto remove_symlinks;
5630 
5631 		list_add_rcu(&adj->list, dev_list);
5632 	} else {
5633 		list_add_tail_rcu(&adj->list, dev_list);
5634 	}
5635 
5636 	return 0;
5637 
5638 remove_symlinks:
5639 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
5640 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5641 free_adj:
5642 	kfree(adj);
5643 	dev_put(adj_dev);
5644 
5645 	return ret;
5646 }
5647 
5648 static void __netdev_adjacent_dev_remove(struct net_device *dev,
5649 					 struct net_device *adj_dev,
5650 					 struct list_head *dev_list)
5651 {
5652 	struct netdev_adjacent *adj;
5653 
5654 	adj = __netdev_find_adj(adj_dev, dev_list);
5655 
5656 	if (!adj) {
5657 		pr_err("tried to remove device %s from %s\n",
5658 		       dev->name, adj_dev->name);
5659 		BUG();
5660 	}
5661 
5662 	if (adj->ref_nr > 1) {
5663 		pr_debug("%s to %s ref_nr-- = %d\n", dev->name, adj_dev->name,
5664 			 adj->ref_nr-1);
5665 		adj->ref_nr--;
5666 		return;
5667 	}
5668 
5669 	if (adj->master)
5670 		sysfs_remove_link(&(dev->dev.kobj), "master");
5671 
5672 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
5673 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5674 
5675 	list_del_rcu(&adj->list);
5676 	pr_debug("dev_put for %s, because link removed from %s to %s\n",
5677 		 adj_dev->name, dev->name, adj_dev->name);
5678 	dev_put(adj_dev);
5679 	kfree_rcu(adj, rcu);
5680 }
5681 
5682 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
5683 					    struct net_device *upper_dev,
5684 					    struct list_head *up_list,
5685 					    struct list_head *down_list,
5686 					    void *private, bool master)
5687 {
5688 	int ret;
5689 
5690 	ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, private,
5691 					   master);
5692 	if (ret)
5693 		return ret;
5694 
5695 	ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, private,
5696 					   false);
5697 	if (ret) {
5698 		__netdev_adjacent_dev_remove(dev, upper_dev, up_list);
5699 		return ret;
5700 	}
5701 
5702 	return 0;
5703 }
5704 
5705 static int __netdev_adjacent_dev_link(struct net_device *dev,
5706 				      struct net_device *upper_dev)
5707 {
5708 	return __netdev_adjacent_dev_link_lists(dev, upper_dev,
5709 						&dev->all_adj_list.upper,
5710 						&upper_dev->all_adj_list.lower,
5711 						NULL, false);
5712 }
5713 
5714 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
5715 					       struct net_device *upper_dev,
5716 					       struct list_head *up_list,
5717 					       struct list_head *down_list)
5718 {
5719 	__netdev_adjacent_dev_remove(dev, upper_dev, up_list);
5720 	__netdev_adjacent_dev_remove(upper_dev, dev, down_list);
5721 }
5722 
5723 static void __netdev_adjacent_dev_unlink(struct net_device *dev,
5724 					 struct net_device *upper_dev)
5725 {
5726 	__netdev_adjacent_dev_unlink_lists(dev, upper_dev,
5727 					   &dev->all_adj_list.upper,
5728 					   &upper_dev->all_adj_list.lower);
5729 }
5730 
5731 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
5732 						struct net_device *upper_dev,
5733 						void *private, bool master)
5734 {
5735 	int ret = __netdev_adjacent_dev_link(dev, upper_dev);
5736 
5737 	if (ret)
5738 		return ret;
5739 
5740 	ret = __netdev_adjacent_dev_link_lists(dev, upper_dev,
5741 					       &dev->adj_list.upper,
5742 					       &upper_dev->adj_list.lower,
5743 					       private, master);
5744 	if (ret) {
5745 		__netdev_adjacent_dev_unlink(dev, upper_dev);
5746 		return ret;
5747 	}
5748 
5749 	return 0;
5750 }
5751 
5752 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
5753 						   struct net_device *upper_dev)
5754 {
5755 	__netdev_adjacent_dev_unlink(dev, upper_dev);
5756 	__netdev_adjacent_dev_unlink_lists(dev, upper_dev,
5757 					   &dev->adj_list.upper,
5758 					   &upper_dev->adj_list.lower);
5759 }
5760 
5761 static int __netdev_upper_dev_link(struct net_device *dev,
5762 				   struct net_device *upper_dev, bool master,
5763 				   void *upper_priv, void *upper_info)
5764 {
5765 	struct netdev_notifier_changeupper_info changeupper_info;
5766 	struct netdev_adjacent *i, *j, *to_i, *to_j;
5767 	int ret = 0;
5768 
5769 	ASSERT_RTNL();
5770 
5771 	if (dev == upper_dev)
5772 		return -EBUSY;
5773 
5774 	/* To prevent loops, check if dev is not upper device to upper_dev. */
5775 	if (__netdev_find_adj(dev, &upper_dev->all_adj_list.upper))
5776 		return -EBUSY;
5777 
5778 	if (__netdev_find_adj(upper_dev, &dev->adj_list.upper))
5779 		return -EEXIST;
5780 
5781 	if (master && netdev_master_upper_dev_get(dev))
5782 		return -EBUSY;
5783 
5784 	changeupper_info.upper_dev = upper_dev;
5785 	changeupper_info.master = master;
5786 	changeupper_info.linking = true;
5787 	changeupper_info.upper_info = upper_info;
5788 
5789 	ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
5790 					    &changeupper_info.info);
5791 	ret = notifier_to_errno(ret);
5792 	if (ret)
5793 		return ret;
5794 
5795 	ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
5796 						   master);
5797 	if (ret)
5798 		return ret;
5799 
5800 	/* Now that we linked these devs, make all the upper_dev's
5801 	 * all_adj_list.upper visible to every dev's all_adj_list.lower an
5802 	 * versa, and don't forget the devices itself. All of these
5803 	 * links are non-neighbours.
5804 	 */
5805 	list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5806 		list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5807 			pr_debug("Interlinking %s with %s, non-neighbour\n",
5808 				 i->dev->name, j->dev->name);
5809 			ret = __netdev_adjacent_dev_link(i->dev, j->dev);
5810 			if (ret)
5811 				goto rollback_mesh;
5812 		}
5813 	}
5814 
5815 	/* add dev to every upper_dev's upper device */
5816 	list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5817 		pr_debug("linking %s's upper device %s with %s\n",
5818 			 upper_dev->name, i->dev->name, dev->name);
5819 		ret = __netdev_adjacent_dev_link(dev, i->dev);
5820 		if (ret)
5821 			goto rollback_upper_mesh;
5822 	}
5823 
5824 	/* add upper_dev to every dev's lower device */
5825 	list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5826 		pr_debug("linking %s's lower device %s with %s\n", dev->name,
5827 			 i->dev->name, upper_dev->name);
5828 		ret = __netdev_adjacent_dev_link(i->dev, upper_dev);
5829 		if (ret)
5830 			goto rollback_lower_mesh;
5831 	}
5832 
5833 	ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
5834 					    &changeupper_info.info);
5835 	ret = notifier_to_errno(ret);
5836 	if (ret)
5837 		goto rollback_lower_mesh;
5838 
5839 	return 0;
5840 
5841 rollback_lower_mesh:
5842 	to_i = i;
5843 	list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5844 		if (i == to_i)
5845 			break;
5846 		__netdev_adjacent_dev_unlink(i->dev, upper_dev);
5847 	}
5848 
5849 	i = NULL;
5850 
5851 rollback_upper_mesh:
5852 	to_i = i;
5853 	list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5854 		if (i == to_i)
5855 			break;
5856 		__netdev_adjacent_dev_unlink(dev, i->dev);
5857 	}
5858 
5859 	i = j = NULL;
5860 
5861 rollback_mesh:
5862 	to_i = i;
5863 	to_j = j;
5864 	list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5865 		list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5866 			if (i == to_i && j == to_j)
5867 				break;
5868 			__netdev_adjacent_dev_unlink(i->dev, j->dev);
5869 		}
5870 		if (i == to_i)
5871 			break;
5872 	}
5873 
5874 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5875 
5876 	return ret;
5877 }
5878 
5879 /**
5880  * netdev_upper_dev_link - Add a link to the upper device
5881  * @dev: device
5882  * @upper_dev: new upper device
5883  *
5884  * Adds a link to device which is upper to this one. The caller must hold
5885  * the RTNL lock. On a failure a negative errno code is returned.
5886  * On success the reference counts are adjusted and the function
5887  * returns zero.
5888  */
5889 int netdev_upper_dev_link(struct net_device *dev,
5890 			  struct net_device *upper_dev)
5891 {
5892 	return __netdev_upper_dev_link(dev, upper_dev, false, NULL, NULL);
5893 }
5894 EXPORT_SYMBOL(netdev_upper_dev_link);
5895 
5896 /**
5897  * netdev_master_upper_dev_link - Add a master link to the upper device
5898  * @dev: device
5899  * @upper_dev: new upper device
5900  * @upper_priv: upper device private
5901  * @upper_info: upper info to be passed down via notifier
5902  *
5903  * Adds a link to device which is upper to this one. In this case, only
5904  * one master upper device can be linked, although other non-master devices
5905  * might be linked as well. The caller must hold the RTNL lock.
5906  * On a failure a negative errno code is returned. On success the reference
5907  * counts are adjusted and the function returns zero.
5908  */
5909 int netdev_master_upper_dev_link(struct net_device *dev,
5910 				 struct net_device *upper_dev,
5911 				 void *upper_priv, void *upper_info)
5912 {
5913 	return __netdev_upper_dev_link(dev, upper_dev, true,
5914 				       upper_priv, upper_info);
5915 }
5916 EXPORT_SYMBOL(netdev_master_upper_dev_link);
5917 
5918 /**
5919  * netdev_upper_dev_unlink - Removes a link to upper device
5920  * @dev: device
5921  * @upper_dev: new upper device
5922  *
5923  * Removes a link to device which is upper to this one. The caller must hold
5924  * the RTNL lock.
5925  */
5926 void netdev_upper_dev_unlink(struct net_device *dev,
5927 			     struct net_device *upper_dev)
5928 {
5929 	struct netdev_notifier_changeupper_info changeupper_info;
5930 	struct netdev_adjacent *i, *j;
5931 	ASSERT_RTNL();
5932 
5933 	changeupper_info.upper_dev = upper_dev;
5934 	changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
5935 	changeupper_info.linking = false;
5936 
5937 	call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
5938 				      &changeupper_info.info);
5939 
5940 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5941 
5942 	/* Here is the tricky part. We must remove all dev's lower
5943 	 * devices from all upper_dev's upper devices and vice
5944 	 * versa, to maintain the graph relationship.
5945 	 */
5946 	list_for_each_entry(i, &dev->all_adj_list.lower, list)
5947 		list_for_each_entry(j, &upper_dev->all_adj_list.upper, list)
5948 			__netdev_adjacent_dev_unlink(i->dev, j->dev);
5949 
5950 	/* remove also the devices itself from lower/upper device
5951 	 * list
5952 	 */
5953 	list_for_each_entry(i, &dev->all_adj_list.lower, list)
5954 		__netdev_adjacent_dev_unlink(i->dev, upper_dev);
5955 
5956 	list_for_each_entry(i, &upper_dev->all_adj_list.upper, list)
5957 		__netdev_adjacent_dev_unlink(dev, i->dev);
5958 
5959 	call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
5960 				      &changeupper_info.info);
5961 }
5962 EXPORT_SYMBOL(netdev_upper_dev_unlink);
5963 
5964 /**
5965  * netdev_bonding_info_change - Dispatch event about slave change
5966  * @dev: device
5967  * @bonding_info: info to dispatch
5968  *
5969  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
5970  * The caller must hold the RTNL lock.
5971  */
5972 void netdev_bonding_info_change(struct net_device *dev,
5973 				struct netdev_bonding_info *bonding_info)
5974 {
5975 	struct netdev_notifier_bonding_info	info;
5976 
5977 	memcpy(&info.bonding_info, bonding_info,
5978 	       sizeof(struct netdev_bonding_info));
5979 	call_netdevice_notifiers_info(NETDEV_BONDING_INFO, dev,
5980 				      &info.info);
5981 }
5982 EXPORT_SYMBOL(netdev_bonding_info_change);
5983 
5984 static void netdev_adjacent_add_links(struct net_device *dev)
5985 {
5986 	struct netdev_adjacent *iter;
5987 
5988 	struct net *net = dev_net(dev);
5989 
5990 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
5991 		if (!net_eq(net, dev_net(iter->dev)))
5992 			continue;
5993 		netdev_adjacent_sysfs_add(iter->dev, dev,
5994 					  &iter->dev->adj_list.lower);
5995 		netdev_adjacent_sysfs_add(dev, iter->dev,
5996 					  &dev->adj_list.upper);
5997 	}
5998 
5999 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
6000 		if (!net_eq(net, dev_net(iter->dev)))
6001 			continue;
6002 		netdev_adjacent_sysfs_add(iter->dev, dev,
6003 					  &iter->dev->adj_list.upper);
6004 		netdev_adjacent_sysfs_add(dev, iter->dev,
6005 					  &dev->adj_list.lower);
6006 	}
6007 }
6008 
6009 static void netdev_adjacent_del_links(struct net_device *dev)
6010 {
6011 	struct netdev_adjacent *iter;
6012 
6013 	struct net *net = dev_net(dev);
6014 
6015 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
6016 		if (!net_eq(net, dev_net(iter->dev)))
6017 			continue;
6018 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
6019 					  &iter->dev->adj_list.lower);
6020 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
6021 					  &dev->adj_list.upper);
6022 	}
6023 
6024 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
6025 		if (!net_eq(net, dev_net(iter->dev)))
6026 			continue;
6027 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
6028 					  &iter->dev->adj_list.upper);
6029 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
6030 					  &dev->adj_list.lower);
6031 	}
6032 }
6033 
6034 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
6035 {
6036 	struct netdev_adjacent *iter;
6037 
6038 	struct net *net = dev_net(dev);
6039 
6040 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
6041 		if (!net_eq(net, dev_net(iter->dev)))
6042 			continue;
6043 		netdev_adjacent_sysfs_del(iter->dev, oldname,
6044 					  &iter->dev->adj_list.lower);
6045 		netdev_adjacent_sysfs_add(iter->dev, dev,
6046 					  &iter->dev->adj_list.lower);
6047 	}
6048 
6049 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
6050 		if (!net_eq(net, dev_net(iter->dev)))
6051 			continue;
6052 		netdev_adjacent_sysfs_del(iter->dev, oldname,
6053 					  &iter->dev->adj_list.upper);
6054 		netdev_adjacent_sysfs_add(iter->dev, dev,
6055 					  &iter->dev->adj_list.upper);
6056 	}
6057 }
6058 
6059 void *netdev_lower_dev_get_private(struct net_device *dev,
6060 				   struct net_device *lower_dev)
6061 {
6062 	struct netdev_adjacent *lower;
6063 
6064 	if (!lower_dev)
6065 		return NULL;
6066 	lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
6067 	if (!lower)
6068 		return NULL;
6069 
6070 	return lower->private;
6071 }
6072 EXPORT_SYMBOL(netdev_lower_dev_get_private);
6073 
6074 
6075 int dev_get_nest_level(struct net_device *dev)
6076 {
6077 	struct net_device *lower = NULL;
6078 	struct list_head *iter;
6079 	int max_nest = -1;
6080 	int nest;
6081 
6082 	ASSERT_RTNL();
6083 
6084 	netdev_for_each_lower_dev(dev, lower, iter) {
6085 		nest = dev_get_nest_level(lower);
6086 		if (max_nest < nest)
6087 			max_nest = nest;
6088 	}
6089 
6090 	return max_nest + 1;
6091 }
6092 EXPORT_SYMBOL(dev_get_nest_level);
6093 
6094 /**
6095  * netdev_lower_change - Dispatch event about lower device state change
6096  * @lower_dev: device
6097  * @lower_state_info: state to dispatch
6098  *
6099  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
6100  * The caller must hold the RTNL lock.
6101  */
6102 void netdev_lower_state_changed(struct net_device *lower_dev,
6103 				void *lower_state_info)
6104 {
6105 	struct netdev_notifier_changelowerstate_info changelowerstate_info;
6106 
6107 	ASSERT_RTNL();
6108 	changelowerstate_info.lower_state_info = lower_state_info;
6109 	call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE, lower_dev,
6110 				      &changelowerstate_info.info);
6111 }
6112 EXPORT_SYMBOL(netdev_lower_state_changed);
6113 
6114 int netdev_default_l2upper_neigh_construct(struct net_device *dev,
6115 					   struct neighbour *n)
6116 {
6117 	struct net_device *lower_dev, *stop_dev;
6118 	struct list_head *iter;
6119 	int err;
6120 
6121 	netdev_for_each_lower_dev(dev, lower_dev, iter) {
6122 		if (!lower_dev->netdev_ops->ndo_neigh_construct)
6123 			continue;
6124 		err = lower_dev->netdev_ops->ndo_neigh_construct(lower_dev, n);
6125 		if (err) {
6126 			stop_dev = lower_dev;
6127 			goto rollback;
6128 		}
6129 	}
6130 	return 0;
6131 
6132 rollback:
6133 	netdev_for_each_lower_dev(dev, lower_dev, iter) {
6134 		if (lower_dev == stop_dev)
6135 			break;
6136 		if (!lower_dev->netdev_ops->ndo_neigh_destroy)
6137 			continue;
6138 		lower_dev->netdev_ops->ndo_neigh_destroy(lower_dev, n);
6139 	}
6140 	return err;
6141 }
6142 EXPORT_SYMBOL_GPL(netdev_default_l2upper_neigh_construct);
6143 
6144 void netdev_default_l2upper_neigh_destroy(struct net_device *dev,
6145 					  struct neighbour *n)
6146 {
6147 	struct net_device *lower_dev;
6148 	struct list_head *iter;
6149 
6150 	netdev_for_each_lower_dev(dev, lower_dev, iter) {
6151 		if (!lower_dev->netdev_ops->ndo_neigh_destroy)
6152 			continue;
6153 		lower_dev->netdev_ops->ndo_neigh_destroy(lower_dev, n);
6154 	}
6155 }
6156 EXPORT_SYMBOL_GPL(netdev_default_l2upper_neigh_destroy);
6157 
6158 static void dev_change_rx_flags(struct net_device *dev, int flags)
6159 {
6160 	const struct net_device_ops *ops = dev->netdev_ops;
6161 
6162 	if (ops->ndo_change_rx_flags)
6163 		ops->ndo_change_rx_flags(dev, flags);
6164 }
6165 
6166 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
6167 {
6168 	unsigned int old_flags = dev->flags;
6169 	kuid_t uid;
6170 	kgid_t gid;
6171 
6172 	ASSERT_RTNL();
6173 
6174 	dev->flags |= IFF_PROMISC;
6175 	dev->promiscuity += inc;
6176 	if (dev->promiscuity == 0) {
6177 		/*
6178 		 * Avoid overflow.
6179 		 * If inc causes overflow, untouch promisc and return error.
6180 		 */
6181 		if (inc < 0)
6182 			dev->flags &= ~IFF_PROMISC;
6183 		else {
6184 			dev->promiscuity -= inc;
6185 			pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
6186 				dev->name);
6187 			return -EOVERFLOW;
6188 		}
6189 	}
6190 	if (dev->flags != old_flags) {
6191 		pr_info("device %s %s promiscuous mode\n",
6192 			dev->name,
6193 			dev->flags & IFF_PROMISC ? "entered" : "left");
6194 		if (audit_enabled) {
6195 			current_uid_gid(&uid, &gid);
6196 			audit_log(current->audit_context, GFP_ATOMIC,
6197 				AUDIT_ANOM_PROMISCUOUS,
6198 				"dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
6199 				dev->name, (dev->flags & IFF_PROMISC),
6200 				(old_flags & IFF_PROMISC),
6201 				from_kuid(&init_user_ns, audit_get_loginuid(current)),
6202 				from_kuid(&init_user_ns, uid),
6203 				from_kgid(&init_user_ns, gid),
6204 				audit_get_sessionid(current));
6205 		}
6206 
6207 		dev_change_rx_flags(dev, IFF_PROMISC);
6208 	}
6209 	if (notify)
6210 		__dev_notify_flags(dev, old_flags, IFF_PROMISC);
6211 	return 0;
6212 }
6213 
6214 /**
6215  *	dev_set_promiscuity	- update promiscuity count on a device
6216  *	@dev: device
6217  *	@inc: modifier
6218  *
6219  *	Add or remove promiscuity from a device. While the count in the device
6220  *	remains above zero the interface remains promiscuous. Once it hits zero
6221  *	the device reverts back to normal filtering operation. A negative inc
6222  *	value is used to drop promiscuity on the device.
6223  *	Return 0 if successful or a negative errno code on error.
6224  */
6225 int dev_set_promiscuity(struct net_device *dev, int inc)
6226 {
6227 	unsigned int old_flags = dev->flags;
6228 	int err;
6229 
6230 	err = __dev_set_promiscuity(dev, inc, true);
6231 	if (err < 0)
6232 		return err;
6233 	if (dev->flags != old_flags)
6234 		dev_set_rx_mode(dev);
6235 	return err;
6236 }
6237 EXPORT_SYMBOL(dev_set_promiscuity);
6238 
6239 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
6240 {
6241 	unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
6242 
6243 	ASSERT_RTNL();
6244 
6245 	dev->flags |= IFF_ALLMULTI;
6246 	dev->allmulti += inc;
6247 	if (dev->allmulti == 0) {
6248 		/*
6249 		 * Avoid overflow.
6250 		 * If inc causes overflow, untouch allmulti and return error.
6251 		 */
6252 		if (inc < 0)
6253 			dev->flags &= ~IFF_ALLMULTI;
6254 		else {
6255 			dev->allmulti -= inc;
6256 			pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
6257 				dev->name);
6258 			return -EOVERFLOW;
6259 		}
6260 	}
6261 	if (dev->flags ^ old_flags) {
6262 		dev_change_rx_flags(dev, IFF_ALLMULTI);
6263 		dev_set_rx_mode(dev);
6264 		if (notify)
6265 			__dev_notify_flags(dev, old_flags,
6266 					   dev->gflags ^ old_gflags);
6267 	}
6268 	return 0;
6269 }
6270 
6271 /**
6272  *	dev_set_allmulti	- update allmulti count on a device
6273  *	@dev: device
6274  *	@inc: modifier
6275  *
6276  *	Add or remove reception of all multicast frames to a device. While the
6277  *	count in the device remains above zero the interface remains listening
6278  *	to all interfaces. Once it hits zero the device reverts back to normal
6279  *	filtering operation. A negative @inc value is used to drop the counter
6280  *	when releasing a resource needing all multicasts.
6281  *	Return 0 if successful or a negative errno code on error.
6282  */
6283 
6284 int dev_set_allmulti(struct net_device *dev, int inc)
6285 {
6286 	return __dev_set_allmulti(dev, inc, true);
6287 }
6288 EXPORT_SYMBOL(dev_set_allmulti);
6289 
6290 /*
6291  *	Upload unicast and multicast address lists to device and
6292  *	configure RX filtering. When the device doesn't support unicast
6293  *	filtering it is put in promiscuous mode while unicast addresses
6294  *	are present.
6295  */
6296 void __dev_set_rx_mode(struct net_device *dev)
6297 {
6298 	const struct net_device_ops *ops = dev->netdev_ops;
6299 
6300 	/* dev_open will call this function so the list will stay sane. */
6301 	if (!(dev->flags&IFF_UP))
6302 		return;
6303 
6304 	if (!netif_device_present(dev))
6305 		return;
6306 
6307 	if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
6308 		/* Unicast addresses changes may only happen under the rtnl,
6309 		 * therefore calling __dev_set_promiscuity here is safe.
6310 		 */
6311 		if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
6312 			__dev_set_promiscuity(dev, 1, false);
6313 			dev->uc_promisc = true;
6314 		} else if (netdev_uc_empty(dev) && dev->uc_promisc) {
6315 			__dev_set_promiscuity(dev, -1, false);
6316 			dev->uc_promisc = false;
6317 		}
6318 	}
6319 
6320 	if (ops->ndo_set_rx_mode)
6321 		ops->ndo_set_rx_mode(dev);
6322 }
6323 
6324 void dev_set_rx_mode(struct net_device *dev)
6325 {
6326 	netif_addr_lock_bh(dev);
6327 	__dev_set_rx_mode(dev);
6328 	netif_addr_unlock_bh(dev);
6329 }
6330 
6331 /**
6332  *	dev_get_flags - get flags reported to userspace
6333  *	@dev: device
6334  *
6335  *	Get the combination of flag bits exported through APIs to userspace.
6336  */
6337 unsigned int dev_get_flags(const struct net_device *dev)
6338 {
6339 	unsigned int flags;
6340 
6341 	flags = (dev->flags & ~(IFF_PROMISC |
6342 				IFF_ALLMULTI |
6343 				IFF_RUNNING |
6344 				IFF_LOWER_UP |
6345 				IFF_DORMANT)) |
6346 		(dev->gflags & (IFF_PROMISC |
6347 				IFF_ALLMULTI));
6348 
6349 	if (netif_running(dev)) {
6350 		if (netif_oper_up(dev))
6351 			flags |= IFF_RUNNING;
6352 		if (netif_carrier_ok(dev))
6353 			flags |= IFF_LOWER_UP;
6354 		if (netif_dormant(dev))
6355 			flags |= IFF_DORMANT;
6356 	}
6357 
6358 	return flags;
6359 }
6360 EXPORT_SYMBOL(dev_get_flags);
6361 
6362 int __dev_change_flags(struct net_device *dev, unsigned int flags)
6363 {
6364 	unsigned int old_flags = dev->flags;
6365 	int ret;
6366 
6367 	ASSERT_RTNL();
6368 
6369 	/*
6370 	 *	Set the flags on our device.
6371 	 */
6372 
6373 	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
6374 			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
6375 			       IFF_AUTOMEDIA)) |
6376 		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
6377 				    IFF_ALLMULTI));
6378 
6379 	/*
6380 	 *	Load in the correct multicast list now the flags have changed.
6381 	 */
6382 
6383 	if ((old_flags ^ flags) & IFF_MULTICAST)
6384 		dev_change_rx_flags(dev, IFF_MULTICAST);
6385 
6386 	dev_set_rx_mode(dev);
6387 
6388 	/*
6389 	 *	Have we downed the interface. We handle IFF_UP ourselves
6390 	 *	according to user attempts to set it, rather than blindly
6391 	 *	setting it.
6392 	 */
6393 
6394 	ret = 0;
6395 	if ((old_flags ^ flags) & IFF_UP)
6396 		ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
6397 
6398 	if ((flags ^ dev->gflags) & IFF_PROMISC) {
6399 		int inc = (flags & IFF_PROMISC) ? 1 : -1;
6400 		unsigned int old_flags = dev->flags;
6401 
6402 		dev->gflags ^= IFF_PROMISC;
6403 
6404 		if (__dev_set_promiscuity(dev, inc, false) >= 0)
6405 			if (dev->flags != old_flags)
6406 				dev_set_rx_mode(dev);
6407 	}
6408 
6409 	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
6410 	   is important. Some (broken) drivers set IFF_PROMISC, when
6411 	   IFF_ALLMULTI is requested not asking us and not reporting.
6412 	 */
6413 	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
6414 		int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
6415 
6416 		dev->gflags ^= IFF_ALLMULTI;
6417 		__dev_set_allmulti(dev, inc, false);
6418 	}
6419 
6420 	return ret;
6421 }
6422 
6423 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
6424 			unsigned int gchanges)
6425 {
6426 	unsigned int changes = dev->flags ^ old_flags;
6427 
6428 	if (gchanges)
6429 		rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
6430 
6431 	if (changes & IFF_UP) {
6432 		if (dev->flags & IFF_UP)
6433 			call_netdevice_notifiers(NETDEV_UP, dev);
6434 		else
6435 			call_netdevice_notifiers(NETDEV_DOWN, dev);
6436 	}
6437 
6438 	if (dev->flags & IFF_UP &&
6439 	    (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
6440 		struct netdev_notifier_change_info change_info;
6441 
6442 		change_info.flags_changed = changes;
6443 		call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
6444 					      &change_info.info);
6445 	}
6446 }
6447 
6448 /**
6449  *	dev_change_flags - change device settings
6450  *	@dev: device
6451  *	@flags: device state flags
6452  *
6453  *	Change settings on device based state flags. The flags are
6454  *	in the userspace exported format.
6455  */
6456 int dev_change_flags(struct net_device *dev, unsigned int flags)
6457 {
6458 	int ret;
6459 	unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
6460 
6461 	ret = __dev_change_flags(dev, flags);
6462 	if (ret < 0)
6463 		return ret;
6464 
6465 	changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
6466 	__dev_notify_flags(dev, old_flags, changes);
6467 	return ret;
6468 }
6469 EXPORT_SYMBOL(dev_change_flags);
6470 
6471 static int __dev_set_mtu(struct net_device *dev, int new_mtu)
6472 {
6473 	const struct net_device_ops *ops = dev->netdev_ops;
6474 
6475 	if (ops->ndo_change_mtu)
6476 		return ops->ndo_change_mtu(dev, new_mtu);
6477 
6478 	dev->mtu = new_mtu;
6479 	return 0;
6480 }
6481 
6482 /**
6483  *	dev_set_mtu - Change maximum transfer unit
6484  *	@dev: device
6485  *	@new_mtu: new transfer unit
6486  *
6487  *	Change the maximum transfer size of the network device.
6488  */
6489 int dev_set_mtu(struct net_device *dev, int new_mtu)
6490 {
6491 	int err, orig_mtu;
6492 
6493 	if (new_mtu == dev->mtu)
6494 		return 0;
6495 
6496 	/*	MTU must be positive.	 */
6497 	if (new_mtu < 0)
6498 		return -EINVAL;
6499 
6500 	if (!netif_device_present(dev))
6501 		return -ENODEV;
6502 
6503 	err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
6504 	err = notifier_to_errno(err);
6505 	if (err)
6506 		return err;
6507 
6508 	orig_mtu = dev->mtu;
6509 	err = __dev_set_mtu(dev, new_mtu);
6510 
6511 	if (!err) {
6512 		err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6513 		err = notifier_to_errno(err);
6514 		if (err) {
6515 			/* setting mtu back and notifying everyone again,
6516 			 * so that they have a chance to revert changes.
6517 			 */
6518 			__dev_set_mtu(dev, orig_mtu);
6519 			call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6520 		}
6521 	}
6522 	return err;
6523 }
6524 EXPORT_SYMBOL(dev_set_mtu);
6525 
6526 /**
6527  *	dev_set_group - Change group this device belongs to
6528  *	@dev: device
6529  *	@new_group: group this device should belong to
6530  */
6531 void dev_set_group(struct net_device *dev, int new_group)
6532 {
6533 	dev->group = new_group;
6534 }
6535 EXPORT_SYMBOL(dev_set_group);
6536 
6537 /**
6538  *	dev_set_mac_address - Change Media Access Control Address
6539  *	@dev: device
6540  *	@sa: new address
6541  *
6542  *	Change the hardware (MAC) address of the device
6543  */
6544 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
6545 {
6546 	const struct net_device_ops *ops = dev->netdev_ops;
6547 	int err;
6548 
6549 	if (!ops->ndo_set_mac_address)
6550 		return -EOPNOTSUPP;
6551 	if (sa->sa_family != dev->type)
6552 		return -EINVAL;
6553 	if (!netif_device_present(dev))
6554 		return -ENODEV;
6555 	err = ops->ndo_set_mac_address(dev, sa);
6556 	if (err)
6557 		return err;
6558 	dev->addr_assign_type = NET_ADDR_SET;
6559 	call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
6560 	add_device_randomness(dev->dev_addr, dev->addr_len);
6561 	return 0;
6562 }
6563 EXPORT_SYMBOL(dev_set_mac_address);
6564 
6565 /**
6566  *	dev_change_carrier - Change device carrier
6567  *	@dev: device
6568  *	@new_carrier: new value
6569  *
6570  *	Change device carrier
6571  */
6572 int dev_change_carrier(struct net_device *dev, bool new_carrier)
6573 {
6574 	const struct net_device_ops *ops = dev->netdev_ops;
6575 
6576 	if (!ops->ndo_change_carrier)
6577 		return -EOPNOTSUPP;
6578 	if (!netif_device_present(dev))
6579 		return -ENODEV;
6580 	return ops->ndo_change_carrier(dev, new_carrier);
6581 }
6582 EXPORT_SYMBOL(dev_change_carrier);
6583 
6584 /**
6585  *	dev_get_phys_port_id - Get device physical port ID
6586  *	@dev: device
6587  *	@ppid: port ID
6588  *
6589  *	Get device physical port ID
6590  */
6591 int dev_get_phys_port_id(struct net_device *dev,
6592 			 struct netdev_phys_item_id *ppid)
6593 {
6594 	const struct net_device_ops *ops = dev->netdev_ops;
6595 
6596 	if (!ops->ndo_get_phys_port_id)
6597 		return -EOPNOTSUPP;
6598 	return ops->ndo_get_phys_port_id(dev, ppid);
6599 }
6600 EXPORT_SYMBOL(dev_get_phys_port_id);
6601 
6602 /**
6603  *	dev_get_phys_port_name - Get device physical port name
6604  *	@dev: device
6605  *	@name: port name
6606  *	@len: limit of bytes to copy to name
6607  *
6608  *	Get device physical port name
6609  */
6610 int dev_get_phys_port_name(struct net_device *dev,
6611 			   char *name, size_t len)
6612 {
6613 	const struct net_device_ops *ops = dev->netdev_ops;
6614 
6615 	if (!ops->ndo_get_phys_port_name)
6616 		return -EOPNOTSUPP;
6617 	return ops->ndo_get_phys_port_name(dev, name, len);
6618 }
6619 EXPORT_SYMBOL(dev_get_phys_port_name);
6620 
6621 /**
6622  *	dev_change_proto_down - update protocol port state information
6623  *	@dev: device
6624  *	@proto_down: new value
6625  *
6626  *	This info can be used by switch drivers to set the phys state of the
6627  *	port.
6628  */
6629 int dev_change_proto_down(struct net_device *dev, bool proto_down)
6630 {
6631 	const struct net_device_ops *ops = dev->netdev_ops;
6632 
6633 	if (!ops->ndo_change_proto_down)
6634 		return -EOPNOTSUPP;
6635 	if (!netif_device_present(dev))
6636 		return -ENODEV;
6637 	return ops->ndo_change_proto_down(dev, proto_down);
6638 }
6639 EXPORT_SYMBOL(dev_change_proto_down);
6640 
6641 /**
6642  *	dev_change_xdp_fd - set or clear a bpf program for a device rx path
6643  *	@dev: device
6644  *	@fd: new program fd or negative value to clear
6645  *
6646  *	Set or clear a bpf program for a device
6647  */
6648 int dev_change_xdp_fd(struct net_device *dev, int fd)
6649 {
6650 	const struct net_device_ops *ops = dev->netdev_ops;
6651 	struct bpf_prog *prog = NULL;
6652 	struct netdev_xdp xdp = {};
6653 	int err;
6654 
6655 	if (!ops->ndo_xdp)
6656 		return -EOPNOTSUPP;
6657 	if (fd >= 0) {
6658 		prog = bpf_prog_get_type(fd, BPF_PROG_TYPE_XDP);
6659 		if (IS_ERR(prog))
6660 			return PTR_ERR(prog);
6661 	}
6662 
6663 	xdp.command = XDP_SETUP_PROG;
6664 	xdp.prog = prog;
6665 	err = ops->ndo_xdp(dev, &xdp);
6666 	if (err < 0 && prog)
6667 		bpf_prog_put(prog);
6668 
6669 	return err;
6670 }
6671 EXPORT_SYMBOL(dev_change_xdp_fd);
6672 
6673 /**
6674  *	dev_new_index	-	allocate an ifindex
6675  *	@net: the applicable net namespace
6676  *
6677  *	Returns a suitable unique value for a new device interface
6678  *	number.  The caller must hold the rtnl semaphore or the
6679  *	dev_base_lock to be sure it remains unique.
6680  */
6681 static int dev_new_index(struct net *net)
6682 {
6683 	int ifindex = net->ifindex;
6684 	for (;;) {
6685 		if (++ifindex <= 0)
6686 			ifindex = 1;
6687 		if (!__dev_get_by_index(net, ifindex))
6688 			return net->ifindex = ifindex;
6689 	}
6690 }
6691 
6692 /* Delayed registration/unregisteration */
6693 static LIST_HEAD(net_todo_list);
6694 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
6695 
6696 static void net_set_todo(struct net_device *dev)
6697 {
6698 	list_add_tail(&dev->todo_list, &net_todo_list);
6699 	dev_net(dev)->dev_unreg_count++;
6700 }
6701 
6702 static void rollback_registered_many(struct list_head *head)
6703 {
6704 	struct net_device *dev, *tmp;
6705 	LIST_HEAD(close_head);
6706 
6707 	BUG_ON(dev_boot_phase);
6708 	ASSERT_RTNL();
6709 
6710 	list_for_each_entry_safe(dev, tmp, head, unreg_list) {
6711 		/* Some devices call without registering
6712 		 * for initialization unwind. Remove those
6713 		 * devices and proceed with the remaining.
6714 		 */
6715 		if (dev->reg_state == NETREG_UNINITIALIZED) {
6716 			pr_debug("unregister_netdevice: device %s/%p never was registered\n",
6717 				 dev->name, dev);
6718 
6719 			WARN_ON(1);
6720 			list_del(&dev->unreg_list);
6721 			continue;
6722 		}
6723 		dev->dismantle = true;
6724 		BUG_ON(dev->reg_state != NETREG_REGISTERED);
6725 	}
6726 
6727 	/* If device is running, close it first. */
6728 	list_for_each_entry(dev, head, unreg_list)
6729 		list_add_tail(&dev->close_list, &close_head);
6730 	dev_close_many(&close_head, true);
6731 
6732 	list_for_each_entry(dev, head, unreg_list) {
6733 		/* And unlink it from device chain. */
6734 		unlist_netdevice(dev);
6735 
6736 		dev->reg_state = NETREG_UNREGISTERING;
6737 	}
6738 	flush_all_backlogs();
6739 
6740 	synchronize_net();
6741 
6742 	list_for_each_entry(dev, head, unreg_list) {
6743 		struct sk_buff *skb = NULL;
6744 
6745 		/* Shutdown queueing discipline. */
6746 		dev_shutdown(dev);
6747 
6748 
6749 		/* Notify protocols, that we are about to destroy
6750 		   this device. They should clean all the things.
6751 		*/
6752 		call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6753 
6754 		if (!dev->rtnl_link_ops ||
6755 		    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
6756 			skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U,
6757 						     GFP_KERNEL);
6758 
6759 		/*
6760 		 *	Flush the unicast and multicast chains
6761 		 */
6762 		dev_uc_flush(dev);
6763 		dev_mc_flush(dev);
6764 
6765 		if (dev->netdev_ops->ndo_uninit)
6766 			dev->netdev_ops->ndo_uninit(dev);
6767 
6768 		if (skb)
6769 			rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
6770 
6771 		/* Notifier chain MUST detach us all upper devices. */
6772 		WARN_ON(netdev_has_any_upper_dev(dev));
6773 
6774 		/* Remove entries from kobject tree */
6775 		netdev_unregister_kobject(dev);
6776 #ifdef CONFIG_XPS
6777 		/* Remove XPS queueing entries */
6778 		netif_reset_xps_queues_gt(dev, 0);
6779 #endif
6780 	}
6781 
6782 	synchronize_net();
6783 
6784 	list_for_each_entry(dev, head, unreg_list)
6785 		dev_put(dev);
6786 }
6787 
6788 static void rollback_registered(struct net_device *dev)
6789 {
6790 	LIST_HEAD(single);
6791 
6792 	list_add(&dev->unreg_list, &single);
6793 	rollback_registered_many(&single);
6794 	list_del(&single);
6795 }
6796 
6797 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
6798 	struct net_device *upper, netdev_features_t features)
6799 {
6800 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
6801 	netdev_features_t feature;
6802 	int feature_bit;
6803 
6804 	for_each_netdev_feature(&upper_disables, feature_bit) {
6805 		feature = __NETIF_F_BIT(feature_bit);
6806 		if (!(upper->wanted_features & feature)
6807 		    && (features & feature)) {
6808 			netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
6809 				   &feature, upper->name);
6810 			features &= ~feature;
6811 		}
6812 	}
6813 
6814 	return features;
6815 }
6816 
6817 static void netdev_sync_lower_features(struct net_device *upper,
6818 	struct net_device *lower, netdev_features_t features)
6819 {
6820 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
6821 	netdev_features_t feature;
6822 	int feature_bit;
6823 
6824 	for_each_netdev_feature(&upper_disables, feature_bit) {
6825 		feature = __NETIF_F_BIT(feature_bit);
6826 		if (!(features & feature) && (lower->features & feature)) {
6827 			netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
6828 				   &feature, lower->name);
6829 			lower->wanted_features &= ~feature;
6830 			netdev_update_features(lower);
6831 
6832 			if (unlikely(lower->features & feature))
6833 				netdev_WARN(upper, "failed to disable %pNF on %s!\n",
6834 					    &feature, lower->name);
6835 		}
6836 	}
6837 }
6838 
6839 static netdev_features_t netdev_fix_features(struct net_device *dev,
6840 	netdev_features_t features)
6841 {
6842 	/* Fix illegal checksum combinations */
6843 	if ((features & NETIF_F_HW_CSUM) &&
6844 	    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6845 		netdev_warn(dev, "mixed HW and IP checksum settings.\n");
6846 		features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
6847 	}
6848 
6849 	/* TSO requires that SG is present as well. */
6850 	if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
6851 		netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
6852 		features &= ~NETIF_F_ALL_TSO;
6853 	}
6854 
6855 	if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
6856 					!(features & NETIF_F_IP_CSUM)) {
6857 		netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
6858 		features &= ~NETIF_F_TSO;
6859 		features &= ~NETIF_F_TSO_ECN;
6860 	}
6861 
6862 	if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
6863 					 !(features & NETIF_F_IPV6_CSUM)) {
6864 		netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
6865 		features &= ~NETIF_F_TSO6;
6866 	}
6867 
6868 	/* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
6869 	if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
6870 		features &= ~NETIF_F_TSO_MANGLEID;
6871 
6872 	/* TSO ECN requires that TSO is present as well. */
6873 	if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
6874 		features &= ~NETIF_F_TSO_ECN;
6875 
6876 	/* Software GSO depends on SG. */
6877 	if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
6878 		netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
6879 		features &= ~NETIF_F_GSO;
6880 	}
6881 
6882 	/* UFO needs SG and checksumming */
6883 	if (features & NETIF_F_UFO) {
6884 		/* maybe split UFO into V4 and V6? */
6885 		if (!(features & NETIF_F_HW_CSUM) &&
6886 		    ((features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) !=
6887 		     (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM))) {
6888 			netdev_dbg(dev,
6889 				"Dropping NETIF_F_UFO since no checksum offload features.\n");
6890 			features &= ~NETIF_F_UFO;
6891 		}
6892 
6893 		if (!(features & NETIF_F_SG)) {
6894 			netdev_dbg(dev,
6895 				"Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
6896 			features &= ~NETIF_F_UFO;
6897 		}
6898 	}
6899 
6900 	/* GSO partial features require GSO partial be set */
6901 	if ((features & dev->gso_partial_features) &&
6902 	    !(features & NETIF_F_GSO_PARTIAL)) {
6903 		netdev_dbg(dev,
6904 			   "Dropping partially supported GSO features since no GSO partial.\n");
6905 		features &= ~dev->gso_partial_features;
6906 	}
6907 
6908 #ifdef CONFIG_NET_RX_BUSY_POLL
6909 	if (dev->netdev_ops->ndo_busy_poll)
6910 		features |= NETIF_F_BUSY_POLL;
6911 	else
6912 #endif
6913 		features &= ~NETIF_F_BUSY_POLL;
6914 
6915 	return features;
6916 }
6917 
6918 int __netdev_update_features(struct net_device *dev)
6919 {
6920 	struct net_device *upper, *lower;
6921 	netdev_features_t features;
6922 	struct list_head *iter;
6923 	int err = -1;
6924 
6925 	ASSERT_RTNL();
6926 
6927 	features = netdev_get_wanted_features(dev);
6928 
6929 	if (dev->netdev_ops->ndo_fix_features)
6930 		features = dev->netdev_ops->ndo_fix_features(dev, features);
6931 
6932 	/* driver might be less strict about feature dependencies */
6933 	features = netdev_fix_features(dev, features);
6934 
6935 	/* some features can't be enabled if they're off an an upper device */
6936 	netdev_for_each_upper_dev_rcu(dev, upper, iter)
6937 		features = netdev_sync_upper_features(dev, upper, features);
6938 
6939 	if (dev->features == features)
6940 		goto sync_lower;
6941 
6942 	netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
6943 		&dev->features, &features);
6944 
6945 	if (dev->netdev_ops->ndo_set_features)
6946 		err = dev->netdev_ops->ndo_set_features(dev, features);
6947 	else
6948 		err = 0;
6949 
6950 	if (unlikely(err < 0)) {
6951 		netdev_err(dev,
6952 			"set_features() failed (%d); wanted %pNF, left %pNF\n",
6953 			err, &features, &dev->features);
6954 		/* return non-0 since some features might have changed and
6955 		 * it's better to fire a spurious notification than miss it
6956 		 */
6957 		return -1;
6958 	}
6959 
6960 sync_lower:
6961 	/* some features must be disabled on lower devices when disabled
6962 	 * on an upper device (think: bonding master or bridge)
6963 	 */
6964 	netdev_for_each_lower_dev(dev, lower, iter)
6965 		netdev_sync_lower_features(dev, lower, features);
6966 
6967 	if (!err)
6968 		dev->features = features;
6969 
6970 	return err < 0 ? 0 : 1;
6971 }
6972 
6973 /**
6974  *	netdev_update_features - recalculate device features
6975  *	@dev: the device to check
6976  *
6977  *	Recalculate dev->features set and send notifications if it
6978  *	has changed. Should be called after driver or hardware dependent
6979  *	conditions might have changed that influence the features.
6980  */
6981 void netdev_update_features(struct net_device *dev)
6982 {
6983 	if (__netdev_update_features(dev))
6984 		netdev_features_change(dev);
6985 }
6986 EXPORT_SYMBOL(netdev_update_features);
6987 
6988 /**
6989  *	netdev_change_features - recalculate device features
6990  *	@dev: the device to check
6991  *
6992  *	Recalculate dev->features set and send notifications even
6993  *	if they have not changed. Should be called instead of
6994  *	netdev_update_features() if also dev->vlan_features might
6995  *	have changed to allow the changes to be propagated to stacked
6996  *	VLAN devices.
6997  */
6998 void netdev_change_features(struct net_device *dev)
6999 {
7000 	__netdev_update_features(dev);
7001 	netdev_features_change(dev);
7002 }
7003 EXPORT_SYMBOL(netdev_change_features);
7004 
7005 /**
7006  *	netif_stacked_transfer_operstate -	transfer operstate
7007  *	@rootdev: the root or lower level device to transfer state from
7008  *	@dev: the device to transfer operstate to
7009  *
7010  *	Transfer operational state from root to device. This is normally
7011  *	called when a stacking relationship exists between the root
7012  *	device and the device(a leaf device).
7013  */
7014 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
7015 					struct net_device *dev)
7016 {
7017 	if (rootdev->operstate == IF_OPER_DORMANT)
7018 		netif_dormant_on(dev);
7019 	else
7020 		netif_dormant_off(dev);
7021 
7022 	if (netif_carrier_ok(rootdev)) {
7023 		if (!netif_carrier_ok(dev))
7024 			netif_carrier_on(dev);
7025 	} else {
7026 		if (netif_carrier_ok(dev))
7027 			netif_carrier_off(dev);
7028 	}
7029 }
7030 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
7031 
7032 #ifdef CONFIG_SYSFS
7033 static int netif_alloc_rx_queues(struct net_device *dev)
7034 {
7035 	unsigned int i, count = dev->num_rx_queues;
7036 	struct netdev_rx_queue *rx;
7037 	size_t sz = count * sizeof(*rx);
7038 
7039 	BUG_ON(count < 1);
7040 
7041 	rx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
7042 	if (!rx) {
7043 		rx = vzalloc(sz);
7044 		if (!rx)
7045 			return -ENOMEM;
7046 	}
7047 	dev->_rx = rx;
7048 
7049 	for (i = 0; i < count; i++)
7050 		rx[i].dev = dev;
7051 	return 0;
7052 }
7053 #endif
7054 
7055 static void netdev_init_one_queue(struct net_device *dev,
7056 				  struct netdev_queue *queue, void *_unused)
7057 {
7058 	/* Initialize queue lock */
7059 	spin_lock_init(&queue->_xmit_lock);
7060 	netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
7061 	queue->xmit_lock_owner = -1;
7062 	netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
7063 	queue->dev = dev;
7064 #ifdef CONFIG_BQL
7065 	dql_init(&queue->dql, HZ);
7066 #endif
7067 }
7068 
7069 static void netif_free_tx_queues(struct net_device *dev)
7070 {
7071 	kvfree(dev->_tx);
7072 }
7073 
7074 static int netif_alloc_netdev_queues(struct net_device *dev)
7075 {
7076 	unsigned int count = dev->num_tx_queues;
7077 	struct netdev_queue *tx;
7078 	size_t sz = count * sizeof(*tx);
7079 
7080 	if (count < 1 || count > 0xffff)
7081 		return -EINVAL;
7082 
7083 	tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
7084 	if (!tx) {
7085 		tx = vzalloc(sz);
7086 		if (!tx)
7087 			return -ENOMEM;
7088 	}
7089 	dev->_tx = tx;
7090 
7091 	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
7092 	spin_lock_init(&dev->tx_global_lock);
7093 
7094 	return 0;
7095 }
7096 
7097 void netif_tx_stop_all_queues(struct net_device *dev)
7098 {
7099 	unsigned int i;
7100 
7101 	for (i = 0; i < dev->num_tx_queues; i++) {
7102 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
7103 		netif_tx_stop_queue(txq);
7104 	}
7105 }
7106 EXPORT_SYMBOL(netif_tx_stop_all_queues);
7107 
7108 /**
7109  *	register_netdevice	- register a network device
7110  *	@dev: device to register
7111  *
7112  *	Take a completed network device structure and add it to the kernel
7113  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7114  *	chain. 0 is returned on success. A negative errno code is returned
7115  *	on a failure to set up the device, or if the name is a duplicate.
7116  *
7117  *	Callers must hold the rtnl semaphore. You may want
7118  *	register_netdev() instead of this.
7119  *
7120  *	BUGS:
7121  *	The locking appears insufficient to guarantee two parallel registers
7122  *	will not get the same name.
7123  */
7124 
7125 int register_netdevice(struct net_device *dev)
7126 {
7127 	int ret;
7128 	struct net *net = dev_net(dev);
7129 
7130 	BUG_ON(dev_boot_phase);
7131 	ASSERT_RTNL();
7132 
7133 	might_sleep();
7134 
7135 	/* When net_device's are persistent, this will be fatal. */
7136 	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
7137 	BUG_ON(!net);
7138 
7139 	spin_lock_init(&dev->addr_list_lock);
7140 	netdev_set_addr_lockdep_class(dev);
7141 
7142 	ret = dev_get_valid_name(net, dev, dev->name);
7143 	if (ret < 0)
7144 		goto out;
7145 
7146 	/* Init, if this function is available */
7147 	if (dev->netdev_ops->ndo_init) {
7148 		ret = dev->netdev_ops->ndo_init(dev);
7149 		if (ret) {
7150 			if (ret > 0)
7151 				ret = -EIO;
7152 			goto out;
7153 		}
7154 	}
7155 
7156 	if (((dev->hw_features | dev->features) &
7157 	     NETIF_F_HW_VLAN_CTAG_FILTER) &&
7158 	    (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
7159 	     !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
7160 		netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
7161 		ret = -EINVAL;
7162 		goto err_uninit;
7163 	}
7164 
7165 	ret = -EBUSY;
7166 	if (!dev->ifindex)
7167 		dev->ifindex = dev_new_index(net);
7168 	else if (__dev_get_by_index(net, dev->ifindex))
7169 		goto err_uninit;
7170 
7171 	/* Transfer changeable features to wanted_features and enable
7172 	 * software offloads (GSO and GRO).
7173 	 */
7174 	dev->hw_features |= NETIF_F_SOFT_FEATURES;
7175 	dev->features |= NETIF_F_SOFT_FEATURES;
7176 	dev->wanted_features = dev->features & dev->hw_features;
7177 
7178 	if (!(dev->flags & IFF_LOOPBACK))
7179 		dev->hw_features |= NETIF_F_NOCACHE_COPY;
7180 
7181 	/* If IPv4 TCP segmentation offload is supported we should also
7182 	 * allow the device to enable segmenting the frame with the option
7183 	 * of ignoring a static IP ID value.  This doesn't enable the
7184 	 * feature itself but allows the user to enable it later.
7185 	 */
7186 	if (dev->hw_features & NETIF_F_TSO)
7187 		dev->hw_features |= NETIF_F_TSO_MANGLEID;
7188 	if (dev->vlan_features & NETIF_F_TSO)
7189 		dev->vlan_features |= NETIF_F_TSO_MANGLEID;
7190 	if (dev->mpls_features & NETIF_F_TSO)
7191 		dev->mpls_features |= NETIF_F_TSO_MANGLEID;
7192 	if (dev->hw_enc_features & NETIF_F_TSO)
7193 		dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
7194 
7195 	/* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
7196 	 */
7197 	dev->vlan_features |= NETIF_F_HIGHDMA;
7198 
7199 	/* Make NETIF_F_SG inheritable to tunnel devices.
7200 	 */
7201 	dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
7202 
7203 	/* Make NETIF_F_SG inheritable to MPLS.
7204 	 */
7205 	dev->mpls_features |= NETIF_F_SG;
7206 
7207 	ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
7208 	ret = notifier_to_errno(ret);
7209 	if (ret)
7210 		goto err_uninit;
7211 
7212 	ret = netdev_register_kobject(dev);
7213 	if (ret)
7214 		goto err_uninit;
7215 	dev->reg_state = NETREG_REGISTERED;
7216 
7217 	__netdev_update_features(dev);
7218 
7219 	/*
7220 	 *	Default initial state at registry is that the
7221 	 *	device is present.
7222 	 */
7223 
7224 	set_bit(__LINK_STATE_PRESENT, &dev->state);
7225 
7226 	linkwatch_init_dev(dev);
7227 
7228 	dev_init_scheduler(dev);
7229 	dev_hold(dev);
7230 	list_netdevice(dev);
7231 	add_device_randomness(dev->dev_addr, dev->addr_len);
7232 
7233 	/* If the device has permanent device address, driver should
7234 	 * set dev_addr and also addr_assign_type should be set to
7235 	 * NET_ADDR_PERM (default value).
7236 	 */
7237 	if (dev->addr_assign_type == NET_ADDR_PERM)
7238 		memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
7239 
7240 	/* Notify protocols, that a new device appeared. */
7241 	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
7242 	ret = notifier_to_errno(ret);
7243 	if (ret) {
7244 		rollback_registered(dev);
7245 		dev->reg_state = NETREG_UNREGISTERED;
7246 	}
7247 	/*
7248 	 *	Prevent userspace races by waiting until the network
7249 	 *	device is fully setup before sending notifications.
7250 	 */
7251 	if (!dev->rtnl_link_ops ||
7252 	    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7253 		rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
7254 
7255 out:
7256 	return ret;
7257 
7258 err_uninit:
7259 	if (dev->netdev_ops->ndo_uninit)
7260 		dev->netdev_ops->ndo_uninit(dev);
7261 	goto out;
7262 }
7263 EXPORT_SYMBOL(register_netdevice);
7264 
7265 /**
7266  *	init_dummy_netdev	- init a dummy network device for NAPI
7267  *	@dev: device to init
7268  *
7269  *	This takes a network device structure and initialize the minimum
7270  *	amount of fields so it can be used to schedule NAPI polls without
7271  *	registering a full blown interface. This is to be used by drivers
7272  *	that need to tie several hardware interfaces to a single NAPI
7273  *	poll scheduler due to HW limitations.
7274  */
7275 int init_dummy_netdev(struct net_device *dev)
7276 {
7277 	/* Clear everything. Note we don't initialize spinlocks
7278 	 * are they aren't supposed to be taken by any of the
7279 	 * NAPI code and this dummy netdev is supposed to be
7280 	 * only ever used for NAPI polls
7281 	 */
7282 	memset(dev, 0, sizeof(struct net_device));
7283 
7284 	/* make sure we BUG if trying to hit standard
7285 	 * register/unregister code path
7286 	 */
7287 	dev->reg_state = NETREG_DUMMY;
7288 
7289 	/* NAPI wants this */
7290 	INIT_LIST_HEAD(&dev->napi_list);
7291 
7292 	/* a dummy interface is started by default */
7293 	set_bit(__LINK_STATE_PRESENT, &dev->state);
7294 	set_bit(__LINK_STATE_START, &dev->state);
7295 
7296 	/* Note : We dont allocate pcpu_refcnt for dummy devices,
7297 	 * because users of this 'device' dont need to change
7298 	 * its refcount.
7299 	 */
7300 
7301 	return 0;
7302 }
7303 EXPORT_SYMBOL_GPL(init_dummy_netdev);
7304 
7305 
7306 /**
7307  *	register_netdev	- register a network device
7308  *	@dev: device to register
7309  *
7310  *	Take a completed network device structure and add it to the kernel
7311  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7312  *	chain. 0 is returned on success. A negative errno code is returned
7313  *	on a failure to set up the device, or if the name is a duplicate.
7314  *
7315  *	This is a wrapper around register_netdevice that takes the rtnl semaphore
7316  *	and expands the device name if you passed a format string to
7317  *	alloc_netdev.
7318  */
7319 int register_netdev(struct net_device *dev)
7320 {
7321 	int err;
7322 
7323 	rtnl_lock();
7324 	err = register_netdevice(dev);
7325 	rtnl_unlock();
7326 	return err;
7327 }
7328 EXPORT_SYMBOL(register_netdev);
7329 
7330 int netdev_refcnt_read(const struct net_device *dev)
7331 {
7332 	int i, refcnt = 0;
7333 
7334 	for_each_possible_cpu(i)
7335 		refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
7336 	return refcnt;
7337 }
7338 EXPORT_SYMBOL(netdev_refcnt_read);
7339 
7340 /**
7341  * netdev_wait_allrefs - wait until all references are gone.
7342  * @dev: target net_device
7343  *
7344  * This is called when unregistering network devices.
7345  *
7346  * Any protocol or device that holds a reference should register
7347  * for netdevice notification, and cleanup and put back the
7348  * reference if they receive an UNREGISTER event.
7349  * We can get stuck here if buggy protocols don't correctly
7350  * call dev_put.
7351  */
7352 static void netdev_wait_allrefs(struct net_device *dev)
7353 {
7354 	unsigned long rebroadcast_time, warning_time;
7355 	int refcnt;
7356 
7357 	linkwatch_forget_dev(dev);
7358 
7359 	rebroadcast_time = warning_time = jiffies;
7360 	refcnt = netdev_refcnt_read(dev);
7361 
7362 	while (refcnt != 0) {
7363 		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
7364 			rtnl_lock();
7365 
7366 			/* Rebroadcast unregister notification */
7367 			call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7368 
7369 			__rtnl_unlock();
7370 			rcu_barrier();
7371 			rtnl_lock();
7372 
7373 			call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7374 			if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
7375 				     &dev->state)) {
7376 				/* We must not have linkwatch events
7377 				 * pending on unregister. If this
7378 				 * happens, we simply run the queue
7379 				 * unscheduled, resulting in a noop
7380 				 * for this device.
7381 				 */
7382 				linkwatch_run_queue();
7383 			}
7384 
7385 			__rtnl_unlock();
7386 
7387 			rebroadcast_time = jiffies;
7388 		}
7389 
7390 		msleep(250);
7391 
7392 		refcnt = netdev_refcnt_read(dev);
7393 
7394 		if (time_after(jiffies, warning_time + 10 * HZ)) {
7395 			pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
7396 				 dev->name, refcnt);
7397 			warning_time = jiffies;
7398 		}
7399 	}
7400 }
7401 
7402 /* The sequence is:
7403  *
7404  *	rtnl_lock();
7405  *	...
7406  *	register_netdevice(x1);
7407  *	register_netdevice(x2);
7408  *	...
7409  *	unregister_netdevice(y1);
7410  *	unregister_netdevice(y2);
7411  *      ...
7412  *	rtnl_unlock();
7413  *	free_netdev(y1);
7414  *	free_netdev(y2);
7415  *
7416  * We are invoked by rtnl_unlock().
7417  * This allows us to deal with problems:
7418  * 1) We can delete sysfs objects which invoke hotplug
7419  *    without deadlocking with linkwatch via keventd.
7420  * 2) Since we run with the RTNL semaphore not held, we can sleep
7421  *    safely in order to wait for the netdev refcnt to drop to zero.
7422  *
7423  * We must not return until all unregister events added during
7424  * the interval the lock was held have been completed.
7425  */
7426 void netdev_run_todo(void)
7427 {
7428 	struct list_head list;
7429 
7430 	/* Snapshot list, allow later requests */
7431 	list_replace_init(&net_todo_list, &list);
7432 
7433 	__rtnl_unlock();
7434 
7435 
7436 	/* Wait for rcu callbacks to finish before next phase */
7437 	if (!list_empty(&list))
7438 		rcu_barrier();
7439 
7440 	while (!list_empty(&list)) {
7441 		struct net_device *dev
7442 			= list_first_entry(&list, struct net_device, todo_list);
7443 		list_del(&dev->todo_list);
7444 
7445 		rtnl_lock();
7446 		call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7447 		__rtnl_unlock();
7448 
7449 		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
7450 			pr_err("network todo '%s' but state %d\n",
7451 			       dev->name, dev->reg_state);
7452 			dump_stack();
7453 			continue;
7454 		}
7455 
7456 		dev->reg_state = NETREG_UNREGISTERED;
7457 
7458 		netdev_wait_allrefs(dev);
7459 
7460 		/* paranoia */
7461 		BUG_ON(netdev_refcnt_read(dev));
7462 		BUG_ON(!list_empty(&dev->ptype_all));
7463 		BUG_ON(!list_empty(&dev->ptype_specific));
7464 		WARN_ON(rcu_access_pointer(dev->ip_ptr));
7465 		WARN_ON(rcu_access_pointer(dev->ip6_ptr));
7466 		WARN_ON(dev->dn_ptr);
7467 
7468 		if (dev->destructor)
7469 			dev->destructor(dev);
7470 
7471 		/* Report a network device has been unregistered */
7472 		rtnl_lock();
7473 		dev_net(dev)->dev_unreg_count--;
7474 		__rtnl_unlock();
7475 		wake_up(&netdev_unregistering_wq);
7476 
7477 		/* Free network device */
7478 		kobject_put(&dev->dev.kobj);
7479 	}
7480 }
7481 
7482 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
7483  * all the same fields in the same order as net_device_stats, with only
7484  * the type differing, but rtnl_link_stats64 may have additional fields
7485  * at the end for newer counters.
7486  */
7487 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
7488 			     const struct net_device_stats *netdev_stats)
7489 {
7490 #if BITS_PER_LONG == 64
7491 	BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
7492 	memcpy(stats64, netdev_stats, sizeof(*stats64));
7493 	/* zero out counters that only exist in rtnl_link_stats64 */
7494 	memset((char *)stats64 + sizeof(*netdev_stats), 0,
7495 	       sizeof(*stats64) - sizeof(*netdev_stats));
7496 #else
7497 	size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
7498 	const unsigned long *src = (const unsigned long *)netdev_stats;
7499 	u64 *dst = (u64 *)stats64;
7500 
7501 	BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
7502 	for (i = 0; i < n; i++)
7503 		dst[i] = src[i];
7504 	/* zero out counters that only exist in rtnl_link_stats64 */
7505 	memset((char *)stats64 + n * sizeof(u64), 0,
7506 	       sizeof(*stats64) - n * sizeof(u64));
7507 #endif
7508 }
7509 EXPORT_SYMBOL(netdev_stats_to_stats64);
7510 
7511 /**
7512  *	dev_get_stats	- get network device statistics
7513  *	@dev: device to get statistics from
7514  *	@storage: place to store stats
7515  *
7516  *	Get network statistics from device. Return @storage.
7517  *	The device driver may provide its own method by setting
7518  *	dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
7519  *	otherwise the internal statistics structure is used.
7520  */
7521 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
7522 					struct rtnl_link_stats64 *storage)
7523 {
7524 	const struct net_device_ops *ops = dev->netdev_ops;
7525 
7526 	if (ops->ndo_get_stats64) {
7527 		memset(storage, 0, sizeof(*storage));
7528 		ops->ndo_get_stats64(dev, storage);
7529 	} else if (ops->ndo_get_stats) {
7530 		netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
7531 	} else {
7532 		netdev_stats_to_stats64(storage, &dev->stats);
7533 	}
7534 	storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
7535 	storage->tx_dropped += atomic_long_read(&dev->tx_dropped);
7536 	storage->rx_nohandler += atomic_long_read(&dev->rx_nohandler);
7537 	return storage;
7538 }
7539 EXPORT_SYMBOL(dev_get_stats);
7540 
7541 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
7542 {
7543 	struct netdev_queue *queue = dev_ingress_queue(dev);
7544 
7545 #ifdef CONFIG_NET_CLS_ACT
7546 	if (queue)
7547 		return queue;
7548 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
7549 	if (!queue)
7550 		return NULL;
7551 	netdev_init_one_queue(dev, queue, NULL);
7552 	RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
7553 	queue->qdisc_sleeping = &noop_qdisc;
7554 	rcu_assign_pointer(dev->ingress_queue, queue);
7555 #endif
7556 	return queue;
7557 }
7558 
7559 static const struct ethtool_ops default_ethtool_ops;
7560 
7561 void netdev_set_default_ethtool_ops(struct net_device *dev,
7562 				    const struct ethtool_ops *ops)
7563 {
7564 	if (dev->ethtool_ops == &default_ethtool_ops)
7565 		dev->ethtool_ops = ops;
7566 }
7567 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
7568 
7569 void netdev_freemem(struct net_device *dev)
7570 {
7571 	char *addr = (char *)dev - dev->padded;
7572 
7573 	kvfree(addr);
7574 }
7575 
7576 /**
7577  *	alloc_netdev_mqs - allocate network device
7578  *	@sizeof_priv:		size of private data to allocate space for
7579  *	@name:			device name format string
7580  *	@name_assign_type: 	origin of device name
7581  *	@setup:			callback to initialize device
7582  *	@txqs:			the number of TX subqueues to allocate
7583  *	@rxqs:			the number of RX subqueues to allocate
7584  *
7585  *	Allocates a struct net_device with private data area for driver use
7586  *	and performs basic initialization.  Also allocates subqueue structs
7587  *	for each queue on the device.
7588  */
7589 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
7590 		unsigned char name_assign_type,
7591 		void (*setup)(struct net_device *),
7592 		unsigned int txqs, unsigned int rxqs)
7593 {
7594 	struct net_device *dev;
7595 	size_t alloc_size;
7596 	struct net_device *p;
7597 
7598 	BUG_ON(strlen(name) >= sizeof(dev->name));
7599 
7600 	if (txqs < 1) {
7601 		pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
7602 		return NULL;
7603 	}
7604 
7605 #ifdef CONFIG_SYSFS
7606 	if (rxqs < 1) {
7607 		pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
7608 		return NULL;
7609 	}
7610 #endif
7611 
7612 	alloc_size = sizeof(struct net_device);
7613 	if (sizeof_priv) {
7614 		/* ensure 32-byte alignment of private area */
7615 		alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
7616 		alloc_size += sizeof_priv;
7617 	}
7618 	/* ensure 32-byte alignment of whole construct */
7619 	alloc_size += NETDEV_ALIGN - 1;
7620 
7621 	p = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
7622 	if (!p)
7623 		p = vzalloc(alloc_size);
7624 	if (!p)
7625 		return NULL;
7626 
7627 	dev = PTR_ALIGN(p, NETDEV_ALIGN);
7628 	dev->padded = (char *)dev - (char *)p;
7629 
7630 	dev->pcpu_refcnt = alloc_percpu(int);
7631 	if (!dev->pcpu_refcnt)
7632 		goto free_dev;
7633 
7634 	if (dev_addr_init(dev))
7635 		goto free_pcpu;
7636 
7637 	dev_mc_init(dev);
7638 	dev_uc_init(dev);
7639 
7640 	dev_net_set(dev, &init_net);
7641 
7642 	dev->gso_max_size = GSO_MAX_SIZE;
7643 	dev->gso_max_segs = GSO_MAX_SEGS;
7644 
7645 	INIT_LIST_HEAD(&dev->napi_list);
7646 	INIT_LIST_HEAD(&dev->unreg_list);
7647 	INIT_LIST_HEAD(&dev->close_list);
7648 	INIT_LIST_HEAD(&dev->link_watch_list);
7649 	INIT_LIST_HEAD(&dev->adj_list.upper);
7650 	INIT_LIST_HEAD(&dev->adj_list.lower);
7651 	INIT_LIST_HEAD(&dev->all_adj_list.upper);
7652 	INIT_LIST_HEAD(&dev->all_adj_list.lower);
7653 	INIT_LIST_HEAD(&dev->ptype_all);
7654 	INIT_LIST_HEAD(&dev->ptype_specific);
7655 #ifdef CONFIG_NET_SCHED
7656 	hash_init(dev->qdisc_hash);
7657 #endif
7658 	dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
7659 	setup(dev);
7660 
7661 	if (!dev->tx_queue_len) {
7662 		dev->priv_flags |= IFF_NO_QUEUE;
7663 		dev->tx_queue_len = 1;
7664 	}
7665 
7666 	dev->num_tx_queues = txqs;
7667 	dev->real_num_tx_queues = txqs;
7668 	if (netif_alloc_netdev_queues(dev))
7669 		goto free_all;
7670 
7671 #ifdef CONFIG_SYSFS
7672 	dev->num_rx_queues = rxqs;
7673 	dev->real_num_rx_queues = rxqs;
7674 	if (netif_alloc_rx_queues(dev))
7675 		goto free_all;
7676 #endif
7677 
7678 	strcpy(dev->name, name);
7679 	dev->name_assign_type = name_assign_type;
7680 	dev->group = INIT_NETDEV_GROUP;
7681 	if (!dev->ethtool_ops)
7682 		dev->ethtool_ops = &default_ethtool_ops;
7683 
7684 	nf_hook_ingress_init(dev);
7685 
7686 	return dev;
7687 
7688 free_all:
7689 	free_netdev(dev);
7690 	return NULL;
7691 
7692 free_pcpu:
7693 	free_percpu(dev->pcpu_refcnt);
7694 free_dev:
7695 	netdev_freemem(dev);
7696 	return NULL;
7697 }
7698 EXPORT_SYMBOL(alloc_netdev_mqs);
7699 
7700 /**
7701  *	free_netdev - free network device
7702  *	@dev: device
7703  *
7704  *	This function does the last stage of destroying an allocated device
7705  * 	interface. The reference to the device object is released.
7706  *	If this is the last reference then it will be freed.
7707  *	Must be called in process context.
7708  */
7709 void free_netdev(struct net_device *dev)
7710 {
7711 	struct napi_struct *p, *n;
7712 
7713 	might_sleep();
7714 	netif_free_tx_queues(dev);
7715 #ifdef CONFIG_SYSFS
7716 	kvfree(dev->_rx);
7717 #endif
7718 
7719 	kfree(rcu_dereference_protected(dev->ingress_queue, 1));
7720 
7721 	/* Flush device addresses */
7722 	dev_addr_flush(dev);
7723 
7724 	list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
7725 		netif_napi_del(p);
7726 
7727 	free_percpu(dev->pcpu_refcnt);
7728 	dev->pcpu_refcnt = NULL;
7729 
7730 	/*  Compatibility with error handling in drivers */
7731 	if (dev->reg_state == NETREG_UNINITIALIZED) {
7732 		netdev_freemem(dev);
7733 		return;
7734 	}
7735 
7736 	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
7737 	dev->reg_state = NETREG_RELEASED;
7738 
7739 	/* will free via device release */
7740 	put_device(&dev->dev);
7741 }
7742 EXPORT_SYMBOL(free_netdev);
7743 
7744 /**
7745  *	synchronize_net -  Synchronize with packet receive processing
7746  *
7747  *	Wait for packets currently being received to be done.
7748  *	Does not block later packets from starting.
7749  */
7750 void synchronize_net(void)
7751 {
7752 	might_sleep();
7753 	if (rtnl_is_locked())
7754 		synchronize_rcu_expedited();
7755 	else
7756 		synchronize_rcu();
7757 }
7758 EXPORT_SYMBOL(synchronize_net);
7759 
7760 /**
7761  *	unregister_netdevice_queue - remove device from the kernel
7762  *	@dev: device
7763  *	@head: list
7764  *
7765  *	This function shuts down a device interface and removes it
7766  *	from the kernel tables.
7767  *	If head not NULL, device is queued to be unregistered later.
7768  *
7769  *	Callers must hold the rtnl semaphore.  You may want
7770  *	unregister_netdev() instead of this.
7771  */
7772 
7773 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
7774 {
7775 	ASSERT_RTNL();
7776 
7777 	if (head) {
7778 		list_move_tail(&dev->unreg_list, head);
7779 	} else {
7780 		rollback_registered(dev);
7781 		/* Finish processing unregister after unlock */
7782 		net_set_todo(dev);
7783 	}
7784 }
7785 EXPORT_SYMBOL(unregister_netdevice_queue);
7786 
7787 /**
7788  *	unregister_netdevice_many - unregister many devices
7789  *	@head: list of devices
7790  *
7791  *  Note: As most callers use a stack allocated list_head,
7792  *  we force a list_del() to make sure stack wont be corrupted later.
7793  */
7794 void unregister_netdevice_many(struct list_head *head)
7795 {
7796 	struct net_device *dev;
7797 
7798 	if (!list_empty(head)) {
7799 		rollback_registered_many(head);
7800 		list_for_each_entry(dev, head, unreg_list)
7801 			net_set_todo(dev);
7802 		list_del(head);
7803 	}
7804 }
7805 EXPORT_SYMBOL(unregister_netdevice_many);
7806 
7807 /**
7808  *	unregister_netdev - remove device from the kernel
7809  *	@dev: device
7810  *
7811  *	This function shuts down a device interface and removes it
7812  *	from the kernel tables.
7813  *
7814  *	This is just a wrapper for unregister_netdevice that takes
7815  *	the rtnl semaphore.  In general you want to use this and not
7816  *	unregister_netdevice.
7817  */
7818 void unregister_netdev(struct net_device *dev)
7819 {
7820 	rtnl_lock();
7821 	unregister_netdevice(dev);
7822 	rtnl_unlock();
7823 }
7824 EXPORT_SYMBOL(unregister_netdev);
7825 
7826 /**
7827  *	dev_change_net_namespace - move device to different nethost namespace
7828  *	@dev: device
7829  *	@net: network namespace
7830  *	@pat: If not NULL name pattern to try if the current device name
7831  *	      is already taken in the destination network namespace.
7832  *
7833  *	This function shuts down a device interface and moves it
7834  *	to a new network namespace. On success 0 is returned, on
7835  *	a failure a netagive errno code is returned.
7836  *
7837  *	Callers must hold the rtnl semaphore.
7838  */
7839 
7840 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
7841 {
7842 	int err;
7843 
7844 	ASSERT_RTNL();
7845 
7846 	/* Don't allow namespace local devices to be moved. */
7847 	err = -EINVAL;
7848 	if (dev->features & NETIF_F_NETNS_LOCAL)
7849 		goto out;
7850 
7851 	/* Ensure the device has been registrered */
7852 	if (dev->reg_state != NETREG_REGISTERED)
7853 		goto out;
7854 
7855 	/* Get out if there is nothing todo */
7856 	err = 0;
7857 	if (net_eq(dev_net(dev), net))
7858 		goto out;
7859 
7860 	/* Pick the destination device name, and ensure
7861 	 * we can use it in the destination network namespace.
7862 	 */
7863 	err = -EEXIST;
7864 	if (__dev_get_by_name(net, dev->name)) {
7865 		/* We get here if we can't use the current device name */
7866 		if (!pat)
7867 			goto out;
7868 		if (dev_get_valid_name(net, dev, pat) < 0)
7869 			goto out;
7870 	}
7871 
7872 	/*
7873 	 * And now a mini version of register_netdevice unregister_netdevice.
7874 	 */
7875 
7876 	/* If device is running close it first. */
7877 	dev_close(dev);
7878 
7879 	/* And unlink it from device chain */
7880 	err = -ENODEV;
7881 	unlist_netdevice(dev);
7882 
7883 	synchronize_net();
7884 
7885 	/* Shutdown queueing discipline. */
7886 	dev_shutdown(dev);
7887 
7888 	/* Notify protocols, that we are about to destroy
7889 	   this device. They should clean all the things.
7890 
7891 	   Note that dev->reg_state stays at NETREG_REGISTERED.
7892 	   This is wanted because this way 8021q and macvlan know
7893 	   the device is just moving and can keep their slaves up.
7894 	*/
7895 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7896 	rcu_barrier();
7897 	call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7898 	rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
7899 
7900 	/*
7901 	 *	Flush the unicast and multicast chains
7902 	 */
7903 	dev_uc_flush(dev);
7904 	dev_mc_flush(dev);
7905 
7906 	/* Send a netdev-removed uevent to the old namespace */
7907 	kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
7908 	netdev_adjacent_del_links(dev);
7909 
7910 	/* Actually switch the network namespace */
7911 	dev_net_set(dev, net);
7912 
7913 	/* If there is an ifindex conflict assign a new one */
7914 	if (__dev_get_by_index(net, dev->ifindex))
7915 		dev->ifindex = dev_new_index(net);
7916 
7917 	/* Send a netdev-add uevent to the new namespace */
7918 	kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
7919 	netdev_adjacent_add_links(dev);
7920 
7921 	/* Fixup kobjects */
7922 	err = device_rename(&dev->dev, dev->name);
7923 	WARN_ON(err);
7924 
7925 	/* Add the device back in the hashes */
7926 	list_netdevice(dev);
7927 
7928 	/* Notify protocols, that a new device appeared. */
7929 	call_netdevice_notifiers(NETDEV_REGISTER, dev);
7930 
7931 	/*
7932 	 *	Prevent userspace races by waiting until the network
7933 	 *	device is fully setup before sending notifications.
7934 	 */
7935 	rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
7936 
7937 	synchronize_net();
7938 	err = 0;
7939 out:
7940 	return err;
7941 }
7942 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
7943 
7944 static int dev_cpu_callback(struct notifier_block *nfb,
7945 			    unsigned long action,
7946 			    void *ocpu)
7947 {
7948 	struct sk_buff **list_skb;
7949 	struct sk_buff *skb;
7950 	unsigned int cpu, oldcpu = (unsigned long)ocpu;
7951 	struct softnet_data *sd, *oldsd;
7952 
7953 	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
7954 		return NOTIFY_OK;
7955 
7956 	local_irq_disable();
7957 	cpu = smp_processor_id();
7958 	sd = &per_cpu(softnet_data, cpu);
7959 	oldsd = &per_cpu(softnet_data, oldcpu);
7960 
7961 	/* Find end of our completion_queue. */
7962 	list_skb = &sd->completion_queue;
7963 	while (*list_skb)
7964 		list_skb = &(*list_skb)->next;
7965 	/* Append completion queue from offline CPU. */
7966 	*list_skb = oldsd->completion_queue;
7967 	oldsd->completion_queue = NULL;
7968 
7969 	/* Append output queue from offline CPU. */
7970 	if (oldsd->output_queue) {
7971 		*sd->output_queue_tailp = oldsd->output_queue;
7972 		sd->output_queue_tailp = oldsd->output_queue_tailp;
7973 		oldsd->output_queue = NULL;
7974 		oldsd->output_queue_tailp = &oldsd->output_queue;
7975 	}
7976 	/* Append NAPI poll list from offline CPU, with one exception :
7977 	 * process_backlog() must be called by cpu owning percpu backlog.
7978 	 * We properly handle process_queue & input_pkt_queue later.
7979 	 */
7980 	while (!list_empty(&oldsd->poll_list)) {
7981 		struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
7982 							    struct napi_struct,
7983 							    poll_list);
7984 
7985 		list_del_init(&napi->poll_list);
7986 		if (napi->poll == process_backlog)
7987 			napi->state = 0;
7988 		else
7989 			____napi_schedule(sd, napi);
7990 	}
7991 
7992 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
7993 	local_irq_enable();
7994 
7995 	/* Process offline CPU's input_pkt_queue */
7996 	while ((skb = __skb_dequeue(&oldsd->process_queue))) {
7997 		netif_rx_ni(skb);
7998 		input_queue_head_incr(oldsd);
7999 	}
8000 	while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
8001 		netif_rx_ni(skb);
8002 		input_queue_head_incr(oldsd);
8003 	}
8004 
8005 	return NOTIFY_OK;
8006 }
8007 
8008 
8009 /**
8010  *	netdev_increment_features - increment feature set by one
8011  *	@all: current feature set
8012  *	@one: new feature set
8013  *	@mask: mask feature set
8014  *
8015  *	Computes a new feature set after adding a device with feature set
8016  *	@one to the master device with current feature set @all.  Will not
8017  *	enable anything that is off in @mask. Returns the new feature set.
8018  */
8019 netdev_features_t netdev_increment_features(netdev_features_t all,
8020 	netdev_features_t one, netdev_features_t mask)
8021 {
8022 	if (mask & NETIF_F_HW_CSUM)
8023 		mask |= NETIF_F_CSUM_MASK;
8024 	mask |= NETIF_F_VLAN_CHALLENGED;
8025 
8026 	all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
8027 	all &= one | ~NETIF_F_ALL_FOR_ALL;
8028 
8029 	/* If one device supports hw checksumming, set for all. */
8030 	if (all & NETIF_F_HW_CSUM)
8031 		all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
8032 
8033 	return all;
8034 }
8035 EXPORT_SYMBOL(netdev_increment_features);
8036 
8037 static struct hlist_head * __net_init netdev_create_hash(void)
8038 {
8039 	int i;
8040 	struct hlist_head *hash;
8041 
8042 	hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
8043 	if (hash != NULL)
8044 		for (i = 0; i < NETDEV_HASHENTRIES; i++)
8045 			INIT_HLIST_HEAD(&hash[i]);
8046 
8047 	return hash;
8048 }
8049 
8050 /* Initialize per network namespace state */
8051 static int __net_init netdev_init(struct net *net)
8052 {
8053 	if (net != &init_net)
8054 		INIT_LIST_HEAD(&net->dev_base_head);
8055 
8056 	net->dev_name_head = netdev_create_hash();
8057 	if (net->dev_name_head == NULL)
8058 		goto err_name;
8059 
8060 	net->dev_index_head = netdev_create_hash();
8061 	if (net->dev_index_head == NULL)
8062 		goto err_idx;
8063 
8064 	return 0;
8065 
8066 err_idx:
8067 	kfree(net->dev_name_head);
8068 err_name:
8069 	return -ENOMEM;
8070 }
8071 
8072 /**
8073  *	netdev_drivername - network driver for the device
8074  *	@dev: network device
8075  *
8076  *	Determine network driver for device.
8077  */
8078 const char *netdev_drivername(const struct net_device *dev)
8079 {
8080 	const struct device_driver *driver;
8081 	const struct device *parent;
8082 	const char *empty = "";
8083 
8084 	parent = dev->dev.parent;
8085 	if (!parent)
8086 		return empty;
8087 
8088 	driver = parent->driver;
8089 	if (driver && driver->name)
8090 		return driver->name;
8091 	return empty;
8092 }
8093 
8094 static void __netdev_printk(const char *level, const struct net_device *dev,
8095 			    struct va_format *vaf)
8096 {
8097 	if (dev && dev->dev.parent) {
8098 		dev_printk_emit(level[1] - '0',
8099 				dev->dev.parent,
8100 				"%s %s %s%s: %pV",
8101 				dev_driver_string(dev->dev.parent),
8102 				dev_name(dev->dev.parent),
8103 				netdev_name(dev), netdev_reg_state(dev),
8104 				vaf);
8105 	} else if (dev) {
8106 		printk("%s%s%s: %pV",
8107 		       level, netdev_name(dev), netdev_reg_state(dev), vaf);
8108 	} else {
8109 		printk("%s(NULL net_device): %pV", level, vaf);
8110 	}
8111 }
8112 
8113 void netdev_printk(const char *level, const struct net_device *dev,
8114 		   const char *format, ...)
8115 {
8116 	struct va_format vaf;
8117 	va_list args;
8118 
8119 	va_start(args, format);
8120 
8121 	vaf.fmt = format;
8122 	vaf.va = &args;
8123 
8124 	__netdev_printk(level, dev, &vaf);
8125 
8126 	va_end(args);
8127 }
8128 EXPORT_SYMBOL(netdev_printk);
8129 
8130 #define define_netdev_printk_level(func, level)			\
8131 void func(const struct net_device *dev, const char *fmt, ...)	\
8132 {								\
8133 	struct va_format vaf;					\
8134 	va_list args;						\
8135 								\
8136 	va_start(args, fmt);					\
8137 								\
8138 	vaf.fmt = fmt;						\
8139 	vaf.va = &args;						\
8140 								\
8141 	__netdev_printk(level, dev, &vaf);			\
8142 								\
8143 	va_end(args);						\
8144 }								\
8145 EXPORT_SYMBOL(func);
8146 
8147 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
8148 define_netdev_printk_level(netdev_alert, KERN_ALERT);
8149 define_netdev_printk_level(netdev_crit, KERN_CRIT);
8150 define_netdev_printk_level(netdev_err, KERN_ERR);
8151 define_netdev_printk_level(netdev_warn, KERN_WARNING);
8152 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
8153 define_netdev_printk_level(netdev_info, KERN_INFO);
8154 
8155 static void __net_exit netdev_exit(struct net *net)
8156 {
8157 	kfree(net->dev_name_head);
8158 	kfree(net->dev_index_head);
8159 }
8160 
8161 static struct pernet_operations __net_initdata netdev_net_ops = {
8162 	.init = netdev_init,
8163 	.exit = netdev_exit,
8164 };
8165 
8166 static void __net_exit default_device_exit(struct net *net)
8167 {
8168 	struct net_device *dev, *aux;
8169 	/*
8170 	 * Push all migratable network devices back to the
8171 	 * initial network namespace
8172 	 */
8173 	rtnl_lock();
8174 	for_each_netdev_safe(net, dev, aux) {
8175 		int err;
8176 		char fb_name[IFNAMSIZ];
8177 
8178 		/* Ignore unmoveable devices (i.e. loopback) */
8179 		if (dev->features & NETIF_F_NETNS_LOCAL)
8180 			continue;
8181 
8182 		/* Leave virtual devices for the generic cleanup */
8183 		if (dev->rtnl_link_ops)
8184 			continue;
8185 
8186 		/* Push remaining network devices to init_net */
8187 		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
8188 		err = dev_change_net_namespace(dev, &init_net, fb_name);
8189 		if (err) {
8190 			pr_emerg("%s: failed to move %s to init_net: %d\n",
8191 				 __func__, dev->name, err);
8192 			BUG();
8193 		}
8194 	}
8195 	rtnl_unlock();
8196 }
8197 
8198 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
8199 {
8200 	/* Return with the rtnl_lock held when there are no network
8201 	 * devices unregistering in any network namespace in net_list.
8202 	 */
8203 	struct net *net;
8204 	bool unregistering;
8205 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
8206 
8207 	add_wait_queue(&netdev_unregistering_wq, &wait);
8208 	for (;;) {
8209 		unregistering = false;
8210 		rtnl_lock();
8211 		list_for_each_entry(net, net_list, exit_list) {
8212 			if (net->dev_unreg_count > 0) {
8213 				unregistering = true;
8214 				break;
8215 			}
8216 		}
8217 		if (!unregistering)
8218 			break;
8219 		__rtnl_unlock();
8220 
8221 		wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
8222 	}
8223 	remove_wait_queue(&netdev_unregistering_wq, &wait);
8224 }
8225 
8226 static void __net_exit default_device_exit_batch(struct list_head *net_list)
8227 {
8228 	/* At exit all network devices most be removed from a network
8229 	 * namespace.  Do this in the reverse order of registration.
8230 	 * Do this across as many network namespaces as possible to
8231 	 * improve batching efficiency.
8232 	 */
8233 	struct net_device *dev;
8234 	struct net *net;
8235 	LIST_HEAD(dev_kill_list);
8236 
8237 	/* To prevent network device cleanup code from dereferencing
8238 	 * loopback devices or network devices that have been freed
8239 	 * wait here for all pending unregistrations to complete,
8240 	 * before unregistring the loopback device and allowing the
8241 	 * network namespace be freed.
8242 	 *
8243 	 * The netdev todo list containing all network devices
8244 	 * unregistrations that happen in default_device_exit_batch
8245 	 * will run in the rtnl_unlock() at the end of
8246 	 * default_device_exit_batch.
8247 	 */
8248 	rtnl_lock_unregistering(net_list);
8249 	list_for_each_entry(net, net_list, exit_list) {
8250 		for_each_netdev_reverse(net, dev) {
8251 			if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
8252 				dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
8253 			else
8254 				unregister_netdevice_queue(dev, &dev_kill_list);
8255 		}
8256 	}
8257 	unregister_netdevice_many(&dev_kill_list);
8258 	rtnl_unlock();
8259 }
8260 
8261 static struct pernet_operations __net_initdata default_device_ops = {
8262 	.exit = default_device_exit,
8263 	.exit_batch = default_device_exit_batch,
8264 };
8265 
8266 /*
8267  *	Initialize the DEV module. At boot time this walks the device list and
8268  *	unhooks any devices that fail to initialise (normally hardware not
8269  *	present) and leaves us with a valid list of present and active devices.
8270  *
8271  */
8272 
8273 /*
8274  *       This is called single threaded during boot, so no need
8275  *       to take the rtnl semaphore.
8276  */
8277 static int __init net_dev_init(void)
8278 {
8279 	int i, rc = -ENOMEM;
8280 
8281 	BUG_ON(!dev_boot_phase);
8282 
8283 	if (dev_proc_init())
8284 		goto out;
8285 
8286 	if (netdev_kobject_init())
8287 		goto out;
8288 
8289 	INIT_LIST_HEAD(&ptype_all);
8290 	for (i = 0; i < PTYPE_HASH_SIZE; i++)
8291 		INIT_LIST_HEAD(&ptype_base[i]);
8292 
8293 	INIT_LIST_HEAD(&offload_base);
8294 
8295 	if (register_pernet_subsys(&netdev_net_ops))
8296 		goto out;
8297 
8298 	/*
8299 	 *	Initialise the packet receive queues.
8300 	 */
8301 
8302 	for_each_possible_cpu(i) {
8303 		struct work_struct *flush = per_cpu_ptr(&flush_works, i);
8304 		struct softnet_data *sd = &per_cpu(softnet_data, i);
8305 
8306 		INIT_WORK(flush, flush_backlog);
8307 
8308 		skb_queue_head_init(&sd->input_pkt_queue);
8309 		skb_queue_head_init(&sd->process_queue);
8310 		INIT_LIST_HEAD(&sd->poll_list);
8311 		sd->output_queue_tailp = &sd->output_queue;
8312 #ifdef CONFIG_RPS
8313 		sd->csd.func = rps_trigger_softirq;
8314 		sd->csd.info = sd;
8315 		sd->cpu = i;
8316 #endif
8317 
8318 		sd->backlog.poll = process_backlog;
8319 		sd->backlog.weight = weight_p;
8320 	}
8321 
8322 	dev_boot_phase = 0;
8323 
8324 	/* The loopback device is special if any other network devices
8325 	 * is present in a network namespace the loopback device must
8326 	 * be present. Since we now dynamically allocate and free the
8327 	 * loopback device ensure this invariant is maintained by
8328 	 * keeping the loopback device as the first device on the
8329 	 * list of network devices.  Ensuring the loopback devices
8330 	 * is the first device that appears and the last network device
8331 	 * that disappears.
8332 	 */
8333 	if (register_pernet_device(&loopback_net_ops))
8334 		goto out;
8335 
8336 	if (register_pernet_device(&default_device_ops))
8337 		goto out;
8338 
8339 	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
8340 	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
8341 
8342 	hotcpu_notifier(dev_cpu_callback, 0);
8343 	dst_subsys_init();
8344 	rc = 0;
8345 out:
8346 	return rc;
8347 }
8348 
8349 subsys_initcall(net_dev_init);
8350