xref: /linux/net/core/dev.c (revision a4989fa91110508b64eea7ccde63d062113988ff)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *      NET3    Protocol independent device support routines.
4  *
5  *	Derived from the non IP parts of dev.c 1.0.19
6  *              Authors:	Ross Biro
7  *				Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8  *				Mark Evans, <evansmp@uhura.aston.ac.uk>
9  *
10  *	Additional Authors:
11  *		Florian la Roche <rzsfl@rz.uni-sb.de>
12  *		Alan Cox <gw4pts@gw4pts.ampr.org>
13  *		David Hinds <dahinds@users.sourceforge.net>
14  *		Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15  *		Adam Sulmicki <adam@cfar.umd.edu>
16  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
17  *
18  *	Changes:
19  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
20  *                                      to 2 if register_netdev gets called
21  *                                      before net_dev_init & also removed a
22  *                                      few lines of code in the process.
23  *		Alan Cox	:	device private ioctl copies fields back.
24  *		Alan Cox	:	Transmit queue code does relevant
25  *					stunts to keep the queue safe.
26  *		Alan Cox	:	Fixed double lock.
27  *		Alan Cox	:	Fixed promisc NULL pointer trap
28  *		????????	:	Support the full private ioctl range
29  *		Alan Cox	:	Moved ioctl permission check into
30  *					drivers
31  *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
32  *		Alan Cox	:	100 backlog just doesn't cut it when
33  *					you start doing multicast video 8)
34  *		Alan Cox	:	Rewrote net_bh and list manager.
35  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
36  *		Alan Cox	:	Took out transmit every packet pass
37  *					Saved a few bytes in the ioctl handler
38  *		Alan Cox	:	Network driver sets packet type before
39  *					calling netif_rx. Saves a function
40  *					call a packet.
41  *		Alan Cox	:	Hashed net_bh()
42  *		Richard Kooijman:	Timestamp fixes.
43  *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
44  *		Alan Cox	:	Device lock protection.
45  *              Alan Cox        :       Fixed nasty side effect of device close
46  *					changes.
47  *		Rudi Cilibrasi	:	Pass the right thing to
48  *					set_mac_address()
49  *		Dave Miller	:	32bit quantity for the device lock to
50  *					make it work out on a Sparc.
51  *		Bjorn Ekwall	:	Added KERNELD hack.
52  *		Alan Cox	:	Cleaned up the backlog initialise.
53  *		Craig Metz	:	SIOCGIFCONF fix if space for under
54  *					1 device.
55  *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
56  *					is no device open function.
57  *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
58  *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
59  *		Cyrus Durgin	:	Cleaned for KMOD
60  *		Adam Sulmicki   :	Bug Fix : Network Device Unload
61  *					A network device unload needs to purge
62  *					the backlog queue.
63  *	Paul Rusty Russell	:	SIOCSIFNAME
64  *              Pekka Riikonen  :	Netdev boot-time settings code
65  *              Andrew Morton   :       Make unregister_netdevice wait
66  *                                      indefinitely on dev->refcnt
67  *              J Hadi Salim    :       - Backlog queue sampling
68  *				        - netif_rx() feedback
69  */
70 
71 #include <linux/uaccess.h>
72 #include <linux/bitops.h>
73 #include <linux/capability.h>
74 #include <linux/cpu.h>
75 #include <linux/types.h>
76 #include <linux/kernel.h>
77 #include <linux/hash.h>
78 #include <linux/slab.h>
79 #include <linux/sched.h>
80 #include <linux/sched/mm.h>
81 #include <linux/mutex.h>
82 #include <linux/rwsem.h>
83 #include <linux/string.h>
84 #include <linux/mm.h>
85 #include <linux/socket.h>
86 #include <linux/sockios.h>
87 #include <linux/errno.h>
88 #include <linux/interrupt.h>
89 #include <linux/if_ether.h>
90 #include <linux/netdevice.h>
91 #include <linux/etherdevice.h>
92 #include <linux/ethtool.h>
93 #include <linux/skbuff.h>
94 #include <linux/bpf.h>
95 #include <linux/bpf_trace.h>
96 #include <net/net_namespace.h>
97 #include <net/sock.h>
98 #include <net/busy_poll.h>
99 #include <linux/rtnetlink.h>
100 #include <linux/stat.h>
101 #include <net/dsa.h>
102 #include <net/dst.h>
103 #include <net/dst_metadata.h>
104 #include <net/pkt_sched.h>
105 #include <net/pkt_cls.h>
106 #include <net/checksum.h>
107 #include <net/xfrm.h>
108 #include <linux/highmem.h>
109 #include <linux/init.h>
110 #include <linux/module.h>
111 #include <linux/netpoll.h>
112 #include <linux/rcupdate.h>
113 #include <linux/delay.h>
114 #include <net/iw_handler.h>
115 #include <asm/current.h>
116 #include <linux/audit.h>
117 #include <linux/dmaengine.h>
118 #include <linux/err.h>
119 #include <linux/ctype.h>
120 #include <linux/if_arp.h>
121 #include <linux/if_vlan.h>
122 #include <linux/ip.h>
123 #include <net/ip.h>
124 #include <net/mpls.h>
125 #include <linux/ipv6.h>
126 #include <linux/in.h>
127 #include <linux/jhash.h>
128 #include <linux/random.h>
129 #include <trace/events/napi.h>
130 #include <trace/events/net.h>
131 #include <trace/events/skb.h>
132 #include <linux/inetdevice.h>
133 #include <linux/cpu_rmap.h>
134 #include <linux/static_key.h>
135 #include <linux/hashtable.h>
136 #include <linux/vmalloc.h>
137 #include <linux/if_macvlan.h>
138 #include <linux/errqueue.h>
139 #include <linux/hrtimer.h>
140 #include <linux/netfilter_ingress.h>
141 #include <linux/crash_dump.h>
142 #include <linux/sctp.h>
143 #include <net/udp_tunnel.h>
144 #include <linux/net_namespace.h>
145 #include <linux/indirect_call_wrapper.h>
146 #include <net/devlink.h>
147 #include <linux/pm_runtime.h>
148 #include <linux/prandom.h>
149 
150 #include "net-sysfs.h"
151 
152 #define MAX_GRO_SKBS 8
153 
154 /* This should be increased if a protocol with a bigger head is added. */
155 #define GRO_MAX_HEAD (MAX_HEADER + 128)
156 
157 static DEFINE_SPINLOCK(ptype_lock);
158 static DEFINE_SPINLOCK(offload_lock);
159 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
160 struct list_head ptype_all __read_mostly;	/* Taps */
161 static struct list_head offload_base __read_mostly;
162 
163 static int netif_rx_internal(struct sk_buff *skb);
164 static int call_netdevice_notifiers_info(unsigned long val,
165 					 struct netdev_notifier_info *info);
166 static int call_netdevice_notifiers_extack(unsigned long val,
167 					   struct net_device *dev,
168 					   struct netlink_ext_ack *extack);
169 static struct napi_struct *napi_by_id(unsigned int napi_id);
170 
171 /*
172  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
173  * semaphore.
174  *
175  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
176  *
177  * Writers must hold the rtnl semaphore while they loop through the
178  * dev_base_head list, and hold dev_base_lock for writing when they do the
179  * actual updates.  This allows pure readers to access the list even
180  * while a writer is preparing to update it.
181  *
182  * To put it another way, dev_base_lock is held for writing only to
183  * protect against pure readers; the rtnl semaphore provides the
184  * protection against other writers.
185  *
186  * See, for example usages, register_netdevice() and
187  * unregister_netdevice(), which must be called with the rtnl
188  * semaphore held.
189  */
190 DEFINE_RWLOCK(dev_base_lock);
191 EXPORT_SYMBOL(dev_base_lock);
192 
193 static DEFINE_MUTEX(ifalias_mutex);
194 
195 /* protects napi_hash addition/deletion and napi_gen_id */
196 static DEFINE_SPINLOCK(napi_hash_lock);
197 
198 static unsigned int napi_gen_id = NR_CPUS;
199 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
200 
201 static DECLARE_RWSEM(devnet_rename_sem);
202 
203 static inline void dev_base_seq_inc(struct net *net)
204 {
205 	while (++net->dev_base_seq == 0)
206 		;
207 }
208 
209 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
210 {
211 	unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
212 
213 	return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
214 }
215 
216 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
217 {
218 	return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
219 }
220 
221 static inline void rps_lock(struct softnet_data *sd)
222 {
223 #ifdef CONFIG_RPS
224 	spin_lock(&sd->input_pkt_queue.lock);
225 #endif
226 }
227 
228 static inline void rps_unlock(struct softnet_data *sd)
229 {
230 #ifdef CONFIG_RPS
231 	spin_unlock(&sd->input_pkt_queue.lock);
232 #endif
233 }
234 
235 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
236 						       const char *name)
237 {
238 	struct netdev_name_node *name_node;
239 
240 	name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
241 	if (!name_node)
242 		return NULL;
243 	INIT_HLIST_NODE(&name_node->hlist);
244 	name_node->dev = dev;
245 	name_node->name = name;
246 	return name_node;
247 }
248 
249 static struct netdev_name_node *
250 netdev_name_node_head_alloc(struct net_device *dev)
251 {
252 	struct netdev_name_node *name_node;
253 
254 	name_node = netdev_name_node_alloc(dev, dev->name);
255 	if (!name_node)
256 		return NULL;
257 	INIT_LIST_HEAD(&name_node->list);
258 	return name_node;
259 }
260 
261 static void netdev_name_node_free(struct netdev_name_node *name_node)
262 {
263 	kfree(name_node);
264 }
265 
266 static void netdev_name_node_add(struct net *net,
267 				 struct netdev_name_node *name_node)
268 {
269 	hlist_add_head_rcu(&name_node->hlist,
270 			   dev_name_hash(net, name_node->name));
271 }
272 
273 static void netdev_name_node_del(struct netdev_name_node *name_node)
274 {
275 	hlist_del_rcu(&name_node->hlist);
276 }
277 
278 static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
279 							const char *name)
280 {
281 	struct hlist_head *head = dev_name_hash(net, name);
282 	struct netdev_name_node *name_node;
283 
284 	hlist_for_each_entry(name_node, head, hlist)
285 		if (!strcmp(name_node->name, name))
286 			return name_node;
287 	return NULL;
288 }
289 
290 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
291 							    const char *name)
292 {
293 	struct hlist_head *head = dev_name_hash(net, name);
294 	struct netdev_name_node *name_node;
295 
296 	hlist_for_each_entry_rcu(name_node, head, hlist)
297 		if (!strcmp(name_node->name, name))
298 			return name_node;
299 	return NULL;
300 }
301 
302 int netdev_name_node_alt_create(struct net_device *dev, const char *name)
303 {
304 	struct netdev_name_node *name_node;
305 	struct net *net = dev_net(dev);
306 
307 	name_node = netdev_name_node_lookup(net, name);
308 	if (name_node)
309 		return -EEXIST;
310 	name_node = netdev_name_node_alloc(dev, name);
311 	if (!name_node)
312 		return -ENOMEM;
313 	netdev_name_node_add(net, name_node);
314 	/* The node that holds dev->name acts as a head of per-device list. */
315 	list_add_tail(&name_node->list, &dev->name_node->list);
316 
317 	return 0;
318 }
319 EXPORT_SYMBOL(netdev_name_node_alt_create);
320 
321 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
322 {
323 	list_del(&name_node->list);
324 	netdev_name_node_del(name_node);
325 	kfree(name_node->name);
326 	netdev_name_node_free(name_node);
327 }
328 
329 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
330 {
331 	struct netdev_name_node *name_node;
332 	struct net *net = dev_net(dev);
333 
334 	name_node = netdev_name_node_lookup(net, name);
335 	if (!name_node)
336 		return -ENOENT;
337 	/* lookup might have found our primary name or a name belonging
338 	 * to another device.
339 	 */
340 	if (name_node == dev->name_node || name_node->dev != dev)
341 		return -EINVAL;
342 
343 	__netdev_name_node_alt_destroy(name_node);
344 
345 	return 0;
346 }
347 EXPORT_SYMBOL(netdev_name_node_alt_destroy);
348 
349 static void netdev_name_node_alt_flush(struct net_device *dev)
350 {
351 	struct netdev_name_node *name_node, *tmp;
352 
353 	list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list)
354 		__netdev_name_node_alt_destroy(name_node);
355 }
356 
357 /* Device list insertion */
358 static void list_netdevice(struct net_device *dev)
359 {
360 	struct net *net = dev_net(dev);
361 
362 	ASSERT_RTNL();
363 
364 	write_lock_bh(&dev_base_lock);
365 	list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
366 	netdev_name_node_add(net, dev->name_node);
367 	hlist_add_head_rcu(&dev->index_hlist,
368 			   dev_index_hash(net, dev->ifindex));
369 	write_unlock_bh(&dev_base_lock);
370 
371 	dev_base_seq_inc(net);
372 }
373 
374 /* Device list removal
375  * caller must respect a RCU grace period before freeing/reusing dev
376  */
377 static void unlist_netdevice(struct net_device *dev)
378 {
379 	ASSERT_RTNL();
380 
381 	/* Unlink dev from the device chain */
382 	write_lock_bh(&dev_base_lock);
383 	list_del_rcu(&dev->dev_list);
384 	netdev_name_node_del(dev->name_node);
385 	hlist_del_rcu(&dev->index_hlist);
386 	write_unlock_bh(&dev_base_lock);
387 
388 	dev_base_seq_inc(dev_net(dev));
389 }
390 
391 /*
392  *	Our notifier list
393  */
394 
395 static RAW_NOTIFIER_HEAD(netdev_chain);
396 
397 /*
398  *	Device drivers call our routines to queue packets here. We empty the
399  *	queue in the local softnet handler.
400  */
401 
402 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
403 EXPORT_PER_CPU_SYMBOL(softnet_data);
404 
405 #ifdef CONFIG_LOCKDEP
406 /*
407  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
408  * according to dev->type
409  */
410 static const unsigned short netdev_lock_type[] = {
411 	 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
412 	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
413 	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
414 	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
415 	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
416 	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
417 	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
418 	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
419 	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
420 	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
421 	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
422 	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
423 	 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
424 	 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
425 	 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
426 
427 static const char *const netdev_lock_name[] = {
428 	"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
429 	"_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
430 	"_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
431 	"_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
432 	"_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
433 	"_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
434 	"_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
435 	"_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
436 	"_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
437 	"_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
438 	"_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
439 	"_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
440 	"_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
441 	"_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
442 	"_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
443 
444 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
445 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
446 
447 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
448 {
449 	int i;
450 
451 	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
452 		if (netdev_lock_type[i] == dev_type)
453 			return i;
454 	/* the last key is used by default */
455 	return ARRAY_SIZE(netdev_lock_type) - 1;
456 }
457 
458 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
459 						 unsigned short dev_type)
460 {
461 	int i;
462 
463 	i = netdev_lock_pos(dev_type);
464 	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
465 				   netdev_lock_name[i]);
466 }
467 
468 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
469 {
470 	int i;
471 
472 	i = netdev_lock_pos(dev->type);
473 	lockdep_set_class_and_name(&dev->addr_list_lock,
474 				   &netdev_addr_lock_key[i],
475 				   netdev_lock_name[i]);
476 }
477 #else
478 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
479 						 unsigned short dev_type)
480 {
481 }
482 
483 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
484 {
485 }
486 #endif
487 
488 /*******************************************************************************
489  *
490  *		Protocol management and registration routines
491  *
492  *******************************************************************************/
493 
494 
495 /*
496  *	Add a protocol ID to the list. Now that the input handler is
497  *	smarter we can dispense with all the messy stuff that used to be
498  *	here.
499  *
500  *	BEWARE!!! Protocol handlers, mangling input packets,
501  *	MUST BE last in hash buckets and checking protocol handlers
502  *	MUST start from promiscuous ptype_all chain in net_bh.
503  *	It is true now, do not change it.
504  *	Explanation follows: if protocol handler, mangling packet, will
505  *	be the first on list, it is not able to sense, that packet
506  *	is cloned and should be copied-on-write, so that it will
507  *	change it and subsequent readers will get broken packet.
508  *							--ANK (980803)
509  */
510 
511 static inline struct list_head *ptype_head(const struct packet_type *pt)
512 {
513 	if (pt->type == htons(ETH_P_ALL))
514 		return pt->dev ? &pt->dev->ptype_all : &ptype_all;
515 	else
516 		return pt->dev ? &pt->dev->ptype_specific :
517 				 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
518 }
519 
520 /**
521  *	dev_add_pack - add packet handler
522  *	@pt: packet type declaration
523  *
524  *	Add a protocol handler to the networking stack. The passed &packet_type
525  *	is linked into kernel lists and may not be freed until it has been
526  *	removed from the kernel lists.
527  *
528  *	This call does not sleep therefore it can not
529  *	guarantee all CPU's that are in middle of receiving packets
530  *	will see the new packet type (until the next received packet).
531  */
532 
533 void dev_add_pack(struct packet_type *pt)
534 {
535 	struct list_head *head = ptype_head(pt);
536 
537 	spin_lock(&ptype_lock);
538 	list_add_rcu(&pt->list, head);
539 	spin_unlock(&ptype_lock);
540 }
541 EXPORT_SYMBOL(dev_add_pack);
542 
543 /**
544  *	__dev_remove_pack	 - remove packet handler
545  *	@pt: packet type declaration
546  *
547  *	Remove a protocol handler that was previously added to the kernel
548  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
549  *	from the kernel lists and can be freed or reused once this function
550  *	returns.
551  *
552  *      The packet type might still be in use by receivers
553  *	and must not be freed until after all the CPU's have gone
554  *	through a quiescent state.
555  */
556 void __dev_remove_pack(struct packet_type *pt)
557 {
558 	struct list_head *head = ptype_head(pt);
559 	struct packet_type *pt1;
560 
561 	spin_lock(&ptype_lock);
562 
563 	list_for_each_entry(pt1, head, list) {
564 		if (pt == pt1) {
565 			list_del_rcu(&pt->list);
566 			goto out;
567 		}
568 	}
569 
570 	pr_warn("dev_remove_pack: %p not found\n", pt);
571 out:
572 	spin_unlock(&ptype_lock);
573 }
574 EXPORT_SYMBOL(__dev_remove_pack);
575 
576 /**
577  *	dev_remove_pack	 - remove packet handler
578  *	@pt: packet type declaration
579  *
580  *	Remove a protocol handler that was previously added to the kernel
581  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
582  *	from the kernel lists and can be freed or reused once this function
583  *	returns.
584  *
585  *	This call sleeps to guarantee that no CPU is looking at the packet
586  *	type after return.
587  */
588 void dev_remove_pack(struct packet_type *pt)
589 {
590 	__dev_remove_pack(pt);
591 
592 	synchronize_net();
593 }
594 EXPORT_SYMBOL(dev_remove_pack);
595 
596 
597 /**
598  *	dev_add_offload - register offload handlers
599  *	@po: protocol offload declaration
600  *
601  *	Add protocol offload handlers to the networking stack. The passed
602  *	&proto_offload is linked into kernel lists and may not be freed until
603  *	it has been removed from the kernel lists.
604  *
605  *	This call does not sleep therefore it can not
606  *	guarantee all CPU's that are in middle of receiving packets
607  *	will see the new offload handlers (until the next received packet).
608  */
609 void dev_add_offload(struct packet_offload *po)
610 {
611 	struct packet_offload *elem;
612 
613 	spin_lock(&offload_lock);
614 	list_for_each_entry(elem, &offload_base, list) {
615 		if (po->priority < elem->priority)
616 			break;
617 	}
618 	list_add_rcu(&po->list, elem->list.prev);
619 	spin_unlock(&offload_lock);
620 }
621 EXPORT_SYMBOL(dev_add_offload);
622 
623 /**
624  *	__dev_remove_offload	 - remove offload handler
625  *	@po: packet offload declaration
626  *
627  *	Remove a protocol offload handler that was previously added to the
628  *	kernel offload handlers by dev_add_offload(). The passed &offload_type
629  *	is removed from the kernel lists and can be freed or reused once this
630  *	function returns.
631  *
632  *      The packet type might still be in use by receivers
633  *	and must not be freed until after all the CPU's have gone
634  *	through a quiescent state.
635  */
636 static void __dev_remove_offload(struct packet_offload *po)
637 {
638 	struct list_head *head = &offload_base;
639 	struct packet_offload *po1;
640 
641 	spin_lock(&offload_lock);
642 
643 	list_for_each_entry(po1, head, list) {
644 		if (po == po1) {
645 			list_del_rcu(&po->list);
646 			goto out;
647 		}
648 	}
649 
650 	pr_warn("dev_remove_offload: %p not found\n", po);
651 out:
652 	spin_unlock(&offload_lock);
653 }
654 
655 /**
656  *	dev_remove_offload	 - remove packet offload handler
657  *	@po: packet offload declaration
658  *
659  *	Remove a packet offload handler that was previously added to the kernel
660  *	offload handlers by dev_add_offload(). The passed &offload_type is
661  *	removed from the kernel lists and can be freed or reused once this
662  *	function returns.
663  *
664  *	This call sleeps to guarantee that no CPU is looking at the packet
665  *	type after return.
666  */
667 void dev_remove_offload(struct packet_offload *po)
668 {
669 	__dev_remove_offload(po);
670 
671 	synchronize_net();
672 }
673 EXPORT_SYMBOL(dev_remove_offload);
674 
675 /******************************************************************************
676  *
677  *		      Device Boot-time Settings Routines
678  *
679  ******************************************************************************/
680 
681 /* Boot time configuration table */
682 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
683 
684 /**
685  *	netdev_boot_setup_add	- add new setup entry
686  *	@name: name of the device
687  *	@map: configured settings for the device
688  *
689  *	Adds new setup entry to the dev_boot_setup list.  The function
690  *	returns 0 on error and 1 on success.  This is a generic routine to
691  *	all netdevices.
692  */
693 static int netdev_boot_setup_add(char *name, struct ifmap *map)
694 {
695 	struct netdev_boot_setup *s;
696 	int i;
697 
698 	s = dev_boot_setup;
699 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
700 		if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
701 			memset(s[i].name, 0, sizeof(s[i].name));
702 			strlcpy(s[i].name, name, IFNAMSIZ);
703 			memcpy(&s[i].map, map, sizeof(s[i].map));
704 			break;
705 		}
706 	}
707 
708 	return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
709 }
710 
711 /**
712  * netdev_boot_setup_check	- check boot time settings
713  * @dev: the netdevice
714  *
715  * Check boot time settings for the device.
716  * The found settings are set for the device to be used
717  * later in the device probing.
718  * Returns 0 if no settings found, 1 if they are.
719  */
720 int netdev_boot_setup_check(struct net_device *dev)
721 {
722 	struct netdev_boot_setup *s = dev_boot_setup;
723 	int i;
724 
725 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
726 		if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
727 		    !strcmp(dev->name, s[i].name)) {
728 			dev->irq = s[i].map.irq;
729 			dev->base_addr = s[i].map.base_addr;
730 			dev->mem_start = s[i].map.mem_start;
731 			dev->mem_end = s[i].map.mem_end;
732 			return 1;
733 		}
734 	}
735 	return 0;
736 }
737 EXPORT_SYMBOL(netdev_boot_setup_check);
738 
739 
740 /**
741  * netdev_boot_base	- get address from boot time settings
742  * @prefix: prefix for network device
743  * @unit: id for network device
744  *
745  * Check boot time settings for the base address of device.
746  * The found settings are set for the device to be used
747  * later in the device probing.
748  * Returns 0 if no settings found.
749  */
750 unsigned long netdev_boot_base(const char *prefix, int unit)
751 {
752 	const struct netdev_boot_setup *s = dev_boot_setup;
753 	char name[IFNAMSIZ];
754 	int i;
755 
756 	sprintf(name, "%s%d", prefix, unit);
757 
758 	/*
759 	 * If device already registered then return base of 1
760 	 * to indicate not to probe for this interface
761 	 */
762 	if (__dev_get_by_name(&init_net, name))
763 		return 1;
764 
765 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
766 		if (!strcmp(name, s[i].name))
767 			return s[i].map.base_addr;
768 	return 0;
769 }
770 
771 /*
772  * Saves at boot time configured settings for any netdevice.
773  */
774 int __init netdev_boot_setup(char *str)
775 {
776 	int ints[5];
777 	struct ifmap map;
778 
779 	str = get_options(str, ARRAY_SIZE(ints), ints);
780 	if (!str || !*str)
781 		return 0;
782 
783 	/* Save settings */
784 	memset(&map, 0, sizeof(map));
785 	if (ints[0] > 0)
786 		map.irq = ints[1];
787 	if (ints[0] > 1)
788 		map.base_addr = ints[2];
789 	if (ints[0] > 2)
790 		map.mem_start = ints[3];
791 	if (ints[0] > 3)
792 		map.mem_end = ints[4];
793 
794 	/* Add new entry to the list */
795 	return netdev_boot_setup_add(str, &map);
796 }
797 
798 __setup("netdev=", netdev_boot_setup);
799 
800 /*******************************************************************************
801  *
802  *			    Device Interface Subroutines
803  *
804  *******************************************************************************/
805 
806 /**
807  *	dev_get_iflink	- get 'iflink' value of a interface
808  *	@dev: targeted interface
809  *
810  *	Indicates the ifindex the interface is linked to.
811  *	Physical interfaces have the same 'ifindex' and 'iflink' values.
812  */
813 
814 int dev_get_iflink(const struct net_device *dev)
815 {
816 	if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
817 		return dev->netdev_ops->ndo_get_iflink(dev);
818 
819 	return dev->ifindex;
820 }
821 EXPORT_SYMBOL(dev_get_iflink);
822 
823 /**
824  *	dev_fill_metadata_dst - Retrieve tunnel egress information.
825  *	@dev: targeted interface
826  *	@skb: The packet.
827  *
828  *	For better visibility of tunnel traffic OVS needs to retrieve
829  *	egress tunnel information for a packet. Following API allows
830  *	user to get this info.
831  */
832 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
833 {
834 	struct ip_tunnel_info *info;
835 
836 	if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
837 		return -EINVAL;
838 
839 	info = skb_tunnel_info_unclone(skb);
840 	if (!info)
841 		return -ENOMEM;
842 	if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
843 		return -EINVAL;
844 
845 	return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
846 }
847 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
848 
849 /**
850  *	__dev_get_by_name	- find a device by its name
851  *	@net: the applicable net namespace
852  *	@name: name to find
853  *
854  *	Find an interface by name. Must be called under RTNL semaphore
855  *	or @dev_base_lock. If the name is found a pointer to the device
856  *	is returned. If the name is not found then %NULL is returned. The
857  *	reference counters are not incremented so the caller must be
858  *	careful with locks.
859  */
860 
861 struct net_device *__dev_get_by_name(struct net *net, const char *name)
862 {
863 	struct netdev_name_node *node_name;
864 
865 	node_name = netdev_name_node_lookup(net, name);
866 	return node_name ? node_name->dev : NULL;
867 }
868 EXPORT_SYMBOL(__dev_get_by_name);
869 
870 /**
871  * dev_get_by_name_rcu	- find a device by its name
872  * @net: the applicable net namespace
873  * @name: name to find
874  *
875  * Find an interface by name.
876  * If the name is found a pointer to the device is returned.
877  * If the name is not found then %NULL is returned.
878  * The reference counters are not incremented so the caller must be
879  * careful with locks. The caller must hold RCU lock.
880  */
881 
882 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
883 {
884 	struct netdev_name_node *node_name;
885 
886 	node_name = netdev_name_node_lookup_rcu(net, name);
887 	return node_name ? node_name->dev : NULL;
888 }
889 EXPORT_SYMBOL(dev_get_by_name_rcu);
890 
891 /**
892  *	dev_get_by_name		- find a device by its name
893  *	@net: the applicable net namespace
894  *	@name: name to find
895  *
896  *	Find an interface by name. This can be called from any
897  *	context and does its own locking. The returned handle has
898  *	the usage count incremented and the caller must use dev_put() to
899  *	release it when it is no longer needed. %NULL is returned if no
900  *	matching device is found.
901  */
902 
903 struct net_device *dev_get_by_name(struct net *net, const char *name)
904 {
905 	struct net_device *dev;
906 
907 	rcu_read_lock();
908 	dev = dev_get_by_name_rcu(net, name);
909 	if (dev)
910 		dev_hold(dev);
911 	rcu_read_unlock();
912 	return dev;
913 }
914 EXPORT_SYMBOL(dev_get_by_name);
915 
916 /**
917  *	__dev_get_by_index - find a device by its ifindex
918  *	@net: the applicable net namespace
919  *	@ifindex: index of device
920  *
921  *	Search for an interface by index. Returns %NULL if the device
922  *	is not found or a pointer to the device. The device has not
923  *	had its reference counter increased so the caller must be careful
924  *	about locking. The caller must hold either the RTNL semaphore
925  *	or @dev_base_lock.
926  */
927 
928 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
929 {
930 	struct net_device *dev;
931 	struct hlist_head *head = dev_index_hash(net, ifindex);
932 
933 	hlist_for_each_entry(dev, head, index_hlist)
934 		if (dev->ifindex == ifindex)
935 			return dev;
936 
937 	return NULL;
938 }
939 EXPORT_SYMBOL(__dev_get_by_index);
940 
941 /**
942  *	dev_get_by_index_rcu - find a device by its ifindex
943  *	@net: the applicable net namespace
944  *	@ifindex: index of device
945  *
946  *	Search for an interface by index. Returns %NULL if the device
947  *	is not found or a pointer to the device. The device has not
948  *	had its reference counter increased so the caller must be careful
949  *	about locking. The caller must hold RCU lock.
950  */
951 
952 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
953 {
954 	struct net_device *dev;
955 	struct hlist_head *head = dev_index_hash(net, ifindex);
956 
957 	hlist_for_each_entry_rcu(dev, head, index_hlist)
958 		if (dev->ifindex == ifindex)
959 			return dev;
960 
961 	return NULL;
962 }
963 EXPORT_SYMBOL(dev_get_by_index_rcu);
964 
965 
966 /**
967  *	dev_get_by_index - find a device by its ifindex
968  *	@net: the applicable net namespace
969  *	@ifindex: index of device
970  *
971  *	Search for an interface by index. Returns NULL if the device
972  *	is not found or a pointer to the device. The device returned has
973  *	had a reference added and the pointer is safe until the user calls
974  *	dev_put to indicate they have finished with it.
975  */
976 
977 struct net_device *dev_get_by_index(struct net *net, int ifindex)
978 {
979 	struct net_device *dev;
980 
981 	rcu_read_lock();
982 	dev = dev_get_by_index_rcu(net, ifindex);
983 	if (dev)
984 		dev_hold(dev);
985 	rcu_read_unlock();
986 	return dev;
987 }
988 EXPORT_SYMBOL(dev_get_by_index);
989 
990 /**
991  *	dev_get_by_napi_id - find a device by napi_id
992  *	@napi_id: ID of the NAPI struct
993  *
994  *	Search for an interface by NAPI ID. Returns %NULL if the device
995  *	is not found or a pointer to the device. The device has not had
996  *	its reference counter increased so the caller must be careful
997  *	about locking. The caller must hold RCU lock.
998  */
999 
1000 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
1001 {
1002 	struct napi_struct *napi;
1003 
1004 	WARN_ON_ONCE(!rcu_read_lock_held());
1005 
1006 	if (napi_id < MIN_NAPI_ID)
1007 		return NULL;
1008 
1009 	napi = napi_by_id(napi_id);
1010 
1011 	return napi ? napi->dev : NULL;
1012 }
1013 EXPORT_SYMBOL(dev_get_by_napi_id);
1014 
1015 /**
1016  *	netdev_get_name - get a netdevice name, knowing its ifindex.
1017  *	@net: network namespace
1018  *	@name: a pointer to the buffer where the name will be stored.
1019  *	@ifindex: the ifindex of the interface to get the name from.
1020  */
1021 int netdev_get_name(struct net *net, char *name, int ifindex)
1022 {
1023 	struct net_device *dev;
1024 	int ret;
1025 
1026 	down_read(&devnet_rename_sem);
1027 	rcu_read_lock();
1028 
1029 	dev = dev_get_by_index_rcu(net, ifindex);
1030 	if (!dev) {
1031 		ret = -ENODEV;
1032 		goto out;
1033 	}
1034 
1035 	strcpy(name, dev->name);
1036 
1037 	ret = 0;
1038 out:
1039 	rcu_read_unlock();
1040 	up_read(&devnet_rename_sem);
1041 	return ret;
1042 }
1043 
1044 /**
1045  *	dev_getbyhwaddr_rcu - find a device by its hardware address
1046  *	@net: the applicable net namespace
1047  *	@type: media type of device
1048  *	@ha: hardware address
1049  *
1050  *	Search for an interface by MAC address. Returns NULL if the device
1051  *	is not found or a pointer to the device.
1052  *	The caller must hold RCU or RTNL.
1053  *	The returned device has not had its ref count increased
1054  *	and the caller must therefore be careful about locking
1055  *
1056  */
1057 
1058 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
1059 				       const char *ha)
1060 {
1061 	struct net_device *dev;
1062 
1063 	for_each_netdev_rcu(net, dev)
1064 		if (dev->type == type &&
1065 		    !memcmp(dev->dev_addr, ha, dev->addr_len))
1066 			return dev;
1067 
1068 	return NULL;
1069 }
1070 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
1071 
1072 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
1073 {
1074 	struct net_device *dev;
1075 
1076 	ASSERT_RTNL();
1077 	for_each_netdev(net, dev)
1078 		if (dev->type == type)
1079 			return dev;
1080 
1081 	return NULL;
1082 }
1083 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
1084 
1085 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
1086 {
1087 	struct net_device *dev, *ret = NULL;
1088 
1089 	rcu_read_lock();
1090 	for_each_netdev_rcu(net, dev)
1091 		if (dev->type == type) {
1092 			dev_hold(dev);
1093 			ret = dev;
1094 			break;
1095 		}
1096 	rcu_read_unlock();
1097 	return ret;
1098 }
1099 EXPORT_SYMBOL(dev_getfirstbyhwtype);
1100 
1101 /**
1102  *	__dev_get_by_flags - find any device with given flags
1103  *	@net: the applicable net namespace
1104  *	@if_flags: IFF_* values
1105  *	@mask: bitmask of bits in if_flags to check
1106  *
1107  *	Search for any interface with the given flags. Returns NULL if a device
1108  *	is not found or a pointer to the device. Must be called inside
1109  *	rtnl_lock(), and result refcount is unchanged.
1110  */
1111 
1112 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1113 				      unsigned short mask)
1114 {
1115 	struct net_device *dev, *ret;
1116 
1117 	ASSERT_RTNL();
1118 
1119 	ret = NULL;
1120 	for_each_netdev(net, dev) {
1121 		if (((dev->flags ^ if_flags) & mask) == 0) {
1122 			ret = dev;
1123 			break;
1124 		}
1125 	}
1126 	return ret;
1127 }
1128 EXPORT_SYMBOL(__dev_get_by_flags);
1129 
1130 /**
1131  *	dev_valid_name - check if name is okay for network device
1132  *	@name: name string
1133  *
1134  *	Network device names need to be valid file names to
1135  *	allow sysfs to work.  We also disallow any kind of
1136  *	whitespace.
1137  */
1138 bool dev_valid_name(const char *name)
1139 {
1140 	if (*name == '\0')
1141 		return false;
1142 	if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1143 		return false;
1144 	if (!strcmp(name, ".") || !strcmp(name, ".."))
1145 		return false;
1146 
1147 	while (*name) {
1148 		if (*name == '/' || *name == ':' || isspace(*name))
1149 			return false;
1150 		name++;
1151 	}
1152 	return true;
1153 }
1154 EXPORT_SYMBOL(dev_valid_name);
1155 
1156 /**
1157  *	__dev_alloc_name - allocate a name for a device
1158  *	@net: network namespace to allocate the device name in
1159  *	@name: name format string
1160  *	@buf:  scratch buffer and result name string
1161  *
1162  *	Passed a format string - eg "lt%d" it will try and find a suitable
1163  *	id. It scans list of devices to build up a free map, then chooses
1164  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1165  *	while allocating the name and adding the device in order to avoid
1166  *	duplicates.
1167  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1168  *	Returns the number of the unit assigned or a negative errno code.
1169  */
1170 
1171 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1172 {
1173 	int i = 0;
1174 	const char *p;
1175 	const int max_netdevices = 8*PAGE_SIZE;
1176 	unsigned long *inuse;
1177 	struct net_device *d;
1178 
1179 	if (!dev_valid_name(name))
1180 		return -EINVAL;
1181 
1182 	p = strchr(name, '%');
1183 	if (p) {
1184 		/*
1185 		 * Verify the string as this thing may have come from
1186 		 * the user.  There must be either one "%d" and no other "%"
1187 		 * characters.
1188 		 */
1189 		if (p[1] != 'd' || strchr(p + 2, '%'))
1190 			return -EINVAL;
1191 
1192 		/* Use one page as a bit array of possible slots */
1193 		inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1194 		if (!inuse)
1195 			return -ENOMEM;
1196 
1197 		for_each_netdev(net, d) {
1198 			if (!sscanf(d->name, name, &i))
1199 				continue;
1200 			if (i < 0 || i >= max_netdevices)
1201 				continue;
1202 
1203 			/*  avoid cases where sscanf is not exact inverse of printf */
1204 			snprintf(buf, IFNAMSIZ, name, i);
1205 			if (!strncmp(buf, d->name, IFNAMSIZ))
1206 				set_bit(i, inuse);
1207 		}
1208 
1209 		i = find_first_zero_bit(inuse, max_netdevices);
1210 		free_page((unsigned long) inuse);
1211 	}
1212 
1213 	snprintf(buf, IFNAMSIZ, name, i);
1214 	if (!__dev_get_by_name(net, buf))
1215 		return i;
1216 
1217 	/* It is possible to run out of possible slots
1218 	 * when the name is long and there isn't enough space left
1219 	 * for the digits, or if all bits are used.
1220 	 */
1221 	return -ENFILE;
1222 }
1223 
1224 static int dev_alloc_name_ns(struct net *net,
1225 			     struct net_device *dev,
1226 			     const char *name)
1227 {
1228 	char buf[IFNAMSIZ];
1229 	int ret;
1230 
1231 	BUG_ON(!net);
1232 	ret = __dev_alloc_name(net, name, buf);
1233 	if (ret >= 0)
1234 		strlcpy(dev->name, buf, IFNAMSIZ);
1235 	return ret;
1236 }
1237 
1238 /**
1239  *	dev_alloc_name - allocate a name for a device
1240  *	@dev: device
1241  *	@name: name format string
1242  *
1243  *	Passed a format string - eg "lt%d" it will try and find a suitable
1244  *	id. It scans list of devices to build up a free map, then chooses
1245  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1246  *	while allocating the name and adding the device in order to avoid
1247  *	duplicates.
1248  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1249  *	Returns the number of the unit assigned or a negative errno code.
1250  */
1251 
1252 int dev_alloc_name(struct net_device *dev, const char *name)
1253 {
1254 	return dev_alloc_name_ns(dev_net(dev), dev, name);
1255 }
1256 EXPORT_SYMBOL(dev_alloc_name);
1257 
1258 static int dev_get_valid_name(struct net *net, struct net_device *dev,
1259 			      const char *name)
1260 {
1261 	BUG_ON(!net);
1262 
1263 	if (!dev_valid_name(name))
1264 		return -EINVAL;
1265 
1266 	if (strchr(name, '%'))
1267 		return dev_alloc_name_ns(net, dev, name);
1268 	else if (__dev_get_by_name(net, name))
1269 		return -EEXIST;
1270 	else if (dev->name != name)
1271 		strlcpy(dev->name, name, IFNAMSIZ);
1272 
1273 	return 0;
1274 }
1275 
1276 /**
1277  *	dev_change_name - change name of a device
1278  *	@dev: device
1279  *	@newname: name (or format string) must be at least IFNAMSIZ
1280  *
1281  *	Change name of a device, can pass format strings "eth%d".
1282  *	for wildcarding.
1283  */
1284 int dev_change_name(struct net_device *dev, const char *newname)
1285 {
1286 	unsigned char old_assign_type;
1287 	char oldname[IFNAMSIZ];
1288 	int err = 0;
1289 	int ret;
1290 	struct net *net;
1291 
1292 	ASSERT_RTNL();
1293 	BUG_ON(!dev_net(dev));
1294 
1295 	net = dev_net(dev);
1296 
1297 	/* Some auto-enslaved devices e.g. failover slaves are
1298 	 * special, as userspace might rename the device after
1299 	 * the interface had been brought up and running since
1300 	 * the point kernel initiated auto-enslavement. Allow
1301 	 * live name change even when these slave devices are
1302 	 * up and running.
1303 	 *
1304 	 * Typically, users of these auto-enslaving devices
1305 	 * don't actually care about slave name change, as
1306 	 * they are supposed to operate on master interface
1307 	 * directly.
1308 	 */
1309 	if (dev->flags & IFF_UP &&
1310 	    likely(!(dev->priv_flags & IFF_LIVE_RENAME_OK)))
1311 		return -EBUSY;
1312 
1313 	down_write(&devnet_rename_sem);
1314 
1315 	if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1316 		up_write(&devnet_rename_sem);
1317 		return 0;
1318 	}
1319 
1320 	memcpy(oldname, dev->name, IFNAMSIZ);
1321 
1322 	err = dev_get_valid_name(net, dev, newname);
1323 	if (err < 0) {
1324 		up_write(&devnet_rename_sem);
1325 		return err;
1326 	}
1327 
1328 	if (oldname[0] && !strchr(oldname, '%'))
1329 		netdev_info(dev, "renamed from %s\n", oldname);
1330 
1331 	old_assign_type = dev->name_assign_type;
1332 	dev->name_assign_type = NET_NAME_RENAMED;
1333 
1334 rollback:
1335 	ret = device_rename(&dev->dev, dev->name);
1336 	if (ret) {
1337 		memcpy(dev->name, oldname, IFNAMSIZ);
1338 		dev->name_assign_type = old_assign_type;
1339 		up_write(&devnet_rename_sem);
1340 		return ret;
1341 	}
1342 
1343 	up_write(&devnet_rename_sem);
1344 
1345 	netdev_adjacent_rename_links(dev, oldname);
1346 
1347 	write_lock_bh(&dev_base_lock);
1348 	netdev_name_node_del(dev->name_node);
1349 	write_unlock_bh(&dev_base_lock);
1350 
1351 	synchronize_rcu();
1352 
1353 	write_lock_bh(&dev_base_lock);
1354 	netdev_name_node_add(net, dev->name_node);
1355 	write_unlock_bh(&dev_base_lock);
1356 
1357 	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1358 	ret = notifier_to_errno(ret);
1359 
1360 	if (ret) {
1361 		/* err >= 0 after dev_alloc_name() or stores the first errno */
1362 		if (err >= 0) {
1363 			err = ret;
1364 			down_write(&devnet_rename_sem);
1365 			memcpy(dev->name, oldname, IFNAMSIZ);
1366 			memcpy(oldname, newname, IFNAMSIZ);
1367 			dev->name_assign_type = old_assign_type;
1368 			old_assign_type = NET_NAME_RENAMED;
1369 			goto rollback;
1370 		} else {
1371 			pr_err("%s: name change rollback failed: %d\n",
1372 			       dev->name, ret);
1373 		}
1374 	}
1375 
1376 	return err;
1377 }
1378 
1379 /**
1380  *	dev_set_alias - change ifalias of a device
1381  *	@dev: device
1382  *	@alias: name up to IFALIASZ
1383  *	@len: limit of bytes to copy from info
1384  *
1385  *	Set ifalias for a device,
1386  */
1387 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1388 {
1389 	struct dev_ifalias *new_alias = NULL;
1390 
1391 	if (len >= IFALIASZ)
1392 		return -EINVAL;
1393 
1394 	if (len) {
1395 		new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1396 		if (!new_alias)
1397 			return -ENOMEM;
1398 
1399 		memcpy(new_alias->ifalias, alias, len);
1400 		new_alias->ifalias[len] = 0;
1401 	}
1402 
1403 	mutex_lock(&ifalias_mutex);
1404 	new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1405 					mutex_is_locked(&ifalias_mutex));
1406 	mutex_unlock(&ifalias_mutex);
1407 
1408 	if (new_alias)
1409 		kfree_rcu(new_alias, rcuhead);
1410 
1411 	return len;
1412 }
1413 EXPORT_SYMBOL(dev_set_alias);
1414 
1415 /**
1416  *	dev_get_alias - get ifalias of a device
1417  *	@dev: device
1418  *	@name: buffer to store name of ifalias
1419  *	@len: size of buffer
1420  *
1421  *	get ifalias for a device.  Caller must make sure dev cannot go
1422  *	away,  e.g. rcu read lock or own a reference count to device.
1423  */
1424 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1425 {
1426 	const struct dev_ifalias *alias;
1427 	int ret = 0;
1428 
1429 	rcu_read_lock();
1430 	alias = rcu_dereference(dev->ifalias);
1431 	if (alias)
1432 		ret = snprintf(name, len, "%s", alias->ifalias);
1433 	rcu_read_unlock();
1434 
1435 	return ret;
1436 }
1437 
1438 /**
1439  *	netdev_features_change - device changes features
1440  *	@dev: device to cause notification
1441  *
1442  *	Called to indicate a device has changed features.
1443  */
1444 void netdev_features_change(struct net_device *dev)
1445 {
1446 	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1447 }
1448 EXPORT_SYMBOL(netdev_features_change);
1449 
1450 /**
1451  *	netdev_state_change - device changes state
1452  *	@dev: device to cause notification
1453  *
1454  *	Called to indicate a device has changed state. This function calls
1455  *	the notifier chains for netdev_chain and sends a NEWLINK message
1456  *	to the routing socket.
1457  */
1458 void netdev_state_change(struct net_device *dev)
1459 {
1460 	if (dev->flags & IFF_UP) {
1461 		struct netdev_notifier_change_info change_info = {
1462 			.info.dev = dev,
1463 		};
1464 
1465 		call_netdevice_notifiers_info(NETDEV_CHANGE,
1466 					      &change_info.info);
1467 		rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1468 	}
1469 }
1470 EXPORT_SYMBOL(netdev_state_change);
1471 
1472 /**
1473  * netdev_notify_peers - notify network peers about existence of @dev
1474  * @dev: network device
1475  *
1476  * Generate traffic such that interested network peers are aware of
1477  * @dev, such as by generating a gratuitous ARP. This may be used when
1478  * a device wants to inform the rest of the network about some sort of
1479  * reconfiguration such as a failover event or virtual machine
1480  * migration.
1481  */
1482 void netdev_notify_peers(struct net_device *dev)
1483 {
1484 	rtnl_lock();
1485 	call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1486 	call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1487 	rtnl_unlock();
1488 }
1489 EXPORT_SYMBOL(netdev_notify_peers);
1490 
1491 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1492 {
1493 	const struct net_device_ops *ops = dev->netdev_ops;
1494 	int ret;
1495 
1496 	ASSERT_RTNL();
1497 
1498 	if (!netif_device_present(dev)) {
1499 		/* may be detached because parent is runtime-suspended */
1500 		if (dev->dev.parent)
1501 			pm_runtime_resume(dev->dev.parent);
1502 		if (!netif_device_present(dev))
1503 			return -ENODEV;
1504 	}
1505 
1506 	/* Block netpoll from trying to do any rx path servicing.
1507 	 * If we don't do this there is a chance ndo_poll_controller
1508 	 * or ndo_poll may be running while we open the device
1509 	 */
1510 	netpoll_poll_disable(dev);
1511 
1512 	ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1513 	ret = notifier_to_errno(ret);
1514 	if (ret)
1515 		return ret;
1516 
1517 	set_bit(__LINK_STATE_START, &dev->state);
1518 
1519 	if (ops->ndo_validate_addr)
1520 		ret = ops->ndo_validate_addr(dev);
1521 
1522 	if (!ret && ops->ndo_open)
1523 		ret = ops->ndo_open(dev);
1524 
1525 	netpoll_poll_enable(dev);
1526 
1527 	if (ret)
1528 		clear_bit(__LINK_STATE_START, &dev->state);
1529 	else {
1530 		dev->flags |= IFF_UP;
1531 		dev_set_rx_mode(dev);
1532 		dev_activate(dev);
1533 		add_device_randomness(dev->dev_addr, dev->addr_len);
1534 	}
1535 
1536 	return ret;
1537 }
1538 
1539 /**
1540  *	dev_open	- prepare an interface for use.
1541  *	@dev: device to open
1542  *	@extack: netlink extended ack
1543  *
1544  *	Takes a device from down to up state. The device's private open
1545  *	function is invoked and then the multicast lists are loaded. Finally
1546  *	the device is moved into the up state and a %NETDEV_UP message is
1547  *	sent to the netdev notifier chain.
1548  *
1549  *	Calling this function on an active interface is a nop. On a failure
1550  *	a negative errno code is returned.
1551  */
1552 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1553 {
1554 	int ret;
1555 
1556 	if (dev->flags & IFF_UP)
1557 		return 0;
1558 
1559 	ret = __dev_open(dev, extack);
1560 	if (ret < 0)
1561 		return ret;
1562 
1563 	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1564 	call_netdevice_notifiers(NETDEV_UP, dev);
1565 
1566 	return ret;
1567 }
1568 EXPORT_SYMBOL(dev_open);
1569 
1570 static void __dev_close_many(struct list_head *head)
1571 {
1572 	struct net_device *dev;
1573 
1574 	ASSERT_RTNL();
1575 	might_sleep();
1576 
1577 	list_for_each_entry(dev, head, close_list) {
1578 		/* Temporarily disable netpoll until the interface is down */
1579 		netpoll_poll_disable(dev);
1580 
1581 		call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1582 
1583 		clear_bit(__LINK_STATE_START, &dev->state);
1584 
1585 		/* Synchronize to scheduled poll. We cannot touch poll list, it
1586 		 * can be even on different cpu. So just clear netif_running().
1587 		 *
1588 		 * dev->stop() will invoke napi_disable() on all of it's
1589 		 * napi_struct instances on this device.
1590 		 */
1591 		smp_mb__after_atomic(); /* Commit netif_running(). */
1592 	}
1593 
1594 	dev_deactivate_many(head);
1595 
1596 	list_for_each_entry(dev, head, close_list) {
1597 		const struct net_device_ops *ops = dev->netdev_ops;
1598 
1599 		/*
1600 		 *	Call the device specific close. This cannot fail.
1601 		 *	Only if device is UP
1602 		 *
1603 		 *	We allow it to be called even after a DETACH hot-plug
1604 		 *	event.
1605 		 */
1606 		if (ops->ndo_stop)
1607 			ops->ndo_stop(dev);
1608 
1609 		dev->flags &= ~IFF_UP;
1610 		netpoll_poll_enable(dev);
1611 	}
1612 }
1613 
1614 static void __dev_close(struct net_device *dev)
1615 {
1616 	LIST_HEAD(single);
1617 
1618 	list_add(&dev->close_list, &single);
1619 	__dev_close_many(&single);
1620 	list_del(&single);
1621 }
1622 
1623 void dev_close_many(struct list_head *head, bool unlink)
1624 {
1625 	struct net_device *dev, *tmp;
1626 
1627 	/* Remove the devices that don't need to be closed */
1628 	list_for_each_entry_safe(dev, tmp, head, close_list)
1629 		if (!(dev->flags & IFF_UP))
1630 			list_del_init(&dev->close_list);
1631 
1632 	__dev_close_many(head);
1633 
1634 	list_for_each_entry_safe(dev, tmp, head, close_list) {
1635 		rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1636 		call_netdevice_notifiers(NETDEV_DOWN, dev);
1637 		if (unlink)
1638 			list_del_init(&dev->close_list);
1639 	}
1640 }
1641 EXPORT_SYMBOL(dev_close_many);
1642 
1643 /**
1644  *	dev_close - shutdown an interface.
1645  *	@dev: device to shutdown
1646  *
1647  *	This function moves an active device into down state. A
1648  *	%NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1649  *	is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1650  *	chain.
1651  */
1652 void dev_close(struct net_device *dev)
1653 {
1654 	if (dev->flags & IFF_UP) {
1655 		LIST_HEAD(single);
1656 
1657 		list_add(&dev->close_list, &single);
1658 		dev_close_many(&single, true);
1659 		list_del(&single);
1660 	}
1661 }
1662 EXPORT_SYMBOL(dev_close);
1663 
1664 
1665 /**
1666  *	dev_disable_lro - disable Large Receive Offload on a device
1667  *	@dev: device
1668  *
1669  *	Disable Large Receive Offload (LRO) on a net device.  Must be
1670  *	called under RTNL.  This is needed if received packets may be
1671  *	forwarded to another interface.
1672  */
1673 void dev_disable_lro(struct net_device *dev)
1674 {
1675 	struct net_device *lower_dev;
1676 	struct list_head *iter;
1677 
1678 	dev->wanted_features &= ~NETIF_F_LRO;
1679 	netdev_update_features(dev);
1680 
1681 	if (unlikely(dev->features & NETIF_F_LRO))
1682 		netdev_WARN(dev, "failed to disable LRO!\n");
1683 
1684 	netdev_for_each_lower_dev(dev, lower_dev, iter)
1685 		dev_disable_lro(lower_dev);
1686 }
1687 EXPORT_SYMBOL(dev_disable_lro);
1688 
1689 /**
1690  *	dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1691  *	@dev: device
1692  *
1693  *	Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1694  *	called under RTNL.  This is needed if Generic XDP is installed on
1695  *	the device.
1696  */
1697 static void dev_disable_gro_hw(struct net_device *dev)
1698 {
1699 	dev->wanted_features &= ~NETIF_F_GRO_HW;
1700 	netdev_update_features(dev);
1701 
1702 	if (unlikely(dev->features & NETIF_F_GRO_HW))
1703 		netdev_WARN(dev, "failed to disable GRO_HW!\n");
1704 }
1705 
1706 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1707 {
1708 #define N(val) 						\
1709 	case NETDEV_##val:				\
1710 		return "NETDEV_" __stringify(val);
1711 	switch (cmd) {
1712 	N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1713 	N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1714 	N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1715 	N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
1716 	N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
1717 	N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
1718 	N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1719 	N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1720 	N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1721 	N(PRE_CHANGEADDR)
1722 	}
1723 #undef N
1724 	return "UNKNOWN_NETDEV_EVENT";
1725 }
1726 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1727 
1728 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1729 				   struct net_device *dev)
1730 {
1731 	struct netdev_notifier_info info = {
1732 		.dev = dev,
1733 	};
1734 
1735 	return nb->notifier_call(nb, val, &info);
1736 }
1737 
1738 static int call_netdevice_register_notifiers(struct notifier_block *nb,
1739 					     struct net_device *dev)
1740 {
1741 	int err;
1742 
1743 	err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1744 	err = notifier_to_errno(err);
1745 	if (err)
1746 		return err;
1747 
1748 	if (!(dev->flags & IFF_UP))
1749 		return 0;
1750 
1751 	call_netdevice_notifier(nb, NETDEV_UP, dev);
1752 	return 0;
1753 }
1754 
1755 static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1756 						struct net_device *dev)
1757 {
1758 	if (dev->flags & IFF_UP) {
1759 		call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1760 					dev);
1761 		call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1762 	}
1763 	call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1764 }
1765 
1766 static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1767 						 struct net *net)
1768 {
1769 	struct net_device *dev;
1770 	int err;
1771 
1772 	for_each_netdev(net, dev) {
1773 		err = call_netdevice_register_notifiers(nb, dev);
1774 		if (err)
1775 			goto rollback;
1776 	}
1777 	return 0;
1778 
1779 rollback:
1780 	for_each_netdev_continue_reverse(net, dev)
1781 		call_netdevice_unregister_notifiers(nb, dev);
1782 	return err;
1783 }
1784 
1785 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1786 						    struct net *net)
1787 {
1788 	struct net_device *dev;
1789 
1790 	for_each_netdev(net, dev)
1791 		call_netdevice_unregister_notifiers(nb, dev);
1792 }
1793 
1794 static int dev_boot_phase = 1;
1795 
1796 /**
1797  * register_netdevice_notifier - register a network notifier block
1798  * @nb: notifier
1799  *
1800  * Register a notifier to be called when network device events occur.
1801  * The notifier passed is linked into the kernel structures and must
1802  * not be reused until it has been unregistered. A negative errno code
1803  * is returned on a failure.
1804  *
1805  * When registered all registration and up events are replayed
1806  * to the new notifier to allow device to have a race free
1807  * view of the network device list.
1808  */
1809 
1810 int register_netdevice_notifier(struct notifier_block *nb)
1811 {
1812 	struct net *net;
1813 	int err;
1814 
1815 	/* Close race with setup_net() and cleanup_net() */
1816 	down_write(&pernet_ops_rwsem);
1817 	rtnl_lock();
1818 	err = raw_notifier_chain_register(&netdev_chain, nb);
1819 	if (err)
1820 		goto unlock;
1821 	if (dev_boot_phase)
1822 		goto unlock;
1823 	for_each_net(net) {
1824 		err = call_netdevice_register_net_notifiers(nb, net);
1825 		if (err)
1826 			goto rollback;
1827 	}
1828 
1829 unlock:
1830 	rtnl_unlock();
1831 	up_write(&pernet_ops_rwsem);
1832 	return err;
1833 
1834 rollback:
1835 	for_each_net_continue_reverse(net)
1836 		call_netdevice_unregister_net_notifiers(nb, net);
1837 
1838 	raw_notifier_chain_unregister(&netdev_chain, nb);
1839 	goto unlock;
1840 }
1841 EXPORT_SYMBOL(register_netdevice_notifier);
1842 
1843 /**
1844  * unregister_netdevice_notifier - unregister a network notifier block
1845  * @nb: notifier
1846  *
1847  * Unregister a notifier previously registered by
1848  * register_netdevice_notifier(). The notifier is unlinked into the
1849  * kernel structures and may then be reused. A negative errno code
1850  * is returned on a failure.
1851  *
1852  * After unregistering unregister and down device events are synthesized
1853  * for all devices on the device list to the removed notifier to remove
1854  * the need for special case cleanup code.
1855  */
1856 
1857 int unregister_netdevice_notifier(struct notifier_block *nb)
1858 {
1859 	struct net *net;
1860 	int err;
1861 
1862 	/* Close race with setup_net() and cleanup_net() */
1863 	down_write(&pernet_ops_rwsem);
1864 	rtnl_lock();
1865 	err = raw_notifier_chain_unregister(&netdev_chain, nb);
1866 	if (err)
1867 		goto unlock;
1868 
1869 	for_each_net(net)
1870 		call_netdevice_unregister_net_notifiers(nb, net);
1871 
1872 unlock:
1873 	rtnl_unlock();
1874 	up_write(&pernet_ops_rwsem);
1875 	return err;
1876 }
1877 EXPORT_SYMBOL(unregister_netdevice_notifier);
1878 
1879 static int __register_netdevice_notifier_net(struct net *net,
1880 					     struct notifier_block *nb,
1881 					     bool ignore_call_fail)
1882 {
1883 	int err;
1884 
1885 	err = raw_notifier_chain_register(&net->netdev_chain, nb);
1886 	if (err)
1887 		return err;
1888 	if (dev_boot_phase)
1889 		return 0;
1890 
1891 	err = call_netdevice_register_net_notifiers(nb, net);
1892 	if (err && !ignore_call_fail)
1893 		goto chain_unregister;
1894 
1895 	return 0;
1896 
1897 chain_unregister:
1898 	raw_notifier_chain_unregister(&net->netdev_chain, nb);
1899 	return err;
1900 }
1901 
1902 static int __unregister_netdevice_notifier_net(struct net *net,
1903 					       struct notifier_block *nb)
1904 {
1905 	int err;
1906 
1907 	err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
1908 	if (err)
1909 		return err;
1910 
1911 	call_netdevice_unregister_net_notifiers(nb, net);
1912 	return 0;
1913 }
1914 
1915 /**
1916  * register_netdevice_notifier_net - register a per-netns network notifier block
1917  * @net: network namespace
1918  * @nb: notifier
1919  *
1920  * Register a notifier to be called when network device events occur.
1921  * The notifier passed is linked into the kernel structures and must
1922  * not be reused until it has been unregistered. A negative errno code
1923  * is returned on a failure.
1924  *
1925  * When registered all registration and up events are replayed
1926  * to the new notifier to allow device to have a race free
1927  * view of the network device list.
1928  */
1929 
1930 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
1931 {
1932 	int err;
1933 
1934 	rtnl_lock();
1935 	err = __register_netdevice_notifier_net(net, nb, false);
1936 	rtnl_unlock();
1937 	return err;
1938 }
1939 EXPORT_SYMBOL(register_netdevice_notifier_net);
1940 
1941 /**
1942  * unregister_netdevice_notifier_net - unregister a per-netns
1943  *                                     network notifier block
1944  * @net: network namespace
1945  * @nb: notifier
1946  *
1947  * Unregister a notifier previously registered by
1948  * register_netdevice_notifier(). The notifier is unlinked into the
1949  * kernel structures and may then be reused. A negative errno code
1950  * is returned on a failure.
1951  *
1952  * After unregistering unregister and down device events are synthesized
1953  * for all devices on the device list to the removed notifier to remove
1954  * the need for special case cleanup code.
1955  */
1956 
1957 int unregister_netdevice_notifier_net(struct net *net,
1958 				      struct notifier_block *nb)
1959 {
1960 	int err;
1961 
1962 	rtnl_lock();
1963 	err = __unregister_netdevice_notifier_net(net, nb);
1964 	rtnl_unlock();
1965 	return err;
1966 }
1967 EXPORT_SYMBOL(unregister_netdevice_notifier_net);
1968 
1969 int register_netdevice_notifier_dev_net(struct net_device *dev,
1970 					struct notifier_block *nb,
1971 					struct netdev_net_notifier *nn)
1972 {
1973 	int err;
1974 
1975 	rtnl_lock();
1976 	err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
1977 	if (!err) {
1978 		nn->nb = nb;
1979 		list_add(&nn->list, &dev->net_notifier_list);
1980 	}
1981 	rtnl_unlock();
1982 	return err;
1983 }
1984 EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
1985 
1986 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
1987 					  struct notifier_block *nb,
1988 					  struct netdev_net_notifier *nn)
1989 {
1990 	int err;
1991 
1992 	rtnl_lock();
1993 	list_del(&nn->list);
1994 	err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
1995 	rtnl_unlock();
1996 	return err;
1997 }
1998 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
1999 
2000 static void move_netdevice_notifiers_dev_net(struct net_device *dev,
2001 					     struct net *net)
2002 {
2003 	struct netdev_net_notifier *nn;
2004 
2005 	list_for_each_entry(nn, &dev->net_notifier_list, list) {
2006 		__unregister_netdevice_notifier_net(dev_net(dev), nn->nb);
2007 		__register_netdevice_notifier_net(net, nn->nb, true);
2008 	}
2009 }
2010 
2011 /**
2012  *	call_netdevice_notifiers_info - call all network notifier blocks
2013  *	@val: value passed unmodified to notifier function
2014  *	@info: notifier information data
2015  *
2016  *	Call all network notifier blocks.  Parameters and return value
2017  *	are as for raw_notifier_call_chain().
2018  */
2019 
2020 static int call_netdevice_notifiers_info(unsigned long val,
2021 					 struct netdev_notifier_info *info)
2022 {
2023 	struct net *net = dev_net(info->dev);
2024 	int ret;
2025 
2026 	ASSERT_RTNL();
2027 
2028 	/* Run per-netns notifier block chain first, then run the global one.
2029 	 * Hopefully, one day, the global one is going to be removed after
2030 	 * all notifier block registrators get converted to be per-netns.
2031 	 */
2032 	ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
2033 	if (ret & NOTIFY_STOP_MASK)
2034 		return ret;
2035 	return raw_notifier_call_chain(&netdev_chain, val, info);
2036 }
2037 
2038 static int call_netdevice_notifiers_extack(unsigned long val,
2039 					   struct net_device *dev,
2040 					   struct netlink_ext_ack *extack)
2041 {
2042 	struct netdev_notifier_info info = {
2043 		.dev = dev,
2044 		.extack = extack,
2045 	};
2046 
2047 	return call_netdevice_notifiers_info(val, &info);
2048 }
2049 
2050 /**
2051  *	call_netdevice_notifiers - call all network notifier blocks
2052  *      @val: value passed unmodified to notifier function
2053  *      @dev: net_device pointer passed unmodified to notifier function
2054  *
2055  *	Call all network notifier blocks.  Parameters and return value
2056  *	are as for raw_notifier_call_chain().
2057  */
2058 
2059 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
2060 {
2061 	return call_netdevice_notifiers_extack(val, dev, NULL);
2062 }
2063 EXPORT_SYMBOL(call_netdevice_notifiers);
2064 
2065 /**
2066  *	call_netdevice_notifiers_mtu - call all network notifier blocks
2067  *	@val: value passed unmodified to notifier function
2068  *	@dev: net_device pointer passed unmodified to notifier function
2069  *	@arg: additional u32 argument passed to the notifier function
2070  *
2071  *	Call all network notifier blocks.  Parameters and return value
2072  *	are as for raw_notifier_call_chain().
2073  */
2074 static int call_netdevice_notifiers_mtu(unsigned long val,
2075 					struct net_device *dev, u32 arg)
2076 {
2077 	struct netdev_notifier_info_ext info = {
2078 		.info.dev = dev,
2079 		.ext.mtu = arg,
2080 	};
2081 
2082 	BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2083 
2084 	return call_netdevice_notifiers_info(val, &info.info);
2085 }
2086 
2087 #ifdef CONFIG_NET_INGRESS
2088 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2089 
2090 void net_inc_ingress_queue(void)
2091 {
2092 	static_branch_inc(&ingress_needed_key);
2093 }
2094 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2095 
2096 void net_dec_ingress_queue(void)
2097 {
2098 	static_branch_dec(&ingress_needed_key);
2099 }
2100 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2101 #endif
2102 
2103 #ifdef CONFIG_NET_EGRESS
2104 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2105 
2106 void net_inc_egress_queue(void)
2107 {
2108 	static_branch_inc(&egress_needed_key);
2109 }
2110 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2111 
2112 void net_dec_egress_queue(void)
2113 {
2114 	static_branch_dec(&egress_needed_key);
2115 }
2116 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2117 #endif
2118 
2119 static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2120 #ifdef CONFIG_JUMP_LABEL
2121 static atomic_t netstamp_needed_deferred;
2122 static atomic_t netstamp_wanted;
2123 static void netstamp_clear(struct work_struct *work)
2124 {
2125 	int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2126 	int wanted;
2127 
2128 	wanted = atomic_add_return(deferred, &netstamp_wanted);
2129 	if (wanted > 0)
2130 		static_branch_enable(&netstamp_needed_key);
2131 	else
2132 		static_branch_disable(&netstamp_needed_key);
2133 }
2134 static DECLARE_WORK(netstamp_work, netstamp_clear);
2135 #endif
2136 
2137 void net_enable_timestamp(void)
2138 {
2139 #ifdef CONFIG_JUMP_LABEL
2140 	int wanted;
2141 
2142 	while (1) {
2143 		wanted = atomic_read(&netstamp_wanted);
2144 		if (wanted <= 0)
2145 			break;
2146 		if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
2147 			return;
2148 	}
2149 	atomic_inc(&netstamp_needed_deferred);
2150 	schedule_work(&netstamp_work);
2151 #else
2152 	static_branch_inc(&netstamp_needed_key);
2153 #endif
2154 }
2155 EXPORT_SYMBOL(net_enable_timestamp);
2156 
2157 void net_disable_timestamp(void)
2158 {
2159 #ifdef CONFIG_JUMP_LABEL
2160 	int wanted;
2161 
2162 	while (1) {
2163 		wanted = atomic_read(&netstamp_wanted);
2164 		if (wanted <= 1)
2165 			break;
2166 		if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
2167 			return;
2168 	}
2169 	atomic_dec(&netstamp_needed_deferred);
2170 	schedule_work(&netstamp_work);
2171 #else
2172 	static_branch_dec(&netstamp_needed_key);
2173 #endif
2174 }
2175 EXPORT_SYMBOL(net_disable_timestamp);
2176 
2177 static inline void net_timestamp_set(struct sk_buff *skb)
2178 {
2179 	skb->tstamp = 0;
2180 	if (static_branch_unlikely(&netstamp_needed_key))
2181 		__net_timestamp(skb);
2182 }
2183 
2184 #define net_timestamp_check(COND, SKB)				\
2185 	if (static_branch_unlikely(&netstamp_needed_key)) {	\
2186 		if ((COND) && !(SKB)->tstamp)			\
2187 			__net_timestamp(SKB);			\
2188 	}							\
2189 
2190 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2191 {
2192 	unsigned int len;
2193 
2194 	if (!(dev->flags & IFF_UP))
2195 		return false;
2196 
2197 	len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
2198 	if (skb->len <= len)
2199 		return true;
2200 
2201 	/* if TSO is enabled, we don't care about the length as the packet
2202 	 * could be forwarded without being segmented before
2203 	 */
2204 	if (skb_is_gso(skb))
2205 		return true;
2206 
2207 	return false;
2208 }
2209 EXPORT_SYMBOL_GPL(is_skb_forwardable);
2210 
2211 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2212 {
2213 	int ret = ____dev_forward_skb(dev, skb);
2214 
2215 	if (likely(!ret)) {
2216 		skb->protocol = eth_type_trans(skb, dev);
2217 		skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2218 	}
2219 
2220 	return ret;
2221 }
2222 EXPORT_SYMBOL_GPL(__dev_forward_skb);
2223 
2224 /**
2225  * dev_forward_skb - loopback an skb to another netif
2226  *
2227  * @dev: destination network device
2228  * @skb: buffer to forward
2229  *
2230  * return values:
2231  *	NET_RX_SUCCESS	(no congestion)
2232  *	NET_RX_DROP     (packet was dropped, but freed)
2233  *
2234  * dev_forward_skb can be used for injecting an skb from the
2235  * start_xmit function of one device into the receive queue
2236  * of another device.
2237  *
2238  * The receiving device may be in another namespace, so
2239  * we have to clear all information in the skb that could
2240  * impact namespace isolation.
2241  */
2242 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2243 {
2244 	return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2245 }
2246 EXPORT_SYMBOL_GPL(dev_forward_skb);
2247 
2248 static inline int deliver_skb(struct sk_buff *skb,
2249 			      struct packet_type *pt_prev,
2250 			      struct net_device *orig_dev)
2251 {
2252 	if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2253 		return -ENOMEM;
2254 	refcount_inc(&skb->users);
2255 	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2256 }
2257 
2258 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2259 					  struct packet_type **pt,
2260 					  struct net_device *orig_dev,
2261 					  __be16 type,
2262 					  struct list_head *ptype_list)
2263 {
2264 	struct packet_type *ptype, *pt_prev = *pt;
2265 
2266 	list_for_each_entry_rcu(ptype, ptype_list, list) {
2267 		if (ptype->type != type)
2268 			continue;
2269 		if (pt_prev)
2270 			deliver_skb(skb, pt_prev, orig_dev);
2271 		pt_prev = ptype;
2272 	}
2273 	*pt = pt_prev;
2274 }
2275 
2276 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2277 {
2278 	if (!ptype->af_packet_priv || !skb->sk)
2279 		return false;
2280 
2281 	if (ptype->id_match)
2282 		return ptype->id_match(ptype, skb->sk);
2283 	else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2284 		return true;
2285 
2286 	return false;
2287 }
2288 
2289 /**
2290  * dev_nit_active - return true if any network interface taps are in use
2291  *
2292  * @dev: network device to check for the presence of taps
2293  */
2294 bool dev_nit_active(struct net_device *dev)
2295 {
2296 	return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
2297 }
2298 EXPORT_SYMBOL_GPL(dev_nit_active);
2299 
2300 /*
2301  *	Support routine. Sends outgoing frames to any network
2302  *	taps currently in use.
2303  */
2304 
2305 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2306 {
2307 	struct packet_type *ptype;
2308 	struct sk_buff *skb2 = NULL;
2309 	struct packet_type *pt_prev = NULL;
2310 	struct list_head *ptype_list = &ptype_all;
2311 
2312 	rcu_read_lock();
2313 again:
2314 	list_for_each_entry_rcu(ptype, ptype_list, list) {
2315 		if (ptype->ignore_outgoing)
2316 			continue;
2317 
2318 		/* Never send packets back to the socket
2319 		 * they originated from - MvS (miquels@drinkel.ow.org)
2320 		 */
2321 		if (skb_loop_sk(ptype, skb))
2322 			continue;
2323 
2324 		if (pt_prev) {
2325 			deliver_skb(skb2, pt_prev, skb->dev);
2326 			pt_prev = ptype;
2327 			continue;
2328 		}
2329 
2330 		/* need to clone skb, done only once */
2331 		skb2 = skb_clone(skb, GFP_ATOMIC);
2332 		if (!skb2)
2333 			goto out_unlock;
2334 
2335 		net_timestamp_set(skb2);
2336 
2337 		/* skb->nh should be correctly
2338 		 * set by sender, so that the second statement is
2339 		 * just protection against buggy protocols.
2340 		 */
2341 		skb_reset_mac_header(skb2);
2342 
2343 		if (skb_network_header(skb2) < skb2->data ||
2344 		    skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2345 			net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2346 					     ntohs(skb2->protocol),
2347 					     dev->name);
2348 			skb_reset_network_header(skb2);
2349 		}
2350 
2351 		skb2->transport_header = skb2->network_header;
2352 		skb2->pkt_type = PACKET_OUTGOING;
2353 		pt_prev = ptype;
2354 	}
2355 
2356 	if (ptype_list == &ptype_all) {
2357 		ptype_list = &dev->ptype_all;
2358 		goto again;
2359 	}
2360 out_unlock:
2361 	if (pt_prev) {
2362 		if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2363 			pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2364 		else
2365 			kfree_skb(skb2);
2366 	}
2367 	rcu_read_unlock();
2368 }
2369 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2370 
2371 /**
2372  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2373  * @dev: Network device
2374  * @txq: number of queues available
2375  *
2376  * If real_num_tx_queues is changed the tc mappings may no longer be
2377  * valid. To resolve this verify the tc mapping remains valid and if
2378  * not NULL the mapping. With no priorities mapping to this
2379  * offset/count pair it will no longer be used. In the worst case TC0
2380  * is invalid nothing can be done so disable priority mappings. If is
2381  * expected that drivers will fix this mapping if they can before
2382  * calling netif_set_real_num_tx_queues.
2383  */
2384 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2385 {
2386 	int i;
2387 	struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2388 
2389 	/* If TC0 is invalidated disable TC mapping */
2390 	if (tc->offset + tc->count > txq) {
2391 		pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2392 		dev->num_tc = 0;
2393 		return;
2394 	}
2395 
2396 	/* Invalidated prio to tc mappings set to TC0 */
2397 	for (i = 1; i < TC_BITMASK + 1; i++) {
2398 		int q = netdev_get_prio_tc_map(dev, i);
2399 
2400 		tc = &dev->tc_to_txq[q];
2401 		if (tc->offset + tc->count > txq) {
2402 			pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2403 				i, q);
2404 			netdev_set_prio_tc_map(dev, i, 0);
2405 		}
2406 	}
2407 }
2408 
2409 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2410 {
2411 	if (dev->num_tc) {
2412 		struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2413 		int i;
2414 
2415 		/* walk through the TCs and see if it falls into any of them */
2416 		for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2417 			if ((txq - tc->offset) < tc->count)
2418 				return i;
2419 		}
2420 
2421 		/* didn't find it, just return -1 to indicate no match */
2422 		return -1;
2423 	}
2424 
2425 	return 0;
2426 }
2427 EXPORT_SYMBOL(netdev_txq_to_tc);
2428 
2429 #ifdef CONFIG_XPS
2430 struct static_key xps_needed __read_mostly;
2431 EXPORT_SYMBOL(xps_needed);
2432 struct static_key xps_rxqs_needed __read_mostly;
2433 EXPORT_SYMBOL(xps_rxqs_needed);
2434 static DEFINE_MUTEX(xps_map_mutex);
2435 #define xmap_dereference(P)		\
2436 	rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2437 
2438 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2439 			     int tci, u16 index)
2440 {
2441 	struct xps_map *map = NULL;
2442 	int pos;
2443 
2444 	if (dev_maps)
2445 		map = xmap_dereference(dev_maps->attr_map[tci]);
2446 	if (!map)
2447 		return false;
2448 
2449 	for (pos = map->len; pos--;) {
2450 		if (map->queues[pos] != index)
2451 			continue;
2452 
2453 		if (map->len > 1) {
2454 			map->queues[pos] = map->queues[--map->len];
2455 			break;
2456 		}
2457 
2458 		RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2459 		kfree_rcu(map, rcu);
2460 		return false;
2461 	}
2462 
2463 	return true;
2464 }
2465 
2466 static bool remove_xps_queue_cpu(struct net_device *dev,
2467 				 struct xps_dev_maps *dev_maps,
2468 				 int cpu, u16 offset, u16 count)
2469 {
2470 	int num_tc = dev->num_tc ? : 1;
2471 	bool active = false;
2472 	int tci;
2473 
2474 	for (tci = cpu * num_tc; num_tc--; tci++) {
2475 		int i, j;
2476 
2477 		for (i = count, j = offset; i--; j++) {
2478 			if (!remove_xps_queue(dev_maps, tci, j))
2479 				break;
2480 		}
2481 
2482 		active |= i < 0;
2483 	}
2484 
2485 	return active;
2486 }
2487 
2488 static void reset_xps_maps(struct net_device *dev,
2489 			   struct xps_dev_maps *dev_maps,
2490 			   bool is_rxqs_map)
2491 {
2492 	if (is_rxqs_map) {
2493 		static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2494 		RCU_INIT_POINTER(dev->xps_rxqs_map, NULL);
2495 	} else {
2496 		RCU_INIT_POINTER(dev->xps_cpus_map, NULL);
2497 	}
2498 	static_key_slow_dec_cpuslocked(&xps_needed);
2499 	kfree_rcu(dev_maps, rcu);
2500 }
2501 
2502 static void clean_xps_maps(struct net_device *dev, const unsigned long *mask,
2503 			   struct xps_dev_maps *dev_maps, unsigned int nr_ids,
2504 			   u16 offset, u16 count, bool is_rxqs_map)
2505 {
2506 	bool active = false;
2507 	int i, j;
2508 
2509 	for (j = -1; j = netif_attrmask_next(j, mask, nr_ids),
2510 	     j < nr_ids;)
2511 		active |= remove_xps_queue_cpu(dev, dev_maps, j, offset,
2512 					       count);
2513 	if (!active)
2514 		reset_xps_maps(dev, dev_maps, is_rxqs_map);
2515 
2516 	if (!is_rxqs_map) {
2517 		for (i = offset + (count - 1); count--; i--) {
2518 			netdev_queue_numa_node_write(
2519 				netdev_get_tx_queue(dev, i),
2520 				NUMA_NO_NODE);
2521 		}
2522 	}
2523 }
2524 
2525 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2526 				   u16 count)
2527 {
2528 	const unsigned long *possible_mask = NULL;
2529 	struct xps_dev_maps *dev_maps;
2530 	unsigned int nr_ids;
2531 
2532 	if (!static_key_false(&xps_needed))
2533 		return;
2534 
2535 	cpus_read_lock();
2536 	mutex_lock(&xps_map_mutex);
2537 
2538 	if (static_key_false(&xps_rxqs_needed)) {
2539 		dev_maps = xmap_dereference(dev->xps_rxqs_map);
2540 		if (dev_maps) {
2541 			nr_ids = dev->num_rx_queues;
2542 			clean_xps_maps(dev, possible_mask, dev_maps, nr_ids,
2543 				       offset, count, true);
2544 		}
2545 	}
2546 
2547 	dev_maps = xmap_dereference(dev->xps_cpus_map);
2548 	if (!dev_maps)
2549 		goto out_no_maps;
2550 
2551 	if (num_possible_cpus() > 1)
2552 		possible_mask = cpumask_bits(cpu_possible_mask);
2553 	nr_ids = nr_cpu_ids;
2554 	clean_xps_maps(dev, possible_mask, dev_maps, nr_ids, offset, count,
2555 		       false);
2556 
2557 out_no_maps:
2558 	mutex_unlock(&xps_map_mutex);
2559 	cpus_read_unlock();
2560 }
2561 
2562 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2563 {
2564 	netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2565 }
2566 
2567 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2568 				      u16 index, bool is_rxqs_map)
2569 {
2570 	struct xps_map *new_map;
2571 	int alloc_len = XPS_MIN_MAP_ALLOC;
2572 	int i, pos;
2573 
2574 	for (pos = 0; map && pos < map->len; pos++) {
2575 		if (map->queues[pos] != index)
2576 			continue;
2577 		return map;
2578 	}
2579 
2580 	/* Need to add tx-queue to this CPU's/rx-queue's existing map */
2581 	if (map) {
2582 		if (pos < map->alloc_len)
2583 			return map;
2584 
2585 		alloc_len = map->alloc_len * 2;
2586 	}
2587 
2588 	/* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2589 	 *  map
2590 	 */
2591 	if (is_rxqs_map)
2592 		new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2593 	else
2594 		new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2595 				       cpu_to_node(attr_index));
2596 	if (!new_map)
2597 		return NULL;
2598 
2599 	for (i = 0; i < pos; i++)
2600 		new_map->queues[i] = map->queues[i];
2601 	new_map->alloc_len = alloc_len;
2602 	new_map->len = pos;
2603 
2604 	return new_map;
2605 }
2606 
2607 /* Must be called under cpus_read_lock */
2608 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2609 			  u16 index, bool is_rxqs_map)
2610 {
2611 	const unsigned long *online_mask = NULL, *possible_mask = NULL;
2612 	struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2613 	int i, j, tci, numa_node_id = -2;
2614 	int maps_sz, num_tc = 1, tc = 0;
2615 	struct xps_map *map, *new_map;
2616 	bool active = false;
2617 	unsigned int nr_ids;
2618 
2619 	if (dev->num_tc) {
2620 		/* Do not allow XPS on subordinate device directly */
2621 		num_tc = dev->num_tc;
2622 		if (num_tc < 0)
2623 			return -EINVAL;
2624 
2625 		/* If queue belongs to subordinate dev use its map */
2626 		dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2627 
2628 		tc = netdev_txq_to_tc(dev, index);
2629 		if (tc < 0)
2630 			return -EINVAL;
2631 	}
2632 
2633 	mutex_lock(&xps_map_mutex);
2634 	if (is_rxqs_map) {
2635 		maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2636 		dev_maps = xmap_dereference(dev->xps_rxqs_map);
2637 		nr_ids = dev->num_rx_queues;
2638 	} else {
2639 		maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2640 		if (num_possible_cpus() > 1) {
2641 			online_mask = cpumask_bits(cpu_online_mask);
2642 			possible_mask = cpumask_bits(cpu_possible_mask);
2643 		}
2644 		dev_maps = xmap_dereference(dev->xps_cpus_map);
2645 		nr_ids = nr_cpu_ids;
2646 	}
2647 
2648 	if (maps_sz < L1_CACHE_BYTES)
2649 		maps_sz = L1_CACHE_BYTES;
2650 
2651 	/* allocate memory for queue storage */
2652 	for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2653 	     j < nr_ids;) {
2654 		if (!new_dev_maps)
2655 			new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2656 		if (!new_dev_maps) {
2657 			mutex_unlock(&xps_map_mutex);
2658 			return -ENOMEM;
2659 		}
2660 
2661 		tci = j * num_tc + tc;
2662 		map = dev_maps ? xmap_dereference(dev_maps->attr_map[tci]) :
2663 				 NULL;
2664 
2665 		map = expand_xps_map(map, j, index, is_rxqs_map);
2666 		if (!map)
2667 			goto error;
2668 
2669 		RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2670 	}
2671 
2672 	if (!new_dev_maps)
2673 		goto out_no_new_maps;
2674 
2675 	if (!dev_maps) {
2676 		/* Increment static keys at most once per type */
2677 		static_key_slow_inc_cpuslocked(&xps_needed);
2678 		if (is_rxqs_map)
2679 			static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2680 	}
2681 
2682 	for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2683 	     j < nr_ids;) {
2684 		/* copy maps belonging to foreign traffic classes */
2685 		for (i = tc, tci = j * num_tc; dev_maps && i--; tci++) {
2686 			/* fill in the new device map from the old device map */
2687 			map = xmap_dereference(dev_maps->attr_map[tci]);
2688 			RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2689 		}
2690 
2691 		/* We need to explicitly update tci as prevous loop
2692 		 * could break out early if dev_maps is NULL.
2693 		 */
2694 		tci = j * num_tc + tc;
2695 
2696 		if (netif_attr_test_mask(j, mask, nr_ids) &&
2697 		    netif_attr_test_online(j, online_mask, nr_ids)) {
2698 			/* add tx-queue to CPU/rx-queue maps */
2699 			int pos = 0;
2700 
2701 			map = xmap_dereference(new_dev_maps->attr_map[tci]);
2702 			while ((pos < map->len) && (map->queues[pos] != index))
2703 				pos++;
2704 
2705 			if (pos == map->len)
2706 				map->queues[map->len++] = index;
2707 #ifdef CONFIG_NUMA
2708 			if (!is_rxqs_map) {
2709 				if (numa_node_id == -2)
2710 					numa_node_id = cpu_to_node(j);
2711 				else if (numa_node_id != cpu_to_node(j))
2712 					numa_node_id = -1;
2713 			}
2714 #endif
2715 		} else if (dev_maps) {
2716 			/* fill in the new device map from the old device map */
2717 			map = xmap_dereference(dev_maps->attr_map[tci]);
2718 			RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2719 		}
2720 
2721 		/* copy maps belonging to foreign traffic classes */
2722 		for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2723 			/* fill in the new device map from the old device map */
2724 			map = xmap_dereference(dev_maps->attr_map[tci]);
2725 			RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2726 		}
2727 	}
2728 
2729 	if (is_rxqs_map)
2730 		rcu_assign_pointer(dev->xps_rxqs_map, new_dev_maps);
2731 	else
2732 		rcu_assign_pointer(dev->xps_cpus_map, new_dev_maps);
2733 
2734 	/* Cleanup old maps */
2735 	if (!dev_maps)
2736 		goto out_no_old_maps;
2737 
2738 	for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2739 	     j < nr_ids;) {
2740 		for (i = num_tc, tci = j * num_tc; i--; tci++) {
2741 			new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2742 			map = xmap_dereference(dev_maps->attr_map[tci]);
2743 			if (map && map != new_map)
2744 				kfree_rcu(map, rcu);
2745 		}
2746 	}
2747 
2748 	kfree_rcu(dev_maps, rcu);
2749 
2750 out_no_old_maps:
2751 	dev_maps = new_dev_maps;
2752 	active = true;
2753 
2754 out_no_new_maps:
2755 	if (!is_rxqs_map) {
2756 		/* update Tx queue numa node */
2757 		netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2758 					     (numa_node_id >= 0) ?
2759 					     numa_node_id : NUMA_NO_NODE);
2760 	}
2761 
2762 	if (!dev_maps)
2763 		goto out_no_maps;
2764 
2765 	/* removes tx-queue from unused CPUs/rx-queues */
2766 	for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2767 	     j < nr_ids;) {
2768 		for (i = tc, tci = j * num_tc; i--; tci++)
2769 			active |= remove_xps_queue(dev_maps, tci, index);
2770 		if (!netif_attr_test_mask(j, mask, nr_ids) ||
2771 		    !netif_attr_test_online(j, online_mask, nr_ids))
2772 			active |= remove_xps_queue(dev_maps, tci, index);
2773 		for (i = num_tc - tc, tci++; --i; tci++)
2774 			active |= remove_xps_queue(dev_maps, tci, index);
2775 	}
2776 
2777 	/* free map if not active */
2778 	if (!active)
2779 		reset_xps_maps(dev, dev_maps, is_rxqs_map);
2780 
2781 out_no_maps:
2782 	mutex_unlock(&xps_map_mutex);
2783 
2784 	return 0;
2785 error:
2786 	/* remove any maps that we added */
2787 	for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2788 	     j < nr_ids;) {
2789 		for (i = num_tc, tci = j * num_tc; i--; tci++) {
2790 			new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2791 			map = dev_maps ?
2792 			      xmap_dereference(dev_maps->attr_map[tci]) :
2793 			      NULL;
2794 			if (new_map && new_map != map)
2795 				kfree(new_map);
2796 		}
2797 	}
2798 
2799 	mutex_unlock(&xps_map_mutex);
2800 
2801 	kfree(new_dev_maps);
2802 	return -ENOMEM;
2803 }
2804 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2805 
2806 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2807 			u16 index)
2808 {
2809 	int ret;
2810 
2811 	cpus_read_lock();
2812 	ret =  __netif_set_xps_queue(dev, cpumask_bits(mask), index, false);
2813 	cpus_read_unlock();
2814 
2815 	return ret;
2816 }
2817 EXPORT_SYMBOL(netif_set_xps_queue);
2818 
2819 #endif
2820 static void netdev_unbind_all_sb_channels(struct net_device *dev)
2821 {
2822 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2823 
2824 	/* Unbind any subordinate channels */
2825 	while (txq-- != &dev->_tx[0]) {
2826 		if (txq->sb_dev)
2827 			netdev_unbind_sb_channel(dev, txq->sb_dev);
2828 	}
2829 }
2830 
2831 void netdev_reset_tc(struct net_device *dev)
2832 {
2833 #ifdef CONFIG_XPS
2834 	netif_reset_xps_queues_gt(dev, 0);
2835 #endif
2836 	netdev_unbind_all_sb_channels(dev);
2837 
2838 	/* Reset TC configuration of device */
2839 	dev->num_tc = 0;
2840 	memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2841 	memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2842 }
2843 EXPORT_SYMBOL(netdev_reset_tc);
2844 
2845 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2846 {
2847 	if (tc >= dev->num_tc)
2848 		return -EINVAL;
2849 
2850 #ifdef CONFIG_XPS
2851 	netif_reset_xps_queues(dev, offset, count);
2852 #endif
2853 	dev->tc_to_txq[tc].count = count;
2854 	dev->tc_to_txq[tc].offset = offset;
2855 	return 0;
2856 }
2857 EXPORT_SYMBOL(netdev_set_tc_queue);
2858 
2859 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2860 {
2861 	if (num_tc > TC_MAX_QUEUE)
2862 		return -EINVAL;
2863 
2864 #ifdef CONFIG_XPS
2865 	netif_reset_xps_queues_gt(dev, 0);
2866 #endif
2867 	netdev_unbind_all_sb_channels(dev);
2868 
2869 	dev->num_tc = num_tc;
2870 	return 0;
2871 }
2872 EXPORT_SYMBOL(netdev_set_num_tc);
2873 
2874 void netdev_unbind_sb_channel(struct net_device *dev,
2875 			      struct net_device *sb_dev)
2876 {
2877 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2878 
2879 #ifdef CONFIG_XPS
2880 	netif_reset_xps_queues_gt(sb_dev, 0);
2881 #endif
2882 	memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2883 	memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2884 
2885 	while (txq-- != &dev->_tx[0]) {
2886 		if (txq->sb_dev == sb_dev)
2887 			txq->sb_dev = NULL;
2888 	}
2889 }
2890 EXPORT_SYMBOL(netdev_unbind_sb_channel);
2891 
2892 int netdev_bind_sb_channel_queue(struct net_device *dev,
2893 				 struct net_device *sb_dev,
2894 				 u8 tc, u16 count, u16 offset)
2895 {
2896 	/* Make certain the sb_dev and dev are already configured */
2897 	if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2898 		return -EINVAL;
2899 
2900 	/* We cannot hand out queues we don't have */
2901 	if ((offset + count) > dev->real_num_tx_queues)
2902 		return -EINVAL;
2903 
2904 	/* Record the mapping */
2905 	sb_dev->tc_to_txq[tc].count = count;
2906 	sb_dev->tc_to_txq[tc].offset = offset;
2907 
2908 	/* Provide a way for Tx queue to find the tc_to_txq map or
2909 	 * XPS map for itself.
2910 	 */
2911 	while (count--)
2912 		netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2913 
2914 	return 0;
2915 }
2916 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2917 
2918 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2919 {
2920 	/* Do not use a multiqueue device to represent a subordinate channel */
2921 	if (netif_is_multiqueue(dev))
2922 		return -ENODEV;
2923 
2924 	/* We allow channels 1 - 32767 to be used for subordinate channels.
2925 	 * Channel 0 is meant to be "native" mode and used only to represent
2926 	 * the main root device. We allow writing 0 to reset the device back
2927 	 * to normal mode after being used as a subordinate channel.
2928 	 */
2929 	if (channel > S16_MAX)
2930 		return -EINVAL;
2931 
2932 	dev->num_tc = -channel;
2933 
2934 	return 0;
2935 }
2936 EXPORT_SYMBOL(netdev_set_sb_channel);
2937 
2938 /*
2939  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2940  * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2941  */
2942 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2943 {
2944 	bool disabling;
2945 	int rc;
2946 
2947 	disabling = txq < dev->real_num_tx_queues;
2948 
2949 	if (txq < 1 || txq > dev->num_tx_queues)
2950 		return -EINVAL;
2951 
2952 	if (dev->reg_state == NETREG_REGISTERED ||
2953 	    dev->reg_state == NETREG_UNREGISTERING) {
2954 		ASSERT_RTNL();
2955 
2956 		rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2957 						  txq);
2958 		if (rc)
2959 			return rc;
2960 
2961 		if (dev->num_tc)
2962 			netif_setup_tc(dev, txq);
2963 
2964 		dev->real_num_tx_queues = txq;
2965 
2966 		if (disabling) {
2967 			synchronize_net();
2968 			qdisc_reset_all_tx_gt(dev, txq);
2969 #ifdef CONFIG_XPS
2970 			netif_reset_xps_queues_gt(dev, txq);
2971 #endif
2972 		}
2973 	} else {
2974 		dev->real_num_tx_queues = txq;
2975 	}
2976 
2977 	return 0;
2978 }
2979 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2980 
2981 #ifdef CONFIG_SYSFS
2982 /**
2983  *	netif_set_real_num_rx_queues - set actual number of RX queues used
2984  *	@dev: Network device
2985  *	@rxq: Actual number of RX queues
2986  *
2987  *	This must be called either with the rtnl_lock held or before
2988  *	registration of the net device.  Returns 0 on success, or a
2989  *	negative error code.  If called before registration, it always
2990  *	succeeds.
2991  */
2992 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2993 {
2994 	int rc;
2995 
2996 	if (rxq < 1 || rxq > dev->num_rx_queues)
2997 		return -EINVAL;
2998 
2999 	if (dev->reg_state == NETREG_REGISTERED) {
3000 		ASSERT_RTNL();
3001 
3002 		rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
3003 						  rxq);
3004 		if (rc)
3005 			return rc;
3006 	}
3007 
3008 	dev->real_num_rx_queues = rxq;
3009 	return 0;
3010 }
3011 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
3012 #endif
3013 
3014 /**
3015  * netif_get_num_default_rss_queues - default number of RSS queues
3016  *
3017  * This routine should set an upper limit on the number of RSS queues
3018  * used by default by multiqueue devices.
3019  */
3020 int netif_get_num_default_rss_queues(void)
3021 {
3022 	return is_kdump_kernel() ?
3023 		1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
3024 }
3025 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3026 
3027 static void __netif_reschedule(struct Qdisc *q)
3028 {
3029 	struct softnet_data *sd;
3030 	unsigned long flags;
3031 
3032 	local_irq_save(flags);
3033 	sd = this_cpu_ptr(&softnet_data);
3034 	q->next_sched = NULL;
3035 	*sd->output_queue_tailp = q;
3036 	sd->output_queue_tailp = &q->next_sched;
3037 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
3038 	local_irq_restore(flags);
3039 }
3040 
3041 void __netif_schedule(struct Qdisc *q)
3042 {
3043 	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3044 		__netif_reschedule(q);
3045 }
3046 EXPORT_SYMBOL(__netif_schedule);
3047 
3048 struct dev_kfree_skb_cb {
3049 	enum skb_free_reason reason;
3050 };
3051 
3052 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
3053 {
3054 	return (struct dev_kfree_skb_cb *)skb->cb;
3055 }
3056 
3057 void netif_schedule_queue(struct netdev_queue *txq)
3058 {
3059 	rcu_read_lock();
3060 	if (!netif_xmit_stopped(txq)) {
3061 		struct Qdisc *q = rcu_dereference(txq->qdisc);
3062 
3063 		__netif_schedule(q);
3064 	}
3065 	rcu_read_unlock();
3066 }
3067 EXPORT_SYMBOL(netif_schedule_queue);
3068 
3069 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3070 {
3071 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3072 		struct Qdisc *q;
3073 
3074 		rcu_read_lock();
3075 		q = rcu_dereference(dev_queue->qdisc);
3076 		__netif_schedule(q);
3077 		rcu_read_unlock();
3078 	}
3079 }
3080 EXPORT_SYMBOL(netif_tx_wake_queue);
3081 
3082 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
3083 {
3084 	unsigned long flags;
3085 
3086 	if (unlikely(!skb))
3087 		return;
3088 
3089 	if (likely(refcount_read(&skb->users) == 1)) {
3090 		smp_rmb();
3091 		refcount_set(&skb->users, 0);
3092 	} else if (likely(!refcount_dec_and_test(&skb->users))) {
3093 		return;
3094 	}
3095 	get_kfree_skb_cb(skb)->reason = reason;
3096 	local_irq_save(flags);
3097 	skb->next = __this_cpu_read(softnet_data.completion_queue);
3098 	__this_cpu_write(softnet_data.completion_queue, skb);
3099 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
3100 	local_irq_restore(flags);
3101 }
3102 EXPORT_SYMBOL(__dev_kfree_skb_irq);
3103 
3104 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
3105 {
3106 	if (in_irq() || irqs_disabled())
3107 		__dev_kfree_skb_irq(skb, reason);
3108 	else
3109 		dev_kfree_skb(skb);
3110 }
3111 EXPORT_SYMBOL(__dev_kfree_skb_any);
3112 
3113 
3114 /**
3115  * netif_device_detach - mark device as removed
3116  * @dev: network device
3117  *
3118  * Mark device as removed from system and therefore no longer available.
3119  */
3120 void netif_device_detach(struct net_device *dev)
3121 {
3122 	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3123 	    netif_running(dev)) {
3124 		netif_tx_stop_all_queues(dev);
3125 	}
3126 }
3127 EXPORT_SYMBOL(netif_device_detach);
3128 
3129 /**
3130  * netif_device_attach - mark device as attached
3131  * @dev: network device
3132  *
3133  * Mark device as attached from system and restart if needed.
3134  */
3135 void netif_device_attach(struct net_device *dev)
3136 {
3137 	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3138 	    netif_running(dev)) {
3139 		netif_tx_wake_all_queues(dev);
3140 		__netdev_watchdog_up(dev);
3141 	}
3142 }
3143 EXPORT_SYMBOL(netif_device_attach);
3144 
3145 /*
3146  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3147  * to be used as a distribution range.
3148  */
3149 static u16 skb_tx_hash(const struct net_device *dev,
3150 		       const struct net_device *sb_dev,
3151 		       struct sk_buff *skb)
3152 {
3153 	u32 hash;
3154 	u16 qoffset = 0;
3155 	u16 qcount = dev->real_num_tx_queues;
3156 
3157 	if (dev->num_tc) {
3158 		u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3159 
3160 		qoffset = sb_dev->tc_to_txq[tc].offset;
3161 		qcount = sb_dev->tc_to_txq[tc].count;
3162 	}
3163 
3164 	if (skb_rx_queue_recorded(skb)) {
3165 		hash = skb_get_rx_queue(skb);
3166 		if (hash >= qoffset)
3167 			hash -= qoffset;
3168 		while (unlikely(hash >= qcount))
3169 			hash -= qcount;
3170 		return hash + qoffset;
3171 	}
3172 
3173 	return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3174 }
3175 
3176 static void skb_warn_bad_offload(const struct sk_buff *skb)
3177 {
3178 	static const netdev_features_t null_features;
3179 	struct net_device *dev = skb->dev;
3180 	const char *name = "";
3181 
3182 	if (!net_ratelimit())
3183 		return;
3184 
3185 	if (dev) {
3186 		if (dev->dev.parent)
3187 			name = dev_driver_string(dev->dev.parent);
3188 		else
3189 			name = netdev_name(dev);
3190 	}
3191 	skb_dump(KERN_WARNING, skb, false);
3192 	WARN(1, "%s: caps=(%pNF, %pNF)\n",
3193 	     name, dev ? &dev->features : &null_features,
3194 	     skb->sk ? &skb->sk->sk_route_caps : &null_features);
3195 }
3196 
3197 /*
3198  * Invalidate hardware checksum when packet is to be mangled, and
3199  * complete checksum manually on outgoing path.
3200  */
3201 int skb_checksum_help(struct sk_buff *skb)
3202 {
3203 	__wsum csum;
3204 	int ret = 0, offset;
3205 
3206 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3207 		goto out_set_summed;
3208 
3209 	if (unlikely(skb_is_gso(skb))) {
3210 		skb_warn_bad_offload(skb);
3211 		return -EINVAL;
3212 	}
3213 
3214 	/* Before computing a checksum, we should make sure no frag could
3215 	 * be modified by an external entity : checksum could be wrong.
3216 	 */
3217 	if (skb_has_shared_frag(skb)) {
3218 		ret = __skb_linearize(skb);
3219 		if (ret)
3220 			goto out;
3221 	}
3222 
3223 	offset = skb_checksum_start_offset(skb);
3224 	BUG_ON(offset >= skb_headlen(skb));
3225 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
3226 
3227 	offset += skb->csum_offset;
3228 	BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
3229 
3230 	ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3231 	if (ret)
3232 		goto out;
3233 
3234 	*(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3235 out_set_summed:
3236 	skb->ip_summed = CHECKSUM_NONE;
3237 out:
3238 	return ret;
3239 }
3240 EXPORT_SYMBOL(skb_checksum_help);
3241 
3242 int skb_crc32c_csum_help(struct sk_buff *skb)
3243 {
3244 	__le32 crc32c_csum;
3245 	int ret = 0, offset, start;
3246 
3247 	if (skb->ip_summed != CHECKSUM_PARTIAL)
3248 		goto out;
3249 
3250 	if (unlikely(skb_is_gso(skb)))
3251 		goto out;
3252 
3253 	/* Before computing a checksum, we should make sure no frag could
3254 	 * be modified by an external entity : checksum could be wrong.
3255 	 */
3256 	if (unlikely(skb_has_shared_frag(skb))) {
3257 		ret = __skb_linearize(skb);
3258 		if (ret)
3259 			goto out;
3260 	}
3261 	start = skb_checksum_start_offset(skb);
3262 	offset = start + offsetof(struct sctphdr, checksum);
3263 	if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3264 		ret = -EINVAL;
3265 		goto out;
3266 	}
3267 
3268 	ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3269 	if (ret)
3270 		goto out;
3271 
3272 	crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3273 						  skb->len - start, ~(__u32)0,
3274 						  crc32c_csum_stub));
3275 	*(__le32 *)(skb->data + offset) = crc32c_csum;
3276 	skb->ip_summed = CHECKSUM_NONE;
3277 	skb->csum_not_inet = 0;
3278 out:
3279 	return ret;
3280 }
3281 
3282 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3283 {
3284 	__be16 type = skb->protocol;
3285 
3286 	/* Tunnel gso handlers can set protocol to ethernet. */
3287 	if (type == htons(ETH_P_TEB)) {
3288 		struct ethhdr *eth;
3289 
3290 		if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3291 			return 0;
3292 
3293 		eth = (struct ethhdr *)skb->data;
3294 		type = eth->h_proto;
3295 	}
3296 
3297 	return __vlan_get_protocol(skb, type, depth);
3298 }
3299 
3300 /**
3301  *	skb_mac_gso_segment - mac layer segmentation handler.
3302  *	@skb: buffer to segment
3303  *	@features: features for the output path (see dev->features)
3304  */
3305 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3306 				    netdev_features_t features)
3307 {
3308 	struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
3309 	struct packet_offload *ptype;
3310 	int vlan_depth = skb->mac_len;
3311 	__be16 type = skb_network_protocol(skb, &vlan_depth);
3312 
3313 	if (unlikely(!type))
3314 		return ERR_PTR(-EINVAL);
3315 
3316 	__skb_pull(skb, vlan_depth);
3317 
3318 	rcu_read_lock();
3319 	list_for_each_entry_rcu(ptype, &offload_base, list) {
3320 		if (ptype->type == type && ptype->callbacks.gso_segment) {
3321 			segs = ptype->callbacks.gso_segment(skb, features);
3322 			break;
3323 		}
3324 	}
3325 	rcu_read_unlock();
3326 
3327 	__skb_push(skb, skb->data - skb_mac_header(skb));
3328 
3329 	return segs;
3330 }
3331 EXPORT_SYMBOL(skb_mac_gso_segment);
3332 
3333 
3334 /* openvswitch calls this on rx path, so we need a different check.
3335  */
3336 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
3337 {
3338 	if (tx_path)
3339 		return skb->ip_summed != CHECKSUM_PARTIAL &&
3340 		       skb->ip_summed != CHECKSUM_UNNECESSARY;
3341 
3342 	return skb->ip_summed == CHECKSUM_NONE;
3343 }
3344 
3345 /**
3346  *	__skb_gso_segment - Perform segmentation on skb.
3347  *	@skb: buffer to segment
3348  *	@features: features for the output path (see dev->features)
3349  *	@tx_path: whether it is called in TX path
3350  *
3351  *	This function segments the given skb and returns a list of segments.
3352  *
3353  *	It may return NULL if the skb requires no segmentation.  This is
3354  *	only possible when GSO is used for verifying header integrity.
3355  *
3356  *	Segmentation preserves SKB_GSO_CB_OFFSET bytes of previous skb cb.
3357  */
3358 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3359 				  netdev_features_t features, bool tx_path)
3360 {
3361 	struct sk_buff *segs;
3362 
3363 	if (unlikely(skb_needs_check(skb, tx_path))) {
3364 		int err;
3365 
3366 		/* We're going to init ->check field in TCP or UDP header */
3367 		err = skb_cow_head(skb, 0);
3368 		if (err < 0)
3369 			return ERR_PTR(err);
3370 	}
3371 
3372 	/* Only report GSO partial support if it will enable us to
3373 	 * support segmentation on this frame without needing additional
3374 	 * work.
3375 	 */
3376 	if (features & NETIF_F_GSO_PARTIAL) {
3377 		netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
3378 		struct net_device *dev = skb->dev;
3379 
3380 		partial_features |= dev->features & dev->gso_partial_features;
3381 		if (!skb_gso_ok(skb, features | partial_features))
3382 			features &= ~NETIF_F_GSO_PARTIAL;
3383 	}
3384 
3385 	BUILD_BUG_ON(SKB_GSO_CB_OFFSET +
3386 		     sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
3387 
3388 	SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3389 	SKB_GSO_CB(skb)->encap_level = 0;
3390 
3391 	skb_reset_mac_header(skb);
3392 	skb_reset_mac_len(skb);
3393 
3394 	segs = skb_mac_gso_segment(skb, features);
3395 
3396 	if (segs != skb && unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
3397 		skb_warn_bad_offload(skb);
3398 
3399 	return segs;
3400 }
3401 EXPORT_SYMBOL(__skb_gso_segment);
3402 
3403 /* Take action when hardware reception checksum errors are detected. */
3404 #ifdef CONFIG_BUG
3405 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3406 {
3407 	if (net_ratelimit()) {
3408 		pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
3409 		skb_dump(KERN_ERR, skb, true);
3410 		dump_stack();
3411 	}
3412 }
3413 EXPORT_SYMBOL(netdev_rx_csum_fault);
3414 #endif
3415 
3416 /* XXX: check that highmem exists at all on the given machine. */
3417 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3418 {
3419 #ifdef CONFIG_HIGHMEM
3420 	int i;
3421 
3422 	if (!(dev->features & NETIF_F_HIGHDMA)) {
3423 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3424 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3425 
3426 			if (PageHighMem(skb_frag_page(frag)))
3427 				return 1;
3428 		}
3429 	}
3430 #endif
3431 	return 0;
3432 }
3433 
3434 /* If MPLS offload request, verify we are testing hardware MPLS features
3435  * instead of standard features for the netdev.
3436  */
3437 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3438 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3439 					   netdev_features_t features,
3440 					   __be16 type)
3441 {
3442 	if (eth_p_mpls(type))
3443 		features &= skb->dev->mpls_features;
3444 
3445 	return features;
3446 }
3447 #else
3448 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3449 					   netdev_features_t features,
3450 					   __be16 type)
3451 {
3452 	return features;
3453 }
3454 #endif
3455 
3456 static netdev_features_t harmonize_features(struct sk_buff *skb,
3457 	netdev_features_t features)
3458 {
3459 	__be16 type;
3460 
3461 	type = skb_network_protocol(skb, NULL);
3462 	features = net_mpls_features(skb, features, type);
3463 
3464 	if (skb->ip_summed != CHECKSUM_NONE &&
3465 	    !can_checksum_protocol(features, type)) {
3466 		features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3467 	}
3468 	if (illegal_highdma(skb->dev, skb))
3469 		features &= ~NETIF_F_SG;
3470 
3471 	return features;
3472 }
3473 
3474 netdev_features_t passthru_features_check(struct sk_buff *skb,
3475 					  struct net_device *dev,
3476 					  netdev_features_t features)
3477 {
3478 	return features;
3479 }
3480 EXPORT_SYMBOL(passthru_features_check);
3481 
3482 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3483 					     struct net_device *dev,
3484 					     netdev_features_t features)
3485 {
3486 	return vlan_features_check(skb, features);
3487 }
3488 
3489 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3490 					    struct net_device *dev,
3491 					    netdev_features_t features)
3492 {
3493 	u16 gso_segs = skb_shinfo(skb)->gso_segs;
3494 
3495 	if (gso_segs > dev->gso_max_segs)
3496 		return features & ~NETIF_F_GSO_MASK;
3497 
3498 	if (!skb_shinfo(skb)->gso_type) {
3499 		skb_warn_bad_offload(skb);
3500 		return features & ~NETIF_F_GSO_MASK;
3501 	}
3502 
3503 	/* Support for GSO partial features requires software
3504 	 * intervention before we can actually process the packets
3505 	 * so we need to strip support for any partial features now
3506 	 * and we can pull them back in after we have partially
3507 	 * segmented the frame.
3508 	 */
3509 	if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3510 		features &= ~dev->gso_partial_features;
3511 
3512 	/* Make sure to clear the IPv4 ID mangling feature if the
3513 	 * IPv4 header has the potential to be fragmented.
3514 	 */
3515 	if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3516 		struct iphdr *iph = skb->encapsulation ?
3517 				    inner_ip_hdr(skb) : ip_hdr(skb);
3518 
3519 		if (!(iph->frag_off & htons(IP_DF)))
3520 			features &= ~NETIF_F_TSO_MANGLEID;
3521 	}
3522 
3523 	return features;
3524 }
3525 
3526 netdev_features_t netif_skb_features(struct sk_buff *skb)
3527 {
3528 	struct net_device *dev = skb->dev;
3529 	netdev_features_t features = dev->features;
3530 
3531 	if (skb_is_gso(skb))
3532 		features = gso_features_check(skb, dev, features);
3533 
3534 	/* If encapsulation offload request, verify we are testing
3535 	 * hardware encapsulation features instead of standard
3536 	 * features for the netdev
3537 	 */
3538 	if (skb->encapsulation)
3539 		features &= dev->hw_enc_features;
3540 
3541 	if (skb_vlan_tagged(skb))
3542 		features = netdev_intersect_features(features,
3543 						     dev->vlan_features |
3544 						     NETIF_F_HW_VLAN_CTAG_TX |
3545 						     NETIF_F_HW_VLAN_STAG_TX);
3546 
3547 	if (dev->netdev_ops->ndo_features_check)
3548 		features &= dev->netdev_ops->ndo_features_check(skb, dev,
3549 								features);
3550 	else
3551 		features &= dflt_features_check(skb, dev, features);
3552 
3553 	return harmonize_features(skb, features);
3554 }
3555 EXPORT_SYMBOL(netif_skb_features);
3556 
3557 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3558 		    struct netdev_queue *txq, bool more)
3559 {
3560 	unsigned int len;
3561 	int rc;
3562 
3563 	if (dev_nit_active(dev))
3564 		dev_queue_xmit_nit(skb, dev);
3565 
3566 	len = skb->len;
3567 	PRANDOM_ADD_NOISE(skb, dev, txq, len + jiffies);
3568 	trace_net_dev_start_xmit(skb, dev);
3569 	rc = netdev_start_xmit(skb, dev, txq, more);
3570 	trace_net_dev_xmit(skb, rc, dev, len);
3571 
3572 	return rc;
3573 }
3574 
3575 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3576 				    struct netdev_queue *txq, int *ret)
3577 {
3578 	struct sk_buff *skb = first;
3579 	int rc = NETDEV_TX_OK;
3580 
3581 	while (skb) {
3582 		struct sk_buff *next = skb->next;
3583 
3584 		skb_mark_not_on_list(skb);
3585 		rc = xmit_one(skb, dev, txq, next != NULL);
3586 		if (unlikely(!dev_xmit_complete(rc))) {
3587 			skb->next = next;
3588 			goto out;
3589 		}
3590 
3591 		skb = next;
3592 		if (netif_tx_queue_stopped(txq) && skb) {
3593 			rc = NETDEV_TX_BUSY;
3594 			break;
3595 		}
3596 	}
3597 
3598 out:
3599 	*ret = rc;
3600 	return skb;
3601 }
3602 
3603 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3604 					  netdev_features_t features)
3605 {
3606 	if (skb_vlan_tag_present(skb) &&
3607 	    !vlan_hw_offload_capable(features, skb->vlan_proto))
3608 		skb = __vlan_hwaccel_push_inside(skb);
3609 	return skb;
3610 }
3611 
3612 int skb_csum_hwoffload_help(struct sk_buff *skb,
3613 			    const netdev_features_t features)
3614 {
3615 	if (unlikely(skb->csum_not_inet))
3616 		return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3617 			skb_crc32c_csum_help(skb);
3618 
3619 	return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb);
3620 }
3621 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3622 
3623 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3624 {
3625 	netdev_features_t features;
3626 
3627 	features = netif_skb_features(skb);
3628 	skb = validate_xmit_vlan(skb, features);
3629 	if (unlikely(!skb))
3630 		goto out_null;
3631 
3632 	skb = sk_validate_xmit_skb(skb, dev);
3633 	if (unlikely(!skb))
3634 		goto out_null;
3635 
3636 	if (netif_needs_gso(skb, features)) {
3637 		struct sk_buff *segs;
3638 
3639 		segs = skb_gso_segment(skb, features);
3640 		if (IS_ERR(segs)) {
3641 			goto out_kfree_skb;
3642 		} else if (segs) {
3643 			consume_skb(skb);
3644 			skb = segs;
3645 		}
3646 	} else {
3647 		if (skb_needs_linearize(skb, features) &&
3648 		    __skb_linearize(skb))
3649 			goto out_kfree_skb;
3650 
3651 		/* If packet is not checksummed and device does not
3652 		 * support checksumming for this protocol, complete
3653 		 * checksumming here.
3654 		 */
3655 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
3656 			if (skb->encapsulation)
3657 				skb_set_inner_transport_header(skb,
3658 							       skb_checksum_start_offset(skb));
3659 			else
3660 				skb_set_transport_header(skb,
3661 							 skb_checksum_start_offset(skb));
3662 			if (skb_csum_hwoffload_help(skb, features))
3663 				goto out_kfree_skb;
3664 		}
3665 	}
3666 
3667 	skb = validate_xmit_xfrm(skb, features, again);
3668 
3669 	return skb;
3670 
3671 out_kfree_skb:
3672 	kfree_skb(skb);
3673 out_null:
3674 	atomic_long_inc(&dev->tx_dropped);
3675 	return NULL;
3676 }
3677 
3678 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3679 {
3680 	struct sk_buff *next, *head = NULL, *tail;
3681 
3682 	for (; skb != NULL; skb = next) {
3683 		next = skb->next;
3684 		skb_mark_not_on_list(skb);
3685 
3686 		/* in case skb wont be segmented, point to itself */
3687 		skb->prev = skb;
3688 
3689 		skb = validate_xmit_skb(skb, dev, again);
3690 		if (!skb)
3691 			continue;
3692 
3693 		if (!head)
3694 			head = skb;
3695 		else
3696 			tail->next = skb;
3697 		/* If skb was segmented, skb->prev points to
3698 		 * the last segment. If not, it still contains skb.
3699 		 */
3700 		tail = skb->prev;
3701 	}
3702 	return head;
3703 }
3704 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3705 
3706 static void qdisc_pkt_len_init(struct sk_buff *skb)
3707 {
3708 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
3709 
3710 	qdisc_skb_cb(skb)->pkt_len = skb->len;
3711 
3712 	/* To get more precise estimation of bytes sent on wire,
3713 	 * we add to pkt_len the headers size of all segments
3714 	 */
3715 	if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3716 		unsigned int hdr_len;
3717 		u16 gso_segs = shinfo->gso_segs;
3718 
3719 		/* mac layer + network layer */
3720 		hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3721 
3722 		/* + transport layer */
3723 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3724 			const struct tcphdr *th;
3725 			struct tcphdr _tcphdr;
3726 
3727 			th = skb_header_pointer(skb, skb_transport_offset(skb),
3728 						sizeof(_tcphdr), &_tcphdr);
3729 			if (likely(th))
3730 				hdr_len += __tcp_hdrlen(th);
3731 		} else {
3732 			struct udphdr _udphdr;
3733 
3734 			if (skb_header_pointer(skb, skb_transport_offset(skb),
3735 					       sizeof(_udphdr), &_udphdr))
3736 				hdr_len += sizeof(struct udphdr);
3737 		}
3738 
3739 		if (shinfo->gso_type & SKB_GSO_DODGY)
3740 			gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3741 						shinfo->gso_size);
3742 
3743 		qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3744 	}
3745 }
3746 
3747 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3748 				 struct net_device *dev,
3749 				 struct netdev_queue *txq)
3750 {
3751 	spinlock_t *root_lock = qdisc_lock(q);
3752 	struct sk_buff *to_free = NULL;
3753 	bool contended;
3754 	int rc;
3755 
3756 	qdisc_calculate_pkt_len(skb, q);
3757 
3758 	if (q->flags & TCQ_F_NOLOCK) {
3759 		rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3760 		qdisc_run(q);
3761 
3762 		if (unlikely(to_free))
3763 			kfree_skb_list(to_free);
3764 		return rc;
3765 	}
3766 
3767 	/*
3768 	 * Heuristic to force contended enqueues to serialize on a
3769 	 * separate lock before trying to get qdisc main lock.
3770 	 * This permits qdisc->running owner to get the lock more
3771 	 * often and dequeue packets faster.
3772 	 */
3773 	contended = qdisc_is_running(q);
3774 	if (unlikely(contended))
3775 		spin_lock(&q->busylock);
3776 
3777 	spin_lock(root_lock);
3778 	if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3779 		__qdisc_drop(skb, &to_free);
3780 		rc = NET_XMIT_DROP;
3781 	} else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3782 		   qdisc_run_begin(q)) {
3783 		/*
3784 		 * This is a work-conserving queue; there are no old skbs
3785 		 * waiting to be sent out; and the qdisc is not running -
3786 		 * xmit the skb directly.
3787 		 */
3788 
3789 		qdisc_bstats_update(q, skb);
3790 
3791 		if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3792 			if (unlikely(contended)) {
3793 				spin_unlock(&q->busylock);
3794 				contended = false;
3795 			}
3796 			__qdisc_run(q);
3797 		}
3798 
3799 		qdisc_run_end(q);
3800 		rc = NET_XMIT_SUCCESS;
3801 	} else {
3802 		rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3803 		if (qdisc_run_begin(q)) {
3804 			if (unlikely(contended)) {
3805 				spin_unlock(&q->busylock);
3806 				contended = false;
3807 			}
3808 			__qdisc_run(q);
3809 			qdisc_run_end(q);
3810 		}
3811 	}
3812 	spin_unlock(root_lock);
3813 	if (unlikely(to_free))
3814 		kfree_skb_list(to_free);
3815 	if (unlikely(contended))
3816 		spin_unlock(&q->busylock);
3817 	return rc;
3818 }
3819 
3820 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3821 static void skb_update_prio(struct sk_buff *skb)
3822 {
3823 	const struct netprio_map *map;
3824 	const struct sock *sk;
3825 	unsigned int prioidx;
3826 
3827 	if (skb->priority)
3828 		return;
3829 	map = rcu_dereference_bh(skb->dev->priomap);
3830 	if (!map)
3831 		return;
3832 	sk = skb_to_full_sk(skb);
3833 	if (!sk)
3834 		return;
3835 
3836 	prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3837 
3838 	if (prioidx < map->priomap_len)
3839 		skb->priority = map->priomap[prioidx];
3840 }
3841 #else
3842 #define skb_update_prio(skb)
3843 #endif
3844 
3845 /**
3846  *	dev_loopback_xmit - loop back @skb
3847  *	@net: network namespace this loopback is happening in
3848  *	@sk:  sk needed to be a netfilter okfn
3849  *	@skb: buffer to transmit
3850  */
3851 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3852 {
3853 	skb_reset_mac_header(skb);
3854 	__skb_pull(skb, skb_network_offset(skb));
3855 	skb->pkt_type = PACKET_LOOPBACK;
3856 	skb->ip_summed = CHECKSUM_UNNECESSARY;
3857 	WARN_ON(!skb_dst(skb));
3858 	skb_dst_force(skb);
3859 	netif_rx_ni(skb);
3860 	return 0;
3861 }
3862 EXPORT_SYMBOL(dev_loopback_xmit);
3863 
3864 #ifdef CONFIG_NET_EGRESS
3865 static struct sk_buff *
3866 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3867 {
3868 	struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3869 	struct tcf_result cl_res;
3870 
3871 	if (!miniq)
3872 		return skb;
3873 
3874 	/* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3875 	qdisc_skb_cb(skb)->mru = 0;
3876 	mini_qdisc_bstats_cpu_update(miniq, skb);
3877 
3878 	switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
3879 	case TC_ACT_OK:
3880 	case TC_ACT_RECLASSIFY:
3881 		skb->tc_index = TC_H_MIN(cl_res.classid);
3882 		break;
3883 	case TC_ACT_SHOT:
3884 		mini_qdisc_qstats_cpu_drop(miniq);
3885 		*ret = NET_XMIT_DROP;
3886 		kfree_skb(skb);
3887 		return NULL;
3888 	case TC_ACT_STOLEN:
3889 	case TC_ACT_QUEUED:
3890 	case TC_ACT_TRAP:
3891 		*ret = NET_XMIT_SUCCESS;
3892 		consume_skb(skb);
3893 		return NULL;
3894 	case TC_ACT_REDIRECT:
3895 		/* No need to push/pop skb's mac_header here on egress! */
3896 		skb_do_redirect(skb);
3897 		*ret = NET_XMIT_SUCCESS;
3898 		return NULL;
3899 	default:
3900 		break;
3901 	}
3902 
3903 	return skb;
3904 }
3905 #endif /* CONFIG_NET_EGRESS */
3906 
3907 #ifdef CONFIG_XPS
3908 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
3909 			       struct xps_dev_maps *dev_maps, unsigned int tci)
3910 {
3911 	struct xps_map *map;
3912 	int queue_index = -1;
3913 
3914 	if (dev->num_tc) {
3915 		tci *= dev->num_tc;
3916 		tci += netdev_get_prio_tc_map(dev, skb->priority);
3917 	}
3918 
3919 	map = rcu_dereference(dev_maps->attr_map[tci]);
3920 	if (map) {
3921 		if (map->len == 1)
3922 			queue_index = map->queues[0];
3923 		else
3924 			queue_index = map->queues[reciprocal_scale(
3925 						skb_get_hash(skb), map->len)];
3926 		if (unlikely(queue_index >= dev->real_num_tx_queues))
3927 			queue_index = -1;
3928 	}
3929 	return queue_index;
3930 }
3931 #endif
3932 
3933 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
3934 			 struct sk_buff *skb)
3935 {
3936 #ifdef CONFIG_XPS
3937 	struct xps_dev_maps *dev_maps;
3938 	struct sock *sk = skb->sk;
3939 	int queue_index = -1;
3940 
3941 	if (!static_key_false(&xps_needed))
3942 		return -1;
3943 
3944 	rcu_read_lock();
3945 	if (!static_key_false(&xps_rxqs_needed))
3946 		goto get_cpus_map;
3947 
3948 	dev_maps = rcu_dereference(sb_dev->xps_rxqs_map);
3949 	if (dev_maps) {
3950 		int tci = sk_rx_queue_get(sk);
3951 
3952 		if (tci >= 0 && tci < dev->num_rx_queues)
3953 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3954 							  tci);
3955 	}
3956 
3957 get_cpus_map:
3958 	if (queue_index < 0) {
3959 		dev_maps = rcu_dereference(sb_dev->xps_cpus_map);
3960 		if (dev_maps) {
3961 			unsigned int tci = skb->sender_cpu - 1;
3962 
3963 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3964 							  tci);
3965 		}
3966 	}
3967 	rcu_read_unlock();
3968 
3969 	return queue_index;
3970 #else
3971 	return -1;
3972 #endif
3973 }
3974 
3975 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
3976 		     struct net_device *sb_dev)
3977 {
3978 	return 0;
3979 }
3980 EXPORT_SYMBOL(dev_pick_tx_zero);
3981 
3982 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
3983 		       struct net_device *sb_dev)
3984 {
3985 	return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
3986 }
3987 EXPORT_SYMBOL(dev_pick_tx_cpu_id);
3988 
3989 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
3990 		     struct net_device *sb_dev)
3991 {
3992 	struct sock *sk = skb->sk;
3993 	int queue_index = sk_tx_queue_get(sk);
3994 
3995 	sb_dev = sb_dev ? : dev;
3996 
3997 	if (queue_index < 0 || skb->ooo_okay ||
3998 	    queue_index >= dev->real_num_tx_queues) {
3999 		int new_index = get_xps_queue(dev, sb_dev, skb);
4000 
4001 		if (new_index < 0)
4002 			new_index = skb_tx_hash(dev, sb_dev, skb);
4003 
4004 		if (queue_index != new_index && sk &&
4005 		    sk_fullsock(sk) &&
4006 		    rcu_access_pointer(sk->sk_dst_cache))
4007 			sk_tx_queue_set(sk, new_index);
4008 
4009 		queue_index = new_index;
4010 	}
4011 
4012 	return queue_index;
4013 }
4014 EXPORT_SYMBOL(netdev_pick_tx);
4015 
4016 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
4017 					 struct sk_buff *skb,
4018 					 struct net_device *sb_dev)
4019 {
4020 	int queue_index = 0;
4021 
4022 #ifdef CONFIG_XPS
4023 	u32 sender_cpu = skb->sender_cpu - 1;
4024 
4025 	if (sender_cpu >= (u32)NR_CPUS)
4026 		skb->sender_cpu = raw_smp_processor_id() + 1;
4027 #endif
4028 
4029 	if (dev->real_num_tx_queues != 1) {
4030 		const struct net_device_ops *ops = dev->netdev_ops;
4031 
4032 		if (ops->ndo_select_queue)
4033 			queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
4034 		else
4035 			queue_index = netdev_pick_tx(dev, skb, sb_dev);
4036 
4037 		queue_index = netdev_cap_txqueue(dev, queue_index);
4038 	}
4039 
4040 	skb_set_queue_mapping(skb, queue_index);
4041 	return netdev_get_tx_queue(dev, queue_index);
4042 }
4043 
4044 /**
4045  *	__dev_queue_xmit - transmit a buffer
4046  *	@skb: buffer to transmit
4047  *	@sb_dev: suboordinate device used for L2 forwarding offload
4048  *
4049  *	Queue a buffer for transmission to a network device. The caller must
4050  *	have set the device and priority and built the buffer before calling
4051  *	this function. The function can be called from an interrupt.
4052  *
4053  *	A negative errno code is returned on a failure. A success does not
4054  *	guarantee the frame will be transmitted as it may be dropped due
4055  *	to congestion or traffic shaping.
4056  *
4057  * -----------------------------------------------------------------------------------
4058  *      I notice this method can also return errors from the queue disciplines,
4059  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
4060  *      be positive.
4061  *
4062  *      Regardless of the return value, the skb is consumed, so it is currently
4063  *      difficult to retry a send to this method.  (You can bump the ref count
4064  *      before sending to hold a reference for retry if you are careful.)
4065  *
4066  *      When calling this method, interrupts MUST be enabled.  This is because
4067  *      the BH enable code must have IRQs enabled so that it will not deadlock.
4068  *          --BLG
4069  */
4070 static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
4071 {
4072 	struct net_device *dev = skb->dev;
4073 	struct netdev_queue *txq;
4074 	struct Qdisc *q;
4075 	int rc = -ENOMEM;
4076 	bool again = false;
4077 
4078 	skb_reset_mac_header(skb);
4079 
4080 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
4081 		__skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
4082 
4083 	/* Disable soft irqs for various locks below. Also
4084 	 * stops preemption for RCU.
4085 	 */
4086 	rcu_read_lock_bh();
4087 
4088 	skb_update_prio(skb);
4089 
4090 	qdisc_pkt_len_init(skb);
4091 #ifdef CONFIG_NET_CLS_ACT
4092 	skb->tc_at_ingress = 0;
4093 # ifdef CONFIG_NET_EGRESS
4094 	if (static_branch_unlikely(&egress_needed_key)) {
4095 		skb = sch_handle_egress(skb, &rc, dev);
4096 		if (!skb)
4097 			goto out;
4098 	}
4099 # endif
4100 #endif
4101 	/* If device/qdisc don't need skb->dst, release it right now while
4102 	 * its hot in this cpu cache.
4103 	 */
4104 	if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4105 		skb_dst_drop(skb);
4106 	else
4107 		skb_dst_force(skb);
4108 
4109 	txq = netdev_core_pick_tx(dev, skb, sb_dev);
4110 	q = rcu_dereference_bh(txq->qdisc);
4111 
4112 	trace_net_dev_queue(skb);
4113 	if (q->enqueue) {
4114 		rc = __dev_xmit_skb(skb, q, dev, txq);
4115 		goto out;
4116 	}
4117 
4118 	/* The device has no queue. Common case for software devices:
4119 	 * loopback, all the sorts of tunnels...
4120 
4121 	 * Really, it is unlikely that netif_tx_lock protection is necessary
4122 	 * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
4123 	 * counters.)
4124 	 * However, it is possible, that they rely on protection
4125 	 * made by us here.
4126 
4127 	 * Check this and shot the lock. It is not prone from deadlocks.
4128 	 *Either shot noqueue qdisc, it is even simpler 8)
4129 	 */
4130 	if (dev->flags & IFF_UP) {
4131 		int cpu = smp_processor_id(); /* ok because BHs are off */
4132 
4133 		if (txq->xmit_lock_owner != cpu) {
4134 			if (dev_xmit_recursion())
4135 				goto recursion_alert;
4136 
4137 			skb = validate_xmit_skb(skb, dev, &again);
4138 			if (!skb)
4139 				goto out;
4140 
4141 			PRANDOM_ADD_NOISE(skb, dev, txq, jiffies);
4142 			HARD_TX_LOCK(dev, txq, cpu);
4143 
4144 			if (!netif_xmit_stopped(txq)) {
4145 				dev_xmit_recursion_inc();
4146 				skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4147 				dev_xmit_recursion_dec();
4148 				if (dev_xmit_complete(rc)) {
4149 					HARD_TX_UNLOCK(dev, txq);
4150 					goto out;
4151 				}
4152 			}
4153 			HARD_TX_UNLOCK(dev, txq);
4154 			net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4155 					     dev->name);
4156 		} else {
4157 			/* Recursion is detected! It is possible,
4158 			 * unfortunately
4159 			 */
4160 recursion_alert:
4161 			net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4162 					     dev->name);
4163 		}
4164 	}
4165 
4166 	rc = -ENETDOWN;
4167 	rcu_read_unlock_bh();
4168 
4169 	atomic_long_inc(&dev->tx_dropped);
4170 	kfree_skb_list(skb);
4171 	return rc;
4172 out:
4173 	rcu_read_unlock_bh();
4174 	return rc;
4175 }
4176 
4177 int dev_queue_xmit(struct sk_buff *skb)
4178 {
4179 	return __dev_queue_xmit(skb, NULL);
4180 }
4181 EXPORT_SYMBOL(dev_queue_xmit);
4182 
4183 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev)
4184 {
4185 	return __dev_queue_xmit(skb, sb_dev);
4186 }
4187 EXPORT_SYMBOL(dev_queue_xmit_accel);
4188 
4189 int dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4190 {
4191 	struct net_device *dev = skb->dev;
4192 	struct sk_buff *orig_skb = skb;
4193 	struct netdev_queue *txq;
4194 	int ret = NETDEV_TX_BUSY;
4195 	bool again = false;
4196 
4197 	if (unlikely(!netif_running(dev) ||
4198 		     !netif_carrier_ok(dev)))
4199 		goto drop;
4200 
4201 	skb = validate_xmit_skb_list(skb, dev, &again);
4202 	if (skb != orig_skb)
4203 		goto drop;
4204 
4205 	skb_set_queue_mapping(skb, queue_id);
4206 	txq = skb_get_tx_queue(dev, skb);
4207 	PRANDOM_ADD_NOISE(skb, dev, txq, jiffies);
4208 
4209 	local_bh_disable();
4210 
4211 	dev_xmit_recursion_inc();
4212 	HARD_TX_LOCK(dev, txq, smp_processor_id());
4213 	if (!netif_xmit_frozen_or_drv_stopped(txq))
4214 		ret = netdev_start_xmit(skb, dev, txq, false);
4215 	HARD_TX_UNLOCK(dev, txq);
4216 	dev_xmit_recursion_dec();
4217 
4218 	local_bh_enable();
4219 
4220 	if (!dev_xmit_complete(ret))
4221 		kfree_skb(skb);
4222 
4223 	return ret;
4224 drop:
4225 	atomic_long_inc(&dev->tx_dropped);
4226 	kfree_skb_list(skb);
4227 	return NET_XMIT_DROP;
4228 }
4229 EXPORT_SYMBOL(dev_direct_xmit);
4230 
4231 /*************************************************************************
4232  *			Receiver routines
4233  *************************************************************************/
4234 
4235 int netdev_max_backlog __read_mostly = 1000;
4236 EXPORT_SYMBOL(netdev_max_backlog);
4237 
4238 int netdev_tstamp_prequeue __read_mostly = 1;
4239 int netdev_budget __read_mostly = 300;
4240 /* Must be at least 2 jiffes to guarantee 1 jiffy timeout */
4241 unsigned int __read_mostly netdev_budget_usecs = 2 * USEC_PER_SEC / HZ;
4242 int weight_p __read_mostly = 64;           /* old backlog weight */
4243 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
4244 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
4245 int dev_rx_weight __read_mostly = 64;
4246 int dev_tx_weight __read_mostly = 64;
4247 /* Maximum number of GRO_NORMAL skbs to batch up for list-RX */
4248 int gro_normal_batch __read_mostly = 8;
4249 
4250 /* Called with irq disabled */
4251 static inline void ____napi_schedule(struct softnet_data *sd,
4252 				     struct napi_struct *napi)
4253 {
4254 	list_add_tail(&napi->poll_list, &sd->poll_list);
4255 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4256 }
4257 
4258 #ifdef CONFIG_RPS
4259 
4260 /* One global table that all flow-based protocols share. */
4261 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
4262 EXPORT_SYMBOL(rps_sock_flow_table);
4263 u32 rps_cpu_mask __read_mostly;
4264 EXPORT_SYMBOL(rps_cpu_mask);
4265 
4266 struct static_key_false rps_needed __read_mostly;
4267 EXPORT_SYMBOL(rps_needed);
4268 struct static_key_false rfs_needed __read_mostly;
4269 EXPORT_SYMBOL(rfs_needed);
4270 
4271 static struct rps_dev_flow *
4272 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4273 	    struct rps_dev_flow *rflow, u16 next_cpu)
4274 {
4275 	if (next_cpu < nr_cpu_ids) {
4276 #ifdef CONFIG_RFS_ACCEL
4277 		struct netdev_rx_queue *rxqueue;
4278 		struct rps_dev_flow_table *flow_table;
4279 		struct rps_dev_flow *old_rflow;
4280 		u32 flow_id;
4281 		u16 rxq_index;
4282 		int rc;
4283 
4284 		/* Should we steer this flow to a different hardware queue? */
4285 		if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4286 		    !(dev->features & NETIF_F_NTUPLE))
4287 			goto out;
4288 		rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4289 		if (rxq_index == skb_get_rx_queue(skb))
4290 			goto out;
4291 
4292 		rxqueue = dev->_rx + rxq_index;
4293 		flow_table = rcu_dereference(rxqueue->rps_flow_table);
4294 		if (!flow_table)
4295 			goto out;
4296 		flow_id = skb_get_hash(skb) & flow_table->mask;
4297 		rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4298 							rxq_index, flow_id);
4299 		if (rc < 0)
4300 			goto out;
4301 		old_rflow = rflow;
4302 		rflow = &flow_table->flows[flow_id];
4303 		rflow->filter = rc;
4304 		if (old_rflow->filter == rflow->filter)
4305 			old_rflow->filter = RPS_NO_FILTER;
4306 	out:
4307 #endif
4308 		rflow->last_qtail =
4309 			per_cpu(softnet_data, next_cpu).input_queue_head;
4310 	}
4311 
4312 	rflow->cpu = next_cpu;
4313 	return rflow;
4314 }
4315 
4316 /*
4317  * get_rps_cpu is called from netif_receive_skb and returns the target
4318  * CPU from the RPS map of the receiving queue for a given skb.
4319  * rcu_read_lock must be held on entry.
4320  */
4321 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4322 		       struct rps_dev_flow **rflowp)
4323 {
4324 	const struct rps_sock_flow_table *sock_flow_table;
4325 	struct netdev_rx_queue *rxqueue = dev->_rx;
4326 	struct rps_dev_flow_table *flow_table;
4327 	struct rps_map *map;
4328 	int cpu = -1;
4329 	u32 tcpu;
4330 	u32 hash;
4331 
4332 	if (skb_rx_queue_recorded(skb)) {
4333 		u16 index = skb_get_rx_queue(skb);
4334 
4335 		if (unlikely(index >= dev->real_num_rx_queues)) {
4336 			WARN_ONCE(dev->real_num_rx_queues > 1,
4337 				  "%s received packet on queue %u, but number "
4338 				  "of RX queues is %u\n",
4339 				  dev->name, index, dev->real_num_rx_queues);
4340 			goto done;
4341 		}
4342 		rxqueue += index;
4343 	}
4344 
4345 	/* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4346 
4347 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
4348 	map = rcu_dereference(rxqueue->rps_map);
4349 	if (!flow_table && !map)
4350 		goto done;
4351 
4352 	skb_reset_network_header(skb);
4353 	hash = skb_get_hash(skb);
4354 	if (!hash)
4355 		goto done;
4356 
4357 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
4358 	if (flow_table && sock_flow_table) {
4359 		struct rps_dev_flow *rflow;
4360 		u32 next_cpu;
4361 		u32 ident;
4362 
4363 		/* First check into global flow table if there is a match */
4364 		ident = sock_flow_table->ents[hash & sock_flow_table->mask];
4365 		if ((ident ^ hash) & ~rps_cpu_mask)
4366 			goto try_rps;
4367 
4368 		next_cpu = ident & rps_cpu_mask;
4369 
4370 		/* OK, now we know there is a match,
4371 		 * we can look at the local (per receive queue) flow table
4372 		 */
4373 		rflow = &flow_table->flows[hash & flow_table->mask];
4374 		tcpu = rflow->cpu;
4375 
4376 		/*
4377 		 * If the desired CPU (where last recvmsg was done) is
4378 		 * different from current CPU (one in the rx-queue flow
4379 		 * table entry), switch if one of the following holds:
4380 		 *   - Current CPU is unset (>= nr_cpu_ids).
4381 		 *   - Current CPU is offline.
4382 		 *   - The current CPU's queue tail has advanced beyond the
4383 		 *     last packet that was enqueued using this table entry.
4384 		 *     This guarantees that all previous packets for the flow
4385 		 *     have been dequeued, thus preserving in order delivery.
4386 		 */
4387 		if (unlikely(tcpu != next_cpu) &&
4388 		    (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4389 		     ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4390 		      rflow->last_qtail)) >= 0)) {
4391 			tcpu = next_cpu;
4392 			rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4393 		}
4394 
4395 		if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4396 			*rflowp = rflow;
4397 			cpu = tcpu;
4398 			goto done;
4399 		}
4400 	}
4401 
4402 try_rps:
4403 
4404 	if (map) {
4405 		tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4406 		if (cpu_online(tcpu)) {
4407 			cpu = tcpu;
4408 			goto done;
4409 		}
4410 	}
4411 
4412 done:
4413 	return cpu;
4414 }
4415 
4416 #ifdef CONFIG_RFS_ACCEL
4417 
4418 /**
4419  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4420  * @dev: Device on which the filter was set
4421  * @rxq_index: RX queue index
4422  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4423  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4424  *
4425  * Drivers that implement ndo_rx_flow_steer() should periodically call
4426  * this function for each installed filter and remove the filters for
4427  * which it returns %true.
4428  */
4429 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4430 			 u32 flow_id, u16 filter_id)
4431 {
4432 	struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4433 	struct rps_dev_flow_table *flow_table;
4434 	struct rps_dev_flow *rflow;
4435 	bool expire = true;
4436 	unsigned int cpu;
4437 
4438 	rcu_read_lock();
4439 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
4440 	if (flow_table && flow_id <= flow_table->mask) {
4441 		rflow = &flow_table->flows[flow_id];
4442 		cpu = READ_ONCE(rflow->cpu);
4443 		if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4444 		    ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4445 			   rflow->last_qtail) <
4446 		     (int)(10 * flow_table->mask)))
4447 			expire = false;
4448 	}
4449 	rcu_read_unlock();
4450 	return expire;
4451 }
4452 EXPORT_SYMBOL(rps_may_expire_flow);
4453 
4454 #endif /* CONFIG_RFS_ACCEL */
4455 
4456 /* Called from hardirq (IPI) context */
4457 static void rps_trigger_softirq(void *data)
4458 {
4459 	struct softnet_data *sd = data;
4460 
4461 	____napi_schedule(sd, &sd->backlog);
4462 	sd->received_rps++;
4463 }
4464 
4465 #endif /* CONFIG_RPS */
4466 
4467 /*
4468  * Check if this softnet_data structure is another cpu one
4469  * If yes, queue it to our IPI list and return 1
4470  * If no, return 0
4471  */
4472 static int rps_ipi_queued(struct softnet_data *sd)
4473 {
4474 #ifdef CONFIG_RPS
4475 	struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4476 
4477 	if (sd != mysd) {
4478 		sd->rps_ipi_next = mysd->rps_ipi_list;
4479 		mysd->rps_ipi_list = sd;
4480 
4481 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4482 		return 1;
4483 	}
4484 #endif /* CONFIG_RPS */
4485 	return 0;
4486 }
4487 
4488 #ifdef CONFIG_NET_FLOW_LIMIT
4489 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4490 #endif
4491 
4492 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4493 {
4494 #ifdef CONFIG_NET_FLOW_LIMIT
4495 	struct sd_flow_limit *fl;
4496 	struct softnet_data *sd;
4497 	unsigned int old_flow, new_flow;
4498 
4499 	if (qlen < (netdev_max_backlog >> 1))
4500 		return false;
4501 
4502 	sd = this_cpu_ptr(&softnet_data);
4503 
4504 	rcu_read_lock();
4505 	fl = rcu_dereference(sd->flow_limit);
4506 	if (fl) {
4507 		new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4508 		old_flow = fl->history[fl->history_head];
4509 		fl->history[fl->history_head] = new_flow;
4510 
4511 		fl->history_head++;
4512 		fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4513 
4514 		if (likely(fl->buckets[old_flow]))
4515 			fl->buckets[old_flow]--;
4516 
4517 		if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4518 			fl->count++;
4519 			rcu_read_unlock();
4520 			return true;
4521 		}
4522 	}
4523 	rcu_read_unlock();
4524 #endif
4525 	return false;
4526 }
4527 
4528 /*
4529  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4530  * queue (may be a remote CPU queue).
4531  */
4532 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4533 			      unsigned int *qtail)
4534 {
4535 	struct softnet_data *sd;
4536 	unsigned long flags;
4537 	unsigned int qlen;
4538 
4539 	sd = &per_cpu(softnet_data, cpu);
4540 
4541 	local_irq_save(flags);
4542 
4543 	rps_lock(sd);
4544 	if (!netif_running(skb->dev))
4545 		goto drop;
4546 	qlen = skb_queue_len(&sd->input_pkt_queue);
4547 	if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
4548 		if (qlen) {
4549 enqueue:
4550 			__skb_queue_tail(&sd->input_pkt_queue, skb);
4551 			input_queue_tail_incr_save(sd, qtail);
4552 			rps_unlock(sd);
4553 			local_irq_restore(flags);
4554 			return NET_RX_SUCCESS;
4555 		}
4556 
4557 		/* Schedule NAPI for backlog device
4558 		 * We can use non atomic operation since we own the queue lock
4559 		 */
4560 		if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
4561 			if (!rps_ipi_queued(sd))
4562 				____napi_schedule(sd, &sd->backlog);
4563 		}
4564 		goto enqueue;
4565 	}
4566 
4567 drop:
4568 	sd->dropped++;
4569 	rps_unlock(sd);
4570 
4571 	local_irq_restore(flags);
4572 
4573 	atomic_long_inc(&skb->dev->rx_dropped);
4574 	kfree_skb(skb);
4575 	return NET_RX_DROP;
4576 }
4577 
4578 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4579 {
4580 	struct net_device *dev = skb->dev;
4581 	struct netdev_rx_queue *rxqueue;
4582 
4583 	rxqueue = dev->_rx;
4584 
4585 	if (skb_rx_queue_recorded(skb)) {
4586 		u16 index = skb_get_rx_queue(skb);
4587 
4588 		if (unlikely(index >= dev->real_num_rx_queues)) {
4589 			WARN_ONCE(dev->real_num_rx_queues > 1,
4590 				  "%s received packet on queue %u, but number "
4591 				  "of RX queues is %u\n",
4592 				  dev->name, index, dev->real_num_rx_queues);
4593 
4594 			return rxqueue; /* Return first rxqueue */
4595 		}
4596 		rxqueue += index;
4597 	}
4598 	return rxqueue;
4599 }
4600 
4601 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4602 				     struct xdp_buff *xdp,
4603 				     struct bpf_prog *xdp_prog)
4604 {
4605 	struct netdev_rx_queue *rxqueue;
4606 	void *orig_data, *orig_data_end;
4607 	u32 metalen, act = XDP_DROP;
4608 	__be16 orig_eth_type;
4609 	struct ethhdr *eth;
4610 	bool orig_bcast;
4611 	int hlen, off;
4612 	u32 mac_len;
4613 
4614 	/* Reinjected packets coming from act_mirred or similar should
4615 	 * not get XDP generic processing.
4616 	 */
4617 	if (skb_is_redirected(skb))
4618 		return XDP_PASS;
4619 
4620 	/* XDP packets must be linear and must have sufficient headroom
4621 	 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4622 	 * native XDP provides, thus we need to do it here as well.
4623 	 */
4624 	if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
4625 	    skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4626 		int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4627 		int troom = skb->tail + skb->data_len - skb->end;
4628 
4629 		/* In case we have to go down the path and also linearize,
4630 		 * then lets do the pskb_expand_head() work just once here.
4631 		 */
4632 		if (pskb_expand_head(skb,
4633 				     hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4634 				     troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4635 			goto do_drop;
4636 		if (skb_linearize(skb))
4637 			goto do_drop;
4638 	}
4639 
4640 	/* The XDP program wants to see the packet starting at the MAC
4641 	 * header.
4642 	 */
4643 	mac_len = skb->data - skb_mac_header(skb);
4644 	hlen = skb_headlen(skb) + mac_len;
4645 	xdp->data = skb->data - mac_len;
4646 	xdp->data_meta = xdp->data;
4647 	xdp->data_end = xdp->data + hlen;
4648 	xdp->data_hard_start = skb->data - skb_headroom(skb);
4649 
4650 	/* SKB "head" area always have tailroom for skb_shared_info */
4651 	xdp->frame_sz  = (void *)skb_end_pointer(skb) - xdp->data_hard_start;
4652 	xdp->frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
4653 
4654 	orig_data_end = xdp->data_end;
4655 	orig_data = xdp->data;
4656 	eth = (struct ethhdr *)xdp->data;
4657 	orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4658 	orig_eth_type = eth->h_proto;
4659 
4660 	rxqueue = netif_get_rxqueue(skb);
4661 	xdp->rxq = &rxqueue->xdp_rxq;
4662 
4663 	act = bpf_prog_run_xdp(xdp_prog, xdp);
4664 
4665 	/* check if bpf_xdp_adjust_head was used */
4666 	off = xdp->data - orig_data;
4667 	if (off) {
4668 		if (off > 0)
4669 			__skb_pull(skb, off);
4670 		else if (off < 0)
4671 			__skb_push(skb, -off);
4672 
4673 		skb->mac_header += off;
4674 		skb_reset_network_header(skb);
4675 	}
4676 
4677 	/* check if bpf_xdp_adjust_tail was used */
4678 	off = xdp->data_end - orig_data_end;
4679 	if (off != 0) {
4680 		skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4681 		skb->len += off; /* positive on grow, negative on shrink */
4682 	}
4683 
4684 	/* check if XDP changed eth hdr such SKB needs update */
4685 	eth = (struct ethhdr *)xdp->data;
4686 	if ((orig_eth_type != eth->h_proto) ||
4687 	    (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4688 		__skb_push(skb, ETH_HLEN);
4689 		skb->protocol = eth_type_trans(skb, skb->dev);
4690 	}
4691 
4692 	switch (act) {
4693 	case XDP_REDIRECT:
4694 	case XDP_TX:
4695 		__skb_push(skb, mac_len);
4696 		break;
4697 	case XDP_PASS:
4698 		metalen = xdp->data - xdp->data_meta;
4699 		if (metalen)
4700 			skb_metadata_set(skb, metalen);
4701 		break;
4702 	default:
4703 		bpf_warn_invalid_xdp_action(act);
4704 		fallthrough;
4705 	case XDP_ABORTED:
4706 		trace_xdp_exception(skb->dev, xdp_prog, act);
4707 		fallthrough;
4708 	case XDP_DROP:
4709 	do_drop:
4710 		kfree_skb(skb);
4711 		break;
4712 	}
4713 
4714 	return act;
4715 }
4716 
4717 /* When doing generic XDP we have to bypass the qdisc layer and the
4718  * network taps in order to match in-driver-XDP behavior.
4719  */
4720 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4721 {
4722 	struct net_device *dev = skb->dev;
4723 	struct netdev_queue *txq;
4724 	bool free_skb = true;
4725 	int cpu, rc;
4726 
4727 	txq = netdev_core_pick_tx(dev, skb, NULL);
4728 	cpu = smp_processor_id();
4729 	HARD_TX_LOCK(dev, txq, cpu);
4730 	if (!netif_xmit_stopped(txq)) {
4731 		rc = netdev_start_xmit(skb, dev, txq, 0);
4732 		if (dev_xmit_complete(rc))
4733 			free_skb = false;
4734 	}
4735 	HARD_TX_UNLOCK(dev, txq);
4736 	if (free_skb) {
4737 		trace_xdp_exception(dev, xdp_prog, XDP_TX);
4738 		kfree_skb(skb);
4739 	}
4740 }
4741 
4742 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
4743 
4744 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4745 {
4746 	if (xdp_prog) {
4747 		struct xdp_buff xdp;
4748 		u32 act;
4749 		int err;
4750 
4751 		act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
4752 		if (act != XDP_PASS) {
4753 			switch (act) {
4754 			case XDP_REDIRECT:
4755 				err = xdp_do_generic_redirect(skb->dev, skb,
4756 							      &xdp, xdp_prog);
4757 				if (err)
4758 					goto out_redir;
4759 				break;
4760 			case XDP_TX:
4761 				generic_xdp_tx(skb, xdp_prog);
4762 				break;
4763 			}
4764 			return XDP_DROP;
4765 		}
4766 	}
4767 	return XDP_PASS;
4768 out_redir:
4769 	kfree_skb(skb);
4770 	return XDP_DROP;
4771 }
4772 EXPORT_SYMBOL_GPL(do_xdp_generic);
4773 
4774 static int netif_rx_internal(struct sk_buff *skb)
4775 {
4776 	int ret;
4777 
4778 	net_timestamp_check(netdev_tstamp_prequeue, skb);
4779 
4780 	trace_netif_rx(skb);
4781 
4782 #ifdef CONFIG_RPS
4783 	if (static_branch_unlikely(&rps_needed)) {
4784 		struct rps_dev_flow voidflow, *rflow = &voidflow;
4785 		int cpu;
4786 
4787 		preempt_disable();
4788 		rcu_read_lock();
4789 
4790 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
4791 		if (cpu < 0)
4792 			cpu = smp_processor_id();
4793 
4794 		ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4795 
4796 		rcu_read_unlock();
4797 		preempt_enable();
4798 	} else
4799 #endif
4800 	{
4801 		unsigned int qtail;
4802 
4803 		ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4804 		put_cpu();
4805 	}
4806 	return ret;
4807 }
4808 
4809 /**
4810  *	netif_rx	-	post buffer to the network code
4811  *	@skb: buffer to post
4812  *
4813  *	This function receives a packet from a device driver and queues it for
4814  *	the upper (protocol) levels to process.  It always succeeds. The buffer
4815  *	may be dropped during processing for congestion control or by the
4816  *	protocol layers.
4817  *
4818  *	return values:
4819  *	NET_RX_SUCCESS	(no congestion)
4820  *	NET_RX_DROP     (packet was dropped)
4821  *
4822  */
4823 
4824 int netif_rx(struct sk_buff *skb)
4825 {
4826 	int ret;
4827 
4828 	trace_netif_rx_entry(skb);
4829 
4830 	ret = netif_rx_internal(skb);
4831 	trace_netif_rx_exit(ret);
4832 
4833 	return ret;
4834 }
4835 EXPORT_SYMBOL(netif_rx);
4836 
4837 int netif_rx_ni(struct sk_buff *skb)
4838 {
4839 	int err;
4840 
4841 	trace_netif_rx_ni_entry(skb);
4842 
4843 	preempt_disable();
4844 	err = netif_rx_internal(skb);
4845 	if (local_softirq_pending())
4846 		do_softirq();
4847 	preempt_enable();
4848 	trace_netif_rx_ni_exit(err);
4849 
4850 	return err;
4851 }
4852 EXPORT_SYMBOL(netif_rx_ni);
4853 
4854 int netif_rx_any_context(struct sk_buff *skb)
4855 {
4856 	/*
4857 	 * If invoked from contexts which do not invoke bottom half
4858 	 * processing either at return from interrupt or when softrqs are
4859 	 * reenabled, use netif_rx_ni() which invokes bottomhalf processing
4860 	 * directly.
4861 	 */
4862 	if (in_interrupt())
4863 		return netif_rx(skb);
4864 	else
4865 		return netif_rx_ni(skb);
4866 }
4867 EXPORT_SYMBOL(netif_rx_any_context);
4868 
4869 static __latent_entropy void net_tx_action(struct softirq_action *h)
4870 {
4871 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4872 
4873 	if (sd->completion_queue) {
4874 		struct sk_buff *clist;
4875 
4876 		local_irq_disable();
4877 		clist = sd->completion_queue;
4878 		sd->completion_queue = NULL;
4879 		local_irq_enable();
4880 
4881 		while (clist) {
4882 			struct sk_buff *skb = clist;
4883 
4884 			clist = clist->next;
4885 
4886 			WARN_ON(refcount_read(&skb->users));
4887 			if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
4888 				trace_consume_skb(skb);
4889 			else
4890 				trace_kfree_skb(skb, net_tx_action);
4891 
4892 			if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
4893 				__kfree_skb(skb);
4894 			else
4895 				__kfree_skb_defer(skb);
4896 		}
4897 
4898 		__kfree_skb_flush();
4899 	}
4900 
4901 	if (sd->output_queue) {
4902 		struct Qdisc *head;
4903 
4904 		local_irq_disable();
4905 		head = sd->output_queue;
4906 		sd->output_queue = NULL;
4907 		sd->output_queue_tailp = &sd->output_queue;
4908 		local_irq_enable();
4909 
4910 		while (head) {
4911 			struct Qdisc *q = head;
4912 			spinlock_t *root_lock = NULL;
4913 
4914 			head = head->next_sched;
4915 
4916 			if (!(q->flags & TCQ_F_NOLOCK)) {
4917 				root_lock = qdisc_lock(q);
4918 				spin_lock(root_lock);
4919 			}
4920 			/* We need to make sure head->next_sched is read
4921 			 * before clearing __QDISC_STATE_SCHED
4922 			 */
4923 			smp_mb__before_atomic();
4924 			clear_bit(__QDISC_STATE_SCHED, &q->state);
4925 			qdisc_run(q);
4926 			if (root_lock)
4927 				spin_unlock(root_lock);
4928 		}
4929 	}
4930 
4931 	xfrm_dev_backlog(sd);
4932 }
4933 
4934 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
4935 /* This hook is defined here for ATM LANE */
4936 int (*br_fdb_test_addr_hook)(struct net_device *dev,
4937 			     unsigned char *addr) __read_mostly;
4938 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
4939 #endif
4940 
4941 static inline struct sk_buff *
4942 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4943 		   struct net_device *orig_dev, bool *another)
4944 {
4945 #ifdef CONFIG_NET_CLS_ACT
4946 	struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
4947 	struct tcf_result cl_res;
4948 
4949 	/* If there's at least one ingress present somewhere (so
4950 	 * we get here via enabled static key), remaining devices
4951 	 * that are not configured with an ingress qdisc will bail
4952 	 * out here.
4953 	 */
4954 	if (!miniq)
4955 		return skb;
4956 
4957 	if (*pt_prev) {
4958 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
4959 		*pt_prev = NULL;
4960 	}
4961 
4962 	qdisc_skb_cb(skb)->pkt_len = skb->len;
4963 	qdisc_skb_cb(skb)->mru = 0;
4964 	skb->tc_at_ingress = 1;
4965 	mini_qdisc_bstats_cpu_update(miniq, skb);
4966 
4967 	switch (tcf_classify_ingress(skb, miniq->block, miniq->filter_list,
4968 				     &cl_res, false)) {
4969 	case TC_ACT_OK:
4970 	case TC_ACT_RECLASSIFY:
4971 		skb->tc_index = TC_H_MIN(cl_res.classid);
4972 		break;
4973 	case TC_ACT_SHOT:
4974 		mini_qdisc_qstats_cpu_drop(miniq);
4975 		kfree_skb(skb);
4976 		return NULL;
4977 	case TC_ACT_STOLEN:
4978 	case TC_ACT_QUEUED:
4979 	case TC_ACT_TRAP:
4980 		consume_skb(skb);
4981 		return NULL;
4982 	case TC_ACT_REDIRECT:
4983 		/* skb_mac_header check was done by cls/act_bpf, so
4984 		 * we can safely push the L2 header back before
4985 		 * redirecting to another netdev
4986 		 */
4987 		__skb_push(skb, skb->mac_len);
4988 		if (skb_do_redirect(skb) == -EAGAIN) {
4989 			__skb_pull(skb, skb->mac_len);
4990 			*another = true;
4991 			break;
4992 		}
4993 		return NULL;
4994 	case TC_ACT_CONSUMED:
4995 		return NULL;
4996 	default:
4997 		break;
4998 	}
4999 #endif /* CONFIG_NET_CLS_ACT */
5000 	return skb;
5001 }
5002 
5003 /**
5004  *	netdev_is_rx_handler_busy - check if receive handler is registered
5005  *	@dev: device to check
5006  *
5007  *	Check if a receive handler is already registered for a given device.
5008  *	Return true if there one.
5009  *
5010  *	The caller must hold the rtnl_mutex.
5011  */
5012 bool netdev_is_rx_handler_busy(struct net_device *dev)
5013 {
5014 	ASSERT_RTNL();
5015 	return dev && rtnl_dereference(dev->rx_handler);
5016 }
5017 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
5018 
5019 /**
5020  *	netdev_rx_handler_register - register receive handler
5021  *	@dev: device to register a handler for
5022  *	@rx_handler: receive handler to register
5023  *	@rx_handler_data: data pointer that is used by rx handler
5024  *
5025  *	Register a receive handler for a device. This handler will then be
5026  *	called from __netif_receive_skb. A negative errno code is returned
5027  *	on a failure.
5028  *
5029  *	The caller must hold the rtnl_mutex.
5030  *
5031  *	For a general description of rx_handler, see enum rx_handler_result.
5032  */
5033 int netdev_rx_handler_register(struct net_device *dev,
5034 			       rx_handler_func_t *rx_handler,
5035 			       void *rx_handler_data)
5036 {
5037 	if (netdev_is_rx_handler_busy(dev))
5038 		return -EBUSY;
5039 
5040 	if (dev->priv_flags & IFF_NO_RX_HANDLER)
5041 		return -EINVAL;
5042 
5043 	/* Note: rx_handler_data must be set before rx_handler */
5044 	rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
5045 	rcu_assign_pointer(dev->rx_handler, rx_handler);
5046 
5047 	return 0;
5048 }
5049 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5050 
5051 /**
5052  *	netdev_rx_handler_unregister - unregister receive handler
5053  *	@dev: device to unregister a handler from
5054  *
5055  *	Unregister a receive handler from a device.
5056  *
5057  *	The caller must hold the rtnl_mutex.
5058  */
5059 void netdev_rx_handler_unregister(struct net_device *dev)
5060 {
5061 
5062 	ASSERT_RTNL();
5063 	RCU_INIT_POINTER(dev->rx_handler, NULL);
5064 	/* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5065 	 * section has a guarantee to see a non NULL rx_handler_data
5066 	 * as well.
5067 	 */
5068 	synchronize_net();
5069 	RCU_INIT_POINTER(dev->rx_handler_data, NULL);
5070 }
5071 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5072 
5073 /*
5074  * Limit the use of PFMEMALLOC reserves to those protocols that implement
5075  * the special handling of PFMEMALLOC skbs.
5076  */
5077 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5078 {
5079 	switch (skb->protocol) {
5080 	case htons(ETH_P_ARP):
5081 	case htons(ETH_P_IP):
5082 	case htons(ETH_P_IPV6):
5083 	case htons(ETH_P_8021Q):
5084 	case htons(ETH_P_8021AD):
5085 		return true;
5086 	default:
5087 		return false;
5088 	}
5089 }
5090 
5091 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5092 			     int *ret, struct net_device *orig_dev)
5093 {
5094 	if (nf_hook_ingress_active(skb)) {
5095 		int ingress_retval;
5096 
5097 		if (*pt_prev) {
5098 			*ret = deliver_skb(skb, *pt_prev, orig_dev);
5099 			*pt_prev = NULL;
5100 		}
5101 
5102 		rcu_read_lock();
5103 		ingress_retval = nf_hook_ingress(skb);
5104 		rcu_read_unlock();
5105 		return ingress_retval;
5106 	}
5107 	return 0;
5108 }
5109 
5110 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
5111 				    struct packet_type **ppt_prev)
5112 {
5113 	struct packet_type *ptype, *pt_prev;
5114 	rx_handler_func_t *rx_handler;
5115 	struct sk_buff *skb = *pskb;
5116 	struct net_device *orig_dev;
5117 	bool deliver_exact = false;
5118 	int ret = NET_RX_DROP;
5119 	__be16 type;
5120 
5121 	net_timestamp_check(!netdev_tstamp_prequeue, skb);
5122 
5123 	trace_netif_receive_skb(skb);
5124 
5125 	orig_dev = skb->dev;
5126 
5127 	skb_reset_network_header(skb);
5128 	if (!skb_transport_header_was_set(skb))
5129 		skb_reset_transport_header(skb);
5130 	skb_reset_mac_len(skb);
5131 
5132 	pt_prev = NULL;
5133 
5134 another_round:
5135 	skb->skb_iif = skb->dev->ifindex;
5136 
5137 	__this_cpu_inc(softnet_data.processed);
5138 
5139 	if (static_branch_unlikely(&generic_xdp_needed_key)) {
5140 		int ret2;
5141 
5142 		preempt_disable();
5143 		ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
5144 		preempt_enable();
5145 
5146 		if (ret2 != XDP_PASS) {
5147 			ret = NET_RX_DROP;
5148 			goto out;
5149 		}
5150 		skb_reset_mac_len(skb);
5151 	}
5152 
5153 	if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
5154 	    skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
5155 		skb = skb_vlan_untag(skb);
5156 		if (unlikely(!skb))
5157 			goto out;
5158 	}
5159 
5160 	if (skb_skip_tc_classify(skb))
5161 		goto skip_classify;
5162 
5163 	if (pfmemalloc)
5164 		goto skip_taps;
5165 
5166 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
5167 		if (pt_prev)
5168 			ret = deliver_skb(skb, pt_prev, orig_dev);
5169 		pt_prev = ptype;
5170 	}
5171 
5172 	list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5173 		if (pt_prev)
5174 			ret = deliver_skb(skb, pt_prev, orig_dev);
5175 		pt_prev = ptype;
5176 	}
5177 
5178 skip_taps:
5179 #ifdef CONFIG_NET_INGRESS
5180 	if (static_branch_unlikely(&ingress_needed_key)) {
5181 		bool another = false;
5182 
5183 		skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev,
5184 					 &another);
5185 		if (another)
5186 			goto another_round;
5187 		if (!skb)
5188 			goto out;
5189 
5190 		if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5191 			goto out;
5192 	}
5193 #endif
5194 	skb_reset_redirect(skb);
5195 skip_classify:
5196 	if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
5197 		goto drop;
5198 
5199 	if (skb_vlan_tag_present(skb)) {
5200 		if (pt_prev) {
5201 			ret = deliver_skb(skb, pt_prev, orig_dev);
5202 			pt_prev = NULL;
5203 		}
5204 		if (vlan_do_receive(&skb))
5205 			goto another_round;
5206 		else if (unlikely(!skb))
5207 			goto out;
5208 	}
5209 
5210 	rx_handler = rcu_dereference(skb->dev->rx_handler);
5211 	if (rx_handler) {
5212 		if (pt_prev) {
5213 			ret = deliver_skb(skb, pt_prev, orig_dev);
5214 			pt_prev = NULL;
5215 		}
5216 		switch (rx_handler(&skb)) {
5217 		case RX_HANDLER_CONSUMED:
5218 			ret = NET_RX_SUCCESS;
5219 			goto out;
5220 		case RX_HANDLER_ANOTHER:
5221 			goto another_round;
5222 		case RX_HANDLER_EXACT:
5223 			deliver_exact = true;
5224 		case RX_HANDLER_PASS:
5225 			break;
5226 		default:
5227 			BUG();
5228 		}
5229 	}
5230 
5231 	if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) {
5232 check_vlan_id:
5233 		if (skb_vlan_tag_get_id(skb)) {
5234 			/* Vlan id is non 0 and vlan_do_receive() above couldn't
5235 			 * find vlan device.
5236 			 */
5237 			skb->pkt_type = PACKET_OTHERHOST;
5238 		} else if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
5239 			   skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
5240 			/* Outer header is 802.1P with vlan 0, inner header is
5241 			 * 802.1Q or 802.1AD and vlan_do_receive() above could
5242 			 * not find vlan dev for vlan id 0.
5243 			 */
5244 			__vlan_hwaccel_clear_tag(skb);
5245 			skb = skb_vlan_untag(skb);
5246 			if (unlikely(!skb))
5247 				goto out;
5248 			if (vlan_do_receive(&skb))
5249 				/* After stripping off 802.1P header with vlan 0
5250 				 * vlan dev is found for inner header.
5251 				 */
5252 				goto another_round;
5253 			else if (unlikely(!skb))
5254 				goto out;
5255 			else
5256 				/* We have stripped outer 802.1P vlan 0 header.
5257 				 * But could not find vlan dev.
5258 				 * check again for vlan id to set OTHERHOST.
5259 				 */
5260 				goto check_vlan_id;
5261 		}
5262 		/* Note: we might in the future use prio bits
5263 		 * and set skb->priority like in vlan_do_receive()
5264 		 * For the time being, just ignore Priority Code Point
5265 		 */
5266 		__vlan_hwaccel_clear_tag(skb);
5267 	}
5268 
5269 	type = skb->protocol;
5270 
5271 	/* deliver only exact match when indicated */
5272 	if (likely(!deliver_exact)) {
5273 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5274 				       &ptype_base[ntohs(type) &
5275 						   PTYPE_HASH_MASK]);
5276 	}
5277 
5278 	deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5279 			       &orig_dev->ptype_specific);
5280 
5281 	if (unlikely(skb->dev != orig_dev)) {
5282 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5283 				       &skb->dev->ptype_specific);
5284 	}
5285 
5286 	if (pt_prev) {
5287 		if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
5288 			goto drop;
5289 		*ppt_prev = pt_prev;
5290 	} else {
5291 drop:
5292 		if (!deliver_exact)
5293 			atomic_long_inc(&skb->dev->rx_dropped);
5294 		else
5295 			atomic_long_inc(&skb->dev->rx_nohandler);
5296 		kfree_skb(skb);
5297 		/* Jamal, now you will not able to escape explaining
5298 		 * me how you were going to use this. :-)
5299 		 */
5300 		ret = NET_RX_DROP;
5301 	}
5302 
5303 out:
5304 	/* The invariant here is that if *ppt_prev is not NULL
5305 	 * then skb should also be non-NULL.
5306 	 *
5307 	 * Apparently *ppt_prev assignment above holds this invariant due to
5308 	 * skb dereferencing near it.
5309 	 */
5310 	*pskb = skb;
5311 	return ret;
5312 }
5313 
5314 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5315 {
5316 	struct net_device *orig_dev = skb->dev;
5317 	struct packet_type *pt_prev = NULL;
5318 	int ret;
5319 
5320 	ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5321 	if (pt_prev)
5322 		ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5323 					 skb->dev, pt_prev, orig_dev);
5324 	return ret;
5325 }
5326 
5327 /**
5328  *	netif_receive_skb_core - special purpose version of netif_receive_skb
5329  *	@skb: buffer to process
5330  *
5331  *	More direct receive version of netif_receive_skb().  It should
5332  *	only be used by callers that have a need to skip RPS and Generic XDP.
5333  *	Caller must also take care of handling if ``(page_is_)pfmemalloc``.
5334  *
5335  *	This function may only be called from softirq context and interrupts
5336  *	should be enabled.
5337  *
5338  *	Return values (usually ignored):
5339  *	NET_RX_SUCCESS: no congestion
5340  *	NET_RX_DROP: packet was dropped
5341  */
5342 int netif_receive_skb_core(struct sk_buff *skb)
5343 {
5344 	int ret;
5345 
5346 	rcu_read_lock();
5347 	ret = __netif_receive_skb_one_core(skb, false);
5348 	rcu_read_unlock();
5349 
5350 	return ret;
5351 }
5352 EXPORT_SYMBOL(netif_receive_skb_core);
5353 
5354 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5355 						  struct packet_type *pt_prev,
5356 						  struct net_device *orig_dev)
5357 {
5358 	struct sk_buff *skb, *next;
5359 
5360 	if (!pt_prev)
5361 		return;
5362 	if (list_empty(head))
5363 		return;
5364 	if (pt_prev->list_func != NULL)
5365 		INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5366 				   ip_list_rcv, head, pt_prev, orig_dev);
5367 	else
5368 		list_for_each_entry_safe(skb, next, head, list) {
5369 			skb_list_del_init(skb);
5370 			pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5371 		}
5372 }
5373 
5374 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5375 {
5376 	/* Fast-path assumptions:
5377 	 * - There is no RX handler.
5378 	 * - Only one packet_type matches.
5379 	 * If either of these fails, we will end up doing some per-packet
5380 	 * processing in-line, then handling the 'last ptype' for the whole
5381 	 * sublist.  This can't cause out-of-order delivery to any single ptype,
5382 	 * because the 'last ptype' must be constant across the sublist, and all
5383 	 * other ptypes are handled per-packet.
5384 	 */
5385 	/* Current (common) ptype of sublist */
5386 	struct packet_type *pt_curr = NULL;
5387 	/* Current (common) orig_dev of sublist */
5388 	struct net_device *od_curr = NULL;
5389 	struct list_head sublist;
5390 	struct sk_buff *skb, *next;
5391 
5392 	INIT_LIST_HEAD(&sublist);
5393 	list_for_each_entry_safe(skb, next, head, list) {
5394 		struct net_device *orig_dev = skb->dev;
5395 		struct packet_type *pt_prev = NULL;
5396 
5397 		skb_list_del_init(skb);
5398 		__netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5399 		if (!pt_prev)
5400 			continue;
5401 		if (pt_curr != pt_prev || od_curr != orig_dev) {
5402 			/* dispatch old sublist */
5403 			__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5404 			/* start new sublist */
5405 			INIT_LIST_HEAD(&sublist);
5406 			pt_curr = pt_prev;
5407 			od_curr = orig_dev;
5408 		}
5409 		list_add_tail(&skb->list, &sublist);
5410 	}
5411 
5412 	/* dispatch final sublist */
5413 	__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5414 }
5415 
5416 static int __netif_receive_skb(struct sk_buff *skb)
5417 {
5418 	int ret;
5419 
5420 	if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5421 		unsigned int noreclaim_flag;
5422 
5423 		/*
5424 		 * PFMEMALLOC skbs are special, they should
5425 		 * - be delivered to SOCK_MEMALLOC sockets only
5426 		 * - stay away from userspace
5427 		 * - have bounded memory usage
5428 		 *
5429 		 * Use PF_MEMALLOC as this saves us from propagating the allocation
5430 		 * context down to all allocation sites.
5431 		 */
5432 		noreclaim_flag = memalloc_noreclaim_save();
5433 		ret = __netif_receive_skb_one_core(skb, true);
5434 		memalloc_noreclaim_restore(noreclaim_flag);
5435 	} else
5436 		ret = __netif_receive_skb_one_core(skb, false);
5437 
5438 	return ret;
5439 }
5440 
5441 static void __netif_receive_skb_list(struct list_head *head)
5442 {
5443 	unsigned long noreclaim_flag = 0;
5444 	struct sk_buff *skb, *next;
5445 	bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5446 
5447 	list_for_each_entry_safe(skb, next, head, list) {
5448 		if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5449 			struct list_head sublist;
5450 
5451 			/* Handle the previous sublist */
5452 			list_cut_before(&sublist, head, &skb->list);
5453 			if (!list_empty(&sublist))
5454 				__netif_receive_skb_list_core(&sublist, pfmemalloc);
5455 			pfmemalloc = !pfmemalloc;
5456 			/* See comments in __netif_receive_skb */
5457 			if (pfmemalloc)
5458 				noreclaim_flag = memalloc_noreclaim_save();
5459 			else
5460 				memalloc_noreclaim_restore(noreclaim_flag);
5461 		}
5462 	}
5463 	/* Handle the remaining sublist */
5464 	if (!list_empty(head))
5465 		__netif_receive_skb_list_core(head, pfmemalloc);
5466 	/* Restore pflags */
5467 	if (pfmemalloc)
5468 		memalloc_noreclaim_restore(noreclaim_flag);
5469 }
5470 
5471 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5472 {
5473 	struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5474 	struct bpf_prog *new = xdp->prog;
5475 	int ret = 0;
5476 
5477 	if (new) {
5478 		u32 i;
5479 
5480 		mutex_lock(&new->aux->used_maps_mutex);
5481 
5482 		/* generic XDP does not work with DEVMAPs that can
5483 		 * have a bpf_prog installed on an entry
5484 		 */
5485 		for (i = 0; i < new->aux->used_map_cnt; i++) {
5486 			if (dev_map_can_have_prog(new->aux->used_maps[i]) ||
5487 			    cpu_map_prog_allowed(new->aux->used_maps[i])) {
5488 				mutex_unlock(&new->aux->used_maps_mutex);
5489 				return -EINVAL;
5490 			}
5491 		}
5492 
5493 		mutex_unlock(&new->aux->used_maps_mutex);
5494 	}
5495 
5496 	switch (xdp->command) {
5497 	case XDP_SETUP_PROG:
5498 		rcu_assign_pointer(dev->xdp_prog, new);
5499 		if (old)
5500 			bpf_prog_put(old);
5501 
5502 		if (old && !new) {
5503 			static_branch_dec(&generic_xdp_needed_key);
5504 		} else if (new && !old) {
5505 			static_branch_inc(&generic_xdp_needed_key);
5506 			dev_disable_lro(dev);
5507 			dev_disable_gro_hw(dev);
5508 		}
5509 		break;
5510 
5511 	default:
5512 		ret = -EINVAL;
5513 		break;
5514 	}
5515 
5516 	return ret;
5517 }
5518 
5519 static int netif_receive_skb_internal(struct sk_buff *skb)
5520 {
5521 	int ret;
5522 
5523 	net_timestamp_check(netdev_tstamp_prequeue, skb);
5524 
5525 	if (skb_defer_rx_timestamp(skb))
5526 		return NET_RX_SUCCESS;
5527 
5528 	rcu_read_lock();
5529 #ifdef CONFIG_RPS
5530 	if (static_branch_unlikely(&rps_needed)) {
5531 		struct rps_dev_flow voidflow, *rflow = &voidflow;
5532 		int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5533 
5534 		if (cpu >= 0) {
5535 			ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5536 			rcu_read_unlock();
5537 			return ret;
5538 		}
5539 	}
5540 #endif
5541 	ret = __netif_receive_skb(skb);
5542 	rcu_read_unlock();
5543 	return ret;
5544 }
5545 
5546 static void netif_receive_skb_list_internal(struct list_head *head)
5547 {
5548 	struct sk_buff *skb, *next;
5549 	struct list_head sublist;
5550 
5551 	INIT_LIST_HEAD(&sublist);
5552 	list_for_each_entry_safe(skb, next, head, list) {
5553 		net_timestamp_check(netdev_tstamp_prequeue, skb);
5554 		skb_list_del_init(skb);
5555 		if (!skb_defer_rx_timestamp(skb))
5556 			list_add_tail(&skb->list, &sublist);
5557 	}
5558 	list_splice_init(&sublist, head);
5559 
5560 	rcu_read_lock();
5561 #ifdef CONFIG_RPS
5562 	if (static_branch_unlikely(&rps_needed)) {
5563 		list_for_each_entry_safe(skb, next, head, list) {
5564 			struct rps_dev_flow voidflow, *rflow = &voidflow;
5565 			int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5566 
5567 			if (cpu >= 0) {
5568 				/* Will be handled, remove from list */
5569 				skb_list_del_init(skb);
5570 				enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5571 			}
5572 		}
5573 	}
5574 #endif
5575 	__netif_receive_skb_list(head);
5576 	rcu_read_unlock();
5577 }
5578 
5579 /**
5580  *	netif_receive_skb - process receive buffer from network
5581  *	@skb: buffer to process
5582  *
5583  *	netif_receive_skb() is the main receive data processing function.
5584  *	It always succeeds. The buffer may be dropped during processing
5585  *	for congestion control or by the protocol layers.
5586  *
5587  *	This function may only be called from softirq context and interrupts
5588  *	should be enabled.
5589  *
5590  *	Return values (usually ignored):
5591  *	NET_RX_SUCCESS: no congestion
5592  *	NET_RX_DROP: packet was dropped
5593  */
5594 int netif_receive_skb(struct sk_buff *skb)
5595 {
5596 	int ret;
5597 
5598 	trace_netif_receive_skb_entry(skb);
5599 
5600 	ret = netif_receive_skb_internal(skb);
5601 	trace_netif_receive_skb_exit(ret);
5602 
5603 	return ret;
5604 }
5605 EXPORT_SYMBOL(netif_receive_skb);
5606 
5607 /**
5608  *	netif_receive_skb_list - process many receive buffers from network
5609  *	@head: list of skbs to process.
5610  *
5611  *	Since return value of netif_receive_skb() is normally ignored, and
5612  *	wouldn't be meaningful for a list, this function returns void.
5613  *
5614  *	This function may only be called from softirq context and interrupts
5615  *	should be enabled.
5616  */
5617 void netif_receive_skb_list(struct list_head *head)
5618 {
5619 	struct sk_buff *skb;
5620 
5621 	if (list_empty(head))
5622 		return;
5623 	if (trace_netif_receive_skb_list_entry_enabled()) {
5624 		list_for_each_entry(skb, head, list)
5625 			trace_netif_receive_skb_list_entry(skb);
5626 	}
5627 	netif_receive_skb_list_internal(head);
5628 	trace_netif_receive_skb_list_exit(0);
5629 }
5630 EXPORT_SYMBOL(netif_receive_skb_list);
5631 
5632 static DEFINE_PER_CPU(struct work_struct, flush_works);
5633 
5634 /* Network device is going away, flush any packets still pending */
5635 static void flush_backlog(struct work_struct *work)
5636 {
5637 	struct sk_buff *skb, *tmp;
5638 	struct softnet_data *sd;
5639 
5640 	local_bh_disable();
5641 	sd = this_cpu_ptr(&softnet_data);
5642 
5643 	local_irq_disable();
5644 	rps_lock(sd);
5645 	skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5646 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5647 			__skb_unlink(skb, &sd->input_pkt_queue);
5648 			dev_kfree_skb_irq(skb);
5649 			input_queue_head_incr(sd);
5650 		}
5651 	}
5652 	rps_unlock(sd);
5653 	local_irq_enable();
5654 
5655 	skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5656 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5657 			__skb_unlink(skb, &sd->process_queue);
5658 			kfree_skb(skb);
5659 			input_queue_head_incr(sd);
5660 		}
5661 	}
5662 	local_bh_enable();
5663 }
5664 
5665 static bool flush_required(int cpu)
5666 {
5667 #if IS_ENABLED(CONFIG_RPS)
5668 	struct softnet_data *sd = &per_cpu(softnet_data, cpu);
5669 	bool do_flush;
5670 
5671 	local_irq_disable();
5672 	rps_lock(sd);
5673 
5674 	/* as insertion into process_queue happens with the rps lock held,
5675 	 * process_queue access may race only with dequeue
5676 	 */
5677 	do_flush = !skb_queue_empty(&sd->input_pkt_queue) ||
5678 		   !skb_queue_empty_lockless(&sd->process_queue);
5679 	rps_unlock(sd);
5680 	local_irq_enable();
5681 
5682 	return do_flush;
5683 #endif
5684 	/* without RPS we can't safely check input_pkt_queue: during a
5685 	 * concurrent remote skb_queue_splice() we can detect as empty both
5686 	 * input_pkt_queue and process_queue even if the latter could end-up
5687 	 * containing a lot of packets.
5688 	 */
5689 	return true;
5690 }
5691 
5692 static void flush_all_backlogs(void)
5693 {
5694 	static cpumask_t flush_cpus;
5695 	unsigned int cpu;
5696 
5697 	/* since we are under rtnl lock protection we can use static data
5698 	 * for the cpumask and avoid allocating on stack the possibly
5699 	 * large mask
5700 	 */
5701 	ASSERT_RTNL();
5702 
5703 	get_online_cpus();
5704 
5705 	cpumask_clear(&flush_cpus);
5706 	for_each_online_cpu(cpu) {
5707 		if (flush_required(cpu)) {
5708 			queue_work_on(cpu, system_highpri_wq,
5709 				      per_cpu_ptr(&flush_works, cpu));
5710 			cpumask_set_cpu(cpu, &flush_cpus);
5711 		}
5712 	}
5713 
5714 	/* we can have in flight packet[s] on the cpus we are not flushing,
5715 	 * synchronize_net() in rollback_registered_many() will take care of
5716 	 * them
5717 	 */
5718 	for_each_cpu(cpu, &flush_cpus)
5719 		flush_work(per_cpu_ptr(&flush_works, cpu));
5720 
5721 	put_online_cpus();
5722 }
5723 
5724 /* Pass the currently batched GRO_NORMAL SKBs up to the stack. */
5725 static void gro_normal_list(struct napi_struct *napi)
5726 {
5727 	if (!napi->rx_count)
5728 		return;
5729 	netif_receive_skb_list_internal(&napi->rx_list);
5730 	INIT_LIST_HEAD(&napi->rx_list);
5731 	napi->rx_count = 0;
5732 }
5733 
5734 /* Queue one GRO_NORMAL SKB up for list processing. If batch size exceeded,
5735  * pass the whole batch up to the stack.
5736  */
5737 static void gro_normal_one(struct napi_struct *napi, struct sk_buff *skb)
5738 {
5739 	list_add_tail(&skb->list, &napi->rx_list);
5740 	if (++napi->rx_count >= gro_normal_batch)
5741 		gro_normal_list(napi);
5742 }
5743 
5744 INDIRECT_CALLABLE_DECLARE(int inet_gro_complete(struct sk_buff *, int));
5745 INDIRECT_CALLABLE_DECLARE(int ipv6_gro_complete(struct sk_buff *, int));
5746 static int napi_gro_complete(struct napi_struct *napi, struct sk_buff *skb)
5747 {
5748 	struct packet_offload *ptype;
5749 	__be16 type = skb->protocol;
5750 	struct list_head *head = &offload_base;
5751 	int err = -ENOENT;
5752 
5753 	BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
5754 
5755 	if (NAPI_GRO_CB(skb)->count == 1) {
5756 		skb_shinfo(skb)->gso_size = 0;
5757 		goto out;
5758 	}
5759 
5760 	rcu_read_lock();
5761 	list_for_each_entry_rcu(ptype, head, list) {
5762 		if (ptype->type != type || !ptype->callbacks.gro_complete)
5763 			continue;
5764 
5765 		err = INDIRECT_CALL_INET(ptype->callbacks.gro_complete,
5766 					 ipv6_gro_complete, inet_gro_complete,
5767 					 skb, 0);
5768 		break;
5769 	}
5770 	rcu_read_unlock();
5771 
5772 	if (err) {
5773 		WARN_ON(&ptype->list == head);
5774 		kfree_skb(skb);
5775 		return NET_RX_SUCCESS;
5776 	}
5777 
5778 out:
5779 	gro_normal_one(napi, skb);
5780 	return NET_RX_SUCCESS;
5781 }
5782 
5783 static void __napi_gro_flush_chain(struct napi_struct *napi, u32 index,
5784 				   bool flush_old)
5785 {
5786 	struct list_head *head = &napi->gro_hash[index].list;
5787 	struct sk_buff *skb, *p;
5788 
5789 	list_for_each_entry_safe_reverse(skb, p, head, list) {
5790 		if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
5791 			return;
5792 		skb_list_del_init(skb);
5793 		napi_gro_complete(napi, skb);
5794 		napi->gro_hash[index].count--;
5795 	}
5796 
5797 	if (!napi->gro_hash[index].count)
5798 		__clear_bit(index, &napi->gro_bitmask);
5799 }
5800 
5801 /* napi->gro_hash[].list contains packets ordered by age.
5802  * youngest packets at the head of it.
5803  * Complete skbs in reverse order to reduce latencies.
5804  */
5805 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
5806 {
5807 	unsigned long bitmask = napi->gro_bitmask;
5808 	unsigned int i, base = ~0U;
5809 
5810 	while ((i = ffs(bitmask)) != 0) {
5811 		bitmask >>= i;
5812 		base += i;
5813 		__napi_gro_flush_chain(napi, base, flush_old);
5814 	}
5815 }
5816 EXPORT_SYMBOL(napi_gro_flush);
5817 
5818 static struct list_head *gro_list_prepare(struct napi_struct *napi,
5819 					  struct sk_buff *skb)
5820 {
5821 	unsigned int maclen = skb->dev->hard_header_len;
5822 	u32 hash = skb_get_hash_raw(skb);
5823 	struct list_head *head;
5824 	struct sk_buff *p;
5825 
5826 	head = &napi->gro_hash[hash & (GRO_HASH_BUCKETS - 1)].list;
5827 	list_for_each_entry(p, head, list) {
5828 		unsigned long diffs;
5829 
5830 		NAPI_GRO_CB(p)->flush = 0;
5831 
5832 		if (hash != skb_get_hash_raw(p)) {
5833 			NAPI_GRO_CB(p)->same_flow = 0;
5834 			continue;
5835 		}
5836 
5837 		diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
5838 		diffs |= skb_vlan_tag_present(p) ^ skb_vlan_tag_present(skb);
5839 		if (skb_vlan_tag_present(p))
5840 			diffs |= skb_vlan_tag_get(p) ^ skb_vlan_tag_get(skb);
5841 		diffs |= skb_metadata_dst_cmp(p, skb);
5842 		diffs |= skb_metadata_differs(p, skb);
5843 		if (maclen == ETH_HLEN)
5844 			diffs |= compare_ether_header(skb_mac_header(p),
5845 						      skb_mac_header(skb));
5846 		else if (!diffs)
5847 			diffs = memcmp(skb_mac_header(p),
5848 				       skb_mac_header(skb),
5849 				       maclen);
5850 		NAPI_GRO_CB(p)->same_flow = !diffs;
5851 	}
5852 
5853 	return head;
5854 }
5855 
5856 static void skb_gro_reset_offset(struct sk_buff *skb)
5857 {
5858 	const struct skb_shared_info *pinfo = skb_shinfo(skb);
5859 	const skb_frag_t *frag0 = &pinfo->frags[0];
5860 
5861 	NAPI_GRO_CB(skb)->data_offset = 0;
5862 	NAPI_GRO_CB(skb)->frag0 = NULL;
5863 	NAPI_GRO_CB(skb)->frag0_len = 0;
5864 
5865 	if (!skb_headlen(skb) && pinfo->nr_frags &&
5866 	    !PageHighMem(skb_frag_page(frag0))) {
5867 		NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
5868 		NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
5869 						    skb_frag_size(frag0),
5870 						    skb->end - skb->tail);
5871 	}
5872 }
5873 
5874 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
5875 {
5876 	struct skb_shared_info *pinfo = skb_shinfo(skb);
5877 
5878 	BUG_ON(skb->end - skb->tail < grow);
5879 
5880 	memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
5881 
5882 	skb->data_len -= grow;
5883 	skb->tail += grow;
5884 
5885 	skb_frag_off_add(&pinfo->frags[0], grow);
5886 	skb_frag_size_sub(&pinfo->frags[0], grow);
5887 
5888 	if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
5889 		skb_frag_unref(skb, 0);
5890 		memmove(pinfo->frags, pinfo->frags + 1,
5891 			--pinfo->nr_frags * sizeof(pinfo->frags[0]));
5892 	}
5893 }
5894 
5895 static void gro_flush_oldest(struct napi_struct *napi, struct list_head *head)
5896 {
5897 	struct sk_buff *oldest;
5898 
5899 	oldest = list_last_entry(head, struct sk_buff, list);
5900 
5901 	/* We are called with head length >= MAX_GRO_SKBS, so this is
5902 	 * impossible.
5903 	 */
5904 	if (WARN_ON_ONCE(!oldest))
5905 		return;
5906 
5907 	/* Do not adjust napi->gro_hash[].count, caller is adding a new
5908 	 * SKB to the chain.
5909 	 */
5910 	skb_list_del_init(oldest);
5911 	napi_gro_complete(napi, oldest);
5912 }
5913 
5914 INDIRECT_CALLABLE_DECLARE(struct sk_buff *inet_gro_receive(struct list_head *,
5915 							   struct sk_buff *));
5916 INDIRECT_CALLABLE_DECLARE(struct sk_buff *ipv6_gro_receive(struct list_head *,
5917 							   struct sk_buff *));
5918 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5919 {
5920 	u32 hash = skb_get_hash_raw(skb) & (GRO_HASH_BUCKETS - 1);
5921 	struct list_head *head = &offload_base;
5922 	struct packet_offload *ptype;
5923 	__be16 type = skb->protocol;
5924 	struct list_head *gro_head;
5925 	struct sk_buff *pp = NULL;
5926 	enum gro_result ret;
5927 	int same_flow;
5928 	int grow;
5929 
5930 	if (netif_elide_gro(skb->dev))
5931 		goto normal;
5932 
5933 	gro_head = gro_list_prepare(napi, skb);
5934 
5935 	rcu_read_lock();
5936 	list_for_each_entry_rcu(ptype, head, list) {
5937 		if (ptype->type != type || !ptype->callbacks.gro_receive)
5938 			continue;
5939 
5940 		skb_set_network_header(skb, skb_gro_offset(skb));
5941 		skb_reset_mac_len(skb);
5942 		NAPI_GRO_CB(skb)->same_flow = 0;
5943 		NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
5944 		NAPI_GRO_CB(skb)->free = 0;
5945 		NAPI_GRO_CB(skb)->encap_mark = 0;
5946 		NAPI_GRO_CB(skb)->recursion_counter = 0;
5947 		NAPI_GRO_CB(skb)->is_fou = 0;
5948 		NAPI_GRO_CB(skb)->is_atomic = 1;
5949 		NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
5950 
5951 		/* Setup for GRO checksum validation */
5952 		switch (skb->ip_summed) {
5953 		case CHECKSUM_COMPLETE:
5954 			NAPI_GRO_CB(skb)->csum = skb->csum;
5955 			NAPI_GRO_CB(skb)->csum_valid = 1;
5956 			NAPI_GRO_CB(skb)->csum_cnt = 0;
5957 			break;
5958 		case CHECKSUM_UNNECESSARY:
5959 			NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
5960 			NAPI_GRO_CB(skb)->csum_valid = 0;
5961 			break;
5962 		default:
5963 			NAPI_GRO_CB(skb)->csum_cnt = 0;
5964 			NAPI_GRO_CB(skb)->csum_valid = 0;
5965 		}
5966 
5967 		pp = INDIRECT_CALL_INET(ptype->callbacks.gro_receive,
5968 					ipv6_gro_receive, inet_gro_receive,
5969 					gro_head, skb);
5970 		break;
5971 	}
5972 	rcu_read_unlock();
5973 
5974 	if (&ptype->list == head)
5975 		goto normal;
5976 
5977 	if (PTR_ERR(pp) == -EINPROGRESS) {
5978 		ret = GRO_CONSUMED;
5979 		goto ok;
5980 	}
5981 
5982 	same_flow = NAPI_GRO_CB(skb)->same_flow;
5983 	ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
5984 
5985 	if (pp) {
5986 		skb_list_del_init(pp);
5987 		napi_gro_complete(napi, pp);
5988 		napi->gro_hash[hash].count--;
5989 	}
5990 
5991 	if (same_flow)
5992 		goto ok;
5993 
5994 	if (NAPI_GRO_CB(skb)->flush)
5995 		goto normal;
5996 
5997 	if (unlikely(napi->gro_hash[hash].count >= MAX_GRO_SKBS)) {
5998 		gro_flush_oldest(napi, gro_head);
5999 	} else {
6000 		napi->gro_hash[hash].count++;
6001 	}
6002 	NAPI_GRO_CB(skb)->count = 1;
6003 	NAPI_GRO_CB(skb)->age = jiffies;
6004 	NAPI_GRO_CB(skb)->last = skb;
6005 	skb_shinfo(skb)->gso_size = skb_gro_len(skb);
6006 	list_add(&skb->list, gro_head);
6007 	ret = GRO_HELD;
6008 
6009 pull:
6010 	grow = skb_gro_offset(skb) - skb_headlen(skb);
6011 	if (grow > 0)
6012 		gro_pull_from_frag0(skb, grow);
6013 ok:
6014 	if (napi->gro_hash[hash].count) {
6015 		if (!test_bit(hash, &napi->gro_bitmask))
6016 			__set_bit(hash, &napi->gro_bitmask);
6017 	} else if (test_bit(hash, &napi->gro_bitmask)) {
6018 		__clear_bit(hash, &napi->gro_bitmask);
6019 	}
6020 
6021 	return ret;
6022 
6023 normal:
6024 	ret = GRO_NORMAL;
6025 	goto pull;
6026 }
6027 
6028 struct packet_offload *gro_find_receive_by_type(__be16 type)
6029 {
6030 	struct list_head *offload_head = &offload_base;
6031 	struct packet_offload *ptype;
6032 
6033 	list_for_each_entry_rcu(ptype, offload_head, list) {
6034 		if (ptype->type != type || !ptype->callbacks.gro_receive)
6035 			continue;
6036 		return ptype;
6037 	}
6038 	return NULL;
6039 }
6040 EXPORT_SYMBOL(gro_find_receive_by_type);
6041 
6042 struct packet_offload *gro_find_complete_by_type(__be16 type)
6043 {
6044 	struct list_head *offload_head = &offload_base;
6045 	struct packet_offload *ptype;
6046 
6047 	list_for_each_entry_rcu(ptype, offload_head, list) {
6048 		if (ptype->type != type || !ptype->callbacks.gro_complete)
6049 			continue;
6050 		return ptype;
6051 	}
6052 	return NULL;
6053 }
6054 EXPORT_SYMBOL(gro_find_complete_by_type);
6055 
6056 static void napi_skb_free_stolen_head(struct sk_buff *skb)
6057 {
6058 	skb_dst_drop(skb);
6059 	skb_ext_put(skb);
6060 	kmem_cache_free(skbuff_head_cache, skb);
6061 }
6062 
6063 static gro_result_t napi_skb_finish(struct napi_struct *napi,
6064 				    struct sk_buff *skb,
6065 				    gro_result_t ret)
6066 {
6067 	switch (ret) {
6068 	case GRO_NORMAL:
6069 		gro_normal_one(napi, skb);
6070 		break;
6071 
6072 	case GRO_DROP:
6073 		kfree_skb(skb);
6074 		break;
6075 
6076 	case GRO_MERGED_FREE:
6077 		if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
6078 			napi_skb_free_stolen_head(skb);
6079 		else
6080 			__kfree_skb(skb);
6081 		break;
6082 
6083 	case GRO_HELD:
6084 	case GRO_MERGED:
6085 	case GRO_CONSUMED:
6086 		break;
6087 	}
6088 
6089 	return ret;
6090 }
6091 
6092 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
6093 {
6094 	gro_result_t ret;
6095 
6096 	skb_mark_napi_id(skb, napi);
6097 	trace_napi_gro_receive_entry(skb);
6098 
6099 	skb_gro_reset_offset(skb);
6100 
6101 	ret = napi_skb_finish(napi, skb, dev_gro_receive(napi, skb));
6102 	trace_napi_gro_receive_exit(ret);
6103 
6104 	return ret;
6105 }
6106 EXPORT_SYMBOL(napi_gro_receive);
6107 
6108 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
6109 {
6110 	if (unlikely(skb->pfmemalloc)) {
6111 		consume_skb(skb);
6112 		return;
6113 	}
6114 	__skb_pull(skb, skb_headlen(skb));
6115 	/* restore the reserve we had after netdev_alloc_skb_ip_align() */
6116 	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
6117 	__vlan_hwaccel_clear_tag(skb);
6118 	skb->dev = napi->dev;
6119 	skb->skb_iif = 0;
6120 
6121 	/* eth_type_trans() assumes pkt_type is PACKET_HOST */
6122 	skb->pkt_type = PACKET_HOST;
6123 
6124 	skb->encapsulation = 0;
6125 	skb_shinfo(skb)->gso_type = 0;
6126 	skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
6127 	skb_ext_reset(skb);
6128 
6129 	napi->skb = skb;
6130 }
6131 
6132 struct sk_buff *napi_get_frags(struct napi_struct *napi)
6133 {
6134 	struct sk_buff *skb = napi->skb;
6135 
6136 	if (!skb) {
6137 		skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
6138 		if (skb) {
6139 			napi->skb = skb;
6140 			skb_mark_napi_id(skb, napi);
6141 		}
6142 	}
6143 	return skb;
6144 }
6145 EXPORT_SYMBOL(napi_get_frags);
6146 
6147 static gro_result_t napi_frags_finish(struct napi_struct *napi,
6148 				      struct sk_buff *skb,
6149 				      gro_result_t ret)
6150 {
6151 	switch (ret) {
6152 	case GRO_NORMAL:
6153 	case GRO_HELD:
6154 		__skb_push(skb, ETH_HLEN);
6155 		skb->protocol = eth_type_trans(skb, skb->dev);
6156 		if (ret == GRO_NORMAL)
6157 			gro_normal_one(napi, skb);
6158 		break;
6159 
6160 	case GRO_DROP:
6161 		napi_reuse_skb(napi, skb);
6162 		break;
6163 
6164 	case GRO_MERGED_FREE:
6165 		if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
6166 			napi_skb_free_stolen_head(skb);
6167 		else
6168 			napi_reuse_skb(napi, skb);
6169 		break;
6170 
6171 	case GRO_MERGED:
6172 	case GRO_CONSUMED:
6173 		break;
6174 	}
6175 
6176 	return ret;
6177 }
6178 
6179 /* Upper GRO stack assumes network header starts at gro_offset=0
6180  * Drivers could call both napi_gro_frags() and napi_gro_receive()
6181  * We copy ethernet header into skb->data to have a common layout.
6182  */
6183 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
6184 {
6185 	struct sk_buff *skb = napi->skb;
6186 	const struct ethhdr *eth;
6187 	unsigned int hlen = sizeof(*eth);
6188 
6189 	napi->skb = NULL;
6190 
6191 	skb_reset_mac_header(skb);
6192 	skb_gro_reset_offset(skb);
6193 
6194 	if (unlikely(skb_gro_header_hard(skb, hlen))) {
6195 		eth = skb_gro_header_slow(skb, hlen, 0);
6196 		if (unlikely(!eth)) {
6197 			net_warn_ratelimited("%s: dropping impossible skb from %s\n",
6198 					     __func__, napi->dev->name);
6199 			napi_reuse_skb(napi, skb);
6200 			return NULL;
6201 		}
6202 	} else {
6203 		eth = (const struct ethhdr *)skb->data;
6204 		gro_pull_from_frag0(skb, hlen);
6205 		NAPI_GRO_CB(skb)->frag0 += hlen;
6206 		NAPI_GRO_CB(skb)->frag0_len -= hlen;
6207 	}
6208 	__skb_pull(skb, hlen);
6209 
6210 	/*
6211 	 * This works because the only protocols we care about don't require
6212 	 * special handling.
6213 	 * We'll fix it up properly in napi_frags_finish()
6214 	 */
6215 	skb->protocol = eth->h_proto;
6216 
6217 	return skb;
6218 }
6219 
6220 gro_result_t napi_gro_frags(struct napi_struct *napi)
6221 {
6222 	gro_result_t ret;
6223 	struct sk_buff *skb = napi_frags_skb(napi);
6224 
6225 	if (!skb)
6226 		return GRO_DROP;
6227 
6228 	trace_napi_gro_frags_entry(skb);
6229 
6230 	ret = napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
6231 	trace_napi_gro_frags_exit(ret);
6232 
6233 	return ret;
6234 }
6235 EXPORT_SYMBOL(napi_gro_frags);
6236 
6237 /* Compute the checksum from gro_offset and return the folded value
6238  * after adding in any pseudo checksum.
6239  */
6240 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
6241 {
6242 	__wsum wsum;
6243 	__sum16 sum;
6244 
6245 	wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
6246 
6247 	/* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
6248 	sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
6249 	/* See comments in __skb_checksum_complete(). */
6250 	if (likely(!sum)) {
6251 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
6252 		    !skb->csum_complete_sw)
6253 			netdev_rx_csum_fault(skb->dev, skb);
6254 	}
6255 
6256 	NAPI_GRO_CB(skb)->csum = wsum;
6257 	NAPI_GRO_CB(skb)->csum_valid = 1;
6258 
6259 	return sum;
6260 }
6261 EXPORT_SYMBOL(__skb_gro_checksum_complete);
6262 
6263 static void net_rps_send_ipi(struct softnet_data *remsd)
6264 {
6265 #ifdef CONFIG_RPS
6266 	while (remsd) {
6267 		struct softnet_data *next = remsd->rps_ipi_next;
6268 
6269 		if (cpu_online(remsd->cpu))
6270 			smp_call_function_single_async(remsd->cpu, &remsd->csd);
6271 		remsd = next;
6272 	}
6273 #endif
6274 }
6275 
6276 /*
6277  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
6278  * Note: called with local irq disabled, but exits with local irq enabled.
6279  */
6280 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
6281 {
6282 #ifdef CONFIG_RPS
6283 	struct softnet_data *remsd = sd->rps_ipi_list;
6284 
6285 	if (remsd) {
6286 		sd->rps_ipi_list = NULL;
6287 
6288 		local_irq_enable();
6289 
6290 		/* Send pending IPI's to kick RPS processing on remote cpus. */
6291 		net_rps_send_ipi(remsd);
6292 	} else
6293 #endif
6294 		local_irq_enable();
6295 }
6296 
6297 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
6298 {
6299 #ifdef CONFIG_RPS
6300 	return sd->rps_ipi_list != NULL;
6301 #else
6302 	return false;
6303 #endif
6304 }
6305 
6306 static int process_backlog(struct napi_struct *napi, int quota)
6307 {
6308 	struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
6309 	bool again = true;
6310 	int work = 0;
6311 
6312 	/* Check if we have pending ipi, its better to send them now,
6313 	 * not waiting net_rx_action() end.
6314 	 */
6315 	if (sd_has_rps_ipi_waiting(sd)) {
6316 		local_irq_disable();
6317 		net_rps_action_and_irq_enable(sd);
6318 	}
6319 
6320 	napi->weight = dev_rx_weight;
6321 	while (again) {
6322 		struct sk_buff *skb;
6323 
6324 		while ((skb = __skb_dequeue(&sd->process_queue))) {
6325 			rcu_read_lock();
6326 			__netif_receive_skb(skb);
6327 			rcu_read_unlock();
6328 			input_queue_head_incr(sd);
6329 			if (++work >= quota)
6330 				return work;
6331 
6332 		}
6333 
6334 		local_irq_disable();
6335 		rps_lock(sd);
6336 		if (skb_queue_empty(&sd->input_pkt_queue)) {
6337 			/*
6338 			 * Inline a custom version of __napi_complete().
6339 			 * only current cpu owns and manipulates this napi,
6340 			 * and NAPI_STATE_SCHED is the only possible flag set
6341 			 * on backlog.
6342 			 * We can use a plain write instead of clear_bit(),
6343 			 * and we dont need an smp_mb() memory barrier.
6344 			 */
6345 			napi->state = 0;
6346 			again = false;
6347 		} else {
6348 			skb_queue_splice_tail_init(&sd->input_pkt_queue,
6349 						   &sd->process_queue);
6350 		}
6351 		rps_unlock(sd);
6352 		local_irq_enable();
6353 	}
6354 
6355 	return work;
6356 }
6357 
6358 /**
6359  * __napi_schedule - schedule for receive
6360  * @n: entry to schedule
6361  *
6362  * The entry's receive function will be scheduled to run.
6363  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
6364  */
6365 void __napi_schedule(struct napi_struct *n)
6366 {
6367 	unsigned long flags;
6368 
6369 	local_irq_save(flags);
6370 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
6371 	local_irq_restore(flags);
6372 }
6373 EXPORT_SYMBOL(__napi_schedule);
6374 
6375 /**
6376  *	napi_schedule_prep - check if napi can be scheduled
6377  *	@n: napi context
6378  *
6379  * Test if NAPI routine is already running, and if not mark
6380  * it as running.  This is used as a condition variable to
6381  * insure only one NAPI poll instance runs.  We also make
6382  * sure there is no pending NAPI disable.
6383  */
6384 bool napi_schedule_prep(struct napi_struct *n)
6385 {
6386 	unsigned long val, new;
6387 
6388 	do {
6389 		val = READ_ONCE(n->state);
6390 		if (unlikely(val & NAPIF_STATE_DISABLE))
6391 			return false;
6392 		new = val | NAPIF_STATE_SCHED;
6393 
6394 		/* Sets STATE_MISSED bit if STATE_SCHED was already set
6395 		 * This was suggested by Alexander Duyck, as compiler
6396 		 * emits better code than :
6397 		 * if (val & NAPIF_STATE_SCHED)
6398 		 *     new |= NAPIF_STATE_MISSED;
6399 		 */
6400 		new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6401 						   NAPIF_STATE_MISSED;
6402 	} while (cmpxchg(&n->state, val, new) != val);
6403 
6404 	return !(val & NAPIF_STATE_SCHED);
6405 }
6406 EXPORT_SYMBOL(napi_schedule_prep);
6407 
6408 /**
6409  * __napi_schedule_irqoff - schedule for receive
6410  * @n: entry to schedule
6411  *
6412  * Variant of __napi_schedule() assuming hard irqs are masked
6413  */
6414 void __napi_schedule_irqoff(struct napi_struct *n)
6415 {
6416 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
6417 }
6418 EXPORT_SYMBOL(__napi_schedule_irqoff);
6419 
6420 bool napi_complete_done(struct napi_struct *n, int work_done)
6421 {
6422 	unsigned long flags, val, new, timeout = 0;
6423 	bool ret = true;
6424 
6425 	/*
6426 	 * 1) Don't let napi dequeue from the cpu poll list
6427 	 *    just in case its running on a different cpu.
6428 	 * 2) If we are busy polling, do nothing here, we have
6429 	 *    the guarantee we will be called later.
6430 	 */
6431 	if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6432 				 NAPIF_STATE_IN_BUSY_POLL)))
6433 		return false;
6434 
6435 	if (work_done) {
6436 		if (n->gro_bitmask)
6437 			timeout = READ_ONCE(n->dev->gro_flush_timeout);
6438 		n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs);
6439 	}
6440 	if (n->defer_hard_irqs_count > 0) {
6441 		n->defer_hard_irqs_count--;
6442 		timeout = READ_ONCE(n->dev->gro_flush_timeout);
6443 		if (timeout)
6444 			ret = false;
6445 	}
6446 	if (n->gro_bitmask) {
6447 		/* When the NAPI instance uses a timeout and keeps postponing
6448 		 * it, we need to bound somehow the time packets are kept in
6449 		 * the GRO layer
6450 		 */
6451 		napi_gro_flush(n, !!timeout);
6452 	}
6453 
6454 	gro_normal_list(n);
6455 
6456 	if (unlikely(!list_empty(&n->poll_list))) {
6457 		/* If n->poll_list is not empty, we need to mask irqs */
6458 		local_irq_save(flags);
6459 		list_del_init(&n->poll_list);
6460 		local_irq_restore(flags);
6461 	}
6462 
6463 	do {
6464 		val = READ_ONCE(n->state);
6465 
6466 		WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6467 
6468 		new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED);
6469 
6470 		/* If STATE_MISSED was set, leave STATE_SCHED set,
6471 		 * because we will call napi->poll() one more time.
6472 		 * This C code was suggested by Alexander Duyck to help gcc.
6473 		 */
6474 		new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6475 						    NAPIF_STATE_SCHED;
6476 	} while (cmpxchg(&n->state, val, new) != val);
6477 
6478 	if (unlikely(val & NAPIF_STATE_MISSED)) {
6479 		__napi_schedule(n);
6480 		return false;
6481 	}
6482 
6483 	if (timeout)
6484 		hrtimer_start(&n->timer, ns_to_ktime(timeout),
6485 			      HRTIMER_MODE_REL_PINNED);
6486 	return ret;
6487 }
6488 EXPORT_SYMBOL(napi_complete_done);
6489 
6490 /* must be called under rcu_read_lock(), as we dont take a reference */
6491 static struct napi_struct *napi_by_id(unsigned int napi_id)
6492 {
6493 	unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6494 	struct napi_struct *napi;
6495 
6496 	hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6497 		if (napi->napi_id == napi_id)
6498 			return napi;
6499 
6500 	return NULL;
6501 }
6502 
6503 #if defined(CONFIG_NET_RX_BUSY_POLL)
6504 
6505 #define BUSY_POLL_BUDGET 8
6506 
6507 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock)
6508 {
6509 	int rc;
6510 
6511 	/* Busy polling means there is a high chance device driver hard irq
6512 	 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6513 	 * set in napi_schedule_prep().
6514 	 * Since we are about to call napi->poll() once more, we can safely
6515 	 * clear NAPI_STATE_MISSED.
6516 	 *
6517 	 * Note: x86 could use a single "lock and ..." instruction
6518 	 * to perform these two clear_bit()
6519 	 */
6520 	clear_bit(NAPI_STATE_MISSED, &napi->state);
6521 	clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6522 
6523 	local_bh_disable();
6524 
6525 	/* All we really want here is to re-enable device interrupts.
6526 	 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6527 	 */
6528 	rc = napi->poll(napi, BUSY_POLL_BUDGET);
6529 	/* We can't gro_normal_list() here, because napi->poll() might have
6530 	 * rearmed the napi (napi_complete_done()) in which case it could
6531 	 * already be running on another CPU.
6532 	 */
6533 	trace_napi_poll(napi, rc, BUSY_POLL_BUDGET);
6534 	netpoll_poll_unlock(have_poll_lock);
6535 	if (rc == BUSY_POLL_BUDGET) {
6536 		/* As the whole budget was spent, we still own the napi so can
6537 		 * safely handle the rx_list.
6538 		 */
6539 		gro_normal_list(napi);
6540 		__napi_schedule(napi);
6541 	}
6542 	local_bh_enable();
6543 }
6544 
6545 void napi_busy_loop(unsigned int napi_id,
6546 		    bool (*loop_end)(void *, unsigned long),
6547 		    void *loop_end_arg)
6548 {
6549 	unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6550 	int (*napi_poll)(struct napi_struct *napi, int budget);
6551 	void *have_poll_lock = NULL;
6552 	struct napi_struct *napi;
6553 
6554 restart:
6555 	napi_poll = NULL;
6556 
6557 	rcu_read_lock();
6558 
6559 	napi = napi_by_id(napi_id);
6560 	if (!napi)
6561 		goto out;
6562 
6563 	preempt_disable();
6564 	for (;;) {
6565 		int work = 0;
6566 
6567 		local_bh_disable();
6568 		if (!napi_poll) {
6569 			unsigned long val = READ_ONCE(napi->state);
6570 
6571 			/* If multiple threads are competing for this napi,
6572 			 * we avoid dirtying napi->state as much as we can.
6573 			 */
6574 			if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6575 				   NAPIF_STATE_IN_BUSY_POLL))
6576 				goto count;
6577 			if (cmpxchg(&napi->state, val,
6578 				    val | NAPIF_STATE_IN_BUSY_POLL |
6579 					  NAPIF_STATE_SCHED) != val)
6580 				goto count;
6581 			have_poll_lock = netpoll_poll_lock(napi);
6582 			napi_poll = napi->poll;
6583 		}
6584 		work = napi_poll(napi, BUSY_POLL_BUDGET);
6585 		trace_napi_poll(napi, work, BUSY_POLL_BUDGET);
6586 		gro_normal_list(napi);
6587 count:
6588 		if (work > 0)
6589 			__NET_ADD_STATS(dev_net(napi->dev),
6590 					LINUX_MIB_BUSYPOLLRXPACKETS, work);
6591 		local_bh_enable();
6592 
6593 		if (!loop_end || loop_end(loop_end_arg, start_time))
6594 			break;
6595 
6596 		if (unlikely(need_resched())) {
6597 			if (napi_poll)
6598 				busy_poll_stop(napi, have_poll_lock);
6599 			preempt_enable();
6600 			rcu_read_unlock();
6601 			cond_resched();
6602 			if (loop_end(loop_end_arg, start_time))
6603 				return;
6604 			goto restart;
6605 		}
6606 		cpu_relax();
6607 	}
6608 	if (napi_poll)
6609 		busy_poll_stop(napi, have_poll_lock);
6610 	preempt_enable();
6611 out:
6612 	rcu_read_unlock();
6613 }
6614 EXPORT_SYMBOL(napi_busy_loop);
6615 
6616 #endif /* CONFIG_NET_RX_BUSY_POLL */
6617 
6618 static void napi_hash_add(struct napi_struct *napi)
6619 {
6620 	if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state))
6621 		return;
6622 
6623 	spin_lock(&napi_hash_lock);
6624 
6625 	/* 0..NR_CPUS range is reserved for sender_cpu use */
6626 	do {
6627 		if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6628 			napi_gen_id = MIN_NAPI_ID;
6629 	} while (napi_by_id(napi_gen_id));
6630 	napi->napi_id = napi_gen_id;
6631 
6632 	hlist_add_head_rcu(&napi->napi_hash_node,
6633 			   &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6634 
6635 	spin_unlock(&napi_hash_lock);
6636 }
6637 
6638 /* Warning : caller is responsible to make sure rcu grace period
6639  * is respected before freeing memory containing @napi
6640  */
6641 static void napi_hash_del(struct napi_struct *napi)
6642 {
6643 	spin_lock(&napi_hash_lock);
6644 
6645 	hlist_del_init_rcu(&napi->napi_hash_node);
6646 
6647 	spin_unlock(&napi_hash_lock);
6648 }
6649 
6650 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6651 {
6652 	struct napi_struct *napi;
6653 
6654 	napi = container_of(timer, struct napi_struct, timer);
6655 
6656 	/* Note : we use a relaxed variant of napi_schedule_prep() not setting
6657 	 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6658 	 */
6659 	if (!napi_disable_pending(napi) &&
6660 	    !test_and_set_bit(NAPI_STATE_SCHED, &napi->state))
6661 		__napi_schedule_irqoff(napi);
6662 
6663 	return HRTIMER_NORESTART;
6664 }
6665 
6666 static void init_gro_hash(struct napi_struct *napi)
6667 {
6668 	int i;
6669 
6670 	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6671 		INIT_LIST_HEAD(&napi->gro_hash[i].list);
6672 		napi->gro_hash[i].count = 0;
6673 	}
6674 	napi->gro_bitmask = 0;
6675 }
6676 
6677 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
6678 		    int (*poll)(struct napi_struct *, int), int weight)
6679 {
6680 	if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state)))
6681 		return;
6682 
6683 	INIT_LIST_HEAD(&napi->poll_list);
6684 	INIT_HLIST_NODE(&napi->napi_hash_node);
6685 	hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6686 	napi->timer.function = napi_watchdog;
6687 	init_gro_hash(napi);
6688 	napi->skb = NULL;
6689 	INIT_LIST_HEAD(&napi->rx_list);
6690 	napi->rx_count = 0;
6691 	napi->poll = poll;
6692 	if (weight > NAPI_POLL_WEIGHT)
6693 		netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6694 				weight);
6695 	napi->weight = weight;
6696 	napi->dev = dev;
6697 #ifdef CONFIG_NETPOLL
6698 	napi->poll_owner = -1;
6699 #endif
6700 	set_bit(NAPI_STATE_SCHED, &napi->state);
6701 	set_bit(NAPI_STATE_NPSVC, &napi->state);
6702 	list_add_rcu(&napi->dev_list, &dev->napi_list);
6703 	napi_hash_add(napi);
6704 }
6705 EXPORT_SYMBOL(netif_napi_add);
6706 
6707 void napi_disable(struct napi_struct *n)
6708 {
6709 	might_sleep();
6710 	set_bit(NAPI_STATE_DISABLE, &n->state);
6711 
6712 	while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
6713 		msleep(1);
6714 	while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
6715 		msleep(1);
6716 
6717 	hrtimer_cancel(&n->timer);
6718 
6719 	clear_bit(NAPI_STATE_DISABLE, &n->state);
6720 }
6721 EXPORT_SYMBOL(napi_disable);
6722 
6723 static void flush_gro_hash(struct napi_struct *napi)
6724 {
6725 	int i;
6726 
6727 	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6728 		struct sk_buff *skb, *n;
6729 
6730 		list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6731 			kfree_skb(skb);
6732 		napi->gro_hash[i].count = 0;
6733 	}
6734 }
6735 
6736 /* Must be called in process context */
6737 void __netif_napi_del(struct napi_struct *napi)
6738 {
6739 	if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state))
6740 		return;
6741 
6742 	napi_hash_del(napi);
6743 	list_del_rcu(&napi->dev_list);
6744 	napi_free_frags(napi);
6745 
6746 	flush_gro_hash(napi);
6747 	napi->gro_bitmask = 0;
6748 }
6749 EXPORT_SYMBOL(__netif_napi_del);
6750 
6751 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6752 {
6753 	void *have;
6754 	int work, weight;
6755 
6756 	list_del_init(&n->poll_list);
6757 
6758 	have = netpoll_poll_lock(n);
6759 
6760 	weight = n->weight;
6761 
6762 	/* This NAPI_STATE_SCHED test is for avoiding a race
6763 	 * with netpoll's poll_napi().  Only the entity which
6764 	 * obtains the lock and sees NAPI_STATE_SCHED set will
6765 	 * actually make the ->poll() call.  Therefore we avoid
6766 	 * accidentally calling ->poll() when NAPI is not scheduled.
6767 	 */
6768 	work = 0;
6769 	if (test_bit(NAPI_STATE_SCHED, &n->state)) {
6770 		work = n->poll(n, weight);
6771 		trace_napi_poll(n, work, weight);
6772 	}
6773 
6774 	if (unlikely(work > weight))
6775 		pr_err_once("NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
6776 			    n->poll, work, weight);
6777 
6778 	if (likely(work < weight))
6779 		goto out_unlock;
6780 
6781 	/* Drivers must not modify the NAPI state if they
6782 	 * consume the entire weight.  In such cases this code
6783 	 * still "owns" the NAPI instance and therefore can
6784 	 * move the instance around on the list at-will.
6785 	 */
6786 	if (unlikely(napi_disable_pending(n))) {
6787 		napi_complete(n);
6788 		goto out_unlock;
6789 	}
6790 
6791 	if (n->gro_bitmask) {
6792 		/* flush too old packets
6793 		 * If HZ < 1000, flush all packets.
6794 		 */
6795 		napi_gro_flush(n, HZ >= 1000);
6796 	}
6797 
6798 	gro_normal_list(n);
6799 
6800 	/* Some drivers may have called napi_schedule
6801 	 * prior to exhausting their budget.
6802 	 */
6803 	if (unlikely(!list_empty(&n->poll_list))) {
6804 		pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6805 			     n->dev ? n->dev->name : "backlog");
6806 		goto out_unlock;
6807 	}
6808 
6809 	list_add_tail(&n->poll_list, repoll);
6810 
6811 out_unlock:
6812 	netpoll_poll_unlock(have);
6813 
6814 	return work;
6815 }
6816 
6817 static __latent_entropy void net_rx_action(struct softirq_action *h)
6818 {
6819 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
6820 	unsigned long time_limit = jiffies +
6821 		usecs_to_jiffies(netdev_budget_usecs);
6822 	int budget = netdev_budget;
6823 	LIST_HEAD(list);
6824 	LIST_HEAD(repoll);
6825 
6826 	local_irq_disable();
6827 	list_splice_init(&sd->poll_list, &list);
6828 	local_irq_enable();
6829 
6830 	for (;;) {
6831 		struct napi_struct *n;
6832 
6833 		if (list_empty(&list)) {
6834 			if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
6835 				goto out;
6836 			break;
6837 		}
6838 
6839 		n = list_first_entry(&list, struct napi_struct, poll_list);
6840 		budget -= napi_poll(n, &repoll);
6841 
6842 		/* If softirq window is exhausted then punt.
6843 		 * Allow this to run for 2 jiffies since which will allow
6844 		 * an average latency of 1.5/HZ.
6845 		 */
6846 		if (unlikely(budget <= 0 ||
6847 			     time_after_eq(jiffies, time_limit))) {
6848 			sd->time_squeeze++;
6849 			break;
6850 		}
6851 	}
6852 
6853 	local_irq_disable();
6854 
6855 	list_splice_tail_init(&sd->poll_list, &list);
6856 	list_splice_tail(&repoll, &list);
6857 	list_splice(&list, &sd->poll_list);
6858 	if (!list_empty(&sd->poll_list))
6859 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
6860 
6861 	net_rps_action_and_irq_enable(sd);
6862 out:
6863 	__kfree_skb_flush();
6864 }
6865 
6866 struct netdev_adjacent {
6867 	struct net_device *dev;
6868 
6869 	/* upper master flag, there can only be one master device per list */
6870 	bool master;
6871 
6872 	/* lookup ignore flag */
6873 	bool ignore;
6874 
6875 	/* counter for the number of times this device was added to us */
6876 	u16 ref_nr;
6877 
6878 	/* private field for the users */
6879 	void *private;
6880 
6881 	struct list_head list;
6882 	struct rcu_head rcu;
6883 };
6884 
6885 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
6886 						 struct list_head *adj_list)
6887 {
6888 	struct netdev_adjacent *adj;
6889 
6890 	list_for_each_entry(adj, adj_list, list) {
6891 		if (adj->dev == adj_dev)
6892 			return adj;
6893 	}
6894 	return NULL;
6895 }
6896 
6897 static int ____netdev_has_upper_dev(struct net_device *upper_dev,
6898 				    struct netdev_nested_priv *priv)
6899 {
6900 	struct net_device *dev = (struct net_device *)priv->data;
6901 
6902 	return upper_dev == dev;
6903 }
6904 
6905 /**
6906  * netdev_has_upper_dev - Check if device is linked to an upper device
6907  * @dev: device
6908  * @upper_dev: upper device to check
6909  *
6910  * Find out if a device is linked to specified upper device and return true
6911  * in case it is. Note that this checks only immediate upper device,
6912  * not through a complete stack of devices. The caller must hold the RTNL lock.
6913  */
6914 bool netdev_has_upper_dev(struct net_device *dev,
6915 			  struct net_device *upper_dev)
6916 {
6917 	struct netdev_nested_priv priv = {
6918 		.data = (void *)upper_dev,
6919 	};
6920 
6921 	ASSERT_RTNL();
6922 
6923 	return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6924 					     &priv);
6925 }
6926 EXPORT_SYMBOL(netdev_has_upper_dev);
6927 
6928 /**
6929  * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device
6930  * @dev: device
6931  * @upper_dev: upper device to check
6932  *
6933  * Find out if a device is linked to specified upper device and return true
6934  * in case it is. Note that this checks the entire upper device chain.
6935  * The caller must hold rcu lock.
6936  */
6937 
6938 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
6939 				  struct net_device *upper_dev)
6940 {
6941 	struct netdev_nested_priv priv = {
6942 		.data = (void *)upper_dev,
6943 	};
6944 
6945 	return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6946 					       &priv);
6947 }
6948 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
6949 
6950 /**
6951  * netdev_has_any_upper_dev - Check if device is linked to some device
6952  * @dev: device
6953  *
6954  * Find out if a device is linked to an upper device and return true in case
6955  * it is. The caller must hold the RTNL lock.
6956  */
6957 bool netdev_has_any_upper_dev(struct net_device *dev)
6958 {
6959 	ASSERT_RTNL();
6960 
6961 	return !list_empty(&dev->adj_list.upper);
6962 }
6963 EXPORT_SYMBOL(netdev_has_any_upper_dev);
6964 
6965 /**
6966  * netdev_master_upper_dev_get - Get master upper device
6967  * @dev: device
6968  *
6969  * Find a master upper device and return pointer to it or NULL in case
6970  * it's not there. The caller must hold the RTNL lock.
6971  */
6972 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
6973 {
6974 	struct netdev_adjacent *upper;
6975 
6976 	ASSERT_RTNL();
6977 
6978 	if (list_empty(&dev->adj_list.upper))
6979 		return NULL;
6980 
6981 	upper = list_first_entry(&dev->adj_list.upper,
6982 				 struct netdev_adjacent, list);
6983 	if (likely(upper->master))
6984 		return upper->dev;
6985 	return NULL;
6986 }
6987 EXPORT_SYMBOL(netdev_master_upper_dev_get);
6988 
6989 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
6990 {
6991 	struct netdev_adjacent *upper;
6992 
6993 	ASSERT_RTNL();
6994 
6995 	if (list_empty(&dev->adj_list.upper))
6996 		return NULL;
6997 
6998 	upper = list_first_entry(&dev->adj_list.upper,
6999 				 struct netdev_adjacent, list);
7000 	if (likely(upper->master) && !upper->ignore)
7001 		return upper->dev;
7002 	return NULL;
7003 }
7004 
7005 /**
7006  * netdev_has_any_lower_dev - Check if device is linked to some device
7007  * @dev: device
7008  *
7009  * Find out if a device is linked to a lower device and return true in case
7010  * it is. The caller must hold the RTNL lock.
7011  */
7012 static bool netdev_has_any_lower_dev(struct net_device *dev)
7013 {
7014 	ASSERT_RTNL();
7015 
7016 	return !list_empty(&dev->adj_list.lower);
7017 }
7018 
7019 void *netdev_adjacent_get_private(struct list_head *adj_list)
7020 {
7021 	struct netdev_adjacent *adj;
7022 
7023 	adj = list_entry(adj_list, struct netdev_adjacent, list);
7024 
7025 	return adj->private;
7026 }
7027 EXPORT_SYMBOL(netdev_adjacent_get_private);
7028 
7029 /**
7030  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
7031  * @dev: device
7032  * @iter: list_head ** of the current position
7033  *
7034  * Gets the next device from the dev's upper list, starting from iter
7035  * position. The caller must hold RCU read lock.
7036  */
7037 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
7038 						 struct list_head **iter)
7039 {
7040 	struct netdev_adjacent *upper;
7041 
7042 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7043 
7044 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7045 
7046 	if (&upper->list == &dev->adj_list.upper)
7047 		return NULL;
7048 
7049 	*iter = &upper->list;
7050 
7051 	return upper->dev;
7052 }
7053 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
7054 
7055 static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
7056 						  struct list_head **iter,
7057 						  bool *ignore)
7058 {
7059 	struct netdev_adjacent *upper;
7060 
7061 	upper = list_entry((*iter)->next, struct netdev_adjacent, list);
7062 
7063 	if (&upper->list == &dev->adj_list.upper)
7064 		return NULL;
7065 
7066 	*iter = &upper->list;
7067 	*ignore = upper->ignore;
7068 
7069 	return upper->dev;
7070 }
7071 
7072 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
7073 						    struct list_head **iter)
7074 {
7075 	struct netdev_adjacent *upper;
7076 
7077 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7078 
7079 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7080 
7081 	if (&upper->list == &dev->adj_list.upper)
7082 		return NULL;
7083 
7084 	*iter = &upper->list;
7085 
7086 	return upper->dev;
7087 }
7088 
7089 static int __netdev_walk_all_upper_dev(struct net_device *dev,
7090 				       int (*fn)(struct net_device *dev,
7091 					 struct netdev_nested_priv *priv),
7092 				       struct netdev_nested_priv *priv)
7093 {
7094 	struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7095 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7096 	int ret, cur = 0;
7097 	bool ignore;
7098 
7099 	now = dev;
7100 	iter = &dev->adj_list.upper;
7101 
7102 	while (1) {
7103 		if (now != dev) {
7104 			ret = fn(now, priv);
7105 			if (ret)
7106 				return ret;
7107 		}
7108 
7109 		next = NULL;
7110 		while (1) {
7111 			udev = __netdev_next_upper_dev(now, &iter, &ignore);
7112 			if (!udev)
7113 				break;
7114 			if (ignore)
7115 				continue;
7116 
7117 			next = udev;
7118 			niter = &udev->adj_list.upper;
7119 			dev_stack[cur] = now;
7120 			iter_stack[cur++] = iter;
7121 			break;
7122 		}
7123 
7124 		if (!next) {
7125 			if (!cur)
7126 				return 0;
7127 			next = dev_stack[--cur];
7128 			niter = iter_stack[cur];
7129 		}
7130 
7131 		now = next;
7132 		iter = niter;
7133 	}
7134 
7135 	return 0;
7136 }
7137 
7138 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
7139 				  int (*fn)(struct net_device *dev,
7140 					    struct netdev_nested_priv *priv),
7141 				  struct netdev_nested_priv *priv)
7142 {
7143 	struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7144 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7145 	int ret, cur = 0;
7146 
7147 	now = dev;
7148 	iter = &dev->adj_list.upper;
7149 
7150 	while (1) {
7151 		if (now != dev) {
7152 			ret = fn(now, priv);
7153 			if (ret)
7154 				return ret;
7155 		}
7156 
7157 		next = NULL;
7158 		while (1) {
7159 			udev = netdev_next_upper_dev_rcu(now, &iter);
7160 			if (!udev)
7161 				break;
7162 
7163 			next = udev;
7164 			niter = &udev->adj_list.upper;
7165 			dev_stack[cur] = now;
7166 			iter_stack[cur++] = iter;
7167 			break;
7168 		}
7169 
7170 		if (!next) {
7171 			if (!cur)
7172 				return 0;
7173 			next = dev_stack[--cur];
7174 			niter = iter_stack[cur];
7175 		}
7176 
7177 		now = next;
7178 		iter = niter;
7179 	}
7180 
7181 	return 0;
7182 }
7183 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
7184 
7185 static bool __netdev_has_upper_dev(struct net_device *dev,
7186 				   struct net_device *upper_dev)
7187 {
7188 	struct netdev_nested_priv priv = {
7189 		.flags = 0,
7190 		.data = (void *)upper_dev,
7191 	};
7192 
7193 	ASSERT_RTNL();
7194 
7195 	return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
7196 					   &priv);
7197 }
7198 
7199 /**
7200  * netdev_lower_get_next_private - Get the next ->private from the
7201  *				   lower neighbour list
7202  * @dev: device
7203  * @iter: list_head ** of the current position
7204  *
7205  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7206  * list, starting from iter position. The caller must hold either hold the
7207  * RTNL lock or its own locking that guarantees that the neighbour lower
7208  * list will remain unchanged.
7209  */
7210 void *netdev_lower_get_next_private(struct net_device *dev,
7211 				    struct list_head **iter)
7212 {
7213 	struct netdev_adjacent *lower;
7214 
7215 	lower = list_entry(*iter, struct netdev_adjacent, list);
7216 
7217 	if (&lower->list == &dev->adj_list.lower)
7218 		return NULL;
7219 
7220 	*iter = lower->list.next;
7221 
7222 	return lower->private;
7223 }
7224 EXPORT_SYMBOL(netdev_lower_get_next_private);
7225 
7226 /**
7227  * netdev_lower_get_next_private_rcu - Get the next ->private from the
7228  *				       lower neighbour list, RCU
7229  *				       variant
7230  * @dev: device
7231  * @iter: list_head ** of the current position
7232  *
7233  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7234  * list, starting from iter position. The caller must hold RCU read lock.
7235  */
7236 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
7237 					struct list_head **iter)
7238 {
7239 	struct netdev_adjacent *lower;
7240 
7241 	WARN_ON_ONCE(!rcu_read_lock_held());
7242 
7243 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7244 
7245 	if (&lower->list == &dev->adj_list.lower)
7246 		return NULL;
7247 
7248 	*iter = &lower->list;
7249 
7250 	return lower->private;
7251 }
7252 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
7253 
7254 /**
7255  * netdev_lower_get_next - Get the next device from the lower neighbour
7256  *                         list
7257  * @dev: device
7258  * @iter: list_head ** of the current position
7259  *
7260  * Gets the next netdev_adjacent from the dev's lower neighbour
7261  * list, starting from iter position. The caller must hold RTNL lock or
7262  * its own locking that guarantees that the neighbour lower
7263  * list will remain unchanged.
7264  */
7265 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
7266 {
7267 	struct netdev_adjacent *lower;
7268 
7269 	lower = list_entry(*iter, struct netdev_adjacent, list);
7270 
7271 	if (&lower->list == &dev->adj_list.lower)
7272 		return NULL;
7273 
7274 	*iter = lower->list.next;
7275 
7276 	return lower->dev;
7277 }
7278 EXPORT_SYMBOL(netdev_lower_get_next);
7279 
7280 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7281 						struct list_head **iter)
7282 {
7283 	struct netdev_adjacent *lower;
7284 
7285 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7286 
7287 	if (&lower->list == &dev->adj_list.lower)
7288 		return NULL;
7289 
7290 	*iter = &lower->list;
7291 
7292 	return lower->dev;
7293 }
7294 
7295 static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7296 						  struct list_head **iter,
7297 						  bool *ignore)
7298 {
7299 	struct netdev_adjacent *lower;
7300 
7301 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7302 
7303 	if (&lower->list == &dev->adj_list.lower)
7304 		return NULL;
7305 
7306 	*iter = &lower->list;
7307 	*ignore = lower->ignore;
7308 
7309 	return lower->dev;
7310 }
7311 
7312 int netdev_walk_all_lower_dev(struct net_device *dev,
7313 			      int (*fn)(struct net_device *dev,
7314 					struct netdev_nested_priv *priv),
7315 			      struct netdev_nested_priv *priv)
7316 {
7317 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7318 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7319 	int ret, cur = 0;
7320 
7321 	now = dev;
7322 	iter = &dev->adj_list.lower;
7323 
7324 	while (1) {
7325 		if (now != dev) {
7326 			ret = fn(now, priv);
7327 			if (ret)
7328 				return ret;
7329 		}
7330 
7331 		next = NULL;
7332 		while (1) {
7333 			ldev = netdev_next_lower_dev(now, &iter);
7334 			if (!ldev)
7335 				break;
7336 
7337 			next = ldev;
7338 			niter = &ldev->adj_list.lower;
7339 			dev_stack[cur] = now;
7340 			iter_stack[cur++] = iter;
7341 			break;
7342 		}
7343 
7344 		if (!next) {
7345 			if (!cur)
7346 				return 0;
7347 			next = dev_stack[--cur];
7348 			niter = iter_stack[cur];
7349 		}
7350 
7351 		now = next;
7352 		iter = niter;
7353 	}
7354 
7355 	return 0;
7356 }
7357 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
7358 
7359 static int __netdev_walk_all_lower_dev(struct net_device *dev,
7360 				       int (*fn)(struct net_device *dev,
7361 					 struct netdev_nested_priv *priv),
7362 				       struct netdev_nested_priv *priv)
7363 {
7364 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7365 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7366 	int ret, cur = 0;
7367 	bool ignore;
7368 
7369 	now = dev;
7370 	iter = &dev->adj_list.lower;
7371 
7372 	while (1) {
7373 		if (now != dev) {
7374 			ret = fn(now, priv);
7375 			if (ret)
7376 				return ret;
7377 		}
7378 
7379 		next = NULL;
7380 		while (1) {
7381 			ldev = __netdev_next_lower_dev(now, &iter, &ignore);
7382 			if (!ldev)
7383 				break;
7384 			if (ignore)
7385 				continue;
7386 
7387 			next = ldev;
7388 			niter = &ldev->adj_list.lower;
7389 			dev_stack[cur] = now;
7390 			iter_stack[cur++] = iter;
7391 			break;
7392 		}
7393 
7394 		if (!next) {
7395 			if (!cur)
7396 				return 0;
7397 			next = dev_stack[--cur];
7398 			niter = iter_stack[cur];
7399 		}
7400 
7401 		now = next;
7402 		iter = niter;
7403 	}
7404 
7405 	return 0;
7406 }
7407 
7408 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
7409 					     struct list_head **iter)
7410 {
7411 	struct netdev_adjacent *lower;
7412 
7413 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7414 	if (&lower->list == &dev->adj_list.lower)
7415 		return NULL;
7416 
7417 	*iter = &lower->list;
7418 
7419 	return lower->dev;
7420 }
7421 EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
7422 
7423 static u8 __netdev_upper_depth(struct net_device *dev)
7424 {
7425 	struct net_device *udev;
7426 	struct list_head *iter;
7427 	u8 max_depth = 0;
7428 	bool ignore;
7429 
7430 	for (iter = &dev->adj_list.upper,
7431 	     udev = __netdev_next_upper_dev(dev, &iter, &ignore);
7432 	     udev;
7433 	     udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
7434 		if (ignore)
7435 			continue;
7436 		if (max_depth < udev->upper_level)
7437 			max_depth = udev->upper_level;
7438 	}
7439 
7440 	return max_depth;
7441 }
7442 
7443 static u8 __netdev_lower_depth(struct net_device *dev)
7444 {
7445 	struct net_device *ldev;
7446 	struct list_head *iter;
7447 	u8 max_depth = 0;
7448 	bool ignore;
7449 
7450 	for (iter = &dev->adj_list.lower,
7451 	     ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
7452 	     ldev;
7453 	     ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
7454 		if (ignore)
7455 			continue;
7456 		if (max_depth < ldev->lower_level)
7457 			max_depth = ldev->lower_level;
7458 	}
7459 
7460 	return max_depth;
7461 }
7462 
7463 static int __netdev_update_upper_level(struct net_device *dev,
7464 				       struct netdev_nested_priv *__unused)
7465 {
7466 	dev->upper_level = __netdev_upper_depth(dev) + 1;
7467 	return 0;
7468 }
7469 
7470 static int __netdev_update_lower_level(struct net_device *dev,
7471 				       struct netdev_nested_priv *priv)
7472 {
7473 	dev->lower_level = __netdev_lower_depth(dev) + 1;
7474 
7475 #ifdef CONFIG_LOCKDEP
7476 	if (!priv)
7477 		return 0;
7478 
7479 	if (priv->flags & NESTED_SYNC_IMM)
7480 		dev->nested_level = dev->lower_level - 1;
7481 	if (priv->flags & NESTED_SYNC_TODO)
7482 		net_unlink_todo(dev);
7483 #endif
7484 	return 0;
7485 }
7486 
7487 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7488 				  int (*fn)(struct net_device *dev,
7489 					    struct netdev_nested_priv *priv),
7490 				  struct netdev_nested_priv *priv)
7491 {
7492 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7493 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7494 	int ret, cur = 0;
7495 
7496 	now = dev;
7497 	iter = &dev->adj_list.lower;
7498 
7499 	while (1) {
7500 		if (now != dev) {
7501 			ret = fn(now, priv);
7502 			if (ret)
7503 				return ret;
7504 		}
7505 
7506 		next = NULL;
7507 		while (1) {
7508 			ldev = netdev_next_lower_dev_rcu(now, &iter);
7509 			if (!ldev)
7510 				break;
7511 
7512 			next = ldev;
7513 			niter = &ldev->adj_list.lower;
7514 			dev_stack[cur] = now;
7515 			iter_stack[cur++] = iter;
7516 			break;
7517 		}
7518 
7519 		if (!next) {
7520 			if (!cur)
7521 				return 0;
7522 			next = dev_stack[--cur];
7523 			niter = iter_stack[cur];
7524 		}
7525 
7526 		now = next;
7527 		iter = niter;
7528 	}
7529 
7530 	return 0;
7531 }
7532 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
7533 
7534 /**
7535  * netdev_lower_get_first_private_rcu - Get the first ->private from the
7536  *				       lower neighbour list, RCU
7537  *				       variant
7538  * @dev: device
7539  *
7540  * Gets the first netdev_adjacent->private from the dev's lower neighbour
7541  * list. The caller must hold RCU read lock.
7542  */
7543 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
7544 {
7545 	struct netdev_adjacent *lower;
7546 
7547 	lower = list_first_or_null_rcu(&dev->adj_list.lower,
7548 			struct netdev_adjacent, list);
7549 	if (lower)
7550 		return lower->private;
7551 	return NULL;
7552 }
7553 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
7554 
7555 /**
7556  * netdev_master_upper_dev_get_rcu - Get master upper device
7557  * @dev: device
7558  *
7559  * Find a master upper device and return pointer to it or NULL in case
7560  * it's not there. The caller must hold the RCU read lock.
7561  */
7562 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
7563 {
7564 	struct netdev_adjacent *upper;
7565 
7566 	upper = list_first_or_null_rcu(&dev->adj_list.upper,
7567 				       struct netdev_adjacent, list);
7568 	if (upper && likely(upper->master))
7569 		return upper->dev;
7570 	return NULL;
7571 }
7572 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
7573 
7574 static int netdev_adjacent_sysfs_add(struct net_device *dev,
7575 			      struct net_device *adj_dev,
7576 			      struct list_head *dev_list)
7577 {
7578 	char linkname[IFNAMSIZ+7];
7579 
7580 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
7581 		"upper_%s" : "lower_%s", adj_dev->name);
7582 	return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
7583 				 linkname);
7584 }
7585 static void netdev_adjacent_sysfs_del(struct net_device *dev,
7586 			       char *name,
7587 			       struct list_head *dev_list)
7588 {
7589 	char linkname[IFNAMSIZ+7];
7590 
7591 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
7592 		"upper_%s" : "lower_%s", name);
7593 	sysfs_remove_link(&(dev->dev.kobj), linkname);
7594 }
7595 
7596 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
7597 						 struct net_device *adj_dev,
7598 						 struct list_head *dev_list)
7599 {
7600 	return (dev_list == &dev->adj_list.upper ||
7601 		dev_list == &dev->adj_list.lower) &&
7602 		net_eq(dev_net(dev), dev_net(adj_dev));
7603 }
7604 
7605 static int __netdev_adjacent_dev_insert(struct net_device *dev,
7606 					struct net_device *adj_dev,
7607 					struct list_head *dev_list,
7608 					void *private, bool master)
7609 {
7610 	struct netdev_adjacent *adj;
7611 	int ret;
7612 
7613 	adj = __netdev_find_adj(adj_dev, dev_list);
7614 
7615 	if (adj) {
7616 		adj->ref_nr += 1;
7617 		pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7618 			 dev->name, adj_dev->name, adj->ref_nr);
7619 
7620 		return 0;
7621 	}
7622 
7623 	adj = kmalloc(sizeof(*adj), GFP_KERNEL);
7624 	if (!adj)
7625 		return -ENOMEM;
7626 
7627 	adj->dev = adj_dev;
7628 	adj->master = master;
7629 	adj->ref_nr = 1;
7630 	adj->private = private;
7631 	adj->ignore = false;
7632 	dev_hold(adj_dev);
7633 
7634 	pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7635 		 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
7636 
7637 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
7638 		ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
7639 		if (ret)
7640 			goto free_adj;
7641 	}
7642 
7643 	/* Ensure that master link is always the first item in list. */
7644 	if (master) {
7645 		ret = sysfs_create_link(&(dev->dev.kobj),
7646 					&(adj_dev->dev.kobj), "master");
7647 		if (ret)
7648 			goto remove_symlinks;
7649 
7650 		list_add_rcu(&adj->list, dev_list);
7651 	} else {
7652 		list_add_tail_rcu(&adj->list, dev_list);
7653 	}
7654 
7655 	return 0;
7656 
7657 remove_symlinks:
7658 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7659 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7660 free_adj:
7661 	kfree(adj);
7662 	dev_put(adj_dev);
7663 
7664 	return ret;
7665 }
7666 
7667 static void __netdev_adjacent_dev_remove(struct net_device *dev,
7668 					 struct net_device *adj_dev,
7669 					 u16 ref_nr,
7670 					 struct list_head *dev_list)
7671 {
7672 	struct netdev_adjacent *adj;
7673 
7674 	pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
7675 		 dev->name, adj_dev->name, ref_nr);
7676 
7677 	adj = __netdev_find_adj(adj_dev, dev_list);
7678 
7679 	if (!adj) {
7680 		pr_err("Adjacency does not exist for device %s from %s\n",
7681 		       dev->name, adj_dev->name);
7682 		WARN_ON(1);
7683 		return;
7684 	}
7685 
7686 	if (adj->ref_nr > ref_nr) {
7687 		pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
7688 			 dev->name, adj_dev->name, ref_nr,
7689 			 adj->ref_nr - ref_nr);
7690 		adj->ref_nr -= ref_nr;
7691 		return;
7692 	}
7693 
7694 	if (adj->master)
7695 		sysfs_remove_link(&(dev->dev.kobj), "master");
7696 
7697 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7698 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7699 
7700 	list_del_rcu(&adj->list);
7701 	pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
7702 		 adj_dev->name, dev->name, adj_dev->name);
7703 	dev_put(adj_dev);
7704 	kfree_rcu(adj, rcu);
7705 }
7706 
7707 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
7708 					    struct net_device *upper_dev,
7709 					    struct list_head *up_list,
7710 					    struct list_head *down_list,
7711 					    void *private, bool master)
7712 {
7713 	int ret;
7714 
7715 	ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
7716 					   private, master);
7717 	if (ret)
7718 		return ret;
7719 
7720 	ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
7721 					   private, false);
7722 	if (ret) {
7723 		__netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
7724 		return ret;
7725 	}
7726 
7727 	return 0;
7728 }
7729 
7730 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
7731 					       struct net_device *upper_dev,
7732 					       u16 ref_nr,
7733 					       struct list_head *up_list,
7734 					       struct list_head *down_list)
7735 {
7736 	__netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
7737 	__netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
7738 }
7739 
7740 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
7741 						struct net_device *upper_dev,
7742 						void *private, bool master)
7743 {
7744 	return __netdev_adjacent_dev_link_lists(dev, upper_dev,
7745 						&dev->adj_list.upper,
7746 						&upper_dev->adj_list.lower,
7747 						private, master);
7748 }
7749 
7750 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
7751 						   struct net_device *upper_dev)
7752 {
7753 	__netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
7754 					   &dev->adj_list.upper,
7755 					   &upper_dev->adj_list.lower);
7756 }
7757 
7758 static int __netdev_upper_dev_link(struct net_device *dev,
7759 				   struct net_device *upper_dev, bool master,
7760 				   void *upper_priv, void *upper_info,
7761 				   struct netdev_nested_priv *priv,
7762 				   struct netlink_ext_ack *extack)
7763 {
7764 	struct netdev_notifier_changeupper_info changeupper_info = {
7765 		.info = {
7766 			.dev = dev,
7767 			.extack = extack,
7768 		},
7769 		.upper_dev = upper_dev,
7770 		.master = master,
7771 		.linking = true,
7772 		.upper_info = upper_info,
7773 	};
7774 	struct net_device *master_dev;
7775 	int ret = 0;
7776 
7777 	ASSERT_RTNL();
7778 
7779 	if (dev == upper_dev)
7780 		return -EBUSY;
7781 
7782 	/* To prevent loops, check if dev is not upper device to upper_dev. */
7783 	if (__netdev_has_upper_dev(upper_dev, dev))
7784 		return -EBUSY;
7785 
7786 	if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
7787 		return -EMLINK;
7788 
7789 	if (!master) {
7790 		if (__netdev_has_upper_dev(dev, upper_dev))
7791 			return -EEXIST;
7792 	} else {
7793 		master_dev = __netdev_master_upper_dev_get(dev);
7794 		if (master_dev)
7795 			return master_dev == upper_dev ? -EEXIST : -EBUSY;
7796 	}
7797 
7798 	ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7799 					    &changeupper_info.info);
7800 	ret = notifier_to_errno(ret);
7801 	if (ret)
7802 		return ret;
7803 
7804 	ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
7805 						   master);
7806 	if (ret)
7807 		return ret;
7808 
7809 	ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7810 					    &changeupper_info.info);
7811 	ret = notifier_to_errno(ret);
7812 	if (ret)
7813 		goto rollback;
7814 
7815 	__netdev_update_upper_level(dev, NULL);
7816 	__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7817 
7818 	__netdev_update_lower_level(upper_dev, priv);
7819 	__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7820 				    priv);
7821 
7822 	return 0;
7823 
7824 rollback:
7825 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7826 
7827 	return ret;
7828 }
7829 
7830 /**
7831  * netdev_upper_dev_link - Add a link to the upper device
7832  * @dev: device
7833  * @upper_dev: new upper device
7834  * @extack: netlink extended ack
7835  *
7836  * Adds a link to device which is upper to this one. The caller must hold
7837  * the RTNL lock. On a failure a negative errno code is returned.
7838  * On success the reference counts are adjusted and the function
7839  * returns zero.
7840  */
7841 int netdev_upper_dev_link(struct net_device *dev,
7842 			  struct net_device *upper_dev,
7843 			  struct netlink_ext_ack *extack)
7844 {
7845 	struct netdev_nested_priv priv = {
7846 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7847 		.data = NULL,
7848 	};
7849 
7850 	return __netdev_upper_dev_link(dev, upper_dev, false,
7851 				       NULL, NULL, &priv, extack);
7852 }
7853 EXPORT_SYMBOL(netdev_upper_dev_link);
7854 
7855 /**
7856  * netdev_master_upper_dev_link - Add a master link to the upper device
7857  * @dev: device
7858  * @upper_dev: new upper device
7859  * @upper_priv: upper device private
7860  * @upper_info: upper info to be passed down via notifier
7861  * @extack: netlink extended ack
7862  *
7863  * Adds a link to device which is upper to this one. In this case, only
7864  * one master upper device can be linked, although other non-master devices
7865  * might be linked as well. The caller must hold the RTNL lock.
7866  * On a failure a negative errno code is returned. On success the reference
7867  * counts are adjusted and the function returns zero.
7868  */
7869 int netdev_master_upper_dev_link(struct net_device *dev,
7870 				 struct net_device *upper_dev,
7871 				 void *upper_priv, void *upper_info,
7872 				 struct netlink_ext_ack *extack)
7873 {
7874 	struct netdev_nested_priv priv = {
7875 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7876 		.data = NULL,
7877 	};
7878 
7879 	return __netdev_upper_dev_link(dev, upper_dev, true,
7880 				       upper_priv, upper_info, &priv, extack);
7881 }
7882 EXPORT_SYMBOL(netdev_master_upper_dev_link);
7883 
7884 static void __netdev_upper_dev_unlink(struct net_device *dev,
7885 				      struct net_device *upper_dev,
7886 				      struct netdev_nested_priv *priv)
7887 {
7888 	struct netdev_notifier_changeupper_info changeupper_info = {
7889 		.info = {
7890 			.dev = dev,
7891 		},
7892 		.upper_dev = upper_dev,
7893 		.linking = false,
7894 	};
7895 
7896 	ASSERT_RTNL();
7897 
7898 	changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
7899 
7900 	call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7901 				      &changeupper_info.info);
7902 
7903 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7904 
7905 	call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7906 				      &changeupper_info.info);
7907 
7908 	__netdev_update_upper_level(dev, NULL);
7909 	__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7910 
7911 	__netdev_update_lower_level(upper_dev, priv);
7912 	__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7913 				    priv);
7914 }
7915 
7916 /**
7917  * netdev_upper_dev_unlink - Removes a link to upper device
7918  * @dev: device
7919  * @upper_dev: new upper device
7920  *
7921  * Removes a link to device which is upper to this one. The caller must hold
7922  * the RTNL lock.
7923  */
7924 void netdev_upper_dev_unlink(struct net_device *dev,
7925 			     struct net_device *upper_dev)
7926 {
7927 	struct netdev_nested_priv priv = {
7928 		.flags = NESTED_SYNC_TODO,
7929 		.data = NULL,
7930 	};
7931 
7932 	__netdev_upper_dev_unlink(dev, upper_dev, &priv);
7933 }
7934 EXPORT_SYMBOL(netdev_upper_dev_unlink);
7935 
7936 static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
7937 				      struct net_device *lower_dev,
7938 				      bool val)
7939 {
7940 	struct netdev_adjacent *adj;
7941 
7942 	adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
7943 	if (adj)
7944 		adj->ignore = val;
7945 
7946 	adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
7947 	if (adj)
7948 		adj->ignore = val;
7949 }
7950 
7951 static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
7952 					struct net_device *lower_dev)
7953 {
7954 	__netdev_adjacent_dev_set(upper_dev, lower_dev, true);
7955 }
7956 
7957 static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
7958 				       struct net_device *lower_dev)
7959 {
7960 	__netdev_adjacent_dev_set(upper_dev, lower_dev, false);
7961 }
7962 
7963 int netdev_adjacent_change_prepare(struct net_device *old_dev,
7964 				   struct net_device *new_dev,
7965 				   struct net_device *dev,
7966 				   struct netlink_ext_ack *extack)
7967 {
7968 	struct netdev_nested_priv priv = {
7969 		.flags = 0,
7970 		.data = NULL,
7971 	};
7972 	int err;
7973 
7974 	if (!new_dev)
7975 		return 0;
7976 
7977 	if (old_dev && new_dev != old_dev)
7978 		netdev_adjacent_dev_disable(dev, old_dev);
7979 	err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv,
7980 				      extack);
7981 	if (err) {
7982 		if (old_dev && new_dev != old_dev)
7983 			netdev_adjacent_dev_enable(dev, old_dev);
7984 		return err;
7985 	}
7986 
7987 	return 0;
7988 }
7989 EXPORT_SYMBOL(netdev_adjacent_change_prepare);
7990 
7991 void netdev_adjacent_change_commit(struct net_device *old_dev,
7992 				   struct net_device *new_dev,
7993 				   struct net_device *dev)
7994 {
7995 	struct netdev_nested_priv priv = {
7996 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7997 		.data = NULL,
7998 	};
7999 
8000 	if (!new_dev || !old_dev)
8001 		return;
8002 
8003 	if (new_dev == old_dev)
8004 		return;
8005 
8006 	netdev_adjacent_dev_enable(dev, old_dev);
8007 	__netdev_upper_dev_unlink(old_dev, dev, &priv);
8008 }
8009 EXPORT_SYMBOL(netdev_adjacent_change_commit);
8010 
8011 void netdev_adjacent_change_abort(struct net_device *old_dev,
8012 				  struct net_device *new_dev,
8013 				  struct net_device *dev)
8014 {
8015 	struct netdev_nested_priv priv = {
8016 		.flags = 0,
8017 		.data = NULL,
8018 	};
8019 
8020 	if (!new_dev)
8021 		return;
8022 
8023 	if (old_dev && new_dev != old_dev)
8024 		netdev_adjacent_dev_enable(dev, old_dev);
8025 
8026 	__netdev_upper_dev_unlink(new_dev, dev, &priv);
8027 }
8028 EXPORT_SYMBOL(netdev_adjacent_change_abort);
8029 
8030 /**
8031  * netdev_bonding_info_change - Dispatch event about slave change
8032  * @dev: device
8033  * @bonding_info: info to dispatch
8034  *
8035  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
8036  * The caller must hold the RTNL lock.
8037  */
8038 void netdev_bonding_info_change(struct net_device *dev,
8039 				struct netdev_bonding_info *bonding_info)
8040 {
8041 	struct netdev_notifier_bonding_info info = {
8042 		.info.dev = dev,
8043 	};
8044 
8045 	memcpy(&info.bonding_info, bonding_info,
8046 	       sizeof(struct netdev_bonding_info));
8047 	call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
8048 				      &info.info);
8049 }
8050 EXPORT_SYMBOL(netdev_bonding_info_change);
8051 
8052 /**
8053  * netdev_get_xmit_slave - Get the xmit slave of master device
8054  * @dev: device
8055  * @skb: The packet
8056  * @all_slaves: assume all the slaves are active
8057  *
8058  * The reference counters are not incremented so the caller must be
8059  * careful with locks. The caller must hold RCU lock.
8060  * %NULL is returned if no slave is found.
8061  */
8062 
8063 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
8064 					 struct sk_buff *skb,
8065 					 bool all_slaves)
8066 {
8067 	const struct net_device_ops *ops = dev->netdev_ops;
8068 
8069 	if (!ops->ndo_get_xmit_slave)
8070 		return NULL;
8071 	return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
8072 }
8073 EXPORT_SYMBOL(netdev_get_xmit_slave);
8074 
8075 static void netdev_adjacent_add_links(struct net_device *dev)
8076 {
8077 	struct netdev_adjacent *iter;
8078 
8079 	struct net *net = dev_net(dev);
8080 
8081 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
8082 		if (!net_eq(net, dev_net(iter->dev)))
8083 			continue;
8084 		netdev_adjacent_sysfs_add(iter->dev, dev,
8085 					  &iter->dev->adj_list.lower);
8086 		netdev_adjacent_sysfs_add(dev, iter->dev,
8087 					  &dev->adj_list.upper);
8088 	}
8089 
8090 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
8091 		if (!net_eq(net, dev_net(iter->dev)))
8092 			continue;
8093 		netdev_adjacent_sysfs_add(iter->dev, dev,
8094 					  &iter->dev->adj_list.upper);
8095 		netdev_adjacent_sysfs_add(dev, iter->dev,
8096 					  &dev->adj_list.lower);
8097 	}
8098 }
8099 
8100 static void netdev_adjacent_del_links(struct net_device *dev)
8101 {
8102 	struct netdev_adjacent *iter;
8103 
8104 	struct net *net = dev_net(dev);
8105 
8106 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
8107 		if (!net_eq(net, dev_net(iter->dev)))
8108 			continue;
8109 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
8110 					  &iter->dev->adj_list.lower);
8111 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
8112 					  &dev->adj_list.upper);
8113 	}
8114 
8115 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
8116 		if (!net_eq(net, dev_net(iter->dev)))
8117 			continue;
8118 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
8119 					  &iter->dev->adj_list.upper);
8120 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
8121 					  &dev->adj_list.lower);
8122 	}
8123 }
8124 
8125 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
8126 {
8127 	struct netdev_adjacent *iter;
8128 
8129 	struct net *net = dev_net(dev);
8130 
8131 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
8132 		if (!net_eq(net, dev_net(iter->dev)))
8133 			continue;
8134 		netdev_adjacent_sysfs_del(iter->dev, oldname,
8135 					  &iter->dev->adj_list.lower);
8136 		netdev_adjacent_sysfs_add(iter->dev, dev,
8137 					  &iter->dev->adj_list.lower);
8138 	}
8139 
8140 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
8141 		if (!net_eq(net, dev_net(iter->dev)))
8142 			continue;
8143 		netdev_adjacent_sysfs_del(iter->dev, oldname,
8144 					  &iter->dev->adj_list.upper);
8145 		netdev_adjacent_sysfs_add(iter->dev, dev,
8146 					  &iter->dev->adj_list.upper);
8147 	}
8148 }
8149 
8150 void *netdev_lower_dev_get_private(struct net_device *dev,
8151 				   struct net_device *lower_dev)
8152 {
8153 	struct netdev_adjacent *lower;
8154 
8155 	if (!lower_dev)
8156 		return NULL;
8157 	lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
8158 	if (!lower)
8159 		return NULL;
8160 
8161 	return lower->private;
8162 }
8163 EXPORT_SYMBOL(netdev_lower_dev_get_private);
8164 
8165 
8166 /**
8167  * netdev_lower_state_changed - Dispatch event about lower device state change
8168  * @lower_dev: device
8169  * @lower_state_info: state to dispatch
8170  *
8171  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
8172  * The caller must hold the RTNL lock.
8173  */
8174 void netdev_lower_state_changed(struct net_device *lower_dev,
8175 				void *lower_state_info)
8176 {
8177 	struct netdev_notifier_changelowerstate_info changelowerstate_info = {
8178 		.info.dev = lower_dev,
8179 	};
8180 
8181 	ASSERT_RTNL();
8182 	changelowerstate_info.lower_state_info = lower_state_info;
8183 	call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
8184 				      &changelowerstate_info.info);
8185 }
8186 EXPORT_SYMBOL(netdev_lower_state_changed);
8187 
8188 static void dev_change_rx_flags(struct net_device *dev, int flags)
8189 {
8190 	const struct net_device_ops *ops = dev->netdev_ops;
8191 
8192 	if (ops->ndo_change_rx_flags)
8193 		ops->ndo_change_rx_flags(dev, flags);
8194 }
8195 
8196 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
8197 {
8198 	unsigned int old_flags = dev->flags;
8199 	kuid_t uid;
8200 	kgid_t gid;
8201 
8202 	ASSERT_RTNL();
8203 
8204 	dev->flags |= IFF_PROMISC;
8205 	dev->promiscuity += inc;
8206 	if (dev->promiscuity == 0) {
8207 		/*
8208 		 * Avoid overflow.
8209 		 * If inc causes overflow, untouch promisc and return error.
8210 		 */
8211 		if (inc < 0)
8212 			dev->flags &= ~IFF_PROMISC;
8213 		else {
8214 			dev->promiscuity -= inc;
8215 			pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
8216 				dev->name);
8217 			return -EOVERFLOW;
8218 		}
8219 	}
8220 	if (dev->flags != old_flags) {
8221 		pr_info("device %s %s promiscuous mode\n",
8222 			dev->name,
8223 			dev->flags & IFF_PROMISC ? "entered" : "left");
8224 		if (audit_enabled) {
8225 			current_uid_gid(&uid, &gid);
8226 			audit_log(audit_context(), GFP_ATOMIC,
8227 				  AUDIT_ANOM_PROMISCUOUS,
8228 				  "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
8229 				  dev->name, (dev->flags & IFF_PROMISC),
8230 				  (old_flags & IFF_PROMISC),
8231 				  from_kuid(&init_user_ns, audit_get_loginuid(current)),
8232 				  from_kuid(&init_user_ns, uid),
8233 				  from_kgid(&init_user_ns, gid),
8234 				  audit_get_sessionid(current));
8235 		}
8236 
8237 		dev_change_rx_flags(dev, IFF_PROMISC);
8238 	}
8239 	if (notify)
8240 		__dev_notify_flags(dev, old_flags, IFF_PROMISC);
8241 	return 0;
8242 }
8243 
8244 /**
8245  *	dev_set_promiscuity	- update promiscuity count on a device
8246  *	@dev: device
8247  *	@inc: modifier
8248  *
8249  *	Add or remove promiscuity from a device. While the count in the device
8250  *	remains above zero the interface remains promiscuous. Once it hits zero
8251  *	the device reverts back to normal filtering operation. A negative inc
8252  *	value is used to drop promiscuity on the device.
8253  *	Return 0 if successful or a negative errno code on error.
8254  */
8255 int dev_set_promiscuity(struct net_device *dev, int inc)
8256 {
8257 	unsigned int old_flags = dev->flags;
8258 	int err;
8259 
8260 	err = __dev_set_promiscuity(dev, inc, true);
8261 	if (err < 0)
8262 		return err;
8263 	if (dev->flags != old_flags)
8264 		dev_set_rx_mode(dev);
8265 	return err;
8266 }
8267 EXPORT_SYMBOL(dev_set_promiscuity);
8268 
8269 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
8270 {
8271 	unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
8272 
8273 	ASSERT_RTNL();
8274 
8275 	dev->flags |= IFF_ALLMULTI;
8276 	dev->allmulti += inc;
8277 	if (dev->allmulti == 0) {
8278 		/*
8279 		 * Avoid overflow.
8280 		 * If inc causes overflow, untouch allmulti and return error.
8281 		 */
8282 		if (inc < 0)
8283 			dev->flags &= ~IFF_ALLMULTI;
8284 		else {
8285 			dev->allmulti -= inc;
8286 			pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
8287 				dev->name);
8288 			return -EOVERFLOW;
8289 		}
8290 	}
8291 	if (dev->flags ^ old_flags) {
8292 		dev_change_rx_flags(dev, IFF_ALLMULTI);
8293 		dev_set_rx_mode(dev);
8294 		if (notify)
8295 			__dev_notify_flags(dev, old_flags,
8296 					   dev->gflags ^ old_gflags);
8297 	}
8298 	return 0;
8299 }
8300 
8301 /**
8302  *	dev_set_allmulti	- update allmulti count on a device
8303  *	@dev: device
8304  *	@inc: modifier
8305  *
8306  *	Add or remove reception of all multicast frames to a device. While the
8307  *	count in the device remains above zero the interface remains listening
8308  *	to all interfaces. Once it hits zero the device reverts back to normal
8309  *	filtering operation. A negative @inc value is used to drop the counter
8310  *	when releasing a resource needing all multicasts.
8311  *	Return 0 if successful or a negative errno code on error.
8312  */
8313 
8314 int dev_set_allmulti(struct net_device *dev, int inc)
8315 {
8316 	return __dev_set_allmulti(dev, inc, true);
8317 }
8318 EXPORT_SYMBOL(dev_set_allmulti);
8319 
8320 /*
8321  *	Upload unicast and multicast address lists to device and
8322  *	configure RX filtering. When the device doesn't support unicast
8323  *	filtering it is put in promiscuous mode while unicast addresses
8324  *	are present.
8325  */
8326 void __dev_set_rx_mode(struct net_device *dev)
8327 {
8328 	const struct net_device_ops *ops = dev->netdev_ops;
8329 
8330 	/* dev_open will call this function so the list will stay sane. */
8331 	if (!(dev->flags&IFF_UP))
8332 		return;
8333 
8334 	if (!netif_device_present(dev))
8335 		return;
8336 
8337 	if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
8338 		/* Unicast addresses changes may only happen under the rtnl,
8339 		 * therefore calling __dev_set_promiscuity here is safe.
8340 		 */
8341 		if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
8342 			__dev_set_promiscuity(dev, 1, false);
8343 			dev->uc_promisc = true;
8344 		} else if (netdev_uc_empty(dev) && dev->uc_promisc) {
8345 			__dev_set_promiscuity(dev, -1, false);
8346 			dev->uc_promisc = false;
8347 		}
8348 	}
8349 
8350 	if (ops->ndo_set_rx_mode)
8351 		ops->ndo_set_rx_mode(dev);
8352 }
8353 
8354 void dev_set_rx_mode(struct net_device *dev)
8355 {
8356 	netif_addr_lock_bh(dev);
8357 	__dev_set_rx_mode(dev);
8358 	netif_addr_unlock_bh(dev);
8359 }
8360 
8361 /**
8362  *	dev_get_flags - get flags reported to userspace
8363  *	@dev: device
8364  *
8365  *	Get the combination of flag bits exported through APIs to userspace.
8366  */
8367 unsigned int dev_get_flags(const struct net_device *dev)
8368 {
8369 	unsigned int flags;
8370 
8371 	flags = (dev->flags & ~(IFF_PROMISC |
8372 				IFF_ALLMULTI |
8373 				IFF_RUNNING |
8374 				IFF_LOWER_UP |
8375 				IFF_DORMANT)) |
8376 		(dev->gflags & (IFF_PROMISC |
8377 				IFF_ALLMULTI));
8378 
8379 	if (netif_running(dev)) {
8380 		if (netif_oper_up(dev))
8381 			flags |= IFF_RUNNING;
8382 		if (netif_carrier_ok(dev))
8383 			flags |= IFF_LOWER_UP;
8384 		if (netif_dormant(dev))
8385 			flags |= IFF_DORMANT;
8386 	}
8387 
8388 	return flags;
8389 }
8390 EXPORT_SYMBOL(dev_get_flags);
8391 
8392 int __dev_change_flags(struct net_device *dev, unsigned int flags,
8393 		       struct netlink_ext_ack *extack)
8394 {
8395 	unsigned int old_flags = dev->flags;
8396 	int ret;
8397 
8398 	ASSERT_RTNL();
8399 
8400 	/*
8401 	 *	Set the flags on our device.
8402 	 */
8403 
8404 	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
8405 			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
8406 			       IFF_AUTOMEDIA)) |
8407 		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
8408 				    IFF_ALLMULTI));
8409 
8410 	/*
8411 	 *	Load in the correct multicast list now the flags have changed.
8412 	 */
8413 
8414 	if ((old_flags ^ flags) & IFF_MULTICAST)
8415 		dev_change_rx_flags(dev, IFF_MULTICAST);
8416 
8417 	dev_set_rx_mode(dev);
8418 
8419 	/*
8420 	 *	Have we downed the interface. We handle IFF_UP ourselves
8421 	 *	according to user attempts to set it, rather than blindly
8422 	 *	setting it.
8423 	 */
8424 
8425 	ret = 0;
8426 	if ((old_flags ^ flags) & IFF_UP) {
8427 		if (old_flags & IFF_UP)
8428 			__dev_close(dev);
8429 		else
8430 			ret = __dev_open(dev, extack);
8431 	}
8432 
8433 	if ((flags ^ dev->gflags) & IFF_PROMISC) {
8434 		int inc = (flags & IFF_PROMISC) ? 1 : -1;
8435 		unsigned int old_flags = dev->flags;
8436 
8437 		dev->gflags ^= IFF_PROMISC;
8438 
8439 		if (__dev_set_promiscuity(dev, inc, false) >= 0)
8440 			if (dev->flags != old_flags)
8441 				dev_set_rx_mode(dev);
8442 	}
8443 
8444 	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
8445 	 * is important. Some (broken) drivers set IFF_PROMISC, when
8446 	 * IFF_ALLMULTI is requested not asking us and not reporting.
8447 	 */
8448 	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
8449 		int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
8450 
8451 		dev->gflags ^= IFF_ALLMULTI;
8452 		__dev_set_allmulti(dev, inc, false);
8453 	}
8454 
8455 	return ret;
8456 }
8457 
8458 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
8459 			unsigned int gchanges)
8460 {
8461 	unsigned int changes = dev->flags ^ old_flags;
8462 
8463 	if (gchanges)
8464 		rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
8465 
8466 	if (changes & IFF_UP) {
8467 		if (dev->flags & IFF_UP)
8468 			call_netdevice_notifiers(NETDEV_UP, dev);
8469 		else
8470 			call_netdevice_notifiers(NETDEV_DOWN, dev);
8471 	}
8472 
8473 	if (dev->flags & IFF_UP &&
8474 	    (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
8475 		struct netdev_notifier_change_info change_info = {
8476 			.info = {
8477 				.dev = dev,
8478 			},
8479 			.flags_changed = changes,
8480 		};
8481 
8482 		call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
8483 	}
8484 }
8485 
8486 /**
8487  *	dev_change_flags - change device settings
8488  *	@dev: device
8489  *	@flags: device state flags
8490  *	@extack: netlink extended ack
8491  *
8492  *	Change settings on device based state flags. The flags are
8493  *	in the userspace exported format.
8494  */
8495 int dev_change_flags(struct net_device *dev, unsigned int flags,
8496 		     struct netlink_ext_ack *extack)
8497 {
8498 	int ret;
8499 	unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
8500 
8501 	ret = __dev_change_flags(dev, flags, extack);
8502 	if (ret < 0)
8503 		return ret;
8504 
8505 	changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
8506 	__dev_notify_flags(dev, old_flags, changes);
8507 	return ret;
8508 }
8509 EXPORT_SYMBOL(dev_change_flags);
8510 
8511 int __dev_set_mtu(struct net_device *dev, int new_mtu)
8512 {
8513 	const struct net_device_ops *ops = dev->netdev_ops;
8514 
8515 	if (ops->ndo_change_mtu)
8516 		return ops->ndo_change_mtu(dev, new_mtu);
8517 
8518 	/* Pairs with all the lockless reads of dev->mtu in the stack */
8519 	WRITE_ONCE(dev->mtu, new_mtu);
8520 	return 0;
8521 }
8522 EXPORT_SYMBOL(__dev_set_mtu);
8523 
8524 int dev_validate_mtu(struct net_device *dev, int new_mtu,
8525 		     struct netlink_ext_ack *extack)
8526 {
8527 	/* MTU must be positive, and in range */
8528 	if (new_mtu < 0 || new_mtu < dev->min_mtu) {
8529 		NL_SET_ERR_MSG(extack, "mtu less than device minimum");
8530 		return -EINVAL;
8531 	}
8532 
8533 	if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
8534 		NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
8535 		return -EINVAL;
8536 	}
8537 	return 0;
8538 }
8539 
8540 /**
8541  *	dev_set_mtu_ext - Change maximum transfer unit
8542  *	@dev: device
8543  *	@new_mtu: new transfer unit
8544  *	@extack: netlink extended ack
8545  *
8546  *	Change the maximum transfer size of the network device.
8547  */
8548 int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
8549 		    struct netlink_ext_ack *extack)
8550 {
8551 	int err, orig_mtu;
8552 
8553 	if (new_mtu == dev->mtu)
8554 		return 0;
8555 
8556 	err = dev_validate_mtu(dev, new_mtu, extack);
8557 	if (err)
8558 		return err;
8559 
8560 	if (!netif_device_present(dev))
8561 		return -ENODEV;
8562 
8563 	err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
8564 	err = notifier_to_errno(err);
8565 	if (err)
8566 		return err;
8567 
8568 	orig_mtu = dev->mtu;
8569 	err = __dev_set_mtu(dev, new_mtu);
8570 
8571 	if (!err) {
8572 		err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8573 						   orig_mtu);
8574 		err = notifier_to_errno(err);
8575 		if (err) {
8576 			/* setting mtu back and notifying everyone again,
8577 			 * so that they have a chance to revert changes.
8578 			 */
8579 			__dev_set_mtu(dev, orig_mtu);
8580 			call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8581 						     new_mtu);
8582 		}
8583 	}
8584 	return err;
8585 }
8586 
8587 int dev_set_mtu(struct net_device *dev, int new_mtu)
8588 {
8589 	struct netlink_ext_ack extack;
8590 	int err;
8591 
8592 	memset(&extack, 0, sizeof(extack));
8593 	err = dev_set_mtu_ext(dev, new_mtu, &extack);
8594 	if (err && extack._msg)
8595 		net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
8596 	return err;
8597 }
8598 EXPORT_SYMBOL(dev_set_mtu);
8599 
8600 /**
8601  *	dev_change_tx_queue_len - Change TX queue length of a netdevice
8602  *	@dev: device
8603  *	@new_len: new tx queue length
8604  */
8605 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
8606 {
8607 	unsigned int orig_len = dev->tx_queue_len;
8608 	int res;
8609 
8610 	if (new_len != (unsigned int)new_len)
8611 		return -ERANGE;
8612 
8613 	if (new_len != orig_len) {
8614 		dev->tx_queue_len = new_len;
8615 		res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
8616 		res = notifier_to_errno(res);
8617 		if (res)
8618 			goto err_rollback;
8619 		res = dev_qdisc_change_tx_queue_len(dev);
8620 		if (res)
8621 			goto err_rollback;
8622 	}
8623 
8624 	return 0;
8625 
8626 err_rollback:
8627 	netdev_err(dev, "refused to change device tx_queue_len\n");
8628 	dev->tx_queue_len = orig_len;
8629 	return res;
8630 }
8631 
8632 /**
8633  *	dev_set_group - Change group this device belongs to
8634  *	@dev: device
8635  *	@new_group: group this device should belong to
8636  */
8637 void dev_set_group(struct net_device *dev, int new_group)
8638 {
8639 	dev->group = new_group;
8640 }
8641 EXPORT_SYMBOL(dev_set_group);
8642 
8643 /**
8644  *	dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
8645  *	@dev: device
8646  *	@addr: new address
8647  *	@extack: netlink extended ack
8648  */
8649 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
8650 			      struct netlink_ext_ack *extack)
8651 {
8652 	struct netdev_notifier_pre_changeaddr_info info = {
8653 		.info.dev = dev,
8654 		.info.extack = extack,
8655 		.dev_addr = addr,
8656 	};
8657 	int rc;
8658 
8659 	rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
8660 	return notifier_to_errno(rc);
8661 }
8662 EXPORT_SYMBOL(dev_pre_changeaddr_notify);
8663 
8664 /**
8665  *	dev_set_mac_address - Change Media Access Control Address
8666  *	@dev: device
8667  *	@sa: new address
8668  *	@extack: netlink extended ack
8669  *
8670  *	Change the hardware (MAC) address of the device
8671  */
8672 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
8673 			struct netlink_ext_ack *extack)
8674 {
8675 	const struct net_device_ops *ops = dev->netdev_ops;
8676 	int err;
8677 
8678 	if (!ops->ndo_set_mac_address)
8679 		return -EOPNOTSUPP;
8680 	if (sa->sa_family != dev->type)
8681 		return -EINVAL;
8682 	if (!netif_device_present(dev))
8683 		return -ENODEV;
8684 	err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
8685 	if (err)
8686 		return err;
8687 	err = ops->ndo_set_mac_address(dev, sa);
8688 	if (err)
8689 		return err;
8690 	dev->addr_assign_type = NET_ADDR_SET;
8691 	call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
8692 	add_device_randomness(dev->dev_addr, dev->addr_len);
8693 	return 0;
8694 }
8695 EXPORT_SYMBOL(dev_set_mac_address);
8696 
8697 /**
8698  *	dev_change_carrier - Change device carrier
8699  *	@dev: device
8700  *	@new_carrier: new value
8701  *
8702  *	Change device carrier
8703  */
8704 int dev_change_carrier(struct net_device *dev, bool new_carrier)
8705 {
8706 	const struct net_device_ops *ops = dev->netdev_ops;
8707 
8708 	if (!ops->ndo_change_carrier)
8709 		return -EOPNOTSUPP;
8710 	if (!netif_device_present(dev))
8711 		return -ENODEV;
8712 	return ops->ndo_change_carrier(dev, new_carrier);
8713 }
8714 EXPORT_SYMBOL(dev_change_carrier);
8715 
8716 /**
8717  *	dev_get_phys_port_id - Get device physical port ID
8718  *	@dev: device
8719  *	@ppid: port ID
8720  *
8721  *	Get device physical port ID
8722  */
8723 int dev_get_phys_port_id(struct net_device *dev,
8724 			 struct netdev_phys_item_id *ppid)
8725 {
8726 	const struct net_device_ops *ops = dev->netdev_ops;
8727 
8728 	if (!ops->ndo_get_phys_port_id)
8729 		return -EOPNOTSUPP;
8730 	return ops->ndo_get_phys_port_id(dev, ppid);
8731 }
8732 EXPORT_SYMBOL(dev_get_phys_port_id);
8733 
8734 /**
8735  *	dev_get_phys_port_name - Get device physical port name
8736  *	@dev: device
8737  *	@name: port name
8738  *	@len: limit of bytes to copy to name
8739  *
8740  *	Get device physical port name
8741  */
8742 int dev_get_phys_port_name(struct net_device *dev,
8743 			   char *name, size_t len)
8744 {
8745 	const struct net_device_ops *ops = dev->netdev_ops;
8746 	int err;
8747 
8748 	if (ops->ndo_get_phys_port_name) {
8749 		err = ops->ndo_get_phys_port_name(dev, name, len);
8750 		if (err != -EOPNOTSUPP)
8751 			return err;
8752 	}
8753 	return devlink_compat_phys_port_name_get(dev, name, len);
8754 }
8755 EXPORT_SYMBOL(dev_get_phys_port_name);
8756 
8757 /**
8758  *	dev_get_port_parent_id - Get the device's port parent identifier
8759  *	@dev: network device
8760  *	@ppid: pointer to a storage for the port's parent identifier
8761  *	@recurse: allow/disallow recursion to lower devices
8762  *
8763  *	Get the devices's port parent identifier
8764  */
8765 int dev_get_port_parent_id(struct net_device *dev,
8766 			   struct netdev_phys_item_id *ppid,
8767 			   bool recurse)
8768 {
8769 	const struct net_device_ops *ops = dev->netdev_ops;
8770 	struct netdev_phys_item_id first = { };
8771 	struct net_device *lower_dev;
8772 	struct list_head *iter;
8773 	int err;
8774 
8775 	if (ops->ndo_get_port_parent_id) {
8776 		err = ops->ndo_get_port_parent_id(dev, ppid);
8777 		if (err != -EOPNOTSUPP)
8778 			return err;
8779 	}
8780 
8781 	err = devlink_compat_switch_id_get(dev, ppid);
8782 	if (!err || err != -EOPNOTSUPP)
8783 		return err;
8784 
8785 	if (!recurse)
8786 		return -EOPNOTSUPP;
8787 
8788 	netdev_for_each_lower_dev(dev, lower_dev, iter) {
8789 		err = dev_get_port_parent_id(lower_dev, ppid, recurse);
8790 		if (err)
8791 			break;
8792 		if (!first.id_len)
8793 			first = *ppid;
8794 		else if (memcmp(&first, ppid, sizeof(*ppid)))
8795 			return -EOPNOTSUPP;
8796 	}
8797 
8798 	return err;
8799 }
8800 EXPORT_SYMBOL(dev_get_port_parent_id);
8801 
8802 /**
8803  *	netdev_port_same_parent_id - Indicate if two network devices have
8804  *	the same port parent identifier
8805  *	@a: first network device
8806  *	@b: second network device
8807  */
8808 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
8809 {
8810 	struct netdev_phys_item_id a_id = { };
8811 	struct netdev_phys_item_id b_id = { };
8812 
8813 	if (dev_get_port_parent_id(a, &a_id, true) ||
8814 	    dev_get_port_parent_id(b, &b_id, true))
8815 		return false;
8816 
8817 	return netdev_phys_item_id_same(&a_id, &b_id);
8818 }
8819 EXPORT_SYMBOL(netdev_port_same_parent_id);
8820 
8821 /**
8822  *	dev_change_proto_down - update protocol port state information
8823  *	@dev: device
8824  *	@proto_down: new value
8825  *
8826  *	This info can be used by switch drivers to set the phys state of the
8827  *	port.
8828  */
8829 int dev_change_proto_down(struct net_device *dev, bool proto_down)
8830 {
8831 	const struct net_device_ops *ops = dev->netdev_ops;
8832 
8833 	if (!ops->ndo_change_proto_down)
8834 		return -EOPNOTSUPP;
8835 	if (!netif_device_present(dev))
8836 		return -ENODEV;
8837 	return ops->ndo_change_proto_down(dev, proto_down);
8838 }
8839 EXPORT_SYMBOL(dev_change_proto_down);
8840 
8841 /**
8842  *	dev_change_proto_down_generic - generic implementation for
8843  * 	ndo_change_proto_down that sets carrier according to
8844  * 	proto_down.
8845  *
8846  *	@dev: device
8847  *	@proto_down: new value
8848  */
8849 int dev_change_proto_down_generic(struct net_device *dev, bool proto_down)
8850 {
8851 	if (proto_down)
8852 		netif_carrier_off(dev);
8853 	else
8854 		netif_carrier_on(dev);
8855 	dev->proto_down = proto_down;
8856 	return 0;
8857 }
8858 EXPORT_SYMBOL(dev_change_proto_down_generic);
8859 
8860 /**
8861  *	dev_change_proto_down_reason - proto down reason
8862  *
8863  *	@dev: device
8864  *	@mask: proto down mask
8865  *	@value: proto down value
8866  */
8867 void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
8868 				  u32 value)
8869 {
8870 	int b;
8871 
8872 	if (!mask) {
8873 		dev->proto_down_reason = value;
8874 	} else {
8875 		for_each_set_bit(b, &mask, 32) {
8876 			if (value & (1 << b))
8877 				dev->proto_down_reason |= BIT(b);
8878 			else
8879 				dev->proto_down_reason &= ~BIT(b);
8880 		}
8881 	}
8882 }
8883 EXPORT_SYMBOL(dev_change_proto_down_reason);
8884 
8885 struct bpf_xdp_link {
8886 	struct bpf_link link;
8887 	struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
8888 	int flags;
8889 };
8890 
8891 static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags)
8892 {
8893 	if (flags & XDP_FLAGS_HW_MODE)
8894 		return XDP_MODE_HW;
8895 	if (flags & XDP_FLAGS_DRV_MODE)
8896 		return XDP_MODE_DRV;
8897 	if (flags & XDP_FLAGS_SKB_MODE)
8898 		return XDP_MODE_SKB;
8899 	return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB;
8900 }
8901 
8902 static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
8903 {
8904 	switch (mode) {
8905 	case XDP_MODE_SKB:
8906 		return generic_xdp_install;
8907 	case XDP_MODE_DRV:
8908 	case XDP_MODE_HW:
8909 		return dev->netdev_ops->ndo_bpf;
8910 	default:
8911 		return NULL;
8912 	}
8913 }
8914 
8915 static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
8916 					 enum bpf_xdp_mode mode)
8917 {
8918 	return dev->xdp_state[mode].link;
8919 }
8920 
8921 static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
8922 				     enum bpf_xdp_mode mode)
8923 {
8924 	struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
8925 
8926 	if (link)
8927 		return link->link.prog;
8928 	return dev->xdp_state[mode].prog;
8929 }
8930 
8931 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
8932 {
8933 	struct bpf_prog *prog = dev_xdp_prog(dev, mode);
8934 
8935 	return prog ? prog->aux->id : 0;
8936 }
8937 
8938 static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
8939 			     struct bpf_xdp_link *link)
8940 {
8941 	dev->xdp_state[mode].link = link;
8942 	dev->xdp_state[mode].prog = NULL;
8943 }
8944 
8945 static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
8946 			     struct bpf_prog *prog)
8947 {
8948 	dev->xdp_state[mode].link = NULL;
8949 	dev->xdp_state[mode].prog = prog;
8950 }
8951 
8952 static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
8953 			   bpf_op_t bpf_op, struct netlink_ext_ack *extack,
8954 			   u32 flags, struct bpf_prog *prog)
8955 {
8956 	struct netdev_bpf xdp;
8957 	int err;
8958 
8959 	memset(&xdp, 0, sizeof(xdp));
8960 	xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
8961 	xdp.extack = extack;
8962 	xdp.flags = flags;
8963 	xdp.prog = prog;
8964 
8965 	/* Drivers assume refcnt is already incremented (i.e, prog pointer is
8966 	 * "moved" into driver), so they don't increment it on their own, but
8967 	 * they do decrement refcnt when program is detached or replaced.
8968 	 * Given net_device also owns link/prog, we need to bump refcnt here
8969 	 * to prevent drivers from underflowing it.
8970 	 */
8971 	if (prog)
8972 		bpf_prog_inc(prog);
8973 	err = bpf_op(dev, &xdp);
8974 	if (err) {
8975 		if (prog)
8976 			bpf_prog_put(prog);
8977 		return err;
8978 	}
8979 
8980 	if (mode != XDP_MODE_HW)
8981 		bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog);
8982 
8983 	return 0;
8984 }
8985 
8986 static void dev_xdp_uninstall(struct net_device *dev)
8987 {
8988 	struct bpf_xdp_link *link;
8989 	struct bpf_prog *prog;
8990 	enum bpf_xdp_mode mode;
8991 	bpf_op_t bpf_op;
8992 
8993 	ASSERT_RTNL();
8994 
8995 	for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
8996 		prog = dev_xdp_prog(dev, mode);
8997 		if (!prog)
8998 			continue;
8999 
9000 		bpf_op = dev_xdp_bpf_op(dev, mode);
9001 		if (!bpf_op)
9002 			continue;
9003 
9004 		WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9005 
9006 		/* auto-detach link from net device */
9007 		link = dev_xdp_link(dev, mode);
9008 		if (link)
9009 			link->dev = NULL;
9010 		else
9011 			bpf_prog_put(prog);
9012 
9013 		dev_xdp_set_link(dev, mode, NULL);
9014 	}
9015 }
9016 
9017 static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
9018 			  struct bpf_xdp_link *link, struct bpf_prog *new_prog,
9019 			  struct bpf_prog *old_prog, u32 flags)
9020 {
9021 	struct bpf_prog *cur_prog;
9022 	enum bpf_xdp_mode mode;
9023 	bpf_op_t bpf_op;
9024 	int err;
9025 
9026 	ASSERT_RTNL();
9027 
9028 	/* either link or prog attachment, never both */
9029 	if (link && (new_prog || old_prog))
9030 		return -EINVAL;
9031 	/* link supports only XDP mode flags */
9032 	if (link && (flags & ~XDP_FLAGS_MODES)) {
9033 		NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
9034 		return -EINVAL;
9035 	}
9036 	/* just one XDP mode bit should be set, zero defaults to SKB mode */
9037 	if (hweight32(flags & XDP_FLAGS_MODES) > 1) {
9038 		NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
9039 		return -EINVAL;
9040 	}
9041 	/* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
9042 	if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
9043 		NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
9044 		return -EINVAL;
9045 	}
9046 
9047 	mode = dev_xdp_mode(dev, flags);
9048 	/* can't replace attached link */
9049 	if (dev_xdp_link(dev, mode)) {
9050 		NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
9051 		return -EBUSY;
9052 	}
9053 
9054 	cur_prog = dev_xdp_prog(dev, mode);
9055 	/* can't replace attached prog with link */
9056 	if (link && cur_prog) {
9057 		NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
9058 		return -EBUSY;
9059 	}
9060 	if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
9061 		NL_SET_ERR_MSG(extack, "Active program does not match expected");
9062 		return -EEXIST;
9063 	}
9064 
9065 	/* put effective new program into new_prog */
9066 	if (link)
9067 		new_prog = link->link.prog;
9068 
9069 	if (new_prog) {
9070 		bool offload = mode == XDP_MODE_HW;
9071 		enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
9072 					       ? XDP_MODE_DRV : XDP_MODE_SKB;
9073 
9074 		if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
9075 			NL_SET_ERR_MSG(extack, "XDP program already attached");
9076 			return -EBUSY;
9077 		}
9078 		if (!offload && dev_xdp_prog(dev, other_mode)) {
9079 			NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
9080 			return -EEXIST;
9081 		}
9082 		if (!offload && bpf_prog_is_dev_bound(new_prog->aux)) {
9083 			NL_SET_ERR_MSG(extack, "Using device-bound program without HW_MODE flag is not supported");
9084 			return -EINVAL;
9085 		}
9086 		if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
9087 			NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
9088 			return -EINVAL;
9089 		}
9090 		if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
9091 			NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
9092 			return -EINVAL;
9093 		}
9094 	}
9095 
9096 	/* don't call drivers if the effective program didn't change */
9097 	if (new_prog != cur_prog) {
9098 		bpf_op = dev_xdp_bpf_op(dev, mode);
9099 		if (!bpf_op) {
9100 			NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
9101 			return -EOPNOTSUPP;
9102 		}
9103 
9104 		err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog);
9105 		if (err)
9106 			return err;
9107 	}
9108 
9109 	if (link)
9110 		dev_xdp_set_link(dev, mode, link);
9111 	else
9112 		dev_xdp_set_prog(dev, mode, new_prog);
9113 	if (cur_prog)
9114 		bpf_prog_put(cur_prog);
9115 
9116 	return 0;
9117 }
9118 
9119 static int dev_xdp_attach_link(struct net_device *dev,
9120 			       struct netlink_ext_ack *extack,
9121 			       struct bpf_xdp_link *link)
9122 {
9123 	return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags);
9124 }
9125 
9126 static int dev_xdp_detach_link(struct net_device *dev,
9127 			       struct netlink_ext_ack *extack,
9128 			       struct bpf_xdp_link *link)
9129 {
9130 	enum bpf_xdp_mode mode;
9131 	bpf_op_t bpf_op;
9132 
9133 	ASSERT_RTNL();
9134 
9135 	mode = dev_xdp_mode(dev, link->flags);
9136 	if (dev_xdp_link(dev, mode) != link)
9137 		return -EINVAL;
9138 
9139 	bpf_op = dev_xdp_bpf_op(dev, mode);
9140 	WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9141 	dev_xdp_set_link(dev, mode, NULL);
9142 	return 0;
9143 }
9144 
9145 static void bpf_xdp_link_release(struct bpf_link *link)
9146 {
9147 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9148 
9149 	rtnl_lock();
9150 
9151 	/* if racing with net_device's tear down, xdp_link->dev might be
9152 	 * already NULL, in which case link was already auto-detached
9153 	 */
9154 	if (xdp_link->dev) {
9155 		WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
9156 		xdp_link->dev = NULL;
9157 	}
9158 
9159 	rtnl_unlock();
9160 }
9161 
9162 static int bpf_xdp_link_detach(struct bpf_link *link)
9163 {
9164 	bpf_xdp_link_release(link);
9165 	return 0;
9166 }
9167 
9168 static void bpf_xdp_link_dealloc(struct bpf_link *link)
9169 {
9170 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9171 
9172 	kfree(xdp_link);
9173 }
9174 
9175 static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link,
9176 				     struct seq_file *seq)
9177 {
9178 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9179 	u32 ifindex = 0;
9180 
9181 	rtnl_lock();
9182 	if (xdp_link->dev)
9183 		ifindex = xdp_link->dev->ifindex;
9184 	rtnl_unlock();
9185 
9186 	seq_printf(seq, "ifindex:\t%u\n", ifindex);
9187 }
9188 
9189 static int bpf_xdp_link_fill_link_info(const struct bpf_link *link,
9190 				       struct bpf_link_info *info)
9191 {
9192 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9193 	u32 ifindex = 0;
9194 
9195 	rtnl_lock();
9196 	if (xdp_link->dev)
9197 		ifindex = xdp_link->dev->ifindex;
9198 	rtnl_unlock();
9199 
9200 	info->xdp.ifindex = ifindex;
9201 	return 0;
9202 }
9203 
9204 static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
9205 			       struct bpf_prog *old_prog)
9206 {
9207 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9208 	enum bpf_xdp_mode mode;
9209 	bpf_op_t bpf_op;
9210 	int err = 0;
9211 
9212 	rtnl_lock();
9213 
9214 	/* link might have been auto-released already, so fail */
9215 	if (!xdp_link->dev) {
9216 		err = -ENOLINK;
9217 		goto out_unlock;
9218 	}
9219 
9220 	if (old_prog && link->prog != old_prog) {
9221 		err = -EPERM;
9222 		goto out_unlock;
9223 	}
9224 	old_prog = link->prog;
9225 	if (old_prog == new_prog) {
9226 		/* no-op, don't disturb drivers */
9227 		bpf_prog_put(new_prog);
9228 		goto out_unlock;
9229 	}
9230 
9231 	mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags);
9232 	bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode);
9233 	err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL,
9234 			      xdp_link->flags, new_prog);
9235 	if (err)
9236 		goto out_unlock;
9237 
9238 	old_prog = xchg(&link->prog, new_prog);
9239 	bpf_prog_put(old_prog);
9240 
9241 out_unlock:
9242 	rtnl_unlock();
9243 	return err;
9244 }
9245 
9246 static const struct bpf_link_ops bpf_xdp_link_lops = {
9247 	.release = bpf_xdp_link_release,
9248 	.dealloc = bpf_xdp_link_dealloc,
9249 	.detach = bpf_xdp_link_detach,
9250 	.show_fdinfo = bpf_xdp_link_show_fdinfo,
9251 	.fill_link_info = bpf_xdp_link_fill_link_info,
9252 	.update_prog = bpf_xdp_link_update,
9253 };
9254 
9255 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
9256 {
9257 	struct net *net = current->nsproxy->net_ns;
9258 	struct bpf_link_primer link_primer;
9259 	struct bpf_xdp_link *link;
9260 	struct net_device *dev;
9261 	int err, fd;
9262 
9263 	dev = dev_get_by_index(net, attr->link_create.target_ifindex);
9264 	if (!dev)
9265 		return -EINVAL;
9266 
9267 	link = kzalloc(sizeof(*link), GFP_USER);
9268 	if (!link) {
9269 		err = -ENOMEM;
9270 		goto out_put_dev;
9271 	}
9272 
9273 	bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog);
9274 	link->dev = dev;
9275 	link->flags = attr->link_create.flags;
9276 
9277 	err = bpf_link_prime(&link->link, &link_primer);
9278 	if (err) {
9279 		kfree(link);
9280 		goto out_put_dev;
9281 	}
9282 
9283 	rtnl_lock();
9284 	err = dev_xdp_attach_link(dev, NULL, link);
9285 	rtnl_unlock();
9286 
9287 	if (err) {
9288 		bpf_link_cleanup(&link_primer);
9289 		goto out_put_dev;
9290 	}
9291 
9292 	fd = bpf_link_settle(&link_primer);
9293 	/* link itself doesn't hold dev's refcnt to not complicate shutdown */
9294 	dev_put(dev);
9295 	return fd;
9296 
9297 out_put_dev:
9298 	dev_put(dev);
9299 	return err;
9300 }
9301 
9302 /**
9303  *	dev_change_xdp_fd - set or clear a bpf program for a device rx path
9304  *	@dev: device
9305  *	@extack: netlink extended ack
9306  *	@fd: new program fd or negative value to clear
9307  *	@expected_fd: old program fd that userspace expects to replace or clear
9308  *	@flags: xdp-related flags
9309  *
9310  *	Set or clear a bpf program for a device
9311  */
9312 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
9313 		      int fd, int expected_fd, u32 flags)
9314 {
9315 	enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags);
9316 	struct bpf_prog *new_prog = NULL, *old_prog = NULL;
9317 	int err;
9318 
9319 	ASSERT_RTNL();
9320 
9321 	if (fd >= 0) {
9322 		new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
9323 						 mode != XDP_MODE_SKB);
9324 		if (IS_ERR(new_prog))
9325 			return PTR_ERR(new_prog);
9326 	}
9327 
9328 	if (expected_fd >= 0) {
9329 		old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP,
9330 						 mode != XDP_MODE_SKB);
9331 		if (IS_ERR(old_prog)) {
9332 			err = PTR_ERR(old_prog);
9333 			old_prog = NULL;
9334 			goto err_out;
9335 		}
9336 	}
9337 
9338 	err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
9339 
9340 err_out:
9341 	if (err && new_prog)
9342 		bpf_prog_put(new_prog);
9343 	if (old_prog)
9344 		bpf_prog_put(old_prog);
9345 	return err;
9346 }
9347 
9348 /**
9349  *	dev_new_index	-	allocate an ifindex
9350  *	@net: the applicable net namespace
9351  *
9352  *	Returns a suitable unique value for a new device interface
9353  *	number.  The caller must hold the rtnl semaphore or the
9354  *	dev_base_lock to be sure it remains unique.
9355  */
9356 static int dev_new_index(struct net *net)
9357 {
9358 	int ifindex = net->ifindex;
9359 
9360 	for (;;) {
9361 		if (++ifindex <= 0)
9362 			ifindex = 1;
9363 		if (!__dev_get_by_index(net, ifindex))
9364 			return net->ifindex = ifindex;
9365 	}
9366 }
9367 
9368 /* Delayed registration/unregisteration */
9369 static LIST_HEAD(net_todo_list);
9370 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
9371 
9372 static void net_set_todo(struct net_device *dev)
9373 {
9374 	list_add_tail(&dev->todo_list, &net_todo_list);
9375 	dev_net(dev)->dev_unreg_count++;
9376 }
9377 
9378 static void rollback_registered_many(struct list_head *head)
9379 {
9380 	struct net_device *dev, *tmp;
9381 	LIST_HEAD(close_head);
9382 
9383 	BUG_ON(dev_boot_phase);
9384 	ASSERT_RTNL();
9385 
9386 	list_for_each_entry_safe(dev, tmp, head, unreg_list) {
9387 		/* Some devices call without registering
9388 		 * for initialization unwind. Remove those
9389 		 * devices and proceed with the remaining.
9390 		 */
9391 		if (dev->reg_state == NETREG_UNINITIALIZED) {
9392 			pr_debug("unregister_netdevice: device %s/%p never was registered\n",
9393 				 dev->name, dev);
9394 
9395 			WARN_ON(1);
9396 			list_del(&dev->unreg_list);
9397 			continue;
9398 		}
9399 		dev->dismantle = true;
9400 		BUG_ON(dev->reg_state != NETREG_REGISTERED);
9401 	}
9402 
9403 	/* If device is running, close it first. */
9404 	list_for_each_entry(dev, head, unreg_list)
9405 		list_add_tail(&dev->close_list, &close_head);
9406 	dev_close_many(&close_head, true);
9407 
9408 	list_for_each_entry(dev, head, unreg_list) {
9409 		/* And unlink it from device chain. */
9410 		unlist_netdevice(dev);
9411 
9412 		dev->reg_state = NETREG_UNREGISTERING;
9413 	}
9414 	flush_all_backlogs();
9415 
9416 	synchronize_net();
9417 
9418 	list_for_each_entry(dev, head, unreg_list) {
9419 		struct sk_buff *skb = NULL;
9420 
9421 		/* Shutdown queueing discipline. */
9422 		dev_shutdown(dev);
9423 
9424 		dev_xdp_uninstall(dev);
9425 
9426 		/* Notify protocols, that we are about to destroy
9427 		 * this device. They should clean all the things.
9428 		 */
9429 		call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
9430 
9431 		if (!dev->rtnl_link_ops ||
9432 		    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
9433 			skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
9434 						     GFP_KERNEL, NULL, 0);
9435 
9436 		/*
9437 		 *	Flush the unicast and multicast chains
9438 		 */
9439 		dev_uc_flush(dev);
9440 		dev_mc_flush(dev);
9441 
9442 		netdev_name_node_alt_flush(dev);
9443 		netdev_name_node_free(dev->name_node);
9444 
9445 		if (dev->netdev_ops->ndo_uninit)
9446 			dev->netdev_ops->ndo_uninit(dev);
9447 
9448 		if (skb)
9449 			rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
9450 
9451 		/* Notifier chain MUST detach us all upper devices. */
9452 		WARN_ON(netdev_has_any_upper_dev(dev));
9453 		WARN_ON(netdev_has_any_lower_dev(dev));
9454 
9455 		/* Remove entries from kobject tree */
9456 		netdev_unregister_kobject(dev);
9457 #ifdef CONFIG_XPS
9458 		/* Remove XPS queueing entries */
9459 		netif_reset_xps_queues_gt(dev, 0);
9460 #endif
9461 	}
9462 
9463 	synchronize_net();
9464 
9465 	list_for_each_entry(dev, head, unreg_list)
9466 		dev_put(dev);
9467 }
9468 
9469 static void rollback_registered(struct net_device *dev)
9470 {
9471 	LIST_HEAD(single);
9472 
9473 	list_add(&dev->unreg_list, &single);
9474 	rollback_registered_many(&single);
9475 	list_del(&single);
9476 }
9477 
9478 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
9479 	struct net_device *upper, netdev_features_t features)
9480 {
9481 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9482 	netdev_features_t feature;
9483 	int feature_bit;
9484 
9485 	for_each_netdev_feature(upper_disables, feature_bit) {
9486 		feature = __NETIF_F_BIT(feature_bit);
9487 		if (!(upper->wanted_features & feature)
9488 		    && (features & feature)) {
9489 			netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
9490 				   &feature, upper->name);
9491 			features &= ~feature;
9492 		}
9493 	}
9494 
9495 	return features;
9496 }
9497 
9498 static void netdev_sync_lower_features(struct net_device *upper,
9499 	struct net_device *lower, netdev_features_t features)
9500 {
9501 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9502 	netdev_features_t feature;
9503 	int feature_bit;
9504 
9505 	for_each_netdev_feature(upper_disables, feature_bit) {
9506 		feature = __NETIF_F_BIT(feature_bit);
9507 		if (!(features & feature) && (lower->features & feature)) {
9508 			netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
9509 				   &feature, lower->name);
9510 			lower->wanted_features &= ~feature;
9511 			__netdev_update_features(lower);
9512 
9513 			if (unlikely(lower->features & feature))
9514 				netdev_WARN(upper, "failed to disable %pNF on %s!\n",
9515 					    &feature, lower->name);
9516 			else
9517 				netdev_features_change(lower);
9518 		}
9519 	}
9520 }
9521 
9522 static netdev_features_t netdev_fix_features(struct net_device *dev,
9523 	netdev_features_t features)
9524 {
9525 	/* Fix illegal checksum combinations */
9526 	if ((features & NETIF_F_HW_CSUM) &&
9527 	    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
9528 		netdev_warn(dev, "mixed HW and IP checksum settings.\n");
9529 		features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
9530 	}
9531 
9532 	/* TSO requires that SG is present as well. */
9533 	if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
9534 		netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
9535 		features &= ~NETIF_F_ALL_TSO;
9536 	}
9537 
9538 	if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
9539 					!(features & NETIF_F_IP_CSUM)) {
9540 		netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
9541 		features &= ~NETIF_F_TSO;
9542 		features &= ~NETIF_F_TSO_ECN;
9543 	}
9544 
9545 	if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
9546 					 !(features & NETIF_F_IPV6_CSUM)) {
9547 		netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
9548 		features &= ~NETIF_F_TSO6;
9549 	}
9550 
9551 	/* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
9552 	if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
9553 		features &= ~NETIF_F_TSO_MANGLEID;
9554 
9555 	/* TSO ECN requires that TSO is present as well. */
9556 	if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
9557 		features &= ~NETIF_F_TSO_ECN;
9558 
9559 	/* Software GSO depends on SG. */
9560 	if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
9561 		netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
9562 		features &= ~NETIF_F_GSO;
9563 	}
9564 
9565 	/* GSO partial features require GSO partial be set */
9566 	if ((features & dev->gso_partial_features) &&
9567 	    !(features & NETIF_F_GSO_PARTIAL)) {
9568 		netdev_dbg(dev,
9569 			   "Dropping partially supported GSO features since no GSO partial.\n");
9570 		features &= ~dev->gso_partial_features;
9571 	}
9572 
9573 	if (!(features & NETIF_F_RXCSUM)) {
9574 		/* NETIF_F_GRO_HW implies doing RXCSUM since every packet
9575 		 * successfully merged by hardware must also have the
9576 		 * checksum verified by hardware.  If the user does not
9577 		 * want to enable RXCSUM, logically, we should disable GRO_HW.
9578 		 */
9579 		if (features & NETIF_F_GRO_HW) {
9580 			netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
9581 			features &= ~NETIF_F_GRO_HW;
9582 		}
9583 	}
9584 
9585 	/* LRO/HW-GRO features cannot be combined with RX-FCS */
9586 	if (features & NETIF_F_RXFCS) {
9587 		if (features & NETIF_F_LRO) {
9588 			netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
9589 			features &= ~NETIF_F_LRO;
9590 		}
9591 
9592 		if (features & NETIF_F_GRO_HW) {
9593 			netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
9594 			features &= ~NETIF_F_GRO_HW;
9595 		}
9596 	}
9597 
9598 	return features;
9599 }
9600 
9601 int __netdev_update_features(struct net_device *dev)
9602 {
9603 	struct net_device *upper, *lower;
9604 	netdev_features_t features;
9605 	struct list_head *iter;
9606 	int err = -1;
9607 
9608 	ASSERT_RTNL();
9609 
9610 	features = netdev_get_wanted_features(dev);
9611 
9612 	if (dev->netdev_ops->ndo_fix_features)
9613 		features = dev->netdev_ops->ndo_fix_features(dev, features);
9614 
9615 	/* driver might be less strict about feature dependencies */
9616 	features = netdev_fix_features(dev, features);
9617 
9618 	/* some features can't be enabled if they're off on an upper device */
9619 	netdev_for_each_upper_dev_rcu(dev, upper, iter)
9620 		features = netdev_sync_upper_features(dev, upper, features);
9621 
9622 	if (dev->features == features)
9623 		goto sync_lower;
9624 
9625 	netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
9626 		&dev->features, &features);
9627 
9628 	if (dev->netdev_ops->ndo_set_features)
9629 		err = dev->netdev_ops->ndo_set_features(dev, features);
9630 	else
9631 		err = 0;
9632 
9633 	if (unlikely(err < 0)) {
9634 		netdev_err(dev,
9635 			"set_features() failed (%d); wanted %pNF, left %pNF\n",
9636 			err, &features, &dev->features);
9637 		/* return non-0 since some features might have changed and
9638 		 * it's better to fire a spurious notification than miss it
9639 		 */
9640 		return -1;
9641 	}
9642 
9643 sync_lower:
9644 	/* some features must be disabled on lower devices when disabled
9645 	 * on an upper device (think: bonding master or bridge)
9646 	 */
9647 	netdev_for_each_lower_dev(dev, lower, iter)
9648 		netdev_sync_lower_features(dev, lower, features);
9649 
9650 	if (!err) {
9651 		netdev_features_t diff = features ^ dev->features;
9652 
9653 		if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
9654 			/* udp_tunnel_{get,drop}_rx_info both need
9655 			 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
9656 			 * device, or they won't do anything.
9657 			 * Thus we need to update dev->features
9658 			 * *before* calling udp_tunnel_get_rx_info,
9659 			 * but *after* calling udp_tunnel_drop_rx_info.
9660 			 */
9661 			if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
9662 				dev->features = features;
9663 				udp_tunnel_get_rx_info(dev);
9664 			} else {
9665 				udp_tunnel_drop_rx_info(dev);
9666 			}
9667 		}
9668 
9669 		if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
9670 			if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
9671 				dev->features = features;
9672 				err |= vlan_get_rx_ctag_filter_info(dev);
9673 			} else {
9674 				vlan_drop_rx_ctag_filter_info(dev);
9675 			}
9676 		}
9677 
9678 		if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
9679 			if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
9680 				dev->features = features;
9681 				err |= vlan_get_rx_stag_filter_info(dev);
9682 			} else {
9683 				vlan_drop_rx_stag_filter_info(dev);
9684 			}
9685 		}
9686 
9687 		dev->features = features;
9688 	}
9689 
9690 	return err < 0 ? 0 : 1;
9691 }
9692 
9693 /**
9694  *	netdev_update_features - recalculate device features
9695  *	@dev: the device to check
9696  *
9697  *	Recalculate dev->features set and send notifications if it
9698  *	has changed. Should be called after driver or hardware dependent
9699  *	conditions might have changed that influence the features.
9700  */
9701 void netdev_update_features(struct net_device *dev)
9702 {
9703 	if (__netdev_update_features(dev))
9704 		netdev_features_change(dev);
9705 }
9706 EXPORT_SYMBOL(netdev_update_features);
9707 
9708 /**
9709  *	netdev_change_features - recalculate device features
9710  *	@dev: the device to check
9711  *
9712  *	Recalculate dev->features set and send notifications even
9713  *	if they have not changed. Should be called instead of
9714  *	netdev_update_features() if also dev->vlan_features might
9715  *	have changed to allow the changes to be propagated to stacked
9716  *	VLAN devices.
9717  */
9718 void netdev_change_features(struct net_device *dev)
9719 {
9720 	__netdev_update_features(dev);
9721 	netdev_features_change(dev);
9722 }
9723 EXPORT_SYMBOL(netdev_change_features);
9724 
9725 /**
9726  *	netif_stacked_transfer_operstate -	transfer operstate
9727  *	@rootdev: the root or lower level device to transfer state from
9728  *	@dev: the device to transfer operstate to
9729  *
9730  *	Transfer operational state from root to device. This is normally
9731  *	called when a stacking relationship exists between the root
9732  *	device and the device(a leaf device).
9733  */
9734 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
9735 					struct net_device *dev)
9736 {
9737 	if (rootdev->operstate == IF_OPER_DORMANT)
9738 		netif_dormant_on(dev);
9739 	else
9740 		netif_dormant_off(dev);
9741 
9742 	if (rootdev->operstate == IF_OPER_TESTING)
9743 		netif_testing_on(dev);
9744 	else
9745 		netif_testing_off(dev);
9746 
9747 	if (netif_carrier_ok(rootdev))
9748 		netif_carrier_on(dev);
9749 	else
9750 		netif_carrier_off(dev);
9751 }
9752 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
9753 
9754 static int netif_alloc_rx_queues(struct net_device *dev)
9755 {
9756 	unsigned int i, count = dev->num_rx_queues;
9757 	struct netdev_rx_queue *rx;
9758 	size_t sz = count * sizeof(*rx);
9759 	int err = 0;
9760 
9761 	BUG_ON(count < 1);
9762 
9763 	rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
9764 	if (!rx)
9765 		return -ENOMEM;
9766 
9767 	dev->_rx = rx;
9768 
9769 	for (i = 0; i < count; i++) {
9770 		rx[i].dev = dev;
9771 
9772 		/* XDP RX-queue setup */
9773 		err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i);
9774 		if (err < 0)
9775 			goto err_rxq_info;
9776 	}
9777 	return 0;
9778 
9779 err_rxq_info:
9780 	/* Rollback successful reg's and free other resources */
9781 	while (i--)
9782 		xdp_rxq_info_unreg(&rx[i].xdp_rxq);
9783 	kvfree(dev->_rx);
9784 	dev->_rx = NULL;
9785 	return err;
9786 }
9787 
9788 static void netif_free_rx_queues(struct net_device *dev)
9789 {
9790 	unsigned int i, count = dev->num_rx_queues;
9791 
9792 	/* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
9793 	if (!dev->_rx)
9794 		return;
9795 
9796 	for (i = 0; i < count; i++)
9797 		xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
9798 
9799 	kvfree(dev->_rx);
9800 }
9801 
9802 static void netdev_init_one_queue(struct net_device *dev,
9803 				  struct netdev_queue *queue, void *_unused)
9804 {
9805 	/* Initialize queue lock */
9806 	spin_lock_init(&queue->_xmit_lock);
9807 	netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
9808 	queue->xmit_lock_owner = -1;
9809 	netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
9810 	queue->dev = dev;
9811 #ifdef CONFIG_BQL
9812 	dql_init(&queue->dql, HZ);
9813 #endif
9814 }
9815 
9816 static void netif_free_tx_queues(struct net_device *dev)
9817 {
9818 	kvfree(dev->_tx);
9819 }
9820 
9821 static int netif_alloc_netdev_queues(struct net_device *dev)
9822 {
9823 	unsigned int count = dev->num_tx_queues;
9824 	struct netdev_queue *tx;
9825 	size_t sz = count * sizeof(*tx);
9826 
9827 	if (count < 1 || count > 0xffff)
9828 		return -EINVAL;
9829 
9830 	tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
9831 	if (!tx)
9832 		return -ENOMEM;
9833 
9834 	dev->_tx = tx;
9835 
9836 	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
9837 	spin_lock_init(&dev->tx_global_lock);
9838 
9839 	return 0;
9840 }
9841 
9842 void netif_tx_stop_all_queues(struct net_device *dev)
9843 {
9844 	unsigned int i;
9845 
9846 	for (i = 0; i < dev->num_tx_queues; i++) {
9847 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
9848 
9849 		netif_tx_stop_queue(txq);
9850 	}
9851 }
9852 EXPORT_SYMBOL(netif_tx_stop_all_queues);
9853 
9854 /**
9855  *	register_netdevice	- register a network device
9856  *	@dev: device to register
9857  *
9858  *	Take a completed network device structure and add it to the kernel
9859  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
9860  *	chain. 0 is returned on success. A negative errno code is returned
9861  *	on a failure to set up the device, or if the name is a duplicate.
9862  *
9863  *	Callers must hold the rtnl semaphore. You may want
9864  *	register_netdev() instead of this.
9865  *
9866  *	BUGS:
9867  *	The locking appears insufficient to guarantee two parallel registers
9868  *	will not get the same name.
9869  */
9870 
9871 int register_netdevice(struct net_device *dev)
9872 {
9873 	int ret;
9874 	struct net *net = dev_net(dev);
9875 
9876 	BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
9877 		     NETDEV_FEATURE_COUNT);
9878 	BUG_ON(dev_boot_phase);
9879 	ASSERT_RTNL();
9880 
9881 	might_sleep();
9882 
9883 	/* When net_device's are persistent, this will be fatal. */
9884 	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
9885 	BUG_ON(!net);
9886 
9887 	ret = ethtool_check_ops(dev->ethtool_ops);
9888 	if (ret)
9889 		return ret;
9890 
9891 	spin_lock_init(&dev->addr_list_lock);
9892 	netdev_set_addr_lockdep_class(dev);
9893 
9894 	ret = dev_get_valid_name(net, dev, dev->name);
9895 	if (ret < 0)
9896 		goto out;
9897 
9898 	ret = -ENOMEM;
9899 	dev->name_node = netdev_name_node_head_alloc(dev);
9900 	if (!dev->name_node)
9901 		goto out;
9902 
9903 	/* Init, if this function is available */
9904 	if (dev->netdev_ops->ndo_init) {
9905 		ret = dev->netdev_ops->ndo_init(dev);
9906 		if (ret) {
9907 			if (ret > 0)
9908 				ret = -EIO;
9909 			goto err_free_name;
9910 		}
9911 	}
9912 
9913 	if (((dev->hw_features | dev->features) &
9914 	     NETIF_F_HW_VLAN_CTAG_FILTER) &&
9915 	    (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
9916 	     !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
9917 		netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
9918 		ret = -EINVAL;
9919 		goto err_uninit;
9920 	}
9921 
9922 	ret = -EBUSY;
9923 	if (!dev->ifindex)
9924 		dev->ifindex = dev_new_index(net);
9925 	else if (__dev_get_by_index(net, dev->ifindex))
9926 		goto err_uninit;
9927 
9928 	/* Transfer changeable features to wanted_features and enable
9929 	 * software offloads (GSO and GRO).
9930 	 */
9931 	dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
9932 	dev->features |= NETIF_F_SOFT_FEATURES;
9933 
9934 	if (dev->netdev_ops->ndo_udp_tunnel_add) {
9935 		dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
9936 		dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
9937 	}
9938 
9939 	dev->wanted_features = dev->features & dev->hw_features;
9940 
9941 	if (!(dev->flags & IFF_LOOPBACK))
9942 		dev->hw_features |= NETIF_F_NOCACHE_COPY;
9943 
9944 	/* If IPv4 TCP segmentation offload is supported we should also
9945 	 * allow the device to enable segmenting the frame with the option
9946 	 * of ignoring a static IP ID value.  This doesn't enable the
9947 	 * feature itself but allows the user to enable it later.
9948 	 */
9949 	if (dev->hw_features & NETIF_F_TSO)
9950 		dev->hw_features |= NETIF_F_TSO_MANGLEID;
9951 	if (dev->vlan_features & NETIF_F_TSO)
9952 		dev->vlan_features |= NETIF_F_TSO_MANGLEID;
9953 	if (dev->mpls_features & NETIF_F_TSO)
9954 		dev->mpls_features |= NETIF_F_TSO_MANGLEID;
9955 	if (dev->hw_enc_features & NETIF_F_TSO)
9956 		dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
9957 
9958 	/* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
9959 	 */
9960 	dev->vlan_features |= NETIF_F_HIGHDMA;
9961 
9962 	/* Make NETIF_F_SG inheritable to tunnel devices.
9963 	 */
9964 	dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
9965 
9966 	/* Make NETIF_F_SG inheritable to MPLS.
9967 	 */
9968 	dev->mpls_features |= NETIF_F_SG;
9969 
9970 	ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
9971 	ret = notifier_to_errno(ret);
9972 	if (ret)
9973 		goto err_uninit;
9974 
9975 	ret = netdev_register_kobject(dev);
9976 	if (ret) {
9977 		dev->reg_state = NETREG_UNREGISTERED;
9978 		goto err_uninit;
9979 	}
9980 	dev->reg_state = NETREG_REGISTERED;
9981 
9982 	__netdev_update_features(dev);
9983 
9984 	/*
9985 	 *	Default initial state at registry is that the
9986 	 *	device is present.
9987 	 */
9988 
9989 	set_bit(__LINK_STATE_PRESENT, &dev->state);
9990 
9991 	linkwatch_init_dev(dev);
9992 
9993 	dev_init_scheduler(dev);
9994 	dev_hold(dev);
9995 	list_netdevice(dev);
9996 	add_device_randomness(dev->dev_addr, dev->addr_len);
9997 
9998 	/* If the device has permanent device address, driver should
9999 	 * set dev_addr and also addr_assign_type should be set to
10000 	 * NET_ADDR_PERM (default value).
10001 	 */
10002 	if (dev->addr_assign_type == NET_ADDR_PERM)
10003 		memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
10004 
10005 	/* Notify protocols, that a new device appeared. */
10006 	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
10007 	ret = notifier_to_errno(ret);
10008 	if (ret) {
10009 		rollback_registered(dev);
10010 		rcu_barrier();
10011 
10012 		dev->reg_state = NETREG_UNREGISTERED;
10013 		/* We should put the kobject that hold in
10014 		 * netdev_unregister_kobject(), otherwise
10015 		 * the net device cannot be freed when
10016 		 * driver calls free_netdev(), because the
10017 		 * kobject is being hold.
10018 		 */
10019 		kobject_put(&dev->dev.kobj);
10020 	}
10021 	/*
10022 	 *	Prevent userspace races by waiting until the network
10023 	 *	device is fully setup before sending notifications.
10024 	 */
10025 	if (!dev->rtnl_link_ops ||
10026 	    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10027 		rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
10028 
10029 out:
10030 	return ret;
10031 
10032 err_uninit:
10033 	if (dev->netdev_ops->ndo_uninit)
10034 		dev->netdev_ops->ndo_uninit(dev);
10035 	if (dev->priv_destructor)
10036 		dev->priv_destructor(dev);
10037 err_free_name:
10038 	netdev_name_node_free(dev->name_node);
10039 	goto out;
10040 }
10041 EXPORT_SYMBOL(register_netdevice);
10042 
10043 /**
10044  *	init_dummy_netdev	- init a dummy network device for NAPI
10045  *	@dev: device to init
10046  *
10047  *	This takes a network device structure and initialize the minimum
10048  *	amount of fields so it can be used to schedule NAPI polls without
10049  *	registering a full blown interface. This is to be used by drivers
10050  *	that need to tie several hardware interfaces to a single NAPI
10051  *	poll scheduler due to HW limitations.
10052  */
10053 int init_dummy_netdev(struct net_device *dev)
10054 {
10055 	/* Clear everything. Note we don't initialize spinlocks
10056 	 * are they aren't supposed to be taken by any of the
10057 	 * NAPI code and this dummy netdev is supposed to be
10058 	 * only ever used for NAPI polls
10059 	 */
10060 	memset(dev, 0, sizeof(struct net_device));
10061 
10062 	/* make sure we BUG if trying to hit standard
10063 	 * register/unregister code path
10064 	 */
10065 	dev->reg_state = NETREG_DUMMY;
10066 
10067 	/* NAPI wants this */
10068 	INIT_LIST_HEAD(&dev->napi_list);
10069 
10070 	/* a dummy interface is started by default */
10071 	set_bit(__LINK_STATE_PRESENT, &dev->state);
10072 	set_bit(__LINK_STATE_START, &dev->state);
10073 
10074 	/* napi_busy_loop stats accounting wants this */
10075 	dev_net_set(dev, &init_net);
10076 
10077 	/* Note : We dont allocate pcpu_refcnt for dummy devices,
10078 	 * because users of this 'device' dont need to change
10079 	 * its refcount.
10080 	 */
10081 
10082 	return 0;
10083 }
10084 EXPORT_SYMBOL_GPL(init_dummy_netdev);
10085 
10086 
10087 /**
10088  *	register_netdev	- register a network device
10089  *	@dev: device to register
10090  *
10091  *	Take a completed network device structure and add it to the kernel
10092  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10093  *	chain. 0 is returned on success. A negative errno code is returned
10094  *	on a failure to set up the device, or if the name is a duplicate.
10095  *
10096  *	This is a wrapper around register_netdevice that takes the rtnl semaphore
10097  *	and expands the device name if you passed a format string to
10098  *	alloc_netdev.
10099  */
10100 int register_netdev(struct net_device *dev)
10101 {
10102 	int err;
10103 
10104 	if (rtnl_lock_killable())
10105 		return -EINTR;
10106 	err = register_netdevice(dev);
10107 	rtnl_unlock();
10108 	return err;
10109 }
10110 EXPORT_SYMBOL(register_netdev);
10111 
10112 int netdev_refcnt_read(const struct net_device *dev)
10113 {
10114 	int i, refcnt = 0;
10115 
10116 	for_each_possible_cpu(i)
10117 		refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
10118 	return refcnt;
10119 }
10120 EXPORT_SYMBOL(netdev_refcnt_read);
10121 
10122 #define WAIT_REFS_MIN_MSECS 1
10123 #define WAIT_REFS_MAX_MSECS 250
10124 /**
10125  * netdev_wait_allrefs - wait until all references are gone.
10126  * @dev: target net_device
10127  *
10128  * This is called when unregistering network devices.
10129  *
10130  * Any protocol or device that holds a reference should register
10131  * for netdevice notification, and cleanup and put back the
10132  * reference if they receive an UNREGISTER event.
10133  * We can get stuck here if buggy protocols don't correctly
10134  * call dev_put.
10135  */
10136 static void netdev_wait_allrefs(struct net_device *dev)
10137 {
10138 	unsigned long rebroadcast_time, warning_time;
10139 	int wait = 0, refcnt;
10140 
10141 	linkwatch_forget_dev(dev);
10142 
10143 	rebroadcast_time = warning_time = jiffies;
10144 	refcnt = netdev_refcnt_read(dev);
10145 
10146 	while (refcnt != 0) {
10147 		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
10148 			rtnl_lock();
10149 
10150 			/* Rebroadcast unregister notification */
10151 			call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10152 
10153 			__rtnl_unlock();
10154 			rcu_barrier();
10155 			rtnl_lock();
10156 
10157 			if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
10158 				     &dev->state)) {
10159 				/* We must not have linkwatch events
10160 				 * pending on unregister. If this
10161 				 * happens, we simply run the queue
10162 				 * unscheduled, resulting in a noop
10163 				 * for this device.
10164 				 */
10165 				linkwatch_run_queue();
10166 			}
10167 
10168 			__rtnl_unlock();
10169 
10170 			rebroadcast_time = jiffies;
10171 		}
10172 
10173 		if (!wait) {
10174 			rcu_barrier();
10175 			wait = WAIT_REFS_MIN_MSECS;
10176 		} else {
10177 			msleep(wait);
10178 			wait = min(wait << 1, WAIT_REFS_MAX_MSECS);
10179 		}
10180 
10181 		refcnt = netdev_refcnt_read(dev);
10182 
10183 		if (refcnt && time_after(jiffies, warning_time + 10 * HZ)) {
10184 			pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
10185 				 dev->name, refcnt);
10186 			warning_time = jiffies;
10187 		}
10188 	}
10189 }
10190 
10191 /* The sequence is:
10192  *
10193  *	rtnl_lock();
10194  *	...
10195  *	register_netdevice(x1);
10196  *	register_netdevice(x2);
10197  *	...
10198  *	unregister_netdevice(y1);
10199  *	unregister_netdevice(y2);
10200  *      ...
10201  *	rtnl_unlock();
10202  *	free_netdev(y1);
10203  *	free_netdev(y2);
10204  *
10205  * We are invoked by rtnl_unlock().
10206  * This allows us to deal with problems:
10207  * 1) We can delete sysfs objects which invoke hotplug
10208  *    without deadlocking with linkwatch via keventd.
10209  * 2) Since we run with the RTNL semaphore not held, we can sleep
10210  *    safely in order to wait for the netdev refcnt to drop to zero.
10211  *
10212  * We must not return until all unregister events added during
10213  * the interval the lock was held have been completed.
10214  */
10215 void netdev_run_todo(void)
10216 {
10217 	struct list_head list;
10218 #ifdef CONFIG_LOCKDEP
10219 	struct list_head unlink_list;
10220 
10221 	list_replace_init(&net_unlink_list, &unlink_list);
10222 
10223 	while (!list_empty(&unlink_list)) {
10224 		struct net_device *dev = list_first_entry(&unlink_list,
10225 							  struct net_device,
10226 							  unlink_list);
10227 		list_del_init(&dev->unlink_list);
10228 		dev->nested_level = dev->lower_level - 1;
10229 	}
10230 #endif
10231 
10232 	/* Snapshot list, allow later requests */
10233 	list_replace_init(&net_todo_list, &list);
10234 
10235 	__rtnl_unlock();
10236 
10237 
10238 	/* Wait for rcu callbacks to finish before next phase */
10239 	if (!list_empty(&list))
10240 		rcu_barrier();
10241 
10242 	while (!list_empty(&list)) {
10243 		struct net_device *dev
10244 			= list_first_entry(&list, struct net_device, todo_list);
10245 		list_del(&dev->todo_list);
10246 
10247 		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
10248 			pr_err("network todo '%s' but state %d\n",
10249 			       dev->name, dev->reg_state);
10250 			dump_stack();
10251 			continue;
10252 		}
10253 
10254 		dev->reg_state = NETREG_UNREGISTERED;
10255 
10256 		netdev_wait_allrefs(dev);
10257 
10258 		/* paranoia */
10259 		BUG_ON(netdev_refcnt_read(dev));
10260 		BUG_ON(!list_empty(&dev->ptype_all));
10261 		BUG_ON(!list_empty(&dev->ptype_specific));
10262 		WARN_ON(rcu_access_pointer(dev->ip_ptr));
10263 		WARN_ON(rcu_access_pointer(dev->ip6_ptr));
10264 #if IS_ENABLED(CONFIG_DECNET)
10265 		WARN_ON(dev->dn_ptr);
10266 #endif
10267 		if (dev->priv_destructor)
10268 			dev->priv_destructor(dev);
10269 		if (dev->needs_free_netdev)
10270 			free_netdev(dev);
10271 
10272 		/* Report a network device has been unregistered */
10273 		rtnl_lock();
10274 		dev_net(dev)->dev_unreg_count--;
10275 		__rtnl_unlock();
10276 		wake_up(&netdev_unregistering_wq);
10277 
10278 		/* Free network device */
10279 		kobject_put(&dev->dev.kobj);
10280 	}
10281 }
10282 
10283 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
10284  * all the same fields in the same order as net_device_stats, with only
10285  * the type differing, but rtnl_link_stats64 may have additional fields
10286  * at the end for newer counters.
10287  */
10288 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
10289 			     const struct net_device_stats *netdev_stats)
10290 {
10291 #if BITS_PER_LONG == 64
10292 	BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
10293 	memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
10294 	/* zero out counters that only exist in rtnl_link_stats64 */
10295 	memset((char *)stats64 + sizeof(*netdev_stats), 0,
10296 	       sizeof(*stats64) - sizeof(*netdev_stats));
10297 #else
10298 	size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
10299 	const unsigned long *src = (const unsigned long *)netdev_stats;
10300 	u64 *dst = (u64 *)stats64;
10301 
10302 	BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
10303 	for (i = 0; i < n; i++)
10304 		dst[i] = src[i];
10305 	/* zero out counters that only exist in rtnl_link_stats64 */
10306 	memset((char *)stats64 + n * sizeof(u64), 0,
10307 	       sizeof(*stats64) - n * sizeof(u64));
10308 #endif
10309 }
10310 EXPORT_SYMBOL(netdev_stats_to_stats64);
10311 
10312 /**
10313  *	dev_get_stats	- get network device statistics
10314  *	@dev: device to get statistics from
10315  *	@storage: place to store stats
10316  *
10317  *	Get network statistics from device. Return @storage.
10318  *	The device driver may provide its own method by setting
10319  *	dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
10320  *	otherwise the internal statistics structure is used.
10321  */
10322 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
10323 					struct rtnl_link_stats64 *storage)
10324 {
10325 	const struct net_device_ops *ops = dev->netdev_ops;
10326 
10327 	if (ops->ndo_get_stats64) {
10328 		memset(storage, 0, sizeof(*storage));
10329 		ops->ndo_get_stats64(dev, storage);
10330 	} else if (ops->ndo_get_stats) {
10331 		netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
10332 	} else {
10333 		netdev_stats_to_stats64(storage, &dev->stats);
10334 	}
10335 	storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
10336 	storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
10337 	storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
10338 	return storage;
10339 }
10340 EXPORT_SYMBOL(dev_get_stats);
10341 
10342 /**
10343  *	dev_fetch_sw_netstats - get per-cpu network device statistics
10344  *	@s: place to store stats
10345  *	@netstats: per-cpu network stats to read from
10346  *
10347  *	Read per-cpu network statistics and populate the related fields in @s.
10348  */
10349 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
10350 			   const struct pcpu_sw_netstats __percpu *netstats)
10351 {
10352 	int cpu;
10353 
10354 	for_each_possible_cpu(cpu) {
10355 		const struct pcpu_sw_netstats *stats;
10356 		struct pcpu_sw_netstats tmp;
10357 		unsigned int start;
10358 
10359 		stats = per_cpu_ptr(netstats, cpu);
10360 		do {
10361 			start = u64_stats_fetch_begin_irq(&stats->syncp);
10362 			tmp.rx_packets = stats->rx_packets;
10363 			tmp.rx_bytes   = stats->rx_bytes;
10364 			tmp.tx_packets = stats->tx_packets;
10365 			tmp.tx_bytes   = stats->tx_bytes;
10366 		} while (u64_stats_fetch_retry_irq(&stats->syncp, start));
10367 
10368 		s->rx_packets += tmp.rx_packets;
10369 		s->rx_bytes   += tmp.rx_bytes;
10370 		s->tx_packets += tmp.tx_packets;
10371 		s->tx_bytes   += tmp.tx_bytes;
10372 	}
10373 }
10374 EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats);
10375 
10376 /**
10377  *	dev_get_tstats64 - ndo_get_stats64 implementation
10378  *	@dev: device to get statistics from
10379  *	@s: place to store stats
10380  *
10381  *	Populate @s from dev->stats and dev->tstats. Can be used as
10382  *	ndo_get_stats64() callback.
10383  */
10384 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s)
10385 {
10386 	netdev_stats_to_stats64(s, &dev->stats);
10387 	dev_fetch_sw_netstats(s, dev->tstats);
10388 }
10389 EXPORT_SYMBOL_GPL(dev_get_tstats64);
10390 
10391 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
10392 {
10393 	struct netdev_queue *queue = dev_ingress_queue(dev);
10394 
10395 #ifdef CONFIG_NET_CLS_ACT
10396 	if (queue)
10397 		return queue;
10398 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
10399 	if (!queue)
10400 		return NULL;
10401 	netdev_init_one_queue(dev, queue, NULL);
10402 	RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
10403 	queue->qdisc_sleeping = &noop_qdisc;
10404 	rcu_assign_pointer(dev->ingress_queue, queue);
10405 #endif
10406 	return queue;
10407 }
10408 
10409 static const struct ethtool_ops default_ethtool_ops;
10410 
10411 void netdev_set_default_ethtool_ops(struct net_device *dev,
10412 				    const struct ethtool_ops *ops)
10413 {
10414 	if (dev->ethtool_ops == &default_ethtool_ops)
10415 		dev->ethtool_ops = ops;
10416 }
10417 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
10418 
10419 void netdev_freemem(struct net_device *dev)
10420 {
10421 	char *addr = (char *)dev - dev->padded;
10422 
10423 	kvfree(addr);
10424 }
10425 
10426 /**
10427  * alloc_netdev_mqs - allocate network device
10428  * @sizeof_priv: size of private data to allocate space for
10429  * @name: device name format string
10430  * @name_assign_type: origin of device name
10431  * @setup: callback to initialize device
10432  * @txqs: the number of TX subqueues to allocate
10433  * @rxqs: the number of RX subqueues to allocate
10434  *
10435  * Allocates a struct net_device with private data area for driver use
10436  * and performs basic initialization.  Also allocates subqueue structs
10437  * for each queue on the device.
10438  */
10439 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
10440 		unsigned char name_assign_type,
10441 		void (*setup)(struct net_device *),
10442 		unsigned int txqs, unsigned int rxqs)
10443 {
10444 	struct net_device *dev;
10445 	unsigned int alloc_size;
10446 	struct net_device *p;
10447 
10448 	BUG_ON(strlen(name) >= sizeof(dev->name));
10449 
10450 	if (txqs < 1) {
10451 		pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
10452 		return NULL;
10453 	}
10454 
10455 	if (rxqs < 1) {
10456 		pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
10457 		return NULL;
10458 	}
10459 
10460 	alloc_size = sizeof(struct net_device);
10461 	if (sizeof_priv) {
10462 		/* ensure 32-byte alignment of private area */
10463 		alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
10464 		alloc_size += sizeof_priv;
10465 	}
10466 	/* ensure 32-byte alignment of whole construct */
10467 	alloc_size += NETDEV_ALIGN - 1;
10468 
10469 	p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
10470 	if (!p)
10471 		return NULL;
10472 
10473 	dev = PTR_ALIGN(p, NETDEV_ALIGN);
10474 	dev->padded = (char *)dev - (char *)p;
10475 
10476 	dev->pcpu_refcnt = alloc_percpu(int);
10477 	if (!dev->pcpu_refcnt)
10478 		goto free_dev;
10479 
10480 	if (dev_addr_init(dev))
10481 		goto free_pcpu;
10482 
10483 	dev_mc_init(dev);
10484 	dev_uc_init(dev);
10485 
10486 	dev_net_set(dev, &init_net);
10487 
10488 	dev->gso_max_size = GSO_MAX_SIZE;
10489 	dev->gso_max_segs = GSO_MAX_SEGS;
10490 	dev->upper_level = 1;
10491 	dev->lower_level = 1;
10492 #ifdef CONFIG_LOCKDEP
10493 	dev->nested_level = 0;
10494 	INIT_LIST_HEAD(&dev->unlink_list);
10495 #endif
10496 
10497 	INIT_LIST_HEAD(&dev->napi_list);
10498 	INIT_LIST_HEAD(&dev->unreg_list);
10499 	INIT_LIST_HEAD(&dev->close_list);
10500 	INIT_LIST_HEAD(&dev->link_watch_list);
10501 	INIT_LIST_HEAD(&dev->adj_list.upper);
10502 	INIT_LIST_HEAD(&dev->adj_list.lower);
10503 	INIT_LIST_HEAD(&dev->ptype_all);
10504 	INIT_LIST_HEAD(&dev->ptype_specific);
10505 	INIT_LIST_HEAD(&dev->net_notifier_list);
10506 #ifdef CONFIG_NET_SCHED
10507 	hash_init(dev->qdisc_hash);
10508 #endif
10509 	dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
10510 	setup(dev);
10511 
10512 	if (!dev->tx_queue_len) {
10513 		dev->priv_flags |= IFF_NO_QUEUE;
10514 		dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
10515 	}
10516 
10517 	dev->num_tx_queues = txqs;
10518 	dev->real_num_tx_queues = txqs;
10519 	if (netif_alloc_netdev_queues(dev))
10520 		goto free_all;
10521 
10522 	dev->num_rx_queues = rxqs;
10523 	dev->real_num_rx_queues = rxqs;
10524 	if (netif_alloc_rx_queues(dev))
10525 		goto free_all;
10526 
10527 	strcpy(dev->name, name);
10528 	dev->name_assign_type = name_assign_type;
10529 	dev->group = INIT_NETDEV_GROUP;
10530 	if (!dev->ethtool_ops)
10531 		dev->ethtool_ops = &default_ethtool_ops;
10532 
10533 	nf_hook_ingress_init(dev);
10534 
10535 	return dev;
10536 
10537 free_all:
10538 	free_netdev(dev);
10539 	return NULL;
10540 
10541 free_pcpu:
10542 	free_percpu(dev->pcpu_refcnt);
10543 free_dev:
10544 	netdev_freemem(dev);
10545 	return NULL;
10546 }
10547 EXPORT_SYMBOL(alloc_netdev_mqs);
10548 
10549 /**
10550  * free_netdev - free network device
10551  * @dev: device
10552  *
10553  * This function does the last stage of destroying an allocated device
10554  * interface. The reference to the device object is released. If this
10555  * is the last reference then it will be freed.Must be called in process
10556  * context.
10557  */
10558 void free_netdev(struct net_device *dev)
10559 {
10560 	struct napi_struct *p, *n;
10561 
10562 	might_sleep();
10563 	netif_free_tx_queues(dev);
10564 	netif_free_rx_queues(dev);
10565 
10566 	kfree(rcu_dereference_protected(dev->ingress_queue, 1));
10567 
10568 	/* Flush device addresses */
10569 	dev_addr_flush(dev);
10570 
10571 	list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
10572 		netif_napi_del(p);
10573 
10574 	free_percpu(dev->pcpu_refcnt);
10575 	dev->pcpu_refcnt = NULL;
10576 	free_percpu(dev->xdp_bulkq);
10577 	dev->xdp_bulkq = NULL;
10578 
10579 	/*  Compatibility with error handling in drivers */
10580 	if (dev->reg_state == NETREG_UNINITIALIZED) {
10581 		netdev_freemem(dev);
10582 		return;
10583 	}
10584 
10585 	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
10586 	dev->reg_state = NETREG_RELEASED;
10587 
10588 	/* will free via device release */
10589 	put_device(&dev->dev);
10590 }
10591 EXPORT_SYMBOL(free_netdev);
10592 
10593 /**
10594  *	synchronize_net -  Synchronize with packet receive processing
10595  *
10596  *	Wait for packets currently being received to be done.
10597  *	Does not block later packets from starting.
10598  */
10599 void synchronize_net(void)
10600 {
10601 	might_sleep();
10602 	if (rtnl_is_locked())
10603 		synchronize_rcu_expedited();
10604 	else
10605 		synchronize_rcu();
10606 }
10607 EXPORT_SYMBOL(synchronize_net);
10608 
10609 /**
10610  *	unregister_netdevice_queue - remove device from the kernel
10611  *	@dev: device
10612  *	@head: list
10613  *
10614  *	This function shuts down a device interface and removes it
10615  *	from the kernel tables.
10616  *	If head not NULL, device is queued to be unregistered later.
10617  *
10618  *	Callers must hold the rtnl semaphore.  You may want
10619  *	unregister_netdev() instead of this.
10620  */
10621 
10622 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
10623 {
10624 	ASSERT_RTNL();
10625 
10626 	if (head) {
10627 		list_move_tail(&dev->unreg_list, head);
10628 	} else {
10629 		rollback_registered(dev);
10630 		/* Finish processing unregister after unlock */
10631 		net_set_todo(dev);
10632 	}
10633 }
10634 EXPORT_SYMBOL(unregister_netdevice_queue);
10635 
10636 /**
10637  *	unregister_netdevice_many - unregister many devices
10638  *	@head: list of devices
10639  *
10640  *  Note: As most callers use a stack allocated list_head,
10641  *  we force a list_del() to make sure stack wont be corrupted later.
10642  */
10643 void unregister_netdevice_many(struct list_head *head)
10644 {
10645 	struct net_device *dev;
10646 
10647 	if (!list_empty(head)) {
10648 		rollback_registered_many(head);
10649 		list_for_each_entry(dev, head, unreg_list)
10650 			net_set_todo(dev);
10651 		list_del(head);
10652 	}
10653 }
10654 EXPORT_SYMBOL(unregister_netdevice_many);
10655 
10656 /**
10657  *	unregister_netdev - remove device from the kernel
10658  *	@dev: device
10659  *
10660  *	This function shuts down a device interface and removes it
10661  *	from the kernel tables.
10662  *
10663  *	This is just a wrapper for unregister_netdevice that takes
10664  *	the rtnl semaphore.  In general you want to use this and not
10665  *	unregister_netdevice.
10666  */
10667 void unregister_netdev(struct net_device *dev)
10668 {
10669 	rtnl_lock();
10670 	unregister_netdevice(dev);
10671 	rtnl_unlock();
10672 }
10673 EXPORT_SYMBOL(unregister_netdev);
10674 
10675 /**
10676  *	dev_change_net_namespace - move device to different nethost namespace
10677  *	@dev: device
10678  *	@net: network namespace
10679  *	@pat: If not NULL name pattern to try if the current device name
10680  *	      is already taken in the destination network namespace.
10681  *
10682  *	This function shuts down a device interface and moves it
10683  *	to a new network namespace. On success 0 is returned, on
10684  *	a failure a netagive errno code is returned.
10685  *
10686  *	Callers must hold the rtnl semaphore.
10687  */
10688 
10689 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
10690 {
10691 	struct net *net_old = dev_net(dev);
10692 	int err, new_nsid, new_ifindex;
10693 
10694 	ASSERT_RTNL();
10695 
10696 	/* Don't allow namespace local devices to be moved. */
10697 	err = -EINVAL;
10698 	if (dev->features & NETIF_F_NETNS_LOCAL)
10699 		goto out;
10700 
10701 	/* Ensure the device has been registrered */
10702 	if (dev->reg_state != NETREG_REGISTERED)
10703 		goto out;
10704 
10705 	/* Get out if there is nothing todo */
10706 	err = 0;
10707 	if (net_eq(net_old, net))
10708 		goto out;
10709 
10710 	/* Pick the destination device name, and ensure
10711 	 * we can use it in the destination network namespace.
10712 	 */
10713 	err = -EEXIST;
10714 	if (__dev_get_by_name(net, dev->name)) {
10715 		/* We get here if we can't use the current device name */
10716 		if (!pat)
10717 			goto out;
10718 		err = dev_get_valid_name(net, dev, pat);
10719 		if (err < 0)
10720 			goto out;
10721 	}
10722 
10723 	/*
10724 	 * And now a mini version of register_netdevice unregister_netdevice.
10725 	 */
10726 
10727 	/* If device is running close it first. */
10728 	dev_close(dev);
10729 
10730 	/* And unlink it from device chain */
10731 	unlist_netdevice(dev);
10732 
10733 	synchronize_net();
10734 
10735 	/* Shutdown queueing discipline. */
10736 	dev_shutdown(dev);
10737 
10738 	/* Notify protocols, that we are about to destroy
10739 	 * this device. They should clean all the things.
10740 	 *
10741 	 * Note that dev->reg_state stays at NETREG_REGISTERED.
10742 	 * This is wanted because this way 8021q and macvlan know
10743 	 * the device is just moving and can keep their slaves up.
10744 	 */
10745 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10746 	rcu_barrier();
10747 
10748 	new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
10749 	/* If there is an ifindex conflict assign a new one */
10750 	if (__dev_get_by_index(net, dev->ifindex))
10751 		new_ifindex = dev_new_index(net);
10752 	else
10753 		new_ifindex = dev->ifindex;
10754 
10755 	rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
10756 			    new_ifindex);
10757 
10758 	/*
10759 	 *	Flush the unicast and multicast chains
10760 	 */
10761 	dev_uc_flush(dev);
10762 	dev_mc_flush(dev);
10763 
10764 	/* Send a netdev-removed uevent to the old namespace */
10765 	kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
10766 	netdev_adjacent_del_links(dev);
10767 
10768 	/* Move per-net netdevice notifiers that are following the netdevice */
10769 	move_netdevice_notifiers_dev_net(dev, net);
10770 
10771 	/* Actually switch the network namespace */
10772 	dev_net_set(dev, net);
10773 	dev->ifindex = new_ifindex;
10774 
10775 	/* Send a netdev-add uevent to the new namespace */
10776 	kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
10777 	netdev_adjacent_add_links(dev);
10778 
10779 	/* Fixup kobjects */
10780 	err = device_rename(&dev->dev, dev->name);
10781 	WARN_ON(err);
10782 
10783 	/* Adapt owner in case owning user namespace of target network
10784 	 * namespace is different from the original one.
10785 	 */
10786 	err = netdev_change_owner(dev, net_old, net);
10787 	WARN_ON(err);
10788 
10789 	/* Add the device back in the hashes */
10790 	list_netdevice(dev);
10791 
10792 	/* Notify protocols, that a new device appeared. */
10793 	call_netdevice_notifiers(NETDEV_REGISTER, dev);
10794 
10795 	/*
10796 	 *	Prevent userspace races by waiting until the network
10797 	 *	device is fully setup before sending notifications.
10798 	 */
10799 	rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
10800 
10801 	synchronize_net();
10802 	err = 0;
10803 out:
10804 	return err;
10805 }
10806 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
10807 
10808 static int dev_cpu_dead(unsigned int oldcpu)
10809 {
10810 	struct sk_buff **list_skb;
10811 	struct sk_buff *skb;
10812 	unsigned int cpu;
10813 	struct softnet_data *sd, *oldsd, *remsd = NULL;
10814 
10815 	local_irq_disable();
10816 	cpu = smp_processor_id();
10817 	sd = &per_cpu(softnet_data, cpu);
10818 	oldsd = &per_cpu(softnet_data, oldcpu);
10819 
10820 	/* Find end of our completion_queue. */
10821 	list_skb = &sd->completion_queue;
10822 	while (*list_skb)
10823 		list_skb = &(*list_skb)->next;
10824 	/* Append completion queue from offline CPU. */
10825 	*list_skb = oldsd->completion_queue;
10826 	oldsd->completion_queue = NULL;
10827 
10828 	/* Append output queue from offline CPU. */
10829 	if (oldsd->output_queue) {
10830 		*sd->output_queue_tailp = oldsd->output_queue;
10831 		sd->output_queue_tailp = oldsd->output_queue_tailp;
10832 		oldsd->output_queue = NULL;
10833 		oldsd->output_queue_tailp = &oldsd->output_queue;
10834 	}
10835 	/* Append NAPI poll list from offline CPU, with one exception :
10836 	 * process_backlog() must be called by cpu owning percpu backlog.
10837 	 * We properly handle process_queue & input_pkt_queue later.
10838 	 */
10839 	while (!list_empty(&oldsd->poll_list)) {
10840 		struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
10841 							    struct napi_struct,
10842 							    poll_list);
10843 
10844 		list_del_init(&napi->poll_list);
10845 		if (napi->poll == process_backlog)
10846 			napi->state = 0;
10847 		else
10848 			____napi_schedule(sd, napi);
10849 	}
10850 
10851 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
10852 	local_irq_enable();
10853 
10854 #ifdef CONFIG_RPS
10855 	remsd = oldsd->rps_ipi_list;
10856 	oldsd->rps_ipi_list = NULL;
10857 #endif
10858 	/* send out pending IPI's on offline CPU */
10859 	net_rps_send_ipi(remsd);
10860 
10861 	/* Process offline CPU's input_pkt_queue */
10862 	while ((skb = __skb_dequeue(&oldsd->process_queue))) {
10863 		netif_rx_ni(skb);
10864 		input_queue_head_incr(oldsd);
10865 	}
10866 	while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
10867 		netif_rx_ni(skb);
10868 		input_queue_head_incr(oldsd);
10869 	}
10870 
10871 	return 0;
10872 }
10873 
10874 /**
10875  *	netdev_increment_features - increment feature set by one
10876  *	@all: current feature set
10877  *	@one: new feature set
10878  *	@mask: mask feature set
10879  *
10880  *	Computes a new feature set after adding a device with feature set
10881  *	@one to the master device with current feature set @all.  Will not
10882  *	enable anything that is off in @mask. Returns the new feature set.
10883  */
10884 netdev_features_t netdev_increment_features(netdev_features_t all,
10885 	netdev_features_t one, netdev_features_t mask)
10886 {
10887 	if (mask & NETIF_F_HW_CSUM)
10888 		mask |= NETIF_F_CSUM_MASK;
10889 	mask |= NETIF_F_VLAN_CHALLENGED;
10890 
10891 	all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
10892 	all &= one | ~NETIF_F_ALL_FOR_ALL;
10893 
10894 	/* If one device supports hw checksumming, set for all. */
10895 	if (all & NETIF_F_HW_CSUM)
10896 		all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
10897 
10898 	return all;
10899 }
10900 EXPORT_SYMBOL(netdev_increment_features);
10901 
10902 static struct hlist_head * __net_init netdev_create_hash(void)
10903 {
10904 	int i;
10905 	struct hlist_head *hash;
10906 
10907 	hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
10908 	if (hash != NULL)
10909 		for (i = 0; i < NETDEV_HASHENTRIES; i++)
10910 			INIT_HLIST_HEAD(&hash[i]);
10911 
10912 	return hash;
10913 }
10914 
10915 /* Initialize per network namespace state */
10916 static int __net_init netdev_init(struct net *net)
10917 {
10918 	BUILD_BUG_ON(GRO_HASH_BUCKETS >
10919 		     8 * sizeof_field(struct napi_struct, gro_bitmask));
10920 
10921 	if (net != &init_net)
10922 		INIT_LIST_HEAD(&net->dev_base_head);
10923 
10924 	net->dev_name_head = netdev_create_hash();
10925 	if (net->dev_name_head == NULL)
10926 		goto err_name;
10927 
10928 	net->dev_index_head = netdev_create_hash();
10929 	if (net->dev_index_head == NULL)
10930 		goto err_idx;
10931 
10932 	RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
10933 
10934 	return 0;
10935 
10936 err_idx:
10937 	kfree(net->dev_name_head);
10938 err_name:
10939 	return -ENOMEM;
10940 }
10941 
10942 /**
10943  *	netdev_drivername - network driver for the device
10944  *	@dev: network device
10945  *
10946  *	Determine network driver for device.
10947  */
10948 const char *netdev_drivername(const struct net_device *dev)
10949 {
10950 	const struct device_driver *driver;
10951 	const struct device *parent;
10952 	const char *empty = "";
10953 
10954 	parent = dev->dev.parent;
10955 	if (!parent)
10956 		return empty;
10957 
10958 	driver = parent->driver;
10959 	if (driver && driver->name)
10960 		return driver->name;
10961 	return empty;
10962 }
10963 
10964 static void __netdev_printk(const char *level, const struct net_device *dev,
10965 			    struct va_format *vaf)
10966 {
10967 	if (dev && dev->dev.parent) {
10968 		dev_printk_emit(level[1] - '0',
10969 				dev->dev.parent,
10970 				"%s %s %s%s: %pV",
10971 				dev_driver_string(dev->dev.parent),
10972 				dev_name(dev->dev.parent),
10973 				netdev_name(dev), netdev_reg_state(dev),
10974 				vaf);
10975 	} else if (dev) {
10976 		printk("%s%s%s: %pV",
10977 		       level, netdev_name(dev), netdev_reg_state(dev), vaf);
10978 	} else {
10979 		printk("%s(NULL net_device): %pV", level, vaf);
10980 	}
10981 }
10982 
10983 void netdev_printk(const char *level, const struct net_device *dev,
10984 		   const char *format, ...)
10985 {
10986 	struct va_format vaf;
10987 	va_list args;
10988 
10989 	va_start(args, format);
10990 
10991 	vaf.fmt = format;
10992 	vaf.va = &args;
10993 
10994 	__netdev_printk(level, dev, &vaf);
10995 
10996 	va_end(args);
10997 }
10998 EXPORT_SYMBOL(netdev_printk);
10999 
11000 #define define_netdev_printk_level(func, level)			\
11001 void func(const struct net_device *dev, const char *fmt, ...)	\
11002 {								\
11003 	struct va_format vaf;					\
11004 	va_list args;						\
11005 								\
11006 	va_start(args, fmt);					\
11007 								\
11008 	vaf.fmt = fmt;						\
11009 	vaf.va = &args;						\
11010 								\
11011 	__netdev_printk(level, dev, &vaf);			\
11012 								\
11013 	va_end(args);						\
11014 }								\
11015 EXPORT_SYMBOL(func);
11016 
11017 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
11018 define_netdev_printk_level(netdev_alert, KERN_ALERT);
11019 define_netdev_printk_level(netdev_crit, KERN_CRIT);
11020 define_netdev_printk_level(netdev_err, KERN_ERR);
11021 define_netdev_printk_level(netdev_warn, KERN_WARNING);
11022 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
11023 define_netdev_printk_level(netdev_info, KERN_INFO);
11024 
11025 static void __net_exit netdev_exit(struct net *net)
11026 {
11027 	kfree(net->dev_name_head);
11028 	kfree(net->dev_index_head);
11029 	if (net != &init_net)
11030 		WARN_ON_ONCE(!list_empty(&net->dev_base_head));
11031 }
11032 
11033 static struct pernet_operations __net_initdata netdev_net_ops = {
11034 	.init = netdev_init,
11035 	.exit = netdev_exit,
11036 };
11037 
11038 static void __net_exit default_device_exit(struct net *net)
11039 {
11040 	struct net_device *dev, *aux;
11041 	/*
11042 	 * Push all migratable network devices back to the
11043 	 * initial network namespace
11044 	 */
11045 	rtnl_lock();
11046 	for_each_netdev_safe(net, dev, aux) {
11047 		int err;
11048 		char fb_name[IFNAMSIZ];
11049 
11050 		/* Ignore unmoveable devices (i.e. loopback) */
11051 		if (dev->features & NETIF_F_NETNS_LOCAL)
11052 			continue;
11053 
11054 		/* Leave virtual devices for the generic cleanup */
11055 		if (dev->rtnl_link_ops)
11056 			continue;
11057 
11058 		/* Push remaining network devices to init_net */
11059 		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
11060 		if (__dev_get_by_name(&init_net, fb_name))
11061 			snprintf(fb_name, IFNAMSIZ, "dev%%d");
11062 		err = dev_change_net_namespace(dev, &init_net, fb_name);
11063 		if (err) {
11064 			pr_emerg("%s: failed to move %s to init_net: %d\n",
11065 				 __func__, dev->name, err);
11066 			BUG();
11067 		}
11068 	}
11069 	rtnl_unlock();
11070 }
11071 
11072 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
11073 {
11074 	/* Return with the rtnl_lock held when there are no network
11075 	 * devices unregistering in any network namespace in net_list.
11076 	 */
11077 	struct net *net;
11078 	bool unregistering;
11079 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
11080 
11081 	add_wait_queue(&netdev_unregistering_wq, &wait);
11082 	for (;;) {
11083 		unregistering = false;
11084 		rtnl_lock();
11085 		list_for_each_entry(net, net_list, exit_list) {
11086 			if (net->dev_unreg_count > 0) {
11087 				unregistering = true;
11088 				break;
11089 			}
11090 		}
11091 		if (!unregistering)
11092 			break;
11093 		__rtnl_unlock();
11094 
11095 		wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
11096 	}
11097 	remove_wait_queue(&netdev_unregistering_wq, &wait);
11098 }
11099 
11100 static void __net_exit default_device_exit_batch(struct list_head *net_list)
11101 {
11102 	/* At exit all network devices most be removed from a network
11103 	 * namespace.  Do this in the reverse order of registration.
11104 	 * Do this across as many network namespaces as possible to
11105 	 * improve batching efficiency.
11106 	 */
11107 	struct net_device *dev;
11108 	struct net *net;
11109 	LIST_HEAD(dev_kill_list);
11110 
11111 	/* To prevent network device cleanup code from dereferencing
11112 	 * loopback devices or network devices that have been freed
11113 	 * wait here for all pending unregistrations to complete,
11114 	 * before unregistring the loopback device and allowing the
11115 	 * network namespace be freed.
11116 	 *
11117 	 * The netdev todo list containing all network devices
11118 	 * unregistrations that happen in default_device_exit_batch
11119 	 * will run in the rtnl_unlock() at the end of
11120 	 * default_device_exit_batch.
11121 	 */
11122 	rtnl_lock_unregistering(net_list);
11123 	list_for_each_entry(net, net_list, exit_list) {
11124 		for_each_netdev_reverse(net, dev) {
11125 			if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
11126 				dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
11127 			else
11128 				unregister_netdevice_queue(dev, &dev_kill_list);
11129 		}
11130 	}
11131 	unregister_netdevice_many(&dev_kill_list);
11132 	rtnl_unlock();
11133 }
11134 
11135 static struct pernet_operations __net_initdata default_device_ops = {
11136 	.exit = default_device_exit,
11137 	.exit_batch = default_device_exit_batch,
11138 };
11139 
11140 /*
11141  *	Initialize the DEV module. At boot time this walks the device list and
11142  *	unhooks any devices that fail to initialise (normally hardware not
11143  *	present) and leaves us with a valid list of present and active devices.
11144  *
11145  */
11146 
11147 /*
11148  *       This is called single threaded during boot, so no need
11149  *       to take the rtnl semaphore.
11150  */
11151 static int __init net_dev_init(void)
11152 {
11153 	int i, rc = -ENOMEM;
11154 
11155 	BUG_ON(!dev_boot_phase);
11156 
11157 	if (dev_proc_init())
11158 		goto out;
11159 
11160 	if (netdev_kobject_init())
11161 		goto out;
11162 
11163 	INIT_LIST_HEAD(&ptype_all);
11164 	for (i = 0; i < PTYPE_HASH_SIZE; i++)
11165 		INIT_LIST_HEAD(&ptype_base[i]);
11166 
11167 	INIT_LIST_HEAD(&offload_base);
11168 
11169 	if (register_pernet_subsys(&netdev_net_ops))
11170 		goto out;
11171 
11172 	/*
11173 	 *	Initialise the packet receive queues.
11174 	 */
11175 
11176 	for_each_possible_cpu(i) {
11177 		struct work_struct *flush = per_cpu_ptr(&flush_works, i);
11178 		struct softnet_data *sd = &per_cpu(softnet_data, i);
11179 
11180 		INIT_WORK(flush, flush_backlog);
11181 
11182 		skb_queue_head_init(&sd->input_pkt_queue);
11183 		skb_queue_head_init(&sd->process_queue);
11184 #ifdef CONFIG_XFRM_OFFLOAD
11185 		skb_queue_head_init(&sd->xfrm_backlog);
11186 #endif
11187 		INIT_LIST_HEAD(&sd->poll_list);
11188 		sd->output_queue_tailp = &sd->output_queue;
11189 #ifdef CONFIG_RPS
11190 		sd->csd.func = rps_trigger_softirq;
11191 		sd->csd.info = sd;
11192 		sd->cpu = i;
11193 #endif
11194 
11195 		init_gro_hash(&sd->backlog);
11196 		sd->backlog.poll = process_backlog;
11197 		sd->backlog.weight = weight_p;
11198 	}
11199 
11200 	dev_boot_phase = 0;
11201 
11202 	/* The loopback device is special if any other network devices
11203 	 * is present in a network namespace the loopback device must
11204 	 * be present. Since we now dynamically allocate and free the
11205 	 * loopback device ensure this invariant is maintained by
11206 	 * keeping the loopback device as the first device on the
11207 	 * list of network devices.  Ensuring the loopback devices
11208 	 * is the first device that appears and the last network device
11209 	 * that disappears.
11210 	 */
11211 	if (register_pernet_device(&loopback_net_ops))
11212 		goto out;
11213 
11214 	if (register_pernet_device(&default_device_ops))
11215 		goto out;
11216 
11217 	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
11218 	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
11219 
11220 	rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
11221 				       NULL, dev_cpu_dead);
11222 	WARN_ON(rc < 0);
11223 	rc = 0;
11224 out:
11225 	return rc;
11226 }
11227 
11228 subsys_initcall(net_dev_init);
11229