1 /* 2 * NET3 Protocol independent device support routines. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public License 6 * as published by the Free Software Foundation; either version 7 * 2 of the License, or (at your option) any later version. 8 * 9 * Derived from the non IP parts of dev.c 1.0.19 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Mark Evans, <evansmp@uhura.aston.ac.uk> 13 * 14 * Additional Authors: 15 * Florian la Roche <rzsfl@rz.uni-sb.de> 16 * Alan Cox <gw4pts@gw4pts.ampr.org> 17 * David Hinds <dahinds@users.sourceforge.net> 18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> 19 * Adam Sulmicki <adam@cfar.umd.edu> 20 * Pekka Riikonen <priikone@poesidon.pspt.fi> 21 * 22 * Changes: 23 * D.J. Barrow : Fixed bug where dev->refcnt gets set 24 * to 2 if register_netdev gets called 25 * before net_dev_init & also removed a 26 * few lines of code in the process. 27 * Alan Cox : device private ioctl copies fields back. 28 * Alan Cox : Transmit queue code does relevant 29 * stunts to keep the queue safe. 30 * Alan Cox : Fixed double lock. 31 * Alan Cox : Fixed promisc NULL pointer trap 32 * ???????? : Support the full private ioctl range 33 * Alan Cox : Moved ioctl permission check into 34 * drivers 35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI 36 * Alan Cox : 100 backlog just doesn't cut it when 37 * you start doing multicast video 8) 38 * Alan Cox : Rewrote net_bh and list manager. 39 * Alan Cox : Fix ETH_P_ALL echoback lengths. 40 * Alan Cox : Took out transmit every packet pass 41 * Saved a few bytes in the ioctl handler 42 * Alan Cox : Network driver sets packet type before 43 * calling netif_rx. Saves a function 44 * call a packet. 45 * Alan Cox : Hashed net_bh() 46 * Richard Kooijman: Timestamp fixes. 47 * Alan Cox : Wrong field in SIOCGIFDSTADDR 48 * Alan Cox : Device lock protection. 49 * Alan Cox : Fixed nasty side effect of device close 50 * changes. 51 * Rudi Cilibrasi : Pass the right thing to 52 * set_mac_address() 53 * Dave Miller : 32bit quantity for the device lock to 54 * make it work out on a Sparc. 55 * Bjorn Ekwall : Added KERNELD hack. 56 * Alan Cox : Cleaned up the backlog initialise. 57 * Craig Metz : SIOCGIFCONF fix if space for under 58 * 1 device. 59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there 60 * is no device open function. 61 * Andi Kleen : Fix error reporting for SIOCGIFCONF 62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF 63 * Cyrus Durgin : Cleaned for KMOD 64 * Adam Sulmicki : Bug Fix : Network Device Unload 65 * A network device unload needs to purge 66 * the backlog queue. 67 * Paul Rusty Russell : SIOCSIFNAME 68 * Pekka Riikonen : Netdev boot-time settings code 69 * Andrew Morton : Make unregister_netdevice wait 70 * indefinitely on dev->refcnt 71 * J Hadi Salim : - Backlog queue sampling 72 * - netif_rx() feedback 73 */ 74 75 #include <asm/uaccess.h> 76 #include <asm/system.h> 77 #include <linux/bitops.h> 78 #include <linux/capability.h> 79 #include <linux/cpu.h> 80 #include <linux/types.h> 81 #include <linux/kernel.h> 82 #include <linux/hash.h> 83 #include <linux/slab.h> 84 #include <linux/sched.h> 85 #include <linux/mutex.h> 86 #include <linux/string.h> 87 #include <linux/mm.h> 88 #include <linux/socket.h> 89 #include <linux/sockios.h> 90 #include <linux/errno.h> 91 #include <linux/interrupt.h> 92 #include <linux/if_ether.h> 93 #include <linux/netdevice.h> 94 #include <linux/etherdevice.h> 95 #include <linux/ethtool.h> 96 #include <linux/notifier.h> 97 #include <linux/skbuff.h> 98 #include <net/net_namespace.h> 99 #include <net/sock.h> 100 #include <linux/rtnetlink.h> 101 #include <linux/proc_fs.h> 102 #include <linux/seq_file.h> 103 #include <linux/stat.h> 104 #include <net/dst.h> 105 #include <net/pkt_sched.h> 106 #include <net/checksum.h> 107 #include <net/xfrm.h> 108 #include <linux/highmem.h> 109 #include <linux/init.h> 110 #include <linux/kmod.h> 111 #include <linux/module.h> 112 #include <linux/netpoll.h> 113 #include <linux/rcupdate.h> 114 #include <linux/delay.h> 115 #include <net/wext.h> 116 #include <net/iw_handler.h> 117 #include <asm/current.h> 118 #include <linux/audit.h> 119 #include <linux/dmaengine.h> 120 #include <linux/err.h> 121 #include <linux/ctype.h> 122 #include <linux/if_arp.h> 123 #include <linux/if_vlan.h> 124 #include <linux/ip.h> 125 #include <net/ip.h> 126 #include <linux/ipv6.h> 127 #include <linux/in.h> 128 #include <linux/jhash.h> 129 #include <linux/random.h> 130 #include <trace/events/napi.h> 131 #include <trace/events/net.h> 132 #include <trace/events/skb.h> 133 #include <linux/pci.h> 134 #include <linux/inetdevice.h> 135 #include <linux/cpu_rmap.h> 136 #include <linux/net_tstamp.h> 137 #include <linux/jump_label.h> 138 #include <net/flow_keys.h> 139 140 #include "net-sysfs.h" 141 142 /* Instead of increasing this, you should create a hash table. */ 143 #define MAX_GRO_SKBS 8 144 145 /* This should be increased if a protocol with a bigger head is added. */ 146 #define GRO_MAX_HEAD (MAX_HEADER + 128) 147 148 /* 149 * The list of packet types we will receive (as opposed to discard) 150 * and the routines to invoke. 151 * 152 * Why 16. Because with 16 the only overlap we get on a hash of the 153 * low nibble of the protocol value is RARP/SNAP/X.25. 154 * 155 * NOTE: That is no longer true with the addition of VLAN tags. Not 156 * sure which should go first, but I bet it won't make much 157 * difference if we are running VLANs. The good news is that 158 * this protocol won't be in the list unless compiled in, so 159 * the average user (w/out VLANs) will not be adversely affected. 160 * --BLG 161 * 162 * 0800 IP 163 * 8100 802.1Q VLAN 164 * 0001 802.3 165 * 0002 AX.25 166 * 0004 802.2 167 * 8035 RARP 168 * 0005 SNAP 169 * 0805 X.25 170 * 0806 ARP 171 * 8137 IPX 172 * 0009 Localtalk 173 * 86DD IPv6 174 */ 175 176 #define PTYPE_HASH_SIZE (16) 177 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1) 178 179 static DEFINE_SPINLOCK(ptype_lock); 180 static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly; 181 static struct list_head ptype_all __read_mostly; /* Taps */ 182 183 /* 184 * The @dev_base_head list is protected by @dev_base_lock and the rtnl 185 * semaphore. 186 * 187 * Pure readers hold dev_base_lock for reading, or rcu_read_lock() 188 * 189 * Writers must hold the rtnl semaphore while they loop through the 190 * dev_base_head list, and hold dev_base_lock for writing when they do the 191 * actual updates. This allows pure readers to access the list even 192 * while a writer is preparing to update it. 193 * 194 * To put it another way, dev_base_lock is held for writing only to 195 * protect against pure readers; the rtnl semaphore provides the 196 * protection against other writers. 197 * 198 * See, for example usages, register_netdevice() and 199 * unregister_netdevice(), which must be called with the rtnl 200 * semaphore held. 201 */ 202 DEFINE_RWLOCK(dev_base_lock); 203 EXPORT_SYMBOL(dev_base_lock); 204 205 static inline void dev_base_seq_inc(struct net *net) 206 { 207 while (++net->dev_base_seq == 0); 208 } 209 210 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name) 211 { 212 unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ)); 213 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)]; 214 } 215 216 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex) 217 { 218 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)]; 219 } 220 221 static inline void rps_lock(struct softnet_data *sd) 222 { 223 #ifdef CONFIG_RPS 224 spin_lock(&sd->input_pkt_queue.lock); 225 #endif 226 } 227 228 static inline void rps_unlock(struct softnet_data *sd) 229 { 230 #ifdef CONFIG_RPS 231 spin_unlock(&sd->input_pkt_queue.lock); 232 #endif 233 } 234 235 /* Device list insertion */ 236 static int list_netdevice(struct net_device *dev) 237 { 238 struct net *net = dev_net(dev); 239 240 ASSERT_RTNL(); 241 242 write_lock_bh(&dev_base_lock); 243 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head); 244 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name)); 245 hlist_add_head_rcu(&dev->index_hlist, 246 dev_index_hash(net, dev->ifindex)); 247 write_unlock_bh(&dev_base_lock); 248 249 dev_base_seq_inc(net); 250 251 return 0; 252 } 253 254 /* Device list removal 255 * caller must respect a RCU grace period before freeing/reusing dev 256 */ 257 static void unlist_netdevice(struct net_device *dev) 258 { 259 ASSERT_RTNL(); 260 261 /* Unlink dev from the device chain */ 262 write_lock_bh(&dev_base_lock); 263 list_del_rcu(&dev->dev_list); 264 hlist_del_rcu(&dev->name_hlist); 265 hlist_del_rcu(&dev->index_hlist); 266 write_unlock_bh(&dev_base_lock); 267 268 dev_base_seq_inc(dev_net(dev)); 269 } 270 271 /* 272 * Our notifier list 273 */ 274 275 static RAW_NOTIFIER_HEAD(netdev_chain); 276 277 /* 278 * Device drivers call our routines to queue packets here. We empty the 279 * queue in the local softnet handler. 280 */ 281 282 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 283 EXPORT_PER_CPU_SYMBOL(softnet_data); 284 285 #ifdef CONFIG_LOCKDEP 286 /* 287 * register_netdevice() inits txq->_xmit_lock and sets lockdep class 288 * according to dev->type 289 */ 290 static const unsigned short netdev_lock_type[] = 291 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25, 292 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET, 293 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM, 294 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP, 295 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD, 296 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25, 297 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP, 298 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD, 299 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI, 300 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE, 301 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET, 302 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL, 303 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211, 304 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, 305 ARPHRD_PHONET_PIPE, ARPHRD_IEEE802154, 306 ARPHRD_VOID, ARPHRD_NONE}; 307 308 static const char *const netdev_lock_name[] = 309 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25", 310 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET", 311 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM", 312 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP", 313 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD", 314 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25", 315 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP", 316 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD", 317 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI", 318 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE", 319 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET", 320 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL", 321 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211", 322 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", 323 "_xmit_PHONET_PIPE", "_xmit_IEEE802154", 324 "_xmit_VOID", "_xmit_NONE"}; 325 326 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)]; 327 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)]; 328 329 static inline unsigned short netdev_lock_pos(unsigned short dev_type) 330 { 331 int i; 332 333 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++) 334 if (netdev_lock_type[i] == dev_type) 335 return i; 336 /* the last key is used by default */ 337 return ARRAY_SIZE(netdev_lock_type) - 1; 338 } 339 340 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 341 unsigned short dev_type) 342 { 343 int i; 344 345 i = netdev_lock_pos(dev_type); 346 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i], 347 netdev_lock_name[i]); 348 } 349 350 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 351 { 352 int i; 353 354 i = netdev_lock_pos(dev->type); 355 lockdep_set_class_and_name(&dev->addr_list_lock, 356 &netdev_addr_lock_key[i], 357 netdev_lock_name[i]); 358 } 359 #else 360 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 361 unsigned short dev_type) 362 { 363 } 364 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 365 { 366 } 367 #endif 368 369 /******************************************************************************* 370 371 Protocol management and registration routines 372 373 *******************************************************************************/ 374 375 /* 376 * Add a protocol ID to the list. Now that the input handler is 377 * smarter we can dispense with all the messy stuff that used to be 378 * here. 379 * 380 * BEWARE!!! Protocol handlers, mangling input packets, 381 * MUST BE last in hash buckets and checking protocol handlers 382 * MUST start from promiscuous ptype_all chain in net_bh. 383 * It is true now, do not change it. 384 * Explanation follows: if protocol handler, mangling packet, will 385 * be the first on list, it is not able to sense, that packet 386 * is cloned and should be copied-on-write, so that it will 387 * change it and subsequent readers will get broken packet. 388 * --ANK (980803) 389 */ 390 391 static inline struct list_head *ptype_head(const struct packet_type *pt) 392 { 393 if (pt->type == htons(ETH_P_ALL)) 394 return &ptype_all; 395 else 396 return &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK]; 397 } 398 399 /** 400 * dev_add_pack - add packet handler 401 * @pt: packet type declaration 402 * 403 * Add a protocol handler to the networking stack. The passed &packet_type 404 * is linked into kernel lists and may not be freed until it has been 405 * removed from the kernel lists. 406 * 407 * This call does not sleep therefore it can not 408 * guarantee all CPU's that are in middle of receiving packets 409 * will see the new packet type (until the next received packet). 410 */ 411 412 void dev_add_pack(struct packet_type *pt) 413 { 414 struct list_head *head = ptype_head(pt); 415 416 spin_lock(&ptype_lock); 417 list_add_rcu(&pt->list, head); 418 spin_unlock(&ptype_lock); 419 } 420 EXPORT_SYMBOL(dev_add_pack); 421 422 /** 423 * __dev_remove_pack - remove packet handler 424 * @pt: packet type declaration 425 * 426 * Remove a protocol handler that was previously added to the kernel 427 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 428 * from the kernel lists and can be freed or reused once this function 429 * returns. 430 * 431 * The packet type might still be in use by receivers 432 * and must not be freed until after all the CPU's have gone 433 * through a quiescent state. 434 */ 435 void __dev_remove_pack(struct packet_type *pt) 436 { 437 struct list_head *head = ptype_head(pt); 438 struct packet_type *pt1; 439 440 spin_lock(&ptype_lock); 441 442 list_for_each_entry(pt1, head, list) { 443 if (pt == pt1) { 444 list_del_rcu(&pt->list); 445 goto out; 446 } 447 } 448 449 printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt); 450 out: 451 spin_unlock(&ptype_lock); 452 } 453 EXPORT_SYMBOL(__dev_remove_pack); 454 455 /** 456 * dev_remove_pack - remove packet handler 457 * @pt: packet type declaration 458 * 459 * Remove a protocol handler that was previously added to the kernel 460 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 461 * from the kernel lists and can be freed or reused once this function 462 * returns. 463 * 464 * This call sleeps to guarantee that no CPU is looking at the packet 465 * type after return. 466 */ 467 void dev_remove_pack(struct packet_type *pt) 468 { 469 __dev_remove_pack(pt); 470 471 synchronize_net(); 472 } 473 EXPORT_SYMBOL(dev_remove_pack); 474 475 /****************************************************************************** 476 477 Device Boot-time Settings Routines 478 479 *******************************************************************************/ 480 481 /* Boot time configuration table */ 482 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX]; 483 484 /** 485 * netdev_boot_setup_add - add new setup entry 486 * @name: name of the device 487 * @map: configured settings for the device 488 * 489 * Adds new setup entry to the dev_boot_setup list. The function 490 * returns 0 on error and 1 on success. This is a generic routine to 491 * all netdevices. 492 */ 493 static int netdev_boot_setup_add(char *name, struct ifmap *map) 494 { 495 struct netdev_boot_setup *s; 496 int i; 497 498 s = dev_boot_setup; 499 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 500 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') { 501 memset(s[i].name, 0, sizeof(s[i].name)); 502 strlcpy(s[i].name, name, IFNAMSIZ); 503 memcpy(&s[i].map, map, sizeof(s[i].map)); 504 break; 505 } 506 } 507 508 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1; 509 } 510 511 /** 512 * netdev_boot_setup_check - check boot time settings 513 * @dev: the netdevice 514 * 515 * Check boot time settings for the device. 516 * The found settings are set for the device to be used 517 * later in the device probing. 518 * Returns 0 if no settings found, 1 if they are. 519 */ 520 int netdev_boot_setup_check(struct net_device *dev) 521 { 522 struct netdev_boot_setup *s = dev_boot_setup; 523 int i; 524 525 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 526 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' && 527 !strcmp(dev->name, s[i].name)) { 528 dev->irq = s[i].map.irq; 529 dev->base_addr = s[i].map.base_addr; 530 dev->mem_start = s[i].map.mem_start; 531 dev->mem_end = s[i].map.mem_end; 532 return 1; 533 } 534 } 535 return 0; 536 } 537 EXPORT_SYMBOL(netdev_boot_setup_check); 538 539 540 /** 541 * netdev_boot_base - get address from boot time settings 542 * @prefix: prefix for network device 543 * @unit: id for network device 544 * 545 * Check boot time settings for the base address of device. 546 * The found settings are set for the device to be used 547 * later in the device probing. 548 * Returns 0 if no settings found. 549 */ 550 unsigned long netdev_boot_base(const char *prefix, int unit) 551 { 552 const struct netdev_boot_setup *s = dev_boot_setup; 553 char name[IFNAMSIZ]; 554 int i; 555 556 sprintf(name, "%s%d", prefix, unit); 557 558 /* 559 * If device already registered then return base of 1 560 * to indicate not to probe for this interface 561 */ 562 if (__dev_get_by_name(&init_net, name)) 563 return 1; 564 565 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) 566 if (!strcmp(name, s[i].name)) 567 return s[i].map.base_addr; 568 return 0; 569 } 570 571 /* 572 * Saves at boot time configured settings for any netdevice. 573 */ 574 int __init netdev_boot_setup(char *str) 575 { 576 int ints[5]; 577 struct ifmap map; 578 579 str = get_options(str, ARRAY_SIZE(ints), ints); 580 if (!str || !*str) 581 return 0; 582 583 /* Save settings */ 584 memset(&map, 0, sizeof(map)); 585 if (ints[0] > 0) 586 map.irq = ints[1]; 587 if (ints[0] > 1) 588 map.base_addr = ints[2]; 589 if (ints[0] > 2) 590 map.mem_start = ints[3]; 591 if (ints[0] > 3) 592 map.mem_end = ints[4]; 593 594 /* Add new entry to the list */ 595 return netdev_boot_setup_add(str, &map); 596 } 597 598 __setup("netdev=", netdev_boot_setup); 599 600 /******************************************************************************* 601 602 Device Interface Subroutines 603 604 *******************************************************************************/ 605 606 /** 607 * __dev_get_by_name - find a device by its name 608 * @net: the applicable net namespace 609 * @name: name to find 610 * 611 * Find an interface by name. Must be called under RTNL semaphore 612 * or @dev_base_lock. If the name is found a pointer to the device 613 * is returned. If the name is not found then %NULL is returned. The 614 * reference counters are not incremented so the caller must be 615 * careful with locks. 616 */ 617 618 struct net_device *__dev_get_by_name(struct net *net, const char *name) 619 { 620 struct hlist_node *p; 621 struct net_device *dev; 622 struct hlist_head *head = dev_name_hash(net, name); 623 624 hlist_for_each_entry(dev, p, head, name_hlist) 625 if (!strncmp(dev->name, name, IFNAMSIZ)) 626 return dev; 627 628 return NULL; 629 } 630 EXPORT_SYMBOL(__dev_get_by_name); 631 632 /** 633 * dev_get_by_name_rcu - find a device by its name 634 * @net: the applicable net namespace 635 * @name: name to find 636 * 637 * Find an interface by name. 638 * If the name is found a pointer to the device is returned. 639 * If the name is not found then %NULL is returned. 640 * The reference counters are not incremented so the caller must be 641 * careful with locks. The caller must hold RCU lock. 642 */ 643 644 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name) 645 { 646 struct hlist_node *p; 647 struct net_device *dev; 648 struct hlist_head *head = dev_name_hash(net, name); 649 650 hlist_for_each_entry_rcu(dev, p, head, name_hlist) 651 if (!strncmp(dev->name, name, IFNAMSIZ)) 652 return dev; 653 654 return NULL; 655 } 656 EXPORT_SYMBOL(dev_get_by_name_rcu); 657 658 /** 659 * dev_get_by_name - find a device by its name 660 * @net: the applicable net namespace 661 * @name: name to find 662 * 663 * Find an interface by name. This can be called from any 664 * context and does its own locking. The returned handle has 665 * the usage count incremented and the caller must use dev_put() to 666 * release it when it is no longer needed. %NULL is returned if no 667 * matching device is found. 668 */ 669 670 struct net_device *dev_get_by_name(struct net *net, const char *name) 671 { 672 struct net_device *dev; 673 674 rcu_read_lock(); 675 dev = dev_get_by_name_rcu(net, name); 676 if (dev) 677 dev_hold(dev); 678 rcu_read_unlock(); 679 return dev; 680 } 681 EXPORT_SYMBOL(dev_get_by_name); 682 683 /** 684 * __dev_get_by_index - find a device by its ifindex 685 * @net: the applicable net namespace 686 * @ifindex: index of device 687 * 688 * Search for an interface by index. Returns %NULL if the device 689 * is not found or a pointer to the device. The device has not 690 * had its reference counter increased so the caller must be careful 691 * about locking. The caller must hold either the RTNL semaphore 692 * or @dev_base_lock. 693 */ 694 695 struct net_device *__dev_get_by_index(struct net *net, int ifindex) 696 { 697 struct hlist_node *p; 698 struct net_device *dev; 699 struct hlist_head *head = dev_index_hash(net, ifindex); 700 701 hlist_for_each_entry(dev, p, head, index_hlist) 702 if (dev->ifindex == ifindex) 703 return dev; 704 705 return NULL; 706 } 707 EXPORT_SYMBOL(__dev_get_by_index); 708 709 /** 710 * dev_get_by_index_rcu - find a device by its ifindex 711 * @net: the applicable net namespace 712 * @ifindex: index of device 713 * 714 * Search for an interface by index. Returns %NULL if the device 715 * is not found or a pointer to the device. The device has not 716 * had its reference counter increased so the caller must be careful 717 * about locking. The caller must hold RCU lock. 718 */ 719 720 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex) 721 { 722 struct hlist_node *p; 723 struct net_device *dev; 724 struct hlist_head *head = dev_index_hash(net, ifindex); 725 726 hlist_for_each_entry_rcu(dev, p, head, index_hlist) 727 if (dev->ifindex == ifindex) 728 return dev; 729 730 return NULL; 731 } 732 EXPORT_SYMBOL(dev_get_by_index_rcu); 733 734 735 /** 736 * dev_get_by_index - find a device by its ifindex 737 * @net: the applicable net namespace 738 * @ifindex: index of device 739 * 740 * Search for an interface by index. Returns NULL if the device 741 * is not found or a pointer to the device. The device returned has 742 * had a reference added and the pointer is safe until the user calls 743 * dev_put to indicate they have finished with it. 744 */ 745 746 struct net_device *dev_get_by_index(struct net *net, int ifindex) 747 { 748 struct net_device *dev; 749 750 rcu_read_lock(); 751 dev = dev_get_by_index_rcu(net, ifindex); 752 if (dev) 753 dev_hold(dev); 754 rcu_read_unlock(); 755 return dev; 756 } 757 EXPORT_SYMBOL(dev_get_by_index); 758 759 /** 760 * dev_getbyhwaddr_rcu - find a device by its hardware address 761 * @net: the applicable net namespace 762 * @type: media type of device 763 * @ha: hardware address 764 * 765 * Search for an interface by MAC address. Returns NULL if the device 766 * is not found or a pointer to the device. 767 * The caller must hold RCU or RTNL. 768 * The returned device has not had its ref count increased 769 * and the caller must therefore be careful about locking 770 * 771 */ 772 773 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 774 const char *ha) 775 { 776 struct net_device *dev; 777 778 for_each_netdev_rcu(net, dev) 779 if (dev->type == type && 780 !memcmp(dev->dev_addr, ha, dev->addr_len)) 781 return dev; 782 783 return NULL; 784 } 785 EXPORT_SYMBOL(dev_getbyhwaddr_rcu); 786 787 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type) 788 { 789 struct net_device *dev; 790 791 ASSERT_RTNL(); 792 for_each_netdev(net, dev) 793 if (dev->type == type) 794 return dev; 795 796 return NULL; 797 } 798 EXPORT_SYMBOL(__dev_getfirstbyhwtype); 799 800 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type) 801 { 802 struct net_device *dev, *ret = NULL; 803 804 rcu_read_lock(); 805 for_each_netdev_rcu(net, dev) 806 if (dev->type == type) { 807 dev_hold(dev); 808 ret = dev; 809 break; 810 } 811 rcu_read_unlock(); 812 return ret; 813 } 814 EXPORT_SYMBOL(dev_getfirstbyhwtype); 815 816 /** 817 * dev_get_by_flags_rcu - find any device with given flags 818 * @net: the applicable net namespace 819 * @if_flags: IFF_* values 820 * @mask: bitmask of bits in if_flags to check 821 * 822 * Search for any interface with the given flags. Returns NULL if a device 823 * is not found or a pointer to the device. Must be called inside 824 * rcu_read_lock(), and result refcount is unchanged. 825 */ 826 827 struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short if_flags, 828 unsigned short mask) 829 { 830 struct net_device *dev, *ret; 831 832 ret = NULL; 833 for_each_netdev_rcu(net, dev) { 834 if (((dev->flags ^ if_flags) & mask) == 0) { 835 ret = dev; 836 break; 837 } 838 } 839 return ret; 840 } 841 EXPORT_SYMBOL(dev_get_by_flags_rcu); 842 843 /** 844 * dev_valid_name - check if name is okay for network device 845 * @name: name string 846 * 847 * Network device names need to be valid file names to 848 * to allow sysfs to work. We also disallow any kind of 849 * whitespace. 850 */ 851 int dev_valid_name(const char *name) 852 { 853 if (*name == '\0') 854 return 0; 855 if (strlen(name) >= IFNAMSIZ) 856 return 0; 857 if (!strcmp(name, ".") || !strcmp(name, "..")) 858 return 0; 859 860 while (*name) { 861 if (*name == '/' || isspace(*name)) 862 return 0; 863 name++; 864 } 865 return 1; 866 } 867 EXPORT_SYMBOL(dev_valid_name); 868 869 /** 870 * __dev_alloc_name - allocate a name for a device 871 * @net: network namespace to allocate the device name in 872 * @name: name format string 873 * @buf: scratch buffer and result name string 874 * 875 * Passed a format string - eg "lt%d" it will try and find a suitable 876 * id. It scans list of devices to build up a free map, then chooses 877 * the first empty slot. The caller must hold the dev_base or rtnl lock 878 * while allocating the name and adding the device in order to avoid 879 * duplicates. 880 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 881 * Returns the number of the unit assigned or a negative errno code. 882 */ 883 884 static int __dev_alloc_name(struct net *net, const char *name, char *buf) 885 { 886 int i = 0; 887 const char *p; 888 const int max_netdevices = 8*PAGE_SIZE; 889 unsigned long *inuse; 890 struct net_device *d; 891 892 p = strnchr(name, IFNAMSIZ-1, '%'); 893 if (p) { 894 /* 895 * Verify the string as this thing may have come from 896 * the user. There must be either one "%d" and no other "%" 897 * characters. 898 */ 899 if (p[1] != 'd' || strchr(p + 2, '%')) 900 return -EINVAL; 901 902 /* Use one page as a bit array of possible slots */ 903 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC); 904 if (!inuse) 905 return -ENOMEM; 906 907 for_each_netdev(net, d) { 908 if (!sscanf(d->name, name, &i)) 909 continue; 910 if (i < 0 || i >= max_netdevices) 911 continue; 912 913 /* avoid cases where sscanf is not exact inverse of printf */ 914 snprintf(buf, IFNAMSIZ, name, i); 915 if (!strncmp(buf, d->name, IFNAMSIZ)) 916 set_bit(i, inuse); 917 } 918 919 i = find_first_zero_bit(inuse, max_netdevices); 920 free_page((unsigned long) inuse); 921 } 922 923 if (buf != name) 924 snprintf(buf, IFNAMSIZ, name, i); 925 if (!__dev_get_by_name(net, buf)) 926 return i; 927 928 /* It is possible to run out of possible slots 929 * when the name is long and there isn't enough space left 930 * for the digits, or if all bits are used. 931 */ 932 return -ENFILE; 933 } 934 935 /** 936 * dev_alloc_name - allocate a name for a device 937 * @dev: device 938 * @name: name format string 939 * 940 * Passed a format string - eg "lt%d" it will try and find a suitable 941 * id. It scans list of devices to build up a free map, then chooses 942 * the first empty slot. The caller must hold the dev_base or rtnl lock 943 * while allocating the name and adding the device in order to avoid 944 * duplicates. 945 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 946 * Returns the number of the unit assigned or a negative errno code. 947 */ 948 949 int dev_alloc_name(struct net_device *dev, const char *name) 950 { 951 char buf[IFNAMSIZ]; 952 struct net *net; 953 int ret; 954 955 BUG_ON(!dev_net(dev)); 956 net = dev_net(dev); 957 ret = __dev_alloc_name(net, name, buf); 958 if (ret >= 0) 959 strlcpy(dev->name, buf, IFNAMSIZ); 960 return ret; 961 } 962 EXPORT_SYMBOL(dev_alloc_name); 963 964 static int dev_get_valid_name(struct net_device *dev, const char *name) 965 { 966 struct net *net; 967 968 BUG_ON(!dev_net(dev)); 969 net = dev_net(dev); 970 971 if (!dev_valid_name(name)) 972 return -EINVAL; 973 974 if (strchr(name, '%')) 975 return dev_alloc_name(dev, name); 976 else if (__dev_get_by_name(net, name)) 977 return -EEXIST; 978 else if (dev->name != name) 979 strlcpy(dev->name, name, IFNAMSIZ); 980 981 return 0; 982 } 983 984 /** 985 * dev_change_name - change name of a device 986 * @dev: device 987 * @newname: name (or format string) must be at least IFNAMSIZ 988 * 989 * Change name of a device, can pass format strings "eth%d". 990 * for wildcarding. 991 */ 992 int dev_change_name(struct net_device *dev, const char *newname) 993 { 994 char oldname[IFNAMSIZ]; 995 int err = 0; 996 int ret; 997 struct net *net; 998 999 ASSERT_RTNL(); 1000 BUG_ON(!dev_net(dev)); 1001 1002 net = dev_net(dev); 1003 if (dev->flags & IFF_UP) 1004 return -EBUSY; 1005 1006 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) 1007 return 0; 1008 1009 memcpy(oldname, dev->name, IFNAMSIZ); 1010 1011 err = dev_get_valid_name(dev, newname); 1012 if (err < 0) 1013 return err; 1014 1015 rollback: 1016 ret = device_rename(&dev->dev, dev->name); 1017 if (ret) { 1018 memcpy(dev->name, oldname, IFNAMSIZ); 1019 return ret; 1020 } 1021 1022 write_lock_bh(&dev_base_lock); 1023 hlist_del_rcu(&dev->name_hlist); 1024 write_unlock_bh(&dev_base_lock); 1025 1026 synchronize_rcu(); 1027 1028 write_lock_bh(&dev_base_lock); 1029 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name)); 1030 write_unlock_bh(&dev_base_lock); 1031 1032 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev); 1033 ret = notifier_to_errno(ret); 1034 1035 if (ret) { 1036 /* err >= 0 after dev_alloc_name() or stores the first errno */ 1037 if (err >= 0) { 1038 err = ret; 1039 memcpy(dev->name, oldname, IFNAMSIZ); 1040 goto rollback; 1041 } else { 1042 printk(KERN_ERR 1043 "%s: name change rollback failed: %d.\n", 1044 dev->name, ret); 1045 } 1046 } 1047 1048 return err; 1049 } 1050 1051 /** 1052 * dev_set_alias - change ifalias of a device 1053 * @dev: device 1054 * @alias: name up to IFALIASZ 1055 * @len: limit of bytes to copy from info 1056 * 1057 * Set ifalias for a device, 1058 */ 1059 int dev_set_alias(struct net_device *dev, const char *alias, size_t len) 1060 { 1061 ASSERT_RTNL(); 1062 1063 if (len >= IFALIASZ) 1064 return -EINVAL; 1065 1066 if (!len) { 1067 if (dev->ifalias) { 1068 kfree(dev->ifalias); 1069 dev->ifalias = NULL; 1070 } 1071 return 0; 1072 } 1073 1074 dev->ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL); 1075 if (!dev->ifalias) 1076 return -ENOMEM; 1077 1078 strlcpy(dev->ifalias, alias, len+1); 1079 return len; 1080 } 1081 1082 1083 /** 1084 * netdev_features_change - device changes features 1085 * @dev: device to cause notification 1086 * 1087 * Called to indicate a device has changed features. 1088 */ 1089 void netdev_features_change(struct net_device *dev) 1090 { 1091 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev); 1092 } 1093 EXPORT_SYMBOL(netdev_features_change); 1094 1095 /** 1096 * netdev_state_change - device changes state 1097 * @dev: device to cause notification 1098 * 1099 * Called to indicate a device has changed state. This function calls 1100 * the notifier chains for netdev_chain and sends a NEWLINK message 1101 * to the routing socket. 1102 */ 1103 void netdev_state_change(struct net_device *dev) 1104 { 1105 if (dev->flags & IFF_UP) { 1106 call_netdevice_notifiers(NETDEV_CHANGE, dev); 1107 rtmsg_ifinfo(RTM_NEWLINK, dev, 0); 1108 } 1109 } 1110 EXPORT_SYMBOL(netdev_state_change); 1111 1112 int netdev_bonding_change(struct net_device *dev, unsigned long event) 1113 { 1114 return call_netdevice_notifiers(event, dev); 1115 } 1116 EXPORT_SYMBOL(netdev_bonding_change); 1117 1118 /** 1119 * dev_load - load a network module 1120 * @net: the applicable net namespace 1121 * @name: name of interface 1122 * 1123 * If a network interface is not present and the process has suitable 1124 * privileges this function loads the module. If module loading is not 1125 * available in this kernel then it becomes a nop. 1126 */ 1127 1128 void dev_load(struct net *net, const char *name) 1129 { 1130 struct net_device *dev; 1131 int no_module; 1132 1133 rcu_read_lock(); 1134 dev = dev_get_by_name_rcu(net, name); 1135 rcu_read_unlock(); 1136 1137 no_module = !dev; 1138 if (no_module && capable(CAP_NET_ADMIN)) 1139 no_module = request_module("netdev-%s", name); 1140 if (no_module && capable(CAP_SYS_MODULE)) { 1141 if (!request_module("%s", name)) 1142 pr_err("Loading kernel module for a network device " 1143 "with CAP_SYS_MODULE (deprecated). Use CAP_NET_ADMIN and alias netdev-%s " 1144 "instead\n", name); 1145 } 1146 } 1147 EXPORT_SYMBOL(dev_load); 1148 1149 static int __dev_open(struct net_device *dev) 1150 { 1151 const struct net_device_ops *ops = dev->netdev_ops; 1152 int ret; 1153 1154 ASSERT_RTNL(); 1155 1156 if (!netif_device_present(dev)) 1157 return -ENODEV; 1158 1159 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev); 1160 ret = notifier_to_errno(ret); 1161 if (ret) 1162 return ret; 1163 1164 set_bit(__LINK_STATE_START, &dev->state); 1165 1166 if (ops->ndo_validate_addr) 1167 ret = ops->ndo_validate_addr(dev); 1168 1169 if (!ret && ops->ndo_open) 1170 ret = ops->ndo_open(dev); 1171 1172 if (ret) 1173 clear_bit(__LINK_STATE_START, &dev->state); 1174 else { 1175 dev->flags |= IFF_UP; 1176 net_dmaengine_get(); 1177 dev_set_rx_mode(dev); 1178 dev_activate(dev); 1179 } 1180 1181 return ret; 1182 } 1183 1184 /** 1185 * dev_open - prepare an interface for use. 1186 * @dev: device to open 1187 * 1188 * Takes a device from down to up state. The device's private open 1189 * function is invoked and then the multicast lists are loaded. Finally 1190 * the device is moved into the up state and a %NETDEV_UP message is 1191 * sent to the netdev notifier chain. 1192 * 1193 * Calling this function on an active interface is a nop. On a failure 1194 * a negative errno code is returned. 1195 */ 1196 int dev_open(struct net_device *dev) 1197 { 1198 int ret; 1199 1200 if (dev->flags & IFF_UP) 1201 return 0; 1202 1203 ret = __dev_open(dev); 1204 if (ret < 0) 1205 return ret; 1206 1207 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING); 1208 call_netdevice_notifiers(NETDEV_UP, dev); 1209 1210 return ret; 1211 } 1212 EXPORT_SYMBOL(dev_open); 1213 1214 static int __dev_close_many(struct list_head *head) 1215 { 1216 struct net_device *dev; 1217 1218 ASSERT_RTNL(); 1219 might_sleep(); 1220 1221 list_for_each_entry(dev, head, unreg_list) { 1222 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev); 1223 1224 clear_bit(__LINK_STATE_START, &dev->state); 1225 1226 /* Synchronize to scheduled poll. We cannot touch poll list, it 1227 * can be even on different cpu. So just clear netif_running(). 1228 * 1229 * dev->stop() will invoke napi_disable() on all of it's 1230 * napi_struct instances on this device. 1231 */ 1232 smp_mb__after_clear_bit(); /* Commit netif_running(). */ 1233 } 1234 1235 dev_deactivate_many(head); 1236 1237 list_for_each_entry(dev, head, unreg_list) { 1238 const struct net_device_ops *ops = dev->netdev_ops; 1239 1240 /* 1241 * Call the device specific close. This cannot fail. 1242 * Only if device is UP 1243 * 1244 * We allow it to be called even after a DETACH hot-plug 1245 * event. 1246 */ 1247 if (ops->ndo_stop) 1248 ops->ndo_stop(dev); 1249 1250 dev->flags &= ~IFF_UP; 1251 net_dmaengine_put(); 1252 } 1253 1254 return 0; 1255 } 1256 1257 static int __dev_close(struct net_device *dev) 1258 { 1259 int retval; 1260 LIST_HEAD(single); 1261 1262 list_add(&dev->unreg_list, &single); 1263 retval = __dev_close_many(&single); 1264 list_del(&single); 1265 return retval; 1266 } 1267 1268 static int dev_close_many(struct list_head *head) 1269 { 1270 struct net_device *dev, *tmp; 1271 LIST_HEAD(tmp_list); 1272 1273 list_for_each_entry_safe(dev, tmp, head, unreg_list) 1274 if (!(dev->flags & IFF_UP)) 1275 list_move(&dev->unreg_list, &tmp_list); 1276 1277 __dev_close_many(head); 1278 1279 list_for_each_entry(dev, head, unreg_list) { 1280 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING); 1281 call_netdevice_notifiers(NETDEV_DOWN, dev); 1282 } 1283 1284 /* rollback_registered_many needs the complete original list */ 1285 list_splice(&tmp_list, head); 1286 return 0; 1287 } 1288 1289 /** 1290 * dev_close - shutdown an interface. 1291 * @dev: device to shutdown 1292 * 1293 * This function moves an active device into down state. A 1294 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device 1295 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier 1296 * chain. 1297 */ 1298 int dev_close(struct net_device *dev) 1299 { 1300 if (dev->flags & IFF_UP) { 1301 LIST_HEAD(single); 1302 1303 list_add(&dev->unreg_list, &single); 1304 dev_close_many(&single); 1305 list_del(&single); 1306 } 1307 return 0; 1308 } 1309 EXPORT_SYMBOL(dev_close); 1310 1311 1312 /** 1313 * dev_disable_lro - disable Large Receive Offload on a device 1314 * @dev: device 1315 * 1316 * Disable Large Receive Offload (LRO) on a net device. Must be 1317 * called under RTNL. This is needed if received packets may be 1318 * forwarded to another interface. 1319 */ 1320 void dev_disable_lro(struct net_device *dev) 1321 { 1322 /* 1323 * If we're trying to disable lro on a vlan device 1324 * use the underlying physical device instead 1325 */ 1326 if (is_vlan_dev(dev)) 1327 dev = vlan_dev_real_dev(dev); 1328 1329 dev->wanted_features &= ~NETIF_F_LRO; 1330 netdev_update_features(dev); 1331 1332 if (unlikely(dev->features & NETIF_F_LRO)) 1333 netdev_WARN(dev, "failed to disable LRO!\n"); 1334 } 1335 EXPORT_SYMBOL(dev_disable_lro); 1336 1337 1338 static int dev_boot_phase = 1; 1339 1340 /** 1341 * register_netdevice_notifier - register a network notifier block 1342 * @nb: notifier 1343 * 1344 * Register a notifier to be called when network device events occur. 1345 * The notifier passed is linked into the kernel structures and must 1346 * not be reused until it has been unregistered. A negative errno code 1347 * is returned on a failure. 1348 * 1349 * When registered all registration and up events are replayed 1350 * to the new notifier to allow device to have a race free 1351 * view of the network device list. 1352 */ 1353 1354 int register_netdevice_notifier(struct notifier_block *nb) 1355 { 1356 struct net_device *dev; 1357 struct net_device *last; 1358 struct net *net; 1359 int err; 1360 1361 rtnl_lock(); 1362 err = raw_notifier_chain_register(&netdev_chain, nb); 1363 if (err) 1364 goto unlock; 1365 if (dev_boot_phase) 1366 goto unlock; 1367 for_each_net(net) { 1368 for_each_netdev(net, dev) { 1369 err = nb->notifier_call(nb, NETDEV_REGISTER, dev); 1370 err = notifier_to_errno(err); 1371 if (err) 1372 goto rollback; 1373 1374 if (!(dev->flags & IFF_UP)) 1375 continue; 1376 1377 nb->notifier_call(nb, NETDEV_UP, dev); 1378 } 1379 } 1380 1381 unlock: 1382 rtnl_unlock(); 1383 return err; 1384 1385 rollback: 1386 last = dev; 1387 for_each_net(net) { 1388 for_each_netdev(net, dev) { 1389 if (dev == last) 1390 goto outroll; 1391 1392 if (dev->flags & IFF_UP) { 1393 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev); 1394 nb->notifier_call(nb, NETDEV_DOWN, dev); 1395 } 1396 nb->notifier_call(nb, NETDEV_UNREGISTER, dev); 1397 nb->notifier_call(nb, NETDEV_UNREGISTER_BATCH, dev); 1398 } 1399 } 1400 1401 outroll: 1402 raw_notifier_chain_unregister(&netdev_chain, nb); 1403 goto unlock; 1404 } 1405 EXPORT_SYMBOL(register_netdevice_notifier); 1406 1407 /** 1408 * unregister_netdevice_notifier - unregister a network notifier block 1409 * @nb: notifier 1410 * 1411 * Unregister a notifier previously registered by 1412 * register_netdevice_notifier(). The notifier is unlinked into the 1413 * kernel structures and may then be reused. A negative errno code 1414 * is returned on a failure. 1415 */ 1416 1417 int unregister_netdevice_notifier(struct notifier_block *nb) 1418 { 1419 int err; 1420 1421 rtnl_lock(); 1422 err = raw_notifier_chain_unregister(&netdev_chain, nb); 1423 rtnl_unlock(); 1424 return err; 1425 } 1426 EXPORT_SYMBOL(unregister_netdevice_notifier); 1427 1428 /** 1429 * call_netdevice_notifiers - call all network notifier blocks 1430 * @val: value passed unmodified to notifier function 1431 * @dev: net_device pointer passed unmodified to notifier function 1432 * 1433 * Call all network notifier blocks. Parameters and return value 1434 * are as for raw_notifier_call_chain(). 1435 */ 1436 1437 int call_netdevice_notifiers(unsigned long val, struct net_device *dev) 1438 { 1439 ASSERT_RTNL(); 1440 return raw_notifier_call_chain(&netdev_chain, val, dev); 1441 } 1442 EXPORT_SYMBOL(call_netdevice_notifiers); 1443 1444 static struct jump_label_key netstamp_needed __read_mostly; 1445 #ifdef HAVE_JUMP_LABEL 1446 /* We are not allowed to call jump_label_dec() from irq context 1447 * If net_disable_timestamp() is called from irq context, defer the 1448 * jump_label_dec() calls. 1449 */ 1450 static atomic_t netstamp_needed_deferred; 1451 #endif 1452 1453 void net_enable_timestamp(void) 1454 { 1455 #ifdef HAVE_JUMP_LABEL 1456 int deferred = atomic_xchg(&netstamp_needed_deferred, 0); 1457 1458 if (deferred) { 1459 while (--deferred) 1460 jump_label_dec(&netstamp_needed); 1461 return; 1462 } 1463 #endif 1464 WARN_ON(in_interrupt()); 1465 jump_label_inc(&netstamp_needed); 1466 } 1467 EXPORT_SYMBOL(net_enable_timestamp); 1468 1469 void net_disable_timestamp(void) 1470 { 1471 #ifdef HAVE_JUMP_LABEL 1472 if (in_interrupt()) { 1473 atomic_inc(&netstamp_needed_deferred); 1474 return; 1475 } 1476 #endif 1477 jump_label_dec(&netstamp_needed); 1478 } 1479 EXPORT_SYMBOL(net_disable_timestamp); 1480 1481 static inline void net_timestamp_set(struct sk_buff *skb) 1482 { 1483 skb->tstamp.tv64 = 0; 1484 if (static_branch(&netstamp_needed)) 1485 __net_timestamp(skb); 1486 } 1487 1488 #define net_timestamp_check(COND, SKB) \ 1489 if (static_branch(&netstamp_needed)) { \ 1490 if ((COND) && !(SKB)->tstamp.tv64) \ 1491 __net_timestamp(SKB); \ 1492 } \ 1493 1494 static int net_hwtstamp_validate(struct ifreq *ifr) 1495 { 1496 struct hwtstamp_config cfg; 1497 enum hwtstamp_tx_types tx_type; 1498 enum hwtstamp_rx_filters rx_filter; 1499 int tx_type_valid = 0; 1500 int rx_filter_valid = 0; 1501 1502 if (copy_from_user(&cfg, ifr->ifr_data, sizeof(cfg))) 1503 return -EFAULT; 1504 1505 if (cfg.flags) /* reserved for future extensions */ 1506 return -EINVAL; 1507 1508 tx_type = cfg.tx_type; 1509 rx_filter = cfg.rx_filter; 1510 1511 switch (tx_type) { 1512 case HWTSTAMP_TX_OFF: 1513 case HWTSTAMP_TX_ON: 1514 case HWTSTAMP_TX_ONESTEP_SYNC: 1515 tx_type_valid = 1; 1516 break; 1517 } 1518 1519 switch (rx_filter) { 1520 case HWTSTAMP_FILTER_NONE: 1521 case HWTSTAMP_FILTER_ALL: 1522 case HWTSTAMP_FILTER_SOME: 1523 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT: 1524 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC: 1525 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ: 1526 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: 1527 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: 1528 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: 1529 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT: 1530 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC: 1531 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ: 1532 case HWTSTAMP_FILTER_PTP_V2_EVENT: 1533 case HWTSTAMP_FILTER_PTP_V2_SYNC: 1534 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ: 1535 rx_filter_valid = 1; 1536 break; 1537 } 1538 1539 if (!tx_type_valid || !rx_filter_valid) 1540 return -ERANGE; 1541 1542 return 0; 1543 } 1544 1545 static inline bool is_skb_forwardable(struct net_device *dev, 1546 struct sk_buff *skb) 1547 { 1548 unsigned int len; 1549 1550 if (!(dev->flags & IFF_UP)) 1551 return false; 1552 1553 len = dev->mtu + dev->hard_header_len + VLAN_HLEN; 1554 if (skb->len <= len) 1555 return true; 1556 1557 /* if TSO is enabled, we don't care about the length as the packet 1558 * could be forwarded without being segmented before 1559 */ 1560 if (skb_is_gso(skb)) 1561 return true; 1562 1563 return false; 1564 } 1565 1566 /** 1567 * dev_forward_skb - loopback an skb to another netif 1568 * 1569 * @dev: destination network device 1570 * @skb: buffer to forward 1571 * 1572 * return values: 1573 * NET_RX_SUCCESS (no congestion) 1574 * NET_RX_DROP (packet was dropped, but freed) 1575 * 1576 * dev_forward_skb can be used for injecting an skb from the 1577 * start_xmit function of one device into the receive queue 1578 * of another device. 1579 * 1580 * The receiving device may be in another namespace, so 1581 * we have to clear all information in the skb that could 1582 * impact namespace isolation. 1583 */ 1584 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 1585 { 1586 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) { 1587 if (skb_copy_ubufs(skb, GFP_ATOMIC)) { 1588 atomic_long_inc(&dev->rx_dropped); 1589 kfree_skb(skb); 1590 return NET_RX_DROP; 1591 } 1592 } 1593 1594 skb_orphan(skb); 1595 nf_reset(skb); 1596 1597 if (unlikely(!is_skb_forwardable(dev, skb))) { 1598 atomic_long_inc(&dev->rx_dropped); 1599 kfree_skb(skb); 1600 return NET_RX_DROP; 1601 } 1602 skb_set_dev(skb, dev); 1603 skb->tstamp.tv64 = 0; 1604 skb->pkt_type = PACKET_HOST; 1605 skb->protocol = eth_type_trans(skb, dev); 1606 return netif_rx(skb); 1607 } 1608 EXPORT_SYMBOL_GPL(dev_forward_skb); 1609 1610 static inline int deliver_skb(struct sk_buff *skb, 1611 struct packet_type *pt_prev, 1612 struct net_device *orig_dev) 1613 { 1614 atomic_inc(&skb->users); 1615 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 1616 } 1617 1618 /* 1619 * Support routine. Sends outgoing frames to any network 1620 * taps currently in use. 1621 */ 1622 1623 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev) 1624 { 1625 struct packet_type *ptype; 1626 struct sk_buff *skb2 = NULL; 1627 struct packet_type *pt_prev = NULL; 1628 1629 rcu_read_lock(); 1630 list_for_each_entry_rcu(ptype, &ptype_all, list) { 1631 /* Never send packets back to the socket 1632 * they originated from - MvS (miquels@drinkel.ow.org) 1633 */ 1634 if ((ptype->dev == dev || !ptype->dev) && 1635 (ptype->af_packet_priv == NULL || 1636 (struct sock *)ptype->af_packet_priv != skb->sk)) { 1637 if (pt_prev) { 1638 deliver_skb(skb2, pt_prev, skb->dev); 1639 pt_prev = ptype; 1640 continue; 1641 } 1642 1643 skb2 = skb_clone(skb, GFP_ATOMIC); 1644 if (!skb2) 1645 break; 1646 1647 net_timestamp_set(skb2); 1648 1649 /* skb->nh should be correctly 1650 set by sender, so that the second statement is 1651 just protection against buggy protocols. 1652 */ 1653 skb_reset_mac_header(skb2); 1654 1655 if (skb_network_header(skb2) < skb2->data || 1656 skb2->network_header > skb2->tail) { 1657 if (net_ratelimit()) 1658 printk(KERN_CRIT "protocol %04x is " 1659 "buggy, dev %s\n", 1660 ntohs(skb2->protocol), 1661 dev->name); 1662 skb_reset_network_header(skb2); 1663 } 1664 1665 skb2->transport_header = skb2->network_header; 1666 skb2->pkt_type = PACKET_OUTGOING; 1667 pt_prev = ptype; 1668 } 1669 } 1670 if (pt_prev) 1671 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev); 1672 rcu_read_unlock(); 1673 } 1674 1675 /* netif_setup_tc - Handle tc mappings on real_num_tx_queues change 1676 * @dev: Network device 1677 * @txq: number of queues available 1678 * 1679 * If real_num_tx_queues is changed the tc mappings may no longer be 1680 * valid. To resolve this verify the tc mapping remains valid and if 1681 * not NULL the mapping. With no priorities mapping to this 1682 * offset/count pair it will no longer be used. In the worst case TC0 1683 * is invalid nothing can be done so disable priority mappings. If is 1684 * expected that drivers will fix this mapping if they can before 1685 * calling netif_set_real_num_tx_queues. 1686 */ 1687 static void netif_setup_tc(struct net_device *dev, unsigned int txq) 1688 { 1689 int i; 1690 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 1691 1692 /* If TC0 is invalidated disable TC mapping */ 1693 if (tc->offset + tc->count > txq) { 1694 pr_warning("Number of in use tx queues changed " 1695 "invalidating tc mappings. Priority " 1696 "traffic classification disabled!\n"); 1697 dev->num_tc = 0; 1698 return; 1699 } 1700 1701 /* Invalidated prio to tc mappings set to TC0 */ 1702 for (i = 1; i < TC_BITMASK + 1; i++) { 1703 int q = netdev_get_prio_tc_map(dev, i); 1704 1705 tc = &dev->tc_to_txq[q]; 1706 if (tc->offset + tc->count > txq) { 1707 pr_warning("Number of in use tx queues " 1708 "changed. Priority %i to tc " 1709 "mapping %i is no longer valid " 1710 "setting map to 0\n", 1711 i, q); 1712 netdev_set_prio_tc_map(dev, i, 0); 1713 } 1714 } 1715 } 1716 1717 /* 1718 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues 1719 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed. 1720 */ 1721 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq) 1722 { 1723 int rc; 1724 1725 if (txq < 1 || txq > dev->num_tx_queues) 1726 return -EINVAL; 1727 1728 if (dev->reg_state == NETREG_REGISTERED || 1729 dev->reg_state == NETREG_UNREGISTERING) { 1730 ASSERT_RTNL(); 1731 1732 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues, 1733 txq); 1734 if (rc) 1735 return rc; 1736 1737 if (dev->num_tc) 1738 netif_setup_tc(dev, txq); 1739 1740 if (txq < dev->real_num_tx_queues) 1741 qdisc_reset_all_tx_gt(dev, txq); 1742 } 1743 1744 dev->real_num_tx_queues = txq; 1745 return 0; 1746 } 1747 EXPORT_SYMBOL(netif_set_real_num_tx_queues); 1748 1749 #ifdef CONFIG_RPS 1750 /** 1751 * netif_set_real_num_rx_queues - set actual number of RX queues used 1752 * @dev: Network device 1753 * @rxq: Actual number of RX queues 1754 * 1755 * This must be called either with the rtnl_lock held or before 1756 * registration of the net device. Returns 0 on success, or a 1757 * negative error code. If called before registration, it always 1758 * succeeds. 1759 */ 1760 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq) 1761 { 1762 int rc; 1763 1764 if (rxq < 1 || rxq > dev->num_rx_queues) 1765 return -EINVAL; 1766 1767 if (dev->reg_state == NETREG_REGISTERED) { 1768 ASSERT_RTNL(); 1769 1770 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues, 1771 rxq); 1772 if (rc) 1773 return rc; 1774 } 1775 1776 dev->real_num_rx_queues = rxq; 1777 return 0; 1778 } 1779 EXPORT_SYMBOL(netif_set_real_num_rx_queues); 1780 #endif 1781 1782 static inline void __netif_reschedule(struct Qdisc *q) 1783 { 1784 struct softnet_data *sd; 1785 unsigned long flags; 1786 1787 local_irq_save(flags); 1788 sd = &__get_cpu_var(softnet_data); 1789 q->next_sched = NULL; 1790 *sd->output_queue_tailp = q; 1791 sd->output_queue_tailp = &q->next_sched; 1792 raise_softirq_irqoff(NET_TX_SOFTIRQ); 1793 local_irq_restore(flags); 1794 } 1795 1796 void __netif_schedule(struct Qdisc *q) 1797 { 1798 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state)) 1799 __netif_reschedule(q); 1800 } 1801 EXPORT_SYMBOL(__netif_schedule); 1802 1803 void dev_kfree_skb_irq(struct sk_buff *skb) 1804 { 1805 if (atomic_dec_and_test(&skb->users)) { 1806 struct softnet_data *sd; 1807 unsigned long flags; 1808 1809 local_irq_save(flags); 1810 sd = &__get_cpu_var(softnet_data); 1811 skb->next = sd->completion_queue; 1812 sd->completion_queue = skb; 1813 raise_softirq_irqoff(NET_TX_SOFTIRQ); 1814 local_irq_restore(flags); 1815 } 1816 } 1817 EXPORT_SYMBOL(dev_kfree_skb_irq); 1818 1819 void dev_kfree_skb_any(struct sk_buff *skb) 1820 { 1821 if (in_irq() || irqs_disabled()) 1822 dev_kfree_skb_irq(skb); 1823 else 1824 dev_kfree_skb(skb); 1825 } 1826 EXPORT_SYMBOL(dev_kfree_skb_any); 1827 1828 1829 /** 1830 * netif_device_detach - mark device as removed 1831 * @dev: network device 1832 * 1833 * Mark device as removed from system and therefore no longer available. 1834 */ 1835 void netif_device_detach(struct net_device *dev) 1836 { 1837 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) && 1838 netif_running(dev)) { 1839 netif_tx_stop_all_queues(dev); 1840 } 1841 } 1842 EXPORT_SYMBOL(netif_device_detach); 1843 1844 /** 1845 * netif_device_attach - mark device as attached 1846 * @dev: network device 1847 * 1848 * Mark device as attached from system and restart if needed. 1849 */ 1850 void netif_device_attach(struct net_device *dev) 1851 { 1852 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) && 1853 netif_running(dev)) { 1854 netif_tx_wake_all_queues(dev); 1855 __netdev_watchdog_up(dev); 1856 } 1857 } 1858 EXPORT_SYMBOL(netif_device_attach); 1859 1860 /** 1861 * skb_dev_set -- assign a new device to a buffer 1862 * @skb: buffer for the new device 1863 * @dev: network device 1864 * 1865 * If an skb is owned by a device already, we have to reset 1866 * all data private to the namespace a device belongs to 1867 * before assigning it a new device. 1868 */ 1869 #ifdef CONFIG_NET_NS 1870 void skb_set_dev(struct sk_buff *skb, struct net_device *dev) 1871 { 1872 skb_dst_drop(skb); 1873 if (skb->dev && !net_eq(dev_net(skb->dev), dev_net(dev))) { 1874 secpath_reset(skb); 1875 nf_reset(skb); 1876 skb_init_secmark(skb); 1877 skb->mark = 0; 1878 skb->priority = 0; 1879 skb->nf_trace = 0; 1880 skb->ipvs_property = 0; 1881 #ifdef CONFIG_NET_SCHED 1882 skb->tc_index = 0; 1883 #endif 1884 } 1885 skb->dev = dev; 1886 } 1887 EXPORT_SYMBOL(skb_set_dev); 1888 #endif /* CONFIG_NET_NS */ 1889 1890 /* 1891 * Invalidate hardware checksum when packet is to be mangled, and 1892 * complete checksum manually on outgoing path. 1893 */ 1894 int skb_checksum_help(struct sk_buff *skb) 1895 { 1896 __wsum csum; 1897 int ret = 0, offset; 1898 1899 if (skb->ip_summed == CHECKSUM_COMPLETE) 1900 goto out_set_summed; 1901 1902 if (unlikely(skb_shinfo(skb)->gso_size)) { 1903 /* Let GSO fix up the checksum. */ 1904 goto out_set_summed; 1905 } 1906 1907 offset = skb_checksum_start_offset(skb); 1908 BUG_ON(offset >= skb_headlen(skb)); 1909 csum = skb_checksum(skb, offset, skb->len - offset, 0); 1910 1911 offset += skb->csum_offset; 1912 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb)); 1913 1914 if (skb_cloned(skb) && 1915 !skb_clone_writable(skb, offset + sizeof(__sum16))) { 1916 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 1917 if (ret) 1918 goto out; 1919 } 1920 1921 *(__sum16 *)(skb->data + offset) = csum_fold(csum); 1922 out_set_summed: 1923 skb->ip_summed = CHECKSUM_NONE; 1924 out: 1925 return ret; 1926 } 1927 EXPORT_SYMBOL(skb_checksum_help); 1928 1929 /** 1930 * skb_gso_segment - Perform segmentation on skb. 1931 * @skb: buffer to segment 1932 * @features: features for the output path (see dev->features) 1933 * 1934 * This function segments the given skb and returns a list of segments. 1935 * 1936 * It may return NULL if the skb requires no segmentation. This is 1937 * only possible when GSO is used for verifying header integrity. 1938 */ 1939 struct sk_buff *skb_gso_segment(struct sk_buff *skb, 1940 netdev_features_t features) 1941 { 1942 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT); 1943 struct packet_type *ptype; 1944 __be16 type = skb->protocol; 1945 int vlan_depth = ETH_HLEN; 1946 int err; 1947 1948 while (type == htons(ETH_P_8021Q)) { 1949 struct vlan_hdr *vh; 1950 1951 if (unlikely(!pskb_may_pull(skb, vlan_depth + VLAN_HLEN))) 1952 return ERR_PTR(-EINVAL); 1953 1954 vh = (struct vlan_hdr *)(skb->data + vlan_depth); 1955 type = vh->h_vlan_encapsulated_proto; 1956 vlan_depth += VLAN_HLEN; 1957 } 1958 1959 skb_reset_mac_header(skb); 1960 skb->mac_len = skb->network_header - skb->mac_header; 1961 __skb_pull(skb, skb->mac_len); 1962 1963 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) { 1964 struct net_device *dev = skb->dev; 1965 struct ethtool_drvinfo info = {}; 1966 1967 if (dev && dev->ethtool_ops && dev->ethtool_ops->get_drvinfo) 1968 dev->ethtool_ops->get_drvinfo(dev, &info); 1969 1970 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d ip_summed=%d\n", 1971 info.driver, dev ? &dev->features : NULL, 1972 skb->sk ? &skb->sk->sk_route_caps : NULL, 1973 skb->len, skb->data_len, skb->ip_summed); 1974 1975 if (skb_header_cloned(skb) && 1976 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))) 1977 return ERR_PTR(err); 1978 } 1979 1980 rcu_read_lock(); 1981 list_for_each_entry_rcu(ptype, 1982 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) { 1983 if (ptype->type == type && !ptype->dev && ptype->gso_segment) { 1984 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) { 1985 err = ptype->gso_send_check(skb); 1986 segs = ERR_PTR(err); 1987 if (err || skb_gso_ok(skb, features)) 1988 break; 1989 __skb_push(skb, (skb->data - 1990 skb_network_header(skb))); 1991 } 1992 segs = ptype->gso_segment(skb, features); 1993 break; 1994 } 1995 } 1996 rcu_read_unlock(); 1997 1998 __skb_push(skb, skb->data - skb_mac_header(skb)); 1999 2000 return segs; 2001 } 2002 EXPORT_SYMBOL(skb_gso_segment); 2003 2004 /* Take action when hardware reception checksum errors are detected. */ 2005 #ifdef CONFIG_BUG 2006 void netdev_rx_csum_fault(struct net_device *dev) 2007 { 2008 if (net_ratelimit()) { 2009 printk(KERN_ERR "%s: hw csum failure.\n", 2010 dev ? dev->name : "<unknown>"); 2011 dump_stack(); 2012 } 2013 } 2014 EXPORT_SYMBOL(netdev_rx_csum_fault); 2015 #endif 2016 2017 /* Actually, we should eliminate this check as soon as we know, that: 2018 * 1. IOMMU is present and allows to map all the memory. 2019 * 2. No high memory really exists on this machine. 2020 */ 2021 2022 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb) 2023 { 2024 #ifdef CONFIG_HIGHMEM 2025 int i; 2026 if (!(dev->features & NETIF_F_HIGHDMA)) { 2027 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2028 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2029 if (PageHighMem(skb_frag_page(frag))) 2030 return 1; 2031 } 2032 } 2033 2034 if (PCI_DMA_BUS_IS_PHYS) { 2035 struct device *pdev = dev->dev.parent; 2036 2037 if (!pdev) 2038 return 0; 2039 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2040 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2041 dma_addr_t addr = page_to_phys(skb_frag_page(frag)); 2042 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask) 2043 return 1; 2044 } 2045 } 2046 #endif 2047 return 0; 2048 } 2049 2050 struct dev_gso_cb { 2051 void (*destructor)(struct sk_buff *skb); 2052 }; 2053 2054 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb) 2055 2056 static void dev_gso_skb_destructor(struct sk_buff *skb) 2057 { 2058 struct dev_gso_cb *cb; 2059 2060 do { 2061 struct sk_buff *nskb = skb->next; 2062 2063 skb->next = nskb->next; 2064 nskb->next = NULL; 2065 kfree_skb(nskb); 2066 } while (skb->next); 2067 2068 cb = DEV_GSO_CB(skb); 2069 if (cb->destructor) 2070 cb->destructor(skb); 2071 } 2072 2073 /** 2074 * dev_gso_segment - Perform emulated hardware segmentation on skb. 2075 * @skb: buffer to segment 2076 * @features: device features as applicable to this skb 2077 * 2078 * This function segments the given skb and stores the list of segments 2079 * in skb->next. 2080 */ 2081 static int dev_gso_segment(struct sk_buff *skb, netdev_features_t features) 2082 { 2083 struct sk_buff *segs; 2084 2085 segs = skb_gso_segment(skb, features); 2086 2087 /* Verifying header integrity only. */ 2088 if (!segs) 2089 return 0; 2090 2091 if (IS_ERR(segs)) 2092 return PTR_ERR(segs); 2093 2094 skb->next = segs; 2095 DEV_GSO_CB(skb)->destructor = skb->destructor; 2096 skb->destructor = dev_gso_skb_destructor; 2097 2098 return 0; 2099 } 2100 2101 /* 2102 * Try to orphan skb early, right before transmission by the device. 2103 * We cannot orphan skb if tx timestamp is requested or the sk-reference 2104 * is needed on driver level for other reasons, e.g. see net/can/raw.c 2105 */ 2106 static inline void skb_orphan_try(struct sk_buff *skb) 2107 { 2108 struct sock *sk = skb->sk; 2109 2110 if (sk && !skb_shinfo(skb)->tx_flags) { 2111 /* skb_tx_hash() wont be able to get sk. 2112 * We copy sk_hash into skb->rxhash 2113 */ 2114 if (!skb->rxhash) 2115 skb->rxhash = sk->sk_hash; 2116 skb_orphan(skb); 2117 } 2118 } 2119 2120 static bool can_checksum_protocol(netdev_features_t features, __be16 protocol) 2121 { 2122 return ((features & NETIF_F_GEN_CSUM) || 2123 ((features & NETIF_F_V4_CSUM) && 2124 protocol == htons(ETH_P_IP)) || 2125 ((features & NETIF_F_V6_CSUM) && 2126 protocol == htons(ETH_P_IPV6)) || 2127 ((features & NETIF_F_FCOE_CRC) && 2128 protocol == htons(ETH_P_FCOE))); 2129 } 2130 2131 static netdev_features_t harmonize_features(struct sk_buff *skb, 2132 __be16 protocol, netdev_features_t features) 2133 { 2134 if (!can_checksum_protocol(features, protocol)) { 2135 features &= ~NETIF_F_ALL_CSUM; 2136 features &= ~NETIF_F_SG; 2137 } else if (illegal_highdma(skb->dev, skb)) { 2138 features &= ~NETIF_F_SG; 2139 } 2140 2141 return features; 2142 } 2143 2144 netdev_features_t netif_skb_features(struct sk_buff *skb) 2145 { 2146 __be16 protocol = skb->protocol; 2147 netdev_features_t features = skb->dev->features; 2148 2149 if (protocol == htons(ETH_P_8021Q)) { 2150 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data; 2151 protocol = veh->h_vlan_encapsulated_proto; 2152 } else if (!vlan_tx_tag_present(skb)) { 2153 return harmonize_features(skb, protocol, features); 2154 } 2155 2156 features &= (skb->dev->vlan_features | NETIF_F_HW_VLAN_TX); 2157 2158 if (protocol != htons(ETH_P_8021Q)) { 2159 return harmonize_features(skb, protocol, features); 2160 } else { 2161 features &= NETIF_F_SG | NETIF_F_HIGHDMA | NETIF_F_FRAGLIST | 2162 NETIF_F_GEN_CSUM | NETIF_F_HW_VLAN_TX; 2163 return harmonize_features(skb, protocol, features); 2164 } 2165 } 2166 EXPORT_SYMBOL(netif_skb_features); 2167 2168 /* 2169 * Returns true if either: 2170 * 1. skb has frag_list and the device doesn't support FRAGLIST, or 2171 * 2. skb is fragmented and the device does not support SG, or if 2172 * at least one of fragments is in highmem and device does not 2173 * support DMA from it. 2174 */ 2175 static inline int skb_needs_linearize(struct sk_buff *skb, 2176 int features) 2177 { 2178 return skb_is_nonlinear(skb) && 2179 ((skb_has_frag_list(skb) && 2180 !(features & NETIF_F_FRAGLIST)) || 2181 (skb_shinfo(skb)->nr_frags && 2182 !(features & NETIF_F_SG))); 2183 } 2184 2185 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev, 2186 struct netdev_queue *txq) 2187 { 2188 const struct net_device_ops *ops = dev->netdev_ops; 2189 int rc = NETDEV_TX_OK; 2190 unsigned int skb_len; 2191 2192 if (likely(!skb->next)) { 2193 netdev_features_t features; 2194 2195 /* 2196 * If device doesn't need skb->dst, release it right now while 2197 * its hot in this cpu cache 2198 */ 2199 if (dev->priv_flags & IFF_XMIT_DST_RELEASE) 2200 skb_dst_drop(skb); 2201 2202 if (!list_empty(&ptype_all)) 2203 dev_queue_xmit_nit(skb, dev); 2204 2205 skb_orphan_try(skb); 2206 2207 features = netif_skb_features(skb); 2208 2209 if (vlan_tx_tag_present(skb) && 2210 !(features & NETIF_F_HW_VLAN_TX)) { 2211 skb = __vlan_put_tag(skb, vlan_tx_tag_get(skb)); 2212 if (unlikely(!skb)) 2213 goto out; 2214 2215 skb->vlan_tci = 0; 2216 } 2217 2218 if (netif_needs_gso(skb, features)) { 2219 if (unlikely(dev_gso_segment(skb, features))) 2220 goto out_kfree_skb; 2221 if (skb->next) 2222 goto gso; 2223 } else { 2224 if (skb_needs_linearize(skb, features) && 2225 __skb_linearize(skb)) 2226 goto out_kfree_skb; 2227 2228 /* If packet is not checksummed and device does not 2229 * support checksumming for this protocol, complete 2230 * checksumming here. 2231 */ 2232 if (skb->ip_summed == CHECKSUM_PARTIAL) { 2233 skb_set_transport_header(skb, 2234 skb_checksum_start_offset(skb)); 2235 if (!(features & NETIF_F_ALL_CSUM) && 2236 skb_checksum_help(skb)) 2237 goto out_kfree_skb; 2238 } 2239 } 2240 2241 skb_len = skb->len; 2242 rc = ops->ndo_start_xmit(skb, dev); 2243 trace_net_dev_xmit(skb, rc, dev, skb_len); 2244 if (rc == NETDEV_TX_OK) 2245 txq_trans_update(txq); 2246 return rc; 2247 } 2248 2249 gso: 2250 do { 2251 struct sk_buff *nskb = skb->next; 2252 2253 skb->next = nskb->next; 2254 nskb->next = NULL; 2255 2256 /* 2257 * If device doesn't need nskb->dst, release it right now while 2258 * its hot in this cpu cache 2259 */ 2260 if (dev->priv_flags & IFF_XMIT_DST_RELEASE) 2261 skb_dst_drop(nskb); 2262 2263 skb_len = nskb->len; 2264 rc = ops->ndo_start_xmit(nskb, dev); 2265 trace_net_dev_xmit(nskb, rc, dev, skb_len); 2266 if (unlikely(rc != NETDEV_TX_OK)) { 2267 if (rc & ~NETDEV_TX_MASK) 2268 goto out_kfree_gso_skb; 2269 nskb->next = skb->next; 2270 skb->next = nskb; 2271 return rc; 2272 } 2273 txq_trans_update(txq); 2274 if (unlikely(netif_xmit_stopped(txq) && skb->next)) 2275 return NETDEV_TX_BUSY; 2276 } while (skb->next); 2277 2278 out_kfree_gso_skb: 2279 if (likely(skb->next == NULL)) 2280 skb->destructor = DEV_GSO_CB(skb)->destructor; 2281 out_kfree_skb: 2282 kfree_skb(skb); 2283 out: 2284 return rc; 2285 } 2286 2287 static u32 hashrnd __read_mostly; 2288 2289 /* 2290 * Returns a Tx hash based on the given packet descriptor a Tx queues' number 2291 * to be used as a distribution range. 2292 */ 2293 u16 __skb_tx_hash(const struct net_device *dev, const struct sk_buff *skb, 2294 unsigned int num_tx_queues) 2295 { 2296 u32 hash; 2297 u16 qoffset = 0; 2298 u16 qcount = num_tx_queues; 2299 2300 if (skb_rx_queue_recorded(skb)) { 2301 hash = skb_get_rx_queue(skb); 2302 while (unlikely(hash >= num_tx_queues)) 2303 hash -= num_tx_queues; 2304 return hash; 2305 } 2306 2307 if (dev->num_tc) { 2308 u8 tc = netdev_get_prio_tc_map(dev, skb->priority); 2309 qoffset = dev->tc_to_txq[tc].offset; 2310 qcount = dev->tc_to_txq[tc].count; 2311 } 2312 2313 if (skb->sk && skb->sk->sk_hash) 2314 hash = skb->sk->sk_hash; 2315 else 2316 hash = (__force u16) skb->protocol ^ skb->rxhash; 2317 hash = jhash_1word(hash, hashrnd); 2318 2319 return (u16) (((u64) hash * qcount) >> 32) + qoffset; 2320 } 2321 EXPORT_SYMBOL(__skb_tx_hash); 2322 2323 static inline u16 dev_cap_txqueue(struct net_device *dev, u16 queue_index) 2324 { 2325 if (unlikely(queue_index >= dev->real_num_tx_queues)) { 2326 if (net_ratelimit()) { 2327 pr_warning("%s selects TX queue %d, but " 2328 "real number of TX queues is %d\n", 2329 dev->name, queue_index, dev->real_num_tx_queues); 2330 } 2331 return 0; 2332 } 2333 return queue_index; 2334 } 2335 2336 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb) 2337 { 2338 #ifdef CONFIG_XPS 2339 struct xps_dev_maps *dev_maps; 2340 struct xps_map *map; 2341 int queue_index = -1; 2342 2343 rcu_read_lock(); 2344 dev_maps = rcu_dereference(dev->xps_maps); 2345 if (dev_maps) { 2346 map = rcu_dereference( 2347 dev_maps->cpu_map[raw_smp_processor_id()]); 2348 if (map) { 2349 if (map->len == 1) 2350 queue_index = map->queues[0]; 2351 else { 2352 u32 hash; 2353 if (skb->sk && skb->sk->sk_hash) 2354 hash = skb->sk->sk_hash; 2355 else 2356 hash = (__force u16) skb->protocol ^ 2357 skb->rxhash; 2358 hash = jhash_1word(hash, hashrnd); 2359 queue_index = map->queues[ 2360 ((u64)hash * map->len) >> 32]; 2361 } 2362 if (unlikely(queue_index >= dev->real_num_tx_queues)) 2363 queue_index = -1; 2364 } 2365 } 2366 rcu_read_unlock(); 2367 2368 return queue_index; 2369 #else 2370 return -1; 2371 #endif 2372 } 2373 2374 static struct netdev_queue *dev_pick_tx(struct net_device *dev, 2375 struct sk_buff *skb) 2376 { 2377 int queue_index; 2378 const struct net_device_ops *ops = dev->netdev_ops; 2379 2380 if (dev->real_num_tx_queues == 1) 2381 queue_index = 0; 2382 else if (ops->ndo_select_queue) { 2383 queue_index = ops->ndo_select_queue(dev, skb); 2384 queue_index = dev_cap_txqueue(dev, queue_index); 2385 } else { 2386 struct sock *sk = skb->sk; 2387 queue_index = sk_tx_queue_get(sk); 2388 2389 if (queue_index < 0 || skb->ooo_okay || 2390 queue_index >= dev->real_num_tx_queues) { 2391 int old_index = queue_index; 2392 2393 queue_index = get_xps_queue(dev, skb); 2394 if (queue_index < 0) 2395 queue_index = skb_tx_hash(dev, skb); 2396 2397 if (queue_index != old_index && sk) { 2398 struct dst_entry *dst = 2399 rcu_dereference_check(sk->sk_dst_cache, 1); 2400 2401 if (dst && skb_dst(skb) == dst) 2402 sk_tx_queue_set(sk, queue_index); 2403 } 2404 } 2405 } 2406 2407 skb_set_queue_mapping(skb, queue_index); 2408 return netdev_get_tx_queue(dev, queue_index); 2409 } 2410 2411 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q, 2412 struct net_device *dev, 2413 struct netdev_queue *txq) 2414 { 2415 spinlock_t *root_lock = qdisc_lock(q); 2416 bool contended; 2417 int rc; 2418 2419 qdisc_skb_cb(skb)->pkt_len = skb->len; 2420 qdisc_calculate_pkt_len(skb, q); 2421 /* 2422 * Heuristic to force contended enqueues to serialize on a 2423 * separate lock before trying to get qdisc main lock. 2424 * This permits __QDISC_STATE_RUNNING owner to get the lock more often 2425 * and dequeue packets faster. 2426 */ 2427 contended = qdisc_is_running(q); 2428 if (unlikely(contended)) 2429 spin_lock(&q->busylock); 2430 2431 spin_lock(root_lock); 2432 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) { 2433 kfree_skb(skb); 2434 rc = NET_XMIT_DROP; 2435 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) && 2436 qdisc_run_begin(q)) { 2437 /* 2438 * This is a work-conserving queue; there are no old skbs 2439 * waiting to be sent out; and the qdisc is not running - 2440 * xmit the skb directly. 2441 */ 2442 if (!(dev->priv_flags & IFF_XMIT_DST_RELEASE)) 2443 skb_dst_force(skb); 2444 2445 qdisc_bstats_update(q, skb); 2446 2447 if (sch_direct_xmit(skb, q, dev, txq, root_lock)) { 2448 if (unlikely(contended)) { 2449 spin_unlock(&q->busylock); 2450 contended = false; 2451 } 2452 __qdisc_run(q); 2453 } else 2454 qdisc_run_end(q); 2455 2456 rc = NET_XMIT_SUCCESS; 2457 } else { 2458 skb_dst_force(skb); 2459 rc = q->enqueue(skb, q) & NET_XMIT_MASK; 2460 if (qdisc_run_begin(q)) { 2461 if (unlikely(contended)) { 2462 spin_unlock(&q->busylock); 2463 contended = false; 2464 } 2465 __qdisc_run(q); 2466 } 2467 } 2468 spin_unlock(root_lock); 2469 if (unlikely(contended)) 2470 spin_unlock(&q->busylock); 2471 return rc; 2472 } 2473 2474 #if IS_ENABLED(CONFIG_NETPRIO_CGROUP) 2475 static void skb_update_prio(struct sk_buff *skb) 2476 { 2477 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap); 2478 2479 if ((!skb->priority) && (skb->sk) && map) 2480 skb->priority = map->priomap[skb->sk->sk_cgrp_prioidx]; 2481 } 2482 #else 2483 #define skb_update_prio(skb) 2484 #endif 2485 2486 static DEFINE_PER_CPU(int, xmit_recursion); 2487 #define RECURSION_LIMIT 10 2488 2489 /** 2490 * dev_queue_xmit - transmit a buffer 2491 * @skb: buffer to transmit 2492 * 2493 * Queue a buffer for transmission to a network device. The caller must 2494 * have set the device and priority and built the buffer before calling 2495 * this function. The function can be called from an interrupt. 2496 * 2497 * A negative errno code is returned on a failure. A success does not 2498 * guarantee the frame will be transmitted as it may be dropped due 2499 * to congestion or traffic shaping. 2500 * 2501 * ----------------------------------------------------------------------------------- 2502 * I notice this method can also return errors from the queue disciplines, 2503 * including NET_XMIT_DROP, which is a positive value. So, errors can also 2504 * be positive. 2505 * 2506 * Regardless of the return value, the skb is consumed, so it is currently 2507 * difficult to retry a send to this method. (You can bump the ref count 2508 * before sending to hold a reference for retry if you are careful.) 2509 * 2510 * When calling this method, interrupts MUST be enabled. This is because 2511 * the BH enable code must have IRQs enabled so that it will not deadlock. 2512 * --BLG 2513 */ 2514 int dev_queue_xmit(struct sk_buff *skb) 2515 { 2516 struct net_device *dev = skb->dev; 2517 struct netdev_queue *txq; 2518 struct Qdisc *q; 2519 int rc = -ENOMEM; 2520 2521 /* Disable soft irqs for various locks below. Also 2522 * stops preemption for RCU. 2523 */ 2524 rcu_read_lock_bh(); 2525 2526 skb_update_prio(skb); 2527 2528 txq = dev_pick_tx(dev, skb); 2529 q = rcu_dereference_bh(txq->qdisc); 2530 2531 #ifdef CONFIG_NET_CLS_ACT 2532 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS); 2533 #endif 2534 trace_net_dev_queue(skb); 2535 if (q->enqueue) { 2536 rc = __dev_xmit_skb(skb, q, dev, txq); 2537 goto out; 2538 } 2539 2540 /* The device has no queue. Common case for software devices: 2541 loopback, all the sorts of tunnels... 2542 2543 Really, it is unlikely that netif_tx_lock protection is necessary 2544 here. (f.e. loopback and IP tunnels are clean ignoring statistics 2545 counters.) 2546 However, it is possible, that they rely on protection 2547 made by us here. 2548 2549 Check this and shot the lock. It is not prone from deadlocks. 2550 Either shot noqueue qdisc, it is even simpler 8) 2551 */ 2552 if (dev->flags & IFF_UP) { 2553 int cpu = smp_processor_id(); /* ok because BHs are off */ 2554 2555 if (txq->xmit_lock_owner != cpu) { 2556 2557 if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT) 2558 goto recursion_alert; 2559 2560 HARD_TX_LOCK(dev, txq, cpu); 2561 2562 if (!netif_xmit_stopped(txq)) { 2563 __this_cpu_inc(xmit_recursion); 2564 rc = dev_hard_start_xmit(skb, dev, txq); 2565 __this_cpu_dec(xmit_recursion); 2566 if (dev_xmit_complete(rc)) { 2567 HARD_TX_UNLOCK(dev, txq); 2568 goto out; 2569 } 2570 } 2571 HARD_TX_UNLOCK(dev, txq); 2572 if (net_ratelimit()) 2573 printk(KERN_CRIT "Virtual device %s asks to " 2574 "queue packet!\n", dev->name); 2575 } else { 2576 /* Recursion is detected! It is possible, 2577 * unfortunately 2578 */ 2579 recursion_alert: 2580 if (net_ratelimit()) 2581 printk(KERN_CRIT "Dead loop on virtual device " 2582 "%s, fix it urgently!\n", dev->name); 2583 } 2584 } 2585 2586 rc = -ENETDOWN; 2587 rcu_read_unlock_bh(); 2588 2589 kfree_skb(skb); 2590 return rc; 2591 out: 2592 rcu_read_unlock_bh(); 2593 return rc; 2594 } 2595 EXPORT_SYMBOL(dev_queue_xmit); 2596 2597 2598 /*======================================================================= 2599 Receiver routines 2600 =======================================================================*/ 2601 2602 int netdev_max_backlog __read_mostly = 1000; 2603 int netdev_tstamp_prequeue __read_mostly = 1; 2604 int netdev_budget __read_mostly = 300; 2605 int weight_p __read_mostly = 64; /* old backlog weight */ 2606 2607 /* Called with irq disabled */ 2608 static inline void ____napi_schedule(struct softnet_data *sd, 2609 struct napi_struct *napi) 2610 { 2611 list_add_tail(&napi->poll_list, &sd->poll_list); 2612 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 2613 } 2614 2615 /* 2616 * __skb_get_rxhash: calculate a flow hash based on src/dst addresses 2617 * and src/dst port numbers. Sets rxhash in skb to non-zero hash value 2618 * on success, zero indicates no valid hash. Also, sets l4_rxhash in skb 2619 * if hash is a canonical 4-tuple hash over transport ports. 2620 */ 2621 void __skb_get_rxhash(struct sk_buff *skb) 2622 { 2623 struct flow_keys keys; 2624 u32 hash; 2625 2626 if (!skb_flow_dissect(skb, &keys)) 2627 return; 2628 2629 if (keys.ports) { 2630 if ((__force u16)keys.port16[1] < (__force u16)keys.port16[0]) 2631 swap(keys.port16[0], keys.port16[1]); 2632 skb->l4_rxhash = 1; 2633 } 2634 2635 /* get a consistent hash (same value on both flow directions) */ 2636 if ((__force u32)keys.dst < (__force u32)keys.src) 2637 swap(keys.dst, keys.src); 2638 2639 hash = jhash_3words((__force u32)keys.dst, 2640 (__force u32)keys.src, 2641 (__force u32)keys.ports, hashrnd); 2642 if (!hash) 2643 hash = 1; 2644 2645 skb->rxhash = hash; 2646 } 2647 EXPORT_SYMBOL(__skb_get_rxhash); 2648 2649 #ifdef CONFIG_RPS 2650 2651 /* One global table that all flow-based protocols share. */ 2652 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly; 2653 EXPORT_SYMBOL(rps_sock_flow_table); 2654 2655 struct jump_label_key rps_needed __read_mostly; 2656 2657 static struct rps_dev_flow * 2658 set_rps_cpu(struct net_device *dev, struct sk_buff *skb, 2659 struct rps_dev_flow *rflow, u16 next_cpu) 2660 { 2661 if (next_cpu != RPS_NO_CPU) { 2662 #ifdef CONFIG_RFS_ACCEL 2663 struct netdev_rx_queue *rxqueue; 2664 struct rps_dev_flow_table *flow_table; 2665 struct rps_dev_flow *old_rflow; 2666 u32 flow_id; 2667 u16 rxq_index; 2668 int rc; 2669 2670 /* Should we steer this flow to a different hardware queue? */ 2671 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap || 2672 !(dev->features & NETIF_F_NTUPLE)) 2673 goto out; 2674 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu); 2675 if (rxq_index == skb_get_rx_queue(skb)) 2676 goto out; 2677 2678 rxqueue = dev->_rx + rxq_index; 2679 flow_table = rcu_dereference(rxqueue->rps_flow_table); 2680 if (!flow_table) 2681 goto out; 2682 flow_id = skb->rxhash & flow_table->mask; 2683 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb, 2684 rxq_index, flow_id); 2685 if (rc < 0) 2686 goto out; 2687 old_rflow = rflow; 2688 rflow = &flow_table->flows[flow_id]; 2689 rflow->filter = rc; 2690 if (old_rflow->filter == rflow->filter) 2691 old_rflow->filter = RPS_NO_FILTER; 2692 out: 2693 #endif 2694 rflow->last_qtail = 2695 per_cpu(softnet_data, next_cpu).input_queue_head; 2696 } 2697 2698 rflow->cpu = next_cpu; 2699 return rflow; 2700 } 2701 2702 /* 2703 * get_rps_cpu is called from netif_receive_skb and returns the target 2704 * CPU from the RPS map of the receiving queue for a given skb. 2705 * rcu_read_lock must be held on entry. 2706 */ 2707 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb, 2708 struct rps_dev_flow **rflowp) 2709 { 2710 struct netdev_rx_queue *rxqueue; 2711 struct rps_map *map; 2712 struct rps_dev_flow_table *flow_table; 2713 struct rps_sock_flow_table *sock_flow_table; 2714 int cpu = -1; 2715 u16 tcpu; 2716 2717 if (skb_rx_queue_recorded(skb)) { 2718 u16 index = skb_get_rx_queue(skb); 2719 if (unlikely(index >= dev->real_num_rx_queues)) { 2720 WARN_ONCE(dev->real_num_rx_queues > 1, 2721 "%s received packet on queue %u, but number " 2722 "of RX queues is %u\n", 2723 dev->name, index, dev->real_num_rx_queues); 2724 goto done; 2725 } 2726 rxqueue = dev->_rx + index; 2727 } else 2728 rxqueue = dev->_rx; 2729 2730 map = rcu_dereference(rxqueue->rps_map); 2731 if (map) { 2732 if (map->len == 1 && 2733 !rcu_access_pointer(rxqueue->rps_flow_table)) { 2734 tcpu = map->cpus[0]; 2735 if (cpu_online(tcpu)) 2736 cpu = tcpu; 2737 goto done; 2738 } 2739 } else if (!rcu_access_pointer(rxqueue->rps_flow_table)) { 2740 goto done; 2741 } 2742 2743 skb_reset_network_header(skb); 2744 if (!skb_get_rxhash(skb)) 2745 goto done; 2746 2747 flow_table = rcu_dereference(rxqueue->rps_flow_table); 2748 sock_flow_table = rcu_dereference(rps_sock_flow_table); 2749 if (flow_table && sock_flow_table) { 2750 u16 next_cpu; 2751 struct rps_dev_flow *rflow; 2752 2753 rflow = &flow_table->flows[skb->rxhash & flow_table->mask]; 2754 tcpu = rflow->cpu; 2755 2756 next_cpu = sock_flow_table->ents[skb->rxhash & 2757 sock_flow_table->mask]; 2758 2759 /* 2760 * If the desired CPU (where last recvmsg was done) is 2761 * different from current CPU (one in the rx-queue flow 2762 * table entry), switch if one of the following holds: 2763 * - Current CPU is unset (equal to RPS_NO_CPU). 2764 * - Current CPU is offline. 2765 * - The current CPU's queue tail has advanced beyond the 2766 * last packet that was enqueued using this table entry. 2767 * This guarantees that all previous packets for the flow 2768 * have been dequeued, thus preserving in order delivery. 2769 */ 2770 if (unlikely(tcpu != next_cpu) && 2771 (tcpu == RPS_NO_CPU || !cpu_online(tcpu) || 2772 ((int)(per_cpu(softnet_data, tcpu).input_queue_head - 2773 rflow->last_qtail)) >= 0)) 2774 rflow = set_rps_cpu(dev, skb, rflow, next_cpu); 2775 2776 if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) { 2777 *rflowp = rflow; 2778 cpu = tcpu; 2779 goto done; 2780 } 2781 } 2782 2783 if (map) { 2784 tcpu = map->cpus[((u64) skb->rxhash * map->len) >> 32]; 2785 2786 if (cpu_online(tcpu)) { 2787 cpu = tcpu; 2788 goto done; 2789 } 2790 } 2791 2792 done: 2793 return cpu; 2794 } 2795 2796 #ifdef CONFIG_RFS_ACCEL 2797 2798 /** 2799 * rps_may_expire_flow - check whether an RFS hardware filter may be removed 2800 * @dev: Device on which the filter was set 2801 * @rxq_index: RX queue index 2802 * @flow_id: Flow ID passed to ndo_rx_flow_steer() 2803 * @filter_id: Filter ID returned by ndo_rx_flow_steer() 2804 * 2805 * Drivers that implement ndo_rx_flow_steer() should periodically call 2806 * this function for each installed filter and remove the filters for 2807 * which it returns %true. 2808 */ 2809 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, 2810 u32 flow_id, u16 filter_id) 2811 { 2812 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index; 2813 struct rps_dev_flow_table *flow_table; 2814 struct rps_dev_flow *rflow; 2815 bool expire = true; 2816 int cpu; 2817 2818 rcu_read_lock(); 2819 flow_table = rcu_dereference(rxqueue->rps_flow_table); 2820 if (flow_table && flow_id <= flow_table->mask) { 2821 rflow = &flow_table->flows[flow_id]; 2822 cpu = ACCESS_ONCE(rflow->cpu); 2823 if (rflow->filter == filter_id && cpu != RPS_NO_CPU && 2824 ((int)(per_cpu(softnet_data, cpu).input_queue_head - 2825 rflow->last_qtail) < 2826 (int)(10 * flow_table->mask))) 2827 expire = false; 2828 } 2829 rcu_read_unlock(); 2830 return expire; 2831 } 2832 EXPORT_SYMBOL(rps_may_expire_flow); 2833 2834 #endif /* CONFIG_RFS_ACCEL */ 2835 2836 /* Called from hardirq (IPI) context */ 2837 static void rps_trigger_softirq(void *data) 2838 { 2839 struct softnet_data *sd = data; 2840 2841 ____napi_schedule(sd, &sd->backlog); 2842 sd->received_rps++; 2843 } 2844 2845 #endif /* CONFIG_RPS */ 2846 2847 /* 2848 * Check if this softnet_data structure is another cpu one 2849 * If yes, queue it to our IPI list and return 1 2850 * If no, return 0 2851 */ 2852 static int rps_ipi_queued(struct softnet_data *sd) 2853 { 2854 #ifdef CONFIG_RPS 2855 struct softnet_data *mysd = &__get_cpu_var(softnet_data); 2856 2857 if (sd != mysd) { 2858 sd->rps_ipi_next = mysd->rps_ipi_list; 2859 mysd->rps_ipi_list = sd; 2860 2861 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 2862 return 1; 2863 } 2864 #endif /* CONFIG_RPS */ 2865 return 0; 2866 } 2867 2868 /* 2869 * enqueue_to_backlog is called to queue an skb to a per CPU backlog 2870 * queue (may be a remote CPU queue). 2871 */ 2872 static int enqueue_to_backlog(struct sk_buff *skb, int cpu, 2873 unsigned int *qtail) 2874 { 2875 struct softnet_data *sd; 2876 unsigned long flags; 2877 2878 sd = &per_cpu(softnet_data, cpu); 2879 2880 local_irq_save(flags); 2881 2882 rps_lock(sd); 2883 if (skb_queue_len(&sd->input_pkt_queue) <= netdev_max_backlog) { 2884 if (skb_queue_len(&sd->input_pkt_queue)) { 2885 enqueue: 2886 __skb_queue_tail(&sd->input_pkt_queue, skb); 2887 input_queue_tail_incr_save(sd, qtail); 2888 rps_unlock(sd); 2889 local_irq_restore(flags); 2890 return NET_RX_SUCCESS; 2891 } 2892 2893 /* Schedule NAPI for backlog device 2894 * We can use non atomic operation since we own the queue lock 2895 */ 2896 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) { 2897 if (!rps_ipi_queued(sd)) 2898 ____napi_schedule(sd, &sd->backlog); 2899 } 2900 goto enqueue; 2901 } 2902 2903 sd->dropped++; 2904 rps_unlock(sd); 2905 2906 local_irq_restore(flags); 2907 2908 atomic_long_inc(&skb->dev->rx_dropped); 2909 kfree_skb(skb); 2910 return NET_RX_DROP; 2911 } 2912 2913 /** 2914 * netif_rx - post buffer to the network code 2915 * @skb: buffer to post 2916 * 2917 * This function receives a packet from a device driver and queues it for 2918 * the upper (protocol) levels to process. It always succeeds. The buffer 2919 * may be dropped during processing for congestion control or by the 2920 * protocol layers. 2921 * 2922 * return values: 2923 * NET_RX_SUCCESS (no congestion) 2924 * NET_RX_DROP (packet was dropped) 2925 * 2926 */ 2927 2928 int netif_rx(struct sk_buff *skb) 2929 { 2930 int ret; 2931 2932 /* if netpoll wants it, pretend we never saw it */ 2933 if (netpoll_rx(skb)) 2934 return NET_RX_DROP; 2935 2936 net_timestamp_check(netdev_tstamp_prequeue, skb); 2937 2938 trace_netif_rx(skb); 2939 #ifdef CONFIG_RPS 2940 if (static_branch(&rps_needed)) { 2941 struct rps_dev_flow voidflow, *rflow = &voidflow; 2942 int cpu; 2943 2944 preempt_disable(); 2945 rcu_read_lock(); 2946 2947 cpu = get_rps_cpu(skb->dev, skb, &rflow); 2948 if (cpu < 0) 2949 cpu = smp_processor_id(); 2950 2951 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 2952 2953 rcu_read_unlock(); 2954 preempt_enable(); 2955 } else 2956 #endif 2957 { 2958 unsigned int qtail; 2959 ret = enqueue_to_backlog(skb, get_cpu(), &qtail); 2960 put_cpu(); 2961 } 2962 return ret; 2963 } 2964 EXPORT_SYMBOL(netif_rx); 2965 2966 int netif_rx_ni(struct sk_buff *skb) 2967 { 2968 int err; 2969 2970 preempt_disable(); 2971 err = netif_rx(skb); 2972 if (local_softirq_pending()) 2973 do_softirq(); 2974 preempt_enable(); 2975 2976 return err; 2977 } 2978 EXPORT_SYMBOL(netif_rx_ni); 2979 2980 static void net_tx_action(struct softirq_action *h) 2981 { 2982 struct softnet_data *sd = &__get_cpu_var(softnet_data); 2983 2984 if (sd->completion_queue) { 2985 struct sk_buff *clist; 2986 2987 local_irq_disable(); 2988 clist = sd->completion_queue; 2989 sd->completion_queue = NULL; 2990 local_irq_enable(); 2991 2992 while (clist) { 2993 struct sk_buff *skb = clist; 2994 clist = clist->next; 2995 2996 WARN_ON(atomic_read(&skb->users)); 2997 trace_kfree_skb(skb, net_tx_action); 2998 __kfree_skb(skb); 2999 } 3000 } 3001 3002 if (sd->output_queue) { 3003 struct Qdisc *head; 3004 3005 local_irq_disable(); 3006 head = sd->output_queue; 3007 sd->output_queue = NULL; 3008 sd->output_queue_tailp = &sd->output_queue; 3009 local_irq_enable(); 3010 3011 while (head) { 3012 struct Qdisc *q = head; 3013 spinlock_t *root_lock; 3014 3015 head = head->next_sched; 3016 3017 root_lock = qdisc_lock(q); 3018 if (spin_trylock(root_lock)) { 3019 smp_mb__before_clear_bit(); 3020 clear_bit(__QDISC_STATE_SCHED, 3021 &q->state); 3022 qdisc_run(q); 3023 spin_unlock(root_lock); 3024 } else { 3025 if (!test_bit(__QDISC_STATE_DEACTIVATED, 3026 &q->state)) { 3027 __netif_reschedule(q); 3028 } else { 3029 smp_mb__before_clear_bit(); 3030 clear_bit(__QDISC_STATE_SCHED, 3031 &q->state); 3032 } 3033 } 3034 } 3035 } 3036 } 3037 3038 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \ 3039 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE)) 3040 /* This hook is defined here for ATM LANE */ 3041 int (*br_fdb_test_addr_hook)(struct net_device *dev, 3042 unsigned char *addr) __read_mostly; 3043 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook); 3044 #endif 3045 3046 #ifdef CONFIG_NET_CLS_ACT 3047 /* TODO: Maybe we should just force sch_ingress to be compiled in 3048 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions 3049 * a compare and 2 stores extra right now if we dont have it on 3050 * but have CONFIG_NET_CLS_ACT 3051 * NOTE: This doesn't stop any functionality; if you dont have 3052 * the ingress scheduler, you just can't add policies on ingress. 3053 * 3054 */ 3055 static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq) 3056 { 3057 struct net_device *dev = skb->dev; 3058 u32 ttl = G_TC_RTTL(skb->tc_verd); 3059 int result = TC_ACT_OK; 3060 struct Qdisc *q; 3061 3062 if (unlikely(MAX_RED_LOOP < ttl++)) { 3063 if (net_ratelimit()) 3064 pr_warning( "Redir loop detected Dropping packet (%d->%d)\n", 3065 skb->skb_iif, dev->ifindex); 3066 return TC_ACT_SHOT; 3067 } 3068 3069 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl); 3070 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS); 3071 3072 q = rxq->qdisc; 3073 if (q != &noop_qdisc) { 3074 spin_lock(qdisc_lock(q)); 3075 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) 3076 result = qdisc_enqueue_root(skb, q); 3077 spin_unlock(qdisc_lock(q)); 3078 } 3079 3080 return result; 3081 } 3082 3083 static inline struct sk_buff *handle_ing(struct sk_buff *skb, 3084 struct packet_type **pt_prev, 3085 int *ret, struct net_device *orig_dev) 3086 { 3087 struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue); 3088 3089 if (!rxq || rxq->qdisc == &noop_qdisc) 3090 goto out; 3091 3092 if (*pt_prev) { 3093 *ret = deliver_skb(skb, *pt_prev, orig_dev); 3094 *pt_prev = NULL; 3095 } 3096 3097 switch (ing_filter(skb, rxq)) { 3098 case TC_ACT_SHOT: 3099 case TC_ACT_STOLEN: 3100 kfree_skb(skb); 3101 return NULL; 3102 } 3103 3104 out: 3105 skb->tc_verd = 0; 3106 return skb; 3107 } 3108 #endif 3109 3110 /** 3111 * netdev_rx_handler_register - register receive handler 3112 * @dev: device to register a handler for 3113 * @rx_handler: receive handler to register 3114 * @rx_handler_data: data pointer that is used by rx handler 3115 * 3116 * Register a receive hander for a device. This handler will then be 3117 * called from __netif_receive_skb. A negative errno code is returned 3118 * on a failure. 3119 * 3120 * The caller must hold the rtnl_mutex. 3121 * 3122 * For a general description of rx_handler, see enum rx_handler_result. 3123 */ 3124 int netdev_rx_handler_register(struct net_device *dev, 3125 rx_handler_func_t *rx_handler, 3126 void *rx_handler_data) 3127 { 3128 ASSERT_RTNL(); 3129 3130 if (dev->rx_handler) 3131 return -EBUSY; 3132 3133 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data); 3134 rcu_assign_pointer(dev->rx_handler, rx_handler); 3135 3136 return 0; 3137 } 3138 EXPORT_SYMBOL_GPL(netdev_rx_handler_register); 3139 3140 /** 3141 * netdev_rx_handler_unregister - unregister receive handler 3142 * @dev: device to unregister a handler from 3143 * 3144 * Unregister a receive hander from a device. 3145 * 3146 * The caller must hold the rtnl_mutex. 3147 */ 3148 void netdev_rx_handler_unregister(struct net_device *dev) 3149 { 3150 3151 ASSERT_RTNL(); 3152 RCU_INIT_POINTER(dev->rx_handler, NULL); 3153 RCU_INIT_POINTER(dev->rx_handler_data, NULL); 3154 } 3155 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister); 3156 3157 static int __netif_receive_skb(struct sk_buff *skb) 3158 { 3159 struct packet_type *ptype, *pt_prev; 3160 rx_handler_func_t *rx_handler; 3161 struct net_device *orig_dev; 3162 struct net_device *null_or_dev; 3163 bool deliver_exact = false; 3164 int ret = NET_RX_DROP; 3165 __be16 type; 3166 3167 net_timestamp_check(!netdev_tstamp_prequeue, skb); 3168 3169 trace_netif_receive_skb(skb); 3170 3171 /* if we've gotten here through NAPI, check netpoll */ 3172 if (netpoll_receive_skb(skb)) 3173 return NET_RX_DROP; 3174 3175 if (!skb->skb_iif) 3176 skb->skb_iif = skb->dev->ifindex; 3177 orig_dev = skb->dev; 3178 3179 skb_reset_network_header(skb); 3180 skb_reset_transport_header(skb); 3181 skb_reset_mac_len(skb); 3182 3183 pt_prev = NULL; 3184 3185 rcu_read_lock(); 3186 3187 another_round: 3188 3189 __this_cpu_inc(softnet_data.processed); 3190 3191 if (skb->protocol == cpu_to_be16(ETH_P_8021Q)) { 3192 skb = vlan_untag(skb); 3193 if (unlikely(!skb)) 3194 goto out; 3195 } 3196 3197 #ifdef CONFIG_NET_CLS_ACT 3198 if (skb->tc_verd & TC_NCLS) { 3199 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd); 3200 goto ncls; 3201 } 3202 #endif 3203 3204 list_for_each_entry_rcu(ptype, &ptype_all, list) { 3205 if (!ptype->dev || ptype->dev == skb->dev) { 3206 if (pt_prev) 3207 ret = deliver_skb(skb, pt_prev, orig_dev); 3208 pt_prev = ptype; 3209 } 3210 } 3211 3212 #ifdef CONFIG_NET_CLS_ACT 3213 skb = handle_ing(skb, &pt_prev, &ret, orig_dev); 3214 if (!skb) 3215 goto out; 3216 ncls: 3217 #endif 3218 3219 rx_handler = rcu_dereference(skb->dev->rx_handler); 3220 if (vlan_tx_tag_present(skb)) { 3221 if (pt_prev) { 3222 ret = deliver_skb(skb, pt_prev, orig_dev); 3223 pt_prev = NULL; 3224 } 3225 if (vlan_do_receive(&skb, !rx_handler)) 3226 goto another_round; 3227 else if (unlikely(!skb)) 3228 goto out; 3229 } 3230 3231 if (rx_handler) { 3232 if (pt_prev) { 3233 ret = deliver_skb(skb, pt_prev, orig_dev); 3234 pt_prev = NULL; 3235 } 3236 switch (rx_handler(&skb)) { 3237 case RX_HANDLER_CONSUMED: 3238 goto out; 3239 case RX_HANDLER_ANOTHER: 3240 goto another_round; 3241 case RX_HANDLER_EXACT: 3242 deliver_exact = true; 3243 case RX_HANDLER_PASS: 3244 break; 3245 default: 3246 BUG(); 3247 } 3248 } 3249 3250 /* deliver only exact match when indicated */ 3251 null_or_dev = deliver_exact ? skb->dev : NULL; 3252 3253 type = skb->protocol; 3254 list_for_each_entry_rcu(ptype, 3255 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) { 3256 if (ptype->type == type && 3257 (ptype->dev == null_or_dev || ptype->dev == skb->dev || 3258 ptype->dev == orig_dev)) { 3259 if (pt_prev) 3260 ret = deliver_skb(skb, pt_prev, orig_dev); 3261 pt_prev = ptype; 3262 } 3263 } 3264 3265 if (pt_prev) { 3266 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 3267 } else { 3268 atomic_long_inc(&skb->dev->rx_dropped); 3269 kfree_skb(skb); 3270 /* Jamal, now you will not able to escape explaining 3271 * me how you were going to use this. :-) 3272 */ 3273 ret = NET_RX_DROP; 3274 } 3275 3276 out: 3277 rcu_read_unlock(); 3278 return ret; 3279 } 3280 3281 /** 3282 * netif_receive_skb - process receive buffer from network 3283 * @skb: buffer to process 3284 * 3285 * netif_receive_skb() is the main receive data processing function. 3286 * It always succeeds. The buffer may be dropped during processing 3287 * for congestion control or by the protocol layers. 3288 * 3289 * This function may only be called from softirq context and interrupts 3290 * should be enabled. 3291 * 3292 * Return values (usually ignored): 3293 * NET_RX_SUCCESS: no congestion 3294 * NET_RX_DROP: packet was dropped 3295 */ 3296 int netif_receive_skb(struct sk_buff *skb) 3297 { 3298 net_timestamp_check(netdev_tstamp_prequeue, skb); 3299 3300 if (skb_defer_rx_timestamp(skb)) 3301 return NET_RX_SUCCESS; 3302 3303 #ifdef CONFIG_RPS 3304 if (static_branch(&rps_needed)) { 3305 struct rps_dev_flow voidflow, *rflow = &voidflow; 3306 int cpu, ret; 3307 3308 rcu_read_lock(); 3309 3310 cpu = get_rps_cpu(skb->dev, skb, &rflow); 3311 3312 if (cpu >= 0) { 3313 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 3314 rcu_read_unlock(); 3315 return ret; 3316 } 3317 rcu_read_unlock(); 3318 } 3319 #endif 3320 return __netif_receive_skb(skb); 3321 } 3322 EXPORT_SYMBOL(netif_receive_skb); 3323 3324 /* Network device is going away, flush any packets still pending 3325 * Called with irqs disabled. 3326 */ 3327 static void flush_backlog(void *arg) 3328 { 3329 struct net_device *dev = arg; 3330 struct softnet_data *sd = &__get_cpu_var(softnet_data); 3331 struct sk_buff *skb, *tmp; 3332 3333 rps_lock(sd); 3334 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) { 3335 if (skb->dev == dev) { 3336 __skb_unlink(skb, &sd->input_pkt_queue); 3337 kfree_skb(skb); 3338 input_queue_head_incr(sd); 3339 } 3340 } 3341 rps_unlock(sd); 3342 3343 skb_queue_walk_safe(&sd->process_queue, skb, tmp) { 3344 if (skb->dev == dev) { 3345 __skb_unlink(skb, &sd->process_queue); 3346 kfree_skb(skb); 3347 input_queue_head_incr(sd); 3348 } 3349 } 3350 } 3351 3352 static int napi_gro_complete(struct sk_buff *skb) 3353 { 3354 struct packet_type *ptype; 3355 __be16 type = skb->protocol; 3356 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK]; 3357 int err = -ENOENT; 3358 3359 if (NAPI_GRO_CB(skb)->count == 1) { 3360 skb_shinfo(skb)->gso_size = 0; 3361 goto out; 3362 } 3363 3364 rcu_read_lock(); 3365 list_for_each_entry_rcu(ptype, head, list) { 3366 if (ptype->type != type || ptype->dev || !ptype->gro_complete) 3367 continue; 3368 3369 err = ptype->gro_complete(skb); 3370 break; 3371 } 3372 rcu_read_unlock(); 3373 3374 if (err) { 3375 WARN_ON(&ptype->list == head); 3376 kfree_skb(skb); 3377 return NET_RX_SUCCESS; 3378 } 3379 3380 out: 3381 return netif_receive_skb(skb); 3382 } 3383 3384 inline void napi_gro_flush(struct napi_struct *napi) 3385 { 3386 struct sk_buff *skb, *next; 3387 3388 for (skb = napi->gro_list; skb; skb = next) { 3389 next = skb->next; 3390 skb->next = NULL; 3391 napi_gro_complete(skb); 3392 } 3393 3394 napi->gro_count = 0; 3395 napi->gro_list = NULL; 3396 } 3397 EXPORT_SYMBOL(napi_gro_flush); 3398 3399 enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 3400 { 3401 struct sk_buff **pp = NULL; 3402 struct packet_type *ptype; 3403 __be16 type = skb->protocol; 3404 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK]; 3405 int same_flow; 3406 int mac_len; 3407 enum gro_result ret; 3408 3409 if (!(skb->dev->features & NETIF_F_GRO) || netpoll_rx_on(skb)) 3410 goto normal; 3411 3412 if (skb_is_gso(skb) || skb_has_frag_list(skb)) 3413 goto normal; 3414 3415 rcu_read_lock(); 3416 list_for_each_entry_rcu(ptype, head, list) { 3417 if (ptype->type != type || ptype->dev || !ptype->gro_receive) 3418 continue; 3419 3420 skb_set_network_header(skb, skb_gro_offset(skb)); 3421 mac_len = skb->network_header - skb->mac_header; 3422 skb->mac_len = mac_len; 3423 NAPI_GRO_CB(skb)->same_flow = 0; 3424 NAPI_GRO_CB(skb)->flush = 0; 3425 NAPI_GRO_CB(skb)->free = 0; 3426 3427 pp = ptype->gro_receive(&napi->gro_list, skb); 3428 break; 3429 } 3430 rcu_read_unlock(); 3431 3432 if (&ptype->list == head) 3433 goto normal; 3434 3435 same_flow = NAPI_GRO_CB(skb)->same_flow; 3436 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED; 3437 3438 if (pp) { 3439 struct sk_buff *nskb = *pp; 3440 3441 *pp = nskb->next; 3442 nskb->next = NULL; 3443 napi_gro_complete(nskb); 3444 napi->gro_count--; 3445 } 3446 3447 if (same_flow) 3448 goto ok; 3449 3450 if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS) 3451 goto normal; 3452 3453 napi->gro_count++; 3454 NAPI_GRO_CB(skb)->count = 1; 3455 skb_shinfo(skb)->gso_size = skb_gro_len(skb); 3456 skb->next = napi->gro_list; 3457 napi->gro_list = skb; 3458 ret = GRO_HELD; 3459 3460 pull: 3461 if (skb_headlen(skb) < skb_gro_offset(skb)) { 3462 int grow = skb_gro_offset(skb) - skb_headlen(skb); 3463 3464 BUG_ON(skb->end - skb->tail < grow); 3465 3466 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow); 3467 3468 skb->tail += grow; 3469 skb->data_len -= grow; 3470 3471 skb_shinfo(skb)->frags[0].page_offset += grow; 3472 skb_frag_size_sub(&skb_shinfo(skb)->frags[0], grow); 3473 3474 if (unlikely(!skb_frag_size(&skb_shinfo(skb)->frags[0]))) { 3475 skb_frag_unref(skb, 0); 3476 memmove(skb_shinfo(skb)->frags, 3477 skb_shinfo(skb)->frags + 1, 3478 --skb_shinfo(skb)->nr_frags * sizeof(skb_frag_t)); 3479 } 3480 } 3481 3482 ok: 3483 return ret; 3484 3485 normal: 3486 ret = GRO_NORMAL; 3487 goto pull; 3488 } 3489 EXPORT_SYMBOL(dev_gro_receive); 3490 3491 static inline gro_result_t 3492 __napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 3493 { 3494 struct sk_buff *p; 3495 3496 for (p = napi->gro_list; p; p = p->next) { 3497 unsigned long diffs; 3498 3499 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev; 3500 diffs |= p->vlan_tci ^ skb->vlan_tci; 3501 diffs |= compare_ether_header(skb_mac_header(p), 3502 skb_gro_mac_header(skb)); 3503 NAPI_GRO_CB(p)->same_flow = !diffs; 3504 NAPI_GRO_CB(p)->flush = 0; 3505 } 3506 3507 return dev_gro_receive(napi, skb); 3508 } 3509 3510 gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb) 3511 { 3512 switch (ret) { 3513 case GRO_NORMAL: 3514 if (netif_receive_skb(skb)) 3515 ret = GRO_DROP; 3516 break; 3517 3518 case GRO_DROP: 3519 case GRO_MERGED_FREE: 3520 kfree_skb(skb); 3521 break; 3522 3523 case GRO_HELD: 3524 case GRO_MERGED: 3525 break; 3526 } 3527 3528 return ret; 3529 } 3530 EXPORT_SYMBOL(napi_skb_finish); 3531 3532 void skb_gro_reset_offset(struct sk_buff *skb) 3533 { 3534 NAPI_GRO_CB(skb)->data_offset = 0; 3535 NAPI_GRO_CB(skb)->frag0 = NULL; 3536 NAPI_GRO_CB(skb)->frag0_len = 0; 3537 3538 if (skb->mac_header == skb->tail && 3539 !PageHighMem(skb_frag_page(&skb_shinfo(skb)->frags[0]))) { 3540 NAPI_GRO_CB(skb)->frag0 = 3541 skb_frag_address(&skb_shinfo(skb)->frags[0]); 3542 NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(&skb_shinfo(skb)->frags[0]); 3543 } 3544 } 3545 EXPORT_SYMBOL(skb_gro_reset_offset); 3546 3547 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 3548 { 3549 skb_gro_reset_offset(skb); 3550 3551 return napi_skb_finish(__napi_gro_receive(napi, skb), skb); 3552 } 3553 EXPORT_SYMBOL(napi_gro_receive); 3554 3555 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb) 3556 { 3557 __skb_pull(skb, skb_headlen(skb)); 3558 skb_reserve(skb, NET_IP_ALIGN - skb_headroom(skb)); 3559 skb->vlan_tci = 0; 3560 skb->dev = napi->dev; 3561 skb->skb_iif = 0; 3562 3563 napi->skb = skb; 3564 } 3565 3566 struct sk_buff *napi_get_frags(struct napi_struct *napi) 3567 { 3568 struct sk_buff *skb = napi->skb; 3569 3570 if (!skb) { 3571 skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD); 3572 if (skb) 3573 napi->skb = skb; 3574 } 3575 return skb; 3576 } 3577 EXPORT_SYMBOL(napi_get_frags); 3578 3579 gro_result_t napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb, 3580 gro_result_t ret) 3581 { 3582 switch (ret) { 3583 case GRO_NORMAL: 3584 case GRO_HELD: 3585 skb->protocol = eth_type_trans(skb, skb->dev); 3586 3587 if (ret == GRO_HELD) 3588 skb_gro_pull(skb, -ETH_HLEN); 3589 else if (netif_receive_skb(skb)) 3590 ret = GRO_DROP; 3591 break; 3592 3593 case GRO_DROP: 3594 case GRO_MERGED_FREE: 3595 napi_reuse_skb(napi, skb); 3596 break; 3597 3598 case GRO_MERGED: 3599 break; 3600 } 3601 3602 return ret; 3603 } 3604 EXPORT_SYMBOL(napi_frags_finish); 3605 3606 struct sk_buff *napi_frags_skb(struct napi_struct *napi) 3607 { 3608 struct sk_buff *skb = napi->skb; 3609 struct ethhdr *eth; 3610 unsigned int hlen; 3611 unsigned int off; 3612 3613 napi->skb = NULL; 3614 3615 skb_reset_mac_header(skb); 3616 skb_gro_reset_offset(skb); 3617 3618 off = skb_gro_offset(skb); 3619 hlen = off + sizeof(*eth); 3620 eth = skb_gro_header_fast(skb, off); 3621 if (skb_gro_header_hard(skb, hlen)) { 3622 eth = skb_gro_header_slow(skb, hlen, off); 3623 if (unlikely(!eth)) { 3624 napi_reuse_skb(napi, skb); 3625 skb = NULL; 3626 goto out; 3627 } 3628 } 3629 3630 skb_gro_pull(skb, sizeof(*eth)); 3631 3632 /* 3633 * This works because the only protocols we care about don't require 3634 * special handling. We'll fix it up properly at the end. 3635 */ 3636 skb->protocol = eth->h_proto; 3637 3638 out: 3639 return skb; 3640 } 3641 EXPORT_SYMBOL(napi_frags_skb); 3642 3643 gro_result_t napi_gro_frags(struct napi_struct *napi) 3644 { 3645 struct sk_buff *skb = napi_frags_skb(napi); 3646 3647 if (!skb) 3648 return GRO_DROP; 3649 3650 return napi_frags_finish(napi, skb, __napi_gro_receive(napi, skb)); 3651 } 3652 EXPORT_SYMBOL(napi_gro_frags); 3653 3654 /* 3655 * net_rps_action sends any pending IPI's for rps. 3656 * Note: called with local irq disabled, but exits with local irq enabled. 3657 */ 3658 static void net_rps_action_and_irq_enable(struct softnet_data *sd) 3659 { 3660 #ifdef CONFIG_RPS 3661 struct softnet_data *remsd = sd->rps_ipi_list; 3662 3663 if (remsd) { 3664 sd->rps_ipi_list = NULL; 3665 3666 local_irq_enable(); 3667 3668 /* Send pending IPI's to kick RPS processing on remote cpus. */ 3669 while (remsd) { 3670 struct softnet_data *next = remsd->rps_ipi_next; 3671 3672 if (cpu_online(remsd->cpu)) 3673 __smp_call_function_single(remsd->cpu, 3674 &remsd->csd, 0); 3675 remsd = next; 3676 } 3677 } else 3678 #endif 3679 local_irq_enable(); 3680 } 3681 3682 static int process_backlog(struct napi_struct *napi, int quota) 3683 { 3684 int work = 0; 3685 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog); 3686 3687 #ifdef CONFIG_RPS 3688 /* Check if we have pending ipi, its better to send them now, 3689 * not waiting net_rx_action() end. 3690 */ 3691 if (sd->rps_ipi_list) { 3692 local_irq_disable(); 3693 net_rps_action_and_irq_enable(sd); 3694 } 3695 #endif 3696 napi->weight = weight_p; 3697 local_irq_disable(); 3698 while (work < quota) { 3699 struct sk_buff *skb; 3700 unsigned int qlen; 3701 3702 while ((skb = __skb_dequeue(&sd->process_queue))) { 3703 local_irq_enable(); 3704 __netif_receive_skb(skb); 3705 local_irq_disable(); 3706 input_queue_head_incr(sd); 3707 if (++work >= quota) { 3708 local_irq_enable(); 3709 return work; 3710 } 3711 } 3712 3713 rps_lock(sd); 3714 qlen = skb_queue_len(&sd->input_pkt_queue); 3715 if (qlen) 3716 skb_queue_splice_tail_init(&sd->input_pkt_queue, 3717 &sd->process_queue); 3718 3719 if (qlen < quota - work) { 3720 /* 3721 * Inline a custom version of __napi_complete(). 3722 * only current cpu owns and manipulates this napi, 3723 * and NAPI_STATE_SCHED is the only possible flag set on backlog. 3724 * we can use a plain write instead of clear_bit(), 3725 * and we dont need an smp_mb() memory barrier. 3726 */ 3727 list_del(&napi->poll_list); 3728 napi->state = 0; 3729 3730 quota = work + qlen; 3731 } 3732 rps_unlock(sd); 3733 } 3734 local_irq_enable(); 3735 3736 return work; 3737 } 3738 3739 /** 3740 * __napi_schedule - schedule for receive 3741 * @n: entry to schedule 3742 * 3743 * The entry's receive function will be scheduled to run 3744 */ 3745 void __napi_schedule(struct napi_struct *n) 3746 { 3747 unsigned long flags; 3748 3749 local_irq_save(flags); 3750 ____napi_schedule(&__get_cpu_var(softnet_data), n); 3751 local_irq_restore(flags); 3752 } 3753 EXPORT_SYMBOL(__napi_schedule); 3754 3755 void __napi_complete(struct napi_struct *n) 3756 { 3757 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state)); 3758 BUG_ON(n->gro_list); 3759 3760 list_del(&n->poll_list); 3761 smp_mb__before_clear_bit(); 3762 clear_bit(NAPI_STATE_SCHED, &n->state); 3763 } 3764 EXPORT_SYMBOL(__napi_complete); 3765 3766 void napi_complete(struct napi_struct *n) 3767 { 3768 unsigned long flags; 3769 3770 /* 3771 * don't let napi dequeue from the cpu poll list 3772 * just in case its running on a different cpu 3773 */ 3774 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state))) 3775 return; 3776 3777 napi_gro_flush(n); 3778 local_irq_save(flags); 3779 __napi_complete(n); 3780 local_irq_restore(flags); 3781 } 3782 EXPORT_SYMBOL(napi_complete); 3783 3784 void netif_napi_add(struct net_device *dev, struct napi_struct *napi, 3785 int (*poll)(struct napi_struct *, int), int weight) 3786 { 3787 INIT_LIST_HEAD(&napi->poll_list); 3788 napi->gro_count = 0; 3789 napi->gro_list = NULL; 3790 napi->skb = NULL; 3791 napi->poll = poll; 3792 napi->weight = weight; 3793 list_add(&napi->dev_list, &dev->napi_list); 3794 napi->dev = dev; 3795 #ifdef CONFIG_NETPOLL 3796 spin_lock_init(&napi->poll_lock); 3797 napi->poll_owner = -1; 3798 #endif 3799 set_bit(NAPI_STATE_SCHED, &napi->state); 3800 } 3801 EXPORT_SYMBOL(netif_napi_add); 3802 3803 void netif_napi_del(struct napi_struct *napi) 3804 { 3805 struct sk_buff *skb, *next; 3806 3807 list_del_init(&napi->dev_list); 3808 napi_free_frags(napi); 3809 3810 for (skb = napi->gro_list; skb; skb = next) { 3811 next = skb->next; 3812 skb->next = NULL; 3813 kfree_skb(skb); 3814 } 3815 3816 napi->gro_list = NULL; 3817 napi->gro_count = 0; 3818 } 3819 EXPORT_SYMBOL(netif_napi_del); 3820 3821 static void net_rx_action(struct softirq_action *h) 3822 { 3823 struct softnet_data *sd = &__get_cpu_var(softnet_data); 3824 unsigned long time_limit = jiffies + 2; 3825 int budget = netdev_budget; 3826 void *have; 3827 3828 local_irq_disable(); 3829 3830 while (!list_empty(&sd->poll_list)) { 3831 struct napi_struct *n; 3832 int work, weight; 3833 3834 /* If softirq window is exhuasted then punt. 3835 * Allow this to run for 2 jiffies since which will allow 3836 * an average latency of 1.5/HZ. 3837 */ 3838 if (unlikely(budget <= 0 || time_after(jiffies, time_limit))) 3839 goto softnet_break; 3840 3841 local_irq_enable(); 3842 3843 /* Even though interrupts have been re-enabled, this 3844 * access is safe because interrupts can only add new 3845 * entries to the tail of this list, and only ->poll() 3846 * calls can remove this head entry from the list. 3847 */ 3848 n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list); 3849 3850 have = netpoll_poll_lock(n); 3851 3852 weight = n->weight; 3853 3854 /* This NAPI_STATE_SCHED test is for avoiding a race 3855 * with netpoll's poll_napi(). Only the entity which 3856 * obtains the lock and sees NAPI_STATE_SCHED set will 3857 * actually make the ->poll() call. Therefore we avoid 3858 * accidentally calling ->poll() when NAPI is not scheduled. 3859 */ 3860 work = 0; 3861 if (test_bit(NAPI_STATE_SCHED, &n->state)) { 3862 work = n->poll(n, weight); 3863 trace_napi_poll(n); 3864 } 3865 3866 WARN_ON_ONCE(work > weight); 3867 3868 budget -= work; 3869 3870 local_irq_disable(); 3871 3872 /* Drivers must not modify the NAPI state if they 3873 * consume the entire weight. In such cases this code 3874 * still "owns" the NAPI instance and therefore can 3875 * move the instance around on the list at-will. 3876 */ 3877 if (unlikely(work == weight)) { 3878 if (unlikely(napi_disable_pending(n))) { 3879 local_irq_enable(); 3880 napi_complete(n); 3881 local_irq_disable(); 3882 } else 3883 list_move_tail(&n->poll_list, &sd->poll_list); 3884 } 3885 3886 netpoll_poll_unlock(have); 3887 } 3888 out: 3889 net_rps_action_and_irq_enable(sd); 3890 3891 #ifdef CONFIG_NET_DMA 3892 /* 3893 * There may not be any more sk_buffs coming right now, so push 3894 * any pending DMA copies to hardware 3895 */ 3896 dma_issue_pending_all(); 3897 #endif 3898 3899 return; 3900 3901 softnet_break: 3902 sd->time_squeeze++; 3903 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 3904 goto out; 3905 } 3906 3907 static gifconf_func_t *gifconf_list[NPROTO]; 3908 3909 /** 3910 * register_gifconf - register a SIOCGIF handler 3911 * @family: Address family 3912 * @gifconf: Function handler 3913 * 3914 * Register protocol dependent address dumping routines. The handler 3915 * that is passed must not be freed or reused until it has been replaced 3916 * by another handler. 3917 */ 3918 int register_gifconf(unsigned int family, gifconf_func_t *gifconf) 3919 { 3920 if (family >= NPROTO) 3921 return -EINVAL; 3922 gifconf_list[family] = gifconf; 3923 return 0; 3924 } 3925 EXPORT_SYMBOL(register_gifconf); 3926 3927 3928 /* 3929 * Map an interface index to its name (SIOCGIFNAME) 3930 */ 3931 3932 /* 3933 * We need this ioctl for efficient implementation of the 3934 * if_indextoname() function required by the IPv6 API. Without 3935 * it, we would have to search all the interfaces to find a 3936 * match. --pb 3937 */ 3938 3939 static int dev_ifname(struct net *net, struct ifreq __user *arg) 3940 { 3941 struct net_device *dev; 3942 struct ifreq ifr; 3943 3944 /* 3945 * Fetch the caller's info block. 3946 */ 3947 3948 if (copy_from_user(&ifr, arg, sizeof(struct ifreq))) 3949 return -EFAULT; 3950 3951 rcu_read_lock(); 3952 dev = dev_get_by_index_rcu(net, ifr.ifr_ifindex); 3953 if (!dev) { 3954 rcu_read_unlock(); 3955 return -ENODEV; 3956 } 3957 3958 strcpy(ifr.ifr_name, dev->name); 3959 rcu_read_unlock(); 3960 3961 if (copy_to_user(arg, &ifr, sizeof(struct ifreq))) 3962 return -EFAULT; 3963 return 0; 3964 } 3965 3966 /* 3967 * Perform a SIOCGIFCONF call. This structure will change 3968 * size eventually, and there is nothing I can do about it. 3969 * Thus we will need a 'compatibility mode'. 3970 */ 3971 3972 static int dev_ifconf(struct net *net, char __user *arg) 3973 { 3974 struct ifconf ifc; 3975 struct net_device *dev; 3976 char __user *pos; 3977 int len; 3978 int total; 3979 int i; 3980 3981 /* 3982 * Fetch the caller's info block. 3983 */ 3984 3985 if (copy_from_user(&ifc, arg, sizeof(struct ifconf))) 3986 return -EFAULT; 3987 3988 pos = ifc.ifc_buf; 3989 len = ifc.ifc_len; 3990 3991 /* 3992 * Loop over the interfaces, and write an info block for each. 3993 */ 3994 3995 total = 0; 3996 for_each_netdev(net, dev) { 3997 for (i = 0; i < NPROTO; i++) { 3998 if (gifconf_list[i]) { 3999 int done; 4000 if (!pos) 4001 done = gifconf_list[i](dev, NULL, 0); 4002 else 4003 done = gifconf_list[i](dev, pos + total, 4004 len - total); 4005 if (done < 0) 4006 return -EFAULT; 4007 total += done; 4008 } 4009 } 4010 } 4011 4012 /* 4013 * All done. Write the updated control block back to the caller. 4014 */ 4015 ifc.ifc_len = total; 4016 4017 /* 4018 * Both BSD and Solaris return 0 here, so we do too. 4019 */ 4020 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0; 4021 } 4022 4023 #ifdef CONFIG_PROC_FS 4024 4025 #define BUCKET_SPACE (32 - NETDEV_HASHBITS) 4026 4027 struct dev_iter_state { 4028 struct seq_net_private p; 4029 unsigned int pos; /* bucket << BUCKET_SPACE + offset */ 4030 }; 4031 4032 #define get_bucket(x) ((x) >> BUCKET_SPACE) 4033 #define get_offset(x) ((x) & ((1 << BUCKET_SPACE) - 1)) 4034 #define set_bucket_offset(b, o) ((b) << BUCKET_SPACE | (o)) 4035 4036 static inline struct net_device *dev_from_same_bucket(struct seq_file *seq) 4037 { 4038 struct dev_iter_state *state = seq->private; 4039 struct net *net = seq_file_net(seq); 4040 struct net_device *dev; 4041 struct hlist_node *p; 4042 struct hlist_head *h; 4043 unsigned int count, bucket, offset; 4044 4045 bucket = get_bucket(state->pos); 4046 offset = get_offset(state->pos); 4047 h = &net->dev_name_head[bucket]; 4048 count = 0; 4049 hlist_for_each_entry_rcu(dev, p, h, name_hlist) { 4050 if (count++ == offset) { 4051 state->pos = set_bucket_offset(bucket, count); 4052 return dev; 4053 } 4054 } 4055 4056 return NULL; 4057 } 4058 4059 static inline struct net_device *dev_from_new_bucket(struct seq_file *seq) 4060 { 4061 struct dev_iter_state *state = seq->private; 4062 struct net_device *dev; 4063 unsigned int bucket; 4064 4065 bucket = get_bucket(state->pos); 4066 do { 4067 dev = dev_from_same_bucket(seq); 4068 if (dev) 4069 return dev; 4070 4071 bucket++; 4072 state->pos = set_bucket_offset(bucket, 0); 4073 } while (bucket < NETDEV_HASHENTRIES); 4074 4075 return NULL; 4076 } 4077 4078 /* 4079 * This is invoked by the /proc filesystem handler to display a device 4080 * in detail. 4081 */ 4082 void *dev_seq_start(struct seq_file *seq, loff_t *pos) 4083 __acquires(RCU) 4084 { 4085 struct dev_iter_state *state = seq->private; 4086 4087 rcu_read_lock(); 4088 if (!*pos) 4089 return SEQ_START_TOKEN; 4090 4091 /* check for end of the hash */ 4092 if (state->pos == 0 && *pos > 1) 4093 return NULL; 4094 4095 return dev_from_new_bucket(seq); 4096 } 4097 4098 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos) 4099 { 4100 struct net_device *dev; 4101 4102 ++*pos; 4103 4104 if (v == SEQ_START_TOKEN) 4105 return dev_from_new_bucket(seq); 4106 4107 dev = dev_from_same_bucket(seq); 4108 if (dev) 4109 return dev; 4110 4111 return dev_from_new_bucket(seq); 4112 } 4113 4114 void dev_seq_stop(struct seq_file *seq, void *v) 4115 __releases(RCU) 4116 { 4117 rcu_read_unlock(); 4118 } 4119 4120 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev) 4121 { 4122 struct rtnl_link_stats64 temp; 4123 const struct rtnl_link_stats64 *stats = dev_get_stats(dev, &temp); 4124 4125 seq_printf(seq, "%6s: %7llu %7llu %4llu %4llu %4llu %5llu %10llu %9llu " 4126 "%8llu %7llu %4llu %4llu %4llu %5llu %7llu %10llu\n", 4127 dev->name, stats->rx_bytes, stats->rx_packets, 4128 stats->rx_errors, 4129 stats->rx_dropped + stats->rx_missed_errors, 4130 stats->rx_fifo_errors, 4131 stats->rx_length_errors + stats->rx_over_errors + 4132 stats->rx_crc_errors + stats->rx_frame_errors, 4133 stats->rx_compressed, stats->multicast, 4134 stats->tx_bytes, stats->tx_packets, 4135 stats->tx_errors, stats->tx_dropped, 4136 stats->tx_fifo_errors, stats->collisions, 4137 stats->tx_carrier_errors + 4138 stats->tx_aborted_errors + 4139 stats->tx_window_errors + 4140 stats->tx_heartbeat_errors, 4141 stats->tx_compressed); 4142 } 4143 4144 /* 4145 * Called from the PROCfs module. This now uses the new arbitrary sized 4146 * /proc/net interface to create /proc/net/dev 4147 */ 4148 static int dev_seq_show(struct seq_file *seq, void *v) 4149 { 4150 if (v == SEQ_START_TOKEN) 4151 seq_puts(seq, "Inter-| Receive " 4152 " | Transmit\n" 4153 " face |bytes packets errs drop fifo frame " 4154 "compressed multicast|bytes packets errs " 4155 "drop fifo colls carrier compressed\n"); 4156 else 4157 dev_seq_printf_stats(seq, v); 4158 return 0; 4159 } 4160 4161 static struct softnet_data *softnet_get_online(loff_t *pos) 4162 { 4163 struct softnet_data *sd = NULL; 4164 4165 while (*pos < nr_cpu_ids) 4166 if (cpu_online(*pos)) { 4167 sd = &per_cpu(softnet_data, *pos); 4168 break; 4169 } else 4170 ++*pos; 4171 return sd; 4172 } 4173 4174 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos) 4175 { 4176 return softnet_get_online(pos); 4177 } 4178 4179 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos) 4180 { 4181 ++*pos; 4182 return softnet_get_online(pos); 4183 } 4184 4185 static void softnet_seq_stop(struct seq_file *seq, void *v) 4186 { 4187 } 4188 4189 static int softnet_seq_show(struct seq_file *seq, void *v) 4190 { 4191 struct softnet_data *sd = v; 4192 4193 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x %08x\n", 4194 sd->processed, sd->dropped, sd->time_squeeze, 0, 4195 0, 0, 0, 0, /* was fastroute */ 4196 sd->cpu_collision, sd->received_rps); 4197 return 0; 4198 } 4199 4200 static const struct seq_operations dev_seq_ops = { 4201 .start = dev_seq_start, 4202 .next = dev_seq_next, 4203 .stop = dev_seq_stop, 4204 .show = dev_seq_show, 4205 }; 4206 4207 static int dev_seq_open(struct inode *inode, struct file *file) 4208 { 4209 return seq_open_net(inode, file, &dev_seq_ops, 4210 sizeof(struct dev_iter_state)); 4211 } 4212 4213 int dev_seq_open_ops(struct inode *inode, struct file *file, 4214 const struct seq_operations *ops) 4215 { 4216 return seq_open_net(inode, file, ops, sizeof(struct dev_iter_state)); 4217 } 4218 4219 static const struct file_operations dev_seq_fops = { 4220 .owner = THIS_MODULE, 4221 .open = dev_seq_open, 4222 .read = seq_read, 4223 .llseek = seq_lseek, 4224 .release = seq_release_net, 4225 }; 4226 4227 static const struct seq_operations softnet_seq_ops = { 4228 .start = softnet_seq_start, 4229 .next = softnet_seq_next, 4230 .stop = softnet_seq_stop, 4231 .show = softnet_seq_show, 4232 }; 4233 4234 static int softnet_seq_open(struct inode *inode, struct file *file) 4235 { 4236 return seq_open(file, &softnet_seq_ops); 4237 } 4238 4239 static const struct file_operations softnet_seq_fops = { 4240 .owner = THIS_MODULE, 4241 .open = softnet_seq_open, 4242 .read = seq_read, 4243 .llseek = seq_lseek, 4244 .release = seq_release, 4245 }; 4246 4247 static void *ptype_get_idx(loff_t pos) 4248 { 4249 struct packet_type *pt = NULL; 4250 loff_t i = 0; 4251 int t; 4252 4253 list_for_each_entry_rcu(pt, &ptype_all, list) { 4254 if (i == pos) 4255 return pt; 4256 ++i; 4257 } 4258 4259 for (t = 0; t < PTYPE_HASH_SIZE; t++) { 4260 list_for_each_entry_rcu(pt, &ptype_base[t], list) { 4261 if (i == pos) 4262 return pt; 4263 ++i; 4264 } 4265 } 4266 return NULL; 4267 } 4268 4269 static void *ptype_seq_start(struct seq_file *seq, loff_t *pos) 4270 __acquires(RCU) 4271 { 4272 rcu_read_lock(); 4273 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN; 4274 } 4275 4276 static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos) 4277 { 4278 struct packet_type *pt; 4279 struct list_head *nxt; 4280 int hash; 4281 4282 ++*pos; 4283 if (v == SEQ_START_TOKEN) 4284 return ptype_get_idx(0); 4285 4286 pt = v; 4287 nxt = pt->list.next; 4288 if (pt->type == htons(ETH_P_ALL)) { 4289 if (nxt != &ptype_all) 4290 goto found; 4291 hash = 0; 4292 nxt = ptype_base[0].next; 4293 } else 4294 hash = ntohs(pt->type) & PTYPE_HASH_MASK; 4295 4296 while (nxt == &ptype_base[hash]) { 4297 if (++hash >= PTYPE_HASH_SIZE) 4298 return NULL; 4299 nxt = ptype_base[hash].next; 4300 } 4301 found: 4302 return list_entry(nxt, struct packet_type, list); 4303 } 4304 4305 static void ptype_seq_stop(struct seq_file *seq, void *v) 4306 __releases(RCU) 4307 { 4308 rcu_read_unlock(); 4309 } 4310 4311 static int ptype_seq_show(struct seq_file *seq, void *v) 4312 { 4313 struct packet_type *pt = v; 4314 4315 if (v == SEQ_START_TOKEN) 4316 seq_puts(seq, "Type Device Function\n"); 4317 else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) { 4318 if (pt->type == htons(ETH_P_ALL)) 4319 seq_puts(seq, "ALL "); 4320 else 4321 seq_printf(seq, "%04x", ntohs(pt->type)); 4322 4323 seq_printf(seq, " %-8s %pF\n", 4324 pt->dev ? pt->dev->name : "", pt->func); 4325 } 4326 4327 return 0; 4328 } 4329 4330 static const struct seq_operations ptype_seq_ops = { 4331 .start = ptype_seq_start, 4332 .next = ptype_seq_next, 4333 .stop = ptype_seq_stop, 4334 .show = ptype_seq_show, 4335 }; 4336 4337 static int ptype_seq_open(struct inode *inode, struct file *file) 4338 { 4339 return seq_open_net(inode, file, &ptype_seq_ops, 4340 sizeof(struct seq_net_private)); 4341 } 4342 4343 static const struct file_operations ptype_seq_fops = { 4344 .owner = THIS_MODULE, 4345 .open = ptype_seq_open, 4346 .read = seq_read, 4347 .llseek = seq_lseek, 4348 .release = seq_release_net, 4349 }; 4350 4351 4352 static int __net_init dev_proc_net_init(struct net *net) 4353 { 4354 int rc = -ENOMEM; 4355 4356 if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops)) 4357 goto out; 4358 if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops)) 4359 goto out_dev; 4360 if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops)) 4361 goto out_softnet; 4362 4363 if (wext_proc_init(net)) 4364 goto out_ptype; 4365 rc = 0; 4366 out: 4367 return rc; 4368 out_ptype: 4369 proc_net_remove(net, "ptype"); 4370 out_softnet: 4371 proc_net_remove(net, "softnet_stat"); 4372 out_dev: 4373 proc_net_remove(net, "dev"); 4374 goto out; 4375 } 4376 4377 static void __net_exit dev_proc_net_exit(struct net *net) 4378 { 4379 wext_proc_exit(net); 4380 4381 proc_net_remove(net, "ptype"); 4382 proc_net_remove(net, "softnet_stat"); 4383 proc_net_remove(net, "dev"); 4384 } 4385 4386 static struct pernet_operations __net_initdata dev_proc_ops = { 4387 .init = dev_proc_net_init, 4388 .exit = dev_proc_net_exit, 4389 }; 4390 4391 static int __init dev_proc_init(void) 4392 { 4393 return register_pernet_subsys(&dev_proc_ops); 4394 } 4395 #else 4396 #define dev_proc_init() 0 4397 #endif /* CONFIG_PROC_FS */ 4398 4399 4400 /** 4401 * netdev_set_master - set up master pointer 4402 * @slave: slave device 4403 * @master: new master device 4404 * 4405 * Changes the master device of the slave. Pass %NULL to break the 4406 * bonding. The caller must hold the RTNL semaphore. On a failure 4407 * a negative errno code is returned. On success the reference counts 4408 * are adjusted and the function returns zero. 4409 */ 4410 int netdev_set_master(struct net_device *slave, struct net_device *master) 4411 { 4412 struct net_device *old = slave->master; 4413 4414 ASSERT_RTNL(); 4415 4416 if (master) { 4417 if (old) 4418 return -EBUSY; 4419 dev_hold(master); 4420 } 4421 4422 slave->master = master; 4423 4424 if (old) 4425 dev_put(old); 4426 return 0; 4427 } 4428 EXPORT_SYMBOL(netdev_set_master); 4429 4430 /** 4431 * netdev_set_bond_master - set up bonding master/slave pair 4432 * @slave: slave device 4433 * @master: new master device 4434 * 4435 * Changes the master device of the slave. Pass %NULL to break the 4436 * bonding. The caller must hold the RTNL semaphore. On a failure 4437 * a negative errno code is returned. On success %RTM_NEWLINK is sent 4438 * to the routing socket and the function returns zero. 4439 */ 4440 int netdev_set_bond_master(struct net_device *slave, struct net_device *master) 4441 { 4442 int err; 4443 4444 ASSERT_RTNL(); 4445 4446 err = netdev_set_master(slave, master); 4447 if (err) 4448 return err; 4449 if (master) 4450 slave->flags |= IFF_SLAVE; 4451 else 4452 slave->flags &= ~IFF_SLAVE; 4453 4454 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE); 4455 return 0; 4456 } 4457 EXPORT_SYMBOL(netdev_set_bond_master); 4458 4459 static void dev_change_rx_flags(struct net_device *dev, int flags) 4460 { 4461 const struct net_device_ops *ops = dev->netdev_ops; 4462 4463 if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags) 4464 ops->ndo_change_rx_flags(dev, flags); 4465 } 4466 4467 static int __dev_set_promiscuity(struct net_device *dev, int inc) 4468 { 4469 unsigned int old_flags = dev->flags; 4470 uid_t uid; 4471 gid_t gid; 4472 4473 ASSERT_RTNL(); 4474 4475 dev->flags |= IFF_PROMISC; 4476 dev->promiscuity += inc; 4477 if (dev->promiscuity == 0) { 4478 /* 4479 * Avoid overflow. 4480 * If inc causes overflow, untouch promisc and return error. 4481 */ 4482 if (inc < 0) 4483 dev->flags &= ~IFF_PROMISC; 4484 else { 4485 dev->promiscuity -= inc; 4486 printk(KERN_WARNING "%s: promiscuity touches roof, " 4487 "set promiscuity failed, promiscuity feature " 4488 "of device might be broken.\n", dev->name); 4489 return -EOVERFLOW; 4490 } 4491 } 4492 if (dev->flags != old_flags) { 4493 printk(KERN_INFO "device %s %s promiscuous mode\n", 4494 dev->name, (dev->flags & IFF_PROMISC) ? "entered" : 4495 "left"); 4496 if (audit_enabled) { 4497 current_uid_gid(&uid, &gid); 4498 audit_log(current->audit_context, GFP_ATOMIC, 4499 AUDIT_ANOM_PROMISCUOUS, 4500 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u", 4501 dev->name, (dev->flags & IFF_PROMISC), 4502 (old_flags & IFF_PROMISC), 4503 audit_get_loginuid(current), 4504 uid, gid, 4505 audit_get_sessionid(current)); 4506 } 4507 4508 dev_change_rx_flags(dev, IFF_PROMISC); 4509 } 4510 return 0; 4511 } 4512 4513 /** 4514 * dev_set_promiscuity - update promiscuity count on a device 4515 * @dev: device 4516 * @inc: modifier 4517 * 4518 * Add or remove promiscuity from a device. While the count in the device 4519 * remains above zero the interface remains promiscuous. Once it hits zero 4520 * the device reverts back to normal filtering operation. A negative inc 4521 * value is used to drop promiscuity on the device. 4522 * Return 0 if successful or a negative errno code on error. 4523 */ 4524 int dev_set_promiscuity(struct net_device *dev, int inc) 4525 { 4526 unsigned int old_flags = dev->flags; 4527 int err; 4528 4529 err = __dev_set_promiscuity(dev, inc); 4530 if (err < 0) 4531 return err; 4532 if (dev->flags != old_flags) 4533 dev_set_rx_mode(dev); 4534 return err; 4535 } 4536 EXPORT_SYMBOL(dev_set_promiscuity); 4537 4538 /** 4539 * dev_set_allmulti - update allmulti count on a device 4540 * @dev: device 4541 * @inc: modifier 4542 * 4543 * Add or remove reception of all multicast frames to a device. While the 4544 * count in the device remains above zero the interface remains listening 4545 * to all interfaces. Once it hits zero the device reverts back to normal 4546 * filtering operation. A negative @inc value is used to drop the counter 4547 * when releasing a resource needing all multicasts. 4548 * Return 0 if successful or a negative errno code on error. 4549 */ 4550 4551 int dev_set_allmulti(struct net_device *dev, int inc) 4552 { 4553 unsigned int old_flags = dev->flags; 4554 4555 ASSERT_RTNL(); 4556 4557 dev->flags |= IFF_ALLMULTI; 4558 dev->allmulti += inc; 4559 if (dev->allmulti == 0) { 4560 /* 4561 * Avoid overflow. 4562 * If inc causes overflow, untouch allmulti and return error. 4563 */ 4564 if (inc < 0) 4565 dev->flags &= ~IFF_ALLMULTI; 4566 else { 4567 dev->allmulti -= inc; 4568 printk(KERN_WARNING "%s: allmulti touches roof, " 4569 "set allmulti failed, allmulti feature of " 4570 "device might be broken.\n", dev->name); 4571 return -EOVERFLOW; 4572 } 4573 } 4574 if (dev->flags ^ old_flags) { 4575 dev_change_rx_flags(dev, IFF_ALLMULTI); 4576 dev_set_rx_mode(dev); 4577 } 4578 return 0; 4579 } 4580 EXPORT_SYMBOL(dev_set_allmulti); 4581 4582 /* 4583 * Upload unicast and multicast address lists to device and 4584 * configure RX filtering. When the device doesn't support unicast 4585 * filtering it is put in promiscuous mode while unicast addresses 4586 * are present. 4587 */ 4588 void __dev_set_rx_mode(struct net_device *dev) 4589 { 4590 const struct net_device_ops *ops = dev->netdev_ops; 4591 4592 /* dev_open will call this function so the list will stay sane. */ 4593 if (!(dev->flags&IFF_UP)) 4594 return; 4595 4596 if (!netif_device_present(dev)) 4597 return; 4598 4599 if (!(dev->priv_flags & IFF_UNICAST_FLT)) { 4600 /* Unicast addresses changes may only happen under the rtnl, 4601 * therefore calling __dev_set_promiscuity here is safe. 4602 */ 4603 if (!netdev_uc_empty(dev) && !dev->uc_promisc) { 4604 __dev_set_promiscuity(dev, 1); 4605 dev->uc_promisc = true; 4606 } else if (netdev_uc_empty(dev) && dev->uc_promisc) { 4607 __dev_set_promiscuity(dev, -1); 4608 dev->uc_promisc = false; 4609 } 4610 } 4611 4612 if (ops->ndo_set_rx_mode) 4613 ops->ndo_set_rx_mode(dev); 4614 } 4615 4616 void dev_set_rx_mode(struct net_device *dev) 4617 { 4618 netif_addr_lock_bh(dev); 4619 __dev_set_rx_mode(dev); 4620 netif_addr_unlock_bh(dev); 4621 } 4622 4623 /** 4624 * dev_get_flags - get flags reported to userspace 4625 * @dev: device 4626 * 4627 * Get the combination of flag bits exported through APIs to userspace. 4628 */ 4629 unsigned dev_get_flags(const struct net_device *dev) 4630 { 4631 unsigned flags; 4632 4633 flags = (dev->flags & ~(IFF_PROMISC | 4634 IFF_ALLMULTI | 4635 IFF_RUNNING | 4636 IFF_LOWER_UP | 4637 IFF_DORMANT)) | 4638 (dev->gflags & (IFF_PROMISC | 4639 IFF_ALLMULTI)); 4640 4641 if (netif_running(dev)) { 4642 if (netif_oper_up(dev)) 4643 flags |= IFF_RUNNING; 4644 if (netif_carrier_ok(dev)) 4645 flags |= IFF_LOWER_UP; 4646 if (netif_dormant(dev)) 4647 flags |= IFF_DORMANT; 4648 } 4649 4650 return flags; 4651 } 4652 EXPORT_SYMBOL(dev_get_flags); 4653 4654 int __dev_change_flags(struct net_device *dev, unsigned int flags) 4655 { 4656 unsigned int old_flags = dev->flags; 4657 int ret; 4658 4659 ASSERT_RTNL(); 4660 4661 /* 4662 * Set the flags on our device. 4663 */ 4664 4665 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP | 4666 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL | 4667 IFF_AUTOMEDIA)) | 4668 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC | 4669 IFF_ALLMULTI)); 4670 4671 /* 4672 * Load in the correct multicast list now the flags have changed. 4673 */ 4674 4675 if ((old_flags ^ flags) & IFF_MULTICAST) 4676 dev_change_rx_flags(dev, IFF_MULTICAST); 4677 4678 dev_set_rx_mode(dev); 4679 4680 /* 4681 * Have we downed the interface. We handle IFF_UP ourselves 4682 * according to user attempts to set it, rather than blindly 4683 * setting it. 4684 */ 4685 4686 ret = 0; 4687 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */ 4688 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev); 4689 4690 if (!ret) 4691 dev_set_rx_mode(dev); 4692 } 4693 4694 if ((flags ^ dev->gflags) & IFF_PROMISC) { 4695 int inc = (flags & IFF_PROMISC) ? 1 : -1; 4696 4697 dev->gflags ^= IFF_PROMISC; 4698 dev_set_promiscuity(dev, inc); 4699 } 4700 4701 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI 4702 is important. Some (broken) drivers set IFF_PROMISC, when 4703 IFF_ALLMULTI is requested not asking us and not reporting. 4704 */ 4705 if ((flags ^ dev->gflags) & IFF_ALLMULTI) { 4706 int inc = (flags & IFF_ALLMULTI) ? 1 : -1; 4707 4708 dev->gflags ^= IFF_ALLMULTI; 4709 dev_set_allmulti(dev, inc); 4710 } 4711 4712 return ret; 4713 } 4714 4715 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags) 4716 { 4717 unsigned int changes = dev->flags ^ old_flags; 4718 4719 if (changes & IFF_UP) { 4720 if (dev->flags & IFF_UP) 4721 call_netdevice_notifiers(NETDEV_UP, dev); 4722 else 4723 call_netdevice_notifiers(NETDEV_DOWN, dev); 4724 } 4725 4726 if (dev->flags & IFF_UP && 4727 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) 4728 call_netdevice_notifiers(NETDEV_CHANGE, dev); 4729 } 4730 4731 /** 4732 * dev_change_flags - change device settings 4733 * @dev: device 4734 * @flags: device state flags 4735 * 4736 * Change settings on device based state flags. The flags are 4737 * in the userspace exported format. 4738 */ 4739 int dev_change_flags(struct net_device *dev, unsigned int flags) 4740 { 4741 int ret; 4742 unsigned int changes, old_flags = dev->flags; 4743 4744 ret = __dev_change_flags(dev, flags); 4745 if (ret < 0) 4746 return ret; 4747 4748 changes = old_flags ^ dev->flags; 4749 if (changes) 4750 rtmsg_ifinfo(RTM_NEWLINK, dev, changes); 4751 4752 __dev_notify_flags(dev, old_flags); 4753 return ret; 4754 } 4755 EXPORT_SYMBOL(dev_change_flags); 4756 4757 /** 4758 * dev_set_mtu - Change maximum transfer unit 4759 * @dev: device 4760 * @new_mtu: new transfer unit 4761 * 4762 * Change the maximum transfer size of the network device. 4763 */ 4764 int dev_set_mtu(struct net_device *dev, int new_mtu) 4765 { 4766 const struct net_device_ops *ops = dev->netdev_ops; 4767 int err; 4768 4769 if (new_mtu == dev->mtu) 4770 return 0; 4771 4772 /* MTU must be positive. */ 4773 if (new_mtu < 0) 4774 return -EINVAL; 4775 4776 if (!netif_device_present(dev)) 4777 return -ENODEV; 4778 4779 err = 0; 4780 if (ops->ndo_change_mtu) 4781 err = ops->ndo_change_mtu(dev, new_mtu); 4782 else 4783 dev->mtu = new_mtu; 4784 4785 if (!err && dev->flags & IFF_UP) 4786 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev); 4787 return err; 4788 } 4789 EXPORT_SYMBOL(dev_set_mtu); 4790 4791 /** 4792 * dev_set_group - Change group this device belongs to 4793 * @dev: device 4794 * @new_group: group this device should belong to 4795 */ 4796 void dev_set_group(struct net_device *dev, int new_group) 4797 { 4798 dev->group = new_group; 4799 } 4800 EXPORT_SYMBOL(dev_set_group); 4801 4802 /** 4803 * dev_set_mac_address - Change Media Access Control Address 4804 * @dev: device 4805 * @sa: new address 4806 * 4807 * Change the hardware (MAC) address of the device 4808 */ 4809 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa) 4810 { 4811 const struct net_device_ops *ops = dev->netdev_ops; 4812 int err; 4813 4814 if (!ops->ndo_set_mac_address) 4815 return -EOPNOTSUPP; 4816 if (sa->sa_family != dev->type) 4817 return -EINVAL; 4818 if (!netif_device_present(dev)) 4819 return -ENODEV; 4820 err = ops->ndo_set_mac_address(dev, sa); 4821 if (!err) 4822 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 4823 return err; 4824 } 4825 EXPORT_SYMBOL(dev_set_mac_address); 4826 4827 /* 4828 * Perform the SIOCxIFxxx calls, inside rcu_read_lock() 4829 */ 4830 static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd) 4831 { 4832 int err; 4833 struct net_device *dev = dev_get_by_name_rcu(net, ifr->ifr_name); 4834 4835 if (!dev) 4836 return -ENODEV; 4837 4838 switch (cmd) { 4839 case SIOCGIFFLAGS: /* Get interface flags */ 4840 ifr->ifr_flags = (short) dev_get_flags(dev); 4841 return 0; 4842 4843 case SIOCGIFMETRIC: /* Get the metric on the interface 4844 (currently unused) */ 4845 ifr->ifr_metric = 0; 4846 return 0; 4847 4848 case SIOCGIFMTU: /* Get the MTU of a device */ 4849 ifr->ifr_mtu = dev->mtu; 4850 return 0; 4851 4852 case SIOCGIFHWADDR: 4853 if (!dev->addr_len) 4854 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data); 4855 else 4856 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr, 4857 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len)); 4858 ifr->ifr_hwaddr.sa_family = dev->type; 4859 return 0; 4860 4861 case SIOCGIFSLAVE: 4862 err = -EINVAL; 4863 break; 4864 4865 case SIOCGIFMAP: 4866 ifr->ifr_map.mem_start = dev->mem_start; 4867 ifr->ifr_map.mem_end = dev->mem_end; 4868 ifr->ifr_map.base_addr = dev->base_addr; 4869 ifr->ifr_map.irq = dev->irq; 4870 ifr->ifr_map.dma = dev->dma; 4871 ifr->ifr_map.port = dev->if_port; 4872 return 0; 4873 4874 case SIOCGIFINDEX: 4875 ifr->ifr_ifindex = dev->ifindex; 4876 return 0; 4877 4878 case SIOCGIFTXQLEN: 4879 ifr->ifr_qlen = dev->tx_queue_len; 4880 return 0; 4881 4882 default: 4883 /* dev_ioctl() should ensure this case 4884 * is never reached 4885 */ 4886 WARN_ON(1); 4887 err = -ENOTTY; 4888 break; 4889 4890 } 4891 return err; 4892 } 4893 4894 /* 4895 * Perform the SIOCxIFxxx calls, inside rtnl_lock() 4896 */ 4897 static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd) 4898 { 4899 int err; 4900 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name); 4901 const struct net_device_ops *ops; 4902 4903 if (!dev) 4904 return -ENODEV; 4905 4906 ops = dev->netdev_ops; 4907 4908 switch (cmd) { 4909 case SIOCSIFFLAGS: /* Set interface flags */ 4910 return dev_change_flags(dev, ifr->ifr_flags); 4911 4912 case SIOCSIFMETRIC: /* Set the metric on the interface 4913 (currently unused) */ 4914 return -EOPNOTSUPP; 4915 4916 case SIOCSIFMTU: /* Set the MTU of a device */ 4917 return dev_set_mtu(dev, ifr->ifr_mtu); 4918 4919 case SIOCSIFHWADDR: 4920 return dev_set_mac_address(dev, &ifr->ifr_hwaddr); 4921 4922 case SIOCSIFHWBROADCAST: 4923 if (ifr->ifr_hwaddr.sa_family != dev->type) 4924 return -EINVAL; 4925 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data, 4926 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len)); 4927 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 4928 return 0; 4929 4930 case SIOCSIFMAP: 4931 if (ops->ndo_set_config) { 4932 if (!netif_device_present(dev)) 4933 return -ENODEV; 4934 return ops->ndo_set_config(dev, &ifr->ifr_map); 4935 } 4936 return -EOPNOTSUPP; 4937 4938 case SIOCADDMULTI: 4939 if (!ops->ndo_set_rx_mode || 4940 ifr->ifr_hwaddr.sa_family != AF_UNSPEC) 4941 return -EINVAL; 4942 if (!netif_device_present(dev)) 4943 return -ENODEV; 4944 return dev_mc_add_global(dev, ifr->ifr_hwaddr.sa_data); 4945 4946 case SIOCDELMULTI: 4947 if (!ops->ndo_set_rx_mode || 4948 ifr->ifr_hwaddr.sa_family != AF_UNSPEC) 4949 return -EINVAL; 4950 if (!netif_device_present(dev)) 4951 return -ENODEV; 4952 return dev_mc_del_global(dev, ifr->ifr_hwaddr.sa_data); 4953 4954 case SIOCSIFTXQLEN: 4955 if (ifr->ifr_qlen < 0) 4956 return -EINVAL; 4957 dev->tx_queue_len = ifr->ifr_qlen; 4958 return 0; 4959 4960 case SIOCSIFNAME: 4961 ifr->ifr_newname[IFNAMSIZ-1] = '\0'; 4962 return dev_change_name(dev, ifr->ifr_newname); 4963 4964 case SIOCSHWTSTAMP: 4965 err = net_hwtstamp_validate(ifr); 4966 if (err) 4967 return err; 4968 /* fall through */ 4969 4970 /* 4971 * Unknown or private ioctl 4972 */ 4973 default: 4974 if ((cmd >= SIOCDEVPRIVATE && 4975 cmd <= SIOCDEVPRIVATE + 15) || 4976 cmd == SIOCBONDENSLAVE || 4977 cmd == SIOCBONDRELEASE || 4978 cmd == SIOCBONDSETHWADDR || 4979 cmd == SIOCBONDSLAVEINFOQUERY || 4980 cmd == SIOCBONDINFOQUERY || 4981 cmd == SIOCBONDCHANGEACTIVE || 4982 cmd == SIOCGMIIPHY || 4983 cmd == SIOCGMIIREG || 4984 cmd == SIOCSMIIREG || 4985 cmd == SIOCBRADDIF || 4986 cmd == SIOCBRDELIF || 4987 cmd == SIOCSHWTSTAMP || 4988 cmd == SIOCWANDEV) { 4989 err = -EOPNOTSUPP; 4990 if (ops->ndo_do_ioctl) { 4991 if (netif_device_present(dev)) 4992 err = ops->ndo_do_ioctl(dev, ifr, cmd); 4993 else 4994 err = -ENODEV; 4995 } 4996 } else 4997 err = -EINVAL; 4998 4999 } 5000 return err; 5001 } 5002 5003 /* 5004 * This function handles all "interface"-type I/O control requests. The actual 5005 * 'doing' part of this is dev_ifsioc above. 5006 */ 5007 5008 /** 5009 * dev_ioctl - network device ioctl 5010 * @net: the applicable net namespace 5011 * @cmd: command to issue 5012 * @arg: pointer to a struct ifreq in user space 5013 * 5014 * Issue ioctl functions to devices. This is normally called by the 5015 * user space syscall interfaces but can sometimes be useful for 5016 * other purposes. The return value is the return from the syscall if 5017 * positive or a negative errno code on error. 5018 */ 5019 5020 int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg) 5021 { 5022 struct ifreq ifr; 5023 int ret; 5024 char *colon; 5025 5026 /* One special case: SIOCGIFCONF takes ifconf argument 5027 and requires shared lock, because it sleeps writing 5028 to user space. 5029 */ 5030 5031 if (cmd == SIOCGIFCONF) { 5032 rtnl_lock(); 5033 ret = dev_ifconf(net, (char __user *) arg); 5034 rtnl_unlock(); 5035 return ret; 5036 } 5037 if (cmd == SIOCGIFNAME) 5038 return dev_ifname(net, (struct ifreq __user *)arg); 5039 5040 if (copy_from_user(&ifr, arg, sizeof(struct ifreq))) 5041 return -EFAULT; 5042 5043 ifr.ifr_name[IFNAMSIZ-1] = 0; 5044 5045 colon = strchr(ifr.ifr_name, ':'); 5046 if (colon) 5047 *colon = 0; 5048 5049 /* 5050 * See which interface the caller is talking about. 5051 */ 5052 5053 switch (cmd) { 5054 /* 5055 * These ioctl calls: 5056 * - can be done by all. 5057 * - atomic and do not require locking. 5058 * - return a value 5059 */ 5060 case SIOCGIFFLAGS: 5061 case SIOCGIFMETRIC: 5062 case SIOCGIFMTU: 5063 case SIOCGIFHWADDR: 5064 case SIOCGIFSLAVE: 5065 case SIOCGIFMAP: 5066 case SIOCGIFINDEX: 5067 case SIOCGIFTXQLEN: 5068 dev_load(net, ifr.ifr_name); 5069 rcu_read_lock(); 5070 ret = dev_ifsioc_locked(net, &ifr, cmd); 5071 rcu_read_unlock(); 5072 if (!ret) { 5073 if (colon) 5074 *colon = ':'; 5075 if (copy_to_user(arg, &ifr, 5076 sizeof(struct ifreq))) 5077 ret = -EFAULT; 5078 } 5079 return ret; 5080 5081 case SIOCETHTOOL: 5082 dev_load(net, ifr.ifr_name); 5083 rtnl_lock(); 5084 ret = dev_ethtool(net, &ifr); 5085 rtnl_unlock(); 5086 if (!ret) { 5087 if (colon) 5088 *colon = ':'; 5089 if (copy_to_user(arg, &ifr, 5090 sizeof(struct ifreq))) 5091 ret = -EFAULT; 5092 } 5093 return ret; 5094 5095 /* 5096 * These ioctl calls: 5097 * - require superuser power. 5098 * - require strict serialization. 5099 * - return a value 5100 */ 5101 case SIOCGMIIPHY: 5102 case SIOCGMIIREG: 5103 case SIOCSIFNAME: 5104 if (!capable(CAP_NET_ADMIN)) 5105 return -EPERM; 5106 dev_load(net, ifr.ifr_name); 5107 rtnl_lock(); 5108 ret = dev_ifsioc(net, &ifr, cmd); 5109 rtnl_unlock(); 5110 if (!ret) { 5111 if (colon) 5112 *colon = ':'; 5113 if (copy_to_user(arg, &ifr, 5114 sizeof(struct ifreq))) 5115 ret = -EFAULT; 5116 } 5117 return ret; 5118 5119 /* 5120 * These ioctl calls: 5121 * - require superuser power. 5122 * - require strict serialization. 5123 * - do not return a value 5124 */ 5125 case SIOCSIFFLAGS: 5126 case SIOCSIFMETRIC: 5127 case SIOCSIFMTU: 5128 case SIOCSIFMAP: 5129 case SIOCSIFHWADDR: 5130 case SIOCSIFSLAVE: 5131 case SIOCADDMULTI: 5132 case SIOCDELMULTI: 5133 case SIOCSIFHWBROADCAST: 5134 case SIOCSIFTXQLEN: 5135 case SIOCSMIIREG: 5136 case SIOCBONDENSLAVE: 5137 case SIOCBONDRELEASE: 5138 case SIOCBONDSETHWADDR: 5139 case SIOCBONDCHANGEACTIVE: 5140 case SIOCBRADDIF: 5141 case SIOCBRDELIF: 5142 case SIOCSHWTSTAMP: 5143 if (!capable(CAP_NET_ADMIN)) 5144 return -EPERM; 5145 /* fall through */ 5146 case SIOCBONDSLAVEINFOQUERY: 5147 case SIOCBONDINFOQUERY: 5148 dev_load(net, ifr.ifr_name); 5149 rtnl_lock(); 5150 ret = dev_ifsioc(net, &ifr, cmd); 5151 rtnl_unlock(); 5152 return ret; 5153 5154 case SIOCGIFMEM: 5155 /* Get the per device memory space. We can add this but 5156 * currently do not support it */ 5157 case SIOCSIFMEM: 5158 /* Set the per device memory buffer space. 5159 * Not applicable in our case */ 5160 case SIOCSIFLINK: 5161 return -ENOTTY; 5162 5163 /* 5164 * Unknown or private ioctl. 5165 */ 5166 default: 5167 if (cmd == SIOCWANDEV || 5168 (cmd >= SIOCDEVPRIVATE && 5169 cmd <= SIOCDEVPRIVATE + 15)) { 5170 dev_load(net, ifr.ifr_name); 5171 rtnl_lock(); 5172 ret = dev_ifsioc(net, &ifr, cmd); 5173 rtnl_unlock(); 5174 if (!ret && copy_to_user(arg, &ifr, 5175 sizeof(struct ifreq))) 5176 ret = -EFAULT; 5177 return ret; 5178 } 5179 /* Take care of Wireless Extensions */ 5180 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) 5181 return wext_handle_ioctl(net, &ifr, cmd, arg); 5182 return -ENOTTY; 5183 } 5184 } 5185 5186 5187 /** 5188 * dev_new_index - allocate an ifindex 5189 * @net: the applicable net namespace 5190 * 5191 * Returns a suitable unique value for a new device interface 5192 * number. The caller must hold the rtnl semaphore or the 5193 * dev_base_lock to be sure it remains unique. 5194 */ 5195 static int dev_new_index(struct net *net) 5196 { 5197 static int ifindex; 5198 for (;;) { 5199 if (++ifindex <= 0) 5200 ifindex = 1; 5201 if (!__dev_get_by_index(net, ifindex)) 5202 return ifindex; 5203 } 5204 } 5205 5206 /* Delayed registration/unregisteration */ 5207 static LIST_HEAD(net_todo_list); 5208 5209 static void net_set_todo(struct net_device *dev) 5210 { 5211 list_add_tail(&dev->todo_list, &net_todo_list); 5212 } 5213 5214 static void rollback_registered_many(struct list_head *head) 5215 { 5216 struct net_device *dev, *tmp; 5217 5218 BUG_ON(dev_boot_phase); 5219 ASSERT_RTNL(); 5220 5221 list_for_each_entry_safe(dev, tmp, head, unreg_list) { 5222 /* Some devices call without registering 5223 * for initialization unwind. Remove those 5224 * devices and proceed with the remaining. 5225 */ 5226 if (dev->reg_state == NETREG_UNINITIALIZED) { 5227 pr_debug("unregister_netdevice: device %s/%p never " 5228 "was registered\n", dev->name, dev); 5229 5230 WARN_ON(1); 5231 list_del(&dev->unreg_list); 5232 continue; 5233 } 5234 dev->dismantle = true; 5235 BUG_ON(dev->reg_state != NETREG_REGISTERED); 5236 } 5237 5238 /* If device is running, close it first. */ 5239 dev_close_many(head); 5240 5241 list_for_each_entry(dev, head, unreg_list) { 5242 /* And unlink it from device chain. */ 5243 unlist_netdevice(dev); 5244 5245 dev->reg_state = NETREG_UNREGISTERING; 5246 } 5247 5248 synchronize_net(); 5249 5250 list_for_each_entry(dev, head, unreg_list) { 5251 /* Shutdown queueing discipline. */ 5252 dev_shutdown(dev); 5253 5254 5255 /* Notify protocols, that we are about to destroy 5256 this device. They should clean all the things. 5257 */ 5258 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 5259 5260 if (!dev->rtnl_link_ops || 5261 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 5262 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U); 5263 5264 /* 5265 * Flush the unicast and multicast chains 5266 */ 5267 dev_uc_flush(dev); 5268 dev_mc_flush(dev); 5269 5270 if (dev->netdev_ops->ndo_uninit) 5271 dev->netdev_ops->ndo_uninit(dev); 5272 5273 /* Notifier chain MUST detach us from master device. */ 5274 WARN_ON(dev->master); 5275 5276 /* Remove entries from kobject tree */ 5277 netdev_unregister_kobject(dev); 5278 } 5279 5280 /* Process any work delayed until the end of the batch */ 5281 dev = list_first_entry(head, struct net_device, unreg_list); 5282 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev); 5283 5284 synchronize_net(); 5285 5286 list_for_each_entry(dev, head, unreg_list) 5287 dev_put(dev); 5288 } 5289 5290 static void rollback_registered(struct net_device *dev) 5291 { 5292 LIST_HEAD(single); 5293 5294 list_add(&dev->unreg_list, &single); 5295 rollback_registered_many(&single); 5296 list_del(&single); 5297 } 5298 5299 static netdev_features_t netdev_fix_features(struct net_device *dev, 5300 netdev_features_t features) 5301 { 5302 /* Fix illegal checksum combinations */ 5303 if ((features & NETIF_F_HW_CSUM) && 5304 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 5305 netdev_warn(dev, "mixed HW and IP checksum settings.\n"); 5306 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 5307 } 5308 5309 /* Fix illegal SG+CSUM combinations. */ 5310 if ((features & NETIF_F_SG) && 5311 !(features & NETIF_F_ALL_CSUM)) { 5312 netdev_dbg(dev, 5313 "Dropping NETIF_F_SG since no checksum feature.\n"); 5314 features &= ~NETIF_F_SG; 5315 } 5316 5317 /* TSO requires that SG is present as well. */ 5318 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) { 5319 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n"); 5320 features &= ~NETIF_F_ALL_TSO; 5321 } 5322 5323 /* TSO ECN requires that TSO is present as well. */ 5324 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN) 5325 features &= ~NETIF_F_TSO_ECN; 5326 5327 /* Software GSO depends on SG. */ 5328 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) { 5329 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n"); 5330 features &= ~NETIF_F_GSO; 5331 } 5332 5333 /* UFO needs SG and checksumming */ 5334 if (features & NETIF_F_UFO) { 5335 /* maybe split UFO into V4 and V6? */ 5336 if (!((features & NETIF_F_GEN_CSUM) || 5337 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM)) 5338 == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 5339 netdev_dbg(dev, 5340 "Dropping NETIF_F_UFO since no checksum offload features.\n"); 5341 features &= ~NETIF_F_UFO; 5342 } 5343 5344 if (!(features & NETIF_F_SG)) { 5345 netdev_dbg(dev, 5346 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n"); 5347 features &= ~NETIF_F_UFO; 5348 } 5349 } 5350 5351 return features; 5352 } 5353 5354 int __netdev_update_features(struct net_device *dev) 5355 { 5356 netdev_features_t features; 5357 int err = 0; 5358 5359 ASSERT_RTNL(); 5360 5361 features = netdev_get_wanted_features(dev); 5362 5363 if (dev->netdev_ops->ndo_fix_features) 5364 features = dev->netdev_ops->ndo_fix_features(dev, features); 5365 5366 /* driver might be less strict about feature dependencies */ 5367 features = netdev_fix_features(dev, features); 5368 5369 if (dev->features == features) 5370 return 0; 5371 5372 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n", 5373 &dev->features, &features); 5374 5375 if (dev->netdev_ops->ndo_set_features) 5376 err = dev->netdev_ops->ndo_set_features(dev, features); 5377 5378 if (unlikely(err < 0)) { 5379 netdev_err(dev, 5380 "set_features() failed (%d); wanted %pNF, left %pNF\n", 5381 err, &features, &dev->features); 5382 return -1; 5383 } 5384 5385 if (!err) 5386 dev->features = features; 5387 5388 return 1; 5389 } 5390 5391 /** 5392 * netdev_update_features - recalculate device features 5393 * @dev: the device to check 5394 * 5395 * Recalculate dev->features set and send notifications if it 5396 * has changed. Should be called after driver or hardware dependent 5397 * conditions might have changed that influence the features. 5398 */ 5399 void netdev_update_features(struct net_device *dev) 5400 { 5401 if (__netdev_update_features(dev)) 5402 netdev_features_change(dev); 5403 } 5404 EXPORT_SYMBOL(netdev_update_features); 5405 5406 /** 5407 * netdev_change_features - recalculate device features 5408 * @dev: the device to check 5409 * 5410 * Recalculate dev->features set and send notifications even 5411 * if they have not changed. Should be called instead of 5412 * netdev_update_features() if also dev->vlan_features might 5413 * have changed to allow the changes to be propagated to stacked 5414 * VLAN devices. 5415 */ 5416 void netdev_change_features(struct net_device *dev) 5417 { 5418 __netdev_update_features(dev); 5419 netdev_features_change(dev); 5420 } 5421 EXPORT_SYMBOL(netdev_change_features); 5422 5423 /** 5424 * netif_stacked_transfer_operstate - transfer operstate 5425 * @rootdev: the root or lower level device to transfer state from 5426 * @dev: the device to transfer operstate to 5427 * 5428 * Transfer operational state from root to device. This is normally 5429 * called when a stacking relationship exists between the root 5430 * device and the device(a leaf device). 5431 */ 5432 void netif_stacked_transfer_operstate(const struct net_device *rootdev, 5433 struct net_device *dev) 5434 { 5435 if (rootdev->operstate == IF_OPER_DORMANT) 5436 netif_dormant_on(dev); 5437 else 5438 netif_dormant_off(dev); 5439 5440 if (netif_carrier_ok(rootdev)) { 5441 if (!netif_carrier_ok(dev)) 5442 netif_carrier_on(dev); 5443 } else { 5444 if (netif_carrier_ok(dev)) 5445 netif_carrier_off(dev); 5446 } 5447 } 5448 EXPORT_SYMBOL(netif_stacked_transfer_operstate); 5449 5450 #ifdef CONFIG_RPS 5451 static int netif_alloc_rx_queues(struct net_device *dev) 5452 { 5453 unsigned int i, count = dev->num_rx_queues; 5454 struct netdev_rx_queue *rx; 5455 5456 BUG_ON(count < 1); 5457 5458 rx = kcalloc(count, sizeof(struct netdev_rx_queue), GFP_KERNEL); 5459 if (!rx) { 5460 pr_err("netdev: Unable to allocate %u rx queues.\n", count); 5461 return -ENOMEM; 5462 } 5463 dev->_rx = rx; 5464 5465 for (i = 0; i < count; i++) 5466 rx[i].dev = dev; 5467 return 0; 5468 } 5469 #endif 5470 5471 static void netdev_init_one_queue(struct net_device *dev, 5472 struct netdev_queue *queue, void *_unused) 5473 { 5474 /* Initialize queue lock */ 5475 spin_lock_init(&queue->_xmit_lock); 5476 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type); 5477 queue->xmit_lock_owner = -1; 5478 netdev_queue_numa_node_write(queue, NUMA_NO_NODE); 5479 queue->dev = dev; 5480 #ifdef CONFIG_BQL 5481 dql_init(&queue->dql, HZ); 5482 #endif 5483 } 5484 5485 static int netif_alloc_netdev_queues(struct net_device *dev) 5486 { 5487 unsigned int count = dev->num_tx_queues; 5488 struct netdev_queue *tx; 5489 5490 BUG_ON(count < 1); 5491 5492 tx = kcalloc(count, sizeof(struct netdev_queue), GFP_KERNEL); 5493 if (!tx) { 5494 pr_err("netdev: Unable to allocate %u tx queues.\n", 5495 count); 5496 return -ENOMEM; 5497 } 5498 dev->_tx = tx; 5499 5500 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL); 5501 spin_lock_init(&dev->tx_global_lock); 5502 5503 return 0; 5504 } 5505 5506 /** 5507 * register_netdevice - register a network device 5508 * @dev: device to register 5509 * 5510 * Take a completed network device structure and add it to the kernel 5511 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 5512 * chain. 0 is returned on success. A negative errno code is returned 5513 * on a failure to set up the device, or if the name is a duplicate. 5514 * 5515 * Callers must hold the rtnl semaphore. You may want 5516 * register_netdev() instead of this. 5517 * 5518 * BUGS: 5519 * The locking appears insufficient to guarantee two parallel registers 5520 * will not get the same name. 5521 */ 5522 5523 int register_netdevice(struct net_device *dev) 5524 { 5525 int ret; 5526 struct net *net = dev_net(dev); 5527 5528 BUG_ON(dev_boot_phase); 5529 ASSERT_RTNL(); 5530 5531 might_sleep(); 5532 5533 /* When net_device's are persistent, this will be fatal. */ 5534 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED); 5535 BUG_ON(!net); 5536 5537 spin_lock_init(&dev->addr_list_lock); 5538 netdev_set_addr_lockdep_class(dev); 5539 5540 dev->iflink = -1; 5541 5542 ret = dev_get_valid_name(dev, dev->name); 5543 if (ret < 0) 5544 goto out; 5545 5546 /* Init, if this function is available */ 5547 if (dev->netdev_ops->ndo_init) { 5548 ret = dev->netdev_ops->ndo_init(dev); 5549 if (ret) { 5550 if (ret > 0) 5551 ret = -EIO; 5552 goto out; 5553 } 5554 } 5555 5556 dev->ifindex = dev_new_index(net); 5557 if (dev->iflink == -1) 5558 dev->iflink = dev->ifindex; 5559 5560 /* Transfer changeable features to wanted_features and enable 5561 * software offloads (GSO and GRO). 5562 */ 5563 dev->hw_features |= NETIF_F_SOFT_FEATURES; 5564 dev->features |= NETIF_F_SOFT_FEATURES; 5565 dev->wanted_features = dev->features & dev->hw_features; 5566 5567 /* Turn on no cache copy if HW is doing checksum */ 5568 if (!(dev->flags & IFF_LOOPBACK)) { 5569 dev->hw_features |= NETIF_F_NOCACHE_COPY; 5570 if (dev->features & NETIF_F_ALL_CSUM) { 5571 dev->wanted_features |= NETIF_F_NOCACHE_COPY; 5572 dev->features |= NETIF_F_NOCACHE_COPY; 5573 } 5574 } 5575 5576 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices. 5577 */ 5578 dev->vlan_features |= NETIF_F_HIGHDMA; 5579 5580 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev); 5581 ret = notifier_to_errno(ret); 5582 if (ret) 5583 goto err_uninit; 5584 5585 ret = netdev_register_kobject(dev); 5586 if (ret) 5587 goto err_uninit; 5588 dev->reg_state = NETREG_REGISTERED; 5589 5590 __netdev_update_features(dev); 5591 5592 /* 5593 * Default initial state at registry is that the 5594 * device is present. 5595 */ 5596 5597 set_bit(__LINK_STATE_PRESENT, &dev->state); 5598 5599 dev_init_scheduler(dev); 5600 dev_hold(dev); 5601 list_netdevice(dev); 5602 5603 /* Notify protocols, that a new device appeared. */ 5604 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev); 5605 ret = notifier_to_errno(ret); 5606 if (ret) { 5607 rollback_registered(dev); 5608 dev->reg_state = NETREG_UNREGISTERED; 5609 } 5610 /* 5611 * Prevent userspace races by waiting until the network 5612 * device is fully setup before sending notifications. 5613 */ 5614 if (!dev->rtnl_link_ops || 5615 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 5616 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U); 5617 5618 out: 5619 return ret; 5620 5621 err_uninit: 5622 if (dev->netdev_ops->ndo_uninit) 5623 dev->netdev_ops->ndo_uninit(dev); 5624 goto out; 5625 } 5626 EXPORT_SYMBOL(register_netdevice); 5627 5628 /** 5629 * init_dummy_netdev - init a dummy network device for NAPI 5630 * @dev: device to init 5631 * 5632 * This takes a network device structure and initialize the minimum 5633 * amount of fields so it can be used to schedule NAPI polls without 5634 * registering a full blown interface. This is to be used by drivers 5635 * that need to tie several hardware interfaces to a single NAPI 5636 * poll scheduler due to HW limitations. 5637 */ 5638 int init_dummy_netdev(struct net_device *dev) 5639 { 5640 /* Clear everything. Note we don't initialize spinlocks 5641 * are they aren't supposed to be taken by any of the 5642 * NAPI code and this dummy netdev is supposed to be 5643 * only ever used for NAPI polls 5644 */ 5645 memset(dev, 0, sizeof(struct net_device)); 5646 5647 /* make sure we BUG if trying to hit standard 5648 * register/unregister code path 5649 */ 5650 dev->reg_state = NETREG_DUMMY; 5651 5652 /* NAPI wants this */ 5653 INIT_LIST_HEAD(&dev->napi_list); 5654 5655 /* a dummy interface is started by default */ 5656 set_bit(__LINK_STATE_PRESENT, &dev->state); 5657 set_bit(__LINK_STATE_START, &dev->state); 5658 5659 /* Note : We dont allocate pcpu_refcnt for dummy devices, 5660 * because users of this 'device' dont need to change 5661 * its refcount. 5662 */ 5663 5664 return 0; 5665 } 5666 EXPORT_SYMBOL_GPL(init_dummy_netdev); 5667 5668 5669 /** 5670 * register_netdev - register a network device 5671 * @dev: device to register 5672 * 5673 * Take a completed network device structure and add it to the kernel 5674 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 5675 * chain. 0 is returned on success. A negative errno code is returned 5676 * on a failure to set up the device, or if the name is a duplicate. 5677 * 5678 * This is a wrapper around register_netdevice that takes the rtnl semaphore 5679 * and expands the device name if you passed a format string to 5680 * alloc_netdev. 5681 */ 5682 int register_netdev(struct net_device *dev) 5683 { 5684 int err; 5685 5686 rtnl_lock(); 5687 err = register_netdevice(dev); 5688 rtnl_unlock(); 5689 return err; 5690 } 5691 EXPORT_SYMBOL(register_netdev); 5692 5693 int netdev_refcnt_read(const struct net_device *dev) 5694 { 5695 int i, refcnt = 0; 5696 5697 for_each_possible_cpu(i) 5698 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i); 5699 return refcnt; 5700 } 5701 EXPORT_SYMBOL(netdev_refcnt_read); 5702 5703 /* 5704 * netdev_wait_allrefs - wait until all references are gone. 5705 * 5706 * This is called when unregistering network devices. 5707 * 5708 * Any protocol or device that holds a reference should register 5709 * for netdevice notification, and cleanup and put back the 5710 * reference if they receive an UNREGISTER event. 5711 * We can get stuck here if buggy protocols don't correctly 5712 * call dev_put. 5713 */ 5714 static void netdev_wait_allrefs(struct net_device *dev) 5715 { 5716 unsigned long rebroadcast_time, warning_time; 5717 int refcnt; 5718 5719 linkwatch_forget_dev(dev); 5720 5721 rebroadcast_time = warning_time = jiffies; 5722 refcnt = netdev_refcnt_read(dev); 5723 5724 while (refcnt != 0) { 5725 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) { 5726 rtnl_lock(); 5727 5728 /* Rebroadcast unregister notification */ 5729 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 5730 /* don't resend NETDEV_UNREGISTER_BATCH, _BATCH users 5731 * should have already handle it the first time */ 5732 5733 if (test_bit(__LINK_STATE_LINKWATCH_PENDING, 5734 &dev->state)) { 5735 /* We must not have linkwatch events 5736 * pending on unregister. If this 5737 * happens, we simply run the queue 5738 * unscheduled, resulting in a noop 5739 * for this device. 5740 */ 5741 linkwatch_run_queue(); 5742 } 5743 5744 __rtnl_unlock(); 5745 5746 rebroadcast_time = jiffies; 5747 } 5748 5749 msleep(250); 5750 5751 refcnt = netdev_refcnt_read(dev); 5752 5753 if (time_after(jiffies, warning_time + 10 * HZ)) { 5754 printk(KERN_EMERG "unregister_netdevice: " 5755 "waiting for %s to become free. Usage " 5756 "count = %d\n", 5757 dev->name, refcnt); 5758 warning_time = jiffies; 5759 } 5760 } 5761 } 5762 5763 /* The sequence is: 5764 * 5765 * rtnl_lock(); 5766 * ... 5767 * register_netdevice(x1); 5768 * register_netdevice(x2); 5769 * ... 5770 * unregister_netdevice(y1); 5771 * unregister_netdevice(y2); 5772 * ... 5773 * rtnl_unlock(); 5774 * free_netdev(y1); 5775 * free_netdev(y2); 5776 * 5777 * We are invoked by rtnl_unlock(). 5778 * This allows us to deal with problems: 5779 * 1) We can delete sysfs objects which invoke hotplug 5780 * without deadlocking with linkwatch via keventd. 5781 * 2) Since we run with the RTNL semaphore not held, we can sleep 5782 * safely in order to wait for the netdev refcnt to drop to zero. 5783 * 5784 * We must not return until all unregister events added during 5785 * the interval the lock was held have been completed. 5786 */ 5787 void netdev_run_todo(void) 5788 { 5789 struct list_head list; 5790 5791 /* Snapshot list, allow later requests */ 5792 list_replace_init(&net_todo_list, &list); 5793 5794 __rtnl_unlock(); 5795 5796 /* Wait for rcu callbacks to finish before attempting to drain 5797 * the device list. This usually avoids a 250ms wait. 5798 */ 5799 if (!list_empty(&list)) 5800 rcu_barrier(); 5801 5802 while (!list_empty(&list)) { 5803 struct net_device *dev 5804 = list_first_entry(&list, struct net_device, todo_list); 5805 list_del(&dev->todo_list); 5806 5807 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) { 5808 printk(KERN_ERR "network todo '%s' but state %d\n", 5809 dev->name, dev->reg_state); 5810 dump_stack(); 5811 continue; 5812 } 5813 5814 dev->reg_state = NETREG_UNREGISTERED; 5815 5816 on_each_cpu(flush_backlog, dev, 1); 5817 5818 netdev_wait_allrefs(dev); 5819 5820 /* paranoia */ 5821 BUG_ON(netdev_refcnt_read(dev)); 5822 WARN_ON(rcu_access_pointer(dev->ip_ptr)); 5823 WARN_ON(rcu_access_pointer(dev->ip6_ptr)); 5824 WARN_ON(dev->dn_ptr); 5825 5826 if (dev->destructor) 5827 dev->destructor(dev); 5828 5829 /* Free network device */ 5830 kobject_put(&dev->dev.kobj); 5831 } 5832 } 5833 5834 /* Convert net_device_stats to rtnl_link_stats64. They have the same 5835 * fields in the same order, with only the type differing. 5836 */ 5837 static void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 5838 const struct net_device_stats *netdev_stats) 5839 { 5840 #if BITS_PER_LONG == 64 5841 BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats)); 5842 memcpy(stats64, netdev_stats, sizeof(*stats64)); 5843 #else 5844 size_t i, n = sizeof(*stats64) / sizeof(u64); 5845 const unsigned long *src = (const unsigned long *)netdev_stats; 5846 u64 *dst = (u64 *)stats64; 5847 5848 BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) != 5849 sizeof(*stats64) / sizeof(u64)); 5850 for (i = 0; i < n; i++) 5851 dst[i] = src[i]; 5852 #endif 5853 } 5854 5855 /** 5856 * dev_get_stats - get network device statistics 5857 * @dev: device to get statistics from 5858 * @storage: place to store stats 5859 * 5860 * Get network statistics from device. Return @storage. 5861 * The device driver may provide its own method by setting 5862 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats; 5863 * otherwise the internal statistics structure is used. 5864 */ 5865 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 5866 struct rtnl_link_stats64 *storage) 5867 { 5868 const struct net_device_ops *ops = dev->netdev_ops; 5869 5870 if (ops->ndo_get_stats64) { 5871 memset(storage, 0, sizeof(*storage)); 5872 ops->ndo_get_stats64(dev, storage); 5873 } else if (ops->ndo_get_stats) { 5874 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev)); 5875 } else { 5876 netdev_stats_to_stats64(storage, &dev->stats); 5877 } 5878 storage->rx_dropped += atomic_long_read(&dev->rx_dropped); 5879 return storage; 5880 } 5881 EXPORT_SYMBOL(dev_get_stats); 5882 5883 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev) 5884 { 5885 struct netdev_queue *queue = dev_ingress_queue(dev); 5886 5887 #ifdef CONFIG_NET_CLS_ACT 5888 if (queue) 5889 return queue; 5890 queue = kzalloc(sizeof(*queue), GFP_KERNEL); 5891 if (!queue) 5892 return NULL; 5893 netdev_init_one_queue(dev, queue, NULL); 5894 queue->qdisc = &noop_qdisc; 5895 queue->qdisc_sleeping = &noop_qdisc; 5896 rcu_assign_pointer(dev->ingress_queue, queue); 5897 #endif 5898 return queue; 5899 } 5900 5901 /** 5902 * alloc_netdev_mqs - allocate network device 5903 * @sizeof_priv: size of private data to allocate space for 5904 * @name: device name format string 5905 * @setup: callback to initialize device 5906 * @txqs: the number of TX subqueues to allocate 5907 * @rxqs: the number of RX subqueues to allocate 5908 * 5909 * Allocates a struct net_device with private data area for driver use 5910 * and performs basic initialization. Also allocates subquue structs 5911 * for each queue on the device. 5912 */ 5913 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 5914 void (*setup)(struct net_device *), 5915 unsigned int txqs, unsigned int rxqs) 5916 { 5917 struct net_device *dev; 5918 size_t alloc_size; 5919 struct net_device *p; 5920 5921 BUG_ON(strlen(name) >= sizeof(dev->name)); 5922 5923 if (txqs < 1) { 5924 pr_err("alloc_netdev: Unable to allocate device " 5925 "with zero queues.\n"); 5926 return NULL; 5927 } 5928 5929 #ifdef CONFIG_RPS 5930 if (rxqs < 1) { 5931 pr_err("alloc_netdev: Unable to allocate device " 5932 "with zero RX queues.\n"); 5933 return NULL; 5934 } 5935 #endif 5936 5937 alloc_size = sizeof(struct net_device); 5938 if (sizeof_priv) { 5939 /* ensure 32-byte alignment of private area */ 5940 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN); 5941 alloc_size += sizeof_priv; 5942 } 5943 /* ensure 32-byte alignment of whole construct */ 5944 alloc_size += NETDEV_ALIGN - 1; 5945 5946 p = kzalloc(alloc_size, GFP_KERNEL); 5947 if (!p) { 5948 printk(KERN_ERR "alloc_netdev: Unable to allocate device.\n"); 5949 return NULL; 5950 } 5951 5952 dev = PTR_ALIGN(p, NETDEV_ALIGN); 5953 dev->padded = (char *)dev - (char *)p; 5954 5955 dev->pcpu_refcnt = alloc_percpu(int); 5956 if (!dev->pcpu_refcnt) 5957 goto free_p; 5958 5959 if (dev_addr_init(dev)) 5960 goto free_pcpu; 5961 5962 dev_mc_init(dev); 5963 dev_uc_init(dev); 5964 5965 dev_net_set(dev, &init_net); 5966 5967 dev->gso_max_size = GSO_MAX_SIZE; 5968 5969 INIT_LIST_HEAD(&dev->napi_list); 5970 INIT_LIST_HEAD(&dev->unreg_list); 5971 INIT_LIST_HEAD(&dev->link_watch_list); 5972 dev->priv_flags = IFF_XMIT_DST_RELEASE; 5973 setup(dev); 5974 5975 dev->num_tx_queues = txqs; 5976 dev->real_num_tx_queues = txqs; 5977 if (netif_alloc_netdev_queues(dev)) 5978 goto free_all; 5979 5980 #ifdef CONFIG_RPS 5981 dev->num_rx_queues = rxqs; 5982 dev->real_num_rx_queues = rxqs; 5983 if (netif_alloc_rx_queues(dev)) 5984 goto free_all; 5985 #endif 5986 5987 strcpy(dev->name, name); 5988 dev->group = INIT_NETDEV_GROUP; 5989 return dev; 5990 5991 free_all: 5992 free_netdev(dev); 5993 return NULL; 5994 5995 free_pcpu: 5996 free_percpu(dev->pcpu_refcnt); 5997 kfree(dev->_tx); 5998 #ifdef CONFIG_RPS 5999 kfree(dev->_rx); 6000 #endif 6001 6002 free_p: 6003 kfree(p); 6004 return NULL; 6005 } 6006 EXPORT_SYMBOL(alloc_netdev_mqs); 6007 6008 /** 6009 * free_netdev - free network device 6010 * @dev: device 6011 * 6012 * This function does the last stage of destroying an allocated device 6013 * interface. The reference to the device object is released. 6014 * If this is the last reference then it will be freed. 6015 */ 6016 void free_netdev(struct net_device *dev) 6017 { 6018 struct napi_struct *p, *n; 6019 6020 release_net(dev_net(dev)); 6021 6022 kfree(dev->_tx); 6023 #ifdef CONFIG_RPS 6024 kfree(dev->_rx); 6025 #endif 6026 6027 kfree(rcu_dereference_protected(dev->ingress_queue, 1)); 6028 6029 /* Flush device addresses */ 6030 dev_addr_flush(dev); 6031 6032 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list) 6033 netif_napi_del(p); 6034 6035 free_percpu(dev->pcpu_refcnt); 6036 dev->pcpu_refcnt = NULL; 6037 6038 /* Compatibility with error handling in drivers */ 6039 if (dev->reg_state == NETREG_UNINITIALIZED) { 6040 kfree((char *)dev - dev->padded); 6041 return; 6042 } 6043 6044 BUG_ON(dev->reg_state != NETREG_UNREGISTERED); 6045 dev->reg_state = NETREG_RELEASED; 6046 6047 /* will free via device release */ 6048 put_device(&dev->dev); 6049 } 6050 EXPORT_SYMBOL(free_netdev); 6051 6052 /** 6053 * synchronize_net - Synchronize with packet receive processing 6054 * 6055 * Wait for packets currently being received to be done. 6056 * Does not block later packets from starting. 6057 */ 6058 void synchronize_net(void) 6059 { 6060 might_sleep(); 6061 if (rtnl_is_locked()) 6062 synchronize_rcu_expedited(); 6063 else 6064 synchronize_rcu(); 6065 } 6066 EXPORT_SYMBOL(synchronize_net); 6067 6068 /** 6069 * unregister_netdevice_queue - remove device from the kernel 6070 * @dev: device 6071 * @head: list 6072 * 6073 * This function shuts down a device interface and removes it 6074 * from the kernel tables. 6075 * If head not NULL, device is queued to be unregistered later. 6076 * 6077 * Callers must hold the rtnl semaphore. You may want 6078 * unregister_netdev() instead of this. 6079 */ 6080 6081 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head) 6082 { 6083 ASSERT_RTNL(); 6084 6085 if (head) { 6086 list_move_tail(&dev->unreg_list, head); 6087 } else { 6088 rollback_registered(dev); 6089 /* Finish processing unregister after unlock */ 6090 net_set_todo(dev); 6091 } 6092 } 6093 EXPORT_SYMBOL(unregister_netdevice_queue); 6094 6095 /** 6096 * unregister_netdevice_many - unregister many devices 6097 * @head: list of devices 6098 */ 6099 void unregister_netdevice_many(struct list_head *head) 6100 { 6101 struct net_device *dev; 6102 6103 if (!list_empty(head)) { 6104 rollback_registered_many(head); 6105 list_for_each_entry(dev, head, unreg_list) 6106 net_set_todo(dev); 6107 } 6108 } 6109 EXPORT_SYMBOL(unregister_netdevice_many); 6110 6111 /** 6112 * unregister_netdev - remove device from the kernel 6113 * @dev: device 6114 * 6115 * This function shuts down a device interface and removes it 6116 * from the kernel tables. 6117 * 6118 * This is just a wrapper for unregister_netdevice that takes 6119 * the rtnl semaphore. In general you want to use this and not 6120 * unregister_netdevice. 6121 */ 6122 void unregister_netdev(struct net_device *dev) 6123 { 6124 rtnl_lock(); 6125 unregister_netdevice(dev); 6126 rtnl_unlock(); 6127 } 6128 EXPORT_SYMBOL(unregister_netdev); 6129 6130 /** 6131 * dev_change_net_namespace - move device to different nethost namespace 6132 * @dev: device 6133 * @net: network namespace 6134 * @pat: If not NULL name pattern to try if the current device name 6135 * is already taken in the destination network namespace. 6136 * 6137 * This function shuts down a device interface and moves it 6138 * to a new network namespace. On success 0 is returned, on 6139 * a failure a netagive errno code is returned. 6140 * 6141 * Callers must hold the rtnl semaphore. 6142 */ 6143 6144 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat) 6145 { 6146 int err; 6147 6148 ASSERT_RTNL(); 6149 6150 /* Don't allow namespace local devices to be moved. */ 6151 err = -EINVAL; 6152 if (dev->features & NETIF_F_NETNS_LOCAL) 6153 goto out; 6154 6155 /* Ensure the device has been registrered */ 6156 err = -EINVAL; 6157 if (dev->reg_state != NETREG_REGISTERED) 6158 goto out; 6159 6160 /* Get out if there is nothing todo */ 6161 err = 0; 6162 if (net_eq(dev_net(dev), net)) 6163 goto out; 6164 6165 /* Pick the destination device name, and ensure 6166 * we can use it in the destination network namespace. 6167 */ 6168 err = -EEXIST; 6169 if (__dev_get_by_name(net, dev->name)) { 6170 /* We get here if we can't use the current device name */ 6171 if (!pat) 6172 goto out; 6173 if (dev_get_valid_name(dev, pat) < 0) 6174 goto out; 6175 } 6176 6177 /* 6178 * And now a mini version of register_netdevice unregister_netdevice. 6179 */ 6180 6181 /* If device is running close it first. */ 6182 dev_close(dev); 6183 6184 /* And unlink it from device chain */ 6185 err = -ENODEV; 6186 unlist_netdevice(dev); 6187 6188 synchronize_net(); 6189 6190 /* Shutdown queueing discipline. */ 6191 dev_shutdown(dev); 6192 6193 /* Notify protocols, that we are about to destroy 6194 this device. They should clean all the things. 6195 6196 Note that dev->reg_state stays at NETREG_REGISTERED. 6197 This is wanted because this way 8021q and macvlan know 6198 the device is just moving and can keep their slaves up. 6199 */ 6200 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 6201 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev); 6202 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U); 6203 6204 /* 6205 * Flush the unicast and multicast chains 6206 */ 6207 dev_uc_flush(dev); 6208 dev_mc_flush(dev); 6209 6210 /* Actually switch the network namespace */ 6211 dev_net_set(dev, net); 6212 6213 /* If there is an ifindex conflict assign a new one */ 6214 if (__dev_get_by_index(net, dev->ifindex)) { 6215 int iflink = (dev->iflink == dev->ifindex); 6216 dev->ifindex = dev_new_index(net); 6217 if (iflink) 6218 dev->iflink = dev->ifindex; 6219 } 6220 6221 /* Fixup kobjects */ 6222 err = device_rename(&dev->dev, dev->name); 6223 WARN_ON(err); 6224 6225 /* Add the device back in the hashes */ 6226 list_netdevice(dev); 6227 6228 /* Notify protocols, that a new device appeared. */ 6229 call_netdevice_notifiers(NETDEV_REGISTER, dev); 6230 6231 /* 6232 * Prevent userspace races by waiting until the network 6233 * device is fully setup before sending notifications. 6234 */ 6235 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U); 6236 6237 synchronize_net(); 6238 err = 0; 6239 out: 6240 return err; 6241 } 6242 EXPORT_SYMBOL_GPL(dev_change_net_namespace); 6243 6244 static int dev_cpu_callback(struct notifier_block *nfb, 6245 unsigned long action, 6246 void *ocpu) 6247 { 6248 struct sk_buff **list_skb; 6249 struct sk_buff *skb; 6250 unsigned int cpu, oldcpu = (unsigned long)ocpu; 6251 struct softnet_data *sd, *oldsd; 6252 6253 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN) 6254 return NOTIFY_OK; 6255 6256 local_irq_disable(); 6257 cpu = smp_processor_id(); 6258 sd = &per_cpu(softnet_data, cpu); 6259 oldsd = &per_cpu(softnet_data, oldcpu); 6260 6261 /* Find end of our completion_queue. */ 6262 list_skb = &sd->completion_queue; 6263 while (*list_skb) 6264 list_skb = &(*list_skb)->next; 6265 /* Append completion queue from offline CPU. */ 6266 *list_skb = oldsd->completion_queue; 6267 oldsd->completion_queue = NULL; 6268 6269 /* Append output queue from offline CPU. */ 6270 if (oldsd->output_queue) { 6271 *sd->output_queue_tailp = oldsd->output_queue; 6272 sd->output_queue_tailp = oldsd->output_queue_tailp; 6273 oldsd->output_queue = NULL; 6274 oldsd->output_queue_tailp = &oldsd->output_queue; 6275 } 6276 /* Append NAPI poll list from offline CPU. */ 6277 if (!list_empty(&oldsd->poll_list)) { 6278 list_splice_init(&oldsd->poll_list, &sd->poll_list); 6279 raise_softirq_irqoff(NET_RX_SOFTIRQ); 6280 } 6281 6282 raise_softirq_irqoff(NET_TX_SOFTIRQ); 6283 local_irq_enable(); 6284 6285 /* Process offline CPU's input_pkt_queue */ 6286 while ((skb = __skb_dequeue(&oldsd->process_queue))) { 6287 netif_rx(skb); 6288 input_queue_head_incr(oldsd); 6289 } 6290 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) { 6291 netif_rx(skb); 6292 input_queue_head_incr(oldsd); 6293 } 6294 6295 return NOTIFY_OK; 6296 } 6297 6298 6299 /** 6300 * netdev_increment_features - increment feature set by one 6301 * @all: current feature set 6302 * @one: new feature set 6303 * @mask: mask feature set 6304 * 6305 * Computes a new feature set after adding a device with feature set 6306 * @one to the master device with current feature set @all. Will not 6307 * enable anything that is off in @mask. Returns the new feature set. 6308 */ 6309 netdev_features_t netdev_increment_features(netdev_features_t all, 6310 netdev_features_t one, netdev_features_t mask) 6311 { 6312 if (mask & NETIF_F_GEN_CSUM) 6313 mask |= NETIF_F_ALL_CSUM; 6314 mask |= NETIF_F_VLAN_CHALLENGED; 6315 6316 all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask; 6317 all &= one | ~NETIF_F_ALL_FOR_ALL; 6318 6319 /* If one device supports hw checksumming, set for all. */ 6320 if (all & NETIF_F_GEN_CSUM) 6321 all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM); 6322 6323 return all; 6324 } 6325 EXPORT_SYMBOL(netdev_increment_features); 6326 6327 static struct hlist_head *netdev_create_hash(void) 6328 { 6329 int i; 6330 struct hlist_head *hash; 6331 6332 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL); 6333 if (hash != NULL) 6334 for (i = 0; i < NETDEV_HASHENTRIES; i++) 6335 INIT_HLIST_HEAD(&hash[i]); 6336 6337 return hash; 6338 } 6339 6340 /* Initialize per network namespace state */ 6341 static int __net_init netdev_init(struct net *net) 6342 { 6343 INIT_LIST_HEAD(&net->dev_base_head); 6344 6345 net->dev_name_head = netdev_create_hash(); 6346 if (net->dev_name_head == NULL) 6347 goto err_name; 6348 6349 net->dev_index_head = netdev_create_hash(); 6350 if (net->dev_index_head == NULL) 6351 goto err_idx; 6352 6353 return 0; 6354 6355 err_idx: 6356 kfree(net->dev_name_head); 6357 err_name: 6358 return -ENOMEM; 6359 } 6360 6361 /** 6362 * netdev_drivername - network driver for the device 6363 * @dev: network device 6364 * 6365 * Determine network driver for device. 6366 */ 6367 const char *netdev_drivername(const struct net_device *dev) 6368 { 6369 const struct device_driver *driver; 6370 const struct device *parent; 6371 const char *empty = ""; 6372 6373 parent = dev->dev.parent; 6374 if (!parent) 6375 return empty; 6376 6377 driver = parent->driver; 6378 if (driver && driver->name) 6379 return driver->name; 6380 return empty; 6381 } 6382 6383 int __netdev_printk(const char *level, const struct net_device *dev, 6384 struct va_format *vaf) 6385 { 6386 int r; 6387 6388 if (dev && dev->dev.parent) 6389 r = dev_printk(level, dev->dev.parent, "%s: %pV", 6390 netdev_name(dev), vaf); 6391 else if (dev) 6392 r = printk("%s%s: %pV", level, netdev_name(dev), vaf); 6393 else 6394 r = printk("%s(NULL net_device): %pV", level, vaf); 6395 6396 return r; 6397 } 6398 EXPORT_SYMBOL(__netdev_printk); 6399 6400 int netdev_printk(const char *level, const struct net_device *dev, 6401 const char *format, ...) 6402 { 6403 struct va_format vaf; 6404 va_list args; 6405 int r; 6406 6407 va_start(args, format); 6408 6409 vaf.fmt = format; 6410 vaf.va = &args; 6411 6412 r = __netdev_printk(level, dev, &vaf); 6413 va_end(args); 6414 6415 return r; 6416 } 6417 EXPORT_SYMBOL(netdev_printk); 6418 6419 #define define_netdev_printk_level(func, level) \ 6420 int func(const struct net_device *dev, const char *fmt, ...) \ 6421 { \ 6422 int r; \ 6423 struct va_format vaf; \ 6424 va_list args; \ 6425 \ 6426 va_start(args, fmt); \ 6427 \ 6428 vaf.fmt = fmt; \ 6429 vaf.va = &args; \ 6430 \ 6431 r = __netdev_printk(level, dev, &vaf); \ 6432 va_end(args); \ 6433 \ 6434 return r; \ 6435 } \ 6436 EXPORT_SYMBOL(func); 6437 6438 define_netdev_printk_level(netdev_emerg, KERN_EMERG); 6439 define_netdev_printk_level(netdev_alert, KERN_ALERT); 6440 define_netdev_printk_level(netdev_crit, KERN_CRIT); 6441 define_netdev_printk_level(netdev_err, KERN_ERR); 6442 define_netdev_printk_level(netdev_warn, KERN_WARNING); 6443 define_netdev_printk_level(netdev_notice, KERN_NOTICE); 6444 define_netdev_printk_level(netdev_info, KERN_INFO); 6445 6446 static void __net_exit netdev_exit(struct net *net) 6447 { 6448 kfree(net->dev_name_head); 6449 kfree(net->dev_index_head); 6450 } 6451 6452 static struct pernet_operations __net_initdata netdev_net_ops = { 6453 .init = netdev_init, 6454 .exit = netdev_exit, 6455 }; 6456 6457 static void __net_exit default_device_exit(struct net *net) 6458 { 6459 struct net_device *dev, *aux; 6460 /* 6461 * Push all migratable network devices back to the 6462 * initial network namespace 6463 */ 6464 rtnl_lock(); 6465 for_each_netdev_safe(net, dev, aux) { 6466 int err; 6467 char fb_name[IFNAMSIZ]; 6468 6469 /* Ignore unmoveable devices (i.e. loopback) */ 6470 if (dev->features & NETIF_F_NETNS_LOCAL) 6471 continue; 6472 6473 /* Leave virtual devices for the generic cleanup */ 6474 if (dev->rtnl_link_ops) 6475 continue; 6476 6477 /* Push remaining network devices to init_net */ 6478 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex); 6479 err = dev_change_net_namespace(dev, &init_net, fb_name); 6480 if (err) { 6481 printk(KERN_EMERG "%s: failed to move %s to init_net: %d\n", 6482 __func__, dev->name, err); 6483 BUG(); 6484 } 6485 } 6486 rtnl_unlock(); 6487 } 6488 6489 static void __net_exit default_device_exit_batch(struct list_head *net_list) 6490 { 6491 /* At exit all network devices most be removed from a network 6492 * namespace. Do this in the reverse order of registration. 6493 * Do this across as many network namespaces as possible to 6494 * improve batching efficiency. 6495 */ 6496 struct net_device *dev; 6497 struct net *net; 6498 LIST_HEAD(dev_kill_list); 6499 6500 rtnl_lock(); 6501 list_for_each_entry(net, net_list, exit_list) { 6502 for_each_netdev_reverse(net, dev) { 6503 if (dev->rtnl_link_ops) 6504 dev->rtnl_link_ops->dellink(dev, &dev_kill_list); 6505 else 6506 unregister_netdevice_queue(dev, &dev_kill_list); 6507 } 6508 } 6509 unregister_netdevice_many(&dev_kill_list); 6510 list_del(&dev_kill_list); 6511 rtnl_unlock(); 6512 } 6513 6514 static struct pernet_operations __net_initdata default_device_ops = { 6515 .exit = default_device_exit, 6516 .exit_batch = default_device_exit_batch, 6517 }; 6518 6519 /* 6520 * Initialize the DEV module. At boot time this walks the device list and 6521 * unhooks any devices that fail to initialise (normally hardware not 6522 * present) and leaves us with a valid list of present and active devices. 6523 * 6524 */ 6525 6526 /* 6527 * This is called single threaded during boot, so no need 6528 * to take the rtnl semaphore. 6529 */ 6530 static int __init net_dev_init(void) 6531 { 6532 int i, rc = -ENOMEM; 6533 6534 BUG_ON(!dev_boot_phase); 6535 6536 if (dev_proc_init()) 6537 goto out; 6538 6539 if (netdev_kobject_init()) 6540 goto out; 6541 6542 INIT_LIST_HEAD(&ptype_all); 6543 for (i = 0; i < PTYPE_HASH_SIZE; i++) 6544 INIT_LIST_HEAD(&ptype_base[i]); 6545 6546 if (register_pernet_subsys(&netdev_net_ops)) 6547 goto out; 6548 6549 /* 6550 * Initialise the packet receive queues. 6551 */ 6552 6553 for_each_possible_cpu(i) { 6554 struct softnet_data *sd = &per_cpu(softnet_data, i); 6555 6556 memset(sd, 0, sizeof(*sd)); 6557 skb_queue_head_init(&sd->input_pkt_queue); 6558 skb_queue_head_init(&sd->process_queue); 6559 sd->completion_queue = NULL; 6560 INIT_LIST_HEAD(&sd->poll_list); 6561 sd->output_queue = NULL; 6562 sd->output_queue_tailp = &sd->output_queue; 6563 #ifdef CONFIG_RPS 6564 sd->csd.func = rps_trigger_softirq; 6565 sd->csd.info = sd; 6566 sd->csd.flags = 0; 6567 sd->cpu = i; 6568 #endif 6569 6570 sd->backlog.poll = process_backlog; 6571 sd->backlog.weight = weight_p; 6572 sd->backlog.gro_list = NULL; 6573 sd->backlog.gro_count = 0; 6574 } 6575 6576 dev_boot_phase = 0; 6577 6578 /* The loopback device is special if any other network devices 6579 * is present in a network namespace the loopback device must 6580 * be present. Since we now dynamically allocate and free the 6581 * loopback device ensure this invariant is maintained by 6582 * keeping the loopback device as the first device on the 6583 * list of network devices. Ensuring the loopback devices 6584 * is the first device that appears and the last network device 6585 * that disappears. 6586 */ 6587 if (register_pernet_device(&loopback_net_ops)) 6588 goto out; 6589 6590 if (register_pernet_device(&default_device_ops)) 6591 goto out; 6592 6593 open_softirq(NET_TX_SOFTIRQ, net_tx_action); 6594 open_softirq(NET_RX_SOFTIRQ, net_rx_action); 6595 6596 hotcpu_notifier(dev_cpu_callback, 0); 6597 dst_init(); 6598 dev_mcast_init(); 6599 rc = 0; 6600 out: 6601 return rc; 6602 } 6603 6604 subsys_initcall(net_dev_init); 6605 6606 static int __init initialize_hashrnd(void) 6607 { 6608 get_random_bytes(&hashrnd, sizeof(hashrnd)); 6609 return 0; 6610 } 6611 6612 late_initcall_sync(initialize_hashrnd); 6613 6614