xref: /linux/net/core/dev.c (revision a429638cac1e5c656818a45aaff78df7b743004e)
1 /*
2  * 	NET3	Protocol independent device support routines.
3  *
4  *		This program is free software; you can redistribute it and/or
5  *		modify it under the terms of the GNU General Public License
6  *		as published by the Free Software Foundation; either version
7  *		2 of the License, or (at your option) any later version.
8  *
9  *	Derived from the non IP parts of dev.c 1.0.19
10  * 		Authors:	Ross Biro
11  *				Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *				Mark Evans, <evansmp@uhura.aston.ac.uk>
13  *
14  *	Additional Authors:
15  *		Florian la Roche <rzsfl@rz.uni-sb.de>
16  *		Alan Cox <gw4pts@gw4pts.ampr.org>
17  *		David Hinds <dahinds@users.sourceforge.net>
18  *		Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19  *		Adam Sulmicki <adam@cfar.umd.edu>
20  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
21  *
22  *	Changes:
23  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
24  *              			to 2 if register_netdev gets called
25  *              			before net_dev_init & also removed a
26  *              			few lines of code in the process.
27  *		Alan Cox	:	device private ioctl copies fields back.
28  *		Alan Cox	:	Transmit queue code does relevant
29  *					stunts to keep the queue safe.
30  *		Alan Cox	:	Fixed double lock.
31  *		Alan Cox	:	Fixed promisc NULL pointer trap
32  *		????????	:	Support the full private ioctl range
33  *		Alan Cox	:	Moved ioctl permission check into
34  *					drivers
35  *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
36  *		Alan Cox	:	100 backlog just doesn't cut it when
37  *					you start doing multicast video 8)
38  *		Alan Cox	:	Rewrote net_bh and list manager.
39  *		Alan Cox	: 	Fix ETH_P_ALL echoback lengths.
40  *		Alan Cox	:	Took out transmit every packet pass
41  *					Saved a few bytes in the ioctl handler
42  *		Alan Cox	:	Network driver sets packet type before
43  *					calling netif_rx. Saves a function
44  *					call a packet.
45  *		Alan Cox	:	Hashed net_bh()
46  *		Richard Kooijman:	Timestamp fixes.
47  *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
48  *		Alan Cox	:	Device lock protection.
49  *		Alan Cox	: 	Fixed nasty side effect of device close
50  *					changes.
51  *		Rudi Cilibrasi	:	Pass the right thing to
52  *					set_mac_address()
53  *		Dave Miller	:	32bit quantity for the device lock to
54  *					make it work out on a Sparc.
55  *		Bjorn Ekwall	:	Added KERNELD hack.
56  *		Alan Cox	:	Cleaned up the backlog initialise.
57  *		Craig Metz	:	SIOCGIFCONF fix if space for under
58  *					1 device.
59  *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
60  *					is no device open function.
61  *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
62  *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
63  *		Cyrus Durgin	:	Cleaned for KMOD
64  *		Adam Sulmicki   :	Bug Fix : Network Device Unload
65  *					A network device unload needs to purge
66  *					the backlog queue.
67  *	Paul Rusty Russell	:	SIOCSIFNAME
68  *              Pekka Riikonen  :	Netdev boot-time settings code
69  *              Andrew Morton   :       Make unregister_netdevice wait
70  *              			indefinitely on dev->refcnt
71  * 		J Hadi Salim	:	- Backlog queue sampling
72  *				        - netif_rx() feedback
73  */
74 
75 #include <asm/uaccess.h>
76 #include <asm/system.h>
77 #include <linux/bitops.h>
78 #include <linux/capability.h>
79 #include <linux/cpu.h>
80 #include <linux/types.h>
81 #include <linux/kernel.h>
82 #include <linux/hash.h>
83 #include <linux/slab.h>
84 #include <linux/sched.h>
85 #include <linux/mutex.h>
86 #include <linux/string.h>
87 #include <linux/mm.h>
88 #include <linux/socket.h>
89 #include <linux/sockios.h>
90 #include <linux/errno.h>
91 #include <linux/interrupt.h>
92 #include <linux/if_ether.h>
93 #include <linux/netdevice.h>
94 #include <linux/etherdevice.h>
95 #include <linux/ethtool.h>
96 #include <linux/notifier.h>
97 #include <linux/skbuff.h>
98 #include <net/net_namespace.h>
99 #include <net/sock.h>
100 #include <linux/rtnetlink.h>
101 #include <linux/proc_fs.h>
102 #include <linux/seq_file.h>
103 #include <linux/stat.h>
104 #include <net/dst.h>
105 #include <net/pkt_sched.h>
106 #include <net/checksum.h>
107 #include <net/xfrm.h>
108 #include <linux/highmem.h>
109 #include <linux/init.h>
110 #include <linux/kmod.h>
111 #include <linux/module.h>
112 #include <linux/netpoll.h>
113 #include <linux/rcupdate.h>
114 #include <linux/delay.h>
115 #include <net/wext.h>
116 #include <net/iw_handler.h>
117 #include <asm/current.h>
118 #include <linux/audit.h>
119 #include <linux/dmaengine.h>
120 #include <linux/err.h>
121 #include <linux/ctype.h>
122 #include <linux/if_arp.h>
123 #include <linux/if_vlan.h>
124 #include <linux/ip.h>
125 #include <net/ip.h>
126 #include <linux/ipv6.h>
127 #include <linux/in.h>
128 #include <linux/jhash.h>
129 #include <linux/random.h>
130 #include <trace/events/napi.h>
131 #include <trace/events/net.h>
132 #include <trace/events/skb.h>
133 #include <linux/pci.h>
134 #include <linux/inetdevice.h>
135 #include <linux/cpu_rmap.h>
136 #include <linux/net_tstamp.h>
137 #include <linux/jump_label.h>
138 #include <net/flow_keys.h>
139 
140 #include "net-sysfs.h"
141 
142 /* Instead of increasing this, you should create a hash table. */
143 #define MAX_GRO_SKBS 8
144 
145 /* This should be increased if a protocol with a bigger head is added. */
146 #define GRO_MAX_HEAD (MAX_HEADER + 128)
147 
148 /*
149  *	The list of packet types we will receive (as opposed to discard)
150  *	and the routines to invoke.
151  *
152  *	Why 16. Because with 16 the only overlap we get on a hash of the
153  *	low nibble of the protocol value is RARP/SNAP/X.25.
154  *
155  *      NOTE:  That is no longer true with the addition of VLAN tags.  Not
156  *             sure which should go first, but I bet it won't make much
157  *             difference if we are running VLANs.  The good news is that
158  *             this protocol won't be in the list unless compiled in, so
159  *             the average user (w/out VLANs) will not be adversely affected.
160  *             --BLG
161  *
162  *		0800	IP
163  *		8100    802.1Q VLAN
164  *		0001	802.3
165  *		0002	AX.25
166  *		0004	802.2
167  *		8035	RARP
168  *		0005	SNAP
169  *		0805	X.25
170  *		0806	ARP
171  *		8137	IPX
172  *		0009	Localtalk
173  *		86DD	IPv6
174  */
175 
176 #define PTYPE_HASH_SIZE	(16)
177 #define PTYPE_HASH_MASK	(PTYPE_HASH_SIZE - 1)
178 
179 static DEFINE_SPINLOCK(ptype_lock);
180 static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
181 static struct list_head ptype_all __read_mostly;	/* Taps */
182 
183 /*
184  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
185  * semaphore.
186  *
187  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
188  *
189  * Writers must hold the rtnl semaphore while they loop through the
190  * dev_base_head list, and hold dev_base_lock for writing when they do the
191  * actual updates.  This allows pure readers to access the list even
192  * while a writer is preparing to update it.
193  *
194  * To put it another way, dev_base_lock is held for writing only to
195  * protect against pure readers; the rtnl semaphore provides the
196  * protection against other writers.
197  *
198  * See, for example usages, register_netdevice() and
199  * unregister_netdevice(), which must be called with the rtnl
200  * semaphore held.
201  */
202 DEFINE_RWLOCK(dev_base_lock);
203 EXPORT_SYMBOL(dev_base_lock);
204 
205 static inline void dev_base_seq_inc(struct net *net)
206 {
207 	while (++net->dev_base_seq == 0);
208 }
209 
210 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
211 {
212 	unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
213 	return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
214 }
215 
216 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
217 {
218 	return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
219 }
220 
221 static inline void rps_lock(struct softnet_data *sd)
222 {
223 #ifdef CONFIG_RPS
224 	spin_lock(&sd->input_pkt_queue.lock);
225 #endif
226 }
227 
228 static inline void rps_unlock(struct softnet_data *sd)
229 {
230 #ifdef CONFIG_RPS
231 	spin_unlock(&sd->input_pkt_queue.lock);
232 #endif
233 }
234 
235 /* Device list insertion */
236 static int list_netdevice(struct net_device *dev)
237 {
238 	struct net *net = dev_net(dev);
239 
240 	ASSERT_RTNL();
241 
242 	write_lock_bh(&dev_base_lock);
243 	list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
244 	hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
245 	hlist_add_head_rcu(&dev->index_hlist,
246 			   dev_index_hash(net, dev->ifindex));
247 	write_unlock_bh(&dev_base_lock);
248 
249 	dev_base_seq_inc(net);
250 
251 	return 0;
252 }
253 
254 /* Device list removal
255  * caller must respect a RCU grace period before freeing/reusing dev
256  */
257 static void unlist_netdevice(struct net_device *dev)
258 {
259 	ASSERT_RTNL();
260 
261 	/* Unlink dev from the device chain */
262 	write_lock_bh(&dev_base_lock);
263 	list_del_rcu(&dev->dev_list);
264 	hlist_del_rcu(&dev->name_hlist);
265 	hlist_del_rcu(&dev->index_hlist);
266 	write_unlock_bh(&dev_base_lock);
267 
268 	dev_base_seq_inc(dev_net(dev));
269 }
270 
271 /*
272  *	Our notifier list
273  */
274 
275 static RAW_NOTIFIER_HEAD(netdev_chain);
276 
277 /*
278  *	Device drivers call our routines to queue packets here. We empty the
279  *	queue in the local softnet handler.
280  */
281 
282 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
283 EXPORT_PER_CPU_SYMBOL(softnet_data);
284 
285 #ifdef CONFIG_LOCKDEP
286 /*
287  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
288  * according to dev->type
289  */
290 static const unsigned short netdev_lock_type[] =
291 	{ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
292 	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
293 	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
294 	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
295 	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
296 	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
297 	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
298 	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
299 	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
300 	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
301 	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
302 	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
303 	 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211,
304 	 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET,
305 	 ARPHRD_PHONET_PIPE, ARPHRD_IEEE802154,
306 	 ARPHRD_VOID, ARPHRD_NONE};
307 
308 static const char *const netdev_lock_name[] =
309 	{"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
310 	 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
311 	 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
312 	 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
313 	 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
314 	 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
315 	 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
316 	 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
317 	 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
318 	 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
319 	 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
320 	 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
321 	 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211",
322 	 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET",
323 	 "_xmit_PHONET_PIPE", "_xmit_IEEE802154",
324 	 "_xmit_VOID", "_xmit_NONE"};
325 
326 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
327 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
328 
329 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
330 {
331 	int i;
332 
333 	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
334 		if (netdev_lock_type[i] == dev_type)
335 			return i;
336 	/* the last key is used by default */
337 	return ARRAY_SIZE(netdev_lock_type) - 1;
338 }
339 
340 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
341 						 unsigned short dev_type)
342 {
343 	int i;
344 
345 	i = netdev_lock_pos(dev_type);
346 	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
347 				   netdev_lock_name[i]);
348 }
349 
350 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
351 {
352 	int i;
353 
354 	i = netdev_lock_pos(dev->type);
355 	lockdep_set_class_and_name(&dev->addr_list_lock,
356 				   &netdev_addr_lock_key[i],
357 				   netdev_lock_name[i]);
358 }
359 #else
360 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
361 						 unsigned short dev_type)
362 {
363 }
364 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
365 {
366 }
367 #endif
368 
369 /*******************************************************************************
370 
371 		Protocol management and registration routines
372 
373 *******************************************************************************/
374 
375 /*
376  *	Add a protocol ID to the list. Now that the input handler is
377  *	smarter we can dispense with all the messy stuff that used to be
378  *	here.
379  *
380  *	BEWARE!!! Protocol handlers, mangling input packets,
381  *	MUST BE last in hash buckets and checking protocol handlers
382  *	MUST start from promiscuous ptype_all chain in net_bh.
383  *	It is true now, do not change it.
384  *	Explanation follows: if protocol handler, mangling packet, will
385  *	be the first on list, it is not able to sense, that packet
386  *	is cloned and should be copied-on-write, so that it will
387  *	change it and subsequent readers will get broken packet.
388  *							--ANK (980803)
389  */
390 
391 static inline struct list_head *ptype_head(const struct packet_type *pt)
392 {
393 	if (pt->type == htons(ETH_P_ALL))
394 		return &ptype_all;
395 	else
396 		return &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
397 }
398 
399 /**
400  *	dev_add_pack - add packet handler
401  *	@pt: packet type declaration
402  *
403  *	Add a protocol handler to the networking stack. The passed &packet_type
404  *	is linked into kernel lists and may not be freed until it has been
405  *	removed from the kernel lists.
406  *
407  *	This call does not sleep therefore it can not
408  *	guarantee all CPU's that are in middle of receiving packets
409  *	will see the new packet type (until the next received packet).
410  */
411 
412 void dev_add_pack(struct packet_type *pt)
413 {
414 	struct list_head *head = ptype_head(pt);
415 
416 	spin_lock(&ptype_lock);
417 	list_add_rcu(&pt->list, head);
418 	spin_unlock(&ptype_lock);
419 }
420 EXPORT_SYMBOL(dev_add_pack);
421 
422 /**
423  *	__dev_remove_pack	 - remove packet handler
424  *	@pt: packet type declaration
425  *
426  *	Remove a protocol handler that was previously added to the kernel
427  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
428  *	from the kernel lists and can be freed or reused once this function
429  *	returns.
430  *
431  *      The packet type might still be in use by receivers
432  *	and must not be freed until after all the CPU's have gone
433  *	through a quiescent state.
434  */
435 void __dev_remove_pack(struct packet_type *pt)
436 {
437 	struct list_head *head = ptype_head(pt);
438 	struct packet_type *pt1;
439 
440 	spin_lock(&ptype_lock);
441 
442 	list_for_each_entry(pt1, head, list) {
443 		if (pt == pt1) {
444 			list_del_rcu(&pt->list);
445 			goto out;
446 		}
447 	}
448 
449 	printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt);
450 out:
451 	spin_unlock(&ptype_lock);
452 }
453 EXPORT_SYMBOL(__dev_remove_pack);
454 
455 /**
456  *	dev_remove_pack	 - remove packet handler
457  *	@pt: packet type declaration
458  *
459  *	Remove a protocol handler that was previously added to the kernel
460  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
461  *	from the kernel lists and can be freed or reused once this function
462  *	returns.
463  *
464  *	This call sleeps to guarantee that no CPU is looking at the packet
465  *	type after return.
466  */
467 void dev_remove_pack(struct packet_type *pt)
468 {
469 	__dev_remove_pack(pt);
470 
471 	synchronize_net();
472 }
473 EXPORT_SYMBOL(dev_remove_pack);
474 
475 /******************************************************************************
476 
477 		      Device Boot-time Settings Routines
478 
479 *******************************************************************************/
480 
481 /* Boot time configuration table */
482 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
483 
484 /**
485  *	netdev_boot_setup_add	- add new setup entry
486  *	@name: name of the device
487  *	@map: configured settings for the device
488  *
489  *	Adds new setup entry to the dev_boot_setup list.  The function
490  *	returns 0 on error and 1 on success.  This is a generic routine to
491  *	all netdevices.
492  */
493 static int netdev_boot_setup_add(char *name, struct ifmap *map)
494 {
495 	struct netdev_boot_setup *s;
496 	int i;
497 
498 	s = dev_boot_setup;
499 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
500 		if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
501 			memset(s[i].name, 0, sizeof(s[i].name));
502 			strlcpy(s[i].name, name, IFNAMSIZ);
503 			memcpy(&s[i].map, map, sizeof(s[i].map));
504 			break;
505 		}
506 	}
507 
508 	return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
509 }
510 
511 /**
512  *	netdev_boot_setup_check	- check boot time settings
513  *	@dev: the netdevice
514  *
515  * 	Check boot time settings for the device.
516  *	The found settings are set for the device to be used
517  *	later in the device probing.
518  *	Returns 0 if no settings found, 1 if they are.
519  */
520 int netdev_boot_setup_check(struct net_device *dev)
521 {
522 	struct netdev_boot_setup *s = dev_boot_setup;
523 	int i;
524 
525 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
526 		if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
527 		    !strcmp(dev->name, s[i].name)) {
528 			dev->irq 	= s[i].map.irq;
529 			dev->base_addr 	= s[i].map.base_addr;
530 			dev->mem_start 	= s[i].map.mem_start;
531 			dev->mem_end 	= s[i].map.mem_end;
532 			return 1;
533 		}
534 	}
535 	return 0;
536 }
537 EXPORT_SYMBOL(netdev_boot_setup_check);
538 
539 
540 /**
541  *	netdev_boot_base	- get address from boot time settings
542  *	@prefix: prefix for network device
543  *	@unit: id for network device
544  *
545  * 	Check boot time settings for the base address of device.
546  *	The found settings are set for the device to be used
547  *	later in the device probing.
548  *	Returns 0 if no settings found.
549  */
550 unsigned long netdev_boot_base(const char *prefix, int unit)
551 {
552 	const struct netdev_boot_setup *s = dev_boot_setup;
553 	char name[IFNAMSIZ];
554 	int i;
555 
556 	sprintf(name, "%s%d", prefix, unit);
557 
558 	/*
559 	 * If device already registered then return base of 1
560 	 * to indicate not to probe for this interface
561 	 */
562 	if (__dev_get_by_name(&init_net, name))
563 		return 1;
564 
565 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
566 		if (!strcmp(name, s[i].name))
567 			return s[i].map.base_addr;
568 	return 0;
569 }
570 
571 /*
572  * Saves at boot time configured settings for any netdevice.
573  */
574 int __init netdev_boot_setup(char *str)
575 {
576 	int ints[5];
577 	struct ifmap map;
578 
579 	str = get_options(str, ARRAY_SIZE(ints), ints);
580 	if (!str || !*str)
581 		return 0;
582 
583 	/* Save settings */
584 	memset(&map, 0, sizeof(map));
585 	if (ints[0] > 0)
586 		map.irq = ints[1];
587 	if (ints[0] > 1)
588 		map.base_addr = ints[2];
589 	if (ints[0] > 2)
590 		map.mem_start = ints[3];
591 	if (ints[0] > 3)
592 		map.mem_end = ints[4];
593 
594 	/* Add new entry to the list */
595 	return netdev_boot_setup_add(str, &map);
596 }
597 
598 __setup("netdev=", netdev_boot_setup);
599 
600 /*******************************************************************************
601 
602 			    Device Interface Subroutines
603 
604 *******************************************************************************/
605 
606 /**
607  *	__dev_get_by_name	- find a device by its name
608  *	@net: the applicable net namespace
609  *	@name: name to find
610  *
611  *	Find an interface by name. Must be called under RTNL semaphore
612  *	or @dev_base_lock. If the name is found a pointer to the device
613  *	is returned. If the name is not found then %NULL is returned. The
614  *	reference counters are not incremented so the caller must be
615  *	careful with locks.
616  */
617 
618 struct net_device *__dev_get_by_name(struct net *net, const char *name)
619 {
620 	struct hlist_node *p;
621 	struct net_device *dev;
622 	struct hlist_head *head = dev_name_hash(net, name);
623 
624 	hlist_for_each_entry(dev, p, head, name_hlist)
625 		if (!strncmp(dev->name, name, IFNAMSIZ))
626 			return dev;
627 
628 	return NULL;
629 }
630 EXPORT_SYMBOL(__dev_get_by_name);
631 
632 /**
633  *	dev_get_by_name_rcu	- find a device by its name
634  *	@net: the applicable net namespace
635  *	@name: name to find
636  *
637  *	Find an interface by name.
638  *	If the name is found a pointer to the device is returned.
639  * 	If the name is not found then %NULL is returned.
640  *	The reference counters are not incremented so the caller must be
641  *	careful with locks. The caller must hold RCU lock.
642  */
643 
644 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
645 {
646 	struct hlist_node *p;
647 	struct net_device *dev;
648 	struct hlist_head *head = dev_name_hash(net, name);
649 
650 	hlist_for_each_entry_rcu(dev, p, head, name_hlist)
651 		if (!strncmp(dev->name, name, IFNAMSIZ))
652 			return dev;
653 
654 	return NULL;
655 }
656 EXPORT_SYMBOL(dev_get_by_name_rcu);
657 
658 /**
659  *	dev_get_by_name		- find a device by its name
660  *	@net: the applicable net namespace
661  *	@name: name to find
662  *
663  *	Find an interface by name. This can be called from any
664  *	context and does its own locking. The returned handle has
665  *	the usage count incremented and the caller must use dev_put() to
666  *	release it when it is no longer needed. %NULL is returned if no
667  *	matching device is found.
668  */
669 
670 struct net_device *dev_get_by_name(struct net *net, const char *name)
671 {
672 	struct net_device *dev;
673 
674 	rcu_read_lock();
675 	dev = dev_get_by_name_rcu(net, name);
676 	if (dev)
677 		dev_hold(dev);
678 	rcu_read_unlock();
679 	return dev;
680 }
681 EXPORT_SYMBOL(dev_get_by_name);
682 
683 /**
684  *	__dev_get_by_index - find a device by its ifindex
685  *	@net: the applicable net namespace
686  *	@ifindex: index of device
687  *
688  *	Search for an interface by index. Returns %NULL if the device
689  *	is not found or a pointer to the device. The device has not
690  *	had its reference counter increased so the caller must be careful
691  *	about locking. The caller must hold either the RTNL semaphore
692  *	or @dev_base_lock.
693  */
694 
695 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
696 {
697 	struct hlist_node *p;
698 	struct net_device *dev;
699 	struct hlist_head *head = dev_index_hash(net, ifindex);
700 
701 	hlist_for_each_entry(dev, p, head, index_hlist)
702 		if (dev->ifindex == ifindex)
703 			return dev;
704 
705 	return NULL;
706 }
707 EXPORT_SYMBOL(__dev_get_by_index);
708 
709 /**
710  *	dev_get_by_index_rcu - find a device by its ifindex
711  *	@net: the applicable net namespace
712  *	@ifindex: index of device
713  *
714  *	Search for an interface by index. Returns %NULL if the device
715  *	is not found or a pointer to the device. The device has not
716  *	had its reference counter increased so the caller must be careful
717  *	about locking. The caller must hold RCU lock.
718  */
719 
720 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
721 {
722 	struct hlist_node *p;
723 	struct net_device *dev;
724 	struct hlist_head *head = dev_index_hash(net, ifindex);
725 
726 	hlist_for_each_entry_rcu(dev, p, head, index_hlist)
727 		if (dev->ifindex == ifindex)
728 			return dev;
729 
730 	return NULL;
731 }
732 EXPORT_SYMBOL(dev_get_by_index_rcu);
733 
734 
735 /**
736  *	dev_get_by_index - find a device by its ifindex
737  *	@net: the applicable net namespace
738  *	@ifindex: index of device
739  *
740  *	Search for an interface by index. Returns NULL if the device
741  *	is not found or a pointer to the device. The device returned has
742  *	had a reference added and the pointer is safe until the user calls
743  *	dev_put to indicate they have finished with it.
744  */
745 
746 struct net_device *dev_get_by_index(struct net *net, int ifindex)
747 {
748 	struct net_device *dev;
749 
750 	rcu_read_lock();
751 	dev = dev_get_by_index_rcu(net, ifindex);
752 	if (dev)
753 		dev_hold(dev);
754 	rcu_read_unlock();
755 	return dev;
756 }
757 EXPORT_SYMBOL(dev_get_by_index);
758 
759 /**
760  *	dev_getbyhwaddr_rcu - find a device by its hardware address
761  *	@net: the applicable net namespace
762  *	@type: media type of device
763  *	@ha: hardware address
764  *
765  *	Search for an interface by MAC address. Returns NULL if the device
766  *	is not found or a pointer to the device.
767  *	The caller must hold RCU or RTNL.
768  *	The returned device has not had its ref count increased
769  *	and the caller must therefore be careful about locking
770  *
771  */
772 
773 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
774 				       const char *ha)
775 {
776 	struct net_device *dev;
777 
778 	for_each_netdev_rcu(net, dev)
779 		if (dev->type == type &&
780 		    !memcmp(dev->dev_addr, ha, dev->addr_len))
781 			return dev;
782 
783 	return NULL;
784 }
785 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
786 
787 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
788 {
789 	struct net_device *dev;
790 
791 	ASSERT_RTNL();
792 	for_each_netdev(net, dev)
793 		if (dev->type == type)
794 			return dev;
795 
796 	return NULL;
797 }
798 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
799 
800 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
801 {
802 	struct net_device *dev, *ret = NULL;
803 
804 	rcu_read_lock();
805 	for_each_netdev_rcu(net, dev)
806 		if (dev->type == type) {
807 			dev_hold(dev);
808 			ret = dev;
809 			break;
810 		}
811 	rcu_read_unlock();
812 	return ret;
813 }
814 EXPORT_SYMBOL(dev_getfirstbyhwtype);
815 
816 /**
817  *	dev_get_by_flags_rcu - find any device with given flags
818  *	@net: the applicable net namespace
819  *	@if_flags: IFF_* values
820  *	@mask: bitmask of bits in if_flags to check
821  *
822  *	Search for any interface with the given flags. Returns NULL if a device
823  *	is not found or a pointer to the device. Must be called inside
824  *	rcu_read_lock(), and result refcount is unchanged.
825  */
826 
827 struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short if_flags,
828 				    unsigned short mask)
829 {
830 	struct net_device *dev, *ret;
831 
832 	ret = NULL;
833 	for_each_netdev_rcu(net, dev) {
834 		if (((dev->flags ^ if_flags) & mask) == 0) {
835 			ret = dev;
836 			break;
837 		}
838 	}
839 	return ret;
840 }
841 EXPORT_SYMBOL(dev_get_by_flags_rcu);
842 
843 /**
844  *	dev_valid_name - check if name is okay for network device
845  *	@name: name string
846  *
847  *	Network device names need to be valid file names to
848  *	to allow sysfs to work.  We also disallow any kind of
849  *	whitespace.
850  */
851 int dev_valid_name(const char *name)
852 {
853 	if (*name == '\0')
854 		return 0;
855 	if (strlen(name) >= IFNAMSIZ)
856 		return 0;
857 	if (!strcmp(name, ".") || !strcmp(name, ".."))
858 		return 0;
859 
860 	while (*name) {
861 		if (*name == '/' || isspace(*name))
862 			return 0;
863 		name++;
864 	}
865 	return 1;
866 }
867 EXPORT_SYMBOL(dev_valid_name);
868 
869 /**
870  *	__dev_alloc_name - allocate a name for a device
871  *	@net: network namespace to allocate the device name in
872  *	@name: name format string
873  *	@buf:  scratch buffer and result name string
874  *
875  *	Passed a format string - eg "lt%d" it will try and find a suitable
876  *	id. It scans list of devices to build up a free map, then chooses
877  *	the first empty slot. The caller must hold the dev_base or rtnl lock
878  *	while allocating the name and adding the device in order to avoid
879  *	duplicates.
880  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
881  *	Returns the number of the unit assigned or a negative errno code.
882  */
883 
884 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
885 {
886 	int i = 0;
887 	const char *p;
888 	const int max_netdevices = 8*PAGE_SIZE;
889 	unsigned long *inuse;
890 	struct net_device *d;
891 
892 	p = strnchr(name, IFNAMSIZ-1, '%');
893 	if (p) {
894 		/*
895 		 * Verify the string as this thing may have come from
896 		 * the user.  There must be either one "%d" and no other "%"
897 		 * characters.
898 		 */
899 		if (p[1] != 'd' || strchr(p + 2, '%'))
900 			return -EINVAL;
901 
902 		/* Use one page as a bit array of possible slots */
903 		inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
904 		if (!inuse)
905 			return -ENOMEM;
906 
907 		for_each_netdev(net, d) {
908 			if (!sscanf(d->name, name, &i))
909 				continue;
910 			if (i < 0 || i >= max_netdevices)
911 				continue;
912 
913 			/*  avoid cases where sscanf is not exact inverse of printf */
914 			snprintf(buf, IFNAMSIZ, name, i);
915 			if (!strncmp(buf, d->name, IFNAMSIZ))
916 				set_bit(i, inuse);
917 		}
918 
919 		i = find_first_zero_bit(inuse, max_netdevices);
920 		free_page((unsigned long) inuse);
921 	}
922 
923 	if (buf != name)
924 		snprintf(buf, IFNAMSIZ, name, i);
925 	if (!__dev_get_by_name(net, buf))
926 		return i;
927 
928 	/* It is possible to run out of possible slots
929 	 * when the name is long and there isn't enough space left
930 	 * for the digits, or if all bits are used.
931 	 */
932 	return -ENFILE;
933 }
934 
935 /**
936  *	dev_alloc_name - allocate a name for a device
937  *	@dev: device
938  *	@name: name format string
939  *
940  *	Passed a format string - eg "lt%d" it will try and find a suitable
941  *	id. It scans list of devices to build up a free map, then chooses
942  *	the first empty slot. The caller must hold the dev_base or rtnl lock
943  *	while allocating the name and adding the device in order to avoid
944  *	duplicates.
945  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
946  *	Returns the number of the unit assigned or a negative errno code.
947  */
948 
949 int dev_alloc_name(struct net_device *dev, const char *name)
950 {
951 	char buf[IFNAMSIZ];
952 	struct net *net;
953 	int ret;
954 
955 	BUG_ON(!dev_net(dev));
956 	net = dev_net(dev);
957 	ret = __dev_alloc_name(net, name, buf);
958 	if (ret >= 0)
959 		strlcpy(dev->name, buf, IFNAMSIZ);
960 	return ret;
961 }
962 EXPORT_SYMBOL(dev_alloc_name);
963 
964 static int dev_get_valid_name(struct net_device *dev, const char *name)
965 {
966 	struct net *net;
967 
968 	BUG_ON(!dev_net(dev));
969 	net = dev_net(dev);
970 
971 	if (!dev_valid_name(name))
972 		return -EINVAL;
973 
974 	if (strchr(name, '%'))
975 		return dev_alloc_name(dev, name);
976 	else if (__dev_get_by_name(net, name))
977 		return -EEXIST;
978 	else if (dev->name != name)
979 		strlcpy(dev->name, name, IFNAMSIZ);
980 
981 	return 0;
982 }
983 
984 /**
985  *	dev_change_name - change name of a device
986  *	@dev: device
987  *	@newname: name (or format string) must be at least IFNAMSIZ
988  *
989  *	Change name of a device, can pass format strings "eth%d".
990  *	for wildcarding.
991  */
992 int dev_change_name(struct net_device *dev, const char *newname)
993 {
994 	char oldname[IFNAMSIZ];
995 	int err = 0;
996 	int ret;
997 	struct net *net;
998 
999 	ASSERT_RTNL();
1000 	BUG_ON(!dev_net(dev));
1001 
1002 	net = dev_net(dev);
1003 	if (dev->flags & IFF_UP)
1004 		return -EBUSY;
1005 
1006 	if (strncmp(newname, dev->name, IFNAMSIZ) == 0)
1007 		return 0;
1008 
1009 	memcpy(oldname, dev->name, IFNAMSIZ);
1010 
1011 	err = dev_get_valid_name(dev, newname);
1012 	if (err < 0)
1013 		return err;
1014 
1015 rollback:
1016 	ret = device_rename(&dev->dev, dev->name);
1017 	if (ret) {
1018 		memcpy(dev->name, oldname, IFNAMSIZ);
1019 		return ret;
1020 	}
1021 
1022 	write_lock_bh(&dev_base_lock);
1023 	hlist_del_rcu(&dev->name_hlist);
1024 	write_unlock_bh(&dev_base_lock);
1025 
1026 	synchronize_rcu();
1027 
1028 	write_lock_bh(&dev_base_lock);
1029 	hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1030 	write_unlock_bh(&dev_base_lock);
1031 
1032 	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1033 	ret = notifier_to_errno(ret);
1034 
1035 	if (ret) {
1036 		/* err >= 0 after dev_alloc_name() or stores the first errno */
1037 		if (err >= 0) {
1038 			err = ret;
1039 			memcpy(dev->name, oldname, IFNAMSIZ);
1040 			goto rollback;
1041 		} else {
1042 			printk(KERN_ERR
1043 			       "%s: name change rollback failed: %d.\n",
1044 			       dev->name, ret);
1045 		}
1046 	}
1047 
1048 	return err;
1049 }
1050 
1051 /**
1052  *	dev_set_alias - change ifalias of a device
1053  *	@dev: device
1054  *	@alias: name up to IFALIASZ
1055  *	@len: limit of bytes to copy from info
1056  *
1057  *	Set ifalias for a device,
1058  */
1059 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1060 {
1061 	ASSERT_RTNL();
1062 
1063 	if (len >= IFALIASZ)
1064 		return -EINVAL;
1065 
1066 	if (!len) {
1067 		if (dev->ifalias) {
1068 			kfree(dev->ifalias);
1069 			dev->ifalias = NULL;
1070 		}
1071 		return 0;
1072 	}
1073 
1074 	dev->ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1075 	if (!dev->ifalias)
1076 		return -ENOMEM;
1077 
1078 	strlcpy(dev->ifalias, alias, len+1);
1079 	return len;
1080 }
1081 
1082 
1083 /**
1084  *	netdev_features_change - device changes features
1085  *	@dev: device to cause notification
1086  *
1087  *	Called to indicate a device has changed features.
1088  */
1089 void netdev_features_change(struct net_device *dev)
1090 {
1091 	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1092 }
1093 EXPORT_SYMBOL(netdev_features_change);
1094 
1095 /**
1096  *	netdev_state_change - device changes state
1097  *	@dev: device to cause notification
1098  *
1099  *	Called to indicate a device has changed state. This function calls
1100  *	the notifier chains for netdev_chain and sends a NEWLINK message
1101  *	to the routing socket.
1102  */
1103 void netdev_state_change(struct net_device *dev)
1104 {
1105 	if (dev->flags & IFF_UP) {
1106 		call_netdevice_notifiers(NETDEV_CHANGE, dev);
1107 		rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
1108 	}
1109 }
1110 EXPORT_SYMBOL(netdev_state_change);
1111 
1112 int netdev_bonding_change(struct net_device *dev, unsigned long event)
1113 {
1114 	return call_netdevice_notifiers(event, dev);
1115 }
1116 EXPORT_SYMBOL(netdev_bonding_change);
1117 
1118 /**
1119  *	dev_load 	- load a network module
1120  *	@net: the applicable net namespace
1121  *	@name: name of interface
1122  *
1123  *	If a network interface is not present and the process has suitable
1124  *	privileges this function loads the module. If module loading is not
1125  *	available in this kernel then it becomes a nop.
1126  */
1127 
1128 void dev_load(struct net *net, const char *name)
1129 {
1130 	struct net_device *dev;
1131 	int no_module;
1132 
1133 	rcu_read_lock();
1134 	dev = dev_get_by_name_rcu(net, name);
1135 	rcu_read_unlock();
1136 
1137 	no_module = !dev;
1138 	if (no_module && capable(CAP_NET_ADMIN))
1139 		no_module = request_module("netdev-%s", name);
1140 	if (no_module && capable(CAP_SYS_MODULE)) {
1141 		if (!request_module("%s", name))
1142 			pr_err("Loading kernel module for a network device "
1143 "with CAP_SYS_MODULE (deprecated).  Use CAP_NET_ADMIN and alias netdev-%s "
1144 "instead\n", name);
1145 	}
1146 }
1147 EXPORT_SYMBOL(dev_load);
1148 
1149 static int __dev_open(struct net_device *dev)
1150 {
1151 	const struct net_device_ops *ops = dev->netdev_ops;
1152 	int ret;
1153 
1154 	ASSERT_RTNL();
1155 
1156 	if (!netif_device_present(dev))
1157 		return -ENODEV;
1158 
1159 	ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1160 	ret = notifier_to_errno(ret);
1161 	if (ret)
1162 		return ret;
1163 
1164 	set_bit(__LINK_STATE_START, &dev->state);
1165 
1166 	if (ops->ndo_validate_addr)
1167 		ret = ops->ndo_validate_addr(dev);
1168 
1169 	if (!ret && ops->ndo_open)
1170 		ret = ops->ndo_open(dev);
1171 
1172 	if (ret)
1173 		clear_bit(__LINK_STATE_START, &dev->state);
1174 	else {
1175 		dev->flags |= IFF_UP;
1176 		net_dmaengine_get();
1177 		dev_set_rx_mode(dev);
1178 		dev_activate(dev);
1179 	}
1180 
1181 	return ret;
1182 }
1183 
1184 /**
1185  *	dev_open	- prepare an interface for use.
1186  *	@dev:	device to open
1187  *
1188  *	Takes a device from down to up state. The device's private open
1189  *	function is invoked and then the multicast lists are loaded. Finally
1190  *	the device is moved into the up state and a %NETDEV_UP message is
1191  *	sent to the netdev notifier chain.
1192  *
1193  *	Calling this function on an active interface is a nop. On a failure
1194  *	a negative errno code is returned.
1195  */
1196 int dev_open(struct net_device *dev)
1197 {
1198 	int ret;
1199 
1200 	if (dev->flags & IFF_UP)
1201 		return 0;
1202 
1203 	ret = __dev_open(dev);
1204 	if (ret < 0)
1205 		return ret;
1206 
1207 	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1208 	call_netdevice_notifiers(NETDEV_UP, dev);
1209 
1210 	return ret;
1211 }
1212 EXPORT_SYMBOL(dev_open);
1213 
1214 static int __dev_close_many(struct list_head *head)
1215 {
1216 	struct net_device *dev;
1217 
1218 	ASSERT_RTNL();
1219 	might_sleep();
1220 
1221 	list_for_each_entry(dev, head, unreg_list) {
1222 		call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1223 
1224 		clear_bit(__LINK_STATE_START, &dev->state);
1225 
1226 		/* Synchronize to scheduled poll. We cannot touch poll list, it
1227 		 * can be even on different cpu. So just clear netif_running().
1228 		 *
1229 		 * dev->stop() will invoke napi_disable() on all of it's
1230 		 * napi_struct instances on this device.
1231 		 */
1232 		smp_mb__after_clear_bit(); /* Commit netif_running(). */
1233 	}
1234 
1235 	dev_deactivate_many(head);
1236 
1237 	list_for_each_entry(dev, head, unreg_list) {
1238 		const struct net_device_ops *ops = dev->netdev_ops;
1239 
1240 		/*
1241 		 *	Call the device specific close. This cannot fail.
1242 		 *	Only if device is UP
1243 		 *
1244 		 *	We allow it to be called even after a DETACH hot-plug
1245 		 *	event.
1246 		 */
1247 		if (ops->ndo_stop)
1248 			ops->ndo_stop(dev);
1249 
1250 		dev->flags &= ~IFF_UP;
1251 		net_dmaengine_put();
1252 	}
1253 
1254 	return 0;
1255 }
1256 
1257 static int __dev_close(struct net_device *dev)
1258 {
1259 	int retval;
1260 	LIST_HEAD(single);
1261 
1262 	list_add(&dev->unreg_list, &single);
1263 	retval = __dev_close_many(&single);
1264 	list_del(&single);
1265 	return retval;
1266 }
1267 
1268 static int dev_close_many(struct list_head *head)
1269 {
1270 	struct net_device *dev, *tmp;
1271 	LIST_HEAD(tmp_list);
1272 
1273 	list_for_each_entry_safe(dev, tmp, head, unreg_list)
1274 		if (!(dev->flags & IFF_UP))
1275 			list_move(&dev->unreg_list, &tmp_list);
1276 
1277 	__dev_close_many(head);
1278 
1279 	list_for_each_entry(dev, head, unreg_list) {
1280 		rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1281 		call_netdevice_notifiers(NETDEV_DOWN, dev);
1282 	}
1283 
1284 	/* rollback_registered_many needs the complete original list */
1285 	list_splice(&tmp_list, head);
1286 	return 0;
1287 }
1288 
1289 /**
1290  *	dev_close - shutdown an interface.
1291  *	@dev: device to shutdown
1292  *
1293  *	This function moves an active device into down state. A
1294  *	%NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1295  *	is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1296  *	chain.
1297  */
1298 int dev_close(struct net_device *dev)
1299 {
1300 	if (dev->flags & IFF_UP) {
1301 		LIST_HEAD(single);
1302 
1303 		list_add(&dev->unreg_list, &single);
1304 		dev_close_many(&single);
1305 		list_del(&single);
1306 	}
1307 	return 0;
1308 }
1309 EXPORT_SYMBOL(dev_close);
1310 
1311 
1312 /**
1313  *	dev_disable_lro - disable Large Receive Offload on a device
1314  *	@dev: device
1315  *
1316  *	Disable Large Receive Offload (LRO) on a net device.  Must be
1317  *	called under RTNL.  This is needed if received packets may be
1318  *	forwarded to another interface.
1319  */
1320 void dev_disable_lro(struct net_device *dev)
1321 {
1322 	/*
1323 	 * If we're trying to disable lro on a vlan device
1324 	 * use the underlying physical device instead
1325 	 */
1326 	if (is_vlan_dev(dev))
1327 		dev = vlan_dev_real_dev(dev);
1328 
1329 	dev->wanted_features &= ~NETIF_F_LRO;
1330 	netdev_update_features(dev);
1331 
1332 	if (unlikely(dev->features & NETIF_F_LRO))
1333 		netdev_WARN(dev, "failed to disable LRO!\n");
1334 }
1335 EXPORT_SYMBOL(dev_disable_lro);
1336 
1337 
1338 static int dev_boot_phase = 1;
1339 
1340 /**
1341  *	register_netdevice_notifier - register a network notifier block
1342  *	@nb: notifier
1343  *
1344  *	Register a notifier to be called when network device events occur.
1345  *	The notifier passed is linked into the kernel structures and must
1346  *	not be reused until it has been unregistered. A negative errno code
1347  *	is returned on a failure.
1348  *
1349  * 	When registered all registration and up events are replayed
1350  *	to the new notifier to allow device to have a race free
1351  *	view of the network device list.
1352  */
1353 
1354 int register_netdevice_notifier(struct notifier_block *nb)
1355 {
1356 	struct net_device *dev;
1357 	struct net_device *last;
1358 	struct net *net;
1359 	int err;
1360 
1361 	rtnl_lock();
1362 	err = raw_notifier_chain_register(&netdev_chain, nb);
1363 	if (err)
1364 		goto unlock;
1365 	if (dev_boot_phase)
1366 		goto unlock;
1367 	for_each_net(net) {
1368 		for_each_netdev(net, dev) {
1369 			err = nb->notifier_call(nb, NETDEV_REGISTER, dev);
1370 			err = notifier_to_errno(err);
1371 			if (err)
1372 				goto rollback;
1373 
1374 			if (!(dev->flags & IFF_UP))
1375 				continue;
1376 
1377 			nb->notifier_call(nb, NETDEV_UP, dev);
1378 		}
1379 	}
1380 
1381 unlock:
1382 	rtnl_unlock();
1383 	return err;
1384 
1385 rollback:
1386 	last = dev;
1387 	for_each_net(net) {
1388 		for_each_netdev(net, dev) {
1389 			if (dev == last)
1390 				goto outroll;
1391 
1392 			if (dev->flags & IFF_UP) {
1393 				nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1394 				nb->notifier_call(nb, NETDEV_DOWN, dev);
1395 			}
1396 			nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1397 			nb->notifier_call(nb, NETDEV_UNREGISTER_BATCH, dev);
1398 		}
1399 	}
1400 
1401 outroll:
1402 	raw_notifier_chain_unregister(&netdev_chain, nb);
1403 	goto unlock;
1404 }
1405 EXPORT_SYMBOL(register_netdevice_notifier);
1406 
1407 /**
1408  *	unregister_netdevice_notifier - unregister a network notifier block
1409  *	@nb: notifier
1410  *
1411  *	Unregister a notifier previously registered by
1412  *	register_netdevice_notifier(). The notifier is unlinked into the
1413  *	kernel structures and may then be reused. A negative errno code
1414  *	is returned on a failure.
1415  */
1416 
1417 int unregister_netdevice_notifier(struct notifier_block *nb)
1418 {
1419 	int err;
1420 
1421 	rtnl_lock();
1422 	err = raw_notifier_chain_unregister(&netdev_chain, nb);
1423 	rtnl_unlock();
1424 	return err;
1425 }
1426 EXPORT_SYMBOL(unregister_netdevice_notifier);
1427 
1428 /**
1429  *	call_netdevice_notifiers - call all network notifier blocks
1430  *      @val: value passed unmodified to notifier function
1431  *      @dev: net_device pointer passed unmodified to notifier function
1432  *
1433  *	Call all network notifier blocks.  Parameters and return value
1434  *	are as for raw_notifier_call_chain().
1435  */
1436 
1437 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1438 {
1439 	ASSERT_RTNL();
1440 	return raw_notifier_call_chain(&netdev_chain, val, dev);
1441 }
1442 EXPORT_SYMBOL(call_netdevice_notifiers);
1443 
1444 static struct jump_label_key netstamp_needed __read_mostly;
1445 #ifdef HAVE_JUMP_LABEL
1446 /* We are not allowed to call jump_label_dec() from irq context
1447  * If net_disable_timestamp() is called from irq context, defer the
1448  * jump_label_dec() calls.
1449  */
1450 static atomic_t netstamp_needed_deferred;
1451 #endif
1452 
1453 void net_enable_timestamp(void)
1454 {
1455 #ifdef HAVE_JUMP_LABEL
1456 	int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1457 
1458 	if (deferred) {
1459 		while (--deferred)
1460 			jump_label_dec(&netstamp_needed);
1461 		return;
1462 	}
1463 #endif
1464 	WARN_ON(in_interrupt());
1465 	jump_label_inc(&netstamp_needed);
1466 }
1467 EXPORT_SYMBOL(net_enable_timestamp);
1468 
1469 void net_disable_timestamp(void)
1470 {
1471 #ifdef HAVE_JUMP_LABEL
1472 	if (in_interrupt()) {
1473 		atomic_inc(&netstamp_needed_deferred);
1474 		return;
1475 	}
1476 #endif
1477 	jump_label_dec(&netstamp_needed);
1478 }
1479 EXPORT_SYMBOL(net_disable_timestamp);
1480 
1481 static inline void net_timestamp_set(struct sk_buff *skb)
1482 {
1483 	skb->tstamp.tv64 = 0;
1484 	if (static_branch(&netstamp_needed))
1485 		__net_timestamp(skb);
1486 }
1487 
1488 #define net_timestamp_check(COND, SKB)			\
1489 	if (static_branch(&netstamp_needed)) {		\
1490 		if ((COND) && !(SKB)->tstamp.tv64)	\
1491 			__net_timestamp(SKB);		\
1492 	}						\
1493 
1494 static int net_hwtstamp_validate(struct ifreq *ifr)
1495 {
1496 	struct hwtstamp_config cfg;
1497 	enum hwtstamp_tx_types tx_type;
1498 	enum hwtstamp_rx_filters rx_filter;
1499 	int tx_type_valid = 0;
1500 	int rx_filter_valid = 0;
1501 
1502 	if (copy_from_user(&cfg, ifr->ifr_data, sizeof(cfg)))
1503 		return -EFAULT;
1504 
1505 	if (cfg.flags) /* reserved for future extensions */
1506 		return -EINVAL;
1507 
1508 	tx_type = cfg.tx_type;
1509 	rx_filter = cfg.rx_filter;
1510 
1511 	switch (tx_type) {
1512 	case HWTSTAMP_TX_OFF:
1513 	case HWTSTAMP_TX_ON:
1514 	case HWTSTAMP_TX_ONESTEP_SYNC:
1515 		tx_type_valid = 1;
1516 		break;
1517 	}
1518 
1519 	switch (rx_filter) {
1520 	case HWTSTAMP_FILTER_NONE:
1521 	case HWTSTAMP_FILTER_ALL:
1522 	case HWTSTAMP_FILTER_SOME:
1523 	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
1524 	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
1525 	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
1526 	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
1527 	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
1528 	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
1529 	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
1530 	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
1531 	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
1532 	case HWTSTAMP_FILTER_PTP_V2_EVENT:
1533 	case HWTSTAMP_FILTER_PTP_V2_SYNC:
1534 	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
1535 		rx_filter_valid = 1;
1536 		break;
1537 	}
1538 
1539 	if (!tx_type_valid || !rx_filter_valid)
1540 		return -ERANGE;
1541 
1542 	return 0;
1543 }
1544 
1545 static inline bool is_skb_forwardable(struct net_device *dev,
1546 				      struct sk_buff *skb)
1547 {
1548 	unsigned int len;
1549 
1550 	if (!(dev->flags & IFF_UP))
1551 		return false;
1552 
1553 	len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1554 	if (skb->len <= len)
1555 		return true;
1556 
1557 	/* if TSO is enabled, we don't care about the length as the packet
1558 	 * could be forwarded without being segmented before
1559 	 */
1560 	if (skb_is_gso(skb))
1561 		return true;
1562 
1563 	return false;
1564 }
1565 
1566 /**
1567  * dev_forward_skb - loopback an skb to another netif
1568  *
1569  * @dev: destination network device
1570  * @skb: buffer to forward
1571  *
1572  * return values:
1573  *	NET_RX_SUCCESS	(no congestion)
1574  *	NET_RX_DROP     (packet was dropped, but freed)
1575  *
1576  * dev_forward_skb can be used for injecting an skb from the
1577  * start_xmit function of one device into the receive queue
1578  * of another device.
1579  *
1580  * The receiving device may be in another namespace, so
1581  * we have to clear all information in the skb that could
1582  * impact namespace isolation.
1583  */
1584 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1585 {
1586 	if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
1587 		if (skb_copy_ubufs(skb, GFP_ATOMIC)) {
1588 			atomic_long_inc(&dev->rx_dropped);
1589 			kfree_skb(skb);
1590 			return NET_RX_DROP;
1591 		}
1592 	}
1593 
1594 	skb_orphan(skb);
1595 	nf_reset(skb);
1596 
1597 	if (unlikely(!is_skb_forwardable(dev, skb))) {
1598 		atomic_long_inc(&dev->rx_dropped);
1599 		kfree_skb(skb);
1600 		return NET_RX_DROP;
1601 	}
1602 	skb_set_dev(skb, dev);
1603 	skb->tstamp.tv64 = 0;
1604 	skb->pkt_type = PACKET_HOST;
1605 	skb->protocol = eth_type_trans(skb, dev);
1606 	return netif_rx(skb);
1607 }
1608 EXPORT_SYMBOL_GPL(dev_forward_skb);
1609 
1610 static inline int deliver_skb(struct sk_buff *skb,
1611 			      struct packet_type *pt_prev,
1612 			      struct net_device *orig_dev)
1613 {
1614 	atomic_inc(&skb->users);
1615 	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1616 }
1617 
1618 /*
1619  *	Support routine. Sends outgoing frames to any network
1620  *	taps currently in use.
1621  */
1622 
1623 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1624 {
1625 	struct packet_type *ptype;
1626 	struct sk_buff *skb2 = NULL;
1627 	struct packet_type *pt_prev = NULL;
1628 
1629 	rcu_read_lock();
1630 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
1631 		/* Never send packets back to the socket
1632 		 * they originated from - MvS (miquels@drinkel.ow.org)
1633 		 */
1634 		if ((ptype->dev == dev || !ptype->dev) &&
1635 		    (ptype->af_packet_priv == NULL ||
1636 		     (struct sock *)ptype->af_packet_priv != skb->sk)) {
1637 			if (pt_prev) {
1638 				deliver_skb(skb2, pt_prev, skb->dev);
1639 				pt_prev = ptype;
1640 				continue;
1641 			}
1642 
1643 			skb2 = skb_clone(skb, GFP_ATOMIC);
1644 			if (!skb2)
1645 				break;
1646 
1647 			net_timestamp_set(skb2);
1648 
1649 			/* skb->nh should be correctly
1650 			   set by sender, so that the second statement is
1651 			   just protection against buggy protocols.
1652 			 */
1653 			skb_reset_mac_header(skb2);
1654 
1655 			if (skb_network_header(skb2) < skb2->data ||
1656 			    skb2->network_header > skb2->tail) {
1657 				if (net_ratelimit())
1658 					printk(KERN_CRIT "protocol %04x is "
1659 					       "buggy, dev %s\n",
1660 					       ntohs(skb2->protocol),
1661 					       dev->name);
1662 				skb_reset_network_header(skb2);
1663 			}
1664 
1665 			skb2->transport_header = skb2->network_header;
1666 			skb2->pkt_type = PACKET_OUTGOING;
1667 			pt_prev = ptype;
1668 		}
1669 	}
1670 	if (pt_prev)
1671 		pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1672 	rcu_read_unlock();
1673 }
1674 
1675 /* netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1676  * @dev: Network device
1677  * @txq: number of queues available
1678  *
1679  * If real_num_tx_queues is changed the tc mappings may no longer be
1680  * valid. To resolve this verify the tc mapping remains valid and if
1681  * not NULL the mapping. With no priorities mapping to this
1682  * offset/count pair it will no longer be used. In the worst case TC0
1683  * is invalid nothing can be done so disable priority mappings. If is
1684  * expected that drivers will fix this mapping if they can before
1685  * calling netif_set_real_num_tx_queues.
1686  */
1687 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1688 {
1689 	int i;
1690 	struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1691 
1692 	/* If TC0 is invalidated disable TC mapping */
1693 	if (tc->offset + tc->count > txq) {
1694 		pr_warning("Number of in use tx queues changed "
1695 			   "invalidating tc mappings. Priority "
1696 			   "traffic classification disabled!\n");
1697 		dev->num_tc = 0;
1698 		return;
1699 	}
1700 
1701 	/* Invalidated prio to tc mappings set to TC0 */
1702 	for (i = 1; i < TC_BITMASK + 1; i++) {
1703 		int q = netdev_get_prio_tc_map(dev, i);
1704 
1705 		tc = &dev->tc_to_txq[q];
1706 		if (tc->offset + tc->count > txq) {
1707 			pr_warning("Number of in use tx queues "
1708 				   "changed. Priority %i to tc "
1709 				   "mapping %i is no longer valid "
1710 				   "setting map to 0\n",
1711 				   i, q);
1712 			netdev_set_prio_tc_map(dev, i, 0);
1713 		}
1714 	}
1715 }
1716 
1717 /*
1718  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
1719  * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
1720  */
1721 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
1722 {
1723 	int rc;
1724 
1725 	if (txq < 1 || txq > dev->num_tx_queues)
1726 		return -EINVAL;
1727 
1728 	if (dev->reg_state == NETREG_REGISTERED ||
1729 	    dev->reg_state == NETREG_UNREGISTERING) {
1730 		ASSERT_RTNL();
1731 
1732 		rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
1733 						  txq);
1734 		if (rc)
1735 			return rc;
1736 
1737 		if (dev->num_tc)
1738 			netif_setup_tc(dev, txq);
1739 
1740 		if (txq < dev->real_num_tx_queues)
1741 			qdisc_reset_all_tx_gt(dev, txq);
1742 	}
1743 
1744 	dev->real_num_tx_queues = txq;
1745 	return 0;
1746 }
1747 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
1748 
1749 #ifdef CONFIG_RPS
1750 /**
1751  *	netif_set_real_num_rx_queues - set actual number of RX queues used
1752  *	@dev: Network device
1753  *	@rxq: Actual number of RX queues
1754  *
1755  *	This must be called either with the rtnl_lock held or before
1756  *	registration of the net device.  Returns 0 on success, or a
1757  *	negative error code.  If called before registration, it always
1758  *	succeeds.
1759  */
1760 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
1761 {
1762 	int rc;
1763 
1764 	if (rxq < 1 || rxq > dev->num_rx_queues)
1765 		return -EINVAL;
1766 
1767 	if (dev->reg_state == NETREG_REGISTERED) {
1768 		ASSERT_RTNL();
1769 
1770 		rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
1771 						  rxq);
1772 		if (rc)
1773 			return rc;
1774 	}
1775 
1776 	dev->real_num_rx_queues = rxq;
1777 	return 0;
1778 }
1779 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
1780 #endif
1781 
1782 static inline void __netif_reschedule(struct Qdisc *q)
1783 {
1784 	struct softnet_data *sd;
1785 	unsigned long flags;
1786 
1787 	local_irq_save(flags);
1788 	sd = &__get_cpu_var(softnet_data);
1789 	q->next_sched = NULL;
1790 	*sd->output_queue_tailp = q;
1791 	sd->output_queue_tailp = &q->next_sched;
1792 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
1793 	local_irq_restore(flags);
1794 }
1795 
1796 void __netif_schedule(struct Qdisc *q)
1797 {
1798 	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
1799 		__netif_reschedule(q);
1800 }
1801 EXPORT_SYMBOL(__netif_schedule);
1802 
1803 void dev_kfree_skb_irq(struct sk_buff *skb)
1804 {
1805 	if (atomic_dec_and_test(&skb->users)) {
1806 		struct softnet_data *sd;
1807 		unsigned long flags;
1808 
1809 		local_irq_save(flags);
1810 		sd = &__get_cpu_var(softnet_data);
1811 		skb->next = sd->completion_queue;
1812 		sd->completion_queue = skb;
1813 		raise_softirq_irqoff(NET_TX_SOFTIRQ);
1814 		local_irq_restore(flags);
1815 	}
1816 }
1817 EXPORT_SYMBOL(dev_kfree_skb_irq);
1818 
1819 void dev_kfree_skb_any(struct sk_buff *skb)
1820 {
1821 	if (in_irq() || irqs_disabled())
1822 		dev_kfree_skb_irq(skb);
1823 	else
1824 		dev_kfree_skb(skb);
1825 }
1826 EXPORT_SYMBOL(dev_kfree_skb_any);
1827 
1828 
1829 /**
1830  * netif_device_detach - mark device as removed
1831  * @dev: network device
1832  *
1833  * Mark device as removed from system and therefore no longer available.
1834  */
1835 void netif_device_detach(struct net_device *dev)
1836 {
1837 	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
1838 	    netif_running(dev)) {
1839 		netif_tx_stop_all_queues(dev);
1840 	}
1841 }
1842 EXPORT_SYMBOL(netif_device_detach);
1843 
1844 /**
1845  * netif_device_attach - mark device as attached
1846  * @dev: network device
1847  *
1848  * Mark device as attached from system and restart if needed.
1849  */
1850 void netif_device_attach(struct net_device *dev)
1851 {
1852 	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
1853 	    netif_running(dev)) {
1854 		netif_tx_wake_all_queues(dev);
1855 		__netdev_watchdog_up(dev);
1856 	}
1857 }
1858 EXPORT_SYMBOL(netif_device_attach);
1859 
1860 /**
1861  * skb_dev_set -- assign a new device to a buffer
1862  * @skb: buffer for the new device
1863  * @dev: network device
1864  *
1865  * If an skb is owned by a device already, we have to reset
1866  * all data private to the namespace a device belongs to
1867  * before assigning it a new device.
1868  */
1869 #ifdef CONFIG_NET_NS
1870 void skb_set_dev(struct sk_buff *skb, struct net_device *dev)
1871 {
1872 	skb_dst_drop(skb);
1873 	if (skb->dev && !net_eq(dev_net(skb->dev), dev_net(dev))) {
1874 		secpath_reset(skb);
1875 		nf_reset(skb);
1876 		skb_init_secmark(skb);
1877 		skb->mark = 0;
1878 		skb->priority = 0;
1879 		skb->nf_trace = 0;
1880 		skb->ipvs_property = 0;
1881 #ifdef CONFIG_NET_SCHED
1882 		skb->tc_index = 0;
1883 #endif
1884 	}
1885 	skb->dev = dev;
1886 }
1887 EXPORT_SYMBOL(skb_set_dev);
1888 #endif /* CONFIG_NET_NS */
1889 
1890 /*
1891  * Invalidate hardware checksum when packet is to be mangled, and
1892  * complete checksum manually on outgoing path.
1893  */
1894 int skb_checksum_help(struct sk_buff *skb)
1895 {
1896 	__wsum csum;
1897 	int ret = 0, offset;
1898 
1899 	if (skb->ip_summed == CHECKSUM_COMPLETE)
1900 		goto out_set_summed;
1901 
1902 	if (unlikely(skb_shinfo(skb)->gso_size)) {
1903 		/* Let GSO fix up the checksum. */
1904 		goto out_set_summed;
1905 	}
1906 
1907 	offset = skb_checksum_start_offset(skb);
1908 	BUG_ON(offset >= skb_headlen(skb));
1909 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
1910 
1911 	offset += skb->csum_offset;
1912 	BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
1913 
1914 	if (skb_cloned(skb) &&
1915 	    !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1916 		ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1917 		if (ret)
1918 			goto out;
1919 	}
1920 
1921 	*(__sum16 *)(skb->data + offset) = csum_fold(csum);
1922 out_set_summed:
1923 	skb->ip_summed = CHECKSUM_NONE;
1924 out:
1925 	return ret;
1926 }
1927 EXPORT_SYMBOL(skb_checksum_help);
1928 
1929 /**
1930  *	skb_gso_segment - Perform segmentation on skb.
1931  *	@skb: buffer to segment
1932  *	@features: features for the output path (see dev->features)
1933  *
1934  *	This function segments the given skb and returns a list of segments.
1935  *
1936  *	It may return NULL if the skb requires no segmentation.  This is
1937  *	only possible when GSO is used for verifying header integrity.
1938  */
1939 struct sk_buff *skb_gso_segment(struct sk_buff *skb,
1940 	netdev_features_t features)
1941 {
1942 	struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
1943 	struct packet_type *ptype;
1944 	__be16 type = skb->protocol;
1945 	int vlan_depth = ETH_HLEN;
1946 	int err;
1947 
1948 	while (type == htons(ETH_P_8021Q)) {
1949 		struct vlan_hdr *vh;
1950 
1951 		if (unlikely(!pskb_may_pull(skb, vlan_depth + VLAN_HLEN)))
1952 			return ERR_PTR(-EINVAL);
1953 
1954 		vh = (struct vlan_hdr *)(skb->data + vlan_depth);
1955 		type = vh->h_vlan_encapsulated_proto;
1956 		vlan_depth += VLAN_HLEN;
1957 	}
1958 
1959 	skb_reset_mac_header(skb);
1960 	skb->mac_len = skb->network_header - skb->mac_header;
1961 	__skb_pull(skb, skb->mac_len);
1962 
1963 	if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1964 		struct net_device *dev = skb->dev;
1965 		struct ethtool_drvinfo info = {};
1966 
1967 		if (dev && dev->ethtool_ops && dev->ethtool_ops->get_drvinfo)
1968 			dev->ethtool_ops->get_drvinfo(dev, &info);
1969 
1970 		WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d ip_summed=%d\n",
1971 		     info.driver, dev ? &dev->features : NULL,
1972 		     skb->sk ? &skb->sk->sk_route_caps : NULL,
1973 		     skb->len, skb->data_len, skb->ip_summed);
1974 
1975 		if (skb_header_cloned(skb) &&
1976 		    (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
1977 			return ERR_PTR(err);
1978 	}
1979 
1980 	rcu_read_lock();
1981 	list_for_each_entry_rcu(ptype,
1982 			&ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
1983 		if (ptype->type == type && !ptype->dev && ptype->gso_segment) {
1984 			if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1985 				err = ptype->gso_send_check(skb);
1986 				segs = ERR_PTR(err);
1987 				if (err || skb_gso_ok(skb, features))
1988 					break;
1989 				__skb_push(skb, (skb->data -
1990 						 skb_network_header(skb)));
1991 			}
1992 			segs = ptype->gso_segment(skb, features);
1993 			break;
1994 		}
1995 	}
1996 	rcu_read_unlock();
1997 
1998 	__skb_push(skb, skb->data - skb_mac_header(skb));
1999 
2000 	return segs;
2001 }
2002 EXPORT_SYMBOL(skb_gso_segment);
2003 
2004 /* Take action when hardware reception checksum errors are detected. */
2005 #ifdef CONFIG_BUG
2006 void netdev_rx_csum_fault(struct net_device *dev)
2007 {
2008 	if (net_ratelimit()) {
2009 		printk(KERN_ERR "%s: hw csum failure.\n",
2010 			dev ? dev->name : "<unknown>");
2011 		dump_stack();
2012 	}
2013 }
2014 EXPORT_SYMBOL(netdev_rx_csum_fault);
2015 #endif
2016 
2017 /* Actually, we should eliminate this check as soon as we know, that:
2018  * 1. IOMMU is present and allows to map all the memory.
2019  * 2. No high memory really exists on this machine.
2020  */
2021 
2022 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2023 {
2024 #ifdef CONFIG_HIGHMEM
2025 	int i;
2026 	if (!(dev->features & NETIF_F_HIGHDMA)) {
2027 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2028 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2029 			if (PageHighMem(skb_frag_page(frag)))
2030 				return 1;
2031 		}
2032 	}
2033 
2034 	if (PCI_DMA_BUS_IS_PHYS) {
2035 		struct device *pdev = dev->dev.parent;
2036 
2037 		if (!pdev)
2038 			return 0;
2039 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2040 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2041 			dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2042 			if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2043 				return 1;
2044 		}
2045 	}
2046 #endif
2047 	return 0;
2048 }
2049 
2050 struct dev_gso_cb {
2051 	void (*destructor)(struct sk_buff *skb);
2052 };
2053 
2054 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
2055 
2056 static void dev_gso_skb_destructor(struct sk_buff *skb)
2057 {
2058 	struct dev_gso_cb *cb;
2059 
2060 	do {
2061 		struct sk_buff *nskb = skb->next;
2062 
2063 		skb->next = nskb->next;
2064 		nskb->next = NULL;
2065 		kfree_skb(nskb);
2066 	} while (skb->next);
2067 
2068 	cb = DEV_GSO_CB(skb);
2069 	if (cb->destructor)
2070 		cb->destructor(skb);
2071 }
2072 
2073 /**
2074  *	dev_gso_segment - Perform emulated hardware segmentation on skb.
2075  *	@skb: buffer to segment
2076  *	@features: device features as applicable to this skb
2077  *
2078  *	This function segments the given skb and stores the list of segments
2079  *	in skb->next.
2080  */
2081 static int dev_gso_segment(struct sk_buff *skb, netdev_features_t features)
2082 {
2083 	struct sk_buff *segs;
2084 
2085 	segs = skb_gso_segment(skb, features);
2086 
2087 	/* Verifying header integrity only. */
2088 	if (!segs)
2089 		return 0;
2090 
2091 	if (IS_ERR(segs))
2092 		return PTR_ERR(segs);
2093 
2094 	skb->next = segs;
2095 	DEV_GSO_CB(skb)->destructor = skb->destructor;
2096 	skb->destructor = dev_gso_skb_destructor;
2097 
2098 	return 0;
2099 }
2100 
2101 /*
2102  * Try to orphan skb early, right before transmission by the device.
2103  * We cannot orphan skb if tx timestamp is requested or the sk-reference
2104  * is needed on driver level for other reasons, e.g. see net/can/raw.c
2105  */
2106 static inline void skb_orphan_try(struct sk_buff *skb)
2107 {
2108 	struct sock *sk = skb->sk;
2109 
2110 	if (sk && !skb_shinfo(skb)->tx_flags) {
2111 		/* skb_tx_hash() wont be able to get sk.
2112 		 * We copy sk_hash into skb->rxhash
2113 		 */
2114 		if (!skb->rxhash)
2115 			skb->rxhash = sk->sk_hash;
2116 		skb_orphan(skb);
2117 	}
2118 }
2119 
2120 static bool can_checksum_protocol(netdev_features_t features, __be16 protocol)
2121 {
2122 	return ((features & NETIF_F_GEN_CSUM) ||
2123 		((features & NETIF_F_V4_CSUM) &&
2124 		 protocol == htons(ETH_P_IP)) ||
2125 		((features & NETIF_F_V6_CSUM) &&
2126 		 protocol == htons(ETH_P_IPV6)) ||
2127 		((features & NETIF_F_FCOE_CRC) &&
2128 		 protocol == htons(ETH_P_FCOE)));
2129 }
2130 
2131 static netdev_features_t harmonize_features(struct sk_buff *skb,
2132 	__be16 protocol, netdev_features_t features)
2133 {
2134 	if (!can_checksum_protocol(features, protocol)) {
2135 		features &= ~NETIF_F_ALL_CSUM;
2136 		features &= ~NETIF_F_SG;
2137 	} else if (illegal_highdma(skb->dev, skb)) {
2138 		features &= ~NETIF_F_SG;
2139 	}
2140 
2141 	return features;
2142 }
2143 
2144 netdev_features_t netif_skb_features(struct sk_buff *skb)
2145 {
2146 	__be16 protocol = skb->protocol;
2147 	netdev_features_t features = skb->dev->features;
2148 
2149 	if (protocol == htons(ETH_P_8021Q)) {
2150 		struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
2151 		protocol = veh->h_vlan_encapsulated_proto;
2152 	} else if (!vlan_tx_tag_present(skb)) {
2153 		return harmonize_features(skb, protocol, features);
2154 	}
2155 
2156 	features &= (skb->dev->vlan_features | NETIF_F_HW_VLAN_TX);
2157 
2158 	if (protocol != htons(ETH_P_8021Q)) {
2159 		return harmonize_features(skb, protocol, features);
2160 	} else {
2161 		features &= NETIF_F_SG | NETIF_F_HIGHDMA | NETIF_F_FRAGLIST |
2162 				NETIF_F_GEN_CSUM | NETIF_F_HW_VLAN_TX;
2163 		return harmonize_features(skb, protocol, features);
2164 	}
2165 }
2166 EXPORT_SYMBOL(netif_skb_features);
2167 
2168 /*
2169  * Returns true if either:
2170  *	1. skb has frag_list and the device doesn't support FRAGLIST, or
2171  *	2. skb is fragmented and the device does not support SG, or if
2172  *	   at least one of fragments is in highmem and device does not
2173  *	   support DMA from it.
2174  */
2175 static inline int skb_needs_linearize(struct sk_buff *skb,
2176 				      int features)
2177 {
2178 	return skb_is_nonlinear(skb) &&
2179 			((skb_has_frag_list(skb) &&
2180 				!(features & NETIF_F_FRAGLIST)) ||
2181 			(skb_shinfo(skb)->nr_frags &&
2182 				!(features & NETIF_F_SG)));
2183 }
2184 
2185 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
2186 			struct netdev_queue *txq)
2187 {
2188 	const struct net_device_ops *ops = dev->netdev_ops;
2189 	int rc = NETDEV_TX_OK;
2190 	unsigned int skb_len;
2191 
2192 	if (likely(!skb->next)) {
2193 		netdev_features_t features;
2194 
2195 		/*
2196 		 * If device doesn't need skb->dst, release it right now while
2197 		 * its hot in this cpu cache
2198 		 */
2199 		if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2200 			skb_dst_drop(skb);
2201 
2202 		if (!list_empty(&ptype_all))
2203 			dev_queue_xmit_nit(skb, dev);
2204 
2205 		skb_orphan_try(skb);
2206 
2207 		features = netif_skb_features(skb);
2208 
2209 		if (vlan_tx_tag_present(skb) &&
2210 		    !(features & NETIF_F_HW_VLAN_TX)) {
2211 			skb = __vlan_put_tag(skb, vlan_tx_tag_get(skb));
2212 			if (unlikely(!skb))
2213 				goto out;
2214 
2215 			skb->vlan_tci = 0;
2216 		}
2217 
2218 		if (netif_needs_gso(skb, features)) {
2219 			if (unlikely(dev_gso_segment(skb, features)))
2220 				goto out_kfree_skb;
2221 			if (skb->next)
2222 				goto gso;
2223 		} else {
2224 			if (skb_needs_linearize(skb, features) &&
2225 			    __skb_linearize(skb))
2226 				goto out_kfree_skb;
2227 
2228 			/* If packet is not checksummed and device does not
2229 			 * support checksumming for this protocol, complete
2230 			 * checksumming here.
2231 			 */
2232 			if (skb->ip_summed == CHECKSUM_PARTIAL) {
2233 				skb_set_transport_header(skb,
2234 					skb_checksum_start_offset(skb));
2235 				if (!(features & NETIF_F_ALL_CSUM) &&
2236 				     skb_checksum_help(skb))
2237 					goto out_kfree_skb;
2238 			}
2239 		}
2240 
2241 		skb_len = skb->len;
2242 		rc = ops->ndo_start_xmit(skb, dev);
2243 		trace_net_dev_xmit(skb, rc, dev, skb_len);
2244 		if (rc == NETDEV_TX_OK)
2245 			txq_trans_update(txq);
2246 		return rc;
2247 	}
2248 
2249 gso:
2250 	do {
2251 		struct sk_buff *nskb = skb->next;
2252 
2253 		skb->next = nskb->next;
2254 		nskb->next = NULL;
2255 
2256 		/*
2257 		 * If device doesn't need nskb->dst, release it right now while
2258 		 * its hot in this cpu cache
2259 		 */
2260 		if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2261 			skb_dst_drop(nskb);
2262 
2263 		skb_len = nskb->len;
2264 		rc = ops->ndo_start_xmit(nskb, dev);
2265 		trace_net_dev_xmit(nskb, rc, dev, skb_len);
2266 		if (unlikely(rc != NETDEV_TX_OK)) {
2267 			if (rc & ~NETDEV_TX_MASK)
2268 				goto out_kfree_gso_skb;
2269 			nskb->next = skb->next;
2270 			skb->next = nskb;
2271 			return rc;
2272 		}
2273 		txq_trans_update(txq);
2274 		if (unlikely(netif_xmit_stopped(txq) && skb->next))
2275 			return NETDEV_TX_BUSY;
2276 	} while (skb->next);
2277 
2278 out_kfree_gso_skb:
2279 	if (likely(skb->next == NULL))
2280 		skb->destructor = DEV_GSO_CB(skb)->destructor;
2281 out_kfree_skb:
2282 	kfree_skb(skb);
2283 out:
2284 	return rc;
2285 }
2286 
2287 static u32 hashrnd __read_mostly;
2288 
2289 /*
2290  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2291  * to be used as a distribution range.
2292  */
2293 u16 __skb_tx_hash(const struct net_device *dev, const struct sk_buff *skb,
2294 		  unsigned int num_tx_queues)
2295 {
2296 	u32 hash;
2297 	u16 qoffset = 0;
2298 	u16 qcount = num_tx_queues;
2299 
2300 	if (skb_rx_queue_recorded(skb)) {
2301 		hash = skb_get_rx_queue(skb);
2302 		while (unlikely(hash >= num_tx_queues))
2303 			hash -= num_tx_queues;
2304 		return hash;
2305 	}
2306 
2307 	if (dev->num_tc) {
2308 		u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2309 		qoffset = dev->tc_to_txq[tc].offset;
2310 		qcount = dev->tc_to_txq[tc].count;
2311 	}
2312 
2313 	if (skb->sk && skb->sk->sk_hash)
2314 		hash = skb->sk->sk_hash;
2315 	else
2316 		hash = (__force u16) skb->protocol ^ skb->rxhash;
2317 	hash = jhash_1word(hash, hashrnd);
2318 
2319 	return (u16) (((u64) hash * qcount) >> 32) + qoffset;
2320 }
2321 EXPORT_SYMBOL(__skb_tx_hash);
2322 
2323 static inline u16 dev_cap_txqueue(struct net_device *dev, u16 queue_index)
2324 {
2325 	if (unlikely(queue_index >= dev->real_num_tx_queues)) {
2326 		if (net_ratelimit()) {
2327 			pr_warning("%s selects TX queue %d, but "
2328 				"real number of TX queues is %d\n",
2329 				dev->name, queue_index, dev->real_num_tx_queues);
2330 		}
2331 		return 0;
2332 	}
2333 	return queue_index;
2334 }
2335 
2336 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
2337 {
2338 #ifdef CONFIG_XPS
2339 	struct xps_dev_maps *dev_maps;
2340 	struct xps_map *map;
2341 	int queue_index = -1;
2342 
2343 	rcu_read_lock();
2344 	dev_maps = rcu_dereference(dev->xps_maps);
2345 	if (dev_maps) {
2346 		map = rcu_dereference(
2347 		    dev_maps->cpu_map[raw_smp_processor_id()]);
2348 		if (map) {
2349 			if (map->len == 1)
2350 				queue_index = map->queues[0];
2351 			else {
2352 				u32 hash;
2353 				if (skb->sk && skb->sk->sk_hash)
2354 					hash = skb->sk->sk_hash;
2355 				else
2356 					hash = (__force u16) skb->protocol ^
2357 					    skb->rxhash;
2358 				hash = jhash_1word(hash, hashrnd);
2359 				queue_index = map->queues[
2360 				    ((u64)hash * map->len) >> 32];
2361 			}
2362 			if (unlikely(queue_index >= dev->real_num_tx_queues))
2363 				queue_index = -1;
2364 		}
2365 	}
2366 	rcu_read_unlock();
2367 
2368 	return queue_index;
2369 #else
2370 	return -1;
2371 #endif
2372 }
2373 
2374 static struct netdev_queue *dev_pick_tx(struct net_device *dev,
2375 					struct sk_buff *skb)
2376 {
2377 	int queue_index;
2378 	const struct net_device_ops *ops = dev->netdev_ops;
2379 
2380 	if (dev->real_num_tx_queues == 1)
2381 		queue_index = 0;
2382 	else if (ops->ndo_select_queue) {
2383 		queue_index = ops->ndo_select_queue(dev, skb);
2384 		queue_index = dev_cap_txqueue(dev, queue_index);
2385 	} else {
2386 		struct sock *sk = skb->sk;
2387 		queue_index = sk_tx_queue_get(sk);
2388 
2389 		if (queue_index < 0 || skb->ooo_okay ||
2390 		    queue_index >= dev->real_num_tx_queues) {
2391 			int old_index = queue_index;
2392 
2393 			queue_index = get_xps_queue(dev, skb);
2394 			if (queue_index < 0)
2395 				queue_index = skb_tx_hash(dev, skb);
2396 
2397 			if (queue_index != old_index && sk) {
2398 				struct dst_entry *dst =
2399 				    rcu_dereference_check(sk->sk_dst_cache, 1);
2400 
2401 				if (dst && skb_dst(skb) == dst)
2402 					sk_tx_queue_set(sk, queue_index);
2403 			}
2404 		}
2405 	}
2406 
2407 	skb_set_queue_mapping(skb, queue_index);
2408 	return netdev_get_tx_queue(dev, queue_index);
2409 }
2410 
2411 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2412 				 struct net_device *dev,
2413 				 struct netdev_queue *txq)
2414 {
2415 	spinlock_t *root_lock = qdisc_lock(q);
2416 	bool contended;
2417 	int rc;
2418 
2419 	qdisc_skb_cb(skb)->pkt_len = skb->len;
2420 	qdisc_calculate_pkt_len(skb, q);
2421 	/*
2422 	 * Heuristic to force contended enqueues to serialize on a
2423 	 * separate lock before trying to get qdisc main lock.
2424 	 * This permits __QDISC_STATE_RUNNING owner to get the lock more often
2425 	 * and dequeue packets faster.
2426 	 */
2427 	contended = qdisc_is_running(q);
2428 	if (unlikely(contended))
2429 		spin_lock(&q->busylock);
2430 
2431 	spin_lock(root_lock);
2432 	if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2433 		kfree_skb(skb);
2434 		rc = NET_XMIT_DROP;
2435 	} else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2436 		   qdisc_run_begin(q)) {
2437 		/*
2438 		 * This is a work-conserving queue; there are no old skbs
2439 		 * waiting to be sent out; and the qdisc is not running -
2440 		 * xmit the skb directly.
2441 		 */
2442 		if (!(dev->priv_flags & IFF_XMIT_DST_RELEASE))
2443 			skb_dst_force(skb);
2444 
2445 		qdisc_bstats_update(q, skb);
2446 
2447 		if (sch_direct_xmit(skb, q, dev, txq, root_lock)) {
2448 			if (unlikely(contended)) {
2449 				spin_unlock(&q->busylock);
2450 				contended = false;
2451 			}
2452 			__qdisc_run(q);
2453 		} else
2454 			qdisc_run_end(q);
2455 
2456 		rc = NET_XMIT_SUCCESS;
2457 	} else {
2458 		skb_dst_force(skb);
2459 		rc = q->enqueue(skb, q) & NET_XMIT_MASK;
2460 		if (qdisc_run_begin(q)) {
2461 			if (unlikely(contended)) {
2462 				spin_unlock(&q->busylock);
2463 				contended = false;
2464 			}
2465 			__qdisc_run(q);
2466 		}
2467 	}
2468 	spin_unlock(root_lock);
2469 	if (unlikely(contended))
2470 		spin_unlock(&q->busylock);
2471 	return rc;
2472 }
2473 
2474 #if IS_ENABLED(CONFIG_NETPRIO_CGROUP)
2475 static void skb_update_prio(struct sk_buff *skb)
2476 {
2477 	struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
2478 
2479 	if ((!skb->priority) && (skb->sk) && map)
2480 		skb->priority = map->priomap[skb->sk->sk_cgrp_prioidx];
2481 }
2482 #else
2483 #define skb_update_prio(skb)
2484 #endif
2485 
2486 static DEFINE_PER_CPU(int, xmit_recursion);
2487 #define RECURSION_LIMIT 10
2488 
2489 /**
2490  *	dev_queue_xmit - transmit a buffer
2491  *	@skb: buffer to transmit
2492  *
2493  *	Queue a buffer for transmission to a network device. The caller must
2494  *	have set the device and priority and built the buffer before calling
2495  *	this function. The function can be called from an interrupt.
2496  *
2497  *	A negative errno code is returned on a failure. A success does not
2498  *	guarantee the frame will be transmitted as it may be dropped due
2499  *	to congestion or traffic shaping.
2500  *
2501  * -----------------------------------------------------------------------------------
2502  *      I notice this method can also return errors from the queue disciplines,
2503  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
2504  *      be positive.
2505  *
2506  *      Regardless of the return value, the skb is consumed, so it is currently
2507  *      difficult to retry a send to this method.  (You can bump the ref count
2508  *      before sending to hold a reference for retry if you are careful.)
2509  *
2510  *      When calling this method, interrupts MUST be enabled.  This is because
2511  *      the BH enable code must have IRQs enabled so that it will not deadlock.
2512  *          --BLG
2513  */
2514 int dev_queue_xmit(struct sk_buff *skb)
2515 {
2516 	struct net_device *dev = skb->dev;
2517 	struct netdev_queue *txq;
2518 	struct Qdisc *q;
2519 	int rc = -ENOMEM;
2520 
2521 	/* Disable soft irqs for various locks below. Also
2522 	 * stops preemption for RCU.
2523 	 */
2524 	rcu_read_lock_bh();
2525 
2526 	skb_update_prio(skb);
2527 
2528 	txq = dev_pick_tx(dev, skb);
2529 	q = rcu_dereference_bh(txq->qdisc);
2530 
2531 #ifdef CONFIG_NET_CLS_ACT
2532 	skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
2533 #endif
2534 	trace_net_dev_queue(skb);
2535 	if (q->enqueue) {
2536 		rc = __dev_xmit_skb(skb, q, dev, txq);
2537 		goto out;
2538 	}
2539 
2540 	/* The device has no queue. Common case for software devices:
2541 	   loopback, all the sorts of tunnels...
2542 
2543 	   Really, it is unlikely that netif_tx_lock protection is necessary
2544 	   here.  (f.e. loopback and IP tunnels are clean ignoring statistics
2545 	   counters.)
2546 	   However, it is possible, that they rely on protection
2547 	   made by us here.
2548 
2549 	   Check this and shot the lock. It is not prone from deadlocks.
2550 	   Either shot noqueue qdisc, it is even simpler 8)
2551 	 */
2552 	if (dev->flags & IFF_UP) {
2553 		int cpu = smp_processor_id(); /* ok because BHs are off */
2554 
2555 		if (txq->xmit_lock_owner != cpu) {
2556 
2557 			if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
2558 				goto recursion_alert;
2559 
2560 			HARD_TX_LOCK(dev, txq, cpu);
2561 
2562 			if (!netif_xmit_stopped(txq)) {
2563 				__this_cpu_inc(xmit_recursion);
2564 				rc = dev_hard_start_xmit(skb, dev, txq);
2565 				__this_cpu_dec(xmit_recursion);
2566 				if (dev_xmit_complete(rc)) {
2567 					HARD_TX_UNLOCK(dev, txq);
2568 					goto out;
2569 				}
2570 			}
2571 			HARD_TX_UNLOCK(dev, txq);
2572 			if (net_ratelimit())
2573 				printk(KERN_CRIT "Virtual device %s asks to "
2574 				       "queue packet!\n", dev->name);
2575 		} else {
2576 			/* Recursion is detected! It is possible,
2577 			 * unfortunately
2578 			 */
2579 recursion_alert:
2580 			if (net_ratelimit())
2581 				printk(KERN_CRIT "Dead loop on virtual device "
2582 				       "%s, fix it urgently!\n", dev->name);
2583 		}
2584 	}
2585 
2586 	rc = -ENETDOWN;
2587 	rcu_read_unlock_bh();
2588 
2589 	kfree_skb(skb);
2590 	return rc;
2591 out:
2592 	rcu_read_unlock_bh();
2593 	return rc;
2594 }
2595 EXPORT_SYMBOL(dev_queue_xmit);
2596 
2597 
2598 /*=======================================================================
2599 			Receiver routines
2600   =======================================================================*/
2601 
2602 int netdev_max_backlog __read_mostly = 1000;
2603 int netdev_tstamp_prequeue __read_mostly = 1;
2604 int netdev_budget __read_mostly = 300;
2605 int weight_p __read_mostly = 64;            /* old backlog weight */
2606 
2607 /* Called with irq disabled */
2608 static inline void ____napi_schedule(struct softnet_data *sd,
2609 				     struct napi_struct *napi)
2610 {
2611 	list_add_tail(&napi->poll_list, &sd->poll_list);
2612 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
2613 }
2614 
2615 /*
2616  * __skb_get_rxhash: calculate a flow hash based on src/dst addresses
2617  * and src/dst port numbers.  Sets rxhash in skb to non-zero hash value
2618  * on success, zero indicates no valid hash.  Also, sets l4_rxhash in skb
2619  * if hash is a canonical 4-tuple hash over transport ports.
2620  */
2621 void __skb_get_rxhash(struct sk_buff *skb)
2622 {
2623 	struct flow_keys keys;
2624 	u32 hash;
2625 
2626 	if (!skb_flow_dissect(skb, &keys))
2627 		return;
2628 
2629 	if (keys.ports) {
2630 		if ((__force u16)keys.port16[1] < (__force u16)keys.port16[0])
2631 			swap(keys.port16[0], keys.port16[1]);
2632 		skb->l4_rxhash = 1;
2633 	}
2634 
2635 	/* get a consistent hash (same value on both flow directions) */
2636 	if ((__force u32)keys.dst < (__force u32)keys.src)
2637 		swap(keys.dst, keys.src);
2638 
2639 	hash = jhash_3words((__force u32)keys.dst,
2640 			    (__force u32)keys.src,
2641 			    (__force u32)keys.ports, hashrnd);
2642 	if (!hash)
2643 		hash = 1;
2644 
2645 	skb->rxhash = hash;
2646 }
2647 EXPORT_SYMBOL(__skb_get_rxhash);
2648 
2649 #ifdef CONFIG_RPS
2650 
2651 /* One global table that all flow-based protocols share. */
2652 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
2653 EXPORT_SYMBOL(rps_sock_flow_table);
2654 
2655 struct jump_label_key rps_needed __read_mostly;
2656 
2657 static struct rps_dev_flow *
2658 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2659 	    struct rps_dev_flow *rflow, u16 next_cpu)
2660 {
2661 	if (next_cpu != RPS_NO_CPU) {
2662 #ifdef CONFIG_RFS_ACCEL
2663 		struct netdev_rx_queue *rxqueue;
2664 		struct rps_dev_flow_table *flow_table;
2665 		struct rps_dev_flow *old_rflow;
2666 		u32 flow_id;
2667 		u16 rxq_index;
2668 		int rc;
2669 
2670 		/* Should we steer this flow to a different hardware queue? */
2671 		if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
2672 		    !(dev->features & NETIF_F_NTUPLE))
2673 			goto out;
2674 		rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
2675 		if (rxq_index == skb_get_rx_queue(skb))
2676 			goto out;
2677 
2678 		rxqueue = dev->_rx + rxq_index;
2679 		flow_table = rcu_dereference(rxqueue->rps_flow_table);
2680 		if (!flow_table)
2681 			goto out;
2682 		flow_id = skb->rxhash & flow_table->mask;
2683 		rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
2684 							rxq_index, flow_id);
2685 		if (rc < 0)
2686 			goto out;
2687 		old_rflow = rflow;
2688 		rflow = &flow_table->flows[flow_id];
2689 		rflow->filter = rc;
2690 		if (old_rflow->filter == rflow->filter)
2691 			old_rflow->filter = RPS_NO_FILTER;
2692 	out:
2693 #endif
2694 		rflow->last_qtail =
2695 			per_cpu(softnet_data, next_cpu).input_queue_head;
2696 	}
2697 
2698 	rflow->cpu = next_cpu;
2699 	return rflow;
2700 }
2701 
2702 /*
2703  * get_rps_cpu is called from netif_receive_skb and returns the target
2704  * CPU from the RPS map of the receiving queue for a given skb.
2705  * rcu_read_lock must be held on entry.
2706  */
2707 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2708 		       struct rps_dev_flow **rflowp)
2709 {
2710 	struct netdev_rx_queue *rxqueue;
2711 	struct rps_map *map;
2712 	struct rps_dev_flow_table *flow_table;
2713 	struct rps_sock_flow_table *sock_flow_table;
2714 	int cpu = -1;
2715 	u16 tcpu;
2716 
2717 	if (skb_rx_queue_recorded(skb)) {
2718 		u16 index = skb_get_rx_queue(skb);
2719 		if (unlikely(index >= dev->real_num_rx_queues)) {
2720 			WARN_ONCE(dev->real_num_rx_queues > 1,
2721 				  "%s received packet on queue %u, but number "
2722 				  "of RX queues is %u\n",
2723 				  dev->name, index, dev->real_num_rx_queues);
2724 			goto done;
2725 		}
2726 		rxqueue = dev->_rx + index;
2727 	} else
2728 		rxqueue = dev->_rx;
2729 
2730 	map = rcu_dereference(rxqueue->rps_map);
2731 	if (map) {
2732 		if (map->len == 1 &&
2733 		    !rcu_access_pointer(rxqueue->rps_flow_table)) {
2734 			tcpu = map->cpus[0];
2735 			if (cpu_online(tcpu))
2736 				cpu = tcpu;
2737 			goto done;
2738 		}
2739 	} else if (!rcu_access_pointer(rxqueue->rps_flow_table)) {
2740 		goto done;
2741 	}
2742 
2743 	skb_reset_network_header(skb);
2744 	if (!skb_get_rxhash(skb))
2745 		goto done;
2746 
2747 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
2748 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
2749 	if (flow_table && sock_flow_table) {
2750 		u16 next_cpu;
2751 		struct rps_dev_flow *rflow;
2752 
2753 		rflow = &flow_table->flows[skb->rxhash & flow_table->mask];
2754 		tcpu = rflow->cpu;
2755 
2756 		next_cpu = sock_flow_table->ents[skb->rxhash &
2757 		    sock_flow_table->mask];
2758 
2759 		/*
2760 		 * If the desired CPU (where last recvmsg was done) is
2761 		 * different from current CPU (one in the rx-queue flow
2762 		 * table entry), switch if one of the following holds:
2763 		 *   - Current CPU is unset (equal to RPS_NO_CPU).
2764 		 *   - Current CPU is offline.
2765 		 *   - The current CPU's queue tail has advanced beyond the
2766 		 *     last packet that was enqueued using this table entry.
2767 		 *     This guarantees that all previous packets for the flow
2768 		 *     have been dequeued, thus preserving in order delivery.
2769 		 */
2770 		if (unlikely(tcpu != next_cpu) &&
2771 		    (tcpu == RPS_NO_CPU || !cpu_online(tcpu) ||
2772 		     ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
2773 		      rflow->last_qtail)) >= 0))
2774 			rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
2775 
2776 		if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) {
2777 			*rflowp = rflow;
2778 			cpu = tcpu;
2779 			goto done;
2780 		}
2781 	}
2782 
2783 	if (map) {
2784 		tcpu = map->cpus[((u64) skb->rxhash * map->len) >> 32];
2785 
2786 		if (cpu_online(tcpu)) {
2787 			cpu = tcpu;
2788 			goto done;
2789 		}
2790 	}
2791 
2792 done:
2793 	return cpu;
2794 }
2795 
2796 #ifdef CONFIG_RFS_ACCEL
2797 
2798 /**
2799  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
2800  * @dev: Device on which the filter was set
2801  * @rxq_index: RX queue index
2802  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
2803  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
2804  *
2805  * Drivers that implement ndo_rx_flow_steer() should periodically call
2806  * this function for each installed filter and remove the filters for
2807  * which it returns %true.
2808  */
2809 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
2810 			 u32 flow_id, u16 filter_id)
2811 {
2812 	struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
2813 	struct rps_dev_flow_table *flow_table;
2814 	struct rps_dev_flow *rflow;
2815 	bool expire = true;
2816 	int cpu;
2817 
2818 	rcu_read_lock();
2819 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
2820 	if (flow_table && flow_id <= flow_table->mask) {
2821 		rflow = &flow_table->flows[flow_id];
2822 		cpu = ACCESS_ONCE(rflow->cpu);
2823 		if (rflow->filter == filter_id && cpu != RPS_NO_CPU &&
2824 		    ((int)(per_cpu(softnet_data, cpu).input_queue_head -
2825 			   rflow->last_qtail) <
2826 		     (int)(10 * flow_table->mask)))
2827 			expire = false;
2828 	}
2829 	rcu_read_unlock();
2830 	return expire;
2831 }
2832 EXPORT_SYMBOL(rps_may_expire_flow);
2833 
2834 #endif /* CONFIG_RFS_ACCEL */
2835 
2836 /* Called from hardirq (IPI) context */
2837 static void rps_trigger_softirq(void *data)
2838 {
2839 	struct softnet_data *sd = data;
2840 
2841 	____napi_schedule(sd, &sd->backlog);
2842 	sd->received_rps++;
2843 }
2844 
2845 #endif /* CONFIG_RPS */
2846 
2847 /*
2848  * Check if this softnet_data structure is another cpu one
2849  * If yes, queue it to our IPI list and return 1
2850  * If no, return 0
2851  */
2852 static int rps_ipi_queued(struct softnet_data *sd)
2853 {
2854 #ifdef CONFIG_RPS
2855 	struct softnet_data *mysd = &__get_cpu_var(softnet_data);
2856 
2857 	if (sd != mysd) {
2858 		sd->rps_ipi_next = mysd->rps_ipi_list;
2859 		mysd->rps_ipi_list = sd;
2860 
2861 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
2862 		return 1;
2863 	}
2864 #endif /* CONFIG_RPS */
2865 	return 0;
2866 }
2867 
2868 /*
2869  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
2870  * queue (may be a remote CPU queue).
2871  */
2872 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
2873 			      unsigned int *qtail)
2874 {
2875 	struct softnet_data *sd;
2876 	unsigned long flags;
2877 
2878 	sd = &per_cpu(softnet_data, cpu);
2879 
2880 	local_irq_save(flags);
2881 
2882 	rps_lock(sd);
2883 	if (skb_queue_len(&sd->input_pkt_queue) <= netdev_max_backlog) {
2884 		if (skb_queue_len(&sd->input_pkt_queue)) {
2885 enqueue:
2886 			__skb_queue_tail(&sd->input_pkt_queue, skb);
2887 			input_queue_tail_incr_save(sd, qtail);
2888 			rps_unlock(sd);
2889 			local_irq_restore(flags);
2890 			return NET_RX_SUCCESS;
2891 		}
2892 
2893 		/* Schedule NAPI for backlog device
2894 		 * We can use non atomic operation since we own the queue lock
2895 		 */
2896 		if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
2897 			if (!rps_ipi_queued(sd))
2898 				____napi_schedule(sd, &sd->backlog);
2899 		}
2900 		goto enqueue;
2901 	}
2902 
2903 	sd->dropped++;
2904 	rps_unlock(sd);
2905 
2906 	local_irq_restore(flags);
2907 
2908 	atomic_long_inc(&skb->dev->rx_dropped);
2909 	kfree_skb(skb);
2910 	return NET_RX_DROP;
2911 }
2912 
2913 /**
2914  *	netif_rx	-	post buffer to the network code
2915  *	@skb: buffer to post
2916  *
2917  *	This function receives a packet from a device driver and queues it for
2918  *	the upper (protocol) levels to process.  It always succeeds. The buffer
2919  *	may be dropped during processing for congestion control or by the
2920  *	protocol layers.
2921  *
2922  *	return values:
2923  *	NET_RX_SUCCESS	(no congestion)
2924  *	NET_RX_DROP     (packet was dropped)
2925  *
2926  */
2927 
2928 int netif_rx(struct sk_buff *skb)
2929 {
2930 	int ret;
2931 
2932 	/* if netpoll wants it, pretend we never saw it */
2933 	if (netpoll_rx(skb))
2934 		return NET_RX_DROP;
2935 
2936 	net_timestamp_check(netdev_tstamp_prequeue, skb);
2937 
2938 	trace_netif_rx(skb);
2939 #ifdef CONFIG_RPS
2940 	if (static_branch(&rps_needed))	{
2941 		struct rps_dev_flow voidflow, *rflow = &voidflow;
2942 		int cpu;
2943 
2944 		preempt_disable();
2945 		rcu_read_lock();
2946 
2947 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
2948 		if (cpu < 0)
2949 			cpu = smp_processor_id();
2950 
2951 		ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
2952 
2953 		rcu_read_unlock();
2954 		preempt_enable();
2955 	} else
2956 #endif
2957 	{
2958 		unsigned int qtail;
2959 		ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
2960 		put_cpu();
2961 	}
2962 	return ret;
2963 }
2964 EXPORT_SYMBOL(netif_rx);
2965 
2966 int netif_rx_ni(struct sk_buff *skb)
2967 {
2968 	int err;
2969 
2970 	preempt_disable();
2971 	err = netif_rx(skb);
2972 	if (local_softirq_pending())
2973 		do_softirq();
2974 	preempt_enable();
2975 
2976 	return err;
2977 }
2978 EXPORT_SYMBOL(netif_rx_ni);
2979 
2980 static void net_tx_action(struct softirq_action *h)
2981 {
2982 	struct softnet_data *sd = &__get_cpu_var(softnet_data);
2983 
2984 	if (sd->completion_queue) {
2985 		struct sk_buff *clist;
2986 
2987 		local_irq_disable();
2988 		clist = sd->completion_queue;
2989 		sd->completion_queue = NULL;
2990 		local_irq_enable();
2991 
2992 		while (clist) {
2993 			struct sk_buff *skb = clist;
2994 			clist = clist->next;
2995 
2996 			WARN_ON(atomic_read(&skb->users));
2997 			trace_kfree_skb(skb, net_tx_action);
2998 			__kfree_skb(skb);
2999 		}
3000 	}
3001 
3002 	if (sd->output_queue) {
3003 		struct Qdisc *head;
3004 
3005 		local_irq_disable();
3006 		head = sd->output_queue;
3007 		sd->output_queue = NULL;
3008 		sd->output_queue_tailp = &sd->output_queue;
3009 		local_irq_enable();
3010 
3011 		while (head) {
3012 			struct Qdisc *q = head;
3013 			spinlock_t *root_lock;
3014 
3015 			head = head->next_sched;
3016 
3017 			root_lock = qdisc_lock(q);
3018 			if (spin_trylock(root_lock)) {
3019 				smp_mb__before_clear_bit();
3020 				clear_bit(__QDISC_STATE_SCHED,
3021 					  &q->state);
3022 				qdisc_run(q);
3023 				spin_unlock(root_lock);
3024 			} else {
3025 				if (!test_bit(__QDISC_STATE_DEACTIVATED,
3026 					      &q->state)) {
3027 					__netif_reschedule(q);
3028 				} else {
3029 					smp_mb__before_clear_bit();
3030 					clear_bit(__QDISC_STATE_SCHED,
3031 						  &q->state);
3032 				}
3033 			}
3034 		}
3035 	}
3036 }
3037 
3038 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
3039     (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
3040 /* This hook is defined here for ATM LANE */
3041 int (*br_fdb_test_addr_hook)(struct net_device *dev,
3042 			     unsigned char *addr) __read_mostly;
3043 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3044 #endif
3045 
3046 #ifdef CONFIG_NET_CLS_ACT
3047 /* TODO: Maybe we should just force sch_ingress to be compiled in
3048  * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
3049  * a compare and 2 stores extra right now if we dont have it on
3050  * but have CONFIG_NET_CLS_ACT
3051  * NOTE: This doesn't stop any functionality; if you dont have
3052  * the ingress scheduler, you just can't add policies on ingress.
3053  *
3054  */
3055 static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq)
3056 {
3057 	struct net_device *dev = skb->dev;
3058 	u32 ttl = G_TC_RTTL(skb->tc_verd);
3059 	int result = TC_ACT_OK;
3060 	struct Qdisc *q;
3061 
3062 	if (unlikely(MAX_RED_LOOP < ttl++)) {
3063 		if (net_ratelimit())
3064 			pr_warning( "Redir loop detected Dropping packet (%d->%d)\n",
3065 			       skb->skb_iif, dev->ifindex);
3066 		return TC_ACT_SHOT;
3067 	}
3068 
3069 	skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
3070 	skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
3071 
3072 	q = rxq->qdisc;
3073 	if (q != &noop_qdisc) {
3074 		spin_lock(qdisc_lock(q));
3075 		if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
3076 			result = qdisc_enqueue_root(skb, q);
3077 		spin_unlock(qdisc_lock(q));
3078 	}
3079 
3080 	return result;
3081 }
3082 
3083 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
3084 					 struct packet_type **pt_prev,
3085 					 int *ret, struct net_device *orig_dev)
3086 {
3087 	struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue);
3088 
3089 	if (!rxq || rxq->qdisc == &noop_qdisc)
3090 		goto out;
3091 
3092 	if (*pt_prev) {
3093 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
3094 		*pt_prev = NULL;
3095 	}
3096 
3097 	switch (ing_filter(skb, rxq)) {
3098 	case TC_ACT_SHOT:
3099 	case TC_ACT_STOLEN:
3100 		kfree_skb(skb);
3101 		return NULL;
3102 	}
3103 
3104 out:
3105 	skb->tc_verd = 0;
3106 	return skb;
3107 }
3108 #endif
3109 
3110 /**
3111  *	netdev_rx_handler_register - register receive handler
3112  *	@dev: device to register a handler for
3113  *	@rx_handler: receive handler to register
3114  *	@rx_handler_data: data pointer that is used by rx handler
3115  *
3116  *	Register a receive hander for a device. This handler will then be
3117  *	called from __netif_receive_skb. A negative errno code is returned
3118  *	on a failure.
3119  *
3120  *	The caller must hold the rtnl_mutex.
3121  *
3122  *	For a general description of rx_handler, see enum rx_handler_result.
3123  */
3124 int netdev_rx_handler_register(struct net_device *dev,
3125 			       rx_handler_func_t *rx_handler,
3126 			       void *rx_handler_data)
3127 {
3128 	ASSERT_RTNL();
3129 
3130 	if (dev->rx_handler)
3131 		return -EBUSY;
3132 
3133 	rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
3134 	rcu_assign_pointer(dev->rx_handler, rx_handler);
3135 
3136 	return 0;
3137 }
3138 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3139 
3140 /**
3141  *	netdev_rx_handler_unregister - unregister receive handler
3142  *	@dev: device to unregister a handler from
3143  *
3144  *	Unregister a receive hander from a device.
3145  *
3146  *	The caller must hold the rtnl_mutex.
3147  */
3148 void netdev_rx_handler_unregister(struct net_device *dev)
3149 {
3150 
3151 	ASSERT_RTNL();
3152 	RCU_INIT_POINTER(dev->rx_handler, NULL);
3153 	RCU_INIT_POINTER(dev->rx_handler_data, NULL);
3154 }
3155 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
3156 
3157 static int __netif_receive_skb(struct sk_buff *skb)
3158 {
3159 	struct packet_type *ptype, *pt_prev;
3160 	rx_handler_func_t *rx_handler;
3161 	struct net_device *orig_dev;
3162 	struct net_device *null_or_dev;
3163 	bool deliver_exact = false;
3164 	int ret = NET_RX_DROP;
3165 	__be16 type;
3166 
3167 	net_timestamp_check(!netdev_tstamp_prequeue, skb);
3168 
3169 	trace_netif_receive_skb(skb);
3170 
3171 	/* if we've gotten here through NAPI, check netpoll */
3172 	if (netpoll_receive_skb(skb))
3173 		return NET_RX_DROP;
3174 
3175 	if (!skb->skb_iif)
3176 		skb->skb_iif = skb->dev->ifindex;
3177 	orig_dev = skb->dev;
3178 
3179 	skb_reset_network_header(skb);
3180 	skb_reset_transport_header(skb);
3181 	skb_reset_mac_len(skb);
3182 
3183 	pt_prev = NULL;
3184 
3185 	rcu_read_lock();
3186 
3187 another_round:
3188 
3189 	__this_cpu_inc(softnet_data.processed);
3190 
3191 	if (skb->protocol == cpu_to_be16(ETH_P_8021Q)) {
3192 		skb = vlan_untag(skb);
3193 		if (unlikely(!skb))
3194 			goto out;
3195 	}
3196 
3197 #ifdef CONFIG_NET_CLS_ACT
3198 	if (skb->tc_verd & TC_NCLS) {
3199 		skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
3200 		goto ncls;
3201 	}
3202 #endif
3203 
3204 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
3205 		if (!ptype->dev || ptype->dev == skb->dev) {
3206 			if (pt_prev)
3207 				ret = deliver_skb(skb, pt_prev, orig_dev);
3208 			pt_prev = ptype;
3209 		}
3210 	}
3211 
3212 #ifdef CONFIG_NET_CLS_ACT
3213 	skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
3214 	if (!skb)
3215 		goto out;
3216 ncls:
3217 #endif
3218 
3219 	rx_handler = rcu_dereference(skb->dev->rx_handler);
3220 	if (vlan_tx_tag_present(skb)) {
3221 		if (pt_prev) {
3222 			ret = deliver_skb(skb, pt_prev, orig_dev);
3223 			pt_prev = NULL;
3224 		}
3225 		if (vlan_do_receive(&skb, !rx_handler))
3226 			goto another_round;
3227 		else if (unlikely(!skb))
3228 			goto out;
3229 	}
3230 
3231 	if (rx_handler) {
3232 		if (pt_prev) {
3233 			ret = deliver_skb(skb, pt_prev, orig_dev);
3234 			pt_prev = NULL;
3235 		}
3236 		switch (rx_handler(&skb)) {
3237 		case RX_HANDLER_CONSUMED:
3238 			goto out;
3239 		case RX_HANDLER_ANOTHER:
3240 			goto another_round;
3241 		case RX_HANDLER_EXACT:
3242 			deliver_exact = true;
3243 		case RX_HANDLER_PASS:
3244 			break;
3245 		default:
3246 			BUG();
3247 		}
3248 	}
3249 
3250 	/* deliver only exact match when indicated */
3251 	null_or_dev = deliver_exact ? skb->dev : NULL;
3252 
3253 	type = skb->protocol;
3254 	list_for_each_entry_rcu(ptype,
3255 			&ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
3256 		if (ptype->type == type &&
3257 		    (ptype->dev == null_or_dev || ptype->dev == skb->dev ||
3258 		     ptype->dev == orig_dev)) {
3259 			if (pt_prev)
3260 				ret = deliver_skb(skb, pt_prev, orig_dev);
3261 			pt_prev = ptype;
3262 		}
3263 	}
3264 
3265 	if (pt_prev) {
3266 		ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
3267 	} else {
3268 		atomic_long_inc(&skb->dev->rx_dropped);
3269 		kfree_skb(skb);
3270 		/* Jamal, now you will not able to escape explaining
3271 		 * me how you were going to use this. :-)
3272 		 */
3273 		ret = NET_RX_DROP;
3274 	}
3275 
3276 out:
3277 	rcu_read_unlock();
3278 	return ret;
3279 }
3280 
3281 /**
3282  *	netif_receive_skb - process receive buffer from network
3283  *	@skb: buffer to process
3284  *
3285  *	netif_receive_skb() is the main receive data processing function.
3286  *	It always succeeds. The buffer may be dropped during processing
3287  *	for congestion control or by the protocol layers.
3288  *
3289  *	This function may only be called from softirq context and interrupts
3290  *	should be enabled.
3291  *
3292  *	Return values (usually ignored):
3293  *	NET_RX_SUCCESS: no congestion
3294  *	NET_RX_DROP: packet was dropped
3295  */
3296 int netif_receive_skb(struct sk_buff *skb)
3297 {
3298 	net_timestamp_check(netdev_tstamp_prequeue, skb);
3299 
3300 	if (skb_defer_rx_timestamp(skb))
3301 		return NET_RX_SUCCESS;
3302 
3303 #ifdef CONFIG_RPS
3304 	if (static_branch(&rps_needed)) {
3305 		struct rps_dev_flow voidflow, *rflow = &voidflow;
3306 		int cpu, ret;
3307 
3308 		rcu_read_lock();
3309 
3310 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
3311 
3312 		if (cpu >= 0) {
3313 			ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3314 			rcu_read_unlock();
3315 			return ret;
3316 		}
3317 		rcu_read_unlock();
3318 	}
3319 #endif
3320 	return __netif_receive_skb(skb);
3321 }
3322 EXPORT_SYMBOL(netif_receive_skb);
3323 
3324 /* Network device is going away, flush any packets still pending
3325  * Called with irqs disabled.
3326  */
3327 static void flush_backlog(void *arg)
3328 {
3329 	struct net_device *dev = arg;
3330 	struct softnet_data *sd = &__get_cpu_var(softnet_data);
3331 	struct sk_buff *skb, *tmp;
3332 
3333 	rps_lock(sd);
3334 	skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
3335 		if (skb->dev == dev) {
3336 			__skb_unlink(skb, &sd->input_pkt_queue);
3337 			kfree_skb(skb);
3338 			input_queue_head_incr(sd);
3339 		}
3340 	}
3341 	rps_unlock(sd);
3342 
3343 	skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
3344 		if (skb->dev == dev) {
3345 			__skb_unlink(skb, &sd->process_queue);
3346 			kfree_skb(skb);
3347 			input_queue_head_incr(sd);
3348 		}
3349 	}
3350 }
3351 
3352 static int napi_gro_complete(struct sk_buff *skb)
3353 {
3354 	struct packet_type *ptype;
3355 	__be16 type = skb->protocol;
3356 	struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
3357 	int err = -ENOENT;
3358 
3359 	if (NAPI_GRO_CB(skb)->count == 1) {
3360 		skb_shinfo(skb)->gso_size = 0;
3361 		goto out;
3362 	}
3363 
3364 	rcu_read_lock();
3365 	list_for_each_entry_rcu(ptype, head, list) {
3366 		if (ptype->type != type || ptype->dev || !ptype->gro_complete)
3367 			continue;
3368 
3369 		err = ptype->gro_complete(skb);
3370 		break;
3371 	}
3372 	rcu_read_unlock();
3373 
3374 	if (err) {
3375 		WARN_ON(&ptype->list == head);
3376 		kfree_skb(skb);
3377 		return NET_RX_SUCCESS;
3378 	}
3379 
3380 out:
3381 	return netif_receive_skb(skb);
3382 }
3383 
3384 inline void napi_gro_flush(struct napi_struct *napi)
3385 {
3386 	struct sk_buff *skb, *next;
3387 
3388 	for (skb = napi->gro_list; skb; skb = next) {
3389 		next = skb->next;
3390 		skb->next = NULL;
3391 		napi_gro_complete(skb);
3392 	}
3393 
3394 	napi->gro_count = 0;
3395 	napi->gro_list = NULL;
3396 }
3397 EXPORT_SYMBOL(napi_gro_flush);
3398 
3399 enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3400 {
3401 	struct sk_buff **pp = NULL;
3402 	struct packet_type *ptype;
3403 	__be16 type = skb->protocol;
3404 	struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
3405 	int same_flow;
3406 	int mac_len;
3407 	enum gro_result ret;
3408 
3409 	if (!(skb->dev->features & NETIF_F_GRO) || netpoll_rx_on(skb))
3410 		goto normal;
3411 
3412 	if (skb_is_gso(skb) || skb_has_frag_list(skb))
3413 		goto normal;
3414 
3415 	rcu_read_lock();
3416 	list_for_each_entry_rcu(ptype, head, list) {
3417 		if (ptype->type != type || ptype->dev || !ptype->gro_receive)
3418 			continue;
3419 
3420 		skb_set_network_header(skb, skb_gro_offset(skb));
3421 		mac_len = skb->network_header - skb->mac_header;
3422 		skb->mac_len = mac_len;
3423 		NAPI_GRO_CB(skb)->same_flow = 0;
3424 		NAPI_GRO_CB(skb)->flush = 0;
3425 		NAPI_GRO_CB(skb)->free = 0;
3426 
3427 		pp = ptype->gro_receive(&napi->gro_list, skb);
3428 		break;
3429 	}
3430 	rcu_read_unlock();
3431 
3432 	if (&ptype->list == head)
3433 		goto normal;
3434 
3435 	same_flow = NAPI_GRO_CB(skb)->same_flow;
3436 	ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
3437 
3438 	if (pp) {
3439 		struct sk_buff *nskb = *pp;
3440 
3441 		*pp = nskb->next;
3442 		nskb->next = NULL;
3443 		napi_gro_complete(nskb);
3444 		napi->gro_count--;
3445 	}
3446 
3447 	if (same_flow)
3448 		goto ok;
3449 
3450 	if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS)
3451 		goto normal;
3452 
3453 	napi->gro_count++;
3454 	NAPI_GRO_CB(skb)->count = 1;
3455 	skb_shinfo(skb)->gso_size = skb_gro_len(skb);
3456 	skb->next = napi->gro_list;
3457 	napi->gro_list = skb;
3458 	ret = GRO_HELD;
3459 
3460 pull:
3461 	if (skb_headlen(skb) < skb_gro_offset(skb)) {
3462 		int grow = skb_gro_offset(skb) - skb_headlen(skb);
3463 
3464 		BUG_ON(skb->end - skb->tail < grow);
3465 
3466 		memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
3467 
3468 		skb->tail += grow;
3469 		skb->data_len -= grow;
3470 
3471 		skb_shinfo(skb)->frags[0].page_offset += grow;
3472 		skb_frag_size_sub(&skb_shinfo(skb)->frags[0], grow);
3473 
3474 		if (unlikely(!skb_frag_size(&skb_shinfo(skb)->frags[0]))) {
3475 			skb_frag_unref(skb, 0);
3476 			memmove(skb_shinfo(skb)->frags,
3477 				skb_shinfo(skb)->frags + 1,
3478 				--skb_shinfo(skb)->nr_frags * sizeof(skb_frag_t));
3479 		}
3480 	}
3481 
3482 ok:
3483 	return ret;
3484 
3485 normal:
3486 	ret = GRO_NORMAL;
3487 	goto pull;
3488 }
3489 EXPORT_SYMBOL(dev_gro_receive);
3490 
3491 static inline gro_result_t
3492 __napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3493 {
3494 	struct sk_buff *p;
3495 
3496 	for (p = napi->gro_list; p; p = p->next) {
3497 		unsigned long diffs;
3498 
3499 		diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
3500 		diffs |= p->vlan_tci ^ skb->vlan_tci;
3501 		diffs |= compare_ether_header(skb_mac_header(p),
3502 					      skb_gro_mac_header(skb));
3503 		NAPI_GRO_CB(p)->same_flow = !diffs;
3504 		NAPI_GRO_CB(p)->flush = 0;
3505 	}
3506 
3507 	return dev_gro_receive(napi, skb);
3508 }
3509 
3510 gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
3511 {
3512 	switch (ret) {
3513 	case GRO_NORMAL:
3514 		if (netif_receive_skb(skb))
3515 			ret = GRO_DROP;
3516 		break;
3517 
3518 	case GRO_DROP:
3519 	case GRO_MERGED_FREE:
3520 		kfree_skb(skb);
3521 		break;
3522 
3523 	case GRO_HELD:
3524 	case GRO_MERGED:
3525 		break;
3526 	}
3527 
3528 	return ret;
3529 }
3530 EXPORT_SYMBOL(napi_skb_finish);
3531 
3532 void skb_gro_reset_offset(struct sk_buff *skb)
3533 {
3534 	NAPI_GRO_CB(skb)->data_offset = 0;
3535 	NAPI_GRO_CB(skb)->frag0 = NULL;
3536 	NAPI_GRO_CB(skb)->frag0_len = 0;
3537 
3538 	if (skb->mac_header == skb->tail &&
3539 	    !PageHighMem(skb_frag_page(&skb_shinfo(skb)->frags[0]))) {
3540 		NAPI_GRO_CB(skb)->frag0 =
3541 			skb_frag_address(&skb_shinfo(skb)->frags[0]);
3542 		NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(&skb_shinfo(skb)->frags[0]);
3543 	}
3544 }
3545 EXPORT_SYMBOL(skb_gro_reset_offset);
3546 
3547 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3548 {
3549 	skb_gro_reset_offset(skb);
3550 
3551 	return napi_skb_finish(__napi_gro_receive(napi, skb), skb);
3552 }
3553 EXPORT_SYMBOL(napi_gro_receive);
3554 
3555 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
3556 {
3557 	__skb_pull(skb, skb_headlen(skb));
3558 	skb_reserve(skb, NET_IP_ALIGN - skb_headroom(skb));
3559 	skb->vlan_tci = 0;
3560 	skb->dev = napi->dev;
3561 	skb->skb_iif = 0;
3562 
3563 	napi->skb = skb;
3564 }
3565 
3566 struct sk_buff *napi_get_frags(struct napi_struct *napi)
3567 {
3568 	struct sk_buff *skb = napi->skb;
3569 
3570 	if (!skb) {
3571 		skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD);
3572 		if (skb)
3573 			napi->skb = skb;
3574 	}
3575 	return skb;
3576 }
3577 EXPORT_SYMBOL(napi_get_frags);
3578 
3579 gro_result_t napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb,
3580 			       gro_result_t ret)
3581 {
3582 	switch (ret) {
3583 	case GRO_NORMAL:
3584 	case GRO_HELD:
3585 		skb->protocol = eth_type_trans(skb, skb->dev);
3586 
3587 		if (ret == GRO_HELD)
3588 			skb_gro_pull(skb, -ETH_HLEN);
3589 		else if (netif_receive_skb(skb))
3590 			ret = GRO_DROP;
3591 		break;
3592 
3593 	case GRO_DROP:
3594 	case GRO_MERGED_FREE:
3595 		napi_reuse_skb(napi, skb);
3596 		break;
3597 
3598 	case GRO_MERGED:
3599 		break;
3600 	}
3601 
3602 	return ret;
3603 }
3604 EXPORT_SYMBOL(napi_frags_finish);
3605 
3606 struct sk_buff *napi_frags_skb(struct napi_struct *napi)
3607 {
3608 	struct sk_buff *skb = napi->skb;
3609 	struct ethhdr *eth;
3610 	unsigned int hlen;
3611 	unsigned int off;
3612 
3613 	napi->skb = NULL;
3614 
3615 	skb_reset_mac_header(skb);
3616 	skb_gro_reset_offset(skb);
3617 
3618 	off = skb_gro_offset(skb);
3619 	hlen = off + sizeof(*eth);
3620 	eth = skb_gro_header_fast(skb, off);
3621 	if (skb_gro_header_hard(skb, hlen)) {
3622 		eth = skb_gro_header_slow(skb, hlen, off);
3623 		if (unlikely(!eth)) {
3624 			napi_reuse_skb(napi, skb);
3625 			skb = NULL;
3626 			goto out;
3627 		}
3628 	}
3629 
3630 	skb_gro_pull(skb, sizeof(*eth));
3631 
3632 	/*
3633 	 * This works because the only protocols we care about don't require
3634 	 * special handling.  We'll fix it up properly at the end.
3635 	 */
3636 	skb->protocol = eth->h_proto;
3637 
3638 out:
3639 	return skb;
3640 }
3641 EXPORT_SYMBOL(napi_frags_skb);
3642 
3643 gro_result_t napi_gro_frags(struct napi_struct *napi)
3644 {
3645 	struct sk_buff *skb = napi_frags_skb(napi);
3646 
3647 	if (!skb)
3648 		return GRO_DROP;
3649 
3650 	return napi_frags_finish(napi, skb, __napi_gro_receive(napi, skb));
3651 }
3652 EXPORT_SYMBOL(napi_gro_frags);
3653 
3654 /*
3655  * net_rps_action sends any pending IPI's for rps.
3656  * Note: called with local irq disabled, but exits with local irq enabled.
3657  */
3658 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
3659 {
3660 #ifdef CONFIG_RPS
3661 	struct softnet_data *remsd = sd->rps_ipi_list;
3662 
3663 	if (remsd) {
3664 		sd->rps_ipi_list = NULL;
3665 
3666 		local_irq_enable();
3667 
3668 		/* Send pending IPI's to kick RPS processing on remote cpus. */
3669 		while (remsd) {
3670 			struct softnet_data *next = remsd->rps_ipi_next;
3671 
3672 			if (cpu_online(remsd->cpu))
3673 				__smp_call_function_single(remsd->cpu,
3674 							   &remsd->csd, 0);
3675 			remsd = next;
3676 		}
3677 	} else
3678 #endif
3679 		local_irq_enable();
3680 }
3681 
3682 static int process_backlog(struct napi_struct *napi, int quota)
3683 {
3684 	int work = 0;
3685 	struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
3686 
3687 #ifdef CONFIG_RPS
3688 	/* Check if we have pending ipi, its better to send them now,
3689 	 * not waiting net_rx_action() end.
3690 	 */
3691 	if (sd->rps_ipi_list) {
3692 		local_irq_disable();
3693 		net_rps_action_and_irq_enable(sd);
3694 	}
3695 #endif
3696 	napi->weight = weight_p;
3697 	local_irq_disable();
3698 	while (work < quota) {
3699 		struct sk_buff *skb;
3700 		unsigned int qlen;
3701 
3702 		while ((skb = __skb_dequeue(&sd->process_queue))) {
3703 			local_irq_enable();
3704 			__netif_receive_skb(skb);
3705 			local_irq_disable();
3706 			input_queue_head_incr(sd);
3707 			if (++work >= quota) {
3708 				local_irq_enable();
3709 				return work;
3710 			}
3711 		}
3712 
3713 		rps_lock(sd);
3714 		qlen = skb_queue_len(&sd->input_pkt_queue);
3715 		if (qlen)
3716 			skb_queue_splice_tail_init(&sd->input_pkt_queue,
3717 						   &sd->process_queue);
3718 
3719 		if (qlen < quota - work) {
3720 			/*
3721 			 * Inline a custom version of __napi_complete().
3722 			 * only current cpu owns and manipulates this napi,
3723 			 * and NAPI_STATE_SCHED is the only possible flag set on backlog.
3724 			 * we can use a plain write instead of clear_bit(),
3725 			 * and we dont need an smp_mb() memory barrier.
3726 			 */
3727 			list_del(&napi->poll_list);
3728 			napi->state = 0;
3729 
3730 			quota = work + qlen;
3731 		}
3732 		rps_unlock(sd);
3733 	}
3734 	local_irq_enable();
3735 
3736 	return work;
3737 }
3738 
3739 /**
3740  * __napi_schedule - schedule for receive
3741  * @n: entry to schedule
3742  *
3743  * The entry's receive function will be scheduled to run
3744  */
3745 void __napi_schedule(struct napi_struct *n)
3746 {
3747 	unsigned long flags;
3748 
3749 	local_irq_save(flags);
3750 	____napi_schedule(&__get_cpu_var(softnet_data), n);
3751 	local_irq_restore(flags);
3752 }
3753 EXPORT_SYMBOL(__napi_schedule);
3754 
3755 void __napi_complete(struct napi_struct *n)
3756 {
3757 	BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
3758 	BUG_ON(n->gro_list);
3759 
3760 	list_del(&n->poll_list);
3761 	smp_mb__before_clear_bit();
3762 	clear_bit(NAPI_STATE_SCHED, &n->state);
3763 }
3764 EXPORT_SYMBOL(__napi_complete);
3765 
3766 void napi_complete(struct napi_struct *n)
3767 {
3768 	unsigned long flags;
3769 
3770 	/*
3771 	 * don't let napi dequeue from the cpu poll list
3772 	 * just in case its running on a different cpu
3773 	 */
3774 	if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
3775 		return;
3776 
3777 	napi_gro_flush(n);
3778 	local_irq_save(flags);
3779 	__napi_complete(n);
3780 	local_irq_restore(flags);
3781 }
3782 EXPORT_SYMBOL(napi_complete);
3783 
3784 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
3785 		    int (*poll)(struct napi_struct *, int), int weight)
3786 {
3787 	INIT_LIST_HEAD(&napi->poll_list);
3788 	napi->gro_count = 0;
3789 	napi->gro_list = NULL;
3790 	napi->skb = NULL;
3791 	napi->poll = poll;
3792 	napi->weight = weight;
3793 	list_add(&napi->dev_list, &dev->napi_list);
3794 	napi->dev = dev;
3795 #ifdef CONFIG_NETPOLL
3796 	spin_lock_init(&napi->poll_lock);
3797 	napi->poll_owner = -1;
3798 #endif
3799 	set_bit(NAPI_STATE_SCHED, &napi->state);
3800 }
3801 EXPORT_SYMBOL(netif_napi_add);
3802 
3803 void netif_napi_del(struct napi_struct *napi)
3804 {
3805 	struct sk_buff *skb, *next;
3806 
3807 	list_del_init(&napi->dev_list);
3808 	napi_free_frags(napi);
3809 
3810 	for (skb = napi->gro_list; skb; skb = next) {
3811 		next = skb->next;
3812 		skb->next = NULL;
3813 		kfree_skb(skb);
3814 	}
3815 
3816 	napi->gro_list = NULL;
3817 	napi->gro_count = 0;
3818 }
3819 EXPORT_SYMBOL(netif_napi_del);
3820 
3821 static void net_rx_action(struct softirq_action *h)
3822 {
3823 	struct softnet_data *sd = &__get_cpu_var(softnet_data);
3824 	unsigned long time_limit = jiffies + 2;
3825 	int budget = netdev_budget;
3826 	void *have;
3827 
3828 	local_irq_disable();
3829 
3830 	while (!list_empty(&sd->poll_list)) {
3831 		struct napi_struct *n;
3832 		int work, weight;
3833 
3834 		/* If softirq window is exhuasted then punt.
3835 		 * Allow this to run for 2 jiffies since which will allow
3836 		 * an average latency of 1.5/HZ.
3837 		 */
3838 		if (unlikely(budget <= 0 || time_after(jiffies, time_limit)))
3839 			goto softnet_break;
3840 
3841 		local_irq_enable();
3842 
3843 		/* Even though interrupts have been re-enabled, this
3844 		 * access is safe because interrupts can only add new
3845 		 * entries to the tail of this list, and only ->poll()
3846 		 * calls can remove this head entry from the list.
3847 		 */
3848 		n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list);
3849 
3850 		have = netpoll_poll_lock(n);
3851 
3852 		weight = n->weight;
3853 
3854 		/* This NAPI_STATE_SCHED test is for avoiding a race
3855 		 * with netpoll's poll_napi().  Only the entity which
3856 		 * obtains the lock and sees NAPI_STATE_SCHED set will
3857 		 * actually make the ->poll() call.  Therefore we avoid
3858 		 * accidentally calling ->poll() when NAPI is not scheduled.
3859 		 */
3860 		work = 0;
3861 		if (test_bit(NAPI_STATE_SCHED, &n->state)) {
3862 			work = n->poll(n, weight);
3863 			trace_napi_poll(n);
3864 		}
3865 
3866 		WARN_ON_ONCE(work > weight);
3867 
3868 		budget -= work;
3869 
3870 		local_irq_disable();
3871 
3872 		/* Drivers must not modify the NAPI state if they
3873 		 * consume the entire weight.  In such cases this code
3874 		 * still "owns" the NAPI instance and therefore can
3875 		 * move the instance around on the list at-will.
3876 		 */
3877 		if (unlikely(work == weight)) {
3878 			if (unlikely(napi_disable_pending(n))) {
3879 				local_irq_enable();
3880 				napi_complete(n);
3881 				local_irq_disable();
3882 			} else
3883 				list_move_tail(&n->poll_list, &sd->poll_list);
3884 		}
3885 
3886 		netpoll_poll_unlock(have);
3887 	}
3888 out:
3889 	net_rps_action_and_irq_enable(sd);
3890 
3891 #ifdef CONFIG_NET_DMA
3892 	/*
3893 	 * There may not be any more sk_buffs coming right now, so push
3894 	 * any pending DMA copies to hardware
3895 	 */
3896 	dma_issue_pending_all();
3897 #endif
3898 
3899 	return;
3900 
3901 softnet_break:
3902 	sd->time_squeeze++;
3903 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
3904 	goto out;
3905 }
3906 
3907 static gifconf_func_t *gifconf_list[NPROTO];
3908 
3909 /**
3910  *	register_gifconf	-	register a SIOCGIF handler
3911  *	@family: Address family
3912  *	@gifconf: Function handler
3913  *
3914  *	Register protocol dependent address dumping routines. The handler
3915  *	that is passed must not be freed or reused until it has been replaced
3916  *	by another handler.
3917  */
3918 int register_gifconf(unsigned int family, gifconf_func_t *gifconf)
3919 {
3920 	if (family >= NPROTO)
3921 		return -EINVAL;
3922 	gifconf_list[family] = gifconf;
3923 	return 0;
3924 }
3925 EXPORT_SYMBOL(register_gifconf);
3926 
3927 
3928 /*
3929  *	Map an interface index to its name (SIOCGIFNAME)
3930  */
3931 
3932 /*
3933  *	We need this ioctl for efficient implementation of the
3934  *	if_indextoname() function required by the IPv6 API.  Without
3935  *	it, we would have to search all the interfaces to find a
3936  *	match.  --pb
3937  */
3938 
3939 static int dev_ifname(struct net *net, struct ifreq __user *arg)
3940 {
3941 	struct net_device *dev;
3942 	struct ifreq ifr;
3943 
3944 	/*
3945 	 *	Fetch the caller's info block.
3946 	 */
3947 
3948 	if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
3949 		return -EFAULT;
3950 
3951 	rcu_read_lock();
3952 	dev = dev_get_by_index_rcu(net, ifr.ifr_ifindex);
3953 	if (!dev) {
3954 		rcu_read_unlock();
3955 		return -ENODEV;
3956 	}
3957 
3958 	strcpy(ifr.ifr_name, dev->name);
3959 	rcu_read_unlock();
3960 
3961 	if (copy_to_user(arg, &ifr, sizeof(struct ifreq)))
3962 		return -EFAULT;
3963 	return 0;
3964 }
3965 
3966 /*
3967  *	Perform a SIOCGIFCONF call. This structure will change
3968  *	size eventually, and there is nothing I can do about it.
3969  *	Thus we will need a 'compatibility mode'.
3970  */
3971 
3972 static int dev_ifconf(struct net *net, char __user *arg)
3973 {
3974 	struct ifconf ifc;
3975 	struct net_device *dev;
3976 	char __user *pos;
3977 	int len;
3978 	int total;
3979 	int i;
3980 
3981 	/*
3982 	 *	Fetch the caller's info block.
3983 	 */
3984 
3985 	if (copy_from_user(&ifc, arg, sizeof(struct ifconf)))
3986 		return -EFAULT;
3987 
3988 	pos = ifc.ifc_buf;
3989 	len = ifc.ifc_len;
3990 
3991 	/*
3992 	 *	Loop over the interfaces, and write an info block for each.
3993 	 */
3994 
3995 	total = 0;
3996 	for_each_netdev(net, dev) {
3997 		for (i = 0; i < NPROTO; i++) {
3998 			if (gifconf_list[i]) {
3999 				int done;
4000 				if (!pos)
4001 					done = gifconf_list[i](dev, NULL, 0);
4002 				else
4003 					done = gifconf_list[i](dev, pos + total,
4004 							       len - total);
4005 				if (done < 0)
4006 					return -EFAULT;
4007 				total += done;
4008 			}
4009 		}
4010 	}
4011 
4012 	/*
4013 	 *	All done.  Write the updated control block back to the caller.
4014 	 */
4015 	ifc.ifc_len = total;
4016 
4017 	/*
4018 	 * 	Both BSD and Solaris return 0 here, so we do too.
4019 	 */
4020 	return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0;
4021 }
4022 
4023 #ifdef CONFIG_PROC_FS
4024 
4025 #define BUCKET_SPACE (32 - NETDEV_HASHBITS)
4026 
4027 struct dev_iter_state {
4028 	struct seq_net_private p;
4029 	unsigned int pos; /* bucket << BUCKET_SPACE + offset */
4030 };
4031 
4032 #define get_bucket(x) ((x) >> BUCKET_SPACE)
4033 #define get_offset(x) ((x) & ((1 << BUCKET_SPACE) - 1))
4034 #define set_bucket_offset(b, o) ((b) << BUCKET_SPACE | (o))
4035 
4036 static inline struct net_device *dev_from_same_bucket(struct seq_file *seq)
4037 {
4038 	struct dev_iter_state *state = seq->private;
4039 	struct net *net = seq_file_net(seq);
4040 	struct net_device *dev;
4041 	struct hlist_node *p;
4042 	struct hlist_head *h;
4043 	unsigned int count, bucket, offset;
4044 
4045 	bucket = get_bucket(state->pos);
4046 	offset = get_offset(state->pos);
4047 	h = &net->dev_name_head[bucket];
4048 	count = 0;
4049 	hlist_for_each_entry_rcu(dev, p, h, name_hlist) {
4050 		if (count++ == offset) {
4051 			state->pos = set_bucket_offset(bucket, count);
4052 			return dev;
4053 		}
4054 	}
4055 
4056 	return NULL;
4057 }
4058 
4059 static inline struct net_device *dev_from_new_bucket(struct seq_file *seq)
4060 {
4061 	struct dev_iter_state *state = seq->private;
4062 	struct net_device *dev;
4063 	unsigned int bucket;
4064 
4065 	bucket = get_bucket(state->pos);
4066 	do {
4067 		dev = dev_from_same_bucket(seq);
4068 		if (dev)
4069 			return dev;
4070 
4071 		bucket++;
4072 		state->pos = set_bucket_offset(bucket, 0);
4073 	} while (bucket < NETDEV_HASHENTRIES);
4074 
4075 	return NULL;
4076 }
4077 
4078 /*
4079  *	This is invoked by the /proc filesystem handler to display a device
4080  *	in detail.
4081  */
4082 void *dev_seq_start(struct seq_file *seq, loff_t *pos)
4083 	__acquires(RCU)
4084 {
4085 	struct dev_iter_state *state = seq->private;
4086 
4087 	rcu_read_lock();
4088 	if (!*pos)
4089 		return SEQ_START_TOKEN;
4090 
4091 	/* check for end of the hash */
4092 	if (state->pos == 0 && *pos > 1)
4093 		return NULL;
4094 
4095 	return dev_from_new_bucket(seq);
4096 }
4097 
4098 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4099 {
4100 	struct net_device *dev;
4101 
4102 	++*pos;
4103 
4104 	if (v == SEQ_START_TOKEN)
4105 		return dev_from_new_bucket(seq);
4106 
4107 	dev = dev_from_same_bucket(seq);
4108 	if (dev)
4109 		return dev;
4110 
4111 	return dev_from_new_bucket(seq);
4112 }
4113 
4114 void dev_seq_stop(struct seq_file *seq, void *v)
4115 	__releases(RCU)
4116 {
4117 	rcu_read_unlock();
4118 }
4119 
4120 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev)
4121 {
4122 	struct rtnl_link_stats64 temp;
4123 	const struct rtnl_link_stats64 *stats = dev_get_stats(dev, &temp);
4124 
4125 	seq_printf(seq, "%6s: %7llu %7llu %4llu %4llu %4llu %5llu %10llu %9llu "
4126 		   "%8llu %7llu %4llu %4llu %4llu %5llu %7llu %10llu\n",
4127 		   dev->name, stats->rx_bytes, stats->rx_packets,
4128 		   stats->rx_errors,
4129 		   stats->rx_dropped + stats->rx_missed_errors,
4130 		   stats->rx_fifo_errors,
4131 		   stats->rx_length_errors + stats->rx_over_errors +
4132 		    stats->rx_crc_errors + stats->rx_frame_errors,
4133 		   stats->rx_compressed, stats->multicast,
4134 		   stats->tx_bytes, stats->tx_packets,
4135 		   stats->tx_errors, stats->tx_dropped,
4136 		   stats->tx_fifo_errors, stats->collisions,
4137 		   stats->tx_carrier_errors +
4138 		    stats->tx_aborted_errors +
4139 		    stats->tx_window_errors +
4140 		    stats->tx_heartbeat_errors,
4141 		   stats->tx_compressed);
4142 }
4143 
4144 /*
4145  *	Called from the PROCfs module. This now uses the new arbitrary sized
4146  *	/proc/net interface to create /proc/net/dev
4147  */
4148 static int dev_seq_show(struct seq_file *seq, void *v)
4149 {
4150 	if (v == SEQ_START_TOKEN)
4151 		seq_puts(seq, "Inter-|   Receive                            "
4152 			      "                    |  Transmit\n"
4153 			      " face |bytes    packets errs drop fifo frame "
4154 			      "compressed multicast|bytes    packets errs "
4155 			      "drop fifo colls carrier compressed\n");
4156 	else
4157 		dev_seq_printf_stats(seq, v);
4158 	return 0;
4159 }
4160 
4161 static struct softnet_data *softnet_get_online(loff_t *pos)
4162 {
4163 	struct softnet_data *sd = NULL;
4164 
4165 	while (*pos < nr_cpu_ids)
4166 		if (cpu_online(*pos)) {
4167 			sd = &per_cpu(softnet_data, *pos);
4168 			break;
4169 		} else
4170 			++*pos;
4171 	return sd;
4172 }
4173 
4174 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos)
4175 {
4176 	return softnet_get_online(pos);
4177 }
4178 
4179 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4180 {
4181 	++*pos;
4182 	return softnet_get_online(pos);
4183 }
4184 
4185 static void softnet_seq_stop(struct seq_file *seq, void *v)
4186 {
4187 }
4188 
4189 static int softnet_seq_show(struct seq_file *seq, void *v)
4190 {
4191 	struct softnet_data *sd = v;
4192 
4193 	seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x %08x\n",
4194 		   sd->processed, sd->dropped, sd->time_squeeze, 0,
4195 		   0, 0, 0, 0, /* was fastroute */
4196 		   sd->cpu_collision, sd->received_rps);
4197 	return 0;
4198 }
4199 
4200 static const struct seq_operations dev_seq_ops = {
4201 	.start = dev_seq_start,
4202 	.next  = dev_seq_next,
4203 	.stop  = dev_seq_stop,
4204 	.show  = dev_seq_show,
4205 };
4206 
4207 static int dev_seq_open(struct inode *inode, struct file *file)
4208 {
4209 	return seq_open_net(inode, file, &dev_seq_ops,
4210 			    sizeof(struct dev_iter_state));
4211 }
4212 
4213 int dev_seq_open_ops(struct inode *inode, struct file *file,
4214 		     const struct seq_operations *ops)
4215 {
4216 	return seq_open_net(inode, file, ops, sizeof(struct dev_iter_state));
4217 }
4218 
4219 static const struct file_operations dev_seq_fops = {
4220 	.owner	 = THIS_MODULE,
4221 	.open    = dev_seq_open,
4222 	.read    = seq_read,
4223 	.llseek  = seq_lseek,
4224 	.release = seq_release_net,
4225 };
4226 
4227 static const struct seq_operations softnet_seq_ops = {
4228 	.start = softnet_seq_start,
4229 	.next  = softnet_seq_next,
4230 	.stop  = softnet_seq_stop,
4231 	.show  = softnet_seq_show,
4232 };
4233 
4234 static int softnet_seq_open(struct inode *inode, struct file *file)
4235 {
4236 	return seq_open(file, &softnet_seq_ops);
4237 }
4238 
4239 static const struct file_operations softnet_seq_fops = {
4240 	.owner	 = THIS_MODULE,
4241 	.open    = softnet_seq_open,
4242 	.read    = seq_read,
4243 	.llseek  = seq_lseek,
4244 	.release = seq_release,
4245 };
4246 
4247 static void *ptype_get_idx(loff_t pos)
4248 {
4249 	struct packet_type *pt = NULL;
4250 	loff_t i = 0;
4251 	int t;
4252 
4253 	list_for_each_entry_rcu(pt, &ptype_all, list) {
4254 		if (i == pos)
4255 			return pt;
4256 		++i;
4257 	}
4258 
4259 	for (t = 0; t < PTYPE_HASH_SIZE; t++) {
4260 		list_for_each_entry_rcu(pt, &ptype_base[t], list) {
4261 			if (i == pos)
4262 				return pt;
4263 			++i;
4264 		}
4265 	}
4266 	return NULL;
4267 }
4268 
4269 static void *ptype_seq_start(struct seq_file *seq, loff_t *pos)
4270 	__acquires(RCU)
4271 {
4272 	rcu_read_lock();
4273 	return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN;
4274 }
4275 
4276 static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4277 {
4278 	struct packet_type *pt;
4279 	struct list_head *nxt;
4280 	int hash;
4281 
4282 	++*pos;
4283 	if (v == SEQ_START_TOKEN)
4284 		return ptype_get_idx(0);
4285 
4286 	pt = v;
4287 	nxt = pt->list.next;
4288 	if (pt->type == htons(ETH_P_ALL)) {
4289 		if (nxt != &ptype_all)
4290 			goto found;
4291 		hash = 0;
4292 		nxt = ptype_base[0].next;
4293 	} else
4294 		hash = ntohs(pt->type) & PTYPE_HASH_MASK;
4295 
4296 	while (nxt == &ptype_base[hash]) {
4297 		if (++hash >= PTYPE_HASH_SIZE)
4298 			return NULL;
4299 		nxt = ptype_base[hash].next;
4300 	}
4301 found:
4302 	return list_entry(nxt, struct packet_type, list);
4303 }
4304 
4305 static void ptype_seq_stop(struct seq_file *seq, void *v)
4306 	__releases(RCU)
4307 {
4308 	rcu_read_unlock();
4309 }
4310 
4311 static int ptype_seq_show(struct seq_file *seq, void *v)
4312 {
4313 	struct packet_type *pt = v;
4314 
4315 	if (v == SEQ_START_TOKEN)
4316 		seq_puts(seq, "Type Device      Function\n");
4317 	else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) {
4318 		if (pt->type == htons(ETH_P_ALL))
4319 			seq_puts(seq, "ALL ");
4320 		else
4321 			seq_printf(seq, "%04x", ntohs(pt->type));
4322 
4323 		seq_printf(seq, " %-8s %pF\n",
4324 			   pt->dev ? pt->dev->name : "", pt->func);
4325 	}
4326 
4327 	return 0;
4328 }
4329 
4330 static const struct seq_operations ptype_seq_ops = {
4331 	.start = ptype_seq_start,
4332 	.next  = ptype_seq_next,
4333 	.stop  = ptype_seq_stop,
4334 	.show  = ptype_seq_show,
4335 };
4336 
4337 static int ptype_seq_open(struct inode *inode, struct file *file)
4338 {
4339 	return seq_open_net(inode, file, &ptype_seq_ops,
4340 			sizeof(struct seq_net_private));
4341 }
4342 
4343 static const struct file_operations ptype_seq_fops = {
4344 	.owner	 = THIS_MODULE,
4345 	.open    = ptype_seq_open,
4346 	.read    = seq_read,
4347 	.llseek  = seq_lseek,
4348 	.release = seq_release_net,
4349 };
4350 
4351 
4352 static int __net_init dev_proc_net_init(struct net *net)
4353 {
4354 	int rc = -ENOMEM;
4355 
4356 	if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops))
4357 		goto out;
4358 	if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops))
4359 		goto out_dev;
4360 	if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops))
4361 		goto out_softnet;
4362 
4363 	if (wext_proc_init(net))
4364 		goto out_ptype;
4365 	rc = 0;
4366 out:
4367 	return rc;
4368 out_ptype:
4369 	proc_net_remove(net, "ptype");
4370 out_softnet:
4371 	proc_net_remove(net, "softnet_stat");
4372 out_dev:
4373 	proc_net_remove(net, "dev");
4374 	goto out;
4375 }
4376 
4377 static void __net_exit dev_proc_net_exit(struct net *net)
4378 {
4379 	wext_proc_exit(net);
4380 
4381 	proc_net_remove(net, "ptype");
4382 	proc_net_remove(net, "softnet_stat");
4383 	proc_net_remove(net, "dev");
4384 }
4385 
4386 static struct pernet_operations __net_initdata dev_proc_ops = {
4387 	.init = dev_proc_net_init,
4388 	.exit = dev_proc_net_exit,
4389 };
4390 
4391 static int __init dev_proc_init(void)
4392 {
4393 	return register_pernet_subsys(&dev_proc_ops);
4394 }
4395 #else
4396 #define dev_proc_init() 0
4397 #endif	/* CONFIG_PROC_FS */
4398 
4399 
4400 /**
4401  *	netdev_set_master	-	set up master pointer
4402  *	@slave: slave device
4403  *	@master: new master device
4404  *
4405  *	Changes the master device of the slave. Pass %NULL to break the
4406  *	bonding. The caller must hold the RTNL semaphore. On a failure
4407  *	a negative errno code is returned. On success the reference counts
4408  *	are adjusted and the function returns zero.
4409  */
4410 int netdev_set_master(struct net_device *slave, struct net_device *master)
4411 {
4412 	struct net_device *old = slave->master;
4413 
4414 	ASSERT_RTNL();
4415 
4416 	if (master) {
4417 		if (old)
4418 			return -EBUSY;
4419 		dev_hold(master);
4420 	}
4421 
4422 	slave->master = master;
4423 
4424 	if (old)
4425 		dev_put(old);
4426 	return 0;
4427 }
4428 EXPORT_SYMBOL(netdev_set_master);
4429 
4430 /**
4431  *	netdev_set_bond_master	-	set up bonding master/slave pair
4432  *	@slave: slave device
4433  *	@master: new master device
4434  *
4435  *	Changes the master device of the slave. Pass %NULL to break the
4436  *	bonding. The caller must hold the RTNL semaphore. On a failure
4437  *	a negative errno code is returned. On success %RTM_NEWLINK is sent
4438  *	to the routing socket and the function returns zero.
4439  */
4440 int netdev_set_bond_master(struct net_device *slave, struct net_device *master)
4441 {
4442 	int err;
4443 
4444 	ASSERT_RTNL();
4445 
4446 	err = netdev_set_master(slave, master);
4447 	if (err)
4448 		return err;
4449 	if (master)
4450 		slave->flags |= IFF_SLAVE;
4451 	else
4452 		slave->flags &= ~IFF_SLAVE;
4453 
4454 	rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE);
4455 	return 0;
4456 }
4457 EXPORT_SYMBOL(netdev_set_bond_master);
4458 
4459 static void dev_change_rx_flags(struct net_device *dev, int flags)
4460 {
4461 	const struct net_device_ops *ops = dev->netdev_ops;
4462 
4463 	if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags)
4464 		ops->ndo_change_rx_flags(dev, flags);
4465 }
4466 
4467 static int __dev_set_promiscuity(struct net_device *dev, int inc)
4468 {
4469 	unsigned int old_flags = dev->flags;
4470 	uid_t uid;
4471 	gid_t gid;
4472 
4473 	ASSERT_RTNL();
4474 
4475 	dev->flags |= IFF_PROMISC;
4476 	dev->promiscuity += inc;
4477 	if (dev->promiscuity == 0) {
4478 		/*
4479 		 * Avoid overflow.
4480 		 * If inc causes overflow, untouch promisc and return error.
4481 		 */
4482 		if (inc < 0)
4483 			dev->flags &= ~IFF_PROMISC;
4484 		else {
4485 			dev->promiscuity -= inc;
4486 			printk(KERN_WARNING "%s: promiscuity touches roof, "
4487 				"set promiscuity failed, promiscuity feature "
4488 				"of device might be broken.\n", dev->name);
4489 			return -EOVERFLOW;
4490 		}
4491 	}
4492 	if (dev->flags != old_flags) {
4493 		printk(KERN_INFO "device %s %s promiscuous mode\n",
4494 		       dev->name, (dev->flags & IFF_PROMISC) ? "entered" :
4495 							       "left");
4496 		if (audit_enabled) {
4497 			current_uid_gid(&uid, &gid);
4498 			audit_log(current->audit_context, GFP_ATOMIC,
4499 				AUDIT_ANOM_PROMISCUOUS,
4500 				"dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
4501 				dev->name, (dev->flags & IFF_PROMISC),
4502 				(old_flags & IFF_PROMISC),
4503 				audit_get_loginuid(current),
4504 				uid, gid,
4505 				audit_get_sessionid(current));
4506 		}
4507 
4508 		dev_change_rx_flags(dev, IFF_PROMISC);
4509 	}
4510 	return 0;
4511 }
4512 
4513 /**
4514  *	dev_set_promiscuity	- update promiscuity count on a device
4515  *	@dev: device
4516  *	@inc: modifier
4517  *
4518  *	Add or remove promiscuity from a device. While the count in the device
4519  *	remains above zero the interface remains promiscuous. Once it hits zero
4520  *	the device reverts back to normal filtering operation. A negative inc
4521  *	value is used to drop promiscuity on the device.
4522  *	Return 0 if successful or a negative errno code on error.
4523  */
4524 int dev_set_promiscuity(struct net_device *dev, int inc)
4525 {
4526 	unsigned int old_flags = dev->flags;
4527 	int err;
4528 
4529 	err = __dev_set_promiscuity(dev, inc);
4530 	if (err < 0)
4531 		return err;
4532 	if (dev->flags != old_flags)
4533 		dev_set_rx_mode(dev);
4534 	return err;
4535 }
4536 EXPORT_SYMBOL(dev_set_promiscuity);
4537 
4538 /**
4539  *	dev_set_allmulti	- update allmulti count on a device
4540  *	@dev: device
4541  *	@inc: modifier
4542  *
4543  *	Add or remove reception of all multicast frames to a device. While the
4544  *	count in the device remains above zero the interface remains listening
4545  *	to all interfaces. Once it hits zero the device reverts back to normal
4546  *	filtering operation. A negative @inc value is used to drop the counter
4547  *	when releasing a resource needing all multicasts.
4548  *	Return 0 if successful or a negative errno code on error.
4549  */
4550 
4551 int dev_set_allmulti(struct net_device *dev, int inc)
4552 {
4553 	unsigned int old_flags = dev->flags;
4554 
4555 	ASSERT_RTNL();
4556 
4557 	dev->flags |= IFF_ALLMULTI;
4558 	dev->allmulti += inc;
4559 	if (dev->allmulti == 0) {
4560 		/*
4561 		 * Avoid overflow.
4562 		 * If inc causes overflow, untouch allmulti and return error.
4563 		 */
4564 		if (inc < 0)
4565 			dev->flags &= ~IFF_ALLMULTI;
4566 		else {
4567 			dev->allmulti -= inc;
4568 			printk(KERN_WARNING "%s: allmulti touches roof, "
4569 				"set allmulti failed, allmulti feature of "
4570 				"device might be broken.\n", dev->name);
4571 			return -EOVERFLOW;
4572 		}
4573 	}
4574 	if (dev->flags ^ old_flags) {
4575 		dev_change_rx_flags(dev, IFF_ALLMULTI);
4576 		dev_set_rx_mode(dev);
4577 	}
4578 	return 0;
4579 }
4580 EXPORT_SYMBOL(dev_set_allmulti);
4581 
4582 /*
4583  *	Upload unicast and multicast address lists to device and
4584  *	configure RX filtering. When the device doesn't support unicast
4585  *	filtering it is put in promiscuous mode while unicast addresses
4586  *	are present.
4587  */
4588 void __dev_set_rx_mode(struct net_device *dev)
4589 {
4590 	const struct net_device_ops *ops = dev->netdev_ops;
4591 
4592 	/* dev_open will call this function so the list will stay sane. */
4593 	if (!(dev->flags&IFF_UP))
4594 		return;
4595 
4596 	if (!netif_device_present(dev))
4597 		return;
4598 
4599 	if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
4600 		/* Unicast addresses changes may only happen under the rtnl,
4601 		 * therefore calling __dev_set_promiscuity here is safe.
4602 		 */
4603 		if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
4604 			__dev_set_promiscuity(dev, 1);
4605 			dev->uc_promisc = true;
4606 		} else if (netdev_uc_empty(dev) && dev->uc_promisc) {
4607 			__dev_set_promiscuity(dev, -1);
4608 			dev->uc_promisc = false;
4609 		}
4610 	}
4611 
4612 	if (ops->ndo_set_rx_mode)
4613 		ops->ndo_set_rx_mode(dev);
4614 }
4615 
4616 void dev_set_rx_mode(struct net_device *dev)
4617 {
4618 	netif_addr_lock_bh(dev);
4619 	__dev_set_rx_mode(dev);
4620 	netif_addr_unlock_bh(dev);
4621 }
4622 
4623 /**
4624  *	dev_get_flags - get flags reported to userspace
4625  *	@dev: device
4626  *
4627  *	Get the combination of flag bits exported through APIs to userspace.
4628  */
4629 unsigned dev_get_flags(const struct net_device *dev)
4630 {
4631 	unsigned flags;
4632 
4633 	flags = (dev->flags & ~(IFF_PROMISC |
4634 				IFF_ALLMULTI |
4635 				IFF_RUNNING |
4636 				IFF_LOWER_UP |
4637 				IFF_DORMANT)) |
4638 		(dev->gflags & (IFF_PROMISC |
4639 				IFF_ALLMULTI));
4640 
4641 	if (netif_running(dev)) {
4642 		if (netif_oper_up(dev))
4643 			flags |= IFF_RUNNING;
4644 		if (netif_carrier_ok(dev))
4645 			flags |= IFF_LOWER_UP;
4646 		if (netif_dormant(dev))
4647 			flags |= IFF_DORMANT;
4648 	}
4649 
4650 	return flags;
4651 }
4652 EXPORT_SYMBOL(dev_get_flags);
4653 
4654 int __dev_change_flags(struct net_device *dev, unsigned int flags)
4655 {
4656 	unsigned int old_flags = dev->flags;
4657 	int ret;
4658 
4659 	ASSERT_RTNL();
4660 
4661 	/*
4662 	 *	Set the flags on our device.
4663 	 */
4664 
4665 	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
4666 			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
4667 			       IFF_AUTOMEDIA)) |
4668 		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
4669 				    IFF_ALLMULTI));
4670 
4671 	/*
4672 	 *	Load in the correct multicast list now the flags have changed.
4673 	 */
4674 
4675 	if ((old_flags ^ flags) & IFF_MULTICAST)
4676 		dev_change_rx_flags(dev, IFF_MULTICAST);
4677 
4678 	dev_set_rx_mode(dev);
4679 
4680 	/*
4681 	 *	Have we downed the interface. We handle IFF_UP ourselves
4682 	 *	according to user attempts to set it, rather than blindly
4683 	 *	setting it.
4684 	 */
4685 
4686 	ret = 0;
4687 	if ((old_flags ^ flags) & IFF_UP) {	/* Bit is different  ? */
4688 		ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
4689 
4690 		if (!ret)
4691 			dev_set_rx_mode(dev);
4692 	}
4693 
4694 	if ((flags ^ dev->gflags) & IFF_PROMISC) {
4695 		int inc = (flags & IFF_PROMISC) ? 1 : -1;
4696 
4697 		dev->gflags ^= IFF_PROMISC;
4698 		dev_set_promiscuity(dev, inc);
4699 	}
4700 
4701 	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
4702 	   is important. Some (broken) drivers set IFF_PROMISC, when
4703 	   IFF_ALLMULTI is requested not asking us and not reporting.
4704 	 */
4705 	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
4706 		int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
4707 
4708 		dev->gflags ^= IFF_ALLMULTI;
4709 		dev_set_allmulti(dev, inc);
4710 	}
4711 
4712 	return ret;
4713 }
4714 
4715 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags)
4716 {
4717 	unsigned int changes = dev->flags ^ old_flags;
4718 
4719 	if (changes & IFF_UP) {
4720 		if (dev->flags & IFF_UP)
4721 			call_netdevice_notifiers(NETDEV_UP, dev);
4722 		else
4723 			call_netdevice_notifiers(NETDEV_DOWN, dev);
4724 	}
4725 
4726 	if (dev->flags & IFF_UP &&
4727 	    (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE)))
4728 		call_netdevice_notifiers(NETDEV_CHANGE, dev);
4729 }
4730 
4731 /**
4732  *	dev_change_flags - change device settings
4733  *	@dev: device
4734  *	@flags: device state flags
4735  *
4736  *	Change settings on device based state flags. The flags are
4737  *	in the userspace exported format.
4738  */
4739 int dev_change_flags(struct net_device *dev, unsigned int flags)
4740 {
4741 	int ret;
4742 	unsigned int changes, old_flags = dev->flags;
4743 
4744 	ret = __dev_change_flags(dev, flags);
4745 	if (ret < 0)
4746 		return ret;
4747 
4748 	changes = old_flags ^ dev->flags;
4749 	if (changes)
4750 		rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
4751 
4752 	__dev_notify_flags(dev, old_flags);
4753 	return ret;
4754 }
4755 EXPORT_SYMBOL(dev_change_flags);
4756 
4757 /**
4758  *	dev_set_mtu - Change maximum transfer unit
4759  *	@dev: device
4760  *	@new_mtu: new transfer unit
4761  *
4762  *	Change the maximum transfer size of the network device.
4763  */
4764 int dev_set_mtu(struct net_device *dev, int new_mtu)
4765 {
4766 	const struct net_device_ops *ops = dev->netdev_ops;
4767 	int err;
4768 
4769 	if (new_mtu == dev->mtu)
4770 		return 0;
4771 
4772 	/*	MTU must be positive.	 */
4773 	if (new_mtu < 0)
4774 		return -EINVAL;
4775 
4776 	if (!netif_device_present(dev))
4777 		return -ENODEV;
4778 
4779 	err = 0;
4780 	if (ops->ndo_change_mtu)
4781 		err = ops->ndo_change_mtu(dev, new_mtu);
4782 	else
4783 		dev->mtu = new_mtu;
4784 
4785 	if (!err && dev->flags & IFF_UP)
4786 		call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
4787 	return err;
4788 }
4789 EXPORT_SYMBOL(dev_set_mtu);
4790 
4791 /**
4792  *	dev_set_group - Change group this device belongs to
4793  *	@dev: device
4794  *	@new_group: group this device should belong to
4795  */
4796 void dev_set_group(struct net_device *dev, int new_group)
4797 {
4798 	dev->group = new_group;
4799 }
4800 EXPORT_SYMBOL(dev_set_group);
4801 
4802 /**
4803  *	dev_set_mac_address - Change Media Access Control Address
4804  *	@dev: device
4805  *	@sa: new address
4806  *
4807  *	Change the hardware (MAC) address of the device
4808  */
4809 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
4810 {
4811 	const struct net_device_ops *ops = dev->netdev_ops;
4812 	int err;
4813 
4814 	if (!ops->ndo_set_mac_address)
4815 		return -EOPNOTSUPP;
4816 	if (sa->sa_family != dev->type)
4817 		return -EINVAL;
4818 	if (!netif_device_present(dev))
4819 		return -ENODEV;
4820 	err = ops->ndo_set_mac_address(dev, sa);
4821 	if (!err)
4822 		call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4823 	return err;
4824 }
4825 EXPORT_SYMBOL(dev_set_mac_address);
4826 
4827 /*
4828  *	Perform the SIOCxIFxxx calls, inside rcu_read_lock()
4829  */
4830 static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd)
4831 {
4832 	int err;
4833 	struct net_device *dev = dev_get_by_name_rcu(net, ifr->ifr_name);
4834 
4835 	if (!dev)
4836 		return -ENODEV;
4837 
4838 	switch (cmd) {
4839 	case SIOCGIFFLAGS:	/* Get interface flags */
4840 		ifr->ifr_flags = (short) dev_get_flags(dev);
4841 		return 0;
4842 
4843 	case SIOCGIFMETRIC:	/* Get the metric on the interface
4844 				   (currently unused) */
4845 		ifr->ifr_metric = 0;
4846 		return 0;
4847 
4848 	case SIOCGIFMTU:	/* Get the MTU of a device */
4849 		ifr->ifr_mtu = dev->mtu;
4850 		return 0;
4851 
4852 	case SIOCGIFHWADDR:
4853 		if (!dev->addr_len)
4854 			memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data);
4855 		else
4856 			memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr,
4857 			       min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4858 		ifr->ifr_hwaddr.sa_family = dev->type;
4859 		return 0;
4860 
4861 	case SIOCGIFSLAVE:
4862 		err = -EINVAL;
4863 		break;
4864 
4865 	case SIOCGIFMAP:
4866 		ifr->ifr_map.mem_start = dev->mem_start;
4867 		ifr->ifr_map.mem_end   = dev->mem_end;
4868 		ifr->ifr_map.base_addr = dev->base_addr;
4869 		ifr->ifr_map.irq       = dev->irq;
4870 		ifr->ifr_map.dma       = dev->dma;
4871 		ifr->ifr_map.port      = dev->if_port;
4872 		return 0;
4873 
4874 	case SIOCGIFINDEX:
4875 		ifr->ifr_ifindex = dev->ifindex;
4876 		return 0;
4877 
4878 	case SIOCGIFTXQLEN:
4879 		ifr->ifr_qlen = dev->tx_queue_len;
4880 		return 0;
4881 
4882 	default:
4883 		/* dev_ioctl() should ensure this case
4884 		 * is never reached
4885 		 */
4886 		WARN_ON(1);
4887 		err = -ENOTTY;
4888 		break;
4889 
4890 	}
4891 	return err;
4892 }
4893 
4894 /*
4895  *	Perform the SIOCxIFxxx calls, inside rtnl_lock()
4896  */
4897 static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd)
4898 {
4899 	int err;
4900 	struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
4901 	const struct net_device_ops *ops;
4902 
4903 	if (!dev)
4904 		return -ENODEV;
4905 
4906 	ops = dev->netdev_ops;
4907 
4908 	switch (cmd) {
4909 	case SIOCSIFFLAGS:	/* Set interface flags */
4910 		return dev_change_flags(dev, ifr->ifr_flags);
4911 
4912 	case SIOCSIFMETRIC:	/* Set the metric on the interface
4913 				   (currently unused) */
4914 		return -EOPNOTSUPP;
4915 
4916 	case SIOCSIFMTU:	/* Set the MTU of a device */
4917 		return dev_set_mtu(dev, ifr->ifr_mtu);
4918 
4919 	case SIOCSIFHWADDR:
4920 		return dev_set_mac_address(dev, &ifr->ifr_hwaddr);
4921 
4922 	case SIOCSIFHWBROADCAST:
4923 		if (ifr->ifr_hwaddr.sa_family != dev->type)
4924 			return -EINVAL;
4925 		memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data,
4926 		       min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4927 		call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4928 		return 0;
4929 
4930 	case SIOCSIFMAP:
4931 		if (ops->ndo_set_config) {
4932 			if (!netif_device_present(dev))
4933 				return -ENODEV;
4934 			return ops->ndo_set_config(dev, &ifr->ifr_map);
4935 		}
4936 		return -EOPNOTSUPP;
4937 
4938 	case SIOCADDMULTI:
4939 		if (!ops->ndo_set_rx_mode ||
4940 		    ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4941 			return -EINVAL;
4942 		if (!netif_device_present(dev))
4943 			return -ENODEV;
4944 		return dev_mc_add_global(dev, ifr->ifr_hwaddr.sa_data);
4945 
4946 	case SIOCDELMULTI:
4947 		if (!ops->ndo_set_rx_mode ||
4948 		    ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4949 			return -EINVAL;
4950 		if (!netif_device_present(dev))
4951 			return -ENODEV;
4952 		return dev_mc_del_global(dev, ifr->ifr_hwaddr.sa_data);
4953 
4954 	case SIOCSIFTXQLEN:
4955 		if (ifr->ifr_qlen < 0)
4956 			return -EINVAL;
4957 		dev->tx_queue_len = ifr->ifr_qlen;
4958 		return 0;
4959 
4960 	case SIOCSIFNAME:
4961 		ifr->ifr_newname[IFNAMSIZ-1] = '\0';
4962 		return dev_change_name(dev, ifr->ifr_newname);
4963 
4964 	case SIOCSHWTSTAMP:
4965 		err = net_hwtstamp_validate(ifr);
4966 		if (err)
4967 			return err;
4968 		/* fall through */
4969 
4970 	/*
4971 	 *	Unknown or private ioctl
4972 	 */
4973 	default:
4974 		if ((cmd >= SIOCDEVPRIVATE &&
4975 		    cmd <= SIOCDEVPRIVATE + 15) ||
4976 		    cmd == SIOCBONDENSLAVE ||
4977 		    cmd == SIOCBONDRELEASE ||
4978 		    cmd == SIOCBONDSETHWADDR ||
4979 		    cmd == SIOCBONDSLAVEINFOQUERY ||
4980 		    cmd == SIOCBONDINFOQUERY ||
4981 		    cmd == SIOCBONDCHANGEACTIVE ||
4982 		    cmd == SIOCGMIIPHY ||
4983 		    cmd == SIOCGMIIREG ||
4984 		    cmd == SIOCSMIIREG ||
4985 		    cmd == SIOCBRADDIF ||
4986 		    cmd == SIOCBRDELIF ||
4987 		    cmd == SIOCSHWTSTAMP ||
4988 		    cmd == SIOCWANDEV) {
4989 			err = -EOPNOTSUPP;
4990 			if (ops->ndo_do_ioctl) {
4991 				if (netif_device_present(dev))
4992 					err = ops->ndo_do_ioctl(dev, ifr, cmd);
4993 				else
4994 					err = -ENODEV;
4995 			}
4996 		} else
4997 			err = -EINVAL;
4998 
4999 	}
5000 	return err;
5001 }
5002 
5003 /*
5004  *	This function handles all "interface"-type I/O control requests. The actual
5005  *	'doing' part of this is dev_ifsioc above.
5006  */
5007 
5008 /**
5009  *	dev_ioctl	-	network device ioctl
5010  *	@net: the applicable net namespace
5011  *	@cmd: command to issue
5012  *	@arg: pointer to a struct ifreq in user space
5013  *
5014  *	Issue ioctl functions to devices. This is normally called by the
5015  *	user space syscall interfaces but can sometimes be useful for
5016  *	other purposes. The return value is the return from the syscall if
5017  *	positive or a negative errno code on error.
5018  */
5019 
5020 int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg)
5021 {
5022 	struct ifreq ifr;
5023 	int ret;
5024 	char *colon;
5025 
5026 	/* One special case: SIOCGIFCONF takes ifconf argument
5027 	   and requires shared lock, because it sleeps writing
5028 	   to user space.
5029 	 */
5030 
5031 	if (cmd == SIOCGIFCONF) {
5032 		rtnl_lock();
5033 		ret = dev_ifconf(net, (char __user *) arg);
5034 		rtnl_unlock();
5035 		return ret;
5036 	}
5037 	if (cmd == SIOCGIFNAME)
5038 		return dev_ifname(net, (struct ifreq __user *)arg);
5039 
5040 	if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
5041 		return -EFAULT;
5042 
5043 	ifr.ifr_name[IFNAMSIZ-1] = 0;
5044 
5045 	colon = strchr(ifr.ifr_name, ':');
5046 	if (colon)
5047 		*colon = 0;
5048 
5049 	/*
5050 	 *	See which interface the caller is talking about.
5051 	 */
5052 
5053 	switch (cmd) {
5054 	/*
5055 	 *	These ioctl calls:
5056 	 *	- can be done by all.
5057 	 *	- atomic and do not require locking.
5058 	 *	- return a value
5059 	 */
5060 	case SIOCGIFFLAGS:
5061 	case SIOCGIFMETRIC:
5062 	case SIOCGIFMTU:
5063 	case SIOCGIFHWADDR:
5064 	case SIOCGIFSLAVE:
5065 	case SIOCGIFMAP:
5066 	case SIOCGIFINDEX:
5067 	case SIOCGIFTXQLEN:
5068 		dev_load(net, ifr.ifr_name);
5069 		rcu_read_lock();
5070 		ret = dev_ifsioc_locked(net, &ifr, cmd);
5071 		rcu_read_unlock();
5072 		if (!ret) {
5073 			if (colon)
5074 				*colon = ':';
5075 			if (copy_to_user(arg, &ifr,
5076 					 sizeof(struct ifreq)))
5077 				ret = -EFAULT;
5078 		}
5079 		return ret;
5080 
5081 	case SIOCETHTOOL:
5082 		dev_load(net, ifr.ifr_name);
5083 		rtnl_lock();
5084 		ret = dev_ethtool(net, &ifr);
5085 		rtnl_unlock();
5086 		if (!ret) {
5087 			if (colon)
5088 				*colon = ':';
5089 			if (copy_to_user(arg, &ifr,
5090 					 sizeof(struct ifreq)))
5091 				ret = -EFAULT;
5092 		}
5093 		return ret;
5094 
5095 	/*
5096 	 *	These ioctl calls:
5097 	 *	- require superuser power.
5098 	 *	- require strict serialization.
5099 	 *	- return a value
5100 	 */
5101 	case SIOCGMIIPHY:
5102 	case SIOCGMIIREG:
5103 	case SIOCSIFNAME:
5104 		if (!capable(CAP_NET_ADMIN))
5105 			return -EPERM;
5106 		dev_load(net, ifr.ifr_name);
5107 		rtnl_lock();
5108 		ret = dev_ifsioc(net, &ifr, cmd);
5109 		rtnl_unlock();
5110 		if (!ret) {
5111 			if (colon)
5112 				*colon = ':';
5113 			if (copy_to_user(arg, &ifr,
5114 					 sizeof(struct ifreq)))
5115 				ret = -EFAULT;
5116 		}
5117 		return ret;
5118 
5119 	/*
5120 	 *	These ioctl calls:
5121 	 *	- require superuser power.
5122 	 *	- require strict serialization.
5123 	 *	- do not return a value
5124 	 */
5125 	case SIOCSIFFLAGS:
5126 	case SIOCSIFMETRIC:
5127 	case SIOCSIFMTU:
5128 	case SIOCSIFMAP:
5129 	case SIOCSIFHWADDR:
5130 	case SIOCSIFSLAVE:
5131 	case SIOCADDMULTI:
5132 	case SIOCDELMULTI:
5133 	case SIOCSIFHWBROADCAST:
5134 	case SIOCSIFTXQLEN:
5135 	case SIOCSMIIREG:
5136 	case SIOCBONDENSLAVE:
5137 	case SIOCBONDRELEASE:
5138 	case SIOCBONDSETHWADDR:
5139 	case SIOCBONDCHANGEACTIVE:
5140 	case SIOCBRADDIF:
5141 	case SIOCBRDELIF:
5142 	case SIOCSHWTSTAMP:
5143 		if (!capable(CAP_NET_ADMIN))
5144 			return -EPERM;
5145 		/* fall through */
5146 	case SIOCBONDSLAVEINFOQUERY:
5147 	case SIOCBONDINFOQUERY:
5148 		dev_load(net, ifr.ifr_name);
5149 		rtnl_lock();
5150 		ret = dev_ifsioc(net, &ifr, cmd);
5151 		rtnl_unlock();
5152 		return ret;
5153 
5154 	case SIOCGIFMEM:
5155 		/* Get the per device memory space. We can add this but
5156 		 * currently do not support it */
5157 	case SIOCSIFMEM:
5158 		/* Set the per device memory buffer space.
5159 		 * Not applicable in our case */
5160 	case SIOCSIFLINK:
5161 		return -ENOTTY;
5162 
5163 	/*
5164 	 *	Unknown or private ioctl.
5165 	 */
5166 	default:
5167 		if (cmd == SIOCWANDEV ||
5168 		    (cmd >= SIOCDEVPRIVATE &&
5169 		     cmd <= SIOCDEVPRIVATE + 15)) {
5170 			dev_load(net, ifr.ifr_name);
5171 			rtnl_lock();
5172 			ret = dev_ifsioc(net, &ifr, cmd);
5173 			rtnl_unlock();
5174 			if (!ret && copy_to_user(arg, &ifr,
5175 						 sizeof(struct ifreq)))
5176 				ret = -EFAULT;
5177 			return ret;
5178 		}
5179 		/* Take care of Wireless Extensions */
5180 		if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)
5181 			return wext_handle_ioctl(net, &ifr, cmd, arg);
5182 		return -ENOTTY;
5183 	}
5184 }
5185 
5186 
5187 /**
5188  *	dev_new_index	-	allocate an ifindex
5189  *	@net: the applicable net namespace
5190  *
5191  *	Returns a suitable unique value for a new device interface
5192  *	number.  The caller must hold the rtnl semaphore or the
5193  *	dev_base_lock to be sure it remains unique.
5194  */
5195 static int dev_new_index(struct net *net)
5196 {
5197 	static int ifindex;
5198 	for (;;) {
5199 		if (++ifindex <= 0)
5200 			ifindex = 1;
5201 		if (!__dev_get_by_index(net, ifindex))
5202 			return ifindex;
5203 	}
5204 }
5205 
5206 /* Delayed registration/unregisteration */
5207 static LIST_HEAD(net_todo_list);
5208 
5209 static void net_set_todo(struct net_device *dev)
5210 {
5211 	list_add_tail(&dev->todo_list, &net_todo_list);
5212 }
5213 
5214 static void rollback_registered_many(struct list_head *head)
5215 {
5216 	struct net_device *dev, *tmp;
5217 
5218 	BUG_ON(dev_boot_phase);
5219 	ASSERT_RTNL();
5220 
5221 	list_for_each_entry_safe(dev, tmp, head, unreg_list) {
5222 		/* Some devices call without registering
5223 		 * for initialization unwind. Remove those
5224 		 * devices and proceed with the remaining.
5225 		 */
5226 		if (dev->reg_state == NETREG_UNINITIALIZED) {
5227 			pr_debug("unregister_netdevice: device %s/%p never "
5228 				 "was registered\n", dev->name, dev);
5229 
5230 			WARN_ON(1);
5231 			list_del(&dev->unreg_list);
5232 			continue;
5233 		}
5234 		dev->dismantle = true;
5235 		BUG_ON(dev->reg_state != NETREG_REGISTERED);
5236 	}
5237 
5238 	/* If device is running, close it first. */
5239 	dev_close_many(head);
5240 
5241 	list_for_each_entry(dev, head, unreg_list) {
5242 		/* And unlink it from device chain. */
5243 		unlist_netdevice(dev);
5244 
5245 		dev->reg_state = NETREG_UNREGISTERING;
5246 	}
5247 
5248 	synchronize_net();
5249 
5250 	list_for_each_entry(dev, head, unreg_list) {
5251 		/* Shutdown queueing discipline. */
5252 		dev_shutdown(dev);
5253 
5254 
5255 		/* Notify protocols, that we are about to destroy
5256 		   this device. They should clean all the things.
5257 		*/
5258 		call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5259 
5260 		if (!dev->rtnl_link_ops ||
5261 		    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5262 			rtmsg_ifinfo(RTM_DELLINK, dev, ~0U);
5263 
5264 		/*
5265 		 *	Flush the unicast and multicast chains
5266 		 */
5267 		dev_uc_flush(dev);
5268 		dev_mc_flush(dev);
5269 
5270 		if (dev->netdev_ops->ndo_uninit)
5271 			dev->netdev_ops->ndo_uninit(dev);
5272 
5273 		/* Notifier chain MUST detach us from master device. */
5274 		WARN_ON(dev->master);
5275 
5276 		/* Remove entries from kobject tree */
5277 		netdev_unregister_kobject(dev);
5278 	}
5279 
5280 	/* Process any work delayed until the end of the batch */
5281 	dev = list_first_entry(head, struct net_device, unreg_list);
5282 	call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
5283 
5284 	synchronize_net();
5285 
5286 	list_for_each_entry(dev, head, unreg_list)
5287 		dev_put(dev);
5288 }
5289 
5290 static void rollback_registered(struct net_device *dev)
5291 {
5292 	LIST_HEAD(single);
5293 
5294 	list_add(&dev->unreg_list, &single);
5295 	rollback_registered_many(&single);
5296 	list_del(&single);
5297 }
5298 
5299 static netdev_features_t netdev_fix_features(struct net_device *dev,
5300 	netdev_features_t features)
5301 {
5302 	/* Fix illegal checksum combinations */
5303 	if ((features & NETIF_F_HW_CSUM) &&
5304 	    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5305 		netdev_warn(dev, "mixed HW and IP checksum settings.\n");
5306 		features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
5307 	}
5308 
5309 	/* Fix illegal SG+CSUM combinations. */
5310 	if ((features & NETIF_F_SG) &&
5311 	    !(features & NETIF_F_ALL_CSUM)) {
5312 		netdev_dbg(dev,
5313 			"Dropping NETIF_F_SG since no checksum feature.\n");
5314 		features &= ~NETIF_F_SG;
5315 	}
5316 
5317 	/* TSO requires that SG is present as well. */
5318 	if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
5319 		netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
5320 		features &= ~NETIF_F_ALL_TSO;
5321 	}
5322 
5323 	/* TSO ECN requires that TSO is present as well. */
5324 	if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
5325 		features &= ~NETIF_F_TSO_ECN;
5326 
5327 	/* Software GSO depends on SG. */
5328 	if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
5329 		netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
5330 		features &= ~NETIF_F_GSO;
5331 	}
5332 
5333 	/* UFO needs SG and checksumming */
5334 	if (features & NETIF_F_UFO) {
5335 		/* maybe split UFO into V4 and V6? */
5336 		if (!((features & NETIF_F_GEN_CSUM) ||
5337 		    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))
5338 			    == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5339 			netdev_dbg(dev,
5340 				"Dropping NETIF_F_UFO since no checksum offload features.\n");
5341 			features &= ~NETIF_F_UFO;
5342 		}
5343 
5344 		if (!(features & NETIF_F_SG)) {
5345 			netdev_dbg(dev,
5346 				"Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
5347 			features &= ~NETIF_F_UFO;
5348 		}
5349 	}
5350 
5351 	return features;
5352 }
5353 
5354 int __netdev_update_features(struct net_device *dev)
5355 {
5356 	netdev_features_t features;
5357 	int err = 0;
5358 
5359 	ASSERT_RTNL();
5360 
5361 	features = netdev_get_wanted_features(dev);
5362 
5363 	if (dev->netdev_ops->ndo_fix_features)
5364 		features = dev->netdev_ops->ndo_fix_features(dev, features);
5365 
5366 	/* driver might be less strict about feature dependencies */
5367 	features = netdev_fix_features(dev, features);
5368 
5369 	if (dev->features == features)
5370 		return 0;
5371 
5372 	netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
5373 		&dev->features, &features);
5374 
5375 	if (dev->netdev_ops->ndo_set_features)
5376 		err = dev->netdev_ops->ndo_set_features(dev, features);
5377 
5378 	if (unlikely(err < 0)) {
5379 		netdev_err(dev,
5380 			"set_features() failed (%d); wanted %pNF, left %pNF\n",
5381 			err, &features, &dev->features);
5382 		return -1;
5383 	}
5384 
5385 	if (!err)
5386 		dev->features = features;
5387 
5388 	return 1;
5389 }
5390 
5391 /**
5392  *	netdev_update_features - recalculate device features
5393  *	@dev: the device to check
5394  *
5395  *	Recalculate dev->features set and send notifications if it
5396  *	has changed. Should be called after driver or hardware dependent
5397  *	conditions might have changed that influence the features.
5398  */
5399 void netdev_update_features(struct net_device *dev)
5400 {
5401 	if (__netdev_update_features(dev))
5402 		netdev_features_change(dev);
5403 }
5404 EXPORT_SYMBOL(netdev_update_features);
5405 
5406 /**
5407  *	netdev_change_features - recalculate device features
5408  *	@dev: the device to check
5409  *
5410  *	Recalculate dev->features set and send notifications even
5411  *	if they have not changed. Should be called instead of
5412  *	netdev_update_features() if also dev->vlan_features might
5413  *	have changed to allow the changes to be propagated to stacked
5414  *	VLAN devices.
5415  */
5416 void netdev_change_features(struct net_device *dev)
5417 {
5418 	__netdev_update_features(dev);
5419 	netdev_features_change(dev);
5420 }
5421 EXPORT_SYMBOL(netdev_change_features);
5422 
5423 /**
5424  *	netif_stacked_transfer_operstate -	transfer operstate
5425  *	@rootdev: the root or lower level device to transfer state from
5426  *	@dev: the device to transfer operstate to
5427  *
5428  *	Transfer operational state from root to device. This is normally
5429  *	called when a stacking relationship exists between the root
5430  *	device and the device(a leaf device).
5431  */
5432 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
5433 					struct net_device *dev)
5434 {
5435 	if (rootdev->operstate == IF_OPER_DORMANT)
5436 		netif_dormant_on(dev);
5437 	else
5438 		netif_dormant_off(dev);
5439 
5440 	if (netif_carrier_ok(rootdev)) {
5441 		if (!netif_carrier_ok(dev))
5442 			netif_carrier_on(dev);
5443 	} else {
5444 		if (netif_carrier_ok(dev))
5445 			netif_carrier_off(dev);
5446 	}
5447 }
5448 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
5449 
5450 #ifdef CONFIG_RPS
5451 static int netif_alloc_rx_queues(struct net_device *dev)
5452 {
5453 	unsigned int i, count = dev->num_rx_queues;
5454 	struct netdev_rx_queue *rx;
5455 
5456 	BUG_ON(count < 1);
5457 
5458 	rx = kcalloc(count, sizeof(struct netdev_rx_queue), GFP_KERNEL);
5459 	if (!rx) {
5460 		pr_err("netdev: Unable to allocate %u rx queues.\n", count);
5461 		return -ENOMEM;
5462 	}
5463 	dev->_rx = rx;
5464 
5465 	for (i = 0; i < count; i++)
5466 		rx[i].dev = dev;
5467 	return 0;
5468 }
5469 #endif
5470 
5471 static void netdev_init_one_queue(struct net_device *dev,
5472 				  struct netdev_queue *queue, void *_unused)
5473 {
5474 	/* Initialize queue lock */
5475 	spin_lock_init(&queue->_xmit_lock);
5476 	netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
5477 	queue->xmit_lock_owner = -1;
5478 	netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
5479 	queue->dev = dev;
5480 #ifdef CONFIG_BQL
5481 	dql_init(&queue->dql, HZ);
5482 #endif
5483 }
5484 
5485 static int netif_alloc_netdev_queues(struct net_device *dev)
5486 {
5487 	unsigned int count = dev->num_tx_queues;
5488 	struct netdev_queue *tx;
5489 
5490 	BUG_ON(count < 1);
5491 
5492 	tx = kcalloc(count, sizeof(struct netdev_queue), GFP_KERNEL);
5493 	if (!tx) {
5494 		pr_err("netdev: Unable to allocate %u tx queues.\n",
5495 		       count);
5496 		return -ENOMEM;
5497 	}
5498 	dev->_tx = tx;
5499 
5500 	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
5501 	spin_lock_init(&dev->tx_global_lock);
5502 
5503 	return 0;
5504 }
5505 
5506 /**
5507  *	register_netdevice	- register a network device
5508  *	@dev: device to register
5509  *
5510  *	Take a completed network device structure and add it to the kernel
5511  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5512  *	chain. 0 is returned on success. A negative errno code is returned
5513  *	on a failure to set up the device, or if the name is a duplicate.
5514  *
5515  *	Callers must hold the rtnl semaphore. You may want
5516  *	register_netdev() instead of this.
5517  *
5518  *	BUGS:
5519  *	The locking appears insufficient to guarantee two parallel registers
5520  *	will not get the same name.
5521  */
5522 
5523 int register_netdevice(struct net_device *dev)
5524 {
5525 	int ret;
5526 	struct net *net = dev_net(dev);
5527 
5528 	BUG_ON(dev_boot_phase);
5529 	ASSERT_RTNL();
5530 
5531 	might_sleep();
5532 
5533 	/* When net_device's are persistent, this will be fatal. */
5534 	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
5535 	BUG_ON(!net);
5536 
5537 	spin_lock_init(&dev->addr_list_lock);
5538 	netdev_set_addr_lockdep_class(dev);
5539 
5540 	dev->iflink = -1;
5541 
5542 	ret = dev_get_valid_name(dev, dev->name);
5543 	if (ret < 0)
5544 		goto out;
5545 
5546 	/* Init, if this function is available */
5547 	if (dev->netdev_ops->ndo_init) {
5548 		ret = dev->netdev_ops->ndo_init(dev);
5549 		if (ret) {
5550 			if (ret > 0)
5551 				ret = -EIO;
5552 			goto out;
5553 		}
5554 	}
5555 
5556 	dev->ifindex = dev_new_index(net);
5557 	if (dev->iflink == -1)
5558 		dev->iflink = dev->ifindex;
5559 
5560 	/* Transfer changeable features to wanted_features and enable
5561 	 * software offloads (GSO and GRO).
5562 	 */
5563 	dev->hw_features |= NETIF_F_SOFT_FEATURES;
5564 	dev->features |= NETIF_F_SOFT_FEATURES;
5565 	dev->wanted_features = dev->features & dev->hw_features;
5566 
5567 	/* Turn on no cache copy if HW is doing checksum */
5568 	if (!(dev->flags & IFF_LOOPBACK)) {
5569 		dev->hw_features |= NETIF_F_NOCACHE_COPY;
5570 		if (dev->features & NETIF_F_ALL_CSUM) {
5571 			dev->wanted_features |= NETIF_F_NOCACHE_COPY;
5572 			dev->features |= NETIF_F_NOCACHE_COPY;
5573 		}
5574 	}
5575 
5576 	/* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
5577 	 */
5578 	dev->vlan_features |= NETIF_F_HIGHDMA;
5579 
5580 	ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
5581 	ret = notifier_to_errno(ret);
5582 	if (ret)
5583 		goto err_uninit;
5584 
5585 	ret = netdev_register_kobject(dev);
5586 	if (ret)
5587 		goto err_uninit;
5588 	dev->reg_state = NETREG_REGISTERED;
5589 
5590 	__netdev_update_features(dev);
5591 
5592 	/*
5593 	 *	Default initial state at registry is that the
5594 	 *	device is present.
5595 	 */
5596 
5597 	set_bit(__LINK_STATE_PRESENT, &dev->state);
5598 
5599 	dev_init_scheduler(dev);
5600 	dev_hold(dev);
5601 	list_netdevice(dev);
5602 
5603 	/* Notify protocols, that a new device appeared. */
5604 	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
5605 	ret = notifier_to_errno(ret);
5606 	if (ret) {
5607 		rollback_registered(dev);
5608 		dev->reg_state = NETREG_UNREGISTERED;
5609 	}
5610 	/*
5611 	 *	Prevent userspace races by waiting until the network
5612 	 *	device is fully setup before sending notifications.
5613 	 */
5614 	if (!dev->rtnl_link_ops ||
5615 	    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5616 		rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
5617 
5618 out:
5619 	return ret;
5620 
5621 err_uninit:
5622 	if (dev->netdev_ops->ndo_uninit)
5623 		dev->netdev_ops->ndo_uninit(dev);
5624 	goto out;
5625 }
5626 EXPORT_SYMBOL(register_netdevice);
5627 
5628 /**
5629  *	init_dummy_netdev	- init a dummy network device for NAPI
5630  *	@dev: device to init
5631  *
5632  *	This takes a network device structure and initialize the minimum
5633  *	amount of fields so it can be used to schedule NAPI polls without
5634  *	registering a full blown interface. This is to be used by drivers
5635  *	that need to tie several hardware interfaces to a single NAPI
5636  *	poll scheduler due to HW limitations.
5637  */
5638 int init_dummy_netdev(struct net_device *dev)
5639 {
5640 	/* Clear everything. Note we don't initialize spinlocks
5641 	 * are they aren't supposed to be taken by any of the
5642 	 * NAPI code and this dummy netdev is supposed to be
5643 	 * only ever used for NAPI polls
5644 	 */
5645 	memset(dev, 0, sizeof(struct net_device));
5646 
5647 	/* make sure we BUG if trying to hit standard
5648 	 * register/unregister code path
5649 	 */
5650 	dev->reg_state = NETREG_DUMMY;
5651 
5652 	/* NAPI wants this */
5653 	INIT_LIST_HEAD(&dev->napi_list);
5654 
5655 	/* a dummy interface is started by default */
5656 	set_bit(__LINK_STATE_PRESENT, &dev->state);
5657 	set_bit(__LINK_STATE_START, &dev->state);
5658 
5659 	/* Note : We dont allocate pcpu_refcnt for dummy devices,
5660 	 * because users of this 'device' dont need to change
5661 	 * its refcount.
5662 	 */
5663 
5664 	return 0;
5665 }
5666 EXPORT_SYMBOL_GPL(init_dummy_netdev);
5667 
5668 
5669 /**
5670  *	register_netdev	- register a network device
5671  *	@dev: device to register
5672  *
5673  *	Take a completed network device structure and add it to the kernel
5674  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5675  *	chain. 0 is returned on success. A negative errno code is returned
5676  *	on a failure to set up the device, or if the name is a duplicate.
5677  *
5678  *	This is a wrapper around register_netdevice that takes the rtnl semaphore
5679  *	and expands the device name if you passed a format string to
5680  *	alloc_netdev.
5681  */
5682 int register_netdev(struct net_device *dev)
5683 {
5684 	int err;
5685 
5686 	rtnl_lock();
5687 	err = register_netdevice(dev);
5688 	rtnl_unlock();
5689 	return err;
5690 }
5691 EXPORT_SYMBOL(register_netdev);
5692 
5693 int netdev_refcnt_read(const struct net_device *dev)
5694 {
5695 	int i, refcnt = 0;
5696 
5697 	for_each_possible_cpu(i)
5698 		refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
5699 	return refcnt;
5700 }
5701 EXPORT_SYMBOL(netdev_refcnt_read);
5702 
5703 /*
5704  * netdev_wait_allrefs - wait until all references are gone.
5705  *
5706  * This is called when unregistering network devices.
5707  *
5708  * Any protocol or device that holds a reference should register
5709  * for netdevice notification, and cleanup and put back the
5710  * reference if they receive an UNREGISTER event.
5711  * We can get stuck here if buggy protocols don't correctly
5712  * call dev_put.
5713  */
5714 static void netdev_wait_allrefs(struct net_device *dev)
5715 {
5716 	unsigned long rebroadcast_time, warning_time;
5717 	int refcnt;
5718 
5719 	linkwatch_forget_dev(dev);
5720 
5721 	rebroadcast_time = warning_time = jiffies;
5722 	refcnt = netdev_refcnt_read(dev);
5723 
5724 	while (refcnt != 0) {
5725 		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
5726 			rtnl_lock();
5727 
5728 			/* Rebroadcast unregister notification */
5729 			call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5730 			/* don't resend NETDEV_UNREGISTER_BATCH, _BATCH users
5731 			 * should have already handle it the first time */
5732 
5733 			if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
5734 				     &dev->state)) {
5735 				/* We must not have linkwatch events
5736 				 * pending on unregister. If this
5737 				 * happens, we simply run the queue
5738 				 * unscheduled, resulting in a noop
5739 				 * for this device.
5740 				 */
5741 				linkwatch_run_queue();
5742 			}
5743 
5744 			__rtnl_unlock();
5745 
5746 			rebroadcast_time = jiffies;
5747 		}
5748 
5749 		msleep(250);
5750 
5751 		refcnt = netdev_refcnt_read(dev);
5752 
5753 		if (time_after(jiffies, warning_time + 10 * HZ)) {
5754 			printk(KERN_EMERG "unregister_netdevice: "
5755 			       "waiting for %s to become free. Usage "
5756 			       "count = %d\n",
5757 			       dev->name, refcnt);
5758 			warning_time = jiffies;
5759 		}
5760 	}
5761 }
5762 
5763 /* The sequence is:
5764  *
5765  *	rtnl_lock();
5766  *	...
5767  *	register_netdevice(x1);
5768  *	register_netdevice(x2);
5769  *	...
5770  *	unregister_netdevice(y1);
5771  *	unregister_netdevice(y2);
5772  *      ...
5773  *	rtnl_unlock();
5774  *	free_netdev(y1);
5775  *	free_netdev(y2);
5776  *
5777  * We are invoked by rtnl_unlock().
5778  * This allows us to deal with problems:
5779  * 1) We can delete sysfs objects which invoke hotplug
5780  *    without deadlocking with linkwatch via keventd.
5781  * 2) Since we run with the RTNL semaphore not held, we can sleep
5782  *    safely in order to wait for the netdev refcnt to drop to zero.
5783  *
5784  * We must not return until all unregister events added during
5785  * the interval the lock was held have been completed.
5786  */
5787 void netdev_run_todo(void)
5788 {
5789 	struct list_head list;
5790 
5791 	/* Snapshot list, allow later requests */
5792 	list_replace_init(&net_todo_list, &list);
5793 
5794 	__rtnl_unlock();
5795 
5796 	/* Wait for rcu callbacks to finish before attempting to drain
5797 	 * the device list.  This usually avoids a 250ms wait.
5798 	 */
5799 	if (!list_empty(&list))
5800 		rcu_barrier();
5801 
5802 	while (!list_empty(&list)) {
5803 		struct net_device *dev
5804 			= list_first_entry(&list, struct net_device, todo_list);
5805 		list_del(&dev->todo_list);
5806 
5807 		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
5808 			printk(KERN_ERR "network todo '%s' but state %d\n",
5809 			       dev->name, dev->reg_state);
5810 			dump_stack();
5811 			continue;
5812 		}
5813 
5814 		dev->reg_state = NETREG_UNREGISTERED;
5815 
5816 		on_each_cpu(flush_backlog, dev, 1);
5817 
5818 		netdev_wait_allrefs(dev);
5819 
5820 		/* paranoia */
5821 		BUG_ON(netdev_refcnt_read(dev));
5822 		WARN_ON(rcu_access_pointer(dev->ip_ptr));
5823 		WARN_ON(rcu_access_pointer(dev->ip6_ptr));
5824 		WARN_ON(dev->dn_ptr);
5825 
5826 		if (dev->destructor)
5827 			dev->destructor(dev);
5828 
5829 		/* Free network device */
5830 		kobject_put(&dev->dev.kobj);
5831 	}
5832 }
5833 
5834 /* Convert net_device_stats to rtnl_link_stats64.  They have the same
5835  * fields in the same order, with only the type differing.
5836  */
5837 static void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
5838 				    const struct net_device_stats *netdev_stats)
5839 {
5840 #if BITS_PER_LONG == 64
5841         BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
5842         memcpy(stats64, netdev_stats, sizeof(*stats64));
5843 #else
5844 	size_t i, n = sizeof(*stats64) / sizeof(u64);
5845 	const unsigned long *src = (const unsigned long *)netdev_stats;
5846 	u64 *dst = (u64 *)stats64;
5847 
5848 	BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
5849 		     sizeof(*stats64) / sizeof(u64));
5850 	for (i = 0; i < n; i++)
5851 		dst[i] = src[i];
5852 #endif
5853 }
5854 
5855 /**
5856  *	dev_get_stats	- get network device statistics
5857  *	@dev: device to get statistics from
5858  *	@storage: place to store stats
5859  *
5860  *	Get network statistics from device. Return @storage.
5861  *	The device driver may provide its own method by setting
5862  *	dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
5863  *	otherwise the internal statistics structure is used.
5864  */
5865 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
5866 					struct rtnl_link_stats64 *storage)
5867 {
5868 	const struct net_device_ops *ops = dev->netdev_ops;
5869 
5870 	if (ops->ndo_get_stats64) {
5871 		memset(storage, 0, sizeof(*storage));
5872 		ops->ndo_get_stats64(dev, storage);
5873 	} else if (ops->ndo_get_stats) {
5874 		netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
5875 	} else {
5876 		netdev_stats_to_stats64(storage, &dev->stats);
5877 	}
5878 	storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
5879 	return storage;
5880 }
5881 EXPORT_SYMBOL(dev_get_stats);
5882 
5883 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
5884 {
5885 	struct netdev_queue *queue = dev_ingress_queue(dev);
5886 
5887 #ifdef CONFIG_NET_CLS_ACT
5888 	if (queue)
5889 		return queue;
5890 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
5891 	if (!queue)
5892 		return NULL;
5893 	netdev_init_one_queue(dev, queue, NULL);
5894 	queue->qdisc = &noop_qdisc;
5895 	queue->qdisc_sleeping = &noop_qdisc;
5896 	rcu_assign_pointer(dev->ingress_queue, queue);
5897 #endif
5898 	return queue;
5899 }
5900 
5901 /**
5902  *	alloc_netdev_mqs - allocate network device
5903  *	@sizeof_priv:	size of private data to allocate space for
5904  *	@name:		device name format string
5905  *	@setup:		callback to initialize device
5906  *	@txqs:		the number of TX subqueues to allocate
5907  *	@rxqs:		the number of RX subqueues to allocate
5908  *
5909  *	Allocates a struct net_device with private data area for driver use
5910  *	and performs basic initialization.  Also allocates subquue structs
5911  *	for each queue on the device.
5912  */
5913 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
5914 		void (*setup)(struct net_device *),
5915 		unsigned int txqs, unsigned int rxqs)
5916 {
5917 	struct net_device *dev;
5918 	size_t alloc_size;
5919 	struct net_device *p;
5920 
5921 	BUG_ON(strlen(name) >= sizeof(dev->name));
5922 
5923 	if (txqs < 1) {
5924 		pr_err("alloc_netdev: Unable to allocate device "
5925 		       "with zero queues.\n");
5926 		return NULL;
5927 	}
5928 
5929 #ifdef CONFIG_RPS
5930 	if (rxqs < 1) {
5931 		pr_err("alloc_netdev: Unable to allocate device "
5932 		       "with zero RX queues.\n");
5933 		return NULL;
5934 	}
5935 #endif
5936 
5937 	alloc_size = sizeof(struct net_device);
5938 	if (sizeof_priv) {
5939 		/* ensure 32-byte alignment of private area */
5940 		alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
5941 		alloc_size += sizeof_priv;
5942 	}
5943 	/* ensure 32-byte alignment of whole construct */
5944 	alloc_size += NETDEV_ALIGN - 1;
5945 
5946 	p = kzalloc(alloc_size, GFP_KERNEL);
5947 	if (!p) {
5948 		printk(KERN_ERR "alloc_netdev: Unable to allocate device.\n");
5949 		return NULL;
5950 	}
5951 
5952 	dev = PTR_ALIGN(p, NETDEV_ALIGN);
5953 	dev->padded = (char *)dev - (char *)p;
5954 
5955 	dev->pcpu_refcnt = alloc_percpu(int);
5956 	if (!dev->pcpu_refcnt)
5957 		goto free_p;
5958 
5959 	if (dev_addr_init(dev))
5960 		goto free_pcpu;
5961 
5962 	dev_mc_init(dev);
5963 	dev_uc_init(dev);
5964 
5965 	dev_net_set(dev, &init_net);
5966 
5967 	dev->gso_max_size = GSO_MAX_SIZE;
5968 
5969 	INIT_LIST_HEAD(&dev->napi_list);
5970 	INIT_LIST_HEAD(&dev->unreg_list);
5971 	INIT_LIST_HEAD(&dev->link_watch_list);
5972 	dev->priv_flags = IFF_XMIT_DST_RELEASE;
5973 	setup(dev);
5974 
5975 	dev->num_tx_queues = txqs;
5976 	dev->real_num_tx_queues = txqs;
5977 	if (netif_alloc_netdev_queues(dev))
5978 		goto free_all;
5979 
5980 #ifdef CONFIG_RPS
5981 	dev->num_rx_queues = rxqs;
5982 	dev->real_num_rx_queues = rxqs;
5983 	if (netif_alloc_rx_queues(dev))
5984 		goto free_all;
5985 #endif
5986 
5987 	strcpy(dev->name, name);
5988 	dev->group = INIT_NETDEV_GROUP;
5989 	return dev;
5990 
5991 free_all:
5992 	free_netdev(dev);
5993 	return NULL;
5994 
5995 free_pcpu:
5996 	free_percpu(dev->pcpu_refcnt);
5997 	kfree(dev->_tx);
5998 #ifdef CONFIG_RPS
5999 	kfree(dev->_rx);
6000 #endif
6001 
6002 free_p:
6003 	kfree(p);
6004 	return NULL;
6005 }
6006 EXPORT_SYMBOL(alloc_netdev_mqs);
6007 
6008 /**
6009  *	free_netdev - free network device
6010  *	@dev: device
6011  *
6012  *	This function does the last stage of destroying an allocated device
6013  * 	interface. The reference to the device object is released.
6014  *	If this is the last reference then it will be freed.
6015  */
6016 void free_netdev(struct net_device *dev)
6017 {
6018 	struct napi_struct *p, *n;
6019 
6020 	release_net(dev_net(dev));
6021 
6022 	kfree(dev->_tx);
6023 #ifdef CONFIG_RPS
6024 	kfree(dev->_rx);
6025 #endif
6026 
6027 	kfree(rcu_dereference_protected(dev->ingress_queue, 1));
6028 
6029 	/* Flush device addresses */
6030 	dev_addr_flush(dev);
6031 
6032 	list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
6033 		netif_napi_del(p);
6034 
6035 	free_percpu(dev->pcpu_refcnt);
6036 	dev->pcpu_refcnt = NULL;
6037 
6038 	/*  Compatibility with error handling in drivers */
6039 	if (dev->reg_state == NETREG_UNINITIALIZED) {
6040 		kfree((char *)dev - dev->padded);
6041 		return;
6042 	}
6043 
6044 	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
6045 	dev->reg_state = NETREG_RELEASED;
6046 
6047 	/* will free via device release */
6048 	put_device(&dev->dev);
6049 }
6050 EXPORT_SYMBOL(free_netdev);
6051 
6052 /**
6053  *	synchronize_net -  Synchronize with packet receive processing
6054  *
6055  *	Wait for packets currently being received to be done.
6056  *	Does not block later packets from starting.
6057  */
6058 void synchronize_net(void)
6059 {
6060 	might_sleep();
6061 	if (rtnl_is_locked())
6062 		synchronize_rcu_expedited();
6063 	else
6064 		synchronize_rcu();
6065 }
6066 EXPORT_SYMBOL(synchronize_net);
6067 
6068 /**
6069  *	unregister_netdevice_queue - remove device from the kernel
6070  *	@dev: device
6071  *	@head: list
6072  *
6073  *	This function shuts down a device interface and removes it
6074  *	from the kernel tables.
6075  *	If head not NULL, device is queued to be unregistered later.
6076  *
6077  *	Callers must hold the rtnl semaphore.  You may want
6078  *	unregister_netdev() instead of this.
6079  */
6080 
6081 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
6082 {
6083 	ASSERT_RTNL();
6084 
6085 	if (head) {
6086 		list_move_tail(&dev->unreg_list, head);
6087 	} else {
6088 		rollback_registered(dev);
6089 		/* Finish processing unregister after unlock */
6090 		net_set_todo(dev);
6091 	}
6092 }
6093 EXPORT_SYMBOL(unregister_netdevice_queue);
6094 
6095 /**
6096  *	unregister_netdevice_many - unregister many devices
6097  *	@head: list of devices
6098  */
6099 void unregister_netdevice_many(struct list_head *head)
6100 {
6101 	struct net_device *dev;
6102 
6103 	if (!list_empty(head)) {
6104 		rollback_registered_many(head);
6105 		list_for_each_entry(dev, head, unreg_list)
6106 			net_set_todo(dev);
6107 	}
6108 }
6109 EXPORT_SYMBOL(unregister_netdevice_many);
6110 
6111 /**
6112  *	unregister_netdev - remove device from the kernel
6113  *	@dev: device
6114  *
6115  *	This function shuts down a device interface and removes it
6116  *	from the kernel tables.
6117  *
6118  *	This is just a wrapper for unregister_netdevice that takes
6119  *	the rtnl semaphore.  In general you want to use this and not
6120  *	unregister_netdevice.
6121  */
6122 void unregister_netdev(struct net_device *dev)
6123 {
6124 	rtnl_lock();
6125 	unregister_netdevice(dev);
6126 	rtnl_unlock();
6127 }
6128 EXPORT_SYMBOL(unregister_netdev);
6129 
6130 /**
6131  *	dev_change_net_namespace - move device to different nethost namespace
6132  *	@dev: device
6133  *	@net: network namespace
6134  *	@pat: If not NULL name pattern to try if the current device name
6135  *	      is already taken in the destination network namespace.
6136  *
6137  *	This function shuts down a device interface and moves it
6138  *	to a new network namespace. On success 0 is returned, on
6139  *	a failure a netagive errno code is returned.
6140  *
6141  *	Callers must hold the rtnl semaphore.
6142  */
6143 
6144 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
6145 {
6146 	int err;
6147 
6148 	ASSERT_RTNL();
6149 
6150 	/* Don't allow namespace local devices to be moved. */
6151 	err = -EINVAL;
6152 	if (dev->features & NETIF_F_NETNS_LOCAL)
6153 		goto out;
6154 
6155 	/* Ensure the device has been registrered */
6156 	err = -EINVAL;
6157 	if (dev->reg_state != NETREG_REGISTERED)
6158 		goto out;
6159 
6160 	/* Get out if there is nothing todo */
6161 	err = 0;
6162 	if (net_eq(dev_net(dev), net))
6163 		goto out;
6164 
6165 	/* Pick the destination device name, and ensure
6166 	 * we can use it in the destination network namespace.
6167 	 */
6168 	err = -EEXIST;
6169 	if (__dev_get_by_name(net, dev->name)) {
6170 		/* We get here if we can't use the current device name */
6171 		if (!pat)
6172 			goto out;
6173 		if (dev_get_valid_name(dev, pat) < 0)
6174 			goto out;
6175 	}
6176 
6177 	/*
6178 	 * And now a mini version of register_netdevice unregister_netdevice.
6179 	 */
6180 
6181 	/* If device is running close it first. */
6182 	dev_close(dev);
6183 
6184 	/* And unlink it from device chain */
6185 	err = -ENODEV;
6186 	unlist_netdevice(dev);
6187 
6188 	synchronize_net();
6189 
6190 	/* Shutdown queueing discipline. */
6191 	dev_shutdown(dev);
6192 
6193 	/* Notify protocols, that we are about to destroy
6194 	   this device. They should clean all the things.
6195 
6196 	   Note that dev->reg_state stays at NETREG_REGISTERED.
6197 	   This is wanted because this way 8021q and macvlan know
6198 	   the device is just moving and can keep their slaves up.
6199 	*/
6200 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6201 	call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
6202 	rtmsg_ifinfo(RTM_DELLINK, dev, ~0U);
6203 
6204 	/*
6205 	 *	Flush the unicast and multicast chains
6206 	 */
6207 	dev_uc_flush(dev);
6208 	dev_mc_flush(dev);
6209 
6210 	/* Actually switch the network namespace */
6211 	dev_net_set(dev, net);
6212 
6213 	/* If there is an ifindex conflict assign a new one */
6214 	if (__dev_get_by_index(net, dev->ifindex)) {
6215 		int iflink = (dev->iflink == dev->ifindex);
6216 		dev->ifindex = dev_new_index(net);
6217 		if (iflink)
6218 			dev->iflink = dev->ifindex;
6219 	}
6220 
6221 	/* Fixup kobjects */
6222 	err = device_rename(&dev->dev, dev->name);
6223 	WARN_ON(err);
6224 
6225 	/* Add the device back in the hashes */
6226 	list_netdevice(dev);
6227 
6228 	/* Notify protocols, that a new device appeared. */
6229 	call_netdevice_notifiers(NETDEV_REGISTER, dev);
6230 
6231 	/*
6232 	 *	Prevent userspace races by waiting until the network
6233 	 *	device is fully setup before sending notifications.
6234 	 */
6235 	rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
6236 
6237 	synchronize_net();
6238 	err = 0;
6239 out:
6240 	return err;
6241 }
6242 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
6243 
6244 static int dev_cpu_callback(struct notifier_block *nfb,
6245 			    unsigned long action,
6246 			    void *ocpu)
6247 {
6248 	struct sk_buff **list_skb;
6249 	struct sk_buff *skb;
6250 	unsigned int cpu, oldcpu = (unsigned long)ocpu;
6251 	struct softnet_data *sd, *oldsd;
6252 
6253 	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
6254 		return NOTIFY_OK;
6255 
6256 	local_irq_disable();
6257 	cpu = smp_processor_id();
6258 	sd = &per_cpu(softnet_data, cpu);
6259 	oldsd = &per_cpu(softnet_data, oldcpu);
6260 
6261 	/* Find end of our completion_queue. */
6262 	list_skb = &sd->completion_queue;
6263 	while (*list_skb)
6264 		list_skb = &(*list_skb)->next;
6265 	/* Append completion queue from offline CPU. */
6266 	*list_skb = oldsd->completion_queue;
6267 	oldsd->completion_queue = NULL;
6268 
6269 	/* Append output queue from offline CPU. */
6270 	if (oldsd->output_queue) {
6271 		*sd->output_queue_tailp = oldsd->output_queue;
6272 		sd->output_queue_tailp = oldsd->output_queue_tailp;
6273 		oldsd->output_queue = NULL;
6274 		oldsd->output_queue_tailp = &oldsd->output_queue;
6275 	}
6276 	/* Append NAPI poll list from offline CPU. */
6277 	if (!list_empty(&oldsd->poll_list)) {
6278 		list_splice_init(&oldsd->poll_list, &sd->poll_list);
6279 		raise_softirq_irqoff(NET_RX_SOFTIRQ);
6280 	}
6281 
6282 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
6283 	local_irq_enable();
6284 
6285 	/* Process offline CPU's input_pkt_queue */
6286 	while ((skb = __skb_dequeue(&oldsd->process_queue))) {
6287 		netif_rx(skb);
6288 		input_queue_head_incr(oldsd);
6289 	}
6290 	while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) {
6291 		netif_rx(skb);
6292 		input_queue_head_incr(oldsd);
6293 	}
6294 
6295 	return NOTIFY_OK;
6296 }
6297 
6298 
6299 /**
6300  *	netdev_increment_features - increment feature set by one
6301  *	@all: current feature set
6302  *	@one: new feature set
6303  *	@mask: mask feature set
6304  *
6305  *	Computes a new feature set after adding a device with feature set
6306  *	@one to the master device with current feature set @all.  Will not
6307  *	enable anything that is off in @mask. Returns the new feature set.
6308  */
6309 netdev_features_t netdev_increment_features(netdev_features_t all,
6310 	netdev_features_t one, netdev_features_t mask)
6311 {
6312 	if (mask & NETIF_F_GEN_CSUM)
6313 		mask |= NETIF_F_ALL_CSUM;
6314 	mask |= NETIF_F_VLAN_CHALLENGED;
6315 
6316 	all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask;
6317 	all &= one | ~NETIF_F_ALL_FOR_ALL;
6318 
6319 	/* If one device supports hw checksumming, set for all. */
6320 	if (all & NETIF_F_GEN_CSUM)
6321 		all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
6322 
6323 	return all;
6324 }
6325 EXPORT_SYMBOL(netdev_increment_features);
6326 
6327 static struct hlist_head *netdev_create_hash(void)
6328 {
6329 	int i;
6330 	struct hlist_head *hash;
6331 
6332 	hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
6333 	if (hash != NULL)
6334 		for (i = 0; i < NETDEV_HASHENTRIES; i++)
6335 			INIT_HLIST_HEAD(&hash[i]);
6336 
6337 	return hash;
6338 }
6339 
6340 /* Initialize per network namespace state */
6341 static int __net_init netdev_init(struct net *net)
6342 {
6343 	INIT_LIST_HEAD(&net->dev_base_head);
6344 
6345 	net->dev_name_head = netdev_create_hash();
6346 	if (net->dev_name_head == NULL)
6347 		goto err_name;
6348 
6349 	net->dev_index_head = netdev_create_hash();
6350 	if (net->dev_index_head == NULL)
6351 		goto err_idx;
6352 
6353 	return 0;
6354 
6355 err_idx:
6356 	kfree(net->dev_name_head);
6357 err_name:
6358 	return -ENOMEM;
6359 }
6360 
6361 /**
6362  *	netdev_drivername - network driver for the device
6363  *	@dev: network device
6364  *
6365  *	Determine network driver for device.
6366  */
6367 const char *netdev_drivername(const struct net_device *dev)
6368 {
6369 	const struct device_driver *driver;
6370 	const struct device *parent;
6371 	const char *empty = "";
6372 
6373 	parent = dev->dev.parent;
6374 	if (!parent)
6375 		return empty;
6376 
6377 	driver = parent->driver;
6378 	if (driver && driver->name)
6379 		return driver->name;
6380 	return empty;
6381 }
6382 
6383 int __netdev_printk(const char *level, const struct net_device *dev,
6384 			   struct va_format *vaf)
6385 {
6386 	int r;
6387 
6388 	if (dev && dev->dev.parent)
6389 		r = dev_printk(level, dev->dev.parent, "%s: %pV",
6390 			       netdev_name(dev), vaf);
6391 	else if (dev)
6392 		r = printk("%s%s: %pV", level, netdev_name(dev), vaf);
6393 	else
6394 		r = printk("%s(NULL net_device): %pV", level, vaf);
6395 
6396 	return r;
6397 }
6398 EXPORT_SYMBOL(__netdev_printk);
6399 
6400 int netdev_printk(const char *level, const struct net_device *dev,
6401 		  const char *format, ...)
6402 {
6403 	struct va_format vaf;
6404 	va_list args;
6405 	int r;
6406 
6407 	va_start(args, format);
6408 
6409 	vaf.fmt = format;
6410 	vaf.va = &args;
6411 
6412 	r = __netdev_printk(level, dev, &vaf);
6413 	va_end(args);
6414 
6415 	return r;
6416 }
6417 EXPORT_SYMBOL(netdev_printk);
6418 
6419 #define define_netdev_printk_level(func, level)			\
6420 int func(const struct net_device *dev, const char *fmt, ...)	\
6421 {								\
6422 	int r;							\
6423 	struct va_format vaf;					\
6424 	va_list args;						\
6425 								\
6426 	va_start(args, fmt);					\
6427 								\
6428 	vaf.fmt = fmt;						\
6429 	vaf.va = &args;						\
6430 								\
6431 	r = __netdev_printk(level, dev, &vaf);			\
6432 	va_end(args);						\
6433 								\
6434 	return r;						\
6435 }								\
6436 EXPORT_SYMBOL(func);
6437 
6438 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
6439 define_netdev_printk_level(netdev_alert, KERN_ALERT);
6440 define_netdev_printk_level(netdev_crit, KERN_CRIT);
6441 define_netdev_printk_level(netdev_err, KERN_ERR);
6442 define_netdev_printk_level(netdev_warn, KERN_WARNING);
6443 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
6444 define_netdev_printk_level(netdev_info, KERN_INFO);
6445 
6446 static void __net_exit netdev_exit(struct net *net)
6447 {
6448 	kfree(net->dev_name_head);
6449 	kfree(net->dev_index_head);
6450 }
6451 
6452 static struct pernet_operations __net_initdata netdev_net_ops = {
6453 	.init = netdev_init,
6454 	.exit = netdev_exit,
6455 };
6456 
6457 static void __net_exit default_device_exit(struct net *net)
6458 {
6459 	struct net_device *dev, *aux;
6460 	/*
6461 	 * Push all migratable network devices back to the
6462 	 * initial network namespace
6463 	 */
6464 	rtnl_lock();
6465 	for_each_netdev_safe(net, dev, aux) {
6466 		int err;
6467 		char fb_name[IFNAMSIZ];
6468 
6469 		/* Ignore unmoveable devices (i.e. loopback) */
6470 		if (dev->features & NETIF_F_NETNS_LOCAL)
6471 			continue;
6472 
6473 		/* Leave virtual devices for the generic cleanup */
6474 		if (dev->rtnl_link_ops)
6475 			continue;
6476 
6477 		/* Push remaining network devices to init_net */
6478 		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
6479 		err = dev_change_net_namespace(dev, &init_net, fb_name);
6480 		if (err) {
6481 			printk(KERN_EMERG "%s: failed to move %s to init_net: %d\n",
6482 				__func__, dev->name, err);
6483 			BUG();
6484 		}
6485 	}
6486 	rtnl_unlock();
6487 }
6488 
6489 static void __net_exit default_device_exit_batch(struct list_head *net_list)
6490 {
6491 	/* At exit all network devices most be removed from a network
6492 	 * namespace.  Do this in the reverse order of registration.
6493 	 * Do this across as many network namespaces as possible to
6494 	 * improve batching efficiency.
6495 	 */
6496 	struct net_device *dev;
6497 	struct net *net;
6498 	LIST_HEAD(dev_kill_list);
6499 
6500 	rtnl_lock();
6501 	list_for_each_entry(net, net_list, exit_list) {
6502 		for_each_netdev_reverse(net, dev) {
6503 			if (dev->rtnl_link_ops)
6504 				dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
6505 			else
6506 				unregister_netdevice_queue(dev, &dev_kill_list);
6507 		}
6508 	}
6509 	unregister_netdevice_many(&dev_kill_list);
6510 	list_del(&dev_kill_list);
6511 	rtnl_unlock();
6512 }
6513 
6514 static struct pernet_operations __net_initdata default_device_ops = {
6515 	.exit = default_device_exit,
6516 	.exit_batch = default_device_exit_batch,
6517 };
6518 
6519 /*
6520  *	Initialize the DEV module. At boot time this walks the device list and
6521  *	unhooks any devices that fail to initialise (normally hardware not
6522  *	present) and leaves us with a valid list of present and active devices.
6523  *
6524  */
6525 
6526 /*
6527  *       This is called single threaded during boot, so no need
6528  *       to take the rtnl semaphore.
6529  */
6530 static int __init net_dev_init(void)
6531 {
6532 	int i, rc = -ENOMEM;
6533 
6534 	BUG_ON(!dev_boot_phase);
6535 
6536 	if (dev_proc_init())
6537 		goto out;
6538 
6539 	if (netdev_kobject_init())
6540 		goto out;
6541 
6542 	INIT_LIST_HEAD(&ptype_all);
6543 	for (i = 0; i < PTYPE_HASH_SIZE; i++)
6544 		INIT_LIST_HEAD(&ptype_base[i]);
6545 
6546 	if (register_pernet_subsys(&netdev_net_ops))
6547 		goto out;
6548 
6549 	/*
6550 	 *	Initialise the packet receive queues.
6551 	 */
6552 
6553 	for_each_possible_cpu(i) {
6554 		struct softnet_data *sd = &per_cpu(softnet_data, i);
6555 
6556 		memset(sd, 0, sizeof(*sd));
6557 		skb_queue_head_init(&sd->input_pkt_queue);
6558 		skb_queue_head_init(&sd->process_queue);
6559 		sd->completion_queue = NULL;
6560 		INIT_LIST_HEAD(&sd->poll_list);
6561 		sd->output_queue = NULL;
6562 		sd->output_queue_tailp = &sd->output_queue;
6563 #ifdef CONFIG_RPS
6564 		sd->csd.func = rps_trigger_softirq;
6565 		sd->csd.info = sd;
6566 		sd->csd.flags = 0;
6567 		sd->cpu = i;
6568 #endif
6569 
6570 		sd->backlog.poll = process_backlog;
6571 		sd->backlog.weight = weight_p;
6572 		sd->backlog.gro_list = NULL;
6573 		sd->backlog.gro_count = 0;
6574 	}
6575 
6576 	dev_boot_phase = 0;
6577 
6578 	/* The loopback device is special if any other network devices
6579 	 * is present in a network namespace the loopback device must
6580 	 * be present. Since we now dynamically allocate and free the
6581 	 * loopback device ensure this invariant is maintained by
6582 	 * keeping the loopback device as the first device on the
6583 	 * list of network devices.  Ensuring the loopback devices
6584 	 * is the first device that appears and the last network device
6585 	 * that disappears.
6586 	 */
6587 	if (register_pernet_device(&loopback_net_ops))
6588 		goto out;
6589 
6590 	if (register_pernet_device(&default_device_ops))
6591 		goto out;
6592 
6593 	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
6594 	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
6595 
6596 	hotcpu_notifier(dev_cpu_callback, 0);
6597 	dst_init();
6598 	dev_mcast_init();
6599 	rc = 0;
6600 out:
6601 	return rc;
6602 }
6603 
6604 subsys_initcall(net_dev_init);
6605 
6606 static int __init initialize_hashrnd(void)
6607 {
6608 	get_random_bytes(&hashrnd, sizeof(hashrnd));
6609 	return 0;
6610 }
6611 
6612 late_initcall_sync(initialize_hashrnd);
6613 
6614