1 /* 2 * NET3 Protocol independent device support routines. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public License 6 * as published by the Free Software Foundation; either version 7 * 2 of the License, or (at your option) any later version. 8 * 9 * Derived from the non IP parts of dev.c 1.0.19 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Mark Evans, <evansmp@uhura.aston.ac.uk> 13 * 14 * Additional Authors: 15 * Florian la Roche <rzsfl@rz.uni-sb.de> 16 * Alan Cox <gw4pts@gw4pts.ampr.org> 17 * David Hinds <dahinds@users.sourceforge.net> 18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> 19 * Adam Sulmicki <adam@cfar.umd.edu> 20 * Pekka Riikonen <priikone@poesidon.pspt.fi> 21 * 22 * Changes: 23 * D.J. Barrow : Fixed bug where dev->refcnt gets set 24 * to 2 if register_netdev gets called 25 * before net_dev_init & also removed a 26 * few lines of code in the process. 27 * Alan Cox : device private ioctl copies fields back. 28 * Alan Cox : Transmit queue code does relevant 29 * stunts to keep the queue safe. 30 * Alan Cox : Fixed double lock. 31 * Alan Cox : Fixed promisc NULL pointer trap 32 * ???????? : Support the full private ioctl range 33 * Alan Cox : Moved ioctl permission check into 34 * drivers 35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI 36 * Alan Cox : 100 backlog just doesn't cut it when 37 * you start doing multicast video 8) 38 * Alan Cox : Rewrote net_bh and list manager. 39 * Alan Cox : Fix ETH_P_ALL echoback lengths. 40 * Alan Cox : Took out transmit every packet pass 41 * Saved a few bytes in the ioctl handler 42 * Alan Cox : Network driver sets packet type before 43 * calling netif_rx. Saves a function 44 * call a packet. 45 * Alan Cox : Hashed net_bh() 46 * Richard Kooijman: Timestamp fixes. 47 * Alan Cox : Wrong field in SIOCGIFDSTADDR 48 * Alan Cox : Device lock protection. 49 * Alan Cox : Fixed nasty side effect of device close 50 * changes. 51 * Rudi Cilibrasi : Pass the right thing to 52 * set_mac_address() 53 * Dave Miller : 32bit quantity for the device lock to 54 * make it work out on a Sparc. 55 * Bjorn Ekwall : Added KERNELD hack. 56 * Alan Cox : Cleaned up the backlog initialise. 57 * Craig Metz : SIOCGIFCONF fix if space for under 58 * 1 device. 59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there 60 * is no device open function. 61 * Andi Kleen : Fix error reporting for SIOCGIFCONF 62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF 63 * Cyrus Durgin : Cleaned for KMOD 64 * Adam Sulmicki : Bug Fix : Network Device Unload 65 * A network device unload needs to purge 66 * the backlog queue. 67 * Paul Rusty Russell : SIOCSIFNAME 68 * Pekka Riikonen : Netdev boot-time settings code 69 * Andrew Morton : Make unregister_netdevice wait 70 * indefinitely on dev->refcnt 71 * J Hadi Salim : - Backlog queue sampling 72 * - netif_rx() feedback 73 */ 74 75 #include <linux/uaccess.h> 76 #include <linux/bitops.h> 77 #include <linux/capability.h> 78 #include <linux/cpu.h> 79 #include <linux/types.h> 80 #include <linux/kernel.h> 81 #include <linux/hash.h> 82 #include <linux/slab.h> 83 #include <linux/sched.h> 84 #include <linux/mutex.h> 85 #include <linux/string.h> 86 #include <linux/mm.h> 87 #include <linux/socket.h> 88 #include <linux/sockios.h> 89 #include <linux/errno.h> 90 #include <linux/interrupt.h> 91 #include <linux/if_ether.h> 92 #include <linux/netdevice.h> 93 #include <linux/etherdevice.h> 94 #include <linux/ethtool.h> 95 #include <linux/notifier.h> 96 #include <linux/skbuff.h> 97 #include <linux/bpf.h> 98 #include <net/net_namespace.h> 99 #include <net/sock.h> 100 #include <net/busy_poll.h> 101 #include <linux/rtnetlink.h> 102 #include <linux/stat.h> 103 #include <net/dst.h> 104 #include <net/dst_metadata.h> 105 #include <net/pkt_sched.h> 106 #include <net/checksum.h> 107 #include <net/xfrm.h> 108 #include <linux/highmem.h> 109 #include <linux/init.h> 110 #include <linux/module.h> 111 #include <linux/netpoll.h> 112 #include <linux/rcupdate.h> 113 #include <linux/delay.h> 114 #include <net/iw_handler.h> 115 #include <asm/current.h> 116 #include <linux/audit.h> 117 #include <linux/dmaengine.h> 118 #include <linux/err.h> 119 #include <linux/ctype.h> 120 #include <linux/if_arp.h> 121 #include <linux/if_vlan.h> 122 #include <linux/ip.h> 123 #include <net/ip.h> 124 #include <net/mpls.h> 125 #include <linux/ipv6.h> 126 #include <linux/in.h> 127 #include <linux/jhash.h> 128 #include <linux/random.h> 129 #include <trace/events/napi.h> 130 #include <trace/events/net.h> 131 #include <trace/events/skb.h> 132 #include <linux/pci.h> 133 #include <linux/inetdevice.h> 134 #include <linux/cpu_rmap.h> 135 #include <linux/static_key.h> 136 #include <linux/hashtable.h> 137 #include <linux/vmalloc.h> 138 #include <linux/if_macvlan.h> 139 #include <linux/errqueue.h> 140 #include <linux/hrtimer.h> 141 #include <linux/netfilter_ingress.h> 142 #include <linux/crash_dump.h> 143 144 #include "net-sysfs.h" 145 146 /* Instead of increasing this, you should create a hash table. */ 147 #define MAX_GRO_SKBS 8 148 149 /* This should be increased if a protocol with a bigger head is added. */ 150 #define GRO_MAX_HEAD (MAX_HEADER + 128) 151 152 static DEFINE_SPINLOCK(ptype_lock); 153 static DEFINE_SPINLOCK(offload_lock); 154 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly; 155 struct list_head ptype_all __read_mostly; /* Taps */ 156 static struct list_head offload_base __read_mostly; 157 158 static int netif_rx_internal(struct sk_buff *skb); 159 static int call_netdevice_notifiers_info(unsigned long val, 160 struct net_device *dev, 161 struct netdev_notifier_info *info); 162 163 /* 164 * The @dev_base_head list is protected by @dev_base_lock and the rtnl 165 * semaphore. 166 * 167 * Pure readers hold dev_base_lock for reading, or rcu_read_lock() 168 * 169 * Writers must hold the rtnl semaphore while they loop through the 170 * dev_base_head list, and hold dev_base_lock for writing when they do the 171 * actual updates. This allows pure readers to access the list even 172 * while a writer is preparing to update it. 173 * 174 * To put it another way, dev_base_lock is held for writing only to 175 * protect against pure readers; the rtnl semaphore provides the 176 * protection against other writers. 177 * 178 * See, for example usages, register_netdevice() and 179 * unregister_netdevice(), which must be called with the rtnl 180 * semaphore held. 181 */ 182 DEFINE_RWLOCK(dev_base_lock); 183 EXPORT_SYMBOL(dev_base_lock); 184 185 /* protects napi_hash addition/deletion and napi_gen_id */ 186 static DEFINE_SPINLOCK(napi_hash_lock); 187 188 static unsigned int napi_gen_id = NR_CPUS; 189 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8); 190 191 static seqcount_t devnet_rename_seq; 192 193 static inline void dev_base_seq_inc(struct net *net) 194 { 195 while (++net->dev_base_seq == 0) 196 ; 197 } 198 199 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name) 200 { 201 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ)); 202 203 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)]; 204 } 205 206 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex) 207 { 208 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)]; 209 } 210 211 static inline void rps_lock(struct softnet_data *sd) 212 { 213 #ifdef CONFIG_RPS 214 spin_lock(&sd->input_pkt_queue.lock); 215 #endif 216 } 217 218 static inline void rps_unlock(struct softnet_data *sd) 219 { 220 #ifdef CONFIG_RPS 221 spin_unlock(&sd->input_pkt_queue.lock); 222 #endif 223 } 224 225 /* Device list insertion */ 226 static void list_netdevice(struct net_device *dev) 227 { 228 struct net *net = dev_net(dev); 229 230 ASSERT_RTNL(); 231 232 write_lock_bh(&dev_base_lock); 233 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head); 234 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name)); 235 hlist_add_head_rcu(&dev->index_hlist, 236 dev_index_hash(net, dev->ifindex)); 237 write_unlock_bh(&dev_base_lock); 238 239 dev_base_seq_inc(net); 240 } 241 242 /* Device list removal 243 * caller must respect a RCU grace period before freeing/reusing dev 244 */ 245 static void unlist_netdevice(struct net_device *dev) 246 { 247 ASSERT_RTNL(); 248 249 /* Unlink dev from the device chain */ 250 write_lock_bh(&dev_base_lock); 251 list_del_rcu(&dev->dev_list); 252 hlist_del_rcu(&dev->name_hlist); 253 hlist_del_rcu(&dev->index_hlist); 254 write_unlock_bh(&dev_base_lock); 255 256 dev_base_seq_inc(dev_net(dev)); 257 } 258 259 /* 260 * Our notifier list 261 */ 262 263 static RAW_NOTIFIER_HEAD(netdev_chain); 264 265 /* 266 * Device drivers call our routines to queue packets here. We empty the 267 * queue in the local softnet handler. 268 */ 269 270 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 271 EXPORT_PER_CPU_SYMBOL(softnet_data); 272 273 #ifdef CONFIG_LOCKDEP 274 /* 275 * register_netdevice() inits txq->_xmit_lock and sets lockdep class 276 * according to dev->type 277 */ 278 static const unsigned short netdev_lock_type[] = { 279 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25, 280 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET, 281 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM, 282 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP, 283 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD, 284 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25, 285 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP, 286 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD, 287 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI, 288 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE, 289 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET, 290 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL, 291 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM, 292 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE, 293 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE}; 294 295 static const char *const netdev_lock_name[] = { 296 "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25", 297 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET", 298 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM", 299 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP", 300 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD", 301 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25", 302 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP", 303 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD", 304 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI", 305 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE", 306 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET", 307 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL", 308 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM", 309 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE", 310 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"}; 311 312 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)]; 313 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)]; 314 315 static inline unsigned short netdev_lock_pos(unsigned short dev_type) 316 { 317 int i; 318 319 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++) 320 if (netdev_lock_type[i] == dev_type) 321 return i; 322 /* the last key is used by default */ 323 return ARRAY_SIZE(netdev_lock_type) - 1; 324 } 325 326 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 327 unsigned short dev_type) 328 { 329 int i; 330 331 i = netdev_lock_pos(dev_type); 332 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i], 333 netdev_lock_name[i]); 334 } 335 336 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 337 { 338 int i; 339 340 i = netdev_lock_pos(dev->type); 341 lockdep_set_class_and_name(&dev->addr_list_lock, 342 &netdev_addr_lock_key[i], 343 netdev_lock_name[i]); 344 } 345 #else 346 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 347 unsigned short dev_type) 348 { 349 } 350 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 351 { 352 } 353 #endif 354 355 /******************************************************************************* 356 * 357 * Protocol management and registration routines 358 * 359 *******************************************************************************/ 360 361 362 /* 363 * Add a protocol ID to the list. Now that the input handler is 364 * smarter we can dispense with all the messy stuff that used to be 365 * here. 366 * 367 * BEWARE!!! Protocol handlers, mangling input packets, 368 * MUST BE last in hash buckets and checking protocol handlers 369 * MUST start from promiscuous ptype_all chain in net_bh. 370 * It is true now, do not change it. 371 * Explanation follows: if protocol handler, mangling packet, will 372 * be the first on list, it is not able to sense, that packet 373 * is cloned and should be copied-on-write, so that it will 374 * change it and subsequent readers will get broken packet. 375 * --ANK (980803) 376 */ 377 378 static inline struct list_head *ptype_head(const struct packet_type *pt) 379 { 380 if (pt->type == htons(ETH_P_ALL)) 381 return pt->dev ? &pt->dev->ptype_all : &ptype_all; 382 else 383 return pt->dev ? &pt->dev->ptype_specific : 384 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK]; 385 } 386 387 /** 388 * dev_add_pack - add packet handler 389 * @pt: packet type declaration 390 * 391 * Add a protocol handler to the networking stack. The passed &packet_type 392 * is linked into kernel lists and may not be freed until it has been 393 * removed from the kernel lists. 394 * 395 * This call does not sleep therefore it can not 396 * guarantee all CPU's that are in middle of receiving packets 397 * will see the new packet type (until the next received packet). 398 */ 399 400 void dev_add_pack(struct packet_type *pt) 401 { 402 struct list_head *head = ptype_head(pt); 403 404 spin_lock(&ptype_lock); 405 list_add_rcu(&pt->list, head); 406 spin_unlock(&ptype_lock); 407 } 408 EXPORT_SYMBOL(dev_add_pack); 409 410 /** 411 * __dev_remove_pack - remove packet handler 412 * @pt: packet type declaration 413 * 414 * Remove a protocol handler that was previously added to the kernel 415 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 416 * from the kernel lists and can be freed or reused once this function 417 * returns. 418 * 419 * The packet type might still be in use by receivers 420 * and must not be freed until after all the CPU's have gone 421 * through a quiescent state. 422 */ 423 void __dev_remove_pack(struct packet_type *pt) 424 { 425 struct list_head *head = ptype_head(pt); 426 struct packet_type *pt1; 427 428 spin_lock(&ptype_lock); 429 430 list_for_each_entry(pt1, head, list) { 431 if (pt == pt1) { 432 list_del_rcu(&pt->list); 433 goto out; 434 } 435 } 436 437 pr_warn("dev_remove_pack: %p not found\n", pt); 438 out: 439 spin_unlock(&ptype_lock); 440 } 441 EXPORT_SYMBOL(__dev_remove_pack); 442 443 /** 444 * dev_remove_pack - remove packet handler 445 * @pt: packet type declaration 446 * 447 * Remove a protocol handler that was previously added to the kernel 448 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 449 * from the kernel lists and can be freed or reused once this function 450 * returns. 451 * 452 * This call sleeps to guarantee that no CPU is looking at the packet 453 * type after return. 454 */ 455 void dev_remove_pack(struct packet_type *pt) 456 { 457 __dev_remove_pack(pt); 458 459 synchronize_net(); 460 } 461 EXPORT_SYMBOL(dev_remove_pack); 462 463 464 /** 465 * dev_add_offload - register offload handlers 466 * @po: protocol offload declaration 467 * 468 * Add protocol offload handlers to the networking stack. The passed 469 * &proto_offload is linked into kernel lists and may not be freed until 470 * it has been removed from the kernel lists. 471 * 472 * This call does not sleep therefore it can not 473 * guarantee all CPU's that are in middle of receiving packets 474 * will see the new offload handlers (until the next received packet). 475 */ 476 void dev_add_offload(struct packet_offload *po) 477 { 478 struct packet_offload *elem; 479 480 spin_lock(&offload_lock); 481 list_for_each_entry(elem, &offload_base, list) { 482 if (po->priority < elem->priority) 483 break; 484 } 485 list_add_rcu(&po->list, elem->list.prev); 486 spin_unlock(&offload_lock); 487 } 488 EXPORT_SYMBOL(dev_add_offload); 489 490 /** 491 * __dev_remove_offload - remove offload handler 492 * @po: packet offload declaration 493 * 494 * Remove a protocol offload handler that was previously added to the 495 * kernel offload handlers by dev_add_offload(). The passed &offload_type 496 * is removed from the kernel lists and can be freed or reused once this 497 * function returns. 498 * 499 * The packet type might still be in use by receivers 500 * and must not be freed until after all the CPU's have gone 501 * through a quiescent state. 502 */ 503 static void __dev_remove_offload(struct packet_offload *po) 504 { 505 struct list_head *head = &offload_base; 506 struct packet_offload *po1; 507 508 spin_lock(&offload_lock); 509 510 list_for_each_entry(po1, head, list) { 511 if (po == po1) { 512 list_del_rcu(&po->list); 513 goto out; 514 } 515 } 516 517 pr_warn("dev_remove_offload: %p not found\n", po); 518 out: 519 spin_unlock(&offload_lock); 520 } 521 522 /** 523 * dev_remove_offload - remove packet offload handler 524 * @po: packet offload declaration 525 * 526 * Remove a packet offload handler that was previously added to the kernel 527 * offload handlers by dev_add_offload(). The passed &offload_type is 528 * removed from the kernel lists and can be freed or reused once this 529 * function returns. 530 * 531 * This call sleeps to guarantee that no CPU is looking at the packet 532 * type after return. 533 */ 534 void dev_remove_offload(struct packet_offload *po) 535 { 536 __dev_remove_offload(po); 537 538 synchronize_net(); 539 } 540 EXPORT_SYMBOL(dev_remove_offload); 541 542 /****************************************************************************** 543 * 544 * Device Boot-time Settings Routines 545 * 546 ******************************************************************************/ 547 548 /* Boot time configuration table */ 549 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX]; 550 551 /** 552 * netdev_boot_setup_add - add new setup entry 553 * @name: name of the device 554 * @map: configured settings for the device 555 * 556 * Adds new setup entry to the dev_boot_setup list. The function 557 * returns 0 on error and 1 on success. This is a generic routine to 558 * all netdevices. 559 */ 560 static int netdev_boot_setup_add(char *name, struct ifmap *map) 561 { 562 struct netdev_boot_setup *s; 563 int i; 564 565 s = dev_boot_setup; 566 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 567 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') { 568 memset(s[i].name, 0, sizeof(s[i].name)); 569 strlcpy(s[i].name, name, IFNAMSIZ); 570 memcpy(&s[i].map, map, sizeof(s[i].map)); 571 break; 572 } 573 } 574 575 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1; 576 } 577 578 /** 579 * netdev_boot_setup_check - check boot time settings 580 * @dev: the netdevice 581 * 582 * Check boot time settings for the device. 583 * The found settings are set for the device to be used 584 * later in the device probing. 585 * Returns 0 if no settings found, 1 if they are. 586 */ 587 int netdev_boot_setup_check(struct net_device *dev) 588 { 589 struct netdev_boot_setup *s = dev_boot_setup; 590 int i; 591 592 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 593 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' && 594 !strcmp(dev->name, s[i].name)) { 595 dev->irq = s[i].map.irq; 596 dev->base_addr = s[i].map.base_addr; 597 dev->mem_start = s[i].map.mem_start; 598 dev->mem_end = s[i].map.mem_end; 599 return 1; 600 } 601 } 602 return 0; 603 } 604 EXPORT_SYMBOL(netdev_boot_setup_check); 605 606 607 /** 608 * netdev_boot_base - get address from boot time settings 609 * @prefix: prefix for network device 610 * @unit: id for network device 611 * 612 * Check boot time settings for the base address of device. 613 * The found settings are set for the device to be used 614 * later in the device probing. 615 * Returns 0 if no settings found. 616 */ 617 unsigned long netdev_boot_base(const char *prefix, int unit) 618 { 619 const struct netdev_boot_setup *s = dev_boot_setup; 620 char name[IFNAMSIZ]; 621 int i; 622 623 sprintf(name, "%s%d", prefix, unit); 624 625 /* 626 * If device already registered then return base of 1 627 * to indicate not to probe for this interface 628 */ 629 if (__dev_get_by_name(&init_net, name)) 630 return 1; 631 632 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) 633 if (!strcmp(name, s[i].name)) 634 return s[i].map.base_addr; 635 return 0; 636 } 637 638 /* 639 * Saves at boot time configured settings for any netdevice. 640 */ 641 int __init netdev_boot_setup(char *str) 642 { 643 int ints[5]; 644 struct ifmap map; 645 646 str = get_options(str, ARRAY_SIZE(ints), ints); 647 if (!str || !*str) 648 return 0; 649 650 /* Save settings */ 651 memset(&map, 0, sizeof(map)); 652 if (ints[0] > 0) 653 map.irq = ints[1]; 654 if (ints[0] > 1) 655 map.base_addr = ints[2]; 656 if (ints[0] > 2) 657 map.mem_start = ints[3]; 658 if (ints[0] > 3) 659 map.mem_end = ints[4]; 660 661 /* Add new entry to the list */ 662 return netdev_boot_setup_add(str, &map); 663 } 664 665 __setup("netdev=", netdev_boot_setup); 666 667 /******************************************************************************* 668 * 669 * Device Interface Subroutines 670 * 671 *******************************************************************************/ 672 673 /** 674 * dev_get_iflink - get 'iflink' value of a interface 675 * @dev: targeted interface 676 * 677 * Indicates the ifindex the interface is linked to. 678 * Physical interfaces have the same 'ifindex' and 'iflink' values. 679 */ 680 681 int dev_get_iflink(const struct net_device *dev) 682 { 683 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink) 684 return dev->netdev_ops->ndo_get_iflink(dev); 685 686 return dev->ifindex; 687 } 688 EXPORT_SYMBOL(dev_get_iflink); 689 690 /** 691 * dev_fill_metadata_dst - Retrieve tunnel egress information. 692 * @dev: targeted interface 693 * @skb: The packet. 694 * 695 * For better visibility of tunnel traffic OVS needs to retrieve 696 * egress tunnel information for a packet. Following API allows 697 * user to get this info. 698 */ 699 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb) 700 { 701 struct ip_tunnel_info *info; 702 703 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst) 704 return -EINVAL; 705 706 info = skb_tunnel_info_unclone(skb); 707 if (!info) 708 return -ENOMEM; 709 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX))) 710 return -EINVAL; 711 712 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb); 713 } 714 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst); 715 716 /** 717 * __dev_get_by_name - find a device by its name 718 * @net: the applicable net namespace 719 * @name: name to find 720 * 721 * Find an interface by name. Must be called under RTNL semaphore 722 * or @dev_base_lock. If the name is found a pointer to the device 723 * is returned. If the name is not found then %NULL is returned. The 724 * reference counters are not incremented so the caller must be 725 * careful with locks. 726 */ 727 728 struct net_device *__dev_get_by_name(struct net *net, const char *name) 729 { 730 struct net_device *dev; 731 struct hlist_head *head = dev_name_hash(net, name); 732 733 hlist_for_each_entry(dev, head, name_hlist) 734 if (!strncmp(dev->name, name, IFNAMSIZ)) 735 return dev; 736 737 return NULL; 738 } 739 EXPORT_SYMBOL(__dev_get_by_name); 740 741 /** 742 * dev_get_by_name_rcu - find a device by its name 743 * @net: the applicable net namespace 744 * @name: name to find 745 * 746 * Find an interface by name. 747 * If the name is found a pointer to the device is returned. 748 * If the name is not found then %NULL is returned. 749 * The reference counters are not incremented so the caller must be 750 * careful with locks. The caller must hold RCU lock. 751 */ 752 753 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name) 754 { 755 struct net_device *dev; 756 struct hlist_head *head = dev_name_hash(net, name); 757 758 hlist_for_each_entry_rcu(dev, head, name_hlist) 759 if (!strncmp(dev->name, name, IFNAMSIZ)) 760 return dev; 761 762 return NULL; 763 } 764 EXPORT_SYMBOL(dev_get_by_name_rcu); 765 766 /** 767 * dev_get_by_name - find a device by its name 768 * @net: the applicable net namespace 769 * @name: name to find 770 * 771 * Find an interface by name. This can be called from any 772 * context and does its own locking. The returned handle has 773 * the usage count incremented and the caller must use dev_put() to 774 * release it when it is no longer needed. %NULL is returned if no 775 * matching device is found. 776 */ 777 778 struct net_device *dev_get_by_name(struct net *net, const char *name) 779 { 780 struct net_device *dev; 781 782 rcu_read_lock(); 783 dev = dev_get_by_name_rcu(net, name); 784 if (dev) 785 dev_hold(dev); 786 rcu_read_unlock(); 787 return dev; 788 } 789 EXPORT_SYMBOL(dev_get_by_name); 790 791 /** 792 * __dev_get_by_index - find a device by its ifindex 793 * @net: the applicable net namespace 794 * @ifindex: index of device 795 * 796 * Search for an interface by index. Returns %NULL if the device 797 * is not found or a pointer to the device. The device has not 798 * had its reference counter increased so the caller must be careful 799 * about locking. The caller must hold either the RTNL semaphore 800 * or @dev_base_lock. 801 */ 802 803 struct net_device *__dev_get_by_index(struct net *net, int ifindex) 804 { 805 struct net_device *dev; 806 struct hlist_head *head = dev_index_hash(net, ifindex); 807 808 hlist_for_each_entry(dev, head, index_hlist) 809 if (dev->ifindex == ifindex) 810 return dev; 811 812 return NULL; 813 } 814 EXPORT_SYMBOL(__dev_get_by_index); 815 816 /** 817 * dev_get_by_index_rcu - find a device by its ifindex 818 * @net: the applicable net namespace 819 * @ifindex: index of device 820 * 821 * Search for an interface by index. Returns %NULL if the device 822 * is not found or a pointer to the device. The device has not 823 * had its reference counter increased so the caller must be careful 824 * about locking. The caller must hold RCU lock. 825 */ 826 827 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex) 828 { 829 struct net_device *dev; 830 struct hlist_head *head = dev_index_hash(net, ifindex); 831 832 hlist_for_each_entry_rcu(dev, head, index_hlist) 833 if (dev->ifindex == ifindex) 834 return dev; 835 836 return NULL; 837 } 838 EXPORT_SYMBOL(dev_get_by_index_rcu); 839 840 841 /** 842 * dev_get_by_index - find a device by its ifindex 843 * @net: the applicable net namespace 844 * @ifindex: index of device 845 * 846 * Search for an interface by index. Returns NULL if the device 847 * is not found or a pointer to the device. The device returned has 848 * had a reference added and the pointer is safe until the user calls 849 * dev_put to indicate they have finished with it. 850 */ 851 852 struct net_device *dev_get_by_index(struct net *net, int ifindex) 853 { 854 struct net_device *dev; 855 856 rcu_read_lock(); 857 dev = dev_get_by_index_rcu(net, ifindex); 858 if (dev) 859 dev_hold(dev); 860 rcu_read_unlock(); 861 return dev; 862 } 863 EXPORT_SYMBOL(dev_get_by_index); 864 865 /** 866 * netdev_get_name - get a netdevice name, knowing its ifindex. 867 * @net: network namespace 868 * @name: a pointer to the buffer where the name will be stored. 869 * @ifindex: the ifindex of the interface to get the name from. 870 * 871 * The use of raw_seqcount_begin() and cond_resched() before 872 * retrying is required as we want to give the writers a chance 873 * to complete when CONFIG_PREEMPT is not set. 874 */ 875 int netdev_get_name(struct net *net, char *name, int ifindex) 876 { 877 struct net_device *dev; 878 unsigned int seq; 879 880 retry: 881 seq = raw_seqcount_begin(&devnet_rename_seq); 882 rcu_read_lock(); 883 dev = dev_get_by_index_rcu(net, ifindex); 884 if (!dev) { 885 rcu_read_unlock(); 886 return -ENODEV; 887 } 888 889 strcpy(name, dev->name); 890 rcu_read_unlock(); 891 if (read_seqcount_retry(&devnet_rename_seq, seq)) { 892 cond_resched(); 893 goto retry; 894 } 895 896 return 0; 897 } 898 899 /** 900 * dev_getbyhwaddr_rcu - find a device by its hardware address 901 * @net: the applicable net namespace 902 * @type: media type of device 903 * @ha: hardware address 904 * 905 * Search for an interface by MAC address. Returns NULL if the device 906 * is not found or a pointer to the device. 907 * The caller must hold RCU or RTNL. 908 * The returned device has not had its ref count increased 909 * and the caller must therefore be careful about locking 910 * 911 */ 912 913 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 914 const char *ha) 915 { 916 struct net_device *dev; 917 918 for_each_netdev_rcu(net, dev) 919 if (dev->type == type && 920 !memcmp(dev->dev_addr, ha, dev->addr_len)) 921 return dev; 922 923 return NULL; 924 } 925 EXPORT_SYMBOL(dev_getbyhwaddr_rcu); 926 927 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type) 928 { 929 struct net_device *dev; 930 931 ASSERT_RTNL(); 932 for_each_netdev(net, dev) 933 if (dev->type == type) 934 return dev; 935 936 return NULL; 937 } 938 EXPORT_SYMBOL(__dev_getfirstbyhwtype); 939 940 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type) 941 { 942 struct net_device *dev, *ret = NULL; 943 944 rcu_read_lock(); 945 for_each_netdev_rcu(net, dev) 946 if (dev->type == type) { 947 dev_hold(dev); 948 ret = dev; 949 break; 950 } 951 rcu_read_unlock(); 952 return ret; 953 } 954 EXPORT_SYMBOL(dev_getfirstbyhwtype); 955 956 /** 957 * __dev_get_by_flags - find any device with given flags 958 * @net: the applicable net namespace 959 * @if_flags: IFF_* values 960 * @mask: bitmask of bits in if_flags to check 961 * 962 * Search for any interface with the given flags. Returns NULL if a device 963 * is not found or a pointer to the device. Must be called inside 964 * rtnl_lock(), and result refcount is unchanged. 965 */ 966 967 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags, 968 unsigned short mask) 969 { 970 struct net_device *dev, *ret; 971 972 ASSERT_RTNL(); 973 974 ret = NULL; 975 for_each_netdev(net, dev) { 976 if (((dev->flags ^ if_flags) & mask) == 0) { 977 ret = dev; 978 break; 979 } 980 } 981 return ret; 982 } 983 EXPORT_SYMBOL(__dev_get_by_flags); 984 985 /** 986 * dev_valid_name - check if name is okay for network device 987 * @name: name string 988 * 989 * Network device names need to be valid file names to 990 * to allow sysfs to work. We also disallow any kind of 991 * whitespace. 992 */ 993 bool dev_valid_name(const char *name) 994 { 995 if (*name == '\0') 996 return false; 997 if (strlen(name) >= IFNAMSIZ) 998 return false; 999 if (!strcmp(name, ".") || !strcmp(name, "..")) 1000 return false; 1001 1002 while (*name) { 1003 if (*name == '/' || *name == ':' || isspace(*name)) 1004 return false; 1005 name++; 1006 } 1007 return true; 1008 } 1009 EXPORT_SYMBOL(dev_valid_name); 1010 1011 /** 1012 * __dev_alloc_name - allocate a name for a device 1013 * @net: network namespace to allocate the device name in 1014 * @name: name format string 1015 * @buf: scratch buffer and result name string 1016 * 1017 * Passed a format string - eg "lt%d" it will try and find a suitable 1018 * id. It scans list of devices to build up a free map, then chooses 1019 * the first empty slot. The caller must hold the dev_base or rtnl lock 1020 * while allocating the name and adding the device in order to avoid 1021 * duplicates. 1022 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 1023 * Returns the number of the unit assigned or a negative errno code. 1024 */ 1025 1026 static int __dev_alloc_name(struct net *net, const char *name, char *buf) 1027 { 1028 int i = 0; 1029 const char *p; 1030 const int max_netdevices = 8*PAGE_SIZE; 1031 unsigned long *inuse; 1032 struct net_device *d; 1033 1034 p = strnchr(name, IFNAMSIZ-1, '%'); 1035 if (p) { 1036 /* 1037 * Verify the string as this thing may have come from 1038 * the user. There must be either one "%d" and no other "%" 1039 * characters. 1040 */ 1041 if (p[1] != 'd' || strchr(p + 2, '%')) 1042 return -EINVAL; 1043 1044 /* Use one page as a bit array of possible slots */ 1045 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC); 1046 if (!inuse) 1047 return -ENOMEM; 1048 1049 for_each_netdev(net, d) { 1050 if (!sscanf(d->name, name, &i)) 1051 continue; 1052 if (i < 0 || i >= max_netdevices) 1053 continue; 1054 1055 /* avoid cases where sscanf is not exact inverse of printf */ 1056 snprintf(buf, IFNAMSIZ, name, i); 1057 if (!strncmp(buf, d->name, IFNAMSIZ)) 1058 set_bit(i, inuse); 1059 } 1060 1061 i = find_first_zero_bit(inuse, max_netdevices); 1062 free_page((unsigned long) inuse); 1063 } 1064 1065 if (buf != name) 1066 snprintf(buf, IFNAMSIZ, name, i); 1067 if (!__dev_get_by_name(net, buf)) 1068 return i; 1069 1070 /* It is possible to run out of possible slots 1071 * when the name is long and there isn't enough space left 1072 * for the digits, or if all bits are used. 1073 */ 1074 return -ENFILE; 1075 } 1076 1077 /** 1078 * dev_alloc_name - allocate a name for a device 1079 * @dev: device 1080 * @name: name format string 1081 * 1082 * Passed a format string - eg "lt%d" it will try and find a suitable 1083 * id. It scans list of devices to build up a free map, then chooses 1084 * the first empty slot. The caller must hold the dev_base or rtnl lock 1085 * while allocating the name and adding the device in order to avoid 1086 * duplicates. 1087 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 1088 * Returns the number of the unit assigned or a negative errno code. 1089 */ 1090 1091 int dev_alloc_name(struct net_device *dev, const char *name) 1092 { 1093 char buf[IFNAMSIZ]; 1094 struct net *net; 1095 int ret; 1096 1097 BUG_ON(!dev_net(dev)); 1098 net = dev_net(dev); 1099 ret = __dev_alloc_name(net, name, buf); 1100 if (ret >= 0) 1101 strlcpy(dev->name, buf, IFNAMSIZ); 1102 return ret; 1103 } 1104 EXPORT_SYMBOL(dev_alloc_name); 1105 1106 static int dev_alloc_name_ns(struct net *net, 1107 struct net_device *dev, 1108 const char *name) 1109 { 1110 char buf[IFNAMSIZ]; 1111 int ret; 1112 1113 ret = __dev_alloc_name(net, name, buf); 1114 if (ret >= 0) 1115 strlcpy(dev->name, buf, IFNAMSIZ); 1116 return ret; 1117 } 1118 1119 static int dev_get_valid_name(struct net *net, 1120 struct net_device *dev, 1121 const char *name) 1122 { 1123 BUG_ON(!net); 1124 1125 if (!dev_valid_name(name)) 1126 return -EINVAL; 1127 1128 if (strchr(name, '%')) 1129 return dev_alloc_name_ns(net, dev, name); 1130 else if (__dev_get_by_name(net, name)) 1131 return -EEXIST; 1132 else if (dev->name != name) 1133 strlcpy(dev->name, name, IFNAMSIZ); 1134 1135 return 0; 1136 } 1137 1138 /** 1139 * dev_change_name - change name of a device 1140 * @dev: device 1141 * @newname: name (or format string) must be at least IFNAMSIZ 1142 * 1143 * Change name of a device, can pass format strings "eth%d". 1144 * for wildcarding. 1145 */ 1146 int dev_change_name(struct net_device *dev, const char *newname) 1147 { 1148 unsigned char old_assign_type; 1149 char oldname[IFNAMSIZ]; 1150 int err = 0; 1151 int ret; 1152 struct net *net; 1153 1154 ASSERT_RTNL(); 1155 BUG_ON(!dev_net(dev)); 1156 1157 net = dev_net(dev); 1158 if (dev->flags & IFF_UP) 1159 return -EBUSY; 1160 1161 write_seqcount_begin(&devnet_rename_seq); 1162 1163 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) { 1164 write_seqcount_end(&devnet_rename_seq); 1165 return 0; 1166 } 1167 1168 memcpy(oldname, dev->name, IFNAMSIZ); 1169 1170 err = dev_get_valid_name(net, dev, newname); 1171 if (err < 0) { 1172 write_seqcount_end(&devnet_rename_seq); 1173 return err; 1174 } 1175 1176 if (oldname[0] && !strchr(oldname, '%')) 1177 netdev_info(dev, "renamed from %s\n", oldname); 1178 1179 old_assign_type = dev->name_assign_type; 1180 dev->name_assign_type = NET_NAME_RENAMED; 1181 1182 rollback: 1183 ret = device_rename(&dev->dev, dev->name); 1184 if (ret) { 1185 memcpy(dev->name, oldname, IFNAMSIZ); 1186 dev->name_assign_type = old_assign_type; 1187 write_seqcount_end(&devnet_rename_seq); 1188 return ret; 1189 } 1190 1191 write_seqcount_end(&devnet_rename_seq); 1192 1193 netdev_adjacent_rename_links(dev, oldname); 1194 1195 write_lock_bh(&dev_base_lock); 1196 hlist_del_rcu(&dev->name_hlist); 1197 write_unlock_bh(&dev_base_lock); 1198 1199 synchronize_rcu(); 1200 1201 write_lock_bh(&dev_base_lock); 1202 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name)); 1203 write_unlock_bh(&dev_base_lock); 1204 1205 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev); 1206 ret = notifier_to_errno(ret); 1207 1208 if (ret) { 1209 /* err >= 0 after dev_alloc_name() or stores the first errno */ 1210 if (err >= 0) { 1211 err = ret; 1212 write_seqcount_begin(&devnet_rename_seq); 1213 memcpy(dev->name, oldname, IFNAMSIZ); 1214 memcpy(oldname, newname, IFNAMSIZ); 1215 dev->name_assign_type = old_assign_type; 1216 old_assign_type = NET_NAME_RENAMED; 1217 goto rollback; 1218 } else { 1219 pr_err("%s: name change rollback failed: %d\n", 1220 dev->name, ret); 1221 } 1222 } 1223 1224 return err; 1225 } 1226 1227 /** 1228 * dev_set_alias - change ifalias of a device 1229 * @dev: device 1230 * @alias: name up to IFALIASZ 1231 * @len: limit of bytes to copy from info 1232 * 1233 * Set ifalias for a device, 1234 */ 1235 int dev_set_alias(struct net_device *dev, const char *alias, size_t len) 1236 { 1237 char *new_ifalias; 1238 1239 ASSERT_RTNL(); 1240 1241 if (len >= IFALIASZ) 1242 return -EINVAL; 1243 1244 if (!len) { 1245 kfree(dev->ifalias); 1246 dev->ifalias = NULL; 1247 return 0; 1248 } 1249 1250 new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL); 1251 if (!new_ifalias) 1252 return -ENOMEM; 1253 dev->ifalias = new_ifalias; 1254 1255 strlcpy(dev->ifalias, alias, len+1); 1256 return len; 1257 } 1258 1259 1260 /** 1261 * netdev_features_change - device changes features 1262 * @dev: device to cause notification 1263 * 1264 * Called to indicate a device has changed features. 1265 */ 1266 void netdev_features_change(struct net_device *dev) 1267 { 1268 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev); 1269 } 1270 EXPORT_SYMBOL(netdev_features_change); 1271 1272 /** 1273 * netdev_state_change - device changes state 1274 * @dev: device to cause notification 1275 * 1276 * Called to indicate a device has changed state. This function calls 1277 * the notifier chains for netdev_chain and sends a NEWLINK message 1278 * to the routing socket. 1279 */ 1280 void netdev_state_change(struct net_device *dev) 1281 { 1282 if (dev->flags & IFF_UP) { 1283 struct netdev_notifier_change_info change_info; 1284 1285 change_info.flags_changed = 0; 1286 call_netdevice_notifiers_info(NETDEV_CHANGE, dev, 1287 &change_info.info); 1288 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL); 1289 } 1290 } 1291 EXPORT_SYMBOL(netdev_state_change); 1292 1293 /** 1294 * netdev_notify_peers - notify network peers about existence of @dev 1295 * @dev: network device 1296 * 1297 * Generate traffic such that interested network peers are aware of 1298 * @dev, such as by generating a gratuitous ARP. This may be used when 1299 * a device wants to inform the rest of the network about some sort of 1300 * reconfiguration such as a failover event or virtual machine 1301 * migration. 1302 */ 1303 void netdev_notify_peers(struct net_device *dev) 1304 { 1305 rtnl_lock(); 1306 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev); 1307 rtnl_unlock(); 1308 } 1309 EXPORT_SYMBOL(netdev_notify_peers); 1310 1311 static int __dev_open(struct net_device *dev) 1312 { 1313 const struct net_device_ops *ops = dev->netdev_ops; 1314 int ret; 1315 1316 ASSERT_RTNL(); 1317 1318 if (!netif_device_present(dev)) 1319 return -ENODEV; 1320 1321 /* Block netpoll from trying to do any rx path servicing. 1322 * If we don't do this there is a chance ndo_poll_controller 1323 * or ndo_poll may be running while we open the device 1324 */ 1325 netpoll_poll_disable(dev); 1326 1327 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev); 1328 ret = notifier_to_errno(ret); 1329 if (ret) 1330 return ret; 1331 1332 set_bit(__LINK_STATE_START, &dev->state); 1333 1334 if (ops->ndo_validate_addr) 1335 ret = ops->ndo_validate_addr(dev); 1336 1337 if (!ret && ops->ndo_open) 1338 ret = ops->ndo_open(dev); 1339 1340 netpoll_poll_enable(dev); 1341 1342 if (ret) 1343 clear_bit(__LINK_STATE_START, &dev->state); 1344 else { 1345 dev->flags |= IFF_UP; 1346 dev_set_rx_mode(dev); 1347 dev_activate(dev); 1348 add_device_randomness(dev->dev_addr, dev->addr_len); 1349 } 1350 1351 return ret; 1352 } 1353 1354 /** 1355 * dev_open - prepare an interface for use. 1356 * @dev: device to open 1357 * 1358 * Takes a device from down to up state. The device's private open 1359 * function is invoked and then the multicast lists are loaded. Finally 1360 * the device is moved into the up state and a %NETDEV_UP message is 1361 * sent to the netdev notifier chain. 1362 * 1363 * Calling this function on an active interface is a nop. On a failure 1364 * a negative errno code is returned. 1365 */ 1366 int dev_open(struct net_device *dev) 1367 { 1368 int ret; 1369 1370 if (dev->flags & IFF_UP) 1371 return 0; 1372 1373 ret = __dev_open(dev); 1374 if (ret < 0) 1375 return ret; 1376 1377 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL); 1378 call_netdevice_notifiers(NETDEV_UP, dev); 1379 1380 return ret; 1381 } 1382 EXPORT_SYMBOL(dev_open); 1383 1384 static int __dev_close_many(struct list_head *head) 1385 { 1386 struct net_device *dev; 1387 1388 ASSERT_RTNL(); 1389 might_sleep(); 1390 1391 list_for_each_entry(dev, head, close_list) { 1392 /* Temporarily disable netpoll until the interface is down */ 1393 netpoll_poll_disable(dev); 1394 1395 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev); 1396 1397 clear_bit(__LINK_STATE_START, &dev->state); 1398 1399 /* Synchronize to scheduled poll. We cannot touch poll list, it 1400 * can be even on different cpu. So just clear netif_running(). 1401 * 1402 * dev->stop() will invoke napi_disable() on all of it's 1403 * napi_struct instances on this device. 1404 */ 1405 smp_mb__after_atomic(); /* Commit netif_running(). */ 1406 } 1407 1408 dev_deactivate_many(head); 1409 1410 list_for_each_entry(dev, head, close_list) { 1411 const struct net_device_ops *ops = dev->netdev_ops; 1412 1413 /* 1414 * Call the device specific close. This cannot fail. 1415 * Only if device is UP 1416 * 1417 * We allow it to be called even after a DETACH hot-plug 1418 * event. 1419 */ 1420 if (ops->ndo_stop) 1421 ops->ndo_stop(dev); 1422 1423 dev->flags &= ~IFF_UP; 1424 netpoll_poll_enable(dev); 1425 } 1426 1427 return 0; 1428 } 1429 1430 static int __dev_close(struct net_device *dev) 1431 { 1432 int retval; 1433 LIST_HEAD(single); 1434 1435 list_add(&dev->close_list, &single); 1436 retval = __dev_close_many(&single); 1437 list_del(&single); 1438 1439 return retval; 1440 } 1441 1442 int dev_close_many(struct list_head *head, bool unlink) 1443 { 1444 struct net_device *dev, *tmp; 1445 1446 /* Remove the devices that don't need to be closed */ 1447 list_for_each_entry_safe(dev, tmp, head, close_list) 1448 if (!(dev->flags & IFF_UP)) 1449 list_del_init(&dev->close_list); 1450 1451 __dev_close_many(head); 1452 1453 list_for_each_entry_safe(dev, tmp, head, close_list) { 1454 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL); 1455 call_netdevice_notifiers(NETDEV_DOWN, dev); 1456 if (unlink) 1457 list_del_init(&dev->close_list); 1458 } 1459 1460 return 0; 1461 } 1462 EXPORT_SYMBOL(dev_close_many); 1463 1464 /** 1465 * dev_close - shutdown an interface. 1466 * @dev: device to shutdown 1467 * 1468 * This function moves an active device into down state. A 1469 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device 1470 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier 1471 * chain. 1472 */ 1473 int dev_close(struct net_device *dev) 1474 { 1475 if (dev->flags & IFF_UP) { 1476 LIST_HEAD(single); 1477 1478 list_add(&dev->close_list, &single); 1479 dev_close_many(&single, true); 1480 list_del(&single); 1481 } 1482 return 0; 1483 } 1484 EXPORT_SYMBOL(dev_close); 1485 1486 1487 /** 1488 * dev_disable_lro - disable Large Receive Offload on a device 1489 * @dev: device 1490 * 1491 * Disable Large Receive Offload (LRO) on a net device. Must be 1492 * called under RTNL. This is needed if received packets may be 1493 * forwarded to another interface. 1494 */ 1495 void dev_disable_lro(struct net_device *dev) 1496 { 1497 struct net_device *lower_dev; 1498 struct list_head *iter; 1499 1500 dev->wanted_features &= ~NETIF_F_LRO; 1501 netdev_update_features(dev); 1502 1503 if (unlikely(dev->features & NETIF_F_LRO)) 1504 netdev_WARN(dev, "failed to disable LRO!\n"); 1505 1506 netdev_for_each_lower_dev(dev, lower_dev, iter) 1507 dev_disable_lro(lower_dev); 1508 } 1509 EXPORT_SYMBOL(dev_disable_lro); 1510 1511 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val, 1512 struct net_device *dev) 1513 { 1514 struct netdev_notifier_info info; 1515 1516 netdev_notifier_info_init(&info, dev); 1517 return nb->notifier_call(nb, val, &info); 1518 } 1519 1520 static int dev_boot_phase = 1; 1521 1522 /** 1523 * register_netdevice_notifier - register a network notifier block 1524 * @nb: notifier 1525 * 1526 * Register a notifier to be called when network device events occur. 1527 * The notifier passed is linked into the kernel structures and must 1528 * not be reused until it has been unregistered. A negative errno code 1529 * is returned on a failure. 1530 * 1531 * When registered all registration and up events are replayed 1532 * to the new notifier to allow device to have a race free 1533 * view of the network device list. 1534 */ 1535 1536 int register_netdevice_notifier(struct notifier_block *nb) 1537 { 1538 struct net_device *dev; 1539 struct net_device *last; 1540 struct net *net; 1541 int err; 1542 1543 rtnl_lock(); 1544 err = raw_notifier_chain_register(&netdev_chain, nb); 1545 if (err) 1546 goto unlock; 1547 if (dev_boot_phase) 1548 goto unlock; 1549 for_each_net(net) { 1550 for_each_netdev(net, dev) { 1551 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev); 1552 err = notifier_to_errno(err); 1553 if (err) 1554 goto rollback; 1555 1556 if (!(dev->flags & IFF_UP)) 1557 continue; 1558 1559 call_netdevice_notifier(nb, NETDEV_UP, dev); 1560 } 1561 } 1562 1563 unlock: 1564 rtnl_unlock(); 1565 return err; 1566 1567 rollback: 1568 last = dev; 1569 for_each_net(net) { 1570 for_each_netdev(net, dev) { 1571 if (dev == last) 1572 goto outroll; 1573 1574 if (dev->flags & IFF_UP) { 1575 call_netdevice_notifier(nb, NETDEV_GOING_DOWN, 1576 dev); 1577 call_netdevice_notifier(nb, NETDEV_DOWN, dev); 1578 } 1579 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev); 1580 } 1581 } 1582 1583 outroll: 1584 raw_notifier_chain_unregister(&netdev_chain, nb); 1585 goto unlock; 1586 } 1587 EXPORT_SYMBOL(register_netdevice_notifier); 1588 1589 /** 1590 * unregister_netdevice_notifier - unregister a network notifier block 1591 * @nb: notifier 1592 * 1593 * Unregister a notifier previously registered by 1594 * register_netdevice_notifier(). The notifier is unlinked into the 1595 * kernel structures and may then be reused. A negative errno code 1596 * is returned on a failure. 1597 * 1598 * After unregistering unregister and down device events are synthesized 1599 * for all devices on the device list to the removed notifier to remove 1600 * the need for special case cleanup code. 1601 */ 1602 1603 int unregister_netdevice_notifier(struct notifier_block *nb) 1604 { 1605 struct net_device *dev; 1606 struct net *net; 1607 int err; 1608 1609 rtnl_lock(); 1610 err = raw_notifier_chain_unregister(&netdev_chain, nb); 1611 if (err) 1612 goto unlock; 1613 1614 for_each_net(net) { 1615 for_each_netdev(net, dev) { 1616 if (dev->flags & IFF_UP) { 1617 call_netdevice_notifier(nb, NETDEV_GOING_DOWN, 1618 dev); 1619 call_netdevice_notifier(nb, NETDEV_DOWN, dev); 1620 } 1621 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev); 1622 } 1623 } 1624 unlock: 1625 rtnl_unlock(); 1626 return err; 1627 } 1628 EXPORT_SYMBOL(unregister_netdevice_notifier); 1629 1630 /** 1631 * call_netdevice_notifiers_info - call all network notifier blocks 1632 * @val: value passed unmodified to notifier function 1633 * @dev: net_device pointer passed unmodified to notifier function 1634 * @info: notifier information data 1635 * 1636 * Call all network notifier blocks. Parameters and return value 1637 * are as for raw_notifier_call_chain(). 1638 */ 1639 1640 static int call_netdevice_notifiers_info(unsigned long val, 1641 struct net_device *dev, 1642 struct netdev_notifier_info *info) 1643 { 1644 ASSERT_RTNL(); 1645 netdev_notifier_info_init(info, dev); 1646 return raw_notifier_call_chain(&netdev_chain, val, info); 1647 } 1648 1649 /** 1650 * call_netdevice_notifiers - call all network notifier blocks 1651 * @val: value passed unmodified to notifier function 1652 * @dev: net_device pointer passed unmodified to notifier function 1653 * 1654 * Call all network notifier blocks. Parameters and return value 1655 * are as for raw_notifier_call_chain(). 1656 */ 1657 1658 int call_netdevice_notifiers(unsigned long val, struct net_device *dev) 1659 { 1660 struct netdev_notifier_info info; 1661 1662 return call_netdevice_notifiers_info(val, dev, &info); 1663 } 1664 EXPORT_SYMBOL(call_netdevice_notifiers); 1665 1666 #ifdef CONFIG_NET_INGRESS 1667 static struct static_key ingress_needed __read_mostly; 1668 1669 void net_inc_ingress_queue(void) 1670 { 1671 static_key_slow_inc(&ingress_needed); 1672 } 1673 EXPORT_SYMBOL_GPL(net_inc_ingress_queue); 1674 1675 void net_dec_ingress_queue(void) 1676 { 1677 static_key_slow_dec(&ingress_needed); 1678 } 1679 EXPORT_SYMBOL_GPL(net_dec_ingress_queue); 1680 #endif 1681 1682 #ifdef CONFIG_NET_EGRESS 1683 static struct static_key egress_needed __read_mostly; 1684 1685 void net_inc_egress_queue(void) 1686 { 1687 static_key_slow_inc(&egress_needed); 1688 } 1689 EXPORT_SYMBOL_GPL(net_inc_egress_queue); 1690 1691 void net_dec_egress_queue(void) 1692 { 1693 static_key_slow_dec(&egress_needed); 1694 } 1695 EXPORT_SYMBOL_GPL(net_dec_egress_queue); 1696 #endif 1697 1698 static struct static_key netstamp_needed __read_mostly; 1699 #ifdef HAVE_JUMP_LABEL 1700 static atomic_t netstamp_needed_deferred; 1701 static atomic_t netstamp_wanted; 1702 static void netstamp_clear(struct work_struct *work) 1703 { 1704 int deferred = atomic_xchg(&netstamp_needed_deferred, 0); 1705 int wanted; 1706 1707 wanted = atomic_add_return(deferred, &netstamp_wanted); 1708 if (wanted > 0) 1709 static_key_enable(&netstamp_needed); 1710 else 1711 static_key_disable(&netstamp_needed); 1712 } 1713 static DECLARE_WORK(netstamp_work, netstamp_clear); 1714 #endif 1715 1716 void net_enable_timestamp(void) 1717 { 1718 #ifdef HAVE_JUMP_LABEL 1719 int wanted; 1720 1721 while (1) { 1722 wanted = atomic_read(&netstamp_wanted); 1723 if (wanted <= 0) 1724 break; 1725 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted) 1726 return; 1727 } 1728 atomic_inc(&netstamp_needed_deferred); 1729 schedule_work(&netstamp_work); 1730 #else 1731 static_key_slow_inc(&netstamp_needed); 1732 #endif 1733 } 1734 EXPORT_SYMBOL(net_enable_timestamp); 1735 1736 void net_disable_timestamp(void) 1737 { 1738 #ifdef HAVE_JUMP_LABEL 1739 int wanted; 1740 1741 while (1) { 1742 wanted = atomic_read(&netstamp_wanted); 1743 if (wanted <= 1) 1744 break; 1745 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted) 1746 return; 1747 } 1748 atomic_dec(&netstamp_needed_deferred); 1749 schedule_work(&netstamp_work); 1750 #else 1751 static_key_slow_dec(&netstamp_needed); 1752 #endif 1753 } 1754 EXPORT_SYMBOL(net_disable_timestamp); 1755 1756 static inline void net_timestamp_set(struct sk_buff *skb) 1757 { 1758 skb->tstamp = 0; 1759 if (static_key_false(&netstamp_needed)) 1760 __net_timestamp(skb); 1761 } 1762 1763 #define net_timestamp_check(COND, SKB) \ 1764 if (static_key_false(&netstamp_needed)) { \ 1765 if ((COND) && !(SKB)->tstamp) \ 1766 __net_timestamp(SKB); \ 1767 } \ 1768 1769 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb) 1770 { 1771 unsigned int len; 1772 1773 if (!(dev->flags & IFF_UP)) 1774 return false; 1775 1776 len = dev->mtu + dev->hard_header_len + VLAN_HLEN; 1777 if (skb->len <= len) 1778 return true; 1779 1780 /* if TSO is enabled, we don't care about the length as the packet 1781 * could be forwarded without being segmented before 1782 */ 1783 if (skb_is_gso(skb)) 1784 return true; 1785 1786 return false; 1787 } 1788 EXPORT_SYMBOL_GPL(is_skb_forwardable); 1789 1790 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 1791 { 1792 int ret = ____dev_forward_skb(dev, skb); 1793 1794 if (likely(!ret)) { 1795 skb->protocol = eth_type_trans(skb, dev); 1796 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN); 1797 } 1798 1799 return ret; 1800 } 1801 EXPORT_SYMBOL_GPL(__dev_forward_skb); 1802 1803 /** 1804 * dev_forward_skb - loopback an skb to another netif 1805 * 1806 * @dev: destination network device 1807 * @skb: buffer to forward 1808 * 1809 * return values: 1810 * NET_RX_SUCCESS (no congestion) 1811 * NET_RX_DROP (packet was dropped, but freed) 1812 * 1813 * dev_forward_skb can be used for injecting an skb from the 1814 * start_xmit function of one device into the receive queue 1815 * of another device. 1816 * 1817 * The receiving device may be in another namespace, so 1818 * we have to clear all information in the skb that could 1819 * impact namespace isolation. 1820 */ 1821 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 1822 { 1823 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb); 1824 } 1825 EXPORT_SYMBOL_GPL(dev_forward_skb); 1826 1827 static inline int deliver_skb(struct sk_buff *skb, 1828 struct packet_type *pt_prev, 1829 struct net_device *orig_dev) 1830 { 1831 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC))) 1832 return -ENOMEM; 1833 atomic_inc(&skb->users); 1834 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 1835 } 1836 1837 static inline void deliver_ptype_list_skb(struct sk_buff *skb, 1838 struct packet_type **pt, 1839 struct net_device *orig_dev, 1840 __be16 type, 1841 struct list_head *ptype_list) 1842 { 1843 struct packet_type *ptype, *pt_prev = *pt; 1844 1845 list_for_each_entry_rcu(ptype, ptype_list, list) { 1846 if (ptype->type != type) 1847 continue; 1848 if (pt_prev) 1849 deliver_skb(skb, pt_prev, orig_dev); 1850 pt_prev = ptype; 1851 } 1852 *pt = pt_prev; 1853 } 1854 1855 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb) 1856 { 1857 if (!ptype->af_packet_priv || !skb->sk) 1858 return false; 1859 1860 if (ptype->id_match) 1861 return ptype->id_match(ptype, skb->sk); 1862 else if ((struct sock *)ptype->af_packet_priv == skb->sk) 1863 return true; 1864 1865 return false; 1866 } 1867 1868 /* 1869 * Support routine. Sends outgoing frames to any network 1870 * taps currently in use. 1871 */ 1872 1873 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev) 1874 { 1875 struct packet_type *ptype; 1876 struct sk_buff *skb2 = NULL; 1877 struct packet_type *pt_prev = NULL; 1878 struct list_head *ptype_list = &ptype_all; 1879 1880 rcu_read_lock(); 1881 again: 1882 list_for_each_entry_rcu(ptype, ptype_list, list) { 1883 /* Never send packets back to the socket 1884 * they originated from - MvS (miquels@drinkel.ow.org) 1885 */ 1886 if (skb_loop_sk(ptype, skb)) 1887 continue; 1888 1889 if (pt_prev) { 1890 deliver_skb(skb2, pt_prev, skb->dev); 1891 pt_prev = ptype; 1892 continue; 1893 } 1894 1895 /* need to clone skb, done only once */ 1896 skb2 = skb_clone(skb, GFP_ATOMIC); 1897 if (!skb2) 1898 goto out_unlock; 1899 1900 net_timestamp_set(skb2); 1901 1902 /* skb->nh should be correctly 1903 * set by sender, so that the second statement is 1904 * just protection against buggy protocols. 1905 */ 1906 skb_reset_mac_header(skb2); 1907 1908 if (skb_network_header(skb2) < skb2->data || 1909 skb_network_header(skb2) > skb_tail_pointer(skb2)) { 1910 net_crit_ratelimited("protocol %04x is buggy, dev %s\n", 1911 ntohs(skb2->protocol), 1912 dev->name); 1913 skb_reset_network_header(skb2); 1914 } 1915 1916 skb2->transport_header = skb2->network_header; 1917 skb2->pkt_type = PACKET_OUTGOING; 1918 pt_prev = ptype; 1919 } 1920 1921 if (ptype_list == &ptype_all) { 1922 ptype_list = &dev->ptype_all; 1923 goto again; 1924 } 1925 out_unlock: 1926 if (pt_prev) 1927 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev); 1928 rcu_read_unlock(); 1929 } 1930 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit); 1931 1932 /** 1933 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change 1934 * @dev: Network device 1935 * @txq: number of queues available 1936 * 1937 * If real_num_tx_queues is changed the tc mappings may no longer be 1938 * valid. To resolve this verify the tc mapping remains valid and if 1939 * not NULL the mapping. With no priorities mapping to this 1940 * offset/count pair it will no longer be used. In the worst case TC0 1941 * is invalid nothing can be done so disable priority mappings. If is 1942 * expected that drivers will fix this mapping if they can before 1943 * calling netif_set_real_num_tx_queues. 1944 */ 1945 static void netif_setup_tc(struct net_device *dev, unsigned int txq) 1946 { 1947 int i; 1948 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 1949 1950 /* If TC0 is invalidated disable TC mapping */ 1951 if (tc->offset + tc->count > txq) { 1952 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n"); 1953 dev->num_tc = 0; 1954 return; 1955 } 1956 1957 /* Invalidated prio to tc mappings set to TC0 */ 1958 for (i = 1; i < TC_BITMASK + 1; i++) { 1959 int q = netdev_get_prio_tc_map(dev, i); 1960 1961 tc = &dev->tc_to_txq[q]; 1962 if (tc->offset + tc->count > txq) { 1963 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n", 1964 i, q); 1965 netdev_set_prio_tc_map(dev, i, 0); 1966 } 1967 } 1968 } 1969 1970 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq) 1971 { 1972 if (dev->num_tc) { 1973 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 1974 int i; 1975 1976 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) { 1977 if ((txq - tc->offset) < tc->count) 1978 return i; 1979 } 1980 1981 return -1; 1982 } 1983 1984 return 0; 1985 } 1986 1987 #ifdef CONFIG_XPS 1988 static DEFINE_MUTEX(xps_map_mutex); 1989 #define xmap_dereference(P) \ 1990 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex)) 1991 1992 static bool remove_xps_queue(struct xps_dev_maps *dev_maps, 1993 int tci, u16 index) 1994 { 1995 struct xps_map *map = NULL; 1996 int pos; 1997 1998 if (dev_maps) 1999 map = xmap_dereference(dev_maps->cpu_map[tci]); 2000 if (!map) 2001 return false; 2002 2003 for (pos = map->len; pos--;) { 2004 if (map->queues[pos] != index) 2005 continue; 2006 2007 if (map->len > 1) { 2008 map->queues[pos] = map->queues[--map->len]; 2009 break; 2010 } 2011 2012 RCU_INIT_POINTER(dev_maps->cpu_map[tci], NULL); 2013 kfree_rcu(map, rcu); 2014 return false; 2015 } 2016 2017 return true; 2018 } 2019 2020 static bool remove_xps_queue_cpu(struct net_device *dev, 2021 struct xps_dev_maps *dev_maps, 2022 int cpu, u16 offset, u16 count) 2023 { 2024 int num_tc = dev->num_tc ? : 1; 2025 bool active = false; 2026 int tci; 2027 2028 for (tci = cpu * num_tc; num_tc--; tci++) { 2029 int i, j; 2030 2031 for (i = count, j = offset; i--; j++) { 2032 if (!remove_xps_queue(dev_maps, cpu, j)) 2033 break; 2034 } 2035 2036 active |= i < 0; 2037 } 2038 2039 return active; 2040 } 2041 2042 static void netif_reset_xps_queues(struct net_device *dev, u16 offset, 2043 u16 count) 2044 { 2045 struct xps_dev_maps *dev_maps; 2046 int cpu, i; 2047 bool active = false; 2048 2049 mutex_lock(&xps_map_mutex); 2050 dev_maps = xmap_dereference(dev->xps_maps); 2051 2052 if (!dev_maps) 2053 goto out_no_maps; 2054 2055 for_each_possible_cpu(cpu) 2056 active |= remove_xps_queue_cpu(dev, dev_maps, cpu, 2057 offset, count); 2058 2059 if (!active) { 2060 RCU_INIT_POINTER(dev->xps_maps, NULL); 2061 kfree_rcu(dev_maps, rcu); 2062 } 2063 2064 for (i = offset + (count - 1); count--; i--) 2065 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i), 2066 NUMA_NO_NODE); 2067 2068 out_no_maps: 2069 mutex_unlock(&xps_map_mutex); 2070 } 2071 2072 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index) 2073 { 2074 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index); 2075 } 2076 2077 static struct xps_map *expand_xps_map(struct xps_map *map, 2078 int cpu, u16 index) 2079 { 2080 struct xps_map *new_map; 2081 int alloc_len = XPS_MIN_MAP_ALLOC; 2082 int i, pos; 2083 2084 for (pos = 0; map && pos < map->len; pos++) { 2085 if (map->queues[pos] != index) 2086 continue; 2087 return map; 2088 } 2089 2090 /* Need to add queue to this CPU's existing map */ 2091 if (map) { 2092 if (pos < map->alloc_len) 2093 return map; 2094 2095 alloc_len = map->alloc_len * 2; 2096 } 2097 2098 /* Need to allocate new map to store queue on this CPU's map */ 2099 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL, 2100 cpu_to_node(cpu)); 2101 if (!new_map) 2102 return NULL; 2103 2104 for (i = 0; i < pos; i++) 2105 new_map->queues[i] = map->queues[i]; 2106 new_map->alloc_len = alloc_len; 2107 new_map->len = pos; 2108 2109 return new_map; 2110 } 2111 2112 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask, 2113 u16 index) 2114 { 2115 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL; 2116 int i, cpu, tci, numa_node_id = -2; 2117 int maps_sz, num_tc = 1, tc = 0; 2118 struct xps_map *map, *new_map; 2119 bool active = false; 2120 2121 if (dev->num_tc) { 2122 num_tc = dev->num_tc; 2123 tc = netdev_txq_to_tc(dev, index); 2124 if (tc < 0) 2125 return -EINVAL; 2126 } 2127 2128 maps_sz = XPS_DEV_MAPS_SIZE(num_tc); 2129 if (maps_sz < L1_CACHE_BYTES) 2130 maps_sz = L1_CACHE_BYTES; 2131 2132 mutex_lock(&xps_map_mutex); 2133 2134 dev_maps = xmap_dereference(dev->xps_maps); 2135 2136 /* allocate memory for queue storage */ 2137 for_each_cpu_and(cpu, cpu_online_mask, mask) { 2138 if (!new_dev_maps) 2139 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL); 2140 if (!new_dev_maps) { 2141 mutex_unlock(&xps_map_mutex); 2142 return -ENOMEM; 2143 } 2144 2145 tci = cpu * num_tc + tc; 2146 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[tci]) : 2147 NULL; 2148 2149 map = expand_xps_map(map, cpu, index); 2150 if (!map) 2151 goto error; 2152 2153 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map); 2154 } 2155 2156 if (!new_dev_maps) 2157 goto out_no_new_maps; 2158 2159 for_each_possible_cpu(cpu) { 2160 /* copy maps belonging to foreign traffic classes */ 2161 for (i = tc, tci = cpu * num_tc; dev_maps && i--; tci++) { 2162 /* fill in the new device map from the old device map */ 2163 map = xmap_dereference(dev_maps->cpu_map[tci]); 2164 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map); 2165 } 2166 2167 /* We need to explicitly update tci as prevous loop 2168 * could break out early if dev_maps is NULL. 2169 */ 2170 tci = cpu * num_tc + tc; 2171 2172 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) { 2173 /* add queue to CPU maps */ 2174 int pos = 0; 2175 2176 map = xmap_dereference(new_dev_maps->cpu_map[tci]); 2177 while ((pos < map->len) && (map->queues[pos] != index)) 2178 pos++; 2179 2180 if (pos == map->len) 2181 map->queues[map->len++] = index; 2182 #ifdef CONFIG_NUMA 2183 if (numa_node_id == -2) 2184 numa_node_id = cpu_to_node(cpu); 2185 else if (numa_node_id != cpu_to_node(cpu)) 2186 numa_node_id = -1; 2187 #endif 2188 } else if (dev_maps) { 2189 /* fill in the new device map from the old device map */ 2190 map = xmap_dereference(dev_maps->cpu_map[tci]); 2191 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map); 2192 } 2193 2194 /* copy maps belonging to foreign traffic classes */ 2195 for (i = num_tc - tc, tci++; dev_maps && --i; tci++) { 2196 /* fill in the new device map from the old device map */ 2197 map = xmap_dereference(dev_maps->cpu_map[tci]); 2198 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map); 2199 } 2200 } 2201 2202 rcu_assign_pointer(dev->xps_maps, new_dev_maps); 2203 2204 /* Cleanup old maps */ 2205 if (!dev_maps) 2206 goto out_no_old_maps; 2207 2208 for_each_possible_cpu(cpu) { 2209 for (i = num_tc, tci = cpu * num_tc; i--; tci++) { 2210 new_map = xmap_dereference(new_dev_maps->cpu_map[tci]); 2211 map = xmap_dereference(dev_maps->cpu_map[tci]); 2212 if (map && map != new_map) 2213 kfree_rcu(map, rcu); 2214 } 2215 } 2216 2217 kfree_rcu(dev_maps, rcu); 2218 2219 out_no_old_maps: 2220 dev_maps = new_dev_maps; 2221 active = true; 2222 2223 out_no_new_maps: 2224 /* update Tx queue numa node */ 2225 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index), 2226 (numa_node_id >= 0) ? numa_node_id : 2227 NUMA_NO_NODE); 2228 2229 if (!dev_maps) 2230 goto out_no_maps; 2231 2232 /* removes queue from unused CPUs */ 2233 for_each_possible_cpu(cpu) { 2234 for (i = tc, tci = cpu * num_tc; i--; tci++) 2235 active |= remove_xps_queue(dev_maps, tci, index); 2236 if (!cpumask_test_cpu(cpu, mask) || !cpu_online(cpu)) 2237 active |= remove_xps_queue(dev_maps, tci, index); 2238 for (i = num_tc - tc, tci++; --i; tci++) 2239 active |= remove_xps_queue(dev_maps, tci, index); 2240 } 2241 2242 /* free map if not active */ 2243 if (!active) { 2244 RCU_INIT_POINTER(dev->xps_maps, NULL); 2245 kfree_rcu(dev_maps, rcu); 2246 } 2247 2248 out_no_maps: 2249 mutex_unlock(&xps_map_mutex); 2250 2251 return 0; 2252 error: 2253 /* remove any maps that we added */ 2254 for_each_possible_cpu(cpu) { 2255 for (i = num_tc, tci = cpu * num_tc; i--; tci++) { 2256 new_map = xmap_dereference(new_dev_maps->cpu_map[tci]); 2257 map = dev_maps ? 2258 xmap_dereference(dev_maps->cpu_map[tci]) : 2259 NULL; 2260 if (new_map && new_map != map) 2261 kfree(new_map); 2262 } 2263 } 2264 2265 mutex_unlock(&xps_map_mutex); 2266 2267 kfree(new_dev_maps); 2268 return -ENOMEM; 2269 } 2270 EXPORT_SYMBOL(netif_set_xps_queue); 2271 2272 #endif 2273 void netdev_reset_tc(struct net_device *dev) 2274 { 2275 #ifdef CONFIG_XPS 2276 netif_reset_xps_queues_gt(dev, 0); 2277 #endif 2278 dev->num_tc = 0; 2279 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq)); 2280 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map)); 2281 } 2282 EXPORT_SYMBOL(netdev_reset_tc); 2283 2284 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset) 2285 { 2286 if (tc >= dev->num_tc) 2287 return -EINVAL; 2288 2289 #ifdef CONFIG_XPS 2290 netif_reset_xps_queues(dev, offset, count); 2291 #endif 2292 dev->tc_to_txq[tc].count = count; 2293 dev->tc_to_txq[tc].offset = offset; 2294 return 0; 2295 } 2296 EXPORT_SYMBOL(netdev_set_tc_queue); 2297 2298 int netdev_set_num_tc(struct net_device *dev, u8 num_tc) 2299 { 2300 if (num_tc > TC_MAX_QUEUE) 2301 return -EINVAL; 2302 2303 #ifdef CONFIG_XPS 2304 netif_reset_xps_queues_gt(dev, 0); 2305 #endif 2306 dev->num_tc = num_tc; 2307 return 0; 2308 } 2309 EXPORT_SYMBOL(netdev_set_num_tc); 2310 2311 /* 2312 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues 2313 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed. 2314 */ 2315 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq) 2316 { 2317 int rc; 2318 2319 if (txq < 1 || txq > dev->num_tx_queues) 2320 return -EINVAL; 2321 2322 if (dev->reg_state == NETREG_REGISTERED || 2323 dev->reg_state == NETREG_UNREGISTERING) { 2324 ASSERT_RTNL(); 2325 2326 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues, 2327 txq); 2328 if (rc) 2329 return rc; 2330 2331 if (dev->num_tc) 2332 netif_setup_tc(dev, txq); 2333 2334 if (txq < dev->real_num_tx_queues) { 2335 qdisc_reset_all_tx_gt(dev, txq); 2336 #ifdef CONFIG_XPS 2337 netif_reset_xps_queues_gt(dev, txq); 2338 #endif 2339 } 2340 } 2341 2342 dev->real_num_tx_queues = txq; 2343 return 0; 2344 } 2345 EXPORT_SYMBOL(netif_set_real_num_tx_queues); 2346 2347 #ifdef CONFIG_SYSFS 2348 /** 2349 * netif_set_real_num_rx_queues - set actual number of RX queues used 2350 * @dev: Network device 2351 * @rxq: Actual number of RX queues 2352 * 2353 * This must be called either with the rtnl_lock held or before 2354 * registration of the net device. Returns 0 on success, or a 2355 * negative error code. If called before registration, it always 2356 * succeeds. 2357 */ 2358 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq) 2359 { 2360 int rc; 2361 2362 if (rxq < 1 || rxq > dev->num_rx_queues) 2363 return -EINVAL; 2364 2365 if (dev->reg_state == NETREG_REGISTERED) { 2366 ASSERT_RTNL(); 2367 2368 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues, 2369 rxq); 2370 if (rc) 2371 return rc; 2372 } 2373 2374 dev->real_num_rx_queues = rxq; 2375 return 0; 2376 } 2377 EXPORT_SYMBOL(netif_set_real_num_rx_queues); 2378 #endif 2379 2380 /** 2381 * netif_get_num_default_rss_queues - default number of RSS queues 2382 * 2383 * This routine should set an upper limit on the number of RSS queues 2384 * used by default by multiqueue devices. 2385 */ 2386 int netif_get_num_default_rss_queues(void) 2387 { 2388 return is_kdump_kernel() ? 2389 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus()); 2390 } 2391 EXPORT_SYMBOL(netif_get_num_default_rss_queues); 2392 2393 static void __netif_reschedule(struct Qdisc *q) 2394 { 2395 struct softnet_data *sd; 2396 unsigned long flags; 2397 2398 local_irq_save(flags); 2399 sd = this_cpu_ptr(&softnet_data); 2400 q->next_sched = NULL; 2401 *sd->output_queue_tailp = q; 2402 sd->output_queue_tailp = &q->next_sched; 2403 raise_softirq_irqoff(NET_TX_SOFTIRQ); 2404 local_irq_restore(flags); 2405 } 2406 2407 void __netif_schedule(struct Qdisc *q) 2408 { 2409 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state)) 2410 __netif_reschedule(q); 2411 } 2412 EXPORT_SYMBOL(__netif_schedule); 2413 2414 struct dev_kfree_skb_cb { 2415 enum skb_free_reason reason; 2416 }; 2417 2418 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb) 2419 { 2420 return (struct dev_kfree_skb_cb *)skb->cb; 2421 } 2422 2423 void netif_schedule_queue(struct netdev_queue *txq) 2424 { 2425 rcu_read_lock(); 2426 if (!(txq->state & QUEUE_STATE_ANY_XOFF)) { 2427 struct Qdisc *q = rcu_dereference(txq->qdisc); 2428 2429 __netif_schedule(q); 2430 } 2431 rcu_read_unlock(); 2432 } 2433 EXPORT_SYMBOL(netif_schedule_queue); 2434 2435 void netif_tx_wake_queue(struct netdev_queue *dev_queue) 2436 { 2437 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) { 2438 struct Qdisc *q; 2439 2440 rcu_read_lock(); 2441 q = rcu_dereference(dev_queue->qdisc); 2442 __netif_schedule(q); 2443 rcu_read_unlock(); 2444 } 2445 } 2446 EXPORT_SYMBOL(netif_tx_wake_queue); 2447 2448 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason) 2449 { 2450 unsigned long flags; 2451 2452 if (likely(atomic_read(&skb->users) == 1)) { 2453 smp_rmb(); 2454 atomic_set(&skb->users, 0); 2455 } else if (likely(!atomic_dec_and_test(&skb->users))) { 2456 return; 2457 } 2458 get_kfree_skb_cb(skb)->reason = reason; 2459 local_irq_save(flags); 2460 skb->next = __this_cpu_read(softnet_data.completion_queue); 2461 __this_cpu_write(softnet_data.completion_queue, skb); 2462 raise_softirq_irqoff(NET_TX_SOFTIRQ); 2463 local_irq_restore(flags); 2464 } 2465 EXPORT_SYMBOL(__dev_kfree_skb_irq); 2466 2467 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason) 2468 { 2469 if (in_irq() || irqs_disabled()) 2470 __dev_kfree_skb_irq(skb, reason); 2471 else 2472 dev_kfree_skb(skb); 2473 } 2474 EXPORT_SYMBOL(__dev_kfree_skb_any); 2475 2476 2477 /** 2478 * netif_device_detach - mark device as removed 2479 * @dev: network device 2480 * 2481 * Mark device as removed from system and therefore no longer available. 2482 */ 2483 void netif_device_detach(struct net_device *dev) 2484 { 2485 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) && 2486 netif_running(dev)) { 2487 netif_tx_stop_all_queues(dev); 2488 } 2489 } 2490 EXPORT_SYMBOL(netif_device_detach); 2491 2492 /** 2493 * netif_device_attach - mark device as attached 2494 * @dev: network device 2495 * 2496 * Mark device as attached from system and restart if needed. 2497 */ 2498 void netif_device_attach(struct net_device *dev) 2499 { 2500 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) && 2501 netif_running(dev)) { 2502 netif_tx_wake_all_queues(dev); 2503 __netdev_watchdog_up(dev); 2504 } 2505 } 2506 EXPORT_SYMBOL(netif_device_attach); 2507 2508 /* 2509 * Returns a Tx hash based on the given packet descriptor a Tx queues' number 2510 * to be used as a distribution range. 2511 */ 2512 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb, 2513 unsigned int num_tx_queues) 2514 { 2515 u32 hash; 2516 u16 qoffset = 0; 2517 u16 qcount = num_tx_queues; 2518 2519 if (skb_rx_queue_recorded(skb)) { 2520 hash = skb_get_rx_queue(skb); 2521 while (unlikely(hash >= num_tx_queues)) 2522 hash -= num_tx_queues; 2523 return hash; 2524 } 2525 2526 if (dev->num_tc) { 2527 u8 tc = netdev_get_prio_tc_map(dev, skb->priority); 2528 2529 qoffset = dev->tc_to_txq[tc].offset; 2530 qcount = dev->tc_to_txq[tc].count; 2531 } 2532 2533 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset; 2534 } 2535 EXPORT_SYMBOL(__skb_tx_hash); 2536 2537 static void skb_warn_bad_offload(const struct sk_buff *skb) 2538 { 2539 static const netdev_features_t null_features; 2540 struct net_device *dev = skb->dev; 2541 const char *name = ""; 2542 2543 if (!net_ratelimit()) 2544 return; 2545 2546 if (dev) { 2547 if (dev->dev.parent) 2548 name = dev_driver_string(dev->dev.parent); 2549 else 2550 name = netdev_name(dev); 2551 } 2552 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d " 2553 "gso_type=%d ip_summed=%d\n", 2554 name, dev ? &dev->features : &null_features, 2555 skb->sk ? &skb->sk->sk_route_caps : &null_features, 2556 skb->len, skb->data_len, skb_shinfo(skb)->gso_size, 2557 skb_shinfo(skb)->gso_type, skb->ip_summed); 2558 } 2559 2560 /* 2561 * Invalidate hardware checksum when packet is to be mangled, and 2562 * complete checksum manually on outgoing path. 2563 */ 2564 int skb_checksum_help(struct sk_buff *skb) 2565 { 2566 __wsum csum; 2567 int ret = 0, offset; 2568 2569 if (skb->ip_summed == CHECKSUM_COMPLETE) 2570 goto out_set_summed; 2571 2572 if (unlikely(skb_shinfo(skb)->gso_size)) { 2573 skb_warn_bad_offload(skb); 2574 return -EINVAL; 2575 } 2576 2577 /* Before computing a checksum, we should make sure no frag could 2578 * be modified by an external entity : checksum could be wrong. 2579 */ 2580 if (skb_has_shared_frag(skb)) { 2581 ret = __skb_linearize(skb); 2582 if (ret) 2583 goto out; 2584 } 2585 2586 offset = skb_checksum_start_offset(skb); 2587 BUG_ON(offset >= skb_headlen(skb)); 2588 csum = skb_checksum(skb, offset, skb->len - offset, 0); 2589 2590 offset += skb->csum_offset; 2591 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb)); 2592 2593 if (skb_cloned(skb) && 2594 !skb_clone_writable(skb, offset + sizeof(__sum16))) { 2595 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 2596 if (ret) 2597 goto out; 2598 } 2599 2600 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0; 2601 out_set_summed: 2602 skb->ip_summed = CHECKSUM_NONE; 2603 out: 2604 return ret; 2605 } 2606 EXPORT_SYMBOL(skb_checksum_help); 2607 2608 __be16 skb_network_protocol(struct sk_buff *skb, int *depth) 2609 { 2610 __be16 type = skb->protocol; 2611 2612 /* Tunnel gso handlers can set protocol to ethernet. */ 2613 if (type == htons(ETH_P_TEB)) { 2614 struct ethhdr *eth; 2615 2616 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr)))) 2617 return 0; 2618 2619 eth = (struct ethhdr *)skb_mac_header(skb); 2620 type = eth->h_proto; 2621 } 2622 2623 return __vlan_get_protocol(skb, type, depth); 2624 } 2625 2626 /** 2627 * skb_mac_gso_segment - mac layer segmentation handler. 2628 * @skb: buffer to segment 2629 * @features: features for the output path (see dev->features) 2630 */ 2631 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb, 2632 netdev_features_t features) 2633 { 2634 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT); 2635 struct packet_offload *ptype; 2636 int vlan_depth = skb->mac_len; 2637 __be16 type = skb_network_protocol(skb, &vlan_depth); 2638 2639 if (unlikely(!type)) 2640 return ERR_PTR(-EINVAL); 2641 2642 __skb_pull(skb, vlan_depth); 2643 2644 rcu_read_lock(); 2645 list_for_each_entry_rcu(ptype, &offload_base, list) { 2646 if (ptype->type == type && ptype->callbacks.gso_segment) { 2647 segs = ptype->callbacks.gso_segment(skb, features); 2648 break; 2649 } 2650 } 2651 rcu_read_unlock(); 2652 2653 __skb_push(skb, skb->data - skb_mac_header(skb)); 2654 2655 return segs; 2656 } 2657 EXPORT_SYMBOL(skb_mac_gso_segment); 2658 2659 2660 /* openvswitch calls this on rx path, so we need a different check. 2661 */ 2662 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path) 2663 { 2664 if (tx_path) 2665 return skb->ip_summed != CHECKSUM_PARTIAL && 2666 skb->ip_summed != CHECKSUM_NONE; 2667 2668 return skb->ip_summed == CHECKSUM_NONE; 2669 } 2670 2671 /** 2672 * __skb_gso_segment - Perform segmentation on skb. 2673 * @skb: buffer to segment 2674 * @features: features for the output path (see dev->features) 2675 * @tx_path: whether it is called in TX path 2676 * 2677 * This function segments the given skb and returns a list of segments. 2678 * 2679 * It may return NULL if the skb requires no segmentation. This is 2680 * only possible when GSO is used for verifying header integrity. 2681 * 2682 * Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb. 2683 */ 2684 struct sk_buff *__skb_gso_segment(struct sk_buff *skb, 2685 netdev_features_t features, bool tx_path) 2686 { 2687 struct sk_buff *segs; 2688 2689 if (unlikely(skb_needs_check(skb, tx_path))) { 2690 int err; 2691 2692 /* We're going to init ->check field in TCP or UDP header */ 2693 err = skb_cow_head(skb, 0); 2694 if (err < 0) 2695 return ERR_PTR(err); 2696 } 2697 2698 /* Only report GSO partial support if it will enable us to 2699 * support segmentation on this frame without needing additional 2700 * work. 2701 */ 2702 if (features & NETIF_F_GSO_PARTIAL) { 2703 netdev_features_t partial_features = NETIF_F_GSO_ROBUST; 2704 struct net_device *dev = skb->dev; 2705 2706 partial_features |= dev->features & dev->gso_partial_features; 2707 if (!skb_gso_ok(skb, features | partial_features)) 2708 features &= ~NETIF_F_GSO_PARTIAL; 2709 } 2710 2711 BUILD_BUG_ON(SKB_SGO_CB_OFFSET + 2712 sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb)); 2713 2714 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb); 2715 SKB_GSO_CB(skb)->encap_level = 0; 2716 2717 skb_reset_mac_header(skb); 2718 skb_reset_mac_len(skb); 2719 2720 segs = skb_mac_gso_segment(skb, features); 2721 2722 if (unlikely(skb_needs_check(skb, tx_path))) 2723 skb_warn_bad_offload(skb); 2724 2725 return segs; 2726 } 2727 EXPORT_SYMBOL(__skb_gso_segment); 2728 2729 /* Take action when hardware reception checksum errors are detected. */ 2730 #ifdef CONFIG_BUG 2731 void netdev_rx_csum_fault(struct net_device *dev) 2732 { 2733 if (net_ratelimit()) { 2734 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>"); 2735 dump_stack(); 2736 } 2737 } 2738 EXPORT_SYMBOL(netdev_rx_csum_fault); 2739 #endif 2740 2741 /* Actually, we should eliminate this check as soon as we know, that: 2742 * 1. IOMMU is present and allows to map all the memory. 2743 * 2. No high memory really exists on this machine. 2744 */ 2745 2746 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb) 2747 { 2748 #ifdef CONFIG_HIGHMEM 2749 int i; 2750 2751 if (!(dev->features & NETIF_F_HIGHDMA)) { 2752 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2753 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2754 2755 if (PageHighMem(skb_frag_page(frag))) 2756 return 1; 2757 } 2758 } 2759 2760 if (PCI_DMA_BUS_IS_PHYS) { 2761 struct device *pdev = dev->dev.parent; 2762 2763 if (!pdev) 2764 return 0; 2765 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2766 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2767 dma_addr_t addr = page_to_phys(skb_frag_page(frag)); 2768 2769 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask) 2770 return 1; 2771 } 2772 } 2773 #endif 2774 return 0; 2775 } 2776 2777 /* If MPLS offload request, verify we are testing hardware MPLS features 2778 * instead of standard features for the netdev. 2779 */ 2780 #if IS_ENABLED(CONFIG_NET_MPLS_GSO) 2781 static netdev_features_t net_mpls_features(struct sk_buff *skb, 2782 netdev_features_t features, 2783 __be16 type) 2784 { 2785 if (eth_p_mpls(type)) 2786 features &= skb->dev->mpls_features; 2787 2788 return features; 2789 } 2790 #else 2791 static netdev_features_t net_mpls_features(struct sk_buff *skb, 2792 netdev_features_t features, 2793 __be16 type) 2794 { 2795 return features; 2796 } 2797 #endif 2798 2799 static netdev_features_t harmonize_features(struct sk_buff *skb, 2800 netdev_features_t features) 2801 { 2802 int tmp; 2803 __be16 type; 2804 2805 type = skb_network_protocol(skb, &tmp); 2806 features = net_mpls_features(skb, features, type); 2807 2808 if (skb->ip_summed != CHECKSUM_NONE && 2809 !can_checksum_protocol(features, type)) { 2810 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 2811 } 2812 if (illegal_highdma(skb->dev, skb)) 2813 features &= ~NETIF_F_SG; 2814 2815 return features; 2816 } 2817 2818 netdev_features_t passthru_features_check(struct sk_buff *skb, 2819 struct net_device *dev, 2820 netdev_features_t features) 2821 { 2822 return features; 2823 } 2824 EXPORT_SYMBOL(passthru_features_check); 2825 2826 static netdev_features_t dflt_features_check(const struct sk_buff *skb, 2827 struct net_device *dev, 2828 netdev_features_t features) 2829 { 2830 return vlan_features_check(skb, features); 2831 } 2832 2833 static netdev_features_t gso_features_check(const struct sk_buff *skb, 2834 struct net_device *dev, 2835 netdev_features_t features) 2836 { 2837 u16 gso_segs = skb_shinfo(skb)->gso_segs; 2838 2839 if (gso_segs > dev->gso_max_segs) 2840 return features & ~NETIF_F_GSO_MASK; 2841 2842 /* Support for GSO partial features requires software 2843 * intervention before we can actually process the packets 2844 * so we need to strip support for any partial features now 2845 * and we can pull them back in after we have partially 2846 * segmented the frame. 2847 */ 2848 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL)) 2849 features &= ~dev->gso_partial_features; 2850 2851 /* Make sure to clear the IPv4 ID mangling feature if the 2852 * IPv4 header has the potential to be fragmented. 2853 */ 2854 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) { 2855 struct iphdr *iph = skb->encapsulation ? 2856 inner_ip_hdr(skb) : ip_hdr(skb); 2857 2858 if (!(iph->frag_off & htons(IP_DF))) 2859 features &= ~NETIF_F_TSO_MANGLEID; 2860 } 2861 2862 return features; 2863 } 2864 2865 netdev_features_t netif_skb_features(struct sk_buff *skb) 2866 { 2867 struct net_device *dev = skb->dev; 2868 netdev_features_t features = dev->features; 2869 2870 if (skb_is_gso(skb)) 2871 features = gso_features_check(skb, dev, features); 2872 2873 /* If encapsulation offload request, verify we are testing 2874 * hardware encapsulation features instead of standard 2875 * features for the netdev 2876 */ 2877 if (skb->encapsulation) 2878 features &= dev->hw_enc_features; 2879 2880 if (skb_vlan_tagged(skb)) 2881 features = netdev_intersect_features(features, 2882 dev->vlan_features | 2883 NETIF_F_HW_VLAN_CTAG_TX | 2884 NETIF_F_HW_VLAN_STAG_TX); 2885 2886 if (dev->netdev_ops->ndo_features_check) 2887 features &= dev->netdev_ops->ndo_features_check(skb, dev, 2888 features); 2889 else 2890 features &= dflt_features_check(skb, dev, features); 2891 2892 return harmonize_features(skb, features); 2893 } 2894 EXPORT_SYMBOL(netif_skb_features); 2895 2896 static int xmit_one(struct sk_buff *skb, struct net_device *dev, 2897 struct netdev_queue *txq, bool more) 2898 { 2899 unsigned int len; 2900 int rc; 2901 2902 if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all)) 2903 dev_queue_xmit_nit(skb, dev); 2904 2905 len = skb->len; 2906 trace_net_dev_start_xmit(skb, dev); 2907 rc = netdev_start_xmit(skb, dev, txq, more); 2908 trace_net_dev_xmit(skb, rc, dev, len); 2909 2910 return rc; 2911 } 2912 2913 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev, 2914 struct netdev_queue *txq, int *ret) 2915 { 2916 struct sk_buff *skb = first; 2917 int rc = NETDEV_TX_OK; 2918 2919 while (skb) { 2920 struct sk_buff *next = skb->next; 2921 2922 skb->next = NULL; 2923 rc = xmit_one(skb, dev, txq, next != NULL); 2924 if (unlikely(!dev_xmit_complete(rc))) { 2925 skb->next = next; 2926 goto out; 2927 } 2928 2929 skb = next; 2930 if (netif_xmit_stopped(txq) && skb) { 2931 rc = NETDEV_TX_BUSY; 2932 break; 2933 } 2934 } 2935 2936 out: 2937 *ret = rc; 2938 return skb; 2939 } 2940 2941 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb, 2942 netdev_features_t features) 2943 { 2944 if (skb_vlan_tag_present(skb) && 2945 !vlan_hw_offload_capable(features, skb->vlan_proto)) 2946 skb = __vlan_hwaccel_push_inside(skb); 2947 return skb; 2948 } 2949 2950 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev) 2951 { 2952 netdev_features_t features; 2953 2954 features = netif_skb_features(skb); 2955 skb = validate_xmit_vlan(skb, features); 2956 if (unlikely(!skb)) 2957 goto out_null; 2958 2959 if (netif_needs_gso(skb, features)) { 2960 struct sk_buff *segs; 2961 2962 segs = skb_gso_segment(skb, features); 2963 if (IS_ERR(segs)) { 2964 goto out_kfree_skb; 2965 } else if (segs) { 2966 consume_skb(skb); 2967 skb = segs; 2968 } 2969 } else { 2970 if (skb_needs_linearize(skb, features) && 2971 __skb_linearize(skb)) 2972 goto out_kfree_skb; 2973 2974 /* If packet is not checksummed and device does not 2975 * support checksumming for this protocol, complete 2976 * checksumming here. 2977 */ 2978 if (skb->ip_summed == CHECKSUM_PARTIAL) { 2979 if (skb->encapsulation) 2980 skb_set_inner_transport_header(skb, 2981 skb_checksum_start_offset(skb)); 2982 else 2983 skb_set_transport_header(skb, 2984 skb_checksum_start_offset(skb)); 2985 if (!(features & NETIF_F_CSUM_MASK) && 2986 skb_checksum_help(skb)) 2987 goto out_kfree_skb; 2988 } 2989 } 2990 2991 return skb; 2992 2993 out_kfree_skb: 2994 kfree_skb(skb); 2995 out_null: 2996 atomic_long_inc(&dev->tx_dropped); 2997 return NULL; 2998 } 2999 3000 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev) 3001 { 3002 struct sk_buff *next, *head = NULL, *tail; 3003 3004 for (; skb != NULL; skb = next) { 3005 next = skb->next; 3006 skb->next = NULL; 3007 3008 /* in case skb wont be segmented, point to itself */ 3009 skb->prev = skb; 3010 3011 skb = validate_xmit_skb(skb, dev); 3012 if (!skb) 3013 continue; 3014 3015 if (!head) 3016 head = skb; 3017 else 3018 tail->next = skb; 3019 /* If skb was segmented, skb->prev points to 3020 * the last segment. If not, it still contains skb. 3021 */ 3022 tail = skb->prev; 3023 } 3024 return head; 3025 } 3026 EXPORT_SYMBOL_GPL(validate_xmit_skb_list); 3027 3028 static void qdisc_pkt_len_init(struct sk_buff *skb) 3029 { 3030 const struct skb_shared_info *shinfo = skb_shinfo(skb); 3031 3032 qdisc_skb_cb(skb)->pkt_len = skb->len; 3033 3034 /* To get more precise estimation of bytes sent on wire, 3035 * we add to pkt_len the headers size of all segments 3036 */ 3037 if (shinfo->gso_size) { 3038 unsigned int hdr_len; 3039 u16 gso_segs = shinfo->gso_segs; 3040 3041 /* mac layer + network layer */ 3042 hdr_len = skb_transport_header(skb) - skb_mac_header(skb); 3043 3044 /* + transport layer */ 3045 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) 3046 hdr_len += tcp_hdrlen(skb); 3047 else 3048 hdr_len += sizeof(struct udphdr); 3049 3050 if (shinfo->gso_type & SKB_GSO_DODGY) 3051 gso_segs = DIV_ROUND_UP(skb->len - hdr_len, 3052 shinfo->gso_size); 3053 3054 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len; 3055 } 3056 } 3057 3058 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q, 3059 struct net_device *dev, 3060 struct netdev_queue *txq) 3061 { 3062 spinlock_t *root_lock = qdisc_lock(q); 3063 struct sk_buff *to_free = NULL; 3064 bool contended; 3065 int rc; 3066 3067 qdisc_calculate_pkt_len(skb, q); 3068 /* 3069 * Heuristic to force contended enqueues to serialize on a 3070 * separate lock before trying to get qdisc main lock. 3071 * This permits qdisc->running owner to get the lock more 3072 * often and dequeue packets faster. 3073 */ 3074 contended = qdisc_is_running(q); 3075 if (unlikely(contended)) 3076 spin_lock(&q->busylock); 3077 3078 spin_lock(root_lock); 3079 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) { 3080 __qdisc_drop(skb, &to_free); 3081 rc = NET_XMIT_DROP; 3082 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) && 3083 qdisc_run_begin(q)) { 3084 /* 3085 * This is a work-conserving queue; there are no old skbs 3086 * waiting to be sent out; and the qdisc is not running - 3087 * xmit the skb directly. 3088 */ 3089 3090 qdisc_bstats_update(q, skb); 3091 3092 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) { 3093 if (unlikely(contended)) { 3094 spin_unlock(&q->busylock); 3095 contended = false; 3096 } 3097 __qdisc_run(q); 3098 } else 3099 qdisc_run_end(q); 3100 3101 rc = NET_XMIT_SUCCESS; 3102 } else { 3103 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK; 3104 if (qdisc_run_begin(q)) { 3105 if (unlikely(contended)) { 3106 spin_unlock(&q->busylock); 3107 contended = false; 3108 } 3109 __qdisc_run(q); 3110 } 3111 } 3112 spin_unlock(root_lock); 3113 if (unlikely(to_free)) 3114 kfree_skb_list(to_free); 3115 if (unlikely(contended)) 3116 spin_unlock(&q->busylock); 3117 return rc; 3118 } 3119 3120 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO) 3121 static void skb_update_prio(struct sk_buff *skb) 3122 { 3123 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap); 3124 3125 if (!skb->priority && skb->sk && map) { 3126 unsigned int prioidx = 3127 sock_cgroup_prioidx(&skb->sk->sk_cgrp_data); 3128 3129 if (prioidx < map->priomap_len) 3130 skb->priority = map->priomap[prioidx]; 3131 } 3132 } 3133 #else 3134 #define skb_update_prio(skb) 3135 #endif 3136 3137 DEFINE_PER_CPU(int, xmit_recursion); 3138 EXPORT_SYMBOL(xmit_recursion); 3139 3140 /** 3141 * dev_loopback_xmit - loop back @skb 3142 * @net: network namespace this loopback is happening in 3143 * @sk: sk needed to be a netfilter okfn 3144 * @skb: buffer to transmit 3145 */ 3146 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb) 3147 { 3148 skb_reset_mac_header(skb); 3149 __skb_pull(skb, skb_network_offset(skb)); 3150 skb->pkt_type = PACKET_LOOPBACK; 3151 skb->ip_summed = CHECKSUM_UNNECESSARY; 3152 WARN_ON(!skb_dst(skb)); 3153 skb_dst_force(skb); 3154 netif_rx_ni(skb); 3155 return 0; 3156 } 3157 EXPORT_SYMBOL(dev_loopback_xmit); 3158 3159 #ifdef CONFIG_NET_EGRESS 3160 static struct sk_buff * 3161 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev) 3162 { 3163 struct tcf_proto *cl = rcu_dereference_bh(dev->egress_cl_list); 3164 struct tcf_result cl_res; 3165 3166 if (!cl) 3167 return skb; 3168 3169 /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */ 3170 qdisc_bstats_cpu_update(cl->q, skb); 3171 3172 switch (tc_classify(skb, cl, &cl_res, false)) { 3173 case TC_ACT_OK: 3174 case TC_ACT_RECLASSIFY: 3175 skb->tc_index = TC_H_MIN(cl_res.classid); 3176 break; 3177 case TC_ACT_SHOT: 3178 qdisc_qstats_cpu_drop(cl->q); 3179 *ret = NET_XMIT_DROP; 3180 kfree_skb(skb); 3181 return NULL; 3182 case TC_ACT_STOLEN: 3183 case TC_ACT_QUEUED: 3184 *ret = NET_XMIT_SUCCESS; 3185 consume_skb(skb); 3186 return NULL; 3187 case TC_ACT_REDIRECT: 3188 /* No need to push/pop skb's mac_header here on egress! */ 3189 skb_do_redirect(skb); 3190 *ret = NET_XMIT_SUCCESS; 3191 return NULL; 3192 default: 3193 break; 3194 } 3195 3196 return skb; 3197 } 3198 #endif /* CONFIG_NET_EGRESS */ 3199 3200 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb) 3201 { 3202 #ifdef CONFIG_XPS 3203 struct xps_dev_maps *dev_maps; 3204 struct xps_map *map; 3205 int queue_index = -1; 3206 3207 rcu_read_lock(); 3208 dev_maps = rcu_dereference(dev->xps_maps); 3209 if (dev_maps) { 3210 unsigned int tci = skb->sender_cpu - 1; 3211 3212 if (dev->num_tc) { 3213 tci *= dev->num_tc; 3214 tci += netdev_get_prio_tc_map(dev, skb->priority); 3215 } 3216 3217 map = rcu_dereference(dev_maps->cpu_map[tci]); 3218 if (map) { 3219 if (map->len == 1) 3220 queue_index = map->queues[0]; 3221 else 3222 queue_index = map->queues[reciprocal_scale(skb_get_hash(skb), 3223 map->len)]; 3224 if (unlikely(queue_index >= dev->real_num_tx_queues)) 3225 queue_index = -1; 3226 } 3227 } 3228 rcu_read_unlock(); 3229 3230 return queue_index; 3231 #else 3232 return -1; 3233 #endif 3234 } 3235 3236 static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb) 3237 { 3238 struct sock *sk = skb->sk; 3239 int queue_index = sk_tx_queue_get(sk); 3240 3241 if (queue_index < 0 || skb->ooo_okay || 3242 queue_index >= dev->real_num_tx_queues) { 3243 int new_index = get_xps_queue(dev, skb); 3244 3245 if (new_index < 0) 3246 new_index = skb_tx_hash(dev, skb); 3247 3248 if (queue_index != new_index && sk && 3249 sk_fullsock(sk) && 3250 rcu_access_pointer(sk->sk_dst_cache)) 3251 sk_tx_queue_set(sk, new_index); 3252 3253 queue_index = new_index; 3254 } 3255 3256 return queue_index; 3257 } 3258 3259 struct netdev_queue *netdev_pick_tx(struct net_device *dev, 3260 struct sk_buff *skb, 3261 void *accel_priv) 3262 { 3263 int queue_index = 0; 3264 3265 #ifdef CONFIG_XPS 3266 u32 sender_cpu = skb->sender_cpu - 1; 3267 3268 if (sender_cpu >= (u32)NR_CPUS) 3269 skb->sender_cpu = raw_smp_processor_id() + 1; 3270 #endif 3271 3272 if (dev->real_num_tx_queues != 1) { 3273 const struct net_device_ops *ops = dev->netdev_ops; 3274 3275 if (ops->ndo_select_queue) 3276 queue_index = ops->ndo_select_queue(dev, skb, accel_priv, 3277 __netdev_pick_tx); 3278 else 3279 queue_index = __netdev_pick_tx(dev, skb); 3280 3281 if (!accel_priv) 3282 queue_index = netdev_cap_txqueue(dev, queue_index); 3283 } 3284 3285 skb_set_queue_mapping(skb, queue_index); 3286 return netdev_get_tx_queue(dev, queue_index); 3287 } 3288 3289 /** 3290 * __dev_queue_xmit - transmit a buffer 3291 * @skb: buffer to transmit 3292 * @accel_priv: private data used for L2 forwarding offload 3293 * 3294 * Queue a buffer for transmission to a network device. The caller must 3295 * have set the device and priority and built the buffer before calling 3296 * this function. The function can be called from an interrupt. 3297 * 3298 * A negative errno code is returned on a failure. A success does not 3299 * guarantee the frame will be transmitted as it may be dropped due 3300 * to congestion or traffic shaping. 3301 * 3302 * ----------------------------------------------------------------------------------- 3303 * I notice this method can also return errors from the queue disciplines, 3304 * including NET_XMIT_DROP, which is a positive value. So, errors can also 3305 * be positive. 3306 * 3307 * Regardless of the return value, the skb is consumed, so it is currently 3308 * difficult to retry a send to this method. (You can bump the ref count 3309 * before sending to hold a reference for retry if you are careful.) 3310 * 3311 * When calling this method, interrupts MUST be enabled. This is because 3312 * the BH enable code must have IRQs enabled so that it will not deadlock. 3313 * --BLG 3314 */ 3315 static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv) 3316 { 3317 struct net_device *dev = skb->dev; 3318 struct netdev_queue *txq; 3319 struct Qdisc *q; 3320 int rc = -ENOMEM; 3321 3322 skb_reset_mac_header(skb); 3323 3324 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP)) 3325 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED); 3326 3327 /* Disable soft irqs for various locks below. Also 3328 * stops preemption for RCU. 3329 */ 3330 rcu_read_lock_bh(); 3331 3332 skb_update_prio(skb); 3333 3334 qdisc_pkt_len_init(skb); 3335 #ifdef CONFIG_NET_CLS_ACT 3336 skb->tc_at_ingress = 0; 3337 # ifdef CONFIG_NET_EGRESS 3338 if (static_key_false(&egress_needed)) { 3339 skb = sch_handle_egress(skb, &rc, dev); 3340 if (!skb) 3341 goto out; 3342 } 3343 # endif 3344 #endif 3345 /* If device/qdisc don't need skb->dst, release it right now while 3346 * its hot in this cpu cache. 3347 */ 3348 if (dev->priv_flags & IFF_XMIT_DST_RELEASE) 3349 skb_dst_drop(skb); 3350 else 3351 skb_dst_force(skb); 3352 3353 txq = netdev_pick_tx(dev, skb, accel_priv); 3354 q = rcu_dereference_bh(txq->qdisc); 3355 3356 trace_net_dev_queue(skb); 3357 if (q->enqueue) { 3358 rc = __dev_xmit_skb(skb, q, dev, txq); 3359 goto out; 3360 } 3361 3362 /* The device has no queue. Common case for software devices: 3363 * loopback, all the sorts of tunnels... 3364 3365 * Really, it is unlikely that netif_tx_lock protection is necessary 3366 * here. (f.e. loopback and IP tunnels are clean ignoring statistics 3367 * counters.) 3368 * However, it is possible, that they rely on protection 3369 * made by us here. 3370 3371 * Check this and shot the lock. It is not prone from deadlocks. 3372 *Either shot noqueue qdisc, it is even simpler 8) 3373 */ 3374 if (dev->flags & IFF_UP) { 3375 int cpu = smp_processor_id(); /* ok because BHs are off */ 3376 3377 if (txq->xmit_lock_owner != cpu) { 3378 if (unlikely(__this_cpu_read(xmit_recursion) > 3379 XMIT_RECURSION_LIMIT)) 3380 goto recursion_alert; 3381 3382 skb = validate_xmit_skb(skb, dev); 3383 if (!skb) 3384 goto out; 3385 3386 HARD_TX_LOCK(dev, txq, cpu); 3387 3388 if (!netif_xmit_stopped(txq)) { 3389 __this_cpu_inc(xmit_recursion); 3390 skb = dev_hard_start_xmit(skb, dev, txq, &rc); 3391 __this_cpu_dec(xmit_recursion); 3392 if (dev_xmit_complete(rc)) { 3393 HARD_TX_UNLOCK(dev, txq); 3394 goto out; 3395 } 3396 } 3397 HARD_TX_UNLOCK(dev, txq); 3398 net_crit_ratelimited("Virtual device %s asks to queue packet!\n", 3399 dev->name); 3400 } else { 3401 /* Recursion is detected! It is possible, 3402 * unfortunately 3403 */ 3404 recursion_alert: 3405 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n", 3406 dev->name); 3407 } 3408 } 3409 3410 rc = -ENETDOWN; 3411 rcu_read_unlock_bh(); 3412 3413 atomic_long_inc(&dev->tx_dropped); 3414 kfree_skb_list(skb); 3415 return rc; 3416 out: 3417 rcu_read_unlock_bh(); 3418 return rc; 3419 } 3420 3421 int dev_queue_xmit(struct sk_buff *skb) 3422 { 3423 return __dev_queue_xmit(skb, NULL); 3424 } 3425 EXPORT_SYMBOL(dev_queue_xmit); 3426 3427 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv) 3428 { 3429 return __dev_queue_xmit(skb, accel_priv); 3430 } 3431 EXPORT_SYMBOL(dev_queue_xmit_accel); 3432 3433 3434 /************************************************************************* 3435 * Receiver routines 3436 *************************************************************************/ 3437 3438 int netdev_max_backlog __read_mostly = 1000; 3439 EXPORT_SYMBOL(netdev_max_backlog); 3440 3441 int netdev_tstamp_prequeue __read_mostly = 1; 3442 int netdev_budget __read_mostly = 300; 3443 int weight_p __read_mostly = 64; /* old backlog weight */ 3444 int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */ 3445 int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */ 3446 int dev_rx_weight __read_mostly = 64; 3447 int dev_tx_weight __read_mostly = 64; 3448 3449 /* Called with irq disabled */ 3450 static inline void ____napi_schedule(struct softnet_data *sd, 3451 struct napi_struct *napi) 3452 { 3453 list_add_tail(&napi->poll_list, &sd->poll_list); 3454 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 3455 } 3456 3457 #ifdef CONFIG_RPS 3458 3459 /* One global table that all flow-based protocols share. */ 3460 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly; 3461 EXPORT_SYMBOL(rps_sock_flow_table); 3462 u32 rps_cpu_mask __read_mostly; 3463 EXPORT_SYMBOL(rps_cpu_mask); 3464 3465 struct static_key rps_needed __read_mostly; 3466 EXPORT_SYMBOL(rps_needed); 3467 struct static_key rfs_needed __read_mostly; 3468 EXPORT_SYMBOL(rfs_needed); 3469 3470 static struct rps_dev_flow * 3471 set_rps_cpu(struct net_device *dev, struct sk_buff *skb, 3472 struct rps_dev_flow *rflow, u16 next_cpu) 3473 { 3474 if (next_cpu < nr_cpu_ids) { 3475 #ifdef CONFIG_RFS_ACCEL 3476 struct netdev_rx_queue *rxqueue; 3477 struct rps_dev_flow_table *flow_table; 3478 struct rps_dev_flow *old_rflow; 3479 u32 flow_id; 3480 u16 rxq_index; 3481 int rc; 3482 3483 /* Should we steer this flow to a different hardware queue? */ 3484 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap || 3485 !(dev->features & NETIF_F_NTUPLE)) 3486 goto out; 3487 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu); 3488 if (rxq_index == skb_get_rx_queue(skb)) 3489 goto out; 3490 3491 rxqueue = dev->_rx + rxq_index; 3492 flow_table = rcu_dereference(rxqueue->rps_flow_table); 3493 if (!flow_table) 3494 goto out; 3495 flow_id = skb_get_hash(skb) & flow_table->mask; 3496 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb, 3497 rxq_index, flow_id); 3498 if (rc < 0) 3499 goto out; 3500 old_rflow = rflow; 3501 rflow = &flow_table->flows[flow_id]; 3502 rflow->filter = rc; 3503 if (old_rflow->filter == rflow->filter) 3504 old_rflow->filter = RPS_NO_FILTER; 3505 out: 3506 #endif 3507 rflow->last_qtail = 3508 per_cpu(softnet_data, next_cpu).input_queue_head; 3509 } 3510 3511 rflow->cpu = next_cpu; 3512 return rflow; 3513 } 3514 3515 /* 3516 * get_rps_cpu is called from netif_receive_skb and returns the target 3517 * CPU from the RPS map of the receiving queue for a given skb. 3518 * rcu_read_lock must be held on entry. 3519 */ 3520 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb, 3521 struct rps_dev_flow **rflowp) 3522 { 3523 const struct rps_sock_flow_table *sock_flow_table; 3524 struct netdev_rx_queue *rxqueue = dev->_rx; 3525 struct rps_dev_flow_table *flow_table; 3526 struct rps_map *map; 3527 int cpu = -1; 3528 u32 tcpu; 3529 u32 hash; 3530 3531 if (skb_rx_queue_recorded(skb)) { 3532 u16 index = skb_get_rx_queue(skb); 3533 3534 if (unlikely(index >= dev->real_num_rx_queues)) { 3535 WARN_ONCE(dev->real_num_rx_queues > 1, 3536 "%s received packet on queue %u, but number " 3537 "of RX queues is %u\n", 3538 dev->name, index, dev->real_num_rx_queues); 3539 goto done; 3540 } 3541 rxqueue += index; 3542 } 3543 3544 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */ 3545 3546 flow_table = rcu_dereference(rxqueue->rps_flow_table); 3547 map = rcu_dereference(rxqueue->rps_map); 3548 if (!flow_table && !map) 3549 goto done; 3550 3551 skb_reset_network_header(skb); 3552 hash = skb_get_hash(skb); 3553 if (!hash) 3554 goto done; 3555 3556 sock_flow_table = rcu_dereference(rps_sock_flow_table); 3557 if (flow_table && sock_flow_table) { 3558 struct rps_dev_flow *rflow; 3559 u32 next_cpu; 3560 u32 ident; 3561 3562 /* First check into global flow table if there is a match */ 3563 ident = sock_flow_table->ents[hash & sock_flow_table->mask]; 3564 if ((ident ^ hash) & ~rps_cpu_mask) 3565 goto try_rps; 3566 3567 next_cpu = ident & rps_cpu_mask; 3568 3569 /* OK, now we know there is a match, 3570 * we can look at the local (per receive queue) flow table 3571 */ 3572 rflow = &flow_table->flows[hash & flow_table->mask]; 3573 tcpu = rflow->cpu; 3574 3575 /* 3576 * If the desired CPU (where last recvmsg was done) is 3577 * different from current CPU (one in the rx-queue flow 3578 * table entry), switch if one of the following holds: 3579 * - Current CPU is unset (>= nr_cpu_ids). 3580 * - Current CPU is offline. 3581 * - The current CPU's queue tail has advanced beyond the 3582 * last packet that was enqueued using this table entry. 3583 * This guarantees that all previous packets for the flow 3584 * have been dequeued, thus preserving in order delivery. 3585 */ 3586 if (unlikely(tcpu != next_cpu) && 3587 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) || 3588 ((int)(per_cpu(softnet_data, tcpu).input_queue_head - 3589 rflow->last_qtail)) >= 0)) { 3590 tcpu = next_cpu; 3591 rflow = set_rps_cpu(dev, skb, rflow, next_cpu); 3592 } 3593 3594 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) { 3595 *rflowp = rflow; 3596 cpu = tcpu; 3597 goto done; 3598 } 3599 } 3600 3601 try_rps: 3602 3603 if (map) { 3604 tcpu = map->cpus[reciprocal_scale(hash, map->len)]; 3605 if (cpu_online(tcpu)) { 3606 cpu = tcpu; 3607 goto done; 3608 } 3609 } 3610 3611 done: 3612 return cpu; 3613 } 3614 3615 #ifdef CONFIG_RFS_ACCEL 3616 3617 /** 3618 * rps_may_expire_flow - check whether an RFS hardware filter may be removed 3619 * @dev: Device on which the filter was set 3620 * @rxq_index: RX queue index 3621 * @flow_id: Flow ID passed to ndo_rx_flow_steer() 3622 * @filter_id: Filter ID returned by ndo_rx_flow_steer() 3623 * 3624 * Drivers that implement ndo_rx_flow_steer() should periodically call 3625 * this function for each installed filter and remove the filters for 3626 * which it returns %true. 3627 */ 3628 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, 3629 u32 flow_id, u16 filter_id) 3630 { 3631 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index; 3632 struct rps_dev_flow_table *flow_table; 3633 struct rps_dev_flow *rflow; 3634 bool expire = true; 3635 unsigned int cpu; 3636 3637 rcu_read_lock(); 3638 flow_table = rcu_dereference(rxqueue->rps_flow_table); 3639 if (flow_table && flow_id <= flow_table->mask) { 3640 rflow = &flow_table->flows[flow_id]; 3641 cpu = ACCESS_ONCE(rflow->cpu); 3642 if (rflow->filter == filter_id && cpu < nr_cpu_ids && 3643 ((int)(per_cpu(softnet_data, cpu).input_queue_head - 3644 rflow->last_qtail) < 3645 (int)(10 * flow_table->mask))) 3646 expire = false; 3647 } 3648 rcu_read_unlock(); 3649 return expire; 3650 } 3651 EXPORT_SYMBOL(rps_may_expire_flow); 3652 3653 #endif /* CONFIG_RFS_ACCEL */ 3654 3655 /* Called from hardirq (IPI) context */ 3656 static void rps_trigger_softirq(void *data) 3657 { 3658 struct softnet_data *sd = data; 3659 3660 ____napi_schedule(sd, &sd->backlog); 3661 sd->received_rps++; 3662 } 3663 3664 #endif /* CONFIG_RPS */ 3665 3666 /* 3667 * Check if this softnet_data structure is another cpu one 3668 * If yes, queue it to our IPI list and return 1 3669 * If no, return 0 3670 */ 3671 static int rps_ipi_queued(struct softnet_data *sd) 3672 { 3673 #ifdef CONFIG_RPS 3674 struct softnet_data *mysd = this_cpu_ptr(&softnet_data); 3675 3676 if (sd != mysd) { 3677 sd->rps_ipi_next = mysd->rps_ipi_list; 3678 mysd->rps_ipi_list = sd; 3679 3680 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 3681 return 1; 3682 } 3683 #endif /* CONFIG_RPS */ 3684 return 0; 3685 } 3686 3687 #ifdef CONFIG_NET_FLOW_LIMIT 3688 int netdev_flow_limit_table_len __read_mostly = (1 << 12); 3689 #endif 3690 3691 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen) 3692 { 3693 #ifdef CONFIG_NET_FLOW_LIMIT 3694 struct sd_flow_limit *fl; 3695 struct softnet_data *sd; 3696 unsigned int old_flow, new_flow; 3697 3698 if (qlen < (netdev_max_backlog >> 1)) 3699 return false; 3700 3701 sd = this_cpu_ptr(&softnet_data); 3702 3703 rcu_read_lock(); 3704 fl = rcu_dereference(sd->flow_limit); 3705 if (fl) { 3706 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1); 3707 old_flow = fl->history[fl->history_head]; 3708 fl->history[fl->history_head] = new_flow; 3709 3710 fl->history_head++; 3711 fl->history_head &= FLOW_LIMIT_HISTORY - 1; 3712 3713 if (likely(fl->buckets[old_flow])) 3714 fl->buckets[old_flow]--; 3715 3716 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) { 3717 fl->count++; 3718 rcu_read_unlock(); 3719 return true; 3720 } 3721 } 3722 rcu_read_unlock(); 3723 #endif 3724 return false; 3725 } 3726 3727 /* 3728 * enqueue_to_backlog is called to queue an skb to a per CPU backlog 3729 * queue (may be a remote CPU queue). 3730 */ 3731 static int enqueue_to_backlog(struct sk_buff *skb, int cpu, 3732 unsigned int *qtail) 3733 { 3734 struct softnet_data *sd; 3735 unsigned long flags; 3736 unsigned int qlen; 3737 3738 sd = &per_cpu(softnet_data, cpu); 3739 3740 local_irq_save(flags); 3741 3742 rps_lock(sd); 3743 if (!netif_running(skb->dev)) 3744 goto drop; 3745 qlen = skb_queue_len(&sd->input_pkt_queue); 3746 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) { 3747 if (qlen) { 3748 enqueue: 3749 __skb_queue_tail(&sd->input_pkt_queue, skb); 3750 input_queue_tail_incr_save(sd, qtail); 3751 rps_unlock(sd); 3752 local_irq_restore(flags); 3753 return NET_RX_SUCCESS; 3754 } 3755 3756 /* Schedule NAPI for backlog device 3757 * We can use non atomic operation since we own the queue lock 3758 */ 3759 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) { 3760 if (!rps_ipi_queued(sd)) 3761 ____napi_schedule(sd, &sd->backlog); 3762 } 3763 goto enqueue; 3764 } 3765 3766 drop: 3767 sd->dropped++; 3768 rps_unlock(sd); 3769 3770 local_irq_restore(flags); 3771 3772 atomic_long_inc(&skb->dev->rx_dropped); 3773 kfree_skb(skb); 3774 return NET_RX_DROP; 3775 } 3776 3777 static int netif_rx_internal(struct sk_buff *skb) 3778 { 3779 int ret; 3780 3781 net_timestamp_check(netdev_tstamp_prequeue, skb); 3782 3783 trace_netif_rx(skb); 3784 #ifdef CONFIG_RPS 3785 if (static_key_false(&rps_needed)) { 3786 struct rps_dev_flow voidflow, *rflow = &voidflow; 3787 int cpu; 3788 3789 preempt_disable(); 3790 rcu_read_lock(); 3791 3792 cpu = get_rps_cpu(skb->dev, skb, &rflow); 3793 if (cpu < 0) 3794 cpu = smp_processor_id(); 3795 3796 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 3797 3798 rcu_read_unlock(); 3799 preempt_enable(); 3800 } else 3801 #endif 3802 { 3803 unsigned int qtail; 3804 3805 ret = enqueue_to_backlog(skb, get_cpu(), &qtail); 3806 put_cpu(); 3807 } 3808 return ret; 3809 } 3810 3811 /** 3812 * netif_rx - post buffer to the network code 3813 * @skb: buffer to post 3814 * 3815 * This function receives a packet from a device driver and queues it for 3816 * the upper (protocol) levels to process. It always succeeds. The buffer 3817 * may be dropped during processing for congestion control or by the 3818 * protocol layers. 3819 * 3820 * return values: 3821 * NET_RX_SUCCESS (no congestion) 3822 * NET_RX_DROP (packet was dropped) 3823 * 3824 */ 3825 3826 int netif_rx(struct sk_buff *skb) 3827 { 3828 trace_netif_rx_entry(skb); 3829 3830 return netif_rx_internal(skb); 3831 } 3832 EXPORT_SYMBOL(netif_rx); 3833 3834 int netif_rx_ni(struct sk_buff *skb) 3835 { 3836 int err; 3837 3838 trace_netif_rx_ni_entry(skb); 3839 3840 preempt_disable(); 3841 err = netif_rx_internal(skb); 3842 if (local_softirq_pending()) 3843 do_softirq(); 3844 preempt_enable(); 3845 3846 return err; 3847 } 3848 EXPORT_SYMBOL(netif_rx_ni); 3849 3850 static __latent_entropy void net_tx_action(struct softirq_action *h) 3851 { 3852 struct softnet_data *sd = this_cpu_ptr(&softnet_data); 3853 3854 if (sd->completion_queue) { 3855 struct sk_buff *clist; 3856 3857 local_irq_disable(); 3858 clist = sd->completion_queue; 3859 sd->completion_queue = NULL; 3860 local_irq_enable(); 3861 3862 while (clist) { 3863 struct sk_buff *skb = clist; 3864 3865 clist = clist->next; 3866 3867 WARN_ON(atomic_read(&skb->users)); 3868 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED)) 3869 trace_consume_skb(skb); 3870 else 3871 trace_kfree_skb(skb, net_tx_action); 3872 3873 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) 3874 __kfree_skb(skb); 3875 else 3876 __kfree_skb_defer(skb); 3877 } 3878 3879 __kfree_skb_flush(); 3880 } 3881 3882 if (sd->output_queue) { 3883 struct Qdisc *head; 3884 3885 local_irq_disable(); 3886 head = sd->output_queue; 3887 sd->output_queue = NULL; 3888 sd->output_queue_tailp = &sd->output_queue; 3889 local_irq_enable(); 3890 3891 while (head) { 3892 struct Qdisc *q = head; 3893 spinlock_t *root_lock; 3894 3895 head = head->next_sched; 3896 3897 root_lock = qdisc_lock(q); 3898 spin_lock(root_lock); 3899 /* We need to make sure head->next_sched is read 3900 * before clearing __QDISC_STATE_SCHED 3901 */ 3902 smp_mb__before_atomic(); 3903 clear_bit(__QDISC_STATE_SCHED, &q->state); 3904 qdisc_run(q); 3905 spin_unlock(root_lock); 3906 } 3907 } 3908 } 3909 3910 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE) 3911 /* This hook is defined here for ATM LANE */ 3912 int (*br_fdb_test_addr_hook)(struct net_device *dev, 3913 unsigned char *addr) __read_mostly; 3914 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook); 3915 #endif 3916 3917 static inline struct sk_buff * 3918 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret, 3919 struct net_device *orig_dev) 3920 { 3921 #ifdef CONFIG_NET_CLS_ACT 3922 struct tcf_proto *cl = rcu_dereference_bh(skb->dev->ingress_cl_list); 3923 struct tcf_result cl_res; 3924 3925 /* If there's at least one ingress present somewhere (so 3926 * we get here via enabled static key), remaining devices 3927 * that are not configured with an ingress qdisc will bail 3928 * out here. 3929 */ 3930 if (!cl) 3931 return skb; 3932 if (*pt_prev) { 3933 *ret = deliver_skb(skb, *pt_prev, orig_dev); 3934 *pt_prev = NULL; 3935 } 3936 3937 qdisc_skb_cb(skb)->pkt_len = skb->len; 3938 skb->tc_at_ingress = 1; 3939 qdisc_bstats_cpu_update(cl->q, skb); 3940 3941 switch (tc_classify(skb, cl, &cl_res, false)) { 3942 case TC_ACT_OK: 3943 case TC_ACT_RECLASSIFY: 3944 skb->tc_index = TC_H_MIN(cl_res.classid); 3945 break; 3946 case TC_ACT_SHOT: 3947 qdisc_qstats_cpu_drop(cl->q); 3948 kfree_skb(skb); 3949 return NULL; 3950 case TC_ACT_STOLEN: 3951 case TC_ACT_QUEUED: 3952 consume_skb(skb); 3953 return NULL; 3954 case TC_ACT_REDIRECT: 3955 /* skb_mac_header check was done by cls/act_bpf, so 3956 * we can safely push the L2 header back before 3957 * redirecting to another netdev 3958 */ 3959 __skb_push(skb, skb->mac_len); 3960 skb_do_redirect(skb); 3961 return NULL; 3962 default: 3963 break; 3964 } 3965 #endif /* CONFIG_NET_CLS_ACT */ 3966 return skb; 3967 } 3968 3969 /** 3970 * netdev_is_rx_handler_busy - check if receive handler is registered 3971 * @dev: device to check 3972 * 3973 * Check if a receive handler is already registered for a given device. 3974 * Return true if there one. 3975 * 3976 * The caller must hold the rtnl_mutex. 3977 */ 3978 bool netdev_is_rx_handler_busy(struct net_device *dev) 3979 { 3980 ASSERT_RTNL(); 3981 return dev && rtnl_dereference(dev->rx_handler); 3982 } 3983 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy); 3984 3985 /** 3986 * netdev_rx_handler_register - register receive handler 3987 * @dev: device to register a handler for 3988 * @rx_handler: receive handler to register 3989 * @rx_handler_data: data pointer that is used by rx handler 3990 * 3991 * Register a receive handler for a device. This handler will then be 3992 * called from __netif_receive_skb. A negative errno code is returned 3993 * on a failure. 3994 * 3995 * The caller must hold the rtnl_mutex. 3996 * 3997 * For a general description of rx_handler, see enum rx_handler_result. 3998 */ 3999 int netdev_rx_handler_register(struct net_device *dev, 4000 rx_handler_func_t *rx_handler, 4001 void *rx_handler_data) 4002 { 4003 if (netdev_is_rx_handler_busy(dev)) 4004 return -EBUSY; 4005 4006 /* Note: rx_handler_data must be set before rx_handler */ 4007 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data); 4008 rcu_assign_pointer(dev->rx_handler, rx_handler); 4009 4010 return 0; 4011 } 4012 EXPORT_SYMBOL_GPL(netdev_rx_handler_register); 4013 4014 /** 4015 * netdev_rx_handler_unregister - unregister receive handler 4016 * @dev: device to unregister a handler from 4017 * 4018 * Unregister a receive handler from a device. 4019 * 4020 * The caller must hold the rtnl_mutex. 4021 */ 4022 void netdev_rx_handler_unregister(struct net_device *dev) 4023 { 4024 4025 ASSERT_RTNL(); 4026 RCU_INIT_POINTER(dev->rx_handler, NULL); 4027 /* a reader seeing a non NULL rx_handler in a rcu_read_lock() 4028 * section has a guarantee to see a non NULL rx_handler_data 4029 * as well. 4030 */ 4031 synchronize_net(); 4032 RCU_INIT_POINTER(dev->rx_handler_data, NULL); 4033 } 4034 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister); 4035 4036 /* 4037 * Limit the use of PFMEMALLOC reserves to those protocols that implement 4038 * the special handling of PFMEMALLOC skbs. 4039 */ 4040 static bool skb_pfmemalloc_protocol(struct sk_buff *skb) 4041 { 4042 switch (skb->protocol) { 4043 case htons(ETH_P_ARP): 4044 case htons(ETH_P_IP): 4045 case htons(ETH_P_IPV6): 4046 case htons(ETH_P_8021Q): 4047 case htons(ETH_P_8021AD): 4048 return true; 4049 default: 4050 return false; 4051 } 4052 } 4053 4054 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev, 4055 int *ret, struct net_device *orig_dev) 4056 { 4057 #ifdef CONFIG_NETFILTER_INGRESS 4058 if (nf_hook_ingress_active(skb)) { 4059 int ingress_retval; 4060 4061 if (*pt_prev) { 4062 *ret = deliver_skb(skb, *pt_prev, orig_dev); 4063 *pt_prev = NULL; 4064 } 4065 4066 rcu_read_lock(); 4067 ingress_retval = nf_hook_ingress(skb); 4068 rcu_read_unlock(); 4069 return ingress_retval; 4070 } 4071 #endif /* CONFIG_NETFILTER_INGRESS */ 4072 return 0; 4073 } 4074 4075 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc) 4076 { 4077 struct packet_type *ptype, *pt_prev; 4078 rx_handler_func_t *rx_handler; 4079 struct net_device *orig_dev; 4080 bool deliver_exact = false; 4081 int ret = NET_RX_DROP; 4082 __be16 type; 4083 4084 net_timestamp_check(!netdev_tstamp_prequeue, skb); 4085 4086 trace_netif_receive_skb(skb); 4087 4088 orig_dev = skb->dev; 4089 4090 skb_reset_network_header(skb); 4091 if (!skb_transport_header_was_set(skb)) 4092 skb_reset_transport_header(skb); 4093 skb_reset_mac_len(skb); 4094 4095 pt_prev = NULL; 4096 4097 another_round: 4098 skb->skb_iif = skb->dev->ifindex; 4099 4100 __this_cpu_inc(softnet_data.processed); 4101 4102 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) || 4103 skb->protocol == cpu_to_be16(ETH_P_8021AD)) { 4104 skb = skb_vlan_untag(skb); 4105 if (unlikely(!skb)) 4106 goto out; 4107 } 4108 4109 if (skb_skip_tc_classify(skb)) 4110 goto skip_classify; 4111 4112 if (pfmemalloc) 4113 goto skip_taps; 4114 4115 list_for_each_entry_rcu(ptype, &ptype_all, list) { 4116 if (pt_prev) 4117 ret = deliver_skb(skb, pt_prev, orig_dev); 4118 pt_prev = ptype; 4119 } 4120 4121 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) { 4122 if (pt_prev) 4123 ret = deliver_skb(skb, pt_prev, orig_dev); 4124 pt_prev = ptype; 4125 } 4126 4127 skip_taps: 4128 #ifdef CONFIG_NET_INGRESS 4129 if (static_key_false(&ingress_needed)) { 4130 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev); 4131 if (!skb) 4132 goto out; 4133 4134 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0) 4135 goto out; 4136 } 4137 #endif 4138 skb_reset_tc(skb); 4139 skip_classify: 4140 if (pfmemalloc && !skb_pfmemalloc_protocol(skb)) 4141 goto drop; 4142 4143 if (skb_vlan_tag_present(skb)) { 4144 if (pt_prev) { 4145 ret = deliver_skb(skb, pt_prev, orig_dev); 4146 pt_prev = NULL; 4147 } 4148 if (vlan_do_receive(&skb)) 4149 goto another_round; 4150 else if (unlikely(!skb)) 4151 goto out; 4152 } 4153 4154 rx_handler = rcu_dereference(skb->dev->rx_handler); 4155 if (rx_handler) { 4156 if (pt_prev) { 4157 ret = deliver_skb(skb, pt_prev, orig_dev); 4158 pt_prev = NULL; 4159 } 4160 switch (rx_handler(&skb)) { 4161 case RX_HANDLER_CONSUMED: 4162 ret = NET_RX_SUCCESS; 4163 goto out; 4164 case RX_HANDLER_ANOTHER: 4165 goto another_round; 4166 case RX_HANDLER_EXACT: 4167 deliver_exact = true; 4168 case RX_HANDLER_PASS: 4169 break; 4170 default: 4171 BUG(); 4172 } 4173 } 4174 4175 if (unlikely(skb_vlan_tag_present(skb))) { 4176 if (skb_vlan_tag_get_id(skb)) 4177 skb->pkt_type = PACKET_OTHERHOST; 4178 /* Note: we might in the future use prio bits 4179 * and set skb->priority like in vlan_do_receive() 4180 * For the time being, just ignore Priority Code Point 4181 */ 4182 skb->vlan_tci = 0; 4183 } 4184 4185 type = skb->protocol; 4186 4187 /* deliver only exact match when indicated */ 4188 if (likely(!deliver_exact)) { 4189 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 4190 &ptype_base[ntohs(type) & 4191 PTYPE_HASH_MASK]); 4192 } 4193 4194 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 4195 &orig_dev->ptype_specific); 4196 4197 if (unlikely(skb->dev != orig_dev)) { 4198 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 4199 &skb->dev->ptype_specific); 4200 } 4201 4202 if (pt_prev) { 4203 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC))) 4204 goto drop; 4205 else 4206 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 4207 } else { 4208 drop: 4209 if (!deliver_exact) 4210 atomic_long_inc(&skb->dev->rx_dropped); 4211 else 4212 atomic_long_inc(&skb->dev->rx_nohandler); 4213 kfree_skb(skb); 4214 /* Jamal, now you will not able to escape explaining 4215 * me how you were going to use this. :-) 4216 */ 4217 ret = NET_RX_DROP; 4218 } 4219 4220 out: 4221 return ret; 4222 } 4223 4224 static int __netif_receive_skb(struct sk_buff *skb) 4225 { 4226 int ret; 4227 4228 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) { 4229 unsigned long pflags = current->flags; 4230 4231 /* 4232 * PFMEMALLOC skbs are special, they should 4233 * - be delivered to SOCK_MEMALLOC sockets only 4234 * - stay away from userspace 4235 * - have bounded memory usage 4236 * 4237 * Use PF_MEMALLOC as this saves us from propagating the allocation 4238 * context down to all allocation sites. 4239 */ 4240 current->flags |= PF_MEMALLOC; 4241 ret = __netif_receive_skb_core(skb, true); 4242 tsk_restore_flags(current, pflags, PF_MEMALLOC); 4243 } else 4244 ret = __netif_receive_skb_core(skb, false); 4245 4246 return ret; 4247 } 4248 4249 static int netif_receive_skb_internal(struct sk_buff *skb) 4250 { 4251 int ret; 4252 4253 net_timestamp_check(netdev_tstamp_prequeue, skb); 4254 4255 if (skb_defer_rx_timestamp(skb)) 4256 return NET_RX_SUCCESS; 4257 4258 rcu_read_lock(); 4259 4260 #ifdef CONFIG_RPS 4261 if (static_key_false(&rps_needed)) { 4262 struct rps_dev_flow voidflow, *rflow = &voidflow; 4263 int cpu = get_rps_cpu(skb->dev, skb, &rflow); 4264 4265 if (cpu >= 0) { 4266 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 4267 rcu_read_unlock(); 4268 return ret; 4269 } 4270 } 4271 #endif 4272 ret = __netif_receive_skb(skb); 4273 rcu_read_unlock(); 4274 return ret; 4275 } 4276 4277 /** 4278 * netif_receive_skb - process receive buffer from network 4279 * @skb: buffer to process 4280 * 4281 * netif_receive_skb() is the main receive data processing function. 4282 * It always succeeds. The buffer may be dropped during processing 4283 * for congestion control or by the protocol layers. 4284 * 4285 * This function may only be called from softirq context and interrupts 4286 * should be enabled. 4287 * 4288 * Return values (usually ignored): 4289 * NET_RX_SUCCESS: no congestion 4290 * NET_RX_DROP: packet was dropped 4291 */ 4292 int netif_receive_skb(struct sk_buff *skb) 4293 { 4294 trace_netif_receive_skb_entry(skb); 4295 4296 return netif_receive_skb_internal(skb); 4297 } 4298 EXPORT_SYMBOL(netif_receive_skb); 4299 4300 DEFINE_PER_CPU(struct work_struct, flush_works); 4301 4302 /* Network device is going away, flush any packets still pending */ 4303 static void flush_backlog(struct work_struct *work) 4304 { 4305 struct sk_buff *skb, *tmp; 4306 struct softnet_data *sd; 4307 4308 local_bh_disable(); 4309 sd = this_cpu_ptr(&softnet_data); 4310 4311 local_irq_disable(); 4312 rps_lock(sd); 4313 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) { 4314 if (skb->dev->reg_state == NETREG_UNREGISTERING) { 4315 __skb_unlink(skb, &sd->input_pkt_queue); 4316 kfree_skb(skb); 4317 input_queue_head_incr(sd); 4318 } 4319 } 4320 rps_unlock(sd); 4321 local_irq_enable(); 4322 4323 skb_queue_walk_safe(&sd->process_queue, skb, tmp) { 4324 if (skb->dev->reg_state == NETREG_UNREGISTERING) { 4325 __skb_unlink(skb, &sd->process_queue); 4326 kfree_skb(skb); 4327 input_queue_head_incr(sd); 4328 } 4329 } 4330 local_bh_enable(); 4331 } 4332 4333 static void flush_all_backlogs(void) 4334 { 4335 unsigned int cpu; 4336 4337 get_online_cpus(); 4338 4339 for_each_online_cpu(cpu) 4340 queue_work_on(cpu, system_highpri_wq, 4341 per_cpu_ptr(&flush_works, cpu)); 4342 4343 for_each_online_cpu(cpu) 4344 flush_work(per_cpu_ptr(&flush_works, cpu)); 4345 4346 put_online_cpus(); 4347 } 4348 4349 static int napi_gro_complete(struct sk_buff *skb) 4350 { 4351 struct packet_offload *ptype; 4352 __be16 type = skb->protocol; 4353 struct list_head *head = &offload_base; 4354 int err = -ENOENT; 4355 4356 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb)); 4357 4358 if (NAPI_GRO_CB(skb)->count == 1) { 4359 skb_shinfo(skb)->gso_size = 0; 4360 goto out; 4361 } 4362 4363 rcu_read_lock(); 4364 list_for_each_entry_rcu(ptype, head, list) { 4365 if (ptype->type != type || !ptype->callbacks.gro_complete) 4366 continue; 4367 4368 err = ptype->callbacks.gro_complete(skb, 0); 4369 break; 4370 } 4371 rcu_read_unlock(); 4372 4373 if (err) { 4374 WARN_ON(&ptype->list == head); 4375 kfree_skb(skb); 4376 return NET_RX_SUCCESS; 4377 } 4378 4379 out: 4380 return netif_receive_skb_internal(skb); 4381 } 4382 4383 /* napi->gro_list contains packets ordered by age. 4384 * youngest packets at the head of it. 4385 * Complete skbs in reverse order to reduce latencies. 4386 */ 4387 void napi_gro_flush(struct napi_struct *napi, bool flush_old) 4388 { 4389 struct sk_buff *skb, *prev = NULL; 4390 4391 /* scan list and build reverse chain */ 4392 for (skb = napi->gro_list; skb != NULL; skb = skb->next) { 4393 skb->prev = prev; 4394 prev = skb; 4395 } 4396 4397 for (skb = prev; skb; skb = prev) { 4398 skb->next = NULL; 4399 4400 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies) 4401 return; 4402 4403 prev = skb->prev; 4404 napi_gro_complete(skb); 4405 napi->gro_count--; 4406 } 4407 4408 napi->gro_list = NULL; 4409 } 4410 EXPORT_SYMBOL(napi_gro_flush); 4411 4412 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb) 4413 { 4414 struct sk_buff *p; 4415 unsigned int maclen = skb->dev->hard_header_len; 4416 u32 hash = skb_get_hash_raw(skb); 4417 4418 for (p = napi->gro_list; p; p = p->next) { 4419 unsigned long diffs; 4420 4421 NAPI_GRO_CB(p)->flush = 0; 4422 4423 if (hash != skb_get_hash_raw(p)) { 4424 NAPI_GRO_CB(p)->same_flow = 0; 4425 continue; 4426 } 4427 4428 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev; 4429 diffs |= p->vlan_tci ^ skb->vlan_tci; 4430 diffs |= skb_metadata_dst_cmp(p, skb); 4431 if (maclen == ETH_HLEN) 4432 diffs |= compare_ether_header(skb_mac_header(p), 4433 skb_mac_header(skb)); 4434 else if (!diffs) 4435 diffs = memcmp(skb_mac_header(p), 4436 skb_mac_header(skb), 4437 maclen); 4438 NAPI_GRO_CB(p)->same_flow = !diffs; 4439 } 4440 } 4441 4442 static void skb_gro_reset_offset(struct sk_buff *skb) 4443 { 4444 const struct skb_shared_info *pinfo = skb_shinfo(skb); 4445 const skb_frag_t *frag0 = &pinfo->frags[0]; 4446 4447 NAPI_GRO_CB(skb)->data_offset = 0; 4448 NAPI_GRO_CB(skb)->frag0 = NULL; 4449 NAPI_GRO_CB(skb)->frag0_len = 0; 4450 4451 if (skb_mac_header(skb) == skb_tail_pointer(skb) && 4452 pinfo->nr_frags && 4453 !PageHighMem(skb_frag_page(frag0))) { 4454 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0); 4455 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int, 4456 skb_frag_size(frag0), 4457 skb->end - skb->tail); 4458 } 4459 } 4460 4461 static void gro_pull_from_frag0(struct sk_buff *skb, int grow) 4462 { 4463 struct skb_shared_info *pinfo = skb_shinfo(skb); 4464 4465 BUG_ON(skb->end - skb->tail < grow); 4466 4467 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow); 4468 4469 skb->data_len -= grow; 4470 skb->tail += grow; 4471 4472 pinfo->frags[0].page_offset += grow; 4473 skb_frag_size_sub(&pinfo->frags[0], grow); 4474 4475 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) { 4476 skb_frag_unref(skb, 0); 4477 memmove(pinfo->frags, pinfo->frags + 1, 4478 --pinfo->nr_frags * sizeof(pinfo->frags[0])); 4479 } 4480 } 4481 4482 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 4483 { 4484 struct sk_buff **pp = NULL; 4485 struct packet_offload *ptype; 4486 __be16 type = skb->protocol; 4487 struct list_head *head = &offload_base; 4488 int same_flow; 4489 enum gro_result ret; 4490 int grow; 4491 4492 if (!(skb->dev->features & NETIF_F_GRO)) 4493 goto normal; 4494 4495 if (skb->csum_bad) 4496 goto normal; 4497 4498 gro_list_prepare(napi, skb); 4499 4500 rcu_read_lock(); 4501 list_for_each_entry_rcu(ptype, head, list) { 4502 if (ptype->type != type || !ptype->callbacks.gro_receive) 4503 continue; 4504 4505 skb_set_network_header(skb, skb_gro_offset(skb)); 4506 skb_reset_mac_len(skb); 4507 NAPI_GRO_CB(skb)->same_flow = 0; 4508 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb); 4509 NAPI_GRO_CB(skb)->free = 0; 4510 NAPI_GRO_CB(skb)->encap_mark = 0; 4511 NAPI_GRO_CB(skb)->recursion_counter = 0; 4512 NAPI_GRO_CB(skb)->is_fou = 0; 4513 NAPI_GRO_CB(skb)->is_atomic = 1; 4514 NAPI_GRO_CB(skb)->gro_remcsum_start = 0; 4515 4516 /* Setup for GRO checksum validation */ 4517 switch (skb->ip_summed) { 4518 case CHECKSUM_COMPLETE: 4519 NAPI_GRO_CB(skb)->csum = skb->csum; 4520 NAPI_GRO_CB(skb)->csum_valid = 1; 4521 NAPI_GRO_CB(skb)->csum_cnt = 0; 4522 break; 4523 case CHECKSUM_UNNECESSARY: 4524 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1; 4525 NAPI_GRO_CB(skb)->csum_valid = 0; 4526 break; 4527 default: 4528 NAPI_GRO_CB(skb)->csum_cnt = 0; 4529 NAPI_GRO_CB(skb)->csum_valid = 0; 4530 } 4531 4532 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb); 4533 break; 4534 } 4535 rcu_read_unlock(); 4536 4537 if (&ptype->list == head) 4538 goto normal; 4539 4540 if (IS_ERR(pp) && PTR_ERR(pp) == -EINPROGRESS) { 4541 ret = GRO_CONSUMED; 4542 goto ok; 4543 } 4544 4545 same_flow = NAPI_GRO_CB(skb)->same_flow; 4546 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED; 4547 4548 if (pp) { 4549 struct sk_buff *nskb = *pp; 4550 4551 *pp = nskb->next; 4552 nskb->next = NULL; 4553 napi_gro_complete(nskb); 4554 napi->gro_count--; 4555 } 4556 4557 if (same_flow) 4558 goto ok; 4559 4560 if (NAPI_GRO_CB(skb)->flush) 4561 goto normal; 4562 4563 if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) { 4564 struct sk_buff *nskb = napi->gro_list; 4565 4566 /* locate the end of the list to select the 'oldest' flow */ 4567 while (nskb->next) { 4568 pp = &nskb->next; 4569 nskb = *pp; 4570 } 4571 *pp = NULL; 4572 nskb->next = NULL; 4573 napi_gro_complete(nskb); 4574 } else { 4575 napi->gro_count++; 4576 } 4577 NAPI_GRO_CB(skb)->count = 1; 4578 NAPI_GRO_CB(skb)->age = jiffies; 4579 NAPI_GRO_CB(skb)->last = skb; 4580 skb_shinfo(skb)->gso_size = skb_gro_len(skb); 4581 skb->next = napi->gro_list; 4582 napi->gro_list = skb; 4583 ret = GRO_HELD; 4584 4585 pull: 4586 grow = skb_gro_offset(skb) - skb_headlen(skb); 4587 if (grow > 0) 4588 gro_pull_from_frag0(skb, grow); 4589 ok: 4590 return ret; 4591 4592 normal: 4593 ret = GRO_NORMAL; 4594 goto pull; 4595 } 4596 4597 struct packet_offload *gro_find_receive_by_type(__be16 type) 4598 { 4599 struct list_head *offload_head = &offload_base; 4600 struct packet_offload *ptype; 4601 4602 list_for_each_entry_rcu(ptype, offload_head, list) { 4603 if (ptype->type != type || !ptype->callbacks.gro_receive) 4604 continue; 4605 return ptype; 4606 } 4607 return NULL; 4608 } 4609 EXPORT_SYMBOL(gro_find_receive_by_type); 4610 4611 struct packet_offload *gro_find_complete_by_type(__be16 type) 4612 { 4613 struct list_head *offload_head = &offload_base; 4614 struct packet_offload *ptype; 4615 4616 list_for_each_entry_rcu(ptype, offload_head, list) { 4617 if (ptype->type != type || !ptype->callbacks.gro_complete) 4618 continue; 4619 return ptype; 4620 } 4621 return NULL; 4622 } 4623 EXPORT_SYMBOL(gro_find_complete_by_type); 4624 4625 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb) 4626 { 4627 switch (ret) { 4628 case GRO_NORMAL: 4629 if (netif_receive_skb_internal(skb)) 4630 ret = GRO_DROP; 4631 break; 4632 4633 case GRO_DROP: 4634 kfree_skb(skb); 4635 break; 4636 4637 case GRO_MERGED_FREE: 4638 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) { 4639 skb_dst_drop(skb); 4640 secpath_reset(skb); 4641 kmem_cache_free(skbuff_head_cache, skb); 4642 } else { 4643 __kfree_skb(skb); 4644 } 4645 break; 4646 4647 case GRO_HELD: 4648 case GRO_MERGED: 4649 case GRO_CONSUMED: 4650 break; 4651 } 4652 4653 return ret; 4654 } 4655 4656 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 4657 { 4658 skb_mark_napi_id(skb, napi); 4659 trace_napi_gro_receive_entry(skb); 4660 4661 skb_gro_reset_offset(skb); 4662 4663 return napi_skb_finish(dev_gro_receive(napi, skb), skb); 4664 } 4665 EXPORT_SYMBOL(napi_gro_receive); 4666 4667 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb) 4668 { 4669 if (unlikely(skb->pfmemalloc)) { 4670 consume_skb(skb); 4671 return; 4672 } 4673 __skb_pull(skb, skb_headlen(skb)); 4674 /* restore the reserve we had after netdev_alloc_skb_ip_align() */ 4675 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb)); 4676 skb->vlan_tci = 0; 4677 skb->dev = napi->dev; 4678 skb->skb_iif = 0; 4679 skb->encapsulation = 0; 4680 skb_shinfo(skb)->gso_type = 0; 4681 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb)); 4682 secpath_reset(skb); 4683 4684 napi->skb = skb; 4685 } 4686 4687 struct sk_buff *napi_get_frags(struct napi_struct *napi) 4688 { 4689 struct sk_buff *skb = napi->skb; 4690 4691 if (!skb) { 4692 skb = napi_alloc_skb(napi, GRO_MAX_HEAD); 4693 if (skb) { 4694 napi->skb = skb; 4695 skb_mark_napi_id(skb, napi); 4696 } 4697 } 4698 return skb; 4699 } 4700 EXPORT_SYMBOL(napi_get_frags); 4701 4702 static gro_result_t napi_frags_finish(struct napi_struct *napi, 4703 struct sk_buff *skb, 4704 gro_result_t ret) 4705 { 4706 switch (ret) { 4707 case GRO_NORMAL: 4708 case GRO_HELD: 4709 __skb_push(skb, ETH_HLEN); 4710 skb->protocol = eth_type_trans(skb, skb->dev); 4711 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb)) 4712 ret = GRO_DROP; 4713 break; 4714 4715 case GRO_DROP: 4716 case GRO_MERGED_FREE: 4717 napi_reuse_skb(napi, skb); 4718 break; 4719 4720 case GRO_MERGED: 4721 case GRO_CONSUMED: 4722 break; 4723 } 4724 4725 return ret; 4726 } 4727 4728 /* Upper GRO stack assumes network header starts at gro_offset=0 4729 * Drivers could call both napi_gro_frags() and napi_gro_receive() 4730 * We copy ethernet header into skb->data to have a common layout. 4731 */ 4732 static struct sk_buff *napi_frags_skb(struct napi_struct *napi) 4733 { 4734 struct sk_buff *skb = napi->skb; 4735 const struct ethhdr *eth; 4736 unsigned int hlen = sizeof(*eth); 4737 4738 napi->skb = NULL; 4739 4740 skb_reset_mac_header(skb); 4741 skb_gro_reset_offset(skb); 4742 4743 eth = skb_gro_header_fast(skb, 0); 4744 if (unlikely(skb_gro_header_hard(skb, hlen))) { 4745 eth = skb_gro_header_slow(skb, hlen, 0); 4746 if (unlikely(!eth)) { 4747 net_warn_ratelimited("%s: dropping impossible skb from %s\n", 4748 __func__, napi->dev->name); 4749 napi_reuse_skb(napi, skb); 4750 return NULL; 4751 } 4752 } else { 4753 gro_pull_from_frag0(skb, hlen); 4754 NAPI_GRO_CB(skb)->frag0 += hlen; 4755 NAPI_GRO_CB(skb)->frag0_len -= hlen; 4756 } 4757 __skb_pull(skb, hlen); 4758 4759 /* 4760 * This works because the only protocols we care about don't require 4761 * special handling. 4762 * We'll fix it up properly in napi_frags_finish() 4763 */ 4764 skb->protocol = eth->h_proto; 4765 4766 return skb; 4767 } 4768 4769 gro_result_t napi_gro_frags(struct napi_struct *napi) 4770 { 4771 struct sk_buff *skb = napi_frags_skb(napi); 4772 4773 if (!skb) 4774 return GRO_DROP; 4775 4776 trace_napi_gro_frags_entry(skb); 4777 4778 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb)); 4779 } 4780 EXPORT_SYMBOL(napi_gro_frags); 4781 4782 /* Compute the checksum from gro_offset and return the folded value 4783 * after adding in any pseudo checksum. 4784 */ 4785 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb) 4786 { 4787 __wsum wsum; 4788 __sum16 sum; 4789 4790 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0); 4791 4792 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */ 4793 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum)); 4794 if (likely(!sum)) { 4795 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) && 4796 !skb->csum_complete_sw) 4797 netdev_rx_csum_fault(skb->dev); 4798 } 4799 4800 NAPI_GRO_CB(skb)->csum = wsum; 4801 NAPI_GRO_CB(skb)->csum_valid = 1; 4802 4803 return sum; 4804 } 4805 EXPORT_SYMBOL(__skb_gro_checksum_complete); 4806 4807 /* 4808 * net_rps_action_and_irq_enable sends any pending IPI's for rps. 4809 * Note: called with local irq disabled, but exits with local irq enabled. 4810 */ 4811 static void net_rps_action_and_irq_enable(struct softnet_data *sd) 4812 { 4813 #ifdef CONFIG_RPS 4814 struct softnet_data *remsd = sd->rps_ipi_list; 4815 4816 if (remsd) { 4817 sd->rps_ipi_list = NULL; 4818 4819 local_irq_enable(); 4820 4821 /* Send pending IPI's to kick RPS processing on remote cpus. */ 4822 while (remsd) { 4823 struct softnet_data *next = remsd->rps_ipi_next; 4824 4825 if (cpu_online(remsd->cpu)) 4826 smp_call_function_single_async(remsd->cpu, 4827 &remsd->csd); 4828 remsd = next; 4829 } 4830 } else 4831 #endif 4832 local_irq_enable(); 4833 } 4834 4835 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd) 4836 { 4837 #ifdef CONFIG_RPS 4838 return sd->rps_ipi_list != NULL; 4839 #else 4840 return false; 4841 #endif 4842 } 4843 4844 static int process_backlog(struct napi_struct *napi, int quota) 4845 { 4846 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog); 4847 bool again = true; 4848 int work = 0; 4849 4850 /* Check if we have pending ipi, its better to send them now, 4851 * not waiting net_rx_action() end. 4852 */ 4853 if (sd_has_rps_ipi_waiting(sd)) { 4854 local_irq_disable(); 4855 net_rps_action_and_irq_enable(sd); 4856 } 4857 4858 napi->weight = dev_rx_weight; 4859 while (again) { 4860 struct sk_buff *skb; 4861 4862 while ((skb = __skb_dequeue(&sd->process_queue))) { 4863 rcu_read_lock(); 4864 __netif_receive_skb(skb); 4865 rcu_read_unlock(); 4866 input_queue_head_incr(sd); 4867 if (++work >= quota) 4868 return work; 4869 4870 } 4871 4872 local_irq_disable(); 4873 rps_lock(sd); 4874 if (skb_queue_empty(&sd->input_pkt_queue)) { 4875 /* 4876 * Inline a custom version of __napi_complete(). 4877 * only current cpu owns and manipulates this napi, 4878 * and NAPI_STATE_SCHED is the only possible flag set 4879 * on backlog. 4880 * We can use a plain write instead of clear_bit(), 4881 * and we dont need an smp_mb() memory barrier. 4882 */ 4883 napi->state = 0; 4884 again = false; 4885 } else { 4886 skb_queue_splice_tail_init(&sd->input_pkt_queue, 4887 &sd->process_queue); 4888 } 4889 rps_unlock(sd); 4890 local_irq_enable(); 4891 } 4892 4893 return work; 4894 } 4895 4896 /** 4897 * __napi_schedule - schedule for receive 4898 * @n: entry to schedule 4899 * 4900 * The entry's receive function will be scheduled to run. 4901 * Consider using __napi_schedule_irqoff() if hard irqs are masked. 4902 */ 4903 void __napi_schedule(struct napi_struct *n) 4904 { 4905 unsigned long flags; 4906 4907 local_irq_save(flags); 4908 ____napi_schedule(this_cpu_ptr(&softnet_data), n); 4909 local_irq_restore(flags); 4910 } 4911 EXPORT_SYMBOL(__napi_schedule); 4912 4913 /** 4914 * napi_schedule_prep - check if napi can be scheduled 4915 * @n: napi context 4916 * 4917 * Test if NAPI routine is already running, and if not mark 4918 * it as running. This is used as a condition variable 4919 * insure only one NAPI poll instance runs. We also make 4920 * sure there is no pending NAPI disable. 4921 */ 4922 bool napi_schedule_prep(struct napi_struct *n) 4923 { 4924 unsigned long val, new; 4925 4926 do { 4927 val = READ_ONCE(n->state); 4928 if (unlikely(val & NAPIF_STATE_DISABLE)) 4929 return false; 4930 new = val | NAPIF_STATE_SCHED; 4931 4932 /* Sets STATE_MISSED bit if STATE_SCHED was already set 4933 * This was suggested by Alexander Duyck, as compiler 4934 * emits better code than : 4935 * if (val & NAPIF_STATE_SCHED) 4936 * new |= NAPIF_STATE_MISSED; 4937 */ 4938 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED * 4939 NAPIF_STATE_MISSED; 4940 } while (cmpxchg(&n->state, val, new) != val); 4941 4942 return !(val & NAPIF_STATE_SCHED); 4943 } 4944 EXPORT_SYMBOL(napi_schedule_prep); 4945 4946 /** 4947 * __napi_schedule_irqoff - schedule for receive 4948 * @n: entry to schedule 4949 * 4950 * Variant of __napi_schedule() assuming hard irqs are masked 4951 */ 4952 void __napi_schedule_irqoff(struct napi_struct *n) 4953 { 4954 ____napi_schedule(this_cpu_ptr(&softnet_data), n); 4955 } 4956 EXPORT_SYMBOL(__napi_schedule_irqoff); 4957 4958 bool napi_complete_done(struct napi_struct *n, int work_done) 4959 { 4960 unsigned long flags, val, new; 4961 4962 /* 4963 * 1) Don't let napi dequeue from the cpu poll list 4964 * just in case its running on a different cpu. 4965 * 2) If we are busy polling, do nothing here, we have 4966 * the guarantee we will be called later. 4967 */ 4968 if (unlikely(n->state & (NAPIF_STATE_NPSVC | 4969 NAPIF_STATE_IN_BUSY_POLL))) 4970 return false; 4971 4972 if (n->gro_list) { 4973 unsigned long timeout = 0; 4974 4975 if (work_done) 4976 timeout = n->dev->gro_flush_timeout; 4977 4978 if (timeout) 4979 hrtimer_start(&n->timer, ns_to_ktime(timeout), 4980 HRTIMER_MODE_REL_PINNED); 4981 else 4982 napi_gro_flush(n, false); 4983 } 4984 if (unlikely(!list_empty(&n->poll_list))) { 4985 /* If n->poll_list is not empty, we need to mask irqs */ 4986 local_irq_save(flags); 4987 list_del_init(&n->poll_list); 4988 local_irq_restore(flags); 4989 } 4990 4991 do { 4992 val = READ_ONCE(n->state); 4993 4994 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED)); 4995 4996 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED); 4997 4998 /* If STATE_MISSED was set, leave STATE_SCHED set, 4999 * because we will call napi->poll() one more time. 5000 * This C code was suggested by Alexander Duyck to help gcc. 5001 */ 5002 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED * 5003 NAPIF_STATE_SCHED; 5004 } while (cmpxchg(&n->state, val, new) != val); 5005 5006 if (unlikely(val & NAPIF_STATE_MISSED)) { 5007 __napi_schedule(n); 5008 return false; 5009 } 5010 5011 return true; 5012 } 5013 EXPORT_SYMBOL(napi_complete_done); 5014 5015 /* must be called under rcu_read_lock(), as we dont take a reference */ 5016 static struct napi_struct *napi_by_id(unsigned int napi_id) 5017 { 5018 unsigned int hash = napi_id % HASH_SIZE(napi_hash); 5019 struct napi_struct *napi; 5020 5021 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node) 5022 if (napi->napi_id == napi_id) 5023 return napi; 5024 5025 return NULL; 5026 } 5027 5028 #if defined(CONFIG_NET_RX_BUSY_POLL) 5029 5030 #define BUSY_POLL_BUDGET 8 5031 5032 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock) 5033 { 5034 int rc; 5035 5036 /* Busy polling means there is a high chance device driver hard irq 5037 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was 5038 * set in napi_schedule_prep(). 5039 * Since we are about to call napi->poll() once more, we can safely 5040 * clear NAPI_STATE_MISSED. 5041 * 5042 * Note: x86 could use a single "lock and ..." instruction 5043 * to perform these two clear_bit() 5044 */ 5045 clear_bit(NAPI_STATE_MISSED, &napi->state); 5046 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state); 5047 5048 local_bh_disable(); 5049 5050 /* All we really want here is to re-enable device interrupts. 5051 * Ideally, a new ndo_busy_poll_stop() could avoid another round. 5052 */ 5053 rc = napi->poll(napi, BUSY_POLL_BUDGET); 5054 netpoll_poll_unlock(have_poll_lock); 5055 if (rc == BUSY_POLL_BUDGET) 5056 __napi_schedule(napi); 5057 local_bh_enable(); 5058 if (local_softirq_pending()) 5059 do_softirq(); 5060 } 5061 5062 bool sk_busy_loop(struct sock *sk, int nonblock) 5063 { 5064 unsigned long end_time = !nonblock ? sk_busy_loop_end_time(sk) : 0; 5065 int (*napi_poll)(struct napi_struct *napi, int budget); 5066 void *have_poll_lock = NULL; 5067 struct napi_struct *napi; 5068 int rc; 5069 5070 restart: 5071 rc = false; 5072 napi_poll = NULL; 5073 5074 rcu_read_lock(); 5075 5076 napi = napi_by_id(sk->sk_napi_id); 5077 if (!napi) 5078 goto out; 5079 5080 preempt_disable(); 5081 for (;;) { 5082 rc = 0; 5083 local_bh_disable(); 5084 if (!napi_poll) { 5085 unsigned long val = READ_ONCE(napi->state); 5086 5087 /* If multiple threads are competing for this napi, 5088 * we avoid dirtying napi->state as much as we can. 5089 */ 5090 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED | 5091 NAPIF_STATE_IN_BUSY_POLL)) 5092 goto count; 5093 if (cmpxchg(&napi->state, val, 5094 val | NAPIF_STATE_IN_BUSY_POLL | 5095 NAPIF_STATE_SCHED) != val) 5096 goto count; 5097 have_poll_lock = netpoll_poll_lock(napi); 5098 napi_poll = napi->poll; 5099 } 5100 rc = napi_poll(napi, BUSY_POLL_BUDGET); 5101 trace_napi_poll(napi, rc, BUSY_POLL_BUDGET); 5102 count: 5103 if (rc > 0) 5104 __NET_ADD_STATS(sock_net(sk), 5105 LINUX_MIB_BUSYPOLLRXPACKETS, rc); 5106 local_bh_enable(); 5107 5108 if (nonblock || !skb_queue_empty(&sk->sk_receive_queue) || 5109 busy_loop_timeout(end_time)) 5110 break; 5111 5112 if (unlikely(need_resched())) { 5113 if (napi_poll) 5114 busy_poll_stop(napi, have_poll_lock); 5115 preempt_enable(); 5116 rcu_read_unlock(); 5117 cond_resched(); 5118 rc = !skb_queue_empty(&sk->sk_receive_queue); 5119 if (rc || busy_loop_timeout(end_time)) 5120 return rc; 5121 goto restart; 5122 } 5123 cpu_relax(); 5124 } 5125 if (napi_poll) 5126 busy_poll_stop(napi, have_poll_lock); 5127 preempt_enable(); 5128 rc = !skb_queue_empty(&sk->sk_receive_queue); 5129 out: 5130 rcu_read_unlock(); 5131 return rc; 5132 } 5133 EXPORT_SYMBOL(sk_busy_loop); 5134 5135 #endif /* CONFIG_NET_RX_BUSY_POLL */ 5136 5137 static void napi_hash_add(struct napi_struct *napi) 5138 { 5139 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) || 5140 test_and_set_bit(NAPI_STATE_HASHED, &napi->state)) 5141 return; 5142 5143 spin_lock(&napi_hash_lock); 5144 5145 /* 0..NR_CPUS+1 range is reserved for sender_cpu use */ 5146 do { 5147 if (unlikely(++napi_gen_id < NR_CPUS + 1)) 5148 napi_gen_id = NR_CPUS + 1; 5149 } while (napi_by_id(napi_gen_id)); 5150 napi->napi_id = napi_gen_id; 5151 5152 hlist_add_head_rcu(&napi->napi_hash_node, 5153 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]); 5154 5155 spin_unlock(&napi_hash_lock); 5156 } 5157 5158 /* Warning : caller is responsible to make sure rcu grace period 5159 * is respected before freeing memory containing @napi 5160 */ 5161 bool napi_hash_del(struct napi_struct *napi) 5162 { 5163 bool rcu_sync_needed = false; 5164 5165 spin_lock(&napi_hash_lock); 5166 5167 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) { 5168 rcu_sync_needed = true; 5169 hlist_del_rcu(&napi->napi_hash_node); 5170 } 5171 spin_unlock(&napi_hash_lock); 5172 return rcu_sync_needed; 5173 } 5174 EXPORT_SYMBOL_GPL(napi_hash_del); 5175 5176 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer) 5177 { 5178 struct napi_struct *napi; 5179 5180 napi = container_of(timer, struct napi_struct, timer); 5181 5182 /* Note : we use a relaxed variant of napi_schedule_prep() not setting 5183 * NAPI_STATE_MISSED, since we do not react to a device IRQ. 5184 */ 5185 if (napi->gro_list && !napi_disable_pending(napi) && 5186 !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) 5187 __napi_schedule_irqoff(napi); 5188 5189 return HRTIMER_NORESTART; 5190 } 5191 5192 void netif_napi_add(struct net_device *dev, struct napi_struct *napi, 5193 int (*poll)(struct napi_struct *, int), int weight) 5194 { 5195 INIT_LIST_HEAD(&napi->poll_list); 5196 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED); 5197 napi->timer.function = napi_watchdog; 5198 napi->gro_count = 0; 5199 napi->gro_list = NULL; 5200 napi->skb = NULL; 5201 napi->poll = poll; 5202 if (weight > NAPI_POLL_WEIGHT) 5203 pr_err_once("netif_napi_add() called with weight %d on device %s\n", 5204 weight, dev->name); 5205 napi->weight = weight; 5206 list_add(&napi->dev_list, &dev->napi_list); 5207 napi->dev = dev; 5208 #ifdef CONFIG_NETPOLL 5209 napi->poll_owner = -1; 5210 #endif 5211 set_bit(NAPI_STATE_SCHED, &napi->state); 5212 napi_hash_add(napi); 5213 } 5214 EXPORT_SYMBOL(netif_napi_add); 5215 5216 void napi_disable(struct napi_struct *n) 5217 { 5218 might_sleep(); 5219 set_bit(NAPI_STATE_DISABLE, &n->state); 5220 5221 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state)) 5222 msleep(1); 5223 while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state)) 5224 msleep(1); 5225 5226 hrtimer_cancel(&n->timer); 5227 5228 clear_bit(NAPI_STATE_DISABLE, &n->state); 5229 } 5230 EXPORT_SYMBOL(napi_disable); 5231 5232 /* Must be called in process context */ 5233 void netif_napi_del(struct napi_struct *napi) 5234 { 5235 might_sleep(); 5236 if (napi_hash_del(napi)) 5237 synchronize_net(); 5238 list_del_init(&napi->dev_list); 5239 napi_free_frags(napi); 5240 5241 kfree_skb_list(napi->gro_list); 5242 napi->gro_list = NULL; 5243 napi->gro_count = 0; 5244 } 5245 EXPORT_SYMBOL(netif_napi_del); 5246 5247 static int napi_poll(struct napi_struct *n, struct list_head *repoll) 5248 { 5249 void *have; 5250 int work, weight; 5251 5252 list_del_init(&n->poll_list); 5253 5254 have = netpoll_poll_lock(n); 5255 5256 weight = n->weight; 5257 5258 /* This NAPI_STATE_SCHED test is for avoiding a race 5259 * with netpoll's poll_napi(). Only the entity which 5260 * obtains the lock and sees NAPI_STATE_SCHED set will 5261 * actually make the ->poll() call. Therefore we avoid 5262 * accidentally calling ->poll() when NAPI is not scheduled. 5263 */ 5264 work = 0; 5265 if (test_bit(NAPI_STATE_SCHED, &n->state)) { 5266 work = n->poll(n, weight); 5267 trace_napi_poll(n, work, weight); 5268 } 5269 5270 WARN_ON_ONCE(work > weight); 5271 5272 if (likely(work < weight)) 5273 goto out_unlock; 5274 5275 /* Drivers must not modify the NAPI state if they 5276 * consume the entire weight. In such cases this code 5277 * still "owns" the NAPI instance and therefore can 5278 * move the instance around on the list at-will. 5279 */ 5280 if (unlikely(napi_disable_pending(n))) { 5281 napi_complete(n); 5282 goto out_unlock; 5283 } 5284 5285 if (n->gro_list) { 5286 /* flush too old packets 5287 * If HZ < 1000, flush all packets. 5288 */ 5289 napi_gro_flush(n, HZ >= 1000); 5290 } 5291 5292 /* Some drivers may have called napi_schedule 5293 * prior to exhausting their budget. 5294 */ 5295 if (unlikely(!list_empty(&n->poll_list))) { 5296 pr_warn_once("%s: Budget exhausted after napi rescheduled\n", 5297 n->dev ? n->dev->name : "backlog"); 5298 goto out_unlock; 5299 } 5300 5301 list_add_tail(&n->poll_list, repoll); 5302 5303 out_unlock: 5304 netpoll_poll_unlock(have); 5305 5306 return work; 5307 } 5308 5309 static __latent_entropy void net_rx_action(struct softirq_action *h) 5310 { 5311 struct softnet_data *sd = this_cpu_ptr(&softnet_data); 5312 unsigned long time_limit = jiffies + 2; 5313 int budget = netdev_budget; 5314 LIST_HEAD(list); 5315 LIST_HEAD(repoll); 5316 5317 local_irq_disable(); 5318 list_splice_init(&sd->poll_list, &list); 5319 local_irq_enable(); 5320 5321 for (;;) { 5322 struct napi_struct *n; 5323 5324 if (list_empty(&list)) { 5325 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll)) 5326 goto out; 5327 break; 5328 } 5329 5330 n = list_first_entry(&list, struct napi_struct, poll_list); 5331 budget -= napi_poll(n, &repoll); 5332 5333 /* If softirq window is exhausted then punt. 5334 * Allow this to run for 2 jiffies since which will allow 5335 * an average latency of 1.5/HZ. 5336 */ 5337 if (unlikely(budget <= 0 || 5338 time_after_eq(jiffies, time_limit))) { 5339 sd->time_squeeze++; 5340 break; 5341 } 5342 } 5343 5344 local_irq_disable(); 5345 5346 list_splice_tail_init(&sd->poll_list, &list); 5347 list_splice_tail(&repoll, &list); 5348 list_splice(&list, &sd->poll_list); 5349 if (!list_empty(&sd->poll_list)) 5350 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 5351 5352 net_rps_action_and_irq_enable(sd); 5353 out: 5354 __kfree_skb_flush(); 5355 } 5356 5357 struct netdev_adjacent { 5358 struct net_device *dev; 5359 5360 /* upper master flag, there can only be one master device per list */ 5361 bool master; 5362 5363 /* counter for the number of times this device was added to us */ 5364 u16 ref_nr; 5365 5366 /* private field for the users */ 5367 void *private; 5368 5369 struct list_head list; 5370 struct rcu_head rcu; 5371 }; 5372 5373 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev, 5374 struct list_head *adj_list) 5375 { 5376 struct netdev_adjacent *adj; 5377 5378 list_for_each_entry(adj, adj_list, list) { 5379 if (adj->dev == adj_dev) 5380 return adj; 5381 } 5382 return NULL; 5383 } 5384 5385 static int __netdev_has_upper_dev(struct net_device *upper_dev, void *data) 5386 { 5387 struct net_device *dev = data; 5388 5389 return upper_dev == dev; 5390 } 5391 5392 /** 5393 * netdev_has_upper_dev - Check if device is linked to an upper device 5394 * @dev: device 5395 * @upper_dev: upper device to check 5396 * 5397 * Find out if a device is linked to specified upper device and return true 5398 * in case it is. Note that this checks only immediate upper device, 5399 * not through a complete stack of devices. The caller must hold the RTNL lock. 5400 */ 5401 bool netdev_has_upper_dev(struct net_device *dev, 5402 struct net_device *upper_dev) 5403 { 5404 ASSERT_RTNL(); 5405 5406 return netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev, 5407 upper_dev); 5408 } 5409 EXPORT_SYMBOL(netdev_has_upper_dev); 5410 5411 /** 5412 * netdev_has_upper_dev_all - Check if device is linked to an upper device 5413 * @dev: device 5414 * @upper_dev: upper device to check 5415 * 5416 * Find out if a device is linked to specified upper device and return true 5417 * in case it is. Note that this checks the entire upper device chain. 5418 * The caller must hold rcu lock. 5419 */ 5420 5421 bool netdev_has_upper_dev_all_rcu(struct net_device *dev, 5422 struct net_device *upper_dev) 5423 { 5424 return !!netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev, 5425 upper_dev); 5426 } 5427 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu); 5428 5429 /** 5430 * netdev_has_any_upper_dev - Check if device is linked to some device 5431 * @dev: device 5432 * 5433 * Find out if a device is linked to an upper device and return true in case 5434 * it is. The caller must hold the RTNL lock. 5435 */ 5436 static bool netdev_has_any_upper_dev(struct net_device *dev) 5437 { 5438 ASSERT_RTNL(); 5439 5440 return !list_empty(&dev->adj_list.upper); 5441 } 5442 5443 /** 5444 * netdev_master_upper_dev_get - Get master upper device 5445 * @dev: device 5446 * 5447 * Find a master upper device and return pointer to it or NULL in case 5448 * it's not there. The caller must hold the RTNL lock. 5449 */ 5450 struct net_device *netdev_master_upper_dev_get(struct net_device *dev) 5451 { 5452 struct netdev_adjacent *upper; 5453 5454 ASSERT_RTNL(); 5455 5456 if (list_empty(&dev->adj_list.upper)) 5457 return NULL; 5458 5459 upper = list_first_entry(&dev->adj_list.upper, 5460 struct netdev_adjacent, list); 5461 if (likely(upper->master)) 5462 return upper->dev; 5463 return NULL; 5464 } 5465 EXPORT_SYMBOL(netdev_master_upper_dev_get); 5466 5467 /** 5468 * netdev_has_any_lower_dev - Check if device is linked to some device 5469 * @dev: device 5470 * 5471 * Find out if a device is linked to a lower device and return true in case 5472 * it is. The caller must hold the RTNL lock. 5473 */ 5474 static bool netdev_has_any_lower_dev(struct net_device *dev) 5475 { 5476 ASSERT_RTNL(); 5477 5478 return !list_empty(&dev->adj_list.lower); 5479 } 5480 5481 void *netdev_adjacent_get_private(struct list_head *adj_list) 5482 { 5483 struct netdev_adjacent *adj; 5484 5485 adj = list_entry(adj_list, struct netdev_adjacent, list); 5486 5487 return adj->private; 5488 } 5489 EXPORT_SYMBOL(netdev_adjacent_get_private); 5490 5491 /** 5492 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list 5493 * @dev: device 5494 * @iter: list_head ** of the current position 5495 * 5496 * Gets the next device from the dev's upper list, starting from iter 5497 * position. The caller must hold RCU read lock. 5498 */ 5499 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev, 5500 struct list_head **iter) 5501 { 5502 struct netdev_adjacent *upper; 5503 5504 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); 5505 5506 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 5507 5508 if (&upper->list == &dev->adj_list.upper) 5509 return NULL; 5510 5511 *iter = &upper->list; 5512 5513 return upper->dev; 5514 } 5515 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu); 5516 5517 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev, 5518 struct list_head **iter) 5519 { 5520 struct netdev_adjacent *upper; 5521 5522 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); 5523 5524 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 5525 5526 if (&upper->list == &dev->adj_list.upper) 5527 return NULL; 5528 5529 *iter = &upper->list; 5530 5531 return upper->dev; 5532 } 5533 5534 int netdev_walk_all_upper_dev_rcu(struct net_device *dev, 5535 int (*fn)(struct net_device *dev, 5536 void *data), 5537 void *data) 5538 { 5539 struct net_device *udev; 5540 struct list_head *iter; 5541 int ret; 5542 5543 for (iter = &dev->adj_list.upper, 5544 udev = netdev_next_upper_dev_rcu(dev, &iter); 5545 udev; 5546 udev = netdev_next_upper_dev_rcu(dev, &iter)) { 5547 /* first is the upper device itself */ 5548 ret = fn(udev, data); 5549 if (ret) 5550 return ret; 5551 5552 /* then look at all of its upper devices */ 5553 ret = netdev_walk_all_upper_dev_rcu(udev, fn, data); 5554 if (ret) 5555 return ret; 5556 } 5557 5558 return 0; 5559 } 5560 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu); 5561 5562 /** 5563 * netdev_lower_get_next_private - Get the next ->private from the 5564 * lower neighbour list 5565 * @dev: device 5566 * @iter: list_head ** of the current position 5567 * 5568 * Gets the next netdev_adjacent->private from the dev's lower neighbour 5569 * list, starting from iter position. The caller must hold either hold the 5570 * RTNL lock or its own locking that guarantees that the neighbour lower 5571 * list will remain unchanged. 5572 */ 5573 void *netdev_lower_get_next_private(struct net_device *dev, 5574 struct list_head **iter) 5575 { 5576 struct netdev_adjacent *lower; 5577 5578 lower = list_entry(*iter, struct netdev_adjacent, list); 5579 5580 if (&lower->list == &dev->adj_list.lower) 5581 return NULL; 5582 5583 *iter = lower->list.next; 5584 5585 return lower->private; 5586 } 5587 EXPORT_SYMBOL(netdev_lower_get_next_private); 5588 5589 /** 5590 * netdev_lower_get_next_private_rcu - Get the next ->private from the 5591 * lower neighbour list, RCU 5592 * variant 5593 * @dev: device 5594 * @iter: list_head ** of the current position 5595 * 5596 * Gets the next netdev_adjacent->private from the dev's lower neighbour 5597 * list, starting from iter position. The caller must hold RCU read lock. 5598 */ 5599 void *netdev_lower_get_next_private_rcu(struct net_device *dev, 5600 struct list_head **iter) 5601 { 5602 struct netdev_adjacent *lower; 5603 5604 WARN_ON_ONCE(!rcu_read_lock_held()); 5605 5606 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 5607 5608 if (&lower->list == &dev->adj_list.lower) 5609 return NULL; 5610 5611 *iter = &lower->list; 5612 5613 return lower->private; 5614 } 5615 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu); 5616 5617 /** 5618 * netdev_lower_get_next - Get the next device from the lower neighbour 5619 * list 5620 * @dev: device 5621 * @iter: list_head ** of the current position 5622 * 5623 * Gets the next netdev_adjacent from the dev's lower neighbour 5624 * list, starting from iter position. The caller must hold RTNL lock or 5625 * its own locking that guarantees that the neighbour lower 5626 * list will remain unchanged. 5627 */ 5628 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter) 5629 { 5630 struct netdev_adjacent *lower; 5631 5632 lower = list_entry(*iter, struct netdev_adjacent, list); 5633 5634 if (&lower->list == &dev->adj_list.lower) 5635 return NULL; 5636 5637 *iter = lower->list.next; 5638 5639 return lower->dev; 5640 } 5641 EXPORT_SYMBOL(netdev_lower_get_next); 5642 5643 static struct net_device *netdev_next_lower_dev(struct net_device *dev, 5644 struct list_head **iter) 5645 { 5646 struct netdev_adjacent *lower; 5647 5648 lower = list_entry((*iter)->next, struct netdev_adjacent, list); 5649 5650 if (&lower->list == &dev->adj_list.lower) 5651 return NULL; 5652 5653 *iter = &lower->list; 5654 5655 return lower->dev; 5656 } 5657 5658 int netdev_walk_all_lower_dev(struct net_device *dev, 5659 int (*fn)(struct net_device *dev, 5660 void *data), 5661 void *data) 5662 { 5663 struct net_device *ldev; 5664 struct list_head *iter; 5665 int ret; 5666 5667 for (iter = &dev->adj_list.lower, 5668 ldev = netdev_next_lower_dev(dev, &iter); 5669 ldev; 5670 ldev = netdev_next_lower_dev(dev, &iter)) { 5671 /* first is the lower device itself */ 5672 ret = fn(ldev, data); 5673 if (ret) 5674 return ret; 5675 5676 /* then look at all of its lower devices */ 5677 ret = netdev_walk_all_lower_dev(ldev, fn, data); 5678 if (ret) 5679 return ret; 5680 } 5681 5682 return 0; 5683 } 5684 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev); 5685 5686 static struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev, 5687 struct list_head **iter) 5688 { 5689 struct netdev_adjacent *lower; 5690 5691 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 5692 if (&lower->list == &dev->adj_list.lower) 5693 return NULL; 5694 5695 *iter = &lower->list; 5696 5697 return lower->dev; 5698 } 5699 5700 int netdev_walk_all_lower_dev_rcu(struct net_device *dev, 5701 int (*fn)(struct net_device *dev, 5702 void *data), 5703 void *data) 5704 { 5705 struct net_device *ldev; 5706 struct list_head *iter; 5707 int ret; 5708 5709 for (iter = &dev->adj_list.lower, 5710 ldev = netdev_next_lower_dev_rcu(dev, &iter); 5711 ldev; 5712 ldev = netdev_next_lower_dev_rcu(dev, &iter)) { 5713 /* first is the lower device itself */ 5714 ret = fn(ldev, data); 5715 if (ret) 5716 return ret; 5717 5718 /* then look at all of its lower devices */ 5719 ret = netdev_walk_all_lower_dev_rcu(ldev, fn, data); 5720 if (ret) 5721 return ret; 5722 } 5723 5724 return 0; 5725 } 5726 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu); 5727 5728 /** 5729 * netdev_lower_get_first_private_rcu - Get the first ->private from the 5730 * lower neighbour list, RCU 5731 * variant 5732 * @dev: device 5733 * 5734 * Gets the first netdev_adjacent->private from the dev's lower neighbour 5735 * list. The caller must hold RCU read lock. 5736 */ 5737 void *netdev_lower_get_first_private_rcu(struct net_device *dev) 5738 { 5739 struct netdev_adjacent *lower; 5740 5741 lower = list_first_or_null_rcu(&dev->adj_list.lower, 5742 struct netdev_adjacent, list); 5743 if (lower) 5744 return lower->private; 5745 return NULL; 5746 } 5747 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu); 5748 5749 /** 5750 * netdev_master_upper_dev_get_rcu - Get master upper device 5751 * @dev: device 5752 * 5753 * Find a master upper device and return pointer to it or NULL in case 5754 * it's not there. The caller must hold the RCU read lock. 5755 */ 5756 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev) 5757 { 5758 struct netdev_adjacent *upper; 5759 5760 upper = list_first_or_null_rcu(&dev->adj_list.upper, 5761 struct netdev_adjacent, list); 5762 if (upper && likely(upper->master)) 5763 return upper->dev; 5764 return NULL; 5765 } 5766 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu); 5767 5768 static int netdev_adjacent_sysfs_add(struct net_device *dev, 5769 struct net_device *adj_dev, 5770 struct list_head *dev_list) 5771 { 5772 char linkname[IFNAMSIZ+7]; 5773 5774 sprintf(linkname, dev_list == &dev->adj_list.upper ? 5775 "upper_%s" : "lower_%s", adj_dev->name); 5776 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj), 5777 linkname); 5778 } 5779 static void netdev_adjacent_sysfs_del(struct net_device *dev, 5780 char *name, 5781 struct list_head *dev_list) 5782 { 5783 char linkname[IFNAMSIZ+7]; 5784 5785 sprintf(linkname, dev_list == &dev->adj_list.upper ? 5786 "upper_%s" : "lower_%s", name); 5787 sysfs_remove_link(&(dev->dev.kobj), linkname); 5788 } 5789 5790 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev, 5791 struct net_device *adj_dev, 5792 struct list_head *dev_list) 5793 { 5794 return (dev_list == &dev->adj_list.upper || 5795 dev_list == &dev->adj_list.lower) && 5796 net_eq(dev_net(dev), dev_net(adj_dev)); 5797 } 5798 5799 static int __netdev_adjacent_dev_insert(struct net_device *dev, 5800 struct net_device *adj_dev, 5801 struct list_head *dev_list, 5802 void *private, bool master) 5803 { 5804 struct netdev_adjacent *adj; 5805 int ret; 5806 5807 adj = __netdev_find_adj(adj_dev, dev_list); 5808 5809 if (adj) { 5810 adj->ref_nr += 1; 5811 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n", 5812 dev->name, adj_dev->name, adj->ref_nr); 5813 5814 return 0; 5815 } 5816 5817 adj = kmalloc(sizeof(*adj), GFP_KERNEL); 5818 if (!adj) 5819 return -ENOMEM; 5820 5821 adj->dev = adj_dev; 5822 adj->master = master; 5823 adj->ref_nr = 1; 5824 adj->private = private; 5825 dev_hold(adj_dev); 5826 5827 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n", 5828 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name); 5829 5830 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) { 5831 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list); 5832 if (ret) 5833 goto free_adj; 5834 } 5835 5836 /* Ensure that master link is always the first item in list. */ 5837 if (master) { 5838 ret = sysfs_create_link(&(dev->dev.kobj), 5839 &(adj_dev->dev.kobj), "master"); 5840 if (ret) 5841 goto remove_symlinks; 5842 5843 list_add_rcu(&adj->list, dev_list); 5844 } else { 5845 list_add_tail_rcu(&adj->list, dev_list); 5846 } 5847 5848 return 0; 5849 5850 remove_symlinks: 5851 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) 5852 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list); 5853 free_adj: 5854 kfree(adj); 5855 dev_put(adj_dev); 5856 5857 return ret; 5858 } 5859 5860 static void __netdev_adjacent_dev_remove(struct net_device *dev, 5861 struct net_device *adj_dev, 5862 u16 ref_nr, 5863 struct list_head *dev_list) 5864 { 5865 struct netdev_adjacent *adj; 5866 5867 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n", 5868 dev->name, adj_dev->name, ref_nr); 5869 5870 adj = __netdev_find_adj(adj_dev, dev_list); 5871 5872 if (!adj) { 5873 pr_err("Adjacency does not exist for device %s from %s\n", 5874 dev->name, adj_dev->name); 5875 WARN_ON(1); 5876 return; 5877 } 5878 5879 if (adj->ref_nr > ref_nr) { 5880 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n", 5881 dev->name, adj_dev->name, ref_nr, 5882 adj->ref_nr - ref_nr); 5883 adj->ref_nr -= ref_nr; 5884 return; 5885 } 5886 5887 if (adj->master) 5888 sysfs_remove_link(&(dev->dev.kobj), "master"); 5889 5890 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) 5891 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list); 5892 5893 list_del_rcu(&adj->list); 5894 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n", 5895 adj_dev->name, dev->name, adj_dev->name); 5896 dev_put(adj_dev); 5897 kfree_rcu(adj, rcu); 5898 } 5899 5900 static int __netdev_adjacent_dev_link_lists(struct net_device *dev, 5901 struct net_device *upper_dev, 5902 struct list_head *up_list, 5903 struct list_head *down_list, 5904 void *private, bool master) 5905 { 5906 int ret; 5907 5908 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, 5909 private, master); 5910 if (ret) 5911 return ret; 5912 5913 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, 5914 private, false); 5915 if (ret) { 5916 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list); 5917 return ret; 5918 } 5919 5920 return 0; 5921 } 5922 5923 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev, 5924 struct net_device *upper_dev, 5925 u16 ref_nr, 5926 struct list_head *up_list, 5927 struct list_head *down_list) 5928 { 5929 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list); 5930 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list); 5931 } 5932 5933 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev, 5934 struct net_device *upper_dev, 5935 void *private, bool master) 5936 { 5937 return __netdev_adjacent_dev_link_lists(dev, upper_dev, 5938 &dev->adj_list.upper, 5939 &upper_dev->adj_list.lower, 5940 private, master); 5941 } 5942 5943 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev, 5944 struct net_device *upper_dev) 5945 { 5946 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1, 5947 &dev->adj_list.upper, 5948 &upper_dev->adj_list.lower); 5949 } 5950 5951 static int __netdev_upper_dev_link(struct net_device *dev, 5952 struct net_device *upper_dev, bool master, 5953 void *upper_priv, void *upper_info) 5954 { 5955 struct netdev_notifier_changeupper_info changeupper_info; 5956 int ret = 0; 5957 5958 ASSERT_RTNL(); 5959 5960 if (dev == upper_dev) 5961 return -EBUSY; 5962 5963 /* To prevent loops, check if dev is not upper device to upper_dev. */ 5964 if (netdev_has_upper_dev(upper_dev, dev)) 5965 return -EBUSY; 5966 5967 if (netdev_has_upper_dev(dev, upper_dev)) 5968 return -EEXIST; 5969 5970 if (master && netdev_master_upper_dev_get(dev)) 5971 return -EBUSY; 5972 5973 changeupper_info.upper_dev = upper_dev; 5974 changeupper_info.master = master; 5975 changeupper_info.linking = true; 5976 changeupper_info.upper_info = upper_info; 5977 5978 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev, 5979 &changeupper_info.info); 5980 ret = notifier_to_errno(ret); 5981 if (ret) 5982 return ret; 5983 5984 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv, 5985 master); 5986 if (ret) 5987 return ret; 5988 5989 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev, 5990 &changeupper_info.info); 5991 ret = notifier_to_errno(ret); 5992 if (ret) 5993 goto rollback; 5994 5995 return 0; 5996 5997 rollback: 5998 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 5999 6000 return ret; 6001 } 6002 6003 /** 6004 * netdev_upper_dev_link - Add a link to the upper device 6005 * @dev: device 6006 * @upper_dev: new upper device 6007 * 6008 * Adds a link to device which is upper to this one. The caller must hold 6009 * the RTNL lock. On a failure a negative errno code is returned. 6010 * On success the reference counts are adjusted and the function 6011 * returns zero. 6012 */ 6013 int netdev_upper_dev_link(struct net_device *dev, 6014 struct net_device *upper_dev) 6015 { 6016 return __netdev_upper_dev_link(dev, upper_dev, false, NULL, NULL); 6017 } 6018 EXPORT_SYMBOL(netdev_upper_dev_link); 6019 6020 /** 6021 * netdev_master_upper_dev_link - Add a master link to the upper device 6022 * @dev: device 6023 * @upper_dev: new upper device 6024 * @upper_priv: upper device private 6025 * @upper_info: upper info to be passed down via notifier 6026 * 6027 * Adds a link to device which is upper to this one. In this case, only 6028 * one master upper device can be linked, although other non-master devices 6029 * might be linked as well. The caller must hold the RTNL lock. 6030 * On a failure a negative errno code is returned. On success the reference 6031 * counts are adjusted and the function returns zero. 6032 */ 6033 int netdev_master_upper_dev_link(struct net_device *dev, 6034 struct net_device *upper_dev, 6035 void *upper_priv, void *upper_info) 6036 { 6037 return __netdev_upper_dev_link(dev, upper_dev, true, 6038 upper_priv, upper_info); 6039 } 6040 EXPORT_SYMBOL(netdev_master_upper_dev_link); 6041 6042 /** 6043 * netdev_upper_dev_unlink - Removes a link to upper device 6044 * @dev: device 6045 * @upper_dev: new upper device 6046 * 6047 * Removes a link to device which is upper to this one. The caller must hold 6048 * the RTNL lock. 6049 */ 6050 void netdev_upper_dev_unlink(struct net_device *dev, 6051 struct net_device *upper_dev) 6052 { 6053 struct netdev_notifier_changeupper_info changeupper_info; 6054 6055 ASSERT_RTNL(); 6056 6057 changeupper_info.upper_dev = upper_dev; 6058 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev; 6059 changeupper_info.linking = false; 6060 6061 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev, 6062 &changeupper_info.info); 6063 6064 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 6065 6066 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev, 6067 &changeupper_info.info); 6068 } 6069 EXPORT_SYMBOL(netdev_upper_dev_unlink); 6070 6071 /** 6072 * netdev_bonding_info_change - Dispatch event about slave change 6073 * @dev: device 6074 * @bonding_info: info to dispatch 6075 * 6076 * Send NETDEV_BONDING_INFO to netdev notifiers with info. 6077 * The caller must hold the RTNL lock. 6078 */ 6079 void netdev_bonding_info_change(struct net_device *dev, 6080 struct netdev_bonding_info *bonding_info) 6081 { 6082 struct netdev_notifier_bonding_info info; 6083 6084 memcpy(&info.bonding_info, bonding_info, 6085 sizeof(struct netdev_bonding_info)); 6086 call_netdevice_notifiers_info(NETDEV_BONDING_INFO, dev, 6087 &info.info); 6088 } 6089 EXPORT_SYMBOL(netdev_bonding_info_change); 6090 6091 static void netdev_adjacent_add_links(struct net_device *dev) 6092 { 6093 struct netdev_adjacent *iter; 6094 6095 struct net *net = dev_net(dev); 6096 6097 list_for_each_entry(iter, &dev->adj_list.upper, list) { 6098 if (!net_eq(net, dev_net(iter->dev))) 6099 continue; 6100 netdev_adjacent_sysfs_add(iter->dev, dev, 6101 &iter->dev->adj_list.lower); 6102 netdev_adjacent_sysfs_add(dev, iter->dev, 6103 &dev->adj_list.upper); 6104 } 6105 6106 list_for_each_entry(iter, &dev->adj_list.lower, list) { 6107 if (!net_eq(net, dev_net(iter->dev))) 6108 continue; 6109 netdev_adjacent_sysfs_add(iter->dev, dev, 6110 &iter->dev->adj_list.upper); 6111 netdev_adjacent_sysfs_add(dev, iter->dev, 6112 &dev->adj_list.lower); 6113 } 6114 } 6115 6116 static void netdev_adjacent_del_links(struct net_device *dev) 6117 { 6118 struct netdev_adjacent *iter; 6119 6120 struct net *net = dev_net(dev); 6121 6122 list_for_each_entry(iter, &dev->adj_list.upper, list) { 6123 if (!net_eq(net, dev_net(iter->dev))) 6124 continue; 6125 netdev_adjacent_sysfs_del(iter->dev, dev->name, 6126 &iter->dev->adj_list.lower); 6127 netdev_adjacent_sysfs_del(dev, iter->dev->name, 6128 &dev->adj_list.upper); 6129 } 6130 6131 list_for_each_entry(iter, &dev->adj_list.lower, list) { 6132 if (!net_eq(net, dev_net(iter->dev))) 6133 continue; 6134 netdev_adjacent_sysfs_del(iter->dev, dev->name, 6135 &iter->dev->adj_list.upper); 6136 netdev_adjacent_sysfs_del(dev, iter->dev->name, 6137 &dev->adj_list.lower); 6138 } 6139 } 6140 6141 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname) 6142 { 6143 struct netdev_adjacent *iter; 6144 6145 struct net *net = dev_net(dev); 6146 6147 list_for_each_entry(iter, &dev->adj_list.upper, list) { 6148 if (!net_eq(net, dev_net(iter->dev))) 6149 continue; 6150 netdev_adjacent_sysfs_del(iter->dev, oldname, 6151 &iter->dev->adj_list.lower); 6152 netdev_adjacent_sysfs_add(iter->dev, dev, 6153 &iter->dev->adj_list.lower); 6154 } 6155 6156 list_for_each_entry(iter, &dev->adj_list.lower, list) { 6157 if (!net_eq(net, dev_net(iter->dev))) 6158 continue; 6159 netdev_adjacent_sysfs_del(iter->dev, oldname, 6160 &iter->dev->adj_list.upper); 6161 netdev_adjacent_sysfs_add(iter->dev, dev, 6162 &iter->dev->adj_list.upper); 6163 } 6164 } 6165 6166 void *netdev_lower_dev_get_private(struct net_device *dev, 6167 struct net_device *lower_dev) 6168 { 6169 struct netdev_adjacent *lower; 6170 6171 if (!lower_dev) 6172 return NULL; 6173 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower); 6174 if (!lower) 6175 return NULL; 6176 6177 return lower->private; 6178 } 6179 EXPORT_SYMBOL(netdev_lower_dev_get_private); 6180 6181 6182 int dev_get_nest_level(struct net_device *dev) 6183 { 6184 struct net_device *lower = NULL; 6185 struct list_head *iter; 6186 int max_nest = -1; 6187 int nest; 6188 6189 ASSERT_RTNL(); 6190 6191 netdev_for_each_lower_dev(dev, lower, iter) { 6192 nest = dev_get_nest_level(lower); 6193 if (max_nest < nest) 6194 max_nest = nest; 6195 } 6196 6197 return max_nest + 1; 6198 } 6199 EXPORT_SYMBOL(dev_get_nest_level); 6200 6201 /** 6202 * netdev_lower_change - Dispatch event about lower device state change 6203 * @lower_dev: device 6204 * @lower_state_info: state to dispatch 6205 * 6206 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info. 6207 * The caller must hold the RTNL lock. 6208 */ 6209 void netdev_lower_state_changed(struct net_device *lower_dev, 6210 void *lower_state_info) 6211 { 6212 struct netdev_notifier_changelowerstate_info changelowerstate_info; 6213 6214 ASSERT_RTNL(); 6215 changelowerstate_info.lower_state_info = lower_state_info; 6216 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE, lower_dev, 6217 &changelowerstate_info.info); 6218 } 6219 EXPORT_SYMBOL(netdev_lower_state_changed); 6220 6221 static void dev_change_rx_flags(struct net_device *dev, int flags) 6222 { 6223 const struct net_device_ops *ops = dev->netdev_ops; 6224 6225 if (ops->ndo_change_rx_flags) 6226 ops->ndo_change_rx_flags(dev, flags); 6227 } 6228 6229 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify) 6230 { 6231 unsigned int old_flags = dev->flags; 6232 kuid_t uid; 6233 kgid_t gid; 6234 6235 ASSERT_RTNL(); 6236 6237 dev->flags |= IFF_PROMISC; 6238 dev->promiscuity += inc; 6239 if (dev->promiscuity == 0) { 6240 /* 6241 * Avoid overflow. 6242 * If inc causes overflow, untouch promisc and return error. 6243 */ 6244 if (inc < 0) 6245 dev->flags &= ~IFF_PROMISC; 6246 else { 6247 dev->promiscuity -= inc; 6248 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n", 6249 dev->name); 6250 return -EOVERFLOW; 6251 } 6252 } 6253 if (dev->flags != old_flags) { 6254 pr_info("device %s %s promiscuous mode\n", 6255 dev->name, 6256 dev->flags & IFF_PROMISC ? "entered" : "left"); 6257 if (audit_enabled) { 6258 current_uid_gid(&uid, &gid); 6259 audit_log(current->audit_context, GFP_ATOMIC, 6260 AUDIT_ANOM_PROMISCUOUS, 6261 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u", 6262 dev->name, (dev->flags & IFF_PROMISC), 6263 (old_flags & IFF_PROMISC), 6264 from_kuid(&init_user_ns, audit_get_loginuid(current)), 6265 from_kuid(&init_user_ns, uid), 6266 from_kgid(&init_user_ns, gid), 6267 audit_get_sessionid(current)); 6268 } 6269 6270 dev_change_rx_flags(dev, IFF_PROMISC); 6271 } 6272 if (notify) 6273 __dev_notify_flags(dev, old_flags, IFF_PROMISC); 6274 return 0; 6275 } 6276 6277 /** 6278 * dev_set_promiscuity - update promiscuity count on a device 6279 * @dev: device 6280 * @inc: modifier 6281 * 6282 * Add or remove promiscuity from a device. While the count in the device 6283 * remains above zero the interface remains promiscuous. Once it hits zero 6284 * the device reverts back to normal filtering operation. A negative inc 6285 * value is used to drop promiscuity on the device. 6286 * Return 0 if successful or a negative errno code on error. 6287 */ 6288 int dev_set_promiscuity(struct net_device *dev, int inc) 6289 { 6290 unsigned int old_flags = dev->flags; 6291 int err; 6292 6293 err = __dev_set_promiscuity(dev, inc, true); 6294 if (err < 0) 6295 return err; 6296 if (dev->flags != old_flags) 6297 dev_set_rx_mode(dev); 6298 return err; 6299 } 6300 EXPORT_SYMBOL(dev_set_promiscuity); 6301 6302 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify) 6303 { 6304 unsigned int old_flags = dev->flags, old_gflags = dev->gflags; 6305 6306 ASSERT_RTNL(); 6307 6308 dev->flags |= IFF_ALLMULTI; 6309 dev->allmulti += inc; 6310 if (dev->allmulti == 0) { 6311 /* 6312 * Avoid overflow. 6313 * If inc causes overflow, untouch allmulti and return error. 6314 */ 6315 if (inc < 0) 6316 dev->flags &= ~IFF_ALLMULTI; 6317 else { 6318 dev->allmulti -= inc; 6319 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n", 6320 dev->name); 6321 return -EOVERFLOW; 6322 } 6323 } 6324 if (dev->flags ^ old_flags) { 6325 dev_change_rx_flags(dev, IFF_ALLMULTI); 6326 dev_set_rx_mode(dev); 6327 if (notify) 6328 __dev_notify_flags(dev, old_flags, 6329 dev->gflags ^ old_gflags); 6330 } 6331 return 0; 6332 } 6333 6334 /** 6335 * dev_set_allmulti - update allmulti count on a device 6336 * @dev: device 6337 * @inc: modifier 6338 * 6339 * Add or remove reception of all multicast frames to a device. While the 6340 * count in the device remains above zero the interface remains listening 6341 * to all interfaces. Once it hits zero the device reverts back to normal 6342 * filtering operation. A negative @inc value is used to drop the counter 6343 * when releasing a resource needing all multicasts. 6344 * Return 0 if successful or a negative errno code on error. 6345 */ 6346 6347 int dev_set_allmulti(struct net_device *dev, int inc) 6348 { 6349 return __dev_set_allmulti(dev, inc, true); 6350 } 6351 EXPORT_SYMBOL(dev_set_allmulti); 6352 6353 /* 6354 * Upload unicast and multicast address lists to device and 6355 * configure RX filtering. When the device doesn't support unicast 6356 * filtering it is put in promiscuous mode while unicast addresses 6357 * are present. 6358 */ 6359 void __dev_set_rx_mode(struct net_device *dev) 6360 { 6361 const struct net_device_ops *ops = dev->netdev_ops; 6362 6363 /* dev_open will call this function so the list will stay sane. */ 6364 if (!(dev->flags&IFF_UP)) 6365 return; 6366 6367 if (!netif_device_present(dev)) 6368 return; 6369 6370 if (!(dev->priv_flags & IFF_UNICAST_FLT)) { 6371 /* Unicast addresses changes may only happen under the rtnl, 6372 * therefore calling __dev_set_promiscuity here is safe. 6373 */ 6374 if (!netdev_uc_empty(dev) && !dev->uc_promisc) { 6375 __dev_set_promiscuity(dev, 1, false); 6376 dev->uc_promisc = true; 6377 } else if (netdev_uc_empty(dev) && dev->uc_promisc) { 6378 __dev_set_promiscuity(dev, -1, false); 6379 dev->uc_promisc = false; 6380 } 6381 } 6382 6383 if (ops->ndo_set_rx_mode) 6384 ops->ndo_set_rx_mode(dev); 6385 } 6386 6387 void dev_set_rx_mode(struct net_device *dev) 6388 { 6389 netif_addr_lock_bh(dev); 6390 __dev_set_rx_mode(dev); 6391 netif_addr_unlock_bh(dev); 6392 } 6393 6394 /** 6395 * dev_get_flags - get flags reported to userspace 6396 * @dev: device 6397 * 6398 * Get the combination of flag bits exported through APIs to userspace. 6399 */ 6400 unsigned int dev_get_flags(const struct net_device *dev) 6401 { 6402 unsigned int flags; 6403 6404 flags = (dev->flags & ~(IFF_PROMISC | 6405 IFF_ALLMULTI | 6406 IFF_RUNNING | 6407 IFF_LOWER_UP | 6408 IFF_DORMANT)) | 6409 (dev->gflags & (IFF_PROMISC | 6410 IFF_ALLMULTI)); 6411 6412 if (netif_running(dev)) { 6413 if (netif_oper_up(dev)) 6414 flags |= IFF_RUNNING; 6415 if (netif_carrier_ok(dev)) 6416 flags |= IFF_LOWER_UP; 6417 if (netif_dormant(dev)) 6418 flags |= IFF_DORMANT; 6419 } 6420 6421 return flags; 6422 } 6423 EXPORT_SYMBOL(dev_get_flags); 6424 6425 int __dev_change_flags(struct net_device *dev, unsigned int flags) 6426 { 6427 unsigned int old_flags = dev->flags; 6428 int ret; 6429 6430 ASSERT_RTNL(); 6431 6432 /* 6433 * Set the flags on our device. 6434 */ 6435 6436 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP | 6437 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL | 6438 IFF_AUTOMEDIA)) | 6439 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC | 6440 IFF_ALLMULTI)); 6441 6442 /* 6443 * Load in the correct multicast list now the flags have changed. 6444 */ 6445 6446 if ((old_flags ^ flags) & IFF_MULTICAST) 6447 dev_change_rx_flags(dev, IFF_MULTICAST); 6448 6449 dev_set_rx_mode(dev); 6450 6451 /* 6452 * Have we downed the interface. We handle IFF_UP ourselves 6453 * according to user attempts to set it, rather than blindly 6454 * setting it. 6455 */ 6456 6457 ret = 0; 6458 if ((old_flags ^ flags) & IFF_UP) 6459 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev); 6460 6461 if ((flags ^ dev->gflags) & IFF_PROMISC) { 6462 int inc = (flags & IFF_PROMISC) ? 1 : -1; 6463 unsigned int old_flags = dev->flags; 6464 6465 dev->gflags ^= IFF_PROMISC; 6466 6467 if (__dev_set_promiscuity(dev, inc, false) >= 0) 6468 if (dev->flags != old_flags) 6469 dev_set_rx_mode(dev); 6470 } 6471 6472 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI 6473 * is important. Some (broken) drivers set IFF_PROMISC, when 6474 * IFF_ALLMULTI is requested not asking us and not reporting. 6475 */ 6476 if ((flags ^ dev->gflags) & IFF_ALLMULTI) { 6477 int inc = (flags & IFF_ALLMULTI) ? 1 : -1; 6478 6479 dev->gflags ^= IFF_ALLMULTI; 6480 __dev_set_allmulti(dev, inc, false); 6481 } 6482 6483 return ret; 6484 } 6485 6486 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags, 6487 unsigned int gchanges) 6488 { 6489 unsigned int changes = dev->flags ^ old_flags; 6490 6491 if (gchanges) 6492 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC); 6493 6494 if (changes & IFF_UP) { 6495 if (dev->flags & IFF_UP) 6496 call_netdevice_notifiers(NETDEV_UP, dev); 6497 else 6498 call_netdevice_notifiers(NETDEV_DOWN, dev); 6499 } 6500 6501 if (dev->flags & IFF_UP && 6502 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) { 6503 struct netdev_notifier_change_info change_info; 6504 6505 change_info.flags_changed = changes; 6506 call_netdevice_notifiers_info(NETDEV_CHANGE, dev, 6507 &change_info.info); 6508 } 6509 } 6510 6511 /** 6512 * dev_change_flags - change device settings 6513 * @dev: device 6514 * @flags: device state flags 6515 * 6516 * Change settings on device based state flags. The flags are 6517 * in the userspace exported format. 6518 */ 6519 int dev_change_flags(struct net_device *dev, unsigned int flags) 6520 { 6521 int ret; 6522 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags; 6523 6524 ret = __dev_change_flags(dev, flags); 6525 if (ret < 0) 6526 return ret; 6527 6528 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags); 6529 __dev_notify_flags(dev, old_flags, changes); 6530 return ret; 6531 } 6532 EXPORT_SYMBOL(dev_change_flags); 6533 6534 static int __dev_set_mtu(struct net_device *dev, int new_mtu) 6535 { 6536 const struct net_device_ops *ops = dev->netdev_ops; 6537 6538 if (ops->ndo_change_mtu) 6539 return ops->ndo_change_mtu(dev, new_mtu); 6540 6541 dev->mtu = new_mtu; 6542 return 0; 6543 } 6544 6545 /** 6546 * dev_set_mtu - Change maximum transfer unit 6547 * @dev: device 6548 * @new_mtu: new transfer unit 6549 * 6550 * Change the maximum transfer size of the network device. 6551 */ 6552 int dev_set_mtu(struct net_device *dev, int new_mtu) 6553 { 6554 int err, orig_mtu; 6555 6556 if (new_mtu == dev->mtu) 6557 return 0; 6558 6559 /* MTU must be positive, and in range */ 6560 if (new_mtu < 0 || new_mtu < dev->min_mtu) { 6561 net_err_ratelimited("%s: Invalid MTU %d requested, hw min %d\n", 6562 dev->name, new_mtu, dev->min_mtu); 6563 return -EINVAL; 6564 } 6565 6566 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) { 6567 net_err_ratelimited("%s: Invalid MTU %d requested, hw max %d\n", 6568 dev->name, new_mtu, dev->max_mtu); 6569 return -EINVAL; 6570 } 6571 6572 if (!netif_device_present(dev)) 6573 return -ENODEV; 6574 6575 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev); 6576 err = notifier_to_errno(err); 6577 if (err) 6578 return err; 6579 6580 orig_mtu = dev->mtu; 6581 err = __dev_set_mtu(dev, new_mtu); 6582 6583 if (!err) { 6584 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev); 6585 err = notifier_to_errno(err); 6586 if (err) { 6587 /* setting mtu back and notifying everyone again, 6588 * so that they have a chance to revert changes. 6589 */ 6590 __dev_set_mtu(dev, orig_mtu); 6591 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev); 6592 } 6593 } 6594 return err; 6595 } 6596 EXPORT_SYMBOL(dev_set_mtu); 6597 6598 /** 6599 * dev_set_group - Change group this device belongs to 6600 * @dev: device 6601 * @new_group: group this device should belong to 6602 */ 6603 void dev_set_group(struct net_device *dev, int new_group) 6604 { 6605 dev->group = new_group; 6606 } 6607 EXPORT_SYMBOL(dev_set_group); 6608 6609 /** 6610 * dev_set_mac_address - Change Media Access Control Address 6611 * @dev: device 6612 * @sa: new address 6613 * 6614 * Change the hardware (MAC) address of the device 6615 */ 6616 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa) 6617 { 6618 const struct net_device_ops *ops = dev->netdev_ops; 6619 int err; 6620 6621 if (!ops->ndo_set_mac_address) 6622 return -EOPNOTSUPP; 6623 if (sa->sa_family != dev->type) 6624 return -EINVAL; 6625 if (!netif_device_present(dev)) 6626 return -ENODEV; 6627 err = ops->ndo_set_mac_address(dev, sa); 6628 if (err) 6629 return err; 6630 dev->addr_assign_type = NET_ADDR_SET; 6631 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 6632 add_device_randomness(dev->dev_addr, dev->addr_len); 6633 return 0; 6634 } 6635 EXPORT_SYMBOL(dev_set_mac_address); 6636 6637 /** 6638 * dev_change_carrier - Change device carrier 6639 * @dev: device 6640 * @new_carrier: new value 6641 * 6642 * Change device carrier 6643 */ 6644 int dev_change_carrier(struct net_device *dev, bool new_carrier) 6645 { 6646 const struct net_device_ops *ops = dev->netdev_ops; 6647 6648 if (!ops->ndo_change_carrier) 6649 return -EOPNOTSUPP; 6650 if (!netif_device_present(dev)) 6651 return -ENODEV; 6652 return ops->ndo_change_carrier(dev, new_carrier); 6653 } 6654 EXPORT_SYMBOL(dev_change_carrier); 6655 6656 /** 6657 * dev_get_phys_port_id - Get device physical port ID 6658 * @dev: device 6659 * @ppid: port ID 6660 * 6661 * Get device physical port ID 6662 */ 6663 int dev_get_phys_port_id(struct net_device *dev, 6664 struct netdev_phys_item_id *ppid) 6665 { 6666 const struct net_device_ops *ops = dev->netdev_ops; 6667 6668 if (!ops->ndo_get_phys_port_id) 6669 return -EOPNOTSUPP; 6670 return ops->ndo_get_phys_port_id(dev, ppid); 6671 } 6672 EXPORT_SYMBOL(dev_get_phys_port_id); 6673 6674 /** 6675 * dev_get_phys_port_name - Get device physical port name 6676 * @dev: device 6677 * @name: port name 6678 * @len: limit of bytes to copy to name 6679 * 6680 * Get device physical port name 6681 */ 6682 int dev_get_phys_port_name(struct net_device *dev, 6683 char *name, size_t len) 6684 { 6685 const struct net_device_ops *ops = dev->netdev_ops; 6686 6687 if (!ops->ndo_get_phys_port_name) 6688 return -EOPNOTSUPP; 6689 return ops->ndo_get_phys_port_name(dev, name, len); 6690 } 6691 EXPORT_SYMBOL(dev_get_phys_port_name); 6692 6693 /** 6694 * dev_change_proto_down - update protocol port state information 6695 * @dev: device 6696 * @proto_down: new value 6697 * 6698 * This info can be used by switch drivers to set the phys state of the 6699 * port. 6700 */ 6701 int dev_change_proto_down(struct net_device *dev, bool proto_down) 6702 { 6703 const struct net_device_ops *ops = dev->netdev_ops; 6704 6705 if (!ops->ndo_change_proto_down) 6706 return -EOPNOTSUPP; 6707 if (!netif_device_present(dev)) 6708 return -ENODEV; 6709 return ops->ndo_change_proto_down(dev, proto_down); 6710 } 6711 EXPORT_SYMBOL(dev_change_proto_down); 6712 6713 /** 6714 * dev_change_xdp_fd - set or clear a bpf program for a device rx path 6715 * @dev: device 6716 * @fd: new program fd or negative value to clear 6717 * @flags: xdp-related flags 6718 * 6719 * Set or clear a bpf program for a device 6720 */ 6721 int dev_change_xdp_fd(struct net_device *dev, int fd, u32 flags) 6722 { 6723 const struct net_device_ops *ops = dev->netdev_ops; 6724 struct bpf_prog *prog = NULL; 6725 struct netdev_xdp xdp; 6726 int err; 6727 6728 ASSERT_RTNL(); 6729 6730 if (!ops->ndo_xdp) 6731 return -EOPNOTSUPP; 6732 if (fd >= 0) { 6733 if (flags & XDP_FLAGS_UPDATE_IF_NOEXIST) { 6734 memset(&xdp, 0, sizeof(xdp)); 6735 xdp.command = XDP_QUERY_PROG; 6736 6737 err = ops->ndo_xdp(dev, &xdp); 6738 if (err < 0) 6739 return err; 6740 if (xdp.prog_attached) 6741 return -EBUSY; 6742 } 6743 6744 prog = bpf_prog_get_type(fd, BPF_PROG_TYPE_XDP); 6745 if (IS_ERR(prog)) 6746 return PTR_ERR(prog); 6747 } 6748 6749 memset(&xdp, 0, sizeof(xdp)); 6750 xdp.command = XDP_SETUP_PROG; 6751 xdp.prog = prog; 6752 6753 err = ops->ndo_xdp(dev, &xdp); 6754 if (err < 0 && prog) 6755 bpf_prog_put(prog); 6756 6757 return err; 6758 } 6759 EXPORT_SYMBOL(dev_change_xdp_fd); 6760 6761 /** 6762 * dev_new_index - allocate an ifindex 6763 * @net: the applicable net namespace 6764 * 6765 * Returns a suitable unique value for a new device interface 6766 * number. The caller must hold the rtnl semaphore or the 6767 * dev_base_lock to be sure it remains unique. 6768 */ 6769 static int dev_new_index(struct net *net) 6770 { 6771 int ifindex = net->ifindex; 6772 6773 for (;;) { 6774 if (++ifindex <= 0) 6775 ifindex = 1; 6776 if (!__dev_get_by_index(net, ifindex)) 6777 return net->ifindex = ifindex; 6778 } 6779 } 6780 6781 /* Delayed registration/unregisteration */ 6782 static LIST_HEAD(net_todo_list); 6783 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq); 6784 6785 static void net_set_todo(struct net_device *dev) 6786 { 6787 list_add_tail(&dev->todo_list, &net_todo_list); 6788 dev_net(dev)->dev_unreg_count++; 6789 } 6790 6791 static void rollback_registered_many(struct list_head *head) 6792 { 6793 struct net_device *dev, *tmp; 6794 LIST_HEAD(close_head); 6795 6796 BUG_ON(dev_boot_phase); 6797 ASSERT_RTNL(); 6798 6799 list_for_each_entry_safe(dev, tmp, head, unreg_list) { 6800 /* Some devices call without registering 6801 * for initialization unwind. Remove those 6802 * devices and proceed with the remaining. 6803 */ 6804 if (dev->reg_state == NETREG_UNINITIALIZED) { 6805 pr_debug("unregister_netdevice: device %s/%p never was registered\n", 6806 dev->name, dev); 6807 6808 WARN_ON(1); 6809 list_del(&dev->unreg_list); 6810 continue; 6811 } 6812 dev->dismantle = true; 6813 BUG_ON(dev->reg_state != NETREG_REGISTERED); 6814 } 6815 6816 /* If device is running, close it first. */ 6817 list_for_each_entry(dev, head, unreg_list) 6818 list_add_tail(&dev->close_list, &close_head); 6819 dev_close_many(&close_head, true); 6820 6821 list_for_each_entry(dev, head, unreg_list) { 6822 /* And unlink it from device chain. */ 6823 unlist_netdevice(dev); 6824 6825 dev->reg_state = NETREG_UNREGISTERING; 6826 } 6827 flush_all_backlogs(); 6828 6829 synchronize_net(); 6830 6831 list_for_each_entry(dev, head, unreg_list) { 6832 struct sk_buff *skb = NULL; 6833 6834 /* Shutdown queueing discipline. */ 6835 dev_shutdown(dev); 6836 6837 6838 /* Notify protocols, that we are about to destroy 6839 * this device. They should clean all the things. 6840 */ 6841 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 6842 6843 if (!dev->rtnl_link_ops || 6844 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 6845 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 6846 GFP_KERNEL); 6847 6848 /* 6849 * Flush the unicast and multicast chains 6850 */ 6851 dev_uc_flush(dev); 6852 dev_mc_flush(dev); 6853 6854 if (dev->netdev_ops->ndo_uninit) 6855 dev->netdev_ops->ndo_uninit(dev); 6856 6857 if (skb) 6858 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL); 6859 6860 /* Notifier chain MUST detach us all upper devices. */ 6861 WARN_ON(netdev_has_any_upper_dev(dev)); 6862 WARN_ON(netdev_has_any_lower_dev(dev)); 6863 6864 /* Remove entries from kobject tree */ 6865 netdev_unregister_kobject(dev); 6866 #ifdef CONFIG_XPS 6867 /* Remove XPS queueing entries */ 6868 netif_reset_xps_queues_gt(dev, 0); 6869 #endif 6870 } 6871 6872 synchronize_net(); 6873 6874 list_for_each_entry(dev, head, unreg_list) 6875 dev_put(dev); 6876 } 6877 6878 static void rollback_registered(struct net_device *dev) 6879 { 6880 LIST_HEAD(single); 6881 6882 list_add(&dev->unreg_list, &single); 6883 rollback_registered_many(&single); 6884 list_del(&single); 6885 } 6886 6887 static netdev_features_t netdev_sync_upper_features(struct net_device *lower, 6888 struct net_device *upper, netdev_features_t features) 6889 { 6890 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES; 6891 netdev_features_t feature; 6892 int feature_bit; 6893 6894 for_each_netdev_feature(&upper_disables, feature_bit) { 6895 feature = __NETIF_F_BIT(feature_bit); 6896 if (!(upper->wanted_features & feature) 6897 && (features & feature)) { 6898 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n", 6899 &feature, upper->name); 6900 features &= ~feature; 6901 } 6902 } 6903 6904 return features; 6905 } 6906 6907 static void netdev_sync_lower_features(struct net_device *upper, 6908 struct net_device *lower, netdev_features_t features) 6909 { 6910 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES; 6911 netdev_features_t feature; 6912 int feature_bit; 6913 6914 for_each_netdev_feature(&upper_disables, feature_bit) { 6915 feature = __NETIF_F_BIT(feature_bit); 6916 if (!(features & feature) && (lower->features & feature)) { 6917 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n", 6918 &feature, lower->name); 6919 lower->wanted_features &= ~feature; 6920 netdev_update_features(lower); 6921 6922 if (unlikely(lower->features & feature)) 6923 netdev_WARN(upper, "failed to disable %pNF on %s!\n", 6924 &feature, lower->name); 6925 } 6926 } 6927 } 6928 6929 static netdev_features_t netdev_fix_features(struct net_device *dev, 6930 netdev_features_t features) 6931 { 6932 /* Fix illegal checksum combinations */ 6933 if ((features & NETIF_F_HW_CSUM) && 6934 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 6935 netdev_warn(dev, "mixed HW and IP checksum settings.\n"); 6936 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 6937 } 6938 6939 /* TSO requires that SG is present as well. */ 6940 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) { 6941 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n"); 6942 features &= ~NETIF_F_ALL_TSO; 6943 } 6944 6945 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) && 6946 !(features & NETIF_F_IP_CSUM)) { 6947 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n"); 6948 features &= ~NETIF_F_TSO; 6949 features &= ~NETIF_F_TSO_ECN; 6950 } 6951 6952 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) && 6953 !(features & NETIF_F_IPV6_CSUM)) { 6954 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n"); 6955 features &= ~NETIF_F_TSO6; 6956 } 6957 6958 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */ 6959 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO)) 6960 features &= ~NETIF_F_TSO_MANGLEID; 6961 6962 /* TSO ECN requires that TSO is present as well. */ 6963 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN) 6964 features &= ~NETIF_F_TSO_ECN; 6965 6966 /* Software GSO depends on SG. */ 6967 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) { 6968 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n"); 6969 features &= ~NETIF_F_GSO; 6970 } 6971 6972 /* UFO needs SG and checksumming */ 6973 if (features & NETIF_F_UFO) { 6974 /* maybe split UFO into V4 and V6? */ 6975 if (!(features & NETIF_F_HW_CSUM) && 6976 ((features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) != 6977 (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM))) { 6978 netdev_dbg(dev, 6979 "Dropping NETIF_F_UFO since no checksum offload features.\n"); 6980 features &= ~NETIF_F_UFO; 6981 } 6982 6983 if (!(features & NETIF_F_SG)) { 6984 netdev_dbg(dev, 6985 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n"); 6986 features &= ~NETIF_F_UFO; 6987 } 6988 } 6989 6990 /* GSO partial features require GSO partial be set */ 6991 if ((features & dev->gso_partial_features) && 6992 !(features & NETIF_F_GSO_PARTIAL)) { 6993 netdev_dbg(dev, 6994 "Dropping partially supported GSO features since no GSO partial.\n"); 6995 features &= ~dev->gso_partial_features; 6996 } 6997 6998 return features; 6999 } 7000 7001 int __netdev_update_features(struct net_device *dev) 7002 { 7003 struct net_device *upper, *lower; 7004 netdev_features_t features; 7005 struct list_head *iter; 7006 int err = -1; 7007 7008 ASSERT_RTNL(); 7009 7010 features = netdev_get_wanted_features(dev); 7011 7012 if (dev->netdev_ops->ndo_fix_features) 7013 features = dev->netdev_ops->ndo_fix_features(dev, features); 7014 7015 /* driver might be less strict about feature dependencies */ 7016 features = netdev_fix_features(dev, features); 7017 7018 /* some features can't be enabled if they're off an an upper device */ 7019 netdev_for_each_upper_dev_rcu(dev, upper, iter) 7020 features = netdev_sync_upper_features(dev, upper, features); 7021 7022 if (dev->features == features) 7023 goto sync_lower; 7024 7025 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n", 7026 &dev->features, &features); 7027 7028 if (dev->netdev_ops->ndo_set_features) 7029 err = dev->netdev_ops->ndo_set_features(dev, features); 7030 else 7031 err = 0; 7032 7033 if (unlikely(err < 0)) { 7034 netdev_err(dev, 7035 "set_features() failed (%d); wanted %pNF, left %pNF\n", 7036 err, &features, &dev->features); 7037 /* return non-0 since some features might have changed and 7038 * it's better to fire a spurious notification than miss it 7039 */ 7040 return -1; 7041 } 7042 7043 sync_lower: 7044 /* some features must be disabled on lower devices when disabled 7045 * on an upper device (think: bonding master or bridge) 7046 */ 7047 netdev_for_each_lower_dev(dev, lower, iter) 7048 netdev_sync_lower_features(dev, lower, features); 7049 7050 if (!err) 7051 dev->features = features; 7052 7053 return err < 0 ? 0 : 1; 7054 } 7055 7056 /** 7057 * netdev_update_features - recalculate device features 7058 * @dev: the device to check 7059 * 7060 * Recalculate dev->features set and send notifications if it 7061 * has changed. Should be called after driver or hardware dependent 7062 * conditions might have changed that influence the features. 7063 */ 7064 void netdev_update_features(struct net_device *dev) 7065 { 7066 if (__netdev_update_features(dev)) 7067 netdev_features_change(dev); 7068 } 7069 EXPORT_SYMBOL(netdev_update_features); 7070 7071 /** 7072 * netdev_change_features - recalculate device features 7073 * @dev: the device to check 7074 * 7075 * Recalculate dev->features set and send notifications even 7076 * if they have not changed. Should be called instead of 7077 * netdev_update_features() if also dev->vlan_features might 7078 * have changed to allow the changes to be propagated to stacked 7079 * VLAN devices. 7080 */ 7081 void netdev_change_features(struct net_device *dev) 7082 { 7083 __netdev_update_features(dev); 7084 netdev_features_change(dev); 7085 } 7086 EXPORT_SYMBOL(netdev_change_features); 7087 7088 /** 7089 * netif_stacked_transfer_operstate - transfer operstate 7090 * @rootdev: the root or lower level device to transfer state from 7091 * @dev: the device to transfer operstate to 7092 * 7093 * Transfer operational state from root to device. This is normally 7094 * called when a stacking relationship exists between the root 7095 * device and the device(a leaf device). 7096 */ 7097 void netif_stacked_transfer_operstate(const struct net_device *rootdev, 7098 struct net_device *dev) 7099 { 7100 if (rootdev->operstate == IF_OPER_DORMANT) 7101 netif_dormant_on(dev); 7102 else 7103 netif_dormant_off(dev); 7104 7105 if (netif_carrier_ok(rootdev)) { 7106 if (!netif_carrier_ok(dev)) 7107 netif_carrier_on(dev); 7108 } else { 7109 if (netif_carrier_ok(dev)) 7110 netif_carrier_off(dev); 7111 } 7112 } 7113 EXPORT_SYMBOL(netif_stacked_transfer_operstate); 7114 7115 #ifdef CONFIG_SYSFS 7116 static int netif_alloc_rx_queues(struct net_device *dev) 7117 { 7118 unsigned int i, count = dev->num_rx_queues; 7119 struct netdev_rx_queue *rx; 7120 size_t sz = count * sizeof(*rx); 7121 7122 BUG_ON(count < 1); 7123 7124 rx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT); 7125 if (!rx) { 7126 rx = vzalloc(sz); 7127 if (!rx) 7128 return -ENOMEM; 7129 } 7130 dev->_rx = rx; 7131 7132 for (i = 0; i < count; i++) 7133 rx[i].dev = dev; 7134 return 0; 7135 } 7136 #endif 7137 7138 static void netdev_init_one_queue(struct net_device *dev, 7139 struct netdev_queue *queue, void *_unused) 7140 { 7141 /* Initialize queue lock */ 7142 spin_lock_init(&queue->_xmit_lock); 7143 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type); 7144 queue->xmit_lock_owner = -1; 7145 netdev_queue_numa_node_write(queue, NUMA_NO_NODE); 7146 queue->dev = dev; 7147 #ifdef CONFIG_BQL 7148 dql_init(&queue->dql, HZ); 7149 #endif 7150 } 7151 7152 static void netif_free_tx_queues(struct net_device *dev) 7153 { 7154 kvfree(dev->_tx); 7155 } 7156 7157 static int netif_alloc_netdev_queues(struct net_device *dev) 7158 { 7159 unsigned int count = dev->num_tx_queues; 7160 struct netdev_queue *tx; 7161 size_t sz = count * sizeof(*tx); 7162 7163 if (count < 1 || count > 0xffff) 7164 return -EINVAL; 7165 7166 tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT); 7167 if (!tx) { 7168 tx = vzalloc(sz); 7169 if (!tx) 7170 return -ENOMEM; 7171 } 7172 dev->_tx = tx; 7173 7174 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL); 7175 spin_lock_init(&dev->tx_global_lock); 7176 7177 return 0; 7178 } 7179 7180 void netif_tx_stop_all_queues(struct net_device *dev) 7181 { 7182 unsigned int i; 7183 7184 for (i = 0; i < dev->num_tx_queues; i++) { 7185 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 7186 7187 netif_tx_stop_queue(txq); 7188 } 7189 } 7190 EXPORT_SYMBOL(netif_tx_stop_all_queues); 7191 7192 /** 7193 * register_netdevice - register a network device 7194 * @dev: device to register 7195 * 7196 * Take a completed network device structure and add it to the kernel 7197 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 7198 * chain. 0 is returned on success. A negative errno code is returned 7199 * on a failure to set up the device, or if the name is a duplicate. 7200 * 7201 * Callers must hold the rtnl semaphore. You may want 7202 * register_netdev() instead of this. 7203 * 7204 * BUGS: 7205 * The locking appears insufficient to guarantee two parallel registers 7206 * will not get the same name. 7207 */ 7208 7209 int register_netdevice(struct net_device *dev) 7210 { 7211 int ret; 7212 struct net *net = dev_net(dev); 7213 7214 BUG_ON(dev_boot_phase); 7215 ASSERT_RTNL(); 7216 7217 might_sleep(); 7218 7219 /* When net_device's are persistent, this will be fatal. */ 7220 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED); 7221 BUG_ON(!net); 7222 7223 spin_lock_init(&dev->addr_list_lock); 7224 netdev_set_addr_lockdep_class(dev); 7225 7226 ret = dev_get_valid_name(net, dev, dev->name); 7227 if (ret < 0) 7228 goto out; 7229 7230 /* Init, if this function is available */ 7231 if (dev->netdev_ops->ndo_init) { 7232 ret = dev->netdev_ops->ndo_init(dev); 7233 if (ret) { 7234 if (ret > 0) 7235 ret = -EIO; 7236 goto out; 7237 } 7238 } 7239 7240 if (((dev->hw_features | dev->features) & 7241 NETIF_F_HW_VLAN_CTAG_FILTER) && 7242 (!dev->netdev_ops->ndo_vlan_rx_add_vid || 7243 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) { 7244 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n"); 7245 ret = -EINVAL; 7246 goto err_uninit; 7247 } 7248 7249 ret = -EBUSY; 7250 if (!dev->ifindex) 7251 dev->ifindex = dev_new_index(net); 7252 else if (__dev_get_by_index(net, dev->ifindex)) 7253 goto err_uninit; 7254 7255 /* Transfer changeable features to wanted_features and enable 7256 * software offloads (GSO and GRO). 7257 */ 7258 dev->hw_features |= NETIF_F_SOFT_FEATURES; 7259 dev->features |= NETIF_F_SOFT_FEATURES; 7260 dev->wanted_features = dev->features & dev->hw_features; 7261 7262 if (!(dev->flags & IFF_LOOPBACK)) 7263 dev->hw_features |= NETIF_F_NOCACHE_COPY; 7264 7265 /* If IPv4 TCP segmentation offload is supported we should also 7266 * allow the device to enable segmenting the frame with the option 7267 * of ignoring a static IP ID value. This doesn't enable the 7268 * feature itself but allows the user to enable it later. 7269 */ 7270 if (dev->hw_features & NETIF_F_TSO) 7271 dev->hw_features |= NETIF_F_TSO_MANGLEID; 7272 if (dev->vlan_features & NETIF_F_TSO) 7273 dev->vlan_features |= NETIF_F_TSO_MANGLEID; 7274 if (dev->mpls_features & NETIF_F_TSO) 7275 dev->mpls_features |= NETIF_F_TSO_MANGLEID; 7276 if (dev->hw_enc_features & NETIF_F_TSO) 7277 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID; 7278 7279 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices. 7280 */ 7281 dev->vlan_features |= NETIF_F_HIGHDMA; 7282 7283 /* Make NETIF_F_SG inheritable to tunnel devices. 7284 */ 7285 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL; 7286 7287 /* Make NETIF_F_SG inheritable to MPLS. 7288 */ 7289 dev->mpls_features |= NETIF_F_SG; 7290 7291 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev); 7292 ret = notifier_to_errno(ret); 7293 if (ret) 7294 goto err_uninit; 7295 7296 ret = netdev_register_kobject(dev); 7297 if (ret) 7298 goto err_uninit; 7299 dev->reg_state = NETREG_REGISTERED; 7300 7301 __netdev_update_features(dev); 7302 7303 /* 7304 * Default initial state at registry is that the 7305 * device is present. 7306 */ 7307 7308 set_bit(__LINK_STATE_PRESENT, &dev->state); 7309 7310 linkwatch_init_dev(dev); 7311 7312 dev_init_scheduler(dev); 7313 dev_hold(dev); 7314 list_netdevice(dev); 7315 add_device_randomness(dev->dev_addr, dev->addr_len); 7316 7317 /* If the device has permanent device address, driver should 7318 * set dev_addr and also addr_assign_type should be set to 7319 * NET_ADDR_PERM (default value). 7320 */ 7321 if (dev->addr_assign_type == NET_ADDR_PERM) 7322 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len); 7323 7324 /* Notify protocols, that a new device appeared. */ 7325 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev); 7326 ret = notifier_to_errno(ret); 7327 if (ret) { 7328 rollback_registered(dev); 7329 dev->reg_state = NETREG_UNREGISTERED; 7330 } 7331 /* 7332 * Prevent userspace races by waiting until the network 7333 * device is fully setup before sending notifications. 7334 */ 7335 if (!dev->rtnl_link_ops || 7336 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 7337 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL); 7338 7339 out: 7340 return ret; 7341 7342 err_uninit: 7343 if (dev->netdev_ops->ndo_uninit) 7344 dev->netdev_ops->ndo_uninit(dev); 7345 goto out; 7346 } 7347 EXPORT_SYMBOL(register_netdevice); 7348 7349 /** 7350 * init_dummy_netdev - init a dummy network device for NAPI 7351 * @dev: device to init 7352 * 7353 * This takes a network device structure and initialize the minimum 7354 * amount of fields so it can be used to schedule NAPI polls without 7355 * registering a full blown interface. This is to be used by drivers 7356 * that need to tie several hardware interfaces to a single NAPI 7357 * poll scheduler due to HW limitations. 7358 */ 7359 int init_dummy_netdev(struct net_device *dev) 7360 { 7361 /* Clear everything. Note we don't initialize spinlocks 7362 * are they aren't supposed to be taken by any of the 7363 * NAPI code and this dummy netdev is supposed to be 7364 * only ever used for NAPI polls 7365 */ 7366 memset(dev, 0, sizeof(struct net_device)); 7367 7368 /* make sure we BUG if trying to hit standard 7369 * register/unregister code path 7370 */ 7371 dev->reg_state = NETREG_DUMMY; 7372 7373 /* NAPI wants this */ 7374 INIT_LIST_HEAD(&dev->napi_list); 7375 7376 /* a dummy interface is started by default */ 7377 set_bit(__LINK_STATE_PRESENT, &dev->state); 7378 set_bit(__LINK_STATE_START, &dev->state); 7379 7380 /* Note : We dont allocate pcpu_refcnt for dummy devices, 7381 * because users of this 'device' dont need to change 7382 * its refcount. 7383 */ 7384 7385 return 0; 7386 } 7387 EXPORT_SYMBOL_GPL(init_dummy_netdev); 7388 7389 7390 /** 7391 * register_netdev - register a network device 7392 * @dev: device to register 7393 * 7394 * Take a completed network device structure and add it to the kernel 7395 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 7396 * chain. 0 is returned on success. A negative errno code is returned 7397 * on a failure to set up the device, or if the name is a duplicate. 7398 * 7399 * This is a wrapper around register_netdevice that takes the rtnl semaphore 7400 * and expands the device name if you passed a format string to 7401 * alloc_netdev. 7402 */ 7403 int register_netdev(struct net_device *dev) 7404 { 7405 int err; 7406 7407 rtnl_lock(); 7408 err = register_netdevice(dev); 7409 rtnl_unlock(); 7410 return err; 7411 } 7412 EXPORT_SYMBOL(register_netdev); 7413 7414 int netdev_refcnt_read(const struct net_device *dev) 7415 { 7416 int i, refcnt = 0; 7417 7418 for_each_possible_cpu(i) 7419 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i); 7420 return refcnt; 7421 } 7422 EXPORT_SYMBOL(netdev_refcnt_read); 7423 7424 /** 7425 * netdev_wait_allrefs - wait until all references are gone. 7426 * @dev: target net_device 7427 * 7428 * This is called when unregistering network devices. 7429 * 7430 * Any protocol or device that holds a reference should register 7431 * for netdevice notification, and cleanup and put back the 7432 * reference if they receive an UNREGISTER event. 7433 * We can get stuck here if buggy protocols don't correctly 7434 * call dev_put. 7435 */ 7436 static void netdev_wait_allrefs(struct net_device *dev) 7437 { 7438 unsigned long rebroadcast_time, warning_time; 7439 int refcnt; 7440 7441 linkwatch_forget_dev(dev); 7442 7443 rebroadcast_time = warning_time = jiffies; 7444 refcnt = netdev_refcnt_read(dev); 7445 7446 while (refcnt != 0) { 7447 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) { 7448 rtnl_lock(); 7449 7450 /* Rebroadcast unregister notification */ 7451 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 7452 7453 __rtnl_unlock(); 7454 rcu_barrier(); 7455 rtnl_lock(); 7456 7457 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev); 7458 if (test_bit(__LINK_STATE_LINKWATCH_PENDING, 7459 &dev->state)) { 7460 /* We must not have linkwatch events 7461 * pending on unregister. If this 7462 * happens, we simply run the queue 7463 * unscheduled, resulting in a noop 7464 * for this device. 7465 */ 7466 linkwatch_run_queue(); 7467 } 7468 7469 __rtnl_unlock(); 7470 7471 rebroadcast_time = jiffies; 7472 } 7473 7474 msleep(250); 7475 7476 refcnt = netdev_refcnt_read(dev); 7477 7478 if (time_after(jiffies, warning_time + 10 * HZ)) { 7479 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n", 7480 dev->name, refcnt); 7481 warning_time = jiffies; 7482 } 7483 } 7484 } 7485 7486 /* The sequence is: 7487 * 7488 * rtnl_lock(); 7489 * ... 7490 * register_netdevice(x1); 7491 * register_netdevice(x2); 7492 * ... 7493 * unregister_netdevice(y1); 7494 * unregister_netdevice(y2); 7495 * ... 7496 * rtnl_unlock(); 7497 * free_netdev(y1); 7498 * free_netdev(y2); 7499 * 7500 * We are invoked by rtnl_unlock(). 7501 * This allows us to deal with problems: 7502 * 1) We can delete sysfs objects which invoke hotplug 7503 * without deadlocking with linkwatch via keventd. 7504 * 2) Since we run with the RTNL semaphore not held, we can sleep 7505 * safely in order to wait for the netdev refcnt to drop to zero. 7506 * 7507 * We must not return until all unregister events added during 7508 * the interval the lock was held have been completed. 7509 */ 7510 void netdev_run_todo(void) 7511 { 7512 struct list_head list; 7513 7514 /* Snapshot list, allow later requests */ 7515 list_replace_init(&net_todo_list, &list); 7516 7517 __rtnl_unlock(); 7518 7519 7520 /* Wait for rcu callbacks to finish before next phase */ 7521 if (!list_empty(&list)) 7522 rcu_barrier(); 7523 7524 while (!list_empty(&list)) { 7525 struct net_device *dev 7526 = list_first_entry(&list, struct net_device, todo_list); 7527 list_del(&dev->todo_list); 7528 7529 rtnl_lock(); 7530 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev); 7531 __rtnl_unlock(); 7532 7533 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) { 7534 pr_err("network todo '%s' but state %d\n", 7535 dev->name, dev->reg_state); 7536 dump_stack(); 7537 continue; 7538 } 7539 7540 dev->reg_state = NETREG_UNREGISTERED; 7541 7542 netdev_wait_allrefs(dev); 7543 7544 /* paranoia */ 7545 BUG_ON(netdev_refcnt_read(dev)); 7546 BUG_ON(!list_empty(&dev->ptype_all)); 7547 BUG_ON(!list_empty(&dev->ptype_specific)); 7548 WARN_ON(rcu_access_pointer(dev->ip_ptr)); 7549 WARN_ON(rcu_access_pointer(dev->ip6_ptr)); 7550 WARN_ON(dev->dn_ptr); 7551 7552 if (dev->destructor) 7553 dev->destructor(dev); 7554 7555 /* Report a network device has been unregistered */ 7556 rtnl_lock(); 7557 dev_net(dev)->dev_unreg_count--; 7558 __rtnl_unlock(); 7559 wake_up(&netdev_unregistering_wq); 7560 7561 /* Free network device */ 7562 kobject_put(&dev->dev.kobj); 7563 } 7564 } 7565 7566 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has 7567 * all the same fields in the same order as net_device_stats, with only 7568 * the type differing, but rtnl_link_stats64 may have additional fields 7569 * at the end for newer counters. 7570 */ 7571 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 7572 const struct net_device_stats *netdev_stats) 7573 { 7574 #if BITS_PER_LONG == 64 7575 BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats)); 7576 memcpy(stats64, netdev_stats, sizeof(*stats64)); 7577 /* zero out counters that only exist in rtnl_link_stats64 */ 7578 memset((char *)stats64 + sizeof(*netdev_stats), 0, 7579 sizeof(*stats64) - sizeof(*netdev_stats)); 7580 #else 7581 size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long); 7582 const unsigned long *src = (const unsigned long *)netdev_stats; 7583 u64 *dst = (u64 *)stats64; 7584 7585 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64)); 7586 for (i = 0; i < n; i++) 7587 dst[i] = src[i]; 7588 /* zero out counters that only exist in rtnl_link_stats64 */ 7589 memset((char *)stats64 + n * sizeof(u64), 0, 7590 sizeof(*stats64) - n * sizeof(u64)); 7591 #endif 7592 } 7593 EXPORT_SYMBOL(netdev_stats_to_stats64); 7594 7595 /** 7596 * dev_get_stats - get network device statistics 7597 * @dev: device to get statistics from 7598 * @storage: place to store stats 7599 * 7600 * Get network statistics from device. Return @storage. 7601 * The device driver may provide its own method by setting 7602 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats; 7603 * otherwise the internal statistics structure is used. 7604 */ 7605 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 7606 struct rtnl_link_stats64 *storage) 7607 { 7608 const struct net_device_ops *ops = dev->netdev_ops; 7609 7610 if (ops->ndo_get_stats64) { 7611 memset(storage, 0, sizeof(*storage)); 7612 ops->ndo_get_stats64(dev, storage); 7613 } else if (ops->ndo_get_stats) { 7614 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev)); 7615 } else { 7616 netdev_stats_to_stats64(storage, &dev->stats); 7617 } 7618 storage->rx_dropped += atomic_long_read(&dev->rx_dropped); 7619 storage->tx_dropped += atomic_long_read(&dev->tx_dropped); 7620 storage->rx_nohandler += atomic_long_read(&dev->rx_nohandler); 7621 return storage; 7622 } 7623 EXPORT_SYMBOL(dev_get_stats); 7624 7625 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev) 7626 { 7627 struct netdev_queue *queue = dev_ingress_queue(dev); 7628 7629 #ifdef CONFIG_NET_CLS_ACT 7630 if (queue) 7631 return queue; 7632 queue = kzalloc(sizeof(*queue), GFP_KERNEL); 7633 if (!queue) 7634 return NULL; 7635 netdev_init_one_queue(dev, queue, NULL); 7636 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc); 7637 queue->qdisc_sleeping = &noop_qdisc; 7638 rcu_assign_pointer(dev->ingress_queue, queue); 7639 #endif 7640 return queue; 7641 } 7642 7643 static const struct ethtool_ops default_ethtool_ops; 7644 7645 void netdev_set_default_ethtool_ops(struct net_device *dev, 7646 const struct ethtool_ops *ops) 7647 { 7648 if (dev->ethtool_ops == &default_ethtool_ops) 7649 dev->ethtool_ops = ops; 7650 } 7651 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops); 7652 7653 void netdev_freemem(struct net_device *dev) 7654 { 7655 char *addr = (char *)dev - dev->padded; 7656 7657 kvfree(addr); 7658 } 7659 7660 /** 7661 * alloc_netdev_mqs - allocate network device 7662 * @sizeof_priv: size of private data to allocate space for 7663 * @name: device name format string 7664 * @name_assign_type: origin of device name 7665 * @setup: callback to initialize device 7666 * @txqs: the number of TX subqueues to allocate 7667 * @rxqs: the number of RX subqueues to allocate 7668 * 7669 * Allocates a struct net_device with private data area for driver use 7670 * and performs basic initialization. Also allocates subqueue structs 7671 * for each queue on the device. 7672 */ 7673 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 7674 unsigned char name_assign_type, 7675 void (*setup)(struct net_device *), 7676 unsigned int txqs, unsigned int rxqs) 7677 { 7678 struct net_device *dev; 7679 size_t alloc_size; 7680 struct net_device *p; 7681 7682 BUG_ON(strlen(name) >= sizeof(dev->name)); 7683 7684 if (txqs < 1) { 7685 pr_err("alloc_netdev: Unable to allocate device with zero queues\n"); 7686 return NULL; 7687 } 7688 7689 #ifdef CONFIG_SYSFS 7690 if (rxqs < 1) { 7691 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n"); 7692 return NULL; 7693 } 7694 #endif 7695 7696 alloc_size = sizeof(struct net_device); 7697 if (sizeof_priv) { 7698 /* ensure 32-byte alignment of private area */ 7699 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN); 7700 alloc_size += sizeof_priv; 7701 } 7702 /* ensure 32-byte alignment of whole construct */ 7703 alloc_size += NETDEV_ALIGN - 1; 7704 7705 p = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT); 7706 if (!p) 7707 p = vzalloc(alloc_size); 7708 if (!p) 7709 return NULL; 7710 7711 dev = PTR_ALIGN(p, NETDEV_ALIGN); 7712 dev->padded = (char *)dev - (char *)p; 7713 7714 dev->pcpu_refcnt = alloc_percpu(int); 7715 if (!dev->pcpu_refcnt) 7716 goto free_dev; 7717 7718 if (dev_addr_init(dev)) 7719 goto free_pcpu; 7720 7721 dev_mc_init(dev); 7722 dev_uc_init(dev); 7723 7724 dev_net_set(dev, &init_net); 7725 7726 dev->gso_max_size = GSO_MAX_SIZE; 7727 dev->gso_max_segs = GSO_MAX_SEGS; 7728 7729 INIT_LIST_HEAD(&dev->napi_list); 7730 INIT_LIST_HEAD(&dev->unreg_list); 7731 INIT_LIST_HEAD(&dev->close_list); 7732 INIT_LIST_HEAD(&dev->link_watch_list); 7733 INIT_LIST_HEAD(&dev->adj_list.upper); 7734 INIT_LIST_HEAD(&dev->adj_list.lower); 7735 INIT_LIST_HEAD(&dev->ptype_all); 7736 INIT_LIST_HEAD(&dev->ptype_specific); 7737 #ifdef CONFIG_NET_SCHED 7738 hash_init(dev->qdisc_hash); 7739 #endif 7740 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM; 7741 setup(dev); 7742 7743 if (!dev->tx_queue_len) { 7744 dev->priv_flags |= IFF_NO_QUEUE; 7745 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN; 7746 } 7747 7748 dev->num_tx_queues = txqs; 7749 dev->real_num_tx_queues = txqs; 7750 if (netif_alloc_netdev_queues(dev)) 7751 goto free_all; 7752 7753 #ifdef CONFIG_SYSFS 7754 dev->num_rx_queues = rxqs; 7755 dev->real_num_rx_queues = rxqs; 7756 if (netif_alloc_rx_queues(dev)) 7757 goto free_all; 7758 #endif 7759 7760 strcpy(dev->name, name); 7761 dev->name_assign_type = name_assign_type; 7762 dev->group = INIT_NETDEV_GROUP; 7763 if (!dev->ethtool_ops) 7764 dev->ethtool_ops = &default_ethtool_ops; 7765 7766 nf_hook_ingress_init(dev); 7767 7768 return dev; 7769 7770 free_all: 7771 free_netdev(dev); 7772 return NULL; 7773 7774 free_pcpu: 7775 free_percpu(dev->pcpu_refcnt); 7776 free_dev: 7777 netdev_freemem(dev); 7778 return NULL; 7779 } 7780 EXPORT_SYMBOL(alloc_netdev_mqs); 7781 7782 /** 7783 * free_netdev - free network device 7784 * @dev: device 7785 * 7786 * This function does the last stage of destroying an allocated device 7787 * interface. The reference to the device object is released. If this 7788 * is the last reference then it will be freed.Must be called in process 7789 * context. 7790 */ 7791 void free_netdev(struct net_device *dev) 7792 { 7793 struct napi_struct *p, *n; 7794 7795 might_sleep(); 7796 netif_free_tx_queues(dev); 7797 #ifdef CONFIG_SYSFS 7798 kvfree(dev->_rx); 7799 #endif 7800 7801 kfree(rcu_dereference_protected(dev->ingress_queue, 1)); 7802 7803 /* Flush device addresses */ 7804 dev_addr_flush(dev); 7805 7806 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list) 7807 netif_napi_del(p); 7808 7809 free_percpu(dev->pcpu_refcnt); 7810 dev->pcpu_refcnt = NULL; 7811 7812 /* Compatibility with error handling in drivers */ 7813 if (dev->reg_state == NETREG_UNINITIALIZED) { 7814 netdev_freemem(dev); 7815 return; 7816 } 7817 7818 BUG_ON(dev->reg_state != NETREG_UNREGISTERED); 7819 dev->reg_state = NETREG_RELEASED; 7820 7821 /* will free via device release */ 7822 put_device(&dev->dev); 7823 } 7824 EXPORT_SYMBOL(free_netdev); 7825 7826 /** 7827 * synchronize_net - Synchronize with packet receive processing 7828 * 7829 * Wait for packets currently being received to be done. 7830 * Does not block later packets from starting. 7831 */ 7832 void synchronize_net(void) 7833 { 7834 might_sleep(); 7835 if (rtnl_is_locked()) 7836 synchronize_rcu_expedited(); 7837 else 7838 synchronize_rcu(); 7839 } 7840 EXPORT_SYMBOL(synchronize_net); 7841 7842 /** 7843 * unregister_netdevice_queue - remove device from the kernel 7844 * @dev: device 7845 * @head: list 7846 * 7847 * This function shuts down a device interface and removes it 7848 * from the kernel tables. 7849 * If head not NULL, device is queued to be unregistered later. 7850 * 7851 * Callers must hold the rtnl semaphore. You may want 7852 * unregister_netdev() instead of this. 7853 */ 7854 7855 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head) 7856 { 7857 ASSERT_RTNL(); 7858 7859 if (head) { 7860 list_move_tail(&dev->unreg_list, head); 7861 } else { 7862 rollback_registered(dev); 7863 /* Finish processing unregister after unlock */ 7864 net_set_todo(dev); 7865 } 7866 } 7867 EXPORT_SYMBOL(unregister_netdevice_queue); 7868 7869 /** 7870 * unregister_netdevice_many - unregister many devices 7871 * @head: list of devices 7872 * 7873 * Note: As most callers use a stack allocated list_head, 7874 * we force a list_del() to make sure stack wont be corrupted later. 7875 */ 7876 void unregister_netdevice_many(struct list_head *head) 7877 { 7878 struct net_device *dev; 7879 7880 if (!list_empty(head)) { 7881 rollback_registered_many(head); 7882 list_for_each_entry(dev, head, unreg_list) 7883 net_set_todo(dev); 7884 list_del(head); 7885 } 7886 } 7887 EXPORT_SYMBOL(unregister_netdevice_many); 7888 7889 /** 7890 * unregister_netdev - remove device from the kernel 7891 * @dev: device 7892 * 7893 * This function shuts down a device interface and removes it 7894 * from the kernel tables. 7895 * 7896 * This is just a wrapper for unregister_netdevice that takes 7897 * the rtnl semaphore. In general you want to use this and not 7898 * unregister_netdevice. 7899 */ 7900 void unregister_netdev(struct net_device *dev) 7901 { 7902 rtnl_lock(); 7903 unregister_netdevice(dev); 7904 rtnl_unlock(); 7905 } 7906 EXPORT_SYMBOL(unregister_netdev); 7907 7908 /** 7909 * dev_change_net_namespace - move device to different nethost namespace 7910 * @dev: device 7911 * @net: network namespace 7912 * @pat: If not NULL name pattern to try if the current device name 7913 * is already taken in the destination network namespace. 7914 * 7915 * This function shuts down a device interface and moves it 7916 * to a new network namespace. On success 0 is returned, on 7917 * a failure a netagive errno code is returned. 7918 * 7919 * Callers must hold the rtnl semaphore. 7920 */ 7921 7922 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat) 7923 { 7924 int err; 7925 7926 ASSERT_RTNL(); 7927 7928 /* Don't allow namespace local devices to be moved. */ 7929 err = -EINVAL; 7930 if (dev->features & NETIF_F_NETNS_LOCAL) 7931 goto out; 7932 7933 /* Ensure the device has been registrered */ 7934 if (dev->reg_state != NETREG_REGISTERED) 7935 goto out; 7936 7937 /* Get out if there is nothing todo */ 7938 err = 0; 7939 if (net_eq(dev_net(dev), net)) 7940 goto out; 7941 7942 /* Pick the destination device name, and ensure 7943 * we can use it in the destination network namespace. 7944 */ 7945 err = -EEXIST; 7946 if (__dev_get_by_name(net, dev->name)) { 7947 /* We get here if we can't use the current device name */ 7948 if (!pat) 7949 goto out; 7950 if (dev_get_valid_name(net, dev, pat) < 0) 7951 goto out; 7952 } 7953 7954 /* 7955 * And now a mini version of register_netdevice unregister_netdevice. 7956 */ 7957 7958 /* If device is running close it first. */ 7959 dev_close(dev); 7960 7961 /* And unlink it from device chain */ 7962 err = -ENODEV; 7963 unlist_netdevice(dev); 7964 7965 synchronize_net(); 7966 7967 /* Shutdown queueing discipline. */ 7968 dev_shutdown(dev); 7969 7970 /* Notify protocols, that we are about to destroy 7971 * this device. They should clean all the things. 7972 * 7973 * Note that dev->reg_state stays at NETREG_REGISTERED. 7974 * This is wanted because this way 8021q and macvlan know 7975 * the device is just moving and can keep their slaves up. 7976 */ 7977 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 7978 rcu_barrier(); 7979 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev); 7980 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL); 7981 7982 /* 7983 * Flush the unicast and multicast chains 7984 */ 7985 dev_uc_flush(dev); 7986 dev_mc_flush(dev); 7987 7988 /* Send a netdev-removed uevent to the old namespace */ 7989 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE); 7990 netdev_adjacent_del_links(dev); 7991 7992 /* Actually switch the network namespace */ 7993 dev_net_set(dev, net); 7994 7995 /* If there is an ifindex conflict assign a new one */ 7996 if (__dev_get_by_index(net, dev->ifindex)) 7997 dev->ifindex = dev_new_index(net); 7998 7999 /* Send a netdev-add uevent to the new namespace */ 8000 kobject_uevent(&dev->dev.kobj, KOBJ_ADD); 8001 netdev_adjacent_add_links(dev); 8002 8003 /* Fixup kobjects */ 8004 err = device_rename(&dev->dev, dev->name); 8005 WARN_ON(err); 8006 8007 /* Add the device back in the hashes */ 8008 list_netdevice(dev); 8009 8010 /* Notify protocols, that a new device appeared. */ 8011 call_netdevice_notifiers(NETDEV_REGISTER, dev); 8012 8013 /* 8014 * Prevent userspace races by waiting until the network 8015 * device is fully setup before sending notifications. 8016 */ 8017 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL); 8018 8019 synchronize_net(); 8020 err = 0; 8021 out: 8022 return err; 8023 } 8024 EXPORT_SYMBOL_GPL(dev_change_net_namespace); 8025 8026 static int dev_cpu_dead(unsigned int oldcpu) 8027 { 8028 struct sk_buff **list_skb; 8029 struct sk_buff *skb; 8030 unsigned int cpu; 8031 struct softnet_data *sd, *oldsd; 8032 8033 local_irq_disable(); 8034 cpu = smp_processor_id(); 8035 sd = &per_cpu(softnet_data, cpu); 8036 oldsd = &per_cpu(softnet_data, oldcpu); 8037 8038 /* Find end of our completion_queue. */ 8039 list_skb = &sd->completion_queue; 8040 while (*list_skb) 8041 list_skb = &(*list_skb)->next; 8042 /* Append completion queue from offline CPU. */ 8043 *list_skb = oldsd->completion_queue; 8044 oldsd->completion_queue = NULL; 8045 8046 /* Append output queue from offline CPU. */ 8047 if (oldsd->output_queue) { 8048 *sd->output_queue_tailp = oldsd->output_queue; 8049 sd->output_queue_tailp = oldsd->output_queue_tailp; 8050 oldsd->output_queue = NULL; 8051 oldsd->output_queue_tailp = &oldsd->output_queue; 8052 } 8053 /* Append NAPI poll list from offline CPU, with one exception : 8054 * process_backlog() must be called by cpu owning percpu backlog. 8055 * We properly handle process_queue & input_pkt_queue later. 8056 */ 8057 while (!list_empty(&oldsd->poll_list)) { 8058 struct napi_struct *napi = list_first_entry(&oldsd->poll_list, 8059 struct napi_struct, 8060 poll_list); 8061 8062 list_del_init(&napi->poll_list); 8063 if (napi->poll == process_backlog) 8064 napi->state = 0; 8065 else 8066 ____napi_schedule(sd, napi); 8067 } 8068 8069 raise_softirq_irqoff(NET_TX_SOFTIRQ); 8070 local_irq_enable(); 8071 8072 /* Process offline CPU's input_pkt_queue */ 8073 while ((skb = __skb_dequeue(&oldsd->process_queue))) { 8074 netif_rx_ni(skb); 8075 input_queue_head_incr(oldsd); 8076 } 8077 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) { 8078 netif_rx_ni(skb); 8079 input_queue_head_incr(oldsd); 8080 } 8081 8082 return 0; 8083 } 8084 8085 /** 8086 * netdev_increment_features - increment feature set by one 8087 * @all: current feature set 8088 * @one: new feature set 8089 * @mask: mask feature set 8090 * 8091 * Computes a new feature set after adding a device with feature set 8092 * @one to the master device with current feature set @all. Will not 8093 * enable anything that is off in @mask. Returns the new feature set. 8094 */ 8095 netdev_features_t netdev_increment_features(netdev_features_t all, 8096 netdev_features_t one, netdev_features_t mask) 8097 { 8098 if (mask & NETIF_F_HW_CSUM) 8099 mask |= NETIF_F_CSUM_MASK; 8100 mask |= NETIF_F_VLAN_CHALLENGED; 8101 8102 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask; 8103 all &= one | ~NETIF_F_ALL_FOR_ALL; 8104 8105 /* If one device supports hw checksumming, set for all. */ 8106 if (all & NETIF_F_HW_CSUM) 8107 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM); 8108 8109 return all; 8110 } 8111 EXPORT_SYMBOL(netdev_increment_features); 8112 8113 static struct hlist_head * __net_init netdev_create_hash(void) 8114 { 8115 int i; 8116 struct hlist_head *hash; 8117 8118 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL); 8119 if (hash != NULL) 8120 for (i = 0; i < NETDEV_HASHENTRIES; i++) 8121 INIT_HLIST_HEAD(&hash[i]); 8122 8123 return hash; 8124 } 8125 8126 /* Initialize per network namespace state */ 8127 static int __net_init netdev_init(struct net *net) 8128 { 8129 if (net != &init_net) 8130 INIT_LIST_HEAD(&net->dev_base_head); 8131 8132 net->dev_name_head = netdev_create_hash(); 8133 if (net->dev_name_head == NULL) 8134 goto err_name; 8135 8136 net->dev_index_head = netdev_create_hash(); 8137 if (net->dev_index_head == NULL) 8138 goto err_idx; 8139 8140 return 0; 8141 8142 err_idx: 8143 kfree(net->dev_name_head); 8144 err_name: 8145 return -ENOMEM; 8146 } 8147 8148 /** 8149 * netdev_drivername - network driver for the device 8150 * @dev: network device 8151 * 8152 * Determine network driver for device. 8153 */ 8154 const char *netdev_drivername(const struct net_device *dev) 8155 { 8156 const struct device_driver *driver; 8157 const struct device *parent; 8158 const char *empty = ""; 8159 8160 parent = dev->dev.parent; 8161 if (!parent) 8162 return empty; 8163 8164 driver = parent->driver; 8165 if (driver && driver->name) 8166 return driver->name; 8167 return empty; 8168 } 8169 8170 static void __netdev_printk(const char *level, const struct net_device *dev, 8171 struct va_format *vaf) 8172 { 8173 if (dev && dev->dev.parent) { 8174 dev_printk_emit(level[1] - '0', 8175 dev->dev.parent, 8176 "%s %s %s%s: %pV", 8177 dev_driver_string(dev->dev.parent), 8178 dev_name(dev->dev.parent), 8179 netdev_name(dev), netdev_reg_state(dev), 8180 vaf); 8181 } else if (dev) { 8182 printk("%s%s%s: %pV", 8183 level, netdev_name(dev), netdev_reg_state(dev), vaf); 8184 } else { 8185 printk("%s(NULL net_device): %pV", level, vaf); 8186 } 8187 } 8188 8189 void netdev_printk(const char *level, const struct net_device *dev, 8190 const char *format, ...) 8191 { 8192 struct va_format vaf; 8193 va_list args; 8194 8195 va_start(args, format); 8196 8197 vaf.fmt = format; 8198 vaf.va = &args; 8199 8200 __netdev_printk(level, dev, &vaf); 8201 8202 va_end(args); 8203 } 8204 EXPORT_SYMBOL(netdev_printk); 8205 8206 #define define_netdev_printk_level(func, level) \ 8207 void func(const struct net_device *dev, const char *fmt, ...) \ 8208 { \ 8209 struct va_format vaf; \ 8210 va_list args; \ 8211 \ 8212 va_start(args, fmt); \ 8213 \ 8214 vaf.fmt = fmt; \ 8215 vaf.va = &args; \ 8216 \ 8217 __netdev_printk(level, dev, &vaf); \ 8218 \ 8219 va_end(args); \ 8220 } \ 8221 EXPORT_SYMBOL(func); 8222 8223 define_netdev_printk_level(netdev_emerg, KERN_EMERG); 8224 define_netdev_printk_level(netdev_alert, KERN_ALERT); 8225 define_netdev_printk_level(netdev_crit, KERN_CRIT); 8226 define_netdev_printk_level(netdev_err, KERN_ERR); 8227 define_netdev_printk_level(netdev_warn, KERN_WARNING); 8228 define_netdev_printk_level(netdev_notice, KERN_NOTICE); 8229 define_netdev_printk_level(netdev_info, KERN_INFO); 8230 8231 static void __net_exit netdev_exit(struct net *net) 8232 { 8233 kfree(net->dev_name_head); 8234 kfree(net->dev_index_head); 8235 } 8236 8237 static struct pernet_operations __net_initdata netdev_net_ops = { 8238 .init = netdev_init, 8239 .exit = netdev_exit, 8240 }; 8241 8242 static void __net_exit default_device_exit(struct net *net) 8243 { 8244 struct net_device *dev, *aux; 8245 /* 8246 * Push all migratable network devices back to the 8247 * initial network namespace 8248 */ 8249 rtnl_lock(); 8250 for_each_netdev_safe(net, dev, aux) { 8251 int err; 8252 char fb_name[IFNAMSIZ]; 8253 8254 /* Ignore unmoveable devices (i.e. loopback) */ 8255 if (dev->features & NETIF_F_NETNS_LOCAL) 8256 continue; 8257 8258 /* Leave virtual devices for the generic cleanup */ 8259 if (dev->rtnl_link_ops) 8260 continue; 8261 8262 /* Push remaining network devices to init_net */ 8263 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex); 8264 err = dev_change_net_namespace(dev, &init_net, fb_name); 8265 if (err) { 8266 pr_emerg("%s: failed to move %s to init_net: %d\n", 8267 __func__, dev->name, err); 8268 BUG(); 8269 } 8270 } 8271 rtnl_unlock(); 8272 } 8273 8274 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list) 8275 { 8276 /* Return with the rtnl_lock held when there are no network 8277 * devices unregistering in any network namespace in net_list. 8278 */ 8279 struct net *net; 8280 bool unregistering; 8281 DEFINE_WAIT_FUNC(wait, woken_wake_function); 8282 8283 add_wait_queue(&netdev_unregistering_wq, &wait); 8284 for (;;) { 8285 unregistering = false; 8286 rtnl_lock(); 8287 list_for_each_entry(net, net_list, exit_list) { 8288 if (net->dev_unreg_count > 0) { 8289 unregistering = true; 8290 break; 8291 } 8292 } 8293 if (!unregistering) 8294 break; 8295 __rtnl_unlock(); 8296 8297 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT); 8298 } 8299 remove_wait_queue(&netdev_unregistering_wq, &wait); 8300 } 8301 8302 static void __net_exit default_device_exit_batch(struct list_head *net_list) 8303 { 8304 /* At exit all network devices most be removed from a network 8305 * namespace. Do this in the reverse order of registration. 8306 * Do this across as many network namespaces as possible to 8307 * improve batching efficiency. 8308 */ 8309 struct net_device *dev; 8310 struct net *net; 8311 LIST_HEAD(dev_kill_list); 8312 8313 /* To prevent network device cleanup code from dereferencing 8314 * loopback devices or network devices that have been freed 8315 * wait here for all pending unregistrations to complete, 8316 * before unregistring the loopback device and allowing the 8317 * network namespace be freed. 8318 * 8319 * The netdev todo list containing all network devices 8320 * unregistrations that happen in default_device_exit_batch 8321 * will run in the rtnl_unlock() at the end of 8322 * default_device_exit_batch. 8323 */ 8324 rtnl_lock_unregistering(net_list); 8325 list_for_each_entry(net, net_list, exit_list) { 8326 for_each_netdev_reverse(net, dev) { 8327 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink) 8328 dev->rtnl_link_ops->dellink(dev, &dev_kill_list); 8329 else 8330 unregister_netdevice_queue(dev, &dev_kill_list); 8331 } 8332 } 8333 unregister_netdevice_many(&dev_kill_list); 8334 rtnl_unlock(); 8335 } 8336 8337 static struct pernet_operations __net_initdata default_device_ops = { 8338 .exit = default_device_exit, 8339 .exit_batch = default_device_exit_batch, 8340 }; 8341 8342 /* 8343 * Initialize the DEV module. At boot time this walks the device list and 8344 * unhooks any devices that fail to initialise (normally hardware not 8345 * present) and leaves us with a valid list of present and active devices. 8346 * 8347 */ 8348 8349 /* 8350 * This is called single threaded during boot, so no need 8351 * to take the rtnl semaphore. 8352 */ 8353 static int __init net_dev_init(void) 8354 { 8355 int i, rc = -ENOMEM; 8356 8357 BUG_ON(!dev_boot_phase); 8358 8359 if (dev_proc_init()) 8360 goto out; 8361 8362 if (netdev_kobject_init()) 8363 goto out; 8364 8365 INIT_LIST_HEAD(&ptype_all); 8366 for (i = 0; i < PTYPE_HASH_SIZE; i++) 8367 INIT_LIST_HEAD(&ptype_base[i]); 8368 8369 INIT_LIST_HEAD(&offload_base); 8370 8371 if (register_pernet_subsys(&netdev_net_ops)) 8372 goto out; 8373 8374 /* 8375 * Initialise the packet receive queues. 8376 */ 8377 8378 for_each_possible_cpu(i) { 8379 struct work_struct *flush = per_cpu_ptr(&flush_works, i); 8380 struct softnet_data *sd = &per_cpu(softnet_data, i); 8381 8382 INIT_WORK(flush, flush_backlog); 8383 8384 skb_queue_head_init(&sd->input_pkt_queue); 8385 skb_queue_head_init(&sd->process_queue); 8386 INIT_LIST_HEAD(&sd->poll_list); 8387 sd->output_queue_tailp = &sd->output_queue; 8388 #ifdef CONFIG_RPS 8389 sd->csd.func = rps_trigger_softirq; 8390 sd->csd.info = sd; 8391 sd->cpu = i; 8392 #endif 8393 8394 sd->backlog.poll = process_backlog; 8395 sd->backlog.weight = weight_p; 8396 } 8397 8398 dev_boot_phase = 0; 8399 8400 /* The loopback device is special if any other network devices 8401 * is present in a network namespace the loopback device must 8402 * be present. Since we now dynamically allocate and free the 8403 * loopback device ensure this invariant is maintained by 8404 * keeping the loopback device as the first device on the 8405 * list of network devices. Ensuring the loopback devices 8406 * is the first device that appears and the last network device 8407 * that disappears. 8408 */ 8409 if (register_pernet_device(&loopback_net_ops)) 8410 goto out; 8411 8412 if (register_pernet_device(&default_device_ops)) 8413 goto out; 8414 8415 open_softirq(NET_TX_SOFTIRQ, net_tx_action); 8416 open_softirq(NET_RX_SOFTIRQ, net_rx_action); 8417 8418 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead", 8419 NULL, dev_cpu_dead); 8420 WARN_ON(rc < 0); 8421 dst_subsys_init(); 8422 rc = 0; 8423 out: 8424 return rc; 8425 } 8426 8427 subsys_initcall(net_dev_init); 8428