xref: /linux/net/core/dev.c (revision a37fbe666c016fd89e4460d0ebfcea05baba46dc)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *      NET3    Protocol independent device support routines.
4  *
5  *	Derived from the non IP parts of dev.c 1.0.19
6  *              Authors:	Ross Biro
7  *				Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8  *				Mark Evans, <evansmp@uhura.aston.ac.uk>
9  *
10  *	Additional Authors:
11  *		Florian la Roche <rzsfl@rz.uni-sb.de>
12  *		Alan Cox <gw4pts@gw4pts.ampr.org>
13  *		David Hinds <dahinds@users.sourceforge.net>
14  *		Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15  *		Adam Sulmicki <adam@cfar.umd.edu>
16  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
17  *
18  *	Changes:
19  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
20  *                                      to 2 if register_netdev gets called
21  *                                      before net_dev_init & also removed a
22  *                                      few lines of code in the process.
23  *		Alan Cox	:	device private ioctl copies fields back.
24  *		Alan Cox	:	Transmit queue code does relevant
25  *					stunts to keep the queue safe.
26  *		Alan Cox	:	Fixed double lock.
27  *		Alan Cox	:	Fixed promisc NULL pointer trap
28  *		????????	:	Support the full private ioctl range
29  *		Alan Cox	:	Moved ioctl permission check into
30  *					drivers
31  *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
32  *		Alan Cox	:	100 backlog just doesn't cut it when
33  *					you start doing multicast video 8)
34  *		Alan Cox	:	Rewrote net_bh and list manager.
35  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
36  *		Alan Cox	:	Took out transmit every packet pass
37  *					Saved a few bytes in the ioctl handler
38  *		Alan Cox	:	Network driver sets packet type before
39  *					calling netif_rx. Saves a function
40  *					call a packet.
41  *		Alan Cox	:	Hashed net_bh()
42  *		Richard Kooijman:	Timestamp fixes.
43  *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
44  *		Alan Cox	:	Device lock protection.
45  *              Alan Cox        :       Fixed nasty side effect of device close
46  *					changes.
47  *		Rudi Cilibrasi	:	Pass the right thing to
48  *					set_mac_address()
49  *		Dave Miller	:	32bit quantity for the device lock to
50  *					make it work out on a Sparc.
51  *		Bjorn Ekwall	:	Added KERNELD hack.
52  *		Alan Cox	:	Cleaned up the backlog initialise.
53  *		Craig Metz	:	SIOCGIFCONF fix if space for under
54  *					1 device.
55  *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
56  *					is no device open function.
57  *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
58  *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
59  *		Cyrus Durgin	:	Cleaned for KMOD
60  *		Adam Sulmicki   :	Bug Fix : Network Device Unload
61  *					A network device unload needs to purge
62  *					the backlog queue.
63  *	Paul Rusty Russell	:	SIOCSIFNAME
64  *              Pekka Riikonen  :	Netdev boot-time settings code
65  *              Andrew Morton   :       Make unregister_netdevice wait
66  *                                      indefinitely on dev->refcnt
67  *              J Hadi Salim    :       - Backlog queue sampling
68  *				        - netif_rx() feedback
69  */
70 
71 #include <linux/uaccess.h>
72 #include <linux/bitmap.h>
73 #include <linux/capability.h>
74 #include <linux/cpu.h>
75 #include <linux/types.h>
76 #include <linux/kernel.h>
77 #include <linux/hash.h>
78 #include <linux/slab.h>
79 #include <linux/sched.h>
80 #include <linux/sched/mm.h>
81 #include <linux/smpboot.h>
82 #include <linux/mutex.h>
83 #include <linux/rwsem.h>
84 #include <linux/string.h>
85 #include <linux/mm.h>
86 #include <linux/socket.h>
87 #include <linux/sockios.h>
88 #include <linux/errno.h>
89 #include <linux/interrupt.h>
90 #include <linux/if_ether.h>
91 #include <linux/netdevice.h>
92 #include <linux/etherdevice.h>
93 #include <linux/ethtool.h>
94 #include <linux/skbuff.h>
95 #include <linux/kthread.h>
96 #include <linux/bpf.h>
97 #include <linux/bpf_trace.h>
98 #include <net/net_namespace.h>
99 #include <net/sock.h>
100 #include <net/busy_poll.h>
101 #include <linux/rtnetlink.h>
102 #include <linux/stat.h>
103 #include <net/dsa.h>
104 #include <net/dst.h>
105 #include <net/dst_metadata.h>
106 #include <net/gro.h>
107 #include <net/pkt_sched.h>
108 #include <net/pkt_cls.h>
109 #include <net/checksum.h>
110 #include <net/xfrm.h>
111 #include <net/tcx.h>
112 #include <linux/highmem.h>
113 #include <linux/init.h>
114 #include <linux/module.h>
115 #include <linux/netpoll.h>
116 #include <linux/rcupdate.h>
117 #include <linux/delay.h>
118 #include <net/iw_handler.h>
119 #include <asm/current.h>
120 #include <linux/audit.h>
121 #include <linux/dmaengine.h>
122 #include <linux/err.h>
123 #include <linux/ctype.h>
124 #include <linux/if_arp.h>
125 #include <linux/if_vlan.h>
126 #include <linux/ip.h>
127 #include <net/ip.h>
128 #include <net/mpls.h>
129 #include <linux/ipv6.h>
130 #include <linux/in.h>
131 #include <linux/jhash.h>
132 #include <linux/random.h>
133 #include <trace/events/napi.h>
134 #include <trace/events/net.h>
135 #include <trace/events/skb.h>
136 #include <trace/events/qdisc.h>
137 #include <trace/events/xdp.h>
138 #include <linux/inetdevice.h>
139 #include <linux/cpu_rmap.h>
140 #include <linux/static_key.h>
141 #include <linux/hashtable.h>
142 #include <linux/vmalloc.h>
143 #include <linux/if_macvlan.h>
144 #include <linux/errqueue.h>
145 #include <linux/hrtimer.h>
146 #include <linux/netfilter_netdev.h>
147 #include <linux/crash_dump.h>
148 #include <linux/sctp.h>
149 #include <net/udp_tunnel.h>
150 #include <linux/net_namespace.h>
151 #include <linux/indirect_call_wrapper.h>
152 #include <net/devlink.h>
153 #include <linux/pm_runtime.h>
154 #include <linux/prandom.h>
155 #include <linux/once_lite.h>
156 #include <net/netdev_rx_queue.h>
157 #include <net/page_pool/types.h>
158 #include <net/page_pool/helpers.h>
159 #include <net/rps.h>
160 
161 #include "dev.h"
162 #include "net-sysfs.h"
163 
164 static DEFINE_SPINLOCK(ptype_lock);
165 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
166 
167 static int netif_rx_internal(struct sk_buff *skb);
168 static int call_netdevice_notifiers_extack(unsigned long val,
169 					   struct net_device *dev,
170 					   struct netlink_ext_ack *extack);
171 
172 static DEFINE_MUTEX(ifalias_mutex);
173 
174 /* protects napi_hash addition/deletion and napi_gen_id */
175 static DEFINE_SPINLOCK(napi_hash_lock);
176 
177 static unsigned int napi_gen_id = NR_CPUS;
178 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
179 
180 static DECLARE_RWSEM(devnet_rename_sem);
181 
182 static inline void dev_base_seq_inc(struct net *net)
183 {
184 	unsigned int val = net->dev_base_seq + 1;
185 
186 	WRITE_ONCE(net->dev_base_seq, val ?: 1);
187 }
188 
189 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
190 {
191 	unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
192 
193 	return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
194 }
195 
196 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
197 {
198 	return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
199 }
200 
201 #ifndef CONFIG_PREEMPT_RT
202 
203 static DEFINE_STATIC_KEY_FALSE(use_backlog_threads_key);
204 
205 static int __init setup_backlog_napi_threads(char *arg)
206 {
207 	static_branch_enable(&use_backlog_threads_key);
208 	return 0;
209 }
210 early_param("thread_backlog_napi", setup_backlog_napi_threads);
211 
212 static bool use_backlog_threads(void)
213 {
214 	return static_branch_unlikely(&use_backlog_threads_key);
215 }
216 
217 #else
218 
219 static bool use_backlog_threads(void)
220 {
221 	return true;
222 }
223 
224 #endif
225 
226 static inline void backlog_lock_irq_save(struct softnet_data *sd,
227 					 unsigned long *flags)
228 {
229 	if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads())
230 		spin_lock_irqsave(&sd->input_pkt_queue.lock, *flags);
231 	else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
232 		local_irq_save(*flags);
233 }
234 
235 static inline void backlog_lock_irq_disable(struct softnet_data *sd)
236 {
237 	if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads())
238 		spin_lock_irq(&sd->input_pkt_queue.lock);
239 	else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
240 		local_irq_disable();
241 }
242 
243 static inline void backlog_unlock_irq_restore(struct softnet_data *sd,
244 					      unsigned long *flags)
245 {
246 	if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads())
247 		spin_unlock_irqrestore(&sd->input_pkt_queue.lock, *flags);
248 	else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
249 		local_irq_restore(*flags);
250 }
251 
252 static inline void backlog_unlock_irq_enable(struct softnet_data *sd)
253 {
254 	if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads())
255 		spin_unlock_irq(&sd->input_pkt_queue.lock);
256 	else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
257 		local_irq_enable();
258 }
259 
260 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
261 						       const char *name)
262 {
263 	struct netdev_name_node *name_node;
264 
265 	name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
266 	if (!name_node)
267 		return NULL;
268 	INIT_HLIST_NODE(&name_node->hlist);
269 	name_node->dev = dev;
270 	name_node->name = name;
271 	return name_node;
272 }
273 
274 static struct netdev_name_node *
275 netdev_name_node_head_alloc(struct net_device *dev)
276 {
277 	struct netdev_name_node *name_node;
278 
279 	name_node = netdev_name_node_alloc(dev, dev->name);
280 	if (!name_node)
281 		return NULL;
282 	INIT_LIST_HEAD(&name_node->list);
283 	return name_node;
284 }
285 
286 static void netdev_name_node_free(struct netdev_name_node *name_node)
287 {
288 	kfree(name_node);
289 }
290 
291 static void netdev_name_node_add(struct net *net,
292 				 struct netdev_name_node *name_node)
293 {
294 	hlist_add_head_rcu(&name_node->hlist,
295 			   dev_name_hash(net, name_node->name));
296 }
297 
298 static void netdev_name_node_del(struct netdev_name_node *name_node)
299 {
300 	hlist_del_rcu(&name_node->hlist);
301 }
302 
303 static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
304 							const char *name)
305 {
306 	struct hlist_head *head = dev_name_hash(net, name);
307 	struct netdev_name_node *name_node;
308 
309 	hlist_for_each_entry(name_node, head, hlist)
310 		if (!strcmp(name_node->name, name))
311 			return name_node;
312 	return NULL;
313 }
314 
315 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
316 							    const char *name)
317 {
318 	struct hlist_head *head = dev_name_hash(net, name);
319 	struct netdev_name_node *name_node;
320 
321 	hlist_for_each_entry_rcu(name_node, head, hlist)
322 		if (!strcmp(name_node->name, name))
323 			return name_node;
324 	return NULL;
325 }
326 
327 bool netdev_name_in_use(struct net *net, const char *name)
328 {
329 	return netdev_name_node_lookup(net, name);
330 }
331 EXPORT_SYMBOL(netdev_name_in_use);
332 
333 int netdev_name_node_alt_create(struct net_device *dev, const char *name)
334 {
335 	struct netdev_name_node *name_node;
336 	struct net *net = dev_net(dev);
337 
338 	name_node = netdev_name_node_lookup(net, name);
339 	if (name_node)
340 		return -EEXIST;
341 	name_node = netdev_name_node_alloc(dev, name);
342 	if (!name_node)
343 		return -ENOMEM;
344 	netdev_name_node_add(net, name_node);
345 	/* The node that holds dev->name acts as a head of per-device list. */
346 	list_add_tail_rcu(&name_node->list, &dev->name_node->list);
347 
348 	return 0;
349 }
350 
351 static void netdev_name_node_alt_free(struct rcu_head *head)
352 {
353 	struct netdev_name_node *name_node =
354 		container_of(head, struct netdev_name_node, rcu);
355 
356 	kfree(name_node->name);
357 	netdev_name_node_free(name_node);
358 }
359 
360 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
361 {
362 	netdev_name_node_del(name_node);
363 	list_del(&name_node->list);
364 	call_rcu(&name_node->rcu, netdev_name_node_alt_free);
365 }
366 
367 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
368 {
369 	struct netdev_name_node *name_node;
370 	struct net *net = dev_net(dev);
371 
372 	name_node = netdev_name_node_lookup(net, name);
373 	if (!name_node)
374 		return -ENOENT;
375 	/* lookup might have found our primary name or a name belonging
376 	 * to another device.
377 	 */
378 	if (name_node == dev->name_node || name_node->dev != dev)
379 		return -EINVAL;
380 
381 	__netdev_name_node_alt_destroy(name_node);
382 	return 0;
383 }
384 
385 static void netdev_name_node_alt_flush(struct net_device *dev)
386 {
387 	struct netdev_name_node *name_node, *tmp;
388 
389 	list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list) {
390 		list_del(&name_node->list);
391 		netdev_name_node_alt_free(&name_node->rcu);
392 	}
393 }
394 
395 /* Device list insertion */
396 static void list_netdevice(struct net_device *dev)
397 {
398 	struct netdev_name_node *name_node;
399 	struct net *net = dev_net(dev);
400 
401 	ASSERT_RTNL();
402 
403 	list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
404 	netdev_name_node_add(net, dev->name_node);
405 	hlist_add_head_rcu(&dev->index_hlist,
406 			   dev_index_hash(net, dev->ifindex));
407 
408 	netdev_for_each_altname(dev, name_node)
409 		netdev_name_node_add(net, name_node);
410 
411 	/* We reserved the ifindex, this can't fail */
412 	WARN_ON(xa_store(&net->dev_by_index, dev->ifindex, dev, GFP_KERNEL));
413 
414 	dev_base_seq_inc(net);
415 }
416 
417 /* Device list removal
418  * caller must respect a RCU grace period before freeing/reusing dev
419  */
420 static void unlist_netdevice(struct net_device *dev)
421 {
422 	struct netdev_name_node *name_node;
423 	struct net *net = dev_net(dev);
424 
425 	ASSERT_RTNL();
426 
427 	xa_erase(&net->dev_by_index, dev->ifindex);
428 
429 	netdev_for_each_altname(dev, name_node)
430 		netdev_name_node_del(name_node);
431 
432 	/* Unlink dev from the device chain */
433 	list_del_rcu(&dev->dev_list);
434 	netdev_name_node_del(dev->name_node);
435 	hlist_del_rcu(&dev->index_hlist);
436 
437 	dev_base_seq_inc(dev_net(dev));
438 }
439 
440 /*
441  *	Our notifier list
442  */
443 
444 static RAW_NOTIFIER_HEAD(netdev_chain);
445 
446 /*
447  *	Device drivers call our routines to queue packets here. We empty the
448  *	queue in the local softnet handler.
449  */
450 
451 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
452 EXPORT_PER_CPU_SYMBOL(softnet_data);
453 
454 /* Page_pool has a lockless array/stack to alloc/recycle pages.
455  * PP consumers must pay attention to run APIs in the appropriate context
456  * (e.g. NAPI context).
457  */
458 static DEFINE_PER_CPU_ALIGNED(struct page_pool *, system_page_pool);
459 
460 #ifdef CONFIG_LOCKDEP
461 /*
462  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
463  * according to dev->type
464  */
465 static const unsigned short netdev_lock_type[] = {
466 	 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
467 	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
468 	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
469 	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
470 	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
471 	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
472 	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
473 	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
474 	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
475 	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
476 	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
477 	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
478 	 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
479 	 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
480 	 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
481 
482 static const char *const netdev_lock_name[] = {
483 	"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
484 	"_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
485 	"_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
486 	"_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
487 	"_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
488 	"_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
489 	"_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
490 	"_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
491 	"_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
492 	"_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
493 	"_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
494 	"_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
495 	"_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
496 	"_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
497 	"_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
498 
499 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
500 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
501 
502 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
503 {
504 	int i;
505 
506 	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
507 		if (netdev_lock_type[i] == dev_type)
508 			return i;
509 	/* the last key is used by default */
510 	return ARRAY_SIZE(netdev_lock_type) - 1;
511 }
512 
513 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
514 						 unsigned short dev_type)
515 {
516 	int i;
517 
518 	i = netdev_lock_pos(dev_type);
519 	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
520 				   netdev_lock_name[i]);
521 }
522 
523 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
524 {
525 	int i;
526 
527 	i = netdev_lock_pos(dev->type);
528 	lockdep_set_class_and_name(&dev->addr_list_lock,
529 				   &netdev_addr_lock_key[i],
530 				   netdev_lock_name[i]);
531 }
532 #else
533 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
534 						 unsigned short dev_type)
535 {
536 }
537 
538 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
539 {
540 }
541 #endif
542 
543 /*******************************************************************************
544  *
545  *		Protocol management and registration routines
546  *
547  *******************************************************************************/
548 
549 
550 /*
551  *	Add a protocol ID to the list. Now that the input handler is
552  *	smarter we can dispense with all the messy stuff that used to be
553  *	here.
554  *
555  *	BEWARE!!! Protocol handlers, mangling input packets,
556  *	MUST BE last in hash buckets and checking protocol handlers
557  *	MUST start from promiscuous ptype_all chain in net_bh.
558  *	It is true now, do not change it.
559  *	Explanation follows: if protocol handler, mangling packet, will
560  *	be the first on list, it is not able to sense, that packet
561  *	is cloned and should be copied-on-write, so that it will
562  *	change it and subsequent readers will get broken packet.
563  *							--ANK (980803)
564  */
565 
566 static inline struct list_head *ptype_head(const struct packet_type *pt)
567 {
568 	if (pt->type == htons(ETH_P_ALL))
569 		return pt->dev ? &pt->dev->ptype_all : &net_hotdata.ptype_all;
570 	else
571 		return pt->dev ? &pt->dev->ptype_specific :
572 				 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
573 }
574 
575 /**
576  *	dev_add_pack - add packet handler
577  *	@pt: packet type declaration
578  *
579  *	Add a protocol handler to the networking stack. The passed &packet_type
580  *	is linked into kernel lists and may not be freed until it has been
581  *	removed from the kernel lists.
582  *
583  *	This call does not sleep therefore it can not
584  *	guarantee all CPU's that are in middle of receiving packets
585  *	will see the new packet type (until the next received packet).
586  */
587 
588 void dev_add_pack(struct packet_type *pt)
589 {
590 	struct list_head *head = ptype_head(pt);
591 
592 	spin_lock(&ptype_lock);
593 	list_add_rcu(&pt->list, head);
594 	spin_unlock(&ptype_lock);
595 }
596 EXPORT_SYMBOL(dev_add_pack);
597 
598 /**
599  *	__dev_remove_pack	 - remove packet handler
600  *	@pt: packet type declaration
601  *
602  *	Remove a protocol handler that was previously added to the kernel
603  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
604  *	from the kernel lists and can be freed or reused once this function
605  *	returns.
606  *
607  *      The packet type might still be in use by receivers
608  *	and must not be freed until after all the CPU's have gone
609  *	through a quiescent state.
610  */
611 void __dev_remove_pack(struct packet_type *pt)
612 {
613 	struct list_head *head = ptype_head(pt);
614 	struct packet_type *pt1;
615 
616 	spin_lock(&ptype_lock);
617 
618 	list_for_each_entry(pt1, head, list) {
619 		if (pt == pt1) {
620 			list_del_rcu(&pt->list);
621 			goto out;
622 		}
623 	}
624 
625 	pr_warn("dev_remove_pack: %p not found\n", pt);
626 out:
627 	spin_unlock(&ptype_lock);
628 }
629 EXPORT_SYMBOL(__dev_remove_pack);
630 
631 /**
632  *	dev_remove_pack	 - remove packet handler
633  *	@pt: packet type declaration
634  *
635  *	Remove a protocol handler that was previously added to the kernel
636  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
637  *	from the kernel lists and can be freed or reused once this function
638  *	returns.
639  *
640  *	This call sleeps to guarantee that no CPU is looking at the packet
641  *	type after return.
642  */
643 void dev_remove_pack(struct packet_type *pt)
644 {
645 	__dev_remove_pack(pt);
646 
647 	synchronize_net();
648 }
649 EXPORT_SYMBOL(dev_remove_pack);
650 
651 
652 /*******************************************************************************
653  *
654  *			    Device Interface Subroutines
655  *
656  *******************************************************************************/
657 
658 /**
659  *	dev_get_iflink	- get 'iflink' value of a interface
660  *	@dev: targeted interface
661  *
662  *	Indicates the ifindex the interface is linked to.
663  *	Physical interfaces have the same 'ifindex' and 'iflink' values.
664  */
665 
666 int dev_get_iflink(const struct net_device *dev)
667 {
668 	if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
669 		return dev->netdev_ops->ndo_get_iflink(dev);
670 
671 	return READ_ONCE(dev->ifindex);
672 }
673 EXPORT_SYMBOL(dev_get_iflink);
674 
675 /**
676  *	dev_fill_metadata_dst - Retrieve tunnel egress information.
677  *	@dev: targeted interface
678  *	@skb: The packet.
679  *
680  *	For better visibility of tunnel traffic OVS needs to retrieve
681  *	egress tunnel information for a packet. Following API allows
682  *	user to get this info.
683  */
684 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
685 {
686 	struct ip_tunnel_info *info;
687 
688 	if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
689 		return -EINVAL;
690 
691 	info = skb_tunnel_info_unclone(skb);
692 	if (!info)
693 		return -ENOMEM;
694 	if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
695 		return -EINVAL;
696 
697 	return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
698 }
699 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
700 
701 static struct net_device_path *dev_fwd_path(struct net_device_path_stack *stack)
702 {
703 	int k = stack->num_paths++;
704 
705 	if (WARN_ON_ONCE(k >= NET_DEVICE_PATH_STACK_MAX))
706 		return NULL;
707 
708 	return &stack->path[k];
709 }
710 
711 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
712 			  struct net_device_path_stack *stack)
713 {
714 	const struct net_device *last_dev;
715 	struct net_device_path_ctx ctx = {
716 		.dev	= dev,
717 	};
718 	struct net_device_path *path;
719 	int ret = 0;
720 
721 	memcpy(ctx.daddr, daddr, sizeof(ctx.daddr));
722 	stack->num_paths = 0;
723 	while (ctx.dev && ctx.dev->netdev_ops->ndo_fill_forward_path) {
724 		last_dev = ctx.dev;
725 		path = dev_fwd_path(stack);
726 		if (!path)
727 			return -1;
728 
729 		memset(path, 0, sizeof(struct net_device_path));
730 		ret = ctx.dev->netdev_ops->ndo_fill_forward_path(&ctx, path);
731 		if (ret < 0)
732 			return -1;
733 
734 		if (WARN_ON_ONCE(last_dev == ctx.dev))
735 			return -1;
736 	}
737 
738 	if (!ctx.dev)
739 		return ret;
740 
741 	path = dev_fwd_path(stack);
742 	if (!path)
743 		return -1;
744 	path->type = DEV_PATH_ETHERNET;
745 	path->dev = ctx.dev;
746 
747 	return ret;
748 }
749 EXPORT_SYMBOL_GPL(dev_fill_forward_path);
750 
751 /**
752  *	__dev_get_by_name	- find a device by its name
753  *	@net: the applicable net namespace
754  *	@name: name to find
755  *
756  *	Find an interface by name. Must be called under RTNL semaphore.
757  *	If the name is found a pointer to the device is returned.
758  *	If the name is not found then %NULL is returned. The
759  *	reference counters are not incremented so the caller must be
760  *	careful with locks.
761  */
762 
763 struct net_device *__dev_get_by_name(struct net *net, const char *name)
764 {
765 	struct netdev_name_node *node_name;
766 
767 	node_name = netdev_name_node_lookup(net, name);
768 	return node_name ? node_name->dev : NULL;
769 }
770 EXPORT_SYMBOL(__dev_get_by_name);
771 
772 /**
773  * dev_get_by_name_rcu	- find a device by its name
774  * @net: the applicable net namespace
775  * @name: name to find
776  *
777  * Find an interface by name.
778  * If the name is found a pointer to the device is returned.
779  * If the name is not found then %NULL is returned.
780  * The reference counters are not incremented so the caller must be
781  * careful with locks. The caller must hold RCU lock.
782  */
783 
784 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
785 {
786 	struct netdev_name_node *node_name;
787 
788 	node_name = netdev_name_node_lookup_rcu(net, name);
789 	return node_name ? node_name->dev : NULL;
790 }
791 EXPORT_SYMBOL(dev_get_by_name_rcu);
792 
793 /* Deprecated for new users, call netdev_get_by_name() instead */
794 struct net_device *dev_get_by_name(struct net *net, const char *name)
795 {
796 	struct net_device *dev;
797 
798 	rcu_read_lock();
799 	dev = dev_get_by_name_rcu(net, name);
800 	dev_hold(dev);
801 	rcu_read_unlock();
802 	return dev;
803 }
804 EXPORT_SYMBOL(dev_get_by_name);
805 
806 /**
807  *	netdev_get_by_name() - find a device by its name
808  *	@net: the applicable net namespace
809  *	@name: name to find
810  *	@tracker: tracking object for the acquired reference
811  *	@gfp: allocation flags for the tracker
812  *
813  *	Find an interface by name. This can be called from any
814  *	context and does its own locking. The returned handle has
815  *	the usage count incremented and the caller must use netdev_put() to
816  *	release it when it is no longer needed. %NULL is returned if no
817  *	matching device is found.
818  */
819 struct net_device *netdev_get_by_name(struct net *net, const char *name,
820 				      netdevice_tracker *tracker, gfp_t gfp)
821 {
822 	struct net_device *dev;
823 
824 	dev = dev_get_by_name(net, name);
825 	if (dev)
826 		netdev_tracker_alloc(dev, tracker, gfp);
827 	return dev;
828 }
829 EXPORT_SYMBOL(netdev_get_by_name);
830 
831 /**
832  *	__dev_get_by_index - find a device by its ifindex
833  *	@net: the applicable net namespace
834  *	@ifindex: index of device
835  *
836  *	Search for an interface by index. Returns %NULL if the device
837  *	is not found or a pointer to the device. The device has not
838  *	had its reference counter increased so the caller must be careful
839  *	about locking. The caller must hold the RTNL semaphore.
840  */
841 
842 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
843 {
844 	struct net_device *dev;
845 	struct hlist_head *head = dev_index_hash(net, ifindex);
846 
847 	hlist_for_each_entry(dev, head, index_hlist)
848 		if (dev->ifindex == ifindex)
849 			return dev;
850 
851 	return NULL;
852 }
853 EXPORT_SYMBOL(__dev_get_by_index);
854 
855 /**
856  *	dev_get_by_index_rcu - find a device by its ifindex
857  *	@net: the applicable net namespace
858  *	@ifindex: index of device
859  *
860  *	Search for an interface by index. Returns %NULL if the device
861  *	is not found or a pointer to the device. The device has not
862  *	had its reference counter increased so the caller must be careful
863  *	about locking. The caller must hold RCU lock.
864  */
865 
866 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
867 {
868 	struct net_device *dev;
869 	struct hlist_head *head = dev_index_hash(net, ifindex);
870 
871 	hlist_for_each_entry_rcu(dev, head, index_hlist)
872 		if (dev->ifindex == ifindex)
873 			return dev;
874 
875 	return NULL;
876 }
877 EXPORT_SYMBOL(dev_get_by_index_rcu);
878 
879 /* Deprecated for new users, call netdev_get_by_index() instead */
880 struct net_device *dev_get_by_index(struct net *net, int ifindex)
881 {
882 	struct net_device *dev;
883 
884 	rcu_read_lock();
885 	dev = dev_get_by_index_rcu(net, ifindex);
886 	dev_hold(dev);
887 	rcu_read_unlock();
888 	return dev;
889 }
890 EXPORT_SYMBOL(dev_get_by_index);
891 
892 /**
893  *	netdev_get_by_index() - find a device by its ifindex
894  *	@net: the applicable net namespace
895  *	@ifindex: index of device
896  *	@tracker: tracking object for the acquired reference
897  *	@gfp: allocation flags for the tracker
898  *
899  *	Search for an interface by index. Returns NULL if the device
900  *	is not found or a pointer to the device. The device returned has
901  *	had a reference added and the pointer is safe until the user calls
902  *	netdev_put() to indicate they have finished with it.
903  */
904 struct net_device *netdev_get_by_index(struct net *net, int ifindex,
905 				       netdevice_tracker *tracker, gfp_t gfp)
906 {
907 	struct net_device *dev;
908 
909 	dev = dev_get_by_index(net, ifindex);
910 	if (dev)
911 		netdev_tracker_alloc(dev, tracker, gfp);
912 	return dev;
913 }
914 EXPORT_SYMBOL(netdev_get_by_index);
915 
916 /**
917  *	dev_get_by_napi_id - find a device by napi_id
918  *	@napi_id: ID of the NAPI struct
919  *
920  *	Search for an interface by NAPI ID. Returns %NULL if the device
921  *	is not found or a pointer to the device. The device has not had
922  *	its reference counter increased so the caller must be careful
923  *	about locking. The caller must hold RCU lock.
924  */
925 
926 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
927 {
928 	struct napi_struct *napi;
929 
930 	WARN_ON_ONCE(!rcu_read_lock_held());
931 
932 	if (napi_id < MIN_NAPI_ID)
933 		return NULL;
934 
935 	napi = napi_by_id(napi_id);
936 
937 	return napi ? napi->dev : NULL;
938 }
939 EXPORT_SYMBOL(dev_get_by_napi_id);
940 
941 /**
942  *	netdev_get_name - get a netdevice name, knowing its ifindex.
943  *	@net: network namespace
944  *	@name: a pointer to the buffer where the name will be stored.
945  *	@ifindex: the ifindex of the interface to get the name from.
946  */
947 int netdev_get_name(struct net *net, char *name, int ifindex)
948 {
949 	struct net_device *dev;
950 	int ret;
951 
952 	down_read(&devnet_rename_sem);
953 	rcu_read_lock();
954 
955 	dev = dev_get_by_index_rcu(net, ifindex);
956 	if (!dev) {
957 		ret = -ENODEV;
958 		goto out;
959 	}
960 
961 	strcpy(name, dev->name);
962 
963 	ret = 0;
964 out:
965 	rcu_read_unlock();
966 	up_read(&devnet_rename_sem);
967 	return ret;
968 }
969 
970 /**
971  *	dev_getbyhwaddr_rcu - find a device by its hardware address
972  *	@net: the applicable net namespace
973  *	@type: media type of device
974  *	@ha: hardware address
975  *
976  *	Search for an interface by MAC address. Returns NULL if the device
977  *	is not found or a pointer to the device.
978  *	The caller must hold RCU or RTNL.
979  *	The returned device has not had its ref count increased
980  *	and the caller must therefore be careful about locking
981  *
982  */
983 
984 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
985 				       const char *ha)
986 {
987 	struct net_device *dev;
988 
989 	for_each_netdev_rcu(net, dev)
990 		if (dev->type == type &&
991 		    !memcmp(dev->dev_addr, ha, dev->addr_len))
992 			return dev;
993 
994 	return NULL;
995 }
996 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
997 
998 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
999 {
1000 	struct net_device *dev, *ret = NULL;
1001 
1002 	rcu_read_lock();
1003 	for_each_netdev_rcu(net, dev)
1004 		if (dev->type == type) {
1005 			dev_hold(dev);
1006 			ret = dev;
1007 			break;
1008 		}
1009 	rcu_read_unlock();
1010 	return ret;
1011 }
1012 EXPORT_SYMBOL(dev_getfirstbyhwtype);
1013 
1014 /**
1015  *	__dev_get_by_flags - find any device with given flags
1016  *	@net: the applicable net namespace
1017  *	@if_flags: IFF_* values
1018  *	@mask: bitmask of bits in if_flags to check
1019  *
1020  *	Search for any interface with the given flags. Returns NULL if a device
1021  *	is not found or a pointer to the device. Must be called inside
1022  *	rtnl_lock(), and result refcount is unchanged.
1023  */
1024 
1025 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1026 				      unsigned short mask)
1027 {
1028 	struct net_device *dev, *ret;
1029 
1030 	ASSERT_RTNL();
1031 
1032 	ret = NULL;
1033 	for_each_netdev(net, dev) {
1034 		if (((dev->flags ^ if_flags) & mask) == 0) {
1035 			ret = dev;
1036 			break;
1037 		}
1038 	}
1039 	return ret;
1040 }
1041 EXPORT_SYMBOL(__dev_get_by_flags);
1042 
1043 /**
1044  *	dev_valid_name - check if name is okay for network device
1045  *	@name: name string
1046  *
1047  *	Network device names need to be valid file names to
1048  *	allow sysfs to work.  We also disallow any kind of
1049  *	whitespace.
1050  */
1051 bool dev_valid_name(const char *name)
1052 {
1053 	if (*name == '\0')
1054 		return false;
1055 	if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1056 		return false;
1057 	if (!strcmp(name, ".") || !strcmp(name, ".."))
1058 		return false;
1059 
1060 	while (*name) {
1061 		if (*name == '/' || *name == ':' || isspace(*name))
1062 			return false;
1063 		name++;
1064 	}
1065 	return true;
1066 }
1067 EXPORT_SYMBOL(dev_valid_name);
1068 
1069 /**
1070  *	__dev_alloc_name - allocate a name for a device
1071  *	@net: network namespace to allocate the device name in
1072  *	@name: name format string
1073  *	@res: result name string
1074  *
1075  *	Passed a format string - eg "lt%d" it will try and find a suitable
1076  *	id. It scans list of devices to build up a free map, then chooses
1077  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1078  *	while allocating the name and adding the device in order to avoid
1079  *	duplicates.
1080  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1081  *	Returns the number of the unit assigned or a negative errno code.
1082  */
1083 
1084 static int __dev_alloc_name(struct net *net, const char *name, char *res)
1085 {
1086 	int i = 0;
1087 	const char *p;
1088 	const int max_netdevices = 8*PAGE_SIZE;
1089 	unsigned long *inuse;
1090 	struct net_device *d;
1091 	char buf[IFNAMSIZ];
1092 
1093 	/* Verify the string as this thing may have come from the user.
1094 	 * There must be one "%d" and no other "%" characters.
1095 	 */
1096 	p = strchr(name, '%');
1097 	if (!p || p[1] != 'd' || strchr(p + 2, '%'))
1098 		return -EINVAL;
1099 
1100 	/* Use one page as a bit array of possible slots */
1101 	inuse = bitmap_zalloc(max_netdevices, GFP_ATOMIC);
1102 	if (!inuse)
1103 		return -ENOMEM;
1104 
1105 	for_each_netdev(net, d) {
1106 		struct netdev_name_node *name_node;
1107 
1108 		netdev_for_each_altname(d, name_node) {
1109 			if (!sscanf(name_node->name, name, &i))
1110 				continue;
1111 			if (i < 0 || i >= max_netdevices)
1112 				continue;
1113 
1114 			/* avoid cases where sscanf is not exact inverse of printf */
1115 			snprintf(buf, IFNAMSIZ, name, i);
1116 			if (!strncmp(buf, name_node->name, IFNAMSIZ))
1117 				__set_bit(i, inuse);
1118 		}
1119 		if (!sscanf(d->name, name, &i))
1120 			continue;
1121 		if (i < 0 || i >= max_netdevices)
1122 			continue;
1123 
1124 		/* avoid cases where sscanf is not exact inverse of printf */
1125 		snprintf(buf, IFNAMSIZ, name, i);
1126 		if (!strncmp(buf, d->name, IFNAMSIZ))
1127 			__set_bit(i, inuse);
1128 	}
1129 
1130 	i = find_first_zero_bit(inuse, max_netdevices);
1131 	bitmap_free(inuse);
1132 	if (i == max_netdevices)
1133 		return -ENFILE;
1134 
1135 	/* 'res' and 'name' could overlap, use 'buf' as an intermediate buffer */
1136 	strscpy(buf, name, IFNAMSIZ);
1137 	snprintf(res, IFNAMSIZ, buf, i);
1138 	return i;
1139 }
1140 
1141 /* Returns negative errno or allocated unit id (see __dev_alloc_name()) */
1142 static int dev_prep_valid_name(struct net *net, struct net_device *dev,
1143 			       const char *want_name, char *out_name,
1144 			       int dup_errno)
1145 {
1146 	if (!dev_valid_name(want_name))
1147 		return -EINVAL;
1148 
1149 	if (strchr(want_name, '%'))
1150 		return __dev_alloc_name(net, want_name, out_name);
1151 
1152 	if (netdev_name_in_use(net, want_name))
1153 		return -dup_errno;
1154 	if (out_name != want_name)
1155 		strscpy(out_name, want_name, IFNAMSIZ);
1156 	return 0;
1157 }
1158 
1159 /**
1160  *	dev_alloc_name - allocate a name for a device
1161  *	@dev: device
1162  *	@name: name format string
1163  *
1164  *	Passed a format string - eg "lt%d" it will try and find a suitable
1165  *	id. It scans list of devices to build up a free map, then chooses
1166  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1167  *	while allocating the name and adding the device in order to avoid
1168  *	duplicates.
1169  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1170  *	Returns the number of the unit assigned or a negative errno code.
1171  */
1172 
1173 int dev_alloc_name(struct net_device *dev, const char *name)
1174 {
1175 	return dev_prep_valid_name(dev_net(dev), dev, name, dev->name, ENFILE);
1176 }
1177 EXPORT_SYMBOL(dev_alloc_name);
1178 
1179 static int dev_get_valid_name(struct net *net, struct net_device *dev,
1180 			      const char *name)
1181 {
1182 	int ret;
1183 
1184 	ret = dev_prep_valid_name(net, dev, name, dev->name, EEXIST);
1185 	return ret < 0 ? ret : 0;
1186 }
1187 
1188 /**
1189  *	dev_change_name - change name of a device
1190  *	@dev: device
1191  *	@newname: name (or format string) must be at least IFNAMSIZ
1192  *
1193  *	Change name of a device, can pass format strings "eth%d".
1194  *	for wildcarding.
1195  */
1196 int dev_change_name(struct net_device *dev, const char *newname)
1197 {
1198 	unsigned char old_assign_type;
1199 	char oldname[IFNAMSIZ];
1200 	int err = 0;
1201 	int ret;
1202 	struct net *net;
1203 
1204 	ASSERT_RTNL();
1205 	BUG_ON(!dev_net(dev));
1206 
1207 	net = dev_net(dev);
1208 
1209 	down_write(&devnet_rename_sem);
1210 
1211 	if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1212 		up_write(&devnet_rename_sem);
1213 		return 0;
1214 	}
1215 
1216 	memcpy(oldname, dev->name, IFNAMSIZ);
1217 
1218 	err = dev_get_valid_name(net, dev, newname);
1219 	if (err < 0) {
1220 		up_write(&devnet_rename_sem);
1221 		return err;
1222 	}
1223 
1224 	if (oldname[0] && !strchr(oldname, '%'))
1225 		netdev_info(dev, "renamed from %s%s\n", oldname,
1226 			    dev->flags & IFF_UP ? " (while UP)" : "");
1227 
1228 	old_assign_type = dev->name_assign_type;
1229 	WRITE_ONCE(dev->name_assign_type, NET_NAME_RENAMED);
1230 
1231 rollback:
1232 	ret = device_rename(&dev->dev, dev->name);
1233 	if (ret) {
1234 		memcpy(dev->name, oldname, IFNAMSIZ);
1235 		WRITE_ONCE(dev->name_assign_type, old_assign_type);
1236 		up_write(&devnet_rename_sem);
1237 		return ret;
1238 	}
1239 
1240 	up_write(&devnet_rename_sem);
1241 
1242 	netdev_adjacent_rename_links(dev, oldname);
1243 
1244 	netdev_name_node_del(dev->name_node);
1245 
1246 	synchronize_net();
1247 
1248 	netdev_name_node_add(net, dev->name_node);
1249 
1250 	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1251 	ret = notifier_to_errno(ret);
1252 
1253 	if (ret) {
1254 		/* err >= 0 after dev_alloc_name() or stores the first errno */
1255 		if (err >= 0) {
1256 			err = ret;
1257 			down_write(&devnet_rename_sem);
1258 			memcpy(dev->name, oldname, IFNAMSIZ);
1259 			memcpy(oldname, newname, IFNAMSIZ);
1260 			WRITE_ONCE(dev->name_assign_type, old_assign_type);
1261 			old_assign_type = NET_NAME_RENAMED;
1262 			goto rollback;
1263 		} else {
1264 			netdev_err(dev, "name change rollback failed: %d\n",
1265 				   ret);
1266 		}
1267 	}
1268 
1269 	return err;
1270 }
1271 
1272 /**
1273  *	dev_set_alias - change ifalias of a device
1274  *	@dev: device
1275  *	@alias: name up to IFALIASZ
1276  *	@len: limit of bytes to copy from info
1277  *
1278  *	Set ifalias for a device,
1279  */
1280 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1281 {
1282 	struct dev_ifalias *new_alias = NULL;
1283 
1284 	if (len >= IFALIASZ)
1285 		return -EINVAL;
1286 
1287 	if (len) {
1288 		new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1289 		if (!new_alias)
1290 			return -ENOMEM;
1291 
1292 		memcpy(new_alias->ifalias, alias, len);
1293 		new_alias->ifalias[len] = 0;
1294 	}
1295 
1296 	mutex_lock(&ifalias_mutex);
1297 	new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1298 					mutex_is_locked(&ifalias_mutex));
1299 	mutex_unlock(&ifalias_mutex);
1300 
1301 	if (new_alias)
1302 		kfree_rcu(new_alias, rcuhead);
1303 
1304 	return len;
1305 }
1306 EXPORT_SYMBOL(dev_set_alias);
1307 
1308 /**
1309  *	dev_get_alias - get ifalias of a device
1310  *	@dev: device
1311  *	@name: buffer to store name of ifalias
1312  *	@len: size of buffer
1313  *
1314  *	get ifalias for a device.  Caller must make sure dev cannot go
1315  *	away,  e.g. rcu read lock or own a reference count to device.
1316  */
1317 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1318 {
1319 	const struct dev_ifalias *alias;
1320 	int ret = 0;
1321 
1322 	rcu_read_lock();
1323 	alias = rcu_dereference(dev->ifalias);
1324 	if (alias)
1325 		ret = snprintf(name, len, "%s", alias->ifalias);
1326 	rcu_read_unlock();
1327 
1328 	return ret;
1329 }
1330 
1331 /**
1332  *	netdev_features_change - device changes features
1333  *	@dev: device to cause notification
1334  *
1335  *	Called to indicate a device has changed features.
1336  */
1337 void netdev_features_change(struct net_device *dev)
1338 {
1339 	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1340 }
1341 EXPORT_SYMBOL(netdev_features_change);
1342 
1343 /**
1344  *	netdev_state_change - device changes state
1345  *	@dev: device to cause notification
1346  *
1347  *	Called to indicate a device has changed state. This function calls
1348  *	the notifier chains for netdev_chain and sends a NEWLINK message
1349  *	to the routing socket.
1350  */
1351 void netdev_state_change(struct net_device *dev)
1352 {
1353 	if (dev->flags & IFF_UP) {
1354 		struct netdev_notifier_change_info change_info = {
1355 			.info.dev = dev,
1356 		};
1357 
1358 		call_netdevice_notifiers_info(NETDEV_CHANGE,
1359 					      &change_info.info);
1360 		rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL, 0, NULL);
1361 	}
1362 }
1363 EXPORT_SYMBOL(netdev_state_change);
1364 
1365 /**
1366  * __netdev_notify_peers - notify network peers about existence of @dev,
1367  * to be called when rtnl lock is already held.
1368  * @dev: network device
1369  *
1370  * Generate traffic such that interested network peers are aware of
1371  * @dev, such as by generating a gratuitous ARP. This may be used when
1372  * a device wants to inform the rest of the network about some sort of
1373  * reconfiguration such as a failover event or virtual machine
1374  * migration.
1375  */
1376 void __netdev_notify_peers(struct net_device *dev)
1377 {
1378 	ASSERT_RTNL();
1379 	call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1380 	call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1381 }
1382 EXPORT_SYMBOL(__netdev_notify_peers);
1383 
1384 /**
1385  * netdev_notify_peers - notify network peers about existence of @dev
1386  * @dev: network device
1387  *
1388  * Generate traffic such that interested network peers are aware of
1389  * @dev, such as by generating a gratuitous ARP. This may be used when
1390  * a device wants to inform the rest of the network about some sort of
1391  * reconfiguration such as a failover event or virtual machine
1392  * migration.
1393  */
1394 void netdev_notify_peers(struct net_device *dev)
1395 {
1396 	rtnl_lock();
1397 	__netdev_notify_peers(dev);
1398 	rtnl_unlock();
1399 }
1400 EXPORT_SYMBOL(netdev_notify_peers);
1401 
1402 static int napi_threaded_poll(void *data);
1403 
1404 static int napi_kthread_create(struct napi_struct *n)
1405 {
1406 	int err = 0;
1407 
1408 	/* Create and wake up the kthread once to put it in
1409 	 * TASK_INTERRUPTIBLE mode to avoid the blocked task
1410 	 * warning and work with loadavg.
1411 	 */
1412 	n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d",
1413 				n->dev->name, n->napi_id);
1414 	if (IS_ERR(n->thread)) {
1415 		err = PTR_ERR(n->thread);
1416 		pr_err("kthread_run failed with err %d\n", err);
1417 		n->thread = NULL;
1418 	}
1419 
1420 	return err;
1421 }
1422 
1423 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1424 {
1425 	const struct net_device_ops *ops = dev->netdev_ops;
1426 	int ret;
1427 
1428 	ASSERT_RTNL();
1429 	dev_addr_check(dev);
1430 
1431 	if (!netif_device_present(dev)) {
1432 		/* may be detached because parent is runtime-suspended */
1433 		if (dev->dev.parent)
1434 			pm_runtime_resume(dev->dev.parent);
1435 		if (!netif_device_present(dev))
1436 			return -ENODEV;
1437 	}
1438 
1439 	/* Block netpoll from trying to do any rx path servicing.
1440 	 * If we don't do this there is a chance ndo_poll_controller
1441 	 * or ndo_poll may be running while we open the device
1442 	 */
1443 	netpoll_poll_disable(dev);
1444 
1445 	ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1446 	ret = notifier_to_errno(ret);
1447 	if (ret)
1448 		return ret;
1449 
1450 	set_bit(__LINK_STATE_START, &dev->state);
1451 
1452 	if (ops->ndo_validate_addr)
1453 		ret = ops->ndo_validate_addr(dev);
1454 
1455 	if (!ret && ops->ndo_open)
1456 		ret = ops->ndo_open(dev);
1457 
1458 	netpoll_poll_enable(dev);
1459 
1460 	if (ret)
1461 		clear_bit(__LINK_STATE_START, &dev->state);
1462 	else {
1463 		dev->flags |= IFF_UP;
1464 		dev_set_rx_mode(dev);
1465 		dev_activate(dev);
1466 		add_device_randomness(dev->dev_addr, dev->addr_len);
1467 	}
1468 
1469 	return ret;
1470 }
1471 
1472 /**
1473  *	dev_open	- prepare an interface for use.
1474  *	@dev: device to open
1475  *	@extack: netlink extended ack
1476  *
1477  *	Takes a device from down to up state. The device's private open
1478  *	function is invoked and then the multicast lists are loaded. Finally
1479  *	the device is moved into the up state and a %NETDEV_UP message is
1480  *	sent to the netdev notifier chain.
1481  *
1482  *	Calling this function on an active interface is a nop. On a failure
1483  *	a negative errno code is returned.
1484  */
1485 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1486 {
1487 	int ret;
1488 
1489 	if (dev->flags & IFF_UP)
1490 		return 0;
1491 
1492 	ret = __dev_open(dev, extack);
1493 	if (ret < 0)
1494 		return ret;
1495 
1496 	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL);
1497 	call_netdevice_notifiers(NETDEV_UP, dev);
1498 
1499 	return ret;
1500 }
1501 EXPORT_SYMBOL(dev_open);
1502 
1503 static void __dev_close_many(struct list_head *head)
1504 {
1505 	struct net_device *dev;
1506 
1507 	ASSERT_RTNL();
1508 	might_sleep();
1509 
1510 	list_for_each_entry(dev, head, close_list) {
1511 		/* Temporarily disable netpoll until the interface is down */
1512 		netpoll_poll_disable(dev);
1513 
1514 		call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1515 
1516 		clear_bit(__LINK_STATE_START, &dev->state);
1517 
1518 		/* Synchronize to scheduled poll. We cannot touch poll list, it
1519 		 * can be even on different cpu. So just clear netif_running().
1520 		 *
1521 		 * dev->stop() will invoke napi_disable() on all of it's
1522 		 * napi_struct instances on this device.
1523 		 */
1524 		smp_mb__after_atomic(); /* Commit netif_running(). */
1525 	}
1526 
1527 	dev_deactivate_many(head);
1528 
1529 	list_for_each_entry(dev, head, close_list) {
1530 		const struct net_device_ops *ops = dev->netdev_ops;
1531 
1532 		/*
1533 		 *	Call the device specific close. This cannot fail.
1534 		 *	Only if device is UP
1535 		 *
1536 		 *	We allow it to be called even after a DETACH hot-plug
1537 		 *	event.
1538 		 */
1539 		if (ops->ndo_stop)
1540 			ops->ndo_stop(dev);
1541 
1542 		dev->flags &= ~IFF_UP;
1543 		netpoll_poll_enable(dev);
1544 	}
1545 }
1546 
1547 static void __dev_close(struct net_device *dev)
1548 {
1549 	LIST_HEAD(single);
1550 
1551 	list_add(&dev->close_list, &single);
1552 	__dev_close_many(&single);
1553 	list_del(&single);
1554 }
1555 
1556 void dev_close_many(struct list_head *head, bool unlink)
1557 {
1558 	struct net_device *dev, *tmp;
1559 
1560 	/* Remove the devices that don't need to be closed */
1561 	list_for_each_entry_safe(dev, tmp, head, close_list)
1562 		if (!(dev->flags & IFF_UP))
1563 			list_del_init(&dev->close_list);
1564 
1565 	__dev_close_many(head);
1566 
1567 	list_for_each_entry_safe(dev, tmp, head, close_list) {
1568 		rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL);
1569 		call_netdevice_notifiers(NETDEV_DOWN, dev);
1570 		if (unlink)
1571 			list_del_init(&dev->close_list);
1572 	}
1573 }
1574 EXPORT_SYMBOL(dev_close_many);
1575 
1576 /**
1577  *	dev_close - shutdown an interface.
1578  *	@dev: device to shutdown
1579  *
1580  *	This function moves an active device into down state. A
1581  *	%NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1582  *	is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1583  *	chain.
1584  */
1585 void dev_close(struct net_device *dev)
1586 {
1587 	if (dev->flags & IFF_UP) {
1588 		LIST_HEAD(single);
1589 
1590 		list_add(&dev->close_list, &single);
1591 		dev_close_many(&single, true);
1592 		list_del(&single);
1593 	}
1594 }
1595 EXPORT_SYMBOL(dev_close);
1596 
1597 
1598 /**
1599  *	dev_disable_lro - disable Large Receive Offload on a device
1600  *	@dev: device
1601  *
1602  *	Disable Large Receive Offload (LRO) on a net device.  Must be
1603  *	called under RTNL.  This is needed if received packets may be
1604  *	forwarded to another interface.
1605  */
1606 void dev_disable_lro(struct net_device *dev)
1607 {
1608 	struct net_device *lower_dev;
1609 	struct list_head *iter;
1610 
1611 	dev->wanted_features &= ~NETIF_F_LRO;
1612 	netdev_update_features(dev);
1613 
1614 	if (unlikely(dev->features & NETIF_F_LRO))
1615 		netdev_WARN(dev, "failed to disable LRO!\n");
1616 
1617 	netdev_for_each_lower_dev(dev, lower_dev, iter)
1618 		dev_disable_lro(lower_dev);
1619 }
1620 EXPORT_SYMBOL(dev_disable_lro);
1621 
1622 /**
1623  *	dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1624  *	@dev: device
1625  *
1626  *	Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1627  *	called under RTNL.  This is needed if Generic XDP is installed on
1628  *	the device.
1629  */
1630 static void dev_disable_gro_hw(struct net_device *dev)
1631 {
1632 	dev->wanted_features &= ~NETIF_F_GRO_HW;
1633 	netdev_update_features(dev);
1634 
1635 	if (unlikely(dev->features & NETIF_F_GRO_HW))
1636 		netdev_WARN(dev, "failed to disable GRO_HW!\n");
1637 }
1638 
1639 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1640 {
1641 #define N(val) 						\
1642 	case NETDEV_##val:				\
1643 		return "NETDEV_" __stringify(val);
1644 	switch (cmd) {
1645 	N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1646 	N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1647 	N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1648 	N(POST_INIT) N(PRE_UNINIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN)
1649 	N(CHANGEUPPER) N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA)
1650 	N(BONDING_INFO) N(PRECHANGEUPPER) N(CHANGELOWERSTATE)
1651 	N(UDP_TUNNEL_PUSH_INFO) N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1652 	N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1653 	N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1654 	N(PRE_CHANGEADDR) N(OFFLOAD_XSTATS_ENABLE) N(OFFLOAD_XSTATS_DISABLE)
1655 	N(OFFLOAD_XSTATS_REPORT_USED) N(OFFLOAD_XSTATS_REPORT_DELTA)
1656 	N(XDP_FEAT_CHANGE)
1657 	}
1658 #undef N
1659 	return "UNKNOWN_NETDEV_EVENT";
1660 }
1661 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1662 
1663 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1664 				   struct net_device *dev)
1665 {
1666 	struct netdev_notifier_info info = {
1667 		.dev = dev,
1668 	};
1669 
1670 	return nb->notifier_call(nb, val, &info);
1671 }
1672 
1673 static int call_netdevice_register_notifiers(struct notifier_block *nb,
1674 					     struct net_device *dev)
1675 {
1676 	int err;
1677 
1678 	err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1679 	err = notifier_to_errno(err);
1680 	if (err)
1681 		return err;
1682 
1683 	if (!(dev->flags & IFF_UP))
1684 		return 0;
1685 
1686 	call_netdevice_notifier(nb, NETDEV_UP, dev);
1687 	return 0;
1688 }
1689 
1690 static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1691 						struct net_device *dev)
1692 {
1693 	if (dev->flags & IFF_UP) {
1694 		call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1695 					dev);
1696 		call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1697 	}
1698 	call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1699 }
1700 
1701 static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1702 						 struct net *net)
1703 {
1704 	struct net_device *dev;
1705 	int err;
1706 
1707 	for_each_netdev(net, dev) {
1708 		err = call_netdevice_register_notifiers(nb, dev);
1709 		if (err)
1710 			goto rollback;
1711 	}
1712 	return 0;
1713 
1714 rollback:
1715 	for_each_netdev_continue_reverse(net, dev)
1716 		call_netdevice_unregister_notifiers(nb, dev);
1717 	return err;
1718 }
1719 
1720 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1721 						    struct net *net)
1722 {
1723 	struct net_device *dev;
1724 
1725 	for_each_netdev(net, dev)
1726 		call_netdevice_unregister_notifiers(nb, dev);
1727 }
1728 
1729 static int dev_boot_phase = 1;
1730 
1731 /**
1732  * register_netdevice_notifier - register a network notifier block
1733  * @nb: notifier
1734  *
1735  * Register a notifier to be called when network device events occur.
1736  * The notifier passed is linked into the kernel structures and must
1737  * not be reused until it has been unregistered. A negative errno code
1738  * is returned on a failure.
1739  *
1740  * When registered all registration and up events are replayed
1741  * to the new notifier to allow device to have a race free
1742  * view of the network device list.
1743  */
1744 
1745 int register_netdevice_notifier(struct notifier_block *nb)
1746 {
1747 	struct net *net;
1748 	int err;
1749 
1750 	/* Close race with setup_net() and cleanup_net() */
1751 	down_write(&pernet_ops_rwsem);
1752 	rtnl_lock();
1753 	err = raw_notifier_chain_register(&netdev_chain, nb);
1754 	if (err)
1755 		goto unlock;
1756 	if (dev_boot_phase)
1757 		goto unlock;
1758 	for_each_net(net) {
1759 		err = call_netdevice_register_net_notifiers(nb, net);
1760 		if (err)
1761 			goto rollback;
1762 	}
1763 
1764 unlock:
1765 	rtnl_unlock();
1766 	up_write(&pernet_ops_rwsem);
1767 	return err;
1768 
1769 rollback:
1770 	for_each_net_continue_reverse(net)
1771 		call_netdevice_unregister_net_notifiers(nb, net);
1772 
1773 	raw_notifier_chain_unregister(&netdev_chain, nb);
1774 	goto unlock;
1775 }
1776 EXPORT_SYMBOL(register_netdevice_notifier);
1777 
1778 /**
1779  * unregister_netdevice_notifier - unregister a network notifier block
1780  * @nb: notifier
1781  *
1782  * Unregister a notifier previously registered by
1783  * register_netdevice_notifier(). The notifier is unlinked into the
1784  * kernel structures and may then be reused. A negative errno code
1785  * is returned on a failure.
1786  *
1787  * After unregistering unregister and down device events are synthesized
1788  * for all devices on the device list to the removed notifier to remove
1789  * the need for special case cleanup code.
1790  */
1791 
1792 int unregister_netdevice_notifier(struct notifier_block *nb)
1793 {
1794 	struct net *net;
1795 	int err;
1796 
1797 	/* Close race with setup_net() and cleanup_net() */
1798 	down_write(&pernet_ops_rwsem);
1799 	rtnl_lock();
1800 	err = raw_notifier_chain_unregister(&netdev_chain, nb);
1801 	if (err)
1802 		goto unlock;
1803 
1804 	for_each_net(net)
1805 		call_netdevice_unregister_net_notifiers(nb, net);
1806 
1807 unlock:
1808 	rtnl_unlock();
1809 	up_write(&pernet_ops_rwsem);
1810 	return err;
1811 }
1812 EXPORT_SYMBOL(unregister_netdevice_notifier);
1813 
1814 static int __register_netdevice_notifier_net(struct net *net,
1815 					     struct notifier_block *nb,
1816 					     bool ignore_call_fail)
1817 {
1818 	int err;
1819 
1820 	err = raw_notifier_chain_register(&net->netdev_chain, nb);
1821 	if (err)
1822 		return err;
1823 	if (dev_boot_phase)
1824 		return 0;
1825 
1826 	err = call_netdevice_register_net_notifiers(nb, net);
1827 	if (err && !ignore_call_fail)
1828 		goto chain_unregister;
1829 
1830 	return 0;
1831 
1832 chain_unregister:
1833 	raw_notifier_chain_unregister(&net->netdev_chain, nb);
1834 	return err;
1835 }
1836 
1837 static int __unregister_netdevice_notifier_net(struct net *net,
1838 					       struct notifier_block *nb)
1839 {
1840 	int err;
1841 
1842 	err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
1843 	if (err)
1844 		return err;
1845 
1846 	call_netdevice_unregister_net_notifiers(nb, net);
1847 	return 0;
1848 }
1849 
1850 /**
1851  * register_netdevice_notifier_net - register a per-netns network notifier block
1852  * @net: network namespace
1853  * @nb: notifier
1854  *
1855  * Register a notifier to be called when network device events occur.
1856  * The notifier passed is linked into the kernel structures and must
1857  * not be reused until it has been unregistered. A negative errno code
1858  * is returned on a failure.
1859  *
1860  * When registered all registration and up events are replayed
1861  * to the new notifier to allow device to have a race free
1862  * view of the network device list.
1863  */
1864 
1865 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
1866 {
1867 	int err;
1868 
1869 	rtnl_lock();
1870 	err = __register_netdevice_notifier_net(net, nb, false);
1871 	rtnl_unlock();
1872 	return err;
1873 }
1874 EXPORT_SYMBOL(register_netdevice_notifier_net);
1875 
1876 /**
1877  * unregister_netdevice_notifier_net - unregister a per-netns
1878  *                                     network notifier block
1879  * @net: network namespace
1880  * @nb: notifier
1881  *
1882  * Unregister a notifier previously registered by
1883  * register_netdevice_notifier_net(). The notifier is unlinked from the
1884  * kernel structures and may then be reused. A negative errno code
1885  * is returned on a failure.
1886  *
1887  * After unregistering unregister and down device events are synthesized
1888  * for all devices on the device list to the removed notifier to remove
1889  * the need for special case cleanup code.
1890  */
1891 
1892 int unregister_netdevice_notifier_net(struct net *net,
1893 				      struct notifier_block *nb)
1894 {
1895 	int err;
1896 
1897 	rtnl_lock();
1898 	err = __unregister_netdevice_notifier_net(net, nb);
1899 	rtnl_unlock();
1900 	return err;
1901 }
1902 EXPORT_SYMBOL(unregister_netdevice_notifier_net);
1903 
1904 static void __move_netdevice_notifier_net(struct net *src_net,
1905 					  struct net *dst_net,
1906 					  struct notifier_block *nb)
1907 {
1908 	__unregister_netdevice_notifier_net(src_net, nb);
1909 	__register_netdevice_notifier_net(dst_net, nb, true);
1910 }
1911 
1912 int register_netdevice_notifier_dev_net(struct net_device *dev,
1913 					struct notifier_block *nb,
1914 					struct netdev_net_notifier *nn)
1915 {
1916 	int err;
1917 
1918 	rtnl_lock();
1919 	err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
1920 	if (!err) {
1921 		nn->nb = nb;
1922 		list_add(&nn->list, &dev->net_notifier_list);
1923 	}
1924 	rtnl_unlock();
1925 	return err;
1926 }
1927 EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
1928 
1929 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
1930 					  struct notifier_block *nb,
1931 					  struct netdev_net_notifier *nn)
1932 {
1933 	int err;
1934 
1935 	rtnl_lock();
1936 	list_del(&nn->list);
1937 	err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
1938 	rtnl_unlock();
1939 	return err;
1940 }
1941 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
1942 
1943 static void move_netdevice_notifiers_dev_net(struct net_device *dev,
1944 					     struct net *net)
1945 {
1946 	struct netdev_net_notifier *nn;
1947 
1948 	list_for_each_entry(nn, &dev->net_notifier_list, list)
1949 		__move_netdevice_notifier_net(dev_net(dev), net, nn->nb);
1950 }
1951 
1952 /**
1953  *	call_netdevice_notifiers_info - call all network notifier blocks
1954  *	@val: value passed unmodified to notifier function
1955  *	@info: notifier information data
1956  *
1957  *	Call all network notifier blocks.  Parameters and return value
1958  *	are as for raw_notifier_call_chain().
1959  */
1960 
1961 int call_netdevice_notifiers_info(unsigned long val,
1962 				  struct netdev_notifier_info *info)
1963 {
1964 	struct net *net = dev_net(info->dev);
1965 	int ret;
1966 
1967 	ASSERT_RTNL();
1968 
1969 	/* Run per-netns notifier block chain first, then run the global one.
1970 	 * Hopefully, one day, the global one is going to be removed after
1971 	 * all notifier block registrators get converted to be per-netns.
1972 	 */
1973 	ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
1974 	if (ret & NOTIFY_STOP_MASK)
1975 		return ret;
1976 	return raw_notifier_call_chain(&netdev_chain, val, info);
1977 }
1978 
1979 /**
1980  *	call_netdevice_notifiers_info_robust - call per-netns notifier blocks
1981  *	                                       for and rollback on error
1982  *	@val_up: value passed unmodified to notifier function
1983  *	@val_down: value passed unmodified to the notifier function when
1984  *	           recovering from an error on @val_up
1985  *	@info: notifier information data
1986  *
1987  *	Call all per-netns network notifier blocks, but not notifier blocks on
1988  *	the global notifier chain. Parameters and return value are as for
1989  *	raw_notifier_call_chain_robust().
1990  */
1991 
1992 static int
1993 call_netdevice_notifiers_info_robust(unsigned long val_up,
1994 				     unsigned long val_down,
1995 				     struct netdev_notifier_info *info)
1996 {
1997 	struct net *net = dev_net(info->dev);
1998 
1999 	ASSERT_RTNL();
2000 
2001 	return raw_notifier_call_chain_robust(&net->netdev_chain,
2002 					      val_up, val_down, info);
2003 }
2004 
2005 static int call_netdevice_notifiers_extack(unsigned long val,
2006 					   struct net_device *dev,
2007 					   struct netlink_ext_ack *extack)
2008 {
2009 	struct netdev_notifier_info info = {
2010 		.dev = dev,
2011 		.extack = extack,
2012 	};
2013 
2014 	return call_netdevice_notifiers_info(val, &info);
2015 }
2016 
2017 /**
2018  *	call_netdevice_notifiers - call all network notifier blocks
2019  *      @val: value passed unmodified to notifier function
2020  *      @dev: net_device pointer passed unmodified to notifier function
2021  *
2022  *	Call all network notifier blocks.  Parameters and return value
2023  *	are as for raw_notifier_call_chain().
2024  */
2025 
2026 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
2027 {
2028 	return call_netdevice_notifiers_extack(val, dev, NULL);
2029 }
2030 EXPORT_SYMBOL(call_netdevice_notifiers);
2031 
2032 /**
2033  *	call_netdevice_notifiers_mtu - call all network notifier blocks
2034  *	@val: value passed unmodified to notifier function
2035  *	@dev: net_device pointer passed unmodified to notifier function
2036  *	@arg: additional u32 argument passed to the notifier function
2037  *
2038  *	Call all network notifier blocks.  Parameters and return value
2039  *	are as for raw_notifier_call_chain().
2040  */
2041 static int call_netdevice_notifiers_mtu(unsigned long val,
2042 					struct net_device *dev, u32 arg)
2043 {
2044 	struct netdev_notifier_info_ext info = {
2045 		.info.dev = dev,
2046 		.ext.mtu = arg,
2047 	};
2048 
2049 	BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2050 
2051 	return call_netdevice_notifiers_info(val, &info.info);
2052 }
2053 
2054 #ifdef CONFIG_NET_INGRESS
2055 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2056 
2057 void net_inc_ingress_queue(void)
2058 {
2059 	static_branch_inc(&ingress_needed_key);
2060 }
2061 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2062 
2063 void net_dec_ingress_queue(void)
2064 {
2065 	static_branch_dec(&ingress_needed_key);
2066 }
2067 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2068 #endif
2069 
2070 #ifdef CONFIG_NET_EGRESS
2071 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2072 
2073 void net_inc_egress_queue(void)
2074 {
2075 	static_branch_inc(&egress_needed_key);
2076 }
2077 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2078 
2079 void net_dec_egress_queue(void)
2080 {
2081 	static_branch_dec(&egress_needed_key);
2082 }
2083 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2084 #endif
2085 
2086 #ifdef CONFIG_NET_CLS_ACT
2087 DEFINE_STATIC_KEY_FALSE(tcf_bypass_check_needed_key);
2088 EXPORT_SYMBOL(tcf_bypass_check_needed_key);
2089 #endif
2090 
2091 DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2092 EXPORT_SYMBOL(netstamp_needed_key);
2093 #ifdef CONFIG_JUMP_LABEL
2094 static atomic_t netstamp_needed_deferred;
2095 static atomic_t netstamp_wanted;
2096 static void netstamp_clear(struct work_struct *work)
2097 {
2098 	int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2099 	int wanted;
2100 
2101 	wanted = atomic_add_return(deferred, &netstamp_wanted);
2102 	if (wanted > 0)
2103 		static_branch_enable(&netstamp_needed_key);
2104 	else
2105 		static_branch_disable(&netstamp_needed_key);
2106 }
2107 static DECLARE_WORK(netstamp_work, netstamp_clear);
2108 #endif
2109 
2110 void net_enable_timestamp(void)
2111 {
2112 #ifdef CONFIG_JUMP_LABEL
2113 	int wanted = atomic_read(&netstamp_wanted);
2114 
2115 	while (wanted > 0) {
2116 		if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted + 1))
2117 			return;
2118 	}
2119 	atomic_inc(&netstamp_needed_deferred);
2120 	schedule_work(&netstamp_work);
2121 #else
2122 	static_branch_inc(&netstamp_needed_key);
2123 #endif
2124 }
2125 EXPORT_SYMBOL(net_enable_timestamp);
2126 
2127 void net_disable_timestamp(void)
2128 {
2129 #ifdef CONFIG_JUMP_LABEL
2130 	int wanted = atomic_read(&netstamp_wanted);
2131 
2132 	while (wanted > 1) {
2133 		if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted - 1))
2134 			return;
2135 	}
2136 	atomic_dec(&netstamp_needed_deferred);
2137 	schedule_work(&netstamp_work);
2138 #else
2139 	static_branch_dec(&netstamp_needed_key);
2140 #endif
2141 }
2142 EXPORT_SYMBOL(net_disable_timestamp);
2143 
2144 static inline void net_timestamp_set(struct sk_buff *skb)
2145 {
2146 	skb->tstamp = 0;
2147 	skb->mono_delivery_time = 0;
2148 	if (static_branch_unlikely(&netstamp_needed_key))
2149 		skb->tstamp = ktime_get_real();
2150 }
2151 
2152 #define net_timestamp_check(COND, SKB)				\
2153 	if (static_branch_unlikely(&netstamp_needed_key)) {	\
2154 		if ((COND) && !(SKB)->tstamp)			\
2155 			(SKB)->tstamp = ktime_get_real();	\
2156 	}							\
2157 
2158 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2159 {
2160 	return __is_skb_forwardable(dev, skb, true);
2161 }
2162 EXPORT_SYMBOL_GPL(is_skb_forwardable);
2163 
2164 static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb,
2165 			      bool check_mtu)
2166 {
2167 	int ret = ____dev_forward_skb(dev, skb, check_mtu);
2168 
2169 	if (likely(!ret)) {
2170 		skb->protocol = eth_type_trans(skb, dev);
2171 		skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2172 	}
2173 
2174 	return ret;
2175 }
2176 
2177 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2178 {
2179 	return __dev_forward_skb2(dev, skb, true);
2180 }
2181 EXPORT_SYMBOL_GPL(__dev_forward_skb);
2182 
2183 /**
2184  * dev_forward_skb - loopback an skb to another netif
2185  *
2186  * @dev: destination network device
2187  * @skb: buffer to forward
2188  *
2189  * return values:
2190  *	NET_RX_SUCCESS	(no congestion)
2191  *	NET_RX_DROP     (packet was dropped, but freed)
2192  *
2193  * dev_forward_skb can be used for injecting an skb from the
2194  * start_xmit function of one device into the receive queue
2195  * of another device.
2196  *
2197  * The receiving device may be in another namespace, so
2198  * we have to clear all information in the skb that could
2199  * impact namespace isolation.
2200  */
2201 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2202 {
2203 	return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2204 }
2205 EXPORT_SYMBOL_GPL(dev_forward_skb);
2206 
2207 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb)
2208 {
2209 	return __dev_forward_skb2(dev, skb, false) ?: netif_rx_internal(skb);
2210 }
2211 
2212 static inline int deliver_skb(struct sk_buff *skb,
2213 			      struct packet_type *pt_prev,
2214 			      struct net_device *orig_dev)
2215 {
2216 	if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2217 		return -ENOMEM;
2218 	refcount_inc(&skb->users);
2219 	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2220 }
2221 
2222 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2223 					  struct packet_type **pt,
2224 					  struct net_device *orig_dev,
2225 					  __be16 type,
2226 					  struct list_head *ptype_list)
2227 {
2228 	struct packet_type *ptype, *pt_prev = *pt;
2229 
2230 	list_for_each_entry_rcu(ptype, ptype_list, list) {
2231 		if (ptype->type != type)
2232 			continue;
2233 		if (pt_prev)
2234 			deliver_skb(skb, pt_prev, orig_dev);
2235 		pt_prev = ptype;
2236 	}
2237 	*pt = pt_prev;
2238 }
2239 
2240 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2241 {
2242 	if (!ptype->af_packet_priv || !skb->sk)
2243 		return false;
2244 
2245 	if (ptype->id_match)
2246 		return ptype->id_match(ptype, skb->sk);
2247 	else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2248 		return true;
2249 
2250 	return false;
2251 }
2252 
2253 /**
2254  * dev_nit_active - return true if any network interface taps are in use
2255  *
2256  * @dev: network device to check for the presence of taps
2257  */
2258 bool dev_nit_active(struct net_device *dev)
2259 {
2260 	return !list_empty(&net_hotdata.ptype_all) ||
2261 	       !list_empty(&dev->ptype_all);
2262 }
2263 EXPORT_SYMBOL_GPL(dev_nit_active);
2264 
2265 /*
2266  *	Support routine. Sends outgoing frames to any network
2267  *	taps currently in use.
2268  */
2269 
2270 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2271 {
2272 	struct list_head *ptype_list = &net_hotdata.ptype_all;
2273 	struct packet_type *ptype, *pt_prev = NULL;
2274 	struct sk_buff *skb2 = NULL;
2275 
2276 	rcu_read_lock();
2277 again:
2278 	list_for_each_entry_rcu(ptype, ptype_list, list) {
2279 		if (READ_ONCE(ptype->ignore_outgoing))
2280 			continue;
2281 
2282 		/* Never send packets back to the socket
2283 		 * they originated from - MvS (miquels@drinkel.ow.org)
2284 		 */
2285 		if (skb_loop_sk(ptype, skb))
2286 			continue;
2287 
2288 		if (pt_prev) {
2289 			deliver_skb(skb2, pt_prev, skb->dev);
2290 			pt_prev = ptype;
2291 			continue;
2292 		}
2293 
2294 		/* need to clone skb, done only once */
2295 		skb2 = skb_clone(skb, GFP_ATOMIC);
2296 		if (!skb2)
2297 			goto out_unlock;
2298 
2299 		net_timestamp_set(skb2);
2300 
2301 		/* skb->nh should be correctly
2302 		 * set by sender, so that the second statement is
2303 		 * just protection against buggy protocols.
2304 		 */
2305 		skb_reset_mac_header(skb2);
2306 
2307 		if (skb_network_header(skb2) < skb2->data ||
2308 		    skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2309 			net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2310 					     ntohs(skb2->protocol),
2311 					     dev->name);
2312 			skb_reset_network_header(skb2);
2313 		}
2314 
2315 		skb2->transport_header = skb2->network_header;
2316 		skb2->pkt_type = PACKET_OUTGOING;
2317 		pt_prev = ptype;
2318 	}
2319 
2320 	if (ptype_list == &net_hotdata.ptype_all) {
2321 		ptype_list = &dev->ptype_all;
2322 		goto again;
2323 	}
2324 out_unlock:
2325 	if (pt_prev) {
2326 		if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2327 			pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2328 		else
2329 			kfree_skb(skb2);
2330 	}
2331 	rcu_read_unlock();
2332 }
2333 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2334 
2335 /**
2336  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2337  * @dev: Network device
2338  * @txq: number of queues available
2339  *
2340  * If real_num_tx_queues is changed the tc mappings may no longer be
2341  * valid. To resolve this verify the tc mapping remains valid and if
2342  * not NULL the mapping. With no priorities mapping to this
2343  * offset/count pair it will no longer be used. In the worst case TC0
2344  * is invalid nothing can be done so disable priority mappings. If is
2345  * expected that drivers will fix this mapping if they can before
2346  * calling netif_set_real_num_tx_queues.
2347  */
2348 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2349 {
2350 	int i;
2351 	struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2352 
2353 	/* If TC0 is invalidated disable TC mapping */
2354 	if (tc->offset + tc->count > txq) {
2355 		netdev_warn(dev, "Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2356 		dev->num_tc = 0;
2357 		return;
2358 	}
2359 
2360 	/* Invalidated prio to tc mappings set to TC0 */
2361 	for (i = 1; i < TC_BITMASK + 1; i++) {
2362 		int q = netdev_get_prio_tc_map(dev, i);
2363 
2364 		tc = &dev->tc_to_txq[q];
2365 		if (tc->offset + tc->count > txq) {
2366 			netdev_warn(dev, "Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2367 				    i, q);
2368 			netdev_set_prio_tc_map(dev, i, 0);
2369 		}
2370 	}
2371 }
2372 
2373 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2374 {
2375 	if (dev->num_tc) {
2376 		struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2377 		int i;
2378 
2379 		/* walk through the TCs and see if it falls into any of them */
2380 		for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2381 			if ((txq - tc->offset) < tc->count)
2382 				return i;
2383 		}
2384 
2385 		/* didn't find it, just return -1 to indicate no match */
2386 		return -1;
2387 	}
2388 
2389 	return 0;
2390 }
2391 EXPORT_SYMBOL(netdev_txq_to_tc);
2392 
2393 #ifdef CONFIG_XPS
2394 static struct static_key xps_needed __read_mostly;
2395 static struct static_key xps_rxqs_needed __read_mostly;
2396 static DEFINE_MUTEX(xps_map_mutex);
2397 #define xmap_dereference(P)		\
2398 	rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2399 
2400 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2401 			     struct xps_dev_maps *old_maps, int tci, u16 index)
2402 {
2403 	struct xps_map *map = NULL;
2404 	int pos;
2405 
2406 	map = xmap_dereference(dev_maps->attr_map[tci]);
2407 	if (!map)
2408 		return false;
2409 
2410 	for (pos = map->len; pos--;) {
2411 		if (map->queues[pos] != index)
2412 			continue;
2413 
2414 		if (map->len > 1) {
2415 			map->queues[pos] = map->queues[--map->len];
2416 			break;
2417 		}
2418 
2419 		if (old_maps)
2420 			RCU_INIT_POINTER(old_maps->attr_map[tci], NULL);
2421 		RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2422 		kfree_rcu(map, rcu);
2423 		return false;
2424 	}
2425 
2426 	return true;
2427 }
2428 
2429 static bool remove_xps_queue_cpu(struct net_device *dev,
2430 				 struct xps_dev_maps *dev_maps,
2431 				 int cpu, u16 offset, u16 count)
2432 {
2433 	int num_tc = dev_maps->num_tc;
2434 	bool active = false;
2435 	int tci;
2436 
2437 	for (tci = cpu * num_tc; num_tc--; tci++) {
2438 		int i, j;
2439 
2440 		for (i = count, j = offset; i--; j++) {
2441 			if (!remove_xps_queue(dev_maps, NULL, tci, j))
2442 				break;
2443 		}
2444 
2445 		active |= i < 0;
2446 	}
2447 
2448 	return active;
2449 }
2450 
2451 static void reset_xps_maps(struct net_device *dev,
2452 			   struct xps_dev_maps *dev_maps,
2453 			   enum xps_map_type type)
2454 {
2455 	static_key_slow_dec_cpuslocked(&xps_needed);
2456 	if (type == XPS_RXQS)
2457 		static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2458 
2459 	RCU_INIT_POINTER(dev->xps_maps[type], NULL);
2460 
2461 	kfree_rcu(dev_maps, rcu);
2462 }
2463 
2464 static void clean_xps_maps(struct net_device *dev, enum xps_map_type type,
2465 			   u16 offset, u16 count)
2466 {
2467 	struct xps_dev_maps *dev_maps;
2468 	bool active = false;
2469 	int i, j;
2470 
2471 	dev_maps = xmap_dereference(dev->xps_maps[type]);
2472 	if (!dev_maps)
2473 		return;
2474 
2475 	for (j = 0; j < dev_maps->nr_ids; j++)
2476 		active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, count);
2477 	if (!active)
2478 		reset_xps_maps(dev, dev_maps, type);
2479 
2480 	if (type == XPS_CPUS) {
2481 		for (i = offset + (count - 1); count--; i--)
2482 			netdev_queue_numa_node_write(
2483 				netdev_get_tx_queue(dev, i), NUMA_NO_NODE);
2484 	}
2485 }
2486 
2487 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2488 				   u16 count)
2489 {
2490 	if (!static_key_false(&xps_needed))
2491 		return;
2492 
2493 	cpus_read_lock();
2494 	mutex_lock(&xps_map_mutex);
2495 
2496 	if (static_key_false(&xps_rxqs_needed))
2497 		clean_xps_maps(dev, XPS_RXQS, offset, count);
2498 
2499 	clean_xps_maps(dev, XPS_CPUS, offset, count);
2500 
2501 	mutex_unlock(&xps_map_mutex);
2502 	cpus_read_unlock();
2503 }
2504 
2505 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2506 {
2507 	netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2508 }
2509 
2510 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2511 				      u16 index, bool is_rxqs_map)
2512 {
2513 	struct xps_map *new_map;
2514 	int alloc_len = XPS_MIN_MAP_ALLOC;
2515 	int i, pos;
2516 
2517 	for (pos = 0; map && pos < map->len; pos++) {
2518 		if (map->queues[pos] != index)
2519 			continue;
2520 		return map;
2521 	}
2522 
2523 	/* Need to add tx-queue to this CPU's/rx-queue's existing map */
2524 	if (map) {
2525 		if (pos < map->alloc_len)
2526 			return map;
2527 
2528 		alloc_len = map->alloc_len * 2;
2529 	}
2530 
2531 	/* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2532 	 *  map
2533 	 */
2534 	if (is_rxqs_map)
2535 		new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2536 	else
2537 		new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2538 				       cpu_to_node(attr_index));
2539 	if (!new_map)
2540 		return NULL;
2541 
2542 	for (i = 0; i < pos; i++)
2543 		new_map->queues[i] = map->queues[i];
2544 	new_map->alloc_len = alloc_len;
2545 	new_map->len = pos;
2546 
2547 	return new_map;
2548 }
2549 
2550 /* Copy xps maps at a given index */
2551 static void xps_copy_dev_maps(struct xps_dev_maps *dev_maps,
2552 			      struct xps_dev_maps *new_dev_maps, int index,
2553 			      int tc, bool skip_tc)
2554 {
2555 	int i, tci = index * dev_maps->num_tc;
2556 	struct xps_map *map;
2557 
2558 	/* copy maps belonging to foreign traffic classes */
2559 	for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2560 		if (i == tc && skip_tc)
2561 			continue;
2562 
2563 		/* fill in the new device map from the old device map */
2564 		map = xmap_dereference(dev_maps->attr_map[tci]);
2565 		RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2566 	}
2567 }
2568 
2569 /* Must be called under cpus_read_lock */
2570 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2571 			  u16 index, enum xps_map_type type)
2572 {
2573 	struct xps_dev_maps *dev_maps, *new_dev_maps = NULL, *old_dev_maps = NULL;
2574 	const unsigned long *online_mask = NULL;
2575 	bool active = false, copy = false;
2576 	int i, j, tci, numa_node_id = -2;
2577 	int maps_sz, num_tc = 1, tc = 0;
2578 	struct xps_map *map, *new_map;
2579 	unsigned int nr_ids;
2580 
2581 	WARN_ON_ONCE(index >= dev->num_tx_queues);
2582 
2583 	if (dev->num_tc) {
2584 		/* Do not allow XPS on subordinate device directly */
2585 		num_tc = dev->num_tc;
2586 		if (num_tc < 0)
2587 			return -EINVAL;
2588 
2589 		/* If queue belongs to subordinate dev use its map */
2590 		dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2591 
2592 		tc = netdev_txq_to_tc(dev, index);
2593 		if (tc < 0)
2594 			return -EINVAL;
2595 	}
2596 
2597 	mutex_lock(&xps_map_mutex);
2598 
2599 	dev_maps = xmap_dereference(dev->xps_maps[type]);
2600 	if (type == XPS_RXQS) {
2601 		maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2602 		nr_ids = dev->num_rx_queues;
2603 	} else {
2604 		maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2605 		if (num_possible_cpus() > 1)
2606 			online_mask = cpumask_bits(cpu_online_mask);
2607 		nr_ids = nr_cpu_ids;
2608 	}
2609 
2610 	if (maps_sz < L1_CACHE_BYTES)
2611 		maps_sz = L1_CACHE_BYTES;
2612 
2613 	/* The old dev_maps could be larger or smaller than the one we're
2614 	 * setting up now, as dev->num_tc or nr_ids could have been updated in
2615 	 * between. We could try to be smart, but let's be safe instead and only
2616 	 * copy foreign traffic classes if the two map sizes match.
2617 	 */
2618 	if (dev_maps &&
2619 	    dev_maps->num_tc == num_tc && dev_maps->nr_ids == nr_ids)
2620 		copy = true;
2621 
2622 	/* allocate memory for queue storage */
2623 	for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2624 	     j < nr_ids;) {
2625 		if (!new_dev_maps) {
2626 			new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2627 			if (!new_dev_maps) {
2628 				mutex_unlock(&xps_map_mutex);
2629 				return -ENOMEM;
2630 			}
2631 
2632 			new_dev_maps->nr_ids = nr_ids;
2633 			new_dev_maps->num_tc = num_tc;
2634 		}
2635 
2636 		tci = j * num_tc + tc;
2637 		map = copy ? xmap_dereference(dev_maps->attr_map[tci]) : NULL;
2638 
2639 		map = expand_xps_map(map, j, index, type == XPS_RXQS);
2640 		if (!map)
2641 			goto error;
2642 
2643 		RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2644 	}
2645 
2646 	if (!new_dev_maps)
2647 		goto out_no_new_maps;
2648 
2649 	if (!dev_maps) {
2650 		/* Increment static keys at most once per type */
2651 		static_key_slow_inc_cpuslocked(&xps_needed);
2652 		if (type == XPS_RXQS)
2653 			static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2654 	}
2655 
2656 	for (j = 0; j < nr_ids; j++) {
2657 		bool skip_tc = false;
2658 
2659 		tci = j * num_tc + tc;
2660 		if (netif_attr_test_mask(j, mask, nr_ids) &&
2661 		    netif_attr_test_online(j, online_mask, nr_ids)) {
2662 			/* add tx-queue to CPU/rx-queue maps */
2663 			int pos = 0;
2664 
2665 			skip_tc = true;
2666 
2667 			map = xmap_dereference(new_dev_maps->attr_map[tci]);
2668 			while ((pos < map->len) && (map->queues[pos] != index))
2669 				pos++;
2670 
2671 			if (pos == map->len)
2672 				map->queues[map->len++] = index;
2673 #ifdef CONFIG_NUMA
2674 			if (type == XPS_CPUS) {
2675 				if (numa_node_id == -2)
2676 					numa_node_id = cpu_to_node(j);
2677 				else if (numa_node_id != cpu_to_node(j))
2678 					numa_node_id = -1;
2679 			}
2680 #endif
2681 		}
2682 
2683 		if (copy)
2684 			xps_copy_dev_maps(dev_maps, new_dev_maps, j, tc,
2685 					  skip_tc);
2686 	}
2687 
2688 	rcu_assign_pointer(dev->xps_maps[type], new_dev_maps);
2689 
2690 	/* Cleanup old maps */
2691 	if (!dev_maps)
2692 		goto out_no_old_maps;
2693 
2694 	for (j = 0; j < dev_maps->nr_ids; j++) {
2695 		for (i = num_tc, tci = j * dev_maps->num_tc; i--; tci++) {
2696 			map = xmap_dereference(dev_maps->attr_map[tci]);
2697 			if (!map)
2698 				continue;
2699 
2700 			if (copy) {
2701 				new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2702 				if (map == new_map)
2703 					continue;
2704 			}
2705 
2706 			RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2707 			kfree_rcu(map, rcu);
2708 		}
2709 	}
2710 
2711 	old_dev_maps = dev_maps;
2712 
2713 out_no_old_maps:
2714 	dev_maps = new_dev_maps;
2715 	active = true;
2716 
2717 out_no_new_maps:
2718 	if (type == XPS_CPUS)
2719 		/* update Tx queue numa node */
2720 		netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2721 					     (numa_node_id >= 0) ?
2722 					     numa_node_id : NUMA_NO_NODE);
2723 
2724 	if (!dev_maps)
2725 		goto out_no_maps;
2726 
2727 	/* removes tx-queue from unused CPUs/rx-queues */
2728 	for (j = 0; j < dev_maps->nr_ids; j++) {
2729 		tci = j * dev_maps->num_tc;
2730 
2731 		for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2732 			if (i == tc &&
2733 			    netif_attr_test_mask(j, mask, dev_maps->nr_ids) &&
2734 			    netif_attr_test_online(j, online_mask, dev_maps->nr_ids))
2735 				continue;
2736 
2737 			active |= remove_xps_queue(dev_maps,
2738 						   copy ? old_dev_maps : NULL,
2739 						   tci, index);
2740 		}
2741 	}
2742 
2743 	if (old_dev_maps)
2744 		kfree_rcu(old_dev_maps, rcu);
2745 
2746 	/* free map if not active */
2747 	if (!active)
2748 		reset_xps_maps(dev, dev_maps, type);
2749 
2750 out_no_maps:
2751 	mutex_unlock(&xps_map_mutex);
2752 
2753 	return 0;
2754 error:
2755 	/* remove any maps that we added */
2756 	for (j = 0; j < nr_ids; j++) {
2757 		for (i = num_tc, tci = j * num_tc; i--; tci++) {
2758 			new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2759 			map = copy ?
2760 			      xmap_dereference(dev_maps->attr_map[tci]) :
2761 			      NULL;
2762 			if (new_map && new_map != map)
2763 				kfree(new_map);
2764 		}
2765 	}
2766 
2767 	mutex_unlock(&xps_map_mutex);
2768 
2769 	kfree(new_dev_maps);
2770 	return -ENOMEM;
2771 }
2772 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2773 
2774 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2775 			u16 index)
2776 {
2777 	int ret;
2778 
2779 	cpus_read_lock();
2780 	ret =  __netif_set_xps_queue(dev, cpumask_bits(mask), index, XPS_CPUS);
2781 	cpus_read_unlock();
2782 
2783 	return ret;
2784 }
2785 EXPORT_SYMBOL(netif_set_xps_queue);
2786 
2787 #endif
2788 static void netdev_unbind_all_sb_channels(struct net_device *dev)
2789 {
2790 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2791 
2792 	/* Unbind any subordinate channels */
2793 	while (txq-- != &dev->_tx[0]) {
2794 		if (txq->sb_dev)
2795 			netdev_unbind_sb_channel(dev, txq->sb_dev);
2796 	}
2797 }
2798 
2799 void netdev_reset_tc(struct net_device *dev)
2800 {
2801 #ifdef CONFIG_XPS
2802 	netif_reset_xps_queues_gt(dev, 0);
2803 #endif
2804 	netdev_unbind_all_sb_channels(dev);
2805 
2806 	/* Reset TC configuration of device */
2807 	dev->num_tc = 0;
2808 	memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2809 	memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2810 }
2811 EXPORT_SYMBOL(netdev_reset_tc);
2812 
2813 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2814 {
2815 	if (tc >= dev->num_tc)
2816 		return -EINVAL;
2817 
2818 #ifdef CONFIG_XPS
2819 	netif_reset_xps_queues(dev, offset, count);
2820 #endif
2821 	dev->tc_to_txq[tc].count = count;
2822 	dev->tc_to_txq[tc].offset = offset;
2823 	return 0;
2824 }
2825 EXPORT_SYMBOL(netdev_set_tc_queue);
2826 
2827 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2828 {
2829 	if (num_tc > TC_MAX_QUEUE)
2830 		return -EINVAL;
2831 
2832 #ifdef CONFIG_XPS
2833 	netif_reset_xps_queues_gt(dev, 0);
2834 #endif
2835 	netdev_unbind_all_sb_channels(dev);
2836 
2837 	dev->num_tc = num_tc;
2838 	return 0;
2839 }
2840 EXPORT_SYMBOL(netdev_set_num_tc);
2841 
2842 void netdev_unbind_sb_channel(struct net_device *dev,
2843 			      struct net_device *sb_dev)
2844 {
2845 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2846 
2847 #ifdef CONFIG_XPS
2848 	netif_reset_xps_queues_gt(sb_dev, 0);
2849 #endif
2850 	memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2851 	memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2852 
2853 	while (txq-- != &dev->_tx[0]) {
2854 		if (txq->sb_dev == sb_dev)
2855 			txq->sb_dev = NULL;
2856 	}
2857 }
2858 EXPORT_SYMBOL(netdev_unbind_sb_channel);
2859 
2860 int netdev_bind_sb_channel_queue(struct net_device *dev,
2861 				 struct net_device *sb_dev,
2862 				 u8 tc, u16 count, u16 offset)
2863 {
2864 	/* Make certain the sb_dev and dev are already configured */
2865 	if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2866 		return -EINVAL;
2867 
2868 	/* We cannot hand out queues we don't have */
2869 	if ((offset + count) > dev->real_num_tx_queues)
2870 		return -EINVAL;
2871 
2872 	/* Record the mapping */
2873 	sb_dev->tc_to_txq[tc].count = count;
2874 	sb_dev->tc_to_txq[tc].offset = offset;
2875 
2876 	/* Provide a way for Tx queue to find the tc_to_txq map or
2877 	 * XPS map for itself.
2878 	 */
2879 	while (count--)
2880 		netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2881 
2882 	return 0;
2883 }
2884 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2885 
2886 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2887 {
2888 	/* Do not use a multiqueue device to represent a subordinate channel */
2889 	if (netif_is_multiqueue(dev))
2890 		return -ENODEV;
2891 
2892 	/* We allow channels 1 - 32767 to be used for subordinate channels.
2893 	 * Channel 0 is meant to be "native" mode and used only to represent
2894 	 * the main root device. We allow writing 0 to reset the device back
2895 	 * to normal mode after being used as a subordinate channel.
2896 	 */
2897 	if (channel > S16_MAX)
2898 		return -EINVAL;
2899 
2900 	dev->num_tc = -channel;
2901 
2902 	return 0;
2903 }
2904 EXPORT_SYMBOL(netdev_set_sb_channel);
2905 
2906 /*
2907  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2908  * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2909  */
2910 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2911 {
2912 	bool disabling;
2913 	int rc;
2914 
2915 	disabling = txq < dev->real_num_tx_queues;
2916 
2917 	if (txq < 1 || txq > dev->num_tx_queues)
2918 		return -EINVAL;
2919 
2920 	if (dev->reg_state == NETREG_REGISTERED ||
2921 	    dev->reg_state == NETREG_UNREGISTERING) {
2922 		ASSERT_RTNL();
2923 
2924 		rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2925 						  txq);
2926 		if (rc)
2927 			return rc;
2928 
2929 		if (dev->num_tc)
2930 			netif_setup_tc(dev, txq);
2931 
2932 		dev_qdisc_change_real_num_tx(dev, txq);
2933 
2934 		dev->real_num_tx_queues = txq;
2935 
2936 		if (disabling) {
2937 			synchronize_net();
2938 			qdisc_reset_all_tx_gt(dev, txq);
2939 #ifdef CONFIG_XPS
2940 			netif_reset_xps_queues_gt(dev, txq);
2941 #endif
2942 		}
2943 	} else {
2944 		dev->real_num_tx_queues = txq;
2945 	}
2946 
2947 	return 0;
2948 }
2949 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2950 
2951 #ifdef CONFIG_SYSFS
2952 /**
2953  *	netif_set_real_num_rx_queues - set actual number of RX queues used
2954  *	@dev: Network device
2955  *	@rxq: Actual number of RX queues
2956  *
2957  *	This must be called either with the rtnl_lock held or before
2958  *	registration of the net device.  Returns 0 on success, or a
2959  *	negative error code.  If called before registration, it always
2960  *	succeeds.
2961  */
2962 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2963 {
2964 	int rc;
2965 
2966 	if (rxq < 1 || rxq > dev->num_rx_queues)
2967 		return -EINVAL;
2968 
2969 	if (dev->reg_state == NETREG_REGISTERED) {
2970 		ASSERT_RTNL();
2971 
2972 		rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2973 						  rxq);
2974 		if (rc)
2975 			return rc;
2976 	}
2977 
2978 	dev->real_num_rx_queues = rxq;
2979 	return 0;
2980 }
2981 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2982 #endif
2983 
2984 /**
2985  *	netif_set_real_num_queues - set actual number of RX and TX queues used
2986  *	@dev: Network device
2987  *	@txq: Actual number of TX queues
2988  *	@rxq: Actual number of RX queues
2989  *
2990  *	Set the real number of both TX and RX queues.
2991  *	Does nothing if the number of queues is already correct.
2992  */
2993 int netif_set_real_num_queues(struct net_device *dev,
2994 			      unsigned int txq, unsigned int rxq)
2995 {
2996 	unsigned int old_rxq = dev->real_num_rx_queues;
2997 	int err;
2998 
2999 	if (txq < 1 || txq > dev->num_tx_queues ||
3000 	    rxq < 1 || rxq > dev->num_rx_queues)
3001 		return -EINVAL;
3002 
3003 	/* Start from increases, so the error path only does decreases -
3004 	 * decreases can't fail.
3005 	 */
3006 	if (rxq > dev->real_num_rx_queues) {
3007 		err = netif_set_real_num_rx_queues(dev, rxq);
3008 		if (err)
3009 			return err;
3010 	}
3011 	if (txq > dev->real_num_tx_queues) {
3012 		err = netif_set_real_num_tx_queues(dev, txq);
3013 		if (err)
3014 			goto undo_rx;
3015 	}
3016 	if (rxq < dev->real_num_rx_queues)
3017 		WARN_ON(netif_set_real_num_rx_queues(dev, rxq));
3018 	if (txq < dev->real_num_tx_queues)
3019 		WARN_ON(netif_set_real_num_tx_queues(dev, txq));
3020 
3021 	return 0;
3022 undo_rx:
3023 	WARN_ON(netif_set_real_num_rx_queues(dev, old_rxq));
3024 	return err;
3025 }
3026 EXPORT_SYMBOL(netif_set_real_num_queues);
3027 
3028 /**
3029  * netif_set_tso_max_size() - set the max size of TSO frames supported
3030  * @dev:	netdev to update
3031  * @size:	max skb->len of a TSO frame
3032  *
3033  * Set the limit on the size of TSO super-frames the device can handle.
3034  * Unless explicitly set the stack will assume the value of
3035  * %GSO_LEGACY_MAX_SIZE.
3036  */
3037 void netif_set_tso_max_size(struct net_device *dev, unsigned int size)
3038 {
3039 	dev->tso_max_size = min(GSO_MAX_SIZE, size);
3040 	if (size < READ_ONCE(dev->gso_max_size))
3041 		netif_set_gso_max_size(dev, size);
3042 	if (size < READ_ONCE(dev->gso_ipv4_max_size))
3043 		netif_set_gso_ipv4_max_size(dev, size);
3044 }
3045 EXPORT_SYMBOL(netif_set_tso_max_size);
3046 
3047 /**
3048  * netif_set_tso_max_segs() - set the max number of segs supported for TSO
3049  * @dev:	netdev to update
3050  * @segs:	max number of TCP segments
3051  *
3052  * Set the limit on the number of TCP segments the device can generate from
3053  * a single TSO super-frame.
3054  * Unless explicitly set the stack will assume the value of %GSO_MAX_SEGS.
3055  */
3056 void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs)
3057 {
3058 	dev->tso_max_segs = segs;
3059 	if (segs < READ_ONCE(dev->gso_max_segs))
3060 		netif_set_gso_max_segs(dev, segs);
3061 }
3062 EXPORT_SYMBOL(netif_set_tso_max_segs);
3063 
3064 /**
3065  * netif_inherit_tso_max() - copy all TSO limits from a lower device to an upper
3066  * @to:		netdev to update
3067  * @from:	netdev from which to copy the limits
3068  */
3069 void netif_inherit_tso_max(struct net_device *to, const struct net_device *from)
3070 {
3071 	netif_set_tso_max_size(to, from->tso_max_size);
3072 	netif_set_tso_max_segs(to, from->tso_max_segs);
3073 }
3074 EXPORT_SYMBOL(netif_inherit_tso_max);
3075 
3076 /**
3077  * netif_get_num_default_rss_queues - default number of RSS queues
3078  *
3079  * Default value is the number of physical cores if there are only 1 or 2, or
3080  * divided by 2 if there are more.
3081  */
3082 int netif_get_num_default_rss_queues(void)
3083 {
3084 	cpumask_var_t cpus;
3085 	int cpu, count = 0;
3086 
3087 	if (unlikely(is_kdump_kernel() || !zalloc_cpumask_var(&cpus, GFP_KERNEL)))
3088 		return 1;
3089 
3090 	cpumask_copy(cpus, cpu_online_mask);
3091 	for_each_cpu(cpu, cpus) {
3092 		++count;
3093 		cpumask_andnot(cpus, cpus, topology_sibling_cpumask(cpu));
3094 	}
3095 	free_cpumask_var(cpus);
3096 
3097 	return count > 2 ? DIV_ROUND_UP(count, 2) : count;
3098 }
3099 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3100 
3101 static void __netif_reschedule(struct Qdisc *q)
3102 {
3103 	struct softnet_data *sd;
3104 	unsigned long flags;
3105 
3106 	local_irq_save(flags);
3107 	sd = this_cpu_ptr(&softnet_data);
3108 	q->next_sched = NULL;
3109 	*sd->output_queue_tailp = q;
3110 	sd->output_queue_tailp = &q->next_sched;
3111 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
3112 	local_irq_restore(flags);
3113 }
3114 
3115 void __netif_schedule(struct Qdisc *q)
3116 {
3117 	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3118 		__netif_reschedule(q);
3119 }
3120 EXPORT_SYMBOL(__netif_schedule);
3121 
3122 struct dev_kfree_skb_cb {
3123 	enum skb_drop_reason reason;
3124 };
3125 
3126 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
3127 {
3128 	return (struct dev_kfree_skb_cb *)skb->cb;
3129 }
3130 
3131 void netif_schedule_queue(struct netdev_queue *txq)
3132 {
3133 	rcu_read_lock();
3134 	if (!netif_xmit_stopped(txq)) {
3135 		struct Qdisc *q = rcu_dereference(txq->qdisc);
3136 
3137 		__netif_schedule(q);
3138 	}
3139 	rcu_read_unlock();
3140 }
3141 EXPORT_SYMBOL(netif_schedule_queue);
3142 
3143 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3144 {
3145 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3146 		struct Qdisc *q;
3147 
3148 		rcu_read_lock();
3149 		q = rcu_dereference(dev_queue->qdisc);
3150 		__netif_schedule(q);
3151 		rcu_read_unlock();
3152 	}
3153 }
3154 EXPORT_SYMBOL(netif_tx_wake_queue);
3155 
3156 void dev_kfree_skb_irq_reason(struct sk_buff *skb, enum skb_drop_reason reason)
3157 {
3158 	unsigned long flags;
3159 
3160 	if (unlikely(!skb))
3161 		return;
3162 
3163 	if (likely(refcount_read(&skb->users) == 1)) {
3164 		smp_rmb();
3165 		refcount_set(&skb->users, 0);
3166 	} else if (likely(!refcount_dec_and_test(&skb->users))) {
3167 		return;
3168 	}
3169 	get_kfree_skb_cb(skb)->reason = reason;
3170 	local_irq_save(flags);
3171 	skb->next = __this_cpu_read(softnet_data.completion_queue);
3172 	__this_cpu_write(softnet_data.completion_queue, skb);
3173 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
3174 	local_irq_restore(flags);
3175 }
3176 EXPORT_SYMBOL(dev_kfree_skb_irq_reason);
3177 
3178 void dev_kfree_skb_any_reason(struct sk_buff *skb, enum skb_drop_reason reason)
3179 {
3180 	if (in_hardirq() || irqs_disabled())
3181 		dev_kfree_skb_irq_reason(skb, reason);
3182 	else
3183 		kfree_skb_reason(skb, reason);
3184 }
3185 EXPORT_SYMBOL(dev_kfree_skb_any_reason);
3186 
3187 
3188 /**
3189  * netif_device_detach - mark device as removed
3190  * @dev: network device
3191  *
3192  * Mark device as removed from system and therefore no longer available.
3193  */
3194 void netif_device_detach(struct net_device *dev)
3195 {
3196 	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3197 	    netif_running(dev)) {
3198 		netif_tx_stop_all_queues(dev);
3199 	}
3200 }
3201 EXPORT_SYMBOL(netif_device_detach);
3202 
3203 /**
3204  * netif_device_attach - mark device as attached
3205  * @dev: network device
3206  *
3207  * Mark device as attached from system and restart if needed.
3208  */
3209 void netif_device_attach(struct net_device *dev)
3210 {
3211 	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3212 	    netif_running(dev)) {
3213 		netif_tx_wake_all_queues(dev);
3214 		__netdev_watchdog_up(dev);
3215 	}
3216 }
3217 EXPORT_SYMBOL(netif_device_attach);
3218 
3219 /*
3220  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3221  * to be used as a distribution range.
3222  */
3223 static u16 skb_tx_hash(const struct net_device *dev,
3224 		       const struct net_device *sb_dev,
3225 		       struct sk_buff *skb)
3226 {
3227 	u32 hash;
3228 	u16 qoffset = 0;
3229 	u16 qcount = dev->real_num_tx_queues;
3230 
3231 	if (dev->num_tc) {
3232 		u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3233 
3234 		qoffset = sb_dev->tc_to_txq[tc].offset;
3235 		qcount = sb_dev->tc_to_txq[tc].count;
3236 		if (unlikely(!qcount)) {
3237 			net_warn_ratelimited("%s: invalid qcount, qoffset %u for tc %u\n",
3238 					     sb_dev->name, qoffset, tc);
3239 			qoffset = 0;
3240 			qcount = dev->real_num_tx_queues;
3241 		}
3242 	}
3243 
3244 	if (skb_rx_queue_recorded(skb)) {
3245 		DEBUG_NET_WARN_ON_ONCE(qcount == 0);
3246 		hash = skb_get_rx_queue(skb);
3247 		if (hash >= qoffset)
3248 			hash -= qoffset;
3249 		while (unlikely(hash >= qcount))
3250 			hash -= qcount;
3251 		return hash + qoffset;
3252 	}
3253 
3254 	return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3255 }
3256 
3257 void skb_warn_bad_offload(const struct sk_buff *skb)
3258 {
3259 	static const netdev_features_t null_features;
3260 	struct net_device *dev = skb->dev;
3261 	const char *name = "";
3262 
3263 	if (!net_ratelimit())
3264 		return;
3265 
3266 	if (dev) {
3267 		if (dev->dev.parent)
3268 			name = dev_driver_string(dev->dev.parent);
3269 		else
3270 			name = netdev_name(dev);
3271 	}
3272 	skb_dump(KERN_WARNING, skb, false);
3273 	WARN(1, "%s: caps=(%pNF, %pNF)\n",
3274 	     name, dev ? &dev->features : &null_features,
3275 	     skb->sk ? &skb->sk->sk_route_caps : &null_features);
3276 }
3277 
3278 /*
3279  * Invalidate hardware checksum when packet is to be mangled, and
3280  * complete checksum manually on outgoing path.
3281  */
3282 int skb_checksum_help(struct sk_buff *skb)
3283 {
3284 	__wsum csum;
3285 	int ret = 0, offset;
3286 
3287 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3288 		goto out_set_summed;
3289 
3290 	if (unlikely(skb_is_gso(skb))) {
3291 		skb_warn_bad_offload(skb);
3292 		return -EINVAL;
3293 	}
3294 
3295 	/* Before computing a checksum, we should make sure no frag could
3296 	 * be modified by an external entity : checksum could be wrong.
3297 	 */
3298 	if (skb_has_shared_frag(skb)) {
3299 		ret = __skb_linearize(skb);
3300 		if (ret)
3301 			goto out;
3302 	}
3303 
3304 	offset = skb_checksum_start_offset(skb);
3305 	ret = -EINVAL;
3306 	if (unlikely(offset >= skb_headlen(skb))) {
3307 		DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3308 		WARN_ONCE(true, "offset (%d) >= skb_headlen() (%u)\n",
3309 			  offset, skb_headlen(skb));
3310 		goto out;
3311 	}
3312 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
3313 
3314 	offset += skb->csum_offset;
3315 	if (unlikely(offset + sizeof(__sum16) > skb_headlen(skb))) {
3316 		DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3317 		WARN_ONCE(true, "offset+2 (%zu) > skb_headlen() (%u)\n",
3318 			  offset + sizeof(__sum16), skb_headlen(skb));
3319 		goto out;
3320 	}
3321 	ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3322 	if (ret)
3323 		goto out;
3324 
3325 	*(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3326 out_set_summed:
3327 	skb->ip_summed = CHECKSUM_NONE;
3328 out:
3329 	return ret;
3330 }
3331 EXPORT_SYMBOL(skb_checksum_help);
3332 
3333 int skb_crc32c_csum_help(struct sk_buff *skb)
3334 {
3335 	__le32 crc32c_csum;
3336 	int ret = 0, offset, start;
3337 
3338 	if (skb->ip_summed != CHECKSUM_PARTIAL)
3339 		goto out;
3340 
3341 	if (unlikely(skb_is_gso(skb)))
3342 		goto out;
3343 
3344 	/* Before computing a checksum, we should make sure no frag could
3345 	 * be modified by an external entity : checksum could be wrong.
3346 	 */
3347 	if (unlikely(skb_has_shared_frag(skb))) {
3348 		ret = __skb_linearize(skb);
3349 		if (ret)
3350 			goto out;
3351 	}
3352 	start = skb_checksum_start_offset(skb);
3353 	offset = start + offsetof(struct sctphdr, checksum);
3354 	if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3355 		ret = -EINVAL;
3356 		goto out;
3357 	}
3358 
3359 	ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3360 	if (ret)
3361 		goto out;
3362 
3363 	crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3364 						  skb->len - start, ~(__u32)0,
3365 						  crc32c_csum_stub));
3366 	*(__le32 *)(skb->data + offset) = crc32c_csum;
3367 	skb_reset_csum_not_inet(skb);
3368 out:
3369 	return ret;
3370 }
3371 
3372 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3373 {
3374 	__be16 type = skb->protocol;
3375 
3376 	/* Tunnel gso handlers can set protocol to ethernet. */
3377 	if (type == htons(ETH_P_TEB)) {
3378 		struct ethhdr *eth;
3379 
3380 		if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3381 			return 0;
3382 
3383 		eth = (struct ethhdr *)skb->data;
3384 		type = eth->h_proto;
3385 	}
3386 
3387 	return vlan_get_protocol_and_depth(skb, type, depth);
3388 }
3389 
3390 
3391 /* Take action when hardware reception checksum errors are detected. */
3392 #ifdef CONFIG_BUG
3393 static void do_netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3394 {
3395 	netdev_err(dev, "hw csum failure\n");
3396 	skb_dump(KERN_ERR, skb, true);
3397 	dump_stack();
3398 }
3399 
3400 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3401 {
3402 	DO_ONCE_LITE(do_netdev_rx_csum_fault, dev, skb);
3403 }
3404 EXPORT_SYMBOL(netdev_rx_csum_fault);
3405 #endif
3406 
3407 /* XXX: check that highmem exists at all on the given machine. */
3408 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3409 {
3410 #ifdef CONFIG_HIGHMEM
3411 	int i;
3412 
3413 	if (!(dev->features & NETIF_F_HIGHDMA)) {
3414 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3415 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3416 
3417 			if (PageHighMem(skb_frag_page(frag)))
3418 				return 1;
3419 		}
3420 	}
3421 #endif
3422 	return 0;
3423 }
3424 
3425 /* If MPLS offload request, verify we are testing hardware MPLS features
3426  * instead of standard features for the netdev.
3427  */
3428 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3429 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3430 					   netdev_features_t features,
3431 					   __be16 type)
3432 {
3433 	if (eth_p_mpls(type))
3434 		features &= skb->dev->mpls_features;
3435 
3436 	return features;
3437 }
3438 #else
3439 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3440 					   netdev_features_t features,
3441 					   __be16 type)
3442 {
3443 	return features;
3444 }
3445 #endif
3446 
3447 static netdev_features_t harmonize_features(struct sk_buff *skb,
3448 	netdev_features_t features)
3449 {
3450 	__be16 type;
3451 
3452 	type = skb_network_protocol(skb, NULL);
3453 	features = net_mpls_features(skb, features, type);
3454 
3455 	if (skb->ip_summed != CHECKSUM_NONE &&
3456 	    !can_checksum_protocol(features, type)) {
3457 		features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3458 	}
3459 	if (illegal_highdma(skb->dev, skb))
3460 		features &= ~NETIF_F_SG;
3461 
3462 	return features;
3463 }
3464 
3465 netdev_features_t passthru_features_check(struct sk_buff *skb,
3466 					  struct net_device *dev,
3467 					  netdev_features_t features)
3468 {
3469 	return features;
3470 }
3471 EXPORT_SYMBOL(passthru_features_check);
3472 
3473 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3474 					     struct net_device *dev,
3475 					     netdev_features_t features)
3476 {
3477 	return vlan_features_check(skb, features);
3478 }
3479 
3480 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3481 					    struct net_device *dev,
3482 					    netdev_features_t features)
3483 {
3484 	u16 gso_segs = skb_shinfo(skb)->gso_segs;
3485 
3486 	if (gso_segs > READ_ONCE(dev->gso_max_segs))
3487 		return features & ~NETIF_F_GSO_MASK;
3488 
3489 	if (unlikely(skb->len >= READ_ONCE(dev->gso_max_size)))
3490 		return features & ~NETIF_F_GSO_MASK;
3491 
3492 	if (!skb_shinfo(skb)->gso_type) {
3493 		skb_warn_bad_offload(skb);
3494 		return features & ~NETIF_F_GSO_MASK;
3495 	}
3496 
3497 	/* Support for GSO partial features requires software
3498 	 * intervention before we can actually process the packets
3499 	 * so we need to strip support for any partial features now
3500 	 * and we can pull them back in after we have partially
3501 	 * segmented the frame.
3502 	 */
3503 	if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3504 		features &= ~dev->gso_partial_features;
3505 
3506 	/* Make sure to clear the IPv4 ID mangling feature if the
3507 	 * IPv4 header has the potential to be fragmented.
3508 	 */
3509 	if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3510 		struct iphdr *iph = skb->encapsulation ?
3511 				    inner_ip_hdr(skb) : ip_hdr(skb);
3512 
3513 		if (!(iph->frag_off & htons(IP_DF)))
3514 			features &= ~NETIF_F_TSO_MANGLEID;
3515 	}
3516 
3517 	return features;
3518 }
3519 
3520 netdev_features_t netif_skb_features(struct sk_buff *skb)
3521 {
3522 	struct net_device *dev = skb->dev;
3523 	netdev_features_t features = dev->features;
3524 
3525 	if (skb_is_gso(skb))
3526 		features = gso_features_check(skb, dev, features);
3527 
3528 	/* If encapsulation offload request, verify we are testing
3529 	 * hardware encapsulation features instead of standard
3530 	 * features for the netdev
3531 	 */
3532 	if (skb->encapsulation)
3533 		features &= dev->hw_enc_features;
3534 
3535 	if (skb_vlan_tagged(skb))
3536 		features = netdev_intersect_features(features,
3537 						     dev->vlan_features |
3538 						     NETIF_F_HW_VLAN_CTAG_TX |
3539 						     NETIF_F_HW_VLAN_STAG_TX);
3540 
3541 	if (dev->netdev_ops->ndo_features_check)
3542 		features &= dev->netdev_ops->ndo_features_check(skb, dev,
3543 								features);
3544 	else
3545 		features &= dflt_features_check(skb, dev, features);
3546 
3547 	return harmonize_features(skb, features);
3548 }
3549 EXPORT_SYMBOL(netif_skb_features);
3550 
3551 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3552 		    struct netdev_queue *txq, bool more)
3553 {
3554 	unsigned int len;
3555 	int rc;
3556 
3557 	if (dev_nit_active(dev))
3558 		dev_queue_xmit_nit(skb, dev);
3559 
3560 	len = skb->len;
3561 	trace_net_dev_start_xmit(skb, dev);
3562 	rc = netdev_start_xmit(skb, dev, txq, more);
3563 	trace_net_dev_xmit(skb, rc, dev, len);
3564 
3565 	return rc;
3566 }
3567 
3568 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3569 				    struct netdev_queue *txq, int *ret)
3570 {
3571 	struct sk_buff *skb = first;
3572 	int rc = NETDEV_TX_OK;
3573 
3574 	while (skb) {
3575 		struct sk_buff *next = skb->next;
3576 
3577 		skb_mark_not_on_list(skb);
3578 		rc = xmit_one(skb, dev, txq, next != NULL);
3579 		if (unlikely(!dev_xmit_complete(rc))) {
3580 			skb->next = next;
3581 			goto out;
3582 		}
3583 
3584 		skb = next;
3585 		if (netif_tx_queue_stopped(txq) && skb) {
3586 			rc = NETDEV_TX_BUSY;
3587 			break;
3588 		}
3589 	}
3590 
3591 out:
3592 	*ret = rc;
3593 	return skb;
3594 }
3595 
3596 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3597 					  netdev_features_t features)
3598 {
3599 	if (skb_vlan_tag_present(skb) &&
3600 	    !vlan_hw_offload_capable(features, skb->vlan_proto))
3601 		skb = __vlan_hwaccel_push_inside(skb);
3602 	return skb;
3603 }
3604 
3605 int skb_csum_hwoffload_help(struct sk_buff *skb,
3606 			    const netdev_features_t features)
3607 {
3608 	if (unlikely(skb_csum_is_sctp(skb)))
3609 		return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3610 			skb_crc32c_csum_help(skb);
3611 
3612 	if (features & NETIF_F_HW_CSUM)
3613 		return 0;
3614 
3615 	if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
3616 		switch (skb->csum_offset) {
3617 		case offsetof(struct tcphdr, check):
3618 		case offsetof(struct udphdr, check):
3619 			return 0;
3620 		}
3621 	}
3622 
3623 	return skb_checksum_help(skb);
3624 }
3625 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3626 
3627 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3628 {
3629 	netdev_features_t features;
3630 
3631 	features = netif_skb_features(skb);
3632 	skb = validate_xmit_vlan(skb, features);
3633 	if (unlikely(!skb))
3634 		goto out_null;
3635 
3636 	skb = sk_validate_xmit_skb(skb, dev);
3637 	if (unlikely(!skb))
3638 		goto out_null;
3639 
3640 	if (netif_needs_gso(skb, features)) {
3641 		struct sk_buff *segs;
3642 
3643 		segs = skb_gso_segment(skb, features);
3644 		if (IS_ERR(segs)) {
3645 			goto out_kfree_skb;
3646 		} else if (segs) {
3647 			consume_skb(skb);
3648 			skb = segs;
3649 		}
3650 	} else {
3651 		if (skb_needs_linearize(skb, features) &&
3652 		    __skb_linearize(skb))
3653 			goto out_kfree_skb;
3654 
3655 		/* If packet is not checksummed and device does not
3656 		 * support checksumming for this protocol, complete
3657 		 * checksumming here.
3658 		 */
3659 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
3660 			if (skb->encapsulation)
3661 				skb_set_inner_transport_header(skb,
3662 							       skb_checksum_start_offset(skb));
3663 			else
3664 				skb_set_transport_header(skb,
3665 							 skb_checksum_start_offset(skb));
3666 			if (skb_csum_hwoffload_help(skb, features))
3667 				goto out_kfree_skb;
3668 		}
3669 	}
3670 
3671 	skb = validate_xmit_xfrm(skb, features, again);
3672 
3673 	return skb;
3674 
3675 out_kfree_skb:
3676 	kfree_skb(skb);
3677 out_null:
3678 	dev_core_stats_tx_dropped_inc(dev);
3679 	return NULL;
3680 }
3681 
3682 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3683 {
3684 	struct sk_buff *next, *head = NULL, *tail;
3685 
3686 	for (; skb != NULL; skb = next) {
3687 		next = skb->next;
3688 		skb_mark_not_on_list(skb);
3689 
3690 		/* in case skb wont be segmented, point to itself */
3691 		skb->prev = skb;
3692 
3693 		skb = validate_xmit_skb(skb, dev, again);
3694 		if (!skb)
3695 			continue;
3696 
3697 		if (!head)
3698 			head = skb;
3699 		else
3700 			tail->next = skb;
3701 		/* If skb was segmented, skb->prev points to
3702 		 * the last segment. If not, it still contains skb.
3703 		 */
3704 		tail = skb->prev;
3705 	}
3706 	return head;
3707 }
3708 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3709 
3710 static void qdisc_pkt_len_init(struct sk_buff *skb)
3711 {
3712 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
3713 
3714 	qdisc_skb_cb(skb)->pkt_len = skb->len;
3715 
3716 	/* To get more precise estimation of bytes sent on wire,
3717 	 * we add to pkt_len the headers size of all segments
3718 	 */
3719 	if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3720 		u16 gso_segs = shinfo->gso_segs;
3721 		unsigned int hdr_len;
3722 
3723 		/* mac layer + network layer */
3724 		hdr_len = skb_transport_offset(skb);
3725 
3726 		/* + transport layer */
3727 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3728 			const struct tcphdr *th;
3729 			struct tcphdr _tcphdr;
3730 
3731 			th = skb_header_pointer(skb, hdr_len,
3732 						sizeof(_tcphdr), &_tcphdr);
3733 			if (likely(th))
3734 				hdr_len += __tcp_hdrlen(th);
3735 		} else {
3736 			struct udphdr _udphdr;
3737 
3738 			if (skb_header_pointer(skb, hdr_len,
3739 					       sizeof(_udphdr), &_udphdr))
3740 				hdr_len += sizeof(struct udphdr);
3741 		}
3742 
3743 		if (shinfo->gso_type & SKB_GSO_DODGY)
3744 			gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3745 						shinfo->gso_size);
3746 
3747 		qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3748 	}
3749 }
3750 
3751 static int dev_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *q,
3752 			     struct sk_buff **to_free,
3753 			     struct netdev_queue *txq)
3754 {
3755 	int rc;
3756 
3757 	rc = q->enqueue(skb, q, to_free) & NET_XMIT_MASK;
3758 	if (rc == NET_XMIT_SUCCESS)
3759 		trace_qdisc_enqueue(q, txq, skb);
3760 	return rc;
3761 }
3762 
3763 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3764 				 struct net_device *dev,
3765 				 struct netdev_queue *txq)
3766 {
3767 	spinlock_t *root_lock = qdisc_lock(q);
3768 	struct sk_buff *to_free = NULL;
3769 	bool contended;
3770 	int rc;
3771 
3772 	qdisc_calculate_pkt_len(skb, q);
3773 
3774 	tcf_set_drop_reason(skb, SKB_DROP_REASON_QDISC_DROP);
3775 
3776 	if (q->flags & TCQ_F_NOLOCK) {
3777 		if (q->flags & TCQ_F_CAN_BYPASS && nolock_qdisc_is_empty(q) &&
3778 		    qdisc_run_begin(q)) {
3779 			/* Retest nolock_qdisc_is_empty() within the protection
3780 			 * of q->seqlock to protect from racing with requeuing.
3781 			 */
3782 			if (unlikely(!nolock_qdisc_is_empty(q))) {
3783 				rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3784 				__qdisc_run(q);
3785 				qdisc_run_end(q);
3786 
3787 				goto no_lock_out;
3788 			}
3789 
3790 			qdisc_bstats_cpu_update(q, skb);
3791 			if (sch_direct_xmit(skb, q, dev, txq, NULL, true) &&
3792 			    !nolock_qdisc_is_empty(q))
3793 				__qdisc_run(q);
3794 
3795 			qdisc_run_end(q);
3796 			return NET_XMIT_SUCCESS;
3797 		}
3798 
3799 		rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3800 		qdisc_run(q);
3801 
3802 no_lock_out:
3803 		if (unlikely(to_free))
3804 			kfree_skb_list_reason(to_free,
3805 					      tcf_get_drop_reason(to_free));
3806 		return rc;
3807 	}
3808 
3809 	/*
3810 	 * Heuristic to force contended enqueues to serialize on a
3811 	 * separate lock before trying to get qdisc main lock.
3812 	 * This permits qdisc->running owner to get the lock more
3813 	 * often and dequeue packets faster.
3814 	 * On PREEMPT_RT it is possible to preempt the qdisc owner during xmit
3815 	 * and then other tasks will only enqueue packets. The packets will be
3816 	 * sent after the qdisc owner is scheduled again. To prevent this
3817 	 * scenario the task always serialize on the lock.
3818 	 */
3819 	contended = qdisc_is_running(q) || IS_ENABLED(CONFIG_PREEMPT_RT);
3820 	if (unlikely(contended))
3821 		spin_lock(&q->busylock);
3822 
3823 	spin_lock(root_lock);
3824 	if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3825 		__qdisc_drop(skb, &to_free);
3826 		rc = NET_XMIT_DROP;
3827 	} else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3828 		   qdisc_run_begin(q)) {
3829 		/*
3830 		 * This is a work-conserving queue; there are no old skbs
3831 		 * waiting to be sent out; and the qdisc is not running -
3832 		 * xmit the skb directly.
3833 		 */
3834 
3835 		qdisc_bstats_update(q, skb);
3836 
3837 		if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3838 			if (unlikely(contended)) {
3839 				spin_unlock(&q->busylock);
3840 				contended = false;
3841 			}
3842 			__qdisc_run(q);
3843 		}
3844 
3845 		qdisc_run_end(q);
3846 		rc = NET_XMIT_SUCCESS;
3847 	} else {
3848 		rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3849 		if (qdisc_run_begin(q)) {
3850 			if (unlikely(contended)) {
3851 				spin_unlock(&q->busylock);
3852 				contended = false;
3853 			}
3854 			__qdisc_run(q);
3855 			qdisc_run_end(q);
3856 		}
3857 	}
3858 	spin_unlock(root_lock);
3859 	if (unlikely(to_free))
3860 		kfree_skb_list_reason(to_free,
3861 				      tcf_get_drop_reason(to_free));
3862 	if (unlikely(contended))
3863 		spin_unlock(&q->busylock);
3864 	return rc;
3865 }
3866 
3867 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3868 static void skb_update_prio(struct sk_buff *skb)
3869 {
3870 	const struct netprio_map *map;
3871 	const struct sock *sk;
3872 	unsigned int prioidx;
3873 
3874 	if (skb->priority)
3875 		return;
3876 	map = rcu_dereference_bh(skb->dev->priomap);
3877 	if (!map)
3878 		return;
3879 	sk = skb_to_full_sk(skb);
3880 	if (!sk)
3881 		return;
3882 
3883 	prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3884 
3885 	if (prioidx < map->priomap_len)
3886 		skb->priority = map->priomap[prioidx];
3887 }
3888 #else
3889 #define skb_update_prio(skb)
3890 #endif
3891 
3892 /**
3893  *	dev_loopback_xmit - loop back @skb
3894  *	@net: network namespace this loopback is happening in
3895  *	@sk:  sk needed to be a netfilter okfn
3896  *	@skb: buffer to transmit
3897  */
3898 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3899 {
3900 	skb_reset_mac_header(skb);
3901 	__skb_pull(skb, skb_network_offset(skb));
3902 	skb->pkt_type = PACKET_LOOPBACK;
3903 	if (skb->ip_summed == CHECKSUM_NONE)
3904 		skb->ip_summed = CHECKSUM_UNNECESSARY;
3905 	DEBUG_NET_WARN_ON_ONCE(!skb_dst(skb));
3906 	skb_dst_force(skb);
3907 	netif_rx(skb);
3908 	return 0;
3909 }
3910 EXPORT_SYMBOL(dev_loopback_xmit);
3911 
3912 #ifdef CONFIG_NET_EGRESS
3913 static struct netdev_queue *
3914 netdev_tx_queue_mapping(struct net_device *dev, struct sk_buff *skb)
3915 {
3916 	int qm = skb_get_queue_mapping(skb);
3917 
3918 	return netdev_get_tx_queue(dev, netdev_cap_txqueue(dev, qm));
3919 }
3920 
3921 static bool netdev_xmit_txqueue_skipped(void)
3922 {
3923 	return __this_cpu_read(softnet_data.xmit.skip_txqueue);
3924 }
3925 
3926 void netdev_xmit_skip_txqueue(bool skip)
3927 {
3928 	__this_cpu_write(softnet_data.xmit.skip_txqueue, skip);
3929 }
3930 EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue);
3931 #endif /* CONFIG_NET_EGRESS */
3932 
3933 #ifdef CONFIG_NET_XGRESS
3934 static int tc_run(struct tcx_entry *entry, struct sk_buff *skb,
3935 		  enum skb_drop_reason *drop_reason)
3936 {
3937 	int ret = TC_ACT_UNSPEC;
3938 #ifdef CONFIG_NET_CLS_ACT
3939 	struct mini_Qdisc *miniq = rcu_dereference_bh(entry->miniq);
3940 	struct tcf_result res;
3941 
3942 	if (!miniq)
3943 		return ret;
3944 
3945 	if (static_branch_unlikely(&tcf_bypass_check_needed_key)) {
3946 		if (tcf_block_bypass_sw(miniq->block))
3947 			return ret;
3948 	}
3949 
3950 	tc_skb_cb(skb)->mru = 0;
3951 	tc_skb_cb(skb)->post_ct = false;
3952 	tcf_set_drop_reason(skb, *drop_reason);
3953 
3954 	mini_qdisc_bstats_cpu_update(miniq, skb);
3955 	ret = tcf_classify(skb, miniq->block, miniq->filter_list, &res, false);
3956 	/* Only tcf related quirks below. */
3957 	switch (ret) {
3958 	case TC_ACT_SHOT:
3959 		*drop_reason = tcf_get_drop_reason(skb);
3960 		mini_qdisc_qstats_cpu_drop(miniq);
3961 		break;
3962 	case TC_ACT_OK:
3963 	case TC_ACT_RECLASSIFY:
3964 		skb->tc_index = TC_H_MIN(res.classid);
3965 		break;
3966 	}
3967 #endif /* CONFIG_NET_CLS_ACT */
3968 	return ret;
3969 }
3970 
3971 static DEFINE_STATIC_KEY_FALSE(tcx_needed_key);
3972 
3973 void tcx_inc(void)
3974 {
3975 	static_branch_inc(&tcx_needed_key);
3976 }
3977 
3978 void tcx_dec(void)
3979 {
3980 	static_branch_dec(&tcx_needed_key);
3981 }
3982 
3983 static __always_inline enum tcx_action_base
3984 tcx_run(const struct bpf_mprog_entry *entry, struct sk_buff *skb,
3985 	const bool needs_mac)
3986 {
3987 	const struct bpf_mprog_fp *fp;
3988 	const struct bpf_prog *prog;
3989 	int ret = TCX_NEXT;
3990 
3991 	if (needs_mac)
3992 		__skb_push(skb, skb->mac_len);
3993 	bpf_mprog_foreach_prog(entry, fp, prog) {
3994 		bpf_compute_data_pointers(skb);
3995 		ret = bpf_prog_run(prog, skb);
3996 		if (ret != TCX_NEXT)
3997 			break;
3998 	}
3999 	if (needs_mac)
4000 		__skb_pull(skb, skb->mac_len);
4001 	return tcx_action_code(skb, ret);
4002 }
4003 
4004 static __always_inline struct sk_buff *
4005 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4006 		   struct net_device *orig_dev, bool *another)
4007 {
4008 	struct bpf_mprog_entry *entry = rcu_dereference_bh(skb->dev->tcx_ingress);
4009 	enum skb_drop_reason drop_reason = SKB_DROP_REASON_TC_INGRESS;
4010 	int sch_ret;
4011 
4012 	if (!entry)
4013 		return skb;
4014 	if (*pt_prev) {
4015 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
4016 		*pt_prev = NULL;
4017 	}
4018 
4019 	qdisc_skb_cb(skb)->pkt_len = skb->len;
4020 	tcx_set_ingress(skb, true);
4021 
4022 	if (static_branch_unlikely(&tcx_needed_key)) {
4023 		sch_ret = tcx_run(entry, skb, true);
4024 		if (sch_ret != TC_ACT_UNSPEC)
4025 			goto ingress_verdict;
4026 	}
4027 	sch_ret = tc_run(tcx_entry(entry), skb, &drop_reason);
4028 ingress_verdict:
4029 	switch (sch_ret) {
4030 	case TC_ACT_REDIRECT:
4031 		/* skb_mac_header check was done by BPF, so we can safely
4032 		 * push the L2 header back before redirecting to another
4033 		 * netdev.
4034 		 */
4035 		__skb_push(skb, skb->mac_len);
4036 		if (skb_do_redirect(skb) == -EAGAIN) {
4037 			__skb_pull(skb, skb->mac_len);
4038 			*another = true;
4039 			break;
4040 		}
4041 		*ret = NET_RX_SUCCESS;
4042 		return NULL;
4043 	case TC_ACT_SHOT:
4044 		kfree_skb_reason(skb, drop_reason);
4045 		*ret = NET_RX_DROP;
4046 		return NULL;
4047 	/* used by tc_run */
4048 	case TC_ACT_STOLEN:
4049 	case TC_ACT_QUEUED:
4050 	case TC_ACT_TRAP:
4051 		consume_skb(skb);
4052 		fallthrough;
4053 	case TC_ACT_CONSUMED:
4054 		*ret = NET_RX_SUCCESS;
4055 		return NULL;
4056 	}
4057 
4058 	return skb;
4059 }
4060 
4061 static __always_inline struct sk_buff *
4062 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
4063 {
4064 	struct bpf_mprog_entry *entry = rcu_dereference_bh(dev->tcx_egress);
4065 	enum skb_drop_reason drop_reason = SKB_DROP_REASON_TC_EGRESS;
4066 	int sch_ret;
4067 
4068 	if (!entry)
4069 		return skb;
4070 
4071 	/* qdisc_skb_cb(skb)->pkt_len & tcx_set_ingress() was
4072 	 * already set by the caller.
4073 	 */
4074 	if (static_branch_unlikely(&tcx_needed_key)) {
4075 		sch_ret = tcx_run(entry, skb, false);
4076 		if (sch_ret != TC_ACT_UNSPEC)
4077 			goto egress_verdict;
4078 	}
4079 	sch_ret = tc_run(tcx_entry(entry), skb, &drop_reason);
4080 egress_verdict:
4081 	switch (sch_ret) {
4082 	case TC_ACT_REDIRECT:
4083 		/* No need to push/pop skb's mac_header here on egress! */
4084 		skb_do_redirect(skb);
4085 		*ret = NET_XMIT_SUCCESS;
4086 		return NULL;
4087 	case TC_ACT_SHOT:
4088 		kfree_skb_reason(skb, drop_reason);
4089 		*ret = NET_XMIT_DROP;
4090 		return NULL;
4091 	/* used by tc_run */
4092 	case TC_ACT_STOLEN:
4093 	case TC_ACT_QUEUED:
4094 	case TC_ACT_TRAP:
4095 		consume_skb(skb);
4096 		fallthrough;
4097 	case TC_ACT_CONSUMED:
4098 		*ret = NET_XMIT_SUCCESS;
4099 		return NULL;
4100 	}
4101 
4102 	return skb;
4103 }
4104 #else
4105 static __always_inline struct sk_buff *
4106 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4107 		   struct net_device *orig_dev, bool *another)
4108 {
4109 	return skb;
4110 }
4111 
4112 static __always_inline struct sk_buff *
4113 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
4114 {
4115 	return skb;
4116 }
4117 #endif /* CONFIG_NET_XGRESS */
4118 
4119 #ifdef CONFIG_XPS
4120 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
4121 			       struct xps_dev_maps *dev_maps, unsigned int tci)
4122 {
4123 	int tc = netdev_get_prio_tc_map(dev, skb->priority);
4124 	struct xps_map *map;
4125 	int queue_index = -1;
4126 
4127 	if (tc >= dev_maps->num_tc || tci >= dev_maps->nr_ids)
4128 		return queue_index;
4129 
4130 	tci *= dev_maps->num_tc;
4131 	tci += tc;
4132 
4133 	map = rcu_dereference(dev_maps->attr_map[tci]);
4134 	if (map) {
4135 		if (map->len == 1)
4136 			queue_index = map->queues[0];
4137 		else
4138 			queue_index = map->queues[reciprocal_scale(
4139 						skb_get_hash(skb), map->len)];
4140 		if (unlikely(queue_index >= dev->real_num_tx_queues))
4141 			queue_index = -1;
4142 	}
4143 	return queue_index;
4144 }
4145 #endif
4146 
4147 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
4148 			 struct sk_buff *skb)
4149 {
4150 #ifdef CONFIG_XPS
4151 	struct xps_dev_maps *dev_maps;
4152 	struct sock *sk = skb->sk;
4153 	int queue_index = -1;
4154 
4155 	if (!static_key_false(&xps_needed))
4156 		return -1;
4157 
4158 	rcu_read_lock();
4159 	if (!static_key_false(&xps_rxqs_needed))
4160 		goto get_cpus_map;
4161 
4162 	dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_RXQS]);
4163 	if (dev_maps) {
4164 		int tci = sk_rx_queue_get(sk);
4165 
4166 		if (tci >= 0)
4167 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4168 							  tci);
4169 	}
4170 
4171 get_cpus_map:
4172 	if (queue_index < 0) {
4173 		dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_CPUS]);
4174 		if (dev_maps) {
4175 			unsigned int tci = skb->sender_cpu - 1;
4176 
4177 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4178 							  tci);
4179 		}
4180 	}
4181 	rcu_read_unlock();
4182 
4183 	return queue_index;
4184 #else
4185 	return -1;
4186 #endif
4187 }
4188 
4189 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
4190 		     struct net_device *sb_dev)
4191 {
4192 	return 0;
4193 }
4194 EXPORT_SYMBOL(dev_pick_tx_zero);
4195 
4196 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
4197 		       struct net_device *sb_dev)
4198 {
4199 	return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
4200 }
4201 EXPORT_SYMBOL(dev_pick_tx_cpu_id);
4202 
4203 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
4204 		     struct net_device *sb_dev)
4205 {
4206 	struct sock *sk = skb->sk;
4207 	int queue_index = sk_tx_queue_get(sk);
4208 
4209 	sb_dev = sb_dev ? : dev;
4210 
4211 	if (queue_index < 0 || skb->ooo_okay ||
4212 	    queue_index >= dev->real_num_tx_queues) {
4213 		int new_index = get_xps_queue(dev, sb_dev, skb);
4214 
4215 		if (new_index < 0)
4216 			new_index = skb_tx_hash(dev, sb_dev, skb);
4217 
4218 		if (queue_index != new_index && sk &&
4219 		    sk_fullsock(sk) &&
4220 		    rcu_access_pointer(sk->sk_dst_cache))
4221 			sk_tx_queue_set(sk, new_index);
4222 
4223 		queue_index = new_index;
4224 	}
4225 
4226 	return queue_index;
4227 }
4228 EXPORT_SYMBOL(netdev_pick_tx);
4229 
4230 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
4231 					 struct sk_buff *skb,
4232 					 struct net_device *sb_dev)
4233 {
4234 	int queue_index = 0;
4235 
4236 #ifdef CONFIG_XPS
4237 	u32 sender_cpu = skb->sender_cpu - 1;
4238 
4239 	if (sender_cpu >= (u32)NR_CPUS)
4240 		skb->sender_cpu = raw_smp_processor_id() + 1;
4241 #endif
4242 
4243 	if (dev->real_num_tx_queues != 1) {
4244 		const struct net_device_ops *ops = dev->netdev_ops;
4245 
4246 		if (ops->ndo_select_queue)
4247 			queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
4248 		else
4249 			queue_index = netdev_pick_tx(dev, skb, sb_dev);
4250 
4251 		queue_index = netdev_cap_txqueue(dev, queue_index);
4252 	}
4253 
4254 	skb_set_queue_mapping(skb, queue_index);
4255 	return netdev_get_tx_queue(dev, queue_index);
4256 }
4257 
4258 /**
4259  * __dev_queue_xmit() - transmit a buffer
4260  * @skb:	buffer to transmit
4261  * @sb_dev:	suboordinate device used for L2 forwarding offload
4262  *
4263  * Queue a buffer for transmission to a network device. The caller must
4264  * have set the device and priority and built the buffer before calling
4265  * this function. The function can be called from an interrupt.
4266  *
4267  * When calling this method, interrupts MUST be enabled. This is because
4268  * the BH enable code must have IRQs enabled so that it will not deadlock.
4269  *
4270  * Regardless of the return value, the skb is consumed, so it is currently
4271  * difficult to retry a send to this method. (You can bump the ref count
4272  * before sending to hold a reference for retry if you are careful.)
4273  *
4274  * Return:
4275  * * 0				- buffer successfully transmitted
4276  * * positive qdisc return code	- NET_XMIT_DROP etc.
4277  * * negative errno		- other errors
4278  */
4279 int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
4280 {
4281 	struct net_device *dev = skb->dev;
4282 	struct netdev_queue *txq = NULL;
4283 	struct Qdisc *q;
4284 	int rc = -ENOMEM;
4285 	bool again = false;
4286 
4287 	skb_reset_mac_header(skb);
4288 	skb_assert_len(skb);
4289 
4290 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
4291 		__skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED);
4292 
4293 	/* Disable soft irqs for various locks below. Also
4294 	 * stops preemption for RCU.
4295 	 */
4296 	rcu_read_lock_bh();
4297 
4298 	skb_update_prio(skb);
4299 
4300 	qdisc_pkt_len_init(skb);
4301 	tcx_set_ingress(skb, false);
4302 #ifdef CONFIG_NET_EGRESS
4303 	if (static_branch_unlikely(&egress_needed_key)) {
4304 		if (nf_hook_egress_active()) {
4305 			skb = nf_hook_egress(skb, &rc, dev);
4306 			if (!skb)
4307 				goto out;
4308 		}
4309 
4310 		netdev_xmit_skip_txqueue(false);
4311 
4312 		nf_skip_egress(skb, true);
4313 		skb = sch_handle_egress(skb, &rc, dev);
4314 		if (!skb)
4315 			goto out;
4316 		nf_skip_egress(skb, false);
4317 
4318 		if (netdev_xmit_txqueue_skipped())
4319 			txq = netdev_tx_queue_mapping(dev, skb);
4320 	}
4321 #endif
4322 	/* If device/qdisc don't need skb->dst, release it right now while
4323 	 * its hot in this cpu cache.
4324 	 */
4325 	if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4326 		skb_dst_drop(skb);
4327 	else
4328 		skb_dst_force(skb);
4329 
4330 	if (!txq)
4331 		txq = netdev_core_pick_tx(dev, skb, sb_dev);
4332 
4333 	q = rcu_dereference_bh(txq->qdisc);
4334 
4335 	trace_net_dev_queue(skb);
4336 	if (q->enqueue) {
4337 		rc = __dev_xmit_skb(skb, q, dev, txq);
4338 		goto out;
4339 	}
4340 
4341 	/* The device has no queue. Common case for software devices:
4342 	 * loopback, all the sorts of tunnels...
4343 
4344 	 * Really, it is unlikely that netif_tx_lock protection is necessary
4345 	 * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
4346 	 * counters.)
4347 	 * However, it is possible, that they rely on protection
4348 	 * made by us here.
4349 
4350 	 * Check this and shot the lock. It is not prone from deadlocks.
4351 	 *Either shot noqueue qdisc, it is even simpler 8)
4352 	 */
4353 	if (dev->flags & IFF_UP) {
4354 		int cpu = smp_processor_id(); /* ok because BHs are off */
4355 
4356 		/* Other cpus might concurrently change txq->xmit_lock_owner
4357 		 * to -1 or to their cpu id, but not to our id.
4358 		 */
4359 		if (READ_ONCE(txq->xmit_lock_owner) != cpu) {
4360 			if (dev_xmit_recursion())
4361 				goto recursion_alert;
4362 
4363 			skb = validate_xmit_skb(skb, dev, &again);
4364 			if (!skb)
4365 				goto out;
4366 
4367 			HARD_TX_LOCK(dev, txq, cpu);
4368 
4369 			if (!netif_xmit_stopped(txq)) {
4370 				dev_xmit_recursion_inc();
4371 				skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4372 				dev_xmit_recursion_dec();
4373 				if (dev_xmit_complete(rc)) {
4374 					HARD_TX_UNLOCK(dev, txq);
4375 					goto out;
4376 				}
4377 			}
4378 			HARD_TX_UNLOCK(dev, txq);
4379 			net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4380 					     dev->name);
4381 		} else {
4382 			/* Recursion is detected! It is possible,
4383 			 * unfortunately
4384 			 */
4385 recursion_alert:
4386 			net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4387 					     dev->name);
4388 		}
4389 	}
4390 
4391 	rc = -ENETDOWN;
4392 	rcu_read_unlock_bh();
4393 
4394 	dev_core_stats_tx_dropped_inc(dev);
4395 	kfree_skb_list(skb);
4396 	return rc;
4397 out:
4398 	rcu_read_unlock_bh();
4399 	return rc;
4400 }
4401 EXPORT_SYMBOL(__dev_queue_xmit);
4402 
4403 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4404 {
4405 	struct net_device *dev = skb->dev;
4406 	struct sk_buff *orig_skb = skb;
4407 	struct netdev_queue *txq;
4408 	int ret = NETDEV_TX_BUSY;
4409 	bool again = false;
4410 
4411 	if (unlikely(!netif_running(dev) ||
4412 		     !netif_carrier_ok(dev)))
4413 		goto drop;
4414 
4415 	skb = validate_xmit_skb_list(skb, dev, &again);
4416 	if (skb != orig_skb)
4417 		goto drop;
4418 
4419 	skb_set_queue_mapping(skb, queue_id);
4420 	txq = skb_get_tx_queue(dev, skb);
4421 
4422 	local_bh_disable();
4423 
4424 	dev_xmit_recursion_inc();
4425 	HARD_TX_LOCK(dev, txq, smp_processor_id());
4426 	if (!netif_xmit_frozen_or_drv_stopped(txq))
4427 		ret = netdev_start_xmit(skb, dev, txq, false);
4428 	HARD_TX_UNLOCK(dev, txq);
4429 	dev_xmit_recursion_dec();
4430 
4431 	local_bh_enable();
4432 	return ret;
4433 drop:
4434 	dev_core_stats_tx_dropped_inc(dev);
4435 	kfree_skb_list(skb);
4436 	return NET_XMIT_DROP;
4437 }
4438 EXPORT_SYMBOL(__dev_direct_xmit);
4439 
4440 /*************************************************************************
4441  *			Receiver routines
4442  *************************************************************************/
4443 static DEFINE_PER_CPU(struct task_struct *, backlog_napi);
4444 
4445 unsigned int sysctl_skb_defer_max __read_mostly = 64;
4446 int weight_p __read_mostly = 64;           /* old backlog weight */
4447 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
4448 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
4449 
4450 /* Called with irq disabled */
4451 static inline void ____napi_schedule(struct softnet_data *sd,
4452 				     struct napi_struct *napi)
4453 {
4454 	struct task_struct *thread;
4455 
4456 	lockdep_assert_irqs_disabled();
4457 
4458 	if (test_bit(NAPI_STATE_THREADED, &napi->state)) {
4459 		/* Paired with smp_mb__before_atomic() in
4460 		 * napi_enable()/dev_set_threaded().
4461 		 * Use READ_ONCE() to guarantee a complete
4462 		 * read on napi->thread. Only call
4463 		 * wake_up_process() when it's not NULL.
4464 		 */
4465 		thread = READ_ONCE(napi->thread);
4466 		if (thread) {
4467 			if (use_backlog_threads() && thread == raw_cpu_read(backlog_napi))
4468 				goto use_local_napi;
4469 
4470 			set_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
4471 			wake_up_process(thread);
4472 			return;
4473 		}
4474 	}
4475 
4476 use_local_napi:
4477 	list_add_tail(&napi->poll_list, &sd->poll_list);
4478 	WRITE_ONCE(napi->list_owner, smp_processor_id());
4479 	/* If not called from net_rx_action()
4480 	 * we have to raise NET_RX_SOFTIRQ.
4481 	 */
4482 	if (!sd->in_net_rx_action)
4483 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4484 }
4485 
4486 #ifdef CONFIG_RPS
4487 
4488 struct static_key_false rps_needed __read_mostly;
4489 EXPORT_SYMBOL(rps_needed);
4490 struct static_key_false rfs_needed __read_mostly;
4491 EXPORT_SYMBOL(rfs_needed);
4492 
4493 static struct rps_dev_flow *
4494 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4495 	    struct rps_dev_flow *rflow, u16 next_cpu)
4496 {
4497 	if (next_cpu < nr_cpu_ids) {
4498 #ifdef CONFIG_RFS_ACCEL
4499 		struct netdev_rx_queue *rxqueue;
4500 		struct rps_dev_flow_table *flow_table;
4501 		struct rps_dev_flow *old_rflow;
4502 		u32 flow_id;
4503 		u16 rxq_index;
4504 		int rc;
4505 
4506 		/* Should we steer this flow to a different hardware queue? */
4507 		if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4508 		    !(dev->features & NETIF_F_NTUPLE))
4509 			goto out;
4510 		rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4511 		if (rxq_index == skb_get_rx_queue(skb))
4512 			goto out;
4513 
4514 		rxqueue = dev->_rx + rxq_index;
4515 		flow_table = rcu_dereference(rxqueue->rps_flow_table);
4516 		if (!flow_table)
4517 			goto out;
4518 		flow_id = skb_get_hash(skb) & flow_table->mask;
4519 		rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4520 							rxq_index, flow_id);
4521 		if (rc < 0)
4522 			goto out;
4523 		old_rflow = rflow;
4524 		rflow = &flow_table->flows[flow_id];
4525 		rflow->filter = rc;
4526 		if (old_rflow->filter == rflow->filter)
4527 			old_rflow->filter = RPS_NO_FILTER;
4528 	out:
4529 #endif
4530 		rflow->last_qtail =
4531 			per_cpu(softnet_data, next_cpu).input_queue_head;
4532 	}
4533 
4534 	rflow->cpu = next_cpu;
4535 	return rflow;
4536 }
4537 
4538 /*
4539  * get_rps_cpu is called from netif_receive_skb and returns the target
4540  * CPU from the RPS map of the receiving queue for a given skb.
4541  * rcu_read_lock must be held on entry.
4542  */
4543 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4544 		       struct rps_dev_flow **rflowp)
4545 {
4546 	const struct rps_sock_flow_table *sock_flow_table;
4547 	struct netdev_rx_queue *rxqueue = dev->_rx;
4548 	struct rps_dev_flow_table *flow_table;
4549 	struct rps_map *map;
4550 	int cpu = -1;
4551 	u32 tcpu;
4552 	u32 hash;
4553 
4554 	if (skb_rx_queue_recorded(skb)) {
4555 		u16 index = skb_get_rx_queue(skb);
4556 
4557 		if (unlikely(index >= dev->real_num_rx_queues)) {
4558 			WARN_ONCE(dev->real_num_rx_queues > 1,
4559 				  "%s received packet on queue %u, but number "
4560 				  "of RX queues is %u\n",
4561 				  dev->name, index, dev->real_num_rx_queues);
4562 			goto done;
4563 		}
4564 		rxqueue += index;
4565 	}
4566 
4567 	/* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4568 
4569 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
4570 	map = rcu_dereference(rxqueue->rps_map);
4571 	if (!flow_table && !map)
4572 		goto done;
4573 
4574 	skb_reset_network_header(skb);
4575 	hash = skb_get_hash(skb);
4576 	if (!hash)
4577 		goto done;
4578 
4579 	sock_flow_table = rcu_dereference(net_hotdata.rps_sock_flow_table);
4580 	if (flow_table && sock_flow_table) {
4581 		struct rps_dev_flow *rflow;
4582 		u32 next_cpu;
4583 		u32 ident;
4584 
4585 		/* First check into global flow table if there is a match.
4586 		 * This READ_ONCE() pairs with WRITE_ONCE() from rps_record_sock_flow().
4587 		 */
4588 		ident = READ_ONCE(sock_flow_table->ents[hash & sock_flow_table->mask]);
4589 		if ((ident ^ hash) & ~net_hotdata.rps_cpu_mask)
4590 			goto try_rps;
4591 
4592 		next_cpu = ident & net_hotdata.rps_cpu_mask;
4593 
4594 		/* OK, now we know there is a match,
4595 		 * we can look at the local (per receive queue) flow table
4596 		 */
4597 		rflow = &flow_table->flows[hash & flow_table->mask];
4598 		tcpu = rflow->cpu;
4599 
4600 		/*
4601 		 * If the desired CPU (where last recvmsg was done) is
4602 		 * different from current CPU (one in the rx-queue flow
4603 		 * table entry), switch if one of the following holds:
4604 		 *   - Current CPU is unset (>= nr_cpu_ids).
4605 		 *   - Current CPU is offline.
4606 		 *   - The current CPU's queue tail has advanced beyond the
4607 		 *     last packet that was enqueued using this table entry.
4608 		 *     This guarantees that all previous packets for the flow
4609 		 *     have been dequeued, thus preserving in order delivery.
4610 		 */
4611 		if (unlikely(tcpu != next_cpu) &&
4612 		    (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4613 		     ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4614 		      rflow->last_qtail)) >= 0)) {
4615 			tcpu = next_cpu;
4616 			rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4617 		}
4618 
4619 		if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4620 			*rflowp = rflow;
4621 			cpu = tcpu;
4622 			goto done;
4623 		}
4624 	}
4625 
4626 try_rps:
4627 
4628 	if (map) {
4629 		tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4630 		if (cpu_online(tcpu)) {
4631 			cpu = tcpu;
4632 			goto done;
4633 		}
4634 	}
4635 
4636 done:
4637 	return cpu;
4638 }
4639 
4640 #ifdef CONFIG_RFS_ACCEL
4641 
4642 /**
4643  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4644  * @dev: Device on which the filter was set
4645  * @rxq_index: RX queue index
4646  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4647  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4648  *
4649  * Drivers that implement ndo_rx_flow_steer() should periodically call
4650  * this function for each installed filter and remove the filters for
4651  * which it returns %true.
4652  */
4653 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4654 			 u32 flow_id, u16 filter_id)
4655 {
4656 	struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4657 	struct rps_dev_flow_table *flow_table;
4658 	struct rps_dev_flow *rflow;
4659 	bool expire = true;
4660 	unsigned int cpu;
4661 
4662 	rcu_read_lock();
4663 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
4664 	if (flow_table && flow_id <= flow_table->mask) {
4665 		rflow = &flow_table->flows[flow_id];
4666 		cpu = READ_ONCE(rflow->cpu);
4667 		if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4668 		    ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4669 			   rflow->last_qtail) <
4670 		     (int)(10 * flow_table->mask)))
4671 			expire = false;
4672 	}
4673 	rcu_read_unlock();
4674 	return expire;
4675 }
4676 EXPORT_SYMBOL(rps_may_expire_flow);
4677 
4678 #endif /* CONFIG_RFS_ACCEL */
4679 
4680 /* Called from hardirq (IPI) context */
4681 static void rps_trigger_softirq(void *data)
4682 {
4683 	struct softnet_data *sd = data;
4684 
4685 	____napi_schedule(sd, &sd->backlog);
4686 	sd->received_rps++;
4687 }
4688 
4689 #endif /* CONFIG_RPS */
4690 
4691 /* Called from hardirq (IPI) context */
4692 static void trigger_rx_softirq(void *data)
4693 {
4694 	struct softnet_data *sd = data;
4695 
4696 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4697 	smp_store_release(&sd->defer_ipi_scheduled, 0);
4698 }
4699 
4700 /*
4701  * After we queued a packet into sd->input_pkt_queue,
4702  * we need to make sure this queue is serviced soon.
4703  *
4704  * - If this is another cpu queue, link it to our rps_ipi_list,
4705  *   and make sure we will process rps_ipi_list from net_rx_action().
4706  *
4707  * - If this is our own queue, NAPI schedule our backlog.
4708  *   Note that this also raises NET_RX_SOFTIRQ.
4709  */
4710 static void napi_schedule_rps(struct softnet_data *sd)
4711 {
4712 	struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4713 
4714 #ifdef CONFIG_RPS
4715 	if (sd != mysd) {
4716 		if (use_backlog_threads()) {
4717 			__napi_schedule_irqoff(&sd->backlog);
4718 			return;
4719 		}
4720 
4721 		sd->rps_ipi_next = mysd->rps_ipi_list;
4722 		mysd->rps_ipi_list = sd;
4723 
4724 		/* If not called from net_rx_action() or napi_threaded_poll()
4725 		 * we have to raise NET_RX_SOFTIRQ.
4726 		 */
4727 		if (!mysd->in_net_rx_action && !mysd->in_napi_threaded_poll)
4728 			__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4729 		return;
4730 	}
4731 #endif /* CONFIG_RPS */
4732 	__napi_schedule_irqoff(&mysd->backlog);
4733 }
4734 
4735 void kick_defer_list_purge(struct softnet_data *sd, unsigned int cpu)
4736 {
4737 	unsigned long flags;
4738 
4739 	if (use_backlog_threads()) {
4740 		backlog_lock_irq_save(sd, &flags);
4741 
4742 		if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state))
4743 			__napi_schedule_irqoff(&sd->backlog);
4744 
4745 		backlog_unlock_irq_restore(sd, &flags);
4746 
4747 	} else if (!cmpxchg(&sd->defer_ipi_scheduled, 0, 1)) {
4748 		smp_call_function_single_async(cpu, &sd->defer_csd);
4749 	}
4750 }
4751 
4752 #ifdef CONFIG_NET_FLOW_LIMIT
4753 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4754 #endif
4755 
4756 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4757 {
4758 #ifdef CONFIG_NET_FLOW_LIMIT
4759 	struct sd_flow_limit *fl;
4760 	struct softnet_data *sd;
4761 	unsigned int old_flow, new_flow;
4762 
4763 	if (qlen < (READ_ONCE(net_hotdata.max_backlog) >> 1))
4764 		return false;
4765 
4766 	sd = this_cpu_ptr(&softnet_data);
4767 
4768 	rcu_read_lock();
4769 	fl = rcu_dereference(sd->flow_limit);
4770 	if (fl) {
4771 		new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4772 		old_flow = fl->history[fl->history_head];
4773 		fl->history[fl->history_head] = new_flow;
4774 
4775 		fl->history_head++;
4776 		fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4777 
4778 		if (likely(fl->buckets[old_flow]))
4779 			fl->buckets[old_flow]--;
4780 
4781 		if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4782 			fl->count++;
4783 			rcu_read_unlock();
4784 			return true;
4785 		}
4786 	}
4787 	rcu_read_unlock();
4788 #endif
4789 	return false;
4790 }
4791 
4792 /*
4793  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4794  * queue (may be a remote CPU queue).
4795  */
4796 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4797 			      unsigned int *qtail)
4798 {
4799 	enum skb_drop_reason reason;
4800 	struct softnet_data *sd;
4801 	unsigned long flags;
4802 	unsigned int qlen;
4803 
4804 	reason = SKB_DROP_REASON_NOT_SPECIFIED;
4805 	sd = &per_cpu(softnet_data, cpu);
4806 
4807 	backlog_lock_irq_save(sd, &flags);
4808 	if (!netif_running(skb->dev))
4809 		goto drop;
4810 	qlen = skb_queue_len(&sd->input_pkt_queue);
4811 	if (qlen <= READ_ONCE(net_hotdata.max_backlog) &&
4812 	    !skb_flow_limit(skb, qlen)) {
4813 		if (qlen) {
4814 enqueue:
4815 			__skb_queue_tail(&sd->input_pkt_queue, skb);
4816 			input_queue_tail_incr_save(sd, qtail);
4817 			backlog_unlock_irq_restore(sd, &flags);
4818 			return NET_RX_SUCCESS;
4819 		}
4820 
4821 		/* Schedule NAPI for backlog device
4822 		 * We can use non atomic operation since we own the queue lock
4823 		 */
4824 		if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state))
4825 			napi_schedule_rps(sd);
4826 		goto enqueue;
4827 	}
4828 	reason = SKB_DROP_REASON_CPU_BACKLOG;
4829 
4830 drop:
4831 	sd->dropped++;
4832 	backlog_unlock_irq_restore(sd, &flags);
4833 
4834 	dev_core_stats_rx_dropped_inc(skb->dev);
4835 	kfree_skb_reason(skb, reason);
4836 	return NET_RX_DROP;
4837 }
4838 
4839 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4840 {
4841 	struct net_device *dev = skb->dev;
4842 	struct netdev_rx_queue *rxqueue;
4843 
4844 	rxqueue = dev->_rx;
4845 
4846 	if (skb_rx_queue_recorded(skb)) {
4847 		u16 index = skb_get_rx_queue(skb);
4848 
4849 		if (unlikely(index >= dev->real_num_rx_queues)) {
4850 			WARN_ONCE(dev->real_num_rx_queues > 1,
4851 				  "%s received packet on queue %u, but number "
4852 				  "of RX queues is %u\n",
4853 				  dev->name, index, dev->real_num_rx_queues);
4854 
4855 			return rxqueue; /* Return first rxqueue */
4856 		}
4857 		rxqueue += index;
4858 	}
4859 	return rxqueue;
4860 }
4861 
4862 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp,
4863 			     struct bpf_prog *xdp_prog)
4864 {
4865 	void *orig_data, *orig_data_end, *hard_start;
4866 	struct netdev_rx_queue *rxqueue;
4867 	bool orig_bcast, orig_host;
4868 	u32 mac_len, frame_sz;
4869 	__be16 orig_eth_type;
4870 	struct ethhdr *eth;
4871 	u32 metalen, act;
4872 	int off;
4873 
4874 	/* The XDP program wants to see the packet starting at the MAC
4875 	 * header.
4876 	 */
4877 	mac_len = skb->data - skb_mac_header(skb);
4878 	hard_start = skb->data - skb_headroom(skb);
4879 
4880 	/* SKB "head" area always have tailroom for skb_shared_info */
4881 	frame_sz = (void *)skb_end_pointer(skb) - hard_start;
4882 	frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
4883 
4884 	rxqueue = netif_get_rxqueue(skb);
4885 	xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq);
4886 	xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len,
4887 			 skb_headlen(skb) + mac_len, true);
4888 	if (skb_is_nonlinear(skb)) {
4889 		skb_shinfo(skb)->xdp_frags_size = skb->data_len;
4890 		xdp_buff_set_frags_flag(xdp);
4891 	} else {
4892 		xdp_buff_clear_frags_flag(xdp);
4893 	}
4894 
4895 	orig_data_end = xdp->data_end;
4896 	orig_data = xdp->data;
4897 	eth = (struct ethhdr *)xdp->data;
4898 	orig_host = ether_addr_equal_64bits(eth->h_dest, skb->dev->dev_addr);
4899 	orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4900 	orig_eth_type = eth->h_proto;
4901 
4902 	act = bpf_prog_run_xdp(xdp_prog, xdp);
4903 
4904 	/* check if bpf_xdp_adjust_head was used */
4905 	off = xdp->data - orig_data;
4906 	if (off) {
4907 		if (off > 0)
4908 			__skb_pull(skb, off);
4909 		else if (off < 0)
4910 			__skb_push(skb, -off);
4911 
4912 		skb->mac_header += off;
4913 		skb_reset_network_header(skb);
4914 	}
4915 
4916 	/* check if bpf_xdp_adjust_tail was used */
4917 	off = xdp->data_end - orig_data_end;
4918 	if (off != 0) {
4919 		skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4920 		skb->len += off; /* positive on grow, negative on shrink */
4921 	}
4922 
4923 	/* XDP frag metadata (e.g. nr_frags) are updated in eBPF helpers
4924 	 * (e.g. bpf_xdp_adjust_tail), we need to update data_len here.
4925 	 */
4926 	if (xdp_buff_has_frags(xdp))
4927 		skb->data_len = skb_shinfo(skb)->xdp_frags_size;
4928 	else
4929 		skb->data_len = 0;
4930 
4931 	/* check if XDP changed eth hdr such SKB needs update */
4932 	eth = (struct ethhdr *)xdp->data;
4933 	if ((orig_eth_type != eth->h_proto) ||
4934 	    (orig_host != ether_addr_equal_64bits(eth->h_dest,
4935 						  skb->dev->dev_addr)) ||
4936 	    (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4937 		__skb_push(skb, ETH_HLEN);
4938 		skb->pkt_type = PACKET_HOST;
4939 		skb->protocol = eth_type_trans(skb, skb->dev);
4940 	}
4941 
4942 	/* Redirect/Tx gives L2 packet, code that will reuse skb must __skb_pull
4943 	 * before calling us again on redirect path. We do not call do_redirect
4944 	 * as we leave that up to the caller.
4945 	 *
4946 	 * Caller is responsible for managing lifetime of skb (i.e. calling
4947 	 * kfree_skb in response to actions it cannot handle/XDP_DROP).
4948 	 */
4949 	switch (act) {
4950 	case XDP_REDIRECT:
4951 	case XDP_TX:
4952 		__skb_push(skb, mac_len);
4953 		break;
4954 	case XDP_PASS:
4955 		metalen = xdp->data - xdp->data_meta;
4956 		if (metalen)
4957 			skb_metadata_set(skb, metalen);
4958 		break;
4959 	}
4960 
4961 	return act;
4962 }
4963 
4964 static int
4965 netif_skb_check_for_xdp(struct sk_buff **pskb, struct bpf_prog *prog)
4966 {
4967 	struct sk_buff *skb = *pskb;
4968 	int err, hroom, troom;
4969 
4970 	if (!skb_cow_data_for_xdp(this_cpu_read(system_page_pool), pskb, prog))
4971 		return 0;
4972 
4973 	/* In case we have to go down the path and also linearize,
4974 	 * then lets do the pskb_expand_head() work just once here.
4975 	 */
4976 	hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4977 	troom = skb->tail + skb->data_len - skb->end;
4978 	err = pskb_expand_head(skb,
4979 			       hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4980 			       troom > 0 ? troom + 128 : 0, GFP_ATOMIC);
4981 	if (err)
4982 		return err;
4983 
4984 	return skb_linearize(skb);
4985 }
4986 
4987 static u32 netif_receive_generic_xdp(struct sk_buff **pskb,
4988 				     struct xdp_buff *xdp,
4989 				     struct bpf_prog *xdp_prog)
4990 {
4991 	struct sk_buff *skb = *pskb;
4992 	u32 mac_len, act = XDP_DROP;
4993 
4994 	/* Reinjected packets coming from act_mirred or similar should
4995 	 * not get XDP generic processing.
4996 	 */
4997 	if (skb_is_redirected(skb))
4998 		return XDP_PASS;
4999 
5000 	/* XDP packets must have sufficient headroom of XDP_PACKET_HEADROOM
5001 	 * bytes. This is the guarantee that also native XDP provides,
5002 	 * thus we need to do it here as well.
5003 	 */
5004 	mac_len = skb->data - skb_mac_header(skb);
5005 	__skb_push(skb, mac_len);
5006 
5007 	if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
5008 	    skb_headroom(skb) < XDP_PACKET_HEADROOM) {
5009 		if (netif_skb_check_for_xdp(pskb, xdp_prog))
5010 			goto do_drop;
5011 	}
5012 
5013 	__skb_pull(*pskb, mac_len);
5014 
5015 	act = bpf_prog_run_generic_xdp(*pskb, xdp, xdp_prog);
5016 	switch (act) {
5017 	case XDP_REDIRECT:
5018 	case XDP_TX:
5019 	case XDP_PASS:
5020 		break;
5021 	default:
5022 		bpf_warn_invalid_xdp_action((*pskb)->dev, xdp_prog, act);
5023 		fallthrough;
5024 	case XDP_ABORTED:
5025 		trace_xdp_exception((*pskb)->dev, xdp_prog, act);
5026 		fallthrough;
5027 	case XDP_DROP:
5028 	do_drop:
5029 		kfree_skb(*pskb);
5030 		break;
5031 	}
5032 
5033 	return act;
5034 }
5035 
5036 /* When doing generic XDP we have to bypass the qdisc layer and the
5037  * network taps in order to match in-driver-XDP behavior. This also means
5038  * that XDP packets are able to starve other packets going through a qdisc,
5039  * and DDOS attacks will be more effective. In-driver-XDP use dedicated TX
5040  * queues, so they do not have this starvation issue.
5041  */
5042 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
5043 {
5044 	struct net_device *dev = skb->dev;
5045 	struct netdev_queue *txq;
5046 	bool free_skb = true;
5047 	int cpu, rc;
5048 
5049 	txq = netdev_core_pick_tx(dev, skb, NULL);
5050 	cpu = smp_processor_id();
5051 	HARD_TX_LOCK(dev, txq, cpu);
5052 	if (!netif_xmit_frozen_or_drv_stopped(txq)) {
5053 		rc = netdev_start_xmit(skb, dev, txq, 0);
5054 		if (dev_xmit_complete(rc))
5055 			free_skb = false;
5056 	}
5057 	HARD_TX_UNLOCK(dev, txq);
5058 	if (free_skb) {
5059 		trace_xdp_exception(dev, xdp_prog, XDP_TX);
5060 		dev_core_stats_tx_dropped_inc(dev);
5061 		kfree_skb(skb);
5062 	}
5063 }
5064 
5065 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
5066 
5067 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff **pskb)
5068 {
5069 	if (xdp_prog) {
5070 		struct xdp_buff xdp;
5071 		u32 act;
5072 		int err;
5073 
5074 		act = netif_receive_generic_xdp(pskb, &xdp, xdp_prog);
5075 		if (act != XDP_PASS) {
5076 			switch (act) {
5077 			case XDP_REDIRECT:
5078 				err = xdp_do_generic_redirect((*pskb)->dev, *pskb,
5079 							      &xdp, xdp_prog);
5080 				if (err)
5081 					goto out_redir;
5082 				break;
5083 			case XDP_TX:
5084 				generic_xdp_tx(*pskb, xdp_prog);
5085 				break;
5086 			}
5087 			return XDP_DROP;
5088 		}
5089 	}
5090 	return XDP_PASS;
5091 out_redir:
5092 	kfree_skb_reason(*pskb, SKB_DROP_REASON_XDP);
5093 	return XDP_DROP;
5094 }
5095 EXPORT_SYMBOL_GPL(do_xdp_generic);
5096 
5097 static int netif_rx_internal(struct sk_buff *skb)
5098 {
5099 	int ret;
5100 
5101 	net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue), skb);
5102 
5103 	trace_netif_rx(skb);
5104 
5105 #ifdef CONFIG_RPS
5106 	if (static_branch_unlikely(&rps_needed)) {
5107 		struct rps_dev_flow voidflow, *rflow = &voidflow;
5108 		int cpu;
5109 
5110 		rcu_read_lock();
5111 
5112 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
5113 		if (cpu < 0)
5114 			cpu = smp_processor_id();
5115 
5116 		ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5117 
5118 		rcu_read_unlock();
5119 	} else
5120 #endif
5121 	{
5122 		unsigned int qtail;
5123 
5124 		ret = enqueue_to_backlog(skb, smp_processor_id(), &qtail);
5125 	}
5126 	return ret;
5127 }
5128 
5129 /**
5130  *	__netif_rx	-	Slightly optimized version of netif_rx
5131  *	@skb: buffer to post
5132  *
5133  *	This behaves as netif_rx except that it does not disable bottom halves.
5134  *	As a result this function may only be invoked from the interrupt context
5135  *	(either hard or soft interrupt).
5136  */
5137 int __netif_rx(struct sk_buff *skb)
5138 {
5139 	int ret;
5140 
5141 	lockdep_assert_once(hardirq_count() | softirq_count());
5142 
5143 	trace_netif_rx_entry(skb);
5144 	ret = netif_rx_internal(skb);
5145 	trace_netif_rx_exit(ret);
5146 	return ret;
5147 }
5148 EXPORT_SYMBOL(__netif_rx);
5149 
5150 /**
5151  *	netif_rx	-	post buffer to the network code
5152  *	@skb: buffer to post
5153  *
5154  *	This function receives a packet from a device driver and queues it for
5155  *	the upper (protocol) levels to process via the backlog NAPI device. It
5156  *	always succeeds. The buffer may be dropped during processing for
5157  *	congestion control or by the protocol layers.
5158  *	The network buffer is passed via the backlog NAPI device. Modern NIC
5159  *	driver should use NAPI and GRO.
5160  *	This function can used from interrupt and from process context. The
5161  *	caller from process context must not disable interrupts before invoking
5162  *	this function.
5163  *
5164  *	return values:
5165  *	NET_RX_SUCCESS	(no congestion)
5166  *	NET_RX_DROP     (packet was dropped)
5167  *
5168  */
5169 int netif_rx(struct sk_buff *skb)
5170 {
5171 	bool need_bh_off = !(hardirq_count() | softirq_count());
5172 	int ret;
5173 
5174 	if (need_bh_off)
5175 		local_bh_disable();
5176 	trace_netif_rx_entry(skb);
5177 	ret = netif_rx_internal(skb);
5178 	trace_netif_rx_exit(ret);
5179 	if (need_bh_off)
5180 		local_bh_enable();
5181 	return ret;
5182 }
5183 EXPORT_SYMBOL(netif_rx);
5184 
5185 static __latent_entropy void net_tx_action(struct softirq_action *h)
5186 {
5187 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5188 
5189 	if (sd->completion_queue) {
5190 		struct sk_buff *clist;
5191 
5192 		local_irq_disable();
5193 		clist = sd->completion_queue;
5194 		sd->completion_queue = NULL;
5195 		local_irq_enable();
5196 
5197 		while (clist) {
5198 			struct sk_buff *skb = clist;
5199 
5200 			clist = clist->next;
5201 
5202 			WARN_ON(refcount_read(&skb->users));
5203 			if (likely(get_kfree_skb_cb(skb)->reason == SKB_CONSUMED))
5204 				trace_consume_skb(skb, net_tx_action);
5205 			else
5206 				trace_kfree_skb(skb, net_tx_action,
5207 						get_kfree_skb_cb(skb)->reason);
5208 
5209 			if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
5210 				__kfree_skb(skb);
5211 			else
5212 				__napi_kfree_skb(skb,
5213 						 get_kfree_skb_cb(skb)->reason);
5214 		}
5215 	}
5216 
5217 	if (sd->output_queue) {
5218 		struct Qdisc *head;
5219 
5220 		local_irq_disable();
5221 		head = sd->output_queue;
5222 		sd->output_queue = NULL;
5223 		sd->output_queue_tailp = &sd->output_queue;
5224 		local_irq_enable();
5225 
5226 		rcu_read_lock();
5227 
5228 		while (head) {
5229 			struct Qdisc *q = head;
5230 			spinlock_t *root_lock = NULL;
5231 
5232 			head = head->next_sched;
5233 
5234 			/* We need to make sure head->next_sched is read
5235 			 * before clearing __QDISC_STATE_SCHED
5236 			 */
5237 			smp_mb__before_atomic();
5238 
5239 			if (!(q->flags & TCQ_F_NOLOCK)) {
5240 				root_lock = qdisc_lock(q);
5241 				spin_lock(root_lock);
5242 			} else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED,
5243 						     &q->state))) {
5244 				/* There is a synchronize_net() between
5245 				 * STATE_DEACTIVATED flag being set and
5246 				 * qdisc_reset()/some_qdisc_is_busy() in
5247 				 * dev_deactivate(), so we can safely bail out
5248 				 * early here to avoid data race between
5249 				 * qdisc_deactivate() and some_qdisc_is_busy()
5250 				 * for lockless qdisc.
5251 				 */
5252 				clear_bit(__QDISC_STATE_SCHED, &q->state);
5253 				continue;
5254 			}
5255 
5256 			clear_bit(__QDISC_STATE_SCHED, &q->state);
5257 			qdisc_run(q);
5258 			if (root_lock)
5259 				spin_unlock(root_lock);
5260 		}
5261 
5262 		rcu_read_unlock();
5263 	}
5264 
5265 	xfrm_dev_backlog(sd);
5266 }
5267 
5268 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
5269 /* This hook is defined here for ATM LANE */
5270 int (*br_fdb_test_addr_hook)(struct net_device *dev,
5271 			     unsigned char *addr) __read_mostly;
5272 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
5273 #endif
5274 
5275 /**
5276  *	netdev_is_rx_handler_busy - check if receive handler is registered
5277  *	@dev: device to check
5278  *
5279  *	Check if a receive handler is already registered for a given device.
5280  *	Return true if there one.
5281  *
5282  *	The caller must hold the rtnl_mutex.
5283  */
5284 bool netdev_is_rx_handler_busy(struct net_device *dev)
5285 {
5286 	ASSERT_RTNL();
5287 	return dev && rtnl_dereference(dev->rx_handler);
5288 }
5289 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
5290 
5291 /**
5292  *	netdev_rx_handler_register - register receive handler
5293  *	@dev: device to register a handler for
5294  *	@rx_handler: receive handler to register
5295  *	@rx_handler_data: data pointer that is used by rx handler
5296  *
5297  *	Register a receive handler for a device. This handler will then be
5298  *	called from __netif_receive_skb. A negative errno code is returned
5299  *	on a failure.
5300  *
5301  *	The caller must hold the rtnl_mutex.
5302  *
5303  *	For a general description of rx_handler, see enum rx_handler_result.
5304  */
5305 int netdev_rx_handler_register(struct net_device *dev,
5306 			       rx_handler_func_t *rx_handler,
5307 			       void *rx_handler_data)
5308 {
5309 	if (netdev_is_rx_handler_busy(dev))
5310 		return -EBUSY;
5311 
5312 	if (dev->priv_flags & IFF_NO_RX_HANDLER)
5313 		return -EINVAL;
5314 
5315 	/* Note: rx_handler_data must be set before rx_handler */
5316 	rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
5317 	rcu_assign_pointer(dev->rx_handler, rx_handler);
5318 
5319 	return 0;
5320 }
5321 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5322 
5323 /**
5324  *	netdev_rx_handler_unregister - unregister receive handler
5325  *	@dev: device to unregister a handler from
5326  *
5327  *	Unregister a receive handler from a device.
5328  *
5329  *	The caller must hold the rtnl_mutex.
5330  */
5331 void netdev_rx_handler_unregister(struct net_device *dev)
5332 {
5333 
5334 	ASSERT_RTNL();
5335 	RCU_INIT_POINTER(dev->rx_handler, NULL);
5336 	/* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5337 	 * section has a guarantee to see a non NULL rx_handler_data
5338 	 * as well.
5339 	 */
5340 	synchronize_net();
5341 	RCU_INIT_POINTER(dev->rx_handler_data, NULL);
5342 }
5343 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5344 
5345 /*
5346  * Limit the use of PFMEMALLOC reserves to those protocols that implement
5347  * the special handling of PFMEMALLOC skbs.
5348  */
5349 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5350 {
5351 	switch (skb->protocol) {
5352 	case htons(ETH_P_ARP):
5353 	case htons(ETH_P_IP):
5354 	case htons(ETH_P_IPV6):
5355 	case htons(ETH_P_8021Q):
5356 	case htons(ETH_P_8021AD):
5357 		return true;
5358 	default:
5359 		return false;
5360 	}
5361 }
5362 
5363 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5364 			     int *ret, struct net_device *orig_dev)
5365 {
5366 	if (nf_hook_ingress_active(skb)) {
5367 		int ingress_retval;
5368 
5369 		if (*pt_prev) {
5370 			*ret = deliver_skb(skb, *pt_prev, orig_dev);
5371 			*pt_prev = NULL;
5372 		}
5373 
5374 		rcu_read_lock();
5375 		ingress_retval = nf_hook_ingress(skb);
5376 		rcu_read_unlock();
5377 		return ingress_retval;
5378 	}
5379 	return 0;
5380 }
5381 
5382 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
5383 				    struct packet_type **ppt_prev)
5384 {
5385 	struct packet_type *ptype, *pt_prev;
5386 	rx_handler_func_t *rx_handler;
5387 	struct sk_buff *skb = *pskb;
5388 	struct net_device *orig_dev;
5389 	bool deliver_exact = false;
5390 	int ret = NET_RX_DROP;
5391 	__be16 type;
5392 
5393 	net_timestamp_check(!READ_ONCE(net_hotdata.tstamp_prequeue), skb);
5394 
5395 	trace_netif_receive_skb(skb);
5396 
5397 	orig_dev = skb->dev;
5398 
5399 	skb_reset_network_header(skb);
5400 	if (!skb_transport_header_was_set(skb))
5401 		skb_reset_transport_header(skb);
5402 	skb_reset_mac_len(skb);
5403 
5404 	pt_prev = NULL;
5405 
5406 another_round:
5407 	skb->skb_iif = skb->dev->ifindex;
5408 
5409 	__this_cpu_inc(softnet_data.processed);
5410 
5411 	if (static_branch_unlikely(&generic_xdp_needed_key)) {
5412 		int ret2;
5413 
5414 		migrate_disable();
5415 		ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog),
5416 				      &skb);
5417 		migrate_enable();
5418 
5419 		if (ret2 != XDP_PASS) {
5420 			ret = NET_RX_DROP;
5421 			goto out;
5422 		}
5423 	}
5424 
5425 	if (eth_type_vlan(skb->protocol)) {
5426 		skb = skb_vlan_untag(skb);
5427 		if (unlikely(!skb))
5428 			goto out;
5429 	}
5430 
5431 	if (skb_skip_tc_classify(skb))
5432 		goto skip_classify;
5433 
5434 	if (pfmemalloc)
5435 		goto skip_taps;
5436 
5437 	list_for_each_entry_rcu(ptype, &net_hotdata.ptype_all, list) {
5438 		if (pt_prev)
5439 			ret = deliver_skb(skb, pt_prev, orig_dev);
5440 		pt_prev = ptype;
5441 	}
5442 
5443 	list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5444 		if (pt_prev)
5445 			ret = deliver_skb(skb, pt_prev, orig_dev);
5446 		pt_prev = ptype;
5447 	}
5448 
5449 skip_taps:
5450 #ifdef CONFIG_NET_INGRESS
5451 	if (static_branch_unlikely(&ingress_needed_key)) {
5452 		bool another = false;
5453 
5454 		nf_skip_egress(skb, true);
5455 		skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev,
5456 					 &another);
5457 		if (another)
5458 			goto another_round;
5459 		if (!skb)
5460 			goto out;
5461 
5462 		nf_skip_egress(skb, false);
5463 		if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5464 			goto out;
5465 	}
5466 #endif
5467 	skb_reset_redirect(skb);
5468 skip_classify:
5469 	if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
5470 		goto drop;
5471 
5472 	if (skb_vlan_tag_present(skb)) {
5473 		if (pt_prev) {
5474 			ret = deliver_skb(skb, pt_prev, orig_dev);
5475 			pt_prev = NULL;
5476 		}
5477 		if (vlan_do_receive(&skb))
5478 			goto another_round;
5479 		else if (unlikely(!skb))
5480 			goto out;
5481 	}
5482 
5483 	rx_handler = rcu_dereference(skb->dev->rx_handler);
5484 	if (rx_handler) {
5485 		if (pt_prev) {
5486 			ret = deliver_skb(skb, pt_prev, orig_dev);
5487 			pt_prev = NULL;
5488 		}
5489 		switch (rx_handler(&skb)) {
5490 		case RX_HANDLER_CONSUMED:
5491 			ret = NET_RX_SUCCESS;
5492 			goto out;
5493 		case RX_HANDLER_ANOTHER:
5494 			goto another_round;
5495 		case RX_HANDLER_EXACT:
5496 			deliver_exact = true;
5497 			break;
5498 		case RX_HANDLER_PASS:
5499 			break;
5500 		default:
5501 			BUG();
5502 		}
5503 	}
5504 
5505 	if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) {
5506 check_vlan_id:
5507 		if (skb_vlan_tag_get_id(skb)) {
5508 			/* Vlan id is non 0 and vlan_do_receive() above couldn't
5509 			 * find vlan device.
5510 			 */
5511 			skb->pkt_type = PACKET_OTHERHOST;
5512 		} else if (eth_type_vlan(skb->protocol)) {
5513 			/* Outer header is 802.1P with vlan 0, inner header is
5514 			 * 802.1Q or 802.1AD and vlan_do_receive() above could
5515 			 * not find vlan dev for vlan id 0.
5516 			 */
5517 			__vlan_hwaccel_clear_tag(skb);
5518 			skb = skb_vlan_untag(skb);
5519 			if (unlikely(!skb))
5520 				goto out;
5521 			if (vlan_do_receive(&skb))
5522 				/* After stripping off 802.1P header with vlan 0
5523 				 * vlan dev is found for inner header.
5524 				 */
5525 				goto another_round;
5526 			else if (unlikely(!skb))
5527 				goto out;
5528 			else
5529 				/* We have stripped outer 802.1P vlan 0 header.
5530 				 * But could not find vlan dev.
5531 				 * check again for vlan id to set OTHERHOST.
5532 				 */
5533 				goto check_vlan_id;
5534 		}
5535 		/* Note: we might in the future use prio bits
5536 		 * and set skb->priority like in vlan_do_receive()
5537 		 * For the time being, just ignore Priority Code Point
5538 		 */
5539 		__vlan_hwaccel_clear_tag(skb);
5540 	}
5541 
5542 	type = skb->protocol;
5543 
5544 	/* deliver only exact match when indicated */
5545 	if (likely(!deliver_exact)) {
5546 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5547 				       &ptype_base[ntohs(type) &
5548 						   PTYPE_HASH_MASK]);
5549 	}
5550 
5551 	deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5552 			       &orig_dev->ptype_specific);
5553 
5554 	if (unlikely(skb->dev != orig_dev)) {
5555 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5556 				       &skb->dev->ptype_specific);
5557 	}
5558 
5559 	if (pt_prev) {
5560 		if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
5561 			goto drop;
5562 		*ppt_prev = pt_prev;
5563 	} else {
5564 drop:
5565 		if (!deliver_exact)
5566 			dev_core_stats_rx_dropped_inc(skb->dev);
5567 		else
5568 			dev_core_stats_rx_nohandler_inc(skb->dev);
5569 		kfree_skb_reason(skb, SKB_DROP_REASON_UNHANDLED_PROTO);
5570 		/* Jamal, now you will not able to escape explaining
5571 		 * me how you were going to use this. :-)
5572 		 */
5573 		ret = NET_RX_DROP;
5574 	}
5575 
5576 out:
5577 	/* The invariant here is that if *ppt_prev is not NULL
5578 	 * then skb should also be non-NULL.
5579 	 *
5580 	 * Apparently *ppt_prev assignment above holds this invariant due to
5581 	 * skb dereferencing near it.
5582 	 */
5583 	*pskb = skb;
5584 	return ret;
5585 }
5586 
5587 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5588 {
5589 	struct net_device *orig_dev = skb->dev;
5590 	struct packet_type *pt_prev = NULL;
5591 	int ret;
5592 
5593 	ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5594 	if (pt_prev)
5595 		ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5596 					 skb->dev, pt_prev, orig_dev);
5597 	return ret;
5598 }
5599 
5600 /**
5601  *	netif_receive_skb_core - special purpose version of netif_receive_skb
5602  *	@skb: buffer to process
5603  *
5604  *	More direct receive version of netif_receive_skb().  It should
5605  *	only be used by callers that have a need to skip RPS and Generic XDP.
5606  *	Caller must also take care of handling if ``(page_is_)pfmemalloc``.
5607  *
5608  *	This function may only be called from softirq context and interrupts
5609  *	should be enabled.
5610  *
5611  *	Return values (usually ignored):
5612  *	NET_RX_SUCCESS: no congestion
5613  *	NET_RX_DROP: packet was dropped
5614  */
5615 int netif_receive_skb_core(struct sk_buff *skb)
5616 {
5617 	int ret;
5618 
5619 	rcu_read_lock();
5620 	ret = __netif_receive_skb_one_core(skb, false);
5621 	rcu_read_unlock();
5622 
5623 	return ret;
5624 }
5625 EXPORT_SYMBOL(netif_receive_skb_core);
5626 
5627 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5628 						  struct packet_type *pt_prev,
5629 						  struct net_device *orig_dev)
5630 {
5631 	struct sk_buff *skb, *next;
5632 
5633 	if (!pt_prev)
5634 		return;
5635 	if (list_empty(head))
5636 		return;
5637 	if (pt_prev->list_func != NULL)
5638 		INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5639 				   ip_list_rcv, head, pt_prev, orig_dev);
5640 	else
5641 		list_for_each_entry_safe(skb, next, head, list) {
5642 			skb_list_del_init(skb);
5643 			pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5644 		}
5645 }
5646 
5647 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5648 {
5649 	/* Fast-path assumptions:
5650 	 * - There is no RX handler.
5651 	 * - Only one packet_type matches.
5652 	 * If either of these fails, we will end up doing some per-packet
5653 	 * processing in-line, then handling the 'last ptype' for the whole
5654 	 * sublist.  This can't cause out-of-order delivery to any single ptype,
5655 	 * because the 'last ptype' must be constant across the sublist, and all
5656 	 * other ptypes are handled per-packet.
5657 	 */
5658 	/* Current (common) ptype of sublist */
5659 	struct packet_type *pt_curr = NULL;
5660 	/* Current (common) orig_dev of sublist */
5661 	struct net_device *od_curr = NULL;
5662 	struct list_head sublist;
5663 	struct sk_buff *skb, *next;
5664 
5665 	INIT_LIST_HEAD(&sublist);
5666 	list_for_each_entry_safe(skb, next, head, list) {
5667 		struct net_device *orig_dev = skb->dev;
5668 		struct packet_type *pt_prev = NULL;
5669 
5670 		skb_list_del_init(skb);
5671 		__netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5672 		if (!pt_prev)
5673 			continue;
5674 		if (pt_curr != pt_prev || od_curr != orig_dev) {
5675 			/* dispatch old sublist */
5676 			__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5677 			/* start new sublist */
5678 			INIT_LIST_HEAD(&sublist);
5679 			pt_curr = pt_prev;
5680 			od_curr = orig_dev;
5681 		}
5682 		list_add_tail(&skb->list, &sublist);
5683 	}
5684 
5685 	/* dispatch final sublist */
5686 	__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5687 }
5688 
5689 static int __netif_receive_skb(struct sk_buff *skb)
5690 {
5691 	int ret;
5692 
5693 	if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5694 		unsigned int noreclaim_flag;
5695 
5696 		/*
5697 		 * PFMEMALLOC skbs are special, they should
5698 		 * - be delivered to SOCK_MEMALLOC sockets only
5699 		 * - stay away from userspace
5700 		 * - have bounded memory usage
5701 		 *
5702 		 * Use PF_MEMALLOC as this saves us from propagating the allocation
5703 		 * context down to all allocation sites.
5704 		 */
5705 		noreclaim_flag = memalloc_noreclaim_save();
5706 		ret = __netif_receive_skb_one_core(skb, true);
5707 		memalloc_noreclaim_restore(noreclaim_flag);
5708 	} else
5709 		ret = __netif_receive_skb_one_core(skb, false);
5710 
5711 	return ret;
5712 }
5713 
5714 static void __netif_receive_skb_list(struct list_head *head)
5715 {
5716 	unsigned long noreclaim_flag = 0;
5717 	struct sk_buff *skb, *next;
5718 	bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5719 
5720 	list_for_each_entry_safe(skb, next, head, list) {
5721 		if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5722 			struct list_head sublist;
5723 
5724 			/* Handle the previous sublist */
5725 			list_cut_before(&sublist, head, &skb->list);
5726 			if (!list_empty(&sublist))
5727 				__netif_receive_skb_list_core(&sublist, pfmemalloc);
5728 			pfmemalloc = !pfmemalloc;
5729 			/* See comments in __netif_receive_skb */
5730 			if (pfmemalloc)
5731 				noreclaim_flag = memalloc_noreclaim_save();
5732 			else
5733 				memalloc_noreclaim_restore(noreclaim_flag);
5734 		}
5735 	}
5736 	/* Handle the remaining sublist */
5737 	if (!list_empty(head))
5738 		__netif_receive_skb_list_core(head, pfmemalloc);
5739 	/* Restore pflags */
5740 	if (pfmemalloc)
5741 		memalloc_noreclaim_restore(noreclaim_flag);
5742 }
5743 
5744 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5745 {
5746 	struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5747 	struct bpf_prog *new = xdp->prog;
5748 	int ret = 0;
5749 
5750 	switch (xdp->command) {
5751 	case XDP_SETUP_PROG:
5752 		rcu_assign_pointer(dev->xdp_prog, new);
5753 		if (old)
5754 			bpf_prog_put(old);
5755 
5756 		if (old && !new) {
5757 			static_branch_dec(&generic_xdp_needed_key);
5758 		} else if (new && !old) {
5759 			static_branch_inc(&generic_xdp_needed_key);
5760 			dev_disable_lro(dev);
5761 			dev_disable_gro_hw(dev);
5762 		}
5763 		break;
5764 
5765 	default:
5766 		ret = -EINVAL;
5767 		break;
5768 	}
5769 
5770 	return ret;
5771 }
5772 
5773 static int netif_receive_skb_internal(struct sk_buff *skb)
5774 {
5775 	int ret;
5776 
5777 	net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue), skb);
5778 
5779 	if (skb_defer_rx_timestamp(skb))
5780 		return NET_RX_SUCCESS;
5781 
5782 	rcu_read_lock();
5783 #ifdef CONFIG_RPS
5784 	if (static_branch_unlikely(&rps_needed)) {
5785 		struct rps_dev_flow voidflow, *rflow = &voidflow;
5786 		int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5787 
5788 		if (cpu >= 0) {
5789 			ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5790 			rcu_read_unlock();
5791 			return ret;
5792 		}
5793 	}
5794 #endif
5795 	ret = __netif_receive_skb(skb);
5796 	rcu_read_unlock();
5797 	return ret;
5798 }
5799 
5800 void netif_receive_skb_list_internal(struct list_head *head)
5801 {
5802 	struct sk_buff *skb, *next;
5803 	struct list_head sublist;
5804 
5805 	INIT_LIST_HEAD(&sublist);
5806 	list_for_each_entry_safe(skb, next, head, list) {
5807 		net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue),
5808 				    skb);
5809 		skb_list_del_init(skb);
5810 		if (!skb_defer_rx_timestamp(skb))
5811 			list_add_tail(&skb->list, &sublist);
5812 	}
5813 	list_splice_init(&sublist, head);
5814 
5815 	rcu_read_lock();
5816 #ifdef CONFIG_RPS
5817 	if (static_branch_unlikely(&rps_needed)) {
5818 		list_for_each_entry_safe(skb, next, head, list) {
5819 			struct rps_dev_flow voidflow, *rflow = &voidflow;
5820 			int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5821 
5822 			if (cpu >= 0) {
5823 				/* Will be handled, remove from list */
5824 				skb_list_del_init(skb);
5825 				enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5826 			}
5827 		}
5828 	}
5829 #endif
5830 	__netif_receive_skb_list(head);
5831 	rcu_read_unlock();
5832 }
5833 
5834 /**
5835  *	netif_receive_skb - process receive buffer from network
5836  *	@skb: buffer to process
5837  *
5838  *	netif_receive_skb() is the main receive data processing function.
5839  *	It always succeeds. The buffer may be dropped during processing
5840  *	for congestion control or by the protocol layers.
5841  *
5842  *	This function may only be called from softirq context and interrupts
5843  *	should be enabled.
5844  *
5845  *	Return values (usually ignored):
5846  *	NET_RX_SUCCESS: no congestion
5847  *	NET_RX_DROP: packet was dropped
5848  */
5849 int netif_receive_skb(struct sk_buff *skb)
5850 {
5851 	int ret;
5852 
5853 	trace_netif_receive_skb_entry(skb);
5854 
5855 	ret = netif_receive_skb_internal(skb);
5856 	trace_netif_receive_skb_exit(ret);
5857 
5858 	return ret;
5859 }
5860 EXPORT_SYMBOL(netif_receive_skb);
5861 
5862 /**
5863  *	netif_receive_skb_list - process many receive buffers from network
5864  *	@head: list of skbs to process.
5865  *
5866  *	Since return value of netif_receive_skb() is normally ignored, and
5867  *	wouldn't be meaningful for a list, this function returns void.
5868  *
5869  *	This function may only be called from softirq context and interrupts
5870  *	should be enabled.
5871  */
5872 void netif_receive_skb_list(struct list_head *head)
5873 {
5874 	struct sk_buff *skb;
5875 
5876 	if (list_empty(head))
5877 		return;
5878 	if (trace_netif_receive_skb_list_entry_enabled()) {
5879 		list_for_each_entry(skb, head, list)
5880 			trace_netif_receive_skb_list_entry(skb);
5881 	}
5882 	netif_receive_skb_list_internal(head);
5883 	trace_netif_receive_skb_list_exit(0);
5884 }
5885 EXPORT_SYMBOL(netif_receive_skb_list);
5886 
5887 static DEFINE_PER_CPU(struct work_struct, flush_works);
5888 
5889 /* Network device is going away, flush any packets still pending */
5890 static void flush_backlog(struct work_struct *work)
5891 {
5892 	struct sk_buff *skb, *tmp;
5893 	struct softnet_data *sd;
5894 
5895 	local_bh_disable();
5896 	sd = this_cpu_ptr(&softnet_data);
5897 
5898 	backlog_lock_irq_disable(sd);
5899 	skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5900 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5901 			__skb_unlink(skb, &sd->input_pkt_queue);
5902 			dev_kfree_skb_irq(skb);
5903 			input_queue_head_incr(sd);
5904 		}
5905 	}
5906 	backlog_unlock_irq_enable(sd);
5907 
5908 	skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5909 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5910 			__skb_unlink(skb, &sd->process_queue);
5911 			kfree_skb(skb);
5912 			input_queue_head_incr(sd);
5913 		}
5914 	}
5915 	local_bh_enable();
5916 }
5917 
5918 static bool flush_required(int cpu)
5919 {
5920 #if IS_ENABLED(CONFIG_RPS)
5921 	struct softnet_data *sd = &per_cpu(softnet_data, cpu);
5922 	bool do_flush;
5923 
5924 	backlog_lock_irq_disable(sd);
5925 
5926 	/* as insertion into process_queue happens with the rps lock held,
5927 	 * process_queue access may race only with dequeue
5928 	 */
5929 	do_flush = !skb_queue_empty(&sd->input_pkt_queue) ||
5930 		   !skb_queue_empty_lockless(&sd->process_queue);
5931 	backlog_unlock_irq_enable(sd);
5932 
5933 	return do_flush;
5934 #endif
5935 	/* without RPS we can't safely check input_pkt_queue: during a
5936 	 * concurrent remote skb_queue_splice() we can detect as empty both
5937 	 * input_pkt_queue and process_queue even if the latter could end-up
5938 	 * containing a lot of packets.
5939 	 */
5940 	return true;
5941 }
5942 
5943 static void flush_all_backlogs(void)
5944 {
5945 	static cpumask_t flush_cpus;
5946 	unsigned int cpu;
5947 
5948 	/* since we are under rtnl lock protection we can use static data
5949 	 * for the cpumask and avoid allocating on stack the possibly
5950 	 * large mask
5951 	 */
5952 	ASSERT_RTNL();
5953 
5954 	cpus_read_lock();
5955 
5956 	cpumask_clear(&flush_cpus);
5957 	for_each_online_cpu(cpu) {
5958 		if (flush_required(cpu)) {
5959 			queue_work_on(cpu, system_highpri_wq,
5960 				      per_cpu_ptr(&flush_works, cpu));
5961 			cpumask_set_cpu(cpu, &flush_cpus);
5962 		}
5963 	}
5964 
5965 	/* we can have in flight packet[s] on the cpus we are not flushing,
5966 	 * synchronize_net() in unregister_netdevice_many() will take care of
5967 	 * them
5968 	 */
5969 	for_each_cpu(cpu, &flush_cpus)
5970 		flush_work(per_cpu_ptr(&flush_works, cpu));
5971 
5972 	cpus_read_unlock();
5973 }
5974 
5975 static void net_rps_send_ipi(struct softnet_data *remsd)
5976 {
5977 #ifdef CONFIG_RPS
5978 	while (remsd) {
5979 		struct softnet_data *next = remsd->rps_ipi_next;
5980 
5981 		if (cpu_online(remsd->cpu))
5982 			smp_call_function_single_async(remsd->cpu, &remsd->csd);
5983 		remsd = next;
5984 	}
5985 #endif
5986 }
5987 
5988 /*
5989  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
5990  * Note: called with local irq disabled, but exits with local irq enabled.
5991  */
5992 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
5993 {
5994 #ifdef CONFIG_RPS
5995 	struct softnet_data *remsd = sd->rps_ipi_list;
5996 
5997 	if (!use_backlog_threads() && remsd) {
5998 		sd->rps_ipi_list = NULL;
5999 
6000 		local_irq_enable();
6001 
6002 		/* Send pending IPI's to kick RPS processing on remote cpus. */
6003 		net_rps_send_ipi(remsd);
6004 	} else
6005 #endif
6006 		local_irq_enable();
6007 }
6008 
6009 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
6010 {
6011 #ifdef CONFIG_RPS
6012 	return !use_backlog_threads() && sd->rps_ipi_list;
6013 #else
6014 	return false;
6015 #endif
6016 }
6017 
6018 static int process_backlog(struct napi_struct *napi, int quota)
6019 {
6020 	struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
6021 	bool again = true;
6022 	int work = 0;
6023 
6024 	/* Check if we have pending ipi, its better to send them now,
6025 	 * not waiting net_rx_action() end.
6026 	 */
6027 	if (sd_has_rps_ipi_waiting(sd)) {
6028 		local_irq_disable();
6029 		net_rps_action_and_irq_enable(sd);
6030 	}
6031 
6032 	napi->weight = READ_ONCE(net_hotdata.dev_rx_weight);
6033 	while (again) {
6034 		struct sk_buff *skb;
6035 
6036 		while ((skb = __skb_dequeue(&sd->process_queue))) {
6037 			rcu_read_lock();
6038 			__netif_receive_skb(skb);
6039 			rcu_read_unlock();
6040 			input_queue_head_incr(sd);
6041 			if (++work >= quota)
6042 				return work;
6043 
6044 		}
6045 
6046 		backlog_lock_irq_disable(sd);
6047 		if (skb_queue_empty(&sd->input_pkt_queue)) {
6048 			/*
6049 			 * Inline a custom version of __napi_complete().
6050 			 * only current cpu owns and manipulates this napi,
6051 			 * and NAPI_STATE_SCHED is the only possible flag set
6052 			 * on backlog.
6053 			 * We can use a plain write instead of clear_bit(),
6054 			 * and we dont need an smp_mb() memory barrier.
6055 			 */
6056 			napi->state &= NAPIF_STATE_THREADED;
6057 			again = false;
6058 		} else {
6059 			skb_queue_splice_tail_init(&sd->input_pkt_queue,
6060 						   &sd->process_queue);
6061 		}
6062 		backlog_unlock_irq_enable(sd);
6063 	}
6064 
6065 	return work;
6066 }
6067 
6068 /**
6069  * __napi_schedule - schedule for receive
6070  * @n: entry to schedule
6071  *
6072  * The entry's receive function will be scheduled to run.
6073  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
6074  */
6075 void __napi_schedule(struct napi_struct *n)
6076 {
6077 	unsigned long flags;
6078 
6079 	local_irq_save(flags);
6080 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
6081 	local_irq_restore(flags);
6082 }
6083 EXPORT_SYMBOL(__napi_schedule);
6084 
6085 /**
6086  *	napi_schedule_prep - check if napi can be scheduled
6087  *	@n: napi context
6088  *
6089  * Test if NAPI routine is already running, and if not mark
6090  * it as running.  This is used as a condition variable to
6091  * insure only one NAPI poll instance runs.  We also make
6092  * sure there is no pending NAPI disable.
6093  */
6094 bool napi_schedule_prep(struct napi_struct *n)
6095 {
6096 	unsigned long new, val = READ_ONCE(n->state);
6097 
6098 	do {
6099 		if (unlikely(val & NAPIF_STATE_DISABLE))
6100 			return false;
6101 		new = val | NAPIF_STATE_SCHED;
6102 
6103 		/* Sets STATE_MISSED bit if STATE_SCHED was already set
6104 		 * This was suggested by Alexander Duyck, as compiler
6105 		 * emits better code than :
6106 		 * if (val & NAPIF_STATE_SCHED)
6107 		 *     new |= NAPIF_STATE_MISSED;
6108 		 */
6109 		new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6110 						   NAPIF_STATE_MISSED;
6111 	} while (!try_cmpxchg(&n->state, &val, new));
6112 
6113 	return !(val & NAPIF_STATE_SCHED);
6114 }
6115 EXPORT_SYMBOL(napi_schedule_prep);
6116 
6117 /**
6118  * __napi_schedule_irqoff - schedule for receive
6119  * @n: entry to schedule
6120  *
6121  * Variant of __napi_schedule() assuming hard irqs are masked.
6122  *
6123  * On PREEMPT_RT enabled kernels this maps to __napi_schedule()
6124  * because the interrupt disabled assumption might not be true
6125  * due to force-threaded interrupts and spinlock substitution.
6126  */
6127 void __napi_schedule_irqoff(struct napi_struct *n)
6128 {
6129 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6130 		____napi_schedule(this_cpu_ptr(&softnet_data), n);
6131 	else
6132 		__napi_schedule(n);
6133 }
6134 EXPORT_SYMBOL(__napi_schedule_irqoff);
6135 
6136 bool napi_complete_done(struct napi_struct *n, int work_done)
6137 {
6138 	unsigned long flags, val, new, timeout = 0;
6139 	bool ret = true;
6140 
6141 	/*
6142 	 * 1) Don't let napi dequeue from the cpu poll list
6143 	 *    just in case its running on a different cpu.
6144 	 * 2) If we are busy polling, do nothing here, we have
6145 	 *    the guarantee we will be called later.
6146 	 */
6147 	if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6148 				 NAPIF_STATE_IN_BUSY_POLL)))
6149 		return false;
6150 
6151 	if (work_done) {
6152 		if (n->gro_bitmask)
6153 			timeout = READ_ONCE(n->dev->gro_flush_timeout);
6154 		n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs);
6155 	}
6156 	if (n->defer_hard_irqs_count > 0) {
6157 		n->defer_hard_irqs_count--;
6158 		timeout = READ_ONCE(n->dev->gro_flush_timeout);
6159 		if (timeout)
6160 			ret = false;
6161 	}
6162 	if (n->gro_bitmask) {
6163 		/* When the NAPI instance uses a timeout and keeps postponing
6164 		 * it, we need to bound somehow the time packets are kept in
6165 		 * the GRO layer
6166 		 */
6167 		napi_gro_flush(n, !!timeout);
6168 	}
6169 
6170 	gro_normal_list(n);
6171 
6172 	if (unlikely(!list_empty(&n->poll_list))) {
6173 		/* If n->poll_list is not empty, we need to mask irqs */
6174 		local_irq_save(flags);
6175 		list_del_init(&n->poll_list);
6176 		local_irq_restore(flags);
6177 	}
6178 	WRITE_ONCE(n->list_owner, -1);
6179 
6180 	val = READ_ONCE(n->state);
6181 	do {
6182 		WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6183 
6184 		new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED |
6185 			      NAPIF_STATE_SCHED_THREADED |
6186 			      NAPIF_STATE_PREFER_BUSY_POLL);
6187 
6188 		/* If STATE_MISSED was set, leave STATE_SCHED set,
6189 		 * because we will call napi->poll() one more time.
6190 		 * This C code was suggested by Alexander Duyck to help gcc.
6191 		 */
6192 		new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6193 						    NAPIF_STATE_SCHED;
6194 	} while (!try_cmpxchg(&n->state, &val, new));
6195 
6196 	if (unlikely(val & NAPIF_STATE_MISSED)) {
6197 		__napi_schedule(n);
6198 		return false;
6199 	}
6200 
6201 	if (timeout)
6202 		hrtimer_start(&n->timer, ns_to_ktime(timeout),
6203 			      HRTIMER_MODE_REL_PINNED);
6204 	return ret;
6205 }
6206 EXPORT_SYMBOL(napi_complete_done);
6207 
6208 /* must be called under rcu_read_lock(), as we dont take a reference */
6209 struct napi_struct *napi_by_id(unsigned int napi_id)
6210 {
6211 	unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6212 	struct napi_struct *napi;
6213 
6214 	hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6215 		if (napi->napi_id == napi_id)
6216 			return napi;
6217 
6218 	return NULL;
6219 }
6220 
6221 static void skb_defer_free_flush(struct softnet_data *sd)
6222 {
6223 	struct sk_buff *skb, *next;
6224 
6225 	/* Paired with WRITE_ONCE() in skb_attempt_defer_free() */
6226 	if (!READ_ONCE(sd->defer_list))
6227 		return;
6228 
6229 	spin_lock(&sd->defer_lock);
6230 	skb = sd->defer_list;
6231 	sd->defer_list = NULL;
6232 	sd->defer_count = 0;
6233 	spin_unlock(&sd->defer_lock);
6234 
6235 	while (skb != NULL) {
6236 		next = skb->next;
6237 		napi_consume_skb(skb, 1);
6238 		skb = next;
6239 	}
6240 }
6241 
6242 #if defined(CONFIG_NET_RX_BUSY_POLL)
6243 
6244 static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule)
6245 {
6246 	if (!skip_schedule) {
6247 		gro_normal_list(napi);
6248 		__napi_schedule(napi);
6249 		return;
6250 	}
6251 
6252 	if (napi->gro_bitmask) {
6253 		/* flush too old packets
6254 		 * If HZ < 1000, flush all packets.
6255 		 */
6256 		napi_gro_flush(napi, HZ >= 1000);
6257 	}
6258 
6259 	gro_normal_list(napi);
6260 	clear_bit(NAPI_STATE_SCHED, &napi->state);
6261 }
6262 
6263 enum {
6264 	NAPI_F_PREFER_BUSY_POLL	= 1,
6265 	NAPI_F_END_ON_RESCHED	= 2,
6266 };
6267 
6268 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock,
6269 			   unsigned flags, u16 budget)
6270 {
6271 	bool skip_schedule = false;
6272 	unsigned long timeout;
6273 	int rc;
6274 
6275 	/* Busy polling means there is a high chance device driver hard irq
6276 	 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6277 	 * set in napi_schedule_prep().
6278 	 * Since we are about to call napi->poll() once more, we can safely
6279 	 * clear NAPI_STATE_MISSED.
6280 	 *
6281 	 * Note: x86 could use a single "lock and ..." instruction
6282 	 * to perform these two clear_bit()
6283 	 */
6284 	clear_bit(NAPI_STATE_MISSED, &napi->state);
6285 	clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6286 
6287 	local_bh_disable();
6288 
6289 	if (flags & NAPI_F_PREFER_BUSY_POLL) {
6290 		napi->defer_hard_irqs_count = READ_ONCE(napi->dev->napi_defer_hard_irqs);
6291 		timeout = READ_ONCE(napi->dev->gro_flush_timeout);
6292 		if (napi->defer_hard_irqs_count && timeout) {
6293 			hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED);
6294 			skip_schedule = true;
6295 		}
6296 	}
6297 
6298 	/* All we really want here is to re-enable device interrupts.
6299 	 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6300 	 */
6301 	rc = napi->poll(napi, budget);
6302 	/* We can't gro_normal_list() here, because napi->poll() might have
6303 	 * rearmed the napi (napi_complete_done()) in which case it could
6304 	 * already be running on another CPU.
6305 	 */
6306 	trace_napi_poll(napi, rc, budget);
6307 	netpoll_poll_unlock(have_poll_lock);
6308 	if (rc == budget)
6309 		__busy_poll_stop(napi, skip_schedule);
6310 	local_bh_enable();
6311 }
6312 
6313 static void __napi_busy_loop(unsigned int napi_id,
6314 		      bool (*loop_end)(void *, unsigned long),
6315 		      void *loop_end_arg, unsigned flags, u16 budget)
6316 {
6317 	unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6318 	int (*napi_poll)(struct napi_struct *napi, int budget);
6319 	void *have_poll_lock = NULL;
6320 	struct napi_struct *napi;
6321 
6322 	WARN_ON_ONCE(!rcu_read_lock_held());
6323 
6324 restart:
6325 	napi_poll = NULL;
6326 
6327 	napi = napi_by_id(napi_id);
6328 	if (!napi)
6329 		return;
6330 
6331 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6332 		preempt_disable();
6333 	for (;;) {
6334 		int work = 0;
6335 
6336 		local_bh_disable();
6337 		if (!napi_poll) {
6338 			unsigned long val = READ_ONCE(napi->state);
6339 
6340 			/* If multiple threads are competing for this napi,
6341 			 * we avoid dirtying napi->state as much as we can.
6342 			 */
6343 			if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6344 				   NAPIF_STATE_IN_BUSY_POLL)) {
6345 				if (flags & NAPI_F_PREFER_BUSY_POLL)
6346 					set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6347 				goto count;
6348 			}
6349 			if (cmpxchg(&napi->state, val,
6350 				    val | NAPIF_STATE_IN_BUSY_POLL |
6351 					  NAPIF_STATE_SCHED) != val) {
6352 				if (flags & NAPI_F_PREFER_BUSY_POLL)
6353 					set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6354 				goto count;
6355 			}
6356 			have_poll_lock = netpoll_poll_lock(napi);
6357 			napi_poll = napi->poll;
6358 		}
6359 		work = napi_poll(napi, budget);
6360 		trace_napi_poll(napi, work, budget);
6361 		gro_normal_list(napi);
6362 count:
6363 		if (work > 0)
6364 			__NET_ADD_STATS(dev_net(napi->dev),
6365 					LINUX_MIB_BUSYPOLLRXPACKETS, work);
6366 		skb_defer_free_flush(this_cpu_ptr(&softnet_data));
6367 		local_bh_enable();
6368 
6369 		if (!loop_end || loop_end(loop_end_arg, start_time))
6370 			break;
6371 
6372 		if (unlikely(need_resched())) {
6373 			if (flags & NAPI_F_END_ON_RESCHED)
6374 				break;
6375 			if (napi_poll)
6376 				busy_poll_stop(napi, have_poll_lock, flags, budget);
6377 			if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6378 				preempt_enable();
6379 			rcu_read_unlock();
6380 			cond_resched();
6381 			rcu_read_lock();
6382 			if (loop_end(loop_end_arg, start_time))
6383 				return;
6384 			goto restart;
6385 		}
6386 		cpu_relax();
6387 	}
6388 	if (napi_poll)
6389 		busy_poll_stop(napi, have_poll_lock, flags, budget);
6390 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6391 		preempt_enable();
6392 }
6393 
6394 void napi_busy_loop_rcu(unsigned int napi_id,
6395 			bool (*loop_end)(void *, unsigned long),
6396 			void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6397 {
6398 	unsigned flags = NAPI_F_END_ON_RESCHED;
6399 
6400 	if (prefer_busy_poll)
6401 		flags |= NAPI_F_PREFER_BUSY_POLL;
6402 
6403 	__napi_busy_loop(napi_id, loop_end, loop_end_arg, flags, budget);
6404 }
6405 
6406 void napi_busy_loop(unsigned int napi_id,
6407 		    bool (*loop_end)(void *, unsigned long),
6408 		    void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6409 {
6410 	unsigned flags = prefer_busy_poll ? NAPI_F_PREFER_BUSY_POLL : 0;
6411 
6412 	rcu_read_lock();
6413 	__napi_busy_loop(napi_id, loop_end, loop_end_arg, flags, budget);
6414 	rcu_read_unlock();
6415 }
6416 EXPORT_SYMBOL(napi_busy_loop);
6417 
6418 #endif /* CONFIG_NET_RX_BUSY_POLL */
6419 
6420 static void napi_hash_add(struct napi_struct *napi)
6421 {
6422 	if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state))
6423 		return;
6424 
6425 	spin_lock(&napi_hash_lock);
6426 
6427 	/* 0..NR_CPUS range is reserved for sender_cpu use */
6428 	do {
6429 		if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6430 			napi_gen_id = MIN_NAPI_ID;
6431 	} while (napi_by_id(napi_gen_id));
6432 	napi->napi_id = napi_gen_id;
6433 
6434 	hlist_add_head_rcu(&napi->napi_hash_node,
6435 			   &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6436 
6437 	spin_unlock(&napi_hash_lock);
6438 }
6439 
6440 /* Warning : caller is responsible to make sure rcu grace period
6441  * is respected before freeing memory containing @napi
6442  */
6443 static void napi_hash_del(struct napi_struct *napi)
6444 {
6445 	spin_lock(&napi_hash_lock);
6446 
6447 	hlist_del_init_rcu(&napi->napi_hash_node);
6448 
6449 	spin_unlock(&napi_hash_lock);
6450 }
6451 
6452 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6453 {
6454 	struct napi_struct *napi;
6455 
6456 	napi = container_of(timer, struct napi_struct, timer);
6457 
6458 	/* Note : we use a relaxed variant of napi_schedule_prep() not setting
6459 	 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6460 	 */
6461 	if (!napi_disable_pending(napi) &&
6462 	    !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) {
6463 		clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6464 		__napi_schedule_irqoff(napi);
6465 	}
6466 
6467 	return HRTIMER_NORESTART;
6468 }
6469 
6470 static void init_gro_hash(struct napi_struct *napi)
6471 {
6472 	int i;
6473 
6474 	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6475 		INIT_LIST_HEAD(&napi->gro_hash[i].list);
6476 		napi->gro_hash[i].count = 0;
6477 	}
6478 	napi->gro_bitmask = 0;
6479 }
6480 
6481 int dev_set_threaded(struct net_device *dev, bool threaded)
6482 {
6483 	struct napi_struct *napi;
6484 	int err = 0;
6485 
6486 	if (dev->threaded == threaded)
6487 		return 0;
6488 
6489 	if (threaded) {
6490 		list_for_each_entry(napi, &dev->napi_list, dev_list) {
6491 			if (!napi->thread) {
6492 				err = napi_kthread_create(napi);
6493 				if (err) {
6494 					threaded = false;
6495 					break;
6496 				}
6497 			}
6498 		}
6499 	}
6500 
6501 	dev->threaded = threaded;
6502 
6503 	/* Make sure kthread is created before THREADED bit
6504 	 * is set.
6505 	 */
6506 	smp_mb__before_atomic();
6507 
6508 	/* Setting/unsetting threaded mode on a napi might not immediately
6509 	 * take effect, if the current napi instance is actively being
6510 	 * polled. In this case, the switch between threaded mode and
6511 	 * softirq mode will happen in the next round of napi_schedule().
6512 	 * This should not cause hiccups/stalls to the live traffic.
6513 	 */
6514 	list_for_each_entry(napi, &dev->napi_list, dev_list)
6515 		assign_bit(NAPI_STATE_THREADED, &napi->state, threaded);
6516 
6517 	return err;
6518 }
6519 EXPORT_SYMBOL(dev_set_threaded);
6520 
6521 /**
6522  * netif_queue_set_napi - Associate queue with the napi
6523  * @dev: device to which NAPI and queue belong
6524  * @queue_index: Index of queue
6525  * @type: queue type as RX or TX
6526  * @napi: NAPI context, pass NULL to clear previously set NAPI
6527  *
6528  * Set queue with its corresponding napi context. This should be done after
6529  * registering the NAPI handler for the queue-vector and the queues have been
6530  * mapped to the corresponding interrupt vector.
6531  */
6532 void netif_queue_set_napi(struct net_device *dev, unsigned int queue_index,
6533 			  enum netdev_queue_type type, struct napi_struct *napi)
6534 {
6535 	struct netdev_rx_queue *rxq;
6536 	struct netdev_queue *txq;
6537 
6538 	if (WARN_ON_ONCE(napi && !napi->dev))
6539 		return;
6540 	if (dev->reg_state >= NETREG_REGISTERED)
6541 		ASSERT_RTNL();
6542 
6543 	switch (type) {
6544 	case NETDEV_QUEUE_TYPE_RX:
6545 		rxq = __netif_get_rx_queue(dev, queue_index);
6546 		rxq->napi = napi;
6547 		return;
6548 	case NETDEV_QUEUE_TYPE_TX:
6549 		txq = netdev_get_tx_queue(dev, queue_index);
6550 		txq->napi = napi;
6551 		return;
6552 	default:
6553 		return;
6554 	}
6555 }
6556 EXPORT_SYMBOL(netif_queue_set_napi);
6557 
6558 void netif_napi_add_weight(struct net_device *dev, struct napi_struct *napi,
6559 			   int (*poll)(struct napi_struct *, int), int weight)
6560 {
6561 	if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state)))
6562 		return;
6563 
6564 	INIT_LIST_HEAD(&napi->poll_list);
6565 	INIT_HLIST_NODE(&napi->napi_hash_node);
6566 	hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6567 	napi->timer.function = napi_watchdog;
6568 	init_gro_hash(napi);
6569 	napi->skb = NULL;
6570 	INIT_LIST_HEAD(&napi->rx_list);
6571 	napi->rx_count = 0;
6572 	napi->poll = poll;
6573 	if (weight > NAPI_POLL_WEIGHT)
6574 		netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6575 				weight);
6576 	napi->weight = weight;
6577 	napi->dev = dev;
6578 #ifdef CONFIG_NETPOLL
6579 	napi->poll_owner = -1;
6580 #endif
6581 	napi->list_owner = -1;
6582 	set_bit(NAPI_STATE_SCHED, &napi->state);
6583 	set_bit(NAPI_STATE_NPSVC, &napi->state);
6584 	list_add_rcu(&napi->dev_list, &dev->napi_list);
6585 	napi_hash_add(napi);
6586 	napi_get_frags_check(napi);
6587 	/* Create kthread for this napi if dev->threaded is set.
6588 	 * Clear dev->threaded if kthread creation failed so that
6589 	 * threaded mode will not be enabled in napi_enable().
6590 	 */
6591 	if (dev->threaded && napi_kthread_create(napi))
6592 		dev->threaded = 0;
6593 	netif_napi_set_irq(napi, -1);
6594 }
6595 EXPORT_SYMBOL(netif_napi_add_weight);
6596 
6597 void napi_disable(struct napi_struct *n)
6598 {
6599 	unsigned long val, new;
6600 
6601 	might_sleep();
6602 	set_bit(NAPI_STATE_DISABLE, &n->state);
6603 
6604 	val = READ_ONCE(n->state);
6605 	do {
6606 		while (val & (NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC)) {
6607 			usleep_range(20, 200);
6608 			val = READ_ONCE(n->state);
6609 		}
6610 
6611 		new = val | NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC;
6612 		new &= ~(NAPIF_STATE_THREADED | NAPIF_STATE_PREFER_BUSY_POLL);
6613 	} while (!try_cmpxchg(&n->state, &val, new));
6614 
6615 	hrtimer_cancel(&n->timer);
6616 
6617 	clear_bit(NAPI_STATE_DISABLE, &n->state);
6618 }
6619 EXPORT_SYMBOL(napi_disable);
6620 
6621 /**
6622  *	napi_enable - enable NAPI scheduling
6623  *	@n: NAPI context
6624  *
6625  * Resume NAPI from being scheduled on this context.
6626  * Must be paired with napi_disable.
6627  */
6628 void napi_enable(struct napi_struct *n)
6629 {
6630 	unsigned long new, val = READ_ONCE(n->state);
6631 
6632 	do {
6633 		BUG_ON(!test_bit(NAPI_STATE_SCHED, &val));
6634 
6635 		new = val & ~(NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC);
6636 		if (n->dev->threaded && n->thread)
6637 			new |= NAPIF_STATE_THREADED;
6638 	} while (!try_cmpxchg(&n->state, &val, new));
6639 }
6640 EXPORT_SYMBOL(napi_enable);
6641 
6642 static void flush_gro_hash(struct napi_struct *napi)
6643 {
6644 	int i;
6645 
6646 	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6647 		struct sk_buff *skb, *n;
6648 
6649 		list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6650 			kfree_skb(skb);
6651 		napi->gro_hash[i].count = 0;
6652 	}
6653 }
6654 
6655 /* Must be called in process context */
6656 void __netif_napi_del(struct napi_struct *napi)
6657 {
6658 	if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state))
6659 		return;
6660 
6661 	napi_hash_del(napi);
6662 	list_del_rcu(&napi->dev_list);
6663 	napi_free_frags(napi);
6664 
6665 	flush_gro_hash(napi);
6666 	napi->gro_bitmask = 0;
6667 
6668 	if (napi->thread) {
6669 		kthread_stop(napi->thread);
6670 		napi->thread = NULL;
6671 	}
6672 }
6673 EXPORT_SYMBOL(__netif_napi_del);
6674 
6675 static int __napi_poll(struct napi_struct *n, bool *repoll)
6676 {
6677 	int work, weight;
6678 
6679 	weight = n->weight;
6680 
6681 	/* This NAPI_STATE_SCHED test is for avoiding a race
6682 	 * with netpoll's poll_napi().  Only the entity which
6683 	 * obtains the lock and sees NAPI_STATE_SCHED set will
6684 	 * actually make the ->poll() call.  Therefore we avoid
6685 	 * accidentally calling ->poll() when NAPI is not scheduled.
6686 	 */
6687 	work = 0;
6688 	if (napi_is_scheduled(n)) {
6689 		work = n->poll(n, weight);
6690 		trace_napi_poll(n, work, weight);
6691 
6692 		xdp_do_check_flushed(n);
6693 	}
6694 
6695 	if (unlikely(work > weight))
6696 		netdev_err_once(n->dev, "NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
6697 				n->poll, work, weight);
6698 
6699 	if (likely(work < weight))
6700 		return work;
6701 
6702 	/* Drivers must not modify the NAPI state if they
6703 	 * consume the entire weight.  In such cases this code
6704 	 * still "owns" the NAPI instance and therefore can
6705 	 * move the instance around on the list at-will.
6706 	 */
6707 	if (unlikely(napi_disable_pending(n))) {
6708 		napi_complete(n);
6709 		return work;
6710 	}
6711 
6712 	/* The NAPI context has more processing work, but busy-polling
6713 	 * is preferred. Exit early.
6714 	 */
6715 	if (napi_prefer_busy_poll(n)) {
6716 		if (napi_complete_done(n, work)) {
6717 			/* If timeout is not set, we need to make sure
6718 			 * that the NAPI is re-scheduled.
6719 			 */
6720 			napi_schedule(n);
6721 		}
6722 		return work;
6723 	}
6724 
6725 	if (n->gro_bitmask) {
6726 		/* flush too old packets
6727 		 * If HZ < 1000, flush all packets.
6728 		 */
6729 		napi_gro_flush(n, HZ >= 1000);
6730 	}
6731 
6732 	gro_normal_list(n);
6733 
6734 	/* Some drivers may have called napi_schedule
6735 	 * prior to exhausting their budget.
6736 	 */
6737 	if (unlikely(!list_empty(&n->poll_list))) {
6738 		pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6739 			     n->dev ? n->dev->name : "backlog");
6740 		return work;
6741 	}
6742 
6743 	*repoll = true;
6744 
6745 	return work;
6746 }
6747 
6748 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6749 {
6750 	bool do_repoll = false;
6751 	void *have;
6752 	int work;
6753 
6754 	list_del_init(&n->poll_list);
6755 
6756 	have = netpoll_poll_lock(n);
6757 
6758 	work = __napi_poll(n, &do_repoll);
6759 
6760 	if (do_repoll)
6761 		list_add_tail(&n->poll_list, repoll);
6762 
6763 	netpoll_poll_unlock(have);
6764 
6765 	return work;
6766 }
6767 
6768 static int napi_thread_wait(struct napi_struct *napi)
6769 {
6770 	set_current_state(TASK_INTERRUPTIBLE);
6771 
6772 	while (!kthread_should_stop()) {
6773 		/* Testing SCHED_THREADED bit here to make sure the current
6774 		 * kthread owns this napi and could poll on this napi.
6775 		 * Testing SCHED bit is not enough because SCHED bit might be
6776 		 * set by some other busy poll thread or by napi_disable().
6777 		 */
6778 		if (test_bit(NAPI_STATE_SCHED_THREADED, &napi->state)) {
6779 			WARN_ON(!list_empty(&napi->poll_list));
6780 			__set_current_state(TASK_RUNNING);
6781 			return 0;
6782 		}
6783 
6784 		schedule();
6785 		set_current_state(TASK_INTERRUPTIBLE);
6786 	}
6787 	__set_current_state(TASK_RUNNING);
6788 
6789 	return -1;
6790 }
6791 
6792 static void napi_threaded_poll_loop(struct napi_struct *napi)
6793 {
6794 	struct softnet_data *sd;
6795 	unsigned long last_qs = jiffies;
6796 
6797 	for (;;) {
6798 		bool repoll = false;
6799 		void *have;
6800 
6801 		local_bh_disable();
6802 		sd = this_cpu_ptr(&softnet_data);
6803 		sd->in_napi_threaded_poll = true;
6804 
6805 		have = netpoll_poll_lock(napi);
6806 		__napi_poll(napi, &repoll);
6807 		netpoll_poll_unlock(have);
6808 
6809 		sd->in_napi_threaded_poll = false;
6810 		barrier();
6811 
6812 		if (sd_has_rps_ipi_waiting(sd)) {
6813 			local_irq_disable();
6814 			net_rps_action_and_irq_enable(sd);
6815 		}
6816 		skb_defer_free_flush(sd);
6817 		local_bh_enable();
6818 
6819 		if (!repoll)
6820 			break;
6821 
6822 		rcu_softirq_qs_periodic(last_qs);
6823 		cond_resched();
6824 	}
6825 }
6826 
6827 static int napi_threaded_poll(void *data)
6828 {
6829 	struct napi_struct *napi = data;
6830 
6831 	while (!napi_thread_wait(napi))
6832 		napi_threaded_poll_loop(napi);
6833 
6834 	return 0;
6835 }
6836 
6837 static __latent_entropy void net_rx_action(struct softirq_action *h)
6838 {
6839 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
6840 	unsigned long time_limit = jiffies +
6841 		usecs_to_jiffies(READ_ONCE(net_hotdata.netdev_budget_usecs));
6842 	int budget = READ_ONCE(net_hotdata.netdev_budget);
6843 	LIST_HEAD(list);
6844 	LIST_HEAD(repoll);
6845 
6846 start:
6847 	sd->in_net_rx_action = true;
6848 	local_irq_disable();
6849 	list_splice_init(&sd->poll_list, &list);
6850 	local_irq_enable();
6851 
6852 	for (;;) {
6853 		struct napi_struct *n;
6854 
6855 		skb_defer_free_flush(sd);
6856 
6857 		if (list_empty(&list)) {
6858 			if (list_empty(&repoll)) {
6859 				sd->in_net_rx_action = false;
6860 				barrier();
6861 				/* We need to check if ____napi_schedule()
6862 				 * had refilled poll_list while
6863 				 * sd->in_net_rx_action was true.
6864 				 */
6865 				if (!list_empty(&sd->poll_list))
6866 					goto start;
6867 				if (!sd_has_rps_ipi_waiting(sd))
6868 					goto end;
6869 			}
6870 			break;
6871 		}
6872 
6873 		n = list_first_entry(&list, struct napi_struct, poll_list);
6874 		budget -= napi_poll(n, &repoll);
6875 
6876 		/* If softirq window is exhausted then punt.
6877 		 * Allow this to run for 2 jiffies since which will allow
6878 		 * an average latency of 1.5/HZ.
6879 		 */
6880 		if (unlikely(budget <= 0 ||
6881 			     time_after_eq(jiffies, time_limit))) {
6882 			sd->time_squeeze++;
6883 			break;
6884 		}
6885 	}
6886 
6887 	local_irq_disable();
6888 
6889 	list_splice_tail_init(&sd->poll_list, &list);
6890 	list_splice_tail(&repoll, &list);
6891 	list_splice(&list, &sd->poll_list);
6892 	if (!list_empty(&sd->poll_list))
6893 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
6894 	else
6895 		sd->in_net_rx_action = false;
6896 
6897 	net_rps_action_and_irq_enable(sd);
6898 end:;
6899 }
6900 
6901 struct netdev_adjacent {
6902 	struct net_device *dev;
6903 	netdevice_tracker dev_tracker;
6904 
6905 	/* upper master flag, there can only be one master device per list */
6906 	bool master;
6907 
6908 	/* lookup ignore flag */
6909 	bool ignore;
6910 
6911 	/* counter for the number of times this device was added to us */
6912 	u16 ref_nr;
6913 
6914 	/* private field for the users */
6915 	void *private;
6916 
6917 	struct list_head list;
6918 	struct rcu_head rcu;
6919 };
6920 
6921 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
6922 						 struct list_head *adj_list)
6923 {
6924 	struct netdev_adjacent *adj;
6925 
6926 	list_for_each_entry(adj, adj_list, list) {
6927 		if (adj->dev == adj_dev)
6928 			return adj;
6929 	}
6930 	return NULL;
6931 }
6932 
6933 static int ____netdev_has_upper_dev(struct net_device *upper_dev,
6934 				    struct netdev_nested_priv *priv)
6935 {
6936 	struct net_device *dev = (struct net_device *)priv->data;
6937 
6938 	return upper_dev == dev;
6939 }
6940 
6941 /**
6942  * netdev_has_upper_dev - Check if device is linked to an upper device
6943  * @dev: device
6944  * @upper_dev: upper device to check
6945  *
6946  * Find out if a device is linked to specified upper device and return true
6947  * in case it is. Note that this checks only immediate upper device,
6948  * not through a complete stack of devices. The caller must hold the RTNL lock.
6949  */
6950 bool netdev_has_upper_dev(struct net_device *dev,
6951 			  struct net_device *upper_dev)
6952 {
6953 	struct netdev_nested_priv priv = {
6954 		.data = (void *)upper_dev,
6955 	};
6956 
6957 	ASSERT_RTNL();
6958 
6959 	return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6960 					     &priv);
6961 }
6962 EXPORT_SYMBOL(netdev_has_upper_dev);
6963 
6964 /**
6965  * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device
6966  * @dev: device
6967  * @upper_dev: upper device to check
6968  *
6969  * Find out if a device is linked to specified upper device and return true
6970  * in case it is. Note that this checks the entire upper device chain.
6971  * The caller must hold rcu lock.
6972  */
6973 
6974 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
6975 				  struct net_device *upper_dev)
6976 {
6977 	struct netdev_nested_priv priv = {
6978 		.data = (void *)upper_dev,
6979 	};
6980 
6981 	return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6982 					       &priv);
6983 }
6984 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
6985 
6986 /**
6987  * netdev_has_any_upper_dev - Check if device is linked to some device
6988  * @dev: device
6989  *
6990  * Find out if a device is linked to an upper device and return true in case
6991  * it is. The caller must hold the RTNL lock.
6992  */
6993 bool netdev_has_any_upper_dev(struct net_device *dev)
6994 {
6995 	ASSERT_RTNL();
6996 
6997 	return !list_empty(&dev->adj_list.upper);
6998 }
6999 EXPORT_SYMBOL(netdev_has_any_upper_dev);
7000 
7001 /**
7002  * netdev_master_upper_dev_get - Get master upper device
7003  * @dev: device
7004  *
7005  * Find a master upper device and return pointer to it or NULL in case
7006  * it's not there. The caller must hold the RTNL lock.
7007  */
7008 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
7009 {
7010 	struct netdev_adjacent *upper;
7011 
7012 	ASSERT_RTNL();
7013 
7014 	if (list_empty(&dev->adj_list.upper))
7015 		return NULL;
7016 
7017 	upper = list_first_entry(&dev->adj_list.upper,
7018 				 struct netdev_adjacent, list);
7019 	if (likely(upper->master))
7020 		return upper->dev;
7021 	return NULL;
7022 }
7023 EXPORT_SYMBOL(netdev_master_upper_dev_get);
7024 
7025 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
7026 {
7027 	struct netdev_adjacent *upper;
7028 
7029 	ASSERT_RTNL();
7030 
7031 	if (list_empty(&dev->adj_list.upper))
7032 		return NULL;
7033 
7034 	upper = list_first_entry(&dev->adj_list.upper,
7035 				 struct netdev_adjacent, list);
7036 	if (likely(upper->master) && !upper->ignore)
7037 		return upper->dev;
7038 	return NULL;
7039 }
7040 
7041 /**
7042  * netdev_has_any_lower_dev - Check if device is linked to some device
7043  * @dev: device
7044  *
7045  * Find out if a device is linked to a lower device and return true in case
7046  * it is. The caller must hold the RTNL lock.
7047  */
7048 static bool netdev_has_any_lower_dev(struct net_device *dev)
7049 {
7050 	ASSERT_RTNL();
7051 
7052 	return !list_empty(&dev->adj_list.lower);
7053 }
7054 
7055 void *netdev_adjacent_get_private(struct list_head *adj_list)
7056 {
7057 	struct netdev_adjacent *adj;
7058 
7059 	adj = list_entry(adj_list, struct netdev_adjacent, list);
7060 
7061 	return adj->private;
7062 }
7063 EXPORT_SYMBOL(netdev_adjacent_get_private);
7064 
7065 /**
7066  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
7067  * @dev: device
7068  * @iter: list_head ** of the current position
7069  *
7070  * Gets the next device from the dev's upper list, starting from iter
7071  * position. The caller must hold RCU read lock.
7072  */
7073 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
7074 						 struct list_head **iter)
7075 {
7076 	struct netdev_adjacent *upper;
7077 
7078 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7079 
7080 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7081 
7082 	if (&upper->list == &dev->adj_list.upper)
7083 		return NULL;
7084 
7085 	*iter = &upper->list;
7086 
7087 	return upper->dev;
7088 }
7089 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
7090 
7091 static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
7092 						  struct list_head **iter,
7093 						  bool *ignore)
7094 {
7095 	struct netdev_adjacent *upper;
7096 
7097 	upper = list_entry((*iter)->next, struct netdev_adjacent, list);
7098 
7099 	if (&upper->list == &dev->adj_list.upper)
7100 		return NULL;
7101 
7102 	*iter = &upper->list;
7103 	*ignore = upper->ignore;
7104 
7105 	return upper->dev;
7106 }
7107 
7108 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
7109 						    struct list_head **iter)
7110 {
7111 	struct netdev_adjacent *upper;
7112 
7113 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7114 
7115 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7116 
7117 	if (&upper->list == &dev->adj_list.upper)
7118 		return NULL;
7119 
7120 	*iter = &upper->list;
7121 
7122 	return upper->dev;
7123 }
7124 
7125 static int __netdev_walk_all_upper_dev(struct net_device *dev,
7126 				       int (*fn)(struct net_device *dev,
7127 					 struct netdev_nested_priv *priv),
7128 				       struct netdev_nested_priv *priv)
7129 {
7130 	struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7131 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7132 	int ret, cur = 0;
7133 	bool ignore;
7134 
7135 	now = dev;
7136 	iter = &dev->adj_list.upper;
7137 
7138 	while (1) {
7139 		if (now != dev) {
7140 			ret = fn(now, priv);
7141 			if (ret)
7142 				return ret;
7143 		}
7144 
7145 		next = NULL;
7146 		while (1) {
7147 			udev = __netdev_next_upper_dev(now, &iter, &ignore);
7148 			if (!udev)
7149 				break;
7150 			if (ignore)
7151 				continue;
7152 
7153 			next = udev;
7154 			niter = &udev->adj_list.upper;
7155 			dev_stack[cur] = now;
7156 			iter_stack[cur++] = iter;
7157 			break;
7158 		}
7159 
7160 		if (!next) {
7161 			if (!cur)
7162 				return 0;
7163 			next = dev_stack[--cur];
7164 			niter = iter_stack[cur];
7165 		}
7166 
7167 		now = next;
7168 		iter = niter;
7169 	}
7170 
7171 	return 0;
7172 }
7173 
7174 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
7175 				  int (*fn)(struct net_device *dev,
7176 					    struct netdev_nested_priv *priv),
7177 				  struct netdev_nested_priv *priv)
7178 {
7179 	struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7180 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7181 	int ret, cur = 0;
7182 
7183 	now = dev;
7184 	iter = &dev->adj_list.upper;
7185 
7186 	while (1) {
7187 		if (now != dev) {
7188 			ret = fn(now, priv);
7189 			if (ret)
7190 				return ret;
7191 		}
7192 
7193 		next = NULL;
7194 		while (1) {
7195 			udev = netdev_next_upper_dev_rcu(now, &iter);
7196 			if (!udev)
7197 				break;
7198 
7199 			next = udev;
7200 			niter = &udev->adj_list.upper;
7201 			dev_stack[cur] = now;
7202 			iter_stack[cur++] = iter;
7203 			break;
7204 		}
7205 
7206 		if (!next) {
7207 			if (!cur)
7208 				return 0;
7209 			next = dev_stack[--cur];
7210 			niter = iter_stack[cur];
7211 		}
7212 
7213 		now = next;
7214 		iter = niter;
7215 	}
7216 
7217 	return 0;
7218 }
7219 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
7220 
7221 static bool __netdev_has_upper_dev(struct net_device *dev,
7222 				   struct net_device *upper_dev)
7223 {
7224 	struct netdev_nested_priv priv = {
7225 		.flags = 0,
7226 		.data = (void *)upper_dev,
7227 	};
7228 
7229 	ASSERT_RTNL();
7230 
7231 	return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
7232 					   &priv);
7233 }
7234 
7235 /**
7236  * netdev_lower_get_next_private - Get the next ->private from the
7237  *				   lower neighbour list
7238  * @dev: device
7239  * @iter: list_head ** of the current position
7240  *
7241  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7242  * list, starting from iter position. The caller must hold either hold the
7243  * RTNL lock or its own locking that guarantees that the neighbour lower
7244  * list will remain unchanged.
7245  */
7246 void *netdev_lower_get_next_private(struct net_device *dev,
7247 				    struct list_head **iter)
7248 {
7249 	struct netdev_adjacent *lower;
7250 
7251 	lower = list_entry(*iter, struct netdev_adjacent, list);
7252 
7253 	if (&lower->list == &dev->adj_list.lower)
7254 		return NULL;
7255 
7256 	*iter = lower->list.next;
7257 
7258 	return lower->private;
7259 }
7260 EXPORT_SYMBOL(netdev_lower_get_next_private);
7261 
7262 /**
7263  * netdev_lower_get_next_private_rcu - Get the next ->private from the
7264  *				       lower neighbour list, RCU
7265  *				       variant
7266  * @dev: device
7267  * @iter: list_head ** of the current position
7268  *
7269  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7270  * list, starting from iter position. The caller must hold RCU read lock.
7271  */
7272 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
7273 					struct list_head **iter)
7274 {
7275 	struct netdev_adjacent *lower;
7276 
7277 	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
7278 
7279 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7280 
7281 	if (&lower->list == &dev->adj_list.lower)
7282 		return NULL;
7283 
7284 	*iter = &lower->list;
7285 
7286 	return lower->private;
7287 }
7288 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
7289 
7290 /**
7291  * netdev_lower_get_next - Get the next device from the lower neighbour
7292  *                         list
7293  * @dev: device
7294  * @iter: list_head ** of the current position
7295  *
7296  * Gets the next netdev_adjacent from the dev's lower neighbour
7297  * list, starting from iter position. The caller must hold RTNL lock or
7298  * its own locking that guarantees that the neighbour lower
7299  * list will remain unchanged.
7300  */
7301 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
7302 {
7303 	struct netdev_adjacent *lower;
7304 
7305 	lower = list_entry(*iter, struct netdev_adjacent, list);
7306 
7307 	if (&lower->list == &dev->adj_list.lower)
7308 		return NULL;
7309 
7310 	*iter = lower->list.next;
7311 
7312 	return lower->dev;
7313 }
7314 EXPORT_SYMBOL(netdev_lower_get_next);
7315 
7316 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7317 						struct list_head **iter)
7318 {
7319 	struct netdev_adjacent *lower;
7320 
7321 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7322 
7323 	if (&lower->list == &dev->adj_list.lower)
7324 		return NULL;
7325 
7326 	*iter = &lower->list;
7327 
7328 	return lower->dev;
7329 }
7330 
7331 static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7332 						  struct list_head **iter,
7333 						  bool *ignore)
7334 {
7335 	struct netdev_adjacent *lower;
7336 
7337 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7338 
7339 	if (&lower->list == &dev->adj_list.lower)
7340 		return NULL;
7341 
7342 	*iter = &lower->list;
7343 	*ignore = lower->ignore;
7344 
7345 	return lower->dev;
7346 }
7347 
7348 int netdev_walk_all_lower_dev(struct net_device *dev,
7349 			      int (*fn)(struct net_device *dev,
7350 					struct netdev_nested_priv *priv),
7351 			      struct netdev_nested_priv *priv)
7352 {
7353 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7354 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7355 	int ret, cur = 0;
7356 
7357 	now = dev;
7358 	iter = &dev->adj_list.lower;
7359 
7360 	while (1) {
7361 		if (now != dev) {
7362 			ret = fn(now, priv);
7363 			if (ret)
7364 				return ret;
7365 		}
7366 
7367 		next = NULL;
7368 		while (1) {
7369 			ldev = netdev_next_lower_dev(now, &iter);
7370 			if (!ldev)
7371 				break;
7372 
7373 			next = ldev;
7374 			niter = &ldev->adj_list.lower;
7375 			dev_stack[cur] = now;
7376 			iter_stack[cur++] = iter;
7377 			break;
7378 		}
7379 
7380 		if (!next) {
7381 			if (!cur)
7382 				return 0;
7383 			next = dev_stack[--cur];
7384 			niter = iter_stack[cur];
7385 		}
7386 
7387 		now = next;
7388 		iter = niter;
7389 	}
7390 
7391 	return 0;
7392 }
7393 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
7394 
7395 static int __netdev_walk_all_lower_dev(struct net_device *dev,
7396 				       int (*fn)(struct net_device *dev,
7397 					 struct netdev_nested_priv *priv),
7398 				       struct netdev_nested_priv *priv)
7399 {
7400 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7401 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7402 	int ret, cur = 0;
7403 	bool ignore;
7404 
7405 	now = dev;
7406 	iter = &dev->adj_list.lower;
7407 
7408 	while (1) {
7409 		if (now != dev) {
7410 			ret = fn(now, priv);
7411 			if (ret)
7412 				return ret;
7413 		}
7414 
7415 		next = NULL;
7416 		while (1) {
7417 			ldev = __netdev_next_lower_dev(now, &iter, &ignore);
7418 			if (!ldev)
7419 				break;
7420 			if (ignore)
7421 				continue;
7422 
7423 			next = ldev;
7424 			niter = &ldev->adj_list.lower;
7425 			dev_stack[cur] = now;
7426 			iter_stack[cur++] = iter;
7427 			break;
7428 		}
7429 
7430 		if (!next) {
7431 			if (!cur)
7432 				return 0;
7433 			next = dev_stack[--cur];
7434 			niter = iter_stack[cur];
7435 		}
7436 
7437 		now = next;
7438 		iter = niter;
7439 	}
7440 
7441 	return 0;
7442 }
7443 
7444 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
7445 					     struct list_head **iter)
7446 {
7447 	struct netdev_adjacent *lower;
7448 
7449 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7450 	if (&lower->list == &dev->adj_list.lower)
7451 		return NULL;
7452 
7453 	*iter = &lower->list;
7454 
7455 	return lower->dev;
7456 }
7457 EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
7458 
7459 static u8 __netdev_upper_depth(struct net_device *dev)
7460 {
7461 	struct net_device *udev;
7462 	struct list_head *iter;
7463 	u8 max_depth = 0;
7464 	bool ignore;
7465 
7466 	for (iter = &dev->adj_list.upper,
7467 	     udev = __netdev_next_upper_dev(dev, &iter, &ignore);
7468 	     udev;
7469 	     udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
7470 		if (ignore)
7471 			continue;
7472 		if (max_depth < udev->upper_level)
7473 			max_depth = udev->upper_level;
7474 	}
7475 
7476 	return max_depth;
7477 }
7478 
7479 static u8 __netdev_lower_depth(struct net_device *dev)
7480 {
7481 	struct net_device *ldev;
7482 	struct list_head *iter;
7483 	u8 max_depth = 0;
7484 	bool ignore;
7485 
7486 	for (iter = &dev->adj_list.lower,
7487 	     ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
7488 	     ldev;
7489 	     ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
7490 		if (ignore)
7491 			continue;
7492 		if (max_depth < ldev->lower_level)
7493 			max_depth = ldev->lower_level;
7494 	}
7495 
7496 	return max_depth;
7497 }
7498 
7499 static int __netdev_update_upper_level(struct net_device *dev,
7500 				       struct netdev_nested_priv *__unused)
7501 {
7502 	dev->upper_level = __netdev_upper_depth(dev) + 1;
7503 	return 0;
7504 }
7505 
7506 #ifdef CONFIG_LOCKDEP
7507 static LIST_HEAD(net_unlink_list);
7508 
7509 static void net_unlink_todo(struct net_device *dev)
7510 {
7511 	if (list_empty(&dev->unlink_list))
7512 		list_add_tail(&dev->unlink_list, &net_unlink_list);
7513 }
7514 #endif
7515 
7516 static int __netdev_update_lower_level(struct net_device *dev,
7517 				       struct netdev_nested_priv *priv)
7518 {
7519 	dev->lower_level = __netdev_lower_depth(dev) + 1;
7520 
7521 #ifdef CONFIG_LOCKDEP
7522 	if (!priv)
7523 		return 0;
7524 
7525 	if (priv->flags & NESTED_SYNC_IMM)
7526 		dev->nested_level = dev->lower_level - 1;
7527 	if (priv->flags & NESTED_SYNC_TODO)
7528 		net_unlink_todo(dev);
7529 #endif
7530 	return 0;
7531 }
7532 
7533 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7534 				  int (*fn)(struct net_device *dev,
7535 					    struct netdev_nested_priv *priv),
7536 				  struct netdev_nested_priv *priv)
7537 {
7538 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7539 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7540 	int ret, cur = 0;
7541 
7542 	now = dev;
7543 	iter = &dev->adj_list.lower;
7544 
7545 	while (1) {
7546 		if (now != dev) {
7547 			ret = fn(now, priv);
7548 			if (ret)
7549 				return ret;
7550 		}
7551 
7552 		next = NULL;
7553 		while (1) {
7554 			ldev = netdev_next_lower_dev_rcu(now, &iter);
7555 			if (!ldev)
7556 				break;
7557 
7558 			next = ldev;
7559 			niter = &ldev->adj_list.lower;
7560 			dev_stack[cur] = now;
7561 			iter_stack[cur++] = iter;
7562 			break;
7563 		}
7564 
7565 		if (!next) {
7566 			if (!cur)
7567 				return 0;
7568 			next = dev_stack[--cur];
7569 			niter = iter_stack[cur];
7570 		}
7571 
7572 		now = next;
7573 		iter = niter;
7574 	}
7575 
7576 	return 0;
7577 }
7578 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
7579 
7580 /**
7581  * netdev_lower_get_first_private_rcu - Get the first ->private from the
7582  *				       lower neighbour list, RCU
7583  *				       variant
7584  * @dev: device
7585  *
7586  * Gets the first netdev_adjacent->private from the dev's lower neighbour
7587  * list. The caller must hold RCU read lock.
7588  */
7589 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
7590 {
7591 	struct netdev_adjacent *lower;
7592 
7593 	lower = list_first_or_null_rcu(&dev->adj_list.lower,
7594 			struct netdev_adjacent, list);
7595 	if (lower)
7596 		return lower->private;
7597 	return NULL;
7598 }
7599 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
7600 
7601 /**
7602  * netdev_master_upper_dev_get_rcu - Get master upper device
7603  * @dev: device
7604  *
7605  * Find a master upper device and return pointer to it or NULL in case
7606  * it's not there. The caller must hold the RCU read lock.
7607  */
7608 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
7609 {
7610 	struct netdev_adjacent *upper;
7611 
7612 	upper = list_first_or_null_rcu(&dev->adj_list.upper,
7613 				       struct netdev_adjacent, list);
7614 	if (upper && likely(upper->master))
7615 		return upper->dev;
7616 	return NULL;
7617 }
7618 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
7619 
7620 static int netdev_adjacent_sysfs_add(struct net_device *dev,
7621 			      struct net_device *adj_dev,
7622 			      struct list_head *dev_list)
7623 {
7624 	char linkname[IFNAMSIZ+7];
7625 
7626 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
7627 		"upper_%s" : "lower_%s", adj_dev->name);
7628 	return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
7629 				 linkname);
7630 }
7631 static void netdev_adjacent_sysfs_del(struct net_device *dev,
7632 			       char *name,
7633 			       struct list_head *dev_list)
7634 {
7635 	char linkname[IFNAMSIZ+7];
7636 
7637 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
7638 		"upper_%s" : "lower_%s", name);
7639 	sysfs_remove_link(&(dev->dev.kobj), linkname);
7640 }
7641 
7642 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
7643 						 struct net_device *adj_dev,
7644 						 struct list_head *dev_list)
7645 {
7646 	return (dev_list == &dev->adj_list.upper ||
7647 		dev_list == &dev->adj_list.lower) &&
7648 		net_eq(dev_net(dev), dev_net(adj_dev));
7649 }
7650 
7651 static int __netdev_adjacent_dev_insert(struct net_device *dev,
7652 					struct net_device *adj_dev,
7653 					struct list_head *dev_list,
7654 					void *private, bool master)
7655 {
7656 	struct netdev_adjacent *adj;
7657 	int ret;
7658 
7659 	adj = __netdev_find_adj(adj_dev, dev_list);
7660 
7661 	if (adj) {
7662 		adj->ref_nr += 1;
7663 		pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7664 			 dev->name, adj_dev->name, adj->ref_nr);
7665 
7666 		return 0;
7667 	}
7668 
7669 	adj = kmalloc(sizeof(*adj), GFP_KERNEL);
7670 	if (!adj)
7671 		return -ENOMEM;
7672 
7673 	adj->dev = adj_dev;
7674 	adj->master = master;
7675 	adj->ref_nr = 1;
7676 	adj->private = private;
7677 	adj->ignore = false;
7678 	netdev_hold(adj_dev, &adj->dev_tracker, GFP_KERNEL);
7679 
7680 	pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7681 		 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
7682 
7683 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
7684 		ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
7685 		if (ret)
7686 			goto free_adj;
7687 	}
7688 
7689 	/* Ensure that master link is always the first item in list. */
7690 	if (master) {
7691 		ret = sysfs_create_link(&(dev->dev.kobj),
7692 					&(adj_dev->dev.kobj), "master");
7693 		if (ret)
7694 			goto remove_symlinks;
7695 
7696 		list_add_rcu(&adj->list, dev_list);
7697 	} else {
7698 		list_add_tail_rcu(&adj->list, dev_list);
7699 	}
7700 
7701 	return 0;
7702 
7703 remove_symlinks:
7704 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7705 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7706 free_adj:
7707 	netdev_put(adj_dev, &adj->dev_tracker);
7708 	kfree(adj);
7709 
7710 	return ret;
7711 }
7712 
7713 static void __netdev_adjacent_dev_remove(struct net_device *dev,
7714 					 struct net_device *adj_dev,
7715 					 u16 ref_nr,
7716 					 struct list_head *dev_list)
7717 {
7718 	struct netdev_adjacent *adj;
7719 
7720 	pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
7721 		 dev->name, adj_dev->name, ref_nr);
7722 
7723 	adj = __netdev_find_adj(adj_dev, dev_list);
7724 
7725 	if (!adj) {
7726 		pr_err("Adjacency does not exist for device %s from %s\n",
7727 		       dev->name, adj_dev->name);
7728 		WARN_ON(1);
7729 		return;
7730 	}
7731 
7732 	if (adj->ref_nr > ref_nr) {
7733 		pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
7734 			 dev->name, adj_dev->name, ref_nr,
7735 			 adj->ref_nr - ref_nr);
7736 		adj->ref_nr -= ref_nr;
7737 		return;
7738 	}
7739 
7740 	if (adj->master)
7741 		sysfs_remove_link(&(dev->dev.kobj), "master");
7742 
7743 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7744 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7745 
7746 	list_del_rcu(&adj->list);
7747 	pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
7748 		 adj_dev->name, dev->name, adj_dev->name);
7749 	netdev_put(adj_dev, &adj->dev_tracker);
7750 	kfree_rcu(adj, rcu);
7751 }
7752 
7753 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
7754 					    struct net_device *upper_dev,
7755 					    struct list_head *up_list,
7756 					    struct list_head *down_list,
7757 					    void *private, bool master)
7758 {
7759 	int ret;
7760 
7761 	ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
7762 					   private, master);
7763 	if (ret)
7764 		return ret;
7765 
7766 	ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
7767 					   private, false);
7768 	if (ret) {
7769 		__netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
7770 		return ret;
7771 	}
7772 
7773 	return 0;
7774 }
7775 
7776 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
7777 					       struct net_device *upper_dev,
7778 					       u16 ref_nr,
7779 					       struct list_head *up_list,
7780 					       struct list_head *down_list)
7781 {
7782 	__netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
7783 	__netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
7784 }
7785 
7786 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
7787 						struct net_device *upper_dev,
7788 						void *private, bool master)
7789 {
7790 	return __netdev_adjacent_dev_link_lists(dev, upper_dev,
7791 						&dev->adj_list.upper,
7792 						&upper_dev->adj_list.lower,
7793 						private, master);
7794 }
7795 
7796 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
7797 						   struct net_device *upper_dev)
7798 {
7799 	__netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
7800 					   &dev->adj_list.upper,
7801 					   &upper_dev->adj_list.lower);
7802 }
7803 
7804 static int __netdev_upper_dev_link(struct net_device *dev,
7805 				   struct net_device *upper_dev, bool master,
7806 				   void *upper_priv, void *upper_info,
7807 				   struct netdev_nested_priv *priv,
7808 				   struct netlink_ext_ack *extack)
7809 {
7810 	struct netdev_notifier_changeupper_info changeupper_info = {
7811 		.info = {
7812 			.dev = dev,
7813 			.extack = extack,
7814 		},
7815 		.upper_dev = upper_dev,
7816 		.master = master,
7817 		.linking = true,
7818 		.upper_info = upper_info,
7819 	};
7820 	struct net_device *master_dev;
7821 	int ret = 0;
7822 
7823 	ASSERT_RTNL();
7824 
7825 	if (dev == upper_dev)
7826 		return -EBUSY;
7827 
7828 	/* To prevent loops, check if dev is not upper device to upper_dev. */
7829 	if (__netdev_has_upper_dev(upper_dev, dev))
7830 		return -EBUSY;
7831 
7832 	if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
7833 		return -EMLINK;
7834 
7835 	if (!master) {
7836 		if (__netdev_has_upper_dev(dev, upper_dev))
7837 			return -EEXIST;
7838 	} else {
7839 		master_dev = __netdev_master_upper_dev_get(dev);
7840 		if (master_dev)
7841 			return master_dev == upper_dev ? -EEXIST : -EBUSY;
7842 	}
7843 
7844 	ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7845 					    &changeupper_info.info);
7846 	ret = notifier_to_errno(ret);
7847 	if (ret)
7848 		return ret;
7849 
7850 	ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
7851 						   master);
7852 	if (ret)
7853 		return ret;
7854 
7855 	ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7856 					    &changeupper_info.info);
7857 	ret = notifier_to_errno(ret);
7858 	if (ret)
7859 		goto rollback;
7860 
7861 	__netdev_update_upper_level(dev, NULL);
7862 	__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7863 
7864 	__netdev_update_lower_level(upper_dev, priv);
7865 	__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7866 				    priv);
7867 
7868 	return 0;
7869 
7870 rollback:
7871 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7872 
7873 	return ret;
7874 }
7875 
7876 /**
7877  * netdev_upper_dev_link - Add a link to the upper device
7878  * @dev: device
7879  * @upper_dev: new upper device
7880  * @extack: netlink extended ack
7881  *
7882  * Adds a link to device which is upper to this one. The caller must hold
7883  * the RTNL lock. On a failure a negative errno code is returned.
7884  * On success the reference counts are adjusted and the function
7885  * returns zero.
7886  */
7887 int netdev_upper_dev_link(struct net_device *dev,
7888 			  struct net_device *upper_dev,
7889 			  struct netlink_ext_ack *extack)
7890 {
7891 	struct netdev_nested_priv priv = {
7892 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7893 		.data = NULL,
7894 	};
7895 
7896 	return __netdev_upper_dev_link(dev, upper_dev, false,
7897 				       NULL, NULL, &priv, extack);
7898 }
7899 EXPORT_SYMBOL(netdev_upper_dev_link);
7900 
7901 /**
7902  * netdev_master_upper_dev_link - Add a master link to the upper device
7903  * @dev: device
7904  * @upper_dev: new upper device
7905  * @upper_priv: upper device private
7906  * @upper_info: upper info to be passed down via notifier
7907  * @extack: netlink extended ack
7908  *
7909  * Adds a link to device which is upper to this one. In this case, only
7910  * one master upper device can be linked, although other non-master devices
7911  * might be linked as well. The caller must hold the RTNL lock.
7912  * On a failure a negative errno code is returned. On success the reference
7913  * counts are adjusted and the function returns zero.
7914  */
7915 int netdev_master_upper_dev_link(struct net_device *dev,
7916 				 struct net_device *upper_dev,
7917 				 void *upper_priv, void *upper_info,
7918 				 struct netlink_ext_ack *extack)
7919 {
7920 	struct netdev_nested_priv priv = {
7921 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7922 		.data = NULL,
7923 	};
7924 
7925 	return __netdev_upper_dev_link(dev, upper_dev, true,
7926 				       upper_priv, upper_info, &priv, extack);
7927 }
7928 EXPORT_SYMBOL(netdev_master_upper_dev_link);
7929 
7930 static void __netdev_upper_dev_unlink(struct net_device *dev,
7931 				      struct net_device *upper_dev,
7932 				      struct netdev_nested_priv *priv)
7933 {
7934 	struct netdev_notifier_changeupper_info changeupper_info = {
7935 		.info = {
7936 			.dev = dev,
7937 		},
7938 		.upper_dev = upper_dev,
7939 		.linking = false,
7940 	};
7941 
7942 	ASSERT_RTNL();
7943 
7944 	changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
7945 
7946 	call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7947 				      &changeupper_info.info);
7948 
7949 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7950 
7951 	call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7952 				      &changeupper_info.info);
7953 
7954 	__netdev_update_upper_level(dev, NULL);
7955 	__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7956 
7957 	__netdev_update_lower_level(upper_dev, priv);
7958 	__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7959 				    priv);
7960 }
7961 
7962 /**
7963  * netdev_upper_dev_unlink - Removes a link to upper device
7964  * @dev: device
7965  * @upper_dev: new upper device
7966  *
7967  * Removes a link to device which is upper to this one. The caller must hold
7968  * the RTNL lock.
7969  */
7970 void netdev_upper_dev_unlink(struct net_device *dev,
7971 			     struct net_device *upper_dev)
7972 {
7973 	struct netdev_nested_priv priv = {
7974 		.flags = NESTED_SYNC_TODO,
7975 		.data = NULL,
7976 	};
7977 
7978 	__netdev_upper_dev_unlink(dev, upper_dev, &priv);
7979 }
7980 EXPORT_SYMBOL(netdev_upper_dev_unlink);
7981 
7982 static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
7983 				      struct net_device *lower_dev,
7984 				      bool val)
7985 {
7986 	struct netdev_adjacent *adj;
7987 
7988 	adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
7989 	if (adj)
7990 		adj->ignore = val;
7991 
7992 	adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
7993 	if (adj)
7994 		adj->ignore = val;
7995 }
7996 
7997 static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
7998 					struct net_device *lower_dev)
7999 {
8000 	__netdev_adjacent_dev_set(upper_dev, lower_dev, true);
8001 }
8002 
8003 static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
8004 				       struct net_device *lower_dev)
8005 {
8006 	__netdev_adjacent_dev_set(upper_dev, lower_dev, false);
8007 }
8008 
8009 int netdev_adjacent_change_prepare(struct net_device *old_dev,
8010 				   struct net_device *new_dev,
8011 				   struct net_device *dev,
8012 				   struct netlink_ext_ack *extack)
8013 {
8014 	struct netdev_nested_priv priv = {
8015 		.flags = 0,
8016 		.data = NULL,
8017 	};
8018 	int err;
8019 
8020 	if (!new_dev)
8021 		return 0;
8022 
8023 	if (old_dev && new_dev != old_dev)
8024 		netdev_adjacent_dev_disable(dev, old_dev);
8025 	err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv,
8026 				      extack);
8027 	if (err) {
8028 		if (old_dev && new_dev != old_dev)
8029 			netdev_adjacent_dev_enable(dev, old_dev);
8030 		return err;
8031 	}
8032 
8033 	return 0;
8034 }
8035 EXPORT_SYMBOL(netdev_adjacent_change_prepare);
8036 
8037 void netdev_adjacent_change_commit(struct net_device *old_dev,
8038 				   struct net_device *new_dev,
8039 				   struct net_device *dev)
8040 {
8041 	struct netdev_nested_priv priv = {
8042 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8043 		.data = NULL,
8044 	};
8045 
8046 	if (!new_dev || !old_dev)
8047 		return;
8048 
8049 	if (new_dev == old_dev)
8050 		return;
8051 
8052 	netdev_adjacent_dev_enable(dev, old_dev);
8053 	__netdev_upper_dev_unlink(old_dev, dev, &priv);
8054 }
8055 EXPORT_SYMBOL(netdev_adjacent_change_commit);
8056 
8057 void netdev_adjacent_change_abort(struct net_device *old_dev,
8058 				  struct net_device *new_dev,
8059 				  struct net_device *dev)
8060 {
8061 	struct netdev_nested_priv priv = {
8062 		.flags = 0,
8063 		.data = NULL,
8064 	};
8065 
8066 	if (!new_dev)
8067 		return;
8068 
8069 	if (old_dev && new_dev != old_dev)
8070 		netdev_adjacent_dev_enable(dev, old_dev);
8071 
8072 	__netdev_upper_dev_unlink(new_dev, dev, &priv);
8073 }
8074 EXPORT_SYMBOL(netdev_adjacent_change_abort);
8075 
8076 /**
8077  * netdev_bonding_info_change - Dispatch event about slave change
8078  * @dev: device
8079  * @bonding_info: info to dispatch
8080  *
8081  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
8082  * The caller must hold the RTNL lock.
8083  */
8084 void netdev_bonding_info_change(struct net_device *dev,
8085 				struct netdev_bonding_info *bonding_info)
8086 {
8087 	struct netdev_notifier_bonding_info info = {
8088 		.info.dev = dev,
8089 	};
8090 
8091 	memcpy(&info.bonding_info, bonding_info,
8092 	       sizeof(struct netdev_bonding_info));
8093 	call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
8094 				      &info.info);
8095 }
8096 EXPORT_SYMBOL(netdev_bonding_info_change);
8097 
8098 static int netdev_offload_xstats_enable_l3(struct net_device *dev,
8099 					   struct netlink_ext_ack *extack)
8100 {
8101 	struct netdev_notifier_offload_xstats_info info = {
8102 		.info.dev = dev,
8103 		.info.extack = extack,
8104 		.type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
8105 	};
8106 	int err;
8107 	int rc;
8108 
8109 	dev->offload_xstats_l3 = kzalloc(sizeof(*dev->offload_xstats_l3),
8110 					 GFP_KERNEL);
8111 	if (!dev->offload_xstats_l3)
8112 		return -ENOMEM;
8113 
8114 	rc = call_netdevice_notifiers_info_robust(NETDEV_OFFLOAD_XSTATS_ENABLE,
8115 						  NETDEV_OFFLOAD_XSTATS_DISABLE,
8116 						  &info.info);
8117 	err = notifier_to_errno(rc);
8118 	if (err)
8119 		goto free_stats;
8120 
8121 	return 0;
8122 
8123 free_stats:
8124 	kfree(dev->offload_xstats_l3);
8125 	dev->offload_xstats_l3 = NULL;
8126 	return err;
8127 }
8128 
8129 int netdev_offload_xstats_enable(struct net_device *dev,
8130 				 enum netdev_offload_xstats_type type,
8131 				 struct netlink_ext_ack *extack)
8132 {
8133 	ASSERT_RTNL();
8134 
8135 	if (netdev_offload_xstats_enabled(dev, type))
8136 		return -EALREADY;
8137 
8138 	switch (type) {
8139 	case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8140 		return netdev_offload_xstats_enable_l3(dev, extack);
8141 	}
8142 
8143 	WARN_ON(1);
8144 	return -EINVAL;
8145 }
8146 EXPORT_SYMBOL(netdev_offload_xstats_enable);
8147 
8148 static void netdev_offload_xstats_disable_l3(struct net_device *dev)
8149 {
8150 	struct netdev_notifier_offload_xstats_info info = {
8151 		.info.dev = dev,
8152 		.type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
8153 	};
8154 
8155 	call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_DISABLE,
8156 				      &info.info);
8157 	kfree(dev->offload_xstats_l3);
8158 	dev->offload_xstats_l3 = NULL;
8159 }
8160 
8161 int netdev_offload_xstats_disable(struct net_device *dev,
8162 				  enum netdev_offload_xstats_type type)
8163 {
8164 	ASSERT_RTNL();
8165 
8166 	if (!netdev_offload_xstats_enabled(dev, type))
8167 		return -EALREADY;
8168 
8169 	switch (type) {
8170 	case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8171 		netdev_offload_xstats_disable_l3(dev);
8172 		return 0;
8173 	}
8174 
8175 	WARN_ON(1);
8176 	return -EINVAL;
8177 }
8178 EXPORT_SYMBOL(netdev_offload_xstats_disable);
8179 
8180 static void netdev_offload_xstats_disable_all(struct net_device *dev)
8181 {
8182 	netdev_offload_xstats_disable(dev, NETDEV_OFFLOAD_XSTATS_TYPE_L3);
8183 }
8184 
8185 static struct rtnl_hw_stats64 *
8186 netdev_offload_xstats_get_ptr(const struct net_device *dev,
8187 			      enum netdev_offload_xstats_type type)
8188 {
8189 	switch (type) {
8190 	case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8191 		return dev->offload_xstats_l3;
8192 	}
8193 
8194 	WARN_ON(1);
8195 	return NULL;
8196 }
8197 
8198 bool netdev_offload_xstats_enabled(const struct net_device *dev,
8199 				   enum netdev_offload_xstats_type type)
8200 {
8201 	ASSERT_RTNL();
8202 
8203 	return netdev_offload_xstats_get_ptr(dev, type);
8204 }
8205 EXPORT_SYMBOL(netdev_offload_xstats_enabled);
8206 
8207 struct netdev_notifier_offload_xstats_ru {
8208 	bool used;
8209 };
8210 
8211 struct netdev_notifier_offload_xstats_rd {
8212 	struct rtnl_hw_stats64 stats;
8213 	bool used;
8214 };
8215 
8216 static void netdev_hw_stats64_add(struct rtnl_hw_stats64 *dest,
8217 				  const struct rtnl_hw_stats64 *src)
8218 {
8219 	dest->rx_packets	  += src->rx_packets;
8220 	dest->tx_packets	  += src->tx_packets;
8221 	dest->rx_bytes		  += src->rx_bytes;
8222 	dest->tx_bytes		  += src->tx_bytes;
8223 	dest->rx_errors		  += src->rx_errors;
8224 	dest->tx_errors		  += src->tx_errors;
8225 	dest->rx_dropped	  += src->rx_dropped;
8226 	dest->tx_dropped	  += src->tx_dropped;
8227 	dest->multicast		  += src->multicast;
8228 }
8229 
8230 static int netdev_offload_xstats_get_used(struct net_device *dev,
8231 					  enum netdev_offload_xstats_type type,
8232 					  bool *p_used,
8233 					  struct netlink_ext_ack *extack)
8234 {
8235 	struct netdev_notifier_offload_xstats_ru report_used = {};
8236 	struct netdev_notifier_offload_xstats_info info = {
8237 		.info.dev = dev,
8238 		.info.extack = extack,
8239 		.type = type,
8240 		.report_used = &report_used,
8241 	};
8242 	int rc;
8243 
8244 	WARN_ON(!netdev_offload_xstats_enabled(dev, type));
8245 	rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_USED,
8246 					   &info.info);
8247 	*p_used = report_used.used;
8248 	return notifier_to_errno(rc);
8249 }
8250 
8251 static int netdev_offload_xstats_get_stats(struct net_device *dev,
8252 					   enum netdev_offload_xstats_type type,
8253 					   struct rtnl_hw_stats64 *p_stats,
8254 					   bool *p_used,
8255 					   struct netlink_ext_ack *extack)
8256 {
8257 	struct netdev_notifier_offload_xstats_rd report_delta = {};
8258 	struct netdev_notifier_offload_xstats_info info = {
8259 		.info.dev = dev,
8260 		.info.extack = extack,
8261 		.type = type,
8262 		.report_delta = &report_delta,
8263 	};
8264 	struct rtnl_hw_stats64 *stats;
8265 	int rc;
8266 
8267 	stats = netdev_offload_xstats_get_ptr(dev, type);
8268 	if (WARN_ON(!stats))
8269 		return -EINVAL;
8270 
8271 	rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_DELTA,
8272 					   &info.info);
8273 
8274 	/* Cache whatever we got, even if there was an error, otherwise the
8275 	 * successful stats retrievals would get lost.
8276 	 */
8277 	netdev_hw_stats64_add(stats, &report_delta.stats);
8278 
8279 	if (p_stats)
8280 		*p_stats = *stats;
8281 	*p_used = report_delta.used;
8282 
8283 	return notifier_to_errno(rc);
8284 }
8285 
8286 int netdev_offload_xstats_get(struct net_device *dev,
8287 			      enum netdev_offload_xstats_type type,
8288 			      struct rtnl_hw_stats64 *p_stats, bool *p_used,
8289 			      struct netlink_ext_ack *extack)
8290 {
8291 	ASSERT_RTNL();
8292 
8293 	if (p_stats)
8294 		return netdev_offload_xstats_get_stats(dev, type, p_stats,
8295 						       p_used, extack);
8296 	else
8297 		return netdev_offload_xstats_get_used(dev, type, p_used,
8298 						      extack);
8299 }
8300 EXPORT_SYMBOL(netdev_offload_xstats_get);
8301 
8302 void
8303 netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *report_delta,
8304 				   const struct rtnl_hw_stats64 *stats)
8305 {
8306 	report_delta->used = true;
8307 	netdev_hw_stats64_add(&report_delta->stats, stats);
8308 }
8309 EXPORT_SYMBOL(netdev_offload_xstats_report_delta);
8310 
8311 void
8312 netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *report_used)
8313 {
8314 	report_used->used = true;
8315 }
8316 EXPORT_SYMBOL(netdev_offload_xstats_report_used);
8317 
8318 void netdev_offload_xstats_push_delta(struct net_device *dev,
8319 				      enum netdev_offload_xstats_type type,
8320 				      const struct rtnl_hw_stats64 *p_stats)
8321 {
8322 	struct rtnl_hw_stats64 *stats;
8323 
8324 	ASSERT_RTNL();
8325 
8326 	stats = netdev_offload_xstats_get_ptr(dev, type);
8327 	if (WARN_ON(!stats))
8328 		return;
8329 
8330 	netdev_hw_stats64_add(stats, p_stats);
8331 }
8332 EXPORT_SYMBOL(netdev_offload_xstats_push_delta);
8333 
8334 /**
8335  * netdev_get_xmit_slave - Get the xmit slave of master device
8336  * @dev: device
8337  * @skb: The packet
8338  * @all_slaves: assume all the slaves are active
8339  *
8340  * The reference counters are not incremented so the caller must be
8341  * careful with locks. The caller must hold RCU lock.
8342  * %NULL is returned if no slave is found.
8343  */
8344 
8345 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
8346 					 struct sk_buff *skb,
8347 					 bool all_slaves)
8348 {
8349 	const struct net_device_ops *ops = dev->netdev_ops;
8350 
8351 	if (!ops->ndo_get_xmit_slave)
8352 		return NULL;
8353 	return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
8354 }
8355 EXPORT_SYMBOL(netdev_get_xmit_slave);
8356 
8357 static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev,
8358 						  struct sock *sk)
8359 {
8360 	const struct net_device_ops *ops = dev->netdev_ops;
8361 
8362 	if (!ops->ndo_sk_get_lower_dev)
8363 		return NULL;
8364 	return ops->ndo_sk_get_lower_dev(dev, sk);
8365 }
8366 
8367 /**
8368  * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket
8369  * @dev: device
8370  * @sk: the socket
8371  *
8372  * %NULL is returned if no lower device is found.
8373  */
8374 
8375 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
8376 					    struct sock *sk)
8377 {
8378 	struct net_device *lower;
8379 
8380 	lower = netdev_sk_get_lower_dev(dev, sk);
8381 	while (lower) {
8382 		dev = lower;
8383 		lower = netdev_sk_get_lower_dev(dev, sk);
8384 	}
8385 
8386 	return dev;
8387 }
8388 EXPORT_SYMBOL(netdev_sk_get_lowest_dev);
8389 
8390 static void netdev_adjacent_add_links(struct net_device *dev)
8391 {
8392 	struct netdev_adjacent *iter;
8393 
8394 	struct net *net = dev_net(dev);
8395 
8396 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
8397 		if (!net_eq(net, dev_net(iter->dev)))
8398 			continue;
8399 		netdev_adjacent_sysfs_add(iter->dev, dev,
8400 					  &iter->dev->adj_list.lower);
8401 		netdev_adjacent_sysfs_add(dev, iter->dev,
8402 					  &dev->adj_list.upper);
8403 	}
8404 
8405 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
8406 		if (!net_eq(net, dev_net(iter->dev)))
8407 			continue;
8408 		netdev_adjacent_sysfs_add(iter->dev, dev,
8409 					  &iter->dev->adj_list.upper);
8410 		netdev_adjacent_sysfs_add(dev, iter->dev,
8411 					  &dev->adj_list.lower);
8412 	}
8413 }
8414 
8415 static void netdev_adjacent_del_links(struct net_device *dev)
8416 {
8417 	struct netdev_adjacent *iter;
8418 
8419 	struct net *net = dev_net(dev);
8420 
8421 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
8422 		if (!net_eq(net, dev_net(iter->dev)))
8423 			continue;
8424 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
8425 					  &iter->dev->adj_list.lower);
8426 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
8427 					  &dev->adj_list.upper);
8428 	}
8429 
8430 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
8431 		if (!net_eq(net, dev_net(iter->dev)))
8432 			continue;
8433 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
8434 					  &iter->dev->adj_list.upper);
8435 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
8436 					  &dev->adj_list.lower);
8437 	}
8438 }
8439 
8440 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
8441 {
8442 	struct netdev_adjacent *iter;
8443 
8444 	struct net *net = dev_net(dev);
8445 
8446 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
8447 		if (!net_eq(net, dev_net(iter->dev)))
8448 			continue;
8449 		netdev_adjacent_sysfs_del(iter->dev, oldname,
8450 					  &iter->dev->adj_list.lower);
8451 		netdev_adjacent_sysfs_add(iter->dev, dev,
8452 					  &iter->dev->adj_list.lower);
8453 	}
8454 
8455 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
8456 		if (!net_eq(net, dev_net(iter->dev)))
8457 			continue;
8458 		netdev_adjacent_sysfs_del(iter->dev, oldname,
8459 					  &iter->dev->adj_list.upper);
8460 		netdev_adjacent_sysfs_add(iter->dev, dev,
8461 					  &iter->dev->adj_list.upper);
8462 	}
8463 }
8464 
8465 void *netdev_lower_dev_get_private(struct net_device *dev,
8466 				   struct net_device *lower_dev)
8467 {
8468 	struct netdev_adjacent *lower;
8469 
8470 	if (!lower_dev)
8471 		return NULL;
8472 	lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
8473 	if (!lower)
8474 		return NULL;
8475 
8476 	return lower->private;
8477 }
8478 EXPORT_SYMBOL(netdev_lower_dev_get_private);
8479 
8480 
8481 /**
8482  * netdev_lower_state_changed - Dispatch event about lower device state change
8483  * @lower_dev: device
8484  * @lower_state_info: state to dispatch
8485  *
8486  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
8487  * The caller must hold the RTNL lock.
8488  */
8489 void netdev_lower_state_changed(struct net_device *lower_dev,
8490 				void *lower_state_info)
8491 {
8492 	struct netdev_notifier_changelowerstate_info changelowerstate_info = {
8493 		.info.dev = lower_dev,
8494 	};
8495 
8496 	ASSERT_RTNL();
8497 	changelowerstate_info.lower_state_info = lower_state_info;
8498 	call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
8499 				      &changelowerstate_info.info);
8500 }
8501 EXPORT_SYMBOL(netdev_lower_state_changed);
8502 
8503 static void dev_change_rx_flags(struct net_device *dev, int flags)
8504 {
8505 	const struct net_device_ops *ops = dev->netdev_ops;
8506 
8507 	if (ops->ndo_change_rx_flags)
8508 		ops->ndo_change_rx_flags(dev, flags);
8509 }
8510 
8511 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
8512 {
8513 	unsigned int old_flags = dev->flags;
8514 	kuid_t uid;
8515 	kgid_t gid;
8516 
8517 	ASSERT_RTNL();
8518 
8519 	dev->flags |= IFF_PROMISC;
8520 	dev->promiscuity += inc;
8521 	if (dev->promiscuity == 0) {
8522 		/*
8523 		 * Avoid overflow.
8524 		 * If inc causes overflow, untouch promisc and return error.
8525 		 */
8526 		if (inc < 0)
8527 			dev->flags &= ~IFF_PROMISC;
8528 		else {
8529 			dev->promiscuity -= inc;
8530 			netdev_warn(dev, "promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n");
8531 			return -EOVERFLOW;
8532 		}
8533 	}
8534 	if (dev->flags != old_flags) {
8535 		netdev_info(dev, "%s promiscuous mode\n",
8536 			    dev->flags & IFF_PROMISC ? "entered" : "left");
8537 		if (audit_enabled) {
8538 			current_uid_gid(&uid, &gid);
8539 			audit_log(audit_context(), GFP_ATOMIC,
8540 				  AUDIT_ANOM_PROMISCUOUS,
8541 				  "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
8542 				  dev->name, (dev->flags & IFF_PROMISC),
8543 				  (old_flags & IFF_PROMISC),
8544 				  from_kuid(&init_user_ns, audit_get_loginuid(current)),
8545 				  from_kuid(&init_user_ns, uid),
8546 				  from_kgid(&init_user_ns, gid),
8547 				  audit_get_sessionid(current));
8548 		}
8549 
8550 		dev_change_rx_flags(dev, IFF_PROMISC);
8551 	}
8552 	if (notify)
8553 		__dev_notify_flags(dev, old_flags, IFF_PROMISC, 0, NULL);
8554 	return 0;
8555 }
8556 
8557 /**
8558  *	dev_set_promiscuity	- update promiscuity count on a device
8559  *	@dev: device
8560  *	@inc: modifier
8561  *
8562  *	Add or remove promiscuity from a device. While the count in the device
8563  *	remains above zero the interface remains promiscuous. Once it hits zero
8564  *	the device reverts back to normal filtering operation. A negative inc
8565  *	value is used to drop promiscuity on the device.
8566  *	Return 0 if successful or a negative errno code on error.
8567  */
8568 int dev_set_promiscuity(struct net_device *dev, int inc)
8569 {
8570 	unsigned int old_flags = dev->flags;
8571 	int err;
8572 
8573 	err = __dev_set_promiscuity(dev, inc, true);
8574 	if (err < 0)
8575 		return err;
8576 	if (dev->flags != old_flags)
8577 		dev_set_rx_mode(dev);
8578 	return err;
8579 }
8580 EXPORT_SYMBOL(dev_set_promiscuity);
8581 
8582 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
8583 {
8584 	unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
8585 
8586 	ASSERT_RTNL();
8587 
8588 	dev->flags |= IFF_ALLMULTI;
8589 	dev->allmulti += inc;
8590 	if (dev->allmulti == 0) {
8591 		/*
8592 		 * Avoid overflow.
8593 		 * If inc causes overflow, untouch allmulti and return error.
8594 		 */
8595 		if (inc < 0)
8596 			dev->flags &= ~IFF_ALLMULTI;
8597 		else {
8598 			dev->allmulti -= inc;
8599 			netdev_warn(dev, "allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n");
8600 			return -EOVERFLOW;
8601 		}
8602 	}
8603 	if (dev->flags ^ old_flags) {
8604 		netdev_info(dev, "%s allmulticast mode\n",
8605 			    dev->flags & IFF_ALLMULTI ? "entered" : "left");
8606 		dev_change_rx_flags(dev, IFF_ALLMULTI);
8607 		dev_set_rx_mode(dev);
8608 		if (notify)
8609 			__dev_notify_flags(dev, old_flags,
8610 					   dev->gflags ^ old_gflags, 0, NULL);
8611 	}
8612 	return 0;
8613 }
8614 
8615 /**
8616  *	dev_set_allmulti	- update allmulti count on a device
8617  *	@dev: device
8618  *	@inc: modifier
8619  *
8620  *	Add or remove reception of all multicast frames to a device. While the
8621  *	count in the device remains above zero the interface remains listening
8622  *	to all interfaces. Once it hits zero the device reverts back to normal
8623  *	filtering operation. A negative @inc value is used to drop the counter
8624  *	when releasing a resource needing all multicasts.
8625  *	Return 0 if successful or a negative errno code on error.
8626  */
8627 
8628 int dev_set_allmulti(struct net_device *dev, int inc)
8629 {
8630 	return __dev_set_allmulti(dev, inc, true);
8631 }
8632 EXPORT_SYMBOL(dev_set_allmulti);
8633 
8634 /*
8635  *	Upload unicast and multicast address lists to device and
8636  *	configure RX filtering. When the device doesn't support unicast
8637  *	filtering it is put in promiscuous mode while unicast addresses
8638  *	are present.
8639  */
8640 void __dev_set_rx_mode(struct net_device *dev)
8641 {
8642 	const struct net_device_ops *ops = dev->netdev_ops;
8643 
8644 	/* dev_open will call this function so the list will stay sane. */
8645 	if (!(dev->flags&IFF_UP))
8646 		return;
8647 
8648 	if (!netif_device_present(dev))
8649 		return;
8650 
8651 	if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
8652 		/* Unicast addresses changes may only happen under the rtnl,
8653 		 * therefore calling __dev_set_promiscuity here is safe.
8654 		 */
8655 		if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
8656 			__dev_set_promiscuity(dev, 1, false);
8657 			dev->uc_promisc = true;
8658 		} else if (netdev_uc_empty(dev) && dev->uc_promisc) {
8659 			__dev_set_promiscuity(dev, -1, false);
8660 			dev->uc_promisc = false;
8661 		}
8662 	}
8663 
8664 	if (ops->ndo_set_rx_mode)
8665 		ops->ndo_set_rx_mode(dev);
8666 }
8667 
8668 void dev_set_rx_mode(struct net_device *dev)
8669 {
8670 	netif_addr_lock_bh(dev);
8671 	__dev_set_rx_mode(dev);
8672 	netif_addr_unlock_bh(dev);
8673 }
8674 
8675 /**
8676  *	dev_get_flags - get flags reported to userspace
8677  *	@dev: device
8678  *
8679  *	Get the combination of flag bits exported through APIs to userspace.
8680  */
8681 unsigned int dev_get_flags(const struct net_device *dev)
8682 {
8683 	unsigned int flags;
8684 
8685 	flags = (READ_ONCE(dev->flags) & ~(IFF_PROMISC |
8686 				IFF_ALLMULTI |
8687 				IFF_RUNNING |
8688 				IFF_LOWER_UP |
8689 				IFF_DORMANT)) |
8690 		(READ_ONCE(dev->gflags) & (IFF_PROMISC |
8691 				IFF_ALLMULTI));
8692 
8693 	if (netif_running(dev)) {
8694 		if (netif_oper_up(dev))
8695 			flags |= IFF_RUNNING;
8696 		if (netif_carrier_ok(dev))
8697 			flags |= IFF_LOWER_UP;
8698 		if (netif_dormant(dev))
8699 			flags |= IFF_DORMANT;
8700 	}
8701 
8702 	return flags;
8703 }
8704 EXPORT_SYMBOL(dev_get_flags);
8705 
8706 int __dev_change_flags(struct net_device *dev, unsigned int flags,
8707 		       struct netlink_ext_ack *extack)
8708 {
8709 	unsigned int old_flags = dev->flags;
8710 	int ret;
8711 
8712 	ASSERT_RTNL();
8713 
8714 	/*
8715 	 *	Set the flags on our device.
8716 	 */
8717 
8718 	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
8719 			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
8720 			       IFF_AUTOMEDIA)) |
8721 		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
8722 				    IFF_ALLMULTI));
8723 
8724 	/*
8725 	 *	Load in the correct multicast list now the flags have changed.
8726 	 */
8727 
8728 	if ((old_flags ^ flags) & IFF_MULTICAST)
8729 		dev_change_rx_flags(dev, IFF_MULTICAST);
8730 
8731 	dev_set_rx_mode(dev);
8732 
8733 	/*
8734 	 *	Have we downed the interface. We handle IFF_UP ourselves
8735 	 *	according to user attempts to set it, rather than blindly
8736 	 *	setting it.
8737 	 */
8738 
8739 	ret = 0;
8740 	if ((old_flags ^ flags) & IFF_UP) {
8741 		if (old_flags & IFF_UP)
8742 			__dev_close(dev);
8743 		else
8744 			ret = __dev_open(dev, extack);
8745 	}
8746 
8747 	if ((flags ^ dev->gflags) & IFF_PROMISC) {
8748 		int inc = (flags & IFF_PROMISC) ? 1 : -1;
8749 		unsigned int old_flags = dev->flags;
8750 
8751 		dev->gflags ^= IFF_PROMISC;
8752 
8753 		if (__dev_set_promiscuity(dev, inc, false) >= 0)
8754 			if (dev->flags != old_flags)
8755 				dev_set_rx_mode(dev);
8756 	}
8757 
8758 	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
8759 	 * is important. Some (broken) drivers set IFF_PROMISC, when
8760 	 * IFF_ALLMULTI is requested not asking us and not reporting.
8761 	 */
8762 	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
8763 		int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
8764 
8765 		dev->gflags ^= IFF_ALLMULTI;
8766 		__dev_set_allmulti(dev, inc, false);
8767 	}
8768 
8769 	return ret;
8770 }
8771 
8772 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
8773 			unsigned int gchanges, u32 portid,
8774 			const struct nlmsghdr *nlh)
8775 {
8776 	unsigned int changes = dev->flags ^ old_flags;
8777 
8778 	if (gchanges)
8779 		rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC, portid, nlh);
8780 
8781 	if (changes & IFF_UP) {
8782 		if (dev->flags & IFF_UP)
8783 			call_netdevice_notifiers(NETDEV_UP, dev);
8784 		else
8785 			call_netdevice_notifiers(NETDEV_DOWN, dev);
8786 	}
8787 
8788 	if (dev->flags & IFF_UP &&
8789 	    (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
8790 		struct netdev_notifier_change_info change_info = {
8791 			.info = {
8792 				.dev = dev,
8793 			},
8794 			.flags_changed = changes,
8795 		};
8796 
8797 		call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
8798 	}
8799 }
8800 
8801 /**
8802  *	dev_change_flags - change device settings
8803  *	@dev: device
8804  *	@flags: device state flags
8805  *	@extack: netlink extended ack
8806  *
8807  *	Change settings on device based state flags. The flags are
8808  *	in the userspace exported format.
8809  */
8810 int dev_change_flags(struct net_device *dev, unsigned int flags,
8811 		     struct netlink_ext_ack *extack)
8812 {
8813 	int ret;
8814 	unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
8815 
8816 	ret = __dev_change_flags(dev, flags, extack);
8817 	if (ret < 0)
8818 		return ret;
8819 
8820 	changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
8821 	__dev_notify_flags(dev, old_flags, changes, 0, NULL);
8822 	return ret;
8823 }
8824 EXPORT_SYMBOL(dev_change_flags);
8825 
8826 int __dev_set_mtu(struct net_device *dev, int new_mtu)
8827 {
8828 	const struct net_device_ops *ops = dev->netdev_ops;
8829 
8830 	if (ops->ndo_change_mtu)
8831 		return ops->ndo_change_mtu(dev, new_mtu);
8832 
8833 	/* Pairs with all the lockless reads of dev->mtu in the stack */
8834 	WRITE_ONCE(dev->mtu, new_mtu);
8835 	return 0;
8836 }
8837 EXPORT_SYMBOL(__dev_set_mtu);
8838 
8839 int dev_validate_mtu(struct net_device *dev, int new_mtu,
8840 		     struct netlink_ext_ack *extack)
8841 {
8842 	/* MTU must be positive, and in range */
8843 	if (new_mtu < 0 || new_mtu < dev->min_mtu) {
8844 		NL_SET_ERR_MSG(extack, "mtu less than device minimum");
8845 		return -EINVAL;
8846 	}
8847 
8848 	if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
8849 		NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
8850 		return -EINVAL;
8851 	}
8852 	return 0;
8853 }
8854 
8855 /**
8856  *	dev_set_mtu_ext - Change maximum transfer unit
8857  *	@dev: device
8858  *	@new_mtu: new transfer unit
8859  *	@extack: netlink extended ack
8860  *
8861  *	Change the maximum transfer size of the network device.
8862  */
8863 int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
8864 		    struct netlink_ext_ack *extack)
8865 {
8866 	int err, orig_mtu;
8867 
8868 	if (new_mtu == dev->mtu)
8869 		return 0;
8870 
8871 	err = dev_validate_mtu(dev, new_mtu, extack);
8872 	if (err)
8873 		return err;
8874 
8875 	if (!netif_device_present(dev))
8876 		return -ENODEV;
8877 
8878 	err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
8879 	err = notifier_to_errno(err);
8880 	if (err)
8881 		return err;
8882 
8883 	orig_mtu = dev->mtu;
8884 	err = __dev_set_mtu(dev, new_mtu);
8885 
8886 	if (!err) {
8887 		err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8888 						   orig_mtu);
8889 		err = notifier_to_errno(err);
8890 		if (err) {
8891 			/* setting mtu back and notifying everyone again,
8892 			 * so that they have a chance to revert changes.
8893 			 */
8894 			__dev_set_mtu(dev, orig_mtu);
8895 			call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8896 						     new_mtu);
8897 		}
8898 	}
8899 	return err;
8900 }
8901 
8902 int dev_set_mtu(struct net_device *dev, int new_mtu)
8903 {
8904 	struct netlink_ext_ack extack;
8905 	int err;
8906 
8907 	memset(&extack, 0, sizeof(extack));
8908 	err = dev_set_mtu_ext(dev, new_mtu, &extack);
8909 	if (err && extack._msg)
8910 		net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
8911 	return err;
8912 }
8913 EXPORT_SYMBOL(dev_set_mtu);
8914 
8915 /**
8916  *	dev_change_tx_queue_len - Change TX queue length of a netdevice
8917  *	@dev: device
8918  *	@new_len: new tx queue length
8919  */
8920 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
8921 {
8922 	unsigned int orig_len = dev->tx_queue_len;
8923 	int res;
8924 
8925 	if (new_len != (unsigned int)new_len)
8926 		return -ERANGE;
8927 
8928 	if (new_len != orig_len) {
8929 		dev->tx_queue_len = new_len;
8930 		res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
8931 		res = notifier_to_errno(res);
8932 		if (res)
8933 			goto err_rollback;
8934 		res = dev_qdisc_change_tx_queue_len(dev);
8935 		if (res)
8936 			goto err_rollback;
8937 	}
8938 
8939 	return 0;
8940 
8941 err_rollback:
8942 	netdev_err(dev, "refused to change device tx_queue_len\n");
8943 	dev->tx_queue_len = orig_len;
8944 	return res;
8945 }
8946 
8947 /**
8948  *	dev_set_group - Change group this device belongs to
8949  *	@dev: device
8950  *	@new_group: group this device should belong to
8951  */
8952 void dev_set_group(struct net_device *dev, int new_group)
8953 {
8954 	dev->group = new_group;
8955 }
8956 
8957 /**
8958  *	dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
8959  *	@dev: device
8960  *	@addr: new address
8961  *	@extack: netlink extended ack
8962  */
8963 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
8964 			      struct netlink_ext_ack *extack)
8965 {
8966 	struct netdev_notifier_pre_changeaddr_info info = {
8967 		.info.dev = dev,
8968 		.info.extack = extack,
8969 		.dev_addr = addr,
8970 	};
8971 	int rc;
8972 
8973 	rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
8974 	return notifier_to_errno(rc);
8975 }
8976 EXPORT_SYMBOL(dev_pre_changeaddr_notify);
8977 
8978 /**
8979  *	dev_set_mac_address - Change Media Access Control Address
8980  *	@dev: device
8981  *	@sa: new address
8982  *	@extack: netlink extended ack
8983  *
8984  *	Change the hardware (MAC) address of the device
8985  */
8986 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
8987 			struct netlink_ext_ack *extack)
8988 {
8989 	const struct net_device_ops *ops = dev->netdev_ops;
8990 	int err;
8991 
8992 	if (!ops->ndo_set_mac_address)
8993 		return -EOPNOTSUPP;
8994 	if (sa->sa_family != dev->type)
8995 		return -EINVAL;
8996 	if (!netif_device_present(dev))
8997 		return -ENODEV;
8998 	err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
8999 	if (err)
9000 		return err;
9001 	if (memcmp(dev->dev_addr, sa->sa_data, dev->addr_len)) {
9002 		err = ops->ndo_set_mac_address(dev, sa);
9003 		if (err)
9004 			return err;
9005 	}
9006 	dev->addr_assign_type = NET_ADDR_SET;
9007 	call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
9008 	add_device_randomness(dev->dev_addr, dev->addr_len);
9009 	return 0;
9010 }
9011 EXPORT_SYMBOL(dev_set_mac_address);
9012 
9013 DECLARE_RWSEM(dev_addr_sem);
9014 
9015 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
9016 			     struct netlink_ext_ack *extack)
9017 {
9018 	int ret;
9019 
9020 	down_write(&dev_addr_sem);
9021 	ret = dev_set_mac_address(dev, sa, extack);
9022 	up_write(&dev_addr_sem);
9023 	return ret;
9024 }
9025 EXPORT_SYMBOL(dev_set_mac_address_user);
9026 
9027 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name)
9028 {
9029 	size_t size = sizeof(sa->sa_data_min);
9030 	struct net_device *dev;
9031 	int ret = 0;
9032 
9033 	down_read(&dev_addr_sem);
9034 	rcu_read_lock();
9035 
9036 	dev = dev_get_by_name_rcu(net, dev_name);
9037 	if (!dev) {
9038 		ret = -ENODEV;
9039 		goto unlock;
9040 	}
9041 	if (!dev->addr_len)
9042 		memset(sa->sa_data, 0, size);
9043 	else
9044 		memcpy(sa->sa_data, dev->dev_addr,
9045 		       min_t(size_t, size, dev->addr_len));
9046 	sa->sa_family = dev->type;
9047 
9048 unlock:
9049 	rcu_read_unlock();
9050 	up_read(&dev_addr_sem);
9051 	return ret;
9052 }
9053 EXPORT_SYMBOL(dev_get_mac_address);
9054 
9055 /**
9056  *	dev_change_carrier - Change device carrier
9057  *	@dev: device
9058  *	@new_carrier: new value
9059  *
9060  *	Change device carrier
9061  */
9062 int dev_change_carrier(struct net_device *dev, bool new_carrier)
9063 {
9064 	const struct net_device_ops *ops = dev->netdev_ops;
9065 
9066 	if (!ops->ndo_change_carrier)
9067 		return -EOPNOTSUPP;
9068 	if (!netif_device_present(dev))
9069 		return -ENODEV;
9070 	return ops->ndo_change_carrier(dev, new_carrier);
9071 }
9072 
9073 /**
9074  *	dev_get_phys_port_id - Get device physical port ID
9075  *	@dev: device
9076  *	@ppid: port ID
9077  *
9078  *	Get device physical port ID
9079  */
9080 int dev_get_phys_port_id(struct net_device *dev,
9081 			 struct netdev_phys_item_id *ppid)
9082 {
9083 	const struct net_device_ops *ops = dev->netdev_ops;
9084 
9085 	if (!ops->ndo_get_phys_port_id)
9086 		return -EOPNOTSUPP;
9087 	return ops->ndo_get_phys_port_id(dev, ppid);
9088 }
9089 
9090 /**
9091  *	dev_get_phys_port_name - Get device physical port name
9092  *	@dev: device
9093  *	@name: port name
9094  *	@len: limit of bytes to copy to name
9095  *
9096  *	Get device physical port name
9097  */
9098 int dev_get_phys_port_name(struct net_device *dev,
9099 			   char *name, size_t len)
9100 {
9101 	const struct net_device_ops *ops = dev->netdev_ops;
9102 	int err;
9103 
9104 	if (ops->ndo_get_phys_port_name) {
9105 		err = ops->ndo_get_phys_port_name(dev, name, len);
9106 		if (err != -EOPNOTSUPP)
9107 			return err;
9108 	}
9109 	return devlink_compat_phys_port_name_get(dev, name, len);
9110 }
9111 
9112 /**
9113  *	dev_get_port_parent_id - Get the device's port parent identifier
9114  *	@dev: network device
9115  *	@ppid: pointer to a storage for the port's parent identifier
9116  *	@recurse: allow/disallow recursion to lower devices
9117  *
9118  *	Get the devices's port parent identifier
9119  */
9120 int dev_get_port_parent_id(struct net_device *dev,
9121 			   struct netdev_phys_item_id *ppid,
9122 			   bool recurse)
9123 {
9124 	const struct net_device_ops *ops = dev->netdev_ops;
9125 	struct netdev_phys_item_id first = { };
9126 	struct net_device *lower_dev;
9127 	struct list_head *iter;
9128 	int err;
9129 
9130 	if (ops->ndo_get_port_parent_id) {
9131 		err = ops->ndo_get_port_parent_id(dev, ppid);
9132 		if (err != -EOPNOTSUPP)
9133 			return err;
9134 	}
9135 
9136 	err = devlink_compat_switch_id_get(dev, ppid);
9137 	if (!recurse || err != -EOPNOTSUPP)
9138 		return err;
9139 
9140 	netdev_for_each_lower_dev(dev, lower_dev, iter) {
9141 		err = dev_get_port_parent_id(lower_dev, ppid, true);
9142 		if (err)
9143 			break;
9144 		if (!first.id_len)
9145 			first = *ppid;
9146 		else if (memcmp(&first, ppid, sizeof(*ppid)))
9147 			return -EOPNOTSUPP;
9148 	}
9149 
9150 	return err;
9151 }
9152 EXPORT_SYMBOL(dev_get_port_parent_id);
9153 
9154 /**
9155  *	netdev_port_same_parent_id - Indicate if two network devices have
9156  *	the same port parent identifier
9157  *	@a: first network device
9158  *	@b: second network device
9159  */
9160 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
9161 {
9162 	struct netdev_phys_item_id a_id = { };
9163 	struct netdev_phys_item_id b_id = { };
9164 
9165 	if (dev_get_port_parent_id(a, &a_id, true) ||
9166 	    dev_get_port_parent_id(b, &b_id, true))
9167 		return false;
9168 
9169 	return netdev_phys_item_id_same(&a_id, &b_id);
9170 }
9171 EXPORT_SYMBOL(netdev_port_same_parent_id);
9172 
9173 /**
9174  *	dev_change_proto_down - set carrier according to proto_down.
9175  *
9176  *	@dev: device
9177  *	@proto_down: new value
9178  */
9179 int dev_change_proto_down(struct net_device *dev, bool proto_down)
9180 {
9181 	if (!(dev->priv_flags & IFF_CHANGE_PROTO_DOWN))
9182 		return -EOPNOTSUPP;
9183 	if (!netif_device_present(dev))
9184 		return -ENODEV;
9185 	if (proto_down)
9186 		netif_carrier_off(dev);
9187 	else
9188 		netif_carrier_on(dev);
9189 	dev->proto_down = proto_down;
9190 	return 0;
9191 }
9192 
9193 /**
9194  *	dev_change_proto_down_reason - proto down reason
9195  *
9196  *	@dev: device
9197  *	@mask: proto down mask
9198  *	@value: proto down value
9199  */
9200 void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
9201 				  u32 value)
9202 {
9203 	int b;
9204 
9205 	if (!mask) {
9206 		dev->proto_down_reason = value;
9207 	} else {
9208 		for_each_set_bit(b, &mask, 32) {
9209 			if (value & (1 << b))
9210 				dev->proto_down_reason |= BIT(b);
9211 			else
9212 				dev->proto_down_reason &= ~BIT(b);
9213 		}
9214 	}
9215 }
9216 
9217 struct bpf_xdp_link {
9218 	struct bpf_link link;
9219 	struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
9220 	int flags;
9221 };
9222 
9223 static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags)
9224 {
9225 	if (flags & XDP_FLAGS_HW_MODE)
9226 		return XDP_MODE_HW;
9227 	if (flags & XDP_FLAGS_DRV_MODE)
9228 		return XDP_MODE_DRV;
9229 	if (flags & XDP_FLAGS_SKB_MODE)
9230 		return XDP_MODE_SKB;
9231 	return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB;
9232 }
9233 
9234 static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
9235 {
9236 	switch (mode) {
9237 	case XDP_MODE_SKB:
9238 		return generic_xdp_install;
9239 	case XDP_MODE_DRV:
9240 	case XDP_MODE_HW:
9241 		return dev->netdev_ops->ndo_bpf;
9242 	default:
9243 		return NULL;
9244 	}
9245 }
9246 
9247 static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
9248 					 enum bpf_xdp_mode mode)
9249 {
9250 	return dev->xdp_state[mode].link;
9251 }
9252 
9253 static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
9254 				     enum bpf_xdp_mode mode)
9255 {
9256 	struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
9257 
9258 	if (link)
9259 		return link->link.prog;
9260 	return dev->xdp_state[mode].prog;
9261 }
9262 
9263 u8 dev_xdp_prog_count(struct net_device *dev)
9264 {
9265 	u8 count = 0;
9266 	int i;
9267 
9268 	for (i = 0; i < __MAX_XDP_MODE; i++)
9269 		if (dev->xdp_state[i].prog || dev->xdp_state[i].link)
9270 			count++;
9271 	return count;
9272 }
9273 EXPORT_SYMBOL_GPL(dev_xdp_prog_count);
9274 
9275 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
9276 {
9277 	struct bpf_prog *prog = dev_xdp_prog(dev, mode);
9278 
9279 	return prog ? prog->aux->id : 0;
9280 }
9281 
9282 static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
9283 			     struct bpf_xdp_link *link)
9284 {
9285 	dev->xdp_state[mode].link = link;
9286 	dev->xdp_state[mode].prog = NULL;
9287 }
9288 
9289 static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
9290 			     struct bpf_prog *prog)
9291 {
9292 	dev->xdp_state[mode].link = NULL;
9293 	dev->xdp_state[mode].prog = prog;
9294 }
9295 
9296 static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
9297 			   bpf_op_t bpf_op, struct netlink_ext_ack *extack,
9298 			   u32 flags, struct bpf_prog *prog)
9299 {
9300 	struct netdev_bpf xdp;
9301 	int err;
9302 
9303 	memset(&xdp, 0, sizeof(xdp));
9304 	xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
9305 	xdp.extack = extack;
9306 	xdp.flags = flags;
9307 	xdp.prog = prog;
9308 
9309 	/* Drivers assume refcnt is already incremented (i.e, prog pointer is
9310 	 * "moved" into driver), so they don't increment it on their own, but
9311 	 * they do decrement refcnt when program is detached or replaced.
9312 	 * Given net_device also owns link/prog, we need to bump refcnt here
9313 	 * to prevent drivers from underflowing it.
9314 	 */
9315 	if (prog)
9316 		bpf_prog_inc(prog);
9317 	err = bpf_op(dev, &xdp);
9318 	if (err) {
9319 		if (prog)
9320 			bpf_prog_put(prog);
9321 		return err;
9322 	}
9323 
9324 	if (mode != XDP_MODE_HW)
9325 		bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog);
9326 
9327 	return 0;
9328 }
9329 
9330 static void dev_xdp_uninstall(struct net_device *dev)
9331 {
9332 	struct bpf_xdp_link *link;
9333 	struct bpf_prog *prog;
9334 	enum bpf_xdp_mode mode;
9335 	bpf_op_t bpf_op;
9336 
9337 	ASSERT_RTNL();
9338 
9339 	for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
9340 		prog = dev_xdp_prog(dev, mode);
9341 		if (!prog)
9342 			continue;
9343 
9344 		bpf_op = dev_xdp_bpf_op(dev, mode);
9345 		if (!bpf_op)
9346 			continue;
9347 
9348 		WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9349 
9350 		/* auto-detach link from net device */
9351 		link = dev_xdp_link(dev, mode);
9352 		if (link)
9353 			link->dev = NULL;
9354 		else
9355 			bpf_prog_put(prog);
9356 
9357 		dev_xdp_set_link(dev, mode, NULL);
9358 	}
9359 }
9360 
9361 static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
9362 			  struct bpf_xdp_link *link, struct bpf_prog *new_prog,
9363 			  struct bpf_prog *old_prog, u32 flags)
9364 {
9365 	unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES);
9366 	struct bpf_prog *cur_prog;
9367 	struct net_device *upper;
9368 	struct list_head *iter;
9369 	enum bpf_xdp_mode mode;
9370 	bpf_op_t bpf_op;
9371 	int err;
9372 
9373 	ASSERT_RTNL();
9374 
9375 	/* either link or prog attachment, never both */
9376 	if (link && (new_prog || old_prog))
9377 		return -EINVAL;
9378 	/* link supports only XDP mode flags */
9379 	if (link && (flags & ~XDP_FLAGS_MODES)) {
9380 		NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
9381 		return -EINVAL;
9382 	}
9383 	/* just one XDP mode bit should be set, zero defaults to drv/skb mode */
9384 	if (num_modes > 1) {
9385 		NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
9386 		return -EINVAL;
9387 	}
9388 	/* avoid ambiguity if offload + drv/skb mode progs are both loaded */
9389 	if (!num_modes && dev_xdp_prog_count(dev) > 1) {
9390 		NL_SET_ERR_MSG(extack,
9391 			       "More than one program loaded, unset mode is ambiguous");
9392 		return -EINVAL;
9393 	}
9394 	/* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
9395 	if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
9396 		NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
9397 		return -EINVAL;
9398 	}
9399 
9400 	mode = dev_xdp_mode(dev, flags);
9401 	/* can't replace attached link */
9402 	if (dev_xdp_link(dev, mode)) {
9403 		NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
9404 		return -EBUSY;
9405 	}
9406 
9407 	/* don't allow if an upper device already has a program */
9408 	netdev_for_each_upper_dev_rcu(dev, upper, iter) {
9409 		if (dev_xdp_prog_count(upper) > 0) {
9410 			NL_SET_ERR_MSG(extack, "Cannot attach when an upper device already has a program");
9411 			return -EEXIST;
9412 		}
9413 	}
9414 
9415 	cur_prog = dev_xdp_prog(dev, mode);
9416 	/* can't replace attached prog with link */
9417 	if (link && cur_prog) {
9418 		NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
9419 		return -EBUSY;
9420 	}
9421 	if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
9422 		NL_SET_ERR_MSG(extack, "Active program does not match expected");
9423 		return -EEXIST;
9424 	}
9425 
9426 	/* put effective new program into new_prog */
9427 	if (link)
9428 		new_prog = link->link.prog;
9429 
9430 	if (new_prog) {
9431 		bool offload = mode == XDP_MODE_HW;
9432 		enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
9433 					       ? XDP_MODE_DRV : XDP_MODE_SKB;
9434 
9435 		if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
9436 			NL_SET_ERR_MSG(extack, "XDP program already attached");
9437 			return -EBUSY;
9438 		}
9439 		if (!offload && dev_xdp_prog(dev, other_mode)) {
9440 			NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
9441 			return -EEXIST;
9442 		}
9443 		if (!offload && bpf_prog_is_offloaded(new_prog->aux)) {
9444 			NL_SET_ERR_MSG(extack, "Using offloaded program without HW_MODE flag is not supported");
9445 			return -EINVAL;
9446 		}
9447 		if (bpf_prog_is_dev_bound(new_prog->aux) && !bpf_offload_dev_match(new_prog, dev)) {
9448 			NL_SET_ERR_MSG(extack, "Program bound to different device");
9449 			return -EINVAL;
9450 		}
9451 		if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
9452 			NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
9453 			return -EINVAL;
9454 		}
9455 		if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
9456 			NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
9457 			return -EINVAL;
9458 		}
9459 	}
9460 
9461 	/* don't call drivers if the effective program didn't change */
9462 	if (new_prog != cur_prog) {
9463 		bpf_op = dev_xdp_bpf_op(dev, mode);
9464 		if (!bpf_op) {
9465 			NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
9466 			return -EOPNOTSUPP;
9467 		}
9468 
9469 		err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog);
9470 		if (err)
9471 			return err;
9472 	}
9473 
9474 	if (link)
9475 		dev_xdp_set_link(dev, mode, link);
9476 	else
9477 		dev_xdp_set_prog(dev, mode, new_prog);
9478 	if (cur_prog)
9479 		bpf_prog_put(cur_prog);
9480 
9481 	return 0;
9482 }
9483 
9484 static int dev_xdp_attach_link(struct net_device *dev,
9485 			       struct netlink_ext_ack *extack,
9486 			       struct bpf_xdp_link *link)
9487 {
9488 	return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags);
9489 }
9490 
9491 static int dev_xdp_detach_link(struct net_device *dev,
9492 			       struct netlink_ext_ack *extack,
9493 			       struct bpf_xdp_link *link)
9494 {
9495 	enum bpf_xdp_mode mode;
9496 	bpf_op_t bpf_op;
9497 
9498 	ASSERT_RTNL();
9499 
9500 	mode = dev_xdp_mode(dev, link->flags);
9501 	if (dev_xdp_link(dev, mode) != link)
9502 		return -EINVAL;
9503 
9504 	bpf_op = dev_xdp_bpf_op(dev, mode);
9505 	WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9506 	dev_xdp_set_link(dev, mode, NULL);
9507 	return 0;
9508 }
9509 
9510 static void bpf_xdp_link_release(struct bpf_link *link)
9511 {
9512 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9513 
9514 	rtnl_lock();
9515 
9516 	/* if racing with net_device's tear down, xdp_link->dev might be
9517 	 * already NULL, in which case link was already auto-detached
9518 	 */
9519 	if (xdp_link->dev) {
9520 		WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
9521 		xdp_link->dev = NULL;
9522 	}
9523 
9524 	rtnl_unlock();
9525 }
9526 
9527 static int bpf_xdp_link_detach(struct bpf_link *link)
9528 {
9529 	bpf_xdp_link_release(link);
9530 	return 0;
9531 }
9532 
9533 static void bpf_xdp_link_dealloc(struct bpf_link *link)
9534 {
9535 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9536 
9537 	kfree(xdp_link);
9538 }
9539 
9540 static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link,
9541 				     struct seq_file *seq)
9542 {
9543 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9544 	u32 ifindex = 0;
9545 
9546 	rtnl_lock();
9547 	if (xdp_link->dev)
9548 		ifindex = xdp_link->dev->ifindex;
9549 	rtnl_unlock();
9550 
9551 	seq_printf(seq, "ifindex:\t%u\n", ifindex);
9552 }
9553 
9554 static int bpf_xdp_link_fill_link_info(const struct bpf_link *link,
9555 				       struct bpf_link_info *info)
9556 {
9557 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9558 	u32 ifindex = 0;
9559 
9560 	rtnl_lock();
9561 	if (xdp_link->dev)
9562 		ifindex = xdp_link->dev->ifindex;
9563 	rtnl_unlock();
9564 
9565 	info->xdp.ifindex = ifindex;
9566 	return 0;
9567 }
9568 
9569 static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
9570 			       struct bpf_prog *old_prog)
9571 {
9572 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9573 	enum bpf_xdp_mode mode;
9574 	bpf_op_t bpf_op;
9575 	int err = 0;
9576 
9577 	rtnl_lock();
9578 
9579 	/* link might have been auto-released already, so fail */
9580 	if (!xdp_link->dev) {
9581 		err = -ENOLINK;
9582 		goto out_unlock;
9583 	}
9584 
9585 	if (old_prog && link->prog != old_prog) {
9586 		err = -EPERM;
9587 		goto out_unlock;
9588 	}
9589 	old_prog = link->prog;
9590 	if (old_prog->type != new_prog->type ||
9591 	    old_prog->expected_attach_type != new_prog->expected_attach_type) {
9592 		err = -EINVAL;
9593 		goto out_unlock;
9594 	}
9595 
9596 	if (old_prog == new_prog) {
9597 		/* no-op, don't disturb drivers */
9598 		bpf_prog_put(new_prog);
9599 		goto out_unlock;
9600 	}
9601 
9602 	mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags);
9603 	bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode);
9604 	err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL,
9605 			      xdp_link->flags, new_prog);
9606 	if (err)
9607 		goto out_unlock;
9608 
9609 	old_prog = xchg(&link->prog, new_prog);
9610 	bpf_prog_put(old_prog);
9611 
9612 out_unlock:
9613 	rtnl_unlock();
9614 	return err;
9615 }
9616 
9617 static const struct bpf_link_ops bpf_xdp_link_lops = {
9618 	.release = bpf_xdp_link_release,
9619 	.dealloc = bpf_xdp_link_dealloc,
9620 	.detach = bpf_xdp_link_detach,
9621 	.show_fdinfo = bpf_xdp_link_show_fdinfo,
9622 	.fill_link_info = bpf_xdp_link_fill_link_info,
9623 	.update_prog = bpf_xdp_link_update,
9624 };
9625 
9626 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
9627 {
9628 	struct net *net = current->nsproxy->net_ns;
9629 	struct bpf_link_primer link_primer;
9630 	struct netlink_ext_ack extack = {};
9631 	struct bpf_xdp_link *link;
9632 	struct net_device *dev;
9633 	int err, fd;
9634 
9635 	rtnl_lock();
9636 	dev = dev_get_by_index(net, attr->link_create.target_ifindex);
9637 	if (!dev) {
9638 		rtnl_unlock();
9639 		return -EINVAL;
9640 	}
9641 
9642 	link = kzalloc(sizeof(*link), GFP_USER);
9643 	if (!link) {
9644 		err = -ENOMEM;
9645 		goto unlock;
9646 	}
9647 
9648 	bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog);
9649 	link->dev = dev;
9650 	link->flags = attr->link_create.flags;
9651 
9652 	err = bpf_link_prime(&link->link, &link_primer);
9653 	if (err) {
9654 		kfree(link);
9655 		goto unlock;
9656 	}
9657 
9658 	err = dev_xdp_attach_link(dev, &extack, link);
9659 	rtnl_unlock();
9660 
9661 	if (err) {
9662 		link->dev = NULL;
9663 		bpf_link_cleanup(&link_primer);
9664 		trace_bpf_xdp_link_attach_failed(extack._msg);
9665 		goto out_put_dev;
9666 	}
9667 
9668 	fd = bpf_link_settle(&link_primer);
9669 	/* link itself doesn't hold dev's refcnt to not complicate shutdown */
9670 	dev_put(dev);
9671 	return fd;
9672 
9673 unlock:
9674 	rtnl_unlock();
9675 
9676 out_put_dev:
9677 	dev_put(dev);
9678 	return err;
9679 }
9680 
9681 /**
9682  *	dev_change_xdp_fd - set or clear a bpf program for a device rx path
9683  *	@dev: device
9684  *	@extack: netlink extended ack
9685  *	@fd: new program fd or negative value to clear
9686  *	@expected_fd: old program fd that userspace expects to replace or clear
9687  *	@flags: xdp-related flags
9688  *
9689  *	Set or clear a bpf program for a device
9690  */
9691 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
9692 		      int fd, int expected_fd, u32 flags)
9693 {
9694 	enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags);
9695 	struct bpf_prog *new_prog = NULL, *old_prog = NULL;
9696 	int err;
9697 
9698 	ASSERT_RTNL();
9699 
9700 	if (fd >= 0) {
9701 		new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
9702 						 mode != XDP_MODE_SKB);
9703 		if (IS_ERR(new_prog))
9704 			return PTR_ERR(new_prog);
9705 	}
9706 
9707 	if (expected_fd >= 0) {
9708 		old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP,
9709 						 mode != XDP_MODE_SKB);
9710 		if (IS_ERR(old_prog)) {
9711 			err = PTR_ERR(old_prog);
9712 			old_prog = NULL;
9713 			goto err_out;
9714 		}
9715 	}
9716 
9717 	err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
9718 
9719 err_out:
9720 	if (err && new_prog)
9721 		bpf_prog_put(new_prog);
9722 	if (old_prog)
9723 		bpf_prog_put(old_prog);
9724 	return err;
9725 }
9726 
9727 /**
9728  * dev_index_reserve() - allocate an ifindex in a namespace
9729  * @net: the applicable net namespace
9730  * @ifindex: requested ifindex, pass %0 to get one allocated
9731  *
9732  * Allocate a ifindex for a new device. Caller must either use the ifindex
9733  * to store the device (via list_netdevice()) or call dev_index_release()
9734  * to give the index up.
9735  *
9736  * Return: a suitable unique value for a new device interface number or -errno.
9737  */
9738 static int dev_index_reserve(struct net *net, u32 ifindex)
9739 {
9740 	int err;
9741 
9742 	if (ifindex > INT_MAX) {
9743 		DEBUG_NET_WARN_ON_ONCE(1);
9744 		return -EINVAL;
9745 	}
9746 
9747 	if (!ifindex)
9748 		err = xa_alloc_cyclic(&net->dev_by_index, &ifindex, NULL,
9749 				      xa_limit_31b, &net->ifindex, GFP_KERNEL);
9750 	else
9751 		err = xa_insert(&net->dev_by_index, ifindex, NULL, GFP_KERNEL);
9752 	if (err < 0)
9753 		return err;
9754 
9755 	return ifindex;
9756 }
9757 
9758 static void dev_index_release(struct net *net, int ifindex)
9759 {
9760 	/* Expect only unused indexes, unlist_netdevice() removes the used */
9761 	WARN_ON(xa_erase(&net->dev_by_index, ifindex));
9762 }
9763 
9764 /* Delayed registration/unregisteration */
9765 LIST_HEAD(net_todo_list);
9766 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
9767 atomic_t dev_unreg_count = ATOMIC_INIT(0);
9768 
9769 static void net_set_todo(struct net_device *dev)
9770 {
9771 	list_add_tail(&dev->todo_list, &net_todo_list);
9772 }
9773 
9774 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
9775 	struct net_device *upper, netdev_features_t features)
9776 {
9777 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9778 	netdev_features_t feature;
9779 	int feature_bit;
9780 
9781 	for_each_netdev_feature(upper_disables, feature_bit) {
9782 		feature = __NETIF_F_BIT(feature_bit);
9783 		if (!(upper->wanted_features & feature)
9784 		    && (features & feature)) {
9785 			netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
9786 				   &feature, upper->name);
9787 			features &= ~feature;
9788 		}
9789 	}
9790 
9791 	return features;
9792 }
9793 
9794 static void netdev_sync_lower_features(struct net_device *upper,
9795 	struct net_device *lower, netdev_features_t features)
9796 {
9797 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9798 	netdev_features_t feature;
9799 	int feature_bit;
9800 
9801 	for_each_netdev_feature(upper_disables, feature_bit) {
9802 		feature = __NETIF_F_BIT(feature_bit);
9803 		if (!(features & feature) && (lower->features & feature)) {
9804 			netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
9805 				   &feature, lower->name);
9806 			lower->wanted_features &= ~feature;
9807 			__netdev_update_features(lower);
9808 
9809 			if (unlikely(lower->features & feature))
9810 				netdev_WARN(upper, "failed to disable %pNF on %s!\n",
9811 					    &feature, lower->name);
9812 			else
9813 				netdev_features_change(lower);
9814 		}
9815 	}
9816 }
9817 
9818 static netdev_features_t netdev_fix_features(struct net_device *dev,
9819 	netdev_features_t features)
9820 {
9821 	/* Fix illegal checksum combinations */
9822 	if ((features & NETIF_F_HW_CSUM) &&
9823 	    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
9824 		netdev_warn(dev, "mixed HW and IP checksum settings.\n");
9825 		features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
9826 	}
9827 
9828 	/* TSO requires that SG is present as well. */
9829 	if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
9830 		netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
9831 		features &= ~NETIF_F_ALL_TSO;
9832 	}
9833 
9834 	if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
9835 					!(features & NETIF_F_IP_CSUM)) {
9836 		netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
9837 		features &= ~NETIF_F_TSO;
9838 		features &= ~NETIF_F_TSO_ECN;
9839 	}
9840 
9841 	if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
9842 					 !(features & NETIF_F_IPV6_CSUM)) {
9843 		netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
9844 		features &= ~NETIF_F_TSO6;
9845 	}
9846 
9847 	/* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
9848 	if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
9849 		features &= ~NETIF_F_TSO_MANGLEID;
9850 
9851 	/* TSO ECN requires that TSO is present as well. */
9852 	if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
9853 		features &= ~NETIF_F_TSO_ECN;
9854 
9855 	/* Software GSO depends on SG. */
9856 	if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
9857 		netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
9858 		features &= ~NETIF_F_GSO;
9859 	}
9860 
9861 	/* GSO partial features require GSO partial be set */
9862 	if ((features & dev->gso_partial_features) &&
9863 	    !(features & NETIF_F_GSO_PARTIAL)) {
9864 		netdev_dbg(dev,
9865 			   "Dropping partially supported GSO features since no GSO partial.\n");
9866 		features &= ~dev->gso_partial_features;
9867 	}
9868 
9869 	if (!(features & NETIF_F_RXCSUM)) {
9870 		/* NETIF_F_GRO_HW implies doing RXCSUM since every packet
9871 		 * successfully merged by hardware must also have the
9872 		 * checksum verified by hardware.  If the user does not
9873 		 * want to enable RXCSUM, logically, we should disable GRO_HW.
9874 		 */
9875 		if (features & NETIF_F_GRO_HW) {
9876 			netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
9877 			features &= ~NETIF_F_GRO_HW;
9878 		}
9879 	}
9880 
9881 	/* LRO/HW-GRO features cannot be combined with RX-FCS */
9882 	if (features & NETIF_F_RXFCS) {
9883 		if (features & NETIF_F_LRO) {
9884 			netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
9885 			features &= ~NETIF_F_LRO;
9886 		}
9887 
9888 		if (features & NETIF_F_GRO_HW) {
9889 			netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
9890 			features &= ~NETIF_F_GRO_HW;
9891 		}
9892 	}
9893 
9894 	if ((features & NETIF_F_GRO_HW) && (features & NETIF_F_LRO)) {
9895 		netdev_dbg(dev, "Dropping LRO feature since HW-GRO is requested.\n");
9896 		features &= ~NETIF_F_LRO;
9897 	}
9898 
9899 	if (features & NETIF_F_HW_TLS_TX) {
9900 		bool ip_csum = (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) ==
9901 			(NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
9902 		bool hw_csum = features & NETIF_F_HW_CSUM;
9903 
9904 		if (!ip_csum && !hw_csum) {
9905 			netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n");
9906 			features &= ~NETIF_F_HW_TLS_TX;
9907 		}
9908 	}
9909 
9910 	if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) {
9911 		netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n");
9912 		features &= ~NETIF_F_HW_TLS_RX;
9913 	}
9914 
9915 	return features;
9916 }
9917 
9918 int __netdev_update_features(struct net_device *dev)
9919 {
9920 	struct net_device *upper, *lower;
9921 	netdev_features_t features;
9922 	struct list_head *iter;
9923 	int err = -1;
9924 
9925 	ASSERT_RTNL();
9926 
9927 	features = netdev_get_wanted_features(dev);
9928 
9929 	if (dev->netdev_ops->ndo_fix_features)
9930 		features = dev->netdev_ops->ndo_fix_features(dev, features);
9931 
9932 	/* driver might be less strict about feature dependencies */
9933 	features = netdev_fix_features(dev, features);
9934 
9935 	/* some features can't be enabled if they're off on an upper device */
9936 	netdev_for_each_upper_dev_rcu(dev, upper, iter)
9937 		features = netdev_sync_upper_features(dev, upper, features);
9938 
9939 	if (dev->features == features)
9940 		goto sync_lower;
9941 
9942 	netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
9943 		&dev->features, &features);
9944 
9945 	if (dev->netdev_ops->ndo_set_features)
9946 		err = dev->netdev_ops->ndo_set_features(dev, features);
9947 	else
9948 		err = 0;
9949 
9950 	if (unlikely(err < 0)) {
9951 		netdev_err(dev,
9952 			"set_features() failed (%d); wanted %pNF, left %pNF\n",
9953 			err, &features, &dev->features);
9954 		/* return non-0 since some features might have changed and
9955 		 * it's better to fire a spurious notification than miss it
9956 		 */
9957 		return -1;
9958 	}
9959 
9960 sync_lower:
9961 	/* some features must be disabled on lower devices when disabled
9962 	 * on an upper device (think: bonding master or bridge)
9963 	 */
9964 	netdev_for_each_lower_dev(dev, lower, iter)
9965 		netdev_sync_lower_features(dev, lower, features);
9966 
9967 	if (!err) {
9968 		netdev_features_t diff = features ^ dev->features;
9969 
9970 		if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
9971 			/* udp_tunnel_{get,drop}_rx_info both need
9972 			 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
9973 			 * device, or they won't do anything.
9974 			 * Thus we need to update dev->features
9975 			 * *before* calling udp_tunnel_get_rx_info,
9976 			 * but *after* calling udp_tunnel_drop_rx_info.
9977 			 */
9978 			if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
9979 				dev->features = features;
9980 				udp_tunnel_get_rx_info(dev);
9981 			} else {
9982 				udp_tunnel_drop_rx_info(dev);
9983 			}
9984 		}
9985 
9986 		if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
9987 			if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
9988 				dev->features = features;
9989 				err |= vlan_get_rx_ctag_filter_info(dev);
9990 			} else {
9991 				vlan_drop_rx_ctag_filter_info(dev);
9992 			}
9993 		}
9994 
9995 		if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
9996 			if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
9997 				dev->features = features;
9998 				err |= vlan_get_rx_stag_filter_info(dev);
9999 			} else {
10000 				vlan_drop_rx_stag_filter_info(dev);
10001 			}
10002 		}
10003 
10004 		dev->features = features;
10005 	}
10006 
10007 	return err < 0 ? 0 : 1;
10008 }
10009 
10010 /**
10011  *	netdev_update_features - recalculate device features
10012  *	@dev: the device to check
10013  *
10014  *	Recalculate dev->features set and send notifications if it
10015  *	has changed. Should be called after driver or hardware dependent
10016  *	conditions might have changed that influence the features.
10017  */
10018 void netdev_update_features(struct net_device *dev)
10019 {
10020 	if (__netdev_update_features(dev))
10021 		netdev_features_change(dev);
10022 }
10023 EXPORT_SYMBOL(netdev_update_features);
10024 
10025 /**
10026  *	netdev_change_features - recalculate device features
10027  *	@dev: the device to check
10028  *
10029  *	Recalculate dev->features set and send notifications even
10030  *	if they have not changed. Should be called instead of
10031  *	netdev_update_features() if also dev->vlan_features might
10032  *	have changed to allow the changes to be propagated to stacked
10033  *	VLAN devices.
10034  */
10035 void netdev_change_features(struct net_device *dev)
10036 {
10037 	__netdev_update_features(dev);
10038 	netdev_features_change(dev);
10039 }
10040 EXPORT_SYMBOL(netdev_change_features);
10041 
10042 /**
10043  *	netif_stacked_transfer_operstate -	transfer operstate
10044  *	@rootdev: the root or lower level device to transfer state from
10045  *	@dev: the device to transfer operstate to
10046  *
10047  *	Transfer operational state from root to device. This is normally
10048  *	called when a stacking relationship exists between the root
10049  *	device and the device(a leaf device).
10050  */
10051 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
10052 					struct net_device *dev)
10053 {
10054 	if (rootdev->operstate == IF_OPER_DORMANT)
10055 		netif_dormant_on(dev);
10056 	else
10057 		netif_dormant_off(dev);
10058 
10059 	if (rootdev->operstate == IF_OPER_TESTING)
10060 		netif_testing_on(dev);
10061 	else
10062 		netif_testing_off(dev);
10063 
10064 	if (netif_carrier_ok(rootdev))
10065 		netif_carrier_on(dev);
10066 	else
10067 		netif_carrier_off(dev);
10068 }
10069 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
10070 
10071 static int netif_alloc_rx_queues(struct net_device *dev)
10072 {
10073 	unsigned int i, count = dev->num_rx_queues;
10074 	struct netdev_rx_queue *rx;
10075 	size_t sz = count * sizeof(*rx);
10076 	int err = 0;
10077 
10078 	BUG_ON(count < 1);
10079 
10080 	rx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10081 	if (!rx)
10082 		return -ENOMEM;
10083 
10084 	dev->_rx = rx;
10085 
10086 	for (i = 0; i < count; i++) {
10087 		rx[i].dev = dev;
10088 
10089 		/* XDP RX-queue setup */
10090 		err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0);
10091 		if (err < 0)
10092 			goto err_rxq_info;
10093 	}
10094 	return 0;
10095 
10096 err_rxq_info:
10097 	/* Rollback successful reg's and free other resources */
10098 	while (i--)
10099 		xdp_rxq_info_unreg(&rx[i].xdp_rxq);
10100 	kvfree(dev->_rx);
10101 	dev->_rx = NULL;
10102 	return err;
10103 }
10104 
10105 static void netif_free_rx_queues(struct net_device *dev)
10106 {
10107 	unsigned int i, count = dev->num_rx_queues;
10108 
10109 	/* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
10110 	if (!dev->_rx)
10111 		return;
10112 
10113 	for (i = 0; i < count; i++)
10114 		xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
10115 
10116 	kvfree(dev->_rx);
10117 }
10118 
10119 static void netdev_init_one_queue(struct net_device *dev,
10120 				  struct netdev_queue *queue, void *_unused)
10121 {
10122 	/* Initialize queue lock */
10123 	spin_lock_init(&queue->_xmit_lock);
10124 	netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
10125 	queue->xmit_lock_owner = -1;
10126 	netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
10127 	queue->dev = dev;
10128 #ifdef CONFIG_BQL
10129 	dql_init(&queue->dql, HZ);
10130 #endif
10131 }
10132 
10133 static void netif_free_tx_queues(struct net_device *dev)
10134 {
10135 	kvfree(dev->_tx);
10136 }
10137 
10138 static int netif_alloc_netdev_queues(struct net_device *dev)
10139 {
10140 	unsigned int count = dev->num_tx_queues;
10141 	struct netdev_queue *tx;
10142 	size_t sz = count * sizeof(*tx);
10143 
10144 	if (count < 1 || count > 0xffff)
10145 		return -EINVAL;
10146 
10147 	tx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10148 	if (!tx)
10149 		return -ENOMEM;
10150 
10151 	dev->_tx = tx;
10152 
10153 	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
10154 	spin_lock_init(&dev->tx_global_lock);
10155 
10156 	return 0;
10157 }
10158 
10159 void netif_tx_stop_all_queues(struct net_device *dev)
10160 {
10161 	unsigned int i;
10162 
10163 	for (i = 0; i < dev->num_tx_queues; i++) {
10164 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
10165 
10166 		netif_tx_stop_queue(txq);
10167 	}
10168 }
10169 EXPORT_SYMBOL(netif_tx_stop_all_queues);
10170 
10171 static int netdev_do_alloc_pcpu_stats(struct net_device *dev)
10172 {
10173 	void __percpu *v;
10174 
10175 	/* Drivers implementing ndo_get_peer_dev must support tstat
10176 	 * accounting, so that skb_do_redirect() can bump the dev's
10177 	 * RX stats upon network namespace switch.
10178 	 */
10179 	if (dev->netdev_ops->ndo_get_peer_dev &&
10180 	    dev->pcpu_stat_type != NETDEV_PCPU_STAT_TSTATS)
10181 		return -EOPNOTSUPP;
10182 
10183 	switch (dev->pcpu_stat_type) {
10184 	case NETDEV_PCPU_STAT_NONE:
10185 		return 0;
10186 	case NETDEV_PCPU_STAT_LSTATS:
10187 		v = dev->lstats = netdev_alloc_pcpu_stats(struct pcpu_lstats);
10188 		break;
10189 	case NETDEV_PCPU_STAT_TSTATS:
10190 		v = dev->tstats = netdev_alloc_pcpu_stats(struct pcpu_sw_netstats);
10191 		break;
10192 	case NETDEV_PCPU_STAT_DSTATS:
10193 		v = dev->dstats = netdev_alloc_pcpu_stats(struct pcpu_dstats);
10194 		break;
10195 	default:
10196 		return -EINVAL;
10197 	}
10198 
10199 	return v ? 0 : -ENOMEM;
10200 }
10201 
10202 static void netdev_do_free_pcpu_stats(struct net_device *dev)
10203 {
10204 	switch (dev->pcpu_stat_type) {
10205 	case NETDEV_PCPU_STAT_NONE:
10206 		return;
10207 	case NETDEV_PCPU_STAT_LSTATS:
10208 		free_percpu(dev->lstats);
10209 		break;
10210 	case NETDEV_PCPU_STAT_TSTATS:
10211 		free_percpu(dev->tstats);
10212 		break;
10213 	case NETDEV_PCPU_STAT_DSTATS:
10214 		free_percpu(dev->dstats);
10215 		break;
10216 	}
10217 }
10218 
10219 /**
10220  * register_netdevice() - register a network device
10221  * @dev: device to register
10222  *
10223  * Take a prepared network device structure and make it externally accessible.
10224  * A %NETDEV_REGISTER message is sent to the netdev notifier chain.
10225  * Callers must hold the rtnl lock - you may want register_netdev()
10226  * instead of this.
10227  */
10228 int register_netdevice(struct net_device *dev)
10229 {
10230 	int ret;
10231 	struct net *net = dev_net(dev);
10232 
10233 	BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
10234 		     NETDEV_FEATURE_COUNT);
10235 	BUG_ON(dev_boot_phase);
10236 	ASSERT_RTNL();
10237 
10238 	might_sleep();
10239 
10240 	/* When net_device's are persistent, this will be fatal. */
10241 	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
10242 	BUG_ON(!net);
10243 
10244 	ret = ethtool_check_ops(dev->ethtool_ops);
10245 	if (ret)
10246 		return ret;
10247 
10248 	spin_lock_init(&dev->addr_list_lock);
10249 	netdev_set_addr_lockdep_class(dev);
10250 
10251 	ret = dev_get_valid_name(net, dev, dev->name);
10252 	if (ret < 0)
10253 		goto out;
10254 
10255 	ret = -ENOMEM;
10256 	dev->name_node = netdev_name_node_head_alloc(dev);
10257 	if (!dev->name_node)
10258 		goto out;
10259 
10260 	/* Init, if this function is available */
10261 	if (dev->netdev_ops->ndo_init) {
10262 		ret = dev->netdev_ops->ndo_init(dev);
10263 		if (ret) {
10264 			if (ret > 0)
10265 				ret = -EIO;
10266 			goto err_free_name;
10267 		}
10268 	}
10269 
10270 	if (((dev->hw_features | dev->features) &
10271 	     NETIF_F_HW_VLAN_CTAG_FILTER) &&
10272 	    (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
10273 	     !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
10274 		netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
10275 		ret = -EINVAL;
10276 		goto err_uninit;
10277 	}
10278 
10279 	ret = netdev_do_alloc_pcpu_stats(dev);
10280 	if (ret)
10281 		goto err_uninit;
10282 
10283 	ret = dev_index_reserve(net, dev->ifindex);
10284 	if (ret < 0)
10285 		goto err_free_pcpu;
10286 	dev->ifindex = ret;
10287 
10288 	/* Transfer changeable features to wanted_features and enable
10289 	 * software offloads (GSO and GRO).
10290 	 */
10291 	dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
10292 	dev->features |= NETIF_F_SOFT_FEATURES;
10293 
10294 	if (dev->udp_tunnel_nic_info) {
10295 		dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10296 		dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10297 	}
10298 
10299 	dev->wanted_features = dev->features & dev->hw_features;
10300 
10301 	if (!(dev->flags & IFF_LOOPBACK))
10302 		dev->hw_features |= NETIF_F_NOCACHE_COPY;
10303 
10304 	/* If IPv4 TCP segmentation offload is supported we should also
10305 	 * allow the device to enable segmenting the frame with the option
10306 	 * of ignoring a static IP ID value.  This doesn't enable the
10307 	 * feature itself but allows the user to enable it later.
10308 	 */
10309 	if (dev->hw_features & NETIF_F_TSO)
10310 		dev->hw_features |= NETIF_F_TSO_MANGLEID;
10311 	if (dev->vlan_features & NETIF_F_TSO)
10312 		dev->vlan_features |= NETIF_F_TSO_MANGLEID;
10313 	if (dev->mpls_features & NETIF_F_TSO)
10314 		dev->mpls_features |= NETIF_F_TSO_MANGLEID;
10315 	if (dev->hw_enc_features & NETIF_F_TSO)
10316 		dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
10317 
10318 	/* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
10319 	 */
10320 	dev->vlan_features |= NETIF_F_HIGHDMA;
10321 
10322 	/* Make NETIF_F_SG inheritable to tunnel devices.
10323 	 */
10324 	dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
10325 
10326 	/* Make NETIF_F_SG inheritable to MPLS.
10327 	 */
10328 	dev->mpls_features |= NETIF_F_SG;
10329 
10330 	ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
10331 	ret = notifier_to_errno(ret);
10332 	if (ret)
10333 		goto err_ifindex_release;
10334 
10335 	ret = netdev_register_kobject(dev);
10336 
10337 	WRITE_ONCE(dev->reg_state, ret ? NETREG_UNREGISTERED : NETREG_REGISTERED);
10338 
10339 	if (ret)
10340 		goto err_uninit_notify;
10341 
10342 	__netdev_update_features(dev);
10343 
10344 	/*
10345 	 *	Default initial state at registry is that the
10346 	 *	device is present.
10347 	 */
10348 
10349 	set_bit(__LINK_STATE_PRESENT, &dev->state);
10350 
10351 	linkwatch_init_dev(dev);
10352 
10353 	dev_init_scheduler(dev);
10354 
10355 	netdev_hold(dev, &dev->dev_registered_tracker, GFP_KERNEL);
10356 	list_netdevice(dev);
10357 
10358 	add_device_randomness(dev->dev_addr, dev->addr_len);
10359 
10360 	/* If the device has permanent device address, driver should
10361 	 * set dev_addr and also addr_assign_type should be set to
10362 	 * NET_ADDR_PERM (default value).
10363 	 */
10364 	if (dev->addr_assign_type == NET_ADDR_PERM)
10365 		memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
10366 
10367 	/* Notify protocols, that a new device appeared. */
10368 	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
10369 	ret = notifier_to_errno(ret);
10370 	if (ret) {
10371 		/* Expect explicit free_netdev() on failure */
10372 		dev->needs_free_netdev = false;
10373 		unregister_netdevice_queue(dev, NULL);
10374 		goto out;
10375 	}
10376 	/*
10377 	 *	Prevent userspace races by waiting until the network
10378 	 *	device is fully setup before sending notifications.
10379 	 */
10380 	if (!dev->rtnl_link_ops ||
10381 	    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10382 		rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL);
10383 
10384 out:
10385 	return ret;
10386 
10387 err_uninit_notify:
10388 	call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev);
10389 err_ifindex_release:
10390 	dev_index_release(net, dev->ifindex);
10391 err_free_pcpu:
10392 	netdev_do_free_pcpu_stats(dev);
10393 err_uninit:
10394 	if (dev->netdev_ops->ndo_uninit)
10395 		dev->netdev_ops->ndo_uninit(dev);
10396 	if (dev->priv_destructor)
10397 		dev->priv_destructor(dev);
10398 err_free_name:
10399 	netdev_name_node_free(dev->name_node);
10400 	goto out;
10401 }
10402 EXPORT_SYMBOL(register_netdevice);
10403 
10404 /**
10405  *	init_dummy_netdev	- init a dummy network device for NAPI
10406  *	@dev: device to init
10407  *
10408  *	This takes a network device structure and initialize the minimum
10409  *	amount of fields so it can be used to schedule NAPI polls without
10410  *	registering a full blown interface. This is to be used by drivers
10411  *	that need to tie several hardware interfaces to a single NAPI
10412  *	poll scheduler due to HW limitations.
10413  */
10414 void init_dummy_netdev(struct net_device *dev)
10415 {
10416 	/* Clear everything. Note we don't initialize spinlocks
10417 	 * are they aren't supposed to be taken by any of the
10418 	 * NAPI code and this dummy netdev is supposed to be
10419 	 * only ever used for NAPI polls
10420 	 */
10421 	memset(dev, 0, sizeof(struct net_device));
10422 
10423 	/* make sure we BUG if trying to hit standard
10424 	 * register/unregister code path
10425 	 */
10426 	dev->reg_state = NETREG_DUMMY;
10427 
10428 	/* NAPI wants this */
10429 	INIT_LIST_HEAD(&dev->napi_list);
10430 
10431 	/* a dummy interface is started by default */
10432 	set_bit(__LINK_STATE_PRESENT, &dev->state);
10433 	set_bit(__LINK_STATE_START, &dev->state);
10434 
10435 	/* napi_busy_loop stats accounting wants this */
10436 	dev_net_set(dev, &init_net);
10437 
10438 	/* Note : We dont allocate pcpu_refcnt for dummy devices,
10439 	 * because users of this 'device' dont need to change
10440 	 * its refcount.
10441 	 */
10442 }
10443 EXPORT_SYMBOL_GPL(init_dummy_netdev);
10444 
10445 
10446 /**
10447  *	register_netdev	- register a network device
10448  *	@dev: device to register
10449  *
10450  *	Take a completed network device structure and add it to the kernel
10451  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10452  *	chain. 0 is returned on success. A negative errno code is returned
10453  *	on a failure to set up the device, or if the name is a duplicate.
10454  *
10455  *	This is a wrapper around register_netdevice that takes the rtnl semaphore
10456  *	and expands the device name if you passed a format string to
10457  *	alloc_netdev.
10458  */
10459 int register_netdev(struct net_device *dev)
10460 {
10461 	int err;
10462 
10463 	if (rtnl_lock_killable())
10464 		return -EINTR;
10465 	err = register_netdevice(dev);
10466 	rtnl_unlock();
10467 	return err;
10468 }
10469 EXPORT_SYMBOL(register_netdev);
10470 
10471 int netdev_refcnt_read(const struct net_device *dev)
10472 {
10473 #ifdef CONFIG_PCPU_DEV_REFCNT
10474 	int i, refcnt = 0;
10475 
10476 	for_each_possible_cpu(i)
10477 		refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
10478 	return refcnt;
10479 #else
10480 	return refcount_read(&dev->dev_refcnt);
10481 #endif
10482 }
10483 EXPORT_SYMBOL(netdev_refcnt_read);
10484 
10485 int netdev_unregister_timeout_secs __read_mostly = 10;
10486 
10487 #define WAIT_REFS_MIN_MSECS 1
10488 #define WAIT_REFS_MAX_MSECS 250
10489 /**
10490  * netdev_wait_allrefs_any - wait until all references are gone.
10491  * @list: list of net_devices to wait on
10492  *
10493  * This is called when unregistering network devices.
10494  *
10495  * Any protocol or device that holds a reference should register
10496  * for netdevice notification, and cleanup and put back the
10497  * reference if they receive an UNREGISTER event.
10498  * We can get stuck here if buggy protocols don't correctly
10499  * call dev_put.
10500  */
10501 static struct net_device *netdev_wait_allrefs_any(struct list_head *list)
10502 {
10503 	unsigned long rebroadcast_time, warning_time;
10504 	struct net_device *dev;
10505 	int wait = 0;
10506 
10507 	rebroadcast_time = warning_time = jiffies;
10508 
10509 	list_for_each_entry(dev, list, todo_list)
10510 		if (netdev_refcnt_read(dev) == 1)
10511 			return dev;
10512 
10513 	while (true) {
10514 		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
10515 			rtnl_lock();
10516 
10517 			/* Rebroadcast unregister notification */
10518 			list_for_each_entry(dev, list, todo_list)
10519 				call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10520 
10521 			__rtnl_unlock();
10522 			rcu_barrier();
10523 			rtnl_lock();
10524 
10525 			list_for_each_entry(dev, list, todo_list)
10526 				if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
10527 					     &dev->state)) {
10528 					/* We must not have linkwatch events
10529 					 * pending on unregister. If this
10530 					 * happens, we simply run the queue
10531 					 * unscheduled, resulting in a noop
10532 					 * for this device.
10533 					 */
10534 					linkwatch_run_queue();
10535 					break;
10536 				}
10537 
10538 			__rtnl_unlock();
10539 
10540 			rebroadcast_time = jiffies;
10541 		}
10542 
10543 		if (!wait) {
10544 			rcu_barrier();
10545 			wait = WAIT_REFS_MIN_MSECS;
10546 		} else {
10547 			msleep(wait);
10548 			wait = min(wait << 1, WAIT_REFS_MAX_MSECS);
10549 		}
10550 
10551 		list_for_each_entry(dev, list, todo_list)
10552 			if (netdev_refcnt_read(dev) == 1)
10553 				return dev;
10554 
10555 		if (time_after(jiffies, warning_time +
10556 			       READ_ONCE(netdev_unregister_timeout_secs) * HZ)) {
10557 			list_for_each_entry(dev, list, todo_list) {
10558 				pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
10559 					 dev->name, netdev_refcnt_read(dev));
10560 				ref_tracker_dir_print(&dev->refcnt_tracker, 10);
10561 			}
10562 
10563 			warning_time = jiffies;
10564 		}
10565 	}
10566 }
10567 
10568 /* The sequence is:
10569  *
10570  *	rtnl_lock();
10571  *	...
10572  *	register_netdevice(x1);
10573  *	register_netdevice(x2);
10574  *	...
10575  *	unregister_netdevice(y1);
10576  *	unregister_netdevice(y2);
10577  *      ...
10578  *	rtnl_unlock();
10579  *	free_netdev(y1);
10580  *	free_netdev(y2);
10581  *
10582  * We are invoked by rtnl_unlock().
10583  * This allows us to deal with problems:
10584  * 1) We can delete sysfs objects which invoke hotplug
10585  *    without deadlocking with linkwatch via keventd.
10586  * 2) Since we run with the RTNL semaphore not held, we can sleep
10587  *    safely in order to wait for the netdev refcnt to drop to zero.
10588  *
10589  * We must not return until all unregister events added during
10590  * the interval the lock was held have been completed.
10591  */
10592 void netdev_run_todo(void)
10593 {
10594 	struct net_device *dev, *tmp;
10595 	struct list_head list;
10596 	int cnt;
10597 #ifdef CONFIG_LOCKDEP
10598 	struct list_head unlink_list;
10599 
10600 	list_replace_init(&net_unlink_list, &unlink_list);
10601 
10602 	while (!list_empty(&unlink_list)) {
10603 		struct net_device *dev = list_first_entry(&unlink_list,
10604 							  struct net_device,
10605 							  unlink_list);
10606 		list_del_init(&dev->unlink_list);
10607 		dev->nested_level = dev->lower_level - 1;
10608 	}
10609 #endif
10610 
10611 	/* Snapshot list, allow later requests */
10612 	list_replace_init(&net_todo_list, &list);
10613 
10614 	__rtnl_unlock();
10615 
10616 	/* Wait for rcu callbacks to finish before next phase */
10617 	if (!list_empty(&list))
10618 		rcu_barrier();
10619 
10620 	list_for_each_entry_safe(dev, tmp, &list, todo_list) {
10621 		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
10622 			netdev_WARN(dev, "run_todo but not unregistering\n");
10623 			list_del(&dev->todo_list);
10624 			continue;
10625 		}
10626 
10627 		WRITE_ONCE(dev->reg_state, NETREG_UNREGISTERED);
10628 		linkwatch_sync_dev(dev);
10629 	}
10630 
10631 	cnt = 0;
10632 	while (!list_empty(&list)) {
10633 		dev = netdev_wait_allrefs_any(&list);
10634 		list_del(&dev->todo_list);
10635 
10636 		/* paranoia */
10637 		BUG_ON(netdev_refcnt_read(dev) != 1);
10638 		BUG_ON(!list_empty(&dev->ptype_all));
10639 		BUG_ON(!list_empty(&dev->ptype_specific));
10640 		WARN_ON(rcu_access_pointer(dev->ip_ptr));
10641 		WARN_ON(rcu_access_pointer(dev->ip6_ptr));
10642 
10643 		netdev_do_free_pcpu_stats(dev);
10644 		if (dev->priv_destructor)
10645 			dev->priv_destructor(dev);
10646 		if (dev->needs_free_netdev)
10647 			free_netdev(dev);
10648 
10649 		cnt++;
10650 
10651 		/* Free network device */
10652 		kobject_put(&dev->dev.kobj);
10653 	}
10654 	if (cnt && atomic_sub_and_test(cnt, &dev_unreg_count))
10655 		wake_up(&netdev_unregistering_wq);
10656 }
10657 
10658 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
10659  * all the same fields in the same order as net_device_stats, with only
10660  * the type differing, but rtnl_link_stats64 may have additional fields
10661  * at the end for newer counters.
10662  */
10663 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
10664 			     const struct net_device_stats *netdev_stats)
10665 {
10666 	size_t i, n = sizeof(*netdev_stats) / sizeof(atomic_long_t);
10667 	const atomic_long_t *src = (atomic_long_t *)netdev_stats;
10668 	u64 *dst = (u64 *)stats64;
10669 
10670 	BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
10671 	for (i = 0; i < n; i++)
10672 		dst[i] = (unsigned long)atomic_long_read(&src[i]);
10673 	/* zero out counters that only exist in rtnl_link_stats64 */
10674 	memset((char *)stats64 + n * sizeof(u64), 0,
10675 	       sizeof(*stats64) - n * sizeof(u64));
10676 }
10677 EXPORT_SYMBOL(netdev_stats_to_stats64);
10678 
10679 static __cold struct net_device_core_stats __percpu *netdev_core_stats_alloc(
10680 		struct net_device *dev)
10681 {
10682 	struct net_device_core_stats __percpu *p;
10683 
10684 	p = alloc_percpu_gfp(struct net_device_core_stats,
10685 			     GFP_ATOMIC | __GFP_NOWARN);
10686 
10687 	if (p && cmpxchg(&dev->core_stats, NULL, p))
10688 		free_percpu(p);
10689 
10690 	/* This READ_ONCE() pairs with the cmpxchg() above */
10691 	return READ_ONCE(dev->core_stats);
10692 }
10693 
10694 noinline void netdev_core_stats_inc(struct net_device *dev, u32 offset)
10695 {
10696 	/* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
10697 	struct net_device_core_stats __percpu *p = READ_ONCE(dev->core_stats);
10698 	unsigned long __percpu *field;
10699 
10700 	if (unlikely(!p)) {
10701 		p = netdev_core_stats_alloc(dev);
10702 		if (!p)
10703 			return;
10704 	}
10705 
10706 	field = (__force unsigned long __percpu *)((__force void *)p + offset);
10707 	this_cpu_inc(*field);
10708 }
10709 EXPORT_SYMBOL_GPL(netdev_core_stats_inc);
10710 
10711 /**
10712  *	dev_get_stats	- get network device statistics
10713  *	@dev: device to get statistics from
10714  *	@storage: place to store stats
10715  *
10716  *	Get network statistics from device. Return @storage.
10717  *	The device driver may provide its own method by setting
10718  *	dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
10719  *	otherwise the internal statistics structure is used.
10720  */
10721 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
10722 					struct rtnl_link_stats64 *storage)
10723 {
10724 	const struct net_device_ops *ops = dev->netdev_ops;
10725 	const struct net_device_core_stats __percpu *p;
10726 
10727 	if (ops->ndo_get_stats64) {
10728 		memset(storage, 0, sizeof(*storage));
10729 		ops->ndo_get_stats64(dev, storage);
10730 	} else if (ops->ndo_get_stats) {
10731 		netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
10732 	} else if (dev->pcpu_stat_type == NETDEV_PCPU_STAT_TSTATS) {
10733 		dev_get_tstats64(dev, storage);
10734 	} else {
10735 		netdev_stats_to_stats64(storage, &dev->stats);
10736 	}
10737 
10738 	/* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
10739 	p = READ_ONCE(dev->core_stats);
10740 	if (p) {
10741 		const struct net_device_core_stats *core_stats;
10742 		int i;
10743 
10744 		for_each_possible_cpu(i) {
10745 			core_stats = per_cpu_ptr(p, i);
10746 			storage->rx_dropped += READ_ONCE(core_stats->rx_dropped);
10747 			storage->tx_dropped += READ_ONCE(core_stats->tx_dropped);
10748 			storage->rx_nohandler += READ_ONCE(core_stats->rx_nohandler);
10749 			storage->rx_otherhost_dropped += READ_ONCE(core_stats->rx_otherhost_dropped);
10750 		}
10751 	}
10752 	return storage;
10753 }
10754 EXPORT_SYMBOL(dev_get_stats);
10755 
10756 /**
10757  *	dev_fetch_sw_netstats - get per-cpu network device statistics
10758  *	@s: place to store stats
10759  *	@netstats: per-cpu network stats to read from
10760  *
10761  *	Read per-cpu network statistics and populate the related fields in @s.
10762  */
10763 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
10764 			   const struct pcpu_sw_netstats __percpu *netstats)
10765 {
10766 	int cpu;
10767 
10768 	for_each_possible_cpu(cpu) {
10769 		u64 rx_packets, rx_bytes, tx_packets, tx_bytes;
10770 		const struct pcpu_sw_netstats *stats;
10771 		unsigned int start;
10772 
10773 		stats = per_cpu_ptr(netstats, cpu);
10774 		do {
10775 			start = u64_stats_fetch_begin(&stats->syncp);
10776 			rx_packets = u64_stats_read(&stats->rx_packets);
10777 			rx_bytes   = u64_stats_read(&stats->rx_bytes);
10778 			tx_packets = u64_stats_read(&stats->tx_packets);
10779 			tx_bytes   = u64_stats_read(&stats->tx_bytes);
10780 		} while (u64_stats_fetch_retry(&stats->syncp, start));
10781 
10782 		s->rx_packets += rx_packets;
10783 		s->rx_bytes   += rx_bytes;
10784 		s->tx_packets += tx_packets;
10785 		s->tx_bytes   += tx_bytes;
10786 	}
10787 }
10788 EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats);
10789 
10790 /**
10791  *	dev_get_tstats64 - ndo_get_stats64 implementation
10792  *	@dev: device to get statistics from
10793  *	@s: place to store stats
10794  *
10795  *	Populate @s from dev->stats and dev->tstats. Can be used as
10796  *	ndo_get_stats64() callback.
10797  */
10798 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s)
10799 {
10800 	netdev_stats_to_stats64(s, &dev->stats);
10801 	dev_fetch_sw_netstats(s, dev->tstats);
10802 }
10803 EXPORT_SYMBOL_GPL(dev_get_tstats64);
10804 
10805 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
10806 {
10807 	struct netdev_queue *queue = dev_ingress_queue(dev);
10808 
10809 #ifdef CONFIG_NET_CLS_ACT
10810 	if (queue)
10811 		return queue;
10812 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
10813 	if (!queue)
10814 		return NULL;
10815 	netdev_init_one_queue(dev, queue, NULL);
10816 	RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
10817 	RCU_INIT_POINTER(queue->qdisc_sleeping, &noop_qdisc);
10818 	rcu_assign_pointer(dev->ingress_queue, queue);
10819 #endif
10820 	return queue;
10821 }
10822 
10823 static const struct ethtool_ops default_ethtool_ops;
10824 
10825 void netdev_set_default_ethtool_ops(struct net_device *dev,
10826 				    const struct ethtool_ops *ops)
10827 {
10828 	if (dev->ethtool_ops == &default_ethtool_ops)
10829 		dev->ethtool_ops = ops;
10830 }
10831 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
10832 
10833 /**
10834  * netdev_sw_irq_coalesce_default_on() - enable SW IRQ coalescing by default
10835  * @dev: netdev to enable the IRQ coalescing on
10836  *
10837  * Sets a conservative default for SW IRQ coalescing. Users can use
10838  * sysfs attributes to override the default values.
10839  */
10840 void netdev_sw_irq_coalesce_default_on(struct net_device *dev)
10841 {
10842 	WARN_ON(dev->reg_state == NETREG_REGISTERED);
10843 
10844 	if (!IS_ENABLED(CONFIG_PREEMPT_RT)) {
10845 		dev->gro_flush_timeout = 20000;
10846 		dev->napi_defer_hard_irqs = 1;
10847 	}
10848 }
10849 EXPORT_SYMBOL_GPL(netdev_sw_irq_coalesce_default_on);
10850 
10851 void netdev_freemem(struct net_device *dev)
10852 {
10853 	char *addr = (char *)dev - dev->padded;
10854 
10855 	kvfree(addr);
10856 }
10857 
10858 /**
10859  * alloc_netdev_mqs - allocate network device
10860  * @sizeof_priv: size of private data to allocate space for
10861  * @name: device name format string
10862  * @name_assign_type: origin of device name
10863  * @setup: callback to initialize device
10864  * @txqs: the number of TX subqueues to allocate
10865  * @rxqs: the number of RX subqueues to allocate
10866  *
10867  * Allocates a struct net_device with private data area for driver use
10868  * and performs basic initialization.  Also allocates subqueue structs
10869  * for each queue on the device.
10870  */
10871 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
10872 		unsigned char name_assign_type,
10873 		void (*setup)(struct net_device *),
10874 		unsigned int txqs, unsigned int rxqs)
10875 {
10876 	struct net_device *dev;
10877 	unsigned int alloc_size;
10878 	struct net_device *p;
10879 
10880 	BUG_ON(strlen(name) >= sizeof(dev->name));
10881 
10882 	if (txqs < 1) {
10883 		pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
10884 		return NULL;
10885 	}
10886 
10887 	if (rxqs < 1) {
10888 		pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
10889 		return NULL;
10890 	}
10891 
10892 	alloc_size = sizeof(struct net_device);
10893 	if (sizeof_priv) {
10894 		/* ensure 32-byte alignment of private area */
10895 		alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
10896 		alloc_size += sizeof_priv;
10897 	}
10898 	/* ensure 32-byte alignment of whole construct */
10899 	alloc_size += NETDEV_ALIGN - 1;
10900 
10901 	p = kvzalloc(alloc_size, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10902 	if (!p)
10903 		return NULL;
10904 
10905 	dev = PTR_ALIGN(p, NETDEV_ALIGN);
10906 	dev->padded = (char *)dev - (char *)p;
10907 
10908 	ref_tracker_dir_init(&dev->refcnt_tracker, 128, name);
10909 #ifdef CONFIG_PCPU_DEV_REFCNT
10910 	dev->pcpu_refcnt = alloc_percpu(int);
10911 	if (!dev->pcpu_refcnt)
10912 		goto free_dev;
10913 	__dev_hold(dev);
10914 #else
10915 	refcount_set(&dev->dev_refcnt, 1);
10916 #endif
10917 
10918 	if (dev_addr_init(dev))
10919 		goto free_pcpu;
10920 
10921 	dev_mc_init(dev);
10922 	dev_uc_init(dev);
10923 
10924 	dev_net_set(dev, &init_net);
10925 
10926 	dev->gso_max_size = GSO_LEGACY_MAX_SIZE;
10927 	dev->xdp_zc_max_segs = 1;
10928 	dev->gso_max_segs = GSO_MAX_SEGS;
10929 	dev->gro_max_size = GRO_LEGACY_MAX_SIZE;
10930 	dev->gso_ipv4_max_size = GSO_LEGACY_MAX_SIZE;
10931 	dev->gro_ipv4_max_size = GRO_LEGACY_MAX_SIZE;
10932 	dev->tso_max_size = TSO_LEGACY_MAX_SIZE;
10933 	dev->tso_max_segs = TSO_MAX_SEGS;
10934 	dev->upper_level = 1;
10935 	dev->lower_level = 1;
10936 #ifdef CONFIG_LOCKDEP
10937 	dev->nested_level = 0;
10938 	INIT_LIST_HEAD(&dev->unlink_list);
10939 #endif
10940 
10941 	INIT_LIST_HEAD(&dev->napi_list);
10942 	INIT_LIST_HEAD(&dev->unreg_list);
10943 	INIT_LIST_HEAD(&dev->close_list);
10944 	INIT_LIST_HEAD(&dev->link_watch_list);
10945 	INIT_LIST_HEAD(&dev->adj_list.upper);
10946 	INIT_LIST_HEAD(&dev->adj_list.lower);
10947 	INIT_LIST_HEAD(&dev->ptype_all);
10948 	INIT_LIST_HEAD(&dev->ptype_specific);
10949 	INIT_LIST_HEAD(&dev->net_notifier_list);
10950 #ifdef CONFIG_NET_SCHED
10951 	hash_init(dev->qdisc_hash);
10952 #endif
10953 	dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
10954 	setup(dev);
10955 
10956 	if (!dev->tx_queue_len) {
10957 		dev->priv_flags |= IFF_NO_QUEUE;
10958 		dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
10959 	}
10960 
10961 	dev->num_tx_queues = txqs;
10962 	dev->real_num_tx_queues = txqs;
10963 	if (netif_alloc_netdev_queues(dev))
10964 		goto free_all;
10965 
10966 	dev->num_rx_queues = rxqs;
10967 	dev->real_num_rx_queues = rxqs;
10968 	if (netif_alloc_rx_queues(dev))
10969 		goto free_all;
10970 
10971 	strcpy(dev->name, name);
10972 	dev->name_assign_type = name_assign_type;
10973 	dev->group = INIT_NETDEV_GROUP;
10974 	if (!dev->ethtool_ops)
10975 		dev->ethtool_ops = &default_ethtool_ops;
10976 
10977 	nf_hook_netdev_init(dev);
10978 
10979 	return dev;
10980 
10981 free_all:
10982 	free_netdev(dev);
10983 	return NULL;
10984 
10985 free_pcpu:
10986 #ifdef CONFIG_PCPU_DEV_REFCNT
10987 	free_percpu(dev->pcpu_refcnt);
10988 free_dev:
10989 #endif
10990 	netdev_freemem(dev);
10991 	return NULL;
10992 }
10993 EXPORT_SYMBOL(alloc_netdev_mqs);
10994 
10995 /**
10996  * free_netdev - free network device
10997  * @dev: device
10998  *
10999  * This function does the last stage of destroying an allocated device
11000  * interface. The reference to the device object is released. If this
11001  * is the last reference then it will be freed.Must be called in process
11002  * context.
11003  */
11004 void free_netdev(struct net_device *dev)
11005 {
11006 	struct napi_struct *p, *n;
11007 
11008 	might_sleep();
11009 
11010 	/* When called immediately after register_netdevice() failed the unwind
11011 	 * handling may still be dismantling the device. Handle that case by
11012 	 * deferring the free.
11013 	 */
11014 	if (dev->reg_state == NETREG_UNREGISTERING) {
11015 		ASSERT_RTNL();
11016 		dev->needs_free_netdev = true;
11017 		return;
11018 	}
11019 
11020 	netif_free_tx_queues(dev);
11021 	netif_free_rx_queues(dev);
11022 
11023 	kfree(rcu_dereference_protected(dev->ingress_queue, 1));
11024 
11025 	/* Flush device addresses */
11026 	dev_addr_flush(dev);
11027 
11028 	list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
11029 		netif_napi_del(p);
11030 
11031 	ref_tracker_dir_exit(&dev->refcnt_tracker);
11032 #ifdef CONFIG_PCPU_DEV_REFCNT
11033 	free_percpu(dev->pcpu_refcnt);
11034 	dev->pcpu_refcnt = NULL;
11035 #endif
11036 	free_percpu(dev->core_stats);
11037 	dev->core_stats = NULL;
11038 	free_percpu(dev->xdp_bulkq);
11039 	dev->xdp_bulkq = NULL;
11040 
11041 	/*  Compatibility with error handling in drivers */
11042 	if (dev->reg_state == NETREG_UNINITIALIZED) {
11043 		netdev_freemem(dev);
11044 		return;
11045 	}
11046 
11047 	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
11048 	WRITE_ONCE(dev->reg_state, NETREG_RELEASED);
11049 
11050 	/* will free via device release */
11051 	put_device(&dev->dev);
11052 }
11053 EXPORT_SYMBOL(free_netdev);
11054 
11055 /**
11056  *	synchronize_net -  Synchronize with packet receive processing
11057  *
11058  *	Wait for packets currently being received to be done.
11059  *	Does not block later packets from starting.
11060  */
11061 void synchronize_net(void)
11062 {
11063 	might_sleep();
11064 	if (rtnl_is_locked())
11065 		synchronize_rcu_expedited();
11066 	else
11067 		synchronize_rcu();
11068 }
11069 EXPORT_SYMBOL(synchronize_net);
11070 
11071 /**
11072  *	unregister_netdevice_queue - remove device from the kernel
11073  *	@dev: device
11074  *	@head: list
11075  *
11076  *	This function shuts down a device interface and removes it
11077  *	from the kernel tables.
11078  *	If head not NULL, device is queued to be unregistered later.
11079  *
11080  *	Callers must hold the rtnl semaphore.  You may want
11081  *	unregister_netdev() instead of this.
11082  */
11083 
11084 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
11085 {
11086 	ASSERT_RTNL();
11087 
11088 	if (head) {
11089 		list_move_tail(&dev->unreg_list, head);
11090 	} else {
11091 		LIST_HEAD(single);
11092 
11093 		list_add(&dev->unreg_list, &single);
11094 		unregister_netdevice_many(&single);
11095 	}
11096 }
11097 EXPORT_SYMBOL(unregister_netdevice_queue);
11098 
11099 void unregister_netdevice_many_notify(struct list_head *head,
11100 				      u32 portid, const struct nlmsghdr *nlh)
11101 {
11102 	struct net_device *dev, *tmp;
11103 	LIST_HEAD(close_head);
11104 	int cnt = 0;
11105 
11106 	BUG_ON(dev_boot_phase);
11107 	ASSERT_RTNL();
11108 
11109 	if (list_empty(head))
11110 		return;
11111 
11112 	list_for_each_entry_safe(dev, tmp, head, unreg_list) {
11113 		/* Some devices call without registering
11114 		 * for initialization unwind. Remove those
11115 		 * devices and proceed with the remaining.
11116 		 */
11117 		if (dev->reg_state == NETREG_UNINITIALIZED) {
11118 			pr_debug("unregister_netdevice: device %s/%p never was registered\n",
11119 				 dev->name, dev);
11120 
11121 			WARN_ON(1);
11122 			list_del(&dev->unreg_list);
11123 			continue;
11124 		}
11125 		dev->dismantle = true;
11126 		BUG_ON(dev->reg_state != NETREG_REGISTERED);
11127 	}
11128 
11129 	/* If device is running, close it first. */
11130 	list_for_each_entry(dev, head, unreg_list)
11131 		list_add_tail(&dev->close_list, &close_head);
11132 	dev_close_many(&close_head, true);
11133 
11134 	list_for_each_entry(dev, head, unreg_list) {
11135 		/* And unlink it from device chain. */
11136 		unlist_netdevice(dev);
11137 		WRITE_ONCE(dev->reg_state, NETREG_UNREGISTERING);
11138 	}
11139 	flush_all_backlogs();
11140 
11141 	synchronize_net();
11142 
11143 	list_for_each_entry(dev, head, unreg_list) {
11144 		struct sk_buff *skb = NULL;
11145 
11146 		/* Shutdown queueing discipline. */
11147 		dev_shutdown(dev);
11148 		dev_tcx_uninstall(dev);
11149 		dev_xdp_uninstall(dev);
11150 		bpf_dev_bound_netdev_unregister(dev);
11151 
11152 		netdev_offload_xstats_disable_all(dev);
11153 
11154 		/* Notify protocols, that we are about to destroy
11155 		 * this device. They should clean all the things.
11156 		 */
11157 		call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11158 
11159 		if (!dev->rtnl_link_ops ||
11160 		    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
11161 			skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
11162 						     GFP_KERNEL, NULL, 0,
11163 						     portid, nlh);
11164 
11165 		/*
11166 		 *	Flush the unicast and multicast chains
11167 		 */
11168 		dev_uc_flush(dev);
11169 		dev_mc_flush(dev);
11170 
11171 		netdev_name_node_alt_flush(dev);
11172 		netdev_name_node_free(dev->name_node);
11173 
11174 		call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev);
11175 
11176 		if (dev->netdev_ops->ndo_uninit)
11177 			dev->netdev_ops->ndo_uninit(dev);
11178 
11179 		if (skb)
11180 			rtmsg_ifinfo_send(skb, dev, GFP_KERNEL, portid, nlh);
11181 
11182 		/* Notifier chain MUST detach us all upper devices. */
11183 		WARN_ON(netdev_has_any_upper_dev(dev));
11184 		WARN_ON(netdev_has_any_lower_dev(dev));
11185 
11186 		/* Remove entries from kobject tree */
11187 		netdev_unregister_kobject(dev);
11188 #ifdef CONFIG_XPS
11189 		/* Remove XPS queueing entries */
11190 		netif_reset_xps_queues_gt(dev, 0);
11191 #endif
11192 	}
11193 
11194 	synchronize_net();
11195 
11196 	list_for_each_entry(dev, head, unreg_list) {
11197 		netdev_put(dev, &dev->dev_registered_tracker);
11198 		net_set_todo(dev);
11199 		cnt++;
11200 	}
11201 	atomic_add(cnt, &dev_unreg_count);
11202 
11203 	list_del(head);
11204 }
11205 
11206 /**
11207  *	unregister_netdevice_many - unregister many devices
11208  *	@head: list of devices
11209  *
11210  *  Note: As most callers use a stack allocated list_head,
11211  *  we force a list_del() to make sure stack wont be corrupted later.
11212  */
11213 void unregister_netdevice_many(struct list_head *head)
11214 {
11215 	unregister_netdevice_many_notify(head, 0, NULL);
11216 }
11217 EXPORT_SYMBOL(unregister_netdevice_many);
11218 
11219 /**
11220  *	unregister_netdev - remove device from the kernel
11221  *	@dev: device
11222  *
11223  *	This function shuts down a device interface and removes it
11224  *	from the kernel tables.
11225  *
11226  *	This is just a wrapper for unregister_netdevice that takes
11227  *	the rtnl semaphore.  In general you want to use this and not
11228  *	unregister_netdevice.
11229  */
11230 void unregister_netdev(struct net_device *dev)
11231 {
11232 	rtnl_lock();
11233 	unregister_netdevice(dev);
11234 	rtnl_unlock();
11235 }
11236 EXPORT_SYMBOL(unregister_netdev);
11237 
11238 /**
11239  *	__dev_change_net_namespace - move device to different nethost namespace
11240  *	@dev: device
11241  *	@net: network namespace
11242  *	@pat: If not NULL name pattern to try if the current device name
11243  *	      is already taken in the destination network namespace.
11244  *	@new_ifindex: If not zero, specifies device index in the target
11245  *	              namespace.
11246  *
11247  *	This function shuts down a device interface and moves it
11248  *	to a new network namespace. On success 0 is returned, on
11249  *	a failure a netagive errno code is returned.
11250  *
11251  *	Callers must hold the rtnl semaphore.
11252  */
11253 
11254 int __dev_change_net_namespace(struct net_device *dev, struct net *net,
11255 			       const char *pat, int new_ifindex)
11256 {
11257 	struct netdev_name_node *name_node;
11258 	struct net *net_old = dev_net(dev);
11259 	char new_name[IFNAMSIZ] = {};
11260 	int err, new_nsid;
11261 
11262 	ASSERT_RTNL();
11263 
11264 	/* Don't allow namespace local devices to be moved. */
11265 	err = -EINVAL;
11266 	if (dev->features & NETIF_F_NETNS_LOCAL)
11267 		goto out;
11268 
11269 	/* Ensure the device has been registrered */
11270 	if (dev->reg_state != NETREG_REGISTERED)
11271 		goto out;
11272 
11273 	/* Get out if there is nothing todo */
11274 	err = 0;
11275 	if (net_eq(net_old, net))
11276 		goto out;
11277 
11278 	/* Pick the destination device name, and ensure
11279 	 * we can use it in the destination network namespace.
11280 	 */
11281 	err = -EEXIST;
11282 	if (netdev_name_in_use(net, dev->name)) {
11283 		/* We get here if we can't use the current device name */
11284 		if (!pat)
11285 			goto out;
11286 		err = dev_prep_valid_name(net, dev, pat, new_name, EEXIST);
11287 		if (err < 0)
11288 			goto out;
11289 	}
11290 	/* Check that none of the altnames conflicts. */
11291 	err = -EEXIST;
11292 	netdev_for_each_altname(dev, name_node)
11293 		if (netdev_name_in_use(net, name_node->name))
11294 			goto out;
11295 
11296 	/* Check that new_ifindex isn't used yet. */
11297 	if (new_ifindex) {
11298 		err = dev_index_reserve(net, new_ifindex);
11299 		if (err < 0)
11300 			goto out;
11301 	} else {
11302 		/* If there is an ifindex conflict assign a new one */
11303 		err = dev_index_reserve(net, dev->ifindex);
11304 		if (err == -EBUSY)
11305 			err = dev_index_reserve(net, 0);
11306 		if (err < 0)
11307 			goto out;
11308 		new_ifindex = err;
11309 	}
11310 
11311 	/*
11312 	 * And now a mini version of register_netdevice unregister_netdevice.
11313 	 */
11314 
11315 	/* If device is running close it first. */
11316 	dev_close(dev);
11317 
11318 	/* And unlink it from device chain */
11319 	unlist_netdevice(dev);
11320 
11321 	synchronize_net();
11322 
11323 	/* Shutdown queueing discipline. */
11324 	dev_shutdown(dev);
11325 
11326 	/* Notify protocols, that we are about to destroy
11327 	 * this device. They should clean all the things.
11328 	 *
11329 	 * Note that dev->reg_state stays at NETREG_REGISTERED.
11330 	 * This is wanted because this way 8021q and macvlan know
11331 	 * the device is just moving and can keep their slaves up.
11332 	 */
11333 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11334 	rcu_barrier();
11335 
11336 	new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
11337 
11338 	rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
11339 			    new_ifindex);
11340 
11341 	/*
11342 	 *	Flush the unicast and multicast chains
11343 	 */
11344 	dev_uc_flush(dev);
11345 	dev_mc_flush(dev);
11346 
11347 	/* Send a netdev-removed uevent to the old namespace */
11348 	kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
11349 	netdev_adjacent_del_links(dev);
11350 
11351 	/* Move per-net netdevice notifiers that are following the netdevice */
11352 	move_netdevice_notifiers_dev_net(dev, net);
11353 
11354 	/* Actually switch the network namespace */
11355 	dev_net_set(dev, net);
11356 	dev->ifindex = new_ifindex;
11357 
11358 	if (new_name[0]) /* Rename the netdev to prepared name */
11359 		strscpy(dev->name, new_name, IFNAMSIZ);
11360 
11361 	/* Fixup kobjects */
11362 	dev_set_uevent_suppress(&dev->dev, 1);
11363 	err = device_rename(&dev->dev, dev->name);
11364 	dev_set_uevent_suppress(&dev->dev, 0);
11365 	WARN_ON(err);
11366 
11367 	/* Send a netdev-add uevent to the new namespace */
11368 	kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
11369 	netdev_adjacent_add_links(dev);
11370 
11371 	/* Adapt owner in case owning user namespace of target network
11372 	 * namespace is different from the original one.
11373 	 */
11374 	err = netdev_change_owner(dev, net_old, net);
11375 	WARN_ON(err);
11376 
11377 	/* Add the device back in the hashes */
11378 	list_netdevice(dev);
11379 
11380 	/* Notify protocols, that a new device appeared. */
11381 	call_netdevice_notifiers(NETDEV_REGISTER, dev);
11382 
11383 	/*
11384 	 *	Prevent userspace races by waiting until the network
11385 	 *	device is fully setup before sending notifications.
11386 	 */
11387 	rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL);
11388 
11389 	synchronize_net();
11390 	err = 0;
11391 out:
11392 	return err;
11393 }
11394 EXPORT_SYMBOL_GPL(__dev_change_net_namespace);
11395 
11396 static int dev_cpu_dead(unsigned int oldcpu)
11397 {
11398 	struct sk_buff **list_skb;
11399 	struct sk_buff *skb;
11400 	unsigned int cpu;
11401 	struct softnet_data *sd, *oldsd, *remsd = NULL;
11402 
11403 	local_irq_disable();
11404 	cpu = smp_processor_id();
11405 	sd = &per_cpu(softnet_data, cpu);
11406 	oldsd = &per_cpu(softnet_data, oldcpu);
11407 
11408 	/* Find end of our completion_queue. */
11409 	list_skb = &sd->completion_queue;
11410 	while (*list_skb)
11411 		list_skb = &(*list_skb)->next;
11412 	/* Append completion queue from offline CPU. */
11413 	*list_skb = oldsd->completion_queue;
11414 	oldsd->completion_queue = NULL;
11415 
11416 	/* Append output queue from offline CPU. */
11417 	if (oldsd->output_queue) {
11418 		*sd->output_queue_tailp = oldsd->output_queue;
11419 		sd->output_queue_tailp = oldsd->output_queue_tailp;
11420 		oldsd->output_queue = NULL;
11421 		oldsd->output_queue_tailp = &oldsd->output_queue;
11422 	}
11423 	/* Append NAPI poll list from offline CPU, with one exception :
11424 	 * process_backlog() must be called by cpu owning percpu backlog.
11425 	 * We properly handle process_queue & input_pkt_queue later.
11426 	 */
11427 	while (!list_empty(&oldsd->poll_list)) {
11428 		struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
11429 							    struct napi_struct,
11430 							    poll_list);
11431 
11432 		list_del_init(&napi->poll_list);
11433 		if (napi->poll == process_backlog)
11434 			napi->state &= NAPIF_STATE_THREADED;
11435 		else
11436 			____napi_schedule(sd, napi);
11437 	}
11438 
11439 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
11440 	local_irq_enable();
11441 
11442 	if (!use_backlog_threads()) {
11443 #ifdef CONFIG_RPS
11444 		remsd = oldsd->rps_ipi_list;
11445 		oldsd->rps_ipi_list = NULL;
11446 #endif
11447 		/* send out pending IPI's on offline CPU */
11448 		net_rps_send_ipi(remsd);
11449 	}
11450 
11451 	/* Process offline CPU's input_pkt_queue */
11452 	while ((skb = __skb_dequeue(&oldsd->process_queue))) {
11453 		netif_rx(skb);
11454 		input_queue_head_incr(oldsd);
11455 	}
11456 	while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
11457 		netif_rx(skb);
11458 		input_queue_head_incr(oldsd);
11459 	}
11460 
11461 	return 0;
11462 }
11463 
11464 /**
11465  *	netdev_increment_features - increment feature set by one
11466  *	@all: current feature set
11467  *	@one: new feature set
11468  *	@mask: mask feature set
11469  *
11470  *	Computes a new feature set after adding a device with feature set
11471  *	@one to the master device with current feature set @all.  Will not
11472  *	enable anything that is off in @mask. Returns the new feature set.
11473  */
11474 netdev_features_t netdev_increment_features(netdev_features_t all,
11475 	netdev_features_t one, netdev_features_t mask)
11476 {
11477 	if (mask & NETIF_F_HW_CSUM)
11478 		mask |= NETIF_F_CSUM_MASK;
11479 	mask |= NETIF_F_VLAN_CHALLENGED;
11480 
11481 	all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
11482 	all &= one | ~NETIF_F_ALL_FOR_ALL;
11483 
11484 	/* If one device supports hw checksumming, set for all. */
11485 	if (all & NETIF_F_HW_CSUM)
11486 		all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
11487 
11488 	return all;
11489 }
11490 EXPORT_SYMBOL(netdev_increment_features);
11491 
11492 static struct hlist_head * __net_init netdev_create_hash(void)
11493 {
11494 	int i;
11495 	struct hlist_head *hash;
11496 
11497 	hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
11498 	if (hash != NULL)
11499 		for (i = 0; i < NETDEV_HASHENTRIES; i++)
11500 			INIT_HLIST_HEAD(&hash[i]);
11501 
11502 	return hash;
11503 }
11504 
11505 /* Initialize per network namespace state */
11506 static int __net_init netdev_init(struct net *net)
11507 {
11508 	BUILD_BUG_ON(GRO_HASH_BUCKETS >
11509 		     8 * sizeof_field(struct napi_struct, gro_bitmask));
11510 
11511 	INIT_LIST_HEAD(&net->dev_base_head);
11512 
11513 	net->dev_name_head = netdev_create_hash();
11514 	if (net->dev_name_head == NULL)
11515 		goto err_name;
11516 
11517 	net->dev_index_head = netdev_create_hash();
11518 	if (net->dev_index_head == NULL)
11519 		goto err_idx;
11520 
11521 	xa_init_flags(&net->dev_by_index, XA_FLAGS_ALLOC1);
11522 
11523 	RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
11524 
11525 	return 0;
11526 
11527 err_idx:
11528 	kfree(net->dev_name_head);
11529 err_name:
11530 	return -ENOMEM;
11531 }
11532 
11533 /**
11534  *	netdev_drivername - network driver for the device
11535  *	@dev: network device
11536  *
11537  *	Determine network driver for device.
11538  */
11539 const char *netdev_drivername(const struct net_device *dev)
11540 {
11541 	const struct device_driver *driver;
11542 	const struct device *parent;
11543 	const char *empty = "";
11544 
11545 	parent = dev->dev.parent;
11546 	if (!parent)
11547 		return empty;
11548 
11549 	driver = parent->driver;
11550 	if (driver && driver->name)
11551 		return driver->name;
11552 	return empty;
11553 }
11554 
11555 static void __netdev_printk(const char *level, const struct net_device *dev,
11556 			    struct va_format *vaf)
11557 {
11558 	if (dev && dev->dev.parent) {
11559 		dev_printk_emit(level[1] - '0',
11560 				dev->dev.parent,
11561 				"%s %s %s%s: %pV",
11562 				dev_driver_string(dev->dev.parent),
11563 				dev_name(dev->dev.parent),
11564 				netdev_name(dev), netdev_reg_state(dev),
11565 				vaf);
11566 	} else if (dev) {
11567 		printk("%s%s%s: %pV",
11568 		       level, netdev_name(dev), netdev_reg_state(dev), vaf);
11569 	} else {
11570 		printk("%s(NULL net_device): %pV", level, vaf);
11571 	}
11572 }
11573 
11574 void netdev_printk(const char *level, const struct net_device *dev,
11575 		   const char *format, ...)
11576 {
11577 	struct va_format vaf;
11578 	va_list args;
11579 
11580 	va_start(args, format);
11581 
11582 	vaf.fmt = format;
11583 	vaf.va = &args;
11584 
11585 	__netdev_printk(level, dev, &vaf);
11586 
11587 	va_end(args);
11588 }
11589 EXPORT_SYMBOL(netdev_printk);
11590 
11591 #define define_netdev_printk_level(func, level)			\
11592 void func(const struct net_device *dev, const char *fmt, ...)	\
11593 {								\
11594 	struct va_format vaf;					\
11595 	va_list args;						\
11596 								\
11597 	va_start(args, fmt);					\
11598 								\
11599 	vaf.fmt = fmt;						\
11600 	vaf.va = &args;						\
11601 								\
11602 	__netdev_printk(level, dev, &vaf);			\
11603 								\
11604 	va_end(args);						\
11605 }								\
11606 EXPORT_SYMBOL(func);
11607 
11608 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
11609 define_netdev_printk_level(netdev_alert, KERN_ALERT);
11610 define_netdev_printk_level(netdev_crit, KERN_CRIT);
11611 define_netdev_printk_level(netdev_err, KERN_ERR);
11612 define_netdev_printk_level(netdev_warn, KERN_WARNING);
11613 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
11614 define_netdev_printk_level(netdev_info, KERN_INFO);
11615 
11616 static void __net_exit netdev_exit(struct net *net)
11617 {
11618 	kfree(net->dev_name_head);
11619 	kfree(net->dev_index_head);
11620 	xa_destroy(&net->dev_by_index);
11621 	if (net != &init_net)
11622 		WARN_ON_ONCE(!list_empty(&net->dev_base_head));
11623 }
11624 
11625 static struct pernet_operations __net_initdata netdev_net_ops = {
11626 	.init = netdev_init,
11627 	.exit = netdev_exit,
11628 };
11629 
11630 static void __net_exit default_device_exit_net(struct net *net)
11631 {
11632 	struct netdev_name_node *name_node, *tmp;
11633 	struct net_device *dev, *aux;
11634 	/*
11635 	 * Push all migratable network devices back to the
11636 	 * initial network namespace
11637 	 */
11638 	ASSERT_RTNL();
11639 	for_each_netdev_safe(net, dev, aux) {
11640 		int err;
11641 		char fb_name[IFNAMSIZ];
11642 
11643 		/* Ignore unmoveable devices (i.e. loopback) */
11644 		if (dev->features & NETIF_F_NETNS_LOCAL)
11645 			continue;
11646 
11647 		/* Leave virtual devices for the generic cleanup */
11648 		if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund)
11649 			continue;
11650 
11651 		/* Push remaining network devices to init_net */
11652 		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
11653 		if (netdev_name_in_use(&init_net, fb_name))
11654 			snprintf(fb_name, IFNAMSIZ, "dev%%d");
11655 
11656 		netdev_for_each_altname_safe(dev, name_node, tmp)
11657 			if (netdev_name_in_use(&init_net, name_node->name))
11658 				__netdev_name_node_alt_destroy(name_node);
11659 
11660 		err = dev_change_net_namespace(dev, &init_net, fb_name);
11661 		if (err) {
11662 			pr_emerg("%s: failed to move %s to init_net: %d\n",
11663 				 __func__, dev->name, err);
11664 			BUG();
11665 		}
11666 	}
11667 }
11668 
11669 static void __net_exit default_device_exit_batch(struct list_head *net_list)
11670 {
11671 	/* At exit all network devices most be removed from a network
11672 	 * namespace.  Do this in the reverse order of registration.
11673 	 * Do this across as many network namespaces as possible to
11674 	 * improve batching efficiency.
11675 	 */
11676 	struct net_device *dev;
11677 	struct net *net;
11678 	LIST_HEAD(dev_kill_list);
11679 
11680 	rtnl_lock();
11681 	list_for_each_entry(net, net_list, exit_list) {
11682 		default_device_exit_net(net);
11683 		cond_resched();
11684 	}
11685 
11686 	list_for_each_entry(net, net_list, exit_list) {
11687 		for_each_netdev_reverse(net, dev) {
11688 			if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
11689 				dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
11690 			else
11691 				unregister_netdevice_queue(dev, &dev_kill_list);
11692 		}
11693 	}
11694 	unregister_netdevice_many(&dev_kill_list);
11695 	rtnl_unlock();
11696 }
11697 
11698 static struct pernet_operations __net_initdata default_device_ops = {
11699 	.exit_batch = default_device_exit_batch,
11700 };
11701 
11702 static void __init net_dev_struct_check(void)
11703 {
11704 	/* TX read-mostly hotpath */
11705 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, priv_flags);
11706 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, netdev_ops);
11707 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, header_ops);
11708 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, _tx);
11709 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, real_num_tx_queues);
11710 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_max_size);
11711 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_ipv4_max_size);
11712 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_max_segs);
11713 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_partial_features);
11714 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, num_tc);
11715 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, mtu);
11716 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, needed_headroom);
11717 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, tc_to_txq);
11718 #ifdef CONFIG_XPS
11719 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, xps_maps);
11720 #endif
11721 #ifdef CONFIG_NETFILTER_EGRESS
11722 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, nf_hooks_egress);
11723 #endif
11724 #ifdef CONFIG_NET_XGRESS
11725 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, tcx_egress);
11726 #endif
11727 	CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_tx, 160);
11728 
11729 	/* TXRX read-mostly hotpath */
11730 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, lstats);
11731 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, state);
11732 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, flags);
11733 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, hard_header_len);
11734 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, features);
11735 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, ip6_ptr);
11736 	CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_txrx, 46);
11737 
11738 	/* RX read-mostly hotpath */
11739 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, ptype_specific);
11740 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, ifindex);
11741 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, real_num_rx_queues);
11742 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, _rx);
11743 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_flush_timeout);
11744 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, napi_defer_hard_irqs);
11745 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_max_size);
11746 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_ipv4_max_size);
11747 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, rx_handler);
11748 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, rx_handler_data);
11749 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, nd_net);
11750 #ifdef CONFIG_NETPOLL
11751 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, npinfo);
11752 #endif
11753 #ifdef CONFIG_NET_XGRESS
11754 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, tcx_ingress);
11755 #endif
11756 	CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_rx, 104);
11757 }
11758 
11759 /*
11760  *	Initialize the DEV module. At boot time this walks the device list and
11761  *	unhooks any devices that fail to initialise (normally hardware not
11762  *	present) and leaves us with a valid list of present and active devices.
11763  *
11764  */
11765 
11766 /* We allocate 256 pages for each CPU if PAGE_SHIFT is 12 */
11767 #define SYSTEM_PERCPU_PAGE_POOL_SIZE	((1 << 20) / PAGE_SIZE)
11768 
11769 static int net_page_pool_create(int cpuid)
11770 {
11771 #if IS_ENABLED(CONFIG_PAGE_POOL)
11772 	struct page_pool_params page_pool_params = {
11773 		.pool_size = SYSTEM_PERCPU_PAGE_POOL_SIZE,
11774 		.flags = PP_FLAG_SYSTEM_POOL,
11775 		.nid = cpu_to_mem(cpuid),
11776 	};
11777 	struct page_pool *pp_ptr;
11778 
11779 	pp_ptr = page_pool_create_percpu(&page_pool_params, cpuid);
11780 	if (IS_ERR(pp_ptr))
11781 		return -ENOMEM;
11782 
11783 	per_cpu(system_page_pool, cpuid) = pp_ptr;
11784 #endif
11785 	return 0;
11786 }
11787 
11788 static int backlog_napi_should_run(unsigned int cpu)
11789 {
11790 	struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu);
11791 	struct napi_struct *napi = &sd->backlog;
11792 
11793 	return test_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
11794 }
11795 
11796 static void run_backlog_napi(unsigned int cpu)
11797 {
11798 	struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu);
11799 
11800 	napi_threaded_poll_loop(&sd->backlog);
11801 }
11802 
11803 static void backlog_napi_setup(unsigned int cpu)
11804 {
11805 	struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu);
11806 	struct napi_struct *napi = &sd->backlog;
11807 
11808 	napi->thread = this_cpu_read(backlog_napi);
11809 	set_bit(NAPI_STATE_THREADED, &napi->state);
11810 }
11811 
11812 static struct smp_hotplug_thread backlog_threads = {
11813 	.store			= &backlog_napi,
11814 	.thread_should_run	= backlog_napi_should_run,
11815 	.thread_fn		= run_backlog_napi,
11816 	.thread_comm		= "backlog_napi/%u",
11817 	.setup			= backlog_napi_setup,
11818 };
11819 
11820 /*
11821  *       This is called single threaded during boot, so no need
11822  *       to take the rtnl semaphore.
11823  */
11824 static int __init net_dev_init(void)
11825 {
11826 	int i, rc = -ENOMEM;
11827 
11828 	BUG_ON(!dev_boot_phase);
11829 
11830 	net_dev_struct_check();
11831 
11832 	if (dev_proc_init())
11833 		goto out;
11834 
11835 	if (netdev_kobject_init())
11836 		goto out;
11837 
11838 	for (i = 0; i < PTYPE_HASH_SIZE; i++)
11839 		INIT_LIST_HEAD(&ptype_base[i]);
11840 
11841 	if (register_pernet_subsys(&netdev_net_ops))
11842 		goto out;
11843 
11844 	/*
11845 	 *	Initialise the packet receive queues.
11846 	 */
11847 
11848 	for_each_possible_cpu(i) {
11849 		struct work_struct *flush = per_cpu_ptr(&flush_works, i);
11850 		struct softnet_data *sd = &per_cpu(softnet_data, i);
11851 
11852 		INIT_WORK(flush, flush_backlog);
11853 
11854 		skb_queue_head_init(&sd->input_pkt_queue);
11855 		skb_queue_head_init(&sd->process_queue);
11856 #ifdef CONFIG_XFRM_OFFLOAD
11857 		skb_queue_head_init(&sd->xfrm_backlog);
11858 #endif
11859 		INIT_LIST_HEAD(&sd->poll_list);
11860 		sd->output_queue_tailp = &sd->output_queue;
11861 #ifdef CONFIG_RPS
11862 		INIT_CSD(&sd->csd, rps_trigger_softirq, sd);
11863 		sd->cpu = i;
11864 #endif
11865 		INIT_CSD(&sd->defer_csd, trigger_rx_softirq, sd);
11866 		spin_lock_init(&sd->defer_lock);
11867 
11868 		init_gro_hash(&sd->backlog);
11869 		sd->backlog.poll = process_backlog;
11870 		sd->backlog.weight = weight_p;
11871 		INIT_LIST_HEAD(&sd->backlog.poll_list);
11872 
11873 		if (net_page_pool_create(i))
11874 			goto out;
11875 	}
11876 	if (use_backlog_threads())
11877 		smpboot_register_percpu_thread(&backlog_threads);
11878 
11879 	dev_boot_phase = 0;
11880 
11881 	/* The loopback device is special if any other network devices
11882 	 * is present in a network namespace the loopback device must
11883 	 * be present. Since we now dynamically allocate and free the
11884 	 * loopback device ensure this invariant is maintained by
11885 	 * keeping the loopback device as the first device on the
11886 	 * list of network devices.  Ensuring the loopback devices
11887 	 * is the first device that appears and the last network device
11888 	 * that disappears.
11889 	 */
11890 	if (register_pernet_device(&loopback_net_ops))
11891 		goto out;
11892 
11893 	if (register_pernet_device(&default_device_ops))
11894 		goto out;
11895 
11896 	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
11897 	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
11898 
11899 	rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
11900 				       NULL, dev_cpu_dead);
11901 	WARN_ON(rc < 0);
11902 	rc = 0;
11903 out:
11904 	if (rc < 0) {
11905 		for_each_possible_cpu(i) {
11906 			struct page_pool *pp_ptr;
11907 
11908 			pp_ptr = per_cpu(system_page_pool, i);
11909 			if (!pp_ptr)
11910 				continue;
11911 
11912 			page_pool_destroy(pp_ptr);
11913 			per_cpu(system_page_pool, i) = NULL;
11914 		}
11915 	}
11916 
11917 	return rc;
11918 }
11919 
11920 subsys_initcall(net_dev_init);
11921