1 /* 2 * NET3 Protocol independent device support routines. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public License 6 * as published by the Free Software Foundation; either version 7 * 2 of the License, or (at your option) any later version. 8 * 9 * Derived from the non IP parts of dev.c 1.0.19 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Mark Evans, <evansmp@uhura.aston.ac.uk> 13 * 14 * Additional Authors: 15 * Florian la Roche <rzsfl@rz.uni-sb.de> 16 * Alan Cox <gw4pts@gw4pts.ampr.org> 17 * David Hinds <dahinds@users.sourceforge.net> 18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> 19 * Adam Sulmicki <adam@cfar.umd.edu> 20 * Pekka Riikonen <priikone@poesidon.pspt.fi> 21 * 22 * Changes: 23 * D.J. Barrow : Fixed bug where dev->refcnt gets set 24 * to 2 if register_netdev gets called 25 * before net_dev_init & also removed a 26 * few lines of code in the process. 27 * Alan Cox : device private ioctl copies fields back. 28 * Alan Cox : Transmit queue code does relevant 29 * stunts to keep the queue safe. 30 * Alan Cox : Fixed double lock. 31 * Alan Cox : Fixed promisc NULL pointer trap 32 * ???????? : Support the full private ioctl range 33 * Alan Cox : Moved ioctl permission check into 34 * drivers 35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI 36 * Alan Cox : 100 backlog just doesn't cut it when 37 * you start doing multicast video 8) 38 * Alan Cox : Rewrote net_bh and list manager. 39 * Alan Cox : Fix ETH_P_ALL echoback lengths. 40 * Alan Cox : Took out transmit every packet pass 41 * Saved a few bytes in the ioctl handler 42 * Alan Cox : Network driver sets packet type before 43 * calling netif_rx. Saves a function 44 * call a packet. 45 * Alan Cox : Hashed net_bh() 46 * Richard Kooijman: Timestamp fixes. 47 * Alan Cox : Wrong field in SIOCGIFDSTADDR 48 * Alan Cox : Device lock protection. 49 * Alan Cox : Fixed nasty side effect of device close 50 * changes. 51 * Rudi Cilibrasi : Pass the right thing to 52 * set_mac_address() 53 * Dave Miller : 32bit quantity for the device lock to 54 * make it work out on a Sparc. 55 * Bjorn Ekwall : Added KERNELD hack. 56 * Alan Cox : Cleaned up the backlog initialise. 57 * Craig Metz : SIOCGIFCONF fix if space for under 58 * 1 device. 59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there 60 * is no device open function. 61 * Andi Kleen : Fix error reporting for SIOCGIFCONF 62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF 63 * Cyrus Durgin : Cleaned for KMOD 64 * Adam Sulmicki : Bug Fix : Network Device Unload 65 * A network device unload needs to purge 66 * the backlog queue. 67 * Paul Rusty Russell : SIOCSIFNAME 68 * Pekka Riikonen : Netdev boot-time settings code 69 * Andrew Morton : Make unregister_netdevice wait 70 * indefinitely on dev->refcnt 71 * J Hadi Salim : - Backlog queue sampling 72 * - netif_rx() feedback 73 */ 74 75 #include <asm/uaccess.h> 76 #include <asm/system.h> 77 #include <linux/bitops.h> 78 #include <linux/capability.h> 79 #include <linux/cpu.h> 80 #include <linux/types.h> 81 #include <linux/kernel.h> 82 #include <linux/sched.h> 83 #include <linux/mutex.h> 84 #include <linux/string.h> 85 #include <linux/mm.h> 86 #include <linux/socket.h> 87 #include <linux/sockios.h> 88 #include <linux/errno.h> 89 #include <linux/interrupt.h> 90 #include <linux/if_ether.h> 91 #include <linux/netdevice.h> 92 #include <linux/etherdevice.h> 93 #include <linux/notifier.h> 94 #include <linux/skbuff.h> 95 #include <net/net_namespace.h> 96 #include <net/sock.h> 97 #include <linux/rtnetlink.h> 98 #include <linux/proc_fs.h> 99 #include <linux/seq_file.h> 100 #include <linux/stat.h> 101 #include <linux/if_bridge.h> 102 #include <linux/if_macvlan.h> 103 #include <net/dst.h> 104 #include <net/pkt_sched.h> 105 #include <net/checksum.h> 106 #include <linux/highmem.h> 107 #include <linux/init.h> 108 #include <linux/kmod.h> 109 #include <linux/module.h> 110 #include <linux/kallsyms.h> 111 #include <linux/netpoll.h> 112 #include <linux/rcupdate.h> 113 #include <linux/delay.h> 114 #include <net/wext.h> 115 #include <net/iw_handler.h> 116 #include <asm/current.h> 117 #include <linux/audit.h> 118 #include <linux/dmaengine.h> 119 #include <linux/err.h> 120 #include <linux/ctype.h> 121 #include <linux/if_arp.h> 122 123 /* 124 * The list of packet types we will receive (as opposed to discard) 125 * and the routines to invoke. 126 * 127 * Why 16. Because with 16 the only overlap we get on a hash of the 128 * low nibble of the protocol value is RARP/SNAP/X.25. 129 * 130 * NOTE: That is no longer true with the addition of VLAN tags. Not 131 * sure which should go first, but I bet it won't make much 132 * difference if we are running VLANs. The good news is that 133 * this protocol won't be in the list unless compiled in, so 134 * the average user (w/out VLANs) will not be adversely affected. 135 * --BLG 136 * 137 * 0800 IP 138 * 8100 802.1Q VLAN 139 * 0001 802.3 140 * 0002 AX.25 141 * 0004 802.2 142 * 8035 RARP 143 * 0005 SNAP 144 * 0805 X.25 145 * 0806 ARP 146 * 8137 IPX 147 * 0009 Localtalk 148 * 86DD IPv6 149 */ 150 151 static DEFINE_SPINLOCK(ptype_lock); 152 static struct list_head ptype_base[16] __read_mostly; /* 16 way hashed list */ 153 static struct list_head ptype_all __read_mostly; /* Taps */ 154 155 #ifdef CONFIG_NET_DMA 156 struct net_dma { 157 struct dma_client client; 158 spinlock_t lock; 159 cpumask_t channel_mask; 160 struct dma_chan *channels[NR_CPUS]; 161 }; 162 163 static enum dma_state_client 164 netdev_dma_event(struct dma_client *client, struct dma_chan *chan, 165 enum dma_state state); 166 167 static struct net_dma net_dma = { 168 .client = { 169 .event_callback = netdev_dma_event, 170 }, 171 }; 172 #endif 173 174 /* 175 * The @dev_base_head list is protected by @dev_base_lock and the rtnl 176 * semaphore. 177 * 178 * Pure readers hold dev_base_lock for reading. 179 * 180 * Writers must hold the rtnl semaphore while they loop through the 181 * dev_base_head list, and hold dev_base_lock for writing when they do the 182 * actual updates. This allows pure readers to access the list even 183 * while a writer is preparing to update it. 184 * 185 * To put it another way, dev_base_lock is held for writing only to 186 * protect against pure readers; the rtnl semaphore provides the 187 * protection against other writers. 188 * 189 * See, for example usages, register_netdevice() and 190 * unregister_netdevice(), which must be called with the rtnl 191 * semaphore held. 192 */ 193 DEFINE_RWLOCK(dev_base_lock); 194 195 EXPORT_SYMBOL(dev_base_lock); 196 197 #define NETDEV_HASHBITS 8 198 #define NETDEV_HASHENTRIES (1 << NETDEV_HASHBITS) 199 200 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name) 201 { 202 unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ)); 203 return &net->dev_name_head[hash & ((1 << NETDEV_HASHBITS) - 1)]; 204 } 205 206 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex) 207 { 208 return &net->dev_index_head[ifindex & ((1 << NETDEV_HASHBITS) - 1)]; 209 } 210 211 /* Device list insertion */ 212 static int list_netdevice(struct net_device *dev) 213 { 214 struct net *net = dev->nd_net; 215 216 ASSERT_RTNL(); 217 218 write_lock_bh(&dev_base_lock); 219 list_add_tail(&dev->dev_list, &net->dev_base_head); 220 hlist_add_head(&dev->name_hlist, dev_name_hash(net, dev->name)); 221 hlist_add_head(&dev->index_hlist, dev_index_hash(net, dev->ifindex)); 222 write_unlock_bh(&dev_base_lock); 223 return 0; 224 } 225 226 /* Device list removal */ 227 static void unlist_netdevice(struct net_device *dev) 228 { 229 ASSERT_RTNL(); 230 231 /* Unlink dev from the device chain */ 232 write_lock_bh(&dev_base_lock); 233 list_del(&dev->dev_list); 234 hlist_del(&dev->name_hlist); 235 hlist_del(&dev->index_hlist); 236 write_unlock_bh(&dev_base_lock); 237 } 238 239 /* 240 * Our notifier list 241 */ 242 243 static RAW_NOTIFIER_HEAD(netdev_chain); 244 245 /* 246 * Device drivers call our routines to queue packets here. We empty the 247 * queue in the local softnet handler. 248 */ 249 250 DEFINE_PER_CPU(struct softnet_data, softnet_data); 251 252 extern int netdev_kobject_init(void); 253 extern int netdev_register_kobject(struct net_device *); 254 extern void netdev_unregister_kobject(struct net_device *); 255 256 #ifdef CONFIG_DEBUG_LOCK_ALLOC 257 /* 258 * register_netdevice() inits dev->_xmit_lock and sets lockdep class 259 * according to dev->type 260 */ 261 static const unsigned short netdev_lock_type[] = 262 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25, 263 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET, 264 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM, 265 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP, 266 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD, 267 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25, 268 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP, 269 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD, 270 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI, 271 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE, 272 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET, 273 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL, 274 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211, 275 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_VOID, 276 ARPHRD_NONE}; 277 278 static const char *netdev_lock_name[] = 279 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25", 280 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET", 281 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM", 282 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP", 283 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD", 284 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25", 285 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP", 286 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD", 287 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI", 288 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE", 289 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET", 290 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL", 291 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211", 292 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_VOID", 293 "_xmit_NONE"}; 294 295 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)]; 296 297 static inline unsigned short netdev_lock_pos(unsigned short dev_type) 298 { 299 int i; 300 301 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++) 302 if (netdev_lock_type[i] == dev_type) 303 return i; 304 /* the last key is used by default */ 305 return ARRAY_SIZE(netdev_lock_type) - 1; 306 } 307 308 static inline void netdev_set_lockdep_class(spinlock_t *lock, 309 unsigned short dev_type) 310 { 311 int i; 312 313 i = netdev_lock_pos(dev_type); 314 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i], 315 netdev_lock_name[i]); 316 } 317 #else 318 static inline void netdev_set_lockdep_class(spinlock_t *lock, 319 unsigned short dev_type) 320 { 321 } 322 #endif 323 324 /******************************************************************************* 325 326 Protocol management and registration routines 327 328 *******************************************************************************/ 329 330 /* 331 * Add a protocol ID to the list. Now that the input handler is 332 * smarter we can dispense with all the messy stuff that used to be 333 * here. 334 * 335 * BEWARE!!! Protocol handlers, mangling input packets, 336 * MUST BE last in hash buckets and checking protocol handlers 337 * MUST start from promiscuous ptype_all chain in net_bh. 338 * It is true now, do not change it. 339 * Explanation follows: if protocol handler, mangling packet, will 340 * be the first on list, it is not able to sense, that packet 341 * is cloned and should be copied-on-write, so that it will 342 * change it and subsequent readers will get broken packet. 343 * --ANK (980803) 344 */ 345 346 /** 347 * dev_add_pack - add packet handler 348 * @pt: packet type declaration 349 * 350 * Add a protocol handler to the networking stack. The passed &packet_type 351 * is linked into kernel lists and may not be freed until it has been 352 * removed from the kernel lists. 353 * 354 * This call does not sleep therefore it can not 355 * guarantee all CPU's that are in middle of receiving packets 356 * will see the new packet type (until the next received packet). 357 */ 358 359 void dev_add_pack(struct packet_type *pt) 360 { 361 int hash; 362 363 spin_lock_bh(&ptype_lock); 364 if (pt->type == htons(ETH_P_ALL)) 365 list_add_rcu(&pt->list, &ptype_all); 366 else { 367 hash = ntohs(pt->type) & 15; 368 list_add_rcu(&pt->list, &ptype_base[hash]); 369 } 370 spin_unlock_bh(&ptype_lock); 371 } 372 373 /** 374 * __dev_remove_pack - remove packet handler 375 * @pt: packet type declaration 376 * 377 * Remove a protocol handler that was previously added to the kernel 378 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 379 * from the kernel lists and can be freed or reused once this function 380 * returns. 381 * 382 * The packet type might still be in use by receivers 383 * and must not be freed until after all the CPU's have gone 384 * through a quiescent state. 385 */ 386 void __dev_remove_pack(struct packet_type *pt) 387 { 388 struct list_head *head; 389 struct packet_type *pt1; 390 391 spin_lock_bh(&ptype_lock); 392 393 if (pt->type == htons(ETH_P_ALL)) 394 head = &ptype_all; 395 else 396 head = &ptype_base[ntohs(pt->type) & 15]; 397 398 list_for_each_entry(pt1, head, list) { 399 if (pt == pt1) { 400 list_del_rcu(&pt->list); 401 goto out; 402 } 403 } 404 405 printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt); 406 out: 407 spin_unlock_bh(&ptype_lock); 408 } 409 /** 410 * dev_remove_pack - remove packet handler 411 * @pt: packet type declaration 412 * 413 * Remove a protocol handler that was previously added to the kernel 414 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 415 * from the kernel lists and can be freed or reused once this function 416 * returns. 417 * 418 * This call sleeps to guarantee that no CPU is looking at the packet 419 * type after return. 420 */ 421 void dev_remove_pack(struct packet_type *pt) 422 { 423 __dev_remove_pack(pt); 424 425 synchronize_net(); 426 } 427 428 /****************************************************************************** 429 430 Device Boot-time Settings Routines 431 432 *******************************************************************************/ 433 434 /* Boot time configuration table */ 435 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX]; 436 437 /** 438 * netdev_boot_setup_add - add new setup entry 439 * @name: name of the device 440 * @map: configured settings for the device 441 * 442 * Adds new setup entry to the dev_boot_setup list. The function 443 * returns 0 on error and 1 on success. This is a generic routine to 444 * all netdevices. 445 */ 446 static int netdev_boot_setup_add(char *name, struct ifmap *map) 447 { 448 struct netdev_boot_setup *s; 449 int i; 450 451 s = dev_boot_setup; 452 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 453 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') { 454 memset(s[i].name, 0, sizeof(s[i].name)); 455 strcpy(s[i].name, name); 456 memcpy(&s[i].map, map, sizeof(s[i].map)); 457 break; 458 } 459 } 460 461 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1; 462 } 463 464 /** 465 * netdev_boot_setup_check - check boot time settings 466 * @dev: the netdevice 467 * 468 * Check boot time settings for the device. 469 * The found settings are set for the device to be used 470 * later in the device probing. 471 * Returns 0 if no settings found, 1 if they are. 472 */ 473 int netdev_boot_setup_check(struct net_device *dev) 474 { 475 struct netdev_boot_setup *s = dev_boot_setup; 476 int i; 477 478 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 479 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' && 480 !strncmp(dev->name, s[i].name, strlen(s[i].name))) { 481 dev->irq = s[i].map.irq; 482 dev->base_addr = s[i].map.base_addr; 483 dev->mem_start = s[i].map.mem_start; 484 dev->mem_end = s[i].map.mem_end; 485 return 1; 486 } 487 } 488 return 0; 489 } 490 491 492 /** 493 * netdev_boot_base - get address from boot time settings 494 * @prefix: prefix for network device 495 * @unit: id for network device 496 * 497 * Check boot time settings for the base address of device. 498 * The found settings are set for the device to be used 499 * later in the device probing. 500 * Returns 0 if no settings found. 501 */ 502 unsigned long netdev_boot_base(const char *prefix, int unit) 503 { 504 const struct netdev_boot_setup *s = dev_boot_setup; 505 char name[IFNAMSIZ]; 506 int i; 507 508 sprintf(name, "%s%d", prefix, unit); 509 510 /* 511 * If device already registered then return base of 1 512 * to indicate not to probe for this interface 513 */ 514 if (__dev_get_by_name(&init_net, name)) 515 return 1; 516 517 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) 518 if (!strcmp(name, s[i].name)) 519 return s[i].map.base_addr; 520 return 0; 521 } 522 523 /* 524 * Saves at boot time configured settings for any netdevice. 525 */ 526 int __init netdev_boot_setup(char *str) 527 { 528 int ints[5]; 529 struct ifmap map; 530 531 str = get_options(str, ARRAY_SIZE(ints), ints); 532 if (!str || !*str) 533 return 0; 534 535 /* Save settings */ 536 memset(&map, 0, sizeof(map)); 537 if (ints[0] > 0) 538 map.irq = ints[1]; 539 if (ints[0] > 1) 540 map.base_addr = ints[2]; 541 if (ints[0] > 2) 542 map.mem_start = ints[3]; 543 if (ints[0] > 3) 544 map.mem_end = ints[4]; 545 546 /* Add new entry to the list */ 547 return netdev_boot_setup_add(str, &map); 548 } 549 550 __setup("netdev=", netdev_boot_setup); 551 552 /******************************************************************************* 553 554 Device Interface Subroutines 555 556 *******************************************************************************/ 557 558 /** 559 * __dev_get_by_name - find a device by its name 560 * @name: name to find 561 * 562 * Find an interface by name. Must be called under RTNL semaphore 563 * or @dev_base_lock. If the name is found a pointer to the device 564 * is returned. If the name is not found then %NULL is returned. The 565 * reference counters are not incremented so the caller must be 566 * careful with locks. 567 */ 568 569 struct net_device *__dev_get_by_name(struct net *net, const char *name) 570 { 571 struct hlist_node *p; 572 573 hlist_for_each(p, dev_name_hash(net, name)) { 574 struct net_device *dev 575 = hlist_entry(p, struct net_device, name_hlist); 576 if (!strncmp(dev->name, name, IFNAMSIZ)) 577 return dev; 578 } 579 return NULL; 580 } 581 582 /** 583 * dev_get_by_name - find a device by its name 584 * @name: name to find 585 * 586 * Find an interface by name. This can be called from any 587 * context and does its own locking. The returned handle has 588 * the usage count incremented and the caller must use dev_put() to 589 * release it when it is no longer needed. %NULL is returned if no 590 * matching device is found. 591 */ 592 593 struct net_device *dev_get_by_name(struct net *net, const char *name) 594 { 595 struct net_device *dev; 596 597 read_lock(&dev_base_lock); 598 dev = __dev_get_by_name(net, name); 599 if (dev) 600 dev_hold(dev); 601 read_unlock(&dev_base_lock); 602 return dev; 603 } 604 605 /** 606 * __dev_get_by_index - find a device by its ifindex 607 * @ifindex: index of device 608 * 609 * Search for an interface by index. Returns %NULL if the device 610 * is not found or a pointer to the device. The device has not 611 * had its reference counter increased so the caller must be careful 612 * about locking. The caller must hold either the RTNL semaphore 613 * or @dev_base_lock. 614 */ 615 616 struct net_device *__dev_get_by_index(struct net *net, int ifindex) 617 { 618 struct hlist_node *p; 619 620 hlist_for_each(p, dev_index_hash(net, ifindex)) { 621 struct net_device *dev 622 = hlist_entry(p, struct net_device, index_hlist); 623 if (dev->ifindex == ifindex) 624 return dev; 625 } 626 return NULL; 627 } 628 629 630 /** 631 * dev_get_by_index - find a device by its ifindex 632 * @ifindex: index of device 633 * 634 * Search for an interface by index. Returns NULL if the device 635 * is not found or a pointer to the device. The device returned has 636 * had a reference added and the pointer is safe until the user calls 637 * dev_put to indicate they have finished with it. 638 */ 639 640 struct net_device *dev_get_by_index(struct net *net, int ifindex) 641 { 642 struct net_device *dev; 643 644 read_lock(&dev_base_lock); 645 dev = __dev_get_by_index(net, ifindex); 646 if (dev) 647 dev_hold(dev); 648 read_unlock(&dev_base_lock); 649 return dev; 650 } 651 652 /** 653 * dev_getbyhwaddr - find a device by its hardware address 654 * @type: media type of device 655 * @ha: hardware address 656 * 657 * Search for an interface by MAC address. Returns NULL if the device 658 * is not found or a pointer to the device. The caller must hold the 659 * rtnl semaphore. The returned device has not had its ref count increased 660 * and the caller must therefore be careful about locking 661 * 662 * BUGS: 663 * If the API was consistent this would be __dev_get_by_hwaddr 664 */ 665 666 struct net_device *dev_getbyhwaddr(struct net *net, unsigned short type, char *ha) 667 { 668 struct net_device *dev; 669 670 ASSERT_RTNL(); 671 672 for_each_netdev(&init_net, dev) 673 if (dev->type == type && 674 !memcmp(dev->dev_addr, ha, dev->addr_len)) 675 return dev; 676 677 return NULL; 678 } 679 680 EXPORT_SYMBOL(dev_getbyhwaddr); 681 682 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type) 683 { 684 struct net_device *dev; 685 686 ASSERT_RTNL(); 687 for_each_netdev(net, dev) 688 if (dev->type == type) 689 return dev; 690 691 return NULL; 692 } 693 694 EXPORT_SYMBOL(__dev_getfirstbyhwtype); 695 696 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type) 697 { 698 struct net_device *dev; 699 700 rtnl_lock(); 701 dev = __dev_getfirstbyhwtype(net, type); 702 if (dev) 703 dev_hold(dev); 704 rtnl_unlock(); 705 return dev; 706 } 707 708 EXPORT_SYMBOL(dev_getfirstbyhwtype); 709 710 /** 711 * dev_get_by_flags - find any device with given flags 712 * @if_flags: IFF_* values 713 * @mask: bitmask of bits in if_flags to check 714 * 715 * Search for any interface with the given flags. Returns NULL if a device 716 * is not found or a pointer to the device. The device returned has 717 * had a reference added and the pointer is safe until the user calls 718 * dev_put to indicate they have finished with it. 719 */ 720 721 struct net_device * dev_get_by_flags(struct net *net, unsigned short if_flags, unsigned short mask) 722 { 723 struct net_device *dev, *ret; 724 725 ret = NULL; 726 read_lock(&dev_base_lock); 727 for_each_netdev(net, dev) { 728 if (((dev->flags ^ if_flags) & mask) == 0) { 729 dev_hold(dev); 730 ret = dev; 731 break; 732 } 733 } 734 read_unlock(&dev_base_lock); 735 return ret; 736 } 737 738 /** 739 * dev_valid_name - check if name is okay for network device 740 * @name: name string 741 * 742 * Network device names need to be valid file names to 743 * to allow sysfs to work. We also disallow any kind of 744 * whitespace. 745 */ 746 int dev_valid_name(const char *name) 747 { 748 if (*name == '\0') 749 return 0; 750 if (strlen(name) >= IFNAMSIZ) 751 return 0; 752 if (!strcmp(name, ".") || !strcmp(name, "..")) 753 return 0; 754 755 while (*name) { 756 if (*name == '/' || isspace(*name)) 757 return 0; 758 name++; 759 } 760 return 1; 761 } 762 763 /** 764 * __dev_alloc_name - allocate a name for a device 765 * @net: network namespace to allocate the device name in 766 * @name: name format string 767 * @buf: scratch buffer and result name string 768 * 769 * Passed a format string - eg "lt%d" it will try and find a suitable 770 * id. It scans list of devices to build up a free map, then chooses 771 * the first empty slot. The caller must hold the dev_base or rtnl lock 772 * while allocating the name and adding the device in order to avoid 773 * duplicates. 774 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 775 * Returns the number of the unit assigned or a negative errno code. 776 */ 777 778 static int __dev_alloc_name(struct net *net, const char *name, char *buf) 779 { 780 int i = 0; 781 const char *p; 782 const int max_netdevices = 8*PAGE_SIZE; 783 unsigned long *inuse; 784 struct net_device *d; 785 786 p = strnchr(name, IFNAMSIZ-1, '%'); 787 if (p) { 788 /* 789 * Verify the string as this thing may have come from 790 * the user. There must be either one "%d" and no other "%" 791 * characters. 792 */ 793 if (p[1] != 'd' || strchr(p + 2, '%')) 794 return -EINVAL; 795 796 /* Use one page as a bit array of possible slots */ 797 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC); 798 if (!inuse) 799 return -ENOMEM; 800 801 for_each_netdev(net, d) { 802 if (!sscanf(d->name, name, &i)) 803 continue; 804 if (i < 0 || i >= max_netdevices) 805 continue; 806 807 /* avoid cases where sscanf is not exact inverse of printf */ 808 snprintf(buf, IFNAMSIZ, name, i); 809 if (!strncmp(buf, d->name, IFNAMSIZ)) 810 set_bit(i, inuse); 811 } 812 813 i = find_first_zero_bit(inuse, max_netdevices); 814 free_page((unsigned long) inuse); 815 } 816 817 snprintf(buf, IFNAMSIZ, name, i); 818 if (!__dev_get_by_name(net, buf)) 819 return i; 820 821 /* It is possible to run out of possible slots 822 * when the name is long and there isn't enough space left 823 * for the digits, or if all bits are used. 824 */ 825 return -ENFILE; 826 } 827 828 /** 829 * dev_alloc_name - allocate a name for a device 830 * @dev: device 831 * @name: name format string 832 * 833 * Passed a format string - eg "lt%d" it will try and find a suitable 834 * id. It scans list of devices to build up a free map, then chooses 835 * the first empty slot. The caller must hold the dev_base or rtnl lock 836 * while allocating the name and adding the device in order to avoid 837 * duplicates. 838 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 839 * Returns the number of the unit assigned or a negative errno code. 840 */ 841 842 int dev_alloc_name(struct net_device *dev, const char *name) 843 { 844 char buf[IFNAMSIZ]; 845 struct net *net; 846 int ret; 847 848 BUG_ON(!dev->nd_net); 849 net = dev->nd_net; 850 ret = __dev_alloc_name(net, name, buf); 851 if (ret >= 0) 852 strlcpy(dev->name, buf, IFNAMSIZ); 853 return ret; 854 } 855 856 857 /** 858 * dev_change_name - change name of a device 859 * @dev: device 860 * @newname: name (or format string) must be at least IFNAMSIZ 861 * 862 * Change name of a device, can pass format strings "eth%d". 863 * for wildcarding. 864 */ 865 int dev_change_name(struct net_device *dev, char *newname) 866 { 867 char oldname[IFNAMSIZ]; 868 int err = 0; 869 int ret; 870 struct net *net; 871 872 ASSERT_RTNL(); 873 BUG_ON(!dev->nd_net); 874 875 net = dev->nd_net; 876 if (dev->flags & IFF_UP) 877 return -EBUSY; 878 879 if (!dev_valid_name(newname)) 880 return -EINVAL; 881 882 memcpy(oldname, dev->name, IFNAMSIZ); 883 884 if (strchr(newname, '%')) { 885 err = dev_alloc_name(dev, newname); 886 if (err < 0) 887 return err; 888 strcpy(newname, dev->name); 889 } 890 else if (__dev_get_by_name(net, newname)) 891 return -EEXIST; 892 else 893 strlcpy(dev->name, newname, IFNAMSIZ); 894 895 rollback: 896 device_rename(&dev->dev, dev->name); 897 898 write_lock_bh(&dev_base_lock); 899 hlist_del(&dev->name_hlist); 900 hlist_add_head(&dev->name_hlist, dev_name_hash(net, dev->name)); 901 write_unlock_bh(&dev_base_lock); 902 903 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev); 904 ret = notifier_to_errno(ret); 905 906 if (ret) { 907 if (err) { 908 printk(KERN_ERR 909 "%s: name change rollback failed: %d.\n", 910 dev->name, ret); 911 } else { 912 err = ret; 913 memcpy(dev->name, oldname, IFNAMSIZ); 914 goto rollback; 915 } 916 } 917 918 return err; 919 } 920 921 /** 922 * netdev_features_change - device changes features 923 * @dev: device to cause notification 924 * 925 * Called to indicate a device has changed features. 926 */ 927 void netdev_features_change(struct net_device *dev) 928 { 929 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev); 930 } 931 EXPORT_SYMBOL(netdev_features_change); 932 933 /** 934 * netdev_state_change - device changes state 935 * @dev: device to cause notification 936 * 937 * Called to indicate a device has changed state. This function calls 938 * the notifier chains for netdev_chain and sends a NEWLINK message 939 * to the routing socket. 940 */ 941 void netdev_state_change(struct net_device *dev) 942 { 943 if (dev->flags & IFF_UP) { 944 call_netdevice_notifiers(NETDEV_CHANGE, dev); 945 rtmsg_ifinfo(RTM_NEWLINK, dev, 0); 946 } 947 } 948 949 /** 950 * dev_load - load a network module 951 * @name: name of interface 952 * 953 * If a network interface is not present and the process has suitable 954 * privileges this function loads the module. If module loading is not 955 * available in this kernel then it becomes a nop. 956 */ 957 958 void dev_load(struct net *net, const char *name) 959 { 960 struct net_device *dev; 961 962 read_lock(&dev_base_lock); 963 dev = __dev_get_by_name(net, name); 964 read_unlock(&dev_base_lock); 965 966 if (!dev && capable(CAP_SYS_MODULE)) 967 request_module("%s", name); 968 } 969 970 /** 971 * dev_open - prepare an interface for use. 972 * @dev: device to open 973 * 974 * Takes a device from down to up state. The device's private open 975 * function is invoked and then the multicast lists are loaded. Finally 976 * the device is moved into the up state and a %NETDEV_UP message is 977 * sent to the netdev notifier chain. 978 * 979 * Calling this function on an active interface is a nop. On a failure 980 * a negative errno code is returned. 981 */ 982 int dev_open(struct net_device *dev) 983 { 984 int ret = 0; 985 986 /* 987 * Is it already up? 988 */ 989 990 if (dev->flags & IFF_UP) 991 return 0; 992 993 /* 994 * Is it even present? 995 */ 996 if (!netif_device_present(dev)) 997 return -ENODEV; 998 999 /* 1000 * Call device private open method 1001 */ 1002 set_bit(__LINK_STATE_START, &dev->state); 1003 if (dev->open) { 1004 ret = dev->open(dev); 1005 if (ret) 1006 clear_bit(__LINK_STATE_START, &dev->state); 1007 } 1008 1009 /* 1010 * If it went open OK then: 1011 */ 1012 1013 if (!ret) { 1014 /* 1015 * Set the flags. 1016 */ 1017 dev->flags |= IFF_UP; 1018 1019 /* 1020 * Initialize multicasting status 1021 */ 1022 dev_set_rx_mode(dev); 1023 1024 /* 1025 * Wakeup transmit queue engine 1026 */ 1027 dev_activate(dev); 1028 1029 /* 1030 * ... and announce new interface. 1031 */ 1032 call_netdevice_notifiers(NETDEV_UP, dev); 1033 } 1034 return ret; 1035 } 1036 1037 /** 1038 * dev_close - shutdown an interface. 1039 * @dev: device to shutdown 1040 * 1041 * This function moves an active device into down state. A 1042 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device 1043 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier 1044 * chain. 1045 */ 1046 int dev_close(struct net_device *dev) 1047 { 1048 might_sleep(); 1049 1050 if (!(dev->flags & IFF_UP)) 1051 return 0; 1052 1053 /* 1054 * Tell people we are going down, so that they can 1055 * prepare to death, when device is still operating. 1056 */ 1057 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev); 1058 1059 dev_deactivate(dev); 1060 1061 clear_bit(__LINK_STATE_START, &dev->state); 1062 1063 /* Synchronize to scheduled poll. We cannot touch poll list, 1064 * it can be even on different cpu. So just clear netif_running(). 1065 * 1066 * dev->stop() will invoke napi_disable() on all of it's 1067 * napi_struct instances on this device. 1068 */ 1069 smp_mb__after_clear_bit(); /* Commit netif_running(). */ 1070 1071 /* 1072 * Call the device specific close. This cannot fail. 1073 * Only if device is UP 1074 * 1075 * We allow it to be called even after a DETACH hot-plug 1076 * event. 1077 */ 1078 if (dev->stop) 1079 dev->stop(dev); 1080 1081 /* 1082 * Device is now down. 1083 */ 1084 1085 dev->flags &= ~IFF_UP; 1086 1087 /* 1088 * Tell people we are down 1089 */ 1090 call_netdevice_notifiers(NETDEV_DOWN, dev); 1091 1092 return 0; 1093 } 1094 1095 1096 static int dev_boot_phase = 1; 1097 1098 /* 1099 * Device change register/unregister. These are not inline or static 1100 * as we export them to the world. 1101 */ 1102 1103 /** 1104 * register_netdevice_notifier - register a network notifier block 1105 * @nb: notifier 1106 * 1107 * Register a notifier to be called when network device events occur. 1108 * The notifier passed is linked into the kernel structures and must 1109 * not be reused until it has been unregistered. A negative errno code 1110 * is returned on a failure. 1111 * 1112 * When registered all registration and up events are replayed 1113 * to the new notifier to allow device to have a race free 1114 * view of the network device list. 1115 */ 1116 1117 int register_netdevice_notifier(struct notifier_block *nb) 1118 { 1119 struct net_device *dev; 1120 struct net_device *last; 1121 struct net *net; 1122 int err; 1123 1124 rtnl_lock(); 1125 err = raw_notifier_chain_register(&netdev_chain, nb); 1126 if (err) 1127 goto unlock; 1128 if (dev_boot_phase) 1129 goto unlock; 1130 for_each_net(net) { 1131 for_each_netdev(net, dev) { 1132 err = nb->notifier_call(nb, NETDEV_REGISTER, dev); 1133 err = notifier_to_errno(err); 1134 if (err) 1135 goto rollback; 1136 1137 if (!(dev->flags & IFF_UP)) 1138 continue; 1139 1140 nb->notifier_call(nb, NETDEV_UP, dev); 1141 } 1142 } 1143 1144 unlock: 1145 rtnl_unlock(); 1146 return err; 1147 1148 rollback: 1149 last = dev; 1150 for_each_net(net) { 1151 for_each_netdev(net, dev) { 1152 if (dev == last) 1153 break; 1154 1155 if (dev->flags & IFF_UP) { 1156 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev); 1157 nb->notifier_call(nb, NETDEV_DOWN, dev); 1158 } 1159 nb->notifier_call(nb, NETDEV_UNREGISTER, dev); 1160 } 1161 } 1162 goto unlock; 1163 } 1164 1165 /** 1166 * unregister_netdevice_notifier - unregister a network notifier block 1167 * @nb: notifier 1168 * 1169 * Unregister a notifier previously registered by 1170 * register_netdevice_notifier(). The notifier is unlinked into the 1171 * kernel structures and may then be reused. A negative errno code 1172 * is returned on a failure. 1173 */ 1174 1175 int unregister_netdevice_notifier(struct notifier_block *nb) 1176 { 1177 int err; 1178 1179 rtnl_lock(); 1180 err = raw_notifier_chain_unregister(&netdev_chain, nb); 1181 rtnl_unlock(); 1182 return err; 1183 } 1184 1185 /** 1186 * call_netdevice_notifiers - call all network notifier blocks 1187 * @val: value passed unmodified to notifier function 1188 * @v: pointer passed unmodified to notifier function 1189 * 1190 * Call all network notifier blocks. Parameters and return value 1191 * are as for raw_notifier_call_chain(). 1192 */ 1193 1194 int call_netdevice_notifiers(unsigned long val, struct net_device *dev) 1195 { 1196 return raw_notifier_call_chain(&netdev_chain, val, dev); 1197 } 1198 1199 /* When > 0 there are consumers of rx skb time stamps */ 1200 static atomic_t netstamp_needed = ATOMIC_INIT(0); 1201 1202 void net_enable_timestamp(void) 1203 { 1204 atomic_inc(&netstamp_needed); 1205 } 1206 1207 void net_disable_timestamp(void) 1208 { 1209 atomic_dec(&netstamp_needed); 1210 } 1211 1212 static inline void net_timestamp(struct sk_buff *skb) 1213 { 1214 if (atomic_read(&netstamp_needed)) 1215 __net_timestamp(skb); 1216 else 1217 skb->tstamp.tv64 = 0; 1218 } 1219 1220 /* 1221 * Support routine. Sends outgoing frames to any network 1222 * taps currently in use. 1223 */ 1224 1225 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev) 1226 { 1227 struct packet_type *ptype; 1228 1229 net_timestamp(skb); 1230 1231 rcu_read_lock(); 1232 list_for_each_entry_rcu(ptype, &ptype_all, list) { 1233 /* Never send packets back to the socket 1234 * they originated from - MvS (miquels@drinkel.ow.org) 1235 */ 1236 if ((ptype->dev == dev || !ptype->dev) && 1237 (ptype->af_packet_priv == NULL || 1238 (struct sock *)ptype->af_packet_priv != skb->sk)) { 1239 struct sk_buff *skb2= skb_clone(skb, GFP_ATOMIC); 1240 if (!skb2) 1241 break; 1242 1243 /* skb->nh should be correctly 1244 set by sender, so that the second statement is 1245 just protection against buggy protocols. 1246 */ 1247 skb_reset_mac_header(skb2); 1248 1249 if (skb_network_header(skb2) < skb2->data || 1250 skb2->network_header > skb2->tail) { 1251 if (net_ratelimit()) 1252 printk(KERN_CRIT "protocol %04x is " 1253 "buggy, dev %s\n", 1254 skb2->protocol, dev->name); 1255 skb_reset_network_header(skb2); 1256 } 1257 1258 skb2->transport_header = skb2->network_header; 1259 skb2->pkt_type = PACKET_OUTGOING; 1260 ptype->func(skb2, skb->dev, ptype, skb->dev); 1261 } 1262 } 1263 rcu_read_unlock(); 1264 } 1265 1266 1267 void __netif_schedule(struct net_device *dev) 1268 { 1269 if (!test_and_set_bit(__LINK_STATE_SCHED, &dev->state)) { 1270 unsigned long flags; 1271 struct softnet_data *sd; 1272 1273 local_irq_save(flags); 1274 sd = &__get_cpu_var(softnet_data); 1275 dev->next_sched = sd->output_queue; 1276 sd->output_queue = dev; 1277 raise_softirq_irqoff(NET_TX_SOFTIRQ); 1278 local_irq_restore(flags); 1279 } 1280 } 1281 EXPORT_SYMBOL(__netif_schedule); 1282 1283 void dev_kfree_skb_irq(struct sk_buff *skb) 1284 { 1285 if (atomic_dec_and_test(&skb->users)) { 1286 struct softnet_data *sd; 1287 unsigned long flags; 1288 1289 local_irq_save(flags); 1290 sd = &__get_cpu_var(softnet_data); 1291 skb->next = sd->completion_queue; 1292 sd->completion_queue = skb; 1293 raise_softirq_irqoff(NET_TX_SOFTIRQ); 1294 local_irq_restore(flags); 1295 } 1296 } 1297 EXPORT_SYMBOL(dev_kfree_skb_irq); 1298 1299 void dev_kfree_skb_any(struct sk_buff *skb) 1300 { 1301 if (in_irq() || irqs_disabled()) 1302 dev_kfree_skb_irq(skb); 1303 else 1304 dev_kfree_skb(skb); 1305 } 1306 EXPORT_SYMBOL(dev_kfree_skb_any); 1307 1308 1309 /** 1310 * netif_device_detach - mark device as removed 1311 * @dev: network device 1312 * 1313 * Mark device as removed from system and therefore no longer available. 1314 */ 1315 void netif_device_detach(struct net_device *dev) 1316 { 1317 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) && 1318 netif_running(dev)) { 1319 netif_stop_queue(dev); 1320 } 1321 } 1322 EXPORT_SYMBOL(netif_device_detach); 1323 1324 /** 1325 * netif_device_attach - mark device as attached 1326 * @dev: network device 1327 * 1328 * Mark device as attached from system and restart if needed. 1329 */ 1330 void netif_device_attach(struct net_device *dev) 1331 { 1332 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) && 1333 netif_running(dev)) { 1334 netif_wake_queue(dev); 1335 __netdev_watchdog_up(dev); 1336 } 1337 } 1338 EXPORT_SYMBOL(netif_device_attach); 1339 1340 1341 /* 1342 * Invalidate hardware checksum when packet is to be mangled, and 1343 * complete checksum manually on outgoing path. 1344 */ 1345 int skb_checksum_help(struct sk_buff *skb) 1346 { 1347 __wsum csum; 1348 int ret = 0, offset; 1349 1350 if (skb->ip_summed == CHECKSUM_COMPLETE) 1351 goto out_set_summed; 1352 1353 if (unlikely(skb_shinfo(skb)->gso_size)) { 1354 /* Let GSO fix up the checksum. */ 1355 goto out_set_summed; 1356 } 1357 1358 if (skb_cloned(skb)) { 1359 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 1360 if (ret) 1361 goto out; 1362 } 1363 1364 offset = skb->csum_start - skb_headroom(skb); 1365 BUG_ON(offset > (int)skb->len); 1366 csum = skb_checksum(skb, offset, skb->len-offset, 0); 1367 1368 offset = skb_headlen(skb) - offset; 1369 BUG_ON(offset <= 0); 1370 BUG_ON(skb->csum_offset + 2 > offset); 1371 1372 *(__sum16 *)(skb->head + skb->csum_start + skb->csum_offset) = 1373 csum_fold(csum); 1374 out_set_summed: 1375 skb->ip_summed = CHECKSUM_NONE; 1376 out: 1377 return ret; 1378 } 1379 1380 /** 1381 * skb_gso_segment - Perform segmentation on skb. 1382 * @skb: buffer to segment 1383 * @features: features for the output path (see dev->features) 1384 * 1385 * This function segments the given skb and returns a list of segments. 1386 * 1387 * It may return NULL if the skb requires no segmentation. This is 1388 * only possible when GSO is used for verifying header integrity. 1389 */ 1390 struct sk_buff *skb_gso_segment(struct sk_buff *skb, int features) 1391 { 1392 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT); 1393 struct packet_type *ptype; 1394 __be16 type = skb->protocol; 1395 int err; 1396 1397 BUG_ON(skb_shinfo(skb)->frag_list); 1398 1399 skb_reset_mac_header(skb); 1400 skb->mac_len = skb->network_header - skb->mac_header; 1401 __skb_pull(skb, skb->mac_len); 1402 1403 if (WARN_ON(skb->ip_summed != CHECKSUM_PARTIAL)) { 1404 if (skb_header_cloned(skb) && 1405 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))) 1406 return ERR_PTR(err); 1407 } 1408 1409 rcu_read_lock(); 1410 list_for_each_entry_rcu(ptype, &ptype_base[ntohs(type) & 15], list) { 1411 if (ptype->type == type && !ptype->dev && ptype->gso_segment) { 1412 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) { 1413 err = ptype->gso_send_check(skb); 1414 segs = ERR_PTR(err); 1415 if (err || skb_gso_ok(skb, features)) 1416 break; 1417 __skb_push(skb, (skb->data - 1418 skb_network_header(skb))); 1419 } 1420 segs = ptype->gso_segment(skb, features); 1421 break; 1422 } 1423 } 1424 rcu_read_unlock(); 1425 1426 __skb_push(skb, skb->data - skb_mac_header(skb)); 1427 1428 return segs; 1429 } 1430 1431 EXPORT_SYMBOL(skb_gso_segment); 1432 1433 /* Take action when hardware reception checksum errors are detected. */ 1434 #ifdef CONFIG_BUG 1435 void netdev_rx_csum_fault(struct net_device *dev) 1436 { 1437 if (net_ratelimit()) { 1438 printk(KERN_ERR "%s: hw csum failure.\n", 1439 dev ? dev->name : "<unknown>"); 1440 dump_stack(); 1441 } 1442 } 1443 EXPORT_SYMBOL(netdev_rx_csum_fault); 1444 #endif 1445 1446 /* Actually, we should eliminate this check as soon as we know, that: 1447 * 1. IOMMU is present and allows to map all the memory. 1448 * 2. No high memory really exists on this machine. 1449 */ 1450 1451 static inline int illegal_highdma(struct net_device *dev, struct sk_buff *skb) 1452 { 1453 #ifdef CONFIG_HIGHMEM 1454 int i; 1455 1456 if (dev->features & NETIF_F_HIGHDMA) 1457 return 0; 1458 1459 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 1460 if (PageHighMem(skb_shinfo(skb)->frags[i].page)) 1461 return 1; 1462 1463 #endif 1464 return 0; 1465 } 1466 1467 struct dev_gso_cb { 1468 void (*destructor)(struct sk_buff *skb); 1469 }; 1470 1471 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb) 1472 1473 static void dev_gso_skb_destructor(struct sk_buff *skb) 1474 { 1475 struct dev_gso_cb *cb; 1476 1477 do { 1478 struct sk_buff *nskb = skb->next; 1479 1480 skb->next = nskb->next; 1481 nskb->next = NULL; 1482 kfree_skb(nskb); 1483 } while (skb->next); 1484 1485 cb = DEV_GSO_CB(skb); 1486 if (cb->destructor) 1487 cb->destructor(skb); 1488 } 1489 1490 /** 1491 * dev_gso_segment - Perform emulated hardware segmentation on skb. 1492 * @skb: buffer to segment 1493 * 1494 * This function segments the given skb and stores the list of segments 1495 * in skb->next. 1496 */ 1497 static int dev_gso_segment(struct sk_buff *skb) 1498 { 1499 struct net_device *dev = skb->dev; 1500 struct sk_buff *segs; 1501 int features = dev->features & ~(illegal_highdma(dev, skb) ? 1502 NETIF_F_SG : 0); 1503 1504 segs = skb_gso_segment(skb, features); 1505 1506 /* Verifying header integrity only. */ 1507 if (!segs) 1508 return 0; 1509 1510 if (unlikely(IS_ERR(segs))) 1511 return PTR_ERR(segs); 1512 1513 skb->next = segs; 1514 DEV_GSO_CB(skb)->destructor = skb->destructor; 1515 skb->destructor = dev_gso_skb_destructor; 1516 1517 return 0; 1518 } 1519 1520 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev) 1521 { 1522 if (likely(!skb->next)) { 1523 if (!list_empty(&ptype_all)) 1524 dev_queue_xmit_nit(skb, dev); 1525 1526 if (netif_needs_gso(dev, skb)) { 1527 if (unlikely(dev_gso_segment(skb))) 1528 goto out_kfree_skb; 1529 if (skb->next) 1530 goto gso; 1531 } 1532 1533 return dev->hard_start_xmit(skb, dev); 1534 } 1535 1536 gso: 1537 do { 1538 struct sk_buff *nskb = skb->next; 1539 int rc; 1540 1541 skb->next = nskb->next; 1542 nskb->next = NULL; 1543 rc = dev->hard_start_xmit(nskb, dev); 1544 if (unlikely(rc)) { 1545 nskb->next = skb->next; 1546 skb->next = nskb; 1547 return rc; 1548 } 1549 if (unlikely((netif_queue_stopped(dev) || 1550 netif_subqueue_stopped(dev, skb->queue_mapping)) && 1551 skb->next)) 1552 return NETDEV_TX_BUSY; 1553 } while (skb->next); 1554 1555 skb->destructor = DEV_GSO_CB(skb)->destructor; 1556 1557 out_kfree_skb: 1558 kfree_skb(skb); 1559 return 0; 1560 } 1561 1562 /** 1563 * dev_queue_xmit - transmit a buffer 1564 * @skb: buffer to transmit 1565 * 1566 * Queue a buffer for transmission to a network device. The caller must 1567 * have set the device and priority and built the buffer before calling 1568 * this function. The function can be called from an interrupt. 1569 * 1570 * A negative errno code is returned on a failure. A success does not 1571 * guarantee the frame will be transmitted as it may be dropped due 1572 * to congestion or traffic shaping. 1573 * 1574 * ----------------------------------------------------------------------------------- 1575 * I notice this method can also return errors from the queue disciplines, 1576 * including NET_XMIT_DROP, which is a positive value. So, errors can also 1577 * be positive. 1578 * 1579 * Regardless of the return value, the skb is consumed, so it is currently 1580 * difficult to retry a send to this method. (You can bump the ref count 1581 * before sending to hold a reference for retry if you are careful.) 1582 * 1583 * When calling this method, interrupts MUST be enabled. This is because 1584 * the BH enable code must have IRQs enabled so that it will not deadlock. 1585 * --BLG 1586 */ 1587 1588 int dev_queue_xmit(struct sk_buff *skb) 1589 { 1590 struct net_device *dev = skb->dev; 1591 struct Qdisc *q; 1592 int rc = -ENOMEM; 1593 1594 /* GSO will handle the following emulations directly. */ 1595 if (netif_needs_gso(dev, skb)) 1596 goto gso; 1597 1598 if (skb_shinfo(skb)->frag_list && 1599 !(dev->features & NETIF_F_FRAGLIST) && 1600 __skb_linearize(skb)) 1601 goto out_kfree_skb; 1602 1603 /* Fragmented skb is linearized if device does not support SG, 1604 * or if at least one of fragments is in highmem and device 1605 * does not support DMA from it. 1606 */ 1607 if (skb_shinfo(skb)->nr_frags && 1608 (!(dev->features & NETIF_F_SG) || illegal_highdma(dev, skb)) && 1609 __skb_linearize(skb)) 1610 goto out_kfree_skb; 1611 1612 /* If packet is not checksummed and device does not support 1613 * checksumming for this protocol, complete checksumming here. 1614 */ 1615 if (skb->ip_summed == CHECKSUM_PARTIAL) { 1616 skb_set_transport_header(skb, skb->csum_start - 1617 skb_headroom(skb)); 1618 1619 if (!(dev->features & NETIF_F_GEN_CSUM) && 1620 !((dev->features & NETIF_F_IP_CSUM) && 1621 skb->protocol == htons(ETH_P_IP)) && 1622 !((dev->features & NETIF_F_IPV6_CSUM) && 1623 skb->protocol == htons(ETH_P_IPV6))) 1624 if (skb_checksum_help(skb)) 1625 goto out_kfree_skb; 1626 } 1627 1628 gso: 1629 spin_lock_prefetch(&dev->queue_lock); 1630 1631 /* Disable soft irqs for various locks below. Also 1632 * stops preemption for RCU. 1633 */ 1634 rcu_read_lock_bh(); 1635 1636 /* Updates of qdisc are serialized by queue_lock. 1637 * The struct Qdisc which is pointed to by qdisc is now a 1638 * rcu structure - it may be accessed without acquiring 1639 * a lock (but the structure may be stale.) The freeing of the 1640 * qdisc will be deferred until it's known that there are no 1641 * more references to it. 1642 * 1643 * If the qdisc has an enqueue function, we still need to 1644 * hold the queue_lock before calling it, since queue_lock 1645 * also serializes access to the device queue. 1646 */ 1647 1648 q = rcu_dereference(dev->qdisc); 1649 #ifdef CONFIG_NET_CLS_ACT 1650 skb->tc_verd = SET_TC_AT(skb->tc_verd,AT_EGRESS); 1651 #endif 1652 if (q->enqueue) { 1653 /* Grab device queue */ 1654 spin_lock(&dev->queue_lock); 1655 q = dev->qdisc; 1656 if (q->enqueue) { 1657 /* reset queue_mapping to zero */ 1658 skb->queue_mapping = 0; 1659 rc = q->enqueue(skb, q); 1660 qdisc_run(dev); 1661 spin_unlock(&dev->queue_lock); 1662 1663 rc = rc == NET_XMIT_BYPASS ? NET_XMIT_SUCCESS : rc; 1664 goto out; 1665 } 1666 spin_unlock(&dev->queue_lock); 1667 } 1668 1669 /* The device has no queue. Common case for software devices: 1670 loopback, all the sorts of tunnels... 1671 1672 Really, it is unlikely that netif_tx_lock protection is necessary 1673 here. (f.e. loopback and IP tunnels are clean ignoring statistics 1674 counters.) 1675 However, it is possible, that they rely on protection 1676 made by us here. 1677 1678 Check this and shot the lock. It is not prone from deadlocks. 1679 Either shot noqueue qdisc, it is even simpler 8) 1680 */ 1681 if (dev->flags & IFF_UP) { 1682 int cpu = smp_processor_id(); /* ok because BHs are off */ 1683 1684 if (dev->xmit_lock_owner != cpu) { 1685 1686 HARD_TX_LOCK(dev, cpu); 1687 1688 if (!netif_queue_stopped(dev) && 1689 !netif_subqueue_stopped(dev, skb->queue_mapping)) { 1690 rc = 0; 1691 if (!dev_hard_start_xmit(skb, dev)) { 1692 HARD_TX_UNLOCK(dev); 1693 goto out; 1694 } 1695 } 1696 HARD_TX_UNLOCK(dev); 1697 if (net_ratelimit()) 1698 printk(KERN_CRIT "Virtual device %s asks to " 1699 "queue packet!\n", dev->name); 1700 } else { 1701 /* Recursion is detected! It is possible, 1702 * unfortunately */ 1703 if (net_ratelimit()) 1704 printk(KERN_CRIT "Dead loop on virtual device " 1705 "%s, fix it urgently!\n", dev->name); 1706 } 1707 } 1708 1709 rc = -ENETDOWN; 1710 rcu_read_unlock_bh(); 1711 1712 out_kfree_skb: 1713 kfree_skb(skb); 1714 return rc; 1715 out: 1716 rcu_read_unlock_bh(); 1717 return rc; 1718 } 1719 1720 1721 /*======================================================================= 1722 Receiver routines 1723 =======================================================================*/ 1724 1725 int netdev_max_backlog __read_mostly = 1000; 1726 int netdev_budget __read_mostly = 300; 1727 int weight_p __read_mostly = 64; /* old backlog weight */ 1728 1729 DEFINE_PER_CPU(struct netif_rx_stats, netdev_rx_stat) = { 0, }; 1730 1731 1732 /** 1733 * netif_rx - post buffer to the network code 1734 * @skb: buffer to post 1735 * 1736 * This function receives a packet from a device driver and queues it for 1737 * the upper (protocol) levels to process. It always succeeds. The buffer 1738 * may be dropped during processing for congestion control or by the 1739 * protocol layers. 1740 * 1741 * return values: 1742 * NET_RX_SUCCESS (no congestion) 1743 * NET_RX_CN_LOW (low congestion) 1744 * NET_RX_CN_MOD (moderate congestion) 1745 * NET_RX_CN_HIGH (high congestion) 1746 * NET_RX_DROP (packet was dropped) 1747 * 1748 */ 1749 1750 int netif_rx(struct sk_buff *skb) 1751 { 1752 struct softnet_data *queue; 1753 unsigned long flags; 1754 1755 /* if netpoll wants it, pretend we never saw it */ 1756 if (netpoll_rx(skb)) 1757 return NET_RX_DROP; 1758 1759 if (!skb->tstamp.tv64) 1760 net_timestamp(skb); 1761 1762 /* 1763 * The code is rearranged so that the path is the most 1764 * short when CPU is congested, but is still operating. 1765 */ 1766 local_irq_save(flags); 1767 queue = &__get_cpu_var(softnet_data); 1768 1769 __get_cpu_var(netdev_rx_stat).total++; 1770 if (queue->input_pkt_queue.qlen <= netdev_max_backlog) { 1771 if (queue->input_pkt_queue.qlen) { 1772 enqueue: 1773 dev_hold(skb->dev); 1774 __skb_queue_tail(&queue->input_pkt_queue, skb); 1775 local_irq_restore(flags); 1776 return NET_RX_SUCCESS; 1777 } 1778 1779 napi_schedule(&queue->backlog); 1780 goto enqueue; 1781 } 1782 1783 __get_cpu_var(netdev_rx_stat).dropped++; 1784 local_irq_restore(flags); 1785 1786 kfree_skb(skb); 1787 return NET_RX_DROP; 1788 } 1789 1790 int netif_rx_ni(struct sk_buff *skb) 1791 { 1792 int err; 1793 1794 preempt_disable(); 1795 err = netif_rx(skb); 1796 if (local_softirq_pending()) 1797 do_softirq(); 1798 preempt_enable(); 1799 1800 return err; 1801 } 1802 1803 EXPORT_SYMBOL(netif_rx_ni); 1804 1805 static inline struct net_device *skb_bond(struct sk_buff *skb) 1806 { 1807 struct net_device *dev = skb->dev; 1808 1809 if (dev->master) { 1810 if (skb_bond_should_drop(skb)) { 1811 kfree_skb(skb); 1812 return NULL; 1813 } 1814 skb->dev = dev->master; 1815 } 1816 1817 return dev; 1818 } 1819 1820 1821 static void net_tx_action(struct softirq_action *h) 1822 { 1823 struct softnet_data *sd = &__get_cpu_var(softnet_data); 1824 1825 if (sd->completion_queue) { 1826 struct sk_buff *clist; 1827 1828 local_irq_disable(); 1829 clist = sd->completion_queue; 1830 sd->completion_queue = NULL; 1831 local_irq_enable(); 1832 1833 while (clist) { 1834 struct sk_buff *skb = clist; 1835 clist = clist->next; 1836 1837 BUG_TRAP(!atomic_read(&skb->users)); 1838 __kfree_skb(skb); 1839 } 1840 } 1841 1842 if (sd->output_queue) { 1843 struct net_device *head; 1844 1845 local_irq_disable(); 1846 head = sd->output_queue; 1847 sd->output_queue = NULL; 1848 local_irq_enable(); 1849 1850 while (head) { 1851 struct net_device *dev = head; 1852 head = head->next_sched; 1853 1854 smp_mb__before_clear_bit(); 1855 clear_bit(__LINK_STATE_SCHED, &dev->state); 1856 1857 if (spin_trylock(&dev->queue_lock)) { 1858 qdisc_run(dev); 1859 spin_unlock(&dev->queue_lock); 1860 } else { 1861 netif_schedule(dev); 1862 } 1863 } 1864 } 1865 } 1866 1867 static inline int deliver_skb(struct sk_buff *skb, 1868 struct packet_type *pt_prev, 1869 struct net_device *orig_dev) 1870 { 1871 atomic_inc(&skb->users); 1872 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 1873 } 1874 1875 #if defined(CONFIG_BRIDGE) || defined (CONFIG_BRIDGE_MODULE) 1876 /* These hooks defined here for ATM */ 1877 struct net_bridge; 1878 struct net_bridge_fdb_entry *(*br_fdb_get_hook)(struct net_bridge *br, 1879 unsigned char *addr); 1880 void (*br_fdb_put_hook)(struct net_bridge_fdb_entry *ent) __read_mostly; 1881 1882 /* 1883 * If bridge module is loaded call bridging hook. 1884 * returns NULL if packet was consumed. 1885 */ 1886 struct sk_buff *(*br_handle_frame_hook)(struct net_bridge_port *p, 1887 struct sk_buff *skb) __read_mostly; 1888 static inline struct sk_buff *handle_bridge(struct sk_buff *skb, 1889 struct packet_type **pt_prev, int *ret, 1890 struct net_device *orig_dev) 1891 { 1892 struct net_bridge_port *port; 1893 1894 if (skb->pkt_type == PACKET_LOOPBACK || 1895 (port = rcu_dereference(skb->dev->br_port)) == NULL) 1896 return skb; 1897 1898 if (*pt_prev) { 1899 *ret = deliver_skb(skb, *pt_prev, orig_dev); 1900 *pt_prev = NULL; 1901 } 1902 1903 return br_handle_frame_hook(port, skb); 1904 } 1905 #else 1906 #define handle_bridge(skb, pt_prev, ret, orig_dev) (skb) 1907 #endif 1908 1909 #if defined(CONFIG_MACVLAN) || defined(CONFIG_MACVLAN_MODULE) 1910 struct sk_buff *(*macvlan_handle_frame_hook)(struct sk_buff *skb) __read_mostly; 1911 EXPORT_SYMBOL_GPL(macvlan_handle_frame_hook); 1912 1913 static inline struct sk_buff *handle_macvlan(struct sk_buff *skb, 1914 struct packet_type **pt_prev, 1915 int *ret, 1916 struct net_device *orig_dev) 1917 { 1918 if (skb->dev->macvlan_port == NULL) 1919 return skb; 1920 1921 if (*pt_prev) { 1922 *ret = deliver_skb(skb, *pt_prev, orig_dev); 1923 *pt_prev = NULL; 1924 } 1925 return macvlan_handle_frame_hook(skb); 1926 } 1927 #else 1928 #define handle_macvlan(skb, pt_prev, ret, orig_dev) (skb) 1929 #endif 1930 1931 #ifdef CONFIG_NET_CLS_ACT 1932 /* TODO: Maybe we should just force sch_ingress to be compiled in 1933 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions 1934 * a compare and 2 stores extra right now if we dont have it on 1935 * but have CONFIG_NET_CLS_ACT 1936 * NOTE: This doesnt stop any functionality; if you dont have 1937 * the ingress scheduler, you just cant add policies on ingress. 1938 * 1939 */ 1940 static int ing_filter(struct sk_buff *skb) 1941 { 1942 struct Qdisc *q; 1943 struct net_device *dev = skb->dev; 1944 int result = TC_ACT_OK; 1945 1946 if (dev->qdisc_ingress) { 1947 __u32 ttl = (__u32) G_TC_RTTL(skb->tc_verd); 1948 if (MAX_RED_LOOP < ttl++) { 1949 printk(KERN_WARNING "Redir loop detected Dropping packet (%d->%d)\n", 1950 skb->iif, skb->dev->ifindex); 1951 return TC_ACT_SHOT; 1952 } 1953 1954 skb->tc_verd = SET_TC_RTTL(skb->tc_verd,ttl); 1955 1956 skb->tc_verd = SET_TC_AT(skb->tc_verd,AT_INGRESS); 1957 1958 spin_lock(&dev->ingress_lock); 1959 if ((q = dev->qdisc_ingress) != NULL) 1960 result = q->enqueue(skb, q); 1961 spin_unlock(&dev->ingress_lock); 1962 1963 } 1964 1965 return result; 1966 } 1967 #endif 1968 1969 int netif_receive_skb(struct sk_buff *skb) 1970 { 1971 struct packet_type *ptype, *pt_prev; 1972 struct net_device *orig_dev; 1973 int ret = NET_RX_DROP; 1974 __be16 type; 1975 1976 /* if we've gotten here through NAPI, check netpoll */ 1977 if (netpoll_receive_skb(skb)) 1978 return NET_RX_DROP; 1979 1980 if (!skb->tstamp.tv64) 1981 net_timestamp(skb); 1982 1983 if (!skb->iif) 1984 skb->iif = skb->dev->ifindex; 1985 1986 orig_dev = skb_bond(skb); 1987 1988 if (!orig_dev) 1989 return NET_RX_DROP; 1990 1991 __get_cpu_var(netdev_rx_stat).total++; 1992 1993 skb_reset_network_header(skb); 1994 skb_reset_transport_header(skb); 1995 skb->mac_len = skb->network_header - skb->mac_header; 1996 1997 pt_prev = NULL; 1998 1999 rcu_read_lock(); 2000 2001 #ifdef CONFIG_NET_CLS_ACT 2002 if (skb->tc_verd & TC_NCLS) { 2003 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd); 2004 goto ncls; 2005 } 2006 #endif 2007 2008 list_for_each_entry_rcu(ptype, &ptype_all, list) { 2009 if (!ptype->dev || ptype->dev == skb->dev) { 2010 if (pt_prev) 2011 ret = deliver_skb(skb, pt_prev, orig_dev); 2012 pt_prev = ptype; 2013 } 2014 } 2015 2016 #ifdef CONFIG_NET_CLS_ACT 2017 if (pt_prev) { 2018 ret = deliver_skb(skb, pt_prev, orig_dev); 2019 pt_prev = NULL; /* noone else should process this after*/ 2020 } else { 2021 skb->tc_verd = SET_TC_OK2MUNGE(skb->tc_verd); 2022 } 2023 2024 ret = ing_filter(skb); 2025 2026 if (ret == TC_ACT_SHOT || (ret == TC_ACT_STOLEN)) { 2027 kfree_skb(skb); 2028 goto out; 2029 } 2030 2031 skb->tc_verd = 0; 2032 ncls: 2033 #endif 2034 2035 skb = handle_bridge(skb, &pt_prev, &ret, orig_dev); 2036 if (!skb) 2037 goto out; 2038 skb = handle_macvlan(skb, &pt_prev, &ret, orig_dev); 2039 if (!skb) 2040 goto out; 2041 2042 type = skb->protocol; 2043 list_for_each_entry_rcu(ptype, &ptype_base[ntohs(type)&15], list) { 2044 if (ptype->type == type && 2045 (!ptype->dev || ptype->dev == skb->dev)) { 2046 if (pt_prev) 2047 ret = deliver_skb(skb, pt_prev, orig_dev); 2048 pt_prev = ptype; 2049 } 2050 } 2051 2052 if (pt_prev) { 2053 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 2054 } else { 2055 kfree_skb(skb); 2056 /* Jamal, now you will not able to escape explaining 2057 * me how you were going to use this. :-) 2058 */ 2059 ret = NET_RX_DROP; 2060 } 2061 2062 out: 2063 rcu_read_unlock(); 2064 return ret; 2065 } 2066 2067 static int process_backlog(struct napi_struct *napi, int quota) 2068 { 2069 int work = 0; 2070 struct softnet_data *queue = &__get_cpu_var(softnet_data); 2071 unsigned long start_time = jiffies; 2072 2073 napi->weight = weight_p; 2074 do { 2075 struct sk_buff *skb; 2076 struct net_device *dev; 2077 2078 local_irq_disable(); 2079 skb = __skb_dequeue(&queue->input_pkt_queue); 2080 if (!skb) { 2081 __napi_complete(napi); 2082 local_irq_enable(); 2083 break; 2084 } 2085 2086 local_irq_enable(); 2087 2088 dev = skb->dev; 2089 2090 netif_receive_skb(skb); 2091 2092 dev_put(dev); 2093 } while (++work < quota && jiffies == start_time); 2094 2095 return work; 2096 } 2097 2098 /** 2099 * __napi_schedule - schedule for receive 2100 * @napi: entry to schedule 2101 * 2102 * The entry's receive function will be scheduled to run 2103 */ 2104 void fastcall __napi_schedule(struct napi_struct *n) 2105 { 2106 unsigned long flags; 2107 2108 local_irq_save(flags); 2109 list_add_tail(&n->poll_list, &__get_cpu_var(softnet_data).poll_list); 2110 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 2111 local_irq_restore(flags); 2112 } 2113 EXPORT_SYMBOL(__napi_schedule); 2114 2115 2116 static void net_rx_action(struct softirq_action *h) 2117 { 2118 struct list_head *list = &__get_cpu_var(softnet_data).poll_list; 2119 unsigned long start_time = jiffies; 2120 int budget = netdev_budget; 2121 void *have; 2122 2123 local_irq_disable(); 2124 2125 while (!list_empty(list)) { 2126 struct napi_struct *n; 2127 int work, weight; 2128 2129 /* If softirq window is exhuasted then punt. 2130 * 2131 * Note that this is a slight policy change from the 2132 * previous NAPI code, which would allow up to 2 2133 * jiffies to pass before breaking out. The test 2134 * used to be "jiffies - start_time > 1". 2135 */ 2136 if (unlikely(budget <= 0 || jiffies != start_time)) 2137 goto softnet_break; 2138 2139 local_irq_enable(); 2140 2141 /* Even though interrupts have been re-enabled, this 2142 * access is safe because interrupts can only add new 2143 * entries to the tail of this list, and only ->poll() 2144 * calls can remove this head entry from the list. 2145 */ 2146 n = list_entry(list->next, struct napi_struct, poll_list); 2147 2148 have = netpoll_poll_lock(n); 2149 2150 weight = n->weight; 2151 2152 work = n->poll(n, weight); 2153 2154 WARN_ON_ONCE(work > weight); 2155 2156 budget -= work; 2157 2158 local_irq_disable(); 2159 2160 /* Drivers must not modify the NAPI state if they 2161 * consume the entire weight. In such cases this code 2162 * still "owns" the NAPI instance and therefore can 2163 * move the instance around on the list at-will. 2164 */ 2165 if (unlikely(work == weight)) 2166 list_move_tail(&n->poll_list, list); 2167 2168 netpoll_poll_unlock(have); 2169 } 2170 out: 2171 local_irq_enable(); 2172 2173 #ifdef CONFIG_NET_DMA 2174 /* 2175 * There may not be any more sk_buffs coming right now, so push 2176 * any pending DMA copies to hardware 2177 */ 2178 if (!cpus_empty(net_dma.channel_mask)) { 2179 int chan_idx; 2180 for_each_cpu_mask(chan_idx, net_dma.channel_mask) { 2181 struct dma_chan *chan = net_dma.channels[chan_idx]; 2182 if (chan) 2183 dma_async_memcpy_issue_pending(chan); 2184 } 2185 } 2186 #endif 2187 2188 return; 2189 2190 softnet_break: 2191 __get_cpu_var(netdev_rx_stat).time_squeeze++; 2192 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 2193 goto out; 2194 } 2195 2196 static gifconf_func_t * gifconf_list [NPROTO]; 2197 2198 /** 2199 * register_gifconf - register a SIOCGIF handler 2200 * @family: Address family 2201 * @gifconf: Function handler 2202 * 2203 * Register protocol dependent address dumping routines. The handler 2204 * that is passed must not be freed or reused until it has been replaced 2205 * by another handler. 2206 */ 2207 int register_gifconf(unsigned int family, gifconf_func_t * gifconf) 2208 { 2209 if (family >= NPROTO) 2210 return -EINVAL; 2211 gifconf_list[family] = gifconf; 2212 return 0; 2213 } 2214 2215 2216 /* 2217 * Map an interface index to its name (SIOCGIFNAME) 2218 */ 2219 2220 /* 2221 * We need this ioctl for efficient implementation of the 2222 * if_indextoname() function required by the IPv6 API. Without 2223 * it, we would have to search all the interfaces to find a 2224 * match. --pb 2225 */ 2226 2227 static int dev_ifname(struct net *net, struct ifreq __user *arg) 2228 { 2229 struct net_device *dev; 2230 struct ifreq ifr; 2231 2232 /* 2233 * Fetch the caller's info block. 2234 */ 2235 2236 if (copy_from_user(&ifr, arg, sizeof(struct ifreq))) 2237 return -EFAULT; 2238 2239 read_lock(&dev_base_lock); 2240 dev = __dev_get_by_index(net, ifr.ifr_ifindex); 2241 if (!dev) { 2242 read_unlock(&dev_base_lock); 2243 return -ENODEV; 2244 } 2245 2246 strcpy(ifr.ifr_name, dev->name); 2247 read_unlock(&dev_base_lock); 2248 2249 if (copy_to_user(arg, &ifr, sizeof(struct ifreq))) 2250 return -EFAULT; 2251 return 0; 2252 } 2253 2254 /* 2255 * Perform a SIOCGIFCONF call. This structure will change 2256 * size eventually, and there is nothing I can do about it. 2257 * Thus we will need a 'compatibility mode'. 2258 */ 2259 2260 static int dev_ifconf(struct net *net, char __user *arg) 2261 { 2262 struct ifconf ifc; 2263 struct net_device *dev; 2264 char __user *pos; 2265 int len; 2266 int total; 2267 int i; 2268 2269 /* 2270 * Fetch the caller's info block. 2271 */ 2272 2273 if (copy_from_user(&ifc, arg, sizeof(struct ifconf))) 2274 return -EFAULT; 2275 2276 pos = ifc.ifc_buf; 2277 len = ifc.ifc_len; 2278 2279 /* 2280 * Loop over the interfaces, and write an info block for each. 2281 */ 2282 2283 total = 0; 2284 for_each_netdev(net, dev) { 2285 for (i = 0; i < NPROTO; i++) { 2286 if (gifconf_list[i]) { 2287 int done; 2288 if (!pos) 2289 done = gifconf_list[i](dev, NULL, 0); 2290 else 2291 done = gifconf_list[i](dev, pos + total, 2292 len - total); 2293 if (done < 0) 2294 return -EFAULT; 2295 total += done; 2296 } 2297 } 2298 } 2299 2300 /* 2301 * All done. Write the updated control block back to the caller. 2302 */ 2303 ifc.ifc_len = total; 2304 2305 /* 2306 * Both BSD and Solaris return 0 here, so we do too. 2307 */ 2308 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0; 2309 } 2310 2311 #ifdef CONFIG_PROC_FS 2312 /* 2313 * This is invoked by the /proc filesystem handler to display a device 2314 * in detail. 2315 */ 2316 void *dev_seq_start(struct seq_file *seq, loff_t *pos) 2317 { 2318 struct net *net = seq->private; 2319 loff_t off; 2320 struct net_device *dev; 2321 2322 read_lock(&dev_base_lock); 2323 if (!*pos) 2324 return SEQ_START_TOKEN; 2325 2326 off = 1; 2327 for_each_netdev(net, dev) 2328 if (off++ == *pos) 2329 return dev; 2330 2331 return NULL; 2332 } 2333 2334 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2335 { 2336 struct net *net = seq->private; 2337 ++*pos; 2338 return v == SEQ_START_TOKEN ? 2339 first_net_device(net) : next_net_device((struct net_device *)v); 2340 } 2341 2342 void dev_seq_stop(struct seq_file *seq, void *v) 2343 { 2344 read_unlock(&dev_base_lock); 2345 } 2346 2347 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev) 2348 { 2349 struct net_device_stats *stats = dev->get_stats(dev); 2350 2351 seq_printf(seq, "%6s:%8lu %7lu %4lu %4lu %4lu %5lu %10lu %9lu " 2352 "%8lu %7lu %4lu %4lu %4lu %5lu %7lu %10lu\n", 2353 dev->name, stats->rx_bytes, stats->rx_packets, 2354 stats->rx_errors, 2355 stats->rx_dropped + stats->rx_missed_errors, 2356 stats->rx_fifo_errors, 2357 stats->rx_length_errors + stats->rx_over_errors + 2358 stats->rx_crc_errors + stats->rx_frame_errors, 2359 stats->rx_compressed, stats->multicast, 2360 stats->tx_bytes, stats->tx_packets, 2361 stats->tx_errors, stats->tx_dropped, 2362 stats->tx_fifo_errors, stats->collisions, 2363 stats->tx_carrier_errors + 2364 stats->tx_aborted_errors + 2365 stats->tx_window_errors + 2366 stats->tx_heartbeat_errors, 2367 stats->tx_compressed); 2368 } 2369 2370 /* 2371 * Called from the PROCfs module. This now uses the new arbitrary sized 2372 * /proc/net interface to create /proc/net/dev 2373 */ 2374 static int dev_seq_show(struct seq_file *seq, void *v) 2375 { 2376 if (v == SEQ_START_TOKEN) 2377 seq_puts(seq, "Inter-| Receive " 2378 " | Transmit\n" 2379 " face |bytes packets errs drop fifo frame " 2380 "compressed multicast|bytes packets errs " 2381 "drop fifo colls carrier compressed\n"); 2382 else 2383 dev_seq_printf_stats(seq, v); 2384 return 0; 2385 } 2386 2387 static struct netif_rx_stats *softnet_get_online(loff_t *pos) 2388 { 2389 struct netif_rx_stats *rc = NULL; 2390 2391 while (*pos < NR_CPUS) 2392 if (cpu_online(*pos)) { 2393 rc = &per_cpu(netdev_rx_stat, *pos); 2394 break; 2395 } else 2396 ++*pos; 2397 return rc; 2398 } 2399 2400 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos) 2401 { 2402 return softnet_get_online(pos); 2403 } 2404 2405 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2406 { 2407 ++*pos; 2408 return softnet_get_online(pos); 2409 } 2410 2411 static void softnet_seq_stop(struct seq_file *seq, void *v) 2412 { 2413 } 2414 2415 static int softnet_seq_show(struct seq_file *seq, void *v) 2416 { 2417 struct netif_rx_stats *s = v; 2418 2419 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x\n", 2420 s->total, s->dropped, s->time_squeeze, 0, 2421 0, 0, 0, 0, /* was fastroute */ 2422 s->cpu_collision ); 2423 return 0; 2424 } 2425 2426 static const struct seq_operations dev_seq_ops = { 2427 .start = dev_seq_start, 2428 .next = dev_seq_next, 2429 .stop = dev_seq_stop, 2430 .show = dev_seq_show, 2431 }; 2432 2433 static int dev_seq_open(struct inode *inode, struct file *file) 2434 { 2435 struct seq_file *seq; 2436 int res; 2437 res = seq_open(file, &dev_seq_ops); 2438 if (!res) { 2439 seq = file->private_data; 2440 seq->private = get_proc_net(inode); 2441 if (!seq->private) { 2442 seq_release(inode, file); 2443 res = -ENXIO; 2444 } 2445 } 2446 return res; 2447 } 2448 2449 static int dev_seq_release(struct inode *inode, struct file *file) 2450 { 2451 struct seq_file *seq = file->private_data; 2452 struct net *net = seq->private; 2453 put_net(net); 2454 return seq_release(inode, file); 2455 } 2456 2457 static const struct file_operations dev_seq_fops = { 2458 .owner = THIS_MODULE, 2459 .open = dev_seq_open, 2460 .read = seq_read, 2461 .llseek = seq_lseek, 2462 .release = dev_seq_release, 2463 }; 2464 2465 static const struct seq_operations softnet_seq_ops = { 2466 .start = softnet_seq_start, 2467 .next = softnet_seq_next, 2468 .stop = softnet_seq_stop, 2469 .show = softnet_seq_show, 2470 }; 2471 2472 static int softnet_seq_open(struct inode *inode, struct file *file) 2473 { 2474 return seq_open(file, &softnet_seq_ops); 2475 } 2476 2477 static const struct file_operations softnet_seq_fops = { 2478 .owner = THIS_MODULE, 2479 .open = softnet_seq_open, 2480 .read = seq_read, 2481 .llseek = seq_lseek, 2482 .release = seq_release, 2483 }; 2484 2485 static void *ptype_get_idx(loff_t pos) 2486 { 2487 struct packet_type *pt = NULL; 2488 loff_t i = 0; 2489 int t; 2490 2491 list_for_each_entry_rcu(pt, &ptype_all, list) { 2492 if (i == pos) 2493 return pt; 2494 ++i; 2495 } 2496 2497 for (t = 0; t < 16; t++) { 2498 list_for_each_entry_rcu(pt, &ptype_base[t], list) { 2499 if (i == pos) 2500 return pt; 2501 ++i; 2502 } 2503 } 2504 return NULL; 2505 } 2506 2507 static void *ptype_seq_start(struct seq_file *seq, loff_t *pos) 2508 { 2509 rcu_read_lock(); 2510 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN; 2511 } 2512 2513 static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2514 { 2515 struct packet_type *pt; 2516 struct list_head *nxt; 2517 int hash; 2518 2519 ++*pos; 2520 if (v == SEQ_START_TOKEN) 2521 return ptype_get_idx(0); 2522 2523 pt = v; 2524 nxt = pt->list.next; 2525 if (pt->type == htons(ETH_P_ALL)) { 2526 if (nxt != &ptype_all) 2527 goto found; 2528 hash = 0; 2529 nxt = ptype_base[0].next; 2530 } else 2531 hash = ntohs(pt->type) & 15; 2532 2533 while (nxt == &ptype_base[hash]) { 2534 if (++hash >= 16) 2535 return NULL; 2536 nxt = ptype_base[hash].next; 2537 } 2538 found: 2539 return list_entry(nxt, struct packet_type, list); 2540 } 2541 2542 static void ptype_seq_stop(struct seq_file *seq, void *v) 2543 { 2544 rcu_read_unlock(); 2545 } 2546 2547 static void ptype_seq_decode(struct seq_file *seq, void *sym) 2548 { 2549 #ifdef CONFIG_KALLSYMS 2550 unsigned long offset = 0, symsize; 2551 const char *symname; 2552 char *modname; 2553 char namebuf[128]; 2554 2555 symname = kallsyms_lookup((unsigned long)sym, &symsize, &offset, 2556 &modname, namebuf); 2557 2558 if (symname) { 2559 char *delim = ":"; 2560 2561 if (!modname) 2562 modname = delim = ""; 2563 seq_printf(seq, "%s%s%s%s+0x%lx", delim, modname, delim, 2564 symname, offset); 2565 return; 2566 } 2567 #endif 2568 2569 seq_printf(seq, "[%p]", sym); 2570 } 2571 2572 static int ptype_seq_show(struct seq_file *seq, void *v) 2573 { 2574 struct packet_type *pt = v; 2575 2576 if (v == SEQ_START_TOKEN) 2577 seq_puts(seq, "Type Device Function\n"); 2578 else { 2579 if (pt->type == htons(ETH_P_ALL)) 2580 seq_puts(seq, "ALL "); 2581 else 2582 seq_printf(seq, "%04x", ntohs(pt->type)); 2583 2584 seq_printf(seq, " %-8s ", 2585 pt->dev ? pt->dev->name : ""); 2586 ptype_seq_decode(seq, pt->func); 2587 seq_putc(seq, '\n'); 2588 } 2589 2590 return 0; 2591 } 2592 2593 static const struct seq_operations ptype_seq_ops = { 2594 .start = ptype_seq_start, 2595 .next = ptype_seq_next, 2596 .stop = ptype_seq_stop, 2597 .show = ptype_seq_show, 2598 }; 2599 2600 static int ptype_seq_open(struct inode *inode, struct file *file) 2601 { 2602 return seq_open(file, &ptype_seq_ops); 2603 } 2604 2605 static const struct file_operations ptype_seq_fops = { 2606 .owner = THIS_MODULE, 2607 .open = ptype_seq_open, 2608 .read = seq_read, 2609 .llseek = seq_lseek, 2610 .release = seq_release, 2611 }; 2612 2613 2614 static int __net_init dev_proc_net_init(struct net *net) 2615 { 2616 int rc = -ENOMEM; 2617 2618 if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops)) 2619 goto out; 2620 if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops)) 2621 goto out_dev; 2622 if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops)) 2623 goto out_softnet; 2624 2625 if (wext_proc_init(net)) 2626 goto out_ptype; 2627 rc = 0; 2628 out: 2629 return rc; 2630 out_ptype: 2631 proc_net_remove(net, "ptype"); 2632 out_softnet: 2633 proc_net_remove(net, "softnet_stat"); 2634 out_dev: 2635 proc_net_remove(net, "dev"); 2636 goto out; 2637 } 2638 2639 static void __net_exit dev_proc_net_exit(struct net *net) 2640 { 2641 wext_proc_exit(net); 2642 2643 proc_net_remove(net, "ptype"); 2644 proc_net_remove(net, "softnet_stat"); 2645 proc_net_remove(net, "dev"); 2646 } 2647 2648 static struct pernet_operations __net_initdata dev_proc_ops = { 2649 .init = dev_proc_net_init, 2650 .exit = dev_proc_net_exit, 2651 }; 2652 2653 static int __init dev_proc_init(void) 2654 { 2655 return register_pernet_subsys(&dev_proc_ops); 2656 } 2657 #else 2658 #define dev_proc_init() 0 2659 #endif /* CONFIG_PROC_FS */ 2660 2661 2662 /** 2663 * netdev_set_master - set up master/slave pair 2664 * @slave: slave device 2665 * @master: new master device 2666 * 2667 * Changes the master device of the slave. Pass %NULL to break the 2668 * bonding. The caller must hold the RTNL semaphore. On a failure 2669 * a negative errno code is returned. On success the reference counts 2670 * are adjusted, %RTM_NEWLINK is sent to the routing socket and the 2671 * function returns zero. 2672 */ 2673 int netdev_set_master(struct net_device *slave, struct net_device *master) 2674 { 2675 struct net_device *old = slave->master; 2676 2677 ASSERT_RTNL(); 2678 2679 if (master) { 2680 if (old) 2681 return -EBUSY; 2682 dev_hold(master); 2683 } 2684 2685 slave->master = master; 2686 2687 synchronize_net(); 2688 2689 if (old) 2690 dev_put(old); 2691 2692 if (master) 2693 slave->flags |= IFF_SLAVE; 2694 else 2695 slave->flags &= ~IFF_SLAVE; 2696 2697 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE); 2698 return 0; 2699 } 2700 2701 static void __dev_set_promiscuity(struct net_device *dev, int inc) 2702 { 2703 unsigned short old_flags = dev->flags; 2704 2705 ASSERT_RTNL(); 2706 2707 if ((dev->promiscuity += inc) == 0) 2708 dev->flags &= ~IFF_PROMISC; 2709 else 2710 dev->flags |= IFF_PROMISC; 2711 if (dev->flags != old_flags) { 2712 printk(KERN_INFO "device %s %s promiscuous mode\n", 2713 dev->name, (dev->flags & IFF_PROMISC) ? "entered" : 2714 "left"); 2715 audit_log(current->audit_context, GFP_ATOMIC, 2716 AUDIT_ANOM_PROMISCUOUS, 2717 "dev=%s prom=%d old_prom=%d auid=%u", 2718 dev->name, (dev->flags & IFF_PROMISC), 2719 (old_flags & IFF_PROMISC), 2720 audit_get_loginuid(current->audit_context)); 2721 2722 if (dev->change_rx_flags) 2723 dev->change_rx_flags(dev, IFF_PROMISC); 2724 } 2725 } 2726 2727 /** 2728 * dev_set_promiscuity - update promiscuity count on a device 2729 * @dev: device 2730 * @inc: modifier 2731 * 2732 * Add or remove promiscuity from a device. While the count in the device 2733 * remains above zero the interface remains promiscuous. Once it hits zero 2734 * the device reverts back to normal filtering operation. A negative inc 2735 * value is used to drop promiscuity on the device. 2736 */ 2737 void dev_set_promiscuity(struct net_device *dev, int inc) 2738 { 2739 unsigned short old_flags = dev->flags; 2740 2741 __dev_set_promiscuity(dev, inc); 2742 if (dev->flags != old_flags) 2743 dev_set_rx_mode(dev); 2744 } 2745 2746 /** 2747 * dev_set_allmulti - update allmulti count on a device 2748 * @dev: device 2749 * @inc: modifier 2750 * 2751 * Add or remove reception of all multicast frames to a device. While the 2752 * count in the device remains above zero the interface remains listening 2753 * to all interfaces. Once it hits zero the device reverts back to normal 2754 * filtering operation. A negative @inc value is used to drop the counter 2755 * when releasing a resource needing all multicasts. 2756 */ 2757 2758 void dev_set_allmulti(struct net_device *dev, int inc) 2759 { 2760 unsigned short old_flags = dev->flags; 2761 2762 ASSERT_RTNL(); 2763 2764 dev->flags |= IFF_ALLMULTI; 2765 if ((dev->allmulti += inc) == 0) 2766 dev->flags &= ~IFF_ALLMULTI; 2767 if (dev->flags ^ old_flags) { 2768 if (dev->change_rx_flags) 2769 dev->change_rx_flags(dev, IFF_ALLMULTI); 2770 dev_set_rx_mode(dev); 2771 } 2772 } 2773 2774 /* 2775 * Upload unicast and multicast address lists to device and 2776 * configure RX filtering. When the device doesn't support unicast 2777 * filtering it is put in promiscous mode while unicast addresses 2778 * are present. 2779 */ 2780 void __dev_set_rx_mode(struct net_device *dev) 2781 { 2782 /* dev_open will call this function so the list will stay sane. */ 2783 if (!(dev->flags&IFF_UP)) 2784 return; 2785 2786 if (!netif_device_present(dev)) 2787 return; 2788 2789 if (dev->set_rx_mode) 2790 dev->set_rx_mode(dev); 2791 else { 2792 /* Unicast addresses changes may only happen under the rtnl, 2793 * therefore calling __dev_set_promiscuity here is safe. 2794 */ 2795 if (dev->uc_count > 0 && !dev->uc_promisc) { 2796 __dev_set_promiscuity(dev, 1); 2797 dev->uc_promisc = 1; 2798 } else if (dev->uc_count == 0 && dev->uc_promisc) { 2799 __dev_set_promiscuity(dev, -1); 2800 dev->uc_promisc = 0; 2801 } 2802 2803 if (dev->set_multicast_list) 2804 dev->set_multicast_list(dev); 2805 } 2806 } 2807 2808 void dev_set_rx_mode(struct net_device *dev) 2809 { 2810 netif_tx_lock_bh(dev); 2811 __dev_set_rx_mode(dev); 2812 netif_tx_unlock_bh(dev); 2813 } 2814 2815 int __dev_addr_delete(struct dev_addr_list **list, int *count, 2816 void *addr, int alen, int glbl) 2817 { 2818 struct dev_addr_list *da; 2819 2820 for (; (da = *list) != NULL; list = &da->next) { 2821 if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 && 2822 alen == da->da_addrlen) { 2823 if (glbl) { 2824 int old_glbl = da->da_gusers; 2825 da->da_gusers = 0; 2826 if (old_glbl == 0) 2827 break; 2828 } 2829 if (--da->da_users) 2830 return 0; 2831 2832 *list = da->next; 2833 kfree(da); 2834 (*count)--; 2835 return 0; 2836 } 2837 } 2838 return -ENOENT; 2839 } 2840 2841 int __dev_addr_add(struct dev_addr_list **list, int *count, 2842 void *addr, int alen, int glbl) 2843 { 2844 struct dev_addr_list *da; 2845 2846 for (da = *list; da != NULL; da = da->next) { 2847 if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 && 2848 da->da_addrlen == alen) { 2849 if (glbl) { 2850 int old_glbl = da->da_gusers; 2851 da->da_gusers = 1; 2852 if (old_glbl) 2853 return 0; 2854 } 2855 da->da_users++; 2856 return 0; 2857 } 2858 } 2859 2860 da = kmalloc(sizeof(*da), GFP_ATOMIC); 2861 if (da == NULL) 2862 return -ENOMEM; 2863 memcpy(da->da_addr, addr, alen); 2864 da->da_addrlen = alen; 2865 da->da_users = 1; 2866 da->da_gusers = glbl ? 1 : 0; 2867 da->next = *list; 2868 *list = da; 2869 (*count)++; 2870 return 0; 2871 } 2872 2873 /** 2874 * dev_unicast_delete - Release secondary unicast address. 2875 * @dev: device 2876 * @addr: address to delete 2877 * @alen: length of @addr 2878 * 2879 * Release reference to a secondary unicast address and remove it 2880 * from the device if the reference count drops to zero. 2881 * 2882 * The caller must hold the rtnl_mutex. 2883 */ 2884 int dev_unicast_delete(struct net_device *dev, void *addr, int alen) 2885 { 2886 int err; 2887 2888 ASSERT_RTNL(); 2889 2890 netif_tx_lock_bh(dev); 2891 err = __dev_addr_delete(&dev->uc_list, &dev->uc_count, addr, alen, 0); 2892 if (!err) 2893 __dev_set_rx_mode(dev); 2894 netif_tx_unlock_bh(dev); 2895 return err; 2896 } 2897 EXPORT_SYMBOL(dev_unicast_delete); 2898 2899 /** 2900 * dev_unicast_add - add a secondary unicast address 2901 * @dev: device 2902 * @addr: address to delete 2903 * @alen: length of @addr 2904 * 2905 * Add a secondary unicast address to the device or increase 2906 * the reference count if it already exists. 2907 * 2908 * The caller must hold the rtnl_mutex. 2909 */ 2910 int dev_unicast_add(struct net_device *dev, void *addr, int alen) 2911 { 2912 int err; 2913 2914 ASSERT_RTNL(); 2915 2916 netif_tx_lock_bh(dev); 2917 err = __dev_addr_add(&dev->uc_list, &dev->uc_count, addr, alen, 0); 2918 if (!err) 2919 __dev_set_rx_mode(dev); 2920 netif_tx_unlock_bh(dev); 2921 return err; 2922 } 2923 EXPORT_SYMBOL(dev_unicast_add); 2924 2925 static void __dev_addr_discard(struct dev_addr_list **list) 2926 { 2927 struct dev_addr_list *tmp; 2928 2929 while (*list != NULL) { 2930 tmp = *list; 2931 *list = tmp->next; 2932 if (tmp->da_users > tmp->da_gusers) 2933 printk("__dev_addr_discard: address leakage! " 2934 "da_users=%d\n", tmp->da_users); 2935 kfree(tmp); 2936 } 2937 } 2938 2939 static void dev_addr_discard(struct net_device *dev) 2940 { 2941 netif_tx_lock_bh(dev); 2942 2943 __dev_addr_discard(&dev->uc_list); 2944 dev->uc_count = 0; 2945 2946 __dev_addr_discard(&dev->mc_list); 2947 dev->mc_count = 0; 2948 2949 netif_tx_unlock_bh(dev); 2950 } 2951 2952 unsigned dev_get_flags(const struct net_device *dev) 2953 { 2954 unsigned flags; 2955 2956 flags = (dev->flags & ~(IFF_PROMISC | 2957 IFF_ALLMULTI | 2958 IFF_RUNNING | 2959 IFF_LOWER_UP | 2960 IFF_DORMANT)) | 2961 (dev->gflags & (IFF_PROMISC | 2962 IFF_ALLMULTI)); 2963 2964 if (netif_running(dev)) { 2965 if (netif_oper_up(dev)) 2966 flags |= IFF_RUNNING; 2967 if (netif_carrier_ok(dev)) 2968 flags |= IFF_LOWER_UP; 2969 if (netif_dormant(dev)) 2970 flags |= IFF_DORMANT; 2971 } 2972 2973 return flags; 2974 } 2975 2976 int dev_change_flags(struct net_device *dev, unsigned flags) 2977 { 2978 int ret, changes; 2979 int old_flags = dev->flags; 2980 2981 ASSERT_RTNL(); 2982 2983 /* 2984 * Set the flags on our device. 2985 */ 2986 2987 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP | 2988 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL | 2989 IFF_AUTOMEDIA)) | 2990 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC | 2991 IFF_ALLMULTI)); 2992 2993 /* 2994 * Load in the correct multicast list now the flags have changed. 2995 */ 2996 2997 if (dev->change_rx_flags && (dev->flags ^ flags) & IFF_MULTICAST) 2998 dev->change_rx_flags(dev, IFF_MULTICAST); 2999 3000 dev_set_rx_mode(dev); 3001 3002 /* 3003 * Have we downed the interface. We handle IFF_UP ourselves 3004 * according to user attempts to set it, rather than blindly 3005 * setting it. 3006 */ 3007 3008 ret = 0; 3009 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */ 3010 ret = ((old_flags & IFF_UP) ? dev_close : dev_open)(dev); 3011 3012 if (!ret) 3013 dev_set_rx_mode(dev); 3014 } 3015 3016 if (dev->flags & IFF_UP && 3017 ((old_flags ^ dev->flags) &~ (IFF_UP | IFF_PROMISC | IFF_ALLMULTI | 3018 IFF_VOLATILE))) 3019 call_netdevice_notifiers(NETDEV_CHANGE, dev); 3020 3021 if ((flags ^ dev->gflags) & IFF_PROMISC) { 3022 int inc = (flags & IFF_PROMISC) ? +1 : -1; 3023 dev->gflags ^= IFF_PROMISC; 3024 dev_set_promiscuity(dev, inc); 3025 } 3026 3027 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI 3028 is important. Some (broken) drivers set IFF_PROMISC, when 3029 IFF_ALLMULTI is requested not asking us and not reporting. 3030 */ 3031 if ((flags ^ dev->gflags) & IFF_ALLMULTI) { 3032 int inc = (flags & IFF_ALLMULTI) ? +1 : -1; 3033 dev->gflags ^= IFF_ALLMULTI; 3034 dev_set_allmulti(dev, inc); 3035 } 3036 3037 /* Exclude state transition flags, already notified */ 3038 changes = (old_flags ^ dev->flags) & ~(IFF_UP | IFF_RUNNING); 3039 if (changes) 3040 rtmsg_ifinfo(RTM_NEWLINK, dev, changes); 3041 3042 return ret; 3043 } 3044 3045 int dev_set_mtu(struct net_device *dev, int new_mtu) 3046 { 3047 int err; 3048 3049 if (new_mtu == dev->mtu) 3050 return 0; 3051 3052 /* MTU must be positive. */ 3053 if (new_mtu < 0) 3054 return -EINVAL; 3055 3056 if (!netif_device_present(dev)) 3057 return -ENODEV; 3058 3059 err = 0; 3060 if (dev->change_mtu) 3061 err = dev->change_mtu(dev, new_mtu); 3062 else 3063 dev->mtu = new_mtu; 3064 if (!err && dev->flags & IFF_UP) 3065 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev); 3066 return err; 3067 } 3068 3069 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa) 3070 { 3071 int err; 3072 3073 if (!dev->set_mac_address) 3074 return -EOPNOTSUPP; 3075 if (sa->sa_family != dev->type) 3076 return -EINVAL; 3077 if (!netif_device_present(dev)) 3078 return -ENODEV; 3079 err = dev->set_mac_address(dev, sa); 3080 if (!err) 3081 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 3082 return err; 3083 } 3084 3085 /* 3086 * Perform the SIOCxIFxxx calls, inside read_lock(dev_base_lock) 3087 */ 3088 static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd) 3089 { 3090 int err; 3091 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name); 3092 3093 if (!dev) 3094 return -ENODEV; 3095 3096 switch (cmd) { 3097 case SIOCGIFFLAGS: /* Get interface flags */ 3098 ifr->ifr_flags = dev_get_flags(dev); 3099 return 0; 3100 3101 case SIOCGIFMETRIC: /* Get the metric on the interface 3102 (currently unused) */ 3103 ifr->ifr_metric = 0; 3104 return 0; 3105 3106 case SIOCGIFMTU: /* Get the MTU of a device */ 3107 ifr->ifr_mtu = dev->mtu; 3108 return 0; 3109 3110 case SIOCGIFHWADDR: 3111 if (!dev->addr_len) 3112 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data); 3113 else 3114 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr, 3115 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len)); 3116 ifr->ifr_hwaddr.sa_family = dev->type; 3117 return 0; 3118 3119 case SIOCGIFSLAVE: 3120 err = -EINVAL; 3121 break; 3122 3123 case SIOCGIFMAP: 3124 ifr->ifr_map.mem_start = dev->mem_start; 3125 ifr->ifr_map.mem_end = dev->mem_end; 3126 ifr->ifr_map.base_addr = dev->base_addr; 3127 ifr->ifr_map.irq = dev->irq; 3128 ifr->ifr_map.dma = dev->dma; 3129 ifr->ifr_map.port = dev->if_port; 3130 return 0; 3131 3132 case SIOCGIFINDEX: 3133 ifr->ifr_ifindex = dev->ifindex; 3134 return 0; 3135 3136 case SIOCGIFTXQLEN: 3137 ifr->ifr_qlen = dev->tx_queue_len; 3138 return 0; 3139 3140 default: 3141 /* dev_ioctl() should ensure this case 3142 * is never reached 3143 */ 3144 WARN_ON(1); 3145 err = -EINVAL; 3146 break; 3147 3148 } 3149 return err; 3150 } 3151 3152 /* 3153 * Perform the SIOCxIFxxx calls, inside rtnl_lock() 3154 */ 3155 static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd) 3156 { 3157 int err; 3158 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name); 3159 3160 if (!dev) 3161 return -ENODEV; 3162 3163 switch (cmd) { 3164 case SIOCSIFFLAGS: /* Set interface flags */ 3165 return dev_change_flags(dev, ifr->ifr_flags); 3166 3167 case SIOCSIFMETRIC: /* Set the metric on the interface 3168 (currently unused) */ 3169 return -EOPNOTSUPP; 3170 3171 case SIOCSIFMTU: /* Set the MTU of a device */ 3172 return dev_set_mtu(dev, ifr->ifr_mtu); 3173 3174 case SIOCSIFHWADDR: 3175 return dev_set_mac_address(dev, &ifr->ifr_hwaddr); 3176 3177 case SIOCSIFHWBROADCAST: 3178 if (ifr->ifr_hwaddr.sa_family != dev->type) 3179 return -EINVAL; 3180 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data, 3181 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len)); 3182 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 3183 return 0; 3184 3185 case SIOCSIFMAP: 3186 if (dev->set_config) { 3187 if (!netif_device_present(dev)) 3188 return -ENODEV; 3189 return dev->set_config(dev, &ifr->ifr_map); 3190 } 3191 return -EOPNOTSUPP; 3192 3193 case SIOCADDMULTI: 3194 if (!dev->set_multicast_list || 3195 ifr->ifr_hwaddr.sa_family != AF_UNSPEC) 3196 return -EINVAL; 3197 if (!netif_device_present(dev)) 3198 return -ENODEV; 3199 return dev_mc_add(dev, ifr->ifr_hwaddr.sa_data, 3200 dev->addr_len, 1); 3201 3202 case SIOCDELMULTI: 3203 if (!dev->set_multicast_list || 3204 ifr->ifr_hwaddr.sa_family != AF_UNSPEC) 3205 return -EINVAL; 3206 if (!netif_device_present(dev)) 3207 return -ENODEV; 3208 return dev_mc_delete(dev, ifr->ifr_hwaddr.sa_data, 3209 dev->addr_len, 1); 3210 3211 case SIOCSIFTXQLEN: 3212 if (ifr->ifr_qlen < 0) 3213 return -EINVAL; 3214 dev->tx_queue_len = ifr->ifr_qlen; 3215 return 0; 3216 3217 case SIOCSIFNAME: 3218 ifr->ifr_newname[IFNAMSIZ-1] = '\0'; 3219 return dev_change_name(dev, ifr->ifr_newname); 3220 3221 /* 3222 * Unknown or private ioctl 3223 */ 3224 3225 default: 3226 if ((cmd >= SIOCDEVPRIVATE && 3227 cmd <= SIOCDEVPRIVATE + 15) || 3228 cmd == SIOCBONDENSLAVE || 3229 cmd == SIOCBONDRELEASE || 3230 cmd == SIOCBONDSETHWADDR || 3231 cmd == SIOCBONDSLAVEINFOQUERY || 3232 cmd == SIOCBONDINFOQUERY || 3233 cmd == SIOCBONDCHANGEACTIVE || 3234 cmd == SIOCGMIIPHY || 3235 cmd == SIOCGMIIREG || 3236 cmd == SIOCSMIIREG || 3237 cmd == SIOCBRADDIF || 3238 cmd == SIOCBRDELIF || 3239 cmd == SIOCWANDEV) { 3240 err = -EOPNOTSUPP; 3241 if (dev->do_ioctl) { 3242 if (netif_device_present(dev)) 3243 err = dev->do_ioctl(dev, ifr, 3244 cmd); 3245 else 3246 err = -ENODEV; 3247 } 3248 } else 3249 err = -EINVAL; 3250 3251 } 3252 return err; 3253 } 3254 3255 /* 3256 * This function handles all "interface"-type I/O control requests. The actual 3257 * 'doing' part of this is dev_ifsioc above. 3258 */ 3259 3260 /** 3261 * dev_ioctl - network device ioctl 3262 * @cmd: command to issue 3263 * @arg: pointer to a struct ifreq in user space 3264 * 3265 * Issue ioctl functions to devices. This is normally called by the 3266 * user space syscall interfaces but can sometimes be useful for 3267 * other purposes. The return value is the return from the syscall if 3268 * positive or a negative errno code on error. 3269 */ 3270 3271 int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg) 3272 { 3273 struct ifreq ifr; 3274 int ret; 3275 char *colon; 3276 3277 /* One special case: SIOCGIFCONF takes ifconf argument 3278 and requires shared lock, because it sleeps writing 3279 to user space. 3280 */ 3281 3282 if (cmd == SIOCGIFCONF) { 3283 rtnl_lock(); 3284 ret = dev_ifconf(net, (char __user *) arg); 3285 rtnl_unlock(); 3286 return ret; 3287 } 3288 if (cmd == SIOCGIFNAME) 3289 return dev_ifname(net, (struct ifreq __user *)arg); 3290 3291 if (copy_from_user(&ifr, arg, sizeof(struct ifreq))) 3292 return -EFAULT; 3293 3294 ifr.ifr_name[IFNAMSIZ-1] = 0; 3295 3296 colon = strchr(ifr.ifr_name, ':'); 3297 if (colon) 3298 *colon = 0; 3299 3300 /* 3301 * See which interface the caller is talking about. 3302 */ 3303 3304 switch (cmd) { 3305 /* 3306 * These ioctl calls: 3307 * - can be done by all. 3308 * - atomic and do not require locking. 3309 * - return a value 3310 */ 3311 case SIOCGIFFLAGS: 3312 case SIOCGIFMETRIC: 3313 case SIOCGIFMTU: 3314 case SIOCGIFHWADDR: 3315 case SIOCGIFSLAVE: 3316 case SIOCGIFMAP: 3317 case SIOCGIFINDEX: 3318 case SIOCGIFTXQLEN: 3319 dev_load(net, ifr.ifr_name); 3320 read_lock(&dev_base_lock); 3321 ret = dev_ifsioc_locked(net, &ifr, cmd); 3322 read_unlock(&dev_base_lock); 3323 if (!ret) { 3324 if (colon) 3325 *colon = ':'; 3326 if (copy_to_user(arg, &ifr, 3327 sizeof(struct ifreq))) 3328 ret = -EFAULT; 3329 } 3330 return ret; 3331 3332 case SIOCETHTOOL: 3333 dev_load(net, ifr.ifr_name); 3334 rtnl_lock(); 3335 ret = dev_ethtool(net, &ifr); 3336 rtnl_unlock(); 3337 if (!ret) { 3338 if (colon) 3339 *colon = ':'; 3340 if (copy_to_user(arg, &ifr, 3341 sizeof(struct ifreq))) 3342 ret = -EFAULT; 3343 } 3344 return ret; 3345 3346 /* 3347 * These ioctl calls: 3348 * - require superuser power. 3349 * - require strict serialization. 3350 * - return a value 3351 */ 3352 case SIOCGMIIPHY: 3353 case SIOCGMIIREG: 3354 case SIOCSIFNAME: 3355 if (!capable(CAP_NET_ADMIN)) 3356 return -EPERM; 3357 dev_load(net, ifr.ifr_name); 3358 rtnl_lock(); 3359 ret = dev_ifsioc(net, &ifr, cmd); 3360 rtnl_unlock(); 3361 if (!ret) { 3362 if (colon) 3363 *colon = ':'; 3364 if (copy_to_user(arg, &ifr, 3365 sizeof(struct ifreq))) 3366 ret = -EFAULT; 3367 } 3368 return ret; 3369 3370 /* 3371 * These ioctl calls: 3372 * - require superuser power. 3373 * - require strict serialization. 3374 * - do not return a value 3375 */ 3376 case SIOCSIFFLAGS: 3377 case SIOCSIFMETRIC: 3378 case SIOCSIFMTU: 3379 case SIOCSIFMAP: 3380 case SIOCSIFHWADDR: 3381 case SIOCSIFSLAVE: 3382 case SIOCADDMULTI: 3383 case SIOCDELMULTI: 3384 case SIOCSIFHWBROADCAST: 3385 case SIOCSIFTXQLEN: 3386 case SIOCSMIIREG: 3387 case SIOCBONDENSLAVE: 3388 case SIOCBONDRELEASE: 3389 case SIOCBONDSETHWADDR: 3390 case SIOCBONDCHANGEACTIVE: 3391 case SIOCBRADDIF: 3392 case SIOCBRDELIF: 3393 if (!capable(CAP_NET_ADMIN)) 3394 return -EPERM; 3395 /* fall through */ 3396 case SIOCBONDSLAVEINFOQUERY: 3397 case SIOCBONDINFOQUERY: 3398 dev_load(net, ifr.ifr_name); 3399 rtnl_lock(); 3400 ret = dev_ifsioc(net, &ifr, cmd); 3401 rtnl_unlock(); 3402 return ret; 3403 3404 case SIOCGIFMEM: 3405 /* Get the per device memory space. We can add this but 3406 * currently do not support it */ 3407 case SIOCSIFMEM: 3408 /* Set the per device memory buffer space. 3409 * Not applicable in our case */ 3410 case SIOCSIFLINK: 3411 return -EINVAL; 3412 3413 /* 3414 * Unknown or private ioctl. 3415 */ 3416 default: 3417 if (cmd == SIOCWANDEV || 3418 (cmd >= SIOCDEVPRIVATE && 3419 cmd <= SIOCDEVPRIVATE + 15)) { 3420 dev_load(net, ifr.ifr_name); 3421 rtnl_lock(); 3422 ret = dev_ifsioc(net, &ifr, cmd); 3423 rtnl_unlock(); 3424 if (!ret && copy_to_user(arg, &ifr, 3425 sizeof(struct ifreq))) 3426 ret = -EFAULT; 3427 return ret; 3428 } 3429 /* Take care of Wireless Extensions */ 3430 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) 3431 return wext_handle_ioctl(net, &ifr, cmd, arg); 3432 return -EINVAL; 3433 } 3434 } 3435 3436 3437 /** 3438 * dev_new_index - allocate an ifindex 3439 * 3440 * Returns a suitable unique value for a new device interface 3441 * number. The caller must hold the rtnl semaphore or the 3442 * dev_base_lock to be sure it remains unique. 3443 */ 3444 static int dev_new_index(struct net *net) 3445 { 3446 static int ifindex; 3447 for (;;) { 3448 if (++ifindex <= 0) 3449 ifindex = 1; 3450 if (!__dev_get_by_index(net, ifindex)) 3451 return ifindex; 3452 } 3453 } 3454 3455 /* Delayed registration/unregisteration */ 3456 static DEFINE_SPINLOCK(net_todo_list_lock); 3457 static struct list_head net_todo_list = LIST_HEAD_INIT(net_todo_list); 3458 3459 static void net_set_todo(struct net_device *dev) 3460 { 3461 spin_lock(&net_todo_list_lock); 3462 list_add_tail(&dev->todo_list, &net_todo_list); 3463 spin_unlock(&net_todo_list_lock); 3464 } 3465 3466 /** 3467 * register_netdevice - register a network device 3468 * @dev: device to register 3469 * 3470 * Take a completed network device structure and add it to the kernel 3471 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 3472 * chain. 0 is returned on success. A negative errno code is returned 3473 * on a failure to set up the device, or if the name is a duplicate. 3474 * 3475 * Callers must hold the rtnl semaphore. You may want 3476 * register_netdev() instead of this. 3477 * 3478 * BUGS: 3479 * The locking appears insufficient to guarantee two parallel registers 3480 * will not get the same name. 3481 */ 3482 3483 int register_netdevice(struct net_device *dev) 3484 { 3485 struct hlist_head *head; 3486 struct hlist_node *p; 3487 int ret; 3488 struct net *net; 3489 3490 BUG_ON(dev_boot_phase); 3491 ASSERT_RTNL(); 3492 3493 might_sleep(); 3494 3495 /* When net_device's are persistent, this will be fatal. */ 3496 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED); 3497 BUG_ON(!dev->nd_net); 3498 net = dev->nd_net; 3499 3500 spin_lock_init(&dev->queue_lock); 3501 spin_lock_init(&dev->_xmit_lock); 3502 netdev_set_lockdep_class(&dev->_xmit_lock, dev->type); 3503 dev->xmit_lock_owner = -1; 3504 spin_lock_init(&dev->ingress_lock); 3505 3506 dev->iflink = -1; 3507 3508 /* Init, if this function is available */ 3509 if (dev->init) { 3510 ret = dev->init(dev); 3511 if (ret) { 3512 if (ret > 0) 3513 ret = -EIO; 3514 goto out; 3515 } 3516 } 3517 3518 if (!dev_valid_name(dev->name)) { 3519 ret = -EINVAL; 3520 goto err_uninit; 3521 } 3522 3523 dev->ifindex = dev_new_index(net); 3524 if (dev->iflink == -1) 3525 dev->iflink = dev->ifindex; 3526 3527 /* Check for existence of name */ 3528 head = dev_name_hash(net, dev->name); 3529 hlist_for_each(p, head) { 3530 struct net_device *d 3531 = hlist_entry(p, struct net_device, name_hlist); 3532 if (!strncmp(d->name, dev->name, IFNAMSIZ)) { 3533 ret = -EEXIST; 3534 goto err_uninit; 3535 } 3536 } 3537 3538 /* Fix illegal checksum combinations */ 3539 if ((dev->features & NETIF_F_HW_CSUM) && 3540 (dev->features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 3541 printk(KERN_NOTICE "%s: mixed HW and IP checksum settings.\n", 3542 dev->name); 3543 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 3544 } 3545 3546 if ((dev->features & NETIF_F_NO_CSUM) && 3547 (dev->features & (NETIF_F_HW_CSUM|NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 3548 printk(KERN_NOTICE "%s: mixed no checksumming and other settings.\n", 3549 dev->name); 3550 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM|NETIF_F_HW_CSUM); 3551 } 3552 3553 3554 /* Fix illegal SG+CSUM combinations. */ 3555 if ((dev->features & NETIF_F_SG) && 3556 !(dev->features & NETIF_F_ALL_CSUM)) { 3557 printk(KERN_NOTICE "%s: Dropping NETIF_F_SG since no checksum feature.\n", 3558 dev->name); 3559 dev->features &= ~NETIF_F_SG; 3560 } 3561 3562 /* TSO requires that SG is present as well. */ 3563 if ((dev->features & NETIF_F_TSO) && 3564 !(dev->features & NETIF_F_SG)) { 3565 printk(KERN_NOTICE "%s: Dropping NETIF_F_TSO since no SG feature.\n", 3566 dev->name); 3567 dev->features &= ~NETIF_F_TSO; 3568 } 3569 if (dev->features & NETIF_F_UFO) { 3570 if (!(dev->features & NETIF_F_HW_CSUM)) { 3571 printk(KERN_ERR "%s: Dropping NETIF_F_UFO since no " 3572 "NETIF_F_HW_CSUM feature.\n", 3573 dev->name); 3574 dev->features &= ~NETIF_F_UFO; 3575 } 3576 if (!(dev->features & NETIF_F_SG)) { 3577 printk(KERN_ERR "%s: Dropping NETIF_F_UFO since no " 3578 "NETIF_F_SG feature.\n", 3579 dev->name); 3580 dev->features &= ~NETIF_F_UFO; 3581 } 3582 } 3583 3584 ret = netdev_register_kobject(dev); 3585 if (ret) 3586 goto err_uninit; 3587 dev->reg_state = NETREG_REGISTERED; 3588 3589 /* 3590 * Default initial state at registry is that the 3591 * device is present. 3592 */ 3593 3594 set_bit(__LINK_STATE_PRESENT, &dev->state); 3595 3596 dev_init_scheduler(dev); 3597 dev_hold(dev); 3598 list_netdevice(dev); 3599 3600 /* Notify protocols, that a new device appeared. */ 3601 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev); 3602 ret = notifier_to_errno(ret); 3603 if (ret) 3604 unregister_netdevice(dev); 3605 3606 out: 3607 return ret; 3608 3609 err_uninit: 3610 if (dev->uninit) 3611 dev->uninit(dev); 3612 goto out; 3613 } 3614 3615 /** 3616 * register_netdev - register a network device 3617 * @dev: device to register 3618 * 3619 * Take a completed network device structure and add it to the kernel 3620 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 3621 * chain. 0 is returned on success. A negative errno code is returned 3622 * on a failure to set up the device, or if the name is a duplicate. 3623 * 3624 * This is a wrapper around register_netdevice that takes the rtnl semaphore 3625 * and expands the device name if you passed a format string to 3626 * alloc_netdev. 3627 */ 3628 int register_netdev(struct net_device *dev) 3629 { 3630 int err; 3631 3632 rtnl_lock(); 3633 3634 /* 3635 * If the name is a format string the caller wants us to do a 3636 * name allocation. 3637 */ 3638 if (strchr(dev->name, '%')) { 3639 err = dev_alloc_name(dev, dev->name); 3640 if (err < 0) 3641 goto out; 3642 } 3643 3644 err = register_netdevice(dev); 3645 out: 3646 rtnl_unlock(); 3647 return err; 3648 } 3649 EXPORT_SYMBOL(register_netdev); 3650 3651 /* 3652 * netdev_wait_allrefs - wait until all references are gone. 3653 * 3654 * This is called when unregistering network devices. 3655 * 3656 * Any protocol or device that holds a reference should register 3657 * for netdevice notification, and cleanup and put back the 3658 * reference if they receive an UNREGISTER event. 3659 * We can get stuck here if buggy protocols don't correctly 3660 * call dev_put. 3661 */ 3662 static void netdev_wait_allrefs(struct net_device *dev) 3663 { 3664 unsigned long rebroadcast_time, warning_time; 3665 3666 rebroadcast_time = warning_time = jiffies; 3667 while (atomic_read(&dev->refcnt) != 0) { 3668 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) { 3669 rtnl_lock(); 3670 3671 /* Rebroadcast unregister notification */ 3672 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 3673 3674 if (test_bit(__LINK_STATE_LINKWATCH_PENDING, 3675 &dev->state)) { 3676 /* We must not have linkwatch events 3677 * pending on unregister. If this 3678 * happens, we simply run the queue 3679 * unscheduled, resulting in a noop 3680 * for this device. 3681 */ 3682 linkwatch_run_queue(); 3683 } 3684 3685 __rtnl_unlock(); 3686 3687 rebroadcast_time = jiffies; 3688 } 3689 3690 msleep(250); 3691 3692 if (time_after(jiffies, warning_time + 10 * HZ)) { 3693 printk(KERN_EMERG "unregister_netdevice: " 3694 "waiting for %s to become free. Usage " 3695 "count = %d\n", 3696 dev->name, atomic_read(&dev->refcnt)); 3697 warning_time = jiffies; 3698 } 3699 } 3700 } 3701 3702 /* The sequence is: 3703 * 3704 * rtnl_lock(); 3705 * ... 3706 * register_netdevice(x1); 3707 * register_netdevice(x2); 3708 * ... 3709 * unregister_netdevice(y1); 3710 * unregister_netdevice(y2); 3711 * ... 3712 * rtnl_unlock(); 3713 * free_netdev(y1); 3714 * free_netdev(y2); 3715 * 3716 * We are invoked by rtnl_unlock() after it drops the semaphore. 3717 * This allows us to deal with problems: 3718 * 1) We can delete sysfs objects which invoke hotplug 3719 * without deadlocking with linkwatch via keventd. 3720 * 2) Since we run with the RTNL semaphore not held, we can sleep 3721 * safely in order to wait for the netdev refcnt to drop to zero. 3722 */ 3723 static DEFINE_MUTEX(net_todo_run_mutex); 3724 void netdev_run_todo(void) 3725 { 3726 struct list_head list; 3727 3728 /* Need to guard against multiple cpu's getting out of order. */ 3729 mutex_lock(&net_todo_run_mutex); 3730 3731 /* Not safe to do outside the semaphore. We must not return 3732 * until all unregister events invoked by the local processor 3733 * have been completed (either by this todo run, or one on 3734 * another cpu). 3735 */ 3736 if (list_empty(&net_todo_list)) 3737 goto out; 3738 3739 /* Snapshot list, allow later requests */ 3740 spin_lock(&net_todo_list_lock); 3741 list_replace_init(&net_todo_list, &list); 3742 spin_unlock(&net_todo_list_lock); 3743 3744 while (!list_empty(&list)) { 3745 struct net_device *dev 3746 = list_entry(list.next, struct net_device, todo_list); 3747 list_del(&dev->todo_list); 3748 3749 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) { 3750 printk(KERN_ERR "network todo '%s' but state %d\n", 3751 dev->name, dev->reg_state); 3752 dump_stack(); 3753 continue; 3754 } 3755 3756 dev->reg_state = NETREG_UNREGISTERED; 3757 3758 netdev_wait_allrefs(dev); 3759 3760 /* paranoia */ 3761 BUG_ON(atomic_read(&dev->refcnt)); 3762 BUG_TRAP(!dev->ip_ptr); 3763 BUG_TRAP(!dev->ip6_ptr); 3764 BUG_TRAP(!dev->dn_ptr); 3765 3766 if (dev->destructor) 3767 dev->destructor(dev); 3768 3769 /* Free network device */ 3770 kobject_put(&dev->dev.kobj); 3771 } 3772 3773 out: 3774 mutex_unlock(&net_todo_run_mutex); 3775 } 3776 3777 static struct net_device_stats *internal_stats(struct net_device *dev) 3778 { 3779 return &dev->stats; 3780 } 3781 3782 /** 3783 * alloc_netdev_mq - allocate network device 3784 * @sizeof_priv: size of private data to allocate space for 3785 * @name: device name format string 3786 * @setup: callback to initialize device 3787 * @queue_count: the number of subqueues to allocate 3788 * 3789 * Allocates a struct net_device with private data area for driver use 3790 * and performs basic initialization. Also allocates subquue structs 3791 * for each queue on the device at the end of the netdevice. 3792 */ 3793 struct net_device *alloc_netdev_mq(int sizeof_priv, const char *name, 3794 void (*setup)(struct net_device *), unsigned int queue_count) 3795 { 3796 void *p; 3797 struct net_device *dev; 3798 int alloc_size; 3799 3800 BUG_ON(strlen(name) >= sizeof(dev->name)); 3801 3802 /* ensure 32-byte alignment of both the device and private area */ 3803 alloc_size = (sizeof(*dev) + NETDEV_ALIGN_CONST + 3804 (sizeof(struct net_device_subqueue) * (queue_count - 1))) & 3805 ~NETDEV_ALIGN_CONST; 3806 alloc_size += sizeof_priv + NETDEV_ALIGN_CONST; 3807 3808 p = kzalloc(alloc_size, GFP_KERNEL); 3809 if (!p) { 3810 printk(KERN_ERR "alloc_netdev: Unable to allocate device.\n"); 3811 return NULL; 3812 } 3813 3814 dev = (struct net_device *) 3815 (((long)p + NETDEV_ALIGN_CONST) & ~NETDEV_ALIGN_CONST); 3816 dev->padded = (char *)dev - (char *)p; 3817 dev->nd_net = &init_net; 3818 3819 if (sizeof_priv) { 3820 dev->priv = ((char *)dev + 3821 ((sizeof(struct net_device) + 3822 (sizeof(struct net_device_subqueue) * 3823 (queue_count - 1)) + NETDEV_ALIGN_CONST) 3824 & ~NETDEV_ALIGN_CONST)); 3825 } 3826 3827 dev->egress_subqueue_count = queue_count; 3828 3829 dev->get_stats = internal_stats; 3830 netpoll_netdev_init(dev); 3831 setup(dev); 3832 strcpy(dev->name, name); 3833 return dev; 3834 } 3835 EXPORT_SYMBOL(alloc_netdev_mq); 3836 3837 /** 3838 * free_netdev - free network device 3839 * @dev: device 3840 * 3841 * This function does the last stage of destroying an allocated device 3842 * interface. The reference to the device object is released. 3843 * If this is the last reference then it will be freed. 3844 */ 3845 void free_netdev(struct net_device *dev) 3846 { 3847 /* Compatibility with error handling in drivers */ 3848 if (dev->reg_state == NETREG_UNINITIALIZED) { 3849 kfree((char *)dev - dev->padded); 3850 return; 3851 } 3852 3853 BUG_ON(dev->reg_state != NETREG_UNREGISTERED); 3854 dev->reg_state = NETREG_RELEASED; 3855 3856 /* will free via device release */ 3857 put_device(&dev->dev); 3858 } 3859 3860 /* Synchronize with packet receive processing. */ 3861 void synchronize_net(void) 3862 { 3863 might_sleep(); 3864 synchronize_rcu(); 3865 } 3866 3867 /** 3868 * unregister_netdevice - remove device from the kernel 3869 * @dev: device 3870 * 3871 * This function shuts down a device interface and removes it 3872 * from the kernel tables. On success 0 is returned, on a failure 3873 * a negative errno code is returned. 3874 * 3875 * Callers must hold the rtnl semaphore. You may want 3876 * unregister_netdev() instead of this. 3877 */ 3878 3879 void unregister_netdevice(struct net_device *dev) 3880 { 3881 BUG_ON(dev_boot_phase); 3882 ASSERT_RTNL(); 3883 3884 /* Some devices call without registering for initialization unwind. */ 3885 if (dev->reg_state == NETREG_UNINITIALIZED) { 3886 printk(KERN_DEBUG "unregister_netdevice: device %s/%p never " 3887 "was registered\n", dev->name, dev); 3888 3889 WARN_ON(1); 3890 return; 3891 } 3892 3893 BUG_ON(dev->reg_state != NETREG_REGISTERED); 3894 3895 /* If device is running, close it first. */ 3896 dev_close(dev); 3897 3898 /* And unlink it from device chain. */ 3899 unlist_netdevice(dev); 3900 3901 dev->reg_state = NETREG_UNREGISTERING; 3902 3903 synchronize_net(); 3904 3905 /* Shutdown queueing discipline. */ 3906 dev_shutdown(dev); 3907 3908 3909 /* Notify protocols, that we are about to destroy 3910 this device. They should clean all the things. 3911 */ 3912 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 3913 3914 /* 3915 * Flush the unicast and multicast chains 3916 */ 3917 dev_addr_discard(dev); 3918 3919 if (dev->uninit) 3920 dev->uninit(dev); 3921 3922 /* Notifier chain MUST detach us from master device. */ 3923 BUG_TRAP(!dev->master); 3924 3925 /* Remove entries from kobject tree */ 3926 netdev_unregister_kobject(dev); 3927 3928 /* Finish processing unregister after unlock */ 3929 net_set_todo(dev); 3930 3931 synchronize_net(); 3932 3933 dev_put(dev); 3934 } 3935 3936 /** 3937 * unregister_netdev - remove device from the kernel 3938 * @dev: device 3939 * 3940 * This function shuts down a device interface and removes it 3941 * from the kernel tables. On success 0 is returned, on a failure 3942 * a negative errno code is returned. 3943 * 3944 * This is just a wrapper for unregister_netdevice that takes 3945 * the rtnl semaphore. In general you want to use this and not 3946 * unregister_netdevice. 3947 */ 3948 void unregister_netdev(struct net_device *dev) 3949 { 3950 rtnl_lock(); 3951 unregister_netdevice(dev); 3952 rtnl_unlock(); 3953 } 3954 3955 EXPORT_SYMBOL(unregister_netdev); 3956 3957 /** 3958 * dev_change_net_namespace - move device to different nethost namespace 3959 * @dev: device 3960 * @net: network namespace 3961 * @pat: If not NULL name pattern to try if the current device name 3962 * is already taken in the destination network namespace. 3963 * 3964 * This function shuts down a device interface and moves it 3965 * to a new network namespace. On success 0 is returned, on 3966 * a failure a netagive errno code is returned. 3967 * 3968 * Callers must hold the rtnl semaphore. 3969 */ 3970 3971 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat) 3972 { 3973 char buf[IFNAMSIZ]; 3974 const char *destname; 3975 int err; 3976 3977 ASSERT_RTNL(); 3978 3979 /* Don't allow namespace local devices to be moved. */ 3980 err = -EINVAL; 3981 if (dev->features & NETIF_F_NETNS_LOCAL) 3982 goto out; 3983 3984 /* Ensure the device has been registrered */ 3985 err = -EINVAL; 3986 if (dev->reg_state != NETREG_REGISTERED) 3987 goto out; 3988 3989 /* Get out if there is nothing todo */ 3990 err = 0; 3991 if (dev->nd_net == net) 3992 goto out; 3993 3994 /* Pick the destination device name, and ensure 3995 * we can use it in the destination network namespace. 3996 */ 3997 err = -EEXIST; 3998 destname = dev->name; 3999 if (__dev_get_by_name(net, destname)) { 4000 /* We get here if we can't use the current device name */ 4001 if (!pat) 4002 goto out; 4003 if (!dev_valid_name(pat)) 4004 goto out; 4005 if (strchr(pat, '%')) { 4006 if (__dev_alloc_name(net, pat, buf) < 0) 4007 goto out; 4008 destname = buf; 4009 } else 4010 destname = pat; 4011 if (__dev_get_by_name(net, destname)) 4012 goto out; 4013 } 4014 4015 /* 4016 * And now a mini version of register_netdevice unregister_netdevice. 4017 */ 4018 4019 /* If device is running close it first. */ 4020 dev_close(dev); 4021 4022 /* And unlink it from device chain */ 4023 err = -ENODEV; 4024 unlist_netdevice(dev); 4025 4026 synchronize_net(); 4027 4028 /* Shutdown queueing discipline. */ 4029 dev_shutdown(dev); 4030 4031 /* Notify protocols, that we are about to destroy 4032 this device. They should clean all the things. 4033 */ 4034 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 4035 4036 /* 4037 * Flush the unicast and multicast chains 4038 */ 4039 dev_addr_discard(dev); 4040 4041 /* Actually switch the network namespace */ 4042 dev->nd_net = net; 4043 4044 /* Assign the new device name */ 4045 if (destname != dev->name) 4046 strcpy(dev->name, destname); 4047 4048 /* If there is an ifindex conflict assign a new one */ 4049 if (__dev_get_by_index(net, dev->ifindex)) { 4050 int iflink = (dev->iflink == dev->ifindex); 4051 dev->ifindex = dev_new_index(net); 4052 if (iflink) 4053 dev->iflink = dev->ifindex; 4054 } 4055 4056 /* Fixup kobjects */ 4057 err = device_rename(&dev->dev, dev->name); 4058 WARN_ON(err); 4059 4060 /* Add the device back in the hashes */ 4061 list_netdevice(dev); 4062 4063 /* Notify protocols, that a new device appeared. */ 4064 call_netdevice_notifiers(NETDEV_REGISTER, dev); 4065 4066 synchronize_net(); 4067 err = 0; 4068 out: 4069 return err; 4070 } 4071 4072 static int dev_cpu_callback(struct notifier_block *nfb, 4073 unsigned long action, 4074 void *ocpu) 4075 { 4076 struct sk_buff **list_skb; 4077 struct net_device **list_net; 4078 struct sk_buff *skb; 4079 unsigned int cpu, oldcpu = (unsigned long)ocpu; 4080 struct softnet_data *sd, *oldsd; 4081 4082 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN) 4083 return NOTIFY_OK; 4084 4085 local_irq_disable(); 4086 cpu = smp_processor_id(); 4087 sd = &per_cpu(softnet_data, cpu); 4088 oldsd = &per_cpu(softnet_data, oldcpu); 4089 4090 /* Find end of our completion_queue. */ 4091 list_skb = &sd->completion_queue; 4092 while (*list_skb) 4093 list_skb = &(*list_skb)->next; 4094 /* Append completion queue from offline CPU. */ 4095 *list_skb = oldsd->completion_queue; 4096 oldsd->completion_queue = NULL; 4097 4098 /* Find end of our output_queue. */ 4099 list_net = &sd->output_queue; 4100 while (*list_net) 4101 list_net = &(*list_net)->next_sched; 4102 /* Append output queue from offline CPU. */ 4103 *list_net = oldsd->output_queue; 4104 oldsd->output_queue = NULL; 4105 4106 raise_softirq_irqoff(NET_TX_SOFTIRQ); 4107 local_irq_enable(); 4108 4109 /* Process offline CPU's input_pkt_queue */ 4110 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) 4111 netif_rx(skb); 4112 4113 return NOTIFY_OK; 4114 } 4115 4116 #ifdef CONFIG_NET_DMA 4117 /** 4118 * net_dma_rebalance - try to maintain one DMA channel per CPU 4119 * @net_dma: DMA client and associated data (lock, channels, channel_mask) 4120 * 4121 * This is called when the number of channels allocated to the net_dma client 4122 * changes. The net_dma client tries to have one DMA channel per CPU. 4123 */ 4124 4125 static void net_dma_rebalance(struct net_dma *net_dma) 4126 { 4127 unsigned int cpu, i, n, chan_idx; 4128 struct dma_chan *chan; 4129 4130 if (cpus_empty(net_dma->channel_mask)) { 4131 for_each_online_cpu(cpu) 4132 rcu_assign_pointer(per_cpu(softnet_data, cpu).net_dma, NULL); 4133 return; 4134 } 4135 4136 i = 0; 4137 cpu = first_cpu(cpu_online_map); 4138 4139 for_each_cpu_mask(chan_idx, net_dma->channel_mask) { 4140 chan = net_dma->channels[chan_idx]; 4141 4142 n = ((num_online_cpus() / cpus_weight(net_dma->channel_mask)) 4143 + (i < (num_online_cpus() % 4144 cpus_weight(net_dma->channel_mask)) ? 1 : 0)); 4145 4146 while(n) { 4147 per_cpu(softnet_data, cpu).net_dma = chan; 4148 cpu = next_cpu(cpu, cpu_online_map); 4149 n--; 4150 } 4151 i++; 4152 } 4153 } 4154 4155 /** 4156 * netdev_dma_event - event callback for the net_dma_client 4157 * @client: should always be net_dma_client 4158 * @chan: DMA channel for the event 4159 * @state: DMA state to be handled 4160 */ 4161 static enum dma_state_client 4162 netdev_dma_event(struct dma_client *client, struct dma_chan *chan, 4163 enum dma_state state) 4164 { 4165 int i, found = 0, pos = -1; 4166 struct net_dma *net_dma = 4167 container_of(client, struct net_dma, client); 4168 enum dma_state_client ack = DMA_DUP; /* default: take no action */ 4169 4170 spin_lock(&net_dma->lock); 4171 switch (state) { 4172 case DMA_RESOURCE_AVAILABLE: 4173 for (i = 0; i < NR_CPUS; i++) 4174 if (net_dma->channels[i] == chan) { 4175 found = 1; 4176 break; 4177 } else if (net_dma->channels[i] == NULL && pos < 0) 4178 pos = i; 4179 4180 if (!found && pos >= 0) { 4181 ack = DMA_ACK; 4182 net_dma->channels[pos] = chan; 4183 cpu_set(pos, net_dma->channel_mask); 4184 net_dma_rebalance(net_dma); 4185 } 4186 break; 4187 case DMA_RESOURCE_REMOVED: 4188 for (i = 0; i < NR_CPUS; i++) 4189 if (net_dma->channels[i] == chan) { 4190 found = 1; 4191 pos = i; 4192 break; 4193 } 4194 4195 if (found) { 4196 ack = DMA_ACK; 4197 cpu_clear(pos, net_dma->channel_mask); 4198 net_dma->channels[i] = NULL; 4199 net_dma_rebalance(net_dma); 4200 } 4201 break; 4202 default: 4203 break; 4204 } 4205 spin_unlock(&net_dma->lock); 4206 4207 return ack; 4208 } 4209 4210 /** 4211 * netdev_dma_regiser - register the networking subsystem as a DMA client 4212 */ 4213 static int __init netdev_dma_register(void) 4214 { 4215 spin_lock_init(&net_dma.lock); 4216 dma_cap_set(DMA_MEMCPY, net_dma.client.cap_mask); 4217 dma_async_client_register(&net_dma.client); 4218 dma_async_client_chan_request(&net_dma.client); 4219 return 0; 4220 } 4221 4222 #else 4223 static int __init netdev_dma_register(void) { return -ENODEV; } 4224 #endif /* CONFIG_NET_DMA */ 4225 4226 /** 4227 * netdev_compute_feature - compute conjunction of two feature sets 4228 * @all: first feature set 4229 * @one: second feature set 4230 * 4231 * Computes a new feature set after adding a device with feature set 4232 * @one to the master device with current feature set @all. Returns 4233 * the new feature set. 4234 */ 4235 int netdev_compute_features(unsigned long all, unsigned long one) 4236 { 4237 /* if device needs checksumming, downgrade to hw checksumming */ 4238 if (all & NETIF_F_NO_CSUM && !(one & NETIF_F_NO_CSUM)) 4239 all ^= NETIF_F_NO_CSUM | NETIF_F_HW_CSUM; 4240 4241 /* if device can't do all checksum, downgrade to ipv4/ipv6 */ 4242 if (all & NETIF_F_HW_CSUM && !(one & NETIF_F_HW_CSUM)) 4243 all ^= NETIF_F_HW_CSUM 4244 | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM; 4245 4246 if (one & NETIF_F_GSO) 4247 one |= NETIF_F_GSO_SOFTWARE; 4248 one |= NETIF_F_GSO; 4249 4250 /* If even one device supports robust GSO, enable it for all. */ 4251 if (one & NETIF_F_GSO_ROBUST) 4252 all |= NETIF_F_GSO_ROBUST; 4253 4254 all &= one | NETIF_F_LLTX; 4255 4256 if (!(all & NETIF_F_ALL_CSUM)) 4257 all &= ~NETIF_F_SG; 4258 if (!(all & NETIF_F_SG)) 4259 all &= ~NETIF_F_GSO_MASK; 4260 4261 return all; 4262 } 4263 EXPORT_SYMBOL(netdev_compute_features); 4264 4265 static struct hlist_head *netdev_create_hash(void) 4266 { 4267 int i; 4268 struct hlist_head *hash; 4269 4270 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL); 4271 if (hash != NULL) 4272 for (i = 0; i < NETDEV_HASHENTRIES; i++) 4273 INIT_HLIST_HEAD(&hash[i]); 4274 4275 return hash; 4276 } 4277 4278 /* Initialize per network namespace state */ 4279 static int __net_init netdev_init(struct net *net) 4280 { 4281 INIT_LIST_HEAD(&net->dev_base_head); 4282 rwlock_init(&dev_base_lock); 4283 4284 net->dev_name_head = netdev_create_hash(); 4285 if (net->dev_name_head == NULL) 4286 goto err_name; 4287 4288 net->dev_index_head = netdev_create_hash(); 4289 if (net->dev_index_head == NULL) 4290 goto err_idx; 4291 4292 return 0; 4293 4294 err_idx: 4295 kfree(net->dev_name_head); 4296 err_name: 4297 return -ENOMEM; 4298 } 4299 4300 static void __net_exit netdev_exit(struct net *net) 4301 { 4302 kfree(net->dev_name_head); 4303 kfree(net->dev_index_head); 4304 } 4305 4306 static struct pernet_operations __net_initdata netdev_net_ops = { 4307 .init = netdev_init, 4308 .exit = netdev_exit, 4309 }; 4310 4311 static void __net_exit default_device_exit(struct net *net) 4312 { 4313 struct net_device *dev, *next; 4314 /* 4315 * Push all migratable of the network devices back to the 4316 * initial network namespace 4317 */ 4318 rtnl_lock(); 4319 for_each_netdev_safe(net, dev, next) { 4320 int err; 4321 4322 /* Ignore unmoveable devices (i.e. loopback) */ 4323 if (dev->features & NETIF_F_NETNS_LOCAL) 4324 continue; 4325 4326 /* Push remaing network devices to init_net */ 4327 err = dev_change_net_namespace(dev, &init_net, "dev%d"); 4328 if (err) { 4329 printk(KERN_WARNING "%s: failed to move %s to init_net: %d\n", 4330 __func__, dev->name, err); 4331 unregister_netdevice(dev); 4332 } 4333 } 4334 rtnl_unlock(); 4335 } 4336 4337 static struct pernet_operations __net_initdata default_device_ops = { 4338 .exit = default_device_exit, 4339 }; 4340 4341 /* 4342 * Initialize the DEV module. At boot time this walks the device list and 4343 * unhooks any devices that fail to initialise (normally hardware not 4344 * present) and leaves us with a valid list of present and active devices. 4345 * 4346 */ 4347 4348 /* 4349 * This is called single threaded during boot, so no need 4350 * to take the rtnl semaphore. 4351 */ 4352 static int __init net_dev_init(void) 4353 { 4354 int i, rc = -ENOMEM; 4355 4356 BUG_ON(!dev_boot_phase); 4357 4358 if (dev_proc_init()) 4359 goto out; 4360 4361 if (netdev_kobject_init()) 4362 goto out; 4363 4364 INIT_LIST_HEAD(&ptype_all); 4365 for (i = 0; i < 16; i++) 4366 INIT_LIST_HEAD(&ptype_base[i]); 4367 4368 if (register_pernet_subsys(&netdev_net_ops)) 4369 goto out; 4370 4371 if (register_pernet_device(&default_device_ops)) 4372 goto out; 4373 4374 /* 4375 * Initialise the packet receive queues. 4376 */ 4377 4378 for_each_possible_cpu(i) { 4379 struct softnet_data *queue; 4380 4381 queue = &per_cpu(softnet_data, i); 4382 skb_queue_head_init(&queue->input_pkt_queue); 4383 queue->completion_queue = NULL; 4384 INIT_LIST_HEAD(&queue->poll_list); 4385 4386 queue->backlog.poll = process_backlog; 4387 queue->backlog.weight = weight_p; 4388 } 4389 4390 netdev_dma_register(); 4391 4392 dev_boot_phase = 0; 4393 4394 open_softirq(NET_TX_SOFTIRQ, net_tx_action, NULL); 4395 open_softirq(NET_RX_SOFTIRQ, net_rx_action, NULL); 4396 4397 hotcpu_notifier(dev_cpu_callback, 0); 4398 dst_init(); 4399 dev_mcast_init(); 4400 rc = 0; 4401 out: 4402 return rc; 4403 } 4404 4405 subsys_initcall(net_dev_init); 4406 4407 EXPORT_SYMBOL(__dev_get_by_index); 4408 EXPORT_SYMBOL(__dev_get_by_name); 4409 EXPORT_SYMBOL(__dev_remove_pack); 4410 EXPORT_SYMBOL(dev_valid_name); 4411 EXPORT_SYMBOL(dev_add_pack); 4412 EXPORT_SYMBOL(dev_alloc_name); 4413 EXPORT_SYMBOL(dev_close); 4414 EXPORT_SYMBOL(dev_get_by_flags); 4415 EXPORT_SYMBOL(dev_get_by_index); 4416 EXPORT_SYMBOL(dev_get_by_name); 4417 EXPORT_SYMBOL(dev_open); 4418 EXPORT_SYMBOL(dev_queue_xmit); 4419 EXPORT_SYMBOL(dev_remove_pack); 4420 EXPORT_SYMBOL(dev_set_allmulti); 4421 EXPORT_SYMBOL(dev_set_promiscuity); 4422 EXPORT_SYMBOL(dev_change_flags); 4423 EXPORT_SYMBOL(dev_set_mtu); 4424 EXPORT_SYMBOL(dev_set_mac_address); 4425 EXPORT_SYMBOL(free_netdev); 4426 EXPORT_SYMBOL(netdev_boot_setup_check); 4427 EXPORT_SYMBOL(netdev_set_master); 4428 EXPORT_SYMBOL(netdev_state_change); 4429 EXPORT_SYMBOL(netif_receive_skb); 4430 EXPORT_SYMBOL(netif_rx); 4431 EXPORT_SYMBOL(register_gifconf); 4432 EXPORT_SYMBOL(register_netdevice); 4433 EXPORT_SYMBOL(register_netdevice_notifier); 4434 EXPORT_SYMBOL(skb_checksum_help); 4435 EXPORT_SYMBOL(synchronize_net); 4436 EXPORT_SYMBOL(unregister_netdevice); 4437 EXPORT_SYMBOL(unregister_netdevice_notifier); 4438 EXPORT_SYMBOL(net_enable_timestamp); 4439 EXPORT_SYMBOL(net_disable_timestamp); 4440 EXPORT_SYMBOL(dev_get_flags); 4441 4442 #if defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE) 4443 EXPORT_SYMBOL(br_handle_frame_hook); 4444 EXPORT_SYMBOL(br_fdb_get_hook); 4445 EXPORT_SYMBOL(br_fdb_put_hook); 4446 #endif 4447 4448 #ifdef CONFIG_KMOD 4449 EXPORT_SYMBOL(dev_load); 4450 #endif 4451 4452 EXPORT_PER_CPU_SYMBOL(softnet_data); 4453