xref: /linux/net/core/dev.c (revision 9ffc93f203c18a70623f21950f1dd473c9ec48cd)
1 /*
2  * 	NET3	Protocol independent device support routines.
3  *
4  *		This program is free software; you can redistribute it and/or
5  *		modify it under the terms of the GNU General Public License
6  *		as published by the Free Software Foundation; either version
7  *		2 of the License, or (at your option) any later version.
8  *
9  *	Derived from the non IP parts of dev.c 1.0.19
10  * 		Authors:	Ross Biro
11  *				Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *				Mark Evans, <evansmp@uhura.aston.ac.uk>
13  *
14  *	Additional Authors:
15  *		Florian la Roche <rzsfl@rz.uni-sb.de>
16  *		Alan Cox <gw4pts@gw4pts.ampr.org>
17  *		David Hinds <dahinds@users.sourceforge.net>
18  *		Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19  *		Adam Sulmicki <adam@cfar.umd.edu>
20  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
21  *
22  *	Changes:
23  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
24  *              			to 2 if register_netdev gets called
25  *              			before net_dev_init & also removed a
26  *              			few lines of code in the process.
27  *		Alan Cox	:	device private ioctl copies fields back.
28  *		Alan Cox	:	Transmit queue code does relevant
29  *					stunts to keep the queue safe.
30  *		Alan Cox	:	Fixed double lock.
31  *		Alan Cox	:	Fixed promisc NULL pointer trap
32  *		????????	:	Support the full private ioctl range
33  *		Alan Cox	:	Moved ioctl permission check into
34  *					drivers
35  *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
36  *		Alan Cox	:	100 backlog just doesn't cut it when
37  *					you start doing multicast video 8)
38  *		Alan Cox	:	Rewrote net_bh and list manager.
39  *		Alan Cox	: 	Fix ETH_P_ALL echoback lengths.
40  *		Alan Cox	:	Took out transmit every packet pass
41  *					Saved a few bytes in the ioctl handler
42  *		Alan Cox	:	Network driver sets packet type before
43  *					calling netif_rx. Saves a function
44  *					call a packet.
45  *		Alan Cox	:	Hashed net_bh()
46  *		Richard Kooijman:	Timestamp fixes.
47  *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
48  *		Alan Cox	:	Device lock protection.
49  *		Alan Cox	: 	Fixed nasty side effect of device close
50  *					changes.
51  *		Rudi Cilibrasi	:	Pass the right thing to
52  *					set_mac_address()
53  *		Dave Miller	:	32bit quantity for the device lock to
54  *					make it work out on a Sparc.
55  *		Bjorn Ekwall	:	Added KERNELD hack.
56  *		Alan Cox	:	Cleaned up the backlog initialise.
57  *		Craig Metz	:	SIOCGIFCONF fix if space for under
58  *					1 device.
59  *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
60  *					is no device open function.
61  *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
62  *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
63  *		Cyrus Durgin	:	Cleaned for KMOD
64  *		Adam Sulmicki   :	Bug Fix : Network Device Unload
65  *					A network device unload needs to purge
66  *					the backlog queue.
67  *	Paul Rusty Russell	:	SIOCSIFNAME
68  *              Pekka Riikonen  :	Netdev boot-time settings code
69  *              Andrew Morton   :       Make unregister_netdevice wait
70  *              			indefinitely on dev->refcnt
71  * 		J Hadi Salim	:	- Backlog queue sampling
72  *				        - netif_rx() feedback
73  */
74 
75 #include <asm/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/mutex.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/notifier.h>
96 #include <linux/skbuff.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <linux/rtnetlink.h>
100 #include <linux/proc_fs.h>
101 #include <linux/seq_file.h>
102 #include <linux/stat.h>
103 #include <net/dst.h>
104 #include <net/pkt_sched.h>
105 #include <net/checksum.h>
106 #include <net/xfrm.h>
107 #include <linux/highmem.h>
108 #include <linux/init.h>
109 #include <linux/kmod.h>
110 #include <linux/module.h>
111 #include <linux/netpoll.h>
112 #include <linux/rcupdate.h>
113 #include <linux/delay.h>
114 #include <net/wext.h>
115 #include <net/iw_handler.h>
116 #include <asm/current.h>
117 #include <linux/audit.h>
118 #include <linux/dmaengine.h>
119 #include <linux/err.h>
120 #include <linux/ctype.h>
121 #include <linux/if_arp.h>
122 #include <linux/if_vlan.h>
123 #include <linux/ip.h>
124 #include <net/ip.h>
125 #include <linux/ipv6.h>
126 #include <linux/in.h>
127 #include <linux/jhash.h>
128 #include <linux/random.h>
129 #include <trace/events/napi.h>
130 #include <trace/events/net.h>
131 #include <trace/events/skb.h>
132 #include <linux/pci.h>
133 #include <linux/inetdevice.h>
134 #include <linux/cpu_rmap.h>
135 #include <linux/net_tstamp.h>
136 #include <linux/static_key.h>
137 #include <net/flow_keys.h>
138 
139 #include "net-sysfs.h"
140 
141 /* Instead of increasing this, you should create a hash table. */
142 #define MAX_GRO_SKBS 8
143 
144 /* This should be increased if a protocol with a bigger head is added. */
145 #define GRO_MAX_HEAD (MAX_HEADER + 128)
146 
147 /*
148  *	The list of packet types we will receive (as opposed to discard)
149  *	and the routines to invoke.
150  *
151  *	Why 16. Because with 16 the only overlap we get on a hash of the
152  *	low nibble of the protocol value is RARP/SNAP/X.25.
153  *
154  *      NOTE:  That is no longer true with the addition of VLAN tags.  Not
155  *             sure which should go first, but I bet it won't make much
156  *             difference if we are running VLANs.  The good news is that
157  *             this protocol won't be in the list unless compiled in, so
158  *             the average user (w/out VLANs) will not be adversely affected.
159  *             --BLG
160  *
161  *		0800	IP
162  *		8100    802.1Q VLAN
163  *		0001	802.3
164  *		0002	AX.25
165  *		0004	802.2
166  *		8035	RARP
167  *		0005	SNAP
168  *		0805	X.25
169  *		0806	ARP
170  *		8137	IPX
171  *		0009	Localtalk
172  *		86DD	IPv6
173  */
174 
175 #define PTYPE_HASH_SIZE	(16)
176 #define PTYPE_HASH_MASK	(PTYPE_HASH_SIZE - 1)
177 
178 static DEFINE_SPINLOCK(ptype_lock);
179 static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
180 static struct list_head ptype_all __read_mostly;	/* Taps */
181 
182 /*
183  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
184  * semaphore.
185  *
186  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
187  *
188  * Writers must hold the rtnl semaphore while they loop through the
189  * dev_base_head list, and hold dev_base_lock for writing when they do the
190  * actual updates.  This allows pure readers to access the list even
191  * while a writer is preparing to update it.
192  *
193  * To put it another way, dev_base_lock is held for writing only to
194  * protect against pure readers; the rtnl semaphore provides the
195  * protection against other writers.
196  *
197  * See, for example usages, register_netdevice() and
198  * unregister_netdevice(), which must be called with the rtnl
199  * semaphore held.
200  */
201 DEFINE_RWLOCK(dev_base_lock);
202 EXPORT_SYMBOL(dev_base_lock);
203 
204 static inline void dev_base_seq_inc(struct net *net)
205 {
206 	while (++net->dev_base_seq == 0);
207 }
208 
209 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
210 {
211 	unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
212 	return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
213 }
214 
215 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
216 {
217 	return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
218 }
219 
220 static inline void rps_lock(struct softnet_data *sd)
221 {
222 #ifdef CONFIG_RPS
223 	spin_lock(&sd->input_pkt_queue.lock);
224 #endif
225 }
226 
227 static inline void rps_unlock(struct softnet_data *sd)
228 {
229 #ifdef CONFIG_RPS
230 	spin_unlock(&sd->input_pkt_queue.lock);
231 #endif
232 }
233 
234 /* Device list insertion */
235 static int list_netdevice(struct net_device *dev)
236 {
237 	struct net *net = dev_net(dev);
238 
239 	ASSERT_RTNL();
240 
241 	write_lock_bh(&dev_base_lock);
242 	list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
243 	hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
244 	hlist_add_head_rcu(&dev->index_hlist,
245 			   dev_index_hash(net, dev->ifindex));
246 	write_unlock_bh(&dev_base_lock);
247 
248 	dev_base_seq_inc(net);
249 
250 	return 0;
251 }
252 
253 /* Device list removal
254  * caller must respect a RCU grace period before freeing/reusing dev
255  */
256 static void unlist_netdevice(struct net_device *dev)
257 {
258 	ASSERT_RTNL();
259 
260 	/* Unlink dev from the device chain */
261 	write_lock_bh(&dev_base_lock);
262 	list_del_rcu(&dev->dev_list);
263 	hlist_del_rcu(&dev->name_hlist);
264 	hlist_del_rcu(&dev->index_hlist);
265 	write_unlock_bh(&dev_base_lock);
266 
267 	dev_base_seq_inc(dev_net(dev));
268 }
269 
270 /*
271  *	Our notifier list
272  */
273 
274 static RAW_NOTIFIER_HEAD(netdev_chain);
275 
276 /*
277  *	Device drivers call our routines to queue packets here. We empty the
278  *	queue in the local softnet handler.
279  */
280 
281 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
282 EXPORT_PER_CPU_SYMBOL(softnet_data);
283 
284 #ifdef CONFIG_LOCKDEP
285 /*
286  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
287  * according to dev->type
288  */
289 static const unsigned short netdev_lock_type[] =
290 	{ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
291 	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
292 	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
293 	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
294 	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
295 	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
296 	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
297 	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
298 	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
299 	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
300 	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
301 	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
302 	 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211,
303 	 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET,
304 	 ARPHRD_PHONET_PIPE, ARPHRD_IEEE802154,
305 	 ARPHRD_VOID, ARPHRD_NONE};
306 
307 static const char *const netdev_lock_name[] =
308 	{"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
309 	 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
310 	 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
311 	 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
312 	 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
313 	 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
314 	 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
315 	 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
316 	 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
317 	 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
318 	 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
319 	 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
320 	 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211",
321 	 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET",
322 	 "_xmit_PHONET_PIPE", "_xmit_IEEE802154",
323 	 "_xmit_VOID", "_xmit_NONE"};
324 
325 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
326 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
327 
328 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
329 {
330 	int i;
331 
332 	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
333 		if (netdev_lock_type[i] == dev_type)
334 			return i;
335 	/* the last key is used by default */
336 	return ARRAY_SIZE(netdev_lock_type) - 1;
337 }
338 
339 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
340 						 unsigned short dev_type)
341 {
342 	int i;
343 
344 	i = netdev_lock_pos(dev_type);
345 	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
346 				   netdev_lock_name[i]);
347 }
348 
349 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
350 {
351 	int i;
352 
353 	i = netdev_lock_pos(dev->type);
354 	lockdep_set_class_and_name(&dev->addr_list_lock,
355 				   &netdev_addr_lock_key[i],
356 				   netdev_lock_name[i]);
357 }
358 #else
359 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
360 						 unsigned short dev_type)
361 {
362 }
363 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
364 {
365 }
366 #endif
367 
368 /*******************************************************************************
369 
370 		Protocol management and registration routines
371 
372 *******************************************************************************/
373 
374 /*
375  *	Add a protocol ID to the list. Now that the input handler is
376  *	smarter we can dispense with all the messy stuff that used to be
377  *	here.
378  *
379  *	BEWARE!!! Protocol handlers, mangling input packets,
380  *	MUST BE last in hash buckets and checking protocol handlers
381  *	MUST start from promiscuous ptype_all chain in net_bh.
382  *	It is true now, do not change it.
383  *	Explanation follows: if protocol handler, mangling packet, will
384  *	be the first on list, it is not able to sense, that packet
385  *	is cloned and should be copied-on-write, so that it will
386  *	change it and subsequent readers will get broken packet.
387  *							--ANK (980803)
388  */
389 
390 static inline struct list_head *ptype_head(const struct packet_type *pt)
391 {
392 	if (pt->type == htons(ETH_P_ALL))
393 		return &ptype_all;
394 	else
395 		return &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
396 }
397 
398 /**
399  *	dev_add_pack - add packet handler
400  *	@pt: packet type declaration
401  *
402  *	Add a protocol handler to the networking stack. The passed &packet_type
403  *	is linked into kernel lists and may not be freed until it has been
404  *	removed from the kernel lists.
405  *
406  *	This call does not sleep therefore it can not
407  *	guarantee all CPU's that are in middle of receiving packets
408  *	will see the new packet type (until the next received packet).
409  */
410 
411 void dev_add_pack(struct packet_type *pt)
412 {
413 	struct list_head *head = ptype_head(pt);
414 
415 	spin_lock(&ptype_lock);
416 	list_add_rcu(&pt->list, head);
417 	spin_unlock(&ptype_lock);
418 }
419 EXPORT_SYMBOL(dev_add_pack);
420 
421 /**
422  *	__dev_remove_pack	 - remove packet handler
423  *	@pt: packet type declaration
424  *
425  *	Remove a protocol handler that was previously added to the kernel
426  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
427  *	from the kernel lists and can be freed or reused once this function
428  *	returns.
429  *
430  *      The packet type might still be in use by receivers
431  *	and must not be freed until after all the CPU's have gone
432  *	through a quiescent state.
433  */
434 void __dev_remove_pack(struct packet_type *pt)
435 {
436 	struct list_head *head = ptype_head(pt);
437 	struct packet_type *pt1;
438 
439 	spin_lock(&ptype_lock);
440 
441 	list_for_each_entry(pt1, head, list) {
442 		if (pt == pt1) {
443 			list_del_rcu(&pt->list);
444 			goto out;
445 		}
446 	}
447 
448 	pr_warn("dev_remove_pack: %p not found\n", pt);
449 out:
450 	spin_unlock(&ptype_lock);
451 }
452 EXPORT_SYMBOL(__dev_remove_pack);
453 
454 /**
455  *	dev_remove_pack	 - remove packet handler
456  *	@pt: packet type declaration
457  *
458  *	Remove a protocol handler that was previously added to the kernel
459  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
460  *	from the kernel lists and can be freed or reused once this function
461  *	returns.
462  *
463  *	This call sleeps to guarantee that no CPU is looking at the packet
464  *	type after return.
465  */
466 void dev_remove_pack(struct packet_type *pt)
467 {
468 	__dev_remove_pack(pt);
469 
470 	synchronize_net();
471 }
472 EXPORT_SYMBOL(dev_remove_pack);
473 
474 /******************************************************************************
475 
476 		      Device Boot-time Settings Routines
477 
478 *******************************************************************************/
479 
480 /* Boot time configuration table */
481 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
482 
483 /**
484  *	netdev_boot_setup_add	- add new setup entry
485  *	@name: name of the device
486  *	@map: configured settings for the device
487  *
488  *	Adds new setup entry to the dev_boot_setup list.  The function
489  *	returns 0 on error and 1 on success.  This is a generic routine to
490  *	all netdevices.
491  */
492 static int netdev_boot_setup_add(char *name, struct ifmap *map)
493 {
494 	struct netdev_boot_setup *s;
495 	int i;
496 
497 	s = dev_boot_setup;
498 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
499 		if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
500 			memset(s[i].name, 0, sizeof(s[i].name));
501 			strlcpy(s[i].name, name, IFNAMSIZ);
502 			memcpy(&s[i].map, map, sizeof(s[i].map));
503 			break;
504 		}
505 	}
506 
507 	return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
508 }
509 
510 /**
511  *	netdev_boot_setup_check	- check boot time settings
512  *	@dev: the netdevice
513  *
514  * 	Check boot time settings for the device.
515  *	The found settings are set for the device to be used
516  *	later in the device probing.
517  *	Returns 0 if no settings found, 1 if they are.
518  */
519 int netdev_boot_setup_check(struct net_device *dev)
520 {
521 	struct netdev_boot_setup *s = dev_boot_setup;
522 	int i;
523 
524 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
525 		if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
526 		    !strcmp(dev->name, s[i].name)) {
527 			dev->irq 	= s[i].map.irq;
528 			dev->base_addr 	= s[i].map.base_addr;
529 			dev->mem_start 	= s[i].map.mem_start;
530 			dev->mem_end 	= s[i].map.mem_end;
531 			return 1;
532 		}
533 	}
534 	return 0;
535 }
536 EXPORT_SYMBOL(netdev_boot_setup_check);
537 
538 
539 /**
540  *	netdev_boot_base	- get address from boot time settings
541  *	@prefix: prefix for network device
542  *	@unit: id for network device
543  *
544  * 	Check boot time settings for the base address of device.
545  *	The found settings are set for the device to be used
546  *	later in the device probing.
547  *	Returns 0 if no settings found.
548  */
549 unsigned long netdev_boot_base(const char *prefix, int unit)
550 {
551 	const struct netdev_boot_setup *s = dev_boot_setup;
552 	char name[IFNAMSIZ];
553 	int i;
554 
555 	sprintf(name, "%s%d", prefix, unit);
556 
557 	/*
558 	 * If device already registered then return base of 1
559 	 * to indicate not to probe for this interface
560 	 */
561 	if (__dev_get_by_name(&init_net, name))
562 		return 1;
563 
564 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
565 		if (!strcmp(name, s[i].name))
566 			return s[i].map.base_addr;
567 	return 0;
568 }
569 
570 /*
571  * Saves at boot time configured settings for any netdevice.
572  */
573 int __init netdev_boot_setup(char *str)
574 {
575 	int ints[5];
576 	struct ifmap map;
577 
578 	str = get_options(str, ARRAY_SIZE(ints), ints);
579 	if (!str || !*str)
580 		return 0;
581 
582 	/* Save settings */
583 	memset(&map, 0, sizeof(map));
584 	if (ints[0] > 0)
585 		map.irq = ints[1];
586 	if (ints[0] > 1)
587 		map.base_addr = ints[2];
588 	if (ints[0] > 2)
589 		map.mem_start = ints[3];
590 	if (ints[0] > 3)
591 		map.mem_end = ints[4];
592 
593 	/* Add new entry to the list */
594 	return netdev_boot_setup_add(str, &map);
595 }
596 
597 __setup("netdev=", netdev_boot_setup);
598 
599 /*******************************************************************************
600 
601 			    Device Interface Subroutines
602 
603 *******************************************************************************/
604 
605 /**
606  *	__dev_get_by_name	- find a device by its name
607  *	@net: the applicable net namespace
608  *	@name: name to find
609  *
610  *	Find an interface by name. Must be called under RTNL semaphore
611  *	or @dev_base_lock. If the name is found a pointer to the device
612  *	is returned. If the name is not found then %NULL is returned. The
613  *	reference counters are not incremented so the caller must be
614  *	careful with locks.
615  */
616 
617 struct net_device *__dev_get_by_name(struct net *net, const char *name)
618 {
619 	struct hlist_node *p;
620 	struct net_device *dev;
621 	struct hlist_head *head = dev_name_hash(net, name);
622 
623 	hlist_for_each_entry(dev, p, head, name_hlist)
624 		if (!strncmp(dev->name, name, IFNAMSIZ))
625 			return dev;
626 
627 	return NULL;
628 }
629 EXPORT_SYMBOL(__dev_get_by_name);
630 
631 /**
632  *	dev_get_by_name_rcu	- find a device by its name
633  *	@net: the applicable net namespace
634  *	@name: name to find
635  *
636  *	Find an interface by name.
637  *	If the name is found a pointer to the device is returned.
638  * 	If the name is not found then %NULL is returned.
639  *	The reference counters are not incremented so the caller must be
640  *	careful with locks. The caller must hold RCU lock.
641  */
642 
643 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
644 {
645 	struct hlist_node *p;
646 	struct net_device *dev;
647 	struct hlist_head *head = dev_name_hash(net, name);
648 
649 	hlist_for_each_entry_rcu(dev, p, head, name_hlist)
650 		if (!strncmp(dev->name, name, IFNAMSIZ))
651 			return dev;
652 
653 	return NULL;
654 }
655 EXPORT_SYMBOL(dev_get_by_name_rcu);
656 
657 /**
658  *	dev_get_by_name		- find a device by its name
659  *	@net: the applicable net namespace
660  *	@name: name to find
661  *
662  *	Find an interface by name. This can be called from any
663  *	context and does its own locking. The returned handle has
664  *	the usage count incremented and the caller must use dev_put() to
665  *	release it when it is no longer needed. %NULL is returned if no
666  *	matching device is found.
667  */
668 
669 struct net_device *dev_get_by_name(struct net *net, const char *name)
670 {
671 	struct net_device *dev;
672 
673 	rcu_read_lock();
674 	dev = dev_get_by_name_rcu(net, name);
675 	if (dev)
676 		dev_hold(dev);
677 	rcu_read_unlock();
678 	return dev;
679 }
680 EXPORT_SYMBOL(dev_get_by_name);
681 
682 /**
683  *	__dev_get_by_index - find a device by its ifindex
684  *	@net: the applicable net namespace
685  *	@ifindex: index of device
686  *
687  *	Search for an interface by index. Returns %NULL if the device
688  *	is not found or a pointer to the device. The device has not
689  *	had its reference counter increased so the caller must be careful
690  *	about locking. The caller must hold either the RTNL semaphore
691  *	or @dev_base_lock.
692  */
693 
694 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
695 {
696 	struct hlist_node *p;
697 	struct net_device *dev;
698 	struct hlist_head *head = dev_index_hash(net, ifindex);
699 
700 	hlist_for_each_entry(dev, p, head, index_hlist)
701 		if (dev->ifindex == ifindex)
702 			return dev;
703 
704 	return NULL;
705 }
706 EXPORT_SYMBOL(__dev_get_by_index);
707 
708 /**
709  *	dev_get_by_index_rcu - find a device by its ifindex
710  *	@net: the applicable net namespace
711  *	@ifindex: index of device
712  *
713  *	Search for an interface by index. Returns %NULL if the device
714  *	is not found or a pointer to the device. The device has not
715  *	had its reference counter increased so the caller must be careful
716  *	about locking. The caller must hold RCU lock.
717  */
718 
719 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
720 {
721 	struct hlist_node *p;
722 	struct net_device *dev;
723 	struct hlist_head *head = dev_index_hash(net, ifindex);
724 
725 	hlist_for_each_entry_rcu(dev, p, head, index_hlist)
726 		if (dev->ifindex == ifindex)
727 			return dev;
728 
729 	return NULL;
730 }
731 EXPORT_SYMBOL(dev_get_by_index_rcu);
732 
733 
734 /**
735  *	dev_get_by_index - find a device by its ifindex
736  *	@net: the applicable net namespace
737  *	@ifindex: index of device
738  *
739  *	Search for an interface by index. Returns NULL if the device
740  *	is not found or a pointer to the device. The device returned has
741  *	had a reference added and the pointer is safe until the user calls
742  *	dev_put to indicate they have finished with it.
743  */
744 
745 struct net_device *dev_get_by_index(struct net *net, int ifindex)
746 {
747 	struct net_device *dev;
748 
749 	rcu_read_lock();
750 	dev = dev_get_by_index_rcu(net, ifindex);
751 	if (dev)
752 		dev_hold(dev);
753 	rcu_read_unlock();
754 	return dev;
755 }
756 EXPORT_SYMBOL(dev_get_by_index);
757 
758 /**
759  *	dev_getbyhwaddr_rcu - find a device by its hardware address
760  *	@net: the applicable net namespace
761  *	@type: media type of device
762  *	@ha: hardware address
763  *
764  *	Search for an interface by MAC address. Returns NULL if the device
765  *	is not found or a pointer to the device.
766  *	The caller must hold RCU or RTNL.
767  *	The returned device has not had its ref count increased
768  *	and the caller must therefore be careful about locking
769  *
770  */
771 
772 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
773 				       const char *ha)
774 {
775 	struct net_device *dev;
776 
777 	for_each_netdev_rcu(net, dev)
778 		if (dev->type == type &&
779 		    !memcmp(dev->dev_addr, ha, dev->addr_len))
780 			return dev;
781 
782 	return NULL;
783 }
784 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
785 
786 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
787 {
788 	struct net_device *dev;
789 
790 	ASSERT_RTNL();
791 	for_each_netdev(net, dev)
792 		if (dev->type == type)
793 			return dev;
794 
795 	return NULL;
796 }
797 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
798 
799 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
800 {
801 	struct net_device *dev, *ret = NULL;
802 
803 	rcu_read_lock();
804 	for_each_netdev_rcu(net, dev)
805 		if (dev->type == type) {
806 			dev_hold(dev);
807 			ret = dev;
808 			break;
809 		}
810 	rcu_read_unlock();
811 	return ret;
812 }
813 EXPORT_SYMBOL(dev_getfirstbyhwtype);
814 
815 /**
816  *	dev_get_by_flags_rcu - find any device with given flags
817  *	@net: the applicable net namespace
818  *	@if_flags: IFF_* values
819  *	@mask: bitmask of bits in if_flags to check
820  *
821  *	Search for any interface with the given flags. Returns NULL if a device
822  *	is not found or a pointer to the device. Must be called inside
823  *	rcu_read_lock(), and result refcount is unchanged.
824  */
825 
826 struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short if_flags,
827 				    unsigned short mask)
828 {
829 	struct net_device *dev, *ret;
830 
831 	ret = NULL;
832 	for_each_netdev_rcu(net, dev) {
833 		if (((dev->flags ^ if_flags) & mask) == 0) {
834 			ret = dev;
835 			break;
836 		}
837 	}
838 	return ret;
839 }
840 EXPORT_SYMBOL(dev_get_by_flags_rcu);
841 
842 /**
843  *	dev_valid_name - check if name is okay for network device
844  *	@name: name string
845  *
846  *	Network device names need to be valid file names to
847  *	to allow sysfs to work.  We also disallow any kind of
848  *	whitespace.
849  */
850 bool dev_valid_name(const char *name)
851 {
852 	if (*name == '\0')
853 		return false;
854 	if (strlen(name) >= IFNAMSIZ)
855 		return false;
856 	if (!strcmp(name, ".") || !strcmp(name, ".."))
857 		return false;
858 
859 	while (*name) {
860 		if (*name == '/' || isspace(*name))
861 			return false;
862 		name++;
863 	}
864 	return true;
865 }
866 EXPORT_SYMBOL(dev_valid_name);
867 
868 /**
869  *	__dev_alloc_name - allocate a name for a device
870  *	@net: network namespace to allocate the device name in
871  *	@name: name format string
872  *	@buf:  scratch buffer and result name string
873  *
874  *	Passed a format string - eg "lt%d" it will try and find a suitable
875  *	id. It scans list of devices to build up a free map, then chooses
876  *	the first empty slot. The caller must hold the dev_base or rtnl lock
877  *	while allocating the name and adding the device in order to avoid
878  *	duplicates.
879  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
880  *	Returns the number of the unit assigned or a negative errno code.
881  */
882 
883 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
884 {
885 	int i = 0;
886 	const char *p;
887 	const int max_netdevices = 8*PAGE_SIZE;
888 	unsigned long *inuse;
889 	struct net_device *d;
890 
891 	p = strnchr(name, IFNAMSIZ-1, '%');
892 	if (p) {
893 		/*
894 		 * Verify the string as this thing may have come from
895 		 * the user.  There must be either one "%d" and no other "%"
896 		 * characters.
897 		 */
898 		if (p[1] != 'd' || strchr(p + 2, '%'))
899 			return -EINVAL;
900 
901 		/* Use one page as a bit array of possible slots */
902 		inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
903 		if (!inuse)
904 			return -ENOMEM;
905 
906 		for_each_netdev(net, d) {
907 			if (!sscanf(d->name, name, &i))
908 				continue;
909 			if (i < 0 || i >= max_netdevices)
910 				continue;
911 
912 			/*  avoid cases where sscanf is not exact inverse of printf */
913 			snprintf(buf, IFNAMSIZ, name, i);
914 			if (!strncmp(buf, d->name, IFNAMSIZ))
915 				set_bit(i, inuse);
916 		}
917 
918 		i = find_first_zero_bit(inuse, max_netdevices);
919 		free_page((unsigned long) inuse);
920 	}
921 
922 	if (buf != name)
923 		snprintf(buf, IFNAMSIZ, name, i);
924 	if (!__dev_get_by_name(net, buf))
925 		return i;
926 
927 	/* It is possible to run out of possible slots
928 	 * when the name is long and there isn't enough space left
929 	 * for the digits, or if all bits are used.
930 	 */
931 	return -ENFILE;
932 }
933 
934 /**
935  *	dev_alloc_name - allocate a name for a device
936  *	@dev: device
937  *	@name: name format string
938  *
939  *	Passed a format string - eg "lt%d" it will try and find a suitable
940  *	id. It scans list of devices to build up a free map, then chooses
941  *	the first empty slot. The caller must hold the dev_base or rtnl lock
942  *	while allocating the name and adding the device in order to avoid
943  *	duplicates.
944  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
945  *	Returns the number of the unit assigned or a negative errno code.
946  */
947 
948 int dev_alloc_name(struct net_device *dev, const char *name)
949 {
950 	char buf[IFNAMSIZ];
951 	struct net *net;
952 	int ret;
953 
954 	BUG_ON(!dev_net(dev));
955 	net = dev_net(dev);
956 	ret = __dev_alloc_name(net, name, buf);
957 	if (ret >= 0)
958 		strlcpy(dev->name, buf, IFNAMSIZ);
959 	return ret;
960 }
961 EXPORT_SYMBOL(dev_alloc_name);
962 
963 static int dev_get_valid_name(struct net_device *dev, const char *name)
964 {
965 	struct net *net;
966 
967 	BUG_ON(!dev_net(dev));
968 	net = dev_net(dev);
969 
970 	if (!dev_valid_name(name))
971 		return -EINVAL;
972 
973 	if (strchr(name, '%'))
974 		return dev_alloc_name(dev, name);
975 	else if (__dev_get_by_name(net, name))
976 		return -EEXIST;
977 	else if (dev->name != name)
978 		strlcpy(dev->name, name, IFNAMSIZ);
979 
980 	return 0;
981 }
982 
983 /**
984  *	dev_change_name - change name of a device
985  *	@dev: device
986  *	@newname: name (or format string) must be at least IFNAMSIZ
987  *
988  *	Change name of a device, can pass format strings "eth%d".
989  *	for wildcarding.
990  */
991 int dev_change_name(struct net_device *dev, const char *newname)
992 {
993 	char oldname[IFNAMSIZ];
994 	int err = 0;
995 	int ret;
996 	struct net *net;
997 
998 	ASSERT_RTNL();
999 	BUG_ON(!dev_net(dev));
1000 
1001 	net = dev_net(dev);
1002 	if (dev->flags & IFF_UP)
1003 		return -EBUSY;
1004 
1005 	if (strncmp(newname, dev->name, IFNAMSIZ) == 0)
1006 		return 0;
1007 
1008 	memcpy(oldname, dev->name, IFNAMSIZ);
1009 
1010 	err = dev_get_valid_name(dev, newname);
1011 	if (err < 0)
1012 		return err;
1013 
1014 rollback:
1015 	ret = device_rename(&dev->dev, dev->name);
1016 	if (ret) {
1017 		memcpy(dev->name, oldname, IFNAMSIZ);
1018 		return ret;
1019 	}
1020 
1021 	write_lock_bh(&dev_base_lock);
1022 	hlist_del_rcu(&dev->name_hlist);
1023 	write_unlock_bh(&dev_base_lock);
1024 
1025 	synchronize_rcu();
1026 
1027 	write_lock_bh(&dev_base_lock);
1028 	hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1029 	write_unlock_bh(&dev_base_lock);
1030 
1031 	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1032 	ret = notifier_to_errno(ret);
1033 
1034 	if (ret) {
1035 		/* err >= 0 after dev_alloc_name() or stores the first errno */
1036 		if (err >= 0) {
1037 			err = ret;
1038 			memcpy(dev->name, oldname, IFNAMSIZ);
1039 			goto rollback;
1040 		} else {
1041 			pr_err("%s: name change rollback failed: %d\n",
1042 			       dev->name, ret);
1043 		}
1044 	}
1045 
1046 	return err;
1047 }
1048 
1049 /**
1050  *	dev_set_alias - change ifalias of a device
1051  *	@dev: device
1052  *	@alias: name up to IFALIASZ
1053  *	@len: limit of bytes to copy from info
1054  *
1055  *	Set ifalias for a device,
1056  */
1057 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1058 {
1059 	ASSERT_RTNL();
1060 
1061 	if (len >= IFALIASZ)
1062 		return -EINVAL;
1063 
1064 	if (!len) {
1065 		if (dev->ifalias) {
1066 			kfree(dev->ifalias);
1067 			dev->ifalias = NULL;
1068 		}
1069 		return 0;
1070 	}
1071 
1072 	dev->ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1073 	if (!dev->ifalias)
1074 		return -ENOMEM;
1075 
1076 	strlcpy(dev->ifalias, alias, len+1);
1077 	return len;
1078 }
1079 
1080 
1081 /**
1082  *	netdev_features_change - device changes features
1083  *	@dev: device to cause notification
1084  *
1085  *	Called to indicate a device has changed features.
1086  */
1087 void netdev_features_change(struct net_device *dev)
1088 {
1089 	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1090 }
1091 EXPORT_SYMBOL(netdev_features_change);
1092 
1093 /**
1094  *	netdev_state_change - device changes state
1095  *	@dev: device to cause notification
1096  *
1097  *	Called to indicate a device has changed state. This function calls
1098  *	the notifier chains for netdev_chain and sends a NEWLINK message
1099  *	to the routing socket.
1100  */
1101 void netdev_state_change(struct net_device *dev)
1102 {
1103 	if (dev->flags & IFF_UP) {
1104 		call_netdevice_notifiers(NETDEV_CHANGE, dev);
1105 		rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
1106 	}
1107 }
1108 EXPORT_SYMBOL(netdev_state_change);
1109 
1110 int netdev_bonding_change(struct net_device *dev, unsigned long event)
1111 {
1112 	return call_netdevice_notifiers(event, dev);
1113 }
1114 EXPORT_SYMBOL(netdev_bonding_change);
1115 
1116 /**
1117  *	dev_load 	- load a network module
1118  *	@net: the applicable net namespace
1119  *	@name: name of interface
1120  *
1121  *	If a network interface is not present and the process has suitable
1122  *	privileges this function loads the module. If module loading is not
1123  *	available in this kernel then it becomes a nop.
1124  */
1125 
1126 void dev_load(struct net *net, const char *name)
1127 {
1128 	struct net_device *dev;
1129 	int no_module;
1130 
1131 	rcu_read_lock();
1132 	dev = dev_get_by_name_rcu(net, name);
1133 	rcu_read_unlock();
1134 
1135 	no_module = !dev;
1136 	if (no_module && capable(CAP_NET_ADMIN))
1137 		no_module = request_module("netdev-%s", name);
1138 	if (no_module && capable(CAP_SYS_MODULE)) {
1139 		if (!request_module("%s", name))
1140 			pr_err("Loading kernel module for a network device with CAP_SYS_MODULE (deprecated).  Use CAP_NET_ADMIN and alias netdev-%s instead.\n",
1141 			       name);
1142 	}
1143 }
1144 EXPORT_SYMBOL(dev_load);
1145 
1146 static int __dev_open(struct net_device *dev)
1147 {
1148 	const struct net_device_ops *ops = dev->netdev_ops;
1149 	int ret;
1150 
1151 	ASSERT_RTNL();
1152 
1153 	if (!netif_device_present(dev))
1154 		return -ENODEV;
1155 
1156 	ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1157 	ret = notifier_to_errno(ret);
1158 	if (ret)
1159 		return ret;
1160 
1161 	set_bit(__LINK_STATE_START, &dev->state);
1162 
1163 	if (ops->ndo_validate_addr)
1164 		ret = ops->ndo_validate_addr(dev);
1165 
1166 	if (!ret && ops->ndo_open)
1167 		ret = ops->ndo_open(dev);
1168 
1169 	if (ret)
1170 		clear_bit(__LINK_STATE_START, &dev->state);
1171 	else {
1172 		dev->flags |= IFF_UP;
1173 		net_dmaengine_get();
1174 		dev_set_rx_mode(dev);
1175 		dev_activate(dev);
1176 	}
1177 
1178 	return ret;
1179 }
1180 
1181 /**
1182  *	dev_open	- prepare an interface for use.
1183  *	@dev:	device to open
1184  *
1185  *	Takes a device from down to up state. The device's private open
1186  *	function is invoked and then the multicast lists are loaded. Finally
1187  *	the device is moved into the up state and a %NETDEV_UP message is
1188  *	sent to the netdev notifier chain.
1189  *
1190  *	Calling this function on an active interface is a nop. On a failure
1191  *	a negative errno code is returned.
1192  */
1193 int dev_open(struct net_device *dev)
1194 {
1195 	int ret;
1196 
1197 	if (dev->flags & IFF_UP)
1198 		return 0;
1199 
1200 	ret = __dev_open(dev);
1201 	if (ret < 0)
1202 		return ret;
1203 
1204 	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1205 	call_netdevice_notifiers(NETDEV_UP, dev);
1206 
1207 	return ret;
1208 }
1209 EXPORT_SYMBOL(dev_open);
1210 
1211 static int __dev_close_many(struct list_head *head)
1212 {
1213 	struct net_device *dev;
1214 
1215 	ASSERT_RTNL();
1216 	might_sleep();
1217 
1218 	list_for_each_entry(dev, head, unreg_list) {
1219 		call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1220 
1221 		clear_bit(__LINK_STATE_START, &dev->state);
1222 
1223 		/* Synchronize to scheduled poll. We cannot touch poll list, it
1224 		 * can be even on different cpu. So just clear netif_running().
1225 		 *
1226 		 * dev->stop() will invoke napi_disable() on all of it's
1227 		 * napi_struct instances on this device.
1228 		 */
1229 		smp_mb__after_clear_bit(); /* Commit netif_running(). */
1230 	}
1231 
1232 	dev_deactivate_many(head);
1233 
1234 	list_for_each_entry(dev, head, unreg_list) {
1235 		const struct net_device_ops *ops = dev->netdev_ops;
1236 
1237 		/*
1238 		 *	Call the device specific close. This cannot fail.
1239 		 *	Only if device is UP
1240 		 *
1241 		 *	We allow it to be called even after a DETACH hot-plug
1242 		 *	event.
1243 		 */
1244 		if (ops->ndo_stop)
1245 			ops->ndo_stop(dev);
1246 
1247 		dev->flags &= ~IFF_UP;
1248 		net_dmaengine_put();
1249 	}
1250 
1251 	return 0;
1252 }
1253 
1254 static int __dev_close(struct net_device *dev)
1255 {
1256 	int retval;
1257 	LIST_HEAD(single);
1258 
1259 	list_add(&dev->unreg_list, &single);
1260 	retval = __dev_close_many(&single);
1261 	list_del(&single);
1262 	return retval;
1263 }
1264 
1265 static int dev_close_many(struct list_head *head)
1266 {
1267 	struct net_device *dev, *tmp;
1268 	LIST_HEAD(tmp_list);
1269 
1270 	list_for_each_entry_safe(dev, tmp, head, unreg_list)
1271 		if (!(dev->flags & IFF_UP))
1272 			list_move(&dev->unreg_list, &tmp_list);
1273 
1274 	__dev_close_many(head);
1275 
1276 	list_for_each_entry(dev, head, unreg_list) {
1277 		rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1278 		call_netdevice_notifiers(NETDEV_DOWN, dev);
1279 	}
1280 
1281 	/* rollback_registered_many needs the complete original list */
1282 	list_splice(&tmp_list, head);
1283 	return 0;
1284 }
1285 
1286 /**
1287  *	dev_close - shutdown an interface.
1288  *	@dev: device to shutdown
1289  *
1290  *	This function moves an active device into down state. A
1291  *	%NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1292  *	is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1293  *	chain.
1294  */
1295 int dev_close(struct net_device *dev)
1296 {
1297 	if (dev->flags & IFF_UP) {
1298 		LIST_HEAD(single);
1299 
1300 		list_add(&dev->unreg_list, &single);
1301 		dev_close_many(&single);
1302 		list_del(&single);
1303 	}
1304 	return 0;
1305 }
1306 EXPORT_SYMBOL(dev_close);
1307 
1308 
1309 /**
1310  *	dev_disable_lro - disable Large Receive Offload on a device
1311  *	@dev: device
1312  *
1313  *	Disable Large Receive Offload (LRO) on a net device.  Must be
1314  *	called under RTNL.  This is needed if received packets may be
1315  *	forwarded to another interface.
1316  */
1317 void dev_disable_lro(struct net_device *dev)
1318 {
1319 	/*
1320 	 * If we're trying to disable lro on a vlan device
1321 	 * use the underlying physical device instead
1322 	 */
1323 	if (is_vlan_dev(dev))
1324 		dev = vlan_dev_real_dev(dev);
1325 
1326 	dev->wanted_features &= ~NETIF_F_LRO;
1327 	netdev_update_features(dev);
1328 
1329 	if (unlikely(dev->features & NETIF_F_LRO))
1330 		netdev_WARN(dev, "failed to disable LRO!\n");
1331 }
1332 EXPORT_SYMBOL(dev_disable_lro);
1333 
1334 
1335 static int dev_boot_phase = 1;
1336 
1337 /**
1338  *	register_netdevice_notifier - register a network notifier block
1339  *	@nb: notifier
1340  *
1341  *	Register a notifier to be called when network device events occur.
1342  *	The notifier passed is linked into the kernel structures and must
1343  *	not be reused until it has been unregistered. A negative errno code
1344  *	is returned on a failure.
1345  *
1346  * 	When registered all registration and up events are replayed
1347  *	to the new notifier to allow device to have a race free
1348  *	view of the network device list.
1349  */
1350 
1351 int register_netdevice_notifier(struct notifier_block *nb)
1352 {
1353 	struct net_device *dev;
1354 	struct net_device *last;
1355 	struct net *net;
1356 	int err;
1357 
1358 	rtnl_lock();
1359 	err = raw_notifier_chain_register(&netdev_chain, nb);
1360 	if (err)
1361 		goto unlock;
1362 	if (dev_boot_phase)
1363 		goto unlock;
1364 	for_each_net(net) {
1365 		for_each_netdev(net, dev) {
1366 			err = nb->notifier_call(nb, NETDEV_REGISTER, dev);
1367 			err = notifier_to_errno(err);
1368 			if (err)
1369 				goto rollback;
1370 
1371 			if (!(dev->flags & IFF_UP))
1372 				continue;
1373 
1374 			nb->notifier_call(nb, NETDEV_UP, dev);
1375 		}
1376 	}
1377 
1378 unlock:
1379 	rtnl_unlock();
1380 	return err;
1381 
1382 rollback:
1383 	last = dev;
1384 	for_each_net(net) {
1385 		for_each_netdev(net, dev) {
1386 			if (dev == last)
1387 				goto outroll;
1388 
1389 			if (dev->flags & IFF_UP) {
1390 				nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1391 				nb->notifier_call(nb, NETDEV_DOWN, dev);
1392 			}
1393 			nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1394 			nb->notifier_call(nb, NETDEV_UNREGISTER_BATCH, dev);
1395 		}
1396 	}
1397 
1398 outroll:
1399 	raw_notifier_chain_unregister(&netdev_chain, nb);
1400 	goto unlock;
1401 }
1402 EXPORT_SYMBOL(register_netdevice_notifier);
1403 
1404 /**
1405  *	unregister_netdevice_notifier - unregister a network notifier block
1406  *	@nb: notifier
1407  *
1408  *	Unregister a notifier previously registered by
1409  *	register_netdevice_notifier(). The notifier is unlinked into the
1410  *	kernel structures and may then be reused. A negative errno code
1411  *	is returned on a failure.
1412  */
1413 
1414 int unregister_netdevice_notifier(struct notifier_block *nb)
1415 {
1416 	int err;
1417 
1418 	rtnl_lock();
1419 	err = raw_notifier_chain_unregister(&netdev_chain, nb);
1420 	rtnl_unlock();
1421 	return err;
1422 }
1423 EXPORT_SYMBOL(unregister_netdevice_notifier);
1424 
1425 /**
1426  *	call_netdevice_notifiers - call all network notifier blocks
1427  *      @val: value passed unmodified to notifier function
1428  *      @dev: net_device pointer passed unmodified to notifier function
1429  *
1430  *	Call all network notifier blocks.  Parameters and return value
1431  *	are as for raw_notifier_call_chain().
1432  */
1433 
1434 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1435 {
1436 	ASSERT_RTNL();
1437 	return raw_notifier_call_chain(&netdev_chain, val, dev);
1438 }
1439 EXPORT_SYMBOL(call_netdevice_notifiers);
1440 
1441 static struct static_key netstamp_needed __read_mostly;
1442 #ifdef HAVE_JUMP_LABEL
1443 /* We are not allowed to call static_key_slow_dec() from irq context
1444  * If net_disable_timestamp() is called from irq context, defer the
1445  * static_key_slow_dec() calls.
1446  */
1447 static atomic_t netstamp_needed_deferred;
1448 #endif
1449 
1450 void net_enable_timestamp(void)
1451 {
1452 #ifdef HAVE_JUMP_LABEL
1453 	int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1454 
1455 	if (deferred) {
1456 		while (--deferred)
1457 			static_key_slow_dec(&netstamp_needed);
1458 		return;
1459 	}
1460 #endif
1461 	WARN_ON(in_interrupt());
1462 	static_key_slow_inc(&netstamp_needed);
1463 }
1464 EXPORT_SYMBOL(net_enable_timestamp);
1465 
1466 void net_disable_timestamp(void)
1467 {
1468 #ifdef HAVE_JUMP_LABEL
1469 	if (in_interrupt()) {
1470 		atomic_inc(&netstamp_needed_deferred);
1471 		return;
1472 	}
1473 #endif
1474 	static_key_slow_dec(&netstamp_needed);
1475 }
1476 EXPORT_SYMBOL(net_disable_timestamp);
1477 
1478 static inline void net_timestamp_set(struct sk_buff *skb)
1479 {
1480 	skb->tstamp.tv64 = 0;
1481 	if (static_key_false(&netstamp_needed))
1482 		__net_timestamp(skb);
1483 }
1484 
1485 #define net_timestamp_check(COND, SKB)			\
1486 	if (static_key_false(&netstamp_needed)) {		\
1487 		if ((COND) && !(SKB)->tstamp.tv64)	\
1488 			__net_timestamp(SKB);		\
1489 	}						\
1490 
1491 static int net_hwtstamp_validate(struct ifreq *ifr)
1492 {
1493 	struct hwtstamp_config cfg;
1494 	enum hwtstamp_tx_types tx_type;
1495 	enum hwtstamp_rx_filters rx_filter;
1496 	int tx_type_valid = 0;
1497 	int rx_filter_valid = 0;
1498 
1499 	if (copy_from_user(&cfg, ifr->ifr_data, sizeof(cfg)))
1500 		return -EFAULT;
1501 
1502 	if (cfg.flags) /* reserved for future extensions */
1503 		return -EINVAL;
1504 
1505 	tx_type = cfg.tx_type;
1506 	rx_filter = cfg.rx_filter;
1507 
1508 	switch (tx_type) {
1509 	case HWTSTAMP_TX_OFF:
1510 	case HWTSTAMP_TX_ON:
1511 	case HWTSTAMP_TX_ONESTEP_SYNC:
1512 		tx_type_valid = 1;
1513 		break;
1514 	}
1515 
1516 	switch (rx_filter) {
1517 	case HWTSTAMP_FILTER_NONE:
1518 	case HWTSTAMP_FILTER_ALL:
1519 	case HWTSTAMP_FILTER_SOME:
1520 	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
1521 	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
1522 	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
1523 	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
1524 	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
1525 	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
1526 	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
1527 	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
1528 	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
1529 	case HWTSTAMP_FILTER_PTP_V2_EVENT:
1530 	case HWTSTAMP_FILTER_PTP_V2_SYNC:
1531 	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
1532 		rx_filter_valid = 1;
1533 		break;
1534 	}
1535 
1536 	if (!tx_type_valid || !rx_filter_valid)
1537 		return -ERANGE;
1538 
1539 	return 0;
1540 }
1541 
1542 static inline bool is_skb_forwardable(struct net_device *dev,
1543 				      struct sk_buff *skb)
1544 {
1545 	unsigned int len;
1546 
1547 	if (!(dev->flags & IFF_UP))
1548 		return false;
1549 
1550 	len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1551 	if (skb->len <= len)
1552 		return true;
1553 
1554 	/* if TSO is enabled, we don't care about the length as the packet
1555 	 * could be forwarded without being segmented before
1556 	 */
1557 	if (skb_is_gso(skb))
1558 		return true;
1559 
1560 	return false;
1561 }
1562 
1563 /**
1564  * dev_forward_skb - loopback an skb to another netif
1565  *
1566  * @dev: destination network device
1567  * @skb: buffer to forward
1568  *
1569  * return values:
1570  *	NET_RX_SUCCESS	(no congestion)
1571  *	NET_RX_DROP     (packet was dropped, but freed)
1572  *
1573  * dev_forward_skb can be used for injecting an skb from the
1574  * start_xmit function of one device into the receive queue
1575  * of another device.
1576  *
1577  * The receiving device may be in another namespace, so
1578  * we have to clear all information in the skb that could
1579  * impact namespace isolation.
1580  */
1581 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1582 {
1583 	if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
1584 		if (skb_copy_ubufs(skb, GFP_ATOMIC)) {
1585 			atomic_long_inc(&dev->rx_dropped);
1586 			kfree_skb(skb);
1587 			return NET_RX_DROP;
1588 		}
1589 	}
1590 
1591 	skb_orphan(skb);
1592 	nf_reset(skb);
1593 
1594 	if (unlikely(!is_skb_forwardable(dev, skb))) {
1595 		atomic_long_inc(&dev->rx_dropped);
1596 		kfree_skb(skb);
1597 		return NET_RX_DROP;
1598 	}
1599 	skb_set_dev(skb, dev);
1600 	skb->tstamp.tv64 = 0;
1601 	skb->pkt_type = PACKET_HOST;
1602 	skb->protocol = eth_type_trans(skb, dev);
1603 	return netif_rx(skb);
1604 }
1605 EXPORT_SYMBOL_GPL(dev_forward_skb);
1606 
1607 static inline int deliver_skb(struct sk_buff *skb,
1608 			      struct packet_type *pt_prev,
1609 			      struct net_device *orig_dev)
1610 {
1611 	atomic_inc(&skb->users);
1612 	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1613 }
1614 
1615 /*
1616  *	Support routine. Sends outgoing frames to any network
1617  *	taps currently in use.
1618  */
1619 
1620 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1621 {
1622 	struct packet_type *ptype;
1623 	struct sk_buff *skb2 = NULL;
1624 	struct packet_type *pt_prev = NULL;
1625 
1626 	rcu_read_lock();
1627 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
1628 		/* Never send packets back to the socket
1629 		 * they originated from - MvS (miquels@drinkel.ow.org)
1630 		 */
1631 		if ((ptype->dev == dev || !ptype->dev) &&
1632 		    (ptype->af_packet_priv == NULL ||
1633 		     (struct sock *)ptype->af_packet_priv != skb->sk)) {
1634 			if (pt_prev) {
1635 				deliver_skb(skb2, pt_prev, skb->dev);
1636 				pt_prev = ptype;
1637 				continue;
1638 			}
1639 
1640 			skb2 = skb_clone(skb, GFP_ATOMIC);
1641 			if (!skb2)
1642 				break;
1643 
1644 			net_timestamp_set(skb2);
1645 
1646 			/* skb->nh should be correctly
1647 			   set by sender, so that the second statement is
1648 			   just protection against buggy protocols.
1649 			 */
1650 			skb_reset_mac_header(skb2);
1651 
1652 			if (skb_network_header(skb2) < skb2->data ||
1653 			    skb2->network_header > skb2->tail) {
1654 				if (net_ratelimit())
1655 					pr_crit("protocol %04x is buggy, dev %s\n",
1656 						ntohs(skb2->protocol),
1657 						dev->name);
1658 				skb_reset_network_header(skb2);
1659 			}
1660 
1661 			skb2->transport_header = skb2->network_header;
1662 			skb2->pkt_type = PACKET_OUTGOING;
1663 			pt_prev = ptype;
1664 		}
1665 	}
1666 	if (pt_prev)
1667 		pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1668 	rcu_read_unlock();
1669 }
1670 
1671 /* netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1672  * @dev: Network device
1673  * @txq: number of queues available
1674  *
1675  * If real_num_tx_queues is changed the tc mappings may no longer be
1676  * valid. To resolve this verify the tc mapping remains valid and if
1677  * not NULL the mapping. With no priorities mapping to this
1678  * offset/count pair it will no longer be used. In the worst case TC0
1679  * is invalid nothing can be done so disable priority mappings. If is
1680  * expected that drivers will fix this mapping if they can before
1681  * calling netif_set_real_num_tx_queues.
1682  */
1683 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1684 {
1685 	int i;
1686 	struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1687 
1688 	/* If TC0 is invalidated disable TC mapping */
1689 	if (tc->offset + tc->count > txq) {
1690 		pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1691 		dev->num_tc = 0;
1692 		return;
1693 	}
1694 
1695 	/* Invalidated prio to tc mappings set to TC0 */
1696 	for (i = 1; i < TC_BITMASK + 1; i++) {
1697 		int q = netdev_get_prio_tc_map(dev, i);
1698 
1699 		tc = &dev->tc_to_txq[q];
1700 		if (tc->offset + tc->count > txq) {
1701 			pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1702 				i, q);
1703 			netdev_set_prio_tc_map(dev, i, 0);
1704 		}
1705 	}
1706 }
1707 
1708 /*
1709  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
1710  * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
1711  */
1712 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
1713 {
1714 	int rc;
1715 
1716 	if (txq < 1 || txq > dev->num_tx_queues)
1717 		return -EINVAL;
1718 
1719 	if (dev->reg_state == NETREG_REGISTERED ||
1720 	    dev->reg_state == NETREG_UNREGISTERING) {
1721 		ASSERT_RTNL();
1722 
1723 		rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
1724 						  txq);
1725 		if (rc)
1726 			return rc;
1727 
1728 		if (dev->num_tc)
1729 			netif_setup_tc(dev, txq);
1730 
1731 		if (txq < dev->real_num_tx_queues)
1732 			qdisc_reset_all_tx_gt(dev, txq);
1733 	}
1734 
1735 	dev->real_num_tx_queues = txq;
1736 	return 0;
1737 }
1738 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
1739 
1740 #ifdef CONFIG_RPS
1741 /**
1742  *	netif_set_real_num_rx_queues - set actual number of RX queues used
1743  *	@dev: Network device
1744  *	@rxq: Actual number of RX queues
1745  *
1746  *	This must be called either with the rtnl_lock held or before
1747  *	registration of the net device.  Returns 0 on success, or a
1748  *	negative error code.  If called before registration, it always
1749  *	succeeds.
1750  */
1751 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
1752 {
1753 	int rc;
1754 
1755 	if (rxq < 1 || rxq > dev->num_rx_queues)
1756 		return -EINVAL;
1757 
1758 	if (dev->reg_state == NETREG_REGISTERED) {
1759 		ASSERT_RTNL();
1760 
1761 		rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
1762 						  rxq);
1763 		if (rc)
1764 			return rc;
1765 	}
1766 
1767 	dev->real_num_rx_queues = rxq;
1768 	return 0;
1769 }
1770 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
1771 #endif
1772 
1773 static inline void __netif_reschedule(struct Qdisc *q)
1774 {
1775 	struct softnet_data *sd;
1776 	unsigned long flags;
1777 
1778 	local_irq_save(flags);
1779 	sd = &__get_cpu_var(softnet_data);
1780 	q->next_sched = NULL;
1781 	*sd->output_queue_tailp = q;
1782 	sd->output_queue_tailp = &q->next_sched;
1783 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
1784 	local_irq_restore(flags);
1785 }
1786 
1787 void __netif_schedule(struct Qdisc *q)
1788 {
1789 	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
1790 		__netif_reschedule(q);
1791 }
1792 EXPORT_SYMBOL(__netif_schedule);
1793 
1794 void dev_kfree_skb_irq(struct sk_buff *skb)
1795 {
1796 	if (atomic_dec_and_test(&skb->users)) {
1797 		struct softnet_data *sd;
1798 		unsigned long flags;
1799 
1800 		local_irq_save(flags);
1801 		sd = &__get_cpu_var(softnet_data);
1802 		skb->next = sd->completion_queue;
1803 		sd->completion_queue = skb;
1804 		raise_softirq_irqoff(NET_TX_SOFTIRQ);
1805 		local_irq_restore(flags);
1806 	}
1807 }
1808 EXPORT_SYMBOL(dev_kfree_skb_irq);
1809 
1810 void dev_kfree_skb_any(struct sk_buff *skb)
1811 {
1812 	if (in_irq() || irqs_disabled())
1813 		dev_kfree_skb_irq(skb);
1814 	else
1815 		dev_kfree_skb(skb);
1816 }
1817 EXPORT_SYMBOL(dev_kfree_skb_any);
1818 
1819 
1820 /**
1821  * netif_device_detach - mark device as removed
1822  * @dev: network device
1823  *
1824  * Mark device as removed from system and therefore no longer available.
1825  */
1826 void netif_device_detach(struct net_device *dev)
1827 {
1828 	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
1829 	    netif_running(dev)) {
1830 		netif_tx_stop_all_queues(dev);
1831 	}
1832 }
1833 EXPORT_SYMBOL(netif_device_detach);
1834 
1835 /**
1836  * netif_device_attach - mark device as attached
1837  * @dev: network device
1838  *
1839  * Mark device as attached from system and restart if needed.
1840  */
1841 void netif_device_attach(struct net_device *dev)
1842 {
1843 	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
1844 	    netif_running(dev)) {
1845 		netif_tx_wake_all_queues(dev);
1846 		__netdev_watchdog_up(dev);
1847 	}
1848 }
1849 EXPORT_SYMBOL(netif_device_attach);
1850 
1851 /**
1852  * skb_dev_set -- assign a new device to a buffer
1853  * @skb: buffer for the new device
1854  * @dev: network device
1855  *
1856  * If an skb is owned by a device already, we have to reset
1857  * all data private to the namespace a device belongs to
1858  * before assigning it a new device.
1859  */
1860 #ifdef CONFIG_NET_NS
1861 void skb_set_dev(struct sk_buff *skb, struct net_device *dev)
1862 {
1863 	skb_dst_drop(skb);
1864 	if (skb->dev && !net_eq(dev_net(skb->dev), dev_net(dev))) {
1865 		secpath_reset(skb);
1866 		nf_reset(skb);
1867 		skb_init_secmark(skb);
1868 		skb->mark = 0;
1869 		skb->priority = 0;
1870 		skb->nf_trace = 0;
1871 		skb->ipvs_property = 0;
1872 #ifdef CONFIG_NET_SCHED
1873 		skb->tc_index = 0;
1874 #endif
1875 	}
1876 	skb->dev = dev;
1877 }
1878 EXPORT_SYMBOL(skb_set_dev);
1879 #endif /* CONFIG_NET_NS */
1880 
1881 static void skb_warn_bad_offload(const struct sk_buff *skb)
1882 {
1883 	static const netdev_features_t null_features = 0;
1884 	struct net_device *dev = skb->dev;
1885 	const char *driver = "";
1886 
1887 	if (dev && dev->dev.parent)
1888 		driver = dev_driver_string(dev->dev.parent);
1889 
1890 	WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
1891 	     "gso_type=%d ip_summed=%d\n",
1892 	     driver, dev ? &dev->features : &null_features,
1893 	     skb->sk ? &skb->sk->sk_route_caps : &null_features,
1894 	     skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
1895 	     skb_shinfo(skb)->gso_type, skb->ip_summed);
1896 }
1897 
1898 /*
1899  * Invalidate hardware checksum when packet is to be mangled, and
1900  * complete checksum manually on outgoing path.
1901  */
1902 int skb_checksum_help(struct sk_buff *skb)
1903 {
1904 	__wsum csum;
1905 	int ret = 0, offset;
1906 
1907 	if (skb->ip_summed == CHECKSUM_COMPLETE)
1908 		goto out_set_summed;
1909 
1910 	if (unlikely(skb_shinfo(skb)->gso_size)) {
1911 		skb_warn_bad_offload(skb);
1912 		return -EINVAL;
1913 	}
1914 
1915 	offset = skb_checksum_start_offset(skb);
1916 	BUG_ON(offset >= skb_headlen(skb));
1917 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
1918 
1919 	offset += skb->csum_offset;
1920 	BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
1921 
1922 	if (skb_cloned(skb) &&
1923 	    !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1924 		ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1925 		if (ret)
1926 			goto out;
1927 	}
1928 
1929 	*(__sum16 *)(skb->data + offset) = csum_fold(csum);
1930 out_set_summed:
1931 	skb->ip_summed = CHECKSUM_NONE;
1932 out:
1933 	return ret;
1934 }
1935 EXPORT_SYMBOL(skb_checksum_help);
1936 
1937 /**
1938  *	skb_gso_segment - Perform segmentation on skb.
1939  *	@skb: buffer to segment
1940  *	@features: features for the output path (see dev->features)
1941  *
1942  *	This function segments the given skb and returns a list of segments.
1943  *
1944  *	It may return NULL if the skb requires no segmentation.  This is
1945  *	only possible when GSO is used for verifying header integrity.
1946  */
1947 struct sk_buff *skb_gso_segment(struct sk_buff *skb,
1948 	netdev_features_t features)
1949 {
1950 	struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
1951 	struct packet_type *ptype;
1952 	__be16 type = skb->protocol;
1953 	int vlan_depth = ETH_HLEN;
1954 	int err;
1955 
1956 	while (type == htons(ETH_P_8021Q)) {
1957 		struct vlan_hdr *vh;
1958 
1959 		if (unlikely(!pskb_may_pull(skb, vlan_depth + VLAN_HLEN)))
1960 			return ERR_PTR(-EINVAL);
1961 
1962 		vh = (struct vlan_hdr *)(skb->data + vlan_depth);
1963 		type = vh->h_vlan_encapsulated_proto;
1964 		vlan_depth += VLAN_HLEN;
1965 	}
1966 
1967 	skb_reset_mac_header(skb);
1968 	skb->mac_len = skb->network_header - skb->mac_header;
1969 	__skb_pull(skb, skb->mac_len);
1970 
1971 	if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1972 		skb_warn_bad_offload(skb);
1973 
1974 		if (skb_header_cloned(skb) &&
1975 		    (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
1976 			return ERR_PTR(err);
1977 	}
1978 
1979 	rcu_read_lock();
1980 	list_for_each_entry_rcu(ptype,
1981 			&ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
1982 		if (ptype->type == type && !ptype->dev && ptype->gso_segment) {
1983 			if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1984 				err = ptype->gso_send_check(skb);
1985 				segs = ERR_PTR(err);
1986 				if (err || skb_gso_ok(skb, features))
1987 					break;
1988 				__skb_push(skb, (skb->data -
1989 						 skb_network_header(skb)));
1990 			}
1991 			segs = ptype->gso_segment(skb, features);
1992 			break;
1993 		}
1994 	}
1995 	rcu_read_unlock();
1996 
1997 	__skb_push(skb, skb->data - skb_mac_header(skb));
1998 
1999 	return segs;
2000 }
2001 EXPORT_SYMBOL(skb_gso_segment);
2002 
2003 /* Take action when hardware reception checksum errors are detected. */
2004 #ifdef CONFIG_BUG
2005 void netdev_rx_csum_fault(struct net_device *dev)
2006 {
2007 	if (net_ratelimit()) {
2008 		pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2009 		dump_stack();
2010 	}
2011 }
2012 EXPORT_SYMBOL(netdev_rx_csum_fault);
2013 #endif
2014 
2015 /* Actually, we should eliminate this check as soon as we know, that:
2016  * 1. IOMMU is present and allows to map all the memory.
2017  * 2. No high memory really exists on this machine.
2018  */
2019 
2020 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2021 {
2022 #ifdef CONFIG_HIGHMEM
2023 	int i;
2024 	if (!(dev->features & NETIF_F_HIGHDMA)) {
2025 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2026 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2027 			if (PageHighMem(skb_frag_page(frag)))
2028 				return 1;
2029 		}
2030 	}
2031 
2032 	if (PCI_DMA_BUS_IS_PHYS) {
2033 		struct device *pdev = dev->dev.parent;
2034 
2035 		if (!pdev)
2036 			return 0;
2037 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2038 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2039 			dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2040 			if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2041 				return 1;
2042 		}
2043 	}
2044 #endif
2045 	return 0;
2046 }
2047 
2048 struct dev_gso_cb {
2049 	void (*destructor)(struct sk_buff *skb);
2050 };
2051 
2052 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
2053 
2054 static void dev_gso_skb_destructor(struct sk_buff *skb)
2055 {
2056 	struct dev_gso_cb *cb;
2057 
2058 	do {
2059 		struct sk_buff *nskb = skb->next;
2060 
2061 		skb->next = nskb->next;
2062 		nskb->next = NULL;
2063 		kfree_skb(nskb);
2064 	} while (skb->next);
2065 
2066 	cb = DEV_GSO_CB(skb);
2067 	if (cb->destructor)
2068 		cb->destructor(skb);
2069 }
2070 
2071 /**
2072  *	dev_gso_segment - Perform emulated hardware segmentation on skb.
2073  *	@skb: buffer to segment
2074  *	@features: device features as applicable to this skb
2075  *
2076  *	This function segments the given skb and stores the list of segments
2077  *	in skb->next.
2078  */
2079 static int dev_gso_segment(struct sk_buff *skb, netdev_features_t features)
2080 {
2081 	struct sk_buff *segs;
2082 
2083 	segs = skb_gso_segment(skb, features);
2084 
2085 	/* Verifying header integrity only. */
2086 	if (!segs)
2087 		return 0;
2088 
2089 	if (IS_ERR(segs))
2090 		return PTR_ERR(segs);
2091 
2092 	skb->next = segs;
2093 	DEV_GSO_CB(skb)->destructor = skb->destructor;
2094 	skb->destructor = dev_gso_skb_destructor;
2095 
2096 	return 0;
2097 }
2098 
2099 /*
2100  * Try to orphan skb early, right before transmission by the device.
2101  * We cannot orphan skb if tx timestamp is requested or the sk-reference
2102  * is needed on driver level for other reasons, e.g. see net/can/raw.c
2103  */
2104 static inline void skb_orphan_try(struct sk_buff *skb)
2105 {
2106 	struct sock *sk = skb->sk;
2107 
2108 	if (sk && !skb_shinfo(skb)->tx_flags) {
2109 		/* skb_tx_hash() wont be able to get sk.
2110 		 * We copy sk_hash into skb->rxhash
2111 		 */
2112 		if (!skb->rxhash)
2113 			skb->rxhash = sk->sk_hash;
2114 		skb_orphan(skb);
2115 	}
2116 }
2117 
2118 static bool can_checksum_protocol(netdev_features_t features, __be16 protocol)
2119 {
2120 	return ((features & NETIF_F_GEN_CSUM) ||
2121 		((features & NETIF_F_V4_CSUM) &&
2122 		 protocol == htons(ETH_P_IP)) ||
2123 		((features & NETIF_F_V6_CSUM) &&
2124 		 protocol == htons(ETH_P_IPV6)) ||
2125 		((features & NETIF_F_FCOE_CRC) &&
2126 		 protocol == htons(ETH_P_FCOE)));
2127 }
2128 
2129 static netdev_features_t harmonize_features(struct sk_buff *skb,
2130 	__be16 protocol, netdev_features_t features)
2131 {
2132 	if (!can_checksum_protocol(features, protocol)) {
2133 		features &= ~NETIF_F_ALL_CSUM;
2134 		features &= ~NETIF_F_SG;
2135 	} else if (illegal_highdma(skb->dev, skb)) {
2136 		features &= ~NETIF_F_SG;
2137 	}
2138 
2139 	return features;
2140 }
2141 
2142 netdev_features_t netif_skb_features(struct sk_buff *skb)
2143 {
2144 	__be16 protocol = skb->protocol;
2145 	netdev_features_t features = skb->dev->features;
2146 
2147 	if (protocol == htons(ETH_P_8021Q)) {
2148 		struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
2149 		protocol = veh->h_vlan_encapsulated_proto;
2150 	} else if (!vlan_tx_tag_present(skb)) {
2151 		return harmonize_features(skb, protocol, features);
2152 	}
2153 
2154 	features &= (skb->dev->vlan_features | NETIF_F_HW_VLAN_TX);
2155 
2156 	if (protocol != htons(ETH_P_8021Q)) {
2157 		return harmonize_features(skb, protocol, features);
2158 	} else {
2159 		features &= NETIF_F_SG | NETIF_F_HIGHDMA | NETIF_F_FRAGLIST |
2160 				NETIF_F_GEN_CSUM | NETIF_F_HW_VLAN_TX;
2161 		return harmonize_features(skb, protocol, features);
2162 	}
2163 }
2164 EXPORT_SYMBOL(netif_skb_features);
2165 
2166 /*
2167  * Returns true if either:
2168  *	1. skb has frag_list and the device doesn't support FRAGLIST, or
2169  *	2. skb is fragmented and the device does not support SG, or if
2170  *	   at least one of fragments is in highmem and device does not
2171  *	   support DMA from it.
2172  */
2173 static inline int skb_needs_linearize(struct sk_buff *skb,
2174 				      int features)
2175 {
2176 	return skb_is_nonlinear(skb) &&
2177 			((skb_has_frag_list(skb) &&
2178 				!(features & NETIF_F_FRAGLIST)) ||
2179 			(skb_shinfo(skb)->nr_frags &&
2180 				!(features & NETIF_F_SG)));
2181 }
2182 
2183 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
2184 			struct netdev_queue *txq)
2185 {
2186 	const struct net_device_ops *ops = dev->netdev_ops;
2187 	int rc = NETDEV_TX_OK;
2188 	unsigned int skb_len;
2189 
2190 	if (likely(!skb->next)) {
2191 		netdev_features_t features;
2192 
2193 		/*
2194 		 * If device doesn't need skb->dst, release it right now while
2195 		 * its hot in this cpu cache
2196 		 */
2197 		if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2198 			skb_dst_drop(skb);
2199 
2200 		if (!list_empty(&ptype_all))
2201 			dev_queue_xmit_nit(skb, dev);
2202 
2203 		skb_orphan_try(skb);
2204 
2205 		features = netif_skb_features(skb);
2206 
2207 		if (vlan_tx_tag_present(skb) &&
2208 		    !(features & NETIF_F_HW_VLAN_TX)) {
2209 			skb = __vlan_put_tag(skb, vlan_tx_tag_get(skb));
2210 			if (unlikely(!skb))
2211 				goto out;
2212 
2213 			skb->vlan_tci = 0;
2214 		}
2215 
2216 		if (netif_needs_gso(skb, features)) {
2217 			if (unlikely(dev_gso_segment(skb, features)))
2218 				goto out_kfree_skb;
2219 			if (skb->next)
2220 				goto gso;
2221 		} else {
2222 			if (skb_needs_linearize(skb, features) &&
2223 			    __skb_linearize(skb))
2224 				goto out_kfree_skb;
2225 
2226 			/* If packet is not checksummed and device does not
2227 			 * support checksumming for this protocol, complete
2228 			 * checksumming here.
2229 			 */
2230 			if (skb->ip_summed == CHECKSUM_PARTIAL) {
2231 				skb_set_transport_header(skb,
2232 					skb_checksum_start_offset(skb));
2233 				if (!(features & NETIF_F_ALL_CSUM) &&
2234 				     skb_checksum_help(skb))
2235 					goto out_kfree_skb;
2236 			}
2237 		}
2238 
2239 		skb_len = skb->len;
2240 		rc = ops->ndo_start_xmit(skb, dev);
2241 		trace_net_dev_xmit(skb, rc, dev, skb_len);
2242 		if (rc == NETDEV_TX_OK)
2243 			txq_trans_update(txq);
2244 		return rc;
2245 	}
2246 
2247 gso:
2248 	do {
2249 		struct sk_buff *nskb = skb->next;
2250 
2251 		skb->next = nskb->next;
2252 		nskb->next = NULL;
2253 
2254 		/*
2255 		 * If device doesn't need nskb->dst, release it right now while
2256 		 * its hot in this cpu cache
2257 		 */
2258 		if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2259 			skb_dst_drop(nskb);
2260 
2261 		skb_len = nskb->len;
2262 		rc = ops->ndo_start_xmit(nskb, dev);
2263 		trace_net_dev_xmit(nskb, rc, dev, skb_len);
2264 		if (unlikely(rc != NETDEV_TX_OK)) {
2265 			if (rc & ~NETDEV_TX_MASK)
2266 				goto out_kfree_gso_skb;
2267 			nskb->next = skb->next;
2268 			skb->next = nskb;
2269 			return rc;
2270 		}
2271 		txq_trans_update(txq);
2272 		if (unlikely(netif_xmit_stopped(txq) && skb->next))
2273 			return NETDEV_TX_BUSY;
2274 	} while (skb->next);
2275 
2276 out_kfree_gso_skb:
2277 	if (likely(skb->next == NULL))
2278 		skb->destructor = DEV_GSO_CB(skb)->destructor;
2279 out_kfree_skb:
2280 	kfree_skb(skb);
2281 out:
2282 	return rc;
2283 }
2284 
2285 static u32 hashrnd __read_mostly;
2286 
2287 /*
2288  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2289  * to be used as a distribution range.
2290  */
2291 u16 __skb_tx_hash(const struct net_device *dev, const struct sk_buff *skb,
2292 		  unsigned int num_tx_queues)
2293 {
2294 	u32 hash;
2295 	u16 qoffset = 0;
2296 	u16 qcount = num_tx_queues;
2297 
2298 	if (skb_rx_queue_recorded(skb)) {
2299 		hash = skb_get_rx_queue(skb);
2300 		while (unlikely(hash >= num_tx_queues))
2301 			hash -= num_tx_queues;
2302 		return hash;
2303 	}
2304 
2305 	if (dev->num_tc) {
2306 		u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2307 		qoffset = dev->tc_to_txq[tc].offset;
2308 		qcount = dev->tc_to_txq[tc].count;
2309 	}
2310 
2311 	if (skb->sk && skb->sk->sk_hash)
2312 		hash = skb->sk->sk_hash;
2313 	else
2314 		hash = (__force u16) skb->protocol ^ skb->rxhash;
2315 	hash = jhash_1word(hash, hashrnd);
2316 
2317 	return (u16) (((u64) hash * qcount) >> 32) + qoffset;
2318 }
2319 EXPORT_SYMBOL(__skb_tx_hash);
2320 
2321 static inline u16 dev_cap_txqueue(struct net_device *dev, u16 queue_index)
2322 {
2323 	if (unlikely(queue_index >= dev->real_num_tx_queues)) {
2324 		if (net_ratelimit()) {
2325 			pr_warn("%s selects TX queue %d, but real number of TX queues is %d\n",
2326 				dev->name, queue_index,
2327 				dev->real_num_tx_queues);
2328 		}
2329 		return 0;
2330 	}
2331 	return queue_index;
2332 }
2333 
2334 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
2335 {
2336 #ifdef CONFIG_XPS
2337 	struct xps_dev_maps *dev_maps;
2338 	struct xps_map *map;
2339 	int queue_index = -1;
2340 
2341 	rcu_read_lock();
2342 	dev_maps = rcu_dereference(dev->xps_maps);
2343 	if (dev_maps) {
2344 		map = rcu_dereference(
2345 		    dev_maps->cpu_map[raw_smp_processor_id()]);
2346 		if (map) {
2347 			if (map->len == 1)
2348 				queue_index = map->queues[0];
2349 			else {
2350 				u32 hash;
2351 				if (skb->sk && skb->sk->sk_hash)
2352 					hash = skb->sk->sk_hash;
2353 				else
2354 					hash = (__force u16) skb->protocol ^
2355 					    skb->rxhash;
2356 				hash = jhash_1word(hash, hashrnd);
2357 				queue_index = map->queues[
2358 				    ((u64)hash * map->len) >> 32];
2359 			}
2360 			if (unlikely(queue_index >= dev->real_num_tx_queues))
2361 				queue_index = -1;
2362 		}
2363 	}
2364 	rcu_read_unlock();
2365 
2366 	return queue_index;
2367 #else
2368 	return -1;
2369 #endif
2370 }
2371 
2372 static struct netdev_queue *dev_pick_tx(struct net_device *dev,
2373 					struct sk_buff *skb)
2374 {
2375 	int queue_index;
2376 	const struct net_device_ops *ops = dev->netdev_ops;
2377 
2378 	if (dev->real_num_tx_queues == 1)
2379 		queue_index = 0;
2380 	else if (ops->ndo_select_queue) {
2381 		queue_index = ops->ndo_select_queue(dev, skb);
2382 		queue_index = dev_cap_txqueue(dev, queue_index);
2383 	} else {
2384 		struct sock *sk = skb->sk;
2385 		queue_index = sk_tx_queue_get(sk);
2386 
2387 		if (queue_index < 0 || skb->ooo_okay ||
2388 		    queue_index >= dev->real_num_tx_queues) {
2389 			int old_index = queue_index;
2390 
2391 			queue_index = get_xps_queue(dev, skb);
2392 			if (queue_index < 0)
2393 				queue_index = skb_tx_hash(dev, skb);
2394 
2395 			if (queue_index != old_index && sk) {
2396 				struct dst_entry *dst =
2397 				    rcu_dereference_check(sk->sk_dst_cache, 1);
2398 
2399 				if (dst && skb_dst(skb) == dst)
2400 					sk_tx_queue_set(sk, queue_index);
2401 			}
2402 		}
2403 	}
2404 
2405 	skb_set_queue_mapping(skb, queue_index);
2406 	return netdev_get_tx_queue(dev, queue_index);
2407 }
2408 
2409 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2410 				 struct net_device *dev,
2411 				 struct netdev_queue *txq)
2412 {
2413 	spinlock_t *root_lock = qdisc_lock(q);
2414 	bool contended;
2415 	int rc;
2416 
2417 	qdisc_skb_cb(skb)->pkt_len = skb->len;
2418 	qdisc_calculate_pkt_len(skb, q);
2419 	/*
2420 	 * Heuristic to force contended enqueues to serialize on a
2421 	 * separate lock before trying to get qdisc main lock.
2422 	 * This permits __QDISC_STATE_RUNNING owner to get the lock more often
2423 	 * and dequeue packets faster.
2424 	 */
2425 	contended = qdisc_is_running(q);
2426 	if (unlikely(contended))
2427 		spin_lock(&q->busylock);
2428 
2429 	spin_lock(root_lock);
2430 	if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2431 		kfree_skb(skb);
2432 		rc = NET_XMIT_DROP;
2433 	} else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2434 		   qdisc_run_begin(q)) {
2435 		/*
2436 		 * This is a work-conserving queue; there are no old skbs
2437 		 * waiting to be sent out; and the qdisc is not running -
2438 		 * xmit the skb directly.
2439 		 */
2440 		if (!(dev->priv_flags & IFF_XMIT_DST_RELEASE))
2441 			skb_dst_force(skb);
2442 
2443 		qdisc_bstats_update(q, skb);
2444 
2445 		if (sch_direct_xmit(skb, q, dev, txq, root_lock)) {
2446 			if (unlikely(contended)) {
2447 				spin_unlock(&q->busylock);
2448 				contended = false;
2449 			}
2450 			__qdisc_run(q);
2451 		} else
2452 			qdisc_run_end(q);
2453 
2454 		rc = NET_XMIT_SUCCESS;
2455 	} else {
2456 		skb_dst_force(skb);
2457 		rc = q->enqueue(skb, q) & NET_XMIT_MASK;
2458 		if (qdisc_run_begin(q)) {
2459 			if (unlikely(contended)) {
2460 				spin_unlock(&q->busylock);
2461 				contended = false;
2462 			}
2463 			__qdisc_run(q);
2464 		}
2465 	}
2466 	spin_unlock(root_lock);
2467 	if (unlikely(contended))
2468 		spin_unlock(&q->busylock);
2469 	return rc;
2470 }
2471 
2472 #if IS_ENABLED(CONFIG_NETPRIO_CGROUP)
2473 static void skb_update_prio(struct sk_buff *skb)
2474 {
2475 	struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
2476 
2477 	if ((!skb->priority) && (skb->sk) && map)
2478 		skb->priority = map->priomap[skb->sk->sk_cgrp_prioidx];
2479 }
2480 #else
2481 #define skb_update_prio(skb)
2482 #endif
2483 
2484 static DEFINE_PER_CPU(int, xmit_recursion);
2485 #define RECURSION_LIMIT 10
2486 
2487 /**
2488  *	dev_queue_xmit - transmit a buffer
2489  *	@skb: buffer to transmit
2490  *
2491  *	Queue a buffer for transmission to a network device. The caller must
2492  *	have set the device and priority and built the buffer before calling
2493  *	this function. The function can be called from an interrupt.
2494  *
2495  *	A negative errno code is returned on a failure. A success does not
2496  *	guarantee the frame will be transmitted as it may be dropped due
2497  *	to congestion or traffic shaping.
2498  *
2499  * -----------------------------------------------------------------------------------
2500  *      I notice this method can also return errors from the queue disciplines,
2501  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
2502  *      be positive.
2503  *
2504  *      Regardless of the return value, the skb is consumed, so it is currently
2505  *      difficult to retry a send to this method.  (You can bump the ref count
2506  *      before sending to hold a reference for retry if you are careful.)
2507  *
2508  *      When calling this method, interrupts MUST be enabled.  This is because
2509  *      the BH enable code must have IRQs enabled so that it will not deadlock.
2510  *          --BLG
2511  */
2512 int dev_queue_xmit(struct sk_buff *skb)
2513 {
2514 	struct net_device *dev = skb->dev;
2515 	struct netdev_queue *txq;
2516 	struct Qdisc *q;
2517 	int rc = -ENOMEM;
2518 
2519 	/* Disable soft irqs for various locks below. Also
2520 	 * stops preemption for RCU.
2521 	 */
2522 	rcu_read_lock_bh();
2523 
2524 	skb_update_prio(skb);
2525 
2526 	txq = dev_pick_tx(dev, skb);
2527 	q = rcu_dereference_bh(txq->qdisc);
2528 
2529 #ifdef CONFIG_NET_CLS_ACT
2530 	skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
2531 #endif
2532 	trace_net_dev_queue(skb);
2533 	if (q->enqueue) {
2534 		rc = __dev_xmit_skb(skb, q, dev, txq);
2535 		goto out;
2536 	}
2537 
2538 	/* The device has no queue. Common case for software devices:
2539 	   loopback, all the sorts of tunnels...
2540 
2541 	   Really, it is unlikely that netif_tx_lock protection is necessary
2542 	   here.  (f.e. loopback and IP tunnels are clean ignoring statistics
2543 	   counters.)
2544 	   However, it is possible, that they rely on protection
2545 	   made by us here.
2546 
2547 	   Check this and shot the lock. It is not prone from deadlocks.
2548 	   Either shot noqueue qdisc, it is even simpler 8)
2549 	 */
2550 	if (dev->flags & IFF_UP) {
2551 		int cpu = smp_processor_id(); /* ok because BHs are off */
2552 
2553 		if (txq->xmit_lock_owner != cpu) {
2554 
2555 			if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
2556 				goto recursion_alert;
2557 
2558 			HARD_TX_LOCK(dev, txq, cpu);
2559 
2560 			if (!netif_xmit_stopped(txq)) {
2561 				__this_cpu_inc(xmit_recursion);
2562 				rc = dev_hard_start_xmit(skb, dev, txq);
2563 				__this_cpu_dec(xmit_recursion);
2564 				if (dev_xmit_complete(rc)) {
2565 					HARD_TX_UNLOCK(dev, txq);
2566 					goto out;
2567 				}
2568 			}
2569 			HARD_TX_UNLOCK(dev, txq);
2570 			if (net_ratelimit())
2571 				pr_crit("Virtual device %s asks to queue packet!\n",
2572 					dev->name);
2573 		} else {
2574 			/* Recursion is detected! It is possible,
2575 			 * unfortunately
2576 			 */
2577 recursion_alert:
2578 			if (net_ratelimit())
2579 				pr_crit("Dead loop on virtual device %s, fix it urgently!\n",
2580 					dev->name);
2581 		}
2582 	}
2583 
2584 	rc = -ENETDOWN;
2585 	rcu_read_unlock_bh();
2586 
2587 	kfree_skb(skb);
2588 	return rc;
2589 out:
2590 	rcu_read_unlock_bh();
2591 	return rc;
2592 }
2593 EXPORT_SYMBOL(dev_queue_xmit);
2594 
2595 
2596 /*=======================================================================
2597 			Receiver routines
2598   =======================================================================*/
2599 
2600 int netdev_max_backlog __read_mostly = 1000;
2601 int netdev_tstamp_prequeue __read_mostly = 1;
2602 int netdev_budget __read_mostly = 300;
2603 int weight_p __read_mostly = 64;            /* old backlog weight */
2604 
2605 /* Called with irq disabled */
2606 static inline void ____napi_schedule(struct softnet_data *sd,
2607 				     struct napi_struct *napi)
2608 {
2609 	list_add_tail(&napi->poll_list, &sd->poll_list);
2610 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
2611 }
2612 
2613 /*
2614  * __skb_get_rxhash: calculate a flow hash based on src/dst addresses
2615  * and src/dst port numbers.  Sets rxhash in skb to non-zero hash value
2616  * on success, zero indicates no valid hash.  Also, sets l4_rxhash in skb
2617  * if hash is a canonical 4-tuple hash over transport ports.
2618  */
2619 void __skb_get_rxhash(struct sk_buff *skb)
2620 {
2621 	struct flow_keys keys;
2622 	u32 hash;
2623 
2624 	if (!skb_flow_dissect(skb, &keys))
2625 		return;
2626 
2627 	if (keys.ports) {
2628 		if ((__force u16)keys.port16[1] < (__force u16)keys.port16[0])
2629 			swap(keys.port16[0], keys.port16[1]);
2630 		skb->l4_rxhash = 1;
2631 	}
2632 
2633 	/* get a consistent hash (same value on both flow directions) */
2634 	if ((__force u32)keys.dst < (__force u32)keys.src)
2635 		swap(keys.dst, keys.src);
2636 
2637 	hash = jhash_3words((__force u32)keys.dst,
2638 			    (__force u32)keys.src,
2639 			    (__force u32)keys.ports, hashrnd);
2640 	if (!hash)
2641 		hash = 1;
2642 
2643 	skb->rxhash = hash;
2644 }
2645 EXPORT_SYMBOL(__skb_get_rxhash);
2646 
2647 #ifdef CONFIG_RPS
2648 
2649 /* One global table that all flow-based protocols share. */
2650 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
2651 EXPORT_SYMBOL(rps_sock_flow_table);
2652 
2653 struct static_key rps_needed __read_mostly;
2654 
2655 static struct rps_dev_flow *
2656 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2657 	    struct rps_dev_flow *rflow, u16 next_cpu)
2658 {
2659 	if (next_cpu != RPS_NO_CPU) {
2660 #ifdef CONFIG_RFS_ACCEL
2661 		struct netdev_rx_queue *rxqueue;
2662 		struct rps_dev_flow_table *flow_table;
2663 		struct rps_dev_flow *old_rflow;
2664 		u32 flow_id;
2665 		u16 rxq_index;
2666 		int rc;
2667 
2668 		/* Should we steer this flow to a different hardware queue? */
2669 		if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
2670 		    !(dev->features & NETIF_F_NTUPLE))
2671 			goto out;
2672 		rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
2673 		if (rxq_index == skb_get_rx_queue(skb))
2674 			goto out;
2675 
2676 		rxqueue = dev->_rx + rxq_index;
2677 		flow_table = rcu_dereference(rxqueue->rps_flow_table);
2678 		if (!flow_table)
2679 			goto out;
2680 		flow_id = skb->rxhash & flow_table->mask;
2681 		rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
2682 							rxq_index, flow_id);
2683 		if (rc < 0)
2684 			goto out;
2685 		old_rflow = rflow;
2686 		rflow = &flow_table->flows[flow_id];
2687 		rflow->filter = rc;
2688 		if (old_rflow->filter == rflow->filter)
2689 			old_rflow->filter = RPS_NO_FILTER;
2690 	out:
2691 #endif
2692 		rflow->last_qtail =
2693 			per_cpu(softnet_data, next_cpu).input_queue_head;
2694 	}
2695 
2696 	rflow->cpu = next_cpu;
2697 	return rflow;
2698 }
2699 
2700 /*
2701  * get_rps_cpu is called from netif_receive_skb and returns the target
2702  * CPU from the RPS map of the receiving queue for a given skb.
2703  * rcu_read_lock must be held on entry.
2704  */
2705 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2706 		       struct rps_dev_flow **rflowp)
2707 {
2708 	struct netdev_rx_queue *rxqueue;
2709 	struct rps_map *map;
2710 	struct rps_dev_flow_table *flow_table;
2711 	struct rps_sock_flow_table *sock_flow_table;
2712 	int cpu = -1;
2713 	u16 tcpu;
2714 
2715 	if (skb_rx_queue_recorded(skb)) {
2716 		u16 index = skb_get_rx_queue(skb);
2717 		if (unlikely(index >= dev->real_num_rx_queues)) {
2718 			WARN_ONCE(dev->real_num_rx_queues > 1,
2719 				  "%s received packet on queue %u, but number "
2720 				  "of RX queues is %u\n",
2721 				  dev->name, index, dev->real_num_rx_queues);
2722 			goto done;
2723 		}
2724 		rxqueue = dev->_rx + index;
2725 	} else
2726 		rxqueue = dev->_rx;
2727 
2728 	map = rcu_dereference(rxqueue->rps_map);
2729 	if (map) {
2730 		if (map->len == 1 &&
2731 		    !rcu_access_pointer(rxqueue->rps_flow_table)) {
2732 			tcpu = map->cpus[0];
2733 			if (cpu_online(tcpu))
2734 				cpu = tcpu;
2735 			goto done;
2736 		}
2737 	} else if (!rcu_access_pointer(rxqueue->rps_flow_table)) {
2738 		goto done;
2739 	}
2740 
2741 	skb_reset_network_header(skb);
2742 	if (!skb_get_rxhash(skb))
2743 		goto done;
2744 
2745 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
2746 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
2747 	if (flow_table && sock_flow_table) {
2748 		u16 next_cpu;
2749 		struct rps_dev_flow *rflow;
2750 
2751 		rflow = &flow_table->flows[skb->rxhash & flow_table->mask];
2752 		tcpu = rflow->cpu;
2753 
2754 		next_cpu = sock_flow_table->ents[skb->rxhash &
2755 		    sock_flow_table->mask];
2756 
2757 		/*
2758 		 * If the desired CPU (where last recvmsg was done) is
2759 		 * different from current CPU (one in the rx-queue flow
2760 		 * table entry), switch if one of the following holds:
2761 		 *   - Current CPU is unset (equal to RPS_NO_CPU).
2762 		 *   - Current CPU is offline.
2763 		 *   - The current CPU's queue tail has advanced beyond the
2764 		 *     last packet that was enqueued using this table entry.
2765 		 *     This guarantees that all previous packets for the flow
2766 		 *     have been dequeued, thus preserving in order delivery.
2767 		 */
2768 		if (unlikely(tcpu != next_cpu) &&
2769 		    (tcpu == RPS_NO_CPU || !cpu_online(tcpu) ||
2770 		     ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
2771 		      rflow->last_qtail)) >= 0))
2772 			rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
2773 
2774 		if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) {
2775 			*rflowp = rflow;
2776 			cpu = tcpu;
2777 			goto done;
2778 		}
2779 	}
2780 
2781 	if (map) {
2782 		tcpu = map->cpus[((u64) skb->rxhash * map->len) >> 32];
2783 
2784 		if (cpu_online(tcpu)) {
2785 			cpu = tcpu;
2786 			goto done;
2787 		}
2788 	}
2789 
2790 done:
2791 	return cpu;
2792 }
2793 
2794 #ifdef CONFIG_RFS_ACCEL
2795 
2796 /**
2797  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
2798  * @dev: Device on which the filter was set
2799  * @rxq_index: RX queue index
2800  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
2801  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
2802  *
2803  * Drivers that implement ndo_rx_flow_steer() should periodically call
2804  * this function for each installed filter and remove the filters for
2805  * which it returns %true.
2806  */
2807 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
2808 			 u32 flow_id, u16 filter_id)
2809 {
2810 	struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
2811 	struct rps_dev_flow_table *flow_table;
2812 	struct rps_dev_flow *rflow;
2813 	bool expire = true;
2814 	int cpu;
2815 
2816 	rcu_read_lock();
2817 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
2818 	if (flow_table && flow_id <= flow_table->mask) {
2819 		rflow = &flow_table->flows[flow_id];
2820 		cpu = ACCESS_ONCE(rflow->cpu);
2821 		if (rflow->filter == filter_id && cpu != RPS_NO_CPU &&
2822 		    ((int)(per_cpu(softnet_data, cpu).input_queue_head -
2823 			   rflow->last_qtail) <
2824 		     (int)(10 * flow_table->mask)))
2825 			expire = false;
2826 	}
2827 	rcu_read_unlock();
2828 	return expire;
2829 }
2830 EXPORT_SYMBOL(rps_may_expire_flow);
2831 
2832 #endif /* CONFIG_RFS_ACCEL */
2833 
2834 /* Called from hardirq (IPI) context */
2835 static void rps_trigger_softirq(void *data)
2836 {
2837 	struct softnet_data *sd = data;
2838 
2839 	____napi_schedule(sd, &sd->backlog);
2840 	sd->received_rps++;
2841 }
2842 
2843 #endif /* CONFIG_RPS */
2844 
2845 /*
2846  * Check if this softnet_data structure is another cpu one
2847  * If yes, queue it to our IPI list and return 1
2848  * If no, return 0
2849  */
2850 static int rps_ipi_queued(struct softnet_data *sd)
2851 {
2852 #ifdef CONFIG_RPS
2853 	struct softnet_data *mysd = &__get_cpu_var(softnet_data);
2854 
2855 	if (sd != mysd) {
2856 		sd->rps_ipi_next = mysd->rps_ipi_list;
2857 		mysd->rps_ipi_list = sd;
2858 
2859 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
2860 		return 1;
2861 	}
2862 #endif /* CONFIG_RPS */
2863 	return 0;
2864 }
2865 
2866 /*
2867  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
2868  * queue (may be a remote CPU queue).
2869  */
2870 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
2871 			      unsigned int *qtail)
2872 {
2873 	struct softnet_data *sd;
2874 	unsigned long flags;
2875 
2876 	sd = &per_cpu(softnet_data, cpu);
2877 
2878 	local_irq_save(flags);
2879 
2880 	rps_lock(sd);
2881 	if (skb_queue_len(&sd->input_pkt_queue) <= netdev_max_backlog) {
2882 		if (skb_queue_len(&sd->input_pkt_queue)) {
2883 enqueue:
2884 			__skb_queue_tail(&sd->input_pkt_queue, skb);
2885 			input_queue_tail_incr_save(sd, qtail);
2886 			rps_unlock(sd);
2887 			local_irq_restore(flags);
2888 			return NET_RX_SUCCESS;
2889 		}
2890 
2891 		/* Schedule NAPI for backlog device
2892 		 * We can use non atomic operation since we own the queue lock
2893 		 */
2894 		if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
2895 			if (!rps_ipi_queued(sd))
2896 				____napi_schedule(sd, &sd->backlog);
2897 		}
2898 		goto enqueue;
2899 	}
2900 
2901 	sd->dropped++;
2902 	rps_unlock(sd);
2903 
2904 	local_irq_restore(flags);
2905 
2906 	atomic_long_inc(&skb->dev->rx_dropped);
2907 	kfree_skb(skb);
2908 	return NET_RX_DROP;
2909 }
2910 
2911 /**
2912  *	netif_rx	-	post buffer to the network code
2913  *	@skb: buffer to post
2914  *
2915  *	This function receives a packet from a device driver and queues it for
2916  *	the upper (protocol) levels to process.  It always succeeds. The buffer
2917  *	may be dropped during processing for congestion control or by the
2918  *	protocol layers.
2919  *
2920  *	return values:
2921  *	NET_RX_SUCCESS	(no congestion)
2922  *	NET_RX_DROP     (packet was dropped)
2923  *
2924  */
2925 
2926 int netif_rx(struct sk_buff *skb)
2927 {
2928 	int ret;
2929 
2930 	/* if netpoll wants it, pretend we never saw it */
2931 	if (netpoll_rx(skb))
2932 		return NET_RX_DROP;
2933 
2934 	net_timestamp_check(netdev_tstamp_prequeue, skb);
2935 
2936 	trace_netif_rx(skb);
2937 #ifdef CONFIG_RPS
2938 	if (static_key_false(&rps_needed)) {
2939 		struct rps_dev_flow voidflow, *rflow = &voidflow;
2940 		int cpu;
2941 
2942 		preempt_disable();
2943 		rcu_read_lock();
2944 
2945 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
2946 		if (cpu < 0)
2947 			cpu = smp_processor_id();
2948 
2949 		ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
2950 
2951 		rcu_read_unlock();
2952 		preempt_enable();
2953 	} else
2954 #endif
2955 	{
2956 		unsigned int qtail;
2957 		ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
2958 		put_cpu();
2959 	}
2960 	return ret;
2961 }
2962 EXPORT_SYMBOL(netif_rx);
2963 
2964 int netif_rx_ni(struct sk_buff *skb)
2965 {
2966 	int err;
2967 
2968 	preempt_disable();
2969 	err = netif_rx(skb);
2970 	if (local_softirq_pending())
2971 		do_softirq();
2972 	preempt_enable();
2973 
2974 	return err;
2975 }
2976 EXPORT_SYMBOL(netif_rx_ni);
2977 
2978 static void net_tx_action(struct softirq_action *h)
2979 {
2980 	struct softnet_data *sd = &__get_cpu_var(softnet_data);
2981 
2982 	if (sd->completion_queue) {
2983 		struct sk_buff *clist;
2984 
2985 		local_irq_disable();
2986 		clist = sd->completion_queue;
2987 		sd->completion_queue = NULL;
2988 		local_irq_enable();
2989 
2990 		while (clist) {
2991 			struct sk_buff *skb = clist;
2992 			clist = clist->next;
2993 
2994 			WARN_ON(atomic_read(&skb->users));
2995 			trace_kfree_skb(skb, net_tx_action);
2996 			__kfree_skb(skb);
2997 		}
2998 	}
2999 
3000 	if (sd->output_queue) {
3001 		struct Qdisc *head;
3002 
3003 		local_irq_disable();
3004 		head = sd->output_queue;
3005 		sd->output_queue = NULL;
3006 		sd->output_queue_tailp = &sd->output_queue;
3007 		local_irq_enable();
3008 
3009 		while (head) {
3010 			struct Qdisc *q = head;
3011 			spinlock_t *root_lock;
3012 
3013 			head = head->next_sched;
3014 
3015 			root_lock = qdisc_lock(q);
3016 			if (spin_trylock(root_lock)) {
3017 				smp_mb__before_clear_bit();
3018 				clear_bit(__QDISC_STATE_SCHED,
3019 					  &q->state);
3020 				qdisc_run(q);
3021 				spin_unlock(root_lock);
3022 			} else {
3023 				if (!test_bit(__QDISC_STATE_DEACTIVATED,
3024 					      &q->state)) {
3025 					__netif_reschedule(q);
3026 				} else {
3027 					smp_mb__before_clear_bit();
3028 					clear_bit(__QDISC_STATE_SCHED,
3029 						  &q->state);
3030 				}
3031 			}
3032 		}
3033 	}
3034 }
3035 
3036 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
3037     (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
3038 /* This hook is defined here for ATM LANE */
3039 int (*br_fdb_test_addr_hook)(struct net_device *dev,
3040 			     unsigned char *addr) __read_mostly;
3041 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3042 #endif
3043 
3044 #ifdef CONFIG_NET_CLS_ACT
3045 /* TODO: Maybe we should just force sch_ingress to be compiled in
3046  * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
3047  * a compare and 2 stores extra right now if we dont have it on
3048  * but have CONFIG_NET_CLS_ACT
3049  * NOTE: This doesn't stop any functionality; if you dont have
3050  * the ingress scheduler, you just can't add policies on ingress.
3051  *
3052  */
3053 static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq)
3054 {
3055 	struct net_device *dev = skb->dev;
3056 	u32 ttl = G_TC_RTTL(skb->tc_verd);
3057 	int result = TC_ACT_OK;
3058 	struct Qdisc *q;
3059 
3060 	if (unlikely(MAX_RED_LOOP < ttl++)) {
3061 		if (net_ratelimit())
3062 			pr_warn("Redir loop detected Dropping packet (%d->%d)\n",
3063 				skb->skb_iif, dev->ifindex);
3064 		return TC_ACT_SHOT;
3065 	}
3066 
3067 	skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
3068 	skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
3069 
3070 	q = rxq->qdisc;
3071 	if (q != &noop_qdisc) {
3072 		spin_lock(qdisc_lock(q));
3073 		if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
3074 			result = qdisc_enqueue_root(skb, q);
3075 		spin_unlock(qdisc_lock(q));
3076 	}
3077 
3078 	return result;
3079 }
3080 
3081 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
3082 					 struct packet_type **pt_prev,
3083 					 int *ret, struct net_device *orig_dev)
3084 {
3085 	struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue);
3086 
3087 	if (!rxq || rxq->qdisc == &noop_qdisc)
3088 		goto out;
3089 
3090 	if (*pt_prev) {
3091 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
3092 		*pt_prev = NULL;
3093 	}
3094 
3095 	switch (ing_filter(skb, rxq)) {
3096 	case TC_ACT_SHOT:
3097 	case TC_ACT_STOLEN:
3098 		kfree_skb(skb);
3099 		return NULL;
3100 	}
3101 
3102 out:
3103 	skb->tc_verd = 0;
3104 	return skb;
3105 }
3106 #endif
3107 
3108 /**
3109  *	netdev_rx_handler_register - register receive handler
3110  *	@dev: device to register a handler for
3111  *	@rx_handler: receive handler to register
3112  *	@rx_handler_data: data pointer that is used by rx handler
3113  *
3114  *	Register a receive hander for a device. This handler will then be
3115  *	called from __netif_receive_skb. A negative errno code is returned
3116  *	on a failure.
3117  *
3118  *	The caller must hold the rtnl_mutex.
3119  *
3120  *	For a general description of rx_handler, see enum rx_handler_result.
3121  */
3122 int netdev_rx_handler_register(struct net_device *dev,
3123 			       rx_handler_func_t *rx_handler,
3124 			       void *rx_handler_data)
3125 {
3126 	ASSERT_RTNL();
3127 
3128 	if (dev->rx_handler)
3129 		return -EBUSY;
3130 
3131 	rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
3132 	rcu_assign_pointer(dev->rx_handler, rx_handler);
3133 
3134 	return 0;
3135 }
3136 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3137 
3138 /**
3139  *	netdev_rx_handler_unregister - unregister receive handler
3140  *	@dev: device to unregister a handler from
3141  *
3142  *	Unregister a receive hander from a device.
3143  *
3144  *	The caller must hold the rtnl_mutex.
3145  */
3146 void netdev_rx_handler_unregister(struct net_device *dev)
3147 {
3148 
3149 	ASSERT_RTNL();
3150 	RCU_INIT_POINTER(dev->rx_handler, NULL);
3151 	RCU_INIT_POINTER(dev->rx_handler_data, NULL);
3152 }
3153 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
3154 
3155 static int __netif_receive_skb(struct sk_buff *skb)
3156 {
3157 	struct packet_type *ptype, *pt_prev;
3158 	rx_handler_func_t *rx_handler;
3159 	struct net_device *orig_dev;
3160 	struct net_device *null_or_dev;
3161 	bool deliver_exact = false;
3162 	int ret = NET_RX_DROP;
3163 	__be16 type;
3164 
3165 	net_timestamp_check(!netdev_tstamp_prequeue, skb);
3166 
3167 	trace_netif_receive_skb(skb);
3168 
3169 	/* if we've gotten here through NAPI, check netpoll */
3170 	if (netpoll_receive_skb(skb))
3171 		return NET_RX_DROP;
3172 
3173 	if (!skb->skb_iif)
3174 		skb->skb_iif = skb->dev->ifindex;
3175 	orig_dev = skb->dev;
3176 
3177 	skb_reset_network_header(skb);
3178 	skb_reset_transport_header(skb);
3179 	skb_reset_mac_len(skb);
3180 
3181 	pt_prev = NULL;
3182 
3183 	rcu_read_lock();
3184 
3185 another_round:
3186 
3187 	__this_cpu_inc(softnet_data.processed);
3188 
3189 	if (skb->protocol == cpu_to_be16(ETH_P_8021Q)) {
3190 		skb = vlan_untag(skb);
3191 		if (unlikely(!skb))
3192 			goto out;
3193 	}
3194 
3195 #ifdef CONFIG_NET_CLS_ACT
3196 	if (skb->tc_verd & TC_NCLS) {
3197 		skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
3198 		goto ncls;
3199 	}
3200 #endif
3201 
3202 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
3203 		if (!ptype->dev || ptype->dev == skb->dev) {
3204 			if (pt_prev)
3205 				ret = deliver_skb(skb, pt_prev, orig_dev);
3206 			pt_prev = ptype;
3207 		}
3208 	}
3209 
3210 #ifdef CONFIG_NET_CLS_ACT
3211 	skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
3212 	if (!skb)
3213 		goto out;
3214 ncls:
3215 #endif
3216 
3217 	rx_handler = rcu_dereference(skb->dev->rx_handler);
3218 	if (vlan_tx_tag_present(skb)) {
3219 		if (pt_prev) {
3220 			ret = deliver_skb(skb, pt_prev, orig_dev);
3221 			pt_prev = NULL;
3222 		}
3223 		if (vlan_do_receive(&skb, !rx_handler))
3224 			goto another_round;
3225 		else if (unlikely(!skb))
3226 			goto out;
3227 	}
3228 
3229 	if (rx_handler) {
3230 		if (pt_prev) {
3231 			ret = deliver_skb(skb, pt_prev, orig_dev);
3232 			pt_prev = NULL;
3233 		}
3234 		switch (rx_handler(&skb)) {
3235 		case RX_HANDLER_CONSUMED:
3236 			goto out;
3237 		case RX_HANDLER_ANOTHER:
3238 			goto another_round;
3239 		case RX_HANDLER_EXACT:
3240 			deliver_exact = true;
3241 		case RX_HANDLER_PASS:
3242 			break;
3243 		default:
3244 			BUG();
3245 		}
3246 	}
3247 
3248 	/* deliver only exact match when indicated */
3249 	null_or_dev = deliver_exact ? skb->dev : NULL;
3250 
3251 	type = skb->protocol;
3252 	list_for_each_entry_rcu(ptype,
3253 			&ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
3254 		if (ptype->type == type &&
3255 		    (ptype->dev == null_or_dev || ptype->dev == skb->dev ||
3256 		     ptype->dev == orig_dev)) {
3257 			if (pt_prev)
3258 				ret = deliver_skb(skb, pt_prev, orig_dev);
3259 			pt_prev = ptype;
3260 		}
3261 	}
3262 
3263 	if (pt_prev) {
3264 		ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
3265 	} else {
3266 		atomic_long_inc(&skb->dev->rx_dropped);
3267 		kfree_skb(skb);
3268 		/* Jamal, now you will not able to escape explaining
3269 		 * me how you were going to use this. :-)
3270 		 */
3271 		ret = NET_RX_DROP;
3272 	}
3273 
3274 out:
3275 	rcu_read_unlock();
3276 	return ret;
3277 }
3278 
3279 /**
3280  *	netif_receive_skb - process receive buffer from network
3281  *	@skb: buffer to process
3282  *
3283  *	netif_receive_skb() is the main receive data processing function.
3284  *	It always succeeds. The buffer may be dropped during processing
3285  *	for congestion control or by the protocol layers.
3286  *
3287  *	This function may only be called from softirq context and interrupts
3288  *	should be enabled.
3289  *
3290  *	Return values (usually ignored):
3291  *	NET_RX_SUCCESS: no congestion
3292  *	NET_RX_DROP: packet was dropped
3293  */
3294 int netif_receive_skb(struct sk_buff *skb)
3295 {
3296 	net_timestamp_check(netdev_tstamp_prequeue, skb);
3297 
3298 	if (skb_defer_rx_timestamp(skb))
3299 		return NET_RX_SUCCESS;
3300 
3301 #ifdef CONFIG_RPS
3302 	if (static_key_false(&rps_needed)) {
3303 		struct rps_dev_flow voidflow, *rflow = &voidflow;
3304 		int cpu, ret;
3305 
3306 		rcu_read_lock();
3307 
3308 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
3309 
3310 		if (cpu >= 0) {
3311 			ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3312 			rcu_read_unlock();
3313 			return ret;
3314 		}
3315 		rcu_read_unlock();
3316 	}
3317 #endif
3318 	return __netif_receive_skb(skb);
3319 }
3320 EXPORT_SYMBOL(netif_receive_skb);
3321 
3322 /* Network device is going away, flush any packets still pending
3323  * Called with irqs disabled.
3324  */
3325 static void flush_backlog(void *arg)
3326 {
3327 	struct net_device *dev = arg;
3328 	struct softnet_data *sd = &__get_cpu_var(softnet_data);
3329 	struct sk_buff *skb, *tmp;
3330 
3331 	rps_lock(sd);
3332 	skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
3333 		if (skb->dev == dev) {
3334 			__skb_unlink(skb, &sd->input_pkt_queue);
3335 			kfree_skb(skb);
3336 			input_queue_head_incr(sd);
3337 		}
3338 	}
3339 	rps_unlock(sd);
3340 
3341 	skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
3342 		if (skb->dev == dev) {
3343 			__skb_unlink(skb, &sd->process_queue);
3344 			kfree_skb(skb);
3345 			input_queue_head_incr(sd);
3346 		}
3347 	}
3348 }
3349 
3350 static int napi_gro_complete(struct sk_buff *skb)
3351 {
3352 	struct packet_type *ptype;
3353 	__be16 type = skb->protocol;
3354 	struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
3355 	int err = -ENOENT;
3356 
3357 	if (NAPI_GRO_CB(skb)->count == 1) {
3358 		skb_shinfo(skb)->gso_size = 0;
3359 		goto out;
3360 	}
3361 
3362 	rcu_read_lock();
3363 	list_for_each_entry_rcu(ptype, head, list) {
3364 		if (ptype->type != type || ptype->dev || !ptype->gro_complete)
3365 			continue;
3366 
3367 		err = ptype->gro_complete(skb);
3368 		break;
3369 	}
3370 	rcu_read_unlock();
3371 
3372 	if (err) {
3373 		WARN_ON(&ptype->list == head);
3374 		kfree_skb(skb);
3375 		return NET_RX_SUCCESS;
3376 	}
3377 
3378 out:
3379 	return netif_receive_skb(skb);
3380 }
3381 
3382 inline void napi_gro_flush(struct napi_struct *napi)
3383 {
3384 	struct sk_buff *skb, *next;
3385 
3386 	for (skb = napi->gro_list; skb; skb = next) {
3387 		next = skb->next;
3388 		skb->next = NULL;
3389 		napi_gro_complete(skb);
3390 	}
3391 
3392 	napi->gro_count = 0;
3393 	napi->gro_list = NULL;
3394 }
3395 EXPORT_SYMBOL(napi_gro_flush);
3396 
3397 enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3398 {
3399 	struct sk_buff **pp = NULL;
3400 	struct packet_type *ptype;
3401 	__be16 type = skb->protocol;
3402 	struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
3403 	int same_flow;
3404 	int mac_len;
3405 	enum gro_result ret;
3406 
3407 	if (!(skb->dev->features & NETIF_F_GRO) || netpoll_rx_on(skb))
3408 		goto normal;
3409 
3410 	if (skb_is_gso(skb) || skb_has_frag_list(skb))
3411 		goto normal;
3412 
3413 	rcu_read_lock();
3414 	list_for_each_entry_rcu(ptype, head, list) {
3415 		if (ptype->type != type || ptype->dev || !ptype->gro_receive)
3416 			continue;
3417 
3418 		skb_set_network_header(skb, skb_gro_offset(skb));
3419 		mac_len = skb->network_header - skb->mac_header;
3420 		skb->mac_len = mac_len;
3421 		NAPI_GRO_CB(skb)->same_flow = 0;
3422 		NAPI_GRO_CB(skb)->flush = 0;
3423 		NAPI_GRO_CB(skb)->free = 0;
3424 
3425 		pp = ptype->gro_receive(&napi->gro_list, skb);
3426 		break;
3427 	}
3428 	rcu_read_unlock();
3429 
3430 	if (&ptype->list == head)
3431 		goto normal;
3432 
3433 	same_flow = NAPI_GRO_CB(skb)->same_flow;
3434 	ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
3435 
3436 	if (pp) {
3437 		struct sk_buff *nskb = *pp;
3438 
3439 		*pp = nskb->next;
3440 		nskb->next = NULL;
3441 		napi_gro_complete(nskb);
3442 		napi->gro_count--;
3443 	}
3444 
3445 	if (same_flow)
3446 		goto ok;
3447 
3448 	if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS)
3449 		goto normal;
3450 
3451 	napi->gro_count++;
3452 	NAPI_GRO_CB(skb)->count = 1;
3453 	skb_shinfo(skb)->gso_size = skb_gro_len(skb);
3454 	skb->next = napi->gro_list;
3455 	napi->gro_list = skb;
3456 	ret = GRO_HELD;
3457 
3458 pull:
3459 	if (skb_headlen(skb) < skb_gro_offset(skb)) {
3460 		int grow = skb_gro_offset(skb) - skb_headlen(skb);
3461 
3462 		BUG_ON(skb->end - skb->tail < grow);
3463 
3464 		memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
3465 
3466 		skb->tail += grow;
3467 		skb->data_len -= grow;
3468 
3469 		skb_shinfo(skb)->frags[0].page_offset += grow;
3470 		skb_frag_size_sub(&skb_shinfo(skb)->frags[0], grow);
3471 
3472 		if (unlikely(!skb_frag_size(&skb_shinfo(skb)->frags[0]))) {
3473 			skb_frag_unref(skb, 0);
3474 			memmove(skb_shinfo(skb)->frags,
3475 				skb_shinfo(skb)->frags + 1,
3476 				--skb_shinfo(skb)->nr_frags * sizeof(skb_frag_t));
3477 		}
3478 	}
3479 
3480 ok:
3481 	return ret;
3482 
3483 normal:
3484 	ret = GRO_NORMAL;
3485 	goto pull;
3486 }
3487 EXPORT_SYMBOL(dev_gro_receive);
3488 
3489 static inline gro_result_t
3490 __napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3491 {
3492 	struct sk_buff *p;
3493 	unsigned int maclen = skb->dev->hard_header_len;
3494 
3495 	for (p = napi->gro_list; p; p = p->next) {
3496 		unsigned long diffs;
3497 
3498 		diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
3499 		diffs |= p->vlan_tci ^ skb->vlan_tci;
3500 		if (maclen == ETH_HLEN)
3501 			diffs |= compare_ether_header(skb_mac_header(p),
3502 						      skb_gro_mac_header(skb));
3503 		else if (!diffs)
3504 			diffs = memcmp(skb_mac_header(p),
3505 				       skb_gro_mac_header(skb),
3506 				       maclen);
3507 		NAPI_GRO_CB(p)->same_flow = !diffs;
3508 		NAPI_GRO_CB(p)->flush = 0;
3509 	}
3510 
3511 	return dev_gro_receive(napi, skb);
3512 }
3513 
3514 gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
3515 {
3516 	switch (ret) {
3517 	case GRO_NORMAL:
3518 		if (netif_receive_skb(skb))
3519 			ret = GRO_DROP;
3520 		break;
3521 
3522 	case GRO_DROP:
3523 	case GRO_MERGED_FREE:
3524 		kfree_skb(skb);
3525 		break;
3526 
3527 	case GRO_HELD:
3528 	case GRO_MERGED:
3529 		break;
3530 	}
3531 
3532 	return ret;
3533 }
3534 EXPORT_SYMBOL(napi_skb_finish);
3535 
3536 void skb_gro_reset_offset(struct sk_buff *skb)
3537 {
3538 	NAPI_GRO_CB(skb)->data_offset = 0;
3539 	NAPI_GRO_CB(skb)->frag0 = NULL;
3540 	NAPI_GRO_CB(skb)->frag0_len = 0;
3541 
3542 	if (skb->mac_header == skb->tail &&
3543 	    !PageHighMem(skb_frag_page(&skb_shinfo(skb)->frags[0]))) {
3544 		NAPI_GRO_CB(skb)->frag0 =
3545 			skb_frag_address(&skb_shinfo(skb)->frags[0]);
3546 		NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(&skb_shinfo(skb)->frags[0]);
3547 	}
3548 }
3549 EXPORT_SYMBOL(skb_gro_reset_offset);
3550 
3551 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3552 {
3553 	skb_gro_reset_offset(skb);
3554 
3555 	return napi_skb_finish(__napi_gro_receive(napi, skb), skb);
3556 }
3557 EXPORT_SYMBOL(napi_gro_receive);
3558 
3559 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
3560 {
3561 	__skb_pull(skb, skb_headlen(skb));
3562 	skb_reserve(skb, NET_IP_ALIGN - skb_headroom(skb));
3563 	skb->vlan_tci = 0;
3564 	skb->dev = napi->dev;
3565 	skb->skb_iif = 0;
3566 
3567 	napi->skb = skb;
3568 }
3569 
3570 struct sk_buff *napi_get_frags(struct napi_struct *napi)
3571 {
3572 	struct sk_buff *skb = napi->skb;
3573 
3574 	if (!skb) {
3575 		skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD);
3576 		if (skb)
3577 			napi->skb = skb;
3578 	}
3579 	return skb;
3580 }
3581 EXPORT_SYMBOL(napi_get_frags);
3582 
3583 gro_result_t napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb,
3584 			       gro_result_t ret)
3585 {
3586 	switch (ret) {
3587 	case GRO_NORMAL:
3588 	case GRO_HELD:
3589 		skb->protocol = eth_type_trans(skb, skb->dev);
3590 
3591 		if (ret == GRO_HELD)
3592 			skb_gro_pull(skb, -ETH_HLEN);
3593 		else if (netif_receive_skb(skb))
3594 			ret = GRO_DROP;
3595 		break;
3596 
3597 	case GRO_DROP:
3598 	case GRO_MERGED_FREE:
3599 		napi_reuse_skb(napi, skb);
3600 		break;
3601 
3602 	case GRO_MERGED:
3603 		break;
3604 	}
3605 
3606 	return ret;
3607 }
3608 EXPORT_SYMBOL(napi_frags_finish);
3609 
3610 struct sk_buff *napi_frags_skb(struct napi_struct *napi)
3611 {
3612 	struct sk_buff *skb = napi->skb;
3613 	struct ethhdr *eth;
3614 	unsigned int hlen;
3615 	unsigned int off;
3616 
3617 	napi->skb = NULL;
3618 
3619 	skb_reset_mac_header(skb);
3620 	skb_gro_reset_offset(skb);
3621 
3622 	off = skb_gro_offset(skb);
3623 	hlen = off + sizeof(*eth);
3624 	eth = skb_gro_header_fast(skb, off);
3625 	if (skb_gro_header_hard(skb, hlen)) {
3626 		eth = skb_gro_header_slow(skb, hlen, off);
3627 		if (unlikely(!eth)) {
3628 			napi_reuse_skb(napi, skb);
3629 			skb = NULL;
3630 			goto out;
3631 		}
3632 	}
3633 
3634 	skb_gro_pull(skb, sizeof(*eth));
3635 
3636 	/*
3637 	 * This works because the only protocols we care about don't require
3638 	 * special handling.  We'll fix it up properly at the end.
3639 	 */
3640 	skb->protocol = eth->h_proto;
3641 
3642 out:
3643 	return skb;
3644 }
3645 EXPORT_SYMBOL(napi_frags_skb);
3646 
3647 gro_result_t napi_gro_frags(struct napi_struct *napi)
3648 {
3649 	struct sk_buff *skb = napi_frags_skb(napi);
3650 
3651 	if (!skb)
3652 		return GRO_DROP;
3653 
3654 	return napi_frags_finish(napi, skb, __napi_gro_receive(napi, skb));
3655 }
3656 EXPORT_SYMBOL(napi_gro_frags);
3657 
3658 /*
3659  * net_rps_action sends any pending IPI's for rps.
3660  * Note: called with local irq disabled, but exits with local irq enabled.
3661  */
3662 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
3663 {
3664 #ifdef CONFIG_RPS
3665 	struct softnet_data *remsd = sd->rps_ipi_list;
3666 
3667 	if (remsd) {
3668 		sd->rps_ipi_list = NULL;
3669 
3670 		local_irq_enable();
3671 
3672 		/* Send pending IPI's to kick RPS processing on remote cpus. */
3673 		while (remsd) {
3674 			struct softnet_data *next = remsd->rps_ipi_next;
3675 
3676 			if (cpu_online(remsd->cpu))
3677 				__smp_call_function_single(remsd->cpu,
3678 							   &remsd->csd, 0);
3679 			remsd = next;
3680 		}
3681 	} else
3682 #endif
3683 		local_irq_enable();
3684 }
3685 
3686 static int process_backlog(struct napi_struct *napi, int quota)
3687 {
3688 	int work = 0;
3689 	struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
3690 
3691 #ifdef CONFIG_RPS
3692 	/* Check if we have pending ipi, its better to send them now,
3693 	 * not waiting net_rx_action() end.
3694 	 */
3695 	if (sd->rps_ipi_list) {
3696 		local_irq_disable();
3697 		net_rps_action_and_irq_enable(sd);
3698 	}
3699 #endif
3700 	napi->weight = weight_p;
3701 	local_irq_disable();
3702 	while (work < quota) {
3703 		struct sk_buff *skb;
3704 		unsigned int qlen;
3705 
3706 		while ((skb = __skb_dequeue(&sd->process_queue))) {
3707 			local_irq_enable();
3708 			__netif_receive_skb(skb);
3709 			local_irq_disable();
3710 			input_queue_head_incr(sd);
3711 			if (++work >= quota) {
3712 				local_irq_enable();
3713 				return work;
3714 			}
3715 		}
3716 
3717 		rps_lock(sd);
3718 		qlen = skb_queue_len(&sd->input_pkt_queue);
3719 		if (qlen)
3720 			skb_queue_splice_tail_init(&sd->input_pkt_queue,
3721 						   &sd->process_queue);
3722 
3723 		if (qlen < quota - work) {
3724 			/*
3725 			 * Inline a custom version of __napi_complete().
3726 			 * only current cpu owns and manipulates this napi,
3727 			 * and NAPI_STATE_SCHED is the only possible flag set on backlog.
3728 			 * we can use a plain write instead of clear_bit(),
3729 			 * and we dont need an smp_mb() memory barrier.
3730 			 */
3731 			list_del(&napi->poll_list);
3732 			napi->state = 0;
3733 
3734 			quota = work + qlen;
3735 		}
3736 		rps_unlock(sd);
3737 	}
3738 	local_irq_enable();
3739 
3740 	return work;
3741 }
3742 
3743 /**
3744  * __napi_schedule - schedule for receive
3745  * @n: entry to schedule
3746  *
3747  * The entry's receive function will be scheduled to run
3748  */
3749 void __napi_schedule(struct napi_struct *n)
3750 {
3751 	unsigned long flags;
3752 
3753 	local_irq_save(flags);
3754 	____napi_schedule(&__get_cpu_var(softnet_data), n);
3755 	local_irq_restore(flags);
3756 }
3757 EXPORT_SYMBOL(__napi_schedule);
3758 
3759 void __napi_complete(struct napi_struct *n)
3760 {
3761 	BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
3762 	BUG_ON(n->gro_list);
3763 
3764 	list_del(&n->poll_list);
3765 	smp_mb__before_clear_bit();
3766 	clear_bit(NAPI_STATE_SCHED, &n->state);
3767 }
3768 EXPORT_SYMBOL(__napi_complete);
3769 
3770 void napi_complete(struct napi_struct *n)
3771 {
3772 	unsigned long flags;
3773 
3774 	/*
3775 	 * don't let napi dequeue from the cpu poll list
3776 	 * just in case its running on a different cpu
3777 	 */
3778 	if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
3779 		return;
3780 
3781 	napi_gro_flush(n);
3782 	local_irq_save(flags);
3783 	__napi_complete(n);
3784 	local_irq_restore(flags);
3785 }
3786 EXPORT_SYMBOL(napi_complete);
3787 
3788 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
3789 		    int (*poll)(struct napi_struct *, int), int weight)
3790 {
3791 	INIT_LIST_HEAD(&napi->poll_list);
3792 	napi->gro_count = 0;
3793 	napi->gro_list = NULL;
3794 	napi->skb = NULL;
3795 	napi->poll = poll;
3796 	napi->weight = weight;
3797 	list_add(&napi->dev_list, &dev->napi_list);
3798 	napi->dev = dev;
3799 #ifdef CONFIG_NETPOLL
3800 	spin_lock_init(&napi->poll_lock);
3801 	napi->poll_owner = -1;
3802 #endif
3803 	set_bit(NAPI_STATE_SCHED, &napi->state);
3804 }
3805 EXPORT_SYMBOL(netif_napi_add);
3806 
3807 void netif_napi_del(struct napi_struct *napi)
3808 {
3809 	struct sk_buff *skb, *next;
3810 
3811 	list_del_init(&napi->dev_list);
3812 	napi_free_frags(napi);
3813 
3814 	for (skb = napi->gro_list; skb; skb = next) {
3815 		next = skb->next;
3816 		skb->next = NULL;
3817 		kfree_skb(skb);
3818 	}
3819 
3820 	napi->gro_list = NULL;
3821 	napi->gro_count = 0;
3822 }
3823 EXPORT_SYMBOL(netif_napi_del);
3824 
3825 static void net_rx_action(struct softirq_action *h)
3826 {
3827 	struct softnet_data *sd = &__get_cpu_var(softnet_data);
3828 	unsigned long time_limit = jiffies + 2;
3829 	int budget = netdev_budget;
3830 	void *have;
3831 
3832 	local_irq_disable();
3833 
3834 	while (!list_empty(&sd->poll_list)) {
3835 		struct napi_struct *n;
3836 		int work, weight;
3837 
3838 		/* If softirq window is exhuasted then punt.
3839 		 * Allow this to run for 2 jiffies since which will allow
3840 		 * an average latency of 1.5/HZ.
3841 		 */
3842 		if (unlikely(budget <= 0 || time_after(jiffies, time_limit)))
3843 			goto softnet_break;
3844 
3845 		local_irq_enable();
3846 
3847 		/* Even though interrupts have been re-enabled, this
3848 		 * access is safe because interrupts can only add new
3849 		 * entries to the tail of this list, and only ->poll()
3850 		 * calls can remove this head entry from the list.
3851 		 */
3852 		n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list);
3853 
3854 		have = netpoll_poll_lock(n);
3855 
3856 		weight = n->weight;
3857 
3858 		/* This NAPI_STATE_SCHED test is for avoiding a race
3859 		 * with netpoll's poll_napi().  Only the entity which
3860 		 * obtains the lock and sees NAPI_STATE_SCHED set will
3861 		 * actually make the ->poll() call.  Therefore we avoid
3862 		 * accidentally calling ->poll() when NAPI is not scheduled.
3863 		 */
3864 		work = 0;
3865 		if (test_bit(NAPI_STATE_SCHED, &n->state)) {
3866 			work = n->poll(n, weight);
3867 			trace_napi_poll(n);
3868 		}
3869 
3870 		WARN_ON_ONCE(work > weight);
3871 
3872 		budget -= work;
3873 
3874 		local_irq_disable();
3875 
3876 		/* Drivers must not modify the NAPI state if they
3877 		 * consume the entire weight.  In such cases this code
3878 		 * still "owns" the NAPI instance and therefore can
3879 		 * move the instance around on the list at-will.
3880 		 */
3881 		if (unlikely(work == weight)) {
3882 			if (unlikely(napi_disable_pending(n))) {
3883 				local_irq_enable();
3884 				napi_complete(n);
3885 				local_irq_disable();
3886 			} else
3887 				list_move_tail(&n->poll_list, &sd->poll_list);
3888 		}
3889 
3890 		netpoll_poll_unlock(have);
3891 	}
3892 out:
3893 	net_rps_action_and_irq_enable(sd);
3894 
3895 #ifdef CONFIG_NET_DMA
3896 	/*
3897 	 * There may not be any more sk_buffs coming right now, so push
3898 	 * any pending DMA copies to hardware
3899 	 */
3900 	dma_issue_pending_all();
3901 #endif
3902 
3903 	return;
3904 
3905 softnet_break:
3906 	sd->time_squeeze++;
3907 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
3908 	goto out;
3909 }
3910 
3911 static gifconf_func_t *gifconf_list[NPROTO];
3912 
3913 /**
3914  *	register_gifconf	-	register a SIOCGIF handler
3915  *	@family: Address family
3916  *	@gifconf: Function handler
3917  *
3918  *	Register protocol dependent address dumping routines. The handler
3919  *	that is passed must not be freed or reused until it has been replaced
3920  *	by another handler.
3921  */
3922 int register_gifconf(unsigned int family, gifconf_func_t *gifconf)
3923 {
3924 	if (family >= NPROTO)
3925 		return -EINVAL;
3926 	gifconf_list[family] = gifconf;
3927 	return 0;
3928 }
3929 EXPORT_SYMBOL(register_gifconf);
3930 
3931 
3932 /*
3933  *	Map an interface index to its name (SIOCGIFNAME)
3934  */
3935 
3936 /*
3937  *	We need this ioctl for efficient implementation of the
3938  *	if_indextoname() function required by the IPv6 API.  Without
3939  *	it, we would have to search all the interfaces to find a
3940  *	match.  --pb
3941  */
3942 
3943 static int dev_ifname(struct net *net, struct ifreq __user *arg)
3944 {
3945 	struct net_device *dev;
3946 	struct ifreq ifr;
3947 
3948 	/*
3949 	 *	Fetch the caller's info block.
3950 	 */
3951 
3952 	if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
3953 		return -EFAULT;
3954 
3955 	rcu_read_lock();
3956 	dev = dev_get_by_index_rcu(net, ifr.ifr_ifindex);
3957 	if (!dev) {
3958 		rcu_read_unlock();
3959 		return -ENODEV;
3960 	}
3961 
3962 	strcpy(ifr.ifr_name, dev->name);
3963 	rcu_read_unlock();
3964 
3965 	if (copy_to_user(arg, &ifr, sizeof(struct ifreq)))
3966 		return -EFAULT;
3967 	return 0;
3968 }
3969 
3970 /*
3971  *	Perform a SIOCGIFCONF call. This structure will change
3972  *	size eventually, and there is nothing I can do about it.
3973  *	Thus we will need a 'compatibility mode'.
3974  */
3975 
3976 static int dev_ifconf(struct net *net, char __user *arg)
3977 {
3978 	struct ifconf ifc;
3979 	struct net_device *dev;
3980 	char __user *pos;
3981 	int len;
3982 	int total;
3983 	int i;
3984 
3985 	/*
3986 	 *	Fetch the caller's info block.
3987 	 */
3988 
3989 	if (copy_from_user(&ifc, arg, sizeof(struct ifconf)))
3990 		return -EFAULT;
3991 
3992 	pos = ifc.ifc_buf;
3993 	len = ifc.ifc_len;
3994 
3995 	/*
3996 	 *	Loop over the interfaces, and write an info block for each.
3997 	 */
3998 
3999 	total = 0;
4000 	for_each_netdev(net, dev) {
4001 		for (i = 0; i < NPROTO; i++) {
4002 			if (gifconf_list[i]) {
4003 				int done;
4004 				if (!pos)
4005 					done = gifconf_list[i](dev, NULL, 0);
4006 				else
4007 					done = gifconf_list[i](dev, pos + total,
4008 							       len - total);
4009 				if (done < 0)
4010 					return -EFAULT;
4011 				total += done;
4012 			}
4013 		}
4014 	}
4015 
4016 	/*
4017 	 *	All done.  Write the updated control block back to the caller.
4018 	 */
4019 	ifc.ifc_len = total;
4020 
4021 	/*
4022 	 * 	Both BSD and Solaris return 0 here, so we do too.
4023 	 */
4024 	return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0;
4025 }
4026 
4027 #ifdef CONFIG_PROC_FS
4028 
4029 #define BUCKET_SPACE (32 - NETDEV_HASHBITS)
4030 
4031 struct dev_iter_state {
4032 	struct seq_net_private p;
4033 	unsigned int pos; /* bucket << BUCKET_SPACE + offset */
4034 };
4035 
4036 #define get_bucket(x) ((x) >> BUCKET_SPACE)
4037 #define get_offset(x) ((x) & ((1 << BUCKET_SPACE) - 1))
4038 #define set_bucket_offset(b, o) ((b) << BUCKET_SPACE | (o))
4039 
4040 static inline struct net_device *dev_from_same_bucket(struct seq_file *seq)
4041 {
4042 	struct dev_iter_state *state = seq->private;
4043 	struct net *net = seq_file_net(seq);
4044 	struct net_device *dev;
4045 	struct hlist_node *p;
4046 	struct hlist_head *h;
4047 	unsigned int count, bucket, offset;
4048 
4049 	bucket = get_bucket(state->pos);
4050 	offset = get_offset(state->pos);
4051 	h = &net->dev_name_head[bucket];
4052 	count = 0;
4053 	hlist_for_each_entry_rcu(dev, p, h, name_hlist) {
4054 		if (count++ == offset) {
4055 			state->pos = set_bucket_offset(bucket, count);
4056 			return dev;
4057 		}
4058 	}
4059 
4060 	return NULL;
4061 }
4062 
4063 static inline struct net_device *dev_from_new_bucket(struct seq_file *seq)
4064 {
4065 	struct dev_iter_state *state = seq->private;
4066 	struct net_device *dev;
4067 	unsigned int bucket;
4068 
4069 	bucket = get_bucket(state->pos);
4070 	do {
4071 		dev = dev_from_same_bucket(seq);
4072 		if (dev)
4073 			return dev;
4074 
4075 		bucket++;
4076 		state->pos = set_bucket_offset(bucket, 0);
4077 	} while (bucket < NETDEV_HASHENTRIES);
4078 
4079 	return NULL;
4080 }
4081 
4082 /*
4083  *	This is invoked by the /proc filesystem handler to display a device
4084  *	in detail.
4085  */
4086 void *dev_seq_start(struct seq_file *seq, loff_t *pos)
4087 	__acquires(RCU)
4088 {
4089 	struct dev_iter_state *state = seq->private;
4090 
4091 	rcu_read_lock();
4092 	if (!*pos)
4093 		return SEQ_START_TOKEN;
4094 
4095 	/* check for end of the hash */
4096 	if (state->pos == 0 && *pos > 1)
4097 		return NULL;
4098 
4099 	return dev_from_new_bucket(seq);
4100 }
4101 
4102 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4103 {
4104 	struct net_device *dev;
4105 
4106 	++*pos;
4107 
4108 	if (v == SEQ_START_TOKEN)
4109 		return dev_from_new_bucket(seq);
4110 
4111 	dev = dev_from_same_bucket(seq);
4112 	if (dev)
4113 		return dev;
4114 
4115 	return dev_from_new_bucket(seq);
4116 }
4117 
4118 void dev_seq_stop(struct seq_file *seq, void *v)
4119 	__releases(RCU)
4120 {
4121 	rcu_read_unlock();
4122 }
4123 
4124 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev)
4125 {
4126 	struct rtnl_link_stats64 temp;
4127 	const struct rtnl_link_stats64 *stats = dev_get_stats(dev, &temp);
4128 
4129 	seq_printf(seq, "%6s: %7llu %7llu %4llu %4llu %4llu %5llu %10llu %9llu "
4130 		   "%8llu %7llu %4llu %4llu %4llu %5llu %7llu %10llu\n",
4131 		   dev->name, stats->rx_bytes, stats->rx_packets,
4132 		   stats->rx_errors,
4133 		   stats->rx_dropped + stats->rx_missed_errors,
4134 		   stats->rx_fifo_errors,
4135 		   stats->rx_length_errors + stats->rx_over_errors +
4136 		    stats->rx_crc_errors + stats->rx_frame_errors,
4137 		   stats->rx_compressed, stats->multicast,
4138 		   stats->tx_bytes, stats->tx_packets,
4139 		   stats->tx_errors, stats->tx_dropped,
4140 		   stats->tx_fifo_errors, stats->collisions,
4141 		   stats->tx_carrier_errors +
4142 		    stats->tx_aborted_errors +
4143 		    stats->tx_window_errors +
4144 		    stats->tx_heartbeat_errors,
4145 		   stats->tx_compressed);
4146 }
4147 
4148 /*
4149  *	Called from the PROCfs module. This now uses the new arbitrary sized
4150  *	/proc/net interface to create /proc/net/dev
4151  */
4152 static int dev_seq_show(struct seq_file *seq, void *v)
4153 {
4154 	if (v == SEQ_START_TOKEN)
4155 		seq_puts(seq, "Inter-|   Receive                            "
4156 			      "                    |  Transmit\n"
4157 			      " face |bytes    packets errs drop fifo frame "
4158 			      "compressed multicast|bytes    packets errs "
4159 			      "drop fifo colls carrier compressed\n");
4160 	else
4161 		dev_seq_printf_stats(seq, v);
4162 	return 0;
4163 }
4164 
4165 static struct softnet_data *softnet_get_online(loff_t *pos)
4166 {
4167 	struct softnet_data *sd = NULL;
4168 
4169 	while (*pos < nr_cpu_ids)
4170 		if (cpu_online(*pos)) {
4171 			sd = &per_cpu(softnet_data, *pos);
4172 			break;
4173 		} else
4174 			++*pos;
4175 	return sd;
4176 }
4177 
4178 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos)
4179 {
4180 	return softnet_get_online(pos);
4181 }
4182 
4183 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4184 {
4185 	++*pos;
4186 	return softnet_get_online(pos);
4187 }
4188 
4189 static void softnet_seq_stop(struct seq_file *seq, void *v)
4190 {
4191 }
4192 
4193 static int softnet_seq_show(struct seq_file *seq, void *v)
4194 {
4195 	struct softnet_data *sd = v;
4196 
4197 	seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x %08x\n",
4198 		   sd->processed, sd->dropped, sd->time_squeeze, 0,
4199 		   0, 0, 0, 0, /* was fastroute */
4200 		   sd->cpu_collision, sd->received_rps);
4201 	return 0;
4202 }
4203 
4204 static const struct seq_operations dev_seq_ops = {
4205 	.start = dev_seq_start,
4206 	.next  = dev_seq_next,
4207 	.stop  = dev_seq_stop,
4208 	.show  = dev_seq_show,
4209 };
4210 
4211 static int dev_seq_open(struct inode *inode, struct file *file)
4212 {
4213 	return seq_open_net(inode, file, &dev_seq_ops,
4214 			    sizeof(struct dev_iter_state));
4215 }
4216 
4217 int dev_seq_open_ops(struct inode *inode, struct file *file,
4218 		     const struct seq_operations *ops)
4219 {
4220 	return seq_open_net(inode, file, ops, sizeof(struct dev_iter_state));
4221 }
4222 
4223 static const struct file_operations dev_seq_fops = {
4224 	.owner	 = THIS_MODULE,
4225 	.open    = dev_seq_open,
4226 	.read    = seq_read,
4227 	.llseek  = seq_lseek,
4228 	.release = seq_release_net,
4229 };
4230 
4231 static const struct seq_operations softnet_seq_ops = {
4232 	.start = softnet_seq_start,
4233 	.next  = softnet_seq_next,
4234 	.stop  = softnet_seq_stop,
4235 	.show  = softnet_seq_show,
4236 };
4237 
4238 static int softnet_seq_open(struct inode *inode, struct file *file)
4239 {
4240 	return seq_open(file, &softnet_seq_ops);
4241 }
4242 
4243 static const struct file_operations softnet_seq_fops = {
4244 	.owner	 = THIS_MODULE,
4245 	.open    = softnet_seq_open,
4246 	.read    = seq_read,
4247 	.llseek  = seq_lseek,
4248 	.release = seq_release,
4249 };
4250 
4251 static void *ptype_get_idx(loff_t pos)
4252 {
4253 	struct packet_type *pt = NULL;
4254 	loff_t i = 0;
4255 	int t;
4256 
4257 	list_for_each_entry_rcu(pt, &ptype_all, list) {
4258 		if (i == pos)
4259 			return pt;
4260 		++i;
4261 	}
4262 
4263 	for (t = 0; t < PTYPE_HASH_SIZE; t++) {
4264 		list_for_each_entry_rcu(pt, &ptype_base[t], list) {
4265 			if (i == pos)
4266 				return pt;
4267 			++i;
4268 		}
4269 	}
4270 	return NULL;
4271 }
4272 
4273 static void *ptype_seq_start(struct seq_file *seq, loff_t *pos)
4274 	__acquires(RCU)
4275 {
4276 	rcu_read_lock();
4277 	return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN;
4278 }
4279 
4280 static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4281 {
4282 	struct packet_type *pt;
4283 	struct list_head *nxt;
4284 	int hash;
4285 
4286 	++*pos;
4287 	if (v == SEQ_START_TOKEN)
4288 		return ptype_get_idx(0);
4289 
4290 	pt = v;
4291 	nxt = pt->list.next;
4292 	if (pt->type == htons(ETH_P_ALL)) {
4293 		if (nxt != &ptype_all)
4294 			goto found;
4295 		hash = 0;
4296 		nxt = ptype_base[0].next;
4297 	} else
4298 		hash = ntohs(pt->type) & PTYPE_HASH_MASK;
4299 
4300 	while (nxt == &ptype_base[hash]) {
4301 		if (++hash >= PTYPE_HASH_SIZE)
4302 			return NULL;
4303 		nxt = ptype_base[hash].next;
4304 	}
4305 found:
4306 	return list_entry(nxt, struct packet_type, list);
4307 }
4308 
4309 static void ptype_seq_stop(struct seq_file *seq, void *v)
4310 	__releases(RCU)
4311 {
4312 	rcu_read_unlock();
4313 }
4314 
4315 static int ptype_seq_show(struct seq_file *seq, void *v)
4316 {
4317 	struct packet_type *pt = v;
4318 
4319 	if (v == SEQ_START_TOKEN)
4320 		seq_puts(seq, "Type Device      Function\n");
4321 	else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) {
4322 		if (pt->type == htons(ETH_P_ALL))
4323 			seq_puts(seq, "ALL ");
4324 		else
4325 			seq_printf(seq, "%04x", ntohs(pt->type));
4326 
4327 		seq_printf(seq, " %-8s %pF\n",
4328 			   pt->dev ? pt->dev->name : "", pt->func);
4329 	}
4330 
4331 	return 0;
4332 }
4333 
4334 static const struct seq_operations ptype_seq_ops = {
4335 	.start = ptype_seq_start,
4336 	.next  = ptype_seq_next,
4337 	.stop  = ptype_seq_stop,
4338 	.show  = ptype_seq_show,
4339 };
4340 
4341 static int ptype_seq_open(struct inode *inode, struct file *file)
4342 {
4343 	return seq_open_net(inode, file, &ptype_seq_ops,
4344 			sizeof(struct seq_net_private));
4345 }
4346 
4347 static const struct file_operations ptype_seq_fops = {
4348 	.owner	 = THIS_MODULE,
4349 	.open    = ptype_seq_open,
4350 	.read    = seq_read,
4351 	.llseek  = seq_lseek,
4352 	.release = seq_release_net,
4353 };
4354 
4355 
4356 static int __net_init dev_proc_net_init(struct net *net)
4357 {
4358 	int rc = -ENOMEM;
4359 
4360 	if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops))
4361 		goto out;
4362 	if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops))
4363 		goto out_dev;
4364 	if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops))
4365 		goto out_softnet;
4366 
4367 	if (wext_proc_init(net))
4368 		goto out_ptype;
4369 	rc = 0;
4370 out:
4371 	return rc;
4372 out_ptype:
4373 	proc_net_remove(net, "ptype");
4374 out_softnet:
4375 	proc_net_remove(net, "softnet_stat");
4376 out_dev:
4377 	proc_net_remove(net, "dev");
4378 	goto out;
4379 }
4380 
4381 static void __net_exit dev_proc_net_exit(struct net *net)
4382 {
4383 	wext_proc_exit(net);
4384 
4385 	proc_net_remove(net, "ptype");
4386 	proc_net_remove(net, "softnet_stat");
4387 	proc_net_remove(net, "dev");
4388 }
4389 
4390 static struct pernet_operations __net_initdata dev_proc_ops = {
4391 	.init = dev_proc_net_init,
4392 	.exit = dev_proc_net_exit,
4393 };
4394 
4395 static int __init dev_proc_init(void)
4396 {
4397 	return register_pernet_subsys(&dev_proc_ops);
4398 }
4399 #else
4400 #define dev_proc_init() 0
4401 #endif	/* CONFIG_PROC_FS */
4402 
4403 
4404 /**
4405  *	netdev_set_master	-	set up master pointer
4406  *	@slave: slave device
4407  *	@master: new master device
4408  *
4409  *	Changes the master device of the slave. Pass %NULL to break the
4410  *	bonding. The caller must hold the RTNL semaphore. On a failure
4411  *	a negative errno code is returned. On success the reference counts
4412  *	are adjusted and the function returns zero.
4413  */
4414 int netdev_set_master(struct net_device *slave, struct net_device *master)
4415 {
4416 	struct net_device *old = slave->master;
4417 
4418 	ASSERT_RTNL();
4419 
4420 	if (master) {
4421 		if (old)
4422 			return -EBUSY;
4423 		dev_hold(master);
4424 	}
4425 
4426 	slave->master = master;
4427 
4428 	if (old)
4429 		dev_put(old);
4430 	return 0;
4431 }
4432 EXPORT_SYMBOL(netdev_set_master);
4433 
4434 /**
4435  *	netdev_set_bond_master	-	set up bonding master/slave pair
4436  *	@slave: slave device
4437  *	@master: new master device
4438  *
4439  *	Changes the master device of the slave. Pass %NULL to break the
4440  *	bonding. The caller must hold the RTNL semaphore. On a failure
4441  *	a negative errno code is returned. On success %RTM_NEWLINK is sent
4442  *	to the routing socket and the function returns zero.
4443  */
4444 int netdev_set_bond_master(struct net_device *slave, struct net_device *master)
4445 {
4446 	int err;
4447 
4448 	ASSERT_RTNL();
4449 
4450 	err = netdev_set_master(slave, master);
4451 	if (err)
4452 		return err;
4453 	if (master)
4454 		slave->flags |= IFF_SLAVE;
4455 	else
4456 		slave->flags &= ~IFF_SLAVE;
4457 
4458 	rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE);
4459 	return 0;
4460 }
4461 EXPORT_SYMBOL(netdev_set_bond_master);
4462 
4463 static void dev_change_rx_flags(struct net_device *dev, int flags)
4464 {
4465 	const struct net_device_ops *ops = dev->netdev_ops;
4466 
4467 	if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags)
4468 		ops->ndo_change_rx_flags(dev, flags);
4469 }
4470 
4471 static int __dev_set_promiscuity(struct net_device *dev, int inc)
4472 {
4473 	unsigned int old_flags = dev->flags;
4474 	uid_t uid;
4475 	gid_t gid;
4476 
4477 	ASSERT_RTNL();
4478 
4479 	dev->flags |= IFF_PROMISC;
4480 	dev->promiscuity += inc;
4481 	if (dev->promiscuity == 0) {
4482 		/*
4483 		 * Avoid overflow.
4484 		 * If inc causes overflow, untouch promisc and return error.
4485 		 */
4486 		if (inc < 0)
4487 			dev->flags &= ~IFF_PROMISC;
4488 		else {
4489 			dev->promiscuity -= inc;
4490 			pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
4491 				dev->name);
4492 			return -EOVERFLOW;
4493 		}
4494 	}
4495 	if (dev->flags != old_flags) {
4496 		pr_info("device %s %s promiscuous mode\n",
4497 			dev->name,
4498 			dev->flags & IFF_PROMISC ? "entered" : "left");
4499 		if (audit_enabled) {
4500 			current_uid_gid(&uid, &gid);
4501 			audit_log(current->audit_context, GFP_ATOMIC,
4502 				AUDIT_ANOM_PROMISCUOUS,
4503 				"dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
4504 				dev->name, (dev->flags & IFF_PROMISC),
4505 				(old_flags & IFF_PROMISC),
4506 				audit_get_loginuid(current),
4507 				uid, gid,
4508 				audit_get_sessionid(current));
4509 		}
4510 
4511 		dev_change_rx_flags(dev, IFF_PROMISC);
4512 	}
4513 	return 0;
4514 }
4515 
4516 /**
4517  *	dev_set_promiscuity	- update promiscuity count on a device
4518  *	@dev: device
4519  *	@inc: modifier
4520  *
4521  *	Add or remove promiscuity from a device. While the count in the device
4522  *	remains above zero the interface remains promiscuous. Once it hits zero
4523  *	the device reverts back to normal filtering operation. A negative inc
4524  *	value is used to drop promiscuity on the device.
4525  *	Return 0 if successful or a negative errno code on error.
4526  */
4527 int dev_set_promiscuity(struct net_device *dev, int inc)
4528 {
4529 	unsigned int old_flags = dev->flags;
4530 	int err;
4531 
4532 	err = __dev_set_promiscuity(dev, inc);
4533 	if (err < 0)
4534 		return err;
4535 	if (dev->flags != old_flags)
4536 		dev_set_rx_mode(dev);
4537 	return err;
4538 }
4539 EXPORT_SYMBOL(dev_set_promiscuity);
4540 
4541 /**
4542  *	dev_set_allmulti	- update allmulti count on a device
4543  *	@dev: device
4544  *	@inc: modifier
4545  *
4546  *	Add or remove reception of all multicast frames to a device. While the
4547  *	count in the device remains above zero the interface remains listening
4548  *	to all interfaces. Once it hits zero the device reverts back to normal
4549  *	filtering operation. A negative @inc value is used to drop the counter
4550  *	when releasing a resource needing all multicasts.
4551  *	Return 0 if successful or a negative errno code on error.
4552  */
4553 
4554 int dev_set_allmulti(struct net_device *dev, int inc)
4555 {
4556 	unsigned int old_flags = dev->flags;
4557 
4558 	ASSERT_RTNL();
4559 
4560 	dev->flags |= IFF_ALLMULTI;
4561 	dev->allmulti += inc;
4562 	if (dev->allmulti == 0) {
4563 		/*
4564 		 * Avoid overflow.
4565 		 * If inc causes overflow, untouch allmulti and return error.
4566 		 */
4567 		if (inc < 0)
4568 			dev->flags &= ~IFF_ALLMULTI;
4569 		else {
4570 			dev->allmulti -= inc;
4571 			pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
4572 				dev->name);
4573 			return -EOVERFLOW;
4574 		}
4575 	}
4576 	if (dev->flags ^ old_flags) {
4577 		dev_change_rx_flags(dev, IFF_ALLMULTI);
4578 		dev_set_rx_mode(dev);
4579 	}
4580 	return 0;
4581 }
4582 EXPORT_SYMBOL(dev_set_allmulti);
4583 
4584 /*
4585  *	Upload unicast and multicast address lists to device and
4586  *	configure RX filtering. When the device doesn't support unicast
4587  *	filtering it is put in promiscuous mode while unicast addresses
4588  *	are present.
4589  */
4590 void __dev_set_rx_mode(struct net_device *dev)
4591 {
4592 	const struct net_device_ops *ops = dev->netdev_ops;
4593 
4594 	/* dev_open will call this function so the list will stay sane. */
4595 	if (!(dev->flags&IFF_UP))
4596 		return;
4597 
4598 	if (!netif_device_present(dev))
4599 		return;
4600 
4601 	if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
4602 		/* Unicast addresses changes may only happen under the rtnl,
4603 		 * therefore calling __dev_set_promiscuity here is safe.
4604 		 */
4605 		if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
4606 			__dev_set_promiscuity(dev, 1);
4607 			dev->uc_promisc = true;
4608 		} else if (netdev_uc_empty(dev) && dev->uc_promisc) {
4609 			__dev_set_promiscuity(dev, -1);
4610 			dev->uc_promisc = false;
4611 		}
4612 	}
4613 
4614 	if (ops->ndo_set_rx_mode)
4615 		ops->ndo_set_rx_mode(dev);
4616 }
4617 
4618 void dev_set_rx_mode(struct net_device *dev)
4619 {
4620 	netif_addr_lock_bh(dev);
4621 	__dev_set_rx_mode(dev);
4622 	netif_addr_unlock_bh(dev);
4623 }
4624 
4625 /**
4626  *	dev_get_flags - get flags reported to userspace
4627  *	@dev: device
4628  *
4629  *	Get the combination of flag bits exported through APIs to userspace.
4630  */
4631 unsigned dev_get_flags(const struct net_device *dev)
4632 {
4633 	unsigned flags;
4634 
4635 	flags = (dev->flags & ~(IFF_PROMISC |
4636 				IFF_ALLMULTI |
4637 				IFF_RUNNING |
4638 				IFF_LOWER_UP |
4639 				IFF_DORMANT)) |
4640 		(dev->gflags & (IFF_PROMISC |
4641 				IFF_ALLMULTI));
4642 
4643 	if (netif_running(dev)) {
4644 		if (netif_oper_up(dev))
4645 			flags |= IFF_RUNNING;
4646 		if (netif_carrier_ok(dev))
4647 			flags |= IFF_LOWER_UP;
4648 		if (netif_dormant(dev))
4649 			flags |= IFF_DORMANT;
4650 	}
4651 
4652 	return flags;
4653 }
4654 EXPORT_SYMBOL(dev_get_flags);
4655 
4656 int __dev_change_flags(struct net_device *dev, unsigned int flags)
4657 {
4658 	unsigned int old_flags = dev->flags;
4659 	int ret;
4660 
4661 	ASSERT_RTNL();
4662 
4663 	/*
4664 	 *	Set the flags on our device.
4665 	 */
4666 
4667 	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
4668 			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
4669 			       IFF_AUTOMEDIA)) |
4670 		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
4671 				    IFF_ALLMULTI));
4672 
4673 	/*
4674 	 *	Load in the correct multicast list now the flags have changed.
4675 	 */
4676 
4677 	if ((old_flags ^ flags) & IFF_MULTICAST)
4678 		dev_change_rx_flags(dev, IFF_MULTICAST);
4679 
4680 	dev_set_rx_mode(dev);
4681 
4682 	/*
4683 	 *	Have we downed the interface. We handle IFF_UP ourselves
4684 	 *	according to user attempts to set it, rather than blindly
4685 	 *	setting it.
4686 	 */
4687 
4688 	ret = 0;
4689 	if ((old_flags ^ flags) & IFF_UP) {	/* Bit is different  ? */
4690 		ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
4691 
4692 		if (!ret)
4693 			dev_set_rx_mode(dev);
4694 	}
4695 
4696 	if ((flags ^ dev->gflags) & IFF_PROMISC) {
4697 		int inc = (flags & IFF_PROMISC) ? 1 : -1;
4698 
4699 		dev->gflags ^= IFF_PROMISC;
4700 		dev_set_promiscuity(dev, inc);
4701 	}
4702 
4703 	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
4704 	   is important. Some (broken) drivers set IFF_PROMISC, when
4705 	   IFF_ALLMULTI is requested not asking us and not reporting.
4706 	 */
4707 	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
4708 		int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
4709 
4710 		dev->gflags ^= IFF_ALLMULTI;
4711 		dev_set_allmulti(dev, inc);
4712 	}
4713 
4714 	return ret;
4715 }
4716 
4717 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags)
4718 {
4719 	unsigned int changes = dev->flags ^ old_flags;
4720 
4721 	if (changes & IFF_UP) {
4722 		if (dev->flags & IFF_UP)
4723 			call_netdevice_notifiers(NETDEV_UP, dev);
4724 		else
4725 			call_netdevice_notifiers(NETDEV_DOWN, dev);
4726 	}
4727 
4728 	if (dev->flags & IFF_UP &&
4729 	    (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE)))
4730 		call_netdevice_notifiers(NETDEV_CHANGE, dev);
4731 }
4732 
4733 /**
4734  *	dev_change_flags - change device settings
4735  *	@dev: device
4736  *	@flags: device state flags
4737  *
4738  *	Change settings on device based state flags. The flags are
4739  *	in the userspace exported format.
4740  */
4741 int dev_change_flags(struct net_device *dev, unsigned int flags)
4742 {
4743 	int ret;
4744 	unsigned int changes, old_flags = dev->flags;
4745 
4746 	ret = __dev_change_flags(dev, flags);
4747 	if (ret < 0)
4748 		return ret;
4749 
4750 	changes = old_flags ^ dev->flags;
4751 	if (changes)
4752 		rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
4753 
4754 	__dev_notify_flags(dev, old_flags);
4755 	return ret;
4756 }
4757 EXPORT_SYMBOL(dev_change_flags);
4758 
4759 /**
4760  *	dev_set_mtu - Change maximum transfer unit
4761  *	@dev: device
4762  *	@new_mtu: new transfer unit
4763  *
4764  *	Change the maximum transfer size of the network device.
4765  */
4766 int dev_set_mtu(struct net_device *dev, int new_mtu)
4767 {
4768 	const struct net_device_ops *ops = dev->netdev_ops;
4769 	int err;
4770 
4771 	if (new_mtu == dev->mtu)
4772 		return 0;
4773 
4774 	/*	MTU must be positive.	 */
4775 	if (new_mtu < 0)
4776 		return -EINVAL;
4777 
4778 	if (!netif_device_present(dev))
4779 		return -ENODEV;
4780 
4781 	err = 0;
4782 	if (ops->ndo_change_mtu)
4783 		err = ops->ndo_change_mtu(dev, new_mtu);
4784 	else
4785 		dev->mtu = new_mtu;
4786 
4787 	if (!err && dev->flags & IFF_UP)
4788 		call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
4789 	return err;
4790 }
4791 EXPORT_SYMBOL(dev_set_mtu);
4792 
4793 /**
4794  *	dev_set_group - Change group this device belongs to
4795  *	@dev: device
4796  *	@new_group: group this device should belong to
4797  */
4798 void dev_set_group(struct net_device *dev, int new_group)
4799 {
4800 	dev->group = new_group;
4801 }
4802 EXPORT_SYMBOL(dev_set_group);
4803 
4804 /**
4805  *	dev_set_mac_address - Change Media Access Control Address
4806  *	@dev: device
4807  *	@sa: new address
4808  *
4809  *	Change the hardware (MAC) address of the device
4810  */
4811 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
4812 {
4813 	const struct net_device_ops *ops = dev->netdev_ops;
4814 	int err;
4815 
4816 	if (!ops->ndo_set_mac_address)
4817 		return -EOPNOTSUPP;
4818 	if (sa->sa_family != dev->type)
4819 		return -EINVAL;
4820 	if (!netif_device_present(dev))
4821 		return -ENODEV;
4822 	err = ops->ndo_set_mac_address(dev, sa);
4823 	if (!err)
4824 		call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4825 	return err;
4826 }
4827 EXPORT_SYMBOL(dev_set_mac_address);
4828 
4829 /*
4830  *	Perform the SIOCxIFxxx calls, inside rcu_read_lock()
4831  */
4832 static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd)
4833 {
4834 	int err;
4835 	struct net_device *dev = dev_get_by_name_rcu(net, ifr->ifr_name);
4836 
4837 	if (!dev)
4838 		return -ENODEV;
4839 
4840 	switch (cmd) {
4841 	case SIOCGIFFLAGS:	/* Get interface flags */
4842 		ifr->ifr_flags = (short) dev_get_flags(dev);
4843 		return 0;
4844 
4845 	case SIOCGIFMETRIC:	/* Get the metric on the interface
4846 				   (currently unused) */
4847 		ifr->ifr_metric = 0;
4848 		return 0;
4849 
4850 	case SIOCGIFMTU:	/* Get the MTU of a device */
4851 		ifr->ifr_mtu = dev->mtu;
4852 		return 0;
4853 
4854 	case SIOCGIFHWADDR:
4855 		if (!dev->addr_len)
4856 			memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data);
4857 		else
4858 			memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr,
4859 			       min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4860 		ifr->ifr_hwaddr.sa_family = dev->type;
4861 		return 0;
4862 
4863 	case SIOCGIFSLAVE:
4864 		err = -EINVAL;
4865 		break;
4866 
4867 	case SIOCGIFMAP:
4868 		ifr->ifr_map.mem_start = dev->mem_start;
4869 		ifr->ifr_map.mem_end   = dev->mem_end;
4870 		ifr->ifr_map.base_addr = dev->base_addr;
4871 		ifr->ifr_map.irq       = dev->irq;
4872 		ifr->ifr_map.dma       = dev->dma;
4873 		ifr->ifr_map.port      = dev->if_port;
4874 		return 0;
4875 
4876 	case SIOCGIFINDEX:
4877 		ifr->ifr_ifindex = dev->ifindex;
4878 		return 0;
4879 
4880 	case SIOCGIFTXQLEN:
4881 		ifr->ifr_qlen = dev->tx_queue_len;
4882 		return 0;
4883 
4884 	default:
4885 		/* dev_ioctl() should ensure this case
4886 		 * is never reached
4887 		 */
4888 		WARN_ON(1);
4889 		err = -ENOTTY;
4890 		break;
4891 
4892 	}
4893 	return err;
4894 }
4895 
4896 /*
4897  *	Perform the SIOCxIFxxx calls, inside rtnl_lock()
4898  */
4899 static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd)
4900 {
4901 	int err;
4902 	struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
4903 	const struct net_device_ops *ops;
4904 
4905 	if (!dev)
4906 		return -ENODEV;
4907 
4908 	ops = dev->netdev_ops;
4909 
4910 	switch (cmd) {
4911 	case SIOCSIFFLAGS:	/* Set interface flags */
4912 		return dev_change_flags(dev, ifr->ifr_flags);
4913 
4914 	case SIOCSIFMETRIC:	/* Set the metric on the interface
4915 				   (currently unused) */
4916 		return -EOPNOTSUPP;
4917 
4918 	case SIOCSIFMTU:	/* Set the MTU of a device */
4919 		return dev_set_mtu(dev, ifr->ifr_mtu);
4920 
4921 	case SIOCSIFHWADDR:
4922 		return dev_set_mac_address(dev, &ifr->ifr_hwaddr);
4923 
4924 	case SIOCSIFHWBROADCAST:
4925 		if (ifr->ifr_hwaddr.sa_family != dev->type)
4926 			return -EINVAL;
4927 		memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data,
4928 		       min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4929 		call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4930 		return 0;
4931 
4932 	case SIOCSIFMAP:
4933 		if (ops->ndo_set_config) {
4934 			if (!netif_device_present(dev))
4935 				return -ENODEV;
4936 			return ops->ndo_set_config(dev, &ifr->ifr_map);
4937 		}
4938 		return -EOPNOTSUPP;
4939 
4940 	case SIOCADDMULTI:
4941 		if (!ops->ndo_set_rx_mode ||
4942 		    ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4943 			return -EINVAL;
4944 		if (!netif_device_present(dev))
4945 			return -ENODEV;
4946 		return dev_mc_add_global(dev, ifr->ifr_hwaddr.sa_data);
4947 
4948 	case SIOCDELMULTI:
4949 		if (!ops->ndo_set_rx_mode ||
4950 		    ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4951 			return -EINVAL;
4952 		if (!netif_device_present(dev))
4953 			return -ENODEV;
4954 		return dev_mc_del_global(dev, ifr->ifr_hwaddr.sa_data);
4955 
4956 	case SIOCSIFTXQLEN:
4957 		if (ifr->ifr_qlen < 0)
4958 			return -EINVAL;
4959 		dev->tx_queue_len = ifr->ifr_qlen;
4960 		return 0;
4961 
4962 	case SIOCSIFNAME:
4963 		ifr->ifr_newname[IFNAMSIZ-1] = '\0';
4964 		return dev_change_name(dev, ifr->ifr_newname);
4965 
4966 	case SIOCSHWTSTAMP:
4967 		err = net_hwtstamp_validate(ifr);
4968 		if (err)
4969 			return err;
4970 		/* fall through */
4971 
4972 	/*
4973 	 *	Unknown or private ioctl
4974 	 */
4975 	default:
4976 		if ((cmd >= SIOCDEVPRIVATE &&
4977 		    cmd <= SIOCDEVPRIVATE + 15) ||
4978 		    cmd == SIOCBONDENSLAVE ||
4979 		    cmd == SIOCBONDRELEASE ||
4980 		    cmd == SIOCBONDSETHWADDR ||
4981 		    cmd == SIOCBONDSLAVEINFOQUERY ||
4982 		    cmd == SIOCBONDINFOQUERY ||
4983 		    cmd == SIOCBONDCHANGEACTIVE ||
4984 		    cmd == SIOCGMIIPHY ||
4985 		    cmd == SIOCGMIIREG ||
4986 		    cmd == SIOCSMIIREG ||
4987 		    cmd == SIOCBRADDIF ||
4988 		    cmd == SIOCBRDELIF ||
4989 		    cmd == SIOCSHWTSTAMP ||
4990 		    cmd == SIOCWANDEV) {
4991 			err = -EOPNOTSUPP;
4992 			if (ops->ndo_do_ioctl) {
4993 				if (netif_device_present(dev))
4994 					err = ops->ndo_do_ioctl(dev, ifr, cmd);
4995 				else
4996 					err = -ENODEV;
4997 			}
4998 		} else
4999 			err = -EINVAL;
5000 
5001 	}
5002 	return err;
5003 }
5004 
5005 /*
5006  *	This function handles all "interface"-type I/O control requests. The actual
5007  *	'doing' part of this is dev_ifsioc above.
5008  */
5009 
5010 /**
5011  *	dev_ioctl	-	network device ioctl
5012  *	@net: the applicable net namespace
5013  *	@cmd: command to issue
5014  *	@arg: pointer to a struct ifreq in user space
5015  *
5016  *	Issue ioctl functions to devices. This is normally called by the
5017  *	user space syscall interfaces but can sometimes be useful for
5018  *	other purposes. The return value is the return from the syscall if
5019  *	positive or a negative errno code on error.
5020  */
5021 
5022 int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg)
5023 {
5024 	struct ifreq ifr;
5025 	int ret;
5026 	char *colon;
5027 
5028 	/* One special case: SIOCGIFCONF takes ifconf argument
5029 	   and requires shared lock, because it sleeps writing
5030 	   to user space.
5031 	 */
5032 
5033 	if (cmd == SIOCGIFCONF) {
5034 		rtnl_lock();
5035 		ret = dev_ifconf(net, (char __user *) arg);
5036 		rtnl_unlock();
5037 		return ret;
5038 	}
5039 	if (cmd == SIOCGIFNAME)
5040 		return dev_ifname(net, (struct ifreq __user *)arg);
5041 
5042 	if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
5043 		return -EFAULT;
5044 
5045 	ifr.ifr_name[IFNAMSIZ-1] = 0;
5046 
5047 	colon = strchr(ifr.ifr_name, ':');
5048 	if (colon)
5049 		*colon = 0;
5050 
5051 	/*
5052 	 *	See which interface the caller is talking about.
5053 	 */
5054 
5055 	switch (cmd) {
5056 	/*
5057 	 *	These ioctl calls:
5058 	 *	- can be done by all.
5059 	 *	- atomic and do not require locking.
5060 	 *	- return a value
5061 	 */
5062 	case SIOCGIFFLAGS:
5063 	case SIOCGIFMETRIC:
5064 	case SIOCGIFMTU:
5065 	case SIOCGIFHWADDR:
5066 	case SIOCGIFSLAVE:
5067 	case SIOCGIFMAP:
5068 	case SIOCGIFINDEX:
5069 	case SIOCGIFTXQLEN:
5070 		dev_load(net, ifr.ifr_name);
5071 		rcu_read_lock();
5072 		ret = dev_ifsioc_locked(net, &ifr, cmd);
5073 		rcu_read_unlock();
5074 		if (!ret) {
5075 			if (colon)
5076 				*colon = ':';
5077 			if (copy_to_user(arg, &ifr,
5078 					 sizeof(struct ifreq)))
5079 				ret = -EFAULT;
5080 		}
5081 		return ret;
5082 
5083 	case SIOCETHTOOL:
5084 		dev_load(net, ifr.ifr_name);
5085 		rtnl_lock();
5086 		ret = dev_ethtool(net, &ifr);
5087 		rtnl_unlock();
5088 		if (!ret) {
5089 			if (colon)
5090 				*colon = ':';
5091 			if (copy_to_user(arg, &ifr,
5092 					 sizeof(struct ifreq)))
5093 				ret = -EFAULT;
5094 		}
5095 		return ret;
5096 
5097 	/*
5098 	 *	These ioctl calls:
5099 	 *	- require superuser power.
5100 	 *	- require strict serialization.
5101 	 *	- return a value
5102 	 */
5103 	case SIOCGMIIPHY:
5104 	case SIOCGMIIREG:
5105 	case SIOCSIFNAME:
5106 		if (!capable(CAP_NET_ADMIN))
5107 			return -EPERM;
5108 		dev_load(net, ifr.ifr_name);
5109 		rtnl_lock();
5110 		ret = dev_ifsioc(net, &ifr, cmd);
5111 		rtnl_unlock();
5112 		if (!ret) {
5113 			if (colon)
5114 				*colon = ':';
5115 			if (copy_to_user(arg, &ifr,
5116 					 sizeof(struct ifreq)))
5117 				ret = -EFAULT;
5118 		}
5119 		return ret;
5120 
5121 	/*
5122 	 *	These ioctl calls:
5123 	 *	- require superuser power.
5124 	 *	- require strict serialization.
5125 	 *	- do not return a value
5126 	 */
5127 	case SIOCSIFFLAGS:
5128 	case SIOCSIFMETRIC:
5129 	case SIOCSIFMTU:
5130 	case SIOCSIFMAP:
5131 	case SIOCSIFHWADDR:
5132 	case SIOCSIFSLAVE:
5133 	case SIOCADDMULTI:
5134 	case SIOCDELMULTI:
5135 	case SIOCSIFHWBROADCAST:
5136 	case SIOCSIFTXQLEN:
5137 	case SIOCSMIIREG:
5138 	case SIOCBONDENSLAVE:
5139 	case SIOCBONDRELEASE:
5140 	case SIOCBONDSETHWADDR:
5141 	case SIOCBONDCHANGEACTIVE:
5142 	case SIOCBRADDIF:
5143 	case SIOCBRDELIF:
5144 	case SIOCSHWTSTAMP:
5145 		if (!capable(CAP_NET_ADMIN))
5146 			return -EPERM;
5147 		/* fall through */
5148 	case SIOCBONDSLAVEINFOQUERY:
5149 	case SIOCBONDINFOQUERY:
5150 		dev_load(net, ifr.ifr_name);
5151 		rtnl_lock();
5152 		ret = dev_ifsioc(net, &ifr, cmd);
5153 		rtnl_unlock();
5154 		return ret;
5155 
5156 	case SIOCGIFMEM:
5157 		/* Get the per device memory space. We can add this but
5158 		 * currently do not support it */
5159 	case SIOCSIFMEM:
5160 		/* Set the per device memory buffer space.
5161 		 * Not applicable in our case */
5162 	case SIOCSIFLINK:
5163 		return -ENOTTY;
5164 
5165 	/*
5166 	 *	Unknown or private ioctl.
5167 	 */
5168 	default:
5169 		if (cmd == SIOCWANDEV ||
5170 		    (cmd >= SIOCDEVPRIVATE &&
5171 		     cmd <= SIOCDEVPRIVATE + 15)) {
5172 			dev_load(net, ifr.ifr_name);
5173 			rtnl_lock();
5174 			ret = dev_ifsioc(net, &ifr, cmd);
5175 			rtnl_unlock();
5176 			if (!ret && copy_to_user(arg, &ifr,
5177 						 sizeof(struct ifreq)))
5178 				ret = -EFAULT;
5179 			return ret;
5180 		}
5181 		/* Take care of Wireless Extensions */
5182 		if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)
5183 			return wext_handle_ioctl(net, &ifr, cmd, arg);
5184 		return -ENOTTY;
5185 	}
5186 }
5187 
5188 
5189 /**
5190  *	dev_new_index	-	allocate an ifindex
5191  *	@net: the applicable net namespace
5192  *
5193  *	Returns a suitable unique value for a new device interface
5194  *	number.  The caller must hold the rtnl semaphore or the
5195  *	dev_base_lock to be sure it remains unique.
5196  */
5197 static int dev_new_index(struct net *net)
5198 {
5199 	static int ifindex;
5200 	for (;;) {
5201 		if (++ifindex <= 0)
5202 			ifindex = 1;
5203 		if (!__dev_get_by_index(net, ifindex))
5204 			return ifindex;
5205 	}
5206 }
5207 
5208 /* Delayed registration/unregisteration */
5209 static LIST_HEAD(net_todo_list);
5210 
5211 static void net_set_todo(struct net_device *dev)
5212 {
5213 	list_add_tail(&dev->todo_list, &net_todo_list);
5214 }
5215 
5216 static void rollback_registered_many(struct list_head *head)
5217 {
5218 	struct net_device *dev, *tmp;
5219 
5220 	BUG_ON(dev_boot_phase);
5221 	ASSERT_RTNL();
5222 
5223 	list_for_each_entry_safe(dev, tmp, head, unreg_list) {
5224 		/* Some devices call without registering
5225 		 * for initialization unwind. Remove those
5226 		 * devices and proceed with the remaining.
5227 		 */
5228 		if (dev->reg_state == NETREG_UNINITIALIZED) {
5229 			pr_debug("unregister_netdevice: device %s/%p never was registered\n",
5230 				 dev->name, dev);
5231 
5232 			WARN_ON(1);
5233 			list_del(&dev->unreg_list);
5234 			continue;
5235 		}
5236 		dev->dismantle = true;
5237 		BUG_ON(dev->reg_state != NETREG_REGISTERED);
5238 	}
5239 
5240 	/* If device is running, close it first. */
5241 	dev_close_many(head);
5242 
5243 	list_for_each_entry(dev, head, unreg_list) {
5244 		/* And unlink it from device chain. */
5245 		unlist_netdevice(dev);
5246 
5247 		dev->reg_state = NETREG_UNREGISTERING;
5248 	}
5249 
5250 	synchronize_net();
5251 
5252 	list_for_each_entry(dev, head, unreg_list) {
5253 		/* Shutdown queueing discipline. */
5254 		dev_shutdown(dev);
5255 
5256 
5257 		/* Notify protocols, that we are about to destroy
5258 		   this device. They should clean all the things.
5259 		*/
5260 		call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5261 
5262 		if (!dev->rtnl_link_ops ||
5263 		    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5264 			rtmsg_ifinfo(RTM_DELLINK, dev, ~0U);
5265 
5266 		/*
5267 		 *	Flush the unicast and multicast chains
5268 		 */
5269 		dev_uc_flush(dev);
5270 		dev_mc_flush(dev);
5271 
5272 		if (dev->netdev_ops->ndo_uninit)
5273 			dev->netdev_ops->ndo_uninit(dev);
5274 
5275 		/* Notifier chain MUST detach us from master device. */
5276 		WARN_ON(dev->master);
5277 
5278 		/* Remove entries from kobject tree */
5279 		netdev_unregister_kobject(dev);
5280 	}
5281 
5282 	/* Process any work delayed until the end of the batch */
5283 	dev = list_first_entry(head, struct net_device, unreg_list);
5284 	call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
5285 
5286 	synchronize_net();
5287 
5288 	list_for_each_entry(dev, head, unreg_list)
5289 		dev_put(dev);
5290 }
5291 
5292 static void rollback_registered(struct net_device *dev)
5293 {
5294 	LIST_HEAD(single);
5295 
5296 	list_add(&dev->unreg_list, &single);
5297 	rollback_registered_many(&single);
5298 	list_del(&single);
5299 }
5300 
5301 static netdev_features_t netdev_fix_features(struct net_device *dev,
5302 	netdev_features_t features)
5303 {
5304 	/* Fix illegal checksum combinations */
5305 	if ((features & NETIF_F_HW_CSUM) &&
5306 	    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5307 		netdev_warn(dev, "mixed HW and IP checksum settings.\n");
5308 		features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
5309 	}
5310 
5311 	/* Fix illegal SG+CSUM combinations. */
5312 	if ((features & NETIF_F_SG) &&
5313 	    !(features & NETIF_F_ALL_CSUM)) {
5314 		netdev_dbg(dev,
5315 			"Dropping NETIF_F_SG since no checksum feature.\n");
5316 		features &= ~NETIF_F_SG;
5317 	}
5318 
5319 	/* TSO requires that SG is present as well. */
5320 	if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
5321 		netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
5322 		features &= ~NETIF_F_ALL_TSO;
5323 	}
5324 
5325 	/* TSO ECN requires that TSO is present as well. */
5326 	if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
5327 		features &= ~NETIF_F_TSO_ECN;
5328 
5329 	/* Software GSO depends on SG. */
5330 	if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
5331 		netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
5332 		features &= ~NETIF_F_GSO;
5333 	}
5334 
5335 	/* UFO needs SG and checksumming */
5336 	if (features & NETIF_F_UFO) {
5337 		/* maybe split UFO into V4 and V6? */
5338 		if (!((features & NETIF_F_GEN_CSUM) ||
5339 		    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))
5340 			    == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5341 			netdev_dbg(dev,
5342 				"Dropping NETIF_F_UFO since no checksum offload features.\n");
5343 			features &= ~NETIF_F_UFO;
5344 		}
5345 
5346 		if (!(features & NETIF_F_SG)) {
5347 			netdev_dbg(dev,
5348 				"Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
5349 			features &= ~NETIF_F_UFO;
5350 		}
5351 	}
5352 
5353 	return features;
5354 }
5355 
5356 int __netdev_update_features(struct net_device *dev)
5357 {
5358 	netdev_features_t features;
5359 	int err = 0;
5360 
5361 	ASSERT_RTNL();
5362 
5363 	features = netdev_get_wanted_features(dev);
5364 
5365 	if (dev->netdev_ops->ndo_fix_features)
5366 		features = dev->netdev_ops->ndo_fix_features(dev, features);
5367 
5368 	/* driver might be less strict about feature dependencies */
5369 	features = netdev_fix_features(dev, features);
5370 
5371 	if (dev->features == features)
5372 		return 0;
5373 
5374 	netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
5375 		&dev->features, &features);
5376 
5377 	if (dev->netdev_ops->ndo_set_features)
5378 		err = dev->netdev_ops->ndo_set_features(dev, features);
5379 
5380 	if (unlikely(err < 0)) {
5381 		netdev_err(dev,
5382 			"set_features() failed (%d); wanted %pNF, left %pNF\n",
5383 			err, &features, &dev->features);
5384 		return -1;
5385 	}
5386 
5387 	if (!err)
5388 		dev->features = features;
5389 
5390 	return 1;
5391 }
5392 
5393 /**
5394  *	netdev_update_features - recalculate device features
5395  *	@dev: the device to check
5396  *
5397  *	Recalculate dev->features set and send notifications if it
5398  *	has changed. Should be called after driver or hardware dependent
5399  *	conditions might have changed that influence the features.
5400  */
5401 void netdev_update_features(struct net_device *dev)
5402 {
5403 	if (__netdev_update_features(dev))
5404 		netdev_features_change(dev);
5405 }
5406 EXPORT_SYMBOL(netdev_update_features);
5407 
5408 /**
5409  *	netdev_change_features - recalculate device features
5410  *	@dev: the device to check
5411  *
5412  *	Recalculate dev->features set and send notifications even
5413  *	if they have not changed. Should be called instead of
5414  *	netdev_update_features() if also dev->vlan_features might
5415  *	have changed to allow the changes to be propagated to stacked
5416  *	VLAN devices.
5417  */
5418 void netdev_change_features(struct net_device *dev)
5419 {
5420 	__netdev_update_features(dev);
5421 	netdev_features_change(dev);
5422 }
5423 EXPORT_SYMBOL(netdev_change_features);
5424 
5425 /**
5426  *	netif_stacked_transfer_operstate -	transfer operstate
5427  *	@rootdev: the root or lower level device to transfer state from
5428  *	@dev: the device to transfer operstate to
5429  *
5430  *	Transfer operational state from root to device. This is normally
5431  *	called when a stacking relationship exists between the root
5432  *	device and the device(a leaf device).
5433  */
5434 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
5435 					struct net_device *dev)
5436 {
5437 	if (rootdev->operstate == IF_OPER_DORMANT)
5438 		netif_dormant_on(dev);
5439 	else
5440 		netif_dormant_off(dev);
5441 
5442 	if (netif_carrier_ok(rootdev)) {
5443 		if (!netif_carrier_ok(dev))
5444 			netif_carrier_on(dev);
5445 	} else {
5446 		if (netif_carrier_ok(dev))
5447 			netif_carrier_off(dev);
5448 	}
5449 }
5450 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
5451 
5452 #ifdef CONFIG_RPS
5453 static int netif_alloc_rx_queues(struct net_device *dev)
5454 {
5455 	unsigned int i, count = dev->num_rx_queues;
5456 	struct netdev_rx_queue *rx;
5457 
5458 	BUG_ON(count < 1);
5459 
5460 	rx = kcalloc(count, sizeof(struct netdev_rx_queue), GFP_KERNEL);
5461 	if (!rx) {
5462 		pr_err("netdev: Unable to allocate %u rx queues\n", count);
5463 		return -ENOMEM;
5464 	}
5465 	dev->_rx = rx;
5466 
5467 	for (i = 0; i < count; i++)
5468 		rx[i].dev = dev;
5469 	return 0;
5470 }
5471 #endif
5472 
5473 static void netdev_init_one_queue(struct net_device *dev,
5474 				  struct netdev_queue *queue, void *_unused)
5475 {
5476 	/* Initialize queue lock */
5477 	spin_lock_init(&queue->_xmit_lock);
5478 	netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
5479 	queue->xmit_lock_owner = -1;
5480 	netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
5481 	queue->dev = dev;
5482 #ifdef CONFIG_BQL
5483 	dql_init(&queue->dql, HZ);
5484 #endif
5485 }
5486 
5487 static int netif_alloc_netdev_queues(struct net_device *dev)
5488 {
5489 	unsigned int count = dev->num_tx_queues;
5490 	struct netdev_queue *tx;
5491 
5492 	BUG_ON(count < 1);
5493 
5494 	tx = kcalloc(count, sizeof(struct netdev_queue), GFP_KERNEL);
5495 	if (!tx) {
5496 		pr_err("netdev: Unable to allocate %u tx queues\n", count);
5497 		return -ENOMEM;
5498 	}
5499 	dev->_tx = tx;
5500 
5501 	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
5502 	spin_lock_init(&dev->tx_global_lock);
5503 
5504 	return 0;
5505 }
5506 
5507 /**
5508  *	register_netdevice	- register a network device
5509  *	@dev: device to register
5510  *
5511  *	Take a completed network device structure and add it to the kernel
5512  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5513  *	chain. 0 is returned on success. A negative errno code is returned
5514  *	on a failure to set up the device, or if the name is a duplicate.
5515  *
5516  *	Callers must hold the rtnl semaphore. You may want
5517  *	register_netdev() instead of this.
5518  *
5519  *	BUGS:
5520  *	The locking appears insufficient to guarantee two parallel registers
5521  *	will not get the same name.
5522  */
5523 
5524 int register_netdevice(struct net_device *dev)
5525 {
5526 	int ret;
5527 	struct net *net = dev_net(dev);
5528 
5529 	BUG_ON(dev_boot_phase);
5530 	ASSERT_RTNL();
5531 
5532 	might_sleep();
5533 
5534 	/* When net_device's are persistent, this will be fatal. */
5535 	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
5536 	BUG_ON(!net);
5537 
5538 	spin_lock_init(&dev->addr_list_lock);
5539 	netdev_set_addr_lockdep_class(dev);
5540 
5541 	dev->iflink = -1;
5542 
5543 	ret = dev_get_valid_name(dev, dev->name);
5544 	if (ret < 0)
5545 		goto out;
5546 
5547 	/* Init, if this function is available */
5548 	if (dev->netdev_ops->ndo_init) {
5549 		ret = dev->netdev_ops->ndo_init(dev);
5550 		if (ret) {
5551 			if (ret > 0)
5552 				ret = -EIO;
5553 			goto out;
5554 		}
5555 	}
5556 
5557 	dev->ifindex = dev_new_index(net);
5558 	if (dev->iflink == -1)
5559 		dev->iflink = dev->ifindex;
5560 
5561 	/* Transfer changeable features to wanted_features and enable
5562 	 * software offloads (GSO and GRO).
5563 	 */
5564 	dev->hw_features |= NETIF_F_SOFT_FEATURES;
5565 	dev->features |= NETIF_F_SOFT_FEATURES;
5566 	dev->wanted_features = dev->features & dev->hw_features;
5567 
5568 	/* Turn on no cache copy if HW is doing checksum */
5569 	if (!(dev->flags & IFF_LOOPBACK)) {
5570 		dev->hw_features |= NETIF_F_NOCACHE_COPY;
5571 		if (dev->features & NETIF_F_ALL_CSUM) {
5572 			dev->wanted_features |= NETIF_F_NOCACHE_COPY;
5573 			dev->features |= NETIF_F_NOCACHE_COPY;
5574 		}
5575 	}
5576 
5577 	/* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
5578 	 */
5579 	dev->vlan_features |= NETIF_F_HIGHDMA;
5580 
5581 	ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
5582 	ret = notifier_to_errno(ret);
5583 	if (ret)
5584 		goto err_uninit;
5585 
5586 	ret = netdev_register_kobject(dev);
5587 	if (ret)
5588 		goto err_uninit;
5589 	dev->reg_state = NETREG_REGISTERED;
5590 
5591 	__netdev_update_features(dev);
5592 
5593 	/*
5594 	 *	Default initial state at registry is that the
5595 	 *	device is present.
5596 	 */
5597 
5598 	set_bit(__LINK_STATE_PRESENT, &dev->state);
5599 
5600 	dev_init_scheduler(dev);
5601 	dev_hold(dev);
5602 	list_netdevice(dev);
5603 
5604 	/* Notify protocols, that a new device appeared. */
5605 	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
5606 	ret = notifier_to_errno(ret);
5607 	if (ret) {
5608 		rollback_registered(dev);
5609 		dev->reg_state = NETREG_UNREGISTERED;
5610 	}
5611 	/*
5612 	 *	Prevent userspace races by waiting until the network
5613 	 *	device is fully setup before sending notifications.
5614 	 */
5615 	if (!dev->rtnl_link_ops ||
5616 	    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5617 		rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
5618 
5619 out:
5620 	return ret;
5621 
5622 err_uninit:
5623 	if (dev->netdev_ops->ndo_uninit)
5624 		dev->netdev_ops->ndo_uninit(dev);
5625 	goto out;
5626 }
5627 EXPORT_SYMBOL(register_netdevice);
5628 
5629 /**
5630  *	init_dummy_netdev	- init a dummy network device for NAPI
5631  *	@dev: device to init
5632  *
5633  *	This takes a network device structure and initialize the minimum
5634  *	amount of fields so it can be used to schedule NAPI polls without
5635  *	registering a full blown interface. This is to be used by drivers
5636  *	that need to tie several hardware interfaces to a single NAPI
5637  *	poll scheduler due to HW limitations.
5638  */
5639 int init_dummy_netdev(struct net_device *dev)
5640 {
5641 	/* Clear everything. Note we don't initialize spinlocks
5642 	 * are they aren't supposed to be taken by any of the
5643 	 * NAPI code and this dummy netdev is supposed to be
5644 	 * only ever used for NAPI polls
5645 	 */
5646 	memset(dev, 0, sizeof(struct net_device));
5647 
5648 	/* make sure we BUG if trying to hit standard
5649 	 * register/unregister code path
5650 	 */
5651 	dev->reg_state = NETREG_DUMMY;
5652 
5653 	/* NAPI wants this */
5654 	INIT_LIST_HEAD(&dev->napi_list);
5655 
5656 	/* a dummy interface is started by default */
5657 	set_bit(__LINK_STATE_PRESENT, &dev->state);
5658 	set_bit(__LINK_STATE_START, &dev->state);
5659 
5660 	/* Note : We dont allocate pcpu_refcnt for dummy devices,
5661 	 * because users of this 'device' dont need to change
5662 	 * its refcount.
5663 	 */
5664 
5665 	return 0;
5666 }
5667 EXPORT_SYMBOL_GPL(init_dummy_netdev);
5668 
5669 
5670 /**
5671  *	register_netdev	- register a network device
5672  *	@dev: device to register
5673  *
5674  *	Take a completed network device structure and add it to the kernel
5675  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5676  *	chain. 0 is returned on success. A negative errno code is returned
5677  *	on a failure to set up the device, or if the name is a duplicate.
5678  *
5679  *	This is a wrapper around register_netdevice that takes the rtnl semaphore
5680  *	and expands the device name if you passed a format string to
5681  *	alloc_netdev.
5682  */
5683 int register_netdev(struct net_device *dev)
5684 {
5685 	int err;
5686 
5687 	rtnl_lock();
5688 	err = register_netdevice(dev);
5689 	rtnl_unlock();
5690 	return err;
5691 }
5692 EXPORT_SYMBOL(register_netdev);
5693 
5694 int netdev_refcnt_read(const struct net_device *dev)
5695 {
5696 	int i, refcnt = 0;
5697 
5698 	for_each_possible_cpu(i)
5699 		refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
5700 	return refcnt;
5701 }
5702 EXPORT_SYMBOL(netdev_refcnt_read);
5703 
5704 /*
5705  * netdev_wait_allrefs - wait until all references are gone.
5706  *
5707  * This is called when unregistering network devices.
5708  *
5709  * Any protocol or device that holds a reference should register
5710  * for netdevice notification, and cleanup and put back the
5711  * reference if they receive an UNREGISTER event.
5712  * We can get stuck here if buggy protocols don't correctly
5713  * call dev_put.
5714  */
5715 static void netdev_wait_allrefs(struct net_device *dev)
5716 {
5717 	unsigned long rebroadcast_time, warning_time;
5718 	int refcnt;
5719 
5720 	linkwatch_forget_dev(dev);
5721 
5722 	rebroadcast_time = warning_time = jiffies;
5723 	refcnt = netdev_refcnt_read(dev);
5724 
5725 	while (refcnt != 0) {
5726 		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
5727 			rtnl_lock();
5728 
5729 			/* Rebroadcast unregister notification */
5730 			call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5731 			/* don't resend NETDEV_UNREGISTER_BATCH, _BATCH users
5732 			 * should have already handle it the first time */
5733 
5734 			if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
5735 				     &dev->state)) {
5736 				/* We must not have linkwatch events
5737 				 * pending on unregister. If this
5738 				 * happens, we simply run the queue
5739 				 * unscheduled, resulting in a noop
5740 				 * for this device.
5741 				 */
5742 				linkwatch_run_queue();
5743 			}
5744 
5745 			__rtnl_unlock();
5746 
5747 			rebroadcast_time = jiffies;
5748 		}
5749 
5750 		msleep(250);
5751 
5752 		refcnt = netdev_refcnt_read(dev);
5753 
5754 		if (time_after(jiffies, warning_time + 10 * HZ)) {
5755 			pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
5756 				 dev->name, refcnt);
5757 			warning_time = jiffies;
5758 		}
5759 	}
5760 }
5761 
5762 /* The sequence is:
5763  *
5764  *	rtnl_lock();
5765  *	...
5766  *	register_netdevice(x1);
5767  *	register_netdevice(x2);
5768  *	...
5769  *	unregister_netdevice(y1);
5770  *	unregister_netdevice(y2);
5771  *      ...
5772  *	rtnl_unlock();
5773  *	free_netdev(y1);
5774  *	free_netdev(y2);
5775  *
5776  * We are invoked by rtnl_unlock().
5777  * This allows us to deal with problems:
5778  * 1) We can delete sysfs objects which invoke hotplug
5779  *    without deadlocking with linkwatch via keventd.
5780  * 2) Since we run with the RTNL semaphore not held, we can sleep
5781  *    safely in order to wait for the netdev refcnt to drop to zero.
5782  *
5783  * We must not return until all unregister events added during
5784  * the interval the lock was held have been completed.
5785  */
5786 void netdev_run_todo(void)
5787 {
5788 	struct list_head list;
5789 
5790 	/* Snapshot list, allow later requests */
5791 	list_replace_init(&net_todo_list, &list);
5792 
5793 	__rtnl_unlock();
5794 
5795 	/* Wait for rcu callbacks to finish before attempting to drain
5796 	 * the device list.  This usually avoids a 250ms wait.
5797 	 */
5798 	if (!list_empty(&list))
5799 		rcu_barrier();
5800 
5801 	while (!list_empty(&list)) {
5802 		struct net_device *dev
5803 			= list_first_entry(&list, struct net_device, todo_list);
5804 		list_del(&dev->todo_list);
5805 
5806 		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
5807 			pr_err("network todo '%s' but state %d\n",
5808 			       dev->name, dev->reg_state);
5809 			dump_stack();
5810 			continue;
5811 		}
5812 
5813 		dev->reg_state = NETREG_UNREGISTERED;
5814 
5815 		on_each_cpu(flush_backlog, dev, 1);
5816 
5817 		netdev_wait_allrefs(dev);
5818 
5819 		/* paranoia */
5820 		BUG_ON(netdev_refcnt_read(dev));
5821 		WARN_ON(rcu_access_pointer(dev->ip_ptr));
5822 		WARN_ON(rcu_access_pointer(dev->ip6_ptr));
5823 		WARN_ON(dev->dn_ptr);
5824 
5825 		if (dev->destructor)
5826 			dev->destructor(dev);
5827 
5828 		/* Free network device */
5829 		kobject_put(&dev->dev.kobj);
5830 	}
5831 }
5832 
5833 /* Convert net_device_stats to rtnl_link_stats64.  They have the same
5834  * fields in the same order, with only the type differing.
5835  */
5836 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
5837 			     const struct net_device_stats *netdev_stats)
5838 {
5839 #if BITS_PER_LONG == 64
5840 	BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
5841 	memcpy(stats64, netdev_stats, sizeof(*stats64));
5842 #else
5843 	size_t i, n = sizeof(*stats64) / sizeof(u64);
5844 	const unsigned long *src = (const unsigned long *)netdev_stats;
5845 	u64 *dst = (u64 *)stats64;
5846 
5847 	BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
5848 		     sizeof(*stats64) / sizeof(u64));
5849 	for (i = 0; i < n; i++)
5850 		dst[i] = src[i];
5851 #endif
5852 }
5853 EXPORT_SYMBOL(netdev_stats_to_stats64);
5854 
5855 /**
5856  *	dev_get_stats	- get network device statistics
5857  *	@dev: device to get statistics from
5858  *	@storage: place to store stats
5859  *
5860  *	Get network statistics from device. Return @storage.
5861  *	The device driver may provide its own method by setting
5862  *	dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
5863  *	otherwise the internal statistics structure is used.
5864  */
5865 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
5866 					struct rtnl_link_stats64 *storage)
5867 {
5868 	const struct net_device_ops *ops = dev->netdev_ops;
5869 
5870 	if (ops->ndo_get_stats64) {
5871 		memset(storage, 0, sizeof(*storage));
5872 		ops->ndo_get_stats64(dev, storage);
5873 	} else if (ops->ndo_get_stats) {
5874 		netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
5875 	} else {
5876 		netdev_stats_to_stats64(storage, &dev->stats);
5877 	}
5878 	storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
5879 	return storage;
5880 }
5881 EXPORT_SYMBOL(dev_get_stats);
5882 
5883 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
5884 {
5885 	struct netdev_queue *queue = dev_ingress_queue(dev);
5886 
5887 #ifdef CONFIG_NET_CLS_ACT
5888 	if (queue)
5889 		return queue;
5890 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
5891 	if (!queue)
5892 		return NULL;
5893 	netdev_init_one_queue(dev, queue, NULL);
5894 	queue->qdisc = &noop_qdisc;
5895 	queue->qdisc_sleeping = &noop_qdisc;
5896 	rcu_assign_pointer(dev->ingress_queue, queue);
5897 #endif
5898 	return queue;
5899 }
5900 
5901 /**
5902  *	alloc_netdev_mqs - allocate network device
5903  *	@sizeof_priv:	size of private data to allocate space for
5904  *	@name:		device name format string
5905  *	@setup:		callback to initialize device
5906  *	@txqs:		the number of TX subqueues to allocate
5907  *	@rxqs:		the number of RX subqueues to allocate
5908  *
5909  *	Allocates a struct net_device with private data area for driver use
5910  *	and performs basic initialization.  Also allocates subquue structs
5911  *	for each queue on the device.
5912  */
5913 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
5914 		void (*setup)(struct net_device *),
5915 		unsigned int txqs, unsigned int rxqs)
5916 {
5917 	struct net_device *dev;
5918 	size_t alloc_size;
5919 	struct net_device *p;
5920 
5921 	BUG_ON(strlen(name) >= sizeof(dev->name));
5922 
5923 	if (txqs < 1) {
5924 		pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
5925 		return NULL;
5926 	}
5927 
5928 #ifdef CONFIG_RPS
5929 	if (rxqs < 1) {
5930 		pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
5931 		return NULL;
5932 	}
5933 #endif
5934 
5935 	alloc_size = sizeof(struct net_device);
5936 	if (sizeof_priv) {
5937 		/* ensure 32-byte alignment of private area */
5938 		alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
5939 		alloc_size += sizeof_priv;
5940 	}
5941 	/* ensure 32-byte alignment of whole construct */
5942 	alloc_size += NETDEV_ALIGN - 1;
5943 
5944 	p = kzalloc(alloc_size, GFP_KERNEL);
5945 	if (!p) {
5946 		pr_err("alloc_netdev: Unable to allocate device\n");
5947 		return NULL;
5948 	}
5949 
5950 	dev = PTR_ALIGN(p, NETDEV_ALIGN);
5951 	dev->padded = (char *)dev - (char *)p;
5952 
5953 	dev->pcpu_refcnt = alloc_percpu(int);
5954 	if (!dev->pcpu_refcnt)
5955 		goto free_p;
5956 
5957 	if (dev_addr_init(dev))
5958 		goto free_pcpu;
5959 
5960 	dev_mc_init(dev);
5961 	dev_uc_init(dev);
5962 
5963 	dev_net_set(dev, &init_net);
5964 
5965 	dev->gso_max_size = GSO_MAX_SIZE;
5966 
5967 	INIT_LIST_HEAD(&dev->napi_list);
5968 	INIT_LIST_HEAD(&dev->unreg_list);
5969 	INIT_LIST_HEAD(&dev->link_watch_list);
5970 	dev->priv_flags = IFF_XMIT_DST_RELEASE;
5971 	setup(dev);
5972 
5973 	dev->num_tx_queues = txqs;
5974 	dev->real_num_tx_queues = txqs;
5975 	if (netif_alloc_netdev_queues(dev))
5976 		goto free_all;
5977 
5978 #ifdef CONFIG_RPS
5979 	dev->num_rx_queues = rxqs;
5980 	dev->real_num_rx_queues = rxqs;
5981 	if (netif_alloc_rx_queues(dev))
5982 		goto free_all;
5983 #endif
5984 
5985 	strcpy(dev->name, name);
5986 	dev->group = INIT_NETDEV_GROUP;
5987 	return dev;
5988 
5989 free_all:
5990 	free_netdev(dev);
5991 	return NULL;
5992 
5993 free_pcpu:
5994 	free_percpu(dev->pcpu_refcnt);
5995 	kfree(dev->_tx);
5996 #ifdef CONFIG_RPS
5997 	kfree(dev->_rx);
5998 #endif
5999 
6000 free_p:
6001 	kfree(p);
6002 	return NULL;
6003 }
6004 EXPORT_SYMBOL(alloc_netdev_mqs);
6005 
6006 /**
6007  *	free_netdev - free network device
6008  *	@dev: device
6009  *
6010  *	This function does the last stage of destroying an allocated device
6011  * 	interface. The reference to the device object is released.
6012  *	If this is the last reference then it will be freed.
6013  */
6014 void free_netdev(struct net_device *dev)
6015 {
6016 	struct napi_struct *p, *n;
6017 
6018 	release_net(dev_net(dev));
6019 
6020 	kfree(dev->_tx);
6021 #ifdef CONFIG_RPS
6022 	kfree(dev->_rx);
6023 #endif
6024 
6025 	kfree(rcu_dereference_protected(dev->ingress_queue, 1));
6026 
6027 	/* Flush device addresses */
6028 	dev_addr_flush(dev);
6029 
6030 	list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
6031 		netif_napi_del(p);
6032 
6033 	free_percpu(dev->pcpu_refcnt);
6034 	dev->pcpu_refcnt = NULL;
6035 
6036 	/*  Compatibility with error handling in drivers */
6037 	if (dev->reg_state == NETREG_UNINITIALIZED) {
6038 		kfree((char *)dev - dev->padded);
6039 		return;
6040 	}
6041 
6042 	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
6043 	dev->reg_state = NETREG_RELEASED;
6044 
6045 	/* will free via device release */
6046 	put_device(&dev->dev);
6047 }
6048 EXPORT_SYMBOL(free_netdev);
6049 
6050 /**
6051  *	synchronize_net -  Synchronize with packet receive processing
6052  *
6053  *	Wait for packets currently being received to be done.
6054  *	Does not block later packets from starting.
6055  */
6056 void synchronize_net(void)
6057 {
6058 	might_sleep();
6059 	if (rtnl_is_locked())
6060 		synchronize_rcu_expedited();
6061 	else
6062 		synchronize_rcu();
6063 }
6064 EXPORT_SYMBOL(synchronize_net);
6065 
6066 /**
6067  *	unregister_netdevice_queue - remove device from the kernel
6068  *	@dev: device
6069  *	@head: list
6070  *
6071  *	This function shuts down a device interface and removes it
6072  *	from the kernel tables.
6073  *	If head not NULL, device is queued to be unregistered later.
6074  *
6075  *	Callers must hold the rtnl semaphore.  You may want
6076  *	unregister_netdev() instead of this.
6077  */
6078 
6079 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
6080 {
6081 	ASSERT_RTNL();
6082 
6083 	if (head) {
6084 		list_move_tail(&dev->unreg_list, head);
6085 	} else {
6086 		rollback_registered(dev);
6087 		/* Finish processing unregister after unlock */
6088 		net_set_todo(dev);
6089 	}
6090 }
6091 EXPORT_SYMBOL(unregister_netdevice_queue);
6092 
6093 /**
6094  *	unregister_netdevice_many - unregister many devices
6095  *	@head: list of devices
6096  */
6097 void unregister_netdevice_many(struct list_head *head)
6098 {
6099 	struct net_device *dev;
6100 
6101 	if (!list_empty(head)) {
6102 		rollback_registered_many(head);
6103 		list_for_each_entry(dev, head, unreg_list)
6104 			net_set_todo(dev);
6105 	}
6106 }
6107 EXPORT_SYMBOL(unregister_netdevice_many);
6108 
6109 /**
6110  *	unregister_netdev - remove device from the kernel
6111  *	@dev: device
6112  *
6113  *	This function shuts down a device interface and removes it
6114  *	from the kernel tables.
6115  *
6116  *	This is just a wrapper for unregister_netdevice that takes
6117  *	the rtnl semaphore.  In general you want to use this and not
6118  *	unregister_netdevice.
6119  */
6120 void unregister_netdev(struct net_device *dev)
6121 {
6122 	rtnl_lock();
6123 	unregister_netdevice(dev);
6124 	rtnl_unlock();
6125 }
6126 EXPORT_SYMBOL(unregister_netdev);
6127 
6128 /**
6129  *	dev_change_net_namespace - move device to different nethost namespace
6130  *	@dev: device
6131  *	@net: network namespace
6132  *	@pat: If not NULL name pattern to try if the current device name
6133  *	      is already taken in the destination network namespace.
6134  *
6135  *	This function shuts down a device interface and moves it
6136  *	to a new network namespace. On success 0 is returned, on
6137  *	a failure a netagive errno code is returned.
6138  *
6139  *	Callers must hold the rtnl semaphore.
6140  */
6141 
6142 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
6143 {
6144 	int err;
6145 
6146 	ASSERT_RTNL();
6147 
6148 	/* Don't allow namespace local devices to be moved. */
6149 	err = -EINVAL;
6150 	if (dev->features & NETIF_F_NETNS_LOCAL)
6151 		goto out;
6152 
6153 	/* Ensure the device has been registrered */
6154 	err = -EINVAL;
6155 	if (dev->reg_state != NETREG_REGISTERED)
6156 		goto out;
6157 
6158 	/* Get out if there is nothing todo */
6159 	err = 0;
6160 	if (net_eq(dev_net(dev), net))
6161 		goto out;
6162 
6163 	/* Pick the destination device name, and ensure
6164 	 * we can use it in the destination network namespace.
6165 	 */
6166 	err = -EEXIST;
6167 	if (__dev_get_by_name(net, dev->name)) {
6168 		/* We get here if we can't use the current device name */
6169 		if (!pat)
6170 			goto out;
6171 		if (dev_get_valid_name(dev, pat) < 0)
6172 			goto out;
6173 	}
6174 
6175 	/*
6176 	 * And now a mini version of register_netdevice unregister_netdevice.
6177 	 */
6178 
6179 	/* If device is running close it first. */
6180 	dev_close(dev);
6181 
6182 	/* And unlink it from device chain */
6183 	err = -ENODEV;
6184 	unlist_netdevice(dev);
6185 
6186 	synchronize_net();
6187 
6188 	/* Shutdown queueing discipline. */
6189 	dev_shutdown(dev);
6190 
6191 	/* Notify protocols, that we are about to destroy
6192 	   this device. They should clean all the things.
6193 
6194 	   Note that dev->reg_state stays at NETREG_REGISTERED.
6195 	   This is wanted because this way 8021q and macvlan know
6196 	   the device is just moving and can keep their slaves up.
6197 	*/
6198 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6199 	call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
6200 	rtmsg_ifinfo(RTM_DELLINK, dev, ~0U);
6201 
6202 	/*
6203 	 *	Flush the unicast and multicast chains
6204 	 */
6205 	dev_uc_flush(dev);
6206 	dev_mc_flush(dev);
6207 
6208 	/* Actually switch the network namespace */
6209 	dev_net_set(dev, net);
6210 
6211 	/* If there is an ifindex conflict assign a new one */
6212 	if (__dev_get_by_index(net, dev->ifindex)) {
6213 		int iflink = (dev->iflink == dev->ifindex);
6214 		dev->ifindex = dev_new_index(net);
6215 		if (iflink)
6216 			dev->iflink = dev->ifindex;
6217 	}
6218 
6219 	/* Fixup kobjects */
6220 	err = device_rename(&dev->dev, dev->name);
6221 	WARN_ON(err);
6222 
6223 	/* Add the device back in the hashes */
6224 	list_netdevice(dev);
6225 
6226 	/* Notify protocols, that a new device appeared. */
6227 	call_netdevice_notifiers(NETDEV_REGISTER, dev);
6228 
6229 	/*
6230 	 *	Prevent userspace races by waiting until the network
6231 	 *	device is fully setup before sending notifications.
6232 	 */
6233 	rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
6234 
6235 	synchronize_net();
6236 	err = 0;
6237 out:
6238 	return err;
6239 }
6240 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
6241 
6242 static int dev_cpu_callback(struct notifier_block *nfb,
6243 			    unsigned long action,
6244 			    void *ocpu)
6245 {
6246 	struct sk_buff **list_skb;
6247 	struct sk_buff *skb;
6248 	unsigned int cpu, oldcpu = (unsigned long)ocpu;
6249 	struct softnet_data *sd, *oldsd;
6250 
6251 	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
6252 		return NOTIFY_OK;
6253 
6254 	local_irq_disable();
6255 	cpu = smp_processor_id();
6256 	sd = &per_cpu(softnet_data, cpu);
6257 	oldsd = &per_cpu(softnet_data, oldcpu);
6258 
6259 	/* Find end of our completion_queue. */
6260 	list_skb = &sd->completion_queue;
6261 	while (*list_skb)
6262 		list_skb = &(*list_skb)->next;
6263 	/* Append completion queue from offline CPU. */
6264 	*list_skb = oldsd->completion_queue;
6265 	oldsd->completion_queue = NULL;
6266 
6267 	/* Append output queue from offline CPU. */
6268 	if (oldsd->output_queue) {
6269 		*sd->output_queue_tailp = oldsd->output_queue;
6270 		sd->output_queue_tailp = oldsd->output_queue_tailp;
6271 		oldsd->output_queue = NULL;
6272 		oldsd->output_queue_tailp = &oldsd->output_queue;
6273 	}
6274 	/* Append NAPI poll list from offline CPU. */
6275 	if (!list_empty(&oldsd->poll_list)) {
6276 		list_splice_init(&oldsd->poll_list, &sd->poll_list);
6277 		raise_softirq_irqoff(NET_RX_SOFTIRQ);
6278 	}
6279 
6280 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
6281 	local_irq_enable();
6282 
6283 	/* Process offline CPU's input_pkt_queue */
6284 	while ((skb = __skb_dequeue(&oldsd->process_queue))) {
6285 		netif_rx(skb);
6286 		input_queue_head_incr(oldsd);
6287 	}
6288 	while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) {
6289 		netif_rx(skb);
6290 		input_queue_head_incr(oldsd);
6291 	}
6292 
6293 	return NOTIFY_OK;
6294 }
6295 
6296 
6297 /**
6298  *	netdev_increment_features - increment feature set by one
6299  *	@all: current feature set
6300  *	@one: new feature set
6301  *	@mask: mask feature set
6302  *
6303  *	Computes a new feature set after adding a device with feature set
6304  *	@one to the master device with current feature set @all.  Will not
6305  *	enable anything that is off in @mask. Returns the new feature set.
6306  */
6307 netdev_features_t netdev_increment_features(netdev_features_t all,
6308 	netdev_features_t one, netdev_features_t mask)
6309 {
6310 	if (mask & NETIF_F_GEN_CSUM)
6311 		mask |= NETIF_F_ALL_CSUM;
6312 	mask |= NETIF_F_VLAN_CHALLENGED;
6313 
6314 	all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask;
6315 	all &= one | ~NETIF_F_ALL_FOR_ALL;
6316 
6317 	/* If one device supports hw checksumming, set for all. */
6318 	if (all & NETIF_F_GEN_CSUM)
6319 		all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
6320 
6321 	return all;
6322 }
6323 EXPORT_SYMBOL(netdev_increment_features);
6324 
6325 static struct hlist_head *netdev_create_hash(void)
6326 {
6327 	int i;
6328 	struct hlist_head *hash;
6329 
6330 	hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
6331 	if (hash != NULL)
6332 		for (i = 0; i < NETDEV_HASHENTRIES; i++)
6333 			INIT_HLIST_HEAD(&hash[i]);
6334 
6335 	return hash;
6336 }
6337 
6338 /* Initialize per network namespace state */
6339 static int __net_init netdev_init(struct net *net)
6340 {
6341 	INIT_LIST_HEAD(&net->dev_base_head);
6342 
6343 	net->dev_name_head = netdev_create_hash();
6344 	if (net->dev_name_head == NULL)
6345 		goto err_name;
6346 
6347 	net->dev_index_head = netdev_create_hash();
6348 	if (net->dev_index_head == NULL)
6349 		goto err_idx;
6350 
6351 	return 0;
6352 
6353 err_idx:
6354 	kfree(net->dev_name_head);
6355 err_name:
6356 	return -ENOMEM;
6357 }
6358 
6359 /**
6360  *	netdev_drivername - network driver for the device
6361  *	@dev: network device
6362  *
6363  *	Determine network driver for device.
6364  */
6365 const char *netdev_drivername(const struct net_device *dev)
6366 {
6367 	const struct device_driver *driver;
6368 	const struct device *parent;
6369 	const char *empty = "";
6370 
6371 	parent = dev->dev.parent;
6372 	if (!parent)
6373 		return empty;
6374 
6375 	driver = parent->driver;
6376 	if (driver && driver->name)
6377 		return driver->name;
6378 	return empty;
6379 }
6380 
6381 int __netdev_printk(const char *level, const struct net_device *dev,
6382 			   struct va_format *vaf)
6383 {
6384 	int r;
6385 
6386 	if (dev && dev->dev.parent)
6387 		r = dev_printk(level, dev->dev.parent, "%s: %pV",
6388 			       netdev_name(dev), vaf);
6389 	else if (dev)
6390 		r = printk("%s%s: %pV", level, netdev_name(dev), vaf);
6391 	else
6392 		r = printk("%s(NULL net_device): %pV", level, vaf);
6393 
6394 	return r;
6395 }
6396 EXPORT_SYMBOL(__netdev_printk);
6397 
6398 int netdev_printk(const char *level, const struct net_device *dev,
6399 		  const char *format, ...)
6400 {
6401 	struct va_format vaf;
6402 	va_list args;
6403 	int r;
6404 
6405 	va_start(args, format);
6406 
6407 	vaf.fmt = format;
6408 	vaf.va = &args;
6409 
6410 	r = __netdev_printk(level, dev, &vaf);
6411 	va_end(args);
6412 
6413 	return r;
6414 }
6415 EXPORT_SYMBOL(netdev_printk);
6416 
6417 #define define_netdev_printk_level(func, level)			\
6418 int func(const struct net_device *dev, const char *fmt, ...)	\
6419 {								\
6420 	int r;							\
6421 	struct va_format vaf;					\
6422 	va_list args;						\
6423 								\
6424 	va_start(args, fmt);					\
6425 								\
6426 	vaf.fmt = fmt;						\
6427 	vaf.va = &args;						\
6428 								\
6429 	r = __netdev_printk(level, dev, &vaf);			\
6430 	va_end(args);						\
6431 								\
6432 	return r;						\
6433 }								\
6434 EXPORT_SYMBOL(func);
6435 
6436 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
6437 define_netdev_printk_level(netdev_alert, KERN_ALERT);
6438 define_netdev_printk_level(netdev_crit, KERN_CRIT);
6439 define_netdev_printk_level(netdev_err, KERN_ERR);
6440 define_netdev_printk_level(netdev_warn, KERN_WARNING);
6441 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
6442 define_netdev_printk_level(netdev_info, KERN_INFO);
6443 
6444 static void __net_exit netdev_exit(struct net *net)
6445 {
6446 	kfree(net->dev_name_head);
6447 	kfree(net->dev_index_head);
6448 }
6449 
6450 static struct pernet_operations __net_initdata netdev_net_ops = {
6451 	.init = netdev_init,
6452 	.exit = netdev_exit,
6453 };
6454 
6455 static void __net_exit default_device_exit(struct net *net)
6456 {
6457 	struct net_device *dev, *aux;
6458 	/*
6459 	 * Push all migratable network devices back to the
6460 	 * initial network namespace
6461 	 */
6462 	rtnl_lock();
6463 	for_each_netdev_safe(net, dev, aux) {
6464 		int err;
6465 		char fb_name[IFNAMSIZ];
6466 
6467 		/* Ignore unmoveable devices (i.e. loopback) */
6468 		if (dev->features & NETIF_F_NETNS_LOCAL)
6469 			continue;
6470 
6471 		/* Leave virtual devices for the generic cleanup */
6472 		if (dev->rtnl_link_ops)
6473 			continue;
6474 
6475 		/* Push remaining network devices to init_net */
6476 		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
6477 		err = dev_change_net_namespace(dev, &init_net, fb_name);
6478 		if (err) {
6479 			pr_emerg("%s: failed to move %s to init_net: %d\n",
6480 				 __func__, dev->name, err);
6481 			BUG();
6482 		}
6483 	}
6484 	rtnl_unlock();
6485 }
6486 
6487 static void __net_exit default_device_exit_batch(struct list_head *net_list)
6488 {
6489 	/* At exit all network devices most be removed from a network
6490 	 * namespace.  Do this in the reverse order of registration.
6491 	 * Do this across as many network namespaces as possible to
6492 	 * improve batching efficiency.
6493 	 */
6494 	struct net_device *dev;
6495 	struct net *net;
6496 	LIST_HEAD(dev_kill_list);
6497 
6498 	rtnl_lock();
6499 	list_for_each_entry(net, net_list, exit_list) {
6500 		for_each_netdev_reverse(net, dev) {
6501 			if (dev->rtnl_link_ops)
6502 				dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
6503 			else
6504 				unregister_netdevice_queue(dev, &dev_kill_list);
6505 		}
6506 	}
6507 	unregister_netdevice_many(&dev_kill_list);
6508 	list_del(&dev_kill_list);
6509 	rtnl_unlock();
6510 }
6511 
6512 static struct pernet_operations __net_initdata default_device_ops = {
6513 	.exit = default_device_exit,
6514 	.exit_batch = default_device_exit_batch,
6515 };
6516 
6517 /*
6518  *	Initialize the DEV module. At boot time this walks the device list and
6519  *	unhooks any devices that fail to initialise (normally hardware not
6520  *	present) and leaves us with a valid list of present and active devices.
6521  *
6522  */
6523 
6524 /*
6525  *       This is called single threaded during boot, so no need
6526  *       to take the rtnl semaphore.
6527  */
6528 static int __init net_dev_init(void)
6529 {
6530 	int i, rc = -ENOMEM;
6531 
6532 	BUG_ON(!dev_boot_phase);
6533 
6534 	if (dev_proc_init())
6535 		goto out;
6536 
6537 	if (netdev_kobject_init())
6538 		goto out;
6539 
6540 	INIT_LIST_HEAD(&ptype_all);
6541 	for (i = 0; i < PTYPE_HASH_SIZE; i++)
6542 		INIT_LIST_HEAD(&ptype_base[i]);
6543 
6544 	if (register_pernet_subsys(&netdev_net_ops))
6545 		goto out;
6546 
6547 	/*
6548 	 *	Initialise the packet receive queues.
6549 	 */
6550 
6551 	for_each_possible_cpu(i) {
6552 		struct softnet_data *sd = &per_cpu(softnet_data, i);
6553 
6554 		memset(sd, 0, sizeof(*sd));
6555 		skb_queue_head_init(&sd->input_pkt_queue);
6556 		skb_queue_head_init(&sd->process_queue);
6557 		sd->completion_queue = NULL;
6558 		INIT_LIST_HEAD(&sd->poll_list);
6559 		sd->output_queue = NULL;
6560 		sd->output_queue_tailp = &sd->output_queue;
6561 #ifdef CONFIG_RPS
6562 		sd->csd.func = rps_trigger_softirq;
6563 		sd->csd.info = sd;
6564 		sd->csd.flags = 0;
6565 		sd->cpu = i;
6566 #endif
6567 
6568 		sd->backlog.poll = process_backlog;
6569 		sd->backlog.weight = weight_p;
6570 		sd->backlog.gro_list = NULL;
6571 		sd->backlog.gro_count = 0;
6572 	}
6573 
6574 	dev_boot_phase = 0;
6575 
6576 	/* The loopback device is special if any other network devices
6577 	 * is present in a network namespace the loopback device must
6578 	 * be present. Since we now dynamically allocate and free the
6579 	 * loopback device ensure this invariant is maintained by
6580 	 * keeping the loopback device as the first device on the
6581 	 * list of network devices.  Ensuring the loopback devices
6582 	 * is the first device that appears and the last network device
6583 	 * that disappears.
6584 	 */
6585 	if (register_pernet_device(&loopback_net_ops))
6586 		goto out;
6587 
6588 	if (register_pernet_device(&default_device_ops))
6589 		goto out;
6590 
6591 	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
6592 	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
6593 
6594 	hotcpu_notifier(dev_cpu_callback, 0);
6595 	dst_init();
6596 	dev_mcast_init();
6597 	rc = 0;
6598 out:
6599 	return rc;
6600 }
6601 
6602 subsys_initcall(net_dev_init);
6603 
6604 static int __init initialize_hashrnd(void)
6605 {
6606 	get_random_bytes(&hashrnd, sizeof(hashrnd));
6607 	return 0;
6608 }
6609 
6610 late_initcall_sync(initialize_hashrnd);
6611 
6612