xref: /linux/net/core/dev.c (revision 9e70eb4a9a8e61105932def55f4667d9a0055381)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *      NET3    Protocol independent device support routines.
4  *
5  *	Derived from the non IP parts of dev.c 1.0.19
6  *              Authors:	Ross Biro
7  *				Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8  *				Mark Evans, <evansmp@uhura.aston.ac.uk>
9  *
10  *	Additional Authors:
11  *		Florian la Roche <rzsfl@rz.uni-sb.de>
12  *		Alan Cox <gw4pts@gw4pts.ampr.org>
13  *		David Hinds <dahinds@users.sourceforge.net>
14  *		Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15  *		Adam Sulmicki <adam@cfar.umd.edu>
16  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
17  *
18  *	Changes:
19  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
20  *                                      to 2 if register_netdev gets called
21  *                                      before net_dev_init & also removed a
22  *                                      few lines of code in the process.
23  *		Alan Cox	:	device private ioctl copies fields back.
24  *		Alan Cox	:	Transmit queue code does relevant
25  *					stunts to keep the queue safe.
26  *		Alan Cox	:	Fixed double lock.
27  *		Alan Cox	:	Fixed promisc NULL pointer trap
28  *		????????	:	Support the full private ioctl range
29  *		Alan Cox	:	Moved ioctl permission check into
30  *					drivers
31  *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
32  *		Alan Cox	:	100 backlog just doesn't cut it when
33  *					you start doing multicast video 8)
34  *		Alan Cox	:	Rewrote net_bh and list manager.
35  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
36  *		Alan Cox	:	Took out transmit every packet pass
37  *					Saved a few bytes in the ioctl handler
38  *		Alan Cox	:	Network driver sets packet type before
39  *					calling netif_rx. Saves a function
40  *					call a packet.
41  *		Alan Cox	:	Hashed net_bh()
42  *		Richard Kooijman:	Timestamp fixes.
43  *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
44  *		Alan Cox	:	Device lock protection.
45  *              Alan Cox        :       Fixed nasty side effect of device close
46  *					changes.
47  *		Rudi Cilibrasi	:	Pass the right thing to
48  *					set_mac_address()
49  *		Dave Miller	:	32bit quantity for the device lock to
50  *					make it work out on a Sparc.
51  *		Bjorn Ekwall	:	Added KERNELD hack.
52  *		Alan Cox	:	Cleaned up the backlog initialise.
53  *		Craig Metz	:	SIOCGIFCONF fix if space for under
54  *					1 device.
55  *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
56  *					is no device open function.
57  *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
58  *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
59  *		Cyrus Durgin	:	Cleaned for KMOD
60  *		Adam Sulmicki   :	Bug Fix : Network Device Unload
61  *					A network device unload needs to purge
62  *					the backlog queue.
63  *	Paul Rusty Russell	:	SIOCSIFNAME
64  *              Pekka Riikonen  :	Netdev boot-time settings code
65  *              Andrew Morton   :       Make unregister_netdevice wait
66  *                                      indefinitely on dev->refcnt
67  *              J Hadi Salim    :       - Backlog queue sampling
68  *				        - netif_rx() feedback
69  */
70 
71 #include <linux/uaccess.h>
72 #include <linux/bitmap.h>
73 #include <linux/capability.h>
74 #include <linux/cpu.h>
75 #include <linux/types.h>
76 #include <linux/kernel.h>
77 #include <linux/hash.h>
78 #include <linux/slab.h>
79 #include <linux/sched.h>
80 #include <linux/sched/isolation.h>
81 #include <linux/sched/mm.h>
82 #include <linux/smpboot.h>
83 #include <linux/mutex.h>
84 #include <linux/rwsem.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/skbuff.h>
96 #include <linux/kthread.h>
97 #include <linux/bpf.h>
98 #include <linux/bpf_trace.h>
99 #include <net/net_namespace.h>
100 #include <net/sock.h>
101 #include <net/busy_poll.h>
102 #include <linux/rtnetlink.h>
103 #include <linux/stat.h>
104 #include <net/dsa.h>
105 #include <net/dst.h>
106 #include <net/dst_metadata.h>
107 #include <net/gro.h>
108 #include <net/pkt_sched.h>
109 #include <net/pkt_cls.h>
110 #include <net/checksum.h>
111 #include <net/xfrm.h>
112 #include <net/tcx.h>
113 #include <linux/highmem.h>
114 #include <linux/init.h>
115 #include <linux/module.h>
116 #include <linux/netpoll.h>
117 #include <linux/rcupdate.h>
118 #include <linux/delay.h>
119 #include <net/iw_handler.h>
120 #include <asm/current.h>
121 #include <linux/audit.h>
122 #include <linux/dmaengine.h>
123 #include <linux/err.h>
124 #include <linux/ctype.h>
125 #include <linux/if_arp.h>
126 #include <linux/if_vlan.h>
127 #include <linux/ip.h>
128 #include <net/ip.h>
129 #include <net/mpls.h>
130 #include <linux/ipv6.h>
131 #include <linux/in.h>
132 #include <linux/jhash.h>
133 #include <linux/random.h>
134 #include <trace/events/napi.h>
135 #include <trace/events/net.h>
136 #include <trace/events/skb.h>
137 #include <trace/events/qdisc.h>
138 #include <trace/events/xdp.h>
139 #include <linux/inetdevice.h>
140 #include <linux/cpu_rmap.h>
141 #include <linux/static_key.h>
142 #include <linux/hashtable.h>
143 #include <linux/vmalloc.h>
144 #include <linux/if_macvlan.h>
145 #include <linux/errqueue.h>
146 #include <linux/hrtimer.h>
147 #include <linux/netfilter_netdev.h>
148 #include <linux/crash_dump.h>
149 #include <linux/sctp.h>
150 #include <net/udp_tunnel.h>
151 #include <linux/net_namespace.h>
152 #include <linux/indirect_call_wrapper.h>
153 #include <net/devlink.h>
154 #include <linux/pm_runtime.h>
155 #include <linux/prandom.h>
156 #include <linux/once_lite.h>
157 #include <net/netdev_rx_queue.h>
158 #include <net/page_pool/types.h>
159 #include <net/page_pool/helpers.h>
160 #include <net/rps.h>
161 #include <linux/phy_link_topology.h>
162 
163 #include "dev.h"
164 #include "net-sysfs.h"
165 
166 static DEFINE_SPINLOCK(ptype_lock);
167 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
168 
169 static int netif_rx_internal(struct sk_buff *skb);
170 static int call_netdevice_notifiers_extack(unsigned long val,
171 					   struct net_device *dev,
172 					   struct netlink_ext_ack *extack);
173 
174 static DEFINE_MUTEX(ifalias_mutex);
175 
176 /* protects napi_hash addition/deletion and napi_gen_id */
177 static DEFINE_SPINLOCK(napi_hash_lock);
178 
179 static unsigned int napi_gen_id = NR_CPUS;
180 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
181 
182 static DECLARE_RWSEM(devnet_rename_sem);
183 
184 static inline void dev_base_seq_inc(struct net *net)
185 {
186 	unsigned int val = net->dev_base_seq + 1;
187 
188 	WRITE_ONCE(net->dev_base_seq, val ?: 1);
189 }
190 
191 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
192 {
193 	unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
194 
195 	return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
196 }
197 
198 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
199 {
200 	return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
201 }
202 
203 #ifndef CONFIG_PREEMPT_RT
204 
205 static DEFINE_STATIC_KEY_FALSE(use_backlog_threads_key);
206 
207 static int __init setup_backlog_napi_threads(char *arg)
208 {
209 	static_branch_enable(&use_backlog_threads_key);
210 	return 0;
211 }
212 early_param("thread_backlog_napi", setup_backlog_napi_threads);
213 
214 static bool use_backlog_threads(void)
215 {
216 	return static_branch_unlikely(&use_backlog_threads_key);
217 }
218 
219 #else
220 
221 static bool use_backlog_threads(void)
222 {
223 	return true;
224 }
225 
226 #endif
227 
228 static inline void backlog_lock_irq_save(struct softnet_data *sd,
229 					 unsigned long *flags)
230 {
231 	if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads())
232 		spin_lock_irqsave(&sd->input_pkt_queue.lock, *flags);
233 	else
234 		local_irq_save(*flags);
235 }
236 
237 static inline void backlog_lock_irq_disable(struct softnet_data *sd)
238 {
239 	if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads())
240 		spin_lock_irq(&sd->input_pkt_queue.lock);
241 	else
242 		local_irq_disable();
243 }
244 
245 static inline void backlog_unlock_irq_restore(struct softnet_data *sd,
246 					      unsigned long *flags)
247 {
248 	if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads())
249 		spin_unlock_irqrestore(&sd->input_pkt_queue.lock, *flags);
250 	else
251 		local_irq_restore(*flags);
252 }
253 
254 static inline void backlog_unlock_irq_enable(struct softnet_data *sd)
255 {
256 	if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads())
257 		spin_unlock_irq(&sd->input_pkt_queue.lock);
258 	else
259 		local_irq_enable();
260 }
261 
262 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
263 						       const char *name)
264 {
265 	struct netdev_name_node *name_node;
266 
267 	name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
268 	if (!name_node)
269 		return NULL;
270 	INIT_HLIST_NODE(&name_node->hlist);
271 	name_node->dev = dev;
272 	name_node->name = name;
273 	return name_node;
274 }
275 
276 static struct netdev_name_node *
277 netdev_name_node_head_alloc(struct net_device *dev)
278 {
279 	struct netdev_name_node *name_node;
280 
281 	name_node = netdev_name_node_alloc(dev, dev->name);
282 	if (!name_node)
283 		return NULL;
284 	INIT_LIST_HEAD(&name_node->list);
285 	return name_node;
286 }
287 
288 static void netdev_name_node_free(struct netdev_name_node *name_node)
289 {
290 	kfree(name_node);
291 }
292 
293 static void netdev_name_node_add(struct net *net,
294 				 struct netdev_name_node *name_node)
295 {
296 	hlist_add_head_rcu(&name_node->hlist,
297 			   dev_name_hash(net, name_node->name));
298 }
299 
300 static void netdev_name_node_del(struct netdev_name_node *name_node)
301 {
302 	hlist_del_rcu(&name_node->hlist);
303 }
304 
305 static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
306 							const char *name)
307 {
308 	struct hlist_head *head = dev_name_hash(net, name);
309 	struct netdev_name_node *name_node;
310 
311 	hlist_for_each_entry(name_node, head, hlist)
312 		if (!strcmp(name_node->name, name))
313 			return name_node;
314 	return NULL;
315 }
316 
317 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
318 							    const char *name)
319 {
320 	struct hlist_head *head = dev_name_hash(net, name);
321 	struct netdev_name_node *name_node;
322 
323 	hlist_for_each_entry_rcu(name_node, head, hlist)
324 		if (!strcmp(name_node->name, name))
325 			return name_node;
326 	return NULL;
327 }
328 
329 bool netdev_name_in_use(struct net *net, const char *name)
330 {
331 	return netdev_name_node_lookup(net, name);
332 }
333 EXPORT_SYMBOL(netdev_name_in_use);
334 
335 int netdev_name_node_alt_create(struct net_device *dev, const char *name)
336 {
337 	struct netdev_name_node *name_node;
338 	struct net *net = dev_net(dev);
339 
340 	name_node = netdev_name_node_lookup(net, name);
341 	if (name_node)
342 		return -EEXIST;
343 	name_node = netdev_name_node_alloc(dev, name);
344 	if (!name_node)
345 		return -ENOMEM;
346 	netdev_name_node_add(net, name_node);
347 	/* The node that holds dev->name acts as a head of per-device list. */
348 	list_add_tail_rcu(&name_node->list, &dev->name_node->list);
349 
350 	return 0;
351 }
352 
353 static void netdev_name_node_alt_free(struct rcu_head *head)
354 {
355 	struct netdev_name_node *name_node =
356 		container_of(head, struct netdev_name_node, rcu);
357 
358 	kfree(name_node->name);
359 	netdev_name_node_free(name_node);
360 }
361 
362 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
363 {
364 	netdev_name_node_del(name_node);
365 	list_del(&name_node->list);
366 	call_rcu(&name_node->rcu, netdev_name_node_alt_free);
367 }
368 
369 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
370 {
371 	struct netdev_name_node *name_node;
372 	struct net *net = dev_net(dev);
373 
374 	name_node = netdev_name_node_lookup(net, name);
375 	if (!name_node)
376 		return -ENOENT;
377 	/* lookup might have found our primary name or a name belonging
378 	 * to another device.
379 	 */
380 	if (name_node == dev->name_node || name_node->dev != dev)
381 		return -EINVAL;
382 
383 	__netdev_name_node_alt_destroy(name_node);
384 	return 0;
385 }
386 
387 static void netdev_name_node_alt_flush(struct net_device *dev)
388 {
389 	struct netdev_name_node *name_node, *tmp;
390 
391 	list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list) {
392 		list_del(&name_node->list);
393 		netdev_name_node_alt_free(&name_node->rcu);
394 	}
395 }
396 
397 /* Device list insertion */
398 static void list_netdevice(struct net_device *dev)
399 {
400 	struct netdev_name_node *name_node;
401 	struct net *net = dev_net(dev);
402 
403 	ASSERT_RTNL();
404 
405 	list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
406 	netdev_name_node_add(net, dev->name_node);
407 	hlist_add_head_rcu(&dev->index_hlist,
408 			   dev_index_hash(net, dev->ifindex));
409 
410 	netdev_for_each_altname(dev, name_node)
411 		netdev_name_node_add(net, name_node);
412 
413 	/* We reserved the ifindex, this can't fail */
414 	WARN_ON(xa_store(&net->dev_by_index, dev->ifindex, dev, GFP_KERNEL));
415 
416 	dev_base_seq_inc(net);
417 }
418 
419 /* Device list removal
420  * caller must respect a RCU grace period before freeing/reusing dev
421  */
422 static void unlist_netdevice(struct net_device *dev)
423 {
424 	struct netdev_name_node *name_node;
425 	struct net *net = dev_net(dev);
426 
427 	ASSERT_RTNL();
428 
429 	xa_erase(&net->dev_by_index, dev->ifindex);
430 
431 	netdev_for_each_altname(dev, name_node)
432 		netdev_name_node_del(name_node);
433 
434 	/* Unlink dev from the device chain */
435 	list_del_rcu(&dev->dev_list);
436 	netdev_name_node_del(dev->name_node);
437 	hlist_del_rcu(&dev->index_hlist);
438 
439 	dev_base_seq_inc(dev_net(dev));
440 }
441 
442 /*
443  *	Our notifier list
444  */
445 
446 static RAW_NOTIFIER_HEAD(netdev_chain);
447 
448 /*
449  *	Device drivers call our routines to queue packets here. We empty the
450  *	queue in the local softnet handler.
451  */
452 
453 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data) = {
454 	.process_queue_bh_lock = INIT_LOCAL_LOCK(process_queue_bh_lock),
455 };
456 EXPORT_PER_CPU_SYMBOL(softnet_data);
457 
458 /* Page_pool has a lockless array/stack to alloc/recycle pages.
459  * PP consumers must pay attention to run APIs in the appropriate context
460  * (e.g. NAPI context).
461  */
462 static DEFINE_PER_CPU(struct page_pool *, system_page_pool);
463 
464 #ifdef CONFIG_LOCKDEP
465 /*
466  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
467  * according to dev->type
468  */
469 static const unsigned short netdev_lock_type[] = {
470 	 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
471 	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
472 	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
473 	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
474 	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
475 	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
476 	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
477 	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
478 	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
479 	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
480 	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
481 	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
482 	 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
483 	 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
484 	 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
485 
486 static const char *const netdev_lock_name[] = {
487 	"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
488 	"_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
489 	"_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
490 	"_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
491 	"_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
492 	"_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
493 	"_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
494 	"_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
495 	"_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
496 	"_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
497 	"_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
498 	"_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
499 	"_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
500 	"_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
501 	"_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
502 
503 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
504 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
505 
506 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
507 {
508 	int i;
509 
510 	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
511 		if (netdev_lock_type[i] == dev_type)
512 			return i;
513 	/* the last key is used by default */
514 	return ARRAY_SIZE(netdev_lock_type) - 1;
515 }
516 
517 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
518 						 unsigned short dev_type)
519 {
520 	int i;
521 
522 	i = netdev_lock_pos(dev_type);
523 	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
524 				   netdev_lock_name[i]);
525 }
526 
527 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
528 {
529 	int i;
530 
531 	i = netdev_lock_pos(dev->type);
532 	lockdep_set_class_and_name(&dev->addr_list_lock,
533 				   &netdev_addr_lock_key[i],
534 				   netdev_lock_name[i]);
535 }
536 #else
537 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
538 						 unsigned short dev_type)
539 {
540 }
541 
542 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
543 {
544 }
545 #endif
546 
547 /*******************************************************************************
548  *
549  *		Protocol management and registration routines
550  *
551  *******************************************************************************/
552 
553 
554 /*
555  *	Add a protocol ID to the list. Now that the input handler is
556  *	smarter we can dispense with all the messy stuff that used to be
557  *	here.
558  *
559  *	BEWARE!!! Protocol handlers, mangling input packets,
560  *	MUST BE last in hash buckets and checking protocol handlers
561  *	MUST start from promiscuous ptype_all chain in net_bh.
562  *	It is true now, do not change it.
563  *	Explanation follows: if protocol handler, mangling packet, will
564  *	be the first on list, it is not able to sense, that packet
565  *	is cloned and should be copied-on-write, so that it will
566  *	change it and subsequent readers will get broken packet.
567  *							--ANK (980803)
568  */
569 
570 static inline struct list_head *ptype_head(const struct packet_type *pt)
571 {
572 	if (pt->type == htons(ETH_P_ALL))
573 		return pt->dev ? &pt->dev->ptype_all : &net_hotdata.ptype_all;
574 	else
575 		return pt->dev ? &pt->dev->ptype_specific :
576 				 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
577 }
578 
579 /**
580  *	dev_add_pack - add packet handler
581  *	@pt: packet type declaration
582  *
583  *	Add a protocol handler to the networking stack. The passed &packet_type
584  *	is linked into kernel lists and may not be freed until it has been
585  *	removed from the kernel lists.
586  *
587  *	This call does not sleep therefore it can not
588  *	guarantee all CPU's that are in middle of receiving packets
589  *	will see the new packet type (until the next received packet).
590  */
591 
592 void dev_add_pack(struct packet_type *pt)
593 {
594 	struct list_head *head = ptype_head(pt);
595 
596 	spin_lock(&ptype_lock);
597 	list_add_rcu(&pt->list, head);
598 	spin_unlock(&ptype_lock);
599 }
600 EXPORT_SYMBOL(dev_add_pack);
601 
602 /**
603  *	__dev_remove_pack	 - remove packet handler
604  *	@pt: packet type declaration
605  *
606  *	Remove a protocol handler that was previously added to the kernel
607  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
608  *	from the kernel lists and can be freed or reused once this function
609  *	returns.
610  *
611  *      The packet type might still be in use by receivers
612  *	and must not be freed until after all the CPU's have gone
613  *	through a quiescent state.
614  */
615 void __dev_remove_pack(struct packet_type *pt)
616 {
617 	struct list_head *head = ptype_head(pt);
618 	struct packet_type *pt1;
619 
620 	spin_lock(&ptype_lock);
621 
622 	list_for_each_entry(pt1, head, list) {
623 		if (pt == pt1) {
624 			list_del_rcu(&pt->list);
625 			goto out;
626 		}
627 	}
628 
629 	pr_warn("dev_remove_pack: %p not found\n", pt);
630 out:
631 	spin_unlock(&ptype_lock);
632 }
633 EXPORT_SYMBOL(__dev_remove_pack);
634 
635 /**
636  *	dev_remove_pack	 - remove packet handler
637  *	@pt: packet type declaration
638  *
639  *	Remove a protocol handler that was previously added to the kernel
640  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
641  *	from the kernel lists and can be freed or reused once this function
642  *	returns.
643  *
644  *	This call sleeps to guarantee that no CPU is looking at the packet
645  *	type after return.
646  */
647 void dev_remove_pack(struct packet_type *pt)
648 {
649 	__dev_remove_pack(pt);
650 
651 	synchronize_net();
652 }
653 EXPORT_SYMBOL(dev_remove_pack);
654 
655 
656 /*******************************************************************************
657  *
658  *			    Device Interface Subroutines
659  *
660  *******************************************************************************/
661 
662 /**
663  *	dev_get_iflink	- get 'iflink' value of a interface
664  *	@dev: targeted interface
665  *
666  *	Indicates the ifindex the interface is linked to.
667  *	Physical interfaces have the same 'ifindex' and 'iflink' values.
668  */
669 
670 int dev_get_iflink(const struct net_device *dev)
671 {
672 	if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
673 		return dev->netdev_ops->ndo_get_iflink(dev);
674 
675 	return READ_ONCE(dev->ifindex);
676 }
677 EXPORT_SYMBOL(dev_get_iflink);
678 
679 /**
680  *	dev_fill_metadata_dst - Retrieve tunnel egress information.
681  *	@dev: targeted interface
682  *	@skb: The packet.
683  *
684  *	For better visibility of tunnel traffic OVS needs to retrieve
685  *	egress tunnel information for a packet. Following API allows
686  *	user to get this info.
687  */
688 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
689 {
690 	struct ip_tunnel_info *info;
691 
692 	if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
693 		return -EINVAL;
694 
695 	info = skb_tunnel_info_unclone(skb);
696 	if (!info)
697 		return -ENOMEM;
698 	if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
699 		return -EINVAL;
700 
701 	return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
702 }
703 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
704 
705 static struct net_device_path *dev_fwd_path(struct net_device_path_stack *stack)
706 {
707 	int k = stack->num_paths++;
708 
709 	if (WARN_ON_ONCE(k >= NET_DEVICE_PATH_STACK_MAX))
710 		return NULL;
711 
712 	return &stack->path[k];
713 }
714 
715 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
716 			  struct net_device_path_stack *stack)
717 {
718 	const struct net_device *last_dev;
719 	struct net_device_path_ctx ctx = {
720 		.dev	= dev,
721 	};
722 	struct net_device_path *path;
723 	int ret = 0;
724 
725 	memcpy(ctx.daddr, daddr, sizeof(ctx.daddr));
726 	stack->num_paths = 0;
727 	while (ctx.dev && ctx.dev->netdev_ops->ndo_fill_forward_path) {
728 		last_dev = ctx.dev;
729 		path = dev_fwd_path(stack);
730 		if (!path)
731 			return -1;
732 
733 		memset(path, 0, sizeof(struct net_device_path));
734 		ret = ctx.dev->netdev_ops->ndo_fill_forward_path(&ctx, path);
735 		if (ret < 0)
736 			return -1;
737 
738 		if (WARN_ON_ONCE(last_dev == ctx.dev))
739 			return -1;
740 	}
741 
742 	if (!ctx.dev)
743 		return ret;
744 
745 	path = dev_fwd_path(stack);
746 	if (!path)
747 		return -1;
748 	path->type = DEV_PATH_ETHERNET;
749 	path->dev = ctx.dev;
750 
751 	return ret;
752 }
753 EXPORT_SYMBOL_GPL(dev_fill_forward_path);
754 
755 /**
756  *	__dev_get_by_name	- find a device by its name
757  *	@net: the applicable net namespace
758  *	@name: name to find
759  *
760  *	Find an interface by name. Must be called under RTNL semaphore.
761  *	If the name is found a pointer to the device is returned.
762  *	If the name is not found then %NULL is returned. The
763  *	reference counters are not incremented so the caller must be
764  *	careful with locks.
765  */
766 
767 struct net_device *__dev_get_by_name(struct net *net, const char *name)
768 {
769 	struct netdev_name_node *node_name;
770 
771 	node_name = netdev_name_node_lookup(net, name);
772 	return node_name ? node_name->dev : NULL;
773 }
774 EXPORT_SYMBOL(__dev_get_by_name);
775 
776 /**
777  * dev_get_by_name_rcu	- find a device by its name
778  * @net: the applicable net namespace
779  * @name: name to find
780  *
781  * Find an interface by name.
782  * If the name is found a pointer to the device is returned.
783  * If the name is not found then %NULL is returned.
784  * The reference counters are not incremented so the caller must be
785  * careful with locks. The caller must hold RCU lock.
786  */
787 
788 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
789 {
790 	struct netdev_name_node *node_name;
791 
792 	node_name = netdev_name_node_lookup_rcu(net, name);
793 	return node_name ? node_name->dev : NULL;
794 }
795 EXPORT_SYMBOL(dev_get_by_name_rcu);
796 
797 /* Deprecated for new users, call netdev_get_by_name() instead */
798 struct net_device *dev_get_by_name(struct net *net, const char *name)
799 {
800 	struct net_device *dev;
801 
802 	rcu_read_lock();
803 	dev = dev_get_by_name_rcu(net, name);
804 	dev_hold(dev);
805 	rcu_read_unlock();
806 	return dev;
807 }
808 EXPORT_SYMBOL(dev_get_by_name);
809 
810 /**
811  *	netdev_get_by_name() - find a device by its name
812  *	@net: the applicable net namespace
813  *	@name: name to find
814  *	@tracker: tracking object for the acquired reference
815  *	@gfp: allocation flags for the tracker
816  *
817  *	Find an interface by name. This can be called from any
818  *	context and does its own locking. The returned handle has
819  *	the usage count incremented and the caller must use netdev_put() to
820  *	release it when it is no longer needed. %NULL is returned if no
821  *	matching device is found.
822  */
823 struct net_device *netdev_get_by_name(struct net *net, const char *name,
824 				      netdevice_tracker *tracker, gfp_t gfp)
825 {
826 	struct net_device *dev;
827 
828 	dev = dev_get_by_name(net, name);
829 	if (dev)
830 		netdev_tracker_alloc(dev, tracker, gfp);
831 	return dev;
832 }
833 EXPORT_SYMBOL(netdev_get_by_name);
834 
835 /**
836  *	__dev_get_by_index - find a device by its ifindex
837  *	@net: the applicable net namespace
838  *	@ifindex: index of device
839  *
840  *	Search for an interface by index. Returns %NULL if the device
841  *	is not found or a pointer to the device. The device has not
842  *	had its reference counter increased so the caller must be careful
843  *	about locking. The caller must hold the RTNL semaphore.
844  */
845 
846 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
847 {
848 	struct net_device *dev;
849 	struct hlist_head *head = dev_index_hash(net, ifindex);
850 
851 	hlist_for_each_entry(dev, head, index_hlist)
852 		if (dev->ifindex == ifindex)
853 			return dev;
854 
855 	return NULL;
856 }
857 EXPORT_SYMBOL(__dev_get_by_index);
858 
859 /**
860  *	dev_get_by_index_rcu - find a device by its ifindex
861  *	@net: the applicable net namespace
862  *	@ifindex: index of device
863  *
864  *	Search for an interface by index. Returns %NULL if the device
865  *	is not found or a pointer to the device. The device has not
866  *	had its reference counter increased so the caller must be careful
867  *	about locking. The caller must hold RCU lock.
868  */
869 
870 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
871 {
872 	struct net_device *dev;
873 	struct hlist_head *head = dev_index_hash(net, ifindex);
874 
875 	hlist_for_each_entry_rcu(dev, head, index_hlist)
876 		if (dev->ifindex == ifindex)
877 			return dev;
878 
879 	return NULL;
880 }
881 EXPORT_SYMBOL(dev_get_by_index_rcu);
882 
883 /* Deprecated for new users, call netdev_get_by_index() instead */
884 struct net_device *dev_get_by_index(struct net *net, int ifindex)
885 {
886 	struct net_device *dev;
887 
888 	rcu_read_lock();
889 	dev = dev_get_by_index_rcu(net, ifindex);
890 	dev_hold(dev);
891 	rcu_read_unlock();
892 	return dev;
893 }
894 EXPORT_SYMBOL(dev_get_by_index);
895 
896 /**
897  *	netdev_get_by_index() - find a device by its ifindex
898  *	@net: the applicable net namespace
899  *	@ifindex: index of device
900  *	@tracker: tracking object for the acquired reference
901  *	@gfp: allocation flags for the tracker
902  *
903  *	Search for an interface by index. Returns NULL if the device
904  *	is not found or a pointer to the device. The device returned has
905  *	had a reference added and the pointer is safe until the user calls
906  *	netdev_put() to indicate they have finished with it.
907  */
908 struct net_device *netdev_get_by_index(struct net *net, int ifindex,
909 				       netdevice_tracker *tracker, gfp_t gfp)
910 {
911 	struct net_device *dev;
912 
913 	dev = dev_get_by_index(net, ifindex);
914 	if (dev)
915 		netdev_tracker_alloc(dev, tracker, gfp);
916 	return dev;
917 }
918 EXPORT_SYMBOL(netdev_get_by_index);
919 
920 /**
921  *	dev_get_by_napi_id - find a device by napi_id
922  *	@napi_id: ID of the NAPI struct
923  *
924  *	Search for an interface by NAPI ID. Returns %NULL if the device
925  *	is not found or a pointer to the device. The device has not had
926  *	its reference counter increased so the caller must be careful
927  *	about locking. The caller must hold RCU lock.
928  */
929 
930 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
931 {
932 	struct napi_struct *napi;
933 
934 	WARN_ON_ONCE(!rcu_read_lock_held());
935 
936 	if (napi_id < MIN_NAPI_ID)
937 		return NULL;
938 
939 	napi = napi_by_id(napi_id);
940 
941 	return napi ? napi->dev : NULL;
942 }
943 EXPORT_SYMBOL(dev_get_by_napi_id);
944 
945 static DEFINE_SEQLOCK(netdev_rename_lock);
946 
947 void netdev_copy_name(struct net_device *dev, char *name)
948 {
949 	unsigned int seq;
950 
951 	do {
952 		seq = read_seqbegin(&netdev_rename_lock);
953 		strscpy(name, dev->name, IFNAMSIZ);
954 	} while (read_seqretry(&netdev_rename_lock, seq));
955 }
956 
957 /**
958  *	netdev_get_name - get a netdevice name, knowing its ifindex.
959  *	@net: network namespace
960  *	@name: a pointer to the buffer where the name will be stored.
961  *	@ifindex: the ifindex of the interface to get the name from.
962  */
963 int netdev_get_name(struct net *net, char *name, int ifindex)
964 {
965 	struct net_device *dev;
966 	int ret;
967 
968 	rcu_read_lock();
969 
970 	dev = dev_get_by_index_rcu(net, ifindex);
971 	if (!dev) {
972 		ret = -ENODEV;
973 		goto out;
974 	}
975 
976 	netdev_copy_name(dev, name);
977 
978 	ret = 0;
979 out:
980 	rcu_read_unlock();
981 	return ret;
982 }
983 
984 /**
985  *	dev_getbyhwaddr_rcu - find a device by its hardware address
986  *	@net: the applicable net namespace
987  *	@type: media type of device
988  *	@ha: hardware address
989  *
990  *	Search for an interface by MAC address. Returns NULL if the device
991  *	is not found or a pointer to the device.
992  *	The caller must hold RCU or RTNL.
993  *	The returned device has not had its ref count increased
994  *	and the caller must therefore be careful about locking
995  *
996  */
997 
998 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
999 				       const char *ha)
1000 {
1001 	struct net_device *dev;
1002 
1003 	for_each_netdev_rcu(net, dev)
1004 		if (dev->type == type &&
1005 		    !memcmp(dev->dev_addr, ha, dev->addr_len))
1006 			return dev;
1007 
1008 	return NULL;
1009 }
1010 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
1011 
1012 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
1013 {
1014 	struct net_device *dev, *ret = NULL;
1015 
1016 	rcu_read_lock();
1017 	for_each_netdev_rcu(net, dev)
1018 		if (dev->type == type) {
1019 			dev_hold(dev);
1020 			ret = dev;
1021 			break;
1022 		}
1023 	rcu_read_unlock();
1024 	return ret;
1025 }
1026 EXPORT_SYMBOL(dev_getfirstbyhwtype);
1027 
1028 /**
1029  *	__dev_get_by_flags - find any device with given flags
1030  *	@net: the applicable net namespace
1031  *	@if_flags: IFF_* values
1032  *	@mask: bitmask of bits in if_flags to check
1033  *
1034  *	Search for any interface with the given flags. Returns NULL if a device
1035  *	is not found or a pointer to the device. Must be called inside
1036  *	rtnl_lock(), and result refcount is unchanged.
1037  */
1038 
1039 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1040 				      unsigned short mask)
1041 {
1042 	struct net_device *dev, *ret;
1043 
1044 	ASSERT_RTNL();
1045 
1046 	ret = NULL;
1047 	for_each_netdev(net, dev) {
1048 		if (((dev->flags ^ if_flags) & mask) == 0) {
1049 			ret = dev;
1050 			break;
1051 		}
1052 	}
1053 	return ret;
1054 }
1055 EXPORT_SYMBOL(__dev_get_by_flags);
1056 
1057 /**
1058  *	dev_valid_name - check if name is okay for network device
1059  *	@name: name string
1060  *
1061  *	Network device names need to be valid file names to
1062  *	allow sysfs to work.  We also disallow any kind of
1063  *	whitespace.
1064  */
1065 bool dev_valid_name(const char *name)
1066 {
1067 	if (*name == '\0')
1068 		return false;
1069 	if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1070 		return false;
1071 	if (!strcmp(name, ".") || !strcmp(name, ".."))
1072 		return false;
1073 
1074 	while (*name) {
1075 		if (*name == '/' || *name == ':' || isspace(*name))
1076 			return false;
1077 		name++;
1078 	}
1079 	return true;
1080 }
1081 EXPORT_SYMBOL(dev_valid_name);
1082 
1083 /**
1084  *	__dev_alloc_name - allocate a name for a device
1085  *	@net: network namespace to allocate the device name in
1086  *	@name: name format string
1087  *	@res: result name string
1088  *
1089  *	Passed a format string - eg "lt%d" it will try and find a suitable
1090  *	id. It scans list of devices to build up a free map, then chooses
1091  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1092  *	while allocating the name and adding the device in order to avoid
1093  *	duplicates.
1094  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1095  *	Returns the number of the unit assigned or a negative errno code.
1096  */
1097 
1098 static int __dev_alloc_name(struct net *net, const char *name, char *res)
1099 {
1100 	int i = 0;
1101 	const char *p;
1102 	const int max_netdevices = 8*PAGE_SIZE;
1103 	unsigned long *inuse;
1104 	struct net_device *d;
1105 	char buf[IFNAMSIZ];
1106 
1107 	/* Verify the string as this thing may have come from the user.
1108 	 * There must be one "%d" and no other "%" characters.
1109 	 */
1110 	p = strchr(name, '%');
1111 	if (!p || p[1] != 'd' || strchr(p + 2, '%'))
1112 		return -EINVAL;
1113 
1114 	/* Use one page as a bit array of possible slots */
1115 	inuse = bitmap_zalloc(max_netdevices, GFP_ATOMIC);
1116 	if (!inuse)
1117 		return -ENOMEM;
1118 
1119 	for_each_netdev(net, d) {
1120 		struct netdev_name_node *name_node;
1121 
1122 		netdev_for_each_altname(d, name_node) {
1123 			if (!sscanf(name_node->name, name, &i))
1124 				continue;
1125 			if (i < 0 || i >= max_netdevices)
1126 				continue;
1127 
1128 			/* avoid cases where sscanf is not exact inverse of printf */
1129 			snprintf(buf, IFNAMSIZ, name, i);
1130 			if (!strncmp(buf, name_node->name, IFNAMSIZ))
1131 				__set_bit(i, inuse);
1132 		}
1133 		if (!sscanf(d->name, name, &i))
1134 			continue;
1135 		if (i < 0 || i >= max_netdevices)
1136 			continue;
1137 
1138 		/* avoid cases where sscanf is not exact inverse of printf */
1139 		snprintf(buf, IFNAMSIZ, name, i);
1140 		if (!strncmp(buf, d->name, IFNAMSIZ))
1141 			__set_bit(i, inuse);
1142 	}
1143 
1144 	i = find_first_zero_bit(inuse, max_netdevices);
1145 	bitmap_free(inuse);
1146 	if (i == max_netdevices)
1147 		return -ENFILE;
1148 
1149 	/* 'res' and 'name' could overlap, use 'buf' as an intermediate buffer */
1150 	strscpy(buf, name, IFNAMSIZ);
1151 	snprintf(res, IFNAMSIZ, buf, i);
1152 	return i;
1153 }
1154 
1155 /* Returns negative errno or allocated unit id (see __dev_alloc_name()) */
1156 static int dev_prep_valid_name(struct net *net, struct net_device *dev,
1157 			       const char *want_name, char *out_name,
1158 			       int dup_errno)
1159 {
1160 	if (!dev_valid_name(want_name))
1161 		return -EINVAL;
1162 
1163 	if (strchr(want_name, '%'))
1164 		return __dev_alloc_name(net, want_name, out_name);
1165 
1166 	if (netdev_name_in_use(net, want_name))
1167 		return -dup_errno;
1168 	if (out_name != want_name)
1169 		strscpy(out_name, want_name, IFNAMSIZ);
1170 	return 0;
1171 }
1172 
1173 /**
1174  *	dev_alloc_name - allocate a name for a device
1175  *	@dev: device
1176  *	@name: name format string
1177  *
1178  *	Passed a format string - eg "lt%d" it will try and find a suitable
1179  *	id. It scans list of devices to build up a free map, then chooses
1180  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1181  *	while allocating the name and adding the device in order to avoid
1182  *	duplicates.
1183  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1184  *	Returns the number of the unit assigned or a negative errno code.
1185  */
1186 
1187 int dev_alloc_name(struct net_device *dev, const char *name)
1188 {
1189 	return dev_prep_valid_name(dev_net(dev), dev, name, dev->name, ENFILE);
1190 }
1191 EXPORT_SYMBOL(dev_alloc_name);
1192 
1193 static int dev_get_valid_name(struct net *net, struct net_device *dev,
1194 			      const char *name)
1195 {
1196 	int ret;
1197 
1198 	ret = dev_prep_valid_name(net, dev, name, dev->name, EEXIST);
1199 	return ret < 0 ? ret : 0;
1200 }
1201 
1202 /**
1203  *	dev_change_name - change name of a device
1204  *	@dev: device
1205  *	@newname: name (or format string) must be at least IFNAMSIZ
1206  *
1207  *	Change name of a device, can pass format strings "eth%d".
1208  *	for wildcarding.
1209  */
1210 int dev_change_name(struct net_device *dev, const char *newname)
1211 {
1212 	unsigned char old_assign_type;
1213 	char oldname[IFNAMSIZ];
1214 	int err = 0;
1215 	int ret;
1216 	struct net *net;
1217 
1218 	ASSERT_RTNL();
1219 	BUG_ON(!dev_net(dev));
1220 
1221 	net = dev_net(dev);
1222 
1223 	down_write(&devnet_rename_sem);
1224 
1225 	if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1226 		up_write(&devnet_rename_sem);
1227 		return 0;
1228 	}
1229 
1230 	memcpy(oldname, dev->name, IFNAMSIZ);
1231 
1232 	write_seqlock_bh(&netdev_rename_lock);
1233 	err = dev_get_valid_name(net, dev, newname);
1234 	write_sequnlock_bh(&netdev_rename_lock);
1235 
1236 	if (err < 0) {
1237 		up_write(&devnet_rename_sem);
1238 		return err;
1239 	}
1240 
1241 	if (oldname[0] && !strchr(oldname, '%'))
1242 		netdev_info(dev, "renamed from %s%s\n", oldname,
1243 			    dev->flags & IFF_UP ? " (while UP)" : "");
1244 
1245 	old_assign_type = dev->name_assign_type;
1246 	WRITE_ONCE(dev->name_assign_type, NET_NAME_RENAMED);
1247 
1248 rollback:
1249 	ret = device_rename(&dev->dev, dev->name);
1250 	if (ret) {
1251 		memcpy(dev->name, oldname, IFNAMSIZ);
1252 		WRITE_ONCE(dev->name_assign_type, old_assign_type);
1253 		up_write(&devnet_rename_sem);
1254 		return ret;
1255 	}
1256 
1257 	up_write(&devnet_rename_sem);
1258 
1259 	netdev_adjacent_rename_links(dev, oldname);
1260 
1261 	netdev_name_node_del(dev->name_node);
1262 
1263 	synchronize_net();
1264 
1265 	netdev_name_node_add(net, dev->name_node);
1266 
1267 	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1268 	ret = notifier_to_errno(ret);
1269 
1270 	if (ret) {
1271 		/* err >= 0 after dev_alloc_name() or stores the first errno */
1272 		if (err >= 0) {
1273 			err = ret;
1274 			down_write(&devnet_rename_sem);
1275 			write_seqlock_bh(&netdev_rename_lock);
1276 			memcpy(dev->name, oldname, IFNAMSIZ);
1277 			write_sequnlock_bh(&netdev_rename_lock);
1278 			memcpy(oldname, newname, IFNAMSIZ);
1279 			WRITE_ONCE(dev->name_assign_type, old_assign_type);
1280 			old_assign_type = NET_NAME_RENAMED;
1281 			goto rollback;
1282 		} else {
1283 			netdev_err(dev, "name change rollback failed: %d\n",
1284 				   ret);
1285 		}
1286 	}
1287 
1288 	return err;
1289 }
1290 
1291 /**
1292  *	dev_set_alias - change ifalias of a device
1293  *	@dev: device
1294  *	@alias: name up to IFALIASZ
1295  *	@len: limit of bytes to copy from info
1296  *
1297  *	Set ifalias for a device,
1298  */
1299 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1300 {
1301 	struct dev_ifalias *new_alias = NULL;
1302 
1303 	if (len >= IFALIASZ)
1304 		return -EINVAL;
1305 
1306 	if (len) {
1307 		new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1308 		if (!new_alias)
1309 			return -ENOMEM;
1310 
1311 		memcpy(new_alias->ifalias, alias, len);
1312 		new_alias->ifalias[len] = 0;
1313 	}
1314 
1315 	mutex_lock(&ifalias_mutex);
1316 	new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1317 					mutex_is_locked(&ifalias_mutex));
1318 	mutex_unlock(&ifalias_mutex);
1319 
1320 	if (new_alias)
1321 		kfree_rcu(new_alias, rcuhead);
1322 
1323 	return len;
1324 }
1325 EXPORT_SYMBOL(dev_set_alias);
1326 
1327 /**
1328  *	dev_get_alias - get ifalias of a device
1329  *	@dev: device
1330  *	@name: buffer to store name of ifalias
1331  *	@len: size of buffer
1332  *
1333  *	get ifalias for a device.  Caller must make sure dev cannot go
1334  *	away,  e.g. rcu read lock or own a reference count to device.
1335  */
1336 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1337 {
1338 	const struct dev_ifalias *alias;
1339 	int ret = 0;
1340 
1341 	rcu_read_lock();
1342 	alias = rcu_dereference(dev->ifalias);
1343 	if (alias)
1344 		ret = snprintf(name, len, "%s", alias->ifalias);
1345 	rcu_read_unlock();
1346 
1347 	return ret;
1348 }
1349 
1350 /**
1351  *	netdev_features_change - device changes features
1352  *	@dev: device to cause notification
1353  *
1354  *	Called to indicate a device has changed features.
1355  */
1356 void netdev_features_change(struct net_device *dev)
1357 {
1358 	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1359 }
1360 EXPORT_SYMBOL(netdev_features_change);
1361 
1362 /**
1363  *	netdev_state_change - device changes state
1364  *	@dev: device to cause notification
1365  *
1366  *	Called to indicate a device has changed state. This function calls
1367  *	the notifier chains for netdev_chain and sends a NEWLINK message
1368  *	to the routing socket.
1369  */
1370 void netdev_state_change(struct net_device *dev)
1371 {
1372 	if (dev->flags & IFF_UP) {
1373 		struct netdev_notifier_change_info change_info = {
1374 			.info.dev = dev,
1375 		};
1376 
1377 		call_netdevice_notifiers_info(NETDEV_CHANGE,
1378 					      &change_info.info);
1379 		rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL, 0, NULL);
1380 	}
1381 }
1382 EXPORT_SYMBOL(netdev_state_change);
1383 
1384 /**
1385  * __netdev_notify_peers - notify network peers about existence of @dev,
1386  * to be called when rtnl lock is already held.
1387  * @dev: network device
1388  *
1389  * Generate traffic such that interested network peers are aware of
1390  * @dev, such as by generating a gratuitous ARP. This may be used when
1391  * a device wants to inform the rest of the network about some sort of
1392  * reconfiguration such as a failover event or virtual machine
1393  * migration.
1394  */
1395 void __netdev_notify_peers(struct net_device *dev)
1396 {
1397 	ASSERT_RTNL();
1398 	call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1399 	call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1400 }
1401 EXPORT_SYMBOL(__netdev_notify_peers);
1402 
1403 /**
1404  * netdev_notify_peers - notify network peers about existence of @dev
1405  * @dev: network device
1406  *
1407  * Generate traffic such that interested network peers are aware of
1408  * @dev, such as by generating a gratuitous ARP. This may be used when
1409  * a device wants to inform the rest of the network about some sort of
1410  * reconfiguration such as a failover event or virtual machine
1411  * migration.
1412  */
1413 void netdev_notify_peers(struct net_device *dev)
1414 {
1415 	rtnl_lock();
1416 	__netdev_notify_peers(dev);
1417 	rtnl_unlock();
1418 }
1419 EXPORT_SYMBOL(netdev_notify_peers);
1420 
1421 static int napi_threaded_poll(void *data);
1422 
1423 static int napi_kthread_create(struct napi_struct *n)
1424 {
1425 	int err = 0;
1426 
1427 	/* Create and wake up the kthread once to put it in
1428 	 * TASK_INTERRUPTIBLE mode to avoid the blocked task
1429 	 * warning and work with loadavg.
1430 	 */
1431 	n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d",
1432 				n->dev->name, n->napi_id);
1433 	if (IS_ERR(n->thread)) {
1434 		err = PTR_ERR(n->thread);
1435 		pr_err("kthread_run failed with err %d\n", err);
1436 		n->thread = NULL;
1437 	}
1438 
1439 	return err;
1440 }
1441 
1442 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1443 {
1444 	const struct net_device_ops *ops = dev->netdev_ops;
1445 	int ret;
1446 
1447 	ASSERT_RTNL();
1448 	dev_addr_check(dev);
1449 
1450 	if (!netif_device_present(dev)) {
1451 		/* may be detached because parent is runtime-suspended */
1452 		if (dev->dev.parent)
1453 			pm_runtime_resume(dev->dev.parent);
1454 		if (!netif_device_present(dev))
1455 			return -ENODEV;
1456 	}
1457 
1458 	/* Block netpoll from trying to do any rx path servicing.
1459 	 * If we don't do this there is a chance ndo_poll_controller
1460 	 * or ndo_poll may be running while we open the device
1461 	 */
1462 	netpoll_poll_disable(dev);
1463 
1464 	ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1465 	ret = notifier_to_errno(ret);
1466 	if (ret)
1467 		return ret;
1468 
1469 	set_bit(__LINK_STATE_START, &dev->state);
1470 
1471 	if (ops->ndo_validate_addr)
1472 		ret = ops->ndo_validate_addr(dev);
1473 
1474 	if (!ret && ops->ndo_open)
1475 		ret = ops->ndo_open(dev);
1476 
1477 	netpoll_poll_enable(dev);
1478 
1479 	if (ret)
1480 		clear_bit(__LINK_STATE_START, &dev->state);
1481 	else {
1482 		dev->flags |= IFF_UP;
1483 		dev_set_rx_mode(dev);
1484 		dev_activate(dev);
1485 		add_device_randomness(dev->dev_addr, dev->addr_len);
1486 	}
1487 
1488 	return ret;
1489 }
1490 
1491 /**
1492  *	dev_open	- prepare an interface for use.
1493  *	@dev: device to open
1494  *	@extack: netlink extended ack
1495  *
1496  *	Takes a device from down to up state. The device's private open
1497  *	function is invoked and then the multicast lists are loaded. Finally
1498  *	the device is moved into the up state and a %NETDEV_UP message is
1499  *	sent to the netdev notifier chain.
1500  *
1501  *	Calling this function on an active interface is a nop. On a failure
1502  *	a negative errno code is returned.
1503  */
1504 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1505 {
1506 	int ret;
1507 
1508 	if (dev->flags & IFF_UP)
1509 		return 0;
1510 
1511 	ret = __dev_open(dev, extack);
1512 	if (ret < 0)
1513 		return ret;
1514 
1515 	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL);
1516 	call_netdevice_notifiers(NETDEV_UP, dev);
1517 
1518 	return ret;
1519 }
1520 EXPORT_SYMBOL(dev_open);
1521 
1522 static void __dev_close_many(struct list_head *head)
1523 {
1524 	struct net_device *dev;
1525 
1526 	ASSERT_RTNL();
1527 	might_sleep();
1528 
1529 	list_for_each_entry(dev, head, close_list) {
1530 		/* Temporarily disable netpoll until the interface is down */
1531 		netpoll_poll_disable(dev);
1532 
1533 		call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1534 
1535 		clear_bit(__LINK_STATE_START, &dev->state);
1536 
1537 		/* Synchronize to scheduled poll. We cannot touch poll list, it
1538 		 * can be even on different cpu. So just clear netif_running().
1539 		 *
1540 		 * dev->stop() will invoke napi_disable() on all of it's
1541 		 * napi_struct instances on this device.
1542 		 */
1543 		smp_mb__after_atomic(); /* Commit netif_running(). */
1544 	}
1545 
1546 	dev_deactivate_many(head);
1547 
1548 	list_for_each_entry(dev, head, close_list) {
1549 		const struct net_device_ops *ops = dev->netdev_ops;
1550 
1551 		/*
1552 		 *	Call the device specific close. This cannot fail.
1553 		 *	Only if device is UP
1554 		 *
1555 		 *	We allow it to be called even after a DETACH hot-plug
1556 		 *	event.
1557 		 */
1558 		if (ops->ndo_stop)
1559 			ops->ndo_stop(dev);
1560 
1561 		dev->flags &= ~IFF_UP;
1562 		netpoll_poll_enable(dev);
1563 	}
1564 }
1565 
1566 static void __dev_close(struct net_device *dev)
1567 {
1568 	LIST_HEAD(single);
1569 
1570 	list_add(&dev->close_list, &single);
1571 	__dev_close_many(&single);
1572 	list_del(&single);
1573 }
1574 
1575 void dev_close_many(struct list_head *head, bool unlink)
1576 {
1577 	struct net_device *dev, *tmp;
1578 
1579 	/* Remove the devices that don't need to be closed */
1580 	list_for_each_entry_safe(dev, tmp, head, close_list)
1581 		if (!(dev->flags & IFF_UP))
1582 			list_del_init(&dev->close_list);
1583 
1584 	__dev_close_many(head);
1585 
1586 	list_for_each_entry_safe(dev, tmp, head, close_list) {
1587 		rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL);
1588 		call_netdevice_notifiers(NETDEV_DOWN, dev);
1589 		if (unlink)
1590 			list_del_init(&dev->close_list);
1591 	}
1592 }
1593 EXPORT_SYMBOL(dev_close_many);
1594 
1595 /**
1596  *	dev_close - shutdown an interface.
1597  *	@dev: device to shutdown
1598  *
1599  *	This function moves an active device into down state. A
1600  *	%NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1601  *	is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1602  *	chain.
1603  */
1604 void dev_close(struct net_device *dev)
1605 {
1606 	if (dev->flags & IFF_UP) {
1607 		LIST_HEAD(single);
1608 
1609 		list_add(&dev->close_list, &single);
1610 		dev_close_many(&single, true);
1611 		list_del(&single);
1612 	}
1613 }
1614 EXPORT_SYMBOL(dev_close);
1615 
1616 
1617 /**
1618  *	dev_disable_lro - disable Large Receive Offload on a device
1619  *	@dev: device
1620  *
1621  *	Disable Large Receive Offload (LRO) on a net device.  Must be
1622  *	called under RTNL.  This is needed if received packets may be
1623  *	forwarded to another interface.
1624  */
1625 void dev_disable_lro(struct net_device *dev)
1626 {
1627 	struct net_device *lower_dev;
1628 	struct list_head *iter;
1629 
1630 	dev->wanted_features &= ~NETIF_F_LRO;
1631 	netdev_update_features(dev);
1632 
1633 	if (unlikely(dev->features & NETIF_F_LRO))
1634 		netdev_WARN(dev, "failed to disable LRO!\n");
1635 
1636 	netdev_for_each_lower_dev(dev, lower_dev, iter)
1637 		dev_disable_lro(lower_dev);
1638 }
1639 EXPORT_SYMBOL(dev_disable_lro);
1640 
1641 /**
1642  *	dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1643  *	@dev: device
1644  *
1645  *	Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1646  *	called under RTNL.  This is needed if Generic XDP is installed on
1647  *	the device.
1648  */
1649 static void dev_disable_gro_hw(struct net_device *dev)
1650 {
1651 	dev->wanted_features &= ~NETIF_F_GRO_HW;
1652 	netdev_update_features(dev);
1653 
1654 	if (unlikely(dev->features & NETIF_F_GRO_HW))
1655 		netdev_WARN(dev, "failed to disable GRO_HW!\n");
1656 }
1657 
1658 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1659 {
1660 #define N(val) 						\
1661 	case NETDEV_##val:				\
1662 		return "NETDEV_" __stringify(val);
1663 	switch (cmd) {
1664 	N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1665 	N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1666 	N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1667 	N(POST_INIT) N(PRE_UNINIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN)
1668 	N(CHANGEUPPER) N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA)
1669 	N(BONDING_INFO) N(PRECHANGEUPPER) N(CHANGELOWERSTATE)
1670 	N(UDP_TUNNEL_PUSH_INFO) N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1671 	N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1672 	N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1673 	N(PRE_CHANGEADDR) N(OFFLOAD_XSTATS_ENABLE) N(OFFLOAD_XSTATS_DISABLE)
1674 	N(OFFLOAD_XSTATS_REPORT_USED) N(OFFLOAD_XSTATS_REPORT_DELTA)
1675 	N(XDP_FEAT_CHANGE)
1676 	}
1677 #undef N
1678 	return "UNKNOWN_NETDEV_EVENT";
1679 }
1680 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1681 
1682 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1683 				   struct net_device *dev)
1684 {
1685 	struct netdev_notifier_info info = {
1686 		.dev = dev,
1687 	};
1688 
1689 	return nb->notifier_call(nb, val, &info);
1690 }
1691 
1692 static int call_netdevice_register_notifiers(struct notifier_block *nb,
1693 					     struct net_device *dev)
1694 {
1695 	int err;
1696 
1697 	err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1698 	err = notifier_to_errno(err);
1699 	if (err)
1700 		return err;
1701 
1702 	if (!(dev->flags & IFF_UP))
1703 		return 0;
1704 
1705 	call_netdevice_notifier(nb, NETDEV_UP, dev);
1706 	return 0;
1707 }
1708 
1709 static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1710 						struct net_device *dev)
1711 {
1712 	if (dev->flags & IFF_UP) {
1713 		call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1714 					dev);
1715 		call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1716 	}
1717 	call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1718 }
1719 
1720 static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1721 						 struct net *net)
1722 {
1723 	struct net_device *dev;
1724 	int err;
1725 
1726 	for_each_netdev(net, dev) {
1727 		err = call_netdevice_register_notifiers(nb, dev);
1728 		if (err)
1729 			goto rollback;
1730 	}
1731 	return 0;
1732 
1733 rollback:
1734 	for_each_netdev_continue_reverse(net, dev)
1735 		call_netdevice_unregister_notifiers(nb, dev);
1736 	return err;
1737 }
1738 
1739 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1740 						    struct net *net)
1741 {
1742 	struct net_device *dev;
1743 
1744 	for_each_netdev(net, dev)
1745 		call_netdevice_unregister_notifiers(nb, dev);
1746 }
1747 
1748 static int dev_boot_phase = 1;
1749 
1750 /**
1751  * register_netdevice_notifier - register a network notifier block
1752  * @nb: notifier
1753  *
1754  * Register a notifier to be called when network device events occur.
1755  * The notifier passed is linked into the kernel structures and must
1756  * not be reused until it has been unregistered. A negative errno code
1757  * is returned on a failure.
1758  *
1759  * When registered all registration and up events are replayed
1760  * to the new notifier to allow device to have a race free
1761  * view of the network device list.
1762  */
1763 
1764 int register_netdevice_notifier(struct notifier_block *nb)
1765 {
1766 	struct net *net;
1767 	int err;
1768 
1769 	/* Close race with setup_net() and cleanup_net() */
1770 	down_write(&pernet_ops_rwsem);
1771 	rtnl_lock();
1772 	err = raw_notifier_chain_register(&netdev_chain, nb);
1773 	if (err)
1774 		goto unlock;
1775 	if (dev_boot_phase)
1776 		goto unlock;
1777 	for_each_net(net) {
1778 		err = call_netdevice_register_net_notifiers(nb, net);
1779 		if (err)
1780 			goto rollback;
1781 	}
1782 
1783 unlock:
1784 	rtnl_unlock();
1785 	up_write(&pernet_ops_rwsem);
1786 	return err;
1787 
1788 rollback:
1789 	for_each_net_continue_reverse(net)
1790 		call_netdevice_unregister_net_notifiers(nb, net);
1791 
1792 	raw_notifier_chain_unregister(&netdev_chain, nb);
1793 	goto unlock;
1794 }
1795 EXPORT_SYMBOL(register_netdevice_notifier);
1796 
1797 /**
1798  * unregister_netdevice_notifier - unregister a network notifier block
1799  * @nb: notifier
1800  *
1801  * Unregister a notifier previously registered by
1802  * register_netdevice_notifier(). The notifier is unlinked into the
1803  * kernel structures and may then be reused. A negative errno code
1804  * is returned on a failure.
1805  *
1806  * After unregistering unregister and down device events are synthesized
1807  * for all devices on the device list to the removed notifier to remove
1808  * the need for special case cleanup code.
1809  */
1810 
1811 int unregister_netdevice_notifier(struct notifier_block *nb)
1812 {
1813 	struct net *net;
1814 	int err;
1815 
1816 	/* Close race with setup_net() and cleanup_net() */
1817 	down_write(&pernet_ops_rwsem);
1818 	rtnl_lock();
1819 	err = raw_notifier_chain_unregister(&netdev_chain, nb);
1820 	if (err)
1821 		goto unlock;
1822 
1823 	for_each_net(net)
1824 		call_netdevice_unregister_net_notifiers(nb, net);
1825 
1826 unlock:
1827 	rtnl_unlock();
1828 	up_write(&pernet_ops_rwsem);
1829 	return err;
1830 }
1831 EXPORT_SYMBOL(unregister_netdevice_notifier);
1832 
1833 static int __register_netdevice_notifier_net(struct net *net,
1834 					     struct notifier_block *nb,
1835 					     bool ignore_call_fail)
1836 {
1837 	int err;
1838 
1839 	err = raw_notifier_chain_register(&net->netdev_chain, nb);
1840 	if (err)
1841 		return err;
1842 	if (dev_boot_phase)
1843 		return 0;
1844 
1845 	err = call_netdevice_register_net_notifiers(nb, net);
1846 	if (err && !ignore_call_fail)
1847 		goto chain_unregister;
1848 
1849 	return 0;
1850 
1851 chain_unregister:
1852 	raw_notifier_chain_unregister(&net->netdev_chain, nb);
1853 	return err;
1854 }
1855 
1856 static int __unregister_netdevice_notifier_net(struct net *net,
1857 					       struct notifier_block *nb)
1858 {
1859 	int err;
1860 
1861 	err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
1862 	if (err)
1863 		return err;
1864 
1865 	call_netdevice_unregister_net_notifiers(nb, net);
1866 	return 0;
1867 }
1868 
1869 /**
1870  * register_netdevice_notifier_net - register a per-netns network notifier block
1871  * @net: network namespace
1872  * @nb: notifier
1873  *
1874  * Register a notifier to be called when network device events occur.
1875  * The notifier passed is linked into the kernel structures and must
1876  * not be reused until it has been unregistered. A negative errno code
1877  * is returned on a failure.
1878  *
1879  * When registered all registration and up events are replayed
1880  * to the new notifier to allow device to have a race free
1881  * view of the network device list.
1882  */
1883 
1884 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
1885 {
1886 	int err;
1887 
1888 	rtnl_lock();
1889 	err = __register_netdevice_notifier_net(net, nb, false);
1890 	rtnl_unlock();
1891 	return err;
1892 }
1893 EXPORT_SYMBOL(register_netdevice_notifier_net);
1894 
1895 /**
1896  * unregister_netdevice_notifier_net - unregister a per-netns
1897  *                                     network notifier block
1898  * @net: network namespace
1899  * @nb: notifier
1900  *
1901  * Unregister a notifier previously registered by
1902  * register_netdevice_notifier_net(). The notifier is unlinked from the
1903  * kernel structures and may then be reused. A negative errno code
1904  * is returned on a failure.
1905  *
1906  * After unregistering unregister and down device events are synthesized
1907  * for all devices on the device list to the removed notifier to remove
1908  * the need for special case cleanup code.
1909  */
1910 
1911 int unregister_netdevice_notifier_net(struct net *net,
1912 				      struct notifier_block *nb)
1913 {
1914 	int err;
1915 
1916 	rtnl_lock();
1917 	err = __unregister_netdevice_notifier_net(net, nb);
1918 	rtnl_unlock();
1919 	return err;
1920 }
1921 EXPORT_SYMBOL(unregister_netdevice_notifier_net);
1922 
1923 static void __move_netdevice_notifier_net(struct net *src_net,
1924 					  struct net *dst_net,
1925 					  struct notifier_block *nb)
1926 {
1927 	__unregister_netdevice_notifier_net(src_net, nb);
1928 	__register_netdevice_notifier_net(dst_net, nb, true);
1929 }
1930 
1931 int register_netdevice_notifier_dev_net(struct net_device *dev,
1932 					struct notifier_block *nb,
1933 					struct netdev_net_notifier *nn)
1934 {
1935 	int err;
1936 
1937 	rtnl_lock();
1938 	err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
1939 	if (!err) {
1940 		nn->nb = nb;
1941 		list_add(&nn->list, &dev->net_notifier_list);
1942 	}
1943 	rtnl_unlock();
1944 	return err;
1945 }
1946 EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
1947 
1948 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
1949 					  struct notifier_block *nb,
1950 					  struct netdev_net_notifier *nn)
1951 {
1952 	int err;
1953 
1954 	rtnl_lock();
1955 	list_del(&nn->list);
1956 	err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
1957 	rtnl_unlock();
1958 	return err;
1959 }
1960 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
1961 
1962 static void move_netdevice_notifiers_dev_net(struct net_device *dev,
1963 					     struct net *net)
1964 {
1965 	struct netdev_net_notifier *nn;
1966 
1967 	list_for_each_entry(nn, &dev->net_notifier_list, list)
1968 		__move_netdevice_notifier_net(dev_net(dev), net, nn->nb);
1969 }
1970 
1971 /**
1972  *	call_netdevice_notifiers_info - call all network notifier blocks
1973  *	@val: value passed unmodified to notifier function
1974  *	@info: notifier information data
1975  *
1976  *	Call all network notifier blocks.  Parameters and return value
1977  *	are as for raw_notifier_call_chain().
1978  */
1979 
1980 int call_netdevice_notifiers_info(unsigned long val,
1981 				  struct netdev_notifier_info *info)
1982 {
1983 	struct net *net = dev_net(info->dev);
1984 	int ret;
1985 
1986 	ASSERT_RTNL();
1987 
1988 	/* Run per-netns notifier block chain first, then run the global one.
1989 	 * Hopefully, one day, the global one is going to be removed after
1990 	 * all notifier block registrators get converted to be per-netns.
1991 	 */
1992 	ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
1993 	if (ret & NOTIFY_STOP_MASK)
1994 		return ret;
1995 	return raw_notifier_call_chain(&netdev_chain, val, info);
1996 }
1997 
1998 /**
1999  *	call_netdevice_notifiers_info_robust - call per-netns notifier blocks
2000  *	                                       for and rollback on error
2001  *	@val_up: value passed unmodified to notifier function
2002  *	@val_down: value passed unmodified to the notifier function when
2003  *	           recovering from an error on @val_up
2004  *	@info: notifier information data
2005  *
2006  *	Call all per-netns network notifier blocks, but not notifier blocks on
2007  *	the global notifier chain. Parameters and return value are as for
2008  *	raw_notifier_call_chain_robust().
2009  */
2010 
2011 static int
2012 call_netdevice_notifiers_info_robust(unsigned long val_up,
2013 				     unsigned long val_down,
2014 				     struct netdev_notifier_info *info)
2015 {
2016 	struct net *net = dev_net(info->dev);
2017 
2018 	ASSERT_RTNL();
2019 
2020 	return raw_notifier_call_chain_robust(&net->netdev_chain,
2021 					      val_up, val_down, info);
2022 }
2023 
2024 static int call_netdevice_notifiers_extack(unsigned long val,
2025 					   struct net_device *dev,
2026 					   struct netlink_ext_ack *extack)
2027 {
2028 	struct netdev_notifier_info info = {
2029 		.dev = dev,
2030 		.extack = extack,
2031 	};
2032 
2033 	return call_netdevice_notifiers_info(val, &info);
2034 }
2035 
2036 /**
2037  *	call_netdevice_notifiers - call all network notifier blocks
2038  *      @val: value passed unmodified to notifier function
2039  *      @dev: net_device pointer passed unmodified to notifier function
2040  *
2041  *	Call all network notifier blocks.  Parameters and return value
2042  *	are as for raw_notifier_call_chain().
2043  */
2044 
2045 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
2046 {
2047 	return call_netdevice_notifiers_extack(val, dev, NULL);
2048 }
2049 EXPORT_SYMBOL(call_netdevice_notifiers);
2050 
2051 /**
2052  *	call_netdevice_notifiers_mtu - call all network notifier blocks
2053  *	@val: value passed unmodified to notifier function
2054  *	@dev: net_device pointer passed unmodified to notifier function
2055  *	@arg: additional u32 argument passed to the notifier function
2056  *
2057  *	Call all network notifier blocks.  Parameters and return value
2058  *	are as for raw_notifier_call_chain().
2059  */
2060 static int call_netdevice_notifiers_mtu(unsigned long val,
2061 					struct net_device *dev, u32 arg)
2062 {
2063 	struct netdev_notifier_info_ext info = {
2064 		.info.dev = dev,
2065 		.ext.mtu = arg,
2066 	};
2067 
2068 	BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2069 
2070 	return call_netdevice_notifiers_info(val, &info.info);
2071 }
2072 
2073 #ifdef CONFIG_NET_INGRESS
2074 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2075 
2076 void net_inc_ingress_queue(void)
2077 {
2078 	static_branch_inc(&ingress_needed_key);
2079 }
2080 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2081 
2082 void net_dec_ingress_queue(void)
2083 {
2084 	static_branch_dec(&ingress_needed_key);
2085 }
2086 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2087 #endif
2088 
2089 #ifdef CONFIG_NET_EGRESS
2090 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2091 
2092 void net_inc_egress_queue(void)
2093 {
2094 	static_branch_inc(&egress_needed_key);
2095 }
2096 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2097 
2098 void net_dec_egress_queue(void)
2099 {
2100 	static_branch_dec(&egress_needed_key);
2101 }
2102 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2103 #endif
2104 
2105 #ifdef CONFIG_NET_CLS_ACT
2106 DEFINE_STATIC_KEY_FALSE(tcf_bypass_check_needed_key);
2107 EXPORT_SYMBOL(tcf_bypass_check_needed_key);
2108 #endif
2109 
2110 DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2111 EXPORT_SYMBOL(netstamp_needed_key);
2112 #ifdef CONFIG_JUMP_LABEL
2113 static atomic_t netstamp_needed_deferred;
2114 static atomic_t netstamp_wanted;
2115 static void netstamp_clear(struct work_struct *work)
2116 {
2117 	int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2118 	int wanted;
2119 
2120 	wanted = atomic_add_return(deferred, &netstamp_wanted);
2121 	if (wanted > 0)
2122 		static_branch_enable(&netstamp_needed_key);
2123 	else
2124 		static_branch_disable(&netstamp_needed_key);
2125 }
2126 static DECLARE_WORK(netstamp_work, netstamp_clear);
2127 #endif
2128 
2129 void net_enable_timestamp(void)
2130 {
2131 #ifdef CONFIG_JUMP_LABEL
2132 	int wanted = atomic_read(&netstamp_wanted);
2133 
2134 	while (wanted > 0) {
2135 		if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted + 1))
2136 			return;
2137 	}
2138 	atomic_inc(&netstamp_needed_deferred);
2139 	schedule_work(&netstamp_work);
2140 #else
2141 	static_branch_inc(&netstamp_needed_key);
2142 #endif
2143 }
2144 EXPORT_SYMBOL(net_enable_timestamp);
2145 
2146 void net_disable_timestamp(void)
2147 {
2148 #ifdef CONFIG_JUMP_LABEL
2149 	int wanted = atomic_read(&netstamp_wanted);
2150 
2151 	while (wanted > 1) {
2152 		if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted - 1))
2153 			return;
2154 	}
2155 	atomic_dec(&netstamp_needed_deferred);
2156 	schedule_work(&netstamp_work);
2157 #else
2158 	static_branch_dec(&netstamp_needed_key);
2159 #endif
2160 }
2161 EXPORT_SYMBOL(net_disable_timestamp);
2162 
2163 static inline void net_timestamp_set(struct sk_buff *skb)
2164 {
2165 	skb->tstamp = 0;
2166 	skb->tstamp_type = SKB_CLOCK_REALTIME;
2167 	if (static_branch_unlikely(&netstamp_needed_key))
2168 		skb->tstamp = ktime_get_real();
2169 }
2170 
2171 #define net_timestamp_check(COND, SKB)				\
2172 	if (static_branch_unlikely(&netstamp_needed_key)) {	\
2173 		if ((COND) && !(SKB)->tstamp)			\
2174 			(SKB)->tstamp = ktime_get_real();	\
2175 	}							\
2176 
2177 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2178 {
2179 	return __is_skb_forwardable(dev, skb, true);
2180 }
2181 EXPORT_SYMBOL_GPL(is_skb_forwardable);
2182 
2183 static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb,
2184 			      bool check_mtu)
2185 {
2186 	int ret = ____dev_forward_skb(dev, skb, check_mtu);
2187 
2188 	if (likely(!ret)) {
2189 		skb->protocol = eth_type_trans(skb, dev);
2190 		skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2191 	}
2192 
2193 	return ret;
2194 }
2195 
2196 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2197 {
2198 	return __dev_forward_skb2(dev, skb, true);
2199 }
2200 EXPORT_SYMBOL_GPL(__dev_forward_skb);
2201 
2202 /**
2203  * dev_forward_skb - loopback an skb to another netif
2204  *
2205  * @dev: destination network device
2206  * @skb: buffer to forward
2207  *
2208  * return values:
2209  *	NET_RX_SUCCESS	(no congestion)
2210  *	NET_RX_DROP     (packet was dropped, but freed)
2211  *
2212  * dev_forward_skb can be used for injecting an skb from the
2213  * start_xmit function of one device into the receive queue
2214  * of another device.
2215  *
2216  * The receiving device may be in another namespace, so
2217  * we have to clear all information in the skb that could
2218  * impact namespace isolation.
2219  */
2220 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2221 {
2222 	return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2223 }
2224 EXPORT_SYMBOL_GPL(dev_forward_skb);
2225 
2226 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb)
2227 {
2228 	return __dev_forward_skb2(dev, skb, false) ?: netif_rx_internal(skb);
2229 }
2230 
2231 static inline int deliver_skb(struct sk_buff *skb,
2232 			      struct packet_type *pt_prev,
2233 			      struct net_device *orig_dev)
2234 {
2235 	if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2236 		return -ENOMEM;
2237 	refcount_inc(&skb->users);
2238 	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2239 }
2240 
2241 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2242 					  struct packet_type **pt,
2243 					  struct net_device *orig_dev,
2244 					  __be16 type,
2245 					  struct list_head *ptype_list)
2246 {
2247 	struct packet_type *ptype, *pt_prev = *pt;
2248 
2249 	list_for_each_entry_rcu(ptype, ptype_list, list) {
2250 		if (ptype->type != type)
2251 			continue;
2252 		if (pt_prev)
2253 			deliver_skb(skb, pt_prev, orig_dev);
2254 		pt_prev = ptype;
2255 	}
2256 	*pt = pt_prev;
2257 }
2258 
2259 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2260 {
2261 	if (!ptype->af_packet_priv || !skb->sk)
2262 		return false;
2263 
2264 	if (ptype->id_match)
2265 		return ptype->id_match(ptype, skb->sk);
2266 	else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2267 		return true;
2268 
2269 	return false;
2270 }
2271 
2272 /**
2273  * dev_nit_active - return true if any network interface taps are in use
2274  *
2275  * @dev: network device to check for the presence of taps
2276  */
2277 bool dev_nit_active(struct net_device *dev)
2278 {
2279 	return !list_empty(&net_hotdata.ptype_all) ||
2280 	       !list_empty(&dev->ptype_all);
2281 }
2282 EXPORT_SYMBOL_GPL(dev_nit_active);
2283 
2284 /*
2285  *	Support routine. Sends outgoing frames to any network
2286  *	taps currently in use.
2287  */
2288 
2289 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2290 {
2291 	struct list_head *ptype_list = &net_hotdata.ptype_all;
2292 	struct packet_type *ptype, *pt_prev = NULL;
2293 	struct sk_buff *skb2 = NULL;
2294 
2295 	rcu_read_lock();
2296 again:
2297 	list_for_each_entry_rcu(ptype, ptype_list, list) {
2298 		if (READ_ONCE(ptype->ignore_outgoing))
2299 			continue;
2300 
2301 		/* Never send packets back to the socket
2302 		 * they originated from - MvS (miquels@drinkel.ow.org)
2303 		 */
2304 		if (skb_loop_sk(ptype, skb))
2305 			continue;
2306 
2307 		if (pt_prev) {
2308 			deliver_skb(skb2, pt_prev, skb->dev);
2309 			pt_prev = ptype;
2310 			continue;
2311 		}
2312 
2313 		/* need to clone skb, done only once */
2314 		skb2 = skb_clone(skb, GFP_ATOMIC);
2315 		if (!skb2)
2316 			goto out_unlock;
2317 
2318 		net_timestamp_set(skb2);
2319 
2320 		/* skb->nh should be correctly
2321 		 * set by sender, so that the second statement is
2322 		 * just protection against buggy protocols.
2323 		 */
2324 		skb_reset_mac_header(skb2);
2325 
2326 		if (skb_network_header(skb2) < skb2->data ||
2327 		    skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2328 			net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2329 					     ntohs(skb2->protocol),
2330 					     dev->name);
2331 			skb_reset_network_header(skb2);
2332 		}
2333 
2334 		skb2->transport_header = skb2->network_header;
2335 		skb2->pkt_type = PACKET_OUTGOING;
2336 		pt_prev = ptype;
2337 	}
2338 
2339 	if (ptype_list == &net_hotdata.ptype_all) {
2340 		ptype_list = &dev->ptype_all;
2341 		goto again;
2342 	}
2343 out_unlock:
2344 	if (pt_prev) {
2345 		if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2346 			pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2347 		else
2348 			kfree_skb(skb2);
2349 	}
2350 	rcu_read_unlock();
2351 }
2352 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2353 
2354 /**
2355  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2356  * @dev: Network device
2357  * @txq: number of queues available
2358  *
2359  * If real_num_tx_queues is changed the tc mappings may no longer be
2360  * valid. To resolve this verify the tc mapping remains valid and if
2361  * not NULL the mapping. With no priorities mapping to this
2362  * offset/count pair it will no longer be used. In the worst case TC0
2363  * is invalid nothing can be done so disable priority mappings. If is
2364  * expected that drivers will fix this mapping if they can before
2365  * calling netif_set_real_num_tx_queues.
2366  */
2367 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2368 {
2369 	int i;
2370 	struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2371 
2372 	/* If TC0 is invalidated disable TC mapping */
2373 	if (tc->offset + tc->count > txq) {
2374 		netdev_warn(dev, "Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2375 		dev->num_tc = 0;
2376 		return;
2377 	}
2378 
2379 	/* Invalidated prio to tc mappings set to TC0 */
2380 	for (i = 1; i < TC_BITMASK + 1; i++) {
2381 		int q = netdev_get_prio_tc_map(dev, i);
2382 
2383 		tc = &dev->tc_to_txq[q];
2384 		if (tc->offset + tc->count > txq) {
2385 			netdev_warn(dev, "Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2386 				    i, q);
2387 			netdev_set_prio_tc_map(dev, i, 0);
2388 		}
2389 	}
2390 }
2391 
2392 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2393 {
2394 	if (dev->num_tc) {
2395 		struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2396 		int i;
2397 
2398 		/* walk through the TCs and see if it falls into any of them */
2399 		for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2400 			if ((txq - tc->offset) < tc->count)
2401 				return i;
2402 		}
2403 
2404 		/* didn't find it, just return -1 to indicate no match */
2405 		return -1;
2406 	}
2407 
2408 	return 0;
2409 }
2410 EXPORT_SYMBOL(netdev_txq_to_tc);
2411 
2412 #ifdef CONFIG_XPS
2413 static struct static_key xps_needed __read_mostly;
2414 static struct static_key xps_rxqs_needed __read_mostly;
2415 static DEFINE_MUTEX(xps_map_mutex);
2416 #define xmap_dereference(P)		\
2417 	rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2418 
2419 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2420 			     struct xps_dev_maps *old_maps, int tci, u16 index)
2421 {
2422 	struct xps_map *map = NULL;
2423 	int pos;
2424 
2425 	map = xmap_dereference(dev_maps->attr_map[tci]);
2426 	if (!map)
2427 		return false;
2428 
2429 	for (pos = map->len; pos--;) {
2430 		if (map->queues[pos] != index)
2431 			continue;
2432 
2433 		if (map->len > 1) {
2434 			map->queues[pos] = map->queues[--map->len];
2435 			break;
2436 		}
2437 
2438 		if (old_maps)
2439 			RCU_INIT_POINTER(old_maps->attr_map[tci], NULL);
2440 		RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2441 		kfree_rcu(map, rcu);
2442 		return false;
2443 	}
2444 
2445 	return true;
2446 }
2447 
2448 static bool remove_xps_queue_cpu(struct net_device *dev,
2449 				 struct xps_dev_maps *dev_maps,
2450 				 int cpu, u16 offset, u16 count)
2451 {
2452 	int num_tc = dev_maps->num_tc;
2453 	bool active = false;
2454 	int tci;
2455 
2456 	for (tci = cpu * num_tc; num_tc--; tci++) {
2457 		int i, j;
2458 
2459 		for (i = count, j = offset; i--; j++) {
2460 			if (!remove_xps_queue(dev_maps, NULL, tci, j))
2461 				break;
2462 		}
2463 
2464 		active |= i < 0;
2465 	}
2466 
2467 	return active;
2468 }
2469 
2470 static void reset_xps_maps(struct net_device *dev,
2471 			   struct xps_dev_maps *dev_maps,
2472 			   enum xps_map_type type)
2473 {
2474 	static_key_slow_dec_cpuslocked(&xps_needed);
2475 	if (type == XPS_RXQS)
2476 		static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2477 
2478 	RCU_INIT_POINTER(dev->xps_maps[type], NULL);
2479 
2480 	kfree_rcu(dev_maps, rcu);
2481 }
2482 
2483 static void clean_xps_maps(struct net_device *dev, enum xps_map_type type,
2484 			   u16 offset, u16 count)
2485 {
2486 	struct xps_dev_maps *dev_maps;
2487 	bool active = false;
2488 	int i, j;
2489 
2490 	dev_maps = xmap_dereference(dev->xps_maps[type]);
2491 	if (!dev_maps)
2492 		return;
2493 
2494 	for (j = 0; j < dev_maps->nr_ids; j++)
2495 		active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, count);
2496 	if (!active)
2497 		reset_xps_maps(dev, dev_maps, type);
2498 
2499 	if (type == XPS_CPUS) {
2500 		for (i = offset + (count - 1); count--; i--)
2501 			netdev_queue_numa_node_write(
2502 				netdev_get_tx_queue(dev, i), NUMA_NO_NODE);
2503 	}
2504 }
2505 
2506 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2507 				   u16 count)
2508 {
2509 	if (!static_key_false(&xps_needed))
2510 		return;
2511 
2512 	cpus_read_lock();
2513 	mutex_lock(&xps_map_mutex);
2514 
2515 	if (static_key_false(&xps_rxqs_needed))
2516 		clean_xps_maps(dev, XPS_RXQS, offset, count);
2517 
2518 	clean_xps_maps(dev, XPS_CPUS, offset, count);
2519 
2520 	mutex_unlock(&xps_map_mutex);
2521 	cpus_read_unlock();
2522 }
2523 
2524 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2525 {
2526 	netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2527 }
2528 
2529 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2530 				      u16 index, bool is_rxqs_map)
2531 {
2532 	struct xps_map *new_map;
2533 	int alloc_len = XPS_MIN_MAP_ALLOC;
2534 	int i, pos;
2535 
2536 	for (pos = 0; map && pos < map->len; pos++) {
2537 		if (map->queues[pos] != index)
2538 			continue;
2539 		return map;
2540 	}
2541 
2542 	/* Need to add tx-queue to this CPU's/rx-queue's existing map */
2543 	if (map) {
2544 		if (pos < map->alloc_len)
2545 			return map;
2546 
2547 		alloc_len = map->alloc_len * 2;
2548 	}
2549 
2550 	/* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2551 	 *  map
2552 	 */
2553 	if (is_rxqs_map)
2554 		new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2555 	else
2556 		new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2557 				       cpu_to_node(attr_index));
2558 	if (!new_map)
2559 		return NULL;
2560 
2561 	for (i = 0; i < pos; i++)
2562 		new_map->queues[i] = map->queues[i];
2563 	new_map->alloc_len = alloc_len;
2564 	new_map->len = pos;
2565 
2566 	return new_map;
2567 }
2568 
2569 /* Copy xps maps at a given index */
2570 static void xps_copy_dev_maps(struct xps_dev_maps *dev_maps,
2571 			      struct xps_dev_maps *new_dev_maps, int index,
2572 			      int tc, bool skip_tc)
2573 {
2574 	int i, tci = index * dev_maps->num_tc;
2575 	struct xps_map *map;
2576 
2577 	/* copy maps belonging to foreign traffic classes */
2578 	for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2579 		if (i == tc && skip_tc)
2580 			continue;
2581 
2582 		/* fill in the new device map from the old device map */
2583 		map = xmap_dereference(dev_maps->attr_map[tci]);
2584 		RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2585 	}
2586 }
2587 
2588 /* Must be called under cpus_read_lock */
2589 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2590 			  u16 index, enum xps_map_type type)
2591 {
2592 	struct xps_dev_maps *dev_maps, *new_dev_maps = NULL, *old_dev_maps = NULL;
2593 	const unsigned long *online_mask = NULL;
2594 	bool active = false, copy = false;
2595 	int i, j, tci, numa_node_id = -2;
2596 	int maps_sz, num_tc = 1, tc = 0;
2597 	struct xps_map *map, *new_map;
2598 	unsigned int nr_ids;
2599 
2600 	WARN_ON_ONCE(index >= dev->num_tx_queues);
2601 
2602 	if (dev->num_tc) {
2603 		/* Do not allow XPS on subordinate device directly */
2604 		num_tc = dev->num_tc;
2605 		if (num_tc < 0)
2606 			return -EINVAL;
2607 
2608 		/* If queue belongs to subordinate dev use its map */
2609 		dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2610 
2611 		tc = netdev_txq_to_tc(dev, index);
2612 		if (tc < 0)
2613 			return -EINVAL;
2614 	}
2615 
2616 	mutex_lock(&xps_map_mutex);
2617 
2618 	dev_maps = xmap_dereference(dev->xps_maps[type]);
2619 	if (type == XPS_RXQS) {
2620 		maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2621 		nr_ids = dev->num_rx_queues;
2622 	} else {
2623 		maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2624 		if (num_possible_cpus() > 1)
2625 			online_mask = cpumask_bits(cpu_online_mask);
2626 		nr_ids = nr_cpu_ids;
2627 	}
2628 
2629 	if (maps_sz < L1_CACHE_BYTES)
2630 		maps_sz = L1_CACHE_BYTES;
2631 
2632 	/* The old dev_maps could be larger or smaller than the one we're
2633 	 * setting up now, as dev->num_tc or nr_ids could have been updated in
2634 	 * between. We could try to be smart, but let's be safe instead and only
2635 	 * copy foreign traffic classes if the two map sizes match.
2636 	 */
2637 	if (dev_maps &&
2638 	    dev_maps->num_tc == num_tc && dev_maps->nr_ids == nr_ids)
2639 		copy = true;
2640 
2641 	/* allocate memory for queue storage */
2642 	for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2643 	     j < nr_ids;) {
2644 		if (!new_dev_maps) {
2645 			new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2646 			if (!new_dev_maps) {
2647 				mutex_unlock(&xps_map_mutex);
2648 				return -ENOMEM;
2649 			}
2650 
2651 			new_dev_maps->nr_ids = nr_ids;
2652 			new_dev_maps->num_tc = num_tc;
2653 		}
2654 
2655 		tci = j * num_tc + tc;
2656 		map = copy ? xmap_dereference(dev_maps->attr_map[tci]) : NULL;
2657 
2658 		map = expand_xps_map(map, j, index, type == XPS_RXQS);
2659 		if (!map)
2660 			goto error;
2661 
2662 		RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2663 	}
2664 
2665 	if (!new_dev_maps)
2666 		goto out_no_new_maps;
2667 
2668 	if (!dev_maps) {
2669 		/* Increment static keys at most once per type */
2670 		static_key_slow_inc_cpuslocked(&xps_needed);
2671 		if (type == XPS_RXQS)
2672 			static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2673 	}
2674 
2675 	for (j = 0; j < nr_ids; j++) {
2676 		bool skip_tc = false;
2677 
2678 		tci = j * num_tc + tc;
2679 		if (netif_attr_test_mask(j, mask, nr_ids) &&
2680 		    netif_attr_test_online(j, online_mask, nr_ids)) {
2681 			/* add tx-queue to CPU/rx-queue maps */
2682 			int pos = 0;
2683 
2684 			skip_tc = true;
2685 
2686 			map = xmap_dereference(new_dev_maps->attr_map[tci]);
2687 			while ((pos < map->len) && (map->queues[pos] != index))
2688 				pos++;
2689 
2690 			if (pos == map->len)
2691 				map->queues[map->len++] = index;
2692 #ifdef CONFIG_NUMA
2693 			if (type == XPS_CPUS) {
2694 				if (numa_node_id == -2)
2695 					numa_node_id = cpu_to_node(j);
2696 				else if (numa_node_id != cpu_to_node(j))
2697 					numa_node_id = -1;
2698 			}
2699 #endif
2700 		}
2701 
2702 		if (copy)
2703 			xps_copy_dev_maps(dev_maps, new_dev_maps, j, tc,
2704 					  skip_tc);
2705 	}
2706 
2707 	rcu_assign_pointer(dev->xps_maps[type], new_dev_maps);
2708 
2709 	/* Cleanup old maps */
2710 	if (!dev_maps)
2711 		goto out_no_old_maps;
2712 
2713 	for (j = 0; j < dev_maps->nr_ids; j++) {
2714 		for (i = num_tc, tci = j * dev_maps->num_tc; i--; tci++) {
2715 			map = xmap_dereference(dev_maps->attr_map[tci]);
2716 			if (!map)
2717 				continue;
2718 
2719 			if (copy) {
2720 				new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2721 				if (map == new_map)
2722 					continue;
2723 			}
2724 
2725 			RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2726 			kfree_rcu(map, rcu);
2727 		}
2728 	}
2729 
2730 	old_dev_maps = dev_maps;
2731 
2732 out_no_old_maps:
2733 	dev_maps = new_dev_maps;
2734 	active = true;
2735 
2736 out_no_new_maps:
2737 	if (type == XPS_CPUS)
2738 		/* update Tx queue numa node */
2739 		netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2740 					     (numa_node_id >= 0) ?
2741 					     numa_node_id : NUMA_NO_NODE);
2742 
2743 	if (!dev_maps)
2744 		goto out_no_maps;
2745 
2746 	/* removes tx-queue from unused CPUs/rx-queues */
2747 	for (j = 0; j < dev_maps->nr_ids; j++) {
2748 		tci = j * dev_maps->num_tc;
2749 
2750 		for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2751 			if (i == tc &&
2752 			    netif_attr_test_mask(j, mask, dev_maps->nr_ids) &&
2753 			    netif_attr_test_online(j, online_mask, dev_maps->nr_ids))
2754 				continue;
2755 
2756 			active |= remove_xps_queue(dev_maps,
2757 						   copy ? old_dev_maps : NULL,
2758 						   tci, index);
2759 		}
2760 	}
2761 
2762 	if (old_dev_maps)
2763 		kfree_rcu(old_dev_maps, rcu);
2764 
2765 	/* free map if not active */
2766 	if (!active)
2767 		reset_xps_maps(dev, dev_maps, type);
2768 
2769 out_no_maps:
2770 	mutex_unlock(&xps_map_mutex);
2771 
2772 	return 0;
2773 error:
2774 	/* remove any maps that we added */
2775 	for (j = 0; j < nr_ids; j++) {
2776 		for (i = num_tc, tci = j * num_tc; i--; tci++) {
2777 			new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2778 			map = copy ?
2779 			      xmap_dereference(dev_maps->attr_map[tci]) :
2780 			      NULL;
2781 			if (new_map && new_map != map)
2782 				kfree(new_map);
2783 		}
2784 	}
2785 
2786 	mutex_unlock(&xps_map_mutex);
2787 
2788 	kfree(new_dev_maps);
2789 	return -ENOMEM;
2790 }
2791 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2792 
2793 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2794 			u16 index)
2795 {
2796 	int ret;
2797 
2798 	cpus_read_lock();
2799 	ret =  __netif_set_xps_queue(dev, cpumask_bits(mask), index, XPS_CPUS);
2800 	cpus_read_unlock();
2801 
2802 	return ret;
2803 }
2804 EXPORT_SYMBOL(netif_set_xps_queue);
2805 
2806 #endif
2807 static void netdev_unbind_all_sb_channels(struct net_device *dev)
2808 {
2809 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2810 
2811 	/* Unbind any subordinate channels */
2812 	while (txq-- != &dev->_tx[0]) {
2813 		if (txq->sb_dev)
2814 			netdev_unbind_sb_channel(dev, txq->sb_dev);
2815 	}
2816 }
2817 
2818 void netdev_reset_tc(struct net_device *dev)
2819 {
2820 #ifdef CONFIG_XPS
2821 	netif_reset_xps_queues_gt(dev, 0);
2822 #endif
2823 	netdev_unbind_all_sb_channels(dev);
2824 
2825 	/* Reset TC configuration of device */
2826 	dev->num_tc = 0;
2827 	memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2828 	memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2829 }
2830 EXPORT_SYMBOL(netdev_reset_tc);
2831 
2832 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2833 {
2834 	if (tc >= dev->num_tc)
2835 		return -EINVAL;
2836 
2837 #ifdef CONFIG_XPS
2838 	netif_reset_xps_queues(dev, offset, count);
2839 #endif
2840 	dev->tc_to_txq[tc].count = count;
2841 	dev->tc_to_txq[tc].offset = offset;
2842 	return 0;
2843 }
2844 EXPORT_SYMBOL(netdev_set_tc_queue);
2845 
2846 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2847 {
2848 	if (num_tc > TC_MAX_QUEUE)
2849 		return -EINVAL;
2850 
2851 #ifdef CONFIG_XPS
2852 	netif_reset_xps_queues_gt(dev, 0);
2853 #endif
2854 	netdev_unbind_all_sb_channels(dev);
2855 
2856 	dev->num_tc = num_tc;
2857 	return 0;
2858 }
2859 EXPORT_SYMBOL(netdev_set_num_tc);
2860 
2861 void netdev_unbind_sb_channel(struct net_device *dev,
2862 			      struct net_device *sb_dev)
2863 {
2864 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2865 
2866 #ifdef CONFIG_XPS
2867 	netif_reset_xps_queues_gt(sb_dev, 0);
2868 #endif
2869 	memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2870 	memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2871 
2872 	while (txq-- != &dev->_tx[0]) {
2873 		if (txq->sb_dev == sb_dev)
2874 			txq->sb_dev = NULL;
2875 	}
2876 }
2877 EXPORT_SYMBOL(netdev_unbind_sb_channel);
2878 
2879 int netdev_bind_sb_channel_queue(struct net_device *dev,
2880 				 struct net_device *sb_dev,
2881 				 u8 tc, u16 count, u16 offset)
2882 {
2883 	/* Make certain the sb_dev and dev are already configured */
2884 	if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2885 		return -EINVAL;
2886 
2887 	/* We cannot hand out queues we don't have */
2888 	if ((offset + count) > dev->real_num_tx_queues)
2889 		return -EINVAL;
2890 
2891 	/* Record the mapping */
2892 	sb_dev->tc_to_txq[tc].count = count;
2893 	sb_dev->tc_to_txq[tc].offset = offset;
2894 
2895 	/* Provide a way for Tx queue to find the tc_to_txq map or
2896 	 * XPS map for itself.
2897 	 */
2898 	while (count--)
2899 		netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2900 
2901 	return 0;
2902 }
2903 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2904 
2905 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2906 {
2907 	/* Do not use a multiqueue device to represent a subordinate channel */
2908 	if (netif_is_multiqueue(dev))
2909 		return -ENODEV;
2910 
2911 	/* We allow channels 1 - 32767 to be used for subordinate channels.
2912 	 * Channel 0 is meant to be "native" mode and used only to represent
2913 	 * the main root device. We allow writing 0 to reset the device back
2914 	 * to normal mode after being used as a subordinate channel.
2915 	 */
2916 	if (channel > S16_MAX)
2917 		return -EINVAL;
2918 
2919 	dev->num_tc = -channel;
2920 
2921 	return 0;
2922 }
2923 EXPORT_SYMBOL(netdev_set_sb_channel);
2924 
2925 /*
2926  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2927  * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2928  */
2929 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2930 {
2931 	bool disabling;
2932 	int rc;
2933 
2934 	disabling = txq < dev->real_num_tx_queues;
2935 
2936 	if (txq < 1 || txq > dev->num_tx_queues)
2937 		return -EINVAL;
2938 
2939 	if (dev->reg_state == NETREG_REGISTERED ||
2940 	    dev->reg_state == NETREG_UNREGISTERING) {
2941 		ASSERT_RTNL();
2942 
2943 		rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2944 						  txq);
2945 		if (rc)
2946 			return rc;
2947 
2948 		if (dev->num_tc)
2949 			netif_setup_tc(dev, txq);
2950 
2951 		dev_qdisc_change_real_num_tx(dev, txq);
2952 
2953 		dev->real_num_tx_queues = txq;
2954 
2955 		if (disabling) {
2956 			synchronize_net();
2957 			qdisc_reset_all_tx_gt(dev, txq);
2958 #ifdef CONFIG_XPS
2959 			netif_reset_xps_queues_gt(dev, txq);
2960 #endif
2961 		}
2962 	} else {
2963 		dev->real_num_tx_queues = txq;
2964 	}
2965 
2966 	return 0;
2967 }
2968 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2969 
2970 #ifdef CONFIG_SYSFS
2971 /**
2972  *	netif_set_real_num_rx_queues - set actual number of RX queues used
2973  *	@dev: Network device
2974  *	@rxq: Actual number of RX queues
2975  *
2976  *	This must be called either with the rtnl_lock held or before
2977  *	registration of the net device.  Returns 0 on success, or a
2978  *	negative error code.  If called before registration, it always
2979  *	succeeds.
2980  */
2981 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2982 {
2983 	int rc;
2984 
2985 	if (rxq < 1 || rxq > dev->num_rx_queues)
2986 		return -EINVAL;
2987 
2988 	if (dev->reg_state == NETREG_REGISTERED) {
2989 		ASSERT_RTNL();
2990 
2991 		rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2992 						  rxq);
2993 		if (rc)
2994 			return rc;
2995 	}
2996 
2997 	dev->real_num_rx_queues = rxq;
2998 	return 0;
2999 }
3000 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
3001 #endif
3002 
3003 /**
3004  *	netif_set_real_num_queues - set actual number of RX and TX queues used
3005  *	@dev: Network device
3006  *	@txq: Actual number of TX queues
3007  *	@rxq: Actual number of RX queues
3008  *
3009  *	Set the real number of both TX and RX queues.
3010  *	Does nothing if the number of queues is already correct.
3011  */
3012 int netif_set_real_num_queues(struct net_device *dev,
3013 			      unsigned int txq, unsigned int rxq)
3014 {
3015 	unsigned int old_rxq = dev->real_num_rx_queues;
3016 	int err;
3017 
3018 	if (txq < 1 || txq > dev->num_tx_queues ||
3019 	    rxq < 1 || rxq > dev->num_rx_queues)
3020 		return -EINVAL;
3021 
3022 	/* Start from increases, so the error path only does decreases -
3023 	 * decreases can't fail.
3024 	 */
3025 	if (rxq > dev->real_num_rx_queues) {
3026 		err = netif_set_real_num_rx_queues(dev, rxq);
3027 		if (err)
3028 			return err;
3029 	}
3030 	if (txq > dev->real_num_tx_queues) {
3031 		err = netif_set_real_num_tx_queues(dev, txq);
3032 		if (err)
3033 			goto undo_rx;
3034 	}
3035 	if (rxq < dev->real_num_rx_queues)
3036 		WARN_ON(netif_set_real_num_rx_queues(dev, rxq));
3037 	if (txq < dev->real_num_tx_queues)
3038 		WARN_ON(netif_set_real_num_tx_queues(dev, txq));
3039 
3040 	return 0;
3041 undo_rx:
3042 	WARN_ON(netif_set_real_num_rx_queues(dev, old_rxq));
3043 	return err;
3044 }
3045 EXPORT_SYMBOL(netif_set_real_num_queues);
3046 
3047 /**
3048  * netif_set_tso_max_size() - set the max size of TSO frames supported
3049  * @dev:	netdev to update
3050  * @size:	max skb->len of a TSO frame
3051  *
3052  * Set the limit on the size of TSO super-frames the device can handle.
3053  * Unless explicitly set the stack will assume the value of
3054  * %GSO_LEGACY_MAX_SIZE.
3055  */
3056 void netif_set_tso_max_size(struct net_device *dev, unsigned int size)
3057 {
3058 	dev->tso_max_size = min(GSO_MAX_SIZE, size);
3059 	if (size < READ_ONCE(dev->gso_max_size))
3060 		netif_set_gso_max_size(dev, size);
3061 	if (size < READ_ONCE(dev->gso_ipv4_max_size))
3062 		netif_set_gso_ipv4_max_size(dev, size);
3063 }
3064 EXPORT_SYMBOL(netif_set_tso_max_size);
3065 
3066 /**
3067  * netif_set_tso_max_segs() - set the max number of segs supported for TSO
3068  * @dev:	netdev to update
3069  * @segs:	max number of TCP segments
3070  *
3071  * Set the limit on the number of TCP segments the device can generate from
3072  * a single TSO super-frame.
3073  * Unless explicitly set the stack will assume the value of %GSO_MAX_SEGS.
3074  */
3075 void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs)
3076 {
3077 	dev->tso_max_segs = segs;
3078 	if (segs < READ_ONCE(dev->gso_max_segs))
3079 		netif_set_gso_max_segs(dev, segs);
3080 }
3081 EXPORT_SYMBOL(netif_set_tso_max_segs);
3082 
3083 /**
3084  * netif_inherit_tso_max() - copy all TSO limits from a lower device to an upper
3085  * @to:		netdev to update
3086  * @from:	netdev from which to copy the limits
3087  */
3088 void netif_inherit_tso_max(struct net_device *to, const struct net_device *from)
3089 {
3090 	netif_set_tso_max_size(to, from->tso_max_size);
3091 	netif_set_tso_max_segs(to, from->tso_max_segs);
3092 }
3093 EXPORT_SYMBOL(netif_inherit_tso_max);
3094 
3095 /**
3096  * netif_get_num_default_rss_queues - default number of RSS queues
3097  *
3098  * Default value is the number of physical cores if there are only 1 or 2, or
3099  * divided by 2 if there are more.
3100  */
3101 int netif_get_num_default_rss_queues(void)
3102 {
3103 	cpumask_var_t cpus;
3104 	int cpu, count = 0;
3105 
3106 	if (unlikely(is_kdump_kernel() || !zalloc_cpumask_var(&cpus, GFP_KERNEL)))
3107 		return 1;
3108 
3109 	cpumask_copy(cpus, cpu_online_mask);
3110 	for_each_cpu(cpu, cpus) {
3111 		++count;
3112 		cpumask_andnot(cpus, cpus, topology_sibling_cpumask(cpu));
3113 	}
3114 	free_cpumask_var(cpus);
3115 
3116 	return count > 2 ? DIV_ROUND_UP(count, 2) : count;
3117 }
3118 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3119 
3120 static void __netif_reschedule(struct Qdisc *q)
3121 {
3122 	struct softnet_data *sd;
3123 	unsigned long flags;
3124 
3125 	local_irq_save(flags);
3126 	sd = this_cpu_ptr(&softnet_data);
3127 	q->next_sched = NULL;
3128 	*sd->output_queue_tailp = q;
3129 	sd->output_queue_tailp = &q->next_sched;
3130 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
3131 	local_irq_restore(flags);
3132 }
3133 
3134 void __netif_schedule(struct Qdisc *q)
3135 {
3136 	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3137 		__netif_reschedule(q);
3138 }
3139 EXPORT_SYMBOL(__netif_schedule);
3140 
3141 struct dev_kfree_skb_cb {
3142 	enum skb_drop_reason reason;
3143 };
3144 
3145 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
3146 {
3147 	return (struct dev_kfree_skb_cb *)skb->cb;
3148 }
3149 
3150 void netif_schedule_queue(struct netdev_queue *txq)
3151 {
3152 	rcu_read_lock();
3153 	if (!netif_xmit_stopped(txq)) {
3154 		struct Qdisc *q = rcu_dereference(txq->qdisc);
3155 
3156 		__netif_schedule(q);
3157 	}
3158 	rcu_read_unlock();
3159 }
3160 EXPORT_SYMBOL(netif_schedule_queue);
3161 
3162 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3163 {
3164 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3165 		struct Qdisc *q;
3166 
3167 		rcu_read_lock();
3168 		q = rcu_dereference(dev_queue->qdisc);
3169 		__netif_schedule(q);
3170 		rcu_read_unlock();
3171 	}
3172 }
3173 EXPORT_SYMBOL(netif_tx_wake_queue);
3174 
3175 void dev_kfree_skb_irq_reason(struct sk_buff *skb, enum skb_drop_reason reason)
3176 {
3177 	unsigned long flags;
3178 
3179 	if (unlikely(!skb))
3180 		return;
3181 
3182 	if (likely(refcount_read(&skb->users) == 1)) {
3183 		smp_rmb();
3184 		refcount_set(&skb->users, 0);
3185 	} else if (likely(!refcount_dec_and_test(&skb->users))) {
3186 		return;
3187 	}
3188 	get_kfree_skb_cb(skb)->reason = reason;
3189 	local_irq_save(flags);
3190 	skb->next = __this_cpu_read(softnet_data.completion_queue);
3191 	__this_cpu_write(softnet_data.completion_queue, skb);
3192 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
3193 	local_irq_restore(flags);
3194 }
3195 EXPORT_SYMBOL(dev_kfree_skb_irq_reason);
3196 
3197 void dev_kfree_skb_any_reason(struct sk_buff *skb, enum skb_drop_reason reason)
3198 {
3199 	if (in_hardirq() || irqs_disabled())
3200 		dev_kfree_skb_irq_reason(skb, reason);
3201 	else
3202 		kfree_skb_reason(skb, reason);
3203 }
3204 EXPORT_SYMBOL(dev_kfree_skb_any_reason);
3205 
3206 
3207 /**
3208  * netif_device_detach - mark device as removed
3209  * @dev: network device
3210  *
3211  * Mark device as removed from system and therefore no longer available.
3212  */
3213 void netif_device_detach(struct net_device *dev)
3214 {
3215 	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3216 	    netif_running(dev)) {
3217 		netif_tx_stop_all_queues(dev);
3218 	}
3219 }
3220 EXPORT_SYMBOL(netif_device_detach);
3221 
3222 /**
3223  * netif_device_attach - mark device as attached
3224  * @dev: network device
3225  *
3226  * Mark device as attached from system and restart if needed.
3227  */
3228 void netif_device_attach(struct net_device *dev)
3229 {
3230 	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3231 	    netif_running(dev)) {
3232 		netif_tx_wake_all_queues(dev);
3233 		__netdev_watchdog_up(dev);
3234 	}
3235 }
3236 EXPORT_SYMBOL(netif_device_attach);
3237 
3238 /*
3239  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3240  * to be used as a distribution range.
3241  */
3242 static u16 skb_tx_hash(const struct net_device *dev,
3243 		       const struct net_device *sb_dev,
3244 		       struct sk_buff *skb)
3245 {
3246 	u32 hash;
3247 	u16 qoffset = 0;
3248 	u16 qcount = dev->real_num_tx_queues;
3249 
3250 	if (dev->num_tc) {
3251 		u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3252 
3253 		qoffset = sb_dev->tc_to_txq[tc].offset;
3254 		qcount = sb_dev->tc_to_txq[tc].count;
3255 		if (unlikely(!qcount)) {
3256 			net_warn_ratelimited("%s: invalid qcount, qoffset %u for tc %u\n",
3257 					     sb_dev->name, qoffset, tc);
3258 			qoffset = 0;
3259 			qcount = dev->real_num_tx_queues;
3260 		}
3261 	}
3262 
3263 	if (skb_rx_queue_recorded(skb)) {
3264 		DEBUG_NET_WARN_ON_ONCE(qcount == 0);
3265 		hash = skb_get_rx_queue(skb);
3266 		if (hash >= qoffset)
3267 			hash -= qoffset;
3268 		while (unlikely(hash >= qcount))
3269 			hash -= qcount;
3270 		return hash + qoffset;
3271 	}
3272 
3273 	return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3274 }
3275 
3276 void skb_warn_bad_offload(const struct sk_buff *skb)
3277 {
3278 	static const netdev_features_t null_features;
3279 	struct net_device *dev = skb->dev;
3280 	const char *name = "";
3281 
3282 	if (!net_ratelimit())
3283 		return;
3284 
3285 	if (dev) {
3286 		if (dev->dev.parent)
3287 			name = dev_driver_string(dev->dev.parent);
3288 		else
3289 			name = netdev_name(dev);
3290 	}
3291 	skb_dump(KERN_WARNING, skb, false);
3292 	WARN(1, "%s: caps=(%pNF, %pNF)\n",
3293 	     name, dev ? &dev->features : &null_features,
3294 	     skb->sk ? &skb->sk->sk_route_caps : &null_features);
3295 }
3296 
3297 /*
3298  * Invalidate hardware checksum when packet is to be mangled, and
3299  * complete checksum manually on outgoing path.
3300  */
3301 int skb_checksum_help(struct sk_buff *skb)
3302 {
3303 	__wsum csum;
3304 	int ret = 0, offset;
3305 
3306 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3307 		goto out_set_summed;
3308 
3309 	if (unlikely(skb_is_gso(skb))) {
3310 		skb_warn_bad_offload(skb);
3311 		return -EINVAL;
3312 	}
3313 
3314 	/* Before computing a checksum, we should make sure no frag could
3315 	 * be modified by an external entity : checksum could be wrong.
3316 	 */
3317 	if (skb_has_shared_frag(skb)) {
3318 		ret = __skb_linearize(skb);
3319 		if (ret)
3320 			goto out;
3321 	}
3322 
3323 	offset = skb_checksum_start_offset(skb);
3324 	ret = -EINVAL;
3325 	if (unlikely(offset >= skb_headlen(skb))) {
3326 		DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3327 		WARN_ONCE(true, "offset (%d) >= skb_headlen() (%u)\n",
3328 			  offset, skb_headlen(skb));
3329 		goto out;
3330 	}
3331 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
3332 
3333 	offset += skb->csum_offset;
3334 	if (unlikely(offset + sizeof(__sum16) > skb_headlen(skb))) {
3335 		DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3336 		WARN_ONCE(true, "offset+2 (%zu) > skb_headlen() (%u)\n",
3337 			  offset + sizeof(__sum16), skb_headlen(skb));
3338 		goto out;
3339 	}
3340 	ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3341 	if (ret)
3342 		goto out;
3343 
3344 	*(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3345 out_set_summed:
3346 	skb->ip_summed = CHECKSUM_NONE;
3347 out:
3348 	return ret;
3349 }
3350 EXPORT_SYMBOL(skb_checksum_help);
3351 
3352 int skb_crc32c_csum_help(struct sk_buff *skb)
3353 {
3354 	__le32 crc32c_csum;
3355 	int ret = 0, offset, start;
3356 
3357 	if (skb->ip_summed != CHECKSUM_PARTIAL)
3358 		goto out;
3359 
3360 	if (unlikely(skb_is_gso(skb)))
3361 		goto out;
3362 
3363 	/* Before computing a checksum, we should make sure no frag could
3364 	 * be modified by an external entity : checksum could be wrong.
3365 	 */
3366 	if (unlikely(skb_has_shared_frag(skb))) {
3367 		ret = __skb_linearize(skb);
3368 		if (ret)
3369 			goto out;
3370 	}
3371 	start = skb_checksum_start_offset(skb);
3372 	offset = start + offsetof(struct sctphdr, checksum);
3373 	if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3374 		ret = -EINVAL;
3375 		goto out;
3376 	}
3377 
3378 	ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3379 	if (ret)
3380 		goto out;
3381 
3382 	crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3383 						  skb->len - start, ~(__u32)0,
3384 						  crc32c_csum_stub));
3385 	*(__le32 *)(skb->data + offset) = crc32c_csum;
3386 	skb_reset_csum_not_inet(skb);
3387 out:
3388 	return ret;
3389 }
3390 EXPORT_SYMBOL(skb_crc32c_csum_help);
3391 
3392 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3393 {
3394 	__be16 type = skb->protocol;
3395 
3396 	/* Tunnel gso handlers can set protocol to ethernet. */
3397 	if (type == htons(ETH_P_TEB)) {
3398 		struct ethhdr *eth;
3399 
3400 		if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3401 			return 0;
3402 
3403 		eth = (struct ethhdr *)skb->data;
3404 		type = eth->h_proto;
3405 	}
3406 
3407 	return vlan_get_protocol_and_depth(skb, type, depth);
3408 }
3409 
3410 
3411 /* Take action when hardware reception checksum errors are detected. */
3412 #ifdef CONFIG_BUG
3413 static void do_netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3414 {
3415 	netdev_err(dev, "hw csum failure\n");
3416 	skb_dump(KERN_ERR, skb, true);
3417 	dump_stack();
3418 }
3419 
3420 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3421 {
3422 	DO_ONCE_LITE(do_netdev_rx_csum_fault, dev, skb);
3423 }
3424 EXPORT_SYMBOL(netdev_rx_csum_fault);
3425 #endif
3426 
3427 /* XXX: check that highmem exists at all on the given machine. */
3428 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3429 {
3430 #ifdef CONFIG_HIGHMEM
3431 	int i;
3432 
3433 	if (!(dev->features & NETIF_F_HIGHDMA)) {
3434 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3435 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3436 
3437 			if (PageHighMem(skb_frag_page(frag)))
3438 				return 1;
3439 		}
3440 	}
3441 #endif
3442 	return 0;
3443 }
3444 
3445 /* If MPLS offload request, verify we are testing hardware MPLS features
3446  * instead of standard features for the netdev.
3447  */
3448 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3449 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3450 					   netdev_features_t features,
3451 					   __be16 type)
3452 {
3453 	if (eth_p_mpls(type))
3454 		features &= skb->dev->mpls_features;
3455 
3456 	return features;
3457 }
3458 #else
3459 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3460 					   netdev_features_t features,
3461 					   __be16 type)
3462 {
3463 	return features;
3464 }
3465 #endif
3466 
3467 static netdev_features_t harmonize_features(struct sk_buff *skb,
3468 	netdev_features_t features)
3469 {
3470 	__be16 type;
3471 
3472 	type = skb_network_protocol(skb, NULL);
3473 	features = net_mpls_features(skb, features, type);
3474 
3475 	if (skb->ip_summed != CHECKSUM_NONE &&
3476 	    !can_checksum_protocol(features, type)) {
3477 		features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3478 	}
3479 	if (illegal_highdma(skb->dev, skb))
3480 		features &= ~NETIF_F_SG;
3481 
3482 	return features;
3483 }
3484 
3485 netdev_features_t passthru_features_check(struct sk_buff *skb,
3486 					  struct net_device *dev,
3487 					  netdev_features_t features)
3488 {
3489 	return features;
3490 }
3491 EXPORT_SYMBOL(passthru_features_check);
3492 
3493 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3494 					     struct net_device *dev,
3495 					     netdev_features_t features)
3496 {
3497 	return vlan_features_check(skb, features);
3498 }
3499 
3500 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3501 					    struct net_device *dev,
3502 					    netdev_features_t features)
3503 {
3504 	u16 gso_segs = skb_shinfo(skb)->gso_segs;
3505 
3506 	if (gso_segs > READ_ONCE(dev->gso_max_segs))
3507 		return features & ~NETIF_F_GSO_MASK;
3508 
3509 	if (unlikely(skb->len >= READ_ONCE(dev->gso_max_size)))
3510 		return features & ~NETIF_F_GSO_MASK;
3511 
3512 	if (!skb_shinfo(skb)->gso_type) {
3513 		skb_warn_bad_offload(skb);
3514 		return features & ~NETIF_F_GSO_MASK;
3515 	}
3516 
3517 	/* Support for GSO partial features requires software
3518 	 * intervention before we can actually process the packets
3519 	 * so we need to strip support for any partial features now
3520 	 * and we can pull them back in after we have partially
3521 	 * segmented the frame.
3522 	 */
3523 	if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3524 		features &= ~dev->gso_partial_features;
3525 
3526 	/* Make sure to clear the IPv4 ID mangling feature if the
3527 	 * IPv4 header has the potential to be fragmented.
3528 	 */
3529 	if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3530 		struct iphdr *iph = skb->encapsulation ?
3531 				    inner_ip_hdr(skb) : ip_hdr(skb);
3532 
3533 		if (!(iph->frag_off & htons(IP_DF)))
3534 			features &= ~NETIF_F_TSO_MANGLEID;
3535 	}
3536 
3537 	return features;
3538 }
3539 
3540 netdev_features_t netif_skb_features(struct sk_buff *skb)
3541 {
3542 	struct net_device *dev = skb->dev;
3543 	netdev_features_t features = dev->features;
3544 
3545 	if (skb_is_gso(skb))
3546 		features = gso_features_check(skb, dev, features);
3547 
3548 	/* If encapsulation offload request, verify we are testing
3549 	 * hardware encapsulation features instead of standard
3550 	 * features for the netdev
3551 	 */
3552 	if (skb->encapsulation)
3553 		features &= dev->hw_enc_features;
3554 
3555 	if (skb_vlan_tagged(skb))
3556 		features = netdev_intersect_features(features,
3557 						     dev->vlan_features |
3558 						     NETIF_F_HW_VLAN_CTAG_TX |
3559 						     NETIF_F_HW_VLAN_STAG_TX);
3560 
3561 	if (dev->netdev_ops->ndo_features_check)
3562 		features &= dev->netdev_ops->ndo_features_check(skb, dev,
3563 								features);
3564 	else
3565 		features &= dflt_features_check(skb, dev, features);
3566 
3567 	return harmonize_features(skb, features);
3568 }
3569 EXPORT_SYMBOL(netif_skb_features);
3570 
3571 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3572 		    struct netdev_queue *txq, bool more)
3573 {
3574 	unsigned int len;
3575 	int rc;
3576 
3577 	if (dev_nit_active(dev))
3578 		dev_queue_xmit_nit(skb, dev);
3579 
3580 	len = skb->len;
3581 	trace_net_dev_start_xmit(skb, dev);
3582 	rc = netdev_start_xmit(skb, dev, txq, more);
3583 	trace_net_dev_xmit(skb, rc, dev, len);
3584 
3585 	return rc;
3586 }
3587 
3588 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3589 				    struct netdev_queue *txq, int *ret)
3590 {
3591 	struct sk_buff *skb = first;
3592 	int rc = NETDEV_TX_OK;
3593 
3594 	while (skb) {
3595 		struct sk_buff *next = skb->next;
3596 
3597 		skb_mark_not_on_list(skb);
3598 		rc = xmit_one(skb, dev, txq, next != NULL);
3599 		if (unlikely(!dev_xmit_complete(rc))) {
3600 			skb->next = next;
3601 			goto out;
3602 		}
3603 
3604 		skb = next;
3605 		if (netif_tx_queue_stopped(txq) && skb) {
3606 			rc = NETDEV_TX_BUSY;
3607 			break;
3608 		}
3609 	}
3610 
3611 out:
3612 	*ret = rc;
3613 	return skb;
3614 }
3615 
3616 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3617 					  netdev_features_t features)
3618 {
3619 	if (skb_vlan_tag_present(skb) &&
3620 	    !vlan_hw_offload_capable(features, skb->vlan_proto))
3621 		skb = __vlan_hwaccel_push_inside(skb);
3622 	return skb;
3623 }
3624 
3625 int skb_csum_hwoffload_help(struct sk_buff *skb,
3626 			    const netdev_features_t features)
3627 {
3628 	if (unlikely(skb_csum_is_sctp(skb)))
3629 		return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3630 			skb_crc32c_csum_help(skb);
3631 
3632 	if (features & NETIF_F_HW_CSUM)
3633 		return 0;
3634 
3635 	if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
3636 		switch (skb->csum_offset) {
3637 		case offsetof(struct tcphdr, check):
3638 		case offsetof(struct udphdr, check):
3639 			return 0;
3640 		}
3641 	}
3642 
3643 	return skb_checksum_help(skb);
3644 }
3645 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3646 
3647 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3648 {
3649 	netdev_features_t features;
3650 
3651 	features = netif_skb_features(skb);
3652 	skb = validate_xmit_vlan(skb, features);
3653 	if (unlikely(!skb))
3654 		goto out_null;
3655 
3656 	skb = sk_validate_xmit_skb(skb, dev);
3657 	if (unlikely(!skb))
3658 		goto out_null;
3659 
3660 	if (netif_needs_gso(skb, features)) {
3661 		struct sk_buff *segs;
3662 
3663 		segs = skb_gso_segment(skb, features);
3664 		if (IS_ERR(segs)) {
3665 			goto out_kfree_skb;
3666 		} else if (segs) {
3667 			consume_skb(skb);
3668 			skb = segs;
3669 		}
3670 	} else {
3671 		if (skb_needs_linearize(skb, features) &&
3672 		    __skb_linearize(skb))
3673 			goto out_kfree_skb;
3674 
3675 		/* If packet is not checksummed and device does not
3676 		 * support checksumming for this protocol, complete
3677 		 * checksumming here.
3678 		 */
3679 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
3680 			if (skb->encapsulation)
3681 				skb_set_inner_transport_header(skb,
3682 							       skb_checksum_start_offset(skb));
3683 			else
3684 				skb_set_transport_header(skb,
3685 							 skb_checksum_start_offset(skb));
3686 			if (skb_csum_hwoffload_help(skb, features))
3687 				goto out_kfree_skb;
3688 		}
3689 	}
3690 
3691 	skb = validate_xmit_xfrm(skb, features, again);
3692 
3693 	return skb;
3694 
3695 out_kfree_skb:
3696 	kfree_skb(skb);
3697 out_null:
3698 	dev_core_stats_tx_dropped_inc(dev);
3699 	return NULL;
3700 }
3701 
3702 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3703 {
3704 	struct sk_buff *next, *head = NULL, *tail;
3705 
3706 	for (; skb != NULL; skb = next) {
3707 		next = skb->next;
3708 		skb_mark_not_on_list(skb);
3709 
3710 		/* in case skb won't be segmented, point to itself */
3711 		skb->prev = skb;
3712 
3713 		skb = validate_xmit_skb(skb, dev, again);
3714 		if (!skb)
3715 			continue;
3716 
3717 		if (!head)
3718 			head = skb;
3719 		else
3720 			tail->next = skb;
3721 		/* If skb was segmented, skb->prev points to
3722 		 * the last segment. If not, it still contains skb.
3723 		 */
3724 		tail = skb->prev;
3725 	}
3726 	return head;
3727 }
3728 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3729 
3730 static void qdisc_pkt_len_init(struct sk_buff *skb)
3731 {
3732 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
3733 
3734 	qdisc_skb_cb(skb)->pkt_len = skb->len;
3735 
3736 	/* To get more precise estimation of bytes sent on wire,
3737 	 * we add to pkt_len the headers size of all segments
3738 	 */
3739 	if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3740 		u16 gso_segs = shinfo->gso_segs;
3741 		unsigned int hdr_len;
3742 
3743 		/* mac layer + network layer */
3744 		hdr_len = skb_transport_offset(skb);
3745 
3746 		/* + transport layer */
3747 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3748 			const struct tcphdr *th;
3749 			struct tcphdr _tcphdr;
3750 
3751 			th = skb_header_pointer(skb, hdr_len,
3752 						sizeof(_tcphdr), &_tcphdr);
3753 			if (likely(th))
3754 				hdr_len += __tcp_hdrlen(th);
3755 		} else {
3756 			struct udphdr _udphdr;
3757 
3758 			if (skb_header_pointer(skb, hdr_len,
3759 					       sizeof(_udphdr), &_udphdr))
3760 				hdr_len += sizeof(struct udphdr);
3761 		}
3762 
3763 		if (shinfo->gso_type & SKB_GSO_DODGY)
3764 			gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3765 						shinfo->gso_size);
3766 
3767 		qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3768 	}
3769 }
3770 
3771 static int dev_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *q,
3772 			     struct sk_buff **to_free,
3773 			     struct netdev_queue *txq)
3774 {
3775 	int rc;
3776 
3777 	rc = q->enqueue(skb, q, to_free) & NET_XMIT_MASK;
3778 	if (rc == NET_XMIT_SUCCESS)
3779 		trace_qdisc_enqueue(q, txq, skb);
3780 	return rc;
3781 }
3782 
3783 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3784 				 struct net_device *dev,
3785 				 struct netdev_queue *txq)
3786 {
3787 	spinlock_t *root_lock = qdisc_lock(q);
3788 	struct sk_buff *to_free = NULL;
3789 	bool contended;
3790 	int rc;
3791 
3792 	qdisc_calculate_pkt_len(skb, q);
3793 
3794 	tcf_set_drop_reason(skb, SKB_DROP_REASON_QDISC_DROP);
3795 
3796 	if (q->flags & TCQ_F_NOLOCK) {
3797 		if (q->flags & TCQ_F_CAN_BYPASS && nolock_qdisc_is_empty(q) &&
3798 		    qdisc_run_begin(q)) {
3799 			/* Retest nolock_qdisc_is_empty() within the protection
3800 			 * of q->seqlock to protect from racing with requeuing.
3801 			 */
3802 			if (unlikely(!nolock_qdisc_is_empty(q))) {
3803 				rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3804 				__qdisc_run(q);
3805 				qdisc_run_end(q);
3806 
3807 				goto no_lock_out;
3808 			}
3809 
3810 			qdisc_bstats_cpu_update(q, skb);
3811 			if (sch_direct_xmit(skb, q, dev, txq, NULL, true) &&
3812 			    !nolock_qdisc_is_empty(q))
3813 				__qdisc_run(q);
3814 
3815 			qdisc_run_end(q);
3816 			return NET_XMIT_SUCCESS;
3817 		}
3818 
3819 		rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3820 		qdisc_run(q);
3821 
3822 no_lock_out:
3823 		if (unlikely(to_free))
3824 			kfree_skb_list_reason(to_free,
3825 					      tcf_get_drop_reason(to_free));
3826 		return rc;
3827 	}
3828 
3829 	if (unlikely(READ_ONCE(q->owner) == smp_processor_id())) {
3830 		kfree_skb_reason(skb, SKB_DROP_REASON_TC_RECLASSIFY_LOOP);
3831 		return NET_XMIT_DROP;
3832 	}
3833 	/*
3834 	 * Heuristic to force contended enqueues to serialize on a
3835 	 * separate lock before trying to get qdisc main lock.
3836 	 * This permits qdisc->running owner to get the lock more
3837 	 * often and dequeue packets faster.
3838 	 * On PREEMPT_RT it is possible to preempt the qdisc owner during xmit
3839 	 * and then other tasks will only enqueue packets. The packets will be
3840 	 * sent after the qdisc owner is scheduled again. To prevent this
3841 	 * scenario the task always serialize on the lock.
3842 	 */
3843 	contended = qdisc_is_running(q) || IS_ENABLED(CONFIG_PREEMPT_RT);
3844 	if (unlikely(contended))
3845 		spin_lock(&q->busylock);
3846 
3847 	spin_lock(root_lock);
3848 	if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3849 		__qdisc_drop(skb, &to_free);
3850 		rc = NET_XMIT_DROP;
3851 	} else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3852 		   qdisc_run_begin(q)) {
3853 		/*
3854 		 * This is a work-conserving queue; there are no old skbs
3855 		 * waiting to be sent out; and the qdisc is not running -
3856 		 * xmit the skb directly.
3857 		 */
3858 
3859 		qdisc_bstats_update(q, skb);
3860 
3861 		if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3862 			if (unlikely(contended)) {
3863 				spin_unlock(&q->busylock);
3864 				contended = false;
3865 			}
3866 			__qdisc_run(q);
3867 		}
3868 
3869 		qdisc_run_end(q);
3870 		rc = NET_XMIT_SUCCESS;
3871 	} else {
3872 		WRITE_ONCE(q->owner, smp_processor_id());
3873 		rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3874 		WRITE_ONCE(q->owner, -1);
3875 		if (qdisc_run_begin(q)) {
3876 			if (unlikely(contended)) {
3877 				spin_unlock(&q->busylock);
3878 				contended = false;
3879 			}
3880 			__qdisc_run(q);
3881 			qdisc_run_end(q);
3882 		}
3883 	}
3884 	spin_unlock(root_lock);
3885 	if (unlikely(to_free))
3886 		kfree_skb_list_reason(to_free,
3887 				      tcf_get_drop_reason(to_free));
3888 	if (unlikely(contended))
3889 		spin_unlock(&q->busylock);
3890 	return rc;
3891 }
3892 
3893 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3894 static void skb_update_prio(struct sk_buff *skb)
3895 {
3896 	const struct netprio_map *map;
3897 	const struct sock *sk;
3898 	unsigned int prioidx;
3899 
3900 	if (skb->priority)
3901 		return;
3902 	map = rcu_dereference_bh(skb->dev->priomap);
3903 	if (!map)
3904 		return;
3905 	sk = skb_to_full_sk(skb);
3906 	if (!sk)
3907 		return;
3908 
3909 	prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3910 
3911 	if (prioidx < map->priomap_len)
3912 		skb->priority = map->priomap[prioidx];
3913 }
3914 #else
3915 #define skb_update_prio(skb)
3916 #endif
3917 
3918 /**
3919  *	dev_loopback_xmit - loop back @skb
3920  *	@net: network namespace this loopback is happening in
3921  *	@sk:  sk needed to be a netfilter okfn
3922  *	@skb: buffer to transmit
3923  */
3924 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3925 {
3926 	skb_reset_mac_header(skb);
3927 	__skb_pull(skb, skb_network_offset(skb));
3928 	skb->pkt_type = PACKET_LOOPBACK;
3929 	if (skb->ip_summed == CHECKSUM_NONE)
3930 		skb->ip_summed = CHECKSUM_UNNECESSARY;
3931 	DEBUG_NET_WARN_ON_ONCE(!skb_dst(skb));
3932 	skb_dst_force(skb);
3933 	netif_rx(skb);
3934 	return 0;
3935 }
3936 EXPORT_SYMBOL(dev_loopback_xmit);
3937 
3938 #ifdef CONFIG_NET_EGRESS
3939 static struct netdev_queue *
3940 netdev_tx_queue_mapping(struct net_device *dev, struct sk_buff *skb)
3941 {
3942 	int qm = skb_get_queue_mapping(skb);
3943 
3944 	return netdev_get_tx_queue(dev, netdev_cap_txqueue(dev, qm));
3945 }
3946 
3947 #ifndef CONFIG_PREEMPT_RT
3948 static bool netdev_xmit_txqueue_skipped(void)
3949 {
3950 	return __this_cpu_read(softnet_data.xmit.skip_txqueue);
3951 }
3952 
3953 void netdev_xmit_skip_txqueue(bool skip)
3954 {
3955 	__this_cpu_write(softnet_data.xmit.skip_txqueue, skip);
3956 }
3957 EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue);
3958 
3959 #else
3960 static bool netdev_xmit_txqueue_skipped(void)
3961 {
3962 	return current->net_xmit.skip_txqueue;
3963 }
3964 
3965 void netdev_xmit_skip_txqueue(bool skip)
3966 {
3967 	current->net_xmit.skip_txqueue = skip;
3968 }
3969 EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue);
3970 #endif
3971 #endif /* CONFIG_NET_EGRESS */
3972 
3973 #ifdef CONFIG_NET_XGRESS
3974 static int tc_run(struct tcx_entry *entry, struct sk_buff *skb,
3975 		  enum skb_drop_reason *drop_reason)
3976 {
3977 	int ret = TC_ACT_UNSPEC;
3978 #ifdef CONFIG_NET_CLS_ACT
3979 	struct mini_Qdisc *miniq = rcu_dereference_bh(entry->miniq);
3980 	struct tcf_result res;
3981 
3982 	if (!miniq)
3983 		return ret;
3984 
3985 	if (static_branch_unlikely(&tcf_bypass_check_needed_key)) {
3986 		if (tcf_block_bypass_sw(miniq->block))
3987 			return ret;
3988 	}
3989 
3990 	tc_skb_cb(skb)->mru = 0;
3991 	tc_skb_cb(skb)->post_ct = false;
3992 	tcf_set_drop_reason(skb, *drop_reason);
3993 
3994 	mini_qdisc_bstats_cpu_update(miniq, skb);
3995 	ret = tcf_classify(skb, miniq->block, miniq->filter_list, &res, false);
3996 	/* Only tcf related quirks below. */
3997 	switch (ret) {
3998 	case TC_ACT_SHOT:
3999 		*drop_reason = tcf_get_drop_reason(skb);
4000 		mini_qdisc_qstats_cpu_drop(miniq);
4001 		break;
4002 	case TC_ACT_OK:
4003 	case TC_ACT_RECLASSIFY:
4004 		skb->tc_index = TC_H_MIN(res.classid);
4005 		break;
4006 	}
4007 #endif /* CONFIG_NET_CLS_ACT */
4008 	return ret;
4009 }
4010 
4011 static DEFINE_STATIC_KEY_FALSE(tcx_needed_key);
4012 
4013 void tcx_inc(void)
4014 {
4015 	static_branch_inc(&tcx_needed_key);
4016 }
4017 
4018 void tcx_dec(void)
4019 {
4020 	static_branch_dec(&tcx_needed_key);
4021 }
4022 
4023 static __always_inline enum tcx_action_base
4024 tcx_run(const struct bpf_mprog_entry *entry, struct sk_buff *skb,
4025 	const bool needs_mac)
4026 {
4027 	const struct bpf_mprog_fp *fp;
4028 	const struct bpf_prog *prog;
4029 	int ret = TCX_NEXT;
4030 
4031 	if (needs_mac)
4032 		__skb_push(skb, skb->mac_len);
4033 	bpf_mprog_foreach_prog(entry, fp, prog) {
4034 		bpf_compute_data_pointers(skb);
4035 		ret = bpf_prog_run(prog, skb);
4036 		if (ret != TCX_NEXT)
4037 			break;
4038 	}
4039 	if (needs_mac)
4040 		__skb_pull(skb, skb->mac_len);
4041 	return tcx_action_code(skb, ret);
4042 }
4043 
4044 static __always_inline struct sk_buff *
4045 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4046 		   struct net_device *orig_dev, bool *another)
4047 {
4048 	struct bpf_mprog_entry *entry = rcu_dereference_bh(skb->dev->tcx_ingress);
4049 	enum skb_drop_reason drop_reason = SKB_DROP_REASON_TC_INGRESS;
4050 	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
4051 	int sch_ret;
4052 
4053 	if (!entry)
4054 		return skb;
4055 
4056 	bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
4057 	if (*pt_prev) {
4058 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
4059 		*pt_prev = NULL;
4060 	}
4061 
4062 	qdisc_skb_cb(skb)->pkt_len = skb->len;
4063 	tcx_set_ingress(skb, true);
4064 
4065 	if (static_branch_unlikely(&tcx_needed_key)) {
4066 		sch_ret = tcx_run(entry, skb, true);
4067 		if (sch_ret != TC_ACT_UNSPEC)
4068 			goto ingress_verdict;
4069 	}
4070 	sch_ret = tc_run(tcx_entry(entry), skb, &drop_reason);
4071 ingress_verdict:
4072 	switch (sch_ret) {
4073 	case TC_ACT_REDIRECT:
4074 		/* skb_mac_header check was done by BPF, so we can safely
4075 		 * push the L2 header back before redirecting to another
4076 		 * netdev.
4077 		 */
4078 		__skb_push(skb, skb->mac_len);
4079 		if (skb_do_redirect(skb) == -EAGAIN) {
4080 			__skb_pull(skb, skb->mac_len);
4081 			*another = true;
4082 			break;
4083 		}
4084 		*ret = NET_RX_SUCCESS;
4085 		bpf_net_ctx_clear(bpf_net_ctx);
4086 		return NULL;
4087 	case TC_ACT_SHOT:
4088 		kfree_skb_reason(skb, drop_reason);
4089 		*ret = NET_RX_DROP;
4090 		bpf_net_ctx_clear(bpf_net_ctx);
4091 		return NULL;
4092 	/* used by tc_run */
4093 	case TC_ACT_STOLEN:
4094 	case TC_ACT_QUEUED:
4095 	case TC_ACT_TRAP:
4096 		consume_skb(skb);
4097 		fallthrough;
4098 	case TC_ACT_CONSUMED:
4099 		*ret = NET_RX_SUCCESS;
4100 		bpf_net_ctx_clear(bpf_net_ctx);
4101 		return NULL;
4102 	}
4103 	bpf_net_ctx_clear(bpf_net_ctx);
4104 
4105 	return skb;
4106 }
4107 
4108 static __always_inline struct sk_buff *
4109 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
4110 {
4111 	struct bpf_mprog_entry *entry = rcu_dereference_bh(dev->tcx_egress);
4112 	enum skb_drop_reason drop_reason = SKB_DROP_REASON_TC_EGRESS;
4113 	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
4114 	int sch_ret;
4115 
4116 	if (!entry)
4117 		return skb;
4118 
4119 	bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
4120 
4121 	/* qdisc_skb_cb(skb)->pkt_len & tcx_set_ingress() was
4122 	 * already set by the caller.
4123 	 */
4124 	if (static_branch_unlikely(&tcx_needed_key)) {
4125 		sch_ret = tcx_run(entry, skb, false);
4126 		if (sch_ret != TC_ACT_UNSPEC)
4127 			goto egress_verdict;
4128 	}
4129 	sch_ret = tc_run(tcx_entry(entry), skb, &drop_reason);
4130 egress_verdict:
4131 	switch (sch_ret) {
4132 	case TC_ACT_REDIRECT:
4133 		/* No need to push/pop skb's mac_header here on egress! */
4134 		skb_do_redirect(skb);
4135 		*ret = NET_XMIT_SUCCESS;
4136 		bpf_net_ctx_clear(bpf_net_ctx);
4137 		return NULL;
4138 	case TC_ACT_SHOT:
4139 		kfree_skb_reason(skb, drop_reason);
4140 		*ret = NET_XMIT_DROP;
4141 		bpf_net_ctx_clear(bpf_net_ctx);
4142 		return NULL;
4143 	/* used by tc_run */
4144 	case TC_ACT_STOLEN:
4145 	case TC_ACT_QUEUED:
4146 	case TC_ACT_TRAP:
4147 		consume_skb(skb);
4148 		fallthrough;
4149 	case TC_ACT_CONSUMED:
4150 		*ret = NET_XMIT_SUCCESS;
4151 		bpf_net_ctx_clear(bpf_net_ctx);
4152 		return NULL;
4153 	}
4154 	bpf_net_ctx_clear(bpf_net_ctx);
4155 
4156 	return skb;
4157 }
4158 #else
4159 static __always_inline struct sk_buff *
4160 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4161 		   struct net_device *orig_dev, bool *another)
4162 {
4163 	return skb;
4164 }
4165 
4166 static __always_inline struct sk_buff *
4167 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
4168 {
4169 	return skb;
4170 }
4171 #endif /* CONFIG_NET_XGRESS */
4172 
4173 #ifdef CONFIG_XPS
4174 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
4175 			       struct xps_dev_maps *dev_maps, unsigned int tci)
4176 {
4177 	int tc = netdev_get_prio_tc_map(dev, skb->priority);
4178 	struct xps_map *map;
4179 	int queue_index = -1;
4180 
4181 	if (tc >= dev_maps->num_tc || tci >= dev_maps->nr_ids)
4182 		return queue_index;
4183 
4184 	tci *= dev_maps->num_tc;
4185 	tci += tc;
4186 
4187 	map = rcu_dereference(dev_maps->attr_map[tci]);
4188 	if (map) {
4189 		if (map->len == 1)
4190 			queue_index = map->queues[0];
4191 		else
4192 			queue_index = map->queues[reciprocal_scale(
4193 						skb_get_hash(skb), map->len)];
4194 		if (unlikely(queue_index >= dev->real_num_tx_queues))
4195 			queue_index = -1;
4196 	}
4197 	return queue_index;
4198 }
4199 #endif
4200 
4201 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
4202 			 struct sk_buff *skb)
4203 {
4204 #ifdef CONFIG_XPS
4205 	struct xps_dev_maps *dev_maps;
4206 	struct sock *sk = skb->sk;
4207 	int queue_index = -1;
4208 
4209 	if (!static_key_false(&xps_needed))
4210 		return -1;
4211 
4212 	rcu_read_lock();
4213 	if (!static_key_false(&xps_rxqs_needed))
4214 		goto get_cpus_map;
4215 
4216 	dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_RXQS]);
4217 	if (dev_maps) {
4218 		int tci = sk_rx_queue_get(sk);
4219 
4220 		if (tci >= 0)
4221 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4222 							  tci);
4223 	}
4224 
4225 get_cpus_map:
4226 	if (queue_index < 0) {
4227 		dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_CPUS]);
4228 		if (dev_maps) {
4229 			unsigned int tci = skb->sender_cpu - 1;
4230 
4231 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4232 							  tci);
4233 		}
4234 	}
4235 	rcu_read_unlock();
4236 
4237 	return queue_index;
4238 #else
4239 	return -1;
4240 #endif
4241 }
4242 
4243 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
4244 		     struct net_device *sb_dev)
4245 {
4246 	return 0;
4247 }
4248 EXPORT_SYMBOL(dev_pick_tx_zero);
4249 
4250 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
4251 		     struct net_device *sb_dev)
4252 {
4253 	struct sock *sk = skb->sk;
4254 	int queue_index = sk_tx_queue_get(sk);
4255 
4256 	sb_dev = sb_dev ? : dev;
4257 
4258 	if (queue_index < 0 || skb->ooo_okay ||
4259 	    queue_index >= dev->real_num_tx_queues) {
4260 		int new_index = get_xps_queue(dev, sb_dev, skb);
4261 
4262 		if (new_index < 0)
4263 			new_index = skb_tx_hash(dev, sb_dev, skb);
4264 
4265 		if (queue_index != new_index && sk &&
4266 		    sk_fullsock(sk) &&
4267 		    rcu_access_pointer(sk->sk_dst_cache))
4268 			sk_tx_queue_set(sk, new_index);
4269 
4270 		queue_index = new_index;
4271 	}
4272 
4273 	return queue_index;
4274 }
4275 EXPORT_SYMBOL(netdev_pick_tx);
4276 
4277 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
4278 					 struct sk_buff *skb,
4279 					 struct net_device *sb_dev)
4280 {
4281 	int queue_index = 0;
4282 
4283 #ifdef CONFIG_XPS
4284 	u32 sender_cpu = skb->sender_cpu - 1;
4285 
4286 	if (sender_cpu >= (u32)NR_CPUS)
4287 		skb->sender_cpu = raw_smp_processor_id() + 1;
4288 #endif
4289 
4290 	if (dev->real_num_tx_queues != 1) {
4291 		const struct net_device_ops *ops = dev->netdev_ops;
4292 
4293 		if (ops->ndo_select_queue)
4294 			queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
4295 		else
4296 			queue_index = netdev_pick_tx(dev, skb, sb_dev);
4297 
4298 		queue_index = netdev_cap_txqueue(dev, queue_index);
4299 	}
4300 
4301 	skb_set_queue_mapping(skb, queue_index);
4302 	return netdev_get_tx_queue(dev, queue_index);
4303 }
4304 
4305 /**
4306  * __dev_queue_xmit() - transmit a buffer
4307  * @skb:	buffer to transmit
4308  * @sb_dev:	suboordinate device used for L2 forwarding offload
4309  *
4310  * Queue a buffer for transmission to a network device. The caller must
4311  * have set the device and priority and built the buffer before calling
4312  * this function. The function can be called from an interrupt.
4313  *
4314  * When calling this method, interrupts MUST be enabled. This is because
4315  * the BH enable code must have IRQs enabled so that it will not deadlock.
4316  *
4317  * Regardless of the return value, the skb is consumed, so it is currently
4318  * difficult to retry a send to this method. (You can bump the ref count
4319  * before sending to hold a reference for retry if you are careful.)
4320  *
4321  * Return:
4322  * * 0				- buffer successfully transmitted
4323  * * positive qdisc return code	- NET_XMIT_DROP etc.
4324  * * negative errno		- other errors
4325  */
4326 int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
4327 {
4328 	struct net_device *dev = skb->dev;
4329 	struct netdev_queue *txq = NULL;
4330 	struct Qdisc *q;
4331 	int rc = -ENOMEM;
4332 	bool again = false;
4333 
4334 	skb_reset_mac_header(skb);
4335 	skb_assert_len(skb);
4336 
4337 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
4338 		__skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED);
4339 
4340 	/* Disable soft irqs for various locks below. Also
4341 	 * stops preemption for RCU.
4342 	 */
4343 	rcu_read_lock_bh();
4344 
4345 	skb_update_prio(skb);
4346 
4347 	qdisc_pkt_len_init(skb);
4348 	tcx_set_ingress(skb, false);
4349 #ifdef CONFIG_NET_EGRESS
4350 	if (static_branch_unlikely(&egress_needed_key)) {
4351 		if (nf_hook_egress_active()) {
4352 			skb = nf_hook_egress(skb, &rc, dev);
4353 			if (!skb)
4354 				goto out;
4355 		}
4356 
4357 		netdev_xmit_skip_txqueue(false);
4358 
4359 		nf_skip_egress(skb, true);
4360 		skb = sch_handle_egress(skb, &rc, dev);
4361 		if (!skb)
4362 			goto out;
4363 		nf_skip_egress(skb, false);
4364 
4365 		if (netdev_xmit_txqueue_skipped())
4366 			txq = netdev_tx_queue_mapping(dev, skb);
4367 	}
4368 #endif
4369 	/* If device/qdisc don't need skb->dst, release it right now while
4370 	 * its hot in this cpu cache.
4371 	 */
4372 	if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4373 		skb_dst_drop(skb);
4374 	else
4375 		skb_dst_force(skb);
4376 
4377 	if (!txq)
4378 		txq = netdev_core_pick_tx(dev, skb, sb_dev);
4379 
4380 	q = rcu_dereference_bh(txq->qdisc);
4381 
4382 	trace_net_dev_queue(skb);
4383 	if (q->enqueue) {
4384 		rc = __dev_xmit_skb(skb, q, dev, txq);
4385 		goto out;
4386 	}
4387 
4388 	/* The device has no queue. Common case for software devices:
4389 	 * loopback, all the sorts of tunnels...
4390 
4391 	 * Really, it is unlikely that netif_tx_lock protection is necessary
4392 	 * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
4393 	 * counters.)
4394 	 * However, it is possible, that they rely on protection
4395 	 * made by us here.
4396 
4397 	 * Check this and shot the lock. It is not prone from deadlocks.
4398 	 *Either shot noqueue qdisc, it is even simpler 8)
4399 	 */
4400 	if (dev->flags & IFF_UP) {
4401 		int cpu = smp_processor_id(); /* ok because BHs are off */
4402 
4403 		/* Other cpus might concurrently change txq->xmit_lock_owner
4404 		 * to -1 or to their cpu id, but not to our id.
4405 		 */
4406 		if (READ_ONCE(txq->xmit_lock_owner) != cpu) {
4407 			if (dev_xmit_recursion())
4408 				goto recursion_alert;
4409 
4410 			skb = validate_xmit_skb(skb, dev, &again);
4411 			if (!skb)
4412 				goto out;
4413 
4414 			HARD_TX_LOCK(dev, txq, cpu);
4415 
4416 			if (!netif_xmit_stopped(txq)) {
4417 				dev_xmit_recursion_inc();
4418 				skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4419 				dev_xmit_recursion_dec();
4420 				if (dev_xmit_complete(rc)) {
4421 					HARD_TX_UNLOCK(dev, txq);
4422 					goto out;
4423 				}
4424 			}
4425 			HARD_TX_UNLOCK(dev, txq);
4426 			net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4427 					     dev->name);
4428 		} else {
4429 			/* Recursion is detected! It is possible,
4430 			 * unfortunately
4431 			 */
4432 recursion_alert:
4433 			net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4434 					     dev->name);
4435 		}
4436 	}
4437 
4438 	rc = -ENETDOWN;
4439 	rcu_read_unlock_bh();
4440 
4441 	dev_core_stats_tx_dropped_inc(dev);
4442 	kfree_skb_list(skb);
4443 	return rc;
4444 out:
4445 	rcu_read_unlock_bh();
4446 	return rc;
4447 }
4448 EXPORT_SYMBOL(__dev_queue_xmit);
4449 
4450 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4451 {
4452 	struct net_device *dev = skb->dev;
4453 	struct sk_buff *orig_skb = skb;
4454 	struct netdev_queue *txq;
4455 	int ret = NETDEV_TX_BUSY;
4456 	bool again = false;
4457 
4458 	if (unlikely(!netif_running(dev) ||
4459 		     !netif_carrier_ok(dev)))
4460 		goto drop;
4461 
4462 	skb = validate_xmit_skb_list(skb, dev, &again);
4463 	if (skb != orig_skb)
4464 		goto drop;
4465 
4466 	skb_set_queue_mapping(skb, queue_id);
4467 	txq = skb_get_tx_queue(dev, skb);
4468 
4469 	local_bh_disable();
4470 
4471 	dev_xmit_recursion_inc();
4472 	HARD_TX_LOCK(dev, txq, smp_processor_id());
4473 	if (!netif_xmit_frozen_or_drv_stopped(txq))
4474 		ret = netdev_start_xmit(skb, dev, txq, false);
4475 	HARD_TX_UNLOCK(dev, txq);
4476 	dev_xmit_recursion_dec();
4477 
4478 	local_bh_enable();
4479 	return ret;
4480 drop:
4481 	dev_core_stats_tx_dropped_inc(dev);
4482 	kfree_skb_list(skb);
4483 	return NET_XMIT_DROP;
4484 }
4485 EXPORT_SYMBOL(__dev_direct_xmit);
4486 
4487 /*************************************************************************
4488  *			Receiver routines
4489  *************************************************************************/
4490 static DEFINE_PER_CPU(struct task_struct *, backlog_napi);
4491 
4492 int weight_p __read_mostly = 64;           /* old backlog weight */
4493 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
4494 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
4495 
4496 /* Called with irq disabled */
4497 static inline void ____napi_schedule(struct softnet_data *sd,
4498 				     struct napi_struct *napi)
4499 {
4500 	struct task_struct *thread;
4501 
4502 	lockdep_assert_irqs_disabled();
4503 
4504 	if (test_bit(NAPI_STATE_THREADED, &napi->state)) {
4505 		/* Paired with smp_mb__before_atomic() in
4506 		 * napi_enable()/dev_set_threaded().
4507 		 * Use READ_ONCE() to guarantee a complete
4508 		 * read on napi->thread. Only call
4509 		 * wake_up_process() when it's not NULL.
4510 		 */
4511 		thread = READ_ONCE(napi->thread);
4512 		if (thread) {
4513 			if (use_backlog_threads() && thread == raw_cpu_read(backlog_napi))
4514 				goto use_local_napi;
4515 
4516 			set_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
4517 			wake_up_process(thread);
4518 			return;
4519 		}
4520 	}
4521 
4522 use_local_napi:
4523 	list_add_tail(&napi->poll_list, &sd->poll_list);
4524 	WRITE_ONCE(napi->list_owner, smp_processor_id());
4525 	/* If not called from net_rx_action()
4526 	 * we have to raise NET_RX_SOFTIRQ.
4527 	 */
4528 	if (!sd->in_net_rx_action)
4529 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4530 }
4531 
4532 #ifdef CONFIG_RPS
4533 
4534 struct static_key_false rps_needed __read_mostly;
4535 EXPORT_SYMBOL(rps_needed);
4536 struct static_key_false rfs_needed __read_mostly;
4537 EXPORT_SYMBOL(rfs_needed);
4538 
4539 static struct rps_dev_flow *
4540 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4541 	    struct rps_dev_flow *rflow, u16 next_cpu)
4542 {
4543 	if (next_cpu < nr_cpu_ids) {
4544 		u32 head;
4545 #ifdef CONFIG_RFS_ACCEL
4546 		struct netdev_rx_queue *rxqueue;
4547 		struct rps_dev_flow_table *flow_table;
4548 		struct rps_dev_flow *old_rflow;
4549 		u16 rxq_index;
4550 		u32 flow_id;
4551 		int rc;
4552 
4553 		/* Should we steer this flow to a different hardware queue? */
4554 		if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4555 		    !(dev->features & NETIF_F_NTUPLE))
4556 			goto out;
4557 		rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4558 		if (rxq_index == skb_get_rx_queue(skb))
4559 			goto out;
4560 
4561 		rxqueue = dev->_rx + rxq_index;
4562 		flow_table = rcu_dereference(rxqueue->rps_flow_table);
4563 		if (!flow_table)
4564 			goto out;
4565 		flow_id = skb_get_hash(skb) & flow_table->mask;
4566 		rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4567 							rxq_index, flow_id);
4568 		if (rc < 0)
4569 			goto out;
4570 		old_rflow = rflow;
4571 		rflow = &flow_table->flows[flow_id];
4572 		WRITE_ONCE(rflow->filter, rc);
4573 		if (old_rflow->filter == rc)
4574 			WRITE_ONCE(old_rflow->filter, RPS_NO_FILTER);
4575 	out:
4576 #endif
4577 		head = READ_ONCE(per_cpu(softnet_data, next_cpu).input_queue_head);
4578 		rps_input_queue_tail_save(&rflow->last_qtail, head);
4579 	}
4580 
4581 	WRITE_ONCE(rflow->cpu, next_cpu);
4582 	return rflow;
4583 }
4584 
4585 /*
4586  * get_rps_cpu is called from netif_receive_skb and returns the target
4587  * CPU from the RPS map of the receiving queue for a given skb.
4588  * rcu_read_lock must be held on entry.
4589  */
4590 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4591 		       struct rps_dev_flow **rflowp)
4592 {
4593 	const struct rps_sock_flow_table *sock_flow_table;
4594 	struct netdev_rx_queue *rxqueue = dev->_rx;
4595 	struct rps_dev_flow_table *flow_table;
4596 	struct rps_map *map;
4597 	int cpu = -1;
4598 	u32 tcpu;
4599 	u32 hash;
4600 
4601 	if (skb_rx_queue_recorded(skb)) {
4602 		u16 index = skb_get_rx_queue(skb);
4603 
4604 		if (unlikely(index >= dev->real_num_rx_queues)) {
4605 			WARN_ONCE(dev->real_num_rx_queues > 1,
4606 				  "%s received packet on queue %u, but number "
4607 				  "of RX queues is %u\n",
4608 				  dev->name, index, dev->real_num_rx_queues);
4609 			goto done;
4610 		}
4611 		rxqueue += index;
4612 	}
4613 
4614 	/* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4615 
4616 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
4617 	map = rcu_dereference(rxqueue->rps_map);
4618 	if (!flow_table && !map)
4619 		goto done;
4620 
4621 	skb_reset_network_header(skb);
4622 	hash = skb_get_hash(skb);
4623 	if (!hash)
4624 		goto done;
4625 
4626 	sock_flow_table = rcu_dereference(net_hotdata.rps_sock_flow_table);
4627 	if (flow_table && sock_flow_table) {
4628 		struct rps_dev_flow *rflow;
4629 		u32 next_cpu;
4630 		u32 ident;
4631 
4632 		/* First check into global flow table if there is a match.
4633 		 * This READ_ONCE() pairs with WRITE_ONCE() from rps_record_sock_flow().
4634 		 */
4635 		ident = READ_ONCE(sock_flow_table->ents[hash & sock_flow_table->mask]);
4636 		if ((ident ^ hash) & ~net_hotdata.rps_cpu_mask)
4637 			goto try_rps;
4638 
4639 		next_cpu = ident & net_hotdata.rps_cpu_mask;
4640 
4641 		/* OK, now we know there is a match,
4642 		 * we can look at the local (per receive queue) flow table
4643 		 */
4644 		rflow = &flow_table->flows[hash & flow_table->mask];
4645 		tcpu = rflow->cpu;
4646 
4647 		/*
4648 		 * If the desired CPU (where last recvmsg was done) is
4649 		 * different from current CPU (one in the rx-queue flow
4650 		 * table entry), switch if one of the following holds:
4651 		 *   - Current CPU is unset (>= nr_cpu_ids).
4652 		 *   - Current CPU is offline.
4653 		 *   - The current CPU's queue tail has advanced beyond the
4654 		 *     last packet that was enqueued using this table entry.
4655 		 *     This guarantees that all previous packets for the flow
4656 		 *     have been dequeued, thus preserving in order delivery.
4657 		 */
4658 		if (unlikely(tcpu != next_cpu) &&
4659 		    (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4660 		     ((int)(READ_ONCE(per_cpu(softnet_data, tcpu).input_queue_head) -
4661 		      rflow->last_qtail)) >= 0)) {
4662 			tcpu = next_cpu;
4663 			rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4664 		}
4665 
4666 		if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4667 			*rflowp = rflow;
4668 			cpu = tcpu;
4669 			goto done;
4670 		}
4671 	}
4672 
4673 try_rps:
4674 
4675 	if (map) {
4676 		tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4677 		if (cpu_online(tcpu)) {
4678 			cpu = tcpu;
4679 			goto done;
4680 		}
4681 	}
4682 
4683 done:
4684 	return cpu;
4685 }
4686 
4687 #ifdef CONFIG_RFS_ACCEL
4688 
4689 /**
4690  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4691  * @dev: Device on which the filter was set
4692  * @rxq_index: RX queue index
4693  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4694  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4695  *
4696  * Drivers that implement ndo_rx_flow_steer() should periodically call
4697  * this function for each installed filter and remove the filters for
4698  * which it returns %true.
4699  */
4700 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4701 			 u32 flow_id, u16 filter_id)
4702 {
4703 	struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4704 	struct rps_dev_flow_table *flow_table;
4705 	struct rps_dev_flow *rflow;
4706 	bool expire = true;
4707 	unsigned int cpu;
4708 
4709 	rcu_read_lock();
4710 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
4711 	if (flow_table && flow_id <= flow_table->mask) {
4712 		rflow = &flow_table->flows[flow_id];
4713 		cpu = READ_ONCE(rflow->cpu);
4714 		if (READ_ONCE(rflow->filter) == filter_id && cpu < nr_cpu_ids &&
4715 		    ((int)(READ_ONCE(per_cpu(softnet_data, cpu).input_queue_head) -
4716 			   READ_ONCE(rflow->last_qtail)) <
4717 		     (int)(10 * flow_table->mask)))
4718 			expire = false;
4719 	}
4720 	rcu_read_unlock();
4721 	return expire;
4722 }
4723 EXPORT_SYMBOL(rps_may_expire_flow);
4724 
4725 #endif /* CONFIG_RFS_ACCEL */
4726 
4727 /* Called from hardirq (IPI) context */
4728 static void rps_trigger_softirq(void *data)
4729 {
4730 	struct softnet_data *sd = data;
4731 
4732 	____napi_schedule(sd, &sd->backlog);
4733 	sd->received_rps++;
4734 }
4735 
4736 #endif /* CONFIG_RPS */
4737 
4738 /* Called from hardirq (IPI) context */
4739 static void trigger_rx_softirq(void *data)
4740 {
4741 	struct softnet_data *sd = data;
4742 
4743 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4744 	smp_store_release(&sd->defer_ipi_scheduled, 0);
4745 }
4746 
4747 /*
4748  * After we queued a packet into sd->input_pkt_queue,
4749  * we need to make sure this queue is serviced soon.
4750  *
4751  * - If this is another cpu queue, link it to our rps_ipi_list,
4752  *   and make sure we will process rps_ipi_list from net_rx_action().
4753  *
4754  * - If this is our own queue, NAPI schedule our backlog.
4755  *   Note that this also raises NET_RX_SOFTIRQ.
4756  */
4757 static void napi_schedule_rps(struct softnet_data *sd)
4758 {
4759 	struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4760 
4761 #ifdef CONFIG_RPS
4762 	if (sd != mysd) {
4763 		if (use_backlog_threads()) {
4764 			__napi_schedule_irqoff(&sd->backlog);
4765 			return;
4766 		}
4767 
4768 		sd->rps_ipi_next = mysd->rps_ipi_list;
4769 		mysd->rps_ipi_list = sd;
4770 
4771 		/* If not called from net_rx_action() or napi_threaded_poll()
4772 		 * we have to raise NET_RX_SOFTIRQ.
4773 		 */
4774 		if (!mysd->in_net_rx_action && !mysd->in_napi_threaded_poll)
4775 			__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4776 		return;
4777 	}
4778 #endif /* CONFIG_RPS */
4779 	__napi_schedule_irqoff(&mysd->backlog);
4780 }
4781 
4782 void kick_defer_list_purge(struct softnet_data *sd, unsigned int cpu)
4783 {
4784 	unsigned long flags;
4785 
4786 	if (use_backlog_threads()) {
4787 		backlog_lock_irq_save(sd, &flags);
4788 
4789 		if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state))
4790 			__napi_schedule_irqoff(&sd->backlog);
4791 
4792 		backlog_unlock_irq_restore(sd, &flags);
4793 
4794 	} else if (!cmpxchg(&sd->defer_ipi_scheduled, 0, 1)) {
4795 		smp_call_function_single_async(cpu, &sd->defer_csd);
4796 	}
4797 }
4798 
4799 #ifdef CONFIG_NET_FLOW_LIMIT
4800 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4801 #endif
4802 
4803 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4804 {
4805 #ifdef CONFIG_NET_FLOW_LIMIT
4806 	struct sd_flow_limit *fl;
4807 	struct softnet_data *sd;
4808 	unsigned int old_flow, new_flow;
4809 
4810 	if (qlen < (READ_ONCE(net_hotdata.max_backlog) >> 1))
4811 		return false;
4812 
4813 	sd = this_cpu_ptr(&softnet_data);
4814 
4815 	rcu_read_lock();
4816 	fl = rcu_dereference(sd->flow_limit);
4817 	if (fl) {
4818 		new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4819 		old_flow = fl->history[fl->history_head];
4820 		fl->history[fl->history_head] = new_flow;
4821 
4822 		fl->history_head++;
4823 		fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4824 
4825 		if (likely(fl->buckets[old_flow]))
4826 			fl->buckets[old_flow]--;
4827 
4828 		if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4829 			fl->count++;
4830 			rcu_read_unlock();
4831 			return true;
4832 		}
4833 	}
4834 	rcu_read_unlock();
4835 #endif
4836 	return false;
4837 }
4838 
4839 /*
4840  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4841  * queue (may be a remote CPU queue).
4842  */
4843 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4844 			      unsigned int *qtail)
4845 {
4846 	enum skb_drop_reason reason;
4847 	struct softnet_data *sd;
4848 	unsigned long flags;
4849 	unsigned int qlen;
4850 	int max_backlog;
4851 	u32 tail;
4852 
4853 	reason = SKB_DROP_REASON_DEV_READY;
4854 	if (!netif_running(skb->dev))
4855 		goto bad_dev;
4856 
4857 	reason = SKB_DROP_REASON_CPU_BACKLOG;
4858 	sd = &per_cpu(softnet_data, cpu);
4859 
4860 	qlen = skb_queue_len_lockless(&sd->input_pkt_queue);
4861 	max_backlog = READ_ONCE(net_hotdata.max_backlog);
4862 	if (unlikely(qlen > max_backlog))
4863 		goto cpu_backlog_drop;
4864 	backlog_lock_irq_save(sd, &flags);
4865 	qlen = skb_queue_len(&sd->input_pkt_queue);
4866 	if (qlen <= max_backlog && !skb_flow_limit(skb, qlen)) {
4867 		if (!qlen) {
4868 			/* Schedule NAPI for backlog device. We can use
4869 			 * non atomic operation as we own the queue lock.
4870 			 */
4871 			if (!__test_and_set_bit(NAPI_STATE_SCHED,
4872 						&sd->backlog.state))
4873 				napi_schedule_rps(sd);
4874 		}
4875 		__skb_queue_tail(&sd->input_pkt_queue, skb);
4876 		tail = rps_input_queue_tail_incr(sd);
4877 		backlog_unlock_irq_restore(sd, &flags);
4878 
4879 		/* save the tail outside of the critical section */
4880 		rps_input_queue_tail_save(qtail, tail);
4881 		return NET_RX_SUCCESS;
4882 	}
4883 
4884 	backlog_unlock_irq_restore(sd, &flags);
4885 
4886 cpu_backlog_drop:
4887 	atomic_inc(&sd->dropped);
4888 bad_dev:
4889 	dev_core_stats_rx_dropped_inc(skb->dev);
4890 	kfree_skb_reason(skb, reason);
4891 	return NET_RX_DROP;
4892 }
4893 
4894 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4895 {
4896 	struct net_device *dev = skb->dev;
4897 	struct netdev_rx_queue *rxqueue;
4898 
4899 	rxqueue = dev->_rx;
4900 
4901 	if (skb_rx_queue_recorded(skb)) {
4902 		u16 index = skb_get_rx_queue(skb);
4903 
4904 		if (unlikely(index >= dev->real_num_rx_queues)) {
4905 			WARN_ONCE(dev->real_num_rx_queues > 1,
4906 				  "%s received packet on queue %u, but number "
4907 				  "of RX queues is %u\n",
4908 				  dev->name, index, dev->real_num_rx_queues);
4909 
4910 			return rxqueue; /* Return first rxqueue */
4911 		}
4912 		rxqueue += index;
4913 	}
4914 	return rxqueue;
4915 }
4916 
4917 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp,
4918 			     struct bpf_prog *xdp_prog)
4919 {
4920 	void *orig_data, *orig_data_end, *hard_start;
4921 	struct netdev_rx_queue *rxqueue;
4922 	bool orig_bcast, orig_host;
4923 	u32 mac_len, frame_sz;
4924 	__be16 orig_eth_type;
4925 	struct ethhdr *eth;
4926 	u32 metalen, act;
4927 	int off;
4928 
4929 	/* The XDP program wants to see the packet starting at the MAC
4930 	 * header.
4931 	 */
4932 	mac_len = skb->data - skb_mac_header(skb);
4933 	hard_start = skb->data - skb_headroom(skb);
4934 
4935 	/* SKB "head" area always have tailroom for skb_shared_info */
4936 	frame_sz = (void *)skb_end_pointer(skb) - hard_start;
4937 	frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
4938 
4939 	rxqueue = netif_get_rxqueue(skb);
4940 	xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq);
4941 	xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len,
4942 			 skb_headlen(skb) + mac_len, true);
4943 	if (skb_is_nonlinear(skb)) {
4944 		skb_shinfo(skb)->xdp_frags_size = skb->data_len;
4945 		xdp_buff_set_frags_flag(xdp);
4946 	} else {
4947 		xdp_buff_clear_frags_flag(xdp);
4948 	}
4949 
4950 	orig_data_end = xdp->data_end;
4951 	orig_data = xdp->data;
4952 	eth = (struct ethhdr *)xdp->data;
4953 	orig_host = ether_addr_equal_64bits(eth->h_dest, skb->dev->dev_addr);
4954 	orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4955 	orig_eth_type = eth->h_proto;
4956 
4957 	act = bpf_prog_run_xdp(xdp_prog, xdp);
4958 
4959 	/* check if bpf_xdp_adjust_head was used */
4960 	off = xdp->data - orig_data;
4961 	if (off) {
4962 		if (off > 0)
4963 			__skb_pull(skb, off);
4964 		else if (off < 0)
4965 			__skb_push(skb, -off);
4966 
4967 		skb->mac_header += off;
4968 		skb_reset_network_header(skb);
4969 	}
4970 
4971 	/* check if bpf_xdp_adjust_tail was used */
4972 	off = xdp->data_end - orig_data_end;
4973 	if (off != 0) {
4974 		skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4975 		skb->len += off; /* positive on grow, negative on shrink */
4976 	}
4977 
4978 	/* XDP frag metadata (e.g. nr_frags) are updated in eBPF helpers
4979 	 * (e.g. bpf_xdp_adjust_tail), we need to update data_len here.
4980 	 */
4981 	if (xdp_buff_has_frags(xdp))
4982 		skb->data_len = skb_shinfo(skb)->xdp_frags_size;
4983 	else
4984 		skb->data_len = 0;
4985 
4986 	/* check if XDP changed eth hdr such SKB needs update */
4987 	eth = (struct ethhdr *)xdp->data;
4988 	if ((orig_eth_type != eth->h_proto) ||
4989 	    (orig_host != ether_addr_equal_64bits(eth->h_dest,
4990 						  skb->dev->dev_addr)) ||
4991 	    (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4992 		__skb_push(skb, ETH_HLEN);
4993 		skb->pkt_type = PACKET_HOST;
4994 		skb->protocol = eth_type_trans(skb, skb->dev);
4995 	}
4996 
4997 	/* Redirect/Tx gives L2 packet, code that will reuse skb must __skb_pull
4998 	 * before calling us again on redirect path. We do not call do_redirect
4999 	 * as we leave that up to the caller.
5000 	 *
5001 	 * Caller is responsible for managing lifetime of skb (i.e. calling
5002 	 * kfree_skb in response to actions it cannot handle/XDP_DROP).
5003 	 */
5004 	switch (act) {
5005 	case XDP_REDIRECT:
5006 	case XDP_TX:
5007 		__skb_push(skb, mac_len);
5008 		break;
5009 	case XDP_PASS:
5010 		metalen = xdp->data - xdp->data_meta;
5011 		if (metalen)
5012 			skb_metadata_set(skb, metalen);
5013 		break;
5014 	}
5015 
5016 	return act;
5017 }
5018 
5019 static int
5020 netif_skb_check_for_xdp(struct sk_buff **pskb, struct bpf_prog *prog)
5021 {
5022 	struct sk_buff *skb = *pskb;
5023 	int err, hroom, troom;
5024 
5025 	if (!skb_cow_data_for_xdp(this_cpu_read(system_page_pool), pskb, prog))
5026 		return 0;
5027 
5028 	/* In case we have to go down the path and also linearize,
5029 	 * then lets do the pskb_expand_head() work just once here.
5030 	 */
5031 	hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
5032 	troom = skb->tail + skb->data_len - skb->end;
5033 	err = pskb_expand_head(skb,
5034 			       hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
5035 			       troom > 0 ? troom + 128 : 0, GFP_ATOMIC);
5036 	if (err)
5037 		return err;
5038 
5039 	return skb_linearize(skb);
5040 }
5041 
5042 static u32 netif_receive_generic_xdp(struct sk_buff **pskb,
5043 				     struct xdp_buff *xdp,
5044 				     struct bpf_prog *xdp_prog)
5045 {
5046 	struct sk_buff *skb = *pskb;
5047 	u32 mac_len, act = XDP_DROP;
5048 
5049 	/* Reinjected packets coming from act_mirred or similar should
5050 	 * not get XDP generic processing.
5051 	 */
5052 	if (skb_is_redirected(skb))
5053 		return XDP_PASS;
5054 
5055 	/* XDP packets must have sufficient headroom of XDP_PACKET_HEADROOM
5056 	 * bytes. This is the guarantee that also native XDP provides,
5057 	 * thus we need to do it here as well.
5058 	 */
5059 	mac_len = skb->data - skb_mac_header(skb);
5060 	__skb_push(skb, mac_len);
5061 
5062 	if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
5063 	    skb_headroom(skb) < XDP_PACKET_HEADROOM) {
5064 		if (netif_skb_check_for_xdp(pskb, xdp_prog))
5065 			goto do_drop;
5066 	}
5067 
5068 	__skb_pull(*pskb, mac_len);
5069 
5070 	act = bpf_prog_run_generic_xdp(*pskb, xdp, xdp_prog);
5071 	switch (act) {
5072 	case XDP_REDIRECT:
5073 	case XDP_TX:
5074 	case XDP_PASS:
5075 		break;
5076 	default:
5077 		bpf_warn_invalid_xdp_action((*pskb)->dev, xdp_prog, act);
5078 		fallthrough;
5079 	case XDP_ABORTED:
5080 		trace_xdp_exception((*pskb)->dev, xdp_prog, act);
5081 		fallthrough;
5082 	case XDP_DROP:
5083 	do_drop:
5084 		kfree_skb(*pskb);
5085 		break;
5086 	}
5087 
5088 	return act;
5089 }
5090 
5091 /* When doing generic XDP we have to bypass the qdisc layer and the
5092  * network taps in order to match in-driver-XDP behavior. This also means
5093  * that XDP packets are able to starve other packets going through a qdisc,
5094  * and DDOS attacks will be more effective. In-driver-XDP use dedicated TX
5095  * queues, so they do not have this starvation issue.
5096  */
5097 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
5098 {
5099 	struct net_device *dev = skb->dev;
5100 	struct netdev_queue *txq;
5101 	bool free_skb = true;
5102 	int cpu, rc;
5103 
5104 	txq = netdev_core_pick_tx(dev, skb, NULL);
5105 	cpu = smp_processor_id();
5106 	HARD_TX_LOCK(dev, txq, cpu);
5107 	if (!netif_xmit_frozen_or_drv_stopped(txq)) {
5108 		rc = netdev_start_xmit(skb, dev, txq, 0);
5109 		if (dev_xmit_complete(rc))
5110 			free_skb = false;
5111 	}
5112 	HARD_TX_UNLOCK(dev, txq);
5113 	if (free_skb) {
5114 		trace_xdp_exception(dev, xdp_prog, XDP_TX);
5115 		dev_core_stats_tx_dropped_inc(dev);
5116 		kfree_skb(skb);
5117 	}
5118 }
5119 
5120 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
5121 
5122 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff **pskb)
5123 {
5124 	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
5125 
5126 	if (xdp_prog) {
5127 		struct xdp_buff xdp;
5128 		u32 act;
5129 		int err;
5130 
5131 		bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
5132 		act = netif_receive_generic_xdp(pskb, &xdp, xdp_prog);
5133 		if (act != XDP_PASS) {
5134 			switch (act) {
5135 			case XDP_REDIRECT:
5136 				err = xdp_do_generic_redirect((*pskb)->dev, *pskb,
5137 							      &xdp, xdp_prog);
5138 				if (err)
5139 					goto out_redir;
5140 				break;
5141 			case XDP_TX:
5142 				generic_xdp_tx(*pskb, xdp_prog);
5143 				break;
5144 			}
5145 			bpf_net_ctx_clear(bpf_net_ctx);
5146 			return XDP_DROP;
5147 		}
5148 		bpf_net_ctx_clear(bpf_net_ctx);
5149 	}
5150 	return XDP_PASS;
5151 out_redir:
5152 	bpf_net_ctx_clear(bpf_net_ctx);
5153 	kfree_skb_reason(*pskb, SKB_DROP_REASON_XDP);
5154 	return XDP_DROP;
5155 }
5156 EXPORT_SYMBOL_GPL(do_xdp_generic);
5157 
5158 static int netif_rx_internal(struct sk_buff *skb)
5159 {
5160 	int ret;
5161 
5162 	net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue), skb);
5163 
5164 	trace_netif_rx(skb);
5165 
5166 #ifdef CONFIG_RPS
5167 	if (static_branch_unlikely(&rps_needed)) {
5168 		struct rps_dev_flow voidflow, *rflow = &voidflow;
5169 		int cpu;
5170 
5171 		rcu_read_lock();
5172 
5173 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
5174 		if (cpu < 0)
5175 			cpu = smp_processor_id();
5176 
5177 		ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5178 
5179 		rcu_read_unlock();
5180 	} else
5181 #endif
5182 	{
5183 		unsigned int qtail;
5184 
5185 		ret = enqueue_to_backlog(skb, smp_processor_id(), &qtail);
5186 	}
5187 	return ret;
5188 }
5189 
5190 /**
5191  *	__netif_rx	-	Slightly optimized version of netif_rx
5192  *	@skb: buffer to post
5193  *
5194  *	This behaves as netif_rx except that it does not disable bottom halves.
5195  *	As a result this function may only be invoked from the interrupt context
5196  *	(either hard or soft interrupt).
5197  */
5198 int __netif_rx(struct sk_buff *skb)
5199 {
5200 	int ret;
5201 
5202 	lockdep_assert_once(hardirq_count() | softirq_count());
5203 
5204 	trace_netif_rx_entry(skb);
5205 	ret = netif_rx_internal(skb);
5206 	trace_netif_rx_exit(ret);
5207 	return ret;
5208 }
5209 EXPORT_SYMBOL(__netif_rx);
5210 
5211 /**
5212  *	netif_rx	-	post buffer to the network code
5213  *	@skb: buffer to post
5214  *
5215  *	This function receives a packet from a device driver and queues it for
5216  *	the upper (protocol) levels to process via the backlog NAPI device. It
5217  *	always succeeds. The buffer may be dropped during processing for
5218  *	congestion control or by the protocol layers.
5219  *	The network buffer is passed via the backlog NAPI device. Modern NIC
5220  *	driver should use NAPI and GRO.
5221  *	This function can used from interrupt and from process context. The
5222  *	caller from process context must not disable interrupts before invoking
5223  *	this function.
5224  *
5225  *	return values:
5226  *	NET_RX_SUCCESS	(no congestion)
5227  *	NET_RX_DROP     (packet was dropped)
5228  *
5229  */
5230 int netif_rx(struct sk_buff *skb)
5231 {
5232 	bool need_bh_off = !(hardirq_count() | softirq_count());
5233 	int ret;
5234 
5235 	if (need_bh_off)
5236 		local_bh_disable();
5237 	trace_netif_rx_entry(skb);
5238 	ret = netif_rx_internal(skb);
5239 	trace_netif_rx_exit(ret);
5240 	if (need_bh_off)
5241 		local_bh_enable();
5242 	return ret;
5243 }
5244 EXPORT_SYMBOL(netif_rx);
5245 
5246 static __latent_entropy void net_tx_action(struct softirq_action *h)
5247 {
5248 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5249 
5250 	if (sd->completion_queue) {
5251 		struct sk_buff *clist;
5252 
5253 		local_irq_disable();
5254 		clist = sd->completion_queue;
5255 		sd->completion_queue = NULL;
5256 		local_irq_enable();
5257 
5258 		while (clist) {
5259 			struct sk_buff *skb = clist;
5260 
5261 			clist = clist->next;
5262 
5263 			WARN_ON(refcount_read(&skb->users));
5264 			if (likely(get_kfree_skb_cb(skb)->reason == SKB_CONSUMED))
5265 				trace_consume_skb(skb, net_tx_action);
5266 			else
5267 				trace_kfree_skb(skb, net_tx_action,
5268 						get_kfree_skb_cb(skb)->reason, NULL);
5269 
5270 			if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
5271 				__kfree_skb(skb);
5272 			else
5273 				__napi_kfree_skb(skb,
5274 						 get_kfree_skb_cb(skb)->reason);
5275 		}
5276 	}
5277 
5278 	if (sd->output_queue) {
5279 		struct Qdisc *head;
5280 
5281 		local_irq_disable();
5282 		head = sd->output_queue;
5283 		sd->output_queue = NULL;
5284 		sd->output_queue_tailp = &sd->output_queue;
5285 		local_irq_enable();
5286 
5287 		rcu_read_lock();
5288 
5289 		while (head) {
5290 			struct Qdisc *q = head;
5291 			spinlock_t *root_lock = NULL;
5292 
5293 			head = head->next_sched;
5294 
5295 			/* We need to make sure head->next_sched is read
5296 			 * before clearing __QDISC_STATE_SCHED
5297 			 */
5298 			smp_mb__before_atomic();
5299 
5300 			if (!(q->flags & TCQ_F_NOLOCK)) {
5301 				root_lock = qdisc_lock(q);
5302 				spin_lock(root_lock);
5303 			} else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED,
5304 						     &q->state))) {
5305 				/* There is a synchronize_net() between
5306 				 * STATE_DEACTIVATED flag being set and
5307 				 * qdisc_reset()/some_qdisc_is_busy() in
5308 				 * dev_deactivate(), so we can safely bail out
5309 				 * early here to avoid data race between
5310 				 * qdisc_deactivate() and some_qdisc_is_busy()
5311 				 * for lockless qdisc.
5312 				 */
5313 				clear_bit(__QDISC_STATE_SCHED, &q->state);
5314 				continue;
5315 			}
5316 
5317 			clear_bit(__QDISC_STATE_SCHED, &q->state);
5318 			qdisc_run(q);
5319 			if (root_lock)
5320 				spin_unlock(root_lock);
5321 		}
5322 
5323 		rcu_read_unlock();
5324 	}
5325 
5326 	xfrm_dev_backlog(sd);
5327 }
5328 
5329 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
5330 /* This hook is defined here for ATM LANE */
5331 int (*br_fdb_test_addr_hook)(struct net_device *dev,
5332 			     unsigned char *addr) __read_mostly;
5333 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
5334 #endif
5335 
5336 /**
5337  *	netdev_is_rx_handler_busy - check if receive handler is registered
5338  *	@dev: device to check
5339  *
5340  *	Check if a receive handler is already registered for a given device.
5341  *	Return true if there one.
5342  *
5343  *	The caller must hold the rtnl_mutex.
5344  */
5345 bool netdev_is_rx_handler_busy(struct net_device *dev)
5346 {
5347 	ASSERT_RTNL();
5348 	return dev && rtnl_dereference(dev->rx_handler);
5349 }
5350 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
5351 
5352 /**
5353  *	netdev_rx_handler_register - register receive handler
5354  *	@dev: device to register a handler for
5355  *	@rx_handler: receive handler to register
5356  *	@rx_handler_data: data pointer that is used by rx handler
5357  *
5358  *	Register a receive handler for a device. This handler will then be
5359  *	called from __netif_receive_skb. A negative errno code is returned
5360  *	on a failure.
5361  *
5362  *	The caller must hold the rtnl_mutex.
5363  *
5364  *	For a general description of rx_handler, see enum rx_handler_result.
5365  */
5366 int netdev_rx_handler_register(struct net_device *dev,
5367 			       rx_handler_func_t *rx_handler,
5368 			       void *rx_handler_data)
5369 {
5370 	if (netdev_is_rx_handler_busy(dev))
5371 		return -EBUSY;
5372 
5373 	if (dev->priv_flags & IFF_NO_RX_HANDLER)
5374 		return -EINVAL;
5375 
5376 	/* Note: rx_handler_data must be set before rx_handler */
5377 	rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
5378 	rcu_assign_pointer(dev->rx_handler, rx_handler);
5379 
5380 	return 0;
5381 }
5382 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5383 
5384 /**
5385  *	netdev_rx_handler_unregister - unregister receive handler
5386  *	@dev: device to unregister a handler from
5387  *
5388  *	Unregister a receive handler from a device.
5389  *
5390  *	The caller must hold the rtnl_mutex.
5391  */
5392 void netdev_rx_handler_unregister(struct net_device *dev)
5393 {
5394 
5395 	ASSERT_RTNL();
5396 	RCU_INIT_POINTER(dev->rx_handler, NULL);
5397 	/* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5398 	 * section has a guarantee to see a non NULL rx_handler_data
5399 	 * as well.
5400 	 */
5401 	synchronize_net();
5402 	RCU_INIT_POINTER(dev->rx_handler_data, NULL);
5403 }
5404 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5405 
5406 /*
5407  * Limit the use of PFMEMALLOC reserves to those protocols that implement
5408  * the special handling of PFMEMALLOC skbs.
5409  */
5410 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5411 {
5412 	switch (skb->protocol) {
5413 	case htons(ETH_P_ARP):
5414 	case htons(ETH_P_IP):
5415 	case htons(ETH_P_IPV6):
5416 	case htons(ETH_P_8021Q):
5417 	case htons(ETH_P_8021AD):
5418 		return true;
5419 	default:
5420 		return false;
5421 	}
5422 }
5423 
5424 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5425 			     int *ret, struct net_device *orig_dev)
5426 {
5427 	if (nf_hook_ingress_active(skb)) {
5428 		int ingress_retval;
5429 
5430 		if (*pt_prev) {
5431 			*ret = deliver_skb(skb, *pt_prev, orig_dev);
5432 			*pt_prev = NULL;
5433 		}
5434 
5435 		rcu_read_lock();
5436 		ingress_retval = nf_hook_ingress(skb);
5437 		rcu_read_unlock();
5438 		return ingress_retval;
5439 	}
5440 	return 0;
5441 }
5442 
5443 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
5444 				    struct packet_type **ppt_prev)
5445 {
5446 	struct packet_type *ptype, *pt_prev;
5447 	rx_handler_func_t *rx_handler;
5448 	struct sk_buff *skb = *pskb;
5449 	struct net_device *orig_dev;
5450 	bool deliver_exact = false;
5451 	int ret = NET_RX_DROP;
5452 	__be16 type;
5453 
5454 	net_timestamp_check(!READ_ONCE(net_hotdata.tstamp_prequeue), skb);
5455 
5456 	trace_netif_receive_skb(skb);
5457 
5458 	orig_dev = skb->dev;
5459 
5460 	skb_reset_network_header(skb);
5461 	if (!skb_transport_header_was_set(skb))
5462 		skb_reset_transport_header(skb);
5463 	skb_reset_mac_len(skb);
5464 
5465 	pt_prev = NULL;
5466 
5467 another_round:
5468 	skb->skb_iif = skb->dev->ifindex;
5469 
5470 	__this_cpu_inc(softnet_data.processed);
5471 
5472 	if (static_branch_unlikely(&generic_xdp_needed_key)) {
5473 		int ret2;
5474 
5475 		migrate_disable();
5476 		ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog),
5477 				      &skb);
5478 		migrate_enable();
5479 
5480 		if (ret2 != XDP_PASS) {
5481 			ret = NET_RX_DROP;
5482 			goto out;
5483 		}
5484 	}
5485 
5486 	if (eth_type_vlan(skb->protocol)) {
5487 		skb = skb_vlan_untag(skb);
5488 		if (unlikely(!skb))
5489 			goto out;
5490 	}
5491 
5492 	if (skb_skip_tc_classify(skb))
5493 		goto skip_classify;
5494 
5495 	if (pfmemalloc)
5496 		goto skip_taps;
5497 
5498 	list_for_each_entry_rcu(ptype, &net_hotdata.ptype_all, list) {
5499 		if (pt_prev)
5500 			ret = deliver_skb(skb, pt_prev, orig_dev);
5501 		pt_prev = ptype;
5502 	}
5503 
5504 	list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5505 		if (pt_prev)
5506 			ret = deliver_skb(skb, pt_prev, orig_dev);
5507 		pt_prev = ptype;
5508 	}
5509 
5510 skip_taps:
5511 #ifdef CONFIG_NET_INGRESS
5512 	if (static_branch_unlikely(&ingress_needed_key)) {
5513 		bool another = false;
5514 
5515 		nf_skip_egress(skb, true);
5516 		skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev,
5517 					 &another);
5518 		if (another)
5519 			goto another_round;
5520 		if (!skb)
5521 			goto out;
5522 
5523 		nf_skip_egress(skb, false);
5524 		if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5525 			goto out;
5526 	}
5527 #endif
5528 	skb_reset_redirect(skb);
5529 skip_classify:
5530 	if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
5531 		goto drop;
5532 
5533 	if (skb_vlan_tag_present(skb)) {
5534 		if (pt_prev) {
5535 			ret = deliver_skb(skb, pt_prev, orig_dev);
5536 			pt_prev = NULL;
5537 		}
5538 		if (vlan_do_receive(&skb))
5539 			goto another_round;
5540 		else if (unlikely(!skb))
5541 			goto out;
5542 	}
5543 
5544 	rx_handler = rcu_dereference(skb->dev->rx_handler);
5545 	if (rx_handler) {
5546 		if (pt_prev) {
5547 			ret = deliver_skb(skb, pt_prev, orig_dev);
5548 			pt_prev = NULL;
5549 		}
5550 		switch (rx_handler(&skb)) {
5551 		case RX_HANDLER_CONSUMED:
5552 			ret = NET_RX_SUCCESS;
5553 			goto out;
5554 		case RX_HANDLER_ANOTHER:
5555 			goto another_round;
5556 		case RX_HANDLER_EXACT:
5557 			deliver_exact = true;
5558 			break;
5559 		case RX_HANDLER_PASS:
5560 			break;
5561 		default:
5562 			BUG();
5563 		}
5564 	}
5565 
5566 	if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) {
5567 check_vlan_id:
5568 		if (skb_vlan_tag_get_id(skb)) {
5569 			/* Vlan id is non 0 and vlan_do_receive() above couldn't
5570 			 * find vlan device.
5571 			 */
5572 			skb->pkt_type = PACKET_OTHERHOST;
5573 		} else if (eth_type_vlan(skb->protocol)) {
5574 			/* Outer header is 802.1P with vlan 0, inner header is
5575 			 * 802.1Q or 802.1AD and vlan_do_receive() above could
5576 			 * not find vlan dev for vlan id 0.
5577 			 */
5578 			__vlan_hwaccel_clear_tag(skb);
5579 			skb = skb_vlan_untag(skb);
5580 			if (unlikely(!skb))
5581 				goto out;
5582 			if (vlan_do_receive(&skb))
5583 				/* After stripping off 802.1P header with vlan 0
5584 				 * vlan dev is found for inner header.
5585 				 */
5586 				goto another_round;
5587 			else if (unlikely(!skb))
5588 				goto out;
5589 			else
5590 				/* We have stripped outer 802.1P vlan 0 header.
5591 				 * But could not find vlan dev.
5592 				 * check again for vlan id to set OTHERHOST.
5593 				 */
5594 				goto check_vlan_id;
5595 		}
5596 		/* Note: we might in the future use prio bits
5597 		 * and set skb->priority like in vlan_do_receive()
5598 		 * For the time being, just ignore Priority Code Point
5599 		 */
5600 		__vlan_hwaccel_clear_tag(skb);
5601 	}
5602 
5603 	type = skb->protocol;
5604 
5605 	/* deliver only exact match when indicated */
5606 	if (likely(!deliver_exact)) {
5607 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5608 				       &ptype_base[ntohs(type) &
5609 						   PTYPE_HASH_MASK]);
5610 	}
5611 
5612 	deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5613 			       &orig_dev->ptype_specific);
5614 
5615 	if (unlikely(skb->dev != orig_dev)) {
5616 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5617 				       &skb->dev->ptype_specific);
5618 	}
5619 
5620 	if (pt_prev) {
5621 		if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
5622 			goto drop;
5623 		*ppt_prev = pt_prev;
5624 	} else {
5625 drop:
5626 		if (!deliver_exact)
5627 			dev_core_stats_rx_dropped_inc(skb->dev);
5628 		else
5629 			dev_core_stats_rx_nohandler_inc(skb->dev);
5630 		kfree_skb_reason(skb, SKB_DROP_REASON_UNHANDLED_PROTO);
5631 		/* Jamal, now you will not able to escape explaining
5632 		 * me how you were going to use this. :-)
5633 		 */
5634 		ret = NET_RX_DROP;
5635 	}
5636 
5637 out:
5638 	/* The invariant here is that if *ppt_prev is not NULL
5639 	 * then skb should also be non-NULL.
5640 	 *
5641 	 * Apparently *ppt_prev assignment above holds this invariant due to
5642 	 * skb dereferencing near it.
5643 	 */
5644 	*pskb = skb;
5645 	return ret;
5646 }
5647 
5648 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5649 {
5650 	struct net_device *orig_dev = skb->dev;
5651 	struct packet_type *pt_prev = NULL;
5652 	int ret;
5653 
5654 	ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5655 	if (pt_prev)
5656 		ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5657 					 skb->dev, pt_prev, orig_dev);
5658 	return ret;
5659 }
5660 
5661 /**
5662  *	netif_receive_skb_core - special purpose version of netif_receive_skb
5663  *	@skb: buffer to process
5664  *
5665  *	More direct receive version of netif_receive_skb().  It should
5666  *	only be used by callers that have a need to skip RPS and Generic XDP.
5667  *	Caller must also take care of handling if ``(page_is_)pfmemalloc``.
5668  *
5669  *	This function may only be called from softirq context and interrupts
5670  *	should be enabled.
5671  *
5672  *	Return values (usually ignored):
5673  *	NET_RX_SUCCESS: no congestion
5674  *	NET_RX_DROP: packet was dropped
5675  */
5676 int netif_receive_skb_core(struct sk_buff *skb)
5677 {
5678 	int ret;
5679 
5680 	rcu_read_lock();
5681 	ret = __netif_receive_skb_one_core(skb, false);
5682 	rcu_read_unlock();
5683 
5684 	return ret;
5685 }
5686 EXPORT_SYMBOL(netif_receive_skb_core);
5687 
5688 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5689 						  struct packet_type *pt_prev,
5690 						  struct net_device *orig_dev)
5691 {
5692 	struct sk_buff *skb, *next;
5693 
5694 	if (!pt_prev)
5695 		return;
5696 	if (list_empty(head))
5697 		return;
5698 	if (pt_prev->list_func != NULL)
5699 		INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5700 				   ip_list_rcv, head, pt_prev, orig_dev);
5701 	else
5702 		list_for_each_entry_safe(skb, next, head, list) {
5703 			skb_list_del_init(skb);
5704 			pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5705 		}
5706 }
5707 
5708 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5709 {
5710 	/* Fast-path assumptions:
5711 	 * - There is no RX handler.
5712 	 * - Only one packet_type matches.
5713 	 * If either of these fails, we will end up doing some per-packet
5714 	 * processing in-line, then handling the 'last ptype' for the whole
5715 	 * sublist.  This can't cause out-of-order delivery to any single ptype,
5716 	 * because the 'last ptype' must be constant across the sublist, and all
5717 	 * other ptypes are handled per-packet.
5718 	 */
5719 	/* Current (common) ptype of sublist */
5720 	struct packet_type *pt_curr = NULL;
5721 	/* Current (common) orig_dev of sublist */
5722 	struct net_device *od_curr = NULL;
5723 	struct sk_buff *skb, *next;
5724 	LIST_HEAD(sublist);
5725 
5726 	list_for_each_entry_safe(skb, next, head, list) {
5727 		struct net_device *orig_dev = skb->dev;
5728 		struct packet_type *pt_prev = NULL;
5729 
5730 		skb_list_del_init(skb);
5731 		__netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5732 		if (!pt_prev)
5733 			continue;
5734 		if (pt_curr != pt_prev || od_curr != orig_dev) {
5735 			/* dispatch old sublist */
5736 			__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5737 			/* start new sublist */
5738 			INIT_LIST_HEAD(&sublist);
5739 			pt_curr = pt_prev;
5740 			od_curr = orig_dev;
5741 		}
5742 		list_add_tail(&skb->list, &sublist);
5743 	}
5744 
5745 	/* dispatch final sublist */
5746 	__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5747 }
5748 
5749 static int __netif_receive_skb(struct sk_buff *skb)
5750 {
5751 	int ret;
5752 
5753 	if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5754 		unsigned int noreclaim_flag;
5755 
5756 		/*
5757 		 * PFMEMALLOC skbs are special, they should
5758 		 * - be delivered to SOCK_MEMALLOC sockets only
5759 		 * - stay away from userspace
5760 		 * - have bounded memory usage
5761 		 *
5762 		 * Use PF_MEMALLOC as this saves us from propagating the allocation
5763 		 * context down to all allocation sites.
5764 		 */
5765 		noreclaim_flag = memalloc_noreclaim_save();
5766 		ret = __netif_receive_skb_one_core(skb, true);
5767 		memalloc_noreclaim_restore(noreclaim_flag);
5768 	} else
5769 		ret = __netif_receive_skb_one_core(skb, false);
5770 
5771 	return ret;
5772 }
5773 
5774 static void __netif_receive_skb_list(struct list_head *head)
5775 {
5776 	unsigned long noreclaim_flag = 0;
5777 	struct sk_buff *skb, *next;
5778 	bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5779 
5780 	list_for_each_entry_safe(skb, next, head, list) {
5781 		if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5782 			struct list_head sublist;
5783 
5784 			/* Handle the previous sublist */
5785 			list_cut_before(&sublist, head, &skb->list);
5786 			if (!list_empty(&sublist))
5787 				__netif_receive_skb_list_core(&sublist, pfmemalloc);
5788 			pfmemalloc = !pfmemalloc;
5789 			/* See comments in __netif_receive_skb */
5790 			if (pfmemalloc)
5791 				noreclaim_flag = memalloc_noreclaim_save();
5792 			else
5793 				memalloc_noreclaim_restore(noreclaim_flag);
5794 		}
5795 	}
5796 	/* Handle the remaining sublist */
5797 	if (!list_empty(head))
5798 		__netif_receive_skb_list_core(head, pfmemalloc);
5799 	/* Restore pflags */
5800 	if (pfmemalloc)
5801 		memalloc_noreclaim_restore(noreclaim_flag);
5802 }
5803 
5804 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5805 {
5806 	struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5807 	struct bpf_prog *new = xdp->prog;
5808 	int ret = 0;
5809 
5810 	switch (xdp->command) {
5811 	case XDP_SETUP_PROG:
5812 		rcu_assign_pointer(dev->xdp_prog, new);
5813 		if (old)
5814 			bpf_prog_put(old);
5815 
5816 		if (old && !new) {
5817 			static_branch_dec(&generic_xdp_needed_key);
5818 		} else if (new && !old) {
5819 			static_branch_inc(&generic_xdp_needed_key);
5820 			dev_disable_lro(dev);
5821 			dev_disable_gro_hw(dev);
5822 		}
5823 		break;
5824 
5825 	default:
5826 		ret = -EINVAL;
5827 		break;
5828 	}
5829 
5830 	return ret;
5831 }
5832 
5833 static int netif_receive_skb_internal(struct sk_buff *skb)
5834 {
5835 	int ret;
5836 
5837 	net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue), skb);
5838 
5839 	if (skb_defer_rx_timestamp(skb))
5840 		return NET_RX_SUCCESS;
5841 
5842 	rcu_read_lock();
5843 #ifdef CONFIG_RPS
5844 	if (static_branch_unlikely(&rps_needed)) {
5845 		struct rps_dev_flow voidflow, *rflow = &voidflow;
5846 		int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5847 
5848 		if (cpu >= 0) {
5849 			ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5850 			rcu_read_unlock();
5851 			return ret;
5852 		}
5853 	}
5854 #endif
5855 	ret = __netif_receive_skb(skb);
5856 	rcu_read_unlock();
5857 	return ret;
5858 }
5859 
5860 void netif_receive_skb_list_internal(struct list_head *head)
5861 {
5862 	struct sk_buff *skb, *next;
5863 	LIST_HEAD(sublist);
5864 
5865 	list_for_each_entry_safe(skb, next, head, list) {
5866 		net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue),
5867 				    skb);
5868 		skb_list_del_init(skb);
5869 		if (!skb_defer_rx_timestamp(skb))
5870 			list_add_tail(&skb->list, &sublist);
5871 	}
5872 	list_splice_init(&sublist, head);
5873 
5874 	rcu_read_lock();
5875 #ifdef CONFIG_RPS
5876 	if (static_branch_unlikely(&rps_needed)) {
5877 		list_for_each_entry_safe(skb, next, head, list) {
5878 			struct rps_dev_flow voidflow, *rflow = &voidflow;
5879 			int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5880 
5881 			if (cpu >= 0) {
5882 				/* Will be handled, remove from list */
5883 				skb_list_del_init(skb);
5884 				enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5885 			}
5886 		}
5887 	}
5888 #endif
5889 	__netif_receive_skb_list(head);
5890 	rcu_read_unlock();
5891 }
5892 
5893 /**
5894  *	netif_receive_skb - process receive buffer from network
5895  *	@skb: buffer to process
5896  *
5897  *	netif_receive_skb() is the main receive data processing function.
5898  *	It always succeeds. The buffer may be dropped during processing
5899  *	for congestion control or by the protocol layers.
5900  *
5901  *	This function may only be called from softirq context and interrupts
5902  *	should be enabled.
5903  *
5904  *	Return values (usually ignored):
5905  *	NET_RX_SUCCESS: no congestion
5906  *	NET_RX_DROP: packet was dropped
5907  */
5908 int netif_receive_skb(struct sk_buff *skb)
5909 {
5910 	int ret;
5911 
5912 	trace_netif_receive_skb_entry(skb);
5913 
5914 	ret = netif_receive_skb_internal(skb);
5915 	trace_netif_receive_skb_exit(ret);
5916 
5917 	return ret;
5918 }
5919 EXPORT_SYMBOL(netif_receive_skb);
5920 
5921 /**
5922  *	netif_receive_skb_list - process many receive buffers from network
5923  *	@head: list of skbs to process.
5924  *
5925  *	Since return value of netif_receive_skb() is normally ignored, and
5926  *	wouldn't be meaningful for a list, this function returns void.
5927  *
5928  *	This function may only be called from softirq context and interrupts
5929  *	should be enabled.
5930  */
5931 void netif_receive_skb_list(struct list_head *head)
5932 {
5933 	struct sk_buff *skb;
5934 
5935 	if (list_empty(head))
5936 		return;
5937 	if (trace_netif_receive_skb_list_entry_enabled()) {
5938 		list_for_each_entry(skb, head, list)
5939 			trace_netif_receive_skb_list_entry(skb);
5940 	}
5941 	netif_receive_skb_list_internal(head);
5942 	trace_netif_receive_skb_list_exit(0);
5943 }
5944 EXPORT_SYMBOL(netif_receive_skb_list);
5945 
5946 static DEFINE_PER_CPU(struct work_struct, flush_works);
5947 
5948 /* Network device is going away, flush any packets still pending */
5949 static void flush_backlog(struct work_struct *work)
5950 {
5951 	struct sk_buff *skb, *tmp;
5952 	struct softnet_data *sd;
5953 
5954 	local_bh_disable();
5955 	sd = this_cpu_ptr(&softnet_data);
5956 
5957 	backlog_lock_irq_disable(sd);
5958 	skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5959 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5960 			__skb_unlink(skb, &sd->input_pkt_queue);
5961 			dev_kfree_skb_irq(skb);
5962 			rps_input_queue_head_incr(sd);
5963 		}
5964 	}
5965 	backlog_unlock_irq_enable(sd);
5966 
5967 	local_lock_nested_bh(&softnet_data.process_queue_bh_lock);
5968 	skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5969 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5970 			__skb_unlink(skb, &sd->process_queue);
5971 			kfree_skb(skb);
5972 			rps_input_queue_head_incr(sd);
5973 		}
5974 	}
5975 	local_unlock_nested_bh(&softnet_data.process_queue_bh_lock);
5976 	local_bh_enable();
5977 }
5978 
5979 static bool flush_required(int cpu)
5980 {
5981 #if IS_ENABLED(CONFIG_RPS)
5982 	struct softnet_data *sd = &per_cpu(softnet_data, cpu);
5983 	bool do_flush;
5984 
5985 	backlog_lock_irq_disable(sd);
5986 
5987 	/* as insertion into process_queue happens with the rps lock held,
5988 	 * process_queue access may race only with dequeue
5989 	 */
5990 	do_flush = !skb_queue_empty(&sd->input_pkt_queue) ||
5991 		   !skb_queue_empty_lockless(&sd->process_queue);
5992 	backlog_unlock_irq_enable(sd);
5993 
5994 	return do_flush;
5995 #endif
5996 	/* without RPS we can't safely check input_pkt_queue: during a
5997 	 * concurrent remote skb_queue_splice() we can detect as empty both
5998 	 * input_pkt_queue and process_queue even if the latter could end-up
5999 	 * containing a lot of packets.
6000 	 */
6001 	return true;
6002 }
6003 
6004 static void flush_all_backlogs(void)
6005 {
6006 	static cpumask_t flush_cpus;
6007 	unsigned int cpu;
6008 
6009 	/* since we are under rtnl lock protection we can use static data
6010 	 * for the cpumask and avoid allocating on stack the possibly
6011 	 * large mask
6012 	 */
6013 	ASSERT_RTNL();
6014 
6015 	cpus_read_lock();
6016 
6017 	cpumask_clear(&flush_cpus);
6018 	for_each_online_cpu(cpu) {
6019 		if (flush_required(cpu)) {
6020 			queue_work_on(cpu, system_highpri_wq,
6021 				      per_cpu_ptr(&flush_works, cpu));
6022 			cpumask_set_cpu(cpu, &flush_cpus);
6023 		}
6024 	}
6025 
6026 	/* we can have in flight packet[s] on the cpus we are not flushing,
6027 	 * synchronize_net() in unregister_netdevice_many() will take care of
6028 	 * them
6029 	 */
6030 	for_each_cpu(cpu, &flush_cpus)
6031 		flush_work(per_cpu_ptr(&flush_works, cpu));
6032 
6033 	cpus_read_unlock();
6034 }
6035 
6036 static void net_rps_send_ipi(struct softnet_data *remsd)
6037 {
6038 #ifdef CONFIG_RPS
6039 	while (remsd) {
6040 		struct softnet_data *next = remsd->rps_ipi_next;
6041 
6042 		if (cpu_online(remsd->cpu))
6043 			smp_call_function_single_async(remsd->cpu, &remsd->csd);
6044 		remsd = next;
6045 	}
6046 #endif
6047 }
6048 
6049 /*
6050  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
6051  * Note: called with local irq disabled, but exits with local irq enabled.
6052  */
6053 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
6054 {
6055 #ifdef CONFIG_RPS
6056 	struct softnet_data *remsd = sd->rps_ipi_list;
6057 
6058 	if (!use_backlog_threads() && remsd) {
6059 		sd->rps_ipi_list = NULL;
6060 
6061 		local_irq_enable();
6062 
6063 		/* Send pending IPI's to kick RPS processing on remote cpus. */
6064 		net_rps_send_ipi(remsd);
6065 	} else
6066 #endif
6067 		local_irq_enable();
6068 }
6069 
6070 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
6071 {
6072 #ifdef CONFIG_RPS
6073 	return !use_backlog_threads() && sd->rps_ipi_list;
6074 #else
6075 	return false;
6076 #endif
6077 }
6078 
6079 static int process_backlog(struct napi_struct *napi, int quota)
6080 {
6081 	struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
6082 	bool again = true;
6083 	int work = 0;
6084 
6085 	/* Check if we have pending ipi, its better to send them now,
6086 	 * not waiting net_rx_action() end.
6087 	 */
6088 	if (sd_has_rps_ipi_waiting(sd)) {
6089 		local_irq_disable();
6090 		net_rps_action_and_irq_enable(sd);
6091 	}
6092 
6093 	napi->weight = READ_ONCE(net_hotdata.dev_rx_weight);
6094 	while (again) {
6095 		struct sk_buff *skb;
6096 
6097 		local_lock_nested_bh(&softnet_data.process_queue_bh_lock);
6098 		while ((skb = __skb_dequeue(&sd->process_queue))) {
6099 			local_unlock_nested_bh(&softnet_data.process_queue_bh_lock);
6100 			rcu_read_lock();
6101 			__netif_receive_skb(skb);
6102 			rcu_read_unlock();
6103 			if (++work >= quota) {
6104 				rps_input_queue_head_add(sd, work);
6105 				return work;
6106 			}
6107 
6108 			local_lock_nested_bh(&softnet_data.process_queue_bh_lock);
6109 		}
6110 		local_unlock_nested_bh(&softnet_data.process_queue_bh_lock);
6111 
6112 		backlog_lock_irq_disable(sd);
6113 		if (skb_queue_empty(&sd->input_pkt_queue)) {
6114 			/*
6115 			 * Inline a custom version of __napi_complete().
6116 			 * only current cpu owns and manipulates this napi,
6117 			 * and NAPI_STATE_SCHED is the only possible flag set
6118 			 * on backlog.
6119 			 * We can use a plain write instead of clear_bit(),
6120 			 * and we dont need an smp_mb() memory barrier.
6121 			 */
6122 			napi->state &= NAPIF_STATE_THREADED;
6123 			again = false;
6124 		} else {
6125 			local_lock_nested_bh(&softnet_data.process_queue_bh_lock);
6126 			skb_queue_splice_tail_init(&sd->input_pkt_queue,
6127 						   &sd->process_queue);
6128 			local_unlock_nested_bh(&softnet_data.process_queue_bh_lock);
6129 		}
6130 		backlog_unlock_irq_enable(sd);
6131 	}
6132 
6133 	if (work)
6134 		rps_input_queue_head_add(sd, work);
6135 	return work;
6136 }
6137 
6138 /**
6139  * __napi_schedule - schedule for receive
6140  * @n: entry to schedule
6141  *
6142  * The entry's receive function will be scheduled to run.
6143  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
6144  */
6145 void __napi_schedule(struct napi_struct *n)
6146 {
6147 	unsigned long flags;
6148 
6149 	local_irq_save(flags);
6150 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
6151 	local_irq_restore(flags);
6152 }
6153 EXPORT_SYMBOL(__napi_schedule);
6154 
6155 /**
6156  *	napi_schedule_prep - check if napi can be scheduled
6157  *	@n: napi context
6158  *
6159  * Test if NAPI routine is already running, and if not mark
6160  * it as running.  This is used as a condition variable to
6161  * insure only one NAPI poll instance runs.  We also make
6162  * sure there is no pending NAPI disable.
6163  */
6164 bool napi_schedule_prep(struct napi_struct *n)
6165 {
6166 	unsigned long new, val = READ_ONCE(n->state);
6167 
6168 	do {
6169 		if (unlikely(val & NAPIF_STATE_DISABLE))
6170 			return false;
6171 		new = val | NAPIF_STATE_SCHED;
6172 
6173 		/* Sets STATE_MISSED bit if STATE_SCHED was already set
6174 		 * This was suggested by Alexander Duyck, as compiler
6175 		 * emits better code than :
6176 		 * if (val & NAPIF_STATE_SCHED)
6177 		 *     new |= NAPIF_STATE_MISSED;
6178 		 */
6179 		new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6180 						   NAPIF_STATE_MISSED;
6181 	} while (!try_cmpxchg(&n->state, &val, new));
6182 
6183 	return !(val & NAPIF_STATE_SCHED);
6184 }
6185 EXPORT_SYMBOL(napi_schedule_prep);
6186 
6187 /**
6188  * __napi_schedule_irqoff - schedule for receive
6189  * @n: entry to schedule
6190  *
6191  * Variant of __napi_schedule() assuming hard irqs are masked.
6192  *
6193  * On PREEMPT_RT enabled kernels this maps to __napi_schedule()
6194  * because the interrupt disabled assumption might not be true
6195  * due to force-threaded interrupts and spinlock substitution.
6196  */
6197 void __napi_schedule_irqoff(struct napi_struct *n)
6198 {
6199 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6200 		____napi_schedule(this_cpu_ptr(&softnet_data), n);
6201 	else
6202 		__napi_schedule(n);
6203 }
6204 EXPORT_SYMBOL(__napi_schedule_irqoff);
6205 
6206 bool napi_complete_done(struct napi_struct *n, int work_done)
6207 {
6208 	unsigned long flags, val, new, timeout = 0;
6209 	bool ret = true;
6210 
6211 	/*
6212 	 * 1) Don't let napi dequeue from the cpu poll list
6213 	 *    just in case its running on a different cpu.
6214 	 * 2) If we are busy polling, do nothing here, we have
6215 	 *    the guarantee we will be called later.
6216 	 */
6217 	if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6218 				 NAPIF_STATE_IN_BUSY_POLL)))
6219 		return false;
6220 
6221 	if (work_done) {
6222 		if (n->gro_bitmask)
6223 			timeout = READ_ONCE(n->dev->gro_flush_timeout);
6224 		n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs);
6225 	}
6226 	if (n->defer_hard_irqs_count > 0) {
6227 		n->defer_hard_irqs_count--;
6228 		timeout = READ_ONCE(n->dev->gro_flush_timeout);
6229 		if (timeout)
6230 			ret = false;
6231 	}
6232 	if (n->gro_bitmask) {
6233 		/* When the NAPI instance uses a timeout and keeps postponing
6234 		 * it, we need to bound somehow the time packets are kept in
6235 		 * the GRO layer
6236 		 */
6237 		napi_gro_flush(n, !!timeout);
6238 	}
6239 
6240 	gro_normal_list(n);
6241 
6242 	if (unlikely(!list_empty(&n->poll_list))) {
6243 		/* If n->poll_list is not empty, we need to mask irqs */
6244 		local_irq_save(flags);
6245 		list_del_init(&n->poll_list);
6246 		local_irq_restore(flags);
6247 	}
6248 	WRITE_ONCE(n->list_owner, -1);
6249 
6250 	val = READ_ONCE(n->state);
6251 	do {
6252 		WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6253 
6254 		new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED |
6255 			      NAPIF_STATE_SCHED_THREADED |
6256 			      NAPIF_STATE_PREFER_BUSY_POLL);
6257 
6258 		/* If STATE_MISSED was set, leave STATE_SCHED set,
6259 		 * because we will call napi->poll() one more time.
6260 		 * This C code was suggested by Alexander Duyck to help gcc.
6261 		 */
6262 		new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6263 						    NAPIF_STATE_SCHED;
6264 	} while (!try_cmpxchg(&n->state, &val, new));
6265 
6266 	if (unlikely(val & NAPIF_STATE_MISSED)) {
6267 		__napi_schedule(n);
6268 		return false;
6269 	}
6270 
6271 	if (timeout)
6272 		hrtimer_start(&n->timer, ns_to_ktime(timeout),
6273 			      HRTIMER_MODE_REL_PINNED);
6274 	return ret;
6275 }
6276 EXPORT_SYMBOL(napi_complete_done);
6277 
6278 /* must be called under rcu_read_lock(), as we dont take a reference */
6279 struct napi_struct *napi_by_id(unsigned int napi_id)
6280 {
6281 	unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6282 	struct napi_struct *napi;
6283 
6284 	hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6285 		if (napi->napi_id == napi_id)
6286 			return napi;
6287 
6288 	return NULL;
6289 }
6290 
6291 static void skb_defer_free_flush(struct softnet_data *sd)
6292 {
6293 	struct sk_buff *skb, *next;
6294 
6295 	/* Paired with WRITE_ONCE() in skb_attempt_defer_free() */
6296 	if (!READ_ONCE(sd->defer_list))
6297 		return;
6298 
6299 	spin_lock(&sd->defer_lock);
6300 	skb = sd->defer_list;
6301 	sd->defer_list = NULL;
6302 	sd->defer_count = 0;
6303 	spin_unlock(&sd->defer_lock);
6304 
6305 	while (skb != NULL) {
6306 		next = skb->next;
6307 		napi_consume_skb(skb, 1);
6308 		skb = next;
6309 	}
6310 }
6311 
6312 #if defined(CONFIG_NET_RX_BUSY_POLL)
6313 
6314 static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule)
6315 {
6316 	if (!skip_schedule) {
6317 		gro_normal_list(napi);
6318 		__napi_schedule(napi);
6319 		return;
6320 	}
6321 
6322 	if (napi->gro_bitmask) {
6323 		/* flush too old packets
6324 		 * If HZ < 1000, flush all packets.
6325 		 */
6326 		napi_gro_flush(napi, HZ >= 1000);
6327 	}
6328 
6329 	gro_normal_list(napi);
6330 	clear_bit(NAPI_STATE_SCHED, &napi->state);
6331 }
6332 
6333 enum {
6334 	NAPI_F_PREFER_BUSY_POLL	= 1,
6335 	NAPI_F_END_ON_RESCHED	= 2,
6336 };
6337 
6338 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock,
6339 			   unsigned flags, u16 budget)
6340 {
6341 	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
6342 	bool skip_schedule = false;
6343 	unsigned long timeout;
6344 	int rc;
6345 
6346 	/* Busy polling means there is a high chance device driver hard irq
6347 	 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6348 	 * set in napi_schedule_prep().
6349 	 * Since we are about to call napi->poll() once more, we can safely
6350 	 * clear NAPI_STATE_MISSED.
6351 	 *
6352 	 * Note: x86 could use a single "lock and ..." instruction
6353 	 * to perform these two clear_bit()
6354 	 */
6355 	clear_bit(NAPI_STATE_MISSED, &napi->state);
6356 	clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6357 
6358 	local_bh_disable();
6359 	bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
6360 
6361 	if (flags & NAPI_F_PREFER_BUSY_POLL) {
6362 		napi->defer_hard_irqs_count = READ_ONCE(napi->dev->napi_defer_hard_irqs);
6363 		timeout = READ_ONCE(napi->dev->gro_flush_timeout);
6364 		if (napi->defer_hard_irqs_count && timeout) {
6365 			hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED);
6366 			skip_schedule = true;
6367 		}
6368 	}
6369 
6370 	/* All we really want here is to re-enable device interrupts.
6371 	 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6372 	 */
6373 	rc = napi->poll(napi, budget);
6374 	/* We can't gro_normal_list() here, because napi->poll() might have
6375 	 * rearmed the napi (napi_complete_done()) in which case it could
6376 	 * already be running on another CPU.
6377 	 */
6378 	trace_napi_poll(napi, rc, budget);
6379 	netpoll_poll_unlock(have_poll_lock);
6380 	if (rc == budget)
6381 		__busy_poll_stop(napi, skip_schedule);
6382 	bpf_net_ctx_clear(bpf_net_ctx);
6383 	local_bh_enable();
6384 }
6385 
6386 static void __napi_busy_loop(unsigned int napi_id,
6387 		      bool (*loop_end)(void *, unsigned long),
6388 		      void *loop_end_arg, unsigned flags, u16 budget)
6389 {
6390 	unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6391 	int (*napi_poll)(struct napi_struct *napi, int budget);
6392 	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
6393 	void *have_poll_lock = NULL;
6394 	struct napi_struct *napi;
6395 
6396 	WARN_ON_ONCE(!rcu_read_lock_held());
6397 
6398 restart:
6399 	napi_poll = NULL;
6400 
6401 	napi = napi_by_id(napi_id);
6402 	if (!napi)
6403 		return;
6404 
6405 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6406 		preempt_disable();
6407 	for (;;) {
6408 		int work = 0;
6409 
6410 		local_bh_disable();
6411 		bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
6412 		if (!napi_poll) {
6413 			unsigned long val = READ_ONCE(napi->state);
6414 
6415 			/* If multiple threads are competing for this napi,
6416 			 * we avoid dirtying napi->state as much as we can.
6417 			 */
6418 			if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6419 				   NAPIF_STATE_IN_BUSY_POLL)) {
6420 				if (flags & NAPI_F_PREFER_BUSY_POLL)
6421 					set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6422 				goto count;
6423 			}
6424 			if (cmpxchg(&napi->state, val,
6425 				    val | NAPIF_STATE_IN_BUSY_POLL |
6426 					  NAPIF_STATE_SCHED) != val) {
6427 				if (flags & NAPI_F_PREFER_BUSY_POLL)
6428 					set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6429 				goto count;
6430 			}
6431 			have_poll_lock = netpoll_poll_lock(napi);
6432 			napi_poll = napi->poll;
6433 		}
6434 		work = napi_poll(napi, budget);
6435 		trace_napi_poll(napi, work, budget);
6436 		gro_normal_list(napi);
6437 count:
6438 		if (work > 0)
6439 			__NET_ADD_STATS(dev_net(napi->dev),
6440 					LINUX_MIB_BUSYPOLLRXPACKETS, work);
6441 		skb_defer_free_flush(this_cpu_ptr(&softnet_data));
6442 		bpf_net_ctx_clear(bpf_net_ctx);
6443 		local_bh_enable();
6444 
6445 		if (!loop_end || loop_end(loop_end_arg, start_time))
6446 			break;
6447 
6448 		if (unlikely(need_resched())) {
6449 			if (flags & NAPI_F_END_ON_RESCHED)
6450 				break;
6451 			if (napi_poll)
6452 				busy_poll_stop(napi, have_poll_lock, flags, budget);
6453 			if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6454 				preempt_enable();
6455 			rcu_read_unlock();
6456 			cond_resched();
6457 			rcu_read_lock();
6458 			if (loop_end(loop_end_arg, start_time))
6459 				return;
6460 			goto restart;
6461 		}
6462 		cpu_relax();
6463 	}
6464 	if (napi_poll)
6465 		busy_poll_stop(napi, have_poll_lock, flags, budget);
6466 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6467 		preempt_enable();
6468 }
6469 
6470 void napi_busy_loop_rcu(unsigned int napi_id,
6471 			bool (*loop_end)(void *, unsigned long),
6472 			void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6473 {
6474 	unsigned flags = NAPI_F_END_ON_RESCHED;
6475 
6476 	if (prefer_busy_poll)
6477 		flags |= NAPI_F_PREFER_BUSY_POLL;
6478 
6479 	__napi_busy_loop(napi_id, loop_end, loop_end_arg, flags, budget);
6480 }
6481 
6482 void napi_busy_loop(unsigned int napi_id,
6483 		    bool (*loop_end)(void *, unsigned long),
6484 		    void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6485 {
6486 	unsigned flags = prefer_busy_poll ? NAPI_F_PREFER_BUSY_POLL : 0;
6487 
6488 	rcu_read_lock();
6489 	__napi_busy_loop(napi_id, loop_end, loop_end_arg, flags, budget);
6490 	rcu_read_unlock();
6491 }
6492 EXPORT_SYMBOL(napi_busy_loop);
6493 
6494 #endif /* CONFIG_NET_RX_BUSY_POLL */
6495 
6496 static void napi_hash_add(struct napi_struct *napi)
6497 {
6498 	if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state))
6499 		return;
6500 
6501 	spin_lock(&napi_hash_lock);
6502 
6503 	/* 0..NR_CPUS range is reserved for sender_cpu use */
6504 	do {
6505 		if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6506 			napi_gen_id = MIN_NAPI_ID;
6507 	} while (napi_by_id(napi_gen_id));
6508 	napi->napi_id = napi_gen_id;
6509 
6510 	hlist_add_head_rcu(&napi->napi_hash_node,
6511 			   &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6512 
6513 	spin_unlock(&napi_hash_lock);
6514 }
6515 
6516 /* Warning : caller is responsible to make sure rcu grace period
6517  * is respected before freeing memory containing @napi
6518  */
6519 static void napi_hash_del(struct napi_struct *napi)
6520 {
6521 	spin_lock(&napi_hash_lock);
6522 
6523 	hlist_del_init_rcu(&napi->napi_hash_node);
6524 
6525 	spin_unlock(&napi_hash_lock);
6526 }
6527 
6528 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6529 {
6530 	struct napi_struct *napi;
6531 
6532 	napi = container_of(timer, struct napi_struct, timer);
6533 
6534 	/* Note : we use a relaxed variant of napi_schedule_prep() not setting
6535 	 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6536 	 */
6537 	if (!napi_disable_pending(napi) &&
6538 	    !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) {
6539 		clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6540 		__napi_schedule_irqoff(napi);
6541 	}
6542 
6543 	return HRTIMER_NORESTART;
6544 }
6545 
6546 static void init_gro_hash(struct napi_struct *napi)
6547 {
6548 	int i;
6549 
6550 	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6551 		INIT_LIST_HEAD(&napi->gro_hash[i].list);
6552 		napi->gro_hash[i].count = 0;
6553 	}
6554 	napi->gro_bitmask = 0;
6555 }
6556 
6557 int dev_set_threaded(struct net_device *dev, bool threaded)
6558 {
6559 	struct napi_struct *napi;
6560 	int err = 0;
6561 
6562 	if (dev->threaded == threaded)
6563 		return 0;
6564 
6565 	if (threaded) {
6566 		list_for_each_entry(napi, &dev->napi_list, dev_list) {
6567 			if (!napi->thread) {
6568 				err = napi_kthread_create(napi);
6569 				if (err) {
6570 					threaded = false;
6571 					break;
6572 				}
6573 			}
6574 		}
6575 	}
6576 
6577 	WRITE_ONCE(dev->threaded, threaded);
6578 
6579 	/* Make sure kthread is created before THREADED bit
6580 	 * is set.
6581 	 */
6582 	smp_mb__before_atomic();
6583 
6584 	/* Setting/unsetting threaded mode on a napi might not immediately
6585 	 * take effect, if the current napi instance is actively being
6586 	 * polled. In this case, the switch between threaded mode and
6587 	 * softirq mode will happen in the next round of napi_schedule().
6588 	 * This should not cause hiccups/stalls to the live traffic.
6589 	 */
6590 	list_for_each_entry(napi, &dev->napi_list, dev_list)
6591 		assign_bit(NAPI_STATE_THREADED, &napi->state, threaded);
6592 
6593 	return err;
6594 }
6595 EXPORT_SYMBOL(dev_set_threaded);
6596 
6597 /**
6598  * netif_queue_set_napi - Associate queue with the napi
6599  * @dev: device to which NAPI and queue belong
6600  * @queue_index: Index of queue
6601  * @type: queue type as RX or TX
6602  * @napi: NAPI context, pass NULL to clear previously set NAPI
6603  *
6604  * Set queue with its corresponding napi context. This should be done after
6605  * registering the NAPI handler for the queue-vector and the queues have been
6606  * mapped to the corresponding interrupt vector.
6607  */
6608 void netif_queue_set_napi(struct net_device *dev, unsigned int queue_index,
6609 			  enum netdev_queue_type type, struct napi_struct *napi)
6610 {
6611 	struct netdev_rx_queue *rxq;
6612 	struct netdev_queue *txq;
6613 
6614 	if (WARN_ON_ONCE(napi && !napi->dev))
6615 		return;
6616 	if (dev->reg_state >= NETREG_REGISTERED)
6617 		ASSERT_RTNL();
6618 
6619 	switch (type) {
6620 	case NETDEV_QUEUE_TYPE_RX:
6621 		rxq = __netif_get_rx_queue(dev, queue_index);
6622 		rxq->napi = napi;
6623 		return;
6624 	case NETDEV_QUEUE_TYPE_TX:
6625 		txq = netdev_get_tx_queue(dev, queue_index);
6626 		txq->napi = napi;
6627 		return;
6628 	default:
6629 		return;
6630 	}
6631 }
6632 EXPORT_SYMBOL(netif_queue_set_napi);
6633 
6634 void netif_napi_add_weight(struct net_device *dev, struct napi_struct *napi,
6635 			   int (*poll)(struct napi_struct *, int), int weight)
6636 {
6637 	if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state)))
6638 		return;
6639 
6640 	INIT_LIST_HEAD(&napi->poll_list);
6641 	INIT_HLIST_NODE(&napi->napi_hash_node);
6642 	hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6643 	napi->timer.function = napi_watchdog;
6644 	init_gro_hash(napi);
6645 	napi->skb = NULL;
6646 	INIT_LIST_HEAD(&napi->rx_list);
6647 	napi->rx_count = 0;
6648 	napi->poll = poll;
6649 	if (weight > NAPI_POLL_WEIGHT)
6650 		netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6651 				weight);
6652 	napi->weight = weight;
6653 	napi->dev = dev;
6654 #ifdef CONFIG_NETPOLL
6655 	napi->poll_owner = -1;
6656 #endif
6657 	napi->list_owner = -1;
6658 	set_bit(NAPI_STATE_SCHED, &napi->state);
6659 	set_bit(NAPI_STATE_NPSVC, &napi->state);
6660 	list_add_rcu(&napi->dev_list, &dev->napi_list);
6661 	napi_hash_add(napi);
6662 	napi_get_frags_check(napi);
6663 	/* Create kthread for this napi if dev->threaded is set.
6664 	 * Clear dev->threaded if kthread creation failed so that
6665 	 * threaded mode will not be enabled in napi_enable().
6666 	 */
6667 	if (dev->threaded && napi_kthread_create(napi))
6668 		dev->threaded = false;
6669 	netif_napi_set_irq(napi, -1);
6670 }
6671 EXPORT_SYMBOL(netif_napi_add_weight);
6672 
6673 void napi_disable(struct napi_struct *n)
6674 {
6675 	unsigned long val, new;
6676 
6677 	might_sleep();
6678 	set_bit(NAPI_STATE_DISABLE, &n->state);
6679 
6680 	val = READ_ONCE(n->state);
6681 	do {
6682 		while (val & (NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC)) {
6683 			usleep_range(20, 200);
6684 			val = READ_ONCE(n->state);
6685 		}
6686 
6687 		new = val | NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC;
6688 		new &= ~(NAPIF_STATE_THREADED | NAPIF_STATE_PREFER_BUSY_POLL);
6689 	} while (!try_cmpxchg(&n->state, &val, new));
6690 
6691 	hrtimer_cancel(&n->timer);
6692 
6693 	clear_bit(NAPI_STATE_DISABLE, &n->state);
6694 }
6695 EXPORT_SYMBOL(napi_disable);
6696 
6697 /**
6698  *	napi_enable - enable NAPI scheduling
6699  *	@n: NAPI context
6700  *
6701  * Resume NAPI from being scheduled on this context.
6702  * Must be paired with napi_disable.
6703  */
6704 void napi_enable(struct napi_struct *n)
6705 {
6706 	unsigned long new, val = READ_ONCE(n->state);
6707 
6708 	do {
6709 		BUG_ON(!test_bit(NAPI_STATE_SCHED, &val));
6710 
6711 		new = val & ~(NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC);
6712 		if (n->dev->threaded && n->thread)
6713 			new |= NAPIF_STATE_THREADED;
6714 	} while (!try_cmpxchg(&n->state, &val, new));
6715 }
6716 EXPORT_SYMBOL(napi_enable);
6717 
6718 static void flush_gro_hash(struct napi_struct *napi)
6719 {
6720 	int i;
6721 
6722 	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6723 		struct sk_buff *skb, *n;
6724 
6725 		list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6726 			kfree_skb(skb);
6727 		napi->gro_hash[i].count = 0;
6728 	}
6729 }
6730 
6731 /* Must be called in process context */
6732 void __netif_napi_del(struct napi_struct *napi)
6733 {
6734 	if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state))
6735 		return;
6736 
6737 	napi_hash_del(napi);
6738 	list_del_rcu(&napi->dev_list);
6739 	napi_free_frags(napi);
6740 
6741 	flush_gro_hash(napi);
6742 	napi->gro_bitmask = 0;
6743 
6744 	if (napi->thread) {
6745 		kthread_stop(napi->thread);
6746 		napi->thread = NULL;
6747 	}
6748 }
6749 EXPORT_SYMBOL(__netif_napi_del);
6750 
6751 static int __napi_poll(struct napi_struct *n, bool *repoll)
6752 {
6753 	int work, weight;
6754 
6755 	weight = n->weight;
6756 
6757 	/* This NAPI_STATE_SCHED test is for avoiding a race
6758 	 * with netpoll's poll_napi().  Only the entity which
6759 	 * obtains the lock and sees NAPI_STATE_SCHED set will
6760 	 * actually make the ->poll() call.  Therefore we avoid
6761 	 * accidentally calling ->poll() when NAPI is not scheduled.
6762 	 */
6763 	work = 0;
6764 	if (napi_is_scheduled(n)) {
6765 		work = n->poll(n, weight);
6766 		trace_napi_poll(n, work, weight);
6767 
6768 		xdp_do_check_flushed(n);
6769 	}
6770 
6771 	if (unlikely(work > weight))
6772 		netdev_err_once(n->dev, "NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
6773 				n->poll, work, weight);
6774 
6775 	if (likely(work < weight))
6776 		return work;
6777 
6778 	/* Drivers must not modify the NAPI state if they
6779 	 * consume the entire weight.  In such cases this code
6780 	 * still "owns" the NAPI instance and therefore can
6781 	 * move the instance around on the list at-will.
6782 	 */
6783 	if (unlikely(napi_disable_pending(n))) {
6784 		napi_complete(n);
6785 		return work;
6786 	}
6787 
6788 	/* The NAPI context has more processing work, but busy-polling
6789 	 * is preferred. Exit early.
6790 	 */
6791 	if (napi_prefer_busy_poll(n)) {
6792 		if (napi_complete_done(n, work)) {
6793 			/* If timeout is not set, we need to make sure
6794 			 * that the NAPI is re-scheduled.
6795 			 */
6796 			napi_schedule(n);
6797 		}
6798 		return work;
6799 	}
6800 
6801 	if (n->gro_bitmask) {
6802 		/* flush too old packets
6803 		 * If HZ < 1000, flush all packets.
6804 		 */
6805 		napi_gro_flush(n, HZ >= 1000);
6806 	}
6807 
6808 	gro_normal_list(n);
6809 
6810 	/* Some drivers may have called napi_schedule
6811 	 * prior to exhausting their budget.
6812 	 */
6813 	if (unlikely(!list_empty(&n->poll_list))) {
6814 		pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6815 			     n->dev ? n->dev->name : "backlog");
6816 		return work;
6817 	}
6818 
6819 	*repoll = true;
6820 
6821 	return work;
6822 }
6823 
6824 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6825 {
6826 	bool do_repoll = false;
6827 	void *have;
6828 	int work;
6829 
6830 	list_del_init(&n->poll_list);
6831 
6832 	have = netpoll_poll_lock(n);
6833 
6834 	work = __napi_poll(n, &do_repoll);
6835 
6836 	if (do_repoll)
6837 		list_add_tail(&n->poll_list, repoll);
6838 
6839 	netpoll_poll_unlock(have);
6840 
6841 	return work;
6842 }
6843 
6844 static int napi_thread_wait(struct napi_struct *napi)
6845 {
6846 	set_current_state(TASK_INTERRUPTIBLE);
6847 
6848 	while (!kthread_should_stop()) {
6849 		/* Testing SCHED_THREADED bit here to make sure the current
6850 		 * kthread owns this napi and could poll on this napi.
6851 		 * Testing SCHED bit is not enough because SCHED bit might be
6852 		 * set by some other busy poll thread or by napi_disable().
6853 		 */
6854 		if (test_bit(NAPI_STATE_SCHED_THREADED, &napi->state)) {
6855 			WARN_ON(!list_empty(&napi->poll_list));
6856 			__set_current_state(TASK_RUNNING);
6857 			return 0;
6858 		}
6859 
6860 		schedule();
6861 		set_current_state(TASK_INTERRUPTIBLE);
6862 	}
6863 	__set_current_state(TASK_RUNNING);
6864 
6865 	return -1;
6866 }
6867 
6868 static void napi_threaded_poll_loop(struct napi_struct *napi)
6869 {
6870 	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
6871 	struct softnet_data *sd;
6872 	unsigned long last_qs = jiffies;
6873 
6874 	for (;;) {
6875 		bool repoll = false;
6876 		void *have;
6877 
6878 		local_bh_disable();
6879 		bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
6880 
6881 		sd = this_cpu_ptr(&softnet_data);
6882 		sd->in_napi_threaded_poll = true;
6883 
6884 		have = netpoll_poll_lock(napi);
6885 		__napi_poll(napi, &repoll);
6886 		netpoll_poll_unlock(have);
6887 
6888 		sd->in_napi_threaded_poll = false;
6889 		barrier();
6890 
6891 		if (sd_has_rps_ipi_waiting(sd)) {
6892 			local_irq_disable();
6893 			net_rps_action_and_irq_enable(sd);
6894 		}
6895 		skb_defer_free_flush(sd);
6896 		bpf_net_ctx_clear(bpf_net_ctx);
6897 		local_bh_enable();
6898 
6899 		if (!repoll)
6900 			break;
6901 
6902 		rcu_softirq_qs_periodic(last_qs);
6903 		cond_resched();
6904 	}
6905 }
6906 
6907 static int napi_threaded_poll(void *data)
6908 {
6909 	struct napi_struct *napi = data;
6910 
6911 	while (!napi_thread_wait(napi))
6912 		napi_threaded_poll_loop(napi);
6913 
6914 	return 0;
6915 }
6916 
6917 static __latent_entropy void net_rx_action(struct softirq_action *h)
6918 {
6919 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
6920 	unsigned long time_limit = jiffies +
6921 		usecs_to_jiffies(READ_ONCE(net_hotdata.netdev_budget_usecs));
6922 	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
6923 	int budget = READ_ONCE(net_hotdata.netdev_budget);
6924 	LIST_HEAD(list);
6925 	LIST_HEAD(repoll);
6926 
6927 	bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
6928 start:
6929 	sd->in_net_rx_action = true;
6930 	local_irq_disable();
6931 	list_splice_init(&sd->poll_list, &list);
6932 	local_irq_enable();
6933 
6934 	for (;;) {
6935 		struct napi_struct *n;
6936 
6937 		skb_defer_free_flush(sd);
6938 
6939 		if (list_empty(&list)) {
6940 			if (list_empty(&repoll)) {
6941 				sd->in_net_rx_action = false;
6942 				barrier();
6943 				/* We need to check if ____napi_schedule()
6944 				 * had refilled poll_list while
6945 				 * sd->in_net_rx_action was true.
6946 				 */
6947 				if (!list_empty(&sd->poll_list))
6948 					goto start;
6949 				if (!sd_has_rps_ipi_waiting(sd))
6950 					goto end;
6951 			}
6952 			break;
6953 		}
6954 
6955 		n = list_first_entry(&list, struct napi_struct, poll_list);
6956 		budget -= napi_poll(n, &repoll);
6957 
6958 		/* If softirq window is exhausted then punt.
6959 		 * Allow this to run for 2 jiffies since which will allow
6960 		 * an average latency of 1.5/HZ.
6961 		 */
6962 		if (unlikely(budget <= 0 ||
6963 			     time_after_eq(jiffies, time_limit))) {
6964 			sd->time_squeeze++;
6965 			break;
6966 		}
6967 	}
6968 
6969 	local_irq_disable();
6970 
6971 	list_splice_tail_init(&sd->poll_list, &list);
6972 	list_splice_tail(&repoll, &list);
6973 	list_splice(&list, &sd->poll_list);
6974 	if (!list_empty(&sd->poll_list))
6975 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
6976 	else
6977 		sd->in_net_rx_action = false;
6978 
6979 	net_rps_action_and_irq_enable(sd);
6980 end:
6981 	bpf_net_ctx_clear(bpf_net_ctx);
6982 }
6983 
6984 struct netdev_adjacent {
6985 	struct net_device *dev;
6986 	netdevice_tracker dev_tracker;
6987 
6988 	/* upper master flag, there can only be one master device per list */
6989 	bool master;
6990 
6991 	/* lookup ignore flag */
6992 	bool ignore;
6993 
6994 	/* counter for the number of times this device was added to us */
6995 	u16 ref_nr;
6996 
6997 	/* private field for the users */
6998 	void *private;
6999 
7000 	struct list_head list;
7001 	struct rcu_head rcu;
7002 };
7003 
7004 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
7005 						 struct list_head *adj_list)
7006 {
7007 	struct netdev_adjacent *adj;
7008 
7009 	list_for_each_entry(adj, adj_list, list) {
7010 		if (adj->dev == adj_dev)
7011 			return adj;
7012 	}
7013 	return NULL;
7014 }
7015 
7016 static int ____netdev_has_upper_dev(struct net_device *upper_dev,
7017 				    struct netdev_nested_priv *priv)
7018 {
7019 	struct net_device *dev = (struct net_device *)priv->data;
7020 
7021 	return upper_dev == dev;
7022 }
7023 
7024 /**
7025  * netdev_has_upper_dev - Check if device is linked to an upper device
7026  * @dev: device
7027  * @upper_dev: upper device to check
7028  *
7029  * Find out if a device is linked to specified upper device and return true
7030  * in case it is. Note that this checks only immediate upper device,
7031  * not through a complete stack of devices. The caller must hold the RTNL lock.
7032  */
7033 bool netdev_has_upper_dev(struct net_device *dev,
7034 			  struct net_device *upper_dev)
7035 {
7036 	struct netdev_nested_priv priv = {
7037 		.data = (void *)upper_dev,
7038 	};
7039 
7040 	ASSERT_RTNL();
7041 
7042 	return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
7043 					     &priv);
7044 }
7045 EXPORT_SYMBOL(netdev_has_upper_dev);
7046 
7047 /**
7048  * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device
7049  * @dev: device
7050  * @upper_dev: upper device to check
7051  *
7052  * Find out if a device is linked to specified upper device and return true
7053  * in case it is. Note that this checks the entire upper device chain.
7054  * The caller must hold rcu lock.
7055  */
7056 
7057 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
7058 				  struct net_device *upper_dev)
7059 {
7060 	struct netdev_nested_priv priv = {
7061 		.data = (void *)upper_dev,
7062 	};
7063 
7064 	return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
7065 					       &priv);
7066 }
7067 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
7068 
7069 /**
7070  * netdev_has_any_upper_dev - Check if device is linked to some device
7071  * @dev: device
7072  *
7073  * Find out if a device is linked to an upper device and return true in case
7074  * it is. The caller must hold the RTNL lock.
7075  */
7076 bool netdev_has_any_upper_dev(struct net_device *dev)
7077 {
7078 	ASSERT_RTNL();
7079 
7080 	return !list_empty(&dev->adj_list.upper);
7081 }
7082 EXPORT_SYMBOL(netdev_has_any_upper_dev);
7083 
7084 /**
7085  * netdev_master_upper_dev_get - Get master upper device
7086  * @dev: device
7087  *
7088  * Find a master upper device and return pointer to it or NULL in case
7089  * it's not there. The caller must hold the RTNL lock.
7090  */
7091 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
7092 {
7093 	struct netdev_adjacent *upper;
7094 
7095 	ASSERT_RTNL();
7096 
7097 	if (list_empty(&dev->adj_list.upper))
7098 		return NULL;
7099 
7100 	upper = list_first_entry(&dev->adj_list.upper,
7101 				 struct netdev_adjacent, list);
7102 	if (likely(upper->master))
7103 		return upper->dev;
7104 	return NULL;
7105 }
7106 EXPORT_SYMBOL(netdev_master_upper_dev_get);
7107 
7108 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
7109 {
7110 	struct netdev_adjacent *upper;
7111 
7112 	ASSERT_RTNL();
7113 
7114 	if (list_empty(&dev->adj_list.upper))
7115 		return NULL;
7116 
7117 	upper = list_first_entry(&dev->adj_list.upper,
7118 				 struct netdev_adjacent, list);
7119 	if (likely(upper->master) && !upper->ignore)
7120 		return upper->dev;
7121 	return NULL;
7122 }
7123 
7124 /**
7125  * netdev_has_any_lower_dev - Check if device is linked to some device
7126  * @dev: device
7127  *
7128  * Find out if a device is linked to a lower device and return true in case
7129  * it is. The caller must hold the RTNL lock.
7130  */
7131 static bool netdev_has_any_lower_dev(struct net_device *dev)
7132 {
7133 	ASSERT_RTNL();
7134 
7135 	return !list_empty(&dev->adj_list.lower);
7136 }
7137 
7138 void *netdev_adjacent_get_private(struct list_head *adj_list)
7139 {
7140 	struct netdev_adjacent *adj;
7141 
7142 	adj = list_entry(adj_list, struct netdev_adjacent, list);
7143 
7144 	return adj->private;
7145 }
7146 EXPORT_SYMBOL(netdev_adjacent_get_private);
7147 
7148 /**
7149  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
7150  * @dev: device
7151  * @iter: list_head ** of the current position
7152  *
7153  * Gets the next device from the dev's upper list, starting from iter
7154  * position. The caller must hold RCU read lock.
7155  */
7156 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
7157 						 struct list_head **iter)
7158 {
7159 	struct netdev_adjacent *upper;
7160 
7161 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7162 
7163 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7164 
7165 	if (&upper->list == &dev->adj_list.upper)
7166 		return NULL;
7167 
7168 	*iter = &upper->list;
7169 
7170 	return upper->dev;
7171 }
7172 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
7173 
7174 static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
7175 						  struct list_head **iter,
7176 						  bool *ignore)
7177 {
7178 	struct netdev_adjacent *upper;
7179 
7180 	upper = list_entry((*iter)->next, struct netdev_adjacent, list);
7181 
7182 	if (&upper->list == &dev->adj_list.upper)
7183 		return NULL;
7184 
7185 	*iter = &upper->list;
7186 	*ignore = upper->ignore;
7187 
7188 	return upper->dev;
7189 }
7190 
7191 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
7192 						    struct list_head **iter)
7193 {
7194 	struct netdev_adjacent *upper;
7195 
7196 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7197 
7198 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7199 
7200 	if (&upper->list == &dev->adj_list.upper)
7201 		return NULL;
7202 
7203 	*iter = &upper->list;
7204 
7205 	return upper->dev;
7206 }
7207 
7208 static int __netdev_walk_all_upper_dev(struct net_device *dev,
7209 				       int (*fn)(struct net_device *dev,
7210 					 struct netdev_nested_priv *priv),
7211 				       struct netdev_nested_priv *priv)
7212 {
7213 	struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7214 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7215 	int ret, cur = 0;
7216 	bool ignore;
7217 
7218 	now = dev;
7219 	iter = &dev->adj_list.upper;
7220 
7221 	while (1) {
7222 		if (now != dev) {
7223 			ret = fn(now, priv);
7224 			if (ret)
7225 				return ret;
7226 		}
7227 
7228 		next = NULL;
7229 		while (1) {
7230 			udev = __netdev_next_upper_dev(now, &iter, &ignore);
7231 			if (!udev)
7232 				break;
7233 			if (ignore)
7234 				continue;
7235 
7236 			next = udev;
7237 			niter = &udev->adj_list.upper;
7238 			dev_stack[cur] = now;
7239 			iter_stack[cur++] = iter;
7240 			break;
7241 		}
7242 
7243 		if (!next) {
7244 			if (!cur)
7245 				return 0;
7246 			next = dev_stack[--cur];
7247 			niter = iter_stack[cur];
7248 		}
7249 
7250 		now = next;
7251 		iter = niter;
7252 	}
7253 
7254 	return 0;
7255 }
7256 
7257 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
7258 				  int (*fn)(struct net_device *dev,
7259 					    struct netdev_nested_priv *priv),
7260 				  struct netdev_nested_priv *priv)
7261 {
7262 	struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7263 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7264 	int ret, cur = 0;
7265 
7266 	now = dev;
7267 	iter = &dev->adj_list.upper;
7268 
7269 	while (1) {
7270 		if (now != dev) {
7271 			ret = fn(now, priv);
7272 			if (ret)
7273 				return ret;
7274 		}
7275 
7276 		next = NULL;
7277 		while (1) {
7278 			udev = netdev_next_upper_dev_rcu(now, &iter);
7279 			if (!udev)
7280 				break;
7281 
7282 			next = udev;
7283 			niter = &udev->adj_list.upper;
7284 			dev_stack[cur] = now;
7285 			iter_stack[cur++] = iter;
7286 			break;
7287 		}
7288 
7289 		if (!next) {
7290 			if (!cur)
7291 				return 0;
7292 			next = dev_stack[--cur];
7293 			niter = iter_stack[cur];
7294 		}
7295 
7296 		now = next;
7297 		iter = niter;
7298 	}
7299 
7300 	return 0;
7301 }
7302 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
7303 
7304 static bool __netdev_has_upper_dev(struct net_device *dev,
7305 				   struct net_device *upper_dev)
7306 {
7307 	struct netdev_nested_priv priv = {
7308 		.flags = 0,
7309 		.data = (void *)upper_dev,
7310 	};
7311 
7312 	ASSERT_RTNL();
7313 
7314 	return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
7315 					   &priv);
7316 }
7317 
7318 /**
7319  * netdev_lower_get_next_private - Get the next ->private from the
7320  *				   lower neighbour list
7321  * @dev: device
7322  * @iter: list_head ** of the current position
7323  *
7324  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7325  * list, starting from iter position. The caller must hold either hold the
7326  * RTNL lock or its own locking that guarantees that the neighbour lower
7327  * list will remain unchanged.
7328  */
7329 void *netdev_lower_get_next_private(struct net_device *dev,
7330 				    struct list_head **iter)
7331 {
7332 	struct netdev_adjacent *lower;
7333 
7334 	lower = list_entry(*iter, struct netdev_adjacent, list);
7335 
7336 	if (&lower->list == &dev->adj_list.lower)
7337 		return NULL;
7338 
7339 	*iter = lower->list.next;
7340 
7341 	return lower->private;
7342 }
7343 EXPORT_SYMBOL(netdev_lower_get_next_private);
7344 
7345 /**
7346  * netdev_lower_get_next_private_rcu - Get the next ->private from the
7347  *				       lower neighbour list, RCU
7348  *				       variant
7349  * @dev: device
7350  * @iter: list_head ** of the current position
7351  *
7352  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7353  * list, starting from iter position. The caller must hold RCU read lock.
7354  */
7355 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
7356 					struct list_head **iter)
7357 {
7358 	struct netdev_adjacent *lower;
7359 
7360 	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
7361 
7362 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7363 
7364 	if (&lower->list == &dev->adj_list.lower)
7365 		return NULL;
7366 
7367 	*iter = &lower->list;
7368 
7369 	return lower->private;
7370 }
7371 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
7372 
7373 /**
7374  * netdev_lower_get_next - Get the next device from the lower neighbour
7375  *                         list
7376  * @dev: device
7377  * @iter: list_head ** of the current position
7378  *
7379  * Gets the next netdev_adjacent from the dev's lower neighbour
7380  * list, starting from iter position. The caller must hold RTNL lock or
7381  * its own locking that guarantees that the neighbour lower
7382  * list will remain unchanged.
7383  */
7384 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
7385 {
7386 	struct netdev_adjacent *lower;
7387 
7388 	lower = list_entry(*iter, struct netdev_adjacent, list);
7389 
7390 	if (&lower->list == &dev->adj_list.lower)
7391 		return NULL;
7392 
7393 	*iter = lower->list.next;
7394 
7395 	return lower->dev;
7396 }
7397 EXPORT_SYMBOL(netdev_lower_get_next);
7398 
7399 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7400 						struct list_head **iter)
7401 {
7402 	struct netdev_adjacent *lower;
7403 
7404 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7405 
7406 	if (&lower->list == &dev->adj_list.lower)
7407 		return NULL;
7408 
7409 	*iter = &lower->list;
7410 
7411 	return lower->dev;
7412 }
7413 
7414 static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7415 						  struct list_head **iter,
7416 						  bool *ignore)
7417 {
7418 	struct netdev_adjacent *lower;
7419 
7420 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7421 
7422 	if (&lower->list == &dev->adj_list.lower)
7423 		return NULL;
7424 
7425 	*iter = &lower->list;
7426 	*ignore = lower->ignore;
7427 
7428 	return lower->dev;
7429 }
7430 
7431 int netdev_walk_all_lower_dev(struct net_device *dev,
7432 			      int (*fn)(struct net_device *dev,
7433 					struct netdev_nested_priv *priv),
7434 			      struct netdev_nested_priv *priv)
7435 {
7436 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7437 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7438 	int ret, cur = 0;
7439 
7440 	now = dev;
7441 	iter = &dev->adj_list.lower;
7442 
7443 	while (1) {
7444 		if (now != dev) {
7445 			ret = fn(now, priv);
7446 			if (ret)
7447 				return ret;
7448 		}
7449 
7450 		next = NULL;
7451 		while (1) {
7452 			ldev = netdev_next_lower_dev(now, &iter);
7453 			if (!ldev)
7454 				break;
7455 
7456 			next = ldev;
7457 			niter = &ldev->adj_list.lower;
7458 			dev_stack[cur] = now;
7459 			iter_stack[cur++] = iter;
7460 			break;
7461 		}
7462 
7463 		if (!next) {
7464 			if (!cur)
7465 				return 0;
7466 			next = dev_stack[--cur];
7467 			niter = iter_stack[cur];
7468 		}
7469 
7470 		now = next;
7471 		iter = niter;
7472 	}
7473 
7474 	return 0;
7475 }
7476 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
7477 
7478 static int __netdev_walk_all_lower_dev(struct net_device *dev,
7479 				       int (*fn)(struct net_device *dev,
7480 					 struct netdev_nested_priv *priv),
7481 				       struct netdev_nested_priv *priv)
7482 {
7483 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7484 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7485 	int ret, cur = 0;
7486 	bool ignore;
7487 
7488 	now = dev;
7489 	iter = &dev->adj_list.lower;
7490 
7491 	while (1) {
7492 		if (now != dev) {
7493 			ret = fn(now, priv);
7494 			if (ret)
7495 				return ret;
7496 		}
7497 
7498 		next = NULL;
7499 		while (1) {
7500 			ldev = __netdev_next_lower_dev(now, &iter, &ignore);
7501 			if (!ldev)
7502 				break;
7503 			if (ignore)
7504 				continue;
7505 
7506 			next = ldev;
7507 			niter = &ldev->adj_list.lower;
7508 			dev_stack[cur] = now;
7509 			iter_stack[cur++] = iter;
7510 			break;
7511 		}
7512 
7513 		if (!next) {
7514 			if (!cur)
7515 				return 0;
7516 			next = dev_stack[--cur];
7517 			niter = iter_stack[cur];
7518 		}
7519 
7520 		now = next;
7521 		iter = niter;
7522 	}
7523 
7524 	return 0;
7525 }
7526 
7527 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
7528 					     struct list_head **iter)
7529 {
7530 	struct netdev_adjacent *lower;
7531 
7532 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7533 	if (&lower->list == &dev->adj_list.lower)
7534 		return NULL;
7535 
7536 	*iter = &lower->list;
7537 
7538 	return lower->dev;
7539 }
7540 EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
7541 
7542 static u8 __netdev_upper_depth(struct net_device *dev)
7543 {
7544 	struct net_device *udev;
7545 	struct list_head *iter;
7546 	u8 max_depth = 0;
7547 	bool ignore;
7548 
7549 	for (iter = &dev->adj_list.upper,
7550 	     udev = __netdev_next_upper_dev(dev, &iter, &ignore);
7551 	     udev;
7552 	     udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
7553 		if (ignore)
7554 			continue;
7555 		if (max_depth < udev->upper_level)
7556 			max_depth = udev->upper_level;
7557 	}
7558 
7559 	return max_depth;
7560 }
7561 
7562 static u8 __netdev_lower_depth(struct net_device *dev)
7563 {
7564 	struct net_device *ldev;
7565 	struct list_head *iter;
7566 	u8 max_depth = 0;
7567 	bool ignore;
7568 
7569 	for (iter = &dev->adj_list.lower,
7570 	     ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
7571 	     ldev;
7572 	     ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
7573 		if (ignore)
7574 			continue;
7575 		if (max_depth < ldev->lower_level)
7576 			max_depth = ldev->lower_level;
7577 	}
7578 
7579 	return max_depth;
7580 }
7581 
7582 static int __netdev_update_upper_level(struct net_device *dev,
7583 				       struct netdev_nested_priv *__unused)
7584 {
7585 	dev->upper_level = __netdev_upper_depth(dev) + 1;
7586 	return 0;
7587 }
7588 
7589 #ifdef CONFIG_LOCKDEP
7590 static LIST_HEAD(net_unlink_list);
7591 
7592 static void net_unlink_todo(struct net_device *dev)
7593 {
7594 	if (list_empty(&dev->unlink_list))
7595 		list_add_tail(&dev->unlink_list, &net_unlink_list);
7596 }
7597 #endif
7598 
7599 static int __netdev_update_lower_level(struct net_device *dev,
7600 				       struct netdev_nested_priv *priv)
7601 {
7602 	dev->lower_level = __netdev_lower_depth(dev) + 1;
7603 
7604 #ifdef CONFIG_LOCKDEP
7605 	if (!priv)
7606 		return 0;
7607 
7608 	if (priv->flags & NESTED_SYNC_IMM)
7609 		dev->nested_level = dev->lower_level - 1;
7610 	if (priv->flags & NESTED_SYNC_TODO)
7611 		net_unlink_todo(dev);
7612 #endif
7613 	return 0;
7614 }
7615 
7616 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7617 				  int (*fn)(struct net_device *dev,
7618 					    struct netdev_nested_priv *priv),
7619 				  struct netdev_nested_priv *priv)
7620 {
7621 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7622 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7623 	int ret, cur = 0;
7624 
7625 	now = dev;
7626 	iter = &dev->adj_list.lower;
7627 
7628 	while (1) {
7629 		if (now != dev) {
7630 			ret = fn(now, priv);
7631 			if (ret)
7632 				return ret;
7633 		}
7634 
7635 		next = NULL;
7636 		while (1) {
7637 			ldev = netdev_next_lower_dev_rcu(now, &iter);
7638 			if (!ldev)
7639 				break;
7640 
7641 			next = ldev;
7642 			niter = &ldev->adj_list.lower;
7643 			dev_stack[cur] = now;
7644 			iter_stack[cur++] = iter;
7645 			break;
7646 		}
7647 
7648 		if (!next) {
7649 			if (!cur)
7650 				return 0;
7651 			next = dev_stack[--cur];
7652 			niter = iter_stack[cur];
7653 		}
7654 
7655 		now = next;
7656 		iter = niter;
7657 	}
7658 
7659 	return 0;
7660 }
7661 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
7662 
7663 /**
7664  * netdev_lower_get_first_private_rcu - Get the first ->private from the
7665  *				       lower neighbour list, RCU
7666  *				       variant
7667  * @dev: device
7668  *
7669  * Gets the first netdev_adjacent->private from the dev's lower neighbour
7670  * list. The caller must hold RCU read lock.
7671  */
7672 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
7673 {
7674 	struct netdev_adjacent *lower;
7675 
7676 	lower = list_first_or_null_rcu(&dev->adj_list.lower,
7677 			struct netdev_adjacent, list);
7678 	if (lower)
7679 		return lower->private;
7680 	return NULL;
7681 }
7682 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
7683 
7684 /**
7685  * netdev_master_upper_dev_get_rcu - Get master upper device
7686  * @dev: device
7687  *
7688  * Find a master upper device and return pointer to it or NULL in case
7689  * it's not there. The caller must hold the RCU read lock.
7690  */
7691 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
7692 {
7693 	struct netdev_adjacent *upper;
7694 
7695 	upper = list_first_or_null_rcu(&dev->adj_list.upper,
7696 				       struct netdev_adjacent, list);
7697 	if (upper && likely(upper->master))
7698 		return upper->dev;
7699 	return NULL;
7700 }
7701 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
7702 
7703 static int netdev_adjacent_sysfs_add(struct net_device *dev,
7704 			      struct net_device *adj_dev,
7705 			      struct list_head *dev_list)
7706 {
7707 	char linkname[IFNAMSIZ+7];
7708 
7709 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
7710 		"upper_%s" : "lower_%s", adj_dev->name);
7711 	return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
7712 				 linkname);
7713 }
7714 static void netdev_adjacent_sysfs_del(struct net_device *dev,
7715 			       char *name,
7716 			       struct list_head *dev_list)
7717 {
7718 	char linkname[IFNAMSIZ+7];
7719 
7720 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
7721 		"upper_%s" : "lower_%s", name);
7722 	sysfs_remove_link(&(dev->dev.kobj), linkname);
7723 }
7724 
7725 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
7726 						 struct net_device *adj_dev,
7727 						 struct list_head *dev_list)
7728 {
7729 	return (dev_list == &dev->adj_list.upper ||
7730 		dev_list == &dev->adj_list.lower) &&
7731 		net_eq(dev_net(dev), dev_net(adj_dev));
7732 }
7733 
7734 static int __netdev_adjacent_dev_insert(struct net_device *dev,
7735 					struct net_device *adj_dev,
7736 					struct list_head *dev_list,
7737 					void *private, bool master)
7738 {
7739 	struct netdev_adjacent *adj;
7740 	int ret;
7741 
7742 	adj = __netdev_find_adj(adj_dev, dev_list);
7743 
7744 	if (adj) {
7745 		adj->ref_nr += 1;
7746 		pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7747 			 dev->name, adj_dev->name, adj->ref_nr);
7748 
7749 		return 0;
7750 	}
7751 
7752 	adj = kmalloc(sizeof(*adj), GFP_KERNEL);
7753 	if (!adj)
7754 		return -ENOMEM;
7755 
7756 	adj->dev = adj_dev;
7757 	adj->master = master;
7758 	adj->ref_nr = 1;
7759 	adj->private = private;
7760 	adj->ignore = false;
7761 	netdev_hold(adj_dev, &adj->dev_tracker, GFP_KERNEL);
7762 
7763 	pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7764 		 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
7765 
7766 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
7767 		ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
7768 		if (ret)
7769 			goto free_adj;
7770 	}
7771 
7772 	/* Ensure that master link is always the first item in list. */
7773 	if (master) {
7774 		ret = sysfs_create_link(&(dev->dev.kobj),
7775 					&(adj_dev->dev.kobj), "master");
7776 		if (ret)
7777 			goto remove_symlinks;
7778 
7779 		list_add_rcu(&adj->list, dev_list);
7780 	} else {
7781 		list_add_tail_rcu(&adj->list, dev_list);
7782 	}
7783 
7784 	return 0;
7785 
7786 remove_symlinks:
7787 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7788 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7789 free_adj:
7790 	netdev_put(adj_dev, &adj->dev_tracker);
7791 	kfree(adj);
7792 
7793 	return ret;
7794 }
7795 
7796 static void __netdev_adjacent_dev_remove(struct net_device *dev,
7797 					 struct net_device *adj_dev,
7798 					 u16 ref_nr,
7799 					 struct list_head *dev_list)
7800 {
7801 	struct netdev_adjacent *adj;
7802 
7803 	pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
7804 		 dev->name, adj_dev->name, ref_nr);
7805 
7806 	adj = __netdev_find_adj(adj_dev, dev_list);
7807 
7808 	if (!adj) {
7809 		pr_err("Adjacency does not exist for device %s from %s\n",
7810 		       dev->name, adj_dev->name);
7811 		WARN_ON(1);
7812 		return;
7813 	}
7814 
7815 	if (adj->ref_nr > ref_nr) {
7816 		pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
7817 			 dev->name, adj_dev->name, ref_nr,
7818 			 adj->ref_nr - ref_nr);
7819 		adj->ref_nr -= ref_nr;
7820 		return;
7821 	}
7822 
7823 	if (adj->master)
7824 		sysfs_remove_link(&(dev->dev.kobj), "master");
7825 
7826 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7827 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7828 
7829 	list_del_rcu(&adj->list);
7830 	pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
7831 		 adj_dev->name, dev->name, adj_dev->name);
7832 	netdev_put(adj_dev, &adj->dev_tracker);
7833 	kfree_rcu(adj, rcu);
7834 }
7835 
7836 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
7837 					    struct net_device *upper_dev,
7838 					    struct list_head *up_list,
7839 					    struct list_head *down_list,
7840 					    void *private, bool master)
7841 {
7842 	int ret;
7843 
7844 	ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
7845 					   private, master);
7846 	if (ret)
7847 		return ret;
7848 
7849 	ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
7850 					   private, false);
7851 	if (ret) {
7852 		__netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
7853 		return ret;
7854 	}
7855 
7856 	return 0;
7857 }
7858 
7859 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
7860 					       struct net_device *upper_dev,
7861 					       u16 ref_nr,
7862 					       struct list_head *up_list,
7863 					       struct list_head *down_list)
7864 {
7865 	__netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
7866 	__netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
7867 }
7868 
7869 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
7870 						struct net_device *upper_dev,
7871 						void *private, bool master)
7872 {
7873 	return __netdev_adjacent_dev_link_lists(dev, upper_dev,
7874 						&dev->adj_list.upper,
7875 						&upper_dev->adj_list.lower,
7876 						private, master);
7877 }
7878 
7879 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
7880 						   struct net_device *upper_dev)
7881 {
7882 	__netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
7883 					   &dev->adj_list.upper,
7884 					   &upper_dev->adj_list.lower);
7885 }
7886 
7887 static int __netdev_upper_dev_link(struct net_device *dev,
7888 				   struct net_device *upper_dev, bool master,
7889 				   void *upper_priv, void *upper_info,
7890 				   struct netdev_nested_priv *priv,
7891 				   struct netlink_ext_ack *extack)
7892 {
7893 	struct netdev_notifier_changeupper_info changeupper_info = {
7894 		.info = {
7895 			.dev = dev,
7896 			.extack = extack,
7897 		},
7898 		.upper_dev = upper_dev,
7899 		.master = master,
7900 		.linking = true,
7901 		.upper_info = upper_info,
7902 	};
7903 	struct net_device *master_dev;
7904 	int ret = 0;
7905 
7906 	ASSERT_RTNL();
7907 
7908 	if (dev == upper_dev)
7909 		return -EBUSY;
7910 
7911 	/* To prevent loops, check if dev is not upper device to upper_dev. */
7912 	if (__netdev_has_upper_dev(upper_dev, dev))
7913 		return -EBUSY;
7914 
7915 	if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
7916 		return -EMLINK;
7917 
7918 	if (!master) {
7919 		if (__netdev_has_upper_dev(dev, upper_dev))
7920 			return -EEXIST;
7921 	} else {
7922 		master_dev = __netdev_master_upper_dev_get(dev);
7923 		if (master_dev)
7924 			return master_dev == upper_dev ? -EEXIST : -EBUSY;
7925 	}
7926 
7927 	ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7928 					    &changeupper_info.info);
7929 	ret = notifier_to_errno(ret);
7930 	if (ret)
7931 		return ret;
7932 
7933 	ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
7934 						   master);
7935 	if (ret)
7936 		return ret;
7937 
7938 	ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7939 					    &changeupper_info.info);
7940 	ret = notifier_to_errno(ret);
7941 	if (ret)
7942 		goto rollback;
7943 
7944 	__netdev_update_upper_level(dev, NULL);
7945 	__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7946 
7947 	__netdev_update_lower_level(upper_dev, priv);
7948 	__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7949 				    priv);
7950 
7951 	return 0;
7952 
7953 rollback:
7954 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7955 
7956 	return ret;
7957 }
7958 
7959 /**
7960  * netdev_upper_dev_link - Add a link to the upper device
7961  * @dev: device
7962  * @upper_dev: new upper device
7963  * @extack: netlink extended ack
7964  *
7965  * Adds a link to device which is upper to this one. The caller must hold
7966  * the RTNL lock. On a failure a negative errno code is returned.
7967  * On success the reference counts are adjusted and the function
7968  * returns zero.
7969  */
7970 int netdev_upper_dev_link(struct net_device *dev,
7971 			  struct net_device *upper_dev,
7972 			  struct netlink_ext_ack *extack)
7973 {
7974 	struct netdev_nested_priv priv = {
7975 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7976 		.data = NULL,
7977 	};
7978 
7979 	return __netdev_upper_dev_link(dev, upper_dev, false,
7980 				       NULL, NULL, &priv, extack);
7981 }
7982 EXPORT_SYMBOL(netdev_upper_dev_link);
7983 
7984 /**
7985  * netdev_master_upper_dev_link - Add a master link to the upper device
7986  * @dev: device
7987  * @upper_dev: new upper device
7988  * @upper_priv: upper device private
7989  * @upper_info: upper info to be passed down via notifier
7990  * @extack: netlink extended ack
7991  *
7992  * Adds a link to device which is upper to this one. In this case, only
7993  * one master upper device can be linked, although other non-master devices
7994  * might be linked as well. The caller must hold the RTNL lock.
7995  * On a failure a negative errno code is returned. On success the reference
7996  * counts are adjusted and the function returns zero.
7997  */
7998 int netdev_master_upper_dev_link(struct net_device *dev,
7999 				 struct net_device *upper_dev,
8000 				 void *upper_priv, void *upper_info,
8001 				 struct netlink_ext_ack *extack)
8002 {
8003 	struct netdev_nested_priv priv = {
8004 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8005 		.data = NULL,
8006 	};
8007 
8008 	return __netdev_upper_dev_link(dev, upper_dev, true,
8009 				       upper_priv, upper_info, &priv, extack);
8010 }
8011 EXPORT_SYMBOL(netdev_master_upper_dev_link);
8012 
8013 static void __netdev_upper_dev_unlink(struct net_device *dev,
8014 				      struct net_device *upper_dev,
8015 				      struct netdev_nested_priv *priv)
8016 {
8017 	struct netdev_notifier_changeupper_info changeupper_info = {
8018 		.info = {
8019 			.dev = dev,
8020 		},
8021 		.upper_dev = upper_dev,
8022 		.linking = false,
8023 	};
8024 
8025 	ASSERT_RTNL();
8026 
8027 	changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
8028 
8029 	call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
8030 				      &changeupper_info.info);
8031 
8032 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
8033 
8034 	call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
8035 				      &changeupper_info.info);
8036 
8037 	__netdev_update_upper_level(dev, NULL);
8038 	__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
8039 
8040 	__netdev_update_lower_level(upper_dev, priv);
8041 	__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
8042 				    priv);
8043 }
8044 
8045 /**
8046  * netdev_upper_dev_unlink - Removes a link to upper device
8047  * @dev: device
8048  * @upper_dev: new upper device
8049  *
8050  * Removes a link to device which is upper to this one. The caller must hold
8051  * the RTNL lock.
8052  */
8053 void netdev_upper_dev_unlink(struct net_device *dev,
8054 			     struct net_device *upper_dev)
8055 {
8056 	struct netdev_nested_priv priv = {
8057 		.flags = NESTED_SYNC_TODO,
8058 		.data = NULL,
8059 	};
8060 
8061 	__netdev_upper_dev_unlink(dev, upper_dev, &priv);
8062 }
8063 EXPORT_SYMBOL(netdev_upper_dev_unlink);
8064 
8065 static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
8066 				      struct net_device *lower_dev,
8067 				      bool val)
8068 {
8069 	struct netdev_adjacent *adj;
8070 
8071 	adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
8072 	if (adj)
8073 		adj->ignore = val;
8074 
8075 	adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
8076 	if (adj)
8077 		adj->ignore = val;
8078 }
8079 
8080 static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
8081 					struct net_device *lower_dev)
8082 {
8083 	__netdev_adjacent_dev_set(upper_dev, lower_dev, true);
8084 }
8085 
8086 static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
8087 				       struct net_device *lower_dev)
8088 {
8089 	__netdev_adjacent_dev_set(upper_dev, lower_dev, false);
8090 }
8091 
8092 int netdev_adjacent_change_prepare(struct net_device *old_dev,
8093 				   struct net_device *new_dev,
8094 				   struct net_device *dev,
8095 				   struct netlink_ext_ack *extack)
8096 {
8097 	struct netdev_nested_priv priv = {
8098 		.flags = 0,
8099 		.data = NULL,
8100 	};
8101 	int err;
8102 
8103 	if (!new_dev)
8104 		return 0;
8105 
8106 	if (old_dev && new_dev != old_dev)
8107 		netdev_adjacent_dev_disable(dev, old_dev);
8108 	err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv,
8109 				      extack);
8110 	if (err) {
8111 		if (old_dev && new_dev != old_dev)
8112 			netdev_adjacent_dev_enable(dev, old_dev);
8113 		return err;
8114 	}
8115 
8116 	return 0;
8117 }
8118 EXPORT_SYMBOL(netdev_adjacent_change_prepare);
8119 
8120 void netdev_adjacent_change_commit(struct net_device *old_dev,
8121 				   struct net_device *new_dev,
8122 				   struct net_device *dev)
8123 {
8124 	struct netdev_nested_priv priv = {
8125 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8126 		.data = NULL,
8127 	};
8128 
8129 	if (!new_dev || !old_dev)
8130 		return;
8131 
8132 	if (new_dev == old_dev)
8133 		return;
8134 
8135 	netdev_adjacent_dev_enable(dev, old_dev);
8136 	__netdev_upper_dev_unlink(old_dev, dev, &priv);
8137 }
8138 EXPORT_SYMBOL(netdev_adjacent_change_commit);
8139 
8140 void netdev_adjacent_change_abort(struct net_device *old_dev,
8141 				  struct net_device *new_dev,
8142 				  struct net_device *dev)
8143 {
8144 	struct netdev_nested_priv priv = {
8145 		.flags = 0,
8146 		.data = NULL,
8147 	};
8148 
8149 	if (!new_dev)
8150 		return;
8151 
8152 	if (old_dev && new_dev != old_dev)
8153 		netdev_adjacent_dev_enable(dev, old_dev);
8154 
8155 	__netdev_upper_dev_unlink(new_dev, dev, &priv);
8156 }
8157 EXPORT_SYMBOL(netdev_adjacent_change_abort);
8158 
8159 /**
8160  * netdev_bonding_info_change - Dispatch event about slave change
8161  * @dev: device
8162  * @bonding_info: info to dispatch
8163  *
8164  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
8165  * The caller must hold the RTNL lock.
8166  */
8167 void netdev_bonding_info_change(struct net_device *dev,
8168 				struct netdev_bonding_info *bonding_info)
8169 {
8170 	struct netdev_notifier_bonding_info info = {
8171 		.info.dev = dev,
8172 	};
8173 
8174 	memcpy(&info.bonding_info, bonding_info,
8175 	       sizeof(struct netdev_bonding_info));
8176 	call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
8177 				      &info.info);
8178 }
8179 EXPORT_SYMBOL(netdev_bonding_info_change);
8180 
8181 static int netdev_offload_xstats_enable_l3(struct net_device *dev,
8182 					   struct netlink_ext_ack *extack)
8183 {
8184 	struct netdev_notifier_offload_xstats_info info = {
8185 		.info.dev = dev,
8186 		.info.extack = extack,
8187 		.type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
8188 	};
8189 	int err;
8190 	int rc;
8191 
8192 	dev->offload_xstats_l3 = kzalloc(sizeof(*dev->offload_xstats_l3),
8193 					 GFP_KERNEL);
8194 	if (!dev->offload_xstats_l3)
8195 		return -ENOMEM;
8196 
8197 	rc = call_netdevice_notifiers_info_robust(NETDEV_OFFLOAD_XSTATS_ENABLE,
8198 						  NETDEV_OFFLOAD_XSTATS_DISABLE,
8199 						  &info.info);
8200 	err = notifier_to_errno(rc);
8201 	if (err)
8202 		goto free_stats;
8203 
8204 	return 0;
8205 
8206 free_stats:
8207 	kfree(dev->offload_xstats_l3);
8208 	dev->offload_xstats_l3 = NULL;
8209 	return err;
8210 }
8211 
8212 int netdev_offload_xstats_enable(struct net_device *dev,
8213 				 enum netdev_offload_xstats_type type,
8214 				 struct netlink_ext_ack *extack)
8215 {
8216 	ASSERT_RTNL();
8217 
8218 	if (netdev_offload_xstats_enabled(dev, type))
8219 		return -EALREADY;
8220 
8221 	switch (type) {
8222 	case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8223 		return netdev_offload_xstats_enable_l3(dev, extack);
8224 	}
8225 
8226 	WARN_ON(1);
8227 	return -EINVAL;
8228 }
8229 EXPORT_SYMBOL(netdev_offload_xstats_enable);
8230 
8231 static void netdev_offload_xstats_disable_l3(struct net_device *dev)
8232 {
8233 	struct netdev_notifier_offload_xstats_info info = {
8234 		.info.dev = dev,
8235 		.type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
8236 	};
8237 
8238 	call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_DISABLE,
8239 				      &info.info);
8240 	kfree(dev->offload_xstats_l3);
8241 	dev->offload_xstats_l3 = NULL;
8242 }
8243 
8244 int netdev_offload_xstats_disable(struct net_device *dev,
8245 				  enum netdev_offload_xstats_type type)
8246 {
8247 	ASSERT_RTNL();
8248 
8249 	if (!netdev_offload_xstats_enabled(dev, type))
8250 		return -EALREADY;
8251 
8252 	switch (type) {
8253 	case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8254 		netdev_offload_xstats_disable_l3(dev);
8255 		return 0;
8256 	}
8257 
8258 	WARN_ON(1);
8259 	return -EINVAL;
8260 }
8261 EXPORT_SYMBOL(netdev_offload_xstats_disable);
8262 
8263 static void netdev_offload_xstats_disable_all(struct net_device *dev)
8264 {
8265 	netdev_offload_xstats_disable(dev, NETDEV_OFFLOAD_XSTATS_TYPE_L3);
8266 }
8267 
8268 static struct rtnl_hw_stats64 *
8269 netdev_offload_xstats_get_ptr(const struct net_device *dev,
8270 			      enum netdev_offload_xstats_type type)
8271 {
8272 	switch (type) {
8273 	case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8274 		return dev->offload_xstats_l3;
8275 	}
8276 
8277 	WARN_ON(1);
8278 	return NULL;
8279 }
8280 
8281 bool netdev_offload_xstats_enabled(const struct net_device *dev,
8282 				   enum netdev_offload_xstats_type type)
8283 {
8284 	ASSERT_RTNL();
8285 
8286 	return netdev_offload_xstats_get_ptr(dev, type);
8287 }
8288 EXPORT_SYMBOL(netdev_offload_xstats_enabled);
8289 
8290 struct netdev_notifier_offload_xstats_ru {
8291 	bool used;
8292 };
8293 
8294 struct netdev_notifier_offload_xstats_rd {
8295 	struct rtnl_hw_stats64 stats;
8296 	bool used;
8297 };
8298 
8299 static void netdev_hw_stats64_add(struct rtnl_hw_stats64 *dest,
8300 				  const struct rtnl_hw_stats64 *src)
8301 {
8302 	dest->rx_packets	  += src->rx_packets;
8303 	dest->tx_packets	  += src->tx_packets;
8304 	dest->rx_bytes		  += src->rx_bytes;
8305 	dest->tx_bytes		  += src->tx_bytes;
8306 	dest->rx_errors		  += src->rx_errors;
8307 	dest->tx_errors		  += src->tx_errors;
8308 	dest->rx_dropped	  += src->rx_dropped;
8309 	dest->tx_dropped	  += src->tx_dropped;
8310 	dest->multicast		  += src->multicast;
8311 }
8312 
8313 static int netdev_offload_xstats_get_used(struct net_device *dev,
8314 					  enum netdev_offload_xstats_type type,
8315 					  bool *p_used,
8316 					  struct netlink_ext_ack *extack)
8317 {
8318 	struct netdev_notifier_offload_xstats_ru report_used = {};
8319 	struct netdev_notifier_offload_xstats_info info = {
8320 		.info.dev = dev,
8321 		.info.extack = extack,
8322 		.type = type,
8323 		.report_used = &report_used,
8324 	};
8325 	int rc;
8326 
8327 	WARN_ON(!netdev_offload_xstats_enabled(dev, type));
8328 	rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_USED,
8329 					   &info.info);
8330 	*p_used = report_used.used;
8331 	return notifier_to_errno(rc);
8332 }
8333 
8334 static int netdev_offload_xstats_get_stats(struct net_device *dev,
8335 					   enum netdev_offload_xstats_type type,
8336 					   struct rtnl_hw_stats64 *p_stats,
8337 					   bool *p_used,
8338 					   struct netlink_ext_ack *extack)
8339 {
8340 	struct netdev_notifier_offload_xstats_rd report_delta = {};
8341 	struct netdev_notifier_offload_xstats_info info = {
8342 		.info.dev = dev,
8343 		.info.extack = extack,
8344 		.type = type,
8345 		.report_delta = &report_delta,
8346 	};
8347 	struct rtnl_hw_stats64 *stats;
8348 	int rc;
8349 
8350 	stats = netdev_offload_xstats_get_ptr(dev, type);
8351 	if (WARN_ON(!stats))
8352 		return -EINVAL;
8353 
8354 	rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_DELTA,
8355 					   &info.info);
8356 
8357 	/* Cache whatever we got, even if there was an error, otherwise the
8358 	 * successful stats retrievals would get lost.
8359 	 */
8360 	netdev_hw_stats64_add(stats, &report_delta.stats);
8361 
8362 	if (p_stats)
8363 		*p_stats = *stats;
8364 	*p_used = report_delta.used;
8365 
8366 	return notifier_to_errno(rc);
8367 }
8368 
8369 int netdev_offload_xstats_get(struct net_device *dev,
8370 			      enum netdev_offload_xstats_type type,
8371 			      struct rtnl_hw_stats64 *p_stats, bool *p_used,
8372 			      struct netlink_ext_ack *extack)
8373 {
8374 	ASSERT_RTNL();
8375 
8376 	if (p_stats)
8377 		return netdev_offload_xstats_get_stats(dev, type, p_stats,
8378 						       p_used, extack);
8379 	else
8380 		return netdev_offload_xstats_get_used(dev, type, p_used,
8381 						      extack);
8382 }
8383 EXPORT_SYMBOL(netdev_offload_xstats_get);
8384 
8385 void
8386 netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *report_delta,
8387 				   const struct rtnl_hw_stats64 *stats)
8388 {
8389 	report_delta->used = true;
8390 	netdev_hw_stats64_add(&report_delta->stats, stats);
8391 }
8392 EXPORT_SYMBOL(netdev_offload_xstats_report_delta);
8393 
8394 void
8395 netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *report_used)
8396 {
8397 	report_used->used = true;
8398 }
8399 EXPORT_SYMBOL(netdev_offload_xstats_report_used);
8400 
8401 void netdev_offload_xstats_push_delta(struct net_device *dev,
8402 				      enum netdev_offload_xstats_type type,
8403 				      const struct rtnl_hw_stats64 *p_stats)
8404 {
8405 	struct rtnl_hw_stats64 *stats;
8406 
8407 	ASSERT_RTNL();
8408 
8409 	stats = netdev_offload_xstats_get_ptr(dev, type);
8410 	if (WARN_ON(!stats))
8411 		return;
8412 
8413 	netdev_hw_stats64_add(stats, p_stats);
8414 }
8415 EXPORT_SYMBOL(netdev_offload_xstats_push_delta);
8416 
8417 /**
8418  * netdev_get_xmit_slave - Get the xmit slave of master device
8419  * @dev: device
8420  * @skb: The packet
8421  * @all_slaves: assume all the slaves are active
8422  *
8423  * The reference counters are not incremented so the caller must be
8424  * careful with locks. The caller must hold RCU lock.
8425  * %NULL is returned if no slave is found.
8426  */
8427 
8428 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
8429 					 struct sk_buff *skb,
8430 					 bool all_slaves)
8431 {
8432 	const struct net_device_ops *ops = dev->netdev_ops;
8433 
8434 	if (!ops->ndo_get_xmit_slave)
8435 		return NULL;
8436 	return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
8437 }
8438 EXPORT_SYMBOL(netdev_get_xmit_slave);
8439 
8440 static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev,
8441 						  struct sock *sk)
8442 {
8443 	const struct net_device_ops *ops = dev->netdev_ops;
8444 
8445 	if (!ops->ndo_sk_get_lower_dev)
8446 		return NULL;
8447 	return ops->ndo_sk_get_lower_dev(dev, sk);
8448 }
8449 
8450 /**
8451  * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket
8452  * @dev: device
8453  * @sk: the socket
8454  *
8455  * %NULL is returned if no lower device is found.
8456  */
8457 
8458 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
8459 					    struct sock *sk)
8460 {
8461 	struct net_device *lower;
8462 
8463 	lower = netdev_sk_get_lower_dev(dev, sk);
8464 	while (lower) {
8465 		dev = lower;
8466 		lower = netdev_sk_get_lower_dev(dev, sk);
8467 	}
8468 
8469 	return dev;
8470 }
8471 EXPORT_SYMBOL(netdev_sk_get_lowest_dev);
8472 
8473 static void netdev_adjacent_add_links(struct net_device *dev)
8474 {
8475 	struct netdev_adjacent *iter;
8476 
8477 	struct net *net = dev_net(dev);
8478 
8479 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
8480 		if (!net_eq(net, dev_net(iter->dev)))
8481 			continue;
8482 		netdev_adjacent_sysfs_add(iter->dev, dev,
8483 					  &iter->dev->adj_list.lower);
8484 		netdev_adjacent_sysfs_add(dev, iter->dev,
8485 					  &dev->adj_list.upper);
8486 	}
8487 
8488 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
8489 		if (!net_eq(net, dev_net(iter->dev)))
8490 			continue;
8491 		netdev_adjacent_sysfs_add(iter->dev, dev,
8492 					  &iter->dev->adj_list.upper);
8493 		netdev_adjacent_sysfs_add(dev, iter->dev,
8494 					  &dev->adj_list.lower);
8495 	}
8496 }
8497 
8498 static void netdev_adjacent_del_links(struct net_device *dev)
8499 {
8500 	struct netdev_adjacent *iter;
8501 
8502 	struct net *net = dev_net(dev);
8503 
8504 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
8505 		if (!net_eq(net, dev_net(iter->dev)))
8506 			continue;
8507 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
8508 					  &iter->dev->adj_list.lower);
8509 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
8510 					  &dev->adj_list.upper);
8511 	}
8512 
8513 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
8514 		if (!net_eq(net, dev_net(iter->dev)))
8515 			continue;
8516 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
8517 					  &iter->dev->adj_list.upper);
8518 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
8519 					  &dev->adj_list.lower);
8520 	}
8521 }
8522 
8523 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
8524 {
8525 	struct netdev_adjacent *iter;
8526 
8527 	struct net *net = dev_net(dev);
8528 
8529 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
8530 		if (!net_eq(net, dev_net(iter->dev)))
8531 			continue;
8532 		netdev_adjacent_sysfs_del(iter->dev, oldname,
8533 					  &iter->dev->adj_list.lower);
8534 		netdev_adjacent_sysfs_add(iter->dev, dev,
8535 					  &iter->dev->adj_list.lower);
8536 	}
8537 
8538 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
8539 		if (!net_eq(net, dev_net(iter->dev)))
8540 			continue;
8541 		netdev_adjacent_sysfs_del(iter->dev, oldname,
8542 					  &iter->dev->adj_list.upper);
8543 		netdev_adjacent_sysfs_add(iter->dev, dev,
8544 					  &iter->dev->adj_list.upper);
8545 	}
8546 }
8547 
8548 void *netdev_lower_dev_get_private(struct net_device *dev,
8549 				   struct net_device *lower_dev)
8550 {
8551 	struct netdev_adjacent *lower;
8552 
8553 	if (!lower_dev)
8554 		return NULL;
8555 	lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
8556 	if (!lower)
8557 		return NULL;
8558 
8559 	return lower->private;
8560 }
8561 EXPORT_SYMBOL(netdev_lower_dev_get_private);
8562 
8563 
8564 /**
8565  * netdev_lower_state_changed - Dispatch event about lower device state change
8566  * @lower_dev: device
8567  * @lower_state_info: state to dispatch
8568  *
8569  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
8570  * The caller must hold the RTNL lock.
8571  */
8572 void netdev_lower_state_changed(struct net_device *lower_dev,
8573 				void *lower_state_info)
8574 {
8575 	struct netdev_notifier_changelowerstate_info changelowerstate_info = {
8576 		.info.dev = lower_dev,
8577 	};
8578 
8579 	ASSERT_RTNL();
8580 	changelowerstate_info.lower_state_info = lower_state_info;
8581 	call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
8582 				      &changelowerstate_info.info);
8583 }
8584 EXPORT_SYMBOL(netdev_lower_state_changed);
8585 
8586 static void dev_change_rx_flags(struct net_device *dev, int flags)
8587 {
8588 	const struct net_device_ops *ops = dev->netdev_ops;
8589 
8590 	if (ops->ndo_change_rx_flags)
8591 		ops->ndo_change_rx_flags(dev, flags);
8592 }
8593 
8594 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
8595 {
8596 	unsigned int old_flags = dev->flags;
8597 	unsigned int promiscuity, flags;
8598 	kuid_t uid;
8599 	kgid_t gid;
8600 
8601 	ASSERT_RTNL();
8602 
8603 	promiscuity = dev->promiscuity + inc;
8604 	if (promiscuity == 0) {
8605 		/*
8606 		 * Avoid overflow.
8607 		 * If inc causes overflow, untouch promisc and return error.
8608 		 */
8609 		if (unlikely(inc > 0)) {
8610 			netdev_warn(dev, "promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n");
8611 			return -EOVERFLOW;
8612 		}
8613 		flags = old_flags & ~IFF_PROMISC;
8614 	} else {
8615 		flags = old_flags | IFF_PROMISC;
8616 	}
8617 	WRITE_ONCE(dev->promiscuity, promiscuity);
8618 	if (flags != old_flags) {
8619 		WRITE_ONCE(dev->flags, flags);
8620 		netdev_info(dev, "%s promiscuous mode\n",
8621 			    dev->flags & IFF_PROMISC ? "entered" : "left");
8622 		if (audit_enabled) {
8623 			current_uid_gid(&uid, &gid);
8624 			audit_log(audit_context(), GFP_ATOMIC,
8625 				  AUDIT_ANOM_PROMISCUOUS,
8626 				  "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
8627 				  dev->name, (dev->flags & IFF_PROMISC),
8628 				  (old_flags & IFF_PROMISC),
8629 				  from_kuid(&init_user_ns, audit_get_loginuid(current)),
8630 				  from_kuid(&init_user_ns, uid),
8631 				  from_kgid(&init_user_ns, gid),
8632 				  audit_get_sessionid(current));
8633 		}
8634 
8635 		dev_change_rx_flags(dev, IFF_PROMISC);
8636 	}
8637 	if (notify)
8638 		__dev_notify_flags(dev, old_flags, IFF_PROMISC, 0, NULL);
8639 	return 0;
8640 }
8641 
8642 /**
8643  *	dev_set_promiscuity	- update promiscuity count on a device
8644  *	@dev: device
8645  *	@inc: modifier
8646  *
8647  *	Add or remove promiscuity from a device. While the count in the device
8648  *	remains above zero the interface remains promiscuous. Once it hits zero
8649  *	the device reverts back to normal filtering operation. A negative inc
8650  *	value is used to drop promiscuity on the device.
8651  *	Return 0 if successful or a negative errno code on error.
8652  */
8653 int dev_set_promiscuity(struct net_device *dev, int inc)
8654 {
8655 	unsigned int old_flags = dev->flags;
8656 	int err;
8657 
8658 	err = __dev_set_promiscuity(dev, inc, true);
8659 	if (err < 0)
8660 		return err;
8661 	if (dev->flags != old_flags)
8662 		dev_set_rx_mode(dev);
8663 	return err;
8664 }
8665 EXPORT_SYMBOL(dev_set_promiscuity);
8666 
8667 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
8668 {
8669 	unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
8670 	unsigned int allmulti, flags;
8671 
8672 	ASSERT_RTNL();
8673 
8674 	allmulti = dev->allmulti + inc;
8675 	if (allmulti == 0) {
8676 		/*
8677 		 * Avoid overflow.
8678 		 * If inc causes overflow, untouch allmulti and return error.
8679 		 */
8680 		if (unlikely(inc > 0)) {
8681 			netdev_warn(dev, "allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n");
8682 			return -EOVERFLOW;
8683 		}
8684 		flags = old_flags & ~IFF_ALLMULTI;
8685 	} else {
8686 		flags = old_flags | IFF_ALLMULTI;
8687 	}
8688 	WRITE_ONCE(dev->allmulti, allmulti);
8689 	if (flags != old_flags) {
8690 		WRITE_ONCE(dev->flags, flags);
8691 		netdev_info(dev, "%s allmulticast mode\n",
8692 			    dev->flags & IFF_ALLMULTI ? "entered" : "left");
8693 		dev_change_rx_flags(dev, IFF_ALLMULTI);
8694 		dev_set_rx_mode(dev);
8695 		if (notify)
8696 			__dev_notify_flags(dev, old_flags,
8697 					   dev->gflags ^ old_gflags, 0, NULL);
8698 	}
8699 	return 0;
8700 }
8701 
8702 /**
8703  *	dev_set_allmulti	- update allmulti count on a device
8704  *	@dev: device
8705  *	@inc: modifier
8706  *
8707  *	Add or remove reception of all multicast frames to a device. While the
8708  *	count in the device remains above zero the interface remains listening
8709  *	to all interfaces. Once it hits zero the device reverts back to normal
8710  *	filtering operation. A negative @inc value is used to drop the counter
8711  *	when releasing a resource needing all multicasts.
8712  *	Return 0 if successful or a negative errno code on error.
8713  */
8714 
8715 int dev_set_allmulti(struct net_device *dev, int inc)
8716 {
8717 	return __dev_set_allmulti(dev, inc, true);
8718 }
8719 EXPORT_SYMBOL(dev_set_allmulti);
8720 
8721 /*
8722  *	Upload unicast and multicast address lists to device and
8723  *	configure RX filtering. When the device doesn't support unicast
8724  *	filtering it is put in promiscuous mode while unicast addresses
8725  *	are present.
8726  */
8727 void __dev_set_rx_mode(struct net_device *dev)
8728 {
8729 	const struct net_device_ops *ops = dev->netdev_ops;
8730 
8731 	/* dev_open will call this function so the list will stay sane. */
8732 	if (!(dev->flags&IFF_UP))
8733 		return;
8734 
8735 	if (!netif_device_present(dev))
8736 		return;
8737 
8738 	if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
8739 		/* Unicast addresses changes may only happen under the rtnl,
8740 		 * therefore calling __dev_set_promiscuity here is safe.
8741 		 */
8742 		if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
8743 			__dev_set_promiscuity(dev, 1, false);
8744 			dev->uc_promisc = true;
8745 		} else if (netdev_uc_empty(dev) && dev->uc_promisc) {
8746 			__dev_set_promiscuity(dev, -1, false);
8747 			dev->uc_promisc = false;
8748 		}
8749 	}
8750 
8751 	if (ops->ndo_set_rx_mode)
8752 		ops->ndo_set_rx_mode(dev);
8753 }
8754 
8755 void dev_set_rx_mode(struct net_device *dev)
8756 {
8757 	netif_addr_lock_bh(dev);
8758 	__dev_set_rx_mode(dev);
8759 	netif_addr_unlock_bh(dev);
8760 }
8761 
8762 /**
8763  *	dev_get_flags - get flags reported to userspace
8764  *	@dev: device
8765  *
8766  *	Get the combination of flag bits exported through APIs to userspace.
8767  */
8768 unsigned int dev_get_flags(const struct net_device *dev)
8769 {
8770 	unsigned int flags;
8771 
8772 	flags = (READ_ONCE(dev->flags) & ~(IFF_PROMISC |
8773 				IFF_ALLMULTI |
8774 				IFF_RUNNING |
8775 				IFF_LOWER_UP |
8776 				IFF_DORMANT)) |
8777 		(READ_ONCE(dev->gflags) & (IFF_PROMISC |
8778 				IFF_ALLMULTI));
8779 
8780 	if (netif_running(dev)) {
8781 		if (netif_oper_up(dev))
8782 			flags |= IFF_RUNNING;
8783 		if (netif_carrier_ok(dev))
8784 			flags |= IFF_LOWER_UP;
8785 		if (netif_dormant(dev))
8786 			flags |= IFF_DORMANT;
8787 	}
8788 
8789 	return flags;
8790 }
8791 EXPORT_SYMBOL(dev_get_flags);
8792 
8793 int __dev_change_flags(struct net_device *dev, unsigned int flags,
8794 		       struct netlink_ext_ack *extack)
8795 {
8796 	unsigned int old_flags = dev->flags;
8797 	int ret;
8798 
8799 	ASSERT_RTNL();
8800 
8801 	/*
8802 	 *	Set the flags on our device.
8803 	 */
8804 
8805 	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
8806 			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
8807 			       IFF_AUTOMEDIA)) |
8808 		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
8809 				    IFF_ALLMULTI));
8810 
8811 	/*
8812 	 *	Load in the correct multicast list now the flags have changed.
8813 	 */
8814 
8815 	if ((old_flags ^ flags) & IFF_MULTICAST)
8816 		dev_change_rx_flags(dev, IFF_MULTICAST);
8817 
8818 	dev_set_rx_mode(dev);
8819 
8820 	/*
8821 	 *	Have we downed the interface. We handle IFF_UP ourselves
8822 	 *	according to user attempts to set it, rather than blindly
8823 	 *	setting it.
8824 	 */
8825 
8826 	ret = 0;
8827 	if ((old_flags ^ flags) & IFF_UP) {
8828 		if (old_flags & IFF_UP)
8829 			__dev_close(dev);
8830 		else
8831 			ret = __dev_open(dev, extack);
8832 	}
8833 
8834 	if ((flags ^ dev->gflags) & IFF_PROMISC) {
8835 		int inc = (flags & IFF_PROMISC) ? 1 : -1;
8836 		unsigned int old_flags = dev->flags;
8837 
8838 		dev->gflags ^= IFF_PROMISC;
8839 
8840 		if (__dev_set_promiscuity(dev, inc, false) >= 0)
8841 			if (dev->flags != old_flags)
8842 				dev_set_rx_mode(dev);
8843 	}
8844 
8845 	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
8846 	 * is important. Some (broken) drivers set IFF_PROMISC, when
8847 	 * IFF_ALLMULTI is requested not asking us and not reporting.
8848 	 */
8849 	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
8850 		int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
8851 
8852 		dev->gflags ^= IFF_ALLMULTI;
8853 		__dev_set_allmulti(dev, inc, false);
8854 	}
8855 
8856 	return ret;
8857 }
8858 
8859 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
8860 			unsigned int gchanges, u32 portid,
8861 			const struct nlmsghdr *nlh)
8862 {
8863 	unsigned int changes = dev->flags ^ old_flags;
8864 
8865 	if (gchanges)
8866 		rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC, portid, nlh);
8867 
8868 	if (changes & IFF_UP) {
8869 		if (dev->flags & IFF_UP)
8870 			call_netdevice_notifiers(NETDEV_UP, dev);
8871 		else
8872 			call_netdevice_notifiers(NETDEV_DOWN, dev);
8873 	}
8874 
8875 	if (dev->flags & IFF_UP &&
8876 	    (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
8877 		struct netdev_notifier_change_info change_info = {
8878 			.info = {
8879 				.dev = dev,
8880 			},
8881 			.flags_changed = changes,
8882 		};
8883 
8884 		call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
8885 	}
8886 }
8887 
8888 /**
8889  *	dev_change_flags - change device settings
8890  *	@dev: device
8891  *	@flags: device state flags
8892  *	@extack: netlink extended ack
8893  *
8894  *	Change settings on device based state flags. The flags are
8895  *	in the userspace exported format.
8896  */
8897 int dev_change_flags(struct net_device *dev, unsigned int flags,
8898 		     struct netlink_ext_ack *extack)
8899 {
8900 	int ret;
8901 	unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
8902 
8903 	ret = __dev_change_flags(dev, flags, extack);
8904 	if (ret < 0)
8905 		return ret;
8906 
8907 	changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
8908 	__dev_notify_flags(dev, old_flags, changes, 0, NULL);
8909 	return ret;
8910 }
8911 EXPORT_SYMBOL(dev_change_flags);
8912 
8913 int __dev_set_mtu(struct net_device *dev, int new_mtu)
8914 {
8915 	const struct net_device_ops *ops = dev->netdev_ops;
8916 
8917 	if (ops->ndo_change_mtu)
8918 		return ops->ndo_change_mtu(dev, new_mtu);
8919 
8920 	/* Pairs with all the lockless reads of dev->mtu in the stack */
8921 	WRITE_ONCE(dev->mtu, new_mtu);
8922 	return 0;
8923 }
8924 EXPORT_SYMBOL(__dev_set_mtu);
8925 
8926 int dev_validate_mtu(struct net_device *dev, int new_mtu,
8927 		     struct netlink_ext_ack *extack)
8928 {
8929 	/* MTU must be positive, and in range */
8930 	if (new_mtu < 0 || new_mtu < dev->min_mtu) {
8931 		NL_SET_ERR_MSG(extack, "mtu less than device minimum");
8932 		return -EINVAL;
8933 	}
8934 
8935 	if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
8936 		NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
8937 		return -EINVAL;
8938 	}
8939 	return 0;
8940 }
8941 
8942 /**
8943  *	dev_set_mtu_ext - Change maximum transfer unit
8944  *	@dev: device
8945  *	@new_mtu: new transfer unit
8946  *	@extack: netlink extended ack
8947  *
8948  *	Change the maximum transfer size of the network device.
8949  */
8950 int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
8951 		    struct netlink_ext_ack *extack)
8952 {
8953 	int err, orig_mtu;
8954 
8955 	if (new_mtu == dev->mtu)
8956 		return 0;
8957 
8958 	err = dev_validate_mtu(dev, new_mtu, extack);
8959 	if (err)
8960 		return err;
8961 
8962 	if (!netif_device_present(dev))
8963 		return -ENODEV;
8964 
8965 	err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
8966 	err = notifier_to_errno(err);
8967 	if (err)
8968 		return err;
8969 
8970 	orig_mtu = dev->mtu;
8971 	err = __dev_set_mtu(dev, new_mtu);
8972 
8973 	if (!err) {
8974 		err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8975 						   orig_mtu);
8976 		err = notifier_to_errno(err);
8977 		if (err) {
8978 			/* setting mtu back and notifying everyone again,
8979 			 * so that they have a chance to revert changes.
8980 			 */
8981 			__dev_set_mtu(dev, orig_mtu);
8982 			call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8983 						     new_mtu);
8984 		}
8985 	}
8986 	return err;
8987 }
8988 
8989 int dev_set_mtu(struct net_device *dev, int new_mtu)
8990 {
8991 	struct netlink_ext_ack extack;
8992 	int err;
8993 
8994 	memset(&extack, 0, sizeof(extack));
8995 	err = dev_set_mtu_ext(dev, new_mtu, &extack);
8996 	if (err && extack._msg)
8997 		net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
8998 	return err;
8999 }
9000 EXPORT_SYMBOL(dev_set_mtu);
9001 
9002 /**
9003  *	dev_change_tx_queue_len - Change TX queue length of a netdevice
9004  *	@dev: device
9005  *	@new_len: new tx queue length
9006  */
9007 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
9008 {
9009 	unsigned int orig_len = dev->tx_queue_len;
9010 	int res;
9011 
9012 	if (new_len != (unsigned int)new_len)
9013 		return -ERANGE;
9014 
9015 	if (new_len != orig_len) {
9016 		WRITE_ONCE(dev->tx_queue_len, new_len);
9017 		res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
9018 		res = notifier_to_errno(res);
9019 		if (res)
9020 			goto err_rollback;
9021 		res = dev_qdisc_change_tx_queue_len(dev);
9022 		if (res)
9023 			goto err_rollback;
9024 	}
9025 
9026 	return 0;
9027 
9028 err_rollback:
9029 	netdev_err(dev, "refused to change device tx_queue_len\n");
9030 	WRITE_ONCE(dev->tx_queue_len, orig_len);
9031 	return res;
9032 }
9033 
9034 /**
9035  *	dev_set_group - Change group this device belongs to
9036  *	@dev: device
9037  *	@new_group: group this device should belong to
9038  */
9039 void dev_set_group(struct net_device *dev, int new_group)
9040 {
9041 	dev->group = new_group;
9042 }
9043 
9044 /**
9045  *	dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
9046  *	@dev: device
9047  *	@addr: new address
9048  *	@extack: netlink extended ack
9049  */
9050 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
9051 			      struct netlink_ext_ack *extack)
9052 {
9053 	struct netdev_notifier_pre_changeaddr_info info = {
9054 		.info.dev = dev,
9055 		.info.extack = extack,
9056 		.dev_addr = addr,
9057 	};
9058 	int rc;
9059 
9060 	rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
9061 	return notifier_to_errno(rc);
9062 }
9063 EXPORT_SYMBOL(dev_pre_changeaddr_notify);
9064 
9065 /**
9066  *	dev_set_mac_address - Change Media Access Control Address
9067  *	@dev: device
9068  *	@sa: new address
9069  *	@extack: netlink extended ack
9070  *
9071  *	Change the hardware (MAC) address of the device
9072  */
9073 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
9074 			struct netlink_ext_ack *extack)
9075 {
9076 	const struct net_device_ops *ops = dev->netdev_ops;
9077 	int err;
9078 
9079 	if (!ops->ndo_set_mac_address)
9080 		return -EOPNOTSUPP;
9081 	if (sa->sa_family != dev->type)
9082 		return -EINVAL;
9083 	if (!netif_device_present(dev))
9084 		return -ENODEV;
9085 	err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
9086 	if (err)
9087 		return err;
9088 	if (memcmp(dev->dev_addr, sa->sa_data, dev->addr_len)) {
9089 		err = ops->ndo_set_mac_address(dev, sa);
9090 		if (err)
9091 			return err;
9092 	}
9093 	dev->addr_assign_type = NET_ADDR_SET;
9094 	call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
9095 	add_device_randomness(dev->dev_addr, dev->addr_len);
9096 	return 0;
9097 }
9098 EXPORT_SYMBOL(dev_set_mac_address);
9099 
9100 DECLARE_RWSEM(dev_addr_sem);
9101 
9102 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
9103 			     struct netlink_ext_ack *extack)
9104 {
9105 	int ret;
9106 
9107 	down_write(&dev_addr_sem);
9108 	ret = dev_set_mac_address(dev, sa, extack);
9109 	up_write(&dev_addr_sem);
9110 	return ret;
9111 }
9112 EXPORT_SYMBOL(dev_set_mac_address_user);
9113 
9114 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name)
9115 {
9116 	size_t size = sizeof(sa->sa_data_min);
9117 	struct net_device *dev;
9118 	int ret = 0;
9119 
9120 	down_read(&dev_addr_sem);
9121 	rcu_read_lock();
9122 
9123 	dev = dev_get_by_name_rcu(net, dev_name);
9124 	if (!dev) {
9125 		ret = -ENODEV;
9126 		goto unlock;
9127 	}
9128 	if (!dev->addr_len)
9129 		memset(sa->sa_data, 0, size);
9130 	else
9131 		memcpy(sa->sa_data, dev->dev_addr,
9132 		       min_t(size_t, size, dev->addr_len));
9133 	sa->sa_family = dev->type;
9134 
9135 unlock:
9136 	rcu_read_unlock();
9137 	up_read(&dev_addr_sem);
9138 	return ret;
9139 }
9140 EXPORT_SYMBOL(dev_get_mac_address);
9141 
9142 /**
9143  *	dev_change_carrier - Change device carrier
9144  *	@dev: device
9145  *	@new_carrier: new value
9146  *
9147  *	Change device carrier
9148  */
9149 int dev_change_carrier(struct net_device *dev, bool new_carrier)
9150 {
9151 	const struct net_device_ops *ops = dev->netdev_ops;
9152 
9153 	if (!ops->ndo_change_carrier)
9154 		return -EOPNOTSUPP;
9155 	if (!netif_device_present(dev))
9156 		return -ENODEV;
9157 	return ops->ndo_change_carrier(dev, new_carrier);
9158 }
9159 
9160 /**
9161  *	dev_get_phys_port_id - Get device physical port ID
9162  *	@dev: device
9163  *	@ppid: port ID
9164  *
9165  *	Get device physical port ID
9166  */
9167 int dev_get_phys_port_id(struct net_device *dev,
9168 			 struct netdev_phys_item_id *ppid)
9169 {
9170 	const struct net_device_ops *ops = dev->netdev_ops;
9171 
9172 	if (!ops->ndo_get_phys_port_id)
9173 		return -EOPNOTSUPP;
9174 	return ops->ndo_get_phys_port_id(dev, ppid);
9175 }
9176 
9177 /**
9178  *	dev_get_phys_port_name - Get device physical port name
9179  *	@dev: device
9180  *	@name: port name
9181  *	@len: limit of bytes to copy to name
9182  *
9183  *	Get device physical port name
9184  */
9185 int dev_get_phys_port_name(struct net_device *dev,
9186 			   char *name, size_t len)
9187 {
9188 	const struct net_device_ops *ops = dev->netdev_ops;
9189 	int err;
9190 
9191 	if (ops->ndo_get_phys_port_name) {
9192 		err = ops->ndo_get_phys_port_name(dev, name, len);
9193 		if (err != -EOPNOTSUPP)
9194 			return err;
9195 	}
9196 	return devlink_compat_phys_port_name_get(dev, name, len);
9197 }
9198 
9199 /**
9200  *	dev_get_port_parent_id - Get the device's port parent identifier
9201  *	@dev: network device
9202  *	@ppid: pointer to a storage for the port's parent identifier
9203  *	@recurse: allow/disallow recursion to lower devices
9204  *
9205  *	Get the devices's port parent identifier
9206  */
9207 int dev_get_port_parent_id(struct net_device *dev,
9208 			   struct netdev_phys_item_id *ppid,
9209 			   bool recurse)
9210 {
9211 	const struct net_device_ops *ops = dev->netdev_ops;
9212 	struct netdev_phys_item_id first = { };
9213 	struct net_device *lower_dev;
9214 	struct list_head *iter;
9215 	int err;
9216 
9217 	if (ops->ndo_get_port_parent_id) {
9218 		err = ops->ndo_get_port_parent_id(dev, ppid);
9219 		if (err != -EOPNOTSUPP)
9220 			return err;
9221 	}
9222 
9223 	err = devlink_compat_switch_id_get(dev, ppid);
9224 	if (!recurse || err != -EOPNOTSUPP)
9225 		return err;
9226 
9227 	netdev_for_each_lower_dev(dev, lower_dev, iter) {
9228 		err = dev_get_port_parent_id(lower_dev, ppid, true);
9229 		if (err)
9230 			break;
9231 		if (!first.id_len)
9232 			first = *ppid;
9233 		else if (memcmp(&first, ppid, sizeof(*ppid)))
9234 			return -EOPNOTSUPP;
9235 	}
9236 
9237 	return err;
9238 }
9239 EXPORT_SYMBOL(dev_get_port_parent_id);
9240 
9241 /**
9242  *	netdev_port_same_parent_id - Indicate if two network devices have
9243  *	the same port parent identifier
9244  *	@a: first network device
9245  *	@b: second network device
9246  */
9247 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
9248 {
9249 	struct netdev_phys_item_id a_id = { };
9250 	struct netdev_phys_item_id b_id = { };
9251 
9252 	if (dev_get_port_parent_id(a, &a_id, true) ||
9253 	    dev_get_port_parent_id(b, &b_id, true))
9254 		return false;
9255 
9256 	return netdev_phys_item_id_same(&a_id, &b_id);
9257 }
9258 EXPORT_SYMBOL(netdev_port_same_parent_id);
9259 
9260 /**
9261  *	dev_change_proto_down - set carrier according to proto_down.
9262  *
9263  *	@dev: device
9264  *	@proto_down: new value
9265  */
9266 int dev_change_proto_down(struct net_device *dev, bool proto_down)
9267 {
9268 	if (!dev->change_proto_down)
9269 		return -EOPNOTSUPP;
9270 	if (!netif_device_present(dev))
9271 		return -ENODEV;
9272 	if (proto_down)
9273 		netif_carrier_off(dev);
9274 	else
9275 		netif_carrier_on(dev);
9276 	WRITE_ONCE(dev->proto_down, proto_down);
9277 	return 0;
9278 }
9279 
9280 /**
9281  *	dev_change_proto_down_reason - proto down reason
9282  *
9283  *	@dev: device
9284  *	@mask: proto down mask
9285  *	@value: proto down value
9286  */
9287 void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
9288 				  u32 value)
9289 {
9290 	u32 proto_down_reason;
9291 	int b;
9292 
9293 	if (!mask) {
9294 		proto_down_reason = value;
9295 	} else {
9296 		proto_down_reason = dev->proto_down_reason;
9297 		for_each_set_bit(b, &mask, 32) {
9298 			if (value & (1 << b))
9299 				proto_down_reason |= BIT(b);
9300 			else
9301 				proto_down_reason &= ~BIT(b);
9302 		}
9303 	}
9304 	WRITE_ONCE(dev->proto_down_reason, proto_down_reason);
9305 }
9306 
9307 struct bpf_xdp_link {
9308 	struct bpf_link link;
9309 	struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
9310 	int flags;
9311 };
9312 
9313 static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags)
9314 {
9315 	if (flags & XDP_FLAGS_HW_MODE)
9316 		return XDP_MODE_HW;
9317 	if (flags & XDP_FLAGS_DRV_MODE)
9318 		return XDP_MODE_DRV;
9319 	if (flags & XDP_FLAGS_SKB_MODE)
9320 		return XDP_MODE_SKB;
9321 	return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB;
9322 }
9323 
9324 static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
9325 {
9326 	switch (mode) {
9327 	case XDP_MODE_SKB:
9328 		return generic_xdp_install;
9329 	case XDP_MODE_DRV:
9330 	case XDP_MODE_HW:
9331 		return dev->netdev_ops->ndo_bpf;
9332 	default:
9333 		return NULL;
9334 	}
9335 }
9336 
9337 static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
9338 					 enum bpf_xdp_mode mode)
9339 {
9340 	return dev->xdp_state[mode].link;
9341 }
9342 
9343 static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
9344 				     enum bpf_xdp_mode mode)
9345 {
9346 	struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
9347 
9348 	if (link)
9349 		return link->link.prog;
9350 	return dev->xdp_state[mode].prog;
9351 }
9352 
9353 u8 dev_xdp_prog_count(struct net_device *dev)
9354 {
9355 	u8 count = 0;
9356 	int i;
9357 
9358 	for (i = 0; i < __MAX_XDP_MODE; i++)
9359 		if (dev->xdp_state[i].prog || dev->xdp_state[i].link)
9360 			count++;
9361 	return count;
9362 }
9363 EXPORT_SYMBOL_GPL(dev_xdp_prog_count);
9364 
9365 int dev_xdp_propagate(struct net_device *dev, struct netdev_bpf *bpf)
9366 {
9367 	if (!dev->netdev_ops->ndo_bpf)
9368 		return -EOPNOTSUPP;
9369 
9370 	return dev->netdev_ops->ndo_bpf(dev, bpf);
9371 }
9372 EXPORT_SYMBOL_GPL(dev_xdp_propagate);
9373 
9374 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
9375 {
9376 	struct bpf_prog *prog = dev_xdp_prog(dev, mode);
9377 
9378 	return prog ? prog->aux->id : 0;
9379 }
9380 
9381 static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
9382 			     struct bpf_xdp_link *link)
9383 {
9384 	dev->xdp_state[mode].link = link;
9385 	dev->xdp_state[mode].prog = NULL;
9386 }
9387 
9388 static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
9389 			     struct bpf_prog *prog)
9390 {
9391 	dev->xdp_state[mode].link = NULL;
9392 	dev->xdp_state[mode].prog = prog;
9393 }
9394 
9395 static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
9396 			   bpf_op_t bpf_op, struct netlink_ext_ack *extack,
9397 			   u32 flags, struct bpf_prog *prog)
9398 {
9399 	struct netdev_bpf xdp;
9400 	int err;
9401 
9402 	memset(&xdp, 0, sizeof(xdp));
9403 	xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
9404 	xdp.extack = extack;
9405 	xdp.flags = flags;
9406 	xdp.prog = prog;
9407 
9408 	/* Drivers assume refcnt is already incremented (i.e, prog pointer is
9409 	 * "moved" into driver), so they don't increment it on their own, but
9410 	 * they do decrement refcnt when program is detached or replaced.
9411 	 * Given net_device also owns link/prog, we need to bump refcnt here
9412 	 * to prevent drivers from underflowing it.
9413 	 */
9414 	if (prog)
9415 		bpf_prog_inc(prog);
9416 	err = bpf_op(dev, &xdp);
9417 	if (err) {
9418 		if (prog)
9419 			bpf_prog_put(prog);
9420 		return err;
9421 	}
9422 
9423 	if (mode != XDP_MODE_HW)
9424 		bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog);
9425 
9426 	return 0;
9427 }
9428 
9429 static void dev_xdp_uninstall(struct net_device *dev)
9430 {
9431 	struct bpf_xdp_link *link;
9432 	struct bpf_prog *prog;
9433 	enum bpf_xdp_mode mode;
9434 	bpf_op_t bpf_op;
9435 
9436 	ASSERT_RTNL();
9437 
9438 	for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
9439 		prog = dev_xdp_prog(dev, mode);
9440 		if (!prog)
9441 			continue;
9442 
9443 		bpf_op = dev_xdp_bpf_op(dev, mode);
9444 		if (!bpf_op)
9445 			continue;
9446 
9447 		WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9448 
9449 		/* auto-detach link from net device */
9450 		link = dev_xdp_link(dev, mode);
9451 		if (link)
9452 			link->dev = NULL;
9453 		else
9454 			bpf_prog_put(prog);
9455 
9456 		dev_xdp_set_link(dev, mode, NULL);
9457 	}
9458 }
9459 
9460 static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
9461 			  struct bpf_xdp_link *link, struct bpf_prog *new_prog,
9462 			  struct bpf_prog *old_prog, u32 flags)
9463 {
9464 	unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES);
9465 	struct bpf_prog *cur_prog;
9466 	struct net_device *upper;
9467 	struct list_head *iter;
9468 	enum bpf_xdp_mode mode;
9469 	bpf_op_t bpf_op;
9470 	int err;
9471 
9472 	ASSERT_RTNL();
9473 
9474 	/* either link or prog attachment, never both */
9475 	if (link && (new_prog || old_prog))
9476 		return -EINVAL;
9477 	/* link supports only XDP mode flags */
9478 	if (link && (flags & ~XDP_FLAGS_MODES)) {
9479 		NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
9480 		return -EINVAL;
9481 	}
9482 	/* just one XDP mode bit should be set, zero defaults to drv/skb mode */
9483 	if (num_modes > 1) {
9484 		NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
9485 		return -EINVAL;
9486 	}
9487 	/* avoid ambiguity if offload + drv/skb mode progs are both loaded */
9488 	if (!num_modes && dev_xdp_prog_count(dev) > 1) {
9489 		NL_SET_ERR_MSG(extack,
9490 			       "More than one program loaded, unset mode is ambiguous");
9491 		return -EINVAL;
9492 	}
9493 	/* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
9494 	if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
9495 		NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
9496 		return -EINVAL;
9497 	}
9498 
9499 	mode = dev_xdp_mode(dev, flags);
9500 	/* can't replace attached link */
9501 	if (dev_xdp_link(dev, mode)) {
9502 		NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
9503 		return -EBUSY;
9504 	}
9505 
9506 	/* don't allow if an upper device already has a program */
9507 	netdev_for_each_upper_dev_rcu(dev, upper, iter) {
9508 		if (dev_xdp_prog_count(upper) > 0) {
9509 			NL_SET_ERR_MSG(extack, "Cannot attach when an upper device already has a program");
9510 			return -EEXIST;
9511 		}
9512 	}
9513 
9514 	cur_prog = dev_xdp_prog(dev, mode);
9515 	/* can't replace attached prog with link */
9516 	if (link && cur_prog) {
9517 		NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
9518 		return -EBUSY;
9519 	}
9520 	if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
9521 		NL_SET_ERR_MSG(extack, "Active program does not match expected");
9522 		return -EEXIST;
9523 	}
9524 
9525 	/* put effective new program into new_prog */
9526 	if (link)
9527 		new_prog = link->link.prog;
9528 
9529 	if (new_prog) {
9530 		bool offload = mode == XDP_MODE_HW;
9531 		enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
9532 					       ? XDP_MODE_DRV : XDP_MODE_SKB;
9533 
9534 		if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
9535 			NL_SET_ERR_MSG(extack, "XDP program already attached");
9536 			return -EBUSY;
9537 		}
9538 		if (!offload && dev_xdp_prog(dev, other_mode)) {
9539 			NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
9540 			return -EEXIST;
9541 		}
9542 		if (!offload && bpf_prog_is_offloaded(new_prog->aux)) {
9543 			NL_SET_ERR_MSG(extack, "Using offloaded program without HW_MODE flag is not supported");
9544 			return -EINVAL;
9545 		}
9546 		if (bpf_prog_is_dev_bound(new_prog->aux) && !bpf_offload_dev_match(new_prog, dev)) {
9547 			NL_SET_ERR_MSG(extack, "Program bound to different device");
9548 			return -EINVAL;
9549 		}
9550 		if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
9551 			NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
9552 			return -EINVAL;
9553 		}
9554 		if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
9555 			NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
9556 			return -EINVAL;
9557 		}
9558 	}
9559 
9560 	/* don't call drivers if the effective program didn't change */
9561 	if (new_prog != cur_prog) {
9562 		bpf_op = dev_xdp_bpf_op(dev, mode);
9563 		if (!bpf_op) {
9564 			NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
9565 			return -EOPNOTSUPP;
9566 		}
9567 
9568 		err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog);
9569 		if (err)
9570 			return err;
9571 	}
9572 
9573 	if (link)
9574 		dev_xdp_set_link(dev, mode, link);
9575 	else
9576 		dev_xdp_set_prog(dev, mode, new_prog);
9577 	if (cur_prog)
9578 		bpf_prog_put(cur_prog);
9579 
9580 	return 0;
9581 }
9582 
9583 static int dev_xdp_attach_link(struct net_device *dev,
9584 			       struct netlink_ext_ack *extack,
9585 			       struct bpf_xdp_link *link)
9586 {
9587 	return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags);
9588 }
9589 
9590 static int dev_xdp_detach_link(struct net_device *dev,
9591 			       struct netlink_ext_ack *extack,
9592 			       struct bpf_xdp_link *link)
9593 {
9594 	enum bpf_xdp_mode mode;
9595 	bpf_op_t bpf_op;
9596 
9597 	ASSERT_RTNL();
9598 
9599 	mode = dev_xdp_mode(dev, link->flags);
9600 	if (dev_xdp_link(dev, mode) != link)
9601 		return -EINVAL;
9602 
9603 	bpf_op = dev_xdp_bpf_op(dev, mode);
9604 	WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9605 	dev_xdp_set_link(dev, mode, NULL);
9606 	return 0;
9607 }
9608 
9609 static void bpf_xdp_link_release(struct bpf_link *link)
9610 {
9611 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9612 
9613 	rtnl_lock();
9614 
9615 	/* if racing with net_device's tear down, xdp_link->dev might be
9616 	 * already NULL, in which case link was already auto-detached
9617 	 */
9618 	if (xdp_link->dev) {
9619 		WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
9620 		xdp_link->dev = NULL;
9621 	}
9622 
9623 	rtnl_unlock();
9624 }
9625 
9626 static int bpf_xdp_link_detach(struct bpf_link *link)
9627 {
9628 	bpf_xdp_link_release(link);
9629 	return 0;
9630 }
9631 
9632 static void bpf_xdp_link_dealloc(struct bpf_link *link)
9633 {
9634 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9635 
9636 	kfree(xdp_link);
9637 }
9638 
9639 static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link,
9640 				     struct seq_file *seq)
9641 {
9642 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9643 	u32 ifindex = 0;
9644 
9645 	rtnl_lock();
9646 	if (xdp_link->dev)
9647 		ifindex = xdp_link->dev->ifindex;
9648 	rtnl_unlock();
9649 
9650 	seq_printf(seq, "ifindex:\t%u\n", ifindex);
9651 }
9652 
9653 static int bpf_xdp_link_fill_link_info(const struct bpf_link *link,
9654 				       struct bpf_link_info *info)
9655 {
9656 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9657 	u32 ifindex = 0;
9658 
9659 	rtnl_lock();
9660 	if (xdp_link->dev)
9661 		ifindex = xdp_link->dev->ifindex;
9662 	rtnl_unlock();
9663 
9664 	info->xdp.ifindex = ifindex;
9665 	return 0;
9666 }
9667 
9668 static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
9669 			       struct bpf_prog *old_prog)
9670 {
9671 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9672 	enum bpf_xdp_mode mode;
9673 	bpf_op_t bpf_op;
9674 	int err = 0;
9675 
9676 	rtnl_lock();
9677 
9678 	/* link might have been auto-released already, so fail */
9679 	if (!xdp_link->dev) {
9680 		err = -ENOLINK;
9681 		goto out_unlock;
9682 	}
9683 
9684 	if (old_prog && link->prog != old_prog) {
9685 		err = -EPERM;
9686 		goto out_unlock;
9687 	}
9688 	old_prog = link->prog;
9689 	if (old_prog->type != new_prog->type ||
9690 	    old_prog->expected_attach_type != new_prog->expected_attach_type) {
9691 		err = -EINVAL;
9692 		goto out_unlock;
9693 	}
9694 
9695 	if (old_prog == new_prog) {
9696 		/* no-op, don't disturb drivers */
9697 		bpf_prog_put(new_prog);
9698 		goto out_unlock;
9699 	}
9700 
9701 	mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags);
9702 	bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode);
9703 	err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL,
9704 			      xdp_link->flags, new_prog);
9705 	if (err)
9706 		goto out_unlock;
9707 
9708 	old_prog = xchg(&link->prog, new_prog);
9709 	bpf_prog_put(old_prog);
9710 
9711 out_unlock:
9712 	rtnl_unlock();
9713 	return err;
9714 }
9715 
9716 static const struct bpf_link_ops bpf_xdp_link_lops = {
9717 	.release = bpf_xdp_link_release,
9718 	.dealloc = bpf_xdp_link_dealloc,
9719 	.detach = bpf_xdp_link_detach,
9720 	.show_fdinfo = bpf_xdp_link_show_fdinfo,
9721 	.fill_link_info = bpf_xdp_link_fill_link_info,
9722 	.update_prog = bpf_xdp_link_update,
9723 };
9724 
9725 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
9726 {
9727 	struct net *net = current->nsproxy->net_ns;
9728 	struct bpf_link_primer link_primer;
9729 	struct netlink_ext_ack extack = {};
9730 	struct bpf_xdp_link *link;
9731 	struct net_device *dev;
9732 	int err, fd;
9733 
9734 	rtnl_lock();
9735 	dev = dev_get_by_index(net, attr->link_create.target_ifindex);
9736 	if (!dev) {
9737 		rtnl_unlock();
9738 		return -EINVAL;
9739 	}
9740 
9741 	link = kzalloc(sizeof(*link), GFP_USER);
9742 	if (!link) {
9743 		err = -ENOMEM;
9744 		goto unlock;
9745 	}
9746 
9747 	bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog);
9748 	link->dev = dev;
9749 	link->flags = attr->link_create.flags;
9750 
9751 	err = bpf_link_prime(&link->link, &link_primer);
9752 	if (err) {
9753 		kfree(link);
9754 		goto unlock;
9755 	}
9756 
9757 	err = dev_xdp_attach_link(dev, &extack, link);
9758 	rtnl_unlock();
9759 
9760 	if (err) {
9761 		link->dev = NULL;
9762 		bpf_link_cleanup(&link_primer);
9763 		trace_bpf_xdp_link_attach_failed(extack._msg);
9764 		goto out_put_dev;
9765 	}
9766 
9767 	fd = bpf_link_settle(&link_primer);
9768 	/* link itself doesn't hold dev's refcnt to not complicate shutdown */
9769 	dev_put(dev);
9770 	return fd;
9771 
9772 unlock:
9773 	rtnl_unlock();
9774 
9775 out_put_dev:
9776 	dev_put(dev);
9777 	return err;
9778 }
9779 
9780 /**
9781  *	dev_change_xdp_fd - set or clear a bpf program for a device rx path
9782  *	@dev: device
9783  *	@extack: netlink extended ack
9784  *	@fd: new program fd or negative value to clear
9785  *	@expected_fd: old program fd that userspace expects to replace or clear
9786  *	@flags: xdp-related flags
9787  *
9788  *	Set or clear a bpf program for a device
9789  */
9790 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
9791 		      int fd, int expected_fd, u32 flags)
9792 {
9793 	enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags);
9794 	struct bpf_prog *new_prog = NULL, *old_prog = NULL;
9795 	int err;
9796 
9797 	ASSERT_RTNL();
9798 
9799 	if (fd >= 0) {
9800 		new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
9801 						 mode != XDP_MODE_SKB);
9802 		if (IS_ERR(new_prog))
9803 			return PTR_ERR(new_prog);
9804 	}
9805 
9806 	if (expected_fd >= 0) {
9807 		old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP,
9808 						 mode != XDP_MODE_SKB);
9809 		if (IS_ERR(old_prog)) {
9810 			err = PTR_ERR(old_prog);
9811 			old_prog = NULL;
9812 			goto err_out;
9813 		}
9814 	}
9815 
9816 	err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
9817 
9818 err_out:
9819 	if (err && new_prog)
9820 		bpf_prog_put(new_prog);
9821 	if (old_prog)
9822 		bpf_prog_put(old_prog);
9823 	return err;
9824 }
9825 
9826 /**
9827  * dev_index_reserve() - allocate an ifindex in a namespace
9828  * @net: the applicable net namespace
9829  * @ifindex: requested ifindex, pass %0 to get one allocated
9830  *
9831  * Allocate a ifindex for a new device. Caller must either use the ifindex
9832  * to store the device (via list_netdevice()) or call dev_index_release()
9833  * to give the index up.
9834  *
9835  * Return: a suitable unique value for a new device interface number or -errno.
9836  */
9837 static int dev_index_reserve(struct net *net, u32 ifindex)
9838 {
9839 	int err;
9840 
9841 	if (ifindex > INT_MAX) {
9842 		DEBUG_NET_WARN_ON_ONCE(1);
9843 		return -EINVAL;
9844 	}
9845 
9846 	if (!ifindex)
9847 		err = xa_alloc_cyclic(&net->dev_by_index, &ifindex, NULL,
9848 				      xa_limit_31b, &net->ifindex, GFP_KERNEL);
9849 	else
9850 		err = xa_insert(&net->dev_by_index, ifindex, NULL, GFP_KERNEL);
9851 	if (err < 0)
9852 		return err;
9853 
9854 	return ifindex;
9855 }
9856 
9857 static void dev_index_release(struct net *net, int ifindex)
9858 {
9859 	/* Expect only unused indexes, unlist_netdevice() removes the used */
9860 	WARN_ON(xa_erase(&net->dev_by_index, ifindex));
9861 }
9862 
9863 /* Delayed registration/unregisteration */
9864 LIST_HEAD(net_todo_list);
9865 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
9866 atomic_t dev_unreg_count = ATOMIC_INIT(0);
9867 
9868 static void net_set_todo(struct net_device *dev)
9869 {
9870 	list_add_tail(&dev->todo_list, &net_todo_list);
9871 }
9872 
9873 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
9874 	struct net_device *upper, netdev_features_t features)
9875 {
9876 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9877 	netdev_features_t feature;
9878 	int feature_bit;
9879 
9880 	for_each_netdev_feature(upper_disables, feature_bit) {
9881 		feature = __NETIF_F_BIT(feature_bit);
9882 		if (!(upper->wanted_features & feature)
9883 		    && (features & feature)) {
9884 			netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
9885 				   &feature, upper->name);
9886 			features &= ~feature;
9887 		}
9888 	}
9889 
9890 	return features;
9891 }
9892 
9893 static void netdev_sync_lower_features(struct net_device *upper,
9894 	struct net_device *lower, netdev_features_t features)
9895 {
9896 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9897 	netdev_features_t feature;
9898 	int feature_bit;
9899 
9900 	for_each_netdev_feature(upper_disables, feature_bit) {
9901 		feature = __NETIF_F_BIT(feature_bit);
9902 		if (!(features & feature) && (lower->features & feature)) {
9903 			netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
9904 				   &feature, lower->name);
9905 			lower->wanted_features &= ~feature;
9906 			__netdev_update_features(lower);
9907 
9908 			if (unlikely(lower->features & feature))
9909 				netdev_WARN(upper, "failed to disable %pNF on %s!\n",
9910 					    &feature, lower->name);
9911 			else
9912 				netdev_features_change(lower);
9913 		}
9914 	}
9915 }
9916 
9917 static bool netdev_has_ip_or_hw_csum(netdev_features_t features)
9918 {
9919 	netdev_features_t ip_csum_mask = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
9920 	bool ip_csum = (features & ip_csum_mask) == ip_csum_mask;
9921 	bool hw_csum = features & NETIF_F_HW_CSUM;
9922 
9923 	return ip_csum || hw_csum;
9924 }
9925 
9926 static netdev_features_t netdev_fix_features(struct net_device *dev,
9927 	netdev_features_t features)
9928 {
9929 	/* Fix illegal checksum combinations */
9930 	if ((features & NETIF_F_HW_CSUM) &&
9931 	    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
9932 		netdev_warn(dev, "mixed HW and IP checksum settings.\n");
9933 		features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
9934 	}
9935 
9936 	/* TSO requires that SG is present as well. */
9937 	if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
9938 		netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
9939 		features &= ~NETIF_F_ALL_TSO;
9940 	}
9941 
9942 	if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
9943 					!(features & NETIF_F_IP_CSUM)) {
9944 		netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
9945 		features &= ~NETIF_F_TSO;
9946 		features &= ~NETIF_F_TSO_ECN;
9947 	}
9948 
9949 	if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
9950 					 !(features & NETIF_F_IPV6_CSUM)) {
9951 		netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
9952 		features &= ~NETIF_F_TSO6;
9953 	}
9954 
9955 	/* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
9956 	if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
9957 		features &= ~NETIF_F_TSO_MANGLEID;
9958 
9959 	/* TSO ECN requires that TSO is present as well. */
9960 	if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
9961 		features &= ~NETIF_F_TSO_ECN;
9962 
9963 	/* Software GSO depends on SG. */
9964 	if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
9965 		netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
9966 		features &= ~NETIF_F_GSO;
9967 	}
9968 
9969 	/* GSO partial features require GSO partial be set */
9970 	if ((features & dev->gso_partial_features) &&
9971 	    !(features & NETIF_F_GSO_PARTIAL)) {
9972 		netdev_dbg(dev,
9973 			   "Dropping partially supported GSO features since no GSO partial.\n");
9974 		features &= ~dev->gso_partial_features;
9975 	}
9976 
9977 	if (!(features & NETIF_F_RXCSUM)) {
9978 		/* NETIF_F_GRO_HW implies doing RXCSUM since every packet
9979 		 * successfully merged by hardware must also have the
9980 		 * checksum verified by hardware.  If the user does not
9981 		 * want to enable RXCSUM, logically, we should disable GRO_HW.
9982 		 */
9983 		if (features & NETIF_F_GRO_HW) {
9984 			netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
9985 			features &= ~NETIF_F_GRO_HW;
9986 		}
9987 	}
9988 
9989 	/* LRO/HW-GRO features cannot be combined with RX-FCS */
9990 	if (features & NETIF_F_RXFCS) {
9991 		if (features & NETIF_F_LRO) {
9992 			netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
9993 			features &= ~NETIF_F_LRO;
9994 		}
9995 
9996 		if (features & NETIF_F_GRO_HW) {
9997 			netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
9998 			features &= ~NETIF_F_GRO_HW;
9999 		}
10000 	}
10001 
10002 	if ((features & NETIF_F_GRO_HW) && (features & NETIF_F_LRO)) {
10003 		netdev_dbg(dev, "Dropping LRO feature since HW-GRO is requested.\n");
10004 		features &= ~NETIF_F_LRO;
10005 	}
10006 
10007 	if ((features & NETIF_F_HW_TLS_TX) && !netdev_has_ip_or_hw_csum(features)) {
10008 		netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n");
10009 		features &= ~NETIF_F_HW_TLS_TX;
10010 	}
10011 
10012 	if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) {
10013 		netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n");
10014 		features &= ~NETIF_F_HW_TLS_RX;
10015 	}
10016 
10017 	if ((features & NETIF_F_GSO_UDP_L4) && !netdev_has_ip_or_hw_csum(features)) {
10018 		netdev_dbg(dev, "Dropping USO feature since no CSUM feature.\n");
10019 		features &= ~NETIF_F_GSO_UDP_L4;
10020 	}
10021 
10022 	return features;
10023 }
10024 
10025 int __netdev_update_features(struct net_device *dev)
10026 {
10027 	struct net_device *upper, *lower;
10028 	netdev_features_t features;
10029 	struct list_head *iter;
10030 	int err = -1;
10031 
10032 	ASSERT_RTNL();
10033 
10034 	features = netdev_get_wanted_features(dev);
10035 
10036 	if (dev->netdev_ops->ndo_fix_features)
10037 		features = dev->netdev_ops->ndo_fix_features(dev, features);
10038 
10039 	/* driver might be less strict about feature dependencies */
10040 	features = netdev_fix_features(dev, features);
10041 
10042 	/* some features can't be enabled if they're off on an upper device */
10043 	netdev_for_each_upper_dev_rcu(dev, upper, iter)
10044 		features = netdev_sync_upper_features(dev, upper, features);
10045 
10046 	if (dev->features == features)
10047 		goto sync_lower;
10048 
10049 	netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
10050 		&dev->features, &features);
10051 
10052 	if (dev->netdev_ops->ndo_set_features)
10053 		err = dev->netdev_ops->ndo_set_features(dev, features);
10054 	else
10055 		err = 0;
10056 
10057 	if (unlikely(err < 0)) {
10058 		netdev_err(dev,
10059 			"set_features() failed (%d); wanted %pNF, left %pNF\n",
10060 			err, &features, &dev->features);
10061 		/* return non-0 since some features might have changed and
10062 		 * it's better to fire a spurious notification than miss it
10063 		 */
10064 		return -1;
10065 	}
10066 
10067 sync_lower:
10068 	/* some features must be disabled on lower devices when disabled
10069 	 * on an upper device (think: bonding master or bridge)
10070 	 */
10071 	netdev_for_each_lower_dev(dev, lower, iter)
10072 		netdev_sync_lower_features(dev, lower, features);
10073 
10074 	if (!err) {
10075 		netdev_features_t diff = features ^ dev->features;
10076 
10077 		if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
10078 			/* udp_tunnel_{get,drop}_rx_info both need
10079 			 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
10080 			 * device, or they won't do anything.
10081 			 * Thus we need to update dev->features
10082 			 * *before* calling udp_tunnel_get_rx_info,
10083 			 * but *after* calling udp_tunnel_drop_rx_info.
10084 			 */
10085 			if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
10086 				dev->features = features;
10087 				udp_tunnel_get_rx_info(dev);
10088 			} else {
10089 				udp_tunnel_drop_rx_info(dev);
10090 			}
10091 		}
10092 
10093 		if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
10094 			if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
10095 				dev->features = features;
10096 				err |= vlan_get_rx_ctag_filter_info(dev);
10097 			} else {
10098 				vlan_drop_rx_ctag_filter_info(dev);
10099 			}
10100 		}
10101 
10102 		if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
10103 			if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
10104 				dev->features = features;
10105 				err |= vlan_get_rx_stag_filter_info(dev);
10106 			} else {
10107 				vlan_drop_rx_stag_filter_info(dev);
10108 			}
10109 		}
10110 
10111 		dev->features = features;
10112 	}
10113 
10114 	return err < 0 ? 0 : 1;
10115 }
10116 
10117 /**
10118  *	netdev_update_features - recalculate device features
10119  *	@dev: the device to check
10120  *
10121  *	Recalculate dev->features set and send notifications if it
10122  *	has changed. Should be called after driver or hardware dependent
10123  *	conditions might have changed that influence the features.
10124  */
10125 void netdev_update_features(struct net_device *dev)
10126 {
10127 	if (__netdev_update_features(dev))
10128 		netdev_features_change(dev);
10129 }
10130 EXPORT_SYMBOL(netdev_update_features);
10131 
10132 /**
10133  *	netdev_change_features - recalculate device features
10134  *	@dev: the device to check
10135  *
10136  *	Recalculate dev->features set and send notifications even
10137  *	if they have not changed. Should be called instead of
10138  *	netdev_update_features() if also dev->vlan_features might
10139  *	have changed to allow the changes to be propagated to stacked
10140  *	VLAN devices.
10141  */
10142 void netdev_change_features(struct net_device *dev)
10143 {
10144 	__netdev_update_features(dev);
10145 	netdev_features_change(dev);
10146 }
10147 EXPORT_SYMBOL(netdev_change_features);
10148 
10149 /**
10150  *	netif_stacked_transfer_operstate -	transfer operstate
10151  *	@rootdev: the root or lower level device to transfer state from
10152  *	@dev: the device to transfer operstate to
10153  *
10154  *	Transfer operational state from root to device. This is normally
10155  *	called when a stacking relationship exists between the root
10156  *	device and the device(a leaf device).
10157  */
10158 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
10159 					struct net_device *dev)
10160 {
10161 	if (rootdev->operstate == IF_OPER_DORMANT)
10162 		netif_dormant_on(dev);
10163 	else
10164 		netif_dormant_off(dev);
10165 
10166 	if (rootdev->operstate == IF_OPER_TESTING)
10167 		netif_testing_on(dev);
10168 	else
10169 		netif_testing_off(dev);
10170 
10171 	if (netif_carrier_ok(rootdev))
10172 		netif_carrier_on(dev);
10173 	else
10174 		netif_carrier_off(dev);
10175 }
10176 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
10177 
10178 static int netif_alloc_rx_queues(struct net_device *dev)
10179 {
10180 	unsigned int i, count = dev->num_rx_queues;
10181 	struct netdev_rx_queue *rx;
10182 	size_t sz = count * sizeof(*rx);
10183 	int err = 0;
10184 
10185 	BUG_ON(count < 1);
10186 
10187 	rx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10188 	if (!rx)
10189 		return -ENOMEM;
10190 
10191 	dev->_rx = rx;
10192 
10193 	for (i = 0; i < count; i++) {
10194 		rx[i].dev = dev;
10195 
10196 		/* XDP RX-queue setup */
10197 		err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0);
10198 		if (err < 0)
10199 			goto err_rxq_info;
10200 	}
10201 	return 0;
10202 
10203 err_rxq_info:
10204 	/* Rollback successful reg's and free other resources */
10205 	while (i--)
10206 		xdp_rxq_info_unreg(&rx[i].xdp_rxq);
10207 	kvfree(dev->_rx);
10208 	dev->_rx = NULL;
10209 	return err;
10210 }
10211 
10212 static void netif_free_rx_queues(struct net_device *dev)
10213 {
10214 	unsigned int i, count = dev->num_rx_queues;
10215 
10216 	/* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
10217 	if (!dev->_rx)
10218 		return;
10219 
10220 	for (i = 0; i < count; i++)
10221 		xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
10222 
10223 	kvfree(dev->_rx);
10224 }
10225 
10226 static void netdev_init_one_queue(struct net_device *dev,
10227 				  struct netdev_queue *queue, void *_unused)
10228 {
10229 	/* Initialize queue lock */
10230 	spin_lock_init(&queue->_xmit_lock);
10231 	netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
10232 	queue->xmit_lock_owner = -1;
10233 	netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
10234 	queue->dev = dev;
10235 #ifdef CONFIG_BQL
10236 	dql_init(&queue->dql, HZ);
10237 #endif
10238 }
10239 
10240 static void netif_free_tx_queues(struct net_device *dev)
10241 {
10242 	kvfree(dev->_tx);
10243 }
10244 
10245 static int netif_alloc_netdev_queues(struct net_device *dev)
10246 {
10247 	unsigned int count = dev->num_tx_queues;
10248 	struct netdev_queue *tx;
10249 	size_t sz = count * sizeof(*tx);
10250 
10251 	if (count < 1 || count > 0xffff)
10252 		return -EINVAL;
10253 
10254 	tx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10255 	if (!tx)
10256 		return -ENOMEM;
10257 
10258 	dev->_tx = tx;
10259 
10260 	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
10261 	spin_lock_init(&dev->tx_global_lock);
10262 
10263 	return 0;
10264 }
10265 
10266 void netif_tx_stop_all_queues(struct net_device *dev)
10267 {
10268 	unsigned int i;
10269 
10270 	for (i = 0; i < dev->num_tx_queues; i++) {
10271 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
10272 
10273 		netif_tx_stop_queue(txq);
10274 	}
10275 }
10276 EXPORT_SYMBOL(netif_tx_stop_all_queues);
10277 
10278 static int netdev_do_alloc_pcpu_stats(struct net_device *dev)
10279 {
10280 	void __percpu *v;
10281 
10282 	/* Drivers implementing ndo_get_peer_dev must support tstat
10283 	 * accounting, so that skb_do_redirect() can bump the dev's
10284 	 * RX stats upon network namespace switch.
10285 	 */
10286 	if (dev->netdev_ops->ndo_get_peer_dev &&
10287 	    dev->pcpu_stat_type != NETDEV_PCPU_STAT_TSTATS)
10288 		return -EOPNOTSUPP;
10289 
10290 	switch (dev->pcpu_stat_type) {
10291 	case NETDEV_PCPU_STAT_NONE:
10292 		return 0;
10293 	case NETDEV_PCPU_STAT_LSTATS:
10294 		v = dev->lstats = netdev_alloc_pcpu_stats(struct pcpu_lstats);
10295 		break;
10296 	case NETDEV_PCPU_STAT_TSTATS:
10297 		v = dev->tstats = netdev_alloc_pcpu_stats(struct pcpu_sw_netstats);
10298 		break;
10299 	case NETDEV_PCPU_STAT_DSTATS:
10300 		v = dev->dstats = netdev_alloc_pcpu_stats(struct pcpu_dstats);
10301 		break;
10302 	default:
10303 		return -EINVAL;
10304 	}
10305 
10306 	return v ? 0 : -ENOMEM;
10307 }
10308 
10309 static void netdev_do_free_pcpu_stats(struct net_device *dev)
10310 {
10311 	switch (dev->pcpu_stat_type) {
10312 	case NETDEV_PCPU_STAT_NONE:
10313 		return;
10314 	case NETDEV_PCPU_STAT_LSTATS:
10315 		free_percpu(dev->lstats);
10316 		break;
10317 	case NETDEV_PCPU_STAT_TSTATS:
10318 		free_percpu(dev->tstats);
10319 		break;
10320 	case NETDEV_PCPU_STAT_DSTATS:
10321 		free_percpu(dev->dstats);
10322 		break;
10323 	}
10324 }
10325 
10326 static void netdev_free_phy_link_topology(struct net_device *dev)
10327 {
10328 	struct phy_link_topology *topo = dev->link_topo;
10329 
10330 	if (IS_ENABLED(CONFIG_PHYLIB) && topo) {
10331 		xa_destroy(&topo->phys);
10332 		kfree(topo);
10333 		dev->link_topo = NULL;
10334 	}
10335 }
10336 
10337 /**
10338  * register_netdevice() - register a network device
10339  * @dev: device to register
10340  *
10341  * Take a prepared network device structure and make it externally accessible.
10342  * A %NETDEV_REGISTER message is sent to the netdev notifier chain.
10343  * Callers must hold the rtnl lock - you may want register_netdev()
10344  * instead of this.
10345  */
10346 int register_netdevice(struct net_device *dev)
10347 {
10348 	int ret;
10349 	struct net *net = dev_net(dev);
10350 
10351 	BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
10352 		     NETDEV_FEATURE_COUNT);
10353 	BUG_ON(dev_boot_phase);
10354 	ASSERT_RTNL();
10355 
10356 	might_sleep();
10357 
10358 	/* When net_device's are persistent, this will be fatal. */
10359 	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
10360 	BUG_ON(!net);
10361 
10362 	ret = ethtool_check_ops(dev->ethtool_ops);
10363 	if (ret)
10364 		return ret;
10365 
10366 	/* rss ctx ID 0 is reserved for the default context, start from 1 */
10367 	xa_init_flags(&dev->ethtool->rss_ctx, XA_FLAGS_ALLOC1);
10368 	mutex_init(&dev->ethtool->rss_lock);
10369 
10370 	spin_lock_init(&dev->addr_list_lock);
10371 	netdev_set_addr_lockdep_class(dev);
10372 
10373 	ret = dev_get_valid_name(net, dev, dev->name);
10374 	if (ret < 0)
10375 		goto out;
10376 
10377 	ret = -ENOMEM;
10378 	dev->name_node = netdev_name_node_head_alloc(dev);
10379 	if (!dev->name_node)
10380 		goto out;
10381 
10382 	/* Init, if this function is available */
10383 	if (dev->netdev_ops->ndo_init) {
10384 		ret = dev->netdev_ops->ndo_init(dev);
10385 		if (ret) {
10386 			if (ret > 0)
10387 				ret = -EIO;
10388 			goto err_free_name;
10389 		}
10390 	}
10391 
10392 	if (((dev->hw_features | dev->features) &
10393 	     NETIF_F_HW_VLAN_CTAG_FILTER) &&
10394 	    (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
10395 	     !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
10396 		netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
10397 		ret = -EINVAL;
10398 		goto err_uninit;
10399 	}
10400 
10401 	ret = netdev_do_alloc_pcpu_stats(dev);
10402 	if (ret)
10403 		goto err_uninit;
10404 
10405 	ret = dev_index_reserve(net, dev->ifindex);
10406 	if (ret < 0)
10407 		goto err_free_pcpu;
10408 	dev->ifindex = ret;
10409 
10410 	/* Transfer changeable features to wanted_features and enable
10411 	 * software offloads (GSO and GRO).
10412 	 */
10413 	dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
10414 	dev->features |= NETIF_F_SOFT_FEATURES;
10415 
10416 	if (dev->udp_tunnel_nic_info) {
10417 		dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10418 		dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10419 	}
10420 
10421 	dev->wanted_features = dev->features & dev->hw_features;
10422 
10423 	if (!(dev->flags & IFF_LOOPBACK))
10424 		dev->hw_features |= NETIF_F_NOCACHE_COPY;
10425 
10426 	/* If IPv4 TCP segmentation offload is supported we should also
10427 	 * allow the device to enable segmenting the frame with the option
10428 	 * of ignoring a static IP ID value.  This doesn't enable the
10429 	 * feature itself but allows the user to enable it later.
10430 	 */
10431 	if (dev->hw_features & NETIF_F_TSO)
10432 		dev->hw_features |= NETIF_F_TSO_MANGLEID;
10433 	if (dev->vlan_features & NETIF_F_TSO)
10434 		dev->vlan_features |= NETIF_F_TSO_MANGLEID;
10435 	if (dev->mpls_features & NETIF_F_TSO)
10436 		dev->mpls_features |= NETIF_F_TSO_MANGLEID;
10437 	if (dev->hw_enc_features & NETIF_F_TSO)
10438 		dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
10439 
10440 	/* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
10441 	 */
10442 	dev->vlan_features |= NETIF_F_HIGHDMA;
10443 
10444 	/* Make NETIF_F_SG inheritable to tunnel devices.
10445 	 */
10446 	dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
10447 
10448 	/* Make NETIF_F_SG inheritable to MPLS.
10449 	 */
10450 	dev->mpls_features |= NETIF_F_SG;
10451 
10452 	ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
10453 	ret = notifier_to_errno(ret);
10454 	if (ret)
10455 		goto err_ifindex_release;
10456 
10457 	ret = netdev_register_kobject(dev);
10458 
10459 	WRITE_ONCE(dev->reg_state, ret ? NETREG_UNREGISTERED : NETREG_REGISTERED);
10460 
10461 	if (ret)
10462 		goto err_uninit_notify;
10463 
10464 	__netdev_update_features(dev);
10465 
10466 	/*
10467 	 *	Default initial state at registry is that the
10468 	 *	device is present.
10469 	 */
10470 
10471 	set_bit(__LINK_STATE_PRESENT, &dev->state);
10472 
10473 	linkwatch_init_dev(dev);
10474 
10475 	dev_init_scheduler(dev);
10476 
10477 	netdev_hold(dev, &dev->dev_registered_tracker, GFP_KERNEL);
10478 	list_netdevice(dev);
10479 
10480 	add_device_randomness(dev->dev_addr, dev->addr_len);
10481 
10482 	/* If the device has permanent device address, driver should
10483 	 * set dev_addr and also addr_assign_type should be set to
10484 	 * NET_ADDR_PERM (default value).
10485 	 */
10486 	if (dev->addr_assign_type == NET_ADDR_PERM)
10487 		memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
10488 
10489 	/* Notify protocols, that a new device appeared. */
10490 	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
10491 	ret = notifier_to_errno(ret);
10492 	if (ret) {
10493 		/* Expect explicit free_netdev() on failure */
10494 		dev->needs_free_netdev = false;
10495 		unregister_netdevice_queue(dev, NULL);
10496 		goto out;
10497 	}
10498 	/*
10499 	 *	Prevent userspace races by waiting until the network
10500 	 *	device is fully setup before sending notifications.
10501 	 */
10502 	if (!dev->rtnl_link_ops ||
10503 	    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10504 		rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL);
10505 
10506 out:
10507 	return ret;
10508 
10509 err_uninit_notify:
10510 	call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev);
10511 err_ifindex_release:
10512 	dev_index_release(net, dev->ifindex);
10513 err_free_pcpu:
10514 	netdev_do_free_pcpu_stats(dev);
10515 err_uninit:
10516 	if (dev->netdev_ops->ndo_uninit)
10517 		dev->netdev_ops->ndo_uninit(dev);
10518 	if (dev->priv_destructor)
10519 		dev->priv_destructor(dev);
10520 err_free_name:
10521 	netdev_name_node_free(dev->name_node);
10522 	goto out;
10523 }
10524 EXPORT_SYMBOL(register_netdevice);
10525 
10526 /* Initialize the core of a dummy net device.
10527  * This is useful if you are calling this function after alloc_netdev(),
10528  * since it does not memset the net_device fields.
10529  */
10530 static void init_dummy_netdev_core(struct net_device *dev)
10531 {
10532 	/* make sure we BUG if trying to hit standard
10533 	 * register/unregister code path
10534 	 */
10535 	dev->reg_state = NETREG_DUMMY;
10536 
10537 	/* NAPI wants this */
10538 	INIT_LIST_HEAD(&dev->napi_list);
10539 
10540 	/* a dummy interface is started by default */
10541 	set_bit(__LINK_STATE_PRESENT, &dev->state);
10542 	set_bit(__LINK_STATE_START, &dev->state);
10543 
10544 	/* napi_busy_loop stats accounting wants this */
10545 	dev_net_set(dev, &init_net);
10546 
10547 	/* Note : We dont allocate pcpu_refcnt for dummy devices,
10548 	 * because users of this 'device' dont need to change
10549 	 * its refcount.
10550 	 */
10551 }
10552 
10553 /**
10554  *	init_dummy_netdev	- init a dummy network device for NAPI
10555  *	@dev: device to init
10556  *
10557  *	This takes a network device structure and initializes the minimum
10558  *	amount of fields so it can be used to schedule NAPI polls without
10559  *	registering a full blown interface. This is to be used by drivers
10560  *	that need to tie several hardware interfaces to a single NAPI
10561  *	poll scheduler due to HW limitations.
10562  */
10563 void init_dummy_netdev(struct net_device *dev)
10564 {
10565 	/* Clear everything. Note we don't initialize spinlocks
10566 	 * as they aren't supposed to be taken by any of the
10567 	 * NAPI code and this dummy netdev is supposed to be
10568 	 * only ever used for NAPI polls
10569 	 */
10570 	memset(dev, 0, sizeof(struct net_device));
10571 	init_dummy_netdev_core(dev);
10572 }
10573 EXPORT_SYMBOL_GPL(init_dummy_netdev);
10574 
10575 /**
10576  *	register_netdev	- register a network device
10577  *	@dev: device to register
10578  *
10579  *	Take a completed network device structure and add it to the kernel
10580  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10581  *	chain. 0 is returned on success. A negative errno code is returned
10582  *	on a failure to set up the device, or if the name is a duplicate.
10583  *
10584  *	This is a wrapper around register_netdevice that takes the rtnl semaphore
10585  *	and expands the device name if you passed a format string to
10586  *	alloc_netdev.
10587  */
10588 int register_netdev(struct net_device *dev)
10589 {
10590 	int err;
10591 
10592 	if (rtnl_lock_killable())
10593 		return -EINTR;
10594 	err = register_netdevice(dev);
10595 	rtnl_unlock();
10596 	return err;
10597 }
10598 EXPORT_SYMBOL(register_netdev);
10599 
10600 int netdev_refcnt_read(const struct net_device *dev)
10601 {
10602 #ifdef CONFIG_PCPU_DEV_REFCNT
10603 	int i, refcnt = 0;
10604 
10605 	for_each_possible_cpu(i)
10606 		refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
10607 	return refcnt;
10608 #else
10609 	return refcount_read(&dev->dev_refcnt);
10610 #endif
10611 }
10612 EXPORT_SYMBOL(netdev_refcnt_read);
10613 
10614 int netdev_unregister_timeout_secs __read_mostly = 10;
10615 
10616 #define WAIT_REFS_MIN_MSECS 1
10617 #define WAIT_REFS_MAX_MSECS 250
10618 /**
10619  * netdev_wait_allrefs_any - wait until all references are gone.
10620  * @list: list of net_devices to wait on
10621  *
10622  * This is called when unregistering network devices.
10623  *
10624  * Any protocol or device that holds a reference should register
10625  * for netdevice notification, and cleanup and put back the
10626  * reference if they receive an UNREGISTER event.
10627  * We can get stuck here if buggy protocols don't correctly
10628  * call dev_put.
10629  */
10630 static struct net_device *netdev_wait_allrefs_any(struct list_head *list)
10631 {
10632 	unsigned long rebroadcast_time, warning_time;
10633 	struct net_device *dev;
10634 	int wait = 0;
10635 
10636 	rebroadcast_time = warning_time = jiffies;
10637 
10638 	list_for_each_entry(dev, list, todo_list)
10639 		if (netdev_refcnt_read(dev) == 1)
10640 			return dev;
10641 
10642 	while (true) {
10643 		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
10644 			rtnl_lock();
10645 
10646 			/* Rebroadcast unregister notification */
10647 			list_for_each_entry(dev, list, todo_list)
10648 				call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10649 
10650 			__rtnl_unlock();
10651 			rcu_barrier();
10652 			rtnl_lock();
10653 
10654 			list_for_each_entry(dev, list, todo_list)
10655 				if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
10656 					     &dev->state)) {
10657 					/* We must not have linkwatch events
10658 					 * pending on unregister. If this
10659 					 * happens, we simply run the queue
10660 					 * unscheduled, resulting in a noop
10661 					 * for this device.
10662 					 */
10663 					linkwatch_run_queue();
10664 					break;
10665 				}
10666 
10667 			__rtnl_unlock();
10668 
10669 			rebroadcast_time = jiffies;
10670 		}
10671 
10672 		rcu_barrier();
10673 
10674 		if (!wait) {
10675 			wait = WAIT_REFS_MIN_MSECS;
10676 		} else {
10677 			msleep(wait);
10678 			wait = min(wait << 1, WAIT_REFS_MAX_MSECS);
10679 		}
10680 
10681 		list_for_each_entry(dev, list, todo_list)
10682 			if (netdev_refcnt_read(dev) == 1)
10683 				return dev;
10684 
10685 		if (time_after(jiffies, warning_time +
10686 			       READ_ONCE(netdev_unregister_timeout_secs) * HZ)) {
10687 			list_for_each_entry(dev, list, todo_list) {
10688 				pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
10689 					 dev->name, netdev_refcnt_read(dev));
10690 				ref_tracker_dir_print(&dev->refcnt_tracker, 10);
10691 			}
10692 
10693 			warning_time = jiffies;
10694 		}
10695 	}
10696 }
10697 
10698 /* The sequence is:
10699  *
10700  *	rtnl_lock();
10701  *	...
10702  *	register_netdevice(x1);
10703  *	register_netdevice(x2);
10704  *	...
10705  *	unregister_netdevice(y1);
10706  *	unregister_netdevice(y2);
10707  *      ...
10708  *	rtnl_unlock();
10709  *	free_netdev(y1);
10710  *	free_netdev(y2);
10711  *
10712  * We are invoked by rtnl_unlock().
10713  * This allows us to deal with problems:
10714  * 1) We can delete sysfs objects which invoke hotplug
10715  *    without deadlocking with linkwatch via keventd.
10716  * 2) Since we run with the RTNL semaphore not held, we can sleep
10717  *    safely in order to wait for the netdev refcnt to drop to zero.
10718  *
10719  * We must not return until all unregister events added during
10720  * the interval the lock was held have been completed.
10721  */
10722 void netdev_run_todo(void)
10723 {
10724 	struct net_device *dev, *tmp;
10725 	struct list_head list;
10726 	int cnt;
10727 #ifdef CONFIG_LOCKDEP
10728 	struct list_head unlink_list;
10729 
10730 	list_replace_init(&net_unlink_list, &unlink_list);
10731 
10732 	while (!list_empty(&unlink_list)) {
10733 		struct net_device *dev = list_first_entry(&unlink_list,
10734 							  struct net_device,
10735 							  unlink_list);
10736 		list_del_init(&dev->unlink_list);
10737 		dev->nested_level = dev->lower_level - 1;
10738 	}
10739 #endif
10740 
10741 	/* Snapshot list, allow later requests */
10742 	list_replace_init(&net_todo_list, &list);
10743 
10744 	__rtnl_unlock();
10745 
10746 	/* Wait for rcu callbacks to finish before next phase */
10747 	if (!list_empty(&list))
10748 		rcu_barrier();
10749 
10750 	list_for_each_entry_safe(dev, tmp, &list, todo_list) {
10751 		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
10752 			netdev_WARN(dev, "run_todo but not unregistering\n");
10753 			list_del(&dev->todo_list);
10754 			continue;
10755 		}
10756 
10757 		WRITE_ONCE(dev->reg_state, NETREG_UNREGISTERED);
10758 		linkwatch_sync_dev(dev);
10759 	}
10760 
10761 	cnt = 0;
10762 	while (!list_empty(&list)) {
10763 		dev = netdev_wait_allrefs_any(&list);
10764 		list_del(&dev->todo_list);
10765 
10766 		/* paranoia */
10767 		BUG_ON(netdev_refcnt_read(dev) != 1);
10768 		BUG_ON(!list_empty(&dev->ptype_all));
10769 		BUG_ON(!list_empty(&dev->ptype_specific));
10770 		WARN_ON(rcu_access_pointer(dev->ip_ptr));
10771 		WARN_ON(rcu_access_pointer(dev->ip6_ptr));
10772 
10773 		netdev_do_free_pcpu_stats(dev);
10774 		if (dev->priv_destructor)
10775 			dev->priv_destructor(dev);
10776 		if (dev->needs_free_netdev)
10777 			free_netdev(dev);
10778 
10779 		cnt++;
10780 
10781 		/* Free network device */
10782 		kobject_put(&dev->dev.kobj);
10783 	}
10784 	if (cnt && atomic_sub_and_test(cnt, &dev_unreg_count))
10785 		wake_up(&netdev_unregistering_wq);
10786 }
10787 
10788 /* Collate per-cpu network dstats statistics
10789  *
10790  * Read per-cpu network statistics from dev->dstats and populate the related
10791  * fields in @s.
10792  */
10793 static void dev_fetch_dstats(struct rtnl_link_stats64 *s,
10794 			     const struct pcpu_dstats __percpu *dstats)
10795 {
10796 	int cpu;
10797 
10798 	for_each_possible_cpu(cpu) {
10799 		u64 rx_packets, rx_bytes, rx_drops;
10800 		u64 tx_packets, tx_bytes, tx_drops;
10801 		const struct pcpu_dstats *stats;
10802 		unsigned int start;
10803 
10804 		stats = per_cpu_ptr(dstats, cpu);
10805 		do {
10806 			start = u64_stats_fetch_begin(&stats->syncp);
10807 			rx_packets = u64_stats_read(&stats->rx_packets);
10808 			rx_bytes   = u64_stats_read(&stats->rx_bytes);
10809 			rx_drops   = u64_stats_read(&stats->rx_drops);
10810 			tx_packets = u64_stats_read(&stats->tx_packets);
10811 			tx_bytes   = u64_stats_read(&stats->tx_bytes);
10812 			tx_drops   = u64_stats_read(&stats->tx_drops);
10813 		} while (u64_stats_fetch_retry(&stats->syncp, start));
10814 
10815 		s->rx_packets += rx_packets;
10816 		s->rx_bytes   += rx_bytes;
10817 		s->rx_dropped += rx_drops;
10818 		s->tx_packets += tx_packets;
10819 		s->tx_bytes   += tx_bytes;
10820 		s->tx_dropped += tx_drops;
10821 	}
10822 }
10823 
10824 /* ndo_get_stats64 implementation for dtstats-based accounting.
10825  *
10826  * Populate @s from dev->stats and dev->dstats. This is used internally by the
10827  * core for NETDEV_PCPU_STAT_DSTAT-type stats collection.
10828  */
10829 static void dev_get_dstats64(const struct net_device *dev,
10830 			     struct rtnl_link_stats64 *s)
10831 {
10832 	netdev_stats_to_stats64(s, &dev->stats);
10833 	dev_fetch_dstats(s, dev->dstats);
10834 }
10835 
10836 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
10837  * all the same fields in the same order as net_device_stats, with only
10838  * the type differing, but rtnl_link_stats64 may have additional fields
10839  * at the end for newer counters.
10840  */
10841 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
10842 			     const struct net_device_stats *netdev_stats)
10843 {
10844 	size_t i, n = sizeof(*netdev_stats) / sizeof(atomic_long_t);
10845 	const atomic_long_t *src = (atomic_long_t *)netdev_stats;
10846 	u64 *dst = (u64 *)stats64;
10847 
10848 	BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
10849 	for (i = 0; i < n; i++)
10850 		dst[i] = (unsigned long)atomic_long_read(&src[i]);
10851 	/* zero out counters that only exist in rtnl_link_stats64 */
10852 	memset((char *)stats64 + n * sizeof(u64), 0,
10853 	       sizeof(*stats64) - n * sizeof(u64));
10854 }
10855 EXPORT_SYMBOL(netdev_stats_to_stats64);
10856 
10857 static __cold struct net_device_core_stats __percpu *netdev_core_stats_alloc(
10858 		struct net_device *dev)
10859 {
10860 	struct net_device_core_stats __percpu *p;
10861 
10862 	p = alloc_percpu_gfp(struct net_device_core_stats,
10863 			     GFP_ATOMIC | __GFP_NOWARN);
10864 
10865 	if (p && cmpxchg(&dev->core_stats, NULL, p))
10866 		free_percpu(p);
10867 
10868 	/* This READ_ONCE() pairs with the cmpxchg() above */
10869 	return READ_ONCE(dev->core_stats);
10870 }
10871 
10872 noinline void netdev_core_stats_inc(struct net_device *dev, u32 offset)
10873 {
10874 	/* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
10875 	struct net_device_core_stats __percpu *p = READ_ONCE(dev->core_stats);
10876 	unsigned long __percpu *field;
10877 
10878 	if (unlikely(!p)) {
10879 		p = netdev_core_stats_alloc(dev);
10880 		if (!p)
10881 			return;
10882 	}
10883 
10884 	field = (unsigned long __percpu *)((void __percpu *)p + offset);
10885 	this_cpu_inc(*field);
10886 }
10887 EXPORT_SYMBOL_GPL(netdev_core_stats_inc);
10888 
10889 /**
10890  *	dev_get_stats	- get network device statistics
10891  *	@dev: device to get statistics from
10892  *	@storage: place to store stats
10893  *
10894  *	Get network statistics from device. Return @storage.
10895  *	The device driver may provide its own method by setting
10896  *	dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
10897  *	otherwise the internal statistics structure is used.
10898  */
10899 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
10900 					struct rtnl_link_stats64 *storage)
10901 {
10902 	const struct net_device_ops *ops = dev->netdev_ops;
10903 	const struct net_device_core_stats __percpu *p;
10904 
10905 	if (ops->ndo_get_stats64) {
10906 		memset(storage, 0, sizeof(*storage));
10907 		ops->ndo_get_stats64(dev, storage);
10908 	} else if (ops->ndo_get_stats) {
10909 		netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
10910 	} else if (dev->pcpu_stat_type == NETDEV_PCPU_STAT_TSTATS) {
10911 		dev_get_tstats64(dev, storage);
10912 	} else if (dev->pcpu_stat_type == NETDEV_PCPU_STAT_DSTATS) {
10913 		dev_get_dstats64(dev, storage);
10914 	} else {
10915 		netdev_stats_to_stats64(storage, &dev->stats);
10916 	}
10917 
10918 	/* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
10919 	p = READ_ONCE(dev->core_stats);
10920 	if (p) {
10921 		const struct net_device_core_stats *core_stats;
10922 		int i;
10923 
10924 		for_each_possible_cpu(i) {
10925 			core_stats = per_cpu_ptr(p, i);
10926 			storage->rx_dropped += READ_ONCE(core_stats->rx_dropped);
10927 			storage->tx_dropped += READ_ONCE(core_stats->tx_dropped);
10928 			storage->rx_nohandler += READ_ONCE(core_stats->rx_nohandler);
10929 			storage->rx_otherhost_dropped += READ_ONCE(core_stats->rx_otherhost_dropped);
10930 		}
10931 	}
10932 	return storage;
10933 }
10934 EXPORT_SYMBOL(dev_get_stats);
10935 
10936 /**
10937  *	dev_fetch_sw_netstats - get per-cpu network device statistics
10938  *	@s: place to store stats
10939  *	@netstats: per-cpu network stats to read from
10940  *
10941  *	Read per-cpu network statistics and populate the related fields in @s.
10942  */
10943 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
10944 			   const struct pcpu_sw_netstats __percpu *netstats)
10945 {
10946 	int cpu;
10947 
10948 	for_each_possible_cpu(cpu) {
10949 		u64 rx_packets, rx_bytes, tx_packets, tx_bytes;
10950 		const struct pcpu_sw_netstats *stats;
10951 		unsigned int start;
10952 
10953 		stats = per_cpu_ptr(netstats, cpu);
10954 		do {
10955 			start = u64_stats_fetch_begin(&stats->syncp);
10956 			rx_packets = u64_stats_read(&stats->rx_packets);
10957 			rx_bytes   = u64_stats_read(&stats->rx_bytes);
10958 			tx_packets = u64_stats_read(&stats->tx_packets);
10959 			tx_bytes   = u64_stats_read(&stats->tx_bytes);
10960 		} while (u64_stats_fetch_retry(&stats->syncp, start));
10961 
10962 		s->rx_packets += rx_packets;
10963 		s->rx_bytes   += rx_bytes;
10964 		s->tx_packets += tx_packets;
10965 		s->tx_bytes   += tx_bytes;
10966 	}
10967 }
10968 EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats);
10969 
10970 /**
10971  *	dev_get_tstats64 - ndo_get_stats64 implementation
10972  *	@dev: device to get statistics from
10973  *	@s: place to store stats
10974  *
10975  *	Populate @s from dev->stats and dev->tstats. Can be used as
10976  *	ndo_get_stats64() callback.
10977  */
10978 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s)
10979 {
10980 	netdev_stats_to_stats64(s, &dev->stats);
10981 	dev_fetch_sw_netstats(s, dev->tstats);
10982 }
10983 EXPORT_SYMBOL_GPL(dev_get_tstats64);
10984 
10985 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
10986 {
10987 	struct netdev_queue *queue = dev_ingress_queue(dev);
10988 
10989 #ifdef CONFIG_NET_CLS_ACT
10990 	if (queue)
10991 		return queue;
10992 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
10993 	if (!queue)
10994 		return NULL;
10995 	netdev_init_one_queue(dev, queue, NULL);
10996 	RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
10997 	RCU_INIT_POINTER(queue->qdisc_sleeping, &noop_qdisc);
10998 	rcu_assign_pointer(dev->ingress_queue, queue);
10999 #endif
11000 	return queue;
11001 }
11002 
11003 static const struct ethtool_ops default_ethtool_ops;
11004 
11005 void netdev_set_default_ethtool_ops(struct net_device *dev,
11006 				    const struct ethtool_ops *ops)
11007 {
11008 	if (dev->ethtool_ops == &default_ethtool_ops)
11009 		dev->ethtool_ops = ops;
11010 }
11011 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
11012 
11013 /**
11014  * netdev_sw_irq_coalesce_default_on() - enable SW IRQ coalescing by default
11015  * @dev: netdev to enable the IRQ coalescing on
11016  *
11017  * Sets a conservative default for SW IRQ coalescing. Users can use
11018  * sysfs attributes to override the default values.
11019  */
11020 void netdev_sw_irq_coalesce_default_on(struct net_device *dev)
11021 {
11022 	WARN_ON(dev->reg_state == NETREG_REGISTERED);
11023 
11024 	if (!IS_ENABLED(CONFIG_PREEMPT_RT)) {
11025 		dev->gro_flush_timeout = 20000;
11026 		dev->napi_defer_hard_irqs = 1;
11027 	}
11028 }
11029 EXPORT_SYMBOL_GPL(netdev_sw_irq_coalesce_default_on);
11030 
11031 /**
11032  * alloc_netdev_mqs - allocate network device
11033  * @sizeof_priv: size of private data to allocate space for
11034  * @name: device name format string
11035  * @name_assign_type: origin of device name
11036  * @setup: callback to initialize device
11037  * @txqs: the number of TX subqueues to allocate
11038  * @rxqs: the number of RX subqueues to allocate
11039  *
11040  * Allocates a struct net_device with private data area for driver use
11041  * and performs basic initialization.  Also allocates subqueue structs
11042  * for each queue on the device.
11043  */
11044 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
11045 		unsigned char name_assign_type,
11046 		void (*setup)(struct net_device *),
11047 		unsigned int txqs, unsigned int rxqs)
11048 {
11049 	struct net_device *dev;
11050 
11051 	BUG_ON(strlen(name) >= sizeof(dev->name));
11052 
11053 	if (txqs < 1) {
11054 		pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
11055 		return NULL;
11056 	}
11057 
11058 	if (rxqs < 1) {
11059 		pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
11060 		return NULL;
11061 	}
11062 
11063 	dev = kvzalloc(struct_size(dev, priv, sizeof_priv),
11064 		       GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
11065 	if (!dev)
11066 		return NULL;
11067 
11068 	dev->priv_len = sizeof_priv;
11069 
11070 	ref_tracker_dir_init(&dev->refcnt_tracker, 128, name);
11071 #ifdef CONFIG_PCPU_DEV_REFCNT
11072 	dev->pcpu_refcnt = alloc_percpu(int);
11073 	if (!dev->pcpu_refcnt)
11074 		goto free_dev;
11075 	__dev_hold(dev);
11076 #else
11077 	refcount_set(&dev->dev_refcnt, 1);
11078 #endif
11079 
11080 	if (dev_addr_init(dev))
11081 		goto free_pcpu;
11082 
11083 	dev_mc_init(dev);
11084 	dev_uc_init(dev);
11085 
11086 	dev_net_set(dev, &init_net);
11087 
11088 	dev->gso_max_size = GSO_LEGACY_MAX_SIZE;
11089 	dev->xdp_zc_max_segs = 1;
11090 	dev->gso_max_segs = GSO_MAX_SEGS;
11091 	dev->gro_max_size = GRO_LEGACY_MAX_SIZE;
11092 	dev->gso_ipv4_max_size = GSO_LEGACY_MAX_SIZE;
11093 	dev->gro_ipv4_max_size = GRO_LEGACY_MAX_SIZE;
11094 	dev->tso_max_size = TSO_LEGACY_MAX_SIZE;
11095 	dev->tso_max_segs = TSO_MAX_SEGS;
11096 	dev->upper_level = 1;
11097 	dev->lower_level = 1;
11098 #ifdef CONFIG_LOCKDEP
11099 	dev->nested_level = 0;
11100 	INIT_LIST_HEAD(&dev->unlink_list);
11101 #endif
11102 
11103 	INIT_LIST_HEAD(&dev->napi_list);
11104 	INIT_LIST_HEAD(&dev->unreg_list);
11105 	INIT_LIST_HEAD(&dev->close_list);
11106 	INIT_LIST_HEAD(&dev->link_watch_list);
11107 	INIT_LIST_HEAD(&dev->adj_list.upper);
11108 	INIT_LIST_HEAD(&dev->adj_list.lower);
11109 	INIT_LIST_HEAD(&dev->ptype_all);
11110 	INIT_LIST_HEAD(&dev->ptype_specific);
11111 	INIT_LIST_HEAD(&dev->net_notifier_list);
11112 #ifdef CONFIG_NET_SCHED
11113 	hash_init(dev->qdisc_hash);
11114 #endif
11115 
11116 	dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
11117 	setup(dev);
11118 
11119 	if (!dev->tx_queue_len) {
11120 		dev->priv_flags |= IFF_NO_QUEUE;
11121 		dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
11122 	}
11123 
11124 	dev->num_tx_queues = txqs;
11125 	dev->real_num_tx_queues = txqs;
11126 	if (netif_alloc_netdev_queues(dev))
11127 		goto free_all;
11128 
11129 	dev->num_rx_queues = rxqs;
11130 	dev->real_num_rx_queues = rxqs;
11131 	if (netif_alloc_rx_queues(dev))
11132 		goto free_all;
11133 	dev->ethtool = kzalloc(sizeof(*dev->ethtool), GFP_KERNEL_ACCOUNT);
11134 	if (!dev->ethtool)
11135 		goto free_all;
11136 
11137 	strscpy(dev->name, name);
11138 	dev->name_assign_type = name_assign_type;
11139 	dev->group = INIT_NETDEV_GROUP;
11140 	if (!dev->ethtool_ops)
11141 		dev->ethtool_ops = &default_ethtool_ops;
11142 
11143 	nf_hook_netdev_init(dev);
11144 
11145 	return dev;
11146 
11147 free_all:
11148 	free_netdev(dev);
11149 	return NULL;
11150 
11151 free_pcpu:
11152 #ifdef CONFIG_PCPU_DEV_REFCNT
11153 	free_percpu(dev->pcpu_refcnt);
11154 free_dev:
11155 #endif
11156 	kvfree(dev);
11157 	return NULL;
11158 }
11159 EXPORT_SYMBOL(alloc_netdev_mqs);
11160 
11161 /**
11162  * free_netdev - free network device
11163  * @dev: device
11164  *
11165  * This function does the last stage of destroying an allocated device
11166  * interface. The reference to the device object is released. If this
11167  * is the last reference then it will be freed.Must be called in process
11168  * context.
11169  */
11170 void free_netdev(struct net_device *dev)
11171 {
11172 	struct napi_struct *p, *n;
11173 
11174 	might_sleep();
11175 
11176 	/* When called immediately after register_netdevice() failed the unwind
11177 	 * handling may still be dismantling the device. Handle that case by
11178 	 * deferring the free.
11179 	 */
11180 	if (dev->reg_state == NETREG_UNREGISTERING) {
11181 		ASSERT_RTNL();
11182 		dev->needs_free_netdev = true;
11183 		return;
11184 	}
11185 
11186 	kfree(dev->ethtool);
11187 	netif_free_tx_queues(dev);
11188 	netif_free_rx_queues(dev);
11189 
11190 	kfree(rcu_dereference_protected(dev->ingress_queue, 1));
11191 
11192 	/* Flush device addresses */
11193 	dev_addr_flush(dev);
11194 
11195 	list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
11196 		netif_napi_del(p);
11197 
11198 	ref_tracker_dir_exit(&dev->refcnt_tracker);
11199 #ifdef CONFIG_PCPU_DEV_REFCNT
11200 	free_percpu(dev->pcpu_refcnt);
11201 	dev->pcpu_refcnt = NULL;
11202 #endif
11203 	free_percpu(dev->core_stats);
11204 	dev->core_stats = NULL;
11205 	free_percpu(dev->xdp_bulkq);
11206 	dev->xdp_bulkq = NULL;
11207 
11208 	netdev_free_phy_link_topology(dev);
11209 
11210 	/*  Compatibility with error handling in drivers */
11211 	if (dev->reg_state == NETREG_UNINITIALIZED ||
11212 	    dev->reg_state == NETREG_DUMMY) {
11213 		kvfree(dev);
11214 		return;
11215 	}
11216 
11217 	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
11218 	WRITE_ONCE(dev->reg_state, NETREG_RELEASED);
11219 
11220 	/* will free via device release */
11221 	put_device(&dev->dev);
11222 }
11223 EXPORT_SYMBOL(free_netdev);
11224 
11225 /**
11226  * alloc_netdev_dummy - Allocate and initialize a dummy net device.
11227  * @sizeof_priv: size of private data to allocate space for
11228  *
11229  * Return: the allocated net_device on success, NULL otherwise
11230  */
11231 struct net_device *alloc_netdev_dummy(int sizeof_priv)
11232 {
11233 	return alloc_netdev(sizeof_priv, "dummy#", NET_NAME_UNKNOWN,
11234 			    init_dummy_netdev_core);
11235 }
11236 EXPORT_SYMBOL_GPL(alloc_netdev_dummy);
11237 
11238 /**
11239  *	synchronize_net -  Synchronize with packet receive processing
11240  *
11241  *	Wait for packets currently being received to be done.
11242  *	Does not block later packets from starting.
11243  */
11244 void synchronize_net(void)
11245 {
11246 	might_sleep();
11247 	if (rtnl_is_locked())
11248 		synchronize_rcu_expedited();
11249 	else
11250 		synchronize_rcu();
11251 }
11252 EXPORT_SYMBOL(synchronize_net);
11253 
11254 static void netdev_rss_contexts_free(struct net_device *dev)
11255 {
11256 	struct ethtool_rxfh_context *ctx;
11257 	unsigned long context;
11258 
11259 	mutex_lock(&dev->ethtool->rss_lock);
11260 	xa_for_each(&dev->ethtool->rss_ctx, context, ctx) {
11261 		struct ethtool_rxfh_param rxfh;
11262 
11263 		rxfh.indir = ethtool_rxfh_context_indir(ctx);
11264 		rxfh.key = ethtool_rxfh_context_key(ctx);
11265 		rxfh.hfunc = ctx->hfunc;
11266 		rxfh.input_xfrm = ctx->input_xfrm;
11267 		rxfh.rss_context = context;
11268 		rxfh.rss_delete = true;
11269 
11270 		xa_erase(&dev->ethtool->rss_ctx, context);
11271 		if (dev->ethtool_ops->create_rxfh_context)
11272 			dev->ethtool_ops->remove_rxfh_context(dev, ctx,
11273 							      context, NULL);
11274 		else
11275 			dev->ethtool_ops->set_rxfh(dev, &rxfh, NULL);
11276 		kfree(ctx);
11277 	}
11278 	xa_destroy(&dev->ethtool->rss_ctx);
11279 	mutex_unlock(&dev->ethtool->rss_lock);
11280 }
11281 
11282 /**
11283  *	unregister_netdevice_queue - remove device from the kernel
11284  *	@dev: device
11285  *	@head: list
11286  *
11287  *	This function shuts down a device interface and removes it
11288  *	from the kernel tables.
11289  *	If head not NULL, device is queued to be unregistered later.
11290  *
11291  *	Callers must hold the rtnl semaphore.  You may want
11292  *	unregister_netdev() instead of this.
11293  */
11294 
11295 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
11296 {
11297 	ASSERT_RTNL();
11298 
11299 	if (head) {
11300 		list_move_tail(&dev->unreg_list, head);
11301 	} else {
11302 		LIST_HEAD(single);
11303 
11304 		list_add(&dev->unreg_list, &single);
11305 		unregister_netdevice_many(&single);
11306 	}
11307 }
11308 EXPORT_SYMBOL(unregister_netdevice_queue);
11309 
11310 void unregister_netdevice_many_notify(struct list_head *head,
11311 				      u32 portid, const struct nlmsghdr *nlh)
11312 {
11313 	struct net_device *dev, *tmp;
11314 	LIST_HEAD(close_head);
11315 	int cnt = 0;
11316 
11317 	BUG_ON(dev_boot_phase);
11318 	ASSERT_RTNL();
11319 
11320 	if (list_empty(head))
11321 		return;
11322 
11323 	list_for_each_entry_safe(dev, tmp, head, unreg_list) {
11324 		/* Some devices call without registering
11325 		 * for initialization unwind. Remove those
11326 		 * devices and proceed with the remaining.
11327 		 */
11328 		if (dev->reg_state == NETREG_UNINITIALIZED) {
11329 			pr_debug("unregister_netdevice: device %s/%p never was registered\n",
11330 				 dev->name, dev);
11331 
11332 			WARN_ON(1);
11333 			list_del(&dev->unreg_list);
11334 			continue;
11335 		}
11336 		dev->dismantle = true;
11337 		BUG_ON(dev->reg_state != NETREG_REGISTERED);
11338 	}
11339 
11340 	/* If device is running, close it first. */
11341 	list_for_each_entry(dev, head, unreg_list)
11342 		list_add_tail(&dev->close_list, &close_head);
11343 	dev_close_many(&close_head, true);
11344 
11345 	list_for_each_entry(dev, head, unreg_list) {
11346 		/* And unlink it from device chain. */
11347 		unlist_netdevice(dev);
11348 		WRITE_ONCE(dev->reg_state, NETREG_UNREGISTERING);
11349 	}
11350 	flush_all_backlogs();
11351 
11352 	synchronize_net();
11353 
11354 	list_for_each_entry(dev, head, unreg_list) {
11355 		struct sk_buff *skb = NULL;
11356 
11357 		/* Shutdown queueing discipline. */
11358 		dev_shutdown(dev);
11359 		dev_tcx_uninstall(dev);
11360 		dev_xdp_uninstall(dev);
11361 		bpf_dev_bound_netdev_unregister(dev);
11362 
11363 		netdev_offload_xstats_disable_all(dev);
11364 
11365 		/* Notify protocols, that we are about to destroy
11366 		 * this device. They should clean all the things.
11367 		 */
11368 		call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11369 
11370 		if (!dev->rtnl_link_ops ||
11371 		    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
11372 			skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
11373 						     GFP_KERNEL, NULL, 0,
11374 						     portid, nlh);
11375 
11376 		/*
11377 		 *	Flush the unicast and multicast chains
11378 		 */
11379 		dev_uc_flush(dev);
11380 		dev_mc_flush(dev);
11381 
11382 		netdev_name_node_alt_flush(dev);
11383 		netdev_name_node_free(dev->name_node);
11384 
11385 		netdev_rss_contexts_free(dev);
11386 
11387 		call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev);
11388 
11389 		if (dev->netdev_ops->ndo_uninit)
11390 			dev->netdev_ops->ndo_uninit(dev);
11391 
11392 		mutex_destroy(&dev->ethtool->rss_lock);
11393 
11394 		if (skb)
11395 			rtmsg_ifinfo_send(skb, dev, GFP_KERNEL, portid, nlh);
11396 
11397 		/* Notifier chain MUST detach us all upper devices. */
11398 		WARN_ON(netdev_has_any_upper_dev(dev));
11399 		WARN_ON(netdev_has_any_lower_dev(dev));
11400 
11401 		/* Remove entries from kobject tree */
11402 		netdev_unregister_kobject(dev);
11403 #ifdef CONFIG_XPS
11404 		/* Remove XPS queueing entries */
11405 		netif_reset_xps_queues_gt(dev, 0);
11406 #endif
11407 	}
11408 
11409 	synchronize_net();
11410 
11411 	list_for_each_entry(dev, head, unreg_list) {
11412 		netdev_put(dev, &dev->dev_registered_tracker);
11413 		net_set_todo(dev);
11414 		cnt++;
11415 	}
11416 	atomic_add(cnt, &dev_unreg_count);
11417 
11418 	list_del(head);
11419 }
11420 
11421 /**
11422  *	unregister_netdevice_many - unregister many devices
11423  *	@head: list of devices
11424  *
11425  *  Note: As most callers use a stack allocated list_head,
11426  *  we force a list_del() to make sure stack won't be corrupted later.
11427  */
11428 void unregister_netdevice_many(struct list_head *head)
11429 {
11430 	unregister_netdevice_many_notify(head, 0, NULL);
11431 }
11432 EXPORT_SYMBOL(unregister_netdevice_many);
11433 
11434 /**
11435  *	unregister_netdev - remove device from the kernel
11436  *	@dev: device
11437  *
11438  *	This function shuts down a device interface and removes it
11439  *	from the kernel tables.
11440  *
11441  *	This is just a wrapper for unregister_netdevice that takes
11442  *	the rtnl semaphore.  In general you want to use this and not
11443  *	unregister_netdevice.
11444  */
11445 void unregister_netdev(struct net_device *dev)
11446 {
11447 	rtnl_lock();
11448 	unregister_netdevice(dev);
11449 	rtnl_unlock();
11450 }
11451 EXPORT_SYMBOL(unregister_netdev);
11452 
11453 /**
11454  *	__dev_change_net_namespace - move device to different nethost namespace
11455  *	@dev: device
11456  *	@net: network namespace
11457  *	@pat: If not NULL name pattern to try if the current device name
11458  *	      is already taken in the destination network namespace.
11459  *	@new_ifindex: If not zero, specifies device index in the target
11460  *	              namespace.
11461  *
11462  *	This function shuts down a device interface and moves it
11463  *	to a new network namespace. On success 0 is returned, on
11464  *	a failure a netagive errno code is returned.
11465  *
11466  *	Callers must hold the rtnl semaphore.
11467  */
11468 
11469 int __dev_change_net_namespace(struct net_device *dev, struct net *net,
11470 			       const char *pat, int new_ifindex)
11471 {
11472 	struct netdev_name_node *name_node;
11473 	struct net *net_old = dev_net(dev);
11474 	char new_name[IFNAMSIZ] = {};
11475 	int err, new_nsid;
11476 
11477 	ASSERT_RTNL();
11478 
11479 	/* Don't allow namespace local devices to be moved. */
11480 	err = -EINVAL;
11481 	if (dev->netns_local)
11482 		goto out;
11483 
11484 	/* Ensure the device has been registered */
11485 	if (dev->reg_state != NETREG_REGISTERED)
11486 		goto out;
11487 
11488 	/* Get out if there is nothing todo */
11489 	err = 0;
11490 	if (net_eq(net_old, net))
11491 		goto out;
11492 
11493 	/* Pick the destination device name, and ensure
11494 	 * we can use it in the destination network namespace.
11495 	 */
11496 	err = -EEXIST;
11497 	if (netdev_name_in_use(net, dev->name)) {
11498 		/* We get here if we can't use the current device name */
11499 		if (!pat)
11500 			goto out;
11501 		err = dev_prep_valid_name(net, dev, pat, new_name, EEXIST);
11502 		if (err < 0)
11503 			goto out;
11504 	}
11505 	/* Check that none of the altnames conflicts. */
11506 	err = -EEXIST;
11507 	netdev_for_each_altname(dev, name_node)
11508 		if (netdev_name_in_use(net, name_node->name))
11509 			goto out;
11510 
11511 	/* Check that new_ifindex isn't used yet. */
11512 	if (new_ifindex) {
11513 		err = dev_index_reserve(net, new_ifindex);
11514 		if (err < 0)
11515 			goto out;
11516 	} else {
11517 		/* If there is an ifindex conflict assign a new one */
11518 		err = dev_index_reserve(net, dev->ifindex);
11519 		if (err == -EBUSY)
11520 			err = dev_index_reserve(net, 0);
11521 		if (err < 0)
11522 			goto out;
11523 		new_ifindex = err;
11524 	}
11525 
11526 	/*
11527 	 * And now a mini version of register_netdevice unregister_netdevice.
11528 	 */
11529 
11530 	/* If device is running close it first. */
11531 	dev_close(dev);
11532 
11533 	/* And unlink it from device chain */
11534 	unlist_netdevice(dev);
11535 
11536 	synchronize_net();
11537 
11538 	/* Shutdown queueing discipline. */
11539 	dev_shutdown(dev);
11540 
11541 	/* Notify protocols, that we are about to destroy
11542 	 * this device. They should clean all the things.
11543 	 *
11544 	 * Note that dev->reg_state stays at NETREG_REGISTERED.
11545 	 * This is wanted because this way 8021q and macvlan know
11546 	 * the device is just moving and can keep their slaves up.
11547 	 */
11548 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11549 	rcu_barrier();
11550 
11551 	new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
11552 
11553 	rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
11554 			    new_ifindex);
11555 
11556 	/*
11557 	 *	Flush the unicast and multicast chains
11558 	 */
11559 	dev_uc_flush(dev);
11560 	dev_mc_flush(dev);
11561 
11562 	/* Send a netdev-removed uevent to the old namespace */
11563 	kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
11564 	netdev_adjacent_del_links(dev);
11565 
11566 	/* Move per-net netdevice notifiers that are following the netdevice */
11567 	move_netdevice_notifiers_dev_net(dev, net);
11568 
11569 	/* Actually switch the network namespace */
11570 	dev_net_set(dev, net);
11571 	dev->ifindex = new_ifindex;
11572 
11573 	if (new_name[0]) {
11574 		/* Rename the netdev to prepared name */
11575 		write_seqlock_bh(&netdev_rename_lock);
11576 		strscpy(dev->name, new_name, IFNAMSIZ);
11577 		write_sequnlock_bh(&netdev_rename_lock);
11578 	}
11579 
11580 	/* Fixup kobjects */
11581 	dev_set_uevent_suppress(&dev->dev, 1);
11582 	err = device_rename(&dev->dev, dev->name);
11583 	dev_set_uevent_suppress(&dev->dev, 0);
11584 	WARN_ON(err);
11585 
11586 	/* Send a netdev-add uevent to the new namespace */
11587 	kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
11588 	netdev_adjacent_add_links(dev);
11589 
11590 	/* Adapt owner in case owning user namespace of target network
11591 	 * namespace is different from the original one.
11592 	 */
11593 	err = netdev_change_owner(dev, net_old, net);
11594 	WARN_ON(err);
11595 
11596 	/* Add the device back in the hashes */
11597 	list_netdevice(dev);
11598 
11599 	/* Notify protocols, that a new device appeared. */
11600 	call_netdevice_notifiers(NETDEV_REGISTER, dev);
11601 
11602 	/*
11603 	 *	Prevent userspace races by waiting until the network
11604 	 *	device is fully setup before sending notifications.
11605 	 */
11606 	rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL);
11607 
11608 	synchronize_net();
11609 	err = 0;
11610 out:
11611 	return err;
11612 }
11613 EXPORT_SYMBOL_GPL(__dev_change_net_namespace);
11614 
11615 static int dev_cpu_dead(unsigned int oldcpu)
11616 {
11617 	struct sk_buff **list_skb;
11618 	struct sk_buff *skb;
11619 	unsigned int cpu;
11620 	struct softnet_data *sd, *oldsd, *remsd = NULL;
11621 
11622 	local_irq_disable();
11623 	cpu = smp_processor_id();
11624 	sd = &per_cpu(softnet_data, cpu);
11625 	oldsd = &per_cpu(softnet_data, oldcpu);
11626 
11627 	/* Find end of our completion_queue. */
11628 	list_skb = &sd->completion_queue;
11629 	while (*list_skb)
11630 		list_skb = &(*list_skb)->next;
11631 	/* Append completion queue from offline CPU. */
11632 	*list_skb = oldsd->completion_queue;
11633 	oldsd->completion_queue = NULL;
11634 
11635 	/* Append output queue from offline CPU. */
11636 	if (oldsd->output_queue) {
11637 		*sd->output_queue_tailp = oldsd->output_queue;
11638 		sd->output_queue_tailp = oldsd->output_queue_tailp;
11639 		oldsd->output_queue = NULL;
11640 		oldsd->output_queue_tailp = &oldsd->output_queue;
11641 	}
11642 	/* Append NAPI poll list from offline CPU, with one exception :
11643 	 * process_backlog() must be called by cpu owning percpu backlog.
11644 	 * We properly handle process_queue & input_pkt_queue later.
11645 	 */
11646 	while (!list_empty(&oldsd->poll_list)) {
11647 		struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
11648 							    struct napi_struct,
11649 							    poll_list);
11650 
11651 		list_del_init(&napi->poll_list);
11652 		if (napi->poll == process_backlog)
11653 			napi->state &= NAPIF_STATE_THREADED;
11654 		else
11655 			____napi_schedule(sd, napi);
11656 	}
11657 
11658 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
11659 	local_irq_enable();
11660 
11661 	if (!use_backlog_threads()) {
11662 #ifdef CONFIG_RPS
11663 		remsd = oldsd->rps_ipi_list;
11664 		oldsd->rps_ipi_list = NULL;
11665 #endif
11666 		/* send out pending IPI's on offline CPU */
11667 		net_rps_send_ipi(remsd);
11668 	}
11669 
11670 	/* Process offline CPU's input_pkt_queue */
11671 	while ((skb = __skb_dequeue(&oldsd->process_queue))) {
11672 		netif_rx(skb);
11673 		rps_input_queue_head_incr(oldsd);
11674 	}
11675 	while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
11676 		netif_rx(skb);
11677 		rps_input_queue_head_incr(oldsd);
11678 	}
11679 
11680 	return 0;
11681 }
11682 
11683 /**
11684  *	netdev_increment_features - increment feature set by one
11685  *	@all: current feature set
11686  *	@one: new feature set
11687  *	@mask: mask feature set
11688  *
11689  *	Computes a new feature set after adding a device with feature set
11690  *	@one to the master device with current feature set @all.  Will not
11691  *	enable anything that is off in @mask. Returns the new feature set.
11692  */
11693 netdev_features_t netdev_increment_features(netdev_features_t all,
11694 	netdev_features_t one, netdev_features_t mask)
11695 {
11696 	if (mask & NETIF_F_HW_CSUM)
11697 		mask |= NETIF_F_CSUM_MASK;
11698 	mask |= NETIF_F_VLAN_CHALLENGED;
11699 
11700 	all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
11701 	all &= one | ~NETIF_F_ALL_FOR_ALL;
11702 
11703 	/* If one device supports hw checksumming, set for all. */
11704 	if (all & NETIF_F_HW_CSUM)
11705 		all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
11706 
11707 	return all;
11708 }
11709 EXPORT_SYMBOL(netdev_increment_features);
11710 
11711 static struct hlist_head * __net_init netdev_create_hash(void)
11712 {
11713 	int i;
11714 	struct hlist_head *hash;
11715 
11716 	hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
11717 	if (hash != NULL)
11718 		for (i = 0; i < NETDEV_HASHENTRIES; i++)
11719 			INIT_HLIST_HEAD(&hash[i]);
11720 
11721 	return hash;
11722 }
11723 
11724 /* Initialize per network namespace state */
11725 static int __net_init netdev_init(struct net *net)
11726 {
11727 	BUILD_BUG_ON(GRO_HASH_BUCKETS >
11728 		     8 * sizeof_field(struct napi_struct, gro_bitmask));
11729 
11730 	INIT_LIST_HEAD(&net->dev_base_head);
11731 
11732 	net->dev_name_head = netdev_create_hash();
11733 	if (net->dev_name_head == NULL)
11734 		goto err_name;
11735 
11736 	net->dev_index_head = netdev_create_hash();
11737 	if (net->dev_index_head == NULL)
11738 		goto err_idx;
11739 
11740 	xa_init_flags(&net->dev_by_index, XA_FLAGS_ALLOC1);
11741 
11742 	RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
11743 
11744 	return 0;
11745 
11746 err_idx:
11747 	kfree(net->dev_name_head);
11748 err_name:
11749 	return -ENOMEM;
11750 }
11751 
11752 /**
11753  *	netdev_drivername - network driver for the device
11754  *	@dev: network device
11755  *
11756  *	Determine network driver for device.
11757  */
11758 const char *netdev_drivername(const struct net_device *dev)
11759 {
11760 	const struct device_driver *driver;
11761 	const struct device *parent;
11762 	const char *empty = "";
11763 
11764 	parent = dev->dev.parent;
11765 	if (!parent)
11766 		return empty;
11767 
11768 	driver = parent->driver;
11769 	if (driver && driver->name)
11770 		return driver->name;
11771 	return empty;
11772 }
11773 
11774 static void __netdev_printk(const char *level, const struct net_device *dev,
11775 			    struct va_format *vaf)
11776 {
11777 	if (dev && dev->dev.parent) {
11778 		dev_printk_emit(level[1] - '0',
11779 				dev->dev.parent,
11780 				"%s %s %s%s: %pV",
11781 				dev_driver_string(dev->dev.parent),
11782 				dev_name(dev->dev.parent),
11783 				netdev_name(dev), netdev_reg_state(dev),
11784 				vaf);
11785 	} else if (dev) {
11786 		printk("%s%s%s: %pV",
11787 		       level, netdev_name(dev), netdev_reg_state(dev), vaf);
11788 	} else {
11789 		printk("%s(NULL net_device): %pV", level, vaf);
11790 	}
11791 }
11792 
11793 void netdev_printk(const char *level, const struct net_device *dev,
11794 		   const char *format, ...)
11795 {
11796 	struct va_format vaf;
11797 	va_list args;
11798 
11799 	va_start(args, format);
11800 
11801 	vaf.fmt = format;
11802 	vaf.va = &args;
11803 
11804 	__netdev_printk(level, dev, &vaf);
11805 
11806 	va_end(args);
11807 }
11808 EXPORT_SYMBOL(netdev_printk);
11809 
11810 #define define_netdev_printk_level(func, level)			\
11811 void func(const struct net_device *dev, const char *fmt, ...)	\
11812 {								\
11813 	struct va_format vaf;					\
11814 	va_list args;						\
11815 								\
11816 	va_start(args, fmt);					\
11817 								\
11818 	vaf.fmt = fmt;						\
11819 	vaf.va = &args;						\
11820 								\
11821 	__netdev_printk(level, dev, &vaf);			\
11822 								\
11823 	va_end(args);						\
11824 }								\
11825 EXPORT_SYMBOL(func);
11826 
11827 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
11828 define_netdev_printk_level(netdev_alert, KERN_ALERT);
11829 define_netdev_printk_level(netdev_crit, KERN_CRIT);
11830 define_netdev_printk_level(netdev_err, KERN_ERR);
11831 define_netdev_printk_level(netdev_warn, KERN_WARNING);
11832 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
11833 define_netdev_printk_level(netdev_info, KERN_INFO);
11834 
11835 static void __net_exit netdev_exit(struct net *net)
11836 {
11837 	kfree(net->dev_name_head);
11838 	kfree(net->dev_index_head);
11839 	xa_destroy(&net->dev_by_index);
11840 	if (net != &init_net)
11841 		WARN_ON_ONCE(!list_empty(&net->dev_base_head));
11842 }
11843 
11844 static struct pernet_operations __net_initdata netdev_net_ops = {
11845 	.init = netdev_init,
11846 	.exit = netdev_exit,
11847 };
11848 
11849 static void __net_exit default_device_exit_net(struct net *net)
11850 {
11851 	struct netdev_name_node *name_node, *tmp;
11852 	struct net_device *dev, *aux;
11853 	/*
11854 	 * Push all migratable network devices back to the
11855 	 * initial network namespace
11856 	 */
11857 	ASSERT_RTNL();
11858 	for_each_netdev_safe(net, dev, aux) {
11859 		int err;
11860 		char fb_name[IFNAMSIZ];
11861 
11862 		/* Ignore unmoveable devices (i.e. loopback) */
11863 		if (dev->netns_local)
11864 			continue;
11865 
11866 		/* Leave virtual devices for the generic cleanup */
11867 		if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund)
11868 			continue;
11869 
11870 		/* Push remaining network devices to init_net */
11871 		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
11872 		if (netdev_name_in_use(&init_net, fb_name))
11873 			snprintf(fb_name, IFNAMSIZ, "dev%%d");
11874 
11875 		netdev_for_each_altname_safe(dev, name_node, tmp)
11876 			if (netdev_name_in_use(&init_net, name_node->name))
11877 				__netdev_name_node_alt_destroy(name_node);
11878 
11879 		err = dev_change_net_namespace(dev, &init_net, fb_name);
11880 		if (err) {
11881 			pr_emerg("%s: failed to move %s to init_net: %d\n",
11882 				 __func__, dev->name, err);
11883 			BUG();
11884 		}
11885 	}
11886 }
11887 
11888 static void __net_exit default_device_exit_batch(struct list_head *net_list)
11889 {
11890 	/* At exit all network devices most be removed from a network
11891 	 * namespace.  Do this in the reverse order of registration.
11892 	 * Do this across as many network namespaces as possible to
11893 	 * improve batching efficiency.
11894 	 */
11895 	struct net_device *dev;
11896 	struct net *net;
11897 	LIST_HEAD(dev_kill_list);
11898 
11899 	rtnl_lock();
11900 	list_for_each_entry(net, net_list, exit_list) {
11901 		default_device_exit_net(net);
11902 		cond_resched();
11903 	}
11904 
11905 	list_for_each_entry(net, net_list, exit_list) {
11906 		for_each_netdev_reverse(net, dev) {
11907 			if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
11908 				dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
11909 			else
11910 				unregister_netdevice_queue(dev, &dev_kill_list);
11911 		}
11912 	}
11913 	unregister_netdevice_many(&dev_kill_list);
11914 	rtnl_unlock();
11915 }
11916 
11917 static struct pernet_operations __net_initdata default_device_ops = {
11918 	.exit_batch = default_device_exit_batch,
11919 };
11920 
11921 static void __init net_dev_struct_check(void)
11922 {
11923 	/* TX read-mostly hotpath */
11924 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, priv_flags_fast);
11925 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, netdev_ops);
11926 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, header_ops);
11927 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, _tx);
11928 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, real_num_tx_queues);
11929 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_max_size);
11930 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_ipv4_max_size);
11931 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_max_segs);
11932 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_partial_features);
11933 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, num_tc);
11934 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, mtu);
11935 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, needed_headroom);
11936 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, tc_to_txq);
11937 #ifdef CONFIG_XPS
11938 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, xps_maps);
11939 #endif
11940 #ifdef CONFIG_NETFILTER_EGRESS
11941 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, nf_hooks_egress);
11942 #endif
11943 #ifdef CONFIG_NET_XGRESS
11944 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, tcx_egress);
11945 #endif
11946 	CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_tx, 160);
11947 
11948 	/* TXRX read-mostly hotpath */
11949 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, lstats);
11950 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, state);
11951 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, flags);
11952 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, hard_header_len);
11953 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, features);
11954 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, ip6_ptr);
11955 	CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_txrx, 46);
11956 
11957 	/* RX read-mostly hotpath */
11958 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, ptype_specific);
11959 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, ifindex);
11960 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, real_num_rx_queues);
11961 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, _rx);
11962 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_flush_timeout);
11963 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, napi_defer_hard_irqs);
11964 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_max_size);
11965 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_ipv4_max_size);
11966 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, rx_handler);
11967 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, rx_handler_data);
11968 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, nd_net);
11969 #ifdef CONFIG_NETPOLL
11970 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, npinfo);
11971 #endif
11972 #ifdef CONFIG_NET_XGRESS
11973 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, tcx_ingress);
11974 #endif
11975 	CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_rx, 104);
11976 }
11977 
11978 /*
11979  *	Initialize the DEV module. At boot time this walks the device list and
11980  *	unhooks any devices that fail to initialise (normally hardware not
11981  *	present) and leaves us with a valid list of present and active devices.
11982  *
11983  */
11984 
11985 /* We allocate 256 pages for each CPU if PAGE_SHIFT is 12 */
11986 #define SYSTEM_PERCPU_PAGE_POOL_SIZE	((1 << 20) / PAGE_SIZE)
11987 
11988 static int net_page_pool_create(int cpuid)
11989 {
11990 #if IS_ENABLED(CONFIG_PAGE_POOL)
11991 	struct page_pool_params page_pool_params = {
11992 		.pool_size = SYSTEM_PERCPU_PAGE_POOL_SIZE,
11993 		.flags = PP_FLAG_SYSTEM_POOL,
11994 		.nid = cpu_to_mem(cpuid),
11995 	};
11996 	struct page_pool *pp_ptr;
11997 
11998 	pp_ptr = page_pool_create_percpu(&page_pool_params, cpuid);
11999 	if (IS_ERR(pp_ptr))
12000 		return -ENOMEM;
12001 
12002 	per_cpu(system_page_pool, cpuid) = pp_ptr;
12003 #endif
12004 	return 0;
12005 }
12006 
12007 static int backlog_napi_should_run(unsigned int cpu)
12008 {
12009 	struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu);
12010 	struct napi_struct *napi = &sd->backlog;
12011 
12012 	return test_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
12013 }
12014 
12015 static void run_backlog_napi(unsigned int cpu)
12016 {
12017 	struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu);
12018 
12019 	napi_threaded_poll_loop(&sd->backlog);
12020 }
12021 
12022 static void backlog_napi_setup(unsigned int cpu)
12023 {
12024 	struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu);
12025 	struct napi_struct *napi = &sd->backlog;
12026 
12027 	napi->thread = this_cpu_read(backlog_napi);
12028 	set_bit(NAPI_STATE_THREADED, &napi->state);
12029 }
12030 
12031 static struct smp_hotplug_thread backlog_threads = {
12032 	.store			= &backlog_napi,
12033 	.thread_should_run	= backlog_napi_should_run,
12034 	.thread_fn		= run_backlog_napi,
12035 	.thread_comm		= "backlog_napi/%u",
12036 	.setup			= backlog_napi_setup,
12037 };
12038 
12039 /*
12040  *       This is called single threaded during boot, so no need
12041  *       to take the rtnl semaphore.
12042  */
12043 static int __init net_dev_init(void)
12044 {
12045 	int i, rc = -ENOMEM;
12046 
12047 	BUG_ON(!dev_boot_phase);
12048 
12049 	net_dev_struct_check();
12050 
12051 	if (dev_proc_init())
12052 		goto out;
12053 
12054 	if (netdev_kobject_init())
12055 		goto out;
12056 
12057 	for (i = 0; i < PTYPE_HASH_SIZE; i++)
12058 		INIT_LIST_HEAD(&ptype_base[i]);
12059 
12060 	if (register_pernet_subsys(&netdev_net_ops))
12061 		goto out;
12062 
12063 	/*
12064 	 *	Initialise the packet receive queues.
12065 	 */
12066 
12067 	for_each_possible_cpu(i) {
12068 		struct work_struct *flush = per_cpu_ptr(&flush_works, i);
12069 		struct softnet_data *sd = &per_cpu(softnet_data, i);
12070 
12071 		INIT_WORK(flush, flush_backlog);
12072 
12073 		skb_queue_head_init(&sd->input_pkt_queue);
12074 		skb_queue_head_init(&sd->process_queue);
12075 #ifdef CONFIG_XFRM_OFFLOAD
12076 		skb_queue_head_init(&sd->xfrm_backlog);
12077 #endif
12078 		INIT_LIST_HEAD(&sd->poll_list);
12079 		sd->output_queue_tailp = &sd->output_queue;
12080 #ifdef CONFIG_RPS
12081 		INIT_CSD(&sd->csd, rps_trigger_softirq, sd);
12082 		sd->cpu = i;
12083 #endif
12084 		INIT_CSD(&sd->defer_csd, trigger_rx_softirq, sd);
12085 		spin_lock_init(&sd->defer_lock);
12086 
12087 		init_gro_hash(&sd->backlog);
12088 		sd->backlog.poll = process_backlog;
12089 		sd->backlog.weight = weight_p;
12090 		INIT_LIST_HEAD(&sd->backlog.poll_list);
12091 
12092 		if (net_page_pool_create(i))
12093 			goto out;
12094 	}
12095 	if (use_backlog_threads())
12096 		smpboot_register_percpu_thread(&backlog_threads);
12097 
12098 	dev_boot_phase = 0;
12099 
12100 	/* The loopback device is special if any other network devices
12101 	 * is present in a network namespace the loopback device must
12102 	 * be present. Since we now dynamically allocate and free the
12103 	 * loopback device ensure this invariant is maintained by
12104 	 * keeping the loopback device as the first device on the
12105 	 * list of network devices.  Ensuring the loopback devices
12106 	 * is the first device that appears and the last network device
12107 	 * that disappears.
12108 	 */
12109 	if (register_pernet_device(&loopback_net_ops))
12110 		goto out;
12111 
12112 	if (register_pernet_device(&default_device_ops))
12113 		goto out;
12114 
12115 	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
12116 	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
12117 
12118 	rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
12119 				       NULL, dev_cpu_dead);
12120 	WARN_ON(rc < 0);
12121 	rc = 0;
12122 
12123 	/* avoid static key IPIs to isolated CPUs */
12124 	if (housekeeping_enabled(HK_TYPE_MISC))
12125 		net_enable_timestamp();
12126 out:
12127 	if (rc < 0) {
12128 		for_each_possible_cpu(i) {
12129 			struct page_pool *pp_ptr;
12130 
12131 			pp_ptr = per_cpu(system_page_pool, i);
12132 			if (!pp_ptr)
12133 				continue;
12134 
12135 			page_pool_destroy(pp_ptr);
12136 			per_cpu(system_page_pool, i) = NULL;
12137 		}
12138 	}
12139 
12140 	return rc;
12141 }
12142 
12143 subsys_initcall(net_dev_init);
12144