xref: /linux/net/core/dev.c (revision 9d56c248e5030d17ea9cd132634e86fdf0622d0e)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *      NET3    Protocol independent device support routines.
4  *
5  *	Derived from the non IP parts of dev.c 1.0.19
6  *              Authors:	Ross Biro
7  *				Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8  *				Mark Evans, <evansmp@uhura.aston.ac.uk>
9  *
10  *	Additional Authors:
11  *		Florian la Roche <rzsfl@rz.uni-sb.de>
12  *		Alan Cox <gw4pts@gw4pts.ampr.org>
13  *		David Hinds <dahinds@users.sourceforge.net>
14  *		Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15  *		Adam Sulmicki <adam@cfar.umd.edu>
16  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
17  *
18  *	Changes:
19  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
20  *                                      to 2 if register_netdev gets called
21  *                                      before net_dev_init & also removed a
22  *                                      few lines of code in the process.
23  *		Alan Cox	:	device private ioctl copies fields back.
24  *		Alan Cox	:	Transmit queue code does relevant
25  *					stunts to keep the queue safe.
26  *		Alan Cox	:	Fixed double lock.
27  *		Alan Cox	:	Fixed promisc NULL pointer trap
28  *		????????	:	Support the full private ioctl range
29  *		Alan Cox	:	Moved ioctl permission check into
30  *					drivers
31  *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
32  *		Alan Cox	:	100 backlog just doesn't cut it when
33  *					you start doing multicast video 8)
34  *		Alan Cox	:	Rewrote net_bh and list manager.
35  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
36  *		Alan Cox	:	Took out transmit every packet pass
37  *					Saved a few bytes in the ioctl handler
38  *		Alan Cox	:	Network driver sets packet type before
39  *					calling netif_rx. Saves a function
40  *					call a packet.
41  *		Alan Cox	:	Hashed net_bh()
42  *		Richard Kooijman:	Timestamp fixes.
43  *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
44  *		Alan Cox	:	Device lock protection.
45  *              Alan Cox        :       Fixed nasty side effect of device close
46  *					changes.
47  *		Rudi Cilibrasi	:	Pass the right thing to
48  *					set_mac_address()
49  *		Dave Miller	:	32bit quantity for the device lock to
50  *					make it work out on a Sparc.
51  *		Bjorn Ekwall	:	Added KERNELD hack.
52  *		Alan Cox	:	Cleaned up the backlog initialise.
53  *		Craig Metz	:	SIOCGIFCONF fix if space for under
54  *					1 device.
55  *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
56  *					is no device open function.
57  *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
58  *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
59  *		Cyrus Durgin	:	Cleaned for KMOD
60  *		Adam Sulmicki   :	Bug Fix : Network Device Unload
61  *					A network device unload needs to purge
62  *					the backlog queue.
63  *	Paul Rusty Russell	:	SIOCSIFNAME
64  *              Pekka Riikonen  :	Netdev boot-time settings code
65  *              Andrew Morton   :       Make unregister_netdevice wait
66  *                                      indefinitely on dev->refcnt
67  *              J Hadi Salim    :       - Backlog queue sampling
68  *				        - netif_rx() feedback
69  */
70 
71 #include <linux/uaccess.h>
72 #include <linux/bitmap.h>
73 #include <linux/capability.h>
74 #include <linux/cpu.h>
75 #include <linux/types.h>
76 #include <linux/kernel.h>
77 #include <linux/hash.h>
78 #include <linux/slab.h>
79 #include <linux/sched.h>
80 #include <linux/sched/isolation.h>
81 #include <linux/sched/mm.h>
82 #include <linux/smpboot.h>
83 #include <linux/mutex.h>
84 #include <linux/rwsem.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/skbuff.h>
96 #include <linux/kthread.h>
97 #include <linux/bpf.h>
98 #include <linux/bpf_trace.h>
99 #include <net/net_namespace.h>
100 #include <net/sock.h>
101 #include <net/busy_poll.h>
102 #include <linux/rtnetlink.h>
103 #include <linux/stat.h>
104 #include <net/dsa.h>
105 #include <net/dst.h>
106 #include <net/dst_metadata.h>
107 #include <net/gro.h>
108 #include <net/pkt_sched.h>
109 #include <net/pkt_cls.h>
110 #include <net/checksum.h>
111 #include <net/xfrm.h>
112 #include <net/tcx.h>
113 #include <linux/highmem.h>
114 #include <linux/init.h>
115 #include <linux/module.h>
116 #include <linux/netpoll.h>
117 #include <linux/rcupdate.h>
118 #include <linux/delay.h>
119 #include <net/iw_handler.h>
120 #include <asm/current.h>
121 #include <linux/audit.h>
122 #include <linux/dmaengine.h>
123 #include <linux/err.h>
124 #include <linux/ctype.h>
125 #include <linux/if_arp.h>
126 #include <linux/if_vlan.h>
127 #include <linux/ip.h>
128 #include <net/ip.h>
129 #include <net/mpls.h>
130 #include <linux/ipv6.h>
131 #include <linux/in.h>
132 #include <linux/jhash.h>
133 #include <linux/random.h>
134 #include <trace/events/napi.h>
135 #include <trace/events/net.h>
136 #include <trace/events/skb.h>
137 #include <trace/events/qdisc.h>
138 #include <trace/events/xdp.h>
139 #include <linux/inetdevice.h>
140 #include <linux/cpu_rmap.h>
141 #include <linux/static_key.h>
142 #include <linux/hashtable.h>
143 #include <linux/vmalloc.h>
144 #include <linux/if_macvlan.h>
145 #include <linux/errqueue.h>
146 #include <linux/hrtimer.h>
147 #include <linux/netfilter_netdev.h>
148 #include <linux/crash_dump.h>
149 #include <linux/sctp.h>
150 #include <net/udp_tunnel.h>
151 #include <linux/net_namespace.h>
152 #include <linux/indirect_call_wrapper.h>
153 #include <net/devlink.h>
154 #include <linux/pm_runtime.h>
155 #include <linux/prandom.h>
156 #include <linux/once_lite.h>
157 #include <net/netdev_rx_queue.h>
158 #include <net/page_pool/types.h>
159 #include <net/page_pool/helpers.h>
160 #include <net/rps.h>
161 #include <linux/phy_link_topology_core.h>
162 
163 #include "dev.h"
164 #include "net-sysfs.h"
165 
166 static DEFINE_SPINLOCK(ptype_lock);
167 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
168 
169 static int netif_rx_internal(struct sk_buff *skb);
170 static int call_netdevice_notifiers_extack(unsigned long val,
171 					   struct net_device *dev,
172 					   struct netlink_ext_ack *extack);
173 
174 static DEFINE_MUTEX(ifalias_mutex);
175 
176 /* protects napi_hash addition/deletion and napi_gen_id */
177 static DEFINE_SPINLOCK(napi_hash_lock);
178 
179 static unsigned int napi_gen_id = NR_CPUS;
180 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
181 
182 static DECLARE_RWSEM(devnet_rename_sem);
183 
184 static inline void dev_base_seq_inc(struct net *net)
185 {
186 	unsigned int val = net->dev_base_seq + 1;
187 
188 	WRITE_ONCE(net->dev_base_seq, val ?: 1);
189 }
190 
191 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
192 {
193 	unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
194 
195 	return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
196 }
197 
198 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
199 {
200 	return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
201 }
202 
203 #ifndef CONFIG_PREEMPT_RT
204 
205 static DEFINE_STATIC_KEY_FALSE(use_backlog_threads_key);
206 
207 static int __init setup_backlog_napi_threads(char *arg)
208 {
209 	static_branch_enable(&use_backlog_threads_key);
210 	return 0;
211 }
212 early_param("thread_backlog_napi", setup_backlog_napi_threads);
213 
214 static bool use_backlog_threads(void)
215 {
216 	return static_branch_unlikely(&use_backlog_threads_key);
217 }
218 
219 #else
220 
221 static bool use_backlog_threads(void)
222 {
223 	return true;
224 }
225 
226 #endif
227 
228 static inline void backlog_lock_irq_save(struct softnet_data *sd,
229 					 unsigned long *flags)
230 {
231 	if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads())
232 		spin_lock_irqsave(&sd->input_pkt_queue.lock, *flags);
233 	else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
234 		local_irq_save(*flags);
235 }
236 
237 static inline void backlog_lock_irq_disable(struct softnet_data *sd)
238 {
239 	if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads())
240 		spin_lock_irq(&sd->input_pkt_queue.lock);
241 	else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
242 		local_irq_disable();
243 }
244 
245 static inline void backlog_unlock_irq_restore(struct softnet_data *sd,
246 					      unsigned long *flags)
247 {
248 	if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads())
249 		spin_unlock_irqrestore(&sd->input_pkt_queue.lock, *flags);
250 	else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
251 		local_irq_restore(*flags);
252 }
253 
254 static inline void backlog_unlock_irq_enable(struct softnet_data *sd)
255 {
256 	if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads())
257 		spin_unlock_irq(&sd->input_pkt_queue.lock);
258 	else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
259 		local_irq_enable();
260 }
261 
262 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
263 						       const char *name)
264 {
265 	struct netdev_name_node *name_node;
266 
267 	name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
268 	if (!name_node)
269 		return NULL;
270 	INIT_HLIST_NODE(&name_node->hlist);
271 	name_node->dev = dev;
272 	name_node->name = name;
273 	return name_node;
274 }
275 
276 static struct netdev_name_node *
277 netdev_name_node_head_alloc(struct net_device *dev)
278 {
279 	struct netdev_name_node *name_node;
280 
281 	name_node = netdev_name_node_alloc(dev, dev->name);
282 	if (!name_node)
283 		return NULL;
284 	INIT_LIST_HEAD(&name_node->list);
285 	return name_node;
286 }
287 
288 static void netdev_name_node_free(struct netdev_name_node *name_node)
289 {
290 	kfree(name_node);
291 }
292 
293 static void netdev_name_node_add(struct net *net,
294 				 struct netdev_name_node *name_node)
295 {
296 	hlist_add_head_rcu(&name_node->hlist,
297 			   dev_name_hash(net, name_node->name));
298 }
299 
300 static void netdev_name_node_del(struct netdev_name_node *name_node)
301 {
302 	hlist_del_rcu(&name_node->hlist);
303 }
304 
305 static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
306 							const char *name)
307 {
308 	struct hlist_head *head = dev_name_hash(net, name);
309 	struct netdev_name_node *name_node;
310 
311 	hlist_for_each_entry(name_node, head, hlist)
312 		if (!strcmp(name_node->name, name))
313 			return name_node;
314 	return NULL;
315 }
316 
317 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
318 							    const char *name)
319 {
320 	struct hlist_head *head = dev_name_hash(net, name);
321 	struct netdev_name_node *name_node;
322 
323 	hlist_for_each_entry_rcu(name_node, head, hlist)
324 		if (!strcmp(name_node->name, name))
325 			return name_node;
326 	return NULL;
327 }
328 
329 bool netdev_name_in_use(struct net *net, const char *name)
330 {
331 	return netdev_name_node_lookup(net, name);
332 }
333 EXPORT_SYMBOL(netdev_name_in_use);
334 
335 int netdev_name_node_alt_create(struct net_device *dev, const char *name)
336 {
337 	struct netdev_name_node *name_node;
338 	struct net *net = dev_net(dev);
339 
340 	name_node = netdev_name_node_lookup(net, name);
341 	if (name_node)
342 		return -EEXIST;
343 	name_node = netdev_name_node_alloc(dev, name);
344 	if (!name_node)
345 		return -ENOMEM;
346 	netdev_name_node_add(net, name_node);
347 	/* The node that holds dev->name acts as a head of per-device list. */
348 	list_add_tail_rcu(&name_node->list, &dev->name_node->list);
349 
350 	return 0;
351 }
352 
353 static void netdev_name_node_alt_free(struct rcu_head *head)
354 {
355 	struct netdev_name_node *name_node =
356 		container_of(head, struct netdev_name_node, rcu);
357 
358 	kfree(name_node->name);
359 	netdev_name_node_free(name_node);
360 }
361 
362 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
363 {
364 	netdev_name_node_del(name_node);
365 	list_del(&name_node->list);
366 	call_rcu(&name_node->rcu, netdev_name_node_alt_free);
367 }
368 
369 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
370 {
371 	struct netdev_name_node *name_node;
372 	struct net *net = dev_net(dev);
373 
374 	name_node = netdev_name_node_lookup(net, name);
375 	if (!name_node)
376 		return -ENOENT;
377 	/* lookup might have found our primary name or a name belonging
378 	 * to another device.
379 	 */
380 	if (name_node == dev->name_node || name_node->dev != dev)
381 		return -EINVAL;
382 
383 	__netdev_name_node_alt_destroy(name_node);
384 	return 0;
385 }
386 
387 static void netdev_name_node_alt_flush(struct net_device *dev)
388 {
389 	struct netdev_name_node *name_node, *tmp;
390 
391 	list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list) {
392 		list_del(&name_node->list);
393 		netdev_name_node_alt_free(&name_node->rcu);
394 	}
395 }
396 
397 /* Device list insertion */
398 static void list_netdevice(struct net_device *dev)
399 {
400 	struct netdev_name_node *name_node;
401 	struct net *net = dev_net(dev);
402 
403 	ASSERT_RTNL();
404 
405 	list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
406 	netdev_name_node_add(net, dev->name_node);
407 	hlist_add_head_rcu(&dev->index_hlist,
408 			   dev_index_hash(net, dev->ifindex));
409 
410 	netdev_for_each_altname(dev, name_node)
411 		netdev_name_node_add(net, name_node);
412 
413 	/* We reserved the ifindex, this can't fail */
414 	WARN_ON(xa_store(&net->dev_by_index, dev->ifindex, dev, GFP_KERNEL));
415 
416 	dev_base_seq_inc(net);
417 }
418 
419 /* Device list removal
420  * caller must respect a RCU grace period before freeing/reusing dev
421  */
422 static void unlist_netdevice(struct net_device *dev)
423 {
424 	struct netdev_name_node *name_node;
425 	struct net *net = dev_net(dev);
426 
427 	ASSERT_RTNL();
428 
429 	xa_erase(&net->dev_by_index, dev->ifindex);
430 
431 	netdev_for_each_altname(dev, name_node)
432 		netdev_name_node_del(name_node);
433 
434 	/* Unlink dev from the device chain */
435 	list_del_rcu(&dev->dev_list);
436 	netdev_name_node_del(dev->name_node);
437 	hlist_del_rcu(&dev->index_hlist);
438 
439 	dev_base_seq_inc(dev_net(dev));
440 }
441 
442 /*
443  *	Our notifier list
444  */
445 
446 static RAW_NOTIFIER_HEAD(netdev_chain);
447 
448 /*
449  *	Device drivers call our routines to queue packets here. We empty the
450  *	queue in the local softnet handler.
451  */
452 
453 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
454 EXPORT_PER_CPU_SYMBOL(softnet_data);
455 
456 /* Page_pool has a lockless array/stack to alloc/recycle pages.
457  * PP consumers must pay attention to run APIs in the appropriate context
458  * (e.g. NAPI context).
459  */
460 static DEFINE_PER_CPU(struct page_pool *, system_page_pool);
461 
462 #ifdef CONFIG_LOCKDEP
463 /*
464  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
465  * according to dev->type
466  */
467 static const unsigned short netdev_lock_type[] = {
468 	 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
469 	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
470 	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
471 	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
472 	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
473 	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
474 	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
475 	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
476 	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
477 	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
478 	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
479 	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
480 	 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
481 	 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
482 	 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
483 
484 static const char *const netdev_lock_name[] = {
485 	"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
486 	"_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
487 	"_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
488 	"_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
489 	"_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
490 	"_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
491 	"_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
492 	"_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
493 	"_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
494 	"_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
495 	"_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
496 	"_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
497 	"_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
498 	"_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
499 	"_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
500 
501 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
502 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
503 
504 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
505 {
506 	int i;
507 
508 	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
509 		if (netdev_lock_type[i] == dev_type)
510 			return i;
511 	/* the last key is used by default */
512 	return ARRAY_SIZE(netdev_lock_type) - 1;
513 }
514 
515 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
516 						 unsigned short dev_type)
517 {
518 	int i;
519 
520 	i = netdev_lock_pos(dev_type);
521 	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
522 				   netdev_lock_name[i]);
523 }
524 
525 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
526 {
527 	int i;
528 
529 	i = netdev_lock_pos(dev->type);
530 	lockdep_set_class_and_name(&dev->addr_list_lock,
531 				   &netdev_addr_lock_key[i],
532 				   netdev_lock_name[i]);
533 }
534 #else
535 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
536 						 unsigned short dev_type)
537 {
538 }
539 
540 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
541 {
542 }
543 #endif
544 
545 /*******************************************************************************
546  *
547  *		Protocol management and registration routines
548  *
549  *******************************************************************************/
550 
551 
552 /*
553  *	Add a protocol ID to the list. Now that the input handler is
554  *	smarter we can dispense with all the messy stuff that used to be
555  *	here.
556  *
557  *	BEWARE!!! Protocol handlers, mangling input packets,
558  *	MUST BE last in hash buckets and checking protocol handlers
559  *	MUST start from promiscuous ptype_all chain in net_bh.
560  *	It is true now, do not change it.
561  *	Explanation follows: if protocol handler, mangling packet, will
562  *	be the first on list, it is not able to sense, that packet
563  *	is cloned and should be copied-on-write, so that it will
564  *	change it and subsequent readers will get broken packet.
565  *							--ANK (980803)
566  */
567 
568 static inline struct list_head *ptype_head(const struct packet_type *pt)
569 {
570 	if (pt->type == htons(ETH_P_ALL))
571 		return pt->dev ? &pt->dev->ptype_all : &net_hotdata.ptype_all;
572 	else
573 		return pt->dev ? &pt->dev->ptype_specific :
574 				 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
575 }
576 
577 /**
578  *	dev_add_pack - add packet handler
579  *	@pt: packet type declaration
580  *
581  *	Add a protocol handler to the networking stack. The passed &packet_type
582  *	is linked into kernel lists and may not be freed until it has been
583  *	removed from the kernel lists.
584  *
585  *	This call does not sleep therefore it can not
586  *	guarantee all CPU's that are in middle of receiving packets
587  *	will see the new packet type (until the next received packet).
588  */
589 
590 void dev_add_pack(struct packet_type *pt)
591 {
592 	struct list_head *head = ptype_head(pt);
593 
594 	spin_lock(&ptype_lock);
595 	list_add_rcu(&pt->list, head);
596 	spin_unlock(&ptype_lock);
597 }
598 EXPORT_SYMBOL(dev_add_pack);
599 
600 /**
601  *	__dev_remove_pack	 - remove packet handler
602  *	@pt: packet type declaration
603  *
604  *	Remove a protocol handler that was previously added to the kernel
605  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
606  *	from the kernel lists and can be freed or reused once this function
607  *	returns.
608  *
609  *      The packet type might still be in use by receivers
610  *	and must not be freed until after all the CPU's have gone
611  *	through a quiescent state.
612  */
613 void __dev_remove_pack(struct packet_type *pt)
614 {
615 	struct list_head *head = ptype_head(pt);
616 	struct packet_type *pt1;
617 
618 	spin_lock(&ptype_lock);
619 
620 	list_for_each_entry(pt1, head, list) {
621 		if (pt == pt1) {
622 			list_del_rcu(&pt->list);
623 			goto out;
624 		}
625 	}
626 
627 	pr_warn("dev_remove_pack: %p not found\n", pt);
628 out:
629 	spin_unlock(&ptype_lock);
630 }
631 EXPORT_SYMBOL(__dev_remove_pack);
632 
633 /**
634  *	dev_remove_pack	 - remove packet handler
635  *	@pt: packet type declaration
636  *
637  *	Remove a protocol handler that was previously added to the kernel
638  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
639  *	from the kernel lists and can be freed or reused once this function
640  *	returns.
641  *
642  *	This call sleeps to guarantee that no CPU is looking at the packet
643  *	type after return.
644  */
645 void dev_remove_pack(struct packet_type *pt)
646 {
647 	__dev_remove_pack(pt);
648 
649 	synchronize_net();
650 }
651 EXPORT_SYMBOL(dev_remove_pack);
652 
653 
654 /*******************************************************************************
655  *
656  *			    Device Interface Subroutines
657  *
658  *******************************************************************************/
659 
660 /**
661  *	dev_get_iflink	- get 'iflink' value of a interface
662  *	@dev: targeted interface
663  *
664  *	Indicates the ifindex the interface is linked to.
665  *	Physical interfaces have the same 'ifindex' and 'iflink' values.
666  */
667 
668 int dev_get_iflink(const struct net_device *dev)
669 {
670 	if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
671 		return dev->netdev_ops->ndo_get_iflink(dev);
672 
673 	return READ_ONCE(dev->ifindex);
674 }
675 EXPORT_SYMBOL(dev_get_iflink);
676 
677 /**
678  *	dev_fill_metadata_dst - Retrieve tunnel egress information.
679  *	@dev: targeted interface
680  *	@skb: The packet.
681  *
682  *	For better visibility of tunnel traffic OVS needs to retrieve
683  *	egress tunnel information for a packet. Following API allows
684  *	user to get this info.
685  */
686 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
687 {
688 	struct ip_tunnel_info *info;
689 
690 	if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
691 		return -EINVAL;
692 
693 	info = skb_tunnel_info_unclone(skb);
694 	if (!info)
695 		return -ENOMEM;
696 	if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
697 		return -EINVAL;
698 
699 	return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
700 }
701 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
702 
703 static struct net_device_path *dev_fwd_path(struct net_device_path_stack *stack)
704 {
705 	int k = stack->num_paths++;
706 
707 	if (WARN_ON_ONCE(k >= NET_DEVICE_PATH_STACK_MAX))
708 		return NULL;
709 
710 	return &stack->path[k];
711 }
712 
713 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
714 			  struct net_device_path_stack *stack)
715 {
716 	const struct net_device *last_dev;
717 	struct net_device_path_ctx ctx = {
718 		.dev	= dev,
719 	};
720 	struct net_device_path *path;
721 	int ret = 0;
722 
723 	memcpy(ctx.daddr, daddr, sizeof(ctx.daddr));
724 	stack->num_paths = 0;
725 	while (ctx.dev && ctx.dev->netdev_ops->ndo_fill_forward_path) {
726 		last_dev = ctx.dev;
727 		path = dev_fwd_path(stack);
728 		if (!path)
729 			return -1;
730 
731 		memset(path, 0, sizeof(struct net_device_path));
732 		ret = ctx.dev->netdev_ops->ndo_fill_forward_path(&ctx, path);
733 		if (ret < 0)
734 			return -1;
735 
736 		if (WARN_ON_ONCE(last_dev == ctx.dev))
737 			return -1;
738 	}
739 
740 	if (!ctx.dev)
741 		return ret;
742 
743 	path = dev_fwd_path(stack);
744 	if (!path)
745 		return -1;
746 	path->type = DEV_PATH_ETHERNET;
747 	path->dev = ctx.dev;
748 
749 	return ret;
750 }
751 EXPORT_SYMBOL_GPL(dev_fill_forward_path);
752 
753 /**
754  *	__dev_get_by_name	- find a device by its name
755  *	@net: the applicable net namespace
756  *	@name: name to find
757  *
758  *	Find an interface by name. Must be called under RTNL semaphore.
759  *	If the name is found a pointer to the device is returned.
760  *	If the name is not found then %NULL is returned. The
761  *	reference counters are not incremented so the caller must be
762  *	careful with locks.
763  */
764 
765 struct net_device *__dev_get_by_name(struct net *net, const char *name)
766 {
767 	struct netdev_name_node *node_name;
768 
769 	node_name = netdev_name_node_lookup(net, name);
770 	return node_name ? node_name->dev : NULL;
771 }
772 EXPORT_SYMBOL(__dev_get_by_name);
773 
774 /**
775  * dev_get_by_name_rcu	- find a device by its name
776  * @net: the applicable net namespace
777  * @name: name to find
778  *
779  * Find an interface by name.
780  * If the name is found a pointer to the device is returned.
781  * If the name is not found then %NULL is returned.
782  * The reference counters are not incremented so the caller must be
783  * careful with locks. The caller must hold RCU lock.
784  */
785 
786 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
787 {
788 	struct netdev_name_node *node_name;
789 
790 	node_name = netdev_name_node_lookup_rcu(net, name);
791 	return node_name ? node_name->dev : NULL;
792 }
793 EXPORT_SYMBOL(dev_get_by_name_rcu);
794 
795 /* Deprecated for new users, call netdev_get_by_name() instead */
796 struct net_device *dev_get_by_name(struct net *net, const char *name)
797 {
798 	struct net_device *dev;
799 
800 	rcu_read_lock();
801 	dev = dev_get_by_name_rcu(net, name);
802 	dev_hold(dev);
803 	rcu_read_unlock();
804 	return dev;
805 }
806 EXPORT_SYMBOL(dev_get_by_name);
807 
808 /**
809  *	netdev_get_by_name() - find a device by its name
810  *	@net: the applicable net namespace
811  *	@name: name to find
812  *	@tracker: tracking object for the acquired reference
813  *	@gfp: allocation flags for the tracker
814  *
815  *	Find an interface by name. This can be called from any
816  *	context and does its own locking. The returned handle has
817  *	the usage count incremented and the caller must use netdev_put() to
818  *	release it when it is no longer needed. %NULL is returned if no
819  *	matching device is found.
820  */
821 struct net_device *netdev_get_by_name(struct net *net, const char *name,
822 				      netdevice_tracker *tracker, gfp_t gfp)
823 {
824 	struct net_device *dev;
825 
826 	dev = dev_get_by_name(net, name);
827 	if (dev)
828 		netdev_tracker_alloc(dev, tracker, gfp);
829 	return dev;
830 }
831 EXPORT_SYMBOL(netdev_get_by_name);
832 
833 /**
834  *	__dev_get_by_index - find a device by its ifindex
835  *	@net: the applicable net namespace
836  *	@ifindex: index of device
837  *
838  *	Search for an interface by index. Returns %NULL if the device
839  *	is not found or a pointer to the device. The device has not
840  *	had its reference counter increased so the caller must be careful
841  *	about locking. The caller must hold the RTNL semaphore.
842  */
843 
844 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
845 {
846 	struct net_device *dev;
847 	struct hlist_head *head = dev_index_hash(net, ifindex);
848 
849 	hlist_for_each_entry(dev, head, index_hlist)
850 		if (dev->ifindex == ifindex)
851 			return dev;
852 
853 	return NULL;
854 }
855 EXPORT_SYMBOL(__dev_get_by_index);
856 
857 /**
858  *	dev_get_by_index_rcu - find a device by its ifindex
859  *	@net: the applicable net namespace
860  *	@ifindex: index of device
861  *
862  *	Search for an interface by index. Returns %NULL if the device
863  *	is not found or a pointer to the device. The device has not
864  *	had its reference counter increased so the caller must be careful
865  *	about locking. The caller must hold RCU lock.
866  */
867 
868 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
869 {
870 	struct net_device *dev;
871 	struct hlist_head *head = dev_index_hash(net, ifindex);
872 
873 	hlist_for_each_entry_rcu(dev, head, index_hlist)
874 		if (dev->ifindex == ifindex)
875 			return dev;
876 
877 	return NULL;
878 }
879 EXPORT_SYMBOL(dev_get_by_index_rcu);
880 
881 /* Deprecated for new users, call netdev_get_by_index() instead */
882 struct net_device *dev_get_by_index(struct net *net, int ifindex)
883 {
884 	struct net_device *dev;
885 
886 	rcu_read_lock();
887 	dev = dev_get_by_index_rcu(net, ifindex);
888 	dev_hold(dev);
889 	rcu_read_unlock();
890 	return dev;
891 }
892 EXPORT_SYMBOL(dev_get_by_index);
893 
894 /**
895  *	netdev_get_by_index() - find a device by its ifindex
896  *	@net: the applicable net namespace
897  *	@ifindex: index of device
898  *	@tracker: tracking object for the acquired reference
899  *	@gfp: allocation flags for the tracker
900  *
901  *	Search for an interface by index. Returns NULL if the device
902  *	is not found or a pointer to the device. The device returned has
903  *	had a reference added and the pointer is safe until the user calls
904  *	netdev_put() to indicate they have finished with it.
905  */
906 struct net_device *netdev_get_by_index(struct net *net, int ifindex,
907 				       netdevice_tracker *tracker, gfp_t gfp)
908 {
909 	struct net_device *dev;
910 
911 	dev = dev_get_by_index(net, ifindex);
912 	if (dev)
913 		netdev_tracker_alloc(dev, tracker, gfp);
914 	return dev;
915 }
916 EXPORT_SYMBOL(netdev_get_by_index);
917 
918 /**
919  *	dev_get_by_napi_id - find a device by napi_id
920  *	@napi_id: ID of the NAPI struct
921  *
922  *	Search for an interface by NAPI ID. Returns %NULL if the device
923  *	is not found or a pointer to the device. The device has not had
924  *	its reference counter increased so the caller must be careful
925  *	about locking. The caller must hold RCU lock.
926  */
927 
928 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
929 {
930 	struct napi_struct *napi;
931 
932 	WARN_ON_ONCE(!rcu_read_lock_held());
933 
934 	if (napi_id < MIN_NAPI_ID)
935 		return NULL;
936 
937 	napi = napi_by_id(napi_id);
938 
939 	return napi ? napi->dev : NULL;
940 }
941 EXPORT_SYMBOL(dev_get_by_napi_id);
942 
943 /**
944  *	netdev_get_name - get a netdevice name, knowing its ifindex.
945  *	@net: network namespace
946  *	@name: a pointer to the buffer where the name will be stored.
947  *	@ifindex: the ifindex of the interface to get the name from.
948  */
949 int netdev_get_name(struct net *net, char *name, int ifindex)
950 {
951 	struct net_device *dev;
952 	int ret;
953 
954 	down_read(&devnet_rename_sem);
955 	rcu_read_lock();
956 
957 	dev = dev_get_by_index_rcu(net, ifindex);
958 	if (!dev) {
959 		ret = -ENODEV;
960 		goto out;
961 	}
962 
963 	strcpy(name, dev->name);
964 
965 	ret = 0;
966 out:
967 	rcu_read_unlock();
968 	up_read(&devnet_rename_sem);
969 	return ret;
970 }
971 
972 /**
973  *	dev_getbyhwaddr_rcu - find a device by its hardware address
974  *	@net: the applicable net namespace
975  *	@type: media type of device
976  *	@ha: hardware address
977  *
978  *	Search for an interface by MAC address. Returns NULL if the device
979  *	is not found or a pointer to the device.
980  *	The caller must hold RCU or RTNL.
981  *	The returned device has not had its ref count increased
982  *	and the caller must therefore be careful about locking
983  *
984  */
985 
986 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
987 				       const char *ha)
988 {
989 	struct net_device *dev;
990 
991 	for_each_netdev_rcu(net, dev)
992 		if (dev->type == type &&
993 		    !memcmp(dev->dev_addr, ha, dev->addr_len))
994 			return dev;
995 
996 	return NULL;
997 }
998 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
999 
1000 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
1001 {
1002 	struct net_device *dev, *ret = NULL;
1003 
1004 	rcu_read_lock();
1005 	for_each_netdev_rcu(net, dev)
1006 		if (dev->type == type) {
1007 			dev_hold(dev);
1008 			ret = dev;
1009 			break;
1010 		}
1011 	rcu_read_unlock();
1012 	return ret;
1013 }
1014 EXPORT_SYMBOL(dev_getfirstbyhwtype);
1015 
1016 /**
1017  *	__dev_get_by_flags - find any device with given flags
1018  *	@net: the applicable net namespace
1019  *	@if_flags: IFF_* values
1020  *	@mask: bitmask of bits in if_flags to check
1021  *
1022  *	Search for any interface with the given flags. Returns NULL if a device
1023  *	is not found or a pointer to the device. Must be called inside
1024  *	rtnl_lock(), and result refcount is unchanged.
1025  */
1026 
1027 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1028 				      unsigned short mask)
1029 {
1030 	struct net_device *dev, *ret;
1031 
1032 	ASSERT_RTNL();
1033 
1034 	ret = NULL;
1035 	for_each_netdev(net, dev) {
1036 		if (((dev->flags ^ if_flags) & mask) == 0) {
1037 			ret = dev;
1038 			break;
1039 		}
1040 	}
1041 	return ret;
1042 }
1043 EXPORT_SYMBOL(__dev_get_by_flags);
1044 
1045 /**
1046  *	dev_valid_name - check if name is okay for network device
1047  *	@name: name string
1048  *
1049  *	Network device names need to be valid file names to
1050  *	allow sysfs to work.  We also disallow any kind of
1051  *	whitespace.
1052  */
1053 bool dev_valid_name(const char *name)
1054 {
1055 	if (*name == '\0')
1056 		return false;
1057 	if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1058 		return false;
1059 	if (!strcmp(name, ".") || !strcmp(name, ".."))
1060 		return false;
1061 
1062 	while (*name) {
1063 		if (*name == '/' || *name == ':' || isspace(*name))
1064 			return false;
1065 		name++;
1066 	}
1067 	return true;
1068 }
1069 EXPORT_SYMBOL(dev_valid_name);
1070 
1071 /**
1072  *	__dev_alloc_name - allocate a name for a device
1073  *	@net: network namespace to allocate the device name in
1074  *	@name: name format string
1075  *	@res: result name string
1076  *
1077  *	Passed a format string - eg "lt%d" it will try and find a suitable
1078  *	id. It scans list of devices to build up a free map, then chooses
1079  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1080  *	while allocating the name and adding the device in order to avoid
1081  *	duplicates.
1082  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1083  *	Returns the number of the unit assigned or a negative errno code.
1084  */
1085 
1086 static int __dev_alloc_name(struct net *net, const char *name, char *res)
1087 {
1088 	int i = 0;
1089 	const char *p;
1090 	const int max_netdevices = 8*PAGE_SIZE;
1091 	unsigned long *inuse;
1092 	struct net_device *d;
1093 	char buf[IFNAMSIZ];
1094 
1095 	/* Verify the string as this thing may have come from the user.
1096 	 * There must be one "%d" and no other "%" characters.
1097 	 */
1098 	p = strchr(name, '%');
1099 	if (!p || p[1] != 'd' || strchr(p + 2, '%'))
1100 		return -EINVAL;
1101 
1102 	/* Use one page as a bit array of possible slots */
1103 	inuse = bitmap_zalloc(max_netdevices, GFP_ATOMIC);
1104 	if (!inuse)
1105 		return -ENOMEM;
1106 
1107 	for_each_netdev(net, d) {
1108 		struct netdev_name_node *name_node;
1109 
1110 		netdev_for_each_altname(d, name_node) {
1111 			if (!sscanf(name_node->name, name, &i))
1112 				continue;
1113 			if (i < 0 || i >= max_netdevices)
1114 				continue;
1115 
1116 			/* avoid cases where sscanf is not exact inverse of printf */
1117 			snprintf(buf, IFNAMSIZ, name, i);
1118 			if (!strncmp(buf, name_node->name, IFNAMSIZ))
1119 				__set_bit(i, inuse);
1120 		}
1121 		if (!sscanf(d->name, name, &i))
1122 			continue;
1123 		if (i < 0 || i >= max_netdevices)
1124 			continue;
1125 
1126 		/* avoid cases where sscanf is not exact inverse of printf */
1127 		snprintf(buf, IFNAMSIZ, name, i);
1128 		if (!strncmp(buf, d->name, IFNAMSIZ))
1129 			__set_bit(i, inuse);
1130 	}
1131 
1132 	i = find_first_zero_bit(inuse, max_netdevices);
1133 	bitmap_free(inuse);
1134 	if (i == max_netdevices)
1135 		return -ENFILE;
1136 
1137 	/* 'res' and 'name' could overlap, use 'buf' as an intermediate buffer */
1138 	strscpy(buf, name, IFNAMSIZ);
1139 	snprintf(res, IFNAMSIZ, buf, i);
1140 	return i;
1141 }
1142 
1143 /* Returns negative errno or allocated unit id (see __dev_alloc_name()) */
1144 static int dev_prep_valid_name(struct net *net, struct net_device *dev,
1145 			       const char *want_name, char *out_name,
1146 			       int dup_errno)
1147 {
1148 	if (!dev_valid_name(want_name))
1149 		return -EINVAL;
1150 
1151 	if (strchr(want_name, '%'))
1152 		return __dev_alloc_name(net, want_name, out_name);
1153 
1154 	if (netdev_name_in_use(net, want_name))
1155 		return -dup_errno;
1156 	if (out_name != want_name)
1157 		strscpy(out_name, want_name, IFNAMSIZ);
1158 	return 0;
1159 }
1160 
1161 /**
1162  *	dev_alloc_name - allocate a name for a device
1163  *	@dev: device
1164  *	@name: name format string
1165  *
1166  *	Passed a format string - eg "lt%d" it will try and find a suitable
1167  *	id. It scans list of devices to build up a free map, then chooses
1168  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1169  *	while allocating the name and adding the device in order to avoid
1170  *	duplicates.
1171  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1172  *	Returns the number of the unit assigned or a negative errno code.
1173  */
1174 
1175 int dev_alloc_name(struct net_device *dev, const char *name)
1176 {
1177 	return dev_prep_valid_name(dev_net(dev), dev, name, dev->name, ENFILE);
1178 }
1179 EXPORT_SYMBOL(dev_alloc_name);
1180 
1181 static int dev_get_valid_name(struct net *net, struct net_device *dev,
1182 			      const char *name)
1183 {
1184 	int ret;
1185 
1186 	ret = dev_prep_valid_name(net, dev, name, dev->name, EEXIST);
1187 	return ret < 0 ? ret : 0;
1188 }
1189 
1190 /**
1191  *	dev_change_name - change name of a device
1192  *	@dev: device
1193  *	@newname: name (or format string) must be at least IFNAMSIZ
1194  *
1195  *	Change name of a device, can pass format strings "eth%d".
1196  *	for wildcarding.
1197  */
1198 int dev_change_name(struct net_device *dev, const char *newname)
1199 {
1200 	unsigned char old_assign_type;
1201 	char oldname[IFNAMSIZ];
1202 	int err = 0;
1203 	int ret;
1204 	struct net *net;
1205 
1206 	ASSERT_RTNL();
1207 	BUG_ON(!dev_net(dev));
1208 
1209 	net = dev_net(dev);
1210 
1211 	down_write(&devnet_rename_sem);
1212 
1213 	if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1214 		up_write(&devnet_rename_sem);
1215 		return 0;
1216 	}
1217 
1218 	memcpy(oldname, dev->name, IFNAMSIZ);
1219 
1220 	err = dev_get_valid_name(net, dev, newname);
1221 	if (err < 0) {
1222 		up_write(&devnet_rename_sem);
1223 		return err;
1224 	}
1225 
1226 	if (oldname[0] && !strchr(oldname, '%'))
1227 		netdev_info(dev, "renamed from %s%s\n", oldname,
1228 			    dev->flags & IFF_UP ? " (while UP)" : "");
1229 
1230 	old_assign_type = dev->name_assign_type;
1231 	WRITE_ONCE(dev->name_assign_type, NET_NAME_RENAMED);
1232 
1233 rollback:
1234 	ret = device_rename(&dev->dev, dev->name);
1235 	if (ret) {
1236 		memcpy(dev->name, oldname, IFNAMSIZ);
1237 		WRITE_ONCE(dev->name_assign_type, old_assign_type);
1238 		up_write(&devnet_rename_sem);
1239 		return ret;
1240 	}
1241 
1242 	up_write(&devnet_rename_sem);
1243 
1244 	netdev_adjacent_rename_links(dev, oldname);
1245 
1246 	netdev_name_node_del(dev->name_node);
1247 
1248 	synchronize_net();
1249 
1250 	netdev_name_node_add(net, dev->name_node);
1251 
1252 	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1253 	ret = notifier_to_errno(ret);
1254 
1255 	if (ret) {
1256 		/* err >= 0 after dev_alloc_name() or stores the first errno */
1257 		if (err >= 0) {
1258 			err = ret;
1259 			down_write(&devnet_rename_sem);
1260 			memcpy(dev->name, oldname, IFNAMSIZ);
1261 			memcpy(oldname, newname, IFNAMSIZ);
1262 			WRITE_ONCE(dev->name_assign_type, old_assign_type);
1263 			old_assign_type = NET_NAME_RENAMED;
1264 			goto rollback;
1265 		} else {
1266 			netdev_err(dev, "name change rollback failed: %d\n",
1267 				   ret);
1268 		}
1269 	}
1270 
1271 	return err;
1272 }
1273 
1274 /**
1275  *	dev_set_alias - change ifalias of a device
1276  *	@dev: device
1277  *	@alias: name up to IFALIASZ
1278  *	@len: limit of bytes to copy from info
1279  *
1280  *	Set ifalias for a device,
1281  */
1282 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1283 {
1284 	struct dev_ifalias *new_alias = NULL;
1285 
1286 	if (len >= IFALIASZ)
1287 		return -EINVAL;
1288 
1289 	if (len) {
1290 		new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1291 		if (!new_alias)
1292 			return -ENOMEM;
1293 
1294 		memcpy(new_alias->ifalias, alias, len);
1295 		new_alias->ifalias[len] = 0;
1296 	}
1297 
1298 	mutex_lock(&ifalias_mutex);
1299 	new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1300 					mutex_is_locked(&ifalias_mutex));
1301 	mutex_unlock(&ifalias_mutex);
1302 
1303 	if (new_alias)
1304 		kfree_rcu(new_alias, rcuhead);
1305 
1306 	return len;
1307 }
1308 EXPORT_SYMBOL(dev_set_alias);
1309 
1310 /**
1311  *	dev_get_alias - get ifalias of a device
1312  *	@dev: device
1313  *	@name: buffer to store name of ifalias
1314  *	@len: size of buffer
1315  *
1316  *	get ifalias for a device.  Caller must make sure dev cannot go
1317  *	away,  e.g. rcu read lock or own a reference count to device.
1318  */
1319 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1320 {
1321 	const struct dev_ifalias *alias;
1322 	int ret = 0;
1323 
1324 	rcu_read_lock();
1325 	alias = rcu_dereference(dev->ifalias);
1326 	if (alias)
1327 		ret = snprintf(name, len, "%s", alias->ifalias);
1328 	rcu_read_unlock();
1329 
1330 	return ret;
1331 }
1332 
1333 /**
1334  *	netdev_features_change - device changes features
1335  *	@dev: device to cause notification
1336  *
1337  *	Called to indicate a device has changed features.
1338  */
1339 void netdev_features_change(struct net_device *dev)
1340 {
1341 	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1342 }
1343 EXPORT_SYMBOL(netdev_features_change);
1344 
1345 /**
1346  *	netdev_state_change - device changes state
1347  *	@dev: device to cause notification
1348  *
1349  *	Called to indicate a device has changed state. This function calls
1350  *	the notifier chains for netdev_chain and sends a NEWLINK message
1351  *	to the routing socket.
1352  */
1353 void netdev_state_change(struct net_device *dev)
1354 {
1355 	if (dev->flags & IFF_UP) {
1356 		struct netdev_notifier_change_info change_info = {
1357 			.info.dev = dev,
1358 		};
1359 
1360 		call_netdevice_notifiers_info(NETDEV_CHANGE,
1361 					      &change_info.info);
1362 		rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL, 0, NULL);
1363 	}
1364 }
1365 EXPORT_SYMBOL(netdev_state_change);
1366 
1367 /**
1368  * __netdev_notify_peers - notify network peers about existence of @dev,
1369  * to be called when rtnl lock is already held.
1370  * @dev: network device
1371  *
1372  * Generate traffic such that interested network peers are aware of
1373  * @dev, such as by generating a gratuitous ARP. This may be used when
1374  * a device wants to inform the rest of the network about some sort of
1375  * reconfiguration such as a failover event or virtual machine
1376  * migration.
1377  */
1378 void __netdev_notify_peers(struct net_device *dev)
1379 {
1380 	ASSERT_RTNL();
1381 	call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1382 	call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1383 }
1384 EXPORT_SYMBOL(__netdev_notify_peers);
1385 
1386 /**
1387  * netdev_notify_peers - notify network peers about existence of @dev
1388  * @dev: network device
1389  *
1390  * Generate traffic such that interested network peers are aware of
1391  * @dev, such as by generating a gratuitous ARP. This may be used when
1392  * a device wants to inform the rest of the network about some sort of
1393  * reconfiguration such as a failover event or virtual machine
1394  * migration.
1395  */
1396 void netdev_notify_peers(struct net_device *dev)
1397 {
1398 	rtnl_lock();
1399 	__netdev_notify_peers(dev);
1400 	rtnl_unlock();
1401 }
1402 EXPORT_SYMBOL(netdev_notify_peers);
1403 
1404 static int napi_threaded_poll(void *data);
1405 
1406 static int napi_kthread_create(struct napi_struct *n)
1407 {
1408 	int err = 0;
1409 
1410 	/* Create and wake up the kthread once to put it in
1411 	 * TASK_INTERRUPTIBLE mode to avoid the blocked task
1412 	 * warning and work with loadavg.
1413 	 */
1414 	n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d",
1415 				n->dev->name, n->napi_id);
1416 	if (IS_ERR(n->thread)) {
1417 		err = PTR_ERR(n->thread);
1418 		pr_err("kthread_run failed with err %d\n", err);
1419 		n->thread = NULL;
1420 	}
1421 
1422 	return err;
1423 }
1424 
1425 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1426 {
1427 	const struct net_device_ops *ops = dev->netdev_ops;
1428 	int ret;
1429 
1430 	ASSERT_RTNL();
1431 	dev_addr_check(dev);
1432 
1433 	if (!netif_device_present(dev)) {
1434 		/* may be detached because parent is runtime-suspended */
1435 		if (dev->dev.parent)
1436 			pm_runtime_resume(dev->dev.parent);
1437 		if (!netif_device_present(dev))
1438 			return -ENODEV;
1439 	}
1440 
1441 	/* Block netpoll from trying to do any rx path servicing.
1442 	 * If we don't do this there is a chance ndo_poll_controller
1443 	 * or ndo_poll may be running while we open the device
1444 	 */
1445 	netpoll_poll_disable(dev);
1446 
1447 	ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1448 	ret = notifier_to_errno(ret);
1449 	if (ret)
1450 		return ret;
1451 
1452 	set_bit(__LINK_STATE_START, &dev->state);
1453 
1454 	if (ops->ndo_validate_addr)
1455 		ret = ops->ndo_validate_addr(dev);
1456 
1457 	if (!ret && ops->ndo_open)
1458 		ret = ops->ndo_open(dev);
1459 
1460 	netpoll_poll_enable(dev);
1461 
1462 	if (ret)
1463 		clear_bit(__LINK_STATE_START, &dev->state);
1464 	else {
1465 		dev->flags |= IFF_UP;
1466 		dev_set_rx_mode(dev);
1467 		dev_activate(dev);
1468 		add_device_randomness(dev->dev_addr, dev->addr_len);
1469 	}
1470 
1471 	return ret;
1472 }
1473 
1474 /**
1475  *	dev_open	- prepare an interface for use.
1476  *	@dev: device to open
1477  *	@extack: netlink extended ack
1478  *
1479  *	Takes a device from down to up state. The device's private open
1480  *	function is invoked and then the multicast lists are loaded. Finally
1481  *	the device is moved into the up state and a %NETDEV_UP message is
1482  *	sent to the netdev notifier chain.
1483  *
1484  *	Calling this function on an active interface is a nop. On a failure
1485  *	a negative errno code is returned.
1486  */
1487 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1488 {
1489 	int ret;
1490 
1491 	if (dev->flags & IFF_UP)
1492 		return 0;
1493 
1494 	ret = __dev_open(dev, extack);
1495 	if (ret < 0)
1496 		return ret;
1497 
1498 	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL);
1499 	call_netdevice_notifiers(NETDEV_UP, dev);
1500 
1501 	return ret;
1502 }
1503 EXPORT_SYMBOL(dev_open);
1504 
1505 static void __dev_close_many(struct list_head *head)
1506 {
1507 	struct net_device *dev;
1508 
1509 	ASSERT_RTNL();
1510 	might_sleep();
1511 
1512 	list_for_each_entry(dev, head, close_list) {
1513 		/* Temporarily disable netpoll until the interface is down */
1514 		netpoll_poll_disable(dev);
1515 
1516 		call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1517 
1518 		clear_bit(__LINK_STATE_START, &dev->state);
1519 
1520 		/* Synchronize to scheduled poll. We cannot touch poll list, it
1521 		 * can be even on different cpu. So just clear netif_running().
1522 		 *
1523 		 * dev->stop() will invoke napi_disable() on all of it's
1524 		 * napi_struct instances on this device.
1525 		 */
1526 		smp_mb__after_atomic(); /* Commit netif_running(). */
1527 	}
1528 
1529 	dev_deactivate_many(head);
1530 
1531 	list_for_each_entry(dev, head, close_list) {
1532 		const struct net_device_ops *ops = dev->netdev_ops;
1533 
1534 		/*
1535 		 *	Call the device specific close. This cannot fail.
1536 		 *	Only if device is UP
1537 		 *
1538 		 *	We allow it to be called even after a DETACH hot-plug
1539 		 *	event.
1540 		 */
1541 		if (ops->ndo_stop)
1542 			ops->ndo_stop(dev);
1543 
1544 		dev->flags &= ~IFF_UP;
1545 		netpoll_poll_enable(dev);
1546 	}
1547 }
1548 
1549 static void __dev_close(struct net_device *dev)
1550 {
1551 	LIST_HEAD(single);
1552 
1553 	list_add(&dev->close_list, &single);
1554 	__dev_close_many(&single);
1555 	list_del(&single);
1556 }
1557 
1558 void dev_close_many(struct list_head *head, bool unlink)
1559 {
1560 	struct net_device *dev, *tmp;
1561 
1562 	/* Remove the devices that don't need to be closed */
1563 	list_for_each_entry_safe(dev, tmp, head, close_list)
1564 		if (!(dev->flags & IFF_UP))
1565 			list_del_init(&dev->close_list);
1566 
1567 	__dev_close_many(head);
1568 
1569 	list_for_each_entry_safe(dev, tmp, head, close_list) {
1570 		rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL);
1571 		call_netdevice_notifiers(NETDEV_DOWN, dev);
1572 		if (unlink)
1573 			list_del_init(&dev->close_list);
1574 	}
1575 }
1576 EXPORT_SYMBOL(dev_close_many);
1577 
1578 /**
1579  *	dev_close - shutdown an interface.
1580  *	@dev: device to shutdown
1581  *
1582  *	This function moves an active device into down state. A
1583  *	%NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1584  *	is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1585  *	chain.
1586  */
1587 void dev_close(struct net_device *dev)
1588 {
1589 	if (dev->flags & IFF_UP) {
1590 		LIST_HEAD(single);
1591 
1592 		list_add(&dev->close_list, &single);
1593 		dev_close_many(&single, true);
1594 		list_del(&single);
1595 	}
1596 }
1597 EXPORT_SYMBOL(dev_close);
1598 
1599 
1600 /**
1601  *	dev_disable_lro - disable Large Receive Offload on a device
1602  *	@dev: device
1603  *
1604  *	Disable Large Receive Offload (LRO) on a net device.  Must be
1605  *	called under RTNL.  This is needed if received packets may be
1606  *	forwarded to another interface.
1607  */
1608 void dev_disable_lro(struct net_device *dev)
1609 {
1610 	struct net_device *lower_dev;
1611 	struct list_head *iter;
1612 
1613 	dev->wanted_features &= ~NETIF_F_LRO;
1614 	netdev_update_features(dev);
1615 
1616 	if (unlikely(dev->features & NETIF_F_LRO))
1617 		netdev_WARN(dev, "failed to disable LRO!\n");
1618 
1619 	netdev_for_each_lower_dev(dev, lower_dev, iter)
1620 		dev_disable_lro(lower_dev);
1621 }
1622 EXPORT_SYMBOL(dev_disable_lro);
1623 
1624 /**
1625  *	dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1626  *	@dev: device
1627  *
1628  *	Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1629  *	called under RTNL.  This is needed if Generic XDP is installed on
1630  *	the device.
1631  */
1632 static void dev_disable_gro_hw(struct net_device *dev)
1633 {
1634 	dev->wanted_features &= ~NETIF_F_GRO_HW;
1635 	netdev_update_features(dev);
1636 
1637 	if (unlikely(dev->features & NETIF_F_GRO_HW))
1638 		netdev_WARN(dev, "failed to disable GRO_HW!\n");
1639 }
1640 
1641 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1642 {
1643 #define N(val) 						\
1644 	case NETDEV_##val:				\
1645 		return "NETDEV_" __stringify(val);
1646 	switch (cmd) {
1647 	N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1648 	N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1649 	N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1650 	N(POST_INIT) N(PRE_UNINIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN)
1651 	N(CHANGEUPPER) N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA)
1652 	N(BONDING_INFO) N(PRECHANGEUPPER) N(CHANGELOWERSTATE)
1653 	N(UDP_TUNNEL_PUSH_INFO) N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1654 	N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1655 	N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1656 	N(PRE_CHANGEADDR) N(OFFLOAD_XSTATS_ENABLE) N(OFFLOAD_XSTATS_DISABLE)
1657 	N(OFFLOAD_XSTATS_REPORT_USED) N(OFFLOAD_XSTATS_REPORT_DELTA)
1658 	N(XDP_FEAT_CHANGE)
1659 	}
1660 #undef N
1661 	return "UNKNOWN_NETDEV_EVENT";
1662 }
1663 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1664 
1665 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1666 				   struct net_device *dev)
1667 {
1668 	struct netdev_notifier_info info = {
1669 		.dev = dev,
1670 	};
1671 
1672 	return nb->notifier_call(nb, val, &info);
1673 }
1674 
1675 static int call_netdevice_register_notifiers(struct notifier_block *nb,
1676 					     struct net_device *dev)
1677 {
1678 	int err;
1679 
1680 	err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1681 	err = notifier_to_errno(err);
1682 	if (err)
1683 		return err;
1684 
1685 	if (!(dev->flags & IFF_UP))
1686 		return 0;
1687 
1688 	call_netdevice_notifier(nb, NETDEV_UP, dev);
1689 	return 0;
1690 }
1691 
1692 static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1693 						struct net_device *dev)
1694 {
1695 	if (dev->flags & IFF_UP) {
1696 		call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1697 					dev);
1698 		call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1699 	}
1700 	call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1701 }
1702 
1703 static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1704 						 struct net *net)
1705 {
1706 	struct net_device *dev;
1707 	int err;
1708 
1709 	for_each_netdev(net, dev) {
1710 		err = call_netdevice_register_notifiers(nb, dev);
1711 		if (err)
1712 			goto rollback;
1713 	}
1714 	return 0;
1715 
1716 rollback:
1717 	for_each_netdev_continue_reverse(net, dev)
1718 		call_netdevice_unregister_notifiers(nb, dev);
1719 	return err;
1720 }
1721 
1722 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1723 						    struct net *net)
1724 {
1725 	struct net_device *dev;
1726 
1727 	for_each_netdev(net, dev)
1728 		call_netdevice_unregister_notifiers(nb, dev);
1729 }
1730 
1731 static int dev_boot_phase = 1;
1732 
1733 /**
1734  * register_netdevice_notifier - register a network notifier block
1735  * @nb: notifier
1736  *
1737  * Register a notifier to be called when network device events occur.
1738  * The notifier passed is linked into the kernel structures and must
1739  * not be reused until it has been unregistered. A negative errno code
1740  * is returned on a failure.
1741  *
1742  * When registered all registration and up events are replayed
1743  * to the new notifier to allow device to have a race free
1744  * view of the network device list.
1745  */
1746 
1747 int register_netdevice_notifier(struct notifier_block *nb)
1748 {
1749 	struct net *net;
1750 	int err;
1751 
1752 	/* Close race with setup_net() and cleanup_net() */
1753 	down_write(&pernet_ops_rwsem);
1754 	rtnl_lock();
1755 	err = raw_notifier_chain_register(&netdev_chain, nb);
1756 	if (err)
1757 		goto unlock;
1758 	if (dev_boot_phase)
1759 		goto unlock;
1760 	for_each_net(net) {
1761 		err = call_netdevice_register_net_notifiers(nb, net);
1762 		if (err)
1763 			goto rollback;
1764 	}
1765 
1766 unlock:
1767 	rtnl_unlock();
1768 	up_write(&pernet_ops_rwsem);
1769 	return err;
1770 
1771 rollback:
1772 	for_each_net_continue_reverse(net)
1773 		call_netdevice_unregister_net_notifiers(nb, net);
1774 
1775 	raw_notifier_chain_unregister(&netdev_chain, nb);
1776 	goto unlock;
1777 }
1778 EXPORT_SYMBOL(register_netdevice_notifier);
1779 
1780 /**
1781  * unregister_netdevice_notifier - unregister a network notifier block
1782  * @nb: notifier
1783  *
1784  * Unregister a notifier previously registered by
1785  * register_netdevice_notifier(). The notifier is unlinked into the
1786  * kernel structures and may then be reused. A negative errno code
1787  * is returned on a failure.
1788  *
1789  * After unregistering unregister and down device events are synthesized
1790  * for all devices on the device list to the removed notifier to remove
1791  * the need for special case cleanup code.
1792  */
1793 
1794 int unregister_netdevice_notifier(struct notifier_block *nb)
1795 {
1796 	struct net *net;
1797 	int err;
1798 
1799 	/* Close race with setup_net() and cleanup_net() */
1800 	down_write(&pernet_ops_rwsem);
1801 	rtnl_lock();
1802 	err = raw_notifier_chain_unregister(&netdev_chain, nb);
1803 	if (err)
1804 		goto unlock;
1805 
1806 	for_each_net(net)
1807 		call_netdevice_unregister_net_notifiers(nb, net);
1808 
1809 unlock:
1810 	rtnl_unlock();
1811 	up_write(&pernet_ops_rwsem);
1812 	return err;
1813 }
1814 EXPORT_SYMBOL(unregister_netdevice_notifier);
1815 
1816 static int __register_netdevice_notifier_net(struct net *net,
1817 					     struct notifier_block *nb,
1818 					     bool ignore_call_fail)
1819 {
1820 	int err;
1821 
1822 	err = raw_notifier_chain_register(&net->netdev_chain, nb);
1823 	if (err)
1824 		return err;
1825 	if (dev_boot_phase)
1826 		return 0;
1827 
1828 	err = call_netdevice_register_net_notifiers(nb, net);
1829 	if (err && !ignore_call_fail)
1830 		goto chain_unregister;
1831 
1832 	return 0;
1833 
1834 chain_unregister:
1835 	raw_notifier_chain_unregister(&net->netdev_chain, nb);
1836 	return err;
1837 }
1838 
1839 static int __unregister_netdevice_notifier_net(struct net *net,
1840 					       struct notifier_block *nb)
1841 {
1842 	int err;
1843 
1844 	err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
1845 	if (err)
1846 		return err;
1847 
1848 	call_netdevice_unregister_net_notifiers(nb, net);
1849 	return 0;
1850 }
1851 
1852 /**
1853  * register_netdevice_notifier_net - register a per-netns network notifier block
1854  * @net: network namespace
1855  * @nb: notifier
1856  *
1857  * Register a notifier to be called when network device events occur.
1858  * The notifier passed is linked into the kernel structures and must
1859  * not be reused until it has been unregistered. A negative errno code
1860  * is returned on a failure.
1861  *
1862  * When registered all registration and up events are replayed
1863  * to the new notifier to allow device to have a race free
1864  * view of the network device list.
1865  */
1866 
1867 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
1868 {
1869 	int err;
1870 
1871 	rtnl_lock();
1872 	err = __register_netdevice_notifier_net(net, nb, false);
1873 	rtnl_unlock();
1874 	return err;
1875 }
1876 EXPORT_SYMBOL(register_netdevice_notifier_net);
1877 
1878 /**
1879  * unregister_netdevice_notifier_net - unregister a per-netns
1880  *                                     network notifier block
1881  * @net: network namespace
1882  * @nb: notifier
1883  *
1884  * Unregister a notifier previously registered by
1885  * register_netdevice_notifier_net(). The notifier is unlinked from the
1886  * kernel structures and may then be reused. A negative errno code
1887  * is returned on a failure.
1888  *
1889  * After unregistering unregister and down device events are synthesized
1890  * for all devices on the device list to the removed notifier to remove
1891  * the need for special case cleanup code.
1892  */
1893 
1894 int unregister_netdevice_notifier_net(struct net *net,
1895 				      struct notifier_block *nb)
1896 {
1897 	int err;
1898 
1899 	rtnl_lock();
1900 	err = __unregister_netdevice_notifier_net(net, nb);
1901 	rtnl_unlock();
1902 	return err;
1903 }
1904 EXPORT_SYMBOL(unregister_netdevice_notifier_net);
1905 
1906 static void __move_netdevice_notifier_net(struct net *src_net,
1907 					  struct net *dst_net,
1908 					  struct notifier_block *nb)
1909 {
1910 	__unregister_netdevice_notifier_net(src_net, nb);
1911 	__register_netdevice_notifier_net(dst_net, nb, true);
1912 }
1913 
1914 int register_netdevice_notifier_dev_net(struct net_device *dev,
1915 					struct notifier_block *nb,
1916 					struct netdev_net_notifier *nn)
1917 {
1918 	int err;
1919 
1920 	rtnl_lock();
1921 	err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
1922 	if (!err) {
1923 		nn->nb = nb;
1924 		list_add(&nn->list, &dev->net_notifier_list);
1925 	}
1926 	rtnl_unlock();
1927 	return err;
1928 }
1929 EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
1930 
1931 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
1932 					  struct notifier_block *nb,
1933 					  struct netdev_net_notifier *nn)
1934 {
1935 	int err;
1936 
1937 	rtnl_lock();
1938 	list_del(&nn->list);
1939 	err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
1940 	rtnl_unlock();
1941 	return err;
1942 }
1943 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
1944 
1945 static void move_netdevice_notifiers_dev_net(struct net_device *dev,
1946 					     struct net *net)
1947 {
1948 	struct netdev_net_notifier *nn;
1949 
1950 	list_for_each_entry(nn, &dev->net_notifier_list, list)
1951 		__move_netdevice_notifier_net(dev_net(dev), net, nn->nb);
1952 }
1953 
1954 /**
1955  *	call_netdevice_notifiers_info - call all network notifier blocks
1956  *	@val: value passed unmodified to notifier function
1957  *	@info: notifier information data
1958  *
1959  *	Call all network notifier blocks.  Parameters and return value
1960  *	are as for raw_notifier_call_chain().
1961  */
1962 
1963 int call_netdevice_notifiers_info(unsigned long val,
1964 				  struct netdev_notifier_info *info)
1965 {
1966 	struct net *net = dev_net(info->dev);
1967 	int ret;
1968 
1969 	ASSERT_RTNL();
1970 
1971 	/* Run per-netns notifier block chain first, then run the global one.
1972 	 * Hopefully, one day, the global one is going to be removed after
1973 	 * all notifier block registrators get converted to be per-netns.
1974 	 */
1975 	ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
1976 	if (ret & NOTIFY_STOP_MASK)
1977 		return ret;
1978 	return raw_notifier_call_chain(&netdev_chain, val, info);
1979 }
1980 
1981 /**
1982  *	call_netdevice_notifiers_info_robust - call per-netns notifier blocks
1983  *	                                       for and rollback on error
1984  *	@val_up: value passed unmodified to notifier function
1985  *	@val_down: value passed unmodified to the notifier function when
1986  *	           recovering from an error on @val_up
1987  *	@info: notifier information data
1988  *
1989  *	Call all per-netns network notifier blocks, but not notifier blocks on
1990  *	the global notifier chain. Parameters and return value are as for
1991  *	raw_notifier_call_chain_robust().
1992  */
1993 
1994 static int
1995 call_netdevice_notifiers_info_robust(unsigned long val_up,
1996 				     unsigned long val_down,
1997 				     struct netdev_notifier_info *info)
1998 {
1999 	struct net *net = dev_net(info->dev);
2000 
2001 	ASSERT_RTNL();
2002 
2003 	return raw_notifier_call_chain_robust(&net->netdev_chain,
2004 					      val_up, val_down, info);
2005 }
2006 
2007 static int call_netdevice_notifiers_extack(unsigned long val,
2008 					   struct net_device *dev,
2009 					   struct netlink_ext_ack *extack)
2010 {
2011 	struct netdev_notifier_info info = {
2012 		.dev = dev,
2013 		.extack = extack,
2014 	};
2015 
2016 	return call_netdevice_notifiers_info(val, &info);
2017 }
2018 
2019 /**
2020  *	call_netdevice_notifiers - call all network notifier blocks
2021  *      @val: value passed unmodified to notifier function
2022  *      @dev: net_device pointer passed unmodified to notifier function
2023  *
2024  *	Call all network notifier blocks.  Parameters and return value
2025  *	are as for raw_notifier_call_chain().
2026  */
2027 
2028 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
2029 {
2030 	return call_netdevice_notifiers_extack(val, dev, NULL);
2031 }
2032 EXPORT_SYMBOL(call_netdevice_notifiers);
2033 
2034 /**
2035  *	call_netdevice_notifiers_mtu - call all network notifier blocks
2036  *	@val: value passed unmodified to notifier function
2037  *	@dev: net_device pointer passed unmodified to notifier function
2038  *	@arg: additional u32 argument passed to the notifier function
2039  *
2040  *	Call all network notifier blocks.  Parameters and return value
2041  *	are as for raw_notifier_call_chain().
2042  */
2043 static int call_netdevice_notifiers_mtu(unsigned long val,
2044 					struct net_device *dev, u32 arg)
2045 {
2046 	struct netdev_notifier_info_ext info = {
2047 		.info.dev = dev,
2048 		.ext.mtu = arg,
2049 	};
2050 
2051 	BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2052 
2053 	return call_netdevice_notifiers_info(val, &info.info);
2054 }
2055 
2056 #ifdef CONFIG_NET_INGRESS
2057 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2058 
2059 void net_inc_ingress_queue(void)
2060 {
2061 	static_branch_inc(&ingress_needed_key);
2062 }
2063 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2064 
2065 void net_dec_ingress_queue(void)
2066 {
2067 	static_branch_dec(&ingress_needed_key);
2068 }
2069 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2070 #endif
2071 
2072 #ifdef CONFIG_NET_EGRESS
2073 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2074 
2075 void net_inc_egress_queue(void)
2076 {
2077 	static_branch_inc(&egress_needed_key);
2078 }
2079 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2080 
2081 void net_dec_egress_queue(void)
2082 {
2083 	static_branch_dec(&egress_needed_key);
2084 }
2085 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2086 #endif
2087 
2088 #ifdef CONFIG_NET_CLS_ACT
2089 DEFINE_STATIC_KEY_FALSE(tcf_bypass_check_needed_key);
2090 EXPORT_SYMBOL(tcf_bypass_check_needed_key);
2091 #endif
2092 
2093 DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2094 EXPORT_SYMBOL(netstamp_needed_key);
2095 #ifdef CONFIG_JUMP_LABEL
2096 static atomic_t netstamp_needed_deferred;
2097 static atomic_t netstamp_wanted;
2098 static void netstamp_clear(struct work_struct *work)
2099 {
2100 	int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2101 	int wanted;
2102 
2103 	wanted = atomic_add_return(deferred, &netstamp_wanted);
2104 	if (wanted > 0)
2105 		static_branch_enable(&netstamp_needed_key);
2106 	else
2107 		static_branch_disable(&netstamp_needed_key);
2108 }
2109 static DECLARE_WORK(netstamp_work, netstamp_clear);
2110 #endif
2111 
2112 void net_enable_timestamp(void)
2113 {
2114 #ifdef CONFIG_JUMP_LABEL
2115 	int wanted = atomic_read(&netstamp_wanted);
2116 
2117 	while (wanted > 0) {
2118 		if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted + 1))
2119 			return;
2120 	}
2121 	atomic_inc(&netstamp_needed_deferred);
2122 	schedule_work(&netstamp_work);
2123 #else
2124 	static_branch_inc(&netstamp_needed_key);
2125 #endif
2126 }
2127 EXPORT_SYMBOL(net_enable_timestamp);
2128 
2129 void net_disable_timestamp(void)
2130 {
2131 #ifdef CONFIG_JUMP_LABEL
2132 	int wanted = atomic_read(&netstamp_wanted);
2133 
2134 	while (wanted > 1) {
2135 		if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted - 1))
2136 			return;
2137 	}
2138 	atomic_dec(&netstamp_needed_deferred);
2139 	schedule_work(&netstamp_work);
2140 #else
2141 	static_branch_dec(&netstamp_needed_key);
2142 #endif
2143 }
2144 EXPORT_SYMBOL(net_disable_timestamp);
2145 
2146 static inline void net_timestamp_set(struct sk_buff *skb)
2147 {
2148 	skb->tstamp = 0;
2149 	skb->mono_delivery_time = 0;
2150 	if (static_branch_unlikely(&netstamp_needed_key))
2151 		skb->tstamp = ktime_get_real();
2152 }
2153 
2154 #define net_timestamp_check(COND, SKB)				\
2155 	if (static_branch_unlikely(&netstamp_needed_key)) {	\
2156 		if ((COND) && !(SKB)->tstamp)			\
2157 			(SKB)->tstamp = ktime_get_real();	\
2158 	}							\
2159 
2160 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2161 {
2162 	return __is_skb_forwardable(dev, skb, true);
2163 }
2164 EXPORT_SYMBOL_GPL(is_skb_forwardable);
2165 
2166 static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb,
2167 			      bool check_mtu)
2168 {
2169 	int ret = ____dev_forward_skb(dev, skb, check_mtu);
2170 
2171 	if (likely(!ret)) {
2172 		skb->protocol = eth_type_trans(skb, dev);
2173 		skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2174 	}
2175 
2176 	return ret;
2177 }
2178 
2179 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2180 {
2181 	return __dev_forward_skb2(dev, skb, true);
2182 }
2183 EXPORT_SYMBOL_GPL(__dev_forward_skb);
2184 
2185 /**
2186  * dev_forward_skb - loopback an skb to another netif
2187  *
2188  * @dev: destination network device
2189  * @skb: buffer to forward
2190  *
2191  * return values:
2192  *	NET_RX_SUCCESS	(no congestion)
2193  *	NET_RX_DROP     (packet was dropped, but freed)
2194  *
2195  * dev_forward_skb can be used for injecting an skb from the
2196  * start_xmit function of one device into the receive queue
2197  * of another device.
2198  *
2199  * The receiving device may be in another namespace, so
2200  * we have to clear all information in the skb that could
2201  * impact namespace isolation.
2202  */
2203 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2204 {
2205 	return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2206 }
2207 EXPORT_SYMBOL_GPL(dev_forward_skb);
2208 
2209 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb)
2210 {
2211 	return __dev_forward_skb2(dev, skb, false) ?: netif_rx_internal(skb);
2212 }
2213 
2214 static inline int deliver_skb(struct sk_buff *skb,
2215 			      struct packet_type *pt_prev,
2216 			      struct net_device *orig_dev)
2217 {
2218 	if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2219 		return -ENOMEM;
2220 	refcount_inc(&skb->users);
2221 	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2222 }
2223 
2224 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2225 					  struct packet_type **pt,
2226 					  struct net_device *orig_dev,
2227 					  __be16 type,
2228 					  struct list_head *ptype_list)
2229 {
2230 	struct packet_type *ptype, *pt_prev = *pt;
2231 
2232 	list_for_each_entry_rcu(ptype, ptype_list, list) {
2233 		if (ptype->type != type)
2234 			continue;
2235 		if (pt_prev)
2236 			deliver_skb(skb, pt_prev, orig_dev);
2237 		pt_prev = ptype;
2238 	}
2239 	*pt = pt_prev;
2240 }
2241 
2242 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2243 {
2244 	if (!ptype->af_packet_priv || !skb->sk)
2245 		return false;
2246 
2247 	if (ptype->id_match)
2248 		return ptype->id_match(ptype, skb->sk);
2249 	else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2250 		return true;
2251 
2252 	return false;
2253 }
2254 
2255 /**
2256  * dev_nit_active - return true if any network interface taps are in use
2257  *
2258  * @dev: network device to check for the presence of taps
2259  */
2260 bool dev_nit_active(struct net_device *dev)
2261 {
2262 	return !list_empty(&net_hotdata.ptype_all) ||
2263 	       !list_empty(&dev->ptype_all);
2264 }
2265 EXPORT_SYMBOL_GPL(dev_nit_active);
2266 
2267 /*
2268  *	Support routine. Sends outgoing frames to any network
2269  *	taps currently in use.
2270  */
2271 
2272 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2273 {
2274 	struct list_head *ptype_list = &net_hotdata.ptype_all;
2275 	struct packet_type *ptype, *pt_prev = NULL;
2276 	struct sk_buff *skb2 = NULL;
2277 
2278 	rcu_read_lock();
2279 again:
2280 	list_for_each_entry_rcu(ptype, ptype_list, list) {
2281 		if (READ_ONCE(ptype->ignore_outgoing))
2282 			continue;
2283 
2284 		/* Never send packets back to the socket
2285 		 * they originated from - MvS (miquels@drinkel.ow.org)
2286 		 */
2287 		if (skb_loop_sk(ptype, skb))
2288 			continue;
2289 
2290 		if (pt_prev) {
2291 			deliver_skb(skb2, pt_prev, skb->dev);
2292 			pt_prev = ptype;
2293 			continue;
2294 		}
2295 
2296 		/* need to clone skb, done only once */
2297 		skb2 = skb_clone(skb, GFP_ATOMIC);
2298 		if (!skb2)
2299 			goto out_unlock;
2300 
2301 		net_timestamp_set(skb2);
2302 
2303 		/* skb->nh should be correctly
2304 		 * set by sender, so that the second statement is
2305 		 * just protection against buggy protocols.
2306 		 */
2307 		skb_reset_mac_header(skb2);
2308 
2309 		if (skb_network_header(skb2) < skb2->data ||
2310 		    skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2311 			net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2312 					     ntohs(skb2->protocol),
2313 					     dev->name);
2314 			skb_reset_network_header(skb2);
2315 		}
2316 
2317 		skb2->transport_header = skb2->network_header;
2318 		skb2->pkt_type = PACKET_OUTGOING;
2319 		pt_prev = ptype;
2320 	}
2321 
2322 	if (ptype_list == &net_hotdata.ptype_all) {
2323 		ptype_list = &dev->ptype_all;
2324 		goto again;
2325 	}
2326 out_unlock:
2327 	if (pt_prev) {
2328 		if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2329 			pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2330 		else
2331 			kfree_skb(skb2);
2332 	}
2333 	rcu_read_unlock();
2334 }
2335 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2336 
2337 /**
2338  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2339  * @dev: Network device
2340  * @txq: number of queues available
2341  *
2342  * If real_num_tx_queues is changed the tc mappings may no longer be
2343  * valid. To resolve this verify the tc mapping remains valid and if
2344  * not NULL the mapping. With no priorities mapping to this
2345  * offset/count pair it will no longer be used. In the worst case TC0
2346  * is invalid nothing can be done so disable priority mappings. If is
2347  * expected that drivers will fix this mapping if they can before
2348  * calling netif_set_real_num_tx_queues.
2349  */
2350 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2351 {
2352 	int i;
2353 	struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2354 
2355 	/* If TC0 is invalidated disable TC mapping */
2356 	if (tc->offset + tc->count > txq) {
2357 		netdev_warn(dev, "Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2358 		dev->num_tc = 0;
2359 		return;
2360 	}
2361 
2362 	/* Invalidated prio to tc mappings set to TC0 */
2363 	for (i = 1; i < TC_BITMASK + 1; i++) {
2364 		int q = netdev_get_prio_tc_map(dev, i);
2365 
2366 		tc = &dev->tc_to_txq[q];
2367 		if (tc->offset + tc->count > txq) {
2368 			netdev_warn(dev, "Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2369 				    i, q);
2370 			netdev_set_prio_tc_map(dev, i, 0);
2371 		}
2372 	}
2373 }
2374 
2375 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2376 {
2377 	if (dev->num_tc) {
2378 		struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2379 		int i;
2380 
2381 		/* walk through the TCs and see if it falls into any of them */
2382 		for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2383 			if ((txq - tc->offset) < tc->count)
2384 				return i;
2385 		}
2386 
2387 		/* didn't find it, just return -1 to indicate no match */
2388 		return -1;
2389 	}
2390 
2391 	return 0;
2392 }
2393 EXPORT_SYMBOL(netdev_txq_to_tc);
2394 
2395 #ifdef CONFIG_XPS
2396 static struct static_key xps_needed __read_mostly;
2397 static struct static_key xps_rxqs_needed __read_mostly;
2398 static DEFINE_MUTEX(xps_map_mutex);
2399 #define xmap_dereference(P)		\
2400 	rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2401 
2402 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2403 			     struct xps_dev_maps *old_maps, int tci, u16 index)
2404 {
2405 	struct xps_map *map = NULL;
2406 	int pos;
2407 
2408 	map = xmap_dereference(dev_maps->attr_map[tci]);
2409 	if (!map)
2410 		return false;
2411 
2412 	for (pos = map->len; pos--;) {
2413 		if (map->queues[pos] != index)
2414 			continue;
2415 
2416 		if (map->len > 1) {
2417 			map->queues[pos] = map->queues[--map->len];
2418 			break;
2419 		}
2420 
2421 		if (old_maps)
2422 			RCU_INIT_POINTER(old_maps->attr_map[tci], NULL);
2423 		RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2424 		kfree_rcu(map, rcu);
2425 		return false;
2426 	}
2427 
2428 	return true;
2429 }
2430 
2431 static bool remove_xps_queue_cpu(struct net_device *dev,
2432 				 struct xps_dev_maps *dev_maps,
2433 				 int cpu, u16 offset, u16 count)
2434 {
2435 	int num_tc = dev_maps->num_tc;
2436 	bool active = false;
2437 	int tci;
2438 
2439 	for (tci = cpu * num_tc; num_tc--; tci++) {
2440 		int i, j;
2441 
2442 		for (i = count, j = offset; i--; j++) {
2443 			if (!remove_xps_queue(dev_maps, NULL, tci, j))
2444 				break;
2445 		}
2446 
2447 		active |= i < 0;
2448 	}
2449 
2450 	return active;
2451 }
2452 
2453 static void reset_xps_maps(struct net_device *dev,
2454 			   struct xps_dev_maps *dev_maps,
2455 			   enum xps_map_type type)
2456 {
2457 	static_key_slow_dec_cpuslocked(&xps_needed);
2458 	if (type == XPS_RXQS)
2459 		static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2460 
2461 	RCU_INIT_POINTER(dev->xps_maps[type], NULL);
2462 
2463 	kfree_rcu(dev_maps, rcu);
2464 }
2465 
2466 static void clean_xps_maps(struct net_device *dev, enum xps_map_type type,
2467 			   u16 offset, u16 count)
2468 {
2469 	struct xps_dev_maps *dev_maps;
2470 	bool active = false;
2471 	int i, j;
2472 
2473 	dev_maps = xmap_dereference(dev->xps_maps[type]);
2474 	if (!dev_maps)
2475 		return;
2476 
2477 	for (j = 0; j < dev_maps->nr_ids; j++)
2478 		active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, count);
2479 	if (!active)
2480 		reset_xps_maps(dev, dev_maps, type);
2481 
2482 	if (type == XPS_CPUS) {
2483 		for (i = offset + (count - 1); count--; i--)
2484 			netdev_queue_numa_node_write(
2485 				netdev_get_tx_queue(dev, i), NUMA_NO_NODE);
2486 	}
2487 }
2488 
2489 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2490 				   u16 count)
2491 {
2492 	if (!static_key_false(&xps_needed))
2493 		return;
2494 
2495 	cpus_read_lock();
2496 	mutex_lock(&xps_map_mutex);
2497 
2498 	if (static_key_false(&xps_rxqs_needed))
2499 		clean_xps_maps(dev, XPS_RXQS, offset, count);
2500 
2501 	clean_xps_maps(dev, XPS_CPUS, offset, count);
2502 
2503 	mutex_unlock(&xps_map_mutex);
2504 	cpus_read_unlock();
2505 }
2506 
2507 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2508 {
2509 	netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2510 }
2511 
2512 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2513 				      u16 index, bool is_rxqs_map)
2514 {
2515 	struct xps_map *new_map;
2516 	int alloc_len = XPS_MIN_MAP_ALLOC;
2517 	int i, pos;
2518 
2519 	for (pos = 0; map && pos < map->len; pos++) {
2520 		if (map->queues[pos] != index)
2521 			continue;
2522 		return map;
2523 	}
2524 
2525 	/* Need to add tx-queue to this CPU's/rx-queue's existing map */
2526 	if (map) {
2527 		if (pos < map->alloc_len)
2528 			return map;
2529 
2530 		alloc_len = map->alloc_len * 2;
2531 	}
2532 
2533 	/* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2534 	 *  map
2535 	 */
2536 	if (is_rxqs_map)
2537 		new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2538 	else
2539 		new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2540 				       cpu_to_node(attr_index));
2541 	if (!new_map)
2542 		return NULL;
2543 
2544 	for (i = 0; i < pos; i++)
2545 		new_map->queues[i] = map->queues[i];
2546 	new_map->alloc_len = alloc_len;
2547 	new_map->len = pos;
2548 
2549 	return new_map;
2550 }
2551 
2552 /* Copy xps maps at a given index */
2553 static void xps_copy_dev_maps(struct xps_dev_maps *dev_maps,
2554 			      struct xps_dev_maps *new_dev_maps, int index,
2555 			      int tc, bool skip_tc)
2556 {
2557 	int i, tci = index * dev_maps->num_tc;
2558 	struct xps_map *map;
2559 
2560 	/* copy maps belonging to foreign traffic classes */
2561 	for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2562 		if (i == tc && skip_tc)
2563 			continue;
2564 
2565 		/* fill in the new device map from the old device map */
2566 		map = xmap_dereference(dev_maps->attr_map[tci]);
2567 		RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2568 	}
2569 }
2570 
2571 /* Must be called under cpus_read_lock */
2572 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2573 			  u16 index, enum xps_map_type type)
2574 {
2575 	struct xps_dev_maps *dev_maps, *new_dev_maps = NULL, *old_dev_maps = NULL;
2576 	const unsigned long *online_mask = NULL;
2577 	bool active = false, copy = false;
2578 	int i, j, tci, numa_node_id = -2;
2579 	int maps_sz, num_tc = 1, tc = 0;
2580 	struct xps_map *map, *new_map;
2581 	unsigned int nr_ids;
2582 
2583 	WARN_ON_ONCE(index >= dev->num_tx_queues);
2584 
2585 	if (dev->num_tc) {
2586 		/* Do not allow XPS on subordinate device directly */
2587 		num_tc = dev->num_tc;
2588 		if (num_tc < 0)
2589 			return -EINVAL;
2590 
2591 		/* If queue belongs to subordinate dev use its map */
2592 		dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2593 
2594 		tc = netdev_txq_to_tc(dev, index);
2595 		if (tc < 0)
2596 			return -EINVAL;
2597 	}
2598 
2599 	mutex_lock(&xps_map_mutex);
2600 
2601 	dev_maps = xmap_dereference(dev->xps_maps[type]);
2602 	if (type == XPS_RXQS) {
2603 		maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2604 		nr_ids = dev->num_rx_queues;
2605 	} else {
2606 		maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2607 		if (num_possible_cpus() > 1)
2608 			online_mask = cpumask_bits(cpu_online_mask);
2609 		nr_ids = nr_cpu_ids;
2610 	}
2611 
2612 	if (maps_sz < L1_CACHE_BYTES)
2613 		maps_sz = L1_CACHE_BYTES;
2614 
2615 	/* The old dev_maps could be larger or smaller than the one we're
2616 	 * setting up now, as dev->num_tc or nr_ids could have been updated in
2617 	 * between. We could try to be smart, but let's be safe instead and only
2618 	 * copy foreign traffic classes if the two map sizes match.
2619 	 */
2620 	if (dev_maps &&
2621 	    dev_maps->num_tc == num_tc && dev_maps->nr_ids == nr_ids)
2622 		copy = true;
2623 
2624 	/* allocate memory for queue storage */
2625 	for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2626 	     j < nr_ids;) {
2627 		if (!new_dev_maps) {
2628 			new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2629 			if (!new_dev_maps) {
2630 				mutex_unlock(&xps_map_mutex);
2631 				return -ENOMEM;
2632 			}
2633 
2634 			new_dev_maps->nr_ids = nr_ids;
2635 			new_dev_maps->num_tc = num_tc;
2636 		}
2637 
2638 		tci = j * num_tc + tc;
2639 		map = copy ? xmap_dereference(dev_maps->attr_map[tci]) : NULL;
2640 
2641 		map = expand_xps_map(map, j, index, type == XPS_RXQS);
2642 		if (!map)
2643 			goto error;
2644 
2645 		RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2646 	}
2647 
2648 	if (!new_dev_maps)
2649 		goto out_no_new_maps;
2650 
2651 	if (!dev_maps) {
2652 		/* Increment static keys at most once per type */
2653 		static_key_slow_inc_cpuslocked(&xps_needed);
2654 		if (type == XPS_RXQS)
2655 			static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2656 	}
2657 
2658 	for (j = 0; j < nr_ids; j++) {
2659 		bool skip_tc = false;
2660 
2661 		tci = j * num_tc + tc;
2662 		if (netif_attr_test_mask(j, mask, nr_ids) &&
2663 		    netif_attr_test_online(j, online_mask, nr_ids)) {
2664 			/* add tx-queue to CPU/rx-queue maps */
2665 			int pos = 0;
2666 
2667 			skip_tc = true;
2668 
2669 			map = xmap_dereference(new_dev_maps->attr_map[tci]);
2670 			while ((pos < map->len) && (map->queues[pos] != index))
2671 				pos++;
2672 
2673 			if (pos == map->len)
2674 				map->queues[map->len++] = index;
2675 #ifdef CONFIG_NUMA
2676 			if (type == XPS_CPUS) {
2677 				if (numa_node_id == -2)
2678 					numa_node_id = cpu_to_node(j);
2679 				else if (numa_node_id != cpu_to_node(j))
2680 					numa_node_id = -1;
2681 			}
2682 #endif
2683 		}
2684 
2685 		if (copy)
2686 			xps_copy_dev_maps(dev_maps, new_dev_maps, j, tc,
2687 					  skip_tc);
2688 	}
2689 
2690 	rcu_assign_pointer(dev->xps_maps[type], new_dev_maps);
2691 
2692 	/* Cleanup old maps */
2693 	if (!dev_maps)
2694 		goto out_no_old_maps;
2695 
2696 	for (j = 0; j < dev_maps->nr_ids; j++) {
2697 		for (i = num_tc, tci = j * dev_maps->num_tc; i--; tci++) {
2698 			map = xmap_dereference(dev_maps->attr_map[tci]);
2699 			if (!map)
2700 				continue;
2701 
2702 			if (copy) {
2703 				new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2704 				if (map == new_map)
2705 					continue;
2706 			}
2707 
2708 			RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2709 			kfree_rcu(map, rcu);
2710 		}
2711 	}
2712 
2713 	old_dev_maps = dev_maps;
2714 
2715 out_no_old_maps:
2716 	dev_maps = new_dev_maps;
2717 	active = true;
2718 
2719 out_no_new_maps:
2720 	if (type == XPS_CPUS)
2721 		/* update Tx queue numa node */
2722 		netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2723 					     (numa_node_id >= 0) ?
2724 					     numa_node_id : NUMA_NO_NODE);
2725 
2726 	if (!dev_maps)
2727 		goto out_no_maps;
2728 
2729 	/* removes tx-queue from unused CPUs/rx-queues */
2730 	for (j = 0; j < dev_maps->nr_ids; j++) {
2731 		tci = j * dev_maps->num_tc;
2732 
2733 		for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2734 			if (i == tc &&
2735 			    netif_attr_test_mask(j, mask, dev_maps->nr_ids) &&
2736 			    netif_attr_test_online(j, online_mask, dev_maps->nr_ids))
2737 				continue;
2738 
2739 			active |= remove_xps_queue(dev_maps,
2740 						   copy ? old_dev_maps : NULL,
2741 						   tci, index);
2742 		}
2743 	}
2744 
2745 	if (old_dev_maps)
2746 		kfree_rcu(old_dev_maps, rcu);
2747 
2748 	/* free map if not active */
2749 	if (!active)
2750 		reset_xps_maps(dev, dev_maps, type);
2751 
2752 out_no_maps:
2753 	mutex_unlock(&xps_map_mutex);
2754 
2755 	return 0;
2756 error:
2757 	/* remove any maps that we added */
2758 	for (j = 0; j < nr_ids; j++) {
2759 		for (i = num_tc, tci = j * num_tc; i--; tci++) {
2760 			new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2761 			map = copy ?
2762 			      xmap_dereference(dev_maps->attr_map[tci]) :
2763 			      NULL;
2764 			if (new_map && new_map != map)
2765 				kfree(new_map);
2766 		}
2767 	}
2768 
2769 	mutex_unlock(&xps_map_mutex);
2770 
2771 	kfree(new_dev_maps);
2772 	return -ENOMEM;
2773 }
2774 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2775 
2776 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2777 			u16 index)
2778 {
2779 	int ret;
2780 
2781 	cpus_read_lock();
2782 	ret =  __netif_set_xps_queue(dev, cpumask_bits(mask), index, XPS_CPUS);
2783 	cpus_read_unlock();
2784 
2785 	return ret;
2786 }
2787 EXPORT_SYMBOL(netif_set_xps_queue);
2788 
2789 #endif
2790 static void netdev_unbind_all_sb_channels(struct net_device *dev)
2791 {
2792 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2793 
2794 	/* Unbind any subordinate channels */
2795 	while (txq-- != &dev->_tx[0]) {
2796 		if (txq->sb_dev)
2797 			netdev_unbind_sb_channel(dev, txq->sb_dev);
2798 	}
2799 }
2800 
2801 void netdev_reset_tc(struct net_device *dev)
2802 {
2803 #ifdef CONFIG_XPS
2804 	netif_reset_xps_queues_gt(dev, 0);
2805 #endif
2806 	netdev_unbind_all_sb_channels(dev);
2807 
2808 	/* Reset TC configuration of device */
2809 	dev->num_tc = 0;
2810 	memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2811 	memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2812 }
2813 EXPORT_SYMBOL(netdev_reset_tc);
2814 
2815 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2816 {
2817 	if (tc >= dev->num_tc)
2818 		return -EINVAL;
2819 
2820 #ifdef CONFIG_XPS
2821 	netif_reset_xps_queues(dev, offset, count);
2822 #endif
2823 	dev->tc_to_txq[tc].count = count;
2824 	dev->tc_to_txq[tc].offset = offset;
2825 	return 0;
2826 }
2827 EXPORT_SYMBOL(netdev_set_tc_queue);
2828 
2829 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2830 {
2831 	if (num_tc > TC_MAX_QUEUE)
2832 		return -EINVAL;
2833 
2834 #ifdef CONFIG_XPS
2835 	netif_reset_xps_queues_gt(dev, 0);
2836 #endif
2837 	netdev_unbind_all_sb_channels(dev);
2838 
2839 	dev->num_tc = num_tc;
2840 	return 0;
2841 }
2842 EXPORT_SYMBOL(netdev_set_num_tc);
2843 
2844 void netdev_unbind_sb_channel(struct net_device *dev,
2845 			      struct net_device *sb_dev)
2846 {
2847 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2848 
2849 #ifdef CONFIG_XPS
2850 	netif_reset_xps_queues_gt(sb_dev, 0);
2851 #endif
2852 	memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2853 	memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2854 
2855 	while (txq-- != &dev->_tx[0]) {
2856 		if (txq->sb_dev == sb_dev)
2857 			txq->sb_dev = NULL;
2858 	}
2859 }
2860 EXPORT_SYMBOL(netdev_unbind_sb_channel);
2861 
2862 int netdev_bind_sb_channel_queue(struct net_device *dev,
2863 				 struct net_device *sb_dev,
2864 				 u8 tc, u16 count, u16 offset)
2865 {
2866 	/* Make certain the sb_dev and dev are already configured */
2867 	if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2868 		return -EINVAL;
2869 
2870 	/* We cannot hand out queues we don't have */
2871 	if ((offset + count) > dev->real_num_tx_queues)
2872 		return -EINVAL;
2873 
2874 	/* Record the mapping */
2875 	sb_dev->tc_to_txq[tc].count = count;
2876 	sb_dev->tc_to_txq[tc].offset = offset;
2877 
2878 	/* Provide a way for Tx queue to find the tc_to_txq map or
2879 	 * XPS map for itself.
2880 	 */
2881 	while (count--)
2882 		netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2883 
2884 	return 0;
2885 }
2886 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2887 
2888 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2889 {
2890 	/* Do not use a multiqueue device to represent a subordinate channel */
2891 	if (netif_is_multiqueue(dev))
2892 		return -ENODEV;
2893 
2894 	/* We allow channels 1 - 32767 to be used for subordinate channels.
2895 	 * Channel 0 is meant to be "native" mode and used only to represent
2896 	 * the main root device. We allow writing 0 to reset the device back
2897 	 * to normal mode after being used as a subordinate channel.
2898 	 */
2899 	if (channel > S16_MAX)
2900 		return -EINVAL;
2901 
2902 	dev->num_tc = -channel;
2903 
2904 	return 0;
2905 }
2906 EXPORT_SYMBOL(netdev_set_sb_channel);
2907 
2908 /*
2909  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2910  * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2911  */
2912 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2913 {
2914 	bool disabling;
2915 	int rc;
2916 
2917 	disabling = txq < dev->real_num_tx_queues;
2918 
2919 	if (txq < 1 || txq > dev->num_tx_queues)
2920 		return -EINVAL;
2921 
2922 	if (dev->reg_state == NETREG_REGISTERED ||
2923 	    dev->reg_state == NETREG_UNREGISTERING) {
2924 		ASSERT_RTNL();
2925 
2926 		rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2927 						  txq);
2928 		if (rc)
2929 			return rc;
2930 
2931 		if (dev->num_tc)
2932 			netif_setup_tc(dev, txq);
2933 
2934 		dev_qdisc_change_real_num_tx(dev, txq);
2935 
2936 		dev->real_num_tx_queues = txq;
2937 
2938 		if (disabling) {
2939 			synchronize_net();
2940 			qdisc_reset_all_tx_gt(dev, txq);
2941 #ifdef CONFIG_XPS
2942 			netif_reset_xps_queues_gt(dev, txq);
2943 #endif
2944 		}
2945 	} else {
2946 		dev->real_num_tx_queues = txq;
2947 	}
2948 
2949 	return 0;
2950 }
2951 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2952 
2953 #ifdef CONFIG_SYSFS
2954 /**
2955  *	netif_set_real_num_rx_queues - set actual number of RX queues used
2956  *	@dev: Network device
2957  *	@rxq: Actual number of RX queues
2958  *
2959  *	This must be called either with the rtnl_lock held or before
2960  *	registration of the net device.  Returns 0 on success, or a
2961  *	negative error code.  If called before registration, it always
2962  *	succeeds.
2963  */
2964 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2965 {
2966 	int rc;
2967 
2968 	if (rxq < 1 || rxq > dev->num_rx_queues)
2969 		return -EINVAL;
2970 
2971 	if (dev->reg_state == NETREG_REGISTERED) {
2972 		ASSERT_RTNL();
2973 
2974 		rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2975 						  rxq);
2976 		if (rc)
2977 			return rc;
2978 	}
2979 
2980 	dev->real_num_rx_queues = rxq;
2981 	return 0;
2982 }
2983 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2984 #endif
2985 
2986 /**
2987  *	netif_set_real_num_queues - set actual number of RX and TX queues used
2988  *	@dev: Network device
2989  *	@txq: Actual number of TX queues
2990  *	@rxq: Actual number of RX queues
2991  *
2992  *	Set the real number of both TX and RX queues.
2993  *	Does nothing if the number of queues is already correct.
2994  */
2995 int netif_set_real_num_queues(struct net_device *dev,
2996 			      unsigned int txq, unsigned int rxq)
2997 {
2998 	unsigned int old_rxq = dev->real_num_rx_queues;
2999 	int err;
3000 
3001 	if (txq < 1 || txq > dev->num_tx_queues ||
3002 	    rxq < 1 || rxq > dev->num_rx_queues)
3003 		return -EINVAL;
3004 
3005 	/* Start from increases, so the error path only does decreases -
3006 	 * decreases can't fail.
3007 	 */
3008 	if (rxq > dev->real_num_rx_queues) {
3009 		err = netif_set_real_num_rx_queues(dev, rxq);
3010 		if (err)
3011 			return err;
3012 	}
3013 	if (txq > dev->real_num_tx_queues) {
3014 		err = netif_set_real_num_tx_queues(dev, txq);
3015 		if (err)
3016 			goto undo_rx;
3017 	}
3018 	if (rxq < dev->real_num_rx_queues)
3019 		WARN_ON(netif_set_real_num_rx_queues(dev, rxq));
3020 	if (txq < dev->real_num_tx_queues)
3021 		WARN_ON(netif_set_real_num_tx_queues(dev, txq));
3022 
3023 	return 0;
3024 undo_rx:
3025 	WARN_ON(netif_set_real_num_rx_queues(dev, old_rxq));
3026 	return err;
3027 }
3028 EXPORT_SYMBOL(netif_set_real_num_queues);
3029 
3030 /**
3031  * netif_set_tso_max_size() - set the max size of TSO frames supported
3032  * @dev:	netdev to update
3033  * @size:	max skb->len of a TSO frame
3034  *
3035  * Set the limit on the size of TSO super-frames the device can handle.
3036  * Unless explicitly set the stack will assume the value of
3037  * %GSO_LEGACY_MAX_SIZE.
3038  */
3039 void netif_set_tso_max_size(struct net_device *dev, unsigned int size)
3040 {
3041 	dev->tso_max_size = min(GSO_MAX_SIZE, size);
3042 	if (size < READ_ONCE(dev->gso_max_size))
3043 		netif_set_gso_max_size(dev, size);
3044 	if (size < READ_ONCE(dev->gso_ipv4_max_size))
3045 		netif_set_gso_ipv4_max_size(dev, size);
3046 }
3047 EXPORT_SYMBOL(netif_set_tso_max_size);
3048 
3049 /**
3050  * netif_set_tso_max_segs() - set the max number of segs supported for TSO
3051  * @dev:	netdev to update
3052  * @segs:	max number of TCP segments
3053  *
3054  * Set the limit on the number of TCP segments the device can generate from
3055  * a single TSO super-frame.
3056  * Unless explicitly set the stack will assume the value of %GSO_MAX_SEGS.
3057  */
3058 void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs)
3059 {
3060 	dev->tso_max_segs = segs;
3061 	if (segs < READ_ONCE(dev->gso_max_segs))
3062 		netif_set_gso_max_segs(dev, segs);
3063 }
3064 EXPORT_SYMBOL(netif_set_tso_max_segs);
3065 
3066 /**
3067  * netif_inherit_tso_max() - copy all TSO limits from a lower device to an upper
3068  * @to:		netdev to update
3069  * @from:	netdev from which to copy the limits
3070  */
3071 void netif_inherit_tso_max(struct net_device *to, const struct net_device *from)
3072 {
3073 	netif_set_tso_max_size(to, from->tso_max_size);
3074 	netif_set_tso_max_segs(to, from->tso_max_segs);
3075 }
3076 EXPORT_SYMBOL(netif_inherit_tso_max);
3077 
3078 /**
3079  * netif_get_num_default_rss_queues - default number of RSS queues
3080  *
3081  * Default value is the number of physical cores if there are only 1 or 2, or
3082  * divided by 2 if there are more.
3083  */
3084 int netif_get_num_default_rss_queues(void)
3085 {
3086 	cpumask_var_t cpus;
3087 	int cpu, count = 0;
3088 
3089 	if (unlikely(is_kdump_kernel() || !zalloc_cpumask_var(&cpus, GFP_KERNEL)))
3090 		return 1;
3091 
3092 	cpumask_copy(cpus, cpu_online_mask);
3093 	for_each_cpu(cpu, cpus) {
3094 		++count;
3095 		cpumask_andnot(cpus, cpus, topology_sibling_cpumask(cpu));
3096 	}
3097 	free_cpumask_var(cpus);
3098 
3099 	return count > 2 ? DIV_ROUND_UP(count, 2) : count;
3100 }
3101 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3102 
3103 static void __netif_reschedule(struct Qdisc *q)
3104 {
3105 	struct softnet_data *sd;
3106 	unsigned long flags;
3107 
3108 	local_irq_save(flags);
3109 	sd = this_cpu_ptr(&softnet_data);
3110 	q->next_sched = NULL;
3111 	*sd->output_queue_tailp = q;
3112 	sd->output_queue_tailp = &q->next_sched;
3113 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
3114 	local_irq_restore(flags);
3115 }
3116 
3117 void __netif_schedule(struct Qdisc *q)
3118 {
3119 	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3120 		__netif_reschedule(q);
3121 }
3122 EXPORT_SYMBOL(__netif_schedule);
3123 
3124 struct dev_kfree_skb_cb {
3125 	enum skb_drop_reason reason;
3126 };
3127 
3128 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
3129 {
3130 	return (struct dev_kfree_skb_cb *)skb->cb;
3131 }
3132 
3133 void netif_schedule_queue(struct netdev_queue *txq)
3134 {
3135 	rcu_read_lock();
3136 	if (!netif_xmit_stopped(txq)) {
3137 		struct Qdisc *q = rcu_dereference(txq->qdisc);
3138 
3139 		__netif_schedule(q);
3140 	}
3141 	rcu_read_unlock();
3142 }
3143 EXPORT_SYMBOL(netif_schedule_queue);
3144 
3145 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3146 {
3147 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3148 		struct Qdisc *q;
3149 
3150 		rcu_read_lock();
3151 		q = rcu_dereference(dev_queue->qdisc);
3152 		__netif_schedule(q);
3153 		rcu_read_unlock();
3154 	}
3155 }
3156 EXPORT_SYMBOL(netif_tx_wake_queue);
3157 
3158 void dev_kfree_skb_irq_reason(struct sk_buff *skb, enum skb_drop_reason reason)
3159 {
3160 	unsigned long flags;
3161 
3162 	if (unlikely(!skb))
3163 		return;
3164 
3165 	if (likely(refcount_read(&skb->users) == 1)) {
3166 		smp_rmb();
3167 		refcount_set(&skb->users, 0);
3168 	} else if (likely(!refcount_dec_and_test(&skb->users))) {
3169 		return;
3170 	}
3171 	get_kfree_skb_cb(skb)->reason = reason;
3172 	local_irq_save(flags);
3173 	skb->next = __this_cpu_read(softnet_data.completion_queue);
3174 	__this_cpu_write(softnet_data.completion_queue, skb);
3175 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
3176 	local_irq_restore(flags);
3177 }
3178 EXPORT_SYMBOL(dev_kfree_skb_irq_reason);
3179 
3180 void dev_kfree_skb_any_reason(struct sk_buff *skb, enum skb_drop_reason reason)
3181 {
3182 	if (in_hardirq() || irqs_disabled())
3183 		dev_kfree_skb_irq_reason(skb, reason);
3184 	else
3185 		kfree_skb_reason(skb, reason);
3186 }
3187 EXPORT_SYMBOL(dev_kfree_skb_any_reason);
3188 
3189 
3190 /**
3191  * netif_device_detach - mark device as removed
3192  * @dev: network device
3193  *
3194  * Mark device as removed from system and therefore no longer available.
3195  */
3196 void netif_device_detach(struct net_device *dev)
3197 {
3198 	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3199 	    netif_running(dev)) {
3200 		netif_tx_stop_all_queues(dev);
3201 	}
3202 }
3203 EXPORT_SYMBOL(netif_device_detach);
3204 
3205 /**
3206  * netif_device_attach - mark device as attached
3207  * @dev: network device
3208  *
3209  * Mark device as attached from system and restart if needed.
3210  */
3211 void netif_device_attach(struct net_device *dev)
3212 {
3213 	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3214 	    netif_running(dev)) {
3215 		netif_tx_wake_all_queues(dev);
3216 		__netdev_watchdog_up(dev);
3217 	}
3218 }
3219 EXPORT_SYMBOL(netif_device_attach);
3220 
3221 /*
3222  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3223  * to be used as a distribution range.
3224  */
3225 static u16 skb_tx_hash(const struct net_device *dev,
3226 		       const struct net_device *sb_dev,
3227 		       struct sk_buff *skb)
3228 {
3229 	u32 hash;
3230 	u16 qoffset = 0;
3231 	u16 qcount = dev->real_num_tx_queues;
3232 
3233 	if (dev->num_tc) {
3234 		u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3235 
3236 		qoffset = sb_dev->tc_to_txq[tc].offset;
3237 		qcount = sb_dev->tc_to_txq[tc].count;
3238 		if (unlikely(!qcount)) {
3239 			net_warn_ratelimited("%s: invalid qcount, qoffset %u for tc %u\n",
3240 					     sb_dev->name, qoffset, tc);
3241 			qoffset = 0;
3242 			qcount = dev->real_num_tx_queues;
3243 		}
3244 	}
3245 
3246 	if (skb_rx_queue_recorded(skb)) {
3247 		DEBUG_NET_WARN_ON_ONCE(qcount == 0);
3248 		hash = skb_get_rx_queue(skb);
3249 		if (hash >= qoffset)
3250 			hash -= qoffset;
3251 		while (unlikely(hash >= qcount))
3252 			hash -= qcount;
3253 		return hash + qoffset;
3254 	}
3255 
3256 	return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3257 }
3258 
3259 void skb_warn_bad_offload(const struct sk_buff *skb)
3260 {
3261 	static const netdev_features_t null_features;
3262 	struct net_device *dev = skb->dev;
3263 	const char *name = "";
3264 
3265 	if (!net_ratelimit())
3266 		return;
3267 
3268 	if (dev) {
3269 		if (dev->dev.parent)
3270 			name = dev_driver_string(dev->dev.parent);
3271 		else
3272 			name = netdev_name(dev);
3273 	}
3274 	skb_dump(KERN_WARNING, skb, false);
3275 	WARN(1, "%s: caps=(%pNF, %pNF)\n",
3276 	     name, dev ? &dev->features : &null_features,
3277 	     skb->sk ? &skb->sk->sk_route_caps : &null_features);
3278 }
3279 
3280 /*
3281  * Invalidate hardware checksum when packet is to be mangled, and
3282  * complete checksum manually on outgoing path.
3283  */
3284 int skb_checksum_help(struct sk_buff *skb)
3285 {
3286 	__wsum csum;
3287 	int ret = 0, offset;
3288 
3289 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3290 		goto out_set_summed;
3291 
3292 	if (unlikely(skb_is_gso(skb))) {
3293 		skb_warn_bad_offload(skb);
3294 		return -EINVAL;
3295 	}
3296 
3297 	/* Before computing a checksum, we should make sure no frag could
3298 	 * be modified by an external entity : checksum could be wrong.
3299 	 */
3300 	if (skb_has_shared_frag(skb)) {
3301 		ret = __skb_linearize(skb);
3302 		if (ret)
3303 			goto out;
3304 	}
3305 
3306 	offset = skb_checksum_start_offset(skb);
3307 	ret = -EINVAL;
3308 	if (unlikely(offset >= skb_headlen(skb))) {
3309 		DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3310 		WARN_ONCE(true, "offset (%d) >= skb_headlen() (%u)\n",
3311 			  offset, skb_headlen(skb));
3312 		goto out;
3313 	}
3314 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
3315 
3316 	offset += skb->csum_offset;
3317 	if (unlikely(offset + sizeof(__sum16) > skb_headlen(skb))) {
3318 		DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3319 		WARN_ONCE(true, "offset+2 (%zu) > skb_headlen() (%u)\n",
3320 			  offset + sizeof(__sum16), skb_headlen(skb));
3321 		goto out;
3322 	}
3323 	ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3324 	if (ret)
3325 		goto out;
3326 
3327 	*(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3328 out_set_summed:
3329 	skb->ip_summed = CHECKSUM_NONE;
3330 out:
3331 	return ret;
3332 }
3333 EXPORT_SYMBOL(skb_checksum_help);
3334 
3335 int skb_crc32c_csum_help(struct sk_buff *skb)
3336 {
3337 	__le32 crc32c_csum;
3338 	int ret = 0, offset, start;
3339 
3340 	if (skb->ip_summed != CHECKSUM_PARTIAL)
3341 		goto out;
3342 
3343 	if (unlikely(skb_is_gso(skb)))
3344 		goto out;
3345 
3346 	/* Before computing a checksum, we should make sure no frag could
3347 	 * be modified by an external entity : checksum could be wrong.
3348 	 */
3349 	if (unlikely(skb_has_shared_frag(skb))) {
3350 		ret = __skb_linearize(skb);
3351 		if (ret)
3352 			goto out;
3353 	}
3354 	start = skb_checksum_start_offset(skb);
3355 	offset = start + offsetof(struct sctphdr, checksum);
3356 	if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3357 		ret = -EINVAL;
3358 		goto out;
3359 	}
3360 
3361 	ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3362 	if (ret)
3363 		goto out;
3364 
3365 	crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3366 						  skb->len - start, ~(__u32)0,
3367 						  crc32c_csum_stub));
3368 	*(__le32 *)(skb->data + offset) = crc32c_csum;
3369 	skb_reset_csum_not_inet(skb);
3370 out:
3371 	return ret;
3372 }
3373 
3374 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3375 {
3376 	__be16 type = skb->protocol;
3377 
3378 	/* Tunnel gso handlers can set protocol to ethernet. */
3379 	if (type == htons(ETH_P_TEB)) {
3380 		struct ethhdr *eth;
3381 
3382 		if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3383 			return 0;
3384 
3385 		eth = (struct ethhdr *)skb->data;
3386 		type = eth->h_proto;
3387 	}
3388 
3389 	return vlan_get_protocol_and_depth(skb, type, depth);
3390 }
3391 
3392 
3393 /* Take action when hardware reception checksum errors are detected. */
3394 #ifdef CONFIG_BUG
3395 static void do_netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3396 {
3397 	netdev_err(dev, "hw csum failure\n");
3398 	skb_dump(KERN_ERR, skb, true);
3399 	dump_stack();
3400 }
3401 
3402 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3403 {
3404 	DO_ONCE_LITE(do_netdev_rx_csum_fault, dev, skb);
3405 }
3406 EXPORT_SYMBOL(netdev_rx_csum_fault);
3407 #endif
3408 
3409 /* XXX: check that highmem exists at all on the given machine. */
3410 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3411 {
3412 #ifdef CONFIG_HIGHMEM
3413 	int i;
3414 
3415 	if (!(dev->features & NETIF_F_HIGHDMA)) {
3416 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3417 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3418 
3419 			if (PageHighMem(skb_frag_page(frag)))
3420 				return 1;
3421 		}
3422 	}
3423 #endif
3424 	return 0;
3425 }
3426 
3427 /* If MPLS offload request, verify we are testing hardware MPLS features
3428  * instead of standard features for the netdev.
3429  */
3430 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3431 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3432 					   netdev_features_t features,
3433 					   __be16 type)
3434 {
3435 	if (eth_p_mpls(type))
3436 		features &= skb->dev->mpls_features;
3437 
3438 	return features;
3439 }
3440 #else
3441 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3442 					   netdev_features_t features,
3443 					   __be16 type)
3444 {
3445 	return features;
3446 }
3447 #endif
3448 
3449 static netdev_features_t harmonize_features(struct sk_buff *skb,
3450 	netdev_features_t features)
3451 {
3452 	__be16 type;
3453 
3454 	type = skb_network_protocol(skb, NULL);
3455 	features = net_mpls_features(skb, features, type);
3456 
3457 	if (skb->ip_summed != CHECKSUM_NONE &&
3458 	    !can_checksum_protocol(features, type)) {
3459 		features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3460 	}
3461 	if (illegal_highdma(skb->dev, skb))
3462 		features &= ~NETIF_F_SG;
3463 
3464 	return features;
3465 }
3466 
3467 netdev_features_t passthru_features_check(struct sk_buff *skb,
3468 					  struct net_device *dev,
3469 					  netdev_features_t features)
3470 {
3471 	return features;
3472 }
3473 EXPORT_SYMBOL(passthru_features_check);
3474 
3475 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3476 					     struct net_device *dev,
3477 					     netdev_features_t features)
3478 {
3479 	return vlan_features_check(skb, features);
3480 }
3481 
3482 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3483 					    struct net_device *dev,
3484 					    netdev_features_t features)
3485 {
3486 	u16 gso_segs = skb_shinfo(skb)->gso_segs;
3487 
3488 	if (gso_segs > READ_ONCE(dev->gso_max_segs))
3489 		return features & ~NETIF_F_GSO_MASK;
3490 
3491 	if (unlikely(skb->len >= READ_ONCE(dev->gso_max_size)))
3492 		return features & ~NETIF_F_GSO_MASK;
3493 
3494 	if (!skb_shinfo(skb)->gso_type) {
3495 		skb_warn_bad_offload(skb);
3496 		return features & ~NETIF_F_GSO_MASK;
3497 	}
3498 
3499 	/* Support for GSO partial features requires software
3500 	 * intervention before we can actually process the packets
3501 	 * so we need to strip support for any partial features now
3502 	 * and we can pull them back in after we have partially
3503 	 * segmented the frame.
3504 	 */
3505 	if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3506 		features &= ~dev->gso_partial_features;
3507 
3508 	/* Make sure to clear the IPv4 ID mangling feature if the
3509 	 * IPv4 header has the potential to be fragmented.
3510 	 */
3511 	if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3512 		struct iphdr *iph = skb->encapsulation ?
3513 				    inner_ip_hdr(skb) : ip_hdr(skb);
3514 
3515 		if (!(iph->frag_off & htons(IP_DF)))
3516 			features &= ~NETIF_F_TSO_MANGLEID;
3517 	}
3518 
3519 	return features;
3520 }
3521 
3522 netdev_features_t netif_skb_features(struct sk_buff *skb)
3523 {
3524 	struct net_device *dev = skb->dev;
3525 	netdev_features_t features = dev->features;
3526 
3527 	if (skb_is_gso(skb))
3528 		features = gso_features_check(skb, dev, features);
3529 
3530 	/* If encapsulation offload request, verify we are testing
3531 	 * hardware encapsulation features instead of standard
3532 	 * features for the netdev
3533 	 */
3534 	if (skb->encapsulation)
3535 		features &= dev->hw_enc_features;
3536 
3537 	if (skb_vlan_tagged(skb))
3538 		features = netdev_intersect_features(features,
3539 						     dev->vlan_features |
3540 						     NETIF_F_HW_VLAN_CTAG_TX |
3541 						     NETIF_F_HW_VLAN_STAG_TX);
3542 
3543 	if (dev->netdev_ops->ndo_features_check)
3544 		features &= dev->netdev_ops->ndo_features_check(skb, dev,
3545 								features);
3546 	else
3547 		features &= dflt_features_check(skb, dev, features);
3548 
3549 	return harmonize_features(skb, features);
3550 }
3551 EXPORT_SYMBOL(netif_skb_features);
3552 
3553 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3554 		    struct netdev_queue *txq, bool more)
3555 {
3556 	unsigned int len;
3557 	int rc;
3558 
3559 	if (dev_nit_active(dev))
3560 		dev_queue_xmit_nit(skb, dev);
3561 
3562 	len = skb->len;
3563 	trace_net_dev_start_xmit(skb, dev);
3564 	rc = netdev_start_xmit(skb, dev, txq, more);
3565 	trace_net_dev_xmit(skb, rc, dev, len);
3566 
3567 	return rc;
3568 }
3569 
3570 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3571 				    struct netdev_queue *txq, int *ret)
3572 {
3573 	struct sk_buff *skb = first;
3574 	int rc = NETDEV_TX_OK;
3575 
3576 	while (skb) {
3577 		struct sk_buff *next = skb->next;
3578 
3579 		skb_mark_not_on_list(skb);
3580 		rc = xmit_one(skb, dev, txq, next != NULL);
3581 		if (unlikely(!dev_xmit_complete(rc))) {
3582 			skb->next = next;
3583 			goto out;
3584 		}
3585 
3586 		skb = next;
3587 		if (netif_tx_queue_stopped(txq) && skb) {
3588 			rc = NETDEV_TX_BUSY;
3589 			break;
3590 		}
3591 	}
3592 
3593 out:
3594 	*ret = rc;
3595 	return skb;
3596 }
3597 
3598 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3599 					  netdev_features_t features)
3600 {
3601 	if (skb_vlan_tag_present(skb) &&
3602 	    !vlan_hw_offload_capable(features, skb->vlan_proto))
3603 		skb = __vlan_hwaccel_push_inside(skb);
3604 	return skb;
3605 }
3606 
3607 int skb_csum_hwoffload_help(struct sk_buff *skb,
3608 			    const netdev_features_t features)
3609 {
3610 	if (unlikely(skb_csum_is_sctp(skb)))
3611 		return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3612 			skb_crc32c_csum_help(skb);
3613 
3614 	if (features & NETIF_F_HW_CSUM)
3615 		return 0;
3616 
3617 	if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
3618 		switch (skb->csum_offset) {
3619 		case offsetof(struct tcphdr, check):
3620 		case offsetof(struct udphdr, check):
3621 			return 0;
3622 		}
3623 	}
3624 
3625 	return skb_checksum_help(skb);
3626 }
3627 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3628 
3629 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3630 {
3631 	netdev_features_t features;
3632 
3633 	features = netif_skb_features(skb);
3634 	skb = validate_xmit_vlan(skb, features);
3635 	if (unlikely(!skb))
3636 		goto out_null;
3637 
3638 	skb = sk_validate_xmit_skb(skb, dev);
3639 	if (unlikely(!skb))
3640 		goto out_null;
3641 
3642 	if (netif_needs_gso(skb, features)) {
3643 		struct sk_buff *segs;
3644 
3645 		segs = skb_gso_segment(skb, features);
3646 		if (IS_ERR(segs)) {
3647 			goto out_kfree_skb;
3648 		} else if (segs) {
3649 			consume_skb(skb);
3650 			skb = segs;
3651 		}
3652 	} else {
3653 		if (skb_needs_linearize(skb, features) &&
3654 		    __skb_linearize(skb))
3655 			goto out_kfree_skb;
3656 
3657 		/* If packet is not checksummed and device does not
3658 		 * support checksumming for this protocol, complete
3659 		 * checksumming here.
3660 		 */
3661 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
3662 			if (skb->encapsulation)
3663 				skb_set_inner_transport_header(skb,
3664 							       skb_checksum_start_offset(skb));
3665 			else
3666 				skb_set_transport_header(skb,
3667 							 skb_checksum_start_offset(skb));
3668 			if (skb_csum_hwoffload_help(skb, features))
3669 				goto out_kfree_skb;
3670 		}
3671 	}
3672 
3673 	skb = validate_xmit_xfrm(skb, features, again);
3674 
3675 	return skb;
3676 
3677 out_kfree_skb:
3678 	kfree_skb(skb);
3679 out_null:
3680 	dev_core_stats_tx_dropped_inc(dev);
3681 	return NULL;
3682 }
3683 
3684 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3685 {
3686 	struct sk_buff *next, *head = NULL, *tail;
3687 
3688 	for (; skb != NULL; skb = next) {
3689 		next = skb->next;
3690 		skb_mark_not_on_list(skb);
3691 
3692 		/* in case skb wont be segmented, point to itself */
3693 		skb->prev = skb;
3694 
3695 		skb = validate_xmit_skb(skb, dev, again);
3696 		if (!skb)
3697 			continue;
3698 
3699 		if (!head)
3700 			head = skb;
3701 		else
3702 			tail->next = skb;
3703 		/* If skb was segmented, skb->prev points to
3704 		 * the last segment. If not, it still contains skb.
3705 		 */
3706 		tail = skb->prev;
3707 	}
3708 	return head;
3709 }
3710 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3711 
3712 static void qdisc_pkt_len_init(struct sk_buff *skb)
3713 {
3714 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
3715 
3716 	qdisc_skb_cb(skb)->pkt_len = skb->len;
3717 
3718 	/* To get more precise estimation of bytes sent on wire,
3719 	 * we add to pkt_len the headers size of all segments
3720 	 */
3721 	if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3722 		u16 gso_segs = shinfo->gso_segs;
3723 		unsigned int hdr_len;
3724 
3725 		/* mac layer + network layer */
3726 		hdr_len = skb_transport_offset(skb);
3727 
3728 		/* + transport layer */
3729 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3730 			const struct tcphdr *th;
3731 			struct tcphdr _tcphdr;
3732 
3733 			th = skb_header_pointer(skb, hdr_len,
3734 						sizeof(_tcphdr), &_tcphdr);
3735 			if (likely(th))
3736 				hdr_len += __tcp_hdrlen(th);
3737 		} else {
3738 			struct udphdr _udphdr;
3739 
3740 			if (skb_header_pointer(skb, hdr_len,
3741 					       sizeof(_udphdr), &_udphdr))
3742 				hdr_len += sizeof(struct udphdr);
3743 		}
3744 
3745 		if (shinfo->gso_type & SKB_GSO_DODGY)
3746 			gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3747 						shinfo->gso_size);
3748 
3749 		qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3750 	}
3751 }
3752 
3753 static int dev_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *q,
3754 			     struct sk_buff **to_free,
3755 			     struct netdev_queue *txq)
3756 {
3757 	int rc;
3758 
3759 	rc = q->enqueue(skb, q, to_free) & NET_XMIT_MASK;
3760 	if (rc == NET_XMIT_SUCCESS)
3761 		trace_qdisc_enqueue(q, txq, skb);
3762 	return rc;
3763 }
3764 
3765 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3766 				 struct net_device *dev,
3767 				 struct netdev_queue *txq)
3768 {
3769 	spinlock_t *root_lock = qdisc_lock(q);
3770 	struct sk_buff *to_free = NULL;
3771 	bool contended;
3772 	int rc;
3773 
3774 	qdisc_calculate_pkt_len(skb, q);
3775 
3776 	tcf_set_drop_reason(skb, SKB_DROP_REASON_QDISC_DROP);
3777 
3778 	if (q->flags & TCQ_F_NOLOCK) {
3779 		if (q->flags & TCQ_F_CAN_BYPASS && nolock_qdisc_is_empty(q) &&
3780 		    qdisc_run_begin(q)) {
3781 			/* Retest nolock_qdisc_is_empty() within the protection
3782 			 * of q->seqlock to protect from racing with requeuing.
3783 			 */
3784 			if (unlikely(!nolock_qdisc_is_empty(q))) {
3785 				rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3786 				__qdisc_run(q);
3787 				qdisc_run_end(q);
3788 
3789 				goto no_lock_out;
3790 			}
3791 
3792 			qdisc_bstats_cpu_update(q, skb);
3793 			if (sch_direct_xmit(skb, q, dev, txq, NULL, true) &&
3794 			    !nolock_qdisc_is_empty(q))
3795 				__qdisc_run(q);
3796 
3797 			qdisc_run_end(q);
3798 			return NET_XMIT_SUCCESS;
3799 		}
3800 
3801 		rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3802 		qdisc_run(q);
3803 
3804 no_lock_out:
3805 		if (unlikely(to_free))
3806 			kfree_skb_list_reason(to_free,
3807 					      tcf_get_drop_reason(to_free));
3808 		return rc;
3809 	}
3810 
3811 	/*
3812 	 * Heuristic to force contended enqueues to serialize on a
3813 	 * separate lock before trying to get qdisc main lock.
3814 	 * This permits qdisc->running owner to get the lock more
3815 	 * often and dequeue packets faster.
3816 	 * On PREEMPT_RT it is possible to preempt the qdisc owner during xmit
3817 	 * and then other tasks will only enqueue packets. The packets will be
3818 	 * sent after the qdisc owner is scheduled again. To prevent this
3819 	 * scenario the task always serialize on the lock.
3820 	 */
3821 	contended = qdisc_is_running(q) || IS_ENABLED(CONFIG_PREEMPT_RT);
3822 	if (unlikely(contended))
3823 		spin_lock(&q->busylock);
3824 
3825 	spin_lock(root_lock);
3826 	if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3827 		__qdisc_drop(skb, &to_free);
3828 		rc = NET_XMIT_DROP;
3829 	} else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3830 		   qdisc_run_begin(q)) {
3831 		/*
3832 		 * This is a work-conserving queue; there are no old skbs
3833 		 * waiting to be sent out; and the qdisc is not running -
3834 		 * xmit the skb directly.
3835 		 */
3836 
3837 		qdisc_bstats_update(q, skb);
3838 
3839 		if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3840 			if (unlikely(contended)) {
3841 				spin_unlock(&q->busylock);
3842 				contended = false;
3843 			}
3844 			__qdisc_run(q);
3845 		}
3846 
3847 		qdisc_run_end(q);
3848 		rc = NET_XMIT_SUCCESS;
3849 	} else {
3850 		rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3851 		if (qdisc_run_begin(q)) {
3852 			if (unlikely(contended)) {
3853 				spin_unlock(&q->busylock);
3854 				contended = false;
3855 			}
3856 			__qdisc_run(q);
3857 			qdisc_run_end(q);
3858 		}
3859 	}
3860 	spin_unlock(root_lock);
3861 	if (unlikely(to_free))
3862 		kfree_skb_list_reason(to_free,
3863 				      tcf_get_drop_reason(to_free));
3864 	if (unlikely(contended))
3865 		spin_unlock(&q->busylock);
3866 	return rc;
3867 }
3868 
3869 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3870 static void skb_update_prio(struct sk_buff *skb)
3871 {
3872 	const struct netprio_map *map;
3873 	const struct sock *sk;
3874 	unsigned int prioidx;
3875 
3876 	if (skb->priority)
3877 		return;
3878 	map = rcu_dereference_bh(skb->dev->priomap);
3879 	if (!map)
3880 		return;
3881 	sk = skb_to_full_sk(skb);
3882 	if (!sk)
3883 		return;
3884 
3885 	prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3886 
3887 	if (prioidx < map->priomap_len)
3888 		skb->priority = map->priomap[prioidx];
3889 }
3890 #else
3891 #define skb_update_prio(skb)
3892 #endif
3893 
3894 /**
3895  *	dev_loopback_xmit - loop back @skb
3896  *	@net: network namespace this loopback is happening in
3897  *	@sk:  sk needed to be a netfilter okfn
3898  *	@skb: buffer to transmit
3899  */
3900 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3901 {
3902 	skb_reset_mac_header(skb);
3903 	__skb_pull(skb, skb_network_offset(skb));
3904 	skb->pkt_type = PACKET_LOOPBACK;
3905 	if (skb->ip_summed == CHECKSUM_NONE)
3906 		skb->ip_summed = CHECKSUM_UNNECESSARY;
3907 	DEBUG_NET_WARN_ON_ONCE(!skb_dst(skb));
3908 	skb_dst_force(skb);
3909 	netif_rx(skb);
3910 	return 0;
3911 }
3912 EXPORT_SYMBOL(dev_loopback_xmit);
3913 
3914 #ifdef CONFIG_NET_EGRESS
3915 static struct netdev_queue *
3916 netdev_tx_queue_mapping(struct net_device *dev, struct sk_buff *skb)
3917 {
3918 	int qm = skb_get_queue_mapping(skb);
3919 
3920 	return netdev_get_tx_queue(dev, netdev_cap_txqueue(dev, qm));
3921 }
3922 
3923 static bool netdev_xmit_txqueue_skipped(void)
3924 {
3925 	return __this_cpu_read(softnet_data.xmit.skip_txqueue);
3926 }
3927 
3928 void netdev_xmit_skip_txqueue(bool skip)
3929 {
3930 	__this_cpu_write(softnet_data.xmit.skip_txqueue, skip);
3931 }
3932 EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue);
3933 #endif /* CONFIG_NET_EGRESS */
3934 
3935 #ifdef CONFIG_NET_XGRESS
3936 static int tc_run(struct tcx_entry *entry, struct sk_buff *skb,
3937 		  enum skb_drop_reason *drop_reason)
3938 {
3939 	int ret = TC_ACT_UNSPEC;
3940 #ifdef CONFIG_NET_CLS_ACT
3941 	struct mini_Qdisc *miniq = rcu_dereference_bh(entry->miniq);
3942 	struct tcf_result res;
3943 
3944 	if (!miniq)
3945 		return ret;
3946 
3947 	if (static_branch_unlikely(&tcf_bypass_check_needed_key)) {
3948 		if (tcf_block_bypass_sw(miniq->block))
3949 			return ret;
3950 	}
3951 
3952 	tc_skb_cb(skb)->mru = 0;
3953 	tc_skb_cb(skb)->post_ct = false;
3954 	tcf_set_drop_reason(skb, *drop_reason);
3955 
3956 	mini_qdisc_bstats_cpu_update(miniq, skb);
3957 	ret = tcf_classify(skb, miniq->block, miniq->filter_list, &res, false);
3958 	/* Only tcf related quirks below. */
3959 	switch (ret) {
3960 	case TC_ACT_SHOT:
3961 		*drop_reason = tcf_get_drop_reason(skb);
3962 		mini_qdisc_qstats_cpu_drop(miniq);
3963 		break;
3964 	case TC_ACT_OK:
3965 	case TC_ACT_RECLASSIFY:
3966 		skb->tc_index = TC_H_MIN(res.classid);
3967 		break;
3968 	}
3969 #endif /* CONFIG_NET_CLS_ACT */
3970 	return ret;
3971 }
3972 
3973 static DEFINE_STATIC_KEY_FALSE(tcx_needed_key);
3974 
3975 void tcx_inc(void)
3976 {
3977 	static_branch_inc(&tcx_needed_key);
3978 }
3979 
3980 void tcx_dec(void)
3981 {
3982 	static_branch_dec(&tcx_needed_key);
3983 }
3984 
3985 static __always_inline enum tcx_action_base
3986 tcx_run(const struct bpf_mprog_entry *entry, struct sk_buff *skb,
3987 	const bool needs_mac)
3988 {
3989 	const struct bpf_mprog_fp *fp;
3990 	const struct bpf_prog *prog;
3991 	int ret = TCX_NEXT;
3992 
3993 	if (needs_mac)
3994 		__skb_push(skb, skb->mac_len);
3995 	bpf_mprog_foreach_prog(entry, fp, prog) {
3996 		bpf_compute_data_pointers(skb);
3997 		ret = bpf_prog_run(prog, skb);
3998 		if (ret != TCX_NEXT)
3999 			break;
4000 	}
4001 	if (needs_mac)
4002 		__skb_pull(skb, skb->mac_len);
4003 	return tcx_action_code(skb, ret);
4004 }
4005 
4006 static __always_inline struct sk_buff *
4007 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4008 		   struct net_device *orig_dev, bool *another)
4009 {
4010 	struct bpf_mprog_entry *entry = rcu_dereference_bh(skb->dev->tcx_ingress);
4011 	enum skb_drop_reason drop_reason = SKB_DROP_REASON_TC_INGRESS;
4012 	int sch_ret;
4013 
4014 	if (!entry)
4015 		return skb;
4016 	if (*pt_prev) {
4017 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
4018 		*pt_prev = NULL;
4019 	}
4020 
4021 	qdisc_skb_cb(skb)->pkt_len = skb->len;
4022 	tcx_set_ingress(skb, true);
4023 
4024 	if (static_branch_unlikely(&tcx_needed_key)) {
4025 		sch_ret = tcx_run(entry, skb, true);
4026 		if (sch_ret != TC_ACT_UNSPEC)
4027 			goto ingress_verdict;
4028 	}
4029 	sch_ret = tc_run(tcx_entry(entry), skb, &drop_reason);
4030 ingress_verdict:
4031 	switch (sch_ret) {
4032 	case TC_ACT_REDIRECT:
4033 		/* skb_mac_header check was done by BPF, so we can safely
4034 		 * push the L2 header back before redirecting to another
4035 		 * netdev.
4036 		 */
4037 		__skb_push(skb, skb->mac_len);
4038 		if (skb_do_redirect(skb) == -EAGAIN) {
4039 			__skb_pull(skb, skb->mac_len);
4040 			*another = true;
4041 			break;
4042 		}
4043 		*ret = NET_RX_SUCCESS;
4044 		return NULL;
4045 	case TC_ACT_SHOT:
4046 		kfree_skb_reason(skb, drop_reason);
4047 		*ret = NET_RX_DROP;
4048 		return NULL;
4049 	/* used by tc_run */
4050 	case TC_ACT_STOLEN:
4051 	case TC_ACT_QUEUED:
4052 	case TC_ACT_TRAP:
4053 		consume_skb(skb);
4054 		fallthrough;
4055 	case TC_ACT_CONSUMED:
4056 		*ret = NET_RX_SUCCESS;
4057 		return NULL;
4058 	}
4059 
4060 	return skb;
4061 }
4062 
4063 static __always_inline struct sk_buff *
4064 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
4065 {
4066 	struct bpf_mprog_entry *entry = rcu_dereference_bh(dev->tcx_egress);
4067 	enum skb_drop_reason drop_reason = SKB_DROP_REASON_TC_EGRESS;
4068 	int sch_ret;
4069 
4070 	if (!entry)
4071 		return skb;
4072 
4073 	/* qdisc_skb_cb(skb)->pkt_len & tcx_set_ingress() was
4074 	 * already set by the caller.
4075 	 */
4076 	if (static_branch_unlikely(&tcx_needed_key)) {
4077 		sch_ret = tcx_run(entry, skb, false);
4078 		if (sch_ret != TC_ACT_UNSPEC)
4079 			goto egress_verdict;
4080 	}
4081 	sch_ret = tc_run(tcx_entry(entry), skb, &drop_reason);
4082 egress_verdict:
4083 	switch (sch_ret) {
4084 	case TC_ACT_REDIRECT:
4085 		/* No need to push/pop skb's mac_header here on egress! */
4086 		skb_do_redirect(skb);
4087 		*ret = NET_XMIT_SUCCESS;
4088 		return NULL;
4089 	case TC_ACT_SHOT:
4090 		kfree_skb_reason(skb, drop_reason);
4091 		*ret = NET_XMIT_DROP;
4092 		return NULL;
4093 	/* used by tc_run */
4094 	case TC_ACT_STOLEN:
4095 	case TC_ACT_QUEUED:
4096 	case TC_ACT_TRAP:
4097 		consume_skb(skb);
4098 		fallthrough;
4099 	case TC_ACT_CONSUMED:
4100 		*ret = NET_XMIT_SUCCESS;
4101 		return NULL;
4102 	}
4103 
4104 	return skb;
4105 }
4106 #else
4107 static __always_inline struct sk_buff *
4108 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4109 		   struct net_device *orig_dev, bool *another)
4110 {
4111 	return skb;
4112 }
4113 
4114 static __always_inline struct sk_buff *
4115 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
4116 {
4117 	return skb;
4118 }
4119 #endif /* CONFIG_NET_XGRESS */
4120 
4121 #ifdef CONFIG_XPS
4122 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
4123 			       struct xps_dev_maps *dev_maps, unsigned int tci)
4124 {
4125 	int tc = netdev_get_prio_tc_map(dev, skb->priority);
4126 	struct xps_map *map;
4127 	int queue_index = -1;
4128 
4129 	if (tc >= dev_maps->num_tc || tci >= dev_maps->nr_ids)
4130 		return queue_index;
4131 
4132 	tci *= dev_maps->num_tc;
4133 	tci += tc;
4134 
4135 	map = rcu_dereference(dev_maps->attr_map[tci]);
4136 	if (map) {
4137 		if (map->len == 1)
4138 			queue_index = map->queues[0];
4139 		else
4140 			queue_index = map->queues[reciprocal_scale(
4141 						skb_get_hash(skb), map->len)];
4142 		if (unlikely(queue_index >= dev->real_num_tx_queues))
4143 			queue_index = -1;
4144 	}
4145 	return queue_index;
4146 }
4147 #endif
4148 
4149 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
4150 			 struct sk_buff *skb)
4151 {
4152 #ifdef CONFIG_XPS
4153 	struct xps_dev_maps *dev_maps;
4154 	struct sock *sk = skb->sk;
4155 	int queue_index = -1;
4156 
4157 	if (!static_key_false(&xps_needed))
4158 		return -1;
4159 
4160 	rcu_read_lock();
4161 	if (!static_key_false(&xps_rxqs_needed))
4162 		goto get_cpus_map;
4163 
4164 	dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_RXQS]);
4165 	if (dev_maps) {
4166 		int tci = sk_rx_queue_get(sk);
4167 
4168 		if (tci >= 0)
4169 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4170 							  tci);
4171 	}
4172 
4173 get_cpus_map:
4174 	if (queue_index < 0) {
4175 		dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_CPUS]);
4176 		if (dev_maps) {
4177 			unsigned int tci = skb->sender_cpu - 1;
4178 
4179 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4180 							  tci);
4181 		}
4182 	}
4183 	rcu_read_unlock();
4184 
4185 	return queue_index;
4186 #else
4187 	return -1;
4188 #endif
4189 }
4190 
4191 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
4192 		     struct net_device *sb_dev)
4193 {
4194 	return 0;
4195 }
4196 EXPORT_SYMBOL(dev_pick_tx_zero);
4197 
4198 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
4199 		       struct net_device *sb_dev)
4200 {
4201 	return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
4202 }
4203 EXPORT_SYMBOL(dev_pick_tx_cpu_id);
4204 
4205 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
4206 		     struct net_device *sb_dev)
4207 {
4208 	struct sock *sk = skb->sk;
4209 	int queue_index = sk_tx_queue_get(sk);
4210 
4211 	sb_dev = sb_dev ? : dev;
4212 
4213 	if (queue_index < 0 || skb->ooo_okay ||
4214 	    queue_index >= dev->real_num_tx_queues) {
4215 		int new_index = get_xps_queue(dev, sb_dev, skb);
4216 
4217 		if (new_index < 0)
4218 			new_index = skb_tx_hash(dev, sb_dev, skb);
4219 
4220 		if (queue_index != new_index && sk &&
4221 		    sk_fullsock(sk) &&
4222 		    rcu_access_pointer(sk->sk_dst_cache))
4223 			sk_tx_queue_set(sk, new_index);
4224 
4225 		queue_index = new_index;
4226 	}
4227 
4228 	return queue_index;
4229 }
4230 EXPORT_SYMBOL(netdev_pick_tx);
4231 
4232 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
4233 					 struct sk_buff *skb,
4234 					 struct net_device *sb_dev)
4235 {
4236 	int queue_index = 0;
4237 
4238 #ifdef CONFIG_XPS
4239 	u32 sender_cpu = skb->sender_cpu - 1;
4240 
4241 	if (sender_cpu >= (u32)NR_CPUS)
4242 		skb->sender_cpu = raw_smp_processor_id() + 1;
4243 #endif
4244 
4245 	if (dev->real_num_tx_queues != 1) {
4246 		const struct net_device_ops *ops = dev->netdev_ops;
4247 
4248 		if (ops->ndo_select_queue)
4249 			queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
4250 		else
4251 			queue_index = netdev_pick_tx(dev, skb, sb_dev);
4252 
4253 		queue_index = netdev_cap_txqueue(dev, queue_index);
4254 	}
4255 
4256 	skb_set_queue_mapping(skb, queue_index);
4257 	return netdev_get_tx_queue(dev, queue_index);
4258 }
4259 
4260 /**
4261  * __dev_queue_xmit() - transmit a buffer
4262  * @skb:	buffer to transmit
4263  * @sb_dev:	suboordinate device used for L2 forwarding offload
4264  *
4265  * Queue a buffer for transmission to a network device. The caller must
4266  * have set the device and priority and built the buffer before calling
4267  * this function. The function can be called from an interrupt.
4268  *
4269  * When calling this method, interrupts MUST be enabled. This is because
4270  * the BH enable code must have IRQs enabled so that it will not deadlock.
4271  *
4272  * Regardless of the return value, the skb is consumed, so it is currently
4273  * difficult to retry a send to this method. (You can bump the ref count
4274  * before sending to hold a reference for retry if you are careful.)
4275  *
4276  * Return:
4277  * * 0				- buffer successfully transmitted
4278  * * positive qdisc return code	- NET_XMIT_DROP etc.
4279  * * negative errno		- other errors
4280  */
4281 int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
4282 {
4283 	struct net_device *dev = skb->dev;
4284 	struct netdev_queue *txq = NULL;
4285 	struct Qdisc *q;
4286 	int rc = -ENOMEM;
4287 	bool again = false;
4288 
4289 	skb_reset_mac_header(skb);
4290 	skb_assert_len(skb);
4291 
4292 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
4293 		__skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED);
4294 
4295 	/* Disable soft irqs for various locks below. Also
4296 	 * stops preemption for RCU.
4297 	 */
4298 	rcu_read_lock_bh();
4299 
4300 	skb_update_prio(skb);
4301 
4302 	qdisc_pkt_len_init(skb);
4303 	tcx_set_ingress(skb, false);
4304 #ifdef CONFIG_NET_EGRESS
4305 	if (static_branch_unlikely(&egress_needed_key)) {
4306 		if (nf_hook_egress_active()) {
4307 			skb = nf_hook_egress(skb, &rc, dev);
4308 			if (!skb)
4309 				goto out;
4310 		}
4311 
4312 		netdev_xmit_skip_txqueue(false);
4313 
4314 		nf_skip_egress(skb, true);
4315 		skb = sch_handle_egress(skb, &rc, dev);
4316 		if (!skb)
4317 			goto out;
4318 		nf_skip_egress(skb, false);
4319 
4320 		if (netdev_xmit_txqueue_skipped())
4321 			txq = netdev_tx_queue_mapping(dev, skb);
4322 	}
4323 #endif
4324 	/* If device/qdisc don't need skb->dst, release it right now while
4325 	 * its hot in this cpu cache.
4326 	 */
4327 	if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4328 		skb_dst_drop(skb);
4329 	else
4330 		skb_dst_force(skb);
4331 
4332 	if (!txq)
4333 		txq = netdev_core_pick_tx(dev, skb, sb_dev);
4334 
4335 	q = rcu_dereference_bh(txq->qdisc);
4336 
4337 	trace_net_dev_queue(skb);
4338 	if (q->enqueue) {
4339 		rc = __dev_xmit_skb(skb, q, dev, txq);
4340 		goto out;
4341 	}
4342 
4343 	/* The device has no queue. Common case for software devices:
4344 	 * loopback, all the sorts of tunnels...
4345 
4346 	 * Really, it is unlikely that netif_tx_lock protection is necessary
4347 	 * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
4348 	 * counters.)
4349 	 * However, it is possible, that they rely on protection
4350 	 * made by us here.
4351 
4352 	 * Check this and shot the lock. It is not prone from deadlocks.
4353 	 *Either shot noqueue qdisc, it is even simpler 8)
4354 	 */
4355 	if (dev->flags & IFF_UP) {
4356 		int cpu = smp_processor_id(); /* ok because BHs are off */
4357 
4358 		/* Other cpus might concurrently change txq->xmit_lock_owner
4359 		 * to -1 or to their cpu id, but not to our id.
4360 		 */
4361 		if (READ_ONCE(txq->xmit_lock_owner) != cpu) {
4362 			if (dev_xmit_recursion())
4363 				goto recursion_alert;
4364 
4365 			skb = validate_xmit_skb(skb, dev, &again);
4366 			if (!skb)
4367 				goto out;
4368 
4369 			HARD_TX_LOCK(dev, txq, cpu);
4370 
4371 			if (!netif_xmit_stopped(txq)) {
4372 				dev_xmit_recursion_inc();
4373 				skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4374 				dev_xmit_recursion_dec();
4375 				if (dev_xmit_complete(rc)) {
4376 					HARD_TX_UNLOCK(dev, txq);
4377 					goto out;
4378 				}
4379 			}
4380 			HARD_TX_UNLOCK(dev, txq);
4381 			net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4382 					     dev->name);
4383 		} else {
4384 			/* Recursion is detected! It is possible,
4385 			 * unfortunately
4386 			 */
4387 recursion_alert:
4388 			net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4389 					     dev->name);
4390 		}
4391 	}
4392 
4393 	rc = -ENETDOWN;
4394 	rcu_read_unlock_bh();
4395 
4396 	dev_core_stats_tx_dropped_inc(dev);
4397 	kfree_skb_list(skb);
4398 	return rc;
4399 out:
4400 	rcu_read_unlock_bh();
4401 	return rc;
4402 }
4403 EXPORT_SYMBOL(__dev_queue_xmit);
4404 
4405 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4406 {
4407 	struct net_device *dev = skb->dev;
4408 	struct sk_buff *orig_skb = skb;
4409 	struct netdev_queue *txq;
4410 	int ret = NETDEV_TX_BUSY;
4411 	bool again = false;
4412 
4413 	if (unlikely(!netif_running(dev) ||
4414 		     !netif_carrier_ok(dev)))
4415 		goto drop;
4416 
4417 	skb = validate_xmit_skb_list(skb, dev, &again);
4418 	if (skb != orig_skb)
4419 		goto drop;
4420 
4421 	skb_set_queue_mapping(skb, queue_id);
4422 	txq = skb_get_tx_queue(dev, skb);
4423 
4424 	local_bh_disable();
4425 
4426 	dev_xmit_recursion_inc();
4427 	HARD_TX_LOCK(dev, txq, smp_processor_id());
4428 	if (!netif_xmit_frozen_or_drv_stopped(txq))
4429 		ret = netdev_start_xmit(skb, dev, txq, false);
4430 	HARD_TX_UNLOCK(dev, txq);
4431 	dev_xmit_recursion_dec();
4432 
4433 	local_bh_enable();
4434 	return ret;
4435 drop:
4436 	dev_core_stats_tx_dropped_inc(dev);
4437 	kfree_skb_list(skb);
4438 	return NET_XMIT_DROP;
4439 }
4440 EXPORT_SYMBOL(__dev_direct_xmit);
4441 
4442 /*************************************************************************
4443  *			Receiver routines
4444  *************************************************************************/
4445 static DEFINE_PER_CPU(struct task_struct *, backlog_napi);
4446 
4447 unsigned int sysctl_skb_defer_max __read_mostly = 64;
4448 int weight_p __read_mostly = 64;           /* old backlog weight */
4449 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
4450 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
4451 
4452 /* Called with irq disabled */
4453 static inline void ____napi_schedule(struct softnet_data *sd,
4454 				     struct napi_struct *napi)
4455 {
4456 	struct task_struct *thread;
4457 
4458 	lockdep_assert_irqs_disabled();
4459 
4460 	if (test_bit(NAPI_STATE_THREADED, &napi->state)) {
4461 		/* Paired with smp_mb__before_atomic() in
4462 		 * napi_enable()/dev_set_threaded().
4463 		 * Use READ_ONCE() to guarantee a complete
4464 		 * read on napi->thread. Only call
4465 		 * wake_up_process() when it's not NULL.
4466 		 */
4467 		thread = READ_ONCE(napi->thread);
4468 		if (thread) {
4469 			if (use_backlog_threads() && thread == raw_cpu_read(backlog_napi))
4470 				goto use_local_napi;
4471 
4472 			set_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
4473 			wake_up_process(thread);
4474 			return;
4475 		}
4476 	}
4477 
4478 use_local_napi:
4479 	list_add_tail(&napi->poll_list, &sd->poll_list);
4480 	WRITE_ONCE(napi->list_owner, smp_processor_id());
4481 	/* If not called from net_rx_action()
4482 	 * we have to raise NET_RX_SOFTIRQ.
4483 	 */
4484 	if (!sd->in_net_rx_action)
4485 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4486 }
4487 
4488 #ifdef CONFIG_RPS
4489 
4490 struct static_key_false rps_needed __read_mostly;
4491 EXPORT_SYMBOL(rps_needed);
4492 struct static_key_false rfs_needed __read_mostly;
4493 EXPORT_SYMBOL(rfs_needed);
4494 
4495 static struct rps_dev_flow *
4496 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4497 	    struct rps_dev_flow *rflow, u16 next_cpu)
4498 {
4499 	if (next_cpu < nr_cpu_ids) {
4500 #ifdef CONFIG_RFS_ACCEL
4501 		struct netdev_rx_queue *rxqueue;
4502 		struct rps_dev_flow_table *flow_table;
4503 		struct rps_dev_flow *old_rflow;
4504 		u32 flow_id;
4505 		u16 rxq_index;
4506 		int rc;
4507 
4508 		/* Should we steer this flow to a different hardware queue? */
4509 		if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4510 		    !(dev->features & NETIF_F_NTUPLE))
4511 			goto out;
4512 		rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4513 		if (rxq_index == skb_get_rx_queue(skb))
4514 			goto out;
4515 
4516 		rxqueue = dev->_rx + rxq_index;
4517 		flow_table = rcu_dereference(rxqueue->rps_flow_table);
4518 		if (!flow_table)
4519 			goto out;
4520 		flow_id = skb_get_hash(skb) & flow_table->mask;
4521 		rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4522 							rxq_index, flow_id);
4523 		if (rc < 0)
4524 			goto out;
4525 		old_rflow = rflow;
4526 		rflow = &flow_table->flows[flow_id];
4527 		rflow->filter = rc;
4528 		if (old_rflow->filter == rflow->filter)
4529 			old_rflow->filter = RPS_NO_FILTER;
4530 	out:
4531 #endif
4532 		rflow->last_qtail =
4533 			READ_ONCE(per_cpu(softnet_data, next_cpu).input_queue_head);
4534 	}
4535 
4536 	rflow->cpu = next_cpu;
4537 	return rflow;
4538 }
4539 
4540 /*
4541  * get_rps_cpu is called from netif_receive_skb and returns the target
4542  * CPU from the RPS map of the receiving queue for a given skb.
4543  * rcu_read_lock must be held on entry.
4544  */
4545 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4546 		       struct rps_dev_flow **rflowp)
4547 {
4548 	const struct rps_sock_flow_table *sock_flow_table;
4549 	struct netdev_rx_queue *rxqueue = dev->_rx;
4550 	struct rps_dev_flow_table *flow_table;
4551 	struct rps_map *map;
4552 	int cpu = -1;
4553 	u32 tcpu;
4554 	u32 hash;
4555 
4556 	if (skb_rx_queue_recorded(skb)) {
4557 		u16 index = skb_get_rx_queue(skb);
4558 
4559 		if (unlikely(index >= dev->real_num_rx_queues)) {
4560 			WARN_ONCE(dev->real_num_rx_queues > 1,
4561 				  "%s received packet on queue %u, but number "
4562 				  "of RX queues is %u\n",
4563 				  dev->name, index, dev->real_num_rx_queues);
4564 			goto done;
4565 		}
4566 		rxqueue += index;
4567 	}
4568 
4569 	/* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4570 
4571 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
4572 	map = rcu_dereference(rxqueue->rps_map);
4573 	if (!flow_table && !map)
4574 		goto done;
4575 
4576 	skb_reset_network_header(skb);
4577 	hash = skb_get_hash(skb);
4578 	if (!hash)
4579 		goto done;
4580 
4581 	sock_flow_table = rcu_dereference(net_hotdata.rps_sock_flow_table);
4582 	if (flow_table && sock_flow_table) {
4583 		struct rps_dev_flow *rflow;
4584 		u32 next_cpu;
4585 		u32 ident;
4586 
4587 		/* First check into global flow table if there is a match.
4588 		 * This READ_ONCE() pairs with WRITE_ONCE() from rps_record_sock_flow().
4589 		 */
4590 		ident = READ_ONCE(sock_flow_table->ents[hash & sock_flow_table->mask]);
4591 		if ((ident ^ hash) & ~net_hotdata.rps_cpu_mask)
4592 			goto try_rps;
4593 
4594 		next_cpu = ident & net_hotdata.rps_cpu_mask;
4595 
4596 		/* OK, now we know there is a match,
4597 		 * we can look at the local (per receive queue) flow table
4598 		 */
4599 		rflow = &flow_table->flows[hash & flow_table->mask];
4600 		tcpu = rflow->cpu;
4601 
4602 		/*
4603 		 * If the desired CPU (where last recvmsg was done) is
4604 		 * different from current CPU (one in the rx-queue flow
4605 		 * table entry), switch if one of the following holds:
4606 		 *   - Current CPU is unset (>= nr_cpu_ids).
4607 		 *   - Current CPU is offline.
4608 		 *   - The current CPU's queue tail has advanced beyond the
4609 		 *     last packet that was enqueued using this table entry.
4610 		 *     This guarantees that all previous packets for the flow
4611 		 *     have been dequeued, thus preserving in order delivery.
4612 		 */
4613 		if (unlikely(tcpu != next_cpu) &&
4614 		    (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4615 		     ((int)(READ_ONCE(per_cpu(softnet_data, tcpu).input_queue_head) -
4616 		      READ_ONCE(rflow->last_qtail))) >= 0)) {
4617 			tcpu = next_cpu;
4618 			rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4619 		}
4620 
4621 		if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4622 			*rflowp = rflow;
4623 			cpu = tcpu;
4624 			goto done;
4625 		}
4626 	}
4627 
4628 try_rps:
4629 
4630 	if (map) {
4631 		tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4632 		if (cpu_online(tcpu)) {
4633 			cpu = tcpu;
4634 			goto done;
4635 		}
4636 	}
4637 
4638 done:
4639 	return cpu;
4640 }
4641 
4642 #ifdef CONFIG_RFS_ACCEL
4643 
4644 /**
4645  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4646  * @dev: Device on which the filter was set
4647  * @rxq_index: RX queue index
4648  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4649  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4650  *
4651  * Drivers that implement ndo_rx_flow_steer() should periodically call
4652  * this function for each installed filter and remove the filters for
4653  * which it returns %true.
4654  */
4655 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4656 			 u32 flow_id, u16 filter_id)
4657 {
4658 	struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4659 	struct rps_dev_flow_table *flow_table;
4660 	struct rps_dev_flow *rflow;
4661 	bool expire = true;
4662 	unsigned int cpu;
4663 
4664 	rcu_read_lock();
4665 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
4666 	if (flow_table && flow_id <= flow_table->mask) {
4667 		rflow = &flow_table->flows[flow_id];
4668 		cpu = READ_ONCE(rflow->cpu);
4669 		if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4670 		    ((int)(READ_ONCE(per_cpu(softnet_data, cpu).input_queue_head) -
4671 			   READ_ONCE(rflow->last_qtail)) <
4672 		     (int)(10 * flow_table->mask)))
4673 			expire = false;
4674 	}
4675 	rcu_read_unlock();
4676 	return expire;
4677 }
4678 EXPORT_SYMBOL(rps_may_expire_flow);
4679 
4680 #endif /* CONFIG_RFS_ACCEL */
4681 
4682 /* Called from hardirq (IPI) context */
4683 static void rps_trigger_softirq(void *data)
4684 {
4685 	struct softnet_data *sd = data;
4686 
4687 	____napi_schedule(sd, &sd->backlog);
4688 	sd->received_rps++;
4689 }
4690 
4691 #endif /* CONFIG_RPS */
4692 
4693 /* Called from hardirq (IPI) context */
4694 static void trigger_rx_softirq(void *data)
4695 {
4696 	struct softnet_data *sd = data;
4697 
4698 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4699 	smp_store_release(&sd->defer_ipi_scheduled, 0);
4700 }
4701 
4702 /*
4703  * After we queued a packet into sd->input_pkt_queue,
4704  * we need to make sure this queue is serviced soon.
4705  *
4706  * - If this is another cpu queue, link it to our rps_ipi_list,
4707  *   and make sure we will process rps_ipi_list from net_rx_action().
4708  *
4709  * - If this is our own queue, NAPI schedule our backlog.
4710  *   Note that this also raises NET_RX_SOFTIRQ.
4711  */
4712 static void napi_schedule_rps(struct softnet_data *sd)
4713 {
4714 	struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4715 
4716 #ifdef CONFIG_RPS
4717 	if (sd != mysd) {
4718 		if (use_backlog_threads()) {
4719 			__napi_schedule_irqoff(&sd->backlog);
4720 			return;
4721 		}
4722 
4723 		sd->rps_ipi_next = mysd->rps_ipi_list;
4724 		mysd->rps_ipi_list = sd;
4725 
4726 		/* If not called from net_rx_action() or napi_threaded_poll()
4727 		 * we have to raise NET_RX_SOFTIRQ.
4728 		 */
4729 		if (!mysd->in_net_rx_action && !mysd->in_napi_threaded_poll)
4730 			__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4731 		return;
4732 	}
4733 #endif /* CONFIG_RPS */
4734 	__napi_schedule_irqoff(&mysd->backlog);
4735 }
4736 
4737 void kick_defer_list_purge(struct softnet_data *sd, unsigned int cpu)
4738 {
4739 	unsigned long flags;
4740 
4741 	if (use_backlog_threads()) {
4742 		backlog_lock_irq_save(sd, &flags);
4743 
4744 		if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state))
4745 			__napi_schedule_irqoff(&sd->backlog);
4746 
4747 		backlog_unlock_irq_restore(sd, &flags);
4748 
4749 	} else if (!cmpxchg(&sd->defer_ipi_scheduled, 0, 1)) {
4750 		smp_call_function_single_async(cpu, &sd->defer_csd);
4751 	}
4752 }
4753 
4754 #ifdef CONFIG_NET_FLOW_LIMIT
4755 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4756 #endif
4757 
4758 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4759 {
4760 #ifdef CONFIG_NET_FLOW_LIMIT
4761 	struct sd_flow_limit *fl;
4762 	struct softnet_data *sd;
4763 	unsigned int old_flow, new_flow;
4764 
4765 	if (qlen < (READ_ONCE(net_hotdata.max_backlog) >> 1))
4766 		return false;
4767 
4768 	sd = this_cpu_ptr(&softnet_data);
4769 
4770 	rcu_read_lock();
4771 	fl = rcu_dereference(sd->flow_limit);
4772 	if (fl) {
4773 		new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4774 		old_flow = fl->history[fl->history_head];
4775 		fl->history[fl->history_head] = new_flow;
4776 
4777 		fl->history_head++;
4778 		fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4779 
4780 		if (likely(fl->buckets[old_flow]))
4781 			fl->buckets[old_flow]--;
4782 
4783 		if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4784 			fl->count++;
4785 			rcu_read_unlock();
4786 			return true;
4787 		}
4788 	}
4789 	rcu_read_unlock();
4790 #endif
4791 	return false;
4792 }
4793 
4794 /*
4795  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4796  * queue (may be a remote CPU queue).
4797  */
4798 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4799 			      unsigned int *qtail)
4800 {
4801 	enum skb_drop_reason reason;
4802 	struct softnet_data *sd;
4803 	unsigned long flags;
4804 	unsigned int qlen;
4805 	int max_backlog;
4806 	u32 tail;
4807 
4808 	reason = SKB_DROP_REASON_DEV_READY;
4809 	if (!netif_running(skb->dev))
4810 		goto bad_dev;
4811 
4812 	reason = SKB_DROP_REASON_CPU_BACKLOG;
4813 	sd = &per_cpu(softnet_data, cpu);
4814 
4815 	qlen = skb_queue_len_lockless(&sd->input_pkt_queue);
4816 	max_backlog = READ_ONCE(net_hotdata.max_backlog);
4817 	if (unlikely(qlen > max_backlog))
4818 		goto cpu_backlog_drop;
4819 	backlog_lock_irq_save(sd, &flags);
4820 	qlen = skb_queue_len(&sd->input_pkt_queue);
4821 	if (qlen <= max_backlog && !skb_flow_limit(skb, qlen)) {
4822 		if (!qlen) {
4823 			/* Schedule NAPI for backlog device. We can use
4824 			 * non atomic operation as we own the queue lock.
4825 			 */
4826 			if (!__test_and_set_bit(NAPI_STATE_SCHED,
4827 						&sd->backlog.state))
4828 				napi_schedule_rps(sd);
4829 		}
4830 		__skb_queue_tail(&sd->input_pkt_queue, skb);
4831 		tail = rps_input_queue_tail_incr(sd);
4832 		backlog_unlock_irq_restore(sd, &flags);
4833 
4834 		/* save the tail outside of the critical section */
4835 		rps_input_queue_tail_save(qtail, tail);
4836 		return NET_RX_SUCCESS;
4837 	}
4838 
4839 	backlog_unlock_irq_restore(sd, &flags);
4840 
4841 cpu_backlog_drop:
4842 	atomic_inc(&sd->dropped);
4843 bad_dev:
4844 	dev_core_stats_rx_dropped_inc(skb->dev);
4845 	kfree_skb_reason(skb, reason);
4846 	return NET_RX_DROP;
4847 }
4848 
4849 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4850 {
4851 	struct net_device *dev = skb->dev;
4852 	struct netdev_rx_queue *rxqueue;
4853 
4854 	rxqueue = dev->_rx;
4855 
4856 	if (skb_rx_queue_recorded(skb)) {
4857 		u16 index = skb_get_rx_queue(skb);
4858 
4859 		if (unlikely(index >= dev->real_num_rx_queues)) {
4860 			WARN_ONCE(dev->real_num_rx_queues > 1,
4861 				  "%s received packet on queue %u, but number "
4862 				  "of RX queues is %u\n",
4863 				  dev->name, index, dev->real_num_rx_queues);
4864 
4865 			return rxqueue; /* Return first rxqueue */
4866 		}
4867 		rxqueue += index;
4868 	}
4869 	return rxqueue;
4870 }
4871 
4872 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp,
4873 			     struct bpf_prog *xdp_prog)
4874 {
4875 	void *orig_data, *orig_data_end, *hard_start;
4876 	struct netdev_rx_queue *rxqueue;
4877 	bool orig_bcast, orig_host;
4878 	u32 mac_len, frame_sz;
4879 	__be16 orig_eth_type;
4880 	struct ethhdr *eth;
4881 	u32 metalen, act;
4882 	int off;
4883 
4884 	/* The XDP program wants to see the packet starting at the MAC
4885 	 * header.
4886 	 */
4887 	mac_len = skb->data - skb_mac_header(skb);
4888 	hard_start = skb->data - skb_headroom(skb);
4889 
4890 	/* SKB "head" area always have tailroom for skb_shared_info */
4891 	frame_sz = (void *)skb_end_pointer(skb) - hard_start;
4892 	frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
4893 
4894 	rxqueue = netif_get_rxqueue(skb);
4895 	xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq);
4896 	xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len,
4897 			 skb_headlen(skb) + mac_len, true);
4898 	if (skb_is_nonlinear(skb)) {
4899 		skb_shinfo(skb)->xdp_frags_size = skb->data_len;
4900 		xdp_buff_set_frags_flag(xdp);
4901 	} else {
4902 		xdp_buff_clear_frags_flag(xdp);
4903 	}
4904 
4905 	orig_data_end = xdp->data_end;
4906 	orig_data = xdp->data;
4907 	eth = (struct ethhdr *)xdp->data;
4908 	orig_host = ether_addr_equal_64bits(eth->h_dest, skb->dev->dev_addr);
4909 	orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4910 	orig_eth_type = eth->h_proto;
4911 
4912 	act = bpf_prog_run_xdp(xdp_prog, xdp);
4913 
4914 	/* check if bpf_xdp_adjust_head was used */
4915 	off = xdp->data - orig_data;
4916 	if (off) {
4917 		if (off > 0)
4918 			__skb_pull(skb, off);
4919 		else if (off < 0)
4920 			__skb_push(skb, -off);
4921 
4922 		skb->mac_header += off;
4923 		skb_reset_network_header(skb);
4924 	}
4925 
4926 	/* check if bpf_xdp_adjust_tail was used */
4927 	off = xdp->data_end - orig_data_end;
4928 	if (off != 0) {
4929 		skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4930 		skb->len += off; /* positive on grow, negative on shrink */
4931 	}
4932 
4933 	/* XDP frag metadata (e.g. nr_frags) are updated in eBPF helpers
4934 	 * (e.g. bpf_xdp_adjust_tail), we need to update data_len here.
4935 	 */
4936 	if (xdp_buff_has_frags(xdp))
4937 		skb->data_len = skb_shinfo(skb)->xdp_frags_size;
4938 	else
4939 		skb->data_len = 0;
4940 
4941 	/* check if XDP changed eth hdr such SKB needs update */
4942 	eth = (struct ethhdr *)xdp->data;
4943 	if ((orig_eth_type != eth->h_proto) ||
4944 	    (orig_host != ether_addr_equal_64bits(eth->h_dest,
4945 						  skb->dev->dev_addr)) ||
4946 	    (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4947 		__skb_push(skb, ETH_HLEN);
4948 		skb->pkt_type = PACKET_HOST;
4949 		skb->protocol = eth_type_trans(skb, skb->dev);
4950 	}
4951 
4952 	/* Redirect/Tx gives L2 packet, code that will reuse skb must __skb_pull
4953 	 * before calling us again on redirect path. We do not call do_redirect
4954 	 * as we leave that up to the caller.
4955 	 *
4956 	 * Caller is responsible for managing lifetime of skb (i.e. calling
4957 	 * kfree_skb in response to actions it cannot handle/XDP_DROP).
4958 	 */
4959 	switch (act) {
4960 	case XDP_REDIRECT:
4961 	case XDP_TX:
4962 		__skb_push(skb, mac_len);
4963 		break;
4964 	case XDP_PASS:
4965 		metalen = xdp->data - xdp->data_meta;
4966 		if (metalen)
4967 			skb_metadata_set(skb, metalen);
4968 		break;
4969 	}
4970 
4971 	return act;
4972 }
4973 
4974 static int
4975 netif_skb_check_for_xdp(struct sk_buff **pskb, struct bpf_prog *prog)
4976 {
4977 	struct sk_buff *skb = *pskb;
4978 	int err, hroom, troom;
4979 
4980 	if (!skb_cow_data_for_xdp(this_cpu_read(system_page_pool), pskb, prog))
4981 		return 0;
4982 
4983 	/* In case we have to go down the path and also linearize,
4984 	 * then lets do the pskb_expand_head() work just once here.
4985 	 */
4986 	hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4987 	troom = skb->tail + skb->data_len - skb->end;
4988 	err = pskb_expand_head(skb,
4989 			       hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4990 			       troom > 0 ? troom + 128 : 0, GFP_ATOMIC);
4991 	if (err)
4992 		return err;
4993 
4994 	return skb_linearize(skb);
4995 }
4996 
4997 static u32 netif_receive_generic_xdp(struct sk_buff **pskb,
4998 				     struct xdp_buff *xdp,
4999 				     struct bpf_prog *xdp_prog)
5000 {
5001 	struct sk_buff *skb = *pskb;
5002 	u32 mac_len, act = XDP_DROP;
5003 
5004 	/* Reinjected packets coming from act_mirred or similar should
5005 	 * not get XDP generic processing.
5006 	 */
5007 	if (skb_is_redirected(skb))
5008 		return XDP_PASS;
5009 
5010 	/* XDP packets must have sufficient headroom of XDP_PACKET_HEADROOM
5011 	 * bytes. This is the guarantee that also native XDP provides,
5012 	 * thus we need to do it here as well.
5013 	 */
5014 	mac_len = skb->data - skb_mac_header(skb);
5015 	__skb_push(skb, mac_len);
5016 
5017 	if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
5018 	    skb_headroom(skb) < XDP_PACKET_HEADROOM) {
5019 		if (netif_skb_check_for_xdp(pskb, xdp_prog))
5020 			goto do_drop;
5021 	}
5022 
5023 	__skb_pull(*pskb, mac_len);
5024 
5025 	act = bpf_prog_run_generic_xdp(*pskb, xdp, xdp_prog);
5026 	switch (act) {
5027 	case XDP_REDIRECT:
5028 	case XDP_TX:
5029 	case XDP_PASS:
5030 		break;
5031 	default:
5032 		bpf_warn_invalid_xdp_action((*pskb)->dev, xdp_prog, act);
5033 		fallthrough;
5034 	case XDP_ABORTED:
5035 		trace_xdp_exception((*pskb)->dev, xdp_prog, act);
5036 		fallthrough;
5037 	case XDP_DROP:
5038 	do_drop:
5039 		kfree_skb(*pskb);
5040 		break;
5041 	}
5042 
5043 	return act;
5044 }
5045 
5046 /* When doing generic XDP we have to bypass the qdisc layer and the
5047  * network taps in order to match in-driver-XDP behavior. This also means
5048  * that XDP packets are able to starve other packets going through a qdisc,
5049  * and DDOS attacks will be more effective. In-driver-XDP use dedicated TX
5050  * queues, so they do not have this starvation issue.
5051  */
5052 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
5053 {
5054 	struct net_device *dev = skb->dev;
5055 	struct netdev_queue *txq;
5056 	bool free_skb = true;
5057 	int cpu, rc;
5058 
5059 	txq = netdev_core_pick_tx(dev, skb, NULL);
5060 	cpu = smp_processor_id();
5061 	HARD_TX_LOCK(dev, txq, cpu);
5062 	if (!netif_xmit_frozen_or_drv_stopped(txq)) {
5063 		rc = netdev_start_xmit(skb, dev, txq, 0);
5064 		if (dev_xmit_complete(rc))
5065 			free_skb = false;
5066 	}
5067 	HARD_TX_UNLOCK(dev, txq);
5068 	if (free_skb) {
5069 		trace_xdp_exception(dev, xdp_prog, XDP_TX);
5070 		dev_core_stats_tx_dropped_inc(dev);
5071 		kfree_skb(skb);
5072 	}
5073 }
5074 
5075 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
5076 
5077 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff **pskb)
5078 {
5079 	if (xdp_prog) {
5080 		struct xdp_buff xdp;
5081 		u32 act;
5082 		int err;
5083 
5084 		act = netif_receive_generic_xdp(pskb, &xdp, xdp_prog);
5085 		if (act != XDP_PASS) {
5086 			switch (act) {
5087 			case XDP_REDIRECT:
5088 				err = xdp_do_generic_redirect((*pskb)->dev, *pskb,
5089 							      &xdp, xdp_prog);
5090 				if (err)
5091 					goto out_redir;
5092 				break;
5093 			case XDP_TX:
5094 				generic_xdp_tx(*pskb, xdp_prog);
5095 				break;
5096 			}
5097 			return XDP_DROP;
5098 		}
5099 	}
5100 	return XDP_PASS;
5101 out_redir:
5102 	kfree_skb_reason(*pskb, SKB_DROP_REASON_XDP);
5103 	return XDP_DROP;
5104 }
5105 EXPORT_SYMBOL_GPL(do_xdp_generic);
5106 
5107 static int netif_rx_internal(struct sk_buff *skb)
5108 {
5109 	int ret;
5110 
5111 	net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue), skb);
5112 
5113 	trace_netif_rx(skb);
5114 
5115 #ifdef CONFIG_RPS
5116 	if (static_branch_unlikely(&rps_needed)) {
5117 		struct rps_dev_flow voidflow, *rflow = &voidflow;
5118 		int cpu;
5119 
5120 		rcu_read_lock();
5121 
5122 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
5123 		if (cpu < 0)
5124 			cpu = smp_processor_id();
5125 
5126 		ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5127 
5128 		rcu_read_unlock();
5129 	} else
5130 #endif
5131 	{
5132 		unsigned int qtail;
5133 
5134 		ret = enqueue_to_backlog(skb, smp_processor_id(), &qtail);
5135 	}
5136 	return ret;
5137 }
5138 
5139 /**
5140  *	__netif_rx	-	Slightly optimized version of netif_rx
5141  *	@skb: buffer to post
5142  *
5143  *	This behaves as netif_rx except that it does not disable bottom halves.
5144  *	As a result this function may only be invoked from the interrupt context
5145  *	(either hard or soft interrupt).
5146  */
5147 int __netif_rx(struct sk_buff *skb)
5148 {
5149 	int ret;
5150 
5151 	lockdep_assert_once(hardirq_count() | softirq_count());
5152 
5153 	trace_netif_rx_entry(skb);
5154 	ret = netif_rx_internal(skb);
5155 	trace_netif_rx_exit(ret);
5156 	return ret;
5157 }
5158 EXPORT_SYMBOL(__netif_rx);
5159 
5160 /**
5161  *	netif_rx	-	post buffer to the network code
5162  *	@skb: buffer to post
5163  *
5164  *	This function receives a packet from a device driver and queues it for
5165  *	the upper (protocol) levels to process via the backlog NAPI device. It
5166  *	always succeeds. The buffer may be dropped during processing for
5167  *	congestion control or by the protocol layers.
5168  *	The network buffer is passed via the backlog NAPI device. Modern NIC
5169  *	driver should use NAPI and GRO.
5170  *	This function can used from interrupt and from process context. The
5171  *	caller from process context must not disable interrupts before invoking
5172  *	this function.
5173  *
5174  *	return values:
5175  *	NET_RX_SUCCESS	(no congestion)
5176  *	NET_RX_DROP     (packet was dropped)
5177  *
5178  */
5179 int netif_rx(struct sk_buff *skb)
5180 {
5181 	bool need_bh_off = !(hardirq_count() | softirq_count());
5182 	int ret;
5183 
5184 	if (need_bh_off)
5185 		local_bh_disable();
5186 	trace_netif_rx_entry(skb);
5187 	ret = netif_rx_internal(skb);
5188 	trace_netif_rx_exit(ret);
5189 	if (need_bh_off)
5190 		local_bh_enable();
5191 	return ret;
5192 }
5193 EXPORT_SYMBOL(netif_rx);
5194 
5195 static __latent_entropy void net_tx_action(struct softirq_action *h)
5196 {
5197 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5198 
5199 	if (sd->completion_queue) {
5200 		struct sk_buff *clist;
5201 
5202 		local_irq_disable();
5203 		clist = sd->completion_queue;
5204 		sd->completion_queue = NULL;
5205 		local_irq_enable();
5206 
5207 		while (clist) {
5208 			struct sk_buff *skb = clist;
5209 
5210 			clist = clist->next;
5211 
5212 			WARN_ON(refcount_read(&skb->users));
5213 			if (likely(get_kfree_skb_cb(skb)->reason == SKB_CONSUMED))
5214 				trace_consume_skb(skb, net_tx_action);
5215 			else
5216 				trace_kfree_skb(skb, net_tx_action,
5217 						get_kfree_skb_cb(skb)->reason);
5218 
5219 			if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
5220 				__kfree_skb(skb);
5221 			else
5222 				__napi_kfree_skb(skb,
5223 						 get_kfree_skb_cb(skb)->reason);
5224 		}
5225 	}
5226 
5227 	if (sd->output_queue) {
5228 		struct Qdisc *head;
5229 
5230 		local_irq_disable();
5231 		head = sd->output_queue;
5232 		sd->output_queue = NULL;
5233 		sd->output_queue_tailp = &sd->output_queue;
5234 		local_irq_enable();
5235 
5236 		rcu_read_lock();
5237 
5238 		while (head) {
5239 			struct Qdisc *q = head;
5240 			spinlock_t *root_lock = NULL;
5241 
5242 			head = head->next_sched;
5243 
5244 			/* We need to make sure head->next_sched is read
5245 			 * before clearing __QDISC_STATE_SCHED
5246 			 */
5247 			smp_mb__before_atomic();
5248 
5249 			if (!(q->flags & TCQ_F_NOLOCK)) {
5250 				root_lock = qdisc_lock(q);
5251 				spin_lock(root_lock);
5252 			} else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED,
5253 						     &q->state))) {
5254 				/* There is a synchronize_net() between
5255 				 * STATE_DEACTIVATED flag being set and
5256 				 * qdisc_reset()/some_qdisc_is_busy() in
5257 				 * dev_deactivate(), so we can safely bail out
5258 				 * early here to avoid data race between
5259 				 * qdisc_deactivate() and some_qdisc_is_busy()
5260 				 * for lockless qdisc.
5261 				 */
5262 				clear_bit(__QDISC_STATE_SCHED, &q->state);
5263 				continue;
5264 			}
5265 
5266 			clear_bit(__QDISC_STATE_SCHED, &q->state);
5267 			qdisc_run(q);
5268 			if (root_lock)
5269 				spin_unlock(root_lock);
5270 		}
5271 
5272 		rcu_read_unlock();
5273 	}
5274 
5275 	xfrm_dev_backlog(sd);
5276 }
5277 
5278 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
5279 /* This hook is defined here for ATM LANE */
5280 int (*br_fdb_test_addr_hook)(struct net_device *dev,
5281 			     unsigned char *addr) __read_mostly;
5282 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
5283 #endif
5284 
5285 /**
5286  *	netdev_is_rx_handler_busy - check if receive handler is registered
5287  *	@dev: device to check
5288  *
5289  *	Check if a receive handler is already registered for a given device.
5290  *	Return true if there one.
5291  *
5292  *	The caller must hold the rtnl_mutex.
5293  */
5294 bool netdev_is_rx_handler_busy(struct net_device *dev)
5295 {
5296 	ASSERT_RTNL();
5297 	return dev && rtnl_dereference(dev->rx_handler);
5298 }
5299 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
5300 
5301 /**
5302  *	netdev_rx_handler_register - register receive handler
5303  *	@dev: device to register a handler for
5304  *	@rx_handler: receive handler to register
5305  *	@rx_handler_data: data pointer that is used by rx handler
5306  *
5307  *	Register a receive handler for a device. This handler will then be
5308  *	called from __netif_receive_skb. A negative errno code is returned
5309  *	on a failure.
5310  *
5311  *	The caller must hold the rtnl_mutex.
5312  *
5313  *	For a general description of rx_handler, see enum rx_handler_result.
5314  */
5315 int netdev_rx_handler_register(struct net_device *dev,
5316 			       rx_handler_func_t *rx_handler,
5317 			       void *rx_handler_data)
5318 {
5319 	if (netdev_is_rx_handler_busy(dev))
5320 		return -EBUSY;
5321 
5322 	if (dev->priv_flags & IFF_NO_RX_HANDLER)
5323 		return -EINVAL;
5324 
5325 	/* Note: rx_handler_data must be set before rx_handler */
5326 	rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
5327 	rcu_assign_pointer(dev->rx_handler, rx_handler);
5328 
5329 	return 0;
5330 }
5331 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5332 
5333 /**
5334  *	netdev_rx_handler_unregister - unregister receive handler
5335  *	@dev: device to unregister a handler from
5336  *
5337  *	Unregister a receive handler from a device.
5338  *
5339  *	The caller must hold the rtnl_mutex.
5340  */
5341 void netdev_rx_handler_unregister(struct net_device *dev)
5342 {
5343 
5344 	ASSERT_RTNL();
5345 	RCU_INIT_POINTER(dev->rx_handler, NULL);
5346 	/* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5347 	 * section has a guarantee to see a non NULL rx_handler_data
5348 	 * as well.
5349 	 */
5350 	synchronize_net();
5351 	RCU_INIT_POINTER(dev->rx_handler_data, NULL);
5352 }
5353 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5354 
5355 /*
5356  * Limit the use of PFMEMALLOC reserves to those protocols that implement
5357  * the special handling of PFMEMALLOC skbs.
5358  */
5359 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5360 {
5361 	switch (skb->protocol) {
5362 	case htons(ETH_P_ARP):
5363 	case htons(ETH_P_IP):
5364 	case htons(ETH_P_IPV6):
5365 	case htons(ETH_P_8021Q):
5366 	case htons(ETH_P_8021AD):
5367 		return true;
5368 	default:
5369 		return false;
5370 	}
5371 }
5372 
5373 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5374 			     int *ret, struct net_device *orig_dev)
5375 {
5376 	if (nf_hook_ingress_active(skb)) {
5377 		int ingress_retval;
5378 
5379 		if (*pt_prev) {
5380 			*ret = deliver_skb(skb, *pt_prev, orig_dev);
5381 			*pt_prev = NULL;
5382 		}
5383 
5384 		rcu_read_lock();
5385 		ingress_retval = nf_hook_ingress(skb);
5386 		rcu_read_unlock();
5387 		return ingress_retval;
5388 	}
5389 	return 0;
5390 }
5391 
5392 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
5393 				    struct packet_type **ppt_prev)
5394 {
5395 	struct packet_type *ptype, *pt_prev;
5396 	rx_handler_func_t *rx_handler;
5397 	struct sk_buff *skb = *pskb;
5398 	struct net_device *orig_dev;
5399 	bool deliver_exact = false;
5400 	int ret = NET_RX_DROP;
5401 	__be16 type;
5402 
5403 	net_timestamp_check(!READ_ONCE(net_hotdata.tstamp_prequeue), skb);
5404 
5405 	trace_netif_receive_skb(skb);
5406 
5407 	orig_dev = skb->dev;
5408 
5409 	skb_reset_network_header(skb);
5410 	if (!skb_transport_header_was_set(skb))
5411 		skb_reset_transport_header(skb);
5412 	skb_reset_mac_len(skb);
5413 
5414 	pt_prev = NULL;
5415 
5416 another_round:
5417 	skb->skb_iif = skb->dev->ifindex;
5418 
5419 	__this_cpu_inc(softnet_data.processed);
5420 
5421 	if (static_branch_unlikely(&generic_xdp_needed_key)) {
5422 		int ret2;
5423 
5424 		migrate_disable();
5425 		ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog),
5426 				      &skb);
5427 		migrate_enable();
5428 
5429 		if (ret2 != XDP_PASS) {
5430 			ret = NET_RX_DROP;
5431 			goto out;
5432 		}
5433 	}
5434 
5435 	if (eth_type_vlan(skb->protocol)) {
5436 		skb = skb_vlan_untag(skb);
5437 		if (unlikely(!skb))
5438 			goto out;
5439 	}
5440 
5441 	if (skb_skip_tc_classify(skb))
5442 		goto skip_classify;
5443 
5444 	if (pfmemalloc)
5445 		goto skip_taps;
5446 
5447 	list_for_each_entry_rcu(ptype, &net_hotdata.ptype_all, list) {
5448 		if (pt_prev)
5449 			ret = deliver_skb(skb, pt_prev, orig_dev);
5450 		pt_prev = ptype;
5451 	}
5452 
5453 	list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5454 		if (pt_prev)
5455 			ret = deliver_skb(skb, pt_prev, orig_dev);
5456 		pt_prev = ptype;
5457 	}
5458 
5459 skip_taps:
5460 #ifdef CONFIG_NET_INGRESS
5461 	if (static_branch_unlikely(&ingress_needed_key)) {
5462 		bool another = false;
5463 
5464 		nf_skip_egress(skb, true);
5465 		skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev,
5466 					 &another);
5467 		if (another)
5468 			goto another_round;
5469 		if (!skb)
5470 			goto out;
5471 
5472 		nf_skip_egress(skb, false);
5473 		if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5474 			goto out;
5475 	}
5476 #endif
5477 	skb_reset_redirect(skb);
5478 skip_classify:
5479 	if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
5480 		goto drop;
5481 
5482 	if (skb_vlan_tag_present(skb)) {
5483 		if (pt_prev) {
5484 			ret = deliver_skb(skb, pt_prev, orig_dev);
5485 			pt_prev = NULL;
5486 		}
5487 		if (vlan_do_receive(&skb))
5488 			goto another_round;
5489 		else if (unlikely(!skb))
5490 			goto out;
5491 	}
5492 
5493 	rx_handler = rcu_dereference(skb->dev->rx_handler);
5494 	if (rx_handler) {
5495 		if (pt_prev) {
5496 			ret = deliver_skb(skb, pt_prev, orig_dev);
5497 			pt_prev = NULL;
5498 		}
5499 		switch (rx_handler(&skb)) {
5500 		case RX_HANDLER_CONSUMED:
5501 			ret = NET_RX_SUCCESS;
5502 			goto out;
5503 		case RX_HANDLER_ANOTHER:
5504 			goto another_round;
5505 		case RX_HANDLER_EXACT:
5506 			deliver_exact = true;
5507 			break;
5508 		case RX_HANDLER_PASS:
5509 			break;
5510 		default:
5511 			BUG();
5512 		}
5513 	}
5514 
5515 	if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) {
5516 check_vlan_id:
5517 		if (skb_vlan_tag_get_id(skb)) {
5518 			/* Vlan id is non 0 and vlan_do_receive() above couldn't
5519 			 * find vlan device.
5520 			 */
5521 			skb->pkt_type = PACKET_OTHERHOST;
5522 		} else if (eth_type_vlan(skb->protocol)) {
5523 			/* Outer header is 802.1P with vlan 0, inner header is
5524 			 * 802.1Q or 802.1AD and vlan_do_receive() above could
5525 			 * not find vlan dev for vlan id 0.
5526 			 */
5527 			__vlan_hwaccel_clear_tag(skb);
5528 			skb = skb_vlan_untag(skb);
5529 			if (unlikely(!skb))
5530 				goto out;
5531 			if (vlan_do_receive(&skb))
5532 				/* After stripping off 802.1P header with vlan 0
5533 				 * vlan dev is found for inner header.
5534 				 */
5535 				goto another_round;
5536 			else if (unlikely(!skb))
5537 				goto out;
5538 			else
5539 				/* We have stripped outer 802.1P vlan 0 header.
5540 				 * But could not find vlan dev.
5541 				 * check again for vlan id to set OTHERHOST.
5542 				 */
5543 				goto check_vlan_id;
5544 		}
5545 		/* Note: we might in the future use prio bits
5546 		 * and set skb->priority like in vlan_do_receive()
5547 		 * For the time being, just ignore Priority Code Point
5548 		 */
5549 		__vlan_hwaccel_clear_tag(skb);
5550 	}
5551 
5552 	type = skb->protocol;
5553 
5554 	/* deliver only exact match when indicated */
5555 	if (likely(!deliver_exact)) {
5556 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5557 				       &ptype_base[ntohs(type) &
5558 						   PTYPE_HASH_MASK]);
5559 	}
5560 
5561 	deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5562 			       &orig_dev->ptype_specific);
5563 
5564 	if (unlikely(skb->dev != orig_dev)) {
5565 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5566 				       &skb->dev->ptype_specific);
5567 	}
5568 
5569 	if (pt_prev) {
5570 		if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
5571 			goto drop;
5572 		*ppt_prev = pt_prev;
5573 	} else {
5574 drop:
5575 		if (!deliver_exact)
5576 			dev_core_stats_rx_dropped_inc(skb->dev);
5577 		else
5578 			dev_core_stats_rx_nohandler_inc(skb->dev);
5579 		kfree_skb_reason(skb, SKB_DROP_REASON_UNHANDLED_PROTO);
5580 		/* Jamal, now you will not able to escape explaining
5581 		 * me how you were going to use this. :-)
5582 		 */
5583 		ret = NET_RX_DROP;
5584 	}
5585 
5586 out:
5587 	/* The invariant here is that if *ppt_prev is not NULL
5588 	 * then skb should also be non-NULL.
5589 	 *
5590 	 * Apparently *ppt_prev assignment above holds this invariant due to
5591 	 * skb dereferencing near it.
5592 	 */
5593 	*pskb = skb;
5594 	return ret;
5595 }
5596 
5597 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5598 {
5599 	struct net_device *orig_dev = skb->dev;
5600 	struct packet_type *pt_prev = NULL;
5601 	int ret;
5602 
5603 	ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5604 	if (pt_prev)
5605 		ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5606 					 skb->dev, pt_prev, orig_dev);
5607 	return ret;
5608 }
5609 
5610 /**
5611  *	netif_receive_skb_core - special purpose version of netif_receive_skb
5612  *	@skb: buffer to process
5613  *
5614  *	More direct receive version of netif_receive_skb().  It should
5615  *	only be used by callers that have a need to skip RPS and Generic XDP.
5616  *	Caller must also take care of handling if ``(page_is_)pfmemalloc``.
5617  *
5618  *	This function may only be called from softirq context and interrupts
5619  *	should be enabled.
5620  *
5621  *	Return values (usually ignored):
5622  *	NET_RX_SUCCESS: no congestion
5623  *	NET_RX_DROP: packet was dropped
5624  */
5625 int netif_receive_skb_core(struct sk_buff *skb)
5626 {
5627 	int ret;
5628 
5629 	rcu_read_lock();
5630 	ret = __netif_receive_skb_one_core(skb, false);
5631 	rcu_read_unlock();
5632 
5633 	return ret;
5634 }
5635 EXPORT_SYMBOL(netif_receive_skb_core);
5636 
5637 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5638 						  struct packet_type *pt_prev,
5639 						  struct net_device *orig_dev)
5640 {
5641 	struct sk_buff *skb, *next;
5642 
5643 	if (!pt_prev)
5644 		return;
5645 	if (list_empty(head))
5646 		return;
5647 	if (pt_prev->list_func != NULL)
5648 		INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5649 				   ip_list_rcv, head, pt_prev, orig_dev);
5650 	else
5651 		list_for_each_entry_safe(skb, next, head, list) {
5652 			skb_list_del_init(skb);
5653 			pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5654 		}
5655 }
5656 
5657 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5658 {
5659 	/* Fast-path assumptions:
5660 	 * - There is no RX handler.
5661 	 * - Only one packet_type matches.
5662 	 * If either of these fails, we will end up doing some per-packet
5663 	 * processing in-line, then handling the 'last ptype' for the whole
5664 	 * sublist.  This can't cause out-of-order delivery to any single ptype,
5665 	 * because the 'last ptype' must be constant across the sublist, and all
5666 	 * other ptypes are handled per-packet.
5667 	 */
5668 	/* Current (common) ptype of sublist */
5669 	struct packet_type *pt_curr = NULL;
5670 	/* Current (common) orig_dev of sublist */
5671 	struct net_device *od_curr = NULL;
5672 	struct list_head sublist;
5673 	struct sk_buff *skb, *next;
5674 
5675 	INIT_LIST_HEAD(&sublist);
5676 	list_for_each_entry_safe(skb, next, head, list) {
5677 		struct net_device *orig_dev = skb->dev;
5678 		struct packet_type *pt_prev = NULL;
5679 
5680 		skb_list_del_init(skb);
5681 		__netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5682 		if (!pt_prev)
5683 			continue;
5684 		if (pt_curr != pt_prev || od_curr != orig_dev) {
5685 			/* dispatch old sublist */
5686 			__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5687 			/* start new sublist */
5688 			INIT_LIST_HEAD(&sublist);
5689 			pt_curr = pt_prev;
5690 			od_curr = orig_dev;
5691 		}
5692 		list_add_tail(&skb->list, &sublist);
5693 	}
5694 
5695 	/* dispatch final sublist */
5696 	__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5697 }
5698 
5699 static int __netif_receive_skb(struct sk_buff *skb)
5700 {
5701 	int ret;
5702 
5703 	if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5704 		unsigned int noreclaim_flag;
5705 
5706 		/*
5707 		 * PFMEMALLOC skbs are special, they should
5708 		 * - be delivered to SOCK_MEMALLOC sockets only
5709 		 * - stay away from userspace
5710 		 * - have bounded memory usage
5711 		 *
5712 		 * Use PF_MEMALLOC as this saves us from propagating the allocation
5713 		 * context down to all allocation sites.
5714 		 */
5715 		noreclaim_flag = memalloc_noreclaim_save();
5716 		ret = __netif_receive_skb_one_core(skb, true);
5717 		memalloc_noreclaim_restore(noreclaim_flag);
5718 	} else
5719 		ret = __netif_receive_skb_one_core(skb, false);
5720 
5721 	return ret;
5722 }
5723 
5724 static void __netif_receive_skb_list(struct list_head *head)
5725 {
5726 	unsigned long noreclaim_flag = 0;
5727 	struct sk_buff *skb, *next;
5728 	bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5729 
5730 	list_for_each_entry_safe(skb, next, head, list) {
5731 		if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5732 			struct list_head sublist;
5733 
5734 			/* Handle the previous sublist */
5735 			list_cut_before(&sublist, head, &skb->list);
5736 			if (!list_empty(&sublist))
5737 				__netif_receive_skb_list_core(&sublist, pfmemalloc);
5738 			pfmemalloc = !pfmemalloc;
5739 			/* See comments in __netif_receive_skb */
5740 			if (pfmemalloc)
5741 				noreclaim_flag = memalloc_noreclaim_save();
5742 			else
5743 				memalloc_noreclaim_restore(noreclaim_flag);
5744 		}
5745 	}
5746 	/* Handle the remaining sublist */
5747 	if (!list_empty(head))
5748 		__netif_receive_skb_list_core(head, pfmemalloc);
5749 	/* Restore pflags */
5750 	if (pfmemalloc)
5751 		memalloc_noreclaim_restore(noreclaim_flag);
5752 }
5753 
5754 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5755 {
5756 	struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5757 	struct bpf_prog *new = xdp->prog;
5758 	int ret = 0;
5759 
5760 	switch (xdp->command) {
5761 	case XDP_SETUP_PROG:
5762 		rcu_assign_pointer(dev->xdp_prog, new);
5763 		if (old)
5764 			bpf_prog_put(old);
5765 
5766 		if (old && !new) {
5767 			static_branch_dec(&generic_xdp_needed_key);
5768 		} else if (new && !old) {
5769 			static_branch_inc(&generic_xdp_needed_key);
5770 			dev_disable_lro(dev);
5771 			dev_disable_gro_hw(dev);
5772 		}
5773 		break;
5774 
5775 	default:
5776 		ret = -EINVAL;
5777 		break;
5778 	}
5779 
5780 	return ret;
5781 }
5782 
5783 static int netif_receive_skb_internal(struct sk_buff *skb)
5784 {
5785 	int ret;
5786 
5787 	net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue), skb);
5788 
5789 	if (skb_defer_rx_timestamp(skb))
5790 		return NET_RX_SUCCESS;
5791 
5792 	rcu_read_lock();
5793 #ifdef CONFIG_RPS
5794 	if (static_branch_unlikely(&rps_needed)) {
5795 		struct rps_dev_flow voidflow, *rflow = &voidflow;
5796 		int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5797 
5798 		if (cpu >= 0) {
5799 			ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5800 			rcu_read_unlock();
5801 			return ret;
5802 		}
5803 	}
5804 #endif
5805 	ret = __netif_receive_skb(skb);
5806 	rcu_read_unlock();
5807 	return ret;
5808 }
5809 
5810 void netif_receive_skb_list_internal(struct list_head *head)
5811 {
5812 	struct sk_buff *skb, *next;
5813 	struct list_head sublist;
5814 
5815 	INIT_LIST_HEAD(&sublist);
5816 	list_for_each_entry_safe(skb, next, head, list) {
5817 		net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue),
5818 				    skb);
5819 		skb_list_del_init(skb);
5820 		if (!skb_defer_rx_timestamp(skb))
5821 			list_add_tail(&skb->list, &sublist);
5822 	}
5823 	list_splice_init(&sublist, head);
5824 
5825 	rcu_read_lock();
5826 #ifdef CONFIG_RPS
5827 	if (static_branch_unlikely(&rps_needed)) {
5828 		list_for_each_entry_safe(skb, next, head, list) {
5829 			struct rps_dev_flow voidflow, *rflow = &voidflow;
5830 			int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5831 
5832 			if (cpu >= 0) {
5833 				/* Will be handled, remove from list */
5834 				skb_list_del_init(skb);
5835 				enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5836 			}
5837 		}
5838 	}
5839 #endif
5840 	__netif_receive_skb_list(head);
5841 	rcu_read_unlock();
5842 }
5843 
5844 /**
5845  *	netif_receive_skb - process receive buffer from network
5846  *	@skb: buffer to process
5847  *
5848  *	netif_receive_skb() is the main receive data processing function.
5849  *	It always succeeds. The buffer may be dropped during processing
5850  *	for congestion control or by the protocol layers.
5851  *
5852  *	This function may only be called from softirq context and interrupts
5853  *	should be enabled.
5854  *
5855  *	Return values (usually ignored):
5856  *	NET_RX_SUCCESS: no congestion
5857  *	NET_RX_DROP: packet was dropped
5858  */
5859 int netif_receive_skb(struct sk_buff *skb)
5860 {
5861 	int ret;
5862 
5863 	trace_netif_receive_skb_entry(skb);
5864 
5865 	ret = netif_receive_skb_internal(skb);
5866 	trace_netif_receive_skb_exit(ret);
5867 
5868 	return ret;
5869 }
5870 EXPORT_SYMBOL(netif_receive_skb);
5871 
5872 /**
5873  *	netif_receive_skb_list - process many receive buffers from network
5874  *	@head: list of skbs to process.
5875  *
5876  *	Since return value of netif_receive_skb() is normally ignored, and
5877  *	wouldn't be meaningful for a list, this function returns void.
5878  *
5879  *	This function may only be called from softirq context and interrupts
5880  *	should be enabled.
5881  */
5882 void netif_receive_skb_list(struct list_head *head)
5883 {
5884 	struct sk_buff *skb;
5885 
5886 	if (list_empty(head))
5887 		return;
5888 	if (trace_netif_receive_skb_list_entry_enabled()) {
5889 		list_for_each_entry(skb, head, list)
5890 			trace_netif_receive_skb_list_entry(skb);
5891 	}
5892 	netif_receive_skb_list_internal(head);
5893 	trace_netif_receive_skb_list_exit(0);
5894 }
5895 EXPORT_SYMBOL(netif_receive_skb_list);
5896 
5897 static DEFINE_PER_CPU(struct work_struct, flush_works);
5898 
5899 /* Network device is going away, flush any packets still pending */
5900 static void flush_backlog(struct work_struct *work)
5901 {
5902 	struct sk_buff *skb, *tmp;
5903 	struct softnet_data *sd;
5904 
5905 	local_bh_disable();
5906 	sd = this_cpu_ptr(&softnet_data);
5907 
5908 	backlog_lock_irq_disable(sd);
5909 	skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5910 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5911 			__skb_unlink(skb, &sd->input_pkt_queue);
5912 			dev_kfree_skb_irq(skb);
5913 			rps_input_queue_head_incr(sd);
5914 		}
5915 	}
5916 	backlog_unlock_irq_enable(sd);
5917 
5918 	skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5919 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5920 			__skb_unlink(skb, &sd->process_queue);
5921 			kfree_skb(skb);
5922 			rps_input_queue_head_incr(sd);
5923 		}
5924 	}
5925 	local_bh_enable();
5926 }
5927 
5928 static bool flush_required(int cpu)
5929 {
5930 #if IS_ENABLED(CONFIG_RPS)
5931 	struct softnet_data *sd = &per_cpu(softnet_data, cpu);
5932 	bool do_flush;
5933 
5934 	backlog_lock_irq_disable(sd);
5935 
5936 	/* as insertion into process_queue happens with the rps lock held,
5937 	 * process_queue access may race only with dequeue
5938 	 */
5939 	do_flush = !skb_queue_empty(&sd->input_pkt_queue) ||
5940 		   !skb_queue_empty_lockless(&sd->process_queue);
5941 	backlog_unlock_irq_enable(sd);
5942 
5943 	return do_flush;
5944 #endif
5945 	/* without RPS we can't safely check input_pkt_queue: during a
5946 	 * concurrent remote skb_queue_splice() we can detect as empty both
5947 	 * input_pkt_queue and process_queue even if the latter could end-up
5948 	 * containing a lot of packets.
5949 	 */
5950 	return true;
5951 }
5952 
5953 static void flush_all_backlogs(void)
5954 {
5955 	static cpumask_t flush_cpus;
5956 	unsigned int cpu;
5957 
5958 	/* since we are under rtnl lock protection we can use static data
5959 	 * for the cpumask and avoid allocating on stack the possibly
5960 	 * large mask
5961 	 */
5962 	ASSERT_RTNL();
5963 
5964 	cpus_read_lock();
5965 
5966 	cpumask_clear(&flush_cpus);
5967 	for_each_online_cpu(cpu) {
5968 		if (flush_required(cpu)) {
5969 			queue_work_on(cpu, system_highpri_wq,
5970 				      per_cpu_ptr(&flush_works, cpu));
5971 			cpumask_set_cpu(cpu, &flush_cpus);
5972 		}
5973 	}
5974 
5975 	/* we can have in flight packet[s] on the cpus we are not flushing,
5976 	 * synchronize_net() in unregister_netdevice_many() will take care of
5977 	 * them
5978 	 */
5979 	for_each_cpu(cpu, &flush_cpus)
5980 		flush_work(per_cpu_ptr(&flush_works, cpu));
5981 
5982 	cpus_read_unlock();
5983 }
5984 
5985 static void net_rps_send_ipi(struct softnet_data *remsd)
5986 {
5987 #ifdef CONFIG_RPS
5988 	while (remsd) {
5989 		struct softnet_data *next = remsd->rps_ipi_next;
5990 
5991 		if (cpu_online(remsd->cpu))
5992 			smp_call_function_single_async(remsd->cpu, &remsd->csd);
5993 		remsd = next;
5994 	}
5995 #endif
5996 }
5997 
5998 /*
5999  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
6000  * Note: called with local irq disabled, but exits with local irq enabled.
6001  */
6002 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
6003 {
6004 #ifdef CONFIG_RPS
6005 	struct softnet_data *remsd = sd->rps_ipi_list;
6006 
6007 	if (!use_backlog_threads() && remsd) {
6008 		sd->rps_ipi_list = NULL;
6009 
6010 		local_irq_enable();
6011 
6012 		/* Send pending IPI's to kick RPS processing on remote cpus. */
6013 		net_rps_send_ipi(remsd);
6014 	} else
6015 #endif
6016 		local_irq_enable();
6017 }
6018 
6019 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
6020 {
6021 #ifdef CONFIG_RPS
6022 	return !use_backlog_threads() && sd->rps_ipi_list;
6023 #else
6024 	return false;
6025 #endif
6026 }
6027 
6028 static int process_backlog(struct napi_struct *napi, int quota)
6029 {
6030 	struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
6031 	bool again = true;
6032 	int work = 0;
6033 
6034 	/* Check if we have pending ipi, its better to send them now,
6035 	 * not waiting net_rx_action() end.
6036 	 */
6037 	if (sd_has_rps_ipi_waiting(sd)) {
6038 		local_irq_disable();
6039 		net_rps_action_and_irq_enable(sd);
6040 	}
6041 
6042 	napi->weight = READ_ONCE(net_hotdata.dev_rx_weight);
6043 	while (again) {
6044 		struct sk_buff *skb;
6045 
6046 		while ((skb = __skb_dequeue(&sd->process_queue))) {
6047 			rcu_read_lock();
6048 			__netif_receive_skb(skb);
6049 			rcu_read_unlock();
6050 			if (++work >= quota) {
6051 				rps_input_queue_head_add(sd, work);
6052 				return work;
6053 			}
6054 
6055 		}
6056 
6057 		backlog_lock_irq_disable(sd);
6058 		if (skb_queue_empty(&sd->input_pkt_queue)) {
6059 			/*
6060 			 * Inline a custom version of __napi_complete().
6061 			 * only current cpu owns and manipulates this napi,
6062 			 * and NAPI_STATE_SCHED is the only possible flag set
6063 			 * on backlog.
6064 			 * We can use a plain write instead of clear_bit(),
6065 			 * and we dont need an smp_mb() memory barrier.
6066 			 */
6067 			napi->state &= NAPIF_STATE_THREADED;
6068 			again = false;
6069 		} else {
6070 			skb_queue_splice_tail_init(&sd->input_pkt_queue,
6071 						   &sd->process_queue);
6072 		}
6073 		backlog_unlock_irq_enable(sd);
6074 	}
6075 
6076 	if (work)
6077 		rps_input_queue_head_add(sd, work);
6078 	return work;
6079 }
6080 
6081 /**
6082  * __napi_schedule - schedule for receive
6083  * @n: entry to schedule
6084  *
6085  * The entry's receive function will be scheduled to run.
6086  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
6087  */
6088 void __napi_schedule(struct napi_struct *n)
6089 {
6090 	unsigned long flags;
6091 
6092 	local_irq_save(flags);
6093 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
6094 	local_irq_restore(flags);
6095 }
6096 EXPORT_SYMBOL(__napi_schedule);
6097 
6098 /**
6099  *	napi_schedule_prep - check if napi can be scheduled
6100  *	@n: napi context
6101  *
6102  * Test if NAPI routine is already running, and if not mark
6103  * it as running.  This is used as a condition variable to
6104  * insure only one NAPI poll instance runs.  We also make
6105  * sure there is no pending NAPI disable.
6106  */
6107 bool napi_schedule_prep(struct napi_struct *n)
6108 {
6109 	unsigned long new, val = READ_ONCE(n->state);
6110 
6111 	do {
6112 		if (unlikely(val & NAPIF_STATE_DISABLE))
6113 			return false;
6114 		new = val | NAPIF_STATE_SCHED;
6115 
6116 		/* Sets STATE_MISSED bit if STATE_SCHED was already set
6117 		 * This was suggested by Alexander Duyck, as compiler
6118 		 * emits better code than :
6119 		 * if (val & NAPIF_STATE_SCHED)
6120 		 *     new |= NAPIF_STATE_MISSED;
6121 		 */
6122 		new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6123 						   NAPIF_STATE_MISSED;
6124 	} while (!try_cmpxchg(&n->state, &val, new));
6125 
6126 	return !(val & NAPIF_STATE_SCHED);
6127 }
6128 EXPORT_SYMBOL(napi_schedule_prep);
6129 
6130 /**
6131  * __napi_schedule_irqoff - schedule for receive
6132  * @n: entry to schedule
6133  *
6134  * Variant of __napi_schedule() assuming hard irqs are masked.
6135  *
6136  * On PREEMPT_RT enabled kernels this maps to __napi_schedule()
6137  * because the interrupt disabled assumption might not be true
6138  * due to force-threaded interrupts and spinlock substitution.
6139  */
6140 void __napi_schedule_irqoff(struct napi_struct *n)
6141 {
6142 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6143 		____napi_schedule(this_cpu_ptr(&softnet_data), n);
6144 	else
6145 		__napi_schedule(n);
6146 }
6147 EXPORT_SYMBOL(__napi_schedule_irqoff);
6148 
6149 bool napi_complete_done(struct napi_struct *n, int work_done)
6150 {
6151 	unsigned long flags, val, new, timeout = 0;
6152 	bool ret = true;
6153 
6154 	/*
6155 	 * 1) Don't let napi dequeue from the cpu poll list
6156 	 *    just in case its running on a different cpu.
6157 	 * 2) If we are busy polling, do nothing here, we have
6158 	 *    the guarantee we will be called later.
6159 	 */
6160 	if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6161 				 NAPIF_STATE_IN_BUSY_POLL)))
6162 		return false;
6163 
6164 	if (work_done) {
6165 		if (n->gro_bitmask)
6166 			timeout = READ_ONCE(n->dev->gro_flush_timeout);
6167 		n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs);
6168 	}
6169 	if (n->defer_hard_irqs_count > 0) {
6170 		n->defer_hard_irqs_count--;
6171 		timeout = READ_ONCE(n->dev->gro_flush_timeout);
6172 		if (timeout)
6173 			ret = false;
6174 	}
6175 	if (n->gro_bitmask) {
6176 		/* When the NAPI instance uses a timeout and keeps postponing
6177 		 * it, we need to bound somehow the time packets are kept in
6178 		 * the GRO layer
6179 		 */
6180 		napi_gro_flush(n, !!timeout);
6181 	}
6182 
6183 	gro_normal_list(n);
6184 
6185 	if (unlikely(!list_empty(&n->poll_list))) {
6186 		/* If n->poll_list is not empty, we need to mask irqs */
6187 		local_irq_save(flags);
6188 		list_del_init(&n->poll_list);
6189 		local_irq_restore(flags);
6190 	}
6191 	WRITE_ONCE(n->list_owner, -1);
6192 
6193 	val = READ_ONCE(n->state);
6194 	do {
6195 		WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6196 
6197 		new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED |
6198 			      NAPIF_STATE_SCHED_THREADED |
6199 			      NAPIF_STATE_PREFER_BUSY_POLL);
6200 
6201 		/* If STATE_MISSED was set, leave STATE_SCHED set,
6202 		 * because we will call napi->poll() one more time.
6203 		 * This C code was suggested by Alexander Duyck to help gcc.
6204 		 */
6205 		new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6206 						    NAPIF_STATE_SCHED;
6207 	} while (!try_cmpxchg(&n->state, &val, new));
6208 
6209 	if (unlikely(val & NAPIF_STATE_MISSED)) {
6210 		__napi_schedule(n);
6211 		return false;
6212 	}
6213 
6214 	if (timeout)
6215 		hrtimer_start(&n->timer, ns_to_ktime(timeout),
6216 			      HRTIMER_MODE_REL_PINNED);
6217 	return ret;
6218 }
6219 EXPORT_SYMBOL(napi_complete_done);
6220 
6221 /* must be called under rcu_read_lock(), as we dont take a reference */
6222 struct napi_struct *napi_by_id(unsigned int napi_id)
6223 {
6224 	unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6225 	struct napi_struct *napi;
6226 
6227 	hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6228 		if (napi->napi_id == napi_id)
6229 			return napi;
6230 
6231 	return NULL;
6232 }
6233 
6234 static void skb_defer_free_flush(struct softnet_data *sd)
6235 {
6236 	struct sk_buff *skb, *next;
6237 
6238 	/* Paired with WRITE_ONCE() in skb_attempt_defer_free() */
6239 	if (!READ_ONCE(sd->defer_list))
6240 		return;
6241 
6242 	spin_lock(&sd->defer_lock);
6243 	skb = sd->defer_list;
6244 	sd->defer_list = NULL;
6245 	sd->defer_count = 0;
6246 	spin_unlock(&sd->defer_lock);
6247 
6248 	while (skb != NULL) {
6249 		next = skb->next;
6250 		napi_consume_skb(skb, 1);
6251 		skb = next;
6252 	}
6253 }
6254 
6255 #if defined(CONFIG_NET_RX_BUSY_POLL)
6256 
6257 static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule)
6258 {
6259 	if (!skip_schedule) {
6260 		gro_normal_list(napi);
6261 		__napi_schedule(napi);
6262 		return;
6263 	}
6264 
6265 	if (napi->gro_bitmask) {
6266 		/* flush too old packets
6267 		 * If HZ < 1000, flush all packets.
6268 		 */
6269 		napi_gro_flush(napi, HZ >= 1000);
6270 	}
6271 
6272 	gro_normal_list(napi);
6273 	clear_bit(NAPI_STATE_SCHED, &napi->state);
6274 }
6275 
6276 enum {
6277 	NAPI_F_PREFER_BUSY_POLL	= 1,
6278 	NAPI_F_END_ON_RESCHED	= 2,
6279 };
6280 
6281 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock,
6282 			   unsigned flags, u16 budget)
6283 {
6284 	bool skip_schedule = false;
6285 	unsigned long timeout;
6286 	int rc;
6287 
6288 	/* Busy polling means there is a high chance device driver hard irq
6289 	 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6290 	 * set in napi_schedule_prep().
6291 	 * Since we are about to call napi->poll() once more, we can safely
6292 	 * clear NAPI_STATE_MISSED.
6293 	 *
6294 	 * Note: x86 could use a single "lock and ..." instruction
6295 	 * to perform these two clear_bit()
6296 	 */
6297 	clear_bit(NAPI_STATE_MISSED, &napi->state);
6298 	clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6299 
6300 	local_bh_disable();
6301 
6302 	if (flags & NAPI_F_PREFER_BUSY_POLL) {
6303 		napi->defer_hard_irqs_count = READ_ONCE(napi->dev->napi_defer_hard_irqs);
6304 		timeout = READ_ONCE(napi->dev->gro_flush_timeout);
6305 		if (napi->defer_hard_irqs_count && timeout) {
6306 			hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED);
6307 			skip_schedule = true;
6308 		}
6309 	}
6310 
6311 	/* All we really want here is to re-enable device interrupts.
6312 	 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6313 	 */
6314 	rc = napi->poll(napi, budget);
6315 	/* We can't gro_normal_list() here, because napi->poll() might have
6316 	 * rearmed the napi (napi_complete_done()) in which case it could
6317 	 * already be running on another CPU.
6318 	 */
6319 	trace_napi_poll(napi, rc, budget);
6320 	netpoll_poll_unlock(have_poll_lock);
6321 	if (rc == budget)
6322 		__busy_poll_stop(napi, skip_schedule);
6323 	local_bh_enable();
6324 }
6325 
6326 static void __napi_busy_loop(unsigned int napi_id,
6327 		      bool (*loop_end)(void *, unsigned long),
6328 		      void *loop_end_arg, unsigned flags, u16 budget)
6329 {
6330 	unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6331 	int (*napi_poll)(struct napi_struct *napi, int budget);
6332 	void *have_poll_lock = NULL;
6333 	struct napi_struct *napi;
6334 
6335 	WARN_ON_ONCE(!rcu_read_lock_held());
6336 
6337 restart:
6338 	napi_poll = NULL;
6339 
6340 	napi = napi_by_id(napi_id);
6341 	if (!napi)
6342 		return;
6343 
6344 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6345 		preempt_disable();
6346 	for (;;) {
6347 		int work = 0;
6348 
6349 		local_bh_disable();
6350 		if (!napi_poll) {
6351 			unsigned long val = READ_ONCE(napi->state);
6352 
6353 			/* If multiple threads are competing for this napi,
6354 			 * we avoid dirtying napi->state as much as we can.
6355 			 */
6356 			if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6357 				   NAPIF_STATE_IN_BUSY_POLL)) {
6358 				if (flags & NAPI_F_PREFER_BUSY_POLL)
6359 					set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6360 				goto count;
6361 			}
6362 			if (cmpxchg(&napi->state, val,
6363 				    val | NAPIF_STATE_IN_BUSY_POLL |
6364 					  NAPIF_STATE_SCHED) != val) {
6365 				if (flags & NAPI_F_PREFER_BUSY_POLL)
6366 					set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6367 				goto count;
6368 			}
6369 			have_poll_lock = netpoll_poll_lock(napi);
6370 			napi_poll = napi->poll;
6371 		}
6372 		work = napi_poll(napi, budget);
6373 		trace_napi_poll(napi, work, budget);
6374 		gro_normal_list(napi);
6375 count:
6376 		if (work > 0)
6377 			__NET_ADD_STATS(dev_net(napi->dev),
6378 					LINUX_MIB_BUSYPOLLRXPACKETS, work);
6379 		skb_defer_free_flush(this_cpu_ptr(&softnet_data));
6380 		local_bh_enable();
6381 
6382 		if (!loop_end || loop_end(loop_end_arg, start_time))
6383 			break;
6384 
6385 		if (unlikely(need_resched())) {
6386 			if (flags & NAPI_F_END_ON_RESCHED)
6387 				break;
6388 			if (napi_poll)
6389 				busy_poll_stop(napi, have_poll_lock, flags, budget);
6390 			if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6391 				preempt_enable();
6392 			rcu_read_unlock();
6393 			cond_resched();
6394 			rcu_read_lock();
6395 			if (loop_end(loop_end_arg, start_time))
6396 				return;
6397 			goto restart;
6398 		}
6399 		cpu_relax();
6400 	}
6401 	if (napi_poll)
6402 		busy_poll_stop(napi, have_poll_lock, flags, budget);
6403 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6404 		preempt_enable();
6405 }
6406 
6407 void napi_busy_loop_rcu(unsigned int napi_id,
6408 			bool (*loop_end)(void *, unsigned long),
6409 			void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6410 {
6411 	unsigned flags = NAPI_F_END_ON_RESCHED;
6412 
6413 	if (prefer_busy_poll)
6414 		flags |= NAPI_F_PREFER_BUSY_POLL;
6415 
6416 	__napi_busy_loop(napi_id, loop_end, loop_end_arg, flags, budget);
6417 }
6418 
6419 void napi_busy_loop(unsigned int napi_id,
6420 		    bool (*loop_end)(void *, unsigned long),
6421 		    void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6422 {
6423 	unsigned flags = prefer_busy_poll ? NAPI_F_PREFER_BUSY_POLL : 0;
6424 
6425 	rcu_read_lock();
6426 	__napi_busy_loop(napi_id, loop_end, loop_end_arg, flags, budget);
6427 	rcu_read_unlock();
6428 }
6429 EXPORT_SYMBOL(napi_busy_loop);
6430 
6431 #endif /* CONFIG_NET_RX_BUSY_POLL */
6432 
6433 static void napi_hash_add(struct napi_struct *napi)
6434 {
6435 	if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state))
6436 		return;
6437 
6438 	spin_lock(&napi_hash_lock);
6439 
6440 	/* 0..NR_CPUS range is reserved for sender_cpu use */
6441 	do {
6442 		if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6443 			napi_gen_id = MIN_NAPI_ID;
6444 	} while (napi_by_id(napi_gen_id));
6445 	napi->napi_id = napi_gen_id;
6446 
6447 	hlist_add_head_rcu(&napi->napi_hash_node,
6448 			   &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6449 
6450 	spin_unlock(&napi_hash_lock);
6451 }
6452 
6453 /* Warning : caller is responsible to make sure rcu grace period
6454  * is respected before freeing memory containing @napi
6455  */
6456 static void napi_hash_del(struct napi_struct *napi)
6457 {
6458 	spin_lock(&napi_hash_lock);
6459 
6460 	hlist_del_init_rcu(&napi->napi_hash_node);
6461 
6462 	spin_unlock(&napi_hash_lock);
6463 }
6464 
6465 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6466 {
6467 	struct napi_struct *napi;
6468 
6469 	napi = container_of(timer, struct napi_struct, timer);
6470 
6471 	/* Note : we use a relaxed variant of napi_schedule_prep() not setting
6472 	 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6473 	 */
6474 	if (!napi_disable_pending(napi) &&
6475 	    !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) {
6476 		clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6477 		__napi_schedule_irqoff(napi);
6478 	}
6479 
6480 	return HRTIMER_NORESTART;
6481 }
6482 
6483 static void init_gro_hash(struct napi_struct *napi)
6484 {
6485 	int i;
6486 
6487 	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6488 		INIT_LIST_HEAD(&napi->gro_hash[i].list);
6489 		napi->gro_hash[i].count = 0;
6490 	}
6491 	napi->gro_bitmask = 0;
6492 }
6493 
6494 int dev_set_threaded(struct net_device *dev, bool threaded)
6495 {
6496 	struct napi_struct *napi;
6497 	int err = 0;
6498 
6499 	if (dev->threaded == threaded)
6500 		return 0;
6501 
6502 	if (threaded) {
6503 		list_for_each_entry(napi, &dev->napi_list, dev_list) {
6504 			if (!napi->thread) {
6505 				err = napi_kthread_create(napi);
6506 				if (err) {
6507 					threaded = false;
6508 					break;
6509 				}
6510 			}
6511 		}
6512 	}
6513 
6514 	dev->threaded = threaded;
6515 
6516 	/* Make sure kthread is created before THREADED bit
6517 	 * is set.
6518 	 */
6519 	smp_mb__before_atomic();
6520 
6521 	/* Setting/unsetting threaded mode on a napi might not immediately
6522 	 * take effect, if the current napi instance is actively being
6523 	 * polled. In this case, the switch between threaded mode and
6524 	 * softirq mode will happen in the next round of napi_schedule().
6525 	 * This should not cause hiccups/stalls to the live traffic.
6526 	 */
6527 	list_for_each_entry(napi, &dev->napi_list, dev_list)
6528 		assign_bit(NAPI_STATE_THREADED, &napi->state, threaded);
6529 
6530 	return err;
6531 }
6532 EXPORT_SYMBOL(dev_set_threaded);
6533 
6534 /**
6535  * netif_queue_set_napi - Associate queue with the napi
6536  * @dev: device to which NAPI and queue belong
6537  * @queue_index: Index of queue
6538  * @type: queue type as RX or TX
6539  * @napi: NAPI context, pass NULL to clear previously set NAPI
6540  *
6541  * Set queue with its corresponding napi context. This should be done after
6542  * registering the NAPI handler for the queue-vector and the queues have been
6543  * mapped to the corresponding interrupt vector.
6544  */
6545 void netif_queue_set_napi(struct net_device *dev, unsigned int queue_index,
6546 			  enum netdev_queue_type type, struct napi_struct *napi)
6547 {
6548 	struct netdev_rx_queue *rxq;
6549 	struct netdev_queue *txq;
6550 
6551 	if (WARN_ON_ONCE(napi && !napi->dev))
6552 		return;
6553 	if (dev->reg_state >= NETREG_REGISTERED)
6554 		ASSERT_RTNL();
6555 
6556 	switch (type) {
6557 	case NETDEV_QUEUE_TYPE_RX:
6558 		rxq = __netif_get_rx_queue(dev, queue_index);
6559 		rxq->napi = napi;
6560 		return;
6561 	case NETDEV_QUEUE_TYPE_TX:
6562 		txq = netdev_get_tx_queue(dev, queue_index);
6563 		txq->napi = napi;
6564 		return;
6565 	default:
6566 		return;
6567 	}
6568 }
6569 EXPORT_SYMBOL(netif_queue_set_napi);
6570 
6571 void netif_napi_add_weight(struct net_device *dev, struct napi_struct *napi,
6572 			   int (*poll)(struct napi_struct *, int), int weight)
6573 {
6574 	if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state)))
6575 		return;
6576 
6577 	INIT_LIST_HEAD(&napi->poll_list);
6578 	INIT_HLIST_NODE(&napi->napi_hash_node);
6579 	hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6580 	napi->timer.function = napi_watchdog;
6581 	init_gro_hash(napi);
6582 	napi->skb = NULL;
6583 	INIT_LIST_HEAD(&napi->rx_list);
6584 	napi->rx_count = 0;
6585 	napi->poll = poll;
6586 	if (weight > NAPI_POLL_WEIGHT)
6587 		netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6588 				weight);
6589 	napi->weight = weight;
6590 	napi->dev = dev;
6591 #ifdef CONFIG_NETPOLL
6592 	napi->poll_owner = -1;
6593 #endif
6594 	napi->list_owner = -1;
6595 	set_bit(NAPI_STATE_SCHED, &napi->state);
6596 	set_bit(NAPI_STATE_NPSVC, &napi->state);
6597 	list_add_rcu(&napi->dev_list, &dev->napi_list);
6598 	napi_hash_add(napi);
6599 	napi_get_frags_check(napi);
6600 	/* Create kthread for this napi if dev->threaded is set.
6601 	 * Clear dev->threaded if kthread creation failed so that
6602 	 * threaded mode will not be enabled in napi_enable().
6603 	 */
6604 	if (dev->threaded && napi_kthread_create(napi))
6605 		dev->threaded = 0;
6606 	netif_napi_set_irq(napi, -1);
6607 }
6608 EXPORT_SYMBOL(netif_napi_add_weight);
6609 
6610 void napi_disable(struct napi_struct *n)
6611 {
6612 	unsigned long val, new;
6613 
6614 	might_sleep();
6615 	set_bit(NAPI_STATE_DISABLE, &n->state);
6616 
6617 	val = READ_ONCE(n->state);
6618 	do {
6619 		while (val & (NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC)) {
6620 			usleep_range(20, 200);
6621 			val = READ_ONCE(n->state);
6622 		}
6623 
6624 		new = val | NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC;
6625 		new &= ~(NAPIF_STATE_THREADED | NAPIF_STATE_PREFER_BUSY_POLL);
6626 	} while (!try_cmpxchg(&n->state, &val, new));
6627 
6628 	hrtimer_cancel(&n->timer);
6629 
6630 	clear_bit(NAPI_STATE_DISABLE, &n->state);
6631 }
6632 EXPORT_SYMBOL(napi_disable);
6633 
6634 /**
6635  *	napi_enable - enable NAPI scheduling
6636  *	@n: NAPI context
6637  *
6638  * Resume NAPI from being scheduled on this context.
6639  * Must be paired with napi_disable.
6640  */
6641 void napi_enable(struct napi_struct *n)
6642 {
6643 	unsigned long new, val = READ_ONCE(n->state);
6644 
6645 	do {
6646 		BUG_ON(!test_bit(NAPI_STATE_SCHED, &val));
6647 
6648 		new = val & ~(NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC);
6649 		if (n->dev->threaded && n->thread)
6650 			new |= NAPIF_STATE_THREADED;
6651 	} while (!try_cmpxchg(&n->state, &val, new));
6652 }
6653 EXPORT_SYMBOL(napi_enable);
6654 
6655 static void flush_gro_hash(struct napi_struct *napi)
6656 {
6657 	int i;
6658 
6659 	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6660 		struct sk_buff *skb, *n;
6661 
6662 		list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6663 			kfree_skb(skb);
6664 		napi->gro_hash[i].count = 0;
6665 	}
6666 }
6667 
6668 /* Must be called in process context */
6669 void __netif_napi_del(struct napi_struct *napi)
6670 {
6671 	if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state))
6672 		return;
6673 
6674 	napi_hash_del(napi);
6675 	list_del_rcu(&napi->dev_list);
6676 	napi_free_frags(napi);
6677 
6678 	flush_gro_hash(napi);
6679 	napi->gro_bitmask = 0;
6680 
6681 	if (napi->thread) {
6682 		kthread_stop(napi->thread);
6683 		napi->thread = NULL;
6684 	}
6685 }
6686 EXPORT_SYMBOL(__netif_napi_del);
6687 
6688 static int __napi_poll(struct napi_struct *n, bool *repoll)
6689 {
6690 	int work, weight;
6691 
6692 	weight = n->weight;
6693 
6694 	/* This NAPI_STATE_SCHED test is for avoiding a race
6695 	 * with netpoll's poll_napi().  Only the entity which
6696 	 * obtains the lock and sees NAPI_STATE_SCHED set will
6697 	 * actually make the ->poll() call.  Therefore we avoid
6698 	 * accidentally calling ->poll() when NAPI is not scheduled.
6699 	 */
6700 	work = 0;
6701 	if (napi_is_scheduled(n)) {
6702 		work = n->poll(n, weight);
6703 		trace_napi_poll(n, work, weight);
6704 
6705 		xdp_do_check_flushed(n);
6706 	}
6707 
6708 	if (unlikely(work > weight))
6709 		netdev_err_once(n->dev, "NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
6710 				n->poll, work, weight);
6711 
6712 	if (likely(work < weight))
6713 		return work;
6714 
6715 	/* Drivers must not modify the NAPI state if they
6716 	 * consume the entire weight.  In such cases this code
6717 	 * still "owns" the NAPI instance and therefore can
6718 	 * move the instance around on the list at-will.
6719 	 */
6720 	if (unlikely(napi_disable_pending(n))) {
6721 		napi_complete(n);
6722 		return work;
6723 	}
6724 
6725 	/* The NAPI context has more processing work, but busy-polling
6726 	 * is preferred. Exit early.
6727 	 */
6728 	if (napi_prefer_busy_poll(n)) {
6729 		if (napi_complete_done(n, work)) {
6730 			/* If timeout is not set, we need to make sure
6731 			 * that the NAPI is re-scheduled.
6732 			 */
6733 			napi_schedule(n);
6734 		}
6735 		return work;
6736 	}
6737 
6738 	if (n->gro_bitmask) {
6739 		/* flush too old packets
6740 		 * If HZ < 1000, flush all packets.
6741 		 */
6742 		napi_gro_flush(n, HZ >= 1000);
6743 	}
6744 
6745 	gro_normal_list(n);
6746 
6747 	/* Some drivers may have called napi_schedule
6748 	 * prior to exhausting their budget.
6749 	 */
6750 	if (unlikely(!list_empty(&n->poll_list))) {
6751 		pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6752 			     n->dev ? n->dev->name : "backlog");
6753 		return work;
6754 	}
6755 
6756 	*repoll = true;
6757 
6758 	return work;
6759 }
6760 
6761 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6762 {
6763 	bool do_repoll = false;
6764 	void *have;
6765 	int work;
6766 
6767 	list_del_init(&n->poll_list);
6768 
6769 	have = netpoll_poll_lock(n);
6770 
6771 	work = __napi_poll(n, &do_repoll);
6772 
6773 	if (do_repoll)
6774 		list_add_tail(&n->poll_list, repoll);
6775 
6776 	netpoll_poll_unlock(have);
6777 
6778 	return work;
6779 }
6780 
6781 static int napi_thread_wait(struct napi_struct *napi)
6782 {
6783 	set_current_state(TASK_INTERRUPTIBLE);
6784 
6785 	while (!kthread_should_stop()) {
6786 		/* Testing SCHED_THREADED bit here to make sure the current
6787 		 * kthread owns this napi and could poll on this napi.
6788 		 * Testing SCHED bit is not enough because SCHED bit might be
6789 		 * set by some other busy poll thread or by napi_disable().
6790 		 */
6791 		if (test_bit(NAPI_STATE_SCHED_THREADED, &napi->state)) {
6792 			WARN_ON(!list_empty(&napi->poll_list));
6793 			__set_current_state(TASK_RUNNING);
6794 			return 0;
6795 		}
6796 
6797 		schedule();
6798 		set_current_state(TASK_INTERRUPTIBLE);
6799 	}
6800 	__set_current_state(TASK_RUNNING);
6801 
6802 	return -1;
6803 }
6804 
6805 static void napi_threaded_poll_loop(struct napi_struct *napi)
6806 {
6807 	struct softnet_data *sd;
6808 	unsigned long last_qs = jiffies;
6809 
6810 	for (;;) {
6811 		bool repoll = false;
6812 		void *have;
6813 
6814 		local_bh_disable();
6815 		sd = this_cpu_ptr(&softnet_data);
6816 		sd->in_napi_threaded_poll = true;
6817 
6818 		have = netpoll_poll_lock(napi);
6819 		__napi_poll(napi, &repoll);
6820 		netpoll_poll_unlock(have);
6821 
6822 		sd->in_napi_threaded_poll = false;
6823 		barrier();
6824 
6825 		if (sd_has_rps_ipi_waiting(sd)) {
6826 			local_irq_disable();
6827 			net_rps_action_and_irq_enable(sd);
6828 		}
6829 		skb_defer_free_flush(sd);
6830 		local_bh_enable();
6831 
6832 		if (!repoll)
6833 			break;
6834 
6835 		rcu_softirq_qs_periodic(last_qs);
6836 		cond_resched();
6837 	}
6838 }
6839 
6840 static int napi_threaded_poll(void *data)
6841 {
6842 	struct napi_struct *napi = data;
6843 
6844 	while (!napi_thread_wait(napi))
6845 		napi_threaded_poll_loop(napi);
6846 
6847 	return 0;
6848 }
6849 
6850 static __latent_entropy void net_rx_action(struct softirq_action *h)
6851 {
6852 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
6853 	unsigned long time_limit = jiffies +
6854 		usecs_to_jiffies(READ_ONCE(net_hotdata.netdev_budget_usecs));
6855 	int budget = READ_ONCE(net_hotdata.netdev_budget);
6856 	LIST_HEAD(list);
6857 	LIST_HEAD(repoll);
6858 
6859 start:
6860 	sd->in_net_rx_action = true;
6861 	local_irq_disable();
6862 	list_splice_init(&sd->poll_list, &list);
6863 	local_irq_enable();
6864 
6865 	for (;;) {
6866 		struct napi_struct *n;
6867 
6868 		skb_defer_free_flush(sd);
6869 
6870 		if (list_empty(&list)) {
6871 			if (list_empty(&repoll)) {
6872 				sd->in_net_rx_action = false;
6873 				barrier();
6874 				/* We need to check if ____napi_schedule()
6875 				 * had refilled poll_list while
6876 				 * sd->in_net_rx_action was true.
6877 				 */
6878 				if (!list_empty(&sd->poll_list))
6879 					goto start;
6880 				if (!sd_has_rps_ipi_waiting(sd))
6881 					goto end;
6882 			}
6883 			break;
6884 		}
6885 
6886 		n = list_first_entry(&list, struct napi_struct, poll_list);
6887 		budget -= napi_poll(n, &repoll);
6888 
6889 		/* If softirq window is exhausted then punt.
6890 		 * Allow this to run for 2 jiffies since which will allow
6891 		 * an average latency of 1.5/HZ.
6892 		 */
6893 		if (unlikely(budget <= 0 ||
6894 			     time_after_eq(jiffies, time_limit))) {
6895 			sd->time_squeeze++;
6896 			break;
6897 		}
6898 	}
6899 
6900 	local_irq_disable();
6901 
6902 	list_splice_tail_init(&sd->poll_list, &list);
6903 	list_splice_tail(&repoll, &list);
6904 	list_splice(&list, &sd->poll_list);
6905 	if (!list_empty(&sd->poll_list))
6906 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
6907 	else
6908 		sd->in_net_rx_action = false;
6909 
6910 	net_rps_action_and_irq_enable(sd);
6911 end:;
6912 }
6913 
6914 struct netdev_adjacent {
6915 	struct net_device *dev;
6916 	netdevice_tracker dev_tracker;
6917 
6918 	/* upper master flag, there can only be one master device per list */
6919 	bool master;
6920 
6921 	/* lookup ignore flag */
6922 	bool ignore;
6923 
6924 	/* counter for the number of times this device was added to us */
6925 	u16 ref_nr;
6926 
6927 	/* private field for the users */
6928 	void *private;
6929 
6930 	struct list_head list;
6931 	struct rcu_head rcu;
6932 };
6933 
6934 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
6935 						 struct list_head *adj_list)
6936 {
6937 	struct netdev_adjacent *adj;
6938 
6939 	list_for_each_entry(adj, adj_list, list) {
6940 		if (adj->dev == adj_dev)
6941 			return adj;
6942 	}
6943 	return NULL;
6944 }
6945 
6946 static int ____netdev_has_upper_dev(struct net_device *upper_dev,
6947 				    struct netdev_nested_priv *priv)
6948 {
6949 	struct net_device *dev = (struct net_device *)priv->data;
6950 
6951 	return upper_dev == dev;
6952 }
6953 
6954 /**
6955  * netdev_has_upper_dev - Check if device is linked to an upper device
6956  * @dev: device
6957  * @upper_dev: upper device to check
6958  *
6959  * Find out if a device is linked to specified upper device and return true
6960  * in case it is. Note that this checks only immediate upper device,
6961  * not through a complete stack of devices. The caller must hold the RTNL lock.
6962  */
6963 bool netdev_has_upper_dev(struct net_device *dev,
6964 			  struct net_device *upper_dev)
6965 {
6966 	struct netdev_nested_priv priv = {
6967 		.data = (void *)upper_dev,
6968 	};
6969 
6970 	ASSERT_RTNL();
6971 
6972 	return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6973 					     &priv);
6974 }
6975 EXPORT_SYMBOL(netdev_has_upper_dev);
6976 
6977 /**
6978  * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device
6979  * @dev: device
6980  * @upper_dev: upper device to check
6981  *
6982  * Find out if a device is linked to specified upper device and return true
6983  * in case it is. Note that this checks the entire upper device chain.
6984  * The caller must hold rcu lock.
6985  */
6986 
6987 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
6988 				  struct net_device *upper_dev)
6989 {
6990 	struct netdev_nested_priv priv = {
6991 		.data = (void *)upper_dev,
6992 	};
6993 
6994 	return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6995 					       &priv);
6996 }
6997 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
6998 
6999 /**
7000  * netdev_has_any_upper_dev - Check if device is linked to some device
7001  * @dev: device
7002  *
7003  * Find out if a device is linked to an upper device and return true in case
7004  * it is. The caller must hold the RTNL lock.
7005  */
7006 bool netdev_has_any_upper_dev(struct net_device *dev)
7007 {
7008 	ASSERT_RTNL();
7009 
7010 	return !list_empty(&dev->adj_list.upper);
7011 }
7012 EXPORT_SYMBOL(netdev_has_any_upper_dev);
7013 
7014 /**
7015  * netdev_master_upper_dev_get - Get master upper device
7016  * @dev: device
7017  *
7018  * Find a master upper device and return pointer to it or NULL in case
7019  * it's not there. The caller must hold the RTNL lock.
7020  */
7021 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
7022 {
7023 	struct netdev_adjacent *upper;
7024 
7025 	ASSERT_RTNL();
7026 
7027 	if (list_empty(&dev->adj_list.upper))
7028 		return NULL;
7029 
7030 	upper = list_first_entry(&dev->adj_list.upper,
7031 				 struct netdev_adjacent, list);
7032 	if (likely(upper->master))
7033 		return upper->dev;
7034 	return NULL;
7035 }
7036 EXPORT_SYMBOL(netdev_master_upper_dev_get);
7037 
7038 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
7039 {
7040 	struct netdev_adjacent *upper;
7041 
7042 	ASSERT_RTNL();
7043 
7044 	if (list_empty(&dev->adj_list.upper))
7045 		return NULL;
7046 
7047 	upper = list_first_entry(&dev->adj_list.upper,
7048 				 struct netdev_adjacent, list);
7049 	if (likely(upper->master) && !upper->ignore)
7050 		return upper->dev;
7051 	return NULL;
7052 }
7053 
7054 /**
7055  * netdev_has_any_lower_dev - Check if device is linked to some device
7056  * @dev: device
7057  *
7058  * Find out if a device is linked to a lower device and return true in case
7059  * it is. The caller must hold the RTNL lock.
7060  */
7061 static bool netdev_has_any_lower_dev(struct net_device *dev)
7062 {
7063 	ASSERT_RTNL();
7064 
7065 	return !list_empty(&dev->adj_list.lower);
7066 }
7067 
7068 void *netdev_adjacent_get_private(struct list_head *adj_list)
7069 {
7070 	struct netdev_adjacent *adj;
7071 
7072 	adj = list_entry(adj_list, struct netdev_adjacent, list);
7073 
7074 	return adj->private;
7075 }
7076 EXPORT_SYMBOL(netdev_adjacent_get_private);
7077 
7078 /**
7079  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
7080  * @dev: device
7081  * @iter: list_head ** of the current position
7082  *
7083  * Gets the next device from the dev's upper list, starting from iter
7084  * position. The caller must hold RCU read lock.
7085  */
7086 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
7087 						 struct list_head **iter)
7088 {
7089 	struct netdev_adjacent *upper;
7090 
7091 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7092 
7093 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7094 
7095 	if (&upper->list == &dev->adj_list.upper)
7096 		return NULL;
7097 
7098 	*iter = &upper->list;
7099 
7100 	return upper->dev;
7101 }
7102 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
7103 
7104 static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
7105 						  struct list_head **iter,
7106 						  bool *ignore)
7107 {
7108 	struct netdev_adjacent *upper;
7109 
7110 	upper = list_entry((*iter)->next, struct netdev_adjacent, list);
7111 
7112 	if (&upper->list == &dev->adj_list.upper)
7113 		return NULL;
7114 
7115 	*iter = &upper->list;
7116 	*ignore = upper->ignore;
7117 
7118 	return upper->dev;
7119 }
7120 
7121 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
7122 						    struct list_head **iter)
7123 {
7124 	struct netdev_adjacent *upper;
7125 
7126 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7127 
7128 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7129 
7130 	if (&upper->list == &dev->adj_list.upper)
7131 		return NULL;
7132 
7133 	*iter = &upper->list;
7134 
7135 	return upper->dev;
7136 }
7137 
7138 static int __netdev_walk_all_upper_dev(struct net_device *dev,
7139 				       int (*fn)(struct net_device *dev,
7140 					 struct netdev_nested_priv *priv),
7141 				       struct netdev_nested_priv *priv)
7142 {
7143 	struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7144 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7145 	int ret, cur = 0;
7146 	bool ignore;
7147 
7148 	now = dev;
7149 	iter = &dev->adj_list.upper;
7150 
7151 	while (1) {
7152 		if (now != dev) {
7153 			ret = fn(now, priv);
7154 			if (ret)
7155 				return ret;
7156 		}
7157 
7158 		next = NULL;
7159 		while (1) {
7160 			udev = __netdev_next_upper_dev(now, &iter, &ignore);
7161 			if (!udev)
7162 				break;
7163 			if (ignore)
7164 				continue;
7165 
7166 			next = udev;
7167 			niter = &udev->adj_list.upper;
7168 			dev_stack[cur] = now;
7169 			iter_stack[cur++] = iter;
7170 			break;
7171 		}
7172 
7173 		if (!next) {
7174 			if (!cur)
7175 				return 0;
7176 			next = dev_stack[--cur];
7177 			niter = iter_stack[cur];
7178 		}
7179 
7180 		now = next;
7181 		iter = niter;
7182 	}
7183 
7184 	return 0;
7185 }
7186 
7187 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
7188 				  int (*fn)(struct net_device *dev,
7189 					    struct netdev_nested_priv *priv),
7190 				  struct netdev_nested_priv *priv)
7191 {
7192 	struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7193 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7194 	int ret, cur = 0;
7195 
7196 	now = dev;
7197 	iter = &dev->adj_list.upper;
7198 
7199 	while (1) {
7200 		if (now != dev) {
7201 			ret = fn(now, priv);
7202 			if (ret)
7203 				return ret;
7204 		}
7205 
7206 		next = NULL;
7207 		while (1) {
7208 			udev = netdev_next_upper_dev_rcu(now, &iter);
7209 			if (!udev)
7210 				break;
7211 
7212 			next = udev;
7213 			niter = &udev->adj_list.upper;
7214 			dev_stack[cur] = now;
7215 			iter_stack[cur++] = iter;
7216 			break;
7217 		}
7218 
7219 		if (!next) {
7220 			if (!cur)
7221 				return 0;
7222 			next = dev_stack[--cur];
7223 			niter = iter_stack[cur];
7224 		}
7225 
7226 		now = next;
7227 		iter = niter;
7228 	}
7229 
7230 	return 0;
7231 }
7232 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
7233 
7234 static bool __netdev_has_upper_dev(struct net_device *dev,
7235 				   struct net_device *upper_dev)
7236 {
7237 	struct netdev_nested_priv priv = {
7238 		.flags = 0,
7239 		.data = (void *)upper_dev,
7240 	};
7241 
7242 	ASSERT_RTNL();
7243 
7244 	return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
7245 					   &priv);
7246 }
7247 
7248 /**
7249  * netdev_lower_get_next_private - Get the next ->private from the
7250  *				   lower neighbour list
7251  * @dev: device
7252  * @iter: list_head ** of the current position
7253  *
7254  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7255  * list, starting from iter position. The caller must hold either hold the
7256  * RTNL lock or its own locking that guarantees that the neighbour lower
7257  * list will remain unchanged.
7258  */
7259 void *netdev_lower_get_next_private(struct net_device *dev,
7260 				    struct list_head **iter)
7261 {
7262 	struct netdev_adjacent *lower;
7263 
7264 	lower = list_entry(*iter, struct netdev_adjacent, list);
7265 
7266 	if (&lower->list == &dev->adj_list.lower)
7267 		return NULL;
7268 
7269 	*iter = lower->list.next;
7270 
7271 	return lower->private;
7272 }
7273 EXPORT_SYMBOL(netdev_lower_get_next_private);
7274 
7275 /**
7276  * netdev_lower_get_next_private_rcu - Get the next ->private from the
7277  *				       lower neighbour list, RCU
7278  *				       variant
7279  * @dev: device
7280  * @iter: list_head ** of the current position
7281  *
7282  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7283  * list, starting from iter position. The caller must hold RCU read lock.
7284  */
7285 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
7286 					struct list_head **iter)
7287 {
7288 	struct netdev_adjacent *lower;
7289 
7290 	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
7291 
7292 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7293 
7294 	if (&lower->list == &dev->adj_list.lower)
7295 		return NULL;
7296 
7297 	*iter = &lower->list;
7298 
7299 	return lower->private;
7300 }
7301 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
7302 
7303 /**
7304  * netdev_lower_get_next - Get the next device from the lower neighbour
7305  *                         list
7306  * @dev: device
7307  * @iter: list_head ** of the current position
7308  *
7309  * Gets the next netdev_adjacent from the dev's lower neighbour
7310  * list, starting from iter position. The caller must hold RTNL lock or
7311  * its own locking that guarantees that the neighbour lower
7312  * list will remain unchanged.
7313  */
7314 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
7315 {
7316 	struct netdev_adjacent *lower;
7317 
7318 	lower = list_entry(*iter, struct netdev_adjacent, list);
7319 
7320 	if (&lower->list == &dev->adj_list.lower)
7321 		return NULL;
7322 
7323 	*iter = lower->list.next;
7324 
7325 	return lower->dev;
7326 }
7327 EXPORT_SYMBOL(netdev_lower_get_next);
7328 
7329 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7330 						struct list_head **iter)
7331 {
7332 	struct netdev_adjacent *lower;
7333 
7334 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7335 
7336 	if (&lower->list == &dev->adj_list.lower)
7337 		return NULL;
7338 
7339 	*iter = &lower->list;
7340 
7341 	return lower->dev;
7342 }
7343 
7344 static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7345 						  struct list_head **iter,
7346 						  bool *ignore)
7347 {
7348 	struct netdev_adjacent *lower;
7349 
7350 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7351 
7352 	if (&lower->list == &dev->adj_list.lower)
7353 		return NULL;
7354 
7355 	*iter = &lower->list;
7356 	*ignore = lower->ignore;
7357 
7358 	return lower->dev;
7359 }
7360 
7361 int netdev_walk_all_lower_dev(struct net_device *dev,
7362 			      int (*fn)(struct net_device *dev,
7363 					struct netdev_nested_priv *priv),
7364 			      struct netdev_nested_priv *priv)
7365 {
7366 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7367 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7368 	int ret, cur = 0;
7369 
7370 	now = dev;
7371 	iter = &dev->adj_list.lower;
7372 
7373 	while (1) {
7374 		if (now != dev) {
7375 			ret = fn(now, priv);
7376 			if (ret)
7377 				return ret;
7378 		}
7379 
7380 		next = NULL;
7381 		while (1) {
7382 			ldev = netdev_next_lower_dev(now, &iter);
7383 			if (!ldev)
7384 				break;
7385 
7386 			next = ldev;
7387 			niter = &ldev->adj_list.lower;
7388 			dev_stack[cur] = now;
7389 			iter_stack[cur++] = iter;
7390 			break;
7391 		}
7392 
7393 		if (!next) {
7394 			if (!cur)
7395 				return 0;
7396 			next = dev_stack[--cur];
7397 			niter = iter_stack[cur];
7398 		}
7399 
7400 		now = next;
7401 		iter = niter;
7402 	}
7403 
7404 	return 0;
7405 }
7406 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
7407 
7408 static int __netdev_walk_all_lower_dev(struct net_device *dev,
7409 				       int (*fn)(struct net_device *dev,
7410 					 struct netdev_nested_priv *priv),
7411 				       struct netdev_nested_priv *priv)
7412 {
7413 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7414 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7415 	int ret, cur = 0;
7416 	bool ignore;
7417 
7418 	now = dev;
7419 	iter = &dev->adj_list.lower;
7420 
7421 	while (1) {
7422 		if (now != dev) {
7423 			ret = fn(now, priv);
7424 			if (ret)
7425 				return ret;
7426 		}
7427 
7428 		next = NULL;
7429 		while (1) {
7430 			ldev = __netdev_next_lower_dev(now, &iter, &ignore);
7431 			if (!ldev)
7432 				break;
7433 			if (ignore)
7434 				continue;
7435 
7436 			next = ldev;
7437 			niter = &ldev->adj_list.lower;
7438 			dev_stack[cur] = now;
7439 			iter_stack[cur++] = iter;
7440 			break;
7441 		}
7442 
7443 		if (!next) {
7444 			if (!cur)
7445 				return 0;
7446 			next = dev_stack[--cur];
7447 			niter = iter_stack[cur];
7448 		}
7449 
7450 		now = next;
7451 		iter = niter;
7452 	}
7453 
7454 	return 0;
7455 }
7456 
7457 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
7458 					     struct list_head **iter)
7459 {
7460 	struct netdev_adjacent *lower;
7461 
7462 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7463 	if (&lower->list == &dev->adj_list.lower)
7464 		return NULL;
7465 
7466 	*iter = &lower->list;
7467 
7468 	return lower->dev;
7469 }
7470 EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
7471 
7472 static u8 __netdev_upper_depth(struct net_device *dev)
7473 {
7474 	struct net_device *udev;
7475 	struct list_head *iter;
7476 	u8 max_depth = 0;
7477 	bool ignore;
7478 
7479 	for (iter = &dev->adj_list.upper,
7480 	     udev = __netdev_next_upper_dev(dev, &iter, &ignore);
7481 	     udev;
7482 	     udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
7483 		if (ignore)
7484 			continue;
7485 		if (max_depth < udev->upper_level)
7486 			max_depth = udev->upper_level;
7487 	}
7488 
7489 	return max_depth;
7490 }
7491 
7492 static u8 __netdev_lower_depth(struct net_device *dev)
7493 {
7494 	struct net_device *ldev;
7495 	struct list_head *iter;
7496 	u8 max_depth = 0;
7497 	bool ignore;
7498 
7499 	for (iter = &dev->adj_list.lower,
7500 	     ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
7501 	     ldev;
7502 	     ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
7503 		if (ignore)
7504 			continue;
7505 		if (max_depth < ldev->lower_level)
7506 			max_depth = ldev->lower_level;
7507 	}
7508 
7509 	return max_depth;
7510 }
7511 
7512 static int __netdev_update_upper_level(struct net_device *dev,
7513 				       struct netdev_nested_priv *__unused)
7514 {
7515 	dev->upper_level = __netdev_upper_depth(dev) + 1;
7516 	return 0;
7517 }
7518 
7519 #ifdef CONFIG_LOCKDEP
7520 static LIST_HEAD(net_unlink_list);
7521 
7522 static void net_unlink_todo(struct net_device *dev)
7523 {
7524 	if (list_empty(&dev->unlink_list))
7525 		list_add_tail(&dev->unlink_list, &net_unlink_list);
7526 }
7527 #endif
7528 
7529 static int __netdev_update_lower_level(struct net_device *dev,
7530 				       struct netdev_nested_priv *priv)
7531 {
7532 	dev->lower_level = __netdev_lower_depth(dev) + 1;
7533 
7534 #ifdef CONFIG_LOCKDEP
7535 	if (!priv)
7536 		return 0;
7537 
7538 	if (priv->flags & NESTED_SYNC_IMM)
7539 		dev->nested_level = dev->lower_level - 1;
7540 	if (priv->flags & NESTED_SYNC_TODO)
7541 		net_unlink_todo(dev);
7542 #endif
7543 	return 0;
7544 }
7545 
7546 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7547 				  int (*fn)(struct net_device *dev,
7548 					    struct netdev_nested_priv *priv),
7549 				  struct netdev_nested_priv *priv)
7550 {
7551 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7552 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7553 	int ret, cur = 0;
7554 
7555 	now = dev;
7556 	iter = &dev->adj_list.lower;
7557 
7558 	while (1) {
7559 		if (now != dev) {
7560 			ret = fn(now, priv);
7561 			if (ret)
7562 				return ret;
7563 		}
7564 
7565 		next = NULL;
7566 		while (1) {
7567 			ldev = netdev_next_lower_dev_rcu(now, &iter);
7568 			if (!ldev)
7569 				break;
7570 
7571 			next = ldev;
7572 			niter = &ldev->adj_list.lower;
7573 			dev_stack[cur] = now;
7574 			iter_stack[cur++] = iter;
7575 			break;
7576 		}
7577 
7578 		if (!next) {
7579 			if (!cur)
7580 				return 0;
7581 			next = dev_stack[--cur];
7582 			niter = iter_stack[cur];
7583 		}
7584 
7585 		now = next;
7586 		iter = niter;
7587 	}
7588 
7589 	return 0;
7590 }
7591 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
7592 
7593 /**
7594  * netdev_lower_get_first_private_rcu - Get the first ->private from the
7595  *				       lower neighbour list, RCU
7596  *				       variant
7597  * @dev: device
7598  *
7599  * Gets the first netdev_adjacent->private from the dev's lower neighbour
7600  * list. The caller must hold RCU read lock.
7601  */
7602 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
7603 {
7604 	struct netdev_adjacent *lower;
7605 
7606 	lower = list_first_or_null_rcu(&dev->adj_list.lower,
7607 			struct netdev_adjacent, list);
7608 	if (lower)
7609 		return lower->private;
7610 	return NULL;
7611 }
7612 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
7613 
7614 /**
7615  * netdev_master_upper_dev_get_rcu - Get master upper device
7616  * @dev: device
7617  *
7618  * Find a master upper device and return pointer to it or NULL in case
7619  * it's not there. The caller must hold the RCU read lock.
7620  */
7621 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
7622 {
7623 	struct netdev_adjacent *upper;
7624 
7625 	upper = list_first_or_null_rcu(&dev->adj_list.upper,
7626 				       struct netdev_adjacent, list);
7627 	if (upper && likely(upper->master))
7628 		return upper->dev;
7629 	return NULL;
7630 }
7631 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
7632 
7633 static int netdev_adjacent_sysfs_add(struct net_device *dev,
7634 			      struct net_device *adj_dev,
7635 			      struct list_head *dev_list)
7636 {
7637 	char linkname[IFNAMSIZ+7];
7638 
7639 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
7640 		"upper_%s" : "lower_%s", adj_dev->name);
7641 	return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
7642 				 linkname);
7643 }
7644 static void netdev_adjacent_sysfs_del(struct net_device *dev,
7645 			       char *name,
7646 			       struct list_head *dev_list)
7647 {
7648 	char linkname[IFNAMSIZ+7];
7649 
7650 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
7651 		"upper_%s" : "lower_%s", name);
7652 	sysfs_remove_link(&(dev->dev.kobj), linkname);
7653 }
7654 
7655 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
7656 						 struct net_device *adj_dev,
7657 						 struct list_head *dev_list)
7658 {
7659 	return (dev_list == &dev->adj_list.upper ||
7660 		dev_list == &dev->adj_list.lower) &&
7661 		net_eq(dev_net(dev), dev_net(adj_dev));
7662 }
7663 
7664 static int __netdev_adjacent_dev_insert(struct net_device *dev,
7665 					struct net_device *adj_dev,
7666 					struct list_head *dev_list,
7667 					void *private, bool master)
7668 {
7669 	struct netdev_adjacent *adj;
7670 	int ret;
7671 
7672 	adj = __netdev_find_adj(adj_dev, dev_list);
7673 
7674 	if (adj) {
7675 		adj->ref_nr += 1;
7676 		pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7677 			 dev->name, adj_dev->name, adj->ref_nr);
7678 
7679 		return 0;
7680 	}
7681 
7682 	adj = kmalloc(sizeof(*adj), GFP_KERNEL);
7683 	if (!adj)
7684 		return -ENOMEM;
7685 
7686 	adj->dev = adj_dev;
7687 	adj->master = master;
7688 	adj->ref_nr = 1;
7689 	adj->private = private;
7690 	adj->ignore = false;
7691 	netdev_hold(adj_dev, &adj->dev_tracker, GFP_KERNEL);
7692 
7693 	pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7694 		 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
7695 
7696 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
7697 		ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
7698 		if (ret)
7699 			goto free_adj;
7700 	}
7701 
7702 	/* Ensure that master link is always the first item in list. */
7703 	if (master) {
7704 		ret = sysfs_create_link(&(dev->dev.kobj),
7705 					&(adj_dev->dev.kobj), "master");
7706 		if (ret)
7707 			goto remove_symlinks;
7708 
7709 		list_add_rcu(&adj->list, dev_list);
7710 	} else {
7711 		list_add_tail_rcu(&adj->list, dev_list);
7712 	}
7713 
7714 	return 0;
7715 
7716 remove_symlinks:
7717 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7718 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7719 free_adj:
7720 	netdev_put(adj_dev, &adj->dev_tracker);
7721 	kfree(adj);
7722 
7723 	return ret;
7724 }
7725 
7726 static void __netdev_adjacent_dev_remove(struct net_device *dev,
7727 					 struct net_device *adj_dev,
7728 					 u16 ref_nr,
7729 					 struct list_head *dev_list)
7730 {
7731 	struct netdev_adjacent *adj;
7732 
7733 	pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
7734 		 dev->name, adj_dev->name, ref_nr);
7735 
7736 	adj = __netdev_find_adj(adj_dev, dev_list);
7737 
7738 	if (!adj) {
7739 		pr_err("Adjacency does not exist for device %s from %s\n",
7740 		       dev->name, adj_dev->name);
7741 		WARN_ON(1);
7742 		return;
7743 	}
7744 
7745 	if (adj->ref_nr > ref_nr) {
7746 		pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
7747 			 dev->name, adj_dev->name, ref_nr,
7748 			 adj->ref_nr - ref_nr);
7749 		adj->ref_nr -= ref_nr;
7750 		return;
7751 	}
7752 
7753 	if (adj->master)
7754 		sysfs_remove_link(&(dev->dev.kobj), "master");
7755 
7756 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7757 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7758 
7759 	list_del_rcu(&adj->list);
7760 	pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
7761 		 adj_dev->name, dev->name, adj_dev->name);
7762 	netdev_put(adj_dev, &adj->dev_tracker);
7763 	kfree_rcu(adj, rcu);
7764 }
7765 
7766 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
7767 					    struct net_device *upper_dev,
7768 					    struct list_head *up_list,
7769 					    struct list_head *down_list,
7770 					    void *private, bool master)
7771 {
7772 	int ret;
7773 
7774 	ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
7775 					   private, master);
7776 	if (ret)
7777 		return ret;
7778 
7779 	ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
7780 					   private, false);
7781 	if (ret) {
7782 		__netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
7783 		return ret;
7784 	}
7785 
7786 	return 0;
7787 }
7788 
7789 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
7790 					       struct net_device *upper_dev,
7791 					       u16 ref_nr,
7792 					       struct list_head *up_list,
7793 					       struct list_head *down_list)
7794 {
7795 	__netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
7796 	__netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
7797 }
7798 
7799 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
7800 						struct net_device *upper_dev,
7801 						void *private, bool master)
7802 {
7803 	return __netdev_adjacent_dev_link_lists(dev, upper_dev,
7804 						&dev->adj_list.upper,
7805 						&upper_dev->adj_list.lower,
7806 						private, master);
7807 }
7808 
7809 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
7810 						   struct net_device *upper_dev)
7811 {
7812 	__netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
7813 					   &dev->adj_list.upper,
7814 					   &upper_dev->adj_list.lower);
7815 }
7816 
7817 static int __netdev_upper_dev_link(struct net_device *dev,
7818 				   struct net_device *upper_dev, bool master,
7819 				   void *upper_priv, void *upper_info,
7820 				   struct netdev_nested_priv *priv,
7821 				   struct netlink_ext_ack *extack)
7822 {
7823 	struct netdev_notifier_changeupper_info changeupper_info = {
7824 		.info = {
7825 			.dev = dev,
7826 			.extack = extack,
7827 		},
7828 		.upper_dev = upper_dev,
7829 		.master = master,
7830 		.linking = true,
7831 		.upper_info = upper_info,
7832 	};
7833 	struct net_device *master_dev;
7834 	int ret = 0;
7835 
7836 	ASSERT_RTNL();
7837 
7838 	if (dev == upper_dev)
7839 		return -EBUSY;
7840 
7841 	/* To prevent loops, check if dev is not upper device to upper_dev. */
7842 	if (__netdev_has_upper_dev(upper_dev, dev))
7843 		return -EBUSY;
7844 
7845 	if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
7846 		return -EMLINK;
7847 
7848 	if (!master) {
7849 		if (__netdev_has_upper_dev(dev, upper_dev))
7850 			return -EEXIST;
7851 	} else {
7852 		master_dev = __netdev_master_upper_dev_get(dev);
7853 		if (master_dev)
7854 			return master_dev == upper_dev ? -EEXIST : -EBUSY;
7855 	}
7856 
7857 	ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7858 					    &changeupper_info.info);
7859 	ret = notifier_to_errno(ret);
7860 	if (ret)
7861 		return ret;
7862 
7863 	ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
7864 						   master);
7865 	if (ret)
7866 		return ret;
7867 
7868 	ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7869 					    &changeupper_info.info);
7870 	ret = notifier_to_errno(ret);
7871 	if (ret)
7872 		goto rollback;
7873 
7874 	__netdev_update_upper_level(dev, NULL);
7875 	__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7876 
7877 	__netdev_update_lower_level(upper_dev, priv);
7878 	__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7879 				    priv);
7880 
7881 	return 0;
7882 
7883 rollback:
7884 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7885 
7886 	return ret;
7887 }
7888 
7889 /**
7890  * netdev_upper_dev_link - Add a link to the upper device
7891  * @dev: device
7892  * @upper_dev: new upper device
7893  * @extack: netlink extended ack
7894  *
7895  * Adds a link to device which is upper to this one. The caller must hold
7896  * the RTNL lock. On a failure a negative errno code is returned.
7897  * On success the reference counts are adjusted and the function
7898  * returns zero.
7899  */
7900 int netdev_upper_dev_link(struct net_device *dev,
7901 			  struct net_device *upper_dev,
7902 			  struct netlink_ext_ack *extack)
7903 {
7904 	struct netdev_nested_priv priv = {
7905 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7906 		.data = NULL,
7907 	};
7908 
7909 	return __netdev_upper_dev_link(dev, upper_dev, false,
7910 				       NULL, NULL, &priv, extack);
7911 }
7912 EXPORT_SYMBOL(netdev_upper_dev_link);
7913 
7914 /**
7915  * netdev_master_upper_dev_link - Add a master link to the upper device
7916  * @dev: device
7917  * @upper_dev: new upper device
7918  * @upper_priv: upper device private
7919  * @upper_info: upper info to be passed down via notifier
7920  * @extack: netlink extended ack
7921  *
7922  * Adds a link to device which is upper to this one. In this case, only
7923  * one master upper device can be linked, although other non-master devices
7924  * might be linked as well. The caller must hold the RTNL lock.
7925  * On a failure a negative errno code is returned. On success the reference
7926  * counts are adjusted and the function returns zero.
7927  */
7928 int netdev_master_upper_dev_link(struct net_device *dev,
7929 				 struct net_device *upper_dev,
7930 				 void *upper_priv, void *upper_info,
7931 				 struct netlink_ext_ack *extack)
7932 {
7933 	struct netdev_nested_priv priv = {
7934 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7935 		.data = NULL,
7936 	};
7937 
7938 	return __netdev_upper_dev_link(dev, upper_dev, true,
7939 				       upper_priv, upper_info, &priv, extack);
7940 }
7941 EXPORT_SYMBOL(netdev_master_upper_dev_link);
7942 
7943 static void __netdev_upper_dev_unlink(struct net_device *dev,
7944 				      struct net_device *upper_dev,
7945 				      struct netdev_nested_priv *priv)
7946 {
7947 	struct netdev_notifier_changeupper_info changeupper_info = {
7948 		.info = {
7949 			.dev = dev,
7950 		},
7951 		.upper_dev = upper_dev,
7952 		.linking = false,
7953 	};
7954 
7955 	ASSERT_RTNL();
7956 
7957 	changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
7958 
7959 	call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7960 				      &changeupper_info.info);
7961 
7962 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7963 
7964 	call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7965 				      &changeupper_info.info);
7966 
7967 	__netdev_update_upper_level(dev, NULL);
7968 	__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7969 
7970 	__netdev_update_lower_level(upper_dev, priv);
7971 	__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7972 				    priv);
7973 }
7974 
7975 /**
7976  * netdev_upper_dev_unlink - Removes a link to upper device
7977  * @dev: device
7978  * @upper_dev: new upper device
7979  *
7980  * Removes a link to device which is upper to this one. The caller must hold
7981  * the RTNL lock.
7982  */
7983 void netdev_upper_dev_unlink(struct net_device *dev,
7984 			     struct net_device *upper_dev)
7985 {
7986 	struct netdev_nested_priv priv = {
7987 		.flags = NESTED_SYNC_TODO,
7988 		.data = NULL,
7989 	};
7990 
7991 	__netdev_upper_dev_unlink(dev, upper_dev, &priv);
7992 }
7993 EXPORT_SYMBOL(netdev_upper_dev_unlink);
7994 
7995 static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
7996 				      struct net_device *lower_dev,
7997 				      bool val)
7998 {
7999 	struct netdev_adjacent *adj;
8000 
8001 	adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
8002 	if (adj)
8003 		adj->ignore = val;
8004 
8005 	adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
8006 	if (adj)
8007 		adj->ignore = val;
8008 }
8009 
8010 static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
8011 					struct net_device *lower_dev)
8012 {
8013 	__netdev_adjacent_dev_set(upper_dev, lower_dev, true);
8014 }
8015 
8016 static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
8017 				       struct net_device *lower_dev)
8018 {
8019 	__netdev_adjacent_dev_set(upper_dev, lower_dev, false);
8020 }
8021 
8022 int netdev_adjacent_change_prepare(struct net_device *old_dev,
8023 				   struct net_device *new_dev,
8024 				   struct net_device *dev,
8025 				   struct netlink_ext_ack *extack)
8026 {
8027 	struct netdev_nested_priv priv = {
8028 		.flags = 0,
8029 		.data = NULL,
8030 	};
8031 	int err;
8032 
8033 	if (!new_dev)
8034 		return 0;
8035 
8036 	if (old_dev && new_dev != old_dev)
8037 		netdev_adjacent_dev_disable(dev, old_dev);
8038 	err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv,
8039 				      extack);
8040 	if (err) {
8041 		if (old_dev && new_dev != old_dev)
8042 			netdev_adjacent_dev_enable(dev, old_dev);
8043 		return err;
8044 	}
8045 
8046 	return 0;
8047 }
8048 EXPORT_SYMBOL(netdev_adjacent_change_prepare);
8049 
8050 void netdev_adjacent_change_commit(struct net_device *old_dev,
8051 				   struct net_device *new_dev,
8052 				   struct net_device *dev)
8053 {
8054 	struct netdev_nested_priv priv = {
8055 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8056 		.data = NULL,
8057 	};
8058 
8059 	if (!new_dev || !old_dev)
8060 		return;
8061 
8062 	if (new_dev == old_dev)
8063 		return;
8064 
8065 	netdev_adjacent_dev_enable(dev, old_dev);
8066 	__netdev_upper_dev_unlink(old_dev, dev, &priv);
8067 }
8068 EXPORT_SYMBOL(netdev_adjacent_change_commit);
8069 
8070 void netdev_adjacent_change_abort(struct net_device *old_dev,
8071 				  struct net_device *new_dev,
8072 				  struct net_device *dev)
8073 {
8074 	struct netdev_nested_priv priv = {
8075 		.flags = 0,
8076 		.data = NULL,
8077 	};
8078 
8079 	if (!new_dev)
8080 		return;
8081 
8082 	if (old_dev && new_dev != old_dev)
8083 		netdev_adjacent_dev_enable(dev, old_dev);
8084 
8085 	__netdev_upper_dev_unlink(new_dev, dev, &priv);
8086 }
8087 EXPORT_SYMBOL(netdev_adjacent_change_abort);
8088 
8089 /**
8090  * netdev_bonding_info_change - Dispatch event about slave change
8091  * @dev: device
8092  * @bonding_info: info to dispatch
8093  *
8094  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
8095  * The caller must hold the RTNL lock.
8096  */
8097 void netdev_bonding_info_change(struct net_device *dev,
8098 				struct netdev_bonding_info *bonding_info)
8099 {
8100 	struct netdev_notifier_bonding_info info = {
8101 		.info.dev = dev,
8102 	};
8103 
8104 	memcpy(&info.bonding_info, bonding_info,
8105 	       sizeof(struct netdev_bonding_info));
8106 	call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
8107 				      &info.info);
8108 }
8109 EXPORT_SYMBOL(netdev_bonding_info_change);
8110 
8111 static int netdev_offload_xstats_enable_l3(struct net_device *dev,
8112 					   struct netlink_ext_ack *extack)
8113 {
8114 	struct netdev_notifier_offload_xstats_info info = {
8115 		.info.dev = dev,
8116 		.info.extack = extack,
8117 		.type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
8118 	};
8119 	int err;
8120 	int rc;
8121 
8122 	dev->offload_xstats_l3 = kzalloc(sizeof(*dev->offload_xstats_l3),
8123 					 GFP_KERNEL);
8124 	if (!dev->offload_xstats_l3)
8125 		return -ENOMEM;
8126 
8127 	rc = call_netdevice_notifiers_info_robust(NETDEV_OFFLOAD_XSTATS_ENABLE,
8128 						  NETDEV_OFFLOAD_XSTATS_DISABLE,
8129 						  &info.info);
8130 	err = notifier_to_errno(rc);
8131 	if (err)
8132 		goto free_stats;
8133 
8134 	return 0;
8135 
8136 free_stats:
8137 	kfree(dev->offload_xstats_l3);
8138 	dev->offload_xstats_l3 = NULL;
8139 	return err;
8140 }
8141 
8142 int netdev_offload_xstats_enable(struct net_device *dev,
8143 				 enum netdev_offload_xstats_type type,
8144 				 struct netlink_ext_ack *extack)
8145 {
8146 	ASSERT_RTNL();
8147 
8148 	if (netdev_offload_xstats_enabled(dev, type))
8149 		return -EALREADY;
8150 
8151 	switch (type) {
8152 	case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8153 		return netdev_offload_xstats_enable_l3(dev, extack);
8154 	}
8155 
8156 	WARN_ON(1);
8157 	return -EINVAL;
8158 }
8159 EXPORT_SYMBOL(netdev_offload_xstats_enable);
8160 
8161 static void netdev_offload_xstats_disable_l3(struct net_device *dev)
8162 {
8163 	struct netdev_notifier_offload_xstats_info info = {
8164 		.info.dev = dev,
8165 		.type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
8166 	};
8167 
8168 	call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_DISABLE,
8169 				      &info.info);
8170 	kfree(dev->offload_xstats_l3);
8171 	dev->offload_xstats_l3 = NULL;
8172 }
8173 
8174 int netdev_offload_xstats_disable(struct net_device *dev,
8175 				  enum netdev_offload_xstats_type type)
8176 {
8177 	ASSERT_RTNL();
8178 
8179 	if (!netdev_offload_xstats_enabled(dev, type))
8180 		return -EALREADY;
8181 
8182 	switch (type) {
8183 	case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8184 		netdev_offload_xstats_disable_l3(dev);
8185 		return 0;
8186 	}
8187 
8188 	WARN_ON(1);
8189 	return -EINVAL;
8190 }
8191 EXPORT_SYMBOL(netdev_offload_xstats_disable);
8192 
8193 static void netdev_offload_xstats_disable_all(struct net_device *dev)
8194 {
8195 	netdev_offload_xstats_disable(dev, NETDEV_OFFLOAD_XSTATS_TYPE_L3);
8196 }
8197 
8198 static struct rtnl_hw_stats64 *
8199 netdev_offload_xstats_get_ptr(const struct net_device *dev,
8200 			      enum netdev_offload_xstats_type type)
8201 {
8202 	switch (type) {
8203 	case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8204 		return dev->offload_xstats_l3;
8205 	}
8206 
8207 	WARN_ON(1);
8208 	return NULL;
8209 }
8210 
8211 bool netdev_offload_xstats_enabled(const struct net_device *dev,
8212 				   enum netdev_offload_xstats_type type)
8213 {
8214 	ASSERT_RTNL();
8215 
8216 	return netdev_offload_xstats_get_ptr(dev, type);
8217 }
8218 EXPORT_SYMBOL(netdev_offload_xstats_enabled);
8219 
8220 struct netdev_notifier_offload_xstats_ru {
8221 	bool used;
8222 };
8223 
8224 struct netdev_notifier_offload_xstats_rd {
8225 	struct rtnl_hw_stats64 stats;
8226 	bool used;
8227 };
8228 
8229 static void netdev_hw_stats64_add(struct rtnl_hw_stats64 *dest,
8230 				  const struct rtnl_hw_stats64 *src)
8231 {
8232 	dest->rx_packets	  += src->rx_packets;
8233 	dest->tx_packets	  += src->tx_packets;
8234 	dest->rx_bytes		  += src->rx_bytes;
8235 	dest->tx_bytes		  += src->tx_bytes;
8236 	dest->rx_errors		  += src->rx_errors;
8237 	dest->tx_errors		  += src->tx_errors;
8238 	dest->rx_dropped	  += src->rx_dropped;
8239 	dest->tx_dropped	  += src->tx_dropped;
8240 	dest->multicast		  += src->multicast;
8241 }
8242 
8243 static int netdev_offload_xstats_get_used(struct net_device *dev,
8244 					  enum netdev_offload_xstats_type type,
8245 					  bool *p_used,
8246 					  struct netlink_ext_ack *extack)
8247 {
8248 	struct netdev_notifier_offload_xstats_ru report_used = {};
8249 	struct netdev_notifier_offload_xstats_info info = {
8250 		.info.dev = dev,
8251 		.info.extack = extack,
8252 		.type = type,
8253 		.report_used = &report_used,
8254 	};
8255 	int rc;
8256 
8257 	WARN_ON(!netdev_offload_xstats_enabled(dev, type));
8258 	rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_USED,
8259 					   &info.info);
8260 	*p_used = report_used.used;
8261 	return notifier_to_errno(rc);
8262 }
8263 
8264 static int netdev_offload_xstats_get_stats(struct net_device *dev,
8265 					   enum netdev_offload_xstats_type type,
8266 					   struct rtnl_hw_stats64 *p_stats,
8267 					   bool *p_used,
8268 					   struct netlink_ext_ack *extack)
8269 {
8270 	struct netdev_notifier_offload_xstats_rd report_delta = {};
8271 	struct netdev_notifier_offload_xstats_info info = {
8272 		.info.dev = dev,
8273 		.info.extack = extack,
8274 		.type = type,
8275 		.report_delta = &report_delta,
8276 	};
8277 	struct rtnl_hw_stats64 *stats;
8278 	int rc;
8279 
8280 	stats = netdev_offload_xstats_get_ptr(dev, type);
8281 	if (WARN_ON(!stats))
8282 		return -EINVAL;
8283 
8284 	rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_DELTA,
8285 					   &info.info);
8286 
8287 	/* Cache whatever we got, even if there was an error, otherwise the
8288 	 * successful stats retrievals would get lost.
8289 	 */
8290 	netdev_hw_stats64_add(stats, &report_delta.stats);
8291 
8292 	if (p_stats)
8293 		*p_stats = *stats;
8294 	*p_used = report_delta.used;
8295 
8296 	return notifier_to_errno(rc);
8297 }
8298 
8299 int netdev_offload_xstats_get(struct net_device *dev,
8300 			      enum netdev_offload_xstats_type type,
8301 			      struct rtnl_hw_stats64 *p_stats, bool *p_used,
8302 			      struct netlink_ext_ack *extack)
8303 {
8304 	ASSERT_RTNL();
8305 
8306 	if (p_stats)
8307 		return netdev_offload_xstats_get_stats(dev, type, p_stats,
8308 						       p_used, extack);
8309 	else
8310 		return netdev_offload_xstats_get_used(dev, type, p_used,
8311 						      extack);
8312 }
8313 EXPORT_SYMBOL(netdev_offload_xstats_get);
8314 
8315 void
8316 netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *report_delta,
8317 				   const struct rtnl_hw_stats64 *stats)
8318 {
8319 	report_delta->used = true;
8320 	netdev_hw_stats64_add(&report_delta->stats, stats);
8321 }
8322 EXPORT_SYMBOL(netdev_offload_xstats_report_delta);
8323 
8324 void
8325 netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *report_used)
8326 {
8327 	report_used->used = true;
8328 }
8329 EXPORT_SYMBOL(netdev_offload_xstats_report_used);
8330 
8331 void netdev_offload_xstats_push_delta(struct net_device *dev,
8332 				      enum netdev_offload_xstats_type type,
8333 				      const struct rtnl_hw_stats64 *p_stats)
8334 {
8335 	struct rtnl_hw_stats64 *stats;
8336 
8337 	ASSERT_RTNL();
8338 
8339 	stats = netdev_offload_xstats_get_ptr(dev, type);
8340 	if (WARN_ON(!stats))
8341 		return;
8342 
8343 	netdev_hw_stats64_add(stats, p_stats);
8344 }
8345 EXPORT_SYMBOL(netdev_offload_xstats_push_delta);
8346 
8347 /**
8348  * netdev_get_xmit_slave - Get the xmit slave of master device
8349  * @dev: device
8350  * @skb: The packet
8351  * @all_slaves: assume all the slaves are active
8352  *
8353  * The reference counters are not incremented so the caller must be
8354  * careful with locks. The caller must hold RCU lock.
8355  * %NULL is returned if no slave is found.
8356  */
8357 
8358 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
8359 					 struct sk_buff *skb,
8360 					 bool all_slaves)
8361 {
8362 	const struct net_device_ops *ops = dev->netdev_ops;
8363 
8364 	if (!ops->ndo_get_xmit_slave)
8365 		return NULL;
8366 	return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
8367 }
8368 EXPORT_SYMBOL(netdev_get_xmit_slave);
8369 
8370 static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev,
8371 						  struct sock *sk)
8372 {
8373 	const struct net_device_ops *ops = dev->netdev_ops;
8374 
8375 	if (!ops->ndo_sk_get_lower_dev)
8376 		return NULL;
8377 	return ops->ndo_sk_get_lower_dev(dev, sk);
8378 }
8379 
8380 /**
8381  * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket
8382  * @dev: device
8383  * @sk: the socket
8384  *
8385  * %NULL is returned if no lower device is found.
8386  */
8387 
8388 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
8389 					    struct sock *sk)
8390 {
8391 	struct net_device *lower;
8392 
8393 	lower = netdev_sk_get_lower_dev(dev, sk);
8394 	while (lower) {
8395 		dev = lower;
8396 		lower = netdev_sk_get_lower_dev(dev, sk);
8397 	}
8398 
8399 	return dev;
8400 }
8401 EXPORT_SYMBOL(netdev_sk_get_lowest_dev);
8402 
8403 static void netdev_adjacent_add_links(struct net_device *dev)
8404 {
8405 	struct netdev_adjacent *iter;
8406 
8407 	struct net *net = dev_net(dev);
8408 
8409 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
8410 		if (!net_eq(net, dev_net(iter->dev)))
8411 			continue;
8412 		netdev_adjacent_sysfs_add(iter->dev, dev,
8413 					  &iter->dev->adj_list.lower);
8414 		netdev_adjacent_sysfs_add(dev, iter->dev,
8415 					  &dev->adj_list.upper);
8416 	}
8417 
8418 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
8419 		if (!net_eq(net, dev_net(iter->dev)))
8420 			continue;
8421 		netdev_adjacent_sysfs_add(iter->dev, dev,
8422 					  &iter->dev->adj_list.upper);
8423 		netdev_adjacent_sysfs_add(dev, iter->dev,
8424 					  &dev->adj_list.lower);
8425 	}
8426 }
8427 
8428 static void netdev_adjacent_del_links(struct net_device *dev)
8429 {
8430 	struct netdev_adjacent *iter;
8431 
8432 	struct net *net = dev_net(dev);
8433 
8434 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
8435 		if (!net_eq(net, dev_net(iter->dev)))
8436 			continue;
8437 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
8438 					  &iter->dev->adj_list.lower);
8439 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
8440 					  &dev->adj_list.upper);
8441 	}
8442 
8443 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
8444 		if (!net_eq(net, dev_net(iter->dev)))
8445 			continue;
8446 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
8447 					  &iter->dev->adj_list.upper);
8448 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
8449 					  &dev->adj_list.lower);
8450 	}
8451 }
8452 
8453 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
8454 {
8455 	struct netdev_adjacent *iter;
8456 
8457 	struct net *net = dev_net(dev);
8458 
8459 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
8460 		if (!net_eq(net, dev_net(iter->dev)))
8461 			continue;
8462 		netdev_adjacent_sysfs_del(iter->dev, oldname,
8463 					  &iter->dev->adj_list.lower);
8464 		netdev_adjacent_sysfs_add(iter->dev, dev,
8465 					  &iter->dev->adj_list.lower);
8466 	}
8467 
8468 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
8469 		if (!net_eq(net, dev_net(iter->dev)))
8470 			continue;
8471 		netdev_adjacent_sysfs_del(iter->dev, oldname,
8472 					  &iter->dev->adj_list.upper);
8473 		netdev_adjacent_sysfs_add(iter->dev, dev,
8474 					  &iter->dev->adj_list.upper);
8475 	}
8476 }
8477 
8478 void *netdev_lower_dev_get_private(struct net_device *dev,
8479 				   struct net_device *lower_dev)
8480 {
8481 	struct netdev_adjacent *lower;
8482 
8483 	if (!lower_dev)
8484 		return NULL;
8485 	lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
8486 	if (!lower)
8487 		return NULL;
8488 
8489 	return lower->private;
8490 }
8491 EXPORT_SYMBOL(netdev_lower_dev_get_private);
8492 
8493 
8494 /**
8495  * netdev_lower_state_changed - Dispatch event about lower device state change
8496  * @lower_dev: device
8497  * @lower_state_info: state to dispatch
8498  *
8499  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
8500  * The caller must hold the RTNL lock.
8501  */
8502 void netdev_lower_state_changed(struct net_device *lower_dev,
8503 				void *lower_state_info)
8504 {
8505 	struct netdev_notifier_changelowerstate_info changelowerstate_info = {
8506 		.info.dev = lower_dev,
8507 	};
8508 
8509 	ASSERT_RTNL();
8510 	changelowerstate_info.lower_state_info = lower_state_info;
8511 	call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
8512 				      &changelowerstate_info.info);
8513 }
8514 EXPORT_SYMBOL(netdev_lower_state_changed);
8515 
8516 static void dev_change_rx_flags(struct net_device *dev, int flags)
8517 {
8518 	const struct net_device_ops *ops = dev->netdev_ops;
8519 
8520 	if (ops->ndo_change_rx_flags)
8521 		ops->ndo_change_rx_flags(dev, flags);
8522 }
8523 
8524 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
8525 {
8526 	unsigned int old_flags = dev->flags;
8527 	kuid_t uid;
8528 	kgid_t gid;
8529 
8530 	ASSERT_RTNL();
8531 
8532 	dev->flags |= IFF_PROMISC;
8533 	dev->promiscuity += inc;
8534 	if (dev->promiscuity == 0) {
8535 		/*
8536 		 * Avoid overflow.
8537 		 * If inc causes overflow, untouch promisc and return error.
8538 		 */
8539 		if (inc < 0)
8540 			dev->flags &= ~IFF_PROMISC;
8541 		else {
8542 			dev->promiscuity -= inc;
8543 			netdev_warn(dev, "promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n");
8544 			return -EOVERFLOW;
8545 		}
8546 	}
8547 	if (dev->flags != old_flags) {
8548 		netdev_info(dev, "%s promiscuous mode\n",
8549 			    dev->flags & IFF_PROMISC ? "entered" : "left");
8550 		if (audit_enabled) {
8551 			current_uid_gid(&uid, &gid);
8552 			audit_log(audit_context(), GFP_ATOMIC,
8553 				  AUDIT_ANOM_PROMISCUOUS,
8554 				  "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
8555 				  dev->name, (dev->flags & IFF_PROMISC),
8556 				  (old_flags & IFF_PROMISC),
8557 				  from_kuid(&init_user_ns, audit_get_loginuid(current)),
8558 				  from_kuid(&init_user_ns, uid),
8559 				  from_kgid(&init_user_ns, gid),
8560 				  audit_get_sessionid(current));
8561 		}
8562 
8563 		dev_change_rx_flags(dev, IFF_PROMISC);
8564 	}
8565 	if (notify)
8566 		__dev_notify_flags(dev, old_flags, IFF_PROMISC, 0, NULL);
8567 	return 0;
8568 }
8569 
8570 /**
8571  *	dev_set_promiscuity	- update promiscuity count on a device
8572  *	@dev: device
8573  *	@inc: modifier
8574  *
8575  *	Add or remove promiscuity from a device. While the count in the device
8576  *	remains above zero the interface remains promiscuous. Once it hits zero
8577  *	the device reverts back to normal filtering operation. A negative inc
8578  *	value is used to drop promiscuity on the device.
8579  *	Return 0 if successful or a negative errno code on error.
8580  */
8581 int dev_set_promiscuity(struct net_device *dev, int inc)
8582 {
8583 	unsigned int old_flags = dev->flags;
8584 	int err;
8585 
8586 	err = __dev_set_promiscuity(dev, inc, true);
8587 	if (err < 0)
8588 		return err;
8589 	if (dev->flags != old_flags)
8590 		dev_set_rx_mode(dev);
8591 	return err;
8592 }
8593 EXPORT_SYMBOL(dev_set_promiscuity);
8594 
8595 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
8596 {
8597 	unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
8598 
8599 	ASSERT_RTNL();
8600 
8601 	dev->flags |= IFF_ALLMULTI;
8602 	dev->allmulti += inc;
8603 	if (dev->allmulti == 0) {
8604 		/*
8605 		 * Avoid overflow.
8606 		 * If inc causes overflow, untouch allmulti and return error.
8607 		 */
8608 		if (inc < 0)
8609 			dev->flags &= ~IFF_ALLMULTI;
8610 		else {
8611 			dev->allmulti -= inc;
8612 			netdev_warn(dev, "allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n");
8613 			return -EOVERFLOW;
8614 		}
8615 	}
8616 	if (dev->flags ^ old_flags) {
8617 		netdev_info(dev, "%s allmulticast mode\n",
8618 			    dev->flags & IFF_ALLMULTI ? "entered" : "left");
8619 		dev_change_rx_flags(dev, IFF_ALLMULTI);
8620 		dev_set_rx_mode(dev);
8621 		if (notify)
8622 			__dev_notify_flags(dev, old_flags,
8623 					   dev->gflags ^ old_gflags, 0, NULL);
8624 	}
8625 	return 0;
8626 }
8627 
8628 /**
8629  *	dev_set_allmulti	- update allmulti count on a device
8630  *	@dev: device
8631  *	@inc: modifier
8632  *
8633  *	Add or remove reception of all multicast frames to a device. While the
8634  *	count in the device remains above zero the interface remains listening
8635  *	to all interfaces. Once it hits zero the device reverts back to normal
8636  *	filtering operation. A negative @inc value is used to drop the counter
8637  *	when releasing a resource needing all multicasts.
8638  *	Return 0 if successful or a negative errno code on error.
8639  */
8640 
8641 int dev_set_allmulti(struct net_device *dev, int inc)
8642 {
8643 	return __dev_set_allmulti(dev, inc, true);
8644 }
8645 EXPORT_SYMBOL(dev_set_allmulti);
8646 
8647 /*
8648  *	Upload unicast and multicast address lists to device and
8649  *	configure RX filtering. When the device doesn't support unicast
8650  *	filtering it is put in promiscuous mode while unicast addresses
8651  *	are present.
8652  */
8653 void __dev_set_rx_mode(struct net_device *dev)
8654 {
8655 	const struct net_device_ops *ops = dev->netdev_ops;
8656 
8657 	/* dev_open will call this function so the list will stay sane. */
8658 	if (!(dev->flags&IFF_UP))
8659 		return;
8660 
8661 	if (!netif_device_present(dev))
8662 		return;
8663 
8664 	if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
8665 		/* Unicast addresses changes may only happen under the rtnl,
8666 		 * therefore calling __dev_set_promiscuity here is safe.
8667 		 */
8668 		if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
8669 			__dev_set_promiscuity(dev, 1, false);
8670 			dev->uc_promisc = true;
8671 		} else if (netdev_uc_empty(dev) && dev->uc_promisc) {
8672 			__dev_set_promiscuity(dev, -1, false);
8673 			dev->uc_promisc = false;
8674 		}
8675 	}
8676 
8677 	if (ops->ndo_set_rx_mode)
8678 		ops->ndo_set_rx_mode(dev);
8679 }
8680 
8681 void dev_set_rx_mode(struct net_device *dev)
8682 {
8683 	netif_addr_lock_bh(dev);
8684 	__dev_set_rx_mode(dev);
8685 	netif_addr_unlock_bh(dev);
8686 }
8687 
8688 /**
8689  *	dev_get_flags - get flags reported to userspace
8690  *	@dev: device
8691  *
8692  *	Get the combination of flag bits exported through APIs to userspace.
8693  */
8694 unsigned int dev_get_flags(const struct net_device *dev)
8695 {
8696 	unsigned int flags;
8697 
8698 	flags = (READ_ONCE(dev->flags) & ~(IFF_PROMISC |
8699 				IFF_ALLMULTI |
8700 				IFF_RUNNING |
8701 				IFF_LOWER_UP |
8702 				IFF_DORMANT)) |
8703 		(READ_ONCE(dev->gflags) & (IFF_PROMISC |
8704 				IFF_ALLMULTI));
8705 
8706 	if (netif_running(dev)) {
8707 		if (netif_oper_up(dev))
8708 			flags |= IFF_RUNNING;
8709 		if (netif_carrier_ok(dev))
8710 			flags |= IFF_LOWER_UP;
8711 		if (netif_dormant(dev))
8712 			flags |= IFF_DORMANT;
8713 	}
8714 
8715 	return flags;
8716 }
8717 EXPORT_SYMBOL(dev_get_flags);
8718 
8719 int __dev_change_flags(struct net_device *dev, unsigned int flags,
8720 		       struct netlink_ext_ack *extack)
8721 {
8722 	unsigned int old_flags = dev->flags;
8723 	int ret;
8724 
8725 	ASSERT_RTNL();
8726 
8727 	/*
8728 	 *	Set the flags on our device.
8729 	 */
8730 
8731 	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
8732 			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
8733 			       IFF_AUTOMEDIA)) |
8734 		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
8735 				    IFF_ALLMULTI));
8736 
8737 	/*
8738 	 *	Load in the correct multicast list now the flags have changed.
8739 	 */
8740 
8741 	if ((old_flags ^ flags) & IFF_MULTICAST)
8742 		dev_change_rx_flags(dev, IFF_MULTICAST);
8743 
8744 	dev_set_rx_mode(dev);
8745 
8746 	/*
8747 	 *	Have we downed the interface. We handle IFF_UP ourselves
8748 	 *	according to user attempts to set it, rather than blindly
8749 	 *	setting it.
8750 	 */
8751 
8752 	ret = 0;
8753 	if ((old_flags ^ flags) & IFF_UP) {
8754 		if (old_flags & IFF_UP)
8755 			__dev_close(dev);
8756 		else
8757 			ret = __dev_open(dev, extack);
8758 	}
8759 
8760 	if ((flags ^ dev->gflags) & IFF_PROMISC) {
8761 		int inc = (flags & IFF_PROMISC) ? 1 : -1;
8762 		unsigned int old_flags = dev->flags;
8763 
8764 		dev->gflags ^= IFF_PROMISC;
8765 
8766 		if (__dev_set_promiscuity(dev, inc, false) >= 0)
8767 			if (dev->flags != old_flags)
8768 				dev_set_rx_mode(dev);
8769 	}
8770 
8771 	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
8772 	 * is important. Some (broken) drivers set IFF_PROMISC, when
8773 	 * IFF_ALLMULTI is requested not asking us and not reporting.
8774 	 */
8775 	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
8776 		int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
8777 
8778 		dev->gflags ^= IFF_ALLMULTI;
8779 		__dev_set_allmulti(dev, inc, false);
8780 	}
8781 
8782 	return ret;
8783 }
8784 
8785 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
8786 			unsigned int gchanges, u32 portid,
8787 			const struct nlmsghdr *nlh)
8788 {
8789 	unsigned int changes = dev->flags ^ old_flags;
8790 
8791 	if (gchanges)
8792 		rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC, portid, nlh);
8793 
8794 	if (changes & IFF_UP) {
8795 		if (dev->flags & IFF_UP)
8796 			call_netdevice_notifiers(NETDEV_UP, dev);
8797 		else
8798 			call_netdevice_notifiers(NETDEV_DOWN, dev);
8799 	}
8800 
8801 	if (dev->flags & IFF_UP &&
8802 	    (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
8803 		struct netdev_notifier_change_info change_info = {
8804 			.info = {
8805 				.dev = dev,
8806 			},
8807 			.flags_changed = changes,
8808 		};
8809 
8810 		call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
8811 	}
8812 }
8813 
8814 /**
8815  *	dev_change_flags - change device settings
8816  *	@dev: device
8817  *	@flags: device state flags
8818  *	@extack: netlink extended ack
8819  *
8820  *	Change settings on device based state flags. The flags are
8821  *	in the userspace exported format.
8822  */
8823 int dev_change_flags(struct net_device *dev, unsigned int flags,
8824 		     struct netlink_ext_ack *extack)
8825 {
8826 	int ret;
8827 	unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
8828 
8829 	ret = __dev_change_flags(dev, flags, extack);
8830 	if (ret < 0)
8831 		return ret;
8832 
8833 	changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
8834 	__dev_notify_flags(dev, old_flags, changes, 0, NULL);
8835 	return ret;
8836 }
8837 EXPORT_SYMBOL(dev_change_flags);
8838 
8839 int __dev_set_mtu(struct net_device *dev, int new_mtu)
8840 {
8841 	const struct net_device_ops *ops = dev->netdev_ops;
8842 
8843 	if (ops->ndo_change_mtu)
8844 		return ops->ndo_change_mtu(dev, new_mtu);
8845 
8846 	/* Pairs with all the lockless reads of dev->mtu in the stack */
8847 	WRITE_ONCE(dev->mtu, new_mtu);
8848 	return 0;
8849 }
8850 EXPORT_SYMBOL(__dev_set_mtu);
8851 
8852 int dev_validate_mtu(struct net_device *dev, int new_mtu,
8853 		     struct netlink_ext_ack *extack)
8854 {
8855 	/* MTU must be positive, and in range */
8856 	if (new_mtu < 0 || new_mtu < dev->min_mtu) {
8857 		NL_SET_ERR_MSG(extack, "mtu less than device minimum");
8858 		return -EINVAL;
8859 	}
8860 
8861 	if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
8862 		NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
8863 		return -EINVAL;
8864 	}
8865 	return 0;
8866 }
8867 
8868 /**
8869  *	dev_set_mtu_ext - Change maximum transfer unit
8870  *	@dev: device
8871  *	@new_mtu: new transfer unit
8872  *	@extack: netlink extended ack
8873  *
8874  *	Change the maximum transfer size of the network device.
8875  */
8876 int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
8877 		    struct netlink_ext_ack *extack)
8878 {
8879 	int err, orig_mtu;
8880 
8881 	if (new_mtu == dev->mtu)
8882 		return 0;
8883 
8884 	err = dev_validate_mtu(dev, new_mtu, extack);
8885 	if (err)
8886 		return err;
8887 
8888 	if (!netif_device_present(dev))
8889 		return -ENODEV;
8890 
8891 	err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
8892 	err = notifier_to_errno(err);
8893 	if (err)
8894 		return err;
8895 
8896 	orig_mtu = dev->mtu;
8897 	err = __dev_set_mtu(dev, new_mtu);
8898 
8899 	if (!err) {
8900 		err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8901 						   orig_mtu);
8902 		err = notifier_to_errno(err);
8903 		if (err) {
8904 			/* setting mtu back and notifying everyone again,
8905 			 * so that they have a chance to revert changes.
8906 			 */
8907 			__dev_set_mtu(dev, orig_mtu);
8908 			call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8909 						     new_mtu);
8910 		}
8911 	}
8912 	return err;
8913 }
8914 
8915 int dev_set_mtu(struct net_device *dev, int new_mtu)
8916 {
8917 	struct netlink_ext_ack extack;
8918 	int err;
8919 
8920 	memset(&extack, 0, sizeof(extack));
8921 	err = dev_set_mtu_ext(dev, new_mtu, &extack);
8922 	if (err && extack._msg)
8923 		net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
8924 	return err;
8925 }
8926 EXPORT_SYMBOL(dev_set_mtu);
8927 
8928 /**
8929  *	dev_change_tx_queue_len - Change TX queue length of a netdevice
8930  *	@dev: device
8931  *	@new_len: new tx queue length
8932  */
8933 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
8934 {
8935 	unsigned int orig_len = dev->tx_queue_len;
8936 	int res;
8937 
8938 	if (new_len != (unsigned int)new_len)
8939 		return -ERANGE;
8940 
8941 	if (new_len != orig_len) {
8942 		dev->tx_queue_len = new_len;
8943 		res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
8944 		res = notifier_to_errno(res);
8945 		if (res)
8946 			goto err_rollback;
8947 		res = dev_qdisc_change_tx_queue_len(dev);
8948 		if (res)
8949 			goto err_rollback;
8950 	}
8951 
8952 	return 0;
8953 
8954 err_rollback:
8955 	netdev_err(dev, "refused to change device tx_queue_len\n");
8956 	dev->tx_queue_len = orig_len;
8957 	return res;
8958 }
8959 
8960 /**
8961  *	dev_set_group - Change group this device belongs to
8962  *	@dev: device
8963  *	@new_group: group this device should belong to
8964  */
8965 void dev_set_group(struct net_device *dev, int new_group)
8966 {
8967 	dev->group = new_group;
8968 }
8969 
8970 /**
8971  *	dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
8972  *	@dev: device
8973  *	@addr: new address
8974  *	@extack: netlink extended ack
8975  */
8976 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
8977 			      struct netlink_ext_ack *extack)
8978 {
8979 	struct netdev_notifier_pre_changeaddr_info info = {
8980 		.info.dev = dev,
8981 		.info.extack = extack,
8982 		.dev_addr = addr,
8983 	};
8984 	int rc;
8985 
8986 	rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
8987 	return notifier_to_errno(rc);
8988 }
8989 EXPORT_SYMBOL(dev_pre_changeaddr_notify);
8990 
8991 /**
8992  *	dev_set_mac_address - Change Media Access Control Address
8993  *	@dev: device
8994  *	@sa: new address
8995  *	@extack: netlink extended ack
8996  *
8997  *	Change the hardware (MAC) address of the device
8998  */
8999 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
9000 			struct netlink_ext_ack *extack)
9001 {
9002 	const struct net_device_ops *ops = dev->netdev_ops;
9003 	int err;
9004 
9005 	if (!ops->ndo_set_mac_address)
9006 		return -EOPNOTSUPP;
9007 	if (sa->sa_family != dev->type)
9008 		return -EINVAL;
9009 	if (!netif_device_present(dev))
9010 		return -ENODEV;
9011 	err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
9012 	if (err)
9013 		return err;
9014 	if (memcmp(dev->dev_addr, sa->sa_data, dev->addr_len)) {
9015 		err = ops->ndo_set_mac_address(dev, sa);
9016 		if (err)
9017 			return err;
9018 	}
9019 	dev->addr_assign_type = NET_ADDR_SET;
9020 	call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
9021 	add_device_randomness(dev->dev_addr, dev->addr_len);
9022 	return 0;
9023 }
9024 EXPORT_SYMBOL(dev_set_mac_address);
9025 
9026 DECLARE_RWSEM(dev_addr_sem);
9027 
9028 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
9029 			     struct netlink_ext_ack *extack)
9030 {
9031 	int ret;
9032 
9033 	down_write(&dev_addr_sem);
9034 	ret = dev_set_mac_address(dev, sa, extack);
9035 	up_write(&dev_addr_sem);
9036 	return ret;
9037 }
9038 EXPORT_SYMBOL(dev_set_mac_address_user);
9039 
9040 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name)
9041 {
9042 	size_t size = sizeof(sa->sa_data_min);
9043 	struct net_device *dev;
9044 	int ret = 0;
9045 
9046 	down_read(&dev_addr_sem);
9047 	rcu_read_lock();
9048 
9049 	dev = dev_get_by_name_rcu(net, dev_name);
9050 	if (!dev) {
9051 		ret = -ENODEV;
9052 		goto unlock;
9053 	}
9054 	if (!dev->addr_len)
9055 		memset(sa->sa_data, 0, size);
9056 	else
9057 		memcpy(sa->sa_data, dev->dev_addr,
9058 		       min_t(size_t, size, dev->addr_len));
9059 	sa->sa_family = dev->type;
9060 
9061 unlock:
9062 	rcu_read_unlock();
9063 	up_read(&dev_addr_sem);
9064 	return ret;
9065 }
9066 EXPORT_SYMBOL(dev_get_mac_address);
9067 
9068 /**
9069  *	dev_change_carrier - Change device carrier
9070  *	@dev: device
9071  *	@new_carrier: new value
9072  *
9073  *	Change device carrier
9074  */
9075 int dev_change_carrier(struct net_device *dev, bool new_carrier)
9076 {
9077 	const struct net_device_ops *ops = dev->netdev_ops;
9078 
9079 	if (!ops->ndo_change_carrier)
9080 		return -EOPNOTSUPP;
9081 	if (!netif_device_present(dev))
9082 		return -ENODEV;
9083 	return ops->ndo_change_carrier(dev, new_carrier);
9084 }
9085 
9086 /**
9087  *	dev_get_phys_port_id - Get device physical port ID
9088  *	@dev: device
9089  *	@ppid: port ID
9090  *
9091  *	Get device physical port ID
9092  */
9093 int dev_get_phys_port_id(struct net_device *dev,
9094 			 struct netdev_phys_item_id *ppid)
9095 {
9096 	const struct net_device_ops *ops = dev->netdev_ops;
9097 
9098 	if (!ops->ndo_get_phys_port_id)
9099 		return -EOPNOTSUPP;
9100 	return ops->ndo_get_phys_port_id(dev, ppid);
9101 }
9102 
9103 /**
9104  *	dev_get_phys_port_name - Get device physical port name
9105  *	@dev: device
9106  *	@name: port name
9107  *	@len: limit of bytes to copy to name
9108  *
9109  *	Get device physical port name
9110  */
9111 int dev_get_phys_port_name(struct net_device *dev,
9112 			   char *name, size_t len)
9113 {
9114 	const struct net_device_ops *ops = dev->netdev_ops;
9115 	int err;
9116 
9117 	if (ops->ndo_get_phys_port_name) {
9118 		err = ops->ndo_get_phys_port_name(dev, name, len);
9119 		if (err != -EOPNOTSUPP)
9120 			return err;
9121 	}
9122 	return devlink_compat_phys_port_name_get(dev, name, len);
9123 }
9124 
9125 /**
9126  *	dev_get_port_parent_id - Get the device's port parent identifier
9127  *	@dev: network device
9128  *	@ppid: pointer to a storage for the port's parent identifier
9129  *	@recurse: allow/disallow recursion to lower devices
9130  *
9131  *	Get the devices's port parent identifier
9132  */
9133 int dev_get_port_parent_id(struct net_device *dev,
9134 			   struct netdev_phys_item_id *ppid,
9135 			   bool recurse)
9136 {
9137 	const struct net_device_ops *ops = dev->netdev_ops;
9138 	struct netdev_phys_item_id first = { };
9139 	struct net_device *lower_dev;
9140 	struct list_head *iter;
9141 	int err;
9142 
9143 	if (ops->ndo_get_port_parent_id) {
9144 		err = ops->ndo_get_port_parent_id(dev, ppid);
9145 		if (err != -EOPNOTSUPP)
9146 			return err;
9147 	}
9148 
9149 	err = devlink_compat_switch_id_get(dev, ppid);
9150 	if (!recurse || err != -EOPNOTSUPP)
9151 		return err;
9152 
9153 	netdev_for_each_lower_dev(dev, lower_dev, iter) {
9154 		err = dev_get_port_parent_id(lower_dev, ppid, true);
9155 		if (err)
9156 			break;
9157 		if (!first.id_len)
9158 			first = *ppid;
9159 		else if (memcmp(&first, ppid, sizeof(*ppid)))
9160 			return -EOPNOTSUPP;
9161 	}
9162 
9163 	return err;
9164 }
9165 EXPORT_SYMBOL(dev_get_port_parent_id);
9166 
9167 /**
9168  *	netdev_port_same_parent_id - Indicate if two network devices have
9169  *	the same port parent identifier
9170  *	@a: first network device
9171  *	@b: second network device
9172  */
9173 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
9174 {
9175 	struct netdev_phys_item_id a_id = { };
9176 	struct netdev_phys_item_id b_id = { };
9177 
9178 	if (dev_get_port_parent_id(a, &a_id, true) ||
9179 	    dev_get_port_parent_id(b, &b_id, true))
9180 		return false;
9181 
9182 	return netdev_phys_item_id_same(&a_id, &b_id);
9183 }
9184 EXPORT_SYMBOL(netdev_port_same_parent_id);
9185 
9186 /**
9187  *	dev_change_proto_down - set carrier according to proto_down.
9188  *
9189  *	@dev: device
9190  *	@proto_down: new value
9191  */
9192 int dev_change_proto_down(struct net_device *dev, bool proto_down)
9193 {
9194 	if (!(dev->priv_flags & IFF_CHANGE_PROTO_DOWN))
9195 		return -EOPNOTSUPP;
9196 	if (!netif_device_present(dev))
9197 		return -ENODEV;
9198 	if (proto_down)
9199 		netif_carrier_off(dev);
9200 	else
9201 		netif_carrier_on(dev);
9202 	dev->proto_down = proto_down;
9203 	return 0;
9204 }
9205 
9206 /**
9207  *	dev_change_proto_down_reason - proto down reason
9208  *
9209  *	@dev: device
9210  *	@mask: proto down mask
9211  *	@value: proto down value
9212  */
9213 void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
9214 				  u32 value)
9215 {
9216 	int b;
9217 
9218 	if (!mask) {
9219 		dev->proto_down_reason = value;
9220 	} else {
9221 		for_each_set_bit(b, &mask, 32) {
9222 			if (value & (1 << b))
9223 				dev->proto_down_reason |= BIT(b);
9224 			else
9225 				dev->proto_down_reason &= ~BIT(b);
9226 		}
9227 	}
9228 }
9229 
9230 struct bpf_xdp_link {
9231 	struct bpf_link link;
9232 	struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
9233 	int flags;
9234 };
9235 
9236 static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags)
9237 {
9238 	if (flags & XDP_FLAGS_HW_MODE)
9239 		return XDP_MODE_HW;
9240 	if (flags & XDP_FLAGS_DRV_MODE)
9241 		return XDP_MODE_DRV;
9242 	if (flags & XDP_FLAGS_SKB_MODE)
9243 		return XDP_MODE_SKB;
9244 	return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB;
9245 }
9246 
9247 static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
9248 {
9249 	switch (mode) {
9250 	case XDP_MODE_SKB:
9251 		return generic_xdp_install;
9252 	case XDP_MODE_DRV:
9253 	case XDP_MODE_HW:
9254 		return dev->netdev_ops->ndo_bpf;
9255 	default:
9256 		return NULL;
9257 	}
9258 }
9259 
9260 static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
9261 					 enum bpf_xdp_mode mode)
9262 {
9263 	return dev->xdp_state[mode].link;
9264 }
9265 
9266 static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
9267 				     enum bpf_xdp_mode mode)
9268 {
9269 	struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
9270 
9271 	if (link)
9272 		return link->link.prog;
9273 	return dev->xdp_state[mode].prog;
9274 }
9275 
9276 u8 dev_xdp_prog_count(struct net_device *dev)
9277 {
9278 	u8 count = 0;
9279 	int i;
9280 
9281 	for (i = 0; i < __MAX_XDP_MODE; i++)
9282 		if (dev->xdp_state[i].prog || dev->xdp_state[i].link)
9283 			count++;
9284 	return count;
9285 }
9286 EXPORT_SYMBOL_GPL(dev_xdp_prog_count);
9287 
9288 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
9289 {
9290 	struct bpf_prog *prog = dev_xdp_prog(dev, mode);
9291 
9292 	return prog ? prog->aux->id : 0;
9293 }
9294 
9295 static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
9296 			     struct bpf_xdp_link *link)
9297 {
9298 	dev->xdp_state[mode].link = link;
9299 	dev->xdp_state[mode].prog = NULL;
9300 }
9301 
9302 static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
9303 			     struct bpf_prog *prog)
9304 {
9305 	dev->xdp_state[mode].link = NULL;
9306 	dev->xdp_state[mode].prog = prog;
9307 }
9308 
9309 static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
9310 			   bpf_op_t bpf_op, struct netlink_ext_ack *extack,
9311 			   u32 flags, struct bpf_prog *prog)
9312 {
9313 	struct netdev_bpf xdp;
9314 	int err;
9315 
9316 	memset(&xdp, 0, sizeof(xdp));
9317 	xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
9318 	xdp.extack = extack;
9319 	xdp.flags = flags;
9320 	xdp.prog = prog;
9321 
9322 	/* Drivers assume refcnt is already incremented (i.e, prog pointer is
9323 	 * "moved" into driver), so they don't increment it on their own, but
9324 	 * they do decrement refcnt when program is detached or replaced.
9325 	 * Given net_device also owns link/prog, we need to bump refcnt here
9326 	 * to prevent drivers from underflowing it.
9327 	 */
9328 	if (prog)
9329 		bpf_prog_inc(prog);
9330 	err = bpf_op(dev, &xdp);
9331 	if (err) {
9332 		if (prog)
9333 			bpf_prog_put(prog);
9334 		return err;
9335 	}
9336 
9337 	if (mode != XDP_MODE_HW)
9338 		bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog);
9339 
9340 	return 0;
9341 }
9342 
9343 static void dev_xdp_uninstall(struct net_device *dev)
9344 {
9345 	struct bpf_xdp_link *link;
9346 	struct bpf_prog *prog;
9347 	enum bpf_xdp_mode mode;
9348 	bpf_op_t bpf_op;
9349 
9350 	ASSERT_RTNL();
9351 
9352 	for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
9353 		prog = dev_xdp_prog(dev, mode);
9354 		if (!prog)
9355 			continue;
9356 
9357 		bpf_op = dev_xdp_bpf_op(dev, mode);
9358 		if (!bpf_op)
9359 			continue;
9360 
9361 		WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9362 
9363 		/* auto-detach link from net device */
9364 		link = dev_xdp_link(dev, mode);
9365 		if (link)
9366 			link->dev = NULL;
9367 		else
9368 			bpf_prog_put(prog);
9369 
9370 		dev_xdp_set_link(dev, mode, NULL);
9371 	}
9372 }
9373 
9374 static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
9375 			  struct bpf_xdp_link *link, struct bpf_prog *new_prog,
9376 			  struct bpf_prog *old_prog, u32 flags)
9377 {
9378 	unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES);
9379 	struct bpf_prog *cur_prog;
9380 	struct net_device *upper;
9381 	struct list_head *iter;
9382 	enum bpf_xdp_mode mode;
9383 	bpf_op_t bpf_op;
9384 	int err;
9385 
9386 	ASSERT_RTNL();
9387 
9388 	/* either link or prog attachment, never both */
9389 	if (link && (new_prog || old_prog))
9390 		return -EINVAL;
9391 	/* link supports only XDP mode flags */
9392 	if (link && (flags & ~XDP_FLAGS_MODES)) {
9393 		NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
9394 		return -EINVAL;
9395 	}
9396 	/* just one XDP mode bit should be set, zero defaults to drv/skb mode */
9397 	if (num_modes > 1) {
9398 		NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
9399 		return -EINVAL;
9400 	}
9401 	/* avoid ambiguity if offload + drv/skb mode progs are both loaded */
9402 	if (!num_modes && dev_xdp_prog_count(dev) > 1) {
9403 		NL_SET_ERR_MSG(extack,
9404 			       "More than one program loaded, unset mode is ambiguous");
9405 		return -EINVAL;
9406 	}
9407 	/* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
9408 	if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
9409 		NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
9410 		return -EINVAL;
9411 	}
9412 
9413 	mode = dev_xdp_mode(dev, flags);
9414 	/* can't replace attached link */
9415 	if (dev_xdp_link(dev, mode)) {
9416 		NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
9417 		return -EBUSY;
9418 	}
9419 
9420 	/* don't allow if an upper device already has a program */
9421 	netdev_for_each_upper_dev_rcu(dev, upper, iter) {
9422 		if (dev_xdp_prog_count(upper) > 0) {
9423 			NL_SET_ERR_MSG(extack, "Cannot attach when an upper device already has a program");
9424 			return -EEXIST;
9425 		}
9426 	}
9427 
9428 	cur_prog = dev_xdp_prog(dev, mode);
9429 	/* can't replace attached prog with link */
9430 	if (link && cur_prog) {
9431 		NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
9432 		return -EBUSY;
9433 	}
9434 	if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
9435 		NL_SET_ERR_MSG(extack, "Active program does not match expected");
9436 		return -EEXIST;
9437 	}
9438 
9439 	/* put effective new program into new_prog */
9440 	if (link)
9441 		new_prog = link->link.prog;
9442 
9443 	if (new_prog) {
9444 		bool offload = mode == XDP_MODE_HW;
9445 		enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
9446 					       ? XDP_MODE_DRV : XDP_MODE_SKB;
9447 
9448 		if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
9449 			NL_SET_ERR_MSG(extack, "XDP program already attached");
9450 			return -EBUSY;
9451 		}
9452 		if (!offload && dev_xdp_prog(dev, other_mode)) {
9453 			NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
9454 			return -EEXIST;
9455 		}
9456 		if (!offload && bpf_prog_is_offloaded(new_prog->aux)) {
9457 			NL_SET_ERR_MSG(extack, "Using offloaded program without HW_MODE flag is not supported");
9458 			return -EINVAL;
9459 		}
9460 		if (bpf_prog_is_dev_bound(new_prog->aux) && !bpf_offload_dev_match(new_prog, dev)) {
9461 			NL_SET_ERR_MSG(extack, "Program bound to different device");
9462 			return -EINVAL;
9463 		}
9464 		if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
9465 			NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
9466 			return -EINVAL;
9467 		}
9468 		if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
9469 			NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
9470 			return -EINVAL;
9471 		}
9472 	}
9473 
9474 	/* don't call drivers if the effective program didn't change */
9475 	if (new_prog != cur_prog) {
9476 		bpf_op = dev_xdp_bpf_op(dev, mode);
9477 		if (!bpf_op) {
9478 			NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
9479 			return -EOPNOTSUPP;
9480 		}
9481 
9482 		err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog);
9483 		if (err)
9484 			return err;
9485 	}
9486 
9487 	if (link)
9488 		dev_xdp_set_link(dev, mode, link);
9489 	else
9490 		dev_xdp_set_prog(dev, mode, new_prog);
9491 	if (cur_prog)
9492 		bpf_prog_put(cur_prog);
9493 
9494 	return 0;
9495 }
9496 
9497 static int dev_xdp_attach_link(struct net_device *dev,
9498 			       struct netlink_ext_ack *extack,
9499 			       struct bpf_xdp_link *link)
9500 {
9501 	return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags);
9502 }
9503 
9504 static int dev_xdp_detach_link(struct net_device *dev,
9505 			       struct netlink_ext_ack *extack,
9506 			       struct bpf_xdp_link *link)
9507 {
9508 	enum bpf_xdp_mode mode;
9509 	bpf_op_t bpf_op;
9510 
9511 	ASSERT_RTNL();
9512 
9513 	mode = dev_xdp_mode(dev, link->flags);
9514 	if (dev_xdp_link(dev, mode) != link)
9515 		return -EINVAL;
9516 
9517 	bpf_op = dev_xdp_bpf_op(dev, mode);
9518 	WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9519 	dev_xdp_set_link(dev, mode, NULL);
9520 	return 0;
9521 }
9522 
9523 static void bpf_xdp_link_release(struct bpf_link *link)
9524 {
9525 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9526 
9527 	rtnl_lock();
9528 
9529 	/* if racing with net_device's tear down, xdp_link->dev might be
9530 	 * already NULL, in which case link was already auto-detached
9531 	 */
9532 	if (xdp_link->dev) {
9533 		WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
9534 		xdp_link->dev = NULL;
9535 	}
9536 
9537 	rtnl_unlock();
9538 }
9539 
9540 static int bpf_xdp_link_detach(struct bpf_link *link)
9541 {
9542 	bpf_xdp_link_release(link);
9543 	return 0;
9544 }
9545 
9546 static void bpf_xdp_link_dealloc(struct bpf_link *link)
9547 {
9548 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9549 
9550 	kfree(xdp_link);
9551 }
9552 
9553 static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link,
9554 				     struct seq_file *seq)
9555 {
9556 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9557 	u32 ifindex = 0;
9558 
9559 	rtnl_lock();
9560 	if (xdp_link->dev)
9561 		ifindex = xdp_link->dev->ifindex;
9562 	rtnl_unlock();
9563 
9564 	seq_printf(seq, "ifindex:\t%u\n", ifindex);
9565 }
9566 
9567 static int bpf_xdp_link_fill_link_info(const struct bpf_link *link,
9568 				       struct bpf_link_info *info)
9569 {
9570 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9571 	u32 ifindex = 0;
9572 
9573 	rtnl_lock();
9574 	if (xdp_link->dev)
9575 		ifindex = xdp_link->dev->ifindex;
9576 	rtnl_unlock();
9577 
9578 	info->xdp.ifindex = ifindex;
9579 	return 0;
9580 }
9581 
9582 static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
9583 			       struct bpf_prog *old_prog)
9584 {
9585 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9586 	enum bpf_xdp_mode mode;
9587 	bpf_op_t bpf_op;
9588 	int err = 0;
9589 
9590 	rtnl_lock();
9591 
9592 	/* link might have been auto-released already, so fail */
9593 	if (!xdp_link->dev) {
9594 		err = -ENOLINK;
9595 		goto out_unlock;
9596 	}
9597 
9598 	if (old_prog && link->prog != old_prog) {
9599 		err = -EPERM;
9600 		goto out_unlock;
9601 	}
9602 	old_prog = link->prog;
9603 	if (old_prog->type != new_prog->type ||
9604 	    old_prog->expected_attach_type != new_prog->expected_attach_type) {
9605 		err = -EINVAL;
9606 		goto out_unlock;
9607 	}
9608 
9609 	if (old_prog == new_prog) {
9610 		/* no-op, don't disturb drivers */
9611 		bpf_prog_put(new_prog);
9612 		goto out_unlock;
9613 	}
9614 
9615 	mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags);
9616 	bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode);
9617 	err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL,
9618 			      xdp_link->flags, new_prog);
9619 	if (err)
9620 		goto out_unlock;
9621 
9622 	old_prog = xchg(&link->prog, new_prog);
9623 	bpf_prog_put(old_prog);
9624 
9625 out_unlock:
9626 	rtnl_unlock();
9627 	return err;
9628 }
9629 
9630 static const struct bpf_link_ops bpf_xdp_link_lops = {
9631 	.release = bpf_xdp_link_release,
9632 	.dealloc = bpf_xdp_link_dealloc,
9633 	.detach = bpf_xdp_link_detach,
9634 	.show_fdinfo = bpf_xdp_link_show_fdinfo,
9635 	.fill_link_info = bpf_xdp_link_fill_link_info,
9636 	.update_prog = bpf_xdp_link_update,
9637 };
9638 
9639 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
9640 {
9641 	struct net *net = current->nsproxy->net_ns;
9642 	struct bpf_link_primer link_primer;
9643 	struct netlink_ext_ack extack = {};
9644 	struct bpf_xdp_link *link;
9645 	struct net_device *dev;
9646 	int err, fd;
9647 
9648 	rtnl_lock();
9649 	dev = dev_get_by_index(net, attr->link_create.target_ifindex);
9650 	if (!dev) {
9651 		rtnl_unlock();
9652 		return -EINVAL;
9653 	}
9654 
9655 	link = kzalloc(sizeof(*link), GFP_USER);
9656 	if (!link) {
9657 		err = -ENOMEM;
9658 		goto unlock;
9659 	}
9660 
9661 	bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog);
9662 	link->dev = dev;
9663 	link->flags = attr->link_create.flags;
9664 
9665 	err = bpf_link_prime(&link->link, &link_primer);
9666 	if (err) {
9667 		kfree(link);
9668 		goto unlock;
9669 	}
9670 
9671 	err = dev_xdp_attach_link(dev, &extack, link);
9672 	rtnl_unlock();
9673 
9674 	if (err) {
9675 		link->dev = NULL;
9676 		bpf_link_cleanup(&link_primer);
9677 		trace_bpf_xdp_link_attach_failed(extack._msg);
9678 		goto out_put_dev;
9679 	}
9680 
9681 	fd = bpf_link_settle(&link_primer);
9682 	/* link itself doesn't hold dev's refcnt to not complicate shutdown */
9683 	dev_put(dev);
9684 	return fd;
9685 
9686 unlock:
9687 	rtnl_unlock();
9688 
9689 out_put_dev:
9690 	dev_put(dev);
9691 	return err;
9692 }
9693 
9694 /**
9695  *	dev_change_xdp_fd - set or clear a bpf program for a device rx path
9696  *	@dev: device
9697  *	@extack: netlink extended ack
9698  *	@fd: new program fd or negative value to clear
9699  *	@expected_fd: old program fd that userspace expects to replace or clear
9700  *	@flags: xdp-related flags
9701  *
9702  *	Set or clear a bpf program for a device
9703  */
9704 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
9705 		      int fd, int expected_fd, u32 flags)
9706 {
9707 	enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags);
9708 	struct bpf_prog *new_prog = NULL, *old_prog = NULL;
9709 	int err;
9710 
9711 	ASSERT_RTNL();
9712 
9713 	if (fd >= 0) {
9714 		new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
9715 						 mode != XDP_MODE_SKB);
9716 		if (IS_ERR(new_prog))
9717 			return PTR_ERR(new_prog);
9718 	}
9719 
9720 	if (expected_fd >= 0) {
9721 		old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP,
9722 						 mode != XDP_MODE_SKB);
9723 		if (IS_ERR(old_prog)) {
9724 			err = PTR_ERR(old_prog);
9725 			old_prog = NULL;
9726 			goto err_out;
9727 		}
9728 	}
9729 
9730 	err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
9731 
9732 err_out:
9733 	if (err && new_prog)
9734 		bpf_prog_put(new_prog);
9735 	if (old_prog)
9736 		bpf_prog_put(old_prog);
9737 	return err;
9738 }
9739 
9740 /**
9741  * dev_index_reserve() - allocate an ifindex in a namespace
9742  * @net: the applicable net namespace
9743  * @ifindex: requested ifindex, pass %0 to get one allocated
9744  *
9745  * Allocate a ifindex for a new device. Caller must either use the ifindex
9746  * to store the device (via list_netdevice()) or call dev_index_release()
9747  * to give the index up.
9748  *
9749  * Return: a suitable unique value for a new device interface number or -errno.
9750  */
9751 static int dev_index_reserve(struct net *net, u32 ifindex)
9752 {
9753 	int err;
9754 
9755 	if (ifindex > INT_MAX) {
9756 		DEBUG_NET_WARN_ON_ONCE(1);
9757 		return -EINVAL;
9758 	}
9759 
9760 	if (!ifindex)
9761 		err = xa_alloc_cyclic(&net->dev_by_index, &ifindex, NULL,
9762 				      xa_limit_31b, &net->ifindex, GFP_KERNEL);
9763 	else
9764 		err = xa_insert(&net->dev_by_index, ifindex, NULL, GFP_KERNEL);
9765 	if (err < 0)
9766 		return err;
9767 
9768 	return ifindex;
9769 }
9770 
9771 static void dev_index_release(struct net *net, int ifindex)
9772 {
9773 	/* Expect only unused indexes, unlist_netdevice() removes the used */
9774 	WARN_ON(xa_erase(&net->dev_by_index, ifindex));
9775 }
9776 
9777 /* Delayed registration/unregisteration */
9778 LIST_HEAD(net_todo_list);
9779 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
9780 atomic_t dev_unreg_count = ATOMIC_INIT(0);
9781 
9782 static void net_set_todo(struct net_device *dev)
9783 {
9784 	list_add_tail(&dev->todo_list, &net_todo_list);
9785 }
9786 
9787 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
9788 	struct net_device *upper, netdev_features_t features)
9789 {
9790 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9791 	netdev_features_t feature;
9792 	int feature_bit;
9793 
9794 	for_each_netdev_feature(upper_disables, feature_bit) {
9795 		feature = __NETIF_F_BIT(feature_bit);
9796 		if (!(upper->wanted_features & feature)
9797 		    && (features & feature)) {
9798 			netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
9799 				   &feature, upper->name);
9800 			features &= ~feature;
9801 		}
9802 	}
9803 
9804 	return features;
9805 }
9806 
9807 static void netdev_sync_lower_features(struct net_device *upper,
9808 	struct net_device *lower, netdev_features_t features)
9809 {
9810 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9811 	netdev_features_t feature;
9812 	int feature_bit;
9813 
9814 	for_each_netdev_feature(upper_disables, feature_bit) {
9815 		feature = __NETIF_F_BIT(feature_bit);
9816 		if (!(features & feature) && (lower->features & feature)) {
9817 			netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
9818 				   &feature, lower->name);
9819 			lower->wanted_features &= ~feature;
9820 			__netdev_update_features(lower);
9821 
9822 			if (unlikely(lower->features & feature))
9823 				netdev_WARN(upper, "failed to disable %pNF on %s!\n",
9824 					    &feature, lower->name);
9825 			else
9826 				netdev_features_change(lower);
9827 		}
9828 	}
9829 }
9830 
9831 static netdev_features_t netdev_fix_features(struct net_device *dev,
9832 	netdev_features_t features)
9833 {
9834 	/* Fix illegal checksum combinations */
9835 	if ((features & NETIF_F_HW_CSUM) &&
9836 	    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
9837 		netdev_warn(dev, "mixed HW and IP checksum settings.\n");
9838 		features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
9839 	}
9840 
9841 	/* TSO requires that SG is present as well. */
9842 	if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
9843 		netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
9844 		features &= ~NETIF_F_ALL_TSO;
9845 	}
9846 
9847 	if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
9848 					!(features & NETIF_F_IP_CSUM)) {
9849 		netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
9850 		features &= ~NETIF_F_TSO;
9851 		features &= ~NETIF_F_TSO_ECN;
9852 	}
9853 
9854 	if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
9855 					 !(features & NETIF_F_IPV6_CSUM)) {
9856 		netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
9857 		features &= ~NETIF_F_TSO6;
9858 	}
9859 
9860 	/* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
9861 	if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
9862 		features &= ~NETIF_F_TSO_MANGLEID;
9863 
9864 	/* TSO ECN requires that TSO is present as well. */
9865 	if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
9866 		features &= ~NETIF_F_TSO_ECN;
9867 
9868 	/* Software GSO depends on SG. */
9869 	if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
9870 		netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
9871 		features &= ~NETIF_F_GSO;
9872 	}
9873 
9874 	/* GSO partial features require GSO partial be set */
9875 	if ((features & dev->gso_partial_features) &&
9876 	    !(features & NETIF_F_GSO_PARTIAL)) {
9877 		netdev_dbg(dev,
9878 			   "Dropping partially supported GSO features since no GSO partial.\n");
9879 		features &= ~dev->gso_partial_features;
9880 	}
9881 
9882 	if (!(features & NETIF_F_RXCSUM)) {
9883 		/* NETIF_F_GRO_HW implies doing RXCSUM since every packet
9884 		 * successfully merged by hardware must also have the
9885 		 * checksum verified by hardware.  If the user does not
9886 		 * want to enable RXCSUM, logically, we should disable GRO_HW.
9887 		 */
9888 		if (features & NETIF_F_GRO_HW) {
9889 			netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
9890 			features &= ~NETIF_F_GRO_HW;
9891 		}
9892 	}
9893 
9894 	/* LRO/HW-GRO features cannot be combined with RX-FCS */
9895 	if (features & NETIF_F_RXFCS) {
9896 		if (features & NETIF_F_LRO) {
9897 			netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
9898 			features &= ~NETIF_F_LRO;
9899 		}
9900 
9901 		if (features & NETIF_F_GRO_HW) {
9902 			netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
9903 			features &= ~NETIF_F_GRO_HW;
9904 		}
9905 	}
9906 
9907 	if ((features & NETIF_F_GRO_HW) && (features & NETIF_F_LRO)) {
9908 		netdev_dbg(dev, "Dropping LRO feature since HW-GRO is requested.\n");
9909 		features &= ~NETIF_F_LRO;
9910 	}
9911 
9912 	if (features & NETIF_F_HW_TLS_TX) {
9913 		bool ip_csum = (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) ==
9914 			(NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
9915 		bool hw_csum = features & NETIF_F_HW_CSUM;
9916 
9917 		if (!ip_csum && !hw_csum) {
9918 			netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n");
9919 			features &= ~NETIF_F_HW_TLS_TX;
9920 		}
9921 	}
9922 
9923 	if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) {
9924 		netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n");
9925 		features &= ~NETIF_F_HW_TLS_RX;
9926 	}
9927 
9928 	return features;
9929 }
9930 
9931 int __netdev_update_features(struct net_device *dev)
9932 {
9933 	struct net_device *upper, *lower;
9934 	netdev_features_t features;
9935 	struct list_head *iter;
9936 	int err = -1;
9937 
9938 	ASSERT_RTNL();
9939 
9940 	features = netdev_get_wanted_features(dev);
9941 
9942 	if (dev->netdev_ops->ndo_fix_features)
9943 		features = dev->netdev_ops->ndo_fix_features(dev, features);
9944 
9945 	/* driver might be less strict about feature dependencies */
9946 	features = netdev_fix_features(dev, features);
9947 
9948 	/* some features can't be enabled if they're off on an upper device */
9949 	netdev_for_each_upper_dev_rcu(dev, upper, iter)
9950 		features = netdev_sync_upper_features(dev, upper, features);
9951 
9952 	if (dev->features == features)
9953 		goto sync_lower;
9954 
9955 	netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
9956 		&dev->features, &features);
9957 
9958 	if (dev->netdev_ops->ndo_set_features)
9959 		err = dev->netdev_ops->ndo_set_features(dev, features);
9960 	else
9961 		err = 0;
9962 
9963 	if (unlikely(err < 0)) {
9964 		netdev_err(dev,
9965 			"set_features() failed (%d); wanted %pNF, left %pNF\n",
9966 			err, &features, &dev->features);
9967 		/* return non-0 since some features might have changed and
9968 		 * it's better to fire a spurious notification than miss it
9969 		 */
9970 		return -1;
9971 	}
9972 
9973 sync_lower:
9974 	/* some features must be disabled on lower devices when disabled
9975 	 * on an upper device (think: bonding master or bridge)
9976 	 */
9977 	netdev_for_each_lower_dev(dev, lower, iter)
9978 		netdev_sync_lower_features(dev, lower, features);
9979 
9980 	if (!err) {
9981 		netdev_features_t diff = features ^ dev->features;
9982 
9983 		if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
9984 			/* udp_tunnel_{get,drop}_rx_info both need
9985 			 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
9986 			 * device, or they won't do anything.
9987 			 * Thus we need to update dev->features
9988 			 * *before* calling udp_tunnel_get_rx_info,
9989 			 * but *after* calling udp_tunnel_drop_rx_info.
9990 			 */
9991 			if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
9992 				dev->features = features;
9993 				udp_tunnel_get_rx_info(dev);
9994 			} else {
9995 				udp_tunnel_drop_rx_info(dev);
9996 			}
9997 		}
9998 
9999 		if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
10000 			if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
10001 				dev->features = features;
10002 				err |= vlan_get_rx_ctag_filter_info(dev);
10003 			} else {
10004 				vlan_drop_rx_ctag_filter_info(dev);
10005 			}
10006 		}
10007 
10008 		if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
10009 			if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
10010 				dev->features = features;
10011 				err |= vlan_get_rx_stag_filter_info(dev);
10012 			} else {
10013 				vlan_drop_rx_stag_filter_info(dev);
10014 			}
10015 		}
10016 
10017 		dev->features = features;
10018 	}
10019 
10020 	return err < 0 ? 0 : 1;
10021 }
10022 
10023 /**
10024  *	netdev_update_features - recalculate device features
10025  *	@dev: the device to check
10026  *
10027  *	Recalculate dev->features set and send notifications if it
10028  *	has changed. Should be called after driver or hardware dependent
10029  *	conditions might have changed that influence the features.
10030  */
10031 void netdev_update_features(struct net_device *dev)
10032 {
10033 	if (__netdev_update_features(dev))
10034 		netdev_features_change(dev);
10035 }
10036 EXPORT_SYMBOL(netdev_update_features);
10037 
10038 /**
10039  *	netdev_change_features - recalculate device features
10040  *	@dev: the device to check
10041  *
10042  *	Recalculate dev->features set and send notifications even
10043  *	if they have not changed. Should be called instead of
10044  *	netdev_update_features() if also dev->vlan_features might
10045  *	have changed to allow the changes to be propagated to stacked
10046  *	VLAN devices.
10047  */
10048 void netdev_change_features(struct net_device *dev)
10049 {
10050 	__netdev_update_features(dev);
10051 	netdev_features_change(dev);
10052 }
10053 EXPORT_SYMBOL(netdev_change_features);
10054 
10055 /**
10056  *	netif_stacked_transfer_operstate -	transfer operstate
10057  *	@rootdev: the root or lower level device to transfer state from
10058  *	@dev: the device to transfer operstate to
10059  *
10060  *	Transfer operational state from root to device. This is normally
10061  *	called when a stacking relationship exists between the root
10062  *	device and the device(a leaf device).
10063  */
10064 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
10065 					struct net_device *dev)
10066 {
10067 	if (rootdev->operstate == IF_OPER_DORMANT)
10068 		netif_dormant_on(dev);
10069 	else
10070 		netif_dormant_off(dev);
10071 
10072 	if (rootdev->operstate == IF_OPER_TESTING)
10073 		netif_testing_on(dev);
10074 	else
10075 		netif_testing_off(dev);
10076 
10077 	if (netif_carrier_ok(rootdev))
10078 		netif_carrier_on(dev);
10079 	else
10080 		netif_carrier_off(dev);
10081 }
10082 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
10083 
10084 static int netif_alloc_rx_queues(struct net_device *dev)
10085 {
10086 	unsigned int i, count = dev->num_rx_queues;
10087 	struct netdev_rx_queue *rx;
10088 	size_t sz = count * sizeof(*rx);
10089 	int err = 0;
10090 
10091 	BUG_ON(count < 1);
10092 
10093 	rx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10094 	if (!rx)
10095 		return -ENOMEM;
10096 
10097 	dev->_rx = rx;
10098 
10099 	for (i = 0; i < count; i++) {
10100 		rx[i].dev = dev;
10101 
10102 		/* XDP RX-queue setup */
10103 		err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0);
10104 		if (err < 0)
10105 			goto err_rxq_info;
10106 	}
10107 	return 0;
10108 
10109 err_rxq_info:
10110 	/* Rollback successful reg's and free other resources */
10111 	while (i--)
10112 		xdp_rxq_info_unreg(&rx[i].xdp_rxq);
10113 	kvfree(dev->_rx);
10114 	dev->_rx = NULL;
10115 	return err;
10116 }
10117 
10118 static void netif_free_rx_queues(struct net_device *dev)
10119 {
10120 	unsigned int i, count = dev->num_rx_queues;
10121 
10122 	/* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
10123 	if (!dev->_rx)
10124 		return;
10125 
10126 	for (i = 0; i < count; i++)
10127 		xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
10128 
10129 	kvfree(dev->_rx);
10130 }
10131 
10132 static void netdev_init_one_queue(struct net_device *dev,
10133 				  struct netdev_queue *queue, void *_unused)
10134 {
10135 	/* Initialize queue lock */
10136 	spin_lock_init(&queue->_xmit_lock);
10137 	netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
10138 	queue->xmit_lock_owner = -1;
10139 	netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
10140 	queue->dev = dev;
10141 #ifdef CONFIG_BQL
10142 	dql_init(&queue->dql, HZ);
10143 #endif
10144 }
10145 
10146 static void netif_free_tx_queues(struct net_device *dev)
10147 {
10148 	kvfree(dev->_tx);
10149 }
10150 
10151 static int netif_alloc_netdev_queues(struct net_device *dev)
10152 {
10153 	unsigned int count = dev->num_tx_queues;
10154 	struct netdev_queue *tx;
10155 	size_t sz = count * sizeof(*tx);
10156 
10157 	if (count < 1 || count > 0xffff)
10158 		return -EINVAL;
10159 
10160 	tx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10161 	if (!tx)
10162 		return -ENOMEM;
10163 
10164 	dev->_tx = tx;
10165 
10166 	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
10167 	spin_lock_init(&dev->tx_global_lock);
10168 
10169 	return 0;
10170 }
10171 
10172 void netif_tx_stop_all_queues(struct net_device *dev)
10173 {
10174 	unsigned int i;
10175 
10176 	for (i = 0; i < dev->num_tx_queues; i++) {
10177 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
10178 
10179 		netif_tx_stop_queue(txq);
10180 	}
10181 }
10182 EXPORT_SYMBOL(netif_tx_stop_all_queues);
10183 
10184 static int netdev_do_alloc_pcpu_stats(struct net_device *dev)
10185 {
10186 	void __percpu *v;
10187 
10188 	/* Drivers implementing ndo_get_peer_dev must support tstat
10189 	 * accounting, so that skb_do_redirect() can bump the dev's
10190 	 * RX stats upon network namespace switch.
10191 	 */
10192 	if (dev->netdev_ops->ndo_get_peer_dev &&
10193 	    dev->pcpu_stat_type != NETDEV_PCPU_STAT_TSTATS)
10194 		return -EOPNOTSUPP;
10195 
10196 	switch (dev->pcpu_stat_type) {
10197 	case NETDEV_PCPU_STAT_NONE:
10198 		return 0;
10199 	case NETDEV_PCPU_STAT_LSTATS:
10200 		v = dev->lstats = netdev_alloc_pcpu_stats(struct pcpu_lstats);
10201 		break;
10202 	case NETDEV_PCPU_STAT_TSTATS:
10203 		v = dev->tstats = netdev_alloc_pcpu_stats(struct pcpu_sw_netstats);
10204 		break;
10205 	case NETDEV_PCPU_STAT_DSTATS:
10206 		v = dev->dstats = netdev_alloc_pcpu_stats(struct pcpu_dstats);
10207 		break;
10208 	default:
10209 		return -EINVAL;
10210 	}
10211 
10212 	return v ? 0 : -ENOMEM;
10213 }
10214 
10215 static void netdev_do_free_pcpu_stats(struct net_device *dev)
10216 {
10217 	switch (dev->pcpu_stat_type) {
10218 	case NETDEV_PCPU_STAT_NONE:
10219 		return;
10220 	case NETDEV_PCPU_STAT_LSTATS:
10221 		free_percpu(dev->lstats);
10222 		break;
10223 	case NETDEV_PCPU_STAT_TSTATS:
10224 		free_percpu(dev->tstats);
10225 		break;
10226 	case NETDEV_PCPU_STAT_DSTATS:
10227 		free_percpu(dev->dstats);
10228 		break;
10229 	}
10230 }
10231 
10232 /**
10233  * register_netdevice() - register a network device
10234  * @dev: device to register
10235  *
10236  * Take a prepared network device structure and make it externally accessible.
10237  * A %NETDEV_REGISTER message is sent to the netdev notifier chain.
10238  * Callers must hold the rtnl lock - you may want register_netdev()
10239  * instead of this.
10240  */
10241 int register_netdevice(struct net_device *dev)
10242 {
10243 	int ret;
10244 	struct net *net = dev_net(dev);
10245 
10246 	BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
10247 		     NETDEV_FEATURE_COUNT);
10248 	BUG_ON(dev_boot_phase);
10249 	ASSERT_RTNL();
10250 
10251 	might_sleep();
10252 
10253 	/* When net_device's are persistent, this will be fatal. */
10254 	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
10255 	BUG_ON(!net);
10256 
10257 	ret = ethtool_check_ops(dev->ethtool_ops);
10258 	if (ret)
10259 		return ret;
10260 
10261 	spin_lock_init(&dev->addr_list_lock);
10262 	netdev_set_addr_lockdep_class(dev);
10263 
10264 	ret = dev_get_valid_name(net, dev, dev->name);
10265 	if (ret < 0)
10266 		goto out;
10267 
10268 	ret = -ENOMEM;
10269 	dev->name_node = netdev_name_node_head_alloc(dev);
10270 	if (!dev->name_node)
10271 		goto out;
10272 
10273 	/* Init, if this function is available */
10274 	if (dev->netdev_ops->ndo_init) {
10275 		ret = dev->netdev_ops->ndo_init(dev);
10276 		if (ret) {
10277 			if (ret > 0)
10278 				ret = -EIO;
10279 			goto err_free_name;
10280 		}
10281 	}
10282 
10283 	if (((dev->hw_features | dev->features) &
10284 	     NETIF_F_HW_VLAN_CTAG_FILTER) &&
10285 	    (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
10286 	     !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
10287 		netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
10288 		ret = -EINVAL;
10289 		goto err_uninit;
10290 	}
10291 
10292 	ret = netdev_do_alloc_pcpu_stats(dev);
10293 	if (ret)
10294 		goto err_uninit;
10295 
10296 	ret = dev_index_reserve(net, dev->ifindex);
10297 	if (ret < 0)
10298 		goto err_free_pcpu;
10299 	dev->ifindex = ret;
10300 
10301 	/* Transfer changeable features to wanted_features and enable
10302 	 * software offloads (GSO and GRO).
10303 	 */
10304 	dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
10305 	dev->features |= NETIF_F_SOFT_FEATURES;
10306 
10307 	if (dev->udp_tunnel_nic_info) {
10308 		dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10309 		dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10310 	}
10311 
10312 	dev->wanted_features = dev->features & dev->hw_features;
10313 
10314 	if (!(dev->flags & IFF_LOOPBACK))
10315 		dev->hw_features |= NETIF_F_NOCACHE_COPY;
10316 
10317 	/* If IPv4 TCP segmentation offload is supported we should also
10318 	 * allow the device to enable segmenting the frame with the option
10319 	 * of ignoring a static IP ID value.  This doesn't enable the
10320 	 * feature itself but allows the user to enable it later.
10321 	 */
10322 	if (dev->hw_features & NETIF_F_TSO)
10323 		dev->hw_features |= NETIF_F_TSO_MANGLEID;
10324 	if (dev->vlan_features & NETIF_F_TSO)
10325 		dev->vlan_features |= NETIF_F_TSO_MANGLEID;
10326 	if (dev->mpls_features & NETIF_F_TSO)
10327 		dev->mpls_features |= NETIF_F_TSO_MANGLEID;
10328 	if (dev->hw_enc_features & NETIF_F_TSO)
10329 		dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
10330 
10331 	/* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
10332 	 */
10333 	dev->vlan_features |= NETIF_F_HIGHDMA;
10334 
10335 	/* Make NETIF_F_SG inheritable to tunnel devices.
10336 	 */
10337 	dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
10338 
10339 	/* Make NETIF_F_SG inheritable to MPLS.
10340 	 */
10341 	dev->mpls_features |= NETIF_F_SG;
10342 
10343 	ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
10344 	ret = notifier_to_errno(ret);
10345 	if (ret)
10346 		goto err_ifindex_release;
10347 
10348 	ret = netdev_register_kobject(dev);
10349 
10350 	WRITE_ONCE(dev->reg_state, ret ? NETREG_UNREGISTERED : NETREG_REGISTERED);
10351 
10352 	if (ret)
10353 		goto err_uninit_notify;
10354 
10355 	__netdev_update_features(dev);
10356 
10357 	/*
10358 	 *	Default initial state at registry is that the
10359 	 *	device is present.
10360 	 */
10361 
10362 	set_bit(__LINK_STATE_PRESENT, &dev->state);
10363 
10364 	linkwatch_init_dev(dev);
10365 
10366 	dev_init_scheduler(dev);
10367 
10368 	netdev_hold(dev, &dev->dev_registered_tracker, GFP_KERNEL);
10369 	list_netdevice(dev);
10370 
10371 	add_device_randomness(dev->dev_addr, dev->addr_len);
10372 
10373 	/* If the device has permanent device address, driver should
10374 	 * set dev_addr and also addr_assign_type should be set to
10375 	 * NET_ADDR_PERM (default value).
10376 	 */
10377 	if (dev->addr_assign_type == NET_ADDR_PERM)
10378 		memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
10379 
10380 	/* Notify protocols, that a new device appeared. */
10381 	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
10382 	ret = notifier_to_errno(ret);
10383 	if (ret) {
10384 		/* Expect explicit free_netdev() on failure */
10385 		dev->needs_free_netdev = false;
10386 		unregister_netdevice_queue(dev, NULL);
10387 		goto out;
10388 	}
10389 	/*
10390 	 *	Prevent userspace races by waiting until the network
10391 	 *	device is fully setup before sending notifications.
10392 	 */
10393 	if (!dev->rtnl_link_ops ||
10394 	    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10395 		rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL);
10396 
10397 out:
10398 	return ret;
10399 
10400 err_uninit_notify:
10401 	call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev);
10402 err_ifindex_release:
10403 	dev_index_release(net, dev->ifindex);
10404 err_free_pcpu:
10405 	netdev_do_free_pcpu_stats(dev);
10406 err_uninit:
10407 	if (dev->netdev_ops->ndo_uninit)
10408 		dev->netdev_ops->ndo_uninit(dev);
10409 	if (dev->priv_destructor)
10410 		dev->priv_destructor(dev);
10411 err_free_name:
10412 	netdev_name_node_free(dev->name_node);
10413 	goto out;
10414 }
10415 EXPORT_SYMBOL(register_netdevice);
10416 
10417 /**
10418  *	init_dummy_netdev	- init a dummy network device for NAPI
10419  *	@dev: device to init
10420  *
10421  *	This takes a network device structure and initialize the minimum
10422  *	amount of fields so it can be used to schedule NAPI polls without
10423  *	registering a full blown interface. This is to be used by drivers
10424  *	that need to tie several hardware interfaces to a single NAPI
10425  *	poll scheduler due to HW limitations.
10426  */
10427 void init_dummy_netdev(struct net_device *dev)
10428 {
10429 	/* Clear everything. Note we don't initialize spinlocks
10430 	 * are they aren't supposed to be taken by any of the
10431 	 * NAPI code and this dummy netdev is supposed to be
10432 	 * only ever used for NAPI polls
10433 	 */
10434 	memset(dev, 0, sizeof(struct net_device));
10435 
10436 	/* make sure we BUG if trying to hit standard
10437 	 * register/unregister code path
10438 	 */
10439 	dev->reg_state = NETREG_DUMMY;
10440 
10441 	/* NAPI wants this */
10442 	INIT_LIST_HEAD(&dev->napi_list);
10443 
10444 	/* a dummy interface is started by default */
10445 	set_bit(__LINK_STATE_PRESENT, &dev->state);
10446 	set_bit(__LINK_STATE_START, &dev->state);
10447 
10448 	/* napi_busy_loop stats accounting wants this */
10449 	dev_net_set(dev, &init_net);
10450 
10451 	/* Note : We dont allocate pcpu_refcnt for dummy devices,
10452 	 * because users of this 'device' dont need to change
10453 	 * its refcount.
10454 	 */
10455 }
10456 EXPORT_SYMBOL_GPL(init_dummy_netdev);
10457 
10458 
10459 /**
10460  *	register_netdev	- register a network device
10461  *	@dev: device to register
10462  *
10463  *	Take a completed network device structure and add it to the kernel
10464  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10465  *	chain. 0 is returned on success. A negative errno code is returned
10466  *	on a failure to set up the device, or if the name is a duplicate.
10467  *
10468  *	This is a wrapper around register_netdevice that takes the rtnl semaphore
10469  *	and expands the device name if you passed a format string to
10470  *	alloc_netdev.
10471  */
10472 int register_netdev(struct net_device *dev)
10473 {
10474 	int err;
10475 
10476 	if (rtnl_lock_killable())
10477 		return -EINTR;
10478 	err = register_netdevice(dev);
10479 	rtnl_unlock();
10480 	return err;
10481 }
10482 EXPORT_SYMBOL(register_netdev);
10483 
10484 int netdev_refcnt_read(const struct net_device *dev)
10485 {
10486 #ifdef CONFIG_PCPU_DEV_REFCNT
10487 	int i, refcnt = 0;
10488 
10489 	for_each_possible_cpu(i)
10490 		refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
10491 	return refcnt;
10492 #else
10493 	return refcount_read(&dev->dev_refcnt);
10494 #endif
10495 }
10496 EXPORT_SYMBOL(netdev_refcnt_read);
10497 
10498 int netdev_unregister_timeout_secs __read_mostly = 10;
10499 
10500 #define WAIT_REFS_MIN_MSECS 1
10501 #define WAIT_REFS_MAX_MSECS 250
10502 /**
10503  * netdev_wait_allrefs_any - wait until all references are gone.
10504  * @list: list of net_devices to wait on
10505  *
10506  * This is called when unregistering network devices.
10507  *
10508  * Any protocol or device that holds a reference should register
10509  * for netdevice notification, and cleanup and put back the
10510  * reference if they receive an UNREGISTER event.
10511  * We can get stuck here if buggy protocols don't correctly
10512  * call dev_put.
10513  */
10514 static struct net_device *netdev_wait_allrefs_any(struct list_head *list)
10515 {
10516 	unsigned long rebroadcast_time, warning_time;
10517 	struct net_device *dev;
10518 	int wait = 0;
10519 
10520 	rebroadcast_time = warning_time = jiffies;
10521 
10522 	list_for_each_entry(dev, list, todo_list)
10523 		if (netdev_refcnt_read(dev) == 1)
10524 			return dev;
10525 
10526 	while (true) {
10527 		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
10528 			rtnl_lock();
10529 
10530 			/* Rebroadcast unregister notification */
10531 			list_for_each_entry(dev, list, todo_list)
10532 				call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10533 
10534 			__rtnl_unlock();
10535 			rcu_barrier();
10536 			rtnl_lock();
10537 
10538 			list_for_each_entry(dev, list, todo_list)
10539 				if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
10540 					     &dev->state)) {
10541 					/* We must not have linkwatch events
10542 					 * pending on unregister. If this
10543 					 * happens, we simply run the queue
10544 					 * unscheduled, resulting in a noop
10545 					 * for this device.
10546 					 */
10547 					linkwatch_run_queue();
10548 					break;
10549 				}
10550 
10551 			__rtnl_unlock();
10552 
10553 			rebroadcast_time = jiffies;
10554 		}
10555 
10556 		if (!wait) {
10557 			rcu_barrier();
10558 			wait = WAIT_REFS_MIN_MSECS;
10559 		} else {
10560 			msleep(wait);
10561 			wait = min(wait << 1, WAIT_REFS_MAX_MSECS);
10562 		}
10563 
10564 		list_for_each_entry(dev, list, todo_list)
10565 			if (netdev_refcnt_read(dev) == 1)
10566 				return dev;
10567 
10568 		if (time_after(jiffies, warning_time +
10569 			       READ_ONCE(netdev_unregister_timeout_secs) * HZ)) {
10570 			list_for_each_entry(dev, list, todo_list) {
10571 				pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
10572 					 dev->name, netdev_refcnt_read(dev));
10573 				ref_tracker_dir_print(&dev->refcnt_tracker, 10);
10574 			}
10575 
10576 			warning_time = jiffies;
10577 		}
10578 	}
10579 }
10580 
10581 /* The sequence is:
10582  *
10583  *	rtnl_lock();
10584  *	...
10585  *	register_netdevice(x1);
10586  *	register_netdevice(x2);
10587  *	...
10588  *	unregister_netdevice(y1);
10589  *	unregister_netdevice(y2);
10590  *      ...
10591  *	rtnl_unlock();
10592  *	free_netdev(y1);
10593  *	free_netdev(y2);
10594  *
10595  * We are invoked by rtnl_unlock().
10596  * This allows us to deal with problems:
10597  * 1) We can delete sysfs objects which invoke hotplug
10598  *    without deadlocking with linkwatch via keventd.
10599  * 2) Since we run with the RTNL semaphore not held, we can sleep
10600  *    safely in order to wait for the netdev refcnt to drop to zero.
10601  *
10602  * We must not return until all unregister events added during
10603  * the interval the lock was held have been completed.
10604  */
10605 void netdev_run_todo(void)
10606 {
10607 	struct net_device *dev, *tmp;
10608 	struct list_head list;
10609 	int cnt;
10610 #ifdef CONFIG_LOCKDEP
10611 	struct list_head unlink_list;
10612 
10613 	list_replace_init(&net_unlink_list, &unlink_list);
10614 
10615 	while (!list_empty(&unlink_list)) {
10616 		struct net_device *dev = list_first_entry(&unlink_list,
10617 							  struct net_device,
10618 							  unlink_list);
10619 		list_del_init(&dev->unlink_list);
10620 		dev->nested_level = dev->lower_level - 1;
10621 	}
10622 #endif
10623 
10624 	/* Snapshot list, allow later requests */
10625 	list_replace_init(&net_todo_list, &list);
10626 
10627 	__rtnl_unlock();
10628 
10629 	/* Wait for rcu callbacks to finish before next phase */
10630 	if (!list_empty(&list))
10631 		rcu_barrier();
10632 
10633 	list_for_each_entry_safe(dev, tmp, &list, todo_list) {
10634 		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
10635 			netdev_WARN(dev, "run_todo but not unregistering\n");
10636 			list_del(&dev->todo_list);
10637 			continue;
10638 		}
10639 
10640 		WRITE_ONCE(dev->reg_state, NETREG_UNREGISTERED);
10641 		linkwatch_sync_dev(dev);
10642 	}
10643 
10644 	cnt = 0;
10645 	while (!list_empty(&list)) {
10646 		dev = netdev_wait_allrefs_any(&list);
10647 		list_del(&dev->todo_list);
10648 
10649 		/* paranoia */
10650 		BUG_ON(netdev_refcnt_read(dev) != 1);
10651 		BUG_ON(!list_empty(&dev->ptype_all));
10652 		BUG_ON(!list_empty(&dev->ptype_specific));
10653 		WARN_ON(rcu_access_pointer(dev->ip_ptr));
10654 		WARN_ON(rcu_access_pointer(dev->ip6_ptr));
10655 
10656 		netdev_do_free_pcpu_stats(dev);
10657 		if (dev->priv_destructor)
10658 			dev->priv_destructor(dev);
10659 		if (dev->needs_free_netdev)
10660 			free_netdev(dev);
10661 
10662 		cnt++;
10663 
10664 		/* Free network device */
10665 		kobject_put(&dev->dev.kobj);
10666 	}
10667 	if (cnt && atomic_sub_and_test(cnt, &dev_unreg_count))
10668 		wake_up(&netdev_unregistering_wq);
10669 }
10670 
10671 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
10672  * all the same fields in the same order as net_device_stats, with only
10673  * the type differing, but rtnl_link_stats64 may have additional fields
10674  * at the end for newer counters.
10675  */
10676 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
10677 			     const struct net_device_stats *netdev_stats)
10678 {
10679 	size_t i, n = sizeof(*netdev_stats) / sizeof(atomic_long_t);
10680 	const atomic_long_t *src = (atomic_long_t *)netdev_stats;
10681 	u64 *dst = (u64 *)stats64;
10682 
10683 	BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
10684 	for (i = 0; i < n; i++)
10685 		dst[i] = (unsigned long)atomic_long_read(&src[i]);
10686 	/* zero out counters that only exist in rtnl_link_stats64 */
10687 	memset((char *)stats64 + n * sizeof(u64), 0,
10688 	       sizeof(*stats64) - n * sizeof(u64));
10689 }
10690 EXPORT_SYMBOL(netdev_stats_to_stats64);
10691 
10692 static __cold struct net_device_core_stats __percpu *netdev_core_stats_alloc(
10693 		struct net_device *dev)
10694 {
10695 	struct net_device_core_stats __percpu *p;
10696 
10697 	p = alloc_percpu_gfp(struct net_device_core_stats,
10698 			     GFP_ATOMIC | __GFP_NOWARN);
10699 
10700 	if (p && cmpxchg(&dev->core_stats, NULL, p))
10701 		free_percpu(p);
10702 
10703 	/* This READ_ONCE() pairs with the cmpxchg() above */
10704 	return READ_ONCE(dev->core_stats);
10705 }
10706 
10707 noinline void netdev_core_stats_inc(struct net_device *dev, u32 offset)
10708 {
10709 	/* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
10710 	struct net_device_core_stats __percpu *p = READ_ONCE(dev->core_stats);
10711 	unsigned long __percpu *field;
10712 
10713 	if (unlikely(!p)) {
10714 		p = netdev_core_stats_alloc(dev);
10715 		if (!p)
10716 			return;
10717 	}
10718 
10719 	field = (__force unsigned long __percpu *)((__force void *)p + offset);
10720 	this_cpu_inc(*field);
10721 }
10722 EXPORT_SYMBOL_GPL(netdev_core_stats_inc);
10723 
10724 /**
10725  *	dev_get_stats	- get network device statistics
10726  *	@dev: device to get statistics from
10727  *	@storage: place to store stats
10728  *
10729  *	Get network statistics from device. Return @storage.
10730  *	The device driver may provide its own method by setting
10731  *	dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
10732  *	otherwise the internal statistics structure is used.
10733  */
10734 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
10735 					struct rtnl_link_stats64 *storage)
10736 {
10737 	const struct net_device_ops *ops = dev->netdev_ops;
10738 	const struct net_device_core_stats __percpu *p;
10739 
10740 	if (ops->ndo_get_stats64) {
10741 		memset(storage, 0, sizeof(*storage));
10742 		ops->ndo_get_stats64(dev, storage);
10743 	} else if (ops->ndo_get_stats) {
10744 		netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
10745 	} else if (dev->pcpu_stat_type == NETDEV_PCPU_STAT_TSTATS) {
10746 		dev_get_tstats64(dev, storage);
10747 	} else {
10748 		netdev_stats_to_stats64(storage, &dev->stats);
10749 	}
10750 
10751 	/* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
10752 	p = READ_ONCE(dev->core_stats);
10753 	if (p) {
10754 		const struct net_device_core_stats *core_stats;
10755 		int i;
10756 
10757 		for_each_possible_cpu(i) {
10758 			core_stats = per_cpu_ptr(p, i);
10759 			storage->rx_dropped += READ_ONCE(core_stats->rx_dropped);
10760 			storage->tx_dropped += READ_ONCE(core_stats->tx_dropped);
10761 			storage->rx_nohandler += READ_ONCE(core_stats->rx_nohandler);
10762 			storage->rx_otherhost_dropped += READ_ONCE(core_stats->rx_otherhost_dropped);
10763 		}
10764 	}
10765 	return storage;
10766 }
10767 EXPORT_SYMBOL(dev_get_stats);
10768 
10769 /**
10770  *	dev_fetch_sw_netstats - get per-cpu network device statistics
10771  *	@s: place to store stats
10772  *	@netstats: per-cpu network stats to read from
10773  *
10774  *	Read per-cpu network statistics and populate the related fields in @s.
10775  */
10776 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
10777 			   const struct pcpu_sw_netstats __percpu *netstats)
10778 {
10779 	int cpu;
10780 
10781 	for_each_possible_cpu(cpu) {
10782 		u64 rx_packets, rx_bytes, tx_packets, tx_bytes;
10783 		const struct pcpu_sw_netstats *stats;
10784 		unsigned int start;
10785 
10786 		stats = per_cpu_ptr(netstats, cpu);
10787 		do {
10788 			start = u64_stats_fetch_begin(&stats->syncp);
10789 			rx_packets = u64_stats_read(&stats->rx_packets);
10790 			rx_bytes   = u64_stats_read(&stats->rx_bytes);
10791 			tx_packets = u64_stats_read(&stats->tx_packets);
10792 			tx_bytes   = u64_stats_read(&stats->tx_bytes);
10793 		} while (u64_stats_fetch_retry(&stats->syncp, start));
10794 
10795 		s->rx_packets += rx_packets;
10796 		s->rx_bytes   += rx_bytes;
10797 		s->tx_packets += tx_packets;
10798 		s->tx_bytes   += tx_bytes;
10799 	}
10800 }
10801 EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats);
10802 
10803 /**
10804  *	dev_get_tstats64 - ndo_get_stats64 implementation
10805  *	@dev: device to get statistics from
10806  *	@s: place to store stats
10807  *
10808  *	Populate @s from dev->stats and dev->tstats. Can be used as
10809  *	ndo_get_stats64() callback.
10810  */
10811 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s)
10812 {
10813 	netdev_stats_to_stats64(s, &dev->stats);
10814 	dev_fetch_sw_netstats(s, dev->tstats);
10815 }
10816 EXPORT_SYMBOL_GPL(dev_get_tstats64);
10817 
10818 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
10819 {
10820 	struct netdev_queue *queue = dev_ingress_queue(dev);
10821 
10822 #ifdef CONFIG_NET_CLS_ACT
10823 	if (queue)
10824 		return queue;
10825 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
10826 	if (!queue)
10827 		return NULL;
10828 	netdev_init_one_queue(dev, queue, NULL);
10829 	RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
10830 	RCU_INIT_POINTER(queue->qdisc_sleeping, &noop_qdisc);
10831 	rcu_assign_pointer(dev->ingress_queue, queue);
10832 #endif
10833 	return queue;
10834 }
10835 
10836 static const struct ethtool_ops default_ethtool_ops;
10837 
10838 void netdev_set_default_ethtool_ops(struct net_device *dev,
10839 				    const struct ethtool_ops *ops)
10840 {
10841 	if (dev->ethtool_ops == &default_ethtool_ops)
10842 		dev->ethtool_ops = ops;
10843 }
10844 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
10845 
10846 /**
10847  * netdev_sw_irq_coalesce_default_on() - enable SW IRQ coalescing by default
10848  * @dev: netdev to enable the IRQ coalescing on
10849  *
10850  * Sets a conservative default for SW IRQ coalescing. Users can use
10851  * sysfs attributes to override the default values.
10852  */
10853 void netdev_sw_irq_coalesce_default_on(struct net_device *dev)
10854 {
10855 	WARN_ON(dev->reg_state == NETREG_REGISTERED);
10856 
10857 	if (!IS_ENABLED(CONFIG_PREEMPT_RT)) {
10858 		dev->gro_flush_timeout = 20000;
10859 		dev->napi_defer_hard_irqs = 1;
10860 	}
10861 }
10862 EXPORT_SYMBOL_GPL(netdev_sw_irq_coalesce_default_on);
10863 
10864 void netdev_freemem(struct net_device *dev)
10865 {
10866 	char *addr = (char *)dev - dev->padded;
10867 
10868 	kvfree(addr);
10869 }
10870 
10871 /**
10872  * alloc_netdev_mqs - allocate network device
10873  * @sizeof_priv: size of private data to allocate space for
10874  * @name: device name format string
10875  * @name_assign_type: origin of device name
10876  * @setup: callback to initialize device
10877  * @txqs: the number of TX subqueues to allocate
10878  * @rxqs: the number of RX subqueues to allocate
10879  *
10880  * Allocates a struct net_device with private data area for driver use
10881  * and performs basic initialization.  Also allocates subqueue structs
10882  * for each queue on the device.
10883  */
10884 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
10885 		unsigned char name_assign_type,
10886 		void (*setup)(struct net_device *),
10887 		unsigned int txqs, unsigned int rxqs)
10888 {
10889 	struct net_device *dev;
10890 	unsigned int alloc_size;
10891 	struct net_device *p;
10892 
10893 	BUG_ON(strlen(name) >= sizeof(dev->name));
10894 
10895 	if (txqs < 1) {
10896 		pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
10897 		return NULL;
10898 	}
10899 
10900 	if (rxqs < 1) {
10901 		pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
10902 		return NULL;
10903 	}
10904 
10905 	alloc_size = sizeof(struct net_device);
10906 	if (sizeof_priv) {
10907 		/* ensure 32-byte alignment of private area */
10908 		alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
10909 		alloc_size += sizeof_priv;
10910 	}
10911 	/* ensure 32-byte alignment of whole construct */
10912 	alloc_size += NETDEV_ALIGN - 1;
10913 
10914 	p = kvzalloc(alloc_size, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10915 	if (!p)
10916 		return NULL;
10917 
10918 	dev = PTR_ALIGN(p, NETDEV_ALIGN);
10919 	dev->padded = (char *)dev - (char *)p;
10920 
10921 	ref_tracker_dir_init(&dev->refcnt_tracker, 128, name);
10922 #ifdef CONFIG_PCPU_DEV_REFCNT
10923 	dev->pcpu_refcnt = alloc_percpu(int);
10924 	if (!dev->pcpu_refcnt)
10925 		goto free_dev;
10926 	__dev_hold(dev);
10927 #else
10928 	refcount_set(&dev->dev_refcnt, 1);
10929 #endif
10930 
10931 	if (dev_addr_init(dev))
10932 		goto free_pcpu;
10933 
10934 	dev_mc_init(dev);
10935 	dev_uc_init(dev);
10936 
10937 	dev_net_set(dev, &init_net);
10938 
10939 	dev->gso_max_size = GSO_LEGACY_MAX_SIZE;
10940 	dev->xdp_zc_max_segs = 1;
10941 	dev->gso_max_segs = GSO_MAX_SEGS;
10942 	dev->gro_max_size = GRO_LEGACY_MAX_SIZE;
10943 	dev->gso_ipv4_max_size = GSO_LEGACY_MAX_SIZE;
10944 	dev->gro_ipv4_max_size = GRO_LEGACY_MAX_SIZE;
10945 	dev->tso_max_size = TSO_LEGACY_MAX_SIZE;
10946 	dev->tso_max_segs = TSO_MAX_SEGS;
10947 	dev->upper_level = 1;
10948 	dev->lower_level = 1;
10949 #ifdef CONFIG_LOCKDEP
10950 	dev->nested_level = 0;
10951 	INIT_LIST_HEAD(&dev->unlink_list);
10952 #endif
10953 
10954 	INIT_LIST_HEAD(&dev->napi_list);
10955 	INIT_LIST_HEAD(&dev->unreg_list);
10956 	INIT_LIST_HEAD(&dev->close_list);
10957 	INIT_LIST_HEAD(&dev->link_watch_list);
10958 	INIT_LIST_HEAD(&dev->adj_list.upper);
10959 	INIT_LIST_HEAD(&dev->adj_list.lower);
10960 	INIT_LIST_HEAD(&dev->ptype_all);
10961 	INIT_LIST_HEAD(&dev->ptype_specific);
10962 	INIT_LIST_HEAD(&dev->net_notifier_list);
10963 #ifdef CONFIG_NET_SCHED
10964 	hash_init(dev->qdisc_hash);
10965 #endif
10966 	dev->link_topo = phy_link_topo_create(dev);
10967 	if (IS_ERR(dev->link_topo)) {
10968 		dev->link_topo = NULL;
10969 		goto free_all;
10970 	}
10971 
10972 	dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
10973 	setup(dev);
10974 
10975 	if (!dev->tx_queue_len) {
10976 		dev->priv_flags |= IFF_NO_QUEUE;
10977 		dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
10978 	}
10979 
10980 	dev->num_tx_queues = txqs;
10981 	dev->real_num_tx_queues = txqs;
10982 	if (netif_alloc_netdev_queues(dev))
10983 		goto free_all;
10984 
10985 	dev->num_rx_queues = rxqs;
10986 	dev->real_num_rx_queues = rxqs;
10987 	if (netif_alloc_rx_queues(dev))
10988 		goto free_all;
10989 
10990 	strcpy(dev->name, name);
10991 	dev->name_assign_type = name_assign_type;
10992 	dev->group = INIT_NETDEV_GROUP;
10993 	if (!dev->ethtool_ops)
10994 		dev->ethtool_ops = &default_ethtool_ops;
10995 
10996 	nf_hook_netdev_init(dev);
10997 
10998 	return dev;
10999 
11000 free_all:
11001 	free_netdev(dev);
11002 	return NULL;
11003 
11004 free_pcpu:
11005 #ifdef CONFIG_PCPU_DEV_REFCNT
11006 	free_percpu(dev->pcpu_refcnt);
11007 free_dev:
11008 #endif
11009 	netdev_freemem(dev);
11010 	return NULL;
11011 }
11012 EXPORT_SYMBOL(alloc_netdev_mqs);
11013 
11014 /**
11015  * free_netdev - free network device
11016  * @dev: device
11017  *
11018  * This function does the last stage of destroying an allocated device
11019  * interface. The reference to the device object is released. If this
11020  * is the last reference then it will be freed.Must be called in process
11021  * context.
11022  */
11023 void free_netdev(struct net_device *dev)
11024 {
11025 	struct napi_struct *p, *n;
11026 
11027 	might_sleep();
11028 
11029 	/* When called immediately after register_netdevice() failed the unwind
11030 	 * handling may still be dismantling the device. Handle that case by
11031 	 * deferring the free.
11032 	 */
11033 	if (dev->reg_state == NETREG_UNREGISTERING) {
11034 		ASSERT_RTNL();
11035 		dev->needs_free_netdev = true;
11036 		return;
11037 	}
11038 
11039 	netif_free_tx_queues(dev);
11040 	netif_free_rx_queues(dev);
11041 
11042 	kfree(rcu_dereference_protected(dev->ingress_queue, 1));
11043 
11044 	/* Flush device addresses */
11045 	dev_addr_flush(dev);
11046 
11047 	list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
11048 		netif_napi_del(p);
11049 
11050 	ref_tracker_dir_exit(&dev->refcnt_tracker);
11051 #ifdef CONFIG_PCPU_DEV_REFCNT
11052 	free_percpu(dev->pcpu_refcnt);
11053 	dev->pcpu_refcnt = NULL;
11054 #endif
11055 	free_percpu(dev->core_stats);
11056 	dev->core_stats = NULL;
11057 	free_percpu(dev->xdp_bulkq);
11058 	dev->xdp_bulkq = NULL;
11059 
11060 	phy_link_topo_destroy(dev->link_topo);
11061 
11062 	/*  Compatibility with error handling in drivers */
11063 	if (dev->reg_state == NETREG_UNINITIALIZED) {
11064 		netdev_freemem(dev);
11065 		return;
11066 	}
11067 
11068 	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
11069 	WRITE_ONCE(dev->reg_state, NETREG_RELEASED);
11070 
11071 	/* will free via device release */
11072 	put_device(&dev->dev);
11073 }
11074 EXPORT_SYMBOL(free_netdev);
11075 
11076 /**
11077  *	synchronize_net -  Synchronize with packet receive processing
11078  *
11079  *	Wait for packets currently being received to be done.
11080  *	Does not block later packets from starting.
11081  */
11082 void synchronize_net(void)
11083 {
11084 	might_sleep();
11085 	if (rtnl_is_locked())
11086 		synchronize_rcu_expedited();
11087 	else
11088 		synchronize_rcu();
11089 }
11090 EXPORT_SYMBOL(synchronize_net);
11091 
11092 /**
11093  *	unregister_netdevice_queue - remove device from the kernel
11094  *	@dev: device
11095  *	@head: list
11096  *
11097  *	This function shuts down a device interface and removes it
11098  *	from the kernel tables.
11099  *	If head not NULL, device is queued to be unregistered later.
11100  *
11101  *	Callers must hold the rtnl semaphore.  You may want
11102  *	unregister_netdev() instead of this.
11103  */
11104 
11105 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
11106 {
11107 	ASSERT_RTNL();
11108 
11109 	if (head) {
11110 		list_move_tail(&dev->unreg_list, head);
11111 	} else {
11112 		LIST_HEAD(single);
11113 
11114 		list_add(&dev->unreg_list, &single);
11115 		unregister_netdevice_many(&single);
11116 	}
11117 }
11118 EXPORT_SYMBOL(unregister_netdevice_queue);
11119 
11120 void unregister_netdevice_many_notify(struct list_head *head,
11121 				      u32 portid, const struct nlmsghdr *nlh)
11122 {
11123 	struct net_device *dev, *tmp;
11124 	LIST_HEAD(close_head);
11125 	int cnt = 0;
11126 
11127 	BUG_ON(dev_boot_phase);
11128 	ASSERT_RTNL();
11129 
11130 	if (list_empty(head))
11131 		return;
11132 
11133 	list_for_each_entry_safe(dev, tmp, head, unreg_list) {
11134 		/* Some devices call without registering
11135 		 * for initialization unwind. Remove those
11136 		 * devices and proceed with the remaining.
11137 		 */
11138 		if (dev->reg_state == NETREG_UNINITIALIZED) {
11139 			pr_debug("unregister_netdevice: device %s/%p never was registered\n",
11140 				 dev->name, dev);
11141 
11142 			WARN_ON(1);
11143 			list_del(&dev->unreg_list);
11144 			continue;
11145 		}
11146 		dev->dismantle = true;
11147 		BUG_ON(dev->reg_state != NETREG_REGISTERED);
11148 	}
11149 
11150 	/* If device is running, close it first. */
11151 	list_for_each_entry(dev, head, unreg_list)
11152 		list_add_tail(&dev->close_list, &close_head);
11153 	dev_close_many(&close_head, true);
11154 
11155 	list_for_each_entry(dev, head, unreg_list) {
11156 		/* And unlink it from device chain. */
11157 		unlist_netdevice(dev);
11158 		WRITE_ONCE(dev->reg_state, NETREG_UNREGISTERING);
11159 	}
11160 	flush_all_backlogs();
11161 
11162 	synchronize_net();
11163 
11164 	list_for_each_entry(dev, head, unreg_list) {
11165 		struct sk_buff *skb = NULL;
11166 
11167 		/* Shutdown queueing discipline. */
11168 		dev_shutdown(dev);
11169 		dev_tcx_uninstall(dev);
11170 		dev_xdp_uninstall(dev);
11171 		bpf_dev_bound_netdev_unregister(dev);
11172 
11173 		netdev_offload_xstats_disable_all(dev);
11174 
11175 		/* Notify protocols, that we are about to destroy
11176 		 * this device. They should clean all the things.
11177 		 */
11178 		call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11179 
11180 		if (!dev->rtnl_link_ops ||
11181 		    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
11182 			skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
11183 						     GFP_KERNEL, NULL, 0,
11184 						     portid, nlh);
11185 
11186 		/*
11187 		 *	Flush the unicast and multicast chains
11188 		 */
11189 		dev_uc_flush(dev);
11190 		dev_mc_flush(dev);
11191 
11192 		netdev_name_node_alt_flush(dev);
11193 		netdev_name_node_free(dev->name_node);
11194 
11195 		call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev);
11196 
11197 		if (dev->netdev_ops->ndo_uninit)
11198 			dev->netdev_ops->ndo_uninit(dev);
11199 
11200 		if (skb)
11201 			rtmsg_ifinfo_send(skb, dev, GFP_KERNEL, portid, nlh);
11202 
11203 		/* Notifier chain MUST detach us all upper devices. */
11204 		WARN_ON(netdev_has_any_upper_dev(dev));
11205 		WARN_ON(netdev_has_any_lower_dev(dev));
11206 
11207 		/* Remove entries from kobject tree */
11208 		netdev_unregister_kobject(dev);
11209 #ifdef CONFIG_XPS
11210 		/* Remove XPS queueing entries */
11211 		netif_reset_xps_queues_gt(dev, 0);
11212 #endif
11213 	}
11214 
11215 	synchronize_net();
11216 
11217 	list_for_each_entry(dev, head, unreg_list) {
11218 		netdev_put(dev, &dev->dev_registered_tracker);
11219 		net_set_todo(dev);
11220 		cnt++;
11221 	}
11222 	atomic_add(cnt, &dev_unreg_count);
11223 
11224 	list_del(head);
11225 }
11226 
11227 /**
11228  *	unregister_netdevice_many - unregister many devices
11229  *	@head: list of devices
11230  *
11231  *  Note: As most callers use a stack allocated list_head,
11232  *  we force a list_del() to make sure stack wont be corrupted later.
11233  */
11234 void unregister_netdevice_many(struct list_head *head)
11235 {
11236 	unregister_netdevice_many_notify(head, 0, NULL);
11237 }
11238 EXPORT_SYMBOL(unregister_netdevice_many);
11239 
11240 /**
11241  *	unregister_netdev - remove device from the kernel
11242  *	@dev: device
11243  *
11244  *	This function shuts down a device interface and removes it
11245  *	from the kernel tables.
11246  *
11247  *	This is just a wrapper for unregister_netdevice that takes
11248  *	the rtnl semaphore.  In general you want to use this and not
11249  *	unregister_netdevice.
11250  */
11251 void unregister_netdev(struct net_device *dev)
11252 {
11253 	rtnl_lock();
11254 	unregister_netdevice(dev);
11255 	rtnl_unlock();
11256 }
11257 EXPORT_SYMBOL(unregister_netdev);
11258 
11259 /**
11260  *	__dev_change_net_namespace - move device to different nethost namespace
11261  *	@dev: device
11262  *	@net: network namespace
11263  *	@pat: If not NULL name pattern to try if the current device name
11264  *	      is already taken in the destination network namespace.
11265  *	@new_ifindex: If not zero, specifies device index in the target
11266  *	              namespace.
11267  *
11268  *	This function shuts down a device interface and moves it
11269  *	to a new network namespace. On success 0 is returned, on
11270  *	a failure a netagive errno code is returned.
11271  *
11272  *	Callers must hold the rtnl semaphore.
11273  */
11274 
11275 int __dev_change_net_namespace(struct net_device *dev, struct net *net,
11276 			       const char *pat, int new_ifindex)
11277 {
11278 	struct netdev_name_node *name_node;
11279 	struct net *net_old = dev_net(dev);
11280 	char new_name[IFNAMSIZ] = {};
11281 	int err, new_nsid;
11282 
11283 	ASSERT_RTNL();
11284 
11285 	/* Don't allow namespace local devices to be moved. */
11286 	err = -EINVAL;
11287 	if (dev->features & NETIF_F_NETNS_LOCAL)
11288 		goto out;
11289 
11290 	/* Ensure the device has been registrered */
11291 	if (dev->reg_state != NETREG_REGISTERED)
11292 		goto out;
11293 
11294 	/* Get out if there is nothing todo */
11295 	err = 0;
11296 	if (net_eq(net_old, net))
11297 		goto out;
11298 
11299 	/* Pick the destination device name, and ensure
11300 	 * we can use it in the destination network namespace.
11301 	 */
11302 	err = -EEXIST;
11303 	if (netdev_name_in_use(net, dev->name)) {
11304 		/* We get here if we can't use the current device name */
11305 		if (!pat)
11306 			goto out;
11307 		err = dev_prep_valid_name(net, dev, pat, new_name, EEXIST);
11308 		if (err < 0)
11309 			goto out;
11310 	}
11311 	/* Check that none of the altnames conflicts. */
11312 	err = -EEXIST;
11313 	netdev_for_each_altname(dev, name_node)
11314 		if (netdev_name_in_use(net, name_node->name))
11315 			goto out;
11316 
11317 	/* Check that new_ifindex isn't used yet. */
11318 	if (new_ifindex) {
11319 		err = dev_index_reserve(net, new_ifindex);
11320 		if (err < 0)
11321 			goto out;
11322 	} else {
11323 		/* If there is an ifindex conflict assign a new one */
11324 		err = dev_index_reserve(net, dev->ifindex);
11325 		if (err == -EBUSY)
11326 			err = dev_index_reserve(net, 0);
11327 		if (err < 0)
11328 			goto out;
11329 		new_ifindex = err;
11330 	}
11331 
11332 	/*
11333 	 * And now a mini version of register_netdevice unregister_netdevice.
11334 	 */
11335 
11336 	/* If device is running close it first. */
11337 	dev_close(dev);
11338 
11339 	/* And unlink it from device chain */
11340 	unlist_netdevice(dev);
11341 
11342 	synchronize_net();
11343 
11344 	/* Shutdown queueing discipline. */
11345 	dev_shutdown(dev);
11346 
11347 	/* Notify protocols, that we are about to destroy
11348 	 * this device. They should clean all the things.
11349 	 *
11350 	 * Note that dev->reg_state stays at NETREG_REGISTERED.
11351 	 * This is wanted because this way 8021q and macvlan know
11352 	 * the device is just moving and can keep their slaves up.
11353 	 */
11354 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11355 	rcu_barrier();
11356 
11357 	new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
11358 
11359 	rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
11360 			    new_ifindex);
11361 
11362 	/*
11363 	 *	Flush the unicast and multicast chains
11364 	 */
11365 	dev_uc_flush(dev);
11366 	dev_mc_flush(dev);
11367 
11368 	/* Send a netdev-removed uevent to the old namespace */
11369 	kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
11370 	netdev_adjacent_del_links(dev);
11371 
11372 	/* Move per-net netdevice notifiers that are following the netdevice */
11373 	move_netdevice_notifiers_dev_net(dev, net);
11374 
11375 	/* Actually switch the network namespace */
11376 	dev_net_set(dev, net);
11377 	dev->ifindex = new_ifindex;
11378 
11379 	if (new_name[0]) /* Rename the netdev to prepared name */
11380 		strscpy(dev->name, new_name, IFNAMSIZ);
11381 
11382 	/* Fixup kobjects */
11383 	dev_set_uevent_suppress(&dev->dev, 1);
11384 	err = device_rename(&dev->dev, dev->name);
11385 	dev_set_uevent_suppress(&dev->dev, 0);
11386 	WARN_ON(err);
11387 
11388 	/* Send a netdev-add uevent to the new namespace */
11389 	kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
11390 	netdev_adjacent_add_links(dev);
11391 
11392 	/* Adapt owner in case owning user namespace of target network
11393 	 * namespace is different from the original one.
11394 	 */
11395 	err = netdev_change_owner(dev, net_old, net);
11396 	WARN_ON(err);
11397 
11398 	/* Add the device back in the hashes */
11399 	list_netdevice(dev);
11400 
11401 	/* Notify protocols, that a new device appeared. */
11402 	call_netdevice_notifiers(NETDEV_REGISTER, dev);
11403 
11404 	/*
11405 	 *	Prevent userspace races by waiting until the network
11406 	 *	device is fully setup before sending notifications.
11407 	 */
11408 	rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL);
11409 
11410 	synchronize_net();
11411 	err = 0;
11412 out:
11413 	return err;
11414 }
11415 EXPORT_SYMBOL_GPL(__dev_change_net_namespace);
11416 
11417 static int dev_cpu_dead(unsigned int oldcpu)
11418 {
11419 	struct sk_buff **list_skb;
11420 	struct sk_buff *skb;
11421 	unsigned int cpu;
11422 	struct softnet_data *sd, *oldsd, *remsd = NULL;
11423 
11424 	local_irq_disable();
11425 	cpu = smp_processor_id();
11426 	sd = &per_cpu(softnet_data, cpu);
11427 	oldsd = &per_cpu(softnet_data, oldcpu);
11428 
11429 	/* Find end of our completion_queue. */
11430 	list_skb = &sd->completion_queue;
11431 	while (*list_skb)
11432 		list_skb = &(*list_skb)->next;
11433 	/* Append completion queue from offline CPU. */
11434 	*list_skb = oldsd->completion_queue;
11435 	oldsd->completion_queue = NULL;
11436 
11437 	/* Append output queue from offline CPU. */
11438 	if (oldsd->output_queue) {
11439 		*sd->output_queue_tailp = oldsd->output_queue;
11440 		sd->output_queue_tailp = oldsd->output_queue_tailp;
11441 		oldsd->output_queue = NULL;
11442 		oldsd->output_queue_tailp = &oldsd->output_queue;
11443 	}
11444 	/* Append NAPI poll list from offline CPU, with one exception :
11445 	 * process_backlog() must be called by cpu owning percpu backlog.
11446 	 * We properly handle process_queue & input_pkt_queue later.
11447 	 */
11448 	while (!list_empty(&oldsd->poll_list)) {
11449 		struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
11450 							    struct napi_struct,
11451 							    poll_list);
11452 
11453 		list_del_init(&napi->poll_list);
11454 		if (napi->poll == process_backlog)
11455 			napi->state &= NAPIF_STATE_THREADED;
11456 		else
11457 			____napi_schedule(sd, napi);
11458 	}
11459 
11460 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
11461 	local_irq_enable();
11462 
11463 	if (!use_backlog_threads()) {
11464 #ifdef CONFIG_RPS
11465 		remsd = oldsd->rps_ipi_list;
11466 		oldsd->rps_ipi_list = NULL;
11467 #endif
11468 		/* send out pending IPI's on offline CPU */
11469 		net_rps_send_ipi(remsd);
11470 	}
11471 
11472 	/* Process offline CPU's input_pkt_queue */
11473 	while ((skb = __skb_dequeue(&oldsd->process_queue))) {
11474 		netif_rx(skb);
11475 		rps_input_queue_head_incr(oldsd);
11476 	}
11477 	while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
11478 		netif_rx(skb);
11479 		rps_input_queue_head_incr(oldsd);
11480 	}
11481 
11482 	return 0;
11483 }
11484 
11485 /**
11486  *	netdev_increment_features - increment feature set by one
11487  *	@all: current feature set
11488  *	@one: new feature set
11489  *	@mask: mask feature set
11490  *
11491  *	Computes a new feature set after adding a device with feature set
11492  *	@one to the master device with current feature set @all.  Will not
11493  *	enable anything that is off in @mask. Returns the new feature set.
11494  */
11495 netdev_features_t netdev_increment_features(netdev_features_t all,
11496 	netdev_features_t one, netdev_features_t mask)
11497 {
11498 	if (mask & NETIF_F_HW_CSUM)
11499 		mask |= NETIF_F_CSUM_MASK;
11500 	mask |= NETIF_F_VLAN_CHALLENGED;
11501 
11502 	all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
11503 	all &= one | ~NETIF_F_ALL_FOR_ALL;
11504 
11505 	/* If one device supports hw checksumming, set for all. */
11506 	if (all & NETIF_F_HW_CSUM)
11507 		all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
11508 
11509 	return all;
11510 }
11511 EXPORT_SYMBOL(netdev_increment_features);
11512 
11513 static struct hlist_head * __net_init netdev_create_hash(void)
11514 {
11515 	int i;
11516 	struct hlist_head *hash;
11517 
11518 	hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
11519 	if (hash != NULL)
11520 		for (i = 0; i < NETDEV_HASHENTRIES; i++)
11521 			INIT_HLIST_HEAD(&hash[i]);
11522 
11523 	return hash;
11524 }
11525 
11526 /* Initialize per network namespace state */
11527 static int __net_init netdev_init(struct net *net)
11528 {
11529 	BUILD_BUG_ON(GRO_HASH_BUCKETS >
11530 		     8 * sizeof_field(struct napi_struct, gro_bitmask));
11531 
11532 	INIT_LIST_HEAD(&net->dev_base_head);
11533 
11534 	net->dev_name_head = netdev_create_hash();
11535 	if (net->dev_name_head == NULL)
11536 		goto err_name;
11537 
11538 	net->dev_index_head = netdev_create_hash();
11539 	if (net->dev_index_head == NULL)
11540 		goto err_idx;
11541 
11542 	xa_init_flags(&net->dev_by_index, XA_FLAGS_ALLOC1);
11543 
11544 	RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
11545 
11546 	return 0;
11547 
11548 err_idx:
11549 	kfree(net->dev_name_head);
11550 err_name:
11551 	return -ENOMEM;
11552 }
11553 
11554 /**
11555  *	netdev_drivername - network driver for the device
11556  *	@dev: network device
11557  *
11558  *	Determine network driver for device.
11559  */
11560 const char *netdev_drivername(const struct net_device *dev)
11561 {
11562 	const struct device_driver *driver;
11563 	const struct device *parent;
11564 	const char *empty = "";
11565 
11566 	parent = dev->dev.parent;
11567 	if (!parent)
11568 		return empty;
11569 
11570 	driver = parent->driver;
11571 	if (driver && driver->name)
11572 		return driver->name;
11573 	return empty;
11574 }
11575 
11576 static void __netdev_printk(const char *level, const struct net_device *dev,
11577 			    struct va_format *vaf)
11578 {
11579 	if (dev && dev->dev.parent) {
11580 		dev_printk_emit(level[1] - '0',
11581 				dev->dev.parent,
11582 				"%s %s %s%s: %pV",
11583 				dev_driver_string(dev->dev.parent),
11584 				dev_name(dev->dev.parent),
11585 				netdev_name(dev), netdev_reg_state(dev),
11586 				vaf);
11587 	} else if (dev) {
11588 		printk("%s%s%s: %pV",
11589 		       level, netdev_name(dev), netdev_reg_state(dev), vaf);
11590 	} else {
11591 		printk("%s(NULL net_device): %pV", level, vaf);
11592 	}
11593 }
11594 
11595 void netdev_printk(const char *level, const struct net_device *dev,
11596 		   const char *format, ...)
11597 {
11598 	struct va_format vaf;
11599 	va_list args;
11600 
11601 	va_start(args, format);
11602 
11603 	vaf.fmt = format;
11604 	vaf.va = &args;
11605 
11606 	__netdev_printk(level, dev, &vaf);
11607 
11608 	va_end(args);
11609 }
11610 EXPORT_SYMBOL(netdev_printk);
11611 
11612 #define define_netdev_printk_level(func, level)			\
11613 void func(const struct net_device *dev, const char *fmt, ...)	\
11614 {								\
11615 	struct va_format vaf;					\
11616 	va_list args;						\
11617 								\
11618 	va_start(args, fmt);					\
11619 								\
11620 	vaf.fmt = fmt;						\
11621 	vaf.va = &args;						\
11622 								\
11623 	__netdev_printk(level, dev, &vaf);			\
11624 								\
11625 	va_end(args);						\
11626 }								\
11627 EXPORT_SYMBOL(func);
11628 
11629 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
11630 define_netdev_printk_level(netdev_alert, KERN_ALERT);
11631 define_netdev_printk_level(netdev_crit, KERN_CRIT);
11632 define_netdev_printk_level(netdev_err, KERN_ERR);
11633 define_netdev_printk_level(netdev_warn, KERN_WARNING);
11634 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
11635 define_netdev_printk_level(netdev_info, KERN_INFO);
11636 
11637 static void __net_exit netdev_exit(struct net *net)
11638 {
11639 	kfree(net->dev_name_head);
11640 	kfree(net->dev_index_head);
11641 	xa_destroy(&net->dev_by_index);
11642 	if (net != &init_net)
11643 		WARN_ON_ONCE(!list_empty(&net->dev_base_head));
11644 }
11645 
11646 static struct pernet_operations __net_initdata netdev_net_ops = {
11647 	.init = netdev_init,
11648 	.exit = netdev_exit,
11649 };
11650 
11651 static void __net_exit default_device_exit_net(struct net *net)
11652 {
11653 	struct netdev_name_node *name_node, *tmp;
11654 	struct net_device *dev, *aux;
11655 	/*
11656 	 * Push all migratable network devices back to the
11657 	 * initial network namespace
11658 	 */
11659 	ASSERT_RTNL();
11660 	for_each_netdev_safe(net, dev, aux) {
11661 		int err;
11662 		char fb_name[IFNAMSIZ];
11663 
11664 		/* Ignore unmoveable devices (i.e. loopback) */
11665 		if (dev->features & NETIF_F_NETNS_LOCAL)
11666 			continue;
11667 
11668 		/* Leave virtual devices for the generic cleanup */
11669 		if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund)
11670 			continue;
11671 
11672 		/* Push remaining network devices to init_net */
11673 		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
11674 		if (netdev_name_in_use(&init_net, fb_name))
11675 			snprintf(fb_name, IFNAMSIZ, "dev%%d");
11676 
11677 		netdev_for_each_altname_safe(dev, name_node, tmp)
11678 			if (netdev_name_in_use(&init_net, name_node->name))
11679 				__netdev_name_node_alt_destroy(name_node);
11680 
11681 		err = dev_change_net_namespace(dev, &init_net, fb_name);
11682 		if (err) {
11683 			pr_emerg("%s: failed to move %s to init_net: %d\n",
11684 				 __func__, dev->name, err);
11685 			BUG();
11686 		}
11687 	}
11688 }
11689 
11690 static void __net_exit default_device_exit_batch(struct list_head *net_list)
11691 {
11692 	/* At exit all network devices most be removed from a network
11693 	 * namespace.  Do this in the reverse order of registration.
11694 	 * Do this across as many network namespaces as possible to
11695 	 * improve batching efficiency.
11696 	 */
11697 	struct net_device *dev;
11698 	struct net *net;
11699 	LIST_HEAD(dev_kill_list);
11700 
11701 	rtnl_lock();
11702 	list_for_each_entry(net, net_list, exit_list) {
11703 		default_device_exit_net(net);
11704 		cond_resched();
11705 	}
11706 
11707 	list_for_each_entry(net, net_list, exit_list) {
11708 		for_each_netdev_reverse(net, dev) {
11709 			if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
11710 				dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
11711 			else
11712 				unregister_netdevice_queue(dev, &dev_kill_list);
11713 		}
11714 	}
11715 	unregister_netdevice_many(&dev_kill_list);
11716 	rtnl_unlock();
11717 }
11718 
11719 static struct pernet_operations __net_initdata default_device_ops = {
11720 	.exit_batch = default_device_exit_batch,
11721 };
11722 
11723 static void __init net_dev_struct_check(void)
11724 {
11725 	/* TX read-mostly hotpath */
11726 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, priv_flags);
11727 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, netdev_ops);
11728 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, header_ops);
11729 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, _tx);
11730 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, real_num_tx_queues);
11731 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_max_size);
11732 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_ipv4_max_size);
11733 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_max_segs);
11734 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_partial_features);
11735 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, num_tc);
11736 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, mtu);
11737 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, needed_headroom);
11738 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, tc_to_txq);
11739 #ifdef CONFIG_XPS
11740 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, xps_maps);
11741 #endif
11742 #ifdef CONFIG_NETFILTER_EGRESS
11743 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, nf_hooks_egress);
11744 #endif
11745 #ifdef CONFIG_NET_XGRESS
11746 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, tcx_egress);
11747 #endif
11748 	CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_tx, 160);
11749 
11750 	/* TXRX read-mostly hotpath */
11751 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, lstats);
11752 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, state);
11753 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, flags);
11754 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, hard_header_len);
11755 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, features);
11756 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, ip6_ptr);
11757 	CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_txrx, 46);
11758 
11759 	/* RX read-mostly hotpath */
11760 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, ptype_specific);
11761 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, ifindex);
11762 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, real_num_rx_queues);
11763 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, _rx);
11764 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_flush_timeout);
11765 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, napi_defer_hard_irqs);
11766 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_max_size);
11767 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_ipv4_max_size);
11768 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, rx_handler);
11769 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, rx_handler_data);
11770 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, nd_net);
11771 #ifdef CONFIG_NETPOLL
11772 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, npinfo);
11773 #endif
11774 #ifdef CONFIG_NET_XGRESS
11775 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, tcx_ingress);
11776 #endif
11777 	CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_rx, 104);
11778 }
11779 
11780 /*
11781  *	Initialize the DEV module. At boot time this walks the device list and
11782  *	unhooks any devices that fail to initialise (normally hardware not
11783  *	present) and leaves us with a valid list of present and active devices.
11784  *
11785  */
11786 
11787 /* We allocate 256 pages for each CPU if PAGE_SHIFT is 12 */
11788 #define SYSTEM_PERCPU_PAGE_POOL_SIZE	((1 << 20) / PAGE_SIZE)
11789 
11790 static int net_page_pool_create(int cpuid)
11791 {
11792 #if IS_ENABLED(CONFIG_PAGE_POOL)
11793 	struct page_pool_params page_pool_params = {
11794 		.pool_size = SYSTEM_PERCPU_PAGE_POOL_SIZE,
11795 		.flags = PP_FLAG_SYSTEM_POOL,
11796 		.nid = cpu_to_mem(cpuid),
11797 	};
11798 	struct page_pool *pp_ptr;
11799 
11800 	pp_ptr = page_pool_create_percpu(&page_pool_params, cpuid);
11801 	if (IS_ERR(pp_ptr))
11802 		return -ENOMEM;
11803 
11804 	per_cpu(system_page_pool, cpuid) = pp_ptr;
11805 #endif
11806 	return 0;
11807 }
11808 
11809 static int backlog_napi_should_run(unsigned int cpu)
11810 {
11811 	struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu);
11812 	struct napi_struct *napi = &sd->backlog;
11813 
11814 	return test_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
11815 }
11816 
11817 static void run_backlog_napi(unsigned int cpu)
11818 {
11819 	struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu);
11820 
11821 	napi_threaded_poll_loop(&sd->backlog);
11822 }
11823 
11824 static void backlog_napi_setup(unsigned int cpu)
11825 {
11826 	struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu);
11827 	struct napi_struct *napi = &sd->backlog;
11828 
11829 	napi->thread = this_cpu_read(backlog_napi);
11830 	set_bit(NAPI_STATE_THREADED, &napi->state);
11831 }
11832 
11833 static struct smp_hotplug_thread backlog_threads = {
11834 	.store			= &backlog_napi,
11835 	.thread_should_run	= backlog_napi_should_run,
11836 	.thread_fn		= run_backlog_napi,
11837 	.thread_comm		= "backlog_napi/%u",
11838 	.setup			= backlog_napi_setup,
11839 };
11840 
11841 /*
11842  *       This is called single threaded during boot, so no need
11843  *       to take the rtnl semaphore.
11844  */
11845 static int __init net_dev_init(void)
11846 {
11847 	int i, rc = -ENOMEM;
11848 
11849 	BUG_ON(!dev_boot_phase);
11850 
11851 	net_dev_struct_check();
11852 
11853 	if (dev_proc_init())
11854 		goto out;
11855 
11856 	if (netdev_kobject_init())
11857 		goto out;
11858 
11859 	for (i = 0; i < PTYPE_HASH_SIZE; i++)
11860 		INIT_LIST_HEAD(&ptype_base[i]);
11861 
11862 	if (register_pernet_subsys(&netdev_net_ops))
11863 		goto out;
11864 
11865 	/*
11866 	 *	Initialise the packet receive queues.
11867 	 */
11868 
11869 	for_each_possible_cpu(i) {
11870 		struct work_struct *flush = per_cpu_ptr(&flush_works, i);
11871 		struct softnet_data *sd = &per_cpu(softnet_data, i);
11872 
11873 		INIT_WORK(flush, flush_backlog);
11874 
11875 		skb_queue_head_init(&sd->input_pkt_queue);
11876 		skb_queue_head_init(&sd->process_queue);
11877 #ifdef CONFIG_XFRM_OFFLOAD
11878 		skb_queue_head_init(&sd->xfrm_backlog);
11879 #endif
11880 		INIT_LIST_HEAD(&sd->poll_list);
11881 		sd->output_queue_tailp = &sd->output_queue;
11882 #ifdef CONFIG_RPS
11883 		INIT_CSD(&sd->csd, rps_trigger_softirq, sd);
11884 		sd->cpu = i;
11885 #endif
11886 		INIT_CSD(&sd->defer_csd, trigger_rx_softirq, sd);
11887 		spin_lock_init(&sd->defer_lock);
11888 
11889 		init_gro_hash(&sd->backlog);
11890 		sd->backlog.poll = process_backlog;
11891 		sd->backlog.weight = weight_p;
11892 		INIT_LIST_HEAD(&sd->backlog.poll_list);
11893 
11894 		if (net_page_pool_create(i))
11895 			goto out;
11896 	}
11897 	if (use_backlog_threads())
11898 		smpboot_register_percpu_thread(&backlog_threads);
11899 
11900 	dev_boot_phase = 0;
11901 
11902 	/* The loopback device is special if any other network devices
11903 	 * is present in a network namespace the loopback device must
11904 	 * be present. Since we now dynamically allocate and free the
11905 	 * loopback device ensure this invariant is maintained by
11906 	 * keeping the loopback device as the first device on the
11907 	 * list of network devices.  Ensuring the loopback devices
11908 	 * is the first device that appears and the last network device
11909 	 * that disappears.
11910 	 */
11911 	if (register_pernet_device(&loopback_net_ops))
11912 		goto out;
11913 
11914 	if (register_pernet_device(&default_device_ops))
11915 		goto out;
11916 
11917 	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
11918 	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
11919 
11920 	rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
11921 				       NULL, dev_cpu_dead);
11922 	WARN_ON(rc < 0);
11923 	rc = 0;
11924 
11925 	/* avoid static key IPIs to isolated CPUs */
11926 	if (housekeeping_enabled(HK_TYPE_MISC))
11927 		net_enable_timestamp();
11928 out:
11929 	if (rc < 0) {
11930 		for_each_possible_cpu(i) {
11931 			struct page_pool *pp_ptr;
11932 
11933 			pp_ptr = per_cpu(system_page_pool, i);
11934 			if (!pp_ptr)
11935 				continue;
11936 
11937 			page_pool_destroy(pp_ptr);
11938 			per_cpu(system_page_pool, i) = NULL;
11939 		}
11940 	}
11941 
11942 	return rc;
11943 }
11944 
11945 subsys_initcall(net_dev_init);
11946