1 /* 2 * NET3 Protocol independent device support routines. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public License 6 * as published by the Free Software Foundation; either version 7 * 2 of the License, or (at your option) any later version. 8 * 9 * Derived from the non IP parts of dev.c 1.0.19 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Mark Evans, <evansmp@uhura.aston.ac.uk> 13 * 14 * Additional Authors: 15 * Florian la Roche <rzsfl@rz.uni-sb.de> 16 * Alan Cox <gw4pts@gw4pts.ampr.org> 17 * David Hinds <dahinds@users.sourceforge.net> 18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> 19 * Adam Sulmicki <adam@cfar.umd.edu> 20 * Pekka Riikonen <priikone@poesidon.pspt.fi> 21 * 22 * Changes: 23 * D.J. Barrow : Fixed bug where dev->refcnt gets set 24 * to 2 if register_netdev gets called 25 * before net_dev_init & also removed a 26 * few lines of code in the process. 27 * Alan Cox : device private ioctl copies fields back. 28 * Alan Cox : Transmit queue code does relevant 29 * stunts to keep the queue safe. 30 * Alan Cox : Fixed double lock. 31 * Alan Cox : Fixed promisc NULL pointer trap 32 * ???????? : Support the full private ioctl range 33 * Alan Cox : Moved ioctl permission check into 34 * drivers 35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI 36 * Alan Cox : 100 backlog just doesn't cut it when 37 * you start doing multicast video 8) 38 * Alan Cox : Rewrote net_bh and list manager. 39 * Alan Cox : Fix ETH_P_ALL echoback lengths. 40 * Alan Cox : Took out transmit every packet pass 41 * Saved a few bytes in the ioctl handler 42 * Alan Cox : Network driver sets packet type before 43 * calling netif_rx. Saves a function 44 * call a packet. 45 * Alan Cox : Hashed net_bh() 46 * Richard Kooijman: Timestamp fixes. 47 * Alan Cox : Wrong field in SIOCGIFDSTADDR 48 * Alan Cox : Device lock protection. 49 * Alan Cox : Fixed nasty side effect of device close 50 * changes. 51 * Rudi Cilibrasi : Pass the right thing to 52 * set_mac_address() 53 * Dave Miller : 32bit quantity for the device lock to 54 * make it work out on a Sparc. 55 * Bjorn Ekwall : Added KERNELD hack. 56 * Alan Cox : Cleaned up the backlog initialise. 57 * Craig Metz : SIOCGIFCONF fix if space for under 58 * 1 device. 59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there 60 * is no device open function. 61 * Andi Kleen : Fix error reporting for SIOCGIFCONF 62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF 63 * Cyrus Durgin : Cleaned for KMOD 64 * Adam Sulmicki : Bug Fix : Network Device Unload 65 * A network device unload needs to purge 66 * the backlog queue. 67 * Paul Rusty Russell : SIOCSIFNAME 68 * Pekka Riikonen : Netdev boot-time settings code 69 * Andrew Morton : Make unregister_netdevice wait 70 * indefinitely on dev->refcnt 71 * J Hadi Salim : - Backlog queue sampling 72 * - netif_rx() feedback 73 */ 74 75 #include <asm/uaccess.h> 76 #include <linux/bitops.h> 77 #include <linux/capability.h> 78 #include <linux/cpu.h> 79 #include <linux/types.h> 80 #include <linux/kernel.h> 81 #include <linux/hash.h> 82 #include <linux/slab.h> 83 #include <linux/sched.h> 84 #include <linux/mutex.h> 85 #include <linux/string.h> 86 #include <linux/mm.h> 87 #include <linux/socket.h> 88 #include <linux/sockios.h> 89 #include <linux/errno.h> 90 #include <linux/interrupt.h> 91 #include <linux/if_ether.h> 92 #include <linux/netdevice.h> 93 #include <linux/etherdevice.h> 94 #include <linux/ethtool.h> 95 #include <linux/notifier.h> 96 #include <linux/skbuff.h> 97 #include <net/net_namespace.h> 98 #include <net/sock.h> 99 #include <linux/rtnetlink.h> 100 #include <linux/stat.h> 101 #include <net/dst.h> 102 #include <net/dst_metadata.h> 103 #include <net/pkt_sched.h> 104 #include <net/checksum.h> 105 #include <net/xfrm.h> 106 #include <linux/highmem.h> 107 #include <linux/init.h> 108 #include <linux/module.h> 109 #include <linux/netpoll.h> 110 #include <linux/rcupdate.h> 111 #include <linux/delay.h> 112 #include <net/iw_handler.h> 113 #include <asm/current.h> 114 #include <linux/audit.h> 115 #include <linux/dmaengine.h> 116 #include <linux/err.h> 117 #include <linux/ctype.h> 118 #include <linux/if_arp.h> 119 #include <linux/if_vlan.h> 120 #include <linux/ip.h> 121 #include <net/ip.h> 122 #include <net/mpls.h> 123 #include <linux/ipv6.h> 124 #include <linux/in.h> 125 #include <linux/jhash.h> 126 #include <linux/random.h> 127 #include <trace/events/napi.h> 128 #include <trace/events/net.h> 129 #include <trace/events/skb.h> 130 #include <linux/pci.h> 131 #include <linux/inetdevice.h> 132 #include <linux/cpu_rmap.h> 133 #include <linux/static_key.h> 134 #include <linux/hashtable.h> 135 #include <linux/vmalloc.h> 136 #include <linux/if_macvlan.h> 137 #include <linux/errqueue.h> 138 #include <linux/hrtimer.h> 139 #include <linux/netfilter_ingress.h> 140 141 #include "net-sysfs.h" 142 143 /* Instead of increasing this, you should create a hash table. */ 144 #define MAX_GRO_SKBS 8 145 146 /* This should be increased if a protocol with a bigger head is added. */ 147 #define GRO_MAX_HEAD (MAX_HEADER + 128) 148 149 static DEFINE_SPINLOCK(ptype_lock); 150 static DEFINE_SPINLOCK(offload_lock); 151 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly; 152 struct list_head ptype_all __read_mostly; /* Taps */ 153 static struct list_head offload_base __read_mostly; 154 155 static int netif_rx_internal(struct sk_buff *skb); 156 static int call_netdevice_notifiers_info(unsigned long val, 157 struct net_device *dev, 158 struct netdev_notifier_info *info); 159 160 /* 161 * The @dev_base_head list is protected by @dev_base_lock and the rtnl 162 * semaphore. 163 * 164 * Pure readers hold dev_base_lock for reading, or rcu_read_lock() 165 * 166 * Writers must hold the rtnl semaphore while they loop through the 167 * dev_base_head list, and hold dev_base_lock for writing when they do the 168 * actual updates. This allows pure readers to access the list even 169 * while a writer is preparing to update it. 170 * 171 * To put it another way, dev_base_lock is held for writing only to 172 * protect against pure readers; the rtnl semaphore provides the 173 * protection against other writers. 174 * 175 * See, for example usages, register_netdevice() and 176 * unregister_netdevice(), which must be called with the rtnl 177 * semaphore held. 178 */ 179 DEFINE_RWLOCK(dev_base_lock); 180 EXPORT_SYMBOL(dev_base_lock); 181 182 /* protects napi_hash addition/deletion and napi_gen_id */ 183 static DEFINE_SPINLOCK(napi_hash_lock); 184 185 static unsigned int napi_gen_id; 186 static DEFINE_HASHTABLE(napi_hash, 8); 187 188 static seqcount_t devnet_rename_seq; 189 190 static inline void dev_base_seq_inc(struct net *net) 191 { 192 while (++net->dev_base_seq == 0); 193 } 194 195 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name) 196 { 197 unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ)); 198 199 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)]; 200 } 201 202 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex) 203 { 204 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)]; 205 } 206 207 static inline void rps_lock(struct softnet_data *sd) 208 { 209 #ifdef CONFIG_RPS 210 spin_lock(&sd->input_pkt_queue.lock); 211 #endif 212 } 213 214 static inline void rps_unlock(struct softnet_data *sd) 215 { 216 #ifdef CONFIG_RPS 217 spin_unlock(&sd->input_pkt_queue.lock); 218 #endif 219 } 220 221 /* Device list insertion */ 222 static void list_netdevice(struct net_device *dev) 223 { 224 struct net *net = dev_net(dev); 225 226 ASSERT_RTNL(); 227 228 write_lock_bh(&dev_base_lock); 229 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head); 230 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name)); 231 hlist_add_head_rcu(&dev->index_hlist, 232 dev_index_hash(net, dev->ifindex)); 233 write_unlock_bh(&dev_base_lock); 234 235 dev_base_seq_inc(net); 236 } 237 238 /* Device list removal 239 * caller must respect a RCU grace period before freeing/reusing dev 240 */ 241 static void unlist_netdevice(struct net_device *dev) 242 { 243 ASSERT_RTNL(); 244 245 /* Unlink dev from the device chain */ 246 write_lock_bh(&dev_base_lock); 247 list_del_rcu(&dev->dev_list); 248 hlist_del_rcu(&dev->name_hlist); 249 hlist_del_rcu(&dev->index_hlist); 250 write_unlock_bh(&dev_base_lock); 251 252 dev_base_seq_inc(dev_net(dev)); 253 } 254 255 /* 256 * Our notifier list 257 */ 258 259 static RAW_NOTIFIER_HEAD(netdev_chain); 260 261 /* 262 * Device drivers call our routines to queue packets here. We empty the 263 * queue in the local softnet handler. 264 */ 265 266 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 267 EXPORT_PER_CPU_SYMBOL(softnet_data); 268 269 #ifdef CONFIG_LOCKDEP 270 /* 271 * register_netdevice() inits txq->_xmit_lock and sets lockdep class 272 * according to dev->type 273 */ 274 static const unsigned short netdev_lock_type[] = 275 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25, 276 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET, 277 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM, 278 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP, 279 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD, 280 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25, 281 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP, 282 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD, 283 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI, 284 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE, 285 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET, 286 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL, 287 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM, 288 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE, 289 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE}; 290 291 static const char *const netdev_lock_name[] = 292 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25", 293 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET", 294 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM", 295 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP", 296 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD", 297 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25", 298 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP", 299 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD", 300 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI", 301 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE", 302 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET", 303 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL", 304 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM", 305 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE", 306 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"}; 307 308 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)]; 309 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)]; 310 311 static inline unsigned short netdev_lock_pos(unsigned short dev_type) 312 { 313 int i; 314 315 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++) 316 if (netdev_lock_type[i] == dev_type) 317 return i; 318 /* the last key is used by default */ 319 return ARRAY_SIZE(netdev_lock_type) - 1; 320 } 321 322 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 323 unsigned short dev_type) 324 { 325 int i; 326 327 i = netdev_lock_pos(dev_type); 328 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i], 329 netdev_lock_name[i]); 330 } 331 332 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 333 { 334 int i; 335 336 i = netdev_lock_pos(dev->type); 337 lockdep_set_class_and_name(&dev->addr_list_lock, 338 &netdev_addr_lock_key[i], 339 netdev_lock_name[i]); 340 } 341 #else 342 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 343 unsigned short dev_type) 344 { 345 } 346 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 347 { 348 } 349 #endif 350 351 /******************************************************************************* 352 353 Protocol management and registration routines 354 355 *******************************************************************************/ 356 357 /* 358 * Add a protocol ID to the list. Now that the input handler is 359 * smarter we can dispense with all the messy stuff that used to be 360 * here. 361 * 362 * BEWARE!!! Protocol handlers, mangling input packets, 363 * MUST BE last in hash buckets and checking protocol handlers 364 * MUST start from promiscuous ptype_all chain in net_bh. 365 * It is true now, do not change it. 366 * Explanation follows: if protocol handler, mangling packet, will 367 * be the first on list, it is not able to sense, that packet 368 * is cloned and should be copied-on-write, so that it will 369 * change it and subsequent readers will get broken packet. 370 * --ANK (980803) 371 */ 372 373 static inline struct list_head *ptype_head(const struct packet_type *pt) 374 { 375 if (pt->type == htons(ETH_P_ALL)) 376 return pt->dev ? &pt->dev->ptype_all : &ptype_all; 377 else 378 return pt->dev ? &pt->dev->ptype_specific : 379 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK]; 380 } 381 382 /** 383 * dev_add_pack - add packet handler 384 * @pt: packet type declaration 385 * 386 * Add a protocol handler to the networking stack. The passed &packet_type 387 * is linked into kernel lists and may not be freed until it has been 388 * removed from the kernel lists. 389 * 390 * This call does not sleep therefore it can not 391 * guarantee all CPU's that are in middle of receiving packets 392 * will see the new packet type (until the next received packet). 393 */ 394 395 void dev_add_pack(struct packet_type *pt) 396 { 397 struct list_head *head = ptype_head(pt); 398 399 spin_lock(&ptype_lock); 400 list_add_rcu(&pt->list, head); 401 spin_unlock(&ptype_lock); 402 } 403 EXPORT_SYMBOL(dev_add_pack); 404 405 /** 406 * __dev_remove_pack - remove packet handler 407 * @pt: packet type declaration 408 * 409 * Remove a protocol handler that was previously added to the kernel 410 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 411 * from the kernel lists and can be freed or reused once this function 412 * returns. 413 * 414 * The packet type might still be in use by receivers 415 * and must not be freed until after all the CPU's have gone 416 * through a quiescent state. 417 */ 418 void __dev_remove_pack(struct packet_type *pt) 419 { 420 struct list_head *head = ptype_head(pt); 421 struct packet_type *pt1; 422 423 spin_lock(&ptype_lock); 424 425 list_for_each_entry(pt1, head, list) { 426 if (pt == pt1) { 427 list_del_rcu(&pt->list); 428 goto out; 429 } 430 } 431 432 pr_warn("dev_remove_pack: %p not found\n", pt); 433 out: 434 spin_unlock(&ptype_lock); 435 } 436 EXPORT_SYMBOL(__dev_remove_pack); 437 438 /** 439 * dev_remove_pack - remove packet handler 440 * @pt: packet type declaration 441 * 442 * Remove a protocol handler that was previously added to the kernel 443 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 444 * from the kernel lists and can be freed or reused once this function 445 * returns. 446 * 447 * This call sleeps to guarantee that no CPU is looking at the packet 448 * type after return. 449 */ 450 void dev_remove_pack(struct packet_type *pt) 451 { 452 __dev_remove_pack(pt); 453 454 synchronize_net(); 455 } 456 EXPORT_SYMBOL(dev_remove_pack); 457 458 459 /** 460 * dev_add_offload - register offload handlers 461 * @po: protocol offload declaration 462 * 463 * Add protocol offload handlers to the networking stack. The passed 464 * &proto_offload is linked into kernel lists and may not be freed until 465 * it has been removed from the kernel lists. 466 * 467 * This call does not sleep therefore it can not 468 * guarantee all CPU's that are in middle of receiving packets 469 * will see the new offload handlers (until the next received packet). 470 */ 471 void dev_add_offload(struct packet_offload *po) 472 { 473 struct packet_offload *elem; 474 475 spin_lock(&offload_lock); 476 list_for_each_entry(elem, &offload_base, list) { 477 if (po->priority < elem->priority) 478 break; 479 } 480 list_add_rcu(&po->list, elem->list.prev); 481 spin_unlock(&offload_lock); 482 } 483 EXPORT_SYMBOL(dev_add_offload); 484 485 /** 486 * __dev_remove_offload - remove offload handler 487 * @po: packet offload declaration 488 * 489 * Remove a protocol offload handler that was previously added to the 490 * kernel offload handlers by dev_add_offload(). The passed &offload_type 491 * is removed from the kernel lists and can be freed or reused once this 492 * function returns. 493 * 494 * The packet type might still be in use by receivers 495 * and must not be freed until after all the CPU's have gone 496 * through a quiescent state. 497 */ 498 static void __dev_remove_offload(struct packet_offload *po) 499 { 500 struct list_head *head = &offload_base; 501 struct packet_offload *po1; 502 503 spin_lock(&offload_lock); 504 505 list_for_each_entry(po1, head, list) { 506 if (po == po1) { 507 list_del_rcu(&po->list); 508 goto out; 509 } 510 } 511 512 pr_warn("dev_remove_offload: %p not found\n", po); 513 out: 514 spin_unlock(&offload_lock); 515 } 516 517 /** 518 * dev_remove_offload - remove packet offload handler 519 * @po: packet offload declaration 520 * 521 * Remove a packet offload handler that was previously added to the kernel 522 * offload handlers by dev_add_offload(). The passed &offload_type is 523 * removed from the kernel lists and can be freed or reused once this 524 * function returns. 525 * 526 * This call sleeps to guarantee that no CPU is looking at the packet 527 * type after return. 528 */ 529 void dev_remove_offload(struct packet_offload *po) 530 { 531 __dev_remove_offload(po); 532 533 synchronize_net(); 534 } 535 EXPORT_SYMBOL(dev_remove_offload); 536 537 /****************************************************************************** 538 539 Device Boot-time Settings Routines 540 541 *******************************************************************************/ 542 543 /* Boot time configuration table */ 544 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX]; 545 546 /** 547 * netdev_boot_setup_add - add new setup entry 548 * @name: name of the device 549 * @map: configured settings for the device 550 * 551 * Adds new setup entry to the dev_boot_setup list. The function 552 * returns 0 on error and 1 on success. This is a generic routine to 553 * all netdevices. 554 */ 555 static int netdev_boot_setup_add(char *name, struct ifmap *map) 556 { 557 struct netdev_boot_setup *s; 558 int i; 559 560 s = dev_boot_setup; 561 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 562 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') { 563 memset(s[i].name, 0, sizeof(s[i].name)); 564 strlcpy(s[i].name, name, IFNAMSIZ); 565 memcpy(&s[i].map, map, sizeof(s[i].map)); 566 break; 567 } 568 } 569 570 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1; 571 } 572 573 /** 574 * netdev_boot_setup_check - check boot time settings 575 * @dev: the netdevice 576 * 577 * Check boot time settings for the device. 578 * The found settings are set for the device to be used 579 * later in the device probing. 580 * Returns 0 if no settings found, 1 if they are. 581 */ 582 int netdev_boot_setup_check(struct net_device *dev) 583 { 584 struct netdev_boot_setup *s = dev_boot_setup; 585 int i; 586 587 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 588 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' && 589 !strcmp(dev->name, s[i].name)) { 590 dev->irq = s[i].map.irq; 591 dev->base_addr = s[i].map.base_addr; 592 dev->mem_start = s[i].map.mem_start; 593 dev->mem_end = s[i].map.mem_end; 594 return 1; 595 } 596 } 597 return 0; 598 } 599 EXPORT_SYMBOL(netdev_boot_setup_check); 600 601 602 /** 603 * netdev_boot_base - get address from boot time settings 604 * @prefix: prefix for network device 605 * @unit: id for network device 606 * 607 * Check boot time settings for the base address of device. 608 * The found settings are set for the device to be used 609 * later in the device probing. 610 * Returns 0 if no settings found. 611 */ 612 unsigned long netdev_boot_base(const char *prefix, int unit) 613 { 614 const struct netdev_boot_setup *s = dev_boot_setup; 615 char name[IFNAMSIZ]; 616 int i; 617 618 sprintf(name, "%s%d", prefix, unit); 619 620 /* 621 * If device already registered then return base of 1 622 * to indicate not to probe for this interface 623 */ 624 if (__dev_get_by_name(&init_net, name)) 625 return 1; 626 627 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) 628 if (!strcmp(name, s[i].name)) 629 return s[i].map.base_addr; 630 return 0; 631 } 632 633 /* 634 * Saves at boot time configured settings for any netdevice. 635 */ 636 int __init netdev_boot_setup(char *str) 637 { 638 int ints[5]; 639 struct ifmap map; 640 641 str = get_options(str, ARRAY_SIZE(ints), ints); 642 if (!str || !*str) 643 return 0; 644 645 /* Save settings */ 646 memset(&map, 0, sizeof(map)); 647 if (ints[0] > 0) 648 map.irq = ints[1]; 649 if (ints[0] > 1) 650 map.base_addr = ints[2]; 651 if (ints[0] > 2) 652 map.mem_start = ints[3]; 653 if (ints[0] > 3) 654 map.mem_end = ints[4]; 655 656 /* Add new entry to the list */ 657 return netdev_boot_setup_add(str, &map); 658 } 659 660 __setup("netdev=", netdev_boot_setup); 661 662 /******************************************************************************* 663 664 Device Interface Subroutines 665 666 *******************************************************************************/ 667 668 /** 669 * dev_get_iflink - get 'iflink' value of a interface 670 * @dev: targeted interface 671 * 672 * Indicates the ifindex the interface is linked to. 673 * Physical interfaces have the same 'ifindex' and 'iflink' values. 674 */ 675 676 int dev_get_iflink(const struct net_device *dev) 677 { 678 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink) 679 return dev->netdev_ops->ndo_get_iflink(dev); 680 681 return dev->ifindex; 682 } 683 EXPORT_SYMBOL(dev_get_iflink); 684 685 /** 686 * dev_fill_metadata_dst - Retrieve tunnel egress information. 687 * @dev: targeted interface 688 * @skb: The packet. 689 * 690 * For better visibility of tunnel traffic OVS needs to retrieve 691 * egress tunnel information for a packet. Following API allows 692 * user to get this info. 693 */ 694 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb) 695 { 696 struct ip_tunnel_info *info; 697 698 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst) 699 return -EINVAL; 700 701 info = skb_tunnel_info_unclone(skb); 702 if (!info) 703 return -ENOMEM; 704 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX))) 705 return -EINVAL; 706 707 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb); 708 } 709 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst); 710 711 /** 712 * __dev_get_by_name - find a device by its name 713 * @net: the applicable net namespace 714 * @name: name to find 715 * 716 * Find an interface by name. Must be called under RTNL semaphore 717 * or @dev_base_lock. If the name is found a pointer to the device 718 * is returned. If the name is not found then %NULL is returned. The 719 * reference counters are not incremented so the caller must be 720 * careful with locks. 721 */ 722 723 struct net_device *__dev_get_by_name(struct net *net, const char *name) 724 { 725 struct net_device *dev; 726 struct hlist_head *head = dev_name_hash(net, name); 727 728 hlist_for_each_entry(dev, head, name_hlist) 729 if (!strncmp(dev->name, name, IFNAMSIZ)) 730 return dev; 731 732 return NULL; 733 } 734 EXPORT_SYMBOL(__dev_get_by_name); 735 736 /** 737 * dev_get_by_name_rcu - find a device by its name 738 * @net: the applicable net namespace 739 * @name: name to find 740 * 741 * Find an interface by name. 742 * If the name is found a pointer to the device is returned. 743 * If the name is not found then %NULL is returned. 744 * The reference counters are not incremented so the caller must be 745 * careful with locks. The caller must hold RCU lock. 746 */ 747 748 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name) 749 { 750 struct net_device *dev; 751 struct hlist_head *head = dev_name_hash(net, name); 752 753 hlist_for_each_entry_rcu(dev, head, name_hlist) 754 if (!strncmp(dev->name, name, IFNAMSIZ)) 755 return dev; 756 757 return NULL; 758 } 759 EXPORT_SYMBOL(dev_get_by_name_rcu); 760 761 /** 762 * dev_get_by_name - find a device by its name 763 * @net: the applicable net namespace 764 * @name: name to find 765 * 766 * Find an interface by name. This can be called from any 767 * context and does its own locking. The returned handle has 768 * the usage count incremented and the caller must use dev_put() to 769 * release it when it is no longer needed. %NULL is returned if no 770 * matching device is found. 771 */ 772 773 struct net_device *dev_get_by_name(struct net *net, const char *name) 774 { 775 struct net_device *dev; 776 777 rcu_read_lock(); 778 dev = dev_get_by_name_rcu(net, name); 779 if (dev) 780 dev_hold(dev); 781 rcu_read_unlock(); 782 return dev; 783 } 784 EXPORT_SYMBOL(dev_get_by_name); 785 786 /** 787 * __dev_get_by_index - find a device by its ifindex 788 * @net: the applicable net namespace 789 * @ifindex: index of device 790 * 791 * Search for an interface by index. Returns %NULL if the device 792 * is not found or a pointer to the device. The device has not 793 * had its reference counter increased so the caller must be careful 794 * about locking. The caller must hold either the RTNL semaphore 795 * or @dev_base_lock. 796 */ 797 798 struct net_device *__dev_get_by_index(struct net *net, int ifindex) 799 { 800 struct net_device *dev; 801 struct hlist_head *head = dev_index_hash(net, ifindex); 802 803 hlist_for_each_entry(dev, head, index_hlist) 804 if (dev->ifindex == ifindex) 805 return dev; 806 807 return NULL; 808 } 809 EXPORT_SYMBOL(__dev_get_by_index); 810 811 /** 812 * dev_get_by_index_rcu - find a device by its ifindex 813 * @net: the applicable net namespace 814 * @ifindex: index of device 815 * 816 * Search for an interface by index. Returns %NULL if the device 817 * is not found or a pointer to the device. The device has not 818 * had its reference counter increased so the caller must be careful 819 * about locking. The caller must hold RCU lock. 820 */ 821 822 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex) 823 { 824 struct net_device *dev; 825 struct hlist_head *head = dev_index_hash(net, ifindex); 826 827 hlist_for_each_entry_rcu(dev, head, index_hlist) 828 if (dev->ifindex == ifindex) 829 return dev; 830 831 return NULL; 832 } 833 EXPORT_SYMBOL(dev_get_by_index_rcu); 834 835 836 /** 837 * dev_get_by_index - find a device by its ifindex 838 * @net: the applicable net namespace 839 * @ifindex: index of device 840 * 841 * Search for an interface by index. Returns NULL if the device 842 * is not found or a pointer to the device. The device returned has 843 * had a reference added and the pointer is safe until the user calls 844 * dev_put to indicate they have finished with it. 845 */ 846 847 struct net_device *dev_get_by_index(struct net *net, int ifindex) 848 { 849 struct net_device *dev; 850 851 rcu_read_lock(); 852 dev = dev_get_by_index_rcu(net, ifindex); 853 if (dev) 854 dev_hold(dev); 855 rcu_read_unlock(); 856 return dev; 857 } 858 EXPORT_SYMBOL(dev_get_by_index); 859 860 /** 861 * netdev_get_name - get a netdevice name, knowing its ifindex. 862 * @net: network namespace 863 * @name: a pointer to the buffer where the name will be stored. 864 * @ifindex: the ifindex of the interface to get the name from. 865 * 866 * The use of raw_seqcount_begin() and cond_resched() before 867 * retrying is required as we want to give the writers a chance 868 * to complete when CONFIG_PREEMPT is not set. 869 */ 870 int netdev_get_name(struct net *net, char *name, int ifindex) 871 { 872 struct net_device *dev; 873 unsigned int seq; 874 875 retry: 876 seq = raw_seqcount_begin(&devnet_rename_seq); 877 rcu_read_lock(); 878 dev = dev_get_by_index_rcu(net, ifindex); 879 if (!dev) { 880 rcu_read_unlock(); 881 return -ENODEV; 882 } 883 884 strcpy(name, dev->name); 885 rcu_read_unlock(); 886 if (read_seqcount_retry(&devnet_rename_seq, seq)) { 887 cond_resched(); 888 goto retry; 889 } 890 891 return 0; 892 } 893 894 /** 895 * dev_getbyhwaddr_rcu - find a device by its hardware address 896 * @net: the applicable net namespace 897 * @type: media type of device 898 * @ha: hardware address 899 * 900 * Search for an interface by MAC address. Returns NULL if the device 901 * is not found or a pointer to the device. 902 * The caller must hold RCU or RTNL. 903 * The returned device has not had its ref count increased 904 * and the caller must therefore be careful about locking 905 * 906 */ 907 908 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 909 const char *ha) 910 { 911 struct net_device *dev; 912 913 for_each_netdev_rcu(net, dev) 914 if (dev->type == type && 915 !memcmp(dev->dev_addr, ha, dev->addr_len)) 916 return dev; 917 918 return NULL; 919 } 920 EXPORT_SYMBOL(dev_getbyhwaddr_rcu); 921 922 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type) 923 { 924 struct net_device *dev; 925 926 ASSERT_RTNL(); 927 for_each_netdev(net, dev) 928 if (dev->type == type) 929 return dev; 930 931 return NULL; 932 } 933 EXPORT_SYMBOL(__dev_getfirstbyhwtype); 934 935 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type) 936 { 937 struct net_device *dev, *ret = NULL; 938 939 rcu_read_lock(); 940 for_each_netdev_rcu(net, dev) 941 if (dev->type == type) { 942 dev_hold(dev); 943 ret = dev; 944 break; 945 } 946 rcu_read_unlock(); 947 return ret; 948 } 949 EXPORT_SYMBOL(dev_getfirstbyhwtype); 950 951 /** 952 * __dev_get_by_flags - find any device with given flags 953 * @net: the applicable net namespace 954 * @if_flags: IFF_* values 955 * @mask: bitmask of bits in if_flags to check 956 * 957 * Search for any interface with the given flags. Returns NULL if a device 958 * is not found or a pointer to the device. Must be called inside 959 * rtnl_lock(), and result refcount is unchanged. 960 */ 961 962 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags, 963 unsigned short mask) 964 { 965 struct net_device *dev, *ret; 966 967 ASSERT_RTNL(); 968 969 ret = NULL; 970 for_each_netdev(net, dev) { 971 if (((dev->flags ^ if_flags) & mask) == 0) { 972 ret = dev; 973 break; 974 } 975 } 976 return ret; 977 } 978 EXPORT_SYMBOL(__dev_get_by_flags); 979 980 /** 981 * dev_valid_name - check if name is okay for network device 982 * @name: name string 983 * 984 * Network device names need to be valid file names to 985 * to allow sysfs to work. We also disallow any kind of 986 * whitespace. 987 */ 988 bool dev_valid_name(const char *name) 989 { 990 if (*name == '\0') 991 return false; 992 if (strlen(name) >= IFNAMSIZ) 993 return false; 994 if (!strcmp(name, ".") || !strcmp(name, "..")) 995 return false; 996 997 while (*name) { 998 if (*name == '/' || *name == ':' || isspace(*name)) 999 return false; 1000 name++; 1001 } 1002 return true; 1003 } 1004 EXPORT_SYMBOL(dev_valid_name); 1005 1006 /** 1007 * __dev_alloc_name - allocate a name for a device 1008 * @net: network namespace to allocate the device name in 1009 * @name: name format string 1010 * @buf: scratch buffer and result name string 1011 * 1012 * Passed a format string - eg "lt%d" it will try and find a suitable 1013 * id. It scans list of devices to build up a free map, then chooses 1014 * the first empty slot. The caller must hold the dev_base or rtnl lock 1015 * while allocating the name and adding the device in order to avoid 1016 * duplicates. 1017 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 1018 * Returns the number of the unit assigned or a negative errno code. 1019 */ 1020 1021 static int __dev_alloc_name(struct net *net, const char *name, char *buf) 1022 { 1023 int i = 0; 1024 const char *p; 1025 const int max_netdevices = 8*PAGE_SIZE; 1026 unsigned long *inuse; 1027 struct net_device *d; 1028 1029 p = strnchr(name, IFNAMSIZ-1, '%'); 1030 if (p) { 1031 /* 1032 * Verify the string as this thing may have come from 1033 * the user. There must be either one "%d" and no other "%" 1034 * characters. 1035 */ 1036 if (p[1] != 'd' || strchr(p + 2, '%')) 1037 return -EINVAL; 1038 1039 /* Use one page as a bit array of possible slots */ 1040 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC); 1041 if (!inuse) 1042 return -ENOMEM; 1043 1044 for_each_netdev(net, d) { 1045 if (!sscanf(d->name, name, &i)) 1046 continue; 1047 if (i < 0 || i >= max_netdevices) 1048 continue; 1049 1050 /* avoid cases where sscanf is not exact inverse of printf */ 1051 snprintf(buf, IFNAMSIZ, name, i); 1052 if (!strncmp(buf, d->name, IFNAMSIZ)) 1053 set_bit(i, inuse); 1054 } 1055 1056 i = find_first_zero_bit(inuse, max_netdevices); 1057 free_page((unsigned long) inuse); 1058 } 1059 1060 if (buf != name) 1061 snprintf(buf, IFNAMSIZ, name, i); 1062 if (!__dev_get_by_name(net, buf)) 1063 return i; 1064 1065 /* It is possible to run out of possible slots 1066 * when the name is long and there isn't enough space left 1067 * for the digits, or if all bits are used. 1068 */ 1069 return -ENFILE; 1070 } 1071 1072 /** 1073 * dev_alloc_name - allocate a name for a device 1074 * @dev: device 1075 * @name: name format string 1076 * 1077 * Passed a format string - eg "lt%d" it will try and find a suitable 1078 * id. It scans list of devices to build up a free map, then chooses 1079 * the first empty slot. The caller must hold the dev_base or rtnl lock 1080 * while allocating the name and adding the device in order to avoid 1081 * duplicates. 1082 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 1083 * Returns the number of the unit assigned or a negative errno code. 1084 */ 1085 1086 int dev_alloc_name(struct net_device *dev, const char *name) 1087 { 1088 char buf[IFNAMSIZ]; 1089 struct net *net; 1090 int ret; 1091 1092 BUG_ON(!dev_net(dev)); 1093 net = dev_net(dev); 1094 ret = __dev_alloc_name(net, name, buf); 1095 if (ret >= 0) 1096 strlcpy(dev->name, buf, IFNAMSIZ); 1097 return ret; 1098 } 1099 EXPORT_SYMBOL(dev_alloc_name); 1100 1101 static int dev_alloc_name_ns(struct net *net, 1102 struct net_device *dev, 1103 const char *name) 1104 { 1105 char buf[IFNAMSIZ]; 1106 int ret; 1107 1108 ret = __dev_alloc_name(net, name, buf); 1109 if (ret >= 0) 1110 strlcpy(dev->name, buf, IFNAMSIZ); 1111 return ret; 1112 } 1113 1114 static int dev_get_valid_name(struct net *net, 1115 struct net_device *dev, 1116 const char *name) 1117 { 1118 BUG_ON(!net); 1119 1120 if (!dev_valid_name(name)) 1121 return -EINVAL; 1122 1123 if (strchr(name, '%')) 1124 return dev_alloc_name_ns(net, dev, name); 1125 else if (__dev_get_by_name(net, name)) 1126 return -EEXIST; 1127 else if (dev->name != name) 1128 strlcpy(dev->name, name, IFNAMSIZ); 1129 1130 return 0; 1131 } 1132 1133 /** 1134 * dev_change_name - change name of a device 1135 * @dev: device 1136 * @newname: name (or format string) must be at least IFNAMSIZ 1137 * 1138 * Change name of a device, can pass format strings "eth%d". 1139 * for wildcarding. 1140 */ 1141 int dev_change_name(struct net_device *dev, const char *newname) 1142 { 1143 unsigned char old_assign_type; 1144 char oldname[IFNAMSIZ]; 1145 int err = 0; 1146 int ret; 1147 struct net *net; 1148 1149 ASSERT_RTNL(); 1150 BUG_ON(!dev_net(dev)); 1151 1152 net = dev_net(dev); 1153 if (dev->flags & IFF_UP) 1154 return -EBUSY; 1155 1156 write_seqcount_begin(&devnet_rename_seq); 1157 1158 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) { 1159 write_seqcount_end(&devnet_rename_seq); 1160 return 0; 1161 } 1162 1163 memcpy(oldname, dev->name, IFNAMSIZ); 1164 1165 err = dev_get_valid_name(net, dev, newname); 1166 if (err < 0) { 1167 write_seqcount_end(&devnet_rename_seq); 1168 return err; 1169 } 1170 1171 if (oldname[0] && !strchr(oldname, '%')) 1172 netdev_info(dev, "renamed from %s\n", oldname); 1173 1174 old_assign_type = dev->name_assign_type; 1175 dev->name_assign_type = NET_NAME_RENAMED; 1176 1177 rollback: 1178 ret = device_rename(&dev->dev, dev->name); 1179 if (ret) { 1180 memcpy(dev->name, oldname, IFNAMSIZ); 1181 dev->name_assign_type = old_assign_type; 1182 write_seqcount_end(&devnet_rename_seq); 1183 return ret; 1184 } 1185 1186 write_seqcount_end(&devnet_rename_seq); 1187 1188 netdev_adjacent_rename_links(dev, oldname); 1189 1190 write_lock_bh(&dev_base_lock); 1191 hlist_del_rcu(&dev->name_hlist); 1192 write_unlock_bh(&dev_base_lock); 1193 1194 synchronize_rcu(); 1195 1196 write_lock_bh(&dev_base_lock); 1197 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name)); 1198 write_unlock_bh(&dev_base_lock); 1199 1200 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev); 1201 ret = notifier_to_errno(ret); 1202 1203 if (ret) { 1204 /* err >= 0 after dev_alloc_name() or stores the first errno */ 1205 if (err >= 0) { 1206 err = ret; 1207 write_seqcount_begin(&devnet_rename_seq); 1208 memcpy(dev->name, oldname, IFNAMSIZ); 1209 memcpy(oldname, newname, IFNAMSIZ); 1210 dev->name_assign_type = old_assign_type; 1211 old_assign_type = NET_NAME_RENAMED; 1212 goto rollback; 1213 } else { 1214 pr_err("%s: name change rollback failed: %d\n", 1215 dev->name, ret); 1216 } 1217 } 1218 1219 return err; 1220 } 1221 1222 /** 1223 * dev_set_alias - change ifalias of a device 1224 * @dev: device 1225 * @alias: name up to IFALIASZ 1226 * @len: limit of bytes to copy from info 1227 * 1228 * Set ifalias for a device, 1229 */ 1230 int dev_set_alias(struct net_device *dev, const char *alias, size_t len) 1231 { 1232 char *new_ifalias; 1233 1234 ASSERT_RTNL(); 1235 1236 if (len >= IFALIASZ) 1237 return -EINVAL; 1238 1239 if (!len) { 1240 kfree(dev->ifalias); 1241 dev->ifalias = NULL; 1242 return 0; 1243 } 1244 1245 new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL); 1246 if (!new_ifalias) 1247 return -ENOMEM; 1248 dev->ifalias = new_ifalias; 1249 1250 strlcpy(dev->ifalias, alias, len+1); 1251 return len; 1252 } 1253 1254 1255 /** 1256 * netdev_features_change - device changes features 1257 * @dev: device to cause notification 1258 * 1259 * Called to indicate a device has changed features. 1260 */ 1261 void netdev_features_change(struct net_device *dev) 1262 { 1263 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev); 1264 } 1265 EXPORT_SYMBOL(netdev_features_change); 1266 1267 /** 1268 * netdev_state_change - device changes state 1269 * @dev: device to cause notification 1270 * 1271 * Called to indicate a device has changed state. This function calls 1272 * the notifier chains for netdev_chain and sends a NEWLINK message 1273 * to the routing socket. 1274 */ 1275 void netdev_state_change(struct net_device *dev) 1276 { 1277 if (dev->flags & IFF_UP) { 1278 struct netdev_notifier_change_info change_info; 1279 1280 change_info.flags_changed = 0; 1281 call_netdevice_notifiers_info(NETDEV_CHANGE, dev, 1282 &change_info.info); 1283 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL); 1284 } 1285 } 1286 EXPORT_SYMBOL(netdev_state_change); 1287 1288 /** 1289 * netdev_notify_peers - notify network peers about existence of @dev 1290 * @dev: network device 1291 * 1292 * Generate traffic such that interested network peers are aware of 1293 * @dev, such as by generating a gratuitous ARP. This may be used when 1294 * a device wants to inform the rest of the network about some sort of 1295 * reconfiguration such as a failover event or virtual machine 1296 * migration. 1297 */ 1298 void netdev_notify_peers(struct net_device *dev) 1299 { 1300 rtnl_lock(); 1301 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev); 1302 rtnl_unlock(); 1303 } 1304 EXPORT_SYMBOL(netdev_notify_peers); 1305 1306 static int __dev_open(struct net_device *dev) 1307 { 1308 const struct net_device_ops *ops = dev->netdev_ops; 1309 int ret; 1310 1311 ASSERT_RTNL(); 1312 1313 if (!netif_device_present(dev)) 1314 return -ENODEV; 1315 1316 /* Block netpoll from trying to do any rx path servicing. 1317 * If we don't do this there is a chance ndo_poll_controller 1318 * or ndo_poll may be running while we open the device 1319 */ 1320 netpoll_poll_disable(dev); 1321 1322 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev); 1323 ret = notifier_to_errno(ret); 1324 if (ret) 1325 return ret; 1326 1327 set_bit(__LINK_STATE_START, &dev->state); 1328 1329 if (ops->ndo_validate_addr) 1330 ret = ops->ndo_validate_addr(dev); 1331 1332 if (!ret && ops->ndo_open) 1333 ret = ops->ndo_open(dev); 1334 1335 netpoll_poll_enable(dev); 1336 1337 if (ret) 1338 clear_bit(__LINK_STATE_START, &dev->state); 1339 else { 1340 dev->flags |= IFF_UP; 1341 dev_set_rx_mode(dev); 1342 dev_activate(dev); 1343 add_device_randomness(dev->dev_addr, dev->addr_len); 1344 } 1345 1346 return ret; 1347 } 1348 1349 /** 1350 * dev_open - prepare an interface for use. 1351 * @dev: device to open 1352 * 1353 * Takes a device from down to up state. The device's private open 1354 * function is invoked and then the multicast lists are loaded. Finally 1355 * the device is moved into the up state and a %NETDEV_UP message is 1356 * sent to the netdev notifier chain. 1357 * 1358 * Calling this function on an active interface is a nop. On a failure 1359 * a negative errno code is returned. 1360 */ 1361 int dev_open(struct net_device *dev) 1362 { 1363 int ret; 1364 1365 if (dev->flags & IFF_UP) 1366 return 0; 1367 1368 ret = __dev_open(dev); 1369 if (ret < 0) 1370 return ret; 1371 1372 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL); 1373 call_netdevice_notifiers(NETDEV_UP, dev); 1374 1375 return ret; 1376 } 1377 EXPORT_SYMBOL(dev_open); 1378 1379 static int __dev_close_many(struct list_head *head) 1380 { 1381 struct net_device *dev; 1382 1383 ASSERT_RTNL(); 1384 might_sleep(); 1385 1386 list_for_each_entry(dev, head, close_list) { 1387 /* Temporarily disable netpoll until the interface is down */ 1388 netpoll_poll_disable(dev); 1389 1390 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev); 1391 1392 clear_bit(__LINK_STATE_START, &dev->state); 1393 1394 /* Synchronize to scheduled poll. We cannot touch poll list, it 1395 * can be even on different cpu. So just clear netif_running(). 1396 * 1397 * dev->stop() will invoke napi_disable() on all of it's 1398 * napi_struct instances on this device. 1399 */ 1400 smp_mb__after_atomic(); /* Commit netif_running(). */ 1401 } 1402 1403 dev_deactivate_many(head); 1404 1405 list_for_each_entry(dev, head, close_list) { 1406 const struct net_device_ops *ops = dev->netdev_ops; 1407 1408 /* 1409 * Call the device specific close. This cannot fail. 1410 * Only if device is UP 1411 * 1412 * We allow it to be called even after a DETACH hot-plug 1413 * event. 1414 */ 1415 if (ops->ndo_stop) 1416 ops->ndo_stop(dev); 1417 1418 dev->flags &= ~IFF_UP; 1419 netpoll_poll_enable(dev); 1420 } 1421 1422 return 0; 1423 } 1424 1425 static int __dev_close(struct net_device *dev) 1426 { 1427 int retval; 1428 LIST_HEAD(single); 1429 1430 list_add(&dev->close_list, &single); 1431 retval = __dev_close_many(&single); 1432 list_del(&single); 1433 1434 return retval; 1435 } 1436 1437 int dev_close_many(struct list_head *head, bool unlink) 1438 { 1439 struct net_device *dev, *tmp; 1440 1441 /* Remove the devices that don't need to be closed */ 1442 list_for_each_entry_safe(dev, tmp, head, close_list) 1443 if (!(dev->flags & IFF_UP)) 1444 list_del_init(&dev->close_list); 1445 1446 __dev_close_many(head); 1447 1448 list_for_each_entry_safe(dev, tmp, head, close_list) { 1449 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL); 1450 call_netdevice_notifiers(NETDEV_DOWN, dev); 1451 if (unlink) 1452 list_del_init(&dev->close_list); 1453 } 1454 1455 return 0; 1456 } 1457 EXPORT_SYMBOL(dev_close_many); 1458 1459 /** 1460 * dev_close - shutdown an interface. 1461 * @dev: device to shutdown 1462 * 1463 * This function moves an active device into down state. A 1464 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device 1465 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier 1466 * chain. 1467 */ 1468 int dev_close(struct net_device *dev) 1469 { 1470 if (dev->flags & IFF_UP) { 1471 LIST_HEAD(single); 1472 1473 list_add(&dev->close_list, &single); 1474 dev_close_many(&single, true); 1475 list_del(&single); 1476 } 1477 return 0; 1478 } 1479 EXPORT_SYMBOL(dev_close); 1480 1481 1482 /** 1483 * dev_disable_lro - disable Large Receive Offload on a device 1484 * @dev: device 1485 * 1486 * Disable Large Receive Offload (LRO) on a net device. Must be 1487 * called under RTNL. This is needed if received packets may be 1488 * forwarded to another interface. 1489 */ 1490 void dev_disable_lro(struct net_device *dev) 1491 { 1492 struct net_device *lower_dev; 1493 struct list_head *iter; 1494 1495 dev->wanted_features &= ~NETIF_F_LRO; 1496 netdev_update_features(dev); 1497 1498 if (unlikely(dev->features & NETIF_F_LRO)) 1499 netdev_WARN(dev, "failed to disable LRO!\n"); 1500 1501 netdev_for_each_lower_dev(dev, lower_dev, iter) 1502 dev_disable_lro(lower_dev); 1503 } 1504 EXPORT_SYMBOL(dev_disable_lro); 1505 1506 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val, 1507 struct net_device *dev) 1508 { 1509 struct netdev_notifier_info info; 1510 1511 netdev_notifier_info_init(&info, dev); 1512 return nb->notifier_call(nb, val, &info); 1513 } 1514 1515 static int dev_boot_phase = 1; 1516 1517 /** 1518 * register_netdevice_notifier - register a network notifier block 1519 * @nb: notifier 1520 * 1521 * Register a notifier to be called when network device events occur. 1522 * The notifier passed is linked into the kernel structures and must 1523 * not be reused until it has been unregistered. A negative errno code 1524 * is returned on a failure. 1525 * 1526 * When registered all registration and up events are replayed 1527 * to the new notifier to allow device to have a race free 1528 * view of the network device list. 1529 */ 1530 1531 int register_netdevice_notifier(struct notifier_block *nb) 1532 { 1533 struct net_device *dev; 1534 struct net_device *last; 1535 struct net *net; 1536 int err; 1537 1538 rtnl_lock(); 1539 err = raw_notifier_chain_register(&netdev_chain, nb); 1540 if (err) 1541 goto unlock; 1542 if (dev_boot_phase) 1543 goto unlock; 1544 for_each_net(net) { 1545 for_each_netdev(net, dev) { 1546 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev); 1547 err = notifier_to_errno(err); 1548 if (err) 1549 goto rollback; 1550 1551 if (!(dev->flags & IFF_UP)) 1552 continue; 1553 1554 call_netdevice_notifier(nb, NETDEV_UP, dev); 1555 } 1556 } 1557 1558 unlock: 1559 rtnl_unlock(); 1560 return err; 1561 1562 rollback: 1563 last = dev; 1564 for_each_net(net) { 1565 for_each_netdev(net, dev) { 1566 if (dev == last) 1567 goto outroll; 1568 1569 if (dev->flags & IFF_UP) { 1570 call_netdevice_notifier(nb, NETDEV_GOING_DOWN, 1571 dev); 1572 call_netdevice_notifier(nb, NETDEV_DOWN, dev); 1573 } 1574 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev); 1575 } 1576 } 1577 1578 outroll: 1579 raw_notifier_chain_unregister(&netdev_chain, nb); 1580 goto unlock; 1581 } 1582 EXPORT_SYMBOL(register_netdevice_notifier); 1583 1584 /** 1585 * unregister_netdevice_notifier - unregister a network notifier block 1586 * @nb: notifier 1587 * 1588 * Unregister a notifier previously registered by 1589 * register_netdevice_notifier(). The notifier is unlinked into the 1590 * kernel structures and may then be reused. A negative errno code 1591 * is returned on a failure. 1592 * 1593 * After unregistering unregister and down device events are synthesized 1594 * for all devices on the device list to the removed notifier to remove 1595 * the need for special case cleanup code. 1596 */ 1597 1598 int unregister_netdevice_notifier(struct notifier_block *nb) 1599 { 1600 struct net_device *dev; 1601 struct net *net; 1602 int err; 1603 1604 rtnl_lock(); 1605 err = raw_notifier_chain_unregister(&netdev_chain, nb); 1606 if (err) 1607 goto unlock; 1608 1609 for_each_net(net) { 1610 for_each_netdev(net, dev) { 1611 if (dev->flags & IFF_UP) { 1612 call_netdevice_notifier(nb, NETDEV_GOING_DOWN, 1613 dev); 1614 call_netdevice_notifier(nb, NETDEV_DOWN, dev); 1615 } 1616 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev); 1617 } 1618 } 1619 unlock: 1620 rtnl_unlock(); 1621 return err; 1622 } 1623 EXPORT_SYMBOL(unregister_netdevice_notifier); 1624 1625 /** 1626 * call_netdevice_notifiers_info - call all network notifier blocks 1627 * @val: value passed unmodified to notifier function 1628 * @dev: net_device pointer passed unmodified to notifier function 1629 * @info: notifier information data 1630 * 1631 * Call all network notifier blocks. Parameters and return value 1632 * are as for raw_notifier_call_chain(). 1633 */ 1634 1635 static int call_netdevice_notifiers_info(unsigned long val, 1636 struct net_device *dev, 1637 struct netdev_notifier_info *info) 1638 { 1639 ASSERT_RTNL(); 1640 netdev_notifier_info_init(info, dev); 1641 return raw_notifier_call_chain(&netdev_chain, val, info); 1642 } 1643 1644 /** 1645 * call_netdevice_notifiers - call all network notifier blocks 1646 * @val: value passed unmodified to notifier function 1647 * @dev: net_device pointer passed unmodified to notifier function 1648 * 1649 * Call all network notifier blocks. Parameters and return value 1650 * are as for raw_notifier_call_chain(). 1651 */ 1652 1653 int call_netdevice_notifiers(unsigned long val, struct net_device *dev) 1654 { 1655 struct netdev_notifier_info info; 1656 1657 return call_netdevice_notifiers_info(val, dev, &info); 1658 } 1659 EXPORT_SYMBOL(call_netdevice_notifiers); 1660 1661 #ifdef CONFIG_NET_INGRESS 1662 static struct static_key ingress_needed __read_mostly; 1663 1664 void net_inc_ingress_queue(void) 1665 { 1666 static_key_slow_inc(&ingress_needed); 1667 } 1668 EXPORT_SYMBOL_GPL(net_inc_ingress_queue); 1669 1670 void net_dec_ingress_queue(void) 1671 { 1672 static_key_slow_dec(&ingress_needed); 1673 } 1674 EXPORT_SYMBOL_GPL(net_dec_ingress_queue); 1675 #endif 1676 1677 static struct static_key netstamp_needed __read_mostly; 1678 #ifdef HAVE_JUMP_LABEL 1679 /* We are not allowed to call static_key_slow_dec() from irq context 1680 * If net_disable_timestamp() is called from irq context, defer the 1681 * static_key_slow_dec() calls. 1682 */ 1683 static atomic_t netstamp_needed_deferred; 1684 #endif 1685 1686 void net_enable_timestamp(void) 1687 { 1688 #ifdef HAVE_JUMP_LABEL 1689 int deferred = atomic_xchg(&netstamp_needed_deferred, 0); 1690 1691 if (deferred) { 1692 while (--deferred) 1693 static_key_slow_dec(&netstamp_needed); 1694 return; 1695 } 1696 #endif 1697 static_key_slow_inc(&netstamp_needed); 1698 } 1699 EXPORT_SYMBOL(net_enable_timestamp); 1700 1701 void net_disable_timestamp(void) 1702 { 1703 #ifdef HAVE_JUMP_LABEL 1704 if (in_interrupt()) { 1705 atomic_inc(&netstamp_needed_deferred); 1706 return; 1707 } 1708 #endif 1709 static_key_slow_dec(&netstamp_needed); 1710 } 1711 EXPORT_SYMBOL(net_disable_timestamp); 1712 1713 static inline void net_timestamp_set(struct sk_buff *skb) 1714 { 1715 skb->tstamp.tv64 = 0; 1716 if (static_key_false(&netstamp_needed)) 1717 __net_timestamp(skb); 1718 } 1719 1720 #define net_timestamp_check(COND, SKB) \ 1721 if (static_key_false(&netstamp_needed)) { \ 1722 if ((COND) && !(SKB)->tstamp.tv64) \ 1723 __net_timestamp(SKB); \ 1724 } \ 1725 1726 bool is_skb_forwardable(struct net_device *dev, struct sk_buff *skb) 1727 { 1728 unsigned int len; 1729 1730 if (!(dev->flags & IFF_UP)) 1731 return false; 1732 1733 len = dev->mtu + dev->hard_header_len + VLAN_HLEN; 1734 if (skb->len <= len) 1735 return true; 1736 1737 /* if TSO is enabled, we don't care about the length as the packet 1738 * could be forwarded without being segmented before 1739 */ 1740 if (skb_is_gso(skb)) 1741 return true; 1742 1743 return false; 1744 } 1745 EXPORT_SYMBOL_GPL(is_skb_forwardable); 1746 1747 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 1748 { 1749 if (skb_orphan_frags(skb, GFP_ATOMIC) || 1750 unlikely(!is_skb_forwardable(dev, skb))) { 1751 atomic_long_inc(&dev->rx_dropped); 1752 kfree_skb(skb); 1753 return NET_RX_DROP; 1754 } 1755 1756 skb_scrub_packet(skb, true); 1757 skb->priority = 0; 1758 skb->protocol = eth_type_trans(skb, dev); 1759 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN); 1760 1761 return 0; 1762 } 1763 EXPORT_SYMBOL_GPL(__dev_forward_skb); 1764 1765 /** 1766 * dev_forward_skb - loopback an skb to another netif 1767 * 1768 * @dev: destination network device 1769 * @skb: buffer to forward 1770 * 1771 * return values: 1772 * NET_RX_SUCCESS (no congestion) 1773 * NET_RX_DROP (packet was dropped, but freed) 1774 * 1775 * dev_forward_skb can be used for injecting an skb from the 1776 * start_xmit function of one device into the receive queue 1777 * of another device. 1778 * 1779 * The receiving device may be in another namespace, so 1780 * we have to clear all information in the skb that could 1781 * impact namespace isolation. 1782 */ 1783 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 1784 { 1785 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb); 1786 } 1787 EXPORT_SYMBOL_GPL(dev_forward_skb); 1788 1789 static inline int deliver_skb(struct sk_buff *skb, 1790 struct packet_type *pt_prev, 1791 struct net_device *orig_dev) 1792 { 1793 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC))) 1794 return -ENOMEM; 1795 atomic_inc(&skb->users); 1796 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 1797 } 1798 1799 static inline void deliver_ptype_list_skb(struct sk_buff *skb, 1800 struct packet_type **pt, 1801 struct net_device *orig_dev, 1802 __be16 type, 1803 struct list_head *ptype_list) 1804 { 1805 struct packet_type *ptype, *pt_prev = *pt; 1806 1807 list_for_each_entry_rcu(ptype, ptype_list, list) { 1808 if (ptype->type != type) 1809 continue; 1810 if (pt_prev) 1811 deliver_skb(skb, pt_prev, orig_dev); 1812 pt_prev = ptype; 1813 } 1814 *pt = pt_prev; 1815 } 1816 1817 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb) 1818 { 1819 if (!ptype->af_packet_priv || !skb->sk) 1820 return false; 1821 1822 if (ptype->id_match) 1823 return ptype->id_match(ptype, skb->sk); 1824 else if ((struct sock *)ptype->af_packet_priv == skb->sk) 1825 return true; 1826 1827 return false; 1828 } 1829 1830 /* 1831 * Support routine. Sends outgoing frames to any network 1832 * taps currently in use. 1833 */ 1834 1835 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev) 1836 { 1837 struct packet_type *ptype; 1838 struct sk_buff *skb2 = NULL; 1839 struct packet_type *pt_prev = NULL; 1840 struct list_head *ptype_list = &ptype_all; 1841 1842 rcu_read_lock(); 1843 again: 1844 list_for_each_entry_rcu(ptype, ptype_list, list) { 1845 /* Never send packets back to the socket 1846 * they originated from - MvS (miquels@drinkel.ow.org) 1847 */ 1848 if (skb_loop_sk(ptype, skb)) 1849 continue; 1850 1851 if (pt_prev) { 1852 deliver_skb(skb2, pt_prev, skb->dev); 1853 pt_prev = ptype; 1854 continue; 1855 } 1856 1857 /* need to clone skb, done only once */ 1858 skb2 = skb_clone(skb, GFP_ATOMIC); 1859 if (!skb2) 1860 goto out_unlock; 1861 1862 net_timestamp_set(skb2); 1863 1864 /* skb->nh should be correctly 1865 * set by sender, so that the second statement is 1866 * just protection against buggy protocols. 1867 */ 1868 skb_reset_mac_header(skb2); 1869 1870 if (skb_network_header(skb2) < skb2->data || 1871 skb_network_header(skb2) > skb_tail_pointer(skb2)) { 1872 net_crit_ratelimited("protocol %04x is buggy, dev %s\n", 1873 ntohs(skb2->protocol), 1874 dev->name); 1875 skb_reset_network_header(skb2); 1876 } 1877 1878 skb2->transport_header = skb2->network_header; 1879 skb2->pkt_type = PACKET_OUTGOING; 1880 pt_prev = ptype; 1881 } 1882 1883 if (ptype_list == &ptype_all) { 1884 ptype_list = &dev->ptype_all; 1885 goto again; 1886 } 1887 out_unlock: 1888 if (pt_prev) 1889 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev); 1890 rcu_read_unlock(); 1891 } 1892 1893 /** 1894 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change 1895 * @dev: Network device 1896 * @txq: number of queues available 1897 * 1898 * If real_num_tx_queues is changed the tc mappings may no longer be 1899 * valid. To resolve this verify the tc mapping remains valid and if 1900 * not NULL the mapping. With no priorities mapping to this 1901 * offset/count pair it will no longer be used. In the worst case TC0 1902 * is invalid nothing can be done so disable priority mappings. If is 1903 * expected that drivers will fix this mapping if they can before 1904 * calling netif_set_real_num_tx_queues. 1905 */ 1906 static void netif_setup_tc(struct net_device *dev, unsigned int txq) 1907 { 1908 int i; 1909 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 1910 1911 /* If TC0 is invalidated disable TC mapping */ 1912 if (tc->offset + tc->count > txq) { 1913 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n"); 1914 dev->num_tc = 0; 1915 return; 1916 } 1917 1918 /* Invalidated prio to tc mappings set to TC0 */ 1919 for (i = 1; i < TC_BITMASK + 1; i++) { 1920 int q = netdev_get_prio_tc_map(dev, i); 1921 1922 tc = &dev->tc_to_txq[q]; 1923 if (tc->offset + tc->count > txq) { 1924 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n", 1925 i, q); 1926 netdev_set_prio_tc_map(dev, i, 0); 1927 } 1928 } 1929 } 1930 1931 #ifdef CONFIG_XPS 1932 static DEFINE_MUTEX(xps_map_mutex); 1933 #define xmap_dereference(P) \ 1934 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex)) 1935 1936 static struct xps_map *remove_xps_queue(struct xps_dev_maps *dev_maps, 1937 int cpu, u16 index) 1938 { 1939 struct xps_map *map = NULL; 1940 int pos; 1941 1942 if (dev_maps) 1943 map = xmap_dereference(dev_maps->cpu_map[cpu]); 1944 1945 for (pos = 0; map && pos < map->len; pos++) { 1946 if (map->queues[pos] == index) { 1947 if (map->len > 1) { 1948 map->queues[pos] = map->queues[--map->len]; 1949 } else { 1950 RCU_INIT_POINTER(dev_maps->cpu_map[cpu], NULL); 1951 kfree_rcu(map, rcu); 1952 map = NULL; 1953 } 1954 break; 1955 } 1956 } 1957 1958 return map; 1959 } 1960 1961 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index) 1962 { 1963 struct xps_dev_maps *dev_maps; 1964 int cpu, i; 1965 bool active = false; 1966 1967 mutex_lock(&xps_map_mutex); 1968 dev_maps = xmap_dereference(dev->xps_maps); 1969 1970 if (!dev_maps) 1971 goto out_no_maps; 1972 1973 for_each_possible_cpu(cpu) { 1974 for (i = index; i < dev->num_tx_queues; i++) { 1975 if (!remove_xps_queue(dev_maps, cpu, i)) 1976 break; 1977 } 1978 if (i == dev->num_tx_queues) 1979 active = true; 1980 } 1981 1982 if (!active) { 1983 RCU_INIT_POINTER(dev->xps_maps, NULL); 1984 kfree_rcu(dev_maps, rcu); 1985 } 1986 1987 for (i = index; i < dev->num_tx_queues; i++) 1988 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i), 1989 NUMA_NO_NODE); 1990 1991 out_no_maps: 1992 mutex_unlock(&xps_map_mutex); 1993 } 1994 1995 static struct xps_map *expand_xps_map(struct xps_map *map, 1996 int cpu, u16 index) 1997 { 1998 struct xps_map *new_map; 1999 int alloc_len = XPS_MIN_MAP_ALLOC; 2000 int i, pos; 2001 2002 for (pos = 0; map && pos < map->len; pos++) { 2003 if (map->queues[pos] != index) 2004 continue; 2005 return map; 2006 } 2007 2008 /* Need to add queue to this CPU's existing map */ 2009 if (map) { 2010 if (pos < map->alloc_len) 2011 return map; 2012 2013 alloc_len = map->alloc_len * 2; 2014 } 2015 2016 /* Need to allocate new map to store queue on this CPU's map */ 2017 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL, 2018 cpu_to_node(cpu)); 2019 if (!new_map) 2020 return NULL; 2021 2022 for (i = 0; i < pos; i++) 2023 new_map->queues[i] = map->queues[i]; 2024 new_map->alloc_len = alloc_len; 2025 new_map->len = pos; 2026 2027 return new_map; 2028 } 2029 2030 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask, 2031 u16 index) 2032 { 2033 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL; 2034 struct xps_map *map, *new_map; 2035 int maps_sz = max_t(unsigned int, XPS_DEV_MAPS_SIZE, L1_CACHE_BYTES); 2036 int cpu, numa_node_id = -2; 2037 bool active = false; 2038 2039 mutex_lock(&xps_map_mutex); 2040 2041 dev_maps = xmap_dereference(dev->xps_maps); 2042 2043 /* allocate memory for queue storage */ 2044 for_each_online_cpu(cpu) { 2045 if (!cpumask_test_cpu(cpu, mask)) 2046 continue; 2047 2048 if (!new_dev_maps) 2049 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL); 2050 if (!new_dev_maps) { 2051 mutex_unlock(&xps_map_mutex); 2052 return -ENOMEM; 2053 } 2054 2055 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) : 2056 NULL; 2057 2058 map = expand_xps_map(map, cpu, index); 2059 if (!map) 2060 goto error; 2061 2062 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map); 2063 } 2064 2065 if (!new_dev_maps) 2066 goto out_no_new_maps; 2067 2068 for_each_possible_cpu(cpu) { 2069 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) { 2070 /* add queue to CPU maps */ 2071 int pos = 0; 2072 2073 map = xmap_dereference(new_dev_maps->cpu_map[cpu]); 2074 while ((pos < map->len) && (map->queues[pos] != index)) 2075 pos++; 2076 2077 if (pos == map->len) 2078 map->queues[map->len++] = index; 2079 #ifdef CONFIG_NUMA 2080 if (numa_node_id == -2) 2081 numa_node_id = cpu_to_node(cpu); 2082 else if (numa_node_id != cpu_to_node(cpu)) 2083 numa_node_id = -1; 2084 #endif 2085 } else if (dev_maps) { 2086 /* fill in the new device map from the old device map */ 2087 map = xmap_dereference(dev_maps->cpu_map[cpu]); 2088 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map); 2089 } 2090 2091 } 2092 2093 rcu_assign_pointer(dev->xps_maps, new_dev_maps); 2094 2095 /* Cleanup old maps */ 2096 if (dev_maps) { 2097 for_each_possible_cpu(cpu) { 2098 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]); 2099 map = xmap_dereference(dev_maps->cpu_map[cpu]); 2100 if (map && map != new_map) 2101 kfree_rcu(map, rcu); 2102 } 2103 2104 kfree_rcu(dev_maps, rcu); 2105 } 2106 2107 dev_maps = new_dev_maps; 2108 active = true; 2109 2110 out_no_new_maps: 2111 /* update Tx queue numa node */ 2112 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index), 2113 (numa_node_id >= 0) ? numa_node_id : 2114 NUMA_NO_NODE); 2115 2116 if (!dev_maps) 2117 goto out_no_maps; 2118 2119 /* removes queue from unused CPUs */ 2120 for_each_possible_cpu(cpu) { 2121 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) 2122 continue; 2123 2124 if (remove_xps_queue(dev_maps, cpu, index)) 2125 active = true; 2126 } 2127 2128 /* free map if not active */ 2129 if (!active) { 2130 RCU_INIT_POINTER(dev->xps_maps, NULL); 2131 kfree_rcu(dev_maps, rcu); 2132 } 2133 2134 out_no_maps: 2135 mutex_unlock(&xps_map_mutex); 2136 2137 return 0; 2138 error: 2139 /* remove any maps that we added */ 2140 for_each_possible_cpu(cpu) { 2141 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]); 2142 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) : 2143 NULL; 2144 if (new_map && new_map != map) 2145 kfree(new_map); 2146 } 2147 2148 mutex_unlock(&xps_map_mutex); 2149 2150 kfree(new_dev_maps); 2151 return -ENOMEM; 2152 } 2153 EXPORT_SYMBOL(netif_set_xps_queue); 2154 2155 #endif 2156 /* 2157 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues 2158 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed. 2159 */ 2160 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq) 2161 { 2162 int rc; 2163 2164 if (txq < 1 || txq > dev->num_tx_queues) 2165 return -EINVAL; 2166 2167 if (dev->reg_state == NETREG_REGISTERED || 2168 dev->reg_state == NETREG_UNREGISTERING) { 2169 ASSERT_RTNL(); 2170 2171 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues, 2172 txq); 2173 if (rc) 2174 return rc; 2175 2176 if (dev->num_tc) 2177 netif_setup_tc(dev, txq); 2178 2179 if (txq < dev->real_num_tx_queues) { 2180 qdisc_reset_all_tx_gt(dev, txq); 2181 #ifdef CONFIG_XPS 2182 netif_reset_xps_queues_gt(dev, txq); 2183 #endif 2184 } 2185 } 2186 2187 dev->real_num_tx_queues = txq; 2188 return 0; 2189 } 2190 EXPORT_SYMBOL(netif_set_real_num_tx_queues); 2191 2192 #ifdef CONFIG_SYSFS 2193 /** 2194 * netif_set_real_num_rx_queues - set actual number of RX queues used 2195 * @dev: Network device 2196 * @rxq: Actual number of RX queues 2197 * 2198 * This must be called either with the rtnl_lock held or before 2199 * registration of the net device. Returns 0 on success, or a 2200 * negative error code. If called before registration, it always 2201 * succeeds. 2202 */ 2203 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq) 2204 { 2205 int rc; 2206 2207 if (rxq < 1 || rxq > dev->num_rx_queues) 2208 return -EINVAL; 2209 2210 if (dev->reg_state == NETREG_REGISTERED) { 2211 ASSERT_RTNL(); 2212 2213 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues, 2214 rxq); 2215 if (rc) 2216 return rc; 2217 } 2218 2219 dev->real_num_rx_queues = rxq; 2220 return 0; 2221 } 2222 EXPORT_SYMBOL(netif_set_real_num_rx_queues); 2223 #endif 2224 2225 /** 2226 * netif_get_num_default_rss_queues - default number of RSS queues 2227 * 2228 * This routine should set an upper limit on the number of RSS queues 2229 * used by default by multiqueue devices. 2230 */ 2231 int netif_get_num_default_rss_queues(void) 2232 { 2233 return min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus()); 2234 } 2235 EXPORT_SYMBOL(netif_get_num_default_rss_queues); 2236 2237 static inline void __netif_reschedule(struct Qdisc *q) 2238 { 2239 struct softnet_data *sd; 2240 unsigned long flags; 2241 2242 local_irq_save(flags); 2243 sd = this_cpu_ptr(&softnet_data); 2244 q->next_sched = NULL; 2245 *sd->output_queue_tailp = q; 2246 sd->output_queue_tailp = &q->next_sched; 2247 raise_softirq_irqoff(NET_TX_SOFTIRQ); 2248 local_irq_restore(flags); 2249 } 2250 2251 void __netif_schedule(struct Qdisc *q) 2252 { 2253 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state)) 2254 __netif_reschedule(q); 2255 } 2256 EXPORT_SYMBOL(__netif_schedule); 2257 2258 struct dev_kfree_skb_cb { 2259 enum skb_free_reason reason; 2260 }; 2261 2262 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb) 2263 { 2264 return (struct dev_kfree_skb_cb *)skb->cb; 2265 } 2266 2267 void netif_schedule_queue(struct netdev_queue *txq) 2268 { 2269 rcu_read_lock(); 2270 if (!(txq->state & QUEUE_STATE_ANY_XOFF)) { 2271 struct Qdisc *q = rcu_dereference(txq->qdisc); 2272 2273 __netif_schedule(q); 2274 } 2275 rcu_read_unlock(); 2276 } 2277 EXPORT_SYMBOL(netif_schedule_queue); 2278 2279 /** 2280 * netif_wake_subqueue - allow sending packets on subqueue 2281 * @dev: network device 2282 * @queue_index: sub queue index 2283 * 2284 * Resume individual transmit queue of a device with multiple transmit queues. 2285 */ 2286 void netif_wake_subqueue(struct net_device *dev, u16 queue_index) 2287 { 2288 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 2289 2290 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &txq->state)) { 2291 struct Qdisc *q; 2292 2293 rcu_read_lock(); 2294 q = rcu_dereference(txq->qdisc); 2295 __netif_schedule(q); 2296 rcu_read_unlock(); 2297 } 2298 } 2299 EXPORT_SYMBOL(netif_wake_subqueue); 2300 2301 void netif_tx_wake_queue(struct netdev_queue *dev_queue) 2302 { 2303 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) { 2304 struct Qdisc *q; 2305 2306 rcu_read_lock(); 2307 q = rcu_dereference(dev_queue->qdisc); 2308 __netif_schedule(q); 2309 rcu_read_unlock(); 2310 } 2311 } 2312 EXPORT_SYMBOL(netif_tx_wake_queue); 2313 2314 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason) 2315 { 2316 unsigned long flags; 2317 2318 if (likely(atomic_read(&skb->users) == 1)) { 2319 smp_rmb(); 2320 atomic_set(&skb->users, 0); 2321 } else if (likely(!atomic_dec_and_test(&skb->users))) { 2322 return; 2323 } 2324 get_kfree_skb_cb(skb)->reason = reason; 2325 local_irq_save(flags); 2326 skb->next = __this_cpu_read(softnet_data.completion_queue); 2327 __this_cpu_write(softnet_data.completion_queue, skb); 2328 raise_softirq_irqoff(NET_TX_SOFTIRQ); 2329 local_irq_restore(flags); 2330 } 2331 EXPORT_SYMBOL(__dev_kfree_skb_irq); 2332 2333 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason) 2334 { 2335 if (in_irq() || irqs_disabled()) 2336 __dev_kfree_skb_irq(skb, reason); 2337 else 2338 dev_kfree_skb(skb); 2339 } 2340 EXPORT_SYMBOL(__dev_kfree_skb_any); 2341 2342 2343 /** 2344 * netif_device_detach - mark device as removed 2345 * @dev: network device 2346 * 2347 * Mark device as removed from system and therefore no longer available. 2348 */ 2349 void netif_device_detach(struct net_device *dev) 2350 { 2351 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) && 2352 netif_running(dev)) { 2353 netif_tx_stop_all_queues(dev); 2354 } 2355 } 2356 EXPORT_SYMBOL(netif_device_detach); 2357 2358 /** 2359 * netif_device_attach - mark device as attached 2360 * @dev: network device 2361 * 2362 * Mark device as attached from system and restart if needed. 2363 */ 2364 void netif_device_attach(struct net_device *dev) 2365 { 2366 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) && 2367 netif_running(dev)) { 2368 netif_tx_wake_all_queues(dev); 2369 __netdev_watchdog_up(dev); 2370 } 2371 } 2372 EXPORT_SYMBOL(netif_device_attach); 2373 2374 /* 2375 * Returns a Tx hash based on the given packet descriptor a Tx queues' number 2376 * to be used as a distribution range. 2377 */ 2378 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb, 2379 unsigned int num_tx_queues) 2380 { 2381 u32 hash; 2382 u16 qoffset = 0; 2383 u16 qcount = num_tx_queues; 2384 2385 if (skb_rx_queue_recorded(skb)) { 2386 hash = skb_get_rx_queue(skb); 2387 while (unlikely(hash >= num_tx_queues)) 2388 hash -= num_tx_queues; 2389 return hash; 2390 } 2391 2392 if (dev->num_tc) { 2393 u8 tc = netdev_get_prio_tc_map(dev, skb->priority); 2394 qoffset = dev->tc_to_txq[tc].offset; 2395 qcount = dev->tc_to_txq[tc].count; 2396 } 2397 2398 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset; 2399 } 2400 EXPORT_SYMBOL(__skb_tx_hash); 2401 2402 static void skb_warn_bad_offload(const struct sk_buff *skb) 2403 { 2404 static const netdev_features_t null_features = 0; 2405 struct net_device *dev = skb->dev; 2406 const char *driver = ""; 2407 2408 if (!net_ratelimit()) 2409 return; 2410 2411 if (dev && dev->dev.parent) 2412 driver = dev_driver_string(dev->dev.parent); 2413 2414 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d " 2415 "gso_type=%d ip_summed=%d\n", 2416 driver, dev ? &dev->features : &null_features, 2417 skb->sk ? &skb->sk->sk_route_caps : &null_features, 2418 skb->len, skb->data_len, skb_shinfo(skb)->gso_size, 2419 skb_shinfo(skb)->gso_type, skb->ip_summed); 2420 } 2421 2422 /* 2423 * Invalidate hardware checksum when packet is to be mangled, and 2424 * complete checksum manually on outgoing path. 2425 */ 2426 int skb_checksum_help(struct sk_buff *skb) 2427 { 2428 __wsum csum; 2429 int ret = 0, offset; 2430 2431 if (skb->ip_summed == CHECKSUM_COMPLETE) 2432 goto out_set_summed; 2433 2434 if (unlikely(skb_shinfo(skb)->gso_size)) { 2435 skb_warn_bad_offload(skb); 2436 return -EINVAL; 2437 } 2438 2439 /* Before computing a checksum, we should make sure no frag could 2440 * be modified by an external entity : checksum could be wrong. 2441 */ 2442 if (skb_has_shared_frag(skb)) { 2443 ret = __skb_linearize(skb); 2444 if (ret) 2445 goto out; 2446 } 2447 2448 offset = skb_checksum_start_offset(skb); 2449 BUG_ON(offset >= skb_headlen(skb)); 2450 csum = skb_checksum(skb, offset, skb->len - offset, 0); 2451 2452 offset += skb->csum_offset; 2453 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb)); 2454 2455 if (skb_cloned(skb) && 2456 !skb_clone_writable(skb, offset + sizeof(__sum16))) { 2457 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 2458 if (ret) 2459 goto out; 2460 } 2461 2462 *(__sum16 *)(skb->data + offset) = csum_fold(csum); 2463 out_set_summed: 2464 skb->ip_summed = CHECKSUM_NONE; 2465 out: 2466 return ret; 2467 } 2468 EXPORT_SYMBOL(skb_checksum_help); 2469 2470 __be16 skb_network_protocol(struct sk_buff *skb, int *depth) 2471 { 2472 __be16 type = skb->protocol; 2473 2474 /* Tunnel gso handlers can set protocol to ethernet. */ 2475 if (type == htons(ETH_P_TEB)) { 2476 struct ethhdr *eth; 2477 2478 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr)))) 2479 return 0; 2480 2481 eth = (struct ethhdr *)skb_mac_header(skb); 2482 type = eth->h_proto; 2483 } 2484 2485 return __vlan_get_protocol(skb, type, depth); 2486 } 2487 2488 /** 2489 * skb_mac_gso_segment - mac layer segmentation handler. 2490 * @skb: buffer to segment 2491 * @features: features for the output path (see dev->features) 2492 */ 2493 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb, 2494 netdev_features_t features) 2495 { 2496 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT); 2497 struct packet_offload *ptype; 2498 int vlan_depth = skb->mac_len; 2499 __be16 type = skb_network_protocol(skb, &vlan_depth); 2500 2501 if (unlikely(!type)) 2502 return ERR_PTR(-EINVAL); 2503 2504 __skb_pull(skb, vlan_depth); 2505 2506 rcu_read_lock(); 2507 list_for_each_entry_rcu(ptype, &offload_base, list) { 2508 if (ptype->type == type && ptype->callbacks.gso_segment) { 2509 segs = ptype->callbacks.gso_segment(skb, features); 2510 break; 2511 } 2512 } 2513 rcu_read_unlock(); 2514 2515 __skb_push(skb, skb->data - skb_mac_header(skb)); 2516 2517 return segs; 2518 } 2519 EXPORT_SYMBOL(skb_mac_gso_segment); 2520 2521 2522 /* openvswitch calls this on rx path, so we need a different check. 2523 */ 2524 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path) 2525 { 2526 if (tx_path) 2527 return skb->ip_summed != CHECKSUM_PARTIAL; 2528 else 2529 return skb->ip_summed == CHECKSUM_NONE; 2530 } 2531 2532 /** 2533 * __skb_gso_segment - Perform segmentation on skb. 2534 * @skb: buffer to segment 2535 * @features: features for the output path (see dev->features) 2536 * @tx_path: whether it is called in TX path 2537 * 2538 * This function segments the given skb and returns a list of segments. 2539 * 2540 * It may return NULL if the skb requires no segmentation. This is 2541 * only possible when GSO is used for verifying header integrity. 2542 */ 2543 struct sk_buff *__skb_gso_segment(struct sk_buff *skb, 2544 netdev_features_t features, bool tx_path) 2545 { 2546 if (unlikely(skb_needs_check(skb, tx_path))) { 2547 int err; 2548 2549 skb_warn_bad_offload(skb); 2550 2551 err = skb_cow_head(skb, 0); 2552 if (err < 0) 2553 return ERR_PTR(err); 2554 } 2555 2556 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb); 2557 SKB_GSO_CB(skb)->encap_level = 0; 2558 2559 skb_reset_mac_header(skb); 2560 skb_reset_mac_len(skb); 2561 2562 return skb_mac_gso_segment(skb, features); 2563 } 2564 EXPORT_SYMBOL(__skb_gso_segment); 2565 2566 /* Take action when hardware reception checksum errors are detected. */ 2567 #ifdef CONFIG_BUG 2568 void netdev_rx_csum_fault(struct net_device *dev) 2569 { 2570 if (net_ratelimit()) { 2571 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>"); 2572 dump_stack(); 2573 } 2574 } 2575 EXPORT_SYMBOL(netdev_rx_csum_fault); 2576 #endif 2577 2578 /* Actually, we should eliminate this check as soon as we know, that: 2579 * 1. IOMMU is present and allows to map all the memory. 2580 * 2. No high memory really exists on this machine. 2581 */ 2582 2583 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb) 2584 { 2585 #ifdef CONFIG_HIGHMEM 2586 int i; 2587 if (!(dev->features & NETIF_F_HIGHDMA)) { 2588 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2589 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2590 if (PageHighMem(skb_frag_page(frag))) 2591 return 1; 2592 } 2593 } 2594 2595 if (PCI_DMA_BUS_IS_PHYS) { 2596 struct device *pdev = dev->dev.parent; 2597 2598 if (!pdev) 2599 return 0; 2600 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2601 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2602 dma_addr_t addr = page_to_phys(skb_frag_page(frag)); 2603 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask) 2604 return 1; 2605 } 2606 } 2607 #endif 2608 return 0; 2609 } 2610 2611 /* If MPLS offload request, verify we are testing hardware MPLS features 2612 * instead of standard features for the netdev. 2613 */ 2614 #if IS_ENABLED(CONFIG_NET_MPLS_GSO) 2615 static netdev_features_t net_mpls_features(struct sk_buff *skb, 2616 netdev_features_t features, 2617 __be16 type) 2618 { 2619 if (eth_p_mpls(type)) 2620 features &= skb->dev->mpls_features; 2621 2622 return features; 2623 } 2624 #else 2625 static netdev_features_t net_mpls_features(struct sk_buff *skb, 2626 netdev_features_t features, 2627 __be16 type) 2628 { 2629 return features; 2630 } 2631 #endif 2632 2633 static netdev_features_t harmonize_features(struct sk_buff *skb, 2634 netdev_features_t features) 2635 { 2636 int tmp; 2637 __be16 type; 2638 2639 type = skb_network_protocol(skb, &tmp); 2640 features = net_mpls_features(skb, features, type); 2641 2642 if (skb->ip_summed != CHECKSUM_NONE && 2643 !can_checksum_protocol(features, type)) { 2644 features &= ~NETIF_F_ALL_CSUM; 2645 } else if (illegal_highdma(skb->dev, skb)) { 2646 features &= ~NETIF_F_SG; 2647 } 2648 2649 return features; 2650 } 2651 2652 netdev_features_t passthru_features_check(struct sk_buff *skb, 2653 struct net_device *dev, 2654 netdev_features_t features) 2655 { 2656 return features; 2657 } 2658 EXPORT_SYMBOL(passthru_features_check); 2659 2660 static netdev_features_t dflt_features_check(const struct sk_buff *skb, 2661 struct net_device *dev, 2662 netdev_features_t features) 2663 { 2664 return vlan_features_check(skb, features); 2665 } 2666 2667 netdev_features_t netif_skb_features(struct sk_buff *skb) 2668 { 2669 struct net_device *dev = skb->dev; 2670 netdev_features_t features = dev->features; 2671 u16 gso_segs = skb_shinfo(skb)->gso_segs; 2672 2673 if (gso_segs > dev->gso_max_segs || gso_segs < dev->gso_min_segs) 2674 features &= ~NETIF_F_GSO_MASK; 2675 2676 /* If encapsulation offload request, verify we are testing 2677 * hardware encapsulation features instead of standard 2678 * features for the netdev 2679 */ 2680 if (skb->encapsulation) 2681 features &= dev->hw_enc_features; 2682 2683 if (skb_vlan_tagged(skb)) 2684 features = netdev_intersect_features(features, 2685 dev->vlan_features | 2686 NETIF_F_HW_VLAN_CTAG_TX | 2687 NETIF_F_HW_VLAN_STAG_TX); 2688 2689 if (dev->netdev_ops->ndo_features_check) 2690 features &= dev->netdev_ops->ndo_features_check(skb, dev, 2691 features); 2692 else 2693 features &= dflt_features_check(skb, dev, features); 2694 2695 return harmonize_features(skb, features); 2696 } 2697 EXPORT_SYMBOL(netif_skb_features); 2698 2699 static int xmit_one(struct sk_buff *skb, struct net_device *dev, 2700 struct netdev_queue *txq, bool more) 2701 { 2702 unsigned int len; 2703 int rc; 2704 2705 if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all)) 2706 dev_queue_xmit_nit(skb, dev); 2707 2708 len = skb->len; 2709 trace_net_dev_start_xmit(skb, dev); 2710 rc = netdev_start_xmit(skb, dev, txq, more); 2711 trace_net_dev_xmit(skb, rc, dev, len); 2712 2713 return rc; 2714 } 2715 2716 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev, 2717 struct netdev_queue *txq, int *ret) 2718 { 2719 struct sk_buff *skb = first; 2720 int rc = NETDEV_TX_OK; 2721 2722 while (skb) { 2723 struct sk_buff *next = skb->next; 2724 2725 skb->next = NULL; 2726 rc = xmit_one(skb, dev, txq, next != NULL); 2727 if (unlikely(!dev_xmit_complete(rc))) { 2728 skb->next = next; 2729 goto out; 2730 } 2731 2732 skb = next; 2733 if (netif_xmit_stopped(txq) && skb) { 2734 rc = NETDEV_TX_BUSY; 2735 break; 2736 } 2737 } 2738 2739 out: 2740 *ret = rc; 2741 return skb; 2742 } 2743 2744 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb, 2745 netdev_features_t features) 2746 { 2747 if (skb_vlan_tag_present(skb) && 2748 !vlan_hw_offload_capable(features, skb->vlan_proto)) 2749 skb = __vlan_hwaccel_push_inside(skb); 2750 return skb; 2751 } 2752 2753 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev) 2754 { 2755 netdev_features_t features; 2756 2757 if (skb->next) 2758 return skb; 2759 2760 features = netif_skb_features(skb); 2761 skb = validate_xmit_vlan(skb, features); 2762 if (unlikely(!skb)) 2763 goto out_null; 2764 2765 if (netif_needs_gso(skb, features)) { 2766 struct sk_buff *segs; 2767 2768 segs = skb_gso_segment(skb, features); 2769 if (IS_ERR(segs)) { 2770 goto out_kfree_skb; 2771 } else if (segs) { 2772 consume_skb(skb); 2773 skb = segs; 2774 } 2775 } else { 2776 if (skb_needs_linearize(skb, features) && 2777 __skb_linearize(skb)) 2778 goto out_kfree_skb; 2779 2780 /* If packet is not checksummed and device does not 2781 * support checksumming for this protocol, complete 2782 * checksumming here. 2783 */ 2784 if (skb->ip_summed == CHECKSUM_PARTIAL) { 2785 if (skb->encapsulation) 2786 skb_set_inner_transport_header(skb, 2787 skb_checksum_start_offset(skb)); 2788 else 2789 skb_set_transport_header(skb, 2790 skb_checksum_start_offset(skb)); 2791 if (!(features & NETIF_F_ALL_CSUM) && 2792 skb_checksum_help(skb)) 2793 goto out_kfree_skb; 2794 } 2795 } 2796 2797 return skb; 2798 2799 out_kfree_skb: 2800 kfree_skb(skb); 2801 out_null: 2802 return NULL; 2803 } 2804 2805 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev) 2806 { 2807 struct sk_buff *next, *head = NULL, *tail; 2808 2809 for (; skb != NULL; skb = next) { 2810 next = skb->next; 2811 skb->next = NULL; 2812 2813 /* in case skb wont be segmented, point to itself */ 2814 skb->prev = skb; 2815 2816 skb = validate_xmit_skb(skb, dev); 2817 if (!skb) 2818 continue; 2819 2820 if (!head) 2821 head = skb; 2822 else 2823 tail->next = skb; 2824 /* If skb was segmented, skb->prev points to 2825 * the last segment. If not, it still contains skb. 2826 */ 2827 tail = skb->prev; 2828 } 2829 return head; 2830 } 2831 2832 static void qdisc_pkt_len_init(struct sk_buff *skb) 2833 { 2834 const struct skb_shared_info *shinfo = skb_shinfo(skb); 2835 2836 qdisc_skb_cb(skb)->pkt_len = skb->len; 2837 2838 /* To get more precise estimation of bytes sent on wire, 2839 * we add to pkt_len the headers size of all segments 2840 */ 2841 if (shinfo->gso_size) { 2842 unsigned int hdr_len; 2843 u16 gso_segs = shinfo->gso_segs; 2844 2845 /* mac layer + network layer */ 2846 hdr_len = skb_transport_header(skb) - skb_mac_header(skb); 2847 2848 /* + transport layer */ 2849 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) 2850 hdr_len += tcp_hdrlen(skb); 2851 else 2852 hdr_len += sizeof(struct udphdr); 2853 2854 if (shinfo->gso_type & SKB_GSO_DODGY) 2855 gso_segs = DIV_ROUND_UP(skb->len - hdr_len, 2856 shinfo->gso_size); 2857 2858 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len; 2859 } 2860 } 2861 2862 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q, 2863 struct net_device *dev, 2864 struct netdev_queue *txq) 2865 { 2866 spinlock_t *root_lock = qdisc_lock(q); 2867 bool contended; 2868 int rc; 2869 2870 qdisc_pkt_len_init(skb); 2871 qdisc_calculate_pkt_len(skb, q); 2872 /* 2873 * Heuristic to force contended enqueues to serialize on a 2874 * separate lock before trying to get qdisc main lock. 2875 * This permits __QDISC___STATE_RUNNING owner to get the lock more 2876 * often and dequeue packets faster. 2877 */ 2878 contended = qdisc_is_running(q); 2879 if (unlikely(contended)) 2880 spin_lock(&q->busylock); 2881 2882 spin_lock(root_lock); 2883 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) { 2884 kfree_skb(skb); 2885 rc = NET_XMIT_DROP; 2886 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) && 2887 qdisc_run_begin(q)) { 2888 /* 2889 * This is a work-conserving queue; there are no old skbs 2890 * waiting to be sent out; and the qdisc is not running - 2891 * xmit the skb directly. 2892 */ 2893 2894 qdisc_bstats_update(q, skb); 2895 2896 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) { 2897 if (unlikely(contended)) { 2898 spin_unlock(&q->busylock); 2899 contended = false; 2900 } 2901 __qdisc_run(q); 2902 } else 2903 qdisc_run_end(q); 2904 2905 rc = NET_XMIT_SUCCESS; 2906 } else { 2907 rc = q->enqueue(skb, q) & NET_XMIT_MASK; 2908 if (qdisc_run_begin(q)) { 2909 if (unlikely(contended)) { 2910 spin_unlock(&q->busylock); 2911 contended = false; 2912 } 2913 __qdisc_run(q); 2914 } 2915 } 2916 spin_unlock(root_lock); 2917 if (unlikely(contended)) 2918 spin_unlock(&q->busylock); 2919 return rc; 2920 } 2921 2922 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO) 2923 static void skb_update_prio(struct sk_buff *skb) 2924 { 2925 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap); 2926 2927 if (!skb->priority && skb->sk && map) { 2928 unsigned int prioidx = skb->sk->sk_cgrp_prioidx; 2929 2930 if (prioidx < map->priomap_len) 2931 skb->priority = map->priomap[prioidx]; 2932 } 2933 } 2934 #else 2935 #define skb_update_prio(skb) 2936 #endif 2937 2938 DEFINE_PER_CPU(int, xmit_recursion); 2939 EXPORT_SYMBOL(xmit_recursion); 2940 2941 #define RECURSION_LIMIT 10 2942 2943 /** 2944 * dev_loopback_xmit - loop back @skb 2945 * @net: network namespace this loopback is happening in 2946 * @sk: sk needed to be a netfilter okfn 2947 * @skb: buffer to transmit 2948 */ 2949 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb) 2950 { 2951 skb_reset_mac_header(skb); 2952 __skb_pull(skb, skb_network_offset(skb)); 2953 skb->pkt_type = PACKET_LOOPBACK; 2954 skb->ip_summed = CHECKSUM_UNNECESSARY; 2955 WARN_ON(!skb_dst(skb)); 2956 skb_dst_force(skb); 2957 netif_rx_ni(skb); 2958 return 0; 2959 } 2960 EXPORT_SYMBOL(dev_loopback_xmit); 2961 2962 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb) 2963 { 2964 #ifdef CONFIG_XPS 2965 struct xps_dev_maps *dev_maps; 2966 struct xps_map *map; 2967 int queue_index = -1; 2968 2969 rcu_read_lock(); 2970 dev_maps = rcu_dereference(dev->xps_maps); 2971 if (dev_maps) { 2972 map = rcu_dereference( 2973 dev_maps->cpu_map[skb->sender_cpu - 1]); 2974 if (map) { 2975 if (map->len == 1) 2976 queue_index = map->queues[0]; 2977 else 2978 queue_index = map->queues[reciprocal_scale(skb_get_hash(skb), 2979 map->len)]; 2980 if (unlikely(queue_index >= dev->real_num_tx_queues)) 2981 queue_index = -1; 2982 } 2983 } 2984 rcu_read_unlock(); 2985 2986 return queue_index; 2987 #else 2988 return -1; 2989 #endif 2990 } 2991 2992 static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb) 2993 { 2994 struct sock *sk = skb->sk; 2995 int queue_index = sk_tx_queue_get(sk); 2996 2997 if (queue_index < 0 || skb->ooo_okay || 2998 queue_index >= dev->real_num_tx_queues) { 2999 int new_index = get_xps_queue(dev, skb); 3000 if (new_index < 0) 3001 new_index = skb_tx_hash(dev, skb); 3002 3003 if (queue_index != new_index && sk && 3004 sk_fullsock(sk) && 3005 rcu_access_pointer(sk->sk_dst_cache)) 3006 sk_tx_queue_set(sk, new_index); 3007 3008 queue_index = new_index; 3009 } 3010 3011 return queue_index; 3012 } 3013 3014 struct netdev_queue *netdev_pick_tx(struct net_device *dev, 3015 struct sk_buff *skb, 3016 void *accel_priv) 3017 { 3018 int queue_index = 0; 3019 3020 #ifdef CONFIG_XPS 3021 if (skb->sender_cpu == 0) 3022 skb->sender_cpu = raw_smp_processor_id() + 1; 3023 #endif 3024 3025 if (dev->real_num_tx_queues != 1) { 3026 const struct net_device_ops *ops = dev->netdev_ops; 3027 if (ops->ndo_select_queue) 3028 queue_index = ops->ndo_select_queue(dev, skb, accel_priv, 3029 __netdev_pick_tx); 3030 else 3031 queue_index = __netdev_pick_tx(dev, skb); 3032 3033 if (!accel_priv) 3034 queue_index = netdev_cap_txqueue(dev, queue_index); 3035 } 3036 3037 skb_set_queue_mapping(skb, queue_index); 3038 return netdev_get_tx_queue(dev, queue_index); 3039 } 3040 3041 /** 3042 * __dev_queue_xmit - transmit a buffer 3043 * @skb: buffer to transmit 3044 * @accel_priv: private data used for L2 forwarding offload 3045 * 3046 * Queue a buffer for transmission to a network device. The caller must 3047 * have set the device and priority and built the buffer before calling 3048 * this function. The function can be called from an interrupt. 3049 * 3050 * A negative errno code is returned on a failure. A success does not 3051 * guarantee the frame will be transmitted as it may be dropped due 3052 * to congestion or traffic shaping. 3053 * 3054 * ----------------------------------------------------------------------------------- 3055 * I notice this method can also return errors from the queue disciplines, 3056 * including NET_XMIT_DROP, which is a positive value. So, errors can also 3057 * be positive. 3058 * 3059 * Regardless of the return value, the skb is consumed, so it is currently 3060 * difficult to retry a send to this method. (You can bump the ref count 3061 * before sending to hold a reference for retry if you are careful.) 3062 * 3063 * When calling this method, interrupts MUST be enabled. This is because 3064 * the BH enable code must have IRQs enabled so that it will not deadlock. 3065 * --BLG 3066 */ 3067 static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv) 3068 { 3069 struct net_device *dev = skb->dev; 3070 struct netdev_queue *txq; 3071 struct Qdisc *q; 3072 int rc = -ENOMEM; 3073 3074 skb_reset_mac_header(skb); 3075 3076 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP)) 3077 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED); 3078 3079 /* Disable soft irqs for various locks below. Also 3080 * stops preemption for RCU. 3081 */ 3082 rcu_read_lock_bh(); 3083 3084 skb_update_prio(skb); 3085 3086 /* If device/qdisc don't need skb->dst, release it right now while 3087 * its hot in this cpu cache. 3088 */ 3089 if (dev->priv_flags & IFF_XMIT_DST_RELEASE) 3090 skb_dst_drop(skb); 3091 else 3092 skb_dst_force(skb); 3093 3094 #ifdef CONFIG_NET_SWITCHDEV 3095 /* Don't forward if offload device already forwarded */ 3096 if (skb->offload_fwd_mark && 3097 skb->offload_fwd_mark == dev->offload_fwd_mark) { 3098 consume_skb(skb); 3099 rc = NET_XMIT_SUCCESS; 3100 goto out; 3101 } 3102 #endif 3103 3104 txq = netdev_pick_tx(dev, skb, accel_priv); 3105 q = rcu_dereference_bh(txq->qdisc); 3106 3107 #ifdef CONFIG_NET_CLS_ACT 3108 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS); 3109 #endif 3110 trace_net_dev_queue(skb); 3111 if (q->enqueue) { 3112 rc = __dev_xmit_skb(skb, q, dev, txq); 3113 goto out; 3114 } 3115 3116 /* The device has no queue. Common case for software devices: 3117 loopback, all the sorts of tunnels... 3118 3119 Really, it is unlikely that netif_tx_lock protection is necessary 3120 here. (f.e. loopback and IP tunnels are clean ignoring statistics 3121 counters.) 3122 However, it is possible, that they rely on protection 3123 made by us here. 3124 3125 Check this and shot the lock. It is not prone from deadlocks. 3126 Either shot noqueue qdisc, it is even simpler 8) 3127 */ 3128 if (dev->flags & IFF_UP) { 3129 int cpu = smp_processor_id(); /* ok because BHs are off */ 3130 3131 if (txq->xmit_lock_owner != cpu) { 3132 3133 if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT) 3134 goto recursion_alert; 3135 3136 skb = validate_xmit_skb(skb, dev); 3137 if (!skb) 3138 goto drop; 3139 3140 HARD_TX_LOCK(dev, txq, cpu); 3141 3142 if (!netif_xmit_stopped(txq)) { 3143 __this_cpu_inc(xmit_recursion); 3144 skb = dev_hard_start_xmit(skb, dev, txq, &rc); 3145 __this_cpu_dec(xmit_recursion); 3146 if (dev_xmit_complete(rc)) { 3147 HARD_TX_UNLOCK(dev, txq); 3148 goto out; 3149 } 3150 } 3151 HARD_TX_UNLOCK(dev, txq); 3152 net_crit_ratelimited("Virtual device %s asks to queue packet!\n", 3153 dev->name); 3154 } else { 3155 /* Recursion is detected! It is possible, 3156 * unfortunately 3157 */ 3158 recursion_alert: 3159 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n", 3160 dev->name); 3161 } 3162 } 3163 3164 rc = -ENETDOWN; 3165 drop: 3166 rcu_read_unlock_bh(); 3167 3168 atomic_long_inc(&dev->tx_dropped); 3169 kfree_skb_list(skb); 3170 return rc; 3171 out: 3172 rcu_read_unlock_bh(); 3173 return rc; 3174 } 3175 3176 int dev_queue_xmit(struct sk_buff *skb) 3177 { 3178 return __dev_queue_xmit(skb, NULL); 3179 } 3180 EXPORT_SYMBOL(dev_queue_xmit); 3181 3182 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv) 3183 { 3184 return __dev_queue_xmit(skb, accel_priv); 3185 } 3186 EXPORT_SYMBOL(dev_queue_xmit_accel); 3187 3188 3189 /*======================================================================= 3190 Receiver routines 3191 =======================================================================*/ 3192 3193 int netdev_max_backlog __read_mostly = 1000; 3194 EXPORT_SYMBOL(netdev_max_backlog); 3195 3196 int netdev_tstamp_prequeue __read_mostly = 1; 3197 int netdev_budget __read_mostly = 300; 3198 int weight_p __read_mostly = 64; /* old backlog weight */ 3199 3200 /* Called with irq disabled */ 3201 static inline void ____napi_schedule(struct softnet_data *sd, 3202 struct napi_struct *napi) 3203 { 3204 list_add_tail(&napi->poll_list, &sd->poll_list); 3205 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 3206 } 3207 3208 #ifdef CONFIG_RPS 3209 3210 /* One global table that all flow-based protocols share. */ 3211 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly; 3212 EXPORT_SYMBOL(rps_sock_flow_table); 3213 u32 rps_cpu_mask __read_mostly; 3214 EXPORT_SYMBOL(rps_cpu_mask); 3215 3216 struct static_key rps_needed __read_mostly; 3217 3218 static struct rps_dev_flow * 3219 set_rps_cpu(struct net_device *dev, struct sk_buff *skb, 3220 struct rps_dev_flow *rflow, u16 next_cpu) 3221 { 3222 if (next_cpu < nr_cpu_ids) { 3223 #ifdef CONFIG_RFS_ACCEL 3224 struct netdev_rx_queue *rxqueue; 3225 struct rps_dev_flow_table *flow_table; 3226 struct rps_dev_flow *old_rflow; 3227 u32 flow_id; 3228 u16 rxq_index; 3229 int rc; 3230 3231 /* Should we steer this flow to a different hardware queue? */ 3232 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap || 3233 !(dev->features & NETIF_F_NTUPLE)) 3234 goto out; 3235 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu); 3236 if (rxq_index == skb_get_rx_queue(skb)) 3237 goto out; 3238 3239 rxqueue = dev->_rx + rxq_index; 3240 flow_table = rcu_dereference(rxqueue->rps_flow_table); 3241 if (!flow_table) 3242 goto out; 3243 flow_id = skb_get_hash(skb) & flow_table->mask; 3244 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb, 3245 rxq_index, flow_id); 3246 if (rc < 0) 3247 goto out; 3248 old_rflow = rflow; 3249 rflow = &flow_table->flows[flow_id]; 3250 rflow->filter = rc; 3251 if (old_rflow->filter == rflow->filter) 3252 old_rflow->filter = RPS_NO_FILTER; 3253 out: 3254 #endif 3255 rflow->last_qtail = 3256 per_cpu(softnet_data, next_cpu).input_queue_head; 3257 } 3258 3259 rflow->cpu = next_cpu; 3260 return rflow; 3261 } 3262 3263 /* 3264 * get_rps_cpu is called from netif_receive_skb and returns the target 3265 * CPU from the RPS map of the receiving queue for a given skb. 3266 * rcu_read_lock must be held on entry. 3267 */ 3268 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb, 3269 struct rps_dev_flow **rflowp) 3270 { 3271 const struct rps_sock_flow_table *sock_flow_table; 3272 struct netdev_rx_queue *rxqueue = dev->_rx; 3273 struct rps_dev_flow_table *flow_table; 3274 struct rps_map *map; 3275 int cpu = -1; 3276 u32 tcpu; 3277 u32 hash; 3278 3279 if (skb_rx_queue_recorded(skb)) { 3280 u16 index = skb_get_rx_queue(skb); 3281 3282 if (unlikely(index >= dev->real_num_rx_queues)) { 3283 WARN_ONCE(dev->real_num_rx_queues > 1, 3284 "%s received packet on queue %u, but number " 3285 "of RX queues is %u\n", 3286 dev->name, index, dev->real_num_rx_queues); 3287 goto done; 3288 } 3289 rxqueue += index; 3290 } 3291 3292 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */ 3293 3294 flow_table = rcu_dereference(rxqueue->rps_flow_table); 3295 map = rcu_dereference(rxqueue->rps_map); 3296 if (!flow_table && !map) 3297 goto done; 3298 3299 skb_reset_network_header(skb); 3300 hash = skb_get_hash(skb); 3301 if (!hash) 3302 goto done; 3303 3304 sock_flow_table = rcu_dereference(rps_sock_flow_table); 3305 if (flow_table && sock_flow_table) { 3306 struct rps_dev_flow *rflow; 3307 u32 next_cpu; 3308 u32 ident; 3309 3310 /* First check into global flow table if there is a match */ 3311 ident = sock_flow_table->ents[hash & sock_flow_table->mask]; 3312 if ((ident ^ hash) & ~rps_cpu_mask) 3313 goto try_rps; 3314 3315 next_cpu = ident & rps_cpu_mask; 3316 3317 /* OK, now we know there is a match, 3318 * we can look at the local (per receive queue) flow table 3319 */ 3320 rflow = &flow_table->flows[hash & flow_table->mask]; 3321 tcpu = rflow->cpu; 3322 3323 /* 3324 * If the desired CPU (where last recvmsg was done) is 3325 * different from current CPU (one in the rx-queue flow 3326 * table entry), switch if one of the following holds: 3327 * - Current CPU is unset (>= nr_cpu_ids). 3328 * - Current CPU is offline. 3329 * - The current CPU's queue tail has advanced beyond the 3330 * last packet that was enqueued using this table entry. 3331 * This guarantees that all previous packets for the flow 3332 * have been dequeued, thus preserving in order delivery. 3333 */ 3334 if (unlikely(tcpu != next_cpu) && 3335 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) || 3336 ((int)(per_cpu(softnet_data, tcpu).input_queue_head - 3337 rflow->last_qtail)) >= 0)) { 3338 tcpu = next_cpu; 3339 rflow = set_rps_cpu(dev, skb, rflow, next_cpu); 3340 } 3341 3342 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) { 3343 *rflowp = rflow; 3344 cpu = tcpu; 3345 goto done; 3346 } 3347 } 3348 3349 try_rps: 3350 3351 if (map) { 3352 tcpu = map->cpus[reciprocal_scale(hash, map->len)]; 3353 if (cpu_online(tcpu)) { 3354 cpu = tcpu; 3355 goto done; 3356 } 3357 } 3358 3359 done: 3360 return cpu; 3361 } 3362 3363 #ifdef CONFIG_RFS_ACCEL 3364 3365 /** 3366 * rps_may_expire_flow - check whether an RFS hardware filter may be removed 3367 * @dev: Device on which the filter was set 3368 * @rxq_index: RX queue index 3369 * @flow_id: Flow ID passed to ndo_rx_flow_steer() 3370 * @filter_id: Filter ID returned by ndo_rx_flow_steer() 3371 * 3372 * Drivers that implement ndo_rx_flow_steer() should periodically call 3373 * this function for each installed filter and remove the filters for 3374 * which it returns %true. 3375 */ 3376 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, 3377 u32 flow_id, u16 filter_id) 3378 { 3379 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index; 3380 struct rps_dev_flow_table *flow_table; 3381 struct rps_dev_flow *rflow; 3382 bool expire = true; 3383 unsigned int cpu; 3384 3385 rcu_read_lock(); 3386 flow_table = rcu_dereference(rxqueue->rps_flow_table); 3387 if (flow_table && flow_id <= flow_table->mask) { 3388 rflow = &flow_table->flows[flow_id]; 3389 cpu = ACCESS_ONCE(rflow->cpu); 3390 if (rflow->filter == filter_id && cpu < nr_cpu_ids && 3391 ((int)(per_cpu(softnet_data, cpu).input_queue_head - 3392 rflow->last_qtail) < 3393 (int)(10 * flow_table->mask))) 3394 expire = false; 3395 } 3396 rcu_read_unlock(); 3397 return expire; 3398 } 3399 EXPORT_SYMBOL(rps_may_expire_flow); 3400 3401 #endif /* CONFIG_RFS_ACCEL */ 3402 3403 /* Called from hardirq (IPI) context */ 3404 static void rps_trigger_softirq(void *data) 3405 { 3406 struct softnet_data *sd = data; 3407 3408 ____napi_schedule(sd, &sd->backlog); 3409 sd->received_rps++; 3410 } 3411 3412 #endif /* CONFIG_RPS */ 3413 3414 /* 3415 * Check if this softnet_data structure is another cpu one 3416 * If yes, queue it to our IPI list and return 1 3417 * If no, return 0 3418 */ 3419 static int rps_ipi_queued(struct softnet_data *sd) 3420 { 3421 #ifdef CONFIG_RPS 3422 struct softnet_data *mysd = this_cpu_ptr(&softnet_data); 3423 3424 if (sd != mysd) { 3425 sd->rps_ipi_next = mysd->rps_ipi_list; 3426 mysd->rps_ipi_list = sd; 3427 3428 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 3429 return 1; 3430 } 3431 #endif /* CONFIG_RPS */ 3432 return 0; 3433 } 3434 3435 #ifdef CONFIG_NET_FLOW_LIMIT 3436 int netdev_flow_limit_table_len __read_mostly = (1 << 12); 3437 #endif 3438 3439 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen) 3440 { 3441 #ifdef CONFIG_NET_FLOW_LIMIT 3442 struct sd_flow_limit *fl; 3443 struct softnet_data *sd; 3444 unsigned int old_flow, new_flow; 3445 3446 if (qlen < (netdev_max_backlog >> 1)) 3447 return false; 3448 3449 sd = this_cpu_ptr(&softnet_data); 3450 3451 rcu_read_lock(); 3452 fl = rcu_dereference(sd->flow_limit); 3453 if (fl) { 3454 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1); 3455 old_flow = fl->history[fl->history_head]; 3456 fl->history[fl->history_head] = new_flow; 3457 3458 fl->history_head++; 3459 fl->history_head &= FLOW_LIMIT_HISTORY - 1; 3460 3461 if (likely(fl->buckets[old_flow])) 3462 fl->buckets[old_flow]--; 3463 3464 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) { 3465 fl->count++; 3466 rcu_read_unlock(); 3467 return true; 3468 } 3469 } 3470 rcu_read_unlock(); 3471 #endif 3472 return false; 3473 } 3474 3475 /* 3476 * enqueue_to_backlog is called to queue an skb to a per CPU backlog 3477 * queue (may be a remote CPU queue). 3478 */ 3479 static int enqueue_to_backlog(struct sk_buff *skb, int cpu, 3480 unsigned int *qtail) 3481 { 3482 struct softnet_data *sd; 3483 unsigned long flags; 3484 unsigned int qlen; 3485 3486 sd = &per_cpu(softnet_data, cpu); 3487 3488 local_irq_save(flags); 3489 3490 rps_lock(sd); 3491 if (!netif_running(skb->dev)) 3492 goto drop; 3493 qlen = skb_queue_len(&sd->input_pkt_queue); 3494 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) { 3495 if (qlen) { 3496 enqueue: 3497 __skb_queue_tail(&sd->input_pkt_queue, skb); 3498 input_queue_tail_incr_save(sd, qtail); 3499 rps_unlock(sd); 3500 local_irq_restore(flags); 3501 return NET_RX_SUCCESS; 3502 } 3503 3504 /* Schedule NAPI for backlog device 3505 * We can use non atomic operation since we own the queue lock 3506 */ 3507 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) { 3508 if (!rps_ipi_queued(sd)) 3509 ____napi_schedule(sd, &sd->backlog); 3510 } 3511 goto enqueue; 3512 } 3513 3514 drop: 3515 sd->dropped++; 3516 rps_unlock(sd); 3517 3518 local_irq_restore(flags); 3519 3520 atomic_long_inc(&skb->dev->rx_dropped); 3521 kfree_skb(skb); 3522 return NET_RX_DROP; 3523 } 3524 3525 static int netif_rx_internal(struct sk_buff *skb) 3526 { 3527 int ret; 3528 3529 net_timestamp_check(netdev_tstamp_prequeue, skb); 3530 3531 trace_netif_rx(skb); 3532 #ifdef CONFIG_RPS 3533 if (static_key_false(&rps_needed)) { 3534 struct rps_dev_flow voidflow, *rflow = &voidflow; 3535 int cpu; 3536 3537 preempt_disable(); 3538 rcu_read_lock(); 3539 3540 cpu = get_rps_cpu(skb->dev, skb, &rflow); 3541 if (cpu < 0) 3542 cpu = smp_processor_id(); 3543 3544 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 3545 3546 rcu_read_unlock(); 3547 preempt_enable(); 3548 } else 3549 #endif 3550 { 3551 unsigned int qtail; 3552 ret = enqueue_to_backlog(skb, get_cpu(), &qtail); 3553 put_cpu(); 3554 } 3555 return ret; 3556 } 3557 3558 /** 3559 * netif_rx - post buffer to the network code 3560 * @skb: buffer to post 3561 * 3562 * This function receives a packet from a device driver and queues it for 3563 * the upper (protocol) levels to process. It always succeeds. The buffer 3564 * may be dropped during processing for congestion control or by the 3565 * protocol layers. 3566 * 3567 * return values: 3568 * NET_RX_SUCCESS (no congestion) 3569 * NET_RX_DROP (packet was dropped) 3570 * 3571 */ 3572 3573 int netif_rx(struct sk_buff *skb) 3574 { 3575 trace_netif_rx_entry(skb); 3576 3577 return netif_rx_internal(skb); 3578 } 3579 EXPORT_SYMBOL(netif_rx); 3580 3581 int netif_rx_ni(struct sk_buff *skb) 3582 { 3583 int err; 3584 3585 trace_netif_rx_ni_entry(skb); 3586 3587 preempt_disable(); 3588 err = netif_rx_internal(skb); 3589 if (local_softirq_pending()) 3590 do_softirq(); 3591 preempt_enable(); 3592 3593 return err; 3594 } 3595 EXPORT_SYMBOL(netif_rx_ni); 3596 3597 static void net_tx_action(struct softirq_action *h) 3598 { 3599 struct softnet_data *sd = this_cpu_ptr(&softnet_data); 3600 3601 if (sd->completion_queue) { 3602 struct sk_buff *clist; 3603 3604 local_irq_disable(); 3605 clist = sd->completion_queue; 3606 sd->completion_queue = NULL; 3607 local_irq_enable(); 3608 3609 while (clist) { 3610 struct sk_buff *skb = clist; 3611 clist = clist->next; 3612 3613 WARN_ON(atomic_read(&skb->users)); 3614 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED)) 3615 trace_consume_skb(skb); 3616 else 3617 trace_kfree_skb(skb, net_tx_action); 3618 __kfree_skb(skb); 3619 } 3620 } 3621 3622 if (sd->output_queue) { 3623 struct Qdisc *head; 3624 3625 local_irq_disable(); 3626 head = sd->output_queue; 3627 sd->output_queue = NULL; 3628 sd->output_queue_tailp = &sd->output_queue; 3629 local_irq_enable(); 3630 3631 while (head) { 3632 struct Qdisc *q = head; 3633 spinlock_t *root_lock; 3634 3635 head = head->next_sched; 3636 3637 root_lock = qdisc_lock(q); 3638 if (spin_trylock(root_lock)) { 3639 smp_mb__before_atomic(); 3640 clear_bit(__QDISC_STATE_SCHED, 3641 &q->state); 3642 qdisc_run(q); 3643 spin_unlock(root_lock); 3644 } else { 3645 if (!test_bit(__QDISC_STATE_DEACTIVATED, 3646 &q->state)) { 3647 __netif_reschedule(q); 3648 } else { 3649 smp_mb__before_atomic(); 3650 clear_bit(__QDISC_STATE_SCHED, 3651 &q->state); 3652 } 3653 } 3654 } 3655 } 3656 } 3657 3658 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \ 3659 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE)) 3660 /* This hook is defined here for ATM LANE */ 3661 int (*br_fdb_test_addr_hook)(struct net_device *dev, 3662 unsigned char *addr) __read_mostly; 3663 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook); 3664 #endif 3665 3666 static inline struct sk_buff *handle_ing(struct sk_buff *skb, 3667 struct packet_type **pt_prev, 3668 int *ret, struct net_device *orig_dev) 3669 { 3670 #ifdef CONFIG_NET_CLS_ACT 3671 struct tcf_proto *cl = rcu_dereference_bh(skb->dev->ingress_cl_list); 3672 struct tcf_result cl_res; 3673 3674 /* If there's at least one ingress present somewhere (so 3675 * we get here via enabled static key), remaining devices 3676 * that are not configured with an ingress qdisc will bail 3677 * out here. 3678 */ 3679 if (!cl) 3680 return skb; 3681 if (*pt_prev) { 3682 *ret = deliver_skb(skb, *pt_prev, orig_dev); 3683 *pt_prev = NULL; 3684 } 3685 3686 qdisc_skb_cb(skb)->pkt_len = skb->len; 3687 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS); 3688 qdisc_bstats_cpu_update(cl->q, skb); 3689 3690 switch (tc_classify(skb, cl, &cl_res, false)) { 3691 case TC_ACT_OK: 3692 case TC_ACT_RECLASSIFY: 3693 skb->tc_index = TC_H_MIN(cl_res.classid); 3694 break; 3695 case TC_ACT_SHOT: 3696 qdisc_qstats_cpu_drop(cl->q); 3697 case TC_ACT_STOLEN: 3698 case TC_ACT_QUEUED: 3699 kfree_skb(skb); 3700 return NULL; 3701 case TC_ACT_REDIRECT: 3702 /* skb_mac_header check was done by cls/act_bpf, so 3703 * we can safely push the L2 header back before 3704 * redirecting to another netdev 3705 */ 3706 __skb_push(skb, skb->mac_len); 3707 skb_do_redirect(skb); 3708 return NULL; 3709 default: 3710 break; 3711 } 3712 #endif /* CONFIG_NET_CLS_ACT */ 3713 return skb; 3714 } 3715 3716 /** 3717 * netdev_rx_handler_register - register receive handler 3718 * @dev: device to register a handler for 3719 * @rx_handler: receive handler to register 3720 * @rx_handler_data: data pointer that is used by rx handler 3721 * 3722 * Register a receive handler for a device. This handler will then be 3723 * called from __netif_receive_skb. A negative errno code is returned 3724 * on a failure. 3725 * 3726 * The caller must hold the rtnl_mutex. 3727 * 3728 * For a general description of rx_handler, see enum rx_handler_result. 3729 */ 3730 int netdev_rx_handler_register(struct net_device *dev, 3731 rx_handler_func_t *rx_handler, 3732 void *rx_handler_data) 3733 { 3734 ASSERT_RTNL(); 3735 3736 if (dev->rx_handler) 3737 return -EBUSY; 3738 3739 /* Note: rx_handler_data must be set before rx_handler */ 3740 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data); 3741 rcu_assign_pointer(dev->rx_handler, rx_handler); 3742 3743 return 0; 3744 } 3745 EXPORT_SYMBOL_GPL(netdev_rx_handler_register); 3746 3747 /** 3748 * netdev_rx_handler_unregister - unregister receive handler 3749 * @dev: device to unregister a handler from 3750 * 3751 * Unregister a receive handler from a device. 3752 * 3753 * The caller must hold the rtnl_mutex. 3754 */ 3755 void netdev_rx_handler_unregister(struct net_device *dev) 3756 { 3757 3758 ASSERT_RTNL(); 3759 RCU_INIT_POINTER(dev->rx_handler, NULL); 3760 /* a reader seeing a non NULL rx_handler in a rcu_read_lock() 3761 * section has a guarantee to see a non NULL rx_handler_data 3762 * as well. 3763 */ 3764 synchronize_net(); 3765 RCU_INIT_POINTER(dev->rx_handler_data, NULL); 3766 } 3767 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister); 3768 3769 /* 3770 * Limit the use of PFMEMALLOC reserves to those protocols that implement 3771 * the special handling of PFMEMALLOC skbs. 3772 */ 3773 static bool skb_pfmemalloc_protocol(struct sk_buff *skb) 3774 { 3775 switch (skb->protocol) { 3776 case htons(ETH_P_ARP): 3777 case htons(ETH_P_IP): 3778 case htons(ETH_P_IPV6): 3779 case htons(ETH_P_8021Q): 3780 case htons(ETH_P_8021AD): 3781 return true; 3782 default: 3783 return false; 3784 } 3785 } 3786 3787 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev, 3788 int *ret, struct net_device *orig_dev) 3789 { 3790 #ifdef CONFIG_NETFILTER_INGRESS 3791 if (nf_hook_ingress_active(skb)) { 3792 if (*pt_prev) { 3793 *ret = deliver_skb(skb, *pt_prev, orig_dev); 3794 *pt_prev = NULL; 3795 } 3796 3797 return nf_hook_ingress(skb); 3798 } 3799 #endif /* CONFIG_NETFILTER_INGRESS */ 3800 return 0; 3801 } 3802 3803 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc) 3804 { 3805 struct packet_type *ptype, *pt_prev; 3806 rx_handler_func_t *rx_handler; 3807 struct net_device *orig_dev; 3808 bool deliver_exact = false; 3809 int ret = NET_RX_DROP; 3810 __be16 type; 3811 3812 net_timestamp_check(!netdev_tstamp_prequeue, skb); 3813 3814 trace_netif_receive_skb(skb); 3815 3816 orig_dev = skb->dev; 3817 3818 skb_reset_network_header(skb); 3819 if (!skb_transport_header_was_set(skb)) 3820 skb_reset_transport_header(skb); 3821 skb_reset_mac_len(skb); 3822 3823 pt_prev = NULL; 3824 3825 another_round: 3826 skb->skb_iif = skb->dev->ifindex; 3827 3828 __this_cpu_inc(softnet_data.processed); 3829 3830 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) || 3831 skb->protocol == cpu_to_be16(ETH_P_8021AD)) { 3832 skb = skb_vlan_untag(skb); 3833 if (unlikely(!skb)) 3834 goto out; 3835 } 3836 3837 #ifdef CONFIG_NET_CLS_ACT 3838 if (skb->tc_verd & TC_NCLS) { 3839 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd); 3840 goto ncls; 3841 } 3842 #endif 3843 3844 if (pfmemalloc) 3845 goto skip_taps; 3846 3847 list_for_each_entry_rcu(ptype, &ptype_all, list) { 3848 if (pt_prev) 3849 ret = deliver_skb(skb, pt_prev, orig_dev); 3850 pt_prev = ptype; 3851 } 3852 3853 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) { 3854 if (pt_prev) 3855 ret = deliver_skb(skb, pt_prev, orig_dev); 3856 pt_prev = ptype; 3857 } 3858 3859 skip_taps: 3860 #ifdef CONFIG_NET_INGRESS 3861 if (static_key_false(&ingress_needed)) { 3862 skb = handle_ing(skb, &pt_prev, &ret, orig_dev); 3863 if (!skb) 3864 goto out; 3865 3866 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0) 3867 goto out; 3868 } 3869 #endif 3870 #ifdef CONFIG_NET_CLS_ACT 3871 skb->tc_verd = 0; 3872 ncls: 3873 #endif 3874 if (pfmemalloc && !skb_pfmemalloc_protocol(skb)) 3875 goto drop; 3876 3877 if (skb_vlan_tag_present(skb)) { 3878 if (pt_prev) { 3879 ret = deliver_skb(skb, pt_prev, orig_dev); 3880 pt_prev = NULL; 3881 } 3882 if (vlan_do_receive(&skb)) 3883 goto another_round; 3884 else if (unlikely(!skb)) 3885 goto out; 3886 } 3887 3888 rx_handler = rcu_dereference(skb->dev->rx_handler); 3889 if (rx_handler) { 3890 if (pt_prev) { 3891 ret = deliver_skb(skb, pt_prev, orig_dev); 3892 pt_prev = NULL; 3893 } 3894 switch (rx_handler(&skb)) { 3895 case RX_HANDLER_CONSUMED: 3896 ret = NET_RX_SUCCESS; 3897 goto out; 3898 case RX_HANDLER_ANOTHER: 3899 goto another_round; 3900 case RX_HANDLER_EXACT: 3901 deliver_exact = true; 3902 case RX_HANDLER_PASS: 3903 break; 3904 default: 3905 BUG(); 3906 } 3907 } 3908 3909 if (unlikely(skb_vlan_tag_present(skb))) { 3910 if (skb_vlan_tag_get_id(skb)) 3911 skb->pkt_type = PACKET_OTHERHOST; 3912 /* Note: we might in the future use prio bits 3913 * and set skb->priority like in vlan_do_receive() 3914 * For the time being, just ignore Priority Code Point 3915 */ 3916 skb->vlan_tci = 0; 3917 } 3918 3919 type = skb->protocol; 3920 3921 /* deliver only exact match when indicated */ 3922 if (likely(!deliver_exact)) { 3923 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 3924 &ptype_base[ntohs(type) & 3925 PTYPE_HASH_MASK]); 3926 } 3927 3928 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 3929 &orig_dev->ptype_specific); 3930 3931 if (unlikely(skb->dev != orig_dev)) { 3932 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 3933 &skb->dev->ptype_specific); 3934 } 3935 3936 if (pt_prev) { 3937 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC))) 3938 goto drop; 3939 else 3940 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 3941 } else { 3942 drop: 3943 atomic_long_inc(&skb->dev->rx_dropped); 3944 kfree_skb(skb); 3945 /* Jamal, now you will not able to escape explaining 3946 * me how you were going to use this. :-) 3947 */ 3948 ret = NET_RX_DROP; 3949 } 3950 3951 out: 3952 return ret; 3953 } 3954 3955 static int __netif_receive_skb(struct sk_buff *skb) 3956 { 3957 int ret; 3958 3959 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) { 3960 unsigned long pflags = current->flags; 3961 3962 /* 3963 * PFMEMALLOC skbs are special, they should 3964 * - be delivered to SOCK_MEMALLOC sockets only 3965 * - stay away from userspace 3966 * - have bounded memory usage 3967 * 3968 * Use PF_MEMALLOC as this saves us from propagating the allocation 3969 * context down to all allocation sites. 3970 */ 3971 current->flags |= PF_MEMALLOC; 3972 ret = __netif_receive_skb_core(skb, true); 3973 tsk_restore_flags(current, pflags, PF_MEMALLOC); 3974 } else 3975 ret = __netif_receive_skb_core(skb, false); 3976 3977 return ret; 3978 } 3979 3980 static int netif_receive_skb_internal(struct sk_buff *skb) 3981 { 3982 int ret; 3983 3984 net_timestamp_check(netdev_tstamp_prequeue, skb); 3985 3986 if (skb_defer_rx_timestamp(skb)) 3987 return NET_RX_SUCCESS; 3988 3989 rcu_read_lock(); 3990 3991 #ifdef CONFIG_RPS 3992 if (static_key_false(&rps_needed)) { 3993 struct rps_dev_flow voidflow, *rflow = &voidflow; 3994 int cpu = get_rps_cpu(skb->dev, skb, &rflow); 3995 3996 if (cpu >= 0) { 3997 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 3998 rcu_read_unlock(); 3999 return ret; 4000 } 4001 } 4002 #endif 4003 ret = __netif_receive_skb(skb); 4004 rcu_read_unlock(); 4005 return ret; 4006 } 4007 4008 /** 4009 * netif_receive_skb - process receive buffer from network 4010 * @skb: buffer to process 4011 * 4012 * netif_receive_skb() is the main receive data processing function. 4013 * It always succeeds. The buffer may be dropped during processing 4014 * for congestion control or by the protocol layers. 4015 * 4016 * This function may only be called from softirq context and interrupts 4017 * should be enabled. 4018 * 4019 * Return values (usually ignored): 4020 * NET_RX_SUCCESS: no congestion 4021 * NET_RX_DROP: packet was dropped 4022 */ 4023 int netif_receive_skb(struct sk_buff *skb) 4024 { 4025 trace_netif_receive_skb_entry(skb); 4026 4027 return netif_receive_skb_internal(skb); 4028 } 4029 EXPORT_SYMBOL(netif_receive_skb); 4030 4031 /* Network device is going away, flush any packets still pending 4032 * Called with irqs disabled. 4033 */ 4034 static void flush_backlog(void *arg) 4035 { 4036 struct net_device *dev = arg; 4037 struct softnet_data *sd = this_cpu_ptr(&softnet_data); 4038 struct sk_buff *skb, *tmp; 4039 4040 rps_lock(sd); 4041 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) { 4042 if (skb->dev == dev) { 4043 __skb_unlink(skb, &sd->input_pkt_queue); 4044 kfree_skb(skb); 4045 input_queue_head_incr(sd); 4046 } 4047 } 4048 rps_unlock(sd); 4049 4050 skb_queue_walk_safe(&sd->process_queue, skb, tmp) { 4051 if (skb->dev == dev) { 4052 __skb_unlink(skb, &sd->process_queue); 4053 kfree_skb(skb); 4054 input_queue_head_incr(sd); 4055 } 4056 } 4057 } 4058 4059 static int napi_gro_complete(struct sk_buff *skb) 4060 { 4061 struct packet_offload *ptype; 4062 __be16 type = skb->protocol; 4063 struct list_head *head = &offload_base; 4064 int err = -ENOENT; 4065 4066 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb)); 4067 4068 if (NAPI_GRO_CB(skb)->count == 1) { 4069 skb_shinfo(skb)->gso_size = 0; 4070 goto out; 4071 } 4072 4073 rcu_read_lock(); 4074 list_for_each_entry_rcu(ptype, head, list) { 4075 if (ptype->type != type || !ptype->callbacks.gro_complete) 4076 continue; 4077 4078 err = ptype->callbacks.gro_complete(skb, 0); 4079 break; 4080 } 4081 rcu_read_unlock(); 4082 4083 if (err) { 4084 WARN_ON(&ptype->list == head); 4085 kfree_skb(skb); 4086 return NET_RX_SUCCESS; 4087 } 4088 4089 out: 4090 return netif_receive_skb_internal(skb); 4091 } 4092 4093 /* napi->gro_list contains packets ordered by age. 4094 * youngest packets at the head of it. 4095 * Complete skbs in reverse order to reduce latencies. 4096 */ 4097 void napi_gro_flush(struct napi_struct *napi, bool flush_old) 4098 { 4099 struct sk_buff *skb, *prev = NULL; 4100 4101 /* scan list and build reverse chain */ 4102 for (skb = napi->gro_list; skb != NULL; skb = skb->next) { 4103 skb->prev = prev; 4104 prev = skb; 4105 } 4106 4107 for (skb = prev; skb; skb = prev) { 4108 skb->next = NULL; 4109 4110 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies) 4111 return; 4112 4113 prev = skb->prev; 4114 napi_gro_complete(skb); 4115 napi->gro_count--; 4116 } 4117 4118 napi->gro_list = NULL; 4119 } 4120 EXPORT_SYMBOL(napi_gro_flush); 4121 4122 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb) 4123 { 4124 struct sk_buff *p; 4125 unsigned int maclen = skb->dev->hard_header_len; 4126 u32 hash = skb_get_hash_raw(skb); 4127 4128 for (p = napi->gro_list; p; p = p->next) { 4129 unsigned long diffs; 4130 4131 NAPI_GRO_CB(p)->flush = 0; 4132 4133 if (hash != skb_get_hash_raw(p)) { 4134 NAPI_GRO_CB(p)->same_flow = 0; 4135 continue; 4136 } 4137 4138 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev; 4139 diffs |= p->vlan_tci ^ skb->vlan_tci; 4140 if (maclen == ETH_HLEN) 4141 diffs |= compare_ether_header(skb_mac_header(p), 4142 skb_mac_header(skb)); 4143 else if (!diffs) 4144 diffs = memcmp(skb_mac_header(p), 4145 skb_mac_header(skb), 4146 maclen); 4147 NAPI_GRO_CB(p)->same_flow = !diffs; 4148 } 4149 } 4150 4151 static void skb_gro_reset_offset(struct sk_buff *skb) 4152 { 4153 const struct skb_shared_info *pinfo = skb_shinfo(skb); 4154 const skb_frag_t *frag0 = &pinfo->frags[0]; 4155 4156 NAPI_GRO_CB(skb)->data_offset = 0; 4157 NAPI_GRO_CB(skb)->frag0 = NULL; 4158 NAPI_GRO_CB(skb)->frag0_len = 0; 4159 4160 if (skb_mac_header(skb) == skb_tail_pointer(skb) && 4161 pinfo->nr_frags && 4162 !PageHighMem(skb_frag_page(frag0))) { 4163 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0); 4164 NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0); 4165 } 4166 } 4167 4168 static void gro_pull_from_frag0(struct sk_buff *skb, int grow) 4169 { 4170 struct skb_shared_info *pinfo = skb_shinfo(skb); 4171 4172 BUG_ON(skb->end - skb->tail < grow); 4173 4174 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow); 4175 4176 skb->data_len -= grow; 4177 skb->tail += grow; 4178 4179 pinfo->frags[0].page_offset += grow; 4180 skb_frag_size_sub(&pinfo->frags[0], grow); 4181 4182 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) { 4183 skb_frag_unref(skb, 0); 4184 memmove(pinfo->frags, pinfo->frags + 1, 4185 --pinfo->nr_frags * sizeof(pinfo->frags[0])); 4186 } 4187 } 4188 4189 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 4190 { 4191 struct sk_buff **pp = NULL; 4192 struct packet_offload *ptype; 4193 __be16 type = skb->protocol; 4194 struct list_head *head = &offload_base; 4195 int same_flow; 4196 enum gro_result ret; 4197 int grow; 4198 4199 if (!(skb->dev->features & NETIF_F_GRO)) 4200 goto normal; 4201 4202 if (skb_is_gso(skb) || skb_has_frag_list(skb) || skb->csum_bad) 4203 goto normal; 4204 4205 gro_list_prepare(napi, skb); 4206 4207 rcu_read_lock(); 4208 list_for_each_entry_rcu(ptype, head, list) { 4209 if (ptype->type != type || !ptype->callbacks.gro_receive) 4210 continue; 4211 4212 skb_set_network_header(skb, skb_gro_offset(skb)); 4213 skb_reset_mac_len(skb); 4214 NAPI_GRO_CB(skb)->same_flow = 0; 4215 NAPI_GRO_CB(skb)->flush = 0; 4216 NAPI_GRO_CB(skb)->free = 0; 4217 NAPI_GRO_CB(skb)->udp_mark = 0; 4218 NAPI_GRO_CB(skb)->gro_remcsum_start = 0; 4219 4220 /* Setup for GRO checksum validation */ 4221 switch (skb->ip_summed) { 4222 case CHECKSUM_COMPLETE: 4223 NAPI_GRO_CB(skb)->csum = skb->csum; 4224 NAPI_GRO_CB(skb)->csum_valid = 1; 4225 NAPI_GRO_CB(skb)->csum_cnt = 0; 4226 break; 4227 case CHECKSUM_UNNECESSARY: 4228 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1; 4229 NAPI_GRO_CB(skb)->csum_valid = 0; 4230 break; 4231 default: 4232 NAPI_GRO_CB(skb)->csum_cnt = 0; 4233 NAPI_GRO_CB(skb)->csum_valid = 0; 4234 } 4235 4236 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb); 4237 break; 4238 } 4239 rcu_read_unlock(); 4240 4241 if (&ptype->list == head) 4242 goto normal; 4243 4244 same_flow = NAPI_GRO_CB(skb)->same_flow; 4245 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED; 4246 4247 if (pp) { 4248 struct sk_buff *nskb = *pp; 4249 4250 *pp = nskb->next; 4251 nskb->next = NULL; 4252 napi_gro_complete(nskb); 4253 napi->gro_count--; 4254 } 4255 4256 if (same_flow) 4257 goto ok; 4258 4259 if (NAPI_GRO_CB(skb)->flush) 4260 goto normal; 4261 4262 if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) { 4263 struct sk_buff *nskb = napi->gro_list; 4264 4265 /* locate the end of the list to select the 'oldest' flow */ 4266 while (nskb->next) { 4267 pp = &nskb->next; 4268 nskb = *pp; 4269 } 4270 *pp = NULL; 4271 nskb->next = NULL; 4272 napi_gro_complete(nskb); 4273 } else { 4274 napi->gro_count++; 4275 } 4276 NAPI_GRO_CB(skb)->count = 1; 4277 NAPI_GRO_CB(skb)->age = jiffies; 4278 NAPI_GRO_CB(skb)->last = skb; 4279 skb_shinfo(skb)->gso_size = skb_gro_len(skb); 4280 skb->next = napi->gro_list; 4281 napi->gro_list = skb; 4282 ret = GRO_HELD; 4283 4284 pull: 4285 grow = skb_gro_offset(skb) - skb_headlen(skb); 4286 if (grow > 0) 4287 gro_pull_from_frag0(skb, grow); 4288 ok: 4289 return ret; 4290 4291 normal: 4292 ret = GRO_NORMAL; 4293 goto pull; 4294 } 4295 4296 struct packet_offload *gro_find_receive_by_type(__be16 type) 4297 { 4298 struct list_head *offload_head = &offload_base; 4299 struct packet_offload *ptype; 4300 4301 list_for_each_entry_rcu(ptype, offload_head, list) { 4302 if (ptype->type != type || !ptype->callbacks.gro_receive) 4303 continue; 4304 return ptype; 4305 } 4306 return NULL; 4307 } 4308 EXPORT_SYMBOL(gro_find_receive_by_type); 4309 4310 struct packet_offload *gro_find_complete_by_type(__be16 type) 4311 { 4312 struct list_head *offload_head = &offload_base; 4313 struct packet_offload *ptype; 4314 4315 list_for_each_entry_rcu(ptype, offload_head, list) { 4316 if (ptype->type != type || !ptype->callbacks.gro_complete) 4317 continue; 4318 return ptype; 4319 } 4320 return NULL; 4321 } 4322 EXPORT_SYMBOL(gro_find_complete_by_type); 4323 4324 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb) 4325 { 4326 switch (ret) { 4327 case GRO_NORMAL: 4328 if (netif_receive_skb_internal(skb)) 4329 ret = GRO_DROP; 4330 break; 4331 4332 case GRO_DROP: 4333 kfree_skb(skb); 4334 break; 4335 4336 case GRO_MERGED_FREE: 4337 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) 4338 kmem_cache_free(skbuff_head_cache, skb); 4339 else 4340 __kfree_skb(skb); 4341 break; 4342 4343 case GRO_HELD: 4344 case GRO_MERGED: 4345 break; 4346 } 4347 4348 return ret; 4349 } 4350 4351 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 4352 { 4353 trace_napi_gro_receive_entry(skb); 4354 4355 skb_gro_reset_offset(skb); 4356 4357 return napi_skb_finish(dev_gro_receive(napi, skb), skb); 4358 } 4359 EXPORT_SYMBOL(napi_gro_receive); 4360 4361 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb) 4362 { 4363 if (unlikely(skb->pfmemalloc)) { 4364 consume_skb(skb); 4365 return; 4366 } 4367 __skb_pull(skb, skb_headlen(skb)); 4368 /* restore the reserve we had after netdev_alloc_skb_ip_align() */ 4369 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb)); 4370 skb->vlan_tci = 0; 4371 skb->dev = napi->dev; 4372 skb->skb_iif = 0; 4373 skb->encapsulation = 0; 4374 skb_shinfo(skb)->gso_type = 0; 4375 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb)); 4376 4377 napi->skb = skb; 4378 } 4379 4380 struct sk_buff *napi_get_frags(struct napi_struct *napi) 4381 { 4382 struct sk_buff *skb = napi->skb; 4383 4384 if (!skb) { 4385 skb = napi_alloc_skb(napi, GRO_MAX_HEAD); 4386 napi->skb = skb; 4387 } 4388 return skb; 4389 } 4390 EXPORT_SYMBOL(napi_get_frags); 4391 4392 static gro_result_t napi_frags_finish(struct napi_struct *napi, 4393 struct sk_buff *skb, 4394 gro_result_t ret) 4395 { 4396 switch (ret) { 4397 case GRO_NORMAL: 4398 case GRO_HELD: 4399 __skb_push(skb, ETH_HLEN); 4400 skb->protocol = eth_type_trans(skb, skb->dev); 4401 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb)) 4402 ret = GRO_DROP; 4403 break; 4404 4405 case GRO_DROP: 4406 case GRO_MERGED_FREE: 4407 napi_reuse_skb(napi, skb); 4408 break; 4409 4410 case GRO_MERGED: 4411 break; 4412 } 4413 4414 return ret; 4415 } 4416 4417 /* Upper GRO stack assumes network header starts at gro_offset=0 4418 * Drivers could call both napi_gro_frags() and napi_gro_receive() 4419 * We copy ethernet header into skb->data to have a common layout. 4420 */ 4421 static struct sk_buff *napi_frags_skb(struct napi_struct *napi) 4422 { 4423 struct sk_buff *skb = napi->skb; 4424 const struct ethhdr *eth; 4425 unsigned int hlen = sizeof(*eth); 4426 4427 napi->skb = NULL; 4428 4429 skb_reset_mac_header(skb); 4430 skb_gro_reset_offset(skb); 4431 4432 eth = skb_gro_header_fast(skb, 0); 4433 if (unlikely(skb_gro_header_hard(skb, hlen))) { 4434 eth = skb_gro_header_slow(skb, hlen, 0); 4435 if (unlikely(!eth)) { 4436 napi_reuse_skb(napi, skb); 4437 return NULL; 4438 } 4439 } else { 4440 gro_pull_from_frag0(skb, hlen); 4441 NAPI_GRO_CB(skb)->frag0 += hlen; 4442 NAPI_GRO_CB(skb)->frag0_len -= hlen; 4443 } 4444 __skb_pull(skb, hlen); 4445 4446 /* 4447 * This works because the only protocols we care about don't require 4448 * special handling. 4449 * We'll fix it up properly in napi_frags_finish() 4450 */ 4451 skb->protocol = eth->h_proto; 4452 4453 return skb; 4454 } 4455 4456 gro_result_t napi_gro_frags(struct napi_struct *napi) 4457 { 4458 struct sk_buff *skb = napi_frags_skb(napi); 4459 4460 if (!skb) 4461 return GRO_DROP; 4462 4463 trace_napi_gro_frags_entry(skb); 4464 4465 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb)); 4466 } 4467 EXPORT_SYMBOL(napi_gro_frags); 4468 4469 /* Compute the checksum from gro_offset and return the folded value 4470 * after adding in any pseudo checksum. 4471 */ 4472 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb) 4473 { 4474 __wsum wsum; 4475 __sum16 sum; 4476 4477 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0); 4478 4479 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */ 4480 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum)); 4481 if (likely(!sum)) { 4482 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) && 4483 !skb->csum_complete_sw) 4484 netdev_rx_csum_fault(skb->dev); 4485 } 4486 4487 NAPI_GRO_CB(skb)->csum = wsum; 4488 NAPI_GRO_CB(skb)->csum_valid = 1; 4489 4490 return sum; 4491 } 4492 EXPORT_SYMBOL(__skb_gro_checksum_complete); 4493 4494 /* 4495 * net_rps_action_and_irq_enable sends any pending IPI's for rps. 4496 * Note: called with local irq disabled, but exits with local irq enabled. 4497 */ 4498 static void net_rps_action_and_irq_enable(struct softnet_data *sd) 4499 { 4500 #ifdef CONFIG_RPS 4501 struct softnet_data *remsd = sd->rps_ipi_list; 4502 4503 if (remsd) { 4504 sd->rps_ipi_list = NULL; 4505 4506 local_irq_enable(); 4507 4508 /* Send pending IPI's to kick RPS processing on remote cpus. */ 4509 while (remsd) { 4510 struct softnet_data *next = remsd->rps_ipi_next; 4511 4512 if (cpu_online(remsd->cpu)) 4513 smp_call_function_single_async(remsd->cpu, 4514 &remsd->csd); 4515 remsd = next; 4516 } 4517 } else 4518 #endif 4519 local_irq_enable(); 4520 } 4521 4522 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd) 4523 { 4524 #ifdef CONFIG_RPS 4525 return sd->rps_ipi_list != NULL; 4526 #else 4527 return false; 4528 #endif 4529 } 4530 4531 static int process_backlog(struct napi_struct *napi, int quota) 4532 { 4533 int work = 0; 4534 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog); 4535 4536 /* Check if we have pending ipi, its better to send them now, 4537 * not waiting net_rx_action() end. 4538 */ 4539 if (sd_has_rps_ipi_waiting(sd)) { 4540 local_irq_disable(); 4541 net_rps_action_and_irq_enable(sd); 4542 } 4543 4544 napi->weight = weight_p; 4545 local_irq_disable(); 4546 while (1) { 4547 struct sk_buff *skb; 4548 4549 while ((skb = __skb_dequeue(&sd->process_queue))) { 4550 rcu_read_lock(); 4551 local_irq_enable(); 4552 __netif_receive_skb(skb); 4553 rcu_read_unlock(); 4554 local_irq_disable(); 4555 input_queue_head_incr(sd); 4556 if (++work >= quota) { 4557 local_irq_enable(); 4558 return work; 4559 } 4560 } 4561 4562 rps_lock(sd); 4563 if (skb_queue_empty(&sd->input_pkt_queue)) { 4564 /* 4565 * Inline a custom version of __napi_complete(). 4566 * only current cpu owns and manipulates this napi, 4567 * and NAPI_STATE_SCHED is the only possible flag set 4568 * on backlog. 4569 * We can use a plain write instead of clear_bit(), 4570 * and we dont need an smp_mb() memory barrier. 4571 */ 4572 napi->state = 0; 4573 rps_unlock(sd); 4574 4575 break; 4576 } 4577 4578 skb_queue_splice_tail_init(&sd->input_pkt_queue, 4579 &sd->process_queue); 4580 rps_unlock(sd); 4581 } 4582 local_irq_enable(); 4583 4584 return work; 4585 } 4586 4587 /** 4588 * __napi_schedule - schedule for receive 4589 * @n: entry to schedule 4590 * 4591 * The entry's receive function will be scheduled to run. 4592 * Consider using __napi_schedule_irqoff() if hard irqs are masked. 4593 */ 4594 void __napi_schedule(struct napi_struct *n) 4595 { 4596 unsigned long flags; 4597 4598 local_irq_save(flags); 4599 ____napi_schedule(this_cpu_ptr(&softnet_data), n); 4600 local_irq_restore(flags); 4601 } 4602 EXPORT_SYMBOL(__napi_schedule); 4603 4604 /** 4605 * __napi_schedule_irqoff - schedule for receive 4606 * @n: entry to schedule 4607 * 4608 * Variant of __napi_schedule() assuming hard irqs are masked 4609 */ 4610 void __napi_schedule_irqoff(struct napi_struct *n) 4611 { 4612 ____napi_schedule(this_cpu_ptr(&softnet_data), n); 4613 } 4614 EXPORT_SYMBOL(__napi_schedule_irqoff); 4615 4616 void __napi_complete(struct napi_struct *n) 4617 { 4618 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state)); 4619 4620 list_del_init(&n->poll_list); 4621 smp_mb__before_atomic(); 4622 clear_bit(NAPI_STATE_SCHED, &n->state); 4623 } 4624 EXPORT_SYMBOL(__napi_complete); 4625 4626 void napi_complete_done(struct napi_struct *n, int work_done) 4627 { 4628 unsigned long flags; 4629 4630 /* 4631 * don't let napi dequeue from the cpu poll list 4632 * just in case its running on a different cpu 4633 */ 4634 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state))) 4635 return; 4636 4637 if (n->gro_list) { 4638 unsigned long timeout = 0; 4639 4640 if (work_done) 4641 timeout = n->dev->gro_flush_timeout; 4642 4643 if (timeout) 4644 hrtimer_start(&n->timer, ns_to_ktime(timeout), 4645 HRTIMER_MODE_REL_PINNED); 4646 else 4647 napi_gro_flush(n, false); 4648 } 4649 if (likely(list_empty(&n->poll_list))) { 4650 WARN_ON_ONCE(!test_and_clear_bit(NAPI_STATE_SCHED, &n->state)); 4651 } else { 4652 /* If n->poll_list is not empty, we need to mask irqs */ 4653 local_irq_save(flags); 4654 __napi_complete(n); 4655 local_irq_restore(flags); 4656 } 4657 } 4658 EXPORT_SYMBOL(napi_complete_done); 4659 4660 /* must be called under rcu_read_lock(), as we dont take a reference */ 4661 struct napi_struct *napi_by_id(unsigned int napi_id) 4662 { 4663 unsigned int hash = napi_id % HASH_SIZE(napi_hash); 4664 struct napi_struct *napi; 4665 4666 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node) 4667 if (napi->napi_id == napi_id) 4668 return napi; 4669 4670 return NULL; 4671 } 4672 EXPORT_SYMBOL_GPL(napi_by_id); 4673 4674 void napi_hash_add(struct napi_struct *napi) 4675 { 4676 if (!test_and_set_bit(NAPI_STATE_HASHED, &napi->state)) { 4677 4678 spin_lock(&napi_hash_lock); 4679 4680 /* 0 is not a valid id, we also skip an id that is taken 4681 * we expect both events to be extremely rare 4682 */ 4683 napi->napi_id = 0; 4684 while (!napi->napi_id) { 4685 napi->napi_id = ++napi_gen_id; 4686 if (napi_by_id(napi->napi_id)) 4687 napi->napi_id = 0; 4688 } 4689 4690 hlist_add_head_rcu(&napi->napi_hash_node, 4691 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]); 4692 4693 spin_unlock(&napi_hash_lock); 4694 } 4695 } 4696 EXPORT_SYMBOL_GPL(napi_hash_add); 4697 4698 /* Warning : caller is responsible to make sure rcu grace period 4699 * is respected before freeing memory containing @napi 4700 */ 4701 void napi_hash_del(struct napi_struct *napi) 4702 { 4703 spin_lock(&napi_hash_lock); 4704 4705 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) 4706 hlist_del_rcu(&napi->napi_hash_node); 4707 4708 spin_unlock(&napi_hash_lock); 4709 } 4710 EXPORT_SYMBOL_GPL(napi_hash_del); 4711 4712 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer) 4713 { 4714 struct napi_struct *napi; 4715 4716 napi = container_of(timer, struct napi_struct, timer); 4717 if (napi->gro_list) 4718 napi_schedule(napi); 4719 4720 return HRTIMER_NORESTART; 4721 } 4722 4723 void netif_napi_add(struct net_device *dev, struct napi_struct *napi, 4724 int (*poll)(struct napi_struct *, int), int weight) 4725 { 4726 INIT_LIST_HEAD(&napi->poll_list); 4727 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED); 4728 napi->timer.function = napi_watchdog; 4729 napi->gro_count = 0; 4730 napi->gro_list = NULL; 4731 napi->skb = NULL; 4732 napi->poll = poll; 4733 if (weight > NAPI_POLL_WEIGHT) 4734 pr_err_once("netif_napi_add() called with weight %d on device %s\n", 4735 weight, dev->name); 4736 napi->weight = weight; 4737 list_add(&napi->dev_list, &dev->napi_list); 4738 napi->dev = dev; 4739 #ifdef CONFIG_NETPOLL 4740 spin_lock_init(&napi->poll_lock); 4741 napi->poll_owner = -1; 4742 #endif 4743 set_bit(NAPI_STATE_SCHED, &napi->state); 4744 } 4745 EXPORT_SYMBOL(netif_napi_add); 4746 4747 void napi_disable(struct napi_struct *n) 4748 { 4749 might_sleep(); 4750 set_bit(NAPI_STATE_DISABLE, &n->state); 4751 4752 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state)) 4753 msleep(1); 4754 while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state)) 4755 msleep(1); 4756 4757 hrtimer_cancel(&n->timer); 4758 4759 clear_bit(NAPI_STATE_DISABLE, &n->state); 4760 } 4761 EXPORT_SYMBOL(napi_disable); 4762 4763 void netif_napi_del(struct napi_struct *napi) 4764 { 4765 list_del_init(&napi->dev_list); 4766 napi_free_frags(napi); 4767 4768 kfree_skb_list(napi->gro_list); 4769 napi->gro_list = NULL; 4770 napi->gro_count = 0; 4771 } 4772 EXPORT_SYMBOL(netif_napi_del); 4773 4774 static int napi_poll(struct napi_struct *n, struct list_head *repoll) 4775 { 4776 void *have; 4777 int work, weight; 4778 4779 list_del_init(&n->poll_list); 4780 4781 have = netpoll_poll_lock(n); 4782 4783 weight = n->weight; 4784 4785 /* This NAPI_STATE_SCHED test is for avoiding a race 4786 * with netpoll's poll_napi(). Only the entity which 4787 * obtains the lock and sees NAPI_STATE_SCHED set will 4788 * actually make the ->poll() call. Therefore we avoid 4789 * accidentally calling ->poll() when NAPI is not scheduled. 4790 */ 4791 work = 0; 4792 if (test_bit(NAPI_STATE_SCHED, &n->state)) { 4793 work = n->poll(n, weight); 4794 trace_napi_poll(n); 4795 } 4796 4797 WARN_ON_ONCE(work > weight); 4798 4799 if (likely(work < weight)) 4800 goto out_unlock; 4801 4802 /* Drivers must not modify the NAPI state if they 4803 * consume the entire weight. In such cases this code 4804 * still "owns" the NAPI instance and therefore can 4805 * move the instance around on the list at-will. 4806 */ 4807 if (unlikely(napi_disable_pending(n))) { 4808 napi_complete(n); 4809 goto out_unlock; 4810 } 4811 4812 if (n->gro_list) { 4813 /* flush too old packets 4814 * If HZ < 1000, flush all packets. 4815 */ 4816 napi_gro_flush(n, HZ >= 1000); 4817 } 4818 4819 /* Some drivers may have called napi_schedule 4820 * prior to exhausting their budget. 4821 */ 4822 if (unlikely(!list_empty(&n->poll_list))) { 4823 pr_warn_once("%s: Budget exhausted after napi rescheduled\n", 4824 n->dev ? n->dev->name : "backlog"); 4825 goto out_unlock; 4826 } 4827 4828 list_add_tail(&n->poll_list, repoll); 4829 4830 out_unlock: 4831 netpoll_poll_unlock(have); 4832 4833 return work; 4834 } 4835 4836 static void net_rx_action(struct softirq_action *h) 4837 { 4838 struct softnet_data *sd = this_cpu_ptr(&softnet_data); 4839 unsigned long time_limit = jiffies + 2; 4840 int budget = netdev_budget; 4841 LIST_HEAD(list); 4842 LIST_HEAD(repoll); 4843 4844 local_irq_disable(); 4845 list_splice_init(&sd->poll_list, &list); 4846 local_irq_enable(); 4847 4848 for (;;) { 4849 struct napi_struct *n; 4850 4851 if (list_empty(&list)) { 4852 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll)) 4853 return; 4854 break; 4855 } 4856 4857 n = list_first_entry(&list, struct napi_struct, poll_list); 4858 budget -= napi_poll(n, &repoll); 4859 4860 /* If softirq window is exhausted then punt. 4861 * Allow this to run for 2 jiffies since which will allow 4862 * an average latency of 1.5/HZ. 4863 */ 4864 if (unlikely(budget <= 0 || 4865 time_after_eq(jiffies, time_limit))) { 4866 sd->time_squeeze++; 4867 break; 4868 } 4869 } 4870 4871 local_irq_disable(); 4872 4873 list_splice_tail_init(&sd->poll_list, &list); 4874 list_splice_tail(&repoll, &list); 4875 list_splice(&list, &sd->poll_list); 4876 if (!list_empty(&sd->poll_list)) 4877 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 4878 4879 net_rps_action_and_irq_enable(sd); 4880 } 4881 4882 struct netdev_adjacent { 4883 struct net_device *dev; 4884 4885 /* upper master flag, there can only be one master device per list */ 4886 bool master; 4887 4888 /* counter for the number of times this device was added to us */ 4889 u16 ref_nr; 4890 4891 /* private field for the users */ 4892 void *private; 4893 4894 struct list_head list; 4895 struct rcu_head rcu; 4896 }; 4897 4898 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev, 4899 struct list_head *adj_list) 4900 { 4901 struct netdev_adjacent *adj; 4902 4903 list_for_each_entry(adj, adj_list, list) { 4904 if (adj->dev == adj_dev) 4905 return adj; 4906 } 4907 return NULL; 4908 } 4909 4910 /** 4911 * netdev_has_upper_dev - Check if device is linked to an upper device 4912 * @dev: device 4913 * @upper_dev: upper device to check 4914 * 4915 * Find out if a device is linked to specified upper device and return true 4916 * in case it is. Note that this checks only immediate upper device, 4917 * not through a complete stack of devices. The caller must hold the RTNL lock. 4918 */ 4919 bool netdev_has_upper_dev(struct net_device *dev, 4920 struct net_device *upper_dev) 4921 { 4922 ASSERT_RTNL(); 4923 4924 return __netdev_find_adj(upper_dev, &dev->all_adj_list.upper); 4925 } 4926 EXPORT_SYMBOL(netdev_has_upper_dev); 4927 4928 /** 4929 * netdev_has_any_upper_dev - Check if device is linked to some device 4930 * @dev: device 4931 * 4932 * Find out if a device is linked to an upper device and return true in case 4933 * it is. The caller must hold the RTNL lock. 4934 */ 4935 static bool netdev_has_any_upper_dev(struct net_device *dev) 4936 { 4937 ASSERT_RTNL(); 4938 4939 return !list_empty(&dev->all_adj_list.upper); 4940 } 4941 4942 /** 4943 * netdev_master_upper_dev_get - Get master upper device 4944 * @dev: device 4945 * 4946 * Find a master upper device and return pointer to it or NULL in case 4947 * it's not there. The caller must hold the RTNL lock. 4948 */ 4949 struct net_device *netdev_master_upper_dev_get(struct net_device *dev) 4950 { 4951 struct netdev_adjacent *upper; 4952 4953 ASSERT_RTNL(); 4954 4955 if (list_empty(&dev->adj_list.upper)) 4956 return NULL; 4957 4958 upper = list_first_entry(&dev->adj_list.upper, 4959 struct netdev_adjacent, list); 4960 if (likely(upper->master)) 4961 return upper->dev; 4962 return NULL; 4963 } 4964 EXPORT_SYMBOL(netdev_master_upper_dev_get); 4965 4966 void *netdev_adjacent_get_private(struct list_head *adj_list) 4967 { 4968 struct netdev_adjacent *adj; 4969 4970 adj = list_entry(adj_list, struct netdev_adjacent, list); 4971 4972 return adj->private; 4973 } 4974 EXPORT_SYMBOL(netdev_adjacent_get_private); 4975 4976 /** 4977 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list 4978 * @dev: device 4979 * @iter: list_head ** of the current position 4980 * 4981 * Gets the next device from the dev's upper list, starting from iter 4982 * position. The caller must hold RCU read lock. 4983 */ 4984 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev, 4985 struct list_head **iter) 4986 { 4987 struct netdev_adjacent *upper; 4988 4989 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); 4990 4991 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 4992 4993 if (&upper->list == &dev->adj_list.upper) 4994 return NULL; 4995 4996 *iter = &upper->list; 4997 4998 return upper->dev; 4999 } 5000 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu); 5001 5002 /** 5003 * netdev_all_upper_get_next_dev_rcu - Get the next dev from upper list 5004 * @dev: device 5005 * @iter: list_head ** of the current position 5006 * 5007 * Gets the next device from the dev's upper list, starting from iter 5008 * position. The caller must hold RCU read lock. 5009 */ 5010 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev, 5011 struct list_head **iter) 5012 { 5013 struct netdev_adjacent *upper; 5014 5015 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); 5016 5017 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 5018 5019 if (&upper->list == &dev->all_adj_list.upper) 5020 return NULL; 5021 5022 *iter = &upper->list; 5023 5024 return upper->dev; 5025 } 5026 EXPORT_SYMBOL(netdev_all_upper_get_next_dev_rcu); 5027 5028 /** 5029 * netdev_lower_get_next_private - Get the next ->private from the 5030 * lower neighbour list 5031 * @dev: device 5032 * @iter: list_head ** of the current position 5033 * 5034 * Gets the next netdev_adjacent->private from the dev's lower neighbour 5035 * list, starting from iter position. The caller must hold either hold the 5036 * RTNL lock or its own locking that guarantees that the neighbour lower 5037 * list will remain unchanged. 5038 */ 5039 void *netdev_lower_get_next_private(struct net_device *dev, 5040 struct list_head **iter) 5041 { 5042 struct netdev_adjacent *lower; 5043 5044 lower = list_entry(*iter, struct netdev_adjacent, list); 5045 5046 if (&lower->list == &dev->adj_list.lower) 5047 return NULL; 5048 5049 *iter = lower->list.next; 5050 5051 return lower->private; 5052 } 5053 EXPORT_SYMBOL(netdev_lower_get_next_private); 5054 5055 /** 5056 * netdev_lower_get_next_private_rcu - Get the next ->private from the 5057 * lower neighbour list, RCU 5058 * variant 5059 * @dev: device 5060 * @iter: list_head ** of the current position 5061 * 5062 * Gets the next netdev_adjacent->private from the dev's lower neighbour 5063 * list, starting from iter position. The caller must hold RCU read lock. 5064 */ 5065 void *netdev_lower_get_next_private_rcu(struct net_device *dev, 5066 struct list_head **iter) 5067 { 5068 struct netdev_adjacent *lower; 5069 5070 WARN_ON_ONCE(!rcu_read_lock_held()); 5071 5072 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 5073 5074 if (&lower->list == &dev->adj_list.lower) 5075 return NULL; 5076 5077 *iter = &lower->list; 5078 5079 return lower->private; 5080 } 5081 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu); 5082 5083 /** 5084 * netdev_lower_get_next - Get the next device from the lower neighbour 5085 * list 5086 * @dev: device 5087 * @iter: list_head ** of the current position 5088 * 5089 * Gets the next netdev_adjacent from the dev's lower neighbour 5090 * list, starting from iter position. The caller must hold RTNL lock or 5091 * its own locking that guarantees that the neighbour lower 5092 * list will remain unchanged. 5093 */ 5094 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter) 5095 { 5096 struct netdev_adjacent *lower; 5097 5098 lower = list_entry((*iter)->next, struct netdev_adjacent, list); 5099 5100 if (&lower->list == &dev->adj_list.lower) 5101 return NULL; 5102 5103 *iter = &lower->list; 5104 5105 return lower->dev; 5106 } 5107 EXPORT_SYMBOL(netdev_lower_get_next); 5108 5109 /** 5110 * netdev_lower_get_first_private_rcu - Get the first ->private from the 5111 * lower neighbour list, RCU 5112 * variant 5113 * @dev: device 5114 * 5115 * Gets the first netdev_adjacent->private from the dev's lower neighbour 5116 * list. The caller must hold RCU read lock. 5117 */ 5118 void *netdev_lower_get_first_private_rcu(struct net_device *dev) 5119 { 5120 struct netdev_adjacent *lower; 5121 5122 lower = list_first_or_null_rcu(&dev->adj_list.lower, 5123 struct netdev_adjacent, list); 5124 if (lower) 5125 return lower->private; 5126 return NULL; 5127 } 5128 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu); 5129 5130 /** 5131 * netdev_master_upper_dev_get_rcu - Get master upper device 5132 * @dev: device 5133 * 5134 * Find a master upper device and return pointer to it or NULL in case 5135 * it's not there. The caller must hold the RCU read lock. 5136 */ 5137 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev) 5138 { 5139 struct netdev_adjacent *upper; 5140 5141 upper = list_first_or_null_rcu(&dev->adj_list.upper, 5142 struct netdev_adjacent, list); 5143 if (upper && likely(upper->master)) 5144 return upper->dev; 5145 return NULL; 5146 } 5147 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu); 5148 5149 static int netdev_adjacent_sysfs_add(struct net_device *dev, 5150 struct net_device *adj_dev, 5151 struct list_head *dev_list) 5152 { 5153 char linkname[IFNAMSIZ+7]; 5154 sprintf(linkname, dev_list == &dev->adj_list.upper ? 5155 "upper_%s" : "lower_%s", adj_dev->name); 5156 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj), 5157 linkname); 5158 } 5159 static void netdev_adjacent_sysfs_del(struct net_device *dev, 5160 char *name, 5161 struct list_head *dev_list) 5162 { 5163 char linkname[IFNAMSIZ+7]; 5164 sprintf(linkname, dev_list == &dev->adj_list.upper ? 5165 "upper_%s" : "lower_%s", name); 5166 sysfs_remove_link(&(dev->dev.kobj), linkname); 5167 } 5168 5169 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev, 5170 struct net_device *adj_dev, 5171 struct list_head *dev_list) 5172 { 5173 return (dev_list == &dev->adj_list.upper || 5174 dev_list == &dev->adj_list.lower) && 5175 net_eq(dev_net(dev), dev_net(adj_dev)); 5176 } 5177 5178 static int __netdev_adjacent_dev_insert(struct net_device *dev, 5179 struct net_device *adj_dev, 5180 struct list_head *dev_list, 5181 void *private, bool master) 5182 { 5183 struct netdev_adjacent *adj; 5184 int ret; 5185 5186 adj = __netdev_find_adj(adj_dev, dev_list); 5187 5188 if (adj) { 5189 adj->ref_nr++; 5190 return 0; 5191 } 5192 5193 adj = kmalloc(sizeof(*adj), GFP_KERNEL); 5194 if (!adj) 5195 return -ENOMEM; 5196 5197 adj->dev = adj_dev; 5198 adj->master = master; 5199 adj->ref_nr = 1; 5200 adj->private = private; 5201 dev_hold(adj_dev); 5202 5203 pr_debug("dev_hold for %s, because of link added from %s to %s\n", 5204 adj_dev->name, dev->name, adj_dev->name); 5205 5206 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) { 5207 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list); 5208 if (ret) 5209 goto free_adj; 5210 } 5211 5212 /* Ensure that master link is always the first item in list. */ 5213 if (master) { 5214 ret = sysfs_create_link(&(dev->dev.kobj), 5215 &(adj_dev->dev.kobj), "master"); 5216 if (ret) 5217 goto remove_symlinks; 5218 5219 list_add_rcu(&adj->list, dev_list); 5220 } else { 5221 list_add_tail_rcu(&adj->list, dev_list); 5222 } 5223 5224 return 0; 5225 5226 remove_symlinks: 5227 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) 5228 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list); 5229 free_adj: 5230 kfree(adj); 5231 dev_put(adj_dev); 5232 5233 return ret; 5234 } 5235 5236 static void __netdev_adjacent_dev_remove(struct net_device *dev, 5237 struct net_device *adj_dev, 5238 struct list_head *dev_list) 5239 { 5240 struct netdev_adjacent *adj; 5241 5242 adj = __netdev_find_adj(adj_dev, dev_list); 5243 5244 if (!adj) { 5245 pr_err("tried to remove device %s from %s\n", 5246 dev->name, adj_dev->name); 5247 BUG(); 5248 } 5249 5250 if (adj->ref_nr > 1) { 5251 pr_debug("%s to %s ref_nr-- = %d\n", dev->name, adj_dev->name, 5252 adj->ref_nr-1); 5253 adj->ref_nr--; 5254 return; 5255 } 5256 5257 if (adj->master) 5258 sysfs_remove_link(&(dev->dev.kobj), "master"); 5259 5260 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) 5261 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list); 5262 5263 list_del_rcu(&adj->list); 5264 pr_debug("dev_put for %s, because link removed from %s to %s\n", 5265 adj_dev->name, dev->name, adj_dev->name); 5266 dev_put(adj_dev); 5267 kfree_rcu(adj, rcu); 5268 } 5269 5270 static int __netdev_adjacent_dev_link_lists(struct net_device *dev, 5271 struct net_device *upper_dev, 5272 struct list_head *up_list, 5273 struct list_head *down_list, 5274 void *private, bool master) 5275 { 5276 int ret; 5277 5278 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, private, 5279 master); 5280 if (ret) 5281 return ret; 5282 5283 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, private, 5284 false); 5285 if (ret) { 5286 __netdev_adjacent_dev_remove(dev, upper_dev, up_list); 5287 return ret; 5288 } 5289 5290 return 0; 5291 } 5292 5293 static int __netdev_adjacent_dev_link(struct net_device *dev, 5294 struct net_device *upper_dev) 5295 { 5296 return __netdev_adjacent_dev_link_lists(dev, upper_dev, 5297 &dev->all_adj_list.upper, 5298 &upper_dev->all_adj_list.lower, 5299 NULL, false); 5300 } 5301 5302 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev, 5303 struct net_device *upper_dev, 5304 struct list_head *up_list, 5305 struct list_head *down_list) 5306 { 5307 __netdev_adjacent_dev_remove(dev, upper_dev, up_list); 5308 __netdev_adjacent_dev_remove(upper_dev, dev, down_list); 5309 } 5310 5311 static void __netdev_adjacent_dev_unlink(struct net_device *dev, 5312 struct net_device *upper_dev) 5313 { 5314 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 5315 &dev->all_adj_list.upper, 5316 &upper_dev->all_adj_list.lower); 5317 } 5318 5319 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev, 5320 struct net_device *upper_dev, 5321 void *private, bool master) 5322 { 5323 int ret = __netdev_adjacent_dev_link(dev, upper_dev); 5324 5325 if (ret) 5326 return ret; 5327 5328 ret = __netdev_adjacent_dev_link_lists(dev, upper_dev, 5329 &dev->adj_list.upper, 5330 &upper_dev->adj_list.lower, 5331 private, master); 5332 if (ret) { 5333 __netdev_adjacent_dev_unlink(dev, upper_dev); 5334 return ret; 5335 } 5336 5337 return 0; 5338 } 5339 5340 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev, 5341 struct net_device *upper_dev) 5342 { 5343 __netdev_adjacent_dev_unlink(dev, upper_dev); 5344 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 5345 &dev->adj_list.upper, 5346 &upper_dev->adj_list.lower); 5347 } 5348 5349 static int __netdev_upper_dev_link(struct net_device *dev, 5350 struct net_device *upper_dev, bool master, 5351 void *private) 5352 { 5353 struct netdev_notifier_changeupper_info changeupper_info; 5354 struct netdev_adjacent *i, *j, *to_i, *to_j; 5355 int ret = 0; 5356 5357 ASSERT_RTNL(); 5358 5359 if (dev == upper_dev) 5360 return -EBUSY; 5361 5362 /* To prevent loops, check if dev is not upper device to upper_dev. */ 5363 if (__netdev_find_adj(dev, &upper_dev->all_adj_list.upper)) 5364 return -EBUSY; 5365 5366 if (__netdev_find_adj(upper_dev, &dev->adj_list.upper)) 5367 return -EEXIST; 5368 5369 if (master && netdev_master_upper_dev_get(dev)) 5370 return -EBUSY; 5371 5372 changeupper_info.upper_dev = upper_dev; 5373 changeupper_info.master = master; 5374 changeupper_info.linking = true; 5375 5376 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev, 5377 &changeupper_info.info); 5378 ret = notifier_to_errno(ret); 5379 if (ret) 5380 return ret; 5381 5382 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, private, 5383 master); 5384 if (ret) 5385 return ret; 5386 5387 /* Now that we linked these devs, make all the upper_dev's 5388 * all_adj_list.upper visible to every dev's all_adj_list.lower an 5389 * versa, and don't forget the devices itself. All of these 5390 * links are non-neighbours. 5391 */ 5392 list_for_each_entry(i, &dev->all_adj_list.lower, list) { 5393 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) { 5394 pr_debug("Interlinking %s with %s, non-neighbour\n", 5395 i->dev->name, j->dev->name); 5396 ret = __netdev_adjacent_dev_link(i->dev, j->dev); 5397 if (ret) 5398 goto rollback_mesh; 5399 } 5400 } 5401 5402 /* add dev to every upper_dev's upper device */ 5403 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) { 5404 pr_debug("linking %s's upper device %s with %s\n", 5405 upper_dev->name, i->dev->name, dev->name); 5406 ret = __netdev_adjacent_dev_link(dev, i->dev); 5407 if (ret) 5408 goto rollback_upper_mesh; 5409 } 5410 5411 /* add upper_dev to every dev's lower device */ 5412 list_for_each_entry(i, &dev->all_adj_list.lower, list) { 5413 pr_debug("linking %s's lower device %s with %s\n", dev->name, 5414 i->dev->name, upper_dev->name); 5415 ret = __netdev_adjacent_dev_link(i->dev, upper_dev); 5416 if (ret) 5417 goto rollback_lower_mesh; 5418 } 5419 5420 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev, 5421 &changeupper_info.info); 5422 return 0; 5423 5424 rollback_lower_mesh: 5425 to_i = i; 5426 list_for_each_entry(i, &dev->all_adj_list.lower, list) { 5427 if (i == to_i) 5428 break; 5429 __netdev_adjacent_dev_unlink(i->dev, upper_dev); 5430 } 5431 5432 i = NULL; 5433 5434 rollback_upper_mesh: 5435 to_i = i; 5436 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) { 5437 if (i == to_i) 5438 break; 5439 __netdev_adjacent_dev_unlink(dev, i->dev); 5440 } 5441 5442 i = j = NULL; 5443 5444 rollback_mesh: 5445 to_i = i; 5446 to_j = j; 5447 list_for_each_entry(i, &dev->all_adj_list.lower, list) { 5448 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) { 5449 if (i == to_i && j == to_j) 5450 break; 5451 __netdev_adjacent_dev_unlink(i->dev, j->dev); 5452 } 5453 if (i == to_i) 5454 break; 5455 } 5456 5457 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 5458 5459 return ret; 5460 } 5461 5462 /** 5463 * netdev_upper_dev_link - Add a link to the upper device 5464 * @dev: device 5465 * @upper_dev: new upper device 5466 * 5467 * Adds a link to device which is upper to this one. The caller must hold 5468 * the RTNL lock. On a failure a negative errno code is returned. 5469 * On success the reference counts are adjusted and the function 5470 * returns zero. 5471 */ 5472 int netdev_upper_dev_link(struct net_device *dev, 5473 struct net_device *upper_dev) 5474 { 5475 return __netdev_upper_dev_link(dev, upper_dev, false, NULL); 5476 } 5477 EXPORT_SYMBOL(netdev_upper_dev_link); 5478 5479 /** 5480 * netdev_master_upper_dev_link - Add a master link to the upper device 5481 * @dev: device 5482 * @upper_dev: new upper device 5483 * 5484 * Adds a link to device which is upper to this one. In this case, only 5485 * one master upper device can be linked, although other non-master devices 5486 * might be linked as well. The caller must hold the RTNL lock. 5487 * On a failure a negative errno code is returned. On success the reference 5488 * counts are adjusted and the function returns zero. 5489 */ 5490 int netdev_master_upper_dev_link(struct net_device *dev, 5491 struct net_device *upper_dev) 5492 { 5493 return __netdev_upper_dev_link(dev, upper_dev, true, NULL); 5494 } 5495 EXPORT_SYMBOL(netdev_master_upper_dev_link); 5496 5497 int netdev_master_upper_dev_link_private(struct net_device *dev, 5498 struct net_device *upper_dev, 5499 void *private) 5500 { 5501 return __netdev_upper_dev_link(dev, upper_dev, true, private); 5502 } 5503 EXPORT_SYMBOL(netdev_master_upper_dev_link_private); 5504 5505 /** 5506 * netdev_upper_dev_unlink - Removes a link to upper device 5507 * @dev: device 5508 * @upper_dev: new upper device 5509 * 5510 * Removes a link to device which is upper to this one. The caller must hold 5511 * the RTNL lock. 5512 */ 5513 void netdev_upper_dev_unlink(struct net_device *dev, 5514 struct net_device *upper_dev) 5515 { 5516 struct netdev_notifier_changeupper_info changeupper_info; 5517 struct netdev_adjacent *i, *j; 5518 ASSERT_RTNL(); 5519 5520 changeupper_info.upper_dev = upper_dev; 5521 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev; 5522 changeupper_info.linking = false; 5523 5524 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev, 5525 &changeupper_info.info); 5526 5527 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 5528 5529 /* Here is the tricky part. We must remove all dev's lower 5530 * devices from all upper_dev's upper devices and vice 5531 * versa, to maintain the graph relationship. 5532 */ 5533 list_for_each_entry(i, &dev->all_adj_list.lower, list) 5534 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) 5535 __netdev_adjacent_dev_unlink(i->dev, j->dev); 5536 5537 /* remove also the devices itself from lower/upper device 5538 * list 5539 */ 5540 list_for_each_entry(i, &dev->all_adj_list.lower, list) 5541 __netdev_adjacent_dev_unlink(i->dev, upper_dev); 5542 5543 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) 5544 __netdev_adjacent_dev_unlink(dev, i->dev); 5545 5546 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev, 5547 &changeupper_info.info); 5548 } 5549 EXPORT_SYMBOL(netdev_upper_dev_unlink); 5550 5551 /** 5552 * netdev_bonding_info_change - Dispatch event about slave change 5553 * @dev: device 5554 * @bonding_info: info to dispatch 5555 * 5556 * Send NETDEV_BONDING_INFO to netdev notifiers with info. 5557 * The caller must hold the RTNL lock. 5558 */ 5559 void netdev_bonding_info_change(struct net_device *dev, 5560 struct netdev_bonding_info *bonding_info) 5561 { 5562 struct netdev_notifier_bonding_info info; 5563 5564 memcpy(&info.bonding_info, bonding_info, 5565 sizeof(struct netdev_bonding_info)); 5566 call_netdevice_notifiers_info(NETDEV_BONDING_INFO, dev, 5567 &info.info); 5568 } 5569 EXPORT_SYMBOL(netdev_bonding_info_change); 5570 5571 static void netdev_adjacent_add_links(struct net_device *dev) 5572 { 5573 struct netdev_adjacent *iter; 5574 5575 struct net *net = dev_net(dev); 5576 5577 list_for_each_entry(iter, &dev->adj_list.upper, list) { 5578 if (!net_eq(net,dev_net(iter->dev))) 5579 continue; 5580 netdev_adjacent_sysfs_add(iter->dev, dev, 5581 &iter->dev->adj_list.lower); 5582 netdev_adjacent_sysfs_add(dev, iter->dev, 5583 &dev->adj_list.upper); 5584 } 5585 5586 list_for_each_entry(iter, &dev->adj_list.lower, list) { 5587 if (!net_eq(net,dev_net(iter->dev))) 5588 continue; 5589 netdev_adjacent_sysfs_add(iter->dev, dev, 5590 &iter->dev->adj_list.upper); 5591 netdev_adjacent_sysfs_add(dev, iter->dev, 5592 &dev->adj_list.lower); 5593 } 5594 } 5595 5596 static void netdev_adjacent_del_links(struct net_device *dev) 5597 { 5598 struct netdev_adjacent *iter; 5599 5600 struct net *net = dev_net(dev); 5601 5602 list_for_each_entry(iter, &dev->adj_list.upper, list) { 5603 if (!net_eq(net,dev_net(iter->dev))) 5604 continue; 5605 netdev_adjacent_sysfs_del(iter->dev, dev->name, 5606 &iter->dev->adj_list.lower); 5607 netdev_adjacent_sysfs_del(dev, iter->dev->name, 5608 &dev->adj_list.upper); 5609 } 5610 5611 list_for_each_entry(iter, &dev->adj_list.lower, list) { 5612 if (!net_eq(net,dev_net(iter->dev))) 5613 continue; 5614 netdev_adjacent_sysfs_del(iter->dev, dev->name, 5615 &iter->dev->adj_list.upper); 5616 netdev_adjacent_sysfs_del(dev, iter->dev->name, 5617 &dev->adj_list.lower); 5618 } 5619 } 5620 5621 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname) 5622 { 5623 struct netdev_adjacent *iter; 5624 5625 struct net *net = dev_net(dev); 5626 5627 list_for_each_entry(iter, &dev->adj_list.upper, list) { 5628 if (!net_eq(net,dev_net(iter->dev))) 5629 continue; 5630 netdev_adjacent_sysfs_del(iter->dev, oldname, 5631 &iter->dev->adj_list.lower); 5632 netdev_adjacent_sysfs_add(iter->dev, dev, 5633 &iter->dev->adj_list.lower); 5634 } 5635 5636 list_for_each_entry(iter, &dev->adj_list.lower, list) { 5637 if (!net_eq(net,dev_net(iter->dev))) 5638 continue; 5639 netdev_adjacent_sysfs_del(iter->dev, oldname, 5640 &iter->dev->adj_list.upper); 5641 netdev_adjacent_sysfs_add(iter->dev, dev, 5642 &iter->dev->adj_list.upper); 5643 } 5644 } 5645 5646 void *netdev_lower_dev_get_private(struct net_device *dev, 5647 struct net_device *lower_dev) 5648 { 5649 struct netdev_adjacent *lower; 5650 5651 if (!lower_dev) 5652 return NULL; 5653 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower); 5654 if (!lower) 5655 return NULL; 5656 5657 return lower->private; 5658 } 5659 EXPORT_SYMBOL(netdev_lower_dev_get_private); 5660 5661 5662 int dev_get_nest_level(struct net_device *dev, 5663 bool (*type_check)(struct net_device *dev)) 5664 { 5665 struct net_device *lower = NULL; 5666 struct list_head *iter; 5667 int max_nest = -1; 5668 int nest; 5669 5670 ASSERT_RTNL(); 5671 5672 netdev_for_each_lower_dev(dev, lower, iter) { 5673 nest = dev_get_nest_level(lower, type_check); 5674 if (max_nest < nest) 5675 max_nest = nest; 5676 } 5677 5678 if (type_check(dev)) 5679 max_nest++; 5680 5681 return max_nest; 5682 } 5683 EXPORT_SYMBOL(dev_get_nest_level); 5684 5685 static void dev_change_rx_flags(struct net_device *dev, int flags) 5686 { 5687 const struct net_device_ops *ops = dev->netdev_ops; 5688 5689 if (ops->ndo_change_rx_flags) 5690 ops->ndo_change_rx_flags(dev, flags); 5691 } 5692 5693 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify) 5694 { 5695 unsigned int old_flags = dev->flags; 5696 kuid_t uid; 5697 kgid_t gid; 5698 5699 ASSERT_RTNL(); 5700 5701 dev->flags |= IFF_PROMISC; 5702 dev->promiscuity += inc; 5703 if (dev->promiscuity == 0) { 5704 /* 5705 * Avoid overflow. 5706 * If inc causes overflow, untouch promisc and return error. 5707 */ 5708 if (inc < 0) 5709 dev->flags &= ~IFF_PROMISC; 5710 else { 5711 dev->promiscuity -= inc; 5712 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n", 5713 dev->name); 5714 return -EOVERFLOW; 5715 } 5716 } 5717 if (dev->flags != old_flags) { 5718 pr_info("device %s %s promiscuous mode\n", 5719 dev->name, 5720 dev->flags & IFF_PROMISC ? "entered" : "left"); 5721 if (audit_enabled) { 5722 current_uid_gid(&uid, &gid); 5723 audit_log(current->audit_context, GFP_ATOMIC, 5724 AUDIT_ANOM_PROMISCUOUS, 5725 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u", 5726 dev->name, (dev->flags & IFF_PROMISC), 5727 (old_flags & IFF_PROMISC), 5728 from_kuid(&init_user_ns, audit_get_loginuid(current)), 5729 from_kuid(&init_user_ns, uid), 5730 from_kgid(&init_user_ns, gid), 5731 audit_get_sessionid(current)); 5732 } 5733 5734 dev_change_rx_flags(dev, IFF_PROMISC); 5735 } 5736 if (notify) 5737 __dev_notify_flags(dev, old_flags, IFF_PROMISC); 5738 return 0; 5739 } 5740 5741 /** 5742 * dev_set_promiscuity - update promiscuity count on a device 5743 * @dev: device 5744 * @inc: modifier 5745 * 5746 * Add or remove promiscuity from a device. While the count in the device 5747 * remains above zero the interface remains promiscuous. Once it hits zero 5748 * the device reverts back to normal filtering operation. A negative inc 5749 * value is used to drop promiscuity on the device. 5750 * Return 0 if successful or a negative errno code on error. 5751 */ 5752 int dev_set_promiscuity(struct net_device *dev, int inc) 5753 { 5754 unsigned int old_flags = dev->flags; 5755 int err; 5756 5757 err = __dev_set_promiscuity(dev, inc, true); 5758 if (err < 0) 5759 return err; 5760 if (dev->flags != old_flags) 5761 dev_set_rx_mode(dev); 5762 return err; 5763 } 5764 EXPORT_SYMBOL(dev_set_promiscuity); 5765 5766 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify) 5767 { 5768 unsigned int old_flags = dev->flags, old_gflags = dev->gflags; 5769 5770 ASSERT_RTNL(); 5771 5772 dev->flags |= IFF_ALLMULTI; 5773 dev->allmulti += inc; 5774 if (dev->allmulti == 0) { 5775 /* 5776 * Avoid overflow. 5777 * If inc causes overflow, untouch allmulti and return error. 5778 */ 5779 if (inc < 0) 5780 dev->flags &= ~IFF_ALLMULTI; 5781 else { 5782 dev->allmulti -= inc; 5783 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n", 5784 dev->name); 5785 return -EOVERFLOW; 5786 } 5787 } 5788 if (dev->flags ^ old_flags) { 5789 dev_change_rx_flags(dev, IFF_ALLMULTI); 5790 dev_set_rx_mode(dev); 5791 if (notify) 5792 __dev_notify_flags(dev, old_flags, 5793 dev->gflags ^ old_gflags); 5794 } 5795 return 0; 5796 } 5797 5798 /** 5799 * dev_set_allmulti - update allmulti count on a device 5800 * @dev: device 5801 * @inc: modifier 5802 * 5803 * Add or remove reception of all multicast frames to a device. While the 5804 * count in the device remains above zero the interface remains listening 5805 * to all interfaces. Once it hits zero the device reverts back to normal 5806 * filtering operation. A negative @inc value is used to drop the counter 5807 * when releasing a resource needing all multicasts. 5808 * Return 0 if successful or a negative errno code on error. 5809 */ 5810 5811 int dev_set_allmulti(struct net_device *dev, int inc) 5812 { 5813 return __dev_set_allmulti(dev, inc, true); 5814 } 5815 EXPORT_SYMBOL(dev_set_allmulti); 5816 5817 /* 5818 * Upload unicast and multicast address lists to device and 5819 * configure RX filtering. When the device doesn't support unicast 5820 * filtering it is put in promiscuous mode while unicast addresses 5821 * are present. 5822 */ 5823 void __dev_set_rx_mode(struct net_device *dev) 5824 { 5825 const struct net_device_ops *ops = dev->netdev_ops; 5826 5827 /* dev_open will call this function so the list will stay sane. */ 5828 if (!(dev->flags&IFF_UP)) 5829 return; 5830 5831 if (!netif_device_present(dev)) 5832 return; 5833 5834 if (!(dev->priv_flags & IFF_UNICAST_FLT)) { 5835 /* Unicast addresses changes may only happen under the rtnl, 5836 * therefore calling __dev_set_promiscuity here is safe. 5837 */ 5838 if (!netdev_uc_empty(dev) && !dev->uc_promisc) { 5839 __dev_set_promiscuity(dev, 1, false); 5840 dev->uc_promisc = true; 5841 } else if (netdev_uc_empty(dev) && dev->uc_promisc) { 5842 __dev_set_promiscuity(dev, -1, false); 5843 dev->uc_promisc = false; 5844 } 5845 } 5846 5847 if (ops->ndo_set_rx_mode) 5848 ops->ndo_set_rx_mode(dev); 5849 } 5850 5851 void dev_set_rx_mode(struct net_device *dev) 5852 { 5853 netif_addr_lock_bh(dev); 5854 __dev_set_rx_mode(dev); 5855 netif_addr_unlock_bh(dev); 5856 } 5857 5858 /** 5859 * dev_get_flags - get flags reported to userspace 5860 * @dev: device 5861 * 5862 * Get the combination of flag bits exported through APIs to userspace. 5863 */ 5864 unsigned int dev_get_flags(const struct net_device *dev) 5865 { 5866 unsigned int flags; 5867 5868 flags = (dev->flags & ~(IFF_PROMISC | 5869 IFF_ALLMULTI | 5870 IFF_RUNNING | 5871 IFF_LOWER_UP | 5872 IFF_DORMANT)) | 5873 (dev->gflags & (IFF_PROMISC | 5874 IFF_ALLMULTI)); 5875 5876 if (netif_running(dev)) { 5877 if (netif_oper_up(dev)) 5878 flags |= IFF_RUNNING; 5879 if (netif_carrier_ok(dev)) 5880 flags |= IFF_LOWER_UP; 5881 if (netif_dormant(dev)) 5882 flags |= IFF_DORMANT; 5883 } 5884 5885 return flags; 5886 } 5887 EXPORT_SYMBOL(dev_get_flags); 5888 5889 int __dev_change_flags(struct net_device *dev, unsigned int flags) 5890 { 5891 unsigned int old_flags = dev->flags; 5892 int ret; 5893 5894 ASSERT_RTNL(); 5895 5896 /* 5897 * Set the flags on our device. 5898 */ 5899 5900 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP | 5901 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL | 5902 IFF_AUTOMEDIA)) | 5903 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC | 5904 IFF_ALLMULTI)); 5905 5906 /* 5907 * Load in the correct multicast list now the flags have changed. 5908 */ 5909 5910 if ((old_flags ^ flags) & IFF_MULTICAST) 5911 dev_change_rx_flags(dev, IFF_MULTICAST); 5912 5913 dev_set_rx_mode(dev); 5914 5915 /* 5916 * Have we downed the interface. We handle IFF_UP ourselves 5917 * according to user attempts to set it, rather than blindly 5918 * setting it. 5919 */ 5920 5921 ret = 0; 5922 if ((old_flags ^ flags) & IFF_UP) 5923 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev); 5924 5925 if ((flags ^ dev->gflags) & IFF_PROMISC) { 5926 int inc = (flags & IFF_PROMISC) ? 1 : -1; 5927 unsigned int old_flags = dev->flags; 5928 5929 dev->gflags ^= IFF_PROMISC; 5930 5931 if (__dev_set_promiscuity(dev, inc, false) >= 0) 5932 if (dev->flags != old_flags) 5933 dev_set_rx_mode(dev); 5934 } 5935 5936 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI 5937 is important. Some (broken) drivers set IFF_PROMISC, when 5938 IFF_ALLMULTI is requested not asking us and not reporting. 5939 */ 5940 if ((flags ^ dev->gflags) & IFF_ALLMULTI) { 5941 int inc = (flags & IFF_ALLMULTI) ? 1 : -1; 5942 5943 dev->gflags ^= IFF_ALLMULTI; 5944 __dev_set_allmulti(dev, inc, false); 5945 } 5946 5947 return ret; 5948 } 5949 5950 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags, 5951 unsigned int gchanges) 5952 { 5953 unsigned int changes = dev->flags ^ old_flags; 5954 5955 if (gchanges) 5956 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC); 5957 5958 if (changes & IFF_UP) { 5959 if (dev->flags & IFF_UP) 5960 call_netdevice_notifiers(NETDEV_UP, dev); 5961 else 5962 call_netdevice_notifiers(NETDEV_DOWN, dev); 5963 } 5964 5965 if (dev->flags & IFF_UP && 5966 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) { 5967 struct netdev_notifier_change_info change_info; 5968 5969 change_info.flags_changed = changes; 5970 call_netdevice_notifiers_info(NETDEV_CHANGE, dev, 5971 &change_info.info); 5972 } 5973 } 5974 5975 /** 5976 * dev_change_flags - change device settings 5977 * @dev: device 5978 * @flags: device state flags 5979 * 5980 * Change settings on device based state flags. The flags are 5981 * in the userspace exported format. 5982 */ 5983 int dev_change_flags(struct net_device *dev, unsigned int flags) 5984 { 5985 int ret; 5986 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags; 5987 5988 ret = __dev_change_flags(dev, flags); 5989 if (ret < 0) 5990 return ret; 5991 5992 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags); 5993 __dev_notify_flags(dev, old_flags, changes); 5994 return ret; 5995 } 5996 EXPORT_SYMBOL(dev_change_flags); 5997 5998 static int __dev_set_mtu(struct net_device *dev, int new_mtu) 5999 { 6000 const struct net_device_ops *ops = dev->netdev_ops; 6001 6002 if (ops->ndo_change_mtu) 6003 return ops->ndo_change_mtu(dev, new_mtu); 6004 6005 dev->mtu = new_mtu; 6006 return 0; 6007 } 6008 6009 /** 6010 * dev_set_mtu - Change maximum transfer unit 6011 * @dev: device 6012 * @new_mtu: new transfer unit 6013 * 6014 * Change the maximum transfer size of the network device. 6015 */ 6016 int dev_set_mtu(struct net_device *dev, int new_mtu) 6017 { 6018 int err, orig_mtu; 6019 6020 if (new_mtu == dev->mtu) 6021 return 0; 6022 6023 /* MTU must be positive. */ 6024 if (new_mtu < 0) 6025 return -EINVAL; 6026 6027 if (!netif_device_present(dev)) 6028 return -ENODEV; 6029 6030 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev); 6031 err = notifier_to_errno(err); 6032 if (err) 6033 return err; 6034 6035 orig_mtu = dev->mtu; 6036 err = __dev_set_mtu(dev, new_mtu); 6037 6038 if (!err) { 6039 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev); 6040 err = notifier_to_errno(err); 6041 if (err) { 6042 /* setting mtu back and notifying everyone again, 6043 * so that they have a chance to revert changes. 6044 */ 6045 __dev_set_mtu(dev, orig_mtu); 6046 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev); 6047 } 6048 } 6049 return err; 6050 } 6051 EXPORT_SYMBOL(dev_set_mtu); 6052 6053 /** 6054 * dev_set_group - Change group this device belongs to 6055 * @dev: device 6056 * @new_group: group this device should belong to 6057 */ 6058 void dev_set_group(struct net_device *dev, int new_group) 6059 { 6060 dev->group = new_group; 6061 } 6062 EXPORT_SYMBOL(dev_set_group); 6063 6064 /** 6065 * dev_set_mac_address - Change Media Access Control Address 6066 * @dev: device 6067 * @sa: new address 6068 * 6069 * Change the hardware (MAC) address of the device 6070 */ 6071 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa) 6072 { 6073 const struct net_device_ops *ops = dev->netdev_ops; 6074 int err; 6075 6076 if (!ops->ndo_set_mac_address) 6077 return -EOPNOTSUPP; 6078 if (sa->sa_family != dev->type) 6079 return -EINVAL; 6080 if (!netif_device_present(dev)) 6081 return -ENODEV; 6082 err = ops->ndo_set_mac_address(dev, sa); 6083 if (err) 6084 return err; 6085 dev->addr_assign_type = NET_ADDR_SET; 6086 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 6087 add_device_randomness(dev->dev_addr, dev->addr_len); 6088 return 0; 6089 } 6090 EXPORT_SYMBOL(dev_set_mac_address); 6091 6092 /** 6093 * dev_change_carrier - Change device carrier 6094 * @dev: device 6095 * @new_carrier: new value 6096 * 6097 * Change device carrier 6098 */ 6099 int dev_change_carrier(struct net_device *dev, bool new_carrier) 6100 { 6101 const struct net_device_ops *ops = dev->netdev_ops; 6102 6103 if (!ops->ndo_change_carrier) 6104 return -EOPNOTSUPP; 6105 if (!netif_device_present(dev)) 6106 return -ENODEV; 6107 return ops->ndo_change_carrier(dev, new_carrier); 6108 } 6109 EXPORT_SYMBOL(dev_change_carrier); 6110 6111 /** 6112 * dev_get_phys_port_id - Get device physical port ID 6113 * @dev: device 6114 * @ppid: port ID 6115 * 6116 * Get device physical port ID 6117 */ 6118 int dev_get_phys_port_id(struct net_device *dev, 6119 struct netdev_phys_item_id *ppid) 6120 { 6121 const struct net_device_ops *ops = dev->netdev_ops; 6122 6123 if (!ops->ndo_get_phys_port_id) 6124 return -EOPNOTSUPP; 6125 return ops->ndo_get_phys_port_id(dev, ppid); 6126 } 6127 EXPORT_SYMBOL(dev_get_phys_port_id); 6128 6129 /** 6130 * dev_get_phys_port_name - Get device physical port name 6131 * @dev: device 6132 * @name: port name 6133 * 6134 * Get device physical port name 6135 */ 6136 int dev_get_phys_port_name(struct net_device *dev, 6137 char *name, size_t len) 6138 { 6139 const struct net_device_ops *ops = dev->netdev_ops; 6140 6141 if (!ops->ndo_get_phys_port_name) 6142 return -EOPNOTSUPP; 6143 return ops->ndo_get_phys_port_name(dev, name, len); 6144 } 6145 EXPORT_SYMBOL(dev_get_phys_port_name); 6146 6147 /** 6148 * dev_change_proto_down - update protocol port state information 6149 * @dev: device 6150 * @proto_down: new value 6151 * 6152 * This info can be used by switch drivers to set the phys state of the 6153 * port. 6154 */ 6155 int dev_change_proto_down(struct net_device *dev, bool proto_down) 6156 { 6157 const struct net_device_ops *ops = dev->netdev_ops; 6158 6159 if (!ops->ndo_change_proto_down) 6160 return -EOPNOTSUPP; 6161 if (!netif_device_present(dev)) 6162 return -ENODEV; 6163 return ops->ndo_change_proto_down(dev, proto_down); 6164 } 6165 EXPORT_SYMBOL(dev_change_proto_down); 6166 6167 /** 6168 * dev_new_index - allocate an ifindex 6169 * @net: the applicable net namespace 6170 * 6171 * Returns a suitable unique value for a new device interface 6172 * number. The caller must hold the rtnl semaphore or the 6173 * dev_base_lock to be sure it remains unique. 6174 */ 6175 static int dev_new_index(struct net *net) 6176 { 6177 int ifindex = net->ifindex; 6178 for (;;) { 6179 if (++ifindex <= 0) 6180 ifindex = 1; 6181 if (!__dev_get_by_index(net, ifindex)) 6182 return net->ifindex = ifindex; 6183 } 6184 } 6185 6186 /* Delayed registration/unregisteration */ 6187 static LIST_HEAD(net_todo_list); 6188 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq); 6189 6190 static void net_set_todo(struct net_device *dev) 6191 { 6192 list_add_tail(&dev->todo_list, &net_todo_list); 6193 dev_net(dev)->dev_unreg_count++; 6194 } 6195 6196 static void rollback_registered_many(struct list_head *head) 6197 { 6198 struct net_device *dev, *tmp; 6199 LIST_HEAD(close_head); 6200 6201 BUG_ON(dev_boot_phase); 6202 ASSERT_RTNL(); 6203 6204 list_for_each_entry_safe(dev, tmp, head, unreg_list) { 6205 /* Some devices call without registering 6206 * for initialization unwind. Remove those 6207 * devices and proceed with the remaining. 6208 */ 6209 if (dev->reg_state == NETREG_UNINITIALIZED) { 6210 pr_debug("unregister_netdevice: device %s/%p never was registered\n", 6211 dev->name, dev); 6212 6213 WARN_ON(1); 6214 list_del(&dev->unreg_list); 6215 continue; 6216 } 6217 dev->dismantle = true; 6218 BUG_ON(dev->reg_state != NETREG_REGISTERED); 6219 } 6220 6221 /* If device is running, close it first. */ 6222 list_for_each_entry(dev, head, unreg_list) 6223 list_add_tail(&dev->close_list, &close_head); 6224 dev_close_many(&close_head, true); 6225 6226 list_for_each_entry(dev, head, unreg_list) { 6227 /* And unlink it from device chain. */ 6228 unlist_netdevice(dev); 6229 6230 dev->reg_state = NETREG_UNREGISTERING; 6231 on_each_cpu(flush_backlog, dev, 1); 6232 } 6233 6234 synchronize_net(); 6235 6236 list_for_each_entry(dev, head, unreg_list) { 6237 struct sk_buff *skb = NULL; 6238 6239 /* Shutdown queueing discipline. */ 6240 dev_shutdown(dev); 6241 6242 6243 /* Notify protocols, that we are about to destroy 6244 this device. They should clean all the things. 6245 */ 6246 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 6247 6248 if (!dev->rtnl_link_ops || 6249 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 6250 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 6251 GFP_KERNEL); 6252 6253 /* 6254 * Flush the unicast and multicast chains 6255 */ 6256 dev_uc_flush(dev); 6257 dev_mc_flush(dev); 6258 6259 if (dev->netdev_ops->ndo_uninit) 6260 dev->netdev_ops->ndo_uninit(dev); 6261 6262 if (skb) 6263 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL); 6264 6265 /* Notifier chain MUST detach us all upper devices. */ 6266 WARN_ON(netdev_has_any_upper_dev(dev)); 6267 6268 /* Remove entries from kobject tree */ 6269 netdev_unregister_kobject(dev); 6270 #ifdef CONFIG_XPS 6271 /* Remove XPS queueing entries */ 6272 netif_reset_xps_queues_gt(dev, 0); 6273 #endif 6274 } 6275 6276 synchronize_net(); 6277 6278 list_for_each_entry(dev, head, unreg_list) 6279 dev_put(dev); 6280 } 6281 6282 static void rollback_registered(struct net_device *dev) 6283 { 6284 LIST_HEAD(single); 6285 6286 list_add(&dev->unreg_list, &single); 6287 rollback_registered_many(&single); 6288 list_del(&single); 6289 } 6290 6291 static netdev_features_t netdev_sync_upper_features(struct net_device *lower, 6292 struct net_device *upper, netdev_features_t features) 6293 { 6294 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES; 6295 netdev_features_t feature; 6296 int feature_bit; 6297 6298 for_each_netdev_feature(&upper_disables, feature_bit) { 6299 feature = __NETIF_F_BIT(feature_bit); 6300 if (!(upper->wanted_features & feature) 6301 && (features & feature)) { 6302 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n", 6303 &feature, upper->name); 6304 features &= ~feature; 6305 } 6306 } 6307 6308 return features; 6309 } 6310 6311 static void netdev_sync_lower_features(struct net_device *upper, 6312 struct net_device *lower, netdev_features_t features) 6313 { 6314 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES; 6315 netdev_features_t feature; 6316 int feature_bit; 6317 6318 for_each_netdev_feature(&upper_disables, feature_bit) { 6319 feature = __NETIF_F_BIT(feature_bit); 6320 if (!(features & feature) && (lower->features & feature)) { 6321 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n", 6322 &feature, lower->name); 6323 lower->wanted_features &= ~feature; 6324 netdev_update_features(lower); 6325 6326 if (unlikely(lower->features & feature)) 6327 netdev_WARN(upper, "failed to disable %pNF on %s!\n", 6328 &feature, lower->name); 6329 } 6330 } 6331 } 6332 6333 static netdev_features_t netdev_fix_features(struct net_device *dev, 6334 netdev_features_t features) 6335 { 6336 /* Fix illegal checksum combinations */ 6337 if ((features & NETIF_F_HW_CSUM) && 6338 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 6339 netdev_warn(dev, "mixed HW and IP checksum settings.\n"); 6340 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 6341 } 6342 6343 /* TSO requires that SG is present as well. */ 6344 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) { 6345 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n"); 6346 features &= ~NETIF_F_ALL_TSO; 6347 } 6348 6349 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) && 6350 !(features & NETIF_F_IP_CSUM)) { 6351 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n"); 6352 features &= ~NETIF_F_TSO; 6353 features &= ~NETIF_F_TSO_ECN; 6354 } 6355 6356 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) && 6357 !(features & NETIF_F_IPV6_CSUM)) { 6358 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n"); 6359 features &= ~NETIF_F_TSO6; 6360 } 6361 6362 /* TSO ECN requires that TSO is present as well. */ 6363 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN) 6364 features &= ~NETIF_F_TSO_ECN; 6365 6366 /* Software GSO depends on SG. */ 6367 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) { 6368 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n"); 6369 features &= ~NETIF_F_GSO; 6370 } 6371 6372 /* UFO needs SG and checksumming */ 6373 if (features & NETIF_F_UFO) { 6374 /* maybe split UFO into V4 and V6? */ 6375 if (!((features & NETIF_F_GEN_CSUM) || 6376 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM)) 6377 == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 6378 netdev_dbg(dev, 6379 "Dropping NETIF_F_UFO since no checksum offload features.\n"); 6380 features &= ~NETIF_F_UFO; 6381 } 6382 6383 if (!(features & NETIF_F_SG)) { 6384 netdev_dbg(dev, 6385 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n"); 6386 features &= ~NETIF_F_UFO; 6387 } 6388 } 6389 6390 #ifdef CONFIG_NET_RX_BUSY_POLL 6391 if (dev->netdev_ops->ndo_busy_poll) 6392 features |= NETIF_F_BUSY_POLL; 6393 else 6394 #endif 6395 features &= ~NETIF_F_BUSY_POLL; 6396 6397 return features; 6398 } 6399 6400 int __netdev_update_features(struct net_device *dev) 6401 { 6402 struct net_device *upper, *lower; 6403 netdev_features_t features; 6404 struct list_head *iter; 6405 int err = -1; 6406 6407 ASSERT_RTNL(); 6408 6409 features = netdev_get_wanted_features(dev); 6410 6411 if (dev->netdev_ops->ndo_fix_features) 6412 features = dev->netdev_ops->ndo_fix_features(dev, features); 6413 6414 /* driver might be less strict about feature dependencies */ 6415 features = netdev_fix_features(dev, features); 6416 6417 /* some features can't be enabled if they're off an an upper device */ 6418 netdev_for_each_upper_dev_rcu(dev, upper, iter) 6419 features = netdev_sync_upper_features(dev, upper, features); 6420 6421 if (dev->features == features) 6422 goto sync_lower; 6423 6424 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n", 6425 &dev->features, &features); 6426 6427 if (dev->netdev_ops->ndo_set_features) 6428 err = dev->netdev_ops->ndo_set_features(dev, features); 6429 6430 if (unlikely(err < 0)) { 6431 netdev_err(dev, 6432 "set_features() failed (%d); wanted %pNF, left %pNF\n", 6433 err, &features, &dev->features); 6434 return -1; 6435 } 6436 6437 sync_lower: 6438 /* some features must be disabled on lower devices when disabled 6439 * on an upper device (think: bonding master or bridge) 6440 */ 6441 netdev_for_each_lower_dev(dev, lower, iter) 6442 netdev_sync_lower_features(dev, lower, features); 6443 6444 if (!err) 6445 dev->features = features; 6446 6447 return err < 0 ? 0 : 1; 6448 } 6449 6450 /** 6451 * netdev_update_features - recalculate device features 6452 * @dev: the device to check 6453 * 6454 * Recalculate dev->features set and send notifications if it 6455 * has changed. Should be called after driver or hardware dependent 6456 * conditions might have changed that influence the features. 6457 */ 6458 void netdev_update_features(struct net_device *dev) 6459 { 6460 if (__netdev_update_features(dev)) 6461 netdev_features_change(dev); 6462 } 6463 EXPORT_SYMBOL(netdev_update_features); 6464 6465 /** 6466 * netdev_change_features - recalculate device features 6467 * @dev: the device to check 6468 * 6469 * Recalculate dev->features set and send notifications even 6470 * if they have not changed. Should be called instead of 6471 * netdev_update_features() if also dev->vlan_features might 6472 * have changed to allow the changes to be propagated to stacked 6473 * VLAN devices. 6474 */ 6475 void netdev_change_features(struct net_device *dev) 6476 { 6477 __netdev_update_features(dev); 6478 netdev_features_change(dev); 6479 } 6480 EXPORT_SYMBOL(netdev_change_features); 6481 6482 /** 6483 * netif_stacked_transfer_operstate - transfer operstate 6484 * @rootdev: the root or lower level device to transfer state from 6485 * @dev: the device to transfer operstate to 6486 * 6487 * Transfer operational state from root to device. This is normally 6488 * called when a stacking relationship exists between the root 6489 * device and the device(a leaf device). 6490 */ 6491 void netif_stacked_transfer_operstate(const struct net_device *rootdev, 6492 struct net_device *dev) 6493 { 6494 if (rootdev->operstate == IF_OPER_DORMANT) 6495 netif_dormant_on(dev); 6496 else 6497 netif_dormant_off(dev); 6498 6499 if (netif_carrier_ok(rootdev)) { 6500 if (!netif_carrier_ok(dev)) 6501 netif_carrier_on(dev); 6502 } else { 6503 if (netif_carrier_ok(dev)) 6504 netif_carrier_off(dev); 6505 } 6506 } 6507 EXPORT_SYMBOL(netif_stacked_transfer_operstate); 6508 6509 #ifdef CONFIG_SYSFS 6510 static int netif_alloc_rx_queues(struct net_device *dev) 6511 { 6512 unsigned int i, count = dev->num_rx_queues; 6513 struct netdev_rx_queue *rx; 6514 size_t sz = count * sizeof(*rx); 6515 6516 BUG_ON(count < 1); 6517 6518 rx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT); 6519 if (!rx) { 6520 rx = vzalloc(sz); 6521 if (!rx) 6522 return -ENOMEM; 6523 } 6524 dev->_rx = rx; 6525 6526 for (i = 0; i < count; i++) 6527 rx[i].dev = dev; 6528 return 0; 6529 } 6530 #endif 6531 6532 static void netdev_init_one_queue(struct net_device *dev, 6533 struct netdev_queue *queue, void *_unused) 6534 { 6535 /* Initialize queue lock */ 6536 spin_lock_init(&queue->_xmit_lock); 6537 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type); 6538 queue->xmit_lock_owner = -1; 6539 netdev_queue_numa_node_write(queue, NUMA_NO_NODE); 6540 queue->dev = dev; 6541 #ifdef CONFIG_BQL 6542 dql_init(&queue->dql, HZ); 6543 #endif 6544 } 6545 6546 static void netif_free_tx_queues(struct net_device *dev) 6547 { 6548 kvfree(dev->_tx); 6549 } 6550 6551 static int netif_alloc_netdev_queues(struct net_device *dev) 6552 { 6553 unsigned int count = dev->num_tx_queues; 6554 struct netdev_queue *tx; 6555 size_t sz = count * sizeof(*tx); 6556 6557 if (count < 1 || count > 0xffff) 6558 return -EINVAL; 6559 6560 tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT); 6561 if (!tx) { 6562 tx = vzalloc(sz); 6563 if (!tx) 6564 return -ENOMEM; 6565 } 6566 dev->_tx = tx; 6567 6568 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL); 6569 spin_lock_init(&dev->tx_global_lock); 6570 6571 return 0; 6572 } 6573 6574 void netif_tx_stop_all_queues(struct net_device *dev) 6575 { 6576 unsigned int i; 6577 6578 for (i = 0; i < dev->num_tx_queues; i++) { 6579 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 6580 netif_tx_stop_queue(txq); 6581 } 6582 } 6583 EXPORT_SYMBOL(netif_tx_stop_all_queues); 6584 6585 /** 6586 * register_netdevice - register a network device 6587 * @dev: device to register 6588 * 6589 * Take a completed network device structure and add it to the kernel 6590 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 6591 * chain. 0 is returned on success. A negative errno code is returned 6592 * on a failure to set up the device, or if the name is a duplicate. 6593 * 6594 * Callers must hold the rtnl semaphore. You may want 6595 * register_netdev() instead of this. 6596 * 6597 * BUGS: 6598 * The locking appears insufficient to guarantee two parallel registers 6599 * will not get the same name. 6600 */ 6601 6602 int register_netdevice(struct net_device *dev) 6603 { 6604 int ret; 6605 struct net *net = dev_net(dev); 6606 6607 BUG_ON(dev_boot_phase); 6608 ASSERT_RTNL(); 6609 6610 might_sleep(); 6611 6612 /* When net_device's are persistent, this will be fatal. */ 6613 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED); 6614 BUG_ON(!net); 6615 6616 spin_lock_init(&dev->addr_list_lock); 6617 netdev_set_addr_lockdep_class(dev); 6618 6619 ret = dev_get_valid_name(net, dev, dev->name); 6620 if (ret < 0) 6621 goto out; 6622 6623 /* Init, if this function is available */ 6624 if (dev->netdev_ops->ndo_init) { 6625 ret = dev->netdev_ops->ndo_init(dev); 6626 if (ret) { 6627 if (ret > 0) 6628 ret = -EIO; 6629 goto out; 6630 } 6631 } 6632 6633 if (((dev->hw_features | dev->features) & 6634 NETIF_F_HW_VLAN_CTAG_FILTER) && 6635 (!dev->netdev_ops->ndo_vlan_rx_add_vid || 6636 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) { 6637 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n"); 6638 ret = -EINVAL; 6639 goto err_uninit; 6640 } 6641 6642 ret = -EBUSY; 6643 if (!dev->ifindex) 6644 dev->ifindex = dev_new_index(net); 6645 else if (__dev_get_by_index(net, dev->ifindex)) 6646 goto err_uninit; 6647 6648 /* Transfer changeable features to wanted_features and enable 6649 * software offloads (GSO and GRO). 6650 */ 6651 dev->hw_features |= NETIF_F_SOFT_FEATURES; 6652 dev->features |= NETIF_F_SOFT_FEATURES; 6653 dev->wanted_features = dev->features & dev->hw_features; 6654 6655 if (!(dev->flags & IFF_LOOPBACK)) { 6656 dev->hw_features |= NETIF_F_NOCACHE_COPY; 6657 } 6658 6659 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices. 6660 */ 6661 dev->vlan_features |= NETIF_F_HIGHDMA; 6662 6663 /* Make NETIF_F_SG inheritable to tunnel devices. 6664 */ 6665 dev->hw_enc_features |= NETIF_F_SG; 6666 6667 /* Make NETIF_F_SG inheritable to MPLS. 6668 */ 6669 dev->mpls_features |= NETIF_F_SG; 6670 6671 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev); 6672 ret = notifier_to_errno(ret); 6673 if (ret) 6674 goto err_uninit; 6675 6676 ret = netdev_register_kobject(dev); 6677 if (ret) 6678 goto err_uninit; 6679 dev->reg_state = NETREG_REGISTERED; 6680 6681 __netdev_update_features(dev); 6682 6683 /* 6684 * Default initial state at registry is that the 6685 * device is present. 6686 */ 6687 6688 set_bit(__LINK_STATE_PRESENT, &dev->state); 6689 6690 linkwatch_init_dev(dev); 6691 6692 dev_init_scheduler(dev); 6693 dev_hold(dev); 6694 list_netdevice(dev); 6695 add_device_randomness(dev->dev_addr, dev->addr_len); 6696 6697 /* If the device has permanent device address, driver should 6698 * set dev_addr and also addr_assign_type should be set to 6699 * NET_ADDR_PERM (default value). 6700 */ 6701 if (dev->addr_assign_type == NET_ADDR_PERM) 6702 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len); 6703 6704 /* Notify protocols, that a new device appeared. */ 6705 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev); 6706 ret = notifier_to_errno(ret); 6707 if (ret) { 6708 rollback_registered(dev); 6709 dev->reg_state = NETREG_UNREGISTERED; 6710 } 6711 /* 6712 * Prevent userspace races by waiting until the network 6713 * device is fully setup before sending notifications. 6714 */ 6715 if (!dev->rtnl_link_ops || 6716 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 6717 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL); 6718 6719 out: 6720 return ret; 6721 6722 err_uninit: 6723 if (dev->netdev_ops->ndo_uninit) 6724 dev->netdev_ops->ndo_uninit(dev); 6725 goto out; 6726 } 6727 EXPORT_SYMBOL(register_netdevice); 6728 6729 /** 6730 * init_dummy_netdev - init a dummy network device for NAPI 6731 * @dev: device to init 6732 * 6733 * This takes a network device structure and initialize the minimum 6734 * amount of fields so it can be used to schedule NAPI polls without 6735 * registering a full blown interface. This is to be used by drivers 6736 * that need to tie several hardware interfaces to a single NAPI 6737 * poll scheduler due to HW limitations. 6738 */ 6739 int init_dummy_netdev(struct net_device *dev) 6740 { 6741 /* Clear everything. Note we don't initialize spinlocks 6742 * are they aren't supposed to be taken by any of the 6743 * NAPI code and this dummy netdev is supposed to be 6744 * only ever used for NAPI polls 6745 */ 6746 memset(dev, 0, sizeof(struct net_device)); 6747 6748 /* make sure we BUG if trying to hit standard 6749 * register/unregister code path 6750 */ 6751 dev->reg_state = NETREG_DUMMY; 6752 6753 /* NAPI wants this */ 6754 INIT_LIST_HEAD(&dev->napi_list); 6755 6756 /* a dummy interface is started by default */ 6757 set_bit(__LINK_STATE_PRESENT, &dev->state); 6758 set_bit(__LINK_STATE_START, &dev->state); 6759 6760 /* Note : We dont allocate pcpu_refcnt for dummy devices, 6761 * because users of this 'device' dont need to change 6762 * its refcount. 6763 */ 6764 6765 return 0; 6766 } 6767 EXPORT_SYMBOL_GPL(init_dummy_netdev); 6768 6769 6770 /** 6771 * register_netdev - register a network device 6772 * @dev: device to register 6773 * 6774 * Take a completed network device structure and add it to the kernel 6775 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 6776 * chain. 0 is returned on success. A negative errno code is returned 6777 * on a failure to set up the device, or if the name is a duplicate. 6778 * 6779 * This is a wrapper around register_netdevice that takes the rtnl semaphore 6780 * and expands the device name if you passed a format string to 6781 * alloc_netdev. 6782 */ 6783 int register_netdev(struct net_device *dev) 6784 { 6785 int err; 6786 6787 rtnl_lock(); 6788 err = register_netdevice(dev); 6789 rtnl_unlock(); 6790 return err; 6791 } 6792 EXPORT_SYMBOL(register_netdev); 6793 6794 int netdev_refcnt_read(const struct net_device *dev) 6795 { 6796 int i, refcnt = 0; 6797 6798 for_each_possible_cpu(i) 6799 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i); 6800 return refcnt; 6801 } 6802 EXPORT_SYMBOL(netdev_refcnt_read); 6803 6804 /** 6805 * netdev_wait_allrefs - wait until all references are gone. 6806 * @dev: target net_device 6807 * 6808 * This is called when unregistering network devices. 6809 * 6810 * Any protocol or device that holds a reference should register 6811 * for netdevice notification, and cleanup and put back the 6812 * reference if they receive an UNREGISTER event. 6813 * We can get stuck here if buggy protocols don't correctly 6814 * call dev_put. 6815 */ 6816 static void netdev_wait_allrefs(struct net_device *dev) 6817 { 6818 unsigned long rebroadcast_time, warning_time; 6819 int refcnt; 6820 6821 linkwatch_forget_dev(dev); 6822 6823 rebroadcast_time = warning_time = jiffies; 6824 refcnt = netdev_refcnt_read(dev); 6825 6826 while (refcnt != 0) { 6827 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) { 6828 rtnl_lock(); 6829 6830 /* Rebroadcast unregister notification */ 6831 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 6832 6833 __rtnl_unlock(); 6834 rcu_barrier(); 6835 rtnl_lock(); 6836 6837 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev); 6838 if (test_bit(__LINK_STATE_LINKWATCH_PENDING, 6839 &dev->state)) { 6840 /* We must not have linkwatch events 6841 * pending on unregister. If this 6842 * happens, we simply run the queue 6843 * unscheduled, resulting in a noop 6844 * for this device. 6845 */ 6846 linkwatch_run_queue(); 6847 } 6848 6849 __rtnl_unlock(); 6850 6851 rebroadcast_time = jiffies; 6852 } 6853 6854 msleep(250); 6855 6856 refcnt = netdev_refcnt_read(dev); 6857 6858 if (time_after(jiffies, warning_time + 10 * HZ)) { 6859 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n", 6860 dev->name, refcnt); 6861 warning_time = jiffies; 6862 } 6863 } 6864 } 6865 6866 /* The sequence is: 6867 * 6868 * rtnl_lock(); 6869 * ... 6870 * register_netdevice(x1); 6871 * register_netdevice(x2); 6872 * ... 6873 * unregister_netdevice(y1); 6874 * unregister_netdevice(y2); 6875 * ... 6876 * rtnl_unlock(); 6877 * free_netdev(y1); 6878 * free_netdev(y2); 6879 * 6880 * We are invoked by rtnl_unlock(). 6881 * This allows us to deal with problems: 6882 * 1) We can delete sysfs objects which invoke hotplug 6883 * without deadlocking with linkwatch via keventd. 6884 * 2) Since we run with the RTNL semaphore not held, we can sleep 6885 * safely in order to wait for the netdev refcnt to drop to zero. 6886 * 6887 * We must not return until all unregister events added during 6888 * the interval the lock was held have been completed. 6889 */ 6890 void netdev_run_todo(void) 6891 { 6892 struct list_head list; 6893 6894 /* Snapshot list, allow later requests */ 6895 list_replace_init(&net_todo_list, &list); 6896 6897 __rtnl_unlock(); 6898 6899 6900 /* Wait for rcu callbacks to finish before next phase */ 6901 if (!list_empty(&list)) 6902 rcu_barrier(); 6903 6904 while (!list_empty(&list)) { 6905 struct net_device *dev 6906 = list_first_entry(&list, struct net_device, todo_list); 6907 list_del(&dev->todo_list); 6908 6909 rtnl_lock(); 6910 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev); 6911 __rtnl_unlock(); 6912 6913 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) { 6914 pr_err("network todo '%s' but state %d\n", 6915 dev->name, dev->reg_state); 6916 dump_stack(); 6917 continue; 6918 } 6919 6920 dev->reg_state = NETREG_UNREGISTERED; 6921 6922 netdev_wait_allrefs(dev); 6923 6924 /* paranoia */ 6925 BUG_ON(netdev_refcnt_read(dev)); 6926 BUG_ON(!list_empty(&dev->ptype_all)); 6927 BUG_ON(!list_empty(&dev->ptype_specific)); 6928 WARN_ON(rcu_access_pointer(dev->ip_ptr)); 6929 WARN_ON(rcu_access_pointer(dev->ip6_ptr)); 6930 WARN_ON(dev->dn_ptr); 6931 6932 if (dev->destructor) 6933 dev->destructor(dev); 6934 6935 /* Report a network device has been unregistered */ 6936 rtnl_lock(); 6937 dev_net(dev)->dev_unreg_count--; 6938 __rtnl_unlock(); 6939 wake_up(&netdev_unregistering_wq); 6940 6941 /* Free network device */ 6942 kobject_put(&dev->dev.kobj); 6943 } 6944 } 6945 6946 /* Convert net_device_stats to rtnl_link_stats64. They have the same 6947 * fields in the same order, with only the type differing. 6948 */ 6949 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 6950 const struct net_device_stats *netdev_stats) 6951 { 6952 #if BITS_PER_LONG == 64 6953 BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats)); 6954 memcpy(stats64, netdev_stats, sizeof(*stats64)); 6955 #else 6956 size_t i, n = sizeof(*stats64) / sizeof(u64); 6957 const unsigned long *src = (const unsigned long *)netdev_stats; 6958 u64 *dst = (u64 *)stats64; 6959 6960 BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) != 6961 sizeof(*stats64) / sizeof(u64)); 6962 for (i = 0; i < n; i++) 6963 dst[i] = src[i]; 6964 #endif 6965 } 6966 EXPORT_SYMBOL(netdev_stats_to_stats64); 6967 6968 /** 6969 * dev_get_stats - get network device statistics 6970 * @dev: device to get statistics from 6971 * @storage: place to store stats 6972 * 6973 * Get network statistics from device. Return @storage. 6974 * The device driver may provide its own method by setting 6975 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats; 6976 * otherwise the internal statistics structure is used. 6977 */ 6978 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 6979 struct rtnl_link_stats64 *storage) 6980 { 6981 const struct net_device_ops *ops = dev->netdev_ops; 6982 6983 if (ops->ndo_get_stats64) { 6984 memset(storage, 0, sizeof(*storage)); 6985 ops->ndo_get_stats64(dev, storage); 6986 } else if (ops->ndo_get_stats) { 6987 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev)); 6988 } else { 6989 netdev_stats_to_stats64(storage, &dev->stats); 6990 } 6991 storage->rx_dropped += atomic_long_read(&dev->rx_dropped); 6992 storage->tx_dropped += atomic_long_read(&dev->tx_dropped); 6993 return storage; 6994 } 6995 EXPORT_SYMBOL(dev_get_stats); 6996 6997 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev) 6998 { 6999 struct netdev_queue *queue = dev_ingress_queue(dev); 7000 7001 #ifdef CONFIG_NET_CLS_ACT 7002 if (queue) 7003 return queue; 7004 queue = kzalloc(sizeof(*queue), GFP_KERNEL); 7005 if (!queue) 7006 return NULL; 7007 netdev_init_one_queue(dev, queue, NULL); 7008 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc); 7009 queue->qdisc_sleeping = &noop_qdisc; 7010 rcu_assign_pointer(dev->ingress_queue, queue); 7011 #endif 7012 return queue; 7013 } 7014 7015 static const struct ethtool_ops default_ethtool_ops; 7016 7017 void netdev_set_default_ethtool_ops(struct net_device *dev, 7018 const struct ethtool_ops *ops) 7019 { 7020 if (dev->ethtool_ops == &default_ethtool_ops) 7021 dev->ethtool_ops = ops; 7022 } 7023 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops); 7024 7025 void netdev_freemem(struct net_device *dev) 7026 { 7027 char *addr = (char *)dev - dev->padded; 7028 7029 kvfree(addr); 7030 } 7031 7032 /** 7033 * alloc_netdev_mqs - allocate network device 7034 * @sizeof_priv: size of private data to allocate space for 7035 * @name: device name format string 7036 * @name_assign_type: origin of device name 7037 * @setup: callback to initialize device 7038 * @txqs: the number of TX subqueues to allocate 7039 * @rxqs: the number of RX subqueues to allocate 7040 * 7041 * Allocates a struct net_device with private data area for driver use 7042 * and performs basic initialization. Also allocates subqueue structs 7043 * for each queue on the device. 7044 */ 7045 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 7046 unsigned char name_assign_type, 7047 void (*setup)(struct net_device *), 7048 unsigned int txqs, unsigned int rxqs) 7049 { 7050 struct net_device *dev; 7051 size_t alloc_size; 7052 struct net_device *p; 7053 7054 BUG_ON(strlen(name) >= sizeof(dev->name)); 7055 7056 if (txqs < 1) { 7057 pr_err("alloc_netdev: Unable to allocate device with zero queues\n"); 7058 return NULL; 7059 } 7060 7061 #ifdef CONFIG_SYSFS 7062 if (rxqs < 1) { 7063 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n"); 7064 return NULL; 7065 } 7066 #endif 7067 7068 alloc_size = sizeof(struct net_device); 7069 if (sizeof_priv) { 7070 /* ensure 32-byte alignment of private area */ 7071 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN); 7072 alloc_size += sizeof_priv; 7073 } 7074 /* ensure 32-byte alignment of whole construct */ 7075 alloc_size += NETDEV_ALIGN - 1; 7076 7077 p = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT); 7078 if (!p) 7079 p = vzalloc(alloc_size); 7080 if (!p) 7081 return NULL; 7082 7083 dev = PTR_ALIGN(p, NETDEV_ALIGN); 7084 dev->padded = (char *)dev - (char *)p; 7085 7086 dev->pcpu_refcnt = alloc_percpu(int); 7087 if (!dev->pcpu_refcnt) 7088 goto free_dev; 7089 7090 if (dev_addr_init(dev)) 7091 goto free_pcpu; 7092 7093 dev_mc_init(dev); 7094 dev_uc_init(dev); 7095 7096 dev_net_set(dev, &init_net); 7097 7098 dev->gso_max_size = GSO_MAX_SIZE; 7099 dev->gso_max_segs = GSO_MAX_SEGS; 7100 dev->gso_min_segs = 0; 7101 7102 INIT_LIST_HEAD(&dev->napi_list); 7103 INIT_LIST_HEAD(&dev->unreg_list); 7104 INIT_LIST_HEAD(&dev->close_list); 7105 INIT_LIST_HEAD(&dev->link_watch_list); 7106 INIT_LIST_HEAD(&dev->adj_list.upper); 7107 INIT_LIST_HEAD(&dev->adj_list.lower); 7108 INIT_LIST_HEAD(&dev->all_adj_list.upper); 7109 INIT_LIST_HEAD(&dev->all_adj_list.lower); 7110 INIT_LIST_HEAD(&dev->ptype_all); 7111 INIT_LIST_HEAD(&dev->ptype_specific); 7112 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM; 7113 setup(dev); 7114 7115 if (!dev->tx_queue_len) 7116 dev->priv_flags |= IFF_NO_QUEUE; 7117 7118 dev->num_tx_queues = txqs; 7119 dev->real_num_tx_queues = txqs; 7120 if (netif_alloc_netdev_queues(dev)) 7121 goto free_all; 7122 7123 #ifdef CONFIG_SYSFS 7124 dev->num_rx_queues = rxqs; 7125 dev->real_num_rx_queues = rxqs; 7126 if (netif_alloc_rx_queues(dev)) 7127 goto free_all; 7128 #endif 7129 7130 strcpy(dev->name, name); 7131 dev->name_assign_type = name_assign_type; 7132 dev->group = INIT_NETDEV_GROUP; 7133 if (!dev->ethtool_ops) 7134 dev->ethtool_ops = &default_ethtool_ops; 7135 7136 nf_hook_ingress_init(dev); 7137 7138 return dev; 7139 7140 free_all: 7141 free_netdev(dev); 7142 return NULL; 7143 7144 free_pcpu: 7145 free_percpu(dev->pcpu_refcnt); 7146 free_dev: 7147 netdev_freemem(dev); 7148 return NULL; 7149 } 7150 EXPORT_SYMBOL(alloc_netdev_mqs); 7151 7152 /** 7153 * free_netdev - free network device 7154 * @dev: device 7155 * 7156 * This function does the last stage of destroying an allocated device 7157 * interface. The reference to the device object is released. 7158 * If this is the last reference then it will be freed. 7159 */ 7160 void free_netdev(struct net_device *dev) 7161 { 7162 struct napi_struct *p, *n; 7163 7164 netif_free_tx_queues(dev); 7165 #ifdef CONFIG_SYSFS 7166 kvfree(dev->_rx); 7167 #endif 7168 7169 kfree(rcu_dereference_protected(dev->ingress_queue, 1)); 7170 7171 /* Flush device addresses */ 7172 dev_addr_flush(dev); 7173 7174 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list) 7175 netif_napi_del(p); 7176 7177 free_percpu(dev->pcpu_refcnt); 7178 dev->pcpu_refcnt = NULL; 7179 7180 /* Compatibility with error handling in drivers */ 7181 if (dev->reg_state == NETREG_UNINITIALIZED) { 7182 netdev_freemem(dev); 7183 return; 7184 } 7185 7186 BUG_ON(dev->reg_state != NETREG_UNREGISTERED); 7187 dev->reg_state = NETREG_RELEASED; 7188 7189 /* will free via device release */ 7190 put_device(&dev->dev); 7191 } 7192 EXPORT_SYMBOL(free_netdev); 7193 7194 /** 7195 * synchronize_net - Synchronize with packet receive processing 7196 * 7197 * Wait for packets currently being received to be done. 7198 * Does not block later packets from starting. 7199 */ 7200 void synchronize_net(void) 7201 { 7202 might_sleep(); 7203 if (rtnl_is_locked()) 7204 synchronize_rcu_expedited(); 7205 else 7206 synchronize_rcu(); 7207 } 7208 EXPORT_SYMBOL(synchronize_net); 7209 7210 /** 7211 * unregister_netdevice_queue - remove device from the kernel 7212 * @dev: device 7213 * @head: list 7214 * 7215 * This function shuts down a device interface and removes it 7216 * from the kernel tables. 7217 * If head not NULL, device is queued to be unregistered later. 7218 * 7219 * Callers must hold the rtnl semaphore. You may want 7220 * unregister_netdev() instead of this. 7221 */ 7222 7223 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head) 7224 { 7225 ASSERT_RTNL(); 7226 7227 if (head) { 7228 list_move_tail(&dev->unreg_list, head); 7229 } else { 7230 rollback_registered(dev); 7231 /* Finish processing unregister after unlock */ 7232 net_set_todo(dev); 7233 } 7234 } 7235 EXPORT_SYMBOL(unregister_netdevice_queue); 7236 7237 /** 7238 * unregister_netdevice_many - unregister many devices 7239 * @head: list of devices 7240 * 7241 * Note: As most callers use a stack allocated list_head, 7242 * we force a list_del() to make sure stack wont be corrupted later. 7243 */ 7244 void unregister_netdevice_many(struct list_head *head) 7245 { 7246 struct net_device *dev; 7247 7248 if (!list_empty(head)) { 7249 rollback_registered_many(head); 7250 list_for_each_entry(dev, head, unreg_list) 7251 net_set_todo(dev); 7252 list_del(head); 7253 } 7254 } 7255 EXPORT_SYMBOL(unregister_netdevice_many); 7256 7257 /** 7258 * unregister_netdev - remove device from the kernel 7259 * @dev: device 7260 * 7261 * This function shuts down a device interface and removes it 7262 * from the kernel tables. 7263 * 7264 * This is just a wrapper for unregister_netdevice that takes 7265 * the rtnl semaphore. In general you want to use this and not 7266 * unregister_netdevice. 7267 */ 7268 void unregister_netdev(struct net_device *dev) 7269 { 7270 rtnl_lock(); 7271 unregister_netdevice(dev); 7272 rtnl_unlock(); 7273 } 7274 EXPORT_SYMBOL(unregister_netdev); 7275 7276 /** 7277 * dev_change_net_namespace - move device to different nethost namespace 7278 * @dev: device 7279 * @net: network namespace 7280 * @pat: If not NULL name pattern to try if the current device name 7281 * is already taken in the destination network namespace. 7282 * 7283 * This function shuts down a device interface and moves it 7284 * to a new network namespace. On success 0 is returned, on 7285 * a failure a netagive errno code is returned. 7286 * 7287 * Callers must hold the rtnl semaphore. 7288 */ 7289 7290 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat) 7291 { 7292 int err; 7293 7294 ASSERT_RTNL(); 7295 7296 /* Don't allow namespace local devices to be moved. */ 7297 err = -EINVAL; 7298 if (dev->features & NETIF_F_NETNS_LOCAL) 7299 goto out; 7300 7301 /* Ensure the device has been registrered */ 7302 if (dev->reg_state != NETREG_REGISTERED) 7303 goto out; 7304 7305 /* Get out if there is nothing todo */ 7306 err = 0; 7307 if (net_eq(dev_net(dev), net)) 7308 goto out; 7309 7310 /* Pick the destination device name, and ensure 7311 * we can use it in the destination network namespace. 7312 */ 7313 err = -EEXIST; 7314 if (__dev_get_by_name(net, dev->name)) { 7315 /* We get here if we can't use the current device name */ 7316 if (!pat) 7317 goto out; 7318 if (dev_get_valid_name(net, dev, pat) < 0) 7319 goto out; 7320 } 7321 7322 /* 7323 * And now a mini version of register_netdevice unregister_netdevice. 7324 */ 7325 7326 /* If device is running close it first. */ 7327 dev_close(dev); 7328 7329 /* And unlink it from device chain */ 7330 err = -ENODEV; 7331 unlist_netdevice(dev); 7332 7333 synchronize_net(); 7334 7335 /* Shutdown queueing discipline. */ 7336 dev_shutdown(dev); 7337 7338 /* Notify protocols, that we are about to destroy 7339 this device. They should clean all the things. 7340 7341 Note that dev->reg_state stays at NETREG_REGISTERED. 7342 This is wanted because this way 8021q and macvlan know 7343 the device is just moving and can keep their slaves up. 7344 */ 7345 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 7346 rcu_barrier(); 7347 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev); 7348 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL); 7349 7350 /* 7351 * Flush the unicast and multicast chains 7352 */ 7353 dev_uc_flush(dev); 7354 dev_mc_flush(dev); 7355 7356 /* Send a netdev-removed uevent to the old namespace */ 7357 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE); 7358 netdev_adjacent_del_links(dev); 7359 7360 /* Actually switch the network namespace */ 7361 dev_net_set(dev, net); 7362 7363 /* If there is an ifindex conflict assign a new one */ 7364 if (__dev_get_by_index(net, dev->ifindex)) 7365 dev->ifindex = dev_new_index(net); 7366 7367 /* Send a netdev-add uevent to the new namespace */ 7368 kobject_uevent(&dev->dev.kobj, KOBJ_ADD); 7369 netdev_adjacent_add_links(dev); 7370 7371 /* Fixup kobjects */ 7372 err = device_rename(&dev->dev, dev->name); 7373 WARN_ON(err); 7374 7375 /* Add the device back in the hashes */ 7376 list_netdevice(dev); 7377 7378 /* Notify protocols, that a new device appeared. */ 7379 call_netdevice_notifiers(NETDEV_REGISTER, dev); 7380 7381 /* 7382 * Prevent userspace races by waiting until the network 7383 * device is fully setup before sending notifications. 7384 */ 7385 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL); 7386 7387 synchronize_net(); 7388 err = 0; 7389 out: 7390 return err; 7391 } 7392 EXPORT_SYMBOL_GPL(dev_change_net_namespace); 7393 7394 static int dev_cpu_callback(struct notifier_block *nfb, 7395 unsigned long action, 7396 void *ocpu) 7397 { 7398 struct sk_buff **list_skb; 7399 struct sk_buff *skb; 7400 unsigned int cpu, oldcpu = (unsigned long)ocpu; 7401 struct softnet_data *sd, *oldsd; 7402 7403 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN) 7404 return NOTIFY_OK; 7405 7406 local_irq_disable(); 7407 cpu = smp_processor_id(); 7408 sd = &per_cpu(softnet_data, cpu); 7409 oldsd = &per_cpu(softnet_data, oldcpu); 7410 7411 /* Find end of our completion_queue. */ 7412 list_skb = &sd->completion_queue; 7413 while (*list_skb) 7414 list_skb = &(*list_skb)->next; 7415 /* Append completion queue from offline CPU. */ 7416 *list_skb = oldsd->completion_queue; 7417 oldsd->completion_queue = NULL; 7418 7419 /* Append output queue from offline CPU. */ 7420 if (oldsd->output_queue) { 7421 *sd->output_queue_tailp = oldsd->output_queue; 7422 sd->output_queue_tailp = oldsd->output_queue_tailp; 7423 oldsd->output_queue = NULL; 7424 oldsd->output_queue_tailp = &oldsd->output_queue; 7425 } 7426 /* Append NAPI poll list from offline CPU, with one exception : 7427 * process_backlog() must be called by cpu owning percpu backlog. 7428 * We properly handle process_queue & input_pkt_queue later. 7429 */ 7430 while (!list_empty(&oldsd->poll_list)) { 7431 struct napi_struct *napi = list_first_entry(&oldsd->poll_list, 7432 struct napi_struct, 7433 poll_list); 7434 7435 list_del_init(&napi->poll_list); 7436 if (napi->poll == process_backlog) 7437 napi->state = 0; 7438 else 7439 ____napi_schedule(sd, napi); 7440 } 7441 7442 raise_softirq_irqoff(NET_TX_SOFTIRQ); 7443 local_irq_enable(); 7444 7445 /* Process offline CPU's input_pkt_queue */ 7446 while ((skb = __skb_dequeue(&oldsd->process_queue))) { 7447 netif_rx_ni(skb); 7448 input_queue_head_incr(oldsd); 7449 } 7450 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) { 7451 netif_rx_ni(skb); 7452 input_queue_head_incr(oldsd); 7453 } 7454 7455 return NOTIFY_OK; 7456 } 7457 7458 7459 /** 7460 * netdev_increment_features - increment feature set by one 7461 * @all: current feature set 7462 * @one: new feature set 7463 * @mask: mask feature set 7464 * 7465 * Computes a new feature set after adding a device with feature set 7466 * @one to the master device with current feature set @all. Will not 7467 * enable anything that is off in @mask. Returns the new feature set. 7468 */ 7469 netdev_features_t netdev_increment_features(netdev_features_t all, 7470 netdev_features_t one, netdev_features_t mask) 7471 { 7472 if (mask & NETIF_F_GEN_CSUM) 7473 mask |= NETIF_F_ALL_CSUM; 7474 mask |= NETIF_F_VLAN_CHALLENGED; 7475 7476 all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask; 7477 all &= one | ~NETIF_F_ALL_FOR_ALL; 7478 7479 /* If one device supports hw checksumming, set for all. */ 7480 if (all & NETIF_F_GEN_CSUM) 7481 all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM); 7482 7483 return all; 7484 } 7485 EXPORT_SYMBOL(netdev_increment_features); 7486 7487 static struct hlist_head * __net_init netdev_create_hash(void) 7488 { 7489 int i; 7490 struct hlist_head *hash; 7491 7492 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL); 7493 if (hash != NULL) 7494 for (i = 0; i < NETDEV_HASHENTRIES; i++) 7495 INIT_HLIST_HEAD(&hash[i]); 7496 7497 return hash; 7498 } 7499 7500 /* Initialize per network namespace state */ 7501 static int __net_init netdev_init(struct net *net) 7502 { 7503 if (net != &init_net) 7504 INIT_LIST_HEAD(&net->dev_base_head); 7505 7506 net->dev_name_head = netdev_create_hash(); 7507 if (net->dev_name_head == NULL) 7508 goto err_name; 7509 7510 net->dev_index_head = netdev_create_hash(); 7511 if (net->dev_index_head == NULL) 7512 goto err_idx; 7513 7514 return 0; 7515 7516 err_idx: 7517 kfree(net->dev_name_head); 7518 err_name: 7519 return -ENOMEM; 7520 } 7521 7522 /** 7523 * netdev_drivername - network driver for the device 7524 * @dev: network device 7525 * 7526 * Determine network driver for device. 7527 */ 7528 const char *netdev_drivername(const struct net_device *dev) 7529 { 7530 const struct device_driver *driver; 7531 const struct device *parent; 7532 const char *empty = ""; 7533 7534 parent = dev->dev.parent; 7535 if (!parent) 7536 return empty; 7537 7538 driver = parent->driver; 7539 if (driver && driver->name) 7540 return driver->name; 7541 return empty; 7542 } 7543 7544 static void __netdev_printk(const char *level, const struct net_device *dev, 7545 struct va_format *vaf) 7546 { 7547 if (dev && dev->dev.parent) { 7548 dev_printk_emit(level[1] - '0', 7549 dev->dev.parent, 7550 "%s %s %s%s: %pV", 7551 dev_driver_string(dev->dev.parent), 7552 dev_name(dev->dev.parent), 7553 netdev_name(dev), netdev_reg_state(dev), 7554 vaf); 7555 } else if (dev) { 7556 printk("%s%s%s: %pV", 7557 level, netdev_name(dev), netdev_reg_state(dev), vaf); 7558 } else { 7559 printk("%s(NULL net_device): %pV", level, vaf); 7560 } 7561 } 7562 7563 void netdev_printk(const char *level, const struct net_device *dev, 7564 const char *format, ...) 7565 { 7566 struct va_format vaf; 7567 va_list args; 7568 7569 va_start(args, format); 7570 7571 vaf.fmt = format; 7572 vaf.va = &args; 7573 7574 __netdev_printk(level, dev, &vaf); 7575 7576 va_end(args); 7577 } 7578 EXPORT_SYMBOL(netdev_printk); 7579 7580 #define define_netdev_printk_level(func, level) \ 7581 void func(const struct net_device *dev, const char *fmt, ...) \ 7582 { \ 7583 struct va_format vaf; \ 7584 va_list args; \ 7585 \ 7586 va_start(args, fmt); \ 7587 \ 7588 vaf.fmt = fmt; \ 7589 vaf.va = &args; \ 7590 \ 7591 __netdev_printk(level, dev, &vaf); \ 7592 \ 7593 va_end(args); \ 7594 } \ 7595 EXPORT_SYMBOL(func); 7596 7597 define_netdev_printk_level(netdev_emerg, KERN_EMERG); 7598 define_netdev_printk_level(netdev_alert, KERN_ALERT); 7599 define_netdev_printk_level(netdev_crit, KERN_CRIT); 7600 define_netdev_printk_level(netdev_err, KERN_ERR); 7601 define_netdev_printk_level(netdev_warn, KERN_WARNING); 7602 define_netdev_printk_level(netdev_notice, KERN_NOTICE); 7603 define_netdev_printk_level(netdev_info, KERN_INFO); 7604 7605 static void __net_exit netdev_exit(struct net *net) 7606 { 7607 kfree(net->dev_name_head); 7608 kfree(net->dev_index_head); 7609 } 7610 7611 static struct pernet_operations __net_initdata netdev_net_ops = { 7612 .init = netdev_init, 7613 .exit = netdev_exit, 7614 }; 7615 7616 static void __net_exit default_device_exit(struct net *net) 7617 { 7618 struct net_device *dev, *aux; 7619 /* 7620 * Push all migratable network devices back to the 7621 * initial network namespace 7622 */ 7623 rtnl_lock(); 7624 for_each_netdev_safe(net, dev, aux) { 7625 int err; 7626 char fb_name[IFNAMSIZ]; 7627 7628 /* Ignore unmoveable devices (i.e. loopback) */ 7629 if (dev->features & NETIF_F_NETNS_LOCAL) 7630 continue; 7631 7632 /* Leave virtual devices for the generic cleanup */ 7633 if (dev->rtnl_link_ops) 7634 continue; 7635 7636 /* Push remaining network devices to init_net */ 7637 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex); 7638 err = dev_change_net_namespace(dev, &init_net, fb_name); 7639 if (err) { 7640 pr_emerg("%s: failed to move %s to init_net: %d\n", 7641 __func__, dev->name, err); 7642 BUG(); 7643 } 7644 } 7645 rtnl_unlock(); 7646 } 7647 7648 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list) 7649 { 7650 /* Return with the rtnl_lock held when there are no network 7651 * devices unregistering in any network namespace in net_list. 7652 */ 7653 struct net *net; 7654 bool unregistering; 7655 DEFINE_WAIT_FUNC(wait, woken_wake_function); 7656 7657 add_wait_queue(&netdev_unregistering_wq, &wait); 7658 for (;;) { 7659 unregistering = false; 7660 rtnl_lock(); 7661 list_for_each_entry(net, net_list, exit_list) { 7662 if (net->dev_unreg_count > 0) { 7663 unregistering = true; 7664 break; 7665 } 7666 } 7667 if (!unregistering) 7668 break; 7669 __rtnl_unlock(); 7670 7671 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT); 7672 } 7673 remove_wait_queue(&netdev_unregistering_wq, &wait); 7674 } 7675 7676 static void __net_exit default_device_exit_batch(struct list_head *net_list) 7677 { 7678 /* At exit all network devices most be removed from a network 7679 * namespace. Do this in the reverse order of registration. 7680 * Do this across as many network namespaces as possible to 7681 * improve batching efficiency. 7682 */ 7683 struct net_device *dev; 7684 struct net *net; 7685 LIST_HEAD(dev_kill_list); 7686 7687 /* To prevent network device cleanup code from dereferencing 7688 * loopback devices or network devices that have been freed 7689 * wait here for all pending unregistrations to complete, 7690 * before unregistring the loopback device and allowing the 7691 * network namespace be freed. 7692 * 7693 * The netdev todo list containing all network devices 7694 * unregistrations that happen in default_device_exit_batch 7695 * will run in the rtnl_unlock() at the end of 7696 * default_device_exit_batch. 7697 */ 7698 rtnl_lock_unregistering(net_list); 7699 list_for_each_entry(net, net_list, exit_list) { 7700 for_each_netdev_reverse(net, dev) { 7701 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink) 7702 dev->rtnl_link_ops->dellink(dev, &dev_kill_list); 7703 else 7704 unregister_netdevice_queue(dev, &dev_kill_list); 7705 } 7706 } 7707 unregister_netdevice_many(&dev_kill_list); 7708 rtnl_unlock(); 7709 } 7710 7711 static struct pernet_operations __net_initdata default_device_ops = { 7712 .exit = default_device_exit, 7713 .exit_batch = default_device_exit_batch, 7714 }; 7715 7716 /* 7717 * Initialize the DEV module. At boot time this walks the device list and 7718 * unhooks any devices that fail to initialise (normally hardware not 7719 * present) and leaves us with a valid list of present and active devices. 7720 * 7721 */ 7722 7723 /* 7724 * This is called single threaded during boot, so no need 7725 * to take the rtnl semaphore. 7726 */ 7727 static int __init net_dev_init(void) 7728 { 7729 int i, rc = -ENOMEM; 7730 7731 BUG_ON(!dev_boot_phase); 7732 7733 if (dev_proc_init()) 7734 goto out; 7735 7736 if (netdev_kobject_init()) 7737 goto out; 7738 7739 INIT_LIST_HEAD(&ptype_all); 7740 for (i = 0; i < PTYPE_HASH_SIZE; i++) 7741 INIT_LIST_HEAD(&ptype_base[i]); 7742 7743 INIT_LIST_HEAD(&offload_base); 7744 7745 if (register_pernet_subsys(&netdev_net_ops)) 7746 goto out; 7747 7748 /* 7749 * Initialise the packet receive queues. 7750 */ 7751 7752 for_each_possible_cpu(i) { 7753 struct softnet_data *sd = &per_cpu(softnet_data, i); 7754 7755 skb_queue_head_init(&sd->input_pkt_queue); 7756 skb_queue_head_init(&sd->process_queue); 7757 INIT_LIST_HEAD(&sd->poll_list); 7758 sd->output_queue_tailp = &sd->output_queue; 7759 #ifdef CONFIG_RPS 7760 sd->csd.func = rps_trigger_softirq; 7761 sd->csd.info = sd; 7762 sd->cpu = i; 7763 #endif 7764 7765 sd->backlog.poll = process_backlog; 7766 sd->backlog.weight = weight_p; 7767 } 7768 7769 dev_boot_phase = 0; 7770 7771 /* The loopback device is special if any other network devices 7772 * is present in a network namespace the loopback device must 7773 * be present. Since we now dynamically allocate and free the 7774 * loopback device ensure this invariant is maintained by 7775 * keeping the loopback device as the first device on the 7776 * list of network devices. Ensuring the loopback devices 7777 * is the first device that appears and the last network device 7778 * that disappears. 7779 */ 7780 if (register_pernet_device(&loopback_net_ops)) 7781 goto out; 7782 7783 if (register_pernet_device(&default_device_ops)) 7784 goto out; 7785 7786 open_softirq(NET_TX_SOFTIRQ, net_tx_action); 7787 open_softirq(NET_RX_SOFTIRQ, net_rx_action); 7788 7789 hotcpu_notifier(dev_cpu_callback, 0); 7790 dst_subsys_init(); 7791 rc = 0; 7792 out: 7793 return rc; 7794 } 7795 7796 subsys_initcall(net_dev_init); 7797