xref: /linux/net/core/dev.c (revision 9cfc5c90ad38c8fc11bfd39de42a107da00871ba)
1 /*
2  * 	NET3	Protocol independent device support routines.
3  *
4  *		This program is free software; you can redistribute it and/or
5  *		modify it under the terms of the GNU General Public License
6  *		as published by the Free Software Foundation; either version
7  *		2 of the License, or (at your option) any later version.
8  *
9  *	Derived from the non IP parts of dev.c 1.0.19
10  * 		Authors:	Ross Biro
11  *				Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *				Mark Evans, <evansmp@uhura.aston.ac.uk>
13  *
14  *	Additional Authors:
15  *		Florian la Roche <rzsfl@rz.uni-sb.de>
16  *		Alan Cox <gw4pts@gw4pts.ampr.org>
17  *		David Hinds <dahinds@users.sourceforge.net>
18  *		Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19  *		Adam Sulmicki <adam@cfar.umd.edu>
20  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
21  *
22  *	Changes:
23  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
24  *              			to 2 if register_netdev gets called
25  *              			before net_dev_init & also removed a
26  *              			few lines of code in the process.
27  *		Alan Cox	:	device private ioctl copies fields back.
28  *		Alan Cox	:	Transmit queue code does relevant
29  *					stunts to keep the queue safe.
30  *		Alan Cox	:	Fixed double lock.
31  *		Alan Cox	:	Fixed promisc NULL pointer trap
32  *		????????	:	Support the full private ioctl range
33  *		Alan Cox	:	Moved ioctl permission check into
34  *					drivers
35  *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
36  *		Alan Cox	:	100 backlog just doesn't cut it when
37  *					you start doing multicast video 8)
38  *		Alan Cox	:	Rewrote net_bh and list manager.
39  *		Alan Cox	: 	Fix ETH_P_ALL echoback lengths.
40  *		Alan Cox	:	Took out transmit every packet pass
41  *					Saved a few bytes in the ioctl handler
42  *		Alan Cox	:	Network driver sets packet type before
43  *					calling netif_rx. Saves a function
44  *					call a packet.
45  *		Alan Cox	:	Hashed net_bh()
46  *		Richard Kooijman:	Timestamp fixes.
47  *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
48  *		Alan Cox	:	Device lock protection.
49  *		Alan Cox	: 	Fixed nasty side effect of device close
50  *					changes.
51  *		Rudi Cilibrasi	:	Pass the right thing to
52  *					set_mac_address()
53  *		Dave Miller	:	32bit quantity for the device lock to
54  *					make it work out on a Sparc.
55  *		Bjorn Ekwall	:	Added KERNELD hack.
56  *		Alan Cox	:	Cleaned up the backlog initialise.
57  *		Craig Metz	:	SIOCGIFCONF fix if space for under
58  *					1 device.
59  *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
60  *					is no device open function.
61  *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
62  *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
63  *		Cyrus Durgin	:	Cleaned for KMOD
64  *		Adam Sulmicki   :	Bug Fix : Network Device Unload
65  *					A network device unload needs to purge
66  *					the backlog queue.
67  *	Paul Rusty Russell	:	SIOCSIFNAME
68  *              Pekka Riikonen  :	Netdev boot-time settings code
69  *              Andrew Morton   :       Make unregister_netdevice wait
70  *              			indefinitely on dev->refcnt
71  * 		J Hadi Salim	:	- Backlog queue sampling
72  *				        - netif_rx() feedback
73  */
74 
75 #include <asm/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/mutex.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/notifier.h>
96 #include <linux/skbuff.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <linux/rtnetlink.h>
100 #include <linux/stat.h>
101 #include <net/dst.h>
102 #include <net/dst_metadata.h>
103 #include <net/pkt_sched.h>
104 #include <net/checksum.h>
105 #include <net/xfrm.h>
106 #include <linux/highmem.h>
107 #include <linux/init.h>
108 #include <linux/module.h>
109 #include <linux/netpoll.h>
110 #include <linux/rcupdate.h>
111 #include <linux/delay.h>
112 #include <net/iw_handler.h>
113 #include <asm/current.h>
114 #include <linux/audit.h>
115 #include <linux/dmaengine.h>
116 #include <linux/err.h>
117 #include <linux/ctype.h>
118 #include <linux/if_arp.h>
119 #include <linux/if_vlan.h>
120 #include <linux/ip.h>
121 #include <net/ip.h>
122 #include <net/mpls.h>
123 #include <linux/ipv6.h>
124 #include <linux/in.h>
125 #include <linux/jhash.h>
126 #include <linux/random.h>
127 #include <trace/events/napi.h>
128 #include <trace/events/net.h>
129 #include <trace/events/skb.h>
130 #include <linux/pci.h>
131 #include <linux/inetdevice.h>
132 #include <linux/cpu_rmap.h>
133 #include <linux/static_key.h>
134 #include <linux/hashtable.h>
135 #include <linux/vmalloc.h>
136 #include <linux/if_macvlan.h>
137 #include <linux/errqueue.h>
138 #include <linux/hrtimer.h>
139 #include <linux/netfilter_ingress.h>
140 
141 #include "net-sysfs.h"
142 
143 /* Instead of increasing this, you should create a hash table. */
144 #define MAX_GRO_SKBS 8
145 
146 /* This should be increased if a protocol with a bigger head is added. */
147 #define GRO_MAX_HEAD (MAX_HEADER + 128)
148 
149 static DEFINE_SPINLOCK(ptype_lock);
150 static DEFINE_SPINLOCK(offload_lock);
151 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
152 struct list_head ptype_all __read_mostly;	/* Taps */
153 static struct list_head offload_base __read_mostly;
154 
155 static int netif_rx_internal(struct sk_buff *skb);
156 static int call_netdevice_notifiers_info(unsigned long val,
157 					 struct net_device *dev,
158 					 struct netdev_notifier_info *info);
159 
160 /*
161  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
162  * semaphore.
163  *
164  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
165  *
166  * Writers must hold the rtnl semaphore while they loop through the
167  * dev_base_head list, and hold dev_base_lock for writing when they do the
168  * actual updates.  This allows pure readers to access the list even
169  * while a writer is preparing to update it.
170  *
171  * To put it another way, dev_base_lock is held for writing only to
172  * protect against pure readers; the rtnl semaphore provides the
173  * protection against other writers.
174  *
175  * See, for example usages, register_netdevice() and
176  * unregister_netdevice(), which must be called with the rtnl
177  * semaphore held.
178  */
179 DEFINE_RWLOCK(dev_base_lock);
180 EXPORT_SYMBOL(dev_base_lock);
181 
182 /* protects napi_hash addition/deletion and napi_gen_id */
183 static DEFINE_SPINLOCK(napi_hash_lock);
184 
185 static unsigned int napi_gen_id;
186 static DEFINE_HASHTABLE(napi_hash, 8);
187 
188 static seqcount_t devnet_rename_seq;
189 
190 static inline void dev_base_seq_inc(struct net *net)
191 {
192 	while (++net->dev_base_seq == 0);
193 }
194 
195 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
196 {
197 	unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
198 
199 	return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
200 }
201 
202 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
203 {
204 	return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
205 }
206 
207 static inline void rps_lock(struct softnet_data *sd)
208 {
209 #ifdef CONFIG_RPS
210 	spin_lock(&sd->input_pkt_queue.lock);
211 #endif
212 }
213 
214 static inline void rps_unlock(struct softnet_data *sd)
215 {
216 #ifdef CONFIG_RPS
217 	spin_unlock(&sd->input_pkt_queue.lock);
218 #endif
219 }
220 
221 /* Device list insertion */
222 static void list_netdevice(struct net_device *dev)
223 {
224 	struct net *net = dev_net(dev);
225 
226 	ASSERT_RTNL();
227 
228 	write_lock_bh(&dev_base_lock);
229 	list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
230 	hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
231 	hlist_add_head_rcu(&dev->index_hlist,
232 			   dev_index_hash(net, dev->ifindex));
233 	write_unlock_bh(&dev_base_lock);
234 
235 	dev_base_seq_inc(net);
236 }
237 
238 /* Device list removal
239  * caller must respect a RCU grace period before freeing/reusing dev
240  */
241 static void unlist_netdevice(struct net_device *dev)
242 {
243 	ASSERT_RTNL();
244 
245 	/* Unlink dev from the device chain */
246 	write_lock_bh(&dev_base_lock);
247 	list_del_rcu(&dev->dev_list);
248 	hlist_del_rcu(&dev->name_hlist);
249 	hlist_del_rcu(&dev->index_hlist);
250 	write_unlock_bh(&dev_base_lock);
251 
252 	dev_base_seq_inc(dev_net(dev));
253 }
254 
255 /*
256  *	Our notifier list
257  */
258 
259 static RAW_NOTIFIER_HEAD(netdev_chain);
260 
261 /*
262  *	Device drivers call our routines to queue packets here. We empty the
263  *	queue in the local softnet handler.
264  */
265 
266 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
267 EXPORT_PER_CPU_SYMBOL(softnet_data);
268 
269 #ifdef CONFIG_LOCKDEP
270 /*
271  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
272  * according to dev->type
273  */
274 static const unsigned short netdev_lock_type[] =
275 	{ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
276 	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
277 	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
278 	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
279 	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
280 	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
281 	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
282 	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
283 	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
284 	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
285 	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
286 	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
287 	 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
288 	 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
289 	 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
290 
291 static const char *const netdev_lock_name[] =
292 	{"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
293 	 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
294 	 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
295 	 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
296 	 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
297 	 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
298 	 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
299 	 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
300 	 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
301 	 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
302 	 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
303 	 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
304 	 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
305 	 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
306 	 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
307 
308 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
309 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
310 
311 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
312 {
313 	int i;
314 
315 	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
316 		if (netdev_lock_type[i] == dev_type)
317 			return i;
318 	/* the last key is used by default */
319 	return ARRAY_SIZE(netdev_lock_type) - 1;
320 }
321 
322 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
323 						 unsigned short dev_type)
324 {
325 	int i;
326 
327 	i = netdev_lock_pos(dev_type);
328 	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
329 				   netdev_lock_name[i]);
330 }
331 
332 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
333 {
334 	int i;
335 
336 	i = netdev_lock_pos(dev->type);
337 	lockdep_set_class_and_name(&dev->addr_list_lock,
338 				   &netdev_addr_lock_key[i],
339 				   netdev_lock_name[i]);
340 }
341 #else
342 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
343 						 unsigned short dev_type)
344 {
345 }
346 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
347 {
348 }
349 #endif
350 
351 /*******************************************************************************
352 
353 		Protocol management and registration routines
354 
355 *******************************************************************************/
356 
357 /*
358  *	Add a protocol ID to the list. Now that the input handler is
359  *	smarter we can dispense with all the messy stuff that used to be
360  *	here.
361  *
362  *	BEWARE!!! Protocol handlers, mangling input packets,
363  *	MUST BE last in hash buckets and checking protocol handlers
364  *	MUST start from promiscuous ptype_all chain in net_bh.
365  *	It is true now, do not change it.
366  *	Explanation follows: if protocol handler, mangling packet, will
367  *	be the first on list, it is not able to sense, that packet
368  *	is cloned and should be copied-on-write, so that it will
369  *	change it and subsequent readers will get broken packet.
370  *							--ANK (980803)
371  */
372 
373 static inline struct list_head *ptype_head(const struct packet_type *pt)
374 {
375 	if (pt->type == htons(ETH_P_ALL))
376 		return pt->dev ? &pt->dev->ptype_all : &ptype_all;
377 	else
378 		return pt->dev ? &pt->dev->ptype_specific :
379 				 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
380 }
381 
382 /**
383  *	dev_add_pack - add packet handler
384  *	@pt: packet type declaration
385  *
386  *	Add a protocol handler to the networking stack. The passed &packet_type
387  *	is linked into kernel lists and may not be freed until it has been
388  *	removed from the kernel lists.
389  *
390  *	This call does not sleep therefore it can not
391  *	guarantee all CPU's that are in middle of receiving packets
392  *	will see the new packet type (until the next received packet).
393  */
394 
395 void dev_add_pack(struct packet_type *pt)
396 {
397 	struct list_head *head = ptype_head(pt);
398 
399 	spin_lock(&ptype_lock);
400 	list_add_rcu(&pt->list, head);
401 	spin_unlock(&ptype_lock);
402 }
403 EXPORT_SYMBOL(dev_add_pack);
404 
405 /**
406  *	__dev_remove_pack	 - remove packet handler
407  *	@pt: packet type declaration
408  *
409  *	Remove a protocol handler that was previously added to the kernel
410  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
411  *	from the kernel lists and can be freed or reused once this function
412  *	returns.
413  *
414  *      The packet type might still be in use by receivers
415  *	and must not be freed until after all the CPU's have gone
416  *	through a quiescent state.
417  */
418 void __dev_remove_pack(struct packet_type *pt)
419 {
420 	struct list_head *head = ptype_head(pt);
421 	struct packet_type *pt1;
422 
423 	spin_lock(&ptype_lock);
424 
425 	list_for_each_entry(pt1, head, list) {
426 		if (pt == pt1) {
427 			list_del_rcu(&pt->list);
428 			goto out;
429 		}
430 	}
431 
432 	pr_warn("dev_remove_pack: %p not found\n", pt);
433 out:
434 	spin_unlock(&ptype_lock);
435 }
436 EXPORT_SYMBOL(__dev_remove_pack);
437 
438 /**
439  *	dev_remove_pack	 - remove packet handler
440  *	@pt: packet type declaration
441  *
442  *	Remove a protocol handler that was previously added to the kernel
443  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
444  *	from the kernel lists and can be freed or reused once this function
445  *	returns.
446  *
447  *	This call sleeps to guarantee that no CPU is looking at the packet
448  *	type after return.
449  */
450 void dev_remove_pack(struct packet_type *pt)
451 {
452 	__dev_remove_pack(pt);
453 
454 	synchronize_net();
455 }
456 EXPORT_SYMBOL(dev_remove_pack);
457 
458 
459 /**
460  *	dev_add_offload - register offload handlers
461  *	@po: protocol offload declaration
462  *
463  *	Add protocol offload handlers to the networking stack. The passed
464  *	&proto_offload is linked into kernel lists and may not be freed until
465  *	it has been removed from the kernel lists.
466  *
467  *	This call does not sleep therefore it can not
468  *	guarantee all CPU's that are in middle of receiving packets
469  *	will see the new offload handlers (until the next received packet).
470  */
471 void dev_add_offload(struct packet_offload *po)
472 {
473 	struct packet_offload *elem;
474 
475 	spin_lock(&offload_lock);
476 	list_for_each_entry(elem, &offload_base, list) {
477 		if (po->priority < elem->priority)
478 			break;
479 	}
480 	list_add_rcu(&po->list, elem->list.prev);
481 	spin_unlock(&offload_lock);
482 }
483 EXPORT_SYMBOL(dev_add_offload);
484 
485 /**
486  *	__dev_remove_offload	 - remove offload handler
487  *	@po: packet offload declaration
488  *
489  *	Remove a protocol offload handler that was previously added to the
490  *	kernel offload handlers by dev_add_offload(). The passed &offload_type
491  *	is removed from the kernel lists and can be freed or reused once this
492  *	function returns.
493  *
494  *      The packet type might still be in use by receivers
495  *	and must not be freed until after all the CPU's have gone
496  *	through a quiescent state.
497  */
498 static void __dev_remove_offload(struct packet_offload *po)
499 {
500 	struct list_head *head = &offload_base;
501 	struct packet_offload *po1;
502 
503 	spin_lock(&offload_lock);
504 
505 	list_for_each_entry(po1, head, list) {
506 		if (po == po1) {
507 			list_del_rcu(&po->list);
508 			goto out;
509 		}
510 	}
511 
512 	pr_warn("dev_remove_offload: %p not found\n", po);
513 out:
514 	spin_unlock(&offload_lock);
515 }
516 
517 /**
518  *	dev_remove_offload	 - remove packet offload handler
519  *	@po: packet offload declaration
520  *
521  *	Remove a packet offload handler that was previously added to the kernel
522  *	offload handlers by dev_add_offload(). The passed &offload_type is
523  *	removed from the kernel lists and can be freed or reused once this
524  *	function returns.
525  *
526  *	This call sleeps to guarantee that no CPU is looking at the packet
527  *	type after return.
528  */
529 void dev_remove_offload(struct packet_offload *po)
530 {
531 	__dev_remove_offload(po);
532 
533 	synchronize_net();
534 }
535 EXPORT_SYMBOL(dev_remove_offload);
536 
537 /******************************************************************************
538 
539 		      Device Boot-time Settings Routines
540 
541 *******************************************************************************/
542 
543 /* Boot time configuration table */
544 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
545 
546 /**
547  *	netdev_boot_setup_add	- add new setup entry
548  *	@name: name of the device
549  *	@map: configured settings for the device
550  *
551  *	Adds new setup entry to the dev_boot_setup list.  The function
552  *	returns 0 on error and 1 on success.  This is a generic routine to
553  *	all netdevices.
554  */
555 static int netdev_boot_setup_add(char *name, struct ifmap *map)
556 {
557 	struct netdev_boot_setup *s;
558 	int i;
559 
560 	s = dev_boot_setup;
561 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
562 		if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
563 			memset(s[i].name, 0, sizeof(s[i].name));
564 			strlcpy(s[i].name, name, IFNAMSIZ);
565 			memcpy(&s[i].map, map, sizeof(s[i].map));
566 			break;
567 		}
568 	}
569 
570 	return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
571 }
572 
573 /**
574  *	netdev_boot_setup_check	- check boot time settings
575  *	@dev: the netdevice
576  *
577  * 	Check boot time settings for the device.
578  *	The found settings are set for the device to be used
579  *	later in the device probing.
580  *	Returns 0 if no settings found, 1 if they are.
581  */
582 int netdev_boot_setup_check(struct net_device *dev)
583 {
584 	struct netdev_boot_setup *s = dev_boot_setup;
585 	int i;
586 
587 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
588 		if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
589 		    !strcmp(dev->name, s[i].name)) {
590 			dev->irq 	= s[i].map.irq;
591 			dev->base_addr 	= s[i].map.base_addr;
592 			dev->mem_start 	= s[i].map.mem_start;
593 			dev->mem_end 	= s[i].map.mem_end;
594 			return 1;
595 		}
596 	}
597 	return 0;
598 }
599 EXPORT_SYMBOL(netdev_boot_setup_check);
600 
601 
602 /**
603  *	netdev_boot_base	- get address from boot time settings
604  *	@prefix: prefix for network device
605  *	@unit: id for network device
606  *
607  * 	Check boot time settings for the base address of device.
608  *	The found settings are set for the device to be used
609  *	later in the device probing.
610  *	Returns 0 if no settings found.
611  */
612 unsigned long netdev_boot_base(const char *prefix, int unit)
613 {
614 	const struct netdev_boot_setup *s = dev_boot_setup;
615 	char name[IFNAMSIZ];
616 	int i;
617 
618 	sprintf(name, "%s%d", prefix, unit);
619 
620 	/*
621 	 * If device already registered then return base of 1
622 	 * to indicate not to probe for this interface
623 	 */
624 	if (__dev_get_by_name(&init_net, name))
625 		return 1;
626 
627 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
628 		if (!strcmp(name, s[i].name))
629 			return s[i].map.base_addr;
630 	return 0;
631 }
632 
633 /*
634  * Saves at boot time configured settings for any netdevice.
635  */
636 int __init netdev_boot_setup(char *str)
637 {
638 	int ints[5];
639 	struct ifmap map;
640 
641 	str = get_options(str, ARRAY_SIZE(ints), ints);
642 	if (!str || !*str)
643 		return 0;
644 
645 	/* Save settings */
646 	memset(&map, 0, sizeof(map));
647 	if (ints[0] > 0)
648 		map.irq = ints[1];
649 	if (ints[0] > 1)
650 		map.base_addr = ints[2];
651 	if (ints[0] > 2)
652 		map.mem_start = ints[3];
653 	if (ints[0] > 3)
654 		map.mem_end = ints[4];
655 
656 	/* Add new entry to the list */
657 	return netdev_boot_setup_add(str, &map);
658 }
659 
660 __setup("netdev=", netdev_boot_setup);
661 
662 /*******************************************************************************
663 
664 			    Device Interface Subroutines
665 
666 *******************************************************************************/
667 
668 /**
669  *	dev_get_iflink	- get 'iflink' value of a interface
670  *	@dev: targeted interface
671  *
672  *	Indicates the ifindex the interface is linked to.
673  *	Physical interfaces have the same 'ifindex' and 'iflink' values.
674  */
675 
676 int dev_get_iflink(const struct net_device *dev)
677 {
678 	if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
679 		return dev->netdev_ops->ndo_get_iflink(dev);
680 
681 	return dev->ifindex;
682 }
683 EXPORT_SYMBOL(dev_get_iflink);
684 
685 /**
686  *	dev_fill_metadata_dst - Retrieve tunnel egress information.
687  *	@dev: targeted interface
688  *	@skb: The packet.
689  *
690  *	For better visibility of tunnel traffic OVS needs to retrieve
691  *	egress tunnel information for a packet. Following API allows
692  *	user to get this info.
693  */
694 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
695 {
696 	struct ip_tunnel_info *info;
697 
698 	if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
699 		return -EINVAL;
700 
701 	info = skb_tunnel_info_unclone(skb);
702 	if (!info)
703 		return -ENOMEM;
704 	if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
705 		return -EINVAL;
706 
707 	return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
708 }
709 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
710 
711 /**
712  *	__dev_get_by_name	- find a device by its name
713  *	@net: the applicable net namespace
714  *	@name: name to find
715  *
716  *	Find an interface by name. Must be called under RTNL semaphore
717  *	or @dev_base_lock. If the name is found a pointer to the device
718  *	is returned. If the name is not found then %NULL is returned. The
719  *	reference counters are not incremented so the caller must be
720  *	careful with locks.
721  */
722 
723 struct net_device *__dev_get_by_name(struct net *net, const char *name)
724 {
725 	struct net_device *dev;
726 	struct hlist_head *head = dev_name_hash(net, name);
727 
728 	hlist_for_each_entry(dev, head, name_hlist)
729 		if (!strncmp(dev->name, name, IFNAMSIZ))
730 			return dev;
731 
732 	return NULL;
733 }
734 EXPORT_SYMBOL(__dev_get_by_name);
735 
736 /**
737  *	dev_get_by_name_rcu	- find a device by its name
738  *	@net: the applicable net namespace
739  *	@name: name to find
740  *
741  *	Find an interface by name.
742  *	If the name is found a pointer to the device is returned.
743  * 	If the name is not found then %NULL is returned.
744  *	The reference counters are not incremented so the caller must be
745  *	careful with locks. The caller must hold RCU lock.
746  */
747 
748 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
749 {
750 	struct net_device *dev;
751 	struct hlist_head *head = dev_name_hash(net, name);
752 
753 	hlist_for_each_entry_rcu(dev, head, name_hlist)
754 		if (!strncmp(dev->name, name, IFNAMSIZ))
755 			return dev;
756 
757 	return NULL;
758 }
759 EXPORT_SYMBOL(dev_get_by_name_rcu);
760 
761 /**
762  *	dev_get_by_name		- find a device by its name
763  *	@net: the applicable net namespace
764  *	@name: name to find
765  *
766  *	Find an interface by name. This can be called from any
767  *	context and does its own locking. The returned handle has
768  *	the usage count incremented and the caller must use dev_put() to
769  *	release it when it is no longer needed. %NULL is returned if no
770  *	matching device is found.
771  */
772 
773 struct net_device *dev_get_by_name(struct net *net, const char *name)
774 {
775 	struct net_device *dev;
776 
777 	rcu_read_lock();
778 	dev = dev_get_by_name_rcu(net, name);
779 	if (dev)
780 		dev_hold(dev);
781 	rcu_read_unlock();
782 	return dev;
783 }
784 EXPORT_SYMBOL(dev_get_by_name);
785 
786 /**
787  *	__dev_get_by_index - find a device by its ifindex
788  *	@net: the applicable net namespace
789  *	@ifindex: index of device
790  *
791  *	Search for an interface by index. Returns %NULL if the device
792  *	is not found or a pointer to the device. The device has not
793  *	had its reference counter increased so the caller must be careful
794  *	about locking. The caller must hold either the RTNL semaphore
795  *	or @dev_base_lock.
796  */
797 
798 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
799 {
800 	struct net_device *dev;
801 	struct hlist_head *head = dev_index_hash(net, ifindex);
802 
803 	hlist_for_each_entry(dev, head, index_hlist)
804 		if (dev->ifindex == ifindex)
805 			return dev;
806 
807 	return NULL;
808 }
809 EXPORT_SYMBOL(__dev_get_by_index);
810 
811 /**
812  *	dev_get_by_index_rcu - find a device by its ifindex
813  *	@net: the applicable net namespace
814  *	@ifindex: index of device
815  *
816  *	Search for an interface by index. Returns %NULL if the device
817  *	is not found or a pointer to the device. The device has not
818  *	had its reference counter increased so the caller must be careful
819  *	about locking. The caller must hold RCU lock.
820  */
821 
822 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
823 {
824 	struct net_device *dev;
825 	struct hlist_head *head = dev_index_hash(net, ifindex);
826 
827 	hlist_for_each_entry_rcu(dev, head, index_hlist)
828 		if (dev->ifindex == ifindex)
829 			return dev;
830 
831 	return NULL;
832 }
833 EXPORT_SYMBOL(dev_get_by_index_rcu);
834 
835 
836 /**
837  *	dev_get_by_index - find a device by its ifindex
838  *	@net: the applicable net namespace
839  *	@ifindex: index of device
840  *
841  *	Search for an interface by index. Returns NULL if the device
842  *	is not found or a pointer to the device. The device returned has
843  *	had a reference added and the pointer is safe until the user calls
844  *	dev_put to indicate they have finished with it.
845  */
846 
847 struct net_device *dev_get_by_index(struct net *net, int ifindex)
848 {
849 	struct net_device *dev;
850 
851 	rcu_read_lock();
852 	dev = dev_get_by_index_rcu(net, ifindex);
853 	if (dev)
854 		dev_hold(dev);
855 	rcu_read_unlock();
856 	return dev;
857 }
858 EXPORT_SYMBOL(dev_get_by_index);
859 
860 /**
861  *	netdev_get_name - get a netdevice name, knowing its ifindex.
862  *	@net: network namespace
863  *	@name: a pointer to the buffer where the name will be stored.
864  *	@ifindex: the ifindex of the interface to get the name from.
865  *
866  *	The use of raw_seqcount_begin() and cond_resched() before
867  *	retrying is required as we want to give the writers a chance
868  *	to complete when CONFIG_PREEMPT is not set.
869  */
870 int netdev_get_name(struct net *net, char *name, int ifindex)
871 {
872 	struct net_device *dev;
873 	unsigned int seq;
874 
875 retry:
876 	seq = raw_seqcount_begin(&devnet_rename_seq);
877 	rcu_read_lock();
878 	dev = dev_get_by_index_rcu(net, ifindex);
879 	if (!dev) {
880 		rcu_read_unlock();
881 		return -ENODEV;
882 	}
883 
884 	strcpy(name, dev->name);
885 	rcu_read_unlock();
886 	if (read_seqcount_retry(&devnet_rename_seq, seq)) {
887 		cond_resched();
888 		goto retry;
889 	}
890 
891 	return 0;
892 }
893 
894 /**
895  *	dev_getbyhwaddr_rcu - find a device by its hardware address
896  *	@net: the applicable net namespace
897  *	@type: media type of device
898  *	@ha: hardware address
899  *
900  *	Search for an interface by MAC address. Returns NULL if the device
901  *	is not found or a pointer to the device.
902  *	The caller must hold RCU or RTNL.
903  *	The returned device has not had its ref count increased
904  *	and the caller must therefore be careful about locking
905  *
906  */
907 
908 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
909 				       const char *ha)
910 {
911 	struct net_device *dev;
912 
913 	for_each_netdev_rcu(net, dev)
914 		if (dev->type == type &&
915 		    !memcmp(dev->dev_addr, ha, dev->addr_len))
916 			return dev;
917 
918 	return NULL;
919 }
920 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
921 
922 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
923 {
924 	struct net_device *dev;
925 
926 	ASSERT_RTNL();
927 	for_each_netdev(net, dev)
928 		if (dev->type == type)
929 			return dev;
930 
931 	return NULL;
932 }
933 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
934 
935 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
936 {
937 	struct net_device *dev, *ret = NULL;
938 
939 	rcu_read_lock();
940 	for_each_netdev_rcu(net, dev)
941 		if (dev->type == type) {
942 			dev_hold(dev);
943 			ret = dev;
944 			break;
945 		}
946 	rcu_read_unlock();
947 	return ret;
948 }
949 EXPORT_SYMBOL(dev_getfirstbyhwtype);
950 
951 /**
952  *	__dev_get_by_flags - find any device with given flags
953  *	@net: the applicable net namespace
954  *	@if_flags: IFF_* values
955  *	@mask: bitmask of bits in if_flags to check
956  *
957  *	Search for any interface with the given flags. Returns NULL if a device
958  *	is not found or a pointer to the device. Must be called inside
959  *	rtnl_lock(), and result refcount is unchanged.
960  */
961 
962 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
963 				      unsigned short mask)
964 {
965 	struct net_device *dev, *ret;
966 
967 	ASSERT_RTNL();
968 
969 	ret = NULL;
970 	for_each_netdev(net, dev) {
971 		if (((dev->flags ^ if_flags) & mask) == 0) {
972 			ret = dev;
973 			break;
974 		}
975 	}
976 	return ret;
977 }
978 EXPORT_SYMBOL(__dev_get_by_flags);
979 
980 /**
981  *	dev_valid_name - check if name is okay for network device
982  *	@name: name string
983  *
984  *	Network device names need to be valid file names to
985  *	to allow sysfs to work.  We also disallow any kind of
986  *	whitespace.
987  */
988 bool dev_valid_name(const char *name)
989 {
990 	if (*name == '\0')
991 		return false;
992 	if (strlen(name) >= IFNAMSIZ)
993 		return false;
994 	if (!strcmp(name, ".") || !strcmp(name, ".."))
995 		return false;
996 
997 	while (*name) {
998 		if (*name == '/' || *name == ':' || isspace(*name))
999 			return false;
1000 		name++;
1001 	}
1002 	return true;
1003 }
1004 EXPORT_SYMBOL(dev_valid_name);
1005 
1006 /**
1007  *	__dev_alloc_name - allocate a name for a device
1008  *	@net: network namespace to allocate the device name in
1009  *	@name: name format string
1010  *	@buf:  scratch buffer and result name string
1011  *
1012  *	Passed a format string - eg "lt%d" it will try and find a suitable
1013  *	id. It scans list of devices to build up a free map, then chooses
1014  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1015  *	while allocating the name and adding the device in order to avoid
1016  *	duplicates.
1017  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1018  *	Returns the number of the unit assigned or a negative errno code.
1019  */
1020 
1021 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1022 {
1023 	int i = 0;
1024 	const char *p;
1025 	const int max_netdevices = 8*PAGE_SIZE;
1026 	unsigned long *inuse;
1027 	struct net_device *d;
1028 
1029 	p = strnchr(name, IFNAMSIZ-1, '%');
1030 	if (p) {
1031 		/*
1032 		 * Verify the string as this thing may have come from
1033 		 * the user.  There must be either one "%d" and no other "%"
1034 		 * characters.
1035 		 */
1036 		if (p[1] != 'd' || strchr(p + 2, '%'))
1037 			return -EINVAL;
1038 
1039 		/* Use one page as a bit array of possible slots */
1040 		inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1041 		if (!inuse)
1042 			return -ENOMEM;
1043 
1044 		for_each_netdev(net, d) {
1045 			if (!sscanf(d->name, name, &i))
1046 				continue;
1047 			if (i < 0 || i >= max_netdevices)
1048 				continue;
1049 
1050 			/*  avoid cases where sscanf is not exact inverse of printf */
1051 			snprintf(buf, IFNAMSIZ, name, i);
1052 			if (!strncmp(buf, d->name, IFNAMSIZ))
1053 				set_bit(i, inuse);
1054 		}
1055 
1056 		i = find_first_zero_bit(inuse, max_netdevices);
1057 		free_page((unsigned long) inuse);
1058 	}
1059 
1060 	if (buf != name)
1061 		snprintf(buf, IFNAMSIZ, name, i);
1062 	if (!__dev_get_by_name(net, buf))
1063 		return i;
1064 
1065 	/* It is possible to run out of possible slots
1066 	 * when the name is long and there isn't enough space left
1067 	 * for the digits, or if all bits are used.
1068 	 */
1069 	return -ENFILE;
1070 }
1071 
1072 /**
1073  *	dev_alloc_name - allocate a name for a device
1074  *	@dev: device
1075  *	@name: name format string
1076  *
1077  *	Passed a format string - eg "lt%d" it will try and find a suitable
1078  *	id. It scans list of devices to build up a free map, then chooses
1079  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1080  *	while allocating the name and adding the device in order to avoid
1081  *	duplicates.
1082  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1083  *	Returns the number of the unit assigned or a negative errno code.
1084  */
1085 
1086 int dev_alloc_name(struct net_device *dev, const char *name)
1087 {
1088 	char buf[IFNAMSIZ];
1089 	struct net *net;
1090 	int ret;
1091 
1092 	BUG_ON(!dev_net(dev));
1093 	net = dev_net(dev);
1094 	ret = __dev_alloc_name(net, name, buf);
1095 	if (ret >= 0)
1096 		strlcpy(dev->name, buf, IFNAMSIZ);
1097 	return ret;
1098 }
1099 EXPORT_SYMBOL(dev_alloc_name);
1100 
1101 static int dev_alloc_name_ns(struct net *net,
1102 			     struct net_device *dev,
1103 			     const char *name)
1104 {
1105 	char buf[IFNAMSIZ];
1106 	int ret;
1107 
1108 	ret = __dev_alloc_name(net, name, buf);
1109 	if (ret >= 0)
1110 		strlcpy(dev->name, buf, IFNAMSIZ);
1111 	return ret;
1112 }
1113 
1114 static int dev_get_valid_name(struct net *net,
1115 			      struct net_device *dev,
1116 			      const char *name)
1117 {
1118 	BUG_ON(!net);
1119 
1120 	if (!dev_valid_name(name))
1121 		return -EINVAL;
1122 
1123 	if (strchr(name, '%'))
1124 		return dev_alloc_name_ns(net, dev, name);
1125 	else if (__dev_get_by_name(net, name))
1126 		return -EEXIST;
1127 	else if (dev->name != name)
1128 		strlcpy(dev->name, name, IFNAMSIZ);
1129 
1130 	return 0;
1131 }
1132 
1133 /**
1134  *	dev_change_name - change name of a device
1135  *	@dev: device
1136  *	@newname: name (or format string) must be at least IFNAMSIZ
1137  *
1138  *	Change name of a device, can pass format strings "eth%d".
1139  *	for wildcarding.
1140  */
1141 int dev_change_name(struct net_device *dev, const char *newname)
1142 {
1143 	unsigned char old_assign_type;
1144 	char oldname[IFNAMSIZ];
1145 	int err = 0;
1146 	int ret;
1147 	struct net *net;
1148 
1149 	ASSERT_RTNL();
1150 	BUG_ON(!dev_net(dev));
1151 
1152 	net = dev_net(dev);
1153 	if (dev->flags & IFF_UP)
1154 		return -EBUSY;
1155 
1156 	write_seqcount_begin(&devnet_rename_seq);
1157 
1158 	if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1159 		write_seqcount_end(&devnet_rename_seq);
1160 		return 0;
1161 	}
1162 
1163 	memcpy(oldname, dev->name, IFNAMSIZ);
1164 
1165 	err = dev_get_valid_name(net, dev, newname);
1166 	if (err < 0) {
1167 		write_seqcount_end(&devnet_rename_seq);
1168 		return err;
1169 	}
1170 
1171 	if (oldname[0] && !strchr(oldname, '%'))
1172 		netdev_info(dev, "renamed from %s\n", oldname);
1173 
1174 	old_assign_type = dev->name_assign_type;
1175 	dev->name_assign_type = NET_NAME_RENAMED;
1176 
1177 rollback:
1178 	ret = device_rename(&dev->dev, dev->name);
1179 	if (ret) {
1180 		memcpy(dev->name, oldname, IFNAMSIZ);
1181 		dev->name_assign_type = old_assign_type;
1182 		write_seqcount_end(&devnet_rename_seq);
1183 		return ret;
1184 	}
1185 
1186 	write_seqcount_end(&devnet_rename_seq);
1187 
1188 	netdev_adjacent_rename_links(dev, oldname);
1189 
1190 	write_lock_bh(&dev_base_lock);
1191 	hlist_del_rcu(&dev->name_hlist);
1192 	write_unlock_bh(&dev_base_lock);
1193 
1194 	synchronize_rcu();
1195 
1196 	write_lock_bh(&dev_base_lock);
1197 	hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1198 	write_unlock_bh(&dev_base_lock);
1199 
1200 	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1201 	ret = notifier_to_errno(ret);
1202 
1203 	if (ret) {
1204 		/* err >= 0 after dev_alloc_name() or stores the first errno */
1205 		if (err >= 0) {
1206 			err = ret;
1207 			write_seqcount_begin(&devnet_rename_seq);
1208 			memcpy(dev->name, oldname, IFNAMSIZ);
1209 			memcpy(oldname, newname, IFNAMSIZ);
1210 			dev->name_assign_type = old_assign_type;
1211 			old_assign_type = NET_NAME_RENAMED;
1212 			goto rollback;
1213 		} else {
1214 			pr_err("%s: name change rollback failed: %d\n",
1215 			       dev->name, ret);
1216 		}
1217 	}
1218 
1219 	return err;
1220 }
1221 
1222 /**
1223  *	dev_set_alias - change ifalias of a device
1224  *	@dev: device
1225  *	@alias: name up to IFALIASZ
1226  *	@len: limit of bytes to copy from info
1227  *
1228  *	Set ifalias for a device,
1229  */
1230 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1231 {
1232 	char *new_ifalias;
1233 
1234 	ASSERT_RTNL();
1235 
1236 	if (len >= IFALIASZ)
1237 		return -EINVAL;
1238 
1239 	if (!len) {
1240 		kfree(dev->ifalias);
1241 		dev->ifalias = NULL;
1242 		return 0;
1243 	}
1244 
1245 	new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1246 	if (!new_ifalias)
1247 		return -ENOMEM;
1248 	dev->ifalias = new_ifalias;
1249 
1250 	strlcpy(dev->ifalias, alias, len+1);
1251 	return len;
1252 }
1253 
1254 
1255 /**
1256  *	netdev_features_change - device changes features
1257  *	@dev: device to cause notification
1258  *
1259  *	Called to indicate a device has changed features.
1260  */
1261 void netdev_features_change(struct net_device *dev)
1262 {
1263 	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1264 }
1265 EXPORT_SYMBOL(netdev_features_change);
1266 
1267 /**
1268  *	netdev_state_change - device changes state
1269  *	@dev: device to cause notification
1270  *
1271  *	Called to indicate a device has changed state. This function calls
1272  *	the notifier chains for netdev_chain and sends a NEWLINK message
1273  *	to the routing socket.
1274  */
1275 void netdev_state_change(struct net_device *dev)
1276 {
1277 	if (dev->flags & IFF_UP) {
1278 		struct netdev_notifier_change_info change_info;
1279 
1280 		change_info.flags_changed = 0;
1281 		call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
1282 					      &change_info.info);
1283 		rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1284 	}
1285 }
1286 EXPORT_SYMBOL(netdev_state_change);
1287 
1288 /**
1289  * 	netdev_notify_peers - notify network peers about existence of @dev
1290  * 	@dev: network device
1291  *
1292  * Generate traffic such that interested network peers are aware of
1293  * @dev, such as by generating a gratuitous ARP. This may be used when
1294  * a device wants to inform the rest of the network about some sort of
1295  * reconfiguration such as a failover event or virtual machine
1296  * migration.
1297  */
1298 void netdev_notify_peers(struct net_device *dev)
1299 {
1300 	rtnl_lock();
1301 	call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1302 	rtnl_unlock();
1303 }
1304 EXPORT_SYMBOL(netdev_notify_peers);
1305 
1306 static int __dev_open(struct net_device *dev)
1307 {
1308 	const struct net_device_ops *ops = dev->netdev_ops;
1309 	int ret;
1310 
1311 	ASSERT_RTNL();
1312 
1313 	if (!netif_device_present(dev))
1314 		return -ENODEV;
1315 
1316 	/* Block netpoll from trying to do any rx path servicing.
1317 	 * If we don't do this there is a chance ndo_poll_controller
1318 	 * or ndo_poll may be running while we open the device
1319 	 */
1320 	netpoll_poll_disable(dev);
1321 
1322 	ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1323 	ret = notifier_to_errno(ret);
1324 	if (ret)
1325 		return ret;
1326 
1327 	set_bit(__LINK_STATE_START, &dev->state);
1328 
1329 	if (ops->ndo_validate_addr)
1330 		ret = ops->ndo_validate_addr(dev);
1331 
1332 	if (!ret && ops->ndo_open)
1333 		ret = ops->ndo_open(dev);
1334 
1335 	netpoll_poll_enable(dev);
1336 
1337 	if (ret)
1338 		clear_bit(__LINK_STATE_START, &dev->state);
1339 	else {
1340 		dev->flags |= IFF_UP;
1341 		dev_set_rx_mode(dev);
1342 		dev_activate(dev);
1343 		add_device_randomness(dev->dev_addr, dev->addr_len);
1344 	}
1345 
1346 	return ret;
1347 }
1348 
1349 /**
1350  *	dev_open	- prepare an interface for use.
1351  *	@dev:	device to open
1352  *
1353  *	Takes a device from down to up state. The device's private open
1354  *	function is invoked and then the multicast lists are loaded. Finally
1355  *	the device is moved into the up state and a %NETDEV_UP message is
1356  *	sent to the netdev notifier chain.
1357  *
1358  *	Calling this function on an active interface is a nop. On a failure
1359  *	a negative errno code is returned.
1360  */
1361 int dev_open(struct net_device *dev)
1362 {
1363 	int ret;
1364 
1365 	if (dev->flags & IFF_UP)
1366 		return 0;
1367 
1368 	ret = __dev_open(dev);
1369 	if (ret < 0)
1370 		return ret;
1371 
1372 	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1373 	call_netdevice_notifiers(NETDEV_UP, dev);
1374 
1375 	return ret;
1376 }
1377 EXPORT_SYMBOL(dev_open);
1378 
1379 static int __dev_close_many(struct list_head *head)
1380 {
1381 	struct net_device *dev;
1382 
1383 	ASSERT_RTNL();
1384 	might_sleep();
1385 
1386 	list_for_each_entry(dev, head, close_list) {
1387 		/* Temporarily disable netpoll until the interface is down */
1388 		netpoll_poll_disable(dev);
1389 
1390 		call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1391 
1392 		clear_bit(__LINK_STATE_START, &dev->state);
1393 
1394 		/* Synchronize to scheduled poll. We cannot touch poll list, it
1395 		 * can be even on different cpu. So just clear netif_running().
1396 		 *
1397 		 * dev->stop() will invoke napi_disable() on all of it's
1398 		 * napi_struct instances on this device.
1399 		 */
1400 		smp_mb__after_atomic(); /* Commit netif_running(). */
1401 	}
1402 
1403 	dev_deactivate_many(head);
1404 
1405 	list_for_each_entry(dev, head, close_list) {
1406 		const struct net_device_ops *ops = dev->netdev_ops;
1407 
1408 		/*
1409 		 *	Call the device specific close. This cannot fail.
1410 		 *	Only if device is UP
1411 		 *
1412 		 *	We allow it to be called even after a DETACH hot-plug
1413 		 *	event.
1414 		 */
1415 		if (ops->ndo_stop)
1416 			ops->ndo_stop(dev);
1417 
1418 		dev->flags &= ~IFF_UP;
1419 		netpoll_poll_enable(dev);
1420 	}
1421 
1422 	return 0;
1423 }
1424 
1425 static int __dev_close(struct net_device *dev)
1426 {
1427 	int retval;
1428 	LIST_HEAD(single);
1429 
1430 	list_add(&dev->close_list, &single);
1431 	retval = __dev_close_many(&single);
1432 	list_del(&single);
1433 
1434 	return retval;
1435 }
1436 
1437 int dev_close_many(struct list_head *head, bool unlink)
1438 {
1439 	struct net_device *dev, *tmp;
1440 
1441 	/* Remove the devices that don't need to be closed */
1442 	list_for_each_entry_safe(dev, tmp, head, close_list)
1443 		if (!(dev->flags & IFF_UP))
1444 			list_del_init(&dev->close_list);
1445 
1446 	__dev_close_many(head);
1447 
1448 	list_for_each_entry_safe(dev, tmp, head, close_list) {
1449 		rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1450 		call_netdevice_notifiers(NETDEV_DOWN, dev);
1451 		if (unlink)
1452 			list_del_init(&dev->close_list);
1453 	}
1454 
1455 	return 0;
1456 }
1457 EXPORT_SYMBOL(dev_close_many);
1458 
1459 /**
1460  *	dev_close - shutdown an interface.
1461  *	@dev: device to shutdown
1462  *
1463  *	This function moves an active device into down state. A
1464  *	%NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1465  *	is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1466  *	chain.
1467  */
1468 int dev_close(struct net_device *dev)
1469 {
1470 	if (dev->flags & IFF_UP) {
1471 		LIST_HEAD(single);
1472 
1473 		list_add(&dev->close_list, &single);
1474 		dev_close_many(&single, true);
1475 		list_del(&single);
1476 	}
1477 	return 0;
1478 }
1479 EXPORT_SYMBOL(dev_close);
1480 
1481 
1482 /**
1483  *	dev_disable_lro - disable Large Receive Offload on a device
1484  *	@dev: device
1485  *
1486  *	Disable Large Receive Offload (LRO) on a net device.  Must be
1487  *	called under RTNL.  This is needed if received packets may be
1488  *	forwarded to another interface.
1489  */
1490 void dev_disable_lro(struct net_device *dev)
1491 {
1492 	struct net_device *lower_dev;
1493 	struct list_head *iter;
1494 
1495 	dev->wanted_features &= ~NETIF_F_LRO;
1496 	netdev_update_features(dev);
1497 
1498 	if (unlikely(dev->features & NETIF_F_LRO))
1499 		netdev_WARN(dev, "failed to disable LRO!\n");
1500 
1501 	netdev_for_each_lower_dev(dev, lower_dev, iter)
1502 		dev_disable_lro(lower_dev);
1503 }
1504 EXPORT_SYMBOL(dev_disable_lro);
1505 
1506 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1507 				   struct net_device *dev)
1508 {
1509 	struct netdev_notifier_info info;
1510 
1511 	netdev_notifier_info_init(&info, dev);
1512 	return nb->notifier_call(nb, val, &info);
1513 }
1514 
1515 static int dev_boot_phase = 1;
1516 
1517 /**
1518  *	register_netdevice_notifier - register a network notifier block
1519  *	@nb: notifier
1520  *
1521  *	Register a notifier to be called when network device events occur.
1522  *	The notifier passed is linked into the kernel structures and must
1523  *	not be reused until it has been unregistered. A negative errno code
1524  *	is returned on a failure.
1525  *
1526  * 	When registered all registration and up events are replayed
1527  *	to the new notifier to allow device to have a race free
1528  *	view of the network device list.
1529  */
1530 
1531 int register_netdevice_notifier(struct notifier_block *nb)
1532 {
1533 	struct net_device *dev;
1534 	struct net_device *last;
1535 	struct net *net;
1536 	int err;
1537 
1538 	rtnl_lock();
1539 	err = raw_notifier_chain_register(&netdev_chain, nb);
1540 	if (err)
1541 		goto unlock;
1542 	if (dev_boot_phase)
1543 		goto unlock;
1544 	for_each_net(net) {
1545 		for_each_netdev(net, dev) {
1546 			err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1547 			err = notifier_to_errno(err);
1548 			if (err)
1549 				goto rollback;
1550 
1551 			if (!(dev->flags & IFF_UP))
1552 				continue;
1553 
1554 			call_netdevice_notifier(nb, NETDEV_UP, dev);
1555 		}
1556 	}
1557 
1558 unlock:
1559 	rtnl_unlock();
1560 	return err;
1561 
1562 rollback:
1563 	last = dev;
1564 	for_each_net(net) {
1565 		for_each_netdev(net, dev) {
1566 			if (dev == last)
1567 				goto outroll;
1568 
1569 			if (dev->flags & IFF_UP) {
1570 				call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1571 							dev);
1572 				call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1573 			}
1574 			call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1575 		}
1576 	}
1577 
1578 outroll:
1579 	raw_notifier_chain_unregister(&netdev_chain, nb);
1580 	goto unlock;
1581 }
1582 EXPORT_SYMBOL(register_netdevice_notifier);
1583 
1584 /**
1585  *	unregister_netdevice_notifier - unregister a network notifier block
1586  *	@nb: notifier
1587  *
1588  *	Unregister a notifier previously registered by
1589  *	register_netdevice_notifier(). The notifier is unlinked into the
1590  *	kernel structures and may then be reused. A negative errno code
1591  *	is returned on a failure.
1592  *
1593  * 	After unregistering unregister and down device events are synthesized
1594  *	for all devices on the device list to the removed notifier to remove
1595  *	the need for special case cleanup code.
1596  */
1597 
1598 int unregister_netdevice_notifier(struct notifier_block *nb)
1599 {
1600 	struct net_device *dev;
1601 	struct net *net;
1602 	int err;
1603 
1604 	rtnl_lock();
1605 	err = raw_notifier_chain_unregister(&netdev_chain, nb);
1606 	if (err)
1607 		goto unlock;
1608 
1609 	for_each_net(net) {
1610 		for_each_netdev(net, dev) {
1611 			if (dev->flags & IFF_UP) {
1612 				call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1613 							dev);
1614 				call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1615 			}
1616 			call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1617 		}
1618 	}
1619 unlock:
1620 	rtnl_unlock();
1621 	return err;
1622 }
1623 EXPORT_SYMBOL(unregister_netdevice_notifier);
1624 
1625 /**
1626  *	call_netdevice_notifiers_info - call all network notifier blocks
1627  *	@val: value passed unmodified to notifier function
1628  *	@dev: net_device pointer passed unmodified to notifier function
1629  *	@info: notifier information data
1630  *
1631  *	Call all network notifier blocks.  Parameters and return value
1632  *	are as for raw_notifier_call_chain().
1633  */
1634 
1635 static int call_netdevice_notifiers_info(unsigned long val,
1636 					 struct net_device *dev,
1637 					 struct netdev_notifier_info *info)
1638 {
1639 	ASSERT_RTNL();
1640 	netdev_notifier_info_init(info, dev);
1641 	return raw_notifier_call_chain(&netdev_chain, val, info);
1642 }
1643 
1644 /**
1645  *	call_netdevice_notifiers - call all network notifier blocks
1646  *      @val: value passed unmodified to notifier function
1647  *      @dev: net_device pointer passed unmodified to notifier function
1648  *
1649  *	Call all network notifier blocks.  Parameters and return value
1650  *	are as for raw_notifier_call_chain().
1651  */
1652 
1653 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1654 {
1655 	struct netdev_notifier_info info;
1656 
1657 	return call_netdevice_notifiers_info(val, dev, &info);
1658 }
1659 EXPORT_SYMBOL(call_netdevice_notifiers);
1660 
1661 #ifdef CONFIG_NET_INGRESS
1662 static struct static_key ingress_needed __read_mostly;
1663 
1664 void net_inc_ingress_queue(void)
1665 {
1666 	static_key_slow_inc(&ingress_needed);
1667 }
1668 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1669 
1670 void net_dec_ingress_queue(void)
1671 {
1672 	static_key_slow_dec(&ingress_needed);
1673 }
1674 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1675 #endif
1676 
1677 static struct static_key netstamp_needed __read_mostly;
1678 #ifdef HAVE_JUMP_LABEL
1679 /* We are not allowed to call static_key_slow_dec() from irq context
1680  * If net_disable_timestamp() is called from irq context, defer the
1681  * static_key_slow_dec() calls.
1682  */
1683 static atomic_t netstamp_needed_deferred;
1684 #endif
1685 
1686 void net_enable_timestamp(void)
1687 {
1688 #ifdef HAVE_JUMP_LABEL
1689 	int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1690 
1691 	if (deferred) {
1692 		while (--deferred)
1693 			static_key_slow_dec(&netstamp_needed);
1694 		return;
1695 	}
1696 #endif
1697 	static_key_slow_inc(&netstamp_needed);
1698 }
1699 EXPORT_SYMBOL(net_enable_timestamp);
1700 
1701 void net_disable_timestamp(void)
1702 {
1703 #ifdef HAVE_JUMP_LABEL
1704 	if (in_interrupt()) {
1705 		atomic_inc(&netstamp_needed_deferred);
1706 		return;
1707 	}
1708 #endif
1709 	static_key_slow_dec(&netstamp_needed);
1710 }
1711 EXPORT_SYMBOL(net_disable_timestamp);
1712 
1713 static inline void net_timestamp_set(struct sk_buff *skb)
1714 {
1715 	skb->tstamp.tv64 = 0;
1716 	if (static_key_false(&netstamp_needed))
1717 		__net_timestamp(skb);
1718 }
1719 
1720 #define net_timestamp_check(COND, SKB)			\
1721 	if (static_key_false(&netstamp_needed)) {		\
1722 		if ((COND) && !(SKB)->tstamp.tv64)	\
1723 			__net_timestamp(SKB);		\
1724 	}						\
1725 
1726 bool is_skb_forwardable(struct net_device *dev, struct sk_buff *skb)
1727 {
1728 	unsigned int len;
1729 
1730 	if (!(dev->flags & IFF_UP))
1731 		return false;
1732 
1733 	len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1734 	if (skb->len <= len)
1735 		return true;
1736 
1737 	/* if TSO is enabled, we don't care about the length as the packet
1738 	 * could be forwarded without being segmented before
1739 	 */
1740 	if (skb_is_gso(skb))
1741 		return true;
1742 
1743 	return false;
1744 }
1745 EXPORT_SYMBOL_GPL(is_skb_forwardable);
1746 
1747 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1748 {
1749 	if (skb_orphan_frags(skb, GFP_ATOMIC) ||
1750 	    unlikely(!is_skb_forwardable(dev, skb))) {
1751 		atomic_long_inc(&dev->rx_dropped);
1752 		kfree_skb(skb);
1753 		return NET_RX_DROP;
1754 	}
1755 
1756 	skb_scrub_packet(skb, true);
1757 	skb->priority = 0;
1758 	skb->protocol = eth_type_trans(skb, dev);
1759 	skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1760 
1761 	return 0;
1762 }
1763 EXPORT_SYMBOL_GPL(__dev_forward_skb);
1764 
1765 /**
1766  * dev_forward_skb - loopback an skb to another netif
1767  *
1768  * @dev: destination network device
1769  * @skb: buffer to forward
1770  *
1771  * return values:
1772  *	NET_RX_SUCCESS	(no congestion)
1773  *	NET_RX_DROP     (packet was dropped, but freed)
1774  *
1775  * dev_forward_skb can be used for injecting an skb from the
1776  * start_xmit function of one device into the receive queue
1777  * of another device.
1778  *
1779  * The receiving device may be in another namespace, so
1780  * we have to clear all information in the skb that could
1781  * impact namespace isolation.
1782  */
1783 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1784 {
1785 	return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1786 }
1787 EXPORT_SYMBOL_GPL(dev_forward_skb);
1788 
1789 static inline int deliver_skb(struct sk_buff *skb,
1790 			      struct packet_type *pt_prev,
1791 			      struct net_device *orig_dev)
1792 {
1793 	if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1794 		return -ENOMEM;
1795 	atomic_inc(&skb->users);
1796 	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1797 }
1798 
1799 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1800 					  struct packet_type **pt,
1801 					  struct net_device *orig_dev,
1802 					  __be16 type,
1803 					  struct list_head *ptype_list)
1804 {
1805 	struct packet_type *ptype, *pt_prev = *pt;
1806 
1807 	list_for_each_entry_rcu(ptype, ptype_list, list) {
1808 		if (ptype->type != type)
1809 			continue;
1810 		if (pt_prev)
1811 			deliver_skb(skb, pt_prev, orig_dev);
1812 		pt_prev = ptype;
1813 	}
1814 	*pt = pt_prev;
1815 }
1816 
1817 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1818 {
1819 	if (!ptype->af_packet_priv || !skb->sk)
1820 		return false;
1821 
1822 	if (ptype->id_match)
1823 		return ptype->id_match(ptype, skb->sk);
1824 	else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1825 		return true;
1826 
1827 	return false;
1828 }
1829 
1830 /*
1831  *	Support routine. Sends outgoing frames to any network
1832  *	taps currently in use.
1833  */
1834 
1835 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1836 {
1837 	struct packet_type *ptype;
1838 	struct sk_buff *skb2 = NULL;
1839 	struct packet_type *pt_prev = NULL;
1840 	struct list_head *ptype_list = &ptype_all;
1841 
1842 	rcu_read_lock();
1843 again:
1844 	list_for_each_entry_rcu(ptype, ptype_list, list) {
1845 		/* Never send packets back to the socket
1846 		 * they originated from - MvS (miquels@drinkel.ow.org)
1847 		 */
1848 		if (skb_loop_sk(ptype, skb))
1849 			continue;
1850 
1851 		if (pt_prev) {
1852 			deliver_skb(skb2, pt_prev, skb->dev);
1853 			pt_prev = ptype;
1854 			continue;
1855 		}
1856 
1857 		/* need to clone skb, done only once */
1858 		skb2 = skb_clone(skb, GFP_ATOMIC);
1859 		if (!skb2)
1860 			goto out_unlock;
1861 
1862 		net_timestamp_set(skb2);
1863 
1864 		/* skb->nh should be correctly
1865 		 * set by sender, so that the second statement is
1866 		 * just protection against buggy protocols.
1867 		 */
1868 		skb_reset_mac_header(skb2);
1869 
1870 		if (skb_network_header(skb2) < skb2->data ||
1871 		    skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1872 			net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1873 					     ntohs(skb2->protocol),
1874 					     dev->name);
1875 			skb_reset_network_header(skb2);
1876 		}
1877 
1878 		skb2->transport_header = skb2->network_header;
1879 		skb2->pkt_type = PACKET_OUTGOING;
1880 		pt_prev = ptype;
1881 	}
1882 
1883 	if (ptype_list == &ptype_all) {
1884 		ptype_list = &dev->ptype_all;
1885 		goto again;
1886 	}
1887 out_unlock:
1888 	if (pt_prev)
1889 		pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1890 	rcu_read_unlock();
1891 }
1892 
1893 /**
1894  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1895  * @dev: Network device
1896  * @txq: number of queues available
1897  *
1898  * If real_num_tx_queues is changed the tc mappings may no longer be
1899  * valid. To resolve this verify the tc mapping remains valid and if
1900  * not NULL the mapping. With no priorities mapping to this
1901  * offset/count pair it will no longer be used. In the worst case TC0
1902  * is invalid nothing can be done so disable priority mappings. If is
1903  * expected that drivers will fix this mapping if they can before
1904  * calling netif_set_real_num_tx_queues.
1905  */
1906 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1907 {
1908 	int i;
1909 	struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1910 
1911 	/* If TC0 is invalidated disable TC mapping */
1912 	if (tc->offset + tc->count > txq) {
1913 		pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1914 		dev->num_tc = 0;
1915 		return;
1916 	}
1917 
1918 	/* Invalidated prio to tc mappings set to TC0 */
1919 	for (i = 1; i < TC_BITMASK + 1; i++) {
1920 		int q = netdev_get_prio_tc_map(dev, i);
1921 
1922 		tc = &dev->tc_to_txq[q];
1923 		if (tc->offset + tc->count > txq) {
1924 			pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1925 				i, q);
1926 			netdev_set_prio_tc_map(dev, i, 0);
1927 		}
1928 	}
1929 }
1930 
1931 #ifdef CONFIG_XPS
1932 static DEFINE_MUTEX(xps_map_mutex);
1933 #define xmap_dereference(P)		\
1934 	rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
1935 
1936 static struct xps_map *remove_xps_queue(struct xps_dev_maps *dev_maps,
1937 					int cpu, u16 index)
1938 {
1939 	struct xps_map *map = NULL;
1940 	int pos;
1941 
1942 	if (dev_maps)
1943 		map = xmap_dereference(dev_maps->cpu_map[cpu]);
1944 
1945 	for (pos = 0; map && pos < map->len; pos++) {
1946 		if (map->queues[pos] == index) {
1947 			if (map->len > 1) {
1948 				map->queues[pos] = map->queues[--map->len];
1949 			} else {
1950 				RCU_INIT_POINTER(dev_maps->cpu_map[cpu], NULL);
1951 				kfree_rcu(map, rcu);
1952 				map = NULL;
1953 			}
1954 			break;
1955 		}
1956 	}
1957 
1958 	return map;
1959 }
1960 
1961 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
1962 {
1963 	struct xps_dev_maps *dev_maps;
1964 	int cpu, i;
1965 	bool active = false;
1966 
1967 	mutex_lock(&xps_map_mutex);
1968 	dev_maps = xmap_dereference(dev->xps_maps);
1969 
1970 	if (!dev_maps)
1971 		goto out_no_maps;
1972 
1973 	for_each_possible_cpu(cpu) {
1974 		for (i = index; i < dev->num_tx_queues; i++) {
1975 			if (!remove_xps_queue(dev_maps, cpu, i))
1976 				break;
1977 		}
1978 		if (i == dev->num_tx_queues)
1979 			active = true;
1980 	}
1981 
1982 	if (!active) {
1983 		RCU_INIT_POINTER(dev->xps_maps, NULL);
1984 		kfree_rcu(dev_maps, rcu);
1985 	}
1986 
1987 	for (i = index; i < dev->num_tx_queues; i++)
1988 		netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
1989 					     NUMA_NO_NODE);
1990 
1991 out_no_maps:
1992 	mutex_unlock(&xps_map_mutex);
1993 }
1994 
1995 static struct xps_map *expand_xps_map(struct xps_map *map,
1996 				      int cpu, u16 index)
1997 {
1998 	struct xps_map *new_map;
1999 	int alloc_len = XPS_MIN_MAP_ALLOC;
2000 	int i, pos;
2001 
2002 	for (pos = 0; map && pos < map->len; pos++) {
2003 		if (map->queues[pos] != index)
2004 			continue;
2005 		return map;
2006 	}
2007 
2008 	/* Need to add queue to this CPU's existing map */
2009 	if (map) {
2010 		if (pos < map->alloc_len)
2011 			return map;
2012 
2013 		alloc_len = map->alloc_len * 2;
2014 	}
2015 
2016 	/* Need to allocate new map to store queue on this CPU's map */
2017 	new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2018 			       cpu_to_node(cpu));
2019 	if (!new_map)
2020 		return NULL;
2021 
2022 	for (i = 0; i < pos; i++)
2023 		new_map->queues[i] = map->queues[i];
2024 	new_map->alloc_len = alloc_len;
2025 	new_map->len = pos;
2026 
2027 	return new_map;
2028 }
2029 
2030 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2031 			u16 index)
2032 {
2033 	struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2034 	struct xps_map *map, *new_map;
2035 	int maps_sz = max_t(unsigned int, XPS_DEV_MAPS_SIZE, L1_CACHE_BYTES);
2036 	int cpu, numa_node_id = -2;
2037 	bool active = false;
2038 
2039 	mutex_lock(&xps_map_mutex);
2040 
2041 	dev_maps = xmap_dereference(dev->xps_maps);
2042 
2043 	/* allocate memory for queue storage */
2044 	for_each_online_cpu(cpu) {
2045 		if (!cpumask_test_cpu(cpu, mask))
2046 			continue;
2047 
2048 		if (!new_dev_maps)
2049 			new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2050 		if (!new_dev_maps) {
2051 			mutex_unlock(&xps_map_mutex);
2052 			return -ENOMEM;
2053 		}
2054 
2055 		map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2056 				 NULL;
2057 
2058 		map = expand_xps_map(map, cpu, index);
2059 		if (!map)
2060 			goto error;
2061 
2062 		RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
2063 	}
2064 
2065 	if (!new_dev_maps)
2066 		goto out_no_new_maps;
2067 
2068 	for_each_possible_cpu(cpu) {
2069 		if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
2070 			/* add queue to CPU maps */
2071 			int pos = 0;
2072 
2073 			map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2074 			while ((pos < map->len) && (map->queues[pos] != index))
2075 				pos++;
2076 
2077 			if (pos == map->len)
2078 				map->queues[map->len++] = index;
2079 #ifdef CONFIG_NUMA
2080 			if (numa_node_id == -2)
2081 				numa_node_id = cpu_to_node(cpu);
2082 			else if (numa_node_id != cpu_to_node(cpu))
2083 				numa_node_id = -1;
2084 #endif
2085 		} else if (dev_maps) {
2086 			/* fill in the new device map from the old device map */
2087 			map = xmap_dereference(dev_maps->cpu_map[cpu]);
2088 			RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
2089 		}
2090 
2091 	}
2092 
2093 	rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2094 
2095 	/* Cleanup old maps */
2096 	if (dev_maps) {
2097 		for_each_possible_cpu(cpu) {
2098 			new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2099 			map = xmap_dereference(dev_maps->cpu_map[cpu]);
2100 			if (map && map != new_map)
2101 				kfree_rcu(map, rcu);
2102 		}
2103 
2104 		kfree_rcu(dev_maps, rcu);
2105 	}
2106 
2107 	dev_maps = new_dev_maps;
2108 	active = true;
2109 
2110 out_no_new_maps:
2111 	/* update Tx queue numa node */
2112 	netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2113 				     (numa_node_id >= 0) ? numa_node_id :
2114 				     NUMA_NO_NODE);
2115 
2116 	if (!dev_maps)
2117 		goto out_no_maps;
2118 
2119 	/* removes queue from unused CPUs */
2120 	for_each_possible_cpu(cpu) {
2121 		if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu))
2122 			continue;
2123 
2124 		if (remove_xps_queue(dev_maps, cpu, index))
2125 			active = true;
2126 	}
2127 
2128 	/* free map if not active */
2129 	if (!active) {
2130 		RCU_INIT_POINTER(dev->xps_maps, NULL);
2131 		kfree_rcu(dev_maps, rcu);
2132 	}
2133 
2134 out_no_maps:
2135 	mutex_unlock(&xps_map_mutex);
2136 
2137 	return 0;
2138 error:
2139 	/* remove any maps that we added */
2140 	for_each_possible_cpu(cpu) {
2141 		new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2142 		map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2143 				 NULL;
2144 		if (new_map && new_map != map)
2145 			kfree(new_map);
2146 	}
2147 
2148 	mutex_unlock(&xps_map_mutex);
2149 
2150 	kfree(new_dev_maps);
2151 	return -ENOMEM;
2152 }
2153 EXPORT_SYMBOL(netif_set_xps_queue);
2154 
2155 #endif
2156 /*
2157  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2158  * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2159  */
2160 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2161 {
2162 	int rc;
2163 
2164 	if (txq < 1 || txq > dev->num_tx_queues)
2165 		return -EINVAL;
2166 
2167 	if (dev->reg_state == NETREG_REGISTERED ||
2168 	    dev->reg_state == NETREG_UNREGISTERING) {
2169 		ASSERT_RTNL();
2170 
2171 		rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2172 						  txq);
2173 		if (rc)
2174 			return rc;
2175 
2176 		if (dev->num_tc)
2177 			netif_setup_tc(dev, txq);
2178 
2179 		if (txq < dev->real_num_tx_queues) {
2180 			qdisc_reset_all_tx_gt(dev, txq);
2181 #ifdef CONFIG_XPS
2182 			netif_reset_xps_queues_gt(dev, txq);
2183 #endif
2184 		}
2185 	}
2186 
2187 	dev->real_num_tx_queues = txq;
2188 	return 0;
2189 }
2190 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2191 
2192 #ifdef CONFIG_SYSFS
2193 /**
2194  *	netif_set_real_num_rx_queues - set actual number of RX queues used
2195  *	@dev: Network device
2196  *	@rxq: Actual number of RX queues
2197  *
2198  *	This must be called either with the rtnl_lock held or before
2199  *	registration of the net device.  Returns 0 on success, or a
2200  *	negative error code.  If called before registration, it always
2201  *	succeeds.
2202  */
2203 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2204 {
2205 	int rc;
2206 
2207 	if (rxq < 1 || rxq > dev->num_rx_queues)
2208 		return -EINVAL;
2209 
2210 	if (dev->reg_state == NETREG_REGISTERED) {
2211 		ASSERT_RTNL();
2212 
2213 		rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2214 						  rxq);
2215 		if (rc)
2216 			return rc;
2217 	}
2218 
2219 	dev->real_num_rx_queues = rxq;
2220 	return 0;
2221 }
2222 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2223 #endif
2224 
2225 /**
2226  * netif_get_num_default_rss_queues - default number of RSS queues
2227  *
2228  * This routine should set an upper limit on the number of RSS queues
2229  * used by default by multiqueue devices.
2230  */
2231 int netif_get_num_default_rss_queues(void)
2232 {
2233 	return min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2234 }
2235 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2236 
2237 static inline void __netif_reschedule(struct Qdisc *q)
2238 {
2239 	struct softnet_data *sd;
2240 	unsigned long flags;
2241 
2242 	local_irq_save(flags);
2243 	sd = this_cpu_ptr(&softnet_data);
2244 	q->next_sched = NULL;
2245 	*sd->output_queue_tailp = q;
2246 	sd->output_queue_tailp = &q->next_sched;
2247 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
2248 	local_irq_restore(flags);
2249 }
2250 
2251 void __netif_schedule(struct Qdisc *q)
2252 {
2253 	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2254 		__netif_reschedule(q);
2255 }
2256 EXPORT_SYMBOL(__netif_schedule);
2257 
2258 struct dev_kfree_skb_cb {
2259 	enum skb_free_reason reason;
2260 };
2261 
2262 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2263 {
2264 	return (struct dev_kfree_skb_cb *)skb->cb;
2265 }
2266 
2267 void netif_schedule_queue(struct netdev_queue *txq)
2268 {
2269 	rcu_read_lock();
2270 	if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2271 		struct Qdisc *q = rcu_dereference(txq->qdisc);
2272 
2273 		__netif_schedule(q);
2274 	}
2275 	rcu_read_unlock();
2276 }
2277 EXPORT_SYMBOL(netif_schedule_queue);
2278 
2279 /**
2280  *	netif_wake_subqueue - allow sending packets on subqueue
2281  *	@dev: network device
2282  *	@queue_index: sub queue index
2283  *
2284  * Resume individual transmit queue of a device with multiple transmit queues.
2285  */
2286 void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
2287 {
2288 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2289 
2290 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &txq->state)) {
2291 		struct Qdisc *q;
2292 
2293 		rcu_read_lock();
2294 		q = rcu_dereference(txq->qdisc);
2295 		__netif_schedule(q);
2296 		rcu_read_unlock();
2297 	}
2298 }
2299 EXPORT_SYMBOL(netif_wake_subqueue);
2300 
2301 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2302 {
2303 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2304 		struct Qdisc *q;
2305 
2306 		rcu_read_lock();
2307 		q = rcu_dereference(dev_queue->qdisc);
2308 		__netif_schedule(q);
2309 		rcu_read_unlock();
2310 	}
2311 }
2312 EXPORT_SYMBOL(netif_tx_wake_queue);
2313 
2314 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2315 {
2316 	unsigned long flags;
2317 
2318 	if (likely(atomic_read(&skb->users) == 1)) {
2319 		smp_rmb();
2320 		atomic_set(&skb->users, 0);
2321 	} else if (likely(!atomic_dec_and_test(&skb->users))) {
2322 		return;
2323 	}
2324 	get_kfree_skb_cb(skb)->reason = reason;
2325 	local_irq_save(flags);
2326 	skb->next = __this_cpu_read(softnet_data.completion_queue);
2327 	__this_cpu_write(softnet_data.completion_queue, skb);
2328 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
2329 	local_irq_restore(flags);
2330 }
2331 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2332 
2333 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2334 {
2335 	if (in_irq() || irqs_disabled())
2336 		__dev_kfree_skb_irq(skb, reason);
2337 	else
2338 		dev_kfree_skb(skb);
2339 }
2340 EXPORT_SYMBOL(__dev_kfree_skb_any);
2341 
2342 
2343 /**
2344  * netif_device_detach - mark device as removed
2345  * @dev: network device
2346  *
2347  * Mark device as removed from system and therefore no longer available.
2348  */
2349 void netif_device_detach(struct net_device *dev)
2350 {
2351 	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2352 	    netif_running(dev)) {
2353 		netif_tx_stop_all_queues(dev);
2354 	}
2355 }
2356 EXPORT_SYMBOL(netif_device_detach);
2357 
2358 /**
2359  * netif_device_attach - mark device as attached
2360  * @dev: network device
2361  *
2362  * Mark device as attached from system and restart if needed.
2363  */
2364 void netif_device_attach(struct net_device *dev)
2365 {
2366 	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2367 	    netif_running(dev)) {
2368 		netif_tx_wake_all_queues(dev);
2369 		__netdev_watchdog_up(dev);
2370 	}
2371 }
2372 EXPORT_SYMBOL(netif_device_attach);
2373 
2374 /*
2375  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2376  * to be used as a distribution range.
2377  */
2378 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
2379 		  unsigned int num_tx_queues)
2380 {
2381 	u32 hash;
2382 	u16 qoffset = 0;
2383 	u16 qcount = num_tx_queues;
2384 
2385 	if (skb_rx_queue_recorded(skb)) {
2386 		hash = skb_get_rx_queue(skb);
2387 		while (unlikely(hash >= num_tx_queues))
2388 			hash -= num_tx_queues;
2389 		return hash;
2390 	}
2391 
2392 	if (dev->num_tc) {
2393 		u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2394 		qoffset = dev->tc_to_txq[tc].offset;
2395 		qcount = dev->tc_to_txq[tc].count;
2396 	}
2397 
2398 	return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2399 }
2400 EXPORT_SYMBOL(__skb_tx_hash);
2401 
2402 static void skb_warn_bad_offload(const struct sk_buff *skb)
2403 {
2404 	static const netdev_features_t null_features = 0;
2405 	struct net_device *dev = skb->dev;
2406 	const char *driver = "";
2407 
2408 	if (!net_ratelimit())
2409 		return;
2410 
2411 	if (dev && dev->dev.parent)
2412 		driver = dev_driver_string(dev->dev.parent);
2413 
2414 	WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2415 	     "gso_type=%d ip_summed=%d\n",
2416 	     driver, dev ? &dev->features : &null_features,
2417 	     skb->sk ? &skb->sk->sk_route_caps : &null_features,
2418 	     skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2419 	     skb_shinfo(skb)->gso_type, skb->ip_summed);
2420 }
2421 
2422 /*
2423  * Invalidate hardware checksum when packet is to be mangled, and
2424  * complete checksum manually on outgoing path.
2425  */
2426 int skb_checksum_help(struct sk_buff *skb)
2427 {
2428 	__wsum csum;
2429 	int ret = 0, offset;
2430 
2431 	if (skb->ip_summed == CHECKSUM_COMPLETE)
2432 		goto out_set_summed;
2433 
2434 	if (unlikely(skb_shinfo(skb)->gso_size)) {
2435 		skb_warn_bad_offload(skb);
2436 		return -EINVAL;
2437 	}
2438 
2439 	/* Before computing a checksum, we should make sure no frag could
2440 	 * be modified by an external entity : checksum could be wrong.
2441 	 */
2442 	if (skb_has_shared_frag(skb)) {
2443 		ret = __skb_linearize(skb);
2444 		if (ret)
2445 			goto out;
2446 	}
2447 
2448 	offset = skb_checksum_start_offset(skb);
2449 	BUG_ON(offset >= skb_headlen(skb));
2450 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
2451 
2452 	offset += skb->csum_offset;
2453 	BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2454 
2455 	if (skb_cloned(skb) &&
2456 	    !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2457 		ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2458 		if (ret)
2459 			goto out;
2460 	}
2461 
2462 	*(__sum16 *)(skb->data + offset) = csum_fold(csum);
2463 out_set_summed:
2464 	skb->ip_summed = CHECKSUM_NONE;
2465 out:
2466 	return ret;
2467 }
2468 EXPORT_SYMBOL(skb_checksum_help);
2469 
2470 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2471 {
2472 	__be16 type = skb->protocol;
2473 
2474 	/* Tunnel gso handlers can set protocol to ethernet. */
2475 	if (type == htons(ETH_P_TEB)) {
2476 		struct ethhdr *eth;
2477 
2478 		if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2479 			return 0;
2480 
2481 		eth = (struct ethhdr *)skb_mac_header(skb);
2482 		type = eth->h_proto;
2483 	}
2484 
2485 	return __vlan_get_protocol(skb, type, depth);
2486 }
2487 
2488 /**
2489  *	skb_mac_gso_segment - mac layer segmentation handler.
2490  *	@skb: buffer to segment
2491  *	@features: features for the output path (see dev->features)
2492  */
2493 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2494 				    netdev_features_t features)
2495 {
2496 	struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2497 	struct packet_offload *ptype;
2498 	int vlan_depth = skb->mac_len;
2499 	__be16 type = skb_network_protocol(skb, &vlan_depth);
2500 
2501 	if (unlikely(!type))
2502 		return ERR_PTR(-EINVAL);
2503 
2504 	__skb_pull(skb, vlan_depth);
2505 
2506 	rcu_read_lock();
2507 	list_for_each_entry_rcu(ptype, &offload_base, list) {
2508 		if (ptype->type == type && ptype->callbacks.gso_segment) {
2509 			segs = ptype->callbacks.gso_segment(skb, features);
2510 			break;
2511 		}
2512 	}
2513 	rcu_read_unlock();
2514 
2515 	__skb_push(skb, skb->data - skb_mac_header(skb));
2516 
2517 	return segs;
2518 }
2519 EXPORT_SYMBOL(skb_mac_gso_segment);
2520 
2521 
2522 /* openvswitch calls this on rx path, so we need a different check.
2523  */
2524 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2525 {
2526 	if (tx_path)
2527 		return skb->ip_summed != CHECKSUM_PARTIAL;
2528 	else
2529 		return skb->ip_summed == CHECKSUM_NONE;
2530 }
2531 
2532 /**
2533  *	__skb_gso_segment - Perform segmentation on skb.
2534  *	@skb: buffer to segment
2535  *	@features: features for the output path (see dev->features)
2536  *	@tx_path: whether it is called in TX path
2537  *
2538  *	This function segments the given skb and returns a list of segments.
2539  *
2540  *	It may return NULL if the skb requires no segmentation.  This is
2541  *	only possible when GSO is used for verifying header integrity.
2542  */
2543 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2544 				  netdev_features_t features, bool tx_path)
2545 {
2546 	if (unlikely(skb_needs_check(skb, tx_path))) {
2547 		int err;
2548 
2549 		skb_warn_bad_offload(skb);
2550 
2551 		err = skb_cow_head(skb, 0);
2552 		if (err < 0)
2553 			return ERR_PTR(err);
2554 	}
2555 
2556 	SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2557 	SKB_GSO_CB(skb)->encap_level = 0;
2558 
2559 	skb_reset_mac_header(skb);
2560 	skb_reset_mac_len(skb);
2561 
2562 	return skb_mac_gso_segment(skb, features);
2563 }
2564 EXPORT_SYMBOL(__skb_gso_segment);
2565 
2566 /* Take action when hardware reception checksum errors are detected. */
2567 #ifdef CONFIG_BUG
2568 void netdev_rx_csum_fault(struct net_device *dev)
2569 {
2570 	if (net_ratelimit()) {
2571 		pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2572 		dump_stack();
2573 	}
2574 }
2575 EXPORT_SYMBOL(netdev_rx_csum_fault);
2576 #endif
2577 
2578 /* Actually, we should eliminate this check as soon as we know, that:
2579  * 1. IOMMU is present and allows to map all the memory.
2580  * 2. No high memory really exists on this machine.
2581  */
2582 
2583 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2584 {
2585 #ifdef CONFIG_HIGHMEM
2586 	int i;
2587 	if (!(dev->features & NETIF_F_HIGHDMA)) {
2588 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2589 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2590 			if (PageHighMem(skb_frag_page(frag)))
2591 				return 1;
2592 		}
2593 	}
2594 
2595 	if (PCI_DMA_BUS_IS_PHYS) {
2596 		struct device *pdev = dev->dev.parent;
2597 
2598 		if (!pdev)
2599 			return 0;
2600 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2601 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2602 			dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2603 			if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2604 				return 1;
2605 		}
2606 	}
2607 #endif
2608 	return 0;
2609 }
2610 
2611 /* If MPLS offload request, verify we are testing hardware MPLS features
2612  * instead of standard features for the netdev.
2613  */
2614 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
2615 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2616 					   netdev_features_t features,
2617 					   __be16 type)
2618 {
2619 	if (eth_p_mpls(type))
2620 		features &= skb->dev->mpls_features;
2621 
2622 	return features;
2623 }
2624 #else
2625 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2626 					   netdev_features_t features,
2627 					   __be16 type)
2628 {
2629 	return features;
2630 }
2631 #endif
2632 
2633 static netdev_features_t harmonize_features(struct sk_buff *skb,
2634 	netdev_features_t features)
2635 {
2636 	int tmp;
2637 	__be16 type;
2638 
2639 	type = skb_network_protocol(skb, &tmp);
2640 	features = net_mpls_features(skb, features, type);
2641 
2642 	if (skb->ip_summed != CHECKSUM_NONE &&
2643 	    !can_checksum_protocol(features, type)) {
2644 		features &= ~NETIF_F_ALL_CSUM;
2645 	} else if (illegal_highdma(skb->dev, skb)) {
2646 		features &= ~NETIF_F_SG;
2647 	}
2648 
2649 	return features;
2650 }
2651 
2652 netdev_features_t passthru_features_check(struct sk_buff *skb,
2653 					  struct net_device *dev,
2654 					  netdev_features_t features)
2655 {
2656 	return features;
2657 }
2658 EXPORT_SYMBOL(passthru_features_check);
2659 
2660 static netdev_features_t dflt_features_check(const struct sk_buff *skb,
2661 					     struct net_device *dev,
2662 					     netdev_features_t features)
2663 {
2664 	return vlan_features_check(skb, features);
2665 }
2666 
2667 netdev_features_t netif_skb_features(struct sk_buff *skb)
2668 {
2669 	struct net_device *dev = skb->dev;
2670 	netdev_features_t features = dev->features;
2671 	u16 gso_segs = skb_shinfo(skb)->gso_segs;
2672 
2673 	if (gso_segs > dev->gso_max_segs || gso_segs < dev->gso_min_segs)
2674 		features &= ~NETIF_F_GSO_MASK;
2675 
2676 	/* If encapsulation offload request, verify we are testing
2677 	 * hardware encapsulation features instead of standard
2678 	 * features for the netdev
2679 	 */
2680 	if (skb->encapsulation)
2681 		features &= dev->hw_enc_features;
2682 
2683 	if (skb_vlan_tagged(skb))
2684 		features = netdev_intersect_features(features,
2685 						     dev->vlan_features |
2686 						     NETIF_F_HW_VLAN_CTAG_TX |
2687 						     NETIF_F_HW_VLAN_STAG_TX);
2688 
2689 	if (dev->netdev_ops->ndo_features_check)
2690 		features &= dev->netdev_ops->ndo_features_check(skb, dev,
2691 								features);
2692 	else
2693 		features &= dflt_features_check(skb, dev, features);
2694 
2695 	return harmonize_features(skb, features);
2696 }
2697 EXPORT_SYMBOL(netif_skb_features);
2698 
2699 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
2700 		    struct netdev_queue *txq, bool more)
2701 {
2702 	unsigned int len;
2703 	int rc;
2704 
2705 	if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all))
2706 		dev_queue_xmit_nit(skb, dev);
2707 
2708 	len = skb->len;
2709 	trace_net_dev_start_xmit(skb, dev);
2710 	rc = netdev_start_xmit(skb, dev, txq, more);
2711 	trace_net_dev_xmit(skb, rc, dev, len);
2712 
2713 	return rc;
2714 }
2715 
2716 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
2717 				    struct netdev_queue *txq, int *ret)
2718 {
2719 	struct sk_buff *skb = first;
2720 	int rc = NETDEV_TX_OK;
2721 
2722 	while (skb) {
2723 		struct sk_buff *next = skb->next;
2724 
2725 		skb->next = NULL;
2726 		rc = xmit_one(skb, dev, txq, next != NULL);
2727 		if (unlikely(!dev_xmit_complete(rc))) {
2728 			skb->next = next;
2729 			goto out;
2730 		}
2731 
2732 		skb = next;
2733 		if (netif_xmit_stopped(txq) && skb) {
2734 			rc = NETDEV_TX_BUSY;
2735 			break;
2736 		}
2737 	}
2738 
2739 out:
2740 	*ret = rc;
2741 	return skb;
2742 }
2743 
2744 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
2745 					  netdev_features_t features)
2746 {
2747 	if (skb_vlan_tag_present(skb) &&
2748 	    !vlan_hw_offload_capable(features, skb->vlan_proto))
2749 		skb = __vlan_hwaccel_push_inside(skb);
2750 	return skb;
2751 }
2752 
2753 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev)
2754 {
2755 	netdev_features_t features;
2756 
2757 	if (skb->next)
2758 		return skb;
2759 
2760 	features = netif_skb_features(skb);
2761 	skb = validate_xmit_vlan(skb, features);
2762 	if (unlikely(!skb))
2763 		goto out_null;
2764 
2765 	if (netif_needs_gso(skb, features)) {
2766 		struct sk_buff *segs;
2767 
2768 		segs = skb_gso_segment(skb, features);
2769 		if (IS_ERR(segs)) {
2770 			goto out_kfree_skb;
2771 		} else if (segs) {
2772 			consume_skb(skb);
2773 			skb = segs;
2774 		}
2775 	} else {
2776 		if (skb_needs_linearize(skb, features) &&
2777 		    __skb_linearize(skb))
2778 			goto out_kfree_skb;
2779 
2780 		/* If packet is not checksummed and device does not
2781 		 * support checksumming for this protocol, complete
2782 		 * checksumming here.
2783 		 */
2784 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
2785 			if (skb->encapsulation)
2786 				skb_set_inner_transport_header(skb,
2787 							       skb_checksum_start_offset(skb));
2788 			else
2789 				skb_set_transport_header(skb,
2790 							 skb_checksum_start_offset(skb));
2791 			if (!(features & NETIF_F_ALL_CSUM) &&
2792 			    skb_checksum_help(skb))
2793 				goto out_kfree_skb;
2794 		}
2795 	}
2796 
2797 	return skb;
2798 
2799 out_kfree_skb:
2800 	kfree_skb(skb);
2801 out_null:
2802 	return NULL;
2803 }
2804 
2805 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev)
2806 {
2807 	struct sk_buff *next, *head = NULL, *tail;
2808 
2809 	for (; skb != NULL; skb = next) {
2810 		next = skb->next;
2811 		skb->next = NULL;
2812 
2813 		/* in case skb wont be segmented, point to itself */
2814 		skb->prev = skb;
2815 
2816 		skb = validate_xmit_skb(skb, dev);
2817 		if (!skb)
2818 			continue;
2819 
2820 		if (!head)
2821 			head = skb;
2822 		else
2823 			tail->next = skb;
2824 		/* If skb was segmented, skb->prev points to
2825 		 * the last segment. If not, it still contains skb.
2826 		 */
2827 		tail = skb->prev;
2828 	}
2829 	return head;
2830 }
2831 
2832 static void qdisc_pkt_len_init(struct sk_buff *skb)
2833 {
2834 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
2835 
2836 	qdisc_skb_cb(skb)->pkt_len = skb->len;
2837 
2838 	/* To get more precise estimation of bytes sent on wire,
2839 	 * we add to pkt_len the headers size of all segments
2840 	 */
2841 	if (shinfo->gso_size)  {
2842 		unsigned int hdr_len;
2843 		u16 gso_segs = shinfo->gso_segs;
2844 
2845 		/* mac layer + network layer */
2846 		hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
2847 
2848 		/* + transport layer */
2849 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
2850 			hdr_len += tcp_hdrlen(skb);
2851 		else
2852 			hdr_len += sizeof(struct udphdr);
2853 
2854 		if (shinfo->gso_type & SKB_GSO_DODGY)
2855 			gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
2856 						shinfo->gso_size);
2857 
2858 		qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
2859 	}
2860 }
2861 
2862 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2863 				 struct net_device *dev,
2864 				 struct netdev_queue *txq)
2865 {
2866 	spinlock_t *root_lock = qdisc_lock(q);
2867 	bool contended;
2868 	int rc;
2869 
2870 	qdisc_pkt_len_init(skb);
2871 	qdisc_calculate_pkt_len(skb, q);
2872 	/*
2873 	 * Heuristic to force contended enqueues to serialize on a
2874 	 * separate lock before trying to get qdisc main lock.
2875 	 * This permits __QDISC___STATE_RUNNING owner to get the lock more
2876 	 * often and dequeue packets faster.
2877 	 */
2878 	contended = qdisc_is_running(q);
2879 	if (unlikely(contended))
2880 		spin_lock(&q->busylock);
2881 
2882 	spin_lock(root_lock);
2883 	if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2884 		kfree_skb(skb);
2885 		rc = NET_XMIT_DROP;
2886 	} else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2887 		   qdisc_run_begin(q)) {
2888 		/*
2889 		 * This is a work-conserving queue; there are no old skbs
2890 		 * waiting to be sent out; and the qdisc is not running -
2891 		 * xmit the skb directly.
2892 		 */
2893 
2894 		qdisc_bstats_update(q, skb);
2895 
2896 		if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
2897 			if (unlikely(contended)) {
2898 				spin_unlock(&q->busylock);
2899 				contended = false;
2900 			}
2901 			__qdisc_run(q);
2902 		} else
2903 			qdisc_run_end(q);
2904 
2905 		rc = NET_XMIT_SUCCESS;
2906 	} else {
2907 		rc = q->enqueue(skb, q) & NET_XMIT_MASK;
2908 		if (qdisc_run_begin(q)) {
2909 			if (unlikely(contended)) {
2910 				spin_unlock(&q->busylock);
2911 				contended = false;
2912 			}
2913 			__qdisc_run(q);
2914 		}
2915 	}
2916 	spin_unlock(root_lock);
2917 	if (unlikely(contended))
2918 		spin_unlock(&q->busylock);
2919 	return rc;
2920 }
2921 
2922 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
2923 static void skb_update_prio(struct sk_buff *skb)
2924 {
2925 	struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
2926 
2927 	if (!skb->priority && skb->sk && map) {
2928 		unsigned int prioidx = skb->sk->sk_cgrp_prioidx;
2929 
2930 		if (prioidx < map->priomap_len)
2931 			skb->priority = map->priomap[prioidx];
2932 	}
2933 }
2934 #else
2935 #define skb_update_prio(skb)
2936 #endif
2937 
2938 DEFINE_PER_CPU(int, xmit_recursion);
2939 EXPORT_SYMBOL(xmit_recursion);
2940 
2941 #define RECURSION_LIMIT 10
2942 
2943 /**
2944  *	dev_loopback_xmit - loop back @skb
2945  *	@net: network namespace this loopback is happening in
2946  *	@sk:  sk needed to be a netfilter okfn
2947  *	@skb: buffer to transmit
2948  */
2949 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
2950 {
2951 	skb_reset_mac_header(skb);
2952 	__skb_pull(skb, skb_network_offset(skb));
2953 	skb->pkt_type = PACKET_LOOPBACK;
2954 	skb->ip_summed = CHECKSUM_UNNECESSARY;
2955 	WARN_ON(!skb_dst(skb));
2956 	skb_dst_force(skb);
2957 	netif_rx_ni(skb);
2958 	return 0;
2959 }
2960 EXPORT_SYMBOL(dev_loopback_xmit);
2961 
2962 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
2963 {
2964 #ifdef CONFIG_XPS
2965 	struct xps_dev_maps *dev_maps;
2966 	struct xps_map *map;
2967 	int queue_index = -1;
2968 
2969 	rcu_read_lock();
2970 	dev_maps = rcu_dereference(dev->xps_maps);
2971 	if (dev_maps) {
2972 		map = rcu_dereference(
2973 		    dev_maps->cpu_map[skb->sender_cpu - 1]);
2974 		if (map) {
2975 			if (map->len == 1)
2976 				queue_index = map->queues[0];
2977 			else
2978 				queue_index = map->queues[reciprocal_scale(skb_get_hash(skb),
2979 									   map->len)];
2980 			if (unlikely(queue_index >= dev->real_num_tx_queues))
2981 				queue_index = -1;
2982 		}
2983 	}
2984 	rcu_read_unlock();
2985 
2986 	return queue_index;
2987 #else
2988 	return -1;
2989 #endif
2990 }
2991 
2992 static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb)
2993 {
2994 	struct sock *sk = skb->sk;
2995 	int queue_index = sk_tx_queue_get(sk);
2996 
2997 	if (queue_index < 0 || skb->ooo_okay ||
2998 	    queue_index >= dev->real_num_tx_queues) {
2999 		int new_index = get_xps_queue(dev, skb);
3000 		if (new_index < 0)
3001 			new_index = skb_tx_hash(dev, skb);
3002 
3003 		if (queue_index != new_index && sk &&
3004 		    sk_fullsock(sk) &&
3005 		    rcu_access_pointer(sk->sk_dst_cache))
3006 			sk_tx_queue_set(sk, new_index);
3007 
3008 		queue_index = new_index;
3009 	}
3010 
3011 	return queue_index;
3012 }
3013 
3014 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
3015 				    struct sk_buff *skb,
3016 				    void *accel_priv)
3017 {
3018 	int queue_index = 0;
3019 
3020 #ifdef CONFIG_XPS
3021 	if (skb->sender_cpu == 0)
3022 		skb->sender_cpu = raw_smp_processor_id() + 1;
3023 #endif
3024 
3025 	if (dev->real_num_tx_queues != 1) {
3026 		const struct net_device_ops *ops = dev->netdev_ops;
3027 		if (ops->ndo_select_queue)
3028 			queue_index = ops->ndo_select_queue(dev, skb, accel_priv,
3029 							    __netdev_pick_tx);
3030 		else
3031 			queue_index = __netdev_pick_tx(dev, skb);
3032 
3033 		if (!accel_priv)
3034 			queue_index = netdev_cap_txqueue(dev, queue_index);
3035 	}
3036 
3037 	skb_set_queue_mapping(skb, queue_index);
3038 	return netdev_get_tx_queue(dev, queue_index);
3039 }
3040 
3041 /**
3042  *	__dev_queue_xmit - transmit a buffer
3043  *	@skb: buffer to transmit
3044  *	@accel_priv: private data used for L2 forwarding offload
3045  *
3046  *	Queue a buffer for transmission to a network device. The caller must
3047  *	have set the device and priority and built the buffer before calling
3048  *	this function. The function can be called from an interrupt.
3049  *
3050  *	A negative errno code is returned on a failure. A success does not
3051  *	guarantee the frame will be transmitted as it may be dropped due
3052  *	to congestion or traffic shaping.
3053  *
3054  * -----------------------------------------------------------------------------------
3055  *      I notice this method can also return errors from the queue disciplines,
3056  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
3057  *      be positive.
3058  *
3059  *      Regardless of the return value, the skb is consumed, so it is currently
3060  *      difficult to retry a send to this method.  (You can bump the ref count
3061  *      before sending to hold a reference for retry if you are careful.)
3062  *
3063  *      When calling this method, interrupts MUST be enabled.  This is because
3064  *      the BH enable code must have IRQs enabled so that it will not deadlock.
3065  *          --BLG
3066  */
3067 static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
3068 {
3069 	struct net_device *dev = skb->dev;
3070 	struct netdev_queue *txq;
3071 	struct Qdisc *q;
3072 	int rc = -ENOMEM;
3073 
3074 	skb_reset_mac_header(skb);
3075 
3076 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3077 		__skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3078 
3079 	/* Disable soft irqs for various locks below. Also
3080 	 * stops preemption for RCU.
3081 	 */
3082 	rcu_read_lock_bh();
3083 
3084 	skb_update_prio(skb);
3085 
3086 	/* If device/qdisc don't need skb->dst, release it right now while
3087 	 * its hot in this cpu cache.
3088 	 */
3089 	if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3090 		skb_dst_drop(skb);
3091 	else
3092 		skb_dst_force(skb);
3093 
3094 #ifdef CONFIG_NET_SWITCHDEV
3095 	/* Don't forward if offload device already forwarded */
3096 	if (skb->offload_fwd_mark &&
3097 	    skb->offload_fwd_mark == dev->offload_fwd_mark) {
3098 		consume_skb(skb);
3099 		rc = NET_XMIT_SUCCESS;
3100 		goto out;
3101 	}
3102 #endif
3103 
3104 	txq = netdev_pick_tx(dev, skb, accel_priv);
3105 	q = rcu_dereference_bh(txq->qdisc);
3106 
3107 #ifdef CONFIG_NET_CLS_ACT
3108 	skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
3109 #endif
3110 	trace_net_dev_queue(skb);
3111 	if (q->enqueue) {
3112 		rc = __dev_xmit_skb(skb, q, dev, txq);
3113 		goto out;
3114 	}
3115 
3116 	/* The device has no queue. Common case for software devices:
3117 	   loopback, all the sorts of tunnels...
3118 
3119 	   Really, it is unlikely that netif_tx_lock protection is necessary
3120 	   here.  (f.e. loopback and IP tunnels are clean ignoring statistics
3121 	   counters.)
3122 	   However, it is possible, that they rely on protection
3123 	   made by us here.
3124 
3125 	   Check this and shot the lock. It is not prone from deadlocks.
3126 	   Either shot noqueue qdisc, it is even simpler 8)
3127 	 */
3128 	if (dev->flags & IFF_UP) {
3129 		int cpu = smp_processor_id(); /* ok because BHs are off */
3130 
3131 		if (txq->xmit_lock_owner != cpu) {
3132 
3133 			if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
3134 				goto recursion_alert;
3135 
3136 			skb = validate_xmit_skb(skb, dev);
3137 			if (!skb)
3138 				goto drop;
3139 
3140 			HARD_TX_LOCK(dev, txq, cpu);
3141 
3142 			if (!netif_xmit_stopped(txq)) {
3143 				__this_cpu_inc(xmit_recursion);
3144 				skb = dev_hard_start_xmit(skb, dev, txq, &rc);
3145 				__this_cpu_dec(xmit_recursion);
3146 				if (dev_xmit_complete(rc)) {
3147 					HARD_TX_UNLOCK(dev, txq);
3148 					goto out;
3149 				}
3150 			}
3151 			HARD_TX_UNLOCK(dev, txq);
3152 			net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3153 					     dev->name);
3154 		} else {
3155 			/* Recursion is detected! It is possible,
3156 			 * unfortunately
3157 			 */
3158 recursion_alert:
3159 			net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3160 					     dev->name);
3161 		}
3162 	}
3163 
3164 	rc = -ENETDOWN;
3165 drop:
3166 	rcu_read_unlock_bh();
3167 
3168 	atomic_long_inc(&dev->tx_dropped);
3169 	kfree_skb_list(skb);
3170 	return rc;
3171 out:
3172 	rcu_read_unlock_bh();
3173 	return rc;
3174 }
3175 
3176 int dev_queue_xmit(struct sk_buff *skb)
3177 {
3178 	return __dev_queue_xmit(skb, NULL);
3179 }
3180 EXPORT_SYMBOL(dev_queue_xmit);
3181 
3182 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
3183 {
3184 	return __dev_queue_xmit(skb, accel_priv);
3185 }
3186 EXPORT_SYMBOL(dev_queue_xmit_accel);
3187 
3188 
3189 /*=======================================================================
3190 			Receiver routines
3191   =======================================================================*/
3192 
3193 int netdev_max_backlog __read_mostly = 1000;
3194 EXPORT_SYMBOL(netdev_max_backlog);
3195 
3196 int netdev_tstamp_prequeue __read_mostly = 1;
3197 int netdev_budget __read_mostly = 300;
3198 int weight_p __read_mostly = 64;            /* old backlog weight */
3199 
3200 /* Called with irq disabled */
3201 static inline void ____napi_schedule(struct softnet_data *sd,
3202 				     struct napi_struct *napi)
3203 {
3204 	list_add_tail(&napi->poll_list, &sd->poll_list);
3205 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
3206 }
3207 
3208 #ifdef CONFIG_RPS
3209 
3210 /* One global table that all flow-based protocols share. */
3211 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3212 EXPORT_SYMBOL(rps_sock_flow_table);
3213 u32 rps_cpu_mask __read_mostly;
3214 EXPORT_SYMBOL(rps_cpu_mask);
3215 
3216 struct static_key rps_needed __read_mostly;
3217 
3218 static struct rps_dev_flow *
3219 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3220 	    struct rps_dev_flow *rflow, u16 next_cpu)
3221 {
3222 	if (next_cpu < nr_cpu_ids) {
3223 #ifdef CONFIG_RFS_ACCEL
3224 		struct netdev_rx_queue *rxqueue;
3225 		struct rps_dev_flow_table *flow_table;
3226 		struct rps_dev_flow *old_rflow;
3227 		u32 flow_id;
3228 		u16 rxq_index;
3229 		int rc;
3230 
3231 		/* Should we steer this flow to a different hardware queue? */
3232 		if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3233 		    !(dev->features & NETIF_F_NTUPLE))
3234 			goto out;
3235 		rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3236 		if (rxq_index == skb_get_rx_queue(skb))
3237 			goto out;
3238 
3239 		rxqueue = dev->_rx + rxq_index;
3240 		flow_table = rcu_dereference(rxqueue->rps_flow_table);
3241 		if (!flow_table)
3242 			goto out;
3243 		flow_id = skb_get_hash(skb) & flow_table->mask;
3244 		rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3245 							rxq_index, flow_id);
3246 		if (rc < 0)
3247 			goto out;
3248 		old_rflow = rflow;
3249 		rflow = &flow_table->flows[flow_id];
3250 		rflow->filter = rc;
3251 		if (old_rflow->filter == rflow->filter)
3252 			old_rflow->filter = RPS_NO_FILTER;
3253 	out:
3254 #endif
3255 		rflow->last_qtail =
3256 			per_cpu(softnet_data, next_cpu).input_queue_head;
3257 	}
3258 
3259 	rflow->cpu = next_cpu;
3260 	return rflow;
3261 }
3262 
3263 /*
3264  * get_rps_cpu is called from netif_receive_skb and returns the target
3265  * CPU from the RPS map of the receiving queue for a given skb.
3266  * rcu_read_lock must be held on entry.
3267  */
3268 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3269 		       struct rps_dev_flow **rflowp)
3270 {
3271 	const struct rps_sock_flow_table *sock_flow_table;
3272 	struct netdev_rx_queue *rxqueue = dev->_rx;
3273 	struct rps_dev_flow_table *flow_table;
3274 	struct rps_map *map;
3275 	int cpu = -1;
3276 	u32 tcpu;
3277 	u32 hash;
3278 
3279 	if (skb_rx_queue_recorded(skb)) {
3280 		u16 index = skb_get_rx_queue(skb);
3281 
3282 		if (unlikely(index >= dev->real_num_rx_queues)) {
3283 			WARN_ONCE(dev->real_num_rx_queues > 1,
3284 				  "%s received packet on queue %u, but number "
3285 				  "of RX queues is %u\n",
3286 				  dev->name, index, dev->real_num_rx_queues);
3287 			goto done;
3288 		}
3289 		rxqueue += index;
3290 	}
3291 
3292 	/* Avoid computing hash if RFS/RPS is not active for this rxqueue */
3293 
3294 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
3295 	map = rcu_dereference(rxqueue->rps_map);
3296 	if (!flow_table && !map)
3297 		goto done;
3298 
3299 	skb_reset_network_header(skb);
3300 	hash = skb_get_hash(skb);
3301 	if (!hash)
3302 		goto done;
3303 
3304 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
3305 	if (flow_table && sock_flow_table) {
3306 		struct rps_dev_flow *rflow;
3307 		u32 next_cpu;
3308 		u32 ident;
3309 
3310 		/* First check into global flow table if there is a match */
3311 		ident = sock_flow_table->ents[hash & sock_flow_table->mask];
3312 		if ((ident ^ hash) & ~rps_cpu_mask)
3313 			goto try_rps;
3314 
3315 		next_cpu = ident & rps_cpu_mask;
3316 
3317 		/* OK, now we know there is a match,
3318 		 * we can look at the local (per receive queue) flow table
3319 		 */
3320 		rflow = &flow_table->flows[hash & flow_table->mask];
3321 		tcpu = rflow->cpu;
3322 
3323 		/*
3324 		 * If the desired CPU (where last recvmsg was done) is
3325 		 * different from current CPU (one in the rx-queue flow
3326 		 * table entry), switch if one of the following holds:
3327 		 *   - Current CPU is unset (>= nr_cpu_ids).
3328 		 *   - Current CPU is offline.
3329 		 *   - The current CPU's queue tail has advanced beyond the
3330 		 *     last packet that was enqueued using this table entry.
3331 		 *     This guarantees that all previous packets for the flow
3332 		 *     have been dequeued, thus preserving in order delivery.
3333 		 */
3334 		if (unlikely(tcpu != next_cpu) &&
3335 		    (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
3336 		     ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
3337 		      rflow->last_qtail)) >= 0)) {
3338 			tcpu = next_cpu;
3339 			rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
3340 		}
3341 
3342 		if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
3343 			*rflowp = rflow;
3344 			cpu = tcpu;
3345 			goto done;
3346 		}
3347 	}
3348 
3349 try_rps:
3350 
3351 	if (map) {
3352 		tcpu = map->cpus[reciprocal_scale(hash, map->len)];
3353 		if (cpu_online(tcpu)) {
3354 			cpu = tcpu;
3355 			goto done;
3356 		}
3357 	}
3358 
3359 done:
3360 	return cpu;
3361 }
3362 
3363 #ifdef CONFIG_RFS_ACCEL
3364 
3365 /**
3366  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3367  * @dev: Device on which the filter was set
3368  * @rxq_index: RX queue index
3369  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3370  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3371  *
3372  * Drivers that implement ndo_rx_flow_steer() should periodically call
3373  * this function for each installed filter and remove the filters for
3374  * which it returns %true.
3375  */
3376 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3377 			 u32 flow_id, u16 filter_id)
3378 {
3379 	struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3380 	struct rps_dev_flow_table *flow_table;
3381 	struct rps_dev_flow *rflow;
3382 	bool expire = true;
3383 	unsigned int cpu;
3384 
3385 	rcu_read_lock();
3386 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
3387 	if (flow_table && flow_id <= flow_table->mask) {
3388 		rflow = &flow_table->flows[flow_id];
3389 		cpu = ACCESS_ONCE(rflow->cpu);
3390 		if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
3391 		    ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3392 			   rflow->last_qtail) <
3393 		     (int)(10 * flow_table->mask)))
3394 			expire = false;
3395 	}
3396 	rcu_read_unlock();
3397 	return expire;
3398 }
3399 EXPORT_SYMBOL(rps_may_expire_flow);
3400 
3401 #endif /* CONFIG_RFS_ACCEL */
3402 
3403 /* Called from hardirq (IPI) context */
3404 static void rps_trigger_softirq(void *data)
3405 {
3406 	struct softnet_data *sd = data;
3407 
3408 	____napi_schedule(sd, &sd->backlog);
3409 	sd->received_rps++;
3410 }
3411 
3412 #endif /* CONFIG_RPS */
3413 
3414 /*
3415  * Check if this softnet_data structure is another cpu one
3416  * If yes, queue it to our IPI list and return 1
3417  * If no, return 0
3418  */
3419 static int rps_ipi_queued(struct softnet_data *sd)
3420 {
3421 #ifdef CONFIG_RPS
3422 	struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
3423 
3424 	if (sd != mysd) {
3425 		sd->rps_ipi_next = mysd->rps_ipi_list;
3426 		mysd->rps_ipi_list = sd;
3427 
3428 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
3429 		return 1;
3430 	}
3431 #endif /* CONFIG_RPS */
3432 	return 0;
3433 }
3434 
3435 #ifdef CONFIG_NET_FLOW_LIMIT
3436 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3437 #endif
3438 
3439 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3440 {
3441 #ifdef CONFIG_NET_FLOW_LIMIT
3442 	struct sd_flow_limit *fl;
3443 	struct softnet_data *sd;
3444 	unsigned int old_flow, new_flow;
3445 
3446 	if (qlen < (netdev_max_backlog >> 1))
3447 		return false;
3448 
3449 	sd = this_cpu_ptr(&softnet_data);
3450 
3451 	rcu_read_lock();
3452 	fl = rcu_dereference(sd->flow_limit);
3453 	if (fl) {
3454 		new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
3455 		old_flow = fl->history[fl->history_head];
3456 		fl->history[fl->history_head] = new_flow;
3457 
3458 		fl->history_head++;
3459 		fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3460 
3461 		if (likely(fl->buckets[old_flow]))
3462 			fl->buckets[old_flow]--;
3463 
3464 		if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3465 			fl->count++;
3466 			rcu_read_unlock();
3467 			return true;
3468 		}
3469 	}
3470 	rcu_read_unlock();
3471 #endif
3472 	return false;
3473 }
3474 
3475 /*
3476  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3477  * queue (may be a remote CPU queue).
3478  */
3479 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3480 			      unsigned int *qtail)
3481 {
3482 	struct softnet_data *sd;
3483 	unsigned long flags;
3484 	unsigned int qlen;
3485 
3486 	sd = &per_cpu(softnet_data, cpu);
3487 
3488 	local_irq_save(flags);
3489 
3490 	rps_lock(sd);
3491 	if (!netif_running(skb->dev))
3492 		goto drop;
3493 	qlen = skb_queue_len(&sd->input_pkt_queue);
3494 	if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
3495 		if (qlen) {
3496 enqueue:
3497 			__skb_queue_tail(&sd->input_pkt_queue, skb);
3498 			input_queue_tail_incr_save(sd, qtail);
3499 			rps_unlock(sd);
3500 			local_irq_restore(flags);
3501 			return NET_RX_SUCCESS;
3502 		}
3503 
3504 		/* Schedule NAPI for backlog device
3505 		 * We can use non atomic operation since we own the queue lock
3506 		 */
3507 		if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3508 			if (!rps_ipi_queued(sd))
3509 				____napi_schedule(sd, &sd->backlog);
3510 		}
3511 		goto enqueue;
3512 	}
3513 
3514 drop:
3515 	sd->dropped++;
3516 	rps_unlock(sd);
3517 
3518 	local_irq_restore(flags);
3519 
3520 	atomic_long_inc(&skb->dev->rx_dropped);
3521 	kfree_skb(skb);
3522 	return NET_RX_DROP;
3523 }
3524 
3525 static int netif_rx_internal(struct sk_buff *skb)
3526 {
3527 	int ret;
3528 
3529 	net_timestamp_check(netdev_tstamp_prequeue, skb);
3530 
3531 	trace_netif_rx(skb);
3532 #ifdef CONFIG_RPS
3533 	if (static_key_false(&rps_needed)) {
3534 		struct rps_dev_flow voidflow, *rflow = &voidflow;
3535 		int cpu;
3536 
3537 		preempt_disable();
3538 		rcu_read_lock();
3539 
3540 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
3541 		if (cpu < 0)
3542 			cpu = smp_processor_id();
3543 
3544 		ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3545 
3546 		rcu_read_unlock();
3547 		preempt_enable();
3548 	} else
3549 #endif
3550 	{
3551 		unsigned int qtail;
3552 		ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3553 		put_cpu();
3554 	}
3555 	return ret;
3556 }
3557 
3558 /**
3559  *	netif_rx	-	post buffer to the network code
3560  *	@skb: buffer to post
3561  *
3562  *	This function receives a packet from a device driver and queues it for
3563  *	the upper (protocol) levels to process.  It always succeeds. The buffer
3564  *	may be dropped during processing for congestion control or by the
3565  *	protocol layers.
3566  *
3567  *	return values:
3568  *	NET_RX_SUCCESS	(no congestion)
3569  *	NET_RX_DROP     (packet was dropped)
3570  *
3571  */
3572 
3573 int netif_rx(struct sk_buff *skb)
3574 {
3575 	trace_netif_rx_entry(skb);
3576 
3577 	return netif_rx_internal(skb);
3578 }
3579 EXPORT_SYMBOL(netif_rx);
3580 
3581 int netif_rx_ni(struct sk_buff *skb)
3582 {
3583 	int err;
3584 
3585 	trace_netif_rx_ni_entry(skb);
3586 
3587 	preempt_disable();
3588 	err = netif_rx_internal(skb);
3589 	if (local_softirq_pending())
3590 		do_softirq();
3591 	preempt_enable();
3592 
3593 	return err;
3594 }
3595 EXPORT_SYMBOL(netif_rx_ni);
3596 
3597 static void net_tx_action(struct softirq_action *h)
3598 {
3599 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
3600 
3601 	if (sd->completion_queue) {
3602 		struct sk_buff *clist;
3603 
3604 		local_irq_disable();
3605 		clist = sd->completion_queue;
3606 		sd->completion_queue = NULL;
3607 		local_irq_enable();
3608 
3609 		while (clist) {
3610 			struct sk_buff *skb = clist;
3611 			clist = clist->next;
3612 
3613 			WARN_ON(atomic_read(&skb->users));
3614 			if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
3615 				trace_consume_skb(skb);
3616 			else
3617 				trace_kfree_skb(skb, net_tx_action);
3618 			__kfree_skb(skb);
3619 		}
3620 	}
3621 
3622 	if (sd->output_queue) {
3623 		struct Qdisc *head;
3624 
3625 		local_irq_disable();
3626 		head = sd->output_queue;
3627 		sd->output_queue = NULL;
3628 		sd->output_queue_tailp = &sd->output_queue;
3629 		local_irq_enable();
3630 
3631 		while (head) {
3632 			struct Qdisc *q = head;
3633 			spinlock_t *root_lock;
3634 
3635 			head = head->next_sched;
3636 
3637 			root_lock = qdisc_lock(q);
3638 			if (spin_trylock(root_lock)) {
3639 				smp_mb__before_atomic();
3640 				clear_bit(__QDISC_STATE_SCHED,
3641 					  &q->state);
3642 				qdisc_run(q);
3643 				spin_unlock(root_lock);
3644 			} else {
3645 				if (!test_bit(__QDISC_STATE_DEACTIVATED,
3646 					      &q->state)) {
3647 					__netif_reschedule(q);
3648 				} else {
3649 					smp_mb__before_atomic();
3650 					clear_bit(__QDISC_STATE_SCHED,
3651 						  &q->state);
3652 				}
3653 			}
3654 		}
3655 	}
3656 }
3657 
3658 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
3659     (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
3660 /* This hook is defined here for ATM LANE */
3661 int (*br_fdb_test_addr_hook)(struct net_device *dev,
3662 			     unsigned char *addr) __read_mostly;
3663 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3664 #endif
3665 
3666 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
3667 					 struct packet_type **pt_prev,
3668 					 int *ret, struct net_device *orig_dev)
3669 {
3670 #ifdef CONFIG_NET_CLS_ACT
3671 	struct tcf_proto *cl = rcu_dereference_bh(skb->dev->ingress_cl_list);
3672 	struct tcf_result cl_res;
3673 
3674 	/* If there's at least one ingress present somewhere (so
3675 	 * we get here via enabled static key), remaining devices
3676 	 * that are not configured with an ingress qdisc will bail
3677 	 * out here.
3678 	 */
3679 	if (!cl)
3680 		return skb;
3681 	if (*pt_prev) {
3682 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
3683 		*pt_prev = NULL;
3684 	}
3685 
3686 	qdisc_skb_cb(skb)->pkt_len = skb->len;
3687 	skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
3688 	qdisc_bstats_cpu_update(cl->q, skb);
3689 
3690 	switch (tc_classify(skb, cl, &cl_res, false)) {
3691 	case TC_ACT_OK:
3692 	case TC_ACT_RECLASSIFY:
3693 		skb->tc_index = TC_H_MIN(cl_res.classid);
3694 		break;
3695 	case TC_ACT_SHOT:
3696 		qdisc_qstats_cpu_drop(cl->q);
3697 	case TC_ACT_STOLEN:
3698 	case TC_ACT_QUEUED:
3699 		kfree_skb(skb);
3700 		return NULL;
3701 	case TC_ACT_REDIRECT:
3702 		/* skb_mac_header check was done by cls/act_bpf, so
3703 		 * we can safely push the L2 header back before
3704 		 * redirecting to another netdev
3705 		 */
3706 		__skb_push(skb, skb->mac_len);
3707 		skb_do_redirect(skb);
3708 		return NULL;
3709 	default:
3710 		break;
3711 	}
3712 #endif /* CONFIG_NET_CLS_ACT */
3713 	return skb;
3714 }
3715 
3716 /**
3717  *	netdev_rx_handler_register - register receive handler
3718  *	@dev: device to register a handler for
3719  *	@rx_handler: receive handler to register
3720  *	@rx_handler_data: data pointer that is used by rx handler
3721  *
3722  *	Register a receive handler for a device. This handler will then be
3723  *	called from __netif_receive_skb. A negative errno code is returned
3724  *	on a failure.
3725  *
3726  *	The caller must hold the rtnl_mutex.
3727  *
3728  *	For a general description of rx_handler, see enum rx_handler_result.
3729  */
3730 int netdev_rx_handler_register(struct net_device *dev,
3731 			       rx_handler_func_t *rx_handler,
3732 			       void *rx_handler_data)
3733 {
3734 	ASSERT_RTNL();
3735 
3736 	if (dev->rx_handler)
3737 		return -EBUSY;
3738 
3739 	/* Note: rx_handler_data must be set before rx_handler */
3740 	rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
3741 	rcu_assign_pointer(dev->rx_handler, rx_handler);
3742 
3743 	return 0;
3744 }
3745 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3746 
3747 /**
3748  *	netdev_rx_handler_unregister - unregister receive handler
3749  *	@dev: device to unregister a handler from
3750  *
3751  *	Unregister a receive handler from a device.
3752  *
3753  *	The caller must hold the rtnl_mutex.
3754  */
3755 void netdev_rx_handler_unregister(struct net_device *dev)
3756 {
3757 
3758 	ASSERT_RTNL();
3759 	RCU_INIT_POINTER(dev->rx_handler, NULL);
3760 	/* a reader seeing a non NULL rx_handler in a rcu_read_lock()
3761 	 * section has a guarantee to see a non NULL rx_handler_data
3762 	 * as well.
3763 	 */
3764 	synchronize_net();
3765 	RCU_INIT_POINTER(dev->rx_handler_data, NULL);
3766 }
3767 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
3768 
3769 /*
3770  * Limit the use of PFMEMALLOC reserves to those protocols that implement
3771  * the special handling of PFMEMALLOC skbs.
3772  */
3773 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
3774 {
3775 	switch (skb->protocol) {
3776 	case htons(ETH_P_ARP):
3777 	case htons(ETH_P_IP):
3778 	case htons(ETH_P_IPV6):
3779 	case htons(ETH_P_8021Q):
3780 	case htons(ETH_P_8021AD):
3781 		return true;
3782 	default:
3783 		return false;
3784 	}
3785 }
3786 
3787 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
3788 			     int *ret, struct net_device *orig_dev)
3789 {
3790 #ifdef CONFIG_NETFILTER_INGRESS
3791 	if (nf_hook_ingress_active(skb)) {
3792 		if (*pt_prev) {
3793 			*ret = deliver_skb(skb, *pt_prev, orig_dev);
3794 			*pt_prev = NULL;
3795 		}
3796 
3797 		return nf_hook_ingress(skb);
3798 	}
3799 #endif /* CONFIG_NETFILTER_INGRESS */
3800 	return 0;
3801 }
3802 
3803 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
3804 {
3805 	struct packet_type *ptype, *pt_prev;
3806 	rx_handler_func_t *rx_handler;
3807 	struct net_device *orig_dev;
3808 	bool deliver_exact = false;
3809 	int ret = NET_RX_DROP;
3810 	__be16 type;
3811 
3812 	net_timestamp_check(!netdev_tstamp_prequeue, skb);
3813 
3814 	trace_netif_receive_skb(skb);
3815 
3816 	orig_dev = skb->dev;
3817 
3818 	skb_reset_network_header(skb);
3819 	if (!skb_transport_header_was_set(skb))
3820 		skb_reset_transport_header(skb);
3821 	skb_reset_mac_len(skb);
3822 
3823 	pt_prev = NULL;
3824 
3825 another_round:
3826 	skb->skb_iif = skb->dev->ifindex;
3827 
3828 	__this_cpu_inc(softnet_data.processed);
3829 
3830 	if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
3831 	    skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
3832 		skb = skb_vlan_untag(skb);
3833 		if (unlikely(!skb))
3834 			goto out;
3835 	}
3836 
3837 #ifdef CONFIG_NET_CLS_ACT
3838 	if (skb->tc_verd & TC_NCLS) {
3839 		skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
3840 		goto ncls;
3841 	}
3842 #endif
3843 
3844 	if (pfmemalloc)
3845 		goto skip_taps;
3846 
3847 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
3848 		if (pt_prev)
3849 			ret = deliver_skb(skb, pt_prev, orig_dev);
3850 		pt_prev = ptype;
3851 	}
3852 
3853 	list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
3854 		if (pt_prev)
3855 			ret = deliver_skb(skb, pt_prev, orig_dev);
3856 		pt_prev = ptype;
3857 	}
3858 
3859 skip_taps:
3860 #ifdef CONFIG_NET_INGRESS
3861 	if (static_key_false(&ingress_needed)) {
3862 		skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
3863 		if (!skb)
3864 			goto out;
3865 
3866 		if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
3867 			goto out;
3868 	}
3869 #endif
3870 #ifdef CONFIG_NET_CLS_ACT
3871 	skb->tc_verd = 0;
3872 ncls:
3873 #endif
3874 	if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
3875 		goto drop;
3876 
3877 	if (skb_vlan_tag_present(skb)) {
3878 		if (pt_prev) {
3879 			ret = deliver_skb(skb, pt_prev, orig_dev);
3880 			pt_prev = NULL;
3881 		}
3882 		if (vlan_do_receive(&skb))
3883 			goto another_round;
3884 		else if (unlikely(!skb))
3885 			goto out;
3886 	}
3887 
3888 	rx_handler = rcu_dereference(skb->dev->rx_handler);
3889 	if (rx_handler) {
3890 		if (pt_prev) {
3891 			ret = deliver_skb(skb, pt_prev, orig_dev);
3892 			pt_prev = NULL;
3893 		}
3894 		switch (rx_handler(&skb)) {
3895 		case RX_HANDLER_CONSUMED:
3896 			ret = NET_RX_SUCCESS;
3897 			goto out;
3898 		case RX_HANDLER_ANOTHER:
3899 			goto another_round;
3900 		case RX_HANDLER_EXACT:
3901 			deliver_exact = true;
3902 		case RX_HANDLER_PASS:
3903 			break;
3904 		default:
3905 			BUG();
3906 		}
3907 	}
3908 
3909 	if (unlikely(skb_vlan_tag_present(skb))) {
3910 		if (skb_vlan_tag_get_id(skb))
3911 			skb->pkt_type = PACKET_OTHERHOST;
3912 		/* Note: we might in the future use prio bits
3913 		 * and set skb->priority like in vlan_do_receive()
3914 		 * For the time being, just ignore Priority Code Point
3915 		 */
3916 		skb->vlan_tci = 0;
3917 	}
3918 
3919 	type = skb->protocol;
3920 
3921 	/* deliver only exact match when indicated */
3922 	if (likely(!deliver_exact)) {
3923 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
3924 				       &ptype_base[ntohs(type) &
3925 						   PTYPE_HASH_MASK]);
3926 	}
3927 
3928 	deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
3929 			       &orig_dev->ptype_specific);
3930 
3931 	if (unlikely(skb->dev != orig_dev)) {
3932 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
3933 				       &skb->dev->ptype_specific);
3934 	}
3935 
3936 	if (pt_prev) {
3937 		if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
3938 			goto drop;
3939 		else
3940 			ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
3941 	} else {
3942 drop:
3943 		atomic_long_inc(&skb->dev->rx_dropped);
3944 		kfree_skb(skb);
3945 		/* Jamal, now you will not able to escape explaining
3946 		 * me how you were going to use this. :-)
3947 		 */
3948 		ret = NET_RX_DROP;
3949 	}
3950 
3951 out:
3952 	return ret;
3953 }
3954 
3955 static int __netif_receive_skb(struct sk_buff *skb)
3956 {
3957 	int ret;
3958 
3959 	if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
3960 		unsigned long pflags = current->flags;
3961 
3962 		/*
3963 		 * PFMEMALLOC skbs are special, they should
3964 		 * - be delivered to SOCK_MEMALLOC sockets only
3965 		 * - stay away from userspace
3966 		 * - have bounded memory usage
3967 		 *
3968 		 * Use PF_MEMALLOC as this saves us from propagating the allocation
3969 		 * context down to all allocation sites.
3970 		 */
3971 		current->flags |= PF_MEMALLOC;
3972 		ret = __netif_receive_skb_core(skb, true);
3973 		tsk_restore_flags(current, pflags, PF_MEMALLOC);
3974 	} else
3975 		ret = __netif_receive_skb_core(skb, false);
3976 
3977 	return ret;
3978 }
3979 
3980 static int netif_receive_skb_internal(struct sk_buff *skb)
3981 {
3982 	int ret;
3983 
3984 	net_timestamp_check(netdev_tstamp_prequeue, skb);
3985 
3986 	if (skb_defer_rx_timestamp(skb))
3987 		return NET_RX_SUCCESS;
3988 
3989 	rcu_read_lock();
3990 
3991 #ifdef CONFIG_RPS
3992 	if (static_key_false(&rps_needed)) {
3993 		struct rps_dev_flow voidflow, *rflow = &voidflow;
3994 		int cpu = get_rps_cpu(skb->dev, skb, &rflow);
3995 
3996 		if (cpu >= 0) {
3997 			ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3998 			rcu_read_unlock();
3999 			return ret;
4000 		}
4001 	}
4002 #endif
4003 	ret = __netif_receive_skb(skb);
4004 	rcu_read_unlock();
4005 	return ret;
4006 }
4007 
4008 /**
4009  *	netif_receive_skb - process receive buffer from network
4010  *	@skb: buffer to process
4011  *
4012  *	netif_receive_skb() is the main receive data processing function.
4013  *	It always succeeds. The buffer may be dropped during processing
4014  *	for congestion control or by the protocol layers.
4015  *
4016  *	This function may only be called from softirq context and interrupts
4017  *	should be enabled.
4018  *
4019  *	Return values (usually ignored):
4020  *	NET_RX_SUCCESS: no congestion
4021  *	NET_RX_DROP: packet was dropped
4022  */
4023 int netif_receive_skb(struct sk_buff *skb)
4024 {
4025 	trace_netif_receive_skb_entry(skb);
4026 
4027 	return netif_receive_skb_internal(skb);
4028 }
4029 EXPORT_SYMBOL(netif_receive_skb);
4030 
4031 /* Network device is going away, flush any packets still pending
4032  * Called with irqs disabled.
4033  */
4034 static void flush_backlog(void *arg)
4035 {
4036 	struct net_device *dev = arg;
4037 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4038 	struct sk_buff *skb, *tmp;
4039 
4040 	rps_lock(sd);
4041 	skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
4042 		if (skb->dev == dev) {
4043 			__skb_unlink(skb, &sd->input_pkt_queue);
4044 			kfree_skb(skb);
4045 			input_queue_head_incr(sd);
4046 		}
4047 	}
4048 	rps_unlock(sd);
4049 
4050 	skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
4051 		if (skb->dev == dev) {
4052 			__skb_unlink(skb, &sd->process_queue);
4053 			kfree_skb(skb);
4054 			input_queue_head_incr(sd);
4055 		}
4056 	}
4057 }
4058 
4059 static int napi_gro_complete(struct sk_buff *skb)
4060 {
4061 	struct packet_offload *ptype;
4062 	__be16 type = skb->protocol;
4063 	struct list_head *head = &offload_base;
4064 	int err = -ENOENT;
4065 
4066 	BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
4067 
4068 	if (NAPI_GRO_CB(skb)->count == 1) {
4069 		skb_shinfo(skb)->gso_size = 0;
4070 		goto out;
4071 	}
4072 
4073 	rcu_read_lock();
4074 	list_for_each_entry_rcu(ptype, head, list) {
4075 		if (ptype->type != type || !ptype->callbacks.gro_complete)
4076 			continue;
4077 
4078 		err = ptype->callbacks.gro_complete(skb, 0);
4079 		break;
4080 	}
4081 	rcu_read_unlock();
4082 
4083 	if (err) {
4084 		WARN_ON(&ptype->list == head);
4085 		kfree_skb(skb);
4086 		return NET_RX_SUCCESS;
4087 	}
4088 
4089 out:
4090 	return netif_receive_skb_internal(skb);
4091 }
4092 
4093 /* napi->gro_list contains packets ordered by age.
4094  * youngest packets at the head of it.
4095  * Complete skbs in reverse order to reduce latencies.
4096  */
4097 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
4098 {
4099 	struct sk_buff *skb, *prev = NULL;
4100 
4101 	/* scan list and build reverse chain */
4102 	for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
4103 		skb->prev = prev;
4104 		prev = skb;
4105 	}
4106 
4107 	for (skb = prev; skb; skb = prev) {
4108 		skb->next = NULL;
4109 
4110 		if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
4111 			return;
4112 
4113 		prev = skb->prev;
4114 		napi_gro_complete(skb);
4115 		napi->gro_count--;
4116 	}
4117 
4118 	napi->gro_list = NULL;
4119 }
4120 EXPORT_SYMBOL(napi_gro_flush);
4121 
4122 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
4123 {
4124 	struct sk_buff *p;
4125 	unsigned int maclen = skb->dev->hard_header_len;
4126 	u32 hash = skb_get_hash_raw(skb);
4127 
4128 	for (p = napi->gro_list; p; p = p->next) {
4129 		unsigned long diffs;
4130 
4131 		NAPI_GRO_CB(p)->flush = 0;
4132 
4133 		if (hash != skb_get_hash_raw(p)) {
4134 			NAPI_GRO_CB(p)->same_flow = 0;
4135 			continue;
4136 		}
4137 
4138 		diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
4139 		diffs |= p->vlan_tci ^ skb->vlan_tci;
4140 		if (maclen == ETH_HLEN)
4141 			diffs |= compare_ether_header(skb_mac_header(p),
4142 						      skb_mac_header(skb));
4143 		else if (!diffs)
4144 			diffs = memcmp(skb_mac_header(p),
4145 				       skb_mac_header(skb),
4146 				       maclen);
4147 		NAPI_GRO_CB(p)->same_flow = !diffs;
4148 	}
4149 }
4150 
4151 static void skb_gro_reset_offset(struct sk_buff *skb)
4152 {
4153 	const struct skb_shared_info *pinfo = skb_shinfo(skb);
4154 	const skb_frag_t *frag0 = &pinfo->frags[0];
4155 
4156 	NAPI_GRO_CB(skb)->data_offset = 0;
4157 	NAPI_GRO_CB(skb)->frag0 = NULL;
4158 	NAPI_GRO_CB(skb)->frag0_len = 0;
4159 
4160 	if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
4161 	    pinfo->nr_frags &&
4162 	    !PageHighMem(skb_frag_page(frag0))) {
4163 		NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
4164 		NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0);
4165 	}
4166 }
4167 
4168 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
4169 {
4170 	struct skb_shared_info *pinfo = skb_shinfo(skb);
4171 
4172 	BUG_ON(skb->end - skb->tail < grow);
4173 
4174 	memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
4175 
4176 	skb->data_len -= grow;
4177 	skb->tail += grow;
4178 
4179 	pinfo->frags[0].page_offset += grow;
4180 	skb_frag_size_sub(&pinfo->frags[0], grow);
4181 
4182 	if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
4183 		skb_frag_unref(skb, 0);
4184 		memmove(pinfo->frags, pinfo->frags + 1,
4185 			--pinfo->nr_frags * sizeof(pinfo->frags[0]));
4186 	}
4187 }
4188 
4189 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4190 {
4191 	struct sk_buff **pp = NULL;
4192 	struct packet_offload *ptype;
4193 	__be16 type = skb->protocol;
4194 	struct list_head *head = &offload_base;
4195 	int same_flow;
4196 	enum gro_result ret;
4197 	int grow;
4198 
4199 	if (!(skb->dev->features & NETIF_F_GRO))
4200 		goto normal;
4201 
4202 	if (skb_is_gso(skb) || skb_has_frag_list(skb) || skb->csum_bad)
4203 		goto normal;
4204 
4205 	gro_list_prepare(napi, skb);
4206 
4207 	rcu_read_lock();
4208 	list_for_each_entry_rcu(ptype, head, list) {
4209 		if (ptype->type != type || !ptype->callbacks.gro_receive)
4210 			continue;
4211 
4212 		skb_set_network_header(skb, skb_gro_offset(skb));
4213 		skb_reset_mac_len(skb);
4214 		NAPI_GRO_CB(skb)->same_flow = 0;
4215 		NAPI_GRO_CB(skb)->flush = 0;
4216 		NAPI_GRO_CB(skb)->free = 0;
4217 		NAPI_GRO_CB(skb)->udp_mark = 0;
4218 		NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
4219 
4220 		/* Setup for GRO checksum validation */
4221 		switch (skb->ip_summed) {
4222 		case CHECKSUM_COMPLETE:
4223 			NAPI_GRO_CB(skb)->csum = skb->csum;
4224 			NAPI_GRO_CB(skb)->csum_valid = 1;
4225 			NAPI_GRO_CB(skb)->csum_cnt = 0;
4226 			break;
4227 		case CHECKSUM_UNNECESSARY:
4228 			NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
4229 			NAPI_GRO_CB(skb)->csum_valid = 0;
4230 			break;
4231 		default:
4232 			NAPI_GRO_CB(skb)->csum_cnt = 0;
4233 			NAPI_GRO_CB(skb)->csum_valid = 0;
4234 		}
4235 
4236 		pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
4237 		break;
4238 	}
4239 	rcu_read_unlock();
4240 
4241 	if (&ptype->list == head)
4242 		goto normal;
4243 
4244 	same_flow = NAPI_GRO_CB(skb)->same_flow;
4245 	ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
4246 
4247 	if (pp) {
4248 		struct sk_buff *nskb = *pp;
4249 
4250 		*pp = nskb->next;
4251 		nskb->next = NULL;
4252 		napi_gro_complete(nskb);
4253 		napi->gro_count--;
4254 	}
4255 
4256 	if (same_flow)
4257 		goto ok;
4258 
4259 	if (NAPI_GRO_CB(skb)->flush)
4260 		goto normal;
4261 
4262 	if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
4263 		struct sk_buff *nskb = napi->gro_list;
4264 
4265 		/* locate the end of the list to select the 'oldest' flow */
4266 		while (nskb->next) {
4267 			pp = &nskb->next;
4268 			nskb = *pp;
4269 		}
4270 		*pp = NULL;
4271 		nskb->next = NULL;
4272 		napi_gro_complete(nskb);
4273 	} else {
4274 		napi->gro_count++;
4275 	}
4276 	NAPI_GRO_CB(skb)->count = 1;
4277 	NAPI_GRO_CB(skb)->age = jiffies;
4278 	NAPI_GRO_CB(skb)->last = skb;
4279 	skb_shinfo(skb)->gso_size = skb_gro_len(skb);
4280 	skb->next = napi->gro_list;
4281 	napi->gro_list = skb;
4282 	ret = GRO_HELD;
4283 
4284 pull:
4285 	grow = skb_gro_offset(skb) - skb_headlen(skb);
4286 	if (grow > 0)
4287 		gro_pull_from_frag0(skb, grow);
4288 ok:
4289 	return ret;
4290 
4291 normal:
4292 	ret = GRO_NORMAL;
4293 	goto pull;
4294 }
4295 
4296 struct packet_offload *gro_find_receive_by_type(__be16 type)
4297 {
4298 	struct list_head *offload_head = &offload_base;
4299 	struct packet_offload *ptype;
4300 
4301 	list_for_each_entry_rcu(ptype, offload_head, list) {
4302 		if (ptype->type != type || !ptype->callbacks.gro_receive)
4303 			continue;
4304 		return ptype;
4305 	}
4306 	return NULL;
4307 }
4308 EXPORT_SYMBOL(gro_find_receive_by_type);
4309 
4310 struct packet_offload *gro_find_complete_by_type(__be16 type)
4311 {
4312 	struct list_head *offload_head = &offload_base;
4313 	struct packet_offload *ptype;
4314 
4315 	list_for_each_entry_rcu(ptype, offload_head, list) {
4316 		if (ptype->type != type || !ptype->callbacks.gro_complete)
4317 			continue;
4318 		return ptype;
4319 	}
4320 	return NULL;
4321 }
4322 EXPORT_SYMBOL(gro_find_complete_by_type);
4323 
4324 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
4325 {
4326 	switch (ret) {
4327 	case GRO_NORMAL:
4328 		if (netif_receive_skb_internal(skb))
4329 			ret = GRO_DROP;
4330 		break;
4331 
4332 	case GRO_DROP:
4333 		kfree_skb(skb);
4334 		break;
4335 
4336 	case GRO_MERGED_FREE:
4337 		if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
4338 			kmem_cache_free(skbuff_head_cache, skb);
4339 		else
4340 			__kfree_skb(skb);
4341 		break;
4342 
4343 	case GRO_HELD:
4344 	case GRO_MERGED:
4345 		break;
4346 	}
4347 
4348 	return ret;
4349 }
4350 
4351 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4352 {
4353 	trace_napi_gro_receive_entry(skb);
4354 
4355 	skb_gro_reset_offset(skb);
4356 
4357 	return napi_skb_finish(dev_gro_receive(napi, skb), skb);
4358 }
4359 EXPORT_SYMBOL(napi_gro_receive);
4360 
4361 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
4362 {
4363 	if (unlikely(skb->pfmemalloc)) {
4364 		consume_skb(skb);
4365 		return;
4366 	}
4367 	__skb_pull(skb, skb_headlen(skb));
4368 	/* restore the reserve we had after netdev_alloc_skb_ip_align() */
4369 	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
4370 	skb->vlan_tci = 0;
4371 	skb->dev = napi->dev;
4372 	skb->skb_iif = 0;
4373 	skb->encapsulation = 0;
4374 	skb_shinfo(skb)->gso_type = 0;
4375 	skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
4376 
4377 	napi->skb = skb;
4378 }
4379 
4380 struct sk_buff *napi_get_frags(struct napi_struct *napi)
4381 {
4382 	struct sk_buff *skb = napi->skb;
4383 
4384 	if (!skb) {
4385 		skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
4386 		napi->skb = skb;
4387 	}
4388 	return skb;
4389 }
4390 EXPORT_SYMBOL(napi_get_frags);
4391 
4392 static gro_result_t napi_frags_finish(struct napi_struct *napi,
4393 				      struct sk_buff *skb,
4394 				      gro_result_t ret)
4395 {
4396 	switch (ret) {
4397 	case GRO_NORMAL:
4398 	case GRO_HELD:
4399 		__skb_push(skb, ETH_HLEN);
4400 		skb->protocol = eth_type_trans(skb, skb->dev);
4401 		if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
4402 			ret = GRO_DROP;
4403 		break;
4404 
4405 	case GRO_DROP:
4406 	case GRO_MERGED_FREE:
4407 		napi_reuse_skb(napi, skb);
4408 		break;
4409 
4410 	case GRO_MERGED:
4411 		break;
4412 	}
4413 
4414 	return ret;
4415 }
4416 
4417 /* Upper GRO stack assumes network header starts at gro_offset=0
4418  * Drivers could call both napi_gro_frags() and napi_gro_receive()
4419  * We copy ethernet header into skb->data to have a common layout.
4420  */
4421 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
4422 {
4423 	struct sk_buff *skb = napi->skb;
4424 	const struct ethhdr *eth;
4425 	unsigned int hlen = sizeof(*eth);
4426 
4427 	napi->skb = NULL;
4428 
4429 	skb_reset_mac_header(skb);
4430 	skb_gro_reset_offset(skb);
4431 
4432 	eth = skb_gro_header_fast(skb, 0);
4433 	if (unlikely(skb_gro_header_hard(skb, hlen))) {
4434 		eth = skb_gro_header_slow(skb, hlen, 0);
4435 		if (unlikely(!eth)) {
4436 			napi_reuse_skb(napi, skb);
4437 			return NULL;
4438 		}
4439 	} else {
4440 		gro_pull_from_frag0(skb, hlen);
4441 		NAPI_GRO_CB(skb)->frag0 += hlen;
4442 		NAPI_GRO_CB(skb)->frag0_len -= hlen;
4443 	}
4444 	__skb_pull(skb, hlen);
4445 
4446 	/*
4447 	 * This works because the only protocols we care about don't require
4448 	 * special handling.
4449 	 * We'll fix it up properly in napi_frags_finish()
4450 	 */
4451 	skb->protocol = eth->h_proto;
4452 
4453 	return skb;
4454 }
4455 
4456 gro_result_t napi_gro_frags(struct napi_struct *napi)
4457 {
4458 	struct sk_buff *skb = napi_frags_skb(napi);
4459 
4460 	if (!skb)
4461 		return GRO_DROP;
4462 
4463 	trace_napi_gro_frags_entry(skb);
4464 
4465 	return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
4466 }
4467 EXPORT_SYMBOL(napi_gro_frags);
4468 
4469 /* Compute the checksum from gro_offset and return the folded value
4470  * after adding in any pseudo checksum.
4471  */
4472 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
4473 {
4474 	__wsum wsum;
4475 	__sum16 sum;
4476 
4477 	wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
4478 
4479 	/* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
4480 	sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
4481 	if (likely(!sum)) {
4482 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
4483 		    !skb->csum_complete_sw)
4484 			netdev_rx_csum_fault(skb->dev);
4485 	}
4486 
4487 	NAPI_GRO_CB(skb)->csum = wsum;
4488 	NAPI_GRO_CB(skb)->csum_valid = 1;
4489 
4490 	return sum;
4491 }
4492 EXPORT_SYMBOL(__skb_gro_checksum_complete);
4493 
4494 /*
4495  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
4496  * Note: called with local irq disabled, but exits with local irq enabled.
4497  */
4498 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
4499 {
4500 #ifdef CONFIG_RPS
4501 	struct softnet_data *remsd = sd->rps_ipi_list;
4502 
4503 	if (remsd) {
4504 		sd->rps_ipi_list = NULL;
4505 
4506 		local_irq_enable();
4507 
4508 		/* Send pending IPI's to kick RPS processing on remote cpus. */
4509 		while (remsd) {
4510 			struct softnet_data *next = remsd->rps_ipi_next;
4511 
4512 			if (cpu_online(remsd->cpu))
4513 				smp_call_function_single_async(remsd->cpu,
4514 							   &remsd->csd);
4515 			remsd = next;
4516 		}
4517 	} else
4518 #endif
4519 		local_irq_enable();
4520 }
4521 
4522 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
4523 {
4524 #ifdef CONFIG_RPS
4525 	return sd->rps_ipi_list != NULL;
4526 #else
4527 	return false;
4528 #endif
4529 }
4530 
4531 static int process_backlog(struct napi_struct *napi, int quota)
4532 {
4533 	int work = 0;
4534 	struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
4535 
4536 	/* Check if we have pending ipi, its better to send them now,
4537 	 * not waiting net_rx_action() end.
4538 	 */
4539 	if (sd_has_rps_ipi_waiting(sd)) {
4540 		local_irq_disable();
4541 		net_rps_action_and_irq_enable(sd);
4542 	}
4543 
4544 	napi->weight = weight_p;
4545 	local_irq_disable();
4546 	while (1) {
4547 		struct sk_buff *skb;
4548 
4549 		while ((skb = __skb_dequeue(&sd->process_queue))) {
4550 			rcu_read_lock();
4551 			local_irq_enable();
4552 			__netif_receive_skb(skb);
4553 			rcu_read_unlock();
4554 			local_irq_disable();
4555 			input_queue_head_incr(sd);
4556 			if (++work >= quota) {
4557 				local_irq_enable();
4558 				return work;
4559 			}
4560 		}
4561 
4562 		rps_lock(sd);
4563 		if (skb_queue_empty(&sd->input_pkt_queue)) {
4564 			/*
4565 			 * Inline a custom version of __napi_complete().
4566 			 * only current cpu owns and manipulates this napi,
4567 			 * and NAPI_STATE_SCHED is the only possible flag set
4568 			 * on backlog.
4569 			 * We can use a plain write instead of clear_bit(),
4570 			 * and we dont need an smp_mb() memory barrier.
4571 			 */
4572 			napi->state = 0;
4573 			rps_unlock(sd);
4574 
4575 			break;
4576 		}
4577 
4578 		skb_queue_splice_tail_init(&sd->input_pkt_queue,
4579 					   &sd->process_queue);
4580 		rps_unlock(sd);
4581 	}
4582 	local_irq_enable();
4583 
4584 	return work;
4585 }
4586 
4587 /**
4588  * __napi_schedule - schedule for receive
4589  * @n: entry to schedule
4590  *
4591  * The entry's receive function will be scheduled to run.
4592  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
4593  */
4594 void __napi_schedule(struct napi_struct *n)
4595 {
4596 	unsigned long flags;
4597 
4598 	local_irq_save(flags);
4599 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
4600 	local_irq_restore(flags);
4601 }
4602 EXPORT_SYMBOL(__napi_schedule);
4603 
4604 /**
4605  * __napi_schedule_irqoff - schedule for receive
4606  * @n: entry to schedule
4607  *
4608  * Variant of __napi_schedule() assuming hard irqs are masked
4609  */
4610 void __napi_schedule_irqoff(struct napi_struct *n)
4611 {
4612 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
4613 }
4614 EXPORT_SYMBOL(__napi_schedule_irqoff);
4615 
4616 void __napi_complete(struct napi_struct *n)
4617 {
4618 	BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
4619 
4620 	list_del_init(&n->poll_list);
4621 	smp_mb__before_atomic();
4622 	clear_bit(NAPI_STATE_SCHED, &n->state);
4623 }
4624 EXPORT_SYMBOL(__napi_complete);
4625 
4626 void napi_complete_done(struct napi_struct *n, int work_done)
4627 {
4628 	unsigned long flags;
4629 
4630 	/*
4631 	 * don't let napi dequeue from the cpu poll list
4632 	 * just in case its running on a different cpu
4633 	 */
4634 	if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
4635 		return;
4636 
4637 	if (n->gro_list) {
4638 		unsigned long timeout = 0;
4639 
4640 		if (work_done)
4641 			timeout = n->dev->gro_flush_timeout;
4642 
4643 		if (timeout)
4644 			hrtimer_start(&n->timer, ns_to_ktime(timeout),
4645 				      HRTIMER_MODE_REL_PINNED);
4646 		else
4647 			napi_gro_flush(n, false);
4648 	}
4649 	if (likely(list_empty(&n->poll_list))) {
4650 		WARN_ON_ONCE(!test_and_clear_bit(NAPI_STATE_SCHED, &n->state));
4651 	} else {
4652 		/* If n->poll_list is not empty, we need to mask irqs */
4653 		local_irq_save(flags);
4654 		__napi_complete(n);
4655 		local_irq_restore(flags);
4656 	}
4657 }
4658 EXPORT_SYMBOL(napi_complete_done);
4659 
4660 /* must be called under rcu_read_lock(), as we dont take a reference */
4661 struct napi_struct *napi_by_id(unsigned int napi_id)
4662 {
4663 	unsigned int hash = napi_id % HASH_SIZE(napi_hash);
4664 	struct napi_struct *napi;
4665 
4666 	hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
4667 		if (napi->napi_id == napi_id)
4668 			return napi;
4669 
4670 	return NULL;
4671 }
4672 EXPORT_SYMBOL_GPL(napi_by_id);
4673 
4674 void napi_hash_add(struct napi_struct *napi)
4675 {
4676 	if (!test_and_set_bit(NAPI_STATE_HASHED, &napi->state)) {
4677 
4678 		spin_lock(&napi_hash_lock);
4679 
4680 		/* 0 is not a valid id, we also skip an id that is taken
4681 		 * we expect both events to be extremely rare
4682 		 */
4683 		napi->napi_id = 0;
4684 		while (!napi->napi_id) {
4685 			napi->napi_id = ++napi_gen_id;
4686 			if (napi_by_id(napi->napi_id))
4687 				napi->napi_id = 0;
4688 		}
4689 
4690 		hlist_add_head_rcu(&napi->napi_hash_node,
4691 			&napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
4692 
4693 		spin_unlock(&napi_hash_lock);
4694 	}
4695 }
4696 EXPORT_SYMBOL_GPL(napi_hash_add);
4697 
4698 /* Warning : caller is responsible to make sure rcu grace period
4699  * is respected before freeing memory containing @napi
4700  */
4701 void napi_hash_del(struct napi_struct *napi)
4702 {
4703 	spin_lock(&napi_hash_lock);
4704 
4705 	if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state))
4706 		hlist_del_rcu(&napi->napi_hash_node);
4707 
4708 	spin_unlock(&napi_hash_lock);
4709 }
4710 EXPORT_SYMBOL_GPL(napi_hash_del);
4711 
4712 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
4713 {
4714 	struct napi_struct *napi;
4715 
4716 	napi = container_of(timer, struct napi_struct, timer);
4717 	if (napi->gro_list)
4718 		napi_schedule(napi);
4719 
4720 	return HRTIMER_NORESTART;
4721 }
4722 
4723 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
4724 		    int (*poll)(struct napi_struct *, int), int weight)
4725 {
4726 	INIT_LIST_HEAD(&napi->poll_list);
4727 	hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
4728 	napi->timer.function = napi_watchdog;
4729 	napi->gro_count = 0;
4730 	napi->gro_list = NULL;
4731 	napi->skb = NULL;
4732 	napi->poll = poll;
4733 	if (weight > NAPI_POLL_WEIGHT)
4734 		pr_err_once("netif_napi_add() called with weight %d on device %s\n",
4735 			    weight, dev->name);
4736 	napi->weight = weight;
4737 	list_add(&napi->dev_list, &dev->napi_list);
4738 	napi->dev = dev;
4739 #ifdef CONFIG_NETPOLL
4740 	spin_lock_init(&napi->poll_lock);
4741 	napi->poll_owner = -1;
4742 #endif
4743 	set_bit(NAPI_STATE_SCHED, &napi->state);
4744 }
4745 EXPORT_SYMBOL(netif_napi_add);
4746 
4747 void napi_disable(struct napi_struct *n)
4748 {
4749 	might_sleep();
4750 	set_bit(NAPI_STATE_DISABLE, &n->state);
4751 
4752 	while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
4753 		msleep(1);
4754 	while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
4755 		msleep(1);
4756 
4757 	hrtimer_cancel(&n->timer);
4758 
4759 	clear_bit(NAPI_STATE_DISABLE, &n->state);
4760 }
4761 EXPORT_SYMBOL(napi_disable);
4762 
4763 void netif_napi_del(struct napi_struct *napi)
4764 {
4765 	list_del_init(&napi->dev_list);
4766 	napi_free_frags(napi);
4767 
4768 	kfree_skb_list(napi->gro_list);
4769 	napi->gro_list = NULL;
4770 	napi->gro_count = 0;
4771 }
4772 EXPORT_SYMBOL(netif_napi_del);
4773 
4774 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
4775 {
4776 	void *have;
4777 	int work, weight;
4778 
4779 	list_del_init(&n->poll_list);
4780 
4781 	have = netpoll_poll_lock(n);
4782 
4783 	weight = n->weight;
4784 
4785 	/* This NAPI_STATE_SCHED test is for avoiding a race
4786 	 * with netpoll's poll_napi().  Only the entity which
4787 	 * obtains the lock and sees NAPI_STATE_SCHED set will
4788 	 * actually make the ->poll() call.  Therefore we avoid
4789 	 * accidentally calling ->poll() when NAPI is not scheduled.
4790 	 */
4791 	work = 0;
4792 	if (test_bit(NAPI_STATE_SCHED, &n->state)) {
4793 		work = n->poll(n, weight);
4794 		trace_napi_poll(n);
4795 	}
4796 
4797 	WARN_ON_ONCE(work > weight);
4798 
4799 	if (likely(work < weight))
4800 		goto out_unlock;
4801 
4802 	/* Drivers must not modify the NAPI state if they
4803 	 * consume the entire weight.  In such cases this code
4804 	 * still "owns" the NAPI instance and therefore can
4805 	 * move the instance around on the list at-will.
4806 	 */
4807 	if (unlikely(napi_disable_pending(n))) {
4808 		napi_complete(n);
4809 		goto out_unlock;
4810 	}
4811 
4812 	if (n->gro_list) {
4813 		/* flush too old packets
4814 		 * If HZ < 1000, flush all packets.
4815 		 */
4816 		napi_gro_flush(n, HZ >= 1000);
4817 	}
4818 
4819 	/* Some drivers may have called napi_schedule
4820 	 * prior to exhausting their budget.
4821 	 */
4822 	if (unlikely(!list_empty(&n->poll_list))) {
4823 		pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
4824 			     n->dev ? n->dev->name : "backlog");
4825 		goto out_unlock;
4826 	}
4827 
4828 	list_add_tail(&n->poll_list, repoll);
4829 
4830 out_unlock:
4831 	netpoll_poll_unlock(have);
4832 
4833 	return work;
4834 }
4835 
4836 static void net_rx_action(struct softirq_action *h)
4837 {
4838 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4839 	unsigned long time_limit = jiffies + 2;
4840 	int budget = netdev_budget;
4841 	LIST_HEAD(list);
4842 	LIST_HEAD(repoll);
4843 
4844 	local_irq_disable();
4845 	list_splice_init(&sd->poll_list, &list);
4846 	local_irq_enable();
4847 
4848 	for (;;) {
4849 		struct napi_struct *n;
4850 
4851 		if (list_empty(&list)) {
4852 			if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
4853 				return;
4854 			break;
4855 		}
4856 
4857 		n = list_first_entry(&list, struct napi_struct, poll_list);
4858 		budget -= napi_poll(n, &repoll);
4859 
4860 		/* If softirq window is exhausted then punt.
4861 		 * Allow this to run for 2 jiffies since which will allow
4862 		 * an average latency of 1.5/HZ.
4863 		 */
4864 		if (unlikely(budget <= 0 ||
4865 			     time_after_eq(jiffies, time_limit))) {
4866 			sd->time_squeeze++;
4867 			break;
4868 		}
4869 	}
4870 
4871 	local_irq_disable();
4872 
4873 	list_splice_tail_init(&sd->poll_list, &list);
4874 	list_splice_tail(&repoll, &list);
4875 	list_splice(&list, &sd->poll_list);
4876 	if (!list_empty(&sd->poll_list))
4877 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4878 
4879 	net_rps_action_and_irq_enable(sd);
4880 }
4881 
4882 struct netdev_adjacent {
4883 	struct net_device *dev;
4884 
4885 	/* upper master flag, there can only be one master device per list */
4886 	bool master;
4887 
4888 	/* counter for the number of times this device was added to us */
4889 	u16 ref_nr;
4890 
4891 	/* private field for the users */
4892 	void *private;
4893 
4894 	struct list_head list;
4895 	struct rcu_head rcu;
4896 };
4897 
4898 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
4899 						 struct list_head *adj_list)
4900 {
4901 	struct netdev_adjacent *adj;
4902 
4903 	list_for_each_entry(adj, adj_list, list) {
4904 		if (adj->dev == adj_dev)
4905 			return adj;
4906 	}
4907 	return NULL;
4908 }
4909 
4910 /**
4911  * netdev_has_upper_dev - Check if device is linked to an upper device
4912  * @dev: device
4913  * @upper_dev: upper device to check
4914  *
4915  * Find out if a device is linked to specified upper device and return true
4916  * in case it is. Note that this checks only immediate upper device,
4917  * not through a complete stack of devices. The caller must hold the RTNL lock.
4918  */
4919 bool netdev_has_upper_dev(struct net_device *dev,
4920 			  struct net_device *upper_dev)
4921 {
4922 	ASSERT_RTNL();
4923 
4924 	return __netdev_find_adj(upper_dev, &dev->all_adj_list.upper);
4925 }
4926 EXPORT_SYMBOL(netdev_has_upper_dev);
4927 
4928 /**
4929  * netdev_has_any_upper_dev - Check if device is linked to some device
4930  * @dev: device
4931  *
4932  * Find out if a device is linked to an upper device and return true in case
4933  * it is. The caller must hold the RTNL lock.
4934  */
4935 static bool netdev_has_any_upper_dev(struct net_device *dev)
4936 {
4937 	ASSERT_RTNL();
4938 
4939 	return !list_empty(&dev->all_adj_list.upper);
4940 }
4941 
4942 /**
4943  * netdev_master_upper_dev_get - Get master upper device
4944  * @dev: device
4945  *
4946  * Find a master upper device and return pointer to it or NULL in case
4947  * it's not there. The caller must hold the RTNL lock.
4948  */
4949 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
4950 {
4951 	struct netdev_adjacent *upper;
4952 
4953 	ASSERT_RTNL();
4954 
4955 	if (list_empty(&dev->adj_list.upper))
4956 		return NULL;
4957 
4958 	upper = list_first_entry(&dev->adj_list.upper,
4959 				 struct netdev_adjacent, list);
4960 	if (likely(upper->master))
4961 		return upper->dev;
4962 	return NULL;
4963 }
4964 EXPORT_SYMBOL(netdev_master_upper_dev_get);
4965 
4966 void *netdev_adjacent_get_private(struct list_head *adj_list)
4967 {
4968 	struct netdev_adjacent *adj;
4969 
4970 	adj = list_entry(adj_list, struct netdev_adjacent, list);
4971 
4972 	return adj->private;
4973 }
4974 EXPORT_SYMBOL(netdev_adjacent_get_private);
4975 
4976 /**
4977  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
4978  * @dev: device
4979  * @iter: list_head ** of the current position
4980  *
4981  * Gets the next device from the dev's upper list, starting from iter
4982  * position. The caller must hold RCU read lock.
4983  */
4984 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
4985 						 struct list_head **iter)
4986 {
4987 	struct netdev_adjacent *upper;
4988 
4989 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
4990 
4991 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4992 
4993 	if (&upper->list == &dev->adj_list.upper)
4994 		return NULL;
4995 
4996 	*iter = &upper->list;
4997 
4998 	return upper->dev;
4999 }
5000 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
5001 
5002 /**
5003  * netdev_all_upper_get_next_dev_rcu - Get the next dev from upper list
5004  * @dev: device
5005  * @iter: list_head ** of the current position
5006  *
5007  * Gets the next device from the dev's upper list, starting from iter
5008  * position. The caller must hold RCU read lock.
5009  */
5010 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
5011 						     struct list_head **iter)
5012 {
5013 	struct netdev_adjacent *upper;
5014 
5015 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5016 
5017 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5018 
5019 	if (&upper->list == &dev->all_adj_list.upper)
5020 		return NULL;
5021 
5022 	*iter = &upper->list;
5023 
5024 	return upper->dev;
5025 }
5026 EXPORT_SYMBOL(netdev_all_upper_get_next_dev_rcu);
5027 
5028 /**
5029  * netdev_lower_get_next_private - Get the next ->private from the
5030  *				   lower neighbour list
5031  * @dev: device
5032  * @iter: list_head ** of the current position
5033  *
5034  * Gets the next netdev_adjacent->private from the dev's lower neighbour
5035  * list, starting from iter position. The caller must hold either hold the
5036  * RTNL lock or its own locking that guarantees that the neighbour lower
5037  * list will remain unchanged.
5038  */
5039 void *netdev_lower_get_next_private(struct net_device *dev,
5040 				    struct list_head **iter)
5041 {
5042 	struct netdev_adjacent *lower;
5043 
5044 	lower = list_entry(*iter, struct netdev_adjacent, list);
5045 
5046 	if (&lower->list == &dev->adj_list.lower)
5047 		return NULL;
5048 
5049 	*iter = lower->list.next;
5050 
5051 	return lower->private;
5052 }
5053 EXPORT_SYMBOL(netdev_lower_get_next_private);
5054 
5055 /**
5056  * netdev_lower_get_next_private_rcu - Get the next ->private from the
5057  *				       lower neighbour list, RCU
5058  *				       variant
5059  * @dev: device
5060  * @iter: list_head ** of the current position
5061  *
5062  * Gets the next netdev_adjacent->private from the dev's lower neighbour
5063  * list, starting from iter position. The caller must hold RCU read lock.
5064  */
5065 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
5066 					struct list_head **iter)
5067 {
5068 	struct netdev_adjacent *lower;
5069 
5070 	WARN_ON_ONCE(!rcu_read_lock_held());
5071 
5072 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5073 
5074 	if (&lower->list == &dev->adj_list.lower)
5075 		return NULL;
5076 
5077 	*iter = &lower->list;
5078 
5079 	return lower->private;
5080 }
5081 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
5082 
5083 /**
5084  * netdev_lower_get_next - Get the next device from the lower neighbour
5085  *                         list
5086  * @dev: device
5087  * @iter: list_head ** of the current position
5088  *
5089  * Gets the next netdev_adjacent from the dev's lower neighbour
5090  * list, starting from iter position. The caller must hold RTNL lock or
5091  * its own locking that guarantees that the neighbour lower
5092  * list will remain unchanged.
5093  */
5094 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
5095 {
5096 	struct netdev_adjacent *lower;
5097 
5098 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
5099 
5100 	if (&lower->list == &dev->adj_list.lower)
5101 		return NULL;
5102 
5103 	*iter = &lower->list;
5104 
5105 	return lower->dev;
5106 }
5107 EXPORT_SYMBOL(netdev_lower_get_next);
5108 
5109 /**
5110  * netdev_lower_get_first_private_rcu - Get the first ->private from the
5111  *				       lower neighbour list, RCU
5112  *				       variant
5113  * @dev: device
5114  *
5115  * Gets the first netdev_adjacent->private from the dev's lower neighbour
5116  * list. The caller must hold RCU read lock.
5117  */
5118 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
5119 {
5120 	struct netdev_adjacent *lower;
5121 
5122 	lower = list_first_or_null_rcu(&dev->adj_list.lower,
5123 			struct netdev_adjacent, list);
5124 	if (lower)
5125 		return lower->private;
5126 	return NULL;
5127 }
5128 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
5129 
5130 /**
5131  * netdev_master_upper_dev_get_rcu - Get master upper device
5132  * @dev: device
5133  *
5134  * Find a master upper device and return pointer to it or NULL in case
5135  * it's not there. The caller must hold the RCU read lock.
5136  */
5137 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
5138 {
5139 	struct netdev_adjacent *upper;
5140 
5141 	upper = list_first_or_null_rcu(&dev->adj_list.upper,
5142 				       struct netdev_adjacent, list);
5143 	if (upper && likely(upper->master))
5144 		return upper->dev;
5145 	return NULL;
5146 }
5147 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
5148 
5149 static int netdev_adjacent_sysfs_add(struct net_device *dev,
5150 			      struct net_device *adj_dev,
5151 			      struct list_head *dev_list)
5152 {
5153 	char linkname[IFNAMSIZ+7];
5154 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
5155 		"upper_%s" : "lower_%s", adj_dev->name);
5156 	return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
5157 				 linkname);
5158 }
5159 static void netdev_adjacent_sysfs_del(struct net_device *dev,
5160 			       char *name,
5161 			       struct list_head *dev_list)
5162 {
5163 	char linkname[IFNAMSIZ+7];
5164 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
5165 		"upper_%s" : "lower_%s", name);
5166 	sysfs_remove_link(&(dev->dev.kobj), linkname);
5167 }
5168 
5169 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
5170 						 struct net_device *adj_dev,
5171 						 struct list_head *dev_list)
5172 {
5173 	return (dev_list == &dev->adj_list.upper ||
5174 		dev_list == &dev->adj_list.lower) &&
5175 		net_eq(dev_net(dev), dev_net(adj_dev));
5176 }
5177 
5178 static int __netdev_adjacent_dev_insert(struct net_device *dev,
5179 					struct net_device *adj_dev,
5180 					struct list_head *dev_list,
5181 					void *private, bool master)
5182 {
5183 	struct netdev_adjacent *adj;
5184 	int ret;
5185 
5186 	adj = __netdev_find_adj(adj_dev, dev_list);
5187 
5188 	if (adj) {
5189 		adj->ref_nr++;
5190 		return 0;
5191 	}
5192 
5193 	adj = kmalloc(sizeof(*adj), GFP_KERNEL);
5194 	if (!adj)
5195 		return -ENOMEM;
5196 
5197 	adj->dev = adj_dev;
5198 	adj->master = master;
5199 	adj->ref_nr = 1;
5200 	adj->private = private;
5201 	dev_hold(adj_dev);
5202 
5203 	pr_debug("dev_hold for %s, because of link added from %s to %s\n",
5204 		 adj_dev->name, dev->name, adj_dev->name);
5205 
5206 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
5207 		ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
5208 		if (ret)
5209 			goto free_adj;
5210 	}
5211 
5212 	/* Ensure that master link is always the first item in list. */
5213 	if (master) {
5214 		ret = sysfs_create_link(&(dev->dev.kobj),
5215 					&(adj_dev->dev.kobj), "master");
5216 		if (ret)
5217 			goto remove_symlinks;
5218 
5219 		list_add_rcu(&adj->list, dev_list);
5220 	} else {
5221 		list_add_tail_rcu(&adj->list, dev_list);
5222 	}
5223 
5224 	return 0;
5225 
5226 remove_symlinks:
5227 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
5228 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5229 free_adj:
5230 	kfree(adj);
5231 	dev_put(adj_dev);
5232 
5233 	return ret;
5234 }
5235 
5236 static void __netdev_adjacent_dev_remove(struct net_device *dev,
5237 					 struct net_device *adj_dev,
5238 					 struct list_head *dev_list)
5239 {
5240 	struct netdev_adjacent *adj;
5241 
5242 	adj = __netdev_find_adj(adj_dev, dev_list);
5243 
5244 	if (!adj) {
5245 		pr_err("tried to remove device %s from %s\n",
5246 		       dev->name, adj_dev->name);
5247 		BUG();
5248 	}
5249 
5250 	if (adj->ref_nr > 1) {
5251 		pr_debug("%s to %s ref_nr-- = %d\n", dev->name, adj_dev->name,
5252 			 adj->ref_nr-1);
5253 		adj->ref_nr--;
5254 		return;
5255 	}
5256 
5257 	if (adj->master)
5258 		sysfs_remove_link(&(dev->dev.kobj), "master");
5259 
5260 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
5261 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5262 
5263 	list_del_rcu(&adj->list);
5264 	pr_debug("dev_put for %s, because link removed from %s to %s\n",
5265 		 adj_dev->name, dev->name, adj_dev->name);
5266 	dev_put(adj_dev);
5267 	kfree_rcu(adj, rcu);
5268 }
5269 
5270 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
5271 					    struct net_device *upper_dev,
5272 					    struct list_head *up_list,
5273 					    struct list_head *down_list,
5274 					    void *private, bool master)
5275 {
5276 	int ret;
5277 
5278 	ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, private,
5279 					   master);
5280 	if (ret)
5281 		return ret;
5282 
5283 	ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, private,
5284 					   false);
5285 	if (ret) {
5286 		__netdev_adjacent_dev_remove(dev, upper_dev, up_list);
5287 		return ret;
5288 	}
5289 
5290 	return 0;
5291 }
5292 
5293 static int __netdev_adjacent_dev_link(struct net_device *dev,
5294 				      struct net_device *upper_dev)
5295 {
5296 	return __netdev_adjacent_dev_link_lists(dev, upper_dev,
5297 						&dev->all_adj_list.upper,
5298 						&upper_dev->all_adj_list.lower,
5299 						NULL, false);
5300 }
5301 
5302 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
5303 					       struct net_device *upper_dev,
5304 					       struct list_head *up_list,
5305 					       struct list_head *down_list)
5306 {
5307 	__netdev_adjacent_dev_remove(dev, upper_dev, up_list);
5308 	__netdev_adjacent_dev_remove(upper_dev, dev, down_list);
5309 }
5310 
5311 static void __netdev_adjacent_dev_unlink(struct net_device *dev,
5312 					 struct net_device *upper_dev)
5313 {
5314 	__netdev_adjacent_dev_unlink_lists(dev, upper_dev,
5315 					   &dev->all_adj_list.upper,
5316 					   &upper_dev->all_adj_list.lower);
5317 }
5318 
5319 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
5320 						struct net_device *upper_dev,
5321 						void *private, bool master)
5322 {
5323 	int ret = __netdev_adjacent_dev_link(dev, upper_dev);
5324 
5325 	if (ret)
5326 		return ret;
5327 
5328 	ret = __netdev_adjacent_dev_link_lists(dev, upper_dev,
5329 					       &dev->adj_list.upper,
5330 					       &upper_dev->adj_list.lower,
5331 					       private, master);
5332 	if (ret) {
5333 		__netdev_adjacent_dev_unlink(dev, upper_dev);
5334 		return ret;
5335 	}
5336 
5337 	return 0;
5338 }
5339 
5340 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
5341 						   struct net_device *upper_dev)
5342 {
5343 	__netdev_adjacent_dev_unlink(dev, upper_dev);
5344 	__netdev_adjacent_dev_unlink_lists(dev, upper_dev,
5345 					   &dev->adj_list.upper,
5346 					   &upper_dev->adj_list.lower);
5347 }
5348 
5349 static int __netdev_upper_dev_link(struct net_device *dev,
5350 				   struct net_device *upper_dev, bool master,
5351 				   void *private)
5352 {
5353 	struct netdev_notifier_changeupper_info changeupper_info;
5354 	struct netdev_adjacent *i, *j, *to_i, *to_j;
5355 	int ret = 0;
5356 
5357 	ASSERT_RTNL();
5358 
5359 	if (dev == upper_dev)
5360 		return -EBUSY;
5361 
5362 	/* To prevent loops, check if dev is not upper device to upper_dev. */
5363 	if (__netdev_find_adj(dev, &upper_dev->all_adj_list.upper))
5364 		return -EBUSY;
5365 
5366 	if (__netdev_find_adj(upper_dev, &dev->adj_list.upper))
5367 		return -EEXIST;
5368 
5369 	if (master && netdev_master_upper_dev_get(dev))
5370 		return -EBUSY;
5371 
5372 	changeupper_info.upper_dev = upper_dev;
5373 	changeupper_info.master = master;
5374 	changeupper_info.linking = true;
5375 
5376 	ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
5377 					    &changeupper_info.info);
5378 	ret = notifier_to_errno(ret);
5379 	if (ret)
5380 		return ret;
5381 
5382 	ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, private,
5383 						   master);
5384 	if (ret)
5385 		return ret;
5386 
5387 	/* Now that we linked these devs, make all the upper_dev's
5388 	 * all_adj_list.upper visible to every dev's all_adj_list.lower an
5389 	 * versa, and don't forget the devices itself. All of these
5390 	 * links are non-neighbours.
5391 	 */
5392 	list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5393 		list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5394 			pr_debug("Interlinking %s with %s, non-neighbour\n",
5395 				 i->dev->name, j->dev->name);
5396 			ret = __netdev_adjacent_dev_link(i->dev, j->dev);
5397 			if (ret)
5398 				goto rollback_mesh;
5399 		}
5400 	}
5401 
5402 	/* add dev to every upper_dev's upper device */
5403 	list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5404 		pr_debug("linking %s's upper device %s with %s\n",
5405 			 upper_dev->name, i->dev->name, dev->name);
5406 		ret = __netdev_adjacent_dev_link(dev, i->dev);
5407 		if (ret)
5408 			goto rollback_upper_mesh;
5409 	}
5410 
5411 	/* add upper_dev to every dev's lower device */
5412 	list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5413 		pr_debug("linking %s's lower device %s with %s\n", dev->name,
5414 			 i->dev->name, upper_dev->name);
5415 		ret = __netdev_adjacent_dev_link(i->dev, upper_dev);
5416 		if (ret)
5417 			goto rollback_lower_mesh;
5418 	}
5419 
5420 	call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
5421 				      &changeupper_info.info);
5422 	return 0;
5423 
5424 rollback_lower_mesh:
5425 	to_i = i;
5426 	list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5427 		if (i == to_i)
5428 			break;
5429 		__netdev_adjacent_dev_unlink(i->dev, upper_dev);
5430 	}
5431 
5432 	i = NULL;
5433 
5434 rollback_upper_mesh:
5435 	to_i = i;
5436 	list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5437 		if (i == to_i)
5438 			break;
5439 		__netdev_adjacent_dev_unlink(dev, i->dev);
5440 	}
5441 
5442 	i = j = NULL;
5443 
5444 rollback_mesh:
5445 	to_i = i;
5446 	to_j = j;
5447 	list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5448 		list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5449 			if (i == to_i && j == to_j)
5450 				break;
5451 			__netdev_adjacent_dev_unlink(i->dev, j->dev);
5452 		}
5453 		if (i == to_i)
5454 			break;
5455 	}
5456 
5457 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5458 
5459 	return ret;
5460 }
5461 
5462 /**
5463  * netdev_upper_dev_link - Add a link to the upper device
5464  * @dev: device
5465  * @upper_dev: new upper device
5466  *
5467  * Adds a link to device which is upper to this one. The caller must hold
5468  * the RTNL lock. On a failure a negative errno code is returned.
5469  * On success the reference counts are adjusted and the function
5470  * returns zero.
5471  */
5472 int netdev_upper_dev_link(struct net_device *dev,
5473 			  struct net_device *upper_dev)
5474 {
5475 	return __netdev_upper_dev_link(dev, upper_dev, false, NULL);
5476 }
5477 EXPORT_SYMBOL(netdev_upper_dev_link);
5478 
5479 /**
5480  * netdev_master_upper_dev_link - Add a master link to the upper device
5481  * @dev: device
5482  * @upper_dev: new upper device
5483  *
5484  * Adds a link to device which is upper to this one. In this case, only
5485  * one master upper device can be linked, although other non-master devices
5486  * might be linked as well. The caller must hold the RTNL lock.
5487  * On a failure a negative errno code is returned. On success the reference
5488  * counts are adjusted and the function returns zero.
5489  */
5490 int netdev_master_upper_dev_link(struct net_device *dev,
5491 				 struct net_device *upper_dev)
5492 {
5493 	return __netdev_upper_dev_link(dev, upper_dev, true, NULL);
5494 }
5495 EXPORT_SYMBOL(netdev_master_upper_dev_link);
5496 
5497 int netdev_master_upper_dev_link_private(struct net_device *dev,
5498 					 struct net_device *upper_dev,
5499 					 void *private)
5500 {
5501 	return __netdev_upper_dev_link(dev, upper_dev, true, private);
5502 }
5503 EXPORT_SYMBOL(netdev_master_upper_dev_link_private);
5504 
5505 /**
5506  * netdev_upper_dev_unlink - Removes a link to upper device
5507  * @dev: device
5508  * @upper_dev: new upper device
5509  *
5510  * Removes a link to device which is upper to this one. The caller must hold
5511  * the RTNL lock.
5512  */
5513 void netdev_upper_dev_unlink(struct net_device *dev,
5514 			     struct net_device *upper_dev)
5515 {
5516 	struct netdev_notifier_changeupper_info changeupper_info;
5517 	struct netdev_adjacent *i, *j;
5518 	ASSERT_RTNL();
5519 
5520 	changeupper_info.upper_dev = upper_dev;
5521 	changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
5522 	changeupper_info.linking = false;
5523 
5524 	call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
5525 				      &changeupper_info.info);
5526 
5527 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5528 
5529 	/* Here is the tricky part. We must remove all dev's lower
5530 	 * devices from all upper_dev's upper devices and vice
5531 	 * versa, to maintain the graph relationship.
5532 	 */
5533 	list_for_each_entry(i, &dev->all_adj_list.lower, list)
5534 		list_for_each_entry(j, &upper_dev->all_adj_list.upper, list)
5535 			__netdev_adjacent_dev_unlink(i->dev, j->dev);
5536 
5537 	/* remove also the devices itself from lower/upper device
5538 	 * list
5539 	 */
5540 	list_for_each_entry(i, &dev->all_adj_list.lower, list)
5541 		__netdev_adjacent_dev_unlink(i->dev, upper_dev);
5542 
5543 	list_for_each_entry(i, &upper_dev->all_adj_list.upper, list)
5544 		__netdev_adjacent_dev_unlink(dev, i->dev);
5545 
5546 	call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
5547 				      &changeupper_info.info);
5548 }
5549 EXPORT_SYMBOL(netdev_upper_dev_unlink);
5550 
5551 /**
5552  * netdev_bonding_info_change - Dispatch event about slave change
5553  * @dev: device
5554  * @bonding_info: info to dispatch
5555  *
5556  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
5557  * The caller must hold the RTNL lock.
5558  */
5559 void netdev_bonding_info_change(struct net_device *dev,
5560 				struct netdev_bonding_info *bonding_info)
5561 {
5562 	struct netdev_notifier_bonding_info	info;
5563 
5564 	memcpy(&info.bonding_info, bonding_info,
5565 	       sizeof(struct netdev_bonding_info));
5566 	call_netdevice_notifiers_info(NETDEV_BONDING_INFO, dev,
5567 				      &info.info);
5568 }
5569 EXPORT_SYMBOL(netdev_bonding_info_change);
5570 
5571 static void netdev_adjacent_add_links(struct net_device *dev)
5572 {
5573 	struct netdev_adjacent *iter;
5574 
5575 	struct net *net = dev_net(dev);
5576 
5577 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
5578 		if (!net_eq(net,dev_net(iter->dev)))
5579 			continue;
5580 		netdev_adjacent_sysfs_add(iter->dev, dev,
5581 					  &iter->dev->adj_list.lower);
5582 		netdev_adjacent_sysfs_add(dev, iter->dev,
5583 					  &dev->adj_list.upper);
5584 	}
5585 
5586 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
5587 		if (!net_eq(net,dev_net(iter->dev)))
5588 			continue;
5589 		netdev_adjacent_sysfs_add(iter->dev, dev,
5590 					  &iter->dev->adj_list.upper);
5591 		netdev_adjacent_sysfs_add(dev, iter->dev,
5592 					  &dev->adj_list.lower);
5593 	}
5594 }
5595 
5596 static void netdev_adjacent_del_links(struct net_device *dev)
5597 {
5598 	struct netdev_adjacent *iter;
5599 
5600 	struct net *net = dev_net(dev);
5601 
5602 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
5603 		if (!net_eq(net,dev_net(iter->dev)))
5604 			continue;
5605 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
5606 					  &iter->dev->adj_list.lower);
5607 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
5608 					  &dev->adj_list.upper);
5609 	}
5610 
5611 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
5612 		if (!net_eq(net,dev_net(iter->dev)))
5613 			continue;
5614 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
5615 					  &iter->dev->adj_list.upper);
5616 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
5617 					  &dev->adj_list.lower);
5618 	}
5619 }
5620 
5621 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
5622 {
5623 	struct netdev_adjacent *iter;
5624 
5625 	struct net *net = dev_net(dev);
5626 
5627 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
5628 		if (!net_eq(net,dev_net(iter->dev)))
5629 			continue;
5630 		netdev_adjacent_sysfs_del(iter->dev, oldname,
5631 					  &iter->dev->adj_list.lower);
5632 		netdev_adjacent_sysfs_add(iter->dev, dev,
5633 					  &iter->dev->adj_list.lower);
5634 	}
5635 
5636 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
5637 		if (!net_eq(net,dev_net(iter->dev)))
5638 			continue;
5639 		netdev_adjacent_sysfs_del(iter->dev, oldname,
5640 					  &iter->dev->adj_list.upper);
5641 		netdev_adjacent_sysfs_add(iter->dev, dev,
5642 					  &iter->dev->adj_list.upper);
5643 	}
5644 }
5645 
5646 void *netdev_lower_dev_get_private(struct net_device *dev,
5647 				   struct net_device *lower_dev)
5648 {
5649 	struct netdev_adjacent *lower;
5650 
5651 	if (!lower_dev)
5652 		return NULL;
5653 	lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
5654 	if (!lower)
5655 		return NULL;
5656 
5657 	return lower->private;
5658 }
5659 EXPORT_SYMBOL(netdev_lower_dev_get_private);
5660 
5661 
5662 int dev_get_nest_level(struct net_device *dev,
5663 		       bool (*type_check)(struct net_device *dev))
5664 {
5665 	struct net_device *lower = NULL;
5666 	struct list_head *iter;
5667 	int max_nest = -1;
5668 	int nest;
5669 
5670 	ASSERT_RTNL();
5671 
5672 	netdev_for_each_lower_dev(dev, lower, iter) {
5673 		nest = dev_get_nest_level(lower, type_check);
5674 		if (max_nest < nest)
5675 			max_nest = nest;
5676 	}
5677 
5678 	if (type_check(dev))
5679 		max_nest++;
5680 
5681 	return max_nest;
5682 }
5683 EXPORT_SYMBOL(dev_get_nest_level);
5684 
5685 static void dev_change_rx_flags(struct net_device *dev, int flags)
5686 {
5687 	const struct net_device_ops *ops = dev->netdev_ops;
5688 
5689 	if (ops->ndo_change_rx_flags)
5690 		ops->ndo_change_rx_flags(dev, flags);
5691 }
5692 
5693 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
5694 {
5695 	unsigned int old_flags = dev->flags;
5696 	kuid_t uid;
5697 	kgid_t gid;
5698 
5699 	ASSERT_RTNL();
5700 
5701 	dev->flags |= IFF_PROMISC;
5702 	dev->promiscuity += inc;
5703 	if (dev->promiscuity == 0) {
5704 		/*
5705 		 * Avoid overflow.
5706 		 * If inc causes overflow, untouch promisc and return error.
5707 		 */
5708 		if (inc < 0)
5709 			dev->flags &= ~IFF_PROMISC;
5710 		else {
5711 			dev->promiscuity -= inc;
5712 			pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
5713 				dev->name);
5714 			return -EOVERFLOW;
5715 		}
5716 	}
5717 	if (dev->flags != old_flags) {
5718 		pr_info("device %s %s promiscuous mode\n",
5719 			dev->name,
5720 			dev->flags & IFF_PROMISC ? "entered" : "left");
5721 		if (audit_enabled) {
5722 			current_uid_gid(&uid, &gid);
5723 			audit_log(current->audit_context, GFP_ATOMIC,
5724 				AUDIT_ANOM_PROMISCUOUS,
5725 				"dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
5726 				dev->name, (dev->flags & IFF_PROMISC),
5727 				(old_flags & IFF_PROMISC),
5728 				from_kuid(&init_user_ns, audit_get_loginuid(current)),
5729 				from_kuid(&init_user_ns, uid),
5730 				from_kgid(&init_user_ns, gid),
5731 				audit_get_sessionid(current));
5732 		}
5733 
5734 		dev_change_rx_flags(dev, IFF_PROMISC);
5735 	}
5736 	if (notify)
5737 		__dev_notify_flags(dev, old_flags, IFF_PROMISC);
5738 	return 0;
5739 }
5740 
5741 /**
5742  *	dev_set_promiscuity	- update promiscuity count on a device
5743  *	@dev: device
5744  *	@inc: modifier
5745  *
5746  *	Add or remove promiscuity from a device. While the count in the device
5747  *	remains above zero the interface remains promiscuous. Once it hits zero
5748  *	the device reverts back to normal filtering operation. A negative inc
5749  *	value is used to drop promiscuity on the device.
5750  *	Return 0 if successful or a negative errno code on error.
5751  */
5752 int dev_set_promiscuity(struct net_device *dev, int inc)
5753 {
5754 	unsigned int old_flags = dev->flags;
5755 	int err;
5756 
5757 	err = __dev_set_promiscuity(dev, inc, true);
5758 	if (err < 0)
5759 		return err;
5760 	if (dev->flags != old_flags)
5761 		dev_set_rx_mode(dev);
5762 	return err;
5763 }
5764 EXPORT_SYMBOL(dev_set_promiscuity);
5765 
5766 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
5767 {
5768 	unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
5769 
5770 	ASSERT_RTNL();
5771 
5772 	dev->flags |= IFF_ALLMULTI;
5773 	dev->allmulti += inc;
5774 	if (dev->allmulti == 0) {
5775 		/*
5776 		 * Avoid overflow.
5777 		 * If inc causes overflow, untouch allmulti and return error.
5778 		 */
5779 		if (inc < 0)
5780 			dev->flags &= ~IFF_ALLMULTI;
5781 		else {
5782 			dev->allmulti -= inc;
5783 			pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
5784 				dev->name);
5785 			return -EOVERFLOW;
5786 		}
5787 	}
5788 	if (dev->flags ^ old_flags) {
5789 		dev_change_rx_flags(dev, IFF_ALLMULTI);
5790 		dev_set_rx_mode(dev);
5791 		if (notify)
5792 			__dev_notify_flags(dev, old_flags,
5793 					   dev->gflags ^ old_gflags);
5794 	}
5795 	return 0;
5796 }
5797 
5798 /**
5799  *	dev_set_allmulti	- update allmulti count on a device
5800  *	@dev: device
5801  *	@inc: modifier
5802  *
5803  *	Add or remove reception of all multicast frames to a device. While the
5804  *	count in the device remains above zero the interface remains listening
5805  *	to all interfaces. Once it hits zero the device reverts back to normal
5806  *	filtering operation. A negative @inc value is used to drop the counter
5807  *	when releasing a resource needing all multicasts.
5808  *	Return 0 if successful or a negative errno code on error.
5809  */
5810 
5811 int dev_set_allmulti(struct net_device *dev, int inc)
5812 {
5813 	return __dev_set_allmulti(dev, inc, true);
5814 }
5815 EXPORT_SYMBOL(dev_set_allmulti);
5816 
5817 /*
5818  *	Upload unicast and multicast address lists to device and
5819  *	configure RX filtering. When the device doesn't support unicast
5820  *	filtering it is put in promiscuous mode while unicast addresses
5821  *	are present.
5822  */
5823 void __dev_set_rx_mode(struct net_device *dev)
5824 {
5825 	const struct net_device_ops *ops = dev->netdev_ops;
5826 
5827 	/* dev_open will call this function so the list will stay sane. */
5828 	if (!(dev->flags&IFF_UP))
5829 		return;
5830 
5831 	if (!netif_device_present(dev))
5832 		return;
5833 
5834 	if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
5835 		/* Unicast addresses changes may only happen under the rtnl,
5836 		 * therefore calling __dev_set_promiscuity here is safe.
5837 		 */
5838 		if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
5839 			__dev_set_promiscuity(dev, 1, false);
5840 			dev->uc_promisc = true;
5841 		} else if (netdev_uc_empty(dev) && dev->uc_promisc) {
5842 			__dev_set_promiscuity(dev, -1, false);
5843 			dev->uc_promisc = false;
5844 		}
5845 	}
5846 
5847 	if (ops->ndo_set_rx_mode)
5848 		ops->ndo_set_rx_mode(dev);
5849 }
5850 
5851 void dev_set_rx_mode(struct net_device *dev)
5852 {
5853 	netif_addr_lock_bh(dev);
5854 	__dev_set_rx_mode(dev);
5855 	netif_addr_unlock_bh(dev);
5856 }
5857 
5858 /**
5859  *	dev_get_flags - get flags reported to userspace
5860  *	@dev: device
5861  *
5862  *	Get the combination of flag bits exported through APIs to userspace.
5863  */
5864 unsigned int dev_get_flags(const struct net_device *dev)
5865 {
5866 	unsigned int flags;
5867 
5868 	flags = (dev->flags & ~(IFF_PROMISC |
5869 				IFF_ALLMULTI |
5870 				IFF_RUNNING |
5871 				IFF_LOWER_UP |
5872 				IFF_DORMANT)) |
5873 		(dev->gflags & (IFF_PROMISC |
5874 				IFF_ALLMULTI));
5875 
5876 	if (netif_running(dev)) {
5877 		if (netif_oper_up(dev))
5878 			flags |= IFF_RUNNING;
5879 		if (netif_carrier_ok(dev))
5880 			flags |= IFF_LOWER_UP;
5881 		if (netif_dormant(dev))
5882 			flags |= IFF_DORMANT;
5883 	}
5884 
5885 	return flags;
5886 }
5887 EXPORT_SYMBOL(dev_get_flags);
5888 
5889 int __dev_change_flags(struct net_device *dev, unsigned int flags)
5890 {
5891 	unsigned int old_flags = dev->flags;
5892 	int ret;
5893 
5894 	ASSERT_RTNL();
5895 
5896 	/*
5897 	 *	Set the flags on our device.
5898 	 */
5899 
5900 	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
5901 			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
5902 			       IFF_AUTOMEDIA)) |
5903 		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
5904 				    IFF_ALLMULTI));
5905 
5906 	/*
5907 	 *	Load in the correct multicast list now the flags have changed.
5908 	 */
5909 
5910 	if ((old_flags ^ flags) & IFF_MULTICAST)
5911 		dev_change_rx_flags(dev, IFF_MULTICAST);
5912 
5913 	dev_set_rx_mode(dev);
5914 
5915 	/*
5916 	 *	Have we downed the interface. We handle IFF_UP ourselves
5917 	 *	according to user attempts to set it, rather than blindly
5918 	 *	setting it.
5919 	 */
5920 
5921 	ret = 0;
5922 	if ((old_flags ^ flags) & IFF_UP)
5923 		ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
5924 
5925 	if ((flags ^ dev->gflags) & IFF_PROMISC) {
5926 		int inc = (flags & IFF_PROMISC) ? 1 : -1;
5927 		unsigned int old_flags = dev->flags;
5928 
5929 		dev->gflags ^= IFF_PROMISC;
5930 
5931 		if (__dev_set_promiscuity(dev, inc, false) >= 0)
5932 			if (dev->flags != old_flags)
5933 				dev_set_rx_mode(dev);
5934 	}
5935 
5936 	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
5937 	   is important. Some (broken) drivers set IFF_PROMISC, when
5938 	   IFF_ALLMULTI is requested not asking us and not reporting.
5939 	 */
5940 	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
5941 		int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
5942 
5943 		dev->gflags ^= IFF_ALLMULTI;
5944 		__dev_set_allmulti(dev, inc, false);
5945 	}
5946 
5947 	return ret;
5948 }
5949 
5950 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
5951 			unsigned int gchanges)
5952 {
5953 	unsigned int changes = dev->flags ^ old_flags;
5954 
5955 	if (gchanges)
5956 		rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
5957 
5958 	if (changes & IFF_UP) {
5959 		if (dev->flags & IFF_UP)
5960 			call_netdevice_notifiers(NETDEV_UP, dev);
5961 		else
5962 			call_netdevice_notifiers(NETDEV_DOWN, dev);
5963 	}
5964 
5965 	if (dev->flags & IFF_UP &&
5966 	    (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
5967 		struct netdev_notifier_change_info change_info;
5968 
5969 		change_info.flags_changed = changes;
5970 		call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
5971 					      &change_info.info);
5972 	}
5973 }
5974 
5975 /**
5976  *	dev_change_flags - change device settings
5977  *	@dev: device
5978  *	@flags: device state flags
5979  *
5980  *	Change settings on device based state flags. The flags are
5981  *	in the userspace exported format.
5982  */
5983 int dev_change_flags(struct net_device *dev, unsigned int flags)
5984 {
5985 	int ret;
5986 	unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
5987 
5988 	ret = __dev_change_flags(dev, flags);
5989 	if (ret < 0)
5990 		return ret;
5991 
5992 	changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
5993 	__dev_notify_flags(dev, old_flags, changes);
5994 	return ret;
5995 }
5996 EXPORT_SYMBOL(dev_change_flags);
5997 
5998 static int __dev_set_mtu(struct net_device *dev, int new_mtu)
5999 {
6000 	const struct net_device_ops *ops = dev->netdev_ops;
6001 
6002 	if (ops->ndo_change_mtu)
6003 		return ops->ndo_change_mtu(dev, new_mtu);
6004 
6005 	dev->mtu = new_mtu;
6006 	return 0;
6007 }
6008 
6009 /**
6010  *	dev_set_mtu - Change maximum transfer unit
6011  *	@dev: device
6012  *	@new_mtu: new transfer unit
6013  *
6014  *	Change the maximum transfer size of the network device.
6015  */
6016 int dev_set_mtu(struct net_device *dev, int new_mtu)
6017 {
6018 	int err, orig_mtu;
6019 
6020 	if (new_mtu == dev->mtu)
6021 		return 0;
6022 
6023 	/*	MTU must be positive.	 */
6024 	if (new_mtu < 0)
6025 		return -EINVAL;
6026 
6027 	if (!netif_device_present(dev))
6028 		return -ENODEV;
6029 
6030 	err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
6031 	err = notifier_to_errno(err);
6032 	if (err)
6033 		return err;
6034 
6035 	orig_mtu = dev->mtu;
6036 	err = __dev_set_mtu(dev, new_mtu);
6037 
6038 	if (!err) {
6039 		err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6040 		err = notifier_to_errno(err);
6041 		if (err) {
6042 			/* setting mtu back and notifying everyone again,
6043 			 * so that they have a chance to revert changes.
6044 			 */
6045 			__dev_set_mtu(dev, orig_mtu);
6046 			call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6047 		}
6048 	}
6049 	return err;
6050 }
6051 EXPORT_SYMBOL(dev_set_mtu);
6052 
6053 /**
6054  *	dev_set_group - Change group this device belongs to
6055  *	@dev: device
6056  *	@new_group: group this device should belong to
6057  */
6058 void dev_set_group(struct net_device *dev, int new_group)
6059 {
6060 	dev->group = new_group;
6061 }
6062 EXPORT_SYMBOL(dev_set_group);
6063 
6064 /**
6065  *	dev_set_mac_address - Change Media Access Control Address
6066  *	@dev: device
6067  *	@sa: new address
6068  *
6069  *	Change the hardware (MAC) address of the device
6070  */
6071 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
6072 {
6073 	const struct net_device_ops *ops = dev->netdev_ops;
6074 	int err;
6075 
6076 	if (!ops->ndo_set_mac_address)
6077 		return -EOPNOTSUPP;
6078 	if (sa->sa_family != dev->type)
6079 		return -EINVAL;
6080 	if (!netif_device_present(dev))
6081 		return -ENODEV;
6082 	err = ops->ndo_set_mac_address(dev, sa);
6083 	if (err)
6084 		return err;
6085 	dev->addr_assign_type = NET_ADDR_SET;
6086 	call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
6087 	add_device_randomness(dev->dev_addr, dev->addr_len);
6088 	return 0;
6089 }
6090 EXPORT_SYMBOL(dev_set_mac_address);
6091 
6092 /**
6093  *	dev_change_carrier - Change device carrier
6094  *	@dev: device
6095  *	@new_carrier: new value
6096  *
6097  *	Change device carrier
6098  */
6099 int dev_change_carrier(struct net_device *dev, bool new_carrier)
6100 {
6101 	const struct net_device_ops *ops = dev->netdev_ops;
6102 
6103 	if (!ops->ndo_change_carrier)
6104 		return -EOPNOTSUPP;
6105 	if (!netif_device_present(dev))
6106 		return -ENODEV;
6107 	return ops->ndo_change_carrier(dev, new_carrier);
6108 }
6109 EXPORT_SYMBOL(dev_change_carrier);
6110 
6111 /**
6112  *	dev_get_phys_port_id - Get device physical port ID
6113  *	@dev: device
6114  *	@ppid: port ID
6115  *
6116  *	Get device physical port ID
6117  */
6118 int dev_get_phys_port_id(struct net_device *dev,
6119 			 struct netdev_phys_item_id *ppid)
6120 {
6121 	const struct net_device_ops *ops = dev->netdev_ops;
6122 
6123 	if (!ops->ndo_get_phys_port_id)
6124 		return -EOPNOTSUPP;
6125 	return ops->ndo_get_phys_port_id(dev, ppid);
6126 }
6127 EXPORT_SYMBOL(dev_get_phys_port_id);
6128 
6129 /**
6130  *	dev_get_phys_port_name - Get device physical port name
6131  *	@dev: device
6132  *	@name: port name
6133  *
6134  *	Get device physical port name
6135  */
6136 int dev_get_phys_port_name(struct net_device *dev,
6137 			   char *name, size_t len)
6138 {
6139 	const struct net_device_ops *ops = dev->netdev_ops;
6140 
6141 	if (!ops->ndo_get_phys_port_name)
6142 		return -EOPNOTSUPP;
6143 	return ops->ndo_get_phys_port_name(dev, name, len);
6144 }
6145 EXPORT_SYMBOL(dev_get_phys_port_name);
6146 
6147 /**
6148  *	dev_change_proto_down - update protocol port state information
6149  *	@dev: device
6150  *	@proto_down: new value
6151  *
6152  *	This info can be used by switch drivers to set the phys state of the
6153  *	port.
6154  */
6155 int dev_change_proto_down(struct net_device *dev, bool proto_down)
6156 {
6157 	const struct net_device_ops *ops = dev->netdev_ops;
6158 
6159 	if (!ops->ndo_change_proto_down)
6160 		return -EOPNOTSUPP;
6161 	if (!netif_device_present(dev))
6162 		return -ENODEV;
6163 	return ops->ndo_change_proto_down(dev, proto_down);
6164 }
6165 EXPORT_SYMBOL(dev_change_proto_down);
6166 
6167 /**
6168  *	dev_new_index	-	allocate an ifindex
6169  *	@net: the applicable net namespace
6170  *
6171  *	Returns a suitable unique value for a new device interface
6172  *	number.  The caller must hold the rtnl semaphore or the
6173  *	dev_base_lock to be sure it remains unique.
6174  */
6175 static int dev_new_index(struct net *net)
6176 {
6177 	int ifindex = net->ifindex;
6178 	for (;;) {
6179 		if (++ifindex <= 0)
6180 			ifindex = 1;
6181 		if (!__dev_get_by_index(net, ifindex))
6182 			return net->ifindex = ifindex;
6183 	}
6184 }
6185 
6186 /* Delayed registration/unregisteration */
6187 static LIST_HEAD(net_todo_list);
6188 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
6189 
6190 static void net_set_todo(struct net_device *dev)
6191 {
6192 	list_add_tail(&dev->todo_list, &net_todo_list);
6193 	dev_net(dev)->dev_unreg_count++;
6194 }
6195 
6196 static void rollback_registered_many(struct list_head *head)
6197 {
6198 	struct net_device *dev, *tmp;
6199 	LIST_HEAD(close_head);
6200 
6201 	BUG_ON(dev_boot_phase);
6202 	ASSERT_RTNL();
6203 
6204 	list_for_each_entry_safe(dev, tmp, head, unreg_list) {
6205 		/* Some devices call without registering
6206 		 * for initialization unwind. Remove those
6207 		 * devices and proceed with the remaining.
6208 		 */
6209 		if (dev->reg_state == NETREG_UNINITIALIZED) {
6210 			pr_debug("unregister_netdevice: device %s/%p never was registered\n",
6211 				 dev->name, dev);
6212 
6213 			WARN_ON(1);
6214 			list_del(&dev->unreg_list);
6215 			continue;
6216 		}
6217 		dev->dismantle = true;
6218 		BUG_ON(dev->reg_state != NETREG_REGISTERED);
6219 	}
6220 
6221 	/* If device is running, close it first. */
6222 	list_for_each_entry(dev, head, unreg_list)
6223 		list_add_tail(&dev->close_list, &close_head);
6224 	dev_close_many(&close_head, true);
6225 
6226 	list_for_each_entry(dev, head, unreg_list) {
6227 		/* And unlink it from device chain. */
6228 		unlist_netdevice(dev);
6229 
6230 		dev->reg_state = NETREG_UNREGISTERING;
6231 		on_each_cpu(flush_backlog, dev, 1);
6232 	}
6233 
6234 	synchronize_net();
6235 
6236 	list_for_each_entry(dev, head, unreg_list) {
6237 		struct sk_buff *skb = NULL;
6238 
6239 		/* Shutdown queueing discipline. */
6240 		dev_shutdown(dev);
6241 
6242 
6243 		/* Notify protocols, that we are about to destroy
6244 		   this device. They should clean all the things.
6245 		*/
6246 		call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6247 
6248 		if (!dev->rtnl_link_ops ||
6249 		    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
6250 			skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U,
6251 						     GFP_KERNEL);
6252 
6253 		/*
6254 		 *	Flush the unicast and multicast chains
6255 		 */
6256 		dev_uc_flush(dev);
6257 		dev_mc_flush(dev);
6258 
6259 		if (dev->netdev_ops->ndo_uninit)
6260 			dev->netdev_ops->ndo_uninit(dev);
6261 
6262 		if (skb)
6263 			rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
6264 
6265 		/* Notifier chain MUST detach us all upper devices. */
6266 		WARN_ON(netdev_has_any_upper_dev(dev));
6267 
6268 		/* Remove entries from kobject tree */
6269 		netdev_unregister_kobject(dev);
6270 #ifdef CONFIG_XPS
6271 		/* Remove XPS queueing entries */
6272 		netif_reset_xps_queues_gt(dev, 0);
6273 #endif
6274 	}
6275 
6276 	synchronize_net();
6277 
6278 	list_for_each_entry(dev, head, unreg_list)
6279 		dev_put(dev);
6280 }
6281 
6282 static void rollback_registered(struct net_device *dev)
6283 {
6284 	LIST_HEAD(single);
6285 
6286 	list_add(&dev->unreg_list, &single);
6287 	rollback_registered_many(&single);
6288 	list_del(&single);
6289 }
6290 
6291 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
6292 	struct net_device *upper, netdev_features_t features)
6293 {
6294 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
6295 	netdev_features_t feature;
6296 	int feature_bit;
6297 
6298 	for_each_netdev_feature(&upper_disables, feature_bit) {
6299 		feature = __NETIF_F_BIT(feature_bit);
6300 		if (!(upper->wanted_features & feature)
6301 		    && (features & feature)) {
6302 			netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
6303 				   &feature, upper->name);
6304 			features &= ~feature;
6305 		}
6306 	}
6307 
6308 	return features;
6309 }
6310 
6311 static void netdev_sync_lower_features(struct net_device *upper,
6312 	struct net_device *lower, netdev_features_t features)
6313 {
6314 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
6315 	netdev_features_t feature;
6316 	int feature_bit;
6317 
6318 	for_each_netdev_feature(&upper_disables, feature_bit) {
6319 		feature = __NETIF_F_BIT(feature_bit);
6320 		if (!(features & feature) && (lower->features & feature)) {
6321 			netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
6322 				   &feature, lower->name);
6323 			lower->wanted_features &= ~feature;
6324 			netdev_update_features(lower);
6325 
6326 			if (unlikely(lower->features & feature))
6327 				netdev_WARN(upper, "failed to disable %pNF on %s!\n",
6328 					    &feature, lower->name);
6329 		}
6330 	}
6331 }
6332 
6333 static netdev_features_t netdev_fix_features(struct net_device *dev,
6334 	netdev_features_t features)
6335 {
6336 	/* Fix illegal checksum combinations */
6337 	if ((features & NETIF_F_HW_CSUM) &&
6338 	    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6339 		netdev_warn(dev, "mixed HW and IP checksum settings.\n");
6340 		features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
6341 	}
6342 
6343 	/* TSO requires that SG is present as well. */
6344 	if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
6345 		netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
6346 		features &= ~NETIF_F_ALL_TSO;
6347 	}
6348 
6349 	if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
6350 					!(features & NETIF_F_IP_CSUM)) {
6351 		netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
6352 		features &= ~NETIF_F_TSO;
6353 		features &= ~NETIF_F_TSO_ECN;
6354 	}
6355 
6356 	if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
6357 					 !(features & NETIF_F_IPV6_CSUM)) {
6358 		netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
6359 		features &= ~NETIF_F_TSO6;
6360 	}
6361 
6362 	/* TSO ECN requires that TSO is present as well. */
6363 	if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
6364 		features &= ~NETIF_F_TSO_ECN;
6365 
6366 	/* Software GSO depends on SG. */
6367 	if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
6368 		netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
6369 		features &= ~NETIF_F_GSO;
6370 	}
6371 
6372 	/* UFO needs SG and checksumming */
6373 	if (features & NETIF_F_UFO) {
6374 		/* maybe split UFO into V4 and V6? */
6375 		if (!((features & NETIF_F_GEN_CSUM) ||
6376 		    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))
6377 			    == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6378 			netdev_dbg(dev,
6379 				"Dropping NETIF_F_UFO since no checksum offload features.\n");
6380 			features &= ~NETIF_F_UFO;
6381 		}
6382 
6383 		if (!(features & NETIF_F_SG)) {
6384 			netdev_dbg(dev,
6385 				"Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
6386 			features &= ~NETIF_F_UFO;
6387 		}
6388 	}
6389 
6390 #ifdef CONFIG_NET_RX_BUSY_POLL
6391 	if (dev->netdev_ops->ndo_busy_poll)
6392 		features |= NETIF_F_BUSY_POLL;
6393 	else
6394 #endif
6395 		features &= ~NETIF_F_BUSY_POLL;
6396 
6397 	return features;
6398 }
6399 
6400 int __netdev_update_features(struct net_device *dev)
6401 {
6402 	struct net_device *upper, *lower;
6403 	netdev_features_t features;
6404 	struct list_head *iter;
6405 	int err = -1;
6406 
6407 	ASSERT_RTNL();
6408 
6409 	features = netdev_get_wanted_features(dev);
6410 
6411 	if (dev->netdev_ops->ndo_fix_features)
6412 		features = dev->netdev_ops->ndo_fix_features(dev, features);
6413 
6414 	/* driver might be less strict about feature dependencies */
6415 	features = netdev_fix_features(dev, features);
6416 
6417 	/* some features can't be enabled if they're off an an upper device */
6418 	netdev_for_each_upper_dev_rcu(dev, upper, iter)
6419 		features = netdev_sync_upper_features(dev, upper, features);
6420 
6421 	if (dev->features == features)
6422 		goto sync_lower;
6423 
6424 	netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
6425 		&dev->features, &features);
6426 
6427 	if (dev->netdev_ops->ndo_set_features)
6428 		err = dev->netdev_ops->ndo_set_features(dev, features);
6429 
6430 	if (unlikely(err < 0)) {
6431 		netdev_err(dev,
6432 			"set_features() failed (%d); wanted %pNF, left %pNF\n",
6433 			err, &features, &dev->features);
6434 		return -1;
6435 	}
6436 
6437 sync_lower:
6438 	/* some features must be disabled on lower devices when disabled
6439 	 * on an upper device (think: bonding master or bridge)
6440 	 */
6441 	netdev_for_each_lower_dev(dev, lower, iter)
6442 		netdev_sync_lower_features(dev, lower, features);
6443 
6444 	if (!err)
6445 		dev->features = features;
6446 
6447 	return err < 0 ? 0 : 1;
6448 }
6449 
6450 /**
6451  *	netdev_update_features - recalculate device features
6452  *	@dev: the device to check
6453  *
6454  *	Recalculate dev->features set and send notifications if it
6455  *	has changed. Should be called after driver or hardware dependent
6456  *	conditions might have changed that influence the features.
6457  */
6458 void netdev_update_features(struct net_device *dev)
6459 {
6460 	if (__netdev_update_features(dev))
6461 		netdev_features_change(dev);
6462 }
6463 EXPORT_SYMBOL(netdev_update_features);
6464 
6465 /**
6466  *	netdev_change_features - recalculate device features
6467  *	@dev: the device to check
6468  *
6469  *	Recalculate dev->features set and send notifications even
6470  *	if they have not changed. Should be called instead of
6471  *	netdev_update_features() if also dev->vlan_features might
6472  *	have changed to allow the changes to be propagated to stacked
6473  *	VLAN devices.
6474  */
6475 void netdev_change_features(struct net_device *dev)
6476 {
6477 	__netdev_update_features(dev);
6478 	netdev_features_change(dev);
6479 }
6480 EXPORT_SYMBOL(netdev_change_features);
6481 
6482 /**
6483  *	netif_stacked_transfer_operstate -	transfer operstate
6484  *	@rootdev: the root or lower level device to transfer state from
6485  *	@dev: the device to transfer operstate to
6486  *
6487  *	Transfer operational state from root to device. This is normally
6488  *	called when a stacking relationship exists between the root
6489  *	device and the device(a leaf device).
6490  */
6491 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
6492 					struct net_device *dev)
6493 {
6494 	if (rootdev->operstate == IF_OPER_DORMANT)
6495 		netif_dormant_on(dev);
6496 	else
6497 		netif_dormant_off(dev);
6498 
6499 	if (netif_carrier_ok(rootdev)) {
6500 		if (!netif_carrier_ok(dev))
6501 			netif_carrier_on(dev);
6502 	} else {
6503 		if (netif_carrier_ok(dev))
6504 			netif_carrier_off(dev);
6505 	}
6506 }
6507 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
6508 
6509 #ifdef CONFIG_SYSFS
6510 static int netif_alloc_rx_queues(struct net_device *dev)
6511 {
6512 	unsigned int i, count = dev->num_rx_queues;
6513 	struct netdev_rx_queue *rx;
6514 	size_t sz = count * sizeof(*rx);
6515 
6516 	BUG_ON(count < 1);
6517 
6518 	rx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6519 	if (!rx) {
6520 		rx = vzalloc(sz);
6521 		if (!rx)
6522 			return -ENOMEM;
6523 	}
6524 	dev->_rx = rx;
6525 
6526 	for (i = 0; i < count; i++)
6527 		rx[i].dev = dev;
6528 	return 0;
6529 }
6530 #endif
6531 
6532 static void netdev_init_one_queue(struct net_device *dev,
6533 				  struct netdev_queue *queue, void *_unused)
6534 {
6535 	/* Initialize queue lock */
6536 	spin_lock_init(&queue->_xmit_lock);
6537 	netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
6538 	queue->xmit_lock_owner = -1;
6539 	netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
6540 	queue->dev = dev;
6541 #ifdef CONFIG_BQL
6542 	dql_init(&queue->dql, HZ);
6543 #endif
6544 }
6545 
6546 static void netif_free_tx_queues(struct net_device *dev)
6547 {
6548 	kvfree(dev->_tx);
6549 }
6550 
6551 static int netif_alloc_netdev_queues(struct net_device *dev)
6552 {
6553 	unsigned int count = dev->num_tx_queues;
6554 	struct netdev_queue *tx;
6555 	size_t sz = count * sizeof(*tx);
6556 
6557 	if (count < 1 || count > 0xffff)
6558 		return -EINVAL;
6559 
6560 	tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6561 	if (!tx) {
6562 		tx = vzalloc(sz);
6563 		if (!tx)
6564 			return -ENOMEM;
6565 	}
6566 	dev->_tx = tx;
6567 
6568 	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
6569 	spin_lock_init(&dev->tx_global_lock);
6570 
6571 	return 0;
6572 }
6573 
6574 void netif_tx_stop_all_queues(struct net_device *dev)
6575 {
6576 	unsigned int i;
6577 
6578 	for (i = 0; i < dev->num_tx_queues; i++) {
6579 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
6580 		netif_tx_stop_queue(txq);
6581 	}
6582 }
6583 EXPORT_SYMBOL(netif_tx_stop_all_queues);
6584 
6585 /**
6586  *	register_netdevice	- register a network device
6587  *	@dev: device to register
6588  *
6589  *	Take a completed network device structure and add it to the kernel
6590  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
6591  *	chain. 0 is returned on success. A negative errno code is returned
6592  *	on a failure to set up the device, or if the name is a duplicate.
6593  *
6594  *	Callers must hold the rtnl semaphore. You may want
6595  *	register_netdev() instead of this.
6596  *
6597  *	BUGS:
6598  *	The locking appears insufficient to guarantee two parallel registers
6599  *	will not get the same name.
6600  */
6601 
6602 int register_netdevice(struct net_device *dev)
6603 {
6604 	int ret;
6605 	struct net *net = dev_net(dev);
6606 
6607 	BUG_ON(dev_boot_phase);
6608 	ASSERT_RTNL();
6609 
6610 	might_sleep();
6611 
6612 	/* When net_device's are persistent, this will be fatal. */
6613 	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
6614 	BUG_ON(!net);
6615 
6616 	spin_lock_init(&dev->addr_list_lock);
6617 	netdev_set_addr_lockdep_class(dev);
6618 
6619 	ret = dev_get_valid_name(net, dev, dev->name);
6620 	if (ret < 0)
6621 		goto out;
6622 
6623 	/* Init, if this function is available */
6624 	if (dev->netdev_ops->ndo_init) {
6625 		ret = dev->netdev_ops->ndo_init(dev);
6626 		if (ret) {
6627 			if (ret > 0)
6628 				ret = -EIO;
6629 			goto out;
6630 		}
6631 	}
6632 
6633 	if (((dev->hw_features | dev->features) &
6634 	     NETIF_F_HW_VLAN_CTAG_FILTER) &&
6635 	    (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
6636 	     !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
6637 		netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
6638 		ret = -EINVAL;
6639 		goto err_uninit;
6640 	}
6641 
6642 	ret = -EBUSY;
6643 	if (!dev->ifindex)
6644 		dev->ifindex = dev_new_index(net);
6645 	else if (__dev_get_by_index(net, dev->ifindex))
6646 		goto err_uninit;
6647 
6648 	/* Transfer changeable features to wanted_features and enable
6649 	 * software offloads (GSO and GRO).
6650 	 */
6651 	dev->hw_features |= NETIF_F_SOFT_FEATURES;
6652 	dev->features |= NETIF_F_SOFT_FEATURES;
6653 	dev->wanted_features = dev->features & dev->hw_features;
6654 
6655 	if (!(dev->flags & IFF_LOOPBACK)) {
6656 		dev->hw_features |= NETIF_F_NOCACHE_COPY;
6657 	}
6658 
6659 	/* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
6660 	 */
6661 	dev->vlan_features |= NETIF_F_HIGHDMA;
6662 
6663 	/* Make NETIF_F_SG inheritable to tunnel devices.
6664 	 */
6665 	dev->hw_enc_features |= NETIF_F_SG;
6666 
6667 	/* Make NETIF_F_SG inheritable to MPLS.
6668 	 */
6669 	dev->mpls_features |= NETIF_F_SG;
6670 
6671 	ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
6672 	ret = notifier_to_errno(ret);
6673 	if (ret)
6674 		goto err_uninit;
6675 
6676 	ret = netdev_register_kobject(dev);
6677 	if (ret)
6678 		goto err_uninit;
6679 	dev->reg_state = NETREG_REGISTERED;
6680 
6681 	__netdev_update_features(dev);
6682 
6683 	/*
6684 	 *	Default initial state at registry is that the
6685 	 *	device is present.
6686 	 */
6687 
6688 	set_bit(__LINK_STATE_PRESENT, &dev->state);
6689 
6690 	linkwatch_init_dev(dev);
6691 
6692 	dev_init_scheduler(dev);
6693 	dev_hold(dev);
6694 	list_netdevice(dev);
6695 	add_device_randomness(dev->dev_addr, dev->addr_len);
6696 
6697 	/* If the device has permanent device address, driver should
6698 	 * set dev_addr and also addr_assign_type should be set to
6699 	 * NET_ADDR_PERM (default value).
6700 	 */
6701 	if (dev->addr_assign_type == NET_ADDR_PERM)
6702 		memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
6703 
6704 	/* Notify protocols, that a new device appeared. */
6705 	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
6706 	ret = notifier_to_errno(ret);
6707 	if (ret) {
6708 		rollback_registered(dev);
6709 		dev->reg_state = NETREG_UNREGISTERED;
6710 	}
6711 	/*
6712 	 *	Prevent userspace races by waiting until the network
6713 	 *	device is fully setup before sending notifications.
6714 	 */
6715 	if (!dev->rtnl_link_ops ||
6716 	    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
6717 		rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
6718 
6719 out:
6720 	return ret;
6721 
6722 err_uninit:
6723 	if (dev->netdev_ops->ndo_uninit)
6724 		dev->netdev_ops->ndo_uninit(dev);
6725 	goto out;
6726 }
6727 EXPORT_SYMBOL(register_netdevice);
6728 
6729 /**
6730  *	init_dummy_netdev	- init a dummy network device for NAPI
6731  *	@dev: device to init
6732  *
6733  *	This takes a network device structure and initialize the minimum
6734  *	amount of fields so it can be used to schedule NAPI polls without
6735  *	registering a full blown interface. This is to be used by drivers
6736  *	that need to tie several hardware interfaces to a single NAPI
6737  *	poll scheduler due to HW limitations.
6738  */
6739 int init_dummy_netdev(struct net_device *dev)
6740 {
6741 	/* Clear everything. Note we don't initialize spinlocks
6742 	 * are they aren't supposed to be taken by any of the
6743 	 * NAPI code and this dummy netdev is supposed to be
6744 	 * only ever used for NAPI polls
6745 	 */
6746 	memset(dev, 0, sizeof(struct net_device));
6747 
6748 	/* make sure we BUG if trying to hit standard
6749 	 * register/unregister code path
6750 	 */
6751 	dev->reg_state = NETREG_DUMMY;
6752 
6753 	/* NAPI wants this */
6754 	INIT_LIST_HEAD(&dev->napi_list);
6755 
6756 	/* a dummy interface is started by default */
6757 	set_bit(__LINK_STATE_PRESENT, &dev->state);
6758 	set_bit(__LINK_STATE_START, &dev->state);
6759 
6760 	/* Note : We dont allocate pcpu_refcnt for dummy devices,
6761 	 * because users of this 'device' dont need to change
6762 	 * its refcount.
6763 	 */
6764 
6765 	return 0;
6766 }
6767 EXPORT_SYMBOL_GPL(init_dummy_netdev);
6768 
6769 
6770 /**
6771  *	register_netdev	- register a network device
6772  *	@dev: device to register
6773  *
6774  *	Take a completed network device structure and add it to the kernel
6775  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
6776  *	chain. 0 is returned on success. A negative errno code is returned
6777  *	on a failure to set up the device, or if the name is a duplicate.
6778  *
6779  *	This is a wrapper around register_netdevice that takes the rtnl semaphore
6780  *	and expands the device name if you passed a format string to
6781  *	alloc_netdev.
6782  */
6783 int register_netdev(struct net_device *dev)
6784 {
6785 	int err;
6786 
6787 	rtnl_lock();
6788 	err = register_netdevice(dev);
6789 	rtnl_unlock();
6790 	return err;
6791 }
6792 EXPORT_SYMBOL(register_netdev);
6793 
6794 int netdev_refcnt_read(const struct net_device *dev)
6795 {
6796 	int i, refcnt = 0;
6797 
6798 	for_each_possible_cpu(i)
6799 		refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
6800 	return refcnt;
6801 }
6802 EXPORT_SYMBOL(netdev_refcnt_read);
6803 
6804 /**
6805  * netdev_wait_allrefs - wait until all references are gone.
6806  * @dev: target net_device
6807  *
6808  * This is called when unregistering network devices.
6809  *
6810  * Any protocol or device that holds a reference should register
6811  * for netdevice notification, and cleanup and put back the
6812  * reference if they receive an UNREGISTER event.
6813  * We can get stuck here if buggy protocols don't correctly
6814  * call dev_put.
6815  */
6816 static void netdev_wait_allrefs(struct net_device *dev)
6817 {
6818 	unsigned long rebroadcast_time, warning_time;
6819 	int refcnt;
6820 
6821 	linkwatch_forget_dev(dev);
6822 
6823 	rebroadcast_time = warning_time = jiffies;
6824 	refcnt = netdev_refcnt_read(dev);
6825 
6826 	while (refcnt != 0) {
6827 		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
6828 			rtnl_lock();
6829 
6830 			/* Rebroadcast unregister notification */
6831 			call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6832 
6833 			__rtnl_unlock();
6834 			rcu_barrier();
6835 			rtnl_lock();
6836 
6837 			call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6838 			if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
6839 				     &dev->state)) {
6840 				/* We must not have linkwatch events
6841 				 * pending on unregister. If this
6842 				 * happens, we simply run the queue
6843 				 * unscheduled, resulting in a noop
6844 				 * for this device.
6845 				 */
6846 				linkwatch_run_queue();
6847 			}
6848 
6849 			__rtnl_unlock();
6850 
6851 			rebroadcast_time = jiffies;
6852 		}
6853 
6854 		msleep(250);
6855 
6856 		refcnt = netdev_refcnt_read(dev);
6857 
6858 		if (time_after(jiffies, warning_time + 10 * HZ)) {
6859 			pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
6860 				 dev->name, refcnt);
6861 			warning_time = jiffies;
6862 		}
6863 	}
6864 }
6865 
6866 /* The sequence is:
6867  *
6868  *	rtnl_lock();
6869  *	...
6870  *	register_netdevice(x1);
6871  *	register_netdevice(x2);
6872  *	...
6873  *	unregister_netdevice(y1);
6874  *	unregister_netdevice(y2);
6875  *      ...
6876  *	rtnl_unlock();
6877  *	free_netdev(y1);
6878  *	free_netdev(y2);
6879  *
6880  * We are invoked by rtnl_unlock().
6881  * This allows us to deal with problems:
6882  * 1) We can delete sysfs objects which invoke hotplug
6883  *    without deadlocking with linkwatch via keventd.
6884  * 2) Since we run with the RTNL semaphore not held, we can sleep
6885  *    safely in order to wait for the netdev refcnt to drop to zero.
6886  *
6887  * We must not return until all unregister events added during
6888  * the interval the lock was held have been completed.
6889  */
6890 void netdev_run_todo(void)
6891 {
6892 	struct list_head list;
6893 
6894 	/* Snapshot list, allow later requests */
6895 	list_replace_init(&net_todo_list, &list);
6896 
6897 	__rtnl_unlock();
6898 
6899 
6900 	/* Wait for rcu callbacks to finish before next phase */
6901 	if (!list_empty(&list))
6902 		rcu_barrier();
6903 
6904 	while (!list_empty(&list)) {
6905 		struct net_device *dev
6906 			= list_first_entry(&list, struct net_device, todo_list);
6907 		list_del(&dev->todo_list);
6908 
6909 		rtnl_lock();
6910 		call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6911 		__rtnl_unlock();
6912 
6913 		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
6914 			pr_err("network todo '%s' but state %d\n",
6915 			       dev->name, dev->reg_state);
6916 			dump_stack();
6917 			continue;
6918 		}
6919 
6920 		dev->reg_state = NETREG_UNREGISTERED;
6921 
6922 		netdev_wait_allrefs(dev);
6923 
6924 		/* paranoia */
6925 		BUG_ON(netdev_refcnt_read(dev));
6926 		BUG_ON(!list_empty(&dev->ptype_all));
6927 		BUG_ON(!list_empty(&dev->ptype_specific));
6928 		WARN_ON(rcu_access_pointer(dev->ip_ptr));
6929 		WARN_ON(rcu_access_pointer(dev->ip6_ptr));
6930 		WARN_ON(dev->dn_ptr);
6931 
6932 		if (dev->destructor)
6933 			dev->destructor(dev);
6934 
6935 		/* Report a network device has been unregistered */
6936 		rtnl_lock();
6937 		dev_net(dev)->dev_unreg_count--;
6938 		__rtnl_unlock();
6939 		wake_up(&netdev_unregistering_wq);
6940 
6941 		/* Free network device */
6942 		kobject_put(&dev->dev.kobj);
6943 	}
6944 }
6945 
6946 /* Convert net_device_stats to rtnl_link_stats64.  They have the same
6947  * fields in the same order, with only the type differing.
6948  */
6949 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
6950 			     const struct net_device_stats *netdev_stats)
6951 {
6952 #if BITS_PER_LONG == 64
6953 	BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
6954 	memcpy(stats64, netdev_stats, sizeof(*stats64));
6955 #else
6956 	size_t i, n = sizeof(*stats64) / sizeof(u64);
6957 	const unsigned long *src = (const unsigned long *)netdev_stats;
6958 	u64 *dst = (u64 *)stats64;
6959 
6960 	BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
6961 		     sizeof(*stats64) / sizeof(u64));
6962 	for (i = 0; i < n; i++)
6963 		dst[i] = src[i];
6964 #endif
6965 }
6966 EXPORT_SYMBOL(netdev_stats_to_stats64);
6967 
6968 /**
6969  *	dev_get_stats	- get network device statistics
6970  *	@dev: device to get statistics from
6971  *	@storage: place to store stats
6972  *
6973  *	Get network statistics from device. Return @storage.
6974  *	The device driver may provide its own method by setting
6975  *	dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
6976  *	otherwise the internal statistics structure is used.
6977  */
6978 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
6979 					struct rtnl_link_stats64 *storage)
6980 {
6981 	const struct net_device_ops *ops = dev->netdev_ops;
6982 
6983 	if (ops->ndo_get_stats64) {
6984 		memset(storage, 0, sizeof(*storage));
6985 		ops->ndo_get_stats64(dev, storage);
6986 	} else if (ops->ndo_get_stats) {
6987 		netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
6988 	} else {
6989 		netdev_stats_to_stats64(storage, &dev->stats);
6990 	}
6991 	storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
6992 	storage->tx_dropped += atomic_long_read(&dev->tx_dropped);
6993 	return storage;
6994 }
6995 EXPORT_SYMBOL(dev_get_stats);
6996 
6997 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
6998 {
6999 	struct netdev_queue *queue = dev_ingress_queue(dev);
7000 
7001 #ifdef CONFIG_NET_CLS_ACT
7002 	if (queue)
7003 		return queue;
7004 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
7005 	if (!queue)
7006 		return NULL;
7007 	netdev_init_one_queue(dev, queue, NULL);
7008 	RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
7009 	queue->qdisc_sleeping = &noop_qdisc;
7010 	rcu_assign_pointer(dev->ingress_queue, queue);
7011 #endif
7012 	return queue;
7013 }
7014 
7015 static const struct ethtool_ops default_ethtool_ops;
7016 
7017 void netdev_set_default_ethtool_ops(struct net_device *dev,
7018 				    const struct ethtool_ops *ops)
7019 {
7020 	if (dev->ethtool_ops == &default_ethtool_ops)
7021 		dev->ethtool_ops = ops;
7022 }
7023 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
7024 
7025 void netdev_freemem(struct net_device *dev)
7026 {
7027 	char *addr = (char *)dev - dev->padded;
7028 
7029 	kvfree(addr);
7030 }
7031 
7032 /**
7033  *	alloc_netdev_mqs - allocate network device
7034  *	@sizeof_priv:		size of private data to allocate space for
7035  *	@name:			device name format string
7036  *	@name_assign_type: 	origin of device name
7037  *	@setup:			callback to initialize device
7038  *	@txqs:			the number of TX subqueues to allocate
7039  *	@rxqs:			the number of RX subqueues to allocate
7040  *
7041  *	Allocates a struct net_device with private data area for driver use
7042  *	and performs basic initialization.  Also allocates subqueue structs
7043  *	for each queue on the device.
7044  */
7045 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
7046 		unsigned char name_assign_type,
7047 		void (*setup)(struct net_device *),
7048 		unsigned int txqs, unsigned int rxqs)
7049 {
7050 	struct net_device *dev;
7051 	size_t alloc_size;
7052 	struct net_device *p;
7053 
7054 	BUG_ON(strlen(name) >= sizeof(dev->name));
7055 
7056 	if (txqs < 1) {
7057 		pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
7058 		return NULL;
7059 	}
7060 
7061 #ifdef CONFIG_SYSFS
7062 	if (rxqs < 1) {
7063 		pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
7064 		return NULL;
7065 	}
7066 #endif
7067 
7068 	alloc_size = sizeof(struct net_device);
7069 	if (sizeof_priv) {
7070 		/* ensure 32-byte alignment of private area */
7071 		alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
7072 		alloc_size += sizeof_priv;
7073 	}
7074 	/* ensure 32-byte alignment of whole construct */
7075 	alloc_size += NETDEV_ALIGN - 1;
7076 
7077 	p = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
7078 	if (!p)
7079 		p = vzalloc(alloc_size);
7080 	if (!p)
7081 		return NULL;
7082 
7083 	dev = PTR_ALIGN(p, NETDEV_ALIGN);
7084 	dev->padded = (char *)dev - (char *)p;
7085 
7086 	dev->pcpu_refcnt = alloc_percpu(int);
7087 	if (!dev->pcpu_refcnt)
7088 		goto free_dev;
7089 
7090 	if (dev_addr_init(dev))
7091 		goto free_pcpu;
7092 
7093 	dev_mc_init(dev);
7094 	dev_uc_init(dev);
7095 
7096 	dev_net_set(dev, &init_net);
7097 
7098 	dev->gso_max_size = GSO_MAX_SIZE;
7099 	dev->gso_max_segs = GSO_MAX_SEGS;
7100 	dev->gso_min_segs = 0;
7101 
7102 	INIT_LIST_HEAD(&dev->napi_list);
7103 	INIT_LIST_HEAD(&dev->unreg_list);
7104 	INIT_LIST_HEAD(&dev->close_list);
7105 	INIT_LIST_HEAD(&dev->link_watch_list);
7106 	INIT_LIST_HEAD(&dev->adj_list.upper);
7107 	INIT_LIST_HEAD(&dev->adj_list.lower);
7108 	INIT_LIST_HEAD(&dev->all_adj_list.upper);
7109 	INIT_LIST_HEAD(&dev->all_adj_list.lower);
7110 	INIT_LIST_HEAD(&dev->ptype_all);
7111 	INIT_LIST_HEAD(&dev->ptype_specific);
7112 	dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
7113 	setup(dev);
7114 
7115 	if (!dev->tx_queue_len)
7116 		dev->priv_flags |= IFF_NO_QUEUE;
7117 
7118 	dev->num_tx_queues = txqs;
7119 	dev->real_num_tx_queues = txqs;
7120 	if (netif_alloc_netdev_queues(dev))
7121 		goto free_all;
7122 
7123 #ifdef CONFIG_SYSFS
7124 	dev->num_rx_queues = rxqs;
7125 	dev->real_num_rx_queues = rxqs;
7126 	if (netif_alloc_rx_queues(dev))
7127 		goto free_all;
7128 #endif
7129 
7130 	strcpy(dev->name, name);
7131 	dev->name_assign_type = name_assign_type;
7132 	dev->group = INIT_NETDEV_GROUP;
7133 	if (!dev->ethtool_ops)
7134 		dev->ethtool_ops = &default_ethtool_ops;
7135 
7136 	nf_hook_ingress_init(dev);
7137 
7138 	return dev;
7139 
7140 free_all:
7141 	free_netdev(dev);
7142 	return NULL;
7143 
7144 free_pcpu:
7145 	free_percpu(dev->pcpu_refcnt);
7146 free_dev:
7147 	netdev_freemem(dev);
7148 	return NULL;
7149 }
7150 EXPORT_SYMBOL(alloc_netdev_mqs);
7151 
7152 /**
7153  *	free_netdev - free network device
7154  *	@dev: device
7155  *
7156  *	This function does the last stage of destroying an allocated device
7157  * 	interface. The reference to the device object is released.
7158  *	If this is the last reference then it will be freed.
7159  */
7160 void free_netdev(struct net_device *dev)
7161 {
7162 	struct napi_struct *p, *n;
7163 
7164 	netif_free_tx_queues(dev);
7165 #ifdef CONFIG_SYSFS
7166 	kvfree(dev->_rx);
7167 #endif
7168 
7169 	kfree(rcu_dereference_protected(dev->ingress_queue, 1));
7170 
7171 	/* Flush device addresses */
7172 	dev_addr_flush(dev);
7173 
7174 	list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
7175 		netif_napi_del(p);
7176 
7177 	free_percpu(dev->pcpu_refcnt);
7178 	dev->pcpu_refcnt = NULL;
7179 
7180 	/*  Compatibility with error handling in drivers */
7181 	if (dev->reg_state == NETREG_UNINITIALIZED) {
7182 		netdev_freemem(dev);
7183 		return;
7184 	}
7185 
7186 	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
7187 	dev->reg_state = NETREG_RELEASED;
7188 
7189 	/* will free via device release */
7190 	put_device(&dev->dev);
7191 }
7192 EXPORT_SYMBOL(free_netdev);
7193 
7194 /**
7195  *	synchronize_net -  Synchronize with packet receive processing
7196  *
7197  *	Wait for packets currently being received to be done.
7198  *	Does not block later packets from starting.
7199  */
7200 void synchronize_net(void)
7201 {
7202 	might_sleep();
7203 	if (rtnl_is_locked())
7204 		synchronize_rcu_expedited();
7205 	else
7206 		synchronize_rcu();
7207 }
7208 EXPORT_SYMBOL(synchronize_net);
7209 
7210 /**
7211  *	unregister_netdevice_queue - remove device from the kernel
7212  *	@dev: device
7213  *	@head: list
7214  *
7215  *	This function shuts down a device interface and removes it
7216  *	from the kernel tables.
7217  *	If head not NULL, device is queued to be unregistered later.
7218  *
7219  *	Callers must hold the rtnl semaphore.  You may want
7220  *	unregister_netdev() instead of this.
7221  */
7222 
7223 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
7224 {
7225 	ASSERT_RTNL();
7226 
7227 	if (head) {
7228 		list_move_tail(&dev->unreg_list, head);
7229 	} else {
7230 		rollback_registered(dev);
7231 		/* Finish processing unregister after unlock */
7232 		net_set_todo(dev);
7233 	}
7234 }
7235 EXPORT_SYMBOL(unregister_netdevice_queue);
7236 
7237 /**
7238  *	unregister_netdevice_many - unregister many devices
7239  *	@head: list of devices
7240  *
7241  *  Note: As most callers use a stack allocated list_head,
7242  *  we force a list_del() to make sure stack wont be corrupted later.
7243  */
7244 void unregister_netdevice_many(struct list_head *head)
7245 {
7246 	struct net_device *dev;
7247 
7248 	if (!list_empty(head)) {
7249 		rollback_registered_many(head);
7250 		list_for_each_entry(dev, head, unreg_list)
7251 			net_set_todo(dev);
7252 		list_del(head);
7253 	}
7254 }
7255 EXPORT_SYMBOL(unregister_netdevice_many);
7256 
7257 /**
7258  *	unregister_netdev - remove device from the kernel
7259  *	@dev: device
7260  *
7261  *	This function shuts down a device interface and removes it
7262  *	from the kernel tables.
7263  *
7264  *	This is just a wrapper for unregister_netdevice that takes
7265  *	the rtnl semaphore.  In general you want to use this and not
7266  *	unregister_netdevice.
7267  */
7268 void unregister_netdev(struct net_device *dev)
7269 {
7270 	rtnl_lock();
7271 	unregister_netdevice(dev);
7272 	rtnl_unlock();
7273 }
7274 EXPORT_SYMBOL(unregister_netdev);
7275 
7276 /**
7277  *	dev_change_net_namespace - move device to different nethost namespace
7278  *	@dev: device
7279  *	@net: network namespace
7280  *	@pat: If not NULL name pattern to try if the current device name
7281  *	      is already taken in the destination network namespace.
7282  *
7283  *	This function shuts down a device interface and moves it
7284  *	to a new network namespace. On success 0 is returned, on
7285  *	a failure a netagive errno code is returned.
7286  *
7287  *	Callers must hold the rtnl semaphore.
7288  */
7289 
7290 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
7291 {
7292 	int err;
7293 
7294 	ASSERT_RTNL();
7295 
7296 	/* Don't allow namespace local devices to be moved. */
7297 	err = -EINVAL;
7298 	if (dev->features & NETIF_F_NETNS_LOCAL)
7299 		goto out;
7300 
7301 	/* Ensure the device has been registrered */
7302 	if (dev->reg_state != NETREG_REGISTERED)
7303 		goto out;
7304 
7305 	/* Get out if there is nothing todo */
7306 	err = 0;
7307 	if (net_eq(dev_net(dev), net))
7308 		goto out;
7309 
7310 	/* Pick the destination device name, and ensure
7311 	 * we can use it in the destination network namespace.
7312 	 */
7313 	err = -EEXIST;
7314 	if (__dev_get_by_name(net, dev->name)) {
7315 		/* We get here if we can't use the current device name */
7316 		if (!pat)
7317 			goto out;
7318 		if (dev_get_valid_name(net, dev, pat) < 0)
7319 			goto out;
7320 	}
7321 
7322 	/*
7323 	 * And now a mini version of register_netdevice unregister_netdevice.
7324 	 */
7325 
7326 	/* If device is running close it first. */
7327 	dev_close(dev);
7328 
7329 	/* And unlink it from device chain */
7330 	err = -ENODEV;
7331 	unlist_netdevice(dev);
7332 
7333 	synchronize_net();
7334 
7335 	/* Shutdown queueing discipline. */
7336 	dev_shutdown(dev);
7337 
7338 	/* Notify protocols, that we are about to destroy
7339 	   this device. They should clean all the things.
7340 
7341 	   Note that dev->reg_state stays at NETREG_REGISTERED.
7342 	   This is wanted because this way 8021q and macvlan know
7343 	   the device is just moving and can keep their slaves up.
7344 	*/
7345 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7346 	rcu_barrier();
7347 	call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7348 	rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
7349 
7350 	/*
7351 	 *	Flush the unicast and multicast chains
7352 	 */
7353 	dev_uc_flush(dev);
7354 	dev_mc_flush(dev);
7355 
7356 	/* Send a netdev-removed uevent to the old namespace */
7357 	kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
7358 	netdev_adjacent_del_links(dev);
7359 
7360 	/* Actually switch the network namespace */
7361 	dev_net_set(dev, net);
7362 
7363 	/* If there is an ifindex conflict assign a new one */
7364 	if (__dev_get_by_index(net, dev->ifindex))
7365 		dev->ifindex = dev_new_index(net);
7366 
7367 	/* Send a netdev-add uevent to the new namespace */
7368 	kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
7369 	netdev_adjacent_add_links(dev);
7370 
7371 	/* Fixup kobjects */
7372 	err = device_rename(&dev->dev, dev->name);
7373 	WARN_ON(err);
7374 
7375 	/* Add the device back in the hashes */
7376 	list_netdevice(dev);
7377 
7378 	/* Notify protocols, that a new device appeared. */
7379 	call_netdevice_notifiers(NETDEV_REGISTER, dev);
7380 
7381 	/*
7382 	 *	Prevent userspace races by waiting until the network
7383 	 *	device is fully setup before sending notifications.
7384 	 */
7385 	rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
7386 
7387 	synchronize_net();
7388 	err = 0;
7389 out:
7390 	return err;
7391 }
7392 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
7393 
7394 static int dev_cpu_callback(struct notifier_block *nfb,
7395 			    unsigned long action,
7396 			    void *ocpu)
7397 {
7398 	struct sk_buff **list_skb;
7399 	struct sk_buff *skb;
7400 	unsigned int cpu, oldcpu = (unsigned long)ocpu;
7401 	struct softnet_data *sd, *oldsd;
7402 
7403 	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
7404 		return NOTIFY_OK;
7405 
7406 	local_irq_disable();
7407 	cpu = smp_processor_id();
7408 	sd = &per_cpu(softnet_data, cpu);
7409 	oldsd = &per_cpu(softnet_data, oldcpu);
7410 
7411 	/* Find end of our completion_queue. */
7412 	list_skb = &sd->completion_queue;
7413 	while (*list_skb)
7414 		list_skb = &(*list_skb)->next;
7415 	/* Append completion queue from offline CPU. */
7416 	*list_skb = oldsd->completion_queue;
7417 	oldsd->completion_queue = NULL;
7418 
7419 	/* Append output queue from offline CPU. */
7420 	if (oldsd->output_queue) {
7421 		*sd->output_queue_tailp = oldsd->output_queue;
7422 		sd->output_queue_tailp = oldsd->output_queue_tailp;
7423 		oldsd->output_queue = NULL;
7424 		oldsd->output_queue_tailp = &oldsd->output_queue;
7425 	}
7426 	/* Append NAPI poll list from offline CPU, with one exception :
7427 	 * process_backlog() must be called by cpu owning percpu backlog.
7428 	 * We properly handle process_queue & input_pkt_queue later.
7429 	 */
7430 	while (!list_empty(&oldsd->poll_list)) {
7431 		struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
7432 							    struct napi_struct,
7433 							    poll_list);
7434 
7435 		list_del_init(&napi->poll_list);
7436 		if (napi->poll == process_backlog)
7437 			napi->state = 0;
7438 		else
7439 			____napi_schedule(sd, napi);
7440 	}
7441 
7442 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
7443 	local_irq_enable();
7444 
7445 	/* Process offline CPU's input_pkt_queue */
7446 	while ((skb = __skb_dequeue(&oldsd->process_queue))) {
7447 		netif_rx_ni(skb);
7448 		input_queue_head_incr(oldsd);
7449 	}
7450 	while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
7451 		netif_rx_ni(skb);
7452 		input_queue_head_incr(oldsd);
7453 	}
7454 
7455 	return NOTIFY_OK;
7456 }
7457 
7458 
7459 /**
7460  *	netdev_increment_features - increment feature set by one
7461  *	@all: current feature set
7462  *	@one: new feature set
7463  *	@mask: mask feature set
7464  *
7465  *	Computes a new feature set after adding a device with feature set
7466  *	@one to the master device with current feature set @all.  Will not
7467  *	enable anything that is off in @mask. Returns the new feature set.
7468  */
7469 netdev_features_t netdev_increment_features(netdev_features_t all,
7470 	netdev_features_t one, netdev_features_t mask)
7471 {
7472 	if (mask & NETIF_F_GEN_CSUM)
7473 		mask |= NETIF_F_ALL_CSUM;
7474 	mask |= NETIF_F_VLAN_CHALLENGED;
7475 
7476 	all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask;
7477 	all &= one | ~NETIF_F_ALL_FOR_ALL;
7478 
7479 	/* If one device supports hw checksumming, set for all. */
7480 	if (all & NETIF_F_GEN_CSUM)
7481 		all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
7482 
7483 	return all;
7484 }
7485 EXPORT_SYMBOL(netdev_increment_features);
7486 
7487 static struct hlist_head * __net_init netdev_create_hash(void)
7488 {
7489 	int i;
7490 	struct hlist_head *hash;
7491 
7492 	hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
7493 	if (hash != NULL)
7494 		for (i = 0; i < NETDEV_HASHENTRIES; i++)
7495 			INIT_HLIST_HEAD(&hash[i]);
7496 
7497 	return hash;
7498 }
7499 
7500 /* Initialize per network namespace state */
7501 static int __net_init netdev_init(struct net *net)
7502 {
7503 	if (net != &init_net)
7504 		INIT_LIST_HEAD(&net->dev_base_head);
7505 
7506 	net->dev_name_head = netdev_create_hash();
7507 	if (net->dev_name_head == NULL)
7508 		goto err_name;
7509 
7510 	net->dev_index_head = netdev_create_hash();
7511 	if (net->dev_index_head == NULL)
7512 		goto err_idx;
7513 
7514 	return 0;
7515 
7516 err_idx:
7517 	kfree(net->dev_name_head);
7518 err_name:
7519 	return -ENOMEM;
7520 }
7521 
7522 /**
7523  *	netdev_drivername - network driver for the device
7524  *	@dev: network device
7525  *
7526  *	Determine network driver for device.
7527  */
7528 const char *netdev_drivername(const struct net_device *dev)
7529 {
7530 	const struct device_driver *driver;
7531 	const struct device *parent;
7532 	const char *empty = "";
7533 
7534 	parent = dev->dev.parent;
7535 	if (!parent)
7536 		return empty;
7537 
7538 	driver = parent->driver;
7539 	if (driver && driver->name)
7540 		return driver->name;
7541 	return empty;
7542 }
7543 
7544 static void __netdev_printk(const char *level, const struct net_device *dev,
7545 			    struct va_format *vaf)
7546 {
7547 	if (dev && dev->dev.parent) {
7548 		dev_printk_emit(level[1] - '0',
7549 				dev->dev.parent,
7550 				"%s %s %s%s: %pV",
7551 				dev_driver_string(dev->dev.parent),
7552 				dev_name(dev->dev.parent),
7553 				netdev_name(dev), netdev_reg_state(dev),
7554 				vaf);
7555 	} else if (dev) {
7556 		printk("%s%s%s: %pV",
7557 		       level, netdev_name(dev), netdev_reg_state(dev), vaf);
7558 	} else {
7559 		printk("%s(NULL net_device): %pV", level, vaf);
7560 	}
7561 }
7562 
7563 void netdev_printk(const char *level, const struct net_device *dev,
7564 		   const char *format, ...)
7565 {
7566 	struct va_format vaf;
7567 	va_list args;
7568 
7569 	va_start(args, format);
7570 
7571 	vaf.fmt = format;
7572 	vaf.va = &args;
7573 
7574 	__netdev_printk(level, dev, &vaf);
7575 
7576 	va_end(args);
7577 }
7578 EXPORT_SYMBOL(netdev_printk);
7579 
7580 #define define_netdev_printk_level(func, level)			\
7581 void func(const struct net_device *dev, const char *fmt, ...)	\
7582 {								\
7583 	struct va_format vaf;					\
7584 	va_list args;						\
7585 								\
7586 	va_start(args, fmt);					\
7587 								\
7588 	vaf.fmt = fmt;						\
7589 	vaf.va = &args;						\
7590 								\
7591 	__netdev_printk(level, dev, &vaf);			\
7592 								\
7593 	va_end(args);						\
7594 }								\
7595 EXPORT_SYMBOL(func);
7596 
7597 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
7598 define_netdev_printk_level(netdev_alert, KERN_ALERT);
7599 define_netdev_printk_level(netdev_crit, KERN_CRIT);
7600 define_netdev_printk_level(netdev_err, KERN_ERR);
7601 define_netdev_printk_level(netdev_warn, KERN_WARNING);
7602 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
7603 define_netdev_printk_level(netdev_info, KERN_INFO);
7604 
7605 static void __net_exit netdev_exit(struct net *net)
7606 {
7607 	kfree(net->dev_name_head);
7608 	kfree(net->dev_index_head);
7609 }
7610 
7611 static struct pernet_operations __net_initdata netdev_net_ops = {
7612 	.init = netdev_init,
7613 	.exit = netdev_exit,
7614 };
7615 
7616 static void __net_exit default_device_exit(struct net *net)
7617 {
7618 	struct net_device *dev, *aux;
7619 	/*
7620 	 * Push all migratable network devices back to the
7621 	 * initial network namespace
7622 	 */
7623 	rtnl_lock();
7624 	for_each_netdev_safe(net, dev, aux) {
7625 		int err;
7626 		char fb_name[IFNAMSIZ];
7627 
7628 		/* Ignore unmoveable devices (i.e. loopback) */
7629 		if (dev->features & NETIF_F_NETNS_LOCAL)
7630 			continue;
7631 
7632 		/* Leave virtual devices for the generic cleanup */
7633 		if (dev->rtnl_link_ops)
7634 			continue;
7635 
7636 		/* Push remaining network devices to init_net */
7637 		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
7638 		err = dev_change_net_namespace(dev, &init_net, fb_name);
7639 		if (err) {
7640 			pr_emerg("%s: failed to move %s to init_net: %d\n",
7641 				 __func__, dev->name, err);
7642 			BUG();
7643 		}
7644 	}
7645 	rtnl_unlock();
7646 }
7647 
7648 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
7649 {
7650 	/* Return with the rtnl_lock held when there are no network
7651 	 * devices unregistering in any network namespace in net_list.
7652 	 */
7653 	struct net *net;
7654 	bool unregistering;
7655 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
7656 
7657 	add_wait_queue(&netdev_unregistering_wq, &wait);
7658 	for (;;) {
7659 		unregistering = false;
7660 		rtnl_lock();
7661 		list_for_each_entry(net, net_list, exit_list) {
7662 			if (net->dev_unreg_count > 0) {
7663 				unregistering = true;
7664 				break;
7665 			}
7666 		}
7667 		if (!unregistering)
7668 			break;
7669 		__rtnl_unlock();
7670 
7671 		wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
7672 	}
7673 	remove_wait_queue(&netdev_unregistering_wq, &wait);
7674 }
7675 
7676 static void __net_exit default_device_exit_batch(struct list_head *net_list)
7677 {
7678 	/* At exit all network devices most be removed from a network
7679 	 * namespace.  Do this in the reverse order of registration.
7680 	 * Do this across as many network namespaces as possible to
7681 	 * improve batching efficiency.
7682 	 */
7683 	struct net_device *dev;
7684 	struct net *net;
7685 	LIST_HEAD(dev_kill_list);
7686 
7687 	/* To prevent network device cleanup code from dereferencing
7688 	 * loopback devices or network devices that have been freed
7689 	 * wait here for all pending unregistrations to complete,
7690 	 * before unregistring the loopback device and allowing the
7691 	 * network namespace be freed.
7692 	 *
7693 	 * The netdev todo list containing all network devices
7694 	 * unregistrations that happen in default_device_exit_batch
7695 	 * will run in the rtnl_unlock() at the end of
7696 	 * default_device_exit_batch.
7697 	 */
7698 	rtnl_lock_unregistering(net_list);
7699 	list_for_each_entry(net, net_list, exit_list) {
7700 		for_each_netdev_reverse(net, dev) {
7701 			if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
7702 				dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
7703 			else
7704 				unregister_netdevice_queue(dev, &dev_kill_list);
7705 		}
7706 	}
7707 	unregister_netdevice_many(&dev_kill_list);
7708 	rtnl_unlock();
7709 }
7710 
7711 static struct pernet_operations __net_initdata default_device_ops = {
7712 	.exit = default_device_exit,
7713 	.exit_batch = default_device_exit_batch,
7714 };
7715 
7716 /*
7717  *	Initialize the DEV module. At boot time this walks the device list and
7718  *	unhooks any devices that fail to initialise (normally hardware not
7719  *	present) and leaves us with a valid list of present and active devices.
7720  *
7721  */
7722 
7723 /*
7724  *       This is called single threaded during boot, so no need
7725  *       to take the rtnl semaphore.
7726  */
7727 static int __init net_dev_init(void)
7728 {
7729 	int i, rc = -ENOMEM;
7730 
7731 	BUG_ON(!dev_boot_phase);
7732 
7733 	if (dev_proc_init())
7734 		goto out;
7735 
7736 	if (netdev_kobject_init())
7737 		goto out;
7738 
7739 	INIT_LIST_HEAD(&ptype_all);
7740 	for (i = 0; i < PTYPE_HASH_SIZE; i++)
7741 		INIT_LIST_HEAD(&ptype_base[i]);
7742 
7743 	INIT_LIST_HEAD(&offload_base);
7744 
7745 	if (register_pernet_subsys(&netdev_net_ops))
7746 		goto out;
7747 
7748 	/*
7749 	 *	Initialise the packet receive queues.
7750 	 */
7751 
7752 	for_each_possible_cpu(i) {
7753 		struct softnet_data *sd = &per_cpu(softnet_data, i);
7754 
7755 		skb_queue_head_init(&sd->input_pkt_queue);
7756 		skb_queue_head_init(&sd->process_queue);
7757 		INIT_LIST_HEAD(&sd->poll_list);
7758 		sd->output_queue_tailp = &sd->output_queue;
7759 #ifdef CONFIG_RPS
7760 		sd->csd.func = rps_trigger_softirq;
7761 		sd->csd.info = sd;
7762 		sd->cpu = i;
7763 #endif
7764 
7765 		sd->backlog.poll = process_backlog;
7766 		sd->backlog.weight = weight_p;
7767 	}
7768 
7769 	dev_boot_phase = 0;
7770 
7771 	/* The loopback device is special if any other network devices
7772 	 * is present in a network namespace the loopback device must
7773 	 * be present. Since we now dynamically allocate and free the
7774 	 * loopback device ensure this invariant is maintained by
7775 	 * keeping the loopback device as the first device on the
7776 	 * list of network devices.  Ensuring the loopback devices
7777 	 * is the first device that appears and the last network device
7778 	 * that disappears.
7779 	 */
7780 	if (register_pernet_device(&loopback_net_ops))
7781 		goto out;
7782 
7783 	if (register_pernet_device(&default_device_ops))
7784 		goto out;
7785 
7786 	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
7787 	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
7788 
7789 	hotcpu_notifier(dev_cpu_callback, 0);
7790 	dst_subsys_init();
7791 	rc = 0;
7792 out:
7793 	return rc;
7794 }
7795 
7796 subsys_initcall(net_dev_init);
7797