xref: /linux/net/core/dev.c (revision 98366c20a275e957416e9516db5dcb7195b4e101)
1 /*
2  * 	NET3	Protocol independent device support routines.
3  *
4  *		This program is free software; you can redistribute it and/or
5  *		modify it under the terms of the GNU General Public License
6  *		as published by the Free Software Foundation; either version
7  *		2 of the License, or (at your option) any later version.
8  *
9  *	Derived from the non IP parts of dev.c 1.0.19
10  * 		Authors:	Ross Biro
11  *				Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *				Mark Evans, <evansmp@uhura.aston.ac.uk>
13  *
14  *	Additional Authors:
15  *		Florian la Roche <rzsfl@rz.uni-sb.de>
16  *		Alan Cox <gw4pts@gw4pts.ampr.org>
17  *		David Hinds <dahinds@users.sourceforge.net>
18  *		Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19  *		Adam Sulmicki <adam@cfar.umd.edu>
20  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
21  *
22  *	Changes:
23  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
24  *              			to 2 if register_netdev gets called
25  *              			before net_dev_init & also removed a
26  *              			few lines of code in the process.
27  *		Alan Cox	:	device private ioctl copies fields back.
28  *		Alan Cox	:	Transmit queue code does relevant
29  *					stunts to keep the queue safe.
30  *		Alan Cox	:	Fixed double lock.
31  *		Alan Cox	:	Fixed promisc NULL pointer trap
32  *		????????	:	Support the full private ioctl range
33  *		Alan Cox	:	Moved ioctl permission check into
34  *					drivers
35  *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
36  *		Alan Cox	:	100 backlog just doesn't cut it when
37  *					you start doing multicast video 8)
38  *		Alan Cox	:	Rewrote net_bh and list manager.
39  *		Alan Cox	: 	Fix ETH_P_ALL echoback lengths.
40  *		Alan Cox	:	Took out transmit every packet pass
41  *					Saved a few bytes in the ioctl handler
42  *		Alan Cox	:	Network driver sets packet type before
43  *					calling netif_rx. Saves a function
44  *					call a packet.
45  *		Alan Cox	:	Hashed net_bh()
46  *		Richard Kooijman:	Timestamp fixes.
47  *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
48  *		Alan Cox	:	Device lock protection.
49  *		Alan Cox	: 	Fixed nasty side effect of device close
50  *					changes.
51  *		Rudi Cilibrasi	:	Pass the right thing to
52  *					set_mac_address()
53  *		Dave Miller	:	32bit quantity for the device lock to
54  *					make it work out on a Sparc.
55  *		Bjorn Ekwall	:	Added KERNELD hack.
56  *		Alan Cox	:	Cleaned up the backlog initialise.
57  *		Craig Metz	:	SIOCGIFCONF fix if space for under
58  *					1 device.
59  *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
60  *					is no device open function.
61  *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
62  *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
63  *		Cyrus Durgin	:	Cleaned for KMOD
64  *		Adam Sulmicki   :	Bug Fix : Network Device Unload
65  *					A network device unload needs to purge
66  *					the backlog queue.
67  *	Paul Rusty Russell	:	SIOCSIFNAME
68  *              Pekka Riikonen  :	Netdev boot-time settings code
69  *              Andrew Morton   :       Make unregister_netdevice wait
70  *              			indefinitely on dev->refcnt
71  * 		J Hadi Salim	:	- Backlog queue sampling
72  *				        - netif_rx() feedback
73  */
74 
75 #include <asm/uaccess.h>
76 #include <asm/system.h>
77 #include <linux/bitops.h>
78 #include <linux/capability.h>
79 #include <linux/cpu.h>
80 #include <linux/types.h>
81 #include <linux/kernel.h>
82 #include <linux/sched.h>
83 #include <linux/mutex.h>
84 #include <linux/string.h>
85 #include <linux/mm.h>
86 #include <linux/socket.h>
87 #include <linux/sockios.h>
88 #include <linux/errno.h>
89 #include <linux/interrupt.h>
90 #include <linux/if_ether.h>
91 #include <linux/netdevice.h>
92 #include <linux/etherdevice.h>
93 #include <linux/notifier.h>
94 #include <linux/skbuff.h>
95 #include <net/net_namespace.h>
96 #include <net/sock.h>
97 #include <linux/rtnetlink.h>
98 #include <linux/proc_fs.h>
99 #include <linux/seq_file.h>
100 #include <linux/stat.h>
101 #include <linux/if_bridge.h>
102 #include <linux/if_macvlan.h>
103 #include <net/dst.h>
104 #include <net/pkt_sched.h>
105 #include <net/checksum.h>
106 #include <linux/highmem.h>
107 #include <linux/init.h>
108 #include <linux/kmod.h>
109 #include <linux/module.h>
110 #include <linux/kallsyms.h>
111 #include <linux/netpoll.h>
112 #include <linux/rcupdate.h>
113 #include <linux/delay.h>
114 #include <net/wext.h>
115 #include <net/iw_handler.h>
116 #include <asm/current.h>
117 #include <linux/audit.h>
118 #include <linux/dmaengine.h>
119 #include <linux/err.h>
120 #include <linux/ctype.h>
121 #include <linux/if_arp.h>
122 
123 #include "net-sysfs.h"
124 
125 /*
126  *	The list of packet types we will receive (as opposed to discard)
127  *	and the routines to invoke.
128  *
129  *	Why 16. Because with 16 the only overlap we get on a hash of the
130  *	low nibble of the protocol value is RARP/SNAP/X.25.
131  *
132  *      NOTE:  That is no longer true with the addition of VLAN tags.  Not
133  *             sure which should go first, but I bet it won't make much
134  *             difference if we are running VLANs.  The good news is that
135  *             this protocol won't be in the list unless compiled in, so
136  *             the average user (w/out VLANs) will not be adversely affected.
137  *             --BLG
138  *
139  *		0800	IP
140  *		8100    802.1Q VLAN
141  *		0001	802.3
142  *		0002	AX.25
143  *		0004	802.2
144  *		8035	RARP
145  *		0005	SNAP
146  *		0805	X.25
147  *		0806	ARP
148  *		8137	IPX
149  *		0009	Localtalk
150  *		86DD	IPv6
151  */
152 
153 static DEFINE_SPINLOCK(ptype_lock);
154 static struct list_head ptype_base[16] __read_mostly;	/* 16 way hashed list */
155 static struct list_head ptype_all __read_mostly;	/* Taps */
156 
157 #ifdef CONFIG_NET_DMA
158 struct net_dma {
159 	struct dma_client client;
160 	spinlock_t lock;
161 	cpumask_t channel_mask;
162 	struct dma_chan *channels[NR_CPUS];
163 };
164 
165 static enum dma_state_client
166 netdev_dma_event(struct dma_client *client, struct dma_chan *chan,
167 	enum dma_state state);
168 
169 static struct net_dma net_dma = {
170 	.client = {
171 		.event_callback = netdev_dma_event,
172 	},
173 };
174 #endif
175 
176 /*
177  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
178  * semaphore.
179  *
180  * Pure readers hold dev_base_lock for reading.
181  *
182  * Writers must hold the rtnl semaphore while they loop through the
183  * dev_base_head list, and hold dev_base_lock for writing when they do the
184  * actual updates.  This allows pure readers to access the list even
185  * while a writer is preparing to update it.
186  *
187  * To put it another way, dev_base_lock is held for writing only to
188  * protect against pure readers; the rtnl semaphore provides the
189  * protection against other writers.
190  *
191  * See, for example usages, register_netdevice() and
192  * unregister_netdevice(), which must be called with the rtnl
193  * semaphore held.
194  */
195 DEFINE_RWLOCK(dev_base_lock);
196 
197 EXPORT_SYMBOL(dev_base_lock);
198 
199 #define NETDEV_HASHBITS	8
200 #define NETDEV_HASHENTRIES (1 << NETDEV_HASHBITS)
201 
202 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
203 {
204 	unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
205 	return &net->dev_name_head[hash & ((1 << NETDEV_HASHBITS) - 1)];
206 }
207 
208 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
209 {
210 	return &net->dev_index_head[ifindex & ((1 << NETDEV_HASHBITS) - 1)];
211 }
212 
213 /* Device list insertion */
214 static int list_netdevice(struct net_device *dev)
215 {
216 	struct net *net = dev->nd_net;
217 
218 	ASSERT_RTNL();
219 
220 	write_lock_bh(&dev_base_lock);
221 	list_add_tail(&dev->dev_list, &net->dev_base_head);
222 	hlist_add_head(&dev->name_hlist, dev_name_hash(net, dev->name));
223 	hlist_add_head(&dev->index_hlist, dev_index_hash(net, dev->ifindex));
224 	write_unlock_bh(&dev_base_lock);
225 	return 0;
226 }
227 
228 /* Device list removal */
229 static void unlist_netdevice(struct net_device *dev)
230 {
231 	ASSERT_RTNL();
232 
233 	/* Unlink dev from the device chain */
234 	write_lock_bh(&dev_base_lock);
235 	list_del(&dev->dev_list);
236 	hlist_del(&dev->name_hlist);
237 	hlist_del(&dev->index_hlist);
238 	write_unlock_bh(&dev_base_lock);
239 }
240 
241 /*
242  *	Our notifier list
243  */
244 
245 static RAW_NOTIFIER_HEAD(netdev_chain);
246 
247 /*
248  *	Device drivers call our routines to queue packets here. We empty the
249  *	queue in the local softnet handler.
250  */
251 
252 DEFINE_PER_CPU(struct softnet_data, softnet_data);
253 
254 #ifdef CONFIG_DEBUG_LOCK_ALLOC
255 /*
256  * register_netdevice() inits dev->_xmit_lock and sets lockdep class
257  * according to dev->type
258  */
259 static const unsigned short netdev_lock_type[] =
260 	{ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
261 	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
262 	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
263 	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
264 	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
265 	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
266 	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
267 	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
268 	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
269 	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
270 	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
271 	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
272 	 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211,
273 	 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_VOID,
274 	 ARPHRD_NONE};
275 
276 static const char *netdev_lock_name[] =
277 	{"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
278 	 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
279 	 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
280 	 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
281 	 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
282 	 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
283 	 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
284 	 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
285 	 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
286 	 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
287 	 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
288 	 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
289 	 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211",
290 	 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_VOID",
291 	 "_xmit_NONE"};
292 
293 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
294 
295 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
296 {
297 	int i;
298 
299 	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
300 		if (netdev_lock_type[i] == dev_type)
301 			return i;
302 	/* the last key is used by default */
303 	return ARRAY_SIZE(netdev_lock_type) - 1;
304 }
305 
306 static inline void netdev_set_lockdep_class(spinlock_t *lock,
307 					    unsigned short dev_type)
308 {
309 	int i;
310 
311 	i = netdev_lock_pos(dev_type);
312 	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
313 				   netdev_lock_name[i]);
314 }
315 #else
316 static inline void netdev_set_lockdep_class(spinlock_t *lock,
317 					    unsigned short dev_type)
318 {
319 }
320 #endif
321 
322 /*******************************************************************************
323 
324 		Protocol management and registration routines
325 
326 *******************************************************************************/
327 
328 /*
329  *	Add a protocol ID to the list. Now that the input handler is
330  *	smarter we can dispense with all the messy stuff that used to be
331  *	here.
332  *
333  *	BEWARE!!! Protocol handlers, mangling input packets,
334  *	MUST BE last in hash buckets and checking protocol handlers
335  *	MUST start from promiscuous ptype_all chain in net_bh.
336  *	It is true now, do not change it.
337  *	Explanation follows: if protocol handler, mangling packet, will
338  *	be the first on list, it is not able to sense, that packet
339  *	is cloned and should be copied-on-write, so that it will
340  *	change it and subsequent readers will get broken packet.
341  *							--ANK (980803)
342  */
343 
344 /**
345  *	dev_add_pack - add packet handler
346  *	@pt: packet type declaration
347  *
348  *	Add a protocol handler to the networking stack. The passed &packet_type
349  *	is linked into kernel lists and may not be freed until it has been
350  *	removed from the kernel lists.
351  *
352  *	This call does not sleep therefore it can not
353  *	guarantee all CPU's that are in middle of receiving packets
354  *	will see the new packet type (until the next received packet).
355  */
356 
357 void dev_add_pack(struct packet_type *pt)
358 {
359 	int hash;
360 
361 	spin_lock_bh(&ptype_lock);
362 	if (pt->type == htons(ETH_P_ALL))
363 		list_add_rcu(&pt->list, &ptype_all);
364 	else {
365 		hash = ntohs(pt->type) & 15;
366 		list_add_rcu(&pt->list, &ptype_base[hash]);
367 	}
368 	spin_unlock_bh(&ptype_lock);
369 }
370 
371 /**
372  *	__dev_remove_pack	 - remove packet handler
373  *	@pt: packet type declaration
374  *
375  *	Remove a protocol handler that was previously added to the kernel
376  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
377  *	from the kernel lists and can be freed or reused once this function
378  *	returns.
379  *
380  *      The packet type might still be in use by receivers
381  *	and must not be freed until after all the CPU's have gone
382  *	through a quiescent state.
383  */
384 void __dev_remove_pack(struct packet_type *pt)
385 {
386 	struct list_head *head;
387 	struct packet_type *pt1;
388 
389 	spin_lock_bh(&ptype_lock);
390 
391 	if (pt->type == htons(ETH_P_ALL))
392 		head = &ptype_all;
393 	else
394 		head = &ptype_base[ntohs(pt->type) & 15];
395 
396 	list_for_each_entry(pt1, head, list) {
397 		if (pt == pt1) {
398 			list_del_rcu(&pt->list);
399 			goto out;
400 		}
401 	}
402 
403 	printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt);
404 out:
405 	spin_unlock_bh(&ptype_lock);
406 }
407 /**
408  *	dev_remove_pack	 - remove packet handler
409  *	@pt: packet type declaration
410  *
411  *	Remove a protocol handler that was previously added to the kernel
412  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
413  *	from the kernel lists and can be freed or reused once this function
414  *	returns.
415  *
416  *	This call sleeps to guarantee that no CPU is looking at the packet
417  *	type after return.
418  */
419 void dev_remove_pack(struct packet_type *pt)
420 {
421 	__dev_remove_pack(pt);
422 
423 	synchronize_net();
424 }
425 
426 /******************************************************************************
427 
428 		      Device Boot-time Settings Routines
429 
430 *******************************************************************************/
431 
432 /* Boot time configuration table */
433 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
434 
435 /**
436  *	netdev_boot_setup_add	- add new setup entry
437  *	@name: name of the device
438  *	@map: configured settings for the device
439  *
440  *	Adds new setup entry to the dev_boot_setup list.  The function
441  *	returns 0 on error and 1 on success.  This is a generic routine to
442  *	all netdevices.
443  */
444 static int netdev_boot_setup_add(char *name, struct ifmap *map)
445 {
446 	struct netdev_boot_setup *s;
447 	int i;
448 
449 	s = dev_boot_setup;
450 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
451 		if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
452 			memset(s[i].name, 0, sizeof(s[i].name));
453 			strcpy(s[i].name, name);
454 			memcpy(&s[i].map, map, sizeof(s[i].map));
455 			break;
456 		}
457 	}
458 
459 	return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
460 }
461 
462 /**
463  *	netdev_boot_setup_check	- check boot time settings
464  *	@dev: the netdevice
465  *
466  * 	Check boot time settings for the device.
467  *	The found settings are set for the device to be used
468  *	later in the device probing.
469  *	Returns 0 if no settings found, 1 if they are.
470  */
471 int netdev_boot_setup_check(struct net_device *dev)
472 {
473 	struct netdev_boot_setup *s = dev_boot_setup;
474 	int i;
475 
476 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
477 		if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
478 		    !strncmp(dev->name, s[i].name, strlen(s[i].name))) {
479 			dev->irq 	= s[i].map.irq;
480 			dev->base_addr 	= s[i].map.base_addr;
481 			dev->mem_start 	= s[i].map.mem_start;
482 			dev->mem_end 	= s[i].map.mem_end;
483 			return 1;
484 		}
485 	}
486 	return 0;
487 }
488 
489 
490 /**
491  *	netdev_boot_base	- get address from boot time settings
492  *	@prefix: prefix for network device
493  *	@unit: id for network device
494  *
495  * 	Check boot time settings for the base address of device.
496  *	The found settings are set for the device to be used
497  *	later in the device probing.
498  *	Returns 0 if no settings found.
499  */
500 unsigned long netdev_boot_base(const char *prefix, int unit)
501 {
502 	const struct netdev_boot_setup *s = dev_boot_setup;
503 	char name[IFNAMSIZ];
504 	int i;
505 
506 	sprintf(name, "%s%d", prefix, unit);
507 
508 	/*
509 	 * If device already registered then return base of 1
510 	 * to indicate not to probe for this interface
511 	 */
512 	if (__dev_get_by_name(&init_net, name))
513 		return 1;
514 
515 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
516 		if (!strcmp(name, s[i].name))
517 			return s[i].map.base_addr;
518 	return 0;
519 }
520 
521 /*
522  * Saves at boot time configured settings for any netdevice.
523  */
524 int __init netdev_boot_setup(char *str)
525 {
526 	int ints[5];
527 	struct ifmap map;
528 
529 	str = get_options(str, ARRAY_SIZE(ints), ints);
530 	if (!str || !*str)
531 		return 0;
532 
533 	/* Save settings */
534 	memset(&map, 0, sizeof(map));
535 	if (ints[0] > 0)
536 		map.irq = ints[1];
537 	if (ints[0] > 1)
538 		map.base_addr = ints[2];
539 	if (ints[0] > 2)
540 		map.mem_start = ints[3];
541 	if (ints[0] > 3)
542 		map.mem_end = ints[4];
543 
544 	/* Add new entry to the list */
545 	return netdev_boot_setup_add(str, &map);
546 }
547 
548 __setup("netdev=", netdev_boot_setup);
549 
550 /*******************************************************************************
551 
552 			    Device Interface Subroutines
553 
554 *******************************************************************************/
555 
556 /**
557  *	__dev_get_by_name	- find a device by its name
558  *	@net: the applicable net namespace
559  *	@name: name to find
560  *
561  *	Find an interface by name. Must be called under RTNL semaphore
562  *	or @dev_base_lock. If the name is found a pointer to the device
563  *	is returned. If the name is not found then %NULL is returned. The
564  *	reference counters are not incremented so the caller must be
565  *	careful with locks.
566  */
567 
568 struct net_device *__dev_get_by_name(struct net *net, const char *name)
569 {
570 	struct hlist_node *p;
571 
572 	hlist_for_each(p, dev_name_hash(net, name)) {
573 		struct net_device *dev
574 			= hlist_entry(p, struct net_device, name_hlist);
575 		if (!strncmp(dev->name, name, IFNAMSIZ))
576 			return dev;
577 	}
578 	return NULL;
579 }
580 
581 /**
582  *	dev_get_by_name		- find a device by its name
583  *	@net: the applicable net namespace
584  *	@name: name to find
585  *
586  *	Find an interface by name. This can be called from any
587  *	context and does its own locking. The returned handle has
588  *	the usage count incremented and the caller must use dev_put() to
589  *	release it when it is no longer needed. %NULL is returned if no
590  *	matching device is found.
591  */
592 
593 struct net_device *dev_get_by_name(struct net *net, const char *name)
594 {
595 	struct net_device *dev;
596 
597 	read_lock(&dev_base_lock);
598 	dev = __dev_get_by_name(net, name);
599 	if (dev)
600 		dev_hold(dev);
601 	read_unlock(&dev_base_lock);
602 	return dev;
603 }
604 
605 /**
606  *	__dev_get_by_index - find a device by its ifindex
607  *	@net: the applicable net namespace
608  *	@ifindex: index of device
609  *
610  *	Search for an interface by index. Returns %NULL if the device
611  *	is not found or a pointer to the device. The device has not
612  *	had its reference counter increased so the caller must be careful
613  *	about locking. The caller must hold either the RTNL semaphore
614  *	or @dev_base_lock.
615  */
616 
617 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
618 {
619 	struct hlist_node *p;
620 
621 	hlist_for_each(p, dev_index_hash(net, ifindex)) {
622 		struct net_device *dev
623 			= hlist_entry(p, struct net_device, index_hlist);
624 		if (dev->ifindex == ifindex)
625 			return dev;
626 	}
627 	return NULL;
628 }
629 
630 
631 /**
632  *	dev_get_by_index - find a device by its ifindex
633  *	@net: the applicable net namespace
634  *	@ifindex: index of device
635  *
636  *	Search for an interface by index. Returns NULL if the device
637  *	is not found or a pointer to the device. The device returned has
638  *	had a reference added and the pointer is safe until the user calls
639  *	dev_put to indicate they have finished with it.
640  */
641 
642 struct net_device *dev_get_by_index(struct net *net, int ifindex)
643 {
644 	struct net_device *dev;
645 
646 	read_lock(&dev_base_lock);
647 	dev = __dev_get_by_index(net, ifindex);
648 	if (dev)
649 		dev_hold(dev);
650 	read_unlock(&dev_base_lock);
651 	return dev;
652 }
653 
654 /**
655  *	dev_getbyhwaddr - find a device by its hardware address
656  *	@net: the applicable net namespace
657  *	@type: media type of device
658  *	@ha: hardware address
659  *
660  *	Search for an interface by MAC address. Returns NULL if the device
661  *	is not found or a pointer to the device. The caller must hold the
662  *	rtnl semaphore. The returned device has not had its ref count increased
663  *	and the caller must therefore be careful about locking
664  *
665  *	BUGS:
666  *	If the API was consistent this would be __dev_get_by_hwaddr
667  */
668 
669 struct net_device *dev_getbyhwaddr(struct net *net, unsigned short type, char *ha)
670 {
671 	struct net_device *dev;
672 
673 	ASSERT_RTNL();
674 
675 	for_each_netdev(&init_net, dev)
676 		if (dev->type == type &&
677 		    !memcmp(dev->dev_addr, ha, dev->addr_len))
678 			return dev;
679 
680 	return NULL;
681 }
682 
683 EXPORT_SYMBOL(dev_getbyhwaddr);
684 
685 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
686 {
687 	struct net_device *dev;
688 
689 	ASSERT_RTNL();
690 	for_each_netdev(net, dev)
691 		if (dev->type == type)
692 			return dev;
693 
694 	return NULL;
695 }
696 
697 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
698 
699 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
700 {
701 	struct net_device *dev;
702 
703 	rtnl_lock();
704 	dev = __dev_getfirstbyhwtype(net, type);
705 	if (dev)
706 		dev_hold(dev);
707 	rtnl_unlock();
708 	return dev;
709 }
710 
711 EXPORT_SYMBOL(dev_getfirstbyhwtype);
712 
713 /**
714  *	dev_get_by_flags - find any device with given flags
715  *	@net: the applicable net namespace
716  *	@if_flags: IFF_* values
717  *	@mask: bitmask of bits in if_flags to check
718  *
719  *	Search for any interface with the given flags. Returns NULL if a device
720  *	is not found or a pointer to the device. The device returned has
721  *	had a reference added and the pointer is safe until the user calls
722  *	dev_put to indicate they have finished with it.
723  */
724 
725 struct net_device * dev_get_by_flags(struct net *net, unsigned short if_flags, unsigned short mask)
726 {
727 	struct net_device *dev, *ret;
728 
729 	ret = NULL;
730 	read_lock(&dev_base_lock);
731 	for_each_netdev(net, dev) {
732 		if (((dev->flags ^ if_flags) & mask) == 0) {
733 			dev_hold(dev);
734 			ret = dev;
735 			break;
736 		}
737 	}
738 	read_unlock(&dev_base_lock);
739 	return ret;
740 }
741 
742 /**
743  *	dev_valid_name - check if name is okay for network device
744  *	@name: name string
745  *
746  *	Network device names need to be valid file names to
747  *	to allow sysfs to work.  We also disallow any kind of
748  *	whitespace.
749  */
750 int dev_valid_name(const char *name)
751 {
752 	if (*name == '\0')
753 		return 0;
754 	if (strlen(name) >= IFNAMSIZ)
755 		return 0;
756 	if (!strcmp(name, ".") || !strcmp(name, ".."))
757 		return 0;
758 
759 	while (*name) {
760 		if (*name == '/' || isspace(*name))
761 			return 0;
762 		name++;
763 	}
764 	return 1;
765 }
766 
767 /**
768  *	__dev_alloc_name - allocate a name for a device
769  *	@net: network namespace to allocate the device name in
770  *	@name: name format string
771  *	@buf:  scratch buffer and result name string
772  *
773  *	Passed a format string - eg "lt%d" it will try and find a suitable
774  *	id. It scans list of devices to build up a free map, then chooses
775  *	the first empty slot. The caller must hold the dev_base or rtnl lock
776  *	while allocating the name and adding the device in order to avoid
777  *	duplicates.
778  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
779  *	Returns the number of the unit assigned or a negative errno code.
780  */
781 
782 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
783 {
784 	int i = 0;
785 	const char *p;
786 	const int max_netdevices = 8*PAGE_SIZE;
787 	unsigned long *inuse;
788 	struct net_device *d;
789 
790 	p = strnchr(name, IFNAMSIZ-1, '%');
791 	if (p) {
792 		/*
793 		 * Verify the string as this thing may have come from
794 		 * the user.  There must be either one "%d" and no other "%"
795 		 * characters.
796 		 */
797 		if (p[1] != 'd' || strchr(p + 2, '%'))
798 			return -EINVAL;
799 
800 		/* Use one page as a bit array of possible slots */
801 		inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
802 		if (!inuse)
803 			return -ENOMEM;
804 
805 		for_each_netdev(net, d) {
806 			if (!sscanf(d->name, name, &i))
807 				continue;
808 			if (i < 0 || i >= max_netdevices)
809 				continue;
810 
811 			/*  avoid cases where sscanf is not exact inverse of printf */
812 			snprintf(buf, IFNAMSIZ, name, i);
813 			if (!strncmp(buf, d->name, IFNAMSIZ))
814 				set_bit(i, inuse);
815 		}
816 
817 		i = find_first_zero_bit(inuse, max_netdevices);
818 		free_page((unsigned long) inuse);
819 	}
820 
821 	snprintf(buf, IFNAMSIZ, name, i);
822 	if (!__dev_get_by_name(net, buf))
823 		return i;
824 
825 	/* It is possible to run out of possible slots
826 	 * when the name is long and there isn't enough space left
827 	 * for the digits, or if all bits are used.
828 	 */
829 	return -ENFILE;
830 }
831 
832 /**
833  *	dev_alloc_name - allocate a name for a device
834  *	@dev: device
835  *	@name: name format string
836  *
837  *	Passed a format string - eg "lt%d" it will try and find a suitable
838  *	id. It scans list of devices to build up a free map, then chooses
839  *	the first empty slot. The caller must hold the dev_base or rtnl lock
840  *	while allocating the name and adding the device in order to avoid
841  *	duplicates.
842  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
843  *	Returns the number of the unit assigned or a negative errno code.
844  */
845 
846 int dev_alloc_name(struct net_device *dev, const char *name)
847 {
848 	char buf[IFNAMSIZ];
849 	struct net *net;
850 	int ret;
851 
852 	BUG_ON(!dev->nd_net);
853 	net = dev->nd_net;
854 	ret = __dev_alloc_name(net, name, buf);
855 	if (ret >= 0)
856 		strlcpy(dev->name, buf, IFNAMSIZ);
857 	return ret;
858 }
859 
860 
861 /**
862  *	dev_change_name - change name of a device
863  *	@dev: device
864  *	@newname: name (or format string) must be at least IFNAMSIZ
865  *
866  *	Change name of a device, can pass format strings "eth%d".
867  *	for wildcarding.
868  */
869 int dev_change_name(struct net_device *dev, char *newname)
870 {
871 	char oldname[IFNAMSIZ];
872 	int err = 0;
873 	int ret;
874 	struct net *net;
875 
876 	ASSERT_RTNL();
877 	BUG_ON(!dev->nd_net);
878 
879 	net = dev->nd_net;
880 	if (dev->flags & IFF_UP)
881 		return -EBUSY;
882 
883 	if (!dev_valid_name(newname))
884 		return -EINVAL;
885 
886 	if (strncmp(newname, dev->name, IFNAMSIZ) == 0)
887 		return 0;
888 
889 	memcpy(oldname, dev->name, IFNAMSIZ);
890 
891 	if (strchr(newname, '%')) {
892 		err = dev_alloc_name(dev, newname);
893 		if (err < 0)
894 			return err;
895 		strcpy(newname, dev->name);
896 	}
897 	else if (__dev_get_by_name(net, newname))
898 		return -EEXIST;
899 	else
900 		strlcpy(dev->name, newname, IFNAMSIZ);
901 
902 rollback:
903 	device_rename(&dev->dev, dev->name);
904 
905 	write_lock_bh(&dev_base_lock);
906 	hlist_del(&dev->name_hlist);
907 	hlist_add_head(&dev->name_hlist, dev_name_hash(net, dev->name));
908 	write_unlock_bh(&dev_base_lock);
909 
910 	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
911 	ret = notifier_to_errno(ret);
912 
913 	if (ret) {
914 		if (err) {
915 			printk(KERN_ERR
916 			       "%s: name change rollback failed: %d.\n",
917 			       dev->name, ret);
918 		} else {
919 			err = ret;
920 			memcpy(dev->name, oldname, IFNAMSIZ);
921 			goto rollback;
922 		}
923 	}
924 
925 	return err;
926 }
927 
928 /**
929  *	netdev_features_change - device changes features
930  *	@dev: device to cause notification
931  *
932  *	Called to indicate a device has changed features.
933  */
934 void netdev_features_change(struct net_device *dev)
935 {
936 	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
937 }
938 EXPORT_SYMBOL(netdev_features_change);
939 
940 /**
941  *	netdev_state_change - device changes state
942  *	@dev: device to cause notification
943  *
944  *	Called to indicate a device has changed state. This function calls
945  *	the notifier chains for netdev_chain and sends a NEWLINK message
946  *	to the routing socket.
947  */
948 void netdev_state_change(struct net_device *dev)
949 {
950 	if (dev->flags & IFF_UP) {
951 		call_netdevice_notifiers(NETDEV_CHANGE, dev);
952 		rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
953 	}
954 }
955 
956 /**
957  *	dev_load 	- load a network module
958  *	@net: the applicable net namespace
959  *	@name: name of interface
960  *
961  *	If a network interface is not present and the process has suitable
962  *	privileges this function loads the module. If module loading is not
963  *	available in this kernel then it becomes a nop.
964  */
965 
966 void dev_load(struct net *net, const char *name)
967 {
968 	struct net_device *dev;
969 
970 	read_lock(&dev_base_lock);
971 	dev = __dev_get_by_name(net, name);
972 	read_unlock(&dev_base_lock);
973 
974 	if (!dev && capable(CAP_SYS_MODULE))
975 		request_module("%s", name);
976 }
977 
978 /**
979  *	dev_open	- prepare an interface for use.
980  *	@dev:	device to open
981  *
982  *	Takes a device from down to up state. The device's private open
983  *	function is invoked and then the multicast lists are loaded. Finally
984  *	the device is moved into the up state and a %NETDEV_UP message is
985  *	sent to the netdev notifier chain.
986  *
987  *	Calling this function on an active interface is a nop. On a failure
988  *	a negative errno code is returned.
989  */
990 int dev_open(struct net_device *dev)
991 {
992 	int ret = 0;
993 
994 	/*
995 	 *	Is it already up?
996 	 */
997 
998 	if (dev->flags & IFF_UP)
999 		return 0;
1000 
1001 	/*
1002 	 *	Is it even present?
1003 	 */
1004 	if (!netif_device_present(dev))
1005 		return -ENODEV;
1006 
1007 	/*
1008 	 *	Call device private open method
1009 	 */
1010 	set_bit(__LINK_STATE_START, &dev->state);
1011 
1012 	if (dev->validate_addr)
1013 		ret = dev->validate_addr(dev);
1014 
1015 	if (!ret && dev->open)
1016 		ret = dev->open(dev);
1017 
1018 	/*
1019 	 *	If it went open OK then:
1020 	 */
1021 
1022 	if (ret)
1023 		clear_bit(__LINK_STATE_START, &dev->state);
1024 	else {
1025 		/*
1026 		 *	Set the flags.
1027 		 */
1028 		dev->flags |= IFF_UP;
1029 
1030 		/*
1031 		 *	Initialize multicasting status
1032 		 */
1033 		dev_set_rx_mode(dev);
1034 
1035 		/*
1036 		 *	Wakeup transmit queue engine
1037 		 */
1038 		dev_activate(dev);
1039 
1040 		/*
1041 		 *	... and announce new interface.
1042 		 */
1043 		call_netdevice_notifiers(NETDEV_UP, dev);
1044 	}
1045 
1046 	return ret;
1047 }
1048 
1049 /**
1050  *	dev_close - shutdown an interface.
1051  *	@dev: device to shutdown
1052  *
1053  *	This function moves an active device into down state. A
1054  *	%NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1055  *	is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1056  *	chain.
1057  */
1058 int dev_close(struct net_device *dev)
1059 {
1060 	might_sleep();
1061 
1062 	if (!(dev->flags & IFF_UP))
1063 		return 0;
1064 
1065 	/*
1066 	 *	Tell people we are going down, so that they can
1067 	 *	prepare to death, when device is still operating.
1068 	 */
1069 	call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1070 
1071 	dev_deactivate(dev);
1072 
1073 	clear_bit(__LINK_STATE_START, &dev->state);
1074 
1075 	/* Synchronize to scheduled poll. We cannot touch poll list,
1076 	 * it can be even on different cpu. So just clear netif_running().
1077 	 *
1078 	 * dev->stop() will invoke napi_disable() on all of it's
1079 	 * napi_struct instances on this device.
1080 	 */
1081 	smp_mb__after_clear_bit(); /* Commit netif_running(). */
1082 
1083 	/*
1084 	 *	Call the device specific close. This cannot fail.
1085 	 *	Only if device is UP
1086 	 *
1087 	 *	We allow it to be called even after a DETACH hot-plug
1088 	 *	event.
1089 	 */
1090 	if (dev->stop)
1091 		dev->stop(dev);
1092 
1093 	/*
1094 	 *	Device is now down.
1095 	 */
1096 
1097 	dev->flags &= ~IFF_UP;
1098 
1099 	/*
1100 	 * Tell people we are down
1101 	 */
1102 	call_netdevice_notifiers(NETDEV_DOWN, dev);
1103 
1104 	return 0;
1105 }
1106 
1107 
1108 static int dev_boot_phase = 1;
1109 
1110 /*
1111  *	Device change register/unregister. These are not inline or static
1112  *	as we export them to the world.
1113  */
1114 
1115 /**
1116  *	register_netdevice_notifier - register a network notifier block
1117  *	@nb: notifier
1118  *
1119  *	Register a notifier to be called when network device events occur.
1120  *	The notifier passed is linked into the kernel structures and must
1121  *	not be reused until it has been unregistered. A negative errno code
1122  *	is returned on a failure.
1123  *
1124  * 	When registered all registration and up events are replayed
1125  *	to the new notifier to allow device to have a race free
1126  *	view of the network device list.
1127  */
1128 
1129 int register_netdevice_notifier(struct notifier_block *nb)
1130 {
1131 	struct net_device *dev;
1132 	struct net_device *last;
1133 	struct net *net;
1134 	int err;
1135 
1136 	rtnl_lock();
1137 	err = raw_notifier_chain_register(&netdev_chain, nb);
1138 	if (err)
1139 		goto unlock;
1140 	if (dev_boot_phase)
1141 		goto unlock;
1142 	for_each_net(net) {
1143 		for_each_netdev(net, dev) {
1144 			err = nb->notifier_call(nb, NETDEV_REGISTER, dev);
1145 			err = notifier_to_errno(err);
1146 			if (err)
1147 				goto rollback;
1148 
1149 			if (!(dev->flags & IFF_UP))
1150 				continue;
1151 
1152 			nb->notifier_call(nb, NETDEV_UP, dev);
1153 		}
1154 	}
1155 
1156 unlock:
1157 	rtnl_unlock();
1158 	return err;
1159 
1160 rollback:
1161 	last = dev;
1162 	for_each_net(net) {
1163 		for_each_netdev(net, dev) {
1164 			if (dev == last)
1165 				break;
1166 
1167 			if (dev->flags & IFF_UP) {
1168 				nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1169 				nb->notifier_call(nb, NETDEV_DOWN, dev);
1170 			}
1171 			nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1172 		}
1173 	}
1174 	goto unlock;
1175 }
1176 
1177 /**
1178  *	unregister_netdevice_notifier - unregister a network notifier block
1179  *	@nb: notifier
1180  *
1181  *	Unregister a notifier previously registered by
1182  *	register_netdevice_notifier(). The notifier is unlinked into the
1183  *	kernel structures and may then be reused. A negative errno code
1184  *	is returned on a failure.
1185  */
1186 
1187 int unregister_netdevice_notifier(struct notifier_block *nb)
1188 {
1189 	int err;
1190 
1191 	rtnl_lock();
1192 	err = raw_notifier_chain_unregister(&netdev_chain, nb);
1193 	rtnl_unlock();
1194 	return err;
1195 }
1196 
1197 /**
1198  *	call_netdevice_notifiers - call all network notifier blocks
1199  *      @val: value passed unmodified to notifier function
1200  *      @dev: net_device pointer passed unmodified to notifier function
1201  *
1202  *	Call all network notifier blocks.  Parameters and return value
1203  *	are as for raw_notifier_call_chain().
1204  */
1205 
1206 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1207 {
1208 	return raw_notifier_call_chain(&netdev_chain, val, dev);
1209 }
1210 
1211 /* When > 0 there are consumers of rx skb time stamps */
1212 static atomic_t netstamp_needed = ATOMIC_INIT(0);
1213 
1214 void net_enable_timestamp(void)
1215 {
1216 	atomic_inc(&netstamp_needed);
1217 }
1218 
1219 void net_disable_timestamp(void)
1220 {
1221 	atomic_dec(&netstamp_needed);
1222 }
1223 
1224 static inline void net_timestamp(struct sk_buff *skb)
1225 {
1226 	if (atomic_read(&netstamp_needed))
1227 		__net_timestamp(skb);
1228 	else
1229 		skb->tstamp.tv64 = 0;
1230 }
1231 
1232 /*
1233  *	Support routine. Sends outgoing frames to any network
1234  *	taps currently in use.
1235  */
1236 
1237 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1238 {
1239 	struct packet_type *ptype;
1240 
1241 	net_timestamp(skb);
1242 
1243 	rcu_read_lock();
1244 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
1245 		/* Never send packets back to the socket
1246 		 * they originated from - MvS (miquels@drinkel.ow.org)
1247 		 */
1248 		if ((ptype->dev == dev || !ptype->dev) &&
1249 		    (ptype->af_packet_priv == NULL ||
1250 		     (struct sock *)ptype->af_packet_priv != skb->sk)) {
1251 			struct sk_buff *skb2= skb_clone(skb, GFP_ATOMIC);
1252 			if (!skb2)
1253 				break;
1254 
1255 			/* skb->nh should be correctly
1256 			   set by sender, so that the second statement is
1257 			   just protection against buggy protocols.
1258 			 */
1259 			skb_reset_mac_header(skb2);
1260 
1261 			if (skb_network_header(skb2) < skb2->data ||
1262 			    skb2->network_header > skb2->tail) {
1263 				if (net_ratelimit())
1264 					printk(KERN_CRIT "protocol %04x is "
1265 					       "buggy, dev %s\n",
1266 					       skb2->protocol, dev->name);
1267 				skb_reset_network_header(skb2);
1268 			}
1269 
1270 			skb2->transport_header = skb2->network_header;
1271 			skb2->pkt_type = PACKET_OUTGOING;
1272 			ptype->func(skb2, skb->dev, ptype, skb->dev);
1273 		}
1274 	}
1275 	rcu_read_unlock();
1276 }
1277 
1278 
1279 void __netif_schedule(struct net_device *dev)
1280 {
1281 	if (!test_and_set_bit(__LINK_STATE_SCHED, &dev->state)) {
1282 		unsigned long flags;
1283 		struct softnet_data *sd;
1284 
1285 		local_irq_save(flags);
1286 		sd = &__get_cpu_var(softnet_data);
1287 		dev->next_sched = sd->output_queue;
1288 		sd->output_queue = dev;
1289 		raise_softirq_irqoff(NET_TX_SOFTIRQ);
1290 		local_irq_restore(flags);
1291 	}
1292 }
1293 EXPORT_SYMBOL(__netif_schedule);
1294 
1295 void dev_kfree_skb_irq(struct sk_buff *skb)
1296 {
1297 	if (atomic_dec_and_test(&skb->users)) {
1298 		struct softnet_data *sd;
1299 		unsigned long flags;
1300 
1301 		local_irq_save(flags);
1302 		sd = &__get_cpu_var(softnet_data);
1303 		skb->next = sd->completion_queue;
1304 		sd->completion_queue = skb;
1305 		raise_softirq_irqoff(NET_TX_SOFTIRQ);
1306 		local_irq_restore(flags);
1307 	}
1308 }
1309 EXPORT_SYMBOL(dev_kfree_skb_irq);
1310 
1311 void dev_kfree_skb_any(struct sk_buff *skb)
1312 {
1313 	if (in_irq() || irqs_disabled())
1314 		dev_kfree_skb_irq(skb);
1315 	else
1316 		dev_kfree_skb(skb);
1317 }
1318 EXPORT_SYMBOL(dev_kfree_skb_any);
1319 
1320 
1321 /**
1322  * netif_device_detach - mark device as removed
1323  * @dev: network device
1324  *
1325  * Mark device as removed from system and therefore no longer available.
1326  */
1327 void netif_device_detach(struct net_device *dev)
1328 {
1329 	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
1330 	    netif_running(dev)) {
1331 		netif_stop_queue(dev);
1332 	}
1333 }
1334 EXPORT_SYMBOL(netif_device_detach);
1335 
1336 /**
1337  * netif_device_attach - mark device as attached
1338  * @dev: network device
1339  *
1340  * Mark device as attached from system and restart if needed.
1341  */
1342 void netif_device_attach(struct net_device *dev)
1343 {
1344 	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
1345 	    netif_running(dev)) {
1346 		netif_wake_queue(dev);
1347 		__netdev_watchdog_up(dev);
1348 	}
1349 }
1350 EXPORT_SYMBOL(netif_device_attach);
1351 
1352 
1353 /*
1354  * Invalidate hardware checksum when packet is to be mangled, and
1355  * complete checksum manually on outgoing path.
1356  */
1357 int skb_checksum_help(struct sk_buff *skb)
1358 {
1359 	__wsum csum;
1360 	int ret = 0, offset;
1361 
1362 	if (skb->ip_summed == CHECKSUM_COMPLETE)
1363 		goto out_set_summed;
1364 
1365 	if (unlikely(skb_shinfo(skb)->gso_size)) {
1366 		/* Let GSO fix up the checksum. */
1367 		goto out_set_summed;
1368 	}
1369 
1370 	offset = skb->csum_start - skb_headroom(skb);
1371 	BUG_ON(offset >= skb_headlen(skb));
1372 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
1373 
1374 	offset += skb->csum_offset;
1375 	BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
1376 
1377 	if (skb_cloned(skb) &&
1378 	    !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1379 		ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1380 		if (ret)
1381 			goto out;
1382 	}
1383 
1384 	*(__sum16 *)(skb->data + offset) = csum_fold(csum);
1385 out_set_summed:
1386 	skb->ip_summed = CHECKSUM_NONE;
1387 out:
1388 	return ret;
1389 }
1390 
1391 /**
1392  *	skb_gso_segment - Perform segmentation on skb.
1393  *	@skb: buffer to segment
1394  *	@features: features for the output path (see dev->features)
1395  *
1396  *	This function segments the given skb and returns a list of segments.
1397  *
1398  *	It may return NULL if the skb requires no segmentation.  This is
1399  *	only possible when GSO is used for verifying header integrity.
1400  */
1401 struct sk_buff *skb_gso_segment(struct sk_buff *skb, int features)
1402 {
1403 	struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
1404 	struct packet_type *ptype;
1405 	__be16 type = skb->protocol;
1406 	int err;
1407 
1408 	BUG_ON(skb_shinfo(skb)->frag_list);
1409 
1410 	skb_reset_mac_header(skb);
1411 	skb->mac_len = skb->network_header - skb->mac_header;
1412 	__skb_pull(skb, skb->mac_len);
1413 
1414 	if (WARN_ON(skb->ip_summed != CHECKSUM_PARTIAL)) {
1415 		if (skb_header_cloned(skb) &&
1416 		    (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
1417 			return ERR_PTR(err);
1418 	}
1419 
1420 	rcu_read_lock();
1421 	list_for_each_entry_rcu(ptype, &ptype_base[ntohs(type) & 15], list) {
1422 		if (ptype->type == type && !ptype->dev && ptype->gso_segment) {
1423 			if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1424 				err = ptype->gso_send_check(skb);
1425 				segs = ERR_PTR(err);
1426 				if (err || skb_gso_ok(skb, features))
1427 					break;
1428 				__skb_push(skb, (skb->data -
1429 						 skb_network_header(skb)));
1430 			}
1431 			segs = ptype->gso_segment(skb, features);
1432 			break;
1433 		}
1434 	}
1435 	rcu_read_unlock();
1436 
1437 	__skb_push(skb, skb->data - skb_mac_header(skb));
1438 
1439 	return segs;
1440 }
1441 
1442 EXPORT_SYMBOL(skb_gso_segment);
1443 
1444 /* Take action when hardware reception checksum errors are detected. */
1445 #ifdef CONFIG_BUG
1446 void netdev_rx_csum_fault(struct net_device *dev)
1447 {
1448 	if (net_ratelimit()) {
1449 		printk(KERN_ERR "%s: hw csum failure.\n",
1450 			dev ? dev->name : "<unknown>");
1451 		dump_stack();
1452 	}
1453 }
1454 EXPORT_SYMBOL(netdev_rx_csum_fault);
1455 #endif
1456 
1457 /* Actually, we should eliminate this check as soon as we know, that:
1458  * 1. IOMMU is present and allows to map all the memory.
1459  * 2. No high memory really exists on this machine.
1460  */
1461 
1462 static inline int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1463 {
1464 #ifdef CONFIG_HIGHMEM
1465 	int i;
1466 
1467 	if (dev->features & NETIF_F_HIGHDMA)
1468 		return 0;
1469 
1470 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1471 		if (PageHighMem(skb_shinfo(skb)->frags[i].page))
1472 			return 1;
1473 
1474 #endif
1475 	return 0;
1476 }
1477 
1478 struct dev_gso_cb {
1479 	void (*destructor)(struct sk_buff *skb);
1480 };
1481 
1482 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
1483 
1484 static void dev_gso_skb_destructor(struct sk_buff *skb)
1485 {
1486 	struct dev_gso_cb *cb;
1487 
1488 	do {
1489 		struct sk_buff *nskb = skb->next;
1490 
1491 		skb->next = nskb->next;
1492 		nskb->next = NULL;
1493 		kfree_skb(nskb);
1494 	} while (skb->next);
1495 
1496 	cb = DEV_GSO_CB(skb);
1497 	if (cb->destructor)
1498 		cb->destructor(skb);
1499 }
1500 
1501 /**
1502  *	dev_gso_segment - Perform emulated hardware segmentation on skb.
1503  *	@skb: buffer to segment
1504  *
1505  *	This function segments the given skb and stores the list of segments
1506  *	in skb->next.
1507  */
1508 static int dev_gso_segment(struct sk_buff *skb)
1509 {
1510 	struct net_device *dev = skb->dev;
1511 	struct sk_buff *segs;
1512 	int features = dev->features & ~(illegal_highdma(dev, skb) ?
1513 					 NETIF_F_SG : 0);
1514 
1515 	segs = skb_gso_segment(skb, features);
1516 
1517 	/* Verifying header integrity only. */
1518 	if (!segs)
1519 		return 0;
1520 
1521 	if (unlikely(IS_ERR(segs)))
1522 		return PTR_ERR(segs);
1523 
1524 	skb->next = segs;
1525 	DEV_GSO_CB(skb)->destructor = skb->destructor;
1526 	skb->destructor = dev_gso_skb_destructor;
1527 
1528 	return 0;
1529 }
1530 
1531 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev)
1532 {
1533 	if (likely(!skb->next)) {
1534 		if (!list_empty(&ptype_all))
1535 			dev_queue_xmit_nit(skb, dev);
1536 
1537 		if (netif_needs_gso(dev, skb)) {
1538 			if (unlikely(dev_gso_segment(skb)))
1539 				goto out_kfree_skb;
1540 			if (skb->next)
1541 				goto gso;
1542 		}
1543 
1544 		return dev->hard_start_xmit(skb, dev);
1545 	}
1546 
1547 gso:
1548 	do {
1549 		struct sk_buff *nskb = skb->next;
1550 		int rc;
1551 
1552 		skb->next = nskb->next;
1553 		nskb->next = NULL;
1554 		rc = dev->hard_start_xmit(nskb, dev);
1555 		if (unlikely(rc)) {
1556 			nskb->next = skb->next;
1557 			skb->next = nskb;
1558 			return rc;
1559 		}
1560 		if (unlikely((netif_queue_stopped(dev) ||
1561 			     netif_subqueue_stopped(dev, skb)) &&
1562 			     skb->next))
1563 			return NETDEV_TX_BUSY;
1564 	} while (skb->next);
1565 
1566 	skb->destructor = DEV_GSO_CB(skb)->destructor;
1567 
1568 out_kfree_skb:
1569 	kfree_skb(skb);
1570 	return 0;
1571 }
1572 
1573 /**
1574  *	dev_queue_xmit - transmit a buffer
1575  *	@skb: buffer to transmit
1576  *
1577  *	Queue a buffer for transmission to a network device. The caller must
1578  *	have set the device and priority and built the buffer before calling
1579  *	this function. The function can be called from an interrupt.
1580  *
1581  *	A negative errno code is returned on a failure. A success does not
1582  *	guarantee the frame will be transmitted as it may be dropped due
1583  *	to congestion or traffic shaping.
1584  *
1585  * -----------------------------------------------------------------------------------
1586  *      I notice this method can also return errors from the queue disciplines,
1587  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
1588  *      be positive.
1589  *
1590  *      Regardless of the return value, the skb is consumed, so it is currently
1591  *      difficult to retry a send to this method.  (You can bump the ref count
1592  *      before sending to hold a reference for retry if you are careful.)
1593  *
1594  *      When calling this method, interrupts MUST be enabled.  This is because
1595  *      the BH enable code must have IRQs enabled so that it will not deadlock.
1596  *          --BLG
1597  */
1598 
1599 int dev_queue_xmit(struct sk_buff *skb)
1600 {
1601 	struct net_device *dev = skb->dev;
1602 	struct Qdisc *q;
1603 	int rc = -ENOMEM;
1604 
1605 	/* GSO will handle the following emulations directly. */
1606 	if (netif_needs_gso(dev, skb))
1607 		goto gso;
1608 
1609 	if (skb_shinfo(skb)->frag_list &&
1610 	    !(dev->features & NETIF_F_FRAGLIST) &&
1611 	    __skb_linearize(skb))
1612 		goto out_kfree_skb;
1613 
1614 	/* Fragmented skb is linearized if device does not support SG,
1615 	 * or if at least one of fragments is in highmem and device
1616 	 * does not support DMA from it.
1617 	 */
1618 	if (skb_shinfo(skb)->nr_frags &&
1619 	    (!(dev->features & NETIF_F_SG) || illegal_highdma(dev, skb)) &&
1620 	    __skb_linearize(skb))
1621 		goto out_kfree_skb;
1622 
1623 	/* If packet is not checksummed and device does not support
1624 	 * checksumming for this protocol, complete checksumming here.
1625 	 */
1626 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
1627 		skb_set_transport_header(skb, skb->csum_start -
1628 					      skb_headroom(skb));
1629 
1630 		if (!(dev->features & NETIF_F_GEN_CSUM) &&
1631 		    !((dev->features & NETIF_F_IP_CSUM) &&
1632 		      skb->protocol == htons(ETH_P_IP)) &&
1633 		    !((dev->features & NETIF_F_IPV6_CSUM) &&
1634 		      skb->protocol == htons(ETH_P_IPV6)))
1635 			if (skb_checksum_help(skb))
1636 				goto out_kfree_skb;
1637 	}
1638 
1639 gso:
1640 	spin_lock_prefetch(&dev->queue_lock);
1641 
1642 	/* Disable soft irqs for various locks below. Also
1643 	 * stops preemption for RCU.
1644 	 */
1645 	rcu_read_lock_bh();
1646 
1647 	/* Updates of qdisc are serialized by queue_lock.
1648 	 * The struct Qdisc which is pointed to by qdisc is now a
1649 	 * rcu structure - it may be accessed without acquiring
1650 	 * a lock (but the structure may be stale.) The freeing of the
1651 	 * qdisc will be deferred until it's known that there are no
1652 	 * more references to it.
1653 	 *
1654 	 * If the qdisc has an enqueue function, we still need to
1655 	 * hold the queue_lock before calling it, since queue_lock
1656 	 * also serializes access to the device queue.
1657 	 */
1658 
1659 	q = rcu_dereference(dev->qdisc);
1660 #ifdef CONFIG_NET_CLS_ACT
1661 	skb->tc_verd = SET_TC_AT(skb->tc_verd,AT_EGRESS);
1662 #endif
1663 	if (q->enqueue) {
1664 		/* Grab device queue */
1665 		spin_lock(&dev->queue_lock);
1666 		q = dev->qdisc;
1667 		if (q->enqueue) {
1668 			/* reset queue_mapping to zero */
1669 			skb_set_queue_mapping(skb, 0);
1670 			rc = q->enqueue(skb, q);
1671 			qdisc_run(dev);
1672 			spin_unlock(&dev->queue_lock);
1673 
1674 			rc = rc == NET_XMIT_BYPASS ? NET_XMIT_SUCCESS : rc;
1675 			goto out;
1676 		}
1677 		spin_unlock(&dev->queue_lock);
1678 	}
1679 
1680 	/* The device has no queue. Common case for software devices:
1681 	   loopback, all the sorts of tunnels...
1682 
1683 	   Really, it is unlikely that netif_tx_lock protection is necessary
1684 	   here.  (f.e. loopback and IP tunnels are clean ignoring statistics
1685 	   counters.)
1686 	   However, it is possible, that they rely on protection
1687 	   made by us here.
1688 
1689 	   Check this and shot the lock. It is not prone from deadlocks.
1690 	   Either shot noqueue qdisc, it is even simpler 8)
1691 	 */
1692 	if (dev->flags & IFF_UP) {
1693 		int cpu = smp_processor_id(); /* ok because BHs are off */
1694 
1695 		if (dev->xmit_lock_owner != cpu) {
1696 
1697 			HARD_TX_LOCK(dev, cpu);
1698 
1699 			if (!netif_queue_stopped(dev) &&
1700 			    !netif_subqueue_stopped(dev, skb)) {
1701 				rc = 0;
1702 				if (!dev_hard_start_xmit(skb, dev)) {
1703 					HARD_TX_UNLOCK(dev);
1704 					goto out;
1705 				}
1706 			}
1707 			HARD_TX_UNLOCK(dev);
1708 			if (net_ratelimit())
1709 				printk(KERN_CRIT "Virtual device %s asks to "
1710 				       "queue packet!\n", dev->name);
1711 		} else {
1712 			/* Recursion is detected! It is possible,
1713 			 * unfortunately */
1714 			if (net_ratelimit())
1715 				printk(KERN_CRIT "Dead loop on virtual device "
1716 				       "%s, fix it urgently!\n", dev->name);
1717 		}
1718 	}
1719 
1720 	rc = -ENETDOWN;
1721 	rcu_read_unlock_bh();
1722 
1723 out_kfree_skb:
1724 	kfree_skb(skb);
1725 	return rc;
1726 out:
1727 	rcu_read_unlock_bh();
1728 	return rc;
1729 }
1730 
1731 
1732 /*=======================================================================
1733 			Receiver routines
1734   =======================================================================*/
1735 
1736 int netdev_max_backlog __read_mostly = 1000;
1737 int netdev_budget __read_mostly = 300;
1738 int weight_p __read_mostly = 64;            /* old backlog weight */
1739 
1740 DEFINE_PER_CPU(struct netif_rx_stats, netdev_rx_stat) = { 0, };
1741 
1742 
1743 /**
1744  *	netif_rx	-	post buffer to the network code
1745  *	@skb: buffer to post
1746  *
1747  *	This function receives a packet from a device driver and queues it for
1748  *	the upper (protocol) levels to process.  It always succeeds. The buffer
1749  *	may be dropped during processing for congestion control or by the
1750  *	protocol layers.
1751  *
1752  *	return values:
1753  *	NET_RX_SUCCESS	(no congestion)
1754  *	NET_RX_DROP     (packet was dropped)
1755  *
1756  */
1757 
1758 int netif_rx(struct sk_buff *skb)
1759 {
1760 	struct softnet_data *queue;
1761 	unsigned long flags;
1762 
1763 	/* if netpoll wants it, pretend we never saw it */
1764 	if (netpoll_rx(skb))
1765 		return NET_RX_DROP;
1766 
1767 	if (!skb->tstamp.tv64)
1768 		net_timestamp(skb);
1769 
1770 	/*
1771 	 * The code is rearranged so that the path is the most
1772 	 * short when CPU is congested, but is still operating.
1773 	 */
1774 	local_irq_save(flags);
1775 	queue = &__get_cpu_var(softnet_data);
1776 
1777 	__get_cpu_var(netdev_rx_stat).total++;
1778 	if (queue->input_pkt_queue.qlen <= netdev_max_backlog) {
1779 		if (queue->input_pkt_queue.qlen) {
1780 enqueue:
1781 			dev_hold(skb->dev);
1782 			__skb_queue_tail(&queue->input_pkt_queue, skb);
1783 			local_irq_restore(flags);
1784 			return NET_RX_SUCCESS;
1785 		}
1786 
1787 		napi_schedule(&queue->backlog);
1788 		goto enqueue;
1789 	}
1790 
1791 	__get_cpu_var(netdev_rx_stat).dropped++;
1792 	local_irq_restore(flags);
1793 
1794 	kfree_skb(skb);
1795 	return NET_RX_DROP;
1796 }
1797 
1798 int netif_rx_ni(struct sk_buff *skb)
1799 {
1800 	int err;
1801 
1802 	preempt_disable();
1803 	err = netif_rx(skb);
1804 	if (local_softirq_pending())
1805 		do_softirq();
1806 	preempt_enable();
1807 
1808 	return err;
1809 }
1810 
1811 EXPORT_SYMBOL(netif_rx_ni);
1812 
1813 static inline struct net_device *skb_bond(struct sk_buff *skb)
1814 {
1815 	struct net_device *dev = skb->dev;
1816 
1817 	if (dev->master) {
1818 		if (skb_bond_should_drop(skb)) {
1819 			kfree_skb(skb);
1820 			return NULL;
1821 		}
1822 		skb->dev = dev->master;
1823 	}
1824 
1825 	return dev;
1826 }
1827 
1828 
1829 static void net_tx_action(struct softirq_action *h)
1830 {
1831 	struct softnet_data *sd = &__get_cpu_var(softnet_data);
1832 
1833 	if (sd->completion_queue) {
1834 		struct sk_buff *clist;
1835 
1836 		local_irq_disable();
1837 		clist = sd->completion_queue;
1838 		sd->completion_queue = NULL;
1839 		local_irq_enable();
1840 
1841 		while (clist) {
1842 			struct sk_buff *skb = clist;
1843 			clist = clist->next;
1844 
1845 			BUG_TRAP(!atomic_read(&skb->users));
1846 			__kfree_skb(skb);
1847 		}
1848 	}
1849 
1850 	if (sd->output_queue) {
1851 		struct net_device *head;
1852 
1853 		local_irq_disable();
1854 		head = sd->output_queue;
1855 		sd->output_queue = NULL;
1856 		local_irq_enable();
1857 
1858 		while (head) {
1859 			struct net_device *dev = head;
1860 			head = head->next_sched;
1861 
1862 			smp_mb__before_clear_bit();
1863 			clear_bit(__LINK_STATE_SCHED, &dev->state);
1864 
1865 			if (spin_trylock(&dev->queue_lock)) {
1866 				qdisc_run(dev);
1867 				spin_unlock(&dev->queue_lock);
1868 			} else {
1869 				netif_schedule(dev);
1870 			}
1871 		}
1872 	}
1873 }
1874 
1875 static inline int deliver_skb(struct sk_buff *skb,
1876 			      struct packet_type *pt_prev,
1877 			      struct net_device *orig_dev)
1878 {
1879 	atomic_inc(&skb->users);
1880 	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1881 }
1882 
1883 #if defined(CONFIG_BRIDGE) || defined (CONFIG_BRIDGE_MODULE)
1884 /* These hooks defined here for ATM */
1885 struct net_bridge;
1886 struct net_bridge_fdb_entry *(*br_fdb_get_hook)(struct net_bridge *br,
1887 						unsigned char *addr);
1888 void (*br_fdb_put_hook)(struct net_bridge_fdb_entry *ent) __read_mostly;
1889 
1890 /*
1891  * If bridge module is loaded call bridging hook.
1892  *  returns NULL if packet was consumed.
1893  */
1894 struct sk_buff *(*br_handle_frame_hook)(struct net_bridge_port *p,
1895 					struct sk_buff *skb) __read_mostly;
1896 static inline struct sk_buff *handle_bridge(struct sk_buff *skb,
1897 					    struct packet_type **pt_prev, int *ret,
1898 					    struct net_device *orig_dev)
1899 {
1900 	struct net_bridge_port *port;
1901 
1902 	if (skb->pkt_type == PACKET_LOOPBACK ||
1903 	    (port = rcu_dereference(skb->dev->br_port)) == NULL)
1904 		return skb;
1905 
1906 	if (*pt_prev) {
1907 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
1908 		*pt_prev = NULL;
1909 	}
1910 
1911 	return br_handle_frame_hook(port, skb);
1912 }
1913 #else
1914 #define handle_bridge(skb, pt_prev, ret, orig_dev)	(skb)
1915 #endif
1916 
1917 #if defined(CONFIG_MACVLAN) || defined(CONFIG_MACVLAN_MODULE)
1918 struct sk_buff *(*macvlan_handle_frame_hook)(struct sk_buff *skb) __read_mostly;
1919 EXPORT_SYMBOL_GPL(macvlan_handle_frame_hook);
1920 
1921 static inline struct sk_buff *handle_macvlan(struct sk_buff *skb,
1922 					     struct packet_type **pt_prev,
1923 					     int *ret,
1924 					     struct net_device *orig_dev)
1925 {
1926 	if (skb->dev->macvlan_port == NULL)
1927 		return skb;
1928 
1929 	if (*pt_prev) {
1930 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
1931 		*pt_prev = NULL;
1932 	}
1933 	return macvlan_handle_frame_hook(skb);
1934 }
1935 #else
1936 #define handle_macvlan(skb, pt_prev, ret, orig_dev)	(skb)
1937 #endif
1938 
1939 #ifdef CONFIG_NET_CLS_ACT
1940 /* TODO: Maybe we should just force sch_ingress to be compiled in
1941  * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
1942  * a compare and 2 stores extra right now if we dont have it on
1943  * but have CONFIG_NET_CLS_ACT
1944  * NOTE: This doesnt stop any functionality; if you dont have
1945  * the ingress scheduler, you just cant add policies on ingress.
1946  *
1947  */
1948 static int ing_filter(struct sk_buff *skb)
1949 {
1950 	struct Qdisc *q;
1951 	struct net_device *dev = skb->dev;
1952 	int result = TC_ACT_OK;
1953 	u32 ttl = G_TC_RTTL(skb->tc_verd);
1954 
1955 	if (MAX_RED_LOOP < ttl++) {
1956 		printk(KERN_WARNING
1957 		       "Redir loop detected Dropping packet (%d->%d)\n",
1958 		       skb->iif, dev->ifindex);
1959 		return TC_ACT_SHOT;
1960 	}
1961 
1962 	skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
1963 	skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
1964 
1965 	spin_lock(&dev->ingress_lock);
1966 	if ((q = dev->qdisc_ingress) != NULL)
1967 		result = q->enqueue(skb, q);
1968 	spin_unlock(&dev->ingress_lock);
1969 
1970 	return result;
1971 }
1972 
1973 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
1974 					 struct packet_type **pt_prev,
1975 					 int *ret, struct net_device *orig_dev)
1976 {
1977 	if (!skb->dev->qdisc_ingress)
1978 		goto out;
1979 
1980 	if (*pt_prev) {
1981 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
1982 		*pt_prev = NULL;
1983 	} else {
1984 		/* Huh? Why does turning on AF_PACKET affect this? */
1985 		skb->tc_verd = SET_TC_OK2MUNGE(skb->tc_verd);
1986 	}
1987 
1988 	switch (ing_filter(skb)) {
1989 	case TC_ACT_SHOT:
1990 	case TC_ACT_STOLEN:
1991 		kfree_skb(skb);
1992 		return NULL;
1993 	}
1994 
1995 out:
1996 	skb->tc_verd = 0;
1997 	return skb;
1998 }
1999 #endif
2000 
2001 /**
2002  *	netif_receive_skb - process receive buffer from network
2003  *	@skb: buffer to process
2004  *
2005  *	netif_receive_skb() is the main receive data processing function.
2006  *	It always succeeds. The buffer may be dropped during processing
2007  *	for congestion control or by the protocol layers.
2008  *
2009  *	This function may only be called from softirq context and interrupts
2010  *	should be enabled.
2011  *
2012  *	Return values (usually ignored):
2013  *	NET_RX_SUCCESS: no congestion
2014  *	NET_RX_DROP: packet was dropped
2015  */
2016 int netif_receive_skb(struct sk_buff *skb)
2017 {
2018 	struct packet_type *ptype, *pt_prev;
2019 	struct net_device *orig_dev;
2020 	int ret = NET_RX_DROP;
2021 	__be16 type;
2022 
2023 	/* if we've gotten here through NAPI, check netpoll */
2024 	if (netpoll_receive_skb(skb))
2025 		return NET_RX_DROP;
2026 
2027 	if (!skb->tstamp.tv64)
2028 		net_timestamp(skb);
2029 
2030 	if (!skb->iif)
2031 		skb->iif = skb->dev->ifindex;
2032 
2033 	orig_dev = skb_bond(skb);
2034 
2035 	if (!orig_dev)
2036 		return NET_RX_DROP;
2037 
2038 	__get_cpu_var(netdev_rx_stat).total++;
2039 
2040 	skb_reset_network_header(skb);
2041 	skb_reset_transport_header(skb);
2042 	skb->mac_len = skb->network_header - skb->mac_header;
2043 
2044 	pt_prev = NULL;
2045 
2046 	rcu_read_lock();
2047 
2048 #ifdef CONFIG_NET_CLS_ACT
2049 	if (skb->tc_verd & TC_NCLS) {
2050 		skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
2051 		goto ncls;
2052 	}
2053 #endif
2054 
2055 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
2056 		if (!ptype->dev || ptype->dev == skb->dev) {
2057 			if (pt_prev)
2058 				ret = deliver_skb(skb, pt_prev, orig_dev);
2059 			pt_prev = ptype;
2060 		}
2061 	}
2062 
2063 #ifdef CONFIG_NET_CLS_ACT
2064 	skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
2065 	if (!skb)
2066 		goto out;
2067 ncls:
2068 #endif
2069 
2070 	skb = handle_bridge(skb, &pt_prev, &ret, orig_dev);
2071 	if (!skb)
2072 		goto out;
2073 	skb = handle_macvlan(skb, &pt_prev, &ret, orig_dev);
2074 	if (!skb)
2075 		goto out;
2076 
2077 	type = skb->protocol;
2078 	list_for_each_entry_rcu(ptype, &ptype_base[ntohs(type)&15], list) {
2079 		if (ptype->type == type &&
2080 		    (!ptype->dev || ptype->dev == skb->dev)) {
2081 			if (pt_prev)
2082 				ret = deliver_skb(skb, pt_prev, orig_dev);
2083 			pt_prev = ptype;
2084 		}
2085 	}
2086 
2087 	if (pt_prev) {
2088 		ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2089 	} else {
2090 		kfree_skb(skb);
2091 		/* Jamal, now you will not able to escape explaining
2092 		 * me how you were going to use this. :-)
2093 		 */
2094 		ret = NET_RX_DROP;
2095 	}
2096 
2097 out:
2098 	rcu_read_unlock();
2099 	return ret;
2100 }
2101 
2102 static int process_backlog(struct napi_struct *napi, int quota)
2103 {
2104 	int work = 0;
2105 	struct softnet_data *queue = &__get_cpu_var(softnet_data);
2106 	unsigned long start_time = jiffies;
2107 
2108 	napi->weight = weight_p;
2109 	do {
2110 		struct sk_buff *skb;
2111 		struct net_device *dev;
2112 
2113 		local_irq_disable();
2114 		skb = __skb_dequeue(&queue->input_pkt_queue);
2115 		if (!skb) {
2116 			__napi_complete(napi);
2117 			local_irq_enable();
2118 			break;
2119 		}
2120 
2121 		local_irq_enable();
2122 
2123 		dev = skb->dev;
2124 
2125 		netif_receive_skb(skb);
2126 
2127 		dev_put(dev);
2128 	} while (++work < quota && jiffies == start_time);
2129 
2130 	return work;
2131 }
2132 
2133 /**
2134  * __napi_schedule - schedule for receive
2135  * @n: entry to schedule
2136  *
2137  * The entry's receive function will be scheduled to run
2138  */
2139 void fastcall __napi_schedule(struct napi_struct *n)
2140 {
2141 	unsigned long flags;
2142 
2143 	local_irq_save(flags);
2144 	list_add_tail(&n->poll_list, &__get_cpu_var(softnet_data).poll_list);
2145 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
2146 	local_irq_restore(flags);
2147 }
2148 EXPORT_SYMBOL(__napi_schedule);
2149 
2150 
2151 static void net_rx_action(struct softirq_action *h)
2152 {
2153 	struct list_head *list = &__get_cpu_var(softnet_data).poll_list;
2154 	unsigned long start_time = jiffies;
2155 	int budget = netdev_budget;
2156 	void *have;
2157 
2158 	local_irq_disable();
2159 
2160 	while (!list_empty(list)) {
2161 		struct napi_struct *n;
2162 		int work, weight;
2163 
2164 		/* If softirq window is exhuasted then punt.
2165 		 *
2166 		 * Note that this is a slight policy change from the
2167 		 * previous NAPI code, which would allow up to 2
2168 		 * jiffies to pass before breaking out.  The test
2169 		 * used to be "jiffies - start_time > 1".
2170 		 */
2171 		if (unlikely(budget <= 0 || jiffies != start_time))
2172 			goto softnet_break;
2173 
2174 		local_irq_enable();
2175 
2176 		/* Even though interrupts have been re-enabled, this
2177 		 * access is safe because interrupts can only add new
2178 		 * entries to the tail of this list, and only ->poll()
2179 		 * calls can remove this head entry from the list.
2180 		 */
2181 		n = list_entry(list->next, struct napi_struct, poll_list);
2182 
2183 		have = netpoll_poll_lock(n);
2184 
2185 		weight = n->weight;
2186 
2187 		/* This NAPI_STATE_SCHED test is for avoiding a race
2188 		 * with netpoll's poll_napi().  Only the entity which
2189 		 * obtains the lock and sees NAPI_STATE_SCHED set will
2190 		 * actually make the ->poll() call.  Therefore we avoid
2191 		 * accidently calling ->poll() when NAPI is not scheduled.
2192 		 */
2193 		work = 0;
2194 		if (test_bit(NAPI_STATE_SCHED, &n->state))
2195 			work = n->poll(n, weight);
2196 
2197 		WARN_ON_ONCE(work > weight);
2198 
2199 		budget -= work;
2200 
2201 		local_irq_disable();
2202 
2203 		/* Drivers must not modify the NAPI state if they
2204 		 * consume the entire weight.  In such cases this code
2205 		 * still "owns" the NAPI instance and therefore can
2206 		 * move the instance around on the list at-will.
2207 		 */
2208 		if (unlikely(work == weight))
2209 			list_move_tail(&n->poll_list, list);
2210 
2211 		netpoll_poll_unlock(have);
2212 	}
2213 out:
2214 	local_irq_enable();
2215 
2216 #ifdef CONFIG_NET_DMA
2217 	/*
2218 	 * There may not be any more sk_buffs coming right now, so push
2219 	 * any pending DMA copies to hardware
2220 	 */
2221 	if (!cpus_empty(net_dma.channel_mask)) {
2222 		int chan_idx;
2223 		for_each_cpu_mask(chan_idx, net_dma.channel_mask) {
2224 			struct dma_chan *chan = net_dma.channels[chan_idx];
2225 			if (chan)
2226 				dma_async_memcpy_issue_pending(chan);
2227 		}
2228 	}
2229 #endif
2230 
2231 	return;
2232 
2233 softnet_break:
2234 	__get_cpu_var(netdev_rx_stat).time_squeeze++;
2235 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
2236 	goto out;
2237 }
2238 
2239 static gifconf_func_t * gifconf_list [NPROTO];
2240 
2241 /**
2242  *	register_gifconf	-	register a SIOCGIF handler
2243  *	@family: Address family
2244  *	@gifconf: Function handler
2245  *
2246  *	Register protocol dependent address dumping routines. The handler
2247  *	that is passed must not be freed or reused until it has been replaced
2248  *	by another handler.
2249  */
2250 int register_gifconf(unsigned int family, gifconf_func_t * gifconf)
2251 {
2252 	if (family >= NPROTO)
2253 		return -EINVAL;
2254 	gifconf_list[family] = gifconf;
2255 	return 0;
2256 }
2257 
2258 
2259 /*
2260  *	Map an interface index to its name (SIOCGIFNAME)
2261  */
2262 
2263 /*
2264  *	We need this ioctl for efficient implementation of the
2265  *	if_indextoname() function required by the IPv6 API.  Without
2266  *	it, we would have to search all the interfaces to find a
2267  *	match.  --pb
2268  */
2269 
2270 static int dev_ifname(struct net *net, struct ifreq __user *arg)
2271 {
2272 	struct net_device *dev;
2273 	struct ifreq ifr;
2274 
2275 	/*
2276 	 *	Fetch the caller's info block.
2277 	 */
2278 
2279 	if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
2280 		return -EFAULT;
2281 
2282 	read_lock(&dev_base_lock);
2283 	dev = __dev_get_by_index(net, ifr.ifr_ifindex);
2284 	if (!dev) {
2285 		read_unlock(&dev_base_lock);
2286 		return -ENODEV;
2287 	}
2288 
2289 	strcpy(ifr.ifr_name, dev->name);
2290 	read_unlock(&dev_base_lock);
2291 
2292 	if (copy_to_user(arg, &ifr, sizeof(struct ifreq)))
2293 		return -EFAULT;
2294 	return 0;
2295 }
2296 
2297 /*
2298  *	Perform a SIOCGIFCONF call. This structure will change
2299  *	size eventually, and there is nothing I can do about it.
2300  *	Thus we will need a 'compatibility mode'.
2301  */
2302 
2303 static int dev_ifconf(struct net *net, char __user *arg)
2304 {
2305 	struct ifconf ifc;
2306 	struct net_device *dev;
2307 	char __user *pos;
2308 	int len;
2309 	int total;
2310 	int i;
2311 
2312 	/*
2313 	 *	Fetch the caller's info block.
2314 	 */
2315 
2316 	if (copy_from_user(&ifc, arg, sizeof(struct ifconf)))
2317 		return -EFAULT;
2318 
2319 	pos = ifc.ifc_buf;
2320 	len = ifc.ifc_len;
2321 
2322 	/*
2323 	 *	Loop over the interfaces, and write an info block for each.
2324 	 */
2325 
2326 	total = 0;
2327 	for_each_netdev(net, dev) {
2328 		for (i = 0; i < NPROTO; i++) {
2329 			if (gifconf_list[i]) {
2330 				int done;
2331 				if (!pos)
2332 					done = gifconf_list[i](dev, NULL, 0);
2333 				else
2334 					done = gifconf_list[i](dev, pos + total,
2335 							       len - total);
2336 				if (done < 0)
2337 					return -EFAULT;
2338 				total += done;
2339 			}
2340 		}
2341 	}
2342 
2343 	/*
2344 	 *	All done.  Write the updated control block back to the caller.
2345 	 */
2346 	ifc.ifc_len = total;
2347 
2348 	/*
2349 	 * 	Both BSD and Solaris return 0 here, so we do too.
2350 	 */
2351 	return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0;
2352 }
2353 
2354 #ifdef CONFIG_PROC_FS
2355 /*
2356  *	This is invoked by the /proc filesystem handler to display a device
2357  *	in detail.
2358  */
2359 void *dev_seq_start(struct seq_file *seq, loff_t *pos)
2360 {
2361 	struct net *net = seq->private;
2362 	loff_t off;
2363 	struct net_device *dev;
2364 
2365 	read_lock(&dev_base_lock);
2366 	if (!*pos)
2367 		return SEQ_START_TOKEN;
2368 
2369 	off = 1;
2370 	for_each_netdev(net, dev)
2371 		if (off++ == *pos)
2372 			return dev;
2373 
2374 	return NULL;
2375 }
2376 
2377 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2378 {
2379 	struct net *net = seq->private;
2380 	++*pos;
2381 	return v == SEQ_START_TOKEN ?
2382 		first_net_device(net) : next_net_device((struct net_device *)v);
2383 }
2384 
2385 void dev_seq_stop(struct seq_file *seq, void *v)
2386 {
2387 	read_unlock(&dev_base_lock);
2388 }
2389 
2390 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev)
2391 {
2392 	struct net_device_stats *stats = dev->get_stats(dev);
2393 
2394 	seq_printf(seq, "%6s:%8lu %7lu %4lu %4lu %4lu %5lu %10lu %9lu "
2395 		   "%8lu %7lu %4lu %4lu %4lu %5lu %7lu %10lu\n",
2396 		   dev->name, stats->rx_bytes, stats->rx_packets,
2397 		   stats->rx_errors,
2398 		   stats->rx_dropped + stats->rx_missed_errors,
2399 		   stats->rx_fifo_errors,
2400 		   stats->rx_length_errors + stats->rx_over_errors +
2401 		    stats->rx_crc_errors + stats->rx_frame_errors,
2402 		   stats->rx_compressed, stats->multicast,
2403 		   stats->tx_bytes, stats->tx_packets,
2404 		   stats->tx_errors, stats->tx_dropped,
2405 		   stats->tx_fifo_errors, stats->collisions,
2406 		   stats->tx_carrier_errors +
2407 		    stats->tx_aborted_errors +
2408 		    stats->tx_window_errors +
2409 		    stats->tx_heartbeat_errors,
2410 		   stats->tx_compressed);
2411 }
2412 
2413 /*
2414  *	Called from the PROCfs module. This now uses the new arbitrary sized
2415  *	/proc/net interface to create /proc/net/dev
2416  */
2417 static int dev_seq_show(struct seq_file *seq, void *v)
2418 {
2419 	if (v == SEQ_START_TOKEN)
2420 		seq_puts(seq, "Inter-|   Receive                            "
2421 			      "                    |  Transmit\n"
2422 			      " face |bytes    packets errs drop fifo frame "
2423 			      "compressed multicast|bytes    packets errs "
2424 			      "drop fifo colls carrier compressed\n");
2425 	else
2426 		dev_seq_printf_stats(seq, v);
2427 	return 0;
2428 }
2429 
2430 static struct netif_rx_stats *softnet_get_online(loff_t *pos)
2431 {
2432 	struct netif_rx_stats *rc = NULL;
2433 
2434 	while (*pos < NR_CPUS)
2435 		if (cpu_online(*pos)) {
2436 			rc = &per_cpu(netdev_rx_stat, *pos);
2437 			break;
2438 		} else
2439 			++*pos;
2440 	return rc;
2441 }
2442 
2443 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos)
2444 {
2445 	return softnet_get_online(pos);
2446 }
2447 
2448 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2449 {
2450 	++*pos;
2451 	return softnet_get_online(pos);
2452 }
2453 
2454 static void softnet_seq_stop(struct seq_file *seq, void *v)
2455 {
2456 }
2457 
2458 static int softnet_seq_show(struct seq_file *seq, void *v)
2459 {
2460 	struct netif_rx_stats *s = v;
2461 
2462 	seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x\n",
2463 		   s->total, s->dropped, s->time_squeeze, 0,
2464 		   0, 0, 0, 0, /* was fastroute */
2465 		   s->cpu_collision );
2466 	return 0;
2467 }
2468 
2469 static const struct seq_operations dev_seq_ops = {
2470 	.start = dev_seq_start,
2471 	.next  = dev_seq_next,
2472 	.stop  = dev_seq_stop,
2473 	.show  = dev_seq_show,
2474 };
2475 
2476 static int dev_seq_open(struct inode *inode, struct file *file)
2477 {
2478 	struct seq_file *seq;
2479 	int res;
2480 	res =  seq_open(file, &dev_seq_ops);
2481 	if (!res) {
2482 		seq = file->private_data;
2483 		seq->private = get_proc_net(inode);
2484 		if (!seq->private) {
2485 			seq_release(inode, file);
2486 			res = -ENXIO;
2487 		}
2488 	}
2489 	return res;
2490 }
2491 
2492 static int dev_seq_release(struct inode *inode, struct file *file)
2493 {
2494 	struct seq_file *seq = file->private_data;
2495 	struct net *net = seq->private;
2496 	put_net(net);
2497 	return seq_release(inode, file);
2498 }
2499 
2500 static const struct file_operations dev_seq_fops = {
2501 	.owner	 = THIS_MODULE,
2502 	.open    = dev_seq_open,
2503 	.read    = seq_read,
2504 	.llseek  = seq_lseek,
2505 	.release = dev_seq_release,
2506 };
2507 
2508 static const struct seq_operations softnet_seq_ops = {
2509 	.start = softnet_seq_start,
2510 	.next  = softnet_seq_next,
2511 	.stop  = softnet_seq_stop,
2512 	.show  = softnet_seq_show,
2513 };
2514 
2515 static int softnet_seq_open(struct inode *inode, struct file *file)
2516 {
2517 	return seq_open(file, &softnet_seq_ops);
2518 }
2519 
2520 static const struct file_operations softnet_seq_fops = {
2521 	.owner	 = THIS_MODULE,
2522 	.open    = softnet_seq_open,
2523 	.read    = seq_read,
2524 	.llseek  = seq_lseek,
2525 	.release = seq_release,
2526 };
2527 
2528 static void *ptype_get_idx(loff_t pos)
2529 {
2530 	struct packet_type *pt = NULL;
2531 	loff_t i = 0;
2532 	int t;
2533 
2534 	list_for_each_entry_rcu(pt, &ptype_all, list) {
2535 		if (i == pos)
2536 			return pt;
2537 		++i;
2538 	}
2539 
2540 	for (t = 0; t < 16; t++) {
2541 		list_for_each_entry_rcu(pt, &ptype_base[t], list) {
2542 			if (i == pos)
2543 				return pt;
2544 			++i;
2545 		}
2546 	}
2547 	return NULL;
2548 }
2549 
2550 static void *ptype_seq_start(struct seq_file *seq, loff_t *pos)
2551 {
2552 	rcu_read_lock();
2553 	return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN;
2554 }
2555 
2556 static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2557 {
2558 	struct packet_type *pt;
2559 	struct list_head *nxt;
2560 	int hash;
2561 
2562 	++*pos;
2563 	if (v == SEQ_START_TOKEN)
2564 		return ptype_get_idx(0);
2565 
2566 	pt = v;
2567 	nxt = pt->list.next;
2568 	if (pt->type == htons(ETH_P_ALL)) {
2569 		if (nxt != &ptype_all)
2570 			goto found;
2571 		hash = 0;
2572 		nxt = ptype_base[0].next;
2573 	} else
2574 		hash = ntohs(pt->type) & 15;
2575 
2576 	while (nxt == &ptype_base[hash]) {
2577 		if (++hash >= 16)
2578 			return NULL;
2579 		nxt = ptype_base[hash].next;
2580 	}
2581 found:
2582 	return list_entry(nxt, struct packet_type, list);
2583 }
2584 
2585 static void ptype_seq_stop(struct seq_file *seq, void *v)
2586 {
2587 	rcu_read_unlock();
2588 }
2589 
2590 static void ptype_seq_decode(struct seq_file *seq, void *sym)
2591 {
2592 #ifdef CONFIG_KALLSYMS
2593 	unsigned long offset = 0, symsize;
2594 	const char *symname;
2595 	char *modname;
2596 	char namebuf[128];
2597 
2598 	symname = kallsyms_lookup((unsigned long)sym, &symsize, &offset,
2599 				  &modname, namebuf);
2600 
2601 	if (symname) {
2602 		char *delim = ":";
2603 
2604 		if (!modname)
2605 			modname = delim = "";
2606 		seq_printf(seq, "%s%s%s%s+0x%lx", delim, modname, delim,
2607 			   symname, offset);
2608 		return;
2609 	}
2610 #endif
2611 
2612 	seq_printf(seq, "[%p]", sym);
2613 }
2614 
2615 static int ptype_seq_show(struct seq_file *seq, void *v)
2616 {
2617 	struct packet_type *pt = v;
2618 
2619 	if (v == SEQ_START_TOKEN)
2620 		seq_puts(seq, "Type Device      Function\n");
2621 	else {
2622 		if (pt->type == htons(ETH_P_ALL))
2623 			seq_puts(seq, "ALL ");
2624 		else
2625 			seq_printf(seq, "%04x", ntohs(pt->type));
2626 
2627 		seq_printf(seq, " %-8s ",
2628 			   pt->dev ? pt->dev->name : "");
2629 		ptype_seq_decode(seq,  pt->func);
2630 		seq_putc(seq, '\n');
2631 	}
2632 
2633 	return 0;
2634 }
2635 
2636 static const struct seq_operations ptype_seq_ops = {
2637 	.start = ptype_seq_start,
2638 	.next  = ptype_seq_next,
2639 	.stop  = ptype_seq_stop,
2640 	.show  = ptype_seq_show,
2641 };
2642 
2643 static int ptype_seq_open(struct inode *inode, struct file *file)
2644 {
2645 	return seq_open(file, &ptype_seq_ops);
2646 }
2647 
2648 static const struct file_operations ptype_seq_fops = {
2649 	.owner	 = THIS_MODULE,
2650 	.open    = ptype_seq_open,
2651 	.read    = seq_read,
2652 	.llseek  = seq_lseek,
2653 	.release = seq_release,
2654 };
2655 
2656 
2657 static int __net_init dev_proc_net_init(struct net *net)
2658 {
2659 	int rc = -ENOMEM;
2660 
2661 	if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops))
2662 		goto out;
2663 	if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops))
2664 		goto out_dev;
2665 	if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops))
2666 		goto out_softnet;
2667 
2668 	if (wext_proc_init(net))
2669 		goto out_ptype;
2670 	rc = 0;
2671 out:
2672 	return rc;
2673 out_ptype:
2674 	proc_net_remove(net, "ptype");
2675 out_softnet:
2676 	proc_net_remove(net, "softnet_stat");
2677 out_dev:
2678 	proc_net_remove(net, "dev");
2679 	goto out;
2680 }
2681 
2682 static void __net_exit dev_proc_net_exit(struct net *net)
2683 {
2684 	wext_proc_exit(net);
2685 
2686 	proc_net_remove(net, "ptype");
2687 	proc_net_remove(net, "softnet_stat");
2688 	proc_net_remove(net, "dev");
2689 }
2690 
2691 static struct pernet_operations dev_proc_ops = {
2692 	.init = dev_proc_net_init,
2693 	.exit = dev_proc_net_exit,
2694 };
2695 
2696 static int __init dev_proc_init(void)
2697 {
2698 	return register_pernet_subsys(&dev_proc_ops);
2699 }
2700 #else
2701 #define dev_proc_init() 0
2702 #endif	/* CONFIG_PROC_FS */
2703 
2704 
2705 /**
2706  *	netdev_set_master	-	set up master/slave pair
2707  *	@slave: slave device
2708  *	@master: new master device
2709  *
2710  *	Changes the master device of the slave. Pass %NULL to break the
2711  *	bonding. The caller must hold the RTNL semaphore. On a failure
2712  *	a negative errno code is returned. On success the reference counts
2713  *	are adjusted, %RTM_NEWLINK is sent to the routing socket and the
2714  *	function returns zero.
2715  */
2716 int netdev_set_master(struct net_device *slave, struct net_device *master)
2717 {
2718 	struct net_device *old = slave->master;
2719 
2720 	ASSERT_RTNL();
2721 
2722 	if (master) {
2723 		if (old)
2724 			return -EBUSY;
2725 		dev_hold(master);
2726 	}
2727 
2728 	slave->master = master;
2729 
2730 	synchronize_net();
2731 
2732 	if (old)
2733 		dev_put(old);
2734 
2735 	if (master)
2736 		slave->flags |= IFF_SLAVE;
2737 	else
2738 		slave->flags &= ~IFF_SLAVE;
2739 
2740 	rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE);
2741 	return 0;
2742 }
2743 
2744 static void __dev_set_promiscuity(struct net_device *dev, int inc)
2745 {
2746 	unsigned short old_flags = dev->flags;
2747 
2748 	ASSERT_RTNL();
2749 
2750 	if ((dev->promiscuity += inc) == 0)
2751 		dev->flags &= ~IFF_PROMISC;
2752 	else
2753 		dev->flags |= IFF_PROMISC;
2754 	if (dev->flags != old_flags) {
2755 		printk(KERN_INFO "device %s %s promiscuous mode\n",
2756 		       dev->name, (dev->flags & IFF_PROMISC) ? "entered" :
2757 							       "left");
2758 		audit_log(current->audit_context, GFP_ATOMIC,
2759 			AUDIT_ANOM_PROMISCUOUS,
2760 			"dev=%s prom=%d old_prom=%d auid=%u",
2761 			dev->name, (dev->flags & IFF_PROMISC),
2762 			(old_flags & IFF_PROMISC),
2763 			audit_get_loginuid(current->audit_context));
2764 
2765 		if (dev->change_rx_flags)
2766 			dev->change_rx_flags(dev, IFF_PROMISC);
2767 	}
2768 }
2769 
2770 /**
2771  *	dev_set_promiscuity	- update promiscuity count on a device
2772  *	@dev: device
2773  *	@inc: modifier
2774  *
2775  *	Add or remove promiscuity from a device. While the count in the device
2776  *	remains above zero the interface remains promiscuous. Once it hits zero
2777  *	the device reverts back to normal filtering operation. A negative inc
2778  *	value is used to drop promiscuity on the device.
2779  */
2780 void dev_set_promiscuity(struct net_device *dev, int inc)
2781 {
2782 	unsigned short old_flags = dev->flags;
2783 
2784 	__dev_set_promiscuity(dev, inc);
2785 	if (dev->flags != old_flags)
2786 		dev_set_rx_mode(dev);
2787 }
2788 
2789 /**
2790  *	dev_set_allmulti	- update allmulti count on a device
2791  *	@dev: device
2792  *	@inc: modifier
2793  *
2794  *	Add or remove reception of all multicast frames to a device. While the
2795  *	count in the device remains above zero the interface remains listening
2796  *	to all interfaces. Once it hits zero the device reverts back to normal
2797  *	filtering operation. A negative @inc value is used to drop the counter
2798  *	when releasing a resource needing all multicasts.
2799  */
2800 
2801 void dev_set_allmulti(struct net_device *dev, int inc)
2802 {
2803 	unsigned short old_flags = dev->flags;
2804 
2805 	ASSERT_RTNL();
2806 
2807 	dev->flags |= IFF_ALLMULTI;
2808 	if ((dev->allmulti += inc) == 0)
2809 		dev->flags &= ~IFF_ALLMULTI;
2810 	if (dev->flags ^ old_flags) {
2811 		if (dev->change_rx_flags)
2812 			dev->change_rx_flags(dev, IFF_ALLMULTI);
2813 		dev_set_rx_mode(dev);
2814 	}
2815 }
2816 
2817 /*
2818  *	Upload unicast and multicast address lists to device and
2819  *	configure RX filtering. When the device doesn't support unicast
2820  *	filtering it is put in promiscous mode while unicast addresses
2821  *	are present.
2822  */
2823 void __dev_set_rx_mode(struct net_device *dev)
2824 {
2825 	/* dev_open will call this function so the list will stay sane. */
2826 	if (!(dev->flags&IFF_UP))
2827 		return;
2828 
2829 	if (!netif_device_present(dev))
2830 		return;
2831 
2832 	if (dev->set_rx_mode)
2833 		dev->set_rx_mode(dev);
2834 	else {
2835 		/* Unicast addresses changes may only happen under the rtnl,
2836 		 * therefore calling __dev_set_promiscuity here is safe.
2837 		 */
2838 		if (dev->uc_count > 0 && !dev->uc_promisc) {
2839 			__dev_set_promiscuity(dev, 1);
2840 			dev->uc_promisc = 1;
2841 		} else if (dev->uc_count == 0 && dev->uc_promisc) {
2842 			__dev_set_promiscuity(dev, -1);
2843 			dev->uc_promisc = 0;
2844 		}
2845 
2846 		if (dev->set_multicast_list)
2847 			dev->set_multicast_list(dev);
2848 	}
2849 }
2850 
2851 void dev_set_rx_mode(struct net_device *dev)
2852 {
2853 	netif_tx_lock_bh(dev);
2854 	__dev_set_rx_mode(dev);
2855 	netif_tx_unlock_bh(dev);
2856 }
2857 
2858 int __dev_addr_delete(struct dev_addr_list **list, int *count,
2859 		      void *addr, int alen, int glbl)
2860 {
2861 	struct dev_addr_list *da;
2862 
2863 	for (; (da = *list) != NULL; list = &da->next) {
2864 		if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 &&
2865 		    alen == da->da_addrlen) {
2866 			if (glbl) {
2867 				int old_glbl = da->da_gusers;
2868 				da->da_gusers = 0;
2869 				if (old_glbl == 0)
2870 					break;
2871 			}
2872 			if (--da->da_users)
2873 				return 0;
2874 
2875 			*list = da->next;
2876 			kfree(da);
2877 			(*count)--;
2878 			return 0;
2879 		}
2880 	}
2881 	return -ENOENT;
2882 }
2883 
2884 int __dev_addr_add(struct dev_addr_list **list, int *count,
2885 		   void *addr, int alen, int glbl)
2886 {
2887 	struct dev_addr_list *da;
2888 
2889 	for (da = *list; da != NULL; da = da->next) {
2890 		if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 &&
2891 		    da->da_addrlen == alen) {
2892 			if (glbl) {
2893 				int old_glbl = da->da_gusers;
2894 				da->da_gusers = 1;
2895 				if (old_glbl)
2896 					return 0;
2897 			}
2898 			da->da_users++;
2899 			return 0;
2900 		}
2901 	}
2902 
2903 	da = kmalloc(sizeof(*da), GFP_ATOMIC);
2904 	if (da == NULL)
2905 		return -ENOMEM;
2906 	memcpy(da->da_addr, addr, alen);
2907 	da->da_addrlen = alen;
2908 	da->da_users = 1;
2909 	da->da_gusers = glbl ? 1 : 0;
2910 	da->next = *list;
2911 	*list = da;
2912 	(*count)++;
2913 	return 0;
2914 }
2915 
2916 /**
2917  *	dev_unicast_delete	- Release secondary unicast address.
2918  *	@dev: device
2919  *	@addr: address to delete
2920  *	@alen: length of @addr
2921  *
2922  *	Release reference to a secondary unicast address and remove it
2923  *	from the device if the reference count drops to zero.
2924  *
2925  * 	The caller must hold the rtnl_mutex.
2926  */
2927 int dev_unicast_delete(struct net_device *dev, void *addr, int alen)
2928 {
2929 	int err;
2930 
2931 	ASSERT_RTNL();
2932 
2933 	netif_tx_lock_bh(dev);
2934 	err = __dev_addr_delete(&dev->uc_list, &dev->uc_count, addr, alen, 0);
2935 	if (!err)
2936 		__dev_set_rx_mode(dev);
2937 	netif_tx_unlock_bh(dev);
2938 	return err;
2939 }
2940 EXPORT_SYMBOL(dev_unicast_delete);
2941 
2942 /**
2943  *	dev_unicast_add		- add a secondary unicast address
2944  *	@dev: device
2945  *	@addr: address to delete
2946  *	@alen: length of @addr
2947  *
2948  *	Add a secondary unicast address to the device or increase
2949  *	the reference count if it already exists.
2950  *
2951  *	The caller must hold the rtnl_mutex.
2952  */
2953 int dev_unicast_add(struct net_device *dev, void *addr, int alen)
2954 {
2955 	int err;
2956 
2957 	ASSERT_RTNL();
2958 
2959 	netif_tx_lock_bh(dev);
2960 	err = __dev_addr_add(&dev->uc_list, &dev->uc_count, addr, alen, 0);
2961 	if (!err)
2962 		__dev_set_rx_mode(dev);
2963 	netif_tx_unlock_bh(dev);
2964 	return err;
2965 }
2966 EXPORT_SYMBOL(dev_unicast_add);
2967 
2968 static void __dev_addr_discard(struct dev_addr_list **list)
2969 {
2970 	struct dev_addr_list *tmp;
2971 
2972 	while (*list != NULL) {
2973 		tmp = *list;
2974 		*list = tmp->next;
2975 		if (tmp->da_users > tmp->da_gusers)
2976 			printk("__dev_addr_discard: address leakage! "
2977 			       "da_users=%d\n", tmp->da_users);
2978 		kfree(tmp);
2979 	}
2980 }
2981 
2982 static void dev_addr_discard(struct net_device *dev)
2983 {
2984 	netif_tx_lock_bh(dev);
2985 
2986 	__dev_addr_discard(&dev->uc_list);
2987 	dev->uc_count = 0;
2988 
2989 	__dev_addr_discard(&dev->mc_list);
2990 	dev->mc_count = 0;
2991 
2992 	netif_tx_unlock_bh(dev);
2993 }
2994 
2995 unsigned dev_get_flags(const struct net_device *dev)
2996 {
2997 	unsigned flags;
2998 
2999 	flags = (dev->flags & ~(IFF_PROMISC |
3000 				IFF_ALLMULTI |
3001 				IFF_RUNNING |
3002 				IFF_LOWER_UP |
3003 				IFF_DORMANT)) |
3004 		(dev->gflags & (IFF_PROMISC |
3005 				IFF_ALLMULTI));
3006 
3007 	if (netif_running(dev)) {
3008 		if (netif_oper_up(dev))
3009 			flags |= IFF_RUNNING;
3010 		if (netif_carrier_ok(dev))
3011 			flags |= IFF_LOWER_UP;
3012 		if (netif_dormant(dev))
3013 			flags |= IFF_DORMANT;
3014 	}
3015 
3016 	return flags;
3017 }
3018 
3019 int dev_change_flags(struct net_device *dev, unsigned flags)
3020 {
3021 	int ret, changes;
3022 	int old_flags = dev->flags;
3023 
3024 	ASSERT_RTNL();
3025 
3026 	/*
3027 	 *	Set the flags on our device.
3028 	 */
3029 
3030 	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
3031 			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
3032 			       IFF_AUTOMEDIA)) |
3033 		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
3034 				    IFF_ALLMULTI));
3035 
3036 	/*
3037 	 *	Load in the correct multicast list now the flags have changed.
3038 	 */
3039 
3040 	if (dev->change_rx_flags && (dev->flags ^ flags) & IFF_MULTICAST)
3041 		dev->change_rx_flags(dev, IFF_MULTICAST);
3042 
3043 	dev_set_rx_mode(dev);
3044 
3045 	/*
3046 	 *	Have we downed the interface. We handle IFF_UP ourselves
3047 	 *	according to user attempts to set it, rather than blindly
3048 	 *	setting it.
3049 	 */
3050 
3051 	ret = 0;
3052 	if ((old_flags ^ flags) & IFF_UP) {	/* Bit is different  ? */
3053 		ret = ((old_flags & IFF_UP) ? dev_close : dev_open)(dev);
3054 
3055 		if (!ret)
3056 			dev_set_rx_mode(dev);
3057 	}
3058 
3059 	if (dev->flags & IFF_UP &&
3060 	    ((old_flags ^ dev->flags) &~ (IFF_UP | IFF_PROMISC | IFF_ALLMULTI |
3061 					  IFF_VOLATILE)))
3062 		call_netdevice_notifiers(NETDEV_CHANGE, dev);
3063 
3064 	if ((flags ^ dev->gflags) & IFF_PROMISC) {
3065 		int inc = (flags & IFF_PROMISC) ? +1 : -1;
3066 		dev->gflags ^= IFF_PROMISC;
3067 		dev_set_promiscuity(dev, inc);
3068 	}
3069 
3070 	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
3071 	   is important. Some (broken) drivers set IFF_PROMISC, when
3072 	   IFF_ALLMULTI is requested not asking us and not reporting.
3073 	 */
3074 	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
3075 		int inc = (flags & IFF_ALLMULTI) ? +1 : -1;
3076 		dev->gflags ^= IFF_ALLMULTI;
3077 		dev_set_allmulti(dev, inc);
3078 	}
3079 
3080 	/* Exclude state transition flags, already notified */
3081 	changes = (old_flags ^ dev->flags) & ~(IFF_UP | IFF_RUNNING);
3082 	if (changes)
3083 		rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
3084 
3085 	return ret;
3086 }
3087 
3088 int dev_set_mtu(struct net_device *dev, int new_mtu)
3089 {
3090 	int err;
3091 
3092 	if (new_mtu == dev->mtu)
3093 		return 0;
3094 
3095 	/*	MTU must be positive.	 */
3096 	if (new_mtu < 0)
3097 		return -EINVAL;
3098 
3099 	if (!netif_device_present(dev))
3100 		return -ENODEV;
3101 
3102 	err = 0;
3103 	if (dev->change_mtu)
3104 		err = dev->change_mtu(dev, new_mtu);
3105 	else
3106 		dev->mtu = new_mtu;
3107 	if (!err && dev->flags & IFF_UP)
3108 		call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
3109 	return err;
3110 }
3111 
3112 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
3113 {
3114 	int err;
3115 
3116 	if (!dev->set_mac_address)
3117 		return -EOPNOTSUPP;
3118 	if (sa->sa_family != dev->type)
3119 		return -EINVAL;
3120 	if (!netif_device_present(dev))
3121 		return -ENODEV;
3122 	err = dev->set_mac_address(dev, sa);
3123 	if (!err)
3124 		call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
3125 	return err;
3126 }
3127 
3128 /*
3129  *	Perform the SIOCxIFxxx calls, inside read_lock(dev_base_lock)
3130  */
3131 static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd)
3132 {
3133 	int err;
3134 	struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
3135 
3136 	if (!dev)
3137 		return -ENODEV;
3138 
3139 	switch (cmd) {
3140 		case SIOCGIFFLAGS:	/* Get interface flags */
3141 			ifr->ifr_flags = dev_get_flags(dev);
3142 			return 0;
3143 
3144 		case SIOCGIFMETRIC:	/* Get the metric on the interface
3145 					   (currently unused) */
3146 			ifr->ifr_metric = 0;
3147 			return 0;
3148 
3149 		case SIOCGIFMTU:	/* Get the MTU of a device */
3150 			ifr->ifr_mtu = dev->mtu;
3151 			return 0;
3152 
3153 		case SIOCGIFHWADDR:
3154 			if (!dev->addr_len)
3155 				memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data);
3156 			else
3157 				memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr,
3158 				       min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
3159 			ifr->ifr_hwaddr.sa_family = dev->type;
3160 			return 0;
3161 
3162 		case SIOCGIFSLAVE:
3163 			err = -EINVAL;
3164 			break;
3165 
3166 		case SIOCGIFMAP:
3167 			ifr->ifr_map.mem_start = dev->mem_start;
3168 			ifr->ifr_map.mem_end   = dev->mem_end;
3169 			ifr->ifr_map.base_addr = dev->base_addr;
3170 			ifr->ifr_map.irq       = dev->irq;
3171 			ifr->ifr_map.dma       = dev->dma;
3172 			ifr->ifr_map.port      = dev->if_port;
3173 			return 0;
3174 
3175 		case SIOCGIFINDEX:
3176 			ifr->ifr_ifindex = dev->ifindex;
3177 			return 0;
3178 
3179 		case SIOCGIFTXQLEN:
3180 			ifr->ifr_qlen = dev->tx_queue_len;
3181 			return 0;
3182 
3183 		default:
3184 			/* dev_ioctl() should ensure this case
3185 			 * is never reached
3186 			 */
3187 			WARN_ON(1);
3188 			err = -EINVAL;
3189 			break;
3190 
3191 	}
3192 	return err;
3193 }
3194 
3195 /*
3196  *	Perform the SIOCxIFxxx calls, inside rtnl_lock()
3197  */
3198 static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd)
3199 {
3200 	int err;
3201 	struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
3202 
3203 	if (!dev)
3204 		return -ENODEV;
3205 
3206 	switch (cmd) {
3207 		case SIOCSIFFLAGS:	/* Set interface flags */
3208 			return dev_change_flags(dev, ifr->ifr_flags);
3209 
3210 		case SIOCSIFMETRIC:	/* Set the metric on the interface
3211 					   (currently unused) */
3212 			return -EOPNOTSUPP;
3213 
3214 		case SIOCSIFMTU:	/* Set the MTU of a device */
3215 			return dev_set_mtu(dev, ifr->ifr_mtu);
3216 
3217 		case SIOCSIFHWADDR:
3218 			return dev_set_mac_address(dev, &ifr->ifr_hwaddr);
3219 
3220 		case SIOCSIFHWBROADCAST:
3221 			if (ifr->ifr_hwaddr.sa_family != dev->type)
3222 				return -EINVAL;
3223 			memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data,
3224 			       min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
3225 			call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
3226 			return 0;
3227 
3228 		case SIOCSIFMAP:
3229 			if (dev->set_config) {
3230 				if (!netif_device_present(dev))
3231 					return -ENODEV;
3232 				return dev->set_config(dev, &ifr->ifr_map);
3233 			}
3234 			return -EOPNOTSUPP;
3235 
3236 		case SIOCADDMULTI:
3237 			if (!dev->set_multicast_list ||
3238 			    ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
3239 				return -EINVAL;
3240 			if (!netif_device_present(dev))
3241 				return -ENODEV;
3242 			return dev_mc_add(dev, ifr->ifr_hwaddr.sa_data,
3243 					  dev->addr_len, 1);
3244 
3245 		case SIOCDELMULTI:
3246 			if (!dev->set_multicast_list ||
3247 			    ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
3248 				return -EINVAL;
3249 			if (!netif_device_present(dev))
3250 				return -ENODEV;
3251 			return dev_mc_delete(dev, ifr->ifr_hwaddr.sa_data,
3252 					     dev->addr_len, 1);
3253 
3254 		case SIOCSIFTXQLEN:
3255 			if (ifr->ifr_qlen < 0)
3256 				return -EINVAL;
3257 			dev->tx_queue_len = ifr->ifr_qlen;
3258 			return 0;
3259 
3260 		case SIOCSIFNAME:
3261 			ifr->ifr_newname[IFNAMSIZ-1] = '\0';
3262 			return dev_change_name(dev, ifr->ifr_newname);
3263 
3264 		/*
3265 		 *	Unknown or private ioctl
3266 		 */
3267 
3268 		default:
3269 			if ((cmd >= SIOCDEVPRIVATE &&
3270 			    cmd <= SIOCDEVPRIVATE + 15) ||
3271 			    cmd == SIOCBONDENSLAVE ||
3272 			    cmd == SIOCBONDRELEASE ||
3273 			    cmd == SIOCBONDSETHWADDR ||
3274 			    cmd == SIOCBONDSLAVEINFOQUERY ||
3275 			    cmd == SIOCBONDINFOQUERY ||
3276 			    cmd == SIOCBONDCHANGEACTIVE ||
3277 			    cmd == SIOCGMIIPHY ||
3278 			    cmd == SIOCGMIIREG ||
3279 			    cmd == SIOCSMIIREG ||
3280 			    cmd == SIOCBRADDIF ||
3281 			    cmd == SIOCBRDELIF ||
3282 			    cmd == SIOCWANDEV) {
3283 				err = -EOPNOTSUPP;
3284 				if (dev->do_ioctl) {
3285 					if (netif_device_present(dev))
3286 						err = dev->do_ioctl(dev, ifr,
3287 								    cmd);
3288 					else
3289 						err = -ENODEV;
3290 				}
3291 			} else
3292 				err = -EINVAL;
3293 
3294 	}
3295 	return err;
3296 }
3297 
3298 /*
3299  *	This function handles all "interface"-type I/O control requests. The actual
3300  *	'doing' part of this is dev_ifsioc above.
3301  */
3302 
3303 /**
3304  *	dev_ioctl	-	network device ioctl
3305  *	@net: the applicable net namespace
3306  *	@cmd: command to issue
3307  *	@arg: pointer to a struct ifreq in user space
3308  *
3309  *	Issue ioctl functions to devices. This is normally called by the
3310  *	user space syscall interfaces but can sometimes be useful for
3311  *	other purposes. The return value is the return from the syscall if
3312  *	positive or a negative errno code on error.
3313  */
3314 
3315 int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg)
3316 {
3317 	struct ifreq ifr;
3318 	int ret;
3319 	char *colon;
3320 
3321 	/* One special case: SIOCGIFCONF takes ifconf argument
3322 	   and requires shared lock, because it sleeps writing
3323 	   to user space.
3324 	 */
3325 
3326 	if (cmd == SIOCGIFCONF) {
3327 		rtnl_lock();
3328 		ret = dev_ifconf(net, (char __user *) arg);
3329 		rtnl_unlock();
3330 		return ret;
3331 	}
3332 	if (cmd == SIOCGIFNAME)
3333 		return dev_ifname(net, (struct ifreq __user *)arg);
3334 
3335 	if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
3336 		return -EFAULT;
3337 
3338 	ifr.ifr_name[IFNAMSIZ-1] = 0;
3339 
3340 	colon = strchr(ifr.ifr_name, ':');
3341 	if (colon)
3342 		*colon = 0;
3343 
3344 	/*
3345 	 *	See which interface the caller is talking about.
3346 	 */
3347 
3348 	switch (cmd) {
3349 		/*
3350 		 *	These ioctl calls:
3351 		 *	- can be done by all.
3352 		 *	- atomic and do not require locking.
3353 		 *	- return a value
3354 		 */
3355 		case SIOCGIFFLAGS:
3356 		case SIOCGIFMETRIC:
3357 		case SIOCGIFMTU:
3358 		case SIOCGIFHWADDR:
3359 		case SIOCGIFSLAVE:
3360 		case SIOCGIFMAP:
3361 		case SIOCGIFINDEX:
3362 		case SIOCGIFTXQLEN:
3363 			dev_load(net, ifr.ifr_name);
3364 			read_lock(&dev_base_lock);
3365 			ret = dev_ifsioc_locked(net, &ifr, cmd);
3366 			read_unlock(&dev_base_lock);
3367 			if (!ret) {
3368 				if (colon)
3369 					*colon = ':';
3370 				if (copy_to_user(arg, &ifr,
3371 						 sizeof(struct ifreq)))
3372 					ret = -EFAULT;
3373 			}
3374 			return ret;
3375 
3376 		case SIOCETHTOOL:
3377 			dev_load(net, ifr.ifr_name);
3378 			rtnl_lock();
3379 			ret = dev_ethtool(net, &ifr);
3380 			rtnl_unlock();
3381 			if (!ret) {
3382 				if (colon)
3383 					*colon = ':';
3384 				if (copy_to_user(arg, &ifr,
3385 						 sizeof(struct ifreq)))
3386 					ret = -EFAULT;
3387 			}
3388 			return ret;
3389 
3390 		/*
3391 		 *	These ioctl calls:
3392 		 *	- require superuser power.
3393 		 *	- require strict serialization.
3394 		 *	- return a value
3395 		 */
3396 		case SIOCGMIIPHY:
3397 		case SIOCGMIIREG:
3398 		case SIOCSIFNAME:
3399 			if (!capable(CAP_NET_ADMIN))
3400 				return -EPERM;
3401 			dev_load(net, ifr.ifr_name);
3402 			rtnl_lock();
3403 			ret = dev_ifsioc(net, &ifr, cmd);
3404 			rtnl_unlock();
3405 			if (!ret) {
3406 				if (colon)
3407 					*colon = ':';
3408 				if (copy_to_user(arg, &ifr,
3409 						 sizeof(struct ifreq)))
3410 					ret = -EFAULT;
3411 			}
3412 			return ret;
3413 
3414 		/*
3415 		 *	These ioctl calls:
3416 		 *	- require superuser power.
3417 		 *	- require strict serialization.
3418 		 *	- do not return a value
3419 		 */
3420 		case SIOCSIFFLAGS:
3421 		case SIOCSIFMETRIC:
3422 		case SIOCSIFMTU:
3423 		case SIOCSIFMAP:
3424 		case SIOCSIFHWADDR:
3425 		case SIOCSIFSLAVE:
3426 		case SIOCADDMULTI:
3427 		case SIOCDELMULTI:
3428 		case SIOCSIFHWBROADCAST:
3429 		case SIOCSIFTXQLEN:
3430 		case SIOCSMIIREG:
3431 		case SIOCBONDENSLAVE:
3432 		case SIOCBONDRELEASE:
3433 		case SIOCBONDSETHWADDR:
3434 		case SIOCBONDCHANGEACTIVE:
3435 		case SIOCBRADDIF:
3436 		case SIOCBRDELIF:
3437 			if (!capable(CAP_NET_ADMIN))
3438 				return -EPERM;
3439 			/* fall through */
3440 		case SIOCBONDSLAVEINFOQUERY:
3441 		case SIOCBONDINFOQUERY:
3442 			dev_load(net, ifr.ifr_name);
3443 			rtnl_lock();
3444 			ret = dev_ifsioc(net, &ifr, cmd);
3445 			rtnl_unlock();
3446 			return ret;
3447 
3448 		case SIOCGIFMEM:
3449 			/* Get the per device memory space. We can add this but
3450 			 * currently do not support it */
3451 		case SIOCSIFMEM:
3452 			/* Set the per device memory buffer space.
3453 			 * Not applicable in our case */
3454 		case SIOCSIFLINK:
3455 			return -EINVAL;
3456 
3457 		/*
3458 		 *	Unknown or private ioctl.
3459 		 */
3460 		default:
3461 			if (cmd == SIOCWANDEV ||
3462 			    (cmd >= SIOCDEVPRIVATE &&
3463 			     cmd <= SIOCDEVPRIVATE + 15)) {
3464 				dev_load(net, ifr.ifr_name);
3465 				rtnl_lock();
3466 				ret = dev_ifsioc(net, &ifr, cmd);
3467 				rtnl_unlock();
3468 				if (!ret && copy_to_user(arg, &ifr,
3469 							 sizeof(struct ifreq)))
3470 					ret = -EFAULT;
3471 				return ret;
3472 			}
3473 			/* Take care of Wireless Extensions */
3474 			if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)
3475 				return wext_handle_ioctl(net, &ifr, cmd, arg);
3476 			return -EINVAL;
3477 	}
3478 }
3479 
3480 
3481 /**
3482  *	dev_new_index	-	allocate an ifindex
3483  *	@net: the applicable net namespace
3484  *
3485  *	Returns a suitable unique value for a new device interface
3486  *	number.  The caller must hold the rtnl semaphore or the
3487  *	dev_base_lock to be sure it remains unique.
3488  */
3489 static int dev_new_index(struct net *net)
3490 {
3491 	static int ifindex;
3492 	for (;;) {
3493 		if (++ifindex <= 0)
3494 			ifindex = 1;
3495 		if (!__dev_get_by_index(net, ifindex))
3496 			return ifindex;
3497 	}
3498 }
3499 
3500 /* Delayed registration/unregisteration */
3501 static DEFINE_SPINLOCK(net_todo_list_lock);
3502 static struct list_head net_todo_list = LIST_HEAD_INIT(net_todo_list);
3503 
3504 static void net_set_todo(struct net_device *dev)
3505 {
3506 	spin_lock(&net_todo_list_lock);
3507 	list_add_tail(&dev->todo_list, &net_todo_list);
3508 	spin_unlock(&net_todo_list_lock);
3509 }
3510 
3511 static void rollback_registered(struct net_device *dev)
3512 {
3513 	BUG_ON(dev_boot_phase);
3514 	ASSERT_RTNL();
3515 
3516 	/* Some devices call without registering for initialization unwind. */
3517 	if (dev->reg_state == NETREG_UNINITIALIZED) {
3518 		printk(KERN_DEBUG "unregister_netdevice: device %s/%p never "
3519 				  "was registered\n", dev->name, dev);
3520 
3521 		WARN_ON(1);
3522 		return;
3523 	}
3524 
3525 	BUG_ON(dev->reg_state != NETREG_REGISTERED);
3526 
3527 	/* If device is running, close it first. */
3528 	dev_close(dev);
3529 
3530 	/* And unlink it from device chain. */
3531 	unlist_netdevice(dev);
3532 
3533 	dev->reg_state = NETREG_UNREGISTERING;
3534 
3535 	synchronize_net();
3536 
3537 	/* Shutdown queueing discipline. */
3538 	dev_shutdown(dev);
3539 
3540 
3541 	/* Notify protocols, that we are about to destroy
3542 	   this device. They should clean all the things.
3543 	*/
3544 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
3545 
3546 	/*
3547 	 *	Flush the unicast and multicast chains
3548 	 */
3549 	dev_addr_discard(dev);
3550 
3551 	if (dev->uninit)
3552 		dev->uninit(dev);
3553 
3554 	/* Notifier chain MUST detach us from master device. */
3555 	BUG_TRAP(!dev->master);
3556 
3557 	/* Remove entries from kobject tree */
3558 	netdev_unregister_kobject(dev);
3559 
3560 	synchronize_net();
3561 
3562 	dev_put(dev);
3563 }
3564 
3565 /**
3566  *	register_netdevice	- register a network device
3567  *	@dev: device to register
3568  *
3569  *	Take a completed network device structure and add it to the kernel
3570  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
3571  *	chain. 0 is returned on success. A negative errno code is returned
3572  *	on a failure to set up the device, or if the name is a duplicate.
3573  *
3574  *	Callers must hold the rtnl semaphore. You may want
3575  *	register_netdev() instead of this.
3576  *
3577  *	BUGS:
3578  *	The locking appears insufficient to guarantee two parallel registers
3579  *	will not get the same name.
3580  */
3581 
3582 int register_netdevice(struct net_device *dev)
3583 {
3584 	struct hlist_head *head;
3585 	struct hlist_node *p;
3586 	int ret;
3587 	struct net *net;
3588 
3589 	BUG_ON(dev_boot_phase);
3590 	ASSERT_RTNL();
3591 
3592 	might_sleep();
3593 
3594 	/* When net_device's are persistent, this will be fatal. */
3595 	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
3596 	BUG_ON(!dev->nd_net);
3597 	net = dev->nd_net;
3598 
3599 	spin_lock_init(&dev->queue_lock);
3600 	spin_lock_init(&dev->_xmit_lock);
3601 	netdev_set_lockdep_class(&dev->_xmit_lock, dev->type);
3602 	dev->xmit_lock_owner = -1;
3603 	spin_lock_init(&dev->ingress_lock);
3604 
3605 	dev->iflink = -1;
3606 
3607 	/* Init, if this function is available */
3608 	if (dev->init) {
3609 		ret = dev->init(dev);
3610 		if (ret) {
3611 			if (ret > 0)
3612 				ret = -EIO;
3613 			goto out;
3614 		}
3615 	}
3616 
3617 	if (!dev_valid_name(dev->name)) {
3618 		ret = -EINVAL;
3619 		goto err_uninit;
3620 	}
3621 
3622 	dev->ifindex = dev_new_index(net);
3623 	if (dev->iflink == -1)
3624 		dev->iflink = dev->ifindex;
3625 
3626 	/* Check for existence of name */
3627 	head = dev_name_hash(net, dev->name);
3628 	hlist_for_each(p, head) {
3629 		struct net_device *d
3630 			= hlist_entry(p, struct net_device, name_hlist);
3631 		if (!strncmp(d->name, dev->name, IFNAMSIZ)) {
3632 			ret = -EEXIST;
3633 			goto err_uninit;
3634 		}
3635 	}
3636 
3637 	/* Fix illegal checksum combinations */
3638 	if ((dev->features & NETIF_F_HW_CSUM) &&
3639 	    (dev->features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
3640 		printk(KERN_NOTICE "%s: mixed HW and IP checksum settings.\n",
3641 		       dev->name);
3642 		dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
3643 	}
3644 
3645 	if ((dev->features & NETIF_F_NO_CSUM) &&
3646 	    (dev->features & (NETIF_F_HW_CSUM|NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
3647 		printk(KERN_NOTICE "%s: mixed no checksumming and other settings.\n",
3648 		       dev->name);
3649 		dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM|NETIF_F_HW_CSUM);
3650 	}
3651 
3652 
3653 	/* Fix illegal SG+CSUM combinations. */
3654 	if ((dev->features & NETIF_F_SG) &&
3655 	    !(dev->features & NETIF_F_ALL_CSUM)) {
3656 		printk(KERN_NOTICE "%s: Dropping NETIF_F_SG since no checksum feature.\n",
3657 		       dev->name);
3658 		dev->features &= ~NETIF_F_SG;
3659 	}
3660 
3661 	/* TSO requires that SG is present as well. */
3662 	if ((dev->features & NETIF_F_TSO) &&
3663 	    !(dev->features & NETIF_F_SG)) {
3664 		printk(KERN_NOTICE "%s: Dropping NETIF_F_TSO since no SG feature.\n",
3665 		       dev->name);
3666 		dev->features &= ~NETIF_F_TSO;
3667 	}
3668 	if (dev->features & NETIF_F_UFO) {
3669 		if (!(dev->features & NETIF_F_HW_CSUM)) {
3670 			printk(KERN_ERR "%s: Dropping NETIF_F_UFO since no "
3671 					"NETIF_F_HW_CSUM feature.\n",
3672 							dev->name);
3673 			dev->features &= ~NETIF_F_UFO;
3674 		}
3675 		if (!(dev->features & NETIF_F_SG)) {
3676 			printk(KERN_ERR "%s: Dropping NETIF_F_UFO since no "
3677 					"NETIF_F_SG feature.\n",
3678 					dev->name);
3679 			dev->features &= ~NETIF_F_UFO;
3680 		}
3681 	}
3682 
3683 	ret = netdev_register_kobject(dev);
3684 	if (ret)
3685 		goto err_uninit;
3686 	dev->reg_state = NETREG_REGISTERED;
3687 
3688 	/*
3689 	 *	Default initial state at registry is that the
3690 	 *	device is present.
3691 	 */
3692 
3693 	set_bit(__LINK_STATE_PRESENT, &dev->state);
3694 
3695 	dev_init_scheduler(dev);
3696 	dev_hold(dev);
3697 	list_netdevice(dev);
3698 
3699 	/* Notify protocols, that a new device appeared. */
3700 	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
3701 	ret = notifier_to_errno(ret);
3702 	if (ret) {
3703 		rollback_registered(dev);
3704 		dev->reg_state = NETREG_UNREGISTERED;
3705 	}
3706 
3707 out:
3708 	return ret;
3709 
3710 err_uninit:
3711 	if (dev->uninit)
3712 		dev->uninit(dev);
3713 	goto out;
3714 }
3715 
3716 /**
3717  *	register_netdev	- register a network device
3718  *	@dev: device to register
3719  *
3720  *	Take a completed network device structure and add it to the kernel
3721  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
3722  *	chain. 0 is returned on success. A negative errno code is returned
3723  *	on a failure to set up the device, or if the name is a duplicate.
3724  *
3725  *	This is a wrapper around register_netdevice that takes the rtnl semaphore
3726  *	and expands the device name if you passed a format string to
3727  *	alloc_netdev.
3728  */
3729 int register_netdev(struct net_device *dev)
3730 {
3731 	int err;
3732 
3733 	rtnl_lock();
3734 
3735 	/*
3736 	 * If the name is a format string the caller wants us to do a
3737 	 * name allocation.
3738 	 */
3739 	if (strchr(dev->name, '%')) {
3740 		err = dev_alloc_name(dev, dev->name);
3741 		if (err < 0)
3742 			goto out;
3743 	}
3744 
3745 	err = register_netdevice(dev);
3746 out:
3747 	rtnl_unlock();
3748 	return err;
3749 }
3750 EXPORT_SYMBOL(register_netdev);
3751 
3752 /*
3753  * netdev_wait_allrefs - wait until all references are gone.
3754  *
3755  * This is called when unregistering network devices.
3756  *
3757  * Any protocol or device that holds a reference should register
3758  * for netdevice notification, and cleanup and put back the
3759  * reference if they receive an UNREGISTER event.
3760  * We can get stuck here if buggy protocols don't correctly
3761  * call dev_put.
3762  */
3763 static void netdev_wait_allrefs(struct net_device *dev)
3764 {
3765 	unsigned long rebroadcast_time, warning_time;
3766 
3767 	rebroadcast_time = warning_time = jiffies;
3768 	while (atomic_read(&dev->refcnt) != 0) {
3769 		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
3770 			rtnl_lock();
3771 
3772 			/* Rebroadcast unregister notification */
3773 			call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
3774 
3775 			if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
3776 				     &dev->state)) {
3777 				/* We must not have linkwatch events
3778 				 * pending on unregister. If this
3779 				 * happens, we simply run the queue
3780 				 * unscheduled, resulting in a noop
3781 				 * for this device.
3782 				 */
3783 				linkwatch_run_queue();
3784 			}
3785 
3786 			__rtnl_unlock();
3787 
3788 			rebroadcast_time = jiffies;
3789 		}
3790 
3791 		msleep(250);
3792 
3793 		if (time_after(jiffies, warning_time + 10 * HZ)) {
3794 			printk(KERN_EMERG "unregister_netdevice: "
3795 			       "waiting for %s to become free. Usage "
3796 			       "count = %d\n",
3797 			       dev->name, atomic_read(&dev->refcnt));
3798 			warning_time = jiffies;
3799 		}
3800 	}
3801 }
3802 
3803 /* The sequence is:
3804  *
3805  *	rtnl_lock();
3806  *	...
3807  *	register_netdevice(x1);
3808  *	register_netdevice(x2);
3809  *	...
3810  *	unregister_netdevice(y1);
3811  *	unregister_netdevice(y2);
3812  *      ...
3813  *	rtnl_unlock();
3814  *	free_netdev(y1);
3815  *	free_netdev(y2);
3816  *
3817  * We are invoked by rtnl_unlock() after it drops the semaphore.
3818  * This allows us to deal with problems:
3819  * 1) We can delete sysfs objects which invoke hotplug
3820  *    without deadlocking with linkwatch via keventd.
3821  * 2) Since we run with the RTNL semaphore not held, we can sleep
3822  *    safely in order to wait for the netdev refcnt to drop to zero.
3823  */
3824 static DEFINE_MUTEX(net_todo_run_mutex);
3825 void netdev_run_todo(void)
3826 {
3827 	struct list_head list;
3828 
3829 	/* Need to guard against multiple cpu's getting out of order. */
3830 	mutex_lock(&net_todo_run_mutex);
3831 
3832 	/* Not safe to do outside the semaphore.  We must not return
3833 	 * until all unregister events invoked by the local processor
3834 	 * have been completed (either by this todo run, or one on
3835 	 * another cpu).
3836 	 */
3837 	if (list_empty(&net_todo_list))
3838 		goto out;
3839 
3840 	/* Snapshot list, allow later requests */
3841 	spin_lock(&net_todo_list_lock);
3842 	list_replace_init(&net_todo_list, &list);
3843 	spin_unlock(&net_todo_list_lock);
3844 
3845 	while (!list_empty(&list)) {
3846 		struct net_device *dev
3847 			= list_entry(list.next, struct net_device, todo_list);
3848 		list_del(&dev->todo_list);
3849 
3850 		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
3851 			printk(KERN_ERR "network todo '%s' but state %d\n",
3852 			       dev->name, dev->reg_state);
3853 			dump_stack();
3854 			continue;
3855 		}
3856 
3857 		dev->reg_state = NETREG_UNREGISTERED;
3858 
3859 		netdev_wait_allrefs(dev);
3860 
3861 		/* paranoia */
3862 		BUG_ON(atomic_read(&dev->refcnt));
3863 		BUG_TRAP(!dev->ip_ptr);
3864 		BUG_TRAP(!dev->ip6_ptr);
3865 		BUG_TRAP(!dev->dn_ptr);
3866 
3867 		if (dev->destructor)
3868 			dev->destructor(dev);
3869 
3870 		/* Free network device */
3871 		kobject_put(&dev->dev.kobj);
3872 	}
3873 
3874 out:
3875 	mutex_unlock(&net_todo_run_mutex);
3876 }
3877 
3878 static struct net_device_stats *internal_stats(struct net_device *dev)
3879 {
3880 	return &dev->stats;
3881 }
3882 
3883 /**
3884  *	alloc_netdev_mq - allocate network device
3885  *	@sizeof_priv:	size of private data to allocate space for
3886  *	@name:		device name format string
3887  *	@setup:		callback to initialize device
3888  *	@queue_count:	the number of subqueues to allocate
3889  *
3890  *	Allocates a struct net_device with private data area for driver use
3891  *	and performs basic initialization.  Also allocates subquue structs
3892  *	for each queue on the device at the end of the netdevice.
3893  */
3894 struct net_device *alloc_netdev_mq(int sizeof_priv, const char *name,
3895 		void (*setup)(struct net_device *), unsigned int queue_count)
3896 {
3897 	void *p;
3898 	struct net_device *dev;
3899 	int alloc_size;
3900 
3901 	BUG_ON(strlen(name) >= sizeof(dev->name));
3902 
3903 	/* ensure 32-byte alignment of both the device and private area */
3904 	alloc_size = (sizeof(*dev) + NETDEV_ALIGN_CONST +
3905 		     (sizeof(struct net_device_subqueue) * (queue_count - 1))) &
3906 		     ~NETDEV_ALIGN_CONST;
3907 	alloc_size += sizeof_priv + NETDEV_ALIGN_CONST;
3908 
3909 	p = kzalloc(alloc_size, GFP_KERNEL);
3910 	if (!p) {
3911 		printk(KERN_ERR "alloc_netdev: Unable to allocate device.\n");
3912 		return NULL;
3913 	}
3914 
3915 	dev = (struct net_device *)
3916 		(((long)p + NETDEV_ALIGN_CONST) & ~NETDEV_ALIGN_CONST);
3917 	dev->padded = (char *)dev - (char *)p;
3918 	dev->nd_net = &init_net;
3919 
3920 	if (sizeof_priv) {
3921 		dev->priv = ((char *)dev +
3922 			     ((sizeof(struct net_device) +
3923 			       (sizeof(struct net_device_subqueue) *
3924 				(queue_count - 1)) + NETDEV_ALIGN_CONST)
3925 			      & ~NETDEV_ALIGN_CONST));
3926 	}
3927 
3928 	dev->egress_subqueue_count = queue_count;
3929 
3930 	dev->get_stats = internal_stats;
3931 	netpoll_netdev_init(dev);
3932 	setup(dev);
3933 	strcpy(dev->name, name);
3934 	return dev;
3935 }
3936 EXPORT_SYMBOL(alloc_netdev_mq);
3937 
3938 /**
3939  *	free_netdev - free network device
3940  *	@dev: device
3941  *
3942  *	This function does the last stage of destroying an allocated device
3943  * 	interface. The reference to the device object is released.
3944  *	If this is the last reference then it will be freed.
3945  */
3946 void free_netdev(struct net_device *dev)
3947 {
3948 	/*  Compatibility with error handling in drivers */
3949 	if (dev->reg_state == NETREG_UNINITIALIZED) {
3950 		kfree((char *)dev - dev->padded);
3951 		return;
3952 	}
3953 
3954 	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
3955 	dev->reg_state = NETREG_RELEASED;
3956 
3957 	/* will free via device release */
3958 	put_device(&dev->dev);
3959 }
3960 
3961 /* Synchronize with packet receive processing. */
3962 void synchronize_net(void)
3963 {
3964 	might_sleep();
3965 	synchronize_rcu();
3966 }
3967 
3968 /**
3969  *	unregister_netdevice - remove device from the kernel
3970  *	@dev: device
3971  *
3972  *	This function shuts down a device interface and removes it
3973  *	from the kernel tables. On success 0 is returned, on a failure
3974  *	a negative errno code is returned.
3975  *
3976  *	Callers must hold the rtnl semaphore.  You may want
3977  *	unregister_netdev() instead of this.
3978  */
3979 
3980 void unregister_netdevice(struct net_device *dev)
3981 {
3982 	rollback_registered(dev);
3983 	/* Finish processing unregister after unlock */
3984 	net_set_todo(dev);
3985 }
3986 
3987 /**
3988  *	unregister_netdev - remove device from the kernel
3989  *	@dev: device
3990  *
3991  *	This function shuts down a device interface and removes it
3992  *	from the kernel tables. On success 0 is returned, on a failure
3993  *	a negative errno code is returned.
3994  *
3995  *	This is just a wrapper for unregister_netdevice that takes
3996  *	the rtnl semaphore.  In general you want to use this and not
3997  *	unregister_netdevice.
3998  */
3999 void unregister_netdev(struct net_device *dev)
4000 {
4001 	rtnl_lock();
4002 	unregister_netdevice(dev);
4003 	rtnl_unlock();
4004 }
4005 
4006 EXPORT_SYMBOL(unregister_netdev);
4007 
4008 /**
4009  *	dev_change_net_namespace - move device to different nethost namespace
4010  *	@dev: device
4011  *	@net: network namespace
4012  *	@pat: If not NULL name pattern to try if the current device name
4013  *	      is already taken in the destination network namespace.
4014  *
4015  *	This function shuts down a device interface and moves it
4016  *	to a new network namespace. On success 0 is returned, on
4017  *	a failure a netagive errno code is returned.
4018  *
4019  *	Callers must hold the rtnl semaphore.
4020  */
4021 
4022 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
4023 {
4024 	char buf[IFNAMSIZ];
4025 	const char *destname;
4026 	int err;
4027 
4028 	ASSERT_RTNL();
4029 
4030 	/* Don't allow namespace local devices to be moved. */
4031 	err = -EINVAL;
4032 	if (dev->features & NETIF_F_NETNS_LOCAL)
4033 		goto out;
4034 
4035 	/* Ensure the device has been registrered */
4036 	err = -EINVAL;
4037 	if (dev->reg_state != NETREG_REGISTERED)
4038 		goto out;
4039 
4040 	/* Get out if there is nothing todo */
4041 	err = 0;
4042 	if (dev->nd_net == net)
4043 		goto out;
4044 
4045 	/* Pick the destination device name, and ensure
4046 	 * we can use it in the destination network namespace.
4047 	 */
4048 	err = -EEXIST;
4049 	destname = dev->name;
4050 	if (__dev_get_by_name(net, destname)) {
4051 		/* We get here if we can't use the current device name */
4052 		if (!pat)
4053 			goto out;
4054 		if (!dev_valid_name(pat))
4055 			goto out;
4056 		if (strchr(pat, '%')) {
4057 			if (__dev_alloc_name(net, pat, buf) < 0)
4058 				goto out;
4059 			destname = buf;
4060 		} else
4061 			destname = pat;
4062 		if (__dev_get_by_name(net, destname))
4063 			goto out;
4064 	}
4065 
4066 	/*
4067 	 * And now a mini version of register_netdevice unregister_netdevice.
4068 	 */
4069 
4070 	/* If device is running close it first. */
4071 	dev_close(dev);
4072 
4073 	/* And unlink it from device chain */
4074 	err = -ENODEV;
4075 	unlist_netdevice(dev);
4076 
4077 	synchronize_net();
4078 
4079 	/* Shutdown queueing discipline. */
4080 	dev_shutdown(dev);
4081 
4082 	/* Notify protocols, that we are about to destroy
4083 	   this device. They should clean all the things.
4084 	*/
4085 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
4086 
4087 	/*
4088 	 *	Flush the unicast and multicast chains
4089 	 */
4090 	dev_addr_discard(dev);
4091 
4092 	/* Actually switch the network namespace */
4093 	dev->nd_net = net;
4094 
4095 	/* Assign the new device name */
4096 	if (destname != dev->name)
4097 		strcpy(dev->name, destname);
4098 
4099 	/* If there is an ifindex conflict assign a new one */
4100 	if (__dev_get_by_index(net, dev->ifindex)) {
4101 		int iflink = (dev->iflink == dev->ifindex);
4102 		dev->ifindex = dev_new_index(net);
4103 		if (iflink)
4104 			dev->iflink = dev->ifindex;
4105 	}
4106 
4107 	/* Fixup kobjects */
4108 	err = device_rename(&dev->dev, dev->name);
4109 	WARN_ON(err);
4110 
4111 	/* Add the device back in the hashes */
4112 	list_netdevice(dev);
4113 
4114 	/* Notify protocols, that a new device appeared. */
4115 	call_netdevice_notifiers(NETDEV_REGISTER, dev);
4116 
4117 	synchronize_net();
4118 	err = 0;
4119 out:
4120 	return err;
4121 }
4122 
4123 static int dev_cpu_callback(struct notifier_block *nfb,
4124 			    unsigned long action,
4125 			    void *ocpu)
4126 {
4127 	struct sk_buff **list_skb;
4128 	struct net_device **list_net;
4129 	struct sk_buff *skb;
4130 	unsigned int cpu, oldcpu = (unsigned long)ocpu;
4131 	struct softnet_data *sd, *oldsd;
4132 
4133 	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
4134 		return NOTIFY_OK;
4135 
4136 	local_irq_disable();
4137 	cpu = smp_processor_id();
4138 	sd = &per_cpu(softnet_data, cpu);
4139 	oldsd = &per_cpu(softnet_data, oldcpu);
4140 
4141 	/* Find end of our completion_queue. */
4142 	list_skb = &sd->completion_queue;
4143 	while (*list_skb)
4144 		list_skb = &(*list_skb)->next;
4145 	/* Append completion queue from offline CPU. */
4146 	*list_skb = oldsd->completion_queue;
4147 	oldsd->completion_queue = NULL;
4148 
4149 	/* Find end of our output_queue. */
4150 	list_net = &sd->output_queue;
4151 	while (*list_net)
4152 		list_net = &(*list_net)->next_sched;
4153 	/* Append output queue from offline CPU. */
4154 	*list_net = oldsd->output_queue;
4155 	oldsd->output_queue = NULL;
4156 
4157 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
4158 	local_irq_enable();
4159 
4160 	/* Process offline CPU's input_pkt_queue */
4161 	while ((skb = __skb_dequeue(&oldsd->input_pkt_queue)))
4162 		netif_rx(skb);
4163 
4164 	return NOTIFY_OK;
4165 }
4166 
4167 #ifdef CONFIG_NET_DMA
4168 /**
4169  * net_dma_rebalance - try to maintain one DMA channel per CPU
4170  * @net_dma: DMA client and associated data (lock, channels, channel_mask)
4171  *
4172  * This is called when the number of channels allocated to the net_dma client
4173  * changes.  The net_dma client tries to have one DMA channel per CPU.
4174  */
4175 
4176 static void net_dma_rebalance(struct net_dma *net_dma)
4177 {
4178 	unsigned int cpu, i, n, chan_idx;
4179 	struct dma_chan *chan;
4180 
4181 	if (cpus_empty(net_dma->channel_mask)) {
4182 		for_each_online_cpu(cpu)
4183 			rcu_assign_pointer(per_cpu(softnet_data, cpu).net_dma, NULL);
4184 		return;
4185 	}
4186 
4187 	i = 0;
4188 	cpu = first_cpu(cpu_online_map);
4189 
4190 	for_each_cpu_mask(chan_idx, net_dma->channel_mask) {
4191 		chan = net_dma->channels[chan_idx];
4192 
4193 		n = ((num_online_cpus() / cpus_weight(net_dma->channel_mask))
4194 		   + (i < (num_online_cpus() %
4195 			cpus_weight(net_dma->channel_mask)) ? 1 : 0));
4196 
4197 		while(n) {
4198 			per_cpu(softnet_data, cpu).net_dma = chan;
4199 			cpu = next_cpu(cpu, cpu_online_map);
4200 			n--;
4201 		}
4202 		i++;
4203 	}
4204 }
4205 
4206 /**
4207  * netdev_dma_event - event callback for the net_dma_client
4208  * @client: should always be net_dma_client
4209  * @chan: DMA channel for the event
4210  * @state: DMA state to be handled
4211  */
4212 static enum dma_state_client
4213 netdev_dma_event(struct dma_client *client, struct dma_chan *chan,
4214 	enum dma_state state)
4215 {
4216 	int i, found = 0, pos = -1;
4217 	struct net_dma *net_dma =
4218 		container_of(client, struct net_dma, client);
4219 	enum dma_state_client ack = DMA_DUP; /* default: take no action */
4220 
4221 	spin_lock(&net_dma->lock);
4222 	switch (state) {
4223 	case DMA_RESOURCE_AVAILABLE:
4224 		for (i = 0; i < NR_CPUS; i++)
4225 			if (net_dma->channels[i] == chan) {
4226 				found = 1;
4227 				break;
4228 			} else if (net_dma->channels[i] == NULL && pos < 0)
4229 				pos = i;
4230 
4231 		if (!found && pos >= 0) {
4232 			ack = DMA_ACK;
4233 			net_dma->channels[pos] = chan;
4234 			cpu_set(pos, net_dma->channel_mask);
4235 			net_dma_rebalance(net_dma);
4236 		}
4237 		break;
4238 	case DMA_RESOURCE_REMOVED:
4239 		for (i = 0; i < NR_CPUS; i++)
4240 			if (net_dma->channels[i] == chan) {
4241 				found = 1;
4242 				pos = i;
4243 				break;
4244 			}
4245 
4246 		if (found) {
4247 			ack = DMA_ACK;
4248 			cpu_clear(pos, net_dma->channel_mask);
4249 			net_dma->channels[i] = NULL;
4250 			net_dma_rebalance(net_dma);
4251 		}
4252 		break;
4253 	default:
4254 		break;
4255 	}
4256 	spin_unlock(&net_dma->lock);
4257 
4258 	return ack;
4259 }
4260 
4261 /**
4262  * netdev_dma_regiser - register the networking subsystem as a DMA client
4263  */
4264 static int __init netdev_dma_register(void)
4265 {
4266 	spin_lock_init(&net_dma.lock);
4267 	dma_cap_set(DMA_MEMCPY, net_dma.client.cap_mask);
4268 	dma_async_client_register(&net_dma.client);
4269 	dma_async_client_chan_request(&net_dma.client);
4270 	return 0;
4271 }
4272 
4273 #else
4274 static int __init netdev_dma_register(void) { return -ENODEV; }
4275 #endif /* CONFIG_NET_DMA */
4276 
4277 /**
4278  *	netdev_compute_feature - compute conjunction of two feature sets
4279  *	@all: first feature set
4280  *	@one: second feature set
4281  *
4282  *	Computes a new feature set after adding a device with feature set
4283  *	@one to the master device with current feature set @all.  Returns
4284  *	the new feature set.
4285  */
4286 int netdev_compute_features(unsigned long all, unsigned long one)
4287 {
4288 	/* if device needs checksumming, downgrade to hw checksumming */
4289 	if (all & NETIF_F_NO_CSUM && !(one & NETIF_F_NO_CSUM))
4290 		all ^= NETIF_F_NO_CSUM | NETIF_F_HW_CSUM;
4291 
4292 	/* if device can't do all checksum, downgrade to ipv4/ipv6 */
4293 	if (all & NETIF_F_HW_CSUM && !(one & NETIF_F_HW_CSUM))
4294 		all ^= NETIF_F_HW_CSUM
4295 			| NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
4296 
4297 	if (one & NETIF_F_GSO)
4298 		one |= NETIF_F_GSO_SOFTWARE;
4299 	one |= NETIF_F_GSO;
4300 
4301 	/* If even one device supports robust GSO, enable it for all. */
4302 	if (one & NETIF_F_GSO_ROBUST)
4303 		all |= NETIF_F_GSO_ROBUST;
4304 
4305 	all &= one | NETIF_F_LLTX;
4306 
4307 	if (!(all & NETIF_F_ALL_CSUM))
4308 		all &= ~NETIF_F_SG;
4309 	if (!(all & NETIF_F_SG))
4310 		all &= ~NETIF_F_GSO_MASK;
4311 
4312 	return all;
4313 }
4314 EXPORT_SYMBOL(netdev_compute_features);
4315 
4316 static struct hlist_head *netdev_create_hash(void)
4317 {
4318 	int i;
4319 	struct hlist_head *hash;
4320 
4321 	hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
4322 	if (hash != NULL)
4323 		for (i = 0; i < NETDEV_HASHENTRIES; i++)
4324 			INIT_HLIST_HEAD(&hash[i]);
4325 
4326 	return hash;
4327 }
4328 
4329 /* Initialize per network namespace state */
4330 static int __net_init netdev_init(struct net *net)
4331 {
4332 	INIT_LIST_HEAD(&net->dev_base_head);
4333 	rwlock_init(&dev_base_lock);
4334 
4335 	net->dev_name_head = netdev_create_hash();
4336 	if (net->dev_name_head == NULL)
4337 		goto err_name;
4338 
4339 	net->dev_index_head = netdev_create_hash();
4340 	if (net->dev_index_head == NULL)
4341 		goto err_idx;
4342 
4343 	return 0;
4344 
4345 err_idx:
4346 	kfree(net->dev_name_head);
4347 err_name:
4348 	return -ENOMEM;
4349 }
4350 
4351 static void __net_exit netdev_exit(struct net *net)
4352 {
4353 	kfree(net->dev_name_head);
4354 	kfree(net->dev_index_head);
4355 }
4356 
4357 static struct pernet_operations  netdev_net_ops = {
4358 	.init = netdev_init,
4359 	.exit = netdev_exit,
4360 };
4361 
4362 static void __net_exit default_device_exit(struct net *net)
4363 {
4364 	struct net_device *dev, *next;
4365 	/*
4366 	 * Push all migratable of the network devices back to the
4367 	 * initial network namespace
4368 	 */
4369 	rtnl_lock();
4370 	for_each_netdev_safe(net, dev, next) {
4371 		int err;
4372 
4373 		/* Ignore unmoveable devices (i.e. loopback) */
4374 		if (dev->features & NETIF_F_NETNS_LOCAL)
4375 			continue;
4376 
4377 		/* Push remaing network devices to init_net */
4378 		err = dev_change_net_namespace(dev, &init_net, "dev%d");
4379 		if (err) {
4380 			printk(KERN_WARNING "%s: failed to move %s to init_net: %d\n",
4381 				__func__, dev->name, err);
4382 			unregister_netdevice(dev);
4383 		}
4384 	}
4385 	rtnl_unlock();
4386 }
4387 
4388 static struct pernet_operations  default_device_ops = {
4389 	.exit = default_device_exit,
4390 };
4391 
4392 /*
4393  *	Initialize the DEV module. At boot time this walks the device list and
4394  *	unhooks any devices that fail to initialise (normally hardware not
4395  *	present) and leaves us with a valid list of present and active devices.
4396  *
4397  */
4398 
4399 /*
4400  *       This is called single threaded during boot, so no need
4401  *       to take the rtnl semaphore.
4402  */
4403 static int __init net_dev_init(void)
4404 {
4405 	int i, rc = -ENOMEM;
4406 
4407 	BUG_ON(!dev_boot_phase);
4408 
4409 	if (dev_proc_init())
4410 		goto out;
4411 
4412 	if (netdev_kobject_init())
4413 		goto out;
4414 
4415 	INIT_LIST_HEAD(&ptype_all);
4416 	for (i = 0; i < 16; i++)
4417 		INIT_LIST_HEAD(&ptype_base[i]);
4418 
4419 	if (register_pernet_subsys(&netdev_net_ops))
4420 		goto out;
4421 
4422 	if (register_pernet_device(&default_device_ops))
4423 		goto out;
4424 
4425 	/*
4426 	 *	Initialise the packet receive queues.
4427 	 */
4428 
4429 	for_each_possible_cpu(i) {
4430 		struct softnet_data *queue;
4431 
4432 		queue = &per_cpu(softnet_data, i);
4433 		skb_queue_head_init(&queue->input_pkt_queue);
4434 		queue->completion_queue = NULL;
4435 		INIT_LIST_HEAD(&queue->poll_list);
4436 
4437 		queue->backlog.poll = process_backlog;
4438 		queue->backlog.weight = weight_p;
4439 	}
4440 
4441 	netdev_dma_register();
4442 
4443 	dev_boot_phase = 0;
4444 
4445 	open_softirq(NET_TX_SOFTIRQ, net_tx_action, NULL);
4446 	open_softirq(NET_RX_SOFTIRQ, net_rx_action, NULL);
4447 
4448 	hotcpu_notifier(dev_cpu_callback, 0);
4449 	dst_init();
4450 	dev_mcast_init();
4451 	rc = 0;
4452 out:
4453 	return rc;
4454 }
4455 
4456 subsys_initcall(net_dev_init);
4457 
4458 EXPORT_SYMBOL(__dev_get_by_index);
4459 EXPORT_SYMBOL(__dev_get_by_name);
4460 EXPORT_SYMBOL(__dev_remove_pack);
4461 EXPORT_SYMBOL(dev_valid_name);
4462 EXPORT_SYMBOL(dev_add_pack);
4463 EXPORT_SYMBOL(dev_alloc_name);
4464 EXPORT_SYMBOL(dev_close);
4465 EXPORT_SYMBOL(dev_get_by_flags);
4466 EXPORT_SYMBOL(dev_get_by_index);
4467 EXPORT_SYMBOL(dev_get_by_name);
4468 EXPORT_SYMBOL(dev_open);
4469 EXPORT_SYMBOL(dev_queue_xmit);
4470 EXPORT_SYMBOL(dev_remove_pack);
4471 EXPORT_SYMBOL(dev_set_allmulti);
4472 EXPORT_SYMBOL(dev_set_promiscuity);
4473 EXPORT_SYMBOL(dev_change_flags);
4474 EXPORT_SYMBOL(dev_set_mtu);
4475 EXPORT_SYMBOL(dev_set_mac_address);
4476 EXPORT_SYMBOL(free_netdev);
4477 EXPORT_SYMBOL(netdev_boot_setup_check);
4478 EXPORT_SYMBOL(netdev_set_master);
4479 EXPORT_SYMBOL(netdev_state_change);
4480 EXPORT_SYMBOL(netif_receive_skb);
4481 EXPORT_SYMBOL(netif_rx);
4482 EXPORT_SYMBOL(register_gifconf);
4483 EXPORT_SYMBOL(register_netdevice);
4484 EXPORT_SYMBOL(register_netdevice_notifier);
4485 EXPORT_SYMBOL(skb_checksum_help);
4486 EXPORT_SYMBOL(synchronize_net);
4487 EXPORT_SYMBOL(unregister_netdevice);
4488 EXPORT_SYMBOL(unregister_netdevice_notifier);
4489 EXPORT_SYMBOL(net_enable_timestamp);
4490 EXPORT_SYMBOL(net_disable_timestamp);
4491 EXPORT_SYMBOL(dev_get_flags);
4492 
4493 #if defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)
4494 EXPORT_SYMBOL(br_handle_frame_hook);
4495 EXPORT_SYMBOL(br_fdb_get_hook);
4496 EXPORT_SYMBOL(br_fdb_put_hook);
4497 #endif
4498 
4499 #ifdef CONFIG_KMOD
4500 EXPORT_SYMBOL(dev_load);
4501 #endif
4502 
4503 EXPORT_PER_CPU_SYMBOL(softnet_data);
4504