xref: /linux/net/core/dev.c (revision 94737ef56b610d94a24fadfb8386fc17dbd79ddd)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *      NET3    Protocol independent device support routines.
4  *
5  *	Derived from the non IP parts of dev.c 1.0.19
6  *              Authors:	Ross Biro
7  *				Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8  *				Mark Evans, <evansmp@uhura.aston.ac.uk>
9  *
10  *	Additional Authors:
11  *		Florian la Roche <rzsfl@rz.uni-sb.de>
12  *		Alan Cox <gw4pts@gw4pts.ampr.org>
13  *		David Hinds <dahinds@users.sourceforge.net>
14  *		Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15  *		Adam Sulmicki <adam@cfar.umd.edu>
16  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
17  *
18  *	Changes:
19  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
20  *                                      to 2 if register_netdev gets called
21  *                                      before net_dev_init & also removed a
22  *                                      few lines of code in the process.
23  *		Alan Cox	:	device private ioctl copies fields back.
24  *		Alan Cox	:	Transmit queue code does relevant
25  *					stunts to keep the queue safe.
26  *		Alan Cox	:	Fixed double lock.
27  *		Alan Cox	:	Fixed promisc NULL pointer trap
28  *		????????	:	Support the full private ioctl range
29  *		Alan Cox	:	Moved ioctl permission check into
30  *					drivers
31  *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
32  *		Alan Cox	:	100 backlog just doesn't cut it when
33  *					you start doing multicast video 8)
34  *		Alan Cox	:	Rewrote net_bh and list manager.
35  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
36  *		Alan Cox	:	Took out transmit every packet pass
37  *					Saved a few bytes in the ioctl handler
38  *		Alan Cox	:	Network driver sets packet type before
39  *					calling netif_rx. Saves a function
40  *					call a packet.
41  *		Alan Cox	:	Hashed net_bh()
42  *		Richard Kooijman:	Timestamp fixes.
43  *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
44  *		Alan Cox	:	Device lock protection.
45  *              Alan Cox        :       Fixed nasty side effect of device close
46  *					changes.
47  *		Rudi Cilibrasi	:	Pass the right thing to
48  *					set_mac_address()
49  *		Dave Miller	:	32bit quantity for the device lock to
50  *					make it work out on a Sparc.
51  *		Bjorn Ekwall	:	Added KERNELD hack.
52  *		Alan Cox	:	Cleaned up the backlog initialise.
53  *		Craig Metz	:	SIOCGIFCONF fix if space for under
54  *					1 device.
55  *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
56  *					is no device open function.
57  *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
58  *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
59  *		Cyrus Durgin	:	Cleaned for KMOD
60  *		Adam Sulmicki   :	Bug Fix : Network Device Unload
61  *					A network device unload needs to purge
62  *					the backlog queue.
63  *	Paul Rusty Russell	:	SIOCSIFNAME
64  *              Pekka Riikonen  :	Netdev boot-time settings code
65  *              Andrew Morton   :       Make unregister_netdevice wait
66  *                                      indefinitely on dev->refcnt
67  *              J Hadi Salim    :       - Backlog queue sampling
68  *				        - netif_rx() feedback
69  */
70 
71 #include <linux/uaccess.h>
72 #include <linux/bitops.h>
73 #include <linux/capability.h>
74 #include <linux/cpu.h>
75 #include <linux/types.h>
76 #include <linux/kernel.h>
77 #include <linux/hash.h>
78 #include <linux/slab.h>
79 #include <linux/sched.h>
80 #include <linux/sched/mm.h>
81 #include <linux/mutex.h>
82 #include <linux/rwsem.h>
83 #include <linux/string.h>
84 #include <linux/mm.h>
85 #include <linux/socket.h>
86 #include <linux/sockios.h>
87 #include <linux/errno.h>
88 #include <linux/interrupt.h>
89 #include <linux/if_ether.h>
90 #include <linux/netdevice.h>
91 #include <linux/etherdevice.h>
92 #include <linux/ethtool.h>
93 #include <linux/skbuff.h>
94 #include <linux/kthread.h>
95 #include <linux/bpf.h>
96 #include <linux/bpf_trace.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <net/busy_poll.h>
100 #include <linux/rtnetlink.h>
101 #include <linux/stat.h>
102 #include <net/dsa.h>
103 #include <net/dst.h>
104 #include <net/dst_metadata.h>
105 #include <net/gro.h>
106 #include <net/pkt_sched.h>
107 #include <net/pkt_cls.h>
108 #include <net/checksum.h>
109 #include <net/xfrm.h>
110 #include <linux/highmem.h>
111 #include <linux/init.h>
112 #include <linux/module.h>
113 #include <linux/netpoll.h>
114 #include <linux/rcupdate.h>
115 #include <linux/delay.h>
116 #include <net/iw_handler.h>
117 #include <asm/current.h>
118 #include <linux/audit.h>
119 #include <linux/dmaengine.h>
120 #include <linux/err.h>
121 #include <linux/ctype.h>
122 #include <linux/if_arp.h>
123 #include <linux/if_vlan.h>
124 #include <linux/ip.h>
125 #include <net/ip.h>
126 #include <net/mpls.h>
127 #include <linux/ipv6.h>
128 #include <linux/in.h>
129 #include <linux/jhash.h>
130 #include <linux/random.h>
131 #include <trace/events/napi.h>
132 #include <trace/events/net.h>
133 #include <trace/events/skb.h>
134 #include <trace/events/qdisc.h>
135 #include <linux/inetdevice.h>
136 #include <linux/cpu_rmap.h>
137 #include <linux/static_key.h>
138 #include <linux/hashtable.h>
139 #include <linux/vmalloc.h>
140 #include <linux/if_macvlan.h>
141 #include <linux/errqueue.h>
142 #include <linux/hrtimer.h>
143 #include <linux/netfilter_netdev.h>
144 #include <linux/crash_dump.h>
145 #include <linux/sctp.h>
146 #include <net/udp_tunnel.h>
147 #include <linux/net_namespace.h>
148 #include <linux/indirect_call_wrapper.h>
149 #include <net/devlink.h>
150 #include <linux/pm_runtime.h>
151 #include <linux/prandom.h>
152 #include <linux/once_lite.h>
153 
154 #include "dev.h"
155 #include "net-sysfs.h"
156 
157 
158 static DEFINE_SPINLOCK(ptype_lock);
159 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
160 struct list_head ptype_all __read_mostly;	/* Taps */
161 
162 static int netif_rx_internal(struct sk_buff *skb);
163 static int call_netdevice_notifiers_info(unsigned long val,
164 					 struct netdev_notifier_info *info);
165 static int call_netdevice_notifiers_extack(unsigned long val,
166 					   struct net_device *dev,
167 					   struct netlink_ext_ack *extack);
168 static struct napi_struct *napi_by_id(unsigned int napi_id);
169 
170 /*
171  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
172  * semaphore.
173  *
174  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
175  *
176  * Writers must hold the rtnl semaphore while they loop through the
177  * dev_base_head list, and hold dev_base_lock for writing when they do the
178  * actual updates.  This allows pure readers to access the list even
179  * while a writer is preparing to update it.
180  *
181  * To put it another way, dev_base_lock is held for writing only to
182  * protect against pure readers; the rtnl semaphore provides the
183  * protection against other writers.
184  *
185  * See, for example usages, register_netdevice() and
186  * unregister_netdevice(), which must be called with the rtnl
187  * semaphore held.
188  */
189 DEFINE_RWLOCK(dev_base_lock);
190 EXPORT_SYMBOL(dev_base_lock);
191 
192 static DEFINE_MUTEX(ifalias_mutex);
193 
194 /* protects napi_hash addition/deletion and napi_gen_id */
195 static DEFINE_SPINLOCK(napi_hash_lock);
196 
197 static unsigned int napi_gen_id = NR_CPUS;
198 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
199 
200 static DECLARE_RWSEM(devnet_rename_sem);
201 
202 static inline void dev_base_seq_inc(struct net *net)
203 {
204 	while (++net->dev_base_seq == 0)
205 		;
206 }
207 
208 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
209 {
210 	unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
211 
212 	return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
213 }
214 
215 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
216 {
217 	return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
218 }
219 
220 static inline void rps_lock_irqsave(struct softnet_data *sd,
221 				    unsigned long *flags)
222 {
223 	if (IS_ENABLED(CONFIG_RPS))
224 		spin_lock_irqsave(&sd->input_pkt_queue.lock, *flags);
225 	else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
226 		local_irq_save(*flags);
227 }
228 
229 static inline void rps_lock_irq_disable(struct softnet_data *sd)
230 {
231 	if (IS_ENABLED(CONFIG_RPS))
232 		spin_lock_irq(&sd->input_pkt_queue.lock);
233 	else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
234 		local_irq_disable();
235 }
236 
237 static inline void rps_unlock_irq_restore(struct softnet_data *sd,
238 					  unsigned long *flags)
239 {
240 	if (IS_ENABLED(CONFIG_RPS))
241 		spin_unlock_irqrestore(&sd->input_pkt_queue.lock, *flags);
242 	else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
243 		local_irq_restore(*flags);
244 }
245 
246 static inline void rps_unlock_irq_enable(struct softnet_data *sd)
247 {
248 	if (IS_ENABLED(CONFIG_RPS))
249 		spin_unlock_irq(&sd->input_pkt_queue.lock);
250 	else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
251 		local_irq_enable();
252 }
253 
254 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
255 						       const char *name)
256 {
257 	struct netdev_name_node *name_node;
258 
259 	name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
260 	if (!name_node)
261 		return NULL;
262 	INIT_HLIST_NODE(&name_node->hlist);
263 	name_node->dev = dev;
264 	name_node->name = name;
265 	return name_node;
266 }
267 
268 static struct netdev_name_node *
269 netdev_name_node_head_alloc(struct net_device *dev)
270 {
271 	struct netdev_name_node *name_node;
272 
273 	name_node = netdev_name_node_alloc(dev, dev->name);
274 	if (!name_node)
275 		return NULL;
276 	INIT_LIST_HEAD(&name_node->list);
277 	return name_node;
278 }
279 
280 static void netdev_name_node_free(struct netdev_name_node *name_node)
281 {
282 	kfree(name_node);
283 }
284 
285 static void netdev_name_node_add(struct net *net,
286 				 struct netdev_name_node *name_node)
287 {
288 	hlist_add_head_rcu(&name_node->hlist,
289 			   dev_name_hash(net, name_node->name));
290 }
291 
292 static void netdev_name_node_del(struct netdev_name_node *name_node)
293 {
294 	hlist_del_rcu(&name_node->hlist);
295 }
296 
297 static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
298 							const char *name)
299 {
300 	struct hlist_head *head = dev_name_hash(net, name);
301 	struct netdev_name_node *name_node;
302 
303 	hlist_for_each_entry(name_node, head, hlist)
304 		if (!strcmp(name_node->name, name))
305 			return name_node;
306 	return NULL;
307 }
308 
309 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
310 							    const char *name)
311 {
312 	struct hlist_head *head = dev_name_hash(net, name);
313 	struct netdev_name_node *name_node;
314 
315 	hlist_for_each_entry_rcu(name_node, head, hlist)
316 		if (!strcmp(name_node->name, name))
317 			return name_node;
318 	return NULL;
319 }
320 
321 bool netdev_name_in_use(struct net *net, const char *name)
322 {
323 	return netdev_name_node_lookup(net, name);
324 }
325 EXPORT_SYMBOL(netdev_name_in_use);
326 
327 int netdev_name_node_alt_create(struct net_device *dev, const char *name)
328 {
329 	struct netdev_name_node *name_node;
330 	struct net *net = dev_net(dev);
331 
332 	name_node = netdev_name_node_lookup(net, name);
333 	if (name_node)
334 		return -EEXIST;
335 	name_node = netdev_name_node_alloc(dev, name);
336 	if (!name_node)
337 		return -ENOMEM;
338 	netdev_name_node_add(net, name_node);
339 	/* The node that holds dev->name acts as a head of per-device list. */
340 	list_add_tail(&name_node->list, &dev->name_node->list);
341 
342 	return 0;
343 }
344 
345 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
346 {
347 	list_del(&name_node->list);
348 	netdev_name_node_del(name_node);
349 	kfree(name_node->name);
350 	netdev_name_node_free(name_node);
351 }
352 
353 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
354 {
355 	struct netdev_name_node *name_node;
356 	struct net *net = dev_net(dev);
357 
358 	name_node = netdev_name_node_lookup(net, name);
359 	if (!name_node)
360 		return -ENOENT;
361 	/* lookup might have found our primary name or a name belonging
362 	 * to another device.
363 	 */
364 	if (name_node == dev->name_node || name_node->dev != dev)
365 		return -EINVAL;
366 
367 	__netdev_name_node_alt_destroy(name_node);
368 
369 	return 0;
370 }
371 
372 static void netdev_name_node_alt_flush(struct net_device *dev)
373 {
374 	struct netdev_name_node *name_node, *tmp;
375 
376 	list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list)
377 		__netdev_name_node_alt_destroy(name_node);
378 }
379 
380 /* Device list insertion */
381 static void list_netdevice(struct net_device *dev)
382 {
383 	struct net *net = dev_net(dev);
384 
385 	ASSERT_RTNL();
386 
387 	write_lock(&dev_base_lock);
388 	list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
389 	netdev_name_node_add(net, dev->name_node);
390 	hlist_add_head_rcu(&dev->index_hlist,
391 			   dev_index_hash(net, dev->ifindex));
392 	write_unlock(&dev_base_lock);
393 
394 	dev_base_seq_inc(net);
395 }
396 
397 /* Device list removal
398  * caller must respect a RCU grace period before freeing/reusing dev
399  */
400 static void unlist_netdevice(struct net_device *dev)
401 {
402 	ASSERT_RTNL();
403 
404 	/* Unlink dev from the device chain */
405 	write_lock(&dev_base_lock);
406 	list_del_rcu(&dev->dev_list);
407 	netdev_name_node_del(dev->name_node);
408 	hlist_del_rcu(&dev->index_hlist);
409 	write_unlock(&dev_base_lock);
410 
411 	dev_base_seq_inc(dev_net(dev));
412 }
413 
414 /*
415  *	Our notifier list
416  */
417 
418 static RAW_NOTIFIER_HEAD(netdev_chain);
419 
420 /*
421  *	Device drivers call our routines to queue packets here. We empty the
422  *	queue in the local softnet handler.
423  */
424 
425 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
426 EXPORT_PER_CPU_SYMBOL(softnet_data);
427 
428 #ifdef CONFIG_LOCKDEP
429 /*
430  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
431  * according to dev->type
432  */
433 static const unsigned short netdev_lock_type[] = {
434 	 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
435 	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
436 	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
437 	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
438 	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
439 	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
440 	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
441 	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
442 	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
443 	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
444 	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
445 	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
446 	 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
447 	 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
448 	 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
449 
450 static const char *const netdev_lock_name[] = {
451 	"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
452 	"_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
453 	"_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
454 	"_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
455 	"_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
456 	"_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
457 	"_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
458 	"_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
459 	"_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
460 	"_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
461 	"_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
462 	"_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
463 	"_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
464 	"_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
465 	"_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
466 
467 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
468 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
469 
470 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
471 {
472 	int i;
473 
474 	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
475 		if (netdev_lock_type[i] == dev_type)
476 			return i;
477 	/* the last key is used by default */
478 	return ARRAY_SIZE(netdev_lock_type) - 1;
479 }
480 
481 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
482 						 unsigned short dev_type)
483 {
484 	int i;
485 
486 	i = netdev_lock_pos(dev_type);
487 	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
488 				   netdev_lock_name[i]);
489 }
490 
491 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
492 {
493 	int i;
494 
495 	i = netdev_lock_pos(dev->type);
496 	lockdep_set_class_and_name(&dev->addr_list_lock,
497 				   &netdev_addr_lock_key[i],
498 				   netdev_lock_name[i]);
499 }
500 #else
501 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
502 						 unsigned short dev_type)
503 {
504 }
505 
506 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
507 {
508 }
509 #endif
510 
511 /*******************************************************************************
512  *
513  *		Protocol management and registration routines
514  *
515  *******************************************************************************/
516 
517 
518 /*
519  *	Add a protocol ID to the list. Now that the input handler is
520  *	smarter we can dispense with all the messy stuff that used to be
521  *	here.
522  *
523  *	BEWARE!!! Protocol handlers, mangling input packets,
524  *	MUST BE last in hash buckets and checking protocol handlers
525  *	MUST start from promiscuous ptype_all chain in net_bh.
526  *	It is true now, do not change it.
527  *	Explanation follows: if protocol handler, mangling packet, will
528  *	be the first on list, it is not able to sense, that packet
529  *	is cloned and should be copied-on-write, so that it will
530  *	change it and subsequent readers will get broken packet.
531  *							--ANK (980803)
532  */
533 
534 static inline struct list_head *ptype_head(const struct packet_type *pt)
535 {
536 	if (pt->type == htons(ETH_P_ALL))
537 		return pt->dev ? &pt->dev->ptype_all : &ptype_all;
538 	else
539 		return pt->dev ? &pt->dev->ptype_specific :
540 				 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
541 }
542 
543 /**
544  *	dev_add_pack - add packet handler
545  *	@pt: packet type declaration
546  *
547  *	Add a protocol handler to the networking stack. The passed &packet_type
548  *	is linked into kernel lists and may not be freed until it has been
549  *	removed from the kernel lists.
550  *
551  *	This call does not sleep therefore it can not
552  *	guarantee all CPU's that are in middle of receiving packets
553  *	will see the new packet type (until the next received packet).
554  */
555 
556 void dev_add_pack(struct packet_type *pt)
557 {
558 	struct list_head *head = ptype_head(pt);
559 
560 	spin_lock(&ptype_lock);
561 	list_add_rcu(&pt->list, head);
562 	spin_unlock(&ptype_lock);
563 }
564 EXPORT_SYMBOL(dev_add_pack);
565 
566 /**
567  *	__dev_remove_pack	 - remove packet handler
568  *	@pt: packet type declaration
569  *
570  *	Remove a protocol handler that was previously added to the kernel
571  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
572  *	from the kernel lists and can be freed or reused once this function
573  *	returns.
574  *
575  *      The packet type might still be in use by receivers
576  *	and must not be freed until after all the CPU's have gone
577  *	through a quiescent state.
578  */
579 void __dev_remove_pack(struct packet_type *pt)
580 {
581 	struct list_head *head = ptype_head(pt);
582 	struct packet_type *pt1;
583 
584 	spin_lock(&ptype_lock);
585 
586 	list_for_each_entry(pt1, head, list) {
587 		if (pt == pt1) {
588 			list_del_rcu(&pt->list);
589 			goto out;
590 		}
591 	}
592 
593 	pr_warn("dev_remove_pack: %p not found\n", pt);
594 out:
595 	spin_unlock(&ptype_lock);
596 }
597 EXPORT_SYMBOL(__dev_remove_pack);
598 
599 /**
600  *	dev_remove_pack	 - remove packet handler
601  *	@pt: packet type declaration
602  *
603  *	Remove a protocol handler that was previously added to the kernel
604  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
605  *	from the kernel lists and can be freed or reused once this function
606  *	returns.
607  *
608  *	This call sleeps to guarantee that no CPU is looking at the packet
609  *	type after return.
610  */
611 void dev_remove_pack(struct packet_type *pt)
612 {
613 	__dev_remove_pack(pt);
614 
615 	synchronize_net();
616 }
617 EXPORT_SYMBOL(dev_remove_pack);
618 
619 
620 /*******************************************************************************
621  *
622  *			    Device Interface Subroutines
623  *
624  *******************************************************************************/
625 
626 /**
627  *	dev_get_iflink	- get 'iflink' value of a interface
628  *	@dev: targeted interface
629  *
630  *	Indicates the ifindex the interface is linked to.
631  *	Physical interfaces have the same 'ifindex' and 'iflink' values.
632  */
633 
634 int dev_get_iflink(const struct net_device *dev)
635 {
636 	if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
637 		return dev->netdev_ops->ndo_get_iflink(dev);
638 
639 	return dev->ifindex;
640 }
641 EXPORT_SYMBOL(dev_get_iflink);
642 
643 /**
644  *	dev_fill_metadata_dst - Retrieve tunnel egress information.
645  *	@dev: targeted interface
646  *	@skb: The packet.
647  *
648  *	For better visibility of tunnel traffic OVS needs to retrieve
649  *	egress tunnel information for a packet. Following API allows
650  *	user to get this info.
651  */
652 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
653 {
654 	struct ip_tunnel_info *info;
655 
656 	if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
657 		return -EINVAL;
658 
659 	info = skb_tunnel_info_unclone(skb);
660 	if (!info)
661 		return -ENOMEM;
662 	if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
663 		return -EINVAL;
664 
665 	return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
666 }
667 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
668 
669 static struct net_device_path *dev_fwd_path(struct net_device_path_stack *stack)
670 {
671 	int k = stack->num_paths++;
672 
673 	if (WARN_ON_ONCE(k >= NET_DEVICE_PATH_STACK_MAX))
674 		return NULL;
675 
676 	return &stack->path[k];
677 }
678 
679 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
680 			  struct net_device_path_stack *stack)
681 {
682 	const struct net_device *last_dev;
683 	struct net_device_path_ctx ctx = {
684 		.dev	= dev,
685 		.daddr	= daddr,
686 	};
687 	struct net_device_path *path;
688 	int ret = 0;
689 
690 	stack->num_paths = 0;
691 	while (ctx.dev && ctx.dev->netdev_ops->ndo_fill_forward_path) {
692 		last_dev = ctx.dev;
693 		path = dev_fwd_path(stack);
694 		if (!path)
695 			return -1;
696 
697 		memset(path, 0, sizeof(struct net_device_path));
698 		ret = ctx.dev->netdev_ops->ndo_fill_forward_path(&ctx, path);
699 		if (ret < 0)
700 			return -1;
701 
702 		if (WARN_ON_ONCE(last_dev == ctx.dev))
703 			return -1;
704 	}
705 
706 	if (!ctx.dev)
707 		return ret;
708 
709 	path = dev_fwd_path(stack);
710 	if (!path)
711 		return -1;
712 	path->type = DEV_PATH_ETHERNET;
713 	path->dev = ctx.dev;
714 
715 	return ret;
716 }
717 EXPORT_SYMBOL_GPL(dev_fill_forward_path);
718 
719 /**
720  *	__dev_get_by_name	- find a device by its name
721  *	@net: the applicable net namespace
722  *	@name: name to find
723  *
724  *	Find an interface by name. Must be called under RTNL semaphore
725  *	or @dev_base_lock. If the name is found a pointer to the device
726  *	is returned. If the name is not found then %NULL is returned. The
727  *	reference counters are not incremented so the caller must be
728  *	careful with locks.
729  */
730 
731 struct net_device *__dev_get_by_name(struct net *net, const char *name)
732 {
733 	struct netdev_name_node *node_name;
734 
735 	node_name = netdev_name_node_lookup(net, name);
736 	return node_name ? node_name->dev : NULL;
737 }
738 EXPORT_SYMBOL(__dev_get_by_name);
739 
740 /**
741  * dev_get_by_name_rcu	- find a device by its name
742  * @net: the applicable net namespace
743  * @name: name to find
744  *
745  * Find an interface by name.
746  * If the name is found a pointer to the device is returned.
747  * If the name is not found then %NULL is returned.
748  * The reference counters are not incremented so the caller must be
749  * careful with locks. The caller must hold RCU lock.
750  */
751 
752 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
753 {
754 	struct netdev_name_node *node_name;
755 
756 	node_name = netdev_name_node_lookup_rcu(net, name);
757 	return node_name ? node_name->dev : NULL;
758 }
759 EXPORT_SYMBOL(dev_get_by_name_rcu);
760 
761 /**
762  *	dev_get_by_name		- find a device by its name
763  *	@net: the applicable net namespace
764  *	@name: name to find
765  *
766  *	Find an interface by name. This can be called from any
767  *	context and does its own locking. The returned handle has
768  *	the usage count incremented and the caller must use dev_put() to
769  *	release it when it is no longer needed. %NULL is returned if no
770  *	matching device is found.
771  */
772 
773 struct net_device *dev_get_by_name(struct net *net, const char *name)
774 {
775 	struct net_device *dev;
776 
777 	rcu_read_lock();
778 	dev = dev_get_by_name_rcu(net, name);
779 	dev_hold(dev);
780 	rcu_read_unlock();
781 	return dev;
782 }
783 EXPORT_SYMBOL(dev_get_by_name);
784 
785 /**
786  *	__dev_get_by_index - find a device by its ifindex
787  *	@net: the applicable net namespace
788  *	@ifindex: index of device
789  *
790  *	Search for an interface by index. Returns %NULL if the device
791  *	is not found or a pointer to the device. The device has not
792  *	had its reference counter increased so the caller must be careful
793  *	about locking. The caller must hold either the RTNL semaphore
794  *	or @dev_base_lock.
795  */
796 
797 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
798 {
799 	struct net_device *dev;
800 	struct hlist_head *head = dev_index_hash(net, ifindex);
801 
802 	hlist_for_each_entry(dev, head, index_hlist)
803 		if (dev->ifindex == ifindex)
804 			return dev;
805 
806 	return NULL;
807 }
808 EXPORT_SYMBOL(__dev_get_by_index);
809 
810 /**
811  *	dev_get_by_index_rcu - find a device by its ifindex
812  *	@net: the applicable net namespace
813  *	@ifindex: index of device
814  *
815  *	Search for an interface by index. Returns %NULL if the device
816  *	is not found or a pointer to the device. The device has not
817  *	had its reference counter increased so the caller must be careful
818  *	about locking. The caller must hold RCU lock.
819  */
820 
821 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
822 {
823 	struct net_device *dev;
824 	struct hlist_head *head = dev_index_hash(net, ifindex);
825 
826 	hlist_for_each_entry_rcu(dev, head, index_hlist)
827 		if (dev->ifindex == ifindex)
828 			return dev;
829 
830 	return NULL;
831 }
832 EXPORT_SYMBOL(dev_get_by_index_rcu);
833 
834 
835 /**
836  *	dev_get_by_index - find a device by its ifindex
837  *	@net: the applicable net namespace
838  *	@ifindex: index of device
839  *
840  *	Search for an interface by index. Returns NULL if the device
841  *	is not found or a pointer to the device. The device returned has
842  *	had a reference added and the pointer is safe until the user calls
843  *	dev_put to indicate they have finished with it.
844  */
845 
846 struct net_device *dev_get_by_index(struct net *net, int ifindex)
847 {
848 	struct net_device *dev;
849 
850 	rcu_read_lock();
851 	dev = dev_get_by_index_rcu(net, ifindex);
852 	dev_hold(dev);
853 	rcu_read_unlock();
854 	return dev;
855 }
856 EXPORT_SYMBOL(dev_get_by_index);
857 
858 /**
859  *	dev_get_by_napi_id - find a device by napi_id
860  *	@napi_id: ID of the NAPI struct
861  *
862  *	Search for an interface by NAPI ID. Returns %NULL if the device
863  *	is not found or a pointer to the device. The device has not had
864  *	its reference counter increased so the caller must be careful
865  *	about locking. The caller must hold RCU lock.
866  */
867 
868 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
869 {
870 	struct napi_struct *napi;
871 
872 	WARN_ON_ONCE(!rcu_read_lock_held());
873 
874 	if (napi_id < MIN_NAPI_ID)
875 		return NULL;
876 
877 	napi = napi_by_id(napi_id);
878 
879 	return napi ? napi->dev : NULL;
880 }
881 EXPORT_SYMBOL(dev_get_by_napi_id);
882 
883 /**
884  *	netdev_get_name - get a netdevice name, knowing its ifindex.
885  *	@net: network namespace
886  *	@name: a pointer to the buffer where the name will be stored.
887  *	@ifindex: the ifindex of the interface to get the name from.
888  */
889 int netdev_get_name(struct net *net, char *name, int ifindex)
890 {
891 	struct net_device *dev;
892 	int ret;
893 
894 	down_read(&devnet_rename_sem);
895 	rcu_read_lock();
896 
897 	dev = dev_get_by_index_rcu(net, ifindex);
898 	if (!dev) {
899 		ret = -ENODEV;
900 		goto out;
901 	}
902 
903 	strcpy(name, dev->name);
904 
905 	ret = 0;
906 out:
907 	rcu_read_unlock();
908 	up_read(&devnet_rename_sem);
909 	return ret;
910 }
911 
912 /**
913  *	dev_getbyhwaddr_rcu - find a device by its hardware address
914  *	@net: the applicable net namespace
915  *	@type: media type of device
916  *	@ha: hardware address
917  *
918  *	Search for an interface by MAC address. Returns NULL if the device
919  *	is not found or a pointer to the device.
920  *	The caller must hold RCU or RTNL.
921  *	The returned device has not had its ref count increased
922  *	and the caller must therefore be careful about locking
923  *
924  */
925 
926 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
927 				       const char *ha)
928 {
929 	struct net_device *dev;
930 
931 	for_each_netdev_rcu(net, dev)
932 		if (dev->type == type &&
933 		    !memcmp(dev->dev_addr, ha, dev->addr_len))
934 			return dev;
935 
936 	return NULL;
937 }
938 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
939 
940 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
941 {
942 	struct net_device *dev, *ret = NULL;
943 
944 	rcu_read_lock();
945 	for_each_netdev_rcu(net, dev)
946 		if (dev->type == type) {
947 			dev_hold(dev);
948 			ret = dev;
949 			break;
950 		}
951 	rcu_read_unlock();
952 	return ret;
953 }
954 EXPORT_SYMBOL(dev_getfirstbyhwtype);
955 
956 /**
957  *	__dev_get_by_flags - find any device with given flags
958  *	@net: the applicable net namespace
959  *	@if_flags: IFF_* values
960  *	@mask: bitmask of bits in if_flags to check
961  *
962  *	Search for any interface with the given flags. Returns NULL if a device
963  *	is not found or a pointer to the device. Must be called inside
964  *	rtnl_lock(), and result refcount is unchanged.
965  */
966 
967 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
968 				      unsigned short mask)
969 {
970 	struct net_device *dev, *ret;
971 
972 	ASSERT_RTNL();
973 
974 	ret = NULL;
975 	for_each_netdev(net, dev) {
976 		if (((dev->flags ^ if_flags) & mask) == 0) {
977 			ret = dev;
978 			break;
979 		}
980 	}
981 	return ret;
982 }
983 EXPORT_SYMBOL(__dev_get_by_flags);
984 
985 /**
986  *	dev_valid_name - check if name is okay for network device
987  *	@name: name string
988  *
989  *	Network device names need to be valid file names to
990  *	allow sysfs to work.  We also disallow any kind of
991  *	whitespace.
992  */
993 bool dev_valid_name(const char *name)
994 {
995 	if (*name == '\0')
996 		return false;
997 	if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
998 		return false;
999 	if (!strcmp(name, ".") || !strcmp(name, ".."))
1000 		return false;
1001 
1002 	while (*name) {
1003 		if (*name == '/' || *name == ':' || isspace(*name))
1004 			return false;
1005 		name++;
1006 	}
1007 	return true;
1008 }
1009 EXPORT_SYMBOL(dev_valid_name);
1010 
1011 /**
1012  *	__dev_alloc_name - allocate a name for a device
1013  *	@net: network namespace to allocate the device name in
1014  *	@name: name format string
1015  *	@buf:  scratch buffer and result name string
1016  *
1017  *	Passed a format string - eg "lt%d" it will try and find a suitable
1018  *	id. It scans list of devices to build up a free map, then chooses
1019  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1020  *	while allocating the name and adding the device in order to avoid
1021  *	duplicates.
1022  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1023  *	Returns the number of the unit assigned or a negative errno code.
1024  */
1025 
1026 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1027 {
1028 	int i = 0;
1029 	const char *p;
1030 	const int max_netdevices = 8*PAGE_SIZE;
1031 	unsigned long *inuse;
1032 	struct net_device *d;
1033 
1034 	if (!dev_valid_name(name))
1035 		return -EINVAL;
1036 
1037 	p = strchr(name, '%');
1038 	if (p) {
1039 		/*
1040 		 * Verify the string as this thing may have come from
1041 		 * the user.  There must be either one "%d" and no other "%"
1042 		 * characters.
1043 		 */
1044 		if (p[1] != 'd' || strchr(p + 2, '%'))
1045 			return -EINVAL;
1046 
1047 		/* Use one page as a bit array of possible slots */
1048 		inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1049 		if (!inuse)
1050 			return -ENOMEM;
1051 
1052 		for_each_netdev(net, d) {
1053 			struct netdev_name_node *name_node;
1054 			list_for_each_entry(name_node, &d->name_node->list, list) {
1055 				if (!sscanf(name_node->name, name, &i))
1056 					continue;
1057 				if (i < 0 || i >= max_netdevices)
1058 					continue;
1059 
1060 				/*  avoid cases where sscanf is not exact inverse of printf */
1061 				snprintf(buf, IFNAMSIZ, name, i);
1062 				if (!strncmp(buf, name_node->name, IFNAMSIZ))
1063 					__set_bit(i, inuse);
1064 			}
1065 			if (!sscanf(d->name, name, &i))
1066 				continue;
1067 			if (i < 0 || i >= max_netdevices)
1068 				continue;
1069 
1070 			/*  avoid cases where sscanf is not exact inverse of printf */
1071 			snprintf(buf, IFNAMSIZ, name, i);
1072 			if (!strncmp(buf, d->name, IFNAMSIZ))
1073 				__set_bit(i, inuse);
1074 		}
1075 
1076 		i = find_first_zero_bit(inuse, max_netdevices);
1077 		free_page((unsigned long) inuse);
1078 	}
1079 
1080 	snprintf(buf, IFNAMSIZ, name, i);
1081 	if (!netdev_name_in_use(net, buf))
1082 		return i;
1083 
1084 	/* It is possible to run out of possible slots
1085 	 * when the name is long and there isn't enough space left
1086 	 * for the digits, or if all bits are used.
1087 	 */
1088 	return -ENFILE;
1089 }
1090 
1091 static int dev_alloc_name_ns(struct net *net,
1092 			     struct net_device *dev,
1093 			     const char *name)
1094 {
1095 	char buf[IFNAMSIZ];
1096 	int ret;
1097 
1098 	BUG_ON(!net);
1099 	ret = __dev_alloc_name(net, name, buf);
1100 	if (ret >= 0)
1101 		strlcpy(dev->name, buf, IFNAMSIZ);
1102 	return ret;
1103 }
1104 
1105 /**
1106  *	dev_alloc_name - allocate a name for a device
1107  *	@dev: device
1108  *	@name: name format string
1109  *
1110  *	Passed a format string - eg "lt%d" it will try and find a suitable
1111  *	id. It scans list of devices to build up a free map, then chooses
1112  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1113  *	while allocating the name and adding the device in order to avoid
1114  *	duplicates.
1115  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1116  *	Returns the number of the unit assigned or a negative errno code.
1117  */
1118 
1119 int dev_alloc_name(struct net_device *dev, const char *name)
1120 {
1121 	return dev_alloc_name_ns(dev_net(dev), dev, name);
1122 }
1123 EXPORT_SYMBOL(dev_alloc_name);
1124 
1125 static int dev_get_valid_name(struct net *net, struct net_device *dev,
1126 			      const char *name)
1127 {
1128 	BUG_ON(!net);
1129 
1130 	if (!dev_valid_name(name))
1131 		return -EINVAL;
1132 
1133 	if (strchr(name, '%'))
1134 		return dev_alloc_name_ns(net, dev, name);
1135 	else if (netdev_name_in_use(net, name))
1136 		return -EEXIST;
1137 	else if (dev->name != name)
1138 		strlcpy(dev->name, name, IFNAMSIZ);
1139 
1140 	return 0;
1141 }
1142 
1143 /**
1144  *	dev_change_name - change name of a device
1145  *	@dev: device
1146  *	@newname: name (or format string) must be at least IFNAMSIZ
1147  *
1148  *	Change name of a device, can pass format strings "eth%d".
1149  *	for wildcarding.
1150  */
1151 int dev_change_name(struct net_device *dev, const char *newname)
1152 {
1153 	unsigned char old_assign_type;
1154 	char oldname[IFNAMSIZ];
1155 	int err = 0;
1156 	int ret;
1157 	struct net *net;
1158 
1159 	ASSERT_RTNL();
1160 	BUG_ON(!dev_net(dev));
1161 
1162 	net = dev_net(dev);
1163 
1164 	/* Some auto-enslaved devices e.g. failover slaves are
1165 	 * special, as userspace might rename the device after
1166 	 * the interface had been brought up and running since
1167 	 * the point kernel initiated auto-enslavement. Allow
1168 	 * live name change even when these slave devices are
1169 	 * up and running.
1170 	 *
1171 	 * Typically, users of these auto-enslaving devices
1172 	 * don't actually care about slave name change, as
1173 	 * they are supposed to operate on master interface
1174 	 * directly.
1175 	 */
1176 	if (dev->flags & IFF_UP &&
1177 	    likely(!(dev->priv_flags & IFF_LIVE_RENAME_OK)))
1178 		return -EBUSY;
1179 
1180 	down_write(&devnet_rename_sem);
1181 
1182 	if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1183 		up_write(&devnet_rename_sem);
1184 		return 0;
1185 	}
1186 
1187 	memcpy(oldname, dev->name, IFNAMSIZ);
1188 
1189 	err = dev_get_valid_name(net, dev, newname);
1190 	if (err < 0) {
1191 		up_write(&devnet_rename_sem);
1192 		return err;
1193 	}
1194 
1195 	if (oldname[0] && !strchr(oldname, '%'))
1196 		netdev_info(dev, "renamed from %s\n", oldname);
1197 
1198 	old_assign_type = dev->name_assign_type;
1199 	dev->name_assign_type = NET_NAME_RENAMED;
1200 
1201 rollback:
1202 	ret = device_rename(&dev->dev, dev->name);
1203 	if (ret) {
1204 		memcpy(dev->name, oldname, IFNAMSIZ);
1205 		dev->name_assign_type = old_assign_type;
1206 		up_write(&devnet_rename_sem);
1207 		return ret;
1208 	}
1209 
1210 	up_write(&devnet_rename_sem);
1211 
1212 	netdev_adjacent_rename_links(dev, oldname);
1213 
1214 	write_lock(&dev_base_lock);
1215 	netdev_name_node_del(dev->name_node);
1216 	write_unlock(&dev_base_lock);
1217 
1218 	synchronize_rcu();
1219 
1220 	write_lock(&dev_base_lock);
1221 	netdev_name_node_add(net, dev->name_node);
1222 	write_unlock(&dev_base_lock);
1223 
1224 	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1225 	ret = notifier_to_errno(ret);
1226 
1227 	if (ret) {
1228 		/* err >= 0 after dev_alloc_name() or stores the first errno */
1229 		if (err >= 0) {
1230 			err = ret;
1231 			down_write(&devnet_rename_sem);
1232 			memcpy(dev->name, oldname, IFNAMSIZ);
1233 			memcpy(oldname, newname, IFNAMSIZ);
1234 			dev->name_assign_type = old_assign_type;
1235 			old_assign_type = NET_NAME_RENAMED;
1236 			goto rollback;
1237 		} else {
1238 			netdev_err(dev, "name change rollback failed: %d\n",
1239 				   ret);
1240 		}
1241 	}
1242 
1243 	return err;
1244 }
1245 
1246 /**
1247  *	dev_set_alias - change ifalias of a device
1248  *	@dev: device
1249  *	@alias: name up to IFALIASZ
1250  *	@len: limit of bytes to copy from info
1251  *
1252  *	Set ifalias for a device,
1253  */
1254 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1255 {
1256 	struct dev_ifalias *new_alias = NULL;
1257 
1258 	if (len >= IFALIASZ)
1259 		return -EINVAL;
1260 
1261 	if (len) {
1262 		new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1263 		if (!new_alias)
1264 			return -ENOMEM;
1265 
1266 		memcpy(new_alias->ifalias, alias, len);
1267 		new_alias->ifalias[len] = 0;
1268 	}
1269 
1270 	mutex_lock(&ifalias_mutex);
1271 	new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1272 					mutex_is_locked(&ifalias_mutex));
1273 	mutex_unlock(&ifalias_mutex);
1274 
1275 	if (new_alias)
1276 		kfree_rcu(new_alias, rcuhead);
1277 
1278 	return len;
1279 }
1280 EXPORT_SYMBOL(dev_set_alias);
1281 
1282 /**
1283  *	dev_get_alias - get ifalias of a device
1284  *	@dev: device
1285  *	@name: buffer to store name of ifalias
1286  *	@len: size of buffer
1287  *
1288  *	get ifalias for a device.  Caller must make sure dev cannot go
1289  *	away,  e.g. rcu read lock or own a reference count to device.
1290  */
1291 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1292 {
1293 	const struct dev_ifalias *alias;
1294 	int ret = 0;
1295 
1296 	rcu_read_lock();
1297 	alias = rcu_dereference(dev->ifalias);
1298 	if (alias)
1299 		ret = snprintf(name, len, "%s", alias->ifalias);
1300 	rcu_read_unlock();
1301 
1302 	return ret;
1303 }
1304 
1305 /**
1306  *	netdev_features_change - device changes features
1307  *	@dev: device to cause notification
1308  *
1309  *	Called to indicate a device has changed features.
1310  */
1311 void netdev_features_change(struct net_device *dev)
1312 {
1313 	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1314 }
1315 EXPORT_SYMBOL(netdev_features_change);
1316 
1317 /**
1318  *	netdev_state_change - device changes state
1319  *	@dev: device to cause notification
1320  *
1321  *	Called to indicate a device has changed state. This function calls
1322  *	the notifier chains for netdev_chain and sends a NEWLINK message
1323  *	to the routing socket.
1324  */
1325 void netdev_state_change(struct net_device *dev)
1326 {
1327 	if (dev->flags & IFF_UP) {
1328 		struct netdev_notifier_change_info change_info = {
1329 			.info.dev = dev,
1330 		};
1331 
1332 		call_netdevice_notifiers_info(NETDEV_CHANGE,
1333 					      &change_info.info);
1334 		rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1335 	}
1336 }
1337 EXPORT_SYMBOL(netdev_state_change);
1338 
1339 /**
1340  * __netdev_notify_peers - notify network peers about existence of @dev,
1341  * to be called when rtnl lock is already held.
1342  * @dev: network device
1343  *
1344  * Generate traffic such that interested network peers are aware of
1345  * @dev, such as by generating a gratuitous ARP. This may be used when
1346  * a device wants to inform the rest of the network about some sort of
1347  * reconfiguration such as a failover event or virtual machine
1348  * migration.
1349  */
1350 void __netdev_notify_peers(struct net_device *dev)
1351 {
1352 	ASSERT_RTNL();
1353 	call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1354 	call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1355 }
1356 EXPORT_SYMBOL(__netdev_notify_peers);
1357 
1358 /**
1359  * netdev_notify_peers - notify network peers about existence of @dev
1360  * @dev: network device
1361  *
1362  * Generate traffic such that interested network peers are aware of
1363  * @dev, such as by generating a gratuitous ARP. This may be used when
1364  * a device wants to inform the rest of the network about some sort of
1365  * reconfiguration such as a failover event or virtual machine
1366  * migration.
1367  */
1368 void netdev_notify_peers(struct net_device *dev)
1369 {
1370 	rtnl_lock();
1371 	__netdev_notify_peers(dev);
1372 	rtnl_unlock();
1373 }
1374 EXPORT_SYMBOL(netdev_notify_peers);
1375 
1376 static int napi_threaded_poll(void *data);
1377 
1378 static int napi_kthread_create(struct napi_struct *n)
1379 {
1380 	int err = 0;
1381 
1382 	/* Create and wake up the kthread once to put it in
1383 	 * TASK_INTERRUPTIBLE mode to avoid the blocked task
1384 	 * warning and work with loadavg.
1385 	 */
1386 	n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d",
1387 				n->dev->name, n->napi_id);
1388 	if (IS_ERR(n->thread)) {
1389 		err = PTR_ERR(n->thread);
1390 		pr_err("kthread_run failed with err %d\n", err);
1391 		n->thread = NULL;
1392 	}
1393 
1394 	return err;
1395 }
1396 
1397 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1398 {
1399 	const struct net_device_ops *ops = dev->netdev_ops;
1400 	int ret;
1401 
1402 	ASSERT_RTNL();
1403 	dev_addr_check(dev);
1404 
1405 	if (!netif_device_present(dev)) {
1406 		/* may be detached because parent is runtime-suspended */
1407 		if (dev->dev.parent)
1408 			pm_runtime_resume(dev->dev.parent);
1409 		if (!netif_device_present(dev))
1410 			return -ENODEV;
1411 	}
1412 
1413 	/* Block netpoll from trying to do any rx path servicing.
1414 	 * If we don't do this there is a chance ndo_poll_controller
1415 	 * or ndo_poll may be running while we open the device
1416 	 */
1417 	netpoll_poll_disable(dev);
1418 
1419 	ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1420 	ret = notifier_to_errno(ret);
1421 	if (ret)
1422 		return ret;
1423 
1424 	set_bit(__LINK_STATE_START, &dev->state);
1425 
1426 	if (ops->ndo_validate_addr)
1427 		ret = ops->ndo_validate_addr(dev);
1428 
1429 	if (!ret && ops->ndo_open)
1430 		ret = ops->ndo_open(dev);
1431 
1432 	netpoll_poll_enable(dev);
1433 
1434 	if (ret)
1435 		clear_bit(__LINK_STATE_START, &dev->state);
1436 	else {
1437 		dev->flags |= IFF_UP;
1438 		dev_set_rx_mode(dev);
1439 		dev_activate(dev);
1440 		add_device_randomness(dev->dev_addr, dev->addr_len);
1441 	}
1442 
1443 	return ret;
1444 }
1445 
1446 /**
1447  *	dev_open	- prepare an interface for use.
1448  *	@dev: device to open
1449  *	@extack: netlink extended ack
1450  *
1451  *	Takes a device from down to up state. The device's private open
1452  *	function is invoked and then the multicast lists are loaded. Finally
1453  *	the device is moved into the up state and a %NETDEV_UP message is
1454  *	sent to the netdev notifier chain.
1455  *
1456  *	Calling this function on an active interface is a nop. On a failure
1457  *	a negative errno code is returned.
1458  */
1459 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1460 {
1461 	int ret;
1462 
1463 	if (dev->flags & IFF_UP)
1464 		return 0;
1465 
1466 	ret = __dev_open(dev, extack);
1467 	if (ret < 0)
1468 		return ret;
1469 
1470 	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1471 	call_netdevice_notifiers(NETDEV_UP, dev);
1472 
1473 	return ret;
1474 }
1475 EXPORT_SYMBOL(dev_open);
1476 
1477 static void __dev_close_many(struct list_head *head)
1478 {
1479 	struct net_device *dev;
1480 
1481 	ASSERT_RTNL();
1482 	might_sleep();
1483 
1484 	list_for_each_entry(dev, head, close_list) {
1485 		/* Temporarily disable netpoll until the interface is down */
1486 		netpoll_poll_disable(dev);
1487 
1488 		call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1489 
1490 		clear_bit(__LINK_STATE_START, &dev->state);
1491 
1492 		/* Synchronize to scheduled poll. We cannot touch poll list, it
1493 		 * can be even on different cpu. So just clear netif_running().
1494 		 *
1495 		 * dev->stop() will invoke napi_disable() on all of it's
1496 		 * napi_struct instances on this device.
1497 		 */
1498 		smp_mb__after_atomic(); /* Commit netif_running(). */
1499 	}
1500 
1501 	dev_deactivate_many(head);
1502 
1503 	list_for_each_entry(dev, head, close_list) {
1504 		const struct net_device_ops *ops = dev->netdev_ops;
1505 
1506 		/*
1507 		 *	Call the device specific close. This cannot fail.
1508 		 *	Only if device is UP
1509 		 *
1510 		 *	We allow it to be called even after a DETACH hot-plug
1511 		 *	event.
1512 		 */
1513 		if (ops->ndo_stop)
1514 			ops->ndo_stop(dev);
1515 
1516 		dev->flags &= ~IFF_UP;
1517 		netpoll_poll_enable(dev);
1518 	}
1519 }
1520 
1521 static void __dev_close(struct net_device *dev)
1522 {
1523 	LIST_HEAD(single);
1524 
1525 	list_add(&dev->close_list, &single);
1526 	__dev_close_many(&single);
1527 	list_del(&single);
1528 }
1529 
1530 void dev_close_many(struct list_head *head, bool unlink)
1531 {
1532 	struct net_device *dev, *tmp;
1533 
1534 	/* Remove the devices that don't need to be closed */
1535 	list_for_each_entry_safe(dev, tmp, head, close_list)
1536 		if (!(dev->flags & IFF_UP))
1537 			list_del_init(&dev->close_list);
1538 
1539 	__dev_close_many(head);
1540 
1541 	list_for_each_entry_safe(dev, tmp, head, close_list) {
1542 		rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1543 		call_netdevice_notifiers(NETDEV_DOWN, dev);
1544 		if (unlink)
1545 			list_del_init(&dev->close_list);
1546 	}
1547 }
1548 EXPORT_SYMBOL(dev_close_many);
1549 
1550 /**
1551  *	dev_close - shutdown an interface.
1552  *	@dev: device to shutdown
1553  *
1554  *	This function moves an active device into down state. A
1555  *	%NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1556  *	is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1557  *	chain.
1558  */
1559 void dev_close(struct net_device *dev)
1560 {
1561 	if (dev->flags & IFF_UP) {
1562 		LIST_HEAD(single);
1563 
1564 		list_add(&dev->close_list, &single);
1565 		dev_close_many(&single, true);
1566 		list_del(&single);
1567 	}
1568 }
1569 EXPORT_SYMBOL(dev_close);
1570 
1571 
1572 /**
1573  *	dev_disable_lro - disable Large Receive Offload on a device
1574  *	@dev: device
1575  *
1576  *	Disable Large Receive Offload (LRO) on a net device.  Must be
1577  *	called under RTNL.  This is needed if received packets may be
1578  *	forwarded to another interface.
1579  */
1580 void dev_disable_lro(struct net_device *dev)
1581 {
1582 	struct net_device *lower_dev;
1583 	struct list_head *iter;
1584 
1585 	dev->wanted_features &= ~NETIF_F_LRO;
1586 	netdev_update_features(dev);
1587 
1588 	if (unlikely(dev->features & NETIF_F_LRO))
1589 		netdev_WARN(dev, "failed to disable LRO!\n");
1590 
1591 	netdev_for_each_lower_dev(dev, lower_dev, iter)
1592 		dev_disable_lro(lower_dev);
1593 }
1594 EXPORT_SYMBOL(dev_disable_lro);
1595 
1596 /**
1597  *	dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1598  *	@dev: device
1599  *
1600  *	Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1601  *	called under RTNL.  This is needed if Generic XDP is installed on
1602  *	the device.
1603  */
1604 static void dev_disable_gro_hw(struct net_device *dev)
1605 {
1606 	dev->wanted_features &= ~NETIF_F_GRO_HW;
1607 	netdev_update_features(dev);
1608 
1609 	if (unlikely(dev->features & NETIF_F_GRO_HW))
1610 		netdev_WARN(dev, "failed to disable GRO_HW!\n");
1611 }
1612 
1613 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1614 {
1615 #define N(val) 						\
1616 	case NETDEV_##val:				\
1617 		return "NETDEV_" __stringify(val);
1618 	switch (cmd) {
1619 	N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1620 	N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1621 	N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1622 	N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
1623 	N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
1624 	N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
1625 	N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1626 	N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1627 	N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1628 	N(PRE_CHANGEADDR) N(OFFLOAD_XSTATS_ENABLE) N(OFFLOAD_XSTATS_DISABLE)
1629 	N(OFFLOAD_XSTATS_REPORT_USED) N(OFFLOAD_XSTATS_REPORT_DELTA)
1630 	}
1631 #undef N
1632 	return "UNKNOWN_NETDEV_EVENT";
1633 }
1634 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1635 
1636 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1637 				   struct net_device *dev)
1638 {
1639 	struct netdev_notifier_info info = {
1640 		.dev = dev,
1641 	};
1642 
1643 	return nb->notifier_call(nb, val, &info);
1644 }
1645 
1646 static int call_netdevice_register_notifiers(struct notifier_block *nb,
1647 					     struct net_device *dev)
1648 {
1649 	int err;
1650 
1651 	err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1652 	err = notifier_to_errno(err);
1653 	if (err)
1654 		return err;
1655 
1656 	if (!(dev->flags & IFF_UP))
1657 		return 0;
1658 
1659 	call_netdevice_notifier(nb, NETDEV_UP, dev);
1660 	return 0;
1661 }
1662 
1663 static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1664 						struct net_device *dev)
1665 {
1666 	if (dev->flags & IFF_UP) {
1667 		call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1668 					dev);
1669 		call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1670 	}
1671 	call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1672 }
1673 
1674 static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1675 						 struct net *net)
1676 {
1677 	struct net_device *dev;
1678 	int err;
1679 
1680 	for_each_netdev(net, dev) {
1681 		err = call_netdevice_register_notifiers(nb, dev);
1682 		if (err)
1683 			goto rollback;
1684 	}
1685 	return 0;
1686 
1687 rollback:
1688 	for_each_netdev_continue_reverse(net, dev)
1689 		call_netdevice_unregister_notifiers(nb, dev);
1690 	return err;
1691 }
1692 
1693 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1694 						    struct net *net)
1695 {
1696 	struct net_device *dev;
1697 
1698 	for_each_netdev(net, dev)
1699 		call_netdevice_unregister_notifiers(nb, dev);
1700 }
1701 
1702 static int dev_boot_phase = 1;
1703 
1704 /**
1705  * register_netdevice_notifier - register a network notifier block
1706  * @nb: notifier
1707  *
1708  * Register a notifier to be called when network device events occur.
1709  * The notifier passed is linked into the kernel structures and must
1710  * not be reused until it has been unregistered. A negative errno code
1711  * is returned on a failure.
1712  *
1713  * When registered all registration and up events are replayed
1714  * to the new notifier to allow device to have a race free
1715  * view of the network device list.
1716  */
1717 
1718 int register_netdevice_notifier(struct notifier_block *nb)
1719 {
1720 	struct net *net;
1721 	int err;
1722 
1723 	/* Close race with setup_net() and cleanup_net() */
1724 	down_write(&pernet_ops_rwsem);
1725 	rtnl_lock();
1726 	err = raw_notifier_chain_register(&netdev_chain, nb);
1727 	if (err)
1728 		goto unlock;
1729 	if (dev_boot_phase)
1730 		goto unlock;
1731 	for_each_net(net) {
1732 		err = call_netdevice_register_net_notifiers(nb, net);
1733 		if (err)
1734 			goto rollback;
1735 	}
1736 
1737 unlock:
1738 	rtnl_unlock();
1739 	up_write(&pernet_ops_rwsem);
1740 	return err;
1741 
1742 rollback:
1743 	for_each_net_continue_reverse(net)
1744 		call_netdevice_unregister_net_notifiers(nb, net);
1745 
1746 	raw_notifier_chain_unregister(&netdev_chain, nb);
1747 	goto unlock;
1748 }
1749 EXPORT_SYMBOL(register_netdevice_notifier);
1750 
1751 /**
1752  * unregister_netdevice_notifier - unregister a network notifier block
1753  * @nb: notifier
1754  *
1755  * Unregister a notifier previously registered by
1756  * register_netdevice_notifier(). The notifier is unlinked into the
1757  * kernel structures and may then be reused. A negative errno code
1758  * is returned on a failure.
1759  *
1760  * After unregistering unregister and down device events are synthesized
1761  * for all devices on the device list to the removed notifier to remove
1762  * the need for special case cleanup code.
1763  */
1764 
1765 int unregister_netdevice_notifier(struct notifier_block *nb)
1766 {
1767 	struct net *net;
1768 	int err;
1769 
1770 	/* Close race with setup_net() and cleanup_net() */
1771 	down_write(&pernet_ops_rwsem);
1772 	rtnl_lock();
1773 	err = raw_notifier_chain_unregister(&netdev_chain, nb);
1774 	if (err)
1775 		goto unlock;
1776 
1777 	for_each_net(net)
1778 		call_netdevice_unregister_net_notifiers(nb, net);
1779 
1780 unlock:
1781 	rtnl_unlock();
1782 	up_write(&pernet_ops_rwsem);
1783 	return err;
1784 }
1785 EXPORT_SYMBOL(unregister_netdevice_notifier);
1786 
1787 static int __register_netdevice_notifier_net(struct net *net,
1788 					     struct notifier_block *nb,
1789 					     bool ignore_call_fail)
1790 {
1791 	int err;
1792 
1793 	err = raw_notifier_chain_register(&net->netdev_chain, nb);
1794 	if (err)
1795 		return err;
1796 	if (dev_boot_phase)
1797 		return 0;
1798 
1799 	err = call_netdevice_register_net_notifiers(nb, net);
1800 	if (err && !ignore_call_fail)
1801 		goto chain_unregister;
1802 
1803 	return 0;
1804 
1805 chain_unregister:
1806 	raw_notifier_chain_unregister(&net->netdev_chain, nb);
1807 	return err;
1808 }
1809 
1810 static int __unregister_netdevice_notifier_net(struct net *net,
1811 					       struct notifier_block *nb)
1812 {
1813 	int err;
1814 
1815 	err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
1816 	if (err)
1817 		return err;
1818 
1819 	call_netdevice_unregister_net_notifiers(nb, net);
1820 	return 0;
1821 }
1822 
1823 /**
1824  * register_netdevice_notifier_net - register a per-netns network notifier block
1825  * @net: network namespace
1826  * @nb: notifier
1827  *
1828  * Register a notifier to be called when network device events occur.
1829  * The notifier passed is linked into the kernel structures and must
1830  * not be reused until it has been unregistered. A negative errno code
1831  * is returned on a failure.
1832  *
1833  * When registered all registration and up events are replayed
1834  * to the new notifier to allow device to have a race free
1835  * view of the network device list.
1836  */
1837 
1838 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
1839 {
1840 	int err;
1841 
1842 	rtnl_lock();
1843 	err = __register_netdevice_notifier_net(net, nb, false);
1844 	rtnl_unlock();
1845 	return err;
1846 }
1847 EXPORT_SYMBOL(register_netdevice_notifier_net);
1848 
1849 /**
1850  * unregister_netdevice_notifier_net - unregister a per-netns
1851  *                                     network notifier block
1852  * @net: network namespace
1853  * @nb: notifier
1854  *
1855  * Unregister a notifier previously registered by
1856  * register_netdevice_notifier(). The notifier is unlinked into the
1857  * kernel structures and may then be reused. A negative errno code
1858  * is returned on a failure.
1859  *
1860  * After unregistering unregister and down device events are synthesized
1861  * for all devices on the device list to the removed notifier to remove
1862  * the need for special case cleanup code.
1863  */
1864 
1865 int unregister_netdevice_notifier_net(struct net *net,
1866 				      struct notifier_block *nb)
1867 {
1868 	int err;
1869 
1870 	rtnl_lock();
1871 	err = __unregister_netdevice_notifier_net(net, nb);
1872 	rtnl_unlock();
1873 	return err;
1874 }
1875 EXPORT_SYMBOL(unregister_netdevice_notifier_net);
1876 
1877 int register_netdevice_notifier_dev_net(struct net_device *dev,
1878 					struct notifier_block *nb,
1879 					struct netdev_net_notifier *nn)
1880 {
1881 	int err;
1882 
1883 	rtnl_lock();
1884 	err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
1885 	if (!err) {
1886 		nn->nb = nb;
1887 		list_add(&nn->list, &dev->net_notifier_list);
1888 	}
1889 	rtnl_unlock();
1890 	return err;
1891 }
1892 EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
1893 
1894 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
1895 					  struct notifier_block *nb,
1896 					  struct netdev_net_notifier *nn)
1897 {
1898 	int err;
1899 
1900 	rtnl_lock();
1901 	list_del(&nn->list);
1902 	err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
1903 	rtnl_unlock();
1904 	return err;
1905 }
1906 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
1907 
1908 static void move_netdevice_notifiers_dev_net(struct net_device *dev,
1909 					     struct net *net)
1910 {
1911 	struct netdev_net_notifier *nn;
1912 
1913 	list_for_each_entry(nn, &dev->net_notifier_list, list) {
1914 		__unregister_netdevice_notifier_net(dev_net(dev), nn->nb);
1915 		__register_netdevice_notifier_net(net, nn->nb, true);
1916 	}
1917 }
1918 
1919 /**
1920  *	call_netdevice_notifiers_info - call all network notifier blocks
1921  *	@val: value passed unmodified to notifier function
1922  *	@info: notifier information data
1923  *
1924  *	Call all network notifier blocks.  Parameters and return value
1925  *	are as for raw_notifier_call_chain().
1926  */
1927 
1928 static int call_netdevice_notifiers_info(unsigned long val,
1929 					 struct netdev_notifier_info *info)
1930 {
1931 	struct net *net = dev_net(info->dev);
1932 	int ret;
1933 
1934 	ASSERT_RTNL();
1935 
1936 	/* Run per-netns notifier block chain first, then run the global one.
1937 	 * Hopefully, one day, the global one is going to be removed after
1938 	 * all notifier block registrators get converted to be per-netns.
1939 	 */
1940 	ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
1941 	if (ret & NOTIFY_STOP_MASK)
1942 		return ret;
1943 	return raw_notifier_call_chain(&netdev_chain, val, info);
1944 }
1945 
1946 /**
1947  *	call_netdevice_notifiers_info_robust - call per-netns notifier blocks
1948  *	                                       for and rollback on error
1949  *	@val_up: value passed unmodified to notifier function
1950  *	@val_down: value passed unmodified to the notifier function when
1951  *	           recovering from an error on @val_up
1952  *	@info: notifier information data
1953  *
1954  *	Call all per-netns network notifier blocks, but not notifier blocks on
1955  *	the global notifier chain. Parameters and return value are as for
1956  *	raw_notifier_call_chain_robust().
1957  */
1958 
1959 static int
1960 call_netdevice_notifiers_info_robust(unsigned long val_up,
1961 				     unsigned long val_down,
1962 				     struct netdev_notifier_info *info)
1963 {
1964 	struct net *net = dev_net(info->dev);
1965 
1966 	ASSERT_RTNL();
1967 
1968 	return raw_notifier_call_chain_robust(&net->netdev_chain,
1969 					      val_up, val_down, info);
1970 }
1971 
1972 static int call_netdevice_notifiers_extack(unsigned long val,
1973 					   struct net_device *dev,
1974 					   struct netlink_ext_ack *extack)
1975 {
1976 	struct netdev_notifier_info info = {
1977 		.dev = dev,
1978 		.extack = extack,
1979 	};
1980 
1981 	return call_netdevice_notifiers_info(val, &info);
1982 }
1983 
1984 /**
1985  *	call_netdevice_notifiers - call all network notifier blocks
1986  *      @val: value passed unmodified to notifier function
1987  *      @dev: net_device pointer passed unmodified to notifier function
1988  *
1989  *	Call all network notifier blocks.  Parameters and return value
1990  *	are as for raw_notifier_call_chain().
1991  */
1992 
1993 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1994 {
1995 	return call_netdevice_notifiers_extack(val, dev, NULL);
1996 }
1997 EXPORT_SYMBOL(call_netdevice_notifiers);
1998 
1999 /**
2000  *	call_netdevice_notifiers_mtu - call all network notifier blocks
2001  *	@val: value passed unmodified to notifier function
2002  *	@dev: net_device pointer passed unmodified to notifier function
2003  *	@arg: additional u32 argument passed to the notifier function
2004  *
2005  *	Call all network notifier blocks.  Parameters and return value
2006  *	are as for raw_notifier_call_chain().
2007  */
2008 static int call_netdevice_notifiers_mtu(unsigned long val,
2009 					struct net_device *dev, u32 arg)
2010 {
2011 	struct netdev_notifier_info_ext info = {
2012 		.info.dev = dev,
2013 		.ext.mtu = arg,
2014 	};
2015 
2016 	BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2017 
2018 	return call_netdevice_notifiers_info(val, &info.info);
2019 }
2020 
2021 #ifdef CONFIG_NET_INGRESS
2022 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2023 
2024 void net_inc_ingress_queue(void)
2025 {
2026 	static_branch_inc(&ingress_needed_key);
2027 }
2028 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2029 
2030 void net_dec_ingress_queue(void)
2031 {
2032 	static_branch_dec(&ingress_needed_key);
2033 }
2034 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2035 #endif
2036 
2037 #ifdef CONFIG_NET_EGRESS
2038 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2039 
2040 void net_inc_egress_queue(void)
2041 {
2042 	static_branch_inc(&egress_needed_key);
2043 }
2044 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2045 
2046 void net_dec_egress_queue(void)
2047 {
2048 	static_branch_dec(&egress_needed_key);
2049 }
2050 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2051 #endif
2052 
2053 DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2054 EXPORT_SYMBOL(netstamp_needed_key);
2055 #ifdef CONFIG_JUMP_LABEL
2056 static atomic_t netstamp_needed_deferred;
2057 static atomic_t netstamp_wanted;
2058 static void netstamp_clear(struct work_struct *work)
2059 {
2060 	int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2061 	int wanted;
2062 
2063 	wanted = atomic_add_return(deferred, &netstamp_wanted);
2064 	if (wanted > 0)
2065 		static_branch_enable(&netstamp_needed_key);
2066 	else
2067 		static_branch_disable(&netstamp_needed_key);
2068 }
2069 static DECLARE_WORK(netstamp_work, netstamp_clear);
2070 #endif
2071 
2072 void net_enable_timestamp(void)
2073 {
2074 #ifdef CONFIG_JUMP_LABEL
2075 	int wanted;
2076 
2077 	while (1) {
2078 		wanted = atomic_read(&netstamp_wanted);
2079 		if (wanted <= 0)
2080 			break;
2081 		if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
2082 			return;
2083 	}
2084 	atomic_inc(&netstamp_needed_deferred);
2085 	schedule_work(&netstamp_work);
2086 #else
2087 	static_branch_inc(&netstamp_needed_key);
2088 #endif
2089 }
2090 EXPORT_SYMBOL(net_enable_timestamp);
2091 
2092 void net_disable_timestamp(void)
2093 {
2094 #ifdef CONFIG_JUMP_LABEL
2095 	int wanted;
2096 
2097 	while (1) {
2098 		wanted = atomic_read(&netstamp_wanted);
2099 		if (wanted <= 1)
2100 			break;
2101 		if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
2102 			return;
2103 	}
2104 	atomic_dec(&netstamp_needed_deferred);
2105 	schedule_work(&netstamp_work);
2106 #else
2107 	static_branch_dec(&netstamp_needed_key);
2108 #endif
2109 }
2110 EXPORT_SYMBOL(net_disable_timestamp);
2111 
2112 static inline void net_timestamp_set(struct sk_buff *skb)
2113 {
2114 	skb->tstamp = 0;
2115 	skb->mono_delivery_time = 0;
2116 	if (static_branch_unlikely(&netstamp_needed_key))
2117 		skb->tstamp = ktime_get_real();
2118 }
2119 
2120 #define net_timestamp_check(COND, SKB)				\
2121 	if (static_branch_unlikely(&netstamp_needed_key)) {	\
2122 		if ((COND) && !(SKB)->tstamp)			\
2123 			(SKB)->tstamp = ktime_get_real();	\
2124 	}							\
2125 
2126 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2127 {
2128 	return __is_skb_forwardable(dev, skb, true);
2129 }
2130 EXPORT_SYMBOL_GPL(is_skb_forwardable);
2131 
2132 static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb,
2133 			      bool check_mtu)
2134 {
2135 	int ret = ____dev_forward_skb(dev, skb, check_mtu);
2136 
2137 	if (likely(!ret)) {
2138 		skb->protocol = eth_type_trans(skb, dev);
2139 		skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2140 	}
2141 
2142 	return ret;
2143 }
2144 
2145 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2146 {
2147 	return __dev_forward_skb2(dev, skb, true);
2148 }
2149 EXPORT_SYMBOL_GPL(__dev_forward_skb);
2150 
2151 /**
2152  * dev_forward_skb - loopback an skb to another netif
2153  *
2154  * @dev: destination network device
2155  * @skb: buffer to forward
2156  *
2157  * return values:
2158  *	NET_RX_SUCCESS	(no congestion)
2159  *	NET_RX_DROP     (packet was dropped, but freed)
2160  *
2161  * dev_forward_skb can be used for injecting an skb from the
2162  * start_xmit function of one device into the receive queue
2163  * of another device.
2164  *
2165  * The receiving device may be in another namespace, so
2166  * we have to clear all information in the skb that could
2167  * impact namespace isolation.
2168  */
2169 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2170 {
2171 	return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2172 }
2173 EXPORT_SYMBOL_GPL(dev_forward_skb);
2174 
2175 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb)
2176 {
2177 	return __dev_forward_skb2(dev, skb, false) ?: netif_rx_internal(skb);
2178 }
2179 
2180 static inline int deliver_skb(struct sk_buff *skb,
2181 			      struct packet_type *pt_prev,
2182 			      struct net_device *orig_dev)
2183 {
2184 	if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2185 		return -ENOMEM;
2186 	refcount_inc(&skb->users);
2187 	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2188 }
2189 
2190 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2191 					  struct packet_type **pt,
2192 					  struct net_device *orig_dev,
2193 					  __be16 type,
2194 					  struct list_head *ptype_list)
2195 {
2196 	struct packet_type *ptype, *pt_prev = *pt;
2197 
2198 	list_for_each_entry_rcu(ptype, ptype_list, list) {
2199 		if (ptype->type != type)
2200 			continue;
2201 		if (pt_prev)
2202 			deliver_skb(skb, pt_prev, orig_dev);
2203 		pt_prev = ptype;
2204 	}
2205 	*pt = pt_prev;
2206 }
2207 
2208 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2209 {
2210 	if (!ptype->af_packet_priv || !skb->sk)
2211 		return false;
2212 
2213 	if (ptype->id_match)
2214 		return ptype->id_match(ptype, skb->sk);
2215 	else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2216 		return true;
2217 
2218 	return false;
2219 }
2220 
2221 /**
2222  * dev_nit_active - return true if any network interface taps are in use
2223  *
2224  * @dev: network device to check for the presence of taps
2225  */
2226 bool dev_nit_active(struct net_device *dev)
2227 {
2228 	return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
2229 }
2230 EXPORT_SYMBOL_GPL(dev_nit_active);
2231 
2232 /*
2233  *	Support routine. Sends outgoing frames to any network
2234  *	taps currently in use.
2235  */
2236 
2237 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2238 {
2239 	struct packet_type *ptype;
2240 	struct sk_buff *skb2 = NULL;
2241 	struct packet_type *pt_prev = NULL;
2242 	struct list_head *ptype_list = &ptype_all;
2243 
2244 	rcu_read_lock();
2245 again:
2246 	list_for_each_entry_rcu(ptype, ptype_list, list) {
2247 		if (ptype->ignore_outgoing)
2248 			continue;
2249 
2250 		/* Never send packets back to the socket
2251 		 * they originated from - MvS (miquels@drinkel.ow.org)
2252 		 */
2253 		if (skb_loop_sk(ptype, skb))
2254 			continue;
2255 
2256 		if (pt_prev) {
2257 			deliver_skb(skb2, pt_prev, skb->dev);
2258 			pt_prev = ptype;
2259 			continue;
2260 		}
2261 
2262 		/* need to clone skb, done only once */
2263 		skb2 = skb_clone(skb, GFP_ATOMIC);
2264 		if (!skb2)
2265 			goto out_unlock;
2266 
2267 		net_timestamp_set(skb2);
2268 
2269 		/* skb->nh should be correctly
2270 		 * set by sender, so that the second statement is
2271 		 * just protection against buggy protocols.
2272 		 */
2273 		skb_reset_mac_header(skb2);
2274 
2275 		if (skb_network_header(skb2) < skb2->data ||
2276 		    skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2277 			net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2278 					     ntohs(skb2->protocol),
2279 					     dev->name);
2280 			skb_reset_network_header(skb2);
2281 		}
2282 
2283 		skb2->transport_header = skb2->network_header;
2284 		skb2->pkt_type = PACKET_OUTGOING;
2285 		pt_prev = ptype;
2286 	}
2287 
2288 	if (ptype_list == &ptype_all) {
2289 		ptype_list = &dev->ptype_all;
2290 		goto again;
2291 	}
2292 out_unlock:
2293 	if (pt_prev) {
2294 		if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2295 			pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2296 		else
2297 			kfree_skb(skb2);
2298 	}
2299 	rcu_read_unlock();
2300 }
2301 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2302 
2303 /**
2304  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2305  * @dev: Network device
2306  * @txq: number of queues available
2307  *
2308  * If real_num_tx_queues is changed the tc mappings may no longer be
2309  * valid. To resolve this verify the tc mapping remains valid and if
2310  * not NULL the mapping. With no priorities mapping to this
2311  * offset/count pair it will no longer be used. In the worst case TC0
2312  * is invalid nothing can be done so disable priority mappings. If is
2313  * expected that drivers will fix this mapping if they can before
2314  * calling netif_set_real_num_tx_queues.
2315  */
2316 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2317 {
2318 	int i;
2319 	struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2320 
2321 	/* If TC0 is invalidated disable TC mapping */
2322 	if (tc->offset + tc->count > txq) {
2323 		netdev_warn(dev, "Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2324 		dev->num_tc = 0;
2325 		return;
2326 	}
2327 
2328 	/* Invalidated prio to tc mappings set to TC0 */
2329 	for (i = 1; i < TC_BITMASK + 1; i++) {
2330 		int q = netdev_get_prio_tc_map(dev, i);
2331 
2332 		tc = &dev->tc_to_txq[q];
2333 		if (tc->offset + tc->count > txq) {
2334 			netdev_warn(dev, "Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2335 				    i, q);
2336 			netdev_set_prio_tc_map(dev, i, 0);
2337 		}
2338 	}
2339 }
2340 
2341 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2342 {
2343 	if (dev->num_tc) {
2344 		struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2345 		int i;
2346 
2347 		/* walk through the TCs and see if it falls into any of them */
2348 		for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2349 			if ((txq - tc->offset) < tc->count)
2350 				return i;
2351 		}
2352 
2353 		/* didn't find it, just return -1 to indicate no match */
2354 		return -1;
2355 	}
2356 
2357 	return 0;
2358 }
2359 EXPORT_SYMBOL(netdev_txq_to_tc);
2360 
2361 #ifdef CONFIG_XPS
2362 static struct static_key xps_needed __read_mostly;
2363 static struct static_key xps_rxqs_needed __read_mostly;
2364 static DEFINE_MUTEX(xps_map_mutex);
2365 #define xmap_dereference(P)		\
2366 	rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2367 
2368 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2369 			     struct xps_dev_maps *old_maps, int tci, u16 index)
2370 {
2371 	struct xps_map *map = NULL;
2372 	int pos;
2373 
2374 	if (dev_maps)
2375 		map = xmap_dereference(dev_maps->attr_map[tci]);
2376 	if (!map)
2377 		return false;
2378 
2379 	for (pos = map->len; pos--;) {
2380 		if (map->queues[pos] != index)
2381 			continue;
2382 
2383 		if (map->len > 1) {
2384 			map->queues[pos] = map->queues[--map->len];
2385 			break;
2386 		}
2387 
2388 		if (old_maps)
2389 			RCU_INIT_POINTER(old_maps->attr_map[tci], NULL);
2390 		RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2391 		kfree_rcu(map, rcu);
2392 		return false;
2393 	}
2394 
2395 	return true;
2396 }
2397 
2398 static bool remove_xps_queue_cpu(struct net_device *dev,
2399 				 struct xps_dev_maps *dev_maps,
2400 				 int cpu, u16 offset, u16 count)
2401 {
2402 	int num_tc = dev_maps->num_tc;
2403 	bool active = false;
2404 	int tci;
2405 
2406 	for (tci = cpu * num_tc; num_tc--; tci++) {
2407 		int i, j;
2408 
2409 		for (i = count, j = offset; i--; j++) {
2410 			if (!remove_xps_queue(dev_maps, NULL, tci, j))
2411 				break;
2412 		}
2413 
2414 		active |= i < 0;
2415 	}
2416 
2417 	return active;
2418 }
2419 
2420 static void reset_xps_maps(struct net_device *dev,
2421 			   struct xps_dev_maps *dev_maps,
2422 			   enum xps_map_type type)
2423 {
2424 	static_key_slow_dec_cpuslocked(&xps_needed);
2425 	if (type == XPS_RXQS)
2426 		static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2427 
2428 	RCU_INIT_POINTER(dev->xps_maps[type], NULL);
2429 
2430 	kfree_rcu(dev_maps, rcu);
2431 }
2432 
2433 static void clean_xps_maps(struct net_device *dev, enum xps_map_type type,
2434 			   u16 offset, u16 count)
2435 {
2436 	struct xps_dev_maps *dev_maps;
2437 	bool active = false;
2438 	int i, j;
2439 
2440 	dev_maps = xmap_dereference(dev->xps_maps[type]);
2441 	if (!dev_maps)
2442 		return;
2443 
2444 	for (j = 0; j < dev_maps->nr_ids; j++)
2445 		active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, count);
2446 	if (!active)
2447 		reset_xps_maps(dev, dev_maps, type);
2448 
2449 	if (type == XPS_CPUS) {
2450 		for (i = offset + (count - 1); count--; i--)
2451 			netdev_queue_numa_node_write(
2452 				netdev_get_tx_queue(dev, i), NUMA_NO_NODE);
2453 	}
2454 }
2455 
2456 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2457 				   u16 count)
2458 {
2459 	if (!static_key_false(&xps_needed))
2460 		return;
2461 
2462 	cpus_read_lock();
2463 	mutex_lock(&xps_map_mutex);
2464 
2465 	if (static_key_false(&xps_rxqs_needed))
2466 		clean_xps_maps(dev, XPS_RXQS, offset, count);
2467 
2468 	clean_xps_maps(dev, XPS_CPUS, offset, count);
2469 
2470 	mutex_unlock(&xps_map_mutex);
2471 	cpus_read_unlock();
2472 }
2473 
2474 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2475 {
2476 	netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2477 }
2478 
2479 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2480 				      u16 index, bool is_rxqs_map)
2481 {
2482 	struct xps_map *new_map;
2483 	int alloc_len = XPS_MIN_MAP_ALLOC;
2484 	int i, pos;
2485 
2486 	for (pos = 0; map && pos < map->len; pos++) {
2487 		if (map->queues[pos] != index)
2488 			continue;
2489 		return map;
2490 	}
2491 
2492 	/* Need to add tx-queue to this CPU's/rx-queue's existing map */
2493 	if (map) {
2494 		if (pos < map->alloc_len)
2495 			return map;
2496 
2497 		alloc_len = map->alloc_len * 2;
2498 	}
2499 
2500 	/* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2501 	 *  map
2502 	 */
2503 	if (is_rxqs_map)
2504 		new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2505 	else
2506 		new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2507 				       cpu_to_node(attr_index));
2508 	if (!new_map)
2509 		return NULL;
2510 
2511 	for (i = 0; i < pos; i++)
2512 		new_map->queues[i] = map->queues[i];
2513 	new_map->alloc_len = alloc_len;
2514 	new_map->len = pos;
2515 
2516 	return new_map;
2517 }
2518 
2519 /* Copy xps maps at a given index */
2520 static void xps_copy_dev_maps(struct xps_dev_maps *dev_maps,
2521 			      struct xps_dev_maps *new_dev_maps, int index,
2522 			      int tc, bool skip_tc)
2523 {
2524 	int i, tci = index * dev_maps->num_tc;
2525 	struct xps_map *map;
2526 
2527 	/* copy maps belonging to foreign traffic classes */
2528 	for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2529 		if (i == tc && skip_tc)
2530 			continue;
2531 
2532 		/* fill in the new device map from the old device map */
2533 		map = xmap_dereference(dev_maps->attr_map[tci]);
2534 		RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2535 	}
2536 }
2537 
2538 /* Must be called under cpus_read_lock */
2539 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2540 			  u16 index, enum xps_map_type type)
2541 {
2542 	struct xps_dev_maps *dev_maps, *new_dev_maps = NULL, *old_dev_maps = NULL;
2543 	const unsigned long *online_mask = NULL;
2544 	bool active = false, copy = false;
2545 	int i, j, tci, numa_node_id = -2;
2546 	int maps_sz, num_tc = 1, tc = 0;
2547 	struct xps_map *map, *new_map;
2548 	unsigned int nr_ids;
2549 
2550 	if (dev->num_tc) {
2551 		/* Do not allow XPS on subordinate device directly */
2552 		num_tc = dev->num_tc;
2553 		if (num_tc < 0)
2554 			return -EINVAL;
2555 
2556 		/* If queue belongs to subordinate dev use its map */
2557 		dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2558 
2559 		tc = netdev_txq_to_tc(dev, index);
2560 		if (tc < 0)
2561 			return -EINVAL;
2562 	}
2563 
2564 	mutex_lock(&xps_map_mutex);
2565 
2566 	dev_maps = xmap_dereference(dev->xps_maps[type]);
2567 	if (type == XPS_RXQS) {
2568 		maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2569 		nr_ids = dev->num_rx_queues;
2570 	} else {
2571 		maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2572 		if (num_possible_cpus() > 1)
2573 			online_mask = cpumask_bits(cpu_online_mask);
2574 		nr_ids = nr_cpu_ids;
2575 	}
2576 
2577 	if (maps_sz < L1_CACHE_BYTES)
2578 		maps_sz = L1_CACHE_BYTES;
2579 
2580 	/* The old dev_maps could be larger or smaller than the one we're
2581 	 * setting up now, as dev->num_tc or nr_ids could have been updated in
2582 	 * between. We could try to be smart, but let's be safe instead and only
2583 	 * copy foreign traffic classes if the two map sizes match.
2584 	 */
2585 	if (dev_maps &&
2586 	    dev_maps->num_tc == num_tc && dev_maps->nr_ids == nr_ids)
2587 		copy = true;
2588 
2589 	/* allocate memory for queue storage */
2590 	for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2591 	     j < nr_ids;) {
2592 		if (!new_dev_maps) {
2593 			new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2594 			if (!new_dev_maps) {
2595 				mutex_unlock(&xps_map_mutex);
2596 				return -ENOMEM;
2597 			}
2598 
2599 			new_dev_maps->nr_ids = nr_ids;
2600 			new_dev_maps->num_tc = num_tc;
2601 		}
2602 
2603 		tci = j * num_tc + tc;
2604 		map = copy ? xmap_dereference(dev_maps->attr_map[tci]) : NULL;
2605 
2606 		map = expand_xps_map(map, j, index, type == XPS_RXQS);
2607 		if (!map)
2608 			goto error;
2609 
2610 		RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2611 	}
2612 
2613 	if (!new_dev_maps)
2614 		goto out_no_new_maps;
2615 
2616 	if (!dev_maps) {
2617 		/* Increment static keys at most once per type */
2618 		static_key_slow_inc_cpuslocked(&xps_needed);
2619 		if (type == XPS_RXQS)
2620 			static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2621 	}
2622 
2623 	for (j = 0; j < nr_ids; j++) {
2624 		bool skip_tc = false;
2625 
2626 		tci = j * num_tc + tc;
2627 		if (netif_attr_test_mask(j, mask, nr_ids) &&
2628 		    netif_attr_test_online(j, online_mask, nr_ids)) {
2629 			/* add tx-queue to CPU/rx-queue maps */
2630 			int pos = 0;
2631 
2632 			skip_tc = true;
2633 
2634 			map = xmap_dereference(new_dev_maps->attr_map[tci]);
2635 			while ((pos < map->len) && (map->queues[pos] != index))
2636 				pos++;
2637 
2638 			if (pos == map->len)
2639 				map->queues[map->len++] = index;
2640 #ifdef CONFIG_NUMA
2641 			if (type == XPS_CPUS) {
2642 				if (numa_node_id == -2)
2643 					numa_node_id = cpu_to_node(j);
2644 				else if (numa_node_id != cpu_to_node(j))
2645 					numa_node_id = -1;
2646 			}
2647 #endif
2648 		}
2649 
2650 		if (copy)
2651 			xps_copy_dev_maps(dev_maps, new_dev_maps, j, tc,
2652 					  skip_tc);
2653 	}
2654 
2655 	rcu_assign_pointer(dev->xps_maps[type], new_dev_maps);
2656 
2657 	/* Cleanup old maps */
2658 	if (!dev_maps)
2659 		goto out_no_old_maps;
2660 
2661 	for (j = 0; j < dev_maps->nr_ids; j++) {
2662 		for (i = num_tc, tci = j * dev_maps->num_tc; i--; tci++) {
2663 			map = xmap_dereference(dev_maps->attr_map[tci]);
2664 			if (!map)
2665 				continue;
2666 
2667 			if (copy) {
2668 				new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2669 				if (map == new_map)
2670 					continue;
2671 			}
2672 
2673 			RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2674 			kfree_rcu(map, rcu);
2675 		}
2676 	}
2677 
2678 	old_dev_maps = dev_maps;
2679 
2680 out_no_old_maps:
2681 	dev_maps = new_dev_maps;
2682 	active = true;
2683 
2684 out_no_new_maps:
2685 	if (type == XPS_CPUS)
2686 		/* update Tx queue numa node */
2687 		netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2688 					     (numa_node_id >= 0) ?
2689 					     numa_node_id : NUMA_NO_NODE);
2690 
2691 	if (!dev_maps)
2692 		goto out_no_maps;
2693 
2694 	/* removes tx-queue from unused CPUs/rx-queues */
2695 	for (j = 0; j < dev_maps->nr_ids; j++) {
2696 		tci = j * dev_maps->num_tc;
2697 
2698 		for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2699 			if (i == tc &&
2700 			    netif_attr_test_mask(j, mask, dev_maps->nr_ids) &&
2701 			    netif_attr_test_online(j, online_mask, dev_maps->nr_ids))
2702 				continue;
2703 
2704 			active |= remove_xps_queue(dev_maps,
2705 						   copy ? old_dev_maps : NULL,
2706 						   tci, index);
2707 		}
2708 	}
2709 
2710 	if (old_dev_maps)
2711 		kfree_rcu(old_dev_maps, rcu);
2712 
2713 	/* free map if not active */
2714 	if (!active)
2715 		reset_xps_maps(dev, dev_maps, type);
2716 
2717 out_no_maps:
2718 	mutex_unlock(&xps_map_mutex);
2719 
2720 	return 0;
2721 error:
2722 	/* remove any maps that we added */
2723 	for (j = 0; j < nr_ids; j++) {
2724 		for (i = num_tc, tci = j * num_tc; i--; tci++) {
2725 			new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2726 			map = copy ?
2727 			      xmap_dereference(dev_maps->attr_map[tci]) :
2728 			      NULL;
2729 			if (new_map && new_map != map)
2730 				kfree(new_map);
2731 		}
2732 	}
2733 
2734 	mutex_unlock(&xps_map_mutex);
2735 
2736 	kfree(new_dev_maps);
2737 	return -ENOMEM;
2738 }
2739 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2740 
2741 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2742 			u16 index)
2743 {
2744 	int ret;
2745 
2746 	cpus_read_lock();
2747 	ret =  __netif_set_xps_queue(dev, cpumask_bits(mask), index, XPS_CPUS);
2748 	cpus_read_unlock();
2749 
2750 	return ret;
2751 }
2752 EXPORT_SYMBOL(netif_set_xps_queue);
2753 
2754 #endif
2755 static void netdev_unbind_all_sb_channels(struct net_device *dev)
2756 {
2757 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2758 
2759 	/* Unbind any subordinate channels */
2760 	while (txq-- != &dev->_tx[0]) {
2761 		if (txq->sb_dev)
2762 			netdev_unbind_sb_channel(dev, txq->sb_dev);
2763 	}
2764 }
2765 
2766 void netdev_reset_tc(struct net_device *dev)
2767 {
2768 #ifdef CONFIG_XPS
2769 	netif_reset_xps_queues_gt(dev, 0);
2770 #endif
2771 	netdev_unbind_all_sb_channels(dev);
2772 
2773 	/* Reset TC configuration of device */
2774 	dev->num_tc = 0;
2775 	memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2776 	memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2777 }
2778 EXPORT_SYMBOL(netdev_reset_tc);
2779 
2780 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2781 {
2782 	if (tc >= dev->num_tc)
2783 		return -EINVAL;
2784 
2785 #ifdef CONFIG_XPS
2786 	netif_reset_xps_queues(dev, offset, count);
2787 #endif
2788 	dev->tc_to_txq[tc].count = count;
2789 	dev->tc_to_txq[tc].offset = offset;
2790 	return 0;
2791 }
2792 EXPORT_SYMBOL(netdev_set_tc_queue);
2793 
2794 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2795 {
2796 	if (num_tc > TC_MAX_QUEUE)
2797 		return -EINVAL;
2798 
2799 #ifdef CONFIG_XPS
2800 	netif_reset_xps_queues_gt(dev, 0);
2801 #endif
2802 	netdev_unbind_all_sb_channels(dev);
2803 
2804 	dev->num_tc = num_tc;
2805 	return 0;
2806 }
2807 EXPORT_SYMBOL(netdev_set_num_tc);
2808 
2809 void netdev_unbind_sb_channel(struct net_device *dev,
2810 			      struct net_device *sb_dev)
2811 {
2812 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2813 
2814 #ifdef CONFIG_XPS
2815 	netif_reset_xps_queues_gt(sb_dev, 0);
2816 #endif
2817 	memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2818 	memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2819 
2820 	while (txq-- != &dev->_tx[0]) {
2821 		if (txq->sb_dev == sb_dev)
2822 			txq->sb_dev = NULL;
2823 	}
2824 }
2825 EXPORT_SYMBOL(netdev_unbind_sb_channel);
2826 
2827 int netdev_bind_sb_channel_queue(struct net_device *dev,
2828 				 struct net_device *sb_dev,
2829 				 u8 tc, u16 count, u16 offset)
2830 {
2831 	/* Make certain the sb_dev and dev are already configured */
2832 	if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2833 		return -EINVAL;
2834 
2835 	/* We cannot hand out queues we don't have */
2836 	if ((offset + count) > dev->real_num_tx_queues)
2837 		return -EINVAL;
2838 
2839 	/* Record the mapping */
2840 	sb_dev->tc_to_txq[tc].count = count;
2841 	sb_dev->tc_to_txq[tc].offset = offset;
2842 
2843 	/* Provide a way for Tx queue to find the tc_to_txq map or
2844 	 * XPS map for itself.
2845 	 */
2846 	while (count--)
2847 		netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2848 
2849 	return 0;
2850 }
2851 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2852 
2853 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2854 {
2855 	/* Do not use a multiqueue device to represent a subordinate channel */
2856 	if (netif_is_multiqueue(dev))
2857 		return -ENODEV;
2858 
2859 	/* We allow channels 1 - 32767 to be used for subordinate channels.
2860 	 * Channel 0 is meant to be "native" mode and used only to represent
2861 	 * the main root device. We allow writing 0 to reset the device back
2862 	 * to normal mode after being used as a subordinate channel.
2863 	 */
2864 	if (channel > S16_MAX)
2865 		return -EINVAL;
2866 
2867 	dev->num_tc = -channel;
2868 
2869 	return 0;
2870 }
2871 EXPORT_SYMBOL(netdev_set_sb_channel);
2872 
2873 /*
2874  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2875  * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2876  */
2877 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2878 {
2879 	bool disabling;
2880 	int rc;
2881 
2882 	disabling = txq < dev->real_num_tx_queues;
2883 
2884 	if (txq < 1 || txq > dev->num_tx_queues)
2885 		return -EINVAL;
2886 
2887 	if (dev->reg_state == NETREG_REGISTERED ||
2888 	    dev->reg_state == NETREG_UNREGISTERING) {
2889 		ASSERT_RTNL();
2890 
2891 		rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2892 						  txq);
2893 		if (rc)
2894 			return rc;
2895 
2896 		if (dev->num_tc)
2897 			netif_setup_tc(dev, txq);
2898 
2899 		dev_qdisc_change_real_num_tx(dev, txq);
2900 
2901 		dev->real_num_tx_queues = txq;
2902 
2903 		if (disabling) {
2904 			synchronize_net();
2905 			qdisc_reset_all_tx_gt(dev, txq);
2906 #ifdef CONFIG_XPS
2907 			netif_reset_xps_queues_gt(dev, txq);
2908 #endif
2909 		}
2910 	} else {
2911 		dev->real_num_tx_queues = txq;
2912 	}
2913 
2914 	return 0;
2915 }
2916 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2917 
2918 #ifdef CONFIG_SYSFS
2919 /**
2920  *	netif_set_real_num_rx_queues - set actual number of RX queues used
2921  *	@dev: Network device
2922  *	@rxq: Actual number of RX queues
2923  *
2924  *	This must be called either with the rtnl_lock held or before
2925  *	registration of the net device.  Returns 0 on success, or a
2926  *	negative error code.  If called before registration, it always
2927  *	succeeds.
2928  */
2929 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2930 {
2931 	int rc;
2932 
2933 	if (rxq < 1 || rxq > dev->num_rx_queues)
2934 		return -EINVAL;
2935 
2936 	if (dev->reg_state == NETREG_REGISTERED) {
2937 		ASSERT_RTNL();
2938 
2939 		rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2940 						  rxq);
2941 		if (rc)
2942 			return rc;
2943 	}
2944 
2945 	dev->real_num_rx_queues = rxq;
2946 	return 0;
2947 }
2948 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2949 #endif
2950 
2951 /**
2952  *	netif_set_real_num_queues - set actual number of RX and TX queues used
2953  *	@dev: Network device
2954  *	@txq: Actual number of TX queues
2955  *	@rxq: Actual number of RX queues
2956  *
2957  *	Set the real number of both TX and RX queues.
2958  *	Does nothing if the number of queues is already correct.
2959  */
2960 int netif_set_real_num_queues(struct net_device *dev,
2961 			      unsigned int txq, unsigned int rxq)
2962 {
2963 	unsigned int old_rxq = dev->real_num_rx_queues;
2964 	int err;
2965 
2966 	if (txq < 1 || txq > dev->num_tx_queues ||
2967 	    rxq < 1 || rxq > dev->num_rx_queues)
2968 		return -EINVAL;
2969 
2970 	/* Start from increases, so the error path only does decreases -
2971 	 * decreases can't fail.
2972 	 */
2973 	if (rxq > dev->real_num_rx_queues) {
2974 		err = netif_set_real_num_rx_queues(dev, rxq);
2975 		if (err)
2976 			return err;
2977 	}
2978 	if (txq > dev->real_num_tx_queues) {
2979 		err = netif_set_real_num_tx_queues(dev, txq);
2980 		if (err)
2981 			goto undo_rx;
2982 	}
2983 	if (rxq < dev->real_num_rx_queues)
2984 		WARN_ON(netif_set_real_num_rx_queues(dev, rxq));
2985 	if (txq < dev->real_num_tx_queues)
2986 		WARN_ON(netif_set_real_num_tx_queues(dev, txq));
2987 
2988 	return 0;
2989 undo_rx:
2990 	WARN_ON(netif_set_real_num_rx_queues(dev, old_rxq));
2991 	return err;
2992 }
2993 EXPORT_SYMBOL(netif_set_real_num_queues);
2994 
2995 /**
2996  * netif_set_tso_max_size() - set the max size of TSO frames supported
2997  * @dev:	netdev to update
2998  * @size:	max skb->len of a TSO frame
2999  *
3000  * Set the limit on the size of TSO super-frames the device can handle.
3001  * Unless explicitly set the stack will assume the value of
3002  * %GSO_LEGACY_MAX_SIZE.
3003  */
3004 void netif_set_tso_max_size(struct net_device *dev, unsigned int size)
3005 {
3006 	dev->tso_max_size = min(GSO_MAX_SIZE, size);
3007 	if (size < READ_ONCE(dev->gso_max_size))
3008 		netif_set_gso_max_size(dev, size);
3009 }
3010 EXPORT_SYMBOL(netif_set_tso_max_size);
3011 
3012 /**
3013  * netif_set_tso_max_segs() - set the max number of segs supported for TSO
3014  * @dev:	netdev to update
3015  * @segs:	max number of TCP segments
3016  *
3017  * Set the limit on the number of TCP segments the device can generate from
3018  * a single TSO super-frame.
3019  * Unless explicitly set the stack will assume the value of %GSO_MAX_SEGS.
3020  */
3021 void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs)
3022 {
3023 	dev->tso_max_segs = segs;
3024 	if (segs < READ_ONCE(dev->gso_max_segs))
3025 		netif_set_gso_max_segs(dev, segs);
3026 }
3027 EXPORT_SYMBOL(netif_set_tso_max_segs);
3028 
3029 /**
3030  * netif_inherit_tso_max() - copy all TSO limits from a lower device to an upper
3031  * @to:		netdev to update
3032  * @from:	netdev from which to copy the limits
3033  */
3034 void netif_inherit_tso_max(struct net_device *to, const struct net_device *from)
3035 {
3036 	netif_set_tso_max_size(to, from->tso_max_size);
3037 	netif_set_tso_max_segs(to, from->tso_max_segs);
3038 }
3039 EXPORT_SYMBOL(netif_inherit_tso_max);
3040 
3041 /**
3042  * netif_get_num_default_rss_queues - default number of RSS queues
3043  *
3044  * Default value is the number of physical cores if there are only 1 or 2, or
3045  * divided by 2 if there are more.
3046  */
3047 int netif_get_num_default_rss_queues(void)
3048 {
3049 	cpumask_var_t cpus;
3050 	int cpu, count = 0;
3051 
3052 	if (unlikely(is_kdump_kernel() || !zalloc_cpumask_var(&cpus, GFP_KERNEL)))
3053 		return 1;
3054 
3055 	cpumask_copy(cpus, cpu_online_mask);
3056 	for_each_cpu(cpu, cpus) {
3057 		++count;
3058 		cpumask_andnot(cpus, cpus, topology_sibling_cpumask(cpu));
3059 	}
3060 	free_cpumask_var(cpus);
3061 
3062 	return count > 2 ? DIV_ROUND_UP(count, 2) : count;
3063 }
3064 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3065 
3066 static void __netif_reschedule(struct Qdisc *q)
3067 {
3068 	struct softnet_data *sd;
3069 	unsigned long flags;
3070 
3071 	local_irq_save(flags);
3072 	sd = this_cpu_ptr(&softnet_data);
3073 	q->next_sched = NULL;
3074 	*sd->output_queue_tailp = q;
3075 	sd->output_queue_tailp = &q->next_sched;
3076 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
3077 	local_irq_restore(flags);
3078 }
3079 
3080 void __netif_schedule(struct Qdisc *q)
3081 {
3082 	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3083 		__netif_reschedule(q);
3084 }
3085 EXPORT_SYMBOL(__netif_schedule);
3086 
3087 struct dev_kfree_skb_cb {
3088 	enum skb_free_reason reason;
3089 };
3090 
3091 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
3092 {
3093 	return (struct dev_kfree_skb_cb *)skb->cb;
3094 }
3095 
3096 void netif_schedule_queue(struct netdev_queue *txq)
3097 {
3098 	rcu_read_lock();
3099 	if (!netif_xmit_stopped(txq)) {
3100 		struct Qdisc *q = rcu_dereference(txq->qdisc);
3101 
3102 		__netif_schedule(q);
3103 	}
3104 	rcu_read_unlock();
3105 }
3106 EXPORT_SYMBOL(netif_schedule_queue);
3107 
3108 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3109 {
3110 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3111 		struct Qdisc *q;
3112 
3113 		rcu_read_lock();
3114 		q = rcu_dereference(dev_queue->qdisc);
3115 		__netif_schedule(q);
3116 		rcu_read_unlock();
3117 	}
3118 }
3119 EXPORT_SYMBOL(netif_tx_wake_queue);
3120 
3121 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
3122 {
3123 	unsigned long flags;
3124 
3125 	if (unlikely(!skb))
3126 		return;
3127 
3128 	if (likely(refcount_read(&skb->users) == 1)) {
3129 		smp_rmb();
3130 		refcount_set(&skb->users, 0);
3131 	} else if (likely(!refcount_dec_and_test(&skb->users))) {
3132 		return;
3133 	}
3134 	get_kfree_skb_cb(skb)->reason = reason;
3135 	local_irq_save(flags);
3136 	skb->next = __this_cpu_read(softnet_data.completion_queue);
3137 	__this_cpu_write(softnet_data.completion_queue, skb);
3138 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
3139 	local_irq_restore(flags);
3140 }
3141 EXPORT_SYMBOL(__dev_kfree_skb_irq);
3142 
3143 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
3144 {
3145 	if (in_hardirq() || irqs_disabled())
3146 		__dev_kfree_skb_irq(skb, reason);
3147 	else
3148 		dev_kfree_skb(skb);
3149 }
3150 EXPORT_SYMBOL(__dev_kfree_skb_any);
3151 
3152 
3153 /**
3154  * netif_device_detach - mark device as removed
3155  * @dev: network device
3156  *
3157  * Mark device as removed from system and therefore no longer available.
3158  */
3159 void netif_device_detach(struct net_device *dev)
3160 {
3161 	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3162 	    netif_running(dev)) {
3163 		netif_tx_stop_all_queues(dev);
3164 	}
3165 }
3166 EXPORT_SYMBOL(netif_device_detach);
3167 
3168 /**
3169  * netif_device_attach - mark device as attached
3170  * @dev: network device
3171  *
3172  * Mark device as attached from system and restart if needed.
3173  */
3174 void netif_device_attach(struct net_device *dev)
3175 {
3176 	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3177 	    netif_running(dev)) {
3178 		netif_tx_wake_all_queues(dev);
3179 		__netdev_watchdog_up(dev);
3180 	}
3181 }
3182 EXPORT_SYMBOL(netif_device_attach);
3183 
3184 /*
3185  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3186  * to be used as a distribution range.
3187  */
3188 static u16 skb_tx_hash(const struct net_device *dev,
3189 		       const struct net_device *sb_dev,
3190 		       struct sk_buff *skb)
3191 {
3192 	u32 hash;
3193 	u16 qoffset = 0;
3194 	u16 qcount = dev->real_num_tx_queues;
3195 
3196 	if (dev->num_tc) {
3197 		u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3198 
3199 		qoffset = sb_dev->tc_to_txq[tc].offset;
3200 		qcount = sb_dev->tc_to_txq[tc].count;
3201 		if (unlikely(!qcount)) {
3202 			net_warn_ratelimited("%s: invalid qcount, qoffset %u for tc %u\n",
3203 					     sb_dev->name, qoffset, tc);
3204 			qoffset = 0;
3205 			qcount = dev->real_num_tx_queues;
3206 		}
3207 	}
3208 
3209 	if (skb_rx_queue_recorded(skb)) {
3210 		hash = skb_get_rx_queue(skb);
3211 		if (hash >= qoffset)
3212 			hash -= qoffset;
3213 		while (unlikely(hash >= qcount))
3214 			hash -= qcount;
3215 		return hash + qoffset;
3216 	}
3217 
3218 	return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3219 }
3220 
3221 static void skb_warn_bad_offload(const struct sk_buff *skb)
3222 {
3223 	static const netdev_features_t null_features;
3224 	struct net_device *dev = skb->dev;
3225 	const char *name = "";
3226 
3227 	if (!net_ratelimit())
3228 		return;
3229 
3230 	if (dev) {
3231 		if (dev->dev.parent)
3232 			name = dev_driver_string(dev->dev.parent);
3233 		else
3234 			name = netdev_name(dev);
3235 	}
3236 	skb_dump(KERN_WARNING, skb, false);
3237 	WARN(1, "%s: caps=(%pNF, %pNF)\n",
3238 	     name, dev ? &dev->features : &null_features,
3239 	     skb->sk ? &skb->sk->sk_route_caps : &null_features);
3240 }
3241 
3242 /*
3243  * Invalidate hardware checksum when packet is to be mangled, and
3244  * complete checksum manually on outgoing path.
3245  */
3246 int skb_checksum_help(struct sk_buff *skb)
3247 {
3248 	__wsum csum;
3249 	int ret = 0, offset;
3250 
3251 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3252 		goto out_set_summed;
3253 
3254 	if (unlikely(skb_is_gso(skb))) {
3255 		skb_warn_bad_offload(skb);
3256 		return -EINVAL;
3257 	}
3258 
3259 	/* Before computing a checksum, we should make sure no frag could
3260 	 * be modified by an external entity : checksum could be wrong.
3261 	 */
3262 	if (skb_has_shared_frag(skb)) {
3263 		ret = __skb_linearize(skb);
3264 		if (ret)
3265 			goto out;
3266 	}
3267 
3268 	offset = skb_checksum_start_offset(skb);
3269 	ret = -EINVAL;
3270 	if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3271 		DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3272 		goto out;
3273 	}
3274 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
3275 
3276 	offset += skb->csum_offset;
3277 	if (WARN_ON_ONCE(offset + sizeof(__sum16) > skb_headlen(skb))) {
3278 		DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3279 		goto out;
3280 	}
3281 	ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3282 	if (ret)
3283 		goto out;
3284 
3285 	*(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3286 out_set_summed:
3287 	skb->ip_summed = CHECKSUM_NONE;
3288 out:
3289 	return ret;
3290 }
3291 EXPORT_SYMBOL(skb_checksum_help);
3292 
3293 int skb_crc32c_csum_help(struct sk_buff *skb)
3294 {
3295 	__le32 crc32c_csum;
3296 	int ret = 0, offset, start;
3297 
3298 	if (skb->ip_summed != CHECKSUM_PARTIAL)
3299 		goto out;
3300 
3301 	if (unlikely(skb_is_gso(skb)))
3302 		goto out;
3303 
3304 	/* Before computing a checksum, we should make sure no frag could
3305 	 * be modified by an external entity : checksum could be wrong.
3306 	 */
3307 	if (unlikely(skb_has_shared_frag(skb))) {
3308 		ret = __skb_linearize(skb);
3309 		if (ret)
3310 			goto out;
3311 	}
3312 	start = skb_checksum_start_offset(skb);
3313 	offset = start + offsetof(struct sctphdr, checksum);
3314 	if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3315 		ret = -EINVAL;
3316 		goto out;
3317 	}
3318 
3319 	ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3320 	if (ret)
3321 		goto out;
3322 
3323 	crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3324 						  skb->len - start, ~(__u32)0,
3325 						  crc32c_csum_stub));
3326 	*(__le32 *)(skb->data + offset) = crc32c_csum;
3327 	skb->ip_summed = CHECKSUM_NONE;
3328 	skb->csum_not_inet = 0;
3329 out:
3330 	return ret;
3331 }
3332 
3333 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3334 {
3335 	__be16 type = skb->protocol;
3336 
3337 	/* Tunnel gso handlers can set protocol to ethernet. */
3338 	if (type == htons(ETH_P_TEB)) {
3339 		struct ethhdr *eth;
3340 
3341 		if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3342 			return 0;
3343 
3344 		eth = (struct ethhdr *)skb->data;
3345 		type = eth->h_proto;
3346 	}
3347 
3348 	return __vlan_get_protocol(skb, type, depth);
3349 }
3350 
3351 /* openvswitch calls this on rx path, so we need a different check.
3352  */
3353 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
3354 {
3355 	if (tx_path)
3356 		return skb->ip_summed != CHECKSUM_PARTIAL &&
3357 		       skb->ip_summed != CHECKSUM_UNNECESSARY;
3358 
3359 	return skb->ip_summed == CHECKSUM_NONE;
3360 }
3361 
3362 /**
3363  *	__skb_gso_segment - Perform segmentation on skb.
3364  *	@skb: buffer to segment
3365  *	@features: features for the output path (see dev->features)
3366  *	@tx_path: whether it is called in TX path
3367  *
3368  *	This function segments the given skb and returns a list of segments.
3369  *
3370  *	It may return NULL if the skb requires no segmentation.  This is
3371  *	only possible when GSO is used for verifying header integrity.
3372  *
3373  *	Segmentation preserves SKB_GSO_CB_OFFSET bytes of previous skb cb.
3374  */
3375 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3376 				  netdev_features_t features, bool tx_path)
3377 {
3378 	struct sk_buff *segs;
3379 
3380 	if (unlikely(skb_needs_check(skb, tx_path))) {
3381 		int err;
3382 
3383 		/* We're going to init ->check field in TCP or UDP header */
3384 		err = skb_cow_head(skb, 0);
3385 		if (err < 0)
3386 			return ERR_PTR(err);
3387 	}
3388 
3389 	/* Only report GSO partial support if it will enable us to
3390 	 * support segmentation on this frame without needing additional
3391 	 * work.
3392 	 */
3393 	if (features & NETIF_F_GSO_PARTIAL) {
3394 		netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
3395 		struct net_device *dev = skb->dev;
3396 
3397 		partial_features |= dev->features & dev->gso_partial_features;
3398 		if (!skb_gso_ok(skb, features | partial_features))
3399 			features &= ~NETIF_F_GSO_PARTIAL;
3400 	}
3401 
3402 	BUILD_BUG_ON(SKB_GSO_CB_OFFSET +
3403 		     sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
3404 
3405 	SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3406 	SKB_GSO_CB(skb)->encap_level = 0;
3407 
3408 	skb_reset_mac_header(skb);
3409 	skb_reset_mac_len(skb);
3410 
3411 	segs = skb_mac_gso_segment(skb, features);
3412 
3413 	if (segs != skb && unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
3414 		skb_warn_bad_offload(skb);
3415 
3416 	return segs;
3417 }
3418 EXPORT_SYMBOL(__skb_gso_segment);
3419 
3420 /* Take action when hardware reception checksum errors are detected. */
3421 #ifdef CONFIG_BUG
3422 static void do_netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3423 {
3424 	netdev_err(dev, "hw csum failure\n");
3425 	skb_dump(KERN_ERR, skb, true);
3426 	dump_stack();
3427 }
3428 
3429 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3430 {
3431 	DO_ONCE_LITE(do_netdev_rx_csum_fault, dev, skb);
3432 }
3433 EXPORT_SYMBOL(netdev_rx_csum_fault);
3434 #endif
3435 
3436 /* XXX: check that highmem exists at all on the given machine. */
3437 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3438 {
3439 #ifdef CONFIG_HIGHMEM
3440 	int i;
3441 
3442 	if (!(dev->features & NETIF_F_HIGHDMA)) {
3443 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3444 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3445 
3446 			if (PageHighMem(skb_frag_page(frag)))
3447 				return 1;
3448 		}
3449 	}
3450 #endif
3451 	return 0;
3452 }
3453 
3454 /* If MPLS offload request, verify we are testing hardware MPLS features
3455  * instead of standard features for the netdev.
3456  */
3457 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3458 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3459 					   netdev_features_t features,
3460 					   __be16 type)
3461 {
3462 	if (eth_p_mpls(type))
3463 		features &= skb->dev->mpls_features;
3464 
3465 	return features;
3466 }
3467 #else
3468 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3469 					   netdev_features_t features,
3470 					   __be16 type)
3471 {
3472 	return features;
3473 }
3474 #endif
3475 
3476 static netdev_features_t harmonize_features(struct sk_buff *skb,
3477 	netdev_features_t features)
3478 {
3479 	__be16 type;
3480 
3481 	type = skb_network_protocol(skb, NULL);
3482 	features = net_mpls_features(skb, features, type);
3483 
3484 	if (skb->ip_summed != CHECKSUM_NONE &&
3485 	    !can_checksum_protocol(features, type)) {
3486 		features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3487 	}
3488 	if (illegal_highdma(skb->dev, skb))
3489 		features &= ~NETIF_F_SG;
3490 
3491 	return features;
3492 }
3493 
3494 netdev_features_t passthru_features_check(struct sk_buff *skb,
3495 					  struct net_device *dev,
3496 					  netdev_features_t features)
3497 {
3498 	return features;
3499 }
3500 EXPORT_SYMBOL(passthru_features_check);
3501 
3502 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3503 					     struct net_device *dev,
3504 					     netdev_features_t features)
3505 {
3506 	return vlan_features_check(skb, features);
3507 }
3508 
3509 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3510 					    struct net_device *dev,
3511 					    netdev_features_t features)
3512 {
3513 	u16 gso_segs = skb_shinfo(skb)->gso_segs;
3514 
3515 	if (gso_segs > READ_ONCE(dev->gso_max_segs))
3516 		return features & ~NETIF_F_GSO_MASK;
3517 
3518 	if (!skb_shinfo(skb)->gso_type) {
3519 		skb_warn_bad_offload(skb);
3520 		return features & ~NETIF_F_GSO_MASK;
3521 	}
3522 
3523 	/* Support for GSO partial features requires software
3524 	 * intervention before we can actually process the packets
3525 	 * so we need to strip support for any partial features now
3526 	 * and we can pull them back in after we have partially
3527 	 * segmented the frame.
3528 	 */
3529 	if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3530 		features &= ~dev->gso_partial_features;
3531 
3532 	/* Make sure to clear the IPv4 ID mangling feature if the
3533 	 * IPv4 header has the potential to be fragmented.
3534 	 */
3535 	if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3536 		struct iphdr *iph = skb->encapsulation ?
3537 				    inner_ip_hdr(skb) : ip_hdr(skb);
3538 
3539 		if (!(iph->frag_off & htons(IP_DF)))
3540 			features &= ~NETIF_F_TSO_MANGLEID;
3541 	}
3542 
3543 	return features;
3544 }
3545 
3546 netdev_features_t netif_skb_features(struct sk_buff *skb)
3547 {
3548 	struct net_device *dev = skb->dev;
3549 	netdev_features_t features = dev->features;
3550 
3551 	if (skb_is_gso(skb))
3552 		features = gso_features_check(skb, dev, features);
3553 
3554 	/* If encapsulation offload request, verify we are testing
3555 	 * hardware encapsulation features instead of standard
3556 	 * features for the netdev
3557 	 */
3558 	if (skb->encapsulation)
3559 		features &= dev->hw_enc_features;
3560 
3561 	if (skb_vlan_tagged(skb))
3562 		features = netdev_intersect_features(features,
3563 						     dev->vlan_features |
3564 						     NETIF_F_HW_VLAN_CTAG_TX |
3565 						     NETIF_F_HW_VLAN_STAG_TX);
3566 
3567 	if (dev->netdev_ops->ndo_features_check)
3568 		features &= dev->netdev_ops->ndo_features_check(skb, dev,
3569 								features);
3570 	else
3571 		features &= dflt_features_check(skb, dev, features);
3572 
3573 	return harmonize_features(skb, features);
3574 }
3575 EXPORT_SYMBOL(netif_skb_features);
3576 
3577 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3578 		    struct netdev_queue *txq, bool more)
3579 {
3580 	unsigned int len;
3581 	int rc;
3582 
3583 	if (dev_nit_active(dev))
3584 		dev_queue_xmit_nit(skb, dev);
3585 
3586 	len = skb->len;
3587 	PRANDOM_ADD_NOISE(skb, dev, txq, len + jiffies);
3588 	trace_net_dev_start_xmit(skb, dev);
3589 	rc = netdev_start_xmit(skb, dev, txq, more);
3590 	trace_net_dev_xmit(skb, rc, dev, len);
3591 
3592 	return rc;
3593 }
3594 
3595 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3596 				    struct netdev_queue *txq, int *ret)
3597 {
3598 	struct sk_buff *skb = first;
3599 	int rc = NETDEV_TX_OK;
3600 
3601 	while (skb) {
3602 		struct sk_buff *next = skb->next;
3603 
3604 		skb_mark_not_on_list(skb);
3605 		rc = xmit_one(skb, dev, txq, next != NULL);
3606 		if (unlikely(!dev_xmit_complete(rc))) {
3607 			skb->next = next;
3608 			goto out;
3609 		}
3610 
3611 		skb = next;
3612 		if (netif_tx_queue_stopped(txq) && skb) {
3613 			rc = NETDEV_TX_BUSY;
3614 			break;
3615 		}
3616 	}
3617 
3618 out:
3619 	*ret = rc;
3620 	return skb;
3621 }
3622 
3623 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3624 					  netdev_features_t features)
3625 {
3626 	if (skb_vlan_tag_present(skb) &&
3627 	    !vlan_hw_offload_capable(features, skb->vlan_proto))
3628 		skb = __vlan_hwaccel_push_inside(skb);
3629 	return skb;
3630 }
3631 
3632 int skb_csum_hwoffload_help(struct sk_buff *skb,
3633 			    const netdev_features_t features)
3634 {
3635 	if (unlikely(skb_csum_is_sctp(skb)))
3636 		return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3637 			skb_crc32c_csum_help(skb);
3638 
3639 	if (features & NETIF_F_HW_CSUM)
3640 		return 0;
3641 
3642 	if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
3643 		switch (skb->csum_offset) {
3644 		case offsetof(struct tcphdr, check):
3645 		case offsetof(struct udphdr, check):
3646 			return 0;
3647 		}
3648 	}
3649 
3650 	return skb_checksum_help(skb);
3651 }
3652 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3653 
3654 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3655 {
3656 	netdev_features_t features;
3657 
3658 	features = netif_skb_features(skb);
3659 	skb = validate_xmit_vlan(skb, features);
3660 	if (unlikely(!skb))
3661 		goto out_null;
3662 
3663 	skb = sk_validate_xmit_skb(skb, dev);
3664 	if (unlikely(!skb))
3665 		goto out_null;
3666 
3667 	if (netif_needs_gso(skb, features)) {
3668 		struct sk_buff *segs;
3669 
3670 		segs = skb_gso_segment(skb, features);
3671 		if (IS_ERR(segs)) {
3672 			goto out_kfree_skb;
3673 		} else if (segs) {
3674 			consume_skb(skb);
3675 			skb = segs;
3676 		}
3677 	} else {
3678 		if (skb_needs_linearize(skb, features) &&
3679 		    __skb_linearize(skb))
3680 			goto out_kfree_skb;
3681 
3682 		/* If packet is not checksummed and device does not
3683 		 * support checksumming for this protocol, complete
3684 		 * checksumming here.
3685 		 */
3686 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
3687 			if (skb->encapsulation)
3688 				skb_set_inner_transport_header(skb,
3689 							       skb_checksum_start_offset(skb));
3690 			else
3691 				skb_set_transport_header(skb,
3692 							 skb_checksum_start_offset(skb));
3693 			if (skb_csum_hwoffload_help(skb, features))
3694 				goto out_kfree_skb;
3695 		}
3696 	}
3697 
3698 	skb = validate_xmit_xfrm(skb, features, again);
3699 
3700 	return skb;
3701 
3702 out_kfree_skb:
3703 	kfree_skb(skb);
3704 out_null:
3705 	dev_core_stats_tx_dropped_inc(dev);
3706 	return NULL;
3707 }
3708 
3709 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3710 {
3711 	struct sk_buff *next, *head = NULL, *tail;
3712 
3713 	for (; skb != NULL; skb = next) {
3714 		next = skb->next;
3715 		skb_mark_not_on_list(skb);
3716 
3717 		/* in case skb wont be segmented, point to itself */
3718 		skb->prev = skb;
3719 
3720 		skb = validate_xmit_skb(skb, dev, again);
3721 		if (!skb)
3722 			continue;
3723 
3724 		if (!head)
3725 			head = skb;
3726 		else
3727 			tail->next = skb;
3728 		/* If skb was segmented, skb->prev points to
3729 		 * the last segment. If not, it still contains skb.
3730 		 */
3731 		tail = skb->prev;
3732 	}
3733 	return head;
3734 }
3735 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3736 
3737 static void qdisc_pkt_len_init(struct sk_buff *skb)
3738 {
3739 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
3740 
3741 	qdisc_skb_cb(skb)->pkt_len = skb->len;
3742 
3743 	/* To get more precise estimation of bytes sent on wire,
3744 	 * we add to pkt_len the headers size of all segments
3745 	 */
3746 	if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3747 		unsigned int hdr_len;
3748 		u16 gso_segs = shinfo->gso_segs;
3749 
3750 		/* mac layer + network layer */
3751 		hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3752 
3753 		/* + transport layer */
3754 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3755 			const struct tcphdr *th;
3756 			struct tcphdr _tcphdr;
3757 
3758 			th = skb_header_pointer(skb, skb_transport_offset(skb),
3759 						sizeof(_tcphdr), &_tcphdr);
3760 			if (likely(th))
3761 				hdr_len += __tcp_hdrlen(th);
3762 		} else {
3763 			struct udphdr _udphdr;
3764 
3765 			if (skb_header_pointer(skb, skb_transport_offset(skb),
3766 					       sizeof(_udphdr), &_udphdr))
3767 				hdr_len += sizeof(struct udphdr);
3768 		}
3769 
3770 		if (shinfo->gso_type & SKB_GSO_DODGY)
3771 			gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3772 						shinfo->gso_size);
3773 
3774 		qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3775 	}
3776 }
3777 
3778 static int dev_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *q,
3779 			     struct sk_buff **to_free,
3780 			     struct netdev_queue *txq)
3781 {
3782 	int rc;
3783 
3784 	rc = q->enqueue(skb, q, to_free) & NET_XMIT_MASK;
3785 	if (rc == NET_XMIT_SUCCESS)
3786 		trace_qdisc_enqueue(q, txq, skb);
3787 	return rc;
3788 }
3789 
3790 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3791 				 struct net_device *dev,
3792 				 struct netdev_queue *txq)
3793 {
3794 	spinlock_t *root_lock = qdisc_lock(q);
3795 	struct sk_buff *to_free = NULL;
3796 	bool contended;
3797 	int rc;
3798 
3799 	qdisc_calculate_pkt_len(skb, q);
3800 
3801 	if (q->flags & TCQ_F_NOLOCK) {
3802 		if (q->flags & TCQ_F_CAN_BYPASS && nolock_qdisc_is_empty(q) &&
3803 		    qdisc_run_begin(q)) {
3804 			/* Retest nolock_qdisc_is_empty() within the protection
3805 			 * of q->seqlock to protect from racing with requeuing.
3806 			 */
3807 			if (unlikely(!nolock_qdisc_is_empty(q))) {
3808 				rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3809 				__qdisc_run(q);
3810 				qdisc_run_end(q);
3811 
3812 				goto no_lock_out;
3813 			}
3814 
3815 			qdisc_bstats_cpu_update(q, skb);
3816 			if (sch_direct_xmit(skb, q, dev, txq, NULL, true) &&
3817 			    !nolock_qdisc_is_empty(q))
3818 				__qdisc_run(q);
3819 
3820 			qdisc_run_end(q);
3821 			return NET_XMIT_SUCCESS;
3822 		}
3823 
3824 		rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3825 		qdisc_run(q);
3826 
3827 no_lock_out:
3828 		if (unlikely(to_free))
3829 			kfree_skb_list_reason(to_free,
3830 					      SKB_DROP_REASON_QDISC_DROP);
3831 		return rc;
3832 	}
3833 
3834 	/*
3835 	 * Heuristic to force contended enqueues to serialize on a
3836 	 * separate lock before trying to get qdisc main lock.
3837 	 * This permits qdisc->running owner to get the lock more
3838 	 * often and dequeue packets faster.
3839 	 * On PREEMPT_RT it is possible to preempt the qdisc owner during xmit
3840 	 * and then other tasks will only enqueue packets. The packets will be
3841 	 * sent after the qdisc owner is scheduled again. To prevent this
3842 	 * scenario the task always serialize on the lock.
3843 	 */
3844 	contended = qdisc_is_running(q) || IS_ENABLED(CONFIG_PREEMPT_RT);
3845 	if (unlikely(contended))
3846 		spin_lock(&q->busylock);
3847 
3848 	spin_lock(root_lock);
3849 	if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3850 		__qdisc_drop(skb, &to_free);
3851 		rc = NET_XMIT_DROP;
3852 	} else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3853 		   qdisc_run_begin(q)) {
3854 		/*
3855 		 * This is a work-conserving queue; there are no old skbs
3856 		 * waiting to be sent out; and the qdisc is not running -
3857 		 * xmit the skb directly.
3858 		 */
3859 
3860 		qdisc_bstats_update(q, skb);
3861 
3862 		if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3863 			if (unlikely(contended)) {
3864 				spin_unlock(&q->busylock);
3865 				contended = false;
3866 			}
3867 			__qdisc_run(q);
3868 		}
3869 
3870 		qdisc_run_end(q);
3871 		rc = NET_XMIT_SUCCESS;
3872 	} else {
3873 		rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3874 		if (qdisc_run_begin(q)) {
3875 			if (unlikely(contended)) {
3876 				spin_unlock(&q->busylock);
3877 				contended = false;
3878 			}
3879 			__qdisc_run(q);
3880 			qdisc_run_end(q);
3881 		}
3882 	}
3883 	spin_unlock(root_lock);
3884 	if (unlikely(to_free))
3885 		kfree_skb_list_reason(to_free, SKB_DROP_REASON_QDISC_DROP);
3886 	if (unlikely(contended))
3887 		spin_unlock(&q->busylock);
3888 	return rc;
3889 }
3890 
3891 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3892 static void skb_update_prio(struct sk_buff *skb)
3893 {
3894 	const struct netprio_map *map;
3895 	const struct sock *sk;
3896 	unsigned int prioidx;
3897 
3898 	if (skb->priority)
3899 		return;
3900 	map = rcu_dereference_bh(skb->dev->priomap);
3901 	if (!map)
3902 		return;
3903 	sk = skb_to_full_sk(skb);
3904 	if (!sk)
3905 		return;
3906 
3907 	prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3908 
3909 	if (prioidx < map->priomap_len)
3910 		skb->priority = map->priomap[prioidx];
3911 }
3912 #else
3913 #define skb_update_prio(skb)
3914 #endif
3915 
3916 /**
3917  *	dev_loopback_xmit - loop back @skb
3918  *	@net: network namespace this loopback is happening in
3919  *	@sk:  sk needed to be a netfilter okfn
3920  *	@skb: buffer to transmit
3921  */
3922 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3923 {
3924 	skb_reset_mac_header(skb);
3925 	__skb_pull(skb, skb_network_offset(skb));
3926 	skb->pkt_type = PACKET_LOOPBACK;
3927 	if (skb->ip_summed == CHECKSUM_NONE)
3928 		skb->ip_summed = CHECKSUM_UNNECESSARY;
3929 	WARN_ON(!skb_dst(skb));
3930 	skb_dst_force(skb);
3931 	netif_rx(skb);
3932 	return 0;
3933 }
3934 EXPORT_SYMBOL(dev_loopback_xmit);
3935 
3936 #ifdef CONFIG_NET_EGRESS
3937 static struct sk_buff *
3938 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3939 {
3940 #ifdef CONFIG_NET_CLS_ACT
3941 	struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3942 	struct tcf_result cl_res;
3943 
3944 	if (!miniq)
3945 		return skb;
3946 
3947 	/* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3948 	tc_skb_cb(skb)->mru = 0;
3949 	tc_skb_cb(skb)->post_ct = false;
3950 	mini_qdisc_bstats_cpu_update(miniq, skb);
3951 
3952 	switch (tcf_classify(skb, miniq->block, miniq->filter_list, &cl_res, false)) {
3953 	case TC_ACT_OK:
3954 	case TC_ACT_RECLASSIFY:
3955 		skb->tc_index = TC_H_MIN(cl_res.classid);
3956 		break;
3957 	case TC_ACT_SHOT:
3958 		mini_qdisc_qstats_cpu_drop(miniq);
3959 		*ret = NET_XMIT_DROP;
3960 		kfree_skb_reason(skb, SKB_DROP_REASON_TC_EGRESS);
3961 		return NULL;
3962 	case TC_ACT_STOLEN:
3963 	case TC_ACT_QUEUED:
3964 	case TC_ACT_TRAP:
3965 		*ret = NET_XMIT_SUCCESS;
3966 		consume_skb(skb);
3967 		return NULL;
3968 	case TC_ACT_REDIRECT:
3969 		/* No need to push/pop skb's mac_header here on egress! */
3970 		skb_do_redirect(skb);
3971 		*ret = NET_XMIT_SUCCESS;
3972 		return NULL;
3973 	default:
3974 		break;
3975 	}
3976 #endif /* CONFIG_NET_CLS_ACT */
3977 
3978 	return skb;
3979 }
3980 
3981 static struct netdev_queue *
3982 netdev_tx_queue_mapping(struct net_device *dev, struct sk_buff *skb)
3983 {
3984 	int qm = skb_get_queue_mapping(skb);
3985 
3986 	return netdev_get_tx_queue(dev, netdev_cap_txqueue(dev, qm));
3987 }
3988 
3989 static bool netdev_xmit_txqueue_skipped(void)
3990 {
3991 	return __this_cpu_read(softnet_data.xmit.skip_txqueue);
3992 }
3993 
3994 void netdev_xmit_skip_txqueue(bool skip)
3995 {
3996 	__this_cpu_write(softnet_data.xmit.skip_txqueue, skip);
3997 }
3998 EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue);
3999 #endif /* CONFIG_NET_EGRESS */
4000 
4001 #ifdef CONFIG_XPS
4002 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
4003 			       struct xps_dev_maps *dev_maps, unsigned int tci)
4004 {
4005 	int tc = netdev_get_prio_tc_map(dev, skb->priority);
4006 	struct xps_map *map;
4007 	int queue_index = -1;
4008 
4009 	if (tc >= dev_maps->num_tc || tci >= dev_maps->nr_ids)
4010 		return queue_index;
4011 
4012 	tci *= dev_maps->num_tc;
4013 	tci += tc;
4014 
4015 	map = rcu_dereference(dev_maps->attr_map[tci]);
4016 	if (map) {
4017 		if (map->len == 1)
4018 			queue_index = map->queues[0];
4019 		else
4020 			queue_index = map->queues[reciprocal_scale(
4021 						skb_get_hash(skb), map->len)];
4022 		if (unlikely(queue_index >= dev->real_num_tx_queues))
4023 			queue_index = -1;
4024 	}
4025 	return queue_index;
4026 }
4027 #endif
4028 
4029 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
4030 			 struct sk_buff *skb)
4031 {
4032 #ifdef CONFIG_XPS
4033 	struct xps_dev_maps *dev_maps;
4034 	struct sock *sk = skb->sk;
4035 	int queue_index = -1;
4036 
4037 	if (!static_key_false(&xps_needed))
4038 		return -1;
4039 
4040 	rcu_read_lock();
4041 	if (!static_key_false(&xps_rxqs_needed))
4042 		goto get_cpus_map;
4043 
4044 	dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_RXQS]);
4045 	if (dev_maps) {
4046 		int tci = sk_rx_queue_get(sk);
4047 
4048 		if (tci >= 0)
4049 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4050 							  tci);
4051 	}
4052 
4053 get_cpus_map:
4054 	if (queue_index < 0) {
4055 		dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_CPUS]);
4056 		if (dev_maps) {
4057 			unsigned int tci = skb->sender_cpu - 1;
4058 
4059 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4060 							  tci);
4061 		}
4062 	}
4063 	rcu_read_unlock();
4064 
4065 	return queue_index;
4066 #else
4067 	return -1;
4068 #endif
4069 }
4070 
4071 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
4072 		     struct net_device *sb_dev)
4073 {
4074 	return 0;
4075 }
4076 EXPORT_SYMBOL(dev_pick_tx_zero);
4077 
4078 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
4079 		       struct net_device *sb_dev)
4080 {
4081 	return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
4082 }
4083 EXPORT_SYMBOL(dev_pick_tx_cpu_id);
4084 
4085 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
4086 		     struct net_device *sb_dev)
4087 {
4088 	struct sock *sk = skb->sk;
4089 	int queue_index = sk_tx_queue_get(sk);
4090 
4091 	sb_dev = sb_dev ? : dev;
4092 
4093 	if (queue_index < 0 || skb->ooo_okay ||
4094 	    queue_index >= dev->real_num_tx_queues) {
4095 		int new_index = get_xps_queue(dev, sb_dev, skb);
4096 
4097 		if (new_index < 0)
4098 			new_index = skb_tx_hash(dev, sb_dev, skb);
4099 
4100 		if (queue_index != new_index && sk &&
4101 		    sk_fullsock(sk) &&
4102 		    rcu_access_pointer(sk->sk_dst_cache))
4103 			sk_tx_queue_set(sk, new_index);
4104 
4105 		queue_index = new_index;
4106 	}
4107 
4108 	return queue_index;
4109 }
4110 EXPORT_SYMBOL(netdev_pick_tx);
4111 
4112 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
4113 					 struct sk_buff *skb,
4114 					 struct net_device *sb_dev)
4115 {
4116 	int queue_index = 0;
4117 
4118 #ifdef CONFIG_XPS
4119 	u32 sender_cpu = skb->sender_cpu - 1;
4120 
4121 	if (sender_cpu >= (u32)NR_CPUS)
4122 		skb->sender_cpu = raw_smp_processor_id() + 1;
4123 #endif
4124 
4125 	if (dev->real_num_tx_queues != 1) {
4126 		const struct net_device_ops *ops = dev->netdev_ops;
4127 
4128 		if (ops->ndo_select_queue)
4129 			queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
4130 		else
4131 			queue_index = netdev_pick_tx(dev, skb, sb_dev);
4132 
4133 		queue_index = netdev_cap_txqueue(dev, queue_index);
4134 	}
4135 
4136 	skb_set_queue_mapping(skb, queue_index);
4137 	return netdev_get_tx_queue(dev, queue_index);
4138 }
4139 
4140 /**
4141  * __dev_queue_xmit() - transmit a buffer
4142  * @skb:	buffer to transmit
4143  * @sb_dev:	suboordinate device used for L2 forwarding offload
4144  *
4145  * Queue a buffer for transmission to a network device. The caller must
4146  * have set the device and priority and built the buffer before calling
4147  * this function. The function can be called from an interrupt.
4148  *
4149  * When calling this method, interrupts MUST be enabled. This is because
4150  * the BH enable code must have IRQs enabled so that it will not deadlock.
4151  *
4152  * Regardless of the return value, the skb is consumed, so it is currently
4153  * difficult to retry a send to this method. (You can bump the ref count
4154  * before sending to hold a reference for retry if you are careful.)
4155  *
4156  * Return:
4157  * * 0				- buffer successfully transmitted
4158  * * positive qdisc return code	- NET_XMIT_DROP etc.
4159  * * negative errno		- other errors
4160  */
4161 int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
4162 {
4163 	struct net_device *dev = skb->dev;
4164 	struct netdev_queue *txq = NULL;
4165 	struct Qdisc *q;
4166 	int rc = -ENOMEM;
4167 	bool again = false;
4168 
4169 	skb_reset_mac_header(skb);
4170 
4171 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
4172 		__skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED);
4173 
4174 	/* Disable soft irqs for various locks below. Also
4175 	 * stops preemption for RCU.
4176 	 */
4177 	rcu_read_lock_bh();
4178 
4179 	skb_update_prio(skb);
4180 
4181 	qdisc_pkt_len_init(skb);
4182 #ifdef CONFIG_NET_CLS_ACT
4183 	skb->tc_at_ingress = 0;
4184 #endif
4185 #ifdef CONFIG_NET_EGRESS
4186 	if (static_branch_unlikely(&egress_needed_key)) {
4187 		if (nf_hook_egress_active()) {
4188 			skb = nf_hook_egress(skb, &rc, dev);
4189 			if (!skb)
4190 				goto out;
4191 		}
4192 
4193 		netdev_xmit_skip_txqueue(false);
4194 
4195 		nf_skip_egress(skb, true);
4196 		skb = sch_handle_egress(skb, &rc, dev);
4197 		if (!skb)
4198 			goto out;
4199 		nf_skip_egress(skb, false);
4200 
4201 		if (netdev_xmit_txqueue_skipped())
4202 			txq = netdev_tx_queue_mapping(dev, skb);
4203 	}
4204 #endif
4205 	/* If device/qdisc don't need skb->dst, release it right now while
4206 	 * its hot in this cpu cache.
4207 	 */
4208 	if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4209 		skb_dst_drop(skb);
4210 	else
4211 		skb_dst_force(skb);
4212 
4213 	if (!txq)
4214 		txq = netdev_core_pick_tx(dev, skb, sb_dev);
4215 
4216 	q = rcu_dereference_bh(txq->qdisc);
4217 
4218 	trace_net_dev_queue(skb);
4219 	if (q->enqueue) {
4220 		rc = __dev_xmit_skb(skb, q, dev, txq);
4221 		goto out;
4222 	}
4223 
4224 	/* The device has no queue. Common case for software devices:
4225 	 * loopback, all the sorts of tunnels...
4226 
4227 	 * Really, it is unlikely that netif_tx_lock protection is necessary
4228 	 * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
4229 	 * counters.)
4230 	 * However, it is possible, that they rely on protection
4231 	 * made by us here.
4232 
4233 	 * Check this and shot the lock. It is not prone from deadlocks.
4234 	 *Either shot noqueue qdisc, it is even simpler 8)
4235 	 */
4236 	if (dev->flags & IFF_UP) {
4237 		int cpu = smp_processor_id(); /* ok because BHs are off */
4238 
4239 		/* Other cpus might concurrently change txq->xmit_lock_owner
4240 		 * to -1 or to their cpu id, but not to our id.
4241 		 */
4242 		if (READ_ONCE(txq->xmit_lock_owner) != cpu) {
4243 			if (dev_xmit_recursion())
4244 				goto recursion_alert;
4245 
4246 			skb = validate_xmit_skb(skb, dev, &again);
4247 			if (!skb)
4248 				goto out;
4249 
4250 			PRANDOM_ADD_NOISE(skb, dev, txq, jiffies);
4251 			HARD_TX_LOCK(dev, txq, cpu);
4252 
4253 			if (!netif_xmit_stopped(txq)) {
4254 				dev_xmit_recursion_inc();
4255 				skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4256 				dev_xmit_recursion_dec();
4257 				if (dev_xmit_complete(rc)) {
4258 					HARD_TX_UNLOCK(dev, txq);
4259 					goto out;
4260 				}
4261 			}
4262 			HARD_TX_UNLOCK(dev, txq);
4263 			net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4264 					     dev->name);
4265 		} else {
4266 			/* Recursion is detected! It is possible,
4267 			 * unfortunately
4268 			 */
4269 recursion_alert:
4270 			net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4271 					     dev->name);
4272 		}
4273 	}
4274 
4275 	rc = -ENETDOWN;
4276 	rcu_read_unlock_bh();
4277 
4278 	dev_core_stats_tx_dropped_inc(dev);
4279 	kfree_skb_list(skb);
4280 	return rc;
4281 out:
4282 	rcu_read_unlock_bh();
4283 	return rc;
4284 }
4285 EXPORT_SYMBOL(__dev_queue_xmit);
4286 
4287 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4288 {
4289 	struct net_device *dev = skb->dev;
4290 	struct sk_buff *orig_skb = skb;
4291 	struct netdev_queue *txq;
4292 	int ret = NETDEV_TX_BUSY;
4293 	bool again = false;
4294 
4295 	if (unlikely(!netif_running(dev) ||
4296 		     !netif_carrier_ok(dev)))
4297 		goto drop;
4298 
4299 	skb = validate_xmit_skb_list(skb, dev, &again);
4300 	if (skb != orig_skb)
4301 		goto drop;
4302 
4303 	skb_set_queue_mapping(skb, queue_id);
4304 	txq = skb_get_tx_queue(dev, skb);
4305 	PRANDOM_ADD_NOISE(skb, dev, txq, jiffies);
4306 
4307 	local_bh_disable();
4308 
4309 	dev_xmit_recursion_inc();
4310 	HARD_TX_LOCK(dev, txq, smp_processor_id());
4311 	if (!netif_xmit_frozen_or_drv_stopped(txq))
4312 		ret = netdev_start_xmit(skb, dev, txq, false);
4313 	HARD_TX_UNLOCK(dev, txq);
4314 	dev_xmit_recursion_dec();
4315 
4316 	local_bh_enable();
4317 	return ret;
4318 drop:
4319 	dev_core_stats_tx_dropped_inc(dev);
4320 	kfree_skb_list(skb);
4321 	return NET_XMIT_DROP;
4322 }
4323 EXPORT_SYMBOL(__dev_direct_xmit);
4324 
4325 /*************************************************************************
4326  *			Receiver routines
4327  *************************************************************************/
4328 
4329 int netdev_max_backlog __read_mostly = 1000;
4330 EXPORT_SYMBOL(netdev_max_backlog);
4331 
4332 int netdev_tstamp_prequeue __read_mostly = 1;
4333 unsigned int sysctl_skb_defer_max __read_mostly = 64;
4334 int netdev_budget __read_mostly = 300;
4335 /* Must be at least 2 jiffes to guarantee 1 jiffy timeout */
4336 unsigned int __read_mostly netdev_budget_usecs = 2 * USEC_PER_SEC / HZ;
4337 int weight_p __read_mostly = 64;           /* old backlog weight */
4338 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
4339 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
4340 int dev_rx_weight __read_mostly = 64;
4341 int dev_tx_weight __read_mostly = 64;
4342 
4343 /* Called with irq disabled */
4344 static inline void ____napi_schedule(struct softnet_data *sd,
4345 				     struct napi_struct *napi)
4346 {
4347 	struct task_struct *thread;
4348 
4349 	lockdep_assert_irqs_disabled();
4350 
4351 	if (test_bit(NAPI_STATE_THREADED, &napi->state)) {
4352 		/* Paired with smp_mb__before_atomic() in
4353 		 * napi_enable()/dev_set_threaded().
4354 		 * Use READ_ONCE() to guarantee a complete
4355 		 * read on napi->thread. Only call
4356 		 * wake_up_process() when it's not NULL.
4357 		 */
4358 		thread = READ_ONCE(napi->thread);
4359 		if (thread) {
4360 			/* Avoid doing set_bit() if the thread is in
4361 			 * INTERRUPTIBLE state, cause napi_thread_wait()
4362 			 * makes sure to proceed with napi polling
4363 			 * if the thread is explicitly woken from here.
4364 			 */
4365 			if (READ_ONCE(thread->__state) != TASK_INTERRUPTIBLE)
4366 				set_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
4367 			wake_up_process(thread);
4368 			return;
4369 		}
4370 	}
4371 
4372 	list_add_tail(&napi->poll_list, &sd->poll_list);
4373 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4374 }
4375 
4376 #ifdef CONFIG_RPS
4377 
4378 /* One global table that all flow-based protocols share. */
4379 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
4380 EXPORT_SYMBOL(rps_sock_flow_table);
4381 u32 rps_cpu_mask __read_mostly;
4382 EXPORT_SYMBOL(rps_cpu_mask);
4383 
4384 struct static_key_false rps_needed __read_mostly;
4385 EXPORT_SYMBOL(rps_needed);
4386 struct static_key_false rfs_needed __read_mostly;
4387 EXPORT_SYMBOL(rfs_needed);
4388 
4389 static struct rps_dev_flow *
4390 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4391 	    struct rps_dev_flow *rflow, u16 next_cpu)
4392 {
4393 	if (next_cpu < nr_cpu_ids) {
4394 #ifdef CONFIG_RFS_ACCEL
4395 		struct netdev_rx_queue *rxqueue;
4396 		struct rps_dev_flow_table *flow_table;
4397 		struct rps_dev_flow *old_rflow;
4398 		u32 flow_id;
4399 		u16 rxq_index;
4400 		int rc;
4401 
4402 		/* Should we steer this flow to a different hardware queue? */
4403 		if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4404 		    !(dev->features & NETIF_F_NTUPLE))
4405 			goto out;
4406 		rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4407 		if (rxq_index == skb_get_rx_queue(skb))
4408 			goto out;
4409 
4410 		rxqueue = dev->_rx + rxq_index;
4411 		flow_table = rcu_dereference(rxqueue->rps_flow_table);
4412 		if (!flow_table)
4413 			goto out;
4414 		flow_id = skb_get_hash(skb) & flow_table->mask;
4415 		rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4416 							rxq_index, flow_id);
4417 		if (rc < 0)
4418 			goto out;
4419 		old_rflow = rflow;
4420 		rflow = &flow_table->flows[flow_id];
4421 		rflow->filter = rc;
4422 		if (old_rflow->filter == rflow->filter)
4423 			old_rflow->filter = RPS_NO_FILTER;
4424 	out:
4425 #endif
4426 		rflow->last_qtail =
4427 			per_cpu(softnet_data, next_cpu).input_queue_head;
4428 	}
4429 
4430 	rflow->cpu = next_cpu;
4431 	return rflow;
4432 }
4433 
4434 /*
4435  * get_rps_cpu is called from netif_receive_skb and returns the target
4436  * CPU from the RPS map of the receiving queue for a given skb.
4437  * rcu_read_lock must be held on entry.
4438  */
4439 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4440 		       struct rps_dev_flow **rflowp)
4441 {
4442 	const struct rps_sock_flow_table *sock_flow_table;
4443 	struct netdev_rx_queue *rxqueue = dev->_rx;
4444 	struct rps_dev_flow_table *flow_table;
4445 	struct rps_map *map;
4446 	int cpu = -1;
4447 	u32 tcpu;
4448 	u32 hash;
4449 
4450 	if (skb_rx_queue_recorded(skb)) {
4451 		u16 index = skb_get_rx_queue(skb);
4452 
4453 		if (unlikely(index >= dev->real_num_rx_queues)) {
4454 			WARN_ONCE(dev->real_num_rx_queues > 1,
4455 				  "%s received packet on queue %u, but number "
4456 				  "of RX queues is %u\n",
4457 				  dev->name, index, dev->real_num_rx_queues);
4458 			goto done;
4459 		}
4460 		rxqueue += index;
4461 	}
4462 
4463 	/* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4464 
4465 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
4466 	map = rcu_dereference(rxqueue->rps_map);
4467 	if (!flow_table && !map)
4468 		goto done;
4469 
4470 	skb_reset_network_header(skb);
4471 	hash = skb_get_hash(skb);
4472 	if (!hash)
4473 		goto done;
4474 
4475 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
4476 	if (flow_table && sock_flow_table) {
4477 		struct rps_dev_flow *rflow;
4478 		u32 next_cpu;
4479 		u32 ident;
4480 
4481 		/* First check into global flow table if there is a match */
4482 		ident = sock_flow_table->ents[hash & sock_flow_table->mask];
4483 		if ((ident ^ hash) & ~rps_cpu_mask)
4484 			goto try_rps;
4485 
4486 		next_cpu = ident & rps_cpu_mask;
4487 
4488 		/* OK, now we know there is a match,
4489 		 * we can look at the local (per receive queue) flow table
4490 		 */
4491 		rflow = &flow_table->flows[hash & flow_table->mask];
4492 		tcpu = rflow->cpu;
4493 
4494 		/*
4495 		 * If the desired CPU (where last recvmsg was done) is
4496 		 * different from current CPU (one in the rx-queue flow
4497 		 * table entry), switch if one of the following holds:
4498 		 *   - Current CPU is unset (>= nr_cpu_ids).
4499 		 *   - Current CPU is offline.
4500 		 *   - The current CPU's queue tail has advanced beyond the
4501 		 *     last packet that was enqueued using this table entry.
4502 		 *     This guarantees that all previous packets for the flow
4503 		 *     have been dequeued, thus preserving in order delivery.
4504 		 */
4505 		if (unlikely(tcpu != next_cpu) &&
4506 		    (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4507 		     ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4508 		      rflow->last_qtail)) >= 0)) {
4509 			tcpu = next_cpu;
4510 			rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4511 		}
4512 
4513 		if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4514 			*rflowp = rflow;
4515 			cpu = tcpu;
4516 			goto done;
4517 		}
4518 	}
4519 
4520 try_rps:
4521 
4522 	if (map) {
4523 		tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4524 		if (cpu_online(tcpu)) {
4525 			cpu = tcpu;
4526 			goto done;
4527 		}
4528 	}
4529 
4530 done:
4531 	return cpu;
4532 }
4533 
4534 #ifdef CONFIG_RFS_ACCEL
4535 
4536 /**
4537  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4538  * @dev: Device on which the filter was set
4539  * @rxq_index: RX queue index
4540  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4541  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4542  *
4543  * Drivers that implement ndo_rx_flow_steer() should periodically call
4544  * this function for each installed filter and remove the filters for
4545  * which it returns %true.
4546  */
4547 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4548 			 u32 flow_id, u16 filter_id)
4549 {
4550 	struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4551 	struct rps_dev_flow_table *flow_table;
4552 	struct rps_dev_flow *rflow;
4553 	bool expire = true;
4554 	unsigned int cpu;
4555 
4556 	rcu_read_lock();
4557 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
4558 	if (flow_table && flow_id <= flow_table->mask) {
4559 		rflow = &flow_table->flows[flow_id];
4560 		cpu = READ_ONCE(rflow->cpu);
4561 		if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4562 		    ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4563 			   rflow->last_qtail) <
4564 		     (int)(10 * flow_table->mask)))
4565 			expire = false;
4566 	}
4567 	rcu_read_unlock();
4568 	return expire;
4569 }
4570 EXPORT_SYMBOL(rps_may_expire_flow);
4571 
4572 #endif /* CONFIG_RFS_ACCEL */
4573 
4574 /* Called from hardirq (IPI) context */
4575 static void rps_trigger_softirq(void *data)
4576 {
4577 	struct softnet_data *sd = data;
4578 
4579 	____napi_schedule(sd, &sd->backlog);
4580 	sd->received_rps++;
4581 }
4582 
4583 #endif /* CONFIG_RPS */
4584 
4585 /* Called from hardirq (IPI) context */
4586 static void trigger_rx_softirq(void *data)
4587 {
4588 	struct softnet_data *sd = data;
4589 
4590 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4591 	smp_store_release(&sd->defer_ipi_scheduled, 0);
4592 }
4593 
4594 /*
4595  * Check if this softnet_data structure is another cpu one
4596  * If yes, queue it to our IPI list and return 1
4597  * If no, return 0
4598  */
4599 static int napi_schedule_rps(struct softnet_data *sd)
4600 {
4601 	struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4602 
4603 #ifdef CONFIG_RPS
4604 	if (sd != mysd) {
4605 		sd->rps_ipi_next = mysd->rps_ipi_list;
4606 		mysd->rps_ipi_list = sd;
4607 
4608 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4609 		return 1;
4610 	}
4611 #endif /* CONFIG_RPS */
4612 	__napi_schedule_irqoff(&mysd->backlog);
4613 	return 0;
4614 }
4615 
4616 #ifdef CONFIG_NET_FLOW_LIMIT
4617 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4618 #endif
4619 
4620 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4621 {
4622 #ifdef CONFIG_NET_FLOW_LIMIT
4623 	struct sd_flow_limit *fl;
4624 	struct softnet_data *sd;
4625 	unsigned int old_flow, new_flow;
4626 
4627 	if (qlen < (netdev_max_backlog >> 1))
4628 		return false;
4629 
4630 	sd = this_cpu_ptr(&softnet_data);
4631 
4632 	rcu_read_lock();
4633 	fl = rcu_dereference(sd->flow_limit);
4634 	if (fl) {
4635 		new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4636 		old_flow = fl->history[fl->history_head];
4637 		fl->history[fl->history_head] = new_flow;
4638 
4639 		fl->history_head++;
4640 		fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4641 
4642 		if (likely(fl->buckets[old_flow]))
4643 			fl->buckets[old_flow]--;
4644 
4645 		if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4646 			fl->count++;
4647 			rcu_read_unlock();
4648 			return true;
4649 		}
4650 	}
4651 	rcu_read_unlock();
4652 #endif
4653 	return false;
4654 }
4655 
4656 /*
4657  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4658  * queue (may be a remote CPU queue).
4659  */
4660 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4661 			      unsigned int *qtail)
4662 {
4663 	enum skb_drop_reason reason;
4664 	struct softnet_data *sd;
4665 	unsigned long flags;
4666 	unsigned int qlen;
4667 
4668 	reason = SKB_DROP_REASON_NOT_SPECIFIED;
4669 	sd = &per_cpu(softnet_data, cpu);
4670 
4671 	rps_lock_irqsave(sd, &flags);
4672 	if (!netif_running(skb->dev))
4673 		goto drop;
4674 	qlen = skb_queue_len(&sd->input_pkt_queue);
4675 	if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
4676 		if (qlen) {
4677 enqueue:
4678 			__skb_queue_tail(&sd->input_pkt_queue, skb);
4679 			input_queue_tail_incr_save(sd, qtail);
4680 			rps_unlock_irq_restore(sd, &flags);
4681 			return NET_RX_SUCCESS;
4682 		}
4683 
4684 		/* Schedule NAPI for backlog device
4685 		 * We can use non atomic operation since we own the queue lock
4686 		 */
4687 		if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state))
4688 			napi_schedule_rps(sd);
4689 		goto enqueue;
4690 	}
4691 	reason = SKB_DROP_REASON_CPU_BACKLOG;
4692 
4693 drop:
4694 	sd->dropped++;
4695 	rps_unlock_irq_restore(sd, &flags);
4696 
4697 	dev_core_stats_rx_dropped_inc(skb->dev);
4698 	kfree_skb_reason(skb, reason);
4699 	return NET_RX_DROP;
4700 }
4701 
4702 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4703 {
4704 	struct net_device *dev = skb->dev;
4705 	struct netdev_rx_queue *rxqueue;
4706 
4707 	rxqueue = dev->_rx;
4708 
4709 	if (skb_rx_queue_recorded(skb)) {
4710 		u16 index = skb_get_rx_queue(skb);
4711 
4712 		if (unlikely(index >= dev->real_num_rx_queues)) {
4713 			WARN_ONCE(dev->real_num_rx_queues > 1,
4714 				  "%s received packet on queue %u, but number "
4715 				  "of RX queues is %u\n",
4716 				  dev->name, index, dev->real_num_rx_queues);
4717 
4718 			return rxqueue; /* Return first rxqueue */
4719 		}
4720 		rxqueue += index;
4721 	}
4722 	return rxqueue;
4723 }
4724 
4725 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp,
4726 			     struct bpf_prog *xdp_prog)
4727 {
4728 	void *orig_data, *orig_data_end, *hard_start;
4729 	struct netdev_rx_queue *rxqueue;
4730 	bool orig_bcast, orig_host;
4731 	u32 mac_len, frame_sz;
4732 	__be16 orig_eth_type;
4733 	struct ethhdr *eth;
4734 	u32 metalen, act;
4735 	int off;
4736 
4737 	/* The XDP program wants to see the packet starting at the MAC
4738 	 * header.
4739 	 */
4740 	mac_len = skb->data - skb_mac_header(skb);
4741 	hard_start = skb->data - skb_headroom(skb);
4742 
4743 	/* SKB "head" area always have tailroom for skb_shared_info */
4744 	frame_sz = (void *)skb_end_pointer(skb) - hard_start;
4745 	frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
4746 
4747 	rxqueue = netif_get_rxqueue(skb);
4748 	xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq);
4749 	xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len,
4750 			 skb_headlen(skb) + mac_len, true);
4751 
4752 	orig_data_end = xdp->data_end;
4753 	orig_data = xdp->data;
4754 	eth = (struct ethhdr *)xdp->data;
4755 	orig_host = ether_addr_equal_64bits(eth->h_dest, skb->dev->dev_addr);
4756 	orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4757 	orig_eth_type = eth->h_proto;
4758 
4759 	act = bpf_prog_run_xdp(xdp_prog, xdp);
4760 
4761 	/* check if bpf_xdp_adjust_head was used */
4762 	off = xdp->data - orig_data;
4763 	if (off) {
4764 		if (off > 0)
4765 			__skb_pull(skb, off);
4766 		else if (off < 0)
4767 			__skb_push(skb, -off);
4768 
4769 		skb->mac_header += off;
4770 		skb_reset_network_header(skb);
4771 	}
4772 
4773 	/* check if bpf_xdp_adjust_tail was used */
4774 	off = xdp->data_end - orig_data_end;
4775 	if (off != 0) {
4776 		skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4777 		skb->len += off; /* positive on grow, negative on shrink */
4778 	}
4779 
4780 	/* check if XDP changed eth hdr such SKB needs update */
4781 	eth = (struct ethhdr *)xdp->data;
4782 	if ((orig_eth_type != eth->h_proto) ||
4783 	    (orig_host != ether_addr_equal_64bits(eth->h_dest,
4784 						  skb->dev->dev_addr)) ||
4785 	    (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4786 		__skb_push(skb, ETH_HLEN);
4787 		skb->pkt_type = PACKET_HOST;
4788 		skb->protocol = eth_type_trans(skb, skb->dev);
4789 	}
4790 
4791 	/* Redirect/Tx gives L2 packet, code that will reuse skb must __skb_pull
4792 	 * before calling us again on redirect path. We do not call do_redirect
4793 	 * as we leave that up to the caller.
4794 	 *
4795 	 * Caller is responsible for managing lifetime of skb (i.e. calling
4796 	 * kfree_skb in response to actions it cannot handle/XDP_DROP).
4797 	 */
4798 	switch (act) {
4799 	case XDP_REDIRECT:
4800 	case XDP_TX:
4801 		__skb_push(skb, mac_len);
4802 		break;
4803 	case XDP_PASS:
4804 		metalen = xdp->data - xdp->data_meta;
4805 		if (metalen)
4806 			skb_metadata_set(skb, metalen);
4807 		break;
4808 	}
4809 
4810 	return act;
4811 }
4812 
4813 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4814 				     struct xdp_buff *xdp,
4815 				     struct bpf_prog *xdp_prog)
4816 {
4817 	u32 act = XDP_DROP;
4818 
4819 	/* Reinjected packets coming from act_mirred or similar should
4820 	 * not get XDP generic processing.
4821 	 */
4822 	if (skb_is_redirected(skb))
4823 		return XDP_PASS;
4824 
4825 	/* XDP packets must be linear and must have sufficient headroom
4826 	 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4827 	 * native XDP provides, thus we need to do it here as well.
4828 	 */
4829 	if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
4830 	    skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4831 		int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4832 		int troom = skb->tail + skb->data_len - skb->end;
4833 
4834 		/* In case we have to go down the path and also linearize,
4835 		 * then lets do the pskb_expand_head() work just once here.
4836 		 */
4837 		if (pskb_expand_head(skb,
4838 				     hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4839 				     troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4840 			goto do_drop;
4841 		if (skb_linearize(skb))
4842 			goto do_drop;
4843 	}
4844 
4845 	act = bpf_prog_run_generic_xdp(skb, xdp, xdp_prog);
4846 	switch (act) {
4847 	case XDP_REDIRECT:
4848 	case XDP_TX:
4849 	case XDP_PASS:
4850 		break;
4851 	default:
4852 		bpf_warn_invalid_xdp_action(skb->dev, xdp_prog, act);
4853 		fallthrough;
4854 	case XDP_ABORTED:
4855 		trace_xdp_exception(skb->dev, xdp_prog, act);
4856 		fallthrough;
4857 	case XDP_DROP:
4858 	do_drop:
4859 		kfree_skb(skb);
4860 		break;
4861 	}
4862 
4863 	return act;
4864 }
4865 
4866 /* When doing generic XDP we have to bypass the qdisc layer and the
4867  * network taps in order to match in-driver-XDP behavior.
4868  */
4869 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4870 {
4871 	struct net_device *dev = skb->dev;
4872 	struct netdev_queue *txq;
4873 	bool free_skb = true;
4874 	int cpu, rc;
4875 
4876 	txq = netdev_core_pick_tx(dev, skb, NULL);
4877 	cpu = smp_processor_id();
4878 	HARD_TX_LOCK(dev, txq, cpu);
4879 	if (!netif_xmit_stopped(txq)) {
4880 		rc = netdev_start_xmit(skb, dev, txq, 0);
4881 		if (dev_xmit_complete(rc))
4882 			free_skb = false;
4883 	}
4884 	HARD_TX_UNLOCK(dev, txq);
4885 	if (free_skb) {
4886 		trace_xdp_exception(dev, xdp_prog, XDP_TX);
4887 		kfree_skb(skb);
4888 	}
4889 }
4890 
4891 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
4892 
4893 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4894 {
4895 	if (xdp_prog) {
4896 		struct xdp_buff xdp;
4897 		u32 act;
4898 		int err;
4899 
4900 		act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
4901 		if (act != XDP_PASS) {
4902 			switch (act) {
4903 			case XDP_REDIRECT:
4904 				err = xdp_do_generic_redirect(skb->dev, skb,
4905 							      &xdp, xdp_prog);
4906 				if (err)
4907 					goto out_redir;
4908 				break;
4909 			case XDP_TX:
4910 				generic_xdp_tx(skb, xdp_prog);
4911 				break;
4912 			}
4913 			return XDP_DROP;
4914 		}
4915 	}
4916 	return XDP_PASS;
4917 out_redir:
4918 	kfree_skb_reason(skb, SKB_DROP_REASON_XDP);
4919 	return XDP_DROP;
4920 }
4921 EXPORT_SYMBOL_GPL(do_xdp_generic);
4922 
4923 static int netif_rx_internal(struct sk_buff *skb)
4924 {
4925 	int ret;
4926 
4927 	net_timestamp_check(netdev_tstamp_prequeue, skb);
4928 
4929 	trace_netif_rx(skb);
4930 
4931 #ifdef CONFIG_RPS
4932 	if (static_branch_unlikely(&rps_needed)) {
4933 		struct rps_dev_flow voidflow, *rflow = &voidflow;
4934 		int cpu;
4935 
4936 		rcu_read_lock();
4937 
4938 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
4939 		if (cpu < 0)
4940 			cpu = smp_processor_id();
4941 
4942 		ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4943 
4944 		rcu_read_unlock();
4945 	} else
4946 #endif
4947 	{
4948 		unsigned int qtail;
4949 
4950 		ret = enqueue_to_backlog(skb, smp_processor_id(), &qtail);
4951 	}
4952 	return ret;
4953 }
4954 
4955 /**
4956  *	__netif_rx	-	Slightly optimized version of netif_rx
4957  *	@skb: buffer to post
4958  *
4959  *	This behaves as netif_rx except that it does not disable bottom halves.
4960  *	As a result this function may only be invoked from the interrupt context
4961  *	(either hard or soft interrupt).
4962  */
4963 int __netif_rx(struct sk_buff *skb)
4964 {
4965 	int ret;
4966 
4967 	lockdep_assert_once(hardirq_count() | softirq_count());
4968 
4969 	trace_netif_rx_entry(skb);
4970 	ret = netif_rx_internal(skb);
4971 	trace_netif_rx_exit(ret);
4972 	return ret;
4973 }
4974 EXPORT_SYMBOL(__netif_rx);
4975 
4976 /**
4977  *	netif_rx	-	post buffer to the network code
4978  *	@skb: buffer to post
4979  *
4980  *	This function receives a packet from a device driver and queues it for
4981  *	the upper (protocol) levels to process via the backlog NAPI device. It
4982  *	always succeeds. The buffer may be dropped during processing for
4983  *	congestion control or by the protocol layers.
4984  *	The network buffer is passed via the backlog NAPI device. Modern NIC
4985  *	driver should use NAPI and GRO.
4986  *	This function can used from interrupt and from process context. The
4987  *	caller from process context must not disable interrupts before invoking
4988  *	this function.
4989  *
4990  *	return values:
4991  *	NET_RX_SUCCESS	(no congestion)
4992  *	NET_RX_DROP     (packet was dropped)
4993  *
4994  */
4995 int netif_rx(struct sk_buff *skb)
4996 {
4997 	bool need_bh_off = !(hardirq_count() | softirq_count());
4998 	int ret;
4999 
5000 	if (need_bh_off)
5001 		local_bh_disable();
5002 	trace_netif_rx_entry(skb);
5003 	ret = netif_rx_internal(skb);
5004 	trace_netif_rx_exit(ret);
5005 	if (need_bh_off)
5006 		local_bh_enable();
5007 	return ret;
5008 }
5009 EXPORT_SYMBOL(netif_rx);
5010 
5011 static __latent_entropy void net_tx_action(struct softirq_action *h)
5012 {
5013 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5014 
5015 	if (sd->completion_queue) {
5016 		struct sk_buff *clist;
5017 
5018 		local_irq_disable();
5019 		clist = sd->completion_queue;
5020 		sd->completion_queue = NULL;
5021 		local_irq_enable();
5022 
5023 		while (clist) {
5024 			struct sk_buff *skb = clist;
5025 
5026 			clist = clist->next;
5027 
5028 			WARN_ON(refcount_read(&skb->users));
5029 			if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
5030 				trace_consume_skb(skb);
5031 			else
5032 				trace_kfree_skb(skb, net_tx_action,
5033 						SKB_DROP_REASON_NOT_SPECIFIED);
5034 
5035 			if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
5036 				__kfree_skb(skb);
5037 			else
5038 				__kfree_skb_defer(skb);
5039 		}
5040 	}
5041 
5042 	if (sd->output_queue) {
5043 		struct Qdisc *head;
5044 
5045 		local_irq_disable();
5046 		head = sd->output_queue;
5047 		sd->output_queue = NULL;
5048 		sd->output_queue_tailp = &sd->output_queue;
5049 		local_irq_enable();
5050 
5051 		rcu_read_lock();
5052 
5053 		while (head) {
5054 			struct Qdisc *q = head;
5055 			spinlock_t *root_lock = NULL;
5056 
5057 			head = head->next_sched;
5058 
5059 			/* We need to make sure head->next_sched is read
5060 			 * before clearing __QDISC_STATE_SCHED
5061 			 */
5062 			smp_mb__before_atomic();
5063 
5064 			if (!(q->flags & TCQ_F_NOLOCK)) {
5065 				root_lock = qdisc_lock(q);
5066 				spin_lock(root_lock);
5067 			} else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED,
5068 						     &q->state))) {
5069 				/* There is a synchronize_net() between
5070 				 * STATE_DEACTIVATED flag being set and
5071 				 * qdisc_reset()/some_qdisc_is_busy() in
5072 				 * dev_deactivate(), so we can safely bail out
5073 				 * early here to avoid data race between
5074 				 * qdisc_deactivate() and some_qdisc_is_busy()
5075 				 * for lockless qdisc.
5076 				 */
5077 				clear_bit(__QDISC_STATE_SCHED, &q->state);
5078 				continue;
5079 			}
5080 
5081 			clear_bit(__QDISC_STATE_SCHED, &q->state);
5082 			qdisc_run(q);
5083 			if (root_lock)
5084 				spin_unlock(root_lock);
5085 		}
5086 
5087 		rcu_read_unlock();
5088 	}
5089 
5090 	xfrm_dev_backlog(sd);
5091 }
5092 
5093 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
5094 /* This hook is defined here for ATM LANE */
5095 int (*br_fdb_test_addr_hook)(struct net_device *dev,
5096 			     unsigned char *addr) __read_mostly;
5097 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
5098 #endif
5099 
5100 static inline struct sk_buff *
5101 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
5102 		   struct net_device *orig_dev, bool *another)
5103 {
5104 #ifdef CONFIG_NET_CLS_ACT
5105 	struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
5106 	struct tcf_result cl_res;
5107 
5108 	/* If there's at least one ingress present somewhere (so
5109 	 * we get here via enabled static key), remaining devices
5110 	 * that are not configured with an ingress qdisc will bail
5111 	 * out here.
5112 	 */
5113 	if (!miniq)
5114 		return skb;
5115 
5116 	if (*pt_prev) {
5117 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
5118 		*pt_prev = NULL;
5119 	}
5120 
5121 	qdisc_skb_cb(skb)->pkt_len = skb->len;
5122 	tc_skb_cb(skb)->mru = 0;
5123 	tc_skb_cb(skb)->post_ct = false;
5124 	skb->tc_at_ingress = 1;
5125 	mini_qdisc_bstats_cpu_update(miniq, skb);
5126 
5127 	switch (tcf_classify(skb, miniq->block, miniq->filter_list, &cl_res, false)) {
5128 	case TC_ACT_OK:
5129 	case TC_ACT_RECLASSIFY:
5130 		skb->tc_index = TC_H_MIN(cl_res.classid);
5131 		break;
5132 	case TC_ACT_SHOT:
5133 		mini_qdisc_qstats_cpu_drop(miniq);
5134 		kfree_skb_reason(skb, SKB_DROP_REASON_TC_INGRESS);
5135 		return NULL;
5136 	case TC_ACT_STOLEN:
5137 	case TC_ACT_QUEUED:
5138 	case TC_ACT_TRAP:
5139 		consume_skb(skb);
5140 		return NULL;
5141 	case TC_ACT_REDIRECT:
5142 		/* skb_mac_header check was done by cls/act_bpf, so
5143 		 * we can safely push the L2 header back before
5144 		 * redirecting to another netdev
5145 		 */
5146 		__skb_push(skb, skb->mac_len);
5147 		if (skb_do_redirect(skb) == -EAGAIN) {
5148 			__skb_pull(skb, skb->mac_len);
5149 			*another = true;
5150 			break;
5151 		}
5152 		return NULL;
5153 	case TC_ACT_CONSUMED:
5154 		return NULL;
5155 	default:
5156 		break;
5157 	}
5158 #endif /* CONFIG_NET_CLS_ACT */
5159 	return skb;
5160 }
5161 
5162 /**
5163  *	netdev_is_rx_handler_busy - check if receive handler is registered
5164  *	@dev: device to check
5165  *
5166  *	Check if a receive handler is already registered for a given device.
5167  *	Return true if there one.
5168  *
5169  *	The caller must hold the rtnl_mutex.
5170  */
5171 bool netdev_is_rx_handler_busy(struct net_device *dev)
5172 {
5173 	ASSERT_RTNL();
5174 	return dev && rtnl_dereference(dev->rx_handler);
5175 }
5176 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
5177 
5178 /**
5179  *	netdev_rx_handler_register - register receive handler
5180  *	@dev: device to register a handler for
5181  *	@rx_handler: receive handler to register
5182  *	@rx_handler_data: data pointer that is used by rx handler
5183  *
5184  *	Register a receive handler for a device. This handler will then be
5185  *	called from __netif_receive_skb. A negative errno code is returned
5186  *	on a failure.
5187  *
5188  *	The caller must hold the rtnl_mutex.
5189  *
5190  *	For a general description of rx_handler, see enum rx_handler_result.
5191  */
5192 int netdev_rx_handler_register(struct net_device *dev,
5193 			       rx_handler_func_t *rx_handler,
5194 			       void *rx_handler_data)
5195 {
5196 	if (netdev_is_rx_handler_busy(dev))
5197 		return -EBUSY;
5198 
5199 	if (dev->priv_flags & IFF_NO_RX_HANDLER)
5200 		return -EINVAL;
5201 
5202 	/* Note: rx_handler_data must be set before rx_handler */
5203 	rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
5204 	rcu_assign_pointer(dev->rx_handler, rx_handler);
5205 
5206 	return 0;
5207 }
5208 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5209 
5210 /**
5211  *	netdev_rx_handler_unregister - unregister receive handler
5212  *	@dev: device to unregister a handler from
5213  *
5214  *	Unregister a receive handler from a device.
5215  *
5216  *	The caller must hold the rtnl_mutex.
5217  */
5218 void netdev_rx_handler_unregister(struct net_device *dev)
5219 {
5220 
5221 	ASSERT_RTNL();
5222 	RCU_INIT_POINTER(dev->rx_handler, NULL);
5223 	/* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5224 	 * section has a guarantee to see a non NULL rx_handler_data
5225 	 * as well.
5226 	 */
5227 	synchronize_net();
5228 	RCU_INIT_POINTER(dev->rx_handler_data, NULL);
5229 }
5230 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5231 
5232 /*
5233  * Limit the use of PFMEMALLOC reserves to those protocols that implement
5234  * the special handling of PFMEMALLOC skbs.
5235  */
5236 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5237 {
5238 	switch (skb->protocol) {
5239 	case htons(ETH_P_ARP):
5240 	case htons(ETH_P_IP):
5241 	case htons(ETH_P_IPV6):
5242 	case htons(ETH_P_8021Q):
5243 	case htons(ETH_P_8021AD):
5244 		return true;
5245 	default:
5246 		return false;
5247 	}
5248 }
5249 
5250 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5251 			     int *ret, struct net_device *orig_dev)
5252 {
5253 	if (nf_hook_ingress_active(skb)) {
5254 		int ingress_retval;
5255 
5256 		if (*pt_prev) {
5257 			*ret = deliver_skb(skb, *pt_prev, orig_dev);
5258 			*pt_prev = NULL;
5259 		}
5260 
5261 		rcu_read_lock();
5262 		ingress_retval = nf_hook_ingress(skb);
5263 		rcu_read_unlock();
5264 		return ingress_retval;
5265 	}
5266 	return 0;
5267 }
5268 
5269 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
5270 				    struct packet_type **ppt_prev)
5271 {
5272 	struct packet_type *ptype, *pt_prev;
5273 	rx_handler_func_t *rx_handler;
5274 	struct sk_buff *skb = *pskb;
5275 	struct net_device *orig_dev;
5276 	bool deliver_exact = false;
5277 	int ret = NET_RX_DROP;
5278 	__be16 type;
5279 
5280 	net_timestamp_check(!netdev_tstamp_prequeue, skb);
5281 
5282 	trace_netif_receive_skb(skb);
5283 
5284 	orig_dev = skb->dev;
5285 
5286 	skb_reset_network_header(skb);
5287 	if (!skb_transport_header_was_set(skb))
5288 		skb_reset_transport_header(skb);
5289 	skb_reset_mac_len(skb);
5290 
5291 	pt_prev = NULL;
5292 
5293 another_round:
5294 	skb->skb_iif = skb->dev->ifindex;
5295 
5296 	__this_cpu_inc(softnet_data.processed);
5297 
5298 	if (static_branch_unlikely(&generic_xdp_needed_key)) {
5299 		int ret2;
5300 
5301 		migrate_disable();
5302 		ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
5303 		migrate_enable();
5304 
5305 		if (ret2 != XDP_PASS) {
5306 			ret = NET_RX_DROP;
5307 			goto out;
5308 		}
5309 	}
5310 
5311 	if (eth_type_vlan(skb->protocol)) {
5312 		skb = skb_vlan_untag(skb);
5313 		if (unlikely(!skb))
5314 			goto out;
5315 	}
5316 
5317 	if (skb_skip_tc_classify(skb))
5318 		goto skip_classify;
5319 
5320 	if (pfmemalloc)
5321 		goto skip_taps;
5322 
5323 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
5324 		if (pt_prev)
5325 			ret = deliver_skb(skb, pt_prev, orig_dev);
5326 		pt_prev = ptype;
5327 	}
5328 
5329 	list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5330 		if (pt_prev)
5331 			ret = deliver_skb(skb, pt_prev, orig_dev);
5332 		pt_prev = ptype;
5333 	}
5334 
5335 skip_taps:
5336 #ifdef CONFIG_NET_INGRESS
5337 	if (static_branch_unlikely(&ingress_needed_key)) {
5338 		bool another = false;
5339 
5340 		nf_skip_egress(skb, true);
5341 		skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev,
5342 					 &another);
5343 		if (another)
5344 			goto another_round;
5345 		if (!skb)
5346 			goto out;
5347 
5348 		nf_skip_egress(skb, false);
5349 		if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5350 			goto out;
5351 	}
5352 #endif
5353 	skb_reset_redirect(skb);
5354 skip_classify:
5355 	if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
5356 		goto drop;
5357 
5358 	if (skb_vlan_tag_present(skb)) {
5359 		if (pt_prev) {
5360 			ret = deliver_skb(skb, pt_prev, orig_dev);
5361 			pt_prev = NULL;
5362 		}
5363 		if (vlan_do_receive(&skb))
5364 			goto another_round;
5365 		else if (unlikely(!skb))
5366 			goto out;
5367 	}
5368 
5369 	rx_handler = rcu_dereference(skb->dev->rx_handler);
5370 	if (rx_handler) {
5371 		if (pt_prev) {
5372 			ret = deliver_skb(skb, pt_prev, orig_dev);
5373 			pt_prev = NULL;
5374 		}
5375 		switch (rx_handler(&skb)) {
5376 		case RX_HANDLER_CONSUMED:
5377 			ret = NET_RX_SUCCESS;
5378 			goto out;
5379 		case RX_HANDLER_ANOTHER:
5380 			goto another_round;
5381 		case RX_HANDLER_EXACT:
5382 			deliver_exact = true;
5383 			break;
5384 		case RX_HANDLER_PASS:
5385 			break;
5386 		default:
5387 			BUG();
5388 		}
5389 	}
5390 
5391 	if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) {
5392 check_vlan_id:
5393 		if (skb_vlan_tag_get_id(skb)) {
5394 			/* Vlan id is non 0 and vlan_do_receive() above couldn't
5395 			 * find vlan device.
5396 			 */
5397 			skb->pkt_type = PACKET_OTHERHOST;
5398 		} else if (eth_type_vlan(skb->protocol)) {
5399 			/* Outer header is 802.1P with vlan 0, inner header is
5400 			 * 802.1Q or 802.1AD and vlan_do_receive() above could
5401 			 * not find vlan dev for vlan id 0.
5402 			 */
5403 			__vlan_hwaccel_clear_tag(skb);
5404 			skb = skb_vlan_untag(skb);
5405 			if (unlikely(!skb))
5406 				goto out;
5407 			if (vlan_do_receive(&skb))
5408 				/* After stripping off 802.1P header with vlan 0
5409 				 * vlan dev is found for inner header.
5410 				 */
5411 				goto another_round;
5412 			else if (unlikely(!skb))
5413 				goto out;
5414 			else
5415 				/* We have stripped outer 802.1P vlan 0 header.
5416 				 * But could not find vlan dev.
5417 				 * check again for vlan id to set OTHERHOST.
5418 				 */
5419 				goto check_vlan_id;
5420 		}
5421 		/* Note: we might in the future use prio bits
5422 		 * and set skb->priority like in vlan_do_receive()
5423 		 * For the time being, just ignore Priority Code Point
5424 		 */
5425 		__vlan_hwaccel_clear_tag(skb);
5426 	}
5427 
5428 	type = skb->protocol;
5429 
5430 	/* deliver only exact match when indicated */
5431 	if (likely(!deliver_exact)) {
5432 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5433 				       &ptype_base[ntohs(type) &
5434 						   PTYPE_HASH_MASK]);
5435 	}
5436 
5437 	deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5438 			       &orig_dev->ptype_specific);
5439 
5440 	if (unlikely(skb->dev != orig_dev)) {
5441 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5442 				       &skb->dev->ptype_specific);
5443 	}
5444 
5445 	if (pt_prev) {
5446 		if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
5447 			goto drop;
5448 		*ppt_prev = pt_prev;
5449 	} else {
5450 drop:
5451 		if (!deliver_exact)
5452 			dev_core_stats_rx_dropped_inc(skb->dev);
5453 		else
5454 			dev_core_stats_rx_nohandler_inc(skb->dev);
5455 		kfree_skb_reason(skb, SKB_DROP_REASON_UNHANDLED_PROTO);
5456 		/* Jamal, now you will not able to escape explaining
5457 		 * me how you were going to use this. :-)
5458 		 */
5459 		ret = NET_RX_DROP;
5460 	}
5461 
5462 out:
5463 	/* The invariant here is that if *ppt_prev is not NULL
5464 	 * then skb should also be non-NULL.
5465 	 *
5466 	 * Apparently *ppt_prev assignment above holds this invariant due to
5467 	 * skb dereferencing near it.
5468 	 */
5469 	*pskb = skb;
5470 	return ret;
5471 }
5472 
5473 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5474 {
5475 	struct net_device *orig_dev = skb->dev;
5476 	struct packet_type *pt_prev = NULL;
5477 	int ret;
5478 
5479 	ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5480 	if (pt_prev)
5481 		ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5482 					 skb->dev, pt_prev, orig_dev);
5483 	return ret;
5484 }
5485 
5486 /**
5487  *	netif_receive_skb_core - special purpose version of netif_receive_skb
5488  *	@skb: buffer to process
5489  *
5490  *	More direct receive version of netif_receive_skb().  It should
5491  *	only be used by callers that have a need to skip RPS and Generic XDP.
5492  *	Caller must also take care of handling if ``(page_is_)pfmemalloc``.
5493  *
5494  *	This function may only be called from softirq context and interrupts
5495  *	should be enabled.
5496  *
5497  *	Return values (usually ignored):
5498  *	NET_RX_SUCCESS: no congestion
5499  *	NET_RX_DROP: packet was dropped
5500  */
5501 int netif_receive_skb_core(struct sk_buff *skb)
5502 {
5503 	int ret;
5504 
5505 	rcu_read_lock();
5506 	ret = __netif_receive_skb_one_core(skb, false);
5507 	rcu_read_unlock();
5508 
5509 	return ret;
5510 }
5511 EXPORT_SYMBOL(netif_receive_skb_core);
5512 
5513 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5514 						  struct packet_type *pt_prev,
5515 						  struct net_device *orig_dev)
5516 {
5517 	struct sk_buff *skb, *next;
5518 
5519 	if (!pt_prev)
5520 		return;
5521 	if (list_empty(head))
5522 		return;
5523 	if (pt_prev->list_func != NULL)
5524 		INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5525 				   ip_list_rcv, head, pt_prev, orig_dev);
5526 	else
5527 		list_for_each_entry_safe(skb, next, head, list) {
5528 			skb_list_del_init(skb);
5529 			pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5530 		}
5531 }
5532 
5533 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5534 {
5535 	/* Fast-path assumptions:
5536 	 * - There is no RX handler.
5537 	 * - Only one packet_type matches.
5538 	 * If either of these fails, we will end up doing some per-packet
5539 	 * processing in-line, then handling the 'last ptype' for the whole
5540 	 * sublist.  This can't cause out-of-order delivery to any single ptype,
5541 	 * because the 'last ptype' must be constant across the sublist, and all
5542 	 * other ptypes are handled per-packet.
5543 	 */
5544 	/* Current (common) ptype of sublist */
5545 	struct packet_type *pt_curr = NULL;
5546 	/* Current (common) orig_dev of sublist */
5547 	struct net_device *od_curr = NULL;
5548 	struct list_head sublist;
5549 	struct sk_buff *skb, *next;
5550 
5551 	INIT_LIST_HEAD(&sublist);
5552 	list_for_each_entry_safe(skb, next, head, list) {
5553 		struct net_device *orig_dev = skb->dev;
5554 		struct packet_type *pt_prev = NULL;
5555 
5556 		skb_list_del_init(skb);
5557 		__netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5558 		if (!pt_prev)
5559 			continue;
5560 		if (pt_curr != pt_prev || od_curr != orig_dev) {
5561 			/* dispatch old sublist */
5562 			__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5563 			/* start new sublist */
5564 			INIT_LIST_HEAD(&sublist);
5565 			pt_curr = pt_prev;
5566 			od_curr = orig_dev;
5567 		}
5568 		list_add_tail(&skb->list, &sublist);
5569 	}
5570 
5571 	/* dispatch final sublist */
5572 	__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5573 }
5574 
5575 static int __netif_receive_skb(struct sk_buff *skb)
5576 {
5577 	int ret;
5578 
5579 	if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5580 		unsigned int noreclaim_flag;
5581 
5582 		/*
5583 		 * PFMEMALLOC skbs are special, they should
5584 		 * - be delivered to SOCK_MEMALLOC sockets only
5585 		 * - stay away from userspace
5586 		 * - have bounded memory usage
5587 		 *
5588 		 * Use PF_MEMALLOC as this saves us from propagating the allocation
5589 		 * context down to all allocation sites.
5590 		 */
5591 		noreclaim_flag = memalloc_noreclaim_save();
5592 		ret = __netif_receive_skb_one_core(skb, true);
5593 		memalloc_noreclaim_restore(noreclaim_flag);
5594 	} else
5595 		ret = __netif_receive_skb_one_core(skb, false);
5596 
5597 	return ret;
5598 }
5599 
5600 static void __netif_receive_skb_list(struct list_head *head)
5601 {
5602 	unsigned long noreclaim_flag = 0;
5603 	struct sk_buff *skb, *next;
5604 	bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5605 
5606 	list_for_each_entry_safe(skb, next, head, list) {
5607 		if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5608 			struct list_head sublist;
5609 
5610 			/* Handle the previous sublist */
5611 			list_cut_before(&sublist, head, &skb->list);
5612 			if (!list_empty(&sublist))
5613 				__netif_receive_skb_list_core(&sublist, pfmemalloc);
5614 			pfmemalloc = !pfmemalloc;
5615 			/* See comments in __netif_receive_skb */
5616 			if (pfmemalloc)
5617 				noreclaim_flag = memalloc_noreclaim_save();
5618 			else
5619 				memalloc_noreclaim_restore(noreclaim_flag);
5620 		}
5621 	}
5622 	/* Handle the remaining sublist */
5623 	if (!list_empty(head))
5624 		__netif_receive_skb_list_core(head, pfmemalloc);
5625 	/* Restore pflags */
5626 	if (pfmemalloc)
5627 		memalloc_noreclaim_restore(noreclaim_flag);
5628 }
5629 
5630 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5631 {
5632 	struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5633 	struct bpf_prog *new = xdp->prog;
5634 	int ret = 0;
5635 
5636 	switch (xdp->command) {
5637 	case XDP_SETUP_PROG:
5638 		rcu_assign_pointer(dev->xdp_prog, new);
5639 		if (old)
5640 			bpf_prog_put(old);
5641 
5642 		if (old && !new) {
5643 			static_branch_dec(&generic_xdp_needed_key);
5644 		} else if (new && !old) {
5645 			static_branch_inc(&generic_xdp_needed_key);
5646 			dev_disable_lro(dev);
5647 			dev_disable_gro_hw(dev);
5648 		}
5649 		break;
5650 
5651 	default:
5652 		ret = -EINVAL;
5653 		break;
5654 	}
5655 
5656 	return ret;
5657 }
5658 
5659 static int netif_receive_skb_internal(struct sk_buff *skb)
5660 {
5661 	int ret;
5662 
5663 	net_timestamp_check(netdev_tstamp_prequeue, skb);
5664 
5665 	if (skb_defer_rx_timestamp(skb))
5666 		return NET_RX_SUCCESS;
5667 
5668 	rcu_read_lock();
5669 #ifdef CONFIG_RPS
5670 	if (static_branch_unlikely(&rps_needed)) {
5671 		struct rps_dev_flow voidflow, *rflow = &voidflow;
5672 		int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5673 
5674 		if (cpu >= 0) {
5675 			ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5676 			rcu_read_unlock();
5677 			return ret;
5678 		}
5679 	}
5680 #endif
5681 	ret = __netif_receive_skb(skb);
5682 	rcu_read_unlock();
5683 	return ret;
5684 }
5685 
5686 void netif_receive_skb_list_internal(struct list_head *head)
5687 {
5688 	struct sk_buff *skb, *next;
5689 	struct list_head sublist;
5690 
5691 	INIT_LIST_HEAD(&sublist);
5692 	list_for_each_entry_safe(skb, next, head, list) {
5693 		net_timestamp_check(netdev_tstamp_prequeue, skb);
5694 		skb_list_del_init(skb);
5695 		if (!skb_defer_rx_timestamp(skb))
5696 			list_add_tail(&skb->list, &sublist);
5697 	}
5698 	list_splice_init(&sublist, head);
5699 
5700 	rcu_read_lock();
5701 #ifdef CONFIG_RPS
5702 	if (static_branch_unlikely(&rps_needed)) {
5703 		list_for_each_entry_safe(skb, next, head, list) {
5704 			struct rps_dev_flow voidflow, *rflow = &voidflow;
5705 			int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5706 
5707 			if (cpu >= 0) {
5708 				/* Will be handled, remove from list */
5709 				skb_list_del_init(skb);
5710 				enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5711 			}
5712 		}
5713 	}
5714 #endif
5715 	__netif_receive_skb_list(head);
5716 	rcu_read_unlock();
5717 }
5718 
5719 /**
5720  *	netif_receive_skb - process receive buffer from network
5721  *	@skb: buffer to process
5722  *
5723  *	netif_receive_skb() is the main receive data processing function.
5724  *	It always succeeds. The buffer may be dropped during processing
5725  *	for congestion control or by the protocol layers.
5726  *
5727  *	This function may only be called from softirq context and interrupts
5728  *	should be enabled.
5729  *
5730  *	Return values (usually ignored):
5731  *	NET_RX_SUCCESS: no congestion
5732  *	NET_RX_DROP: packet was dropped
5733  */
5734 int netif_receive_skb(struct sk_buff *skb)
5735 {
5736 	int ret;
5737 
5738 	trace_netif_receive_skb_entry(skb);
5739 
5740 	ret = netif_receive_skb_internal(skb);
5741 	trace_netif_receive_skb_exit(ret);
5742 
5743 	return ret;
5744 }
5745 EXPORT_SYMBOL(netif_receive_skb);
5746 
5747 /**
5748  *	netif_receive_skb_list - process many receive buffers from network
5749  *	@head: list of skbs to process.
5750  *
5751  *	Since return value of netif_receive_skb() is normally ignored, and
5752  *	wouldn't be meaningful for a list, this function returns void.
5753  *
5754  *	This function may only be called from softirq context and interrupts
5755  *	should be enabled.
5756  */
5757 void netif_receive_skb_list(struct list_head *head)
5758 {
5759 	struct sk_buff *skb;
5760 
5761 	if (list_empty(head))
5762 		return;
5763 	if (trace_netif_receive_skb_list_entry_enabled()) {
5764 		list_for_each_entry(skb, head, list)
5765 			trace_netif_receive_skb_list_entry(skb);
5766 	}
5767 	netif_receive_skb_list_internal(head);
5768 	trace_netif_receive_skb_list_exit(0);
5769 }
5770 EXPORT_SYMBOL(netif_receive_skb_list);
5771 
5772 static DEFINE_PER_CPU(struct work_struct, flush_works);
5773 
5774 /* Network device is going away, flush any packets still pending */
5775 static void flush_backlog(struct work_struct *work)
5776 {
5777 	struct sk_buff *skb, *tmp;
5778 	struct softnet_data *sd;
5779 
5780 	local_bh_disable();
5781 	sd = this_cpu_ptr(&softnet_data);
5782 
5783 	rps_lock_irq_disable(sd);
5784 	skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5785 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5786 			__skb_unlink(skb, &sd->input_pkt_queue);
5787 			dev_kfree_skb_irq(skb);
5788 			input_queue_head_incr(sd);
5789 		}
5790 	}
5791 	rps_unlock_irq_enable(sd);
5792 
5793 	skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5794 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5795 			__skb_unlink(skb, &sd->process_queue);
5796 			kfree_skb(skb);
5797 			input_queue_head_incr(sd);
5798 		}
5799 	}
5800 	local_bh_enable();
5801 }
5802 
5803 static bool flush_required(int cpu)
5804 {
5805 #if IS_ENABLED(CONFIG_RPS)
5806 	struct softnet_data *sd = &per_cpu(softnet_data, cpu);
5807 	bool do_flush;
5808 
5809 	rps_lock_irq_disable(sd);
5810 
5811 	/* as insertion into process_queue happens with the rps lock held,
5812 	 * process_queue access may race only with dequeue
5813 	 */
5814 	do_flush = !skb_queue_empty(&sd->input_pkt_queue) ||
5815 		   !skb_queue_empty_lockless(&sd->process_queue);
5816 	rps_unlock_irq_enable(sd);
5817 
5818 	return do_flush;
5819 #endif
5820 	/* without RPS we can't safely check input_pkt_queue: during a
5821 	 * concurrent remote skb_queue_splice() we can detect as empty both
5822 	 * input_pkt_queue and process_queue even if the latter could end-up
5823 	 * containing a lot of packets.
5824 	 */
5825 	return true;
5826 }
5827 
5828 static void flush_all_backlogs(void)
5829 {
5830 	static cpumask_t flush_cpus;
5831 	unsigned int cpu;
5832 
5833 	/* since we are under rtnl lock protection we can use static data
5834 	 * for the cpumask and avoid allocating on stack the possibly
5835 	 * large mask
5836 	 */
5837 	ASSERT_RTNL();
5838 
5839 	cpus_read_lock();
5840 
5841 	cpumask_clear(&flush_cpus);
5842 	for_each_online_cpu(cpu) {
5843 		if (flush_required(cpu)) {
5844 			queue_work_on(cpu, system_highpri_wq,
5845 				      per_cpu_ptr(&flush_works, cpu));
5846 			cpumask_set_cpu(cpu, &flush_cpus);
5847 		}
5848 	}
5849 
5850 	/* we can have in flight packet[s] on the cpus we are not flushing,
5851 	 * synchronize_net() in unregister_netdevice_many() will take care of
5852 	 * them
5853 	 */
5854 	for_each_cpu(cpu, &flush_cpus)
5855 		flush_work(per_cpu_ptr(&flush_works, cpu));
5856 
5857 	cpus_read_unlock();
5858 }
5859 
5860 static void net_rps_send_ipi(struct softnet_data *remsd)
5861 {
5862 #ifdef CONFIG_RPS
5863 	while (remsd) {
5864 		struct softnet_data *next = remsd->rps_ipi_next;
5865 
5866 		if (cpu_online(remsd->cpu))
5867 			smp_call_function_single_async(remsd->cpu, &remsd->csd);
5868 		remsd = next;
5869 	}
5870 #endif
5871 }
5872 
5873 /*
5874  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
5875  * Note: called with local irq disabled, but exits with local irq enabled.
5876  */
5877 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
5878 {
5879 #ifdef CONFIG_RPS
5880 	struct softnet_data *remsd = sd->rps_ipi_list;
5881 
5882 	if (remsd) {
5883 		sd->rps_ipi_list = NULL;
5884 
5885 		local_irq_enable();
5886 
5887 		/* Send pending IPI's to kick RPS processing on remote cpus. */
5888 		net_rps_send_ipi(remsd);
5889 	} else
5890 #endif
5891 		local_irq_enable();
5892 }
5893 
5894 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
5895 {
5896 #ifdef CONFIG_RPS
5897 	return sd->rps_ipi_list != NULL;
5898 #else
5899 	return false;
5900 #endif
5901 }
5902 
5903 static int process_backlog(struct napi_struct *napi, int quota)
5904 {
5905 	struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
5906 	bool again = true;
5907 	int work = 0;
5908 
5909 	/* Check if we have pending ipi, its better to send them now,
5910 	 * not waiting net_rx_action() end.
5911 	 */
5912 	if (sd_has_rps_ipi_waiting(sd)) {
5913 		local_irq_disable();
5914 		net_rps_action_and_irq_enable(sd);
5915 	}
5916 
5917 	napi->weight = dev_rx_weight;
5918 	while (again) {
5919 		struct sk_buff *skb;
5920 
5921 		while ((skb = __skb_dequeue(&sd->process_queue))) {
5922 			rcu_read_lock();
5923 			__netif_receive_skb(skb);
5924 			rcu_read_unlock();
5925 			input_queue_head_incr(sd);
5926 			if (++work >= quota)
5927 				return work;
5928 
5929 		}
5930 
5931 		rps_lock_irq_disable(sd);
5932 		if (skb_queue_empty(&sd->input_pkt_queue)) {
5933 			/*
5934 			 * Inline a custom version of __napi_complete().
5935 			 * only current cpu owns and manipulates this napi,
5936 			 * and NAPI_STATE_SCHED is the only possible flag set
5937 			 * on backlog.
5938 			 * We can use a plain write instead of clear_bit(),
5939 			 * and we dont need an smp_mb() memory barrier.
5940 			 */
5941 			napi->state = 0;
5942 			again = false;
5943 		} else {
5944 			skb_queue_splice_tail_init(&sd->input_pkt_queue,
5945 						   &sd->process_queue);
5946 		}
5947 		rps_unlock_irq_enable(sd);
5948 	}
5949 
5950 	return work;
5951 }
5952 
5953 /**
5954  * __napi_schedule - schedule for receive
5955  * @n: entry to schedule
5956  *
5957  * The entry's receive function will be scheduled to run.
5958  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
5959  */
5960 void __napi_schedule(struct napi_struct *n)
5961 {
5962 	unsigned long flags;
5963 
5964 	local_irq_save(flags);
5965 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
5966 	local_irq_restore(flags);
5967 }
5968 EXPORT_SYMBOL(__napi_schedule);
5969 
5970 /**
5971  *	napi_schedule_prep - check if napi can be scheduled
5972  *	@n: napi context
5973  *
5974  * Test if NAPI routine is already running, and if not mark
5975  * it as running.  This is used as a condition variable to
5976  * insure only one NAPI poll instance runs.  We also make
5977  * sure there is no pending NAPI disable.
5978  */
5979 bool napi_schedule_prep(struct napi_struct *n)
5980 {
5981 	unsigned long val, new;
5982 
5983 	do {
5984 		val = READ_ONCE(n->state);
5985 		if (unlikely(val & NAPIF_STATE_DISABLE))
5986 			return false;
5987 		new = val | NAPIF_STATE_SCHED;
5988 
5989 		/* Sets STATE_MISSED bit if STATE_SCHED was already set
5990 		 * This was suggested by Alexander Duyck, as compiler
5991 		 * emits better code than :
5992 		 * if (val & NAPIF_STATE_SCHED)
5993 		 *     new |= NAPIF_STATE_MISSED;
5994 		 */
5995 		new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
5996 						   NAPIF_STATE_MISSED;
5997 	} while (cmpxchg(&n->state, val, new) != val);
5998 
5999 	return !(val & NAPIF_STATE_SCHED);
6000 }
6001 EXPORT_SYMBOL(napi_schedule_prep);
6002 
6003 /**
6004  * __napi_schedule_irqoff - schedule for receive
6005  * @n: entry to schedule
6006  *
6007  * Variant of __napi_schedule() assuming hard irqs are masked.
6008  *
6009  * On PREEMPT_RT enabled kernels this maps to __napi_schedule()
6010  * because the interrupt disabled assumption might not be true
6011  * due to force-threaded interrupts and spinlock substitution.
6012  */
6013 void __napi_schedule_irqoff(struct napi_struct *n)
6014 {
6015 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6016 		____napi_schedule(this_cpu_ptr(&softnet_data), n);
6017 	else
6018 		__napi_schedule(n);
6019 }
6020 EXPORT_SYMBOL(__napi_schedule_irqoff);
6021 
6022 bool napi_complete_done(struct napi_struct *n, int work_done)
6023 {
6024 	unsigned long flags, val, new, timeout = 0;
6025 	bool ret = true;
6026 
6027 	/*
6028 	 * 1) Don't let napi dequeue from the cpu poll list
6029 	 *    just in case its running on a different cpu.
6030 	 * 2) If we are busy polling, do nothing here, we have
6031 	 *    the guarantee we will be called later.
6032 	 */
6033 	if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6034 				 NAPIF_STATE_IN_BUSY_POLL)))
6035 		return false;
6036 
6037 	if (work_done) {
6038 		if (n->gro_bitmask)
6039 			timeout = READ_ONCE(n->dev->gro_flush_timeout);
6040 		n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs);
6041 	}
6042 	if (n->defer_hard_irqs_count > 0) {
6043 		n->defer_hard_irqs_count--;
6044 		timeout = READ_ONCE(n->dev->gro_flush_timeout);
6045 		if (timeout)
6046 			ret = false;
6047 	}
6048 	if (n->gro_bitmask) {
6049 		/* When the NAPI instance uses a timeout and keeps postponing
6050 		 * it, we need to bound somehow the time packets are kept in
6051 		 * the GRO layer
6052 		 */
6053 		napi_gro_flush(n, !!timeout);
6054 	}
6055 
6056 	gro_normal_list(n);
6057 
6058 	if (unlikely(!list_empty(&n->poll_list))) {
6059 		/* If n->poll_list is not empty, we need to mask irqs */
6060 		local_irq_save(flags);
6061 		list_del_init(&n->poll_list);
6062 		local_irq_restore(flags);
6063 	}
6064 
6065 	do {
6066 		val = READ_ONCE(n->state);
6067 
6068 		WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6069 
6070 		new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED |
6071 			      NAPIF_STATE_SCHED_THREADED |
6072 			      NAPIF_STATE_PREFER_BUSY_POLL);
6073 
6074 		/* If STATE_MISSED was set, leave STATE_SCHED set,
6075 		 * because we will call napi->poll() one more time.
6076 		 * This C code was suggested by Alexander Duyck to help gcc.
6077 		 */
6078 		new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6079 						    NAPIF_STATE_SCHED;
6080 	} while (cmpxchg(&n->state, val, new) != val);
6081 
6082 	if (unlikely(val & NAPIF_STATE_MISSED)) {
6083 		__napi_schedule(n);
6084 		return false;
6085 	}
6086 
6087 	if (timeout)
6088 		hrtimer_start(&n->timer, ns_to_ktime(timeout),
6089 			      HRTIMER_MODE_REL_PINNED);
6090 	return ret;
6091 }
6092 EXPORT_SYMBOL(napi_complete_done);
6093 
6094 /* must be called under rcu_read_lock(), as we dont take a reference */
6095 static struct napi_struct *napi_by_id(unsigned int napi_id)
6096 {
6097 	unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6098 	struct napi_struct *napi;
6099 
6100 	hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6101 		if (napi->napi_id == napi_id)
6102 			return napi;
6103 
6104 	return NULL;
6105 }
6106 
6107 #if defined(CONFIG_NET_RX_BUSY_POLL)
6108 
6109 static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule)
6110 {
6111 	if (!skip_schedule) {
6112 		gro_normal_list(napi);
6113 		__napi_schedule(napi);
6114 		return;
6115 	}
6116 
6117 	if (napi->gro_bitmask) {
6118 		/* flush too old packets
6119 		 * If HZ < 1000, flush all packets.
6120 		 */
6121 		napi_gro_flush(napi, HZ >= 1000);
6122 	}
6123 
6124 	gro_normal_list(napi);
6125 	clear_bit(NAPI_STATE_SCHED, &napi->state);
6126 }
6127 
6128 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock, bool prefer_busy_poll,
6129 			   u16 budget)
6130 {
6131 	bool skip_schedule = false;
6132 	unsigned long timeout;
6133 	int rc;
6134 
6135 	/* Busy polling means there is a high chance device driver hard irq
6136 	 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6137 	 * set in napi_schedule_prep().
6138 	 * Since we are about to call napi->poll() once more, we can safely
6139 	 * clear NAPI_STATE_MISSED.
6140 	 *
6141 	 * Note: x86 could use a single "lock and ..." instruction
6142 	 * to perform these two clear_bit()
6143 	 */
6144 	clear_bit(NAPI_STATE_MISSED, &napi->state);
6145 	clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6146 
6147 	local_bh_disable();
6148 
6149 	if (prefer_busy_poll) {
6150 		napi->defer_hard_irqs_count = READ_ONCE(napi->dev->napi_defer_hard_irqs);
6151 		timeout = READ_ONCE(napi->dev->gro_flush_timeout);
6152 		if (napi->defer_hard_irqs_count && timeout) {
6153 			hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED);
6154 			skip_schedule = true;
6155 		}
6156 	}
6157 
6158 	/* All we really want here is to re-enable device interrupts.
6159 	 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6160 	 */
6161 	rc = napi->poll(napi, budget);
6162 	/* We can't gro_normal_list() here, because napi->poll() might have
6163 	 * rearmed the napi (napi_complete_done()) in which case it could
6164 	 * already be running on another CPU.
6165 	 */
6166 	trace_napi_poll(napi, rc, budget);
6167 	netpoll_poll_unlock(have_poll_lock);
6168 	if (rc == budget)
6169 		__busy_poll_stop(napi, skip_schedule);
6170 	local_bh_enable();
6171 }
6172 
6173 void napi_busy_loop(unsigned int napi_id,
6174 		    bool (*loop_end)(void *, unsigned long),
6175 		    void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6176 {
6177 	unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6178 	int (*napi_poll)(struct napi_struct *napi, int budget);
6179 	void *have_poll_lock = NULL;
6180 	struct napi_struct *napi;
6181 
6182 restart:
6183 	napi_poll = NULL;
6184 
6185 	rcu_read_lock();
6186 
6187 	napi = napi_by_id(napi_id);
6188 	if (!napi)
6189 		goto out;
6190 
6191 	preempt_disable();
6192 	for (;;) {
6193 		int work = 0;
6194 
6195 		local_bh_disable();
6196 		if (!napi_poll) {
6197 			unsigned long val = READ_ONCE(napi->state);
6198 
6199 			/* If multiple threads are competing for this napi,
6200 			 * we avoid dirtying napi->state as much as we can.
6201 			 */
6202 			if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6203 				   NAPIF_STATE_IN_BUSY_POLL)) {
6204 				if (prefer_busy_poll)
6205 					set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6206 				goto count;
6207 			}
6208 			if (cmpxchg(&napi->state, val,
6209 				    val | NAPIF_STATE_IN_BUSY_POLL |
6210 					  NAPIF_STATE_SCHED) != val) {
6211 				if (prefer_busy_poll)
6212 					set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6213 				goto count;
6214 			}
6215 			have_poll_lock = netpoll_poll_lock(napi);
6216 			napi_poll = napi->poll;
6217 		}
6218 		work = napi_poll(napi, budget);
6219 		trace_napi_poll(napi, work, budget);
6220 		gro_normal_list(napi);
6221 count:
6222 		if (work > 0)
6223 			__NET_ADD_STATS(dev_net(napi->dev),
6224 					LINUX_MIB_BUSYPOLLRXPACKETS, work);
6225 		local_bh_enable();
6226 
6227 		if (!loop_end || loop_end(loop_end_arg, start_time))
6228 			break;
6229 
6230 		if (unlikely(need_resched())) {
6231 			if (napi_poll)
6232 				busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6233 			preempt_enable();
6234 			rcu_read_unlock();
6235 			cond_resched();
6236 			if (loop_end(loop_end_arg, start_time))
6237 				return;
6238 			goto restart;
6239 		}
6240 		cpu_relax();
6241 	}
6242 	if (napi_poll)
6243 		busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6244 	preempt_enable();
6245 out:
6246 	rcu_read_unlock();
6247 }
6248 EXPORT_SYMBOL(napi_busy_loop);
6249 
6250 #endif /* CONFIG_NET_RX_BUSY_POLL */
6251 
6252 static void napi_hash_add(struct napi_struct *napi)
6253 {
6254 	if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state))
6255 		return;
6256 
6257 	spin_lock(&napi_hash_lock);
6258 
6259 	/* 0..NR_CPUS range is reserved for sender_cpu use */
6260 	do {
6261 		if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6262 			napi_gen_id = MIN_NAPI_ID;
6263 	} while (napi_by_id(napi_gen_id));
6264 	napi->napi_id = napi_gen_id;
6265 
6266 	hlist_add_head_rcu(&napi->napi_hash_node,
6267 			   &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6268 
6269 	spin_unlock(&napi_hash_lock);
6270 }
6271 
6272 /* Warning : caller is responsible to make sure rcu grace period
6273  * is respected before freeing memory containing @napi
6274  */
6275 static void napi_hash_del(struct napi_struct *napi)
6276 {
6277 	spin_lock(&napi_hash_lock);
6278 
6279 	hlist_del_init_rcu(&napi->napi_hash_node);
6280 
6281 	spin_unlock(&napi_hash_lock);
6282 }
6283 
6284 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6285 {
6286 	struct napi_struct *napi;
6287 
6288 	napi = container_of(timer, struct napi_struct, timer);
6289 
6290 	/* Note : we use a relaxed variant of napi_schedule_prep() not setting
6291 	 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6292 	 */
6293 	if (!napi_disable_pending(napi) &&
6294 	    !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) {
6295 		clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6296 		__napi_schedule_irqoff(napi);
6297 	}
6298 
6299 	return HRTIMER_NORESTART;
6300 }
6301 
6302 static void init_gro_hash(struct napi_struct *napi)
6303 {
6304 	int i;
6305 
6306 	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6307 		INIT_LIST_HEAD(&napi->gro_hash[i].list);
6308 		napi->gro_hash[i].count = 0;
6309 	}
6310 	napi->gro_bitmask = 0;
6311 }
6312 
6313 int dev_set_threaded(struct net_device *dev, bool threaded)
6314 {
6315 	struct napi_struct *napi;
6316 	int err = 0;
6317 
6318 	if (dev->threaded == threaded)
6319 		return 0;
6320 
6321 	if (threaded) {
6322 		list_for_each_entry(napi, &dev->napi_list, dev_list) {
6323 			if (!napi->thread) {
6324 				err = napi_kthread_create(napi);
6325 				if (err) {
6326 					threaded = false;
6327 					break;
6328 				}
6329 			}
6330 		}
6331 	}
6332 
6333 	dev->threaded = threaded;
6334 
6335 	/* Make sure kthread is created before THREADED bit
6336 	 * is set.
6337 	 */
6338 	smp_mb__before_atomic();
6339 
6340 	/* Setting/unsetting threaded mode on a napi might not immediately
6341 	 * take effect, if the current napi instance is actively being
6342 	 * polled. In this case, the switch between threaded mode and
6343 	 * softirq mode will happen in the next round of napi_schedule().
6344 	 * This should not cause hiccups/stalls to the live traffic.
6345 	 */
6346 	list_for_each_entry(napi, &dev->napi_list, dev_list) {
6347 		if (threaded)
6348 			set_bit(NAPI_STATE_THREADED, &napi->state);
6349 		else
6350 			clear_bit(NAPI_STATE_THREADED, &napi->state);
6351 	}
6352 
6353 	return err;
6354 }
6355 EXPORT_SYMBOL(dev_set_threaded);
6356 
6357 void netif_napi_add_weight(struct net_device *dev, struct napi_struct *napi,
6358 			   int (*poll)(struct napi_struct *, int), int weight)
6359 {
6360 	if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state)))
6361 		return;
6362 
6363 	INIT_LIST_HEAD(&napi->poll_list);
6364 	INIT_HLIST_NODE(&napi->napi_hash_node);
6365 	hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6366 	napi->timer.function = napi_watchdog;
6367 	init_gro_hash(napi);
6368 	napi->skb = NULL;
6369 	INIT_LIST_HEAD(&napi->rx_list);
6370 	napi->rx_count = 0;
6371 	napi->poll = poll;
6372 	if (weight > NAPI_POLL_WEIGHT)
6373 		netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6374 				weight);
6375 	napi->weight = weight;
6376 	napi->dev = dev;
6377 #ifdef CONFIG_NETPOLL
6378 	napi->poll_owner = -1;
6379 #endif
6380 	set_bit(NAPI_STATE_SCHED, &napi->state);
6381 	set_bit(NAPI_STATE_NPSVC, &napi->state);
6382 	list_add_rcu(&napi->dev_list, &dev->napi_list);
6383 	napi_hash_add(napi);
6384 	/* Create kthread for this napi if dev->threaded is set.
6385 	 * Clear dev->threaded if kthread creation failed so that
6386 	 * threaded mode will not be enabled in napi_enable().
6387 	 */
6388 	if (dev->threaded && napi_kthread_create(napi))
6389 		dev->threaded = 0;
6390 }
6391 EXPORT_SYMBOL(netif_napi_add_weight);
6392 
6393 void napi_disable(struct napi_struct *n)
6394 {
6395 	unsigned long val, new;
6396 
6397 	might_sleep();
6398 	set_bit(NAPI_STATE_DISABLE, &n->state);
6399 
6400 	for ( ; ; ) {
6401 		val = READ_ONCE(n->state);
6402 		if (val & (NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC)) {
6403 			usleep_range(20, 200);
6404 			continue;
6405 		}
6406 
6407 		new = val | NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC;
6408 		new &= ~(NAPIF_STATE_THREADED | NAPIF_STATE_PREFER_BUSY_POLL);
6409 
6410 		if (cmpxchg(&n->state, val, new) == val)
6411 			break;
6412 	}
6413 
6414 	hrtimer_cancel(&n->timer);
6415 
6416 	clear_bit(NAPI_STATE_DISABLE, &n->state);
6417 }
6418 EXPORT_SYMBOL(napi_disable);
6419 
6420 /**
6421  *	napi_enable - enable NAPI scheduling
6422  *	@n: NAPI context
6423  *
6424  * Resume NAPI from being scheduled on this context.
6425  * Must be paired with napi_disable.
6426  */
6427 void napi_enable(struct napi_struct *n)
6428 {
6429 	unsigned long val, new;
6430 
6431 	do {
6432 		val = READ_ONCE(n->state);
6433 		BUG_ON(!test_bit(NAPI_STATE_SCHED, &val));
6434 
6435 		new = val & ~(NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC);
6436 		if (n->dev->threaded && n->thread)
6437 			new |= NAPIF_STATE_THREADED;
6438 	} while (cmpxchg(&n->state, val, new) != val);
6439 }
6440 EXPORT_SYMBOL(napi_enable);
6441 
6442 static void flush_gro_hash(struct napi_struct *napi)
6443 {
6444 	int i;
6445 
6446 	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6447 		struct sk_buff *skb, *n;
6448 
6449 		list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6450 			kfree_skb(skb);
6451 		napi->gro_hash[i].count = 0;
6452 	}
6453 }
6454 
6455 /* Must be called in process context */
6456 void __netif_napi_del(struct napi_struct *napi)
6457 {
6458 	if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state))
6459 		return;
6460 
6461 	napi_hash_del(napi);
6462 	list_del_rcu(&napi->dev_list);
6463 	napi_free_frags(napi);
6464 
6465 	flush_gro_hash(napi);
6466 	napi->gro_bitmask = 0;
6467 
6468 	if (napi->thread) {
6469 		kthread_stop(napi->thread);
6470 		napi->thread = NULL;
6471 	}
6472 }
6473 EXPORT_SYMBOL(__netif_napi_del);
6474 
6475 static int __napi_poll(struct napi_struct *n, bool *repoll)
6476 {
6477 	int work, weight;
6478 
6479 	weight = n->weight;
6480 
6481 	/* This NAPI_STATE_SCHED test is for avoiding a race
6482 	 * with netpoll's poll_napi().  Only the entity which
6483 	 * obtains the lock and sees NAPI_STATE_SCHED set will
6484 	 * actually make the ->poll() call.  Therefore we avoid
6485 	 * accidentally calling ->poll() when NAPI is not scheduled.
6486 	 */
6487 	work = 0;
6488 	if (test_bit(NAPI_STATE_SCHED, &n->state)) {
6489 		work = n->poll(n, weight);
6490 		trace_napi_poll(n, work, weight);
6491 	}
6492 
6493 	if (unlikely(work > weight))
6494 		netdev_err_once(n->dev, "NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
6495 				n->poll, work, weight);
6496 
6497 	if (likely(work < weight))
6498 		return work;
6499 
6500 	/* Drivers must not modify the NAPI state if they
6501 	 * consume the entire weight.  In such cases this code
6502 	 * still "owns" the NAPI instance and therefore can
6503 	 * move the instance around on the list at-will.
6504 	 */
6505 	if (unlikely(napi_disable_pending(n))) {
6506 		napi_complete(n);
6507 		return work;
6508 	}
6509 
6510 	/* The NAPI context has more processing work, but busy-polling
6511 	 * is preferred. Exit early.
6512 	 */
6513 	if (napi_prefer_busy_poll(n)) {
6514 		if (napi_complete_done(n, work)) {
6515 			/* If timeout is not set, we need to make sure
6516 			 * that the NAPI is re-scheduled.
6517 			 */
6518 			napi_schedule(n);
6519 		}
6520 		return work;
6521 	}
6522 
6523 	if (n->gro_bitmask) {
6524 		/* flush too old packets
6525 		 * If HZ < 1000, flush all packets.
6526 		 */
6527 		napi_gro_flush(n, HZ >= 1000);
6528 	}
6529 
6530 	gro_normal_list(n);
6531 
6532 	/* Some drivers may have called napi_schedule
6533 	 * prior to exhausting their budget.
6534 	 */
6535 	if (unlikely(!list_empty(&n->poll_list))) {
6536 		pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6537 			     n->dev ? n->dev->name : "backlog");
6538 		return work;
6539 	}
6540 
6541 	*repoll = true;
6542 
6543 	return work;
6544 }
6545 
6546 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6547 {
6548 	bool do_repoll = false;
6549 	void *have;
6550 	int work;
6551 
6552 	list_del_init(&n->poll_list);
6553 
6554 	have = netpoll_poll_lock(n);
6555 
6556 	work = __napi_poll(n, &do_repoll);
6557 
6558 	if (do_repoll)
6559 		list_add_tail(&n->poll_list, repoll);
6560 
6561 	netpoll_poll_unlock(have);
6562 
6563 	return work;
6564 }
6565 
6566 static int napi_thread_wait(struct napi_struct *napi)
6567 {
6568 	bool woken = false;
6569 
6570 	set_current_state(TASK_INTERRUPTIBLE);
6571 
6572 	while (!kthread_should_stop()) {
6573 		/* Testing SCHED_THREADED bit here to make sure the current
6574 		 * kthread owns this napi and could poll on this napi.
6575 		 * Testing SCHED bit is not enough because SCHED bit might be
6576 		 * set by some other busy poll thread or by napi_disable().
6577 		 */
6578 		if (test_bit(NAPI_STATE_SCHED_THREADED, &napi->state) || woken) {
6579 			WARN_ON(!list_empty(&napi->poll_list));
6580 			__set_current_state(TASK_RUNNING);
6581 			return 0;
6582 		}
6583 
6584 		schedule();
6585 		/* woken being true indicates this thread owns this napi. */
6586 		woken = true;
6587 		set_current_state(TASK_INTERRUPTIBLE);
6588 	}
6589 	__set_current_state(TASK_RUNNING);
6590 
6591 	return -1;
6592 }
6593 
6594 static int napi_threaded_poll(void *data)
6595 {
6596 	struct napi_struct *napi = data;
6597 	void *have;
6598 
6599 	while (!napi_thread_wait(napi)) {
6600 		for (;;) {
6601 			bool repoll = false;
6602 
6603 			local_bh_disable();
6604 
6605 			have = netpoll_poll_lock(napi);
6606 			__napi_poll(napi, &repoll);
6607 			netpoll_poll_unlock(have);
6608 
6609 			local_bh_enable();
6610 
6611 			if (!repoll)
6612 				break;
6613 
6614 			cond_resched();
6615 		}
6616 	}
6617 	return 0;
6618 }
6619 
6620 static void skb_defer_free_flush(struct softnet_data *sd)
6621 {
6622 	struct sk_buff *skb, *next;
6623 	unsigned long flags;
6624 
6625 	/* Paired with WRITE_ONCE() in skb_attempt_defer_free() */
6626 	if (!READ_ONCE(sd->defer_list))
6627 		return;
6628 
6629 	spin_lock_irqsave(&sd->defer_lock, flags);
6630 	skb = sd->defer_list;
6631 	sd->defer_list = NULL;
6632 	sd->defer_count = 0;
6633 	spin_unlock_irqrestore(&sd->defer_lock, flags);
6634 
6635 	while (skb != NULL) {
6636 		next = skb->next;
6637 		napi_consume_skb(skb, 1);
6638 		skb = next;
6639 	}
6640 }
6641 
6642 static __latent_entropy void net_rx_action(struct softirq_action *h)
6643 {
6644 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
6645 	unsigned long time_limit = jiffies +
6646 		usecs_to_jiffies(netdev_budget_usecs);
6647 	int budget = netdev_budget;
6648 	LIST_HEAD(list);
6649 	LIST_HEAD(repoll);
6650 
6651 	local_irq_disable();
6652 	list_splice_init(&sd->poll_list, &list);
6653 	local_irq_enable();
6654 
6655 	for (;;) {
6656 		struct napi_struct *n;
6657 
6658 		skb_defer_free_flush(sd);
6659 
6660 		if (list_empty(&list)) {
6661 			if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
6662 				goto end;
6663 			break;
6664 		}
6665 
6666 		n = list_first_entry(&list, struct napi_struct, poll_list);
6667 		budget -= napi_poll(n, &repoll);
6668 
6669 		/* If softirq window is exhausted then punt.
6670 		 * Allow this to run for 2 jiffies since which will allow
6671 		 * an average latency of 1.5/HZ.
6672 		 */
6673 		if (unlikely(budget <= 0 ||
6674 			     time_after_eq(jiffies, time_limit))) {
6675 			sd->time_squeeze++;
6676 			break;
6677 		}
6678 	}
6679 
6680 	local_irq_disable();
6681 
6682 	list_splice_tail_init(&sd->poll_list, &list);
6683 	list_splice_tail(&repoll, &list);
6684 	list_splice(&list, &sd->poll_list);
6685 	if (!list_empty(&sd->poll_list))
6686 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
6687 
6688 	net_rps_action_and_irq_enable(sd);
6689 end:;
6690 }
6691 
6692 struct netdev_adjacent {
6693 	struct net_device *dev;
6694 	netdevice_tracker dev_tracker;
6695 
6696 	/* upper master flag, there can only be one master device per list */
6697 	bool master;
6698 
6699 	/* lookup ignore flag */
6700 	bool ignore;
6701 
6702 	/* counter for the number of times this device was added to us */
6703 	u16 ref_nr;
6704 
6705 	/* private field for the users */
6706 	void *private;
6707 
6708 	struct list_head list;
6709 	struct rcu_head rcu;
6710 };
6711 
6712 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
6713 						 struct list_head *adj_list)
6714 {
6715 	struct netdev_adjacent *adj;
6716 
6717 	list_for_each_entry(adj, adj_list, list) {
6718 		if (adj->dev == adj_dev)
6719 			return adj;
6720 	}
6721 	return NULL;
6722 }
6723 
6724 static int ____netdev_has_upper_dev(struct net_device *upper_dev,
6725 				    struct netdev_nested_priv *priv)
6726 {
6727 	struct net_device *dev = (struct net_device *)priv->data;
6728 
6729 	return upper_dev == dev;
6730 }
6731 
6732 /**
6733  * netdev_has_upper_dev - Check if device is linked to an upper device
6734  * @dev: device
6735  * @upper_dev: upper device to check
6736  *
6737  * Find out if a device is linked to specified upper device and return true
6738  * in case it is. Note that this checks only immediate upper device,
6739  * not through a complete stack of devices. The caller must hold the RTNL lock.
6740  */
6741 bool netdev_has_upper_dev(struct net_device *dev,
6742 			  struct net_device *upper_dev)
6743 {
6744 	struct netdev_nested_priv priv = {
6745 		.data = (void *)upper_dev,
6746 	};
6747 
6748 	ASSERT_RTNL();
6749 
6750 	return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6751 					     &priv);
6752 }
6753 EXPORT_SYMBOL(netdev_has_upper_dev);
6754 
6755 /**
6756  * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device
6757  * @dev: device
6758  * @upper_dev: upper device to check
6759  *
6760  * Find out if a device is linked to specified upper device and return true
6761  * in case it is. Note that this checks the entire upper device chain.
6762  * The caller must hold rcu lock.
6763  */
6764 
6765 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
6766 				  struct net_device *upper_dev)
6767 {
6768 	struct netdev_nested_priv priv = {
6769 		.data = (void *)upper_dev,
6770 	};
6771 
6772 	return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6773 					       &priv);
6774 }
6775 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
6776 
6777 /**
6778  * netdev_has_any_upper_dev - Check if device is linked to some device
6779  * @dev: device
6780  *
6781  * Find out if a device is linked to an upper device and return true in case
6782  * it is. The caller must hold the RTNL lock.
6783  */
6784 bool netdev_has_any_upper_dev(struct net_device *dev)
6785 {
6786 	ASSERT_RTNL();
6787 
6788 	return !list_empty(&dev->adj_list.upper);
6789 }
6790 EXPORT_SYMBOL(netdev_has_any_upper_dev);
6791 
6792 /**
6793  * netdev_master_upper_dev_get - Get master upper device
6794  * @dev: device
6795  *
6796  * Find a master upper device and return pointer to it or NULL in case
6797  * it's not there. The caller must hold the RTNL lock.
6798  */
6799 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
6800 {
6801 	struct netdev_adjacent *upper;
6802 
6803 	ASSERT_RTNL();
6804 
6805 	if (list_empty(&dev->adj_list.upper))
6806 		return NULL;
6807 
6808 	upper = list_first_entry(&dev->adj_list.upper,
6809 				 struct netdev_adjacent, list);
6810 	if (likely(upper->master))
6811 		return upper->dev;
6812 	return NULL;
6813 }
6814 EXPORT_SYMBOL(netdev_master_upper_dev_get);
6815 
6816 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
6817 {
6818 	struct netdev_adjacent *upper;
6819 
6820 	ASSERT_RTNL();
6821 
6822 	if (list_empty(&dev->adj_list.upper))
6823 		return NULL;
6824 
6825 	upper = list_first_entry(&dev->adj_list.upper,
6826 				 struct netdev_adjacent, list);
6827 	if (likely(upper->master) && !upper->ignore)
6828 		return upper->dev;
6829 	return NULL;
6830 }
6831 
6832 /**
6833  * netdev_has_any_lower_dev - Check if device is linked to some device
6834  * @dev: device
6835  *
6836  * Find out if a device is linked to a lower device and return true in case
6837  * it is. The caller must hold the RTNL lock.
6838  */
6839 static bool netdev_has_any_lower_dev(struct net_device *dev)
6840 {
6841 	ASSERT_RTNL();
6842 
6843 	return !list_empty(&dev->adj_list.lower);
6844 }
6845 
6846 void *netdev_adjacent_get_private(struct list_head *adj_list)
6847 {
6848 	struct netdev_adjacent *adj;
6849 
6850 	adj = list_entry(adj_list, struct netdev_adjacent, list);
6851 
6852 	return adj->private;
6853 }
6854 EXPORT_SYMBOL(netdev_adjacent_get_private);
6855 
6856 /**
6857  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
6858  * @dev: device
6859  * @iter: list_head ** of the current position
6860  *
6861  * Gets the next device from the dev's upper list, starting from iter
6862  * position. The caller must hold RCU read lock.
6863  */
6864 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
6865 						 struct list_head **iter)
6866 {
6867 	struct netdev_adjacent *upper;
6868 
6869 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6870 
6871 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6872 
6873 	if (&upper->list == &dev->adj_list.upper)
6874 		return NULL;
6875 
6876 	*iter = &upper->list;
6877 
6878 	return upper->dev;
6879 }
6880 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
6881 
6882 static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
6883 						  struct list_head **iter,
6884 						  bool *ignore)
6885 {
6886 	struct netdev_adjacent *upper;
6887 
6888 	upper = list_entry((*iter)->next, struct netdev_adjacent, list);
6889 
6890 	if (&upper->list == &dev->adj_list.upper)
6891 		return NULL;
6892 
6893 	*iter = &upper->list;
6894 	*ignore = upper->ignore;
6895 
6896 	return upper->dev;
6897 }
6898 
6899 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
6900 						    struct list_head **iter)
6901 {
6902 	struct netdev_adjacent *upper;
6903 
6904 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6905 
6906 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6907 
6908 	if (&upper->list == &dev->adj_list.upper)
6909 		return NULL;
6910 
6911 	*iter = &upper->list;
6912 
6913 	return upper->dev;
6914 }
6915 
6916 static int __netdev_walk_all_upper_dev(struct net_device *dev,
6917 				       int (*fn)(struct net_device *dev,
6918 					 struct netdev_nested_priv *priv),
6919 				       struct netdev_nested_priv *priv)
6920 {
6921 	struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
6922 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
6923 	int ret, cur = 0;
6924 	bool ignore;
6925 
6926 	now = dev;
6927 	iter = &dev->adj_list.upper;
6928 
6929 	while (1) {
6930 		if (now != dev) {
6931 			ret = fn(now, priv);
6932 			if (ret)
6933 				return ret;
6934 		}
6935 
6936 		next = NULL;
6937 		while (1) {
6938 			udev = __netdev_next_upper_dev(now, &iter, &ignore);
6939 			if (!udev)
6940 				break;
6941 			if (ignore)
6942 				continue;
6943 
6944 			next = udev;
6945 			niter = &udev->adj_list.upper;
6946 			dev_stack[cur] = now;
6947 			iter_stack[cur++] = iter;
6948 			break;
6949 		}
6950 
6951 		if (!next) {
6952 			if (!cur)
6953 				return 0;
6954 			next = dev_stack[--cur];
6955 			niter = iter_stack[cur];
6956 		}
6957 
6958 		now = next;
6959 		iter = niter;
6960 	}
6961 
6962 	return 0;
6963 }
6964 
6965 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
6966 				  int (*fn)(struct net_device *dev,
6967 					    struct netdev_nested_priv *priv),
6968 				  struct netdev_nested_priv *priv)
6969 {
6970 	struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
6971 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
6972 	int ret, cur = 0;
6973 
6974 	now = dev;
6975 	iter = &dev->adj_list.upper;
6976 
6977 	while (1) {
6978 		if (now != dev) {
6979 			ret = fn(now, priv);
6980 			if (ret)
6981 				return ret;
6982 		}
6983 
6984 		next = NULL;
6985 		while (1) {
6986 			udev = netdev_next_upper_dev_rcu(now, &iter);
6987 			if (!udev)
6988 				break;
6989 
6990 			next = udev;
6991 			niter = &udev->adj_list.upper;
6992 			dev_stack[cur] = now;
6993 			iter_stack[cur++] = iter;
6994 			break;
6995 		}
6996 
6997 		if (!next) {
6998 			if (!cur)
6999 				return 0;
7000 			next = dev_stack[--cur];
7001 			niter = iter_stack[cur];
7002 		}
7003 
7004 		now = next;
7005 		iter = niter;
7006 	}
7007 
7008 	return 0;
7009 }
7010 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
7011 
7012 static bool __netdev_has_upper_dev(struct net_device *dev,
7013 				   struct net_device *upper_dev)
7014 {
7015 	struct netdev_nested_priv priv = {
7016 		.flags = 0,
7017 		.data = (void *)upper_dev,
7018 	};
7019 
7020 	ASSERT_RTNL();
7021 
7022 	return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
7023 					   &priv);
7024 }
7025 
7026 /**
7027  * netdev_lower_get_next_private - Get the next ->private from the
7028  *				   lower neighbour list
7029  * @dev: device
7030  * @iter: list_head ** of the current position
7031  *
7032  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7033  * list, starting from iter position. The caller must hold either hold the
7034  * RTNL lock or its own locking that guarantees that the neighbour lower
7035  * list will remain unchanged.
7036  */
7037 void *netdev_lower_get_next_private(struct net_device *dev,
7038 				    struct list_head **iter)
7039 {
7040 	struct netdev_adjacent *lower;
7041 
7042 	lower = list_entry(*iter, struct netdev_adjacent, list);
7043 
7044 	if (&lower->list == &dev->adj_list.lower)
7045 		return NULL;
7046 
7047 	*iter = lower->list.next;
7048 
7049 	return lower->private;
7050 }
7051 EXPORT_SYMBOL(netdev_lower_get_next_private);
7052 
7053 /**
7054  * netdev_lower_get_next_private_rcu - Get the next ->private from the
7055  *				       lower neighbour list, RCU
7056  *				       variant
7057  * @dev: device
7058  * @iter: list_head ** of the current position
7059  *
7060  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7061  * list, starting from iter position. The caller must hold RCU read lock.
7062  */
7063 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
7064 					struct list_head **iter)
7065 {
7066 	struct netdev_adjacent *lower;
7067 
7068 	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
7069 
7070 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7071 
7072 	if (&lower->list == &dev->adj_list.lower)
7073 		return NULL;
7074 
7075 	*iter = &lower->list;
7076 
7077 	return lower->private;
7078 }
7079 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
7080 
7081 /**
7082  * netdev_lower_get_next - Get the next device from the lower neighbour
7083  *                         list
7084  * @dev: device
7085  * @iter: list_head ** of the current position
7086  *
7087  * Gets the next netdev_adjacent from the dev's lower neighbour
7088  * list, starting from iter position. The caller must hold RTNL lock or
7089  * its own locking that guarantees that the neighbour lower
7090  * list will remain unchanged.
7091  */
7092 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
7093 {
7094 	struct netdev_adjacent *lower;
7095 
7096 	lower = list_entry(*iter, struct netdev_adjacent, list);
7097 
7098 	if (&lower->list == &dev->adj_list.lower)
7099 		return NULL;
7100 
7101 	*iter = lower->list.next;
7102 
7103 	return lower->dev;
7104 }
7105 EXPORT_SYMBOL(netdev_lower_get_next);
7106 
7107 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7108 						struct list_head **iter)
7109 {
7110 	struct netdev_adjacent *lower;
7111 
7112 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7113 
7114 	if (&lower->list == &dev->adj_list.lower)
7115 		return NULL;
7116 
7117 	*iter = &lower->list;
7118 
7119 	return lower->dev;
7120 }
7121 
7122 static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7123 						  struct list_head **iter,
7124 						  bool *ignore)
7125 {
7126 	struct netdev_adjacent *lower;
7127 
7128 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7129 
7130 	if (&lower->list == &dev->adj_list.lower)
7131 		return NULL;
7132 
7133 	*iter = &lower->list;
7134 	*ignore = lower->ignore;
7135 
7136 	return lower->dev;
7137 }
7138 
7139 int netdev_walk_all_lower_dev(struct net_device *dev,
7140 			      int (*fn)(struct net_device *dev,
7141 					struct netdev_nested_priv *priv),
7142 			      struct netdev_nested_priv *priv)
7143 {
7144 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7145 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7146 	int ret, cur = 0;
7147 
7148 	now = dev;
7149 	iter = &dev->adj_list.lower;
7150 
7151 	while (1) {
7152 		if (now != dev) {
7153 			ret = fn(now, priv);
7154 			if (ret)
7155 				return ret;
7156 		}
7157 
7158 		next = NULL;
7159 		while (1) {
7160 			ldev = netdev_next_lower_dev(now, &iter);
7161 			if (!ldev)
7162 				break;
7163 
7164 			next = ldev;
7165 			niter = &ldev->adj_list.lower;
7166 			dev_stack[cur] = now;
7167 			iter_stack[cur++] = iter;
7168 			break;
7169 		}
7170 
7171 		if (!next) {
7172 			if (!cur)
7173 				return 0;
7174 			next = dev_stack[--cur];
7175 			niter = iter_stack[cur];
7176 		}
7177 
7178 		now = next;
7179 		iter = niter;
7180 	}
7181 
7182 	return 0;
7183 }
7184 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
7185 
7186 static int __netdev_walk_all_lower_dev(struct net_device *dev,
7187 				       int (*fn)(struct net_device *dev,
7188 					 struct netdev_nested_priv *priv),
7189 				       struct netdev_nested_priv *priv)
7190 {
7191 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7192 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7193 	int ret, cur = 0;
7194 	bool ignore;
7195 
7196 	now = dev;
7197 	iter = &dev->adj_list.lower;
7198 
7199 	while (1) {
7200 		if (now != dev) {
7201 			ret = fn(now, priv);
7202 			if (ret)
7203 				return ret;
7204 		}
7205 
7206 		next = NULL;
7207 		while (1) {
7208 			ldev = __netdev_next_lower_dev(now, &iter, &ignore);
7209 			if (!ldev)
7210 				break;
7211 			if (ignore)
7212 				continue;
7213 
7214 			next = ldev;
7215 			niter = &ldev->adj_list.lower;
7216 			dev_stack[cur] = now;
7217 			iter_stack[cur++] = iter;
7218 			break;
7219 		}
7220 
7221 		if (!next) {
7222 			if (!cur)
7223 				return 0;
7224 			next = dev_stack[--cur];
7225 			niter = iter_stack[cur];
7226 		}
7227 
7228 		now = next;
7229 		iter = niter;
7230 	}
7231 
7232 	return 0;
7233 }
7234 
7235 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
7236 					     struct list_head **iter)
7237 {
7238 	struct netdev_adjacent *lower;
7239 
7240 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7241 	if (&lower->list == &dev->adj_list.lower)
7242 		return NULL;
7243 
7244 	*iter = &lower->list;
7245 
7246 	return lower->dev;
7247 }
7248 EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
7249 
7250 static u8 __netdev_upper_depth(struct net_device *dev)
7251 {
7252 	struct net_device *udev;
7253 	struct list_head *iter;
7254 	u8 max_depth = 0;
7255 	bool ignore;
7256 
7257 	for (iter = &dev->adj_list.upper,
7258 	     udev = __netdev_next_upper_dev(dev, &iter, &ignore);
7259 	     udev;
7260 	     udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
7261 		if (ignore)
7262 			continue;
7263 		if (max_depth < udev->upper_level)
7264 			max_depth = udev->upper_level;
7265 	}
7266 
7267 	return max_depth;
7268 }
7269 
7270 static u8 __netdev_lower_depth(struct net_device *dev)
7271 {
7272 	struct net_device *ldev;
7273 	struct list_head *iter;
7274 	u8 max_depth = 0;
7275 	bool ignore;
7276 
7277 	for (iter = &dev->adj_list.lower,
7278 	     ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
7279 	     ldev;
7280 	     ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
7281 		if (ignore)
7282 			continue;
7283 		if (max_depth < ldev->lower_level)
7284 			max_depth = ldev->lower_level;
7285 	}
7286 
7287 	return max_depth;
7288 }
7289 
7290 static int __netdev_update_upper_level(struct net_device *dev,
7291 				       struct netdev_nested_priv *__unused)
7292 {
7293 	dev->upper_level = __netdev_upper_depth(dev) + 1;
7294 	return 0;
7295 }
7296 
7297 #ifdef CONFIG_LOCKDEP
7298 static LIST_HEAD(net_unlink_list);
7299 
7300 static void net_unlink_todo(struct net_device *dev)
7301 {
7302 	if (list_empty(&dev->unlink_list))
7303 		list_add_tail(&dev->unlink_list, &net_unlink_list);
7304 }
7305 #endif
7306 
7307 static int __netdev_update_lower_level(struct net_device *dev,
7308 				       struct netdev_nested_priv *priv)
7309 {
7310 	dev->lower_level = __netdev_lower_depth(dev) + 1;
7311 
7312 #ifdef CONFIG_LOCKDEP
7313 	if (!priv)
7314 		return 0;
7315 
7316 	if (priv->flags & NESTED_SYNC_IMM)
7317 		dev->nested_level = dev->lower_level - 1;
7318 	if (priv->flags & NESTED_SYNC_TODO)
7319 		net_unlink_todo(dev);
7320 #endif
7321 	return 0;
7322 }
7323 
7324 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7325 				  int (*fn)(struct net_device *dev,
7326 					    struct netdev_nested_priv *priv),
7327 				  struct netdev_nested_priv *priv)
7328 {
7329 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7330 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7331 	int ret, cur = 0;
7332 
7333 	now = dev;
7334 	iter = &dev->adj_list.lower;
7335 
7336 	while (1) {
7337 		if (now != dev) {
7338 			ret = fn(now, priv);
7339 			if (ret)
7340 				return ret;
7341 		}
7342 
7343 		next = NULL;
7344 		while (1) {
7345 			ldev = netdev_next_lower_dev_rcu(now, &iter);
7346 			if (!ldev)
7347 				break;
7348 
7349 			next = ldev;
7350 			niter = &ldev->adj_list.lower;
7351 			dev_stack[cur] = now;
7352 			iter_stack[cur++] = iter;
7353 			break;
7354 		}
7355 
7356 		if (!next) {
7357 			if (!cur)
7358 				return 0;
7359 			next = dev_stack[--cur];
7360 			niter = iter_stack[cur];
7361 		}
7362 
7363 		now = next;
7364 		iter = niter;
7365 	}
7366 
7367 	return 0;
7368 }
7369 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
7370 
7371 /**
7372  * netdev_lower_get_first_private_rcu - Get the first ->private from the
7373  *				       lower neighbour list, RCU
7374  *				       variant
7375  * @dev: device
7376  *
7377  * Gets the first netdev_adjacent->private from the dev's lower neighbour
7378  * list. The caller must hold RCU read lock.
7379  */
7380 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
7381 {
7382 	struct netdev_adjacent *lower;
7383 
7384 	lower = list_first_or_null_rcu(&dev->adj_list.lower,
7385 			struct netdev_adjacent, list);
7386 	if (lower)
7387 		return lower->private;
7388 	return NULL;
7389 }
7390 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
7391 
7392 /**
7393  * netdev_master_upper_dev_get_rcu - Get master upper device
7394  * @dev: device
7395  *
7396  * Find a master upper device and return pointer to it or NULL in case
7397  * it's not there. The caller must hold the RCU read lock.
7398  */
7399 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
7400 {
7401 	struct netdev_adjacent *upper;
7402 
7403 	upper = list_first_or_null_rcu(&dev->adj_list.upper,
7404 				       struct netdev_adjacent, list);
7405 	if (upper && likely(upper->master))
7406 		return upper->dev;
7407 	return NULL;
7408 }
7409 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
7410 
7411 static int netdev_adjacent_sysfs_add(struct net_device *dev,
7412 			      struct net_device *adj_dev,
7413 			      struct list_head *dev_list)
7414 {
7415 	char linkname[IFNAMSIZ+7];
7416 
7417 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
7418 		"upper_%s" : "lower_%s", adj_dev->name);
7419 	return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
7420 				 linkname);
7421 }
7422 static void netdev_adjacent_sysfs_del(struct net_device *dev,
7423 			       char *name,
7424 			       struct list_head *dev_list)
7425 {
7426 	char linkname[IFNAMSIZ+7];
7427 
7428 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
7429 		"upper_%s" : "lower_%s", name);
7430 	sysfs_remove_link(&(dev->dev.kobj), linkname);
7431 }
7432 
7433 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
7434 						 struct net_device *adj_dev,
7435 						 struct list_head *dev_list)
7436 {
7437 	return (dev_list == &dev->adj_list.upper ||
7438 		dev_list == &dev->adj_list.lower) &&
7439 		net_eq(dev_net(dev), dev_net(adj_dev));
7440 }
7441 
7442 static int __netdev_adjacent_dev_insert(struct net_device *dev,
7443 					struct net_device *adj_dev,
7444 					struct list_head *dev_list,
7445 					void *private, bool master)
7446 {
7447 	struct netdev_adjacent *adj;
7448 	int ret;
7449 
7450 	adj = __netdev_find_adj(adj_dev, dev_list);
7451 
7452 	if (adj) {
7453 		adj->ref_nr += 1;
7454 		pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7455 			 dev->name, adj_dev->name, adj->ref_nr);
7456 
7457 		return 0;
7458 	}
7459 
7460 	adj = kmalloc(sizeof(*adj), GFP_KERNEL);
7461 	if (!adj)
7462 		return -ENOMEM;
7463 
7464 	adj->dev = adj_dev;
7465 	adj->master = master;
7466 	adj->ref_nr = 1;
7467 	adj->private = private;
7468 	adj->ignore = false;
7469 	dev_hold_track(adj_dev, &adj->dev_tracker, GFP_KERNEL);
7470 
7471 	pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7472 		 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
7473 
7474 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
7475 		ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
7476 		if (ret)
7477 			goto free_adj;
7478 	}
7479 
7480 	/* Ensure that master link is always the first item in list. */
7481 	if (master) {
7482 		ret = sysfs_create_link(&(dev->dev.kobj),
7483 					&(adj_dev->dev.kobj), "master");
7484 		if (ret)
7485 			goto remove_symlinks;
7486 
7487 		list_add_rcu(&adj->list, dev_list);
7488 	} else {
7489 		list_add_tail_rcu(&adj->list, dev_list);
7490 	}
7491 
7492 	return 0;
7493 
7494 remove_symlinks:
7495 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7496 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7497 free_adj:
7498 	dev_put_track(adj_dev, &adj->dev_tracker);
7499 	kfree(adj);
7500 
7501 	return ret;
7502 }
7503 
7504 static void __netdev_adjacent_dev_remove(struct net_device *dev,
7505 					 struct net_device *adj_dev,
7506 					 u16 ref_nr,
7507 					 struct list_head *dev_list)
7508 {
7509 	struct netdev_adjacent *adj;
7510 
7511 	pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
7512 		 dev->name, adj_dev->name, ref_nr);
7513 
7514 	adj = __netdev_find_adj(adj_dev, dev_list);
7515 
7516 	if (!adj) {
7517 		pr_err("Adjacency does not exist for device %s from %s\n",
7518 		       dev->name, adj_dev->name);
7519 		WARN_ON(1);
7520 		return;
7521 	}
7522 
7523 	if (adj->ref_nr > ref_nr) {
7524 		pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
7525 			 dev->name, adj_dev->name, ref_nr,
7526 			 adj->ref_nr - ref_nr);
7527 		adj->ref_nr -= ref_nr;
7528 		return;
7529 	}
7530 
7531 	if (adj->master)
7532 		sysfs_remove_link(&(dev->dev.kobj), "master");
7533 
7534 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7535 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7536 
7537 	list_del_rcu(&adj->list);
7538 	pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
7539 		 adj_dev->name, dev->name, adj_dev->name);
7540 	dev_put_track(adj_dev, &adj->dev_tracker);
7541 	kfree_rcu(adj, rcu);
7542 }
7543 
7544 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
7545 					    struct net_device *upper_dev,
7546 					    struct list_head *up_list,
7547 					    struct list_head *down_list,
7548 					    void *private, bool master)
7549 {
7550 	int ret;
7551 
7552 	ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
7553 					   private, master);
7554 	if (ret)
7555 		return ret;
7556 
7557 	ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
7558 					   private, false);
7559 	if (ret) {
7560 		__netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
7561 		return ret;
7562 	}
7563 
7564 	return 0;
7565 }
7566 
7567 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
7568 					       struct net_device *upper_dev,
7569 					       u16 ref_nr,
7570 					       struct list_head *up_list,
7571 					       struct list_head *down_list)
7572 {
7573 	__netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
7574 	__netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
7575 }
7576 
7577 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
7578 						struct net_device *upper_dev,
7579 						void *private, bool master)
7580 {
7581 	return __netdev_adjacent_dev_link_lists(dev, upper_dev,
7582 						&dev->adj_list.upper,
7583 						&upper_dev->adj_list.lower,
7584 						private, master);
7585 }
7586 
7587 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
7588 						   struct net_device *upper_dev)
7589 {
7590 	__netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
7591 					   &dev->adj_list.upper,
7592 					   &upper_dev->adj_list.lower);
7593 }
7594 
7595 static int __netdev_upper_dev_link(struct net_device *dev,
7596 				   struct net_device *upper_dev, bool master,
7597 				   void *upper_priv, void *upper_info,
7598 				   struct netdev_nested_priv *priv,
7599 				   struct netlink_ext_ack *extack)
7600 {
7601 	struct netdev_notifier_changeupper_info changeupper_info = {
7602 		.info = {
7603 			.dev = dev,
7604 			.extack = extack,
7605 		},
7606 		.upper_dev = upper_dev,
7607 		.master = master,
7608 		.linking = true,
7609 		.upper_info = upper_info,
7610 	};
7611 	struct net_device *master_dev;
7612 	int ret = 0;
7613 
7614 	ASSERT_RTNL();
7615 
7616 	if (dev == upper_dev)
7617 		return -EBUSY;
7618 
7619 	/* To prevent loops, check if dev is not upper device to upper_dev. */
7620 	if (__netdev_has_upper_dev(upper_dev, dev))
7621 		return -EBUSY;
7622 
7623 	if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
7624 		return -EMLINK;
7625 
7626 	if (!master) {
7627 		if (__netdev_has_upper_dev(dev, upper_dev))
7628 			return -EEXIST;
7629 	} else {
7630 		master_dev = __netdev_master_upper_dev_get(dev);
7631 		if (master_dev)
7632 			return master_dev == upper_dev ? -EEXIST : -EBUSY;
7633 	}
7634 
7635 	ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7636 					    &changeupper_info.info);
7637 	ret = notifier_to_errno(ret);
7638 	if (ret)
7639 		return ret;
7640 
7641 	ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
7642 						   master);
7643 	if (ret)
7644 		return ret;
7645 
7646 	ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7647 					    &changeupper_info.info);
7648 	ret = notifier_to_errno(ret);
7649 	if (ret)
7650 		goto rollback;
7651 
7652 	__netdev_update_upper_level(dev, NULL);
7653 	__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7654 
7655 	__netdev_update_lower_level(upper_dev, priv);
7656 	__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7657 				    priv);
7658 
7659 	return 0;
7660 
7661 rollback:
7662 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7663 
7664 	return ret;
7665 }
7666 
7667 /**
7668  * netdev_upper_dev_link - Add a link to the upper device
7669  * @dev: device
7670  * @upper_dev: new upper device
7671  * @extack: netlink extended ack
7672  *
7673  * Adds a link to device which is upper to this one. The caller must hold
7674  * the RTNL lock. On a failure a negative errno code is returned.
7675  * On success the reference counts are adjusted and the function
7676  * returns zero.
7677  */
7678 int netdev_upper_dev_link(struct net_device *dev,
7679 			  struct net_device *upper_dev,
7680 			  struct netlink_ext_ack *extack)
7681 {
7682 	struct netdev_nested_priv priv = {
7683 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7684 		.data = NULL,
7685 	};
7686 
7687 	return __netdev_upper_dev_link(dev, upper_dev, false,
7688 				       NULL, NULL, &priv, extack);
7689 }
7690 EXPORT_SYMBOL(netdev_upper_dev_link);
7691 
7692 /**
7693  * netdev_master_upper_dev_link - Add a master link to the upper device
7694  * @dev: device
7695  * @upper_dev: new upper device
7696  * @upper_priv: upper device private
7697  * @upper_info: upper info to be passed down via notifier
7698  * @extack: netlink extended ack
7699  *
7700  * Adds a link to device which is upper to this one. In this case, only
7701  * one master upper device can be linked, although other non-master devices
7702  * might be linked as well. The caller must hold the RTNL lock.
7703  * On a failure a negative errno code is returned. On success the reference
7704  * counts are adjusted and the function returns zero.
7705  */
7706 int netdev_master_upper_dev_link(struct net_device *dev,
7707 				 struct net_device *upper_dev,
7708 				 void *upper_priv, void *upper_info,
7709 				 struct netlink_ext_ack *extack)
7710 {
7711 	struct netdev_nested_priv priv = {
7712 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7713 		.data = NULL,
7714 	};
7715 
7716 	return __netdev_upper_dev_link(dev, upper_dev, true,
7717 				       upper_priv, upper_info, &priv, extack);
7718 }
7719 EXPORT_SYMBOL(netdev_master_upper_dev_link);
7720 
7721 static void __netdev_upper_dev_unlink(struct net_device *dev,
7722 				      struct net_device *upper_dev,
7723 				      struct netdev_nested_priv *priv)
7724 {
7725 	struct netdev_notifier_changeupper_info changeupper_info = {
7726 		.info = {
7727 			.dev = dev,
7728 		},
7729 		.upper_dev = upper_dev,
7730 		.linking = false,
7731 	};
7732 
7733 	ASSERT_RTNL();
7734 
7735 	changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
7736 
7737 	call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7738 				      &changeupper_info.info);
7739 
7740 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7741 
7742 	call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7743 				      &changeupper_info.info);
7744 
7745 	__netdev_update_upper_level(dev, NULL);
7746 	__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7747 
7748 	__netdev_update_lower_level(upper_dev, priv);
7749 	__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7750 				    priv);
7751 }
7752 
7753 /**
7754  * netdev_upper_dev_unlink - Removes a link to upper device
7755  * @dev: device
7756  * @upper_dev: new upper device
7757  *
7758  * Removes a link to device which is upper to this one. The caller must hold
7759  * the RTNL lock.
7760  */
7761 void netdev_upper_dev_unlink(struct net_device *dev,
7762 			     struct net_device *upper_dev)
7763 {
7764 	struct netdev_nested_priv priv = {
7765 		.flags = NESTED_SYNC_TODO,
7766 		.data = NULL,
7767 	};
7768 
7769 	__netdev_upper_dev_unlink(dev, upper_dev, &priv);
7770 }
7771 EXPORT_SYMBOL(netdev_upper_dev_unlink);
7772 
7773 static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
7774 				      struct net_device *lower_dev,
7775 				      bool val)
7776 {
7777 	struct netdev_adjacent *adj;
7778 
7779 	adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
7780 	if (adj)
7781 		adj->ignore = val;
7782 
7783 	adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
7784 	if (adj)
7785 		adj->ignore = val;
7786 }
7787 
7788 static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
7789 					struct net_device *lower_dev)
7790 {
7791 	__netdev_adjacent_dev_set(upper_dev, lower_dev, true);
7792 }
7793 
7794 static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
7795 				       struct net_device *lower_dev)
7796 {
7797 	__netdev_adjacent_dev_set(upper_dev, lower_dev, false);
7798 }
7799 
7800 int netdev_adjacent_change_prepare(struct net_device *old_dev,
7801 				   struct net_device *new_dev,
7802 				   struct net_device *dev,
7803 				   struct netlink_ext_ack *extack)
7804 {
7805 	struct netdev_nested_priv priv = {
7806 		.flags = 0,
7807 		.data = NULL,
7808 	};
7809 	int err;
7810 
7811 	if (!new_dev)
7812 		return 0;
7813 
7814 	if (old_dev && new_dev != old_dev)
7815 		netdev_adjacent_dev_disable(dev, old_dev);
7816 	err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv,
7817 				      extack);
7818 	if (err) {
7819 		if (old_dev && new_dev != old_dev)
7820 			netdev_adjacent_dev_enable(dev, old_dev);
7821 		return err;
7822 	}
7823 
7824 	return 0;
7825 }
7826 EXPORT_SYMBOL(netdev_adjacent_change_prepare);
7827 
7828 void netdev_adjacent_change_commit(struct net_device *old_dev,
7829 				   struct net_device *new_dev,
7830 				   struct net_device *dev)
7831 {
7832 	struct netdev_nested_priv priv = {
7833 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7834 		.data = NULL,
7835 	};
7836 
7837 	if (!new_dev || !old_dev)
7838 		return;
7839 
7840 	if (new_dev == old_dev)
7841 		return;
7842 
7843 	netdev_adjacent_dev_enable(dev, old_dev);
7844 	__netdev_upper_dev_unlink(old_dev, dev, &priv);
7845 }
7846 EXPORT_SYMBOL(netdev_adjacent_change_commit);
7847 
7848 void netdev_adjacent_change_abort(struct net_device *old_dev,
7849 				  struct net_device *new_dev,
7850 				  struct net_device *dev)
7851 {
7852 	struct netdev_nested_priv priv = {
7853 		.flags = 0,
7854 		.data = NULL,
7855 	};
7856 
7857 	if (!new_dev)
7858 		return;
7859 
7860 	if (old_dev && new_dev != old_dev)
7861 		netdev_adjacent_dev_enable(dev, old_dev);
7862 
7863 	__netdev_upper_dev_unlink(new_dev, dev, &priv);
7864 }
7865 EXPORT_SYMBOL(netdev_adjacent_change_abort);
7866 
7867 /**
7868  * netdev_bonding_info_change - Dispatch event about slave change
7869  * @dev: device
7870  * @bonding_info: info to dispatch
7871  *
7872  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
7873  * The caller must hold the RTNL lock.
7874  */
7875 void netdev_bonding_info_change(struct net_device *dev,
7876 				struct netdev_bonding_info *bonding_info)
7877 {
7878 	struct netdev_notifier_bonding_info info = {
7879 		.info.dev = dev,
7880 	};
7881 
7882 	memcpy(&info.bonding_info, bonding_info,
7883 	       sizeof(struct netdev_bonding_info));
7884 	call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
7885 				      &info.info);
7886 }
7887 EXPORT_SYMBOL(netdev_bonding_info_change);
7888 
7889 static int netdev_offload_xstats_enable_l3(struct net_device *dev,
7890 					   struct netlink_ext_ack *extack)
7891 {
7892 	struct netdev_notifier_offload_xstats_info info = {
7893 		.info.dev = dev,
7894 		.info.extack = extack,
7895 		.type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
7896 	};
7897 	int err;
7898 	int rc;
7899 
7900 	dev->offload_xstats_l3 = kzalloc(sizeof(*dev->offload_xstats_l3),
7901 					 GFP_KERNEL);
7902 	if (!dev->offload_xstats_l3)
7903 		return -ENOMEM;
7904 
7905 	rc = call_netdevice_notifiers_info_robust(NETDEV_OFFLOAD_XSTATS_ENABLE,
7906 						  NETDEV_OFFLOAD_XSTATS_DISABLE,
7907 						  &info.info);
7908 	err = notifier_to_errno(rc);
7909 	if (err)
7910 		goto free_stats;
7911 
7912 	return 0;
7913 
7914 free_stats:
7915 	kfree(dev->offload_xstats_l3);
7916 	dev->offload_xstats_l3 = NULL;
7917 	return err;
7918 }
7919 
7920 int netdev_offload_xstats_enable(struct net_device *dev,
7921 				 enum netdev_offload_xstats_type type,
7922 				 struct netlink_ext_ack *extack)
7923 {
7924 	ASSERT_RTNL();
7925 
7926 	if (netdev_offload_xstats_enabled(dev, type))
7927 		return -EALREADY;
7928 
7929 	switch (type) {
7930 	case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
7931 		return netdev_offload_xstats_enable_l3(dev, extack);
7932 	}
7933 
7934 	WARN_ON(1);
7935 	return -EINVAL;
7936 }
7937 EXPORT_SYMBOL(netdev_offload_xstats_enable);
7938 
7939 static void netdev_offload_xstats_disable_l3(struct net_device *dev)
7940 {
7941 	struct netdev_notifier_offload_xstats_info info = {
7942 		.info.dev = dev,
7943 		.type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
7944 	};
7945 
7946 	call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_DISABLE,
7947 				      &info.info);
7948 	kfree(dev->offload_xstats_l3);
7949 	dev->offload_xstats_l3 = NULL;
7950 }
7951 
7952 int netdev_offload_xstats_disable(struct net_device *dev,
7953 				  enum netdev_offload_xstats_type type)
7954 {
7955 	ASSERT_RTNL();
7956 
7957 	if (!netdev_offload_xstats_enabled(dev, type))
7958 		return -EALREADY;
7959 
7960 	switch (type) {
7961 	case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
7962 		netdev_offload_xstats_disable_l3(dev);
7963 		return 0;
7964 	}
7965 
7966 	WARN_ON(1);
7967 	return -EINVAL;
7968 }
7969 EXPORT_SYMBOL(netdev_offload_xstats_disable);
7970 
7971 static void netdev_offload_xstats_disable_all(struct net_device *dev)
7972 {
7973 	netdev_offload_xstats_disable(dev, NETDEV_OFFLOAD_XSTATS_TYPE_L3);
7974 }
7975 
7976 static struct rtnl_hw_stats64 *
7977 netdev_offload_xstats_get_ptr(const struct net_device *dev,
7978 			      enum netdev_offload_xstats_type type)
7979 {
7980 	switch (type) {
7981 	case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
7982 		return dev->offload_xstats_l3;
7983 	}
7984 
7985 	WARN_ON(1);
7986 	return NULL;
7987 }
7988 
7989 bool netdev_offload_xstats_enabled(const struct net_device *dev,
7990 				   enum netdev_offload_xstats_type type)
7991 {
7992 	ASSERT_RTNL();
7993 
7994 	return netdev_offload_xstats_get_ptr(dev, type);
7995 }
7996 EXPORT_SYMBOL(netdev_offload_xstats_enabled);
7997 
7998 struct netdev_notifier_offload_xstats_ru {
7999 	bool used;
8000 };
8001 
8002 struct netdev_notifier_offload_xstats_rd {
8003 	struct rtnl_hw_stats64 stats;
8004 	bool used;
8005 };
8006 
8007 static void netdev_hw_stats64_add(struct rtnl_hw_stats64 *dest,
8008 				  const struct rtnl_hw_stats64 *src)
8009 {
8010 	dest->rx_packets	  += src->rx_packets;
8011 	dest->tx_packets	  += src->tx_packets;
8012 	dest->rx_bytes		  += src->rx_bytes;
8013 	dest->tx_bytes		  += src->tx_bytes;
8014 	dest->rx_errors		  += src->rx_errors;
8015 	dest->tx_errors		  += src->tx_errors;
8016 	dest->rx_dropped	  += src->rx_dropped;
8017 	dest->tx_dropped	  += src->tx_dropped;
8018 	dest->multicast		  += src->multicast;
8019 }
8020 
8021 static int netdev_offload_xstats_get_used(struct net_device *dev,
8022 					  enum netdev_offload_xstats_type type,
8023 					  bool *p_used,
8024 					  struct netlink_ext_ack *extack)
8025 {
8026 	struct netdev_notifier_offload_xstats_ru report_used = {};
8027 	struct netdev_notifier_offload_xstats_info info = {
8028 		.info.dev = dev,
8029 		.info.extack = extack,
8030 		.type = type,
8031 		.report_used = &report_used,
8032 	};
8033 	int rc;
8034 
8035 	WARN_ON(!netdev_offload_xstats_enabled(dev, type));
8036 	rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_USED,
8037 					   &info.info);
8038 	*p_used = report_used.used;
8039 	return notifier_to_errno(rc);
8040 }
8041 
8042 static int netdev_offload_xstats_get_stats(struct net_device *dev,
8043 					   enum netdev_offload_xstats_type type,
8044 					   struct rtnl_hw_stats64 *p_stats,
8045 					   bool *p_used,
8046 					   struct netlink_ext_ack *extack)
8047 {
8048 	struct netdev_notifier_offload_xstats_rd report_delta = {};
8049 	struct netdev_notifier_offload_xstats_info info = {
8050 		.info.dev = dev,
8051 		.info.extack = extack,
8052 		.type = type,
8053 		.report_delta = &report_delta,
8054 	};
8055 	struct rtnl_hw_stats64 *stats;
8056 	int rc;
8057 
8058 	stats = netdev_offload_xstats_get_ptr(dev, type);
8059 	if (WARN_ON(!stats))
8060 		return -EINVAL;
8061 
8062 	rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_DELTA,
8063 					   &info.info);
8064 
8065 	/* Cache whatever we got, even if there was an error, otherwise the
8066 	 * successful stats retrievals would get lost.
8067 	 */
8068 	netdev_hw_stats64_add(stats, &report_delta.stats);
8069 
8070 	if (p_stats)
8071 		*p_stats = *stats;
8072 	*p_used = report_delta.used;
8073 
8074 	return notifier_to_errno(rc);
8075 }
8076 
8077 int netdev_offload_xstats_get(struct net_device *dev,
8078 			      enum netdev_offload_xstats_type type,
8079 			      struct rtnl_hw_stats64 *p_stats, bool *p_used,
8080 			      struct netlink_ext_ack *extack)
8081 {
8082 	ASSERT_RTNL();
8083 
8084 	if (p_stats)
8085 		return netdev_offload_xstats_get_stats(dev, type, p_stats,
8086 						       p_used, extack);
8087 	else
8088 		return netdev_offload_xstats_get_used(dev, type, p_used,
8089 						      extack);
8090 }
8091 EXPORT_SYMBOL(netdev_offload_xstats_get);
8092 
8093 void
8094 netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *report_delta,
8095 				   const struct rtnl_hw_stats64 *stats)
8096 {
8097 	report_delta->used = true;
8098 	netdev_hw_stats64_add(&report_delta->stats, stats);
8099 }
8100 EXPORT_SYMBOL(netdev_offload_xstats_report_delta);
8101 
8102 void
8103 netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *report_used)
8104 {
8105 	report_used->used = true;
8106 }
8107 EXPORT_SYMBOL(netdev_offload_xstats_report_used);
8108 
8109 void netdev_offload_xstats_push_delta(struct net_device *dev,
8110 				      enum netdev_offload_xstats_type type,
8111 				      const struct rtnl_hw_stats64 *p_stats)
8112 {
8113 	struct rtnl_hw_stats64 *stats;
8114 
8115 	ASSERT_RTNL();
8116 
8117 	stats = netdev_offload_xstats_get_ptr(dev, type);
8118 	if (WARN_ON(!stats))
8119 		return;
8120 
8121 	netdev_hw_stats64_add(stats, p_stats);
8122 }
8123 EXPORT_SYMBOL(netdev_offload_xstats_push_delta);
8124 
8125 /**
8126  * netdev_get_xmit_slave - Get the xmit slave of master device
8127  * @dev: device
8128  * @skb: The packet
8129  * @all_slaves: assume all the slaves are active
8130  *
8131  * The reference counters are not incremented so the caller must be
8132  * careful with locks. The caller must hold RCU lock.
8133  * %NULL is returned if no slave is found.
8134  */
8135 
8136 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
8137 					 struct sk_buff *skb,
8138 					 bool all_slaves)
8139 {
8140 	const struct net_device_ops *ops = dev->netdev_ops;
8141 
8142 	if (!ops->ndo_get_xmit_slave)
8143 		return NULL;
8144 	return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
8145 }
8146 EXPORT_SYMBOL(netdev_get_xmit_slave);
8147 
8148 static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev,
8149 						  struct sock *sk)
8150 {
8151 	const struct net_device_ops *ops = dev->netdev_ops;
8152 
8153 	if (!ops->ndo_sk_get_lower_dev)
8154 		return NULL;
8155 	return ops->ndo_sk_get_lower_dev(dev, sk);
8156 }
8157 
8158 /**
8159  * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket
8160  * @dev: device
8161  * @sk: the socket
8162  *
8163  * %NULL is returned if no lower device is found.
8164  */
8165 
8166 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
8167 					    struct sock *sk)
8168 {
8169 	struct net_device *lower;
8170 
8171 	lower = netdev_sk_get_lower_dev(dev, sk);
8172 	while (lower) {
8173 		dev = lower;
8174 		lower = netdev_sk_get_lower_dev(dev, sk);
8175 	}
8176 
8177 	return dev;
8178 }
8179 EXPORT_SYMBOL(netdev_sk_get_lowest_dev);
8180 
8181 static void netdev_adjacent_add_links(struct net_device *dev)
8182 {
8183 	struct netdev_adjacent *iter;
8184 
8185 	struct net *net = dev_net(dev);
8186 
8187 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
8188 		if (!net_eq(net, dev_net(iter->dev)))
8189 			continue;
8190 		netdev_adjacent_sysfs_add(iter->dev, dev,
8191 					  &iter->dev->adj_list.lower);
8192 		netdev_adjacent_sysfs_add(dev, iter->dev,
8193 					  &dev->adj_list.upper);
8194 	}
8195 
8196 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
8197 		if (!net_eq(net, dev_net(iter->dev)))
8198 			continue;
8199 		netdev_adjacent_sysfs_add(iter->dev, dev,
8200 					  &iter->dev->adj_list.upper);
8201 		netdev_adjacent_sysfs_add(dev, iter->dev,
8202 					  &dev->adj_list.lower);
8203 	}
8204 }
8205 
8206 static void netdev_adjacent_del_links(struct net_device *dev)
8207 {
8208 	struct netdev_adjacent *iter;
8209 
8210 	struct net *net = dev_net(dev);
8211 
8212 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
8213 		if (!net_eq(net, dev_net(iter->dev)))
8214 			continue;
8215 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
8216 					  &iter->dev->adj_list.lower);
8217 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
8218 					  &dev->adj_list.upper);
8219 	}
8220 
8221 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
8222 		if (!net_eq(net, dev_net(iter->dev)))
8223 			continue;
8224 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
8225 					  &iter->dev->adj_list.upper);
8226 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
8227 					  &dev->adj_list.lower);
8228 	}
8229 }
8230 
8231 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
8232 {
8233 	struct netdev_adjacent *iter;
8234 
8235 	struct net *net = dev_net(dev);
8236 
8237 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
8238 		if (!net_eq(net, dev_net(iter->dev)))
8239 			continue;
8240 		netdev_adjacent_sysfs_del(iter->dev, oldname,
8241 					  &iter->dev->adj_list.lower);
8242 		netdev_adjacent_sysfs_add(iter->dev, dev,
8243 					  &iter->dev->adj_list.lower);
8244 	}
8245 
8246 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
8247 		if (!net_eq(net, dev_net(iter->dev)))
8248 			continue;
8249 		netdev_adjacent_sysfs_del(iter->dev, oldname,
8250 					  &iter->dev->adj_list.upper);
8251 		netdev_adjacent_sysfs_add(iter->dev, dev,
8252 					  &iter->dev->adj_list.upper);
8253 	}
8254 }
8255 
8256 void *netdev_lower_dev_get_private(struct net_device *dev,
8257 				   struct net_device *lower_dev)
8258 {
8259 	struct netdev_adjacent *lower;
8260 
8261 	if (!lower_dev)
8262 		return NULL;
8263 	lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
8264 	if (!lower)
8265 		return NULL;
8266 
8267 	return lower->private;
8268 }
8269 EXPORT_SYMBOL(netdev_lower_dev_get_private);
8270 
8271 
8272 /**
8273  * netdev_lower_state_changed - Dispatch event about lower device state change
8274  * @lower_dev: device
8275  * @lower_state_info: state to dispatch
8276  *
8277  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
8278  * The caller must hold the RTNL lock.
8279  */
8280 void netdev_lower_state_changed(struct net_device *lower_dev,
8281 				void *lower_state_info)
8282 {
8283 	struct netdev_notifier_changelowerstate_info changelowerstate_info = {
8284 		.info.dev = lower_dev,
8285 	};
8286 
8287 	ASSERT_RTNL();
8288 	changelowerstate_info.lower_state_info = lower_state_info;
8289 	call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
8290 				      &changelowerstate_info.info);
8291 }
8292 EXPORT_SYMBOL(netdev_lower_state_changed);
8293 
8294 static void dev_change_rx_flags(struct net_device *dev, int flags)
8295 {
8296 	const struct net_device_ops *ops = dev->netdev_ops;
8297 
8298 	if (ops->ndo_change_rx_flags)
8299 		ops->ndo_change_rx_flags(dev, flags);
8300 }
8301 
8302 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
8303 {
8304 	unsigned int old_flags = dev->flags;
8305 	kuid_t uid;
8306 	kgid_t gid;
8307 
8308 	ASSERT_RTNL();
8309 
8310 	dev->flags |= IFF_PROMISC;
8311 	dev->promiscuity += inc;
8312 	if (dev->promiscuity == 0) {
8313 		/*
8314 		 * Avoid overflow.
8315 		 * If inc causes overflow, untouch promisc and return error.
8316 		 */
8317 		if (inc < 0)
8318 			dev->flags &= ~IFF_PROMISC;
8319 		else {
8320 			dev->promiscuity -= inc;
8321 			netdev_warn(dev, "promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n");
8322 			return -EOVERFLOW;
8323 		}
8324 	}
8325 	if (dev->flags != old_flags) {
8326 		pr_info("device %s %s promiscuous mode\n",
8327 			dev->name,
8328 			dev->flags & IFF_PROMISC ? "entered" : "left");
8329 		if (audit_enabled) {
8330 			current_uid_gid(&uid, &gid);
8331 			audit_log(audit_context(), GFP_ATOMIC,
8332 				  AUDIT_ANOM_PROMISCUOUS,
8333 				  "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
8334 				  dev->name, (dev->flags & IFF_PROMISC),
8335 				  (old_flags & IFF_PROMISC),
8336 				  from_kuid(&init_user_ns, audit_get_loginuid(current)),
8337 				  from_kuid(&init_user_ns, uid),
8338 				  from_kgid(&init_user_ns, gid),
8339 				  audit_get_sessionid(current));
8340 		}
8341 
8342 		dev_change_rx_flags(dev, IFF_PROMISC);
8343 	}
8344 	if (notify)
8345 		__dev_notify_flags(dev, old_flags, IFF_PROMISC);
8346 	return 0;
8347 }
8348 
8349 /**
8350  *	dev_set_promiscuity	- update promiscuity count on a device
8351  *	@dev: device
8352  *	@inc: modifier
8353  *
8354  *	Add or remove promiscuity from a device. While the count in the device
8355  *	remains above zero the interface remains promiscuous. Once it hits zero
8356  *	the device reverts back to normal filtering operation. A negative inc
8357  *	value is used to drop promiscuity on the device.
8358  *	Return 0 if successful or a negative errno code on error.
8359  */
8360 int dev_set_promiscuity(struct net_device *dev, int inc)
8361 {
8362 	unsigned int old_flags = dev->flags;
8363 	int err;
8364 
8365 	err = __dev_set_promiscuity(dev, inc, true);
8366 	if (err < 0)
8367 		return err;
8368 	if (dev->flags != old_flags)
8369 		dev_set_rx_mode(dev);
8370 	return err;
8371 }
8372 EXPORT_SYMBOL(dev_set_promiscuity);
8373 
8374 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
8375 {
8376 	unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
8377 
8378 	ASSERT_RTNL();
8379 
8380 	dev->flags |= IFF_ALLMULTI;
8381 	dev->allmulti += inc;
8382 	if (dev->allmulti == 0) {
8383 		/*
8384 		 * Avoid overflow.
8385 		 * If inc causes overflow, untouch allmulti and return error.
8386 		 */
8387 		if (inc < 0)
8388 			dev->flags &= ~IFF_ALLMULTI;
8389 		else {
8390 			dev->allmulti -= inc;
8391 			netdev_warn(dev, "allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n");
8392 			return -EOVERFLOW;
8393 		}
8394 	}
8395 	if (dev->flags ^ old_flags) {
8396 		dev_change_rx_flags(dev, IFF_ALLMULTI);
8397 		dev_set_rx_mode(dev);
8398 		if (notify)
8399 			__dev_notify_flags(dev, old_flags,
8400 					   dev->gflags ^ old_gflags);
8401 	}
8402 	return 0;
8403 }
8404 
8405 /**
8406  *	dev_set_allmulti	- update allmulti count on a device
8407  *	@dev: device
8408  *	@inc: modifier
8409  *
8410  *	Add or remove reception of all multicast frames to a device. While the
8411  *	count in the device remains above zero the interface remains listening
8412  *	to all interfaces. Once it hits zero the device reverts back to normal
8413  *	filtering operation. A negative @inc value is used to drop the counter
8414  *	when releasing a resource needing all multicasts.
8415  *	Return 0 if successful or a negative errno code on error.
8416  */
8417 
8418 int dev_set_allmulti(struct net_device *dev, int inc)
8419 {
8420 	return __dev_set_allmulti(dev, inc, true);
8421 }
8422 EXPORT_SYMBOL(dev_set_allmulti);
8423 
8424 /*
8425  *	Upload unicast and multicast address lists to device and
8426  *	configure RX filtering. When the device doesn't support unicast
8427  *	filtering it is put in promiscuous mode while unicast addresses
8428  *	are present.
8429  */
8430 void __dev_set_rx_mode(struct net_device *dev)
8431 {
8432 	const struct net_device_ops *ops = dev->netdev_ops;
8433 
8434 	/* dev_open will call this function so the list will stay sane. */
8435 	if (!(dev->flags&IFF_UP))
8436 		return;
8437 
8438 	if (!netif_device_present(dev))
8439 		return;
8440 
8441 	if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
8442 		/* Unicast addresses changes may only happen under the rtnl,
8443 		 * therefore calling __dev_set_promiscuity here is safe.
8444 		 */
8445 		if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
8446 			__dev_set_promiscuity(dev, 1, false);
8447 			dev->uc_promisc = true;
8448 		} else if (netdev_uc_empty(dev) && dev->uc_promisc) {
8449 			__dev_set_promiscuity(dev, -1, false);
8450 			dev->uc_promisc = false;
8451 		}
8452 	}
8453 
8454 	if (ops->ndo_set_rx_mode)
8455 		ops->ndo_set_rx_mode(dev);
8456 }
8457 
8458 void dev_set_rx_mode(struct net_device *dev)
8459 {
8460 	netif_addr_lock_bh(dev);
8461 	__dev_set_rx_mode(dev);
8462 	netif_addr_unlock_bh(dev);
8463 }
8464 
8465 /**
8466  *	dev_get_flags - get flags reported to userspace
8467  *	@dev: device
8468  *
8469  *	Get the combination of flag bits exported through APIs to userspace.
8470  */
8471 unsigned int dev_get_flags(const struct net_device *dev)
8472 {
8473 	unsigned int flags;
8474 
8475 	flags = (dev->flags & ~(IFF_PROMISC |
8476 				IFF_ALLMULTI |
8477 				IFF_RUNNING |
8478 				IFF_LOWER_UP |
8479 				IFF_DORMANT)) |
8480 		(dev->gflags & (IFF_PROMISC |
8481 				IFF_ALLMULTI));
8482 
8483 	if (netif_running(dev)) {
8484 		if (netif_oper_up(dev))
8485 			flags |= IFF_RUNNING;
8486 		if (netif_carrier_ok(dev))
8487 			flags |= IFF_LOWER_UP;
8488 		if (netif_dormant(dev))
8489 			flags |= IFF_DORMANT;
8490 	}
8491 
8492 	return flags;
8493 }
8494 EXPORT_SYMBOL(dev_get_flags);
8495 
8496 int __dev_change_flags(struct net_device *dev, unsigned int flags,
8497 		       struct netlink_ext_ack *extack)
8498 {
8499 	unsigned int old_flags = dev->flags;
8500 	int ret;
8501 
8502 	ASSERT_RTNL();
8503 
8504 	/*
8505 	 *	Set the flags on our device.
8506 	 */
8507 
8508 	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
8509 			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
8510 			       IFF_AUTOMEDIA)) |
8511 		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
8512 				    IFF_ALLMULTI));
8513 
8514 	/*
8515 	 *	Load in the correct multicast list now the flags have changed.
8516 	 */
8517 
8518 	if ((old_flags ^ flags) & IFF_MULTICAST)
8519 		dev_change_rx_flags(dev, IFF_MULTICAST);
8520 
8521 	dev_set_rx_mode(dev);
8522 
8523 	/*
8524 	 *	Have we downed the interface. We handle IFF_UP ourselves
8525 	 *	according to user attempts to set it, rather than blindly
8526 	 *	setting it.
8527 	 */
8528 
8529 	ret = 0;
8530 	if ((old_flags ^ flags) & IFF_UP) {
8531 		if (old_flags & IFF_UP)
8532 			__dev_close(dev);
8533 		else
8534 			ret = __dev_open(dev, extack);
8535 	}
8536 
8537 	if ((flags ^ dev->gflags) & IFF_PROMISC) {
8538 		int inc = (flags & IFF_PROMISC) ? 1 : -1;
8539 		unsigned int old_flags = dev->flags;
8540 
8541 		dev->gflags ^= IFF_PROMISC;
8542 
8543 		if (__dev_set_promiscuity(dev, inc, false) >= 0)
8544 			if (dev->flags != old_flags)
8545 				dev_set_rx_mode(dev);
8546 	}
8547 
8548 	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
8549 	 * is important. Some (broken) drivers set IFF_PROMISC, when
8550 	 * IFF_ALLMULTI is requested not asking us and not reporting.
8551 	 */
8552 	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
8553 		int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
8554 
8555 		dev->gflags ^= IFF_ALLMULTI;
8556 		__dev_set_allmulti(dev, inc, false);
8557 	}
8558 
8559 	return ret;
8560 }
8561 
8562 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
8563 			unsigned int gchanges)
8564 {
8565 	unsigned int changes = dev->flags ^ old_flags;
8566 
8567 	if (gchanges)
8568 		rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
8569 
8570 	if (changes & IFF_UP) {
8571 		if (dev->flags & IFF_UP)
8572 			call_netdevice_notifiers(NETDEV_UP, dev);
8573 		else
8574 			call_netdevice_notifiers(NETDEV_DOWN, dev);
8575 	}
8576 
8577 	if (dev->flags & IFF_UP &&
8578 	    (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
8579 		struct netdev_notifier_change_info change_info = {
8580 			.info = {
8581 				.dev = dev,
8582 			},
8583 			.flags_changed = changes,
8584 		};
8585 
8586 		call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
8587 	}
8588 }
8589 
8590 /**
8591  *	dev_change_flags - change device settings
8592  *	@dev: device
8593  *	@flags: device state flags
8594  *	@extack: netlink extended ack
8595  *
8596  *	Change settings on device based state flags. The flags are
8597  *	in the userspace exported format.
8598  */
8599 int dev_change_flags(struct net_device *dev, unsigned int flags,
8600 		     struct netlink_ext_ack *extack)
8601 {
8602 	int ret;
8603 	unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
8604 
8605 	ret = __dev_change_flags(dev, flags, extack);
8606 	if (ret < 0)
8607 		return ret;
8608 
8609 	changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
8610 	__dev_notify_flags(dev, old_flags, changes);
8611 	return ret;
8612 }
8613 EXPORT_SYMBOL(dev_change_flags);
8614 
8615 int __dev_set_mtu(struct net_device *dev, int new_mtu)
8616 {
8617 	const struct net_device_ops *ops = dev->netdev_ops;
8618 
8619 	if (ops->ndo_change_mtu)
8620 		return ops->ndo_change_mtu(dev, new_mtu);
8621 
8622 	/* Pairs with all the lockless reads of dev->mtu in the stack */
8623 	WRITE_ONCE(dev->mtu, new_mtu);
8624 	return 0;
8625 }
8626 EXPORT_SYMBOL(__dev_set_mtu);
8627 
8628 int dev_validate_mtu(struct net_device *dev, int new_mtu,
8629 		     struct netlink_ext_ack *extack)
8630 {
8631 	/* MTU must be positive, and in range */
8632 	if (new_mtu < 0 || new_mtu < dev->min_mtu) {
8633 		NL_SET_ERR_MSG(extack, "mtu less than device minimum");
8634 		return -EINVAL;
8635 	}
8636 
8637 	if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
8638 		NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
8639 		return -EINVAL;
8640 	}
8641 	return 0;
8642 }
8643 
8644 /**
8645  *	dev_set_mtu_ext - Change maximum transfer unit
8646  *	@dev: device
8647  *	@new_mtu: new transfer unit
8648  *	@extack: netlink extended ack
8649  *
8650  *	Change the maximum transfer size of the network device.
8651  */
8652 int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
8653 		    struct netlink_ext_ack *extack)
8654 {
8655 	int err, orig_mtu;
8656 
8657 	if (new_mtu == dev->mtu)
8658 		return 0;
8659 
8660 	err = dev_validate_mtu(dev, new_mtu, extack);
8661 	if (err)
8662 		return err;
8663 
8664 	if (!netif_device_present(dev))
8665 		return -ENODEV;
8666 
8667 	err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
8668 	err = notifier_to_errno(err);
8669 	if (err)
8670 		return err;
8671 
8672 	orig_mtu = dev->mtu;
8673 	err = __dev_set_mtu(dev, new_mtu);
8674 
8675 	if (!err) {
8676 		err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8677 						   orig_mtu);
8678 		err = notifier_to_errno(err);
8679 		if (err) {
8680 			/* setting mtu back and notifying everyone again,
8681 			 * so that they have a chance to revert changes.
8682 			 */
8683 			__dev_set_mtu(dev, orig_mtu);
8684 			call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8685 						     new_mtu);
8686 		}
8687 	}
8688 	return err;
8689 }
8690 
8691 int dev_set_mtu(struct net_device *dev, int new_mtu)
8692 {
8693 	struct netlink_ext_ack extack;
8694 	int err;
8695 
8696 	memset(&extack, 0, sizeof(extack));
8697 	err = dev_set_mtu_ext(dev, new_mtu, &extack);
8698 	if (err && extack._msg)
8699 		net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
8700 	return err;
8701 }
8702 EXPORT_SYMBOL(dev_set_mtu);
8703 
8704 /**
8705  *	dev_change_tx_queue_len - Change TX queue length of a netdevice
8706  *	@dev: device
8707  *	@new_len: new tx queue length
8708  */
8709 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
8710 {
8711 	unsigned int orig_len = dev->tx_queue_len;
8712 	int res;
8713 
8714 	if (new_len != (unsigned int)new_len)
8715 		return -ERANGE;
8716 
8717 	if (new_len != orig_len) {
8718 		dev->tx_queue_len = new_len;
8719 		res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
8720 		res = notifier_to_errno(res);
8721 		if (res)
8722 			goto err_rollback;
8723 		res = dev_qdisc_change_tx_queue_len(dev);
8724 		if (res)
8725 			goto err_rollback;
8726 	}
8727 
8728 	return 0;
8729 
8730 err_rollback:
8731 	netdev_err(dev, "refused to change device tx_queue_len\n");
8732 	dev->tx_queue_len = orig_len;
8733 	return res;
8734 }
8735 
8736 /**
8737  *	dev_set_group - Change group this device belongs to
8738  *	@dev: device
8739  *	@new_group: group this device should belong to
8740  */
8741 void dev_set_group(struct net_device *dev, int new_group)
8742 {
8743 	dev->group = new_group;
8744 }
8745 
8746 /**
8747  *	dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
8748  *	@dev: device
8749  *	@addr: new address
8750  *	@extack: netlink extended ack
8751  */
8752 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
8753 			      struct netlink_ext_ack *extack)
8754 {
8755 	struct netdev_notifier_pre_changeaddr_info info = {
8756 		.info.dev = dev,
8757 		.info.extack = extack,
8758 		.dev_addr = addr,
8759 	};
8760 	int rc;
8761 
8762 	rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
8763 	return notifier_to_errno(rc);
8764 }
8765 EXPORT_SYMBOL(dev_pre_changeaddr_notify);
8766 
8767 /**
8768  *	dev_set_mac_address - Change Media Access Control Address
8769  *	@dev: device
8770  *	@sa: new address
8771  *	@extack: netlink extended ack
8772  *
8773  *	Change the hardware (MAC) address of the device
8774  */
8775 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
8776 			struct netlink_ext_ack *extack)
8777 {
8778 	const struct net_device_ops *ops = dev->netdev_ops;
8779 	int err;
8780 
8781 	if (!ops->ndo_set_mac_address)
8782 		return -EOPNOTSUPP;
8783 	if (sa->sa_family != dev->type)
8784 		return -EINVAL;
8785 	if (!netif_device_present(dev))
8786 		return -ENODEV;
8787 	err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
8788 	if (err)
8789 		return err;
8790 	err = ops->ndo_set_mac_address(dev, sa);
8791 	if (err)
8792 		return err;
8793 	dev->addr_assign_type = NET_ADDR_SET;
8794 	call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
8795 	add_device_randomness(dev->dev_addr, dev->addr_len);
8796 	return 0;
8797 }
8798 EXPORT_SYMBOL(dev_set_mac_address);
8799 
8800 static DECLARE_RWSEM(dev_addr_sem);
8801 
8802 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
8803 			     struct netlink_ext_ack *extack)
8804 {
8805 	int ret;
8806 
8807 	down_write(&dev_addr_sem);
8808 	ret = dev_set_mac_address(dev, sa, extack);
8809 	up_write(&dev_addr_sem);
8810 	return ret;
8811 }
8812 EXPORT_SYMBOL(dev_set_mac_address_user);
8813 
8814 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name)
8815 {
8816 	size_t size = sizeof(sa->sa_data);
8817 	struct net_device *dev;
8818 	int ret = 0;
8819 
8820 	down_read(&dev_addr_sem);
8821 	rcu_read_lock();
8822 
8823 	dev = dev_get_by_name_rcu(net, dev_name);
8824 	if (!dev) {
8825 		ret = -ENODEV;
8826 		goto unlock;
8827 	}
8828 	if (!dev->addr_len)
8829 		memset(sa->sa_data, 0, size);
8830 	else
8831 		memcpy(sa->sa_data, dev->dev_addr,
8832 		       min_t(size_t, size, dev->addr_len));
8833 	sa->sa_family = dev->type;
8834 
8835 unlock:
8836 	rcu_read_unlock();
8837 	up_read(&dev_addr_sem);
8838 	return ret;
8839 }
8840 EXPORT_SYMBOL(dev_get_mac_address);
8841 
8842 /**
8843  *	dev_change_carrier - Change device carrier
8844  *	@dev: device
8845  *	@new_carrier: new value
8846  *
8847  *	Change device carrier
8848  */
8849 int dev_change_carrier(struct net_device *dev, bool new_carrier)
8850 {
8851 	const struct net_device_ops *ops = dev->netdev_ops;
8852 
8853 	if (!ops->ndo_change_carrier)
8854 		return -EOPNOTSUPP;
8855 	if (!netif_device_present(dev))
8856 		return -ENODEV;
8857 	return ops->ndo_change_carrier(dev, new_carrier);
8858 }
8859 
8860 /**
8861  *	dev_get_phys_port_id - Get device physical port ID
8862  *	@dev: device
8863  *	@ppid: port ID
8864  *
8865  *	Get device physical port ID
8866  */
8867 int dev_get_phys_port_id(struct net_device *dev,
8868 			 struct netdev_phys_item_id *ppid)
8869 {
8870 	const struct net_device_ops *ops = dev->netdev_ops;
8871 
8872 	if (!ops->ndo_get_phys_port_id)
8873 		return -EOPNOTSUPP;
8874 	return ops->ndo_get_phys_port_id(dev, ppid);
8875 }
8876 
8877 /**
8878  *	dev_get_phys_port_name - Get device physical port name
8879  *	@dev: device
8880  *	@name: port name
8881  *	@len: limit of bytes to copy to name
8882  *
8883  *	Get device physical port name
8884  */
8885 int dev_get_phys_port_name(struct net_device *dev,
8886 			   char *name, size_t len)
8887 {
8888 	const struct net_device_ops *ops = dev->netdev_ops;
8889 	int err;
8890 
8891 	if (ops->ndo_get_phys_port_name) {
8892 		err = ops->ndo_get_phys_port_name(dev, name, len);
8893 		if (err != -EOPNOTSUPP)
8894 			return err;
8895 	}
8896 	return devlink_compat_phys_port_name_get(dev, name, len);
8897 }
8898 
8899 /**
8900  *	dev_get_port_parent_id - Get the device's port parent identifier
8901  *	@dev: network device
8902  *	@ppid: pointer to a storage for the port's parent identifier
8903  *	@recurse: allow/disallow recursion to lower devices
8904  *
8905  *	Get the devices's port parent identifier
8906  */
8907 int dev_get_port_parent_id(struct net_device *dev,
8908 			   struct netdev_phys_item_id *ppid,
8909 			   bool recurse)
8910 {
8911 	const struct net_device_ops *ops = dev->netdev_ops;
8912 	struct netdev_phys_item_id first = { };
8913 	struct net_device *lower_dev;
8914 	struct list_head *iter;
8915 	int err;
8916 
8917 	if (ops->ndo_get_port_parent_id) {
8918 		err = ops->ndo_get_port_parent_id(dev, ppid);
8919 		if (err != -EOPNOTSUPP)
8920 			return err;
8921 	}
8922 
8923 	err = devlink_compat_switch_id_get(dev, ppid);
8924 	if (!recurse || err != -EOPNOTSUPP)
8925 		return err;
8926 
8927 	netdev_for_each_lower_dev(dev, lower_dev, iter) {
8928 		err = dev_get_port_parent_id(lower_dev, ppid, true);
8929 		if (err)
8930 			break;
8931 		if (!first.id_len)
8932 			first = *ppid;
8933 		else if (memcmp(&first, ppid, sizeof(*ppid)))
8934 			return -EOPNOTSUPP;
8935 	}
8936 
8937 	return err;
8938 }
8939 EXPORT_SYMBOL(dev_get_port_parent_id);
8940 
8941 /**
8942  *	netdev_port_same_parent_id - Indicate if two network devices have
8943  *	the same port parent identifier
8944  *	@a: first network device
8945  *	@b: second network device
8946  */
8947 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
8948 {
8949 	struct netdev_phys_item_id a_id = { };
8950 	struct netdev_phys_item_id b_id = { };
8951 
8952 	if (dev_get_port_parent_id(a, &a_id, true) ||
8953 	    dev_get_port_parent_id(b, &b_id, true))
8954 		return false;
8955 
8956 	return netdev_phys_item_id_same(&a_id, &b_id);
8957 }
8958 EXPORT_SYMBOL(netdev_port_same_parent_id);
8959 
8960 /**
8961  *	dev_change_proto_down - set carrier according to proto_down.
8962  *
8963  *	@dev: device
8964  *	@proto_down: new value
8965  */
8966 int dev_change_proto_down(struct net_device *dev, bool proto_down)
8967 {
8968 	if (!(dev->priv_flags & IFF_CHANGE_PROTO_DOWN))
8969 		return -EOPNOTSUPP;
8970 	if (!netif_device_present(dev))
8971 		return -ENODEV;
8972 	if (proto_down)
8973 		netif_carrier_off(dev);
8974 	else
8975 		netif_carrier_on(dev);
8976 	dev->proto_down = proto_down;
8977 	return 0;
8978 }
8979 
8980 /**
8981  *	dev_change_proto_down_reason - proto down reason
8982  *
8983  *	@dev: device
8984  *	@mask: proto down mask
8985  *	@value: proto down value
8986  */
8987 void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
8988 				  u32 value)
8989 {
8990 	int b;
8991 
8992 	if (!mask) {
8993 		dev->proto_down_reason = value;
8994 	} else {
8995 		for_each_set_bit(b, &mask, 32) {
8996 			if (value & (1 << b))
8997 				dev->proto_down_reason |= BIT(b);
8998 			else
8999 				dev->proto_down_reason &= ~BIT(b);
9000 		}
9001 	}
9002 }
9003 
9004 struct bpf_xdp_link {
9005 	struct bpf_link link;
9006 	struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
9007 	int flags;
9008 };
9009 
9010 static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags)
9011 {
9012 	if (flags & XDP_FLAGS_HW_MODE)
9013 		return XDP_MODE_HW;
9014 	if (flags & XDP_FLAGS_DRV_MODE)
9015 		return XDP_MODE_DRV;
9016 	if (flags & XDP_FLAGS_SKB_MODE)
9017 		return XDP_MODE_SKB;
9018 	return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB;
9019 }
9020 
9021 static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
9022 {
9023 	switch (mode) {
9024 	case XDP_MODE_SKB:
9025 		return generic_xdp_install;
9026 	case XDP_MODE_DRV:
9027 	case XDP_MODE_HW:
9028 		return dev->netdev_ops->ndo_bpf;
9029 	default:
9030 		return NULL;
9031 	}
9032 }
9033 
9034 static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
9035 					 enum bpf_xdp_mode mode)
9036 {
9037 	return dev->xdp_state[mode].link;
9038 }
9039 
9040 static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
9041 				     enum bpf_xdp_mode mode)
9042 {
9043 	struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
9044 
9045 	if (link)
9046 		return link->link.prog;
9047 	return dev->xdp_state[mode].prog;
9048 }
9049 
9050 u8 dev_xdp_prog_count(struct net_device *dev)
9051 {
9052 	u8 count = 0;
9053 	int i;
9054 
9055 	for (i = 0; i < __MAX_XDP_MODE; i++)
9056 		if (dev->xdp_state[i].prog || dev->xdp_state[i].link)
9057 			count++;
9058 	return count;
9059 }
9060 EXPORT_SYMBOL_GPL(dev_xdp_prog_count);
9061 
9062 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
9063 {
9064 	struct bpf_prog *prog = dev_xdp_prog(dev, mode);
9065 
9066 	return prog ? prog->aux->id : 0;
9067 }
9068 
9069 static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
9070 			     struct bpf_xdp_link *link)
9071 {
9072 	dev->xdp_state[mode].link = link;
9073 	dev->xdp_state[mode].prog = NULL;
9074 }
9075 
9076 static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
9077 			     struct bpf_prog *prog)
9078 {
9079 	dev->xdp_state[mode].link = NULL;
9080 	dev->xdp_state[mode].prog = prog;
9081 }
9082 
9083 static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
9084 			   bpf_op_t bpf_op, struct netlink_ext_ack *extack,
9085 			   u32 flags, struct bpf_prog *prog)
9086 {
9087 	struct netdev_bpf xdp;
9088 	int err;
9089 
9090 	memset(&xdp, 0, sizeof(xdp));
9091 	xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
9092 	xdp.extack = extack;
9093 	xdp.flags = flags;
9094 	xdp.prog = prog;
9095 
9096 	/* Drivers assume refcnt is already incremented (i.e, prog pointer is
9097 	 * "moved" into driver), so they don't increment it on their own, but
9098 	 * they do decrement refcnt when program is detached or replaced.
9099 	 * Given net_device also owns link/prog, we need to bump refcnt here
9100 	 * to prevent drivers from underflowing it.
9101 	 */
9102 	if (prog)
9103 		bpf_prog_inc(prog);
9104 	err = bpf_op(dev, &xdp);
9105 	if (err) {
9106 		if (prog)
9107 			bpf_prog_put(prog);
9108 		return err;
9109 	}
9110 
9111 	if (mode != XDP_MODE_HW)
9112 		bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog);
9113 
9114 	return 0;
9115 }
9116 
9117 static void dev_xdp_uninstall(struct net_device *dev)
9118 {
9119 	struct bpf_xdp_link *link;
9120 	struct bpf_prog *prog;
9121 	enum bpf_xdp_mode mode;
9122 	bpf_op_t bpf_op;
9123 
9124 	ASSERT_RTNL();
9125 
9126 	for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
9127 		prog = dev_xdp_prog(dev, mode);
9128 		if (!prog)
9129 			continue;
9130 
9131 		bpf_op = dev_xdp_bpf_op(dev, mode);
9132 		if (!bpf_op)
9133 			continue;
9134 
9135 		WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9136 
9137 		/* auto-detach link from net device */
9138 		link = dev_xdp_link(dev, mode);
9139 		if (link)
9140 			link->dev = NULL;
9141 		else
9142 			bpf_prog_put(prog);
9143 
9144 		dev_xdp_set_link(dev, mode, NULL);
9145 	}
9146 }
9147 
9148 static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
9149 			  struct bpf_xdp_link *link, struct bpf_prog *new_prog,
9150 			  struct bpf_prog *old_prog, u32 flags)
9151 {
9152 	unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES);
9153 	struct bpf_prog *cur_prog;
9154 	struct net_device *upper;
9155 	struct list_head *iter;
9156 	enum bpf_xdp_mode mode;
9157 	bpf_op_t bpf_op;
9158 	int err;
9159 
9160 	ASSERT_RTNL();
9161 
9162 	/* either link or prog attachment, never both */
9163 	if (link && (new_prog || old_prog))
9164 		return -EINVAL;
9165 	/* link supports only XDP mode flags */
9166 	if (link && (flags & ~XDP_FLAGS_MODES)) {
9167 		NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
9168 		return -EINVAL;
9169 	}
9170 	/* just one XDP mode bit should be set, zero defaults to drv/skb mode */
9171 	if (num_modes > 1) {
9172 		NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
9173 		return -EINVAL;
9174 	}
9175 	/* avoid ambiguity if offload + drv/skb mode progs are both loaded */
9176 	if (!num_modes && dev_xdp_prog_count(dev) > 1) {
9177 		NL_SET_ERR_MSG(extack,
9178 			       "More than one program loaded, unset mode is ambiguous");
9179 		return -EINVAL;
9180 	}
9181 	/* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
9182 	if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
9183 		NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
9184 		return -EINVAL;
9185 	}
9186 
9187 	mode = dev_xdp_mode(dev, flags);
9188 	/* can't replace attached link */
9189 	if (dev_xdp_link(dev, mode)) {
9190 		NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
9191 		return -EBUSY;
9192 	}
9193 
9194 	/* don't allow if an upper device already has a program */
9195 	netdev_for_each_upper_dev_rcu(dev, upper, iter) {
9196 		if (dev_xdp_prog_count(upper) > 0) {
9197 			NL_SET_ERR_MSG(extack, "Cannot attach when an upper device already has a program");
9198 			return -EEXIST;
9199 		}
9200 	}
9201 
9202 	cur_prog = dev_xdp_prog(dev, mode);
9203 	/* can't replace attached prog with link */
9204 	if (link && cur_prog) {
9205 		NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
9206 		return -EBUSY;
9207 	}
9208 	if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
9209 		NL_SET_ERR_MSG(extack, "Active program does not match expected");
9210 		return -EEXIST;
9211 	}
9212 
9213 	/* put effective new program into new_prog */
9214 	if (link)
9215 		new_prog = link->link.prog;
9216 
9217 	if (new_prog) {
9218 		bool offload = mode == XDP_MODE_HW;
9219 		enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
9220 					       ? XDP_MODE_DRV : XDP_MODE_SKB;
9221 
9222 		if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
9223 			NL_SET_ERR_MSG(extack, "XDP program already attached");
9224 			return -EBUSY;
9225 		}
9226 		if (!offload && dev_xdp_prog(dev, other_mode)) {
9227 			NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
9228 			return -EEXIST;
9229 		}
9230 		if (!offload && bpf_prog_is_dev_bound(new_prog->aux)) {
9231 			NL_SET_ERR_MSG(extack, "Using device-bound program without HW_MODE flag is not supported");
9232 			return -EINVAL;
9233 		}
9234 		if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
9235 			NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
9236 			return -EINVAL;
9237 		}
9238 		if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
9239 			NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
9240 			return -EINVAL;
9241 		}
9242 	}
9243 
9244 	/* don't call drivers if the effective program didn't change */
9245 	if (new_prog != cur_prog) {
9246 		bpf_op = dev_xdp_bpf_op(dev, mode);
9247 		if (!bpf_op) {
9248 			NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
9249 			return -EOPNOTSUPP;
9250 		}
9251 
9252 		err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog);
9253 		if (err)
9254 			return err;
9255 	}
9256 
9257 	if (link)
9258 		dev_xdp_set_link(dev, mode, link);
9259 	else
9260 		dev_xdp_set_prog(dev, mode, new_prog);
9261 	if (cur_prog)
9262 		bpf_prog_put(cur_prog);
9263 
9264 	return 0;
9265 }
9266 
9267 static int dev_xdp_attach_link(struct net_device *dev,
9268 			       struct netlink_ext_ack *extack,
9269 			       struct bpf_xdp_link *link)
9270 {
9271 	return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags);
9272 }
9273 
9274 static int dev_xdp_detach_link(struct net_device *dev,
9275 			       struct netlink_ext_ack *extack,
9276 			       struct bpf_xdp_link *link)
9277 {
9278 	enum bpf_xdp_mode mode;
9279 	bpf_op_t bpf_op;
9280 
9281 	ASSERT_RTNL();
9282 
9283 	mode = dev_xdp_mode(dev, link->flags);
9284 	if (dev_xdp_link(dev, mode) != link)
9285 		return -EINVAL;
9286 
9287 	bpf_op = dev_xdp_bpf_op(dev, mode);
9288 	WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9289 	dev_xdp_set_link(dev, mode, NULL);
9290 	return 0;
9291 }
9292 
9293 static void bpf_xdp_link_release(struct bpf_link *link)
9294 {
9295 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9296 
9297 	rtnl_lock();
9298 
9299 	/* if racing with net_device's tear down, xdp_link->dev might be
9300 	 * already NULL, in which case link was already auto-detached
9301 	 */
9302 	if (xdp_link->dev) {
9303 		WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
9304 		xdp_link->dev = NULL;
9305 	}
9306 
9307 	rtnl_unlock();
9308 }
9309 
9310 static int bpf_xdp_link_detach(struct bpf_link *link)
9311 {
9312 	bpf_xdp_link_release(link);
9313 	return 0;
9314 }
9315 
9316 static void bpf_xdp_link_dealloc(struct bpf_link *link)
9317 {
9318 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9319 
9320 	kfree(xdp_link);
9321 }
9322 
9323 static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link,
9324 				     struct seq_file *seq)
9325 {
9326 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9327 	u32 ifindex = 0;
9328 
9329 	rtnl_lock();
9330 	if (xdp_link->dev)
9331 		ifindex = xdp_link->dev->ifindex;
9332 	rtnl_unlock();
9333 
9334 	seq_printf(seq, "ifindex:\t%u\n", ifindex);
9335 }
9336 
9337 static int bpf_xdp_link_fill_link_info(const struct bpf_link *link,
9338 				       struct bpf_link_info *info)
9339 {
9340 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9341 	u32 ifindex = 0;
9342 
9343 	rtnl_lock();
9344 	if (xdp_link->dev)
9345 		ifindex = xdp_link->dev->ifindex;
9346 	rtnl_unlock();
9347 
9348 	info->xdp.ifindex = ifindex;
9349 	return 0;
9350 }
9351 
9352 static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
9353 			       struct bpf_prog *old_prog)
9354 {
9355 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9356 	enum bpf_xdp_mode mode;
9357 	bpf_op_t bpf_op;
9358 	int err = 0;
9359 
9360 	rtnl_lock();
9361 
9362 	/* link might have been auto-released already, so fail */
9363 	if (!xdp_link->dev) {
9364 		err = -ENOLINK;
9365 		goto out_unlock;
9366 	}
9367 
9368 	if (old_prog && link->prog != old_prog) {
9369 		err = -EPERM;
9370 		goto out_unlock;
9371 	}
9372 	old_prog = link->prog;
9373 	if (old_prog->type != new_prog->type ||
9374 	    old_prog->expected_attach_type != new_prog->expected_attach_type) {
9375 		err = -EINVAL;
9376 		goto out_unlock;
9377 	}
9378 
9379 	if (old_prog == new_prog) {
9380 		/* no-op, don't disturb drivers */
9381 		bpf_prog_put(new_prog);
9382 		goto out_unlock;
9383 	}
9384 
9385 	mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags);
9386 	bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode);
9387 	err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL,
9388 			      xdp_link->flags, new_prog);
9389 	if (err)
9390 		goto out_unlock;
9391 
9392 	old_prog = xchg(&link->prog, new_prog);
9393 	bpf_prog_put(old_prog);
9394 
9395 out_unlock:
9396 	rtnl_unlock();
9397 	return err;
9398 }
9399 
9400 static const struct bpf_link_ops bpf_xdp_link_lops = {
9401 	.release = bpf_xdp_link_release,
9402 	.dealloc = bpf_xdp_link_dealloc,
9403 	.detach = bpf_xdp_link_detach,
9404 	.show_fdinfo = bpf_xdp_link_show_fdinfo,
9405 	.fill_link_info = bpf_xdp_link_fill_link_info,
9406 	.update_prog = bpf_xdp_link_update,
9407 };
9408 
9409 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
9410 {
9411 	struct net *net = current->nsproxy->net_ns;
9412 	struct bpf_link_primer link_primer;
9413 	struct bpf_xdp_link *link;
9414 	struct net_device *dev;
9415 	int err, fd;
9416 
9417 	rtnl_lock();
9418 	dev = dev_get_by_index(net, attr->link_create.target_ifindex);
9419 	if (!dev) {
9420 		rtnl_unlock();
9421 		return -EINVAL;
9422 	}
9423 
9424 	link = kzalloc(sizeof(*link), GFP_USER);
9425 	if (!link) {
9426 		err = -ENOMEM;
9427 		goto unlock;
9428 	}
9429 
9430 	bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog);
9431 	link->dev = dev;
9432 	link->flags = attr->link_create.flags;
9433 
9434 	err = bpf_link_prime(&link->link, &link_primer);
9435 	if (err) {
9436 		kfree(link);
9437 		goto unlock;
9438 	}
9439 
9440 	err = dev_xdp_attach_link(dev, NULL, link);
9441 	rtnl_unlock();
9442 
9443 	if (err) {
9444 		link->dev = NULL;
9445 		bpf_link_cleanup(&link_primer);
9446 		goto out_put_dev;
9447 	}
9448 
9449 	fd = bpf_link_settle(&link_primer);
9450 	/* link itself doesn't hold dev's refcnt to not complicate shutdown */
9451 	dev_put(dev);
9452 	return fd;
9453 
9454 unlock:
9455 	rtnl_unlock();
9456 
9457 out_put_dev:
9458 	dev_put(dev);
9459 	return err;
9460 }
9461 
9462 /**
9463  *	dev_change_xdp_fd - set or clear a bpf program for a device rx path
9464  *	@dev: device
9465  *	@extack: netlink extended ack
9466  *	@fd: new program fd or negative value to clear
9467  *	@expected_fd: old program fd that userspace expects to replace or clear
9468  *	@flags: xdp-related flags
9469  *
9470  *	Set or clear a bpf program for a device
9471  */
9472 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
9473 		      int fd, int expected_fd, u32 flags)
9474 {
9475 	enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags);
9476 	struct bpf_prog *new_prog = NULL, *old_prog = NULL;
9477 	int err;
9478 
9479 	ASSERT_RTNL();
9480 
9481 	if (fd >= 0) {
9482 		new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
9483 						 mode != XDP_MODE_SKB);
9484 		if (IS_ERR(new_prog))
9485 			return PTR_ERR(new_prog);
9486 	}
9487 
9488 	if (expected_fd >= 0) {
9489 		old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP,
9490 						 mode != XDP_MODE_SKB);
9491 		if (IS_ERR(old_prog)) {
9492 			err = PTR_ERR(old_prog);
9493 			old_prog = NULL;
9494 			goto err_out;
9495 		}
9496 	}
9497 
9498 	err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
9499 
9500 err_out:
9501 	if (err && new_prog)
9502 		bpf_prog_put(new_prog);
9503 	if (old_prog)
9504 		bpf_prog_put(old_prog);
9505 	return err;
9506 }
9507 
9508 /**
9509  *	dev_new_index	-	allocate an ifindex
9510  *	@net: the applicable net namespace
9511  *
9512  *	Returns a suitable unique value for a new device interface
9513  *	number.  The caller must hold the rtnl semaphore or the
9514  *	dev_base_lock to be sure it remains unique.
9515  */
9516 static int dev_new_index(struct net *net)
9517 {
9518 	int ifindex = net->ifindex;
9519 
9520 	for (;;) {
9521 		if (++ifindex <= 0)
9522 			ifindex = 1;
9523 		if (!__dev_get_by_index(net, ifindex))
9524 			return net->ifindex = ifindex;
9525 	}
9526 }
9527 
9528 /* Delayed registration/unregisteration */
9529 LIST_HEAD(net_todo_list);
9530 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
9531 
9532 static void net_set_todo(struct net_device *dev)
9533 {
9534 	list_add_tail(&dev->todo_list, &net_todo_list);
9535 	atomic_inc(&dev_net(dev)->dev_unreg_count);
9536 }
9537 
9538 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
9539 	struct net_device *upper, netdev_features_t features)
9540 {
9541 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9542 	netdev_features_t feature;
9543 	int feature_bit;
9544 
9545 	for_each_netdev_feature(upper_disables, feature_bit) {
9546 		feature = __NETIF_F_BIT(feature_bit);
9547 		if (!(upper->wanted_features & feature)
9548 		    && (features & feature)) {
9549 			netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
9550 				   &feature, upper->name);
9551 			features &= ~feature;
9552 		}
9553 	}
9554 
9555 	return features;
9556 }
9557 
9558 static void netdev_sync_lower_features(struct net_device *upper,
9559 	struct net_device *lower, netdev_features_t features)
9560 {
9561 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9562 	netdev_features_t feature;
9563 	int feature_bit;
9564 
9565 	for_each_netdev_feature(upper_disables, feature_bit) {
9566 		feature = __NETIF_F_BIT(feature_bit);
9567 		if (!(features & feature) && (lower->features & feature)) {
9568 			netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
9569 				   &feature, lower->name);
9570 			lower->wanted_features &= ~feature;
9571 			__netdev_update_features(lower);
9572 
9573 			if (unlikely(lower->features & feature))
9574 				netdev_WARN(upper, "failed to disable %pNF on %s!\n",
9575 					    &feature, lower->name);
9576 			else
9577 				netdev_features_change(lower);
9578 		}
9579 	}
9580 }
9581 
9582 static netdev_features_t netdev_fix_features(struct net_device *dev,
9583 	netdev_features_t features)
9584 {
9585 	/* Fix illegal checksum combinations */
9586 	if ((features & NETIF_F_HW_CSUM) &&
9587 	    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
9588 		netdev_warn(dev, "mixed HW and IP checksum settings.\n");
9589 		features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
9590 	}
9591 
9592 	/* TSO requires that SG is present as well. */
9593 	if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
9594 		netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
9595 		features &= ~NETIF_F_ALL_TSO;
9596 	}
9597 
9598 	if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
9599 					!(features & NETIF_F_IP_CSUM)) {
9600 		netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
9601 		features &= ~NETIF_F_TSO;
9602 		features &= ~NETIF_F_TSO_ECN;
9603 	}
9604 
9605 	if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
9606 					 !(features & NETIF_F_IPV6_CSUM)) {
9607 		netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
9608 		features &= ~NETIF_F_TSO6;
9609 	}
9610 
9611 	/* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
9612 	if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
9613 		features &= ~NETIF_F_TSO_MANGLEID;
9614 
9615 	/* TSO ECN requires that TSO is present as well. */
9616 	if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
9617 		features &= ~NETIF_F_TSO_ECN;
9618 
9619 	/* Software GSO depends on SG. */
9620 	if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
9621 		netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
9622 		features &= ~NETIF_F_GSO;
9623 	}
9624 
9625 	/* GSO partial features require GSO partial be set */
9626 	if ((features & dev->gso_partial_features) &&
9627 	    !(features & NETIF_F_GSO_PARTIAL)) {
9628 		netdev_dbg(dev,
9629 			   "Dropping partially supported GSO features since no GSO partial.\n");
9630 		features &= ~dev->gso_partial_features;
9631 	}
9632 
9633 	if (!(features & NETIF_F_RXCSUM)) {
9634 		/* NETIF_F_GRO_HW implies doing RXCSUM since every packet
9635 		 * successfully merged by hardware must also have the
9636 		 * checksum verified by hardware.  If the user does not
9637 		 * want to enable RXCSUM, logically, we should disable GRO_HW.
9638 		 */
9639 		if (features & NETIF_F_GRO_HW) {
9640 			netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
9641 			features &= ~NETIF_F_GRO_HW;
9642 		}
9643 	}
9644 
9645 	/* LRO/HW-GRO features cannot be combined with RX-FCS */
9646 	if (features & NETIF_F_RXFCS) {
9647 		if (features & NETIF_F_LRO) {
9648 			netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
9649 			features &= ~NETIF_F_LRO;
9650 		}
9651 
9652 		if (features & NETIF_F_GRO_HW) {
9653 			netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
9654 			features &= ~NETIF_F_GRO_HW;
9655 		}
9656 	}
9657 
9658 	if ((features & NETIF_F_GRO_HW) && (features & NETIF_F_LRO)) {
9659 		netdev_dbg(dev, "Dropping LRO feature since HW-GRO is requested.\n");
9660 		features &= ~NETIF_F_LRO;
9661 	}
9662 
9663 	if (features & NETIF_F_HW_TLS_TX) {
9664 		bool ip_csum = (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) ==
9665 			(NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
9666 		bool hw_csum = features & NETIF_F_HW_CSUM;
9667 
9668 		if (!ip_csum && !hw_csum) {
9669 			netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n");
9670 			features &= ~NETIF_F_HW_TLS_TX;
9671 		}
9672 	}
9673 
9674 	if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) {
9675 		netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n");
9676 		features &= ~NETIF_F_HW_TLS_RX;
9677 	}
9678 
9679 	return features;
9680 }
9681 
9682 int __netdev_update_features(struct net_device *dev)
9683 {
9684 	struct net_device *upper, *lower;
9685 	netdev_features_t features;
9686 	struct list_head *iter;
9687 	int err = -1;
9688 
9689 	ASSERT_RTNL();
9690 
9691 	features = netdev_get_wanted_features(dev);
9692 
9693 	if (dev->netdev_ops->ndo_fix_features)
9694 		features = dev->netdev_ops->ndo_fix_features(dev, features);
9695 
9696 	/* driver might be less strict about feature dependencies */
9697 	features = netdev_fix_features(dev, features);
9698 
9699 	/* some features can't be enabled if they're off on an upper device */
9700 	netdev_for_each_upper_dev_rcu(dev, upper, iter)
9701 		features = netdev_sync_upper_features(dev, upper, features);
9702 
9703 	if (dev->features == features)
9704 		goto sync_lower;
9705 
9706 	netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
9707 		&dev->features, &features);
9708 
9709 	if (dev->netdev_ops->ndo_set_features)
9710 		err = dev->netdev_ops->ndo_set_features(dev, features);
9711 	else
9712 		err = 0;
9713 
9714 	if (unlikely(err < 0)) {
9715 		netdev_err(dev,
9716 			"set_features() failed (%d); wanted %pNF, left %pNF\n",
9717 			err, &features, &dev->features);
9718 		/* return non-0 since some features might have changed and
9719 		 * it's better to fire a spurious notification than miss it
9720 		 */
9721 		return -1;
9722 	}
9723 
9724 sync_lower:
9725 	/* some features must be disabled on lower devices when disabled
9726 	 * on an upper device (think: bonding master or bridge)
9727 	 */
9728 	netdev_for_each_lower_dev(dev, lower, iter)
9729 		netdev_sync_lower_features(dev, lower, features);
9730 
9731 	if (!err) {
9732 		netdev_features_t diff = features ^ dev->features;
9733 
9734 		if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
9735 			/* udp_tunnel_{get,drop}_rx_info both need
9736 			 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
9737 			 * device, or they won't do anything.
9738 			 * Thus we need to update dev->features
9739 			 * *before* calling udp_tunnel_get_rx_info,
9740 			 * but *after* calling udp_tunnel_drop_rx_info.
9741 			 */
9742 			if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
9743 				dev->features = features;
9744 				udp_tunnel_get_rx_info(dev);
9745 			} else {
9746 				udp_tunnel_drop_rx_info(dev);
9747 			}
9748 		}
9749 
9750 		if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
9751 			if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
9752 				dev->features = features;
9753 				err |= vlan_get_rx_ctag_filter_info(dev);
9754 			} else {
9755 				vlan_drop_rx_ctag_filter_info(dev);
9756 			}
9757 		}
9758 
9759 		if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
9760 			if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
9761 				dev->features = features;
9762 				err |= vlan_get_rx_stag_filter_info(dev);
9763 			} else {
9764 				vlan_drop_rx_stag_filter_info(dev);
9765 			}
9766 		}
9767 
9768 		dev->features = features;
9769 	}
9770 
9771 	return err < 0 ? 0 : 1;
9772 }
9773 
9774 /**
9775  *	netdev_update_features - recalculate device features
9776  *	@dev: the device to check
9777  *
9778  *	Recalculate dev->features set and send notifications if it
9779  *	has changed. Should be called after driver or hardware dependent
9780  *	conditions might have changed that influence the features.
9781  */
9782 void netdev_update_features(struct net_device *dev)
9783 {
9784 	if (__netdev_update_features(dev))
9785 		netdev_features_change(dev);
9786 }
9787 EXPORT_SYMBOL(netdev_update_features);
9788 
9789 /**
9790  *	netdev_change_features - recalculate device features
9791  *	@dev: the device to check
9792  *
9793  *	Recalculate dev->features set and send notifications even
9794  *	if they have not changed. Should be called instead of
9795  *	netdev_update_features() if also dev->vlan_features might
9796  *	have changed to allow the changes to be propagated to stacked
9797  *	VLAN devices.
9798  */
9799 void netdev_change_features(struct net_device *dev)
9800 {
9801 	__netdev_update_features(dev);
9802 	netdev_features_change(dev);
9803 }
9804 EXPORT_SYMBOL(netdev_change_features);
9805 
9806 /**
9807  *	netif_stacked_transfer_operstate -	transfer operstate
9808  *	@rootdev: the root or lower level device to transfer state from
9809  *	@dev: the device to transfer operstate to
9810  *
9811  *	Transfer operational state from root to device. This is normally
9812  *	called when a stacking relationship exists between the root
9813  *	device and the device(a leaf device).
9814  */
9815 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
9816 					struct net_device *dev)
9817 {
9818 	if (rootdev->operstate == IF_OPER_DORMANT)
9819 		netif_dormant_on(dev);
9820 	else
9821 		netif_dormant_off(dev);
9822 
9823 	if (rootdev->operstate == IF_OPER_TESTING)
9824 		netif_testing_on(dev);
9825 	else
9826 		netif_testing_off(dev);
9827 
9828 	if (netif_carrier_ok(rootdev))
9829 		netif_carrier_on(dev);
9830 	else
9831 		netif_carrier_off(dev);
9832 }
9833 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
9834 
9835 static int netif_alloc_rx_queues(struct net_device *dev)
9836 {
9837 	unsigned int i, count = dev->num_rx_queues;
9838 	struct netdev_rx_queue *rx;
9839 	size_t sz = count * sizeof(*rx);
9840 	int err = 0;
9841 
9842 	BUG_ON(count < 1);
9843 
9844 	rx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
9845 	if (!rx)
9846 		return -ENOMEM;
9847 
9848 	dev->_rx = rx;
9849 
9850 	for (i = 0; i < count; i++) {
9851 		rx[i].dev = dev;
9852 
9853 		/* XDP RX-queue setup */
9854 		err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0);
9855 		if (err < 0)
9856 			goto err_rxq_info;
9857 	}
9858 	return 0;
9859 
9860 err_rxq_info:
9861 	/* Rollback successful reg's and free other resources */
9862 	while (i--)
9863 		xdp_rxq_info_unreg(&rx[i].xdp_rxq);
9864 	kvfree(dev->_rx);
9865 	dev->_rx = NULL;
9866 	return err;
9867 }
9868 
9869 static void netif_free_rx_queues(struct net_device *dev)
9870 {
9871 	unsigned int i, count = dev->num_rx_queues;
9872 
9873 	/* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
9874 	if (!dev->_rx)
9875 		return;
9876 
9877 	for (i = 0; i < count; i++)
9878 		xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
9879 
9880 	kvfree(dev->_rx);
9881 }
9882 
9883 static void netdev_init_one_queue(struct net_device *dev,
9884 				  struct netdev_queue *queue, void *_unused)
9885 {
9886 	/* Initialize queue lock */
9887 	spin_lock_init(&queue->_xmit_lock);
9888 	netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
9889 	queue->xmit_lock_owner = -1;
9890 	netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
9891 	queue->dev = dev;
9892 #ifdef CONFIG_BQL
9893 	dql_init(&queue->dql, HZ);
9894 #endif
9895 }
9896 
9897 static void netif_free_tx_queues(struct net_device *dev)
9898 {
9899 	kvfree(dev->_tx);
9900 }
9901 
9902 static int netif_alloc_netdev_queues(struct net_device *dev)
9903 {
9904 	unsigned int count = dev->num_tx_queues;
9905 	struct netdev_queue *tx;
9906 	size_t sz = count * sizeof(*tx);
9907 
9908 	if (count < 1 || count > 0xffff)
9909 		return -EINVAL;
9910 
9911 	tx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
9912 	if (!tx)
9913 		return -ENOMEM;
9914 
9915 	dev->_tx = tx;
9916 
9917 	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
9918 	spin_lock_init(&dev->tx_global_lock);
9919 
9920 	return 0;
9921 }
9922 
9923 void netif_tx_stop_all_queues(struct net_device *dev)
9924 {
9925 	unsigned int i;
9926 
9927 	for (i = 0; i < dev->num_tx_queues; i++) {
9928 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
9929 
9930 		netif_tx_stop_queue(txq);
9931 	}
9932 }
9933 EXPORT_SYMBOL(netif_tx_stop_all_queues);
9934 
9935 /**
9936  * register_netdevice() - register a network device
9937  * @dev: device to register
9938  *
9939  * Take a prepared network device structure and make it externally accessible.
9940  * A %NETDEV_REGISTER message is sent to the netdev notifier chain.
9941  * Callers must hold the rtnl lock - you may want register_netdev()
9942  * instead of this.
9943  */
9944 int register_netdevice(struct net_device *dev)
9945 {
9946 	int ret;
9947 	struct net *net = dev_net(dev);
9948 
9949 	BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
9950 		     NETDEV_FEATURE_COUNT);
9951 	BUG_ON(dev_boot_phase);
9952 	ASSERT_RTNL();
9953 
9954 	might_sleep();
9955 
9956 	/* When net_device's are persistent, this will be fatal. */
9957 	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
9958 	BUG_ON(!net);
9959 
9960 	ret = ethtool_check_ops(dev->ethtool_ops);
9961 	if (ret)
9962 		return ret;
9963 
9964 	spin_lock_init(&dev->addr_list_lock);
9965 	netdev_set_addr_lockdep_class(dev);
9966 
9967 	ret = dev_get_valid_name(net, dev, dev->name);
9968 	if (ret < 0)
9969 		goto out;
9970 
9971 	ret = -ENOMEM;
9972 	dev->name_node = netdev_name_node_head_alloc(dev);
9973 	if (!dev->name_node)
9974 		goto out;
9975 
9976 	/* Init, if this function is available */
9977 	if (dev->netdev_ops->ndo_init) {
9978 		ret = dev->netdev_ops->ndo_init(dev);
9979 		if (ret) {
9980 			if (ret > 0)
9981 				ret = -EIO;
9982 			goto err_free_name;
9983 		}
9984 	}
9985 
9986 	if (((dev->hw_features | dev->features) &
9987 	     NETIF_F_HW_VLAN_CTAG_FILTER) &&
9988 	    (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
9989 	     !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
9990 		netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
9991 		ret = -EINVAL;
9992 		goto err_uninit;
9993 	}
9994 
9995 	ret = -EBUSY;
9996 	if (!dev->ifindex)
9997 		dev->ifindex = dev_new_index(net);
9998 	else if (__dev_get_by_index(net, dev->ifindex))
9999 		goto err_uninit;
10000 
10001 	/* Transfer changeable features to wanted_features and enable
10002 	 * software offloads (GSO and GRO).
10003 	 */
10004 	dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
10005 	dev->features |= NETIF_F_SOFT_FEATURES;
10006 
10007 	if (dev->udp_tunnel_nic_info) {
10008 		dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10009 		dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10010 	}
10011 
10012 	dev->wanted_features = dev->features & dev->hw_features;
10013 
10014 	if (!(dev->flags & IFF_LOOPBACK))
10015 		dev->hw_features |= NETIF_F_NOCACHE_COPY;
10016 
10017 	/* If IPv4 TCP segmentation offload is supported we should also
10018 	 * allow the device to enable segmenting the frame with the option
10019 	 * of ignoring a static IP ID value.  This doesn't enable the
10020 	 * feature itself but allows the user to enable it later.
10021 	 */
10022 	if (dev->hw_features & NETIF_F_TSO)
10023 		dev->hw_features |= NETIF_F_TSO_MANGLEID;
10024 	if (dev->vlan_features & NETIF_F_TSO)
10025 		dev->vlan_features |= NETIF_F_TSO_MANGLEID;
10026 	if (dev->mpls_features & NETIF_F_TSO)
10027 		dev->mpls_features |= NETIF_F_TSO_MANGLEID;
10028 	if (dev->hw_enc_features & NETIF_F_TSO)
10029 		dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
10030 
10031 	/* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
10032 	 */
10033 	dev->vlan_features |= NETIF_F_HIGHDMA;
10034 
10035 	/* Make NETIF_F_SG inheritable to tunnel devices.
10036 	 */
10037 	dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
10038 
10039 	/* Make NETIF_F_SG inheritable to MPLS.
10040 	 */
10041 	dev->mpls_features |= NETIF_F_SG;
10042 
10043 	ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
10044 	ret = notifier_to_errno(ret);
10045 	if (ret)
10046 		goto err_uninit;
10047 
10048 	ret = netdev_register_kobject(dev);
10049 	if (ret) {
10050 		dev->reg_state = NETREG_UNREGISTERED;
10051 		goto err_uninit;
10052 	}
10053 	dev->reg_state = NETREG_REGISTERED;
10054 
10055 	__netdev_update_features(dev);
10056 
10057 	/*
10058 	 *	Default initial state at registry is that the
10059 	 *	device is present.
10060 	 */
10061 
10062 	set_bit(__LINK_STATE_PRESENT, &dev->state);
10063 
10064 	linkwatch_init_dev(dev);
10065 
10066 	dev_init_scheduler(dev);
10067 
10068 	dev_hold_track(dev, &dev->dev_registered_tracker, GFP_KERNEL);
10069 	list_netdevice(dev);
10070 
10071 	add_device_randomness(dev->dev_addr, dev->addr_len);
10072 
10073 	/* If the device has permanent device address, driver should
10074 	 * set dev_addr and also addr_assign_type should be set to
10075 	 * NET_ADDR_PERM (default value).
10076 	 */
10077 	if (dev->addr_assign_type == NET_ADDR_PERM)
10078 		memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
10079 
10080 	/* Notify protocols, that a new device appeared. */
10081 	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
10082 	ret = notifier_to_errno(ret);
10083 	if (ret) {
10084 		/* Expect explicit free_netdev() on failure */
10085 		dev->needs_free_netdev = false;
10086 		unregister_netdevice_queue(dev, NULL);
10087 		goto out;
10088 	}
10089 	/*
10090 	 *	Prevent userspace races by waiting until the network
10091 	 *	device is fully setup before sending notifications.
10092 	 */
10093 	if (!dev->rtnl_link_ops ||
10094 	    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10095 		rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
10096 
10097 out:
10098 	return ret;
10099 
10100 err_uninit:
10101 	if (dev->netdev_ops->ndo_uninit)
10102 		dev->netdev_ops->ndo_uninit(dev);
10103 	if (dev->priv_destructor)
10104 		dev->priv_destructor(dev);
10105 err_free_name:
10106 	netdev_name_node_free(dev->name_node);
10107 	goto out;
10108 }
10109 EXPORT_SYMBOL(register_netdevice);
10110 
10111 /**
10112  *	init_dummy_netdev	- init a dummy network device for NAPI
10113  *	@dev: device to init
10114  *
10115  *	This takes a network device structure and initialize the minimum
10116  *	amount of fields so it can be used to schedule NAPI polls without
10117  *	registering a full blown interface. This is to be used by drivers
10118  *	that need to tie several hardware interfaces to a single NAPI
10119  *	poll scheduler due to HW limitations.
10120  */
10121 int init_dummy_netdev(struct net_device *dev)
10122 {
10123 	/* Clear everything. Note we don't initialize spinlocks
10124 	 * are they aren't supposed to be taken by any of the
10125 	 * NAPI code and this dummy netdev is supposed to be
10126 	 * only ever used for NAPI polls
10127 	 */
10128 	memset(dev, 0, sizeof(struct net_device));
10129 
10130 	/* make sure we BUG if trying to hit standard
10131 	 * register/unregister code path
10132 	 */
10133 	dev->reg_state = NETREG_DUMMY;
10134 
10135 	/* NAPI wants this */
10136 	INIT_LIST_HEAD(&dev->napi_list);
10137 
10138 	/* a dummy interface is started by default */
10139 	set_bit(__LINK_STATE_PRESENT, &dev->state);
10140 	set_bit(__LINK_STATE_START, &dev->state);
10141 
10142 	/* napi_busy_loop stats accounting wants this */
10143 	dev_net_set(dev, &init_net);
10144 
10145 	/* Note : We dont allocate pcpu_refcnt for dummy devices,
10146 	 * because users of this 'device' dont need to change
10147 	 * its refcount.
10148 	 */
10149 
10150 	return 0;
10151 }
10152 EXPORT_SYMBOL_GPL(init_dummy_netdev);
10153 
10154 
10155 /**
10156  *	register_netdev	- register a network device
10157  *	@dev: device to register
10158  *
10159  *	Take a completed network device structure and add it to the kernel
10160  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10161  *	chain. 0 is returned on success. A negative errno code is returned
10162  *	on a failure to set up the device, or if the name is a duplicate.
10163  *
10164  *	This is a wrapper around register_netdevice that takes the rtnl semaphore
10165  *	and expands the device name if you passed a format string to
10166  *	alloc_netdev.
10167  */
10168 int register_netdev(struct net_device *dev)
10169 {
10170 	int err;
10171 
10172 	if (rtnl_lock_killable())
10173 		return -EINTR;
10174 	err = register_netdevice(dev);
10175 	rtnl_unlock();
10176 	return err;
10177 }
10178 EXPORT_SYMBOL(register_netdev);
10179 
10180 int netdev_refcnt_read(const struct net_device *dev)
10181 {
10182 #ifdef CONFIG_PCPU_DEV_REFCNT
10183 	int i, refcnt = 0;
10184 
10185 	for_each_possible_cpu(i)
10186 		refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
10187 	return refcnt;
10188 #else
10189 	return refcount_read(&dev->dev_refcnt);
10190 #endif
10191 }
10192 EXPORT_SYMBOL(netdev_refcnt_read);
10193 
10194 int netdev_unregister_timeout_secs __read_mostly = 10;
10195 
10196 #define WAIT_REFS_MIN_MSECS 1
10197 #define WAIT_REFS_MAX_MSECS 250
10198 /**
10199  * netdev_wait_allrefs_any - wait until all references are gone.
10200  * @list: list of net_devices to wait on
10201  *
10202  * This is called when unregistering network devices.
10203  *
10204  * Any protocol or device that holds a reference should register
10205  * for netdevice notification, and cleanup and put back the
10206  * reference if they receive an UNREGISTER event.
10207  * We can get stuck here if buggy protocols don't correctly
10208  * call dev_put.
10209  */
10210 static struct net_device *netdev_wait_allrefs_any(struct list_head *list)
10211 {
10212 	unsigned long rebroadcast_time, warning_time;
10213 	struct net_device *dev;
10214 	int wait = 0;
10215 
10216 	rebroadcast_time = warning_time = jiffies;
10217 
10218 	list_for_each_entry(dev, list, todo_list)
10219 		if (netdev_refcnt_read(dev) == 1)
10220 			return dev;
10221 
10222 	while (true) {
10223 		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
10224 			rtnl_lock();
10225 
10226 			/* Rebroadcast unregister notification */
10227 			list_for_each_entry(dev, list, todo_list)
10228 				call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10229 
10230 			__rtnl_unlock();
10231 			rcu_barrier();
10232 			rtnl_lock();
10233 
10234 			list_for_each_entry(dev, list, todo_list)
10235 				if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
10236 					     &dev->state)) {
10237 					/* We must not have linkwatch events
10238 					 * pending on unregister. If this
10239 					 * happens, we simply run the queue
10240 					 * unscheduled, resulting in a noop
10241 					 * for this device.
10242 					 */
10243 					linkwatch_run_queue();
10244 					break;
10245 				}
10246 
10247 			__rtnl_unlock();
10248 
10249 			rebroadcast_time = jiffies;
10250 		}
10251 
10252 		if (!wait) {
10253 			rcu_barrier();
10254 			wait = WAIT_REFS_MIN_MSECS;
10255 		} else {
10256 			msleep(wait);
10257 			wait = min(wait << 1, WAIT_REFS_MAX_MSECS);
10258 		}
10259 
10260 		list_for_each_entry(dev, list, todo_list)
10261 			if (netdev_refcnt_read(dev) == 1)
10262 				return dev;
10263 
10264 		if (time_after(jiffies, warning_time +
10265 			       netdev_unregister_timeout_secs * HZ)) {
10266 			list_for_each_entry(dev, list, todo_list) {
10267 				pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
10268 					 dev->name, netdev_refcnt_read(dev));
10269 				ref_tracker_dir_print(&dev->refcnt_tracker, 10);
10270 			}
10271 
10272 			warning_time = jiffies;
10273 		}
10274 	}
10275 }
10276 
10277 /* The sequence is:
10278  *
10279  *	rtnl_lock();
10280  *	...
10281  *	register_netdevice(x1);
10282  *	register_netdevice(x2);
10283  *	...
10284  *	unregister_netdevice(y1);
10285  *	unregister_netdevice(y2);
10286  *      ...
10287  *	rtnl_unlock();
10288  *	free_netdev(y1);
10289  *	free_netdev(y2);
10290  *
10291  * We are invoked by rtnl_unlock().
10292  * This allows us to deal with problems:
10293  * 1) We can delete sysfs objects which invoke hotplug
10294  *    without deadlocking with linkwatch via keventd.
10295  * 2) Since we run with the RTNL semaphore not held, we can sleep
10296  *    safely in order to wait for the netdev refcnt to drop to zero.
10297  *
10298  * We must not return until all unregister events added during
10299  * the interval the lock was held have been completed.
10300  */
10301 void netdev_run_todo(void)
10302 {
10303 	struct net_device *dev, *tmp;
10304 	struct list_head list;
10305 #ifdef CONFIG_LOCKDEP
10306 	struct list_head unlink_list;
10307 
10308 	list_replace_init(&net_unlink_list, &unlink_list);
10309 
10310 	while (!list_empty(&unlink_list)) {
10311 		struct net_device *dev = list_first_entry(&unlink_list,
10312 							  struct net_device,
10313 							  unlink_list);
10314 		list_del_init(&dev->unlink_list);
10315 		dev->nested_level = dev->lower_level - 1;
10316 	}
10317 #endif
10318 
10319 	/* Snapshot list, allow later requests */
10320 	list_replace_init(&net_todo_list, &list);
10321 
10322 	__rtnl_unlock();
10323 
10324 	/* Wait for rcu callbacks to finish before next phase */
10325 	if (!list_empty(&list))
10326 		rcu_barrier();
10327 
10328 	list_for_each_entry_safe(dev, tmp, &list, todo_list) {
10329 		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
10330 			netdev_WARN(dev, "run_todo but not unregistering\n");
10331 			list_del(&dev->todo_list);
10332 			continue;
10333 		}
10334 
10335 		dev->reg_state = NETREG_UNREGISTERED;
10336 		linkwatch_forget_dev(dev);
10337 	}
10338 
10339 	while (!list_empty(&list)) {
10340 		dev = netdev_wait_allrefs_any(&list);
10341 		list_del(&dev->todo_list);
10342 
10343 		/* paranoia */
10344 		BUG_ON(netdev_refcnt_read(dev) != 1);
10345 		BUG_ON(!list_empty(&dev->ptype_all));
10346 		BUG_ON(!list_empty(&dev->ptype_specific));
10347 		WARN_ON(rcu_access_pointer(dev->ip_ptr));
10348 		WARN_ON(rcu_access_pointer(dev->ip6_ptr));
10349 #if IS_ENABLED(CONFIG_DECNET)
10350 		WARN_ON(dev->dn_ptr);
10351 #endif
10352 		if (dev->priv_destructor)
10353 			dev->priv_destructor(dev);
10354 		if (dev->needs_free_netdev)
10355 			free_netdev(dev);
10356 
10357 		if (atomic_dec_and_test(&dev_net(dev)->dev_unreg_count))
10358 			wake_up(&netdev_unregistering_wq);
10359 
10360 		/* Free network device */
10361 		kobject_put(&dev->dev.kobj);
10362 	}
10363 }
10364 
10365 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
10366  * all the same fields in the same order as net_device_stats, with only
10367  * the type differing, but rtnl_link_stats64 may have additional fields
10368  * at the end for newer counters.
10369  */
10370 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
10371 			     const struct net_device_stats *netdev_stats)
10372 {
10373 #if BITS_PER_LONG == 64
10374 	BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
10375 	memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
10376 	/* zero out counters that only exist in rtnl_link_stats64 */
10377 	memset((char *)stats64 + sizeof(*netdev_stats), 0,
10378 	       sizeof(*stats64) - sizeof(*netdev_stats));
10379 #else
10380 	size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
10381 	const unsigned long *src = (const unsigned long *)netdev_stats;
10382 	u64 *dst = (u64 *)stats64;
10383 
10384 	BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
10385 	for (i = 0; i < n; i++)
10386 		dst[i] = src[i];
10387 	/* zero out counters that only exist in rtnl_link_stats64 */
10388 	memset((char *)stats64 + n * sizeof(u64), 0,
10389 	       sizeof(*stats64) - n * sizeof(u64));
10390 #endif
10391 }
10392 EXPORT_SYMBOL(netdev_stats_to_stats64);
10393 
10394 struct net_device_core_stats __percpu *netdev_core_stats_alloc(struct net_device *dev)
10395 {
10396 	struct net_device_core_stats __percpu *p;
10397 
10398 	p = alloc_percpu_gfp(struct net_device_core_stats,
10399 			     GFP_ATOMIC | __GFP_NOWARN);
10400 
10401 	if (p && cmpxchg(&dev->core_stats, NULL, p))
10402 		free_percpu(p);
10403 
10404 	/* This READ_ONCE() pairs with the cmpxchg() above */
10405 	return READ_ONCE(dev->core_stats);
10406 }
10407 EXPORT_SYMBOL(netdev_core_stats_alloc);
10408 
10409 /**
10410  *	dev_get_stats	- get network device statistics
10411  *	@dev: device to get statistics from
10412  *	@storage: place to store stats
10413  *
10414  *	Get network statistics from device. Return @storage.
10415  *	The device driver may provide its own method by setting
10416  *	dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
10417  *	otherwise the internal statistics structure is used.
10418  */
10419 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
10420 					struct rtnl_link_stats64 *storage)
10421 {
10422 	const struct net_device_ops *ops = dev->netdev_ops;
10423 	const struct net_device_core_stats __percpu *p;
10424 
10425 	if (ops->ndo_get_stats64) {
10426 		memset(storage, 0, sizeof(*storage));
10427 		ops->ndo_get_stats64(dev, storage);
10428 	} else if (ops->ndo_get_stats) {
10429 		netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
10430 	} else {
10431 		netdev_stats_to_stats64(storage, &dev->stats);
10432 	}
10433 
10434 	/* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
10435 	p = READ_ONCE(dev->core_stats);
10436 	if (p) {
10437 		const struct net_device_core_stats *core_stats;
10438 		int i;
10439 
10440 		for_each_possible_cpu(i) {
10441 			core_stats = per_cpu_ptr(p, i);
10442 			storage->rx_dropped += READ_ONCE(core_stats->rx_dropped);
10443 			storage->tx_dropped += READ_ONCE(core_stats->tx_dropped);
10444 			storage->rx_nohandler += READ_ONCE(core_stats->rx_nohandler);
10445 			storage->rx_otherhost_dropped += READ_ONCE(core_stats->rx_otherhost_dropped);
10446 		}
10447 	}
10448 	return storage;
10449 }
10450 EXPORT_SYMBOL(dev_get_stats);
10451 
10452 /**
10453  *	dev_fetch_sw_netstats - get per-cpu network device statistics
10454  *	@s: place to store stats
10455  *	@netstats: per-cpu network stats to read from
10456  *
10457  *	Read per-cpu network statistics and populate the related fields in @s.
10458  */
10459 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
10460 			   const struct pcpu_sw_netstats __percpu *netstats)
10461 {
10462 	int cpu;
10463 
10464 	for_each_possible_cpu(cpu) {
10465 		const struct pcpu_sw_netstats *stats;
10466 		struct pcpu_sw_netstats tmp;
10467 		unsigned int start;
10468 
10469 		stats = per_cpu_ptr(netstats, cpu);
10470 		do {
10471 			start = u64_stats_fetch_begin_irq(&stats->syncp);
10472 			tmp.rx_packets = stats->rx_packets;
10473 			tmp.rx_bytes   = stats->rx_bytes;
10474 			tmp.tx_packets = stats->tx_packets;
10475 			tmp.tx_bytes   = stats->tx_bytes;
10476 		} while (u64_stats_fetch_retry_irq(&stats->syncp, start));
10477 
10478 		s->rx_packets += tmp.rx_packets;
10479 		s->rx_bytes   += tmp.rx_bytes;
10480 		s->tx_packets += tmp.tx_packets;
10481 		s->tx_bytes   += tmp.tx_bytes;
10482 	}
10483 }
10484 EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats);
10485 
10486 /**
10487  *	dev_get_tstats64 - ndo_get_stats64 implementation
10488  *	@dev: device to get statistics from
10489  *	@s: place to store stats
10490  *
10491  *	Populate @s from dev->stats and dev->tstats. Can be used as
10492  *	ndo_get_stats64() callback.
10493  */
10494 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s)
10495 {
10496 	netdev_stats_to_stats64(s, &dev->stats);
10497 	dev_fetch_sw_netstats(s, dev->tstats);
10498 }
10499 EXPORT_SYMBOL_GPL(dev_get_tstats64);
10500 
10501 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
10502 {
10503 	struct netdev_queue *queue = dev_ingress_queue(dev);
10504 
10505 #ifdef CONFIG_NET_CLS_ACT
10506 	if (queue)
10507 		return queue;
10508 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
10509 	if (!queue)
10510 		return NULL;
10511 	netdev_init_one_queue(dev, queue, NULL);
10512 	RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
10513 	queue->qdisc_sleeping = &noop_qdisc;
10514 	rcu_assign_pointer(dev->ingress_queue, queue);
10515 #endif
10516 	return queue;
10517 }
10518 
10519 static const struct ethtool_ops default_ethtool_ops;
10520 
10521 void netdev_set_default_ethtool_ops(struct net_device *dev,
10522 				    const struct ethtool_ops *ops)
10523 {
10524 	if (dev->ethtool_ops == &default_ethtool_ops)
10525 		dev->ethtool_ops = ops;
10526 }
10527 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
10528 
10529 void netdev_freemem(struct net_device *dev)
10530 {
10531 	char *addr = (char *)dev - dev->padded;
10532 
10533 	kvfree(addr);
10534 }
10535 
10536 /**
10537  * alloc_netdev_mqs - allocate network device
10538  * @sizeof_priv: size of private data to allocate space for
10539  * @name: device name format string
10540  * @name_assign_type: origin of device name
10541  * @setup: callback to initialize device
10542  * @txqs: the number of TX subqueues to allocate
10543  * @rxqs: the number of RX subqueues to allocate
10544  *
10545  * Allocates a struct net_device with private data area for driver use
10546  * and performs basic initialization.  Also allocates subqueue structs
10547  * for each queue on the device.
10548  */
10549 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
10550 		unsigned char name_assign_type,
10551 		void (*setup)(struct net_device *),
10552 		unsigned int txqs, unsigned int rxqs)
10553 {
10554 	struct net_device *dev;
10555 	unsigned int alloc_size;
10556 	struct net_device *p;
10557 
10558 	BUG_ON(strlen(name) >= sizeof(dev->name));
10559 
10560 	if (txqs < 1) {
10561 		pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
10562 		return NULL;
10563 	}
10564 
10565 	if (rxqs < 1) {
10566 		pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
10567 		return NULL;
10568 	}
10569 
10570 	alloc_size = sizeof(struct net_device);
10571 	if (sizeof_priv) {
10572 		/* ensure 32-byte alignment of private area */
10573 		alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
10574 		alloc_size += sizeof_priv;
10575 	}
10576 	/* ensure 32-byte alignment of whole construct */
10577 	alloc_size += NETDEV_ALIGN - 1;
10578 
10579 	p = kvzalloc(alloc_size, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10580 	if (!p)
10581 		return NULL;
10582 
10583 	dev = PTR_ALIGN(p, NETDEV_ALIGN);
10584 	dev->padded = (char *)dev - (char *)p;
10585 
10586 	ref_tracker_dir_init(&dev->refcnt_tracker, 128);
10587 #ifdef CONFIG_PCPU_DEV_REFCNT
10588 	dev->pcpu_refcnt = alloc_percpu(int);
10589 	if (!dev->pcpu_refcnt)
10590 		goto free_dev;
10591 	__dev_hold(dev);
10592 #else
10593 	refcount_set(&dev->dev_refcnt, 1);
10594 #endif
10595 
10596 	if (dev_addr_init(dev))
10597 		goto free_pcpu;
10598 
10599 	dev_mc_init(dev);
10600 	dev_uc_init(dev);
10601 
10602 	dev_net_set(dev, &init_net);
10603 
10604 	dev->gso_max_size = GSO_LEGACY_MAX_SIZE;
10605 	dev->gso_max_segs = GSO_MAX_SEGS;
10606 	dev->gro_max_size = GRO_LEGACY_MAX_SIZE;
10607 	dev->tso_max_size = TSO_LEGACY_MAX_SIZE;
10608 	dev->tso_max_segs = TSO_MAX_SEGS;
10609 	dev->upper_level = 1;
10610 	dev->lower_level = 1;
10611 #ifdef CONFIG_LOCKDEP
10612 	dev->nested_level = 0;
10613 	INIT_LIST_HEAD(&dev->unlink_list);
10614 #endif
10615 
10616 	INIT_LIST_HEAD(&dev->napi_list);
10617 	INIT_LIST_HEAD(&dev->unreg_list);
10618 	INIT_LIST_HEAD(&dev->close_list);
10619 	INIT_LIST_HEAD(&dev->link_watch_list);
10620 	INIT_LIST_HEAD(&dev->adj_list.upper);
10621 	INIT_LIST_HEAD(&dev->adj_list.lower);
10622 	INIT_LIST_HEAD(&dev->ptype_all);
10623 	INIT_LIST_HEAD(&dev->ptype_specific);
10624 	INIT_LIST_HEAD(&dev->net_notifier_list);
10625 #ifdef CONFIG_NET_SCHED
10626 	hash_init(dev->qdisc_hash);
10627 #endif
10628 	dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
10629 	setup(dev);
10630 
10631 	if (!dev->tx_queue_len) {
10632 		dev->priv_flags |= IFF_NO_QUEUE;
10633 		dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
10634 	}
10635 
10636 	dev->num_tx_queues = txqs;
10637 	dev->real_num_tx_queues = txqs;
10638 	if (netif_alloc_netdev_queues(dev))
10639 		goto free_all;
10640 
10641 	dev->num_rx_queues = rxqs;
10642 	dev->real_num_rx_queues = rxqs;
10643 	if (netif_alloc_rx_queues(dev))
10644 		goto free_all;
10645 
10646 	strcpy(dev->name, name);
10647 	dev->name_assign_type = name_assign_type;
10648 	dev->group = INIT_NETDEV_GROUP;
10649 	if (!dev->ethtool_ops)
10650 		dev->ethtool_ops = &default_ethtool_ops;
10651 
10652 	nf_hook_netdev_init(dev);
10653 
10654 	return dev;
10655 
10656 free_all:
10657 	free_netdev(dev);
10658 	return NULL;
10659 
10660 free_pcpu:
10661 #ifdef CONFIG_PCPU_DEV_REFCNT
10662 	free_percpu(dev->pcpu_refcnt);
10663 free_dev:
10664 #endif
10665 	netdev_freemem(dev);
10666 	return NULL;
10667 }
10668 EXPORT_SYMBOL(alloc_netdev_mqs);
10669 
10670 /**
10671  * free_netdev - free network device
10672  * @dev: device
10673  *
10674  * This function does the last stage of destroying an allocated device
10675  * interface. The reference to the device object is released. If this
10676  * is the last reference then it will be freed.Must be called in process
10677  * context.
10678  */
10679 void free_netdev(struct net_device *dev)
10680 {
10681 	struct napi_struct *p, *n;
10682 
10683 	might_sleep();
10684 
10685 	/* When called immediately after register_netdevice() failed the unwind
10686 	 * handling may still be dismantling the device. Handle that case by
10687 	 * deferring the free.
10688 	 */
10689 	if (dev->reg_state == NETREG_UNREGISTERING) {
10690 		ASSERT_RTNL();
10691 		dev->needs_free_netdev = true;
10692 		return;
10693 	}
10694 
10695 	netif_free_tx_queues(dev);
10696 	netif_free_rx_queues(dev);
10697 
10698 	kfree(rcu_dereference_protected(dev->ingress_queue, 1));
10699 
10700 	/* Flush device addresses */
10701 	dev_addr_flush(dev);
10702 
10703 	list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
10704 		netif_napi_del(p);
10705 
10706 	ref_tracker_dir_exit(&dev->refcnt_tracker);
10707 #ifdef CONFIG_PCPU_DEV_REFCNT
10708 	free_percpu(dev->pcpu_refcnt);
10709 	dev->pcpu_refcnt = NULL;
10710 #endif
10711 	free_percpu(dev->core_stats);
10712 	dev->core_stats = NULL;
10713 	free_percpu(dev->xdp_bulkq);
10714 	dev->xdp_bulkq = NULL;
10715 
10716 	/*  Compatibility with error handling in drivers */
10717 	if (dev->reg_state == NETREG_UNINITIALIZED) {
10718 		netdev_freemem(dev);
10719 		return;
10720 	}
10721 
10722 	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
10723 	dev->reg_state = NETREG_RELEASED;
10724 
10725 	/* will free via device release */
10726 	put_device(&dev->dev);
10727 }
10728 EXPORT_SYMBOL(free_netdev);
10729 
10730 /**
10731  *	synchronize_net -  Synchronize with packet receive processing
10732  *
10733  *	Wait for packets currently being received to be done.
10734  *	Does not block later packets from starting.
10735  */
10736 void synchronize_net(void)
10737 {
10738 	might_sleep();
10739 	if (rtnl_is_locked())
10740 		synchronize_rcu_expedited();
10741 	else
10742 		synchronize_rcu();
10743 }
10744 EXPORT_SYMBOL(synchronize_net);
10745 
10746 /**
10747  *	unregister_netdevice_queue - remove device from the kernel
10748  *	@dev: device
10749  *	@head: list
10750  *
10751  *	This function shuts down a device interface and removes it
10752  *	from the kernel tables.
10753  *	If head not NULL, device is queued to be unregistered later.
10754  *
10755  *	Callers must hold the rtnl semaphore.  You may want
10756  *	unregister_netdev() instead of this.
10757  */
10758 
10759 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
10760 {
10761 	ASSERT_RTNL();
10762 
10763 	if (head) {
10764 		list_move_tail(&dev->unreg_list, head);
10765 	} else {
10766 		LIST_HEAD(single);
10767 
10768 		list_add(&dev->unreg_list, &single);
10769 		unregister_netdevice_many(&single);
10770 	}
10771 }
10772 EXPORT_SYMBOL(unregister_netdevice_queue);
10773 
10774 /**
10775  *	unregister_netdevice_many - unregister many devices
10776  *	@head: list of devices
10777  *
10778  *  Note: As most callers use a stack allocated list_head,
10779  *  we force a list_del() to make sure stack wont be corrupted later.
10780  */
10781 void unregister_netdevice_many(struct list_head *head)
10782 {
10783 	struct net_device *dev, *tmp;
10784 	LIST_HEAD(close_head);
10785 
10786 	BUG_ON(dev_boot_phase);
10787 	ASSERT_RTNL();
10788 
10789 	if (list_empty(head))
10790 		return;
10791 
10792 	list_for_each_entry_safe(dev, tmp, head, unreg_list) {
10793 		/* Some devices call without registering
10794 		 * for initialization unwind. Remove those
10795 		 * devices and proceed with the remaining.
10796 		 */
10797 		if (dev->reg_state == NETREG_UNINITIALIZED) {
10798 			pr_debug("unregister_netdevice: device %s/%p never was registered\n",
10799 				 dev->name, dev);
10800 
10801 			WARN_ON(1);
10802 			list_del(&dev->unreg_list);
10803 			continue;
10804 		}
10805 		dev->dismantle = true;
10806 		BUG_ON(dev->reg_state != NETREG_REGISTERED);
10807 	}
10808 
10809 	/* If device is running, close it first. */
10810 	list_for_each_entry(dev, head, unreg_list)
10811 		list_add_tail(&dev->close_list, &close_head);
10812 	dev_close_many(&close_head, true);
10813 
10814 	list_for_each_entry(dev, head, unreg_list) {
10815 		/* And unlink it from device chain. */
10816 		unlist_netdevice(dev);
10817 
10818 		dev->reg_state = NETREG_UNREGISTERING;
10819 	}
10820 	flush_all_backlogs();
10821 
10822 	synchronize_net();
10823 
10824 	list_for_each_entry(dev, head, unreg_list) {
10825 		struct sk_buff *skb = NULL;
10826 
10827 		/* Shutdown queueing discipline. */
10828 		dev_shutdown(dev);
10829 
10830 		dev_xdp_uninstall(dev);
10831 
10832 		netdev_offload_xstats_disable_all(dev);
10833 
10834 		/* Notify protocols, that we are about to destroy
10835 		 * this device. They should clean all the things.
10836 		 */
10837 		call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10838 
10839 		if (!dev->rtnl_link_ops ||
10840 		    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10841 			skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
10842 						     GFP_KERNEL, NULL, 0);
10843 
10844 		/*
10845 		 *	Flush the unicast and multicast chains
10846 		 */
10847 		dev_uc_flush(dev);
10848 		dev_mc_flush(dev);
10849 
10850 		netdev_name_node_alt_flush(dev);
10851 		netdev_name_node_free(dev->name_node);
10852 
10853 		if (dev->netdev_ops->ndo_uninit)
10854 			dev->netdev_ops->ndo_uninit(dev);
10855 
10856 		if (skb)
10857 			rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
10858 
10859 		/* Notifier chain MUST detach us all upper devices. */
10860 		WARN_ON(netdev_has_any_upper_dev(dev));
10861 		WARN_ON(netdev_has_any_lower_dev(dev));
10862 
10863 		/* Remove entries from kobject tree */
10864 		netdev_unregister_kobject(dev);
10865 #ifdef CONFIG_XPS
10866 		/* Remove XPS queueing entries */
10867 		netif_reset_xps_queues_gt(dev, 0);
10868 #endif
10869 	}
10870 
10871 	synchronize_net();
10872 
10873 	list_for_each_entry(dev, head, unreg_list) {
10874 		dev_put_track(dev, &dev->dev_registered_tracker);
10875 		net_set_todo(dev);
10876 	}
10877 
10878 	list_del(head);
10879 }
10880 EXPORT_SYMBOL(unregister_netdevice_many);
10881 
10882 /**
10883  *	unregister_netdev - remove device from the kernel
10884  *	@dev: device
10885  *
10886  *	This function shuts down a device interface and removes it
10887  *	from the kernel tables.
10888  *
10889  *	This is just a wrapper for unregister_netdevice that takes
10890  *	the rtnl semaphore.  In general you want to use this and not
10891  *	unregister_netdevice.
10892  */
10893 void unregister_netdev(struct net_device *dev)
10894 {
10895 	rtnl_lock();
10896 	unregister_netdevice(dev);
10897 	rtnl_unlock();
10898 }
10899 EXPORT_SYMBOL(unregister_netdev);
10900 
10901 /**
10902  *	__dev_change_net_namespace - move device to different nethost namespace
10903  *	@dev: device
10904  *	@net: network namespace
10905  *	@pat: If not NULL name pattern to try if the current device name
10906  *	      is already taken in the destination network namespace.
10907  *	@new_ifindex: If not zero, specifies device index in the target
10908  *	              namespace.
10909  *
10910  *	This function shuts down a device interface and moves it
10911  *	to a new network namespace. On success 0 is returned, on
10912  *	a failure a netagive errno code is returned.
10913  *
10914  *	Callers must hold the rtnl semaphore.
10915  */
10916 
10917 int __dev_change_net_namespace(struct net_device *dev, struct net *net,
10918 			       const char *pat, int new_ifindex)
10919 {
10920 	struct net *net_old = dev_net(dev);
10921 	int err, new_nsid;
10922 
10923 	ASSERT_RTNL();
10924 
10925 	/* Don't allow namespace local devices to be moved. */
10926 	err = -EINVAL;
10927 	if (dev->features & NETIF_F_NETNS_LOCAL)
10928 		goto out;
10929 
10930 	/* Ensure the device has been registrered */
10931 	if (dev->reg_state != NETREG_REGISTERED)
10932 		goto out;
10933 
10934 	/* Get out if there is nothing todo */
10935 	err = 0;
10936 	if (net_eq(net_old, net))
10937 		goto out;
10938 
10939 	/* Pick the destination device name, and ensure
10940 	 * we can use it in the destination network namespace.
10941 	 */
10942 	err = -EEXIST;
10943 	if (netdev_name_in_use(net, dev->name)) {
10944 		/* We get here if we can't use the current device name */
10945 		if (!pat)
10946 			goto out;
10947 		err = dev_get_valid_name(net, dev, pat);
10948 		if (err < 0)
10949 			goto out;
10950 	}
10951 
10952 	/* Check that new_ifindex isn't used yet. */
10953 	err = -EBUSY;
10954 	if (new_ifindex && __dev_get_by_index(net, new_ifindex))
10955 		goto out;
10956 
10957 	/*
10958 	 * And now a mini version of register_netdevice unregister_netdevice.
10959 	 */
10960 
10961 	/* If device is running close it first. */
10962 	dev_close(dev);
10963 
10964 	/* And unlink it from device chain */
10965 	unlist_netdevice(dev);
10966 
10967 	synchronize_net();
10968 
10969 	/* Shutdown queueing discipline. */
10970 	dev_shutdown(dev);
10971 
10972 	/* Notify protocols, that we are about to destroy
10973 	 * this device. They should clean all the things.
10974 	 *
10975 	 * Note that dev->reg_state stays at NETREG_REGISTERED.
10976 	 * This is wanted because this way 8021q and macvlan know
10977 	 * the device is just moving and can keep their slaves up.
10978 	 */
10979 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10980 	rcu_barrier();
10981 
10982 	new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
10983 	/* If there is an ifindex conflict assign a new one */
10984 	if (!new_ifindex) {
10985 		if (__dev_get_by_index(net, dev->ifindex))
10986 			new_ifindex = dev_new_index(net);
10987 		else
10988 			new_ifindex = dev->ifindex;
10989 	}
10990 
10991 	rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
10992 			    new_ifindex);
10993 
10994 	/*
10995 	 *	Flush the unicast and multicast chains
10996 	 */
10997 	dev_uc_flush(dev);
10998 	dev_mc_flush(dev);
10999 
11000 	/* Send a netdev-removed uevent to the old namespace */
11001 	kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
11002 	netdev_adjacent_del_links(dev);
11003 
11004 	/* Move per-net netdevice notifiers that are following the netdevice */
11005 	move_netdevice_notifiers_dev_net(dev, net);
11006 
11007 	/* Actually switch the network namespace */
11008 	dev_net_set(dev, net);
11009 	dev->ifindex = new_ifindex;
11010 
11011 	/* Send a netdev-add uevent to the new namespace */
11012 	kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
11013 	netdev_adjacent_add_links(dev);
11014 
11015 	/* Fixup kobjects */
11016 	err = device_rename(&dev->dev, dev->name);
11017 	WARN_ON(err);
11018 
11019 	/* Adapt owner in case owning user namespace of target network
11020 	 * namespace is different from the original one.
11021 	 */
11022 	err = netdev_change_owner(dev, net_old, net);
11023 	WARN_ON(err);
11024 
11025 	/* Add the device back in the hashes */
11026 	list_netdevice(dev);
11027 
11028 	/* Notify protocols, that a new device appeared. */
11029 	call_netdevice_notifiers(NETDEV_REGISTER, dev);
11030 
11031 	/*
11032 	 *	Prevent userspace races by waiting until the network
11033 	 *	device is fully setup before sending notifications.
11034 	 */
11035 	rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
11036 
11037 	synchronize_net();
11038 	err = 0;
11039 out:
11040 	return err;
11041 }
11042 EXPORT_SYMBOL_GPL(__dev_change_net_namespace);
11043 
11044 static int dev_cpu_dead(unsigned int oldcpu)
11045 {
11046 	struct sk_buff **list_skb;
11047 	struct sk_buff *skb;
11048 	unsigned int cpu;
11049 	struct softnet_data *sd, *oldsd, *remsd = NULL;
11050 
11051 	local_irq_disable();
11052 	cpu = smp_processor_id();
11053 	sd = &per_cpu(softnet_data, cpu);
11054 	oldsd = &per_cpu(softnet_data, oldcpu);
11055 
11056 	/* Find end of our completion_queue. */
11057 	list_skb = &sd->completion_queue;
11058 	while (*list_skb)
11059 		list_skb = &(*list_skb)->next;
11060 	/* Append completion queue from offline CPU. */
11061 	*list_skb = oldsd->completion_queue;
11062 	oldsd->completion_queue = NULL;
11063 
11064 	/* Append output queue from offline CPU. */
11065 	if (oldsd->output_queue) {
11066 		*sd->output_queue_tailp = oldsd->output_queue;
11067 		sd->output_queue_tailp = oldsd->output_queue_tailp;
11068 		oldsd->output_queue = NULL;
11069 		oldsd->output_queue_tailp = &oldsd->output_queue;
11070 	}
11071 	/* Append NAPI poll list from offline CPU, with one exception :
11072 	 * process_backlog() must be called by cpu owning percpu backlog.
11073 	 * We properly handle process_queue & input_pkt_queue later.
11074 	 */
11075 	while (!list_empty(&oldsd->poll_list)) {
11076 		struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
11077 							    struct napi_struct,
11078 							    poll_list);
11079 
11080 		list_del_init(&napi->poll_list);
11081 		if (napi->poll == process_backlog)
11082 			napi->state = 0;
11083 		else
11084 			____napi_schedule(sd, napi);
11085 	}
11086 
11087 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
11088 	local_irq_enable();
11089 
11090 #ifdef CONFIG_RPS
11091 	remsd = oldsd->rps_ipi_list;
11092 	oldsd->rps_ipi_list = NULL;
11093 #endif
11094 	/* send out pending IPI's on offline CPU */
11095 	net_rps_send_ipi(remsd);
11096 
11097 	/* Process offline CPU's input_pkt_queue */
11098 	while ((skb = __skb_dequeue(&oldsd->process_queue))) {
11099 		netif_rx(skb);
11100 		input_queue_head_incr(oldsd);
11101 	}
11102 	while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
11103 		netif_rx(skb);
11104 		input_queue_head_incr(oldsd);
11105 	}
11106 
11107 	return 0;
11108 }
11109 
11110 /**
11111  *	netdev_increment_features - increment feature set by one
11112  *	@all: current feature set
11113  *	@one: new feature set
11114  *	@mask: mask feature set
11115  *
11116  *	Computes a new feature set after adding a device with feature set
11117  *	@one to the master device with current feature set @all.  Will not
11118  *	enable anything that is off in @mask. Returns the new feature set.
11119  */
11120 netdev_features_t netdev_increment_features(netdev_features_t all,
11121 	netdev_features_t one, netdev_features_t mask)
11122 {
11123 	if (mask & NETIF_F_HW_CSUM)
11124 		mask |= NETIF_F_CSUM_MASK;
11125 	mask |= NETIF_F_VLAN_CHALLENGED;
11126 
11127 	all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
11128 	all &= one | ~NETIF_F_ALL_FOR_ALL;
11129 
11130 	/* If one device supports hw checksumming, set for all. */
11131 	if (all & NETIF_F_HW_CSUM)
11132 		all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
11133 
11134 	return all;
11135 }
11136 EXPORT_SYMBOL(netdev_increment_features);
11137 
11138 static struct hlist_head * __net_init netdev_create_hash(void)
11139 {
11140 	int i;
11141 	struct hlist_head *hash;
11142 
11143 	hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
11144 	if (hash != NULL)
11145 		for (i = 0; i < NETDEV_HASHENTRIES; i++)
11146 			INIT_HLIST_HEAD(&hash[i]);
11147 
11148 	return hash;
11149 }
11150 
11151 /* Initialize per network namespace state */
11152 static int __net_init netdev_init(struct net *net)
11153 {
11154 	BUILD_BUG_ON(GRO_HASH_BUCKETS >
11155 		     8 * sizeof_field(struct napi_struct, gro_bitmask));
11156 
11157 	INIT_LIST_HEAD(&net->dev_base_head);
11158 
11159 	net->dev_name_head = netdev_create_hash();
11160 	if (net->dev_name_head == NULL)
11161 		goto err_name;
11162 
11163 	net->dev_index_head = netdev_create_hash();
11164 	if (net->dev_index_head == NULL)
11165 		goto err_idx;
11166 
11167 	RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
11168 
11169 	return 0;
11170 
11171 err_idx:
11172 	kfree(net->dev_name_head);
11173 err_name:
11174 	return -ENOMEM;
11175 }
11176 
11177 /**
11178  *	netdev_drivername - network driver for the device
11179  *	@dev: network device
11180  *
11181  *	Determine network driver for device.
11182  */
11183 const char *netdev_drivername(const struct net_device *dev)
11184 {
11185 	const struct device_driver *driver;
11186 	const struct device *parent;
11187 	const char *empty = "";
11188 
11189 	parent = dev->dev.parent;
11190 	if (!parent)
11191 		return empty;
11192 
11193 	driver = parent->driver;
11194 	if (driver && driver->name)
11195 		return driver->name;
11196 	return empty;
11197 }
11198 
11199 static void __netdev_printk(const char *level, const struct net_device *dev,
11200 			    struct va_format *vaf)
11201 {
11202 	if (dev && dev->dev.parent) {
11203 		dev_printk_emit(level[1] - '0',
11204 				dev->dev.parent,
11205 				"%s %s %s%s: %pV",
11206 				dev_driver_string(dev->dev.parent),
11207 				dev_name(dev->dev.parent),
11208 				netdev_name(dev), netdev_reg_state(dev),
11209 				vaf);
11210 	} else if (dev) {
11211 		printk("%s%s%s: %pV",
11212 		       level, netdev_name(dev), netdev_reg_state(dev), vaf);
11213 	} else {
11214 		printk("%s(NULL net_device): %pV", level, vaf);
11215 	}
11216 }
11217 
11218 void netdev_printk(const char *level, const struct net_device *dev,
11219 		   const char *format, ...)
11220 {
11221 	struct va_format vaf;
11222 	va_list args;
11223 
11224 	va_start(args, format);
11225 
11226 	vaf.fmt = format;
11227 	vaf.va = &args;
11228 
11229 	__netdev_printk(level, dev, &vaf);
11230 
11231 	va_end(args);
11232 }
11233 EXPORT_SYMBOL(netdev_printk);
11234 
11235 #define define_netdev_printk_level(func, level)			\
11236 void func(const struct net_device *dev, const char *fmt, ...)	\
11237 {								\
11238 	struct va_format vaf;					\
11239 	va_list args;						\
11240 								\
11241 	va_start(args, fmt);					\
11242 								\
11243 	vaf.fmt = fmt;						\
11244 	vaf.va = &args;						\
11245 								\
11246 	__netdev_printk(level, dev, &vaf);			\
11247 								\
11248 	va_end(args);						\
11249 }								\
11250 EXPORT_SYMBOL(func);
11251 
11252 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
11253 define_netdev_printk_level(netdev_alert, KERN_ALERT);
11254 define_netdev_printk_level(netdev_crit, KERN_CRIT);
11255 define_netdev_printk_level(netdev_err, KERN_ERR);
11256 define_netdev_printk_level(netdev_warn, KERN_WARNING);
11257 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
11258 define_netdev_printk_level(netdev_info, KERN_INFO);
11259 
11260 static void __net_exit netdev_exit(struct net *net)
11261 {
11262 	kfree(net->dev_name_head);
11263 	kfree(net->dev_index_head);
11264 	if (net != &init_net)
11265 		WARN_ON_ONCE(!list_empty(&net->dev_base_head));
11266 }
11267 
11268 static struct pernet_operations __net_initdata netdev_net_ops = {
11269 	.init = netdev_init,
11270 	.exit = netdev_exit,
11271 };
11272 
11273 static void __net_exit default_device_exit_net(struct net *net)
11274 {
11275 	struct net_device *dev, *aux;
11276 	/*
11277 	 * Push all migratable network devices back to the
11278 	 * initial network namespace
11279 	 */
11280 	ASSERT_RTNL();
11281 	for_each_netdev_safe(net, dev, aux) {
11282 		int err;
11283 		char fb_name[IFNAMSIZ];
11284 
11285 		/* Ignore unmoveable devices (i.e. loopback) */
11286 		if (dev->features & NETIF_F_NETNS_LOCAL)
11287 			continue;
11288 
11289 		/* Leave virtual devices for the generic cleanup */
11290 		if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund)
11291 			continue;
11292 
11293 		/* Push remaining network devices to init_net */
11294 		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
11295 		if (netdev_name_in_use(&init_net, fb_name))
11296 			snprintf(fb_name, IFNAMSIZ, "dev%%d");
11297 		err = dev_change_net_namespace(dev, &init_net, fb_name);
11298 		if (err) {
11299 			pr_emerg("%s: failed to move %s to init_net: %d\n",
11300 				 __func__, dev->name, err);
11301 			BUG();
11302 		}
11303 	}
11304 }
11305 
11306 static void __net_exit default_device_exit_batch(struct list_head *net_list)
11307 {
11308 	/* At exit all network devices most be removed from a network
11309 	 * namespace.  Do this in the reverse order of registration.
11310 	 * Do this across as many network namespaces as possible to
11311 	 * improve batching efficiency.
11312 	 */
11313 	struct net_device *dev;
11314 	struct net *net;
11315 	LIST_HEAD(dev_kill_list);
11316 
11317 	rtnl_lock();
11318 	list_for_each_entry(net, net_list, exit_list) {
11319 		default_device_exit_net(net);
11320 		cond_resched();
11321 	}
11322 
11323 	list_for_each_entry(net, net_list, exit_list) {
11324 		for_each_netdev_reverse(net, dev) {
11325 			if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
11326 				dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
11327 			else
11328 				unregister_netdevice_queue(dev, &dev_kill_list);
11329 		}
11330 	}
11331 	unregister_netdevice_many(&dev_kill_list);
11332 	rtnl_unlock();
11333 }
11334 
11335 static struct pernet_operations __net_initdata default_device_ops = {
11336 	.exit_batch = default_device_exit_batch,
11337 };
11338 
11339 /*
11340  *	Initialize the DEV module. At boot time this walks the device list and
11341  *	unhooks any devices that fail to initialise (normally hardware not
11342  *	present) and leaves us with a valid list of present and active devices.
11343  *
11344  */
11345 
11346 /*
11347  *       This is called single threaded during boot, so no need
11348  *       to take the rtnl semaphore.
11349  */
11350 static int __init net_dev_init(void)
11351 {
11352 	int i, rc = -ENOMEM;
11353 
11354 	BUG_ON(!dev_boot_phase);
11355 
11356 	if (dev_proc_init())
11357 		goto out;
11358 
11359 	if (netdev_kobject_init())
11360 		goto out;
11361 
11362 	INIT_LIST_HEAD(&ptype_all);
11363 	for (i = 0; i < PTYPE_HASH_SIZE; i++)
11364 		INIT_LIST_HEAD(&ptype_base[i]);
11365 
11366 	if (register_pernet_subsys(&netdev_net_ops))
11367 		goto out;
11368 
11369 	/*
11370 	 *	Initialise the packet receive queues.
11371 	 */
11372 
11373 	for_each_possible_cpu(i) {
11374 		struct work_struct *flush = per_cpu_ptr(&flush_works, i);
11375 		struct softnet_data *sd = &per_cpu(softnet_data, i);
11376 
11377 		INIT_WORK(flush, flush_backlog);
11378 
11379 		skb_queue_head_init(&sd->input_pkt_queue);
11380 		skb_queue_head_init(&sd->process_queue);
11381 #ifdef CONFIG_XFRM_OFFLOAD
11382 		skb_queue_head_init(&sd->xfrm_backlog);
11383 #endif
11384 		INIT_LIST_HEAD(&sd->poll_list);
11385 		sd->output_queue_tailp = &sd->output_queue;
11386 #ifdef CONFIG_RPS
11387 		INIT_CSD(&sd->csd, rps_trigger_softirq, sd);
11388 		sd->cpu = i;
11389 #endif
11390 		INIT_CSD(&sd->defer_csd, trigger_rx_softirq, sd);
11391 		spin_lock_init(&sd->defer_lock);
11392 
11393 		init_gro_hash(&sd->backlog);
11394 		sd->backlog.poll = process_backlog;
11395 		sd->backlog.weight = weight_p;
11396 	}
11397 
11398 	dev_boot_phase = 0;
11399 
11400 	/* The loopback device is special if any other network devices
11401 	 * is present in a network namespace the loopback device must
11402 	 * be present. Since we now dynamically allocate and free the
11403 	 * loopback device ensure this invariant is maintained by
11404 	 * keeping the loopback device as the first device on the
11405 	 * list of network devices.  Ensuring the loopback devices
11406 	 * is the first device that appears and the last network device
11407 	 * that disappears.
11408 	 */
11409 	if (register_pernet_device(&loopback_net_ops))
11410 		goto out;
11411 
11412 	if (register_pernet_device(&default_device_ops))
11413 		goto out;
11414 
11415 	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
11416 	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
11417 
11418 	rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
11419 				       NULL, dev_cpu_dead);
11420 	WARN_ON(rc < 0);
11421 	rc = 0;
11422 out:
11423 	return rc;
11424 }
11425 
11426 subsys_initcall(net_dev_init);
11427