1 /* 2 * NET3 Protocol independent device support routines. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public License 6 * as published by the Free Software Foundation; either version 7 * 2 of the License, or (at your option) any later version. 8 * 9 * Derived from the non IP parts of dev.c 1.0.19 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Mark Evans, <evansmp@uhura.aston.ac.uk> 13 * 14 * Additional Authors: 15 * Florian la Roche <rzsfl@rz.uni-sb.de> 16 * Alan Cox <gw4pts@gw4pts.ampr.org> 17 * David Hinds <dahinds@users.sourceforge.net> 18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> 19 * Adam Sulmicki <adam@cfar.umd.edu> 20 * Pekka Riikonen <priikone@poesidon.pspt.fi> 21 * 22 * Changes: 23 * D.J. Barrow : Fixed bug where dev->refcnt gets set 24 * to 2 if register_netdev gets called 25 * before net_dev_init & also removed a 26 * few lines of code in the process. 27 * Alan Cox : device private ioctl copies fields back. 28 * Alan Cox : Transmit queue code does relevant 29 * stunts to keep the queue safe. 30 * Alan Cox : Fixed double lock. 31 * Alan Cox : Fixed promisc NULL pointer trap 32 * ???????? : Support the full private ioctl range 33 * Alan Cox : Moved ioctl permission check into 34 * drivers 35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI 36 * Alan Cox : 100 backlog just doesn't cut it when 37 * you start doing multicast video 8) 38 * Alan Cox : Rewrote net_bh and list manager. 39 * Alan Cox : Fix ETH_P_ALL echoback lengths. 40 * Alan Cox : Took out transmit every packet pass 41 * Saved a few bytes in the ioctl handler 42 * Alan Cox : Network driver sets packet type before 43 * calling netif_rx. Saves a function 44 * call a packet. 45 * Alan Cox : Hashed net_bh() 46 * Richard Kooijman: Timestamp fixes. 47 * Alan Cox : Wrong field in SIOCGIFDSTADDR 48 * Alan Cox : Device lock protection. 49 * Alan Cox : Fixed nasty side effect of device close 50 * changes. 51 * Rudi Cilibrasi : Pass the right thing to 52 * set_mac_address() 53 * Dave Miller : 32bit quantity for the device lock to 54 * make it work out on a Sparc. 55 * Bjorn Ekwall : Added KERNELD hack. 56 * Alan Cox : Cleaned up the backlog initialise. 57 * Craig Metz : SIOCGIFCONF fix if space for under 58 * 1 device. 59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there 60 * is no device open function. 61 * Andi Kleen : Fix error reporting for SIOCGIFCONF 62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF 63 * Cyrus Durgin : Cleaned for KMOD 64 * Adam Sulmicki : Bug Fix : Network Device Unload 65 * A network device unload needs to purge 66 * the backlog queue. 67 * Paul Rusty Russell : SIOCSIFNAME 68 * Pekka Riikonen : Netdev boot-time settings code 69 * Andrew Morton : Make unregister_netdevice wait 70 * indefinitely on dev->refcnt 71 * J Hadi Salim : - Backlog queue sampling 72 * - netif_rx() feedback 73 */ 74 75 #include <asm/uaccess.h> 76 #include <linux/bitops.h> 77 #include <linux/capability.h> 78 #include <linux/cpu.h> 79 #include <linux/types.h> 80 #include <linux/kernel.h> 81 #include <linux/hash.h> 82 #include <linux/slab.h> 83 #include <linux/sched.h> 84 #include <linux/mutex.h> 85 #include <linux/string.h> 86 #include <linux/mm.h> 87 #include <linux/socket.h> 88 #include <linux/sockios.h> 89 #include <linux/errno.h> 90 #include <linux/interrupt.h> 91 #include <linux/if_ether.h> 92 #include <linux/netdevice.h> 93 #include <linux/etherdevice.h> 94 #include <linux/ethtool.h> 95 #include <linux/notifier.h> 96 #include <linux/skbuff.h> 97 #include <net/net_namespace.h> 98 #include <net/sock.h> 99 #include <linux/rtnetlink.h> 100 #include <linux/stat.h> 101 #include <net/dst.h> 102 #include <net/pkt_sched.h> 103 #include <net/checksum.h> 104 #include <net/xfrm.h> 105 #include <linux/highmem.h> 106 #include <linux/init.h> 107 #include <linux/module.h> 108 #include <linux/netpoll.h> 109 #include <linux/rcupdate.h> 110 #include <linux/delay.h> 111 #include <net/iw_handler.h> 112 #include <asm/current.h> 113 #include <linux/audit.h> 114 #include <linux/dmaengine.h> 115 #include <linux/err.h> 116 #include <linux/ctype.h> 117 #include <linux/if_arp.h> 118 #include <linux/if_vlan.h> 119 #include <linux/ip.h> 120 #include <net/ip.h> 121 #include <net/mpls.h> 122 #include <linux/ipv6.h> 123 #include <linux/in.h> 124 #include <linux/jhash.h> 125 #include <linux/random.h> 126 #include <trace/events/napi.h> 127 #include <trace/events/net.h> 128 #include <trace/events/skb.h> 129 #include <linux/pci.h> 130 #include <linux/inetdevice.h> 131 #include <linux/cpu_rmap.h> 132 #include <linux/static_key.h> 133 #include <linux/hashtable.h> 134 #include <linux/vmalloc.h> 135 #include <linux/if_macvlan.h> 136 #include <linux/errqueue.h> 137 #include <linux/hrtimer.h> 138 139 #include "net-sysfs.h" 140 141 /* Instead of increasing this, you should create a hash table. */ 142 #define MAX_GRO_SKBS 8 143 144 /* This should be increased if a protocol with a bigger head is added. */ 145 #define GRO_MAX_HEAD (MAX_HEADER + 128) 146 147 static DEFINE_SPINLOCK(ptype_lock); 148 static DEFINE_SPINLOCK(offload_lock); 149 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly; 150 struct list_head ptype_all __read_mostly; /* Taps */ 151 static struct list_head offload_base __read_mostly; 152 153 static int netif_rx_internal(struct sk_buff *skb); 154 static int call_netdevice_notifiers_info(unsigned long val, 155 struct net_device *dev, 156 struct netdev_notifier_info *info); 157 158 /* 159 * The @dev_base_head list is protected by @dev_base_lock and the rtnl 160 * semaphore. 161 * 162 * Pure readers hold dev_base_lock for reading, or rcu_read_lock() 163 * 164 * Writers must hold the rtnl semaphore while they loop through the 165 * dev_base_head list, and hold dev_base_lock for writing when they do the 166 * actual updates. This allows pure readers to access the list even 167 * while a writer is preparing to update it. 168 * 169 * To put it another way, dev_base_lock is held for writing only to 170 * protect against pure readers; the rtnl semaphore provides the 171 * protection against other writers. 172 * 173 * See, for example usages, register_netdevice() and 174 * unregister_netdevice(), which must be called with the rtnl 175 * semaphore held. 176 */ 177 DEFINE_RWLOCK(dev_base_lock); 178 EXPORT_SYMBOL(dev_base_lock); 179 180 /* protects napi_hash addition/deletion and napi_gen_id */ 181 static DEFINE_SPINLOCK(napi_hash_lock); 182 183 static unsigned int napi_gen_id; 184 static DEFINE_HASHTABLE(napi_hash, 8); 185 186 static seqcount_t devnet_rename_seq; 187 188 static inline void dev_base_seq_inc(struct net *net) 189 { 190 while (++net->dev_base_seq == 0); 191 } 192 193 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name) 194 { 195 unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ)); 196 197 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)]; 198 } 199 200 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex) 201 { 202 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)]; 203 } 204 205 static inline void rps_lock(struct softnet_data *sd) 206 { 207 #ifdef CONFIG_RPS 208 spin_lock(&sd->input_pkt_queue.lock); 209 #endif 210 } 211 212 static inline void rps_unlock(struct softnet_data *sd) 213 { 214 #ifdef CONFIG_RPS 215 spin_unlock(&sd->input_pkt_queue.lock); 216 #endif 217 } 218 219 /* Device list insertion */ 220 static void list_netdevice(struct net_device *dev) 221 { 222 struct net *net = dev_net(dev); 223 224 ASSERT_RTNL(); 225 226 write_lock_bh(&dev_base_lock); 227 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head); 228 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name)); 229 hlist_add_head_rcu(&dev->index_hlist, 230 dev_index_hash(net, dev->ifindex)); 231 write_unlock_bh(&dev_base_lock); 232 233 dev_base_seq_inc(net); 234 } 235 236 /* Device list removal 237 * caller must respect a RCU grace period before freeing/reusing dev 238 */ 239 static void unlist_netdevice(struct net_device *dev) 240 { 241 ASSERT_RTNL(); 242 243 /* Unlink dev from the device chain */ 244 write_lock_bh(&dev_base_lock); 245 list_del_rcu(&dev->dev_list); 246 hlist_del_rcu(&dev->name_hlist); 247 hlist_del_rcu(&dev->index_hlist); 248 write_unlock_bh(&dev_base_lock); 249 250 dev_base_seq_inc(dev_net(dev)); 251 } 252 253 /* 254 * Our notifier list 255 */ 256 257 static RAW_NOTIFIER_HEAD(netdev_chain); 258 259 /* 260 * Device drivers call our routines to queue packets here. We empty the 261 * queue in the local softnet handler. 262 */ 263 264 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 265 EXPORT_PER_CPU_SYMBOL(softnet_data); 266 267 #ifdef CONFIG_LOCKDEP 268 /* 269 * register_netdevice() inits txq->_xmit_lock and sets lockdep class 270 * according to dev->type 271 */ 272 static const unsigned short netdev_lock_type[] = 273 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25, 274 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET, 275 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM, 276 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP, 277 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD, 278 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25, 279 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP, 280 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD, 281 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI, 282 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE, 283 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET, 284 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL, 285 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM, 286 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE, 287 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE}; 288 289 static const char *const netdev_lock_name[] = 290 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25", 291 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET", 292 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM", 293 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP", 294 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD", 295 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25", 296 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP", 297 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD", 298 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI", 299 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE", 300 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET", 301 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL", 302 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM", 303 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE", 304 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"}; 305 306 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)]; 307 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)]; 308 309 static inline unsigned short netdev_lock_pos(unsigned short dev_type) 310 { 311 int i; 312 313 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++) 314 if (netdev_lock_type[i] == dev_type) 315 return i; 316 /* the last key is used by default */ 317 return ARRAY_SIZE(netdev_lock_type) - 1; 318 } 319 320 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 321 unsigned short dev_type) 322 { 323 int i; 324 325 i = netdev_lock_pos(dev_type); 326 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i], 327 netdev_lock_name[i]); 328 } 329 330 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 331 { 332 int i; 333 334 i = netdev_lock_pos(dev->type); 335 lockdep_set_class_and_name(&dev->addr_list_lock, 336 &netdev_addr_lock_key[i], 337 netdev_lock_name[i]); 338 } 339 #else 340 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 341 unsigned short dev_type) 342 { 343 } 344 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 345 { 346 } 347 #endif 348 349 /******************************************************************************* 350 351 Protocol management and registration routines 352 353 *******************************************************************************/ 354 355 /* 356 * Add a protocol ID to the list. Now that the input handler is 357 * smarter we can dispense with all the messy stuff that used to be 358 * here. 359 * 360 * BEWARE!!! Protocol handlers, mangling input packets, 361 * MUST BE last in hash buckets and checking protocol handlers 362 * MUST start from promiscuous ptype_all chain in net_bh. 363 * It is true now, do not change it. 364 * Explanation follows: if protocol handler, mangling packet, will 365 * be the first on list, it is not able to sense, that packet 366 * is cloned and should be copied-on-write, so that it will 367 * change it and subsequent readers will get broken packet. 368 * --ANK (980803) 369 */ 370 371 static inline struct list_head *ptype_head(const struct packet_type *pt) 372 { 373 if (pt->type == htons(ETH_P_ALL)) 374 return &ptype_all; 375 else 376 return &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK]; 377 } 378 379 /** 380 * dev_add_pack - add packet handler 381 * @pt: packet type declaration 382 * 383 * Add a protocol handler to the networking stack. The passed &packet_type 384 * is linked into kernel lists and may not be freed until it has been 385 * removed from the kernel lists. 386 * 387 * This call does not sleep therefore it can not 388 * guarantee all CPU's that are in middle of receiving packets 389 * will see the new packet type (until the next received packet). 390 */ 391 392 void dev_add_pack(struct packet_type *pt) 393 { 394 struct list_head *head = ptype_head(pt); 395 396 spin_lock(&ptype_lock); 397 list_add_rcu(&pt->list, head); 398 spin_unlock(&ptype_lock); 399 } 400 EXPORT_SYMBOL(dev_add_pack); 401 402 /** 403 * __dev_remove_pack - remove packet handler 404 * @pt: packet type declaration 405 * 406 * Remove a protocol handler that was previously added to the kernel 407 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 408 * from the kernel lists and can be freed or reused once this function 409 * returns. 410 * 411 * The packet type might still be in use by receivers 412 * and must not be freed until after all the CPU's have gone 413 * through a quiescent state. 414 */ 415 void __dev_remove_pack(struct packet_type *pt) 416 { 417 struct list_head *head = ptype_head(pt); 418 struct packet_type *pt1; 419 420 spin_lock(&ptype_lock); 421 422 list_for_each_entry(pt1, head, list) { 423 if (pt == pt1) { 424 list_del_rcu(&pt->list); 425 goto out; 426 } 427 } 428 429 pr_warn("dev_remove_pack: %p not found\n", pt); 430 out: 431 spin_unlock(&ptype_lock); 432 } 433 EXPORT_SYMBOL(__dev_remove_pack); 434 435 /** 436 * dev_remove_pack - remove packet handler 437 * @pt: packet type declaration 438 * 439 * Remove a protocol handler that was previously added to the kernel 440 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 441 * from the kernel lists and can be freed or reused once this function 442 * returns. 443 * 444 * This call sleeps to guarantee that no CPU is looking at the packet 445 * type after return. 446 */ 447 void dev_remove_pack(struct packet_type *pt) 448 { 449 __dev_remove_pack(pt); 450 451 synchronize_net(); 452 } 453 EXPORT_SYMBOL(dev_remove_pack); 454 455 456 /** 457 * dev_add_offload - register offload handlers 458 * @po: protocol offload declaration 459 * 460 * Add protocol offload handlers to the networking stack. The passed 461 * &proto_offload is linked into kernel lists and may not be freed until 462 * it has been removed from the kernel lists. 463 * 464 * This call does not sleep therefore it can not 465 * guarantee all CPU's that are in middle of receiving packets 466 * will see the new offload handlers (until the next received packet). 467 */ 468 void dev_add_offload(struct packet_offload *po) 469 { 470 struct list_head *head = &offload_base; 471 472 spin_lock(&offload_lock); 473 list_add_rcu(&po->list, head); 474 spin_unlock(&offload_lock); 475 } 476 EXPORT_SYMBOL(dev_add_offload); 477 478 /** 479 * __dev_remove_offload - remove offload handler 480 * @po: packet offload declaration 481 * 482 * Remove a protocol offload handler that was previously added to the 483 * kernel offload handlers by dev_add_offload(). The passed &offload_type 484 * is removed from the kernel lists and can be freed or reused once this 485 * function returns. 486 * 487 * The packet type might still be in use by receivers 488 * and must not be freed until after all the CPU's have gone 489 * through a quiescent state. 490 */ 491 static void __dev_remove_offload(struct packet_offload *po) 492 { 493 struct list_head *head = &offload_base; 494 struct packet_offload *po1; 495 496 spin_lock(&offload_lock); 497 498 list_for_each_entry(po1, head, list) { 499 if (po == po1) { 500 list_del_rcu(&po->list); 501 goto out; 502 } 503 } 504 505 pr_warn("dev_remove_offload: %p not found\n", po); 506 out: 507 spin_unlock(&offload_lock); 508 } 509 510 /** 511 * dev_remove_offload - remove packet offload handler 512 * @po: packet offload declaration 513 * 514 * Remove a packet offload handler that was previously added to the kernel 515 * offload handlers by dev_add_offload(). The passed &offload_type is 516 * removed from the kernel lists and can be freed or reused once this 517 * function returns. 518 * 519 * This call sleeps to guarantee that no CPU is looking at the packet 520 * type after return. 521 */ 522 void dev_remove_offload(struct packet_offload *po) 523 { 524 __dev_remove_offload(po); 525 526 synchronize_net(); 527 } 528 EXPORT_SYMBOL(dev_remove_offload); 529 530 /****************************************************************************** 531 532 Device Boot-time Settings Routines 533 534 *******************************************************************************/ 535 536 /* Boot time configuration table */ 537 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX]; 538 539 /** 540 * netdev_boot_setup_add - add new setup entry 541 * @name: name of the device 542 * @map: configured settings for the device 543 * 544 * Adds new setup entry to the dev_boot_setup list. The function 545 * returns 0 on error and 1 on success. This is a generic routine to 546 * all netdevices. 547 */ 548 static int netdev_boot_setup_add(char *name, struct ifmap *map) 549 { 550 struct netdev_boot_setup *s; 551 int i; 552 553 s = dev_boot_setup; 554 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 555 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') { 556 memset(s[i].name, 0, sizeof(s[i].name)); 557 strlcpy(s[i].name, name, IFNAMSIZ); 558 memcpy(&s[i].map, map, sizeof(s[i].map)); 559 break; 560 } 561 } 562 563 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1; 564 } 565 566 /** 567 * netdev_boot_setup_check - check boot time settings 568 * @dev: the netdevice 569 * 570 * Check boot time settings for the device. 571 * The found settings are set for the device to be used 572 * later in the device probing. 573 * Returns 0 if no settings found, 1 if they are. 574 */ 575 int netdev_boot_setup_check(struct net_device *dev) 576 { 577 struct netdev_boot_setup *s = dev_boot_setup; 578 int i; 579 580 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 581 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' && 582 !strcmp(dev->name, s[i].name)) { 583 dev->irq = s[i].map.irq; 584 dev->base_addr = s[i].map.base_addr; 585 dev->mem_start = s[i].map.mem_start; 586 dev->mem_end = s[i].map.mem_end; 587 return 1; 588 } 589 } 590 return 0; 591 } 592 EXPORT_SYMBOL(netdev_boot_setup_check); 593 594 595 /** 596 * netdev_boot_base - get address from boot time settings 597 * @prefix: prefix for network device 598 * @unit: id for network device 599 * 600 * Check boot time settings for the base address of device. 601 * The found settings are set for the device to be used 602 * later in the device probing. 603 * Returns 0 if no settings found. 604 */ 605 unsigned long netdev_boot_base(const char *prefix, int unit) 606 { 607 const struct netdev_boot_setup *s = dev_boot_setup; 608 char name[IFNAMSIZ]; 609 int i; 610 611 sprintf(name, "%s%d", prefix, unit); 612 613 /* 614 * If device already registered then return base of 1 615 * to indicate not to probe for this interface 616 */ 617 if (__dev_get_by_name(&init_net, name)) 618 return 1; 619 620 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) 621 if (!strcmp(name, s[i].name)) 622 return s[i].map.base_addr; 623 return 0; 624 } 625 626 /* 627 * Saves at boot time configured settings for any netdevice. 628 */ 629 int __init netdev_boot_setup(char *str) 630 { 631 int ints[5]; 632 struct ifmap map; 633 634 str = get_options(str, ARRAY_SIZE(ints), ints); 635 if (!str || !*str) 636 return 0; 637 638 /* Save settings */ 639 memset(&map, 0, sizeof(map)); 640 if (ints[0] > 0) 641 map.irq = ints[1]; 642 if (ints[0] > 1) 643 map.base_addr = ints[2]; 644 if (ints[0] > 2) 645 map.mem_start = ints[3]; 646 if (ints[0] > 3) 647 map.mem_end = ints[4]; 648 649 /* Add new entry to the list */ 650 return netdev_boot_setup_add(str, &map); 651 } 652 653 __setup("netdev=", netdev_boot_setup); 654 655 /******************************************************************************* 656 657 Device Interface Subroutines 658 659 *******************************************************************************/ 660 661 /** 662 * __dev_get_by_name - find a device by its name 663 * @net: the applicable net namespace 664 * @name: name to find 665 * 666 * Find an interface by name. Must be called under RTNL semaphore 667 * or @dev_base_lock. If the name is found a pointer to the device 668 * is returned. If the name is not found then %NULL is returned. The 669 * reference counters are not incremented so the caller must be 670 * careful with locks. 671 */ 672 673 struct net_device *__dev_get_by_name(struct net *net, const char *name) 674 { 675 struct net_device *dev; 676 struct hlist_head *head = dev_name_hash(net, name); 677 678 hlist_for_each_entry(dev, head, name_hlist) 679 if (!strncmp(dev->name, name, IFNAMSIZ)) 680 return dev; 681 682 return NULL; 683 } 684 EXPORT_SYMBOL(__dev_get_by_name); 685 686 /** 687 * dev_get_by_name_rcu - find a device by its name 688 * @net: the applicable net namespace 689 * @name: name to find 690 * 691 * Find an interface by name. 692 * If the name is found a pointer to the device is returned. 693 * If the name is not found then %NULL is returned. 694 * The reference counters are not incremented so the caller must be 695 * careful with locks. The caller must hold RCU lock. 696 */ 697 698 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name) 699 { 700 struct net_device *dev; 701 struct hlist_head *head = dev_name_hash(net, name); 702 703 hlist_for_each_entry_rcu(dev, head, name_hlist) 704 if (!strncmp(dev->name, name, IFNAMSIZ)) 705 return dev; 706 707 return NULL; 708 } 709 EXPORT_SYMBOL(dev_get_by_name_rcu); 710 711 /** 712 * dev_get_by_name - find a device by its name 713 * @net: the applicable net namespace 714 * @name: name to find 715 * 716 * Find an interface by name. This can be called from any 717 * context and does its own locking. The returned handle has 718 * the usage count incremented and the caller must use dev_put() to 719 * release it when it is no longer needed. %NULL is returned if no 720 * matching device is found. 721 */ 722 723 struct net_device *dev_get_by_name(struct net *net, const char *name) 724 { 725 struct net_device *dev; 726 727 rcu_read_lock(); 728 dev = dev_get_by_name_rcu(net, name); 729 if (dev) 730 dev_hold(dev); 731 rcu_read_unlock(); 732 return dev; 733 } 734 EXPORT_SYMBOL(dev_get_by_name); 735 736 /** 737 * __dev_get_by_index - find a device by its ifindex 738 * @net: the applicable net namespace 739 * @ifindex: index of device 740 * 741 * Search for an interface by index. Returns %NULL if the device 742 * is not found or a pointer to the device. The device has not 743 * had its reference counter increased so the caller must be careful 744 * about locking. The caller must hold either the RTNL semaphore 745 * or @dev_base_lock. 746 */ 747 748 struct net_device *__dev_get_by_index(struct net *net, int ifindex) 749 { 750 struct net_device *dev; 751 struct hlist_head *head = dev_index_hash(net, ifindex); 752 753 hlist_for_each_entry(dev, head, index_hlist) 754 if (dev->ifindex == ifindex) 755 return dev; 756 757 return NULL; 758 } 759 EXPORT_SYMBOL(__dev_get_by_index); 760 761 /** 762 * dev_get_by_index_rcu - find a device by its ifindex 763 * @net: the applicable net namespace 764 * @ifindex: index of device 765 * 766 * Search for an interface by index. Returns %NULL if the device 767 * is not found or a pointer to the device. The device has not 768 * had its reference counter increased so the caller must be careful 769 * about locking. The caller must hold RCU lock. 770 */ 771 772 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex) 773 { 774 struct net_device *dev; 775 struct hlist_head *head = dev_index_hash(net, ifindex); 776 777 hlist_for_each_entry_rcu(dev, head, index_hlist) 778 if (dev->ifindex == ifindex) 779 return dev; 780 781 return NULL; 782 } 783 EXPORT_SYMBOL(dev_get_by_index_rcu); 784 785 786 /** 787 * dev_get_by_index - find a device by its ifindex 788 * @net: the applicable net namespace 789 * @ifindex: index of device 790 * 791 * Search for an interface by index. Returns NULL if the device 792 * is not found or a pointer to the device. The device returned has 793 * had a reference added and the pointer is safe until the user calls 794 * dev_put to indicate they have finished with it. 795 */ 796 797 struct net_device *dev_get_by_index(struct net *net, int ifindex) 798 { 799 struct net_device *dev; 800 801 rcu_read_lock(); 802 dev = dev_get_by_index_rcu(net, ifindex); 803 if (dev) 804 dev_hold(dev); 805 rcu_read_unlock(); 806 return dev; 807 } 808 EXPORT_SYMBOL(dev_get_by_index); 809 810 /** 811 * netdev_get_name - get a netdevice name, knowing its ifindex. 812 * @net: network namespace 813 * @name: a pointer to the buffer where the name will be stored. 814 * @ifindex: the ifindex of the interface to get the name from. 815 * 816 * The use of raw_seqcount_begin() and cond_resched() before 817 * retrying is required as we want to give the writers a chance 818 * to complete when CONFIG_PREEMPT is not set. 819 */ 820 int netdev_get_name(struct net *net, char *name, int ifindex) 821 { 822 struct net_device *dev; 823 unsigned int seq; 824 825 retry: 826 seq = raw_seqcount_begin(&devnet_rename_seq); 827 rcu_read_lock(); 828 dev = dev_get_by_index_rcu(net, ifindex); 829 if (!dev) { 830 rcu_read_unlock(); 831 return -ENODEV; 832 } 833 834 strcpy(name, dev->name); 835 rcu_read_unlock(); 836 if (read_seqcount_retry(&devnet_rename_seq, seq)) { 837 cond_resched(); 838 goto retry; 839 } 840 841 return 0; 842 } 843 844 /** 845 * dev_getbyhwaddr_rcu - find a device by its hardware address 846 * @net: the applicable net namespace 847 * @type: media type of device 848 * @ha: hardware address 849 * 850 * Search for an interface by MAC address. Returns NULL if the device 851 * is not found or a pointer to the device. 852 * The caller must hold RCU or RTNL. 853 * The returned device has not had its ref count increased 854 * and the caller must therefore be careful about locking 855 * 856 */ 857 858 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 859 const char *ha) 860 { 861 struct net_device *dev; 862 863 for_each_netdev_rcu(net, dev) 864 if (dev->type == type && 865 !memcmp(dev->dev_addr, ha, dev->addr_len)) 866 return dev; 867 868 return NULL; 869 } 870 EXPORT_SYMBOL(dev_getbyhwaddr_rcu); 871 872 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type) 873 { 874 struct net_device *dev; 875 876 ASSERT_RTNL(); 877 for_each_netdev(net, dev) 878 if (dev->type == type) 879 return dev; 880 881 return NULL; 882 } 883 EXPORT_SYMBOL(__dev_getfirstbyhwtype); 884 885 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type) 886 { 887 struct net_device *dev, *ret = NULL; 888 889 rcu_read_lock(); 890 for_each_netdev_rcu(net, dev) 891 if (dev->type == type) { 892 dev_hold(dev); 893 ret = dev; 894 break; 895 } 896 rcu_read_unlock(); 897 return ret; 898 } 899 EXPORT_SYMBOL(dev_getfirstbyhwtype); 900 901 /** 902 * __dev_get_by_flags - find any device with given flags 903 * @net: the applicable net namespace 904 * @if_flags: IFF_* values 905 * @mask: bitmask of bits in if_flags to check 906 * 907 * Search for any interface with the given flags. Returns NULL if a device 908 * is not found or a pointer to the device. Must be called inside 909 * rtnl_lock(), and result refcount is unchanged. 910 */ 911 912 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags, 913 unsigned short mask) 914 { 915 struct net_device *dev, *ret; 916 917 ASSERT_RTNL(); 918 919 ret = NULL; 920 for_each_netdev(net, dev) { 921 if (((dev->flags ^ if_flags) & mask) == 0) { 922 ret = dev; 923 break; 924 } 925 } 926 return ret; 927 } 928 EXPORT_SYMBOL(__dev_get_by_flags); 929 930 /** 931 * dev_valid_name - check if name is okay for network device 932 * @name: name string 933 * 934 * Network device names need to be valid file names to 935 * to allow sysfs to work. We also disallow any kind of 936 * whitespace. 937 */ 938 bool dev_valid_name(const char *name) 939 { 940 if (*name == '\0') 941 return false; 942 if (strlen(name) >= IFNAMSIZ) 943 return false; 944 if (!strcmp(name, ".") || !strcmp(name, "..")) 945 return false; 946 947 while (*name) { 948 if (*name == '/' || isspace(*name)) 949 return false; 950 name++; 951 } 952 return true; 953 } 954 EXPORT_SYMBOL(dev_valid_name); 955 956 /** 957 * __dev_alloc_name - allocate a name for a device 958 * @net: network namespace to allocate the device name in 959 * @name: name format string 960 * @buf: scratch buffer and result name string 961 * 962 * Passed a format string - eg "lt%d" it will try and find a suitable 963 * id. It scans list of devices to build up a free map, then chooses 964 * the first empty slot. The caller must hold the dev_base or rtnl lock 965 * while allocating the name and adding the device in order to avoid 966 * duplicates. 967 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 968 * Returns the number of the unit assigned or a negative errno code. 969 */ 970 971 static int __dev_alloc_name(struct net *net, const char *name, char *buf) 972 { 973 int i = 0; 974 const char *p; 975 const int max_netdevices = 8*PAGE_SIZE; 976 unsigned long *inuse; 977 struct net_device *d; 978 979 p = strnchr(name, IFNAMSIZ-1, '%'); 980 if (p) { 981 /* 982 * Verify the string as this thing may have come from 983 * the user. There must be either one "%d" and no other "%" 984 * characters. 985 */ 986 if (p[1] != 'd' || strchr(p + 2, '%')) 987 return -EINVAL; 988 989 /* Use one page as a bit array of possible slots */ 990 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC); 991 if (!inuse) 992 return -ENOMEM; 993 994 for_each_netdev(net, d) { 995 if (!sscanf(d->name, name, &i)) 996 continue; 997 if (i < 0 || i >= max_netdevices) 998 continue; 999 1000 /* avoid cases where sscanf is not exact inverse of printf */ 1001 snprintf(buf, IFNAMSIZ, name, i); 1002 if (!strncmp(buf, d->name, IFNAMSIZ)) 1003 set_bit(i, inuse); 1004 } 1005 1006 i = find_first_zero_bit(inuse, max_netdevices); 1007 free_page((unsigned long) inuse); 1008 } 1009 1010 if (buf != name) 1011 snprintf(buf, IFNAMSIZ, name, i); 1012 if (!__dev_get_by_name(net, buf)) 1013 return i; 1014 1015 /* It is possible to run out of possible slots 1016 * when the name is long and there isn't enough space left 1017 * for the digits, or if all bits are used. 1018 */ 1019 return -ENFILE; 1020 } 1021 1022 /** 1023 * dev_alloc_name - allocate a name for a device 1024 * @dev: device 1025 * @name: name format string 1026 * 1027 * Passed a format string - eg "lt%d" it will try and find a suitable 1028 * id. It scans list of devices to build up a free map, then chooses 1029 * the first empty slot. The caller must hold the dev_base or rtnl lock 1030 * while allocating the name and adding the device in order to avoid 1031 * duplicates. 1032 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 1033 * Returns the number of the unit assigned or a negative errno code. 1034 */ 1035 1036 int dev_alloc_name(struct net_device *dev, const char *name) 1037 { 1038 char buf[IFNAMSIZ]; 1039 struct net *net; 1040 int ret; 1041 1042 BUG_ON(!dev_net(dev)); 1043 net = dev_net(dev); 1044 ret = __dev_alloc_name(net, name, buf); 1045 if (ret >= 0) 1046 strlcpy(dev->name, buf, IFNAMSIZ); 1047 return ret; 1048 } 1049 EXPORT_SYMBOL(dev_alloc_name); 1050 1051 static int dev_alloc_name_ns(struct net *net, 1052 struct net_device *dev, 1053 const char *name) 1054 { 1055 char buf[IFNAMSIZ]; 1056 int ret; 1057 1058 ret = __dev_alloc_name(net, name, buf); 1059 if (ret >= 0) 1060 strlcpy(dev->name, buf, IFNAMSIZ); 1061 return ret; 1062 } 1063 1064 static int dev_get_valid_name(struct net *net, 1065 struct net_device *dev, 1066 const char *name) 1067 { 1068 BUG_ON(!net); 1069 1070 if (!dev_valid_name(name)) 1071 return -EINVAL; 1072 1073 if (strchr(name, '%')) 1074 return dev_alloc_name_ns(net, dev, name); 1075 else if (__dev_get_by_name(net, name)) 1076 return -EEXIST; 1077 else if (dev->name != name) 1078 strlcpy(dev->name, name, IFNAMSIZ); 1079 1080 return 0; 1081 } 1082 1083 /** 1084 * dev_change_name - change name of a device 1085 * @dev: device 1086 * @newname: name (or format string) must be at least IFNAMSIZ 1087 * 1088 * Change name of a device, can pass format strings "eth%d". 1089 * for wildcarding. 1090 */ 1091 int dev_change_name(struct net_device *dev, const char *newname) 1092 { 1093 unsigned char old_assign_type; 1094 char oldname[IFNAMSIZ]; 1095 int err = 0; 1096 int ret; 1097 struct net *net; 1098 1099 ASSERT_RTNL(); 1100 BUG_ON(!dev_net(dev)); 1101 1102 net = dev_net(dev); 1103 if (dev->flags & IFF_UP) 1104 return -EBUSY; 1105 1106 write_seqcount_begin(&devnet_rename_seq); 1107 1108 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) { 1109 write_seqcount_end(&devnet_rename_seq); 1110 return 0; 1111 } 1112 1113 memcpy(oldname, dev->name, IFNAMSIZ); 1114 1115 err = dev_get_valid_name(net, dev, newname); 1116 if (err < 0) { 1117 write_seqcount_end(&devnet_rename_seq); 1118 return err; 1119 } 1120 1121 if (oldname[0] && !strchr(oldname, '%')) 1122 netdev_info(dev, "renamed from %s\n", oldname); 1123 1124 old_assign_type = dev->name_assign_type; 1125 dev->name_assign_type = NET_NAME_RENAMED; 1126 1127 rollback: 1128 ret = device_rename(&dev->dev, dev->name); 1129 if (ret) { 1130 memcpy(dev->name, oldname, IFNAMSIZ); 1131 dev->name_assign_type = old_assign_type; 1132 write_seqcount_end(&devnet_rename_seq); 1133 return ret; 1134 } 1135 1136 write_seqcount_end(&devnet_rename_seq); 1137 1138 netdev_adjacent_rename_links(dev, oldname); 1139 1140 write_lock_bh(&dev_base_lock); 1141 hlist_del_rcu(&dev->name_hlist); 1142 write_unlock_bh(&dev_base_lock); 1143 1144 synchronize_rcu(); 1145 1146 write_lock_bh(&dev_base_lock); 1147 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name)); 1148 write_unlock_bh(&dev_base_lock); 1149 1150 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev); 1151 ret = notifier_to_errno(ret); 1152 1153 if (ret) { 1154 /* err >= 0 after dev_alloc_name() or stores the first errno */ 1155 if (err >= 0) { 1156 err = ret; 1157 write_seqcount_begin(&devnet_rename_seq); 1158 memcpy(dev->name, oldname, IFNAMSIZ); 1159 memcpy(oldname, newname, IFNAMSIZ); 1160 dev->name_assign_type = old_assign_type; 1161 old_assign_type = NET_NAME_RENAMED; 1162 goto rollback; 1163 } else { 1164 pr_err("%s: name change rollback failed: %d\n", 1165 dev->name, ret); 1166 } 1167 } 1168 1169 return err; 1170 } 1171 1172 /** 1173 * dev_set_alias - change ifalias of a device 1174 * @dev: device 1175 * @alias: name up to IFALIASZ 1176 * @len: limit of bytes to copy from info 1177 * 1178 * Set ifalias for a device, 1179 */ 1180 int dev_set_alias(struct net_device *dev, const char *alias, size_t len) 1181 { 1182 char *new_ifalias; 1183 1184 ASSERT_RTNL(); 1185 1186 if (len >= IFALIASZ) 1187 return -EINVAL; 1188 1189 if (!len) { 1190 kfree(dev->ifalias); 1191 dev->ifalias = NULL; 1192 return 0; 1193 } 1194 1195 new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL); 1196 if (!new_ifalias) 1197 return -ENOMEM; 1198 dev->ifalias = new_ifalias; 1199 1200 strlcpy(dev->ifalias, alias, len+1); 1201 return len; 1202 } 1203 1204 1205 /** 1206 * netdev_features_change - device changes features 1207 * @dev: device to cause notification 1208 * 1209 * Called to indicate a device has changed features. 1210 */ 1211 void netdev_features_change(struct net_device *dev) 1212 { 1213 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev); 1214 } 1215 EXPORT_SYMBOL(netdev_features_change); 1216 1217 /** 1218 * netdev_state_change - device changes state 1219 * @dev: device to cause notification 1220 * 1221 * Called to indicate a device has changed state. This function calls 1222 * the notifier chains for netdev_chain and sends a NEWLINK message 1223 * to the routing socket. 1224 */ 1225 void netdev_state_change(struct net_device *dev) 1226 { 1227 if (dev->flags & IFF_UP) { 1228 struct netdev_notifier_change_info change_info; 1229 1230 change_info.flags_changed = 0; 1231 call_netdevice_notifiers_info(NETDEV_CHANGE, dev, 1232 &change_info.info); 1233 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL); 1234 } 1235 } 1236 EXPORT_SYMBOL(netdev_state_change); 1237 1238 /** 1239 * netdev_notify_peers - notify network peers about existence of @dev 1240 * @dev: network device 1241 * 1242 * Generate traffic such that interested network peers are aware of 1243 * @dev, such as by generating a gratuitous ARP. This may be used when 1244 * a device wants to inform the rest of the network about some sort of 1245 * reconfiguration such as a failover event or virtual machine 1246 * migration. 1247 */ 1248 void netdev_notify_peers(struct net_device *dev) 1249 { 1250 rtnl_lock(); 1251 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev); 1252 rtnl_unlock(); 1253 } 1254 EXPORT_SYMBOL(netdev_notify_peers); 1255 1256 static int __dev_open(struct net_device *dev) 1257 { 1258 const struct net_device_ops *ops = dev->netdev_ops; 1259 int ret; 1260 1261 ASSERT_RTNL(); 1262 1263 if (!netif_device_present(dev)) 1264 return -ENODEV; 1265 1266 /* Block netpoll from trying to do any rx path servicing. 1267 * If we don't do this there is a chance ndo_poll_controller 1268 * or ndo_poll may be running while we open the device 1269 */ 1270 netpoll_poll_disable(dev); 1271 1272 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev); 1273 ret = notifier_to_errno(ret); 1274 if (ret) 1275 return ret; 1276 1277 set_bit(__LINK_STATE_START, &dev->state); 1278 1279 if (ops->ndo_validate_addr) 1280 ret = ops->ndo_validate_addr(dev); 1281 1282 if (!ret && ops->ndo_open) 1283 ret = ops->ndo_open(dev); 1284 1285 netpoll_poll_enable(dev); 1286 1287 if (ret) 1288 clear_bit(__LINK_STATE_START, &dev->state); 1289 else { 1290 dev->flags |= IFF_UP; 1291 dev_set_rx_mode(dev); 1292 dev_activate(dev); 1293 add_device_randomness(dev->dev_addr, dev->addr_len); 1294 } 1295 1296 return ret; 1297 } 1298 1299 /** 1300 * dev_open - prepare an interface for use. 1301 * @dev: device to open 1302 * 1303 * Takes a device from down to up state. The device's private open 1304 * function is invoked and then the multicast lists are loaded. Finally 1305 * the device is moved into the up state and a %NETDEV_UP message is 1306 * sent to the netdev notifier chain. 1307 * 1308 * Calling this function on an active interface is a nop. On a failure 1309 * a negative errno code is returned. 1310 */ 1311 int dev_open(struct net_device *dev) 1312 { 1313 int ret; 1314 1315 if (dev->flags & IFF_UP) 1316 return 0; 1317 1318 ret = __dev_open(dev); 1319 if (ret < 0) 1320 return ret; 1321 1322 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL); 1323 call_netdevice_notifiers(NETDEV_UP, dev); 1324 1325 return ret; 1326 } 1327 EXPORT_SYMBOL(dev_open); 1328 1329 static int __dev_close_many(struct list_head *head) 1330 { 1331 struct net_device *dev; 1332 1333 ASSERT_RTNL(); 1334 might_sleep(); 1335 1336 list_for_each_entry(dev, head, close_list) { 1337 /* Temporarily disable netpoll until the interface is down */ 1338 netpoll_poll_disable(dev); 1339 1340 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev); 1341 1342 clear_bit(__LINK_STATE_START, &dev->state); 1343 1344 /* Synchronize to scheduled poll. We cannot touch poll list, it 1345 * can be even on different cpu. So just clear netif_running(). 1346 * 1347 * dev->stop() will invoke napi_disable() on all of it's 1348 * napi_struct instances on this device. 1349 */ 1350 smp_mb__after_atomic(); /* Commit netif_running(). */ 1351 } 1352 1353 dev_deactivate_many(head); 1354 1355 list_for_each_entry(dev, head, close_list) { 1356 const struct net_device_ops *ops = dev->netdev_ops; 1357 1358 /* 1359 * Call the device specific close. This cannot fail. 1360 * Only if device is UP 1361 * 1362 * We allow it to be called even after a DETACH hot-plug 1363 * event. 1364 */ 1365 if (ops->ndo_stop) 1366 ops->ndo_stop(dev); 1367 1368 dev->flags &= ~IFF_UP; 1369 netpoll_poll_enable(dev); 1370 } 1371 1372 return 0; 1373 } 1374 1375 static int __dev_close(struct net_device *dev) 1376 { 1377 int retval; 1378 LIST_HEAD(single); 1379 1380 list_add(&dev->close_list, &single); 1381 retval = __dev_close_many(&single); 1382 list_del(&single); 1383 1384 return retval; 1385 } 1386 1387 static int dev_close_many(struct list_head *head) 1388 { 1389 struct net_device *dev, *tmp; 1390 1391 /* Remove the devices that don't need to be closed */ 1392 list_for_each_entry_safe(dev, tmp, head, close_list) 1393 if (!(dev->flags & IFF_UP)) 1394 list_del_init(&dev->close_list); 1395 1396 __dev_close_many(head); 1397 1398 list_for_each_entry_safe(dev, tmp, head, close_list) { 1399 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL); 1400 call_netdevice_notifiers(NETDEV_DOWN, dev); 1401 list_del_init(&dev->close_list); 1402 } 1403 1404 return 0; 1405 } 1406 1407 /** 1408 * dev_close - shutdown an interface. 1409 * @dev: device to shutdown 1410 * 1411 * This function moves an active device into down state. A 1412 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device 1413 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier 1414 * chain. 1415 */ 1416 int dev_close(struct net_device *dev) 1417 { 1418 if (dev->flags & IFF_UP) { 1419 LIST_HEAD(single); 1420 1421 list_add(&dev->close_list, &single); 1422 dev_close_many(&single); 1423 list_del(&single); 1424 } 1425 return 0; 1426 } 1427 EXPORT_SYMBOL(dev_close); 1428 1429 1430 /** 1431 * dev_disable_lro - disable Large Receive Offload on a device 1432 * @dev: device 1433 * 1434 * Disable Large Receive Offload (LRO) on a net device. Must be 1435 * called under RTNL. This is needed if received packets may be 1436 * forwarded to another interface. 1437 */ 1438 void dev_disable_lro(struct net_device *dev) 1439 { 1440 struct net_device *lower_dev; 1441 struct list_head *iter; 1442 1443 dev->wanted_features &= ~NETIF_F_LRO; 1444 netdev_update_features(dev); 1445 1446 if (unlikely(dev->features & NETIF_F_LRO)) 1447 netdev_WARN(dev, "failed to disable LRO!\n"); 1448 1449 netdev_for_each_lower_dev(dev, lower_dev, iter) 1450 dev_disable_lro(lower_dev); 1451 } 1452 EXPORT_SYMBOL(dev_disable_lro); 1453 1454 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val, 1455 struct net_device *dev) 1456 { 1457 struct netdev_notifier_info info; 1458 1459 netdev_notifier_info_init(&info, dev); 1460 return nb->notifier_call(nb, val, &info); 1461 } 1462 1463 static int dev_boot_phase = 1; 1464 1465 /** 1466 * register_netdevice_notifier - register a network notifier block 1467 * @nb: notifier 1468 * 1469 * Register a notifier to be called when network device events occur. 1470 * The notifier passed is linked into the kernel structures and must 1471 * not be reused until it has been unregistered. A negative errno code 1472 * is returned on a failure. 1473 * 1474 * When registered all registration and up events are replayed 1475 * to the new notifier to allow device to have a race free 1476 * view of the network device list. 1477 */ 1478 1479 int register_netdevice_notifier(struct notifier_block *nb) 1480 { 1481 struct net_device *dev; 1482 struct net_device *last; 1483 struct net *net; 1484 int err; 1485 1486 rtnl_lock(); 1487 err = raw_notifier_chain_register(&netdev_chain, nb); 1488 if (err) 1489 goto unlock; 1490 if (dev_boot_phase) 1491 goto unlock; 1492 for_each_net(net) { 1493 for_each_netdev(net, dev) { 1494 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev); 1495 err = notifier_to_errno(err); 1496 if (err) 1497 goto rollback; 1498 1499 if (!(dev->flags & IFF_UP)) 1500 continue; 1501 1502 call_netdevice_notifier(nb, NETDEV_UP, dev); 1503 } 1504 } 1505 1506 unlock: 1507 rtnl_unlock(); 1508 return err; 1509 1510 rollback: 1511 last = dev; 1512 for_each_net(net) { 1513 for_each_netdev(net, dev) { 1514 if (dev == last) 1515 goto outroll; 1516 1517 if (dev->flags & IFF_UP) { 1518 call_netdevice_notifier(nb, NETDEV_GOING_DOWN, 1519 dev); 1520 call_netdevice_notifier(nb, NETDEV_DOWN, dev); 1521 } 1522 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev); 1523 } 1524 } 1525 1526 outroll: 1527 raw_notifier_chain_unregister(&netdev_chain, nb); 1528 goto unlock; 1529 } 1530 EXPORT_SYMBOL(register_netdevice_notifier); 1531 1532 /** 1533 * unregister_netdevice_notifier - unregister a network notifier block 1534 * @nb: notifier 1535 * 1536 * Unregister a notifier previously registered by 1537 * register_netdevice_notifier(). The notifier is unlinked into the 1538 * kernel structures and may then be reused. A negative errno code 1539 * is returned on a failure. 1540 * 1541 * After unregistering unregister and down device events are synthesized 1542 * for all devices on the device list to the removed notifier to remove 1543 * the need for special case cleanup code. 1544 */ 1545 1546 int unregister_netdevice_notifier(struct notifier_block *nb) 1547 { 1548 struct net_device *dev; 1549 struct net *net; 1550 int err; 1551 1552 rtnl_lock(); 1553 err = raw_notifier_chain_unregister(&netdev_chain, nb); 1554 if (err) 1555 goto unlock; 1556 1557 for_each_net(net) { 1558 for_each_netdev(net, dev) { 1559 if (dev->flags & IFF_UP) { 1560 call_netdevice_notifier(nb, NETDEV_GOING_DOWN, 1561 dev); 1562 call_netdevice_notifier(nb, NETDEV_DOWN, dev); 1563 } 1564 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev); 1565 } 1566 } 1567 unlock: 1568 rtnl_unlock(); 1569 return err; 1570 } 1571 EXPORT_SYMBOL(unregister_netdevice_notifier); 1572 1573 /** 1574 * call_netdevice_notifiers_info - call all network notifier blocks 1575 * @val: value passed unmodified to notifier function 1576 * @dev: net_device pointer passed unmodified to notifier function 1577 * @info: notifier information data 1578 * 1579 * Call all network notifier blocks. Parameters and return value 1580 * are as for raw_notifier_call_chain(). 1581 */ 1582 1583 static int call_netdevice_notifiers_info(unsigned long val, 1584 struct net_device *dev, 1585 struct netdev_notifier_info *info) 1586 { 1587 ASSERT_RTNL(); 1588 netdev_notifier_info_init(info, dev); 1589 return raw_notifier_call_chain(&netdev_chain, val, info); 1590 } 1591 1592 /** 1593 * call_netdevice_notifiers - call all network notifier blocks 1594 * @val: value passed unmodified to notifier function 1595 * @dev: net_device pointer passed unmodified to notifier function 1596 * 1597 * Call all network notifier blocks. Parameters and return value 1598 * are as for raw_notifier_call_chain(). 1599 */ 1600 1601 int call_netdevice_notifiers(unsigned long val, struct net_device *dev) 1602 { 1603 struct netdev_notifier_info info; 1604 1605 return call_netdevice_notifiers_info(val, dev, &info); 1606 } 1607 EXPORT_SYMBOL(call_netdevice_notifiers); 1608 1609 static struct static_key netstamp_needed __read_mostly; 1610 #ifdef HAVE_JUMP_LABEL 1611 /* We are not allowed to call static_key_slow_dec() from irq context 1612 * If net_disable_timestamp() is called from irq context, defer the 1613 * static_key_slow_dec() calls. 1614 */ 1615 static atomic_t netstamp_needed_deferred; 1616 #endif 1617 1618 void net_enable_timestamp(void) 1619 { 1620 #ifdef HAVE_JUMP_LABEL 1621 int deferred = atomic_xchg(&netstamp_needed_deferred, 0); 1622 1623 if (deferred) { 1624 while (--deferred) 1625 static_key_slow_dec(&netstamp_needed); 1626 return; 1627 } 1628 #endif 1629 static_key_slow_inc(&netstamp_needed); 1630 } 1631 EXPORT_SYMBOL(net_enable_timestamp); 1632 1633 void net_disable_timestamp(void) 1634 { 1635 #ifdef HAVE_JUMP_LABEL 1636 if (in_interrupt()) { 1637 atomic_inc(&netstamp_needed_deferred); 1638 return; 1639 } 1640 #endif 1641 static_key_slow_dec(&netstamp_needed); 1642 } 1643 EXPORT_SYMBOL(net_disable_timestamp); 1644 1645 static inline void net_timestamp_set(struct sk_buff *skb) 1646 { 1647 skb->tstamp.tv64 = 0; 1648 if (static_key_false(&netstamp_needed)) 1649 __net_timestamp(skb); 1650 } 1651 1652 #define net_timestamp_check(COND, SKB) \ 1653 if (static_key_false(&netstamp_needed)) { \ 1654 if ((COND) && !(SKB)->tstamp.tv64) \ 1655 __net_timestamp(SKB); \ 1656 } \ 1657 1658 bool is_skb_forwardable(struct net_device *dev, struct sk_buff *skb) 1659 { 1660 unsigned int len; 1661 1662 if (!(dev->flags & IFF_UP)) 1663 return false; 1664 1665 len = dev->mtu + dev->hard_header_len + VLAN_HLEN; 1666 if (skb->len <= len) 1667 return true; 1668 1669 /* if TSO is enabled, we don't care about the length as the packet 1670 * could be forwarded without being segmented before 1671 */ 1672 if (skb_is_gso(skb)) 1673 return true; 1674 1675 return false; 1676 } 1677 EXPORT_SYMBOL_GPL(is_skb_forwardable); 1678 1679 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 1680 { 1681 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) { 1682 if (skb_copy_ubufs(skb, GFP_ATOMIC)) { 1683 atomic_long_inc(&dev->rx_dropped); 1684 kfree_skb(skb); 1685 return NET_RX_DROP; 1686 } 1687 } 1688 1689 if (unlikely(!is_skb_forwardable(dev, skb))) { 1690 atomic_long_inc(&dev->rx_dropped); 1691 kfree_skb(skb); 1692 return NET_RX_DROP; 1693 } 1694 1695 skb_scrub_packet(skb, true); 1696 skb->protocol = eth_type_trans(skb, dev); 1697 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN); 1698 1699 return 0; 1700 } 1701 EXPORT_SYMBOL_GPL(__dev_forward_skb); 1702 1703 /** 1704 * dev_forward_skb - loopback an skb to another netif 1705 * 1706 * @dev: destination network device 1707 * @skb: buffer to forward 1708 * 1709 * return values: 1710 * NET_RX_SUCCESS (no congestion) 1711 * NET_RX_DROP (packet was dropped, but freed) 1712 * 1713 * dev_forward_skb can be used for injecting an skb from the 1714 * start_xmit function of one device into the receive queue 1715 * of another device. 1716 * 1717 * The receiving device may be in another namespace, so 1718 * we have to clear all information in the skb that could 1719 * impact namespace isolation. 1720 */ 1721 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 1722 { 1723 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb); 1724 } 1725 EXPORT_SYMBOL_GPL(dev_forward_skb); 1726 1727 static inline int deliver_skb(struct sk_buff *skb, 1728 struct packet_type *pt_prev, 1729 struct net_device *orig_dev) 1730 { 1731 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC))) 1732 return -ENOMEM; 1733 atomic_inc(&skb->users); 1734 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 1735 } 1736 1737 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb) 1738 { 1739 if (!ptype->af_packet_priv || !skb->sk) 1740 return false; 1741 1742 if (ptype->id_match) 1743 return ptype->id_match(ptype, skb->sk); 1744 else if ((struct sock *)ptype->af_packet_priv == skb->sk) 1745 return true; 1746 1747 return false; 1748 } 1749 1750 /* 1751 * Support routine. Sends outgoing frames to any network 1752 * taps currently in use. 1753 */ 1754 1755 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev) 1756 { 1757 struct packet_type *ptype; 1758 struct sk_buff *skb2 = NULL; 1759 struct packet_type *pt_prev = NULL; 1760 1761 rcu_read_lock(); 1762 list_for_each_entry_rcu(ptype, &ptype_all, list) { 1763 /* Never send packets back to the socket 1764 * they originated from - MvS (miquels@drinkel.ow.org) 1765 */ 1766 if ((ptype->dev == dev || !ptype->dev) && 1767 (!skb_loop_sk(ptype, skb))) { 1768 if (pt_prev) { 1769 deliver_skb(skb2, pt_prev, skb->dev); 1770 pt_prev = ptype; 1771 continue; 1772 } 1773 1774 skb2 = skb_clone(skb, GFP_ATOMIC); 1775 if (!skb2) 1776 break; 1777 1778 net_timestamp_set(skb2); 1779 1780 /* skb->nh should be correctly 1781 set by sender, so that the second statement is 1782 just protection against buggy protocols. 1783 */ 1784 skb_reset_mac_header(skb2); 1785 1786 if (skb_network_header(skb2) < skb2->data || 1787 skb_network_header(skb2) > skb_tail_pointer(skb2)) { 1788 net_crit_ratelimited("protocol %04x is buggy, dev %s\n", 1789 ntohs(skb2->protocol), 1790 dev->name); 1791 skb_reset_network_header(skb2); 1792 } 1793 1794 skb2->transport_header = skb2->network_header; 1795 skb2->pkt_type = PACKET_OUTGOING; 1796 pt_prev = ptype; 1797 } 1798 } 1799 if (pt_prev) 1800 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev); 1801 rcu_read_unlock(); 1802 } 1803 1804 /** 1805 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change 1806 * @dev: Network device 1807 * @txq: number of queues available 1808 * 1809 * If real_num_tx_queues is changed the tc mappings may no longer be 1810 * valid. To resolve this verify the tc mapping remains valid and if 1811 * not NULL the mapping. With no priorities mapping to this 1812 * offset/count pair it will no longer be used. In the worst case TC0 1813 * is invalid nothing can be done so disable priority mappings. If is 1814 * expected that drivers will fix this mapping if they can before 1815 * calling netif_set_real_num_tx_queues. 1816 */ 1817 static void netif_setup_tc(struct net_device *dev, unsigned int txq) 1818 { 1819 int i; 1820 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 1821 1822 /* If TC0 is invalidated disable TC mapping */ 1823 if (tc->offset + tc->count > txq) { 1824 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n"); 1825 dev->num_tc = 0; 1826 return; 1827 } 1828 1829 /* Invalidated prio to tc mappings set to TC0 */ 1830 for (i = 1; i < TC_BITMASK + 1; i++) { 1831 int q = netdev_get_prio_tc_map(dev, i); 1832 1833 tc = &dev->tc_to_txq[q]; 1834 if (tc->offset + tc->count > txq) { 1835 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n", 1836 i, q); 1837 netdev_set_prio_tc_map(dev, i, 0); 1838 } 1839 } 1840 } 1841 1842 #ifdef CONFIG_XPS 1843 static DEFINE_MUTEX(xps_map_mutex); 1844 #define xmap_dereference(P) \ 1845 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex)) 1846 1847 static struct xps_map *remove_xps_queue(struct xps_dev_maps *dev_maps, 1848 int cpu, u16 index) 1849 { 1850 struct xps_map *map = NULL; 1851 int pos; 1852 1853 if (dev_maps) 1854 map = xmap_dereference(dev_maps->cpu_map[cpu]); 1855 1856 for (pos = 0; map && pos < map->len; pos++) { 1857 if (map->queues[pos] == index) { 1858 if (map->len > 1) { 1859 map->queues[pos] = map->queues[--map->len]; 1860 } else { 1861 RCU_INIT_POINTER(dev_maps->cpu_map[cpu], NULL); 1862 kfree_rcu(map, rcu); 1863 map = NULL; 1864 } 1865 break; 1866 } 1867 } 1868 1869 return map; 1870 } 1871 1872 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index) 1873 { 1874 struct xps_dev_maps *dev_maps; 1875 int cpu, i; 1876 bool active = false; 1877 1878 mutex_lock(&xps_map_mutex); 1879 dev_maps = xmap_dereference(dev->xps_maps); 1880 1881 if (!dev_maps) 1882 goto out_no_maps; 1883 1884 for_each_possible_cpu(cpu) { 1885 for (i = index; i < dev->num_tx_queues; i++) { 1886 if (!remove_xps_queue(dev_maps, cpu, i)) 1887 break; 1888 } 1889 if (i == dev->num_tx_queues) 1890 active = true; 1891 } 1892 1893 if (!active) { 1894 RCU_INIT_POINTER(dev->xps_maps, NULL); 1895 kfree_rcu(dev_maps, rcu); 1896 } 1897 1898 for (i = index; i < dev->num_tx_queues; i++) 1899 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i), 1900 NUMA_NO_NODE); 1901 1902 out_no_maps: 1903 mutex_unlock(&xps_map_mutex); 1904 } 1905 1906 static struct xps_map *expand_xps_map(struct xps_map *map, 1907 int cpu, u16 index) 1908 { 1909 struct xps_map *new_map; 1910 int alloc_len = XPS_MIN_MAP_ALLOC; 1911 int i, pos; 1912 1913 for (pos = 0; map && pos < map->len; pos++) { 1914 if (map->queues[pos] != index) 1915 continue; 1916 return map; 1917 } 1918 1919 /* Need to add queue to this CPU's existing map */ 1920 if (map) { 1921 if (pos < map->alloc_len) 1922 return map; 1923 1924 alloc_len = map->alloc_len * 2; 1925 } 1926 1927 /* Need to allocate new map to store queue on this CPU's map */ 1928 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL, 1929 cpu_to_node(cpu)); 1930 if (!new_map) 1931 return NULL; 1932 1933 for (i = 0; i < pos; i++) 1934 new_map->queues[i] = map->queues[i]; 1935 new_map->alloc_len = alloc_len; 1936 new_map->len = pos; 1937 1938 return new_map; 1939 } 1940 1941 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask, 1942 u16 index) 1943 { 1944 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL; 1945 struct xps_map *map, *new_map; 1946 int maps_sz = max_t(unsigned int, XPS_DEV_MAPS_SIZE, L1_CACHE_BYTES); 1947 int cpu, numa_node_id = -2; 1948 bool active = false; 1949 1950 mutex_lock(&xps_map_mutex); 1951 1952 dev_maps = xmap_dereference(dev->xps_maps); 1953 1954 /* allocate memory for queue storage */ 1955 for_each_online_cpu(cpu) { 1956 if (!cpumask_test_cpu(cpu, mask)) 1957 continue; 1958 1959 if (!new_dev_maps) 1960 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL); 1961 if (!new_dev_maps) { 1962 mutex_unlock(&xps_map_mutex); 1963 return -ENOMEM; 1964 } 1965 1966 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) : 1967 NULL; 1968 1969 map = expand_xps_map(map, cpu, index); 1970 if (!map) 1971 goto error; 1972 1973 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map); 1974 } 1975 1976 if (!new_dev_maps) 1977 goto out_no_new_maps; 1978 1979 for_each_possible_cpu(cpu) { 1980 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) { 1981 /* add queue to CPU maps */ 1982 int pos = 0; 1983 1984 map = xmap_dereference(new_dev_maps->cpu_map[cpu]); 1985 while ((pos < map->len) && (map->queues[pos] != index)) 1986 pos++; 1987 1988 if (pos == map->len) 1989 map->queues[map->len++] = index; 1990 #ifdef CONFIG_NUMA 1991 if (numa_node_id == -2) 1992 numa_node_id = cpu_to_node(cpu); 1993 else if (numa_node_id != cpu_to_node(cpu)) 1994 numa_node_id = -1; 1995 #endif 1996 } else if (dev_maps) { 1997 /* fill in the new device map from the old device map */ 1998 map = xmap_dereference(dev_maps->cpu_map[cpu]); 1999 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map); 2000 } 2001 2002 } 2003 2004 rcu_assign_pointer(dev->xps_maps, new_dev_maps); 2005 2006 /* Cleanup old maps */ 2007 if (dev_maps) { 2008 for_each_possible_cpu(cpu) { 2009 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]); 2010 map = xmap_dereference(dev_maps->cpu_map[cpu]); 2011 if (map && map != new_map) 2012 kfree_rcu(map, rcu); 2013 } 2014 2015 kfree_rcu(dev_maps, rcu); 2016 } 2017 2018 dev_maps = new_dev_maps; 2019 active = true; 2020 2021 out_no_new_maps: 2022 /* update Tx queue numa node */ 2023 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index), 2024 (numa_node_id >= 0) ? numa_node_id : 2025 NUMA_NO_NODE); 2026 2027 if (!dev_maps) 2028 goto out_no_maps; 2029 2030 /* removes queue from unused CPUs */ 2031 for_each_possible_cpu(cpu) { 2032 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) 2033 continue; 2034 2035 if (remove_xps_queue(dev_maps, cpu, index)) 2036 active = true; 2037 } 2038 2039 /* free map if not active */ 2040 if (!active) { 2041 RCU_INIT_POINTER(dev->xps_maps, NULL); 2042 kfree_rcu(dev_maps, rcu); 2043 } 2044 2045 out_no_maps: 2046 mutex_unlock(&xps_map_mutex); 2047 2048 return 0; 2049 error: 2050 /* remove any maps that we added */ 2051 for_each_possible_cpu(cpu) { 2052 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]); 2053 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) : 2054 NULL; 2055 if (new_map && new_map != map) 2056 kfree(new_map); 2057 } 2058 2059 mutex_unlock(&xps_map_mutex); 2060 2061 kfree(new_dev_maps); 2062 return -ENOMEM; 2063 } 2064 EXPORT_SYMBOL(netif_set_xps_queue); 2065 2066 #endif 2067 /* 2068 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues 2069 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed. 2070 */ 2071 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq) 2072 { 2073 int rc; 2074 2075 if (txq < 1 || txq > dev->num_tx_queues) 2076 return -EINVAL; 2077 2078 if (dev->reg_state == NETREG_REGISTERED || 2079 dev->reg_state == NETREG_UNREGISTERING) { 2080 ASSERT_RTNL(); 2081 2082 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues, 2083 txq); 2084 if (rc) 2085 return rc; 2086 2087 if (dev->num_tc) 2088 netif_setup_tc(dev, txq); 2089 2090 if (txq < dev->real_num_tx_queues) { 2091 qdisc_reset_all_tx_gt(dev, txq); 2092 #ifdef CONFIG_XPS 2093 netif_reset_xps_queues_gt(dev, txq); 2094 #endif 2095 } 2096 } 2097 2098 dev->real_num_tx_queues = txq; 2099 return 0; 2100 } 2101 EXPORT_SYMBOL(netif_set_real_num_tx_queues); 2102 2103 #ifdef CONFIG_SYSFS 2104 /** 2105 * netif_set_real_num_rx_queues - set actual number of RX queues used 2106 * @dev: Network device 2107 * @rxq: Actual number of RX queues 2108 * 2109 * This must be called either with the rtnl_lock held or before 2110 * registration of the net device. Returns 0 on success, or a 2111 * negative error code. If called before registration, it always 2112 * succeeds. 2113 */ 2114 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq) 2115 { 2116 int rc; 2117 2118 if (rxq < 1 || rxq > dev->num_rx_queues) 2119 return -EINVAL; 2120 2121 if (dev->reg_state == NETREG_REGISTERED) { 2122 ASSERT_RTNL(); 2123 2124 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues, 2125 rxq); 2126 if (rc) 2127 return rc; 2128 } 2129 2130 dev->real_num_rx_queues = rxq; 2131 return 0; 2132 } 2133 EXPORT_SYMBOL(netif_set_real_num_rx_queues); 2134 #endif 2135 2136 /** 2137 * netif_get_num_default_rss_queues - default number of RSS queues 2138 * 2139 * This routine should set an upper limit on the number of RSS queues 2140 * used by default by multiqueue devices. 2141 */ 2142 int netif_get_num_default_rss_queues(void) 2143 { 2144 return min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus()); 2145 } 2146 EXPORT_SYMBOL(netif_get_num_default_rss_queues); 2147 2148 static inline void __netif_reschedule(struct Qdisc *q) 2149 { 2150 struct softnet_data *sd; 2151 unsigned long flags; 2152 2153 local_irq_save(flags); 2154 sd = this_cpu_ptr(&softnet_data); 2155 q->next_sched = NULL; 2156 *sd->output_queue_tailp = q; 2157 sd->output_queue_tailp = &q->next_sched; 2158 raise_softirq_irqoff(NET_TX_SOFTIRQ); 2159 local_irq_restore(flags); 2160 } 2161 2162 void __netif_schedule(struct Qdisc *q) 2163 { 2164 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state)) 2165 __netif_reschedule(q); 2166 } 2167 EXPORT_SYMBOL(__netif_schedule); 2168 2169 struct dev_kfree_skb_cb { 2170 enum skb_free_reason reason; 2171 }; 2172 2173 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb) 2174 { 2175 return (struct dev_kfree_skb_cb *)skb->cb; 2176 } 2177 2178 void netif_schedule_queue(struct netdev_queue *txq) 2179 { 2180 rcu_read_lock(); 2181 if (!(txq->state & QUEUE_STATE_ANY_XOFF)) { 2182 struct Qdisc *q = rcu_dereference(txq->qdisc); 2183 2184 __netif_schedule(q); 2185 } 2186 rcu_read_unlock(); 2187 } 2188 EXPORT_SYMBOL(netif_schedule_queue); 2189 2190 /** 2191 * netif_wake_subqueue - allow sending packets on subqueue 2192 * @dev: network device 2193 * @queue_index: sub queue index 2194 * 2195 * Resume individual transmit queue of a device with multiple transmit queues. 2196 */ 2197 void netif_wake_subqueue(struct net_device *dev, u16 queue_index) 2198 { 2199 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 2200 2201 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &txq->state)) { 2202 struct Qdisc *q; 2203 2204 rcu_read_lock(); 2205 q = rcu_dereference(txq->qdisc); 2206 __netif_schedule(q); 2207 rcu_read_unlock(); 2208 } 2209 } 2210 EXPORT_SYMBOL(netif_wake_subqueue); 2211 2212 void netif_tx_wake_queue(struct netdev_queue *dev_queue) 2213 { 2214 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) { 2215 struct Qdisc *q; 2216 2217 rcu_read_lock(); 2218 q = rcu_dereference(dev_queue->qdisc); 2219 __netif_schedule(q); 2220 rcu_read_unlock(); 2221 } 2222 } 2223 EXPORT_SYMBOL(netif_tx_wake_queue); 2224 2225 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason) 2226 { 2227 unsigned long flags; 2228 2229 if (likely(atomic_read(&skb->users) == 1)) { 2230 smp_rmb(); 2231 atomic_set(&skb->users, 0); 2232 } else if (likely(!atomic_dec_and_test(&skb->users))) { 2233 return; 2234 } 2235 get_kfree_skb_cb(skb)->reason = reason; 2236 local_irq_save(flags); 2237 skb->next = __this_cpu_read(softnet_data.completion_queue); 2238 __this_cpu_write(softnet_data.completion_queue, skb); 2239 raise_softirq_irqoff(NET_TX_SOFTIRQ); 2240 local_irq_restore(flags); 2241 } 2242 EXPORT_SYMBOL(__dev_kfree_skb_irq); 2243 2244 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason) 2245 { 2246 if (in_irq() || irqs_disabled()) 2247 __dev_kfree_skb_irq(skb, reason); 2248 else 2249 dev_kfree_skb(skb); 2250 } 2251 EXPORT_SYMBOL(__dev_kfree_skb_any); 2252 2253 2254 /** 2255 * netif_device_detach - mark device as removed 2256 * @dev: network device 2257 * 2258 * Mark device as removed from system and therefore no longer available. 2259 */ 2260 void netif_device_detach(struct net_device *dev) 2261 { 2262 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) && 2263 netif_running(dev)) { 2264 netif_tx_stop_all_queues(dev); 2265 } 2266 } 2267 EXPORT_SYMBOL(netif_device_detach); 2268 2269 /** 2270 * netif_device_attach - mark device as attached 2271 * @dev: network device 2272 * 2273 * Mark device as attached from system and restart if needed. 2274 */ 2275 void netif_device_attach(struct net_device *dev) 2276 { 2277 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) && 2278 netif_running(dev)) { 2279 netif_tx_wake_all_queues(dev); 2280 __netdev_watchdog_up(dev); 2281 } 2282 } 2283 EXPORT_SYMBOL(netif_device_attach); 2284 2285 static void skb_warn_bad_offload(const struct sk_buff *skb) 2286 { 2287 static const netdev_features_t null_features = 0; 2288 struct net_device *dev = skb->dev; 2289 const char *driver = ""; 2290 2291 if (!net_ratelimit()) 2292 return; 2293 2294 if (dev && dev->dev.parent) 2295 driver = dev_driver_string(dev->dev.parent); 2296 2297 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d " 2298 "gso_type=%d ip_summed=%d\n", 2299 driver, dev ? &dev->features : &null_features, 2300 skb->sk ? &skb->sk->sk_route_caps : &null_features, 2301 skb->len, skb->data_len, skb_shinfo(skb)->gso_size, 2302 skb_shinfo(skb)->gso_type, skb->ip_summed); 2303 } 2304 2305 /* 2306 * Invalidate hardware checksum when packet is to be mangled, and 2307 * complete checksum manually on outgoing path. 2308 */ 2309 int skb_checksum_help(struct sk_buff *skb) 2310 { 2311 __wsum csum; 2312 int ret = 0, offset; 2313 2314 if (skb->ip_summed == CHECKSUM_COMPLETE) 2315 goto out_set_summed; 2316 2317 if (unlikely(skb_shinfo(skb)->gso_size)) { 2318 skb_warn_bad_offload(skb); 2319 return -EINVAL; 2320 } 2321 2322 /* Before computing a checksum, we should make sure no frag could 2323 * be modified by an external entity : checksum could be wrong. 2324 */ 2325 if (skb_has_shared_frag(skb)) { 2326 ret = __skb_linearize(skb); 2327 if (ret) 2328 goto out; 2329 } 2330 2331 offset = skb_checksum_start_offset(skb); 2332 BUG_ON(offset >= skb_headlen(skb)); 2333 csum = skb_checksum(skb, offset, skb->len - offset, 0); 2334 2335 offset += skb->csum_offset; 2336 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb)); 2337 2338 if (skb_cloned(skb) && 2339 !skb_clone_writable(skb, offset + sizeof(__sum16))) { 2340 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 2341 if (ret) 2342 goto out; 2343 } 2344 2345 *(__sum16 *)(skb->data + offset) = csum_fold(csum); 2346 out_set_summed: 2347 skb->ip_summed = CHECKSUM_NONE; 2348 out: 2349 return ret; 2350 } 2351 EXPORT_SYMBOL(skb_checksum_help); 2352 2353 __be16 skb_network_protocol(struct sk_buff *skb, int *depth) 2354 { 2355 unsigned int vlan_depth = skb->mac_len; 2356 __be16 type = skb->protocol; 2357 2358 /* Tunnel gso handlers can set protocol to ethernet. */ 2359 if (type == htons(ETH_P_TEB)) { 2360 struct ethhdr *eth; 2361 2362 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr)))) 2363 return 0; 2364 2365 eth = (struct ethhdr *)skb_mac_header(skb); 2366 type = eth->h_proto; 2367 } 2368 2369 /* if skb->protocol is 802.1Q/AD then the header should already be 2370 * present at mac_len - VLAN_HLEN (if mac_len > 0), or at 2371 * ETH_HLEN otherwise 2372 */ 2373 if (type == htons(ETH_P_8021Q) || type == htons(ETH_P_8021AD)) { 2374 if (vlan_depth) { 2375 if (WARN_ON(vlan_depth < VLAN_HLEN)) 2376 return 0; 2377 vlan_depth -= VLAN_HLEN; 2378 } else { 2379 vlan_depth = ETH_HLEN; 2380 } 2381 do { 2382 struct vlan_hdr *vh; 2383 2384 if (unlikely(!pskb_may_pull(skb, 2385 vlan_depth + VLAN_HLEN))) 2386 return 0; 2387 2388 vh = (struct vlan_hdr *)(skb->data + vlan_depth); 2389 type = vh->h_vlan_encapsulated_proto; 2390 vlan_depth += VLAN_HLEN; 2391 } while (type == htons(ETH_P_8021Q) || 2392 type == htons(ETH_P_8021AD)); 2393 } 2394 2395 *depth = vlan_depth; 2396 2397 return type; 2398 } 2399 2400 /** 2401 * skb_mac_gso_segment - mac layer segmentation handler. 2402 * @skb: buffer to segment 2403 * @features: features for the output path (see dev->features) 2404 */ 2405 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb, 2406 netdev_features_t features) 2407 { 2408 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT); 2409 struct packet_offload *ptype; 2410 int vlan_depth = skb->mac_len; 2411 __be16 type = skb_network_protocol(skb, &vlan_depth); 2412 2413 if (unlikely(!type)) 2414 return ERR_PTR(-EINVAL); 2415 2416 __skb_pull(skb, vlan_depth); 2417 2418 rcu_read_lock(); 2419 list_for_each_entry_rcu(ptype, &offload_base, list) { 2420 if (ptype->type == type && ptype->callbacks.gso_segment) { 2421 segs = ptype->callbacks.gso_segment(skb, features); 2422 break; 2423 } 2424 } 2425 rcu_read_unlock(); 2426 2427 __skb_push(skb, skb->data - skb_mac_header(skb)); 2428 2429 return segs; 2430 } 2431 EXPORT_SYMBOL(skb_mac_gso_segment); 2432 2433 2434 /* openvswitch calls this on rx path, so we need a different check. 2435 */ 2436 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path) 2437 { 2438 if (tx_path) 2439 return skb->ip_summed != CHECKSUM_PARTIAL; 2440 else 2441 return skb->ip_summed == CHECKSUM_NONE; 2442 } 2443 2444 /** 2445 * __skb_gso_segment - Perform segmentation on skb. 2446 * @skb: buffer to segment 2447 * @features: features for the output path (see dev->features) 2448 * @tx_path: whether it is called in TX path 2449 * 2450 * This function segments the given skb and returns a list of segments. 2451 * 2452 * It may return NULL if the skb requires no segmentation. This is 2453 * only possible when GSO is used for verifying header integrity. 2454 */ 2455 struct sk_buff *__skb_gso_segment(struct sk_buff *skb, 2456 netdev_features_t features, bool tx_path) 2457 { 2458 if (unlikely(skb_needs_check(skb, tx_path))) { 2459 int err; 2460 2461 skb_warn_bad_offload(skb); 2462 2463 err = skb_cow_head(skb, 0); 2464 if (err < 0) 2465 return ERR_PTR(err); 2466 } 2467 2468 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb); 2469 SKB_GSO_CB(skb)->encap_level = 0; 2470 2471 skb_reset_mac_header(skb); 2472 skb_reset_mac_len(skb); 2473 2474 return skb_mac_gso_segment(skb, features); 2475 } 2476 EXPORT_SYMBOL(__skb_gso_segment); 2477 2478 /* Take action when hardware reception checksum errors are detected. */ 2479 #ifdef CONFIG_BUG 2480 void netdev_rx_csum_fault(struct net_device *dev) 2481 { 2482 if (net_ratelimit()) { 2483 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>"); 2484 dump_stack(); 2485 } 2486 } 2487 EXPORT_SYMBOL(netdev_rx_csum_fault); 2488 #endif 2489 2490 /* Actually, we should eliminate this check as soon as we know, that: 2491 * 1. IOMMU is present and allows to map all the memory. 2492 * 2. No high memory really exists on this machine. 2493 */ 2494 2495 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb) 2496 { 2497 #ifdef CONFIG_HIGHMEM 2498 int i; 2499 if (!(dev->features & NETIF_F_HIGHDMA)) { 2500 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2501 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2502 if (PageHighMem(skb_frag_page(frag))) 2503 return 1; 2504 } 2505 } 2506 2507 if (PCI_DMA_BUS_IS_PHYS) { 2508 struct device *pdev = dev->dev.parent; 2509 2510 if (!pdev) 2511 return 0; 2512 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2513 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2514 dma_addr_t addr = page_to_phys(skb_frag_page(frag)); 2515 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask) 2516 return 1; 2517 } 2518 } 2519 #endif 2520 return 0; 2521 } 2522 2523 /* If MPLS offload request, verify we are testing hardware MPLS features 2524 * instead of standard features for the netdev. 2525 */ 2526 #if IS_ENABLED(CONFIG_NET_MPLS_GSO) 2527 static netdev_features_t net_mpls_features(struct sk_buff *skb, 2528 netdev_features_t features, 2529 __be16 type) 2530 { 2531 if (eth_p_mpls(type)) 2532 features &= skb->dev->mpls_features; 2533 2534 return features; 2535 } 2536 #else 2537 static netdev_features_t net_mpls_features(struct sk_buff *skb, 2538 netdev_features_t features, 2539 __be16 type) 2540 { 2541 return features; 2542 } 2543 #endif 2544 2545 static netdev_features_t harmonize_features(struct sk_buff *skb, 2546 netdev_features_t features) 2547 { 2548 int tmp; 2549 __be16 type; 2550 2551 type = skb_network_protocol(skb, &tmp); 2552 features = net_mpls_features(skb, features, type); 2553 2554 if (skb->ip_summed != CHECKSUM_NONE && 2555 !can_checksum_protocol(features, type)) { 2556 features &= ~NETIF_F_ALL_CSUM; 2557 } else if (illegal_highdma(skb->dev, skb)) { 2558 features &= ~NETIF_F_SG; 2559 } 2560 2561 return features; 2562 } 2563 2564 netdev_features_t netif_skb_features(struct sk_buff *skb) 2565 { 2566 struct net_device *dev = skb->dev; 2567 netdev_features_t features = dev->features; 2568 u16 gso_segs = skb_shinfo(skb)->gso_segs; 2569 __be16 protocol = skb->protocol; 2570 2571 if (gso_segs > dev->gso_max_segs || gso_segs < dev->gso_min_segs) 2572 features &= ~NETIF_F_GSO_MASK; 2573 2574 /* If encapsulation offload request, verify we are testing 2575 * hardware encapsulation features instead of standard 2576 * features for the netdev 2577 */ 2578 if (skb->encapsulation) 2579 features &= dev->hw_enc_features; 2580 2581 if (!vlan_tx_tag_present(skb)) { 2582 if (unlikely(protocol == htons(ETH_P_8021Q) || 2583 protocol == htons(ETH_P_8021AD))) { 2584 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data; 2585 protocol = veh->h_vlan_encapsulated_proto; 2586 } else { 2587 goto finalize; 2588 } 2589 } 2590 2591 features = netdev_intersect_features(features, 2592 dev->vlan_features | 2593 NETIF_F_HW_VLAN_CTAG_TX | 2594 NETIF_F_HW_VLAN_STAG_TX); 2595 2596 if (protocol == htons(ETH_P_8021Q) || protocol == htons(ETH_P_8021AD)) 2597 features = netdev_intersect_features(features, 2598 NETIF_F_SG | 2599 NETIF_F_HIGHDMA | 2600 NETIF_F_FRAGLIST | 2601 NETIF_F_GEN_CSUM | 2602 NETIF_F_HW_VLAN_CTAG_TX | 2603 NETIF_F_HW_VLAN_STAG_TX); 2604 2605 finalize: 2606 if (dev->netdev_ops->ndo_features_check) 2607 features &= dev->netdev_ops->ndo_features_check(skb, dev, 2608 features); 2609 2610 return harmonize_features(skb, features); 2611 } 2612 EXPORT_SYMBOL(netif_skb_features); 2613 2614 static int xmit_one(struct sk_buff *skb, struct net_device *dev, 2615 struct netdev_queue *txq, bool more) 2616 { 2617 unsigned int len; 2618 int rc; 2619 2620 if (!list_empty(&ptype_all)) 2621 dev_queue_xmit_nit(skb, dev); 2622 2623 len = skb->len; 2624 trace_net_dev_start_xmit(skb, dev); 2625 rc = netdev_start_xmit(skb, dev, txq, more); 2626 trace_net_dev_xmit(skb, rc, dev, len); 2627 2628 return rc; 2629 } 2630 2631 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev, 2632 struct netdev_queue *txq, int *ret) 2633 { 2634 struct sk_buff *skb = first; 2635 int rc = NETDEV_TX_OK; 2636 2637 while (skb) { 2638 struct sk_buff *next = skb->next; 2639 2640 skb->next = NULL; 2641 rc = xmit_one(skb, dev, txq, next != NULL); 2642 if (unlikely(!dev_xmit_complete(rc))) { 2643 skb->next = next; 2644 goto out; 2645 } 2646 2647 skb = next; 2648 if (netif_xmit_stopped(txq) && skb) { 2649 rc = NETDEV_TX_BUSY; 2650 break; 2651 } 2652 } 2653 2654 out: 2655 *ret = rc; 2656 return skb; 2657 } 2658 2659 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb, 2660 netdev_features_t features) 2661 { 2662 if (vlan_tx_tag_present(skb) && 2663 !vlan_hw_offload_capable(features, skb->vlan_proto)) 2664 skb = __vlan_hwaccel_push_inside(skb); 2665 return skb; 2666 } 2667 2668 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev) 2669 { 2670 netdev_features_t features; 2671 2672 if (skb->next) 2673 return skb; 2674 2675 features = netif_skb_features(skb); 2676 skb = validate_xmit_vlan(skb, features); 2677 if (unlikely(!skb)) 2678 goto out_null; 2679 2680 if (netif_needs_gso(dev, skb, features)) { 2681 struct sk_buff *segs; 2682 2683 segs = skb_gso_segment(skb, features); 2684 if (IS_ERR(segs)) { 2685 goto out_kfree_skb; 2686 } else if (segs) { 2687 consume_skb(skb); 2688 skb = segs; 2689 } 2690 } else { 2691 if (skb_needs_linearize(skb, features) && 2692 __skb_linearize(skb)) 2693 goto out_kfree_skb; 2694 2695 /* If packet is not checksummed and device does not 2696 * support checksumming for this protocol, complete 2697 * checksumming here. 2698 */ 2699 if (skb->ip_summed == CHECKSUM_PARTIAL) { 2700 if (skb->encapsulation) 2701 skb_set_inner_transport_header(skb, 2702 skb_checksum_start_offset(skb)); 2703 else 2704 skb_set_transport_header(skb, 2705 skb_checksum_start_offset(skb)); 2706 if (!(features & NETIF_F_ALL_CSUM) && 2707 skb_checksum_help(skb)) 2708 goto out_kfree_skb; 2709 } 2710 } 2711 2712 return skb; 2713 2714 out_kfree_skb: 2715 kfree_skb(skb); 2716 out_null: 2717 return NULL; 2718 } 2719 2720 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev) 2721 { 2722 struct sk_buff *next, *head = NULL, *tail; 2723 2724 for (; skb != NULL; skb = next) { 2725 next = skb->next; 2726 skb->next = NULL; 2727 2728 /* in case skb wont be segmented, point to itself */ 2729 skb->prev = skb; 2730 2731 skb = validate_xmit_skb(skb, dev); 2732 if (!skb) 2733 continue; 2734 2735 if (!head) 2736 head = skb; 2737 else 2738 tail->next = skb; 2739 /* If skb was segmented, skb->prev points to 2740 * the last segment. If not, it still contains skb. 2741 */ 2742 tail = skb->prev; 2743 } 2744 return head; 2745 } 2746 2747 static void qdisc_pkt_len_init(struct sk_buff *skb) 2748 { 2749 const struct skb_shared_info *shinfo = skb_shinfo(skb); 2750 2751 qdisc_skb_cb(skb)->pkt_len = skb->len; 2752 2753 /* To get more precise estimation of bytes sent on wire, 2754 * we add to pkt_len the headers size of all segments 2755 */ 2756 if (shinfo->gso_size) { 2757 unsigned int hdr_len; 2758 u16 gso_segs = shinfo->gso_segs; 2759 2760 /* mac layer + network layer */ 2761 hdr_len = skb_transport_header(skb) - skb_mac_header(skb); 2762 2763 /* + transport layer */ 2764 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) 2765 hdr_len += tcp_hdrlen(skb); 2766 else 2767 hdr_len += sizeof(struct udphdr); 2768 2769 if (shinfo->gso_type & SKB_GSO_DODGY) 2770 gso_segs = DIV_ROUND_UP(skb->len - hdr_len, 2771 shinfo->gso_size); 2772 2773 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len; 2774 } 2775 } 2776 2777 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q, 2778 struct net_device *dev, 2779 struct netdev_queue *txq) 2780 { 2781 spinlock_t *root_lock = qdisc_lock(q); 2782 bool contended; 2783 int rc; 2784 2785 qdisc_pkt_len_init(skb); 2786 qdisc_calculate_pkt_len(skb, q); 2787 /* 2788 * Heuristic to force contended enqueues to serialize on a 2789 * separate lock before trying to get qdisc main lock. 2790 * This permits __QDISC___STATE_RUNNING owner to get the lock more 2791 * often and dequeue packets faster. 2792 */ 2793 contended = qdisc_is_running(q); 2794 if (unlikely(contended)) 2795 spin_lock(&q->busylock); 2796 2797 spin_lock(root_lock); 2798 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) { 2799 kfree_skb(skb); 2800 rc = NET_XMIT_DROP; 2801 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) && 2802 qdisc_run_begin(q)) { 2803 /* 2804 * This is a work-conserving queue; there are no old skbs 2805 * waiting to be sent out; and the qdisc is not running - 2806 * xmit the skb directly. 2807 */ 2808 2809 qdisc_bstats_update(q, skb); 2810 2811 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) { 2812 if (unlikely(contended)) { 2813 spin_unlock(&q->busylock); 2814 contended = false; 2815 } 2816 __qdisc_run(q); 2817 } else 2818 qdisc_run_end(q); 2819 2820 rc = NET_XMIT_SUCCESS; 2821 } else { 2822 rc = q->enqueue(skb, q) & NET_XMIT_MASK; 2823 if (qdisc_run_begin(q)) { 2824 if (unlikely(contended)) { 2825 spin_unlock(&q->busylock); 2826 contended = false; 2827 } 2828 __qdisc_run(q); 2829 } 2830 } 2831 spin_unlock(root_lock); 2832 if (unlikely(contended)) 2833 spin_unlock(&q->busylock); 2834 return rc; 2835 } 2836 2837 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO) 2838 static void skb_update_prio(struct sk_buff *skb) 2839 { 2840 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap); 2841 2842 if (!skb->priority && skb->sk && map) { 2843 unsigned int prioidx = skb->sk->sk_cgrp_prioidx; 2844 2845 if (prioidx < map->priomap_len) 2846 skb->priority = map->priomap[prioidx]; 2847 } 2848 } 2849 #else 2850 #define skb_update_prio(skb) 2851 #endif 2852 2853 static DEFINE_PER_CPU(int, xmit_recursion); 2854 #define RECURSION_LIMIT 10 2855 2856 /** 2857 * dev_loopback_xmit - loop back @skb 2858 * @skb: buffer to transmit 2859 */ 2860 int dev_loopback_xmit(struct sk_buff *skb) 2861 { 2862 skb_reset_mac_header(skb); 2863 __skb_pull(skb, skb_network_offset(skb)); 2864 skb->pkt_type = PACKET_LOOPBACK; 2865 skb->ip_summed = CHECKSUM_UNNECESSARY; 2866 WARN_ON(!skb_dst(skb)); 2867 skb_dst_force(skb); 2868 netif_rx_ni(skb); 2869 return 0; 2870 } 2871 EXPORT_SYMBOL(dev_loopback_xmit); 2872 2873 /** 2874 * __dev_queue_xmit - transmit a buffer 2875 * @skb: buffer to transmit 2876 * @accel_priv: private data used for L2 forwarding offload 2877 * 2878 * Queue a buffer for transmission to a network device. The caller must 2879 * have set the device and priority and built the buffer before calling 2880 * this function. The function can be called from an interrupt. 2881 * 2882 * A negative errno code is returned on a failure. A success does not 2883 * guarantee the frame will be transmitted as it may be dropped due 2884 * to congestion or traffic shaping. 2885 * 2886 * ----------------------------------------------------------------------------------- 2887 * I notice this method can also return errors from the queue disciplines, 2888 * including NET_XMIT_DROP, which is a positive value. So, errors can also 2889 * be positive. 2890 * 2891 * Regardless of the return value, the skb is consumed, so it is currently 2892 * difficult to retry a send to this method. (You can bump the ref count 2893 * before sending to hold a reference for retry if you are careful.) 2894 * 2895 * When calling this method, interrupts MUST be enabled. This is because 2896 * the BH enable code must have IRQs enabled so that it will not deadlock. 2897 * --BLG 2898 */ 2899 static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv) 2900 { 2901 struct net_device *dev = skb->dev; 2902 struct netdev_queue *txq; 2903 struct Qdisc *q; 2904 int rc = -ENOMEM; 2905 2906 skb_reset_mac_header(skb); 2907 2908 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP)) 2909 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED); 2910 2911 /* Disable soft irqs for various locks below. Also 2912 * stops preemption for RCU. 2913 */ 2914 rcu_read_lock_bh(); 2915 2916 skb_update_prio(skb); 2917 2918 /* If device/qdisc don't need skb->dst, release it right now while 2919 * its hot in this cpu cache. 2920 */ 2921 if (dev->priv_flags & IFF_XMIT_DST_RELEASE) 2922 skb_dst_drop(skb); 2923 else 2924 skb_dst_force(skb); 2925 2926 txq = netdev_pick_tx(dev, skb, accel_priv); 2927 q = rcu_dereference_bh(txq->qdisc); 2928 2929 #ifdef CONFIG_NET_CLS_ACT 2930 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS); 2931 #endif 2932 trace_net_dev_queue(skb); 2933 if (q->enqueue) { 2934 rc = __dev_xmit_skb(skb, q, dev, txq); 2935 goto out; 2936 } 2937 2938 /* The device has no queue. Common case for software devices: 2939 loopback, all the sorts of tunnels... 2940 2941 Really, it is unlikely that netif_tx_lock protection is necessary 2942 here. (f.e. loopback and IP tunnels are clean ignoring statistics 2943 counters.) 2944 However, it is possible, that they rely on protection 2945 made by us here. 2946 2947 Check this and shot the lock. It is not prone from deadlocks. 2948 Either shot noqueue qdisc, it is even simpler 8) 2949 */ 2950 if (dev->flags & IFF_UP) { 2951 int cpu = smp_processor_id(); /* ok because BHs are off */ 2952 2953 if (txq->xmit_lock_owner != cpu) { 2954 2955 if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT) 2956 goto recursion_alert; 2957 2958 skb = validate_xmit_skb(skb, dev); 2959 if (!skb) 2960 goto drop; 2961 2962 HARD_TX_LOCK(dev, txq, cpu); 2963 2964 if (!netif_xmit_stopped(txq)) { 2965 __this_cpu_inc(xmit_recursion); 2966 skb = dev_hard_start_xmit(skb, dev, txq, &rc); 2967 __this_cpu_dec(xmit_recursion); 2968 if (dev_xmit_complete(rc)) { 2969 HARD_TX_UNLOCK(dev, txq); 2970 goto out; 2971 } 2972 } 2973 HARD_TX_UNLOCK(dev, txq); 2974 net_crit_ratelimited("Virtual device %s asks to queue packet!\n", 2975 dev->name); 2976 } else { 2977 /* Recursion is detected! It is possible, 2978 * unfortunately 2979 */ 2980 recursion_alert: 2981 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n", 2982 dev->name); 2983 } 2984 } 2985 2986 rc = -ENETDOWN; 2987 drop: 2988 rcu_read_unlock_bh(); 2989 2990 atomic_long_inc(&dev->tx_dropped); 2991 kfree_skb_list(skb); 2992 return rc; 2993 out: 2994 rcu_read_unlock_bh(); 2995 return rc; 2996 } 2997 2998 int dev_queue_xmit(struct sk_buff *skb) 2999 { 3000 return __dev_queue_xmit(skb, NULL); 3001 } 3002 EXPORT_SYMBOL(dev_queue_xmit); 3003 3004 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv) 3005 { 3006 return __dev_queue_xmit(skb, accel_priv); 3007 } 3008 EXPORT_SYMBOL(dev_queue_xmit_accel); 3009 3010 3011 /*======================================================================= 3012 Receiver routines 3013 =======================================================================*/ 3014 3015 int netdev_max_backlog __read_mostly = 1000; 3016 EXPORT_SYMBOL(netdev_max_backlog); 3017 3018 int netdev_tstamp_prequeue __read_mostly = 1; 3019 int netdev_budget __read_mostly = 300; 3020 int weight_p __read_mostly = 64; /* old backlog weight */ 3021 3022 /* Called with irq disabled */ 3023 static inline void ____napi_schedule(struct softnet_data *sd, 3024 struct napi_struct *napi) 3025 { 3026 list_add_tail(&napi->poll_list, &sd->poll_list); 3027 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 3028 } 3029 3030 #ifdef CONFIG_RPS 3031 3032 /* One global table that all flow-based protocols share. */ 3033 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly; 3034 EXPORT_SYMBOL(rps_sock_flow_table); 3035 3036 struct static_key rps_needed __read_mostly; 3037 3038 static struct rps_dev_flow * 3039 set_rps_cpu(struct net_device *dev, struct sk_buff *skb, 3040 struct rps_dev_flow *rflow, u16 next_cpu) 3041 { 3042 if (next_cpu != RPS_NO_CPU) { 3043 #ifdef CONFIG_RFS_ACCEL 3044 struct netdev_rx_queue *rxqueue; 3045 struct rps_dev_flow_table *flow_table; 3046 struct rps_dev_flow *old_rflow; 3047 u32 flow_id; 3048 u16 rxq_index; 3049 int rc; 3050 3051 /* Should we steer this flow to a different hardware queue? */ 3052 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap || 3053 !(dev->features & NETIF_F_NTUPLE)) 3054 goto out; 3055 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu); 3056 if (rxq_index == skb_get_rx_queue(skb)) 3057 goto out; 3058 3059 rxqueue = dev->_rx + rxq_index; 3060 flow_table = rcu_dereference(rxqueue->rps_flow_table); 3061 if (!flow_table) 3062 goto out; 3063 flow_id = skb_get_hash(skb) & flow_table->mask; 3064 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb, 3065 rxq_index, flow_id); 3066 if (rc < 0) 3067 goto out; 3068 old_rflow = rflow; 3069 rflow = &flow_table->flows[flow_id]; 3070 rflow->filter = rc; 3071 if (old_rflow->filter == rflow->filter) 3072 old_rflow->filter = RPS_NO_FILTER; 3073 out: 3074 #endif 3075 rflow->last_qtail = 3076 per_cpu(softnet_data, next_cpu).input_queue_head; 3077 } 3078 3079 rflow->cpu = next_cpu; 3080 return rflow; 3081 } 3082 3083 /* 3084 * get_rps_cpu is called from netif_receive_skb and returns the target 3085 * CPU from the RPS map of the receiving queue for a given skb. 3086 * rcu_read_lock must be held on entry. 3087 */ 3088 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb, 3089 struct rps_dev_flow **rflowp) 3090 { 3091 struct netdev_rx_queue *rxqueue; 3092 struct rps_map *map; 3093 struct rps_dev_flow_table *flow_table; 3094 struct rps_sock_flow_table *sock_flow_table; 3095 int cpu = -1; 3096 u16 tcpu; 3097 u32 hash; 3098 3099 if (skb_rx_queue_recorded(skb)) { 3100 u16 index = skb_get_rx_queue(skb); 3101 if (unlikely(index >= dev->real_num_rx_queues)) { 3102 WARN_ONCE(dev->real_num_rx_queues > 1, 3103 "%s received packet on queue %u, but number " 3104 "of RX queues is %u\n", 3105 dev->name, index, dev->real_num_rx_queues); 3106 goto done; 3107 } 3108 rxqueue = dev->_rx + index; 3109 } else 3110 rxqueue = dev->_rx; 3111 3112 map = rcu_dereference(rxqueue->rps_map); 3113 if (map) { 3114 if (map->len == 1 && 3115 !rcu_access_pointer(rxqueue->rps_flow_table)) { 3116 tcpu = map->cpus[0]; 3117 if (cpu_online(tcpu)) 3118 cpu = tcpu; 3119 goto done; 3120 } 3121 } else if (!rcu_access_pointer(rxqueue->rps_flow_table)) { 3122 goto done; 3123 } 3124 3125 skb_reset_network_header(skb); 3126 hash = skb_get_hash(skb); 3127 if (!hash) 3128 goto done; 3129 3130 flow_table = rcu_dereference(rxqueue->rps_flow_table); 3131 sock_flow_table = rcu_dereference(rps_sock_flow_table); 3132 if (flow_table && sock_flow_table) { 3133 u16 next_cpu; 3134 struct rps_dev_flow *rflow; 3135 3136 rflow = &flow_table->flows[hash & flow_table->mask]; 3137 tcpu = rflow->cpu; 3138 3139 next_cpu = sock_flow_table->ents[hash & sock_flow_table->mask]; 3140 3141 /* 3142 * If the desired CPU (where last recvmsg was done) is 3143 * different from current CPU (one in the rx-queue flow 3144 * table entry), switch if one of the following holds: 3145 * - Current CPU is unset (equal to RPS_NO_CPU). 3146 * - Current CPU is offline. 3147 * - The current CPU's queue tail has advanced beyond the 3148 * last packet that was enqueued using this table entry. 3149 * This guarantees that all previous packets for the flow 3150 * have been dequeued, thus preserving in order delivery. 3151 */ 3152 if (unlikely(tcpu != next_cpu) && 3153 (tcpu == RPS_NO_CPU || !cpu_online(tcpu) || 3154 ((int)(per_cpu(softnet_data, tcpu).input_queue_head - 3155 rflow->last_qtail)) >= 0)) { 3156 tcpu = next_cpu; 3157 rflow = set_rps_cpu(dev, skb, rflow, next_cpu); 3158 } 3159 3160 if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) { 3161 *rflowp = rflow; 3162 cpu = tcpu; 3163 goto done; 3164 } 3165 } 3166 3167 if (map) { 3168 tcpu = map->cpus[reciprocal_scale(hash, map->len)]; 3169 if (cpu_online(tcpu)) { 3170 cpu = tcpu; 3171 goto done; 3172 } 3173 } 3174 3175 done: 3176 return cpu; 3177 } 3178 3179 #ifdef CONFIG_RFS_ACCEL 3180 3181 /** 3182 * rps_may_expire_flow - check whether an RFS hardware filter may be removed 3183 * @dev: Device on which the filter was set 3184 * @rxq_index: RX queue index 3185 * @flow_id: Flow ID passed to ndo_rx_flow_steer() 3186 * @filter_id: Filter ID returned by ndo_rx_flow_steer() 3187 * 3188 * Drivers that implement ndo_rx_flow_steer() should periodically call 3189 * this function for each installed filter and remove the filters for 3190 * which it returns %true. 3191 */ 3192 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, 3193 u32 flow_id, u16 filter_id) 3194 { 3195 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index; 3196 struct rps_dev_flow_table *flow_table; 3197 struct rps_dev_flow *rflow; 3198 bool expire = true; 3199 int cpu; 3200 3201 rcu_read_lock(); 3202 flow_table = rcu_dereference(rxqueue->rps_flow_table); 3203 if (flow_table && flow_id <= flow_table->mask) { 3204 rflow = &flow_table->flows[flow_id]; 3205 cpu = ACCESS_ONCE(rflow->cpu); 3206 if (rflow->filter == filter_id && cpu != RPS_NO_CPU && 3207 ((int)(per_cpu(softnet_data, cpu).input_queue_head - 3208 rflow->last_qtail) < 3209 (int)(10 * flow_table->mask))) 3210 expire = false; 3211 } 3212 rcu_read_unlock(); 3213 return expire; 3214 } 3215 EXPORT_SYMBOL(rps_may_expire_flow); 3216 3217 #endif /* CONFIG_RFS_ACCEL */ 3218 3219 /* Called from hardirq (IPI) context */ 3220 static void rps_trigger_softirq(void *data) 3221 { 3222 struct softnet_data *sd = data; 3223 3224 ____napi_schedule(sd, &sd->backlog); 3225 sd->received_rps++; 3226 } 3227 3228 #endif /* CONFIG_RPS */ 3229 3230 /* 3231 * Check if this softnet_data structure is another cpu one 3232 * If yes, queue it to our IPI list and return 1 3233 * If no, return 0 3234 */ 3235 static int rps_ipi_queued(struct softnet_data *sd) 3236 { 3237 #ifdef CONFIG_RPS 3238 struct softnet_data *mysd = this_cpu_ptr(&softnet_data); 3239 3240 if (sd != mysd) { 3241 sd->rps_ipi_next = mysd->rps_ipi_list; 3242 mysd->rps_ipi_list = sd; 3243 3244 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 3245 return 1; 3246 } 3247 #endif /* CONFIG_RPS */ 3248 return 0; 3249 } 3250 3251 #ifdef CONFIG_NET_FLOW_LIMIT 3252 int netdev_flow_limit_table_len __read_mostly = (1 << 12); 3253 #endif 3254 3255 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen) 3256 { 3257 #ifdef CONFIG_NET_FLOW_LIMIT 3258 struct sd_flow_limit *fl; 3259 struct softnet_data *sd; 3260 unsigned int old_flow, new_flow; 3261 3262 if (qlen < (netdev_max_backlog >> 1)) 3263 return false; 3264 3265 sd = this_cpu_ptr(&softnet_data); 3266 3267 rcu_read_lock(); 3268 fl = rcu_dereference(sd->flow_limit); 3269 if (fl) { 3270 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1); 3271 old_flow = fl->history[fl->history_head]; 3272 fl->history[fl->history_head] = new_flow; 3273 3274 fl->history_head++; 3275 fl->history_head &= FLOW_LIMIT_HISTORY - 1; 3276 3277 if (likely(fl->buckets[old_flow])) 3278 fl->buckets[old_flow]--; 3279 3280 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) { 3281 fl->count++; 3282 rcu_read_unlock(); 3283 return true; 3284 } 3285 } 3286 rcu_read_unlock(); 3287 #endif 3288 return false; 3289 } 3290 3291 /* 3292 * enqueue_to_backlog is called to queue an skb to a per CPU backlog 3293 * queue (may be a remote CPU queue). 3294 */ 3295 static int enqueue_to_backlog(struct sk_buff *skb, int cpu, 3296 unsigned int *qtail) 3297 { 3298 struct softnet_data *sd; 3299 unsigned long flags; 3300 unsigned int qlen; 3301 3302 sd = &per_cpu(softnet_data, cpu); 3303 3304 local_irq_save(flags); 3305 3306 rps_lock(sd); 3307 qlen = skb_queue_len(&sd->input_pkt_queue); 3308 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) { 3309 if (qlen) { 3310 enqueue: 3311 __skb_queue_tail(&sd->input_pkt_queue, skb); 3312 input_queue_tail_incr_save(sd, qtail); 3313 rps_unlock(sd); 3314 local_irq_restore(flags); 3315 return NET_RX_SUCCESS; 3316 } 3317 3318 /* Schedule NAPI for backlog device 3319 * We can use non atomic operation since we own the queue lock 3320 */ 3321 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) { 3322 if (!rps_ipi_queued(sd)) 3323 ____napi_schedule(sd, &sd->backlog); 3324 } 3325 goto enqueue; 3326 } 3327 3328 sd->dropped++; 3329 rps_unlock(sd); 3330 3331 local_irq_restore(flags); 3332 3333 atomic_long_inc(&skb->dev->rx_dropped); 3334 kfree_skb(skb); 3335 return NET_RX_DROP; 3336 } 3337 3338 static int netif_rx_internal(struct sk_buff *skb) 3339 { 3340 int ret; 3341 3342 net_timestamp_check(netdev_tstamp_prequeue, skb); 3343 3344 trace_netif_rx(skb); 3345 #ifdef CONFIG_RPS 3346 if (static_key_false(&rps_needed)) { 3347 struct rps_dev_flow voidflow, *rflow = &voidflow; 3348 int cpu; 3349 3350 preempt_disable(); 3351 rcu_read_lock(); 3352 3353 cpu = get_rps_cpu(skb->dev, skb, &rflow); 3354 if (cpu < 0) 3355 cpu = smp_processor_id(); 3356 3357 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 3358 3359 rcu_read_unlock(); 3360 preempt_enable(); 3361 } else 3362 #endif 3363 { 3364 unsigned int qtail; 3365 ret = enqueue_to_backlog(skb, get_cpu(), &qtail); 3366 put_cpu(); 3367 } 3368 return ret; 3369 } 3370 3371 /** 3372 * netif_rx - post buffer to the network code 3373 * @skb: buffer to post 3374 * 3375 * This function receives a packet from a device driver and queues it for 3376 * the upper (protocol) levels to process. It always succeeds. The buffer 3377 * may be dropped during processing for congestion control or by the 3378 * protocol layers. 3379 * 3380 * return values: 3381 * NET_RX_SUCCESS (no congestion) 3382 * NET_RX_DROP (packet was dropped) 3383 * 3384 */ 3385 3386 int netif_rx(struct sk_buff *skb) 3387 { 3388 trace_netif_rx_entry(skb); 3389 3390 return netif_rx_internal(skb); 3391 } 3392 EXPORT_SYMBOL(netif_rx); 3393 3394 int netif_rx_ni(struct sk_buff *skb) 3395 { 3396 int err; 3397 3398 trace_netif_rx_ni_entry(skb); 3399 3400 preempt_disable(); 3401 err = netif_rx_internal(skb); 3402 if (local_softirq_pending()) 3403 do_softirq(); 3404 preempt_enable(); 3405 3406 return err; 3407 } 3408 EXPORT_SYMBOL(netif_rx_ni); 3409 3410 static void net_tx_action(struct softirq_action *h) 3411 { 3412 struct softnet_data *sd = this_cpu_ptr(&softnet_data); 3413 3414 if (sd->completion_queue) { 3415 struct sk_buff *clist; 3416 3417 local_irq_disable(); 3418 clist = sd->completion_queue; 3419 sd->completion_queue = NULL; 3420 local_irq_enable(); 3421 3422 while (clist) { 3423 struct sk_buff *skb = clist; 3424 clist = clist->next; 3425 3426 WARN_ON(atomic_read(&skb->users)); 3427 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED)) 3428 trace_consume_skb(skb); 3429 else 3430 trace_kfree_skb(skb, net_tx_action); 3431 __kfree_skb(skb); 3432 } 3433 } 3434 3435 if (sd->output_queue) { 3436 struct Qdisc *head; 3437 3438 local_irq_disable(); 3439 head = sd->output_queue; 3440 sd->output_queue = NULL; 3441 sd->output_queue_tailp = &sd->output_queue; 3442 local_irq_enable(); 3443 3444 while (head) { 3445 struct Qdisc *q = head; 3446 spinlock_t *root_lock; 3447 3448 head = head->next_sched; 3449 3450 root_lock = qdisc_lock(q); 3451 if (spin_trylock(root_lock)) { 3452 smp_mb__before_atomic(); 3453 clear_bit(__QDISC_STATE_SCHED, 3454 &q->state); 3455 qdisc_run(q); 3456 spin_unlock(root_lock); 3457 } else { 3458 if (!test_bit(__QDISC_STATE_DEACTIVATED, 3459 &q->state)) { 3460 __netif_reschedule(q); 3461 } else { 3462 smp_mb__before_atomic(); 3463 clear_bit(__QDISC_STATE_SCHED, 3464 &q->state); 3465 } 3466 } 3467 } 3468 } 3469 } 3470 3471 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \ 3472 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE)) 3473 /* This hook is defined here for ATM LANE */ 3474 int (*br_fdb_test_addr_hook)(struct net_device *dev, 3475 unsigned char *addr) __read_mostly; 3476 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook); 3477 #endif 3478 3479 #ifdef CONFIG_NET_CLS_ACT 3480 /* TODO: Maybe we should just force sch_ingress to be compiled in 3481 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions 3482 * a compare and 2 stores extra right now if we dont have it on 3483 * but have CONFIG_NET_CLS_ACT 3484 * NOTE: This doesn't stop any functionality; if you dont have 3485 * the ingress scheduler, you just can't add policies on ingress. 3486 * 3487 */ 3488 static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq) 3489 { 3490 struct net_device *dev = skb->dev; 3491 u32 ttl = G_TC_RTTL(skb->tc_verd); 3492 int result = TC_ACT_OK; 3493 struct Qdisc *q; 3494 3495 if (unlikely(MAX_RED_LOOP < ttl++)) { 3496 net_warn_ratelimited("Redir loop detected Dropping packet (%d->%d)\n", 3497 skb->skb_iif, dev->ifindex); 3498 return TC_ACT_SHOT; 3499 } 3500 3501 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl); 3502 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS); 3503 3504 q = rcu_dereference(rxq->qdisc); 3505 if (q != &noop_qdisc) { 3506 spin_lock(qdisc_lock(q)); 3507 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) 3508 result = qdisc_enqueue_root(skb, q); 3509 spin_unlock(qdisc_lock(q)); 3510 } 3511 3512 return result; 3513 } 3514 3515 static inline struct sk_buff *handle_ing(struct sk_buff *skb, 3516 struct packet_type **pt_prev, 3517 int *ret, struct net_device *orig_dev) 3518 { 3519 struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue); 3520 3521 if (!rxq || rcu_access_pointer(rxq->qdisc) == &noop_qdisc) 3522 goto out; 3523 3524 if (*pt_prev) { 3525 *ret = deliver_skb(skb, *pt_prev, orig_dev); 3526 *pt_prev = NULL; 3527 } 3528 3529 switch (ing_filter(skb, rxq)) { 3530 case TC_ACT_SHOT: 3531 case TC_ACT_STOLEN: 3532 kfree_skb(skb); 3533 return NULL; 3534 } 3535 3536 out: 3537 skb->tc_verd = 0; 3538 return skb; 3539 } 3540 #endif 3541 3542 /** 3543 * netdev_rx_handler_register - register receive handler 3544 * @dev: device to register a handler for 3545 * @rx_handler: receive handler to register 3546 * @rx_handler_data: data pointer that is used by rx handler 3547 * 3548 * Register a receive handler for a device. This handler will then be 3549 * called from __netif_receive_skb. A negative errno code is returned 3550 * on a failure. 3551 * 3552 * The caller must hold the rtnl_mutex. 3553 * 3554 * For a general description of rx_handler, see enum rx_handler_result. 3555 */ 3556 int netdev_rx_handler_register(struct net_device *dev, 3557 rx_handler_func_t *rx_handler, 3558 void *rx_handler_data) 3559 { 3560 ASSERT_RTNL(); 3561 3562 if (dev->rx_handler) 3563 return -EBUSY; 3564 3565 /* Note: rx_handler_data must be set before rx_handler */ 3566 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data); 3567 rcu_assign_pointer(dev->rx_handler, rx_handler); 3568 3569 return 0; 3570 } 3571 EXPORT_SYMBOL_GPL(netdev_rx_handler_register); 3572 3573 /** 3574 * netdev_rx_handler_unregister - unregister receive handler 3575 * @dev: device to unregister a handler from 3576 * 3577 * Unregister a receive handler from a device. 3578 * 3579 * The caller must hold the rtnl_mutex. 3580 */ 3581 void netdev_rx_handler_unregister(struct net_device *dev) 3582 { 3583 3584 ASSERT_RTNL(); 3585 RCU_INIT_POINTER(dev->rx_handler, NULL); 3586 /* a reader seeing a non NULL rx_handler in a rcu_read_lock() 3587 * section has a guarantee to see a non NULL rx_handler_data 3588 * as well. 3589 */ 3590 synchronize_net(); 3591 RCU_INIT_POINTER(dev->rx_handler_data, NULL); 3592 } 3593 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister); 3594 3595 /* 3596 * Limit the use of PFMEMALLOC reserves to those protocols that implement 3597 * the special handling of PFMEMALLOC skbs. 3598 */ 3599 static bool skb_pfmemalloc_protocol(struct sk_buff *skb) 3600 { 3601 switch (skb->protocol) { 3602 case htons(ETH_P_ARP): 3603 case htons(ETH_P_IP): 3604 case htons(ETH_P_IPV6): 3605 case htons(ETH_P_8021Q): 3606 case htons(ETH_P_8021AD): 3607 return true; 3608 default: 3609 return false; 3610 } 3611 } 3612 3613 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc) 3614 { 3615 struct packet_type *ptype, *pt_prev; 3616 rx_handler_func_t *rx_handler; 3617 struct net_device *orig_dev; 3618 struct net_device *null_or_dev; 3619 bool deliver_exact = false; 3620 int ret = NET_RX_DROP; 3621 __be16 type; 3622 3623 net_timestamp_check(!netdev_tstamp_prequeue, skb); 3624 3625 trace_netif_receive_skb(skb); 3626 3627 orig_dev = skb->dev; 3628 3629 skb_reset_network_header(skb); 3630 if (!skb_transport_header_was_set(skb)) 3631 skb_reset_transport_header(skb); 3632 skb_reset_mac_len(skb); 3633 3634 pt_prev = NULL; 3635 3636 rcu_read_lock(); 3637 3638 another_round: 3639 skb->skb_iif = skb->dev->ifindex; 3640 3641 __this_cpu_inc(softnet_data.processed); 3642 3643 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) || 3644 skb->protocol == cpu_to_be16(ETH_P_8021AD)) { 3645 skb = skb_vlan_untag(skb); 3646 if (unlikely(!skb)) 3647 goto unlock; 3648 } 3649 3650 #ifdef CONFIG_NET_CLS_ACT 3651 if (skb->tc_verd & TC_NCLS) { 3652 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd); 3653 goto ncls; 3654 } 3655 #endif 3656 3657 if (pfmemalloc) 3658 goto skip_taps; 3659 3660 list_for_each_entry_rcu(ptype, &ptype_all, list) { 3661 if (!ptype->dev || ptype->dev == skb->dev) { 3662 if (pt_prev) 3663 ret = deliver_skb(skb, pt_prev, orig_dev); 3664 pt_prev = ptype; 3665 } 3666 } 3667 3668 skip_taps: 3669 #ifdef CONFIG_NET_CLS_ACT 3670 skb = handle_ing(skb, &pt_prev, &ret, orig_dev); 3671 if (!skb) 3672 goto unlock; 3673 ncls: 3674 #endif 3675 3676 if (pfmemalloc && !skb_pfmemalloc_protocol(skb)) 3677 goto drop; 3678 3679 if (vlan_tx_tag_present(skb)) { 3680 if (pt_prev) { 3681 ret = deliver_skb(skb, pt_prev, orig_dev); 3682 pt_prev = NULL; 3683 } 3684 if (vlan_do_receive(&skb)) 3685 goto another_round; 3686 else if (unlikely(!skb)) 3687 goto unlock; 3688 } 3689 3690 rx_handler = rcu_dereference(skb->dev->rx_handler); 3691 if (rx_handler) { 3692 if (pt_prev) { 3693 ret = deliver_skb(skb, pt_prev, orig_dev); 3694 pt_prev = NULL; 3695 } 3696 switch (rx_handler(&skb)) { 3697 case RX_HANDLER_CONSUMED: 3698 ret = NET_RX_SUCCESS; 3699 goto unlock; 3700 case RX_HANDLER_ANOTHER: 3701 goto another_round; 3702 case RX_HANDLER_EXACT: 3703 deliver_exact = true; 3704 case RX_HANDLER_PASS: 3705 break; 3706 default: 3707 BUG(); 3708 } 3709 } 3710 3711 if (unlikely(vlan_tx_tag_present(skb))) { 3712 if (vlan_tx_tag_get_id(skb)) 3713 skb->pkt_type = PACKET_OTHERHOST; 3714 /* Note: we might in the future use prio bits 3715 * and set skb->priority like in vlan_do_receive() 3716 * For the time being, just ignore Priority Code Point 3717 */ 3718 skb->vlan_tci = 0; 3719 } 3720 3721 /* deliver only exact match when indicated */ 3722 null_or_dev = deliver_exact ? skb->dev : NULL; 3723 3724 type = skb->protocol; 3725 list_for_each_entry_rcu(ptype, 3726 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) { 3727 if (ptype->type == type && 3728 (ptype->dev == null_or_dev || ptype->dev == skb->dev || 3729 ptype->dev == orig_dev)) { 3730 if (pt_prev) 3731 ret = deliver_skb(skb, pt_prev, orig_dev); 3732 pt_prev = ptype; 3733 } 3734 } 3735 3736 if (pt_prev) { 3737 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC))) 3738 goto drop; 3739 else 3740 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 3741 } else { 3742 drop: 3743 atomic_long_inc(&skb->dev->rx_dropped); 3744 kfree_skb(skb); 3745 /* Jamal, now you will not able to escape explaining 3746 * me how you were going to use this. :-) 3747 */ 3748 ret = NET_RX_DROP; 3749 } 3750 3751 unlock: 3752 rcu_read_unlock(); 3753 return ret; 3754 } 3755 3756 static int __netif_receive_skb(struct sk_buff *skb) 3757 { 3758 int ret; 3759 3760 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) { 3761 unsigned long pflags = current->flags; 3762 3763 /* 3764 * PFMEMALLOC skbs are special, they should 3765 * - be delivered to SOCK_MEMALLOC sockets only 3766 * - stay away from userspace 3767 * - have bounded memory usage 3768 * 3769 * Use PF_MEMALLOC as this saves us from propagating the allocation 3770 * context down to all allocation sites. 3771 */ 3772 current->flags |= PF_MEMALLOC; 3773 ret = __netif_receive_skb_core(skb, true); 3774 tsk_restore_flags(current, pflags, PF_MEMALLOC); 3775 } else 3776 ret = __netif_receive_skb_core(skb, false); 3777 3778 return ret; 3779 } 3780 3781 static int netif_receive_skb_internal(struct sk_buff *skb) 3782 { 3783 net_timestamp_check(netdev_tstamp_prequeue, skb); 3784 3785 if (skb_defer_rx_timestamp(skb)) 3786 return NET_RX_SUCCESS; 3787 3788 #ifdef CONFIG_RPS 3789 if (static_key_false(&rps_needed)) { 3790 struct rps_dev_flow voidflow, *rflow = &voidflow; 3791 int cpu, ret; 3792 3793 rcu_read_lock(); 3794 3795 cpu = get_rps_cpu(skb->dev, skb, &rflow); 3796 3797 if (cpu >= 0) { 3798 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 3799 rcu_read_unlock(); 3800 return ret; 3801 } 3802 rcu_read_unlock(); 3803 } 3804 #endif 3805 return __netif_receive_skb(skb); 3806 } 3807 3808 /** 3809 * netif_receive_skb - process receive buffer from network 3810 * @skb: buffer to process 3811 * 3812 * netif_receive_skb() is the main receive data processing function. 3813 * It always succeeds. The buffer may be dropped during processing 3814 * for congestion control or by the protocol layers. 3815 * 3816 * This function may only be called from softirq context and interrupts 3817 * should be enabled. 3818 * 3819 * Return values (usually ignored): 3820 * NET_RX_SUCCESS: no congestion 3821 * NET_RX_DROP: packet was dropped 3822 */ 3823 int netif_receive_skb(struct sk_buff *skb) 3824 { 3825 trace_netif_receive_skb_entry(skb); 3826 3827 return netif_receive_skb_internal(skb); 3828 } 3829 EXPORT_SYMBOL(netif_receive_skb); 3830 3831 /* Network device is going away, flush any packets still pending 3832 * Called with irqs disabled. 3833 */ 3834 static void flush_backlog(void *arg) 3835 { 3836 struct net_device *dev = arg; 3837 struct softnet_data *sd = this_cpu_ptr(&softnet_data); 3838 struct sk_buff *skb, *tmp; 3839 3840 rps_lock(sd); 3841 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) { 3842 if (skb->dev == dev) { 3843 __skb_unlink(skb, &sd->input_pkt_queue); 3844 kfree_skb(skb); 3845 input_queue_head_incr(sd); 3846 } 3847 } 3848 rps_unlock(sd); 3849 3850 skb_queue_walk_safe(&sd->process_queue, skb, tmp) { 3851 if (skb->dev == dev) { 3852 __skb_unlink(skb, &sd->process_queue); 3853 kfree_skb(skb); 3854 input_queue_head_incr(sd); 3855 } 3856 } 3857 } 3858 3859 static int napi_gro_complete(struct sk_buff *skb) 3860 { 3861 struct packet_offload *ptype; 3862 __be16 type = skb->protocol; 3863 struct list_head *head = &offload_base; 3864 int err = -ENOENT; 3865 3866 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb)); 3867 3868 if (NAPI_GRO_CB(skb)->count == 1) { 3869 skb_shinfo(skb)->gso_size = 0; 3870 goto out; 3871 } 3872 3873 rcu_read_lock(); 3874 list_for_each_entry_rcu(ptype, head, list) { 3875 if (ptype->type != type || !ptype->callbacks.gro_complete) 3876 continue; 3877 3878 err = ptype->callbacks.gro_complete(skb, 0); 3879 break; 3880 } 3881 rcu_read_unlock(); 3882 3883 if (err) { 3884 WARN_ON(&ptype->list == head); 3885 kfree_skb(skb); 3886 return NET_RX_SUCCESS; 3887 } 3888 3889 out: 3890 return netif_receive_skb_internal(skb); 3891 } 3892 3893 /* napi->gro_list contains packets ordered by age. 3894 * youngest packets at the head of it. 3895 * Complete skbs in reverse order to reduce latencies. 3896 */ 3897 void napi_gro_flush(struct napi_struct *napi, bool flush_old) 3898 { 3899 struct sk_buff *skb, *prev = NULL; 3900 3901 /* scan list and build reverse chain */ 3902 for (skb = napi->gro_list; skb != NULL; skb = skb->next) { 3903 skb->prev = prev; 3904 prev = skb; 3905 } 3906 3907 for (skb = prev; skb; skb = prev) { 3908 skb->next = NULL; 3909 3910 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies) 3911 return; 3912 3913 prev = skb->prev; 3914 napi_gro_complete(skb); 3915 napi->gro_count--; 3916 } 3917 3918 napi->gro_list = NULL; 3919 } 3920 EXPORT_SYMBOL(napi_gro_flush); 3921 3922 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb) 3923 { 3924 struct sk_buff *p; 3925 unsigned int maclen = skb->dev->hard_header_len; 3926 u32 hash = skb_get_hash_raw(skb); 3927 3928 for (p = napi->gro_list; p; p = p->next) { 3929 unsigned long diffs; 3930 3931 NAPI_GRO_CB(p)->flush = 0; 3932 3933 if (hash != skb_get_hash_raw(p)) { 3934 NAPI_GRO_CB(p)->same_flow = 0; 3935 continue; 3936 } 3937 3938 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev; 3939 diffs |= p->vlan_tci ^ skb->vlan_tci; 3940 if (maclen == ETH_HLEN) 3941 diffs |= compare_ether_header(skb_mac_header(p), 3942 skb_mac_header(skb)); 3943 else if (!diffs) 3944 diffs = memcmp(skb_mac_header(p), 3945 skb_mac_header(skb), 3946 maclen); 3947 NAPI_GRO_CB(p)->same_flow = !diffs; 3948 } 3949 } 3950 3951 static void skb_gro_reset_offset(struct sk_buff *skb) 3952 { 3953 const struct skb_shared_info *pinfo = skb_shinfo(skb); 3954 const skb_frag_t *frag0 = &pinfo->frags[0]; 3955 3956 NAPI_GRO_CB(skb)->data_offset = 0; 3957 NAPI_GRO_CB(skb)->frag0 = NULL; 3958 NAPI_GRO_CB(skb)->frag0_len = 0; 3959 3960 if (skb_mac_header(skb) == skb_tail_pointer(skb) && 3961 pinfo->nr_frags && 3962 !PageHighMem(skb_frag_page(frag0))) { 3963 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0); 3964 NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0); 3965 } 3966 } 3967 3968 static void gro_pull_from_frag0(struct sk_buff *skb, int grow) 3969 { 3970 struct skb_shared_info *pinfo = skb_shinfo(skb); 3971 3972 BUG_ON(skb->end - skb->tail < grow); 3973 3974 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow); 3975 3976 skb->data_len -= grow; 3977 skb->tail += grow; 3978 3979 pinfo->frags[0].page_offset += grow; 3980 skb_frag_size_sub(&pinfo->frags[0], grow); 3981 3982 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) { 3983 skb_frag_unref(skb, 0); 3984 memmove(pinfo->frags, pinfo->frags + 1, 3985 --pinfo->nr_frags * sizeof(pinfo->frags[0])); 3986 } 3987 } 3988 3989 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 3990 { 3991 struct sk_buff **pp = NULL; 3992 struct packet_offload *ptype; 3993 __be16 type = skb->protocol; 3994 struct list_head *head = &offload_base; 3995 int same_flow; 3996 enum gro_result ret; 3997 int grow; 3998 3999 if (!(skb->dev->features & NETIF_F_GRO)) 4000 goto normal; 4001 4002 if (skb_is_gso(skb) || skb_has_frag_list(skb) || skb->csum_bad) 4003 goto normal; 4004 4005 gro_list_prepare(napi, skb); 4006 4007 rcu_read_lock(); 4008 list_for_each_entry_rcu(ptype, head, list) { 4009 if (ptype->type != type || !ptype->callbacks.gro_receive) 4010 continue; 4011 4012 skb_set_network_header(skb, skb_gro_offset(skb)); 4013 skb_reset_mac_len(skb); 4014 NAPI_GRO_CB(skb)->same_flow = 0; 4015 NAPI_GRO_CB(skb)->flush = 0; 4016 NAPI_GRO_CB(skb)->free = 0; 4017 NAPI_GRO_CB(skb)->udp_mark = 0; 4018 4019 /* Setup for GRO checksum validation */ 4020 switch (skb->ip_summed) { 4021 case CHECKSUM_COMPLETE: 4022 NAPI_GRO_CB(skb)->csum = skb->csum; 4023 NAPI_GRO_CB(skb)->csum_valid = 1; 4024 NAPI_GRO_CB(skb)->csum_cnt = 0; 4025 break; 4026 case CHECKSUM_UNNECESSARY: 4027 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1; 4028 NAPI_GRO_CB(skb)->csum_valid = 0; 4029 break; 4030 default: 4031 NAPI_GRO_CB(skb)->csum_cnt = 0; 4032 NAPI_GRO_CB(skb)->csum_valid = 0; 4033 } 4034 4035 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb); 4036 break; 4037 } 4038 rcu_read_unlock(); 4039 4040 if (&ptype->list == head) 4041 goto normal; 4042 4043 same_flow = NAPI_GRO_CB(skb)->same_flow; 4044 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED; 4045 4046 if (pp) { 4047 struct sk_buff *nskb = *pp; 4048 4049 *pp = nskb->next; 4050 nskb->next = NULL; 4051 napi_gro_complete(nskb); 4052 napi->gro_count--; 4053 } 4054 4055 if (same_flow) 4056 goto ok; 4057 4058 if (NAPI_GRO_CB(skb)->flush) 4059 goto normal; 4060 4061 if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) { 4062 struct sk_buff *nskb = napi->gro_list; 4063 4064 /* locate the end of the list to select the 'oldest' flow */ 4065 while (nskb->next) { 4066 pp = &nskb->next; 4067 nskb = *pp; 4068 } 4069 *pp = NULL; 4070 nskb->next = NULL; 4071 napi_gro_complete(nskb); 4072 } else { 4073 napi->gro_count++; 4074 } 4075 NAPI_GRO_CB(skb)->count = 1; 4076 NAPI_GRO_CB(skb)->age = jiffies; 4077 NAPI_GRO_CB(skb)->last = skb; 4078 skb_shinfo(skb)->gso_size = skb_gro_len(skb); 4079 skb->next = napi->gro_list; 4080 napi->gro_list = skb; 4081 ret = GRO_HELD; 4082 4083 pull: 4084 grow = skb_gro_offset(skb) - skb_headlen(skb); 4085 if (grow > 0) 4086 gro_pull_from_frag0(skb, grow); 4087 ok: 4088 return ret; 4089 4090 normal: 4091 ret = GRO_NORMAL; 4092 goto pull; 4093 } 4094 4095 struct packet_offload *gro_find_receive_by_type(__be16 type) 4096 { 4097 struct list_head *offload_head = &offload_base; 4098 struct packet_offload *ptype; 4099 4100 list_for_each_entry_rcu(ptype, offload_head, list) { 4101 if (ptype->type != type || !ptype->callbacks.gro_receive) 4102 continue; 4103 return ptype; 4104 } 4105 return NULL; 4106 } 4107 EXPORT_SYMBOL(gro_find_receive_by_type); 4108 4109 struct packet_offload *gro_find_complete_by_type(__be16 type) 4110 { 4111 struct list_head *offload_head = &offload_base; 4112 struct packet_offload *ptype; 4113 4114 list_for_each_entry_rcu(ptype, offload_head, list) { 4115 if (ptype->type != type || !ptype->callbacks.gro_complete) 4116 continue; 4117 return ptype; 4118 } 4119 return NULL; 4120 } 4121 EXPORT_SYMBOL(gro_find_complete_by_type); 4122 4123 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb) 4124 { 4125 switch (ret) { 4126 case GRO_NORMAL: 4127 if (netif_receive_skb_internal(skb)) 4128 ret = GRO_DROP; 4129 break; 4130 4131 case GRO_DROP: 4132 kfree_skb(skb); 4133 break; 4134 4135 case GRO_MERGED_FREE: 4136 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) 4137 kmem_cache_free(skbuff_head_cache, skb); 4138 else 4139 __kfree_skb(skb); 4140 break; 4141 4142 case GRO_HELD: 4143 case GRO_MERGED: 4144 break; 4145 } 4146 4147 return ret; 4148 } 4149 4150 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 4151 { 4152 trace_napi_gro_receive_entry(skb); 4153 4154 skb_gro_reset_offset(skb); 4155 4156 return napi_skb_finish(dev_gro_receive(napi, skb), skb); 4157 } 4158 EXPORT_SYMBOL(napi_gro_receive); 4159 4160 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb) 4161 { 4162 if (unlikely(skb->pfmemalloc)) { 4163 consume_skb(skb); 4164 return; 4165 } 4166 __skb_pull(skb, skb_headlen(skb)); 4167 /* restore the reserve we had after netdev_alloc_skb_ip_align() */ 4168 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb)); 4169 skb->vlan_tci = 0; 4170 skb->dev = napi->dev; 4171 skb->skb_iif = 0; 4172 skb->encapsulation = 0; 4173 skb_shinfo(skb)->gso_type = 0; 4174 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb)); 4175 4176 napi->skb = skb; 4177 } 4178 4179 struct sk_buff *napi_get_frags(struct napi_struct *napi) 4180 { 4181 struct sk_buff *skb = napi->skb; 4182 4183 if (!skb) { 4184 skb = napi_alloc_skb(napi, GRO_MAX_HEAD); 4185 napi->skb = skb; 4186 } 4187 return skb; 4188 } 4189 EXPORT_SYMBOL(napi_get_frags); 4190 4191 static gro_result_t napi_frags_finish(struct napi_struct *napi, 4192 struct sk_buff *skb, 4193 gro_result_t ret) 4194 { 4195 switch (ret) { 4196 case GRO_NORMAL: 4197 case GRO_HELD: 4198 __skb_push(skb, ETH_HLEN); 4199 skb->protocol = eth_type_trans(skb, skb->dev); 4200 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb)) 4201 ret = GRO_DROP; 4202 break; 4203 4204 case GRO_DROP: 4205 case GRO_MERGED_FREE: 4206 napi_reuse_skb(napi, skb); 4207 break; 4208 4209 case GRO_MERGED: 4210 break; 4211 } 4212 4213 return ret; 4214 } 4215 4216 /* Upper GRO stack assumes network header starts at gro_offset=0 4217 * Drivers could call both napi_gro_frags() and napi_gro_receive() 4218 * We copy ethernet header into skb->data to have a common layout. 4219 */ 4220 static struct sk_buff *napi_frags_skb(struct napi_struct *napi) 4221 { 4222 struct sk_buff *skb = napi->skb; 4223 const struct ethhdr *eth; 4224 unsigned int hlen = sizeof(*eth); 4225 4226 napi->skb = NULL; 4227 4228 skb_reset_mac_header(skb); 4229 skb_gro_reset_offset(skb); 4230 4231 eth = skb_gro_header_fast(skb, 0); 4232 if (unlikely(skb_gro_header_hard(skb, hlen))) { 4233 eth = skb_gro_header_slow(skb, hlen, 0); 4234 if (unlikely(!eth)) { 4235 napi_reuse_skb(napi, skb); 4236 return NULL; 4237 } 4238 } else { 4239 gro_pull_from_frag0(skb, hlen); 4240 NAPI_GRO_CB(skb)->frag0 += hlen; 4241 NAPI_GRO_CB(skb)->frag0_len -= hlen; 4242 } 4243 __skb_pull(skb, hlen); 4244 4245 /* 4246 * This works because the only protocols we care about don't require 4247 * special handling. 4248 * We'll fix it up properly in napi_frags_finish() 4249 */ 4250 skb->protocol = eth->h_proto; 4251 4252 return skb; 4253 } 4254 4255 gro_result_t napi_gro_frags(struct napi_struct *napi) 4256 { 4257 struct sk_buff *skb = napi_frags_skb(napi); 4258 4259 if (!skb) 4260 return GRO_DROP; 4261 4262 trace_napi_gro_frags_entry(skb); 4263 4264 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb)); 4265 } 4266 EXPORT_SYMBOL(napi_gro_frags); 4267 4268 /* Compute the checksum from gro_offset and return the folded value 4269 * after adding in any pseudo checksum. 4270 */ 4271 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb) 4272 { 4273 __wsum wsum; 4274 __sum16 sum; 4275 4276 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0); 4277 4278 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */ 4279 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum)); 4280 if (likely(!sum)) { 4281 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) && 4282 !skb->csum_complete_sw) 4283 netdev_rx_csum_fault(skb->dev); 4284 } 4285 4286 NAPI_GRO_CB(skb)->csum = wsum; 4287 NAPI_GRO_CB(skb)->csum_valid = 1; 4288 4289 return sum; 4290 } 4291 EXPORT_SYMBOL(__skb_gro_checksum_complete); 4292 4293 /* 4294 * net_rps_action_and_irq_enable sends any pending IPI's for rps. 4295 * Note: called with local irq disabled, but exits with local irq enabled. 4296 */ 4297 static void net_rps_action_and_irq_enable(struct softnet_data *sd) 4298 { 4299 #ifdef CONFIG_RPS 4300 struct softnet_data *remsd = sd->rps_ipi_list; 4301 4302 if (remsd) { 4303 sd->rps_ipi_list = NULL; 4304 4305 local_irq_enable(); 4306 4307 /* Send pending IPI's to kick RPS processing on remote cpus. */ 4308 while (remsd) { 4309 struct softnet_data *next = remsd->rps_ipi_next; 4310 4311 if (cpu_online(remsd->cpu)) 4312 smp_call_function_single_async(remsd->cpu, 4313 &remsd->csd); 4314 remsd = next; 4315 } 4316 } else 4317 #endif 4318 local_irq_enable(); 4319 } 4320 4321 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd) 4322 { 4323 #ifdef CONFIG_RPS 4324 return sd->rps_ipi_list != NULL; 4325 #else 4326 return false; 4327 #endif 4328 } 4329 4330 static int process_backlog(struct napi_struct *napi, int quota) 4331 { 4332 int work = 0; 4333 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog); 4334 4335 /* Check if we have pending ipi, its better to send them now, 4336 * not waiting net_rx_action() end. 4337 */ 4338 if (sd_has_rps_ipi_waiting(sd)) { 4339 local_irq_disable(); 4340 net_rps_action_and_irq_enable(sd); 4341 } 4342 4343 napi->weight = weight_p; 4344 local_irq_disable(); 4345 while (1) { 4346 struct sk_buff *skb; 4347 4348 while ((skb = __skb_dequeue(&sd->process_queue))) { 4349 local_irq_enable(); 4350 __netif_receive_skb(skb); 4351 local_irq_disable(); 4352 input_queue_head_incr(sd); 4353 if (++work >= quota) { 4354 local_irq_enable(); 4355 return work; 4356 } 4357 } 4358 4359 rps_lock(sd); 4360 if (skb_queue_empty(&sd->input_pkt_queue)) { 4361 /* 4362 * Inline a custom version of __napi_complete(). 4363 * only current cpu owns and manipulates this napi, 4364 * and NAPI_STATE_SCHED is the only possible flag set 4365 * on backlog. 4366 * We can use a plain write instead of clear_bit(), 4367 * and we dont need an smp_mb() memory barrier. 4368 */ 4369 napi->state = 0; 4370 rps_unlock(sd); 4371 4372 break; 4373 } 4374 4375 skb_queue_splice_tail_init(&sd->input_pkt_queue, 4376 &sd->process_queue); 4377 rps_unlock(sd); 4378 } 4379 local_irq_enable(); 4380 4381 return work; 4382 } 4383 4384 /** 4385 * __napi_schedule - schedule for receive 4386 * @n: entry to schedule 4387 * 4388 * The entry's receive function will be scheduled to run. 4389 * Consider using __napi_schedule_irqoff() if hard irqs are masked. 4390 */ 4391 void __napi_schedule(struct napi_struct *n) 4392 { 4393 unsigned long flags; 4394 4395 local_irq_save(flags); 4396 ____napi_schedule(this_cpu_ptr(&softnet_data), n); 4397 local_irq_restore(flags); 4398 } 4399 EXPORT_SYMBOL(__napi_schedule); 4400 4401 /** 4402 * __napi_schedule_irqoff - schedule for receive 4403 * @n: entry to schedule 4404 * 4405 * Variant of __napi_schedule() assuming hard irqs are masked 4406 */ 4407 void __napi_schedule_irqoff(struct napi_struct *n) 4408 { 4409 ____napi_schedule(this_cpu_ptr(&softnet_data), n); 4410 } 4411 EXPORT_SYMBOL(__napi_schedule_irqoff); 4412 4413 void __napi_complete(struct napi_struct *n) 4414 { 4415 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state)); 4416 4417 list_del_init(&n->poll_list); 4418 smp_mb__before_atomic(); 4419 clear_bit(NAPI_STATE_SCHED, &n->state); 4420 } 4421 EXPORT_SYMBOL(__napi_complete); 4422 4423 void napi_complete_done(struct napi_struct *n, int work_done) 4424 { 4425 unsigned long flags; 4426 4427 /* 4428 * don't let napi dequeue from the cpu poll list 4429 * just in case its running on a different cpu 4430 */ 4431 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state))) 4432 return; 4433 4434 if (n->gro_list) { 4435 unsigned long timeout = 0; 4436 4437 if (work_done) 4438 timeout = n->dev->gro_flush_timeout; 4439 4440 if (timeout) 4441 hrtimer_start(&n->timer, ns_to_ktime(timeout), 4442 HRTIMER_MODE_REL_PINNED); 4443 else 4444 napi_gro_flush(n, false); 4445 } 4446 if (likely(list_empty(&n->poll_list))) { 4447 WARN_ON_ONCE(!test_and_clear_bit(NAPI_STATE_SCHED, &n->state)); 4448 } else { 4449 /* If n->poll_list is not empty, we need to mask irqs */ 4450 local_irq_save(flags); 4451 __napi_complete(n); 4452 local_irq_restore(flags); 4453 } 4454 } 4455 EXPORT_SYMBOL(napi_complete_done); 4456 4457 /* must be called under rcu_read_lock(), as we dont take a reference */ 4458 struct napi_struct *napi_by_id(unsigned int napi_id) 4459 { 4460 unsigned int hash = napi_id % HASH_SIZE(napi_hash); 4461 struct napi_struct *napi; 4462 4463 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node) 4464 if (napi->napi_id == napi_id) 4465 return napi; 4466 4467 return NULL; 4468 } 4469 EXPORT_SYMBOL_GPL(napi_by_id); 4470 4471 void napi_hash_add(struct napi_struct *napi) 4472 { 4473 if (!test_and_set_bit(NAPI_STATE_HASHED, &napi->state)) { 4474 4475 spin_lock(&napi_hash_lock); 4476 4477 /* 0 is not a valid id, we also skip an id that is taken 4478 * we expect both events to be extremely rare 4479 */ 4480 napi->napi_id = 0; 4481 while (!napi->napi_id) { 4482 napi->napi_id = ++napi_gen_id; 4483 if (napi_by_id(napi->napi_id)) 4484 napi->napi_id = 0; 4485 } 4486 4487 hlist_add_head_rcu(&napi->napi_hash_node, 4488 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]); 4489 4490 spin_unlock(&napi_hash_lock); 4491 } 4492 } 4493 EXPORT_SYMBOL_GPL(napi_hash_add); 4494 4495 /* Warning : caller is responsible to make sure rcu grace period 4496 * is respected before freeing memory containing @napi 4497 */ 4498 void napi_hash_del(struct napi_struct *napi) 4499 { 4500 spin_lock(&napi_hash_lock); 4501 4502 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) 4503 hlist_del_rcu(&napi->napi_hash_node); 4504 4505 spin_unlock(&napi_hash_lock); 4506 } 4507 EXPORT_SYMBOL_GPL(napi_hash_del); 4508 4509 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer) 4510 { 4511 struct napi_struct *napi; 4512 4513 napi = container_of(timer, struct napi_struct, timer); 4514 if (napi->gro_list) 4515 napi_schedule(napi); 4516 4517 return HRTIMER_NORESTART; 4518 } 4519 4520 void netif_napi_add(struct net_device *dev, struct napi_struct *napi, 4521 int (*poll)(struct napi_struct *, int), int weight) 4522 { 4523 INIT_LIST_HEAD(&napi->poll_list); 4524 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED); 4525 napi->timer.function = napi_watchdog; 4526 napi->gro_count = 0; 4527 napi->gro_list = NULL; 4528 napi->skb = NULL; 4529 napi->poll = poll; 4530 if (weight > NAPI_POLL_WEIGHT) 4531 pr_err_once("netif_napi_add() called with weight %d on device %s\n", 4532 weight, dev->name); 4533 napi->weight = weight; 4534 list_add(&napi->dev_list, &dev->napi_list); 4535 napi->dev = dev; 4536 #ifdef CONFIG_NETPOLL 4537 spin_lock_init(&napi->poll_lock); 4538 napi->poll_owner = -1; 4539 #endif 4540 set_bit(NAPI_STATE_SCHED, &napi->state); 4541 } 4542 EXPORT_SYMBOL(netif_napi_add); 4543 4544 void napi_disable(struct napi_struct *n) 4545 { 4546 might_sleep(); 4547 set_bit(NAPI_STATE_DISABLE, &n->state); 4548 4549 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state)) 4550 msleep(1); 4551 4552 hrtimer_cancel(&n->timer); 4553 4554 clear_bit(NAPI_STATE_DISABLE, &n->state); 4555 } 4556 EXPORT_SYMBOL(napi_disable); 4557 4558 void netif_napi_del(struct napi_struct *napi) 4559 { 4560 list_del_init(&napi->dev_list); 4561 napi_free_frags(napi); 4562 4563 kfree_skb_list(napi->gro_list); 4564 napi->gro_list = NULL; 4565 napi->gro_count = 0; 4566 } 4567 EXPORT_SYMBOL(netif_napi_del); 4568 4569 static int napi_poll(struct napi_struct *n, struct list_head *repoll) 4570 { 4571 void *have; 4572 int work, weight; 4573 4574 list_del_init(&n->poll_list); 4575 4576 have = netpoll_poll_lock(n); 4577 4578 weight = n->weight; 4579 4580 /* This NAPI_STATE_SCHED test is for avoiding a race 4581 * with netpoll's poll_napi(). Only the entity which 4582 * obtains the lock and sees NAPI_STATE_SCHED set will 4583 * actually make the ->poll() call. Therefore we avoid 4584 * accidentally calling ->poll() when NAPI is not scheduled. 4585 */ 4586 work = 0; 4587 if (test_bit(NAPI_STATE_SCHED, &n->state)) { 4588 work = n->poll(n, weight); 4589 trace_napi_poll(n); 4590 } 4591 4592 WARN_ON_ONCE(work > weight); 4593 4594 if (likely(work < weight)) 4595 goto out_unlock; 4596 4597 /* Drivers must not modify the NAPI state if they 4598 * consume the entire weight. In such cases this code 4599 * still "owns" the NAPI instance and therefore can 4600 * move the instance around on the list at-will. 4601 */ 4602 if (unlikely(napi_disable_pending(n))) { 4603 napi_complete(n); 4604 goto out_unlock; 4605 } 4606 4607 if (n->gro_list) { 4608 /* flush too old packets 4609 * If HZ < 1000, flush all packets. 4610 */ 4611 napi_gro_flush(n, HZ >= 1000); 4612 } 4613 4614 /* Some drivers may have called napi_schedule 4615 * prior to exhausting their budget. 4616 */ 4617 if (unlikely(!list_empty(&n->poll_list))) { 4618 pr_warn_once("%s: Budget exhausted after napi rescheduled\n", 4619 n->dev ? n->dev->name : "backlog"); 4620 goto out_unlock; 4621 } 4622 4623 list_add_tail(&n->poll_list, repoll); 4624 4625 out_unlock: 4626 netpoll_poll_unlock(have); 4627 4628 return work; 4629 } 4630 4631 static void net_rx_action(struct softirq_action *h) 4632 { 4633 struct softnet_data *sd = this_cpu_ptr(&softnet_data); 4634 unsigned long time_limit = jiffies + 2; 4635 int budget = netdev_budget; 4636 LIST_HEAD(list); 4637 LIST_HEAD(repoll); 4638 4639 local_irq_disable(); 4640 list_splice_init(&sd->poll_list, &list); 4641 local_irq_enable(); 4642 4643 for (;;) { 4644 struct napi_struct *n; 4645 4646 if (list_empty(&list)) { 4647 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll)) 4648 return; 4649 break; 4650 } 4651 4652 n = list_first_entry(&list, struct napi_struct, poll_list); 4653 budget -= napi_poll(n, &repoll); 4654 4655 /* If softirq window is exhausted then punt. 4656 * Allow this to run for 2 jiffies since which will allow 4657 * an average latency of 1.5/HZ. 4658 */ 4659 if (unlikely(budget <= 0 || 4660 time_after_eq(jiffies, time_limit))) { 4661 sd->time_squeeze++; 4662 break; 4663 } 4664 } 4665 4666 local_irq_disable(); 4667 4668 list_splice_tail_init(&sd->poll_list, &list); 4669 list_splice_tail(&repoll, &list); 4670 list_splice(&list, &sd->poll_list); 4671 if (!list_empty(&sd->poll_list)) 4672 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 4673 4674 net_rps_action_and_irq_enable(sd); 4675 } 4676 4677 struct netdev_adjacent { 4678 struct net_device *dev; 4679 4680 /* upper master flag, there can only be one master device per list */ 4681 bool master; 4682 4683 /* counter for the number of times this device was added to us */ 4684 u16 ref_nr; 4685 4686 /* private field for the users */ 4687 void *private; 4688 4689 struct list_head list; 4690 struct rcu_head rcu; 4691 }; 4692 4693 static struct netdev_adjacent *__netdev_find_adj(struct net_device *dev, 4694 struct net_device *adj_dev, 4695 struct list_head *adj_list) 4696 { 4697 struct netdev_adjacent *adj; 4698 4699 list_for_each_entry(adj, adj_list, list) { 4700 if (adj->dev == adj_dev) 4701 return adj; 4702 } 4703 return NULL; 4704 } 4705 4706 /** 4707 * netdev_has_upper_dev - Check if device is linked to an upper device 4708 * @dev: device 4709 * @upper_dev: upper device to check 4710 * 4711 * Find out if a device is linked to specified upper device and return true 4712 * in case it is. Note that this checks only immediate upper device, 4713 * not through a complete stack of devices. The caller must hold the RTNL lock. 4714 */ 4715 bool netdev_has_upper_dev(struct net_device *dev, 4716 struct net_device *upper_dev) 4717 { 4718 ASSERT_RTNL(); 4719 4720 return __netdev_find_adj(dev, upper_dev, &dev->all_adj_list.upper); 4721 } 4722 EXPORT_SYMBOL(netdev_has_upper_dev); 4723 4724 /** 4725 * netdev_has_any_upper_dev - Check if device is linked to some device 4726 * @dev: device 4727 * 4728 * Find out if a device is linked to an upper device and return true in case 4729 * it is. The caller must hold the RTNL lock. 4730 */ 4731 static bool netdev_has_any_upper_dev(struct net_device *dev) 4732 { 4733 ASSERT_RTNL(); 4734 4735 return !list_empty(&dev->all_adj_list.upper); 4736 } 4737 4738 /** 4739 * netdev_master_upper_dev_get - Get master upper device 4740 * @dev: device 4741 * 4742 * Find a master upper device and return pointer to it or NULL in case 4743 * it's not there. The caller must hold the RTNL lock. 4744 */ 4745 struct net_device *netdev_master_upper_dev_get(struct net_device *dev) 4746 { 4747 struct netdev_adjacent *upper; 4748 4749 ASSERT_RTNL(); 4750 4751 if (list_empty(&dev->adj_list.upper)) 4752 return NULL; 4753 4754 upper = list_first_entry(&dev->adj_list.upper, 4755 struct netdev_adjacent, list); 4756 if (likely(upper->master)) 4757 return upper->dev; 4758 return NULL; 4759 } 4760 EXPORT_SYMBOL(netdev_master_upper_dev_get); 4761 4762 void *netdev_adjacent_get_private(struct list_head *adj_list) 4763 { 4764 struct netdev_adjacent *adj; 4765 4766 adj = list_entry(adj_list, struct netdev_adjacent, list); 4767 4768 return adj->private; 4769 } 4770 EXPORT_SYMBOL(netdev_adjacent_get_private); 4771 4772 /** 4773 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list 4774 * @dev: device 4775 * @iter: list_head ** of the current position 4776 * 4777 * Gets the next device from the dev's upper list, starting from iter 4778 * position. The caller must hold RCU read lock. 4779 */ 4780 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev, 4781 struct list_head **iter) 4782 { 4783 struct netdev_adjacent *upper; 4784 4785 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); 4786 4787 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 4788 4789 if (&upper->list == &dev->adj_list.upper) 4790 return NULL; 4791 4792 *iter = &upper->list; 4793 4794 return upper->dev; 4795 } 4796 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu); 4797 4798 /** 4799 * netdev_all_upper_get_next_dev_rcu - Get the next dev from upper list 4800 * @dev: device 4801 * @iter: list_head ** of the current position 4802 * 4803 * Gets the next device from the dev's upper list, starting from iter 4804 * position. The caller must hold RCU read lock. 4805 */ 4806 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev, 4807 struct list_head **iter) 4808 { 4809 struct netdev_adjacent *upper; 4810 4811 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); 4812 4813 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 4814 4815 if (&upper->list == &dev->all_adj_list.upper) 4816 return NULL; 4817 4818 *iter = &upper->list; 4819 4820 return upper->dev; 4821 } 4822 EXPORT_SYMBOL(netdev_all_upper_get_next_dev_rcu); 4823 4824 /** 4825 * netdev_lower_get_next_private - Get the next ->private from the 4826 * lower neighbour list 4827 * @dev: device 4828 * @iter: list_head ** of the current position 4829 * 4830 * Gets the next netdev_adjacent->private from the dev's lower neighbour 4831 * list, starting from iter position. The caller must hold either hold the 4832 * RTNL lock or its own locking that guarantees that the neighbour lower 4833 * list will remain unchainged. 4834 */ 4835 void *netdev_lower_get_next_private(struct net_device *dev, 4836 struct list_head **iter) 4837 { 4838 struct netdev_adjacent *lower; 4839 4840 lower = list_entry(*iter, struct netdev_adjacent, list); 4841 4842 if (&lower->list == &dev->adj_list.lower) 4843 return NULL; 4844 4845 *iter = lower->list.next; 4846 4847 return lower->private; 4848 } 4849 EXPORT_SYMBOL(netdev_lower_get_next_private); 4850 4851 /** 4852 * netdev_lower_get_next_private_rcu - Get the next ->private from the 4853 * lower neighbour list, RCU 4854 * variant 4855 * @dev: device 4856 * @iter: list_head ** of the current position 4857 * 4858 * Gets the next netdev_adjacent->private from the dev's lower neighbour 4859 * list, starting from iter position. The caller must hold RCU read lock. 4860 */ 4861 void *netdev_lower_get_next_private_rcu(struct net_device *dev, 4862 struct list_head **iter) 4863 { 4864 struct netdev_adjacent *lower; 4865 4866 WARN_ON_ONCE(!rcu_read_lock_held()); 4867 4868 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 4869 4870 if (&lower->list == &dev->adj_list.lower) 4871 return NULL; 4872 4873 *iter = &lower->list; 4874 4875 return lower->private; 4876 } 4877 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu); 4878 4879 /** 4880 * netdev_lower_get_next - Get the next device from the lower neighbour 4881 * list 4882 * @dev: device 4883 * @iter: list_head ** of the current position 4884 * 4885 * Gets the next netdev_adjacent from the dev's lower neighbour 4886 * list, starting from iter position. The caller must hold RTNL lock or 4887 * its own locking that guarantees that the neighbour lower 4888 * list will remain unchainged. 4889 */ 4890 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter) 4891 { 4892 struct netdev_adjacent *lower; 4893 4894 lower = list_entry((*iter)->next, struct netdev_adjacent, list); 4895 4896 if (&lower->list == &dev->adj_list.lower) 4897 return NULL; 4898 4899 *iter = &lower->list; 4900 4901 return lower->dev; 4902 } 4903 EXPORT_SYMBOL(netdev_lower_get_next); 4904 4905 /** 4906 * netdev_lower_get_first_private_rcu - Get the first ->private from the 4907 * lower neighbour list, RCU 4908 * variant 4909 * @dev: device 4910 * 4911 * Gets the first netdev_adjacent->private from the dev's lower neighbour 4912 * list. The caller must hold RCU read lock. 4913 */ 4914 void *netdev_lower_get_first_private_rcu(struct net_device *dev) 4915 { 4916 struct netdev_adjacent *lower; 4917 4918 lower = list_first_or_null_rcu(&dev->adj_list.lower, 4919 struct netdev_adjacent, list); 4920 if (lower) 4921 return lower->private; 4922 return NULL; 4923 } 4924 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu); 4925 4926 /** 4927 * netdev_master_upper_dev_get_rcu - Get master upper device 4928 * @dev: device 4929 * 4930 * Find a master upper device and return pointer to it or NULL in case 4931 * it's not there. The caller must hold the RCU read lock. 4932 */ 4933 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev) 4934 { 4935 struct netdev_adjacent *upper; 4936 4937 upper = list_first_or_null_rcu(&dev->adj_list.upper, 4938 struct netdev_adjacent, list); 4939 if (upper && likely(upper->master)) 4940 return upper->dev; 4941 return NULL; 4942 } 4943 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu); 4944 4945 static int netdev_adjacent_sysfs_add(struct net_device *dev, 4946 struct net_device *adj_dev, 4947 struct list_head *dev_list) 4948 { 4949 char linkname[IFNAMSIZ+7]; 4950 sprintf(linkname, dev_list == &dev->adj_list.upper ? 4951 "upper_%s" : "lower_%s", adj_dev->name); 4952 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj), 4953 linkname); 4954 } 4955 static void netdev_adjacent_sysfs_del(struct net_device *dev, 4956 char *name, 4957 struct list_head *dev_list) 4958 { 4959 char linkname[IFNAMSIZ+7]; 4960 sprintf(linkname, dev_list == &dev->adj_list.upper ? 4961 "upper_%s" : "lower_%s", name); 4962 sysfs_remove_link(&(dev->dev.kobj), linkname); 4963 } 4964 4965 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev, 4966 struct net_device *adj_dev, 4967 struct list_head *dev_list) 4968 { 4969 return (dev_list == &dev->adj_list.upper || 4970 dev_list == &dev->adj_list.lower) && 4971 net_eq(dev_net(dev), dev_net(adj_dev)); 4972 } 4973 4974 static int __netdev_adjacent_dev_insert(struct net_device *dev, 4975 struct net_device *adj_dev, 4976 struct list_head *dev_list, 4977 void *private, bool master) 4978 { 4979 struct netdev_adjacent *adj; 4980 int ret; 4981 4982 adj = __netdev_find_adj(dev, adj_dev, dev_list); 4983 4984 if (adj) { 4985 adj->ref_nr++; 4986 return 0; 4987 } 4988 4989 adj = kmalloc(sizeof(*adj), GFP_KERNEL); 4990 if (!adj) 4991 return -ENOMEM; 4992 4993 adj->dev = adj_dev; 4994 adj->master = master; 4995 adj->ref_nr = 1; 4996 adj->private = private; 4997 dev_hold(adj_dev); 4998 4999 pr_debug("dev_hold for %s, because of link added from %s to %s\n", 5000 adj_dev->name, dev->name, adj_dev->name); 5001 5002 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) { 5003 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list); 5004 if (ret) 5005 goto free_adj; 5006 } 5007 5008 /* Ensure that master link is always the first item in list. */ 5009 if (master) { 5010 ret = sysfs_create_link(&(dev->dev.kobj), 5011 &(adj_dev->dev.kobj), "master"); 5012 if (ret) 5013 goto remove_symlinks; 5014 5015 list_add_rcu(&adj->list, dev_list); 5016 } else { 5017 list_add_tail_rcu(&adj->list, dev_list); 5018 } 5019 5020 return 0; 5021 5022 remove_symlinks: 5023 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) 5024 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list); 5025 free_adj: 5026 kfree(adj); 5027 dev_put(adj_dev); 5028 5029 return ret; 5030 } 5031 5032 static void __netdev_adjacent_dev_remove(struct net_device *dev, 5033 struct net_device *adj_dev, 5034 struct list_head *dev_list) 5035 { 5036 struct netdev_adjacent *adj; 5037 5038 adj = __netdev_find_adj(dev, adj_dev, dev_list); 5039 5040 if (!adj) { 5041 pr_err("tried to remove device %s from %s\n", 5042 dev->name, adj_dev->name); 5043 BUG(); 5044 } 5045 5046 if (adj->ref_nr > 1) { 5047 pr_debug("%s to %s ref_nr-- = %d\n", dev->name, adj_dev->name, 5048 adj->ref_nr-1); 5049 adj->ref_nr--; 5050 return; 5051 } 5052 5053 if (adj->master) 5054 sysfs_remove_link(&(dev->dev.kobj), "master"); 5055 5056 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) 5057 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list); 5058 5059 list_del_rcu(&adj->list); 5060 pr_debug("dev_put for %s, because link removed from %s to %s\n", 5061 adj_dev->name, dev->name, adj_dev->name); 5062 dev_put(adj_dev); 5063 kfree_rcu(adj, rcu); 5064 } 5065 5066 static int __netdev_adjacent_dev_link_lists(struct net_device *dev, 5067 struct net_device *upper_dev, 5068 struct list_head *up_list, 5069 struct list_head *down_list, 5070 void *private, bool master) 5071 { 5072 int ret; 5073 5074 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, private, 5075 master); 5076 if (ret) 5077 return ret; 5078 5079 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, private, 5080 false); 5081 if (ret) { 5082 __netdev_adjacent_dev_remove(dev, upper_dev, up_list); 5083 return ret; 5084 } 5085 5086 return 0; 5087 } 5088 5089 static int __netdev_adjacent_dev_link(struct net_device *dev, 5090 struct net_device *upper_dev) 5091 { 5092 return __netdev_adjacent_dev_link_lists(dev, upper_dev, 5093 &dev->all_adj_list.upper, 5094 &upper_dev->all_adj_list.lower, 5095 NULL, false); 5096 } 5097 5098 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev, 5099 struct net_device *upper_dev, 5100 struct list_head *up_list, 5101 struct list_head *down_list) 5102 { 5103 __netdev_adjacent_dev_remove(dev, upper_dev, up_list); 5104 __netdev_adjacent_dev_remove(upper_dev, dev, down_list); 5105 } 5106 5107 static void __netdev_adjacent_dev_unlink(struct net_device *dev, 5108 struct net_device *upper_dev) 5109 { 5110 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 5111 &dev->all_adj_list.upper, 5112 &upper_dev->all_adj_list.lower); 5113 } 5114 5115 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev, 5116 struct net_device *upper_dev, 5117 void *private, bool master) 5118 { 5119 int ret = __netdev_adjacent_dev_link(dev, upper_dev); 5120 5121 if (ret) 5122 return ret; 5123 5124 ret = __netdev_adjacent_dev_link_lists(dev, upper_dev, 5125 &dev->adj_list.upper, 5126 &upper_dev->adj_list.lower, 5127 private, master); 5128 if (ret) { 5129 __netdev_adjacent_dev_unlink(dev, upper_dev); 5130 return ret; 5131 } 5132 5133 return 0; 5134 } 5135 5136 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev, 5137 struct net_device *upper_dev) 5138 { 5139 __netdev_adjacent_dev_unlink(dev, upper_dev); 5140 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 5141 &dev->adj_list.upper, 5142 &upper_dev->adj_list.lower); 5143 } 5144 5145 static int __netdev_upper_dev_link(struct net_device *dev, 5146 struct net_device *upper_dev, bool master, 5147 void *private) 5148 { 5149 struct netdev_adjacent *i, *j, *to_i, *to_j; 5150 int ret = 0; 5151 5152 ASSERT_RTNL(); 5153 5154 if (dev == upper_dev) 5155 return -EBUSY; 5156 5157 /* To prevent loops, check if dev is not upper device to upper_dev. */ 5158 if (__netdev_find_adj(upper_dev, dev, &upper_dev->all_adj_list.upper)) 5159 return -EBUSY; 5160 5161 if (__netdev_find_adj(dev, upper_dev, &dev->all_adj_list.upper)) 5162 return -EEXIST; 5163 5164 if (master && netdev_master_upper_dev_get(dev)) 5165 return -EBUSY; 5166 5167 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, private, 5168 master); 5169 if (ret) 5170 return ret; 5171 5172 /* Now that we linked these devs, make all the upper_dev's 5173 * all_adj_list.upper visible to every dev's all_adj_list.lower an 5174 * versa, and don't forget the devices itself. All of these 5175 * links are non-neighbours. 5176 */ 5177 list_for_each_entry(i, &dev->all_adj_list.lower, list) { 5178 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) { 5179 pr_debug("Interlinking %s with %s, non-neighbour\n", 5180 i->dev->name, j->dev->name); 5181 ret = __netdev_adjacent_dev_link(i->dev, j->dev); 5182 if (ret) 5183 goto rollback_mesh; 5184 } 5185 } 5186 5187 /* add dev to every upper_dev's upper device */ 5188 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) { 5189 pr_debug("linking %s's upper device %s with %s\n", 5190 upper_dev->name, i->dev->name, dev->name); 5191 ret = __netdev_adjacent_dev_link(dev, i->dev); 5192 if (ret) 5193 goto rollback_upper_mesh; 5194 } 5195 5196 /* add upper_dev to every dev's lower device */ 5197 list_for_each_entry(i, &dev->all_adj_list.lower, list) { 5198 pr_debug("linking %s's lower device %s with %s\n", dev->name, 5199 i->dev->name, upper_dev->name); 5200 ret = __netdev_adjacent_dev_link(i->dev, upper_dev); 5201 if (ret) 5202 goto rollback_lower_mesh; 5203 } 5204 5205 call_netdevice_notifiers(NETDEV_CHANGEUPPER, dev); 5206 return 0; 5207 5208 rollback_lower_mesh: 5209 to_i = i; 5210 list_for_each_entry(i, &dev->all_adj_list.lower, list) { 5211 if (i == to_i) 5212 break; 5213 __netdev_adjacent_dev_unlink(i->dev, upper_dev); 5214 } 5215 5216 i = NULL; 5217 5218 rollback_upper_mesh: 5219 to_i = i; 5220 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) { 5221 if (i == to_i) 5222 break; 5223 __netdev_adjacent_dev_unlink(dev, i->dev); 5224 } 5225 5226 i = j = NULL; 5227 5228 rollback_mesh: 5229 to_i = i; 5230 to_j = j; 5231 list_for_each_entry(i, &dev->all_adj_list.lower, list) { 5232 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) { 5233 if (i == to_i && j == to_j) 5234 break; 5235 __netdev_adjacent_dev_unlink(i->dev, j->dev); 5236 } 5237 if (i == to_i) 5238 break; 5239 } 5240 5241 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 5242 5243 return ret; 5244 } 5245 5246 /** 5247 * netdev_upper_dev_link - Add a link to the upper device 5248 * @dev: device 5249 * @upper_dev: new upper device 5250 * 5251 * Adds a link to device which is upper to this one. The caller must hold 5252 * the RTNL lock. On a failure a negative errno code is returned. 5253 * On success the reference counts are adjusted and the function 5254 * returns zero. 5255 */ 5256 int netdev_upper_dev_link(struct net_device *dev, 5257 struct net_device *upper_dev) 5258 { 5259 return __netdev_upper_dev_link(dev, upper_dev, false, NULL); 5260 } 5261 EXPORT_SYMBOL(netdev_upper_dev_link); 5262 5263 /** 5264 * netdev_master_upper_dev_link - Add a master link to the upper device 5265 * @dev: device 5266 * @upper_dev: new upper device 5267 * 5268 * Adds a link to device which is upper to this one. In this case, only 5269 * one master upper device can be linked, although other non-master devices 5270 * might be linked as well. The caller must hold the RTNL lock. 5271 * On a failure a negative errno code is returned. On success the reference 5272 * counts are adjusted and the function returns zero. 5273 */ 5274 int netdev_master_upper_dev_link(struct net_device *dev, 5275 struct net_device *upper_dev) 5276 { 5277 return __netdev_upper_dev_link(dev, upper_dev, true, NULL); 5278 } 5279 EXPORT_SYMBOL(netdev_master_upper_dev_link); 5280 5281 int netdev_master_upper_dev_link_private(struct net_device *dev, 5282 struct net_device *upper_dev, 5283 void *private) 5284 { 5285 return __netdev_upper_dev_link(dev, upper_dev, true, private); 5286 } 5287 EXPORT_SYMBOL(netdev_master_upper_dev_link_private); 5288 5289 /** 5290 * netdev_upper_dev_unlink - Removes a link to upper device 5291 * @dev: device 5292 * @upper_dev: new upper device 5293 * 5294 * Removes a link to device which is upper to this one. The caller must hold 5295 * the RTNL lock. 5296 */ 5297 void netdev_upper_dev_unlink(struct net_device *dev, 5298 struct net_device *upper_dev) 5299 { 5300 struct netdev_adjacent *i, *j; 5301 ASSERT_RTNL(); 5302 5303 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 5304 5305 /* Here is the tricky part. We must remove all dev's lower 5306 * devices from all upper_dev's upper devices and vice 5307 * versa, to maintain the graph relationship. 5308 */ 5309 list_for_each_entry(i, &dev->all_adj_list.lower, list) 5310 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) 5311 __netdev_adjacent_dev_unlink(i->dev, j->dev); 5312 5313 /* remove also the devices itself from lower/upper device 5314 * list 5315 */ 5316 list_for_each_entry(i, &dev->all_adj_list.lower, list) 5317 __netdev_adjacent_dev_unlink(i->dev, upper_dev); 5318 5319 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) 5320 __netdev_adjacent_dev_unlink(dev, i->dev); 5321 5322 call_netdevice_notifiers(NETDEV_CHANGEUPPER, dev); 5323 } 5324 EXPORT_SYMBOL(netdev_upper_dev_unlink); 5325 5326 void netdev_adjacent_add_links(struct net_device *dev) 5327 { 5328 struct netdev_adjacent *iter; 5329 5330 struct net *net = dev_net(dev); 5331 5332 list_for_each_entry(iter, &dev->adj_list.upper, list) { 5333 if (!net_eq(net,dev_net(iter->dev))) 5334 continue; 5335 netdev_adjacent_sysfs_add(iter->dev, dev, 5336 &iter->dev->adj_list.lower); 5337 netdev_adjacent_sysfs_add(dev, iter->dev, 5338 &dev->adj_list.upper); 5339 } 5340 5341 list_for_each_entry(iter, &dev->adj_list.lower, list) { 5342 if (!net_eq(net,dev_net(iter->dev))) 5343 continue; 5344 netdev_adjacent_sysfs_add(iter->dev, dev, 5345 &iter->dev->adj_list.upper); 5346 netdev_adjacent_sysfs_add(dev, iter->dev, 5347 &dev->adj_list.lower); 5348 } 5349 } 5350 5351 void netdev_adjacent_del_links(struct net_device *dev) 5352 { 5353 struct netdev_adjacent *iter; 5354 5355 struct net *net = dev_net(dev); 5356 5357 list_for_each_entry(iter, &dev->adj_list.upper, list) { 5358 if (!net_eq(net,dev_net(iter->dev))) 5359 continue; 5360 netdev_adjacent_sysfs_del(iter->dev, dev->name, 5361 &iter->dev->adj_list.lower); 5362 netdev_adjacent_sysfs_del(dev, iter->dev->name, 5363 &dev->adj_list.upper); 5364 } 5365 5366 list_for_each_entry(iter, &dev->adj_list.lower, list) { 5367 if (!net_eq(net,dev_net(iter->dev))) 5368 continue; 5369 netdev_adjacent_sysfs_del(iter->dev, dev->name, 5370 &iter->dev->adj_list.upper); 5371 netdev_adjacent_sysfs_del(dev, iter->dev->name, 5372 &dev->adj_list.lower); 5373 } 5374 } 5375 5376 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname) 5377 { 5378 struct netdev_adjacent *iter; 5379 5380 struct net *net = dev_net(dev); 5381 5382 list_for_each_entry(iter, &dev->adj_list.upper, list) { 5383 if (!net_eq(net,dev_net(iter->dev))) 5384 continue; 5385 netdev_adjacent_sysfs_del(iter->dev, oldname, 5386 &iter->dev->adj_list.lower); 5387 netdev_adjacent_sysfs_add(iter->dev, dev, 5388 &iter->dev->adj_list.lower); 5389 } 5390 5391 list_for_each_entry(iter, &dev->adj_list.lower, list) { 5392 if (!net_eq(net,dev_net(iter->dev))) 5393 continue; 5394 netdev_adjacent_sysfs_del(iter->dev, oldname, 5395 &iter->dev->adj_list.upper); 5396 netdev_adjacent_sysfs_add(iter->dev, dev, 5397 &iter->dev->adj_list.upper); 5398 } 5399 } 5400 5401 void *netdev_lower_dev_get_private(struct net_device *dev, 5402 struct net_device *lower_dev) 5403 { 5404 struct netdev_adjacent *lower; 5405 5406 if (!lower_dev) 5407 return NULL; 5408 lower = __netdev_find_adj(dev, lower_dev, &dev->adj_list.lower); 5409 if (!lower) 5410 return NULL; 5411 5412 return lower->private; 5413 } 5414 EXPORT_SYMBOL(netdev_lower_dev_get_private); 5415 5416 5417 int dev_get_nest_level(struct net_device *dev, 5418 bool (*type_check)(struct net_device *dev)) 5419 { 5420 struct net_device *lower = NULL; 5421 struct list_head *iter; 5422 int max_nest = -1; 5423 int nest; 5424 5425 ASSERT_RTNL(); 5426 5427 netdev_for_each_lower_dev(dev, lower, iter) { 5428 nest = dev_get_nest_level(lower, type_check); 5429 if (max_nest < nest) 5430 max_nest = nest; 5431 } 5432 5433 if (type_check(dev)) 5434 max_nest++; 5435 5436 return max_nest; 5437 } 5438 EXPORT_SYMBOL(dev_get_nest_level); 5439 5440 static void dev_change_rx_flags(struct net_device *dev, int flags) 5441 { 5442 const struct net_device_ops *ops = dev->netdev_ops; 5443 5444 if (ops->ndo_change_rx_flags) 5445 ops->ndo_change_rx_flags(dev, flags); 5446 } 5447 5448 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify) 5449 { 5450 unsigned int old_flags = dev->flags; 5451 kuid_t uid; 5452 kgid_t gid; 5453 5454 ASSERT_RTNL(); 5455 5456 dev->flags |= IFF_PROMISC; 5457 dev->promiscuity += inc; 5458 if (dev->promiscuity == 0) { 5459 /* 5460 * Avoid overflow. 5461 * If inc causes overflow, untouch promisc and return error. 5462 */ 5463 if (inc < 0) 5464 dev->flags &= ~IFF_PROMISC; 5465 else { 5466 dev->promiscuity -= inc; 5467 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n", 5468 dev->name); 5469 return -EOVERFLOW; 5470 } 5471 } 5472 if (dev->flags != old_flags) { 5473 pr_info("device %s %s promiscuous mode\n", 5474 dev->name, 5475 dev->flags & IFF_PROMISC ? "entered" : "left"); 5476 if (audit_enabled) { 5477 current_uid_gid(&uid, &gid); 5478 audit_log(current->audit_context, GFP_ATOMIC, 5479 AUDIT_ANOM_PROMISCUOUS, 5480 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u", 5481 dev->name, (dev->flags & IFF_PROMISC), 5482 (old_flags & IFF_PROMISC), 5483 from_kuid(&init_user_ns, audit_get_loginuid(current)), 5484 from_kuid(&init_user_ns, uid), 5485 from_kgid(&init_user_ns, gid), 5486 audit_get_sessionid(current)); 5487 } 5488 5489 dev_change_rx_flags(dev, IFF_PROMISC); 5490 } 5491 if (notify) 5492 __dev_notify_flags(dev, old_flags, IFF_PROMISC); 5493 return 0; 5494 } 5495 5496 /** 5497 * dev_set_promiscuity - update promiscuity count on a device 5498 * @dev: device 5499 * @inc: modifier 5500 * 5501 * Add or remove promiscuity from a device. While the count in the device 5502 * remains above zero the interface remains promiscuous. Once it hits zero 5503 * the device reverts back to normal filtering operation. A negative inc 5504 * value is used to drop promiscuity on the device. 5505 * Return 0 if successful or a negative errno code on error. 5506 */ 5507 int dev_set_promiscuity(struct net_device *dev, int inc) 5508 { 5509 unsigned int old_flags = dev->flags; 5510 int err; 5511 5512 err = __dev_set_promiscuity(dev, inc, true); 5513 if (err < 0) 5514 return err; 5515 if (dev->flags != old_flags) 5516 dev_set_rx_mode(dev); 5517 return err; 5518 } 5519 EXPORT_SYMBOL(dev_set_promiscuity); 5520 5521 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify) 5522 { 5523 unsigned int old_flags = dev->flags, old_gflags = dev->gflags; 5524 5525 ASSERT_RTNL(); 5526 5527 dev->flags |= IFF_ALLMULTI; 5528 dev->allmulti += inc; 5529 if (dev->allmulti == 0) { 5530 /* 5531 * Avoid overflow. 5532 * If inc causes overflow, untouch allmulti and return error. 5533 */ 5534 if (inc < 0) 5535 dev->flags &= ~IFF_ALLMULTI; 5536 else { 5537 dev->allmulti -= inc; 5538 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n", 5539 dev->name); 5540 return -EOVERFLOW; 5541 } 5542 } 5543 if (dev->flags ^ old_flags) { 5544 dev_change_rx_flags(dev, IFF_ALLMULTI); 5545 dev_set_rx_mode(dev); 5546 if (notify) 5547 __dev_notify_flags(dev, old_flags, 5548 dev->gflags ^ old_gflags); 5549 } 5550 return 0; 5551 } 5552 5553 /** 5554 * dev_set_allmulti - update allmulti count on a device 5555 * @dev: device 5556 * @inc: modifier 5557 * 5558 * Add or remove reception of all multicast frames to a device. While the 5559 * count in the device remains above zero the interface remains listening 5560 * to all interfaces. Once it hits zero the device reverts back to normal 5561 * filtering operation. A negative @inc value is used to drop the counter 5562 * when releasing a resource needing all multicasts. 5563 * Return 0 if successful or a negative errno code on error. 5564 */ 5565 5566 int dev_set_allmulti(struct net_device *dev, int inc) 5567 { 5568 return __dev_set_allmulti(dev, inc, true); 5569 } 5570 EXPORT_SYMBOL(dev_set_allmulti); 5571 5572 /* 5573 * Upload unicast and multicast address lists to device and 5574 * configure RX filtering. When the device doesn't support unicast 5575 * filtering it is put in promiscuous mode while unicast addresses 5576 * are present. 5577 */ 5578 void __dev_set_rx_mode(struct net_device *dev) 5579 { 5580 const struct net_device_ops *ops = dev->netdev_ops; 5581 5582 /* dev_open will call this function so the list will stay sane. */ 5583 if (!(dev->flags&IFF_UP)) 5584 return; 5585 5586 if (!netif_device_present(dev)) 5587 return; 5588 5589 if (!(dev->priv_flags & IFF_UNICAST_FLT)) { 5590 /* Unicast addresses changes may only happen under the rtnl, 5591 * therefore calling __dev_set_promiscuity here is safe. 5592 */ 5593 if (!netdev_uc_empty(dev) && !dev->uc_promisc) { 5594 __dev_set_promiscuity(dev, 1, false); 5595 dev->uc_promisc = true; 5596 } else if (netdev_uc_empty(dev) && dev->uc_promisc) { 5597 __dev_set_promiscuity(dev, -1, false); 5598 dev->uc_promisc = false; 5599 } 5600 } 5601 5602 if (ops->ndo_set_rx_mode) 5603 ops->ndo_set_rx_mode(dev); 5604 } 5605 5606 void dev_set_rx_mode(struct net_device *dev) 5607 { 5608 netif_addr_lock_bh(dev); 5609 __dev_set_rx_mode(dev); 5610 netif_addr_unlock_bh(dev); 5611 } 5612 5613 /** 5614 * dev_get_flags - get flags reported to userspace 5615 * @dev: device 5616 * 5617 * Get the combination of flag bits exported through APIs to userspace. 5618 */ 5619 unsigned int dev_get_flags(const struct net_device *dev) 5620 { 5621 unsigned int flags; 5622 5623 flags = (dev->flags & ~(IFF_PROMISC | 5624 IFF_ALLMULTI | 5625 IFF_RUNNING | 5626 IFF_LOWER_UP | 5627 IFF_DORMANT)) | 5628 (dev->gflags & (IFF_PROMISC | 5629 IFF_ALLMULTI)); 5630 5631 if (netif_running(dev)) { 5632 if (netif_oper_up(dev)) 5633 flags |= IFF_RUNNING; 5634 if (netif_carrier_ok(dev)) 5635 flags |= IFF_LOWER_UP; 5636 if (netif_dormant(dev)) 5637 flags |= IFF_DORMANT; 5638 } 5639 5640 return flags; 5641 } 5642 EXPORT_SYMBOL(dev_get_flags); 5643 5644 int __dev_change_flags(struct net_device *dev, unsigned int flags) 5645 { 5646 unsigned int old_flags = dev->flags; 5647 int ret; 5648 5649 ASSERT_RTNL(); 5650 5651 /* 5652 * Set the flags on our device. 5653 */ 5654 5655 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP | 5656 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL | 5657 IFF_AUTOMEDIA)) | 5658 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC | 5659 IFF_ALLMULTI)); 5660 5661 /* 5662 * Load in the correct multicast list now the flags have changed. 5663 */ 5664 5665 if ((old_flags ^ flags) & IFF_MULTICAST) 5666 dev_change_rx_flags(dev, IFF_MULTICAST); 5667 5668 dev_set_rx_mode(dev); 5669 5670 /* 5671 * Have we downed the interface. We handle IFF_UP ourselves 5672 * according to user attempts to set it, rather than blindly 5673 * setting it. 5674 */ 5675 5676 ret = 0; 5677 if ((old_flags ^ flags) & IFF_UP) 5678 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev); 5679 5680 if ((flags ^ dev->gflags) & IFF_PROMISC) { 5681 int inc = (flags & IFF_PROMISC) ? 1 : -1; 5682 unsigned int old_flags = dev->flags; 5683 5684 dev->gflags ^= IFF_PROMISC; 5685 5686 if (__dev_set_promiscuity(dev, inc, false) >= 0) 5687 if (dev->flags != old_flags) 5688 dev_set_rx_mode(dev); 5689 } 5690 5691 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI 5692 is important. Some (broken) drivers set IFF_PROMISC, when 5693 IFF_ALLMULTI is requested not asking us and not reporting. 5694 */ 5695 if ((flags ^ dev->gflags) & IFF_ALLMULTI) { 5696 int inc = (flags & IFF_ALLMULTI) ? 1 : -1; 5697 5698 dev->gflags ^= IFF_ALLMULTI; 5699 __dev_set_allmulti(dev, inc, false); 5700 } 5701 5702 return ret; 5703 } 5704 5705 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags, 5706 unsigned int gchanges) 5707 { 5708 unsigned int changes = dev->flags ^ old_flags; 5709 5710 if (gchanges) 5711 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC); 5712 5713 if (changes & IFF_UP) { 5714 if (dev->flags & IFF_UP) 5715 call_netdevice_notifiers(NETDEV_UP, dev); 5716 else 5717 call_netdevice_notifiers(NETDEV_DOWN, dev); 5718 } 5719 5720 if (dev->flags & IFF_UP && 5721 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) { 5722 struct netdev_notifier_change_info change_info; 5723 5724 change_info.flags_changed = changes; 5725 call_netdevice_notifiers_info(NETDEV_CHANGE, dev, 5726 &change_info.info); 5727 } 5728 } 5729 5730 /** 5731 * dev_change_flags - change device settings 5732 * @dev: device 5733 * @flags: device state flags 5734 * 5735 * Change settings on device based state flags. The flags are 5736 * in the userspace exported format. 5737 */ 5738 int dev_change_flags(struct net_device *dev, unsigned int flags) 5739 { 5740 int ret; 5741 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags; 5742 5743 ret = __dev_change_flags(dev, flags); 5744 if (ret < 0) 5745 return ret; 5746 5747 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags); 5748 __dev_notify_flags(dev, old_flags, changes); 5749 return ret; 5750 } 5751 EXPORT_SYMBOL(dev_change_flags); 5752 5753 static int __dev_set_mtu(struct net_device *dev, int new_mtu) 5754 { 5755 const struct net_device_ops *ops = dev->netdev_ops; 5756 5757 if (ops->ndo_change_mtu) 5758 return ops->ndo_change_mtu(dev, new_mtu); 5759 5760 dev->mtu = new_mtu; 5761 return 0; 5762 } 5763 5764 /** 5765 * dev_set_mtu - Change maximum transfer unit 5766 * @dev: device 5767 * @new_mtu: new transfer unit 5768 * 5769 * Change the maximum transfer size of the network device. 5770 */ 5771 int dev_set_mtu(struct net_device *dev, int new_mtu) 5772 { 5773 int err, orig_mtu; 5774 5775 if (new_mtu == dev->mtu) 5776 return 0; 5777 5778 /* MTU must be positive. */ 5779 if (new_mtu < 0) 5780 return -EINVAL; 5781 5782 if (!netif_device_present(dev)) 5783 return -ENODEV; 5784 5785 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev); 5786 err = notifier_to_errno(err); 5787 if (err) 5788 return err; 5789 5790 orig_mtu = dev->mtu; 5791 err = __dev_set_mtu(dev, new_mtu); 5792 5793 if (!err) { 5794 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev); 5795 err = notifier_to_errno(err); 5796 if (err) { 5797 /* setting mtu back and notifying everyone again, 5798 * so that they have a chance to revert changes. 5799 */ 5800 __dev_set_mtu(dev, orig_mtu); 5801 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev); 5802 } 5803 } 5804 return err; 5805 } 5806 EXPORT_SYMBOL(dev_set_mtu); 5807 5808 /** 5809 * dev_set_group - Change group this device belongs to 5810 * @dev: device 5811 * @new_group: group this device should belong to 5812 */ 5813 void dev_set_group(struct net_device *dev, int new_group) 5814 { 5815 dev->group = new_group; 5816 } 5817 EXPORT_SYMBOL(dev_set_group); 5818 5819 /** 5820 * dev_set_mac_address - Change Media Access Control Address 5821 * @dev: device 5822 * @sa: new address 5823 * 5824 * Change the hardware (MAC) address of the device 5825 */ 5826 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa) 5827 { 5828 const struct net_device_ops *ops = dev->netdev_ops; 5829 int err; 5830 5831 if (!ops->ndo_set_mac_address) 5832 return -EOPNOTSUPP; 5833 if (sa->sa_family != dev->type) 5834 return -EINVAL; 5835 if (!netif_device_present(dev)) 5836 return -ENODEV; 5837 err = ops->ndo_set_mac_address(dev, sa); 5838 if (err) 5839 return err; 5840 dev->addr_assign_type = NET_ADDR_SET; 5841 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 5842 add_device_randomness(dev->dev_addr, dev->addr_len); 5843 return 0; 5844 } 5845 EXPORT_SYMBOL(dev_set_mac_address); 5846 5847 /** 5848 * dev_change_carrier - Change device carrier 5849 * @dev: device 5850 * @new_carrier: new value 5851 * 5852 * Change device carrier 5853 */ 5854 int dev_change_carrier(struct net_device *dev, bool new_carrier) 5855 { 5856 const struct net_device_ops *ops = dev->netdev_ops; 5857 5858 if (!ops->ndo_change_carrier) 5859 return -EOPNOTSUPP; 5860 if (!netif_device_present(dev)) 5861 return -ENODEV; 5862 return ops->ndo_change_carrier(dev, new_carrier); 5863 } 5864 EXPORT_SYMBOL(dev_change_carrier); 5865 5866 /** 5867 * dev_get_phys_port_id - Get device physical port ID 5868 * @dev: device 5869 * @ppid: port ID 5870 * 5871 * Get device physical port ID 5872 */ 5873 int dev_get_phys_port_id(struct net_device *dev, 5874 struct netdev_phys_item_id *ppid) 5875 { 5876 const struct net_device_ops *ops = dev->netdev_ops; 5877 5878 if (!ops->ndo_get_phys_port_id) 5879 return -EOPNOTSUPP; 5880 return ops->ndo_get_phys_port_id(dev, ppid); 5881 } 5882 EXPORT_SYMBOL(dev_get_phys_port_id); 5883 5884 /** 5885 * dev_new_index - allocate an ifindex 5886 * @net: the applicable net namespace 5887 * 5888 * Returns a suitable unique value for a new device interface 5889 * number. The caller must hold the rtnl semaphore or the 5890 * dev_base_lock to be sure it remains unique. 5891 */ 5892 static int dev_new_index(struct net *net) 5893 { 5894 int ifindex = net->ifindex; 5895 for (;;) { 5896 if (++ifindex <= 0) 5897 ifindex = 1; 5898 if (!__dev_get_by_index(net, ifindex)) 5899 return net->ifindex = ifindex; 5900 } 5901 } 5902 5903 /* Delayed registration/unregisteration */ 5904 static LIST_HEAD(net_todo_list); 5905 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq); 5906 5907 static void net_set_todo(struct net_device *dev) 5908 { 5909 list_add_tail(&dev->todo_list, &net_todo_list); 5910 dev_net(dev)->dev_unreg_count++; 5911 } 5912 5913 static void rollback_registered_many(struct list_head *head) 5914 { 5915 struct net_device *dev, *tmp; 5916 LIST_HEAD(close_head); 5917 5918 BUG_ON(dev_boot_phase); 5919 ASSERT_RTNL(); 5920 5921 list_for_each_entry_safe(dev, tmp, head, unreg_list) { 5922 /* Some devices call without registering 5923 * for initialization unwind. Remove those 5924 * devices and proceed with the remaining. 5925 */ 5926 if (dev->reg_state == NETREG_UNINITIALIZED) { 5927 pr_debug("unregister_netdevice: device %s/%p never was registered\n", 5928 dev->name, dev); 5929 5930 WARN_ON(1); 5931 list_del(&dev->unreg_list); 5932 continue; 5933 } 5934 dev->dismantle = true; 5935 BUG_ON(dev->reg_state != NETREG_REGISTERED); 5936 } 5937 5938 /* If device is running, close it first. */ 5939 list_for_each_entry(dev, head, unreg_list) 5940 list_add_tail(&dev->close_list, &close_head); 5941 dev_close_many(&close_head); 5942 5943 list_for_each_entry(dev, head, unreg_list) { 5944 /* And unlink it from device chain. */ 5945 unlist_netdevice(dev); 5946 5947 dev->reg_state = NETREG_UNREGISTERING; 5948 } 5949 5950 synchronize_net(); 5951 5952 list_for_each_entry(dev, head, unreg_list) { 5953 struct sk_buff *skb = NULL; 5954 5955 /* Shutdown queueing discipline. */ 5956 dev_shutdown(dev); 5957 5958 5959 /* Notify protocols, that we are about to destroy 5960 this device. They should clean all the things. 5961 */ 5962 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 5963 5964 if (!dev->rtnl_link_ops || 5965 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 5966 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 5967 GFP_KERNEL); 5968 5969 /* 5970 * Flush the unicast and multicast chains 5971 */ 5972 dev_uc_flush(dev); 5973 dev_mc_flush(dev); 5974 5975 if (dev->netdev_ops->ndo_uninit) 5976 dev->netdev_ops->ndo_uninit(dev); 5977 5978 if (skb) 5979 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL); 5980 5981 /* Notifier chain MUST detach us all upper devices. */ 5982 WARN_ON(netdev_has_any_upper_dev(dev)); 5983 5984 /* Remove entries from kobject tree */ 5985 netdev_unregister_kobject(dev); 5986 #ifdef CONFIG_XPS 5987 /* Remove XPS queueing entries */ 5988 netif_reset_xps_queues_gt(dev, 0); 5989 #endif 5990 } 5991 5992 synchronize_net(); 5993 5994 list_for_each_entry(dev, head, unreg_list) 5995 dev_put(dev); 5996 } 5997 5998 static void rollback_registered(struct net_device *dev) 5999 { 6000 LIST_HEAD(single); 6001 6002 list_add(&dev->unreg_list, &single); 6003 rollback_registered_many(&single); 6004 list_del(&single); 6005 } 6006 6007 static netdev_features_t netdev_fix_features(struct net_device *dev, 6008 netdev_features_t features) 6009 { 6010 /* Fix illegal checksum combinations */ 6011 if ((features & NETIF_F_HW_CSUM) && 6012 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 6013 netdev_warn(dev, "mixed HW and IP checksum settings.\n"); 6014 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 6015 } 6016 6017 /* TSO requires that SG is present as well. */ 6018 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) { 6019 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n"); 6020 features &= ~NETIF_F_ALL_TSO; 6021 } 6022 6023 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) && 6024 !(features & NETIF_F_IP_CSUM)) { 6025 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n"); 6026 features &= ~NETIF_F_TSO; 6027 features &= ~NETIF_F_TSO_ECN; 6028 } 6029 6030 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) && 6031 !(features & NETIF_F_IPV6_CSUM)) { 6032 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n"); 6033 features &= ~NETIF_F_TSO6; 6034 } 6035 6036 /* TSO ECN requires that TSO is present as well. */ 6037 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN) 6038 features &= ~NETIF_F_TSO_ECN; 6039 6040 /* Software GSO depends on SG. */ 6041 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) { 6042 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n"); 6043 features &= ~NETIF_F_GSO; 6044 } 6045 6046 /* UFO needs SG and checksumming */ 6047 if (features & NETIF_F_UFO) { 6048 /* maybe split UFO into V4 and V6? */ 6049 if (!((features & NETIF_F_GEN_CSUM) || 6050 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM)) 6051 == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 6052 netdev_dbg(dev, 6053 "Dropping NETIF_F_UFO since no checksum offload features.\n"); 6054 features &= ~NETIF_F_UFO; 6055 } 6056 6057 if (!(features & NETIF_F_SG)) { 6058 netdev_dbg(dev, 6059 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n"); 6060 features &= ~NETIF_F_UFO; 6061 } 6062 } 6063 6064 #ifdef CONFIG_NET_RX_BUSY_POLL 6065 if (dev->netdev_ops->ndo_busy_poll) 6066 features |= NETIF_F_BUSY_POLL; 6067 else 6068 #endif 6069 features &= ~NETIF_F_BUSY_POLL; 6070 6071 return features; 6072 } 6073 6074 int __netdev_update_features(struct net_device *dev) 6075 { 6076 netdev_features_t features; 6077 int err = 0; 6078 6079 ASSERT_RTNL(); 6080 6081 features = netdev_get_wanted_features(dev); 6082 6083 if (dev->netdev_ops->ndo_fix_features) 6084 features = dev->netdev_ops->ndo_fix_features(dev, features); 6085 6086 /* driver might be less strict about feature dependencies */ 6087 features = netdev_fix_features(dev, features); 6088 6089 if (dev->features == features) 6090 return 0; 6091 6092 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n", 6093 &dev->features, &features); 6094 6095 if (dev->netdev_ops->ndo_set_features) 6096 err = dev->netdev_ops->ndo_set_features(dev, features); 6097 6098 if (unlikely(err < 0)) { 6099 netdev_err(dev, 6100 "set_features() failed (%d); wanted %pNF, left %pNF\n", 6101 err, &features, &dev->features); 6102 return -1; 6103 } 6104 6105 if (!err) 6106 dev->features = features; 6107 6108 return 1; 6109 } 6110 6111 /** 6112 * netdev_update_features - recalculate device features 6113 * @dev: the device to check 6114 * 6115 * Recalculate dev->features set and send notifications if it 6116 * has changed. Should be called after driver or hardware dependent 6117 * conditions might have changed that influence the features. 6118 */ 6119 void netdev_update_features(struct net_device *dev) 6120 { 6121 if (__netdev_update_features(dev)) 6122 netdev_features_change(dev); 6123 } 6124 EXPORT_SYMBOL(netdev_update_features); 6125 6126 /** 6127 * netdev_change_features - recalculate device features 6128 * @dev: the device to check 6129 * 6130 * Recalculate dev->features set and send notifications even 6131 * if they have not changed. Should be called instead of 6132 * netdev_update_features() if also dev->vlan_features might 6133 * have changed to allow the changes to be propagated to stacked 6134 * VLAN devices. 6135 */ 6136 void netdev_change_features(struct net_device *dev) 6137 { 6138 __netdev_update_features(dev); 6139 netdev_features_change(dev); 6140 } 6141 EXPORT_SYMBOL(netdev_change_features); 6142 6143 /** 6144 * netif_stacked_transfer_operstate - transfer operstate 6145 * @rootdev: the root or lower level device to transfer state from 6146 * @dev: the device to transfer operstate to 6147 * 6148 * Transfer operational state from root to device. This is normally 6149 * called when a stacking relationship exists between the root 6150 * device and the device(a leaf device). 6151 */ 6152 void netif_stacked_transfer_operstate(const struct net_device *rootdev, 6153 struct net_device *dev) 6154 { 6155 if (rootdev->operstate == IF_OPER_DORMANT) 6156 netif_dormant_on(dev); 6157 else 6158 netif_dormant_off(dev); 6159 6160 if (netif_carrier_ok(rootdev)) { 6161 if (!netif_carrier_ok(dev)) 6162 netif_carrier_on(dev); 6163 } else { 6164 if (netif_carrier_ok(dev)) 6165 netif_carrier_off(dev); 6166 } 6167 } 6168 EXPORT_SYMBOL(netif_stacked_transfer_operstate); 6169 6170 #ifdef CONFIG_SYSFS 6171 static int netif_alloc_rx_queues(struct net_device *dev) 6172 { 6173 unsigned int i, count = dev->num_rx_queues; 6174 struct netdev_rx_queue *rx; 6175 6176 BUG_ON(count < 1); 6177 6178 rx = kcalloc(count, sizeof(struct netdev_rx_queue), GFP_KERNEL); 6179 if (!rx) 6180 return -ENOMEM; 6181 6182 dev->_rx = rx; 6183 6184 for (i = 0; i < count; i++) 6185 rx[i].dev = dev; 6186 return 0; 6187 } 6188 #endif 6189 6190 static void netdev_init_one_queue(struct net_device *dev, 6191 struct netdev_queue *queue, void *_unused) 6192 { 6193 /* Initialize queue lock */ 6194 spin_lock_init(&queue->_xmit_lock); 6195 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type); 6196 queue->xmit_lock_owner = -1; 6197 netdev_queue_numa_node_write(queue, NUMA_NO_NODE); 6198 queue->dev = dev; 6199 #ifdef CONFIG_BQL 6200 dql_init(&queue->dql, HZ); 6201 #endif 6202 } 6203 6204 static void netif_free_tx_queues(struct net_device *dev) 6205 { 6206 kvfree(dev->_tx); 6207 } 6208 6209 static int netif_alloc_netdev_queues(struct net_device *dev) 6210 { 6211 unsigned int count = dev->num_tx_queues; 6212 struct netdev_queue *tx; 6213 size_t sz = count * sizeof(*tx); 6214 6215 BUG_ON(count < 1 || count > 0xffff); 6216 6217 tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT); 6218 if (!tx) { 6219 tx = vzalloc(sz); 6220 if (!tx) 6221 return -ENOMEM; 6222 } 6223 dev->_tx = tx; 6224 6225 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL); 6226 spin_lock_init(&dev->tx_global_lock); 6227 6228 return 0; 6229 } 6230 6231 /** 6232 * register_netdevice - register a network device 6233 * @dev: device to register 6234 * 6235 * Take a completed network device structure and add it to the kernel 6236 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 6237 * chain. 0 is returned on success. A negative errno code is returned 6238 * on a failure to set up the device, or if the name is a duplicate. 6239 * 6240 * Callers must hold the rtnl semaphore. You may want 6241 * register_netdev() instead of this. 6242 * 6243 * BUGS: 6244 * The locking appears insufficient to guarantee two parallel registers 6245 * will not get the same name. 6246 */ 6247 6248 int register_netdevice(struct net_device *dev) 6249 { 6250 int ret; 6251 struct net *net = dev_net(dev); 6252 6253 BUG_ON(dev_boot_phase); 6254 ASSERT_RTNL(); 6255 6256 might_sleep(); 6257 6258 /* When net_device's are persistent, this will be fatal. */ 6259 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED); 6260 BUG_ON(!net); 6261 6262 spin_lock_init(&dev->addr_list_lock); 6263 netdev_set_addr_lockdep_class(dev); 6264 6265 dev->iflink = -1; 6266 6267 ret = dev_get_valid_name(net, dev, dev->name); 6268 if (ret < 0) 6269 goto out; 6270 6271 /* Init, if this function is available */ 6272 if (dev->netdev_ops->ndo_init) { 6273 ret = dev->netdev_ops->ndo_init(dev); 6274 if (ret) { 6275 if (ret > 0) 6276 ret = -EIO; 6277 goto out; 6278 } 6279 } 6280 6281 if (((dev->hw_features | dev->features) & 6282 NETIF_F_HW_VLAN_CTAG_FILTER) && 6283 (!dev->netdev_ops->ndo_vlan_rx_add_vid || 6284 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) { 6285 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n"); 6286 ret = -EINVAL; 6287 goto err_uninit; 6288 } 6289 6290 ret = -EBUSY; 6291 if (!dev->ifindex) 6292 dev->ifindex = dev_new_index(net); 6293 else if (__dev_get_by_index(net, dev->ifindex)) 6294 goto err_uninit; 6295 6296 if (dev->iflink == -1) 6297 dev->iflink = dev->ifindex; 6298 6299 /* Transfer changeable features to wanted_features and enable 6300 * software offloads (GSO and GRO). 6301 */ 6302 dev->hw_features |= NETIF_F_SOFT_FEATURES; 6303 dev->features |= NETIF_F_SOFT_FEATURES; 6304 dev->wanted_features = dev->features & dev->hw_features; 6305 6306 if (!(dev->flags & IFF_LOOPBACK)) { 6307 dev->hw_features |= NETIF_F_NOCACHE_COPY; 6308 } 6309 6310 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices. 6311 */ 6312 dev->vlan_features |= NETIF_F_HIGHDMA; 6313 6314 /* Make NETIF_F_SG inheritable to tunnel devices. 6315 */ 6316 dev->hw_enc_features |= NETIF_F_SG; 6317 6318 /* Make NETIF_F_SG inheritable to MPLS. 6319 */ 6320 dev->mpls_features |= NETIF_F_SG; 6321 6322 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev); 6323 ret = notifier_to_errno(ret); 6324 if (ret) 6325 goto err_uninit; 6326 6327 ret = netdev_register_kobject(dev); 6328 if (ret) 6329 goto err_uninit; 6330 dev->reg_state = NETREG_REGISTERED; 6331 6332 __netdev_update_features(dev); 6333 6334 /* 6335 * Default initial state at registry is that the 6336 * device is present. 6337 */ 6338 6339 set_bit(__LINK_STATE_PRESENT, &dev->state); 6340 6341 linkwatch_init_dev(dev); 6342 6343 dev_init_scheduler(dev); 6344 dev_hold(dev); 6345 list_netdevice(dev); 6346 add_device_randomness(dev->dev_addr, dev->addr_len); 6347 6348 /* If the device has permanent device address, driver should 6349 * set dev_addr and also addr_assign_type should be set to 6350 * NET_ADDR_PERM (default value). 6351 */ 6352 if (dev->addr_assign_type == NET_ADDR_PERM) 6353 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len); 6354 6355 /* Notify protocols, that a new device appeared. */ 6356 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev); 6357 ret = notifier_to_errno(ret); 6358 if (ret) { 6359 rollback_registered(dev); 6360 dev->reg_state = NETREG_UNREGISTERED; 6361 } 6362 /* 6363 * Prevent userspace races by waiting until the network 6364 * device is fully setup before sending notifications. 6365 */ 6366 if (!dev->rtnl_link_ops || 6367 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 6368 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL); 6369 6370 out: 6371 return ret; 6372 6373 err_uninit: 6374 if (dev->netdev_ops->ndo_uninit) 6375 dev->netdev_ops->ndo_uninit(dev); 6376 goto out; 6377 } 6378 EXPORT_SYMBOL(register_netdevice); 6379 6380 /** 6381 * init_dummy_netdev - init a dummy network device for NAPI 6382 * @dev: device to init 6383 * 6384 * This takes a network device structure and initialize the minimum 6385 * amount of fields so it can be used to schedule NAPI polls without 6386 * registering a full blown interface. This is to be used by drivers 6387 * that need to tie several hardware interfaces to a single NAPI 6388 * poll scheduler due to HW limitations. 6389 */ 6390 int init_dummy_netdev(struct net_device *dev) 6391 { 6392 /* Clear everything. Note we don't initialize spinlocks 6393 * are they aren't supposed to be taken by any of the 6394 * NAPI code and this dummy netdev is supposed to be 6395 * only ever used for NAPI polls 6396 */ 6397 memset(dev, 0, sizeof(struct net_device)); 6398 6399 /* make sure we BUG if trying to hit standard 6400 * register/unregister code path 6401 */ 6402 dev->reg_state = NETREG_DUMMY; 6403 6404 /* NAPI wants this */ 6405 INIT_LIST_HEAD(&dev->napi_list); 6406 6407 /* a dummy interface is started by default */ 6408 set_bit(__LINK_STATE_PRESENT, &dev->state); 6409 set_bit(__LINK_STATE_START, &dev->state); 6410 6411 /* Note : We dont allocate pcpu_refcnt for dummy devices, 6412 * because users of this 'device' dont need to change 6413 * its refcount. 6414 */ 6415 6416 return 0; 6417 } 6418 EXPORT_SYMBOL_GPL(init_dummy_netdev); 6419 6420 6421 /** 6422 * register_netdev - register a network device 6423 * @dev: device to register 6424 * 6425 * Take a completed network device structure and add it to the kernel 6426 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 6427 * chain. 0 is returned on success. A negative errno code is returned 6428 * on a failure to set up the device, or if the name is a duplicate. 6429 * 6430 * This is a wrapper around register_netdevice that takes the rtnl semaphore 6431 * and expands the device name if you passed a format string to 6432 * alloc_netdev. 6433 */ 6434 int register_netdev(struct net_device *dev) 6435 { 6436 int err; 6437 6438 rtnl_lock(); 6439 err = register_netdevice(dev); 6440 rtnl_unlock(); 6441 return err; 6442 } 6443 EXPORT_SYMBOL(register_netdev); 6444 6445 int netdev_refcnt_read(const struct net_device *dev) 6446 { 6447 int i, refcnt = 0; 6448 6449 for_each_possible_cpu(i) 6450 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i); 6451 return refcnt; 6452 } 6453 EXPORT_SYMBOL(netdev_refcnt_read); 6454 6455 /** 6456 * netdev_wait_allrefs - wait until all references are gone. 6457 * @dev: target net_device 6458 * 6459 * This is called when unregistering network devices. 6460 * 6461 * Any protocol or device that holds a reference should register 6462 * for netdevice notification, and cleanup and put back the 6463 * reference if they receive an UNREGISTER event. 6464 * We can get stuck here if buggy protocols don't correctly 6465 * call dev_put. 6466 */ 6467 static void netdev_wait_allrefs(struct net_device *dev) 6468 { 6469 unsigned long rebroadcast_time, warning_time; 6470 int refcnt; 6471 6472 linkwatch_forget_dev(dev); 6473 6474 rebroadcast_time = warning_time = jiffies; 6475 refcnt = netdev_refcnt_read(dev); 6476 6477 while (refcnt != 0) { 6478 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) { 6479 rtnl_lock(); 6480 6481 /* Rebroadcast unregister notification */ 6482 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 6483 6484 __rtnl_unlock(); 6485 rcu_barrier(); 6486 rtnl_lock(); 6487 6488 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev); 6489 if (test_bit(__LINK_STATE_LINKWATCH_PENDING, 6490 &dev->state)) { 6491 /* We must not have linkwatch events 6492 * pending on unregister. If this 6493 * happens, we simply run the queue 6494 * unscheduled, resulting in a noop 6495 * for this device. 6496 */ 6497 linkwatch_run_queue(); 6498 } 6499 6500 __rtnl_unlock(); 6501 6502 rebroadcast_time = jiffies; 6503 } 6504 6505 msleep(250); 6506 6507 refcnt = netdev_refcnt_read(dev); 6508 6509 if (time_after(jiffies, warning_time + 10 * HZ)) { 6510 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n", 6511 dev->name, refcnt); 6512 warning_time = jiffies; 6513 } 6514 } 6515 } 6516 6517 /* The sequence is: 6518 * 6519 * rtnl_lock(); 6520 * ... 6521 * register_netdevice(x1); 6522 * register_netdevice(x2); 6523 * ... 6524 * unregister_netdevice(y1); 6525 * unregister_netdevice(y2); 6526 * ... 6527 * rtnl_unlock(); 6528 * free_netdev(y1); 6529 * free_netdev(y2); 6530 * 6531 * We are invoked by rtnl_unlock(). 6532 * This allows us to deal with problems: 6533 * 1) We can delete sysfs objects which invoke hotplug 6534 * without deadlocking with linkwatch via keventd. 6535 * 2) Since we run with the RTNL semaphore not held, we can sleep 6536 * safely in order to wait for the netdev refcnt to drop to zero. 6537 * 6538 * We must not return until all unregister events added during 6539 * the interval the lock was held have been completed. 6540 */ 6541 void netdev_run_todo(void) 6542 { 6543 struct list_head list; 6544 6545 /* Snapshot list, allow later requests */ 6546 list_replace_init(&net_todo_list, &list); 6547 6548 __rtnl_unlock(); 6549 6550 6551 /* Wait for rcu callbacks to finish before next phase */ 6552 if (!list_empty(&list)) 6553 rcu_barrier(); 6554 6555 while (!list_empty(&list)) { 6556 struct net_device *dev 6557 = list_first_entry(&list, struct net_device, todo_list); 6558 list_del(&dev->todo_list); 6559 6560 rtnl_lock(); 6561 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev); 6562 __rtnl_unlock(); 6563 6564 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) { 6565 pr_err("network todo '%s' but state %d\n", 6566 dev->name, dev->reg_state); 6567 dump_stack(); 6568 continue; 6569 } 6570 6571 dev->reg_state = NETREG_UNREGISTERED; 6572 6573 on_each_cpu(flush_backlog, dev, 1); 6574 6575 netdev_wait_allrefs(dev); 6576 6577 /* paranoia */ 6578 BUG_ON(netdev_refcnt_read(dev)); 6579 WARN_ON(rcu_access_pointer(dev->ip_ptr)); 6580 WARN_ON(rcu_access_pointer(dev->ip6_ptr)); 6581 WARN_ON(dev->dn_ptr); 6582 6583 if (dev->destructor) 6584 dev->destructor(dev); 6585 6586 /* Report a network device has been unregistered */ 6587 rtnl_lock(); 6588 dev_net(dev)->dev_unreg_count--; 6589 __rtnl_unlock(); 6590 wake_up(&netdev_unregistering_wq); 6591 6592 /* Free network device */ 6593 kobject_put(&dev->dev.kobj); 6594 } 6595 } 6596 6597 /* Convert net_device_stats to rtnl_link_stats64. They have the same 6598 * fields in the same order, with only the type differing. 6599 */ 6600 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 6601 const struct net_device_stats *netdev_stats) 6602 { 6603 #if BITS_PER_LONG == 64 6604 BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats)); 6605 memcpy(stats64, netdev_stats, sizeof(*stats64)); 6606 #else 6607 size_t i, n = sizeof(*stats64) / sizeof(u64); 6608 const unsigned long *src = (const unsigned long *)netdev_stats; 6609 u64 *dst = (u64 *)stats64; 6610 6611 BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) != 6612 sizeof(*stats64) / sizeof(u64)); 6613 for (i = 0; i < n; i++) 6614 dst[i] = src[i]; 6615 #endif 6616 } 6617 EXPORT_SYMBOL(netdev_stats_to_stats64); 6618 6619 /** 6620 * dev_get_stats - get network device statistics 6621 * @dev: device to get statistics from 6622 * @storage: place to store stats 6623 * 6624 * Get network statistics from device. Return @storage. 6625 * The device driver may provide its own method by setting 6626 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats; 6627 * otherwise the internal statistics structure is used. 6628 */ 6629 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 6630 struct rtnl_link_stats64 *storage) 6631 { 6632 const struct net_device_ops *ops = dev->netdev_ops; 6633 6634 if (ops->ndo_get_stats64) { 6635 memset(storage, 0, sizeof(*storage)); 6636 ops->ndo_get_stats64(dev, storage); 6637 } else if (ops->ndo_get_stats) { 6638 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev)); 6639 } else { 6640 netdev_stats_to_stats64(storage, &dev->stats); 6641 } 6642 storage->rx_dropped += atomic_long_read(&dev->rx_dropped); 6643 storage->tx_dropped += atomic_long_read(&dev->tx_dropped); 6644 return storage; 6645 } 6646 EXPORT_SYMBOL(dev_get_stats); 6647 6648 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev) 6649 { 6650 struct netdev_queue *queue = dev_ingress_queue(dev); 6651 6652 #ifdef CONFIG_NET_CLS_ACT 6653 if (queue) 6654 return queue; 6655 queue = kzalloc(sizeof(*queue), GFP_KERNEL); 6656 if (!queue) 6657 return NULL; 6658 netdev_init_one_queue(dev, queue, NULL); 6659 queue->qdisc = &noop_qdisc; 6660 queue->qdisc_sleeping = &noop_qdisc; 6661 rcu_assign_pointer(dev->ingress_queue, queue); 6662 #endif 6663 return queue; 6664 } 6665 6666 static const struct ethtool_ops default_ethtool_ops; 6667 6668 void netdev_set_default_ethtool_ops(struct net_device *dev, 6669 const struct ethtool_ops *ops) 6670 { 6671 if (dev->ethtool_ops == &default_ethtool_ops) 6672 dev->ethtool_ops = ops; 6673 } 6674 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops); 6675 6676 void netdev_freemem(struct net_device *dev) 6677 { 6678 char *addr = (char *)dev - dev->padded; 6679 6680 kvfree(addr); 6681 } 6682 6683 /** 6684 * alloc_netdev_mqs - allocate network device 6685 * @sizeof_priv: size of private data to allocate space for 6686 * @name: device name format string 6687 * @name_assign_type: origin of device name 6688 * @setup: callback to initialize device 6689 * @txqs: the number of TX subqueues to allocate 6690 * @rxqs: the number of RX subqueues to allocate 6691 * 6692 * Allocates a struct net_device with private data area for driver use 6693 * and performs basic initialization. Also allocates subqueue structs 6694 * for each queue on the device. 6695 */ 6696 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 6697 unsigned char name_assign_type, 6698 void (*setup)(struct net_device *), 6699 unsigned int txqs, unsigned int rxqs) 6700 { 6701 struct net_device *dev; 6702 size_t alloc_size; 6703 struct net_device *p; 6704 6705 BUG_ON(strlen(name) >= sizeof(dev->name)); 6706 6707 if (txqs < 1) { 6708 pr_err("alloc_netdev: Unable to allocate device with zero queues\n"); 6709 return NULL; 6710 } 6711 6712 #ifdef CONFIG_SYSFS 6713 if (rxqs < 1) { 6714 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n"); 6715 return NULL; 6716 } 6717 #endif 6718 6719 alloc_size = sizeof(struct net_device); 6720 if (sizeof_priv) { 6721 /* ensure 32-byte alignment of private area */ 6722 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN); 6723 alloc_size += sizeof_priv; 6724 } 6725 /* ensure 32-byte alignment of whole construct */ 6726 alloc_size += NETDEV_ALIGN - 1; 6727 6728 p = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT); 6729 if (!p) 6730 p = vzalloc(alloc_size); 6731 if (!p) 6732 return NULL; 6733 6734 dev = PTR_ALIGN(p, NETDEV_ALIGN); 6735 dev->padded = (char *)dev - (char *)p; 6736 6737 dev->pcpu_refcnt = alloc_percpu(int); 6738 if (!dev->pcpu_refcnt) 6739 goto free_dev; 6740 6741 if (dev_addr_init(dev)) 6742 goto free_pcpu; 6743 6744 dev_mc_init(dev); 6745 dev_uc_init(dev); 6746 6747 dev_net_set(dev, &init_net); 6748 6749 dev->gso_max_size = GSO_MAX_SIZE; 6750 dev->gso_max_segs = GSO_MAX_SEGS; 6751 dev->gso_min_segs = 0; 6752 6753 INIT_LIST_HEAD(&dev->napi_list); 6754 INIT_LIST_HEAD(&dev->unreg_list); 6755 INIT_LIST_HEAD(&dev->close_list); 6756 INIT_LIST_HEAD(&dev->link_watch_list); 6757 INIT_LIST_HEAD(&dev->adj_list.upper); 6758 INIT_LIST_HEAD(&dev->adj_list.lower); 6759 INIT_LIST_HEAD(&dev->all_adj_list.upper); 6760 INIT_LIST_HEAD(&dev->all_adj_list.lower); 6761 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM; 6762 setup(dev); 6763 6764 dev->num_tx_queues = txqs; 6765 dev->real_num_tx_queues = txqs; 6766 if (netif_alloc_netdev_queues(dev)) 6767 goto free_all; 6768 6769 #ifdef CONFIG_SYSFS 6770 dev->num_rx_queues = rxqs; 6771 dev->real_num_rx_queues = rxqs; 6772 if (netif_alloc_rx_queues(dev)) 6773 goto free_all; 6774 #endif 6775 6776 strcpy(dev->name, name); 6777 dev->name_assign_type = name_assign_type; 6778 dev->group = INIT_NETDEV_GROUP; 6779 if (!dev->ethtool_ops) 6780 dev->ethtool_ops = &default_ethtool_ops; 6781 return dev; 6782 6783 free_all: 6784 free_netdev(dev); 6785 return NULL; 6786 6787 free_pcpu: 6788 free_percpu(dev->pcpu_refcnt); 6789 free_dev: 6790 netdev_freemem(dev); 6791 return NULL; 6792 } 6793 EXPORT_SYMBOL(alloc_netdev_mqs); 6794 6795 /** 6796 * free_netdev - free network device 6797 * @dev: device 6798 * 6799 * This function does the last stage of destroying an allocated device 6800 * interface. The reference to the device object is released. 6801 * If this is the last reference then it will be freed. 6802 */ 6803 void free_netdev(struct net_device *dev) 6804 { 6805 struct napi_struct *p, *n; 6806 6807 release_net(dev_net(dev)); 6808 6809 netif_free_tx_queues(dev); 6810 #ifdef CONFIG_SYSFS 6811 kfree(dev->_rx); 6812 #endif 6813 6814 kfree(rcu_dereference_protected(dev->ingress_queue, 1)); 6815 6816 /* Flush device addresses */ 6817 dev_addr_flush(dev); 6818 6819 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list) 6820 netif_napi_del(p); 6821 6822 free_percpu(dev->pcpu_refcnt); 6823 dev->pcpu_refcnt = NULL; 6824 6825 /* Compatibility with error handling in drivers */ 6826 if (dev->reg_state == NETREG_UNINITIALIZED) { 6827 netdev_freemem(dev); 6828 return; 6829 } 6830 6831 BUG_ON(dev->reg_state != NETREG_UNREGISTERED); 6832 dev->reg_state = NETREG_RELEASED; 6833 6834 /* will free via device release */ 6835 put_device(&dev->dev); 6836 } 6837 EXPORT_SYMBOL(free_netdev); 6838 6839 /** 6840 * synchronize_net - Synchronize with packet receive processing 6841 * 6842 * Wait for packets currently being received to be done. 6843 * Does not block later packets from starting. 6844 */ 6845 void synchronize_net(void) 6846 { 6847 might_sleep(); 6848 if (rtnl_is_locked()) 6849 synchronize_rcu_expedited(); 6850 else 6851 synchronize_rcu(); 6852 } 6853 EXPORT_SYMBOL(synchronize_net); 6854 6855 /** 6856 * unregister_netdevice_queue - remove device from the kernel 6857 * @dev: device 6858 * @head: list 6859 * 6860 * This function shuts down a device interface and removes it 6861 * from the kernel tables. 6862 * If head not NULL, device is queued to be unregistered later. 6863 * 6864 * Callers must hold the rtnl semaphore. You may want 6865 * unregister_netdev() instead of this. 6866 */ 6867 6868 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head) 6869 { 6870 ASSERT_RTNL(); 6871 6872 if (head) { 6873 list_move_tail(&dev->unreg_list, head); 6874 } else { 6875 rollback_registered(dev); 6876 /* Finish processing unregister after unlock */ 6877 net_set_todo(dev); 6878 } 6879 } 6880 EXPORT_SYMBOL(unregister_netdevice_queue); 6881 6882 /** 6883 * unregister_netdevice_many - unregister many devices 6884 * @head: list of devices 6885 * 6886 * Note: As most callers use a stack allocated list_head, 6887 * we force a list_del() to make sure stack wont be corrupted later. 6888 */ 6889 void unregister_netdevice_many(struct list_head *head) 6890 { 6891 struct net_device *dev; 6892 6893 if (!list_empty(head)) { 6894 rollback_registered_many(head); 6895 list_for_each_entry(dev, head, unreg_list) 6896 net_set_todo(dev); 6897 list_del(head); 6898 } 6899 } 6900 EXPORT_SYMBOL(unregister_netdevice_many); 6901 6902 /** 6903 * unregister_netdev - remove device from the kernel 6904 * @dev: device 6905 * 6906 * This function shuts down a device interface and removes it 6907 * from the kernel tables. 6908 * 6909 * This is just a wrapper for unregister_netdevice that takes 6910 * the rtnl semaphore. In general you want to use this and not 6911 * unregister_netdevice. 6912 */ 6913 void unregister_netdev(struct net_device *dev) 6914 { 6915 rtnl_lock(); 6916 unregister_netdevice(dev); 6917 rtnl_unlock(); 6918 } 6919 EXPORT_SYMBOL(unregister_netdev); 6920 6921 /** 6922 * dev_change_net_namespace - move device to different nethost namespace 6923 * @dev: device 6924 * @net: network namespace 6925 * @pat: If not NULL name pattern to try if the current device name 6926 * is already taken in the destination network namespace. 6927 * 6928 * This function shuts down a device interface and moves it 6929 * to a new network namespace. On success 0 is returned, on 6930 * a failure a netagive errno code is returned. 6931 * 6932 * Callers must hold the rtnl semaphore. 6933 */ 6934 6935 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat) 6936 { 6937 int err; 6938 6939 ASSERT_RTNL(); 6940 6941 /* Don't allow namespace local devices to be moved. */ 6942 err = -EINVAL; 6943 if (dev->features & NETIF_F_NETNS_LOCAL) 6944 goto out; 6945 6946 /* Ensure the device has been registrered */ 6947 if (dev->reg_state != NETREG_REGISTERED) 6948 goto out; 6949 6950 /* Get out if there is nothing todo */ 6951 err = 0; 6952 if (net_eq(dev_net(dev), net)) 6953 goto out; 6954 6955 /* Pick the destination device name, and ensure 6956 * we can use it in the destination network namespace. 6957 */ 6958 err = -EEXIST; 6959 if (__dev_get_by_name(net, dev->name)) { 6960 /* We get here if we can't use the current device name */ 6961 if (!pat) 6962 goto out; 6963 if (dev_get_valid_name(net, dev, pat) < 0) 6964 goto out; 6965 } 6966 6967 /* 6968 * And now a mini version of register_netdevice unregister_netdevice. 6969 */ 6970 6971 /* If device is running close it first. */ 6972 dev_close(dev); 6973 6974 /* And unlink it from device chain */ 6975 err = -ENODEV; 6976 unlist_netdevice(dev); 6977 6978 synchronize_net(); 6979 6980 /* Shutdown queueing discipline. */ 6981 dev_shutdown(dev); 6982 6983 /* Notify protocols, that we are about to destroy 6984 this device. They should clean all the things. 6985 6986 Note that dev->reg_state stays at NETREG_REGISTERED. 6987 This is wanted because this way 8021q and macvlan know 6988 the device is just moving and can keep their slaves up. 6989 */ 6990 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 6991 rcu_barrier(); 6992 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev); 6993 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL); 6994 6995 /* 6996 * Flush the unicast and multicast chains 6997 */ 6998 dev_uc_flush(dev); 6999 dev_mc_flush(dev); 7000 7001 /* Send a netdev-removed uevent to the old namespace */ 7002 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE); 7003 netdev_adjacent_del_links(dev); 7004 7005 /* Actually switch the network namespace */ 7006 dev_net_set(dev, net); 7007 7008 /* If there is an ifindex conflict assign a new one */ 7009 if (__dev_get_by_index(net, dev->ifindex)) { 7010 int iflink = (dev->iflink == dev->ifindex); 7011 dev->ifindex = dev_new_index(net); 7012 if (iflink) 7013 dev->iflink = dev->ifindex; 7014 } 7015 7016 /* Send a netdev-add uevent to the new namespace */ 7017 kobject_uevent(&dev->dev.kobj, KOBJ_ADD); 7018 netdev_adjacent_add_links(dev); 7019 7020 /* Fixup kobjects */ 7021 err = device_rename(&dev->dev, dev->name); 7022 WARN_ON(err); 7023 7024 /* Add the device back in the hashes */ 7025 list_netdevice(dev); 7026 7027 /* Notify protocols, that a new device appeared. */ 7028 call_netdevice_notifiers(NETDEV_REGISTER, dev); 7029 7030 /* 7031 * Prevent userspace races by waiting until the network 7032 * device is fully setup before sending notifications. 7033 */ 7034 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL); 7035 7036 synchronize_net(); 7037 err = 0; 7038 out: 7039 return err; 7040 } 7041 EXPORT_SYMBOL_GPL(dev_change_net_namespace); 7042 7043 static int dev_cpu_callback(struct notifier_block *nfb, 7044 unsigned long action, 7045 void *ocpu) 7046 { 7047 struct sk_buff **list_skb; 7048 struct sk_buff *skb; 7049 unsigned int cpu, oldcpu = (unsigned long)ocpu; 7050 struct softnet_data *sd, *oldsd; 7051 7052 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN) 7053 return NOTIFY_OK; 7054 7055 local_irq_disable(); 7056 cpu = smp_processor_id(); 7057 sd = &per_cpu(softnet_data, cpu); 7058 oldsd = &per_cpu(softnet_data, oldcpu); 7059 7060 /* Find end of our completion_queue. */ 7061 list_skb = &sd->completion_queue; 7062 while (*list_skb) 7063 list_skb = &(*list_skb)->next; 7064 /* Append completion queue from offline CPU. */ 7065 *list_skb = oldsd->completion_queue; 7066 oldsd->completion_queue = NULL; 7067 7068 /* Append output queue from offline CPU. */ 7069 if (oldsd->output_queue) { 7070 *sd->output_queue_tailp = oldsd->output_queue; 7071 sd->output_queue_tailp = oldsd->output_queue_tailp; 7072 oldsd->output_queue = NULL; 7073 oldsd->output_queue_tailp = &oldsd->output_queue; 7074 } 7075 /* Append NAPI poll list from offline CPU, with one exception : 7076 * process_backlog() must be called by cpu owning percpu backlog. 7077 * We properly handle process_queue & input_pkt_queue later. 7078 */ 7079 while (!list_empty(&oldsd->poll_list)) { 7080 struct napi_struct *napi = list_first_entry(&oldsd->poll_list, 7081 struct napi_struct, 7082 poll_list); 7083 7084 list_del_init(&napi->poll_list); 7085 if (napi->poll == process_backlog) 7086 napi->state = 0; 7087 else 7088 ____napi_schedule(sd, napi); 7089 } 7090 7091 raise_softirq_irqoff(NET_TX_SOFTIRQ); 7092 local_irq_enable(); 7093 7094 /* Process offline CPU's input_pkt_queue */ 7095 while ((skb = __skb_dequeue(&oldsd->process_queue))) { 7096 netif_rx_internal(skb); 7097 input_queue_head_incr(oldsd); 7098 } 7099 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) { 7100 netif_rx_internal(skb); 7101 input_queue_head_incr(oldsd); 7102 } 7103 7104 return NOTIFY_OK; 7105 } 7106 7107 7108 /** 7109 * netdev_increment_features - increment feature set by one 7110 * @all: current feature set 7111 * @one: new feature set 7112 * @mask: mask feature set 7113 * 7114 * Computes a new feature set after adding a device with feature set 7115 * @one to the master device with current feature set @all. Will not 7116 * enable anything that is off in @mask. Returns the new feature set. 7117 */ 7118 netdev_features_t netdev_increment_features(netdev_features_t all, 7119 netdev_features_t one, netdev_features_t mask) 7120 { 7121 if (mask & NETIF_F_GEN_CSUM) 7122 mask |= NETIF_F_ALL_CSUM; 7123 mask |= NETIF_F_VLAN_CHALLENGED; 7124 7125 all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask; 7126 all &= one | ~NETIF_F_ALL_FOR_ALL; 7127 7128 /* If one device supports hw checksumming, set for all. */ 7129 if (all & NETIF_F_GEN_CSUM) 7130 all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM); 7131 7132 return all; 7133 } 7134 EXPORT_SYMBOL(netdev_increment_features); 7135 7136 static struct hlist_head * __net_init netdev_create_hash(void) 7137 { 7138 int i; 7139 struct hlist_head *hash; 7140 7141 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL); 7142 if (hash != NULL) 7143 for (i = 0; i < NETDEV_HASHENTRIES; i++) 7144 INIT_HLIST_HEAD(&hash[i]); 7145 7146 return hash; 7147 } 7148 7149 /* Initialize per network namespace state */ 7150 static int __net_init netdev_init(struct net *net) 7151 { 7152 if (net != &init_net) 7153 INIT_LIST_HEAD(&net->dev_base_head); 7154 7155 net->dev_name_head = netdev_create_hash(); 7156 if (net->dev_name_head == NULL) 7157 goto err_name; 7158 7159 net->dev_index_head = netdev_create_hash(); 7160 if (net->dev_index_head == NULL) 7161 goto err_idx; 7162 7163 return 0; 7164 7165 err_idx: 7166 kfree(net->dev_name_head); 7167 err_name: 7168 return -ENOMEM; 7169 } 7170 7171 /** 7172 * netdev_drivername - network driver for the device 7173 * @dev: network device 7174 * 7175 * Determine network driver for device. 7176 */ 7177 const char *netdev_drivername(const struct net_device *dev) 7178 { 7179 const struct device_driver *driver; 7180 const struct device *parent; 7181 const char *empty = ""; 7182 7183 parent = dev->dev.parent; 7184 if (!parent) 7185 return empty; 7186 7187 driver = parent->driver; 7188 if (driver && driver->name) 7189 return driver->name; 7190 return empty; 7191 } 7192 7193 static void __netdev_printk(const char *level, const struct net_device *dev, 7194 struct va_format *vaf) 7195 { 7196 if (dev && dev->dev.parent) { 7197 dev_printk_emit(level[1] - '0', 7198 dev->dev.parent, 7199 "%s %s %s%s: %pV", 7200 dev_driver_string(dev->dev.parent), 7201 dev_name(dev->dev.parent), 7202 netdev_name(dev), netdev_reg_state(dev), 7203 vaf); 7204 } else if (dev) { 7205 printk("%s%s%s: %pV", 7206 level, netdev_name(dev), netdev_reg_state(dev), vaf); 7207 } else { 7208 printk("%s(NULL net_device): %pV", level, vaf); 7209 } 7210 } 7211 7212 void netdev_printk(const char *level, const struct net_device *dev, 7213 const char *format, ...) 7214 { 7215 struct va_format vaf; 7216 va_list args; 7217 7218 va_start(args, format); 7219 7220 vaf.fmt = format; 7221 vaf.va = &args; 7222 7223 __netdev_printk(level, dev, &vaf); 7224 7225 va_end(args); 7226 } 7227 EXPORT_SYMBOL(netdev_printk); 7228 7229 #define define_netdev_printk_level(func, level) \ 7230 void func(const struct net_device *dev, const char *fmt, ...) \ 7231 { \ 7232 struct va_format vaf; \ 7233 va_list args; \ 7234 \ 7235 va_start(args, fmt); \ 7236 \ 7237 vaf.fmt = fmt; \ 7238 vaf.va = &args; \ 7239 \ 7240 __netdev_printk(level, dev, &vaf); \ 7241 \ 7242 va_end(args); \ 7243 } \ 7244 EXPORT_SYMBOL(func); 7245 7246 define_netdev_printk_level(netdev_emerg, KERN_EMERG); 7247 define_netdev_printk_level(netdev_alert, KERN_ALERT); 7248 define_netdev_printk_level(netdev_crit, KERN_CRIT); 7249 define_netdev_printk_level(netdev_err, KERN_ERR); 7250 define_netdev_printk_level(netdev_warn, KERN_WARNING); 7251 define_netdev_printk_level(netdev_notice, KERN_NOTICE); 7252 define_netdev_printk_level(netdev_info, KERN_INFO); 7253 7254 static void __net_exit netdev_exit(struct net *net) 7255 { 7256 kfree(net->dev_name_head); 7257 kfree(net->dev_index_head); 7258 } 7259 7260 static struct pernet_operations __net_initdata netdev_net_ops = { 7261 .init = netdev_init, 7262 .exit = netdev_exit, 7263 }; 7264 7265 static void __net_exit default_device_exit(struct net *net) 7266 { 7267 struct net_device *dev, *aux; 7268 /* 7269 * Push all migratable network devices back to the 7270 * initial network namespace 7271 */ 7272 rtnl_lock(); 7273 for_each_netdev_safe(net, dev, aux) { 7274 int err; 7275 char fb_name[IFNAMSIZ]; 7276 7277 /* Ignore unmoveable devices (i.e. loopback) */ 7278 if (dev->features & NETIF_F_NETNS_LOCAL) 7279 continue; 7280 7281 /* Leave virtual devices for the generic cleanup */ 7282 if (dev->rtnl_link_ops) 7283 continue; 7284 7285 /* Push remaining network devices to init_net */ 7286 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex); 7287 err = dev_change_net_namespace(dev, &init_net, fb_name); 7288 if (err) { 7289 pr_emerg("%s: failed to move %s to init_net: %d\n", 7290 __func__, dev->name, err); 7291 BUG(); 7292 } 7293 } 7294 rtnl_unlock(); 7295 } 7296 7297 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list) 7298 { 7299 /* Return with the rtnl_lock held when there are no network 7300 * devices unregistering in any network namespace in net_list. 7301 */ 7302 struct net *net; 7303 bool unregistering; 7304 DEFINE_WAIT_FUNC(wait, woken_wake_function); 7305 7306 add_wait_queue(&netdev_unregistering_wq, &wait); 7307 for (;;) { 7308 unregistering = false; 7309 rtnl_lock(); 7310 list_for_each_entry(net, net_list, exit_list) { 7311 if (net->dev_unreg_count > 0) { 7312 unregistering = true; 7313 break; 7314 } 7315 } 7316 if (!unregistering) 7317 break; 7318 __rtnl_unlock(); 7319 7320 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT); 7321 } 7322 remove_wait_queue(&netdev_unregistering_wq, &wait); 7323 } 7324 7325 static void __net_exit default_device_exit_batch(struct list_head *net_list) 7326 { 7327 /* At exit all network devices most be removed from a network 7328 * namespace. Do this in the reverse order of registration. 7329 * Do this across as many network namespaces as possible to 7330 * improve batching efficiency. 7331 */ 7332 struct net_device *dev; 7333 struct net *net; 7334 LIST_HEAD(dev_kill_list); 7335 7336 /* To prevent network device cleanup code from dereferencing 7337 * loopback devices or network devices that have been freed 7338 * wait here for all pending unregistrations to complete, 7339 * before unregistring the loopback device and allowing the 7340 * network namespace be freed. 7341 * 7342 * The netdev todo list containing all network devices 7343 * unregistrations that happen in default_device_exit_batch 7344 * will run in the rtnl_unlock() at the end of 7345 * default_device_exit_batch. 7346 */ 7347 rtnl_lock_unregistering(net_list); 7348 list_for_each_entry(net, net_list, exit_list) { 7349 for_each_netdev_reverse(net, dev) { 7350 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink) 7351 dev->rtnl_link_ops->dellink(dev, &dev_kill_list); 7352 else 7353 unregister_netdevice_queue(dev, &dev_kill_list); 7354 } 7355 } 7356 unregister_netdevice_many(&dev_kill_list); 7357 rtnl_unlock(); 7358 } 7359 7360 static struct pernet_operations __net_initdata default_device_ops = { 7361 .exit = default_device_exit, 7362 .exit_batch = default_device_exit_batch, 7363 }; 7364 7365 /* 7366 * Initialize the DEV module. At boot time this walks the device list and 7367 * unhooks any devices that fail to initialise (normally hardware not 7368 * present) and leaves us with a valid list of present and active devices. 7369 * 7370 */ 7371 7372 /* 7373 * This is called single threaded during boot, so no need 7374 * to take the rtnl semaphore. 7375 */ 7376 static int __init net_dev_init(void) 7377 { 7378 int i, rc = -ENOMEM; 7379 7380 BUG_ON(!dev_boot_phase); 7381 7382 if (dev_proc_init()) 7383 goto out; 7384 7385 if (netdev_kobject_init()) 7386 goto out; 7387 7388 INIT_LIST_HEAD(&ptype_all); 7389 for (i = 0; i < PTYPE_HASH_SIZE; i++) 7390 INIT_LIST_HEAD(&ptype_base[i]); 7391 7392 INIT_LIST_HEAD(&offload_base); 7393 7394 if (register_pernet_subsys(&netdev_net_ops)) 7395 goto out; 7396 7397 /* 7398 * Initialise the packet receive queues. 7399 */ 7400 7401 for_each_possible_cpu(i) { 7402 struct softnet_data *sd = &per_cpu(softnet_data, i); 7403 7404 skb_queue_head_init(&sd->input_pkt_queue); 7405 skb_queue_head_init(&sd->process_queue); 7406 INIT_LIST_HEAD(&sd->poll_list); 7407 sd->output_queue_tailp = &sd->output_queue; 7408 #ifdef CONFIG_RPS 7409 sd->csd.func = rps_trigger_softirq; 7410 sd->csd.info = sd; 7411 sd->cpu = i; 7412 #endif 7413 7414 sd->backlog.poll = process_backlog; 7415 sd->backlog.weight = weight_p; 7416 } 7417 7418 dev_boot_phase = 0; 7419 7420 /* The loopback device is special if any other network devices 7421 * is present in a network namespace the loopback device must 7422 * be present. Since we now dynamically allocate and free the 7423 * loopback device ensure this invariant is maintained by 7424 * keeping the loopback device as the first device on the 7425 * list of network devices. Ensuring the loopback devices 7426 * is the first device that appears and the last network device 7427 * that disappears. 7428 */ 7429 if (register_pernet_device(&loopback_net_ops)) 7430 goto out; 7431 7432 if (register_pernet_device(&default_device_ops)) 7433 goto out; 7434 7435 open_softirq(NET_TX_SOFTIRQ, net_tx_action); 7436 open_softirq(NET_RX_SOFTIRQ, net_rx_action); 7437 7438 hotcpu_notifier(dev_cpu_callback, 0); 7439 dst_init(); 7440 rc = 0; 7441 out: 7442 return rc; 7443 } 7444 7445 subsys_initcall(net_dev_init); 7446