xref: /linux/net/core/dev.c (revision 8f8d74ee110c02137f5b78ca0a2bd6c10331f267)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *      NET3    Protocol independent device support routines.
4  *
5  *	Derived from the non IP parts of dev.c 1.0.19
6  *              Authors:	Ross Biro
7  *				Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8  *				Mark Evans, <evansmp@uhura.aston.ac.uk>
9  *
10  *	Additional Authors:
11  *		Florian la Roche <rzsfl@rz.uni-sb.de>
12  *		Alan Cox <gw4pts@gw4pts.ampr.org>
13  *		David Hinds <dahinds@users.sourceforge.net>
14  *		Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15  *		Adam Sulmicki <adam@cfar.umd.edu>
16  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
17  *
18  *	Changes:
19  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
20  *                                      to 2 if register_netdev gets called
21  *                                      before net_dev_init & also removed a
22  *                                      few lines of code in the process.
23  *		Alan Cox	:	device private ioctl copies fields back.
24  *		Alan Cox	:	Transmit queue code does relevant
25  *					stunts to keep the queue safe.
26  *		Alan Cox	:	Fixed double lock.
27  *		Alan Cox	:	Fixed promisc NULL pointer trap
28  *		????????	:	Support the full private ioctl range
29  *		Alan Cox	:	Moved ioctl permission check into
30  *					drivers
31  *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
32  *		Alan Cox	:	100 backlog just doesn't cut it when
33  *					you start doing multicast video 8)
34  *		Alan Cox	:	Rewrote net_bh and list manager.
35  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
36  *		Alan Cox	:	Took out transmit every packet pass
37  *					Saved a few bytes in the ioctl handler
38  *		Alan Cox	:	Network driver sets packet type before
39  *					calling netif_rx. Saves a function
40  *					call a packet.
41  *		Alan Cox	:	Hashed net_bh()
42  *		Richard Kooijman:	Timestamp fixes.
43  *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
44  *		Alan Cox	:	Device lock protection.
45  *              Alan Cox        :       Fixed nasty side effect of device close
46  *					changes.
47  *		Rudi Cilibrasi	:	Pass the right thing to
48  *					set_mac_address()
49  *		Dave Miller	:	32bit quantity for the device lock to
50  *					make it work out on a Sparc.
51  *		Bjorn Ekwall	:	Added KERNELD hack.
52  *		Alan Cox	:	Cleaned up the backlog initialise.
53  *		Craig Metz	:	SIOCGIFCONF fix if space for under
54  *					1 device.
55  *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
56  *					is no device open function.
57  *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
58  *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
59  *		Cyrus Durgin	:	Cleaned for KMOD
60  *		Adam Sulmicki   :	Bug Fix : Network Device Unload
61  *					A network device unload needs to purge
62  *					the backlog queue.
63  *	Paul Rusty Russell	:	SIOCSIFNAME
64  *              Pekka Riikonen  :	Netdev boot-time settings code
65  *              Andrew Morton   :       Make unregister_netdevice wait
66  *                                      indefinitely on dev->refcnt
67  *              J Hadi Salim    :       - Backlog queue sampling
68  *				        - netif_rx() feedback
69  */
70 
71 #include <linux/uaccess.h>
72 #include <linux/bitmap.h>
73 #include <linux/capability.h>
74 #include <linux/cpu.h>
75 #include <linux/types.h>
76 #include <linux/kernel.h>
77 #include <linux/hash.h>
78 #include <linux/slab.h>
79 #include <linux/sched.h>
80 #include <linux/sched/mm.h>
81 #include <linux/mutex.h>
82 #include <linux/rwsem.h>
83 #include <linux/string.h>
84 #include <linux/mm.h>
85 #include <linux/socket.h>
86 #include <linux/sockios.h>
87 #include <linux/errno.h>
88 #include <linux/interrupt.h>
89 #include <linux/if_ether.h>
90 #include <linux/netdevice.h>
91 #include <linux/etherdevice.h>
92 #include <linux/ethtool.h>
93 #include <linux/skbuff.h>
94 #include <linux/kthread.h>
95 #include <linux/bpf.h>
96 #include <linux/bpf_trace.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <net/busy_poll.h>
100 #include <linux/rtnetlink.h>
101 #include <linux/stat.h>
102 #include <net/dsa.h>
103 #include <net/dst.h>
104 #include <net/dst_metadata.h>
105 #include <net/gro.h>
106 #include <net/pkt_sched.h>
107 #include <net/pkt_cls.h>
108 #include <net/checksum.h>
109 #include <net/xfrm.h>
110 #include <net/tcx.h>
111 #include <linux/highmem.h>
112 #include <linux/init.h>
113 #include <linux/module.h>
114 #include <linux/netpoll.h>
115 #include <linux/rcupdate.h>
116 #include <linux/delay.h>
117 #include <net/iw_handler.h>
118 #include <asm/current.h>
119 #include <linux/audit.h>
120 #include <linux/dmaengine.h>
121 #include <linux/err.h>
122 #include <linux/ctype.h>
123 #include <linux/if_arp.h>
124 #include <linux/if_vlan.h>
125 #include <linux/ip.h>
126 #include <net/ip.h>
127 #include <net/mpls.h>
128 #include <linux/ipv6.h>
129 #include <linux/in.h>
130 #include <linux/jhash.h>
131 #include <linux/random.h>
132 #include <trace/events/napi.h>
133 #include <trace/events/net.h>
134 #include <trace/events/skb.h>
135 #include <trace/events/qdisc.h>
136 #include <trace/events/xdp.h>
137 #include <linux/inetdevice.h>
138 #include <linux/cpu_rmap.h>
139 #include <linux/static_key.h>
140 #include <linux/hashtable.h>
141 #include <linux/vmalloc.h>
142 #include <linux/if_macvlan.h>
143 #include <linux/errqueue.h>
144 #include <linux/hrtimer.h>
145 #include <linux/netfilter_netdev.h>
146 #include <linux/crash_dump.h>
147 #include <linux/sctp.h>
148 #include <net/udp_tunnel.h>
149 #include <linux/net_namespace.h>
150 #include <linux/indirect_call_wrapper.h>
151 #include <net/devlink.h>
152 #include <linux/pm_runtime.h>
153 #include <linux/prandom.h>
154 #include <linux/once_lite.h>
155 #include <net/netdev_rx_queue.h>
156 #include <net/page_pool/types.h>
157 #include <net/page_pool/helpers.h>
158 #include <net/rps.h>
159 
160 #include "dev.h"
161 #include "net-sysfs.h"
162 
163 static DEFINE_SPINLOCK(ptype_lock);
164 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
165 
166 static int netif_rx_internal(struct sk_buff *skb);
167 static int call_netdevice_notifiers_extack(unsigned long val,
168 					   struct net_device *dev,
169 					   struct netlink_ext_ack *extack);
170 
171 static DEFINE_MUTEX(ifalias_mutex);
172 
173 /* protects napi_hash addition/deletion and napi_gen_id */
174 static DEFINE_SPINLOCK(napi_hash_lock);
175 
176 static unsigned int napi_gen_id = NR_CPUS;
177 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
178 
179 static DECLARE_RWSEM(devnet_rename_sem);
180 
181 static inline void dev_base_seq_inc(struct net *net)
182 {
183 	unsigned int val = net->dev_base_seq + 1;
184 
185 	WRITE_ONCE(net->dev_base_seq, val ?: 1);
186 }
187 
188 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
189 {
190 	unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
191 
192 	return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
193 }
194 
195 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
196 {
197 	return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
198 }
199 
200 static inline void rps_lock_irqsave(struct softnet_data *sd,
201 				    unsigned long *flags)
202 {
203 	if (IS_ENABLED(CONFIG_RPS))
204 		spin_lock_irqsave(&sd->input_pkt_queue.lock, *flags);
205 	else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
206 		local_irq_save(*flags);
207 }
208 
209 static inline void rps_lock_irq_disable(struct softnet_data *sd)
210 {
211 	if (IS_ENABLED(CONFIG_RPS))
212 		spin_lock_irq(&sd->input_pkt_queue.lock);
213 	else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
214 		local_irq_disable();
215 }
216 
217 static inline void rps_unlock_irq_restore(struct softnet_data *sd,
218 					  unsigned long *flags)
219 {
220 	if (IS_ENABLED(CONFIG_RPS))
221 		spin_unlock_irqrestore(&sd->input_pkt_queue.lock, *flags);
222 	else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
223 		local_irq_restore(*flags);
224 }
225 
226 static inline void rps_unlock_irq_enable(struct softnet_data *sd)
227 {
228 	if (IS_ENABLED(CONFIG_RPS))
229 		spin_unlock_irq(&sd->input_pkt_queue.lock);
230 	else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
231 		local_irq_enable();
232 }
233 
234 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
235 						       const char *name)
236 {
237 	struct netdev_name_node *name_node;
238 
239 	name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
240 	if (!name_node)
241 		return NULL;
242 	INIT_HLIST_NODE(&name_node->hlist);
243 	name_node->dev = dev;
244 	name_node->name = name;
245 	return name_node;
246 }
247 
248 static struct netdev_name_node *
249 netdev_name_node_head_alloc(struct net_device *dev)
250 {
251 	struct netdev_name_node *name_node;
252 
253 	name_node = netdev_name_node_alloc(dev, dev->name);
254 	if (!name_node)
255 		return NULL;
256 	INIT_LIST_HEAD(&name_node->list);
257 	return name_node;
258 }
259 
260 static void netdev_name_node_free(struct netdev_name_node *name_node)
261 {
262 	kfree(name_node);
263 }
264 
265 static void netdev_name_node_add(struct net *net,
266 				 struct netdev_name_node *name_node)
267 {
268 	hlist_add_head_rcu(&name_node->hlist,
269 			   dev_name_hash(net, name_node->name));
270 }
271 
272 static void netdev_name_node_del(struct netdev_name_node *name_node)
273 {
274 	hlist_del_rcu(&name_node->hlist);
275 }
276 
277 static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
278 							const char *name)
279 {
280 	struct hlist_head *head = dev_name_hash(net, name);
281 	struct netdev_name_node *name_node;
282 
283 	hlist_for_each_entry(name_node, head, hlist)
284 		if (!strcmp(name_node->name, name))
285 			return name_node;
286 	return NULL;
287 }
288 
289 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
290 							    const char *name)
291 {
292 	struct hlist_head *head = dev_name_hash(net, name);
293 	struct netdev_name_node *name_node;
294 
295 	hlist_for_each_entry_rcu(name_node, head, hlist)
296 		if (!strcmp(name_node->name, name))
297 			return name_node;
298 	return NULL;
299 }
300 
301 bool netdev_name_in_use(struct net *net, const char *name)
302 {
303 	return netdev_name_node_lookup(net, name);
304 }
305 EXPORT_SYMBOL(netdev_name_in_use);
306 
307 int netdev_name_node_alt_create(struct net_device *dev, const char *name)
308 {
309 	struct netdev_name_node *name_node;
310 	struct net *net = dev_net(dev);
311 
312 	name_node = netdev_name_node_lookup(net, name);
313 	if (name_node)
314 		return -EEXIST;
315 	name_node = netdev_name_node_alloc(dev, name);
316 	if (!name_node)
317 		return -ENOMEM;
318 	netdev_name_node_add(net, name_node);
319 	/* The node that holds dev->name acts as a head of per-device list. */
320 	list_add_tail_rcu(&name_node->list, &dev->name_node->list);
321 
322 	return 0;
323 }
324 
325 static void netdev_name_node_alt_free(struct rcu_head *head)
326 {
327 	struct netdev_name_node *name_node =
328 		container_of(head, struct netdev_name_node, rcu);
329 
330 	kfree(name_node->name);
331 	netdev_name_node_free(name_node);
332 }
333 
334 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
335 {
336 	netdev_name_node_del(name_node);
337 	list_del(&name_node->list);
338 	call_rcu(&name_node->rcu, netdev_name_node_alt_free);
339 }
340 
341 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
342 {
343 	struct netdev_name_node *name_node;
344 	struct net *net = dev_net(dev);
345 
346 	name_node = netdev_name_node_lookup(net, name);
347 	if (!name_node)
348 		return -ENOENT;
349 	/* lookup might have found our primary name or a name belonging
350 	 * to another device.
351 	 */
352 	if (name_node == dev->name_node || name_node->dev != dev)
353 		return -EINVAL;
354 
355 	__netdev_name_node_alt_destroy(name_node);
356 	return 0;
357 }
358 
359 static void netdev_name_node_alt_flush(struct net_device *dev)
360 {
361 	struct netdev_name_node *name_node, *tmp;
362 
363 	list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list) {
364 		list_del(&name_node->list);
365 		netdev_name_node_alt_free(&name_node->rcu);
366 	}
367 }
368 
369 /* Device list insertion */
370 static void list_netdevice(struct net_device *dev)
371 {
372 	struct netdev_name_node *name_node;
373 	struct net *net = dev_net(dev);
374 
375 	ASSERT_RTNL();
376 
377 	list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
378 	netdev_name_node_add(net, dev->name_node);
379 	hlist_add_head_rcu(&dev->index_hlist,
380 			   dev_index_hash(net, dev->ifindex));
381 
382 	netdev_for_each_altname(dev, name_node)
383 		netdev_name_node_add(net, name_node);
384 
385 	/* We reserved the ifindex, this can't fail */
386 	WARN_ON(xa_store(&net->dev_by_index, dev->ifindex, dev, GFP_KERNEL));
387 
388 	dev_base_seq_inc(net);
389 }
390 
391 /* Device list removal
392  * caller must respect a RCU grace period before freeing/reusing dev
393  */
394 static void unlist_netdevice(struct net_device *dev)
395 {
396 	struct netdev_name_node *name_node;
397 	struct net *net = dev_net(dev);
398 
399 	ASSERT_RTNL();
400 
401 	xa_erase(&net->dev_by_index, dev->ifindex);
402 
403 	netdev_for_each_altname(dev, name_node)
404 		netdev_name_node_del(name_node);
405 
406 	/* Unlink dev from the device chain */
407 	list_del_rcu(&dev->dev_list);
408 	netdev_name_node_del(dev->name_node);
409 	hlist_del_rcu(&dev->index_hlist);
410 
411 	dev_base_seq_inc(dev_net(dev));
412 }
413 
414 /*
415  *	Our notifier list
416  */
417 
418 static RAW_NOTIFIER_HEAD(netdev_chain);
419 
420 /*
421  *	Device drivers call our routines to queue packets here. We empty the
422  *	queue in the local softnet handler.
423  */
424 
425 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
426 EXPORT_PER_CPU_SYMBOL(softnet_data);
427 
428 /* Page_pool has a lockless array/stack to alloc/recycle pages.
429  * PP consumers must pay attention to run APIs in the appropriate context
430  * (e.g. NAPI context).
431  */
432 static DEFINE_PER_CPU(struct page_pool *, system_page_pool);
433 
434 #ifdef CONFIG_LOCKDEP
435 /*
436  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
437  * according to dev->type
438  */
439 static const unsigned short netdev_lock_type[] = {
440 	 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
441 	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
442 	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
443 	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
444 	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
445 	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
446 	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
447 	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
448 	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
449 	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
450 	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
451 	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
452 	 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
453 	 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
454 	 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
455 
456 static const char *const netdev_lock_name[] = {
457 	"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
458 	"_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
459 	"_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
460 	"_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
461 	"_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
462 	"_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
463 	"_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
464 	"_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
465 	"_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
466 	"_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
467 	"_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
468 	"_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
469 	"_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
470 	"_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
471 	"_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
472 
473 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
474 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
475 
476 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
477 {
478 	int i;
479 
480 	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
481 		if (netdev_lock_type[i] == dev_type)
482 			return i;
483 	/* the last key is used by default */
484 	return ARRAY_SIZE(netdev_lock_type) - 1;
485 }
486 
487 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
488 						 unsigned short dev_type)
489 {
490 	int i;
491 
492 	i = netdev_lock_pos(dev_type);
493 	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
494 				   netdev_lock_name[i]);
495 }
496 
497 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
498 {
499 	int i;
500 
501 	i = netdev_lock_pos(dev->type);
502 	lockdep_set_class_and_name(&dev->addr_list_lock,
503 				   &netdev_addr_lock_key[i],
504 				   netdev_lock_name[i]);
505 }
506 #else
507 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
508 						 unsigned short dev_type)
509 {
510 }
511 
512 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
513 {
514 }
515 #endif
516 
517 /*******************************************************************************
518  *
519  *		Protocol management and registration routines
520  *
521  *******************************************************************************/
522 
523 
524 /*
525  *	Add a protocol ID to the list. Now that the input handler is
526  *	smarter we can dispense with all the messy stuff that used to be
527  *	here.
528  *
529  *	BEWARE!!! Protocol handlers, mangling input packets,
530  *	MUST BE last in hash buckets and checking protocol handlers
531  *	MUST start from promiscuous ptype_all chain in net_bh.
532  *	It is true now, do not change it.
533  *	Explanation follows: if protocol handler, mangling packet, will
534  *	be the first on list, it is not able to sense, that packet
535  *	is cloned and should be copied-on-write, so that it will
536  *	change it and subsequent readers will get broken packet.
537  *							--ANK (980803)
538  */
539 
540 static inline struct list_head *ptype_head(const struct packet_type *pt)
541 {
542 	if (pt->type == htons(ETH_P_ALL))
543 		return pt->dev ? &pt->dev->ptype_all : &net_hotdata.ptype_all;
544 	else
545 		return pt->dev ? &pt->dev->ptype_specific :
546 				 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
547 }
548 
549 /**
550  *	dev_add_pack - add packet handler
551  *	@pt: packet type declaration
552  *
553  *	Add a protocol handler to the networking stack. The passed &packet_type
554  *	is linked into kernel lists and may not be freed until it has been
555  *	removed from the kernel lists.
556  *
557  *	This call does not sleep therefore it can not
558  *	guarantee all CPU's that are in middle of receiving packets
559  *	will see the new packet type (until the next received packet).
560  */
561 
562 void dev_add_pack(struct packet_type *pt)
563 {
564 	struct list_head *head = ptype_head(pt);
565 
566 	spin_lock(&ptype_lock);
567 	list_add_rcu(&pt->list, head);
568 	spin_unlock(&ptype_lock);
569 }
570 EXPORT_SYMBOL(dev_add_pack);
571 
572 /**
573  *	__dev_remove_pack	 - remove packet handler
574  *	@pt: packet type declaration
575  *
576  *	Remove a protocol handler that was previously added to the kernel
577  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
578  *	from the kernel lists and can be freed or reused once this function
579  *	returns.
580  *
581  *      The packet type might still be in use by receivers
582  *	and must not be freed until after all the CPU's have gone
583  *	through a quiescent state.
584  */
585 void __dev_remove_pack(struct packet_type *pt)
586 {
587 	struct list_head *head = ptype_head(pt);
588 	struct packet_type *pt1;
589 
590 	spin_lock(&ptype_lock);
591 
592 	list_for_each_entry(pt1, head, list) {
593 		if (pt == pt1) {
594 			list_del_rcu(&pt->list);
595 			goto out;
596 		}
597 	}
598 
599 	pr_warn("dev_remove_pack: %p not found\n", pt);
600 out:
601 	spin_unlock(&ptype_lock);
602 }
603 EXPORT_SYMBOL(__dev_remove_pack);
604 
605 /**
606  *	dev_remove_pack	 - remove packet handler
607  *	@pt: packet type declaration
608  *
609  *	Remove a protocol handler that was previously added to the kernel
610  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
611  *	from the kernel lists and can be freed or reused once this function
612  *	returns.
613  *
614  *	This call sleeps to guarantee that no CPU is looking at the packet
615  *	type after return.
616  */
617 void dev_remove_pack(struct packet_type *pt)
618 {
619 	__dev_remove_pack(pt);
620 
621 	synchronize_net();
622 }
623 EXPORT_SYMBOL(dev_remove_pack);
624 
625 
626 /*******************************************************************************
627  *
628  *			    Device Interface Subroutines
629  *
630  *******************************************************************************/
631 
632 /**
633  *	dev_get_iflink	- get 'iflink' value of a interface
634  *	@dev: targeted interface
635  *
636  *	Indicates the ifindex the interface is linked to.
637  *	Physical interfaces have the same 'ifindex' and 'iflink' values.
638  */
639 
640 int dev_get_iflink(const struct net_device *dev)
641 {
642 	if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
643 		return dev->netdev_ops->ndo_get_iflink(dev);
644 
645 	return READ_ONCE(dev->ifindex);
646 }
647 EXPORT_SYMBOL(dev_get_iflink);
648 
649 /**
650  *	dev_fill_metadata_dst - Retrieve tunnel egress information.
651  *	@dev: targeted interface
652  *	@skb: The packet.
653  *
654  *	For better visibility of tunnel traffic OVS needs to retrieve
655  *	egress tunnel information for a packet. Following API allows
656  *	user to get this info.
657  */
658 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
659 {
660 	struct ip_tunnel_info *info;
661 
662 	if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
663 		return -EINVAL;
664 
665 	info = skb_tunnel_info_unclone(skb);
666 	if (!info)
667 		return -ENOMEM;
668 	if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
669 		return -EINVAL;
670 
671 	return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
672 }
673 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
674 
675 static struct net_device_path *dev_fwd_path(struct net_device_path_stack *stack)
676 {
677 	int k = stack->num_paths++;
678 
679 	if (WARN_ON_ONCE(k >= NET_DEVICE_PATH_STACK_MAX))
680 		return NULL;
681 
682 	return &stack->path[k];
683 }
684 
685 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
686 			  struct net_device_path_stack *stack)
687 {
688 	const struct net_device *last_dev;
689 	struct net_device_path_ctx ctx = {
690 		.dev	= dev,
691 	};
692 	struct net_device_path *path;
693 	int ret = 0;
694 
695 	memcpy(ctx.daddr, daddr, sizeof(ctx.daddr));
696 	stack->num_paths = 0;
697 	while (ctx.dev && ctx.dev->netdev_ops->ndo_fill_forward_path) {
698 		last_dev = ctx.dev;
699 		path = dev_fwd_path(stack);
700 		if (!path)
701 			return -1;
702 
703 		memset(path, 0, sizeof(struct net_device_path));
704 		ret = ctx.dev->netdev_ops->ndo_fill_forward_path(&ctx, path);
705 		if (ret < 0)
706 			return -1;
707 
708 		if (WARN_ON_ONCE(last_dev == ctx.dev))
709 			return -1;
710 	}
711 
712 	if (!ctx.dev)
713 		return ret;
714 
715 	path = dev_fwd_path(stack);
716 	if (!path)
717 		return -1;
718 	path->type = DEV_PATH_ETHERNET;
719 	path->dev = ctx.dev;
720 
721 	return ret;
722 }
723 EXPORT_SYMBOL_GPL(dev_fill_forward_path);
724 
725 /**
726  *	__dev_get_by_name	- find a device by its name
727  *	@net: the applicable net namespace
728  *	@name: name to find
729  *
730  *	Find an interface by name. Must be called under RTNL semaphore.
731  *	If the name is found a pointer to the device is returned.
732  *	If the name is not found then %NULL is returned. The
733  *	reference counters are not incremented so the caller must be
734  *	careful with locks.
735  */
736 
737 struct net_device *__dev_get_by_name(struct net *net, const char *name)
738 {
739 	struct netdev_name_node *node_name;
740 
741 	node_name = netdev_name_node_lookup(net, name);
742 	return node_name ? node_name->dev : NULL;
743 }
744 EXPORT_SYMBOL(__dev_get_by_name);
745 
746 /**
747  * dev_get_by_name_rcu	- find a device by its name
748  * @net: the applicable net namespace
749  * @name: name to find
750  *
751  * Find an interface by name.
752  * If the name is found a pointer to the device is returned.
753  * If the name is not found then %NULL is returned.
754  * The reference counters are not incremented so the caller must be
755  * careful with locks. The caller must hold RCU lock.
756  */
757 
758 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
759 {
760 	struct netdev_name_node *node_name;
761 
762 	node_name = netdev_name_node_lookup_rcu(net, name);
763 	return node_name ? node_name->dev : NULL;
764 }
765 EXPORT_SYMBOL(dev_get_by_name_rcu);
766 
767 /* Deprecated for new users, call netdev_get_by_name() instead */
768 struct net_device *dev_get_by_name(struct net *net, const char *name)
769 {
770 	struct net_device *dev;
771 
772 	rcu_read_lock();
773 	dev = dev_get_by_name_rcu(net, name);
774 	dev_hold(dev);
775 	rcu_read_unlock();
776 	return dev;
777 }
778 EXPORT_SYMBOL(dev_get_by_name);
779 
780 /**
781  *	netdev_get_by_name() - find a device by its name
782  *	@net: the applicable net namespace
783  *	@name: name to find
784  *	@tracker: tracking object for the acquired reference
785  *	@gfp: allocation flags for the tracker
786  *
787  *	Find an interface by name. This can be called from any
788  *	context and does its own locking. The returned handle has
789  *	the usage count incremented and the caller must use netdev_put() to
790  *	release it when it is no longer needed. %NULL is returned if no
791  *	matching device is found.
792  */
793 struct net_device *netdev_get_by_name(struct net *net, const char *name,
794 				      netdevice_tracker *tracker, gfp_t gfp)
795 {
796 	struct net_device *dev;
797 
798 	dev = dev_get_by_name(net, name);
799 	if (dev)
800 		netdev_tracker_alloc(dev, tracker, gfp);
801 	return dev;
802 }
803 EXPORT_SYMBOL(netdev_get_by_name);
804 
805 /**
806  *	__dev_get_by_index - find a device by its ifindex
807  *	@net: the applicable net namespace
808  *	@ifindex: index of device
809  *
810  *	Search for an interface by index. Returns %NULL if the device
811  *	is not found or a pointer to the device. The device has not
812  *	had its reference counter increased so the caller must be careful
813  *	about locking. The caller must hold the RTNL semaphore.
814  */
815 
816 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
817 {
818 	struct net_device *dev;
819 	struct hlist_head *head = dev_index_hash(net, ifindex);
820 
821 	hlist_for_each_entry(dev, head, index_hlist)
822 		if (dev->ifindex == ifindex)
823 			return dev;
824 
825 	return NULL;
826 }
827 EXPORT_SYMBOL(__dev_get_by_index);
828 
829 /**
830  *	dev_get_by_index_rcu - find a device by its ifindex
831  *	@net: the applicable net namespace
832  *	@ifindex: index of device
833  *
834  *	Search for an interface by index. Returns %NULL if the device
835  *	is not found or a pointer to the device. The device has not
836  *	had its reference counter increased so the caller must be careful
837  *	about locking. The caller must hold RCU lock.
838  */
839 
840 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
841 {
842 	struct net_device *dev;
843 	struct hlist_head *head = dev_index_hash(net, ifindex);
844 
845 	hlist_for_each_entry_rcu(dev, head, index_hlist)
846 		if (dev->ifindex == ifindex)
847 			return dev;
848 
849 	return NULL;
850 }
851 EXPORT_SYMBOL(dev_get_by_index_rcu);
852 
853 /* Deprecated for new users, call netdev_get_by_index() instead */
854 struct net_device *dev_get_by_index(struct net *net, int ifindex)
855 {
856 	struct net_device *dev;
857 
858 	rcu_read_lock();
859 	dev = dev_get_by_index_rcu(net, ifindex);
860 	dev_hold(dev);
861 	rcu_read_unlock();
862 	return dev;
863 }
864 EXPORT_SYMBOL(dev_get_by_index);
865 
866 /**
867  *	netdev_get_by_index() - find a device by its ifindex
868  *	@net: the applicable net namespace
869  *	@ifindex: index of device
870  *	@tracker: tracking object for the acquired reference
871  *	@gfp: allocation flags for the tracker
872  *
873  *	Search for an interface by index. Returns NULL if the device
874  *	is not found or a pointer to the device. The device returned has
875  *	had a reference added and the pointer is safe until the user calls
876  *	netdev_put() to indicate they have finished with it.
877  */
878 struct net_device *netdev_get_by_index(struct net *net, int ifindex,
879 				       netdevice_tracker *tracker, gfp_t gfp)
880 {
881 	struct net_device *dev;
882 
883 	dev = dev_get_by_index(net, ifindex);
884 	if (dev)
885 		netdev_tracker_alloc(dev, tracker, gfp);
886 	return dev;
887 }
888 EXPORT_SYMBOL(netdev_get_by_index);
889 
890 /**
891  *	dev_get_by_napi_id - find a device by napi_id
892  *	@napi_id: ID of the NAPI struct
893  *
894  *	Search for an interface by NAPI ID. Returns %NULL if the device
895  *	is not found or a pointer to the device. The device has not had
896  *	its reference counter increased so the caller must be careful
897  *	about locking. The caller must hold RCU lock.
898  */
899 
900 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
901 {
902 	struct napi_struct *napi;
903 
904 	WARN_ON_ONCE(!rcu_read_lock_held());
905 
906 	if (napi_id < MIN_NAPI_ID)
907 		return NULL;
908 
909 	napi = napi_by_id(napi_id);
910 
911 	return napi ? napi->dev : NULL;
912 }
913 EXPORT_SYMBOL(dev_get_by_napi_id);
914 
915 /**
916  *	netdev_get_name - get a netdevice name, knowing its ifindex.
917  *	@net: network namespace
918  *	@name: a pointer to the buffer where the name will be stored.
919  *	@ifindex: the ifindex of the interface to get the name from.
920  */
921 int netdev_get_name(struct net *net, char *name, int ifindex)
922 {
923 	struct net_device *dev;
924 	int ret;
925 
926 	down_read(&devnet_rename_sem);
927 	rcu_read_lock();
928 
929 	dev = dev_get_by_index_rcu(net, ifindex);
930 	if (!dev) {
931 		ret = -ENODEV;
932 		goto out;
933 	}
934 
935 	strcpy(name, dev->name);
936 
937 	ret = 0;
938 out:
939 	rcu_read_unlock();
940 	up_read(&devnet_rename_sem);
941 	return ret;
942 }
943 
944 /**
945  *	dev_getbyhwaddr_rcu - find a device by its hardware address
946  *	@net: the applicable net namespace
947  *	@type: media type of device
948  *	@ha: hardware address
949  *
950  *	Search for an interface by MAC address. Returns NULL if the device
951  *	is not found or a pointer to the device.
952  *	The caller must hold RCU or RTNL.
953  *	The returned device has not had its ref count increased
954  *	and the caller must therefore be careful about locking
955  *
956  */
957 
958 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
959 				       const char *ha)
960 {
961 	struct net_device *dev;
962 
963 	for_each_netdev_rcu(net, dev)
964 		if (dev->type == type &&
965 		    !memcmp(dev->dev_addr, ha, dev->addr_len))
966 			return dev;
967 
968 	return NULL;
969 }
970 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
971 
972 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
973 {
974 	struct net_device *dev, *ret = NULL;
975 
976 	rcu_read_lock();
977 	for_each_netdev_rcu(net, dev)
978 		if (dev->type == type) {
979 			dev_hold(dev);
980 			ret = dev;
981 			break;
982 		}
983 	rcu_read_unlock();
984 	return ret;
985 }
986 EXPORT_SYMBOL(dev_getfirstbyhwtype);
987 
988 /**
989  *	__dev_get_by_flags - find any device with given flags
990  *	@net: the applicable net namespace
991  *	@if_flags: IFF_* values
992  *	@mask: bitmask of bits in if_flags to check
993  *
994  *	Search for any interface with the given flags. Returns NULL if a device
995  *	is not found or a pointer to the device. Must be called inside
996  *	rtnl_lock(), and result refcount is unchanged.
997  */
998 
999 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1000 				      unsigned short mask)
1001 {
1002 	struct net_device *dev, *ret;
1003 
1004 	ASSERT_RTNL();
1005 
1006 	ret = NULL;
1007 	for_each_netdev(net, dev) {
1008 		if (((dev->flags ^ if_flags) & mask) == 0) {
1009 			ret = dev;
1010 			break;
1011 		}
1012 	}
1013 	return ret;
1014 }
1015 EXPORT_SYMBOL(__dev_get_by_flags);
1016 
1017 /**
1018  *	dev_valid_name - check if name is okay for network device
1019  *	@name: name string
1020  *
1021  *	Network device names need to be valid file names to
1022  *	allow sysfs to work.  We also disallow any kind of
1023  *	whitespace.
1024  */
1025 bool dev_valid_name(const char *name)
1026 {
1027 	if (*name == '\0')
1028 		return false;
1029 	if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1030 		return false;
1031 	if (!strcmp(name, ".") || !strcmp(name, ".."))
1032 		return false;
1033 
1034 	while (*name) {
1035 		if (*name == '/' || *name == ':' || isspace(*name))
1036 			return false;
1037 		name++;
1038 	}
1039 	return true;
1040 }
1041 EXPORT_SYMBOL(dev_valid_name);
1042 
1043 /**
1044  *	__dev_alloc_name - allocate a name for a device
1045  *	@net: network namespace to allocate the device name in
1046  *	@name: name format string
1047  *	@res: result name string
1048  *
1049  *	Passed a format string - eg "lt%d" it will try and find a suitable
1050  *	id. It scans list of devices to build up a free map, then chooses
1051  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1052  *	while allocating the name and adding the device in order to avoid
1053  *	duplicates.
1054  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1055  *	Returns the number of the unit assigned or a negative errno code.
1056  */
1057 
1058 static int __dev_alloc_name(struct net *net, const char *name, char *res)
1059 {
1060 	int i = 0;
1061 	const char *p;
1062 	const int max_netdevices = 8*PAGE_SIZE;
1063 	unsigned long *inuse;
1064 	struct net_device *d;
1065 	char buf[IFNAMSIZ];
1066 
1067 	/* Verify the string as this thing may have come from the user.
1068 	 * There must be one "%d" and no other "%" characters.
1069 	 */
1070 	p = strchr(name, '%');
1071 	if (!p || p[1] != 'd' || strchr(p + 2, '%'))
1072 		return -EINVAL;
1073 
1074 	/* Use one page as a bit array of possible slots */
1075 	inuse = bitmap_zalloc(max_netdevices, GFP_ATOMIC);
1076 	if (!inuse)
1077 		return -ENOMEM;
1078 
1079 	for_each_netdev(net, d) {
1080 		struct netdev_name_node *name_node;
1081 
1082 		netdev_for_each_altname(d, name_node) {
1083 			if (!sscanf(name_node->name, name, &i))
1084 				continue;
1085 			if (i < 0 || i >= max_netdevices)
1086 				continue;
1087 
1088 			/* avoid cases where sscanf is not exact inverse of printf */
1089 			snprintf(buf, IFNAMSIZ, name, i);
1090 			if (!strncmp(buf, name_node->name, IFNAMSIZ))
1091 				__set_bit(i, inuse);
1092 		}
1093 		if (!sscanf(d->name, name, &i))
1094 			continue;
1095 		if (i < 0 || i >= max_netdevices)
1096 			continue;
1097 
1098 		/* avoid cases where sscanf is not exact inverse of printf */
1099 		snprintf(buf, IFNAMSIZ, name, i);
1100 		if (!strncmp(buf, d->name, IFNAMSIZ))
1101 			__set_bit(i, inuse);
1102 	}
1103 
1104 	i = find_first_zero_bit(inuse, max_netdevices);
1105 	bitmap_free(inuse);
1106 	if (i == max_netdevices)
1107 		return -ENFILE;
1108 
1109 	/* 'res' and 'name' could overlap, use 'buf' as an intermediate buffer */
1110 	strscpy(buf, name, IFNAMSIZ);
1111 	snprintf(res, IFNAMSIZ, buf, i);
1112 	return i;
1113 }
1114 
1115 /* Returns negative errno or allocated unit id (see __dev_alloc_name()) */
1116 static int dev_prep_valid_name(struct net *net, struct net_device *dev,
1117 			       const char *want_name, char *out_name,
1118 			       int dup_errno)
1119 {
1120 	if (!dev_valid_name(want_name))
1121 		return -EINVAL;
1122 
1123 	if (strchr(want_name, '%'))
1124 		return __dev_alloc_name(net, want_name, out_name);
1125 
1126 	if (netdev_name_in_use(net, want_name))
1127 		return -dup_errno;
1128 	if (out_name != want_name)
1129 		strscpy(out_name, want_name, IFNAMSIZ);
1130 	return 0;
1131 }
1132 
1133 /**
1134  *	dev_alloc_name - allocate a name for a device
1135  *	@dev: device
1136  *	@name: name format string
1137  *
1138  *	Passed a format string - eg "lt%d" it will try and find a suitable
1139  *	id. It scans list of devices to build up a free map, then chooses
1140  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1141  *	while allocating the name and adding the device in order to avoid
1142  *	duplicates.
1143  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1144  *	Returns the number of the unit assigned or a negative errno code.
1145  */
1146 
1147 int dev_alloc_name(struct net_device *dev, const char *name)
1148 {
1149 	return dev_prep_valid_name(dev_net(dev), dev, name, dev->name, ENFILE);
1150 }
1151 EXPORT_SYMBOL(dev_alloc_name);
1152 
1153 static int dev_get_valid_name(struct net *net, struct net_device *dev,
1154 			      const char *name)
1155 {
1156 	int ret;
1157 
1158 	ret = dev_prep_valid_name(net, dev, name, dev->name, EEXIST);
1159 	return ret < 0 ? ret : 0;
1160 }
1161 
1162 /**
1163  *	dev_change_name - change name of a device
1164  *	@dev: device
1165  *	@newname: name (or format string) must be at least IFNAMSIZ
1166  *
1167  *	Change name of a device, can pass format strings "eth%d".
1168  *	for wildcarding.
1169  */
1170 int dev_change_name(struct net_device *dev, const char *newname)
1171 {
1172 	unsigned char old_assign_type;
1173 	char oldname[IFNAMSIZ];
1174 	int err = 0;
1175 	int ret;
1176 	struct net *net;
1177 
1178 	ASSERT_RTNL();
1179 	BUG_ON(!dev_net(dev));
1180 
1181 	net = dev_net(dev);
1182 
1183 	down_write(&devnet_rename_sem);
1184 
1185 	if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1186 		up_write(&devnet_rename_sem);
1187 		return 0;
1188 	}
1189 
1190 	memcpy(oldname, dev->name, IFNAMSIZ);
1191 
1192 	err = dev_get_valid_name(net, dev, newname);
1193 	if (err < 0) {
1194 		up_write(&devnet_rename_sem);
1195 		return err;
1196 	}
1197 
1198 	if (oldname[0] && !strchr(oldname, '%'))
1199 		netdev_info(dev, "renamed from %s%s\n", oldname,
1200 			    dev->flags & IFF_UP ? " (while UP)" : "");
1201 
1202 	old_assign_type = dev->name_assign_type;
1203 	WRITE_ONCE(dev->name_assign_type, NET_NAME_RENAMED);
1204 
1205 rollback:
1206 	ret = device_rename(&dev->dev, dev->name);
1207 	if (ret) {
1208 		memcpy(dev->name, oldname, IFNAMSIZ);
1209 		WRITE_ONCE(dev->name_assign_type, old_assign_type);
1210 		up_write(&devnet_rename_sem);
1211 		return ret;
1212 	}
1213 
1214 	up_write(&devnet_rename_sem);
1215 
1216 	netdev_adjacent_rename_links(dev, oldname);
1217 
1218 	netdev_name_node_del(dev->name_node);
1219 
1220 	synchronize_net();
1221 
1222 	netdev_name_node_add(net, dev->name_node);
1223 
1224 	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1225 	ret = notifier_to_errno(ret);
1226 
1227 	if (ret) {
1228 		/* err >= 0 after dev_alloc_name() or stores the first errno */
1229 		if (err >= 0) {
1230 			err = ret;
1231 			down_write(&devnet_rename_sem);
1232 			memcpy(dev->name, oldname, IFNAMSIZ);
1233 			memcpy(oldname, newname, IFNAMSIZ);
1234 			WRITE_ONCE(dev->name_assign_type, old_assign_type);
1235 			old_assign_type = NET_NAME_RENAMED;
1236 			goto rollback;
1237 		} else {
1238 			netdev_err(dev, "name change rollback failed: %d\n",
1239 				   ret);
1240 		}
1241 	}
1242 
1243 	return err;
1244 }
1245 
1246 /**
1247  *	dev_set_alias - change ifalias of a device
1248  *	@dev: device
1249  *	@alias: name up to IFALIASZ
1250  *	@len: limit of bytes to copy from info
1251  *
1252  *	Set ifalias for a device,
1253  */
1254 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1255 {
1256 	struct dev_ifalias *new_alias = NULL;
1257 
1258 	if (len >= IFALIASZ)
1259 		return -EINVAL;
1260 
1261 	if (len) {
1262 		new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1263 		if (!new_alias)
1264 			return -ENOMEM;
1265 
1266 		memcpy(new_alias->ifalias, alias, len);
1267 		new_alias->ifalias[len] = 0;
1268 	}
1269 
1270 	mutex_lock(&ifalias_mutex);
1271 	new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1272 					mutex_is_locked(&ifalias_mutex));
1273 	mutex_unlock(&ifalias_mutex);
1274 
1275 	if (new_alias)
1276 		kfree_rcu(new_alias, rcuhead);
1277 
1278 	return len;
1279 }
1280 EXPORT_SYMBOL(dev_set_alias);
1281 
1282 /**
1283  *	dev_get_alias - get ifalias of a device
1284  *	@dev: device
1285  *	@name: buffer to store name of ifalias
1286  *	@len: size of buffer
1287  *
1288  *	get ifalias for a device.  Caller must make sure dev cannot go
1289  *	away,  e.g. rcu read lock or own a reference count to device.
1290  */
1291 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1292 {
1293 	const struct dev_ifalias *alias;
1294 	int ret = 0;
1295 
1296 	rcu_read_lock();
1297 	alias = rcu_dereference(dev->ifalias);
1298 	if (alias)
1299 		ret = snprintf(name, len, "%s", alias->ifalias);
1300 	rcu_read_unlock();
1301 
1302 	return ret;
1303 }
1304 
1305 /**
1306  *	netdev_features_change - device changes features
1307  *	@dev: device to cause notification
1308  *
1309  *	Called to indicate a device has changed features.
1310  */
1311 void netdev_features_change(struct net_device *dev)
1312 {
1313 	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1314 }
1315 EXPORT_SYMBOL(netdev_features_change);
1316 
1317 /**
1318  *	netdev_state_change - device changes state
1319  *	@dev: device to cause notification
1320  *
1321  *	Called to indicate a device has changed state. This function calls
1322  *	the notifier chains for netdev_chain and sends a NEWLINK message
1323  *	to the routing socket.
1324  */
1325 void netdev_state_change(struct net_device *dev)
1326 {
1327 	if (dev->flags & IFF_UP) {
1328 		struct netdev_notifier_change_info change_info = {
1329 			.info.dev = dev,
1330 		};
1331 
1332 		call_netdevice_notifiers_info(NETDEV_CHANGE,
1333 					      &change_info.info);
1334 		rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL, 0, NULL);
1335 	}
1336 }
1337 EXPORT_SYMBOL(netdev_state_change);
1338 
1339 /**
1340  * __netdev_notify_peers - notify network peers about existence of @dev,
1341  * to be called when rtnl lock is already held.
1342  * @dev: network device
1343  *
1344  * Generate traffic such that interested network peers are aware of
1345  * @dev, such as by generating a gratuitous ARP. This may be used when
1346  * a device wants to inform the rest of the network about some sort of
1347  * reconfiguration such as a failover event or virtual machine
1348  * migration.
1349  */
1350 void __netdev_notify_peers(struct net_device *dev)
1351 {
1352 	ASSERT_RTNL();
1353 	call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1354 	call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1355 }
1356 EXPORT_SYMBOL(__netdev_notify_peers);
1357 
1358 /**
1359  * netdev_notify_peers - notify network peers about existence of @dev
1360  * @dev: network device
1361  *
1362  * Generate traffic such that interested network peers are aware of
1363  * @dev, such as by generating a gratuitous ARP. This may be used when
1364  * a device wants to inform the rest of the network about some sort of
1365  * reconfiguration such as a failover event or virtual machine
1366  * migration.
1367  */
1368 void netdev_notify_peers(struct net_device *dev)
1369 {
1370 	rtnl_lock();
1371 	__netdev_notify_peers(dev);
1372 	rtnl_unlock();
1373 }
1374 EXPORT_SYMBOL(netdev_notify_peers);
1375 
1376 static int napi_threaded_poll(void *data);
1377 
1378 static int napi_kthread_create(struct napi_struct *n)
1379 {
1380 	int err = 0;
1381 
1382 	/* Create and wake up the kthread once to put it in
1383 	 * TASK_INTERRUPTIBLE mode to avoid the blocked task
1384 	 * warning and work with loadavg.
1385 	 */
1386 	n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d",
1387 				n->dev->name, n->napi_id);
1388 	if (IS_ERR(n->thread)) {
1389 		err = PTR_ERR(n->thread);
1390 		pr_err("kthread_run failed with err %d\n", err);
1391 		n->thread = NULL;
1392 	}
1393 
1394 	return err;
1395 }
1396 
1397 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1398 {
1399 	const struct net_device_ops *ops = dev->netdev_ops;
1400 	int ret;
1401 
1402 	ASSERT_RTNL();
1403 	dev_addr_check(dev);
1404 
1405 	if (!netif_device_present(dev)) {
1406 		/* may be detached because parent is runtime-suspended */
1407 		if (dev->dev.parent)
1408 			pm_runtime_resume(dev->dev.parent);
1409 		if (!netif_device_present(dev))
1410 			return -ENODEV;
1411 	}
1412 
1413 	/* Block netpoll from trying to do any rx path servicing.
1414 	 * If we don't do this there is a chance ndo_poll_controller
1415 	 * or ndo_poll may be running while we open the device
1416 	 */
1417 	netpoll_poll_disable(dev);
1418 
1419 	ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1420 	ret = notifier_to_errno(ret);
1421 	if (ret)
1422 		return ret;
1423 
1424 	set_bit(__LINK_STATE_START, &dev->state);
1425 
1426 	if (ops->ndo_validate_addr)
1427 		ret = ops->ndo_validate_addr(dev);
1428 
1429 	if (!ret && ops->ndo_open)
1430 		ret = ops->ndo_open(dev);
1431 
1432 	netpoll_poll_enable(dev);
1433 
1434 	if (ret)
1435 		clear_bit(__LINK_STATE_START, &dev->state);
1436 	else {
1437 		dev->flags |= IFF_UP;
1438 		dev_set_rx_mode(dev);
1439 		dev_activate(dev);
1440 		add_device_randomness(dev->dev_addr, dev->addr_len);
1441 	}
1442 
1443 	return ret;
1444 }
1445 
1446 /**
1447  *	dev_open	- prepare an interface for use.
1448  *	@dev: device to open
1449  *	@extack: netlink extended ack
1450  *
1451  *	Takes a device from down to up state. The device's private open
1452  *	function is invoked and then the multicast lists are loaded. Finally
1453  *	the device is moved into the up state and a %NETDEV_UP message is
1454  *	sent to the netdev notifier chain.
1455  *
1456  *	Calling this function on an active interface is a nop. On a failure
1457  *	a negative errno code is returned.
1458  */
1459 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1460 {
1461 	int ret;
1462 
1463 	if (dev->flags & IFF_UP)
1464 		return 0;
1465 
1466 	ret = __dev_open(dev, extack);
1467 	if (ret < 0)
1468 		return ret;
1469 
1470 	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL);
1471 	call_netdevice_notifiers(NETDEV_UP, dev);
1472 
1473 	return ret;
1474 }
1475 EXPORT_SYMBOL(dev_open);
1476 
1477 static void __dev_close_many(struct list_head *head)
1478 {
1479 	struct net_device *dev;
1480 
1481 	ASSERT_RTNL();
1482 	might_sleep();
1483 
1484 	list_for_each_entry(dev, head, close_list) {
1485 		/* Temporarily disable netpoll until the interface is down */
1486 		netpoll_poll_disable(dev);
1487 
1488 		call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1489 
1490 		clear_bit(__LINK_STATE_START, &dev->state);
1491 
1492 		/* Synchronize to scheduled poll. We cannot touch poll list, it
1493 		 * can be even on different cpu. So just clear netif_running().
1494 		 *
1495 		 * dev->stop() will invoke napi_disable() on all of it's
1496 		 * napi_struct instances on this device.
1497 		 */
1498 		smp_mb__after_atomic(); /* Commit netif_running(). */
1499 	}
1500 
1501 	dev_deactivate_many(head);
1502 
1503 	list_for_each_entry(dev, head, close_list) {
1504 		const struct net_device_ops *ops = dev->netdev_ops;
1505 
1506 		/*
1507 		 *	Call the device specific close. This cannot fail.
1508 		 *	Only if device is UP
1509 		 *
1510 		 *	We allow it to be called even after a DETACH hot-plug
1511 		 *	event.
1512 		 */
1513 		if (ops->ndo_stop)
1514 			ops->ndo_stop(dev);
1515 
1516 		dev->flags &= ~IFF_UP;
1517 		netpoll_poll_enable(dev);
1518 	}
1519 }
1520 
1521 static void __dev_close(struct net_device *dev)
1522 {
1523 	LIST_HEAD(single);
1524 
1525 	list_add(&dev->close_list, &single);
1526 	__dev_close_many(&single);
1527 	list_del(&single);
1528 }
1529 
1530 void dev_close_many(struct list_head *head, bool unlink)
1531 {
1532 	struct net_device *dev, *tmp;
1533 
1534 	/* Remove the devices that don't need to be closed */
1535 	list_for_each_entry_safe(dev, tmp, head, close_list)
1536 		if (!(dev->flags & IFF_UP))
1537 			list_del_init(&dev->close_list);
1538 
1539 	__dev_close_many(head);
1540 
1541 	list_for_each_entry_safe(dev, tmp, head, close_list) {
1542 		rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL);
1543 		call_netdevice_notifiers(NETDEV_DOWN, dev);
1544 		if (unlink)
1545 			list_del_init(&dev->close_list);
1546 	}
1547 }
1548 EXPORT_SYMBOL(dev_close_many);
1549 
1550 /**
1551  *	dev_close - shutdown an interface.
1552  *	@dev: device to shutdown
1553  *
1554  *	This function moves an active device into down state. A
1555  *	%NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1556  *	is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1557  *	chain.
1558  */
1559 void dev_close(struct net_device *dev)
1560 {
1561 	if (dev->flags & IFF_UP) {
1562 		LIST_HEAD(single);
1563 
1564 		list_add(&dev->close_list, &single);
1565 		dev_close_many(&single, true);
1566 		list_del(&single);
1567 	}
1568 }
1569 EXPORT_SYMBOL(dev_close);
1570 
1571 
1572 /**
1573  *	dev_disable_lro - disable Large Receive Offload on a device
1574  *	@dev: device
1575  *
1576  *	Disable Large Receive Offload (LRO) on a net device.  Must be
1577  *	called under RTNL.  This is needed if received packets may be
1578  *	forwarded to another interface.
1579  */
1580 void dev_disable_lro(struct net_device *dev)
1581 {
1582 	struct net_device *lower_dev;
1583 	struct list_head *iter;
1584 
1585 	dev->wanted_features &= ~NETIF_F_LRO;
1586 	netdev_update_features(dev);
1587 
1588 	if (unlikely(dev->features & NETIF_F_LRO))
1589 		netdev_WARN(dev, "failed to disable LRO!\n");
1590 
1591 	netdev_for_each_lower_dev(dev, lower_dev, iter)
1592 		dev_disable_lro(lower_dev);
1593 }
1594 EXPORT_SYMBOL(dev_disable_lro);
1595 
1596 /**
1597  *	dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1598  *	@dev: device
1599  *
1600  *	Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1601  *	called under RTNL.  This is needed if Generic XDP is installed on
1602  *	the device.
1603  */
1604 static void dev_disable_gro_hw(struct net_device *dev)
1605 {
1606 	dev->wanted_features &= ~NETIF_F_GRO_HW;
1607 	netdev_update_features(dev);
1608 
1609 	if (unlikely(dev->features & NETIF_F_GRO_HW))
1610 		netdev_WARN(dev, "failed to disable GRO_HW!\n");
1611 }
1612 
1613 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1614 {
1615 #define N(val) 						\
1616 	case NETDEV_##val:				\
1617 		return "NETDEV_" __stringify(val);
1618 	switch (cmd) {
1619 	N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1620 	N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1621 	N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1622 	N(POST_INIT) N(PRE_UNINIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN)
1623 	N(CHANGEUPPER) N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA)
1624 	N(BONDING_INFO) N(PRECHANGEUPPER) N(CHANGELOWERSTATE)
1625 	N(UDP_TUNNEL_PUSH_INFO) N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1626 	N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1627 	N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1628 	N(PRE_CHANGEADDR) N(OFFLOAD_XSTATS_ENABLE) N(OFFLOAD_XSTATS_DISABLE)
1629 	N(OFFLOAD_XSTATS_REPORT_USED) N(OFFLOAD_XSTATS_REPORT_DELTA)
1630 	N(XDP_FEAT_CHANGE)
1631 	}
1632 #undef N
1633 	return "UNKNOWN_NETDEV_EVENT";
1634 }
1635 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1636 
1637 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1638 				   struct net_device *dev)
1639 {
1640 	struct netdev_notifier_info info = {
1641 		.dev = dev,
1642 	};
1643 
1644 	return nb->notifier_call(nb, val, &info);
1645 }
1646 
1647 static int call_netdevice_register_notifiers(struct notifier_block *nb,
1648 					     struct net_device *dev)
1649 {
1650 	int err;
1651 
1652 	err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1653 	err = notifier_to_errno(err);
1654 	if (err)
1655 		return err;
1656 
1657 	if (!(dev->flags & IFF_UP))
1658 		return 0;
1659 
1660 	call_netdevice_notifier(nb, NETDEV_UP, dev);
1661 	return 0;
1662 }
1663 
1664 static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1665 						struct net_device *dev)
1666 {
1667 	if (dev->flags & IFF_UP) {
1668 		call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1669 					dev);
1670 		call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1671 	}
1672 	call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1673 }
1674 
1675 static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1676 						 struct net *net)
1677 {
1678 	struct net_device *dev;
1679 	int err;
1680 
1681 	for_each_netdev(net, dev) {
1682 		err = call_netdevice_register_notifiers(nb, dev);
1683 		if (err)
1684 			goto rollback;
1685 	}
1686 	return 0;
1687 
1688 rollback:
1689 	for_each_netdev_continue_reverse(net, dev)
1690 		call_netdevice_unregister_notifiers(nb, dev);
1691 	return err;
1692 }
1693 
1694 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1695 						    struct net *net)
1696 {
1697 	struct net_device *dev;
1698 
1699 	for_each_netdev(net, dev)
1700 		call_netdevice_unregister_notifiers(nb, dev);
1701 }
1702 
1703 static int dev_boot_phase = 1;
1704 
1705 /**
1706  * register_netdevice_notifier - register a network notifier block
1707  * @nb: notifier
1708  *
1709  * Register a notifier to be called when network device events occur.
1710  * The notifier passed is linked into the kernel structures and must
1711  * not be reused until it has been unregistered. A negative errno code
1712  * is returned on a failure.
1713  *
1714  * When registered all registration and up events are replayed
1715  * to the new notifier to allow device to have a race free
1716  * view of the network device list.
1717  */
1718 
1719 int register_netdevice_notifier(struct notifier_block *nb)
1720 {
1721 	struct net *net;
1722 	int err;
1723 
1724 	/* Close race with setup_net() and cleanup_net() */
1725 	down_write(&pernet_ops_rwsem);
1726 	rtnl_lock();
1727 	err = raw_notifier_chain_register(&netdev_chain, nb);
1728 	if (err)
1729 		goto unlock;
1730 	if (dev_boot_phase)
1731 		goto unlock;
1732 	for_each_net(net) {
1733 		err = call_netdevice_register_net_notifiers(nb, net);
1734 		if (err)
1735 			goto rollback;
1736 	}
1737 
1738 unlock:
1739 	rtnl_unlock();
1740 	up_write(&pernet_ops_rwsem);
1741 	return err;
1742 
1743 rollback:
1744 	for_each_net_continue_reverse(net)
1745 		call_netdevice_unregister_net_notifiers(nb, net);
1746 
1747 	raw_notifier_chain_unregister(&netdev_chain, nb);
1748 	goto unlock;
1749 }
1750 EXPORT_SYMBOL(register_netdevice_notifier);
1751 
1752 /**
1753  * unregister_netdevice_notifier - unregister a network notifier block
1754  * @nb: notifier
1755  *
1756  * Unregister a notifier previously registered by
1757  * register_netdevice_notifier(). The notifier is unlinked into the
1758  * kernel structures and may then be reused. A negative errno code
1759  * is returned on a failure.
1760  *
1761  * After unregistering unregister and down device events are synthesized
1762  * for all devices on the device list to the removed notifier to remove
1763  * the need for special case cleanup code.
1764  */
1765 
1766 int unregister_netdevice_notifier(struct notifier_block *nb)
1767 {
1768 	struct net *net;
1769 	int err;
1770 
1771 	/* Close race with setup_net() and cleanup_net() */
1772 	down_write(&pernet_ops_rwsem);
1773 	rtnl_lock();
1774 	err = raw_notifier_chain_unregister(&netdev_chain, nb);
1775 	if (err)
1776 		goto unlock;
1777 
1778 	for_each_net(net)
1779 		call_netdevice_unregister_net_notifiers(nb, net);
1780 
1781 unlock:
1782 	rtnl_unlock();
1783 	up_write(&pernet_ops_rwsem);
1784 	return err;
1785 }
1786 EXPORT_SYMBOL(unregister_netdevice_notifier);
1787 
1788 static int __register_netdevice_notifier_net(struct net *net,
1789 					     struct notifier_block *nb,
1790 					     bool ignore_call_fail)
1791 {
1792 	int err;
1793 
1794 	err = raw_notifier_chain_register(&net->netdev_chain, nb);
1795 	if (err)
1796 		return err;
1797 	if (dev_boot_phase)
1798 		return 0;
1799 
1800 	err = call_netdevice_register_net_notifiers(nb, net);
1801 	if (err && !ignore_call_fail)
1802 		goto chain_unregister;
1803 
1804 	return 0;
1805 
1806 chain_unregister:
1807 	raw_notifier_chain_unregister(&net->netdev_chain, nb);
1808 	return err;
1809 }
1810 
1811 static int __unregister_netdevice_notifier_net(struct net *net,
1812 					       struct notifier_block *nb)
1813 {
1814 	int err;
1815 
1816 	err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
1817 	if (err)
1818 		return err;
1819 
1820 	call_netdevice_unregister_net_notifiers(nb, net);
1821 	return 0;
1822 }
1823 
1824 /**
1825  * register_netdevice_notifier_net - register a per-netns network notifier block
1826  * @net: network namespace
1827  * @nb: notifier
1828  *
1829  * Register a notifier to be called when network device events occur.
1830  * The notifier passed is linked into the kernel structures and must
1831  * not be reused until it has been unregistered. A negative errno code
1832  * is returned on a failure.
1833  *
1834  * When registered all registration and up events are replayed
1835  * to the new notifier to allow device to have a race free
1836  * view of the network device list.
1837  */
1838 
1839 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
1840 {
1841 	int err;
1842 
1843 	rtnl_lock();
1844 	err = __register_netdevice_notifier_net(net, nb, false);
1845 	rtnl_unlock();
1846 	return err;
1847 }
1848 EXPORT_SYMBOL(register_netdevice_notifier_net);
1849 
1850 /**
1851  * unregister_netdevice_notifier_net - unregister a per-netns
1852  *                                     network notifier block
1853  * @net: network namespace
1854  * @nb: notifier
1855  *
1856  * Unregister a notifier previously registered by
1857  * register_netdevice_notifier_net(). The notifier is unlinked from the
1858  * kernel structures and may then be reused. A negative errno code
1859  * is returned on a failure.
1860  *
1861  * After unregistering unregister and down device events are synthesized
1862  * for all devices on the device list to the removed notifier to remove
1863  * the need for special case cleanup code.
1864  */
1865 
1866 int unregister_netdevice_notifier_net(struct net *net,
1867 				      struct notifier_block *nb)
1868 {
1869 	int err;
1870 
1871 	rtnl_lock();
1872 	err = __unregister_netdevice_notifier_net(net, nb);
1873 	rtnl_unlock();
1874 	return err;
1875 }
1876 EXPORT_SYMBOL(unregister_netdevice_notifier_net);
1877 
1878 static void __move_netdevice_notifier_net(struct net *src_net,
1879 					  struct net *dst_net,
1880 					  struct notifier_block *nb)
1881 {
1882 	__unregister_netdevice_notifier_net(src_net, nb);
1883 	__register_netdevice_notifier_net(dst_net, nb, true);
1884 }
1885 
1886 int register_netdevice_notifier_dev_net(struct net_device *dev,
1887 					struct notifier_block *nb,
1888 					struct netdev_net_notifier *nn)
1889 {
1890 	int err;
1891 
1892 	rtnl_lock();
1893 	err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
1894 	if (!err) {
1895 		nn->nb = nb;
1896 		list_add(&nn->list, &dev->net_notifier_list);
1897 	}
1898 	rtnl_unlock();
1899 	return err;
1900 }
1901 EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
1902 
1903 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
1904 					  struct notifier_block *nb,
1905 					  struct netdev_net_notifier *nn)
1906 {
1907 	int err;
1908 
1909 	rtnl_lock();
1910 	list_del(&nn->list);
1911 	err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
1912 	rtnl_unlock();
1913 	return err;
1914 }
1915 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
1916 
1917 static void move_netdevice_notifiers_dev_net(struct net_device *dev,
1918 					     struct net *net)
1919 {
1920 	struct netdev_net_notifier *nn;
1921 
1922 	list_for_each_entry(nn, &dev->net_notifier_list, list)
1923 		__move_netdevice_notifier_net(dev_net(dev), net, nn->nb);
1924 }
1925 
1926 /**
1927  *	call_netdevice_notifiers_info - call all network notifier blocks
1928  *	@val: value passed unmodified to notifier function
1929  *	@info: notifier information data
1930  *
1931  *	Call all network notifier blocks.  Parameters and return value
1932  *	are as for raw_notifier_call_chain().
1933  */
1934 
1935 int call_netdevice_notifiers_info(unsigned long val,
1936 				  struct netdev_notifier_info *info)
1937 {
1938 	struct net *net = dev_net(info->dev);
1939 	int ret;
1940 
1941 	ASSERT_RTNL();
1942 
1943 	/* Run per-netns notifier block chain first, then run the global one.
1944 	 * Hopefully, one day, the global one is going to be removed after
1945 	 * all notifier block registrators get converted to be per-netns.
1946 	 */
1947 	ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
1948 	if (ret & NOTIFY_STOP_MASK)
1949 		return ret;
1950 	return raw_notifier_call_chain(&netdev_chain, val, info);
1951 }
1952 
1953 /**
1954  *	call_netdevice_notifiers_info_robust - call per-netns notifier blocks
1955  *	                                       for and rollback on error
1956  *	@val_up: value passed unmodified to notifier function
1957  *	@val_down: value passed unmodified to the notifier function when
1958  *	           recovering from an error on @val_up
1959  *	@info: notifier information data
1960  *
1961  *	Call all per-netns network notifier blocks, but not notifier blocks on
1962  *	the global notifier chain. Parameters and return value are as for
1963  *	raw_notifier_call_chain_robust().
1964  */
1965 
1966 static int
1967 call_netdevice_notifiers_info_robust(unsigned long val_up,
1968 				     unsigned long val_down,
1969 				     struct netdev_notifier_info *info)
1970 {
1971 	struct net *net = dev_net(info->dev);
1972 
1973 	ASSERT_RTNL();
1974 
1975 	return raw_notifier_call_chain_robust(&net->netdev_chain,
1976 					      val_up, val_down, info);
1977 }
1978 
1979 static int call_netdevice_notifiers_extack(unsigned long val,
1980 					   struct net_device *dev,
1981 					   struct netlink_ext_ack *extack)
1982 {
1983 	struct netdev_notifier_info info = {
1984 		.dev = dev,
1985 		.extack = extack,
1986 	};
1987 
1988 	return call_netdevice_notifiers_info(val, &info);
1989 }
1990 
1991 /**
1992  *	call_netdevice_notifiers - call all network notifier blocks
1993  *      @val: value passed unmodified to notifier function
1994  *      @dev: net_device pointer passed unmodified to notifier function
1995  *
1996  *	Call all network notifier blocks.  Parameters and return value
1997  *	are as for raw_notifier_call_chain().
1998  */
1999 
2000 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
2001 {
2002 	return call_netdevice_notifiers_extack(val, dev, NULL);
2003 }
2004 EXPORT_SYMBOL(call_netdevice_notifiers);
2005 
2006 /**
2007  *	call_netdevice_notifiers_mtu - call all network notifier blocks
2008  *	@val: value passed unmodified to notifier function
2009  *	@dev: net_device pointer passed unmodified to notifier function
2010  *	@arg: additional u32 argument passed to the notifier function
2011  *
2012  *	Call all network notifier blocks.  Parameters and return value
2013  *	are as for raw_notifier_call_chain().
2014  */
2015 static int call_netdevice_notifiers_mtu(unsigned long val,
2016 					struct net_device *dev, u32 arg)
2017 {
2018 	struct netdev_notifier_info_ext info = {
2019 		.info.dev = dev,
2020 		.ext.mtu = arg,
2021 	};
2022 
2023 	BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2024 
2025 	return call_netdevice_notifiers_info(val, &info.info);
2026 }
2027 
2028 #ifdef CONFIG_NET_INGRESS
2029 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2030 
2031 void net_inc_ingress_queue(void)
2032 {
2033 	static_branch_inc(&ingress_needed_key);
2034 }
2035 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2036 
2037 void net_dec_ingress_queue(void)
2038 {
2039 	static_branch_dec(&ingress_needed_key);
2040 }
2041 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2042 #endif
2043 
2044 #ifdef CONFIG_NET_EGRESS
2045 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2046 
2047 void net_inc_egress_queue(void)
2048 {
2049 	static_branch_inc(&egress_needed_key);
2050 }
2051 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2052 
2053 void net_dec_egress_queue(void)
2054 {
2055 	static_branch_dec(&egress_needed_key);
2056 }
2057 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2058 #endif
2059 
2060 DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2061 EXPORT_SYMBOL(netstamp_needed_key);
2062 #ifdef CONFIG_JUMP_LABEL
2063 static atomic_t netstamp_needed_deferred;
2064 static atomic_t netstamp_wanted;
2065 static void netstamp_clear(struct work_struct *work)
2066 {
2067 	int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2068 	int wanted;
2069 
2070 	wanted = atomic_add_return(deferred, &netstamp_wanted);
2071 	if (wanted > 0)
2072 		static_branch_enable(&netstamp_needed_key);
2073 	else
2074 		static_branch_disable(&netstamp_needed_key);
2075 }
2076 static DECLARE_WORK(netstamp_work, netstamp_clear);
2077 #endif
2078 
2079 void net_enable_timestamp(void)
2080 {
2081 #ifdef CONFIG_JUMP_LABEL
2082 	int wanted = atomic_read(&netstamp_wanted);
2083 
2084 	while (wanted > 0) {
2085 		if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted + 1))
2086 			return;
2087 	}
2088 	atomic_inc(&netstamp_needed_deferred);
2089 	schedule_work(&netstamp_work);
2090 #else
2091 	static_branch_inc(&netstamp_needed_key);
2092 #endif
2093 }
2094 EXPORT_SYMBOL(net_enable_timestamp);
2095 
2096 void net_disable_timestamp(void)
2097 {
2098 #ifdef CONFIG_JUMP_LABEL
2099 	int wanted = atomic_read(&netstamp_wanted);
2100 
2101 	while (wanted > 1) {
2102 		if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted - 1))
2103 			return;
2104 	}
2105 	atomic_dec(&netstamp_needed_deferred);
2106 	schedule_work(&netstamp_work);
2107 #else
2108 	static_branch_dec(&netstamp_needed_key);
2109 #endif
2110 }
2111 EXPORT_SYMBOL(net_disable_timestamp);
2112 
2113 static inline void net_timestamp_set(struct sk_buff *skb)
2114 {
2115 	skb->tstamp = 0;
2116 	skb->mono_delivery_time = 0;
2117 	if (static_branch_unlikely(&netstamp_needed_key))
2118 		skb->tstamp = ktime_get_real();
2119 }
2120 
2121 #define net_timestamp_check(COND, SKB)				\
2122 	if (static_branch_unlikely(&netstamp_needed_key)) {	\
2123 		if ((COND) && !(SKB)->tstamp)			\
2124 			(SKB)->tstamp = ktime_get_real();	\
2125 	}							\
2126 
2127 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2128 {
2129 	return __is_skb_forwardable(dev, skb, true);
2130 }
2131 EXPORT_SYMBOL_GPL(is_skb_forwardable);
2132 
2133 static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb,
2134 			      bool check_mtu)
2135 {
2136 	int ret = ____dev_forward_skb(dev, skb, check_mtu);
2137 
2138 	if (likely(!ret)) {
2139 		skb->protocol = eth_type_trans(skb, dev);
2140 		skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2141 	}
2142 
2143 	return ret;
2144 }
2145 
2146 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2147 {
2148 	return __dev_forward_skb2(dev, skb, true);
2149 }
2150 EXPORT_SYMBOL_GPL(__dev_forward_skb);
2151 
2152 /**
2153  * dev_forward_skb - loopback an skb to another netif
2154  *
2155  * @dev: destination network device
2156  * @skb: buffer to forward
2157  *
2158  * return values:
2159  *	NET_RX_SUCCESS	(no congestion)
2160  *	NET_RX_DROP     (packet was dropped, but freed)
2161  *
2162  * dev_forward_skb can be used for injecting an skb from the
2163  * start_xmit function of one device into the receive queue
2164  * of another device.
2165  *
2166  * The receiving device may be in another namespace, so
2167  * we have to clear all information in the skb that could
2168  * impact namespace isolation.
2169  */
2170 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2171 {
2172 	return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2173 }
2174 EXPORT_SYMBOL_GPL(dev_forward_skb);
2175 
2176 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb)
2177 {
2178 	return __dev_forward_skb2(dev, skb, false) ?: netif_rx_internal(skb);
2179 }
2180 
2181 static inline int deliver_skb(struct sk_buff *skb,
2182 			      struct packet_type *pt_prev,
2183 			      struct net_device *orig_dev)
2184 {
2185 	if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2186 		return -ENOMEM;
2187 	refcount_inc(&skb->users);
2188 	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2189 }
2190 
2191 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2192 					  struct packet_type **pt,
2193 					  struct net_device *orig_dev,
2194 					  __be16 type,
2195 					  struct list_head *ptype_list)
2196 {
2197 	struct packet_type *ptype, *pt_prev = *pt;
2198 
2199 	list_for_each_entry_rcu(ptype, ptype_list, list) {
2200 		if (ptype->type != type)
2201 			continue;
2202 		if (pt_prev)
2203 			deliver_skb(skb, pt_prev, orig_dev);
2204 		pt_prev = ptype;
2205 	}
2206 	*pt = pt_prev;
2207 }
2208 
2209 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2210 {
2211 	if (!ptype->af_packet_priv || !skb->sk)
2212 		return false;
2213 
2214 	if (ptype->id_match)
2215 		return ptype->id_match(ptype, skb->sk);
2216 	else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2217 		return true;
2218 
2219 	return false;
2220 }
2221 
2222 /**
2223  * dev_nit_active - return true if any network interface taps are in use
2224  *
2225  * @dev: network device to check for the presence of taps
2226  */
2227 bool dev_nit_active(struct net_device *dev)
2228 {
2229 	return !list_empty(&net_hotdata.ptype_all) ||
2230 	       !list_empty(&dev->ptype_all);
2231 }
2232 EXPORT_SYMBOL_GPL(dev_nit_active);
2233 
2234 /*
2235  *	Support routine. Sends outgoing frames to any network
2236  *	taps currently in use.
2237  */
2238 
2239 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2240 {
2241 	struct list_head *ptype_list = &net_hotdata.ptype_all;
2242 	struct packet_type *ptype, *pt_prev = NULL;
2243 	struct sk_buff *skb2 = NULL;
2244 
2245 	rcu_read_lock();
2246 again:
2247 	list_for_each_entry_rcu(ptype, ptype_list, list) {
2248 		if (READ_ONCE(ptype->ignore_outgoing))
2249 			continue;
2250 
2251 		/* Never send packets back to the socket
2252 		 * they originated from - MvS (miquels@drinkel.ow.org)
2253 		 */
2254 		if (skb_loop_sk(ptype, skb))
2255 			continue;
2256 
2257 		if (pt_prev) {
2258 			deliver_skb(skb2, pt_prev, skb->dev);
2259 			pt_prev = ptype;
2260 			continue;
2261 		}
2262 
2263 		/* need to clone skb, done only once */
2264 		skb2 = skb_clone(skb, GFP_ATOMIC);
2265 		if (!skb2)
2266 			goto out_unlock;
2267 
2268 		net_timestamp_set(skb2);
2269 
2270 		/* skb->nh should be correctly
2271 		 * set by sender, so that the second statement is
2272 		 * just protection against buggy protocols.
2273 		 */
2274 		skb_reset_mac_header(skb2);
2275 
2276 		if (skb_network_header(skb2) < skb2->data ||
2277 		    skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2278 			net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2279 					     ntohs(skb2->protocol),
2280 					     dev->name);
2281 			skb_reset_network_header(skb2);
2282 		}
2283 
2284 		skb2->transport_header = skb2->network_header;
2285 		skb2->pkt_type = PACKET_OUTGOING;
2286 		pt_prev = ptype;
2287 	}
2288 
2289 	if (ptype_list == &net_hotdata.ptype_all) {
2290 		ptype_list = &dev->ptype_all;
2291 		goto again;
2292 	}
2293 out_unlock:
2294 	if (pt_prev) {
2295 		if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2296 			pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2297 		else
2298 			kfree_skb(skb2);
2299 	}
2300 	rcu_read_unlock();
2301 }
2302 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2303 
2304 /**
2305  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2306  * @dev: Network device
2307  * @txq: number of queues available
2308  *
2309  * If real_num_tx_queues is changed the tc mappings may no longer be
2310  * valid. To resolve this verify the tc mapping remains valid and if
2311  * not NULL the mapping. With no priorities mapping to this
2312  * offset/count pair it will no longer be used. In the worst case TC0
2313  * is invalid nothing can be done so disable priority mappings. If is
2314  * expected that drivers will fix this mapping if they can before
2315  * calling netif_set_real_num_tx_queues.
2316  */
2317 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2318 {
2319 	int i;
2320 	struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2321 
2322 	/* If TC0 is invalidated disable TC mapping */
2323 	if (tc->offset + tc->count > txq) {
2324 		netdev_warn(dev, "Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2325 		dev->num_tc = 0;
2326 		return;
2327 	}
2328 
2329 	/* Invalidated prio to tc mappings set to TC0 */
2330 	for (i = 1; i < TC_BITMASK + 1; i++) {
2331 		int q = netdev_get_prio_tc_map(dev, i);
2332 
2333 		tc = &dev->tc_to_txq[q];
2334 		if (tc->offset + tc->count > txq) {
2335 			netdev_warn(dev, "Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2336 				    i, q);
2337 			netdev_set_prio_tc_map(dev, i, 0);
2338 		}
2339 	}
2340 }
2341 
2342 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2343 {
2344 	if (dev->num_tc) {
2345 		struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2346 		int i;
2347 
2348 		/* walk through the TCs and see if it falls into any of them */
2349 		for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2350 			if ((txq - tc->offset) < tc->count)
2351 				return i;
2352 		}
2353 
2354 		/* didn't find it, just return -1 to indicate no match */
2355 		return -1;
2356 	}
2357 
2358 	return 0;
2359 }
2360 EXPORT_SYMBOL(netdev_txq_to_tc);
2361 
2362 #ifdef CONFIG_XPS
2363 static struct static_key xps_needed __read_mostly;
2364 static struct static_key xps_rxqs_needed __read_mostly;
2365 static DEFINE_MUTEX(xps_map_mutex);
2366 #define xmap_dereference(P)		\
2367 	rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2368 
2369 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2370 			     struct xps_dev_maps *old_maps, int tci, u16 index)
2371 {
2372 	struct xps_map *map = NULL;
2373 	int pos;
2374 
2375 	map = xmap_dereference(dev_maps->attr_map[tci]);
2376 	if (!map)
2377 		return false;
2378 
2379 	for (pos = map->len; pos--;) {
2380 		if (map->queues[pos] != index)
2381 			continue;
2382 
2383 		if (map->len > 1) {
2384 			map->queues[pos] = map->queues[--map->len];
2385 			break;
2386 		}
2387 
2388 		if (old_maps)
2389 			RCU_INIT_POINTER(old_maps->attr_map[tci], NULL);
2390 		RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2391 		kfree_rcu(map, rcu);
2392 		return false;
2393 	}
2394 
2395 	return true;
2396 }
2397 
2398 static bool remove_xps_queue_cpu(struct net_device *dev,
2399 				 struct xps_dev_maps *dev_maps,
2400 				 int cpu, u16 offset, u16 count)
2401 {
2402 	int num_tc = dev_maps->num_tc;
2403 	bool active = false;
2404 	int tci;
2405 
2406 	for (tci = cpu * num_tc; num_tc--; tci++) {
2407 		int i, j;
2408 
2409 		for (i = count, j = offset; i--; j++) {
2410 			if (!remove_xps_queue(dev_maps, NULL, tci, j))
2411 				break;
2412 		}
2413 
2414 		active |= i < 0;
2415 	}
2416 
2417 	return active;
2418 }
2419 
2420 static void reset_xps_maps(struct net_device *dev,
2421 			   struct xps_dev_maps *dev_maps,
2422 			   enum xps_map_type type)
2423 {
2424 	static_key_slow_dec_cpuslocked(&xps_needed);
2425 	if (type == XPS_RXQS)
2426 		static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2427 
2428 	RCU_INIT_POINTER(dev->xps_maps[type], NULL);
2429 
2430 	kfree_rcu(dev_maps, rcu);
2431 }
2432 
2433 static void clean_xps_maps(struct net_device *dev, enum xps_map_type type,
2434 			   u16 offset, u16 count)
2435 {
2436 	struct xps_dev_maps *dev_maps;
2437 	bool active = false;
2438 	int i, j;
2439 
2440 	dev_maps = xmap_dereference(dev->xps_maps[type]);
2441 	if (!dev_maps)
2442 		return;
2443 
2444 	for (j = 0; j < dev_maps->nr_ids; j++)
2445 		active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, count);
2446 	if (!active)
2447 		reset_xps_maps(dev, dev_maps, type);
2448 
2449 	if (type == XPS_CPUS) {
2450 		for (i = offset + (count - 1); count--; i--)
2451 			netdev_queue_numa_node_write(
2452 				netdev_get_tx_queue(dev, i), NUMA_NO_NODE);
2453 	}
2454 }
2455 
2456 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2457 				   u16 count)
2458 {
2459 	if (!static_key_false(&xps_needed))
2460 		return;
2461 
2462 	cpus_read_lock();
2463 	mutex_lock(&xps_map_mutex);
2464 
2465 	if (static_key_false(&xps_rxqs_needed))
2466 		clean_xps_maps(dev, XPS_RXQS, offset, count);
2467 
2468 	clean_xps_maps(dev, XPS_CPUS, offset, count);
2469 
2470 	mutex_unlock(&xps_map_mutex);
2471 	cpus_read_unlock();
2472 }
2473 
2474 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2475 {
2476 	netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2477 }
2478 
2479 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2480 				      u16 index, bool is_rxqs_map)
2481 {
2482 	struct xps_map *new_map;
2483 	int alloc_len = XPS_MIN_MAP_ALLOC;
2484 	int i, pos;
2485 
2486 	for (pos = 0; map && pos < map->len; pos++) {
2487 		if (map->queues[pos] != index)
2488 			continue;
2489 		return map;
2490 	}
2491 
2492 	/* Need to add tx-queue to this CPU's/rx-queue's existing map */
2493 	if (map) {
2494 		if (pos < map->alloc_len)
2495 			return map;
2496 
2497 		alloc_len = map->alloc_len * 2;
2498 	}
2499 
2500 	/* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2501 	 *  map
2502 	 */
2503 	if (is_rxqs_map)
2504 		new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2505 	else
2506 		new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2507 				       cpu_to_node(attr_index));
2508 	if (!new_map)
2509 		return NULL;
2510 
2511 	for (i = 0; i < pos; i++)
2512 		new_map->queues[i] = map->queues[i];
2513 	new_map->alloc_len = alloc_len;
2514 	new_map->len = pos;
2515 
2516 	return new_map;
2517 }
2518 
2519 /* Copy xps maps at a given index */
2520 static void xps_copy_dev_maps(struct xps_dev_maps *dev_maps,
2521 			      struct xps_dev_maps *new_dev_maps, int index,
2522 			      int tc, bool skip_tc)
2523 {
2524 	int i, tci = index * dev_maps->num_tc;
2525 	struct xps_map *map;
2526 
2527 	/* copy maps belonging to foreign traffic classes */
2528 	for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2529 		if (i == tc && skip_tc)
2530 			continue;
2531 
2532 		/* fill in the new device map from the old device map */
2533 		map = xmap_dereference(dev_maps->attr_map[tci]);
2534 		RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2535 	}
2536 }
2537 
2538 /* Must be called under cpus_read_lock */
2539 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2540 			  u16 index, enum xps_map_type type)
2541 {
2542 	struct xps_dev_maps *dev_maps, *new_dev_maps = NULL, *old_dev_maps = NULL;
2543 	const unsigned long *online_mask = NULL;
2544 	bool active = false, copy = false;
2545 	int i, j, tci, numa_node_id = -2;
2546 	int maps_sz, num_tc = 1, tc = 0;
2547 	struct xps_map *map, *new_map;
2548 	unsigned int nr_ids;
2549 
2550 	WARN_ON_ONCE(index >= dev->num_tx_queues);
2551 
2552 	if (dev->num_tc) {
2553 		/* Do not allow XPS on subordinate device directly */
2554 		num_tc = dev->num_tc;
2555 		if (num_tc < 0)
2556 			return -EINVAL;
2557 
2558 		/* If queue belongs to subordinate dev use its map */
2559 		dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2560 
2561 		tc = netdev_txq_to_tc(dev, index);
2562 		if (tc < 0)
2563 			return -EINVAL;
2564 	}
2565 
2566 	mutex_lock(&xps_map_mutex);
2567 
2568 	dev_maps = xmap_dereference(dev->xps_maps[type]);
2569 	if (type == XPS_RXQS) {
2570 		maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2571 		nr_ids = dev->num_rx_queues;
2572 	} else {
2573 		maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2574 		if (num_possible_cpus() > 1)
2575 			online_mask = cpumask_bits(cpu_online_mask);
2576 		nr_ids = nr_cpu_ids;
2577 	}
2578 
2579 	if (maps_sz < L1_CACHE_BYTES)
2580 		maps_sz = L1_CACHE_BYTES;
2581 
2582 	/* The old dev_maps could be larger or smaller than the one we're
2583 	 * setting up now, as dev->num_tc or nr_ids could have been updated in
2584 	 * between. We could try to be smart, but let's be safe instead and only
2585 	 * copy foreign traffic classes if the two map sizes match.
2586 	 */
2587 	if (dev_maps &&
2588 	    dev_maps->num_tc == num_tc && dev_maps->nr_ids == nr_ids)
2589 		copy = true;
2590 
2591 	/* allocate memory for queue storage */
2592 	for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2593 	     j < nr_ids;) {
2594 		if (!new_dev_maps) {
2595 			new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2596 			if (!new_dev_maps) {
2597 				mutex_unlock(&xps_map_mutex);
2598 				return -ENOMEM;
2599 			}
2600 
2601 			new_dev_maps->nr_ids = nr_ids;
2602 			new_dev_maps->num_tc = num_tc;
2603 		}
2604 
2605 		tci = j * num_tc + tc;
2606 		map = copy ? xmap_dereference(dev_maps->attr_map[tci]) : NULL;
2607 
2608 		map = expand_xps_map(map, j, index, type == XPS_RXQS);
2609 		if (!map)
2610 			goto error;
2611 
2612 		RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2613 	}
2614 
2615 	if (!new_dev_maps)
2616 		goto out_no_new_maps;
2617 
2618 	if (!dev_maps) {
2619 		/* Increment static keys at most once per type */
2620 		static_key_slow_inc_cpuslocked(&xps_needed);
2621 		if (type == XPS_RXQS)
2622 			static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2623 	}
2624 
2625 	for (j = 0; j < nr_ids; j++) {
2626 		bool skip_tc = false;
2627 
2628 		tci = j * num_tc + tc;
2629 		if (netif_attr_test_mask(j, mask, nr_ids) &&
2630 		    netif_attr_test_online(j, online_mask, nr_ids)) {
2631 			/* add tx-queue to CPU/rx-queue maps */
2632 			int pos = 0;
2633 
2634 			skip_tc = true;
2635 
2636 			map = xmap_dereference(new_dev_maps->attr_map[tci]);
2637 			while ((pos < map->len) && (map->queues[pos] != index))
2638 				pos++;
2639 
2640 			if (pos == map->len)
2641 				map->queues[map->len++] = index;
2642 #ifdef CONFIG_NUMA
2643 			if (type == XPS_CPUS) {
2644 				if (numa_node_id == -2)
2645 					numa_node_id = cpu_to_node(j);
2646 				else if (numa_node_id != cpu_to_node(j))
2647 					numa_node_id = -1;
2648 			}
2649 #endif
2650 		}
2651 
2652 		if (copy)
2653 			xps_copy_dev_maps(dev_maps, new_dev_maps, j, tc,
2654 					  skip_tc);
2655 	}
2656 
2657 	rcu_assign_pointer(dev->xps_maps[type], new_dev_maps);
2658 
2659 	/* Cleanup old maps */
2660 	if (!dev_maps)
2661 		goto out_no_old_maps;
2662 
2663 	for (j = 0; j < dev_maps->nr_ids; j++) {
2664 		for (i = num_tc, tci = j * dev_maps->num_tc; i--; tci++) {
2665 			map = xmap_dereference(dev_maps->attr_map[tci]);
2666 			if (!map)
2667 				continue;
2668 
2669 			if (copy) {
2670 				new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2671 				if (map == new_map)
2672 					continue;
2673 			}
2674 
2675 			RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2676 			kfree_rcu(map, rcu);
2677 		}
2678 	}
2679 
2680 	old_dev_maps = dev_maps;
2681 
2682 out_no_old_maps:
2683 	dev_maps = new_dev_maps;
2684 	active = true;
2685 
2686 out_no_new_maps:
2687 	if (type == XPS_CPUS)
2688 		/* update Tx queue numa node */
2689 		netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2690 					     (numa_node_id >= 0) ?
2691 					     numa_node_id : NUMA_NO_NODE);
2692 
2693 	if (!dev_maps)
2694 		goto out_no_maps;
2695 
2696 	/* removes tx-queue from unused CPUs/rx-queues */
2697 	for (j = 0; j < dev_maps->nr_ids; j++) {
2698 		tci = j * dev_maps->num_tc;
2699 
2700 		for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2701 			if (i == tc &&
2702 			    netif_attr_test_mask(j, mask, dev_maps->nr_ids) &&
2703 			    netif_attr_test_online(j, online_mask, dev_maps->nr_ids))
2704 				continue;
2705 
2706 			active |= remove_xps_queue(dev_maps,
2707 						   copy ? old_dev_maps : NULL,
2708 						   tci, index);
2709 		}
2710 	}
2711 
2712 	if (old_dev_maps)
2713 		kfree_rcu(old_dev_maps, rcu);
2714 
2715 	/* free map if not active */
2716 	if (!active)
2717 		reset_xps_maps(dev, dev_maps, type);
2718 
2719 out_no_maps:
2720 	mutex_unlock(&xps_map_mutex);
2721 
2722 	return 0;
2723 error:
2724 	/* remove any maps that we added */
2725 	for (j = 0; j < nr_ids; j++) {
2726 		for (i = num_tc, tci = j * num_tc; i--; tci++) {
2727 			new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2728 			map = copy ?
2729 			      xmap_dereference(dev_maps->attr_map[tci]) :
2730 			      NULL;
2731 			if (new_map && new_map != map)
2732 				kfree(new_map);
2733 		}
2734 	}
2735 
2736 	mutex_unlock(&xps_map_mutex);
2737 
2738 	kfree(new_dev_maps);
2739 	return -ENOMEM;
2740 }
2741 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2742 
2743 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2744 			u16 index)
2745 {
2746 	int ret;
2747 
2748 	cpus_read_lock();
2749 	ret =  __netif_set_xps_queue(dev, cpumask_bits(mask), index, XPS_CPUS);
2750 	cpus_read_unlock();
2751 
2752 	return ret;
2753 }
2754 EXPORT_SYMBOL(netif_set_xps_queue);
2755 
2756 #endif
2757 static void netdev_unbind_all_sb_channels(struct net_device *dev)
2758 {
2759 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2760 
2761 	/* Unbind any subordinate channels */
2762 	while (txq-- != &dev->_tx[0]) {
2763 		if (txq->sb_dev)
2764 			netdev_unbind_sb_channel(dev, txq->sb_dev);
2765 	}
2766 }
2767 
2768 void netdev_reset_tc(struct net_device *dev)
2769 {
2770 #ifdef CONFIG_XPS
2771 	netif_reset_xps_queues_gt(dev, 0);
2772 #endif
2773 	netdev_unbind_all_sb_channels(dev);
2774 
2775 	/* Reset TC configuration of device */
2776 	dev->num_tc = 0;
2777 	memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2778 	memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2779 }
2780 EXPORT_SYMBOL(netdev_reset_tc);
2781 
2782 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2783 {
2784 	if (tc >= dev->num_tc)
2785 		return -EINVAL;
2786 
2787 #ifdef CONFIG_XPS
2788 	netif_reset_xps_queues(dev, offset, count);
2789 #endif
2790 	dev->tc_to_txq[tc].count = count;
2791 	dev->tc_to_txq[tc].offset = offset;
2792 	return 0;
2793 }
2794 EXPORT_SYMBOL(netdev_set_tc_queue);
2795 
2796 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2797 {
2798 	if (num_tc > TC_MAX_QUEUE)
2799 		return -EINVAL;
2800 
2801 #ifdef CONFIG_XPS
2802 	netif_reset_xps_queues_gt(dev, 0);
2803 #endif
2804 	netdev_unbind_all_sb_channels(dev);
2805 
2806 	dev->num_tc = num_tc;
2807 	return 0;
2808 }
2809 EXPORT_SYMBOL(netdev_set_num_tc);
2810 
2811 void netdev_unbind_sb_channel(struct net_device *dev,
2812 			      struct net_device *sb_dev)
2813 {
2814 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2815 
2816 #ifdef CONFIG_XPS
2817 	netif_reset_xps_queues_gt(sb_dev, 0);
2818 #endif
2819 	memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2820 	memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2821 
2822 	while (txq-- != &dev->_tx[0]) {
2823 		if (txq->sb_dev == sb_dev)
2824 			txq->sb_dev = NULL;
2825 	}
2826 }
2827 EXPORT_SYMBOL(netdev_unbind_sb_channel);
2828 
2829 int netdev_bind_sb_channel_queue(struct net_device *dev,
2830 				 struct net_device *sb_dev,
2831 				 u8 tc, u16 count, u16 offset)
2832 {
2833 	/* Make certain the sb_dev and dev are already configured */
2834 	if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2835 		return -EINVAL;
2836 
2837 	/* We cannot hand out queues we don't have */
2838 	if ((offset + count) > dev->real_num_tx_queues)
2839 		return -EINVAL;
2840 
2841 	/* Record the mapping */
2842 	sb_dev->tc_to_txq[tc].count = count;
2843 	sb_dev->tc_to_txq[tc].offset = offset;
2844 
2845 	/* Provide a way for Tx queue to find the tc_to_txq map or
2846 	 * XPS map for itself.
2847 	 */
2848 	while (count--)
2849 		netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2850 
2851 	return 0;
2852 }
2853 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2854 
2855 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2856 {
2857 	/* Do not use a multiqueue device to represent a subordinate channel */
2858 	if (netif_is_multiqueue(dev))
2859 		return -ENODEV;
2860 
2861 	/* We allow channels 1 - 32767 to be used for subordinate channels.
2862 	 * Channel 0 is meant to be "native" mode and used only to represent
2863 	 * the main root device. We allow writing 0 to reset the device back
2864 	 * to normal mode after being used as a subordinate channel.
2865 	 */
2866 	if (channel > S16_MAX)
2867 		return -EINVAL;
2868 
2869 	dev->num_tc = -channel;
2870 
2871 	return 0;
2872 }
2873 EXPORT_SYMBOL(netdev_set_sb_channel);
2874 
2875 /*
2876  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2877  * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2878  */
2879 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2880 {
2881 	bool disabling;
2882 	int rc;
2883 
2884 	disabling = txq < dev->real_num_tx_queues;
2885 
2886 	if (txq < 1 || txq > dev->num_tx_queues)
2887 		return -EINVAL;
2888 
2889 	if (dev->reg_state == NETREG_REGISTERED ||
2890 	    dev->reg_state == NETREG_UNREGISTERING) {
2891 		ASSERT_RTNL();
2892 
2893 		rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2894 						  txq);
2895 		if (rc)
2896 			return rc;
2897 
2898 		if (dev->num_tc)
2899 			netif_setup_tc(dev, txq);
2900 
2901 		dev_qdisc_change_real_num_tx(dev, txq);
2902 
2903 		dev->real_num_tx_queues = txq;
2904 
2905 		if (disabling) {
2906 			synchronize_net();
2907 			qdisc_reset_all_tx_gt(dev, txq);
2908 #ifdef CONFIG_XPS
2909 			netif_reset_xps_queues_gt(dev, txq);
2910 #endif
2911 		}
2912 	} else {
2913 		dev->real_num_tx_queues = txq;
2914 	}
2915 
2916 	return 0;
2917 }
2918 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2919 
2920 #ifdef CONFIG_SYSFS
2921 /**
2922  *	netif_set_real_num_rx_queues - set actual number of RX queues used
2923  *	@dev: Network device
2924  *	@rxq: Actual number of RX queues
2925  *
2926  *	This must be called either with the rtnl_lock held or before
2927  *	registration of the net device.  Returns 0 on success, or a
2928  *	negative error code.  If called before registration, it always
2929  *	succeeds.
2930  */
2931 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2932 {
2933 	int rc;
2934 
2935 	if (rxq < 1 || rxq > dev->num_rx_queues)
2936 		return -EINVAL;
2937 
2938 	if (dev->reg_state == NETREG_REGISTERED) {
2939 		ASSERT_RTNL();
2940 
2941 		rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2942 						  rxq);
2943 		if (rc)
2944 			return rc;
2945 	}
2946 
2947 	dev->real_num_rx_queues = rxq;
2948 	return 0;
2949 }
2950 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2951 #endif
2952 
2953 /**
2954  *	netif_set_real_num_queues - set actual number of RX and TX queues used
2955  *	@dev: Network device
2956  *	@txq: Actual number of TX queues
2957  *	@rxq: Actual number of RX queues
2958  *
2959  *	Set the real number of both TX and RX queues.
2960  *	Does nothing if the number of queues is already correct.
2961  */
2962 int netif_set_real_num_queues(struct net_device *dev,
2963 			      unsigned int txq, unsigned int rxq)
2964 {
2965 	unsigned int old_rxq = dev->real_num_rx_queues;
2966 	int err;
2967 
2968 	if (txq < 1 || txq > dev->num_tx_queues ||
2969 	    rxq < 1 || rxq > dev->num_rx_queues)
2970 		return -EINVAL;
2971 
2972 	/* Start from increases, so the error path only does decreases -
2973 	 * decreases can't fail.
2974 	 */
2975 	if (rxq > dev->real_num_rx_queues) {
2976 		err = netif_set_real_num_rx_queues(dev, rxq);
2977 		if (err)
2978 			return err;
2979 	}
2980 	if (txq > dev->real_num_tx_queues) {
2981 		err = netif_set_real_num_tx_queues(dev, txq);
2982 		if (err)
2983 			goto undo_rx;
2984 	}
2985 	if (rxq < dev->real_num_rx_queues)
2986 		WARN_ON(netif_set_real_num_rx_queues(dev, rxq));
2987 	if (txq < dev->real_num_tx_queues)
2988 		WARN_ON(netif_set_real_num_tx_queues(dev, txq));
2989 
2990 	return 0;
2991 undo_rx:
2992 	WARN_ON(netif_set_real_num_rx_queues(dev, old_rxq));
2993 	return err;
2994 }
2995 EXPORT_SYMBOL(netif_set_real_num_queues);
2996 
2997 /**
2998  * netif_set_tso_max_size() - set the max size of TSO frames supported
2999  * @dev:	netdev to update
3000  * @size:	max skb->len of a TSO frame
3001  *
3002  * Set the limit on the size of TSO super-frames the device can handle.
3003  * Unless explicitly set the stack will assume the value of
3004  * %GSO_LEGACY_MAX_SIZE.
3005  */
3006 void netif_set_tso_max_size(struct net_device *dev, unsigned int size)
3007 {
3008 	dev->tso_max_size = min(GSO_MAX_SIZE, size);
3009 	if (size < READ_ONCE(dev->gso_max_size))
3010 		netif_set_gso_max_size(dev, size);
3011 	if (size < READ_ONCE(dev->gso_ipv4_max_size))
3012 		netif_set_gso_ipv4_max_size(dev, size);
3013 }
3014 EXPORT_SYMBOL(netif_set_tso_max_size);
3015 
3016 /**
3017  * netif_set_tso_max_segs() - set the max number of segs supported for TSO
3018  * @dev:	netdev to update
3019  * @segs:	max number of TCP segments
3020  *
3021  * Set the limit on the number of TCP segments the device can generate from
3022  * a single TSO super-frame.
3023  * Unless explicitly set the stack will assume the value of %GSO_MAX_SEGS.
3024  */
3025 void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs)
3026 {
3027 	dev->tso_max_segs = segs;
3028 	if (segs < READ_ONCE(dev->gso_max_segs))
3029 		netif_set_gso_max_segs(dev, segs);
3030 }
3031 EXPORT_SYMBOL(netif_set_tso_max_segs);
3032 
3033 /**
3034  * netif_inherit_tso_max() - copy all TSO limits from a lower device to an upper
3035  * @to:		netdev to update
3036  * @from:	netdev from which to copy the limits
3037  */
3038 void netif_inherit_tso_max(struct net_device *to, const struct net_device *from)
3039 {
3040 	netif_set_tso_max_size(to, from->tso_max_size);
3041 	netif_set_tso_max_segs(to, from->tso_max_segs);
3042 }
3043 EXPORT_SYMBOL(netif_inherit_tso_max);
3044 
3045 /**
3046  * netif_get_num_default_rss_queues - default number of RSS queues
3047  *
3048  * Default value is the number of physical cores if there are only 1 or 2, or
3049  * divided by 2 if there are more.
3050  */
3051 int netif_get_num_default_rss_queues(void)
3052 {
3053 	cpumask_var_t cpus;
3054 	int cpu, count = 0;
3055 
3056 	if (unlikely(is_kdump_kernel() || !zalloc_cpumask_var(&cpus, GFP_KERNEL)))
3057 		return 1;
3058 
3059 	cpumask_copy(cpus, cpu_online_mask);
3060 	for_each_cpu(cpu, cpus) {
3061 		++count;
3062 		cpumask_andnot(cpus, cpus, topology_sibling_cpumask(cpu));
3063 	}
3064 	free_cpumask_var(cpus);
3065 
3066 	return count > 2 ? DIV_ROUND_UP(count, 2) : count;
3067 }
3068 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3069 
3070 static void __netif_reschedule(struct Qdisc *q)
3071 {
3072 	struct softnet_data *sd;
3073 	unsigned long flags;
3074 
3075 	local_irq_save(flags);
3076 	sd = this_cpu_ptr(&softnet_data);
3077 	q->next_sched = NULL;
3078 	*sd->output_queue_tailp = q;
3079 	sd->output_queue_tailp = &q->next_sched;
3080 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
3081 	local_irq_restore(flags);
3082 }
3083 
3084 void __netif_schedule(struct Qdisc *q)
3085 {
3086 	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3087 		__netif_reschedule(q);
3088 }
3089 EXPORT_SYMBOL(__netif_schedule);
3090 
3091 struct dev_kfree_skb_cb {
3092 	enum skb_drop_reason reason;
3093 };
3094 
3095 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
3096 {
3097 	return (struct dev_kfree_skb_cb *)skb->cb;
3098 }
3099 
3100 void netif_schedule_queue(struct netdev_queue *txq)
3101 {
3102 	rcu_read_lock();
3103 	if (!netif_xmit_stopped(txq)) {
3104 		struct Qdisc *q = rcu_dereference(txq->qdisc);
3105 
3106 		__netif_schedule(q);
3107 	}
3108 	rcu_read_unlock();
3109 }
3110 EXPORT_SYMBOL(netif_schedule_queue);
3111 
3112 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3113 {
3114 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3115 		struct Qdisc *q;
3116 
3117 		rcu_read_lock();
3118 		q = rcu_dereference(dev_queue->qdisc);
3119 		__netif_schedule(q);
3120 		rcu_read_unlock();
3121 	}
3122 }
3123 EXPORT_SYMBOL(netif_tx_wake_queue);
3124 
3125 void dev_kfree_skb_irq_reason(struct sk_buff *skb, enum skb_drop_reason reason)
3126 {
3127 	unsigned long flags;
3128 
3129 	if (unlikely(!skb))
3130 		return;
3131 
3132 	if (likely(refcount_read(&skb->users) == 1)) {
3133 		smp_rmb();
3134 		refcount_set(&skb->users, 0);
3135 	} else if (likely(!refcount_dec_and_test(&skb->users))) {
3136 		return;
3137 	}
3138 	get_kfree_skb_cb(skb)->reason = reason;
3139 	local_irq_save(flags);
3140 	skb->next = __this_cpu_read(softnet_data.completion_queue);
3141 	__this_cpu_write(softnet_data.completion_queue, skb);
3142 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
3143 	local_irq_restore(flags);
3144 }
3145 EXPORT_SYMBOL(dev_kfree_skb_irq_reason);
3146 
3147 void dev_kfree_skb_any_reason(struct sk_buff *skb, enum skb_drop_reason reason)
3148 {
3149 	if (in_hardirq() || irqs_disabled())
3150 		dev_kfree_skb_irq_reason(skb, reason);
3151 	else
3152 		kfree_skb_reason(skb, reason);
3153 }
3154 EXPORT_SYMBOL(dev_kfree_skb_any_reason);
3155 
3156 
3157 /**
3158  * netif_device_detach - mark device as removed
3159  * @dev: network device
3160  *
3161  * Mark device as removed from system and therefore no longer available.
3162  */
3163 void netif_device_detach(struct net_device *dev)
3164 {
3165 	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3166 	    netif_running(dev)) {
3167 		netif_tx_stop_all_queues(dev);
3168 	}
3169 }
3170 EXPORT_SYMBOL(netif_device_detach);
3171 
3172 /**
3173  * netif_device_attach - mark device as attached
3174  * @dev: network device
3175  *
3176  * Mark device as attached from system and restart if needed.
3177  */
3178 void netif_device_attach(struct net_device *dev)
3179 {
3180 	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3181 	    netif_running(dev)) {
3182 		netif_tx_wake_all_queues(dev);
3183 		__netdev_watchdog_up(dev);
3184 	}
3185 }
3186 EXPORT_SYMBOL(netif_device_attach);
3187 
3188 /*
3189  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3190  * to be used as a distribution range.
3191  */
3192 static u16 skb_tx_hash(const struct net_device *dev,
3193 		       const struct net_device *sb_dev,
3194 		       struct sk_buff *skb)
3195 {
3196 	u32 hash;
3197 	u16 qoffset = 0;
3198 	u16 qcount = dev->real_num_tx_queues;
3199 
3200 	if (dev->num_tc) {
3201 		u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3202 
3203 		qoffset = sb_dev->tc_to_txq[tc].offset;
3204 		qcount = sb_dev->tc_to_txq[tc].count;
3205 		if (unlikely(!qcount)) {
3206 			net_warn_ratelimited("%s: invalid qcount, qoffset %u for tc %u\n",
3207 					     sb_dev->name, qoffset, tc);
3208 			qoffset = 0;
3209 			qcount = dev->real_num_tx_queues;
3210 		}
3211 	}
3212 
3213 	if (skb_rx_queue_recorded(skb)) {
3214 		DEBUG_NET_WARN_ON_ONCE(qcount == 0);
3215 		hash = skb_get_rx_queue(skb);
3216 		if (hash >= qoffset)
3217 			hash -= qoffset;
3218 		while (unlikely(hash >= qcount))
3219 			hash -= qcount;
3220 		return hash + qoffset;
3221 	}
3222 
3223 	return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3224 }
3225 
3226 void skb_warn_bad_offload(const struct sk_buff *skb)
3227 {
3228 	static const netdev_features_t null_features;
3229 	struct net_device *dev = skb->dev;
3230 	const char *name = "";
3231 
3232 	if (!net_ratelimit())
3233 		return;
3234 
3235 	if (dev) {
3236 		if (dev->dev.parent)
3237 			name = dev_driver_string(dev->dev.parent);
3238 		else
3239 			name = netdev_name(dev);
3240 	}
3241 	skb_dump(KERN_WARNING, skb, false);
3242 	WARN(1, "%s: caps=(%pNF, %pNF)\n",
3243 	     name, dev ? &dev->features : &null_features,
3244 	     skb->sk ? &skb->sk->sk_route_caps : &null_features);
3245 }
3246 
3247 /*
3248  * Invalidate hardware checksum when packet is to be mangled, and
3249  * complete checksum manually on outgoing path.
3250  */
3251 int skb_checksum_help(struct sk_buff *skb)
3252 {
3253 	__wsum csum;
3254 	int ret = 0, offset;
3255 
3256 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3257 		goto out_set_summed;
3258 
3259 	if (unlikely(skb_is_gso(skb))) {
3260 		skb_warn_bad_offload(skb);
3261 		return -EINVAL;
3262 	}
3263 
3264 	/* Before computing a checksum, we should make sure no frag could
3265 	 * be modified by an external entity : checksum could be wrong.
3266 	 */
3267 	if (skb_has_shared_frag(skb)) {
3268 		ret = __skb_linearize(skb);
3269 		if (ret)
3270 			goto out;
3271 	}
3272 
3273 	offset = skb_checksum_start_offset(skb);
3274 	ret = -EINVAL;
3275 	if (unlikely(offset >= skb_headlen(skb))) {
3276 		DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3277 		WARN_ONCE(true, "offset (%d) >= skb_headlen() (%u)\n",
3278 			  offset, skb_headlen(skb));
3279 		goto out;
3280 	}
3281 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
3282 
3283 	offset += skb->csum_offset;
3284 	if (unlikely(offset + sizeof(__sum16) > skb_headlen(skb))) {
3285 		DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3286 		WARN_ONCE(true, "offset+2 (%zu) > skb_headlen() (%u)\n",
3287 			  offset + sizeof(__sum16), skb_headlen(skb));
3288 		goto out;
3289 	}
3290 	ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3291 	if (ret)
3292 		goto out;
3293 
3294 	*(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3295 out_set_summed:
3296 	skb->ip_summed = CHECKSUM_NONE;
3297 out:
3298 	return ret;
3299 }
3300 EXPORT_SYMBOL(skb_checksum_help);
3301 
3302 int skb_crc32c_csum_help(struct sk_buff *skb)
3303 {
3304 	__le32 crc32c_csum;
3305 	int ret = 0, offset, start;
3306 
3307 	if (skb->ip_summed != CHECKSUM_PARTIAL)
3308 		goto out;
3309 
3310 	if (unlikely(skb_is_gso(skb)))
3311 		goto out;
3312 
3313 	/* Before computing a checksum, we should make sure no frag could
3314 	 * be modified by an external entity : checksum could be wrong.
3315 	 */
3316 	if (unlikely(skb_has_shared_frag(skb))) {
3317 		ret = __skb_linearize(skb);
3318 		if (ret)
3319 			goto out;
3320 	}
3321 	start = skb_checksum_start_offset(skb);
3322 	offset = start + offsetof(struct sctphdr, checksum);
3323 	if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3324 		ret = -EINVAL;
3325 		goto out;
3326 	}
3327 
3328 	ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3329 	if (ret)
3330 		goto out;
3331 
3332 	crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3333 						  skb->len - start, ~(__u32)0,
3334 						  crc32c_csum_stub));
3335 	*(__le32 *)(skb->data + offset) = crc32c_csum;
3336 	skb_reset_csum_not_inet(skb);
3337 out:
3338 	return ret;
3339 }
3340 
3341 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3342 {
3343 	__be16 type = skb->protocol;
3344 
3345 	/* Tunnel gso handlers can set protocol to ethernet. */
3346 	if (type == htons(ETH_P_TEB)) {
3347 		struct ethhdr *eth;
3348 
3349 		if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3350 			return 0;
3351 
3352 		eth = (struct ethhdr *)skb->data;
3353 		type = eth->h_proto;
3354 	}
3355 
3356 	return vlan_get_protocol_and_depth(skb, type, depth);
3357 }
3358 
3359 
3360 /* Take action when hardware reception checksum errors are detected. */
3361 #ifdef CONFIG_BUG
3362 static void do_netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3363 {
3364 	netdev_err(dev, "hw csum failure\n");
3365 	skb_dump(KERN_ERR, skb, true);
3366 	dump_stack();
3367 }
3368 
3369 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3370 {
3371 	DO_ONCE_LITE(do_netdev_rx_csum_fault, dev, skb);
3372 }
3373 EXPORT_SYMBOL(netdev_rx_csum_fault);
3374 #endif
3375 
3376 /* XXX: check that highmem exists at all on the given machine. */
3377 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3378 {
3379 #ifdef CONFIG_HIGHMEM
3380 	int i;
3381 
3382 	if (!(dev->features & NETIF_F_HIGHDMA)) {
3383 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3384 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3385 
3386 			if (PageHighMem(skb_frag_page(frag)))
3387 				return 1;
3388 		}
3389 	}
3390 #endif
3391 	return 0;
3392 }
3393 
3394 /* If MPLS offload request, verify we are testing hardware MPLS features
3395  * instead of standard features for the netdev.
3396  */
3397 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3398 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3399 					   netdev_features_t features,
3400 					   __be16 type)
3401 {
3402 	if (eth_p_mpls(type))
3403 		features &= skb->dev->mpls_features;
3404 
3405 	return features;
3406 }
3407 #else
3408 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3409 					   netdev_features_t features,
3410 					   __be16 type)
3411 {
3412 	return features;
3413 }
3414 #endif
3415 
3416 static netdev_features_t harmonize_features(struct sk_buff *skb,
3417 	netdev_features_t features)
3418 {
3419 	__be16 type;
3420 
3421 	type = skb_network_protocol(skb, NULL);
3422 	features = net_mpls_features(skb, features, type);
3423 
3424 	if (skb->ip_summed != CHECKSUM_NONE &&
3425 	    !can_checksum_protocol(features, type)) {
3426 		features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3427 	}
3428 	if (illegal_highdma(skb->dev, skb))
3429 		features &= ~NETIF_F_SG;
3430 
3431 	return features;
3432 }
3433 
3434 netdev_features_t passthru_features_check(struct sk_buff *skb,
3435 					  struct net_device *dev,
3436 					  netdev_features_t features)
3437 {
3438 	return features;
3439 }
3440 EXPORT_SYMBOL(passthru_features_check);
3441 
3442 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3443 					     struct net_device *dev,
3444 					     netdev_features_t features)
3445 {
3446 	return vlan_features_check(skb, features);
3447 }
3448 
3449 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3450 					    struct net_device *dev,
3451 					    netdev_features_t features)
3452 {
3453 	u16 gso_segs = skb_shinfo(skb)->gso_segs;
3454 
3455 	if (gso_segs > READ_ONCE(dev->gso_max_segs))
3456 		return features & ~NETIF_F_GSO_MASK;
3457 
3458 	if (unlikely(skb->len >= READ_ONCE(dev->gso_max_size)))
3459 		return features & ~NETIF_F_GSO_MASK;
3460 
3461 	if (!skb_shinfo(skb)->gso_type) {
3462 		skb_warn_bad_offload(skb);
3463 		return features & ~NETIF_F_GSO_MASK;
3464 	}
3465 
3466 	/* Support for GSO partial features requires software
3467 	 * intervention before we can actually process the packets
3468 	 * so we need to strip support for any partial features now
3469 	 * and we can pull them back in after we have partially
3470 	 * segmented the frame.
3471 	 */
3472 	if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3473 		features &= ~dev->gso_partial_features;
3474 
3475 	/* Make sure to clear the IPv4 ID mangling feature if the
3476 	 * IPv4 header has the potential to be fragmented.
3477 	 */
3478 	if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3479 		struct iphdr *iph = skb->encapsulation ?
3480 				    inner_ip_hdr(skb) : ip_hdr(skb);
3481 
3482 		if (!(iph->frag_off & htons(IP_DF)))
3483 			features &= ~NETIF_F_TSO_MANGLEID;
3484 	}
3485 
3486 	return features;
3487 }
3488 
3489 netdev_features_t netif_skb_features(struct sk_buff *skb)
3490 {
3491 	struct net_device *dev = skb->dev;
3492 	netdev_features_t features = dev->features;
3493 
3494 	if (skb_is_gso(skb))
3495 		features = gso_features_check(skb, dev, features);
3496 
3497 	/* If encapsulation offload request, verify we are testing
3498 	 * hardware encapsulation features instead of standard
3499 	 * features for the netdev
3500 	 */
3501 	if (skb->encapsulation)
3502 		features &= dev->hw_enc_features;
3503 
3504 	if (skb_vlan_tagged(skb))
3505 		features = netdev_intersect_features(features,
3506 						     dev->vlan_features |
3507 						     NETIF_F_HW_VLAN_CTAG_TX |
3508 						     NETIF_F_HW_VLAN_STAG_TX);
3509 
3510 	if (dev->netdev_ops->ndo_features_check)
3511 		features &= dev->netdev_ops->ndo_features_check(skb, dev,
3512 								features);
3513 	else
3514 		features &= dflt_features_check(skb, dev, features);
3515 
3516 	return harmonize_features(skb, features);
3517 }
3518 EXPORT_SYMBOL(netif_skb_features);
3519 
3520 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3521 		    struct netdev_queue *txq, bool more)
3522 {
3523 	unsigned int len;
3524 	int rc;
3525 
3526 	if (dev_nit_active(dev))
3527 		dev_queue_xmit_nit(skb, dev);
3528 
3529 	len = skb->len;
3530 	trace_net_dev_start_xmit(skb, dev);
3531 	rc = netdev_start_xmit(skb, dev, txq, more);
3532 	trace_net_dev_xmit(skb, rc, dev, len);
3533 
3534 	return rc;
3535 }
3536 
3537 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3538 				    struct netdev_queue *txq, int *ret)
3539 {
3540 	struct sk_buff *skb = first;
3541 	int rc = NETDEV_TX_OK;
3542 
3543 	while (skb) {
3544 		struct sk_buff *next = skb->next;
3545 
3546 		skb_mark_not_on_list(skb);
3547 		rc = xmit_one(skb, dev, txq, next != NULL);
3548 		if (unlikely(!dev_xmit_complete(rc))) {
3549 			skb->next = next;
3550 			goto out;
3551 		}
3552 
3553 		skb = next;
3554 		if (netif_tx_queue_stopped(txq) && skb) {
3555 			rc = NETDEV_TX_BUSY;
3556 			break;
3557 		}
3558 	}
3559 
3560 out:
3561 	*ret = rc;
3562 	return skb;
3563 }
3564 
3565 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3566 					  netdev_features_t features)
3567 {
3568 	if (skb_vlan_tag_present(skb) &&
3569 	    !vlan_hw_offload_capable(features, skb->vlan_proto))
3570 		skb = __vlan_hwaccel_push_inside(skb);
3571 	return skb;
3572 }
3573 
3574 int skb_csum_hwoffload_help(struct sk_buff *skb,
3575 			    const netdev_features_t features)
3576 {
3577 	if (unlikely(skb_csum_is_sctp(skb)))
3578 		return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3579 			skb_crc32c_csum_help(skb);
3580 
3581 	if (features & NETIF_F_HW_CSUM)
3582 		return 0;
3583 
3584 	if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
3585 		switch (skb->csum_offset) {
3586 		case offsetof(struct tcphdr, check):
3587 		case offsetof(struct udphdr, check):
3588 			return 0;
3589 		}
3590 	}
3591 
3592 	return skb_checksum_help(skb);
3593 }
3594 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3595 
3596 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3597 {
3598 	netdev_features_t features;
3599 
3600 	features = netif_skb_features(skb);
3601 	skb = validate_xmit_vlan(skb, features);
3602 	if (unlikely(!skb))
3603 		goto out_null;
3604 
3605 	skb = sk_validate_xmit_skb(skb, dev);
3606 	if (unlikely(!skb))
3607 		goto out_null;
3608 
3609 	if (netif_needs_gso(skb, features)) {
3610 		struct sk_buff *segs;
3611 
3612 		segs = skb_gso_segment(skb, features);
3613 		if (IS_ERR(segs)) {
3614 			goto out_kfree_skb;
3615 		} else if (segs) {
3616 			consume_skb(skb);
3617 			skb = segs;
3618 		}
3619 	} else {
3620 		if (skb_needs_linearize(skb, features) &&
3621 		    __skb_linearize(skb))
3622 			goto out_kfree_skb;
3623 
3624 		/* If packet is not checksummed and device does not
3625 		 * support checksumming for this protocol, complete
3626 		 * checksumming here.
3627 		 */
3628 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
3629 			if (skb->encapsulation)
3630 				skb_set_inner_transport_header(skb,
3631 							       skb_checksum_start_offset(skb));
3632 			else
3633 				skb_set_transport_header(skb,
3634 							 skb_checksum_start_offset(skb));
3635 			if (skb_csum_hwoffload_help(skb, features))
3636 				goto out_kfree_skb;
3637 		}
3638 	}
3639 
3640 	skb = validate_xmit_xfrm(skb, features, again);
3641 
3642 	return skb;
3643 
3644 out_kfree_skb:
3645 	kfree_skb(skb);
3646 out_null:
3647 	dev_core_stats_tx_dropped_inc(dev);
3648 	return NULL;
3649 }
3650 
3651 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3652 {
3653 	struct sk_buff *next, *head = NULL, *tail;
3654 
3655 	for (; skb != NULL; skb = next) {
3656 		next = skb->next;
3657 		skb_mark_not_on_list(skb);
3658 
3659 		/* in case skb wont be segmented, point to itself */
3660 		skb->prev = skb;
3661 
3662 		skb = validate_xmit_skb(skb, dev, again);
3663 		if (!skb)
3664 			continue;
3665 
3666 		if (!head)
3667 			head = skb;
3668 		else
3669 			tail->next = skb;
3670 		/* If skb was segmented, skb->prev points to
3671 		 * the last segment. If not, it still contains skb.
3672 		 */
3673 		tail = skb->prev;
3674 	}
3675 	return head;
3676 }
3677 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3678 
3679 static void qdisc_pkt_len_init(struct sk_buff *skb)
3680 {
3681 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
3682 
3683 	qdisc_skb_cb(skb)->pkt_len = skb->len;
3684 
3685 	/* To get more precise estimation of bytes sent on wire,
3686 	 * we add to pkt_len the headers size of all segments
3687 	 */
3688 	if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3689 		u16 gso_segs = shinfo->gso_segs;
3690 		unsigned int hdr_len;
3691 
3692 		/* mac layer + network layer */
3693 		hdr_len = skb_transport_offset(skb);
3694 
3695 		/* + transport layer */
3696 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3697 			const struct tcphdr *th;
3698 			struct tcphdr _tcphdr;
3699 
3700 			th = skb_header_pointer(skb, hdr_len,
3701 						sizeof(_tcphdr), &_tcphdr);
3702 			if (likely(th))
3703 				hdr_len += __tcp_hdrlen(th);
3704 		} else {
3705 			struct udphdr _udphdr;
3706 
3707 			if (skb_header_pointer(skb, hdr_len,
3708 					       sizeof(_udphdr), &_udphdr))
3709 				hdr_len += sizeof(struct udphdr);
3710 		}
3711 
3712 		if (shinfo->gso_type & SKB_GSO_DODGY)
3713 			gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3714 						shinfo->gso_size);
3715 
3716 		qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3717 	}
3718 }
3719 
3720 static int dev_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *q,
3721 			     struct sk_buff **to_free,
3722 			     struct netdev_queue *txq)
3723 {
3724 	int rc;
3725 
3726 	rc = q->enqueue(skb, q, to_free) & NET_XMIT_MASK;
3727 	if (rc == NET_XMIT_SUCCESS)
3728 		trace_qdisc_enqueue(q, txq, skb);
3729 	return rc;
3730 }
3731 
3732 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3733 				 struct net_device *dev,
3734 				 struct netdev_queue *txq)
3735 {
3736 	spinlock_t *root_lock = qdisc_lock(q);
3737 	struct sk_buff *to_free = NULL;
3738 	bool contended;
3739 	int rc;
3740 
3741 	qdisc_calculate_pkt_len(skb, q);
3742 
3743 	tcf_set_drop_reason(skb, SKB_DROP_REASON_QDISC_DROP);
3744 
3745 	if (q->flags & TCQ_F_NOLOCK) {
3746 		if (q->flags & TCQ_F_CAN_BYPASS && nolock_qdisc_is_empty(q) &&
3747 		    qdisc_run_begin(q)) {
3748 			/* Retest nolock_qdisc_is_empty() within the protection
3749 			 * of q->seqlock to protect from racing with requeuing.
3750 			 */
3751 			if (unlikely(!nolock_qdisc_is_empty(q))) {
3752 				rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3753 				__qdisc_run(q);
3754 				qdisc_run_end(q);
3755 
3756 				goto no_lock_out;
3757 			}
3758 
3759 			qdisc_bstats_cpu_update(q, skb);
3760 			if (sch_direct_xmit(skb, q, dev, txq, NULL, true) &&
3761 			    !nolock_qdisc_is_empty(q))
3762 				__qdisc_run(q);
3763 
3764 			qdisc_run_end(q);
3765 			return NET_XMIT_SUCCESS;
3766 		}
3767 
3768 		rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3769 		qdisc_run(q);
3770 
3771 no_lock_out:
3772 		if (unlikely(to_free))
3773 			kfree_skb_list_reason(to_free,
3774 					      tcf_get_drop_reason(to_free));
3775 		return rc;
3776 	}
3777 
3778 	if (unlikely(READ_ONCE(q->owner) == smp_processor_id())) {
3779 		kfree_skb_reason(skb, SKB_DROP_REASON_TC_RECLASSIFY_LOOP);
3780 		return NET_XMIT_DROP;
3781 	}
3782 	/*
3783 	 * Heuristic to force contended enqueues to serialize on a
3784 	 * separate lock before trying to get qdisc main lock.
3785 	 * This permits qdisc->running owner to get the lock more
3786 	 * often and dequeue packets faster.
3787 	 * On PREEMPT_RT it is possible to preempt the qdisc owner during xmit
3788 	 * and then other tasks will only enqueue packets. The packets will be
3789 	 * sent after the qdisc owner is scheduled again. To prevent this
3790 	 * scenario the task always serialize on the lock.
3791 	 */
3792 	contended = qdisc_is_running(q) || IS_ENABLED(CONFIG_PREEMPT_RT);
3793 	if (unlikely(contended))
3794 		spin_lock(&q->busylock);
3795 
3796 	spin_lock(root_lock);
3797 	if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3798 		__qdisc_drop(skb, &to_free);
3799 		rc = NET_XMIT_DROP;
3800 	} else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3801 		   qdisc_run_begin(q)) {
3802 		/*
3803 		 * This is a work-conserving queue; there are no old skbs
3804 		 * waiting to be sent out; and the qdisc is not running -
3805 		 * xmit the skb directly.
3806 		 */
3807 
3808 		qdisc_bstats_update(q, skb);
3809 
3810 		if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3811 			if (unlikely(contended)) {
3812 				spin_unlock(&q->busylock);
3813 				contended = false;
3814 			}
3815 			__qdisc_run(q);
3816 		}
3817 
3818 		qdisc_run_end(q);
3819 		rc = NET_XMIT_SUCCESS;
3820 	} else {
3821 		WRITE_ONCE(q->owner, smp_processor_id());
3822 		rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3823 		WRITE_ONCE(q->owner, -1);
3824 		if (qdisc_run_begin(q)) {
3825 			if (unlikely(contended)) {
3826 				spin_unlock(&q->busylock);
3827 				contended = false;
3828 			}
3829 			__qdisc_run(q);
3830 			qdisc_run_end(q);
3831 		}
3832 	}
3833 	spin_unlock(root_lock);
3834 	if (unlikely(to_free))
3835 		kfree_skb_list_reason(to_free,
3836 				      tcf_get_drop_reason(to_free));
3837 	if (unlikely(contended))
3838 		spin_unlock(&q->busylock);
3839 	return rc;
3840 }
3841 
3842 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3843 static void skb_update_prio(struct sk_buff *skb)
3844 {
3845 	const struct netprio_map *map;
3846 	const struct sock *sk;
3847 	unsigned int prioidx;
3848 
3849 	if (skb->priority)
3850 		return;
3851 	map = rcu_dereference_bh(skb->dev->priomap);
3852 	if (!map)
3853 		return;
3854 	sk = skb_to_full_sk(skb);
3855 	if (!sk)
3856 		return;
3857 
3858 	prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3859 
3860 	if (prioidx < map->priomap_len)
3861 		skb->priority = map->priomap[prioidx];
3862 }
3863 #else
3864 #define skb_update_prio(skb)
3865 #endif
3866 
3867 /**
3868  *	dev_loopback_xmit - loop back @skb
3869  *	@net: network namespace this loopback is happening in
3870  *	@sk:  sk needed to be a netfilter okfn
3871  *	@skb: buffer to transmit
3872  */
3873 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3874 {
3875 	skb_reset_mac_header(skb);
3876 	__skb_pull(skb, skb_network_offset(skb));
3877 	skb->pkt_type = PACKET_LOOPBACK;
3878 	if (skb->ip_summed == CHECKSUM_NONE)
3879 		skb->ip_summed = CHECKSUM_UNNECESSARY;
3880 	DEBUG_NET_WARN_ON_ONCE(!skb_dst(skb));
3881 	skb_dst_force(skb);
3882 	netif_rx(skb);
3883 	return 0;
3884 }
3885 EXPORT_SYMBOL(dev_loopback_xmit);
3886 
3887 #ifdef CONFIG_NET_EGRESS
3888 static struct netdev_queue *
3889 netdev_tx_queue_mapping(struct net_device *dev, struct sk_buff *skb)
3890 {
3891 	int qm = skb_get_queue_mapping(skb);
3892 
3893 	return netdev_get_tx_queue(dev, netdev_cap_txqueue(dev, qm));
3894 }
3895 
3896 static bool netdev_xmit_txqueue_skipped(void)
3897 {
3898 	return __this_cpu_read(softnet_data.xmit.skip_txqueue);
3899 }
3900 
3901 void netdev_xmit_skip_txqueue(bool skip)
3902 {
3903 	__this_cpu_write(softnet_data.xmit.skip_txqueue, skip);
3904 }
3905 EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue);
3906 #endif /* CONFIG_NET_EGRESS */
3907 
3908 #ifdef CONFIG_NET_XGRESS
3909 static int tc_run(struct tcx_entry *entry, struct sk_buff *skb,
3910 		  enum skb_drop_reason *drop_reason)
3911 {
3912 	int ret = TC_ACT_UNSPEC;
3913 #ifdef CONFIG_NET_CLS_ACT
3914 	struct mini_Qdisc *miniq = rcu_dereference_bh(entry->miniq);
3915 	struct tcf_result res;
3916 
3917 	if (!miniq)
3918 		return ret;
3919 
3920 	tc_skb_cb(skb)->mru = 0;
3921 	tc_skb_cb(skb)->post_ct = false;
3922 	tcf_set_drop_reason(skb, *drop_reason);
3923 
3924 	mini_qdisc_bstats_cpu_update(miniq, skb);
3925 	ret = tcf_classify(skb, miniq->block, miniq->filter_list, &res, false);
3926 	/* Only tcf related quirks below. */
3927 	switch (ret) {
3928 	case TC_ACT_SHOT:
3929 		*drop_reason = tcf_get_drop_reason(skb);
3930 		mini_qdisc_qstats_cpu_drop(miniq);
3931 		break;
3932 	case TC_ACT_OK:
3933 	case TC_ACT_RECLASSIFY:
3934 		skb->tc_index = TC_H_MIN(res.classid);
3935 		break;
3936 	}
3937 #endif /* CONFIG_NET_CLS_ACT */
3938 	return ret;
3939 }
3940 
3941 static DEFINE_STATIC_KEY_FALSE(tcx_needed_key);
3942 
3943 void tcx_inc(void)
3944 {
3945 	static_branch_inc(&tcx_needed_key);
3946 }
3947 
3948 void tcx_dec(void)
3949 {
3950 	static_branch_dec(&tcx_needed_key);
3951 }
3952 
3953 static __always_inline enum tcx_action_base
3954 tcx_run(const struct bpf_mprog_entry *entry, struct sk_buff *skb,
3955 	const bool needs_mac)
3956 {
3957 	const struct bpf_mprog_fp *fp;
3958 	const struct bpf_prog *prog;
3959 	int ret = TCX_NEXT;
3960 
3961 	if (needs_mac)
3962 		__skb_push(skb, skb->mac_len);
3963 	bpf_mprog_foreach_prog(entry, fp, prog) {
3964 		bpf_compute_data_pointers(skb);
3965 		ret = bpf_prog_run(prog, skb);
3966 		if (ret != TCX_NEXT)
3967 			break;
3968 	}
3969 	if (needs_mac)
3970 		__skb_pull(skb, skb->mac_len);
3971 	return tcx_action_code(skb, ret);
3972 }
3973 
3974 static __always_inline struct sk_buff *
3975 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
3976 		   struct net_device *orig_dev, bool *another)
3977 {
3978 	struct bpf_mprog_entry *entry = rcu_dereference_bh(skb->dev->tcx_ingress);
3979 	enum skb_drop_reason drop_reason = SKB_DROP_REASON_TC_INGRESS;
3980 	int sch_ret;
3981 
3982 	if (!entry)
3983 		return skb;
3984 	if (*pt_prev) {
3985 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
3986 		*pt_prev = NULL;
3987 	}
3988 
3989 	qdisc_skb_cb(skb)->pkt_len = skb->len;
3990 	tcx_set_ingress(skb, true);
3991 
3992 	if (static_branch_unlikely(&tcx_needed_key)) {
3993 		sch_ret = tcx_run(entry, skb, true);
3994 		if (sch_ret != TC_ACT_UNSPEC)
3995 			goto ingress_verdict;
3996 	}
3997 	sch_ret = tc_run(tcx_entry(entry), skb, &drop_reason);
3998 ingress_verdict:
3999 	switch (sch_ret) {
4000 	case TC_ACT_REDIRECT:
4001 		/* skb_mac_header check was done by BPF, so we can safely
4002 		 * push the L2 header back before redirecting to another
4003 		 * netdev.
4004 		 */
4005 		__skb_push(skb, skb->mac_len);
4006 		if (skb_do_redirect(skb) == -EAGAIN) {
4007 			__skb_pull(skb, skb->mac_len);
4008 			*another = true;
4009 			break;
4010 		}
4011 		*ret = NET_RX_SUCCESS;
4012 		return NULL;
4013 	case TC_ACT_SHOT:
4014 		kfree_skb_reason(skb, drop_reason);
4015 		*ret = NET_RX_DROP;
4016 		return NULL;
4017 	/* used by tc_run */
4018 	case TC_ACT_STOLEN:
4019 	case TC_ACT_QUEUED:
4020 	case TC_ACT_TRAP:
4021 		consume_skb(skb);
4022 		fallthrough;
4023 	case TC_ACT_CONSUMED:
4024 		*ret = NET_RX_SUCCESS;
4025 		return NULL;
4026 	}
4027 
4028 	return skb;
4029 }
4030 
4031 static __always_inline struct sk_buff *
4032 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
4033 {
4034 	struct bpf_mprog_entry *entry = rcu_dereference_bh(dev->tcx_egress);
4035 	enum skb_drop_reason drop_reason = SKB_DROP_REASON_TC_EGRESS;
4036 	int sch_ret;
4037 
4038 	if (!entry)
4039 		return skb;
4040 
4041 	/* qdisc_skb_cb(skb)->pkt_len & tcx_set_ingress() was
4042 	 * already set by the caller.
4043 	 */
4044 	if (static_branch_unlikely(&tcx_needed_key)) {
4045 		sch_ret = tcx_run(entry, skb, false);
4046 		if (sch_ret != TC_ACT_UNSPEC)
4047 			goto egress_verdict;
4048 	}
4049 	sch_ret = tc_run(tcx_entry(entry), skb, &drop_reason);
4050 egress_verdict:
4051 	switch (sch_ret) {
4052 	case TC_ACT_REDIRECT:
4053 		/* No need to push/pop skb's mac_header here on egress! */
4054 		skb_do_redirect(skb);
4055 		*ret = NET_XMIT_SUCCESS;
4056 		return NULL;
4057 	case TC_ACT_SHOT:
4058 		kfree_skb_reason(skb, drop_reason);
4059 		*ret = NET_XMIT_DROP;
4060 		return NULL;
4061 	/* used by tc_run */
4062 	case TC_ACT_STOLEN:
4063 	case TC_ACT_QUEUED:
4064 	case TC_ACT_TRAP:
4065 		consume_skb(skb);
4066 		fallthrough;
4067 	case TC_ACT_CONSUMED:
4068 		*ret = NET_XMIT_SUCCESS;
4069 		return NULL;
4070 	}
4071 
4072 	return skb;
4073 }
4074 #else
4075 static __always_inline struct sk_buff *
4076 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4077 		   struct net_device *orig_dev, bool *another)
4078 {
4079 	return skb;
4080 }
4081 
4082 static __always_inline struct sk_buff *
4083 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
4084 {
4085 	return skb;
4086 }
4087 #endif /* CONFIG_NET_XGRESS */
4088 
4089 #ifdef CONFIG_XPS
4090 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
4091 			       struct xps_dev_maps *dev_maps, unsigned int tci)
4092 {
4093 	int tc = netdev_get_prio_tc_map(dev, skb->priority);
4094 	struct xps_map *map;
4095 	int queue_index = -1;
4096 
4097 	if (tc >= dev_maps->num_tc || tci >= dev_maps->nr_ids)
4098 		return queue_index;
4099 
4100 	tci *= dev_maps->num_tc;
4101 	tci += tc;
4102 
4103 	map = rcu_dereference(dev_maps->attr_map[tci]);
4104 	if (map) {
4105 		if (map->len == 1)
4106 			queue_index = map->queues[0];
4107 		else
4108 			queue_index = map->queues[reciprocal_scale(
4109 						skb_get_hash(skb), map->len)];
4110 		if (unlikely(queue_index >= dev->real_num_tx_queues))
4111 			queue_index = -1;
4112 	}
4113 	return queue_index;
4114 }
4115 #endif
4116 
4117 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
4118 			 struct sk_buff *skb)
4119 {
4120 #ifdef CONFIG_XPS
4121 	struct xps_dev_maps *dev_maps;
4122 	struct sock *sk = skb->sk;
4123 	int queue_index = -1;
4124 
4125 	if (!static_key_false(&xps_needed))
4126 		return -1;
4127 
4128 	rcu_read_lock();
4129 	if (!static_key_false(&xps_rxqs_needed))
4130 		goto get_cpus_map;
4131 
4132 	dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_RXQS]);
4133 	if (dev_maps) {
4134 		int tci = sk_rx_queue_get(sk);
4135 
4136 		if (tci >= 0)
4137 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4138 							  tci);
4139 	}
4140 
4141 get_cpus_map:
4142 	if (queue_index < 0) {
4143 		dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_CPUS]);
4144 		if (dev_maps) {
4145 			unsigned int tci = skb->sender_cpu - 1;
4146 
4147 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4148 							  tci);
4149 		}
4150 	}
4151 	rcu_read_unlock();
4152 
4153 	return queue_index;
4154 #else
4155 	return -1;
4156 #endif
4157 }
4158 
4159 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
4160 		     struct net_device *sb_dev)
4161 {
4162 	return 0;
4163 }
4164 EXPORT_SYMBOL(dev_pick_tx_zero);
4165 
4166 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
4167 		       struct net_device *sb_dev)
4168 {
4169 	return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
4170 }
4171 EXPORT_SYMBOL(dev_pick_tx_cpu_id);
4172 
4173 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
4174 		     struct net_device *sb_dev)
4175 {
4176 	struct sock *sk = skb->sk;
4177 	int queue_index = sk_tx_queue_get(sk);
4178 
4179 	sb_dev = sb_dev ? : dev;
4180 
4181 	if (queue_index < 0 || skb->ooo_okay ||
4182 	    queue_index >= dev->real_num_tx_queues) {
4183 		int new_index = get_xps_queue(dev, sb_dev, skb);
4184 
4185 		if (new_index < 0)
4186 			new_index = skb_tx_hash(dev, sb_dev, skb);
4187 
4188 		if (queue_index != new_index && sk &&
4189 		    sk_fullsock(sk) &&
4190 		    rcu_access_pointer(sk->sk_dst_cache))
4191 			sk_tx_queue_set(sk, new_index);
4192 
4193 		queue_index = new_index;
4194 	}
4195 
4196 	return queue_index;
4197 }
4198 EXPORT_SYMBOL(netdev_pick_tx);
4199 
4200 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
4201 					 struct sk_buff *skb,
4202 					 struct net_device *sb_dev)
4203 {
4204 	int queue_index = 0;
4205 
4206 #ifdef CONFIG_XPS
4207 	u32 sender_cpu = skb->sender_cpu - 1;
4208 
4209 	if (sender_cpu >= (u32)NR_CPUS)
4210 		skb->sender_cpu = raw_smp_processor_id() + 1;
4211 #endif
4212 
4213 	if (dev->real_num_tx_queues != 1) {
4214 		const struct net_device_ops *ops = dev->netdev_ops;
4215 
4216 		if (ops->ndo_select_queue)
4217 			queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
4218 		else
4219 			queue_index = netdev_pick_tx(dev, skb, sb_dev);
4220 
4221 		queue_index = netdev_cap_txqueue(dev, queue_index);
4222 	}
4223 
4224 	skb_set_queue_mapping(skb, queue_index);
4225 	return netdev_get_tx_queue(dev, queue_index);
4226 }
4227 
4228 /**
4229  * __dev_queue_xmit() - transmit a buffer
4230  * @skb:	buffer to transmit
4231  * @sb_dev:	suboordinate device used for L2 forwarding offload
4232  *
4233  * Queue a buffer for transmission to a network device. The caller must
4234  * have set the device and priority and built the buffer before calling
4235  * this function. The function can be called from an interrupt.
4236  *
4237  * When calling this method, interrupts MUST be enabled. This is because
4238  * the BH enable code must have IRQs enabled so that it will not deadlock.
4239  *
4240  * Regardless of the return value, the skb is consumed, so it is currently
4241  * difficult to retry a send to this method. (You can bump the ref count
4242  * before sending to hold a reference for retry if you are careful.)
4243  *
4244  * Return:
4245  * * 0				- buffer successfully transmitted
4246  * * positive qdisc return code	- NET_XMIT_DROP etc.
4247  * * negative errno		- other errors
4248  */
4249 int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
4250 {
4251 	struct net_device *dev = skb->dev;
4252 	struct netdev_queue *txq = NULL;
4253 	struct Qdisc *q;
4254 	int rc = -ENOMEM;
4255 	bool again = false;
4256 
4257 	skb_reset_mac_header(skb);
4258 	skb_assert_len(skb);
4259 
4260 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
4261 		__skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED);
4262 
4263 	/* Disable soft irqs for various locks below. Also
4264 	 * stops preemption for RCU.
4265 	 */
4266 	rcu_read_lock_bh();
4267 
4268 	skb_update_prio(skb);
4269 
4270 	qdisc_pkt_len_init(skb);
4271 	tcx_set_ingress(skb, false);
4272 #ifdef CONFIG_NET_EGRESS
4273 	if (static_branch_unlikely(&egress_needed_key)) {
4274 		if (nf_hook_egress_active()) {
4275 			skb = nf_hook_egress(skb, &rc, dev);
4276 			if (!skb)
4277 				goto out;
4278 		}
4279 
4280 		netdev_xmit_skip_txqueue(false);
4281 
4282 		nf_skip_egress(skb, true);
4283 		skb = sch_handle_egress(skb, &rc, dev);
4284 		if (!skb)
4285 			goto out;
4286 		nf_skip_egress(skb, false);
4287 
4288 		if (netdev_xmit_txqueue_skipped())
4289 			txq = netdev_tx_queue_mapping(dev, skb);
4290 	}
4291 #endif
4292 	/* If device/qdisc don't need skb->dst, release it right now while
4293 	 * its hot in this cpu cache.
4294 	 */
4295 	if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4296 		skb_dst_drop(skb);
4297 	else
4298 		skb_dst_force(skb);
4299 
4300 	if (!txq)
4301 		txq = netdev_core_pick_tx(dev, skb, sb_dev);
4302 
4303 	q = rcu_dereference_bh(txq->qdisc);
4304 
4305 	trace_net_dev_queue(skb);
4306 	if (q->enqueue) {
4307 		rc = __dev_xmit_skb(skb, q, dev, txq);
4308 		goto out;
4309 	}
4310 
4311 	/* The device has no queue. Common case for software devices:
4312 	 * loopback, all the sorts of tunnels...
4313 
4314 	 * Really, it is unlikely that netif_tx_lock protection is necessary
4315 	 * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
4316 	 * counters.)
4317 	 * However, it is possible, that they rely on protection
4318 	 * made by us here.
4319 
4320 	 * Check this and shot the lock. It is not prone from deadlocks.
4321 	 *Either shot noqueue qdisc, it is even simpler 8)
4322 	 */
4323 	if (dev->flags & IFF_UP) {
4324 		int cpu = smp_processor_id(); /* ok because BHs are off */
4325 
4326 		/* Other cpus might concurrently change txq->xmit_lock_owner
4327 		 * to -1 or to their cpu id, but not to our id.
4328 		 */
4329 		if (READ_ONCE(txq->xmit_lock_owner) != cpu) {
4330 			if (dev_xmit_recursion())
4331 				goto recursion_alert;
4332 
4333 			skb = validate_xmit_skb(skb, dev, &again);
4334 			if (!skb)
4335 				goto out;
4336 
4337 			HARD_TX_LOCK(dev, txq, cpu);
4338 
4339 			if (!netif_xmit_stopped(txq)) {
4340 				dev_xmit_recursion_inc();
4341 				skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4342 				dev_xmit_recursion_dec();
4343 				if (dev_xmit_complete(rc)) {
4344 					HARD_TX_UNLOCK(dev, txq);
4345 					goto out;
4346 				}
4347 			}
4348 			HARD_TX_UNLOCK(dev, txq);
4349 			net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4350 					     dev->name);
4351 		} else {
4352 			/* Recursion is detected! It is possible,
4353 			 * unfortunately
4354 			 */
4355 recursion_alert:
4356 			net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4357 					     dev->name);
4358 		}
4359 	}
4360 
4361 	rc = -ENETDOWN;
4362 	rcu_read_unlock_bh();
4363 
4364 	dev_core_stats_tx_dropped_inc(dev);
4365 	kfree_skb_list(skb);
4366 	return rc;
4367 out:
4368 	rcu_read_unlock_bh();
4369 	return rc;
4370 }
4371 EXPORT_SYMBOL(__dev_queue_xmit);
4372 
4373 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4374 {
4375 	struct net_device *dev = skb->dev;
4376 	struct sk_buff *orig_skb = skb;
4377 	struct netdev_queue *txq;
4378 	int ret = NETDEV_TX_BUSY;
4379 	bool again = false;
4380 
4381 	if (unlikely(!netif_running(dev) ||
4382 		     !netif_carrier_ok(dev)))
4383 		goto drop;
4384 
4385 	skb = validate_xmit_skb_list(skb, dev, &again);
4386 	if (skb != orig_skb)
4387 		goto drop;
4388 
4389 	skb_set_queue_mapping(skb, queue_id);
4390 	txq = skb_get_tx_queue(dev, skb);
4391 
4392 	local_bh_disable();
4393 
4394 	dev_xmit_recursion_inc();
4395 	HARD_TX_LOCK(dev, txq, smp_processor_id());
4396 	if (!netif_xmit_frozen_or_drv_stopped(txq))
4397 		ret = netdev_start_xmit(skb, dev, txq, false);
4398 	HARD_TX_UNLOCK(dev, txq);
4399 	dev_xmit_recursion_dec();
4400 
4401 	local_bh_enable();
4402 	return ret;
4403 drop:
4404 	dev_core_stats_tx_dropped_inc(dev);
4405 	kfree_skb_list(skb);
4406 	return NET_XMIT_DROP;
4407 }
4408 EXPORT_SYMBOL(__dev_direct_xmit);
4409 
4410 /*************************************************************************
4411  *			Receiver routines
4412  *************************************************************************/
4413 
4414 unsigned int sysctl_skb_defer_max __read_mostly = 64;
4415 int weight_p __read_mostly = 64;           /* old backlog weight */
4416 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
4417 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
4418 
4419 /* Called with irq disabled */
4420 static inline void ____napi_schedule(struct softnet_data *sd,
4421 				     struct napi_struct *napi)
4422 {
4423 	struct task_struct *thread;
4424 
4425 	lockdep_assert_irqs_disabled();
4426 
4427 	if (test_bit(NAPI_STATE_THREADED, &napi->state)) {
4428 		/* Paired with smp_mb__before_atomic() in
4429 		 * napi_enable()/dev_set_threaded().
4430 		 * Use READ_ONCE() to guarantee a complete
4431 		 * read on napi->thread. Only call
4432 		 * wake_up_process() when it's not NULL.
4433 		 */
4434 		thread = READ_ONCE(napi->thread);
4435 		if (thread) {
4436 			/* Avoid doing set_bit() if the thread is in
4437 			 * INTERRUPTIBLE state, cause napi_thread_wait()
4438 			 * makes sure to proceed with napi polling
4439 			 * if the thread is explicitly woken from here.
4440 			 */
4441 			if (READ_ONCE(thread->__state) != TASK_INTERRUPTIBLE)
4442 				set_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
4443 			wake_up_process(thread);
4444 			return;
4445 		}
4446 	}
4447 
4448 	list_add_tail(&napi->poll_list, &sd->poll_list);
4449 	WRITE_ONCE(napi->list_owner, smp_processor_id());
4450 	/* If not called from net_rx_action()
4451 	 * we have to raise NET_RX_SOFTIRQ.
4452 	 */
4453 	if (!sd->in_net_rx_action)
4454 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4455 }
4456 
4457 #ifdef CONFIG_RPS
4458 
4459 struct static_key_false rps_needed __read_mostly;
4460 EXPORT_SYMBOL(rps_needed);
4461 struct static_key_false rfs_needed __read_mostly;
4462 EXPORT_SYMBOL(rfs_needed);
4463 
4464 static struct rps_dev_flow *
4465 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4466 	    struct rps_dev_flow *rflow, u16 next_cpu)
4467 {
4468 	if (next_cpu < nr_cpu_ids) {
4469 #ifdef CONFIG_RFS_ACCEL
4470 		struct netdev_rx_queue *rxqueue;
4471 		struct rps_dev_flow_table *flow_table;
4472 		struct rps_dev_flow *old_rflow;
4473 		u32 flow_id;
4474 		u16 rxq_index;
4475 		int rc;
4476 
4477 		/* Should we steer this flow to a different hardware queue? */
4478 		if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4479 		    !(dev->features & NETIF_F_NTUPLE))
4480 			goto out;
4481 		rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4482 		if (rxq_index == skb_get_rx_queue(skb))
4483 			goto out;
4484 
4485 		rxqueue = dev->_rx + rxq_index;
4486 		flow_table = rcu_dereference(rxqueue->rps_flow_table);
4487 		if (!flow_table)
4488 			goto out;
4489 		flow_id = skb_get_hash(skb) & flow_table->mask;
4490 		rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4491 							rxq_index, flow_id);
4492 		if (rc < 0)
4493 			goto out;
4494 		old_rflow = rflow;
4495 		rflow = &flow_table->flows[flow_id];
4496 		rflow->filter = rc;
4497 		if (old_rflow->filter == rflow->filter)
4498 			old_rflow->filter = RPS_NO_FILTER;
4499 	out:
4500 #endif
4501 		rflow->last_qtail =
4502 			per_cpu(softnet_data, next_cpu).input_queue_head;
4503 	}
4504 
4505 	rflow->cpu = next_cpu;
4506 	return rflow;
4507 }
4508 
4509 /*
4510  * get_rps_cpu is called from netif_receive_skb and returns the target
4511  * CPU from the RPS map of the receiving queue for a given skb.
4512  * rcu_read_lock must be held on entry.
4513  */
4514 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4515 		       struct rps_dev_flow **rflowp)
4516 {
4517 	const struct rps_sock_flow_table *sock_flow_table;
4518 	struct netdev_rx_queue *rxqueue = dev->_rx;
4519 	struct rps_dev_flow_table *flow_table;
4520 	struct rps_map *map;
4521 	int cpu = -1;
4522 	u32 tcpu;
4523 	u32 hash;
4524 
4525 	if (skb_rx_queue_recorded(skb)) {
4526 		u16 index = skb_get_rx_queue(skb);
4527 
4528 		if (unlikely(index >= dev->real_num_rx_queues)) {
4529 			WARN_ONCE(dev->real_num_rx_queues > 1,
4530 				  "%s received packet on queue %u, but number "
4531 				  "of RX queues is %u\n",
4532 				  dev->name, index, dev->real_num_rx_queues);
4533 			goto done;
4534 		}
4535 		rxqueue += index;
4536 	}
4537 
4538 	/* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4539 
4540 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
4541 	map = rcu_dereference(rxqueue->rps_map);
4542 	if (!flow_table && !map)
4543 		goto done;
4544 
4545 	skb_reset_network_header(skb);
4546 	hash = skb_get_hash(skb);
4547 	if (!hash)
4548 		goto done;
4549 
4550 	sock_flow_table = rcu_dereference(net_hotdata.rps_sock_flow_table);
4551 	if (flow_table && sock_flow_table) {
4552 		struct rps_dev_flow *rflow;
4553 		u32 next_cpu;
4554 		u32 ident;
4555 
4556 		/* First check into global flow table if there is a match.
4557 		 * This READ_ONCE() pairs with WRITE_ONCE() from rps_record_sock_flow().
4558 		 */
4559 		ident = READ_ONCE(sock_flow_table->ents[hash & sock_flow_table->mask]);
4560 		if ((ident ^ hash) & ~net_hotdata.rps_cpu_mask)
4561 			goto try_rps;
4562 
4563 		next_cpu = ident & net_hotdata.rps_cpu_mask;
4564 
4565 		/* OK, now we know there is a match,
4566 		 * we can look at the local (per receive queue) flow table
4567 		 */
4568 		rflow = &flow_table->flows[hash & flow_table->mask];
4569 		tcpu = rflow->cpu;
4570 
4571 		/*
4572 		 * If the desired CPU (where last recvmsg was done) is
4573 		 * different from current CPU (one in the rx-queue flow
4574 		 * table entry), switch if one of the following holds:
4575 		 *   - Current CPU is unset (>= nr_cpu_ids).
4576 		 *   - Current CPU is offline.
4577 		 *   - The current CPU's queue tail has advanced beyond the
4578 		 *     last packet that was enqueued using this table entry.
4579 		 *     This guarantees that all previous packets for the flow
4580 		 *     have been dequeued, thus preserving in order delivery.
4581 		 */
4582 		if (unlikely(tcpu != next_cpu) &&
4583 		    (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4584 		     ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4585 		      rflow->last_qtail)) >= 0)) {
4586 			tcpu = next_cpu;
4587 			rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4588 		}
4589 
4590 		if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4591 			*rflowp = rflow;
4592 			cpu = tcpu;
4593 			goto done;
4594 		}
4595 	}
4596 
4597 try_rps:
4598 
4599 	if (map) {
4600 		tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4601 		if (cpu_online(tcpu)) {
4602 			cpu = tcpu;
4603 			goto done;
4604 		}
4605 	}
4606 
4607 done:
4608 	return cpu;
4609 }
4610 
4611 #ifdef CONFIG_RFS_ACCEL
4612 
4613 /**
4614  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4615  * @dev: Device on which the filter was set
4616  * @rxq_index: RX queue index
4617  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4618  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4619  *
4620  * Drivers that implement ndo_rx_flow_steer() should periodically call
4621  * this function for each installed filter and remove the filters for
4622  * which it returns %true.
4623  */
4624 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4625 			 u32 flow_id, u16 filter_id)
4626 {
4627 	struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4628 	struct rps_dev_flow_table *flow_table;
4629 	struct rps_dev_flow *rflow;
4630 	bool expire = true;
4631 	unsigned int cpu;
4632 
4633 	rcu_read_lock();
4634 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
4635 	if (flow_table && flow_id <= flow_table->mask) {
4636 		rflow = &flow_table->flows[flow_id];
4637 		cpu = READ_ONCE(rflow->cpu);
4638 		if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4639 		    ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4640 			   rflow->last_qtail) <
4641 		     (int)(10 * flow_table->mask)))
4642 			expire = false;
4643 	}
4644 	rcu_read_unlock();
4645 	return expire;
4646 }
4647 EXPORT_SYMBOL(rps_may_expire_flow);
4648 
4649 #endif /* CONFIG_RFS_ACCEL */
4650 
4651 /* Called from hardirq (IPI) context */
4652 static void rps_trigger_softirq(void *data)
4653 {
4654 	struct softnet_data *sd = data;
4655 
4656 	____napi_schedule(sd, &sd->backlog);
4657 	sd->received_rps++;
4658 }
4659 
4660 #endif /* CONFIG_RPS */
4661 
4662 /* Called from hardirq (IPI) context */
4663 static void trigger_rx_softirq(void *data)
4664 {
4665 	struct softnet_data *sd = data;
4666 
4667 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4668 	smp_store_release(&sd->defer_ipi_scheduled, 0);
4669 }
4670 
4671 /*
4672  * After we queued a packet into sd->input_pkt_queue,
4673  * we need to make sure this queue is serviced soon.
4674  *
4675  * - If this is another cpu queue, link it to our rps_ipi_list,
4676  *   and make sure we will process rps_ipi_list from net_rx_action().
4677  *
4678  * - If this is our own queue, NAPI schedule our backlog.
4679  *   Note that this also raises NET_RX_SOFTIRQ.
4680  */
4681 static void napi_schedule_rps(struct softnet_data *sd)
4682 {
4683 	struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4684 
4685 #ifdef CONFIG_RPS
4686 	if (sd != mysd) {
4687 		sd->rps_ipi_next = mysd->rps_ipi_list;
4688 		mysd->rps_ipi_list = sd;
4689 
4690 		/* If not called from net_rx_action() or napi_threaded_poll()
4691 		 * we have to raise NET_RX_SOFTIRQ.
4692 		 */
4693 		if (!mysd->in_net_rx_action && !mysd->in_napi_threaded_poll)
4694 			__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4695 		return;
4696 	}
4697 #endif /* CONFIG_RPS */
4698 	__napi_schedule_irqoff(&mysd->backlog);
4699 }
4700 
4701 #ifdef CONFIG_NET_FLOW_LIMIT
4702 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4703 #endif
4704 
4705 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4706 {
4707 #ifdef CONFIG_NET_FLOW_LIMIT
4708 	struct sd_flow_limit *fl;
4709 	struct softnet_data *sd;
4710 	unsigned int old_flow, new_flow;
4711 
4712 	if (qlen < (READ_ONCE(net_hotdata.max_backlog) >> 1))
4713 		return false;
4714 
4715 	sd = this_cpu_ptr(&softnet_data);
4716 
4717 	rcu_read_lock();
4718 	fl = rcu_dereference(sd->flow_limit);
4719 	if (fl) {
4720 		new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4721 		old_flow = fl->history[fl->history_head];
4722 		fl->history[fl->history_head] = new_flow;
4723 
4724 		fl->history_head++;
4725 		fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4726 
4727 		if (likely(fl->buckets[old_flow]))
4728 			fl->buckets[old_flow]--;
4729 
4730 		if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4731 			fl->count++;
4732 			rcu_read_unlock();
4733 			return true;
4734 		}
4735 	}
4736 	rcu_read_unlock();
4737 #endif
4738 	return false;
4739 }
4740 
4741 /*
4742  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4743  * queue (may be a remote CPU queue).
4744  */
4745 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4746 			      unsigned int *qtail)
4747 {
4748 	enum skb_drop_reason reason;
4749 	struct softnet_data *sd;
4750 	unsigned long flags;
4751 	unsigned int qlen;
4752 
4753 	reason = SKB_DROP_REASON_NOT_SPECIFIED;
4754 	sd = &per_cpu(softnet_data, cpu);
4755 
4756 	rps_lock_irqsave(sd, &flags);
4757 	if (!netif_running(skb->dev))
4758 		goto drop;
4759 	qlen = skb_queue_len(&sd->input_pkt_queue);
4760 	if (qlen <= READ_ONCE(net_hotdata.max_backlog) &&
4761 	    !skb_flow_limit(skb, qlen)) {
4762 		if (qlen) {
4763 enqueue:
4764 			__skb_queue_tail(&sd->input_pkt_queue, skb);
4765 			input_queue_tail_incr_save(sd, qtail);
4766 			rps_unlock_irq_restore(sd, &flags);
4767 			return NET_RX_SUCCESS;
4768 		}
4769 
4770 		/* Schedule NAPI for backlog device
4771 		 * We can use non atomic operation since we own the queue lock
4772 		 */
4773 		if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state))
4774 			napi_schedule_rps(sd);
4775 		goto enqueue;
4776 	}
4777 	reason = SKB_DROP_REASON_CPU_BACKLOG;
4778 
4779 drop:
4780 	sd->dropped++;
4781 	rps_unlock_irq_restore(sd, &flags);
4782 
4783 	dev_core_stats_rx_dropped_inc(skb->dev);
4784 	kfree_skb_reason(skb, reason);
4785 	return NET_RX_DROP;
4786 }
4787 
4788 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4789 {
4790 	struct net_device *dev = skb->dev;
4791 	struct netdev_rx_queue *rxqueue;
4792 
4793 	rxqueue = dev->_rx;
4794 
4795 	if (skb_rx_queue_recorded(skb)) {
4796 		u16 index = skb_get_rx_queue(skb);
4797 
4798 		if (unlikely(index >= dev->real_num_rx_queues)) {
4799 			WARN_ONCE(dev->real_num_rx_queues > 1,
4800 				  "%s received packet on queue %u, but number "
4801 				  "of RX queues is %u\n",
4802 				  dev->name, index, dev->real_num_rx_queues);
4803 
4804 			return rxqueue; /* Return first rxqueue */
4805 		}
4806 		rxqueue += index;
4807 	}
4808 	return rxqueue;
4809 }
4810 
4811 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp,
4812 			     struct bpf_prog *xdp_prog)
4813 {
4814 	void *orig_data, *orig_data_end, *hard_start;
4815 	struct netdev_rx_queue *rxqueue;
4816 	bool orig_bcast, orig_host;
4817 	u32 mac_len, frame_sz;
4818 	__be16 orig_eth_type;
4819 	struct ethhdr *eth;
4820 	u32 metalen, act;
4821 	int off;
4822 
4823 	/* The XDP program wants to see the packet starting at the MAC
4824 	 * header.
4825 	 */
4826 	mac_len = skb->data - skb_mac_header(skb);
4827 	hard_start = skb->data - skb_headroom(skb);
4828 
4829 	/* SKB "head" area always have tailroom for skb_shared_info */
4830 	frame_sz = (void *)skb_end_pointer(skb) - hard_start;
4831 	frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
4832 
4833 	rxqueue = netif_get_rxqueue(skb);
4834 	xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq);
4835 	xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len,
4836 			 skb_headlen(skb) + mac_len, true);
4837 	if (skb_is_nonlinear(skb)) {
4838 		skb_shinfo(skb)->xdp_frags_size = skb->data_len;
4839 		xdp_buff_set_frags_flag(xdp);
4840 	} else {
4841 		xdp_buff_clear_frags_flag(xdp);
4842 	}
4843 
4844 	orig_data_end = xdp->data_end;
4845 	orig_data = xdp->data;
4846 	eth = (struct ethhdr *)xdp->data;
4847 	orig_host = ether_addr_equal_64bits(eth->h_dest, skb->dev->dev_addr);
4848 	orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4849 	orig_eth_type = eth->h_proto;
4850 
4851 	act = bpf_prog_run_xdp(xdp_prog, xdp);
4852 
4853 	/* check if bpf_xdp_adjust_head was used */
4854 	off = xdp->data - orig_data;
4855 	if (off) {
4856 		if (off > 0)
4857 			__skb_pull(skb, off);
4858 		else if (off < 0)
4859 			__skb_push(skb, -off);
4860 
4861 		skb->mac_header += off;
4862 		skb_reset_network_header(skb);
4863 	}
4864 
4865 	/* check if bpf_xdp_adjust_tail was used */
4866 	off = xdp->data_end - orig_data_end;
4867 	if (off != 0) {
4868 		skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4869 		skb->len += off; /* positive on grow, negative on shrink */
4870 	}
4871 
4872 	/* XDP frag metadata (e.g. nr_frags) are updated in eBPF helpers
4873 	 * (e.g. bpf_xdp_adjust_tail), we need to update data_len here.
4874 	 */
4875 	if (xdp_buff_has_frags(xdp))
4876 		skb->data_len = skb_shinfo(skb)->xdp_frags_size;
4877 	else
4878 		skb->data_len = 0;
4879 
4880 	/* check if XDP changed eth hdr such SKB needs update */
4881 	eth = (struct ethhdr *)xdp->data;
4882 	if ((orig_eth_type != eth->h_proto) ||
4883 	    (orig_host != ether_addr_equal_64bits(eth->h_dest,
4884 						  skb->dev->dev_addr)) ||
4885 	    (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4886 		__skb_push(skb, ETH_HLEN);
4887 		skb->pkt_type = PACKET_HOST;
4888 		skb->protocol = eth_type_trans(skb, skb->dev);
4889 	}
4890 
4891 	/* Redirect/Tx gives L2 packet, code that will reuse skb must __skb_pull
4892 	 * before calling us again on redirect path. We do not call do_redirect
4893 	 * as we leave that up to the caller.
4894 	 *
4895 	 * Caller is responsible for managing lifetime of skb (i.e. calling
4896 	 * kfree_skb in response to actions it cannot handle/XDP_DROP).
4897 	 */
4898 	switch (act) {
4899 	case XDP_REDIRECT:
4900 	case XDP_TX:
4901 		__skb_push(skb, mac_len);
4902 		break;
4903 	case XDP_PASS:
4904 		metalen = xdp->data - xdp->data_meta;
4905 		if (metalen)
4906 			skb_metadata_set(skb, metalen);
4907 		break;
4908 	}
4909 
4910 	return act;
4911 }
4912 
4913 static int
4914 netif_skb_check_for_xdp(struct sk_buff **pskb, struct bpf_prog *prog)
4915 {
4916 	struct sk_buff *skb = *pskb;
4917 	int err, hroom, troom;
4918 
4919 	if (!skb_cow_data_for_xdp(this_cpu_read(system_page_pool), pskb, prog))
4920 		return 0;
4921 
4922 	/* In case we have to go down the path and also linearize,
4923 	 * then lets do the pskb_expand_head() work just once here.
4924 	 */
4925 	hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4926 	troom = skb->tail + skb->data_len - skb->end;
4927 	err = pskb_expand_head(skb,
4928 			       hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4929 			       troom > 0 ? troom + 128 : 0, GFP_ATOMIC);
4930 	if (err)
4931 		return err;
4932 
4933 	return skb_linearize(skb);
4934 }
4935 
4936 static u32 netif_receive_generic_xdp(struct sk_buff **pskb,
4937 				     struct xdp_buff *xdp,
4938 				     struct bpf_prog *xdp_prog)
4939 {
4940 	struct sk_buff *skb = *pskb;
4941 	u32 mac_len, act = XDP_DROP;
4942 
4943 	/* Reinjected packets coming from act_mirred or similar should
4944 	 * not get XDP generic processing.
4945 	 */
4946 	if (skb_is_redirected(skb))
4947 		return XDP_PASS;
4948 
4949 	/* XDP packets must have sufficient headroom of XDP_PACKET_HEADROOM
4950 	 * bytes. This is the guarantee that also native XDP provides,
4951 	 * thus we need to do it here as well.
4952 	 */
4953 	mac_len = skb->data - skb_mac_header(skb);
4954 	__skb_push(skb, mac_len);
4955 
4956 	if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
4957 	    skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4958 		if (netif_skb_check_for_xdp(pskb, xdp_prog))
4959 			goto do_drop;
4960 	}
4961 
4962 	__skb_pull(*pskb, mac_len);
4963 
4964 	act = bpf_prog_run_generic_xdp(*pskb, xdp, xdp_prog);
4965 	switch (act) {
4966 	case XDP_REDIRECT:
4967 	case XDP_TX:
4968 	case XDP_PASS:
4969 		break;
4970 	default:
4971 		bpf_warn_invalid_xdp_action((*pskb)->dev, xdp_prog, act);
4972 		fallthrough;
4973 	case XDP_ABORTED:
4974 		trace_xdp_exception((*pskb)->dev, xdp_prog, act);
4975 		fallthrough;
4976 	case XDP_DROP:
4977 	do_drop:
4978 		kfree_skb(*pskb);
4979 		break;
4980 	}
4981 
4982 	return act;
4983 }
4984 
4985 /* When doing generic XDP we have to bypass the qdisc layer and the
4986  * network taps in order to match in-driver-XDP behavior. This also means
4987  * that XDP packets are able to starve other packets going through a qdisc,
4988  * and DDOS attacks will be more effective. In-driver-XDP use dedicated TX
4989  * queues, so they do not have this starvation issue.
4990  */
4991 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4992 {
4993 	struct net_device *dev = skb->dev;
4994 	struct netdev_queue *txq;
4995 	bool free_skb = true;
4996 	int cpu, rc;
4997 
4998 	txq = netdev_core_pick_tx(dev, skb, NULL);
4999 	cpu = smp_processor_id();
5000 	HARD_TX_LOCK(dev, txq, cpu);
5001 	if (!netif_xmit_frozen_or_drv_stopped(txq)) {
5002 		rc = netdev_start_xmit(skb, dev, txq, 0);
5003 		if (dev_xmit_complete(rc))
5004 			free_skb = false;
5005 	}
5006 	HARD_TX_UNLOCK(dev, txq);
5007 	if (free_skb) {
5008 		trace_xdp_exception(dev, xdp_prog, XDP_TX);
5009 		dev_core_stats_tx_dropped_inc(dev);
5010 		kfree_skb(skb);
5011 	}
5012 }
5013 
5014 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
5015 
5016 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff **pskb)
5017 {
5018 	if (xdp_prog) {
5019 		struct xdp_buff xdp;
5020 		u32 act;
5021 		int err;
5022 
5023 		act = netif_receive_generic_xdp(pskb, &xdp, xdp_prog);
5024 		if (act != XDP_PASS) {
5025 			switch (act) {
5026 			case XDP_REDIRECT:
5027 				err = xdp_do_generic_redirect((*pskb)->dev, *pskb,
5028 							      &xdp, xdp_prog);
5029 				if (err)
5030 					goto out_redir;
5031 				break;
5032 			case XDP_TX:
5033 				generic_xdp_tx(*pskb, xdp_prog);
5034 				break;
5035 			}
5036 			return XDP_DROP;
5037 		}
5038 	}
5039 	return XDP_PASS;
5040 out_redir:
5041 	kfree_skb_reason(*pskb, SKB_DROP_REASON_XDP);
5042 	return XDP_DROP;
5043 }
5044 EXPORT_SYMBOL_GPL(do_xdp_generic);
5045 
5046 static int netif_rx_internal(struct sk_buff *skb)
5047 {
5048 	int ret;
5049 
5050 	net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue), skb);
5051 
5052 	trace_netif_rx(skb);
5053 
5054 #ifdef CONFIG_RPS
5055 	if (static_branch_unlikely(&rps_needed)) {
5056 		struct rps_dev_flow voidflow, *rflow = &voidflow;
5057 		int cpu;
5058 
5059 		rcu_read_lock();
5060 
5061 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
5062 		if (cpu < 0)
5063 			cpu = smp_processor_id();
5064 
5065 		ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5066 
5067 		rcu_read_unlock();
5068 	} else
5069 #endif
5070 	{
5071 		unsigned int qtail;
5072 
5073 		ret = enqueue_to_backlog(skb, smp_processor_id(), &qtail);
5074 	}
5075 	return ret;
5076 }
5077 
5078 /**
5079  *	__netif_rx	-	Slightly optimized version of netif_rx
5080  *	@skb: buffer to post
5081  *
5082  *	This behaves as netif_rx except that it does not disable bottom halves.
5083  *	As a result this function may only be invoked from the interrupt context
5084  *	(either hard or soft interrupt).
5085  */
5086 int __netif_rx(struct sk_buff *skb)
5087 {
5088 	int ret;
5089 
5090 	lockdep_assert_once(hardirq_count() | softirq_count());
5091 
5092 	trace_netif_rx_entry(skb);
5093 	ret = netif_rx_internal(skb);
5094 	trace_netif_rx_exit(ret);
5095 	return ret;
5096 }
5097 EXPORT_SYMBOL(__netif_rx);
5098 
5099 /**
5100  *	netif_rx	-	post buffer to the network code
5101  *	@skb: buffer to post
5102  *
5103  *	This function receives a packet from a device driver and queues it for
5104  *	the upper (protocol) levels to process via the backlog NAPI device. It
5105  *	always succeeds. The buffer may be dropped during processing for
5106  *	congestion control or by the protocol layers.
5107  *	The network buffer is passed via the backlog NAPI device. Modern NIC
5108  *	driver should use NAPI and GRO.
5109  *	This function can used from interrupt and from process context. The
5110  *	caller from process context must not disable interrupts before invoking
5111  *	this function.
5112  *
5113  *	return values:
5114  *	NET_RX_SUCCESS	(no congestion)
5115  *	NET_RX_DROP     (packet was dropped)
5116  *
5117  */
5118 int netif_rx(struct sk_buff *skb)
5119 {
5120 	bool need_bh_off = !(hardirq_count() | softirq_count());
5121 	int ret;
5122 
5123 	if (need_bh_off)
5124 		local_bh_disable();
5125 	trace_netif_rx_entry(skb);
5126 	ret = netif_rx_internal(skb);
5127 	trace_netif_rx_exit(ret);
5128 	if (need_bh_off)
5129 		local_bh_enable();
5130 	return ret;
5131 }
5132 EXPORT_SYMBOL(netif_rx);
5133 
5134 static __latent_entropy void net_tx_action(struct softirq_action *h)
5135 {
5136 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5137 
5138 	if (sd->completion_queue) {
5139 		struct sk_buff *clist;
5140 
5141 		local_irq_disable();
5142 		clist = sd->completion_queue;
5143 		sd->completion_queue = NULL;
5144 		local_irq_enable();
5145 
5146 		while (clist) {
5147 			struct sk_buff *skb = clist;
5148 
5149 			clist = clist->next;
5150 
5151 			WARN_ON(refcount_read(&skb->users));
5152 			if (likely(get_kfree_skb_cb(skb)->reason == SKB_CONSUMED))
5153 				trace_consume_skb(skb, net_tx_action);
5154 			else
5155 				trace_kfree_skb(skb, net_tx_action,
5156 						get_kfree_skb_cb(skb)->reason);
5157 
5158 			if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
5159 				__kfree_skb(skb);
5160 			else
5161 				__napi_kfree_skb(skb,
5162 						 get_kfree_skb_cb(skb)->reason);
5163 		}
5164 	}
5165 
5166 	if (sd->output_queue) {
5167 		struct Qdisc *head;
5168 
5169 		local_irq_disable();
5170 		head = sd->output_queue;
5171 		sd->output_queue = NULL;
5172 		sd->output_queue_tailp = &sd->output_queue;
5173 		local_irq_enable();
5174 
5175 		rcu_read_lock();
5176 
5177 		while (head) {
5178 			struct Qdisc *q = head;
5179 			spinlock_t *root_lock = NULL;
5180 
5181 			head = head->next_sched;
5182 
5183 			/* We need to make sure head->next_sched is read
5184 			 * before clearing __QDISC_STATE_SCHED
5185 			 */
5186 			smp_mb__before_atomic();
5187 
5188 			if (!(q->flags & TCQ_F_NOLOCK)) {
5189 				root_lock = qdisc_lock(q);
5190 				spin_lock(root_lock);
5191 			} else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED,
5192 						     &q->state))) {
5193 				/* There is a synchronize_net() between
5194 				 * STATE_DEACTIVATED flag being set and
5195 				 * qdisc_reset()/some_qdisc_is_busy() in
5196 				 * dev_deactivate(), so we can safely bail out
5197 				 * early here to avoid data race between
5198 				 * qdisc_deactivate() and some_qdisc_is_busy()
5199 				 * for lockless qdisc.
5200 				 */
5201 				clear_bit(__QDISC_STATE_SCHED, &q->state);
5202 				continue;
5203 			}
5204 
5205 			clear_bit(__QDISC_STATE_SCHED, &q->state);
5206 			qdisc_run(q);
5207 			if (root_lock)
5208 				spin_unlock(root_lock);
5209 		}
5210 
5211 		rcu_read_unlock();
5212 	}
5213 
5214 	xfrm_dev_backlog(sd);
5215 }
5216 
5217 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
5218 /* This hook is defined here for ATM LANE */
5219 int (*br_fdb_test_addr_hook)(struct net_device *dev,
5220 			     unsigned char *addr) __read_mostly;
5221 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
5222 #endif
5223 
5224 /**
5225  *	netdev_is_rx_handler_busy - check if receive handler is registered
5226  *	@dev: device to check
5227  *
5228  *	Check if a receive handler is already registered for a given device.
5229  *	Return true if there one.
5230  *
5231  *	The caller must hold the rtnl_mutex.
5232  */
5233 bool netdev_is_rx_handler_busy(struct net_device *dev)
5234 {
5235 	ASSERT_RTNL();
5236 	return dev && rtnl_dereference(dev->rx_handler);
5237 }
5238 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
5239 
5240 /**
5241  *	netdev_rx_handler_register - register receive handler
5242  *	@dev: device to register a handler for
5243  *	@rx_handler: receive handler to register
5244  *	@rx_handler_data: data pointer that is used by rx handler
5245  *
5246  *	Register a receive handler for a device. This handler will then be
5247  *	called from __netif_receive_skb. A negative errno code is returned
5248  *	on a failure.
5249  *
5250  *	The caller must hold the rtnl_mutex.
5251  *
5252  *	For a general description of rx_handler, see enum rx_handler_result.
5253  */
5254 int netdev_rx_handler_register(struct net_device *dev,
5255 			       rx_handler_func_t *rx_handler,
5256 			       void *rx_handler_data)
5257 {
5258 	if (netdev_is_rx_handler_busy(dev))
5259 		return -EBUSY;
5260 
5261 	if (dev->priv_flags & IFF_NO_RX_HANDLER)
5262 		return -EINVAL;
5263 
5264 	/* Note: rx_handler_data must be set before rx_handler */
5265 	rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
5266 	rcu_assign_pointer(dev->rx_handler, rx_handler);
5267 
5268 	return 0;
5269 }
5270 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5271 
5272 /**
5273  *	netdev_rx_handler_unregister - unregister receive handler
5274  *	@dev: device to unregister a handler from
5275  *
5276  *	Unregister a receive handler from a device.
5277  *
5278  *	The caller must hold the rtnl_mutex.
5279  */
5280 void netdev_rx_handler_unregister(struct net_device *dev)
5281 {
5282 
5283 	ASSERT_RTNL();
5284 	RCU_INIT_POINTER(dev->rx_handler, NULL);
5285 	/* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5286 	 * section has a guarantee to see a non NULL rx_handler_data
5287 	 * as well.
5288 	 */
5289 	synchronize_net();
5290 	RCU_INIT_POINTER(dev->rx_handler_data, NULL);
5291 }
5292 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5293 
5294 /*
5295  * Limit the use of PFMEMALLOC reserves to those protocols that implement
5296  * the special handling of PFMEMALLOC skbs.
5297  */
5298 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5299 {
5300 	switch (skb->protocol) {
5301 	case htons(ETH_P_ARP):
5302 	case htons(ETH_P_IP):
5303 	case htons(ETH_P_IPV6):
5304 	case htons(ETH_P_8021Q):
5305 	case htons(ETH_P_8021AD):
5306 		return true;
5307 	default:
5308 		return false;
5309 	}
5310 }
5311 
5312 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5313 			     int *ret, struct net_device *orig_dev)
5314 {
5315 	if (nf_hook_ingress_active(skb)) {
5316 		int ingress_retval;
5317 
5318 		if (*pt_prev) {
5319 			*ret = deliver_skb(skb, *pt_prev, orig_dev);
5320 			*pt_prev = NULL;
5321 		}
5322 
5323 		rcu_read_lock();
5324 		ingress_retval = nf_hook_ingress(skb);
5325 		rcu_read_unlock();
5326 		return ingress_retval;
5327 	}
5328 	return 0;
5329 }
5330 
5331 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
5332 				    struct packet_type **ppt_prev)
5333 {
5334 	struct packet_type *ptype, *pt_prev;
5335 	rx_handler_func_t *rx_handler;
5336 	struct sk_buff *skb = *pskb;
5337 	struct net_device *orig_dev;
5338 	bool deliver_exact = false;
5339 	int ret = NET_RX_DROP;
5340 	__be16 type;
5341 
5342 	net_timestamp_check(!READ_ONCE(net_hotdata.tstamp_prequeue), skb);
5343 
5344 	trace_netif_receive_skb(skb);
5345 
5346 	orig_dev = skb->dev;
5347 
5348 	skb_reset_network_header(skb);
5349 	if (!skb_transport_header_was_set(skb))
5350 		skb_reset_transport_header(skb);
5351 	skb_reset_mac_len(skb);
5352 
5353 	pt_prev = NULL;
5354 
5355 another_round:
5356 	skb->skb_iif = skb->dev->ifindex;
5357 
5358 	__this_cpu_inc(softnet_data.processed);
5359 
5360 	if (static_branch_unlikely(&generic_xdp_needed_key)) {
5361 		int ret2;
5362 
5363 		migrate_disable();
5364 		ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog),
5365 				      &skb);
5366 		migrate_enable();
5367 
5368 		if (ret2 != XDP_PASS) {
5369 			ret = NET_RX_DROP;
5370 			goto out;
5371 		}
5372 	}
5373 
5374 	if (eth_type_vlan(skb->protocol)) {
5375 		skb = skb_vlan_untag(skb);
5376 		if (unlikely(!skb))
5377 			goto out;
5378 	}
5379 
5380 	if (skb_skip_tc_classify(skb))
5381 		goto skip_classify;
5382 
5383 	if (pfmemalloc)
5384 		goto skip_taps;
5385 
5386 	list_for_each_entry_rcu(ptype, &net_hotdata.ptype_all, list) {
5387 		if (pt_prev)
5388 			ret = deliver_skb(skb, pt_prev, orig_dev);
5389 		pt_prev = ptype;
5390 	}
5391 
5392 	list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5393 		if (pt_prev)
5394 			ret = deliver_skb(skb, pt_prev, orig_dev);
5395 		pt_prev = ptype;
5396 	}
5397 
5398 skip_taps:
5399 #ifdef CONFIG_NET_INGRESS
5400 	if (static_branch_unlikely(&ingress_needed_key)) {
5401 		bool another = false;
5402 
5403 		nf_skip_egress(skb, true);
5404 		skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev,
5405 					 &another);
5406 		if (another)
5407 			goto another_round;
5408 		if (!skb)
5409 			goto out;
5410 
5411 		nf_skip_egress(skb, false);
5412 		if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5413 			goto out;
5414 	}
5415 #endif
5416 	skb_reset_redirect(skb);
5417 skip_classify:
5418 	if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
5419 		goto drop;
5420 
5421 	if (skb_vlan_tag_present(skb)) {
5422 		if (pt_prev) {
5423 			ret = deliver_skb(skb, pt_prev, orig_dev);
5424 			pt_prev = NULL;
5425 		}
5426 		if (vlan_do_receive(&skb))
5427 			goto another_round;
5428 		else if (unlikely(!skb))
5429 			goto out;
5430 	}
5431 
5432 	rx_handler = rcu_dereference(skb->dev->rx_handler);
5433 	if (rx_handler) {
5434 		if (pt_prev) {
5435 			ret = deliver_skb(skb, pt_prev, orig_dev);
5436 			pt_prev = NULL;
5437 		}
5438 		switch (rx_handler(&skb)) {
5439 		case RX_HANDLER_CONSUMED:
5440 			ret = NET_RX_SUCCESS;
5441 			goto out;
5442 		case RX_HANDLER_ANOTHER:
5443 			goto another_round;
5444 		case RX_HANDLER_EXACT:
5445 			deliver_exact = true;
5446 			break;
5447 		case RX_HANDLER_PASS:
5448 			break;
5449 		default:
5450 			BUG();
5451 		}
5452 	}
5453 
5454 	if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) {
5455 check_vlan_id:
5456 		if (skb_vlan_tag_get_id(skb)) {
5457 			/* Vlan id is non 0 and vlan_do_receive() above couldn't
5458 			 * find vlan device.
5459 			 */
5460 			skb->pkt_type = PACKET_OTHERHOST;
5461 		} else if (eth_type_vlan(skb->protocol)) {
5462 			/* Outer header is 802.1P with vlan 0, inner header is
5463 			 * 802.1Q or 802.1AD and vlan_do_receive() above could
5464 			 * not find vlan dev for vlan id 0.
5465 			 */
5466 			__vlan_hwaccel_clear_tag(skb);
5467 			skb = skb_vlan_untag(skb);
5468 			if (unlikely(!skb))
5469 				goto out;
5470 			if (vlan_do_receive(&skb))
5471 				/* After stripping off 802.1P header with vlan 0
5472 				 * vlan dev is found for inner header.
5473 				 */
5474 				goto another_round;
5475 			else if (unlikely(!skb))
5476 				goto out;
5477 			else
5478 				/* We have stripped outer 802.1P vlan 0 header.
5479 				 * But could not find vlan dev.
5480 				 * check again for vlan id to set OTHERHOST.
5481 				 */
5482 				goto check_vlan_id;
5483 		}
5484 		/* Note: we might in the future use prio bits
5485 		 * and set skb->priority like in vlan_do_receive()
5486 		 * For the time being, just ignore Priority Code Point
5487 		 */
5488 		__vlan_hwaccel_clear_tag(skb);
5489 	}
5490 
5491 	type = skb->protocol;
5492 
5493 	/* deliver only exact match when indicated */
5494 	if (likely(!deliver_exact)) {
5495 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5496 				       &ptype_base[ntohs(type) &
5497 						   PTYPE_HASH_MASK]);
5498 	}
5499 
5500 	deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5501 			       &orig_dev->ptype_specific);
5502 
5503 	if (unlikely(skb->dev != orig_dev)) {
5504 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5505 				       &skb->dev->ptype_specific);
5506 	}
5507 
5508 	if (pt_prev) {
5509 		if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
5510 			goto drop;
5511 		*ppt_prev = pt_prev;
5512 	} else {
5513 drop:
5514 		if (!deliver_exact)
5515 			dev_core_stats_rx_dropped_inc(skb->dev);
5516 		else
5517 			dev_core_stats_rx_nohandler_inc(skb->dev);
5518 		kfree_skb_reason(skb, SKB_DROP_REASON_UNHANDLED_PROTO);
5519 		/* Jamal, now you will not able to escape explaining
5520 		 * me how you were going to use this. :-)
5521 		 */
5522 		ret = NET_RX_DROP;
5523 	}
5524 
5525 out:
5526 	/* The invariant here is that if *ppt_prev is not NULL
5527 	 * then skb should also be non-NULL.
5528 	 *
5529 	 * Apparently *ppt_prev assignment above holds this invariant due to
5530 	 * skb dereferencing near it.
5531 	 */
5532 	*pskb = skb;
5533 	return ret;
5534 }
5535 
5536 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5537 {
5538 	struct net_device *orig_dev = skb->dev;
5539 	struct packet_type *pt_prev = NULL;
5540 	int ret;
5541 
5542 	ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5543 	if (pt_prev)
5544 		ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5545 					 skb->dev, pt_prev, orig_dev);
5546 	return ret;
5547 }
5548 
5549 /**
5550  *	netif_receive_skb_core - special purpose version of netif_receive_skb
5551  *	@skb: buffer to process
5552  *
5553  *	More direct receive version of netif_receive_skb().  It should
5554  *	only be used by callers that have a need to skip RPS and Generic XDP.
5555  *	Caller must also take care of handling if ``(page_is_)pfmemalloc``.
5556  *
5557  *	This function may only be called from softirq context and interrupts
5558  *	should be enabled.
5559  *
5560  *	Return values (usually ignored):
5561  *	NET_RX_SUCCESS: no congestion
5562  *	NET_RX_DROP: packet was dropped
5563  */
5564 int netif_receive_skb_core(struct sk_buff *skb)
5565 {
5566 	int ret;
5567 
5568 	rcu_read_lock();
5569 	ret = __netif_receive_skb_one_core(skb, false);
5570 	rcu_read_unlock();
5571 
5572 	return ret;
5573 }
5574 EXPORT_SYMBOL(netif_receive_skb_core);
5575 
5576 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5577 						  struct packet_type *pt_prev,
5578 						  struct net_device *orig_dev)
5579 {
5580 	struct sk_buff *skb, *next;
5581 
5582 	if (!pt_prev)
5583 		return;
5584 	if (list_empty(head))
5585 		return;
5586 	if (pt_prev->list_func != NULL)
5587 		INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5588 				   ip_list_rcv, head, pt_prev, orig_dev);
5589 	else
5590 		list_for_each_entry_safe(skb, next, head, list) {
5591 			skb_list_del_init(skb);
5592 			pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5593 		}
5594 }
5595 
5596 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5597 {
5598 	/* Fast-path assumptions:
5599 	 * - There is no RX handler.
5600 	 * - Only one packet_type matches.
5601 	 * If either of these fails, we will end up doing some per-packet
5602 	 * processing in-line, then handling the 'last ptype' for the whole
5603 	 * sublist.  This can't cause out-of-order delivery to any single ptype,
5604 	 * because the 'last ptype' must be constant across the sublist, and all
5605 	 * other ptypes are handled per-packet.
5606 	 */
5607 	/* Current (common) ptype of sublist */
5608 	struct packet_type *pt_curr = NULL;
5609 	/* Current (common) orig_dev of sublist */
5610 	struct net_device *od_curr = NULL;
5611 	struct list_head sublist;
5612 	struct sk_buff *skb, *next;
5613 
5614 	INIT_LIST_HEAD(&sublist);
5615 	list_for_each_entry_safe(skb, next, head, list) {
5616 		struct net_device *orig_dev = skb->dev;
5617 		struct packet_type *pt_prev = NULL;
5618 
5619 		skb_list_del_init(skb);
5620 		__netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5621 		if (!pt_prev)
5622 			continue;
5623 		if (pt_curr != pt_prev || od_curr != orig_dev) {
5624 			/* dispatch old sublist */
5625 			__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5626 			/* start new sublist */
5627 			INIT_LIST_HEAD(&sublist);
5628 			pt_curr = pt_prev;
5629 			od_curr = orig_dev;
5630 		}
5631 		list_add_tail(&skb->list, &sublist);
5632 	}
5633 
5634 	/* dispatch final sublist */
5635 	__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5636 }
5637 
5638 static int __netif_receive_skb(struct sk_buff *skb)
5639 {
5640 	int ret;
5641 
5642 	if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5643 		unsigned int noreclaim_flag;
5644 
5645 		/*
5646 		 * PFMEMALLOC skbs are special, they should
5647 		 * - be delivered to SOCK_MEMALLOC sockets only
5648 		 * - stay away from userspace
5649 		 * - have bounded memory usage
5650 		 *
5651 		 * Use PF_MEMALLOC as this saves us from propagating the allocation
5652 		 * context down to all allocation sites.
5653 		 */
5654 		noreclaim_flag = memalloc_noreclaim_save();
5655 		ret = __netif_receive_skb_one_core(skb, true);
5656 		memalloc_noreclaim_restore(noreclaim_flag);
5657 	} else
5658 		ret = __netif_receive_skb_one_core(skb, false);
5659 
5660 	return ret;
5661 }
5662 
5663 static void __netif_receive_skb_list(struct list_head *head)
5664 {
5665 	unsigned long noreclaim_flag = 0;
5666 	struct sk_buff *skb, *next;
5667 	bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5668 
5669 	list_for_each_entry_safe(skb, next, head, list) {
5670 		if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5671 			struct list_head sublist;
5672 
5673 			/* Handle the previous sublist */
5674 			list_cut_before(&sublist, head, &skb->list);
5675 			if (!list_empty(&sublist))
5676 				__netif_receive_skb_list_core(&sublist, pfmemalloc);
5677 			pfmemalloc = !pfmemalloc;
5678 			/* See comments in __netif_receive_skb */
5679 			if (pfmemalloc)
5680 				noreclaim_flag = memalloc_noreclaim_save();
5681 			else
5682 				memalloc_noreclaim_restore(noreclaim_flag);
5683 		}
5684 	}
5685 	/* Handle the remaining sublist */
5686 	if (!list_empty(head))
5687 		__netif_receive_skb_list_core(head, pfmemalloc);
5688 	/* Restore pflags */
5689 	if (pfmemalloc)
5690 		memalloc_noreclaim_restore(noreclaim_flag);
5691 }
5692 
5693 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5694 {
5695 	struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5696 	struct bpf_prog *new = xdp->prog;
5697 	int ret = 0;
5698 
5699 	switch (xdp->command) {
5700 	case XDP_SETUP_PROG:
5701 		rcu_assign_pointer(dev->xdp_prog, new);
5702 		if (old)
5703 			bpf_prog_put(old);
5704 
5705 		if (old && !new) {
5706 			static_branch_dec(&generic_xdp_needed_key);
5707 		} else if (new && !old) {
5708 			static_branch_inc(&generic_xdp_needed_key);
5709 			dev_disable_lro(dev);
5710 			dev_disable_gro_hw(dev);
5711 		}
5712 		break;
5713 
5714 	default:
5715 		ret = -EINVAL;
5716 		break;
5717 	}
5718 
5719 	return ret;
5720 }
5721 
5722 static int netif_receive_skb_internal(struct sk_buff *skb)
5723 {
5724 	int ret;
5725 
5726 	net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue), skb);
5727 
5728 	if (skb_defer_rx_timestamp(skb))
5729 		return NET_RX_SUCCESS;
5730 
5731 	rcu_read_lock();
5732 #ifdef CONFIG_RPS
5733 	if (static_branch_unlikely(&rps_needed)) {
5734 		struct rps_dev_flow voidflow, *rflow = &voidflow;
5735 		int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5736 
5737 		if (cpu >= 0) {
5738 			ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5739 			rcu_read_unlock();
5740 			return ret;
5741 		}
5742 	}
5743 #endif
5744 	ret = __netif_receive_skb(skb);
5745 	rcu_read_unlock();
5746 	return ret;
5747 }
5748 
5749 void netif_receive_skb_list_internal(struct list_head *head)
5750 {
5751 	struct sk_buff *skb, *next;
5752 	struct list_head sublist;
5753 
5754 	INIT_LIST_HEAD(&sublist);
5755 	list_for_each_entry_safe(skb, next, head, list) {
5756 		net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue),
5757 				    skb);
5758 		skb_list_del_init(skb);
5759 		if (!skb_defer_rx_timestamp(skb))
5760 			list_add_tail(&skb->list, &sublist);
5761 	}
5762 	list_splice_init(&sublist, head);
5763 
5764 	rcu_read_lock();
5765 #ifdef CONFIG_RPS
5766 	if (static_branch_unlikely(&rps_needed)) {
5767 		list_for_each_entry_safe(skb, next, head, list) {
5768 			struct rps_dev_flow voidflow, *rflow = &voidflow;
5769 			int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5770 
5771 			if (cpu >= 0) {
5772 				/* Will be handled, remove from list */
5773 				skb_list_del_init(skb);
5774 				enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5775 			}
5776 		}
5777 	}
5778 #endif
5779 	__netif_receive_skb_list(head);
5780 	rcu_read_unlock();
5781 }
5782 
5783 /**
5784  *	netif_receive_skb - process receive buffer from network
5785  *	@skb: buffer to process
5786  *
5787  *	netif_receive_skb() is the main receive data processing function.
5788  *	It always succeeds. The buffer may be dropped during processing
5789  *	for congestion control or by the protocol layers.
5790  *
5791  *	This function may only be called from softirq context and interrupts
5792  *	should be enabled.
5793  *
5794  *	Return values (usually ignored):
5795  *	NET_RX_SUCCESS: no congestion
5796  *	NET_RX_DROP: packet was dropped
5797  */
5798 int netif_receive_skb(struct sk_buff *skb)
5799 {
5800 	int ret;
5801 
5802 	trace_netif_receive_skb_entry(skb);
5803 
5804 	ret = netif_receive_skb_internal(skb);
5805 	trace_netif_receive_skb_exit(ret);
5806 
5807 	return ret;
5808 }
5809 EXPORT_SYMBOL(netif_receive_skb);
5810 
5811 /**
5812  *	netif_receive_skb_list - process many receive buffers from network
5813  *	@head: list of skbs to process.
5814  *
5815  *	Since return value of netif_receive_skb() is normally ignored, and
5816  *	wouldn't be meaningful for a list, this function returns void.
5817  *
5818  *	This function may only be called from softirq context and interrupts
5819  *	should be enabled.
5820  */
5821 void netif_receive_skb_list(struct list_head *head)
5822 {
5823 	struct sk_buff *skb;
5824 
5825 	if (list_empty(head))
5826 		return;
5827 	if (trace_netif_receive_skb_list_entry_enabled()) {
5828 		list_for_each_entry(skb, head, list)
5829 			trace_netif_receive_skb_list_entry(skb);
5830 	}
5831 	netif_receive_skb_list_internal(head);
5832 	trace_netif_receive_skb_list_exit(0);
5833 }
5834 EXPORT_SYMBOL(netif_receive_skb_list);
5835 
5836 static DEFINE_PER_CPU(struct work_struct, flush_works);
5837 
5838 /* Network device is going away, flush any packets still pending */
5839 static void flush_backlog(struct work_struct *work)
5840 {
5841 	struct sk_buff *skb, *tmp;
5842 	struct softnet_data *sd;
5843 
5844 	local_bh_disable();
5845 	sd = this_cpu_ptr(&softnet_data);
5846 
5847 	rps_lock_irq_disable(sd);
5848 	skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5849 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5850 			__skb_unlink(skb, &sd->input_pkt_queue);
5851 			dev_kfree_skb_irq(skb);
5852 			input_queue_head_incr(sd);
5853 		}
5854 	}
5855 	rps_unlock_irq_enable(sd);
5856 
5857 	skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5858 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5859 			__skb_unlink(skb, &sd->process_queue);
5860 			kfree_skb(skb);
5861 			input_queue_head_incr(sd);
5862 		}
5863 	}
5864 	local_bh_enable();
5865 }
5866 
5867 static bool flush_required(int cpu)
5868 {
5869 #if IS_ENABLED(CONFIG_RPS)
5870 	struct softnet_data *sd = &per_cpu(softnet_data, cpu);
5871 	bool do_flush;
5872 
5873 	rps_lock_irq_disable(sd);
5874 
5875 	/* as insertion into process_queue happens with the rps lock held,
5876 	 * process_queue access may race only with dequeue
5877 	 */
5878 	do_flush = !skb_queue_empty(&sd->input_pkt_queue) ||
5879 		   !skb_queue_empty_lockless(&sd->process_queue);
5880 	rps_unlock_irq_enable(sd);
5881 
5882 	return do_flush;
5883 #endif
5884 	/* without RPS we can't safely check input_pkt_queue: during a
5885 	 * concurrent remote skb_queue_splice() we can detect as empty both
5886 	 * input_pkt_queue and process_queue even if the latter could end-up
5887 	 * containing a lot of packets.
5888 	 */
5889 	return true;
5890 }
5891 
5892 static void flush_all_backlogs(void)
5893 {
5894 	static cpumask_t flush_cpus;
5895 	unsigned int cpu;
5896 
5897 	/* since we are under rtnl lock protection we can use static data
5898 	 * for the cpumask and avoid allocating on stack the possibly
5899 	 * large mask
5900 	 */
5901 	ASSERT_RTNL();
5902 
5903 	cpus_read_lock();
5904 
5905 	cpumask_clear(&flush_cpus);
5906 	for_each_online_cpu(cpu) {
5907 		if (flush_required(cpu)) {
5908 			queue_work_on(cpu, system_highpri_wq,
5909 				      per_cpu_ptr(&flush_works, cpu));
5910 			cpumask_set_cpu(cpu, &flush_cpus);
5911 		}
5912 	}
5913 
5914 	/* we can have in flight packet[s] on the cpus we are not flushing,
5915 	 * synchronize_net() in unregister_netdevice_many() will take care of
5916 	 * them
5917 	 */
5918 	for_each_cpu(cpu, &flush_cpus)
5919 		flush_work(per_cpu_ptr(&flush_works, cpu));
5920 
5921 	cpus_read_unlock();
5922 }
5923 
5924 static void net_rps_send_ipi(struct softnet_data *remsd)
5925 {
5926 #ifdef CONFIG_RPS
5927 	while (remsd) {
5928 		struct softnet_data *next = remsd->rps_ipi_next;
5929 
5930 		if (cpu_online(remsd->cpu))
5931 			smp_call_function_single_async(remsd->cpu, &remsd->csd);
5932 		remsd = next;
5933 	}
5934 #endif
5935 }
5936 
5937 /*
5938  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
5939  * Note: called with local irq disabled, but exits with local irq enabled.
5940  */
5941 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
5942 {
5943 #ifdef CONFIG_RPS
5944 	struct softnet_data *remsd = sd->rps_ipi_list;
5945 
5946 	if (remsd) {
5947 		sd->rps_ipi_list = NULL;
5948 
5949 		local_irq_enable();
5950 
5951 		/* Send pending IPI's to kick RPS processing on remote cpus. */
5952 		net_rps_send_ipi(remsd);
5953 	} else
5954 #endif
5955 		local_irq_enable();
5956 }
5957 
5958 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
5959 {
5960 #ifdef CONFIG_RPS
5961 	return sd->rps_ipi_list != NULL;
5962 #else
5963 	return false;
5964 #endif
5965 }
5966 
5967 static int process_backlog(struct napi_struct *napi, int quota)
5968 {
5969 	struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
5970 	bool again = true;
5971 	int work = 0;
5972 
5973 	/* Check if we have pending ipi, its better to send them now,
5974 	 * not waiting net_rx_action() end.
5975 	 */
5976 	if (sd_has_rps_ipi_waiting(sd)) {
5977 		local_irq_disable();
5978 		net_rps_action_and_irq_enable(sd);
5979 	}
5980 
5981 	napi->weight = READ_ONCE(net_hotdata.dev_rx_weight);
5982 	while (again) {
5983 		struct sk_buff *skb;
5984 
5985 		while ((skb = __skb_dequeue(&sd->process_queue))) {
5986 			rcu_read_lock();
5987 			__netif_receive_skb(skb);
5988 			rcu_read_unlock();
5989 			input_queue_head_incr(sd);
5990 			if (++work >= quota)
5991 				return work;
5992 
5993 		}
5994 
5995 		rps_lock_irq_disable(sd);
5996 		if (skb_queue_empty(&sd->input_pkt_queue)) {
5997 			/*
5998 			 * Inline a custom version of __napi_complete().
5999 			 * only current cpu owns and manipulates this napi,
6000 			 * and NAPI_STATE_SCHED is the only possible flag set
6001 			 * on backlog.
6002 			 * We can use a plain write instead of clear_bit(),
6003 			 * and we dont need an smp_mb() memory barrier.
6004 			 */
6005 			napi->state = 0;
6006 			again = false;
6007 		} else {
6008 			skb_queue_splice_tail_init(&sd->input_pkt_queue,
6009 						   &sd->process_queue);
6010 		}
6011 		rps_unlock_irq_enable(sd);
6012 	}
6013 
6014 	return work;
6015 }
6016 
6017 /**
6018  * __napi_schedule - schedule for receive
6019  * @n: entry to schedule
6020  *
6021  * The entry's receive function will be scheduled to run.
6022  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
6023  */
6024 void __napi_schedule(struct napi_struct *n)
6025 {
6026 	unsigned long flags;
6027 
6028 	local_irq_save(flags);
6029 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
6030 	local_irq_restore(flags);
6031 }
6032 EXPORT_SYMBOL(__napi_schedule);
6033 
6034 /**
6035  *	napi_schedule_prep - check if napi can be scheduled
6036  *	@n: napi context
6037  *
6038  * Test if NAPI routine is already running, and if not mark
6039  * it as running.  This is used as a condition variable to
6040  * insure only one NAPI poll instance runs.  We also make
6041  * sure there is no pending NAPI disable.
6042  */
6043 bool napi_schedule_prep(struct napi_struct *n)
6044 {
6045 	unsigned long new, val = READ_ONCE(n->state);
6046 
6047 	do {
6048 		if (unlikely(val & NAPIF_STATE_DISABLE))
6049 			return false;
6050 		new = val | NAPIF_STATE_SCHED;
6051 
6052 		/* Sets STATE_MISSED bit if STATE_SCHED was already set
6053 		 * This was suggested by Alexander Duyck, as compiler
6054 		 * emits better code than :
6055 		 * if (val & NAPIF_STATE_SCHED)
6056 		 *     new |= NAPIF_STATE_MISSED;
6057 		 */
6058 		new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6059 						   NAPIF_STATE_MISSED;
6060 	} while (!try_cmpxchg(&n->state, &val, new));
6061 
6062 	return !(val & NAPIF_STATE_SCHED);
6063 }
6064 EXPORT_SYMBOL(napi_schedule_prep);
6065 
6066 /**
6067  * __napi_schedule_irqoff - schedule for receive
6068  * @n: entry to schedule
6069  *
6070  * Variant of __napi_schedule() assuming hard irqs are masked.
6071  *
6072  * On PREEMPT_RT enabled kernels this maps to __napi_schedule()
6073  * because the interrupt disabled assumption might not be true
6074  * due to force-threaded interrupts and spinlock substitution.
6075  */
6076 void __napi_schedule_irqoff(struct napi_struct *n)
6077 {
6078 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6079 		____napi_schedule(this_cpu_ptr(&softnet_data), n);
6080 	else
6081 		__napi_schedule(n);
6082 }
6083 EXPORT_SYMBOL(__napi_schedule_irqoff);
6084 
6085 bool napi_complete_done(struct napi_struct *n, int work_done)
6086 {
6087 	unsigned long flags, val, new, timeout = 0;
6088 	bool ret = true;
6089 
6090 	/*
6091 	 * 1) Don't let napi dequeue from the cpu poll list
6092 	 *    just in case its running on a different cpu.
6093 	 * 2) If we are busy polling, do nothing here, we have
6094 	 *    the guarantee we will be called later.
6095 	 */
6096 	if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6097 				 NAPIF_STATE_IN_BUSY_POLL)))
6098 		return false;
6099 
6100 	if (work_done) {
6101 		if (n->gro_bitmask)
6102 			timeout = READ_ONCE(n->dev->gro_flush_timeout);
6103 		n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs);
6104 	}
6105 	if (n->defer_hard_irqs_count > 0) {
6106 		n->defer_hard_irqs_count--;
6107 		timeout = READ_ONCE(n->dev->gro_flush_timeout);
6108 		if (timeout)
6109 			ret = false;
6110 	}
6111 	if (n->gro_bitmask) {
6112 		/* When the NAPI instance uses a timeout and keeps postponing
6113 		 * it, we need to bound somehow the time packets are kept in
6114 		 * the GRO layer
6115 		 */
6116 		napi_gro_flush(n, !!timeout);
6117 	}
6118 
6119 	gro_normal_list(n);
6120 
6121 	if (unlikely(!list_empty(&n->poll_list))) {
6122 		/* If n->poll_list is not empty, we need to mask irqs */
6123 		local_irq_save(flags);
6124 		list_del_init(&n->poll_list);
6125 		local_irq_restore(flags);
6126 	}
6127 	WRITE_ONCE(n->list_owner, -1);
6128 
6129 	val = READ_ONCE(n->state);
6130 	do {
6131 		WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6132 
6133 		new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED |
6134 			      NAPIF_STATE_SCHED_THREADED |
6135 			      NAPIF_STATE_PREFER_BUSY_POLL);
6136 
6137 		/* If STATE_MISSED was set, leave STATE_SCHED set,
6138 		 * because we will call napi->poll() one more time.
6139 		 * This C code was suggested by Alexander Duyck to help gcc.
6140 		 */
6141 		new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6142 						    NAPIF_STATE_SCHED;
6143 	} while (!try_cmpxchg(&n->state, &val, new));
6144 
6145 	if (unlikely(val & NAPIF_STATE_MISSED)) {
6146 		__napi_schedule(n);
6147 		return false;
6148 	}
6149 
6150 	if (timeout)
6151 		hrtimer_start(&n->timer, ns_to_ktime(timeout),
6152 			      HRTIMER_MODE_REL_PINNED);
6153 	return ret;
6154 }
6155 EXPORT_SYMBOL(napi_complete_done);
6156 
6157 /* must be called under rcu_read_lock(), as we dont take a reference */
6158 struct napi_struct *napi_by_id(unsigned int napi_id)
6159 {
6160 	unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6161 	struct napi_struct *napi;
6162 
6163 	hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6164 		if (napi->napi_id == napi_id)
6165 			return napi;
6166 
6167 	return NULL;
6168 }
6169 
6170 static void skb_defer_free_flush(struct softnet_data *sd)
6171 {
6172 	struct sk_buff *skb, *next;
6173 
6174 	/* Paired with WRITE_ONCE() in skb_attempt_defer_free() */
6175 	if (!READ_ONCE(sd->defer_list))
6176 		return;
6177 
6178 	spin_lock(&sd->defer_lock);
6179 	skb = sd->defer_list;
6180 	sd->defer_list = NULL;
6181 	sd->defer_count = 0;
6182 	spin_unlock(&sd->defer_lock);
6183 
6184 	while (skb != NULL) {
6185 		next = skb->next;
6186 		napi_consume_skb(skb, 1);
6187 		skb = next;
6188 	}
6189 }
6190 
6191 #if defined(CONFIG_NET_RX_BUSY_POLL)
6192 
6193 static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule)
6194 {
6195 	if (!skip_schedule) {
6196 		gro_normal_list(napi);
6197 		__napi_schedule(napi);
6198 		return;
6199 	}
6200 
6201 	if (napi->gro_bitmask) {
6202 		/* flush too old packets
6203 		 * If HZ < 1000, flush all packets.
6204 		 */
6205 		napi_gro_flush(napi, HZ >= 1000);
6206 	}
6207 
6208 	gro_normal_list(napi);
6209 	clear_bit(NAPI_STATE_SCHED, &napi->state);
6210 }
6211 
6212 enum {
6213 	NAPI_F_PREFER_BUSY_POLL	= 1,
6214 	NAPI_F_END_ON_RESCHED	= 2,
6215 };
6216 
6217 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock,
6218 			   unsigned flags, u16 budget)
6219 {
6220 	bool skip_schedule = false;
6221 	unsigned long timeout;
6222 	int rc;
6223 
6224 	/* Busy polling means there is a high chance device driver hard irq
6225 	 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6226 	 * set in napi_schedule_prep().
6227 	 * Since we are about to call napi->poll() once more, we can safely
6228 	 * clear NAPI_STATE_MISSED.
6229 	 *
6230 	 * Note: x86 could use a single "lock and ..." instruction
6231 	 * to perform these two clear_bit()
6232 	 */
6233 	clear_bit(NAPI_STATE_MISSED, &napi->state);
6234 	clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6235 
6236 	local_bh_disable();
6237 
6238 	if (flags & NAPI_F_PREFER_BUSY_POLL) {
6239 		napi->defer_hard_irqs_count = READ_ONCE(napi->dev->napi_defer_hard_irqs);
6240 		timeout = READ_ONCE(napi->dev->gro_flush_timeout);
6241 		if (napi->defer_hard_irqs_count && timeout) {
6242 			hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED);
6243 			skip_schedule = true;
6244 		}
6245 	}
6246 
6247 	/* All we really want here is to re-enable device interrupts.
6248 	 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6249 	 */
6250 	rc = napi->poll(napi, budget);
6251 	/* We can't gro_normal_list() here, because napi->poll() might have
6252 	 * rearmed the napi (napi_complete_done()) in which case it could
6253 	 * already be running on another CPU.
6254 	 */
6255 	trace_napi_poll(napi, rc, budget);
6256 	netpoll_poll_unlock(have_poll_lock);
6257 	if (rc == budget)
6258 		__busy_poll_stop(napi, skip_schedule);
6259 	local_bh_enable();
6260 }
6261 
6262 static void __napi_busy_loop(unsigned int napi_id,
6263 		      bool (*loop_end)(void *, unsigned long),
6264 		      void *loop_end_arg, unsigned flags, u16 budget)
6265 {
6266 	unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6267 	int (*napi_poll)(struct napi_struct *napi, int budget);
6268 	void *have_poll_lock = NULL;
6269 	struct napi_struct *napi;
6270 
6271 	WARN_ON_ONCE(!rcu_read_lock_held());
6272 
6273 restart:
6274 	napi_poll = NULL;
6275 
6276 	napi = napi_by_id(napi_id);
6277 	if (!napi)
6278 		return;
6279 
6280 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6281 		preempt_disable();
6282 	for (;;) {
6283 		int work = 0;
6284 
6285 		local_bh_disable();
6286 		if (!napi_poll) {
6287 			unsigned long val = READ_ONCE(napi->state);
6288 
6289 			/* If multiple threads are competing for this napi,
6290 			 * we avoid dirtying napi->state as much as we can.
6291 			 */
6292 			if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6293 				   NAPIF_STATE_IN_BUSY_POLL)) {
6294 				if (flags & NAPI_F_PREFER_BUSY_POLL)
6295 					set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6296 				goto count;
6297 			}
6298 			if (cmpxchg(&napi->state, val,
6299 				    val | NAPIF_STATE_IN_BUSY_POLL |
6300 					  NAPIF_STATE_SCHED) != val) {
6301 				if (flags & NAPI_F_PREFER_BUSY_POLL)
6302 					set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6303 				goto count;
6304 			}
6305 			have_poll_lock = netpoll_poll_lock(napi);
6306 			napi_poll = napi->poll;
6307 		}
6308 		work = napi_poll(napi, budget);
6309 		trace_napi_poll(napi, work, budget);
6310 		gro_normal_list(napi);
6311 count:
6312 		if (work > 0)
6313 			__NET_ADD_STATS(dev_net(napi->dev),
6314 					LINUX_MIB_BUSYPOLLRXPACKETS, work);
6315 		skb_defer_free_flush(this_cpu_ptr(&softnet_data));
6316 		local_bh_enable();
6317 
6318 		if (!loop_end || loop_end(loop_end_arg, start_time))
6319 			break;
6320 
6321 		if (unlikely(need_resched())) {
6322 			if (flags & NAPI_F_END_ON_RESCHED)
6323 				break;
6324 			if (napi_poll)
6325 				busy_poll_stop(napi, have_poll_lock, flags, budget);
6326 			if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6327 				preempt_enable();
6328 			rcu_read_unlock();
6329 			cond_resched();
6330 			rcu_read_lock();
6331 			if (loop_end(loop_end_arg, start_time))
6332 				return;
6333 			goto restart;
6334 		}
6335 		cpu_relax();
6336 	}
6337 	if (napi_poll)
6338 		busy_poll_stop(napi, have_poll_lock, flags, budget);
6339 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6340 		preempt_enable();
6341 }
6342 
6343 void napi_busy_loop_rcu(unsigned int napi_id,
6344 			bool (*loop_end)(void *, unsigned long),
6345 			void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6346 {
6347 	unsigned flags = NAPI_F_END_ON_RESCHED;
6348 
6349 	if (prefer_busy_poll)
6350 		flags |= NAPI_F_PREFER_BUSY_POLL;
6351 
6352 	__napi_busy_loop(napi_id, loop_end, loop_end_arg, flags, budget);
6353 }
6354 
6355 void napi_busy_loop(unsigned int napi_id,
6356 		    bool (*loop_end)(void *, unsigned long),
6357 		    void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6358 {
6359 	unsigned flags = prefer_busy_poll ? NAPI_F_PREFER_BUSY_POLL : 0;
6360 
6361 	rcu_read_lock();
6362 	__napi_busy_loop(napi_id, loop_end, loop_end_arg, flags, budget);
6363 	rcu_read_unlock();
6364 }
6365 EXPORT_SYMBOL(napi_busy_loop);
6366 
6367 #endif /* CONFIG_NET_RX_BUSY_POLL */
6368 
6369 static void napi_hash_add(struct napi_struct *napi)
6370 {
6371 	if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state))
6372 		return;
6373 
6374 	spin_lock(&napi_hash_lock);
6375 
6376 	/* 0..NR_CPUS range is reserved for sender_cpu use */
6377 	do {
6378 		if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6379 			napi_gen_id = MIN_NAPI_ID;
6380 	} while (napi_by_id(napi_gen_id));
6381 	napi->napi_id = napi_gen_id;
6382 
6383 	hlist_add_head_rcu(&napi->napi_hash_node,
6384 			   &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6385 
6386 	spin_unlock(&napi_hash_lock);
6387 }
6388 
6389 /* Warning : caller is responsible to make sure rcu grace period
6390  * is respected before freeing memory containing @napi
6391  */
6392 static void napi_hash_del(struct napi_struct *napi)
6393 {
6394 	spin_lock(&napi_hash_lock);
6395 
6396 	hlist_del_init_rcu(&napi->napi_hash_node);
6397 
6398 	spin_unlock(&napi_hash_lock);
6399 }
6400 
6401 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6402 {
6403 	struct napi_struct *napi;
6404 
6405 	napi = container_of(timer, struct napi_struct, timer);
6406 
6407 	/* Note : we use a relaxed variant of napi_schedule_prep() not setting
6408 	 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6409 	 */
6410 	if (!napi_disable_pending(napi) &&
6411 	    !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) {
6412 		clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6413 		__napi_schedule_irqoff(napi);
6414 	}
6415 
6416 	return HRTIMER_NORESTART;
6417 }
6418 
6419 static void init_gro_hash(struct napi_struct *napi)
6420 {
6421 	int i;
6422 
6423 	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6424 		INIT_LIST_HEAD(&napi->gro_hash[i].list);
6425 		napi->gro_hash[i].count = 0;
6426 	}
6427 	napi->gro_bitmask = 0;
6428 }
6429 
6430 int dev_set_threaded(struct net_device *dev, bool threaded)
6431 {
6432 	struct napi_struct *napi;
6433 	int err = 0;
6434 
6435 	if (dev->threaded == threaded)
6436 		return 0;
6437 
6438 	if (threaded) {
6439 		list_for_each_entry(napi, &dev->napi_list, dev_list) {
6440 			if (!napi->thread) {
6441 				err = napi_kthread_create(napi);
6442 				if (err) {
6443 					threaded = false;
6444 					break;
6445 				}
6446 			}
6447 		}
6448 	}
6449 
6450 	dev->threaded = threaded;
6451 
6452 	/* Make sure kthread is created before THREADED bit
6453 	 * is set.
6454 	 */
6455 	smp_mb__before_atomic();
6456 
6457 	/* Setting/unsetting threaded mode on a napi might not immediately
6458 	 * take effect, if the current napi instance is actively being
6459 	 * polled. In this case, the switch between threaded mode and
6460 	 * softirq mode will happen in the next round of napi_schedule().
6461 	 * This should not cause hiccups/stalls to the live traffic.
6462 	 */
6463 	list_for_each_entry(napi, &dev->napi_list, dev_list)
6464 		assign_bit(NAPI_STATE_THREADED, &napi->state, threaded);
6465 
6466 	return err;
6467 }
6468 EXPORT_SYMBOL(dev_set_threaded);
6469 
6470 /**
6471  * netif_queue_set_napi - Associate queue with the napi
6472  * @dev: device to which NAPI and queue belong
6473  * @queue_index: Index of queue
6474  * @type: queue type as RX or TX
6475  * @napi: NAPI context, pass NULL to clear previously set NAPI
6476  *
6477  * Set queue with its corresponding napi context. This should be done after
6478  * registering the NAPI handler for the queue-vector and the queues have been
6479  * mapped to the corresponding interrupt vector.
6480  */
6481 void netif_queue_set_napi(struct net_device *dev, unsigned int queue_index,
6482 			  enum netdev_queue_type type, struct napi_struct *napi)
6483 {
6484 	struct netdev_rx_queue *rxq;
6485 	struct netdev_queue *txq;
6486 
6487 	if (WARN_ON_ONCE(napi && !napi->dev))
6488 		return;
6489 	if (dev->reg_state >= NETREG_REGISTERED)
6490 		ASSERT_RTNL();
6491 
6492 	switch (type) {
6493 	case NETDEV_QUEUE_TYPE_RX:
6494 		rxq = __netif_get_rx_queue(dev, queue_index);
6495 		rxq->napi = napi;
6496 		return;
6497 	case NETDEV_QUEUE_TYPE_TX:
6498 		txq = netdev_get_tx_queue(dev, queue_index);
6499 		txq->napi = napi;
6500 		return;
6501 	default:
6502 		return;
6503 	}
6504 }
6505 EXPORT_SYMBOL(netif_queue_set_napi);
6506 
6507 void netif_napi_add_weight(struct net_device *dev, struct napi_struct *napi,
6508 			   int (*poll)(struct napi_struct *, int), int weight)
6509 {
6510 	if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state)))
6511 		return;
6512 
6513 	INIT_LIST_HEAD(&napi->poll_list);
6514 	INIT_HLIST_NODE(&napi->napi_hash_node);
6515 	hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6516 	napi->timer.function = napi_watchdog;
6517 	init_gro_hash(napi);
6518 	napi->skb = NULL;
6519 	INIT_LIST_HEAD(&napi->rx_list);
6520 	napi->rx_count = 0;
6521 	napi->poll = poll;
6522 	if (weight > NAPI_POLL_WEIGHT)
6523 		netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6524 				weight);
6525 	napi->weight = weight;
6526 	napi->dev = dev;
6527 #ifdef CONFIG_NETPOLL
6528 	napi->poll_owner = -1;
6529 #endif
6530 	napi->list_owner = -1;
6531 	set_bit(NAPI_STATE_SCHED, &napi->state);
6532 	set_bit(NAPI_STATE_NPSVC, &napi->state);
6533 	list_add_rcu(&napi->dev_list, &dev->napi_list);
6534 	napi_hash_add(napi);
6535 	napi_get_frags_check(napi);
6536 	/* Create kthread for this napi if dev->threaded is set.
6537 	 * Clear dev->threaded if kthread creation failed so that
6538 	 * threaded mode will not be enabled in napi_enable().
6539 	 */
6540 	if (dev->threaded && napi_kthread_create(napi))
6541 		dev->threaded = 0;
6542 	netif_napi_set_irq(napi, -1);
6543 }
6544 EXPORT_SYMBOL(netif_napi_add_weight);
6545 
6546 void napi_disable(struct napi_struct *n)
6547 {
6548 	unsigned long val, new;
6549 
6550 	might_sleep();
6551 	set_bit(NAPI_STATE_DISABLE, &n->state);
6552 
6553 	val = READ_ONCE(n->state);
6554 	do {
6555 		while (val & (NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC)) {
6556 			usleep_range(20, 200);
6557 			val = READ_ONCE(n->state);
6558 		}
6559 
6560 		new = val | NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC;
6561 		new &= ~(NAPIF_STATE_THREADED | NAPIF_STATE_PREFER_BUSY_POLL);
6562 	} while (!try_cmpxchg(&n->state, &val, new));
6563 
6564 	hrtimer_cancel(&n->timer);
6565 
6566 	clear_bit(NAPI_STATE_DISABLE, &n->state);
6567 }
6568 EXPORT_SYMBOL(napi_disable);
6569 
6570 /**
6571  *	napi_enable - enable NAPI scheduling
6572  *	@n: NAPI context
6573  *
6574  * Resume NAPI from being scheduled on this context.
6575  * Must be paired with napi_disable.
6576  */
6577 void napi_enable(struct napi_struct *n)
6578 {
6579 	unsigned long new, val = READ_ONCE(n->state);
6580 
6581 	do {
6582 		BUG_ON(!test_bit(NAPI_STATE_SCHED, &val));
6583 
6584 		new = val & ~(NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC);
6585 		if (n->dev->threaded && n->thread)
6586 			new |= NAPIF_STATE_THREADED;
6587 	} while (!try_cmpxchg(&n->state, &val, new));
6588 }
6589 EXPORT_SYMBOL(napi_enable);
6590 
6591 static void flush_gro_hash(struct napi_struct *napi)
6592 {
6593 	int i;
6594 
6595 	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6596 		struct sk_buff *skb, *n;
6597 
6598 		list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6599 			kfree_skb(skb);
6600 		napi->gro_hash[i].count = 0;
6601 	}
6602 }
6603 
6604 /* Must be called in process context */
6605 void __netif_napi_del(struct napi_struct *napi)
6606 {
6607 	if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state))
6608 		return;
6609 
6610 	napi_hash_del(napi);
6611 	list_del_rcu(&napi->dev_list);
6612 	napi_free_frags(napi);
6613 
6614 	flush_gro_hash(napi);
6615 	napi->gro_bitmask = 0;
6616 
6617 	if (napi->thread) {
6618 		kthread_stop(napi->thread);
6619 		napi->thread = NULL;
6620 	}
6621 }
6622 EXPORT_SYMBOL(__netif_napi_del);
6623 
6624 static int __napi_poll(struct napi_struct *n, bool *repoll)
6625 {
6626 	int work, weight;
6627 
6628 	weight = n->weight;
6629 
6630 	/* This NAPI_STATE_SCHED test is for avoiding a race
6631 	 * with netpoll's poll_napi().  Only the entity which
6632 	 * obtains the lock and sees NAPI_STATE_SCHED set will
6633 	 * actually make the ->poll() call.  Therefore we avoid
6634 	 * accidentally calling ->poll() when NAPI is not scheduled.
6635 	 */
6636 	work = 0;
6637 	if (napi_is_scheduled(n)) {
6638 		work = n->poll(n, weight);
6639 		trace_napi_poll(n, work, weight);
6640 
6641 		xdp_do_check_flushed(n);
6642 	}
6643 
6644 	if (unlikely(work > weight))
6645 		netdev_err_once(n->dev, "NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
6646 				n->poll, work, weight);
6647 
6648 	if (likely(work < weight))
6649 		return work;
6650 
6651 	/* Drivers must not modify the NAPI state if they
6652 	 * consume the entire weight.  In such cases this code
6653 	 * still "owns" the NAPI instance and therefore can
6654 	 * move the instance around on the list at-will.
6655 	 */
6656 	if (unlikely(napi_disable_pending(n))) {
6657 		napi_complete(n);
6658 		return work;
6659 	}
6660 
6661 	/* The NAPI context has more processing work, but busy-polling
6662 	 * is preferred. Exit early.
6663 	 */
6664 	if (napi_prefer_busy_poll(n)) {
6665 		if (napi_complete_done(n, work)) {
6666 			/* If timeout is not set, we need to make sure
6667 			 * that the NAPI is re-scheduled.
6668 			 */
6669 			napi_schedule(n);
6670 		}
6671 		return work;
6672 	}
6673 
6674 	if (n->gro_bitmask) {
6675 		/* flush too old packets
6676 		 * If HZ < 1000, flush all packets.
6677 		 */
6678 		napi_gro_flush(n, HZ >= 1000);
6679 	}
6680 
6681 	gro_normal_list(n);
6682 
6683 	/* Some drivers may have called napi_schedule
6684 	 * prior to exhausting their budget.
6685 	 */
6686 	if (unlikely(!list_empty(&n->poll_list))) {
6687 		pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6688 			     n->dev ? n->dev->name : "backlog");
6689 		return work;
6690 	}
6691 
6692 	*repoll = true;
6693 
6694 	return work;
6695 }
6696 
6697 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6698 {
6699 	bool do_repoll = false;
6700 	void *have;
6701 	int work;
6702 
6703 	list_del_init(&n->poll_list);
6704 
6705 	have = netpoll_poll_lock(n);
6706 
6707 	work = __napi_poll(n, &do_repoll);
6708 
6709 	if (do_repoll)
6710 		list_add_tail(&n->poll_list, repoll);
6711 
6712 	netpoll_poll_unlock(have);
6713 
6714 	return work;
6715 }
6716 
6717 static int napi_thread_wait(struct napi_struct *napi)
6718 {
6719 	bool woken = false;
6720 
6721 	set_current_state(TASK_INTERRUPTIBLE);
6722 
6723 	while (!kthread_should_stop()) {
6724 		/* Testing SCHED_THREADED bit here to make sure the current
6725 		 * kthread owns this napi and could poll on this napi.
6726 		 * Testing SCHED bit is not enough because SCHED bit might be
6727 		 * set by some other busy poll thread or by napi_disable().
6728 		 */
6729 		if (test_bit(NAPI_STATE_SCHED_THREADED, &napi->state) || woken) {
6730 			WARN_ON(!list_empty(&napi->poll_list));
6731 			__set_current_state(TASK_RUNNING);
6732 			return 0;
6733 		}
6734 
6735 		schedule();
6736 		/* woken being true indicates this thread owns this napi. */
6737 		woken = true;
6738 		set_current_state(TASK_INTERRUPTIBLE);
6739 	}
6740 	__set_current_state(TASK_RUNNING);
6741 
6742 	return -1;
6743 }
6744 
6745 static int napi_threaded_poll(void *data)
6746 {
6747 	struct napi_struct *napi = data;
6748 	struct softnet_data *sd;
6749 	void *have;
6750 
6751 	while (!napi_thread_wait(napi)) {
6752 		unsigned long last_qs = jiffies;
6753 
6754 		for (;;) {
6755 			bool repoll = false;
6756 
6757 			local_bh_disable();
6758 			sd = this_cpu_ptr(&softnet_data);
6759 			sd->in_napi_threaded_poll = true;
6760 
6761 			have = netpoll_poll_lock(napi);
6762 			__napi_poll(napi, &repoll);
6763 			netpoll_poll_unlock(have);
6764 
6765 			sd->in_napi_threaded_poll = false;
6766 			barrier();
6767 
6768 			if (sd_has_rps_ipi_waiting(sd)) {
6769 				local_irq_disable();
6770 				net_rps_action_and_irq_enable(sd);
6771 			}
6772 			skb_defer_free_flush(sd);
6773 			local_bh_enable();
6774 
6775 			if (!repoll)
6776 				break;
6777 
6778 			rcu_softirq_qs_periodic(last_qs);
6779 			cond_resched();
6780 		}
6781 	}
6782 	return 0;
6783 }
6784 
6785 static __latent_entropy void net_rx_action(struct softirq_action *h)
6786 {
6787 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
6788 	unsigned long time_limit = jiffies +
6789 		usecs_to_jiffies(READ_ONCE(net_hotdata.netdev_budget_usecs));
6790 	int budget = READ_ONCE(net_hotdata.netdev_budget);
6791 	LIST_HEAD(list);
6792 	LIST_HEAD(repoll);
6793 
6794 start:
6795 	sd->in_net_rx_action = true;
6796 	local_irq_disable();
6797 	list_splice_init(&sd->poll_list, &list);
6798 	local_irq_enable();
6799 
6800 	for (;;) {
6801 		struct napi_struct *n;
6802 
6803 		skb_defer_free_flush(sd);
6804 
6805 		if (list_empty(&list)) {
6806 			if (list_empty(&repoll)) {
6807 				sd->in_net_rx_action = false;
6808 				barrier();
6809 				/* We need to check if ____napi_schedule()
6810 				 * had refilled poll_list while
6811 				 * sd->in_net_rx_action was true.
6812 				 */
6813 				if (!list_empty(&sd->poll_list))
6814 					goto start;
6815 				if (!sd_has_rps_ipi_waiting(sd))
6816 					goto end;
6817 			}
6818 			break;
6819 		}
6820 
6821 		n = list_first_entry(&list, struct napi_struct, poll_list);
6822 		budget -= napi_poll(n, &repoll);
6823 
6824 		/* If softirq window is exhausted then punt.
6825 		 * Allow this to run for 2 jiffies since which will allow
6826 		 * an average latency of 1.5/HZ.
6827 		 */
6828 		if (unlikely(budget <= 0 ||
6829 			     time_after_eq(jiffies, time_limit))) {
6830 			sd->time_squeeze++;
6831 			break;
6832 		}
6833 	}
6834 
6835 	local_irq_disable();
6836 
6837 	list_splice_tail_init(&sd->poll_list, &list);
6838 	list_splice_tail(&repoll, &list);
6839 	list_splice(&list, &sd->poll_list);
6840 	if (!list_empty(&sd->poll_list))
6841 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
6842 	else
6843 		sd->in_net_rx_action = false;
6844 
6845 	net_rps_action_and_irq_enable(sd);
6846 end:;
6847 }
6848 
6849 struct netdev_adjacent {
6850 	struct net_device *dev;
6851 	netdevice_tracker dev_tracker;
6852 
6853 	/* upper master flag, there can only be one master device per list */
6854 	bool master;
6855 
6856 	/* lookup ignore flag */
6857 	bool ignore;
6858 
6859 	/* counter for the number of times this device was added to us */
6860 	u16 ref_nr;
6861 
6862 	/* private field for the users */
6863 	void *private;
6864 
6865 	struct list_head list;
6866 	struct rcu_head rcu;
6867 };
6868 
6869 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
6870 						 struct list_head *adj_list)
6871 {
6872 	struct netdev_adjacent *adj;
6873 
6874 	list_for_each_entry(adj, adj_list, list) {
6875 		if (adj->dev == adj_dev)
6876 			return adj;
6877 	}
6878 	return NULL;
6879 }
6880 
6881 static int ____netdev_has_upper_dev(struct net_device *upper_dev,
6882 				    struct netdev_nested_priv *priv)
6883 {
6884 	struct net_device *dev = (struct net_device *)priv->data;
6885 
6886 	return upper_dev == dev;
6887 }
6888 
6889 /**
6890  * netdev_has_upper_dev - Check if device is linked to an upper device
6891  * @dev: device
6892  * @upper_dev: upper device to check
6893  *
6894  * Find out if a device is linked to specified upper device and return true
6895  * in case it is. Note that this checks only immediate upper device,
6896  * not through a complete stack of devices. The caller must hold the RTNL lock.
6897  */
6898 bool netdev_has_upper_dev(struct net_device *dev,
6899 			  struct net_device *upper_dev)
6900 {
6901 	struct netdev_nested_priv priv = {
6902 		.data = (void *)upper_dev,
6903 	};
6904 
6905 	ASSERT_RTNL();
6906 
6907 	return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6908 					     &priv);
6909 }
6910 EXPORT_SYMBOL(netdev_has_upper_dev);
6911 
6912 /**
6913  * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device
6914  * @dev: device
6915  * @upper_dev: upper device to check
6916  *
6917  * Find out if a device is linked to specified upper device and return true
6918  * in case it is. Note that this checks the entire upper device chain.
6919  * The caller must hold rcu lock.
6920  */
6921 
6922 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
6923 				  struct net_device *upper_dev)
6924 {
6925 	struct netdev_nested_priv priv = {
6926 		.data = (void *)upper_dev,
6927 	};
6928 
6929 	return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6930 					       &priv);
6931 }
6932 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
6933 
6934 /**
6935  * netdev_has_any_upper_dev - Check if device is linked to some device
6936  * @dev: device
6937  *
6938  * Find out if a device is linked to an upper device and return true in case
6939  * it is. The caller must hold the RTNL lock.
6940  */
6941 bool netdev_has_any_upper_dev(struct net_device *dev)
6942 {
6943 	ASSERT_RTNL();
6944 
6945 	return !list_empty(&dev->adj_list.upper);
6946 }
6947 EXPORT_SYMBOL(netdev_has_any_upper_dev);
6948 
6949 /**
6950  * netdev_master_upper_dev_get - Get master upper device
6951  * @dev: device
6952  *
6953  * Find a master upper device and return pointer to it or NULL in case
6954  * it's not there. The caller must hold the RTNL lock.
6955  */
6956 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
6957 {
6958 	struct netdev_adjacent *upper;
6959 
6960 	ASSERT_RTNL();
6961 
6962 	if (list_empty(&dev->adj_list.upper))
6963 		return NULL;
6964 
6965 	upper = list_first_entry(&dev->adj_list.upper,
6966 				 struct netdev_adjacent, list);
6967 	if (likely(upper->master))
6968 		return upper->dev;
6969 	return NULL;
6970 }
6971 EXPORT_SYMBOL(netdev_master_upper_dev_get);
6972 
6973 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
6974 {
6975 	struct netdev_adjacent *upper;
6976 
6977 	ASSERT_RTNL();
6978 
6979 	if (list_empty(&dev->adj_list.upper))
6980 		return NULL;
6981 
6982 	upper = list_first_entry(&dev->adj_list.upper,
6983 				 struct netdev_adjacent, list);
6984 	if (likely(upper->master) && !upper->ignore)
6985 		return upper->dev;
6986 	return NULL;
6987 }
6988 
6989 /**
6990  * netdev_has_any_lower_dev - Check if device is linked to some device
6991  * @dev: device
6992  *
6993  * Find out if a device is linked to a lower device and return true in case
6994  * it is. The caller must hold the RTNL lock.
6995  */
6996 static bool netdev_has_any_lower_dev(struct net_device *dev)
6997 {
6998 	ASSERT_RTNL();
6999 
7000 	return !list_empty(&dev->adj_list.lower);
7001 }
7002 
7003 void *netdev_adjacent_get_private(struct list_head *adj_list)
7004 {
7005 	struct netdev_adjacent *adj;
7006 
7007 	adj = list_entry(adj_list, struct netdev_adjacent, list);
7008 
7009 	return adj->private;
7010 }
7011 EXPORT_SYMBOL(netdev_adjacent_get_private);
7012 
7013 /**
7014  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
7015  * @dev: device
7016  * @iter: list_head ** of the current position
7017  *
7018  * Gets the next device from the dev's upper list, starting from iter
7019  * position. The caller must hold RCU read lock.
7020  */
7021 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
7022 						 struct list_head **iter)
7023 {
7024 	struct netdev_adjacent *upper;
7025 
7026 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7027 
7028 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7029 
7030 	if (&upper->list == &dev->adj_list.upper)
7031 		return NULL;
7032 
7033 	*iter = &upper->list;
7034 
7035 	return upper->dev;
7036 }
7037 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
7038 
7039 static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
7040 						  struct list_head **iter,
7041 						  bool *ignore)
7042 {
7043 	struct netdev_adjacent *upper;
7044 
7045 	upper = list_entry((*iter)->next, struct netdev_adjacent, list);
7046 
7047 	if (&upper->list == &dev->adj_list.upper)
7048 		return NULL;
7049 
7050 	*iter = &upper->list;
7051 	*ignore = upper->ignore;
7052 
7053 	return upper->dev;
7054 }
7055 
7056 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
7057 						    struct list_head **iter)
7058 {
7059 	struct netdev_adjacent *upper;
7060 
7061 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7062 
7063 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7064 
7065 	if (&upper->list == &dev->adj_list.upper)
7066 		return NULL;
7067 
7068 	*iter = &upper->list;
7069 
7070 	return upper->dev;
7071 }
7072 
7073 static int __netdev_walk_all_upper_dev(struct net_device *dev,
7074 				       int (*fn)(struct net_device *dev,
7075 					 struct netdev_nested_priv *priv),
7076 				       struct netdev_nested_priv *priv)
7077 {
7078 	struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7079 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7080 	int ret, cur = 0;
7081 	bool ignore;
7082 
7083 	now = dev;
7084 	iter = &dev->adj_list.upper;
7085 
7086 	while (1) {
7087 		if (now != dev) {
7088 			ret = fn(now, priv);
7089 			if (ret)
7090 				return ret;
7091 		}
7092 
7093 		next = NULL;
7094 		while (1) {
7095 			udev = __netdev_next_upper_dev(now, &iter, &ignore);
7096 			if (!udev)
7097 				break;
7098 			if (ignore)
7099 				continue;
7100 
7101 			next = udev;
7102 			niter = &udev->adj_list.upper;
7103 			dev_stack[cur] = now;
7104 			iter_stack[cur++] = iter;
7105 			break;
7106 		}
7107 
7108 		if (!next) {
7109 			if (!cur)
7110 				return 0;
7111 			next = dev_stack[--cur];
7112 			niter = iter_stack[cur];
7113 		}
7114 
7115 		now = next;
7116 		iter = niter;
7117 	}
7118 
7119 	return 0;
7120 }
7121 
7122 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
7123 				  int (*fn)(struct net_device *dev,
7124 					    struct netdev_nested_priv *priv),
7125 				  struct netdev_nested_priv *priv)
7126 {
7127 	struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7128 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7129 	int ret, cur = 0;
7130 
7131 	now = dev;
7132 	iter = &dev->adj_list.upper;
7133 
7134 	while (1) {
7135 		if (now != dev) {
7136 			ret = fn(now, priv);
7137 			if (ret)
7138 				return ret;
7139 		}
7140 
7141 		next = NULL;
7142 		while (1) {
7143 			udev = netdev_next_upper_dev_rcu(now, &iter);
7144 			if (!udev)
7145 				break;
7146 
7147 			next = udev;
7148 			niter = &udev->adj_list.upper;
7149 			dev_stack[cur] = now;
7150 			iter_stack[cur++] = iter;
7151 			break;
7152 		}
7153 
7154 		if (!next) {
7155 			if (!cur)
7156 				return 0;
7157 			next = dev_stack[--cur];
7158 			niter = iter_stack[cur];
7159 		}
7160 
7161 		now = next;
7162 		iter = niter;
7163 	}
7164 
7165 	return 0;
7166 }
7167 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
7168 
7169 static bool __netdev_has_upper_dev(struct net_device *dev,
7170 				   struct net_device *upper_dev)
7171 {
7172 	struct netdev_nested_priv priv = {
7173 		.flags = 0,
7174 		.data = (void *)upper_dev,
7175 	};
7176 
7177 	ASSERT_RTNL();
7178 
7179 	return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
7180 					   &priv);
7181 }
7182 
7183 /**
7184  * netdev_lower_get_next_private - Get the next ->private from the
7185  *				   lower neighbour list
7186  * @dev: device
7187  * @iter: list_head ** of the current position
7188  *
7189  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7190  * list, starting from iter position. The caller must hold either hold the
7191  * RTNL lock or its own locking that guarantees that the neighbour lower
7192  * list will remain unchanged.
7193  */
7194 void *netdev_lower_get_next_private(struct net_device *dev,
7195 				    struct list_head **iter)
7196 {
7197 	struct netdev_adjacent *lower;
7198 
7199 	lower = list_entry(*iter, struct netdev_adjacent, list);
7200 
7201 	if (&lower->list == &dev->adj_list.lower)
7202 		return NULL;
7203 
7204 	*iter = lower->list.next;
7205 
7206 	return lower->private;
7207 }
7208 EXPORT_SYMBOL(netdev_lower_get_next_private);
7209 
7210 /**
7211  * netdev_lower_get_next_private_rcu - Get the next ->private from the
7212  *				       lower neighbour list, RCU
7213  *				       variant
7214  * @dev: device
7215  * @iter: list_head ** of the current position
7216  *
7217  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7218  * list, starting from iter position. The caller must hold RCU read lock.
7219  */
7220 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
7221 					struct list_head **iter)
7222 {
7223 	struct netdev_adjacent *lower;
7224 
7225 	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
7226 
7227 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7228 
7229 	if (&lower->list == &dev->adj_list.lower)
7230 		return NULL;
7231 
7232 	*iter = &lower->list;
7233 
7234 	return lower->private;
7235 }
7236 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
7237 
7238 /**
7239  * netdev_lower_get_next - Get the next device from the lower neighbour
7240  *                         list
7241  * @dev: device
7242  * @iter: list_head ** of the current position
7243  *
7244  * Gets the next netdev_adjacent from the dev's lower neighbour
7245  * list, starting from iter position. The caller must hold RTNL lock or
7246  * its own locking that guarantees that the neighbour lower
7247  * list will remain unchanged.
7248  */
7249 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
7250 {
7251 	struct netdev_adjacent *lower;
7252 
7253 	lower = list_entry(*iter, struct netdev_adjacent, list);
7254 
7255 	if (&lower->list == &dev->adj_list.lower)
7256 		return NULL;
7257 
7258 	*iter = lower->list.next;
7259 
7260 	return lower->dev;
7261 }
7262 EXPORT_SYMBOL(netdev_lower_get_next);
7263 
7264 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7265 						struct list_head **iter)
7266 {
7267 	struct netdev_adjacent *lower;
7268 
7269 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7270 
7271 	if (&lower->list == &dev->adj_list.lower)
7272 		return NULL;
7273 
7274 	*iter = &lower->list;
7275 
7276 	return lower->dev;
7277 }
7278 
7279 static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7280 						  struct list_head **iter,
7281 						  bool *ignore)
7282 {
7283 	struct netdev_adjacent *lower;
7284 
7285 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7286 
7287 	if (&lower->list == &dev->adj_list.lower)
7288 		return NULL;
7289 
7290 	*iter = &lower->list;
7291 	*ignore = lower->ignore;
7292 
7293 	return lower->dev;
7294 }
7295 
7296 int netdev_walk_all_lower_dev(struct net_device *dev,
7297 			      int (*fn)(struct net_device *dev,
7298 					struct netdev_nested_priv *priv),
7299 			      struct netdev_nested_priv *priv)
7300 {
7301 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7302 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7303 	int ret, cur = 0;
7304 
7305 	now = dev;
7306 	iter = &dev->adj_list.lower;
7307 
7308 	while (1) {
7309 		if (now != dev) {
7310 			ret = fn(now, priv);
7311 			if (ret)
7312 				return ret;
7313 		}
7314 
7315 		next = NULL;
7316 		while (1) {
7317 			ldev = netdev_next_lower_dev(now, &iter);
7318 			if (!ldev)
7319 				break;
7320 
7321 			next = ldev;
7322 			niter = &ldev->adj_list.lower;
7323 			dev_stack[cur] = now;
7324 			iter_stack[cur++] = iter;
7325 			break;
7326 		}
7327 
7328 		if (!next) {
7329 			if (!cur)
7330 				return 0;
7331 			next = dev_stack[--cur];
7332 			niter = iter_stack[cur];
7333 		}
7334 
7335 		now = next;
7336 		iter = niter;
7337 	}
7338 
7339 	return 0;
7340 }
7341 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
7342 
7343 static int __netdev_walk_all_lower_dev(struct net_device *dev,
7344 				       int (*fn)(struct net_device *dev,
7345 					 struct netdev_nested_priv *priv),
7346 				       struct netdev_nested_priv *priv)
7347 {
7348 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7349 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7350 	int ret, cur = 0;
7351 	bool ignore;
7352 
7353 	now = dev;
7354 	iter = &dev->adj_list.lower;
7355 
7356 	while (1) {
7357 		if (now != dev) {
7358 			ret = fn(now, priv);
7359 			if (ret)
7360 				return ret;
7361 		}
7362 
7363 		next = NULL;
7364 		while (1) {
7365 			ldev = __netdev_next_lower_dev(now, &iter, &ignore);
7366 			if (!ldev)
7367 				break;
7368 			if (ignore)
7369 				continue;
7370 
7371 			next = ldev;
7372 			niter = &ldev->adj_list.lower;
7373 			dev_stack[cur] = now;
7374 			iter_stack[cur++] = iter;
7375 			break;
7376 		}
7377 
7378 		if (!next) {
7379 			if (!cur)
7380 				return 0;
7381 			next = dev_stack[--cur];
7382 			niter = iter_stack[cur];
7383 		}
7384 
7385 		now = next;
7386 		iter = niter;
7387 	}
7388 
7389 	return 0;
7390 }
7391 
7392 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
7393 					     struct list_head **iter)
7394 {
7395 	struct netdev_adjacent *lower;
7396 
7397 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7398 	if (&lower->list == &dev->adj_list.lower)
7399 		return NULL;
7400 
7401 	*iter = &lower->list;
7402 
7403 	return lower->dev;
7404 }
7405 EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
7406 
7407 static u8 __netdev_upper_depth(struct net_device *dev)
7408 {
7409 	struct net_device *udev;
7410 	struct list_head *iter;
7411 	u8 max_depth = 0;
7412 	bool ignore;
7413 
7414 	for (iter = &dev->adj_list.upper,
7415 	     udev = __netdev_next_upper_dev(dev, &iter, &ignore);
7416 	     udev;
7417 	     udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
7418 		if (ignore)
7419 			continue;
7420 		if (max_depth < udev->upper_level)
7421 			max_depth = udev->upper_level;
7422 	}
7423 
7424 	return max_depth;
7425 }
7426 
7427 static u8 __netdev_lower_depth(struct net_device *dev)
7428 {
7429 	struct net_device *ldev;
7430 	struct list_head *iter;
7431 	u8 max_depth = 0;
7432 	bool ignore;
7433 
7434 	for (iter = &dev->adj_list.lower,
7435 	     ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
7436 	     ldev;
7437 	     ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
7438 		if (ignore)
7439 			continue;
7440 		if (max_depth < ldev->lower_level)
7441 			max_depth = ldev->lower_level;
7442 	}
7443 
7444 	return max_depth;
7445 }
7446 
7447 static int __netdev_update_upper_level(struct net_device *dev,
7448 				       struct netdev_nested_priv *__unused)
7449 {
7450 	dev->upper_level = __netdev_upper_depth(dev) + 1;
7451 	return 0;
7452 }
7453 
7454 #ifdef CONFIG_LOCKDEP
7455 static LIST_HEAD(net_unlink_list);
7456 
7457 static void net_unlink_todo(struct net_device *dev)
7458 {
7459 	if (list_empty(&dev->unlink_list))
7460 		list_add_tail(&dev->unlink_list, &net_unlink_list);
7461 }
7462 #endif
7463 
7464 static int __netdev_update_lower_level(struct net_device *dev,
7465 				       struct netdev_nested_priv *priv)
7466 {
7467 	dev->lower_level = __netdev_lower_depth(dev) + 1;
7468 
7469 #ifdef CONFIG_LOCKDEP
7470 	if (!priv)
7471 		return 0;
7472 
7473 	if (priv->flags & NESTED_SYNC_IMM)
7474 		dev->nested_level = dev->lower_level - 1;
7475 	if (priv->flags & NESTED_SYNC_TODO)
7476 		net_unlink_todo(dev);
7477 #endif
7478 	return 0;
7479 }
7480 
7481 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7482 				  int (*fn)(struct net_device *dev,
7483 					    struct netdev_nested_priv *priv),
7484 				  struct netdev_nested_priv *priv)
7485 {
7486 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7487 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7488 	int ret, cur = 0;
7489 
7490 	now = dev;
7491 	iter = &dev->adj_list.lower;
7492 
7493 	while (1) {
7494 		if (now != dev) {
7495 			ret = fn(now, priv);
7496 			if (ret)
7497 				return ret;
7498 		}
7499 
7500 		next = NULL;
7501 		while (1) {
7502 			ldev = netdev_next_lower_dev_rcu(now, &iter);
7503 			if (!ldev)
7504 				break;
7505 
7506 			next = ldev;
7507 			niter = &ldev->adj_list.lower;
7508 			dev_stack[cur] = now;
7509 			iter_stack[cur++] = iter;
7510 			break;
7511 		}
7512 
7513 		if (!next) {
7514 			if (!cur)
7515 				return 0;
7516 			next = dev_stack[--cur];
7517 			niter = iter_stack[cur];
7518 		}
7519 
7520 		now = next;
7521 		iter = niter;
7522 	}
7523 
7524 	return 0;
7525 }
7526 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
7527 
7528 /**
7529  * netdev_lower_get_first_private_rcu - Get the first ->private from the
7530  *				       lower neighbour list, RCU
7531  *				       variant
7532  * @dev: device
7533  *
7534  * Gets the first netdev_adjacent->private from the dev's lower neighbour
7535  * list. The caller must hold RCU read lock.
7536  */
7537 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
7538 {
7539 	struct netdev_adjacent *lower;
7540 
7541 	lower = list_first_or_null_rcu(&dev->adj_list.lower,
7542 			struct netdev_adjacent, list);
7543 	if (lower)
7544 		return lower->private;
7545 	return NULL;
7546 }
7547 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
7548 
7549 /**
7550  * netdev_master_upper_dev_get_rcu - Get master upper device
7551  * @dev: device
7552  *
7553  * Find a master upper device and return pointer to it or NULL in case
7554  * it's not there. The caller must hold the RCU read lock.
7555  */
7556 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
7557 {
7558 	struct netdev_adjacent *upper;
7559 
7560 	upper = list_first_or_null_rcu(&dev->adj_list.upper,
7561 				       struct netdev_adjacent, list);
7562 	if (upper && likely(upper->master))
7563 		return upper->dev;
7564 	return NULL;
7565 }
7566 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
7567 
7568 static int netdev_adjacent_sysfs_add(struct net_device *dev,
7569 			      struct net_device *adj_dev,
7570 			      struct list_head *dev_list)
7571 {
7572 	char linkname[IFNAMSIZ+7];
7573 
7574 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
7575 		"upper_%s" : "lower_%s", adj_dev->name);
7576 	return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
7577 				 linkname);
7578 }
7579 static void netdev_adjacent_sysfs_del(struct net_device *dev,
7580 			       char *name,
7581 			       struct list_head *dev_list)
7582 {
7583 	char linkname[IFNAMSIZ+7];
7584 
7585 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
7586 		"upper_%s" : "lower_%s", name);
7587 	sysfs_remove_link(&(dev->dev.kobj), linkname);
7588 }
7589 
7590 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
7591 						 struct net_device *adj_dev,
7592 						 struct list_head *dev_list)
7593 {
7594 	return (dev_list == &dev->adj_list.upper ||
7595 		dev_list == &dev->adj_list.lower) &&
7596 		net_eq(dev_net(dev), dev_net(adj_dev));
7597 }
7598 
7599 static int __netdev_adjacent_dev_insert(struct net_device *dev,
7600 					struct net_device *adj_dev,
7601 					struct list_head *dev_list,
7602 					void *private, bool master)
7603 {
7604 	struct netdev_adjacent *adj;
7605 	int ret;
7606 
7607 	adj = __netdev_find_adj(adj_dev, dev_list);
7608 
7609 	if (adj) {
7610 		adj->ref_nr += 1;
7611 		pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7612 			 dev->name, adj_dev->name, adj->ref_nr);
7613 
7614 		return 0;
7615 	}
7616 
7617 	adj = kmalloc(sizeof(*adj), GFP_KERNEL);
7618 	if (!adj)
7619 		return -ENOMEM;
7620 
7621 	adj->dev = adj_dev;
7622 	adj->master = master;
7623 	adj->ref_nr = 1;
7624 	adj->private = private;
7625 	adj->ignore = false;
7626 	netdev_hold(adj_dev, &adj->dev_tracker, GFP_KERNEL);
7627 
7628 	pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7629 		 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
7630 
7631 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
7632 		ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
7633 		if (ret)
7634 			goto free_adj;
7635 	}
7636 
7637 	/* Ensure that master link is always the first item in list. */
7638 	if (master) {
7639 		ret = sysfs_create_link(&(dev->dev.kobj),
7640 					&(adj_dev->dev.kobj), "master");
7641 		if (ret)
7642 			goto remove_symlinks;
7643 
7644 		list_add_rcu(&adj->list, dev_list);
7645 	} else {
7646 		list_add_tail_rcu(&adj->list, dev_list);
7647 	}
7648 
7649 	return 0;
7650 
7651 remove_symlinks:
7652 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7653 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7654 free_adj:
7655 	netdev_put(adj_dev, &adj->dev_tracker);
7656 	kfree(adj);
7657 
7658 	return ret;
7659 }
7660 
7661 static void __netdev_adjacent_dev_remove(struct net_device *dev,
7662 					 struct net_device *adj_dev,
7663 					 u16 ref_nr,
7664 					 struct list_head *dev_list)
7665 {
7666 	struct netdev_adjacent *adj;
7667 
7668 	pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
7669 		 dev->name, adj_dev->name, ref_nr);
7670 
7671 	adj = __netdev_find_adj(adj_dev, dev_list);
7672 
7673 	if (!adj) {
7674 		pr_err("Adjacency does not exist for device %s from %s\n",
7675 		       dev->name, adj_dev->name);
7676 		WARN_ON(1);
7677 		return;
7678 	}
7679 
7680 	if (adj->ref_nr > ref_nr) {
7681 		pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
7682 			 dev->name, adj_dev->name, ref_nr,
7683 			 adj->ref_nr - ref_nr);
7684 		adj->ref_nr -= ref_nr;
7685 		return;
7686 	}
7687 
7688 	if (adj->master)
7689 		sysfs_remove_link(&(dev->dev.kobj), "master");
7690 
7691 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7692 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7693 
7694 	list_del_rcu(&adj->list);
7695 	pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
7696 		 adj_dev->name, dev->name, adj_dev->name);
7697 	netdev_put(adj_dev, &adj->dev_tracker);
7698 	kfree_rcu(adj, rcu);
7699 }
7700 
7701 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
7702 					    struct net_device *upper_dev,
7703 					    struct list_head *up_list,
7704 					    struct list_head *down_list,
7705 					    void *private, bool master)
7706 {
7707 	int ret;
7708 
7709 	ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
7710 					   private, master);
7711 	if (ret)
7712 		return ret;
7713 
7714 	ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
7715 					   private, false);
7716 	if (ret) {
7717 		__netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
7718 		return ret;
7719 	}
7720 
7721 	return 0;
7722 }
7723 
7724 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
7725 					       struct net_device *upper_dev,
7726 					       u16 ref_nr,
7727 					       struct list_head *up_list,
7728 					       struct list_head *down_list)
7729 {
7730 	__netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
7731 	__netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
7732 }
7733 
7734 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
7735 						struct net_device *upper_dev,
7736 						void *private, bool master)
7737 {
7738 	return __netdev_adjacent_dev_link_lists(dev, upper_dev,
7739 						&dev->adj_list.upper,
7740 						&upper_dev->adj_list.lower,
7741 						private, master);
7742 }
7743 
7744 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
7745 						   struct net_device *upper_dev)
7746 {
7747 	__netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
7748 					   &dev->adj_list.upper,
7749 					   &upper_dev->adj_list.lower);
7750 }
7751 
7752 static int __netdev_upper_dev_link(struct net_device *dev,
7753 				   struct net_device *upper_dev, bool master,
7754 				   void *upper_priv, void *upper_info,
7755 				   struct netdev_nested_priv *priv,
7756 				   struct netlink_ext_ack *extack)
7757 {
7758 	struct netdev_notifier_changeupper_info changeupper_info = {
7759 		.info = {
7760 			.dev = dev,
7761 			.extack = extack,
7762 		},
7763 		.upper_dev = upper_dev,
7764 		.master = master,
7765 		.linking = true,
7766 		.upper_info = upper_info,
7767 	};
7768 	struct net_device *master_dev;
7769 	int ret = 0;
7770 
7771 	ASSERT_RTNL();
7772 
7773 	if (dev == upper_dev)
7774 		return -EBUSY;
7775 
7776 	/* To prevent loops, check if dev is not upper device to upper_dev. */
7777 	if (__netdev_has_upper_dev(upper_dev, dev))
7778 		return -EBUSY;
7779 
7780 	if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
7781 		return -EMLINK;
7782 
7783 	if (!master) {
7784 		if (__netdev_has_upper_dev(dev, upper_dev))
7785 			return -EEXIST;
7786 	} else {
7787 		master_dev = __netdev_master_upper_dev_get(dev);
7788 		if (master_dev)
7789 			return master_dev == upper_dev ? -EEXIST : -EBUSY;
7790 	}
7791 
7792 	ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7793 					    &changeupper_info.info);
7794 	ret = notifier_to_errno(ret);
7795 	if (ret)
7796 		return ret;
7797 
7798 	ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
7799 						   master);
7800 	if (ret)
7801 		return ret;
7802 
7803 	ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7804 					    &changeupper_info.info);
7805 	ret = notifier_to_errno(ret);
7806 	if (ret)
7807 		goto rollback;
7808 
7809 	__netdev_update_upper_level(dev, NULL);
7810 	__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7811 
7812 	__netdev_update_lower_level(upper_dev, priv);
7813 	__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7814 				    priv);
7815 
7816 	return 0;
7817 
7818 rollback:
7819 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7820 
7821 	return ret;
7822 }
7823 
7824 /**
7825  * netdev_upper_dev_link - Add a link to the upper device
7826  * @dev: device
7827  * @upper_dev: new upper device
7828  * @extack: netlink extended ack
7829  *
7830  * Adds a link to device which is upper to this one. The caller must hold
7831  * the RTNL lock. On a failure a negative errno code is returned.
7832  * On success the reference counts are adjusted and the function
7833  * returns zero.
7834  */
7835 int netdev_upper_dev_link(struct net_device *dev,
7836 			  struct net_device *upper_dev,
7837 			  struct netlink_ext_ack *extack)
7838 {
7839 	struct netdev_nested_priv priv = {
7840 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7841 		.data = NULL,
7842 	};
7843 
7844 	return __netdev_upper_dev_link(dev, upper_dev, false,
7845 				       NULL, NULL, &priv, extack);
7846 }
7847 EXPORT_SYMBOL(netdev_upper_dev_link);
7848 
7849 /**
7850  * netdev_master_upper_dev_link - Add a master link to the upper device
7851  * @dev: device
7852  * @upper_dev: new upper device
7853  * @upper_priv: upper device private
7854  * @upper_info: upper info to be passed down via notifier
7855  * @extack: netlink extended ack
7856  *
7857  * Adds a link to device which is upper to this one. In this case, only
7858  * one master upper device can be linked, although other non-master devices
7859  * might be linked as well. The caller must hold the RTNL lock.
7860  * On a failure a negative errno code is returned. On success the reference
7861  * counts are adjusted and the function returns zero.
7862  */
7863 int netdev_master_upper_dev_link(struct net_device *dev,
7864 				 struct net_device *upper_dev,
7865 				 void *upper_priv, void *upper_info,
7866 				 struct netlink_ext_ack *extack)
7867 {
7868 	struct netdev_nested_priv priv = {
7869 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7870 		.data = NULL,
7871 	};
7872 
7873 	return __netdev_upper_dev_link(dev, upper_dev, true,
7874 				       upper_priv, upper_info, &priv, extack);
7875 }
7876 EXPORT_SYMBOL(netdev_master_upper_dev_link);
7877 
7878 static void __netdev_upper_dev_unlink(struct net_device *dev,
7879 				      struct net_device *upper_dev,
7880 				      struct netdev_nested_priv *priv)
7881 {
7882 	struct netdev_notifier_changeupper_info changeupper_info = {
7883 		.info = {
7884 			.dev = dev,
7885 		},
7886 		.upper_dev = upper_dev,
7887 		.linking = false,
7888 	};
7889 
7890 	ASSERT_RTNL();
7891 
7892 	changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
7893 
7894 	call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7895 				      &changeupper_info.info);
7896 
7897 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7898 
7899 	call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7900 				      &changeupper_info.info);
7901 
7902 	__netdev_update_upper_level(dev, NULL);
7903 	__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7904 
7905 	__netdev_update_lower_level(upper_dev, priv);
7906 	__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7907 				    priv);
7908 }
7909 
7910 /**
7911  * netdev_upper_dev_unlink - Removes a link to upper device
7912  * @dev: device
7913  * @upper_dev: new upper device
7914  *
7915  * Removes a link to device which is upper to this one. The caller must hold
7916  * the RTNL lock.
7917  */
7918 void netdev_upper_dev_unlink(struct net_device *dev,
7919 			     struct net_device *upper_dev)
7920 {
7921 	struct netdev_nested_priv priv = {
7922 		.flags = NESTED_SYNC_TODO,
7923 		.data = NULL,
7924 	};
7925 
7926 	__netdev_upper_dev_unlink(dev, upper_dev, &priv);
7927 }
7928 EXPORT_SYMBOL(netdev_upper_dev_unlink);
7929 
7930 static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
7931 				      struct net_device *lower_dev,
7932 				      bool val)
7933 {
7934 	struct netdev_adjacent *adj;
7935 
7936 	adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
7937 	if (adj)
7938 		adj->ignore = val;
7939 
7940 	adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
7941 	if (adj)
7942 		adj->ignore = val;
7943 }
7944 
7945 static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
7946 					struct net_device *lower_dev)
7947 {
7948 	__netdev_adjacent_dev_set(upper_dev, lower_dev, true);
7949 }
7950 
7951 static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
7952 				       struct net_device *lower_dev)
7953 {
7954 	__netdev_adjacent_dev_set(upper_dev, lower_dev, false);
7955 }
7956 
7957 int netdev_adjacent_change_prepare(struct net_device *old_dev,
7958 				   struct net_device *new_dev,
7959 				   struct net_device *dev,
7960 				   struct netlink_ext_ack *extack)
7961 {
7962 	struct netdev_nested_priv priv = {
7963 		.flags = 0,
7964 		.data = NULL,
7965 	};
7966 	int err;
7967 
7968 	if (!new_dev)
7969 		return 0;
7970 
7971 	if (old_dev && new_dev != old_dev)
7972 		netdev_adjacent_dev_disable(dev, old_dev);
7973 	err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv,
7974 				      extack);
7975 	if (err) {
7976 		if (old_dev && new_dev != old_dev)
7977 			netdev_adjacent_dev_enable(dev, old_dev);
7978 		return err;
7979 	}
7980 
7981 	return 0;
7982 }
7983 EXPORT_SYMBOL(netdev_adjacent_change_prepare);
7984 
7985 void netdev_adjacent_change_commit(struct net_device *old_dev,
7986 				   struct net_device *new_dev,
7987 				   struct net_device *dev)
7988 {
7989 	struct netdev_nested_priv priv = {
7990 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7991 		.data = NULL,
7992 	};
7993 
7994 	if (!new_dev || !old_dev)
7995 		return;
7996 
7997 	if (new_dev == old_dev)
7998 		return;
7999 
8000 	netdev_adjacent_dev_enable(dev, old_dev);
8001 	__netdev_upper_dev_unlink(old_dev, dev, &priv);
8002 }
8003 EXPORT_SYMBOL(netdev_adjacent_change_commit);
8004 
8005 void netdev_adjacent_change_abort(struct net_device *old_dev,
8006 				  struct net_device *new_dev,
8007 				  struct net_device *dev)
8008 {
8009 	struct netdev_nested_priv priv = {
8010 		.flags = 0,
8011 		.data = NULL,
8012 	};
8013 
8014 	if (!new_dev)
8015 		return;
8016 
8017 	if (old_dev && new_dev != old_dev)
8018 		netdev_adjacent_dev_enable(dev, old_dev);
8019 
8020 	__netdev_upper_dev_unlink(new_dev, dev, &priv);
8021 }
8022 EXPORT_SYMBOL(netdev_adjacent_change_abort);
8023 
8024 /**
8025  * netdev_bonding_info_change - Dispatch event about slave change
8026  * @dev: device
8027  * @bonding_info: info to dispatch
8028  *
8029  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
8030  * The caller must hold the RTNL lock.
8031  */
8032 void netdev_bonding_info_change(struct net_device *dev,
8033 				struct netdev_bonding_info *bonding_info)
8034 {
8035 	struct netdev_notifier_bonding_info info = {
8036 		.info.dev = dev,
8037 	};
8038 
8039 	memcpy(&info.bonding_info, bonding_info,
8040 	       sizeof(struct netdev_bonding_info));
8041 	call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
8042 				      &info.info);
8043 }
8044 EXPORT_SYMBOL(netdev_bonding_info_change);
8045 
8046 static int netdev_offload_xstats_enable_l3(struct net_device *dev,
8047 					   struct netlink_ext_ack *extack)
8048 {
8049 	struct netdev_notifier_offload_xstats_info info = {
8050 		.info.dev = dev,
8051 		.info.extack = extack,
8052 		.type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
8053 	};
8054 	int err;
8055 	int rc;
8056 
8057 	dev->offload_xstats_l3 = kzalloc(sizeof(*dev->offload_xstats_l3),
8058 					 GFP_KERNEL);
8059 	if (!dev->offload_xstats_l3)
8060 		return -ENOMEM;
8061 
8062 	rc = call_netdevice_notifiers_info_robust(NETDEV_OFFLOAD_XSTATS_ENABLE,
8063 						  NETDEV_OFFLOAD_XSTATS_DISABLE,
8064 						  &info.info);
8065 	err = notifier_to_errno(rc);
8066 	if (err)
8067 		goto free_stats;
8068 
8069 	return 0;
8070 
8071 free_stats:
8072 	kfree(dev->offload_xstats_l3);
8073 	dev->offload_xstats_l3 = NULL;
8074 	return err;
8075 }
8076 
8077 int netdev_offload_xstats_enable(struct net_device *dev,
8078 				 enum netdev_offload_xstats_type type,
8079 				 struct netlink_ext_ack *extack)
8080 {
8081 	ASSERT_RTNL();
8082 
8083 	if (netdev_offload_xstats_enabled(dev, type))
8084 		return -EALREADY;
8085 
8086 	switch (type) {
8087 	case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8088 		return netdev_offload_xstats_enable_l3(dev, extack);
8089 	}
8090 
8091 	WARN_ON(1);
8092 	return -EINVAL;
8093 }
8094 EXPORT_SYMBOL(netdev_offload_xstats_enable);
8095 
8096 static void netdev_offload_xstats_disable_l3(struct net_device *dev)
8097 {
8098 	struct netdev_notifier_offload_xstats_info info = {
8099 		.info.dev = dev,
8100 		.type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
8101 	};
8102 
8103 	call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_DISABLE,
8104 				      &info.info);
8105 	kfree(dev->offload_xstats_l3);
8106 	dev->offload_xstats_l3 = NULL;
8107 }
8108 
8109 int netdev_offload_xstats_disable(struct net_device *dev,
8110 				  enum netdev_offload_xstats_type type)
8111 {
8112 	ASSERT_RTNL();
8113 
8114 	if (!netdev_offload_xstats_enabled(dev, type))
8115 		return -EALREADY;
8116 
8117 	switch (type) {
8118 	case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8119 		netdev_offload_xstats_disable_l3(dev);
8120 		return 0;
8121 	}
8122 
8123 	WARN_ON(1);
8124 	return -EINVAL;
8125 }
8126 EXPORT_SYMBOL(netdev_offload_xstats_disable);
8127 
8128 static void netdev_offload_xstats_disable_all(struct net_device *dev)
8129 {
8130 	netdev_offload_xstats_disable(dev, NETDEV_OFFLOAD_XSTATS_TYPE_L3);
8131 }
8132 
8133 static struct rtnl_hw_stats64 *
8134 netdev_offload_xstats_get_ptr(const struct net_device *dev,
8135 			      enum netdev_offload_xstats_type type)
8136 {
8137 	switch (type) {
8138 	case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8139 		return dev->offload_xstats_l3;
8140 	}
8141 
8142 	WARN_ON(1);
8143 	return NULL;
8144 }
8145 
8146 bool netdev_offload_xstats_enabled(const struct net_device *dev,
8147 				   enum netdev_offload_xstats_type type)
8148 {
8149 	ASSERT_RTNL();
8150 
8151 	return netdev_offload_xstats_get_ptr(dev, type);
8152 }
8153 EXPORT_SYMBOL(netdev_offload_xstats_enabled);
8154 
8155 struct netdev_notifier_offload_xstats_ru {
8156 	bool used;
8157 };
8158 
8159 struct netdev_notifier_offload_xstats_rd {
8160 	struct rtnl_hw_stats64 stats;
8161 	bool used;
8162 };
8163 
8164 static void netdev_hw_stats64_add(struct rtnl_hw_stats64 *dest,
8165 				  const struct rtnl_hw_stats64 *src)
8166 {
8167 	dest->rx_packets	  += src->rx_packets;
8168 	dest->tx_packets	  += src->tx_packets;
8169 	dest->rx_bytes		  += src->rx_bytes;
8170 	dest->tx_bytes		  += src->tx_bytes;
8171 	dest->rx_errors		  += src->rx_errors;
8172 	dest->tx_errors		  += src->tx_errors;
8173 	dest->rx_dropped	  += src->rx_dropped;
8174 	dest->tx_dropped	  += src->tx_dropped;
8175 	dest->multicast		  += src->multicast;
8176 }
8177 
8178 static int netdev_offload_xstats_get_used(struct net_device *dev,
8179 					  enum netdev_offload_xstats_type type,
8180 					  bool *p_used,
8181 					  struct netlink_ext_ack *extack)
8182 {
8183 	struct netdev_notifier_offload_xstats_ru report_used = {};
8184 	struct netdev_notifier_offload_xstats_info info = {
8185 		.info.dev = dev,
8186 		.info.extack = extack,
8187 		.type = type,
8188 		.report_used = &report_used,
8189 	};
8190 	int rc;
8191 
8192 	WARN_ON(!netdev_offload_xstats_enabled(dev, type));
8193 	rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_USED,
8194 					   &info.info);
8195 	*p_used = report_used.used;
8196 	return notifier_to_errno(rc);
8197 }
8198 
8199 static int netdev_offload_xstats_get_stats(struct net_device *dev,
8200 					   enum netdev_offload_xstats_type type,
8201 					   struct rtnl_hw_stats64 *p_stats,
8202 					   bool *p_used,
8203 					   struct netlink_ext_ack *extack)
8204 {
8205 	struct netdev_notifier_offload_xstats_rd report_delta = {};
8206 	struct netdev_notifier_offload_xstats_info info = {
8207 		.info.dev = dev,
8208 		.info.extack = extack,
8209 		.type = type,
8210 		.report_delta = &report_delta,
8211 	};
8212 	struct rtnl_hw_stats64 *stats;
8213 	int rc;
8214 
8215 	stats = netdev_offload_xstats_get_ptr(dev, type);
8216 	if (WARN_ON(!stats))
8217 		return -EINVAL;
8218 
8219 	rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_DELTA,
8220 					   &info.info);
8221 
8222 	/* Cache whatever we got, even if there was an error, otherwise the
8223 	 * successful stats retrievals would get lost.
8224 	 */
8225 	netdev_hw_stats64_add(stats, &report_delta.stats);
8226 
8227 	if (p_stats)
8228 		*p_stats = *stats;
8229 	*p_used = report_delta.used;
8230 
8231 	return notifier_to_errno(rc);
8232 }
8233 
8234 int netdev_offload_xstats_get(struct net_device *dev,
8235 			      enum netdev_offload_xstats_type type,
8236 			      struct rtnl_hw_stats64 *p_stats, bool *p_used,
8237 			      struct netlink_ext_ack *extack)
8238 {
8239 	ASSERT_RTNL();
8240 
8241 	if (p_stats)
8242 		return netdev_offload_xstats_get_stats(dev, type, p_stats,
8243 						       p_used, extack);
8244 	else
8245 		return netdev_offload_xstats_get_used(dev, type, p_used,
8246 						      extack);
8247 }
8248 EXPORT_SYMBOL(netdev_offload_xstats_get);
8249 
8250 void
8251 netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *report_delta,
8252 				   const struct rtnl_hw_stats64 *stats)
8253 {
8254 	report_delta->used = true;
8255 	netdev_hw_stats64_add(&report_delta->stats, stats);
8256 }
8257 EXPORT_SYMBOL(netdev_offload_xstats_report_delta);
8258 
8259 void
8260 netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *report_used)
8261 {
8262 	report_used->used = true;
8263 }
8264 EXPORT_SYMBOL(netdev_offload_xstats_report_used);
8265 
8266 void netdev_offload_xstats_push_delta(struct net_device *dev,
8267 				      enum netdev_offload_xstats_type type,
8268 				      const struct rtnl_hw_stats64 *p_stats)
8269 {
8270 	struct rtnl_hw_stats64 *stats;
8271 
8272 	ASSERT_RTNL();
8273 
8274 	stats = netdev_offload_xstats_get_ptr(dev, type);
8275 	if (WARN_ON(!stats))
8276 		return;
8277 
8278 	netdev_hw_stats64_add(stats, p_stats);
8279 }
8280 EXPORT_SYMBOL(netdev_offload_xstats_push_delta);
8281 
8282 /**
8283  * netdev_get_xmit_slave - Get the xmit slave of master device
8284  * @dev: device
8285  * @skb: The packet
8286  * @all_slaves: assume all the slaves are active
8287  *
8288  * The reference counters are not incremented so the caller must be
8289  * careful with locks. The caller must hold RCU lock.
8290  * %NULL is returned if no slave is found.
8291  */
8292 
8293 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
8294 					 struct sk_buff *skb,
8295 					 bool all_slaves)
8296 {
8297 	const struct net_device_ops *ops = dev->netdev_ops;
8298 
8299 	if (!ops->ndo_get_xmit_slave)
8300 		return NULL;
8301 	return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
8302 }
8303 EXPORT_SYMBOL(netdev_get_xmit_slave);
8304 
8305 static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev,
8306 						  struct sock *sk)
8307 {
8308 	const struct net_device_ops *ops = dev->netdev_ops;
8309 
8310 	if (!ops->ndo_sk_get_lower_dev)
8311 		return NULL;
8312 	return ops->ndo_sk_get_lower_dev(dev, sk);
8313 }
8314 
8315 /**
8316  * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket
8317  * @dev: device
8318  * @sk: the socket
8319  *
8320  * %NULL is returned if no lower device is found.
8321  */
8322 
8323 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
8324 					    struct sock *sk)
8325 {
8326 	struct net_device *lower;
8327 
8328 	lower = netdev_sk_get_lower_dev(dev, sk);
8329 	while (lower) {
8330 		dev = lower;
8331 		lower = netdev_sk_get_lower_dev(dev, sk);
8332 	}
8333 
8334 	return dev;
8335 }
8336 EXPORT_SYMBOL(netdev_sk_get_lowest_dev);
8337 
8338 static void netdev_adjacent_add_links(struct net_device *dev)
8339 {
8340 	struct netdev_adjacent *iter;
8341 
8342 	struct net *net = dev_net(dev);
8343 
8344 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
8345 		if (!net_eq(net, dev_net(iter->dev)))
8346 			continue;
8347 		netdev_adjacent_sysfs_add(iter->dev, dev,
8348 					  &iter->dev->adj_list.lower);
8349 		netdev_adjacent_sysfs_add(dev, iter->dev,
8350 					  &dev->adj_list.upper);
8351 	}
8352 
8353 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
8354 		if (!net_eq(net, dev_net(iter->dev)))
8355 			continue;
8356 		netdev_adjacent_sysfs_add(iter->dev, dev,
8357 					  &iter->dev->adj_list.upper);
8358 		netdev_adjacent_sysfs_add(dev, iter->dev,
8359 					  &dev->adj_list.lower);
8360 	}
8361 }
8362 
8363 static void netdev_adjacent_del_links(struct net_device *dev)
8364 {
8365 	struct netdev_adjacent *iter;
8366 
8367 	struct net *net = dev_net(dev);
8368 
8369 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
8370 		if (!net_eq(net, dev_net(iter->dev)))
8371 			continue;
8372 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
8373 					  &iter->dev->adj_list.lower);
8374 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
8375 					  &dev->adj_list.upper);
8376 	}
8377 
8378 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
8379 		if (!net_eq(net, dev_net(iter->dev)))
8380 			continue;
8381 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
8382 					  &iter->dev->adj_list.upper);
8383 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
8384 					  &dev->adj_list.lower);
8385 	}
8386 }
8387 
8388 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
8389 {
8390 	struct netdev_adjacent *iter;
8391 
8392 	struct net *net = dev_net(dev);
8393 
8394 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
8395 		if (!net_eq(net, dev_net(iter->dev)))
8396 			continue;
8397 		netdev_adjacent_sysfs_del(iter->dev, oldname,
8398 					  &iter->dev->adj_list.lower);
8399 		netdev_adjacent_sysfs_add(iter->dev, dev,
8400 					  &iter->dev->adj_list.lower);
8401 	}
8402 
8403 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
8404 		if (!net_eq(net, dev_net(iter->dev)))
8405 			continue;
8406 		netdev_adjacent_sysfs_del(iter->dev, oldname,
8407 					  &iter->dev->adj_list.upper);
8408 		netdev_adjacent_sysfs_add(iter->dev, dev,
8409 					  &iter->dev->adj_list.upper);
8410 	}
8411 }
8412 
8413 void *netdev_lower_dev_get_private(struct net_device *dev,
8414 				   struct net_device *lower_dev)
8415 {
8416 	struct netdev_adjacent *lower;
8417 
8418 	if (!lower_dev)
8419 		return NULL;
8420 	lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
8421 	if (!lower)
8422 		return NULL;
8423 
8424 	return lower->private;
8425 }
8426 EXPORT_SYMBOL(netdev_lower_dev_get_private);
8427 
8428 
8429 /**
8430  * netdev_lower_state_changed - Dispatch event about lower device state change
8431  * @lower_dev: device
8432  * @lower_state_info: state to dispatch
8433  *
8434  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
8435  * The caller must hold the RTNL lock.
8436  */
8437 void netdev_lower_state_changed(struct net_device *lower_dev,
8438 				void *lower_state_info)
8439 {
8440 	struct netdev_notifier_changelowerstate_info changelowerstate_info = {
8441 		.info.dev = lower_dev,
8442 	};
8443 
8444 	ASSERT_RTNL();
8445 	changelowerstate_info.lower_state_info = lower_state_info;
8446 	call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
8447 				      &changelowerstate_info.info);
8448 }
8449 EXPORT_SYMBOL(netdev_lower_state_changed);
8450 
8451 static void dev_change_rx_flags(struct net_device *dev, int flags)
8452 {
8453 	const struct net_device_ops *ops = dev->netdev_ops;
8454 
8455 	if (ops->ndo_change_rx_flags)
8456 		ops->ndo_change_rx_flags(dev, flags);
8457 }
8458 
8459 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
8460 {
8461 	unsigned int old_flags = dev->flags;
8462 	kuid_t uid;
8463 	kgid_t gid;
8464 
8465 	ASSERT_RTNL();
8466 
8467 	dev->flags |= IFF_PROMISC;
8468 	dev->promiscuity += inc;
8469 	if (dev->promiscuity == 0) {
8470 		/*
8471 		 * Avoid overflow.
8472 		 * If inc causes overflow, untouch promisc and return error.
8473 		 */
8474 		if (inc < 0)
8475 			dev->flags &= ~IFF_PROMISC;
8476 		else {
8477 			dev->promiscuity -= inc;
8478 			netdev_warn(dev, "promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n");
8479 			return -EOVERFLOW;
8480 		}
8481 	}
8482 	if (dev->flags != old_flags) {
8483 		netdev_info(dev, "%s promiscuous mode\n",
8484 			    dev->flags & IFF_PROMISC ? "entered" : "left");
8485 		if (audit_enabled) {
8486 			current_uid_gid(&uid, &gid);
8487 			audit_log(audit_context(), GFP_ATOMIC,
8488 				  AUDIT_ANOM_PROMISCUOUS,
8489 				  "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
8490 				  dev->name, (dev->flags & IFF_PROMISC),
8491 				  (old_flags & IFF_PROMISC),
8492 				  from_kuid(&init_user_ns, audit_get_loginuid(current)),
8493 				  from_kuid(&init_user_ns, uid),
8494 				  from_kgid(&init_user_ns, gid),
8495 				  audit_get_sessionid(current));
8496 		}
8497 
8498 		dev_change_rx_flags(dev, IFF_PROMISC);
8499 	}
8500 	if (notify)
8501 		__dev_notify_flags(dev, old_flags, IFF_PROMISC, 0, NULL);
8502 	return 0;
8503 }
8504 
8505 /**
8506  *	dev_set_promiscuity	- update promiscuity count on a device
8507  *	@dev: device
8508  *	@inc: modifier
8509  *
8510  *	Add or remove promiscuity from a device. While the count in the device
8511  *	remains above zero the interface remains promiscuous. Once it hits zero
8512  *	the device reverts back to normal filtering operation. A negative inc
8513  *	value is used to drop promiscuity on the device.
8514  *	Return 0 if successful or a negative errno code on error.
8515  */
8516 int dev_set_promiscuity(struct net_device *dev, int inc)
8517 {
8518 	unsigned int old_flags = dev->flags;
8519 	int err;
8520 
8521 	err = __dev_set_promiscuity(dev, inc, true);
8522 	if (err < 0)
8523 		return err;
8524 	if (dev->flags != old_flags)
8525 		dev_set_rx_mode(dev);
8526 	return err;
8527 }
8528 EXPORT_SYMBOL(dev_set_promiscuity);
8529 
8530 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
8531 {
8532 	unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
8533 
8534 	ASSERT_RTNL();
8535 
8536 	dev->flags |= IFF_ALLMULTI;
8537 	dev->allmulti += inc;
8538 	if (dev->allmulti == 0) {
8539 		/*
8540 		 * Avoid overflow.
8541 		 * If inc causes overflow, untouch allmulti and return error.
8542 		 */
8543 		if (inc < 0)
8544 			dev->flags &= ~IFF_ALLMULTI;
8545 		else {
8546 			dev->allmulti -= inc;
8547 			netdev_warn(dev, "allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n");
8548 			return -EOVERFLOW;
8549 		}
8550 	}
8551 	if (dev->flags ^ old_flags) {
8552 		netdev_info(dev, "%s allmulticast mode\n",
8553 			    dev->flags & IFF_ALLMULTI ? "entered" : "left");
8554 		dev_change_rx_flags(dev, IFF_ALLMULTI);
8555 		dev_set_rx_mode(dev);
8556 		if (notify)
8557 			__dev_notify_flags(dev, old_flags,
8558 					   dev->gflags ^ old_gflags, 0, NULL);
8559 	}
8560 	return 0;
8561 }
8562 
8563 /**
8564  *	dev_set_allmulti	- update allmulti count on a device
8565  *	@dev: device
8566  *	@inc: modifier
8567  *
8568  *	Add or remove reception of all multicast frames to a device. While the
8569  *	count in the device remains above zero the interface remains listening
8570  *	to all interfaces. Once it hits zero the device reverts back to normal
8571  *	filtering operation. A negative @inc value is used to drop the counter
8572  *	when releasing a resource needing all multicasts.
8573  *	Return 0 if successful or a negative errno code on error.
8574  */
8575 
8576 int dev_set_allmulti(struct net_device *dev, int inc)
8577 {
8578 	return __dev_set_allmulti(dev, inc, true);
8579 }
8580 EXPORT_SYMBOL(dev_set_allmulti);
8581 
8582 /*
8583  *	Upload unicast and multicast address lists to device and
8584  *	configure RX filtering. When the device doesn't support unicast
8585  *	filtering it is put in promiscuous mode while unicast addresses
8586  *	are present.
8587  */
8588 void __dev_set_rx_mode(struct net_device *dev)
8589 {
8590 	const struct net_device_ops *ops = dev->netdev_ops;
8591 
8592 	/* dev_open will call this function so the list will stay sane. */
8593 	if (!(dev->flags&IFF_UP))
8594 		return;
8595 
8596 	if (!netif_device_present(dev))
8597 		return;
8598 
8599 	if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
8600 		/* Unicast addresses changes may only happen under the rtnl,
8601 		 * therefore calling __dev_set_promiscuity here is safe.
8602 		 */
8603 		if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
8604 			__dev_set_promiscuity(dev, 1, false);
8605 			dev->uc_promisc = true;
8606 		} else if (netdev_uc_empty(dev) && dev->uc_promisc) {
8607 			__dev_set_promiscuity(dev, -1, false);
8608 			dev->uc_promisc = false;
8609 		}
8610 	}
8611 
8612 	if (ops->ndo_set_rx_mode)
8613 		ops->ndo_set_rx_mode(dev);
8614 }
8615 
8616 void dev_set_rx_mode(struct net_device *dev)
8617 {
8618 	netif_addr_lock_bh(dev);
8619 	__dev_set_rx_mode(dev);
8620 	netif_addr_unlock_bh(dev);
8621 }
8622 
8623 /**
8624  *	dev_get_flags - get flags reported to userspace
8625  *	@dev: device
8626  *
8627  *	Get the combination of flag bits exported through APIs to userspace.
8628  */
8629 unsigned int dev_get_flags(const struct net_device *dev)
8630 {
8631 	unsigned int flags;
8632 
8633 	flags = (READ_ONCE(dev->flags) & ~(IFF_PROMISC |
8634 				IFF_ALLMULTI |
8635 				IFF_RUNNING |
8636 				IFF_LOWER_UP |
8637 				IFF_DORMANT)) |
8638 		(READ_ONCE(dev->gflags) & (IFF_PROMISC |
8639 				IFF_ALLMULTI));
8640 
8641 	if (netif_running(dev)) {
8642 		if (netif_oper_up(dev))
8643 			flags |= IFF_RUNNING;
8644 		if (netif_carrier_ok(dev))
8645 			flags |= IFF_LOWER_UP;
8646 		if (netif_dormant(dev))
8647 			flags |= IFF_DORMANT;
8648 	}
8649 
8650 	return flags;
8651 }
8652 EXPORT_SYMBOL(dev_get_flags);
8653 
8654 int __dev_change_flags(struct net_device *dev, unsigned int flags,
8655 		       struct netlink_ext_ack *extack)
8656 {
8657 	unsigned int old_flags = dev->flags;
8658 	int ret;
8659 
8660 	ASSERT_RTNL();
8661 
8662 	/*
8663 	 *	Set the flags on our device.
8664 	 */
8665 
8666 	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
8667 			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
8668 			       IFF_AUTOMEDIA)) |
8669 		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
8670 				    IFF_ALLMULTI));
8671 
8672 	/*
8673 	 *	Load in the correct multicast list now the flags have changed.
8674 	 */
8675 
8676 	if ((old_flags ^ flags) & IFF_MULTICAST)
8677 		dev_change_rx_flags(dev, IFF_MULTICAST);
8678 
8679 	dev_set_rx_mode(dev);
8680 
8681 	/*
8682 	 *	Have we downed the interface. We handle IFF_UP ourselves
8683 	 *	according to user attempts to set it, rather than blindly
8684 	 *	setting it.
8685 	 */
8686 
8687 	ret = 0;
8688 	if ((old_flags ^ flags) & IFF_UP) {
8689 		if (old_flags & IFF_UP)
8690 			__dev_close(dev);
8691 		else
8692 			ret = __dev_open(dev, extack);
8693 	}
8694 
8695 	if ((flags ^ dev->gflags) & IFF_PROMISC) {
8696 		int inc = (flags & IFF_PROMISC) ? 1 : -1;
8697 		unsigned int old_flags = dev->flags;
8698 
8699 		dev->gflags ^= IFF_PROMISC;
8700 
8701 		if (__dev_set_promiscuity(dev, inc, false) >= 0)
8702 			if (dev->flags != old_flags)
8703 				dev_set_rx_mode(dev);
8704 	}
8705 
8706 	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
8707 	 * is important. Some (broken) drivers set IFF_PROMISC, when
8708 	 * IFF_ALLMULTI is requested not asking us and not reporting.
8709 	 */
8710 	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
8711 		int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
8712 
8713 		dev->gflags ^= IFF_ALLMULTI;
8714 		__dev_set_allmulti(dev, inc, false);
8715 	}
8716 
8717 	return ret;
8718 }
8719 
8720 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
8721 			unsigned int gchanges, u32 portid,
8722 			const struct nlmsghdr *nlh)
8723 {
8724 	unsigned int changes = dev->flags ^ old_flags;
8725 
8726 	if (gchanges)
8727 		rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC, portid, nlh);
8728 
8729 	if (changes & IFF_UP) {
8730 		if (dev->flags & IFF_UP)
8731 			call_netdevice_notifiers(NETDEV_UP, dev);
8732 		else
8733 			call_netdevice_notifiers(NETDEV_DOWN, dev);
8734 	}
8735 
8736 	if (dev->flags & IFF_UP &&
8737 	    (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
8738 		struct netdev_notifier_change_info change_info = {
8739 			.info = {
8740 				.dev = dev,
8741 			},
8742 			.flags_changed = changes,
8743 		};
8744 
8745 		call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
8746 	}
8747 }
8748 
8749 /**
8750  *	dev_change_flags - change device settings
8751  *	@dev: device
8752  *	@flags: device state flags
8753  *	@extack: netlink extended ack
8754  *
8755  *	Change settings on device based state flags. The flags are
8756  *	in the userspace exported format.
8757  */
8758 int dev_change_flags(struct net_device *dev, unsigned int flags,
8759 		     struct netlink_ext_ack *extack)
8760 {
8761 	int ret;
8762 	unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
8763 
8764 	ret = __dev_change_flags(dev, flags, extack);
8765 	if (ret < 0)
8766 		return ret;
8767 
8768 	changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
8769 	__dev_notify_flags(dev, old_flags, changes, 0, NULL);
8770 	return ret;
8771 }
8772 EXPORT_SYMBOL(dev_change_flags);
8773 
8774 int __dev_set_mtu(struct net_device *dev, int new_mtu)
8775 {
8776 	const struct net_device_ops *ops = dev->netdev_ops;
8777 
8778 	if (ops->ndo_change_mtu)
8779 		return ops->ndo_change_mtu(dev, new_mtu);
8780 
8781 	/* Pairs with all the lockless reads of dev->mtu in the stack */
8782 	WRITE_ONCE(dev->mtu, new_mtu);
8783 	return 0;
8784 }
8785 EXPORT_SYMBOL(__dev_set_mtu);
8786 
8787 int dev_validate_mtu(struct net_device *dev, int new_mtu,
8788 		     struct netlink_ext_ack *extack)
8789 {
8790 	/* MTU must be positive, and in range */
8791 	if (new_mtu < 0 || new_mtu < dev->min_mtu) {
8792 		NL_SET_ERR_MSG(extack, "mtu less than device minimum");
8793 		return -EINVAL;
8794 	}
8795 
8796 	if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
8797 		NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
8798 		return -EINVAL;
8799 	}
8800 	return 0;
8801 }
8802 
8803 /**
8804  *	dev_set_mtu_ext - Change maximum transfer unit
8805  *	@dev: device
8806  *	@new_mtu: new transfer unit
8807  *	@extack: netlink extended ack
8808  *
8809  *	Change the maximum transfer size of the network device.
8810  */
8811 int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
8812 		    struct netlink_ext_ack *extack)
8813 {
8814 	int err, orig_mtu;
8815 
8816 	if (new_mtu == dev->mtu)
8817 		return 0;
8818 
8819 	err = dev_validate_mtu(dev, new_mtu, extack);
8820 	if (err)
8821 		return err;
8822 
8823 	if (!netif_device_present(dev))
8824 		return -ENODEV;
8825 
8826 	err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
8827 	err = notifier_to_errno(err);
8828 	if (err)
8829 		return err;
8830 
8831 	orig_mtu = dev->mtu;
8832 	err = __dev_set_mtu(dev, new_mtu);
8833 
8834 	if (!err) {
8835 		err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8836 						   orig_mtu);
8837 		err = notifier_to_errno(err);
8838 		if (err) {
8839 			/* setting mtu back and notifying everyone again,
8840 			 * so that they have a chance to revert changes.
8841 			 */
8842 			__dev_set_mtu(dev, orig_mtu);
8843 			call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8844 						     new_mtu);
8845 		}
8846 	}
8847 	return err;
8848 }
8849 
8850 int dev_set_mtu(struct net_device *dev, int new_mtu)
8851 {
8852 	struct netlink_ext_ack extack;
8853 	int err;
8854 
8855 	memset(&extack, 0, sizeof(extack));
8856 	err = dev_set_mtu_ext(dev, new_mtu, &extack);
8857 	if (err && extack._msg)
8858 		net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
8859 	return err;
8860 }
8861 EXPORT_SYMBOL(dev_set_mtu);
8862 
8863 /**
8864  *	dev_change_tx_queue_len - Change TX queue length of a netdevice
8865  *	@dev: device
8866  *	@new_len: new tx queue length
8867  */
8868 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
8869 {
8870 	unsigned int orig_len = dev->tx_queue_len;
8871 	int res;
8872 
8873 	if (new_len != (unsigned int)new_len)
8874 		return -ERANGE;
8875 
8876 	if (new_len != orig_len) {
8877 		dev->tx_queue_len = new_len;
8878 		res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
8879 		res = notifier_to_errno(res);
8880 		if (res)
8881 			goto err_rollback;
8882 		res = dev_qdisc_change_tx_queue_len(dev);
8883 		if (res)
8884 			goto err_rollback;
8885 	}
8886 
8887 	return 0;
8888 
8889 err_rollback:
8890 	netdev_err(dev, "refused to change device tx_queue_len\n");
8891 	dev->tx_queue_len = orig_len;
8892 	return res;
8893 }
8894 
8895 /**
8896  *	dev_set_group - Change group this device belongs to
8897  *	@dev: device
8898  *	@new_group: group this device should belong to
8899  */
8900 void dev_set_group(struct net_device *dev, int new_group)
8901 {
8902 	dev->group = new_group;
8903 }
8904 
8905 /**
8906  *	dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
8907  *	@dev: device
8908  *	@addr: new address
8909  *	@extack: netlink extended ack
8910  */
8911 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
8912 			      struct netlink_ext_ack *extack)
8913 {
8914 	struct netdev_notifier_pre_changeaddr_info info = {
8915 		.info.dev = dev,
8916 		.info.extack = extack,
8917 		.dev_addr = addr,
8918 	};
8919 	int rc;
8920 
8921 	rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
8922 	return notifier_to_errno(rc);
8923 }
8924 EXPORT_SYMBOL(dev_pre_changeaddr_notify);
8925 
8926 /**
8927  *	dev_set_mac_address - Change Media Access Control Address
8928  *	@dev: device
8929  *	@sa: new address
8930  *	@extack: netlink extended ack
8931  *
8932  *	Change the hardware (MAC) address of the device
8933  */
8934 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
8935 			struct netlink_ext_ack *extack)
8936 {
8937 	const struct net_device_ops *ops = dev->netdev_ops;
8938 	int err;
8939 
8940 	if (!ops->ndo_set_mac_address)
8941 		return -EOPNOTSUPP;
8942 	if (sa->sa_family != dev->type)
8943 		return -EINVAL;
8944 	if (!netif_device_present(dev))
8945 		return -ENODEV;
8946 	err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
8947 	if (err)
8948 		return err;
8949 	if (memcmp(dev->dev_addr, sa->sa_data, dev->addr_len)) {
8950 		err = ops->ndo_set_mac_address(dev, sa);
8951 		if (err)
8952 			return err;
8953 	}
8954 	dev->addr_assign_type = NET_ADDR_SET;
8955 	call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
8956 	add_device_randomness(dev->dev_addr, dev->addr_len);
8957 	return 0;
8958 }
8959 EXPORT_SYMBOL(dev_set_mac_address);
8960 
8961 DECLARE_RWSEM(dev_addr_sem);
8962 
8963 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
8964 			     struct netlink_ext_ack *extack)
8965 {
8966 	int ret;
8967 
8968 	down_write(&dev_addr_sem);
8969 	ret = dev_set_mac_address(dev, sa, extack);
8970 	up_write(&dev_addr_sem);
8971 	return ret;
8972 }
8973 EXPORT_SYMBOL(dev_set_mac_address_user);
8974 
8975 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name)
8976 {
8977 	size_t size = sizeof(sa->sa_data_min);
8978 	struct net_device *dev;
8979 	int ret = 0;
8980 
8981 	down_read(&dev_addr_sem);
8982 	rcu_read_lock();
8983 
8984 	dev = dev_get_by_name_rcu(net, dev_name);
8985 	if (!dev) {
8986 		ret = -ENODEV;
8987 		goto unlock;
8988 	}
8989 	if (!dev->addr_len)
8990 		memset(sa->sa_data, 0, size);
8991 	else
8992 		memcpy(sa->sa_data, dev->dev_addr,
8993 		       min_t(size_t, size, dev->addr_len));
8994 	sa->sa_family = dev->type;
8995 
8996 unlock:
8997 	rcu_read_unlock();
8998 	up_read(&dev_addr_sem);
8999 	return ret;
9000 }
9001 EXPORT_SYMBOL(dev_get_mac_address);
9002 
9003 /**
9004  *	dev_change_carrier - Change device carrier
9005  *	@dev: device
9006  *	@new_carrier: new value
9007  *
9008  *	Change device carrier
9009  */
9010 int dev_change_carrier(struct net_device *dev, bool new_carrier)
9011 {
9012 	const struct net_device_ops *ops = dev->netdev_ops;
9013 
9014 	if (!ops->ndo_change_carrier)
9015 		return -EOPNOTSUPP;
9016 	if (!netif_device_present(dev))
9017 		return -ENODEV;
9018 	return ops->ndo_change_carrier(dev, new_carrier);
9019 }
9020 
9021 /**
9022  *	dev_get_phys_port_id - Get device physical port ID
9023  *	@dev: device
9024  *	@ppid: port ID
9025  *
9026  *	Get device physical port ID
9027  */
9028 int dev_get_phys_port_id(struct net_device *dev,
9029 			 struct netdev_phys_item_id *ppid)
9030 {
9031 	const struct net_device_ops *ops = dev->netdev_ops;
9032 
9033 	if (!ops->ndo_get_phys_port_id)
9034 		return -EOPNOTSUPP;
9035 	return ops->ndo_get_phys_port_id(dev, ppid);
9036 }
9037 
9038 /**
9039  *	dev_get_phys_port_name - Get device physical port name
9040  *	@dev: device
9041  *	@name: port name
9042  *	@len: limit of bytes to copy to name
9043  *
9044  *	Get device physical port name
9045  */
9046 int dev_get_phys_port_name(struct net_device *dev,
9047 			   char *name, size_t len)
9048 {
9049 	const struct net_device_ops *ops = dev->netdev_ops;
9050 	int err;
9051 
9052 	if (ops->ndo_get_phys_port_name) {
9053 		err = ops->ndo_get_phys_port_name(dev, name, len);
9054 		if (err != -EOPNOTSUPP)
9055 			return err;
9056 	}
9057 	return devlink_compat_phys_port_name_get(dev, name, len);
9058 }
9059 
9060 /**
9061  *	dev_get_port_parent_id - Get the device's port parent identifier
9062  *	@dev: network device
9063  *	@ppid: pointer to a storage for the port's parent identifier
9064  *	@recurse: allow/disallow recursion to lower devices
9065  *
9066  *	Get the devices's port parent identifier
9067  */
9068 int dev_get_port_parent_id(struct net_device *dev,
9069 			   struct netdev_phys_item_id *ppid,
9070 			   bool recurse)
9071 {
9072 	const struct net_device_ops *ops = dev->netdev_ops;
9073 	struct netdev_phys_item_id first = { };
9074 	struct net_device *lower_dev;
9075 	struct list_head *iter;
9076 	int err;
9077 
9078 	if (ops->ndo_get_port_parent_id) {
9079 		err = ops->ndo_get_port_parent_id(dev, ppid);
9080 		if (err != -EOPNOTSUPP)
9081 			return err;
9082 	}
9083 
9084 	err = devlink_compat_switch_id_get(dev, ppid);
9085 	if (!recurse || err != -EOPNOTSUPP)
9086 		return err;
9087 
9088 	netdev_for_each_lower_dev(dev, lower_dev, iter) {
9089 		err = dev_get_port_parent_id(lower_dev, ppid, true);
9090 		if (err)
9091 			break;
9092 		if (!first.id_len)
9093 			first = *ppid;
9094 		else if (memcmp(&first, ppid, sizeof(*ppid)))
9095 			return -EOPNOTSUPP;
9096 	}
9097 
9098 	return err;
9099 }
9100 EXPORT_SYMBOL(dev_get_port_parent_id);
9101 
9102 /**
9103  *	netdev_port_same_parent_id - Indicate if two network devices have
9104  *	the same port parent identifier
9105  *	@a: first network device
9106  *	@b: second network device
9107  */
9108 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
9109 {
9110 	struct netdev_phys_item_id a_id = { };
9111 	struct netdev_phys_item_id b_id = { };
9112 
9113 	if (dev_get_port_parent_id(a, &a_id, true) ||
9114 	    dev_get_port_parent_id(b, &b_id, true))
9115 		return false;
9116 
9117 	return netdev_phys_item_id_same(&a_id, &b_id);
9118 }
9119 EXPORT_SYMBOL(netdev_port_same_parent_id);
9120 
9121 /**
9122  *	dev_change_proto_down - set carrier according to proto_down.
9123  *
9124  *	@dev: device
9125  *	@proto_down: new value
9126  */
9127 int dev_change_proto_down(struct net_device *dev, bool proto_down)
9128 {
9129 	if (!(dev->priv_flags & IFF_CHANGE_PROTO_DOWN))
9130 		return -EOPNOTSUPP;
9131 	if (!netif_device_present(dev))
9132 		return -ENODEV;
9133 	if (proto_down)
9134 		netif_carrier_off(dev);
9135 	else
9136 		netif_carrier_on(dev);
9137 	dev->proto_down = proto_down;
9138 	return 0;
9139 }
9140 
9141 /**
9142  *	dev_change_proto_down_reason - proto down reason
9143  *
9144  *	@dev: device
9145  *	@mask: proto down mask
9146  *	@value: proto down value
9147  */
9148 void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
9149 				  u32 value)
9150 {
9151 	int b;
9152 
9153 	if (!mask) {
9154 		dev->proto_down_reason = value;
9155 	} else {
9156 		for_each_set_bit(b, &mask, 32) {
9157 			if (value & (1 << b))
9158 				dev->proto_down_reason |= BIT(b);
9159 			else
9160 				dev->proto_down_reason &= ~BIT(b);
9161 		}
9162 	}
9163 }
9164 
9165 struct bpf_xdp_link {
9166 	struct bpf_link link;
9167 	struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
9168 	int flags;
9169 };
9170 
9171 static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags)
9172 {
9173 	if (flags & XDP_FLAGS_HW_MODE)
9174 		return XDP_MODE_HW;
9175 	if (flags & XDP_FLAGS_DRV_MODE)
9176 		return XDP_MODE_DRV;
9177 	if (flags & XDP_FLAGS_SKB_MODE)
9178 		return XDP_MODE_SKB;
9179 	return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB;
9180 }
9181 
9182 static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
9183 {
9184 	switch (mode) {
9185 	case XDP_MODE_SKB:
9186 		return generic_xdp_install;
9187 	case XDP_MODE_DRV:
9188 	case XDP_MODE_HW:
9189 		return dev->netdev_ops->ndo_bpf;
9190 	default:
9191 		return NULL;
9192 	}
9193 }
9194 
9195 static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
9196 					 enum bpf_xdp_mode mode)
9197 {
9198 	return dev->xdp_state[mode].link;
9199 }
9200 
9201 static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
9202 				     enum bpf_xdp_mode mode)
9203 {
9204 	struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
9205 
9206 	if (link)
9207 		return link->link.prog;
9208 	return dev->xdp_state[mode].prog;
9209 }
9210 
9211 u8 dev_xdp_prog_count(struct net_device *dev)
9212 {
9213 	u8 count = 0;
9214 	int i;
9215 
9216 	for (i = 0; i < __MAX_XDP_MODE; i++)
9217 		if (dev->xdp_state[i].prog || dev->xdp_state[i].link)
9218 			count++;
9219 	return count;
9220 }
9221 EXPORT_SYMBOL_GPL(dev_xdp_prog_count);
9222 
9223 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
9224 {
9225 	struct bpf_prog *prog = dev_xdp_prog(dev, mode);
9226 
9227 	return prog ? prog->aux->id : 0;
9228 }
9229 
9230 static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
9231 			     struct bpf_xdp_link *link)
9232 {
9233 	dev->xdp_state[mode].link = link;
9234 	dev->xdp_state[mode].prog = NULL;
9235 }
9236 
9237 static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
9238 			     struct bpf_prog *prog)
9239 {
9240 	dev->xdp_state[mode].link = NULL;
9241 	dev->xdp_state[mode].prog = prog;
9242 }
9243 
9244 static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
9245 			   bpf_op_t bpf_op, struct netlink_ext_ack *extack,
9246 			   u32 flags, struct bpf_prog *prog)
9247 {
9248 	struct netdev_bpf xdp;
9249 	int err;
9250 
9251 	memset(&xdp, 0, sizeof(xdp));
9252 	xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
9253 	xdp.extack = extack;
9254 	xdp.flags = flags;
9255 	xdp.prog = prog;
9256 
9257 	/* Drivers assume refcnt is already incremented (i.e, prog pointer is
9258 	 * "moved" into driver), so they don't increment it on their own, but
9259 	 * they do decrement refcnt when program is detached or replaced.
9260 	 * Given net_device also owns link/prog, we need to bump refcnt here
9261 	 * to prevent drivers from underflowing it.
9262 	 */
9263 	if (prog)
9264 		bpf_prog_inc(prog);
9265 	err = bpf_op(dev, &xdp);
9266 	if (err) {
9267 		if (prog)
9268 			bpf_prog_put(prog);
9269 		return err;
9270 	}
9271 
9272 	if (mode != XDP_MODE_HW)
9273 		bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog);
9274 
9275 	return 0;
9276 }
9277 
9278 static void dev_xdp_uninstall(struct net_device *dev)
9279 {
9280 	struct bpf_xdp_link *link;
9281 	struct bpf_prog *prog;
9282 	enum bpf_xdp_mode mode;
9283 	bpf_op_t bpf_op;
9284 
9285 	ASSERT_RTNL();
9286 
9287 	for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
9288 		prog = dev_xdp_prog(dev, mode);
9289 		if (!prog)
9290 			continue;
9291 
9292 		bpf_op = dev_xdp_bpf_op(dev, mode);
9293 		if (!bpf_op)
9294 			continue;
9295 
9296 		WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9297 
9298 		/* auto-detach link from net device */
9299 		link = dev_xdp_link(dev, mode);
9300 		if (link)
9301 			link->dev = NULL;
9302 		else
9303 			bpf_prog_put(prog);
9304 
9305 		dev_xdp_set_link(dev, mode, NULL);
9306 	}
9307 }
9308 
9309 static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
9310 			  struct bpf_xdp_link *link, struct bpf_prog *new_prog,
9311 			  struct bpf_prog *old_prog, u32 flags)
9312 {
9313 	unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES);
9314 	struct bpf_prog *cur_prog;
9315 	struct net_device *upper;
9316 	struct list_head *iter;
9317 	enum bpf_xdp_mode mode;
9318 	bpf_op_t bpf_op;
9319 	int err;
9320 
9321 	ASSERT_RTNL();
9322 
9323 	/* either link or prog attachment, never both */
9324 	if (link && (new_prog || old_prog))
9325 		return -EINVAL;
9326 	/* link supports only XDP mode flags */
9327 	if (link && (flags & ~XDP_FLAGS_MODES)) {
9328 		NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
9329 		return -EINVAL;
9330 	}
9331 	/* just one XDP mode bit should be set, zero defaults to drv/skb mode */
9332 	if (num_modes > 1) {
9333 		NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
9334 		return -EINVAL;
9335 	}
9336 	/* avoid ambiguity if offload + drv/skb mode progs are both loaded */
9337 	if (!num_modes && dev_xdp_prog_count(dev) > 1) {
9338 		NL_SET_ERR_MSG(extack,
9339 			       "More than one program loaded, unset mode is ambiguous");
9340 		return -EINVAL;
9341 	}
9342 	/* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
9343 	if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
9344 		NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
9345 		return -EINVAL;
9346 	}
9347 
9348 	mode = dev_xdp_mode(dev, flags);
9349 	/* can't replace attached link */
9350 	if (dev_xdp_link(dev, mode)) {
9351 		NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
9352 		return -EBUSY;
9353 	}
9354 
9355 	/* don't allow if an upper device already has a program */
9356 	netdev_for_each_upper_dev_rcu(dev, upper, iter) {
9357 		if (dev_xdp_prog_count(upper) > 0) {
9358 			NL_SET_ERR_MSG(extack, "Cannot attach when an upper device already has a program");
9359 			return -EEXIST;
9360 		}
9361 	}
9362 
9363 	cur_prog = dev_xdp_prog(dev, mode);
9364 	/* can't replace attached prog with link */
9365 	if (link && cur_prog) {
9366 		NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
9367 		return -EBUSY;
9368 	}
9369 	if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
9370 		NL_SET_ERR_MSG(extack, "Active program does not match expected");
9371 		return -EEXIST;
9372 	}
9373 
9374 	/* put effective new program into new_prog */
9375 	if (link)
9376 		new_prog = link->link.prog;
9377 
9378 	if (new_prog) {
9379 		bool offload = mode == XDP_MODE_HW;
9380 		enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
9381 					       ? XDP_MODE_DRV : XDP_MODE_SKB;
9382 
9383 		if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
9384 			NL_SET_ERR_MSG(extack, "XDP program already attached");
9385 			return -EBUSY;
9386 		}
9387 		if (!offload && dev_xdp_prog(dev, other_mode)) {
9388 			NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
9389 			return -EEXIST;
9390 		}
9391 		if (!offload && bpf_prog_is_offloaded(new_prog->aux)) {
9392 			NL_SET_ERR_MSG(extack, "Using offloaded program without HW_MODE flag is not supported");
9393 			return -EINVAL;
9394 		}
9395 		if (bpf_prog_is_dev_bound(new_prog->aux) && !bpf_offload_dev_match(new_prog, dev)) {
9396 			NL_SET_ERR_MSG(extack, "Program bound to different device");
9397 			return -EINVAL;
9398 		}
9399 		if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
9400 			NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
9401 			return -EINVAL;
9402 		}
9403 		if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
9404 			NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
9405 			return -EINVAL;
9406 		}
9407 	}
9408 
9409 	/* don't call drivers if the effective program didn't change */
9410 	if (new_prog != cur_prog) {
9411 		bpf_op = dev_xdp_bpf_op(dev, mode);
9412 		if (!bpf_op) {
9413 			NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
9414 			return -EOPNOTSUPP;
9415 		}
9416 
9417 		err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog);
9418 		if (err)
9419 			return err;
9420 	}
9421 
9422 	if (link)
9423 		dev_xdp_set_link(dev, mode, link);
9424 	else
9425 		dev_xdp_set_prog(dev, mode, new_prog);
9426 	if (cur_prog)
9427 		bpf_prog_put(cur_prog);
9428 
9429 	return 0;
9430 }
9431 
9432 static int dev_xdp_attach_link(struct net_device *dev,
9433 			       struct netlink_ext_ack *extack,
9434 			       struct bpf_xdp_link *link)
9435 {
9436 	return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags);
9437 }
9438 
9439 static int dev_xdp_detach_link(struct net_device *dev,
9440 			       struct netlink_ext_ack *extack,
9441 			       struct bpf_xdp_link *link)
9442 {
9443 	enum bpf_xdp_mode mode;
9444 	bpf_op_t bpf_op;
9445 
9446 	ASSERT_RTNL();
9447 
9448 	mode = dev_xdp_mode(dev, link->flags);
9449 	if (dev_xdp_link(dev, mode) != link)
9450 		return -EINVAL;
9451 
9452 	bpf_op = dev_xdp_bpf_op(dev, mode);
9453 	WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9454 	dev_xdp_set_link(dev, mode, NULL);
9455 	return 0;
9456 }
9457 
9458 static void bpf_xdp_link_release(struct bpf_link *link)
9459 {
9460 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9461 
9462 	rtnl_lock();
9463 
9464 	/* if racing with net_device's tear down, xdp_link->dev might be
9465 	 * already NULL, in which case link was already auto-detached
9466 	 */
9467 	if (xdp_link->dev) {
9468 		WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
9469 		xdp_link->dev = NULL;
9470 	}
9471 
9472 	rtnl_unlock();
9473 }
9474 
9475 static int bpf_xdp_link_detach(struct bpf_link *link)
9476 {
9477 	bpf_xdp_link_release(link);
9478 	return 0;
9479 }
9480 
9481 static void bpf_xdp_link_dealloc(struct bpf_link *link)
9482 {
9483 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9484 
9485 	kfree(xdp_link);
9486 }
9487 
9488 static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link,
9489 				     struct seq_file *seq)
9490 {
9491 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9492 	u32 ifindex = 0;
9493 
9494 	rtnl_lock();
9495 	if (xdp_link->dev)
9496 		ifindex = xdp_link->dev->ifindex;
9497 	rtnl_unlock();
9498 
9499 	seq_printf(seq, "ifindex:\t%u\n", ifindex);
9500 }
9501 
9502 static int bpf_xdp_link_fill_link_info(const struct bpf_link *link,
9503 				       struct bpf_link_info *info)
9504 {
9505 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9506 	u32 ifindex = 0;
9507 
9508 	rtnl_lock();
9509 	if (xdp_link->dev)
9510 		ifindex = xdp_link->dev->ifindex;
9511 	rtnl_unlock();
9512 
9513 	info->xdp.ifindex = ifindex;
9514 	return 0;
9515 }
9516 
9517 static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
9518 			       struct bpf_prog *old_prog)
9519 {
9520 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9521 	enum bpf_xdp_mode mode;
9522 	bpf_op_t bpf_op;
9523 	int err = 0;
9524 
9525 	rtnl_lock();
9526 
9527 	/* link might have been auto-released already, so fail */
9528 	if (!xdp_link->dev) {
9529 		err = -ENOLINK;
9530 		goto out_unlock;
9531 	}
9532 
9533 	if (old_prog && link->prog != old_prog) {
9534 		err = -EPERM;
9535 		goto out_unlock;
9536 	}
9537 	old_prog = link->prog;
9538 	if (old_prog->type != new_prog->type ||
9539 	    old_prog->expected_attach_type != new_prog->expected_attach_type) {
9540 		err = -EINVAL;
9541 		goto out_unlock;
9542 	}
9543 
9544 	if (old_prog == new_prog) {
9545 		/* no-op, don't disturb drivers */
9546 		bpf_prog_put(new_prog);
9547 		goto out_unlock;
9548 	}
9549 
9550 	mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags);
9551 	bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode);
9552 	err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL,
9553 			      xdp_link->flags, new_prog);
9554 	if (err)
9555 		goto out_unlock;
9556 
9557 	old_prog = xchg(&link->prog, new_prog);
9558 	bpf_prog_put(old_prog);
9559 
9560 out_unlock:
9561 	rtnl_unlock();
9562 	return err;
9563 }
9564 
9565 static const struct bpf_link_ops bpf_xdp_link_lops = {
9566 	.release = bpf_xdp_link_release,
9567 	.dealloc = bpf_xdp_link_dealloc,
9568 	.detach = bpf_xdp_link_detach,
9569 	.show_fdinfo = bpf_xdp_link_show_fdinfo,
9570 	.fill_link_info = bpf_xdp_link_fill_link_info,
9571 	.update_prog = bpf_xdp_link_update,
9572 };
9573 
9574 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
9575 {
9576 	struct net *net = current->nsproxy->net_ns;
9577 	struct bpf_link_primer link_primer;
9578 	struct netlink_ext_ack extack = {};
9579 	struct bpf_xdp_link *link;
9580 	struct net_device *dev;
9581 	int err, fd;
9582 
9583 	rtnl_lock();
9584 	dev = dev_get_by_index(net, attr->link_create.target_ifindex);
9585 	if (!dev) {
9586 		rtnl_unlock();
9587 		return -EINVAL;
9588 	}
9589 
9590 	link = kzalloc(sizeof(*link), GFP_USER);
9591 	if (!link) {
9592 		err = -ENOMEM;
9593 		goto unlock;
9594 	}
9595 
9596 	bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog);
9597 	link->dev = dev;
9598 	link->flags = attr->link_create.flags;
9599 
9600 	err = bpf_link_prime(&link->link, &link_primer);
9601 	if (err) {
9602 		kfree(link);
9603 		goto unlock;
9604 	}
9605 
9606 	err = dev_xdp_attach_link(dev, &extack, link);
9607 	rtnl_unlock();
9608 
9609 	if (err) {
9610 		link->dev = NULL;
9611 		bpf_link_cleanup(&link_primer);
9612 		trace_bpf_xdp_link_attach_failed(extack._msg);
9613 		goto out_put_dev;
9614 	}
9615 
9616 	fd = bpf_link_settle(&link_primer);
9617 	/* link itself doesn't hold dev's refcnt to not complicate shutdown */
9618 	dev_put(dev);
9619 	return fd;
9620 
9621 unlock:
9622 	rtnl_unlock();
9623 
9624 out_put_dev:
9625 	dev_put(dev);
9626 	return err;
9627 }
9628 
9629 /**
9630  *	dev_change_xdp_fd - set or clear a bpf program for a device rx path
9631  *	@dev: device
9632  *	@extack: netlink extended ack
9633  *	@fd: new program fd or negative value to clear
9634  *	@expected_fd: old program fd that userspace expects to replace or clear
9635  *	@flags: xdp-related flags
9636  *
9637  *	Set or clear a bpf program for a device
9638  */
9639 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
9640 		      int fd, int expected_fd, u32 flags)
9641 {
9642 	enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags);
9643 	struct bpf_prog *new_prog = NULL, *old_prog = NULL;
9644 	int err;
9645 
9646 	ASSERT_RTNL();
9647 
9648 	if (fd >= 0) {
9649 		new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
9650 						 mode != XDP_MODE_SKB);
9651 		if (IS_ERR(new_prog))
9652 			return PTR_ERR(new_prog);
9653 	}
9654 
9655 	if (expected_fd >= 0) {
9656 		old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP,
9657 						 mode != XDP_MODE_SKB);
9658 		if (IS_ERR(old_prog)) {
9659 			err = PTR_ERR(old_prog);
9660 			old_prog = NULL;
9661 			goto err_out;
9662 		}
9663 	}
9664 
9665 	err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
9666 
9667 err_out:
9668 	if (err && new_prog)
9669 		bpf_prog_put(new_prog);
9670 	if (old_prog)
9671 		bpf_prog_put(old_prog);
9672 	return err;
9673 }
9674 
9675 /**
9676  * dev_index_reserve() - allocate an ifindex in a namespace
9677  * @net: the applicable net namespace
9678  * @ifindex: requested ifindex, pass %0 to get one allocated
9679  *
9680  * Allocate a ifindex for a new device. Caller must either use the ifindex
9681  * to store the device (via list_netdevice()) or call dev_index_release()
9682  * to give the index up.
9683  *
9684  * Return: a suitable unique value for a new device interface number or -errno.
9685  */
9686 static int dev_index_reserve(struct net *net, u32 ifindex)
9687 {
9688 	int err;
9689 
9690 	if (ifindex > INT_MAX) {
9691 		DEBUG_NET_WARN_ON_ONCE(1);
9692 		return -EINVAL;
9693 	}
9694 
9695 	if (!ifindex)
9696 		err = xa_alloc_cyclic(&net->dev_by_index, &ifindex, NULL,
9697 				      xa_limit_31b, &net->ifindex, GFP_KERNEL);
9698 	else
9699 		err = xa_insert(&net->dev_by_index, ifindex, NULL, GFP_KERNEL);
9700 	if (err < 0)
9701 		return err;
9702 
9703 	return ifindex;
9704 }
9705 
9706 static void dev_index_release(struct net *net, int ifindex)
9707 {
9708 	/* Expect only unused indexes, unlist_netdevice() removes the used */
9709 	WARN_ON(xa_erase(&net->dev_by_index, ifindex));
9710 }
9711 
9712 /* Delayed registration/unregisteration */
9713 LIST_HEAD(net_todo_list);
9714 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
9715 atomic_t dev_unreg_count = ATOMIC_INIT(0);
9716 
9717 static void net_set_todo(struct net_device *dev)
9718 {
9719 	list_add_tail(&dev->todo_list, &net_todo_list);
9720 }
9721 
9722 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
9723 	struct net_device *upper, netdev_features_t features)
9724 {
9725 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9726 	netdev_features_t feature;
9727 	int feature_bit;
9728 
9729 	for_each_netdev_feature(upper_disables, feature_bit) {
9730 		feature = __NETIF_F_BIT(feature_bit);
9731 		if (!(upper->wanted_features & feature)
9732 		    && (features & feature)) {
9733 			netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
9734 				   &feature, upper->name);
9735 			features &= ~feature;
9736 		}
9737 	}
9738 
9739 	return features;
9740 }
9741 
9742 static void netdev_sync_lower_features(struct net_device *upper,
9743 	struct net_device *lower, netdev_features_t features)
9744 {
9745 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9746 	netdev_features_t feature;
9747 	int feature_bit;
9748 
9749 	for_each_netdev_feature(upper_disables, feature_bit) {
9750 		feature = __NETIF_F_BIT(feature_bit);
9751 		if (!(features & feature) && (lower->features & feature)) {
9752 			netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
9753 				   &feature, lower->name);
9754 			lower->wanted_features &= ~feature;
9755 			__netdev_update_features(lower);
9756 
9757 			if (unlikely(lower->features & feature))
9758 				netdev_WARN(upper, "failed to disable %pNF on %s!\n",
9759 					    &feature, lower->name);
9760 			else
9761 				netdev_features_change(lower);
9762 		}
9763 	}
9764 }
9765 
9766 static netdev_features_t netdev_fix_features(struct net_device *dev,
9767 	netdev_features_t features)
9768 {
9769 	/* Fix illegal checksum combinations */
9770 	if ((features & NETIF_F_HW_CSUM) &&
9771 	    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
9772 		netdev_warn(dev, "mixed HW and IP checksum settings.\n");
9773 		features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
9774 	}
9775 
9776 	/* TSO requires that SG is present as well. */
9777 	if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
9778 		netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
9779 		features &= ~NETIF_F_ALL_TSO;
9780 	}
9781 
9782 	if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
9783 					!(features & NETIF_F_IP_CSUM)) {
9784 		netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
9785 		features &= ~NETIF_F_TSO;
9786 		features &= ~NETIF_F_TSO_ECN;
9787 	}
9788 
9789 	if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
9790 					 !(features & NETIF_F_IPV6_CSUM)) {
9791 		netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
9792 		features &= ~NETIF_F_TSO6;
9793 	}
9794 
9795 	/* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
9796 	if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
9797 		features &= ~NETIF_F_TSO_MANGLEID;
9798 
9799 	/* TSO ECN requires that TSO is present as well. */
9800 	if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
9801 		features &= ~NETIF_F_TSO_ECN;
9802 
9803 	/* Software GSO depends on SG. */
9804 	if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
9805 		netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
9806 		features &= ~NETIF_F_GSO;
9807 	}
9808 
9809 	/* GSO partial features require GSO partial be set */
9810 	if ((features & dev->gso_partial_features) &&
9811 	    !(features & NETIF_F_GSO_PARTIAL)) {
9812 		netdev_dbg(dev,
9813 			   "Dropping partially supported GSO features since no GSO partial.\n");
9814 		features &= ~dev->gso_partial_features;
9815 	}
9816 
9817 	if (!(features & NETIF_F_RXCSUM)) {
9818 		/* NETIF_F_GRO_HW implies doing RXCSUM since every packet
9819 		 * successfully merged by hardware must also have the
9820 		 * checksum verified by hardware.  If the user does not
9821 		 * want to enable RXCSUM, logically, we should disable GRO_HW.
9822 		 */
9823 		if (features & NETIF_F_GRO_HW) {
9824 			netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
9825 			features &= ~NETIF_F_GRO_HW;
9826 		}
9827 	}
9828 
9829 	/* LRO/HW-GRO features cannot be combined with RX-FCS */
9830 	if (features & NETIF_F_RXFCS) {
9831 		if (features & NETIF_F_LRO) {
9832 			netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
9833 			features &= ~NETIF_F_LRO;
9834 		}
9835 
9836 		if (features & NETIF_F_GRO_HW) {
9837 			netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
9838 			features &= ~NETIF_F_GRO_HW;
9839 		}
9840 	}
9841 
9842 	if ((features & NETIF_F_GRO_HW) && (features & NETIF_F_LRO)) {
9843 		netdev_dbg(dev, "Dropping LRO feature since HW-GRO is requested.\n");
9844 		features &= ~NETIF_F_LRO;
9845 	}
9846 
9847 	if (features & NETIF_F_HW_TLS_TX) {
9848 		bool ip_csum = (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) ==
9849 			(NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
9850 		bool hw_csum = features & NETIF_F_HW_CSUM;
9851 
9852 		if (!ip_csum && !hw_csum) {
9853 			netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n");
9854 			features &= ~NETIF_F_HW_TLS_TX;
9855 		}
9856 	}
9857 
9858 	if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) {
9859 		netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n");
9860 		features &= ~NETIF_F_HW_TLS_RX;
9861 	}
9862 
9863 	return features;
9864 }
9865 
9866 int __netdev_update_features(struct net_device *dev)
9867 {
9868 	struct net_device *upper, *lower;
9869 	netdev_features_t features;
9870 	struct list_head *iter;
9871 	int err = -1;
9872 
9873 	ASSERT_RTNL();
9874 
9875 	features = netdev_get_wanted_features(dev);
9876 
9877 	if (dev->netdev_ops->ndo_fix_features)
9878 		features = dev->netdev_ops->ndo_fix_features(dev, features);
9879 
9880 	/* driver might be less strict about feature dependencies */
9881 	features = netdev_fix_features(dev, features);
9882 
9883 	/* some features can't be enabled if they're off on an upper device */
9884 	netdev_for_each_upper_dev_rcu(dev, upper, iter)
9885 		features = netdev_sync_upper_features(dev, upper, features);
9886 
9887 	if (dev->features == features)
9888 		goto sync_lower;
9889 
9890 	netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
9891 		&dev->features, &features);
9892 
9893 	if (dev->netdev_ops->ndo_set_features)
9894 		err = dev->netdev_ops->ndo_set_features(dev, features);
9895 	else
9896 		err = 0;
9897 
9898 	if (unlikely(err < 0)) {
9899 		netdev_err(dev,
9900 			"set_features() failed (%d); wanted %pNF, left %pNF\n",
9901 			err, &features, &dev->features);
9902 		/* return non-0 since some features might have changed and
9903 		 * it's better to fire a spurious notification than miss it
9904 		 */
9905 		return -1;
9906 	}
9907 
9908 sync_lower:
9909 	/* some features must be disabled on lower devices when disabled
9910 	 * on an upper device (think: bonding master or bridge)
9911 	 */
9912 	netdev_for_each_lower_dev(dev, lower, iter)
9913 		netdev_sync_lower_features(dev, lower, features);
9914 
9915 	if (!err) {
9916 		netdev_features_t diff = features ^ dev->features;
9917 
9918 		if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
9919 			/* udp_tunnel_{get,drop}_rx_info both need
9920 			 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
9921 			 * device, or they won't do anything.
9922 			 * Thus we need to update dev->features
9923 			 * *before* calling udp_tunnel_get_rx_info,
9924 			 * but *after* calling udp_tunnel_drop_rx_info.
9925 			 */
9926 			if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
9927 				dev->features = features;
9928 				udp_tunnel_get_rx_info(dev);
9929 			} else {
9930 				udp_tunnel_drop_rx_info(dev);
9931 			}
9932 		}
9933 
9934 		if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
9935 			if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
9936 				dev->features = features;
9937 				err |= vlan_get_rx_ctag_filter_info(dev);
9938 			} else {
9939 				vlan_drop_rx_ctag_filter_info(dev);
9940 			}
9941 		}
9942 
9943 		if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
9944 			if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
9945 				dev->features = features;
9946 				err |= vlan_get_rx_stag_filter_info(dev);
9947 			} else {
9948 				vlan_drop_rx_stag_filter_info(dev);
9949 			}
9950 		}
9951 
9952 		dev->features = features;
9953 	}
9954 
9955 	return err < 0 ? 0 : 1;
9956 }
9957 
9958 /**
9959  *	netdev_update_features - recalculate device features
9960  *	@dev: the device to check
9961  *
9962  *	Recalculate dev->features set and send notifications if it
9963  *	has changed. Should be called after driver or hardware dependent
9964  *	conditions might have changed that influence the features.
9965  */
9966 void netdev_update_features(struct net_device *dev)
9967 {
9968 	if (__netdev_update_features(dev))
9969 		netdev_features_change(dev);
9970 }
9971 EXPORT_SYMBOL(netdev_update_features);
9972 
9973 /**
9974  *	netdev_change_features - recalculate device features
9975  *	@dev: the device to check
9976  *
9977  *	Recalculate dev->features set and send notifications even
9978  *	if they have not changed. Should be called instead of
9979  *	netdev_update_features() if also dev->vlan_features might
9980  *	have changed to allow the changes to be propagated to stacked
9981  *	VLAN devices.
9982  */
9983 void netdev_change_features(struct net_device *dev)
9984 {
9985 	__netdev_update_features(dev);
9986 	netdev_features_change(dev);
9987 }
9988 EXPORT_SYMBOL(netdev_change_features);
9989 
9990 /**
9991  *	netif_stacked_transfer_operstate -	transfer operstate
9992  *	@rootdev: the root or lower level device to transfer state from
9993  *	@dev: the device to transfer operstate to
9994  *
9995  *	Transfer operational state from root to device. This is normally
9996  *	called when a stacking relationship exists between the root
9997  *	device and the device(a leaf device).
9998  */
9999 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
10000 					struct net_device *dev)
10001 {
10002 	if (rootdev->operstate == IF_OPER_DORMANT)
10003 		netif_dormant_on(dev);
10004 	else
10005 		netif_dormant_off(dev);
10006 
10007 	if (rootdev->operstate == IF_OPER_TESTING)
10008 		netif_testing_on(dev);
10009 	else
10010 		netif_testing_off(dev);
10011 
10012 	if (netif_carrier_ok(rootdev))
10013 		netif_carrier_on(dev);
10014 	else
10015 		netif_carrier_off(dev);
10016 }
10017 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
10018 
10019 static int netif_alloc_rx_queues(struct net_device *dev)
10020 {
10021 	unsigned int i, count = dev->num_rx_queues;
10022 	struct netdev_rx_queue *rx;
10023 	size_t sz = count * sizeof(*rx);
10024 	int err = 0;
10025 
10026 	BUG_ON(count < 1);
10027 
10028 	rx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10029 	if (!rx)
10030 		return -ENOMEM;
10031 
10032 	dev->_rx = rx;
10033 
10034 	for (i = 0; i < count; i++) {
10035 		rx[i].dev = dev;
10036 
10037 		/* XDP RX-queue setup */
10038 		err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0);
10039 		if (err < 0)
10040 			goto err_rxq_info;
10041 	}
10042 	return 0;
10043 
10044 err_rxq_info:
10045 	/* Rollback successful reg's and free other resources */
10046 	while (i--)
10047 		xdp_rxq_info_unreg(&rx[i].xdp_rxq);
10048 	kvfree(dev->_rx);
10049 	dev->_rx = NULL;
10050 	return err;
10051 }
10052 
10053 static void netif_free_rx_queues(struct net_device *dev)
10054 {
10055 	unsigned int i, count = dev->num_rx_queues;
10056 
10057 	/* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
10058 	if (!dev->_rx)
10059 		return;
10060 
10061 	for (i = 0; i < count; i++)
10062 		xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
10063 
10064 	kvfree(dev->_rx);
10065 }
10066 
10067 static void netdev_init_one_queue(struct net_device *dev,
10068 				  struct netdev_queue *queue, void *_unused)
10069 {
10070 	/* Initialize queue lock */
10071 	spin_lock_init(&queue->_xmit_lock);
10072 	netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
10073 	queue->xmit_lock_owner = -1;
10074 	netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
10075 	queue->dev = dev;
10076 #ifdef CONFIG_BQL
10077 	dql_init(&queue->dql, HZ);
10078 #endif
10079 }
10080 
10081 static void netif_free_tx_queues(struct net_device *dev)
10082 {
10083 	kvfree(dev->_tx);
10084 }
10085 
10086 static int netif_alloc_netdev_queues(struct net_device *dev)
10087 {
10088 	unsigned int count = dev->num_tx_queues;
10089 	struct netdev_queue *tx;
10090 	size_t sz = count * sizeof(*tx);
10091 
10092 	if (count < 1 || count > 0xffff)
10093 		return -EINVAL;
10094 
10095 	tx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10096 	if (!tx)
10097 		return -ENOMEM;
10098 
10099 	dev->_tx = tx;
10100 
10101 	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
10102 	spin_lock_init(&dev->tx_global_lock);
10103 
10104 	return 0;
10105 }
10106 
10107 void netif_tx_stop_all_queues(struct net_device *dev)
10108 {
10109 	unsigned int i;
10110 
10111 	for (i = 0; i < dev->num_tx_queues; i++) {
10112 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
10113 
10114 		netif_tx_stop_queue(txq);
10115 	}
10116 }
10117 EXPORT_SYMBOL(netif_tx_stop_all_queues);
10118 
10119 static int netdev_do_alloc_pcpu_stats(struct net_device *dev)
10120 {
10121 	void __percpu *v;
10122 
10123 	/* Drivers implementing ndo_get_peer_dev must support tstat
10124 	 * accounting, so that skb_do_redirect() can bump the dev's
10125 	 * RX stats upon network namespace switch.
10126 	 */
10127 	if (dev->netdev_ops->ndo_get_peer_dev &&
10128 	    dev->pcpu_stat_type != NETDEV_PCPU_STAT_TSTATS)
10129 		return -EOPNOTSUPP;
10130 
10131 	switch (dev->pcpu_stat_type) {
10132 	case NETDEV_PCPU_STAT_NONE:
10133 		return 0;
10134 	case NETDEV_PCPU_STAT_LSTATS:
10135 		v = dev->lstats = netdev_alloc_pcpu_stats(struct pcpu_lstats);
10136 		break;
10137 	case NETDEV_PCPU_STAT_TSTATS:
10138 		v = dev->tstats = netdev_alloc_pcpu_stats(struct pcpu_sw_netstats);
10139 		break;
10140 	case NETDEV_PCPU_STAT_DSTATS:
10141 		v = dev->dstats = netdev_alloc_pcpu_stats(struct pcpu_dstats);
10142 		break;
10143 	default:
10144 		return -EINVAL;
10145 	}
10146 
10147 	return v ? 0 : -ENOMEM;
10148 }
10149 
10150 static void netdev_do_free_pcpu_stats(struct net_device *dev)
10151 {
10152 	switch (dev->pcpu_stat_type) {
10153 	case NETDEV_PCPU_STAT_NONE:
10154 		return;
10155 	case NETDEV_PCPU_STAT_LSTATS:
10156 		free_percpu(dev->lstats);
10157 		break;
10158 	case NETDEV_PCPU_STAT_TSTATS:
10159 		free_percpu(dev->tstats);
10160 		break;
10161 	case NETDEV_PCPU_STAT_DSTATS:
10162 		free_percpu(dev->dstats);
10163 		break;
10164 	}
10165 }
10166 
10167 /**
10168  * register_netdevice() - register a network device
10169  * @dev: device to register
10170  *
10171  * Take a prepared network device structure and make it externally accessible.
10172  * A %NETDEV_REGISTER message is sent to the netdev notifier chain.
10173  * Callers must hold the rtnl lock - you may want register_netdev()
10174  * instead of this.
10175  */
10176 int register_netdevice(struct net_device *dev)
10177 {
10178 	int ret;
10179 	struct net *net = dev_net(dev);
10180 
10181 	BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
10182 		     NETDEV_FEATURE_COUNT);
10183 	BUG_ON(dev_boot_phase);
10184 	ASSERT_RTNL();
10185 
10186 	might_sleep();
10187 
10188 	/* When net_device's are persistent, this will be fatal. */
10189 	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
10190 	BUG_ON(!net);
10191 
10192 	ret = ethtool_check_ops(dev->ethtool_ops);
10193 	if (ret)
10194 		return ret;
10195 
10196 	spin_lock_init(&dev->addr_list_lock);
10197 	netdev_set_addr_lockdep_class(dev);
10198 
10199 	ret = dev_get_valid_name(net, dev, dev->name);
10200 	if (ret < 0)
10201 		goto out;
10202 
10203 	ret = -ENOMEM;
10204 	dev->name_node = netdev_name_node_head_alloc(dev);
10205 	if (!dev->name_node)
10206 		goto out;
10207 
10208 	/* Init, if this function is available */
10209 	if (dev->netdev_ops->ndo_init) {
10210 		ret = dev->netdev_ops->ndo_init(dev);
10211 		if (ret) {
10212 			if (ret > 0)
10213 				ret = -EIO;
10214 			goto err_free_name;
10215 		}
10216 	}
10217 
10218 	if (((dev->hw_features | dev->features) &
10219 	     NETIF_F_HW_VLAN_CTAG_FILTER) &&
10220 	    (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
10221 	     !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
10222 		netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
10223 		ret = -EINVAL;
10224 		goto err_uninit;
10225 	}
10226 
10227 	ret = netdev_do_alloc_pcpu_stats(dev);
10228 	if (ret)
10229 		goto err_uninit;
10230 
10231 	ret = dev_index_reserve(net, dev->ifindex);
10232 	if (ret < 0)
10233 		goto err_free_pcpu;
10234 	dev->ifindex = ret;
10235 
10236 	/* Transfer changeable features to wanted_features and enable
10237 	 * software offloads (GSO and GRO).
10238 	 */
10239 	dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
10240 	dev->features |= NETIF_F_SOFT_FEATURES;
10241 
10242 	if (dev->udp_tunnel_nic_info) {
10243 		dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10244 		dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10245 	}
10246 
10247 	dev->wanted_features = dev->features & dev->hw_features;
10248 
10249 	if (!(dev->flags & IFF_LOOPBACK))
10250 		dev->hw_features |= NETIF_F_NOCACHE_COPY;
10251 
10252 	/* If IPv4 TCP segmentation offload is supported we should also
10253 	 * allow the device to enable segmenting the frame with the option
10254 	 * of ignoring a static IP ID value.  This doesn't enable the
10255 	 * feature itself but allows the user to enable it later.
10256 	 */
10257 	if (dev->hw_features & NETIF_F_TSO)
10258 		dev->hw_features |= NETIF_F_TSO_MANGLEID;
10259 	if (dev->vlan_features & NETIF_F_TSO)
10260 		dev->vlan_features |= NETIF_F_TSO_MANGLEID;
10261 	if (dev->mpls_features & NETIF_F_TSO)
10262 		dev->mpls_features |= NETIF_F_TSO_MANGLEID;
10263 	if (dev->hw_enc_features & NETIF_F_TSO)
10264 		dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
10265 
10266 	/* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
10267 	 */
10268 	dev->vlan_features |= NETIF_F_HIGHDMA;
10269 
10270 	/* Make NETIF_F_SG inheritable to tunnel devices.
10271 	 */
10272 	dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
10273 
10274 	/* Make NETIF_F_SG inheritable to MPLS.
10275 	 */
10276 	dev->mpls_features |= NETIF_F_SG;
10277 
10278 	ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
10279 	ret = notifier_to_errno(ret);
10280 	if (ret)
10281 		goto err_ifindex_release;
10282 
10283 	ret = netdev_register_kobject(dev);
10284 
10285 	WRITE_ONCE(dev->reg_state, ret ? NETREG_UNREGISTERED : NETREG_REGISTERED);
10286 
10287 	if (ret)
10288 		goto err_uninit_notify;
10289 
10290 	__netdev_update_features(dev);
10291 
10292 	/*
10293 	 *	Default initial state at registry is that the
10294 	 *	device is present.
10295 	 */
10296 
10297 	set_bit(__LINK_STATE_PRESENT, &dev->state);
10298 
10299 	linkwatch_init_dev(dev);
10300 
10301 	dev_init_scheduler(dev);
10302 
10303 	netdev_hold(dev, &dev->dev_registered_tracker, GFP_KERNEL);
10304 	list_netdevice(dev);
10305 
10306 	add_device_randomness(dev->dev_addr, dev->addr_len);
10307 
10308 	/* If the device has permanent device address, driver should
10309 	 * set dev_addr and also addr_assign_type should be set to
10310 	 * NET_ADDR_PERM (default value).
10311 	 */
10312 	if (dev->addr_assign_type == NET_ADDR_PERM)
10313 		memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
10314 
10315 	/* Notify protocols, that a new device appeared. */
10316 	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
10317 	ret = notifier_to_errno(ret);
10318 	if (ret) {
10319 		/* Expect explicit free_netdev() on failure */
10320 		dev->needs_free_netdev = false;
10321 		unregister_netdevice_queue(dev, NULL);
10322 		goto out;
10323 	}
10324 	/*
10325 	 *	Prevent userspace races by waiting until the network
10326 	 *	device is fully setup before sending notifications.
10327 	 */
10328 	if (!dev->rtnl_link_ops ||
10329 	    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10330 		rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL);
10331 
10332 out:
10333 	return ret;
10334 
10335 err_uninit_notify:
10336 	call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev);
10337 err_ifindex_release:
10338 	dev_index_release(net, dev->ifindex);
10339 err_free_pcpu:
10340 	netdev_do_free_pcpu_stats(dev);
10341 err_uninit:
10342 	if (dev->netdev_ops->ndo_uninit)
10343 		dev->netdev_ops->ndo_uninit(dev);
10344 	if (dev->priv_destructor)
10345 		dev->priv_destructor(dev);
10346 err_free_name:
10347 	netdev_name_node_free(dev->name_node);
10348 	goto out;
10349 }
10350 EXPORT_SYMBOL(register_netdevice);
10351 
10352 /**
10353  *	init_dummy_netdev	- init a dummy network device for NAPI
10354  *	@dev: device to init
10355  *
10356  *	This takes a network device structure and initialize the minimum
10357  *	amount of fields so it can be used to schedule NAPI polls without
10358  *	registering a full blown interface. This is to be used by drivers
10359  *	that need to tie several hardware interfaces to a single NAPI
10360  *	poll scheduler due to HW limitations.
10361  */
10362 void init_dummy_netdev(struct net_device *dev)
10363 {
10364 	/* Clear everything. Note we don't initialize spinlocks
10365 	 * are they aren't supposed to be taken by any of the
10366 	 * NAPI code and this dummy netdev is supposed to be
10367 	 * only ever used for NAPI polls
10368 	 */
10369 	memset(dev, 0, sizeof(struct net_device));
10370 
10371 	/* make sure we BUG if trying to hit standard
10372 	 * register/unregister code path
10373 	 */
10374 	dev->reg_state = NETREG_DUMMY;
10375 
10376 	/* NAPI wants this */
10377 	INIT_LIST_HEAD(&dev->napi_list);
10378 
10379 	/* a dummy interface is started by default */
10380 	set_bit(__LINK_STATE_PRESENT, &dev->state);
10381 	set_bit(__LINK_STATE_START, &dev->state);
10382 
10383 	/* napi_busy_loop stats accounting wants this */
10384 	dev_net_set(dev, &init_net);
10385 
10386 	/* Note : We dont allocate pcpu_refcnt for dummy devices,
10387 	 * because users of this 'device' dont need to change
10388 	 * its refcount.
10389 	 */
10390 }
10391 EXPORT_SYMBOL_GPL(init_dummy_netdev);
10392 
10393 
10394 /**
10395  *	register_netdev	- register a network device
10396  *	@dev: device to register
10397  *
10398  *	Take a completed network device structure and add it to the kernel
10399  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10400  *	chain. 0 is returned on success. A negative errno code is returned
10401  *	on a failure to set up the device, or if the name is a duplicate.
10402  *
10403  *	This is a wrapper around register_netdevice that takes the rtnl semaphore
10404  *	and expands the device name if you passed a format string to
10405  *	alloc_netdev.
10406  */
10407 int register_netdev(struct net_device *dev)
10408 {
10409 	int err;
10410 
10411 	if (rtnl_lock_killable())
10412 		return -EINTR;
10413 	err = register_netdevice(dev);
10414 	rtnl_unlock();
10415 	return err;
10416 }
10417 EXPORT_SYMBOL(register_netdev);
10418 
10419 int netdev_refcnt_read(const struct net_device *dev)
10420 {
10421 #ifdef CONFIG_PCPU_DEV_REFCNT
10422 	int i, refcnt = 0;
10423 
10424 	for_each_possible_cpu(i)
10425 		refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
10426 	return refcnt;
10427 #else
10428 	return refcount_read(&dev->dev_refcnt);
10429 #endif
10430 }
10431 EXPORT_SYMBOL(netdev_refcnt_read);
10432 
10433 int netdev_unregister_timeout_secs __read_mostly = 10;
10434 
10435 #define WAIT_REFS_MIN_MSECS 1
10436 #define WAIT_REFS_MAX_MSECS 250
10437 /**
10438  * netdev_wait_allrefs_any - wait until all references are gone.
10439  * @list: list of net_devices to wait on
10440  *
10441  * This is called when unregistering network devices.
10442  *
10443  * Any protocol or device that holds a reference should register
10444  * for netdevice notification, and cleanup and put back the
10445  * reference if they receive an UNREGISTER event.
10446  * We can get stuck here if buggy protocols don't correctly
10447  * call dev_put.
10448  */
10449 static struct net_device *netdev_wait_allrefs_any(struct list_head *list)
10450 {
10451 	unsigned long rebroadcast_time, warning_time;
10452 	struct net_device *dev;
10453 	int wait = 0;
10454 
10455 	rebroadcast_time = warning_time = jiffies;
10456 
10457 	list_for_each_entry(dev, list, todo_list)
10458 		if (netdev_refcnt_read(dev) == 1)
10459 			return dev;
10460 
10461 	while (true) {
10462 		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
10463 			rtnl_lock();
10464 
10465 			/* Rebroadcast unregister notification */
10466 			list_for_each_entry(dev, list, todo_list)
10467 				call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10468 
10469 			__rtnl_unlock();
10470 			rcu_barrier();
10471 			rtnl_lock();
10472 
10473 			list_for_each_entry(dev, list, todo_list)
10474 				if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
10475 					     &dev->state)) {
10476 					/* We must not have linkwatch events
10477 					 * pending on unregister. If this
10478 					 * happens, we simply run the queue
10479 					 * unscheduled, resulting in a noop
10480 					 * for this device.
10481 					 */
10482 					linkwatch_run_queue();
10483 					break;
10484 				}
10485 
10486 			__rtnl_unlock();
10487 
10488 			rebroadcast_time = jiffies;
10489 		}
10490 
10491 		if (!wait) {
10492 			rcu_barrier();
10493 			wait = WAIT_REFS_MIN_MSECS;
10494 		} else {
10495 			msleep(wait);
10496 			wait = min(wait << 1, WAIT_REFS_MAX_MSECS);
10497 		}
10498 
10499 		list_for_each_entry(dev, list, todo_list)
10500 			if (netdev_refcnt_read(dev) == 1)
10501 				return dev;
10502 
10503 		if (time_after(jiffies, warning_time +
10504 			       READ_ONCE(netdev_unregister_timeout_secs) * HZ)) {
10505 			list_for_each_entry(dev, list, todo_list) {
10506 				pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
10507 					 dev->name, netdev_refcnt_read(dev));
10508 				ref_tracker_dir_print(&dev->refcnt_tracker, 10);
10509 			}
10510 
10511 			warning_time = jiffies;
10512 		}
10513 	}
10514 }
10515 
10516 /* The sequence is:
10517  *
10518  *	rtnl_lock();
10519  *	...
10520  *	register_netdevice(x1);
10521  *	register_netdevice(x2);
10522  *	...
10523  *	unregister_netdevice(y1);
10524  *	unregister_netdevice(y2);
10525  *      ...
10526  *	rtnl_unlock();
10527  *	free_netdev(y1);
10528  *	free_netdev(y2);
10529  *
10530  * We are invoked by rtnl_unlock().
10531  * This allows us to deal with problems:
10532  * 1) We can delete sysfs objects which invoke hotplug
10533  *    without deadlocking with linkwatch via keventd.
10534  * 2) Since we run with the RTNL semaphore not held, we can sleep
10535  *    safely in order to wait for the netdev refcnt to drop to zero.
10536  *
10537  * We must not return until all unregister events added during
10538  * the interval the lock was held have been completed.
10539  */
10540 void netdev_run_todo(void)
10541 {
10542 	struct net_device *dev, *tmp;
10543 	struct list_head list;
10544 	int cnt;
10545 #ifdef CONFIG_LOCKDEP
10546 	struct list_head unlink_list;
10547 
10548 	list_replace_init(&net_unlink_list, &unlink_list);
10549 
10550 	while (!list_empty(&unlink_list)) {
10551 		struct net_device *dev = list_first_entry(&unlink_list,
10552 							  struct net_device,
10553 							  unlink_list);
10554 		list_del_init(&dev->unlink_list);
10555 		dev->nested_level = dev->lower_level - 1;
10556 	}
10557 #endif
10558 
10559 	/* Snapshot list, allow later requests */
10560 	list_replace_init(&net_todo_list, &list);
10561 
10562 	__rtnl_unlock();
10563 
10564 	/* Wait for rcu callbacks to finish before next phase */
10565 	if (!list_empty(&list))
10566 		rcu_barrier();
10567 
10568 	list_for_each_entry_safe(dev, tmp, &list, todo_list) {
10569 		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
10570 			netdev_WARN(dev, "run_todo but not unregistering\n");
10571 			list_del(&dev->todo_list);
10572 			continue;
10573 		}
10574 
10575 		WRITE_ONCE(dev->reg_state, NETREG_UNREGISTERED);
10576 		linkwatch_sync_dev(dev);
10577 	}
10578 
10579 	cnt = 0;
10580 	while (!list_empty(&list)) {
10581 		dev = netdev_wait_allrefs_any(&list);
10582 		list_del(&dev->todo_list);
10583 
10584 		/* paranoia */
10585 		BUG_ON(netdev_refcnt_read(dev) != 1);
10586 		BUG_ON(!list_empty(&dev->ptype_all));
10587 		BUG_ON(!list_empty(&dev->ptype_specific));
10588 		WARN_ON(rcu_access_pointer(dev->ip_ptr));
10589 		WARN_ON(rcu_access_pointer(dev->ip6_ptr));
10590 
10591 		netdev_do_free_pcpu_stats(dev);
10592 		if (dev->priv_destructor)
10593 			dev->priv_destructor(dev);
10594 		if (dev->needs_free_netdev)
10595 			free_netdev(dev);
10596 
10597 		cnt++;
10598 
10599 		/* Free network device */
10600 		kobject_put(&dev->dev.kobj);
10601 	}
10602 	if (cnt && atomic_sub_and_test(cnt, &dev_unreg_count))
10603 		wake_up(&netdev_unregistering_wq);
10604 }
10605 
10606 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
10607  * all the same fields in the same order as net_device_stats, with only
10608  * the type differing, but rtnl_link_stats64 may have additional fields
10609  * at the end for newer counters.
10610  */
10611 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
10612 			     const struct net_device_stats *netdev_stats)
10613 {
10614 	size_t i, n = sizeof(*netdev_stats) / sizeof(atomic_long_t);
10615 	const atomic_long_t *src = (atomic_long_t *)netdev_stats;
10616 	u64 *dst = (u64 *)stats64;
10617 
10618 	BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
10619 	for (i = 0; i < n; i++)
10620 		dst[i] = (unsigned long)atomic_long_read(&src[i]);
10621 	/* zero out counters that only exist in rtnl_link_stats64 */
10622 	memset((char *)stats64 + n * sizeof(u64), 0,
10623 	       sizeof(*stats64) - n * sizeof(u64));
10624 }
10625 EXPORT_SYMBOL(netdev_stats_to_stats64);
10626 
10627 static __cold struct net_device_core_stats __percpu *netdev_core_stats_alloc(
10628 		struct net_device *dev)
10629 {
10630 	struct net_device_core_stats __percpu *p;
10631 
10632 	p = alloc_percpu_gfp(struct net_device_core_stats,
10633 			     GFP_ATOMIC | __GFP_NOWARN);
10634 
10635 	if (p && cmpxchg(&dev->core_stats, NULL, p))
10636 		free_percpu(p);
10637 
10638 	/* This READ_ONCE() pairs with the cmpxchg() above */
10639 	return READ_ONCE(dev->core_stats);
10640 }
10641 
10642 noinline void netdev_core_stats_inc(struct net_device *dev, u32 offset)
10643 {
10644 	/* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
10645 	struct net_device_core_stats __percpu *p = READ_ONCE(dev->core_stats);
10646 	unsigned long __percpu *field;
10647 
10648 	if (unlikely(!p)) {
10649 		p = netdev_core_stats_alloc(dev);
10650 		if (!p)
10651 			return;
10652 	}
10653 
10654 	field = (__force unsigned long __percpu *)((__force void *)p + offset);
10655 	this_cpu_inc(*field);
10656 }
10657 EXPORT_SYMBOL_GPL(netdev_core_stats_inc);
10658 
10659 /**
10660  *	dev_get_stats	- get network device statistics
10661  *	@dev: device to get statistics from
10662  *	@storage: place to store stats
10663  *
10664  *	Get network statistics from device. Return @storage.
10665  *	The device driver may provide its own method by setting
10666  *	dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
10667  *	otherwise the internal statistics structure is used.
10668  */
10669 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
10670 					struct rtnl_link_stats64 *storage)
10671 {
10672 	const struct net_device_ops *ops = dev->netdev_ops;
10673 	const struct net_device_core_stats __percpu *p;
10674 
10675 	if (ops->ndo_get_stats64) {
10676 		memset(storage, 0, sizeof(*storage));
10677 		ops->ndo_get_stats64(dev, storage);
10678 	} else if (ops->ndo_get_stats) {
10679 		netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
10680 	} else if (dev->pcpu_stat_type == NETDEV_PCPU_STAT_TSTATS) {
10681 		dev_get_tstats64(dev, storage);
10682 	} else {
10683 		netdev_stats_to_stats64(storage, &dev->stats);
10684 	}
10685 
10686 	/* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
10687 	p = READ_ONCE(dev->core_stats);
10688 	if (p) {
10689 		const struct net_device_core_stats *core_stats;
10690 		int i;
10691 
10692 		for_each_possible_cpu(i) {
10693 			core_stats = per_cpu_ptr(p, i);
10694 			storage->rx_dropped += READ_ONCE(core_stats->rx_dropped);
10695 			storage->tx_dropped += READ_ONCE(core_stats->tx_dropped);
10696 			storage->rx_nohandler += READ_ONCE(core_stats->rx_nohandler);
10697 			storage->rx_otherhost_dropped += READ_ONCE(core_stats->rx_otherhost_dropped);
10698 		}
10699 	}
10700 	return storage;
10701 }
10702 EXPORT_SYMBOL(dev_get_stats);
10703 
10704 /**
10705  *	dev_fetch_sw_netstats - get per-cpu network device statistics
10706  *	@s: place to store stats
10707  *	@netstats: per-cpu network stats to read from
10708  *
10709  *	Read per-cpu network statistics and populate the related fields in @s.
10710  */
10711 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
10712 			   const struct pcpu_sw_netstats __percpu *netstats)
10713 {
10714 	int cpu;
10715 
10716 	for_each_possible_cpu(cpu) {
10717 		u64 rx_packets, rx_bytes, tx_packets, tx_bytes;
10718 		const struct pcpu_sw_netstats *stats;
10719 		unsigned int start;
10720 
10721 		stats = per_cpu_ptr(netstats, cpu);
10722 		do {
10723 			start = u64_stats_fetch_begin(&stats->syncp);
10724 			rx_packets = u64_stats_read(&stats->rx_packets);
10725 			rx_bytes   = u64_stats_read(&stats->rx_bytes);
10726 			tx_packets = u64_stats_read(&stats->tx_packets);
10727 			tx_bytes   = u64_stats_read(&stats->tx_bytes);
10728 		} while (u64_stats_fetch_retry(&stats->syncp, start));
10729 
10730 		s->rx_packets += rx_packets;
10731 		s->rx_bytes   += rx_bytes;
10732 		s->tx_packets += tx_packets;
10733 		s->tx_bytes   += tx_bytes;
10734 	}
10735 }
10736 EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats);
10737 
10738 /**
10739  *	dev_get_tstats64 - ndo_get_stats64 implementation
10740  *	@dev: device to get statistics from
10741  *	@s: place to store stats
10742  *
10743  *	Populate @s from dev->stats and dev->tstats. Can be used as
10744  *	ndo_get_stats64() callback.
10745  */
10746 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s)
10747 {
10748 	netdev_stats_to_stats64(s, &dev->stats);
10749 	dev_fetch_sw_netstats(s, dev->tstats);
10750 }
10751 EXPORT_SYMBOL_GPL(dev_get_tstats64);
10752 
10753 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
10754 {
10755 	struct netdev_queue *queue = dev_ingress_queue(dev);
10756 
10757 #ifdef CONFIG_NET_CLS_ACT
10758 	if (queue)
10759 		return queue;
10760 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
10761 	if (!queue)
10762 		return NULL;
10763 	netdev_init_one_queue(dev, queue, NULL);
10764 	RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
10765 	RCU_INIT_POINTER(queue->qdisc_sleeping, &noop_qdisc);
10766 	rcu_assign_pointer(dev->ingress_queue, queue);
10767 #endif
10768 	return queue;
10769 }
10770 
10771 static const struct ethtool_ops default_ethtool_ops;
10772 
10773 void netdev_set_default_ethtool_ops(struct net_device *dev,
10774 				    const struct ethtool_ops *ops)
10775 {
10776 	if (dev->ethtool_ops == &default_ethtool_ops)
10777 		dev->ethtool_ops = ops;
10778 }
10779 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
10780 
10781 /**
10782  * netdev_sw_irq_coalesce_default_on() - enable SW IRQ coalescing by default
10783  * @dev: netdev to enable the IRQ coalescing on
10784  *
10785  * Sets a conservative default for SW IRQ coalescing. Users can use
10786  * sysfs attributes to override the default values.
10787  */
10788 void netdev_sw_irq_coalesce_default_on(struct net_device *dev)
10789 {
10790 	WARN_ON(dev->reg_state == NETREG_REGISTERED);
10791 
10792 	if (!IS_ENABLED(CONFIG_PREEMPT_RT)) {
10793 		dev->gro_flush_timeout = 20000;
10794 		dev->napi_defer_hard_irqs = 1;
10795 	}
10796 }
10797 EXPORT_SYMBOL_GPL(netdev_sw_irq_coalesce_default_on);
10798 
10799 void netdev_freemem(struct net_device *dev)
10800 {
10801 	char *addr = (char *)dev - dev->padded;
10802 
10803 	kvfree(addr);
10804 }
10805 
10806 /**
10807  * alloc_netdev_mqs - allocate network device
10808  * @sizeof_priv: size of private data to allocate space for
10809  * @name: device name format string
10810  * @name_assign_type: origin of device name
10811  * @setup: callback to initialize device
10812  * @txqs: the number of TX subqueues to allocate
10813  * @rxqs: the number of RX subqueues to allocate
10814  *
10815  * Allocates a struct net_device with private data area for driver use
10816  * and performs basic initialization.  Also allocates subqueue structs
10817  * for each queue on the device.
10818  */
10819 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
10820 		unsigned char name_assign_type,
10821 		void (*setup)(struct net_device *),
10822 		unsigned int txqs, unsigned int rxqs)
10823 {
10824 	struct net_device *dev;
10825 	unsigned int alloc_size;
10826 	struct net_device *p;
10827 
10828 	BUG_ON(strlen(name) >= sizeof(dev->name));
10829 
10830 	if (txqs < 1) {
10831 		pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
10832 		return NULL;
10833 	}
10834 
10835 	if (rxqs < 1) {
10836 		pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
10837 		return NULL;
10838 	}
10839 
10840 	alloc_size = sizeof(struct net_device);
10841 	if (sizeof_priv) {
10842 		/* ensure 32-byte alignment of private area */
10843 		alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
10844 		alloc_size += sizeof_priv;
10845 	}
10846 	/* ensure 32-byte alignment of whole construct */
10847 	alloc_size += NETDEV_ALIGN - 1;
10848 
10849 	p = kvzalloc(alloc_size, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10850 	if (!p)
10851 		return NULL;
10852 
10853 	dev = PTR_ALIGN(p, NETDEV_ALIGN);
10854 	dev->padded = (char *)dev - (char *)p;
10855 
10856 	ref_tracker_dir_init(&dev->refcnt_tracker, 128, name);
10857 #ifdef CONFIG_PCPU_DEV_REFCNT
10858 	dev->pcpu_refcnt = alloc_percpu(int);
10859 	if (!dev->pcpu_refcnt)
10860 		goto free_dev;
10861 	__dev_hold(dev);
10862 #else
10863 	refcount_set(&dev->dev_refcnt, 1);
10864 #endif
10865 
10866 	if (dev_addr_init(dev))
10867 		goto free_pcpu;
10868 
10869 	dev_mc_init(dev);
10870 	dev_uc_init(dev);
10871 
10872 	dev_net_set(dev, &init_net);
10873 
10874 	dev->gso_max_size = GSO_LEGACY_MAX_SIZE;
10875 	dev->xdp_zc_max_segs = 1;
10876 	dev->gso_max_segs = GSO_MAX_SEGS;
10877 	dev->gro_max_size = GRO_LEGACY_MAX_SIZE;
10878 	dev->gso_ipv4_max_size = GSO_LEGACY_MAX_SIZE;
10879 	dev->gro_ipv4_max_size = GRO_LEGACY_MAX_SIZE;
10880 	dev->tso_max_size = TSO_LEGACY_MAX_SIZE;
10881 	dev->tso_max_segs = TSO_MAX_SEGS;
10882 	dev->upper_level = 1;
10883 	dev->lower_level = 1;
10884 #ifdef CONFIG_LOCKDEP
10885 	dev->nested_level = 0;
10886 	INIT_LIST_HEAD(&dev->unlink_list);
10887 #endif
10888 
10889 	INIT_LIST_HEAD(&dev->napi_list);
10890 	INIT_LIST_HEAD(&dev->unreg_list);
10891 	INIT_LIST_HEAD(&dev->close_list);
10892 	INIT_LIST_HEAD(&dev->link_watch_list);
10893 	INIT_LIST_HEAD(&dev->adj_list.upper);
10894 	INIT_LIST_HEAD(&dev->adj_list.lower);
10895 	INIT_LIST_HEAD(&dev->ptype_all);
10896 	INIT_LIST_HEAD(&dev->ptype_specific);
10897 	INIT_LIST_HEAD(&dev->net_notifier_list);
10898 #ifdef CONFIG_NET_SCHED
10899 	hash_init(dev->qdisc_hash);
10900 #endif
10901 	dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
10902 	setup(dev);
10903 
10904 	if (!dev->tx_queue_len) {
10905 		dev->priv_flags |= IFF_NO_QUEUE;
10906 		dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
10907 	}
10908 
10909 	dev->num_tx_queues = txqs;
10910 	dev->real_num_tx_queues = txqs;
10911 	if (netif_alloc_netdev_queues(dev))
10912 		goto free_all;
10913 
10914 	dev->num_rx_queues = rxqs;
10915 	dev->real_num_rx_queues = rxqs;
10916 	if (netif_alloc_rx_queues(dev))
10917 		goto free_all;
10918 
10919 	strcpy(dev->name, name);
10920 	dev->name_assign_type = name_assign_type;
10921 	dev->group = INIT_NETDEV_GROUP;
10922 	if (!dev->ethtool_ops)
10923 		dev->ethtool_ops = &default_ethtool_ops;
10924 
10925 	nf_hook_netdev_init(dev);
10926 
10927 	return dev;
10928 
10929 free_all:
10930 	free_netdev(dev);
10931 	return NULL;
10932 
10933 free_pcpu:
10934 #ifdef CONFIG_PCPU_DEV_REFCNT
10935 	free_percpu(dev->pcpu_refcnt);
10936 free_dev:
10937 #endif
10938 	netdev_freemem(dev);
10939 	return NULL;
10940 }
10941 EXPORT_SYMBOL(alloc_netdev_mqs);
10942 
10943 /**
10944  * free_netdev - free network device
10945  * @dev: device
10946  *
10947  * This function does the last stage of destroying an allocated device
10948  * interface. The reference to the device object is released. If this
10949  * is the last reference then it will be freed.Must be called in process
10950  * context.
10951  */
10952 void free_netdev(struct net_device *dev)
10953 {
10954 	struct napi_struct *p, *n;
10955 
10956 	might_sleep();
10957 
10958 	/* When called immediately after register_netdevice() failed the unwind
10959 	 * handling may still be dismantling the device. Handle that case by
10960 	 * deferring the free.
10961 	 */
10962 	if (dev->reg_state == NETREG_UNREGISTERING) {
10963 		ASSERT_RTNL();
10964 		dev->needs_free_netdev = true;
10965 		return;
10966 	}
10967 
10968 	netif_free_tx_queues(dev);
10969 	netif_free_rx_queues(dev);
10970 
10971 	kfree(rcu_dereference_protected(dev->ingress_queue, 1));
10972 
10973 	/* Flush device addresses */
10974 	dev_addr_flush(dev);
10975 
10976 	list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
10977 		netif_napi_del(p);
10978 
10979 	ref_tracker_dir_exit(&dev->refcnt_tracker);
10980 #ifdef CONFIG_PCPU_DEV_REFCNT
10981 	free_percpu(dev->pcpu_refcnt);
10982 	dev->pcpu_refcnt = NULL;
10983 #endif
10984 	free_percpu(dev->core_stats);
10985 	dev->core_stats = NULL;
10986 	free_percpu(dev->xdp_bulkq);
10987 	dev->xdp_bulkq = NULL;
10988 
10989 	/*  Compatibility with error handling in drivers */
10990 	if (dev->reg_state == NETREG_UNINITIALIZED) {
10991 		netdev_freemem(dev);
10992 		return;
10993 	}
10994 
10995 	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
10996 	WRITE_ONCE(dev->reg_state, NETREG_RELEASED);
10997 
10998 	/* will free via device release */
10999 	put_device(&dev->dev);
11000 }
11001 EXPORT_SYMBOL(free_netdev);
11002 
11003 /**
11004  *	synchronize_net -  Synchronize with packet receive processing
11005  *
11006  *	Wait for packets currently being received to be done.
11007  *	Does not block later packets from starting.
11008  */
11009 void synchronize_net(void)
11010 {
11011 	might_sleep();
11012 	if (rtnl_is_locked())
11013 		synchronize_rcu_expedited();
11014 	else
11015 		synchronize_rcu();
11016 }
11017 EXPORT_SYMBOL(synchronize_net);
11018 
11019 /**
11020  *	unregister_netdevice_queue - remove device from the kernel
11021  *	@dev: device
11022  *	@head: list
11023  *
11024  *	This function shuts down a device interface and removes it
11025  *	from the kernel tables.
11026  *	If head not NULL, device is queued to be unregistered later.
11027  *
11028  *	Callers must hold the rtnl semaphore.  You may want
11029  *	unregister_netdev() instead of this.
11030  */
11031 
11032 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
11033 {
11034 	ASSERT_RTNL();
11035 
11036 	if (head) {
11037 		list_move_tail(&dev->unreg_list, head);
11038 	} else {
11039 		LIST_HEAD(single);
11040 
11041 		list_add(&dev->unreg_list, &single);
11042 		unregister_netdevice_many(&single);
11043 	}
11044 }
11045 EXPORT_SYMBOL(unregister_netdevice_queue);
11046 
11047 void unregister_netdevice_many_notify(struct list_head *head,
11048 				      u32 portid, const struct nlmsghdr *nlh)
11049 {
11050 	struct net_device *dev, *tmp;
11051 	LIST_HEAD(close_head);
11052 	int cnt = 0;
11053 
11054 	BUG_ON(dev_boot_phase);
11055 	ASSERT_RTNL();
11056 
11057 	if (list_empty(head))
11058 		return;
11059 
11060 	list_for_each_entry_safe(dev, tmp, head, unreg_list) {
11061 		/* Some devices call without registering
11062 		 * for initialization unwind. Remove those
11063 		 * devices and proceed with the remaining.
11064 		 */
11065 		if (dev->reg_state == NETREG_UNINITIALIZED) {
11066 			pr_debug("unregister_netdevice: device %s/%p never was registered\n",
11067 				 dev->name, dev);
11068 
11069 			WARN_ON(1);
11070 			list_del(&dev->unreg_list);
11071 			continue;
11072 		}
11073 		dev->dismantle = true;
11074 		BUG_ON(dev->reg_state != NETREG_REGISTERED);
11075 	}
11076 
11077 	/* If device is running, close it first. */
11078 	list_for_each_entry(dev, head, unreg_list)
11079 		list_add_tail(&dev->close_list, &close_head);
11080 	dev_close_many(&close_head, true);
11081 
11082 	list_for_each_entry(dev, head, unreg_list) {
11083 		/* And unlink it from device chain. */
11084 		unlist_netdevice(dev);
11085 		WRITE_ONCE(dev->reg_state, NETREG_UNREGISTERING);
11086 	}
11087 	flush_all_backlogs();
11088 
11089 	synchronize_net();
11090 
11091 	list_for_each_entry(dev, head, unreg_list) {
11092 		struct sk_buff *skb = NULL;
11093 
11094 		/* Shutdown queueing discipline. */
11095 		dev_shutdown(dev);
11096 		dev_tcx_uninstall(dev);
11097 		dev_xdp_uninstall(dev);
11098 		bpf_dev_bound_netdev_unregister(dev);
11099 
11100 		netdev_offload_xstats_disable_all(dev);
11101 
11102 		/* Notify protocols, that we are about to destroy
11103 		 * this device. They should clean all the things.
11104 		 */
11105 		call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11106 
11107 		if (!dev->rtnl_link_ops ||
11108 		    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
11109 			skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
11110 						     GFP_KERNEL, NULL, 0,
11111 						     portid, nlh);
11112 
11113 		/*
11114 		 *	Flush the unicast and multicast chains
11115 		 */
11116 		dev_uc_flush(dev);
11117 		dev_mc_flush(dev);
11118 
11119 		netdev_name_node_alt_flush(dev);
11120 		netdev_name_node_free(dev->name_node);
11121 
11122 		call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev);
11123 
11124 		if (dev->netdev_ops->ndo_uninit)
11125 			dev->netdev_ops->ndo_uninit(dev);
11126 
11127 		if (skb)
11128 			rtmsg_ifinfo_send(skb, dev, GFP_KERNEL, portid, nlh);
11129 
11130 		/* Notifier chain MUST detach us all upper devices. */
11131 		WARN_ON(netdev_has_any_upper_dev(dev));
11132 		WARN_ON(netdev_has_any_lower_dev(dev));
11133 
11134 		/* Remove entries from kobject tree */
11135 		netdev_unregister_kobject(dev);
11136 #ifdef CONFIG_XPS
11137 		/* Remove XPS queueing entries */
11138 		netif_reset_xps_queues_gt(dev, 0);
11139 #endif
11140 	}
11141 
11142 	synchronize_net();
11143 
11144 	list_for_each_entry(dev, head, unreg_list) {
11145 		netdev_put(dev, &dev->dev_registered_tracker);
11146 		net_set_todo(dev);
11147 		cnt++;
11148 	}
11149 	atomic_add(cnt, &dev_unreg_count);
11150 
11151 	list_del(head);
11152 }
11153 
11154 /**
11155  *	unregister_netdevice_many - unregister many devices
11156  *	@head: list of devices
11157  *
11158  *  Note: As most callers use a stack allocated list_head,
11159  *  we force a list_del() to make sure stack wont be corrupted later.
11160  */
11161 void unregister_netdevice_many(struct list_head *head)
11162 {
11163 	unregister_netdevice_many_notify(head, 0, NULL);
11164 }
11165 EXPORT_SYMBOL(unregister_netdevice_many);
11166 
11167 /**
11168  *	unregister_netdev - remove device from the kernel
11169  *	@dev: device
11170  *
11171  *	This function shuts down a device interface and removes it
11172  *	from the kernel tables.
11173  *
11174  *	This is just a wrapper for unregister_netdevice that takes
11175  *	the rtnl semaphore.  In general you want to use this and not
11176  *	unregister_netdevice.
11177  */
11178 void unregister_netdev(struct net_device *dev)
11179 {
11180 	rtnl_lock();
11181 	unregister_netdevice(dev);
11182 	rtnl_unlock();
11183 }
11184 EXPORT_SYMBOL(unregister_netdev);
11185 
11186 /**
11187  *	__dev_change_net_namespace - move device to different nethost namespace
11188  *	@dev: device
11189  *	@net: network namespace
11190  *	@pat: If not NULL name pattern to try if the current device name
11191  *	      is already taken in the destination network namespace.
11192  *	@new_ifindex: If not zero, specifies device index in the target
11193  *	              namespace.
11194  *
11195  *	This function shuts down a device interface and moves it
11196  *	to a new network namespace. On success 0 is returned, on
11197  *	a failure a netagive errno code is returned.
11198  *
11199  *	Callers must hold the rtnl semaphore.
11200  */
11201 
11202 int __dev_change_net_namespace(struct net_device *dev, struct net *net,
11203 			       const char *pat, int new_ifindex)
11204 {
11205 	struct netdev_name_node *name_node;
11206 	struct net *net_old = dev_net(dev);
11207 	char new_name[IFNAMSIZ] = {};
11208 	int err, new_nsid;
11209 
11210 	ASSERT_RTNL();
11211 
11212 	/* Don't allow namespace local devices to be moved. */
11213 	err = -EINVAL;
11214 	if (dev->features & NETIF_F_NETNS_LOCAL)
11215 		goto out;
11216 
11217 	/* Ensure the device has been registrered */
11218 	if (dev->reg_state != NETREG_REGISTERED)
11219 		goto out;
11220 
11221 	/* Get out if there is nothing todo */
11222 	err = 0;
11223 	if (net_eq(net_old, net))
11224 		goto out;
11225 
11226 	/* Pick the destination device name, and ensure
11227 	 * we can use it in the destination network namespace.
11228 	 */
11229 	err = -EEXIST;
11230 	if (netdev_name_in_use(net, dev->name)) {
11231 		/* We get here if we can't use the current device name */
11232 		if (!pat)
11233 			goto out;
11234 		err = dev_prep_valid_name(net, dev, pat, new_name, EEXIST);
11235 		if (err < 0)
11236 			goto out;
11237 	}
11238 	/* Check that none of the altnames conflicts. */
11239 	err = -EEXIST;
11240 	netdev_for_each_altname(dev, name_node)
11241 		if (netdev_name_in_use(net, name_node->name))
11242 			goto out;
11243 
11244 	/* Check that new_ifindex isn't used yet. */
11245 	if (new_ifindex) {
11246 		err = dev_index_reserve(net, new_ifindex);
11247 		if (err < 0)
11248 			goto out;
11249 	} else {
11250 		/* If there is an ifindex conflict assign a new one */
11251 		err = dev_index_reserve(net, dev->ifindex);
11252 		if (err == -EBUSY)
11253 			err = dev_index_reserve(net, 0);
11254 		if (err < 0)
11255 			goto out;
11256 		new_ifindex = err;
11257 	}
11258 
11259 	/*
11260 	 * And now a mini version of register_netdevice unregister_netdevice.
11261 	 */
11262 
11263 	/* If device is running close it first. */
11264 	dev_close(dev);
11265 
11266 	/* And unlink it from device chain */
11267 	unlist_netdevice(dev);
11268 
11269 	synchronize_net();
11270 
11271 	/* Shutdown queueing discipline. */
11272 	dev_shutdown(dev);
11273 
11274 	/* Notify protocols, that we are about to destroy
11275 	 * this device. They should clean all the things.
11276 	 *
11277 	 * Note that dev->reg_state stays at NETREG_REGISTERED.
11278 	 * This is wanted because this way 8021q and macvlan know
11279 	 * the device is just moving and can keep their slaves up.
11280 	 */
11281 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11282 	rcu_barrier();
11283 
11284 	new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
11285 
11286 	rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
11287 			    new_ifindex);
11288 
11289 	/*
11290 	 *	Flush the unicast and multicast chains
11291 	 */
11292 	dev_uc_flush(dev);
11293 	dev_mc_flush(dev);
11294 
11295 	/* Send a netdev-removed uevent to the old namespace */
11296 	kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
11297 	netdev_adjacent_del_links(dev);
11298 
11299 	/* Move per-net netdevice notifiers that are following the netdevice */
11300 	move_netdevice_notifiers_dev_net(dev, net);
11301 
11302 	/* Actually switch the network namespace */
11303 	dev_net_set(dev, net);
11304 	dev->ifindex = new_ifindex;
11305 
11306 	if (new_name[0]) /* Rename the netdev to prepared name */
11307 		strscpy(dev->name, new_name, IFNAMSIZ);
11308 
11309 	/* Fixup kobjects */
11310 	dev_set_uevent_suppress(&dev->dev, 1);
11311 	err = device_rename(&dev->dev, dev->name);
11312 	dev_set_uevent_suppress(&dev->dev, 0);
11313 	WARN_ON(err);
11314 
11315 	/* Send a netdev-add uevent to the new namespace */
11316 	kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
11317 	netdev_adjacent_add_links(dev);
11318 
11319 	/* Adapt owner in case owning user namespace of target network
11320 	 * namespace is different from the original one.
11321 	 */
11322 	err = netdev_change_owner(dev, net_old, net);
11323 	WARN_ON(err);
11324 
11325 	/* Add the device back in the hashes */
11326 	list_netdevice(dev);
11327 
11328 	/* Notify protocols, that a new device appeared. */
11329 	call_netdevice_notifiers(NETDEV_REGISTER, dev);
11330 
11331 	/*
11332 	 *	Prevent userspace races by waiting until the network
11333 	 *	device is fully setup before sending notifications.
11334 	 */
11335 	rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL);
11336 
11337 	synchronize_net();
11338 	err = 0;
11339 out:
11340 	return err;
11341 }
11342 EXPORT_SYMBOL_GPL(__dev_change_net_namespace);
11343 
11344 static int dev_cpu_dead(unsigned int oldcpu)
11345 {
11346 	struct sk_buff **list_skb;
11347 	struct sk_buff *skb;
11348 	unsigned int cpu;
11349 	struct softnet_data *sd, *oldsd, *remsd = NULL;
11350 
11351 	local_irq_disable();
11352 	cpu = smp_processor_id();
11353 	sd = &per_cpu(softnet_data, cpu);
11354 	oldsd = &per_cpu(softnet_data, oldcpu);
11355 
11356 	/* Find end of our completion_queue. */
11357 	list_skb = &sd->completion_queue;
11358 	while (*list_skb)
11359 		list_skb = &(*list_skb)->next;
11360 	/* Append completion queue from offline CPU. */
11361 	*list_skb = oldsd->completion_queue;
11362 	oldsd->completion_queue = NULL;
11363 
11364 	/* Append output queue from offline CPU. */
11365 	if (oldsd->output_queue) {
11366 		*sd->output_queue_tailp = oldsd->output_queue;
11367 		sd->output_queue_tailp = oldsd->output_queue_tailp;
11368 		oldsd->output_queue = NULL;
11369 		oldsd->output_queue_tailp = &oldsd->output_queue;
11370 	}
11371 	/* Append NAPI poll list from offline CPU, with one exception :
11372 	 * process_backlog() must be called by cpu owning percpu backlog.
11373 	 * We properly handle process_queue & input_pkt_queue later.
11374 	 */
11375 	while (!list_empty(&oldsd->poll_list)) {
11376 		struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
11377 							    struct napi_struct,
11378 							    poll_list);
11379 
11380 		list_del_init(&napi->poll_list);
11381 		if (napi->poll == process_backlog)
11382 			napi->state = 0;
11383 		else
11384 			____napi_schedule(sd, napi);
11385 	}
11386 
11387 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
11388 	local_irq_enable();
11389 
11390 #ifdef CONFIG_RPS
11391 	remsd = oldsd->rps_ipi_list;
11392 	oldsd->rps_ipi_list = NULL;
11393 #endif
11394 	/* send out pending IPI's on offline CPU */
11395 	net_rps_send_ipi(remsd);
11396 
11397 	/* Process offline CPU's input_pkt_queue */
11398 	while ((skb = __skb_dequeue(&oldsd->process_queue))) {
11399 		netif_rx(skb);
11400 		input_queue_head_incr(oldsd);
11401 	}
11402 	while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
11403 		netif_rx(skb);
11404 		input_queue_head_incr(oldsd);
11405 	}
11406 
11407 	return 0;
11408 }
11409 
11410 /**
11411  *	netdev_increment_features - increment feature set by one
11412  *	@all: current feature set
11413  *	@one: new feature set
11414  *	@mask: mask feature set
11415  *
11416  *	Computes a new feature set after adding a device with feature set
11417  *	@one to the master device with current feature set @all.  Will not
11418  *	enable anything that is off in @mask. Returns the new feature set.
11419  */
11420 netdev_features_t netdev_increment_features(netdev_features_t all,
11421 	netdev_features_t one, netdev_features_t mask)
11422 {
11423 	if (mask & NETIF_F_HW_CSUM)
11424 		mask |= NETIF_F_CSUM_MASK;
11425 	mask |= NETIF_F_VLAN_CHALLENGED;
11426 
11427 	all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
11428 	all &= one | ~NETIF_F_ALL_FOR_ALL;
11429 
11430 	/* If one device supports hw checksumming, set for all. */
11431 	if (all & NETIF_F_HW_CSUM)
11432 		all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
11433 
11434 	return all;
11435 }
11436 EXPORT_SYMBOL(netdev_increment_features);
11437 
11438 static struct hlist_head * __net_init netdev_create_hash(void)
11439 {
11440 	int i;
11441 	struct hlist_head *hash;
11442 
11443 	hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
11444 	if (hash != NULL)
11445 		for (i = 0; i < NETDEV_HASHENTRIES; i++)
11446 			INIT_HLIST_HEAD(&hash[i]);
11447 
11448 	return hash;
11449 }
11450 
11451 /* Initialize per network namespace state */
11452 static int __net_init netdev_init(struct net *net)
11453 {
11454 	BUILD_BUG_ON(GRO_HASH_BUCKETS >
11455 		     8 * sizeof_field(struct napi_struct, gro_bitmask));
11456 
11457 	INIT_LIST_HEAD(&net->dev_base_head);
11458 
11459 	net->dev_name_head = netdev_create_hash();
11460 	if (net->dev_name_head == NULL)
11461 		goto err_name;
11462 
11463 	net->dev_index_head = netdev_create_hash();
11464 	if (net->dev_index_head == NULL)
11465 		goto err_idx;
11466 
11467 	xa_init_flags(&net->dev_by_index, XA_FLAGS_ALLOC1);
11468 
11469 	RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
11470 
11471 	return 0;
11472 
11473 err_idx:
11474 	kfree(net->dev_name_head);
11475 err_name:
11476 	return -ENOMEM;
11477 }
11478 
11479 /**
11480  *	netdev_drivername - network driver for the device
11481  *	@dev: network device
11482  *
11483  *	Determine network driver for device.
11484  */
11485 const char *netdev_drivername(const struct net_device *dev)
11486 {
11487 	const struct device_driver *driver;
11488 	const struct device *parent;
11489 	const char *empty = "";
11490 
11491 	parent = dev->dev.parent;
11492 	if (!parent)
11493 		return empty;
11494 
11495 	driver = parent->driver;
11496 	if (driver && driver->name)
11497 		return driver->name;
11498 	return empty;
11499 }
11500 
11501 static void __netdev_printk(const char *level, const struct net_device *dev,
11502 			    struct va_format *vaf)
11503 {
11504 	if (dev && dev->dev.parent) {
11505 		dev_printk_emit(level[1] - '0',
11506 				dev->dev.parent,
11507 				"%s %s %s%s: %pV",
11508 				dev_driver_string(dev->dev.parent),
11509 				dev_name(dev->dev.parent),
11510 				netdev_name(dev), netdev_reg_state(dev),
11511 				vaf);
11512 	} else if (dev) {
11513 		printk("%s%s%s: %pV",
11514 		       level, netdev_name(dev), netdev_reg_state(dev), vaf);
11515 	} else {
11516 		printk("%s(NULL net_device): %pV", level, vaf);
11517 	}
11518 }
11519 
11520 void netdev_printk(const char *level, const struct net_device *dev,
11521 		   const char *format, ...)
11522 {
11523 	struct va_format vaf;
11524 	va_list args;
11525 
11526 	va_start(args, format);
11527 
11528 	vaf.fmt = format;
11529 	vaf.va = &args;
11530 
11531 	__netdev_printk(level, dev, &vaf);
11532 
11533 	va_end(args);
11534 }
11535 EXPORT_SYMBOL(netdev_printk);
11536 
11537 #define define_netdev_printk_level(func, level)			\
11538 void func(const struct net_device *dev, const char *fmt, ...)	\
11539 {								\
11540 	struct va_format vaf;					\
11541 	va_list args;						\
11542 								\
11543 	va_start(args, fmt);					\
11544 								\
11545 	vaf.fmt = fmt;						\
11546 	vaf.va = &args;						\
11547 								\
11548 	__netdev_printk(level, dev, &vaf);			\
11549 								\
11550 	va_end(args);						\
11551 }								\
11552 EXPORT_SYMBOL(func);
11553 
11554 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
11555 define_netdev_printk_level(netdev_alert, KERN_ALERT);
11556 define_netdev_printk_level(netdev_crit, KERN_CRIT);
11557 define_netdev_printk_level(netdev_err, KERN_ERR);
11558 define_netdev_printk_level(netdev_warn, KERN_WARNING);
11559 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
11560 define_netdev_printk_level(netdev_info, KERN_INFO);
11561 
11562 static void __net_exit netdev_exit(struct net *net)
11563 {
11564 	kfree(net->dev_name_head);
11565 	kfree(net->dev_index_head);
11566 	xa_destroy(&net->dev_by_index);
11567 	if (net != &init_net)
11568 		WARN_ON_ONCE(!list_empty(&net->dev_base_head));
11569 }
11570 
11571 static struct pernet_operations __net_initdata netdev_net_ops = {
11572 	.init = netdev_init,
11573 	.exit = netdev_exit,
11574 };
11575 
11576 static void __net_exit default_device_exit_net(struct net *net)
11577 {
11578 	struct netdev_name_node *name_node, *tmp;
11579 	struct net_device *dev, *aux;
11580 	/*
11581 	 * Push all migratable network devices back to the
11582 	 * initial network namespace
11583 	 */
11584 	ASSERT_RTNL();
11585 	for_each_netdev_safe(net, dev, aux) {
11586 		int err;
11587 		char fb_name[IFNAMSIZ];
11588 
11589 		/* Ignore unmoveable devices (i.e. loopback) */
11590 		if (dev->features & NETIF_F_NETNS_LOCAL)
11591 			continue;
11592 
11593 		/* Leave virtual devices for the generic cleanup */
11594 		if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund)
11595 			continue;
11596 
11597 		/* Push remaining network devices to init_net */
11598 		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
11599 		if (netdev_name_in_use(&init_net, fb_name))
11600 			snprintf(fb_name, IFNAMSIZ, "dev%%d");
11601 
11602 		netdev_for_each_altname_safe(dev, name_node, tmp)
11603 			if (netdev_name_in_use(&init_net, name_node->name))
11604 				__netdev_name_node_alt_destroy(name_node);
11605 
11606 		err = dev_change_net_namespace(dev, &init_net, fb_name);
11607 		if (err) {
11608 			pr_emerg("%s: failed to move %s to init_net: %d\n",
11609 				 __func__, dev->name, err);
11610 			BUG();
11611 		}
11612 	}
11613 }
11614 
11615 static void __net_exit default_device_exit_batch(struct list_head *net_list)
11616 {
11617 	/* At exit all network devices most be removed from a network
11618 	 * namespace.  Do this in the reverse order of registration.
11619 	 * Do this across as many network namespaces as possible to
11620 	 * improve batching efficiency.
11621 	 */
11622 	struct net_device *dev;
11623 	struct net *net;
11624 	LIST_HEAD(dev_kill_list);
11625 
11626 	rtnl_lock();
11627 	list_for_each_entry(net, net_list, exit_list) {
11628 		default_device_exit_net(net);
11629 		cond_resched();
11630 	}
11631 
11632 	list_for_each_entry(net, net_list, exit_list) {
11633 		for_each_netdev_reverse(net, dev) {
11634 			if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
11635 				dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
11636 			else
11637 				unregister_netdevice_queue(dev, &dev_kill_list);
11638 		}
11639 	}
11640 	unregister_netdevice_many(&dev_kill_list);
11641 	rtnl_unlock();
11642 }
11643 
11644 static struct pernet_operations __net_initdata default_device_ops = {
11645 	.exit_batch = default_device_exit_batch,
11646 };
11647 
11648 static void __init net_dev_struct_check(void)
11649 {
11650 	/* TX read-mostly hotpath */
11651 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, priv_flags);
11652 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, netdev_ops);
11653 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, header_ops);
11654 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, _tx);
11655 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, real_num_tx_queues);
11656 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_max_size);
11657 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_ipv4_max_size);
11658 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_max_segs);
11659 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_partial_features);
11660 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, num_tc);
11661 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, mtu);
11662 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, needed_headroom);
11663 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, tc_to_txq);
11664 #ifdef CONFIG_XPS
11665 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, xps_maps);
11666 #endif
11667 #ifdef CONFIG_NETFILTER_EGRESS
11668 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, nf_hooks_egress);
11669 #endif
11670 #ifdef CONFIG_NET_XGRESS
11671 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, tcx_egress);
11672 #endif
11673 	CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_tx, 160);
11674 
11675 	/* TXRX read-mostly hotpath */
11676 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, lstats);
11677 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, state);
11678 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, flags);
11679 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, hard_header_len);
11680 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, features);
11681 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, ip6_ptr);
11682 	CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_txrx, 46);
11683 
11684 	/* RX read-mostly hotpath */
11685 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, ptype_specific);
11686 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, ifindex);
11687 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, real_num_rx_queues);
11688 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, _rx);
11689 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_flush_timeout);
11690 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, napi_defer_hard_irqs);
11691 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_max_size);
11692 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_ipv4_max_size);
11693 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, rx_handler);
11694 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, rx_handler_data);
11695 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, nd_net);
11696 #ifdef CONFIG_NETPOLL
11697 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, npinfo);
11698 #endif
11699 #ifdef CONFIG_NET_XGRESS
11700 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, tcx_ingress);
11701 #endif
11702 	CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_rx, 104);
11703 }
11704 
11705 /*
11706  *	Initialize the DEV module. At boot time this walks the device list and
11707  *	unhooks any devices that fail to initialise (normally hardware not
11708  *	present) and leaves us with a valid list of present and active devices.
11709  *
11710  */
11711 
11712 /* We allocate 256 pages for each CPU if PAGE_SHIFT is 12 */
11713 #define SYSTEM_PERCPU_PAGE_POOL_SIZE	((1 << 20) / PAGE_SIZE)
11714 
11715 static int net_page_pool_create(int cpuid)
11716 {
11717 #if IS_ENABLED(CONFIG_PAGE_POOL)
11718 	struct page_pool_params page_pool_params = {
11719 		.pool_size = SYSTEM_PERCPU_PAGE_POOL_SIZE,
11720 		.flags = PP_FLAG_SYSTEM_POOL,
11721 		.nid = NUMA_NO_NODE,
11722 	};
11723 	struct page_pool *pp_ptr;
11724 
11725 	pp_ptr = page_pool_create_percpu(&page_pool_params, cpuid);
11726 	if (IS_ERR(pp_ptr))
11727 		return -ENOMEM;
11728 
11729 	per_cpu(system_page_pool, cpuid) = pp_ptr;
11730 #endif
11731 	return 0;
11732 }
11733 
11734 /*
11735  *       This is called single threaded during boot, so no need
11736  *       to take the rtnl semaphore.
11737  */
11738 static int __init net_dev_init(void)
11739 {
11740 	int i, rc = -ENOMEM;
11741 
11742 	BUG_ON(!dev_boot_phase);
11743 
11744 	net_dev_struct_check();
11745 
11746 	if (dev_proc_init())
11747 		goto out;
11748 
11749 	if (netdev_kobject_init())
11750 		goto out;
11751 
11752 	for (i = 0; i < PTYPE_HASH_SIZE; i++)
11753 		INIT_LIST_HEAD(&ptype_base[i]);
11754 
11755 	if (register_pernet_subsys(&netdev_net_ops))
11756 		goto out;
11757 
11758 	/*
11759 	 *	Initialise the packet receive queues.
11760 	 */
11761 
11762 	for_each_possible_cpu(i) {
11763 		struct work_struct *flush = per_cpu_ptr(&flush_works, i);
11764 		struct softnet_data *sd = &per_cpu(softnet_data, i);
11765 
11766 		INIT_WORK(flush, flush_backlog);
11767 
11768 		skb_queue_head_init(&sd->input_pkt_queue);
11769 		skb_queue_head_init(&sd->process_queue);
11770 #ifdef CONFIG_XFRM_OFFLOAD
11771 		skb_queue_head_init(&sd->xfrm_backlog);
11772 #endif
11773 		INIT_LIST_HEAD(&sd->poll_list);
11774 		sd->output_queue_tailp = &sd->output_queue;
11775 #ifdef CONFIG_RPS
11776 		INIT_CSD(&sd->csd, rps_trigger_softirq, sd);
11777 		sd->cpu = i;
11778 #endif
11779 		INIT_CSD(&sd->defer_csd, trigger_rx_softirq, sd);
11780 		spin_lock_init(&sd->defer_lock);
11781 
11782 		init_gro_hash(&sd->backlog);
11783 		sd->backlog.poll = process_backlog;
11784 		sd->backlog.weight = weight_p;
11785 
11786 		if (net_page_pool_create(i))
11787 			goto out;
11788 	}
11789 
11790 	dev_boot_phase = 0;
11791 
11792 	/* The loopback device is special if any other network devices
11793 	 * is present in a network namespace the loopback device must
11794 	 * be present. Since we now dynamically allocate and free the
11795 	 * loopback device ensure this invariant is maintained by
11796 	 * keeping the loopback device as the first device on the
11797 	 * list of network devices.  Ensuring the loopback devices
11798 	 * is the first device that appears and the last network device
11799 	 * that disappears.
11800 	 */
11801 	if (register_pernet_device(&loopback_net_ops))
11802 		goto out;
11803 
11804 	if (register_pernet_device(&default_device_ops))
11805 		goto out;
11806 
11807 	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
11808 	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
11809 
11810 	rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
11811 				       NULL, dev_cpu_dead);
11812 	WARN_ON(rc < 0);
11813 	rc = 0;
11814 out:
11815 	if (rc < 0) {
11816 		for_each_possible_cpu(i) {
11817 			struct page_pool *pp_ptr;
11818 
11819 			pp_ptr = per_cpu(system_page_pool, i);
11820 			if (!pp_ptr)
11821 				continue;
11822 
11823 			page_pool_destroy(pp_ptr);
11824 			per_cpu(system_page_pool, i) = NULL;
11825 		}
11826 	}
11827 
11828 	return rc;
11829 }
11830 
11831 subsys_initcall(net_dev_init);
11832