1 /* 2 * NET3 Protocol independent device support routines. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public License 6 * as published by the Free Software Foundation; either version 7 * 2 of the License, or (at your option) any later version. 8 * 9 * Derived from the non IP parts of dev.c 1.0.19 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Mark Evans, <evansmp@uhura.aston.ac.uk> 13 * 14 * Additional Authors: 15 * Florian la Roche <rzsfl@rz.uni-sb.de> 16 * Alan Cox <gw4pts@gw4pts.ampr.org> 17 * David Hinds <dahinds@users.sourceforge.net> 18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> 19 * Adam Sulmicki <adam@cfar.umd.edu> 20 * Pekka Riikonen <priikone@poesidon.pspt.fi> 21 * 22 * Changes: 23 * D.J. Barrow : Fixed bug where dev->refcnt gets set 24 * to 2 if register_netdev gets called 25 * before net_dev_init & also removed a 26 * few lines of code in the process. 27 * Alan Cox : device private ioctl copies fields back. 28 * Alan Cox : Transmit queue code does relevant 29 * stunts to keep the queue safe. 30 * Alan Cox : Fixed double lock. 31 * Alan Cox : Fixed promisc NULL pointer trap 32 * ???????? : Support the full private ioctl range 33 * Alan Cox : Moved ioctl permission check into 34 * drivers 35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI 36 * Alan Cox : 100 backlog just doesn't cut it when 37 * you start doing multicast video 8) 38 * Alan Cox : Rewrote net_bh and list manager. 39 * Alan Cox : Fix ETH_P_ALL echoback lengths. 40 * Alan Cox : Took out transmit every packet pass 41 * Saved a few bytes in the ioctl handler 42 * Alan Cox : Network driver sets packet type before 43 * calling netif_rx. Saves a function 44 * call a packet. 45 * Alan Cox : Hashed net_bh() 46 * Richard Kooijman: Timestamp fixes. 47 * Alan Cox : Wrong field in SIOCGIFDSTADDR 48 * Alan Cox : Device lock protection. 49 * Alan Cox : Fixed nasty side effect of device close 50 * changes. 51 * Rudi Cilibrasi : Pass the right thing to 52 * set_mac_address() 53 * Dave Miller : 32bit quantity for the device lock to 54 * make it work out on a Sparc. 55 * Bjorn Ekwall : Added KERNELD hack. 56 * Alan Cox : Cleaned up the backlog initialise. 57 * Craig Metz : SIOCGIFCONF fix if space for under 58 * 1 device. 59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there 60 * is no device open function. 61 * Andi Kleen : Fix error reporting for SIOCGIFCONF 62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF 63 * Cyrus Durgin : Cleaned for KMOD 64 * Adam Sulmicki : Bug Fix : Network Device Unload 65 * A network device unload needs to purge 66 * the backlog queue. 67 * Paul Rusty Russell : SIOCSIFNAME 68 * Pekka Riikonen : Netdev boot-time settings code 69 * Andrew Morton : Make unregister_netdevice wait 70 * indefinitely on dev->refcnt 71 * J Hadi Salim : - Backlog queue sampling 72 * - netif_rx() feedback 73 */ 74 75 #include <asm/uaccess.h> 76 #include <asm/system.h> 77 #include <linux/bitops.h> 78 #include <linux/capability.h> 79 #include <linux/cpu.h> 80 #include <linux/types.h> 81 #include <linux/kernel.h> 82 #include <linux/sched.h> 83 #include <linux/mutex.h> 84 #include <linux/string.h> 85 #include <linux/mm.h> 86 #include <linux/socket.h> 87 #include <linux/sockios.h> 88 #include <linux/errno.h> 89 #include <linux/interrupt.h> 90 #include <linux/if_ether.h> 91 #include <linux/netdevice.h> 92 #include <linux/etherdevice.h> 93 #include <linux/notifier.h> 94 #include <linux/skbuff.h> 95 #include <net/sock.h> 96 #include <linux/rtnetlink.h> 97 #include <linux/proc_fs.h> 98 #include <linux/seq_file.h> 99 #include <linux/stat.h> 100 #include <linux/if_bridge.h> 101 #include <linux/if_macvlan.h> 102 #include <net/dst.h> 103 #include <net/pkt_sched.h> 104 #include <net/checksum.h> 105 #include <linux/highmem.h> 106 #include <linux/init.h> 107 #include <linux/kmod.h> 108 #include <linux/module.h> 109 #include <linux/kallsyms.h> 110 #include <linux/netpoll.h> 111 #include <linux/rcupdate.h> 112 #include <linux/delay.h> 113 #include <net/wext.h> 114 #include <net/iw_handler.h> 115 #include <asm/current.h> 116 #include <linux/audit.h> 117 #include <linux/dmaengine.h> 118 #include <linux/err.h> 119 #include <linux/ctype.h> 120 #include <linux/if_arp.h> 121 122 /* 123 * The list of packet types we will receive (as opposed to discard) 124 * and the routines to invoke. 125 * 126 * Why 16. Because with 16 the only overlap we get on a hash of the 127 * low nibble of the protocol value is RARP/SNAP/X.25. 128 * 129 * NOTE: That is no longer true with the addition of VLAN tags. Not 130 * sure which should go first, but I bet it won't make much 131 * difference if we are running VLANs. The good news is that 132 * this protocol won't be in the list unless compiled in, so 133 * the average user (w/out VLANs) will not be adversely affected. 134 * --BLG 135 * 136 * 0800 IP 137 * 8100 802.1Q VLAN 138 * 0001 802.3 139 * 0002 AX.25 140 * 0004 802.2 141 * 8035 RARP 142 * 0005 SNAP 143 * 0805 X.25 144 * 0806 ARP 145 * 8137 IPX 146 * 0009 Localtalk 147 * 86DD IPv6 148 */ 149 150 static DEFINE_SPINLOCK(ptype_lock); 151 static struct list_head ptype_base[16] __read_mostly; /* 16 way hashed list */ 152 static struct list_head ptype_all __read_mostly; /* Taps */ 153 154 #ifdef CONFIG_NET_DMA 155 struct net_dma { 156 struct dma_client client; 157 spinlock_t lock; 158 cpumask_t channel_mask; 159 struct dma_chan *channels[NR_CPUS]; 160 }; 161 162 static enum dma_state_client 163 netdev_dma_event(struct dma_client *client, struct dma_chan *chan, 164 enum dma_state state); 165 166 static struct net_dma net_dma = { 167 .client = { 168 .event_callback = netdev_dma_event, 169 }, 170 }; 171 #endif 172 173 /* 174 * The @dev_base_head list is protected by @dev_base_lock and the rtnl 175 * semaphore. 176 * 177 * Pure readers hold dev_base_lock for reading. 178 * 179 * Writers must hold the rtnl semaphore while they loop through the 180 * dev_base_head list, and hold dev_base_lock for writing when they do the 181 * actual updates. This allows pure readers to access the list even 182 * while a writer is preparing to update it. 183 * 184 * To put it another way, dev_base_lock is held for writing only to 185 * protect against pure readers; the rtnl semaphore provides the 186 * protection against other writers. 187 * 188 * See, for example usages, register_netdevice() and 189 * unregister_netdevice(), which must be called with the rtnl 190 * semaphore held. 191 */ 192 LIST_HEAD(dev_base_head); 193 DEFINE_RWLOCK(dev_base_lock); 194 195 EXPORT_SYMBOL(dev_base_head); 196 EXPORT_SYMBOL(dev_base_lock); 197 198 #define NETDEV_HASHBITS 8 199 static struct hlist_head dev_name_head[1<<NETDEV_HASHBITS]; 200 static struct hlist_head dev_index_head[1<<NETDEV_HASHBITS]; 201 202 static inline struct hlist_head *dev_name_hash(const char *name) 203 { 204 unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ)); 205 return &dev_name_head[hash & ((1<<NETDEV_HASHBITS)-1)]; 206 } 207 208 static inline struct hlist_head *dev_index_hash(int ifindex) 209 { 210 return &dev_index_head[ifindex & ((1<<NETDEV_HASHBITS)-1)]; 211 } 212 213 /* 214 * Our notifier list 215 */ 216 217 static RAW_NOTIFIER_HEAD(netdev_chain); 218 219 /* 220 * Device drivers call our routines to queue packets here. We empty the 221 * queue in the local softnet handler. 222 */ 223 DEFINE_PER_CPU(struct softnet_data, softnet_data) = { NULL }; 224 225 #ifdef CONFIG_SYSFS 226 extern int netdev_sysfs_init(void); 227 extern int netdev_register_sysfs(struct net_device *); 228 extern void netdev_unregister_sysfs(struct net_device *); 229 #else 230 #define netdev_sysfs_init() (0) 231 #define netdev_register_sysfs(dev) (0) 232 #define netdev_unregister_sysfs(dev) do { } while(0) 233 #endif 234 235 #ifdef CONFIG_DEBUG_LOCK_ALLOC 236 /* 237 * register_netdevice() inits dev->_xmit_lock and sets lockdep class 238 * according to dev->type 239 */ 240 static const unsigned short netdev_lock_type[] = 241 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25, 242 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET, 243 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM, 244 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP, 245 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD, 246 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25, 247 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP, 248 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD, 249 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI, 250 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE, 251 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET, 252 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL, 253 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211, 254 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_VOID, 255 ARPHRD_NONE}; 256 257 static const char *netdev_lock_name[] = 258 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25", 259 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET", 260 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM", 261 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP", 262 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD", 263 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25", 264 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP", 265 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD", 266 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI", 267 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE", 268 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET", 269 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL", 270 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211", 271 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_VOID", 272 "_xmit_NONE"}; 273 274 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)]; 275 276 static inline unsigned short netdev_lock_pos(unsigned short dev_type) 277 { 278 int i; 279 280 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++) 281 if (netdev_lock_type[i] == dev_type) 282 return i; 283 /* the last key is used by default */ 284 return ARRAY_SIZE(netdev_lock_type) - 1; 285 } 286 287 static inline void netdev_set_lockdep_class(spinlock_t *lock, 288 unsigned short dev_type) 289 { 290 int i; 291 292 i = netdev_lock_pos(dev_type); 293 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i], 294 netdev_lock_name[i]); 295 } 296 #else 297 static inline void netdev_set_lockdep_class(spinlock_t *lock, 298 unsigned short dev_type) 299 { 300 } 301 #endif 302 303 /******************************************************************************* 304 305 Protocol management and registration routines 306 307 *******************************************************************************/ 308 309 /* 310 * Add a protocol ID to the list. Now that the input handler is 311 * smarter we can dispense with all the messy stuff that used to be 312 * here. 313 * 314 * BEWARE!!! Protocol handlers, mangling input packets, 315 * MUST BE last in hash buckets and checking protocol handlers 316 * MUST start from promiscuous ptype_all chain in net_bh. 317 * It is true now, do not change it. 318 * Explanation follows: if protocol handler, mangling packet, will 319 * be the first on list, it is not able to sense, that packet 320 * is cloned and should be copied-on-write, so that it will 321 * change it and subsequent readers will get broken packet. 322 * --ANK (980803) 323 */ 324 325 /** 326 * dev_add_pack - add packet handler 327 * @pt: packet type declaration 328 * 329 * Add a protocol handler to the networking stack. The passed &packet_type 330 * is linked into kernel lists and may not be freed until it has been 331 * removed from the kernel lists. 332 * 333 * This call does not sleep therefore it can not 334 * guarantee all CPU's that are in middle of receiving packets 335 * will see the new packet type (until the next received packet). 336 */ 337 338 void dev_add_pack(struct packet_type *pt) 339 { 340 int hash; 341 342 spin_lock_bh(&ptype_lock); 343 if (pt->type == htons(ETH_P_ALL)) 344 list_add_rcu(&pt->list, &ptype_all); 345 else { 346 hash = ntohs(pt->type) & 15; 347 list_add_rcu(&pt->list, &ptype_base[hash]); 348 } 349 spin_unlock_bh(&ptype_lock); 350 } 351 352 /** 353 * __dev_remove_pack - remove packet handler 354 * @pt: packet type declaration 355 * 356 * Remove a protocol handler that was previously added to the kernel 357 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 358 * from the kernel lists and can be freed or reused once this function 359 * returns. 360 * 361 * The packet type might still be in use by receivers 362 * and must not be freed until after all the CPU's have gone 363 * through a quiescent state. 364 */ 365 void __dev_remove_pack(struct packet_type *pt) 366 { 367 struct list_head *head; 368 struct packet_type *pt1; 369 370 spin_lock_bh(&ptype_lock); 371 372 if (pt->type == htons(ETH_P_ALL)) 373 head = &ptype_all; 374 else 375 head = &ptype_base[ntohs(pt->type) & 15]; 376 377 list_for_each_entry(pt1, head, list) { 378 if (pt == pt1) { 379 list_del_rcu(&pt->list); 380 goto out; 381 } 382 } 383 384 printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt); 385 out: 386 spin_unlock_bh(&ptype_lock); 387 } 388 /** 389 * dev_remove_pack - remove packet handler 390 * @pt: packet type declaration 391 * 392 * Remove a protocol handler that was previously added to the kernel 393 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 394 * from the kernel lists and can be freed or reused once this function 395 * returns. 396 * 397 * This call sleeps to guarantee that no CPU is looking at the packet 398 * type after return. 399 */ 400 void dev_remove_pack(struct packet_type *pt) 401 { 402 __dev_remove_pack(pt); 403 404 synchronize_net(); 405 } 406 407 /****************************************************************************** 408 409 Device Boot-time Settings Routines 410 411 *******************************************************************************/ 412 413 /* Boot time configuration table */ 414 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX]; 415 416 /** 417 * netdev_boot_setup_add - add new setup entry 418 * @name: name of the device 419 * @map: configured settings for the device 420 * 421 * Adds new setup entry to the dev_boot_setup list. The function 422 * returns 0 on error and 1 on success. This is a generic routine to 423 * all netdevices. 424 */ 425 static int netdev_boot_setup_add(char *name, struct ifmap *map) 426 { 427 struct netdev_boot_setup *s; 428 int i; 429 430 s = dev_boot_setup; 431 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 432 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') { 433 memset(s[i].name, 0, sizeof(s[i].name)); 434 strcpy(s[i].name, name); 435 memcpy(&s[i].map, map, sizeof(s[i].map)); 436 break; 437 } 438 } 439 440 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1; 441 } 442 443 /** 444 * netdev_boot_setup_check - check boot time settings 445 * @dev: the netdevice 446 * 447 * Check boot time settings for the device. 448 * The found settings are set for the device to be used 449 * later in the device probing. 450 * Returns 0 if no settings found, 1 if they are. 451 */ 452 int netdev_boot_setup_check(struct net_device *dev) 453 { 454 struct netdev_boot_setup *s = dev_boot_setup; 455 int i; 456 457 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 458 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' && 459 !strncmp(dev->name, s[i].name, strlen(s[i].name))) { 460 dev->irq = s[i].map.irq; 461 dev->base_addr = s[i].map.base_addr; 462 dev->mem_start = s[i].map.mem_start; 463 dev->mem_end = s[i].map.mem_end; 464 return 1; 465 } 466 } 467 return 0; 468 } 469 470 471 /** 472 * netdev_boot_base - get address from boot time settings 473 * @prefix: prefix for network device 474 * @unit: id for network device 475 * 476 * Check boot time settings for the base address of device. 477 * The found settings are set for the device to be used 478 * later in the device probing. 479 * Returns 0 if no settings found. 480 */ 481 unsigned long netdev_boot_base(const char *prefix, int unit) 482 { 483 const struct netdev_boot_setup *s = dev_boot_setup; 484 char name[IFNAMSIZ]; 485 int i; 486 487 sprintf(name, "%s%d", prefix, unit); 488 489 /* 490 * If device already registered then return base of 1 491 * to indicate not to probe for this interface 492 */ 493 if (__dev_get_by_name(name)) 494 return 1; 495 496 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) 497 if (!strcmp(name, s[i].name)) 498 return s[i].map.base_addr; 499 return 0; 500 } 501 502 /* 503 * Saves at boot time configured settings for any netdevice. 504 */ 505 int __init netdev_boot_setup(char *str) 506 { 507 int ints[5]; 508 struct ifmap map; 509 510 str = get_options(str, ARRAY_SIZE(ints), ints); 511 if (!str || !*str) 512 return 0; 513 514 /* Save settings */ 515 memset(&map, 0, sizeof(map)); 516 if (ints[0] > 0) 517 map.irq = ints[1]; 518 if (ints[0] > 1) 519 map.base_addr = ints[2]; 520 if (ints[0] > 2) 521 map.mem_start = ints[3]; 522 if (ints[0] > 3) 523 map.mem_end = ints[4]; 524 525 /* Add new entry to the list */ 526 return netdev_boot_setup_add(str, &map); 527 } 528 529 __setup("netdev=", netdev_boot_setup); 530 531 /******************************************************************************* 532 533 Device Interface Subroutines 534 535 *******************************************************************************/ 536 537 /** 538 * __dev_get_by_name - find a device by its name 539 * @name: name to find 540 * 541 * Find an interface by name. Must be called under RTNL semaphore 542 * or @dev_base_lock. If the name is found a pointer to the device 543 * is returned. If the name is not found then %NULL is returned. The 544 * reference counters are not incremented so the caller must be 545 * careful with locks. 546 */ 547 548 struct net_device *__dev_get_by_name(const char *name) 549 { 550 struct hlist_node *p; 551 552 hlist_for_each(p, dev_name_hash(name)) { 553 struct net_device *dev 554 = hlist_entry(p, struct net_device, name_hlist); 555 if (!strncmp(dev->name, name, IFNAMSIZ)) 556 return dev; 557 } 558 return NULL; 559 } 560 561 /** 562 * dev_get_by_name - find a device by its name 563 * @name: name to find 564 * 565 * Find an interface by name. This can be called from any 566 * context and does its own locking. The returned handle has 567 * the usage count incremented and the caller must use dev_put() to 568 * release it when it is no longer needed. %NULL is returned if no 569 * matching device is found. 570 */ 571 572 struct net_device *dev_get_by_name(const char *name) 573 { 574 struct net_device *dev; 575 576 read_lock(&dev_base_lock); 577 dev = __dev_get_by_name(name); 578 if (dev) 579 dev_hold(dev); 580 read_unlock(&dev_base_lock); 581 return dev; 582 } 583 584 /** 585 * __dev_get_by_index - find a device by its ifindex 586 * @ifindex: index of device 587 * 588 * Search for an interface by index. Returns %NULL if the device 589 * is not found or a pointer to the device. The device has not 590 * had its reference counter increased so the caller must be careful 591 * about locking. The caller must hold either the RTNL semaphore 592 * or @dev_base_lock. 593 */ 594 595 struct net_device *__dev_get_by_index(int ifindex) 596 { 597 struct hlist_node *p; 598 599 hlist_for_each(p, dev_index_hash(ifindex)) { 600 struct net_device *dev 601 = hlist_entry(p, struct net_device, index_hlist); 602 if (dev->ifindex == ifindex) 603 return dev; 604 } 605 return NULL; 606 } 607 608 609 /** 610 * dev_get_by_index - find a device by its ifindex 611 * @ifindex: index of device 612 * 613 * Search for an interface by index. Returns NULL if the device 614 * is not found or a pointer to the device. The device returned has 615 * had a reference added and the pointer is safe until the user calls 616 * dev_put to indicate they have finished with it. 617 */ 618 619 struct net_device *dev_get_by_index(int ifindex) 620 { 621 struct net_device *dev; 622 623 read_lock(&dev_base_lock); 624 dev = __dev_get_by_index(ifindex); 625 if (dev) 626 dev_hold(dev); 627 read_unlock(&dev_base_lock); 628 return dev; 629 } 630 631 /** 632 * dev_getbyhwaddr - find a device by its hardware address 633 * @type: media type of device 634 * @ha: hardware address 635 * 636 * Search for an interface by MAC address. Returns NULL if the device 637 * is not found or a pointer to the device. The caller must hold the 638 * rtnl semaphore. The returned device has not had its ref count increased 639 * and the caller must therefore be careful about locking 640 * 641 * BUGS: 642 * If the API was consistent this would be __dev_get_by_hwaddr 643 */ 644 645 struct net_device *dev_getbyhwaddr(unsigned short type, char *ha) 646 { 647 struct net_device *dev; 648 649 ASSERT_RTNL(); 650 651 for_each_netdev(dev) 652 if (dev->type == type && 653 !memcmp(dev->dev_addr, ha, dev->addr_len)) 654 return dev; 655 656 return NULL; 657 } 658 659 EXPORT_SYMBOL(dev_getbyhwaddr); 660 661 struct net_device *__dev_getfirstbyhwtype(unsigned short type) 662 { 663 struct net_device *dev; 664 665 ASSERT_RTNL(); 666 for_each_netdev(dev) 667 if (dev->type == type) 668 return dev; 669 670 return NULL; 671 } 672 673 EXPORT_SYMBOL(__dev_getfirstbyhwtype); 674 675 struct net_device *dev_getfirstbyhwtype(unsigned short type) 676 { 677 struct net_device *dev; 678 679 rtnl_lock(); 680 dev = __dev_getfirstbyhwtype(type); 681 if (dev) 682 dev_hold(dev); 683 rtnl_unlock(); 684 return dev; 685 } 686 687 EXPORT_SYMBOL(dev_getfirstbyhwtype); 688 689 /** 690 * dev_get_by_flags - find any device with given flags 691 * @if_flags: IFF_* values 692 * @mask: bitmask of bits in if_flags to check 693 * 694 * Search for any interface with the given flags. Returns NULL if a device 695 * is not found or a pointer to the device. The device returned has 696 * had a reference added and the pointer is safe until the user calls 697 * dev_put to indicate they have finished with it. 698 */ 699 700 struct net_device * dev_get_by_flags(unsigned short if_flags, unsigned short mask) 701 { 702 struct net_device *dev, *ret; 703 704 ret = NULL; 705 read_lock(&dev_base_lock); 706 for_each_netdev(dev) { 707 if (((dev->flags ^ if_flags) & mask) == 0) { 708 dev_hold(dev); 709 ret = dev; 710 break; 711 } 712 } 713 read_unlock(&dev_base_lock); 714 return ret; 715 } 716 717 /** 718 * dev_valid_name - check if name is okay for network device 719 * @name: name string 720 * 721 * Network device names need to be valid file names to 722 * to allow sysfs to work. We also disallow any kind of 723 * whitespace. 724 */ 725 int dev_valid_name(const char *name) 726 { 727 if (*name == '\0') 728 return 0; 729 if (strlen(name) >= IFNAMSIZ) 730 return 0; 731 if (!strcmp(name, ".") || !strcmp(name, "..")) 732 return 0; 733 734 while (*name) { 735 if (*name == '/' || isspace(*name)) 736 return 0; 737 name++; 738 } 739 return 1; 740 } 741 742 /** 743 * dev_alloc_name - allocate a name for a device 744 * @dev: device 745 * @name: name format string 746 * 747 * Passed a format string - eg "lt%d" it will try and find a suitable 748 * id. It scans list of devices to build up a free map, then chooses 749 * the first empty slot. The caller must hold the dev_base or rtnl lock 750 * while allocating the name and adding the device in order to avoid 751 * duplicates. 752 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 753 * Returns the number of the unit assigned or a negative errno code. 754 */ 755 756 int dev_alloc_name(struct net_device *dev, const char *name) 757 { 758 int i = 0; 759 char buf[IFNAMSIZ]; 760 const char *p; 761 const int max_netdevices = 8*PAGE_SIZE; 762 long *inuse; 763 struct net_device *d; 764 765 p = strnchr(name, IFNAMSIZ-1, '%'); 766 if (p) { 767 /* 768 * Verify the string as this thing may have come from 769 * the user. There must be either one "%d" and no other "%" 770 * characters. 771 */ 772 if (p[1] != 'd' || strchr(p + 2, '%')) 773 return -EINVAL; 774 775 /* Use one page as a bit array of possible slots */ 776 inuse = (long *) get_zeroed_page(GFP_ATOMIC); 777 if (!inuse) 778 return -ENOMEM; 779 780 for_each_netdev(d) { 781 if (!sscanf(d->name, name, &i)) 782 continue; 783 if (i < 0 || i >= max_netdevices) 784 continue; 785 786 /* avoid cases where sscanf is not exact inverse of printf */ 787 snprintf(buf, sizeof(buf), name, i); 788 if (!strncmp(buf, d->name, IFNAMSIZ)) 789 set_bit(i, inuse); 790 } 791 792 i = find_first_zero_bit(inuse, max_netdevices); 793 free_page((unsigned long) inuse); 794 } 795 796 snprintf(buf, sizeof(buf), name, i); 797 if (!__dev_get_by_name(buf)) { 798 strlcpy(dev->name, buf, IFNAMSIZ); 799 return i; 800 } 801 802 /* It is possible to run out of possible slots 803 * when the name is long and there isn't enough space left 804 * for the digits, or if all bits are used. 805 */ 806 return -ENFILE; 807 } 808 809 810 /** 811 * dev_change_name - change name of a device 812 * @dev: device 813 * @newname: name (or format string) must be at least IFNAMSIZ 814 * 815 * Change name of a device, can pass format strings "eth%d". 816 * for wildcarding. 817 */ 818 int dev_change_name(struct net_device *dev, char *newname) 819 { 820 int err = 0; 821 822 ASSERT_RTNL(); 823 824 if (dev->flags & IFF_UP) 825 return -EBUSY; 826 827 if (!dev_valid_name(newname)) 828 return -EINVAL; 829 830 if (strchr(newname, '%')) { 831 err = dev_alloc_name(dev, newname); 832 if (err < 0) 833 return err; 834 strcpy(newname, dev->name); 835 } 836 else if (__dev_get_by_name(newname)) 837 return -EEXIST; 838 else 839 strlcpy(dev->name, newname, IFNAMSIZ); 840 841 device_rename(&dev->dev, dev->name); 842 hlist_del(&dev->name_hlist); 843 hlist_add_head(&dev->name_hlist, dev_name_hash(dev->name)); 844 raw_notifier_call_chain(&netdev_chain, NETDEV_CHANGENAME, dev); 845 846 return err; 847 } 848 849 /** 850 * netdev_features_change - device changes features 851 * @dev: device to cause notification 852 * 853 * Called to indicate a device has changed features. 854 */ 855 void netdev_features_change(struct net_device *dev) 856 { 857 raw_notifier_call_chain(&netdev_chain, NETDEV_FEAT_CHANGE, dev); 858 } 859 EXPORT_SYMBOL(netdev_features_change); 860 861 /** 862 * netdev_state_change - device changes state 863 * @dev: device to cause notification 864 * 865 * Called to indicate a device has changed state. This function calls 866 * the notifier chains for netdev_chain and sends a NEWLINK message 867 * to the routing socket. 868 */ 869 void netdev_state_change(struct net_device *dev) 870 { 871 if (dev->flags & IFF_UP) { 872 raw_notifier_call_chain(&netdev_chain, 873 NETDEV_CHANGE, dev); 874 rtmsg_ifinfo(RTM_NEWLINK, dev, 0); 875 } 876 } 877 878 /** 879 * dev_load - load a network module 880 * @name: name of interface 881 * 882 * If a network interface is not present and the process has suitable 883 * privileges this function loads the module. If module loading is not 884 * available in this kernel then it becomes a nop. 885 */ 886 887 void dev_load(const char *name) 888 { 889 struct net_device *dev; 890 891 read_lock(&dev_base_lock); 892 dev = __dev_get_by_name(name); 893 read_unlock(&dev_base_lock); 894 895 if (!dev && capable(CAP_SYS_MODULE)) 896 request_module("%s", name); 897 } 898 899 static int default_rebuild_header(struct sk_buff *skb) 900 { 901 printk(KERN_DEBUG "%s: default_rebuild_header called -- BUG!\n", 902 skb->dev ? skb->dev->name : "NULL!!!"); 903 kfree_skb(skb); 904 return 1; 905 } 906 907 /** 908 * dev_open - prepare an interface for use. 909 * @dev: device to open 910 * 911 * Takes a device from down to up state. The device's private open 912 * function is invoked and then the multicast lists are loaded. Finally 913 * the device is moved into the up state and a %NETDEV_UP message is 914 * sent to the netdev notifier chain. 915 * 916 * Calling this function on an active interface is a nop. On a failure 917 * a negative errno code is returned. 918 */ 919 int dev_open(struct net_device *dev) 920 { 921 int ret = 0; 922 923 /* 924 * Is it already up? 925 */ 926 927 if (dev->flags & IFF_UP) 928 return 0; 929 930 /* 931 * Is it even present? 932 */ 933 if (!netif_device_present(dev)) 934 return -ENODEV; 935 936 /* 937 * Call device private open method 938 */ 939 set_bit(__LINK_STATE_START, &dev->state); 940 if (dev->open) { 941 ret = dev->open(dev); 942 if (ret) 943 clear_bit(__LINK_STATE_START, &dev->state); 944 } 945 946 /* 947 * If it went open OK then: 948 */ 949 950 if (!ret) { 951 /* 952 * Set the flags. 953 */ 954 dev->flags |= IFF_UP; 955 956 /* 957 * Initialize multicasting status 958 */ 959 dev_set_rx_mode(dev); 960 961 /* 962 * Wakeup transmit queue engine 963 */ 964 dev_activate(dev); 965 966 /* 967 * ... and announce new interface. 968 */ 969 raw_notifier_call_chain(&netdev_chain, NETDEV_UP, dev); 970 } 971 return ret; 972 } 973 974 /** 975 * dev_close - shutdown an interface. 976 * @dev: device to shutdown 977 * 978 * This function moves an active device into down state. A 979 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device 980 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier 981 * chain. 982 */ 983 int dev_close(struct net_device *dev) 984 { 985 if (!(dev->flags & IFF_UP)) 986 return 0; 987 988 /* 989 * Tell people we are going down, so that they can 990 * prepare to death, when device is still operating. 991 */ 992 raw_notifier_call_chain(&netdev_chain, NETDEV_GOING_DOWN, dev); 993 994 dev_deactivate(dev); 995 996 clear_bit(__LINK_STATE_START, &dev->state); 997 998 /* Synchronize to scheduled poll. We cannot touch poll list, 999 * it can be even on different cpu. So just clear netif_running(), 1000 * and wait when poll really will happen. Actually, the best place 1001 * for this is inside dev->stop() after device stopped its irq 1002 * engine, but this requires more changes in devices. */ 1003 1004 smp_mb__after_clear_bit(); /* Commit netif_running(). */ 1005 while (test_bit(__LINK_STATE_RX_SCHED, &dev->state)) { 1006 /* No hurry. */ 1007 msleep(1); 1008 } 1009 1010 /* 1011 * Call the device specific close. This cannot fail. 1012 * Only if device is UP 1013 * 1014 * We allow it to be called even after a DETACH hot-plug 1015 * event. 1016 */ 1017 if (dev->stop) 1018 dev->stop(dev); 1019 1020 /* 1021 * Device is now down. 1022 */ 1023 1024 dev->flags &= ~IFF_UP; 1025 1026 /* 1027 * Tell people we are down 1028 */ 1029 raw_notifier_call_chain(&netdev_chain, NETDEV_DOWN, dev); 1030 1031 return 0; 1032 } 1033 1034 1035 /* 1036 * Device change register/unregister. These are not inline or static 1037 * as we export them to the world. 1038 */ 1039 1040 /** 1041 * register_netdevice_notifier - register a network notifier block 1042 * @nb: notifier 1043 * 1044 * Register a notifier to be called when network device events occur. 1045 * The notifier passed is linked into the kernel structures and must 1046 * not be reused until it has been unregistered. A negative errno code 1047 * is returned on a failure. 1048 * 1049 * When registered all registration and up events are replayed 1050 * to the new notifier to allow device to have a race free 1051 * view of the network device list. 1052 */ 1053 1054 int register_netdevice_notifier(struct notifier_block *nb) 1055 { 1056 struct net_device *dev; 1057 int err; 1058 1059 rtnl_lock(); 1060 err = raw_notifier_chain_register(&netdev_chain, nb); 1061 if (!err) { 1062 for_each_netdev(dev) { 1063 nb->notifier_call(nb, NETDEV_REGISTER, dev); 1064 1065 if (dev->flags & IFF_UP) 1066 nb->notifier_call(nb, NETDEV_UP, dev); 1067 } 1068 } 1069 rtnl_unlock(); 1070 return err; 1071 } 1072 1073 /** 1074 * unregister_netdevice_notifier - unregister a network notifier block 1075 * @nb: notifier 1076 * 1077 * Unregister a notifier previously registered by 1078 * register_netdevice_notifier(). The notifier is unlinked into the 1079 * kernel structures and may then be reused. A negative errno code 1080 * is returned on a failure. 1081 */ 1082 1083 int unregister_netdevice_notifier(struct notifier_block *nb) 1084 { 1085 int err; 1086 1087 rtnl_lock(); 1088 err = raw_notifier_chain_unregister(&netdev_chain, nb); 1089 rtnl_unlock(); 1090 return err; 1091 } 1092 1093 /** 1094 * call_netdevice_notifiers - call all network notifier blocks 1095 * @val: value passed unmodified to notifier function 1096 * @v: pointer passed unmodified to notifier function 1097 * 1098 * Call all network notifier blocks. Parameters and return value 1099 * are as for raw_notifier_call_chain(). 1100 */ 1101 1102 int call_netdevice_notifiers(unsigned long val, void *v) 1103 { 1104 return raw_notifier_call_chain(&netdev_chain, val, v); 1105 } 1106 1107 /* When > 0 there are consumers of rx skb time stamps */ 1108 static atomic_t netstamp_needed = ATOMIC_INIT(0); 1109 1110 void net_enable_timestamp(void) 1111 { 1112 atomic_inc(&netstamp_needed); 1113 } 1114 1115 void net_disable_timestamp(void) 1116 { 1117 atomic_dec(&netstamp_needed); 1118 } 1119 1120 static inline void net_timestamp(struct sk_buff *skb) 1121 { 1122 if (atomic_read(&netstamp_needed)) 1123 __net_timestamp(skb); 1124 else 1125 skb->tstamp.tv64 = 0; 1126 } 1127 1128 /* 1129 * Support routine. Sends outgoing frames to any network 1130 * taps currently in use. 1131 */ 1132 1133 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev) 1134 { 1135 struct packet_type *ptype; 1136 1137 net_timestamp(skb); 1138 1139 rcu_read_lock(); 1140 list_for_each_entry_rcu(ptype, &ptype_all, list) { 1141 /* Never send packets back to the socket 1142 * they originated from - MvS (miquels@drinkel.ow.org) 1143 */ 1144 if ((ptype->dev == dev || !ptype->dev) && 1145 (ptype->af_packet_priv == NULL || 1146 (struct sock *)ptype->af_packet_priv != skb->sk)) { 1147 struct sk_buff *skb2= skb_clone(skb, GFP_ATOMIC); 1148 if (!skb2) 1149 break; 1150 1151 /* skb->nh should be correctly 1152 set by sender, so that the second statement is 1153 just protection against buggy protocols. 1154 */ 1155 skb_reset_mac_header(skb2); 1156 1157 if (skb_network_header(skb2) < skb2->data || 1158 skb2->network_header > skb2->tail) { 1159 if (net_ratelimit()) 1160 printk(KERN_CRIT "protocol %04x is " 1161 "buggy, dev %s\n", 1162 skb2->protocol, dev->name); 1163 skb_reset_network_header(skb2); 1164 } 1165 1166 skb2->transport_header = skb2->network_header; 1167 skb2->pkt_type = PACKET_OUTGOING; 1168 ptype->func(skb2, skb->dev, ptype, skb->dev); 1169 } 1170 } 1171 rcu_read_unlock(); 1172 } 1173 1174 1175 void __netif_schedule(struct net_device *dev) 1176 { 1177 if (!test_and_set_bit(__LINK_STATE_SCHED, &dev->state)) { 1178 unsigned long flags; 1179 struct softnet_data *sd; 1180 1181 local_irq_save(flags); 1182 sd = &__get_cpu_var(softnet_data); 1183 dev->next_sched = sd->output_queue; 1184 sd->output_queue = dev; 1185 raise_softirq_irqoff(NET_TX_SOFTIRQ); 1186 local_irq_restore(flags); 1187 } 1188 } 1189 EXPORT_SYMBOL(__netif_schedule); 1190 1191 void __netif_rx_schedule(struct net_device *dev) 1192 { 1193 unsigned long flags; 1194 1195 local_irq_save(flags); 1196 dev_hold(dev); 1197 list_add_tail(&dev->poll_list, &__get_cpu_var(softnet_data).poll_list); 1198 if (dev->quota < 0) 1199 dev->quota += dev->weight; 1200 else 1201 dev->quota = dev->weight; 1202 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 1203 local_irq_restore(flags); 1204 } 1205 EXPORT_SYMBOL(__netif_rx_schedule); 1206 1207 void dev_kfree_skb_any(struct sk_buff *skb) 1208 { 1209 if (in_irq() || irqs_disabled()) 1210 dev_kfree_skb_irq(skb); 1211 else 1212 dev_kfree_skb(skb); 1213 } 1214 EXPORT_SYMBOL(dev_kfree_skb_any); 1215 1216 1217 /* Hot-plugging. */ 1218 void netif_device_detach(struct net_device *dev) 1219 { 1220 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) && 1221 netif_running(dev)) { 1222 netif_stop_queue(dev); 1223 } 1224 } 1225 EXPORT_SYMBOL(netif_device_detach); 1226 1227 void netif_device_attach(struct net_device *dev) 1228 { 1229 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) && 1230 netif_running(dev)) { 1231 netif_wake_queue(dev); 1232 __netdev_watchdog_up(dev); 1233 } 1234 } 1235 EXPORT_SYMBOL(netif_device_attach); 1236 1237 1238 /* 1239 * Invalidate hardware checksum when packet is to be mangled, and 1240 * complete checksum manually on outgoing path. 1241 */ 1242 int skb_checksum_help(struct sk_buff *skb) 1243 { 1244 __wsum csum; 1245 int ret = 0, offset; 1246 1247 if (skb->ip_summed == CHECKSUM_COMPLETE) 1248 goto out_set_summed; 1249 1250 if (unlikely(skb_shinfo(skb)->gso_size)) { 1251 /* Let GSO fix up the checksum. */ 1252 goto out_set_summed; 1253 } 1254 1255 if (skb_cloned(skb)) { 1256 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 1257 if (ret) 1258 goto out; 1259 } 1260 1261 offset = skb->csum_start - skb_headroom(skb); 1262 BUG_ON(offset > (int)skb->len); 1263 csum = skb_checksum(skb, offset, skb->len-offset, 0); 1264 1265 offset = skb_headlen(skb) - offset; 1266 BUG_ON(offset <= 0); 1267 BUG_ON(skb->csum_offset + 2 > offset); 1268 1269 *(__sum16 *)(skb->head + skb->csum_start + skb->csum_offset) = 1270 csum_fold(csum); 1271 out_set_summed: 1272 skb->ip_summed = CHECKSUM_NONE; 1273 out: 1274 return ret; 1275 } 1276 1277 /** 1278 * skb_gso_segment - Perform segmentation on skb. 1279 * @skb: buffer to segment 1280 * @features: features for the output path (see dev->features) 1281 * 1282 * This function segments the given skb and returns a list of segments. 1283 * 1284 * It may return NULL if the skb requires no segmentation. This is 1285 * only possible when GSO is used for verifying header integrity. 1286 */ 1287 struct sk_buff *skb_gso_segment(struct sk_buff *skb, int features) 1288 { 1289 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT); 1290 struct packet_type *ptype; 1291 __be16 type = skb->protocol; 1292 int err; 1293 1294 BUG_ON(skb_shinfo(skb)->frag_list); 1295 1296 skb_reset_mac_header(skb); 1297 skb->mac_len = skb->network_header - skb->mac_header; 1298 __skb_pull(skb, skb->mac_len); 1299 1300 if (WARN_ON(skb->ip_summed != CHECKSUM_PARTIAL)) { 1301 if (skb_header_cloned(skb) && 1302 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))) 1303 return ERR_PTR(err); 1304 } 1305 1306 rcu_read_lock(); 1307 list_for_each_entry_rcu(ptype, &ptype_base[ntohs(type) & 15], list) { 1308 if (ptype->type == type && !ptype->dev && ptype->gso_segment) { 1309 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) { 1310 err = ptype->gso_send_check(skb); 1311 segs = ERR_PTR(err); 1312 if (err || skb_gso_ok(skb, features)) 1313 break; 1314 __skb_push(skb, (skb->data - 1315 skb_network_header(skb))); 1316 } 1317 segs = ptype->gso_segment(skb, features); 1318 break; 1319 } 1320 } 1321 rcu_read_unlock(); 1322 1323 __skb_push(skb, skb->data - skb_mac_header(skb)); 1324 1325 return segs; 1326 } 1327 1328 EXPORT_SYMBOL(skb_gso_segment); 1329 1330 /* Take action when hardware reception checksum errors are detected. */ 1331 #ifdef CONFIG_BUG 1332 void netdev_rx_csum_fault(struct net_device *dev) 1333 { 1334 if (net_ratelimit()) { 1335 printk(KERN_ERR "%s: hw csum failure.\n", 1336 dev ? dev->name : "<unknown>"); 1337 dump_stack(); 1338 } 1339 } 1340 EXPORT_SYMBOL(netdev_rx_csum_fault); 1341 #endif 1342 1343 /* Actually, we should eliminate this check as soon as we know, that: 1344 * 1. IOMMU is present and allows to map all the memory. 1345 * 2. No high memory really exists on this machine. 1346 */ 1347 1348 static inline int illegal_highdma(struct net_device *dev, struct sk_buff *skb) 1349 { 1350 #ifdef CONFIG_HIGHMEM 1351 int i; 1352 1353 if (dev->features & NETIF_F_HIGHDMA) 1354 return 0; 1355 1356 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 1357 if (PageHighMem(skb_shinfo(skb)->frags[i].page)) 1358 return 1; 1359 1360 #endif 1361 return 0; 1362 } 1363 1364 struct dev_gso_cb { 1365 void (*destructor)(struct sk_buff *skb); 1366 }; 1367 1368 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb) 1369 1370 static void dev_gso_skb_destructor(struct sk_buff *skb) 1371 { 1372 struct dev_gso_cb *cb; 1373 1374 do { 1375 struct sk_buff *nskb = skb->next; 1376 1377 skb->next = nskb->next; 1378 nskb->next = NULL; 1379 kfree_skb(nskb); 1380 } while (skb->next); 1381 1382 cb = DEV_GSO_CB(skb); 1383 if (cb->destructor) 1384 cb->destructor(skb); 1385 } 1386 1387 /** 1388 * dev_gso_segment - Perform emulated hardware segmentation on skb. 1389 * @skb: buffer to segment 1390 * 1391 * This function segments the given skb and stores the list of segments 1392 * in skb->next. 1393 */ 1394 static int dev_gso_segment(struct sk_buff *skb) 1395 { 1396 struct net_device *dev = skb->dev; 1397 struct sk_buff *segs; 1398 int features = dev->features & ~(illegal_highdma(dev, skb) ? 1399 NETIF_F_SG : 0); 1400 1401 segs = skb_gso_segment(skb, features); 1402 1403 /* Verifying header integrity only. */ 1404 if (!segs) 1405 return 0; 1406 1407 if (unlikely(IS_ERR(segs))) 1408 return PTR_ERR(segs); 1409 1410 skb->next = segs; 1411 DEV_GSO_CB(skb)->destructor = skb->destructor; 1412 skb->destructor = dev_gso_skb_destructor; 1413 1414 return 0; 1415 } 1416 1417 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev) 1418 { 1419 if (likely(!skb->next)) { 1420 if (!list_empty(&ptype_all)) 1421 dev_queue_xmit_nit(skb, dev); 1422 1423 if (netif_needs_gso(dev, skb)) { 1424 if (unlikely(dev_gso_segment(skb))) 1425 goto out_kfree_skb; 1426 if (skb->next) 1427 goto gso; 1428 } 1429 1430 return dev->hard_start_xmit(skb, dev); 1431 } 1432 1433 gso: 1434 do { 1435 struct sk_buff *nskb = skb->next; 1436 int rc; 1437 1438 skb->next = nskb->next; 1439 nskb->next = NULL; 1440 rc = dev->hard_start_xmit(nskb, dev); 1441 if (unlikely(rc)) { 1442 nskb->next = skb->next; 1443 skb->next = nskb; 1444 return rc; 1445 } 1446 if (unlikely((netif_queue_stopped(dev) || 1447 netif_subqueue_stopped(dev, skb->queue_mapping)) && 1448 skb->next)) 1449 return NETDEV_TX_BUSY; 1450 } while (skb->next); 1451 1452 skb->destructor = DEV_GSO_CB(skb)->destructor; 1453 1454 out_kfree_skb: 1455 kfree_skb(skb); 1456 return 0; 1457 } 1458 1459 #define HARD_TX_LOCK(dev, cpu) { \ 1460 if ((dev->features & NETIF_F_LLTX) == 0) { \ 1461 netif_tx_lock(dev); \ 1462 } \ 1463 } 1464 1465 #define HARD_TX_UNLOCK(dev) { \ 1466 if ((dev->features & NETIF_F_LLTX) == 0) { \ 1467 netif_tx_unlock(dev); \ 1468 } \ 1469 } 1470 1471 /** 1472 * dev_queue_xmit - transmit a buffer 1473 * @skb: buffer to transmit 1474 * 1475 * Queue a buffer for transmission to a network device. The caller must 1476 * have set the device and priority and built the buffer before calling 1477 * this function. The function can be called from an interrupt. 1478 * 1479 * A negative errno code is returned on a failure. A success does not 1480 * guarantee the frame will be transmitted as it may be dropped due 1481 * to congestion or traffic shaping. 1482 * 1483 * ----------------------------------------------------------------------------------- 1484 * I notice this method can also return errors from the queue disciplines, 1485 * including NET_XMIT_DROP, which is a positive value. So, errors can also 1486 * be positive. 1487 * 1488 * Regardless of the return value, the skb is consumed, so it is currently 1489 * difficult to retry a send to this method. (You can bump the ref count 1490 * before sending to hold a reference for retry if you are careful.) 1491 * 1492 * When calling this method, interrupts MUST be enabled. This is because 1493 * the BH enable code must have IRQs enabled so that it will not deadlock. 1494 * --BLG 1495 */ 1496 1497 int dev_queue_xmit(struct sk_buff *skb) 1498 { 1499 struct net_device *dev = skb->dev; 1500 struct Qdisc *q; 1501 int rc = -ENOMEM; 1502 1503 /* GSO will handle the following emulations directly. */ 1504 if (netif_needs_gso(dev, skb)) 1505 goto gso; 1506 1507 if (skb_shinfo(skb)->frag_list && 1508 !(dev->features & NETIF_F_FRAGLIST) && 1509 __skb_linearize(skb)) 1510 goto out_kfree_skb; 1511 1512 /* Fragmented skb is linearized if device does not support SG, 1513 * or if at least one of fragments is in highmem and device 1514 * does not support DMA from it. 1515 */ 1516 if (skb_shinfo(skb)->nr_frags && 1517 (!(dev->features & NETIF_F_SG) || illegal_highdma(dev, skb)) && 1518 __skb_linearize(skb)) 1519 goto out_kfree_skb; 1520 1521 /* If packet is not checksummed and device does not support 1522 * checksumming for this protocol, complete checksumming here. 1523 */ 1524 if (skb->ip_summed == CHECKSUM_PARTIAL) { 1525 skb_set_transport_header(skb, skb->csum_start - 1526 skb_headroom(skb)); 1527 1528 if (!(dev->features & NETIF_F_GEN_CSUM) && 1529 !((dev->features & NETIF_F_IP_CSUM) && 1530 skb->protocol == htons(ETH_P_IP)) && 1531 !((dev->features & NETIF_F_IPV6_CSUM) && 1532 skb->protocol == htons(ETH_P_IPV6))) 1533 if (skb_checksum_help(skb)) 1534 goto out_kfree_skb; 1535 } 1536 1537 gso: 1538 spin_lock_prefetch(&dev->queue_lock); 1539 1540 /* Disable soft irqs for various locks below. Also 1541 * stops preemption for RCU. 1542 */ 1543 rcu_read_lock_bh(); 1544 1545 /* Updates of qdisc are serialized by queue_lock. 1546 * The struct Qdisc which is pointed to by qdisc is now a 1547 * rcu structure - it may be accessed without acquiring 1548 * a lock (but the structure may be stale.) The freeing of the 1549 * qdisc will be deferred until it's known that there are no 1550 * more references to it. 1551 * 1552 * If the qdisc has an enqueue function, we still need to 1553 * hold the queue_lock before calling it, since queue_lock 1554 * also serializes access to the device queue. 1555 */ 1556 1557 q = rcu_dereference(dev->qdisc); 1558 #ifdef CONFIG_NET_CLS_ACT 1559 skb->tc_verd = SET_TC_AT(skb->tc_verd,AT_EGRESS); 1560 #endif 1561 if (q->enqueue) { 1562 /* Grab device queue */ 1563 spin_lock(&dev->queue_lock); 1564 q = dev->qdisc; 1565 if (q->enqueue) { 1566 /* reset queue_mapping to zero */ 1567 skb->queue_mapping = 0; 1568 rc = q->enqueue(skb, q); 1569 qdisc_run(dev); 1570 spin_unlock(&dev->queue_lock); 1571 1572 rc = rc == NET_XMIT_BYPASS ? NET_XMIT_SUCCESS : rc; 1573 goto out; 1574 } 1575 spin_unlock(&dev->queue_lock); 1576 } 1577 1578 /* The device has no queue. Common case for software devices: 1579 loopback, all the sorts of tunnels... 1580 1581 Really, it is unlikely that netif_tx_lock protection is necessary 1582 here. (f.e. loopback and IP tunnels are clean ignoring statistics 1583 counters.) 1584 However, it is possible, that they rely on protection 1585 made by us here. 1586 1587 Check this and shot the lock. It is not prone from deadlocks. 1588 Either shot noqueue qdisc, it is even simpler 8) 1589 */ 1590 if (dev->flags & IFF_UP) { 1591 int cpu = smp_processor_id(); /* ok because BHs are off */ 1592 1593 if (dev->xmit_lock_owner != cpu) { 1594 1595 HARD_TX_LOCK(dev, cpu); 1596 1597 if (!netif_queue_stopped(dev) && 1598 !netif_subqueue_stopped(dev, skb->queue_mapping)) { 1599 rc = 0; 1600 if (!dev_hard_start_xmit(skb, dev)) { 1601 HARD_TX_UNLOCK(dev); 1602 goto out; 1603 } 1604 } 1605 HARD_TX_UNLOCK(dev); 1606 if (net_ratelimit()) 1607 printk(KERN_CRIT "Virtual device %s asks to " 1608 "queue packet!\n", dev->name); 1609 } else { 1610 /* Recursion is detected! It is possible, 1611 * unfortunately */ 1612 if (net_ratelimit()) 1613 printk(KERN_CRIT "Dead loop on virtual device " 1614 "%s, fix it urgently!\n", dev->name); 1615 } 1616 } 1617 1618 rc = -ENETDOWN; 1619 rcu_read_unlock_bh(); 1620 1621 out_kfree_skb: 1622 kfree_skb(skb); 1623 return rc; 1624 out: 1625 rcu_read_unlock_bh(); 1626 return rc; 1627 } 1628 1629 1630 /*======================================================================= 1631 Receiver routines 1632 =======================================================================*/ 1633 1634 int netdev_max_backlog __read_mostly = 1000; 1635 int netdev_budget __read_mostly = 300; 1636 int weight_p __read_mostly = 64; /* old backlog weight */ 1637 1638 DEFINE_PER_CPU(struct netif_rx_stats, netdev_rx_stat) = { 0, }; 1639 1640 1641 /** 1642 * netif_rx - post buffer to the network code 1643 * @skb: buffer to post 1644 * 1645 * This function receives a packet from a device driver and queues it for 1646 * the upper (protocol) levels to process. It always succeeds. The buffer 1647 * may be dropped during processing for congestion control or by the 1648 * protocol layers. 1649 * 1650 * return values: 1651 * NET_RX_SUCCESS (no congestion) 1652 * NET_RX_CN_LOW (low congestion) 1653 * NET_RX_CN_MOD (moderate congestion) 1654 * NET_RX_CN_HIGH (high congestion) 1655 * NET_RX_DROP (packet was dropped) 1656 * 1657 */ 1658 1659 int netif_rx(struct sk_buff *skb) 1660 { 1661 struct softnet_data *queue; 1662 unsigned long flags; 1663 1664 /* if netpoll wants it, pretend we never saw it */ 1665 if (netpoll_rx(skb)) 1666 return NET_RX_DROP; 1667 1668 if (!skb->tstamp.tv64) 1669 net_timestamp(skb); 1670 1671 /* 1672 * The code is rearranged so that the path is the most 1673 * short when CPU is congested, but is still operating. 1674 */ 1675 local_irq_save(flags); 1676 queue = &__get_cpu_var(softnet_data); 1677 1678 __get_cpu_var(netdev_rx_stat).total++; 1679 if (queue->input_pkt_queue.qlen <= netdev_max_backlog) { 1680 if (queue->input_pkt_queue.qlen) { 1681 enqueue: 1682 dev_hold(skb->dev); 1683 __skb_queue_tail(&queue->input_pkt_queue, skb); 1684 local_irq_restore(flags); 1685 return NET_RX_SUCCESS; 1686 } 1687 1688 netif_rx_schedule(&queue->backlog_dev); 1689 goto enqueue; 1690 } 1691 1692 __get_cpu_var(netdev_rx_stat).dropped++; 1693 local_irq_restore(flags); 1694 1695 kfree_skb(skb); 1696 return NET_RX_DROP; 1697 } 1698 1699 int netif_rx_ni(struct sk_buff *skb) 1700 { 1701 int err; 1702 1703 preempt_disable(); 1704 err = netif_rx(skb); 1705 if (local_softirq_pending()) 1706 do_softirq(); 1707 preempt_enable(); 1708 1709 return err; 1710 } 1711 1712 EXPORT_SYMBOL(netif_rx_ni); 1713 1714 static inline struct net_device *skb_bond(struct sk_buff *skb) 1715 { 1716 struct net_device *dev = skb->dev; 1717 1718 if (dev->master) { 1719 if (skb_bond_should_drop(skb)) { 1720 kfree_skb(skb); 1721 return NULL; 1722 } 1723 skb->dev = dev->master; 1724 } 1725 1726 return dev; 1727 } 1728 1729 static void net_tx_action(struct softirq_action *h) 1730 { 1731 struct softnet_data *sd = &__get_cpu_var(softnet_data); 1732 1733 if (sd->completion_queue) { 1734 struct sk_buff *clist; 1735 1736 local_irq_disable(); 1737 clist = sd->completion_queue; 1738 sd->completion_queue = NULL; 1739 local_irq_enable(); 1740 1741 while (clist) { 1742 struct sk_buff *skb = clist; 1743 clist = clist->next; 1744 1745 BUG_TRAP(!atomic_read(&skb->users)); 1746 __kfree_skb(skb); 1747 } 1748 } 1749 1750 if (sd->output_queue) { 1751 struct net_device *head; 1752 1753 local_irq_disable(); 1754 head = sd->output_queue; 1755 sd->output_queue = NULL; 1756 local_irq_enable(); 1757 1758 while (head) { 1759 struct net_device *dev = head; 1760 head = head->next_sched; 1761 1762 smp_mb__before_clear_bit(); 1763 clear_bit(__LINK_STATE_SCHED, &dev->state); 1764 1765 if (spin_trylock(&dev->queue_lock)) { 1766 qdisc_run(dev); 1767 spin_unlock(&dev->queue_lock); 1768 } else { 1769 netif_schedule(dev); 1770 } 1771 } 1772 } 1773 } 1774 1775 static inline int deliver_skb(struct sk_buff *skb, 1776 struct packet_type *pt_prev, 1777 struct net_device *orig_dev) 1778 { 1779 atomic_inc(&skb->users); 1780 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 1781 } 1782 1783 #if defined(CONFIG_BRIDGE) || defined (CONFIG_BRIDGE_MODULE) 1784 /* These hooks defined here for ATM */ 1785 struct net_bridge; 1786 struct net_bridge_fdb_entry *(*br_fdb_get_hook)(struct net_bridge *br, 1787 unsigned char *addr); 1788 void (*br_fdb_put_hook)(struct net_bridge_fdb_entry *ent) __read_mostly; 1789 1790 /* 1791 * If bridge module is loaded call bridging hook. 1792 * returns NULL if packet was consumed. 1793 */ 1794 struct sk_buff *(*br_handle_frame_hook)(struct net_bridge_port *p, 1795 struct sk_buff *skb) __read_mostly; 1796 static inline struct sk_buff *handle_bridge(struct sk_buff *skb, 1797 struct packet_type **pt_prev, int *ret, 1798 struct net_device *orig_dev) 1799 { 1800 struct net_bridge_port *port; 1801 1802 if (skb->pkt_type == PACKET_LOOPBACK || 1803 (port = rcu_dereference(skb->dev->br_port)) == NULL) 1804 return skb; 1805 1806 if (*pt_prev) { 1807 *ret = deliver_skb(skb, *pt_prev, orig_dev); 1808 *pt_prev = NULL; 1809 } 1810 1811 return br_handle_frame_hook(port, skb); 1812 } 1813 #else 1814 #define handle_bridge(skb, pt_prev, ret, orig_dev) (skb) 1815 #endif 1816 1817 #if defined(CONFIG_MACVLAN) || defined(CONFIG_MACVLAN_MODULE) 1818 struct sk_buff *(*macvlan_handle_frame_hook)(struct sk_buff *skb) __read_mostly; 1819 EXPORT_SYMBOL_GPL(macvlan_handle_frame_hook); 1820 1821 static inline struct sk_buff *handle_macvlan(struct sk_buff *skb, 1822 struct packet_type **pt_prev, 1823 int *ret, 1824 struct net_device *orig_dev) 1825 { 1826 if (skb->dev->macvlan_port == NULL) 1827 return skb; 1828 1829 if (*pt_prev) { 1830 *ret = deliver_skb(skb, *pt_prev, orig_dev); 1831 *pt_prev = NULL; 1832 } 1833 return macvlan_handle_frame_hook(skb); 1834 } 1835 #else 1836 #define handle_macvlan(skb, pt_prev, ret, orig_dev) (skb) 1837 #endif 1838 1839 #ifdef CONFIG_NET_CLS_ACT 1840 /* TODO: Maybe we should just force sch_ingress to be compiled in 1841 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions 1842 * a compare and 2 stores extra right now if we dont have it on 1843 * but have CONFIG_NET_CLS_ACT 1844 * NOTE: This doesnt stop any functionality; if you dont have 1845 * the ingress scheduler, you just cant add policies on ingress. 1846 * 1847 */ 1848 static int ing_filter(struct sk_buff *skb) 1849 { 1850 struct Qdisc *q; 1851 struct net_device *dev = skb->dev; 1852 int result = TC_ACT_OK; 1853 1854 if (dev->qdisc_ingress) { 1855 __u32 ttl = (__u32) G_TC_RTTL(skb->tc_verd); 1856 if (MAX_RED_LOOP < ttl++) { 1857 printk(KERN_WARNING "Redir loop detected Dropping packet (%d->%d)\n", 1858 skb->iif, skb->dev->ifindex); 1859 return TC_ACT_SHOT; 1860 } 1861 1862 skb->tc_verd = SET_TC_RTTL(skb->tc_verd,ttl); 1863 1864 skb->tc_verd = SET_TC_AT(skb->tc_verd,AT_INGRESS); 1865 1866 spin_lock(&dev->ingress_lock); 1867 if ((q = dev->qdisc_ingress) != NULL) 1868 result = q->enqueue(skb, q); 1869 spin_unlock(&dev->ingress_lock); 1870 1871 } 1872 1873 return result; 1874 } 1875 #endif 1876 1877 int netif_receive_skb(struct sk_buff *skb) 1878 { 1879 struct packet_type *ptype, *pt_prev; 1880 struct net_device *orig_dev; 1881 int ret = NET_RX_DROP; 1882 __be16 type; 1883 1884 /* if we've gotten here through NAPI, check netpoll */ 1885 if (skb->dev->poll && netpoll_rx(skb)) 1886 return NET_RX_DROP; 1887 1888 if (!skb->tstamp.tv64) 1889 net_timestamp(skb); 1890 1891 if (!skb->iif) 1892 skb->iif = skb->dev->ifindex; 1893 1894 orig_dev = skb_bond(skb); 1895 1896 if (!orig_dev) 1897 return NET_RX_DROP; 1898 1899 __get_cpu_var(netdev_rx_stat).total++; 1900 1901 skb_reset_network_header(skb); 1902 skb_reset_transport_header(skb); 1903 skb->mac_len = skb->network_header - skb->mac_header; 1904 1905 pt_prev = NULL; 1906 1907 rcu_read_lock(); 1908 1909 #ifdef CONFIG_NET_CLS_ACT 1910 if (skb->tc_verd & TC_NCLS) { 1911 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd); 1912 goto ncls; 1913 } 1914 #endif 1915 1916 list_for_each_entry_rcu(ptype, &ptype_all, list) { 1917 if (!ptype->dev || ptype->dev == skb->dev) { 1918 if (pt_prev) 1919 ret = deliver_skb(skb, pt_prev, orig_dev); 1920 pt_prev = ptype; 1921 } 1922 } 1923 1924 #ifdef CONFIG_NET_CLS_ACT 1925 if (pt_prev) { 1926 ret = deliver_skb(skb, pt_prev, orig_dev); 1927 pt_prev = NULL; /* noone else should process this after*/ 1928 } else { 1929 skb->tc_verd = SET_TC_OK2MUNGE(skb->tc_verd); 1930 } 1931 1932 ret = ing_filter(skb); 1933 1934 if (ret == TC_ACT_SHOT || (ret == TC_ACT_STOLEN)) { 1935 kfree_skb(skb); 1936 goto out; 1937 } 1938 1939 skb->tc_verd = 0; 1940 ncls: 1941 #endif 1942 1943 skb = handle_bridge(skb, &pt_prev, &ret, orig_dev); 1944 if (!skb) 1945 goto out; 1946 skb = handle_macvlan(skb, &pt_prev, &ret, orig_dev); 1947 if (!skb) 1948 goto out; 1949 1950 type = skb->protocol; 1951 list_for_each_entry_rcu(ptype, &ptype_base[ntohs(type)&15], list) { 1952 if (ptype->type == type && 1953 (!ptype->dev || ptype->dev == skb->dev)) { 1954 if (pt_prev) 1955 ret = deliver_skb(skb, pt_prev, orig_dev); 1956 pt_prev = ptype; 1957 } 1958 } 1959 1960 if (pt_prev) { 1961 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 1962 } else { 1963 kfree_skb(skb); 1964 /* Jamal, now you will not able to escape explaining 1965 * me how you were going to use this. :-) 1966 */ 1967 ret = NET_RX_DROP; 1968 } 1969 1970 out: 1971 rcu_read_unlock(); 1972 return ret; 1973 } 1974 1975 static int process_backlog(struct net_device *backlog_dev, int *budget) 1976 { 1977 int work = 0; 1978 int quota = min(backlog_dev->quota, *budget); 1979 struct softnet_data *queue = &__get_cpu_var(softnet_data); 1980 unsigned long start_time = jiffies; 1981 1982 backlog_dev->weight = weight_p; 1983 for (;;) { 1984 struct sk_buff *skb; 1985 struct net_device *dev; 1986 1987 local_irq_disable(); 1988 skb = __skb_dequeue(&queue->input_pkt_queue); 1989 if (!skb) 1990 goto job_done; 1991 local_irq_enable(); 1992 1993 dev = skb->dev; 1994 1995 netif_receive_skb(skb); 1996 1997 dev_put(dev); 1998 1999 work++; 2000 2001 if (work >= quota || jiffies - start_time > 1) 2002 break; 2003 2004 } 2005 2006 backlog_dev->quota -= work; 2007 *budget -= work; 2008 return -1; 2009 2010 job_done: 2011 backlog_dev->quota -= work; 2012 *budget -= work; 2013 2014 list_del(&backlog_dev->poll_list); 2015 smp_mb__before_clear_bit(); 2016 netif_poll_enable(backlog_dev); 2017 2018 local_irq_enable(); 2019 return 0; 2020 } 2021 2022 static void net_rx_action(struct softirq_action *h) 2023 { 2024 struct softnet_data *queue = &__get_cpu_var(softnet_data); 2025 unsigned long start_time = jiffies; 2026 int budget = netdev_budget; 2027 void *have; 2028 2029 local_irq_disable(); 2030 2031 while (!list_empty(&queue->poll_list)) { 2032 struct net_device *dev; 2033 2034 if (budget <= 0 || jiffies - start_time > 1) 2035 goto softnet_break; 2036 2037 local_irq_enable(); 2038 2039 dev = list_entry(queue->poll_list.next, 2040 struct net_device, poll_list); 2041 have = netpoll_poll_lock(dev); 2042 2043 if (dev->quota <= 0 || dev->poll(dev, &budget)) { 2044 netpoll_poll_unlock(have); 2045 local_irq_disable(); 2046 list_move_tail(&dev->poll_list, &queue->poll_list); 2047 if (dev->quota < 0) 2048 dev->quota += dev->weight; 2049 else 2050 dev->quota = dev->weight; 2051 } else { 2052 netpoll_poll_unlock(have); 2053 dev_put(dev); 2054 local_irq_disable(); 2055 } 2056 } 2057 out: 2058 local_irq_enable(); 2059 #ifdef CONFIG_NET_DMA 2060 /* 2061 * There may not be any more sk_buffs coming right now, so push 2062 * any pending DMA copies to hardware 2063 */ 2064 if (!cpus_empty(net_dma.channel_mask)) { 2065 int chan_idx; 2066 for_each_cpu_mask(chan_idx, net_dma.channel_mask) { 2067 struct dma_chan *chan = net_dma.channels[chan_idx]; 2068 if (chan) 2069 dma_async_memcpy_issue_pending(chan); 2070 } 2071 } 2072 #endif 2073 return; 2074 2075 softnet_break: 2076 __get_cpu_var(netdev_rx_stat).time_squeeze++; 2077 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 2078 goto out; 2079 } 2080 2081 static gifconf_func_t * gifconf_list [NPROTO]; 2082 2083 /** 2084 * register_gifconf - register a SIOCGIF handler 2085 * @family: Address family 2086 * @gifconf: Function handler 2087 * 2088 * Register protocol dependent address dumping routines. The handler 2089 * that is passed must not be freed or reused until it has been replaced 2090 * by another handler. 2091 */ 2092 int register_gifconf(unsigned int family, gifconf_func_t * gifconf) 2093 { 2094 if (family >= NPROTO) 2095 return -EINVAL; 2096 gifconf_list[family] = gifconf; 2097 return 0; 2098 } 2099 2100 2101 /* 2102 * Map an interface index to its name (SIOCGIFNAME) 2103 */ 2104 2105 /* 2106 * We need this ioctl for efficient implementation of the 2107 * if_indextoname() function required by the IPv6 API. Without 2108 * it, we would have to search all the interfaces to find a 2109 * match. --pb 2110 */ 2111 2112 static int dev_ifname(struct ifreq __user *arg) 2113 { 2114 struct net_device *dev; 2115 struct ifreq ifr; 2116 2117 /* 2118 * Fetch the caller's info block. 2119 */ 2120 2121 if (copy_from_user(&ifr, arg, sizeof(struct ifreq))) 2122 return -EFAULT; 2123 2124 read_lock(&dev_base_lock); 2125 dev = __dev_get_by_index(ifr.ifr_ifindex); 2126 if (!dev) { 2127 read_unlock(&dev_base_lock); 2128 return -ENODEV; 2129 } 2130 2131 strcpy(ifr.ifr_name, dev->name); 2132 read_unlock(&dev_base_lock); 2133 2134 if (copy_to_user(arg, &ifr, sizeof(struct ifreq))) 2135 return -EFAULT; 2136 return 0; 2137 } 2138 2139 /* 2140 * Perform a SIOCGIFCONF call. This structure will change 2141 * size eventually, and there is nothing I can do about it. 2142 * Thus we will need a 'compatibility mode'. 2143 */ 2144 2145 static int dev_ifconf(char __user *arg) 2146 { 2147 struct ifconf ifc; 2148 struct net_device *dev; 2149 char __user *pos; 2150 int len; 2151 int total; 2152 int i; 2153 2154 /* 2155 * Fetch the caller's info block. 2156 */ 2157 2158 if (copy_from_user(&ifc, arg, sizeof(struct ifconf))) 2159 return -EFAULT; 2160 2161 pos = ifc.ifc_buf; 2162 len = ifc.ifc_len; 2163 2164 /* 2165 * Loop over the interfaces, and write an info block for each. 2166 */ 2167 2168 total = 0; 2169 for_each_netdev(dev) { 2170 for (i = 0; i < NPROTO; i++) { 2171 if (gifconf_list[i]) { 2172 int done; 2173 if (!pos) 2174 done = gifconf_list[i](dev, NULL, 0); 2175 else 2176 done = gifconf_list[i](dev, pos + total, 2177 len - total); 2178 if (done < 0) 2179 return -EFAULT; 2180 total += done; 2181 } 2182 } 2183 } 2184 2185 /* 2186 * All done. Write the updated control block back to the caller. 2187 */ 2188 ifc.ifc_len = total; 2189 2190 /* 2191 * Both BSD and Solaris return 0 here, so we do too. 2192 */ 2193 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0; 2194 } 2195 2196 #ifdef CONFIG_PROC_FS 2197 /* 2198 * This is invoked by the /proc filesystem handler to display a device 2199 * in detail. 2200 */ 2201 void *dev_seq_start(struct seq_file *seq, loff_t *pos) 2202 { 2203 loff_t off; 2204 struct net_device *dev; 2205 2206 read_lock(&dev_base_lock); 2207 if (!*pos) 2208 return SEQ_START_TOKEN; 2209 2210 off = 1; 2211 for_each_netdev(dev) 2212 if (off++ == *pos) 2213 return dev; 2214 2215 return NULL; 2216 } 2217 2218 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2219 { 2220 ++*pos; 2221 return v == SEQ_START_TOKEN ? 2222 first_net_device() : next_net_device((struct net_device *)v); 2223 } 2224 2225 void dev_seq_stop(struct seq_file *seq, void *v) 2226 { 2227 read_unlock(&dev_base_lock); 2228 } 2229 2230 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev) 2231 { 2232 struct net_device_stats *stats = dev->get_stats(dev); 2233 2234 seq_printf(seq, "%6s:%8lu %7lu %4lu %4lu %4lu %5lu %10lu %9lu " 2235 "%8lu %7lu %4lu %4lu %4lu %5lu %7lu %10lu\n", 2236 dev->name, stats->rx_bytes, stats->rx_packets, 2237 stats->rx_errors, 2238 stats->rx_dropped + stats->rx_missed_errors, 2239 stats->rx_fifo_errors, 2240 stats->rx_length_errors + stats->rx_over_errors + 2241 stats->rx_crc_errors + stats->rx_frame_errors, 2242 stats->rx_compressed, stats->multicast, 2243 stats->tx_bytes, stats->tx_packets, 2244 stats->tx_errors, stats->tx_dropped, 2245 stats->tx_fifo_errors, stats->collisions, 2246 stats->tx_carrier_errors + 2247 stats->tx_aborted_errors + 2248 stats->tx_window_errors + 2249 stats->tx_heartbeat_errors, 2250 stats->tx_compressed); 2251 } 2252 2253 /* 2254 * Called from the PROCfs module. This now uses the new arbitrary sized 2255 * /proc/net interface to create /proc/net/dev 2256 */ 2257 static int dev_seq_show(struct seq_file *seq, void *v) 2258 { 2259 if (v == SEQ_START_TOKEN) 2260 seq_puts(seq, "Inter-| Receive " 2261 " | Transmit\n" 2262 " face |bytes packets errs drop fifo frame " 2263 "compressed multicast|bytes packets errs " 2264 "drop fifo colls carrier compressed\n"); 2265 else 2266 dev_seq_printf_stats(seq, v); 2267 return 0; 2268 } 2269 2270 static struct netif_rx_stats *softnet_get_online(loff_t *pos) 2271 { 2272 struct netif_rx_stats *rc = NULL; 2273 2274 while (*pos < NR_CPUS) 2275 if (cpu_online(*pos)) { 2276 rc = &per_cpu(netdev_rx_stat, *pos); 2277 break; 2278 } else 2279 ++*pos; 2280 return rc; 2281 } 2282 2283 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos) 2284 { 2285 return softnet_get_online(pos); 2286 } 2287 2288 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2289 { 2290 ++*pos; 2291 return softnet_get_online(pos); 2292 } 2293 2294 static void softnet_seq_stop(struct seq_file *seq, void *v) 2295 { 2296 } 2297 2298 static int softnet_seq_show(struct seq_file *seq, void *v) 2299 { 2300 struct netif_rx_stats *s = v; 2301 2302 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x\n", 2303 s->total, s->dropped, s->time_squeeze, 0, 2304 0, 0, 0, 0, /* was fastroute */ 2305 s->cpu_collision ); 2306 return 0; 2307 } 2308 2309 static const struct seq_operations dev_seq_ops = { 2310 .start = dev_seq_start, 2311 .next = dev_seq_next, 2312 .stop = dev_seq_stop, 2313 .show = dev_seq_show, 2314 }; 2315 2316 static int dev_seq_open(struct inode *inode, struct file *file) 2317 { 2318 return seq_open(file, &dev_seq_ops); 2319 } 2320 2321 static const struct file_operations dev_seq_fops = { 2322 .owner = THIS_MODULE, 2323 .open = dev_seq_open, 2324 .read = seq_read, 2325 .llseek = seq_lseek, 2326 .release = seq_release, 2327 }; 2328 2329 static const struct seq_operations softnet_seq_ops = { 2330 .start = softnet_seq_start, 2331 .next = softnet_seq_next, 2332 .stop = softnet_seq_stop, 2333 .show = softnet_seq_show, 2334 }; 2335 2336 static int softnet_seq_open(struct inode *inode, struct file *file) 2337 { 2338 return seq_open(file, &softnet_seq_ops); 2339 } 2340 2341 static const struct file_operations softnet_seq_fops = { 2342 .owner = THIS_MODULE, 2343 .open = softnet_seq_open, 2344 .read = seq_read, 2345 .llseek = seq_lseek, 2346 .release = seq_release, 2347 }; 2348 2349 static void *ptype_get_idx(loff_t pos) 2350 { 2351 struct packet_type *pt = NULL; 2352 loff_t i = 0; 2353 int t; 2354 2355 list_for_each_entry_rcu(pt, &ptype_all, list) { 2356 if (i == pos) 2357 return pt; 2358 ++i; 2359 } 2360 2361 for (t = 0; t < 16; t++) { 2362 list_for_each_entry_rcu(pt, &ptype_base[t], list) { 2363 if (i == pos) 2364 return pt; 2365 ++i; 2366 } 2367 } 2368 return NULL; 2369 } 2370 2371 static void *ptype_seq_start(struct seq_file *seq, loff_t *pos) 2372 { 2373 rcu_read_lock(); 2374 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN; 2375 } 2376 2377 static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2378 { 2379 struct packet_type *pt; 2380 struct list_head *nxt; 2381 int hash; 2382 2383 ++*pos; 2384 if (v == SEQ_START_TOKEN) 2385 return ptype_get_idx(0); 2386 2387 pt = v; 2388 nxt = pt->list.next; 2389 if (pt->type == htons(ETH_P_ALL)) { 2390 if (nxt != &ptype_all) 2391 goto found; 2392 hash = 0; 2393 nxt = ptype_base[0].next; 2394 } else 2395 hash = ntohs(pt->type) & 15; 2396 2397 while (nxt == &ptype_base[hash]) { 2398 if (++hash >= 16) 2399 return NULL; 2400 nxt = ptype_base[hash].next; 2401 } 2402 found: 2403 return list_entry(nxt, struct packet_type, list); 2404 } 2405 2406 static void ptype_seq_stop(struct seq_file *seq, void *v) 2407 { 2408 rcu_read_unlock(); 2409 } 2410 2411 static void ptype_seq_decode(struct seq_file *seq, void *sym) 2412 { 2413 #ifdef CONFIG_KALLSYMS 2414 unsigned long offset = 0, symsize; 2415 const char *symname; 2416 char *modname; 2417 char namebuf[128]; 2418 2419 symname = kallsyms_lookup((unsigned long)sym, &symsize, &offset, 2420 &modname, namebuf); 2421 2422 if (symname) { 2423 char *delim = ":"; 2424 2425 if (!modname) 2426 modname = delim = ""; 2427 seq_printf(seq, "%s%s%s%s+0x%lx", delim, modname, delim, 2428 symname, offset); 2429 return; 2430 } 2431 #endif 2432 2433 seq_printf(seq, "[%p]", sym); 2434 } 2435 2436 static int ptype_seq_show(struct seq_file *seq, void *v) 2437 { 2438 struct packet_type *pt = v; 2439 2440 if (v == SEQ_START_TOKEN) 2441 seq_puts(seq, "Type Device Function\n"); 2442 else { 2443 if (pt->type == htons(ETH_P_ALL)) 2444 seq_puts(seq, "ALL "); 2445 else 2446 seq_printf(seq, "%04x", ntohs(pt->type)); 2447 2448 seq_printf(seq, " %-8s ", 2449 pt->dev ? pt->dev->name : ""); 2450 ptype_seq_decode(seq, pt->func); 2451 seq_putc(seq, '\n'); 2452 } 2453 2454 return 0; 2455 } 2456 2457 static const struct seq_operations ptype_seq_ops = { 2458 .start = ptype_seq_start, 2459 .next = ptype_seq_next, 2460 .stop = ptype_seq_stop, 2461 .show = ptype_seq_show, 2462 }; 2463 2464 static int ptype_seq_open(struct inode *inode, struct file *file) 2465 { 2466 return seq_open(file, &ptype_seq_ops); 2467 } 2468 2469 static const struct file_operations ptype_seq_fops = { 2470 .owner = THIS_MODULE, 2471 .open = ptype_seq_open, 2472 .read = seq_read, 2473 .llseek = seq_lseek, 2474 .release = seq_release, 2475 }; 2476 2477 2478 static int __init dev_proc_init(void) 2479 { 2480 int rc = -ENOMEM; 2481 2482 if (!proc_net_fops_create("dev", S_IRUGO, &dev_seq_fops)) 2483 goto out; 2484 if (!proc_net_fops_create("softnet_stat", S_IRUGO, &softnet_seq_fops)) 2485 goto out_dev; 2486 if (!proc_net_fops_create("ptype", S_IRUGO, &ptype_seq_fops)) 2487 goto out_dev2; 2488 2489 if (wext_proc_init()) 2490 goto out_softnet; 2491 rc = 0; 2492 out: 2493 return rc; 2494 out_softnet: 2495 proc_net_remove("ptype"); 2496 out_dev2: 2497 proc_net_remove("softnet_stat"); 2498 out_dev: 2499 proc_net_remove("dev"); 2500 goto out; 2501 } 2502 #else 2503 #define dev_proc_init() 0 2504 #endif /* CONFIG_PROC_FS */ 2505 2506 2507 /** 2508 * netdev_set_master - set up master/slave pair 2509 * @slave: slave device 2510 * @master: new master device 2511 * 2512 * Changes the master device of the slave. Pass %NULL to break the 2513 * bonding. The caller must hold the RTNL semaphore. On a failure 2514 * a negative errno code is returned. On success the reference counts 2515 * are adjusted, %RTM_NEWLINK is sent to the routing socket and the 2516 * function returns zero. 2517 */ 2518 int netdev_set_master(struct net_device *slave, struct net_device *master) 2519 { 2520 struct net_device *old = slave->master; 2521 2522 ASSERT_RTNL(); 2523 2524 if (master) { 2525 if (old) 2526 return -EBUSY; 2527 dev_hold(master); 2528 } 2529 2530 slave->master = master; 2531 2532 synchronize_net(); 2533 2534 if (old) 2535 dev_put(old); 2536 2537 if (master) 2538 slave->flags |= IFF_SLAVE; 2539 else 2540 slave->flags &= ~IFF_SLAVE; 2541 2542 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE); 2543 return 0; 2544 } 2545 2546 static void __dev_set_promiscuity(struct net_device *dev, int inc) 2547 { 2548 unsigned short old_flags = dev->flags; 2549 2550 ASSERT_RTNL(); 2551 2552 if ((dev->promiscuity += inc) == 0) 2553 dev->flags &= ~IFF_PROMISC; 2554 else 2555 dev->flags |= IFF_PROMISC; 2556 if (dev->flags != old_flags) { 2557 printk(KERN_INFO "device %s %s promiscuous mode\n", 2558 dev->name, (dev->flags & IFF_PROMISC) ? "entered" : 2559 "left"); 2560 audit_log(current->audit_context, GFP_ATOMIC, 2561 AUDIT_ANOM_PROMISCUOUS, 2562 "dev=%s prom=%d old_prom=%d auid=%u", 2563 dev->name, (dev->flags & IFF_PROMISC), 2564 (old_flags & IFF_PROMISC), 2565 audit_get_loginuid(current->audit_context)); 2566 2567 if (dev->change_rx_flags) 2568 dev->change_rx_flags(dev, IFF_PROMISC); 2569 } 2570 } 2571 2572 /** 2573 * dev_set_promiscuity - update promiscuity count on a device 2574 * @dev: device 2575 * @inc: modifier 2576 * 2577 * Add or remove promiscuity from a device. While the count in the device 2578 * remains above zero the interface remains promiscuous. Once it hits zero 2579 * the device reverts back to normal filtering operation. A negative inc 2580 * value is used to drop promiscuity on the device. 2581 */ 2582 void dev_set_promiscuity(struct net_device *dev, int inc) 2583 { 2584 unsigned short old_flags = dev->flags; 2585 2586 __dev_set_promiscuity(dev, inc); 2587 if (dev->flags != old_flags) 2588 dev_set_rx_mode(dev); 2589 } 2590 2591 /** 2592 * dev_set_allmulti - update allmulti count on a device 2593 * @dev: device 2594 * @inc: modifier 2595 * 2596 * Add or remove reception of all multicast frames to a device. While the 2597 * count in the device remains above zero the interface remains listening 2598 * to all interfaces. Once it hits zero the device reverts back to normal 2599 * filtering operation. A negative @inc value is used to drop the counter 2600 * when releasing a resource needing all multicasts. 2601 */ 2602 2603 void dev_set_allmulti(struct net_device *dev, int inc) 2604 { 2605 unsigned short old_flags = dev->flags; 2606 2607 ASSERT_RTNL(); 2608 2609 dev->flags |= IFF_ALLMULTI; 2610 if ((dev->allmulti += inc) == 0) 2611 dev->flags &= ~IFF_ALLMULTI; 2612 if (dev->flags ^ old_flags) { 2613 if (dev->change_rx_flags) 2614 dev->change_rx_flags(dev, IFF_ALLMULTI); 2615 dev_set_rx_mode(dev); 2616 } 2617 } 2618 2619 /* 2620 * Upload unicast and multicast address lists to device and 2621 * configure RX filtering. When the device doesn't support unicast 2622 * filtering it is put in promiscous mode while unicast addresses 2623 * are present. 2624 */ 2625 void __dev_set_rx_mode(struct net_device *dev) 2626 { 2627 /* dev_open will call this function so the list will stay sane. */ 2628 if (!(dev->flags&IFF_UP)) 2629 return; 2630 2631 if (!netif_device_present(dev)) 2632 return; 2633 2634 if (dev->set_rx_mode) 2635 dev->set_rx_mode(dev); 2636 else { 2637 /* Unicast addresses changes may only happen under the rtnl, 2638 * therefore calling __dev_set_promiscuity here is safe. 2639 */ 2640 if (dev->uc_count > 0 && !dev->uc_promisc) { 2641 __dev_set_promiscuity(dev, 1); 2642 dev->uc_promisc = 1; 2643 } else if (dev->uc_count == 0 && dev->uc_promisc) { 2644 __dev_set_promiscuity(dev, -1); 2645 dev->uc_promisc = 0; 2646 } 2647 2648 if (dev->set_multicast_list) 2649 dev->set_multicast_list(dev); 2650 } 2651 } 2652 2653 void dev_set_rx_mode(struct net_device *dev) 2654 { 2655 netif_tx_lock_bh(dev); 2656 __dev_set_rx_mode(dev); 2657 netif_tx_unlock_bh(dev); 2658 } 2659 2660 int __dev_addr_delete(struct dev_addr_list **list, int *count, 2661 void *addr, int alen, int glbl) 2662 { 2663 struct dev_addr_list *da; 2664 2665 for (; (da = *list) != NULL; list = &da->next) { 2666 if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 && 2667 alen == da->da_addrlen) { 2668 if (glbl) { 2669 int old_glbl = da->da_gusers; 2670 da->da_gusers = 0; 2671 if (old_glbl == 0) 2672 break; 2673 } 2674 if (--da->da_users) 2675 return 0; 2676 2677 *list = da->next; 2678 kfree(da); 2679 (*count)--; 2680 return 0; 2681 } 2682 } 2683 return -ENOENT; 2684 } 2685 2686 int __dev_addr_add(struct dev_addr_list **list, int *count, 2687 void *addr, int alen, int glbl) 2688 { 2689 struct dev_addr_list *da; 2690 2691 for (da = *list; da != NULL; da = da->next) { 2692 if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 && 2693 da->da_addrlen == alen) { 2694 if (glbl) { 2695 int old_glbl = da->da_gusers; 2696 da->da_gusers = 1; 2697 if (old_glbl) 2698 return 0; 2699 } 2700 da->da_users++; 2701 return 0; 2702 } 2703 } 2704 2705 da = kmalloc(sizeof(*da), GFP_ATOMIC); 2706 if (da == NULL) 2707 return -ENOMEM; 2708 memcpy(da->da_addr, addr, alen); 2709 da->da_addrlen = alen; 2710 da->da_users = 1; 2711 da->da_gusers = glbl ? 1 : 0; 2712 da->next = *list; 2713 *list = da; 2714 (*count)++; 2715 return 0; 2716 } 2717 2718 void __dev_addr_discard(struct dev_addr_list **list) 2719 { 2720 struct dev_addr_list *tmp; 2721 2722 while (*list != NULL) { 2723 tmp = *list; 2724 *list = tmp->next; 2725 if (tmp->da_users > tmp->da_gusers) 2726 printk("__dev_addr_discard: address leakage! " 2727 "da_users=%d\n", tmp->da_users); 2728 kfree(tmp); 2729 } 2730 } 2731 2732 /** 2733 * dev_unicast_delete - Release secondary unicast address. 2734 * @dev: device 2735 * 2736 * Release reference to a secondary unicast address and remove it 2737 * from the device if the reference count drop to zero. 2738 * 2739 * The caller must hold the rtnl_mutex. 2740 */ 2741 int dev_unicast_delete(struct net_device *dev, void *addr, int alen) 2742 { 2743 int err; 2744 2745 ASSERT_RTNL(); 2746 2747 netif_tx_lock_bh(dev); 2748 err = __dev_addr_delete(&dev->uc_list, &dev->uc_count, addr, alen, 0); 2749 if (!err) 2750 __dev_set_rx_mode(dev); 2751 netif_tx_unlock_bh(dev); 2752 return err; 2753 } 2754 EXPORT_SYMBOL(dev_unicast_delete); 2755 2756 /** 2757 * dev_unicast_add - add a secondary unicast address 2758 * @dev: device 2759 * 2760 * Add a secondary unicast address to the device or increase 2761 * the reference count if it already exists. 2762 * 2763 * The caller must hold the rtnl_mutex. 2764 */ 2765 int dev_unicast_add(struct net_device *dev, void *addr, int alen) 2766 { 2767 int err; 2768 2769 ASSERT_RTNL(); 2770 2771 netif_tx_lock_bh(dev); 2772 err = __dev_addr_add(&dev->uc_list, &dev->uc_count, addr, alen, 0); 2773 if (!err) 2774 __dev_set_rx_mode(dev); 2775 netif_tx_unlock_bh(dev); 2776 return err; 2777 } 2778 EXPORT_SYMBOL(dev_unicast_add); 2779 2780 static void dev_unicast_discard(struct net_device *dev) 2781 { 2782 netif_tx_lock_bh(dev); 2783 __dev_addr_discard(&dev->uc_list); 2784 dev->uc_count = 0; 2785 netif_tx_unlock_bh(dev); 2786 } 2787 2788 unsigned dev_get_flags(const struct net_device *dev) 2789 { 2790 unsigned flags; 2791 2792 flags = (dev->flags & ~(IFF_PROMISC | 2793 IFF_ALLMULTI | 2794 IFF_RUNNING | 2795 IFF_LOWER_UP | 2796 IFF_DORMANT)) | 2797 (dev->gflags & (IFF_PROMISC | 2798 IFF_ALLMULTI)); 2799 2800 if (netif_running(dev)) { 2801 if (netif_oper_up(dev)) 2802 flags |= IFF_RUNNING; 2803 if (netif_carrier_ok(dev)) 2804 flags |= IFF_LOWER_UP; 2805 if (netif_dormant(dev)) 2806 flags |= IFF_DORMANT; 2807 } 2808 2809 return flags; 2810 } 2811 2812 int dev_change_flags(struct net_device *dev, unsigned flags) 2813 { 2814 int ret, changes; 2815 int old_flags = dev->flags; 2816 2817 ASSERT_RTNL(); 2818 2819 /* 2820 * Set the flags on our device. 2821 */ 2822 2823 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP | 2824 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL | 2825 IFF_AUTOMEDIA)) | 2826 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC | 2827 IFF_ALLMULTI)); 2828 2829 /* 2830 * Load in the correct multicast list now the flags have changed. 2831 */ 2832 2833 if (dev->change_rx_flags && (dev->flags ^ flags) & IFF_MULTICAST) 2834 dev->change_rx_flags(dev, IFF_MULTICAST); 2835 2836 dev_set_rx_mode(dev); 2837 2838 /* 2839 * Have we downed the interface. We handle IFF_UP ourselves 2840 * according to user attempts to set it, rather than blindly 2841 * setting it. 2842 */ 2843 2844 ret = 0; 2845 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */ 2846 ret = ((old_flags & IFF_UP) ? dev_close : dev_open)(dev); 2847 2848 if (!ret) 2849 dev_set_rx_mode(dev); 2850 } 2851 2852 if (dev->flags & IFF_UP && 2853 ((old_flags ^ dev->flags) &~ (IFF_UP | IFF_PROMISC | IFF_ALLMULTI | 2854 IFF_VOLATILE))) 2855 raw_notifier_call_chain(&netdev_chain, 2856 NETDEV_CHANGE, dev); 2857 2858 if ((flags ^ dev->gflags) & IFF_PROMISC) { 2859 int inc = (flags & IFF_PROMISC) ? +1 : -1; 2860 dev->gflags ^= IFF_PROMISC; 2861 dev_set_promiscuity(dev, inc); 2862 } 2863 2864 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI 2865 is important. Some (broken) drivers set IFF_PROMISC, when 2866 IFF_ALLMULTI is requested not asking us and not reporting. 2867 */ 2868 if ((flags ^ dev->gflags) & IFF_ALLMULTI) { 2869 int inc = (flags & IFF_ALLMULTI) ? +1 : -1; 2870 dev->gflags ^= IFF_ALLMULTI; 2871 dev_set_allmulti(dev, inc); 2872 } 2873 2874 /* Exclude state transition flags, already notified */ 2875 changes = (old_flags ^ dev->flags) & ~(IFF_UP | IFF_RUNNING); 2876 if (changes) 2877 rtmsg_ifinfo(RTM_NEWLINK, dev, changes); 2878 2879 return ret; 2880 } 2881 2882 int dev_set_mtu(struct net_device *dev, int new_mtu) 2883 { 2884 int err; 2885 2886 if (new_mtu == dev->mtu) 2887 return 0; 2888 2889 /* MTU must be positive. */ 2890 if (new_mtu < 0) 2891 return -EINVAL; 2892 2893 if (!netif_device_present(dev)) 2894 return -ENODEV; 2895 2896 err = 0; 2897 if (dev->change_mtu) 2898 err = dev->change_mtu(dev, new_mtu); 2899 else 2900 dev->mtu = new_mtu; 2901 if (!err && dev->flags & IFF_UP) 2902 raw_notifier_call_chain(&netdev_chain, 2903 NETDEV_CHANGEMTU, dev); 2904 return err; 2905 } 2906 2907 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa) 2908 { 2909 int err; 2910 2911 if (!dev->set_mac_address) 2912 return -EOPNOTSUPP; 2913 if (sa->sa_family != dev->type) 2914 return -EINVAL; 2915 if (!netif_device_present(dev)) 2916 return -ENODEV; 2917 err = dev->set_mac_address(dev, sa); 2918 if (!err) 2919 raw_notifier_call_chain(&netdev_chain, 2920 NETDEV_CHANGEADDR, dev); 2921 return err; 2922 } 2923 2924 /* 2925 * Perform the SIOCxIFxxx calls. 2926 */ 2927 static int dev_ifsioc(struct ifreq *ifr, unsigned int cmd) 2928 { 2929 int err; 2930 struct net_device *dev = __dev_get_by_name(ifr->ifr_name); 2931 2932 if (!dev) 2933 return -ENODEV; 2934 2935 switch (cmd) { 2936 case SIOCGIFFLAGS: /* Get interface flags */ 2937 ifr->ifr_flags = dev_get_flags(dev); 2938 return 0; 2939 2940 case SIOCSIFFLAGS: /* Set interface flags */ 2941 return dev_change_flags(dev, ifr->ifr_flags); 2942 2943 case SIOCGIFMETRIC: /* Get the metric on the interface 2944 (currently unused) */ 2945 ifr->ifr_metric = 0; 2946 return 0; 2947 2948 case SIOCSIFMETRIC: /* Set the metric on the interface 2949 (currently unused) */ 2950 return -EOPNOTSUPP; 2951 2952 case SIOCGIFMTU: /* Get the MTU of a device */ 2953 ifr->ifr_mtu = dev->mtu; 2954 return 0; 2955 2956 case SIOCSIFMTU: /* Set the MTU of a device */ 2957 return dev_set_mtu(dev, ifr->ifr_mtu); 2958 2959 case SIOCGIFHWADDR: 2960 if (!dev->addr_len) 2961 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data); 2962 else 2963 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr, 2964 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len)); 2965 ifr->ifr_hwaddr.sa_family = dev->type; 2966 return 0; 2967 2968 case SIOCSIFHWADDR: 2969 return dev_set_mac_address(dev, &ifr->ifr_hwaddr); 2970 2971 case SIOCSIFHWBROADCAST: 2972 if (ifr->ifr_hwaddr.sa_family != dev->type) 2973 return -EINVAL; 2974 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data, 2975 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len)); 2976 raw_notifier_call_chain(&netdev_chain, 2977 NETDEV_CHANGEADDR, dev); 2978 return 0; 2979 2980 case SIOCGIFMAP: 2981 ifr->ifr_map.mem_start = dev->mem_start; 2982 ifr->ifr_map.mem_end = dev->mem_end; 2983 ifr->ifr_map.base_addr = dev->base_addr; 2984 ifr->ifr_map.irq = dev->irq; 2985 ifr->ifr_map.dma = dev->dma; 2986 ifr->ifr_map.port = dev->if_port; 2987 return 0; 2988 2989 case SIOCSIFMAP: 2990 if (dev->set_config) { 2991 if (!netif_device_present(dev)) 2992 return -ENODEV; 2993 return dev->set_config(dev, &ifr->ifr_map); 2994 } 2995 return -EOPNOTSUPP; 2996 2997 case SIOCADDMULTI: 2998 if (!dev->set_multicast_list || 2999 ifr->ifr_hwaddr.sa_family != AF_UNSPEC) 3000 return -EINVAL; 3001 if (!netif_device_present(dev)) 3002 return -ENODEV; 3003 return dev_mc_add(dev, ifr->ifr_hwaddr.sa_data, 3004 dev->addr_len, 1); 3005 3006 case SIOCDELMULTI: 3007 if (!dev->set_multicast_list || 3008 ifr->ifr_hwaddr.sa_family != AF_UNSPEC) 3009 return -EINVAL; 3010 if (!netif_device_present(dev)) 3011 return -ENODEV; 3012 return dev_mc_delete(dev, ifr->ifr_hwaddr.sa_data, 3013 dev->addr_len, 1); 3014 3015 case SIOCGIFINDEX: 3016 ifr->ifr_ifindex = dev->ifindex; 3017 return 0; 3018 3019 case SIOCGIFTXQLEN: 3020 ifr->ifr_qlen = dev->tx_queue_len; 3021 return 0; 3022 3023 case SIOCSIFTXQLEN: 3024 if (ifr->ifr_qlen < 0) 3025 return -EINVAL; 3026 dev->tx_queue_len = ifr->ifr_qlen; 3027 return 0; 3028 3029 case SIOCSIFNAME: 3030 ifr->ifr_newname[IFNAMSIZ-1] = '\0'; 3031 return dev_change_name(dev, ifr->ifr_newname); 3032 3033 /* 3034 * Unknown or private ioctl 3035 */ 3036 3037 default: 3038 if ((cmd >= SIOCDEVPRIVATE && 3039 cmd <= SIOCDEVPRIVATE + 15) || 3040 cmd == SIOCBONDENSLAVE || 3041 cmd == SIOCBONDRELEASE || 3042 cmd == SIOCBONDSETHWADDR || 3043 cmd == SIOCBONDSLAVEINFOQUERY || 3044 cmd == SIOCBONDINFOQUERY || 3045 cmd == SIOCBONDCHANGEACTIVE || 3046 cmd == SIOCGMIIPHY || 3047 cmd == SIOCGMIIREG || 3048 cmd == SIOCSMIIREG || 3049 cmd == SIOCBRADDIF || 3050 cmd == SIOCBRDELIF || 3051 cmd == SIOCWANDEV) { 3052 err = -EOPNOTSUPP; 3053 if (dev->do_ioctl) { 3054 if (netif_device_present(dev)) 3055 err = dev->do_ioctl(dev, ifr, 3056 cmd); 3057 else 3058 err = -ENODEV; 3059 } 3060 } else 3061 err = -EINVAL; 3062 3063 } 3064 return err; 3065 } 3066 3067 /* 3068 * This function handles all "interface"-type I/O control requests. The actual 3069 * 'doing' part of this is dev_ifsioc above. 3070 */ 3071 3072 /** 3073 * dev_ioctl - network device ioctl 3074 * @cmd: command to issue 3075 * @arg: pointer to a struct ifreq in user space 3076 * 3077 * Issue ioctl functions to devices. This is normally called by the 3078 * user space syscall interfaces but can sometimes be useful for 3079 * other purposes. The return value is the return from the syscall if 3080 * positive or a negative errno code on error. 3081 */ 3082 3083 int dev_ioctl(unsigned int cmd, void __user *arg) 3084 { 3085 struct ifreq ifr; 3086 int ret; 3087 char *colon; 3088 3089 /* One special case: SIOCGIFCONF takes ifconf argument 3090 and requires shared lock, because it sleeps writing 3091 to user space. 3092 */ 3093 3094 if (cmd == SIOCGIFCONF) { 3095 rtnl_lock(); 3096 ret = dev_ifconf((char __user *) arg); 3097 rtnl_unlock(); 3098 return ret; 3099 } 3100 if (cmd == SIOCGIFNAME) 3101 return dev_ifname((struct ifreq __user *)arg); 3102 3103 if (copy_from_user(&ifr, arg, sizeof(struct ifreq))) 3104 return -EFAULT; 3105 3106 ifr.ifr_name[IFNAMSIZ-1] = 0; 3107 3108 colon = strchr(ifr.ifr_name, ':'); 3109 if (colon) 3110 *colon = 0; 3111 3112 /* 3113 * See which interface the caller is talking about. 3114 */ 3115 3116 switch (cmd) { 3117 /* 3118 * These ioctl calls: 3119 * - can be done by all. 3120 * - atomic and do not require locking. 3121 * - return a value 3122 */ 3123 case SIOCGIFFLAGS: 3124 case SIOCGIFMETRIC: 3125 case SIOCGIFMTU: 3126 case SIOCGIFHWADDR: 3127 case SIOCGIFSLAVE: 3128 case SIOCGIFMAP: 3129 case SIOCGIFINDEX: 3130 case SIOCGIFTXQLEN: 3131 dev_load(ifr.ifr_name); 3132 read_lock(&dev_base_lock); 3133 ret = dev_ifsioc(&ifr, cmd); 3134 read_unlock(&dev_base_lock); 3135 if (!ret) { 3136 if (colon) 3137 *colon = ':'; 3138 if (copy_to_user(arg, &ifr, 3139 sizeof(struct ifreq))) 3140 ret = -EFAULT; 3141 } 3142 return ret; 3143 3144 case SIOCETHTOOL: 3145 dev_load(ifr.ifr_name); 3146 rtnl_lock(); 3147 ret = dev_ethtool(&ifr); 3148 rtnl_unlock(); 3149 if (!ret) { 3150 if (colon) 3151 *colon = ':'; 3152 if (copy_to_user(arg, &ifr, 3153 sizeof(struct ifreq))) 3154 ret = -EFAULT; 3155 } 3156 return ret; 3157 3158 /* 3159 * These ioctl calls: 3160 * - require superuser power. 3161 * - require strict serialization. 3162 * - return a value 3163 */ 3164 case SIOCGMIIPHY: 3165 case SIOCGMIIREG: 3166 case SIOCSIFNAME: 3167 if (!capable(CAP_NET_ADMIN)) 3168 return -EPERM; 3169 dev_load(ifr.ifr_name); 3170 rtnl_lock(); 3171 ret = dev_ifsioc(&ifr, cmd); 3172 rtnl_unlock(); 3173 if (!ret) { 3174 if (colon) 3175 *colon = ':'; 3176 if (copy_to_user(arg, &ifr, 3177 sizeof(struct ifreq))) 3178 ret = -EFAULT; 3179 } 3180 return ret; 3181 3182 /* 3183 * These ioctl calls: 3184 * - require superuser power. 3185 * - require strict serialization. 3186 * - do not return a value 3187 */ 3188 case SIOCSIFFLAGS: 3189 case SIOCSIFMETRIC: 3190 case SIOCSIFMTU: 3191 case SIOCSIFMAP: 3192 case SIOCSIFHWADDR: 3193 case SIOCSIFSLAVE: 3194 case SIOCADDMULTI: 3195 case SIOCDELMULTI: 3196 case SIOCSIFHWBROADCAST: 3197 case SIOCSIFTXQLEN: 3198 case SIOCSMIIREG: 3199 case SIOCBONDENSLAVE: 3200 case SIOCBONDRELEASE: 3201 case SIOCBONDSETHWADDR: 3202 case SIOCBONDCHANGEACTIVE: 3203 case SIOCBRADDIF: 3204 case SIOCBRDELIF: 3205 if (!capable(CAP_NET_ADMIN)) 3206 return -EPERM; 3207 /* fall through */ 3208 case SIOCBONDSLAVEINFOQUERY: 3209 case SIOCBONDINFOQUERY: 3210 dev_load(ifr.ifr_name); 3211 rtnl_lock(); 3212 ret = dev_ifsioc(&ifr, cmd); 3213 rtnl_unlock(); 3214 return ret; 3215 3216 case SIOCGIFMEM: 3217 /* Get the per device memory space. We can add this but 3218 * currently do not support it */ 3219 case SIOCSIFMEM: 3220 /* Set the per device memory buffer space. 3221 * Not applicable in our case */ 3222 case SIOCSIFLINK: 3223 return -EINVAL; 3224 3225 /* 3226 * Unknown or private ioctl. 3227 */ 3228 default: 3229 if (cmd == SIOCWANDEV || 3230 (cmd >= SIOCDEVPRIVATE && 3231 cmd <= SIOCDEVPRIVATE + 15)) { 3232 dev_load(ifr.ifr_name); 3233 rtnl_lock(); 3234 ret = dev_ifsioc(&ifr, cmd); 3235 rtnl_unlock(); 3236 if (!ret && copy_to_user(arg, &ifr, 3237 sizeof(struct ifreq))) 3238 ret = -EFAULT; 3239 return ret; 3240 } 3241 /* Take care of Wireless Extensions */ 3242 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) 3243 return wext_handle_ioctl(&ifr, cmd, arg); 3244 return -EINVAL; 3245 } 3246 } 3247 3248 3249 /** 3250 * dev_new_index - allocate an ifindex 3251 * 3252 * Returns a suitable unique value for a new device interface 3253 * number. The caller must hold the rtnl semaphore or the 3254 * dev_base_lock to be sure it remains unique. 3255 */ 3256 static int dev_new_index(void) 3257 { 3258 static int ifindex; 3259 for (;;) { 3260 if (++ifindex <= 0) 3261 ifindex = 1; 3262 if (!__dev_get_by_index(ifindex)) 3263 return ifindex; 3264 } 3265 } 3266 3267 static int dev_boot_phase = 1; 3268 3269 /* Delayed registration/unregisteration */ 3270 static DEFINE_SPINLOCK(net_todo_list_lock); 3271 static struct list_head net_todo_list = LIST_HEAD_INIT(net_todo_list); 3272 3273 static void net_set_todo(struct net_device *dev) 3274 { 3275 spin_lock(&net_todo_list_lock); 3276 list_add_tail(&dev->todo_list, &net_todo_list); 3277 spin_unlock(&net_todo_list_lock); 3278 } 3279 3280 /** 3281 * register_netdevice - register a network device 3282 * @dev: device to register 3283 * 3284 * Take a completed network device structure and add it to the kernel 3285 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 3286 * chain. 0 is returned on success. A negative errno code is returned 3287 * on a failure to set up the device, or if the name is a duplicate. 3288 * 3289 * Callers must hold the rtnl semaphore. You may want 3290 * register_netdev() instead of this. 3291 * 3292 * BUGS: 3293 * The locking appears insufficient to guarantee two parallel registers 3294 * will not get the same name. 3295 */ 3296 3297 int register_netdevice(struct net_device *dev) 3298 { 3299 struct hlist_head *head; 3300 struct hlist_node *p; 3301 int ret; 3302 3303 BUG_ON(dev_boot_phase); 3304 ASSERT_RTNL(); 3305 3306 might_sleep(); 3307 3308 /* When net_device's are persistent, this will be fatal. */ 3309 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED); 3310 3311 spin_lock_init(&dev->queue_lock); 3312 spin_lock_init(&dev->_xmit_lock); 3313 netdev_set_lockdep_class(&dev->_xmit_lock, dev->type); 3314 dev->xmit_lock_owner = -1; 3315 spin_lock_init(&dev->ingress_lock); 3316 3317 dev->iflink = -1; 3318 3319 /* Init, if this function is available */ 3320 if (dev->init) { 3321 ret = dev->init(dev); 3322 if (ret) { 3323 if (ret > 0) 3324 ret = -EIO; 3325 goto out; 3326 } 3327 } 3328 3329 if (!dev_valid_name(dev->name)) { 3330 ret = -EINVAL; 3331 goto out; 3332 } 3333 3334 dev->ifindex = dev_new_index(); 3335 if (dev->iflink == -1) 3336 dev->iflink = dev->ifindex; 3337 3338 /* Check for existence of name */ 3339 head = dev_name_hash(dev->name); 3340 hlist_for_each(p, head) { 3341 struct net_device *d 3342 = hlist_entry(p, struct net_device, name_hlist); 3343 if (!strncmp(d->name, dev->name, IFNAMSIZ)) { 3344 ret = -EEXIST; 3345 goto out; 3346 } 3347 } 3348 3349 /* Fix illegal checksum combinations */ 3350 if ((dev->features & NETIF_F_HW_CSUM) && 3351 (dev->features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 3352 printk(KERN_NOTICE "%s: mixed HW and IP checksum settings.\n", 3353 dev->name); 3354 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 3355 } 3356 3357 if ((dev->features & NETIF_F_NO_CSUM) && 3358 (dev->features & (NETIF_F_HW_CSUM|NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 3359 printk(KERN_NOTICE "%s: mixed no checksumming and other settings.\n", 3360 dev->name); 3361 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM|NETIF_F_HW_CSUM); 3362 } 3363 3364 3365 /* Fix illegal SG+CSUM combinations. */ 3366 if ((dev->features & NETIF_F_SG) && 3367 !(dev->features & NETIF_F_ALL_CSUM)) { 3368 printk(KERN_NOTICE "%s: Dropping NETIF_F_SG since no checksum feature.\n", 3369 dev->name); 3370 dev->features &= ~NETIF_F_SG; 3371 } 3372 3373 /* TSO requires that SG is present as well. */ 3374 if ((dev->features & NETIF_F_TSO) && 3375 !(dev->features & NETIF_F_SG)) { 3376 printk(KERN_NOTICE "%s: Dropping NETIF_F_TSO since no SG feature.\n", 3377 dev->name); 3378 dev->features &= ~NETIF_F_TSO; 3379 } 3380 if (dev->features & NETIF_F_UFO) { 3381 if (!(dev->features & NETIF_F_HW_CSUM)) { 3382 printk(KERN_ERR "%s: Dropping NETIF_F_UFO since no " 3383 "NETIF_F_HW_CSUM feature.\n", 3384 dev->name); 3385 dev->features &= ~NETIF_F_UFO; 3386 } 3387 if (!(dev->features & NETIF_F_SG)) { 3388 printk(KERN_ERR "%s: Dropping NETIF_F_UFO since no " 3389 "NETIF_F_SG feature.\n", 3390 dev->name); 3391 dev->features &= ~NETIF_F_UFO; 3392 } 3393 } 3394 3395 /* 3396 * nil rebuild_header routine, 3397 * that should be never called and used as just bug trap. 3398 */ 3399 3400 if (!dev->rebuild_header) 3401 dev->rebuild_header = default_rebuild_header; 3402 3403 ret = netdev_register_sysfs(dev); 3404 if (ret) 3405 goto out; 3406 dev->reg_state = NETREG_REGISTERED; 3407 3408 /* 3409 * Default initial state at registry is that the 3410 * device is present. 3411 */ 3412 3413 set_bit(__LINK_STATE_PRESENT, &dev->state); 3414 3415 dev_init_scheduler(dev); 3416 write_lock_bh(&dev_base_lock); 3417 list_add_tail(&dev->dev_list, &dev_base_head); 3418 hlist_add_head(&dev->name_hlist, head); 3419 hlist_add_head(&dev->index_hlist, dev_index_hash(dev->ifindex)); 3420 dev_hold(dev); 3421 write_unlock_bh(&dev_base_lock); 3422 3423 /* Notify protocols, that a new device appeared. */ 3424 raw_notifier_call_chain(&netdev_chain, NETDEV_REGISTER, dev); 3425 3426 ret = 0; 3427 3428 out: 3429 return ret; 3430 } 3431 3432 /** 3433 * register_netdev - register a network device 3434 * @dev: device to register 3435 * 3436 * Take a completed network device structure and add it to the kernel 3437 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 3438 * chain. 0 is returned on success. A negative errno code is returned 3439 * on a failure to set up the device, or if the name is a duplicate. 3440 * 3441 * This is a wrapper around register_netdevice that takes the rtnl semaphore 3442 * and expands the device name if you passed a format string to 3443 * alloc_netdev. 3444 */ 3445 int register_netdev(struct net_device *dev) 3446 { 3447 int err; 3448 3449 rtnl_lock(); 3450 3451 /* 3452 * If the name is a format string the caller wants us to do a 3453 * name allocation. 3454 */ 3455 if (strchr(dev->name, '%')) { 3456 err = dev_alloc_name(dev, dev->name); 3457 if (err < 0) 3458 goto out; 3459 } 3460 3461 err = register_netdevice(dev); 3462 out: 3463 rtnl_unlock(); 3464 return err; 3465 } 3466 EXPORT_SYMBOL(register_netdev); 3467 3468 /* 3469 * netdev_wait_allrefs - wait until all references are gone. 3470 * 3471 * This is called when unregistering network devices. 3472 * 3473 * Any protocol or device that holds a reference should register 3474 * for netdevice notification, and cleanup and put back the 3475 * reference if they receive an UNREGISTER event. 3476 * We can get stuck here if buggy protocols don't correctly 3477 * call dev_put. 3478 */ 3479 static void netdev_wait_allrefs(struct net_device *dev) 3480 { 3481 unsigned long rebroadcast_time, warning_time; 3482 3483 rebroadcast_time = warning_time = jiffies; 3484 while (atomic_read(&dev->refcnt) != 0) { 3485 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) { 3486 rtnl_lock(); 3487 3488 /* Rebroadcast unregister notification */ 3489 raw_notifier_call_chain(&netdev_chain, 3490 NETDEV_UNREGISTER, dev); 3491 3492 if (test_bit(__LINK_STATE_LINKWATCH_PENDING, 3493 &dev->state)) { 3494 /* We must not have linkwatch events 3495 * pending on unregister. If this 3496 * happens, we simply run the queue 3497 * unscheduled, resulting in a noop 3498 * for this device. 3499 */ 3500 linkwatch_run_queue(); 3501 } 3502 3503 __rtnl_unlock(); 3504 3505 rebroadcast_time = jiffies; 3506 } 3507 3508 msleep(250); 3509 3510 if (time_after(jiffies, warning_time + 10 * HZ)) { 3511 printk(KERN_EMERG "unregister_netdevice: " 3512 "waiting for %s to become free. Usage " 3513 "count = %d\n", 3514 dev->name, atomic_read(&dev->refcnt)); 3515 warning_time = jiffies; 3516 } 3517 } 3518 } 3519 3520 /* The sequence is: 3521 * 3522 * rtnl_lock(); 3523 * ... 3524 * register_netdevice(x1); 3525 * register_netdevice(x2); 3526 * ... 3527 * unregister_netdevice(y1); 3528 * unregister_netdevice(y2); 3529 * ... 3530 * rtnl_unlock(); 3531 * free_netdev(y1); 3532 * free_netdev(y2); 3533 * 3534 * We are invoked by rtnl_unlock() after it drops the semaphore. 3535 * This allows us to deal with problems: 3536 * 1) We can delete sysfs objects which invoke hotplug 3537 * without deadlocking with linkwatch via keventd. 3538 * 2) Since we run with the RTNL semaphore not held, we can sleep 3539 * safely in order to wait for the netdev refcnt to drop to zero. 3540 */ 3541 static DEFINE_MUTEX(net_todo_run_mutex); 3542 void netdev_run_todo(void) 3543 { 3544 struct list_head list; 3545 3546 /* Need to guard against multiple cpu's getting out of order. */ 3547 mutex_lock(&net_todo_run_mutex); 3548 3549 /* Not safe to do outside the semaphore. We must not return 3550 * until all unregister events invoked by the local processor 3551 * have been completed (either by this todo run, or one on 3552 * another cpu). 3553 */ 3554 if (list_empty(&net_todo_list)) 3555 goto out; 3556 3557 /* Snapshot list, allow later requests */ 3558 spin_lock(&net_todo_list_lock); 3559 list_replace_init(&net_todo_list, &list); 3560 spin_unlock(&net_todo_list_lock); 3561 3562 while (!list_empty(&list)) { 3563 struct net_device *dev 3564 = list_entry(list.next, struct net_device, todo_list); 3565 list_del(&dev->todo_list); 3566 3567 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) { 3568 printk(KERN_ERR "network todo '%s' but state %d\n", 3569 dev->name, dev->reg_state); 3570 dump_stack(); 3571 continue; 3572 } 3573 3574 dev->reg_state = NETREG_UNREGISTERED; 3575 3576 netdev_wait_allrefs(dev); 3577 3578 /* paranoia */ 3579 BUG_ON(atomic_read(&dev->refcnt)); 3580 BUG_TRAP(!dev->ip_ptr); 3581 BUG_TRAP(!dev->ip6_ptr); 3582 BUG_TRAP(!dev->dn_ptr); 3583 3584 if (dev->destructor) 3585 dev->destructor(dev); 3586 3587 /* Free network device */ 3588 kobject_put(&dev->dev.kobj); 3589 } 3590 3591 out: 3592 mutex_unlock(&net_todo_run_mutex); 3593 } 3594 3595 static struct net_device_stats *internal_stats(struct net_device *dev) 3596 { 3597 return &dev->stats; 3598 } 3599 3600 /** 3601 * alloc_netdev_mq - allocate network device 3602 * @sizeof_priv: size of private data to allocate space for 3603 * @name: device name format string 3604 * @setup: callback to initialize device 3605 * @queue_count: the number of subqueues to allocate 3606 * 3607 * Allocates a struct net_device with private data area for driver use 3608 * and performs basic initialization. Also allocates subquue structs 3609 * for each queue on the device at the end of the netdevice. 3610 */ 3611 struct net_device *alloc_netdev_mq(int sizeof_priv, const char *name, 3612 void (*setup)(struct net_device *), unsigned int queue_count) 3613 { 3614 void *p; 3615 struct net_device *dev; 3616 int alloc_size; 3617 3618 BUG_ON(strlen(name) >= sizeof(dev->name)); 3619 3620 /* ensure 32-byte alignment of both the device and private area */ 3621 alloc_size = (sizeof(*dev) + NETDEV_ALIGN_CONST + 3622 (sizeof(struct net_device_subqueue) * queue_count)) & 3623 ~NETDEV_ALIGN_CONST; 3624 alloc_size += sizeof_priv + NETDEV_ALIGN_CONST; 3625 3626 p = kzalloc(alloc_size, GFP_KERNEL); 3627 if (!p) { 3628 printk(KERN_ERR "alloc_netdev: Unable to allocate device.\n"); 3629 return NULL; 3630 } 3631 3632 dev = (struct net_device *) 3633 (((long)p + NETDEV_ALIGN_CONST) & ~NETDEV_ALIGN_CONST); 3634 dev->padded = (char *)dev - (char *)p; 3635 3636 if (sizeof_priv) { 3637 dev->priv = ((char *)dev + 3638 ((sizeof(struct net_device) + 3639 (sizeof(struct net_device_subqueue) * 3640 queue_count) + NETDEV_ALIGN_CONST) 3641 & ~NETDEV_ALIGN_CONST)); 3642 } 3643 3644 dev->egress_subqueue_count = queue_count; 3645 3646 dev->get_stats = internal_stats; 3647 setup(dev); 3648 strcpy(dev->name, name); 3649 return dev; 3650 } 3651 EXPORT_SYMBOL(alloc_netdev_mq); 3652 3653 /** 3654 * free_netdev - free network device 3655 * @dev: device 3656 * 3657 * This function does the last stage of destroying an allocated device 3658 * interface. The reference to the device object is released. 3659 * If this is the last reference then it will be freed. 3660 */ 3661 void free_netdev(struct net_device *dev) 3662 { 3663 #ifdef CONFIG_SYSFS 3664 /* Compatibility with error handling in drivers */ 3665 if (dev->reg_state == NETREG_UNINITIALIZED) { 3666 kfree((char *)dev - dev->padded); 3667 return; 3668 } 3669 3670 BUG_ON(dev->reg_state != NETREG_UNREGISTERED); 3671 dev->reg_state = NETREG_RELEASED; 3672 3673 /* will free via device release */ 3674 put_device(&dev->dev); 3675 #else 3676 kfree((char *)dev - dev->padded); 3677 #endif 3678 } 3679 3680 /* Synchronize with packet receive processing. */ 3681 void synchronize_net(void) 3682 { 3683 might_sleep(); 3684 synchronize_rcu(); 3685 } 3686 3687 /** 3688 * unregister_netdevice - remove device from the kernel 3689 * @dev: device 3690 * 3691 * This function shuts down a device interface and removes it 3692 * from the kernel tables. On success 0 is returned, on a failure 3693 * a negative errno code is returned. 3694 * 3695 * Callers must hold the rtnl semaphore. You may want 3696 * unregister_netdev() instead of this. 3697 */ 3698 3699 void unregister_netdevice(struct net_device *dev) 3700 { 3701 BUG_ON(dev_boot_phase); 3702 ASSERT_RTNL(); 3703 3704 /* Some devices call without registering for initialization unwind. */ 3705 if (dev->reg_state == NETREG_UNINITIALIZED) { 3706 printk(KERN_DEBUG "unregister_netdevice: device %s/%p never " 3707 "was registered\n", dev->name, dev); 3708 3709 WARN_ON(1); 3710 return; 3711 } 3712 3713 BUG_ON(dev->reg_state != NETREG_REGISTERED); 3714 3715 /* If device is running, close it first. */ 3716 if (dev->flags & IFF_UP) 3717 dev_close(dev); 3718 3719 /* And unlink it from device chain. */ 3720 write_lock_bh(&dev_base_lock); 3721 list_del(&dev->dev_list); 3722 hlist_del(&dev->name_hlist); 3723 hlist_del(&dev->index_hlist); 3724 write_unlock_bh(&dev_base_lock); 3725 3726 dev->reg_state = NETREG_UNREGISTERING; 3727 3728 synchronize_net(); 3729 3730 /* Shutdown queueing discipline. */ 3731 dev_shutdown(dev); 3732 3733 3734 /* Notify protocols, that we are about to destroy 3735 this device. They should clean all the things. 3736 */ 3737 raw_notifier_call_chain(&netdev_chain, NETDEV_UNREGISTER, dev); 3738 3739 /* 3740 * Flush the unicast and multicast chains 3741 */ 3742 dev_unicast_discard(dev); 3743 dev_mc_discard(dev); 3744 3745 if (dev->uninit) 3746 dev->uninit(dev); 3747 3748 /* Notifier chain MUST detach us from master device. */ 3749 BUG_TRAP(!dev->master); 3750 3751 /* Remove entries from sysfs */ 3752 netdev_unregister_sysfs(dev); 3753 3754 /* Finish processing unregister after unlock */ 3755 net_set_todo(dev); 3756 3757 synchronize_net(); 3758 3759 dev_put(dev); 3760 } 3761 3762 /** 3763 * unregister_netdev - remove device from the kernel 3764 * @dev: device 3765 * 3766 * This function shuts down a device interface and removes it 3767 * from the kernel tables. On success 0 is returned, on a failure 3768 * a negative errno code is returned. 3769 * 3770 * This is just a wrapper for unregister_netdevice that takes 3771 * the rtnl semaphore. In general you want to use this and not 3772 * unregister_netdevice. 3773 */ 3774 void unregister_netdev(struct net_device *dev) 3775 { 3776 rtnl_lock(); 3777 unregister_netdevice(dev); 3778 rtnl_unlock(); 3779 } 3780 3781 EXPORT_SYMBOL(unregister_netdev); 3782 3783 static int dev_cpu_callback(struct notifier_block *nfb, 3784 unsigned long action, 3785 void *ocpu) 3786 { 3787 struct sk_buff **list_skb; 3788 struct net_device **list_net; 3789 struct sk_buff *skb; 3790 unsigned int cpu, oldcpu = (unsigned long)ocpu; 3791 struct softnet_data *sd, *oldsd; 3792 3793 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN) 3794 return NOTIFY_OK; 3795 3796 local_irq_disable(); 3797 cpu = smp_processor_id(); 3798 sd = &per_cpu(softnet_data, cpu); 3799 oldsd = &per_cpu(softnet_data, oldcpu); 3800 3801 /* Find end of our completion_queue. */ 3802 list_skb = &sd->completion_queue; 3803 while (*list_skb) 3804 list_skb = &(*list_skb)->next; 3805 /* Append completion queue from offline CPU. */ 3806 *list_skb = oldsd->completion_queue; 3807 oldsd->completion_queue = NULL; 3808 3809 /* Find end of our output_queue. */ 3810 list_net = &sd->output_queue; 3811 while (*list_net) 3812 list_net = &(*list_net)->next_sched; 3813 /* Append output queue from offline CPU. */ 3814 *list_net = oldsd->output_queue; 3815 oldsd->output_queue = NULL; 3816 3817 raise_softirq_irqoff(NET_TX_SOFTIRQ); 3818 local_irq_enable(); 3819 3820 /* Process offline CPU's input_pkt_queue */ 3821 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) 3822 netif_rx(skb); 3823 3824 return NOTIFY_OK; 3825 } 3826 3827 #ifdef CONFIG_NET_DMA 3828 /** 3829 * net_dma_rebalance - 3830 * This is called when the number of channels allocated to the net_dma_client 3831 * changes. The net_dma_client tries to have one DMA channel per CPU. 3832 */ 3833 3834 static void net_dma_rebalance(struct net_dma *net_dma) 3835 { 3836 unsigned int cpu, i, n, chan_idx; 3837 struct dma_chan *chan; 3838 3839 if (cpus_empty(net_dma->channel_mask)) { 3840 for_each_online_cpu(cpu) 3841 rcu_assign_pointer(per_cpu(softnet_data, cpu).net_dma, NULL); 3842 return; 3843 } 3844 3845 i = 0; 3846 cpu = first_cpu(cpu_online_map); 3847 3848 for_each_cpu_mask(chan_idx, net_dma->channel_mask) { 3849 chan = net_dma->channels[chan_idx]; 3850 3851 n = ((num_online_cpus() / cpus_weight(net_dma->channel_mask)) 3852 + (i < (num_online_cpus() % 3853 cpus_weight(net_dma->channel_mask)) ? 1 : 0)); 3854 3855 while(n) { 3856 per_cpu(softnet_data, cpu).net_dma = chan; 3857 cpu = next_cpu(cpu, cpu_online_map); 3858 n--; 3859 } 3860 i++; 3861 } 3862 } 3863 3864 /** 3865 * netdev_dma_event - event callback for the net_dma_client 3866 * @client: should always be net_dma_client 3867 * @chan: DMA channel for the event 3868 * @event: event type 3869 */ 3870 static enum dma_state_client 3871 netdev_dma_event(struct dma_client *client, struct dma_chan *chan, 3872 enum dma_state state) 3873 { 3874 int i, found = 0, pos = -1; 3875 struct net_dma *net_dma = 3876 container_of(client, struct net_dma, client); 3877 enum dma_state_client ack = DMA_DUP; /* default: take no action */ 3878 3879 spin_lock(&net_dma->lock); 3880 switch (state) { 3881 case DMA_RESOURCE_AVAILABLE: 3882 for (i = 0; i < NR_CPUS; i++) 3883 if (net_dma->channels[i] == chan) { 3884 found = 1; 3885 break; 3886 } else if (net_dma->channels[i] == NULL && pos < 0) 3887 pos = i; 3888 3889 if (!found && pos >= 0) { 3890 ack = DMA_ACK; 3891 net_dma->channels[pos] = chan; 3892 cpu_set(pos, net_dma->channel_mask); 3893 net_dma_rebalance(net_dma); 3894 } 3895 break; 3896 case DMA_RESOURCE_REMOVED: 3897 for (i = 0; i < NR_CPUS; i++) 3898 if (net_dma->channels[i] == chan) { 3899 found = 1; 3900 pos = i; 3901 break; 3902 } 3903 3904 if (found) { 3905 ack = DMA_ACK; 3906 cpu_clear(pos, net_dma->channel_mask); 3907 net_dma->channels[i] = NULL; 3908 net_dma_rebalance(net_dma); 3909 } 3910 break; 3911 default: 3912 break; 3913 } 3914 spin_unlock(&net_dma->lock); 3915 3916 return ack; 3917 } 3918 3919 /** 3920 * netdev_dma_regiser - register the networking subsystem as a DMA client 3921 */ 3922 static int __init netdev_dma_register(void) 3923 { 3924 spin_lock_init(&net_dma.lock); 3925 dma_cap_set(DMA_MEMCPY, net_dma.client.cap_mask); 3926 dma_async_client_register(&net_dma.client); 3927 dma_async_client_chan_request(&net_dma.client); 3928 return 0; 3929 } 3930 3931 #else 3932 static int __init netdev_dma_register(void) { return -ENODEV; } 3933 #endif /* CONFIG_NET_DMA */ 3934 3935 /* 3936 * Initialize the DEV module. At boot time this walks the device list and 3937 * unhooks any devices that fail to initialise (normally hardware not 3938 * present) and leaves us with a valid list of present and active devices. 3939 * 3940 */ 3941 3942 /* 3943 * This is called single threaded during boot, so no need 3944 * to take the rtnl semaphore. 3945 */ 3946 static int __init net_dev_init(void) 3947 { 3948 int i, rc = -ENOMEM; 3949 3950 BUG_ON(!dev_boot_phase); 3951 3952 if (dev_proc_init()) 3953 goto out; 3954 3955 if (netdev_sysfs_init()) 3956 goto out; 3957 3958 INIT_LIST_HEAD(&ptype_all); 3959 for (i = 0; i < 16; i++) 3960 INIT_LIST_HEAD(&ptype_base[i]); 3961 3962 for (i = 0; i < ARRAY_SIZE(dev_name_head); i++) 3963 INIT_HLIST_HEAD(&dev_name_head[i]); 3964 3965 for (i = 0; i < ARRAY_SIZE(dev_index_head); i++) 3966 INIT_HLIST_HEAD(&dev_index_head[i]); 3967 3968 /* 3969 * Initialise the packet receive queues. 3970 */ 3971 3972 for_each_possible_cpu(i) { 3973 struct softnet_data *queue; 3974 3975 queue = &per_cpu(softnet_data, i); 3976 skb_queue_head_init(&queue->input_pkt_queue); 3977 queue->completion_queue = NULL; 3978 INIT_LIST_HEAD(&queue->poll_list); 3979 set_bit(__LINK_STATE_START, &queue->backlog_dev.state); 3980 queue->backlog_dev.weight = weight_p; 3981 queue->backlog_dev.poll = process_backlog; 3982 atomic_set(&queue->backlog_dev.refcnt, 1); 3983 } 3984 3985 netdev_dma_register(); 3986 3987 dev_boot_phase = 0; 3988 3989 open_softirq(NET_TX_SOFTIRQ, net_tx_action, NULL); 3990 open_softirq(NET_RX_SOFTIRQ, net_rx_action, NULL); 3991 3992 hotcpu_notifier(dev_cpu_callback, 0); 3993 dst_init(); 3994 dev_mcast_init(); 3995 rc = 0; 3996 out: 3997 return rc; 3998 } 3999 4000 subsys_initcall(net_dev_init); 4001 4002 EXPORT_SYMBOL(__dev_get_by_index); 4003 EXPORT_SYMBOL(__dev_get_by_name); 4004 EXPORT_SYMBOL(__dev_remove_pack); 4005 EXPORT_SYMBOL(dev_valid_name); 4006 EXPORT_SYMBOL(dev_add_pack); 4007 EXPORT_SYMBOL(dev_alloc_name); 4008 EXPORT_SYMBOL(dev_close); 4009 EXPORT_SYMBOL(dev_get_by_flags); 4010 EXPORT_SYMBOL(dev_get_by_index); 4011 EXPORT_SYMBOL(dev_get_by_name); 4012 EXPORT_SYMBOL(dev_open); 4013 EXPORT_SYMBOL(dev_queue_xmit); 4014 EXPORT_SYMBOL(dev_remove_pack); 4015 EXPORT_SYMBOL(dev_set_allmulti); 4016 EXPORT_SYMBOL(dev_set_promiscuity); 4017 EXPORT_SYMBOL(dev_change_flags); 4018 EXPORT_SYMBOL(dev_set_mtu); 4019 EXPORT_SYMBOL(dev_set_mac_address); 4020 EXPORT_SYMBOL(free_netdev); 4021 EXPORT_SYMBOL(netdev_boot_setup_check); 4022 EXPORT_SYMBOL(netdev_set_master); 4023 EXPORT_SYMBOL(netdev_state_change); 4024 EXPORT_SYMBOL(netif_receive_skb); 4025 EXPORT_SYMBOL(netif_rx); 4026 EXPORT_SYMBOL(register_gifconf); 4027 EXPORT_SYMBOL(register_netdevice); 4028 EXPORT_SYMBOL(register_netdevice_notifier); 4029 EXPORT_SYMBOL(skb_checksum_help); 4030 EXPORT_SYMBOL(synchronize_net); 4031 EXPORT_SYMBOL(unregister_netdevice); 4032 EXPORT_SYMBOL(unregister_netdevice_notifier); 4033 EXPORT_SYMBOL(net_enable_timestamp); 4034 EXPORT_SYMBOL(net_disable_timestamp); 4035 EXPORT_SYMBOL(dev_get_flags); 4036 4037 #if defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE) 4038 EXPORT_SYMBOL(br_handle_frame_hook); 4039 EXPORT_SYMBOL(br_fdb_get_hook); 4040 EXPORT_SYMBOL(br_fdb_put_hook); 4041 #endif 4042 4043 #ifdef CONFIG_KMOD 4044 EXPORT_SYMBOL(dev_load); 4045 #endif 4046 4047 EXPORT_PER_CPU_SYMBOL(softnet_data); 4048