1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * NET3 Protocol independent device support routines. 4 * 5 * Derived from the non IP parts of dev.c 1.0.19 6 * Authors: Ross Biro 7 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 8 * Mark Evans, <evansmp@uhura.aston.ac.uk> 9 * 10 * Additional Authors: 11 * Florian la Roche <rzsfl@rz.uni-sb.de> 12 * Alan Cox <gw4pts@gw4pts.ampr.org> 13 * David Hinds <dahinds@users.sourceforge.net> 14 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> 15 * Adam Sulmicki <adam@cfar.umd.edu> 16 * Pekka Riikonen <priikone@poesidon.pspt.fi> 17 * 18 * Changes: 19 * D.J. Barrow : Fixed bug where dev->refcnt gets set 20 * to 2 if register_netdev gets called 21 * before net_dev_init & also removed a 22 * few lines of code in the process. 23 * Alan Cox : device private ioctl copies fields back. 24 * Alan Cox : Transmit queue code does relevant 25 * stunts to keep the queue safe. 26 * Alan Cox : Fixed double lock. 27 * Alan Cox : Fixed promisc NULL pointer trap 28 * ???????? : Support the full private ioctl range 29 * Alan Cox : Moved ioctl permission check into 30 * drivers 31 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI 32 * Alan Cox : 100 backlog just doesn't cut it when 33 * you start doing multicast video 8) 34 * Alan Cox : Rewrote net_bh and list manager. 35 * Alan Cox : Fix ETH_P_ALL echoback lengths. 36 * Alan Cox : Took out transmit every packet pass 37 * Saved a few bytes in the ioctl handler 38 * Alan Cox : Network driver sets packet type before 39 * calling netif_rx. Saves a function 40 * call a packet. 41 * Alan Cox : Hashed net_bh() 42 * Richard Kooijman: Timestamp fixes. 43 * Alan Cox : Wrong field in SIOCGIFDSTADDR 44 * Alan Cox : Device lock protection. 45 * Alan Cox : Fixed nasty side effect of device close 46 * changes. 47 * Rudi Cilibrasi : Pass the right thing to 48 * set_mac_address() 49 * Dave Miller : 32bit quantity for the device lock to 50 * make it work out on a Sparc. 51 * Bjorn Ekwall : Added KERNELD hack. 52 * Alan Cox : Cleaned up the backlog initialise. 53 * Craig Metz : SIOCGIFCONF fix if space for under 54 * 1 device. 55 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there 56 * is no device open function. 57 * Andi Kleen : Fix error reporting for SIOCGIFCONF 58 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF 59 * Cyrus Durgin : Cleaned for KMOD 60 * Adam Sulmicki : Bug Fix : Network Device Unload 61 * A network device unload needs to purge 62 * the backlog queue. 63 * Paul Rusty Russell : SIOCSIFNAME 64 * Pekka Riikonen : Netdev boot-time settings code 65 * Andrew Morton : Make unregister_netdevice wait 66 * indefinitely on dev->refcnt 67 * J Hadi Salim : - Backlog queue sampling 68 * - netif_rx() feedback 69 */ 70 71 #include <linux/uaccess.h> 72 #include <linux/bitmap.h> 73 #include <linux/capability.h> 74 #include <linux/cpu.h> 75 #include <linux/types.h> 76 #include <linux/kernel.h> 77 #include <linux/hash.h> 78 #include <linux/slab.h> 79 #include <linux/sched.h> 80 #include <linux/sched/isolation.h> 81 #include <linux/sched/mm.h> 82 #include <linux/smpboot.h> 83 #include <linux/mutex.h> 84 #include <linux/rwsem.h> 85 #include <linux/string.h> 86 #include <linux/mm.h> 87 #include <linux/socket.h> 88 #include <linux/sockios.h> 89 #include <linux/errno.h> 90 #include <linux/interrupt.h> 91 #include <linux/if_ether.h> 92 #include <linux/netdevice.h> 93 #include <linux/etherdevice.h> 94 #include <linux/ethtool.h> 95 #include <linux/ethtool_netlink.h> 96 #include <linux/skbuff.h> 97 #include <linux/kthread.h> 98 #include <linux/bpf.h> 99 #include <linux/bpf_trace.h> 100 #include <net/net_namespace.h> 101 #include <net/sock.h> 102 #include <net/busy_poll.h> 103 #include <linux/rtnetlink.h> 104 #include <linux/stat.h> 105 #include <net/dsa.h> 106 #include <net/dst.h> 107 #include <net/dst_metadata.h> 108 #include <net/gro.h> 109 #include <net/netdev_queues.h> 110 #include <net/pkt_sched.h> 111 #include <net/pkt_cls.h> 112 #include <net/checksum.h> 113 #include <net/xfrm.h> 114 #include <net/tcx.h> 115 #include <linux/highmem.h> 116 #include <linux/init.h> 117 #include <linux/module.h> 118 #include <linux/netpoll.h> 119 #include <linux/rcupdate.h> 120 #include <linux/delay.h> 121 #include <net/iw_handler.h> 122 #include <asm/current.h> 123 #include <linux/audit.h> 124 #include <linux/dmaengine.h> 125 #include <linux/err.h> 126 #include <linux/ctype.h> 127 #include <linux/if_arp.h> 128 #include <linux/if_vlan.h> 129 #include <linux/ip.h> 130 #include <net/ip.h> 131 #include <net/mpls.h> 132 #include <linux/ipv6.h> 133 #include <linux/in.h> 134 #include <linux/jhash.h> 135 #include <linux/random.h> 136 #include <trace/events/napi.h> 137 #include <trace/events/net.h> 138 #include <trace/events/skb.h> 139 #include <trace/events/qdisc.h> 140 #include <trace/events/xdp.h> 141 #include <linux/inetdevice.h> 142 #include <linux/cpu_rmap.h> 143 #include <linux/static_key.h> 144 #include <linux/hashtable.h> 145 #include <linux/vmalloc.h> 146 #include <linux/if_macvlan.h> 147 #include <linux/errqueue.h> 148 #include <linux/hrtimer.h> 149 #include <linux/netfilter_netdev.h> 150 #include <linux/crash_dump.h> 151 #include <linux/sctp.h> 152 #include <net/udp_tunnel.h> 153 #include <linux/net_namespace.h> 154 #include <linux/indirect_call_wrapper.h> 155 #include <net/devlink.h> 156 #include <linux/pm_runtime.h> 157 #include <linux/prandom.h> 158 #include <linux/once_lite.h> 159 #include <net/netdev_lock.h> 160 #include <net/netdev_rx_queue.h> 161 #include <net/page_pool/types.h> 162 #include <net/page_pool/helpers.h> 163 #include <net/page_pool/memory_provider.h> 164 #include <net/rps.h> 165 #include <linux/phy_link_topology.h> 166 167 #include "dev.h" 168 #include "devmem.h" 169 #include "net-sysfs.h" 170 171 static DEFINE_SPINLOCK(ptype_lock); 172 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly; 173 174 static int netif_rx_internal(struct sk_buff *skb); 175 static int call_netdevice_notifiers_extack(unsigned long val, 176 struct net_device *dev, 177 struct netlink_ext_ack *extack); 178 179 static DEFINE_MUTEX(ifalias_mutex); 180 181 /* protects napi_hash addition/deletion and napi_gen_id */ 182 static DEFINE_SPINLOCK(napi_hash_lock); 183 184 static unsigned int napi_gen_id = NR_CPUS; 185 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8); 186 187 static inline void dev_base_seq_inc(struct net *net) 188 { 189 unsigned int val = net->dev_base_seq + 1; 190 191 WRITE_ONCE(net->dev_base_seq, val ?: 1); 192 } 193 194 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name) 195 { 196 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ)); 197 198 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)]; 199 } 200 201 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex) 202 { 203 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)]; 204 } 205 206 #ifndef CONFIG_PREEMPT_RT 207 208 static DEFINE_STATIC_KEY_FALSE(use_backlog_threads_key); 209 210 static int __init setup_backlog_napi_threads(char *arg) 211 { 212 static_branch_enable(&use_backlog_threads_key); 213 return 0; 214 } 215 early_param("thread_backlog_napi", setup_backlog_napi_threads); 216 217 static bool use_backlog_threads(void) 218 { 219 return static_branch_unlikely(&use_backlog_threads_key); 220 } 221 222 #else 223 224 static bool use_backlog_threads(void) 225 { 226 return true; 227 } 228 229 #endif 230 231 static inline void backlog_lock_irq_save(struct softnet_data *sd, 232 unsigned long *flags) 233 { 234 if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads()) 235 spin_lock_irqsave(&sd->input_pkt_queue.lock, *flags); 236 else 237 local_irq_save(*flags); 238 } 239 240 static inline void backlog_lock_irq_disable(struct softnet_data *sd) 241 { 242 if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads()) 243 spin_lock_irq(&sd->input_pkt_queue.lock); 244 else 245 local_irq_disable(); 246 } 247 248 static inline void backlog_unlock_irq_restore(struct softnet_data *sd, 249 unsigned long *flags) 250 { 251 if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads()) 252 spin_unlock_irqrestore(&sd->input_pkt_queue.lock, *flags); 253 else 254 local_irq_restore(*flags); 255 } 256 257 static inline void backlog_unlock_irq_enable(struct softnet_data *sd) 258 { 259 if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads()) 260 spin_unlock_irq(&sd->input_pkt_queue.lock); 261 else 262 local_irq_enable(); 263 } 264 265 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev, 266 const char *name) 267 { 268 struct netdev_name_node *name_node; 269 270 name_node = kmalloc(sizeof(*name_node), GFP_KERNEL); 271 if (!name_node) 272 return NULL; 273 INIT_HLIST_NODE(&name_node->hlist); 274 name_node->dev = dev; 275 name_node->name = name; 276 return name_node; 277 } 278 279 static struct netdev_name_node * 280 netdev_name_node_head_alloc(struct net_device *dev) 281 { 282 struct netdev_name_node *name_node; 283 284 name_node = netdev_name_node_alloc(dev, dev->name); 285 if (!name_node) 286 return NULL; 287 INIT_LIST_HEAD(&name_node->list); 288 return name_node; 289 } 290 291 static void netdev_name_node_free(struct netdev_name_node *name_node) 292 { 293 kfree(name_node); 294 } 295 296 static void netdev_name_node_add(struct net *net, 297 struct netdev_name_node *name_node) 298 { 299 hlist_add_head_rcu(&name_node->hlist, 300 dev_name_hash(net, name_node->name)); 301 } 302 303 static void netdev_name_node_del(struct netdev_name_node *name_node) 304 { 305 hlist_del_rcu(&name_node->hlist); 306 } 307 308 static struct netdev_name_node *netdev_name_node_lookup(struct net *net, 309 const char *name) 310 { 311 struct hlist_head *head = dev_name_hash(net, name); 312 struct netdev_name_node *name_node; 313 314 hlist_for_each_entry(name_node, head, hlist) 315 if (!strcmp(name_node->name, name)) 316 return name_node; 317 return NULL; 318 } 319 320 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net, 321 const char *name) 322 { 323 struct hlist_head *head = dev_name_hash(net, name); 324 struct netdev_name_node *name_node; 325 326 hlist_for_each_entry_rcu(name_node, head, hlist) 327 if (!strcmp(name_node->name, name)) 328 return name_node; 329 return NULL; 330 } 331 332 bool netdev_name_in_use(struct net *net, const char *name) 333 { 334 return netdev_name_node_lookup(net, name); 335 } 336 EXPORT_SYMBOL(netdev_name_in_use); 337 338 int netdev_name_node_alt_create(struct net_device *dev, const char *name) 339 { 340 struct netdev_name_node *name_node; 341 struct net *net = dev_net(dev); 342 343 name_node = netdev_name_node_lookup(net, name); 344 if (name_node) 345 return -EEXIST; 346 name_node = netdev_name_node_alloc(dev, name); 347 if (!name_node) 348 return -ENOMEM; 349 netdev_name_node_add(net, name_node); 350 /* The node that holds dev->name acts as a head of per-device list. */ 351 list_add_tail_rcu(&name_node->list, &dev->name_node->list); 352 353 return 0; 354 } 355 356 static void netdev_name_node_alt_free(struct rcu_head *head) 357 { 358 struct netdev_name_node *name_node = 359 container_of(head, struct netdev_name_node, rcu); 360 361 kfree(name_node->name); 362 netdev_name_node_free(name_node); 363 } 364 365 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node) 366 { 367 netdev_name_node_del(name_node); 368 list_del(&name_node->list); 369 call_rcu(&name_node->rcu, netdev_name_node_alt_free); 370 } 371 372 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name) 373 { 374 struct netdev_name_node *name_node; 375 struct net *net = dev_net(dev); 376 377 name_node = netdev_name_node_lookup(net, name); 378 if (!name_node) 379 return -ENOENT; 380 /* lookup might have found our primary name or a name belonging 381 * to another device. 382 */ 383 if (name_node == dev->name_node || name_node->dev != dev) 384 return -EINVAL; 385 386 __netdev_name_node_alt_destroy(name_node); 387 return 0; 388 } 389 390 static void netdev_name_node_alt_flush(struct net_device *dev) 391 { 392 struct netdev_name_node *name_node, *tmp; 393 394 list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list) { 395 list_del(&name_node->list); 396 netdev_name_node_alt_free(&name_node->rcu); 397 } 398 } 399 400 /* Device list insertion */ 401 static void list_netdevice(struct net_device *dev) 402 { 403 struct netdev_name_node *name_node; 404 struct net *net = dev_net(dev); 405 406 ASSERT_RTNL(); 407 408 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head); 409 netdev_name_node_add(net, dev->name_node); 410 hlist_add_head_rcu(&dev->index_hlist, 411 dev_index_hash(net, dev->ifindex)); 412 413 netdev_for_each_altname(dev, name_node) 414 netdev_name_node_add(net, name_node); 415 416 /* We reserved the ifindex, this can't fail */ 417 WARN_ON(xa_store(&net->dev_by_index, dev->ifindex, dev, GFP_KERNEL)); 418 419 dev_base_seq_inc(net); 420 } 421 422 /* Device list removal 423 * caller must respect a RCU grace period before freeing/reusing dev 424 */ 425 static void unlist_netdevice(struct net_device *dev) 426 { 427 struct netdev_name_node *name_node; 428 struct net *net = dev_net(dev); 429 430 ASSERT_RTNL(); 431 432 xa_erase(&net->dev_by_index, dev->ifindex); 433 434 netdev_for_each_altname(dev, name_node) 435 netdev_name_node_del(name_node); 436 437 /* Unlink dev from the device chain */ 438 list_del_rcu(&dev->dev_list); 439 netdev_name_node_del(dev->name_node); 440 hlist_del_rcu(&dev->index_hlist); 441 442 dev_base_seq_inc(dev_net(dev)); 443 } 444 445 /* 446 * Our notifier list 447 */ 448 449 static RAW_NOTIFIER_HEAD(netdev_chain); 450 451 /* 452 * Device drivers call our routines to queue packets here. We empty the 453 * queue in the local softnet handler. 454 */ 455 456 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data) = { 457 .process_queue_bh_lock = INIT_LOCAL_LOCK(process_queue_bh_lock), 458 }; 459 EXPORT_PER_CPU_SYMBOL(softnet_data); 460 461 /* Page_pool has a lockless array/stack to alloc/recycle pages. 462 * PP consumers must pay attention to run APIs in the appropriate context 463 * (e.g. NAPI context). 464 */ 465 DEFINE_PER_CPU(struct page_pool_bh, system_page_pool) = { 466 .bh_lock = INIT_LOCAL_LOCK(bh_lock), 467 }; 468 469 #ifdef CONFIG_LOCKDEP 470 /* 471 * register_netdevice() inits txq->_xmit_lock and sets lockdep class 472 * according to dev->type 473 */ 474 static const unsigned short netdev_lock_type[] = { 475 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25, 476 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET, 477 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM, 478 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP, 479 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD, 480 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25, 481 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP, 482 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD, 483 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI, 484 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE, 485 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET, 486 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL, 487 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM, 488 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE, 489 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE}; 490 491 static const char *const netdev_lock_name[] = { 492 "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25", 493 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET", 494 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM", 495 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP", 496 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD", 497 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25", 498 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP", 499 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD", 500 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI", 501 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE", 502 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET", 503 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL", 504 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM", 505 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE", 506 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"}; 507 508 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)]; 509 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)]; 510 511 static inline unsigned short netdev_lock_pos(unsigned short dev_type) 512 { 513 int i; 514 515 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++) 516 if (netdev_lock_type[i] == dev_type) 517 return i; 518 /* the last key is used by default */ 519 return ARRAY_SIZE(netdev_lock_type) - 1; 520 } 521 522 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 523 unsigned short dev_type) 524 { 525 int i; 526 527 i = netdev_lock_pos(dev_type); 528 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i], 529 netdev_lock_name[i]); 530 } 531 532 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 533 { 534 int i; 535 536 i = netdev_lock_pos(dev->type); 537 lockdep_set_class_and_name(&dev->addr_list_lock, 538 &netdev_addr_lock_key[i], 539 netdev_lock_name[i]); 540 } 541 #else 542 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 543 unsigned short dev_type) 544 { 545 } 546 547 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 548 { 549 } 550 #endif 551 552 /******************************************************************************* 553 * 554 * Protocol management and registration routines 555 * 556 *******************************************************************************/ 557 558 559 /* 560 * Add a protocol ID to the list. Now that the input handler is 561 * smarter we can dispense with all the messy stuff that used to be 562 * here. 563 * 564 * BEWARE!!! Protocol handlers, mangling input packets, 565 * MUST BE last in hash buckets and checking protocol handlers 566 * MUST start from promiscuous ptype_all chain in net_bh. 567 * It is true now, do not change it. 568 * Explanation follows: if protocol handler, mangling packet, will 569 * be the first on list, it is not able to sense, that packet 570 * is cloned and should be copied-on-write, so that it will 571 * change it and subsequent readers will get broken packet. 572 * --ANK (980803) 573 */ 574 575 static inline struct list_head *ptype_head(const struct packet_type *pt) 576 { 577 if (pt->type == htons(ETH_P_ALL)) { 578 if (!pt->af_packet_net && !pt->dev) 579 return NULL; 580 581 return pt->dev ? &pt->dev->ptype_all : 582 &pt->af_packet_net->ptype_all; 583 } 584 585 if (pt->dev) 586 return &pt->dev->ptype_specific; 587 588 return pt->af_packet_net ? &pt->af_packet_net->ptype_specific : 589 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK]; 590 } 591 592 /** 593 * dev_add_pack - add packet handler 594 * @pt: packet type declaration 595 * 596 * Add a protocol handler to the networking stack. The passed &packet_type 597 * is linked into kernel lists and may not be freed until it has been 598 * removed from the kernel lists. 599 * 600 * This call does not sleep therefore it can not 601 * guarantee all CPU's that are in middle of receiving packets 602 * will see the new packet type (until the next received packet). 603 */ 604 605 void dev_add_pack(struct packet_type *pt) 606 { 607 struct list_head *head = ptype_head(pt); 608 609 if (WARN_ON_ONCE(!head)) 610 return; 611 612 spin_lock(&ptype_lock); 613 list_add_rcu(&pt->list, head); 614 spin_unlock(&ptype_lock); 615 } 616 EXPORT_SYMBOL(dev_add_pack); 617 618 /** 619 * __dev_remove_pack - remove packet handler 620 * @pt: packet type declaration 621 * 622 * Remove a protocol handler that was previously added to the kernel 623 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 624 * from the kernel lists and can be freed or reused once this function 625 * returns. 626 * 627 * The packet type might still be in use by receivers 628 * and must not be freed until after all the CPU's have gone 629 * through a quiescent state. 630 */ 631 void __dev_remove_pack(struct packet_type *pt) 632 { 633 struct list_head *head = ptype_head(pt); 634 struct packet_type *pt1; 635 636 if (!head) 637 return; 638 639 spin_lock(&ptype_lock); 640 641 list_for_each_entry(pt1, head, list) { 642 if (pt == pt1) { 643 list_del_rcu(&pt->list); 644 goto out; 645 } 646 } 647 648 pr_warn("dev_remove_pack: %p not found\n", pt); 649 out: 650 spin_unlock(&ptype_lock); 651 } 652 EXPORT_SYMBOL(__dev_remove_pack); 653 654 /** 655 * dev_remove_pack - remove packet handler 656 * @pt: packet type declaration 657 * 658 * Remove a protocol handler that was previously added to the kernel 659 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 660 * from the kernel lists and can be freed or reused once this function 661 * returns. 662 * 663 * This call sleeps to guarantee that no CPU is looking at the packet 664 * type after return. 665 */ 666 void dev_remove_pack(struct packet_type *pt) 667 { 668 __dev_remove_pack(pt); 669 670 synchronize_net(); 671 } 672 EXPORT_SYMBOL(dev_remove_pack); 673 674 675 /******************************************************************************* 676 * 677 * Device Interface Subroutines 678 * 679 *******************************************************************************/ 680 681 /** 682 * dev_get_iflink - get 'iflink' value of a interface 683 * @dev: targeted interface 684 * 685 * Indicates the ifindex the interface is linked to. 686 * Physical interfaces have the same 'ifindex' and 'iflink' values. 687 */ 688 689 int dev_get_iflink(const struct net_device *dev) 690 { 691 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink) 692 return dev->netdev_ops->ndo_get_iflink(dev); 693 694 return READ_ONCE(dev->ifindex); 695 } 696 EXPORT_SYMBOL(dev_get_iflink); 697 698 /** 699 * dev_fill_metadata_dst - Retrieve tunnel egress information. 700 * @dev: targeted interface 701 * @skb: The packet. 702 * 703 * For better visibility of tunnel traffic OVS needs to retrieve 704 * egress tunnel information for a packet. Following API allows 705 * user to get this info. 706 */ 707 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb) 708 { 709 struct ip_tunnel_info *info; 710 711 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst) 712 return -EINVAL; 713 714 info = skb_tunnel_info_unclone(skb); 715 if (!info) 716 return -ENOMEM; 717 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX))) 718 return -EINVAL; 719 720 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb); 721 } 722 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst); 723 724 static struct net_device_path *dev_fwd_path(struct net_device_path_stack *stack) 725 { 726 int k = stack->num_paths++; 727 728 if (WARN_ON_ONCE(k >= NET_DEVICE_PATH_STACK_MAX)) 729 return NULL; 730 731 return &stack->path[k]; 732 } 733 734 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr, 735 struct net_device_path_stack *stack) 736 { 737 const struct net_device *last_dev; 738 struct net_device_path_ctx ctx = { 739 .dev = dev, 740 }; 741 struct net_device_path *path; 742 int ret = 0; 743 744 memcpy(ctx.daddr, daddr, sizeof(ctx.daddr)); 745 stack->num_paths = 0; 746 while (ctx.dev && ctx.dev->netdev_ops->ndo_fill_forward_path) { 747 last_dev = ctx.dev; 748 path = dev_fwd_path(stack); 749 if (!path) 750 return -1; 751 752 memset(path, 0, sizeof(struct net_device_path)); 753 ret = ctx.dev->netdev_ops->ndo_fill_forward_path(&ctx, path); 754 if (ret < 0) 755 return -1; 756 757 if (WARN_ON_ONCE(last_dev == ctx.dev)) 758 return -1; 759 } 760 761 if (!ctx.dev) 762 return ret; 763 764 path = dev_fwd_path(stack); 765 if (!path) 766 return -1; 767 path->type = DEV_PATH_ETHERNET; 768 path->dev = ctx.dev; 769 770 return ret; 771 } 772 EXPORT_SYMBOL_GPL(dev_fill_forward_path); 773 774 /* must be called under rcu_read_lock(), as we dont take a reference */ 775 static struct napi_struct *napi_by_id(unsigned int napi_id) 776 { 777 unsigned int hash = napi_id % HASH_SIZE(napi_hash); 778 struct napi_struct *napi; 779 780 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node) 781 if (napi->napi_id == napi_id) 782 return napi; 783 784 return NULL; 785 } 786 787 /* must be called under rcu_read_lock(), as we dont take a reference */ 788 static struct napi_struct * 789 netdev_napi_by_id(struct net *net, unsigned int napi_id) 790 { 791 struct napi_struct *napi; 792 793 napi = napi_by_id(napi_id); 794 if (!napi) 795 return NULL; 796 797 if (WARN_ON_ONCE(!napi->dev)) 798 return NULL; 799 if (!net_eq(net, dev_net(napi->dev))) 800 return NULL; 801 802 return napi; 803 } 804 805 /** 806 * netdev_napi_by_id_lock() - find a device by NAPI ID and lock it 807 * @net: the applicable net namespace 808 * @napi_id: ID of a NAPI of a target device 809 * 810 * Find a NAPI instance with @napi_id. Lock its device. 811 * The device must be in %NETREG_REGISTERED state for lookup to succeed. 812 * netdev_unlock() must be called to release it. 813 * 814 * Return: pointer to NAPI, its device with lock held, NULL if not found. 815 */ 816 struct napi_struct * 817 netdev_napi_by_id_lock(struct net *net, unsigned int napi_id) 818 { 819 struct napi_struct *napi; 820 struct net_device *dev; 821 822 rcu_read_lock(); 823 napi = netdev_napi_by_id(net, napi_id); 824 if (!napi || READ_ONCE(napi->dev->reg_state) != NETREG_REGISTERED) { 825 rcu_read_unlock(); 826 return NULL; 827 } 828 829 dev = napi->dev; 830 dev_hold(dev); 831 rcu_read_unlock(); 832 833 dev = __netdev_put_lock(dev, net); 834 if (!dev) 835 return NULL; 836 837 rcu_read_lock(); 838 napi = netdev_napi_by_id(net, napi_id); 839 if (napi && napi->dev != dev) 840 napi = NULL; 841 rcu_read_unlock(); 842 843 if (!napi) 844 netdev_unlock(dev); 845 return napi; 846 } 847 848 /** 849 * __dev_get_by_name - find a device by its name 850 * @net: the applicable net namespace 851 * @name: name to find 852 * 853 * Find an interface by name. Must be called under RTNL semaphore. 854 * If the name is found a pointer to the device is returned. 855 * If the name is not found then %NULL is returned. The 856 * reference counters are not incremented so the caller must be 857 * careful with locks. 858 */ 859 860 struct net_device *__dev_get_by_name(struct net *net, const char *name) 861 { 862 struct netdev_name_node *node_name; 863 864 node_name = netdev_name_node_lookup(net, name); 865 return node_name ? node_name->dev : NULL; 866 } 867 EXPORT_SYMBOL(__dev_get_by_name); 868 869 /** 870 * dev_get_by_name_rcu - find a device by its name 871 * @net: the applicable net namespace 872 * @name: name to find 873 * 874 * Find an interface by name. 875 * If the name is found a pointer to the device is returned. 876 * If the name is not found then %NULL is returned. 877 * The reference counters are not incremented so the caller must be 878 * careful with locks. The caller must hold RCU lock. 879 */ 880 881 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name) 882 { 883 struct netdev_name_node *node_name; 884 885 node_name = netdev_name_node_lookup_rcu(net, name); 886 return node_name ? node_name->dev : NULL; 887 } 888 EXPORT_SYMBOL(dev_get_by_name_rcu); 889 890 /* Deprecated for new users, call netdev_get_by_name() instead */ 891 struct net_device *dev_get_by_name(struct net *net, const char *name) 892 { 893 struct net_device *dev; 894 895 rcu_read_lock(); 896 dev = dev_get_by_name_rcu(net, name); 897 dev_hold(dev); 898 rcu_read_unlock(); 899 return dev; 900 } 901 EXPORT_SYMBOL(dev_get_by_name); 902 903 /** 904 * netdev_get_by_name() - find a device by its name 905 * @net: the applicable net namespace 906 * @name: name to find 907 * @tracker: tracking object for the acquired reference 908 * @gfp: allocation flags for the tracker 909 * 910 * Find an interface by name. This can be called from any 911 * context and does its own locking. The returned handle has 912 * the usage count incremented and the caller must use netdev_put() to 913 * release it when it is no longer needed. %NULL is returned if no 914 * matching device is found. 915 */ 916 struct net_device *netdev_get_by_name(struct net *net, const char *name, 917 netdevice_tracker *tracker, gfp_t gfp) 918 { 919 struct net_device *dev; 920 921 dev = dev_get_by_name(net, name); 922 if (dev) 923 netdev_tracker_alloc(dev, tracker, gfp); 924 return dev; 925 } 926 EXPORT_SYMBOL(netdev_get_by_name); 927 928 /** 929 * __dev_get_by_index - find a device by its ifindex 930 * @net: the applicable net namespace 931 * @ifindex: index of device 932 * 933 * Search for an interface by index. Returns %NULL if the device 934 * is not found or a pointer to the device. The device has not 935 * had its reference counter increased so the caller must be careful 936 * about locking. The caller must hold the RTNL semaphore. 937 */ 938 939 struct net_device *__dev_get_by_index(struct net *net, int ifindex) 940 { 941 struct net_device *dev; 942 struct hlist_head *head = dev_index_hash(net, ifindex); 943 944 hlist_for_each_entry(dev, head, index_hlist) 945 if (dev->ifindex == ifindex) 946 return dev; 947 948 return NULL; 949 } 950 EXPORT_SYMBOL(__dev_get_by_index); 951 952 /** 953 * dev_get_by_index_rcu - find a device by its ifindex 954 * @net: the applicable net namespace 955 * @ifindex: index of device 956 * 957 * Search for an interface by index. Returns %NULL if the device 958 * is not found or a pointer to the device. The device has not 959 * had its reference counter increased so the caller must be careful 960 * about locking. The caller must hold RCU lock. 961 */ 962 963 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex) 964 { 965 struct net_device *dev; 966 struct hlist_head *head = dev_index_hash(net, ifindex); 967 968 hlist_for_each_entry_rcu(dev, head, index_hlist) 969 if (dev->ifindex == ifindex) 970 return dev; 971 972 return NULL; 973 } 974 EXPORT_SYMBOL(dev_get_by_index_rcu); 975 976 /* Deprecated for new users, call netdev_get_by_index() instead */ 977 struct net_device *dev_get_by_index(struct net *net, int ifindex) 978 { 979 struct net_device *dev; 980 981 rcu_read_lock(); 982 dev = dev_get_by_index_rcu(net, ifindex); 983 dev_hold(dev); 984 rcu_read_unlock(); 985 return dev; 986 } 987 EXPORT_SYMBOL(dev_get_by_index); 988 989 /** 990 * netdev_get_by_index() - find a device by its ifindex 991 * @net: the applicable net namespace 992 * @ifindex: index of device 993 * @tracker: tracking object for the acquired reference 994 * @gfp: allocation flags for the tracker 995 * 996 * Search for an interface by index. Returns NULL if the device 997 * is not found or a pointer to the device. The device returned has 998 * had a reference added and the pointer is safe until the user calls 999 * netdev_put() to indicate they have finished with it. 1000 */ 1001 struct net_device *netdev_get_by_index(struct net *net, int ifindex, 1002 netdevice_tracker *tracker, gfp_t gfp) 1003 { 1004 struct net_device *dev; 1005 1006 dev = dev_get_by_index(net, ifindex); 1007 if (dev) 1008 netdev_tracker_alloc(dev, tracker, gfp); 1009 return dev; 1010 } 1011 EXPORT_SYMBOL(netdev_get_by_index); 1012 1013 /** 1014 * dev_get_by_napi_id - find a device by napi_id 1015 * @napi_id: ID of the NAPI struct 1016 * 1017 * Search for an interface by NAPI ID. Returns %NULL if the device 1018 * is not found or a pointer to the device. The device has not had 1019 * its reference counter increased so the caller must be careful 1020 * about locking. The caller must hold RCU lock. 1021 */ 1022 struct net_device *dev_get_by_napi_id(unsigned int napi_id) 1023 { 1024 struct napi_struct *napi; 1025 1026 WARN_ON_ONCE(!rcu_read_lock_held()); 1027 1028 if (!napi_id_valid(napi_id)) 1029 return NULL; 1030 1031 napi = napi_by_id(napi_id); 1032 1033 return napi ? napi->dev : NULL; 1034 } 1035 1036 /* Release the held reference on the net_device, and if the net_device 1037 * is still registered try to lock the instance lock. If device is being 1038 * unregistered NULL will be returned (but the reference has been released, 1039 * either way!) 1040 * 1041 * This helper is intended for locking net_device after it has been looked up 1042 * using a lockless lookup helper. Lock prevents the instance from going away. 1043 */ 1044 struct net_device *__netdev_put_lock(struct net_device *dev, struct net *net) 1045 { 1046 netdev_lock(dev); 1047 if (dev->reg_state > NETREG_REGISTERED || 1048 dev->moving_ns || !net_eq(dev_net(dev), net)) { 1049 netdev_unlock(dev); 1050 dev_put(dev); 1051 return NULL; 1052 } 1053 dev_put(dev); 1054 return dev; 1055 } 1056 1057 static struct net_device * 1058 __netdev_put_lock_ops_compat(struct net_device *dev, struct net *net) 1059 { 1060 netdev_lock_ops_compat(dev); 1061 if (dev->reg_state > NETREG_REGISTERED || 1062 dev->moving_ns || !net_eq(dev_net(dev), net)) { 1063 netdev_unlock_ops_compat(dev); 1064 dev_put(dev); 1065 return NULL; 1066 } 1067 dev_put(dev); 1068 return dev; 1069 } 1070 1071 /** 1072 * netdev_get_by_index_lock() - find a device by its ifindex 1073 * @net: the applicable net namespace 1074 * @ifindex: index of device 1075 * 1076 * Search for an interface by index. If a valid device 1077 * with @ifindex is found it will be returned with netdev->lock held. 1078 * netdev_unlock() must be called to release it. 1079 * 1080 * Return: pointer to a device with lock held, NULL if not found. 1081 */ 1082 struct net_device *netdev_get_by_index_lock(struct net *net, int ifindex) 1083 { 1084 struct net_device *dev; 1085 1086 dev = dev_get_by_index(net, ifindex); 1087 if (!dev) 1088 return NULL; 1089 1090 return __netdev_put_lock(dev, net); 1091 } 1092 1093 struct net_device * 1094 netdev_get_by_index_lock_ops_compat(struct net *net, int ifindex) 1095 { 1096 struct net_device *dev; 1097 1098 dev = dev_get_by_index(net, ifindex); 1099 if (!dev) 1100 return NULL; 1101 1102 return __netdev_put_lock_ops_compat(dev, net); 1103 } 1104 1105 struct net_device * 1106 netdev_xa_find_lock(struct net *net, struct net_device *dev, 1107 unsigned long *index) 1108 { 1109 if (dev) 1110 netdev_unlock(dev); 1111 1112 do { 1113 rcu_read_lock(); 1114 dev = xa_find(&net->dev_by_index, index, ULONG_MAX, XA_PRESENT); 1115 if (!dev) { 1116 rcu_read_unlock(); 1117 return NULL; 1118 } 1119 dev_hold(dev); 1120 rcu_read_unlock(); 1121 1122 dev = __netdev_put_lock(dev, net); 1123 if (dev) 1124 return dev; 1125 1126 (*index)++; 1127 } while (true); 1128 } 1129 1130 struct net_device * 1131 netdev_xa_find_lock_ops_compat(struct net *net, struct net_device *dev, 1132 unsigned long *index) 1133 { 1134 if (dev) 1135 netdev_unlock_ops_compat(dev); 1136 1137 do { 1138 rcu_read_lock(); 1139 dev = xa_find(&net->dev_by_index, index, ULONG_MAX, XA_PRESENT); 1140 if (!dev) { 1141 rcu_read_unlock(); 1142 return NULL; 1143 } 1144 dev_hold(dev); 1145 rcu_read_unlock(); 1146 1147 dev = __netdev_put_lock_ops_compat(dev, net); 1148 if (dev) 1149 return dev; 1150 1151 (*index)++; 1152 } while (true); 1153 } 1154 1155 static DEFINE_SEQLOCK(netdev_rename_lock); 1156 1157 void netdev_copy_name(struct net_device *dev, char *name) 1158 { 1159 unsigned int seq; 1160 1161 do { 1162 seq = read_seqbegin(&netdev_rename_lock); 1163 strscpy(name, dev->name, IFNAMSIZ); 1164 } while (read_seqretry(&netdev_rename_lock, seq)); 1165 } 1166 1167 /** 1168 * netdev_get_name - get a netdevice name, knowing its ifindex. 1169 * @net: network namespace 1170 * @name: a pointer to the buffer where the name will be stored. 1171 * @ifindex: the ifindex of the interface to get the name from. 1172 */ 1173 int netdev_get_name(struct net *net, char *name, int ifindex) 1174 { 1175 struct net_device *dev; 1176 int ret; 1177 1178 rcu_read_lock(); 1179 1180 dev = dev_get_by_index_rcu(net, ifindex); 1181 if (!dev) { 1182 ret = -ENODEV; 1183 goto out; 1184 } 1185 1186 netdev_copy_name(dev, name); 1187 1188 ret = 0; 1189 out: 1190 rcu_read_unlock(); 1191 return ret; 1192 } 1193 1194 static bool dev_addr_cmp(struct net_device *dev, unsigned short type, 1195 const char *ha) 1196 { 1197 return dev->type == type && !memcmp(dev->dev_addr, ha, dev->addr_len); 1198 } 1199 1200 /** 1201 * dev_getbyhwaddr_rcu - find a device by its hardware address 1202 * @net: the applicable net namespace 1203 * @type: media type of device 1204 * @ha: hardware address 1205 * 1206 * Search for an interface by MAC address. Returns NULL if the device 1207 * is not found or a pointer to the device. 1208 * The caller must hold RCU. 1209 * The returned device has not had its ref count increased 1210 * and the caller must therefore be careful about locking 1211 * 1212 */ 1213 1214 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 1215 const char *ha) 1216 { 1217 struct net_device *dev; 1218 1219 for_each_netdev_rcu(net, dev) 1220 if (dev_addr_cmp(dev, type, ha)) 1221 return dev; 1222 1223 return NULL; 1224 } 1225 EXPORT_SYMBOL(dev_getbyhwaddr_rcu); 1226 1227 /** 1228 * dev_getbyhwaddr() - find a device by its hardware address 1229 * @net: the applicable net namespace 1230 * @type: media type of device 1231 * @ha: hardware address 1232 * 1233 * Similar to dev_getbyhwaddr_rcu(), but the owner needs to hold 1234 * rtnl_lock. 1235 * 1236 * Context: rtnl_lock() must be held. 1237 * Return: pointer to the net_device, or NULL if not found 1238 */ 1239 struct net_device *dev_getbyhwaddr(struct net *net, unsigned short type, 1240 const char *ha) 1241 { 1242 struct net_device *dev; 1243 1244 ASSERT_RTNL(); 1245 for_each_netdev(net, dev) 1246 if (dev_addr_cmp(dev, type, ha)) 1247 return dev; 1248 1249 return NULL; 1250 } 1251 EXPORT_SYMBOL(dev_getbyhwaddr); 1252 1253 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type) 1254 { 1255 struct net_device *dev, *ret = NULL; 1256 1257 rcu_read_lock(); 1258 for_each_netdev_rcu(net, dev) 1259 if (dev->type == type) { 1260 dev_hold(dev); 1261 ret = dev; 1262 break; 1263 } 1264 rcu_read_unlock(); 1265 return ret; 1266 } 1267 EXPORT_SYMBOL(dev_getfirstbyhwtype); 1268 1269 /** 1270 * netdev_get_by_flags_rcu - find any device with given flags 1271 * @net: the applicable net namespace 1272 * @tracker: tracking object for the acquired reference 1273 * @if_flags: IFF_* values 1274 * @mask: bitmask of bits in if_flags to check 1275 * 1276 * Search for any interface with the given flags. 1277 * 1278 * Context: rcu_read_lock() must be held. 1279 * Returns: NULL if a device is not found or a pointer to the device. 1280 */ 1281 struct net_device *netdev_get_by_flags_rcu(struct net *net, netdevice_tracker *tracker, 1282 unsigned short if_flags, unsigned short mask) 1283 { 1284 struct net_device *dev; 1285 1286 for_each_netdev_rcu(net, dev) { 1287 if (((READ_ONCE(dev->flags) ^ if_flags) & mask) == 0) { 1288 netdev_hold(dev, tracker, GFP_ATOMIC); 1289 return dev; 1290 } 1291 } 1292 1293 return NULL; 1294 } 1295 EXPORT_IPV6_MOD(netdev_get_by_flags_rcu); 1296 1297 /** 1298 * dev_valid_name - check if name is okay for network device 1299 * @name: name string 1300 * 1301 * Network device names need to be valid file names to 1302 * allow sysfs to work. We also disallow any kind of 1303 * whitespace. 1304 */ 1305 bool dev_valid_name(const char *name) 1306 { 1307 if (*name == '\0') 1308 return false; 1309 if (strnlen(name, IFNAMSIZ) == IFNAMSIZ) 1310 return false; 1311 if (!strcmp(name, ".") || !strcmp(name, "..")) 1312 return false; 1313 1314 while (*name) { 1315 if (*name == '/' || *name == ':' || isspace(*name)) 1316 return false; 1317 name++; 1318 } 1319 return true; 1320 } 1321 EXPORT_SYMBOL(dev_valid_name); 1322 1323 /** 1324 * __dev_alloc_name - allocate a name for a device 1325 * @net: network namespace to allocate the device name in 1326 * @name: name format string 1327 * @res: result name string 1328 * 1329 * Passed a format string - eg "lt%d" it will try and find a suitable 1330 * id. It scans list of devices to build up a free map, then chooses 1331 * the first empty slot. The caller must hold the dev_base or rtnl lock 1332 * while allocating the name and adding the device in order to avoid 1333 * duplicates. 1334 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 1335 * Returns the number of the unit assigned or a negative errno code. 1336 */ 1337 1338 static int __dev_alloc_name(struct net *net, const char *name, char *res) 1339 { 1340 int i = 0; 1341 const char *p; 1342 const int max_netdevices = 8*PAGE_SIZE; 1343 unsigned long *inuse; 1344 struct net_device *d; 1345 char buf[IFNAMSIZ]; 1346 1347 /* Verify the string as this thing may have come from the user. 1348 * There must be one "%d" and no other "%" characters. 1349 */ 1350 p = strchr(name, '%'); 1351 if (!p || p[1] != 'd' || strchr(p + 2, '%')) 1352 return -EINVAL; 1353 1354 /* Use one page as a bit array of possible slots */ 1355 inuse = bitmap_zalloc(max_netdevices, GFP_ATOMIC); 1356 if (!inuse) 1357 return -ENOMEM; 1358 1359 for_each_netdev(net, d) { 1360 struct netdev_name_node *name_node; 1361 1362 netdev_for_each_altname(d, name_node) { 1363 if (!sscanf(name_node->name, name, &i)) 1364 continue; 1365 if (i < 0 || i >= max_netdevices) 1366 continue; 1367 1368 /* avoid cases where sscanf is not exact inverse of printf */ 1369 snprintf(buf, IFNAMSIZ, name, i); 1370 if (!strncmp(buf, name_node->name, IFNAMSIZ)) 1371 __set_bit(i, inuse); 1372 } 1373 if (!sscanf(d->name, name, &i)) 1374 continue; 1375 if (i < 0 || i >= max_netdevices) 1376 continue; 1377 1378 /* avoid cases where sscanf is not exact inverse of printf */ 1379 snprintf(buf, IFNAMSIZ, name, i); 1380 if (!strncmp(buf, d->name, IFNAMSIZ)) 1381 __set_bit(i, inuse); 1382 } 1383 1384 i = find_first_zero_bit(inuse, max_netdevices); 1385 bitmap_free(inuse); 1386 if (i == max_netdevices) 1387 return -ENFILE; 1388 1389 /* 'res' and 'name' could overlap, use 'buf' as an intermediate buffer */ 1390 strscpy(buf, name, IFNAMSIZ); 1391 snprintf(res, IFNAMSIZ, buf, i); 1392 return i; 1393 } 1394 1395 /* Returns negative errno or allocated unit id (see __dev_alloc_name()) */ 1396 static int dev_prep_valid_name(struct net *net, struct net_device *dev, 1397 const char *want_name, char *out_name, 1398 int dup_errno) 1399 { 1400 if (!dev_valid_name(want_name)) 1401 return -EINVAL; 1402 1403 if (strchr(want_name, '%')) 1404 return __dev_alloc_name(net, want_name, out_name); 1405 1406 if (netdev_name_in_use(net, want_name)) 1407 return -dup_errno; 1408 if (out_name != want_name) 1409 strscpy(out_name, want_name, IFNAMSIZ); 1410 return 0; 1411 } 1412 1413 /** 1414 * dev_alloc_name - allocate a name for a device 1415 * @dev: device 1416 * @name: name format string 1417 * 1418 * Passed a format string - eg "lt%d" it will try and find a suitable 1419 * id. It scans list of devices to build up a free map, then chooses 1420 * the first empty slot. The caller must hold the dev_base or rtnl lock 1421 * while allocating the name and adding the device in order to avoid 1422 * duplicates. 1423 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 1424 * Returns the number of the unit assigned or a negative errno code. 1425 */ 1426 1427 int dev_alloc_name(struct net_device *dev, const char *name) 1428 { 1429 return dev_prep_valid_name(dev_net(dev), dev, name, dev->name, ENFILE); 1430 } 1431 EXPORT_SYMBOL(dev_alloc_name); 1432 1433 static int dev_get_valid_name(struct net *net, struct net_device *dev, 1434 const char *name) 1435 { 1436 int ret; 1437 1438 ret = dev_prep_valid_name(net, dev, name, dev->name, EEXIST); 1439 return ret < 0 ? ret : 0; 1440 } 1441 1442 int netif_change_name(struct net_device *dev, const char *newname) 1443 { 1444 struct net *net = dev_net(dev); 1445 unsigned char old_assign_type; 1446 char oldname[IFNAMSIZ]; 1447 int err = 0; 1448 int ret; 1449 1450 ASSERT_RTNL_NET(net); 1451 1452 if (!strncmp(newname, dev->name, IFNAMSIZ)) 1453 return 0; 1454 1455 memcpy(oldname, dev->name, IFNAMSIZ); 1456 1457 write_seqlock_bh(&netdev_rename_lock); 1458 err = dev_get_valid_name(net, dev, newname); 1459 write_sequnlock_bh(&netdev_rename_lock); 1460 1461 if (err < 0) 1462 return err; 1463 1464 if (oldname[0] && !strchr(oldname, '%')) 1465 netdev_info(dev, "renamed from %s%s\n", oldname, 1466 dev->flags & IFF_UP ? " (while UP)" : ""); 1467 1468 old_assign_type = dev->name_assign_type; 1469 WRITE_ONCE(dev->name_assign_type, NET_NAME_RENAMED); 1470 1471 rollback: 1472 ret = device_rename(&dev->dev, dev->name); 1473 if (ret) { 1474 write_seqlock_bh(&netdev_rename_lock); 1475 memcpy(dev->name, oldname, IFNAMSIZ); 1476 write_sequnlock_bh(&netdev_rename_lock); 1477 WRITE_ONCE(dev->name_assign_type, old_assign_type); 1478 return ret; 1479 } 1480 1481 netdev_adjacent_rename_links(dev, oldname); 1482 1483 netdev_name_node_del(dev->name_node); 1484 1485 synchronize_net(); 1486 1487 netdev_name_node_add(net, dev->name_node); 1488 1489 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev); 1490 ret = notifier_to_errno(ret); 1491 1492 if (ret) { 1493 /* err >= 0 after dev_alloc_name() or stores the first errno */ 1494 if (err >= 0) { 1495 err = ret; 1496 write_seqlock_bh(&netdev_rename_lock); 1497 memcpy(dev->name, oldname, IFNAMSIZ); 1498 write_sequnlock_bh(&netdev_rename_lock); 1499 memcpy(oldname, newname, IFNAMSIZ); 1500 WRITE_ONCE(dev->name_assign_type, old_assign_type); 1501 old_assign_type = NET_NAME_RENAMED; 1502 goto rollback; 1503 } else { 1504 netdev_err(dev, "name change rollback failed: %d\n", 1505 ret); 1506 } 1507 } 1508 1509 return err; 1510 } 1511 1512 int netif_set_alias(struct net_device *dev, const char *alias, size_t len) 1513 { 1514 struct dev_ifalias *new_alias = NULL; 1515 1516 if (len >= IFALIASZ) 1517 return -EINVAL; 1518 1519 if (len) { 1520 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL); 1521 if (!new_alias) 1522 return -ENOMEM; 1523 1524 memcpy(new_alias->ifalias, alias, len); 1525 new_alias->ifalias[len] = 0; 1526 } 1527 1528 mutex_lock(&ifalias_mutex); 1529 new_alias = rcu_replace_pointer(dev->ifalias, new_alias, 1530 mutex_is_locked(&ifalias_mutex)); 1531 mutex_unlock(&ifalias_mutex); 1532 1533 if (new_alias) 1534 kfree_rcu(new_alias, rcuhead); 1535 1536 return len; 1537 } 1538 1539 /** 1540 * dev_get_alias - get ifalias of a device 1541 * @dev: device 1542 * @name: buffer to store name of ifalias 1543 * @len: size of buffer 1544 * 1545 * get ifalias for a device. Caller must make sure dev cannot go 1546 * away, e.g. rcu read lock or own a reference count to device. 1547 */ 1548 int dev_get_alias(const struct net_device *dev, char *name, size_t len) 1549 { 1550 const struct dev_ifalias *alias; 1551 int ret = 0; 1552 1553 rcu_read_lock(); 1554 alias = rcu_dereference(dev->ifalias); 1555 if (alias) 1556 ret = snprintf(name, len, "%s", alias->ifalias); 1557 rcu_read_unlock(); 1558 1559 return ret; 1560 } 1561 1562 /** 1563 * netdev_features_change - device changes features 1564 * @dev: device to cause notification 1565 * 1566 * Called to indicate a device has changed features. 1567 */ 1568 void netdev_features_change(struct net_device *dev) 1569 { 1570 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev); 1571 } 1572 EXPORT_SYMBOL(netdev_features_change); 1573 1574 void netif_state_change(struct net_device *dev) 1575 { 1576 netdev_ops_assert_locked_or_invisible(dev); 1577 1578 if (dev->flags & IFF_UP) { 1579 struct netdev_notifier_change_info change_info = { 1580 .info.dev = dev, 1581 }; 1582 1583 call_netdevice_notifiers_info(NETDEV_CHANGE, 1584 &change_info.info); 1585 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL, 0, NULL); 1586 } 1587 } 1588 1589 /** 1590 * __netdev_notify_peers - notify network peers about existence of @dev, 1591 * to be called when rtnl lock is already held. 1592 * @dev: network device 1593 * 1594 * Generate traffic such that interested network peers are aware of 1595 * @dev, such as by generating a gratuitous ARP. This may be used when 1596 * a device wants to inform the rest of the network about some sort of 1597 * reconfiguration such as a failover event or virtual machine 1598 * migration. 1599 */ 1600 void __netdev_notify_peers(struct net_device *dev) 1601 { 1602 ASSERT_RTNL(); 1603 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev); 1604 call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev); 1605 } 1606 EXPORT_SYMBOL(__netdev_notify_peers); 1607 1608 /** 1609 * netdev_notify_peers - notify network peers about existence of @dev 1610 * @dev: network device 1611 * 1612 * Generate traffic such that interested network peers are aware of 1613 * @dev, such as by generating a gratuitous ARP. This may be used when 1614 * a device wants to inform the rest of the network about some sort of 1615 * reconfiguration such as a failover event or virtual machine 1616 * migration. 1617 */ 1618 void netdev_notify_peers(struct net_device *dev) 1619 { 1620 rtnl_lock(); 1621 __netdev_notify_peers(dev); 1622 rtnl_unlock(); 1623 } 1624 EXPORT_SYMBOL(netdev_notify_peers); 1625 1626 static int napi_threaded_poll(void *data); 1627 1628 static int napi_kthread_create(struct napi_struct *n) 1629 { 1630 int err = 0; 1631 1632 /* Create and wake up the kthread once to put it in 1633 * TASK_INTERRUPTIBLE mode to avoid the blocked task 1634 * warning and work with loadavg. 1635 */ 1636 n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d", 1637 n->dev->name, n->napi_id); 1638 if (IS_ERR(n->thread)) { 1639 err = PTR_ERR(n->thread); 1640 pr_err("kthread_run failed with err %d\n", err); 1641 n->thread = NULL; 1642 } 1643 1644 return err; 1645 } 1646 1647 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack) 1648 { 1649 const struct net_device_ops *ops = dev->netdev_ops; 1650 int ret; 1651 1652 ASSERT_RTNL(); 1653 dev_addr_check(dev); 1654 1655 if (!netif_device_present(dev)) { 1656 /* may be detached because parent is runtime-suspended */ 1657 if (dev->dev.parent) 1658 pm_runtime_resume(dev->dev.parent); 1659 if (!netif_device_present(dev)) 1660 return -ENODEV; 1661 } 1662 1663 /* Block netpoll from trying to do any rx path servicing. 1664 * If we don't do this there is a chance ndo_poll_controller 1665 * or ndo_poll may be running while we open the device 1666 */ 1667 netpoll_poll_disable(dev); 1668 1669 ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack); 1670 ret = notifier_to_errno(ret); 1671 if (ret) 1672 return ret; 1673 1674 set_bit(__LINK_STATE_START, &dev->state); 1675 1676 netdev_ops_assert_locked(dev); 1677 1678 if (ops->ndo_validate_addr) 1679 ret = ops->ndo_validate_addr(dev); 1680 1681 if (!ret && ops->ndo_open) 1682 ret = ops->ndo_open(dev); 1683 1684 netpoll_poll_enable(dev); 1685 1686 if (ret) 1687 clear_bit(__LINK_STATE_START, &dev->state); 1688 else { 1689 netif_set_up(dev, true); 1690 dev_set_rx_mode(dev); 1691 dev_activate(dev); 1692 add_device_randomness(dev->dev_addr, dev->addr_len); 1693 } 1694 1695 return ret; 1696 } 1697 1698 int netif_open(struct net_device *dev, struct netlink_ext_ack *extack) 1699 { 1700 int ret; 1701 1702 if (dev->flags & IFF_UP) 1703 return 0; 1704 1705 ret = __dev_open(dev, extack); 1706 if (ret < 0) 1707 return ret; 1708 1709 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL); 1710 call_netdevice_notifiers(NETDEV_UP, dev); 1711 1712 return ret; 1713 } 1714 1715 static void __dev_close_many(struct list_head *head) 1716 { 1717 struct net_device *dev; 1718 1719 ASSERT_RTNL(); 1720 might_sleep(); 1721 1722 list_for_each_entry(dev, head, close_list) { 1723 /* Temporarily disable netpoll until the interface is down */ 1724 netpoll_poll_disable(dev); 1725 1726 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev); 1727 1728 clear_bit(__LINK_STATE_START, &dev->state); 1729 1730 /* Synchronize to scheduled poll. We cannot touch poll list, it 1731 * can be even on different cpu. So just clear netif_running(). 1732 * 1733 * dev->stop() will invoke napi_disable() on all of it's 1734 * napi_struct instances on this device. 1735 */ 1736 smp_mb__after_atomic(); /* Commit netif_running(). */ 1737 } 1738 1739 dev_deactivate_many(head); 1740 1741 list_for_each_entry(dev, head, close_list) { 1742 const struct net_device_ops *ops = dev->netdev_ops; 1743 1744 /* 1745 * Call the device specific close. This cannot fail. 1746 * Only if device is UP 1747 * 1748 * We allow it to be called even after a DETACH hot-plug 1749 * event. 1750 */ 1751 1752 netdev_ops_assert_locked(dev); 1753 1754 if (ops->ndo_stop) 1755 ops->ndo_stop(dev); 1756 1757 netif_set_up(dev, false); 1758 netpoll_poll_enable(dev); 1759 } 1760 } 1761 1762 static void __dev_close(struct net_device *dev) 1763 { 1764 LIST_HEAD(single); 1765 1766 list_add(&dev->close_list, &single); 1767 __dev_close_many(&single); 1768 list_del(&single); 1769 } 1770 1771 void netif_close_many(struct list_head *head, bool unlink) 1772 { 1773 struct net_device *dev, *tmp; 1774 1775 /* Remove the devices that don't need to be closed */ 1776 list_for_each_entry_safe(dev, tmp, head, close_list) 1777 if (!(dev->flags & IFF_UP)) 1778 list_del_init(&dev->close_list); 1779 1780 __dev_close_many(head); 1781 1782 list_for_each_entry_safe(dev, tmp, head, close_list) { 1783 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL); 1784 call_netdevice_notifiers(NETDEV_DOWN, dev); 1785 if (unlink) 1786 list_del_init(&dev->close_list); 1787 } 1788 } 1789 EXPORT_SYMBOL_NS_GPL(netif_close_many, "NETDEV_INTERNAL"); 1790 1791 void netif_close(struct net_device *dev) 1792 { 1793 if (dev->flags & IFF_UP) { 1794 LIST_HEAD(single); 1795 1796 list_add(&dev->close_list, &single); 1797 netif_close_many(&single, true); 1798 list_del(&single); 1799 } 1800 } 1801 EXPORT_SYMBOL(netif_close); 1802 1803 void netif_disable_lro(struct net_device *dev) 1804 { 1805 struct net_device *lower_dev; 1806 struct list_head *iter; 1807 1808 dev->wanted_features &= ~NETIF_F_LRO; 1809 netdev_update_features(dev); 1810 1811 if (unlikely(dev->features & NETIF_F_LRO)) 1812 netdev_WARN(dev, "failed to disable LRO!\n"); 1813 1814 netdev_for_each_lower_dev(dev, lower_dev, iter) { 1815 netdev_lock_ops(lower_dev); 1816 netif_disable_lro(lower_dev); 1817 netdev_unlock_ops(lower_dev); 1818 } 1819 } 1820 EXPORT_IPV6_MOD(netif_disable_lro); 1821 1822 /** 1823 * dev_disable_gro_hw - disable HW Generic Receive Offload on a device 1824 * @dev: device 1825 * 1826 * Disable HW Generic Receive Offload (GRO_HW) on a net device. Must be 1827 * called under RTNL. This is needed if Generic XDP is installed on 1828 * the device. 1829 */ 1830 static void dev_disable_gro_hw(struct net_device *dev) 1831 { 1832 dev->wanted_features &= ~NETIF_F_GRO_HW; 1833 netdev_update_features(dev); 1834 1835 if (unlikely(dev->features & NETIF_F_GRO_HW)) 1836 netdev_WARN(dev, "failed to disable GRO_HW!\n"); 1837 } 1838 1839 const char *netdev_cmd_to_name(enum netdev_cmd cmd) 1840 { 1841 #define N(val) \ 1842 case NETDEV_##val: \ 1843 return "NETDEV_" __stringify(val); 1844 switch (cmd) { 1845 N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER) 1846 N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE) 1847 N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE) 1848 N(POST_INIT) N(PRE_UNINIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) 1849 N(CHANGEUPPER) N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) 1850 N(BONDING_INFO) N(PRECHANGEUPPER) N(CHANGELOWERSTATE) 1851 N(UDP_TUNNEL_PUSH_INFO) N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN) 1852 N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO) 1853 N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO) 1854 N(PRE_CHANGEADDR) N(OFFLOAD_XSTATS_ENABLE) N(OFFLOAD_XSTATS_DISABLE) 1855 N(OFFLOAD_XSTATS_REPORT_USED) N(OFFLOAD_XSTATS_REPORT_DELTA) 1856 N(XDP_FEAT_CHANGE) 1857 } 1858 #undef N 1859 return "UNKNOWN_NETDEV_EVENT"; 1860 } 1861 EXPORT_SYMBOL_GPL(netdev_cmd_to_name); 1862 1863 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val, 1864 struct net_device *dev) 1865 { 1866 struct netdev_notifier_info info = { 1867 .dev = dev, 1868 }; 1869 1870 return nb->notifier_call(nb, val, &info); 1871 } 1872 1873 static int call_netdevice_register_notifiers(struct notifier_block *nb, 1874 struct net_device *dev) 1875 { 1876 int err; 1877 1878 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev); 1879 err = notifier_to_errno(err); 1880 if (err) 1881 return err; 1882 1883 if (!(dev->flags & IFF_UP)) 1884 return 0; 1885 1886 call_netdevice_notifier(nb, NETDEV_UP, dev); 1887 return 0; 1888 } 1889 1890 static void call_netdevice_unregister_notifiers(struct notifier_block *nb, 1891 struct net_device *dev) 1892 { 1893 if (dev->flags & IFF_UP) { 1894 call_netdevice_notifier(nb, NETDEV_GOING_DOWN, 1895 dev); 1896 call_netdevice_notifier(nb, NETDEV_DOWN, dev); 1897 } 1898 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev); 1899 } 1900 1901 static int call_netdevice_register_net_notifiers(struct notifier_block *nb, 1902 struct net *net) 1903 { 1904 struct net_device *dev; 1905 int err; 1906 1907 for_each_netdev(net, dev) { 1908 netdev_lock_ops(dev); 1909 err = call_netdevice_register_notifiers(nb, dev); 1910 netdev_unlock_ops(dev); 1911 if (err) 1912 goto rollback; 1913 } 1914 return 0; 1915 1916 rollback: 1917 for_each_netdev_continue_reverse(net, dev) 1918 call_netdevice_unregister_notifiers(nb, dev); 1919 return err; 1920 } 1921 1922 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb, 1923 struct net *net) 1924 { 1925 struct net_device *dev; 1926 1927 for_each_netdev(net, dev) 1928 call_netdevice_unregister_notifiers(nb, dev); 1929 } 1930 1931 static int dev_boot_phase = 1; 1932 1933 /** 1934 * register_netdevice_notifier - register a network notifier block 1935 * @nb: notifier 1936 * 1937 * Register a notifier to be called when network device events occur. 1938 * The notifier passed is linked into the kernel structures and must 1939 * not be reused until it has been unregistered. A negative errno code 1940 * is returned on a failure. 1941 * 1942 * When registered all registration and up events are replayed 1943 * to the new notifier to allow device to have a race free 1944 * view of the network device list. 1945 */ 1946 1947 int register_netdevice_notifier(struct notifier_block *nb) 1948 { 1949 struct net *net; 1950 int err; 1951 1952 /* Close race with setup_net() and cleanup_net() */ 1953 down_write(&pernet_ops_rwsem); 1954 1955 /* When RTNL is removed, we need protection for netdev_chain. */ 1956 rtnl_lock(); 1957 1958 err = raw_notifier_chain_register(&netdev_chain, nb); 1959 if (err) 1960 goto unlock; 1961 if (dev_boot_phase) 1962 goto unlock; 1963 for_each_net(net) { 1964 __rtnl_net_lock(net); 1965 err = call_netdevice_register_net_notifiers(nb, net); 1966 __rtnl_net_unlock(net); 1967 if (err) 1968 goto rollback; 1969 } 1970 1971 unlock: 1972 rtnl_unlock(); 1973 up_write(&pernet_ops_rwsem); 1974 return err; 1975 1976 rollback: 1977 for_each_net_continue_reverse(net) { 1978 __rtnl_net_lock(net); 1979 call_netdevice_unregister_net_notifiers(nb, net); 1980 __rtnl_net_unlock(net); 1981 } 1982 1983 raw_notifier_chain_unregister(&netdev_chain, nb); 1984 goto unlock; 1985 } 1986 EXPORT_SYMBOL(register_netdevice_notifier); 1987 1988 /** 1989 * unregister_netdevice_notifier - unregister a network notifier block 1990 * @nb: notifier 1991 * 1992 * Unregister a notifier previously registered by 1993 * register_netdevice_notifier(). The notifier is unlinked into the 1994 * kernel structures and may then be reused. A negative errno code 1995 * is returned on a failure. 1996 * 1997 * After unregistering unregister and down device events are synthesized 1998 * for all devices on the device list to the removed notifier to remove 1999 * the need for special case cleanup code. 2000 */ 2001 2002 int unregister_netdevice_notifier(struct notifier_block *nb) 2003 { 2004 struct net *net; 2005 int err; 2006 2007 /* Close race with setup_net() and cleanup_net() */ 2008 down_write(&pernet_ops_rwsem); 2009 rtnl_lock(); 2010 err = raw_notifier_chain_unregister(&netdev_chain, nb); 2011 if (err) 2012 goto unlock; 2013 2014 for_each_net(net) { 2015 __rtnl_net_lock(net); 2016 call_netdevice_unregister_net_notifiers(nb, net); 2017 __rtnl_net_unlock(net); 2018 } 2019 2020 unlock: 2021 rtnl_unlock(); 2022 up_write(&pernet_ops_rwsem); 2023 return err; 2024 } 2025 EXPORT_SYMBOL(unregister_netdevice_notifier); 2026 2027 static int __register_netdevice_notifier_net(struct net *net, 2028 struct notifier_block *nb, 2029 bool ignore_call_fail) 2030 { 2031 int err; 2032 2033 err = raw_notifier_chain_register(&net->netdev_chain, nb); 2034 if (err) 2035 return err; 2036 if (dev_boot_phase) 2037 return 0; 2038 2039 err = call_netdevice_register_net_notifiers(nb, net); 2040 if (err && !ignore_call_fail) 2041 goto chain_unregister; 2042 2043 return 0; 2044 2045 chain_unregister: 2046 raw_notifier_chain_unregister(&net->netdev_chain, nb); 2047 return err; 2048 } 2049 2050 static int __unregister_netdevice_notifier_net(struct net *net, 2051 struct notifier_block *nb) 2052 { 2053 int err; 2054 2055 err = raw_notifier_chain_unregister(&net->netdev_chain, nb); 2056 if (err) 2057 return err; 2058 2059 call_netdevice_unregister_net_notifiers(nb, net); 2060 return 0; 2061 } 2062 2063 /** 2064 * register_netdevice_notifier_net - register a per-netns network notifier block 2065 * @net: network namespace 2066 * @nb: notifier 2067 * 2068 * Register a notifier to be called when network device events occur. 2069 * The notifier passed is linked into the kernel structures and must 2070 * not be reused until it has been unregistered. A negative errno code 2071 * is returned on a failure. 2072 * 2073 * When registered all registration and up events are replayed 2074 * to the new notifier to allow device to have a race free 2075 * view of the network device list. 2076 */ 2077 2078 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb) 2079 { 2080 int err; 2081 2082 rtnl_net_lock(net); 2083 err = __register_netdevice_notifier_net(net, nb, false); 2084 rtnl_net_unlock(net); 2085 2086 return err; 2087 } 2088 EXPORT_SYMBOL(register_netdevice_notifier_net); 2089 2090 /** 2091 * unregister_netdevice_notifier_net - unregister a per-netns 2092 * network notifier block 2093 * @net: network namespace 2094 * @nb: notifier 2095 * 2096 * Unregister a notifier previously registered by 2097 * register_netdevice_notifier_net(). The notifier is unlinked from the 2098 * kernel structures and may then be reused. A negative errno code 2099 * is returned on a failure. 2100 * 2101 * After unregistering unregister and down device events are synthesized 2102 * for all devices on the device list to the removed notifier to remove 2103 * the need for special case cleanup code. 2104 */ 2105 2106 int unregister_netdevice_notifier_net(struct net *net, 2107 struct notifier_block *nb) 2108 { 2109 int err; 2110 2111 rtnl_net_lock(net); 2112 err = __unregister_netdevice_notifier_net(net, nb); 2113 rtnl_net_unlock(net); 2114 2115 return err; 2116 } 2117 EXPORT_SYMBOL(unregister_netdevice_notifier_net); 2118 2119 static void __move_netdevice_notifier_net(struct net *src_net, 2120 struct net *dst_net, 2121 struct notifier_block *nb) 2122 { 2123 __unregister_netdevice_notifier_net(src_net, nb); 2124 __register_netdevice_notifier_net(dst_net, nb, true); 2125 } 2126 2127 static void rtnl_net_dev_lock(struct net_device *dev) 2128 { 2129 bool again; 2130 2131 do { 2132 struct net *net; 2133 2134 again = false; 2135 2136 /* netns might be being dismantled. */ 2137 rcu_read_lock(); 2138 net = dev_net_rcu(dev); 2139 net_passive_inc(net); 2140 rcu_read_unlock(); 2141 2142 rtnl_net_lock(net); 2143 2144 #ifdef CONFIG_NET_NS 2145 /* dev might have been moved to another netns. */ 2146 if (!net_eq(net, rcu_access_pointer(dev->nd_net.net))) { 2147 rtnl_net_unlock(net); 2148 net_passive_dec(net); 2149 again = true; 2150 } 2151 #endif 2152 } while (again); 2153 } 2154 2155 static void rtnl_net_dev_unlock(struct net_device *dev) 2156 { 2157 struct net *net = dev_net(dev); 2158 2159 rtnl_net_unlock(net); 2160 net_passive_dec(net); 2161 } 2162 2163 int register_netdevice_notifier_dev_net(struct net_device *dev, 2164 struct notifier_block *nb, 2165 struct netdev_net_notifier *nn) 2166 { 2167 int err; 2168 2169 rtnl_net_dev_lock(dev); 2170 err = __register_netdevice_notifier_net(dev_net(dev), nb, false); 2171 if (!err) { 2172 nn->nb = nb; 2173 list_add(&nn->list, &dev->net_notifier_list); 2174 } 2175 rtnl_net_dev_unlock(dev); 2176 2177 return err; 2178 } 2179 EXPORT_SYMBOL(register_netdevice_notifier_dev_net); 2180 2181 int unregister_netdevice_notifier_dev_net(struct net_device *dev, 2182 struct notifier_block *nb, 2183 struct netdev_net_notifier *nn) 2184 { 2185 int err; 2186 2187 rtnl_net_dev_lock(dev); 2188 list_del(&nn->list); 2189 err = __unregister_netdevice_notifier_net(dev_net(dev), nb); 2190 rtnl_net_dev_unlock(dev); 2191 2192 return err; 2193 } 2194 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net); 2195 2196 static void move_netdevice_notifiers_dev_net(struct net_device *dev, 2197 struct net *net) 2198 { 2199 struct netdev_net_notifier *nn; 2200 2201 list_for_each_entry(nn, &dev->net_notifier_list, list) 2202 __move_netdevice_notifier_net(dev_net(dev), net, nn->nb); 2203 } 2204 2205 /** 2206 * call_netdevice_notifiers_info - call all network notifier blocks 2207 * @val: value passed unmodified to notifier function 2208 * @info: notifier information data 2209 * 2210 * Call all network notifier blocks. Parameters and return value 2211 * are as for raw_notifier_call_chain(). 2212 */ 2213 2214 int call_netdevice_notifiers_info(unsigned long val, 2215 struct netdev_notifier_info *info) 2216 { 2217 struct net *net = dev_net(info->dev); 2218 int ret; 2219 2220 ASSERT_RTNL(); 2221 2222 /* Run per-netns notifier block chain first, then run the global one. 2223 * Hopefully, one day, the global one is going to be removed after 2224 * all notifier block registrators get converted to be per-netns. 2225 */ 2226 ret = raw_notifier_call_chain(&net->netdev_chain, val, info); 2227 if (ret & NOTIFY_STOP_MASK) 2228 return ret; 2229 return raw_notifier_call_chain(&netdev_chain, val, info); 2230 } 2231 2232 /** 2233 * call_netdevice_notifiers_info_robust - call per-netns notifier blocks 2234 * for and rollback on error 2235 * @val_up: value passed unmodified to notifier function 2236 * @val_down: value passed unmodified to the notifier function when 2237 * recovering from an error on @val_up 2238 * @info: notifier information data 2239 * 2240 * Call all per-netns network notifier blocks, but not notifier blocks on 2241 * the global notifier chain. Parameters and return value are as for 2242 * raw_notifier_call_chain_robust(). 2243 */ 2244 2245 static int 2246 call_netdevice_notifiers_info_robust(unsigned long val_up, 2247 unsigned long val_down, 2248 struct netdev_notifier_info *info) 2249 { 2250 struct net *net = dev_net(info->dev); 2251 2252 ASSERT_RTNL(); 2253 2254 return raw_notifier_call_chain_robust(&net->netdev_chain, 2255 val_up, val_down, info); 2256 } 2257 2258 static int call_netdevice_notifiers_extack(unsigned long val, 2259 struct net_device *dev, 2260 struct netlink_ext_ack *extack) 2261 { 2262 struct netdev_notifier_info info = { 2263 .dev = dev, 2264 .extack = extack, 2265 }; 2266 2267 return call_netdevice_notifiers_info(val, &info); 2268 } 2269 2270 /** 2271 * call_netdevice_notifiers - call all network notifier blocks 2272 * @val: value passed unmodified to notifier function 2273 * @dev: net_device pointer passed unmodified to notifier function 2274 * 2275 * Call all network notifier blocks. Parameters and return value 2276 * are as for raw_notifier_call_chain(). 2277 */ 2278 2279 int call_netdevice_notifiers(unsigned long val, struct net_device *dev) 2280 { 2281 return call_netdevice_notifiers_extack(val, dev, NULL); 2282 } 2283 EXPORT_SYMBOL(call_netdevice_notifiers); 2284 2285 /** 2286 * call_netdevice_notifiers_mtu - call all network notifier blocks 2287 * @val: value passed unmodified to notifier function 2288 * @dev: net_device pointer passed unmodified to notifier function 2289 * @arg: additional u32 argument passed to the notifier function 2290 * 2291 * Call all network notifier blocks. Parameters and return value 2292 * are as for raw_notifier_call_chain(). 2293 */ 2294 static int call_netdevice_notifiers_mtu(unsigned long val, 2295 struct net_device *dev, u32 arg) 2296 { 2297 struct netdev_notifier_info_ext info = { 2298 .info.dev = dev, 2299 .ext.mtu = arg, 2300 }; 2301 2302 BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0); 2303 2304 return call_netdevice_notifiers_info(val, &info.info); 2305 } 2306 2307 #ifdef CONFIG_NET_INGRESS 2308 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key); 2309 2310 void net_inc_ingress_queue(void) 2311 { 2312 static_branch_inc(&ingress_needed_key); 2313 } 2314 EXPORT_SYMBOL_GPL(net_inc_ingress_queue); 2315 2316 void net_dec_ingress_queue(void) 2317 { 2318 static_branch_dec(&ingress_needed_key); 2319 } 2320 EXPORT_SYMBOL_GPL(net_dec_ingress_queue); 2321 #endif 2322 2323 #ifdef CONFIG_NET_EGRESS 2324 static DEFINE_STATIC_KEY_FALSE(egress_needed_key); 2325 2326 void net_inc_egress_queue(void) 2327 { 2328 static_branch_inc(&egress_needed_key); 2329 } 2330 EXPORT_SYMBOL_GPL(net_inc_egress_queue); 2331 2332 void net_dec_egress_queue(void) 2333 { 2334 static_branch_dec(&egress_needed_key); 2335 } 2336 EXPORT_SYMBOL_GPL(net_dec_egress_queue); 2337 #endif 2338 2339 #ifdef CONFIG_NET_CLS_ACT 2340 DEFINE_STATIC_KEY_FALSE(tcf_sw_enabled_key); 2341 EXPORT_SYMBOL(tcf_sw_enabled_key); 2342 #endif 2343 2344 DEFINE_STATIC_KEY_FALSE(netstamp_needed_key); 2345 EXPORT_SYMBOL(netstamp_needed_key); 2346 #ifdef CONFIG_JUMP_LABEL 2347 static atomic_t netstamp_needed_deferred; 2348 static atomic_t netstamp_wanted; 2349 static void netstamp_clear(struct work_struct *work) 2350 { 2351 int deferred = atomic_xchg(&netstamp_needed_deferred, 0); 2352 int wanted; 2353 2354 wanted = atomic_add_return(deferred, &netstamp_wanted); 2355 if (wanted > 0) 2356 static_branch_enable(&netstamp_needed_key); 2357 else 2358 static_branch_disable(&netstamp_needed_key); 2359 } 2360 static DECLARE_WORK(netstamp_work, netstamp_clear); 2361 #endif 2362 2363 void net_enable_timestamp(void) 2364 { 2365 #ifdef CONFIG_JUMP_LABEL 2366 int wanted = atomic_read(&netstamp_wanted); 2367 2368 while (wanted > 0) { 2369 if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted + 1)) 2370 return; 2371 } 2372 atomic_inc(&netstamp_needed_deferred); 2373 schedule_work(&netstamp_work); 2374 #else 2375 static_branch_inc(&netstamp_needed_key); 2376 #endif 2377 } 2378 EXPORT_SYMBOL(net_enable_timestamp); 2379 2380 void net_disable_timestamp(void) 2381 { 2382 #ifdef CONFIG_JUMP_LABEL 2383 int wanted = atomic_read(&netstamp_wanted); 2384 2385 while (wanted > 1) { 2386 if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted - 1)) 2387 return; 2388 } 2389 atomic_dec(&netstamp_needed_deferred); 2390 schedule_work(&netstamp_work); 2391 #else 2392 static_branch_dec(&netstamp_needed_key); 2393 #endif 2394 } 2395 EXPORT_SYMBOL(net_disable_timestamp); 2396 2397 static inline void net_timestamp_set(struct sk_buff *skb) 2398 { 2399 skb->tstamp = 0; 2400 skb->tstamp_type = SKB_CLOCK_REALTIME; 2401 if (static_branch_unlikely(&netstamp_needed_key)) 2402 skb->tstamp = ktime_get_real(); 2403 } 2404 2405 #define net_timestamp_check(COND, SKB) \ 2406 if (static_branch_unlikely(&netstamp_needed_key)) { \ 2407 if ((COND) && !(SKB)->tstamp) \ 2408 (SKB)->tstamp = ktime_get_real(); \ 2409 } \ 2410 2411 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb) 2412 { 2413 return __is_skb_forwardable(dev, skb, true); 2414 } 2415 EXPORT_SYMBOL_GPL(is_skb_forwardable); 2416 2417 static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb, 2418 bool check_mtu) 2419 { 2420 int ret = ____dev_forward_skb(dev, skb, check_mtu); 2421 2422 if (likely(!ret)) { 2423 skb->protocol = eth_type_trans(skb, dev); 2424 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN); 2425 } 2426 2427 return ret; 2428 } 2429 2430 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 2431 { 2432 return __dev_forward_skb2(dev, skb, true); 2433 } 2434 EXPORT_SYMBOL_GPL(__dev_forward_skb); 2435 2436 /** 2437 * dev_forward_skb - loopback an skb to another netif 2438 * 2439 * @dev: destination network device 2440 * @skb: buffer to forward 2441 * 2442 * return values: 2443 * NET_RX_SUCCESS (no congestion) 2444 * NET_RX_DROP (packet was dropped, but freed) 2445 * 2446 * dev_forward_skb can be used for injecting an skb from the 2447 * start_xmit function of one device into the receive queue 2448 * of another device. 2449 * 2450 * The receiving device may be in another namespace, so 2451 * we have to clear all information in the skb that could 2452 * impact namespace isolation. 2453 */ 2454 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 2455 { 2456 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb); 2457 } 2458 EXPORT_SYMBOL_GPL(dev_forward_skb); 2459 2460 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb) 2461 { 2462 return __dev_forward_skb2(dev, skb, false) ?: netif_rx_internal(skb); 2463 } 2464 2465 static inline int deliver_skb(struct sk_buff *skb, 2466 struct packet_type *pt_prev, 2467 struct net_device *orig_dev) 2468 { 2469 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC))) 2470 return -ENOMEM; 2471 refcount_inc(&skb->users); 2472 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 2473 } 2474 2475 static inline void deliver_ptype_list_skb(struct sk_buff *skb, 2476 struct packet_type **pt, 2477 struct net_device *orig_dev, 2478 __be16 type, 2479 struct list_head *ptype_list) 2480 { 2481 struct packet_type *ptype, *pt_prev = *pt; 2482 2483 list_for_each_entry_rcu(ptype, ptype_list, list) { 2484 if (ptype->type != type) 2485 continue; 2486 if (pt_prev) 2487 deliver_skb(skb, pt_prev, orig_dev); 2488 pt_prev = ptype; 2489 } 2490 *pt = pt_prev; 2491 } 2492 2493 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb) 2494 { 2495 if (!ptype->af_packet_priv || !skb->sk) 2496 return false; 2497 2498 if (ptype->id_match) 2499 return ptype->id_match(ptype, skb->sk); 2500 else if ((struct sock *)ptype->af_packet_priv == skb->sk) 2501 return true; 2502 2503 return false; 2504 } 2505 2506 /** 2507 * dev_nit_active_rcu - return true if any network interface taps are in use 2508 * 2509 * The caller must hold the RCU lock 2510 * 2511 * @dev: network device to check for the presence of taps 2512 */ 2513 bool dev_nit_active_rcu(const struct net_device *dev) 2514 { 2515 /* Callers may hold either RCU or RCU BH lock */ 2516 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held()); 2517 2518 return !list_empty(&dev_net(dev)->ptype_all) || 2519 !list_empty(&dev->ptype_all); 2520 } 2521 EXPORT_SYMBOL_GPL(dev_nit_active_rcu); 2522 2523 /* 2524 * Support routine. Sends outgoing frames to any network 2525 * taps currently in use. 2526 */ 2527 2528 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev) 2529 { 2530 struct packet_type *ptype, *pt_prev = NULL; 2531 struct list_head *ptype_list; 2532 struct sk_buff *skb2 = NULL; 2533 2534 rcu_read_lock(); 2535 ptype_list = &dev_net_rcu(dev)->ptype_all; 2536 again: 2537 list_for_each_entry_rcu(ptype, ptype_list, list) { 2538 if (READ_ONCE(ptype->ignore_outgoing)) 2539 continue; 2540 2541 /* Never send packets back to the socket 2542 * they originated from - MvS (miquels@drinkel.ow.org) 2543 */ 2544 if (skb_loop_sk(ptype, skb)) 2545 continue; 2546 2547 if (pt_prev) { 2548 deliver_skb(skb2, pt_prev, skb->dev); 2549 pt_prev = ptype; 2550 continue; 2551 } 2552 2553 /* need to clone skb, done only once */ 2554 skb2 = skb_clone(skb, GFP_ATOMIC); 2555 if (!skb2) 2556 goto out_unlock; 2557 2558 net_timestamp_set(skb2); 2559 2560 /* skb->nh should be correctly 2561 * set by sender, so that the second statement is 2562 * just protection against buggy protocols. 2563 */ 2564 skb_reset_mac_header(skb2); 2565 2566 if (skb_network_header(skb2) < skb2->data || 2567 skb_network_header(skb2) > skb_tail_pointer(skb2)) { 2568 net_crit_ratelimited("protocol %04x is buggy, dev %s\n", 2569 ntohs(skb2->protocol), 2570 dev->name); 2571 skb_reset_network_header(skb2); 2572 } 2573 2574 skb2->transport_header = skb2->network_header; 2575 skb2->pkt_type = PACKET_OUTGOING; 2576 pt_prev = ptype; 2577 } 2578 2579 if (ptype_list != &dev->ptype_all) { 2580 ptype_list = &dev->ptype_all; 2581 goto again; 2582 } 2583 out_unlock: 2584 if (pt_prev) { 2585 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC)) 2586 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev); 2587 else 2588 kfree_skb(skb2); 2589 } 2590 rcu_read_unlock(); 2591 } 2592 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit); 2593 2594 /** 2595 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change 2596 * @dev: Network device 2597 * @txq: number of queues available 2598 * 2599 * If real_num_tx_queues is changed the tc mappings may no longer be 2600 * valid. To resolve this verify the tc mapping remains valid and if 2601 * not NULL the mapping. With no priorities mapping to this 2602 * offset/count pair it will no longer be used. In the worst case TC0 2603 * is invalid nothing can be done so disable priority mappings. If is 2604 * expected that drivers will fix this mapping if they can before 2605 * calling netif_set_real_num_tx_queues. 2606 */ 2607 static void netif_setup_tc(struct net_device *dev, unsigned int txq) 2608 { 2609 int i; 2610 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 2611 2612 /* If TC0 is invalidated disable TC mapping */ 2613 if (tc->offset + tc->count > txq) { 2614 netdev_warn(dev, "Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n"); 2615 dev->num_tc = 0; 2616 return; 2617 } 2618 2619 /* Invalidated prio to tc mappings set to TC0 */ 2620 for (i = 1; i < TC_BITMASK + 1; i++) { 2621 int q = netdev_get_prio_tc_map(dev, i); 2622 2623 tc = &dev->tc_to_txq[q]; 2624 if (tc->offset + tc->count > txq) { 2625 netdev_warn(dev, "Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n", 2626 i, q); 2627 netdev_set_prio_tc_map(dev, i, 0); 2628 } 2629 } 2630 } 2631 2632 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq) 2633 { 2634 if (dev->num_tc) { 2635 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 2636 int i; 2637 2638 /* walk through the TCs and see if it falls into any of them */ 2639 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) { 2640 if ((txq - tc->offset) < tc->count) 2641 return i; 2642 } 2643 2644 /* didn't find it, just return -1 to indicate no match */ 2645 return -1; 2646 } 2647 2648 return 0; 2649 } 2650 EXPORT_SYMBOL(netdev_txq_to_tc); 2651 2652 #ifdef CONFIG_XPS 2653 static struct static_key xps_needed __read_mostly; 2654 static struct static_key xps_rxqs_needed __read_mostly; 2655 static DEFINE_MUTEX(xps_map_mutex); 2656 #define xmap_dereference(P) \ 2657 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex)) 2658 2659 static bool remove_xps_queue(struct xps_dev_maps *dev_maps, 2660 struct xps_dev_maps *old_maps, int tci, u16 index) 2661 { 2662 struct xps_map *map = NULL; 2663 int pos; 2664 2665 map = xmap_dereference(dev_maps->attr_map[tci]); 2666 if (!map) 2667 return false; 2668 2669 for (pos = map->len; pos--;) { 2670 if (map->queues[pos] != index) 2671 continue; 2672 2673 if (map->len > 1) { 2674 map->queues[pos] = map->queues[--map->len]; 2675 break; 2676 } 2677 2678 if (old_maps) 2679 RCU_INIT_POINTER(old_maps->attr_map[tci], NULL); 2680 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL); 2681 kfree_rcu(map, rcu); 2682 return false; 2683 } 2684 2685 return true; 2686 } 2687 2688 static bool remove_xps_queue_cpu(struct net_device *dev, 2689 struct xps_dev_maps *dev_maps, 2690 int cpu, u16 offset, u16 count) 2691 { 2692 int num_tc = dev_maps->num_tc; 2693 bool active = false; 2694 int tci; 2695 2696 for (tci = cpu * num_tc; num_tc--; tci++) { 2697 int i, j; 2698 2699 for (i = count, j = offset; i--; j++) { 2700 if (!remove_xps_queue(dev_maps, NULL, tci, j)) 2701 break; 2702 } 2703 2704 active |= i < 0; 2705 } 2706 2707 return active; 2708 } 2709 2710 static void reset_xps_maps(struct net_device *dev, 2711 struct xps_dev_maps *dev_maps, 2712 enum xps_map_type type) 2713 { 2714 static_key_slow_dec_cpuslocked(&xps_needed); 2715 if (type == XPS_RXQS) 2716 static_key_slow_dec_cpuslocked(&xps_rxqs_needed); 2717 2718 RCU_INIT_POINTER(dev->xps_maps[type], NULL); 2719 2720 kfree_rcu(dev_maps, rcu); 2721 } 2722 2723 static void clean_xps_maps(struct net_device *dev, enum xps_map_type type, 2724 u16 offset, u16 count) 2725 { 2726 struct xps_dev_maps *dev_maps; 2727 bool active = false; 2728 int i, j; 2729 2730 dev_maps = xmap_dereference(dev->xps_maps[type]); 2731 if (!dev_maps) 2732 return; 2733 2734 for (j = 0; j < dev_maps->nr_ids; j++) 2735 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, count); 2736 if (!active) 2737 reset_xps_maps(dev, dev_maps, type); 2738 2739 if (type == XPS_CPUS) { 2740 for (i = offset + (count - 1); count--; i--) 2741 netdev_queue_numa_node_write( 2742 netdev_get_tx_queue(dev, i), NUMA_NO_NODE); 2743 } 2744 } 2745 2746 static void netif_reset_xps_queues(struct net_device *dev, u16 offset, 2747 u16 count) 2748 { 2749 if (!static_key_false(&xps_needed)) 2750 return; 2751 2752 cpus_read_lock(); 2753 mutex_lock(&xps_map_mutex); 2754 2755 if (static_key_false(&xps_rxqs_needed)) 2756 clean_xps_maps(dev, XPS_RXQS, offset, count); 2757 2758 clean_xps_maps(dev, XPS_CPUS, offset, count); 2759 2760 mutex_unlock(&xps_map_mutex); 2761 cpus_read_unlock(); 2762 } 2763 2764 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index) 2765 { 2766 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index); 2767 } 2768 2769 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index, 2770 u16 index, bool is_rxqs_map) 2771 { 2772 struct xps_map *new_map; 2773 int alloc_len = XPS_MIN_MAP_ALLOC; 2774 int i, pos; 2775 2776 for (pos = 0; map && pos < map->len; pos++) { 2777 if (map->queues[pos] != index) 2778 continue; 2779 return map; 2780 } 2781 2782 /* Need to add tx-queue to this CPU's/rx-queue's existing map */ 2783 if (map) { 2784 if (pos < map->alloc_len) 2785 return map; 2786 2787 alloc_len = map->alloc_len * 2; 2788 } 2789 2790 /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's 2791 * map 2792 */ 2793 if (is_rxqs_map) 2794 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL); 2795 else 2796 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL, 2797 cpu_to_node(attr_index)); 2798 if (!new_map) 2799 return NULL; 2800 2801 for (i = 0; i < pos; i++) 2802 new_map->queues[i] = map->queues[i]; 2803 new_map->alloc_len = alloc_len; 2804 new_map->len = pos; 2805 2806 return new_map; 2807 } 2808 2809 /* Copy xps maps at a given index */ 2810 static void xps_copy_dev_maps(struct xps_dev_maps *dev_maps, 2811 struct xps_dev_maps *new_dev_maps, int index, 2812 int tc, bool skip_tc) 2813 { 2814 int i, tci = index * dev_maps->num_tc; 2815 struct xps_map *map; 2816 2817 /* copy maps belonging to foreign traffic classes */ 2818 for (i = 0; i < dev_maps->num_tc; i++, tci++) { 2819 if (i == tc && skip_tc) 2820 continue; 2821 2822 /* fill in the new device map from the old device map */ 2823 map = xmap_dereference(dev_maps->attr_map[tci]); 2824 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map); 2825 } 2826 } 2827 2828 /* Must be called under cpus_read_lock */ 2829 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask, 2830 u16 index, enum xps_map_type type) 2831 { 2832 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL, *old_dev_maps = NULL; 2833 const unsigned long *online_mask = NULL; 2834 bool active = false, copy = false; 2835 int i, j, tci, numa_node_id = -2; 2836 int maps_sz, num_tc = 1, tc = 0; 2837 struct xps_map *map, *new_map; 2838 unsigned int nr_ids; 2839 2840 WARN_ON_ONCE(index >= dev->num_tx_queues); 2841 2842 if (dev->num_tc) { 2843 /* Do not allow XPS on subordinate device directly */ 2844 num_tc = dev->num_tc; 2845 if (num_tc < 0) 2846 return -EINVAL; 2847 2848 /* If queue belongs to subordinate dev use its map */ 2849 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev; 2850 2851 tc = netdev_txq_to_tc(dev, index); 2852 if (tc < 0) 2853 return -EINVAL; 2854 } 2855 2856 mutex_lock(&xps_map_mutex); 2857 2858 dev_maps = xmap_dereference(dev->xps_maps[type]); 2859 if (type == XPS_RXQS) { 2860 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues); 2861 nr_ids = dev->num_rx_queues; 2862 } else { 2863 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc); 2864 if (num_possible_cpus() > 1) 2865 online_mask = cpumask_bits(cpu_online_mask); 2866 nr_ids = nr_cpu_ids; 2867 } 2868 2869 if (maps_sz < L1_CACHE_BYTES) 2870 maps_sz = L1_CACHE_BYTES; 2871 2872 /* The old dev_maps could be larger or smaller than the one we're 2873 * setting up now, as dev->num_tc or nr_ids could have been updated in 2874 * between. We could try to be smart, but let's be safe instead and only 2875 * copy foreign traffic classes if the two map sizes match. 2876 */ 2877 if (dev_maps && 2878 dev_maps->num_tc == num_tc && dev_maps->nr_ids == nr_ids) 2879 copy = true; 2880 2881 /* allocate memory for queue storage */ 2882 for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids), 2883 j < nr_ids;) { 2884 if (!new_dev_maps) { 2885 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL); 2886 if (!new_dev_maps) { 2887 mutex_unlock(&xps_map_mutex); 2888 return -ENOMEM; 2889 } 2890 2891 new_dev_maps->nr_ids = nr_ids; 2892 new_dev_maps->num_tc = num_tc; 2893 } 2894 2895 tci = j * num_tc + tc; 2896 map = copy ? xmap_dereference(dev_maps->attr_map[tci]) : NULL; 2897 2898 map = expand_xps_map(map, j, index, type == XPS_RXQS); 2899 if (!map) 2900 goto error; 2901 2902 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map); 2903 } 2904 2905 if (!new_dev_maps) 2906 goto out_no_new_maps; 2907 2908 if (!dev_maps) { 2909 /* Increment static keys at most once per type */ 2910 static_key_slow_inc_cpuslocked(&xps_needed); 2911 if (type == XPS_RXQS) 2912 static_key_slow_inc_cpuslocked(&xps_rxqs_needed); 2913 } 2914 2915 for (j = 0; j < nr_ids; j++) { 2916 bool skip_tc = false; 2917 2918 tci = j * num_tc + tc; 2919 if (netif_attr_test_mask(j, mask, nr_ids) && 2920 netif_attr_test_online(j, online_mask, nr_ids)) { 2921 /* add tx-queue to CPU/rx-queue maps */ 2922 int pos = 0; 2923 2924 skip_tc = true; 2925 2926 map = xmap_dereference(new_dev_maps->attr_map[tci]); 2927 while ((pos < map->len) && (map->queues[pos] != index)) 2928 pos++; 2929 2930 if (pos == map->len) 2931 map->queues[map->len++] = index; 2932 #ifdef CONFIG_NUMA 2933 if (type == XPS_CPUS) { 2934 if (numa_node_id == -2) 2935 numa_node_id = cpu_to_node(j); 2936 else if (numa_node_id != cpu_to_node(j)) 2937 numa_node_id = -1; 2938 } 2939 #endif 2940 } 2941 2942 if (copy) 2943 xps_copy_dev_maps(dev_maps, new_dev_maps, j, tc, 2944 skip_tc); 2945 } 2946 2947 rcu_assign_pointer(dev->xps_maps[type], new_dev_maps); 2948 2949 /* Cleanup old maps */ 2950 if (!dev_maps) 2951 goto out_no_old_maps; 2952 2953 for (j = 0; j < dev_maps->nr_ids; j++) { 2954 for (i = num_tc, tci = j * dev_maps->num_tc; i--; tci++) { 2955 map = xmap_dereference(dev_maps->attr_map[tci]); 2956 if (!map) 2957 continue; 2958 2959 if (copy) { 2960 new_map = xmap_dereference(new_dev_maps->attr_map[tci]); 2961 if (map == new_map) 2962 continue; 2963 } 2964 2965 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL); 2966 kfree_rcu(map, rcu); 2967 } 2968 } 2969 2970 old_dev_maps = dev_maps; 2971 2972 out_no_old_maps: 2973 dev_maps = new_dev_maps; 2974 active = true; 2975 2976 out_no_new_maps: 2977 if (type == XPS_CPUS) 2978 /* update Tx queue numa node */ 2979 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index), 2980 (numa_node_id >= 0) ? 2981 numa_node_id : NUMA_NO_NODE); 2982 2983 if (!dev_maps) 2984 goto out_no_maps; 2985 2986 /* removes tx-queue from unused CPUs/rx-queues */ 2987 for (j = 0; j < dev_maps->nr_ids; j++) { 2988 tci = j * dev_maps->num_tc; 2989 2990 for (i = 0; i < dev_maps->num_tc; i++, tci++) { 2991 if (i == tc && 2992 netif_attr_test_mask(j, mask, dev_maps->nr_ids) && 2993 netif_attr_test_online(j, online_mask, dev_maps->nr_ids)) 2994 continue; 2995 2996 active |= remove_xps_queue(dev_maps, 2997 copy ? old_dev_maps : NULL, 2998 tci, index); 2999 } 3000 } 3001 3002 if (old_dev_maps) 3003 kfree_rcu(old_dev_maps, rcu); 3004 3005 /* free map if not active */ 3006 if (!active) 3007 reset_xps_maps(dev, dev_maps, type); 3008 3009 out_no_maps: 3010 mutex_unlock(&xps_map_mutex); 3011 3012 return 0; 3013 error: 3014 /* remove any maps that we added */ 3015 for (j = 0; j < nr_ids; j++) { 3016 for (i = num_tc, tci = j * num_tc; i--; tci++) { 3017 new_map = xmap_dereference(new_dev_maps->attr_map[tci]); 3018 map = copy ? 3019 xmap_dereference(dev_maps->attr_map[tci]) : 3020 NULL; 3021 if (new_map && new_map != map) 3022 kfree(new_map); 3023 } 3024 } 3025 3026 mutex_unlock(&xps_map_mutex); 3027 3028 kfree(new_dev_maps); 3029 return -ENOMEM; 3030 } 3031 EXPORT_SYMBOL_GPL(__netif_set_xps_queue); 3032 3033 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask, 3034 u16 index) 3035 { 3036 int ret; 3037 3038 cpus_read_lock(); 3039 ret = __netif_set_xps_queue(dev, cpumask_bits(mask), index, XPS_CPUS); 3040 cpus_read_unlock(); 3041 3042 return ret; 3043 } 3044 EXPORT_SYMBOL(netif_set_xps_queue); 3045 3046 #endif 3047 static void netdev_unbind_all_sb_channels(struct net_device *dev) 3048 { 3049 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues]; 3050 3051 /* Unbind any subordinate channels */ 3052 while (txq-- != &dev->_tx[0]) { 3053 if (txq->sb_dev) 3054 netdev_unbind_sb_channel(dev, txq->sb_dev); 3055 } 3056 } 3057 3058 void netdev_reset_tc(struct net_device *dev) 3059 { 3060 #ifdef CONFIG_XPS 3061 netif_reset_xps_queues_gt(dev, 0); 3062 #endif 3063 netdev_unbind_all_sb_channels(dev); 3064 3065 /* Reset TC configuration of device */ 3066 dev->num_tc = 0; 3067 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq)); 3068 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map)); 3069 } 3070 EXPORT_SYMBOL(netdev_reset_tc); 3071 3072 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset) 3073 { 3074 if (tc >= dev->num_tc) 3075 return -EINVAL; 3076 3077 #ifdef CONFIG_XPS 3078 netif_reset_xps_queues(dev, offset, count); 3079 #endif 3080 dev->tc_to_txq[tc].count = count; 3081 dev->tc_to_txq[tc].offset = offset; 3082 return 0; 3083 } 3084 EXPORT_SYMBOL(netdev_set_tc_queue); 3085 3086 int netdev_set_num_tc(struct net_device *dev, u8 num_tc) 3087 { 3088 if (num_tc > TC_MAX_QUEUE) 3089 return -EINVAL; 3090 3091 #ifdef CONFIG_XPS 3092 netif_reset_xps_queues_gt(dev, 0); 3093 #endif 3094 netdev_unbind_all_sb_channels(dev); 3095 3096 dev->num_tc = num_tc; 3097 return 0; 3098 } 3099 EXPORT_SYMBOL(netdev_set_num_tc); 3100 3101 void netdev_unbind_sb_channel(struct net_device *dev, 3102 struct net_device *sb_dev) 3103 { 3104 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues]; 3105 3106 #ifdef CONFIG_XPS 3107 netif_reset_xps_queues_gt(sb_dev, 0); 3108 #endif 3109 memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq)); 3110 memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map)); 3111 3112 while (txq-- != &dev->_tx[0]) { 3113 if (txq->sb_dev == sb_dev) 3114 txq->sb_dev = NULL; 3115 } 3116 } 3117 EXPORT_SYMBOL(netdev_unbind_sb_channel); 3118 3119 int netdev_bind_sb_channel_queue(struct net_device *dev, 3120 struct net_device *sb_dev, 3121 u8 tc, u16 count, u16 offset) 3122 { 3123 /* Make certain the sb_dev and dev are already configured */ 3124 if (sb_dev->num_tc >= 0 || tc >= dev->num_tc) 3125 return -EINVAL; 3126 3127 /* We cannot hand out queues we don't have */ 3128 if ((offset + count) > dev->real_num_tx_queues) 3129 return -EINVAL; 3130 3131 /* Record the mapping */ 3132 sb_dev->tc_to_txq[tc].count = count; 3133 sb_dev->tc_to_txq[tc].offset = offset; 3134 3135 /* Provide a way for Tx queue to find the tc_to_txq map or 3136 * XPS map for itself. 3137 */ 3138 while (count--) 3139 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev; 3140 3141 return 0; 3142 } 3143 EXPORT_SYMBOL(netdev_bind_sb_channel_queue); 3144 3145 int netdev_set_sb_channel(struct net_device *dev, u16 channel) 3146 { 3147 /* Do not use a multiqueue device to represent a subordinate channel */ 3148 if (netif_is_multiqueue(dev)) 3149 return -ENODEV; 3150 3151 /* We allow channels 1 - 32767 to be used for subordinate channels. 3152 * Channel 0 is meant to be "native" mode and used only to represent 3153 * the main root device. We allow writing 0 to reset the device back 3154 * to normal mode after being used as a subordinate channel. 3155 */ 3156 if (channel > S16_MAX) 3157 return -EINVAL; 3158 3159 dev->num_tc = -channel; 3160 3161 return 0; 3162 } 3163 EXPORT_SYMBOL(netdev_set_sb_channel); 3164 3165 /* 3166 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues 3167 * greater than real_num_tx_queues stale skbs on the qdisc must be flushed. 3168 */ 3169 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq) 3170 { 3171 bool disabling; 3172 int rc; 3173 3174 disabling = txq < dev->real_num_tx_queues; 3175 3176 if (txq < 1 || txq > dev->num_tx_queues) 3177 return -EINVAL; 3178 3179 if (dev->reg_state == NETREG_REGISTERED || 3180 dev->reg_state == NETREG_UNREGISTERING) { 3181 netdev_ops_assert_locked(dev); 3182 3183 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues, 3184 txq); 3185 if (rc) 3186 return rc; 3187 3188 if (dev->num_tc) 3189 netif_setup_tc(dev, txq); 3190 3191 net_shaper_set_real_num_tx_queues(dev, txq); 3192 3193 dev_qdisc_change_real_num_tx(dev, txq); 3194 3195 dev->real_num_tx_queues = txq; 3196 3197 if (disabling) { 3198 synchronize_net(); 3199 qdisc_reset_all_tx_gt(dev, txq); 3200 #ifdef CONFIG_XPS 3201 netif_reset_xps_queues_gt(dev, txq); 3202 #endif 3203 } 3204 } else { 3205 dev->real_num_tx_queues = txq; 3206 } 3207 3208 return 0; 3209 } 3210 EXPORT_SYMBOL(netif_set_real_num_tx_queues); 3211 3212 /** 3213 * netif_set_real_num_rx_queues - set actual number of RX queues used 3214 * @dev: Network device 3215 * @rxq: Actual number of RX queues 3216 * 3217 * This must be called either with the rtnl_lock held or before 3218 * registration of the net device. Returns 0 on success, or a 3219 * negative error code. If called before registration, it always 3220 * succeeds. 3221 */ 3222 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq) 3223 { 3224 int rc; 3225 3226 if (rxq < 1 || rxq > dev->num_rx_queues) 3227 return -EINVAL; 3228 3229 if (dev->reg_state == NETREG_REGISTERED) { 3230 netdev_ops_assert_locked(dev); 3231 3232 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues, 3233 rxq); 3234 if (rc) 3235 return rc; 3236 } 3237 3238 dev->real_num_rx_queues = rxq; 3239 return 0; 3240 } 3241 EXPORT_SYMBOL(netif_set_real_num_rx_queues); 3242 3243 /** 3244 * netif_set_real_num_queues - set actual number of RX and TX queues used 3245 * @dev: Network device 3246 * @txq: Actual number of TX queues 3247 * @rxq: Actual number of RX queues 3248 * 3249 * Set the real number of both TX and RX queues. 3250 * Does nothing if the number of queues is already correct. 3251 */ 3252 int netif_set_real_num_queues(struct net_device *dev, 3253 unsigned int txq, unsigned int rxq) 3254 { 3255 unsigned int old_rxq = dev->real_num_rx_queues; 3256 int err; 3257 3258 if (txq < 1 || txq > dev->num_tx_queues || 3259 rxq < 1 || rxq > dev->num_rx_queues) 3260 return -EINVAL; 3261 3262 /* Start from increases, so the error path only does decreases - 3263 * decreases can't fail. 3264 */ 3265 if (rxq > dev->real_num_rx_queues) { 3266 err = netif_set_real_num_rx_queues(dev, rxq); 3267 if (err) 3268 return err; 3269 } 3270 if (txq > dev->real_num_tx_queues) { 3271 err = netif_set_real_num_tx_queues(dev, txq); 3272 if (err) 3273 goto undo_rx; 3274 } 3275 if (rxq < dev->real_num_rx_queues) 3276 WARN_ON(netif_set_real_num_rx_queues(dev, rxq)); 3277 if (txq < dev->real_num_tx_queues) 3278 WARN_ON(netif_set_real_num_tx_queues(dev, txq)); 3279 3280 return 0; 3281 undo_rx: 3282 WARN_ON(netif_set_real_num_rx_queues(dev, old_rxq)); 3283 return err; 3284 } 3285 EXPORT_SYMBOL(netif_set_real_num_queues); 3286 3287 /** 3288 * netif_set_tso_max_size() - set the max size of TSO frames supported 3289 * @dev: netdev to update 3290 * @size: max skb->len of a TSO frame 3291 * 3292 * Set the limit on the size of TSO super-frames the device can handle. 3293 * Unless explicitly set the stack will assume the value of 3294 * %GSO_LEGACY_MAX_SIZE. 3295 */ 3296 void netif_set_tso_max_size(struct net_device *dev, unsigned int size) 3297 { 3298 dev->tso_max_size = min(GSO_MAX_SIZE, size); 3299 if (size < READ_ONCE(dev->gso_max_size)) 3300 netif_set_gso_max_size(dev, size); 3301 if (size < READ_ONCE(dev->gso_ipv4_max_size)) 3302 netif_set_gso_ipv4_max_size(dev, size); 3303 } 3304 EXPORT_SYMBOL(netif_set_tso_max_size); 3305 3306 /** 3307 * netif_set_tso_max_segs() - set the max number of segs supported for TSO 3308 * @dev: netdev to update 3309 * @segs: max number of TCP segments 3310 * 3311 * Set the limit on the number of TCP segments the device can generate from 3312 * a single TSO super-frame. 3313 * Unless explicitly set the stack will assume the value of %GSO_MAX_SEGS. 3314 */ 3315 void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs) 3316 { 3317 dev->tso_max_segs = segs; 3318 if (segs < READ_ONCE(dev->gso_max_segs)) 3319 netif_set_gso_max_segs(dev, segs); 3320 } 3321 EXPORT_SYMBOL(netif_set_tso_max_segs); 3322 3323 /** 3324 * netif_inherit_tso_max() - copy all TSO limits from a lower device to an upper 3325 * @to: netdev to update 3326 * @from: netdev from which to copy the limits 3327 */ 3328 void netif_inherit_tso_max(struct net_device *to, const struct net_device *from) 3329 { 3330 netif_set_tso_max_size(to, from->tso_max_size); 3331 netif_set_tso_max_segs(to, from->tso_max_segs); 3332 } 3333 EXPORT_SYMBOL(netif_inherit_tso_max); 3334 3335 /** 3336 * netif_get_num_default_rss_queues - default number of RSS queues 3337 * 3338 * Default value is the number of physical cores if there are only 1 or 2, or 3339 * divided by 2 if there are more. 3340 */ 3341 int netif_get_num_default_rss_queues(void) 3342 { 3343 cpumask_var_t cpus; 3344 int cpu, count = 0; 3345 3346 if (unlikely(is_kdump_kernel() || !zalloc_cpumask_var(&cpus, GFP_KERNEL))) 3347 return 1; 3348 3349 cpumask_copy(cpus, cpu_online_mask); 3350 for_each_cpu(cpu, cpus) { 3351 ++count; 3352 cpumask_andnot(cpus, cpus, topology_sibling_cpumask(cpu)); 3353 } 3354 free_cpumask_var(cpus); 3355 3356 return count > 2 ? DIV_ROUND_UP(count, 2) : count; 3357 } 3358 EXPORT_SYMBOL(netif_get_num_default_rss_queues); 3359 3360 static void __netif_reschedule(struct Qdisc *q) 3361 { 3362 struct softnet_data *sd; 3363 unsigned long flags; 3364 3365 local_irq_save(flags); 3366 sd = this_cpu_ptr(&softnet_data); 3367 q->next_sched = NULL; 3368 *sd->output_queue_tailp = q; 3369 sd->output_queue_tailp = &q->next_sched; 3370 raise_softirq_irqoff(NET_TX_SOFTIRQ); 3371 local_irq_restore(flags); 3372 } 3373 3374 void __netif_schedule(struct Qdisc *q) 3375 { 3376 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state)) 3377 __netif_reschedule(q); 3378 } 3379 EXPORT_SYMBOL(__netif_schedule); 3380 3381 struct dev_kfree_skb_cb { 3382 enum skb_drop_reason reason; 3383 }; 3384 3385 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb) 3386 { 3387 return (struct dev_kfree_skb_cb *)skb->cb; 3388 } 3389 3390 void netif_schedule_queue(struct netdev_queue *txq) 3391 { 3392 rcu_read_lock(); 3393 if (!netif_xmit_stopped(txq)) { 3394 struct Qdisc *q = rcu_dereference(txq->qdisc); 3395 3396 __netif_schedule(q); 3397 } 3398 rcu_read_unlock(); 3399 } 3400 EXPORT_SYMBOL(netif_schedule_queue); 3401 3402 void netif_tx_wake_queue(struct netdev_queue *dev_queue) 3403 { 3404 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) { 3405 struct Qdisc *q; 3406 3407 rcu_read_lock(); 3408 q = rcu_dereference(dev_queue->qdisc); 3409 __netif_schedule(q); 3410 rcu_read_unlock(); 3411 } 3412 } 3413 EXPORT_SYMBOL(netif_tx_wake_queue); 3414 3415 void dev_kfree_skb_irq_reason(struct sk_buff *skb, enum skb_drop_reason reason) 3416 { 3417 unsigned long flags; 3418 3419 if (unlikely(!skb)) 3420 return; 3421 3422 if (likely(refcount_read(&skb->users) == 1)) { 3423 smp_rmb(); 3424 refcount_set(&skb->users, 0); 3425 } else if (likely(!refcount_dec_and_test(&skb->users))) { 3426 return; 3427 } 3428 get_kfree_skb_cb(skb)->reason = reason; 3429 local_irq_save(flags); 3430 skb->next = __this_cpu_read(softnet_data.completion_queue); 3431 __this_cpu_write(softnet_data.completion_queue, skb); 3432 raise_softirq_irqoff(NET_TX_SOFTIRQ); 3433 local_irq_restore(flags); 3434 } 3435 EXPORT_SYMBOL(dev_kfree_skb_irq_reason); 3436 3437 void dev_kfree_skb_any_reason(struct sk_buff *skb, enum skb_drop_reason reason) 3438 { 3439 if (in_hardirq() || irqs_disabled()) 3440 dev_kfree_skb_irq_reason(skb, reason); 3441 else 3442 kfree_skb_reason(skb, reason); 3443 } 3444 EXPORT_SYMBOL(dev_kfree_skb_any_reason); 3445 3446 3447 /** 3448 * netif_device_detach - mark device as removed 3449 * @dev: network device 3450 * 3451 * Mark device as removed from system and therefore no longer available. 3452 */ 3453 void netif_device_detach(struct net_device *dev) 3454 { 3455 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) && 3456 netif_running(dev)) { 3457 netif_tx_stop_all_queues(dev); 3458 } 3459 } 3460 EXPORT_SYMBOL(netif_device_detach); 3461 3462 /** 3463 * netif_device_attach - mark device as attached 3464 * @dev: network device 3465 * 3466 * Mark device as attached from system and restart if needed. 3467 */ 3468 void netif_device_attach(struct net_device *dev) 3469 { 3470 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) && 3471 netif_running(dev)) { 3472 netif_tx_wake_all_queues(dev); 3473 netdev_watchdog_up(dev); 3474 } 3475 } 3476 EXPORT_SYMBOL(netif_device_attach); 3477 3478 /* 3479 * Returns a Tx hash based on the given packet descriptor a Tx queues' number 3480 * to be used as a distribution range. 3481 */ 3482 static u16 skb_tx_hash(const struct net_device *dev, 3483 const struct net_device *sb_dev, 3484 struct sk_buff *skb) 3485 { 3486 u32 hash; 3487 u16 qoffset = 0; 3488 u16 qcount = dev->real_num_tx_queues; 3489 3490 if (dev->num_tc) { 3491 u8 tc = netdev_get_prio_tc_map(dev, skb->priority); 3492 3493 qoffset = sb_dev->tc_to_txq[tc].offset; 3494 qcount = sb_dev->tc_to_txq[tc].count; 3495 if (unlikely(!qcount)) { 3496 net_warn_ratelimited("%s: invalid qcount, qoffset %u for tc %u\n", 3497 sb_dev->name, qoffset, tc); 3498 qoffset = 0; 3499 qcount = dev->real_num_tx_queues; 3500 } 3501 } 3502 3503 if (skb_rx_queue_recorded(skb)) { 3504 DEBUG_NET_WARN_ON_ONCE(qcount == 0); 3505 hash = skb_get_rx_queue(skb); 3506 if (hash >= qoffset) 3507 hash -= qoffset; 3508 while (unlikely(hash >= qcount)) 3509 hash -= qcount; 3510 return hash + qoffset; 3511 } 3512 3513 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset; 3514 } 3515 3516 void skb_warn_bad_offload(const struct sk_buff *skb) 3517 { 3518 static const netdev_features_t null_features; 3519 struct net_device *dev = skb->dev; 3520 const char *name = ""; 3521 3522 if (!net_ratelimit()) 3523 return; 3524 3525 if (dev) { 3526 if (dev->dev.parent) 3527 name = dev_driver_string(dev->dev.parent); 3528 else 3529 name = netdev_name(dev); 3530 } 3531 skb_dump(KERN_WARNING, skb, false); 3532 WARN(1, "%s: caps=(%pNF, %pNF)\n", 3533 name, dev ? &dev->features : &null_features, 3534 skb->sk ? &skb->sk->sk_route_caps : &null_features); 3535 } 3536 3537 /* 3538 * Invalidate hardware checksum when packet is to be mangled, and 3539 * complete checksum manually on outgoing path. 3540 */ 3541 int skb_checksum_help(struct sk_buff *skb) 3542 { 3543 __wsum csum; 3544 int ret = 0, offset; 3545 3546 if (skb->ip_summed == CHECKSUM_COMPLETE) 3547 goto out_set_summed; 3548 3549 if (unlikely(skb_is_gso(skb))) { 3550 skb_warn_bad_offload(skb); 3551 return -EINVAL; 3552 } 3553 3554 if (!skb_frags_readable(skb)) { 3555 return -EFAULT; 3556 } 3557 3558 /* Before computing a checksum, we should make sure no frag could 3559 * be modified by an external entity : checksum could be wrong. 3560 */ 3561 if (skb_has_shared_frag(skb)) { 3562 ret = __skb_linearize(skb); 3563 if (ret) 3564 goto out; 3565 } 3566 3567 offset = skb_checksum_start_offset(skb); 3568 ret = -EINVAL; 3569 if (unlikely(offset >= skb_headlen(skb))) { 3570 DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false); 3571 WARN_ONCE(true, "offset (%d) >= skb_headlen() (%u)\n", 3572 offset, skb_headlen(skb)); 3573 goto out; 3574 } 3575 csum = skb_checksum(skb, offset, skb->len - offset, 0); 3576 3577 offset += skb->csum_offset; 3578 if (unlikely(offset + sizeof(__sum16) > skb_headlen(skb))) { 3579 DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false); 3580 WARN_ONCE(true, "offset+2 (%zu) > skb_headlen() (%u)\n", 3581 offset + sizeof(__sum16), skb_headlen(skb)); 3582 goto out; 3583 } 3584 ret = skb_ensure_writable(skb, offset + sizeof(__sum16)); 3585 if (ret) 3586 goto out; 3587 3588 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0; 3589 out_set_summed: 3590 skb->ip_summed = CHECKSUM_NONE; 3591 out: 3592 return ret; 3593 } 3594 EXPORT_SYMBOL(skb_checksum_help); 3595 3596 #ifdef CONFIG_NET_CRC32C 3597 int skb_crc32c_csum_help(struct sk_buff *skb) 3598 { 3599 u32 crc; 3600 int ret = 0, offset, start; 3601 3602 if (skb->ip_summed != CHECKSUM_PARTIAL) 3603 goto out; 3604 3605 if (unlikely(skb_is_gso(skb))) 3606 goto out; 3607 3608 /* Before computing a checksum, we should make sure no frag could 3609 * be modified by an external entity : checksum could be wrong. 3610 */ 3611 if (unlikely(skb_has_shared_frag(skb))) { 3612 ret = __skb_linearize(skb); 3613 if (ret) 3614 goto out; 3615 } 3616 start = skb_checksum_start_offset(skb); 3617 offset = start + offsetof(struct sctphdr, checksum); 3618 if (WARN_ON_ONCE(offset >= skb_headlen(skb))) { 3619 ret = -EINVAL; 3620 goto out; 3621 } 3622 3623 ret = skb_ensure_writable(skb, offset + sizeof(__le32)); 3624 if (ret) 3625 goto out; 3626 3627 crc = ~skb_crc32c(skb, start, skb->len - start, ~0); 3628 *(__le32 *)(skb->data + offset) = cpu_to_le32(crc); 3629 skb_reset_csum_not_inet(skb); 3630 out: 3631 return ret; 3632 } 3633 EXPORT_SYMBOL(skb_crc32c_csum_help); 3634 #endif /* CONFIG_NET_CRC32C */ 3635 3636 __be16 skb_network_protocol(struct sk_buff *skb, int *depth) 3637 { 3638 __be16 type = skb->protocol; 3639 3640 /* Tunnel gso handlers can set protocol to ethernet. */ 3641 if (type == htons(ETH_P_TEB)) { 3642 struct ethhdr *eth; 3643 3644 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr)))) 3645 return 0; 3646 3647 eth = (struct ethhdr *)skb->data; 3648 type = eth->h_proto; 3649 } 3650 3651 return vlan_get_protocol_and_depth(skb, type, depth); 3652 } 3653 3654 3655 /* Take action when hardware reception checksum errors are detected. */ 3656 #ifdef CONFIG_BUG 3657 static void do_netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb) 3658 { 3659 netdev_err(dev, "hw csum failure\n"); 3660 skb_dump(KERN_ERR, skb, true); 3661 dump_stack(); 3662 } 3663 3664 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb) 3665 { 3666 DO_ONCE_LITE(do_netdev_rx_csum_fault, dev, skb); 3667 } 3668 EXPORT_SYMBOL(netdev_rx_csum_fault); 3669 #endif 3670 3671 /* XXX: check that highmem exists at all on the given machine. */ 3672 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb) 3673 { 3674 #ifdef CONFIG_HIGHMEM 3675 int i; 3676 3677 if (!(dev->features & NETIF_F_HIGHDMA)) { 3678 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 3679 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 3680 struct page *page = skb_frag_page(frag); 3681 3682 if (page && PageHighMem(page)) 3683 return 1; 3684 } 3685 } 3686 #endif 3687 return 0; 3688 } 3689 3690 /* If MPLS offload request, verify we are testing hardware MPLS features 3691 * instead of standard features for the netdev. 3692 */ 3693 #if IS_ENABLED(CONFIG_NET_MPLS_GSO) 3694 static netdev_features_t net_mpls_features(struct sk_buff *skb, 3695 netdev_features_t features, 3696 __be16 type) 3697 { 3698 if (eth_p_mpls(type)) 3699 features &= skb->dev->mpls_features; 3700 3701 return features; 3702 } 3703 #else 3704 static netdev_features_t net_mpls_features(struct sk_buff *skb, 3705 netdev_features_t features, 3706 __be16 type) 3707 { 3708 return features; 3709 } 3710 #endif 3711 3712 static netdev_features_t harmonize_features(struct sk_buff *skb, 3713 netdev_features_t features) 3714 { 3715 __be16 type; 3716 3717 type = skb_network_protocol(skb, NULL); 3718 features = net_mpls_features(skb, features, type); 3719 3720 if (skb->ip_summed != CHECKSUM_NONE && 3721 !can_checksum_protocol(features, type)) { 3722 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 3723 } 3724 if (illegal_highdma(skb->dev, skb)) 3725 features &= ~NETIF_F_SG; 3726 3727 return features; 3728 } 3729 3730 netdev_features_t passthru_features_check(struct sk_buff *skb, 3731 struct net_device *dev, 3732 netdev_features_t features) 3733 { 3734 return features; 3735 } 3736 EXPORT_SYMBOL(passthru_features_check); 3737 3738 static netdev_features_t dflt_features_check(struct sk_buff *skb, 3739 struct net_device *dev, 3740 netdev_features_t features) 3741 { 3742 return vlan_features_check(skb, features); 3743 } 3744 3745 static netdev_features_t gso_features_check(const struct sk_buff *skb, 3746 struct net_device *dev, 3747 netdev_features_t features) 3748 { 3749 u16 gso_segs = skb_shinfo(skb)->gso_segs; 3750 3751 if (gso_segs > READ_ONCE(dev->gso_max_segs)) 3752 return features & ~NETIF_F_GSO_MASK; 3753 3754 if (unlikely(skb->len >= netif_get_gso_max_size(dev, skb))) 3755 return features & ~NETIF_F_GSO_MASK; 3756 3757 if (!skb_shinfo(skb)->gso_type) { 3758 skb_warn_bad_offload(skb); 3759 return features & ~NETIF_F_GSO_MASK; 3760 } 3761 3762 /* Support for GSO partial features requires software 3763 * intervention before we can actually process the packets 3764 * so we need to strip support for any partial features now 3765 * and we can pull them back in after we have partially 3766 * segmented the frame. 3767 */ 3768 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL)) 3769 features &= ~dev->gso_partial_features; 3770 3771 /* Make sure to clear the IPv4 ID mangling feature if the IPv4 header 3772 * has the potential to be fragmented so that TSO does not generate 3773 * segments with the same ID. For encapsulated packets, the ID mangling 3774 * feature is guaranteed not to use the same ID for the outer IPv4 3775 * headers of the generated segments if the headers have the potential 3776 * to be fragmented, so there is no need to clear the IPv4 ID mangling 3777 * feature (see the section about NETIF_F_TSO_MANGLEID in 3778 * segmentation-offloads.rst). 3779 */ 3780 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) { 3781 struct iphdr *iph = skb->encapsulation ? 3782 inner_ip_hdr(skb) : ip_hdr(skb); 3783 3784 if (!(iph->frag_off & htons(IP_DF))) 3785 features &= ~NETIF_F_TSO_MANGLEID; 3786 } 3787 3788 /* NETIF_F_IPV6_CSUM does not support IPv6 extension headers, 3789 * so neither does TSO that depends on it. 3790 */ 3791 if (features & NETIF_F_IPV6_CSUM && 3792 (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6 || 3793 (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4 && 3794 vlan_get_protocol(skb) == htons(ETH_P_IPV6))) && 3795 skb_transport_header_was_set(skb) && 3796 skb_network_header_len(skb) != sizeof(struct ipv6hdr) && 3797 !ipv6_has_hopopt_jumbo(skb)) 3798 features &= ~(NETIF_F_IPV6_CSUM | NETIF_F_TSO6 | NETIF_F_GSO_UDP_L4); 3799 3800 return features; 3801 } 3802 3803 netdev_features_t netif_skb_features(struct sk_buff *skb) 3804 { 3805 struct net_device *dev = skb->dev; 3806 netdev_features_t features = dev->features; 3807 3808 if (skb_is_gso(skb)) 3809 features = gso_features_check(skb, dev, features); 3810 3811 /* If encapsulation offload request, verify we are testing 3812 * hardware encapsulation features instead of standard 3813 * features for the netdev 3814 */ 3815 if (skb->encapsulation) 3816 features &= dev->hw_enc_features; 3817 3818 if (skb_vlan_tagged(skb)) 3819 features = netdev_intersect_features(features, 3820 dev->vlan_features | 3821 NETIF_F_HW_VLAN_CTAG_TX | 3822 NETIF_F_HW_VLAN_STAG_TX); 3823 3824 if (dev->netdev_ops->ndo_features_check) 3825 features &= dev->netdev_ops->ndo_features_check(skb, dev, 3826 features); 3827 else 3828 features &= dflt_features_check(skb, dev, features); 3829 3830 return harmonize_features(skb, features); 3831 } 3832 EXPORT_SYMBOL(netif_skb_features); 3833 3834 static int xmit_one(struct sk_buff *skb, struct net_device *dev, 3835 struct netdev_queue *txq, bool more) 3836 { 3837 unsigned int len; 3838 int rc; 3839 3840 if (dev_nit_active_rcu(dev)) 3841 dev_queue_xmit_nit(skb, dev); 3842 3843 len = skb->len; 3844 trace_net_dev_start_xmit(skb, dev); 3845 rc = netdev_start_xmit(skb, dev, txq, more); 3846 trace_net_dev_xmit(skb, rc, dev, len); 3847 3848 return rc; 3849 } 3850 3851 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev, 3852 struct netdev_queue *txq, int *ret) 3853 { 3854 struct sk_buff *skb = first; 3855 int rc = NETDEV_TX_OK; 3856 3857 while (skb) { 3858 struct sk_buff *next = skb->next; 3859 3860 skb_mark_not_on_list(skb); 3861 rc = xmit_one(skb, dev, txq, next != NULL); 3862 if (unlikely(!dev_xmit_complete(rc))) { 3863 skb->next = next; 3864 goto out; 3865 } 3866 3867 skb = next; 3868 if (netif_tx_queue_stopped(txq) && skb) { 3869 rc = NETDEV_TX_BUSY; 3870 break; 3871 } 3872 } 3873 3874 out: 3875 *ret = rc; 3876 return skb; 3877 } 3878 3879 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb, 3880 netdev_features_t features) 3881 { 3882 if (skb_vlan_tag_present(skb) && 3883 !vlan_hw_offload_capable(features, skb->vlan_proto)) 3884 skb = __vlan_hwaccel_push_inside(skb); 3885 return skb; 3886 } 3887 3888 int skb_csum_hwoffload_help(struct sk_buff *skb, 3889 const netdev_features_t features) 3890 { 3891 if (unlikely(skb_csum_is_sctp(skb))) 3892 return !!(features & NETIF_F_SCTP_CRC) ? 0 : 3893 skb_crc32c_csum_help(skb); 3894 3895 if (features & NETIF_F_HW_CSUM) 3896 return 0; 3897 3898 if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) { 3899 if (vlan_get_protocol(skb) == htons(ETH_P_IPV6) && 3900 skb_network_header_len(skb) != sizeof(struct ipv6hdr) && 3901 !ipv6_has_hopopt_jumbo(skb)) 3902 goto sw_checksum; 3903 3904 switch (skb->csum_offset) { 3905 case offsetof(struct tcphdr, check): 3906 case offsetof(struct udphdr, check): 3907 return 0; 3908 } 3909 } 3910 3911 sw_checksum: 3912 return skb_checksum_help(skb); 3913 } 3914 EXPORT_SYMBOL(skb_csum_hwoffload_help); 3915 3916 /* Checks if this SKB belongs to an HW offloaded socket 3917 * and whether any SW fallbacks are required based on dev. 3918 * Check decrypted mark in case skb_orphan() cleared socket. 3919 */ 3920 static struct sk_buff *sk_validate_xmit_skb(struct sk_buff *skb, 3921 struct net_device *dev) 3922 { 3923 #ifdef CONFIG_SOCK_VALIDATE_XMIT 3924 struct sk_buff *(*sk_validate)(struct sock *sk, struct net_device *dev, 3925 struct sk_buff *skb); 3926 struct sock *sk = skb->sk; 3927 3928 sk_validate = NULL; 3929 if (sk) { 3930 if (sk_fullsock(sk)) 3931 sk_validate = sk->sk_validate_xmit_skb; 3932 else if (sk_is_inet(sk) && sk->sk_state == TCP_TIME_WAIT) 3933 sk_validate = inet_twsk(sk)->tw_validate_xmit_skb; 3934 } 3935 3936 if (sk_validate) { 3937 skb = sk_validate(sk, dev, skb); 3938 } else if (unlikely(skb_is_decrypted(skb))) { 3939 pr_warn_ratelimited("unencrypted skb with no associated socket - dropping\n"); 3940 kfree_skb(skb); 3941 skb = NULL; 3942 } 3943 #endif 3944 3945 return skb; 3946 } 3947 3948 static struct sk_buff *validate_xmit_unreadable_skb(struct sk_buff *skb, 3949 struct net_device *dev) 3950 { 3951 struct skb_shared_info *shinfo; 3952 struct net_iov *niov; 3953 3954 if (likely(skb_frags_readable(skb))) 3955 goto out; 3956 3957 if (!dev->netmem_tx) 3958 goto out_free; 3959 3960 shinfo = skb_shinfo(skb); 3961 3962 if (shinfo->nr_frags > 0) { 3963 niov = netmem_to_net_iov(skb_frag_netmem(&shinfo->frags[0])); 3964 if (net_is_devmem_iov(niov) && 3965 net_devmem_iov_binding(niov)->dev != dev) 3966 goto out_free; 3967 } 3968 3969 out: 3970 return skb; 3971 3972 out_free: 3973 kfree_skb(skb); 3974 return NULL; 3975 } 3976 3977 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again) 3978 { 3979 netdev_features_t features; 3980 3981 skb = validate_xmit_unreadable_skb(skb, dev); 3982 if (unlikely(!skb)) 3983 goto out_null; 3984 3985 features = netif_skb_features(skb); 3986 skb = validate_xmit_vlan(skb, features); 3987 if (unlikely(!skb)) 3988 goto out_null; 3989 3990 skb = sk_validate_xmit_skb(skb, dev); 3991 if (unlikely(!skb)) 3992 goto out_null; 3993 3994 if (netif_needs_gso(skb, features)) { 3995 struct sk_buff *segs; 3996 3997 segs = skb_gso_segment(skb, features); 3998 if (IS_ERR(segs)) { 3999 goto out_kfree_skb; 4000 } else if (segs) { 4001 consume_skb(skb); 4002 skb = segs; 4003 } 4004 } else { 4005 if (skb_needs_linearize(skb, features) && 4006 __skb_linearize(skb)) 4007 goto out_kfree_skb; 4008 4009 /* If packet is not checksummed and device does not 4010 * support checksumming for this protocol, complete 4011 * checksumming here. 4012 */ 4013 if (skb->ip_summed == CHECKSUM_PARTIAL) { 4014 if (skb->encapsulation) 4015 skb_set_inner_transport_header(skb, 4016 skb_checksum_start_offset(skb)); 4017 else 4018 skb_set_transport_header(skb, 4019 skb_checksum_start_offset(skb)); 4020 if (skb_csum_hwoffload_help(skb, features)) 4021 goto out_kfree_skb; 4022 } 4023 } 4024 4025 skb = validate_xmit_xfrm(skb, features, again); 4026 4027 return skb; 4028 4029 out_kfree_skb: 4030 kfree_skb(skb); 4031 out_null: 4032 dev_core_stats_tx_dropped_inc(dev); 4033 return NULL; 4034 } 4035 4036 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again) 4037 { 4038 struct sk_buff *next, *head = NULL, *tail; 4039 4040 for (; skb != NULL; skb = next) { 4041 next = skb->next; 4042 skb_mark_not_on_list(skb); 4043 4044 /* in case skb won't be segmented, point to itself */ 4045 skb->prev = skb; 4046 4047 skb = validate_xmit_skb(skb, dev, again); 4048 if (!skb) 4049 continue; 4050 4051 if (!head) 4052 head = skb; 4053 else 4054 tail->next = skb; 4055 /* If skb was segmented, skb->prev points to 4056 * the last segment. If not, it still contains skb. 4057 */ 4058 tail = skb->prev; 4059 } 4060 return head; 4061 } 4062 EXPORT_SYMBOL_GPL(validate_xmit_skb_list); 4063 4064 static void qdisc_pkt_len_init(struct sk_buff *skb) 4065 { 4066 const struct skb_shared_info *shinfo = skb_shinfo(skb); 4067 4068 qdisc_skb_cb(skb)->pkt_len = skb->len; 4069 4070 /* To get more precise estimation of bytes sent on wire, 4071 * we add to pkt_len the headers size of all segments 4072 */ 4073 if (shinfo->gso_size && skb_transport_header_was_set(skb)) { 4074 u16 gso_segs = shinfo->gso_segs; 4075 unsigned int hdr_len; 4076 4077 /* mac layer + network layer */ 4078 if (!skb->encapsulation) 4079 hdr_len = skb_transport_offset(skb); 4080 else 4081 hdr_len = skb_inner_transport_offset(skb); 4082 4083 /* + transport layer */ 4084 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) { 4085 const struct tcphdr *th; 4086 struct tcphdr _tcphdr; 4087 4088 th = skb_header_pointer(skb, hdr_len, 4089 sizeof(_tcphdr), &_tcphdr); 4090 if (likely(th)) 4091 hdr_len += __tcp_hdrlen(th); 4092 } else if (shinfo->gso_type & SKB_GSO_UDP_L4) { 4093 struct udphdr _udphdr; 4094 4095 if (skb_header_pointer(skb, hdr_len, 4096 sizeof(_udphdr), &_udphdr)) 4097 hdr_len += sizeof(struct udphdr); 4098 } 4099 4100 if (unlikely(shinfo->gso_type & SKB_GSO_DODGY)) { 4101 int payload = skb->len - hdr_len; 4102 4103 /* Malicious packet. */ 4104 if (payload <= 0) 4105 return; 4106 gso_segs = DIV_ROUND_UP(payload, shinfo->gso_size); 4107 } 4108 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len; 4109 } 4110 } 4111 4112 static int dev_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *q, 4113 struct sk_buff **to_free, 4114 struct netdev_queue *txq) 4115 { 4116 int rc; 4117 4118 rc = q->enqueue(skb, q, to_free) & NET_XMIT_MASK; 4119 if (rc == NET_XMIT_SUCCESS) 4120 trace_qdisc_enqueue(q, txq, skb); 4121 return rc; 4122 } 4123 4124 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q, 4125 struct net_device *dev, 4126 struct netdev_queue *txq) 4127 { 4128 spinlock_t *root_lock = qdisc_lock(q); 4129 struct sk_buff *to_free = NULL; 4130 bool contended; 4131 int rc; 4132 4133 qdisc_calculate_pkt_len(skb, q); 4134 4135 tcf_set_drop_reason(skb, SKB_DROP_REASON_QDISC_DROP); 4136 4137 if (q->flags & TCQ_F_NOLOCK) { 4138 if (q->flags & TCQ_F_CAN_BYPASS && nolock_qdisc_is_empty(q) && 4139 qdisc_run_begin(q)) { 4140 /* Retest nolock_qdisc_is_empty() within the protection 4141 * of q->seqlock to protect from racing with requeuing. 4142 */ 4143 if (unlikely(!nolock_qdisc_is_empty(q))) { 4144 rc = dev_qdisc_enqueue(skb, q, &to_free, txq); 4145 __qdisc_run(q); 4146 qdisc_run_end(q); 4147 4148 goto no_lock_out; 4149 } 4150 4151 qdisc_bstats_cpu_update(q, skb); 4152 if (sch_direct_xmit(skb, q, dev, txq, NULL, true) && 4153 !nolock_qdisc_is_empty(q)) 4154 __qdisc_run(q); 4155 4156 qdisc_run_end(q); 4157 return NET_XMIT_SUCCESS; 4158 } 4159 4160 rc = dev_qdisc_enqueue(skb, q, &to_free, txq); 4161 qdisc_run(q); 4162 4163 no_lock_out: 4164 if (unlikely(to_free)) 4165 kfree_skb_list_reason(to_free, 4166 tcf_get_drop_reason(to_free)); 4167 return rc; 4168 } 4169 4170 if (unlikely(READ_ONCE(q->owner) == smp_processor_id())) { 4171 kfree_skb_reason(skb, SKB_DROP_REASON_TC_RECLASSIFY_LOOP); 4172 return NET_XMIT_DROP; 4173 } 4174 /* 4175 * Heuristic to force contended enqueues to serialize on a 4176 * separate lock before trying to get qdisc main lock. 4177 * This permits qdisc->running owner to get the lock more 4178 * often and dequeue packets faster. 4179 * On PREEMPT_RT it is possible to preempt the qdisc owner during xmit 4180 * and then other tasks will only enqueue packets. The packets will be 4181 * sent after the qdisc owner is scheduled again. To prevent this 4182 * scenario the task always serialize on the lock. 4183 */ 4184 contended = qdisc_is_running(q) || IS_ENABLED(CONFIG_PREEMPT_RT); 4185 if (unlikely(contended)) 4186 spin_lock(&q->busylock); 4187 4188 spin_lock(root_lock); 4189 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) { 4190 __qdisc_drop(skb, &to_free); 4191 rc = NET_XMIT_DROP; 4192 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) && 4193 qdisc_run_begin(q)) { 4194 /* 4195 * This is a work-conserving queue; there are no old skbs 4196 * waiting to be sent out; and the qdisc is not running - 4197 * xmit the skb directly. 4198 */ 4199 4200 qdisc_bstats_update(q, skb); 4201 4202 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) { 4203 if (unlikely(contended)) { 4204 spin_unlock(&q->busylock); 4205 contended = false; 4206 } 4207 __qdisc_run(q); 4208 } 4209 4210 qdisc_run_end(q); 4211 rc = NET_XMIT_SUCCESS; 4212 } else { 4213 WRITE_ONCE(q->owner, smp_processor_id()); 4214 rc = dev_qdisc_enqueue(skb, q, &to_free, txq); 4215 WRITE_ONCE(q->owner, -1); 4216 if (qdisc_run_begin(q)) { 4217 if (unlikely(contended)) { 4218 spin_unlock(&q->busylock); 4219 contended = false; 4220 } 4221 __qdisc_run(q); 4222 qdisc_run_end(q); 4223 } 4224 } 4225 spin_unlock(root_lock); 4226 if (unlikely(to_free)) 4227 kfree_skb_list_reason(to_free, 4228 tcf_get_drop_reason(to_free)); 4229 if (unlikely(contended)) 4230 spin_unlock(&q->busylock); 4231 return rc; 4232 } 4233 4234 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO) 4235 static void skb_update_prio(struct sk_buff *skb) 4236 { 4237 const struct netprio_map *map; 4238 const struct sock *sk; 4239 unsigned int prioidx; 4240 4241 if (skb->priority) 4242 return; 4243 map = rcu_dereference_bh(skb->dev->priomap); 4244 if (!map) 4245 return; 4246 sk = skb_to_full_sk(skb); 4247 if (!sk) 4248 return; 4249 4250 prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data); 4251 4252 if (prioidx < map->priomap_len) 4253 skb->priority = map->priomap[prioidx]; 4254 } 4255 #else 4256 #define skb_update_prio(skb) 4257 #endif 4258 4259 /** 4260 * dev_loopback_xmit - loop back @skb 4261 * @net: network namespace this loopback is happening in 4262 * @sk: sk needed to be a netfilter okfn 4263 * @skb: buffer to transmit 4264 */ 4265 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb) 4266 { 4267 skb_reset_mac_header(skb); 4268 __skb_pull(skb, skb_network_offset(skb)); 4269 skb->pkt_type = PACKET_LOOPBACK; 4270 if (skb->ip_summed == CHECKSUM_NONE) 4271 skb->ip_summed = CHECKSUM_UNNECESSARY; 4272 DEBUG_NET_WARN_ON_ONCE(!skb_dst(skb)); 4273 skb_dst_force(skb); 4274 netif_rx(skb); 4275 return 0; 4276 } 4277 EXPORT_SYMBOL(dev_loopback_xmit); 4278 4279 #ifdef CONFIG_NET_EGRESS 4280 static struct netdev_queue * 4281 netdev_tx_queue_mapping(struct net_device *dev, struct sk_buff *skb) 4282 { 4283 int qm = skb_get_queue_mapping(skb); 4284 4285 return netdev_get_tx_queue(dev, netdev_cap_txqueue(dev, qm)); 4286 } 4287 4288 #ifndef CONFIG_PREEMPT_RT 4289 static bool netdev_xmit_txqueue_skipped(void) 4290 { 4291 return __this_cpu_read(softnet_data.xmit.skip_txqueue); 4292 } 4293 4294 void netdev_xmit_skip_txqueue(bool skip) 4295 { 4296 __this_cpu_write(softnet_data.xmit.skip_txqueue, skip); 4297 } 4298 EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue); 4299 4300 #else 4301 static bool netdev_xmit_txqueue_skipped(void) 4302 { 4303 return current->net_xmit.skip_txqueue; 4304 } 4305 4306 void netdev_xmit_skip_txqueue(bool skip) 4307 { 4308 current->net_xmit.skip_txqueue = skip; 4309 } 4310 EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue); 4311 #endif 4312 #endif /* CONFIG_NET_EGRESS */ 4313 4314 #ifdef CONFIG_NET_XGRESS 4315 static int tc_run(struct tcx_entry *entry, struct sk_buff *skb, 4316 enum skb_drop_reason *drop_reason) 4317 { 4318 int ret = TC_ACT_UNSPEC; 4319 #ifdef CONFIG_NET_CLS_ACT 4320 struct mini_Qdisc *miniq = rcu_dereference_bh(entry->miniq); 4321 struct tcf_result res; 4322 4323 if (!miniq) 4324 return ret; 4325 4326 /* Global bypass */ 4327 if (!static_branch_likely(&tcf_sw_enabled_key)) 4328 return ret; 4329 4330 /* Block-wise bypass */ 4331 if (tcf_block_bypass_sw(miniq->block)) 4332 return ret; 4333 4334 tc_skb_cb(skb)->mru = 0; 4335 tc_skb_cb(skb)->post_ct = false; 4336 tcf_set_drop_reason(skb, *drop_reason); 4337 4338 mini_qdisc_bstats_cpu_update(miniq, skb); 4339 ret = tcf_classify(skb, miniq->block, miniq->filter_list, &res, false); 4340 /* Only tcf related quirks below. */ 4341 switch (ret) { 4342 case TC_ACT_SHOT: 4343 *drop_reason = tcf_get_drop_reason(skb); 4344 mini_qdisc_qstats_cpu_drop(miniq); 4345 break; 4346 case TC_ACT_OK: 4347 case TC_ACT_RECLASSIFY: 4348 skb->tc_index = TC_H_MIN(res.classid); 4349 break; 4350 } 4351 #endif /* CONFIG_NET_CLS_ACT */ 4352 return ret; 4353 } 4354 4355 static DEFINE_STATIC_KEY_FALSE(tcx_needed_key); 4356 4357 void tcx_inc(void) 4358 { 4359 static_branch_inc(&tcx_needed_key); 4360 } 4361 4362 void tcx_dec(void) 4363 { 4364 static_branch_dec(&tcx_needed_key); 4365 } 4366 4367 static __always_inline enum tcx_action_base 4368 tcx_run(const struct bpf_mprog_entry *entry, struct sk_buff *skb, 4369 const bool needs_mac) 4370 { 4371 const struct bpf_mprog_fp *fp; 4372 const struct bpf_prog *prog; 4373 int ret = TCX_NEXT; 4374 4375 if (needs_mac) 4376 __skb_push(skb, skb->mac_len); 4377 bpf_mprog_foreach_prog(entry, fp, prog) { 4378 bpf_compute_data_pointers(skb); 4379 ret = bpf_prog_run(prog, skb); 4380 if (ret != TCX_NEXT) 4381 break; 4382 } 4383 if (needs_mac) 4384 __skb_pull(skb, skb->mac_len); 4385 return tcx_action_code(skb, ret); 4386 } 4387 4388 static __always_inline struct sk_buff * 4389 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret, 4390 struct net_device *orig_dev, bool *another) 4391 { 4392 struct bpf_mprog_entry *entry = rcu_dereference_bh(skb->dev->tcx_ingress); 4393 enum skb_drop_reason drop_reason = SKB_DROP_REASON_TC_INGRESS; 4394 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx; 4395 int sch_ret; 4396 4397 if (!entry) 4398 return skb; 4399 4400 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx); 4401 if (*pt_prev) { 4402 *ret = deliver_skb(skb, *pt_prev, orig_dev); 4403 *pt_prev = NULL; 4404 } 4405 4406 qdisc_skb_cb(skb)->pkt_len = skb->len; 4407 tcx_set_ingress(skb, true); 4408 4409 if (static_branch_unlikely(&tcx_needed_key)) { 4410 sch_ret = tcx_run(entry, skb, true); 4411 if (sch_ret != TC_ACT_UNSPEC) 4412 goto ingress_verdict; 4413 } 4414 sch_ret = tc_run(tcx_entry(entry), skb, &drop_reason); 4415 ingress_verdict: 4416 switch (sch_ret) { 4417 case TC_ACT_REDIRECT: 4418 /* skb_mac_header check was done by BPF, so we can safely 4419 * push the L2 header back before redirecting to another 4420 * netdev. 4421 */ 4422 __skb_push(skb, skb->mac_len); 4423 if (skb_do_redirect(skb) == -EAGAIN) { 4424 __skb_pull(skb, skb->mac_len); 4425 *another = true; 4426 break; 4427 } 4428 *ret = NET_RX_SUCCESS; 4429 bpf_net_ctx_clear(bpf_net_ctx); 4430 return NULL; 4431 case TC_ACT_SHOT: 4432 kfree_skb_reason(skb, drop_reason); 4433 *ret = NET_RX_DROP; 4434 bpf_net_ctx_clear(bpf_net_ctx); 4435 return NULL; 4436 /* used by tc_run */ 4437 case TC_ACT_STOLEN: 4438 case TC_ACT_QUEUED: 4439 case TC_ACT_TRAP: 4440 consume_skb(skb); 4441 fallthrough; 4442 case TC_ACT_CONSUMED: 4443 *ret = NET_RX_SUCCESS; 4444 bpf_net_ctx_clear(bpf_net_ctx); 4445 return NULL; 4446 } 4447 bpf_net_ctx_clear(bpf_net_ctx); 4448 4449 return skb; 4450 } 4451 4452 static __always_inline struct sk_buff * 4453 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev) 4454 { 4455 struct bpf_mprog_entry *entry = rcu_dereference_bh(dev->tcx_egress); 4456 enum skb_drop_reason drop_reason = SKB_DROP_REASON_TC_EGRESS; 4457 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx; 4458 int sch_ret; 4459 4460 if (!entry) 4461 return skb; 4462 4463 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx); 4464 4465 /* qdisc_skb_cb(skb)->pkt_len & tcx_set_ingress() was 4466 * already set by the caller. 4467 */ 4468 if (static_branch_unlikely(&tcx_needed_key)) { 4469 sch_ret = tcx_run(entry, skb, false); 4470 if (sch_ret != TC_ACT_UNSPEC) 4471 goto egress_verdict; 4472 } 4473 sch_ret = tc_run(tcx_entry(entry), skb, &drop_reason); 4474 egress_verdict: 4475 switch (sch_ret) { 4476 case TC_ACT_REDIRECT: 4477 /* No need to push/pop skb's mac_header here on egress! */ 4478 skb_do_redirect(skb); 4479 *ret = NET_XMIT_SUCCESS; 4480 bpf_net_ctx_clear(bpf_net_ctx); 4481 return NULL; 4482 case TC_ACT_SHOT: 4483 kfree_skb_reason(skb, drop_reason); 4484 *ret = NET_XMIT_DROP; 4485 bpf_net_ctx_clear(bpf_net_ctx); 4486 return NULL; 4487 /* used by tc_run */ 4488 case TC_ACT_STOLEN: 4489 case TC_ACT_QUEUED: 4490 case TC_ACT_TRAP: 4491 consume_skb(skb); 4492 fallthrough; 4493 case TC_ACT_CONSUMED: 4494 *ret = NET_XMIT_SUCCESS; 4495 bpf_net_ctx_clear(bpf_net_ctx); 4496 return NULL; 4497 } 4498 bpf_net_ctx_clear(bpf_net_ctx); 4499 4500 return skb; 4501 } 4502 #else 4503 static __always_inline struct sk_buff * 4504 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret, 4505 struct net_device *orig_dev, bool *another) 4506 { 4507 return skb; 4508 } 4509 4510 static __always_inline struct sk_buff * 4511 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev) 4512 { 4513 return skb; 4514 } 4515 #endif /* CONFIG_NET_XGRESS */ 4516 4517 #ifdef CONFIG_XPS 4518 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb, 4519 struct xps_dev_maps *dev_maps, unsigned int tci) 4520 { 4521 int tc = netdev_get_prio_tc_map(dev, skb->priority); 4522 struct xps_map *map; 4523 int queue_index = -1; 4524 4525 if (tc >= dev_maps->num_tc || tci >= dev_maps->nr_ids) 4526 return queue_index; 4527 4528 tci *= dev_maps->num_tc; 4529 tci += tc; 4530 4531 map = rcu_dereference(dev_maps->attr_map[tci]); 4532 if (map) { 4533 if (map->len == 1) 4534 queue_index = map->queues[0]; 4535 else 4536 queue_index = map->queues[reciprocal_scale( 4537 skb_get_hash(skb), map->len)]; 4538 if (unlikely(queue_index >= dev->real_num_tx_queues)) 4539 queue_index = -1; 4540 } 4541 return queue_index; 4542 } 4543 #endif 4544 4545 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev, 4546 struct sk_buff *skb) 4547 { 4548 #ifdef CONFIG_XPS 4549 struct xps_dev_maps *dev_maps; 4550 struct sock *sk = skb->sk; 4551 int queue_index = -1; 4552 4553 if (!static_key_false(&xps_needed)) 4554 return -1; 4555 4556 rcu_read_lock(); 4557 if (!static_key_false(&xps_rxqs_needed)) 4558 goto get_cpus_map; 4559 4560 dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_RXQS]); 4561 if (dev_maps) { 4562 int tci = sk_rx_queue_get(sk); 4563 4564 if (tci >= 0) 4565 queue_index = __get_xps_queue_idx(dev, skb, dev_maps, 4566 tci); 4567 } 4568 4569 get_cpus_map: 4570 if (queue_index < 0) { 4571 dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_CPUS]); 4572 if (dev_maps) { 4573 unsigned int tci = skb->sender_cpu - 1; 4574 4575 queue_index = __get_xps_queue_idx(dev, skb, dev_maps, 4576 tci); 4577 } 4578 } 4579 rcu_read_unlock(); 4580 4581 return queue_index; 4582 #else 4583 return -1; 4584 #endif 4585 } 4586 4587 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb, 4588 struct net_device *sb_dev) 4589 { 4590 return 0; 4591 } 4592 EXPORT_SYMBOL(dev_pick_tx_zero); 4593 4594 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb, 4595 struct net_device *sb_dev) 4596 { 4597 struct sock *sk = skb->sk; 4598 int queue_index = sk_tx_queue_get(sk); 4599 4600 sb_dev = sb_dev ? : dev; 4601 4602 if (queue_index < 0 || skb->ooo_okay || 4603 queue_index >= dev->real_num_tx_queues) { 4604 int new_index = get_xps_queue(dev, sb_dev, skb); 4605 4606 if (new_index < 0) 4607 new_index = skb_tx_hash(dev, sb_dev, skb); 4608 4609 if (queue_index != new_index && sk && 4610 sk_fullsock(sk) && 4611 rcu_access_pointer(sk->sk_dst_cache)) 4612 sk_tx_queue_set(sk, new_index); 4613 4614 queue_index = new_index; 4615 } 4616 4617 return queue_index; 4618 } 4619 EXPORT_SYMBOL(netdev_pick_tx); 4620 4621 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev, 4622 struct sk_buff *skb, 4623 struct net_device *sb_dev) 4624 { 4625 int queue_index = 0; 4626 4627 #ifdef CONFIG_XPS 4628 u32 sender_cpu = skb->sender_cpu - 1; 4629 4630 if (sender_cpu >= (u32)NR_CPUS) 4631 skb->sender_cpu = raw_smp_processor_id() + 1; 4632 #endif 4633 4634 if (dev->real_num_tx_queues != 1) { 4635 const struct net_device_ops *ops = dev->netdev_ops; 4636 4637 if (ops->ndo_select_queue) 4638 queue_index = ops->ndo_select_queue(dev, skb, sb_dev); 4639 else 4640 queue_index = netdev_pick_tx(dev, skb, sb_dev); 4641 4642 queue_index = netdev_cap_txqueue(dev, queue_index); 4643 } 4644 4645 skb_set_queue_mapping(skb, queue_index); 4646 return netdev_get_tx_queue(dev, queue_index); 4647 } 4648 4649 /** 4650 * __dev_queue_xmit() - transmit a buffer 4651 * @skb: buffer to transmit 4652 * @sb_dev: suboordinate device used for L2 forwarding offload 4653 * 4654 * Queue a buffer for transmission to a network device. The caller must 4655 * have set the device and priority and built the buffer before calling 4656 * this function. The function can be called from an interrupt. 4657 * 4658 * When calling this method, interrupts MUST be enabled. This is because 4659 * the BH enable code must have IRQs enabled so that it will not deadlock. 4660 * 4661 * Regardless of the return value, the skb is consumed, so it is currently 4662 * difficult to retry a send to this method. (You can bump the ref count 4663 * before sending to hold a reference for retry if you are careful.) 4664 * 4665 * Return: 4666 * * 0 - buffer successfully transmitted 4667 * * positive qdisc return code - NET_XMIT_DROP etc. 4668 * * negative errno - other errors 4669 */ 4670 int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev) 4671 { 4672 struct net_device *dev = skb->dev; 4673 struct netdev_queue *txq = NULL; 4674 struct Qdisc *q; 4675 int rc = -ENOMEM; 4676 bool again = false; 4677 4678 skb_reset_mac_header(skb); 4679 skb_assert_len(skb); 4680 4681 if (unlikely(skb_shinfo(skb)->tx_flags & 4682 (SKBTX_SCHED_TSTAMP | SKBTX_BPF))) 4683 __skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED); 4684 4685 /* Disable soft irqs for various locks below. Also 4686 * stops preemption for RCU. 4687 */ 4688 rcu_read_lock_bh(); 4689 4690 skb_update_prio(skb); 4691 4692 qdisc_pkt_len_init(skb); 4693 tcx_set_ingress(skb, false); 4694 #ifdef CONFIG_NET_EGRESS 4695 if (static_branch_unlikely(&egress_needed_key)) { 4696 if (nf_hook_egress_active()) { 4697 skb = nf_hook_egress(skb, &rc, dev); 4698 if (!skb) 4699 goto out; 4700 } 4701 4702 netdev_xmit_skip_txqueue(false); 4703 4704 nf_skip_egress(skb, true); 4705 skb = sch_handle_egress(skb, &rc, dev); 4706 if (!skb) 4707 goto out; 4708 nf_skip_egress(skb, false); 4709 4710 if (netdev_xmit_txqueue_skipped()) 4711 txq = netdev_tx_queue_mapping(dev, skb); 4712 } 4713 #endif 4714 /* If device/qdisc don't need skb->dst, release it right now while 4715 * its hot in this cpu cache. 4716 */ 4717 if (dev->priv_flags & IFF_XMIT_DST_RELEASE) 4718 skb_dst_drop(skb); 4719 else 4720 skb_dst_force(skb); 4721 4722 if (!txq) 4723 txq = netdev_core_pick_tx(dev, skb, sb_dev); 4724 4725 q = rcu_dereference_bh(txq->qdisc); 4726 4727 trace_net_dev_queue(skb); 4728 if (q->enqueue) { 4729 rc = __dev_xmit_skb(skb, q, dev, txq); 4730 goto out; 4731 } 4732 4733 /* The device has no queue. Common case for software devices: 4734 * loopback, all the sorts of tunnels... 4735 4736 * Really, it is unlikely that netif_tx_lock protection is necessary 4737 * here. (f.e. loopback and IP tunnels are clean ignoring statistics 4738 * counters.) 4739 * However, it is possible, that they rely on protection 4740 * made by us here. 4741 4742 * Check this and shot the lock. It is not prone from deadlocks. 4743 *Either shot noqueue qdisc, it is even simpler 8) 4744 */ 4745 if (dev->flags & IFF_UP) { 4746 int cpu = smp_processor_id(); /* ok because BHs are off */ 4747 4748 /* Other cpus might concurrently change txq->xmit_lock_owner 4749 * to -1 or to their cpu id, but not to our id. 4750 */ 4751 if (READ_ONCE(txq->xmit_lock_owner) != cpu) { 4752 if (dev_xmit_recursion()) 4753 goto recursion_alert; 4754 4755 skb = validate_xmit_skb(skb, dev, &again); 4756 if (!skb) 4757 goto out; 4758 4759 HARD_TX_LOCK(dev, txq, cpu); 4760 4761 if (!netif_xmit_stopped(txq)) { 4762 dev_xmit_recursion_inc(); 4763 skb = dev_hard_start_xmit(skb, dev, txq, &rc); 4764 dev_xmit_recursion_dec(); 4765 if (dev_xmit_complete(rc)) { 4766 HARD_TX_UNLOCK(dev, txq); 4767 goto out; 4768 } 4769 } 4770 HARD_TX_UNLOCK(dev, txq); 4771 net_crit_ratelimited("Virtual device %s asks to queue packet!\n", 4772 dev->name); 4773 } else { 4774 /* Recursion is detected! It is possible, 4775 * unfortunately 4776 */ 4777 recursion_alert: 4778 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n", 4779 dev->name); 4780 } 4781 } 4782 4783 rc = -ENETDOWN; 4784 rcu_read_unlock_bh(); 4785 4786 dev_core_stats_tx_dropped_inc(dev); 4787 kfree_skb_list(skb); 4788 return rc; 4789 out: 4790 rcu_read_unlock_bh(); 4791 return rc; 4792 } 4793 EXPORT_SYMBOL(__dev_queue_xmit); 4794 4795 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id) 4796 { 4797 struct net_device *dev = skb->dev; 4798 struct sk_buff *orig_skb = skb; 4799 struct netdev_queue *txq; 4800 int ret = NETDEV_TX_BUSY; 4801 bool again = false; 4802 4803 if (unlikely(!netif_running(dev) || 4804 !netif_carrier_ok(dev))) 4805 goto drop; 4806 4807 skb = validate_xmit_skb_list(skb, dev, &again); 4808 if (skb != orig_skb) 4809 goto drop; 4810 4811 skb_set_queue_mapping(skb, queue_id); 4812 txq = skb_get_tx_queue(dev, skb); 4813 4814 local_bh_disable(); 4815 4816 dev_xmit_recursion_inc(); 4817 HARD_TX_LOCK(dev, txq, smp_processor_id()); 4818 if (!netif_xmit_frozen_or_drv_stopped(txq)) 4819 ret = netdev_start_xmit(skb, dev, txq, false); 4820 HARD_TX_UNLOCK(dev, txq); 4821 dev_xmit_recursion_dec(); 4822 4823 local_bh_enable(); 4824 return ret; 4825 drop: 4826 dev_core_stats_tx_dropped_inc(dev); 4827 kfree_skb_list(skb); 4828 return NET_XMIT_DROP; 4829 } 4830 EXPORT_SYMBOL(__dev_direct_xmit); 4831 4832 /************************************************************************* 4833 * Receiver routines 4834 *************************************************************************/ 4835 static DEFINE_PER_CPU(struct task_struct *, backlog_napi); 4836 4837 int weight_p __read_mostly = 64; /* old backlog weight */ 4838 int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */ 4839 int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */ 4840 4841 /* Called with irq disabled */ 4842 static inline void ____napi_schedule(struct softnet_data *sd, 4843 struct napi_struct *napi) 4844 { 4845 struct task_struct *thread; 4846 4847 lockdep_assert_irqs_disabled(); 4848 4849 if (test_bit(NAPI_STATE_THREADED, &napi->state)) { 4850 /* Paired with smp_mb__before_atomic() in 4851 * napi_enable()/netif_set_threaded(). 4852 * Use READ_ONCE() to guarantee a complete 4853 * read on napi->thread. Only call 4854 * wake_up_process() when it's not NULL. 4855 */ 4856 thread = READ_ONCE(napi->thread); 4857 if (thread) { 4858 if (use_backlog_threads() && thread == raw_cpu_read(backlog_napi)) 4859 goto use_local_napi; 4860 4861 set_bit(NAPI_STATE_SCHED_THREADED, &napi->state); 4862 wake_up_process(thread); 4863 return; 4864 } 4865 } 4866 4867 use_local_napi: 4868 DEBUG_NET_WARN_ON_ONCE(!list_empty(&napi->poll_list)); 4869 list_add_tail(&napi->poll_list, &sd->poll_list); 4870 WRITE_ONCE(napi->list_owner, smp_processor_id()); 4871 /* If not called from net_rx_action() 4872 * we have to raise NET_RX_SOFTIRQ. 4873 */ 4874 if (!sd->in_net_rx_action) 4875 raise_softirq_irqoff(NET_RX_SOFTIRQ); 4876 } 4877 4878 #ifdef CONFIG_RPS 4879 4880 struct static_key_false rps_needed __read_mostly; 4881 EXPORT_SYMBOL(rps_needed); 4882 struct static_key_false rfs_needed __read_mostly; 4883 EXPORT_SYMBOL(rfs_needed); 4884 4885 static u32 rfs_slot(u32 hash, const struct rps_dev_flow_table *flow_table) 4886 { 4887 return hash_32(hash, flow_table->log); 4888 } 4889 4890 #ifdef CONFIG_RFS_ACCEL 4891 /** 4892 * rps_flow_is_active - check whether the flow is recently active. 4893 * @rflow: Specific flow to check activity. 4894 * @flow_table: per-queue flowtable that @rflow belongs to. 4895 * @cpu: CPU saved in @rflow. 4896 * 4897 * If the CPU has processed many packets since the flow's last activity 4898 * (beyond 10 times the table size), the flow is considered stale. 4899 * 4900 * Return: true if flow was recently active. 4901 */ 4902 static bool rps_flow_is_active(struct rps_dev_flow *rflow, 4903 struct rps_dev_flow_table *flow_table, 4904 unsigned int cpu) 4905 { 4906 unsigned int flow_last_active; 4907 unsigned int sd_input_head; 4908 4909 if (cpu >= nr_cpu_ids) 4910 return false; 4911 4912 sd_input_head = READ_ONCE(per_cpu(softnet_data, cpu).input_queue_head); 4913 flow_last_active = READ_ONCE(rflow->last_qtail); 4914 4915 return (int)(sd_input_head - flow_last_active) < 4916 (int)(10 << flow_table->log); 4917 } 4918 #endif 4919 4920 static struct rps_dev_flow * 4921 set_rps_cpu(struct net_device *dev, struct sk_buff *skb, 4922 struct rps_dev_flow *rflow, u16 next_cpu, u32 hash, 4923 u32 flow_id) 4924 { 4925 if (next_cpu < nr_cpu_ids) { 4926 u32 head; 4927 #ifdef CONFIG_RFS_ACCEL 4928 struct netdev_rx_queue *rxqueue; 4929 struct rps_dev_flow_table *flow_table; 4930 struct rps_dev_flow *old_rflow; 4931 struct rps_dev_flow *tmp_rflow; 4932 unsigned int tmp_cpu; 4933 u16 rxq_index; 4934 int rc; 4935 4936 /* Should we steer this flow to a different hardware queue? */ 4937 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap || 4938 !(dev->features & NETIF_F_NTUPLE)) 4939 goto out; 4940 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu); 4941 if (rxq_index == skb_get_rx_queue(skb)) 4942 goto out; 4943 4944 rxqueue = dev->_rx + rxq_index; 4945 flow_table = rcu_dereference(rxqueue->rps_flow_table); 4946 if (!flow_table) 4947 goto out; 4948 4949 tmp_rflow = &flow_table->flows[flow_id]; 4950 tmp_cpu = READ_ONCE(tmp_rflow->cpu); 4951 4952 if (READ_ONCE(tmp_rflow->filter) != RPS_NO_FILTER) { 4953 if (rps_flow_is_active(tmp_rflow, flow_table, 4954 tmp_cpu)) { 4955 if (hash != READ_ONCE(tmp_rflow->hash) || 4956 next_cpu == tmp_cpu) 4957 goto out; 4958 } 4959 } 4960 4961 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb, 4962 rxq_index, flow_id); 4963 if (rc < 0) 4964 goto out; 4965 4966 old_rflow = rflow; 4967 rflow = tmp_rflow; 4968 WRITE_ONCE(rflow->filter, rc); 4969 WRITE_ONCE(rflow->hash, hash); 4970 4971 if (old_rflow->filter == rc) 4972 WRITE_ONCE(old_rflow->filter, RPS_NO_FILTER); 4973 out: 4974 #endif 4975 head = READ_ONCE(per_cpu(softnet_data, next_cpu).input_queue_head); 4976 rps_input_queue_tail_save(&rflow->last_qtail, head); 4977 } 4978 4979 WRITE_ONCE(rflow->cpu, next_cpu); 4980 return rflow; 4981 } 4982 4983 /* 4984 * get_rps_cpu is called from netif_receive_skb and returns the target 4985 * CPU from the RPS map of the receiving queue for a given skb. 4986 * rcu_read_lock must be held on entry. 4987 */ 4988 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb, 4989 struct rps_dev_flow **rflowp) 4990 { 4991 const struct rps_sock_flow_table *sock_flow_table; 4992 struct netdev_rx_queue *rxqueue = dev->_rx; 4993 struct rps_dev_flow_table *flow_table; 4994 struct rps_map *map; 4995 int cpu = -1; 4996 u32 flow_id; 4997 u32 tcpu; 4998 u32 hash; 4999 5000 if (skb_rx_queue_recorded(skb)) { 5001 u16 index = skb_get_rx_queue(skb); 5002 5003 if (unlikely(index >= dev->real_num_rx_queues)) { 5004 WARN_ONCE(dev->real_num_rx_queues > 1, 5005 "%s received packet on queue %u, but number " 5006 "of RX queues is %u\n", 5007 dev->name, index, dev->real_num_rx_queues); 5008 goto done; 5009 } 5010 rxqueue += index; 5011 } 5012 5013 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */ 5014 5015 flow_table = rcu_dereference(rxqueue->rps_flow_table); 5016 map = rcu_dereference(rxqueue->rps_map); 5017 if (!flow_table && !map) 5018 goto done; 5019 5020 skb_reset_network_header(skb); 5021 hash = skb_get_hash(skb); 5022 if (!hash) 5023 goto done; 5024 5025 sock_flow_table = rcu_dereference(net_hotdata.rps_sock_flow_table); 5026 if (flow_table && sock_flow_table) { 5027 struct rps_dev_flow *rflow; 5028 u32 next_cpu; 5029 u32 ident; 5030 5031 /* First check into global flow table if there is a match. 5032 * This READ_ONCE() pairs with WRITE_ONCE() from rps_record_sock_flow(). 5033 */ 5034 ident = READ_ONCE(sock_flow_table->ents[hash & sock_flow_table->mask]); 5035 if ((ident ^ hash) & ~net_hotdata.rps_cpu_mask) 5036 goto try_rps; 5037 5038 next_cpu = ident & net_hotdata.rps_cpu_mask; 5039 5040 /* OK, now we know there is a match, 5041 * we can look at the local (per receive queue) flow table 5042 */ 5043 flow_id = rfs_slot(hash, flow_table); 5044 rflow = &flow_table->flows[flow_id]; 5045 tcpu = rflow->cpu; 5046 5047 /* 5048 * If the desired CPU (where last recvmsg was done) is 5049 * different from current CPU (one in the rx-queue flow 5050 * table entry), switch if one of the following holds: 5051 * - Current CPU is unset (>= nr_cpu_ids). 5052 * - Current CPU is offline. 5053 * - The current CPU's queue tail has advanced beyond the 5054 * last packet that was enqueued using this table entry. 5055 * This guarantees that all previous packets for the flow 5056 * have been dequeued, thus preserving in order delivery. 5057 */ 5058 if (unlikely(tcpu != next_cpu) && 5059 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) || 5060 ((int)(READ_ONCE(per_cpu(softnet_data, tcpu).input_queue_head) - 5061 rflow->last_qtail)) >= 0)) { 5062 tcpu = next_cpu; 5063 rflow = set_rps_cpu(dev, skb, rflow, next_cpu, hash, 5064 flow_id); 5065 } 5066 5067 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) { 5068 *rflowp = rflow; 5069 cpu = tcpu; 5070 goto done; 5071 } 5072 } 5073 5074 try_rps: 5075 5076 if (map) { 5077 tcpu = map->cpus[reciprocal_scale(hash, map->len)]; 5078 if (cpu_online(tcpu)) { 5079 cpu = tcpu; 5080 goto done; 5081 } 5082 } 5083 5084 done: 5085 return cpu; 5086 } 5087 5088 #ifdef CONFIG_RFS_ACCEL 5089 5090 /** 5091 * rps_may_expire_flow - check whether an RFS hardware filter may be removed 5092 * @dev: Device on which the filter was set 5093 * @rxq_index: RX queue index 5094 * @flow_id: Flow ID passed to ndo_rx_flow_steer() 5095 * @filter_id: Filter ID returned by ndo_rx_flow_steer() 5096 * 5097 * Drivers that implement ndo_rx_flow_steer() should periodically call 5098 * this function for each installed filter and remove the filters for 5099 * which it returns %true. 5100 */ 5101 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, 5102 u32 flow_id, u16 filter_id) 5103 { 5104 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index; 5105 struct rps_dev_flow_table *flow_table; 5106 struct rps_dev_flow *rflow; 5107 bool expire = true; 5108 5109 rcu_read_lock(); 5110 flow_table = rcu_dereference(rxqueue->rps_flow_table); 5111 if (flow_table && flow_id < (1UL << flow_table->log)) { 5112 unsigned int cpu; 5113 5114 rflow = &flow_table->flows[flow_id]; 5115 cpu = READ_ONCE(rflow->cpu); 5116 if (READ_ONCE(rflow->filter) == filter_id && 5117 rps_flow_is_active(rflow, flow_table, cpu)) 5118 expire = false; 5119 } 5120 rcu_read_unlock(); 5121 return expire; 5122 } 5123 EXPORT_SYMBOL(rps_may_expire_flow); 5124 5125 #endif /* CONFIG_RFS_ACCEL */ 5126 5127 /* Called from hardirq (IPI) context */ 5128 static void rps_trigger_softirq(void *data) 5129 { 5130 struct softnet_data *sd = data; 5131 5132 ____napi_schedule(sd, &sd->backlog); 5133 /* Pairs with READ_ONCE() in softnet_seq_show() */ 5134 WRITE_ONCE(sd->received_rps, sd->received_rps + 1); 5135 } 5136 5137 #endif /* CONFIG_RPS */ 5138 5139 /* Called from hardirq (IPI) context */ 5140 static void trigger_rx_softirq(void *data) 5141 { 5142 struct softnet_data *sd = data; 5143 5144 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 5145 smp_store_release(&sd->defer_ipi_scheduled, 0); 5146 } 5147 5148 /* 5149 * After we queued a packet into sd->input_pkt_queue, 5150 * we need to make sure this queue is serviced soon. 5151 * 5152 * - If this is another cpu queue, link it to our rps_ipi_list, 5153 * and make sure we will process rps_ipi_list from net_rx_action(). 5154 * 5155 * - If this is our own queue, NAPI schedule our backlog. 5156 * Note that this also raises NET_RX_SOFTIRQ. 5157 */ 5158 static void napi_schedule_rps(struct softnet_data *sd) 5159 { 5160 struct softnet_data *mysd = this_cpu_ptr(&softnet_data); 5161 5162 #ifdef CONFIG_RPS 5163 if (sd != mysd) { 5164 if (use_backlog_threads()) { 5165 __napi_schedule_irqoff(&sd->backlog); 5166 return; 5167 } 5168 5169 sd->rps_ipi_next = mysd->rps_ipi_list; 5170 mysd->rps_ipi_list = sd; 5171 5172 /* If not called from net_rx_action() or napi_threaded_poll() 5173 * we have to raise NET_RX_SOFTIRQ. 5174 */ 5175 if (!mysd->in_net_rx_action && !mysd->in_napi_threaded_poll) 5176 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 5177 return; 5178 } 5179 #endif /* CONFIG_RPS */ 5180 __napi_schedule_irqoff(&mysd->backlog); 5181 } 5182 5183 void kick_defer_list_purge(struct softnet_data *sd, unsigned int cpu) 5184 { 5185 unsigned long flags; 5186 5187 if (use_backlog_threads()) { 5188 backlog_lock_irq_save(sd, &flags); 5189 5190 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) 5191 __napi_schedule_irqoff(&sd->backlog); 5192 5193 backlog_unlock_irq_restore(sd, &flags); 5194 5195 } else if (!cmpxchg(&sd->defer_ipi_scheduled, 0, 1)) { 5196 smp_call_function_single_async(cpu, &sd->defer_csd); 5197 } 5198 } 5199 5200 #ifdef CONFIG_NET_FLOW_LIMIT 5201 int netdev_flow_limit_table_len __read_mostly = (1 << 12); 5202 #endif 5203 5204 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen) 5205 { 5206 #ifdef CONFIG_NET_FLOW_LIMIT 5207 struct sd_flow_limit *fl; 5208 struct softnet_data *sd; 5209 unsigned int old_flow, new_flow; 5210 5211 if (qlen < (READ_ONCE(net_hotdata.max_backlog) >> 1)) 5212 return false; 5213 5214 sd = this_cpu_ptr(&softnet_data); 5215 5216 rcu_read_lock(); 5217 fl = rcu_dereference(sd->flow_limit); 5218 if (fl) { 5219 new_flow = hash_32(skb_get_hash(skb), fl->log_buckets); 5220 old_flow = fl->history[fl->history_head]; 5221 fl->history[fl->history_head] = new_flow; 5222 5223 fl->history_head++; 5224 fl->history_head &= FLOW_LIMIT_HISTORY - 1; 5225 5226 if (likely(fl->buckets[old_flow])) 5227 fl->buckets[old_flow]--; 5228 5229 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) { 5230 /* Pairs with READ_ONCE() in softnet_seq_show() */ 5231 WRITE_ONCE(fl->count, fl->count + 1); 5232 rcu_read_unlock(); 5233 return true; 5234 } 5235 } 5236 rcu_read_unlock(); 5237 #endif 5238 return false; 5239 } 5240 5241 /* 5242 * enqueue_to_backlog is called to queue an skb to a per CPU backlog 5243 * queue (may be a remote CPU queue). 5244 */ 5245 static int enqueue_to_backlog(struct sk_buff *skb, int cpu, 5246 unsigned int *qtail) 5247 { 5248 enum skb_drop_reason reason; 5249 struct softnet_data *sd; 5250 unsigned long flags; 5251 unsigned int qlen; 5252 int max_backlog; 5253 u32 tail; 5254 5255 reason = SKB_DROP_REASON_DEV_READY; 5256 if (!netif_running(skb->dev)) 5257 goto bad_dev; 5258 5259 reason = SKB_DROP_REASON_CPU_BACKLOG; 5260 sd = &per_cpu(softnet_data, cpu); 5261 5262 qlen = skb_queue_len_lockless(&sd->input_pkt_queue); 5263 max_backlog = READ_ONCE(net_hotdata.max_backlog); 5264 if (unlikely(qlen > max_backlog)) 5265 goto cpu_backlog_drop; 5266 backlog_lock_irq_save(sd, &flags); 5267 qlen = skb_queue_len(&sd->input_pkt_queue); 5268 if (qlen <= max_backlog && !skb_flow_limit(skb, qlen)) { 5269 if (!qlen) { 5270 /* Schedule NAPI for backlog device. We can use 5271 * non atomic operation as we own the queue lock. 5272 */ 5273 if (!__test_and_set_bit(NAPI_STATE_SCHED, 5274 &sd->backlog.state)) 5275 napi_schedule_rps(sd); 5276 } 5277 __skb_queue_tail(&sd->input_pkt_queue, skb); 5278 tail = rps_input_queue_tail_incr(sd); 5279 backlog_unlock_irq_restore(sd, &flags); 5280 5281 /* save the tail outside of the critical section */ 5282 rps_input_queue_tail_save(qtail, tail); 5283 return NET_RX_SUCCESS; 5284 } 5285 5286 backlog_unlock_irq_restore(sd, &flags); 5287 5288 cpu_backlog_drop: 5289 numa_drop_add(&sd->drop_counters, 1); 5290 bad_dev: 5291 dev_core_stats_rx_dropped_inc(skb->dev); 5292 kfree_skb_reason(skb, reason); 5293 return NET_RX_DROP; 5294 } 5295 5296 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb) 5297 { 5298 struct net_device *dev = skb->dev; 5299 struct netdev_rx_queue *rxqueue; 5300 5301 rxqueue = dev->_rx; 5302 5303 if (skb_rx_queue_recorded(skb)) { 5304 u16 index = skb_get_rx_queue(skb); 5305 5306 if (unlikely(index >= dev->real_num_rx_queues)) { 5307 WARN_ONCE(dev->real_num_rx_queues > 1, 5308 "%s received packet on queue %u, but number " 5309 "of RX queues is %u\n", 5310 dev->name, index, dev->real_num_rx_queues); 5311 5312 return rxqueue; /* Return first rxqueue */ 5313 } 5314 rxqueue += index; 5315 } 5316 return rxqueue; 5317 } 5318 5319 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp, 5320 const struct bpf_prog *xdp_prog) 5321 { 5322 void *orig_data, *orig_data_end, *hard_start; 5323 struct netdev_rx_queue *rxqueue; 5324 bool orig_bcast, orig_host; 5325 u32 mac_len, frame_sz; 5326 __be16 orig_eth_type; 5327 struct ethhdr *eth; 5328 u32 metalen, act; 5329 int off; 5330 5331 /* The XDP program wants to see the packet starting at the MAC 5332 * header. 5333 */ 5334 mac_len = skb->data - skb_mac_header(skb); 5335 hard_start = skb->data - skb_headroom(skb); 5336 5337 /* SKB "head" area always have tailroom for skb_shared_info */ 5338 frame_sz = (void *)skb_end_pointer(skb) - hard_start; 5339 frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 5340 5341 rxqueue = netif_get_rxqueue(skb); 5342 xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq); 5343 xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len, 5344 skb_headlen(skb) + mac_len, true); 5345 if (skb_is_nonlinear(skb)) { 5346 skb_shinfo(skb)->xdp_frags_size = skb->data_len; 5347 xdp_buff_set_frags_flag(xdp); 5348 } else { 5349 xdp_buff_clear_frags_flag(xdp); 5350 } 5351 5352 orig_data_end = xdp->data_end; 5353 orig_data = xdp->data; 5354 eth = (struct ethhdr *)xdp->data; 5355 orig_host = ether_addr_equal_64bits(eth->h_dest, skb->dev->dev_addr); 5356 orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest); 5357 orig_eth_type = eth->h_proto; 5358 5359 act = bpf_prog_run_xdp(xdp_prog, xdp); 5360 5361 /* check if bpf_xdp_adjust_head was used */ 5362 off = xdp->data - orig_data; 5363 if (off) { 5364 if (off > 0) 5365 __skb_pull(skb, off); 5366 else if (off < 0) 5367 __skb_push(skb, -off); 5368 5369 skb->mac_header += off; 5370 skb_reset_network_header(skb); 5371 } 5372 5373 /* check if bpf_xdp_adjust_tail was used */ 5374 off = xdp->data_end - orig_data_end; 5375 if (off != 0) { 5376 skb_set_tail_pointer(skb, xdp->data_end - xdp->data); 5377 skb->len += off; /* positive on grow, negative on shrink */ 5378 } 5379 5380 /* XDP frag metadata (e.g. nr_frags) are updated in eBPF helpers 5381 * (e.g. bpf_xdp_adjust_tail), we need to update data_len here. 5382 */ 5383 if (xdp_buff_has_frags(xdp)) 5384 skb->data_len = skb_shinfo(skb)->xdp_frags_size; 5385 else 5386 skb->data_len = 0; 5387 5388 /* check if XDP changed eth hdr such SKB needs update */ 5389 eth = (struct ethhdr *)xdp->data; 5390 if ((orig_eth_type != eth->h_proto) || 5391 (orig_host != ether_addr_equal_64bits(eth->h_dest, 5392 skb->dev->dev_addr)) || 5393 (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) { 5394 __skb_push(skb, ETH_HLEN); 5395 skb->pkt_type = PACKET_HOST; 5396 skb->protocol = eth_type_trans(skb, skb->dev); 5397 } 5398 5399 /* Redirect/Tx gives L2 packet, code that will reuse skb must __skb_pull 5400 * before calling us again on redirect path. We do not call do_redirect 5401 * as we leave that up to the caller. 5402 * 5403 * Caller is responsible for managing lifetime of skb (i.e. calling 5404 * kfree_skb in response to actions it cannot handle/XDP_DROP). 5405 */ 5406 switch (act) { 5407 case XDP_REDIRECT: 5408 case XDP_TX: 5409 __skb_push(skb, mac_len); 5410 break; 5411 case XDP_PASS: 5412 metalen = xdp->data - xdp->data_meta; 5413 if (metalen) 5414 skb_metadata_set(skb, metalen); 5415 break; 5416 } 5417 5418 return act; 5419 } 5420 5421 static int 5422 netif_skb_check_for_xdp(struct sk_buff **pskb, const struct bpf_prog *prog) 5423 { 5424 struct sk_buff *skb = *pskb; 5425 int err, hroom, troom; 5426 5427 local_lock_nested_bh(&system_page_pool.bh_lock); 5428 err = skb_cow_data_for_xdp(this_cpu_read(system_page_pool.pool), pskb, prog); 5429 local_unlock_nested_bh(&system_page_pool.bh_lock); 5430 if (!err) 5431 return 0; 5432 5433 /* In case we have to go down the path and also linearize, 5434 * then lets do the pskb_expand_head() work just once here. 5435 */ 5436 hroom = XDP_PACKET_HEADROOM - skb_headroom(skb); 5437 troom = skb->tail + skb->data_len - skb->end; 5438 err = pskb_expand_head(skb, 5439 hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0, 5440 troom > 0 ? troom + 128 : 0, GFP_ATOMIC); 5441 if (err) 5442 return err; 5443 5444 return skb_linearize(skb); 5445 } 5446 5447 static u32 netif_receive_generic_xdp(struct sk_buff **pskb, 5448 struct xdp_buff *xdp, 5449 const struct bpf_prog *xdp_prog) 5450 { 5451 struct sk_buff *skb = *pskb; 5452 u32 mac_len, act = XDP_DROP; 5453 5454 /* Reinjected packets coming from act_mirred or similar should 5455 * not get XDP generic processing. 5456 */ 5457 if (skb_is_redirected(skb)) 5458 return XDP_PASS; 5459 5460 /* XDP packets must have sufficient headroom of XDP_PACKET_HEADROOM 5461 * bytes. This is the guarantee that also native XDP provides, 5462 * thus we need to do it here as well. 5463 */ 5464 mac_len = skb->data - skb_mac_header(skb); 5465 __skb_push(skb, mac_len); 5466 5467 if (skb_cloned(skb) || skb_is_nonlinear(skb) || 5468 skb_headroom(skb) < XDP_PACKET_HEADROOM) { 5469 if (netif_skb_check_for_xdp(pskb, xdp_prog)) 5470 goto do_drop; 5471 } 5472 5473 __skb_pull(*pskb, mac_len); 5474 5475 act = bpf_prog_run_generic_xdp(*pskb, xdp, xdp_prog); 5476 switch (act) { 5477 case XDP_REDIRECT: 5478 case XDP_TX: 5479 case XDP_PASS: 5480 break; 5481 default: 5482 bpf_warn_invalid_xdp_action((*pskb)->dev, xdp_prog, act); 5483 fallthrough; 5484 case XDP_ABORTED: 5485 trace_xdp_exception((*pskb)->dev, xdp_prog, act); 5486 fallthrough; 5487 case XDP_DROP: 5488 do_drop: 5489 kfree_skb(*pskb); 5490 break; 5491 } 5492 5493 return act; 5494 } 5495 5496 /* When doing generic XDP we have to bypass the qdisc layer and the 5497 * network taps in order to match in-driver-XDP behavior. This also means 5498 * that XDP packets are able to starve other packets going through a qdisc, 5499 * and DDOS attacks will be more effective. In-driver-XDP use dedicated TX 5500 * queues, so they do not have this starvation issue. 5501 */ 5502 void generic_xdp_tx(struct sk_buff *skb, const struct bpf_prog *xdp_prog) 5503 { 5504 struct net_device *dev = skb->dev; 5505 struct netdev_queue *txq; 5506 bool free_skb = true; 5507 int cpu, rc; 5508 5509 txq = netdev_core_pick_tx(dev, skb, NULL); 5510 cpu = smp_processor_id(); 5511 HARD_TX_LOCK(dev, txq, cpu); 5512 if (!netif_xmit_frozen_or_drv_stopped(txq)) { 5513 rc = netdev_start_xmit(skb, dev, txq, 0); 5514 if (dev_xmit_complete(rc)) 5515 free_skb = false; 5516 } 5517 HARD_TX_UNLOCK(dev, txq); 5518 if (free_skb) { 5519 trace_xdp_exception(dev, xdp_prog, XDP_TX); 5520 dev_core_stats_tx_dropped_inc(dev); 5521 kfree_skb(skb); 5522 } 5523 } 5524 5525 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key); 5526 5527 int do_xdp_generic(const struct bpf_prog *xdp_prog, struct sk_buff **pskb) 5528 { 5529 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx; 5530 5531 if (xdp_prog) { 5532 struct xdp_buff xdp; 5533 u32 act; 5534 int err; 5535 5536 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx); 5537 act = netif_receive_generic_xdp(pskb, &xdp, xdp_prog); 5538 if (act != XDP_PASS) { 5539 switch (act) { 5540 case XDP_REDIRECT: 5541 err = xdp_do_generic_redirect((*pskb)->dev, *pskb, 5542 &xdp, xdp_prog); 5543 if (err) 5544 goto out_redir; 5545 break; 5546 case XDP_TX: 5547 generic_xdp_tx(*pskb, xdp_prog); 5548 break; 5549 } 5550 bpf_net_ctx_clear(bpf_net_ctx); 5551 return XDP_DROP; 5552 } 5553 bpf_net_ctx_clear(bpf_net_ctx); 5554 } 5555 return XDP_PASS; 5556 out_redir: 5557 bpf_net_ctx_clear(bpf_net_ctx); 5558 kfree_skb_reason(*pskb, SKB_DROP_REASON_XDP); 5559 return XDP_DROP; 5560 } 5561 EXPORT_SYMBOL_GPL(do_xdp_generic); 5562 5563 static int netif_rx_internal(struct sk_buff *skb) 5564 { 5565 int ret; 5566 5567 net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue), skb); 5568 5569 trace_netif_rx(skb); 5570 5571 #ifdef CONFIG_RPS 5572 if (static_branch_unlikely(&rps_needed)) { 5573 struct rps_dev_flow voidflow, *rflow = &voidflow; 5574 int cpu; 5575 5576 rcu_read_lock(); 5577 5578 cpu = get_rps_cpu(skb->dev, skb, &rflow); 5579 if (cpu < 0) 5580 cpu = smp_processor_id(); 5581 5582 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 5583 5584 rcu_read_unlock(); 5585 } else 5586 #endif 5587 { 5588 unsigned int qtail; 5589 5590 ret = enqueue_to_backlog(skb, smp_processor_id(), &qtail); 5591 } 5592 return ret; 5593 } 5594 5595 /** 5596 * __netif_rx - Slightly optimized version of netif_rx 5597 * @skb: buffer to post 5598 * 5599 * This behaves as netif_rx except that it does not disable bottom halves. 5600 * As a result this function may only be invoked from the interrupt context 5601 * (either hard or soft interrupt). 5602 */ 5603 int __netif_rx(struct sk_buff *skb) 5604 { 5605 int ret; 5606 5607 lockdep_assert_once(hardirq_count() | softirq_count()); 5608 5609 trace_netif_rx_entry(skb); 5610 ret = netif_rx_internal(skb); 5611 trace_netif_rx_exit(ret); 5612 return ret; 5613 } 5614 EXPORT_SYMBOL(__netif_rx); 5615 5616 /** 5617 * netif_rx - post buffer to the network code 5618 * @skb: buffer to post 5619 * 5620 * This function receives a packet from a device driver and queues it for 5621 * the upper (protocol) levels to process via the backlog NAPI device. It 5622 * always succeeds. The buffer may be dropped during processing for 5623 * congestion control or by the protocol layers. 5624 * The network buffer is passed via the backlog NAPI device. Modern NIC 5625 * driver should use NAPI and GRO. 5626 * This function can used from interrupt and from process context. The 5627 * caller from process context must not disable interrupts before invoking 5628 * this function. 5629 * 5630 * return values: 5631 * NET_RX_SUCCESS (no congestion) 5632 * NET_RX_DROP (packet was dropped) 5633 * 5634 */ 5635 int netif_rx(struct sk_buff *skb) 5636 { 5637 bool need_bh_off = !(hardirq_count() | softirq_count()); 5638 int ret; 5639 5640 if (need_bh_off) 5641 local_bh_disable(); 5642 trace_netif_rx_entry(skb); 5643 ret = netif_rx_internal(skb); 5644 trace_netif_rx_exit(ret); 5645 if (need_bh_off) 5646 local_bh_enable(); 5647 return ret; 5648 } 5649 EXPORT_SYMBOL(netif_rx); 5650 5651 static __latent_entropy void net_tx_action(void) 5652 { 5653 struct softnet_data *sd = this_cpu_ptr(&softnet_data); 5654 5655 if (sd->completion_queue) { 5656 struct sk_buff *clist; 5657 5658 local_irq_disable(); 5659 clist = sd->completion_queue; 5660 sd->completion_queue = NULL; 5661 local_irq_enable(); 5662 5663 while (clist) { 5664 struct sk_buff *skb = clist; 5665 5666 clist = clist->next; 5667 5668 WARN_ON(refcount_read(&skb->users)); 5669 if (likely(get_kfree_skb_cb(skb)->reason == SKB_CONSUMED)) 5670 trace_consume_skb(skb, net_tx_action); 5671 else 5672 trace_kfree_skb(skb, net_tx_action, 5673 get_kfree_skb_cb(skb)->reason, NULL); 5674 5675 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) 5676 __kfree_skb(skb); 5677 else 5678 __napi_kfree_skb(skb, 5679 get_kfree_skb_cb(skb)->reason); 5680 } 5681 } 5682 5683 if (sd->output_queue) { 5684 struct Qdisc *head; 5685 5686 local_irq_disable(); 5687 head = sd->output_queue; 5688 sd->output_queue = NULL; 5689 sd->output_queue_tailp = &sd->output_queue; 5690 local_irq_enable(); 5691 5692 rcu_read_lock(); 5693 5694 while (head) { 5695 struct Qdisc *q = head; 5696 spinlock_t *root_lock = NULL; 5697 5698 head = head->next_sched; 5699 5700 /* We need to make sure head->next_sched is read 5701 * before clearing __QDISC_STATE_SCHED 5702 */ 5703 smp_mb__before_atomic(); 5704 5705 if (!(q->flags & TCQ_F_NOLOCK)) { 5706 root_lock = qdisc_lock(q); 5707 spin_lock(root_lock); 5708 } else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, 5709 &q->state))) { 5710 /* There is a synchronize_net() between 5711 * STATE_DEACTIVATED flag being set and 5712 * qdisc_reset()/some_qdisc_is_busy() in 5713 * dev_deactivate(), so we can safely bail out 5714 * early here to avoid data race between 5715 * qdisc_deactivate() and some_qdisc_is_busy() 5716 * for lockless qdisc. 5717 */ 5718 clear_bit(__QDISC_STATE_SCHED, &q->state); 5719 continue; 5720 } 5721 5722 clear_bit(__QDISC_STATE_SCHED, &q->state); 5723 qdisc_run(q); 5724 if (root_lock) 5725 spin_unlock(root_lock); 5726 } 5727 5728 rcu_read_unlock(); 5729 } 5730 5731 xfrm_dev_backlog(sd); 5732 } 5733 5734 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE) 5735 /* This hook is defined here for ATM LANE */ 5736 int (*br_fdb_test_addr_hook)(struct net_device *dev, 5737 unsigned char *addr) __read_mostly; 5738 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook); 5739 #endif 5740 5741 /** 5742 * netdev_is_rx_handler_busy - check if receive handler is registered 5743 * @dev: device to check 5744 * 5745 * Check if a receive handler is already registered for a given device. 5746 * Return true if there one. 5747 * 5748 * The caller must hold the rtnl_mutex. 5749 */ 5750 bool netdev_is_rx_handler_busy(struct net_device *dev) 5751 { 5752 ASSERT_RTNL(); 5753 return dev && rtnl_dereference(dev->rx_handler); 5754 } 5755 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy); 5756 5757 /** 5758 * netdev_rx_handler_register - register receive handler 5759 * @dev: device to register a handler for 5760 * @rx_handler: receive handler to register 5761 * @rx_handler_data: data pointer that is used by rx handler 5762 * 5763 * Register a receive handler for a device. This handler will then be 5764 * called from __netif_receive_skb. A negative errno code is returned 5765 * on a failure. 5766 * 5767 * The caller must hold the rtnl_mutex. 5768 * 5769 * For a general description of rx_handler, see enum rx_handler_result. 5770 */ 5771 int netdev_rx_handler_register(struct net_device *dev, 5772 rx_handler_func_t *rx_handler, 5773 void *rx_handler_data) 5774 { 5775 if (netdev_is_rx_handler_busy(dev)) 5776 return -EBUSY; 5777 5778 if (dev->priv_flags & IFF_NO_RX_HANDLER) 5779 return -EINVAL; 5780 5781 /* Note: rx_handler_data must be set before rx_handler */ 5782 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data); 5783 rcu_assign_pointer(dev->rx_handler, rx_handler); 5784 5785 return 0; 5786 } 5787 EXPORT_SYMBOL_GPL(netdev_rx_handler_register); 5788 5789 /** 5790 * netdev_rx_handler_unregister - unregister receive handler 5791 * @dev: device to unregister a handler from 5792 * 5793 * Unregister a receive handler from a device. 5794 * 5795 * The caller must hold the rtnl_mutex. 5796 */ 5797 void netdev_rx_handler_unregister(struct net_device *dev) 5798 { 5799 5800 ASSERT_RTNL(); 5801 RCU_INIT_POINTER(dev->rx_handler, NULL); 5802 /* a reader seeing a non NULL rx_handler in a rcu_read_lock() 5803 * section has a guarantee to see a non NULL rx_handler_data 5804 * as well. 5805 */ 5806 synchronize_net(); 5807 RCU_INIT_POINTER(dev->rx_handler_data, NULL); 5808 } 5809 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister); 5810 5811 /* 5812 * Limit the use of PFMEMALLOC reserves to those protocols that implement 5813 * the special handling of PFMEMALLOC skbs. 5814 */ 5815 static bool skb_pfmemalloc_protocol(struct sk_buff *skb) 5816 { 5817 switch (skb->protocol) { 5818 case htons(ETH_P_ARP): 5819 case htons(ETH_P_IP): 5820 case htons(ETH_P_IPV6): 5821 case htons(ETH_P_8021Q): 5822 case htons(ETH_P_8021AD): 5823 return true; 5824 default: 5825 return false; 5826 } 5827 } 5828 5829 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev, 5830 int *ret, struct net_device *orig_dev) 5831 { 5832 if (nf_hook_ingress_active(skb)) { 5833 int ingress_retval; 5834 5835 if (*pt_prev) { 5836 *ret = deliver_skb(skb, *pt_prev, orig_dev); 5837 *pt_prev = NULL; 5838 } 5839 5840 rcu_read_lock(); 5841 ingress_retval = nf_hook_ingress(skb); 5842 rcu_read_unlock(); 5843 return ingress_retval; 5844 } 5845 return 0; 5846 } 5847 5848 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc, 5849 struct packet_type **ppt_prev) 5850 { 5851 enum skb_drop_reason drop_reason = SKB_DROP_REASON_UNHANDLED_PROTO; 5852 struct packet_type *ptype, *pt_prev; 5853 rx_handler_func_t *rx_handler; 5854 struct sk_buff *skb = *pskb; 5855 struct net_device *orig_dev; 5856 bool deliver_exact = false; 5857 int ret = NET_RX_DROP; 5858 __be16 type; 5859 5860 net_timestamp_check(!READ_ONCE(net_hotdata.tstamp_prequeue), skb); 5861 5862 trace_netif_receive_skb(skb); 5863 5864 orig_dev = skb->dev; 5865 5866 skb_reset_network_header(skb); 5867 #if !defined(CONFIG_DEBUG_NET) 5868 /* We plan to no longer reset the transport header here. 5869 * Give some time to fuzzers and dev build to catch bugs 5870 * in network stacks. 5871 */ 5872 if (!skb_transport_header_was_set(skb)) 5873 skb_reset_transport_header(skb); 5874 #endif 5875 skb_reset_mac_len(skb); 5876 5877 pt_prev = NULL; 5878 5879 another_round: 5880 skb->skb_iif = skb->dev->ifindex; 5881 5882 __this_cpu_inc(softnet_data.processed); 5883 5884 if (static_branch_unlikely(&generic_xdp_needed_key)) { 5885 int ret2; 5886 5887 migrate_disable(); 5888 ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), 5889 &skb); 5890 migrate_enable(); 5891 5892 if (ret2 != XDP_PASS) { 5893 ret = NET_RX_DROP; 5894 goto out; 5895 } 5896 } 5897 5898 if (eth_type_vlan(skb->protocol)) { 5899 skb = skb_vlan_untag(skb); 5900 if (unlikely(!skb)) 5901 goto out; 5902 } 5903 5904 if (skb_skip_tc_classify(skb)) 5905 goto skip_classify; 5906 5907 if (pfmemalloc) 5908 goto skip_taps; 5909 5910 list_for_each_entry_rcu(ptype, &dev_net_rcu(skb->dev)->ptype_all, 5911 list) { 5912 if (pt_prev) 5913 ret = deliver_skb(skb, pt_prev, orig_dev); 5914 pt_prev = ptype; 5915 } 5916 5917 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) { 5918 if (pt_prev) 5919 ret = deliver_skb(skb, pt_prev, orig_dev); 5920 pt_prev = ptype; 5921 } 5922 5923 skip_taps: 5924 #ifdef CONFIG_NET_INGRESS 5925 if (static_branch_unlikely(&ingress_needed_key)) { 5926 bool another = false; 5927 5928 nf_skip_egress(skb, true); 5929 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev, 5930 &another); 5931 if (another) 5932 goto another_round; 5933 if (!skb) 5934 goto out; 5935 5936 nf_skip_egress(skb, false); 5937 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0) 5938 goto out; 5939 } 5940 #endif 5941 skb_reset_redirect(skb); 5942 skip_classify: 5943 if (pfmemalloc && !skb_pfmemalloc_protocol(skb)) { 5944 drop_reason = SKB_DROP_REASON_PFMEMALLOC; 5945 goto drop; 5946 } 5947 5948 if (skb_vlan_tag_present(skb)) { 5949 if (pt_prev) { 5950 ret = deliver_skb(skb, pt_prev, orig_dev); 5951 pt_prev = NULL; 5952 } 5953 if (vlan_do_receive(&skb)) 5954 goto another_round; 5955 else if (unlikely(!skb)) 5956 goto out; 5957 } 5958 5959 rx_handler = rcu_dereference(skb->dev->rx_handler); 5960 if (rx_handler) { 5961 if (pt_prev) { 5962 ret = deliver_skb(skb, pt_prev, orig_dev); 5963 pt_prev = NULL; 5964 } 5965 switch (rx_handler(&skb)) { 5966 case RX_HANDLER_CONSUMED: 5967 ret = NET_RX_SUCCESS; 5968 goto out; 5969 case RX_HANDLER_ANOTHER: 5970 goto another_round; 5971 case RX_HANDLER_EXACT: 5972 deliver_exact = true; 5973 break; 5974 case RX_HANDLER_PASS: 5975 break; 5976 default: 5977 BUG(); 5978 } 5979 } 5980 5981 if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) { 5982 check_vlan_id: 5983 if (skb_vlan_tag_get_id(skb)) { 5984 /* Vlan id is non 0 and vlan_do_receive() above couldn't 5985 * find vlan device. 5986 */ 5987 skb->pkt_type = PACKET_OTHERHOST; 5988 } else if (eth_type_vlan(skb->protocol)) { 5989 /* Outer header is 802.1P with vlan 0, inner header is 5990 * 802.1Q or 802.1AD and vlan_do_receive() above could 5991 * not find vlan dev for vlan id 0. 5992 */ 5993 __vlan_hwaccel_clear_tag(skb); 5994 skb = skb_vlan_untag(skb); 5995 if (unlikely(!skb)) 5996 goto out; 5997 if (vlan_do_receive(&skb)) 5998 /* After stripping off 802.1P header with vlan 0 5999 * vlan dev is found for inner header. 6000 */ 6001 goto another_round; 6002 else if (unlikely(!skb)) 6003 goto out; 6004 else 6005 /* We have stripped outer 802.1P vlan 0 header. 6006 * But could not find vlan dev. 6007 * check again for vlan id to set OTHERHOST. 6008 */ 6009 goto check_vlan_id; 6010 } 6011 /* Note: we might in the future use prio bits 6012 * and set skb->priority like in vlan_do_receive() 6013 * For the time being, just ignore Priority Code Point 6014 */ 6015 __vlan_hwaccel_clear_tag(skb); 6016 } 6017 6018 type = skb->protocol; 6019 6020 /* deliver only exact match when indicated */ 6021 if (likely(!deliver_exact)) { 6022 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 6023 &ptype_base[ntohs(type) & 6024 PTYPE_HASH_MASK]); 6025 6026 /* orig_dev and skb->dev could belong to different netns; 6027 * Even in such case we need to traverse only the list 6028 * coming from skb->dev, as the ptype owner (packet socket) 6029 * will use dev_net(skb->dev) to do namespace filtering. 6030 */ 6031 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 6032 &dev_net_rcu(skb->dev)->ptype_specific); 6033 } 6034 6035 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 6036 &orig_dev->ptype_specific); 6037 6038 if (unlikely(skb->dev != orig_dev)) { 6039 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 6040 &skb->dev->ptype_specific); 6041 } 6042 6043 if (pt_prev) { 6044 *ppt_prev = pt_prev; 6045 } else { 6046 drop: 6047 if (!deliver_exact) 6048 dev_core_stats_rx_dropped_inc(skb->dev); 6049 else 6050 dev_core_stats_rx_nohandler_inc(skb->dev); 6051 6052 kfree_skb_reason(skb, drop_reason); 6053 /* Jamal, now you will not able to escape explaining 6054 * me how you were going to use this. :-) 6055 */ 6056 ret = NET_RX_DROP; 6057 } 6058 6059 out: 6060 /* The invariant here is that if *ppt_prev is not NULL 6061 * then skb should also be non-NULL. 6062 * 6063 * Apparently *ppt_prev assignment above holds this invariant due to 6064 * skb dereferencing near it. 6065 */ 6066 *pskb = skb; 6067 return ret; 6068 } 6069 6070 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc) 6071 { 6072 struct net_device *orig_dev = skb->dev; 6073 struct packet_type *pt_prev = NULL; 6074 int ret; 6075 6076 ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev); 6077 if (pt_prev) 6078 ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb, 6079 skb->dev, pt_prev, orig_dev); 6080 return ret; 6081 } 6082 6083 /** 6084 * netif_receive_skb_core - special purpose version of netif_receive_skb 6085 * @skb: buffer to process 6086 * 6087 * More direct receive version of netif_receive_skb(). It should 6088 * only be used by callers that have a need to skip RPS and Generic XDP. 6089 * Caller must also take care of handling if ``(page_is_)pfmemalloc``. 6090 * 6091 * This function may only be called from softirq context and interrupts 6092 * should be enabled. 6093 * 6094 * Return values (usually ignored): 6095 * NET_RX_SUCCESS: no congestion 6096 * NET_RX_DROP: packet was dropped 6097 */ 6098 int netif_receive_skb_core(struct sk_buff *skb) 6099 { 6100 int ret; 6101 6102 rcu_read_lock(); 6103 ret = __netif_receive_skb_one_core(skb, false); 6104 rcu_read_unlock(); 6105 6106 return ret; 6107 } 6108 EXPORT_SYMBOL(netif_receive_skb_core); 6109 6110 static inline void __netif_receive_skb_list_ptype(struct list_head *head, 6111 struct packet_type *pt_prev, 6112 struct net_device *orig_dev) 6113 { 6114 struct sk_buff *skb, *next; 6115 6116 if (!pt_prev) 6117 return; 6118 if (list_empty(head)) 6119 return; 6120 if (pt_prev->list_func != NULL) 6121 INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv, 6122 ip_list_rcv, head, pt_prev, orig_dev); 6123 else 6124 list_for_each_entry_safe(skb, next, head, list) { 6125 skb_list_del_init(skb); 6126 pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 6127 } 6128 } 6129 6130 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc) 6131 { 6132 /* Fast-path assumptions: 6133 * - There is no RX handler. 6134 * - Only one packet_type matches. 6135 * If either of these fails, we will end up doing some per-packet 6136 * processing in-line, then handling the 'last ptype' for the whole 6137 * sublist. This can't cause out-of-order delivery to any single ptype, 6138 * because the 'last ptype' must be constant across the sublist, and all 6139 * other ptypes are handled per-packet. 6140 */ 6141 /* Current (common) ptype of sublist */ 6142 struct packet_type *pt_curr = NULL; 6143 /* Current (common) orig_dev of sublist */ 6144 struct net_device *od_curr = NULL; 6145 struct sk_buff *skb, *next; 6146 LIST_HEAD(sublist); 6147 6148 list_for_each_entry_safe(skb, next, head, list) { 6149 struct net_device *orig_dev = skb->dev; 6150 struct packet_type *pt_prev = NULL; 6151 6152 skb_list_del_init(skb); 6153 __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev); 6154 if (!pt_prev) 6155 continue; 6156 if (pt_curr != pt_prev || od_curr != orig_dev) { 6157 /* dispatch old sublist */ 6158 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr); 6159 /* start new sublist */ 6160 INIT_LIST_HEAD(&sublist); 6161 pt_curr = pt_prev; 6162 od_curr = orig_dev; 6163 } 6164 list_add_tail(&skb->list, &sublist); 6165 } 6166 6167 /* dispatch final sublist */ 6168 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr); 6169 } 6170 6171 static int __netif_receive_skb(struct sk_buff *skb) 6172 { 6173 int ret; 6174 6175 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) { 6176 unsigned int noreclaim_flag; 6177 6178 /* 6179 * PFMEMALLOC skbs are special, they should 6180 * - be delivered to SOCK_MEMALLOC sockets only 6181 * - stay away from userspace 6182 * - have bounded memory usage 6183 * 6184 * Use PF_MEMALLOC as this saves us from propagating the allocation 6185 * context down to all allocation sites. 6186 */ 6187 noreclaim_flag = memalloc_noreclaim_save(); 6188 ret = __netif_receive_skb_one_core(skb, true); 6189 memalloc_noreclaim_restore(noreclaim_flag); 6190 } else 6191 ret = __netif_receive_skb_one_core(skb, false); 6192 6193 return ret; 6194 } 6195 6196 static void __netif_receive_skb_list(struct list_head *head) 6197 { 6198 unsigned long noreclaim_flag = 0; 6199 struct sk_buff *skb, *next; 6200 bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */ 6201 6202 list_for_each_entry_safe(skb, next, head, list) { 6203 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) { 6204 struct list_head sublist; 6205 6206 /* Handle the previous sublist */ 6207 list_cut_before(&sublist, head, &skb->list); 6208 if (!list_empty(&sublist)) 6209 __netif_receive_skb_list_core(&sublist, pfmemalloc); 6210 pfmemalloc = !pfmemalloc; 6211 /* See comments in __netif_receive_skb */ 6212 if (pfmemalloc) 6213 noreclaim_flag = memalloc_noreclaim_save(); 6214 else 6215 memalloc_noreclaim_restore(noreclaim_flag); 6216 } 6217 } 6218 /* Handle the remaining sublist */ 6219 if (!list_empty(head)) 6220 __netif_receive_skb_list_core(head, pfmemalloc); 6221 /* Restore pflags */ 6222 if (pfmemalloc) 6223 memalloc_noreclaim_restore(noreclaim_flag); 6224 } 6225 6226 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp) 6227 { 6228 struct bpf_prog *old = rtnl_dereference(dev->xdp_prog); 6229 struct bpf_prog *new = xdp->prog; 6230 int ret = 0; 6231 6232 switch (xdp->command) { 6233 case XDP_SETUP_PROG: 6234 rcu_assign_pointer(dev->xdp_prog, new); 6235 if (old) 6236 bpf_prog_put(old); 6237 6238 if (old && !new) { 6239 static_branch_dec(&generic_xdp_needed_key); 6240 } else if (new && !old) { 6241 static_branch_inc(&generic_xdp_needed_key); 6242 netif_disable_lro(dev); 6243 dev_disable_gro_hw(dev); 6244 } 6245 break; 6246 6247 default: 6248 ret = -EINVAL; 6249 break; 6250 } 6251 6252 return ret; 6253 } 6254 6255 static int netif_receive_skb_internal(struct sk_buff *skb) 6256 { 6257 int ret; 6258 6259 net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue), skb); 6260 6261 if (skb_defer_rx_timestamp(skb)) 6262 return NET_RX_SUCCESS; 6263 6264 rcu_read_lock(); 6265 #ifdef CONFIG_RPS 6266 if (static_branch_unlikely(&rps_needed)) { 6267 struct rps_dev_flow voidflow, *rflow = &voidflow; 6268 int cpu = get_rps_cpu(skb->dev, skb, &rflow); 6269 6270 if (cpu >= 0) { 6271 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 6272 rcu_read_unlock(); 6273 return ret; 6274 } 6275 } 6276 #endif 6277 ret = __netif_receive_skb(skb); 6278 rcu_read_unlock(); 6279 return ret; 6280 } 6281 6282 void netif_receive_skb_list_internal(struct list_head *head) 6283 { 6284 struct sk_buff *skb, *next; 6285 LIST_HEAD(sublist); 6286 6287 list_for_each_entry_safe(skb, next, head, list) { 6288 net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue), 6289 skb); 6290 skb_list_del_init(skb); 6291 if (!skb_defer_rx_timestamp(skb)) 6292 list_add_tail(&skb->list, &sublist); 6293 } 6294 list_splice_init(&sublist, head); 6295 6296 rcu_read_lock(); 6297 #ifdef CONFIG_RPS 6298 if (static_branch_unlikely(&rps_needed)) { 6299 list_for_each_entry_safe(skb, next, head, list) { 6300 struct rps_dev_flow voidflow, *rflow = &voidflow; 6301 int cpu = get_rps_cpu(skb->dev, skb, &rflow); 6302 6303 if (cpu >= 0) { 6304 /* Will be handled, remove from list */ 6305 skb_list_del_init(skb); 6306 enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 6307 } 6308 } 6309 } 6310 #endif 6311 __netif_receive_skb_list(head); 6312 rcu_read_unlock(); 6313 } 6314 6315 /** 6316 * netif_receive_skb - process receive buffer from network 6317 * @skb: buffer to process 6318 * 6319 * netif_receive_skb() is the main receive data processing function. 6320 * It always succeeds. The buffer may be dropped during processing 6321 * for congestion control or by the protocol layers. 6322 * 6323 * This function may only be called from softirq context and interrupts 6324 * should be enabled. 6325 * 6326 * Return values (usually ignored): 6327 * NET_RX_SUCCESS: no congestion 6328 * NET_RX_DROP: packet was dropped 6329 */ 6330 int netif_receive_skb(struct sk_buff *skb) 6331 { 6332 int ret; 6333 6334 trace_netif_receive_skb_entry(skb); 6335 6336 ret = netif_receive_skb_internal(skb); 6337 trace_netif_receive_skb_exit(ret); 6338 6339 return ret; 6340 } 6341 EXPORT_SYMBOL(netif_receive_skb); 6342 6343 /** 6344 * netif_receive_skb_list - process many receive buffers from network 6345 * @head: list of skbs to process. 6346 * 6347 * Since return value of netif_receive_skb() is normally ignored, and 6348 * wouldn't be meaningful for a list, this function returns void. 6349 * 6350 * This function may only be called from softirq context and interrupts 6351 * should be enabled. 6352 */ 6353 void netif_receive_skb_list(struct list_head *head) 6354 { 6355 struct sk_buff *skb; 6356 6357 if (list_empty(head)) 6358 return; 6359 if (trace_netif_receive_skb_list_entry_enabled()) { 6360 list_for_each_entry(skb, head, list) 6361 trace_netif_receive_skb_list_entry(skb); 6362 } 6363 netif_receive_skb_list_internal(head); 6364 trace_netif_receive_skb_list_exit(0); 6365 } 6366 EXPORT_SYMBOL(netif_receive_skb_list); 6367 6368 /* Network device is going away, flush any packets still pending */ 6369 static void flush_backlog(struct work_struct *work) 6370 { 6371 struct sk_buff *skb, *tmp; 6372 struct sk_buff_head list; 6373 struct softnet_data *sd; 6374 6375 __skb_queue_head_init(&list); 6376 local_bh_disable(); 6377 sd = this_cpu_ptr(&softnet_data); 6378 6379 backlog_lock_irq_disable(sd); 6380 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) { 6381 if (READ_ONCE(skb->dev->reg_state) == NETREG_UNREGISTERING) { 6382 __skb_unlink(skb, &sd->input_pkt_queue); 6383 __skb_queue_tail(&list, skb); 6384 rps_input_queue_head_incr(sd); 6385 } 6386 } 6387 backlog_unlock_irq_enable(sd); 6388 6389 local_lock_nested_bh(&softnet_data.process_queue_bh_lock); 6390 skb_queue_walk_safe(&sd->process_queue, skb, tmp) { 6391 if (READ_ONCE(skb->dev->reg_state) == NETREG_UNREGISTERING) { 6392 __skb_unlink(skb, &sd->process_queue); 6393 __skb_queue_tail(&list, skb); 6394 rps_input_queue_head_incr(sd); 6395 } 6396 } 6397 local_unlock_nested_bh(&softnet_data.process_queue_bh_lock); 6398 local_bh_enable(); 6399 6400 __skb_queue_purge_reason(&list, SKB_DROP_REASON_DEV_READY); 6401 } 6402 6403 static bool flush_required(int cpu) 6404 { 6405 #if IS_ENABLED(CONFIG_RPS) 6406 struct softnet_data *sd = &per_cpu(softnet_data, cpu); 6407 bool do_flush; 6408 6409 backlog_lock_irq_disable(sd); 6410 6411 /* as insertion into process_queue happens with the rps lock held, 6412 * process_queue access may race only with dequeue 6413 */ 6414 do_flush = !skb_queue_empty(&sd->input_pkt_queue) || 6415 !skb_queue_empty_lockless(&sd->process_queue); 6416 backlog_unlock_irq_enable(sd); 6417 6418 return do_flush; 6419 #endif 6420 /* without RPS we can't safely check input_pkt_queue: during a 6421 * concurrent remote skb_queue_splice() we can detect as empty both 6422 * input_pkt_queue and process_queue even if the latter could end-up 6423 * containing a lot of packets. 6424 */ 6425 return true; 6426 } 6427 6428 struct flush_backlogs { 6429 cpumask_t flush_cpus; 6430 struct work_struct w[]; 6431 }; 6432 6433 static struct flush_backlogs *flush_backlogs_alloc(void) 6434 { 6435 return kmalloc(struct_size_t(struct flush_backlogs, w, nr_cpu_ids), 6436 GFP_KERNEL); 6437 } 6438 6439 static struct flush_backlogs *flush_backlogs_fallback; 6440 static DEFINE_MUTEX(flush_backlogs_mutex); 6441 6442 static void flush_all_backlogs(void) 6443 { 6444 struct flush_backlogs *ptr = flush_backlogs_alloc(); 6445 unsigned int cpu; 6446 6447 if (!ptr) { 6448 mutex_lock(&flush_backlogs_mutex); 6449 ptr = flush_backlogs_fallback; 6450 } 6451 cpumask_clear(&ptr->flush_cpus); 6452 6453 cpus_read_lock(); 6454 6455 for_each_online_cpu(cpu) { 6456 if (flush_required(cpu)) { 6457 INIT_WORK(&ptr->w[cpu], flush_backlog); 6458 queue_work_on(cpu, system_highpri_wq, &ptr->w[cpu]); 6459 __cpumask_set_cpu(cpu, &ptr->flush_cpus); 6460 } 6461 } 6462 6463 /* we can have in flight packet[s] on the cpus we are not flushing, 6464 * synchronize_net() in unregister_netdevice_many() will take care of 6465 * them. 6466 */ 6467 for_each_cpu(cpu, &ptr->flush_cpus) 6468 flush_work(&ptr->w[cpu]); 6469 6470 cpus_read_unlock(); 6471 6472 if (ptr != flush_backlogs_fallback) 6473 kfree(ptr); 6474 else 6475 mutex_unlock(&flush_backlogs_mutex); 6476 } 6477 6478 static void net_rps_send_ipi(struct softnet_data *remsd) 6479 { 6480 #ifdef CONFIG_RPS 6481 while (remsd) { 6482 struct softnet_data *next = remsd->rps_ipi_next; 6483 6484 if (cpu_online(remsd->cpu)) 6485 smp_call_function_single_async(remsd->cpu, &remsd->csd); 6486 remsd = next; 6487 } 6488 #endif 6489 } 6490 6491 /* 6492 * net_rps_action_and_irq_enable sends any pending IPI's for rps. 6493 * Note: called with local irq disabled, but exits with local irq enabled. 6494 */ 6495 static void net_rps_action_and_irq_enable(struct softnet_data *sd) 6496 { 6497 #ifdef CONFIG_RPS 6498 struct softnet_data *remsd = sd->rps_ipi_list; 6499 6500 if (!use_backlog_threads() && remsd) { 6501 sd->rps_ipi_list = NULL; 6502 6503 local_irq_enable(); 6504 6505 /* Send pending IPI's to kick RPS processing on remote cpus. */ 6506 net_rps_send_ipi(remsd); 6507 } else 6508 #endif 6509 local_irq_enable(); 6510 } 6511 6512 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd) 6513 { 6514 #ifdef CONFIG_RPS 6515 return !use_backlog_threads() && sd->rps_ipi_list; 6516 #else 6517 return false; 6518 #endif 6519 } 6520 6521 static int process_backlog(struct napi_struct *napi, int quota) 6522 { 6523 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog); 6524 bool again = true; 6525 int work = 0; 6526 6527 /* Check if we have pending ipi, its better to send them now, 6528 * not waiting net_rx_action() end. 6529 */ 6530 if (sd_has_rps_ipi_waiting(sd)) { 6531 local_irq_disable(); 6532 net_rps_action_and_irq_enable(sd); 6533 } 6534 6535 napi->weight = READ_ONCE(net_hotdata.dev_rx_weight); 6536 while (again) { 6537 struct sk_buff *skb; 6538 6539 local_lock_nested_bh(&softnet_data.process_queue_bh_lock); 6540 while ((skb = __skb_dequeue(&sd->process_queue))) { 6541 local_unlock_nested_bh(&softnet_data.process_queue_bh_lock); 6542 rcu_read_lock(); 6543 __netif_receive_skb(skb); 6544 rcu_read_unlock(); 6545 if (++work >= quota) { 6546 rps_input_queue_head_add(sd, work); 6547 return work; 6548 } 6549 6550 local_lock_nested_bh(&softnet_data.process_queue_bh_lock); 6551 } 6552 local_unlock_nested_bh(&softnet_data.process_queue_bh_lock); 6553 6554 backlog_lock_irq_disable(sd); 6555 if (skb_queue_empty(&sd->input_pkt_queue)) { 6556 /* 6557 * Inline a custom version of __napi_complete(). 6558 * only current cpu owns and manipulates this napi, 6559 * and NAPI_STATE_SCHED is the only possible flag set 6560 * on backlog. 6561 * We can use a plain write instead of clear_bit(), 6562 * and we dont need an smp_mb() memory barrier. 6563 */ 6564 napi->state &= NAPIF_STATE_THREADED; 6565 again = false; 6566 } else { 6567 local_lock_nested_bh(&softnet_data.process_queue_bh_lock); 6568 skb_queue_splice_tail_init(&sd->input_pkt_queue, 6569 &sd->process_queue); 6570 local_unlock_nested_bh(&softnet_data.process_queue_bh_lock); 6571 } 6572 backlog_unlock_irq_enable(sd); 6573 } 6574 6575 if (work) 6576 rps_input_queue_head_add(sd, work); 6577 return work; 6578 } 6579 6580 /** 6581 * __napi_schedule - schedule for receive 6582 * @n: entry to schedule 6583 * 6584 * The entry's receive function will be scheduled to run. 6585 * Consider using __napi_schedule_irqoff() if hard irqs are masked. 6586 */ 6587 void __napi_schedule(struct napi_struct *n) 6588 { 6589 unsigned long flags; 6590 6591 local_irq_save(flags); 6592 ____napi_schedule(this_cpu_ptr(&softnet_data), n); 6593 local_irq_restore(flags); 6594 } 6595 EXPORT_SYMBOL(__napi_schedule); 6596 6597 /** 6598 * napi_schedule_prep - check if napi can be scheduled 6599 * @n: napi context 6600 * 6601 * Test if NAPI routine is already running, and if not mark 6602 * it as running. This is used as a condition variable to 6603 * insure only one NAPI poll instance runs. We also make 6604 * sure there is no pending NAPI disable. 6605 */ 6606 bool napi_schedule_prep(struct napi_struct *n) 6607 { 6608 unsigned long new, val = READ_ONCE(n->state); 6609 6610 do { 6611 if (unlikely(val & NAPIF_STATE_DISABLE)) 6612 return false; 6613 new = val | NAPIF_STATE_SCHED; 6614 6615 /* Sets STATE_MISSED bit if STATE_SCHED was already set 6616 * This was suggested by Alexander Duyck, as compiler 6617 * emits better code than : 6618 * if (val & NAPIF_STATE_SCHED) 6619 * new |= NAPIF_STATE_MISSED; 6620 */ 6621 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED * 6622 NAPIF_STATE_MISSED; 6623 } while (!try_cmpxchg(&n->state, &val, new)); 6624 6625 return !(val & NAPIF_STATE_SCHED); 6626 } 6627 EXPORT_SYMBOL(napi_schedule_prep); 6628 6629 /** 6630 * __napi_schedule_irqoff - schedule for receive 6631 * @n: entry to schedule 6632 * 6633 * Variant of __napi_schedule() assuming hard irqs are masked. 6634 * 6635 * On PREEMPT_RT enabled kernels this maps to __napi_schedule() 6636 * because the interrupt disabled assumption might not be true 6637 * due to force-threaded interrupts and spinlock substitution. 6638 */ 6639 void __napi_schedule_irqoff(struct napi_struct *n) 6640 { 6641 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 6642 ____napi_schedule(this_cpu_ptr(&softnet_data), n); 6643 else 6644 __napi_schedule(n); 6645 } 6646 EXPORT_SYMBOL(__napi_schedule_irqoff); 6647 6648 bool napi_complete_done(struct napi_struct *n, int work_done) 6649 { 6650 unsigned long flags, val, new, timeout = 0; 6651 bool ret = true; 6652 6653 /* 6654 * 1) Don't let napi dequeue from the cpu poll list 6655 * just in case its running on a different cpu. 6656 * 2) If we are busy polling, do nothing here, we have 6657 * the guarantee we will be called later. 6658 */ 6659 if (unlikely(n->state & (NAPIF_STATE_NPSVC | 6660 NAPIF_STATE_IN_BUSY_POLL))) 6661 return false; 6662 6663 if (work_done) { 6664 if (n->gro.bitmask) 6665 timeout = napi_get_gro_flush_timeout(n); 6666 n->defer_hard_irqs_count = napi_get_defer_hard_irqs(n); 6667 } 6668 if (n->defer_hard_irqs_count > 0) { 6669 n->defer_hard_irqs_count--; 6670 timeout = napi_get_gro_flush_timeout(n); 6671 if (timeout) 6672 ret = false; 6673 } 6674 6675 /* 6676 * When the NAPI instance uses a timeout and keeps postponing 6677 * it, we need to bound somehow the time packets are kept in 6678 * the GRO layer. 6679 */ 6680 gro_flush_normal(&n->gro, !!timeout); 6681 6682 if (unlikely(!list_empty(&n->poll_list))) { 6683 /* If n->poll_list is not empty, we need to mask irqs */ 6684 local_irq_save(flags); 6685 list_del_init(&n->poll_list); 6686 local_irq_restore(flags); 6687 } 6688 WRITE_ONCE(n->list_owner, -1); 6689 6690 val = READ_ONCE(n->state); 6691 do { 6692 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED)); 6693 6694 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED | 6695 NAPIF_STATE_SCHED_THREADED | 6696 NAPIF_STATE_PREFER_BUSY_POLL); 6697 6698 /* If STATE_MISSED was set, leave STATE_SCHED set, 6699 * because we will call napi->poll() one more time. 6700 * This C code was suggested by Alexander Duyck to help gcc. 6701 */ 6702 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED * 6703 NAPIF_STATE_SCHED; 6704 } while (!try_cmpxchg(&n->state, &val, new)); 6705 6706 if (unlikely(val & NAPIF_STATE_MISSED)) { 6707 __napi_schedule(n); 6708 return false; 6709 } 6710 6711 if (timeout) 6712 hrtimer_start(&n->timer, ns_to_ktime(timeout), 6713 HRTIMER_MODE_REL_PINNED); 6714 return ret; 6715 } 6716 EXPORT_SYMBOL(napi_complete_done); 6717 6718 static void skb_defer_free_flush(struct softnet_data *sd) 6719 { 6720 struct sk_buff *skb, *next; 6721 6722 /* Paired with WRITE_ONCE() in skb_attempt_defer_free() */ 6723 if (!READ_ONCE(sd->defer_list)) 6724 return; 6725 6726 spin_lock(&sd->defer_lock); 6727 skb = sd->defer_list; 6728 sd->defer_list = NULL; 6729 sd->defer_count = 0; 6730 spin_unlock(&sd->defer_lock); 6731 6732 while (skb != NULL) { 6733 next = skb->next; 6734 napi_consume_skb(skb, 1); 6735 skb = next; 6736 } 6737 } 6738 6739 #if defined(CONFIG_NET_RX_BUSY_POLL) 6740 6741 static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule) 6742 { 6743 if (!skip_schedule) { 6744 gro_normal_list(&napi->gro); 6745 __napi_schedule(napi); 6746 return; 6747 } 6748 6749 /* Flush too old packets. If HZ < 1000, flush all packets */ 6750 gro_flush_normal(&napi->gro, HZ >= 1000); 6751 6752 clear_bit(NAPI_STATE_SCHED, &napi->state); 6753 } 6754 6755 enum { 6756 NAPI_F_PREFER_BUSY_POLL = 1, 6757 NAPI_F_END_ON_RESCHED = 2, 6758 }; 6759 6760 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock, 6761 unsigned flags, u16 budget) 6762 { 6763 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx; 6764 bool skip_schedule = false; 6765 unsigned long timeout; 6766 int rc; 6767 6768 /* Busy polling means there is a high chance device driver hard irq 6769 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was 6770 * set in napi_schedule_prep(). 6771 * Since we are about to call napi->poll() once more, we can safely 6772 * clear NAPI_STATE_MISSED. 6773 * 6774 * Note: x86 could use a single "lock and ..." instruction 6775 * to perform these two clear_bit() 6776 */ 6777 clear_bit(NAPI_STATE_MISSED, &napi->state); 6778 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state); 6779 6780 local_bh_disable(); 6781 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx); 6782 6783 if (flags & NAPI_F_PREFER_BUSY_POLL) { 6784 napi->defer_hard_irqs_count = napi_get_defer_hard_irqs(napi); 6785 timeout = napi_get_gro_flush_timeout(napi); 6786 if (napi->defer_hard_irqs_count && timeout) { 6787 hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED); 6788 skip_schedule = true; 6789 } 6790 } 6791 6792 /* All we really want here is to re-enable device interrupts. 6793 * Ideally, a new ndo_busy_poll_stop() could avoid another round. 6794 */ 6795 rc = napi->poll(napi, budget); 6796 /* We can't gro_normal_list() here, because napi->poll() might have 6797 * rearmed the napi (napi_complete_done()) in which case it could 6798 * already be running on another CPU. 6799 */ 6800 trace_napi_poll(napi, rc, budget); 6801 netpoll_poll_unlock(have_poll_lock); 6802 if (rc == budget) 6803 __busy_poll_stop(napi, skip_schedule); 6804 bpf_net_ctx_clear(bpf_net_ctx); 6805 local_bh_enable(); 6806 } 6807 6808 static void __napi_busy_loop(unsigned int napi_id, 6809 bool (*loop_end)(void *, unsigned long), 6810 void *loop_end_arg, unsigned flags, u16 budget) 6811 { 6812 unsigned long start_time = loop_end ? busy_loop_current_time() : 0; 6813 int (*napi_poll)(struct napi_struct *napi, int budget); 6814 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx; 6815 void *have_poll_lock = NULL; 6816 struct napi_struct *napi; 6817 6818 WARN_ON_ONCE(!rcu_read_lock_held()); 6819 6820 restart: 6821 napi_poll = NULL; 6822 6823 napi = napi_by_id(napi_id); 6824 if (!napi) 6825 return; 6826 6827 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 6828 preempt_disable(); 6829 for (;;) { 6830 int work = 0; 6831 6832 local_bh_disable(); 6833 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx); 6834 if (!napi_poll) { 6835 unsigned long val = READ_ONCE(napi->state); 6836 6837 /* If multiple threads are competing for this napi, 6838 * we avoid dirtying napi->state as much as we can. 6839 */ 6840 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED | 6841 NAPIF_STATE_IN_BUSY_POLL)) { 6842 if (flags & NAPI_F_PREFER_BUSY_POLL) 6843 set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state); 6844 goto count; 6845 } 6846 if (cmpxchg(&napi->state, val, 6847 val | NAPIF_STATE_IN_BUSY_POLL | 6848 NAPIF_STATE_SCHED) != val) { 6849 if (flags & NAPI_F_PREFER_BUSY_POLL) 6850 set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state); 6851 goto count; 6852 } 6853 have_poll_lock = netpoll_poll_lock(napi); 6854 napi_poll = napi->poll; 6855 } 6856 work = napi_poll(napi, budget); 6857 trace_napi_poll(napi, work, budget); 6858 gro_normal_list(&napi->gro); 6859 count: 6860 if (work > 0) 6861 __NET_ADD_STATS(dev_net(napi->dev), 6862 LINUX_MIB_BUSYPOLLRXPACKETS, work); 6863 skb_defer_free_flush(this_cpu_ptr(&softnet_data)); 6864 bpf_net_ctx_clear(bpf_net_ctx); 6865 local_bh_enable(); 6866 6867 if (!loop_end || loop_end(loop_end_arg, start_time)) 6868 break; 6869 6870 if (unlikely(need_resched())) { 6871 if (flags & NAPI_F_END_ON_RESCHED) 6872 break; 6873 if (napi_poll) 6874 busy_poll_stop(napi, have_poll_lock, flags, budget); 6875 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 6876 preempt_enable(); 6877 rcu_read_unlock(); 6878 cond_resched(); 6879 rcu_read_lock(); 6880 if (loop_end(loop_end_arg, start_time)) 6881 return; 6882 goto restart; 6883 } 6884 cpu_relax(); 6885 } 6886 if (napi_poll) 6887 busy_poll_stop(napi, have_poll_lock, flags, budget); 6888 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 6889 preempt_enable(); 6890 } 6891 6892 void napi_busy_loop_rcu(unsigned int napi_id, 6893 bool (*loop_end)(void *, unsigned long), 6894 void *loop_end_arg, bool prefer_busy_poll, u16 budget) 6895 { 6896 unsigned flags = NAPI_F_END_ON_RESCHED; 6897 6898 if (prefer_busy_poll) 6899 flags |= NAPI_F_PREFER_BUSY_POLL; 6900 6901 __napi_busy_loop(napi_id, loop_end, loop_end_arg, flags, budget); 6902 } 6903 6904 void napi_busy_loop(unsigned int napi_id, 6905 bool (*loop_end)(void *, unsigned long), 6906 void *loop_end_arg, bool prefer_busy_poll, u16 budget) 6907 { 6908 unsigned flags = prefer_busy_poll ? NAPI_F_PREFER_BUSY_POLL : 0; 6909 6910 rcu_read_lock(); 6911 __napi_busy_loop(napi_id, loop_end, loop_end_arg, flags, budget); 6912 rcu_read_unlock(); 6913 } 6914 EXPORT_SYMBOL(napi_busy_loop); 6915 6916 void napi_suspend_irqs(unsigned int napi_id) 6917 { 6918 struct napi_struct *napi; 6919 6920 rcu_read_lock(); 6921 napi = napi_by_id(napi_id); 6922 if (napi) { 6923 unsigned long timeout = napi_get_irq_suspend_timeout(napi); 6924 6925 if (timeout) 6926 hrtimer_start(&napi->timer, ns_to_ktime(timeout), 6927 HRTIMER_MODE_REL_PINNED); 6928 } 6929 rcu_read_unlock(); 6930 } 6931 6932 void napi_resume_irqs(unsigned int napi_id) 6933 { 6934 struct napi_struct *napi; 6935 6936 rcu_read_lock(); 6937 napi = napi_by_id(napi_id); 6938 if (napi) { 6939 /* If irq_suspend_timeout is set to 0 between the call to 6940 * napi_suspend_irqs and now, the original value still 6941 * determines the safety timeout as intended and napi_watchdog 6942 * will resume irq processing. 6943 */ 6944 if (napi_get_irq_suspend_timeout(napi)) { 6945 local_bh_disable(); 6946 napi_schedule(napi); 6947 local_bh_enable(); 6948 } 6949 } 6950 rcu_read_unlock(); 6951 } 6952 6953 #endif /* CONFIG_NET_RX_BUSY_POLL */ 6954 6955 static void __napi_hash_add_with_id(struct napi_struct *napi, 6956 unsigned int napi_id) 6957 { 6958 napi->gro.cached_napi_id = napi_id; 6959 6960 WRITE_ONCE(napi->napi_id, napi_id); 6961 hlist_add_head_rcu(&napi->napi_hash_node, 6962 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]); 6963 } 6964 6965 static void napi_hash_add_with_id(struct napi_struct *napi, 6966 unsigned int napi_id) 6967 { 6968 unsigned long flags; 6969 6970 spin_lock_irqsave(&napi_hash_lock, flags); 6971 WARN_ON_ONCE(napi_by_id(napi_id)); 6972 __napi_hash_add_with_id(napi, napi_id); 6973 spin_unlock_irqrestore(&napi_hash_lock, flags); 6974 } 6975 6976 static void napi_hash_add(struct napi_struct *napi) 6977 { 6978 unsigned long flags; 6979 6980 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state)) 6981 return; 6982 6983 spin_lock_irqsave(&napi_hash_lock, flags); 6984 6985 /* 0..NR_CPUS range is reserved for sender_cpu use */ 6986 do { 6987 if (unlikely(!napi_id_valid(++napi_gen_id))) 6988 napi_gen_id = MIN_NAPI_ID; 6989 } while (napi_by_id(napi_gen_id)); 6990 6991 __napi_hash_add_with_id(napi, napi_gen_id); 6992 6993 spin_unlock_irqrestore(&napi_hash_lock, flags); 6994 } 6995 6996 /* Warning : caller is responsible to make sure rcu grace period 6997 * is respected before freeing memory containing @napi 6998 */ 6999 static void napi_hash_del(struct napi_struct *napi) 7000 { 7001 unsigned long flags; 7002 7003 spin_lock_irqsave(&napi_hash_lock, flags); 7004 7005 hlist_del_init_rcu(&napi->napi_hash_node); 7006 7007 spin_unlock_irqrestore(&napi_hash_lock, flags); 7008 } 7009 7010 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer) 7011 { 7012 struct napi_struct *napi; 7013 7014 napi = container_of(timer, struct napi_struct, timer); 7015 7016 /* Note : we use a relaxed variant of napi_schedule_prep() not setting 7017 * NAPI_STATE_MISSED, since we do not react to a device IRQ. 7018 */ 7019 if (!napi_disable_pending(napi) && 7020 !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) { 7021 clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state); 7022 __napi_schedule_irqoff(napi); 7023 } 7024 7025 return HRTIMER_NORESTART; 7026 } 7027 7028 static void napi_stop_kthread(struct napi_struct *napi) 7029 { 7030 unsigned long val, new; 7031 7032 /* Wait until the napi STATE_THREADED is unset. */ 7033 while (true) { 7034 val = READ_ONCE(napi->state); 7035 7036 /* If napi kthread own this napi or the napi is idle, 7037 * STATE_THREADED can be unset here. 7038 */ 7039 if ((val & NAPIF_STATE_SCHED_THREADED) || 7040 !(val & NAPIF_STATE_SCHED)) { 7041 new = val & (~NAPIF_STATE_THREADED); 7042 } else { 7043 msleep(20); 7044 continue; 7045 } 7046 7047 if (try_cmpxchg(&napi->state, &val, new)) 7048 break; 7049 } 7050 7051 /* Once STATE_THREADED is unset, wait for SCHED_THREADED to be unset by 7052 * the kthread. 7053 */ 7054 while (true) { 7055 if (!test_bit(NAPI_STATE_SCHED_THREADED, &napi->state)) 7056 break; 7057 7058 msleep(20); 7059 } 7060 7061 kthread_stop(napi->thread); 7062 napi->thread = NULL; 7063 } 7064 7065 int napi_set_threaded(struct napi_struct *napi, 7066 enum netdev_napi_threaded threaded) 7067 { 7068 if (threaded) { 7069 if (!napi->thread) { 7070 int err = napi_kthread_create(napi); 7071 7072 if (err) 7073 return err; 7074 } 7075 } 7076 7077 if (napi->config) 7078 napi->config->threaded = threaded; 7079 7080 /* Setting/unsetting threaded mode on a napi might not immediately 7081 * take effect, if the current napi instance is actively being 7082 * polled. In this case, the switch between threaded mode and 7083 * softirq mode will happen in the next round of napi_schedule(). 7084 * This should not cause hiccups/stalls to the live traffic. 7085 */ 7086 if (!threaded && napi->thread) { 7087 napi_stop_kthread(napi); 7088 } else { 7089 /* Make sure kthread is created before THREADED bit is set. */ 7090 smp_mb__before_atomic(); 7091 assign_bit(NAPI_STATE_THREADED, &napi->state, threaded); 7092 } 7093 7094 return 0; 7095 } 7096 7097 int netif_set_threaded(struct net_device *dev, 7098 enum netdev_napi_threaded threaded) 7099 { 7100 struct napi_struct *napi; 7101 int i, err = 0; 7102 7103 netdev_assert_locked_or_invisible(dev); 7104 7105 if (threaded) { 7106 list_for_each_entry(napi, &dev->napi_list, dev_list) { 7107 if (!napi->thread) { 7108 err = napi_kthread_create(napi); 7109 if (err) { 7110 threaded = NETDEV_NAPI_THREADED_DISABLED; 7111 break; 7112 } 7113 } 7114 } 7115 } 7116 7117 WRITE_ONCE(dev->threaded, threaded); 7118 7119 /* The error should not occur as the kthreads are already created. */ 7120 list_for_each_entry(napi, &dev->napi_list, dev_list) 7121 WARN_ON_ONCE(napi_set_threaded(napi, threaded)); 7122 7123 /* Override the config for all NAPIs even if currently not listed */ 7124 for (i = 0; i < dev->num_napi_configs; i++) 7125 dev->napi_config[i].threaded = threaded; 7126 7127 return err; 7128 } 7129 7130 /** 7131 * netif_threaded_enable() - enable threaded NAPIs 7132 * @dev: net_device instance 7133 * 7134 * Enable threaded mode for the NAPI instances of the device. This may be useful 7135 * for devices where multiple NAPI instances get scheduled by a single 7136 * interrupt. Threaded NAPI allows moving the NAPI processing to cores other 7137 * than the core where IRQ is mapped. 7138 * 7139 * This function should be called before @dev is registered. 7140 */ 7141 void netif_threaded_enable(struct net_device *dev) 7142 { 7143 WARN_ON_ONCE(netif_set_threaded(dev, NETDEV_NAPI_THREADED_ENABLED)); 7144 } 7145 EXPORT_SYMBOL(netif_threaded_enable); 7146 7147 /** 7148 * netif_queue_set_napi - Associate queue with the napi 7149 * @dev: device to which NAPI and queue belong 7150 * @queue_index: Index of queue 7151 * @type: queue type as RX or TX 7152 * @napi: NAPI context, pass NULL to clear previously set NAPI 7153 * 7154 * Set queue with its corresponding napi context. This should be done after 7155 * registering the NAPI handler for the queue-vector and the queues have been 7156 * mapped to the corresponding interrupt vector. 7157 */ 7158 void netif_queue_set_napi(struct net_device *dev, unsigned int queue_index, 7159 enum netdev_queue_type type, struct napi_struct *napi) 7160 { 7161 struct netdev_rx_queue *rxq; 7162 struct netdev_queue *txq; 7163 7164 if (WARN_ON_ONCE(napi && !napi->dev)) 7165 return; 7166 netdev_ops_assert_locked_or_invisible(dev); 7167 7168 switch (type) { 7169 case NETDEV_QUEUE_TYPE_RX: 7170 rxq = __netif_get_rx_queue(dev, queue_index); 7171 rxq->napi = napi; 7172 return; 7173 case NETDEV_QUEUE_TYPE_TX: 7174 txq = netdev_get_tx_queue(dev, queue_index); 7175 txq->napi = napi; 7176 return; 7177 default: 7178 return; 7179 } 7180 } 7181 EXPORT_SYMBOL(netif_queue_set_napi); 7182 7183 static void 7184 netif_napi_irq_notify(struct irq_affinity_notify *notify, 7185 const cpumask_t *mask) 7186 { 7187 struct napi_struct *napi = 7188 container_of(notify, struct napi_struct, notify); 7189 #ifdef CONFIG_RFS_ACCEL 7190 struct cpu_rmap *rmap = napi->dev->rx_cpu_rmap; 7191 int err; 7192 #endif 7193 7194 if (napi->config && napi->dev->irq_affinity_auto) 7195 cpumask_copy(&napi->config->affinity_mask, mask); 7196 7197 #ifdef CONFIG_RFS_ACCEL 7198 if (napi->dev->rx_cpu_rmap_auto) { 7199 err = cpu_rmap_update(rmap, napi->napi_rmap_idx, mask); 7200 if (err) 7201 netdev_warn(napi->dev, "RMAP update failed (%d)\n", 7202 err); 7203 } 7204 #endif 7205 } 7206 7207 #ifdef CONFIG_RFS_ACCEL 7208 static void netif_napi_affinity_release(struct kref *ref) 7209 { 7210 struct napi_struct *napi = 7211 container_of(ref, struct napi_struct, notify.kref); 7212 struct cpu_rmap *rmap = napi->dev->rx_cpu_rmap; 7213 7214 netdev_assert_locked(napi->dev); 7215 WARN_ON(test_and_clear_bit(NAPI_STATE_HAS_NOTIFIER, 7216 &napi->state)); 7217 7218 if (!napi->dev->rx_cpu_rmap_auto) 7219 return; 7220 rmap->obj[napi->napi_rmap_idx] = NULL; 7221 napi->napi_rmap_idx = -1; 7222 cpu_rmap_put(rmap); 7223 } 7224 7225 int netif_enable_cpu_rmap(struct net_device *dev, unsigned int num_irqs) 7226 { 7227 if (dev->rx_cpu_rmap_auto) 7228 return 0; 7229 7230 dev->rx_cpu_rmap = alloc_irq_cpu_rmap(num_irqs); 7231 if (!dev->rx_cpu_rmap) 7232 return -ENOMEM; 7233 7234 dev->rx_cpu_rmap_auto = true; 7235 return 0; 7236 } 7237 EXPORT_SYMBOL(netif_enable_cpu_rmap); 7238 7239 static void netif_del_cpu_rmap(struct net_device *dev) 7240 { 7241 struct cpu_rmap *rmap = dev->rx_cpu_rmap; 7242 7243 if (!dev->rx_cpu_rmap_auto) 7244 return; 7245 7246 /* Free the rmap */ 7247 cpu_rmap_put(rmap); 7248 dev->rx_cpu_rmap = NULL; 7249 dev->rx_cpu_rmap_auto = false; 7250 } 7251 7252 #else 7253 static void netif_napi_affinity_release(struct kref *ref) 7254 { 7255 } 7256 7257 int netif_enable_cpu_rmap(struct net_device *dev, unsigned int num_irqs) 7258 { 7259 return 0; 7260 } 7261 EXPORT_SYMBOL(netif_enable_cpu_rmap); 7262 7263 static void netif_del_cpu_rmap(struct net_device *dev) 7264 { 7265 } 7266 #endif 7267 7268 void netif_set_affinity_auto(struct net_device *dev) 7269 { 7270 unsigned int i, maxqs, numa; 7271 7272 maxqs = max(dev->num_tx_queues, dev->num_rx_queues); 7273 numa = dev_to_node(&dev->dev); 7274 7275 for (i = 0; i < maxqs; i++) 7276 cpumask_set_cpu(cpumask_local_spread(i, numa), 7277 &dev->napi_config[i].affinity_mask); 7278 7279 dev->irq_affinity_auto = true; 7280 } 7281 EXPORT_SYMBOL(netif_set_affinity_auto); 7282 7283 void netif_napi_set_irq_locked(struct napi_struct *napi, int irq) 7284 { 7285 int rc; 7286 7287 netdev_assert_locked_or_invisible(napi->dev); 7288 7289 if (napi->irq == irq) 7290 return; 7291 7292 /* Remove existing resources */ 7293 if (test_and_clear_bit(NAPI_STATE_HAS_NOTIFIER, &napi->state)) 7294 irq_set_affinity_notifier(napi->irq, NULL); 7295 7296 napi->irq = irq; 7297 if (irq < 0 || 7298 (!napi->dev->rx_cpu_rmap_auto && !napi->dev->irq_affinity_auto)) 7299 return; 7300 7301 /* Abort for buggy drivers */ 7302 if (napi->dev->irq_affinity_auto && WARN_ON_ONCE(!napi->config)) 7303 return; 7304 7305 #ifdef CONFIG_RFS_ACCEL 7306 if (napi->dev->rx_cpu_rmap_auto) { 7307 rc = cpu_rmap_add(napi->dev->rx_cpu_rmap, napi); 7308 if (rc < 0) 7309 return; 7310 7311 cpu_rmap_get(napi->dev->rx_cpu_rmap); 7312 napi->napi_rmap_idx = rc; 7313 } 7314 #endif 7315 7316 /* Use core IRQ notifier */ 7317 napi->notify.notify = netif_napi_irq_notify; 7318 napi->notify.release = netif_napi_affinity_release; 7319 rc = irq_set_affinity_notifier(irq, &napi->notify); 7320 if (rc) { 7321 netdev_warn(napi->dev, "Unable to set IRQ notifier (%d)\n", 7322 rc); 7323 goto put_rmap; 7324 } 7325 7326 set_bit(NAPI_STATE_HAS_NOTIFIER, &napi->state); 7327 return; 7328 7329 put_rmap: 7330 #ifdef CONFIG_RFS_ACCEL 7331 if (napi->dev->rx_cpu_rmap_auto) { 7332 napi->dev->rx_cpu_rmap->obj[napi->napi_rmap_idx] = NULL; 7333 cpu_rmap_put(napi->dev->rx_cpu_rmap); 7334 napi->napi_rmap_idx = -1; 7335 } 7336 #endif 7337 napi->notify.notify = NULL; 7338 napi->notify.release = NULL; 7339 } 7340 EXPORT_SYMBOL(netif_napi_set_irq_locked); 7341 7342 static void napi_restore_config(struct napi_struct *n) 7343 { 7344 n->defer_hard_irqs = n->config->defer_hard_irqs; 7345 n->gro_flush_timeout = n->config->gro_flush_timeout; 7346 n->irq_suspend_timeout = n->config->irq_suspend_timeout; 7347 7348 if (n->dev->irq_affinity_auto && 7349 test_bit(NAPI_STATE_HAS_NOTIFIER, &n->state)) 7350 irq_set_affinity(n->irq, &n->config->affinity_mask); 7351 7352 /* a NAPI ID might be stored in the config, if so use it. if not, use 7353 * napi_hash_add to generate one for us. 7354 */ 7355 if (n->config->napi_id) { 7356 napi_hash_add_with_id(n, n->config->napi_id); 7357 } else { 7358 napi_hash_add(n); 7359 n->config->napi_id = n->napi_id; 7360 } 7361 7362 WARN_ON_ONCE(napi_set_threaded(n, n->config->threaded)); 7363 } 7364 7365 static void napi_save_config(struct napi_struct *n) 7366 { 7367 n->config->defer_hard_irqs = n->defer_hard_irqs; 7368 n->config->gro_flush_timeout = n->gro_flush_timeout; 7369 n->config->irq_suspend_timeout = n->irq_suspend_timeout; 7370 napi_hash_del(n); 7371 } 7372 7373 /* Netlink wants the NAPI list to be sorted by ID, if adding a NAPI which will 7374 * inherit an existing ID try to insert it at the right position. 7375 */ 7376 static void 7377 netif_napi_dev_list_add(struct net_device *dev, struct napi_struct *napi) 7378 { 7379 unsigned int new_id, pos_id; 7380 struct list_head *higher; 7381 struct napi_struct *pos; 7382 7383 new_id = UINT_MAX; 7384 if (napi->config && napi->config->napi_id) 7385 new_id = napi->config->napi_id; 7386 7387 higher = &dev->napi_list; 7388 list_for_each_entry(pos, &dev->napi_list, dev_list) { 7389 if (napi_id_valid(pos->napi_id)) 7390 pos_id = pos->napi_id; 7391 else if (pos->config) 7392 pos_id = pos->config->napi_id; 7393 else 7394 pos_id = UINT_MAX; 7395 7396 if (pos_id <= new_id) 7397 break; 7398 higher = &pos->dev_list; 7399 } 7400 list_add_rcu(&napi->dev_list, higher); /* adds after higher */ 7401 } 7402 7403 /* Double check that napi_get_frags() allocates skbs with 7404 * skb->head being backed by slab, not a page fragment. 7405 * This is to make sure bug fixed in 3226b158e67c 7406 * ("net: avoid 32 x truesize under-estimation for tiny skbs") 7407 * does not accidentally come back. 7408 */ 7409 static void napi_get_frags_check(struct napi_struct *napi) 7410 { 7411 struct sk_buff *skb; 7412 7413 local_bh_disable(); 7414 skb = napi_get_frags(napi); 7415 WARN_ON_ONCE(skb && skb->head_frag); 7416 napi_free_frags(napi); 7417 local_bh_enable(); 7418 } 7419 7420 void netif_napi_add_weight_locked(struct net_device *dev, 7421 struct napi_struct *napi, 7422 int (*poll)(struct napi_struct *, int), 7423 int weight) 7424 { 7425 netdev_assert_locked(dev); 7426 if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state))) 7427 return; 7428 7429 INIT_LIST_HEAD(&napi->poll_list); 7430 INIT_HLIST_NODE(&napi->napi_hash_node); 7431 hrtimer_setup(&napi->timer, napi_watchdog, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED); 7432 gro_init(&napi->gro); 7433 napi->skb = NULL; 7434 napi->poll = poll; 7435 if (weight > NAPI_POLL_WEIGHT) 7436 netdev_err_once(dev, "%s() called with weight %d\n", __func__, 7437 weight); 7438 napi->weight = weight; 7439 napi->dev = dev; 7440 #ifdef CONFIG_NETPOLL 7441 napi->poll_owner = -1; 7442 #endif 7443 napi->list_owner = -1; 7444 set_bit(NAPI_STATE_SCHED, &napi->state); 7445 set_bit(NAPI_STATE_NPSVC, &napi->state); 7446 netif_napi_dev_list_add(dev, napi); 7447 7448 /* default settings from sysfs are applied to all NAPIs. any per-NAPI 7449 * configuration will be loaded in napi_enable 7450 */ 7451 napi_set_defer_hard_irqs(napi, READ_ONCE(dev->napi_defer_hard_irqs)); 7452 napi_set_gro_flush_timeout(napi, READ_ONCE(dev->gro_flush_timeout)); 7453 7454 napi_get_frags_check(napi); 7455 /* Create kthread for this napi if dev->threaded is set. 7456 * Clear dev->threaded if kthread creation failed so that 7457 * threaded mode will not be enabled in napi_enable(). 7458 */ 7459 if (napi_get_threaded_config(dev, napi)) 7460 if (napi_kthread_create(napi)) 7461 dev->threaded = NETDEV_NAPI_THREADED_DISABLED; 7462 netif_napi_set_irq_locked(napi, -1); 7463 } 7464 EXPORT_SYMBOL(netif_napi_add_weight_locked); 7465 7466 void napi_disable_locked(struct napi_struct *n) 7467 { 7468 unsigned long val, new; 7469 7470 might_sleep(); 7471 netdev_assert_locked(n->dev); 7472 7473 set_bit(NAPI_STATE_DISABLE, &n->state); 7474 7475 val = READ_ONCE(n->state); 7476 do { 7477 while (val & (NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC)) { 7478 usleep_range(20, 200); 7479 val = READ_ONCE(n->state); 7480 } 7481 7482 new = val | NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC; 7483 new &= ~(NAPIF_STATE_THREADED | NAPIF_STATE_PREFER_BUSY_POLL); 7484 } while (!try_cmpxchg(&n->state, &val, new)); 7485 7486 hrtimer_cancel(&n->timer); 7487 7488 if (n->config) 7489 napi_save_config(n); 7490 else 7491 napi_hash_del(n); 7492 7493 clear_bit(NAPI_STATE_DISABLE, &n->state); 7494 } 7495 EXPORT_SYMBOL(napi_disable_locked); 7496 7497 /** 7498 * napi_disable() - prevent NAPI from scheduling 7499 * @n: NAPI context 7500 * 7501 * Stop NAPI from being scheduled on this context. 7502 * Waits till any outstanding processing completes. 7503 * Takes netdev_lock() for associated net_device. 7504 */ 7505 void napi_disable(struct napi_struct *n) 7506 { 7507 netdev_lock(n->dev); 7508 napi_disable_locked(n); 7509 netdev_unlock(n->dev); 7510 } 7511 EXPORT_SYMBOL(napi_disable); 7512 7513 void napi_enable_locked(struct napi_struct *n) 7514 { 7515 unsigned long new, val = READ_ONCE(n->state); 7516 7517 if (n->config) 7518 napi_restore_config(n); 7519 else 7520 napi_hash_add(n); 7521 7522 do { 7523 BUG_ON(!test_bit(NAPI_STATE_SCHED, &val)); 7524 7525 new = val & ~(NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC); 7526 if (n->dev->threaded && n->thread) 7527 new |= NAPIF_STATE_THREADED; 7528 } while (!try_cmpxchg(&n->state, &val, new)); 7529 } 7530 EXPORT_SYMBOL(napi_enable_locked); 7531 7532 /** 7533 * napi_enable() - enable NAPI scheduling 7534 * @n: NAPI context 7535 * 7536 * Enable scheduling of a NAPI instance. 7537 * Must be paired with napi_disable(). 7538 * Takes netdev_lock() for associated net_device. 7539 */ 7540 void napi_enable(struct napi_struct *n) 7541 { 7542 netdev_lock(n->dev); 7543 napi_enable_locked(n); 7544 netdev_unlock(n->dev); 7545 } 7546 EXPORT_SYMBOL(napi_enable); 7547 7548 /* Must be called in process context */ 7549 void __netif_napi_del_locked(struct napi_struct *napi) 7550 { 7551 netdev_assert_locked(napi->dev); 7552 7553 if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state)) 7554 return; 7555 7556 /* Make sure NAPI is disabled (or was never enabled). */ 7557 WARN_ON(!test_bit(NAPI_STATE_SCHED, &napi->state)); 7558 7559 if (test_and_clear_bit(NAPI_STATE_HAS_NOTIFIER, &napi->state)) 7560 irq_set_affinity_notifier(napi->irq, NULL); 7561 7562 if (napi->config) { 7563 napi->index = -1; 7564 napi->config = NULL; 7565 } 7566 7567 list_del_rcu(&napi->dev_list); 7568 napi_free_frags(napi); 7569 7570 gro_cleanup(&napi->gro); 7571 7572 if (napi->thread) { 7573 kthread_stop(napi->thread); 7574 napi->thread = NULL; 7575 } 7576 } 7577 EXPORT_SYMBOL(__netif_napi_del_locked); 7578 7579 static int __napi_poll(struct napi_struct *n, bool *repoll) 7580 { 7581 int work, weight; 7582 7583 weight = n->weight; 7584 7585 /* This NAPI_STATE_SCHED test is for avoiding a race 7586 * with netpoll's poll_napi(). Only the entity which 7587 * obtains the lock and sees NAPI_STATE_SCHED set will 7588 * actually make the ->poll() call. Therefore we avoid 7589 * accidentally calling ->poll() when NAPI is not scheduled. 7590 */ 7591 work = 0; 7592 if (napi_is_scheduled(n)) { 7593 work = n->poll(n, weight); 7594 trace_napi_poll(n, work, weight); 7595 7596 xdp_do_check_flushed(n); 7597 } 7598 7599 if (unlikely(work > weight)) 7600 netdev_err_once(n->dev, "NAPI poll function %pS returned %d, exceeding its budget of %d.\n", 7601 n->poll, work, weight); 7602 7603 if (likely(work < weight)) 7604 return work; 7605 7606 /* Drivers must not modify the NAPI state if they 7607 * consume the entire weight. In such cases this code 7608 * still "owns" the NAPI instance and therefore can 7609 * move the instance around on the list at-will. 7610 */ 7611 if (unlikely(napi_disable_pending(n))) { 7612 napi_complete(n); 7613 return work; 7614 } 7615 7616 /* The NAPI context has more processing work, but busy-polling 7617 * is preferred. Exit early. 7618 */ 7619 if (napi_prefer_busy_poll(n)) { 7620 if (napi_complete_done(n, work)) { 7621 /* If timeout is not set, we need to make sure 7622 * that the NAPI is re-scheduled. 7623 */ 7624 napi_schedule(n); 7625 } 7626 return work; 7627 } 7628 7629 /* Flush too old packets. If HZ < 1000, flush all packets */ 7630 gro_flush_normal(&n->gro, HZ >= 1000); 7631 7632 /* Some drivers may have called napi_schedule 7633 * prior to exhausting their budget. 7634 */ 7635 if (unlikely(!list_empty(&n->poll_list))) { 7636 pr_warn_once("%s: Budget exhausted after napi rescheduled\n", 7637 n->dev ? n->dev->name : "backlog"); 7638 return work; 7639 } 7640 7641 *repoll = true; 7642 7643 return work; 7644 } 7645 7646 static int napi_poll(struct napi_struct *n, struct list_head *repoll) 7647 { 7648 bool do_repoll = false; 7649 void *have; 7650 int work; 7651 7652 list_del_init(&n->poll_list); 7653 7654 have = netpoll_poll_lock(n); 7655 7656 work = __napi_poll(n, &do_repoll); 7657 7658 if (do_repoll) { 7659 #if defined(CONFIG_DEBUG_NET) 7660 if (unlikely(!napi_is_scheduled(n))) 7661 pr_crit("repoll requested for device %s %ps but napi is not scheduled.\n", 7662 n->dev->name, n->poll); 7663 #endif 7664 list_add_tail(&n->poll_list, repoll); 7665 } 7666 netpoll_poll_unlock(have); 7667 7668 return work; 7669 } 7670 7671 static int napi_thread_wait(struct napi_struct *napi) 7672 { 7673 set_current_state(TASK_INTERRUPTIBLE); 7674 7675 while (!kthread_should_stop()) { 7676 /* Testing SCHED_THREADED bit here to make sure the current 7677 * kthread owns this napi and could poll on this napi. 7678 * Testing SCHED bit is not enough because SCHED bit might be 7679 * set by some other busy poll thread or by napi_disable(). 7680 */ 7681 if (test_bit(NAPI_STATE_SCHED_THREADED, &napi->state)) { 7682 WARN_ON(!list_empty(&napi->poll_list)); 7683 __set_current_state(TASK_RUNNING); 7684 return 0; 7685 } 7686 7687 schedule(); 7688 set_current_state(TASK_INTERRUPTIBLE); 7689 } 7690 __set_current_state(TASK_RUNNING); 7691 7692 return -1; 7693 } 7694 7695 static void napi_threaded_poll_loop(struct napi_struct *napi) 7696 { 7697 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx; 7698 struct softnet_data *sd; 7699 unsigned long last_qs = jiffies; 7700 7701 for (;;) { 7702 bool repoll = false; 7703 void *have; 7704 7705 local_bh_disable(); 7706 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx); 7707 7708 sd = this_cpu_ptr(&softnet_data); 7709 sd->in_napi_threaded_poll = true; 7710 7711 have = netpoll_poll_lock(napi); 7712 __napi_poll(napi, &repoll); 7713 netpoll_poll_unlock(have); 7714 7715 sd->in_napi_threaded_poll = false; 7716 barrier(); 7717 7718 if (sd_has_rps_ipi_waiting(sd)) { 7719 local_irq_disable(); 7720 net_rps_action_and_irq_enable(sd); 7721 } 7722 skb_defer_free_flush(sd); 7723 bpf_net_ctx_clear(bpf_net_ctx); 7724 local_bh_enable(); 7725 7726 if (!repoll) 7727 break; 7728 7729 rcu_softirq_qs_periodic(last_qs); 7730 cond_resched(); 7731 } 7732 } 7733 7734 static int napi_threaded_poll(void *data) 7735 { 7736 struct napi_struct *napi = data; 7737 7738 while (!napi_thread_wait(napi)) 7739 napi_threaded_poll_loop(napi); 7740 7741 return 0; 7742 } 7743 7744 static __latent_entropy void net_rx_action(void) 7745 { 7746 struct softnet_data *sd = this_cpu_ptr(&softnet_data); 7747 unsigned long time_limit = jiffies + 7748 usecs_to_jiffies(READ_ONCE(net_hotdata.netdev_budget_usecs)); 7749 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx; 7750 int budget = READ_ONCE(net_hotdata.netdev_budget); 7751 LIST_HEAD(list); 7752 LIST_HEAD(repoll); 7753 7754 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx); 7755 start: 7756 sd->in_net_rx_action = true; 7757 local_irq_disable(); 7758 list_splice_init(&sd->poll_list, &list); 7759 local_irq_enable(); 7760 7761 for (;;) { 7762 struct napi_struct *n; 7763 7764 skb_defer_free_flush(sd); 7765 7766 if (list_empty(&list)) { 7767 if (list_empty(&repoll)) { 7768 sd->in_net_rx_action = false; 7769 barrier(); 7770 /* We need to check if ____napi_schedule() 7771 * had refilled poll_list while 7772 * sd->in_net_rx_action was true. 7773 */ 7774 if (!list_empty(&sd->poll_list)) 7775 goto start; 7776 if (!sd_has_rps_ipi_waiting(sd)) 7777 goto end; 7778 } 7779 break; 7780 } 7781 7782 n = list_first_entry(&list, struct napi_struct, poll_list); 7783 budget -= napi_poll(n, &repoll); 7784 7785 /* If softirq window is exhausted then punt. 7786 * Allow this to run for 2 jiffies since which will allow 7787 * an average latency of 1.5/HZ. 7788 */ 7789 if (unlikely(budget <= 0 || 7790 time_after_eq(jiffies, time_limit))) { 7791 /* Pairs with READ_ONCE() in softnet_seq_show() */ 7792 WRITE_ONCE(sd->time_squeeze, sd->time_squeeze + 1); 7793 break; 7794 } 7795 } 7796 7797 local_irq_disable(); 7798 7799 list_splice_tail_init(&sd->poll_list, &list); 7800 list_splice_tail(&repoll, &list); 7801 list_splice(&list, &sd->poll_list); 7802 if (!list_empty(&sd->poll_list)) 7803 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 7804 else 7805 sd->in_net_rx_action = false; 7806 7807 net_rps_action_and_irq_enable(sd); 7808 end: 7809 bpf_net_ctx_clear(bpf_net_ctx); 7810 } 7811 7812 struct netdev_adjacent { 7813 struct net_device *dev; 7814 netdevice_tracker dev_tracker; 7815 7816 /* upper master flag, there can only be one master device per list */ 7817 bool master; 7818 7819 /* lookup ignore flag */ 7820 bool ignore; 7821 7822 /* counter for the number of times this device was added to us */ 7823 u16 ref_nr; 7824 7825 /* private field for the users */ 7826 void *private; 7827 7828 struct list_head list; 7829 struct rcu_head rcu; 7830 }; 7831 7832 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev, 7833 struct list_head *adj_list) 7834 { 7835 struct netdev_adjacent *adj; 7836 7837 list_for_each_entry(adj, adj_list, list) { 7838 if (adj->dev == adj_dev) 7839 return adj; 7840 } 7841 return NULL; 7842 } 7843 7844 static int ____netdev_has_upper_dev(struct net_device *upper_dev, 7845 struct netdev_nested_priv *priv) 7846 { 7847 struct net_device *dev = (struct net_device *)priv->data; 7848 7849 return upper_dev == dev; 7850 } 7851 7852 /** 7853 * netdev_has_upper_dev - Check if device is linked to an upper device 7854 * @dev: device 7855 * @upper_dev: upper device to check 7856 * 7857 * Find out if a device is linked to specified upper device and return true 7858 * in case it is. Note that this checks only immediate upper device, 7859 * not through a complete stack of devices. The caller must hold the RTNL lock. 7860 */ 7861 bool netdev_has_upper_dev(struct net_device *dev, 7862 struct net_device *upper_dev) 7863 { 7864 struct netdev_nested_priv priv = { 7865 .data = (void *)upper_dev, 7866 }; 7867 7868 ASSERT_RTNL(); 7869 7870 return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev, 7871 &priv); 7872 } 7873 EXPORT_SYMBOL(netdev_has_upper_dev); 7874 7875 /** 7876 * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device 7877 * @dev: device 7878 * @upper_dev: upper device to check 7879 * 7880 * Find out if a device is linked to specified upper device and return true 7881 * in case it is. Note that this checks the entire upper device chain. 7882 * The caller must hold rcu lock. 7883 */ 7884 7885 bool netdev_has_upper_dev_all_rcu(struct net_device *dev, 7886 struct net_device *upper_dev) 7887 { 7888 struct netdev_nested_priv priv = { 7889 .data = (void *)upper_dev, 7890 }; 7891 7892 return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev, 7893 &priv); 7894 } 7895 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu); 7896 7897 /** 7898 * netdev_has_any_upper_dev - Check if device is linked to some device 7899 * @dev: device 7900 * 7901 * Find out if a device is linked to an upper device and return true in case 7902 * it is. The caller must hold the RTNL lock. 7903 */ 7904 bool netdev_has_any_upper_dev(struct net_device *dev) 7905 { 7906 ASSERT_RTNL(); 7907 7908 return !list_empty(&dev->adj_list.upper); 7909 } 7910 EXPORT_SYMBOL(netdev_has_any_upper_dev); 7911 7912 /** 7913 * netdev_master_upper_dev_get - Get master upper device 7914 * @dev: device 7915 * 7916 * Find a master upper device and return pointer to it or NULL in case 7917 * it's not there. The caller must hold the RTNL lock. 7918 */ 7919 struct net_device *netdev_master_upper_dev_get(struct net_device *dev) 7920 { 7921 struct netdev_adjacent *upper; 7922 7923 ASSERT_RTNL(); 7924 7925 if (list_empty(&dev->adj_list.upper)) 7926 return NULL; 7927 7928 upper = list_first_entry(&dev->adj_list.upper, 7929 struct netdev_adjacent, list); 7930 if (likely(upper->master)) 7931 return upper->dev; 7932 return NULL; 7933 } 7934 EXPORT_SYMBOL(netdev_master_upper_dev_get); 7935 7936 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev) 7937 { 7938 struct netdev_adjacent *upper; 7939 7940 ASSERT_RTNL(); 7941 7942 if (list_empty(&dev->adj_list.upper)) 7943 return NULL; 7944 7945 upper = list_first_entry(&dev->adj_list.upper, 7946 struct netdev_adjacent, list); 7947 if (likely(upper->master) && !upper->ignore) 7948 return upper->dev; 7949 return NULL; 7950 } 7951 7952 /** 7953 * netdev_has_any_lower_dev - Check if device is linked to some device 7954 * @dev: device 7955 * 7956 * Find out if a device is linked to a lower device and return true in case 7957 * it is. The caller must hold the RTNL lock. 7958 */ 7959 static bool netdev_has_any_lower_dev(struct net_device *dev) 7960 { 7961 ASSERT_RTNL(); 7962 7963 return !list_empty(&dev->adj_list.lower); 7964 } 7965 7966 void *netdev_adjacent_get_private(struct list_head *adj_list) 7967 { 7968 struct netdev_adjacent *adj; 7969 7970 adj = list_entry(adj_list, struct netdev_adjacent, list); 7971 7972 return adj->private; 7973 } 7974 EXPORT_SYMBOL(netdev_adjacent_get_private); 7975 7976 /** 7977 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list 7978 * @dev: device 7979 * @iter: list_head ** of the current position 7980 * 7981 * Gets the next device from the dev's upper list, starting from iter 7982 * position. The caller must hold RCU read lock. 7983 */ 7984 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev, 7985 struct list_head **iter) 7986 { 7987 struct netdev_adjacent *upper; 7988 7989 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); 7990 7991 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 7992 7993 if (&upper->list == &dev->adj_list.upper) 7994 return NULL; 7995 7996 *iter = &upper->list; 7997 7998 return upper->dev; 7999 } 8000 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu); 8001 8002 static struct net_device *__netdev_next_upper_dev(struct net_device *dev, 8003 struct list_head **iter, 8004 bool *ignore) 8005 { 8006 struct netdev_adjacent *upper; 8007 8008 upper = list_entry((*iter)->next, struct netdev_adjacent, list); 8009 8010 if (&upper->list == &dev->adj_list.upper) 8011 return NULL; 8012 8013 *iter = &upper->list; 8014 *ignore = upper->ignore; 8015 8016 return upper->dev; 8017 } 8018 8019 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev, 8020 struct list_head **iter) 8021 { 8022 struct netdev_adjacent *upper; 8023 8024 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); 8025 8026 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 8027 8028 if (&upper->list == &dev->adj_list.upper) 8029 return NULL; 8030 8031 *iter = &upper->list; 8032 8033 return upper->dev; 8034 } 8035 8036 static int __netdev_walk_all_upper_dev(struct net_device *dev, 8037 int (*fn)(struct net_device *dev, 8038 struct netdev_nested_priv *priv), 8039 struct netdev_nested_priv *priv) 8040 { 8041 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 8042 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 8043 int ret, cur = 0; 8044 bool ignore; 8045 8046 now = dev; 8047 iter = &dev->adj_list.upper; 8048 8049 while (1) { 8050 if (now != dev) { 8051 ret = fn(now, priv); 8052 if (ret) 8053 return ret; 8054 } 8055 8056 next = NULL; 8057 while (1) { 8058 udev = __netdev_next_upper_dev(now, &iter, &ignore); 8059 if (!udev) 8060 break; 8061 if (ignore) 8062 continue; 8063 8064 next = udev; 8065 niter = &udev->adj_list.upper; 8066 dev_stack[cur] = now; 8067 iter_stack[cur++] = iter; 8068 break; 8069 } 8070 8071 if (!next) { 8072 if (!cur) 8073 return 0; 8074 next = dev_stack[--cur]; 8075 niter = iter_stack[cur]; 8076 } 8077 8078 now = next; 8079 iter = niter; 8080 } 8081 8082 return 0; 8083 } 8084 8085 int netdev_walk_all_upper_dev_rcu(struct net_device *dev, 8086 int (*fn)(struct net_device *dev, 8087 struct netdev_nested_priv *priv), 8088 struct netdev_nested_priv *priv) 8089 { 8090 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 8091 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 8092 int ret, cur = 0; 8093 8094 now = dev; 8095 iter = &dev->adj_list.upper; 8096 8097 while (1) { 8098 if (now != dev) { 8099 ret = fn(now, priv); 8100 if (ret) 8101 return ret; 8102 } 8103 8104 next = NULL; 8105 while (1) { 8106 udev = netdev_next_upper_dev_rcu(now, &iter); 8107 if (!udev) 8108 break; 8109 8110 next = udev; 8111 niter = &udev->adj_list.upper; 8112 dev_stack[cur] = now; 8113 iter_stack[cur++] = iter; 8114 break; 8115 } 8116 8117 if (!next) { 8118 if (!cur) 8119 return 0; 8120 next = dev_stack[--cur]; 8121 niter = iter_stack[cur]; 8122 } 8123 8124 now = next; 8125 iter = niter; 8126 } 8127 8128 return 0; 8129 } 8130 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu); 8131 8132 static bool __netdev_has_upper_dev(struct net_device *dev, 8133 struct net_device *upper_dev) 8134 { 8135 struct netdev_nested_priv priv = { 8136 .flags = 0, 8137 .data = (void *)upper_dev, 8138 }; 8139 8140 ASSERT_RTNL(); 8141 8142 return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev, 8143 &priv); 8144 } 8145 8146 /** 8147 * netdev_lower_get_next_private - Get the next ->private from the 8148 * lower neighbour list 8149 * @dev: device 8150 * @iter: list_head ** of the current position 8151 * 8152 * Gets the next netdev_adjacent->private from the dev's lower neighbour 8153 * list, starting from iter position. The caller must hold either hold the 8154 * RTNL lock or its own locking that guarantees that the neighbour lower 8155 * list will remain unchanged. 8156 */ 8157 void *netdev_lower_get_next_private(struct net_device *dev, 8158 struct list_head **iter) 8159 { 8160 struct netdev_adjacent *lower; 8161 8162 lower = list_entry(*iter, struct netdev_adjacent, list); 8163 8164 if (&lower->list == &dev->adj_list.lower) 8165 return NULL; 8166 8167 *iter = lower->list.next; 8168 8169 return lower->private; 8170 } 8171 EXPORT_SYMBOL(netdev_lower_get_next_private); 8172 8173 /** 8174 * netdev_lower_get_next_private_rcu - Get the next ->private from the 8175 * lower neighbour list, RCU 8176 * variant 8177 * @dev: device 8178 * @iter: list_head ** of the current position 8179 * 8180 * Gets the next netdev_adjacent->private from the dev's lower neighbour 8181 * list, starting from iter position. The caller must hold RCU read lock. 8182 */ 8183 void *netdev_lower_get_next_private_rcu(struct net_device *dev, 8184 struct list_head **iter) 8185 { 8186 struct netdev_adjacent *lower; 8187 8188 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held()); 8189 8190 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 8191 8192 if (&lower->list == &dev->adj_list.lower) 8193 return NULL; 8194 8195 *iter = &lower->list; 8196 8197 return lower->private; 8198 } 8199 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu); 8200 8201 /** 8202 * netdev_lower_get_next - Get the next device from the lower neighbour 8203 * list 8204 * @dev: device 8205 * @iter: list_head ** of the current position 8206 * 8207 * Gets the next netdev_adjacent from the dev's lower neighbour 8208 * list, starting from iter position. The caller must hold RTNL lock or 8209 * its own locking that guarantees that the neighbour lower 8210 * list will remain unchanged. 8211 */ 8212 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter) 8213 { 8214 struct netdev_adjacent *lower; 8215 8216 lower = list_entry(*iter, struct netdev_adjacent, list); 8217 8218 if (&lower->list == &dev->adj_list.lower) 8219 return NULL; 8220 8221 *iter = lower->list.next; 8222 8223 return lower->dev; 8224 } 8225 EXPORT_SYMBOL(netdev_lower_get_next); 8226 8227 static struct net_device *netdev_next_lower_dev(struct net_device *dev, 8228 struct list_head **iter) 8229 { 8230 struct netdev_adjacent *lower; 8231 8232 lower = list_entry((*iter)->next, struct netdev_adjacent, list); 8233 8234 if (&lower->list == &dev->adj_list.lower) 8235 return NULL; 8236 8237 *iter = &lower->list; 8238 8239 return lower->dev; 8240 } 8241 8242 static struct net_device *__netdev_next_lower_dev(struct net_device *dev, 8243 struct list_head **iter, 8244 bool *ignore) 8245 { 8246 struct netdev_adjacent *lower; 8247 8248 lower = list_entry((*iter)->next, struct netdev_adjacent, list); 8249 8250 if (&lower->list == &dev->adj_list.lower) 8251 return NULL; 8252 8253 *iter = &lower->list; 8254 *ignore = lower->ignore; 8255 8256 return lower->dev; 8257 } 8258 8259 int netdev_walk_all_lower_dev(struct net_device *dev, 8260 int (*fn)(struct net_device *dev, 8261 struct netdev_nested_priv *priv), 8262 struct netdev_nested_priv *priv) 8263 { 8264 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 8265 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 8266 int ret, cur = 0; 8267 8268 now = dev; 8269 iter = &dev->adj_list.lower; 8270 8271 while (1) { 8272 if (now != dev) { 8273 ret = fn(now, priv); 8274 if (ret) 8275 return ret; 8276 } 8277 8278 next = NULL; 8279 while (1) { 8280 ldev = netdev_next_lower_dev(now, &iter); 8281 if (!ldev) 8282 break; 8283 8284 next = ldev; 8285 niter = &ldev->adj_list.lower; 8286 dev_stack[cur] = now; 8287 iter_stack[cur++] = iter; 8288 break; 8289 } 8290 8291 if (!next) { 8292 if (!cur) 8293 return 0; 8294 next = dev_stack[--cur]; 8295 niter = iter_stack[cur]; 8296 } 8297 8298 now = next; 8299 iter = niter; 8300 } 8301 8302 return 0; 8303 } 8304 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev); 8305 8306 static int __netdev_walk_all_lower_dev(struct net_device *dev, 8307 int (*fn)(struct net_device *dev, 8308 struct netdev_nested_priv *priv), 8309 struct netdev_nested_priv *priv) 8310 { 8311 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 8312 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 8313 int ret, cur = 0; 8314 bool ignore; 8315 8316 now = dev; 8317 iter = &dev->adj_list.lower; 8318 8319 while (1) { 8320 if (now != dev) { 8321 ret = fn(now, priv); 8322 if (ret) 8323 return ret; 8324 } 8325 8326 next = NULL; 8327 while (1) { 8328 ldev = __netdev_next_lower_dev(now, &iter, &ignore); 8329 if (!ldev) 8330 break; 8331 if (ignore) 8332 continue; 8333 8334 next = ldev; 8335 niter = &ldev->adj_list.lower; 8336 dev_stack[cur] = now; 8337 iter_stack[cur++] = iter; 8338 break; 8339 } 8340 8341 if (!next) { 8342 if (!cur) 8343 return 0; 8344 next = dev_stack[--cur]; 8345 niter = iter_stack[cur]; 8346 } 8347 8348 now = next; 8349 iter = niter; 8350 } 8351 8352 return 0; 8353 } 8354 8355 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev, 8356 struct list_head **iter) 8357 { 8358 struct netdev_adjacent *lower; 8359 8360 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 8361 if (&lower->list == &dev->adj_list.lower) 8362 return NULL; 8363 8364 *iter = &lower->list; 8365 8366 return lower->dev; 8367 } 8368 EXPORT_SYMBOL(netdev_next_lower_dev_rcu); 8369 8370 static u8 __netdev_upper_depth(struct net_device *dev) 8371 { 8372 struct net_device *udev; 8373 struct list_head *iter; 8374 u8 max_depth = 0; 8375 bool ignore; 8376 8377 for (iter = &dev->adj_list.upper, 8378 udev = __netdev_next_upper_dev(dev, &iter, &ignore); 8379 udev; 8380 udev = __netdev_next_upper_dev(dev, &iter, &ignore)) { 8381 if (ignore) 8382 continue; 8383 if (max_depth < udev->upper_level) 8384 max_depth = udev->upper_level; 8385 } 8386 8387 return max_depth; 8388 } 8389 8390 static u8 __netdev_lower_depth(struct net_device *dev) 8391 { 8392 struct net_device *ldev; 8393 struct list_head *iter; 8394 u8 max_depth = 0; 8395 bool ignore; 8396 8397 for (iter = &dev->adj_list.lower, 8398 ldev = __netdev_next_lower_dev(dev, &iter, &ignore); 8399 ldev; 8400 ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) { 8401 if (ignore) 8402 continue; 8403 if (max_depth < ldev->lower_level) 8404 max_depth = ldev->lower_level; 8405 } 8406 8407 return max_depth; 8408 } 8409 8410 static int __netdev_update_upper_level(struct net_device *dev, 8411 struct netdev_nested_priv *__unused) 8412 { 8413 dev->upper_level = __netdev_upper_depth(dev) + 1; 8414 return 0; 8415 } 8416 8417 #ifdef CONFIG_LOCKDEP 8418 static LIST_HEAD(net_unlink_list); 8419 8420 static void net_unlink_todo(struct net_device *dev) 8421 { 8422 if (list_empty(&dev->unlink_list)) 8423 list_add_tail(&dev->unlink_list, &net_unlink_list); 8424 } 8425 #endif 8426 8427 static int __netdev_update_lower_level(struct net_device *dev, 8428 struct netdev_nested_priv *priv) 8429 { 8430 dev->lower_level = __netdev_lower_depth(dev) + 1; 8431 8432 #ifdef CONFIG_LOCKDEP 8433 if (!priv) 8434 return 0; 8435 8436 if (priv->flags & NESTED_SYNC_IMM) 8437 dev->nested_level = dev->lower_level - 1; 8438 if (priv->flags & NESTED_SYNC_TODO) 8439 net_unlink_todo(dev); 8440 #endif 8441 return 0; 8442 } 8443 8444 int netdev_walk_all_lower_dev_rcu(struct net_device *dev, 8445 int (*fn)(struct net_device *dev, 8446 struct netdev_nested_priv *priv), 8447 struct netdev_nested_priv *priv) 8448 { 8449 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 8450 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 8451 int ret, cur = 0; 8452 8453 now = dev; 8454 iter = &dev->adj_list.lower; 8455 8456 while (1) { 8457 if (now != dev) { 8458 ret = fn(now, priv); 8459 if (ret) 8460 return ret; 8461 } 8462 8463 next = NULL; 8464 while (1) { 8465 ldev = netdev_next_lower_dev_rcu(now, &iter); 8466 if (!ldev) 8467 break; 8468 8469 next = ldev; 8470 niter = &ldev->adj_list.lower; 8471 dev_stack[cur] = now; 8472 iter_stack[cur++] = iter; 8473 break; 8474 } 8475 8476 if (!next) { 8477 if (!cur) 8478 return 0; 8479 next = dev_stack[--cur]; 8480 niter = iter_stack[cur]; 8481 } 8482 8483 now = next; 8484 iter = niter; 8485 } 8486 8487 return 0; 8488 } 8489 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu); 8490 8491 /** 8492 * netdev_lower_get_first_private_rcu - Get the first ->private from the 8493 * lower neighbour list, RCU 8494 * variant 8495 * @dev: device 8496 * 8497 * Gets the first netdev_adjacent->private from the dev's lower neighbour 8498 * list. The caller must hold RCU read lock. 8499 */ 8500 void *netdev_lower_get_first_private_rcu(struct net_device *dev) 8501 { 8502 struct netdev_adjacent *lower; 8503 8504 lower = list_first_or_null_rcu(&dev->adj_list.lower, 8505 struct netdev_adjacent, list); 8506 if (lower) 8507 return lower->private; 8508 return NULL; 8509 } 8510 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu); 8511 8512 /** 8513 * netdev_master_upper_dev_get_rcu - Get master upper device 8514 * @dev: device 8515 * 8516 * Find a master upper device and return pointer to it or NULL in case 8517 * it's not there. The caller must hold the RCU read lock. 8518 */ 8519 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev) 8520 { 8521 struct netdev_adjacent *upper; 8522 8523 upper = list_first_or_null_rcu(&dev->adj_list.upper, 8524 struct netdev_adjacent, list); 8525 if (upper && likely(upper->master)) 8526 return upper->dev; 8527 return NULL; 8528 } 8529 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu); 8530 8531 static int netdev_adjacent_sysfs_add(struct net_device *dev, 8532 struct net_device *adj_dev, 8533 struct list_head *dev_list) 8534 { 8535 char linkname[IFNAMSIZ+7]; 8536 8537 sprintf(linkname, dev_list == &dev->adj_list.upper ? 8538 "upper_%s" : "lower_%s", adj_dev->name); 8539 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj), 8540 linkname); 8541 } 8542 static void netdev_adjacent_sysfs_del(struct net_device *dev, 8543 char *name, 8544 struct list_head *dev_list) 8545 { 8546 char linkname[IFNAMSIZ+7]; 8547 8548 sprintf(linkname, dev_list == &dev->adj_list.upper ? 8549 "upper_%s" : "lower_%s", name); 8550 sysfs_remove_link(&(dev->dev.kobj), linkname); 8551 } 8552 8553 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev, 8554 struct net_device *adj_dev, 8555 struct list_head *dev_list) 8556 { 8557 return (dev_list == &dev->adj_list.upper || 8558 dev_list == &dev->adj_list.lower) && 8559 net_eq(dev_net(dev), dev_net(adj_dev)); 8560 } 8561 8562 static int __netdev_adjacent_dev_insert(struct net_device *dev, 8563 struct net_device *adj_dev, 8564 struct list_head *dev_list, 8565 void *private, bool master) 8566 { 8567 struct netdev_adjacent *adj; 8568 int ret; 8569 8570 adj = __netdev_find_adj(adj_dev, dev_list); 8571 8572 if (adj) { 8573 adj->ref_nr += 1; 8574 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n", 8575 dev->name, adj_dev->name, adj->ref_nr); 8576 8577 return 0; 8578 } 8579 8580 adj = kmalloc(sizeof(*adj), GFP_KERNEL); 8581 if (!adj) 8582 return -ENOMEM; 8583 8584 adj->dev = adj_dev; 8585 adj->master = master; 8586 adj->ref_nr = 1; 8587 adj->private = private; 8588 adj->ignore = false; 8589 netdev_hold(adj_dev, &adj->dev_tracker, GFP_KERNEL); 8590 8591 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n", 8592 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name); 8593 8594 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) { 8595 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list); 8596 if (ret) 8597 goto free_adj; 8598 } 8599 8600 /* Ensure that master link is always the first item in list. */ 8601 if (master) { 8602 ret = sysfs_create_link(&(dev->dev.kobj), 8603 &(adj_dev->dev.kobj), "master"); 8604 if (ret) 8605 goto remove_symlinks; 8606 8607 list_add_rcu(&adj->list, dev_list); 8608 } else { 8609 list_add_tail_rcu(&adj->list, dev_list); 8610 } 8611 8612 return 0; 8613 8614 remove_symlinks: 8615 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) 8616 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list); 8617 free_adj: 8618 netdev_put(adj_dev, &adj->dev_tracker); 8619 kfree(adj); 8620 8621 return ret; 8622 } 8623 8624 static void __netdev_adjacent_dev_remove(struct net_device *dev, 8625 struct net_device *adj_dev, 8626 u16 ref_nr, 8627 struct list_head *dev_list) 8628 { 8629 struct netdev_adjacent *adj; 8630 8631 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n", 8632 dev->name, adj_dev->name, ref_nr); 8633 8634 adj = __netdev_find_adj(adj_dev, dev_list); 8635 8636 if (!adj) { 8637 pr_err("Adjacency does not exist for device %s from %s\n", 8638 dev->name, adj_dev->name); 8639 WARN_ON(1); 8640 return; 8641 } 8642 8643 if (adj->ref_nr > ref_nr) { 8644 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n", 8645 dev->name, adj_dev->name, ref_nr, 8646 adj->ref_nr - ref_nr); 8647 adj->ref_nr -= ref_nr; 8648 return; 8649 } 8650 8651 if (adj->master) 8652 sysfs_remove_link(&(dev->dev.kobj), "master"); 8653 8654 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) 8655 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list); 8656 8657 list_del_rcu(&adj->list); 8658 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n", 8659 adj_dev->name, dev->name, adj_dev->name); 8660 netdev_put(adj_dev, &adj->dev_tracker); 8661 kfree_rcu(adj, rcu); 8662 } 8663 8664 static int __netdev_adjacent_dev_link_lists(struct net_device *dev, 8665 struct net_device *upper_dev, 8666 struct list_head *up_list, 8667 struct list_head *down_list, 8668 void *private, bool master) 8669 { 8670 int ret; 8671 8672 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, 8673 private, master); 8674 if (ret) 8675 return ret; 8676 8677 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, 8678 private, false); 8679 if (ret) { 8680 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list); 8681 return ret; 8682 } 8683 8684 return 0; 8685 } 8686 8687 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev, 8688 struct net_device *upper_dev, 8689 u16 ref_nr, 8690 struct list_head *up_list, 8691 struct list_head *down_list) 8692 { 8693 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list); 8694 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list); 8695 } 8696 8697 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev, 8698 struct net_device *upper_dev, 8699 void *private, bool master) 8700 { 8701 return __netdev_adjacent_dev_link_lists(dev, upper_dev, 8702 &dev->adj_list.upper, 8703 &upper_dev->adj_list.lower, 8704 private, master); 8705 } 8706 8707 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev, 8708 struct net_device *upper_dev) 8709 { 8710 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1, 8711 &dev->adj_list.upper, 8712 &upper_dev->adj_list.lower); 8713 } 8714 8715 static int __netdev_upper_dev_link(struct net_device *dev, 8716 struct net_device *upper_dev, bool master, 8717 void *upper_priv, void *upper_info, 8718 struct netdev_nested_priv *priv, 8719 struct netlink_ext_ack *extack) 8720 { 8721 struct netdev_notifier_changeupper_info changeupper_info = { 8722 .info = { 8723 .dev = dev, 8724 .extack = extack, 8725 }, 8726 .upper_dev = upper_dev, 8727 .master = master, 8728 .linking = true, 8729 .upper_info = upper_info, 8730 }; 8731 struct net_device *master_dev; 8732 int ret = 0; 8733 8734 ASSERT_RTNL(); 8735 8736 if (dev == upper_dev) 8737 return -EBUSY; 8738 8739 /* To prevent loops, check if dev is not upper device to upper_dev. */ 8740 if (__netdev_has_upper_dev(upper_dev, dev)) 8741 return -EBUSY; 8742 8743 if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV) 8744 return -EMLINK; 8745 8746 if (!master) { 8747 if (__netdev_has_upper_dev(dev, upper_dev)) 8748 return -EEXIST; 8749 } else { 8750 master_dev = __netdev_master_upper_dev_get(dev); 8751 if (master_dev) 8752 return master_dev == upper_dev ? -EEXIST : -EBUSY; 8753 } 8754 8755 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, 8756 &changeupper_info.info); 8757 ret = notifier_to_errno(ret); 8758 if (ret) 8759 return ret; 8760 8761 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv, 8762 master); 8763 if (ret) 8764 return ret; 8765 8766 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, 8767 &changeupper_info.info); 8768 ret = notifier_to_errno(ret); 8769 if (ret) 8770 goto rollback; 8771 8772 __netdev_update_upper_level(dev, NULL); 8773 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL); 8774 8775 __netdev_update_lower_level(upper_dev, priv); 8776 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level, 8777 priv); 8778 8779 return 0; 8780 8781 rollback: 8782 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 8783 8784 return ret; 8785 } 8786 8787 /** 8788 * netdev_upper_dev_link - Add a link to the upper device 8789 * @dev: device 8790 * @upper_dev: new upper device 8791 * @extack: netlink extended ack 8792 * 8793 * Adds a link to device which is upper to this one. The caller must hold 8794 * the RTNL lock. On a failure a negative errno code is returned. 8795 * On success the reference counts are adjusted and the function 8796 * returns zero. 8797 */ 8798 int netdev_upper_dev_link(struct net_device *dev, 8799 struct net_device *upper_dev, 8800 struct netlink_ext_ack *extack) 8801 { 8802 struct netdev_nested_priv priv = { 8803 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO, 8804 .data = NULL, 8805 }; 8806 8807 return __netdev_upper_dev_link(dev, upper_dev, false, 8808 NULL, NULL, &priv, extack); 8809 } 8810 EXPORT_SYMBOL(netdev_upper_dev_link); 8811 8812 /** 8813 * netdev_master_upper_dev_link - Add a master link to the upper device 8814 * @dev: device 8815 * @upper_dev: new upper device 8816 * @upper_priv: upper device private 8817 * @upper_info: upper info to be passed down via notifier 8818 * @extack: netlink extended ack 8819 * 8820 * Adds a link to device which is upper to this one. In this case, only 8821 * one master upper device can be linked, although other non-master devices 8822 * might be linked as well. The caller must hold the RTNL lock. 8823 * On a failure a negative errno code is returned. On success the reference 8824 * counts are adjusted and the function returns zero. 8825 */ 8826 int netdev_master_upper_dev_link(struct net_device *dev, 8827 struct net_device *upper_dev, 8828 void *upper_priv, void *upper_info, 8829 struct netlink_ext_ack *extack) 8830 { 8831 struct netdev_nested_priv priv = { 8832 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO, 8833 .data = NULL, 8834 }; 8835 8836 return __netdev_upper_dev_link(dev, upper_dev, true, 8837 upper_priv, upper_info, &priv, extack); 8838 } 8839 EXPORT_SYMBOL(netdev_master_upper_dev_link); 8840 8841 static void __netdev_upper_dev_unlink(struct net_device *dev, 8842 struct net_device *upper_dev, 8843 struct netdev_nested_priv *priv) 8844 { 8845 struct netdev_notifier_changeupper_info changeupper_info = { 8846 .info = { 8847 .dev = dev, 8848 }, 8849 .upper_dev = upper_dev, 8850 .linking = false, 8851 }; 8852 8853 ASSERT_RTNL(); 8854 8855 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev; 8856 8857 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, 8858 &changeupper_info.info); 8859 8860 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 8861 8862 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, 8863 &changeupper_info.info); 8864 8865 __netdev_update_upper_level(dev, NULL); 8866 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL); 8867 8868 __netdev_update_lower_level(upper_dev, priv); 8869 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level, 8870 priv); 8871 } 8872 8873 /** 8874 * netdev_upper_dev_unlink - Removes a link to upper device 8875 * @dev: device 8876 * @upper_dev: new upper device 8877 * 8878 * Removes a link to device which is upper to this one. The caller must hold 8879 * the RTNL lock. 8880 */ 8881 void netdev_upper_dev_unlink(struct net_device *dev, 8882 struct net_device *upper_dev) 8883 { 8884 struct netdev_nested_priv priv = { 8885 .flags = NESTED_SYNC_TODO, 8886 .data = NULL, 8887 }; 8888 8889 __netdev_upper_dev_unlink(dev, upper_dev, &priv); 8890 } 8891 EXPORT_SYMBOL(netdev_upper_dev_unlink); 8892 8893 static void __netdev_adjacent_dev_set(struct net_device *upper_dev, 8894 struct net_device *lower_dev, 8895 bool val) 8896 { 8897 struct netdev_adjacent *adj; 8898 8899 adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower); 8900 if (adj) 8901 adj->ignore = val; 8902 8903 adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper); 8904 if (adj) 8905 adj->ignore = val; 8906 } 8907 8908 static void netdev_adjacent_dev_disable(struct net_device *upper_dev, 8909 struct net_device *lower_dev) 8910 { 8911 __netdev_adjacent_dev_set(upper_dev, lower_dev, true); 8912 } 8913 8914 static void netdev_adjacent_dev_enable(struct net_device *upper_dev, 8915 struct net_device *lower_dev) 8916 { 8917 __netdev_adjacent_dev_set(upper_dev, lower_dev, false); 8918 } 8919 8920 int netdev_adjacent_change_prepare(struct net_device *old_dev, 8921 struct net_device *new_dev, 8922 struct net_device *dev, 8923 struct netlink_ext_ack *extack) 8924 { 8925 struct netdev_nested_priv priv = { 8926 .flags = 0, 8927 .data = NULL, 8928 }; 8929 int err; 8930 8931 if (!new_dev) 8932 return 0; 8933 8934 if (old_dev && new_dev != old_dev) 8935 netdev_adjacent_dev_disable(dev, old_dev); 8936 err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv, 8937 extack); 8938 if (err) { 8939 if (old_dev && new_dev != old_dev) 8940 netdev_adjacent_dev_enable(dev, old_dev); 8941 return err; 8942 } 8943 8944 return 0; 8945 } 8946 EXPORT_SYMBOL(netdev_adjacent_change_prepare); 8947 8948 void netdev_adjacent_change_commit(struct net_device *old_dev, 8949 struct net_device *new_dev, 8950 struct net_device *dev) 8951 { 8952 struct netdev_nested_priv priv = { 8953 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO, 8954 .data = NULL, 8955 }; 8956 8957 if (!new_dev || !old_dev) 8958 return; 8959 8960 if (new_dev == old_dev) 8961 return; 8962 8963 netdev_adjacent_dev_enable(dev, old_dev); 8964 __netdev_upper_dev_unlink(old_dev, dev, &priv); 8965 } 8966 EXPORT_SYMBOL(netdev_adjacent_change_commit); 8967 8968 void netdev_adjacent_change_abort(struct net_device *old_dev, 8969 struct net_device *new_dev, 8970 struct net_device *dev) 8971 { 8972 struct netdev_nested_priv priv = { 8973 .flags = 0, 8974 .data = NULL, 8975 }; 8976 8977 if (!new_dev) 8978 return; 8979 8980 if (old_dev && new_dev != old_dev) 8981 netdev_adjacent_dev_enable(dev, old_dev); 8982 8983 __netdev_upper_dev_unlink(new_dev, dev, &priv); 8984 } 8985 EXPORT_SYMBOL(netdev_adjacent_change_abort); 8986 8987 /** 8988 * netdev_bonding_info_change - Dispatch event about slave change 8989 * @dev: device 8990 * @bonding_info: info to dispatch 8991 * 8992 * Send NETDEV_BONDING_INFO to netdev notifiers with info. 8993 * The caller must hold the RTNL lock. 8994 */ 8995 void netdev_bonding_info_change(struct net_device *dev, 8996 struct netdev_bonding_info *bonding_info) 8997 { 8998 struct netdev_notifier_bonding_info info = { 8999 .info.dev = dev, 9000 }; 9001 9002 memcpy(&info.bonding_info, bonding_info, 9003 sizeof(struct netdev_bonding_info)); 9004 call_netdevice_notifiers_info(NETDEV_BONDING_INFO, 9005 &info.info); 9006 } 9007 EXPORT_SYMBOL(netdev_bonding_info_change); 9008 9009 static int netdev_offload_xstats_enable_l3(struct net_device *dev, 9010 struct netlink_ext_ack *extack) 9011 { 9012 struct netdev_notifier_offload_xstats_info info = { 9013 .info.dev = dev, 9014 .info.extack = extack, 9015 .type = NETDEV_OFFLOAD_XSTATS_TYPE_L3, 9016 }; 9017 int err; 9018 int rc; 9019 9020 dev->offload_xstats_l3 = kzalloc(sizeof(*dev->offload_xstats_l3), 9021 GFP_KERNEL); 9022 if (!dev->offload_xstats_l3) 9023 return -ENOMEM; 9024 9025 rc = call_netdevice_notifiers_info_robust(NETDEV_OFFLOAD_XSTATS_ENABLE, 9026 NETDEV_OFFLOAD_XSTATS_DISABLE, 9027 &info.info); 9028 err = notifier_to_errno(rc); 9029 if (err) 9030 goto free_stats; 9031 9032 return 0; 9033 9034 free_stats: 9035 kfree(dev->offload_xstats_l3); 9036 dev->offload_xstats_l3 = NULL; 9037 return err; 9038 } 9039 9040 int netdev_offload_xstats_enable(struct net_device *dev, 9041 enum netdev_offload_xstats_type type, 9042 struct netlink_ext_ack *extack) 9043 { 9044 ASSERT_RTNL(); 9045 9046 if (netdev_offload_xstats_enabled(dev, type)) 9047 return -EALREADY; 9048 9049 switch (type) { 9050 case NETDEV_OFFLOAD_XSTATS_TYPE_L3: 9051 return netdev_offload_xstats_enable_l3(dev, extack); 9052 } 9053 9054 WARN_ON(1); 9055 return -EINVAL; 9056 } 9057 EXPORT_SYMBOL(netdev_offload_xstats_enable); 9058 9059 static void netdev_offload_xstats_disable_l3(struct net_device *dev) 9060 { 9061 struct netdev_notifier_offload_xstats_info info = { 9062 .info.dev = dev, 9063 .type = NETDEV_OFFLOAD_XSTATS_TYPE_L3, 9064 }; 9065 9066 call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_DISABLE, 9067 &info.info); 9068 kfree(dev->offload_xstats_l3); 9069 dev->offload_xstats_l3 = NULL; 9070 } 9071 9072 int netdev_offload_xstats_disable(struct net_device *dev, 9073 enum netdev_offload_xstats_type type) 9074 { 9075 ASSERT_RTNL(); 9076 9077 if (!netdev_offload_xstats_enabled(dev, type)) 9078 return -EALREADY; 9079 9080 switch (type) { 9081 case NETDEV_OFFLOAD_XSTATS_TYPE_L3: 9082 netdev_offload_xstats_disable_l3(dev); 9083 return 0; 9084 } 9085 9086 WARN_ON(1); 9087 return -EINVAL; 9088 } 9089 EXPORT_SYMBOL(netdev_offload_xstats_disable); 9090 9091 static void netdev_offload_xstats_disable_all(struct net_device *dev) 9092 { 9093 netdev_offload_xstats_disable(dev, NETDEV_OFFLOAD_XSTATS_TYPE_L3); 9094 } 9095 9096 static struct rtnl_hw_stats64 * 9097 netdev_offload_xstats_get_ptr(const struct net_device *dev, 9098 enum netdev_offload_xstats_type type) 9099 { 9100 switch (type) { 9101 case NETDEV_OFFLOAD_XSTATS_TYPE_L3: 9102 return dev->offload_xstats_l3; 9103 } 9104 9105 WARN_ON(1); 9106 return NULL; 9107 } 9108 9109 bool netdev_offload_xstats_enabled(const struct net_device *dev, 9110 enum netdev_offload_xstats_type type) 9111 { 9112 ASSERT_RTNL(); 9113 9114 return netdev_offload_xstats_get_ptr(dev, type); 9115 } 9116 EXPORT_SYMBOL(netdev_offload_xstats_enabled); 9117 9118 struct netdev_notifier_offload_xstats_ru { 9119 bool used; 9120 }; 9121 9122 struct netdev_notifier_offload_xstats_rd { 9123 struct rtnl_hw_stats64 stats; 9124 bool used; 9125 }; 9126 9127 static void netdev_hw_stats64_add(struct rtnl_hw_stats64 *dest, 9128 const struct rtnl_hw_stats64 *src) 9129 { 9130 dest->rx_packets += src->rx_packets; 9131 dest->tx_packets += src->tx_packets; 9132 dest->rx_bytes += src->rx_bytes; 9133 dest->tx_bytes += src->tx_bytes; 9134 dest->rx_errors += src->rx_errors; 9135 dest->tx_errors += src->tx_errors; 9136 dest->rx_dropped += src->rx_dropped; 9137 dest->tx_dropped += src->tx_dropped; 9138 dest->multicast += src->multicast; 9139 } 9140 9141 static int netdev_offload_xstats_get_used(struct net_device *dev, 9142 enum netdev_offload_xstats_type type, 9143 bool *p_used, 9144 struct netlink_ext_ack *extack) 9145 { 9146 struct netdev_notifier_offload_xstats_ru report_used = {}; 9147 struct netdev_notifier_offload_xstats_info info = { 9148 .info.dev = dev, 9149 .info.extack = extack, 9150 .type = type, 9151 .report_used = &report_used, 9152 }; 9153 int rc; 9154 9155 WARN_ON(!netdev_offload_xstats_enabled(dev, type)); 9156 rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_USED, 9157 &info.info); 9158 *p_used = report_used.used; 9159 return notifier_to_errno(rc); 9160 } 9161 9162 static int netdev_offload_xstats_get_stats(struct net_device *dev, 9163 enum netdev_offload_xstats_type type, 9164 struct rtnl_hw_stats64 *p_stats, 9165 bool *p_used, 9166 struct netlink_ext_ack *extack) 9167 { 9168 struct netdev_notifier_offload_xstats_rd report_delta = {}; 9169 struct netdev_notifier_offload_xstats_info info = { 9170 .info.dev = dev, 9171 .info.extack = extack, 9172 .type = type, 9173 .report_delta = &report_delta, 9174 }; 9175 struct rtnl_hw_stats64 *stats; 9176 int rc; 9177 9178 stats = netdev_offload_xstats_get_ptr(dev, type); 9179 if (WARN_ON(!stats)) 9180 return -EINVAL; 9181 9182 rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_DELTA, 9183 &info.info); 9184 9185 /* Cache whatever we got, even if there was an error, otherwise the 9186 * successful stats retrievals would get lost. 9187 */ 9188 netdev_hw_stats64_add(stats, &report_delta.stats); 9189 9190 if (p_stats) 9191 *p_stats = *stats; 9192 *p_used = report_delta.used; 9193 9194 return notifier_to_errno(rc); 9195 } 9196 9197 int netdev_offload_xstats_get(struct net_device *dev, 9198 enum netdev_offload_xstats_type type, 9199 struct rtnl_hw_stats64 *p_stats, bool *p_used, 9200 struct netlink_ext_ack *extack) 9201 { 9202 ASSERT_RTNL(); 9203 9204 if (p_stats) 9205 return netdev_offload_xstats_get_stats(dev, type, p_stats, 9206 p_used, extack); 9207 else 9208 return netdev_offload_xstats_get_used(dev, type, p_used, 9209 extack); 9210 } 9211 EXPORT_SYMBOL(netdev_offload_xstats_get); 9212 9213 void 9214 netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *report_delta, 9215 const struct rtnl_hw_stats64 *stats) 9216 { 9217 report_delta->used = true; 9218 netdev_hw_stats64_add(&report_delta->stats, stats); 9219 } 9220 EXPORT_SYMBOL(netdev_offload_xstats_report_delta); 9221 9222 void 9223 netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *report_used) 9224 { 9225 report_used->used = true; 9226 } 9227 EXPORT_SYMBOL(netdev_offload_xstats_report_used); 9228 9229 void netdev_offload_xstats_push_delta(struct net_device *dev, 9230 enum netdev_offload_xstats_type type, 9231 const struct rtnl_hw_stats64 *p_stats) 9232 { 9233 struct rtnl_hw_stats64 *stats; 9234 9235 ASSERT_RTNL(); 9236 9237 stats = netdev_offload_xstats_get_ptr(dev, type); 9238 if (WARN_ON(!stats)) 9239 return; 9240 9241 netdev_hw_stats64_add(stats, p_stats); 9242 } 9243 EXPORT_SYMBOL(netdev_offload_xstats_push_delta); 9244 9245 /** 9246 * netdev_get_xmit_slave - Get the xmit slave of master device 9247 * @dev: device 9248 * @skb: The packet 9249 * @all_slaves: assume all the slaves are active 9250 * 9251 * The reference counters are not incremented so the caller must be 9252 * careful with locks. The caller must hold RCU lock. 9253 * %NULL is returned if no slave is found. 9254 */ 9255 9256 struct net_device *netdev_get_xmit_slave(struct net_device *dev, 9257 struct sk_buff *skb, 9258 bool all_slaves) 9259 { 9260 const struct net_device_ops *ops = dev->netdev_ops; 9261 9262 if (!ops->ndo_get_xmit_slave) 9263 return NULL; 9264 return ops->ndo_get_xmit_slave(dev, skb, all_slaves); 9265 } 9266 EXPORT_SYMBOL(netdev_get_xmit_slave); 9267 9268 static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev, 9269 struct sock *sk) 9270 { 9271 const struct net_device_ops *ops = dev->netdev_ops; 9272 9273 if (!ops->ndo_sk_get_lower_dev) 9274 return NULL; 9275 return ops->ndo_sk_get_lower_dev(dev, sk); 9276 } 9277 9278 /** 9279 * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket 9280 * @dev: device 9281 * @sk: the socket 9282 * 9283 * %NULL is returned if no lower device is found. 9284 */ 9285 9286 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev, 9287 struct sock *sk) 9288 { 9289 struct net_device *lower; 9290 9291 lower = netdev_sk_get_lower_dev(dev, sk); 9292 while (lower) { 9293 dev = lower; 9294 lower = netdev_sk_get_lower_dev(dev, sk); 9295 } 9296 9297 return dev; 9298 } 9299 EXPORT_SYMBOL(netdev_sk_get_lowest_dev); 9300 9301 static void netdev_adjacent_add_links(struct net_device *dev) 9302 { 9303 struct netdev_adjacent *iter; 9304 9305 struct net *net = dev_net(dev); 9306 9307 list_for_each_entry(iter, &dev->adj_list.upper, list) { 9308 if (!net_eq(net, dev_net(iter->dev))) 9309 continue; 9310 netdev_adjacent_sysfs_add(iter->dev, dev, 9311 &iter->dev->adj_list.lower); 9312 netdev_adjacent_sysfs_add(dev, iter->dev, 9313 &dev->adj_list.upper); 9314 } 9315 9316 list_for_each_entry(iter, &dev->adj_list.lower, list) { 9317 if (!net_eq(net, dev_net(iter->dev))) 9318 continue; 9319 netdev_adjacent_sysfs_add(iter->dev, dev, 9320 &iter->dev->adj_list.upper); 9321 netdev_adjacent_sysfs_add(dev, iter->dev, 9322 &dev->adj_list.lower); 9323 } 9324 } 9325 9326 static void netdev_adjacent_del_links(struct net_device *dev) 9327 { 9328 struct netdev_adjacent *iter; 9329 9330 struct net *net = dev_net(dev); 9331 9332 list_for_each_entry(iter, &dev->adj_list.upper, list) { 9333 if (!net_eq(net, dev_net(iter->dev))) 9334 continue; 9335 netdev_adjacent_sysfs_del(iter->dev, dev->name, 9336 &iter->dev->adj_list.lower); 9337 netdev_adjacent_sysfs_del(dev, iter->dev->name, 9338 &dev->adj_list.upper); 9339 } 9340 9341 list_for_each_entry(iter, &dev->adj_list.lower, list) { 9342 if (!net_eq(net, dev_net(iter->dev))) 9343 continue; 9344 netdev_adjacent_sysfs_del(iter->dev, dev->name, 9345 &iter->dev->adj_list.upper); 9346 netdev_adjacent_sysfs_del(dev, iter->dev->name, 9347 &dev->adj_list.lower); 9348 } 9349 } 9350 9351 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname) 9352 { 9353 struct netdev_adjacent *iter; 9354 9355 struct net *net = dev_net(dev); 9356 9357 list_for_each_entry(iter, &dev->adj_list.upper, list) { 9358 if (!net_eq(net, dev_net(iter->dev))) 9359 continue; 9360 netdev_adjacent_sysfs_del(iter->dev, oldname, 9361 &iter->dev->adj_list.lower); 9362 netdev_adjacent_sysfs_add(iter->dev, dev, 9363 &iter->dev->adj_list.lower); 9364 } 9365 9366 list_for_each_entry(iter, &dev->adj_list.lower, list) { 9367 if (!net_eq(net, dev_net(iter->dev))) 9368 continue; 9369 netdev_adjacent_sysfs_del(iter->dev, oldname, 9370 &iter->dev->adj_list.upper); 9371 netdev_adjacent_sysfs_add(iter->dev, dev, 9372 &iter->dev->adj_list.upper); 9373 } 9374 } 9375 9376 void *netdev_lower_dev_get_private(struct net_device *dev, 9377 struct net_device *lower_dev) 9378 { 9379 struct netdev_adjacent *lower; 9380 9381 if (!lower_dev) 9382 return NULL; 9383 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower); 9384 if (!lower) 9385 return NULL; 9386 9387 return lower->private; 9388 } 9389 EXPORT_SYMBOL(netdev_lower_dev_get_private); 9390 9391 9392 /** 9393 * netdev_lower_state_changed - Dispatch event about lower device state change 9394 * @lower_dev: device 9395 * @lower_state_info: state to dispatch 9396 * 9397 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info. 9398 * The caller must hold the RTNL lock. 9399 */ 9400 void netdev_lower_state_changed(struct net_device *lower_dev, 9401 void *lower_state_info) 9402 { 9403 struct netdev_notifier_changelowerstate_info changelowerstate_info = { 9404 .info.dev = lower_dev, 9405 }; 9406 9407 ASSERT_RTNL(); 9408 changelowerstate_info.lower_state_info = lower_state_info; 9409 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE, 9410 &changelowerstate_info.info); 9411 } 9412 EXPORT_SYMBOL(netdev_lower_state_changed); 9413 9414 static void dev_change_rx_flags(struct net_device *dev, int flags) 9415 { 9416 const struct net_device_ops *ops = dev->netdev_ops; 9417 9418 if (ops->ndo_change_rx_flags) 9419 ops->ndo_change_rx_flags(dev, flags); 9420 } 9421 9422 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify) 9423 { 9424 unsigned int old_flags = dev->flags; 9425 unsigned int promiscuity, flags; 9426 kuid_t uid; 9427 kgid_t gid; 9428 9429 ASSERT_RTNL(); 9430 9431 promiscuity = dev->promiscuity + inc; 9432 if (promiscuity == 0) { 9433 /* 9434 * Avoid overflow. 9435 * If inc causes overflow, untouch promisc and return error. 9436 */ 9437 if (unlikely(inc > 0)) { 9438 netdev_warn(dev, "promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n"); 9439 return -EOVERFLOW; 9440 } 9441 flags = old_flags & ~IFF_PROMISC; 9442 } else { 9443 flags = old_flags | IFF_PROMISC; 9444 } 9445 WRITE_ONCE(dev->promiscuity, promiscuity); 9446 if (flags != old_flags) { 9447 WRITE_ONCE(dev->flags, flags); 9448 netdev_info(dev, "%s promiscuous mode\n", 9449 dev->flags & IFF_PROMISC ? "entered" : "left"); 9450 if (audit_enabled) { 9451 current_uid_gid(&uid, &gid); 9452 audit_log(audit_context(), GFP_ATOMIC, 9453 AUDIT_ANOM_PROMISCUOUS, 9454 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u", 9455 dev->name, (dev->flags & IFF_PROMISC), 9456 (old_flags & IFF_PROMISC), 9457 from_kuid(&init_user_ns, audit_get_loginuid(current)), 9458 from_kuid(&init_user_ns, uid), 9459 from_kgid(&init_user_ns, gid), 9460 audit_get_sessionid(current)); 9461 } 9462 9463 dev_change_rx_flags(dev, IFF_PROMISC); 9464 } 9465 if (notify) { 9466 /* The ops lock is only required to ensure consistent locking 9467 * for `NETDEV_CHANGE` notifiers. This function is sometimes 9468 * called without the lock, even for devices that are ops 9469 * locked, such as in `dev_uc_sync_multiple` when using 9470 * bonding or teaming. 9471 */ 9472 netdev_ops_assert_locked(dev); 9473 __dev_notify_flags(dev, old_flags, IFF_PROMISC, 0, NULL); 9474 } 9475 return 0; 9476 } 9477 9478 int netif_set_promiscuity(struct net_device *dev, int inc) 9479 { 9480 unsigned int old_flags = dev->flags; 9481 int err; 9482 9483 err = __dev_set_promiscuity(dev, inc, true); 9484 if (err < 0) 9485 return err; 9486 if (dev->flags != old_flags) 9487 dev_set_rx_mode(dev); 9488 return err; 9489 } 9490 9491 int netif_set_allmulti(struct net_device *dev, int inc, bool notify) 9492 { 9493 unsigned int old_flags = dev->flags, old_gflags = dev->gflags; 9494 unsigned int allmulti, flags; 9495 9496 ASSERT_RTNL(); 9497 9498 allmulti = dev->allmulti + inc; 9499 if (allmulti == 0) { 9500 /* 9501 * Avoid overflow. 9502 * If inc causes overflow, untouch allmulti and return error. 9503 */ 9504 if (unlikely(inc > 0)) { 9505 netdev_warn(dev, "allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n"); 9506 return -EOVERFLOW; 9507 } 9508 flags = old_flags & ~IFF_ALLMULTI; 9509 } else { 9510 flags = old_flags | IFF_ALLMULTI; 9511 } 9512 WRITE_ONCE(dev->allmulti, allmulti); 9513 if (flags != old_flags) { 9514 WRITE_ONCE(dev->flags, flags); 9515 netdev_info(dev, "%s allmulticast mode\n", 9516 dev->flags & IFF_ALLMULTI ? "entered" : "left"); 9517 dev_change_rx_flags(dev, IFF_ALLMULTI); 9518 dev_set_rx_mode(dev); 9519 if (notify) 9520 __dev_notify_flags(dev, old_flags, 9521 dev->gflags ^ old_gflags, 0, NULL); 9522 } 9523 return 0; 9524 } 9525 9526 /* 9527 * Upload unicast and multicast address lists to device and 9528 * configure RX filtering. When the device doesn't support unicast 9529 * filtering it is put in promiscuous mode while unicast addresses 9530 * are present. 9531 */ 9532 void __dev_set_rx_mode(struct net_device *dev) 9533 { 9534 const struct net_device_ops *ops = dev->netdev_ops; 9535 9536 /* dev_open will call this function so the list will stay sane. */ 9537 if (!(dev->flags&IFF_UP)) 9538 return; 9539 9540 if (!netif_device_present(dev)) 9541 return; 9542 9543 if (!(dev->priv_flags & IFF_UNICAST_FLT)) { 9544 /* Unicast addresses changes may only happen under the rtnl, 9545 * therefore calling __dev_set_promiscuity here is safe. 9546 */ 9547 if (!netdev_uc_empty(dev) && !dev->uc_promisc) { 9548 __dev_set_promiscuity(dev, 1, false); 9549 dev->uc_promisc = true; 9550 } else if (netdev_uc_empty(dev) && dev->uc_promisc) { 9551 __dev_set_promiscuity(dev, -1, false); 9552 dev->uc_promisc = false; 9553 } 9554 } 9555 9556 if (ops->ndo_set_rx_mode) 9557 ops->ndo_set_rx_mode(dev); 9558 } 9559 9560 void dev_set_rx_mode(struct net_device *dev) 9561 { 9562 netif_addr_lock_bh(dev); 9563 __dev_set_rx_mode(dev); 9564 netif_addr_unlock_bh(dev); 9565 } 9566 9567 /** 9568 * netif_get_flags() - get flags reported to userspace 9569 * @dev: device 9570 * 9571 * Get the combination of flag bits exported through APIs to userspace. 9572 */ 9573 unsigned int netif_get_flags(const struct net_device *dev) 9574 { 9575 unsigned int flags; 9576 9577 flags = (READ_ONCE(dev->flags) & ~(IFF_PROMISC | 9578 IFF_ALLMULTI | 9579 IFF_RUNNING | 9580 IFF_LOWER_UP | 9581 IFF_DORMANT)) | 9582 (READ_ONCE(dev->gflags) & (IFF_PROMISC | 9583 IFF_ALLMULTI)); 9584 9585 if (netif_running(dev)) { 9586 if (netif_oper_up(dev)) 9587 flags |= IFF_RUNNING; 9588 if (netif_carrier_ok(dev)) 9589 flags |= IFF_LOWER_UP; 9590 if (netif_dormant(dev)) 9591 flags |= IFF_DORMANT; 9592 } 9593 9594 return flags; 9595 } 9596 EXPORT_SYMBOL(netif_get_flags); 9597 9598 int __dev_change_flags(struct net_device *dev, unsigned int flags, 9599 struct netlink_ext_ack *extack) 9600 { 9601 unsigned int old_flags = dev->flags; 9602 int ret; 9603 9604 ASSERT_RTNL(); 9605 9606 /* 9607 * Set the flags on our device. 9608 */ 9609 9610 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP | 9611 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL | 9612 IFF_AUTOMEDIA)) | 9613 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC | 9614 IFF_ALLMULTI)); 9615 9616 /* 9617 * Load in the correct multicast list now the flags have changed. 9618 */ 9619 9620 if ((old_flags ^ flags) & IFF_MULTICAST) 9621 dev_change_rx_flags(dev, IFF_MULTICAST); 9622 9623 dev_set_rx_mode(dev); 9624 9625 /* 9626 * Have we downed the interface. We handle IFF_UP ourselves 9627 * according to user attempts to set it, rather than blindly 9628 * setting it. 9629 */ 9630 9631 ret = 0; 9632 if ((old_flags ^ flags) & IFF_UP) { 9633 if (old_flags & IFF_UP) 9634 __dev_close(dev); 9635 else 9636 ret = __dev_open(dev, extack); 9637 } 9638 9639 if ((flags ^ dev->gflags) & IFF_PROMISC) { 9640 int inc = (flags & IFF_PROMISC) ? 1 : -1; 9641 old_flags = dev->flags; 9642 9643 dev->gflags ^= IFF_PROMISC; 9644 9645 if (__dev_set_promiscuity(dev, inc, false) >= 0) 9646 if (dev->flags != old_flags) 9647 dev_set_rx_mode(dev); 9648 } 9649 9650 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI 9651 * is important. Some (broken) drivers set IFF_PROMISC, when 9652 * IFF_ALLMULTI is requested not asking us and not reporting. 9653 */ 9654 if ((flags ^ dev->gflags) & IFF_ALLMULTI) { 9655 int inc = (flags & IFF_ALLMULTI) ? 1 : -1; 9656 9657 dev->gflags ^= IFF_ALLMULTI; 9658 netif_set_allmulti(dev, inc, false); 9659 } 9660 9661 return ret; 9662 } 9663 9664 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags, 9665 unsigned int gchanges, u32 portid, 9666 const struct nlmsghdr *nlh) 9667 { 9668 unsigned int changes = dev->flags ^ old_flags; 9669 9670 if (gchanges) 9671 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC, portid, nlh); 9672 9673 if (changes & IFF_UP) { 9674 if (dev->flags & IFF_UP) 9675 call_netdevice_notifiers(NETDEV_UP, dev); 9676 else 9677 call_netdevice_notifiers(NETDEV_DOWN, dev); 9678 } 9679 9680 if (dev->flags & IFF_UP && 9681 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) { 9682 struct netdev_notifier_change_info change_info = { 9683 .info = { 9684 .dev = dev, 9685 }, 9686 .flags_changed = changes, 9687 }; 9688 9689 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info); 9690 } 9691 } 9692 9693 int netif_change_flags(struct net_device *dev, unsigned int flags, 9694 struct netlink_ext_ack *extack) 9695 { 9696 int ret; 9697 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags; 9698 9699 ret = __dev_change_flags(dev, flags, extack); 9700 if (ret < 0) 9701 return ret; 9702 9703 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags); 9704 __dev_notify_flags(dev, old_flags, changes, 0, NULL); 9705 return ret; 9706 } 9707 9708 int __netif_set_mtu(struct net_device *dev, int new_mtu) 9709 { 9710 const struct net_device_ops *ops = dev->netdev_ops; 9711 9712 if (ops->ndo_change_mtu) 9713 return ops->ndo_change_mtu(dev, new_mtu); 9714 9715 /* Pairs with all the lockless reads of dev->mtu in the stack */ 9716 WRITE_ONCE(dev->mtu, new_mtu); 9717 return 0; 9718 } 9719 EXPORT_SYMBOL_NS_GPL(__netif_set_mtu, "NETDEV_INTERNAL"); 9720 9721 int dev_validate_mtu(struct net_device *dev, int new_mtu, 9722 struct netlink_ext_ack *extack) 9723 { 9724 /* MTU must be positive, and in range */ 9725 if (new_mtu < 0 || new_mtu < dev->min_mtu) { 9726 NL_SET_ERR_MSG(extack, "mtu less than device minimum"); 9727 return -EINVAL; 9728 } 9729 9730 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) { 9731 NL_SET_ERR_MSG(extack, "mtu greater than device maximum"); 9732 return -EINVAL; 9733 } 9734 return 0; 9735 } 9736 9737 /** 9738 * netif_set_mtu_ext() - Change maximum transfer unit 9739 * @dev: device 9740 * @new_mtu: new transfer unit 9741 * @extack: netlink extended ack 9742 * 9743 * Change the maximum transfer size of the network device. 9744 * 9745 * Return: 0 on success, -errno on failure. 9746 */ 9747 int netif_set_mtu_ext(struct net_device *dev, int new_mtu, 9748 struct netlink_ext_ack *extack) 9749 { 9750 int err, orig_mtu; 9751 9752 netdev_ops_assert_locked(dev); 9753 9754 if (new_mtu == dev->mtu) 9755 return 0; 9756 9757 err = dev_validate_mtu(dev, new_mtu, extack); 9758 if (err) 9759 return err; 9760 9761 if (!netif_device_present(dev)) 9762 return -ENODEV; 9763 9764 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev); 9765 err = notifier_to_errno(err); 9766 if (err) 9767 return err; 9768 9769 orig_mtu = dev->mtu; 9770 err = __netif_set_mtu(dev, new_mtu); 9771 9772 if (!err) { 9773 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev, 9774 orig_mtu); 9775 err = notifier_to_errno(err); 9776 if (err) { 9777 /* setting mtu back and notifying everyone again, 9778 * so that they have a chance to revert changes. 9779 */ 9780 __netif_set_mtu(dev, orig_mtu); 9781 call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev, 9782 new_mtu); 9783 } 9784 } 9785 return err; 9786 } 9787 9788 int netif_set_mtu(struct net_device *dev, int new_mtu) 9789 { 9790 struct netlink_ext_ack extack; 9791 int err; 9792 9793 memset(&extack, 0, sizeof(extack)); 9794 err = netif_set_mtu_ext(dev, new_mtu, &extack); 9795 if (err && extack._msg) 9796 net_err_ratelimited("%s: %s\n", dev->name, extack._msg); 9797 return err; 9798 } 9799 EXPORT_SYMBOL(netif_set_mtu); 9800 9801 int netif_change_tx_queue_len(struct net_device *dev, unsigned long new_len) 9802 { 9803 unsigned int orig_len = dev->tx_queue_len; 9804 int res; 9805 9806 if (new_len != (unsigned int)new_len) 9807 return -ERANGE; 9808 9809 if (new_len != orig_len) { 9810 WRITE_ONCE(dev->tx_queue_len, new_len); 9811 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev); 9812 res = notifier_to_errno(res); 9813 if (res) 9814 goto err_rollback; 9815 res = dev_qdisc_change_tx_queue_len(dev); 9816 if (res) 9817 goto err_rollback; 9818 } 9819 9820 return 0; 9821 9822 err_rollback: 9823 netdev_err(dev, "refused to change device tx_queue_len\n"); 9824 WRITE_ONCE(dev->tx_queue_len, orig_len); 9825 return res; 9826 } 9827 9828 void netif_set_group(struct net_device *dev, int new_group) 9829 { 9830 dev->group = new_group; 9831 } 9832 9833 /** 9834 * netif_pre_changeaddr_notify() - Call NETDEV_PRE_CHANGEADDR. 9835 * @dev: device 9836 * @addr: new address 9837 * @extack: netlink extended ack 9838 * 9839 * Return: 0 on success, -errno on failure. 9840 */ 9841 int netif_pre_changeaddr_notify(struct net_device *dev, const char *addr, 9842 struct netlink_ext_ack *extack) 9843 { 9844 struct netdev_notifier_pre_changeaddr_info info = { 9845 .info.dev = dev, 9846 .info.extack = extack, 9847 .dev_addr = addr, 9848 }; 9849 int rc; 9850 9851 rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info); 9852 return notifier_to_errno(rc); 9853 } 9854 EXPORT_SYMBOL_NS_GPL(netif_pre_changeaddr_notify, "NETDEV_INTERNAL"); 9855 9856 int netif_set_mac_address(struct net_device *dev, struct sockaddr_storage *ss, 9857 struct netlink_ext_ack *extack) 9858 { 9859 const struct net_device_ops *ops = dev->netdev_ops; 9860 int err; 9861 9862 if (!ops->ndo_set_mac_address) 9863 return -EOPNOTSUPP; 9864 if (ss->ss_family != dev->type) 9865 return -EINVAL; 9866 if (!netif_device_present(dev)) 9867 return -ENODEV; 9868 err = netif_pre_changeaddr_notify(dev, ss->__data, extack); 9869 if (err) 9870 return err; 9871 if (memcmp(dev->dev_addr, ss->__data, dev->addr_len)) { 9872 err = ops->ndo_set_mac_address(dev, ss); 9873 if (err) 9874 return err; 9875 } 9876 dev->addr_assign_type = NET_ADDR_SET; 9877 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 9878 add_device_randomness(dev->dev_addr, dev->addr_len); 9879 return 0; 9880 } 9881 9882 DECLARE_RWSEM(dev_addr_sem); 9883 9884 /* "sa" is a true struct sockaddr with limited "sa_data" member. */ 9885 int netif_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name) 9886 { 9887 size_t size = sizeof(sa->sa_data_min); 9888 struct net_device *dev; 9889 int ret = 0; 9890 9891 down_read(&dev_addr_sem); 9892 rcu_read_lock(); 9893 9894 dev = dev_get_by_name_rcu(net, dev_name); 9895 if (!dev) { 9896 ret = -ENODEV; 9897 goto unlock; 9898 } 9899 if (!dev->addr_len) 9900 memset(sa->sa_data, 0, size); 9901 else 9902 memcpy(sa->sa_data, dev->dev_addr, 9903 min_t(size_t, size, dev->addr_len)); 9904 sa->sa_family = dev->type; 9905 9906 unlock: 9907 rcu_read_unlock(); 9908 up_read(&dev_addr_sem); 9909 return ret; 9910 } 9911 EXPORT_SYMBOL_NS_GPL(netif_get_mac_address, "NETDEV_INTERNAL"); 9912 9913 int netif_change_carrier(struct net_device *dev, bool new_carrier) 9914 { 9915 const struct net_device_ops *ops = dev->netdev_ops; 9916 9917 if (!ops->ndo_change_carrier) 9918 return -EOPNOTSUPP; 9919 if (!netif_device_present(dev)) 9920 return -ENODEV; 9921 return ops->ndo_change_carrier(dev, new_carrier); 9922 } 9923 9924 /** 9925 * dev_get_phys_port_id - Get device physical port ID 9926 * @dev: device 9927 * @ppid: port ID 9928 * 9929 * Get device physical port ID 9930 */ 9931 int dev_get_phys_port_id(struct net_device *dev, 9932 struct netdev_phys_item_id *ppid) 9933 { 9934 const struct net_device_ops *ops = dev->netdev_ops; 9935 9936 if (!ops->ndo_get_phys_port_id) 9937 return -EOPNOTSUPP; 9938 return ops->ndo_get_phys_port_id(dev, ppid); 9939 } 9940 9941 /** 9942 * dev_get_phys_port_name - Get device physical port name 9943 * @dev: device 9944 * @name: port name 9945 * @len: limit of bytes to copy to name 9946 * 9947 * Get device physical port name 9948 */ 9949 int dev_get_phys_port_name(struct net_device *dev, 9950 char *name, size_t len) 9951 { 9952 const struct net_device_ops *ops = dev->netdev_ops; 9953 int err; 9954 9955 if (ops->ndo_get_phys_port_name) { 9956 err = ops->ndo_get_phys_port_name(dev, name, len); 9957 if (err != -EOPNOTSUPP) 9958 return err; 9959 } 9960 return devlink_compat_phys_port_name_get(dev, name, len); 9961 } 9962 9963 /** 9964 * netif_get_port_parent_id() - Get the device's port parent identifier 9965 * @dev: network device 9966 * @ppid: pointer to a storage for the port's parent identifier 9967 * @recurse: allow/disallow recursion to lower devices 9968 * 9969 * Get the devices's port parent identifier. 9970 * 9971 * Return: 0 on success, -errno on failure. 9972 */ 9973 int netif_get_port_parent_id(struct net_device *dev, 9974 struct netdev_phys_item_id *ppid, bool recurse) 9975 { 9976 const struct net_device_ops *ops = dev->netdev_ops; 9977 struct netdev_phys_item_id first = { }; 9978 struct net_device *lower_dev; 9979 struct list_head *iter; 9980 int err; 9981 9982 if (ops->ndo_get_port_parent_id) { 9983 err = ops->ndo_get_port_parent_id(dev, ppid); 9984 if (err != -EOPNOTSUPP) 9985 return err; 9986 } 9987 9988 err = devlink_compat_switch_id_get(dev, ppid); 9989 if (!recurse || err != -EOPNOTSUPP) 9990 return err; 9991 9992 netdev_for_each_lower_dev(dev, lower_dev, iter) { 9993 err = netif_get_port_parent_id(lower_dev, ppid, true); 9994 if (err) 9995 break; 9996 if (!first.id_len) 9997 first = *ppid; 9998 else if (memcmp(&first, ppid, sizeof(*ppid))) 9999 return -EOPNOTSUPP; 10000 } 10001 10002 return err; 10003 } 10004 EXPORT_SYMBOL(netif_get_port_parent_id); 10005 10006 /** 10007 * netdev_port_same_parent_id - Indicate if two network devices have 10008 * the same port parent identifier 10009 * @a: first network device 10010 * @b: second network device 10011 */ 10012 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b) 10013 { 10014 struct netdev_phys_item_id a_id = { }; 10015 struct netdev_phys_item_id b_id = { }; 10016 10017 if (netif_get_port_parent_id(a, &a_id, true) || 10018 netif_get_port_parent_id(b, &b_id, true)) 10019 return false; 10020 10021 return netdev_phys_item_id_same(&a_id, &b_id); 10022 } 10023 EXPORT_SYMBOL(netdev_port_same_parent_id); 10024 10025 int netif_change_proto_down(struct net_device *dev, bool proto_down) 10026 { 10027 if (!dev->change_proto_down) 10028 return -EOPNOTSUPP; 10029 if (!netif_device_present(dev)) 10030 return -ENODEV; 10031 if (proto_down) 10032 netif_carrier_off(dev); 10033 else 10034 netif_carrier_on(dev); 10035 WRITE_ONCE(dev->proto_down, proto_down); 10036 return 0; 10037 } 10038 10039 /** 10040 * netdev_change_proto_down_reason_locked - proto down reason 10041 * 10042 * @dev: device 10043 * @mask: proto down mask 10044 * @value: proto down value 10045 */ 10046 void netdev_change_proto_down_reason_locked(struct net_device *dev, 10047 unsigned long mask, u32 value) 10048 { 10049 u32 proto_down_reason; 10050 int b; 10051 10052 if (!mask) { 10053 proto_down_reason = value; 10054 } else { 10055 proto_down_reason = dev->proto_down_reason; 10056 for_each_set_bit(b, &mask, 32) { 10057 if (value & (1 << b)) 10058 proto_down_reason |= BIT(b); 10059 else 10060 proto_down_reason &= ~BIT(b); 10061 } 10062 } 10063 WRITE_ONCE(dev->proto_down_reason, proto_down_reason); 10064 } 10065 10066 struct bpf_xdp_link { 10067 struct bpf_link link; 10068 struct net_device *dev; /* protected by rtnl_lock, no refcnt held */ 10069 int flags; 10070 }; 10071 10072 static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags) 10073 { 10074 if (flags & XDP_FLAGS_HW_MODE) 10075 return XDP_MODE_HW; 10076 if (flags & XDP_FLAGS_DRV_MODE) 10077 return XDP_MODE_DRV; 10078 if (flags & XDP_FLAGS_SKB_MODE) 10079 return XDP_MODE_SKB; 10080 return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB; 10081 } 10082 10083 static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode) 10084 { 10085 switch (mode) { 10086 case XDP_MODE_SKB: 10087 return generic_xdp_install; 10088 case XDP_MODE_DRV: 10089 case XDP_MODE_HW: 10090 return dev->netdev_ops->ndo_bpf; 10091 default: 10092 return NULL; 10093 } 10094 } 10095 10096 static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev, 10097 enum bpf_xdp_mode mode) 10098 { 10099 return dev->xdp_state[mode].link; 10100 } 10101 10102 static struct bpf_prog *dev_xdp_prog(struct net_device *dev, 10103 enum bpf_xdp_mode mode) 10104 { 10105 struct bpf_xdp_link *link = dev_xdp_link(dev, mode); 10106 10107 if (link) 10108 return link->link.prog; 10109 return dev->xdp_state[mode].prog; 10110 } 10111 10112 u8 dev_xdp_prog_count(struct net_device *dev) 10113 { 10114 u8 count = 0; 10115 int i; 10116 10117 for (i = 0; i < __MAX_XDP_MODE; i++) 10118 if (dev->xdp_state[i].prog || dev->xdp_state[i].link) 10119 count++; 10120 return count; 10121 } 10122 EXPORT_SYMBOL_GPL(dev_xdp_prog_count); 10123 10124 u8 dev_xdp_sb_prog_count(struct net_device *dev) 10125 { 10126 u8 count = 0; 10127 int i; 10128 10129 for (i = 0; i < __MAX_XDP_MODE; i++) 10130 if (dev->xdp_state[i].prog && 10131 !dev->xdp_state[i].prog->aux->xdp_has_frags) 10132 count++; 10133 return count; 10134 } 10135 10136 int netif_xdp_propagate(struct net_device *dev, struct netdev_bpf *bpf) 10137 { 10138 if (!dev->netdev_ops->ndo_bpf) 10139 return -EOPNOTSUPP; 10140 10141 if (dev->cfg->hds_config == ETHTOOL_TCP_DATA_SPLIT_ENABLED && 10142 bpf->command == XDP_SETUP_PROG && 10143 bpf->prog && !bpf->prog->aux->xdp_has_frags) { 10144 NL_SET_ERR_MSG(bpf->extack, 10145 "unable to propagate XDP to device using tcp-data-split"); 10146 return -EBUSY; 10147 } 10148 10149 if (dev_get_min_mp_channel_count(dev)) { 10150 NL_SET_ERR_MSG(bpf->extack, "unable to propagate XDP to device using memory provider"); 10151 return -EBUSY; 10152 } 10153 10154 return dev->netdev_ops->ndo_bpf(dev, bpf); 10155 } 10156 EXPORT_SYMBOL_GPL(netif_xdp_propagate); 10157 10158 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode) 10159 { 10160 struct bpf_prog *prog = dev_xdp_prog(dev, mode); 10161 10162 return prog ? prog->aux->id : 0; 10163 } 10164 10165 static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode, 10166 struct bpf_xdp_link *link) 10167 { 10168 dev->xdp_state[mode].link = link; 10169 dev->xdp_state[mode].prog = NULL; 10170 } 10171 10172 static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode, 10173 struct bpf_prog *prog) 10174 { 10175 dev->xdp_state[mode].link = NULL; 10176 dev->xdp_state[mode].prog = prog; 10177 } 10178 10179 static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode, 10180 bpf_op_t bpf_op, struct netlink_ext_ack *extack, 10181 u32 flags, struct bpf_prog *prog) 10182 { 10183 struct netdev_bpf xdp; 10184 int err; 10185 10186 netdev_ops_assert_locked(dev); 10187 10188 if (dev->cfg->hds_config == ETHTOOL_TCP_DATA_SPLIT_ENABLED && 10189 prog && !prog->aux->xdp_has_frags) { 10190 NL_SET_ERR_MSG(extack, "unable to install XDP to device using tcp-data-split"); 10191 return -EBUSY; 10192 } 10193 10194 if (dev_get_min_mp_channel_count(dev)) { 10195 NL_SET_ERR_MSG(extack, "unable to install XDP to device using memory provider"); 10196 return -EBUSY; 10197 } 10198 10199 memset(&xdp, 0, sizeof(xdp)); 10200 xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG; 10201 xdp.extack = extack; 10202 xdp.flags = flags; 10203 xdp.prog = prog; 10204 10205 /* Drivers assume refcnt is already incremented (i.e, prog pointer is 10206 * "moved" into driver), so they don't increment it on their own, but 10207 * they do decrement refcnt when program is detached or replaced. 10208 * Given net_device also owns link/prog, we need to bump refcnt here 10209 * to prevent drivers from underflowing it. 10210 */ 10211 if (prog) 10212 bpf_prog_inc(prog); 10213 err = bpf_op(dev, &xdp); 10214 if (err) { 10215 if (prog) 10216 bpf_prog_put(prog); 10217 return err; 10218 } 10219 10220 if (mode != XDP_MODE_HW) 10221 bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog); 10222 10223 return 0; 10224 } 10225 10226 static void dev_xdp_uninstall(struct net_device *dev) 10227 { 10228 struct bpf_xdp_link *link; 10229 struct bpf_prog *prog; 10230 enum bpf_xdp_mode mode; 10231 bpf_op_t bpf_op; 10232 10233 ASSERT_RTNL(); 10234 10235 for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) { 10236 prog = dev_xdp_prog(dev, mode); 10237 if (!prog) 10238 continue; 10239 10240 bpf_op = dev_xdp_bpf_op(dev, mode); 10241 if (!bpf_op) 10242 continue; 10243 10244 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL)); 10245 10246 /* auto-detach link from net device */ 10247 link = dev_xdp_link(dev, mode); 10248 if (link) 10249 link->dev = NULL; 10250 else 10251 bpf_prog_put(prog); 10252 10253 dev_xdp_set_link(dev, mode, NULL); 10254 } 10255 } 10256 10257 static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack, 10258 struct bpf_xdp_link *link, struct bpf_prog *new_prog, 10259 struct bpf_prog *old_prog, u32 flags) 10260 { 10261 unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES); 10262 struct bpf_prog *cur_prog; 10263 struct net_device *upper; 10264 struct list_head *iter; 10265 enum bpf_xdp_mode mode; 10266 bpf_op_t bpf_op; 10267 int err; 10268 10269 ASSERT_RTNL(); 10270 10271 /* either link or prog attachment, never both */ 10272 if (link && (new_prog || old_prog)) 10273 return -EINVAL; 10274 /* link supports only XDP mode flags */ 10275 if (link && (flags & ~XDP_FLAGS_MODES)) { 10276 NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment"); 10277 return -EINVAL; 10278 } 10279 /* just one XDP mode bit should be set, zero defaults to drv/skb mode */ 10280 if (num_modes > 1) { 10281 NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set"); 10282 return -EINVAL; 10283 } 10284 /* avoid ambiguity if offload + drv/skb mode progs are both loaded */ 10285 if (!num_modes && dev_xdp_prog_count(dev) > 1) { 10286 NL_SET_ERR_MSG(extack, 10287 "More than one program loaded, unset mode is ambiguous"); 10288 return -EINVAL; 10289 } 10290 /* old_prog != NULL implies XDP_FLAGS_REPLACE is set */ 10291 if (old_prog && !(flags & XDP_FLAGS_REPLACE)) { 10292 NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified"); 10293 return -EINVAL; 10294 } 10295 10296 mode = dev_xdp_mode(dev, flags); 10297 /* can't replace attached link */ 10298 if (dev_xdp_link(dev, mode)) { 10299 NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link"); 10300 return -EBUSY; 10301 } 10302 10303 /* don't allow if an upper device already has a program */ 10304 netdev_for_each_upper_dev_rcu(dev, upper, iter) { 10305 if (dev_xdp_prog_count(upper) > 0) { 10306 NL_SET_ERR_MSG(extack, "Cannot attach when an upper device already has a program"); 10307 return -EEXIST; 10308 } 10309 } 10310 10311 cur_prog = dev_xdp_prog(dev, mode); 10312 /* can't replace attached prog with link */ 10313 if (link && cur_prog) { 10314 NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link"); 10315 return -EBUSY; 10316 } 10317 if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) { 10318 NL_SET_ERR_MSG(extack, "Active program does not match expected"); 10319 return -EEXIST; 10320 } 10321 10322 /* put effective new program into new_prog */ 10323 if (link) 10324 new_prog = link->link.prog; 10325 10326 if (new_prog) { 10327 bool offload = mode == XDP_MODE_HW; 10328 enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB 10329 ? XDP_MODE_DRV : XDP_MODE_SKB; 10330 10331 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) { 10332 NL_SET_ERR_MSG(extack, "XDP program already attached"); 10333 return -EBUSY; 10334 } 10335 if (!offload && dev_xdp_prog(dev, other_mode)) { 10336 NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time"); 10337 return -EEXIST; 10338 } 10339 if (!offload && bpf_prog_is_offloaded(new_prog->aux)) { 10340 NL_SET_ERR_MSG(extack, "Using offloaded program without HW_MODE flag is not supported"); 10341 return -EINVAL; 10342 } 10343 if (bpf_prog_is_dev_bound(new_prog->aux) && !bpf_offload_dev_match(new_prog, dev)) { 10344 NL_SET_ERR_MSG(extack, "Program bound to different device"); 10345 return -EINVAL; 10346 } 10347 if (bpf_prog_is_dev_bound(new_prog->aux) && mode == XDP_MODE_SKB) { 10348 NL_SET_ERR_MSG(extack, "Can't attach device-bound programs in generic mode"); 10349 return -EINVAL; 10350 } 10351 if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) { 10352 NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device"); 10353 return -EINVAL; 10354 } 10355 if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) { 10356 NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device"); 10357 return -EINVAL; 10358 } 10359 } 10360 10361 /* don't call drivers if the effective program didn't change */ 10362 if (new_prog != cur_prog) { 10363 bpf_op = dev_xdp_bpf_op(dev, mode); 10364 if (!bpf_op) { 10365 NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode"); 10366 return -EOPNOTSUPP; 10367 } 10368 10369 err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog); 10370 if (err) 10371 return err; 10372 } 10373 10374 if (link) 10375 dev_xdp_set_link(dev, mode, link); 10376 else 10377 dev_xdp_set_prog(dev, mode, new_prog); 10378 if (cur_prog) 10379 bpf_prog_put(cur_prog); 10380 10381 return 0; 10382 } 10383 10384 static int dev_xdp_attach_link(struct net_device *dev, 10385 struct netlink_ext_ack *extack, 10386 struct bpf_xdp_link *link) 10387 { 10388 return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags); 10389 } 10390 10391 static int dev_xdp_detach_link(struct net_device *dev, 10392 struct netlink_ext_ack *extack, 10393 struct bpf_xdp_link *link) 10394 { 10395 enum bpf_xdp_mode mode; 10396 bpf_op_t bpf_op; 10397 10398 ASSERT_RTNL(); 10399 10400 mode = dev_xdp_mode(dev, link->flags); 10401 if (dev_xdp_link(dev, mode) != link) 10402 return -EINVAL; 10403 10404 bpf_op = dev_xdp_bpf_op(dev, mode); 10405 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL)); 10406 dev_xdp_set_link(dev, mode, NULL); 10407 return 0; 10408 } 10409 10410 static void bpf_xdp_link_release(struct bpf_link *link) 10411 { 10412 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link); 10413 10414 rtnl_lock(); 10415 10416 /* if racing with net_device's tear down, xdp_link->dev might be 10417 * already NULL, in which case link was already auto-detached 10418 */ 10419 if (xdp_link->dev) { 10420 netdev_lock_ops(xdp_link->dev); 10421 WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link)); 10422 netdev_unlock_ops(xdp_link->dev); 10423 xdp_link->dev = NULL; 10424 } 10425 10426 rtnl_unlock(); 10427 } 10428 10429 static int bpf_xdp_link_detach(struct bpf_link *link) 10430 { 10431 bpf_xdp_link_release(link); 10432 return 0; 10433 } 10434 10435 static void bpf_xdp_link_dealloc(struct bpf_link *link) 10436 { 10437 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link); 10438 10439 kfree(xdp_link); 10440 } 10441 10442 static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link, 10443 struct seq_file *seq) 10444 { 10445 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link); 10446 u32 ifindex = 0; 10447 10448 rtnl_lock(); 10449 if (xdp_link->dev) 10450 ifindex = xdp_link->dev->ifindex; 10451 rtnl_unlock(); 10452 10453 seq_printf(seq, "ifindex:\t%u\n", ifindex); 10454 } 10455 10456 static int bpf_xdp_link_fill_link_info(const struct bpf_link *link, 10457 struct bpf_link_info *info) 10458 { 10459 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link); 10460 u32 ifindex = 0; 10461 10462 rtnl_lock(); 10463 if (xdp_link->dev) 10464 ifindex = xdp_link->dev->ifindex; 10465 rtnl_unlock(); 10466 10467 info->xdp.ifindex = ifindex; 10468 return 0; 10469 } 10470 10471 static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog, 10472 struct bpf_prog *old_prog) 10473 { 10474 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link); 10475 enum bpf_xdp_mode mode; 10476 bpf_op_t bpf_op; 10477 int err = 0; 10478 10479 rtnl_lock(); 10480 10481 /* link might have been auto-released already, so fail */ 10482 if (!xdp_link->dev) { 10483 err = -ENOLINK; 10484 goto out_unlock; 10485 } 10486 10487 if (old_prog && link->prog != old_prog) { 10488 err = -EPERM; 10489 goto out_unlock; 10490 } 10491 old_prog = link->prog; 10492 if (old_prog->type != new_prog->type || 10493 old_prog->expected_attach_type != new_prog->expected_attach_type) { 10494 err = -EINVAL; 10495 goto out_unlock; 10496 } 10497 10498 if (old_prog == new_prog) { 10499 /* no-op, don't disturb drivers */ 10500 bpf_prog_put(new_prog); 10501 goto out_unlock; 10502 } 10503 10504 netdev_lock_ops(xdp_link->dev); 10505 mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags); 10506 bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode); 10507 err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL, 10508 xdp_link->flags, new_prog); 10509 netdev_unlock_ops(xdp_link->dev); 10510 if (err) 10511 goto out_unlock; 10512 10513 old_prog = xchg(&link->prog, new_prog); 10514 bpf_prog_put(old_prog); 10515 10516 out_unlock: 10517 rtnl_unlock(); 10518 return err; 10519 } 10520 10521 static const struct bpf_link_ops bpf_xdp_link_lops = { 10522 .release = bpf_xdp_link_release, 10523 .dealloc = bpf_xdp_link_dealloc, 10524 .detach = bpf_xdp_link_detach, 10525 .show_fdinfo = bpf_xdp_link_show_fdinfo, 10526 .fill_link_info = bpf_xdp_link_fill_link_info, 10527 .update_prog = bpf_xdp_link_update, 10528 }; 10529 10530 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog) 10531 { 10532 struct net *net = current->nsproxy->net_ns; 10533 struct bpf_link_primer link_primer; 10534 struct netlink_ext_ack extack = {}; 10535 struct bpf_xdp_link *link; 10536 struct net_device *dev; 10537 int err, fd; 10538 10539 rtnl_lock(); 10540 dev = dev_get_by_index(net, attr->link_create.target_ifindex); 10541 if (!dev) { 10542 rtnl_unlock(); 10543 return -EINVAL; 10544 } 10545 10546 link = kzalloc(sizeof(*link), GFP_USER); 10547 if (!link) { 10548 err = -ENOMEM; 10549 goto unlock; 10550 } 10551 10552 bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog, 10553 attr->link_create.attach_type); 10554 link->dev = dev; 10555 link->flags = attr->link_create.flags; 10556 10557 err = bpf_link_prime(&link->link, &link_primer); 10558 if (err) { 10559 kfree(link); 10560 goto unlock; 10561 } 10562 10563 netdev_lock_ops(dev); 10564 err = dev_xdp_attach_link(dev, &extack, link); 10565 netdev_unlock_ops(dev); 10566 rtnl_unlock(); 10567 10568 if (err) { 10569 link->dev = NULL; 10570 bpf_link_cleanup(&link_primer); 10571 trace_bpf_xdp_link_attach_failed(extack._msg); 10572 goto out_put_dev; 10573 } 10574 10575 fd = bpf_link_settle(&link_primer); 10576 /* link itself doesn't hold dev's refcnt to not complicate shutdown */ 10577 dev_put(dev); 10578 return fd; 10579 10580 unlock: 10581 rtnl_unlock(); 10582 10583 out_put_dev: 10584 dev_put(dev); 10585 return err; 10586 } 10587 10588 /** 10589 * dev_change_xdp_fd - set or clear a bpf program for a device rx path 10590 * @dev: device 10591 * @extack: netlink extended ack 10592 * @fd: new program fd or negative value to clear 10593 * @expected_fd: old program fd that userspace expects to replace or clear 10594 * @flags: xdp-related flags 10595 * 10596 * Set or clear a bpf program for a device 10597 */ 10598 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack, 10599 int fd, int expected_fd, u32 flags) 10600 { 10601 enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags); 10602 struct bpf_prog *new_prog = NULL, *old_prog = NULL; 10603 int err; 10604 10605 ASSERT_RTNL(); 10606 10607 if (fd >= 0) { 10608 new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP, 10609 mode != XDP_MODE_SKB); 10610 if (IS_ERR(new_prog)) 10611 return PTR_ERR(new_prog); 10612 } 10613 10614 if (expected_fd >= 0) { 10615 old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP, 10616 mode != XDP_MODE_SKB); 10617 if (IS_ERR(old_prog)) { 10618 err = PTR_ERR(old_prog); 10619 old_prog = NULL; 10620 goto err_out; 10621 } 10622 } 10623 10624 err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags); 10625 10626 err_out: 10627 if (err && new_prog) 10628 bpf_prog_put(new_prog); 10629 if (old_prog) 10630 bpf_prog_put(old_prog); 10631 return err; 10632 } 10633 10634 u32 dev_get_min_mp_channel_count(const struct net_device *dev) 10635 { 10636 int i; 10637 10638 netdev_ops_assert_locked(dev); 10639 10640 for (i = dev->real_num_rx_queues - 1; i >= 0; i--) 10641 if (dev->_rx[i].mp_params.mp_priv) 10642 /* The channel count is the idx plus 1. */ 10643 return i + 1; 10644 10645 return 0; 10646 } 10647 10648 /** 10649 * dev_index_reserve() - allocate an ifindex in a namespace 10650 * @net: the applicable net namespace 10651 * @ifindex: requested ifindex, pass %0 to get one allocated 10652 * 10653 * Allocate a ifindex for a new device. Caller must either use the ifindex 10654 * to store the device (via list_netdevice()) or call dev_index_release() 10655 * to give the index up. 10656 * 10657 * Return: a suitable unique value for a new device interface number or -errno. 10658 */ 10659 static int dev_index_reserve(struct net *net, u32 ifindex) 10660 { 10661 int err; 10662 10663 if (ifindex > INT_MAX) { 10664 DEBUG_NET_WARN_ON_ONCE(1); 10665 return -EINVAL; 10666 } 10667 10668 if (!ifindex) 10669 err = xa_alloc_cyclic(&net->dev_by_index, &ifindex, NULL, 10670 xa_limit_31b, &net->ifindex, GFP_KERNEL); 10671 else 10672 err = xa_insert(&net->dev_by_index, ifindex, NULL, GFP_KERNEL); 10673 if (err < 0) 10674 return err; 10675 10676 return ifindex; 10677 } 10678 10679 static void dev_index_release(struct net *net, int ifindex) 10680 { 10681 /* Expect only unused indexes, unlist_netdevice() removes the used */ 10682 WARN_ON(xa_erase(&net->dev_by_index, ifindex)); 10683 } 10684 10685 static bool from_cleanup_net(void) 10686 { 10687 #ifdef CONFIG_NET_NS 10688 return current == READ_ONCE(cleanup_net_task); 10689 #else 10690 return false; 10691 #endif 10692 } 10693 10694 /* Delayed registration/unregisteration */ 10695 LIST_HEAD(net_todo_list); 10696 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq); 10697 atomic_t dev_unreg_count = ATOMIC_INIT(0); 10698 10699 static void net_set_todo(struct net_device *dev) 10700 { 10701 list_add_tail(&dev->todo_list, &net_todo_list); 10702 } 10703 10704 static netdev_features_t netdev_sync_upper_features(struct net_device *lower, 10705 struct net_device *upper, netdev_features_t features) 10706 { 10707 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES; 10708 netdev_features_t feature; 10709 int feature_bit; 10710 10711 for_each_netdev_feature(upper_disables, feature_bit) { 10712 feature = __NETIF_F_BIT(feature_bit); 10713 if (!(upper->wanted_features & feature) 10714 && (features & feature)) { 10715 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n", 10716 &feature, upper->name); 10717 features &= ~feature; 10718 } 10719 } 10720 10721 return features; 10722 } 10723 10724 static void netdev_sync_lower_features(struct net_device *upper, 10725 struct net_device *lower, netdev_features_t features) 10726 { 10727 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES; 10728 netdev_features_t feature; 10729 int feature_bit; 10730 10731 for_each_netdev_feature(upper_disables, feature_bit) { 10732 feature = __NETIF_F_BIT(feature_bit); 10733 if (!(features & feature) && (lower->features & feature)) { 10734 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n", 10735 &feature, lower->name); 10736 netdev_lock_ops(lower); 10737 lower->wanted_features &= ~feature; 10738 __netdev_update_features(lower); 10739 10740 if (unlikely(lower->features & feature)) 10741 netdev_WARN(upper, "failed to disable %pNF on %s!\n", 10742 &feature, lower->name); 10743 else 10744 netdev_features_change(lower); 10745 netdev_unlock_ops(lower); 10746 } 10747 } 10748 } 10749 10750 static bool netdev_has_ip_or_hw_csum(netdev_features_t features) 10751 { 10752 netdev_features_t ip_csum_mask = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM; 10753 bool ip_csum = (features & ip_csum_mask) == ip_csum_mask; 10754 bool hw_csum = features & NETIF_F_HW_CSUM; 10755 10756 return ip_csum || hw_csum; 10757 } 10758 10759 static netdev_features_t netdev_fix_features(struct net_device *dev, 10760 netdev_features_t features) 10761 { 10762 /* Fix illegal checksum combinations */ 10763 if ((features & NETIF_F_HW_CSUM) && 10764 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 10765 netdev_warn(dev, "mixed HW and IP checksum settings.\n"); 10766 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 10767 } 10768 10769 /* TSO requires that SG is present as well. */ 10770 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) { 10771 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n"); 10772 features &= ~NETIF_F_ALL_TSO; 10773 } 10774 10775 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) && 10776 !(features & NETIF_F_IP_CSUM)) { 10777 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n"); 10778 features &= ~NETIF_F_TSO; 10779 features &= ~NETIF_F_TSO_ECN; 10780 } 10781 10782 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) && 10783 !(features & NETIF_F_IPV6_CSUM)) { 10784 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n"); 10785 features &= ~NETIF_F_TSO6; 10786 } 10787 10788 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */ 10789 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO)) 10790 features &= ~NETIF_F_TSO_MANGLEID; 10791 10792 /* TSO ECN requires that TSO is present as well. */ 10793 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN) 10794 features &= ~NETIF_F_TSO_ECN; 10795 10796 /* Software GSO depends on SG. */ 10797 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) { 10798 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n"); 10799 features &= ~NETIF_F_GSO; 10800 } 10801 10802 /* GSO partial features require GSO partial be set */ 10803 if ((features & dev->gso_partial_features) && 10804 !(features & NETIF_F_GSO_PARTIAL)) { 10805 netdev_dbg(dev, 10806 "Dropping partially supported GSO features since no GSO partial.\n"); 10807 features &= ~dev->gso_partial_features; 10808 } 10809 10810 if (!(features & NETIF_F_RXCSUM)) { 10811 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet 10812 * successfully merged by hardware must also have the 10813 * checksum verified by hardware. If the user does not 10814 * want to enable RXCSUM, logically, we should disable GRO_HW. 10815 */ 10816 if (features & NETIF_F_GRO_HW) { 10817 netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n"); 10818 features &= ~NETIF_F_GRO_HW; 10819 } 10820 } 10821 10822 /* LRO/HW-GRO features cannot be combined with RX-FCS */ 10823 if (features & NETIF_F_RXFCS) { 10824 if (features & NETIF_F_LRO) { 10825 netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n"); 10826 features &= ~NETIF_F_LRO; 10827 } 10828 10829 if (features & NETIF_F_GRO_HW) { 10830 netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n"); 10831 features &= ~NETIF_F_GRO_HW; 10832 } 10833 } 10834 10835 if ((features & NETIF_F_GRO_HW) && (features & NETIF_F_LRO)) { 10836 netdev_dbg(dev, "Dropping LRO feature since HW-GRO is requested.\n"); 10837 features &= ~NETIF_F_LRO; 10838 } 10839 10840 if ((features & NETIF_F_HW_TLS_TX) && !netdev_has_ip_or_hw_csum(features)) { 10841 netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n"); 10842 features &= ~NETIF_F_HW_TLS_TX; 10843 } 10844 10845 if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) { 10846 netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n"); 10847 features &= ~NETIF_F_HW_TLS_RX; 10848 } 10849 10850 if ((features & NETIF_F_GSO_UDP_L4) && !netdev_has_ip_or_hw_csum(features)) { 10851 netdev_dbg(dev, "Dropping USO feature since no CSUM feature.\n"); 10852 features &= ~NETIF_F_GSO_UDP_L4; 10853 } 10854 10855 return features; 10856 } 10857 10858 int __netdev_update_features(struct net_device *dev) 10859 { 10860 struct net_device *upper, *lower; 10861 netdev_features_t features; 10862 struct list_head *iter; 10863 int err = -1; 10864 10865 ASSERT_RTNL(); 10866 netdev_ops_assert_locked(dev); 10867 10868 features = netdev_get_wanted_features(dev); 10869 10870 if (dev->netdev_ops->ndo_fix_features) 10871 features = dev->netdev_ops->ndo_fix_features(dev, features); 10872 10873 /* driver might be less strict about feature dependencies */ 10874 features = netdev_fix_features(dev, features); 10875 10876 /* some features can't be enabled if they're off on an upper device */ 10877 netdev_for_each_upper_dev_rcu(dev, upper, iter) 10878 features = netdev_sync_upper_features(dev, upper, features); 10879 10880 if (dev->features == features) 10881 goto sync_lower; 10882 10883 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n", 10884 &dev->features, &features); 10885 10886 if (dev->netdev_ops->ndo_set_features) 10887 err = dev->netdev_ops->ndo_set_features(dev, features); 10888 else 10889 err = 0; 10890 10891 if (unlikely(err < 0)) { 10892 netdev_err(dev, 10893 "set_features() failed (%d); wanted %pNF, left %pNF\n", 10894 err, &features, &dev->features); 10895 /* return non-0 since some features might have changed and 10896 * it's better to fire a spurious notification than miss it 10897 */ 10898 return -1; 10899 } 10900 10901 sync_lower: 10902 /* some features must be disabled on lower devices when disabled 10903 * on an upper device (think: bonding master or bridge) 10904 */ 10905 netdev_for_each_lower_dev(dev, lower, iter) 10906 netdev_sync_lower_features(dev, lower, features); 10907 10908 if (!err) { 10909 netdev_features_t diff = features ^ dev->features; 10910 10911 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) { 10912 /* udp_tunnel_{get,drop}_rx_info both need 10913 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the 10914 * device, or they won't do anything. 10915 * Thus we need to update dev->features 10916 * *before* calling udp_tunnel_get_rx_info, 10917 * but *after* calling udp_tunnel_drop_rx_info. 10918 */ 10919 udp_tunnel_nic_lock(dev); 10920 if (features & NETIF_F_RX_UDP_TUNNEL_PORT) { 10921 dev->features = features; 10922 udp_tunnel_get_rx_info(dev); 10923 } else { 10924 udp_tunnel_drop_rx_info(dev); 10925 } 10926 udp_tunnel_nic_unlock(dev); 10927 } 10928 10929 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) { 10930 if (features & NETIF_F_HW_VLAN_CTAG_FILTER) { 10931 dev->features = features; 10932 err |= vlan_get_rx_ctag_filter_info(dev); 10933 } else { 10934 vlan_drop_rx_ctag_filter_info(dev); 10935 } 10936 } 10937 10938 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) { 10939 if (features & NETIF_F_HW_VLAN_STAG_FILTER) { 10940 dev->features = features; 10941 err |= vlan_get_rx_stag_filter_info(dev); 10942 } else { 10943 vlan_drop_rx_stag_filter_info(dev); 10944 } 10945 } 10946 10947 dev->features = features; 10948 } 10949 10950 return err < 0 ? 0 : 1; 10951 } 10952 10953 /** 10954 * netdev_update_features - recalculate device features 10955 * @dev: the device to check 10956 * 10957 * Recalculate dev->features set and send notifications if it 10958 * has changed. Should be called after driver or hardware dependent 10959 * conditions might have changed that influence the features. 10960 */ 10961 void netdev_update_features(struct net_device *dev) 10962 { 10963 if (__netdev_update_features(dev)) 10964 netdev_features_change(dev); 10965 } 10966 EXPORT_SYMBOL(netdev_update_features); 10967 10968 /** 10969 * netdev_change_features - recalculate device features 10970 * @dev: the device to check 10971 * 10972 * Recalculate dev->features set and send notifications even 10973 * if they have not changed. Should be called instead of 10974 * netdev_update_features() if also dev->vlan_features might 10975 * have changed to allow the changes to be propagated to stacked 10976 * VLAN devices. 10977 */ 10978 void netdev_change_features(struct net_device *dev) 10979 { 10980 __netdev_update_features(dev); 10981 netdev_features_change(dev); 10982 } 10983 EXPORT_SYMBOL(netdev_change_features); 10984 10985 /** 10986 * netif_stacked_transfer_operstate - transfer operstate 10987 * @rootdev: the root or lower level device to transfer state from 10988 * @dev: the device to transfer operstate to 10989 * 10990 * Transfer operational state from root to device. This is normally 10991 * called when a stacking relationship exists between the root 10992 * device and the device(a leaf device). 10993 */ 10994 void netif_stacked_transfer_operstate(const struct net_device *rootdev, 10995 struct net_device *dev) 10996 { 10997 if (rootdev->operstate == IF_OPER_DORMANT) 10998 netif_dormant_on(dev); 10999 else 11000 netif_dormant_off(dev); 11001 11002 if (rootdev->operstate == IF_OPER_TESTING) 11003 netif_testing_on(dev); 11004 else 11005 netif_testing_off(dev); 11006 11007 if (netif_carrier_ok(rootdev)) 11008 netif_carrier_on(dev); 11009 else 11010 netif_carrier_off(dev); 11011 } 11012 EXPORT_SYMBOL(netif_stacked_transfer_operstate); 11013 11014 static int netif_alloc_rx_queues(struct net_device *dev) 11015 { 11016 unsigned int i, count = dev->num_rx_queues; 11017 struct netdev_rx_queue *rx; 11018 size_t sz = count * sizeof(*rx); 11019 int err = 0; 11020 11021 BUG_ON(count < 1); 11022 11023 rx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL); 11024 if (!rx) 11025 return -ENOMEM; 11026 11027 dev->_rx = rx; 11028 11029 for (i = 0; i < count; i++) { 11030 rx[i].dev = dev; 11031 11032 /* XDP RX-queue setup */ 11033 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0); 11034 if (err < 0) 11035 goto err_rxq_info; 11036 } 11037 return 0; 11038 11039 err_rxq_info: 11040 /* Rollback successful reg's and free other resources */ 11041 while (i--) 11042 xdp_rxq_info_unreg(&rx[i].xdp_rxq); 11043 kvfree(dev->_rx); 11044 dev->_rx = NULL; 11045 return err; 11046 } 11047 11048 static void netif_free_rx_queues(struct net_device *dev) 11049 { 11050 unsigned int i, count = dev->num_rx_queues; 11051 11052 /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */ 11053 if (!dev->_rx) 11054 return; 11055 11056 for (i = 0; i < count; i++) 11057 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq); 11058 11059 kvfree(dev->_rx); 11060 } 11061 11062 static void netdev_init_one_queue(struct net_device *dev, 11063 struct netdev_queue *queue, void *_unused) 11064 { 11065 /* Initialize queue lock */ 11066 spin_lock_init(&queue->_xmit_lock); 11067 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type); 11068 queue->xmit_lock_owner = -1; 11069 netdev_queue_numa_node_write(queue, NUMA_NO_NODE); 11070 queue->dev = dev; 11071 #ifdef CONFIG_BQL 11072 dql_init(&queue->dql, HZ); 11073 #endif 11074 } 11075 11076 static void netif_free_tx_queues(struct net_device *dev) 11077 { 11078 kvfree(dev->_tx); 11079 } 11080 11081 static int netif_alloc_netdev_queues(struct net_device *dev) 11082 { 11083 unsigned int count = dev->num_tx_queues; 11084 struct netdev_queue *tx; 11085 size_t sz = count * sizeof(*tx); 11086 11087 if (count < 1 || count > 0xffff) 11088 return -EINVAL; 11089 11090 tx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL); 11091 if (!tx) 11092 return -ENOMEM; 11093 11094 dev->_tx = tx; 11095 11096 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL); 11097 spin_lock_init(&dev->tx_global_lock); 11098 11099 return 0; 11100 } 11101 11102 void netif_tx_stop_all_queues(struct net_device *dev) 11103 { 11104 unsigned int i; 11105 11106 for (i = 0; i < dev->num_tx_queues; i++) { 11107 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 11108 11109 netif_tx_stop_queue(txq); 11110 } 11111 } 11112 EXPORT_SYMBOL(netif_tx_stop_all_queues); 11113 11114 static int netdev_do_alloc_pcpu_stats(struct net_device *dev) 11115 { 11116 void __percpu *v; 11117 11118 /* Drivers implementing ndo_get_peer_dev must support tstat 11119 * accounting, so that skb_do_redirect() can bump the dev's 11120 * RX stats upon network namespace switch. 11121 */ 11122 if (dev->netdev_ops->ndo_get_peer_dev && 11123 dev->pcpu_stat_type != NETDEV_PCPU_STAT_TSTATS) 11124 return -EOPNOTSUPP; 11125 11126 switch (dev->pcpu_stat_type) { 11127 case NETDEV_PCPU_STAT_NONE: 11128 return 0; 11129 case NETDEV_PCPU_STAT_LSTATS: 11130 v = dev->lstats = netdev_alloc_pcpu_stats(struct pcpu_lstats); 11131 break; 11132 case NETDEV_PCPU_STAT_TSTATS: 11133 v = dev->tstats = netdev_alloc_pcpu_stats(struct pcpu_sw_netstats); 11134 break; 11135 case NETDEV_PCPU_STAT_DSTATS: 11136 v = dev->dstats = netdev_alloc_pcpu_stats(struct pcpu_dstats); 11137 break; 11138 default: 11139 return -EINVAL; 11140 } 11141 11142 return v ? 0 : -ENOMEM; 11143 } 11144 11145 static void netdev_do_free_pcpu_stats(struct net_device *dev) 11146 { 11147 switch (dev->pcpu_stat_type) { 11148 case NETDEV_PCPU_STAT_NONE: 11149 return; 11150 case NETDEV_PCPU_STAT_LSTATS: 11151 free_percpu(dev->lstats); 11152 break; 11153 case NETDEV_PCPU_STAT_TSTATS: 11154 free_percpu(dev->tstats); 11155 break; 11156 case NETDEV_PCPU_STAT_DSTATS: 11157 free_percpu(dev->dstats); 11158 break; 11159 } 11160 } 11161 11162 static void netdev_free_phy_link_topology(struct net_device *dev) 11163 { 11164 struct phy_link_topology *topo = dev->link_topo; 11165 11166 if (IS_ENABLED(CONFIG_PHYLIB) && topo) { 11167 xa_destroy(&topo->phys); 11168 kfree(topo); 11169 dev->link_topo = NULL; 11170 } 11171 } 11172 11173 /** 11174 * register_netdevice() - register a network device 11175 * @dev: device to register 11176 * 11177 * Take a prepared network device structure and make it externally accessible. 11178 * A %NETDEV_REGISTER message is sent to the netdev notifier chain. 11179 * Callers must hold the rtnl lock - you may want register_netdev() 11180 * instead of this. 11181 */ 11182 int register_netdevice(struct net_device *dev) 11183 { 11184 int ret; 11185 struct net *net = dev_net(dev); 11186 11187 BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE < 11188 NETDEV_FEATURE_COUNT); 11189 BUG_ON(dev_boot_phase); 11190 ASSERT_RTNL(); 11191 11192 might_sleep(); 11193 11194 /* When net_device's are persistent, this will be fatal. */ 11195 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED); 11196 BUG_ON(!net); 11197 11198 ret = ethtool_check_ops(dev->ethtool_ops); 11199 if (ret) 11200 return ret; 11201 11202 /* rss ctx ID 0 is reserved for the default context, start from 1 */ 11203 xa_init_flags(&dev->ethtool->rss_ctx, XA_FLAGS_ALLOC1); 11204 mutex_init(&dev->ethtool->rss_lock); 11205 11206 spin_lock_init(&dev->addr_list_lock); 11207 netdev_set_addr_lockdep_class(dev); 11208 11209 ret = dev_get_valid_name(net, dev, dev->name); 11210 if (ret < 0) 11211 goto out; 11212 11213 ret = -ENOMEM; 11214 dev->name_node = netdev_name_node_head_alloc(dev); 11215 if (!dev->name_node) 11216 goto out; 11217 11218 /* Init, if this function is available */ 11219 if (dev->netdev_ops->ndo_init) { 11220 ret = dev->netdev_ops->ndo_init(dev); 11221 if (ret) { 11222 if (ret > 0) 11223 ret = -EIO; 11224 goto err_free_name; 11225 } 11226 } 11227 11228 if (((dev->hw_features | dev->features) & 11229 NETIF_F_HW_VLAN_CTAG_FILTER) && 11230 (!dev->netdev_ops->ndo_vlan_rx_add_vid || 11231 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) { 11232 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n"); 11233 ret = -EINVAL; 11234 goto err_uninit; 11235 } 11236 11237 ret = netdev_do_alloc_pcpu_stats(dev); 11238 if (ret) 11239 goto err_uninit; 11240 11241 ret = dev_index_reserve(net, dev->ifindex); 11242 if (ret < 0) 11243 goto err_free_pcpu; 11244 dev->ifindex = ret; 11245 11246 /* Transfer changeable features to wanted_features and enable 11247 * software offloads (GSO and GRO). 11248 */ 11249 dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF); 11250 dev->features |= NETIF_F_SOFT_FEATURES; 11251 11252 if (dev->udp_tunnel_nic_info) { 11253 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT; 11254 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT; 11255 } 11256 11257 dev->wanted_features = dev->features & dev->hw_features; 11258 11259 if (!(dev->flags & IFF_LOOPBACK)) 11260 dev->hw_features |= NETIF_F_NOCACHE_COPY; 11261 11262 /* If IPv4 TCP segmentation offload is supported we should also 11263 * allow the device to enable segmenting the frame with the option 11264 * of ignoring a static IP ID value. This doesn't enable the 11265 * feature itself but allows the user to enable it later. 11266 */ 11267 if (dev->hw_features & NETIF_F_TSO) 11268 dev->hw_features |= NETIF_F_TSO_MANGLEID; 11269 if (dev->vlan_features & NETIF_F_TSO) 11270 dev->vlan_features |= NETIF_F_TSO_MANGLEID; 11271 if (dev->mpls_features & NETIF_F_TSO) 11272 dev->mpls_features |= NETIF_F_TSO_MANGLEID; 11273 if (dev->hw_enc_features & NETIF_F_TSO) 11274 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID; 11275 11276 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices. 11277 */ 11278 dev->vlan_features |= NETIF_F_HIGHDMA; 11279 11280 /* Make NETIF_F_SG inheritable to tunnel devices. 11281 */ 11282 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL; 11283 11284 /* Make NETIF_F_SG inheritable to MPLS. 11285 */ 11286 dev->mpls_features |= NETIF_F_SG; 11287 11288 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev); 11289 ret = notifier_to_errno(ret); 11290 if (ret) 11291 goto err_ifindex_release; 11292 11293 ret = netdev_register_kobject(dev); 11294 11295 netdev_lock(dev); 11296 WRITE_ONCE(dev->reg_state, ret ? NETREG_UNREGISTERED : NETREG_REGISTERED); 11297 netdev_unlock(dev); 11298 11299 if (ret) 11300 goto err_uninit_notify; 11301 11302 netdev_lock_ops(dev); 11303 __netdev_update_features(dev); 11304 netdev_unlock_ops(dev); 11305 11306 /* 11307 * Default initial state at registry is that the 11308 * device is present. 11309 */ 11310 11311 set_bit(__LINK_STATE_PRESENT, &dev->state); 11312 11313 linkwatch_init_dev(dev); 11314 11315 dev_init_scheduler(dev); 11316 11317 netdev_hold(dev, &dev->dev_registered_tracker, GFP_KERNEL); 11318 list_netdevice(dev); 11319 11320 add_device_randomness(dev->dev_addr, dev->addr_len); 11321 11322 /* If the device has permanent device address, driver should 11323 * set dev_addr and also addr_assign_type should be set to 11324 * NET_ADDR_PERM (default value). 11325 */ 11326 if (dev->addr_assign_type == NET_ADDR_PERM) 11327 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len); 11328 11329 /* Notify protocols, that a new device appeared. */ 11330 netdev_lock_ops(dev); 11331 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev); 11332 netdev_unlock_ops(dev); 11333 ret = notifier_to_errno(ret); 11334 if (ret) { 11335 /* Expect explicit free_netdev() on failure */ 11336 dev->needs_free_netdev = false; 11337 unregister_netdevice_queue(dev, NULL); 11338 goto out; 11339 } 11340 /* 11341 * Prevent userspace races by waiting until the network 11342 * device is fully setup before sending notifications. 11343 */ 11344 if (!(dev->rtnl_link_ops && dev->rtnl_link_initializing)) 11345 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL); 11346 11347 out: 11348 return ret; 11349 11350 err_uninit_notify: 11351 call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev); 11352 err_ifindex_release: 11353 dev_index_release(net, dev->ifindex); 11354 err_free_pcpu: 11355 netdev_do_free_pcpu_stats(dev); 11356 err_uninit: 11357 if (dev->netdev_ops->ndo_uninit) 11358 dev->netdev_ops->ndo_uninit(dev); 11359 if (dev->priv_destructor) 11360 dev->priv_destructor(dev); 11361 err_free_name: 11362 netdev_name_node_free(dev->name_node); 11363 goto out; 11364 } 11365 EXPORT_SYMBOL(register_netdevice); 11366 11367 /* Initialize the core of a dummy net device. 11368 * The setup steps dummy netdevs need which normal netdevs get by going 11369 * through register_netdevice(). 11370 */ 11371 static void init_dummy_netdev(struct net_device *dev) 11372 { 11373 /* make sure we BUG if trying to hit standard 11374 * register/unregister code path 11375 */ 11376 dev->reg_state = NETREG_DUMMY; 11377 11378 /* a dummy interface is started by default */ 11379 set_bit(__LINK_STATE_PRESENT, &dev->state); 11380 set_bit(__LINK_STATE_START, &dev->state); 11381 11382 /* Note : We dont allocate pcpu_refcnt for dummy devices, 11383 * because users of this 'device' dont need to change 11384 * its refcount. 11385 */ 11386 } 11387 11388 /** 11389 * register_netdev - register a network device 11390 * @dev: device to register 11391 * 11392 * Take a completed network device structure and add it to the kernel 11393 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 11394 * chain. 0 is returned on success. A negative errno code is returned 11395 * on a failure to set up the device, or if the name is a duplicate. 11396 * 11397 * This is a wrapper around register_netdevice that takes the rtnl semaphore 11398 * and expands the device name if you passed a format string to 11399 * alloc_netdev. 11400 */ 11401 int register_netdev(struct net_device *dev) 11402 { 11403 struct net *net = dev_net(dev); 11404 int err; 11405 11406 if (rtnl_net_lock_killable(net)) 11407 return -EINTR; 11408 11409 err = register_netdevice(dev); 11410 11411 rtnl_net_unlock(net); 11412 11413 return err; 11414 } 11415 EXPORT_SYMBOL(register_netdev); 11416 11417 int netdev_refcnt_read(const struct net_device *dev) 11418 { 11419 #ifdef CONFIG_PCPU_DEV_REFCNT 11420 int i, refcnt = 0; 11421 11422 for_each_possible_cpu(i) 11423 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i); 11424 return refcnt; 11425 #else 11426 return refcount_read(&dev->dev_refcnt); 11427 #endif 11428 } 11429 EXPORT_SYMBOL(netdev_refcnt_read); 11430 11431 int netdev_unregister_timeout_secs __read_mostly = 10; 11432 11433 #define WAIT_REFS_MIN_MSECS 1 11434 #define WAIT_REFS_MAX_MSECS 250 11435 /** 11436 * netdev_wait_allrefs_any - wait until all references are gone. 11437 * @list: list of net_devices to wait on 11438 * 11439 * This is called when unregistering network devices. 11440 * 11441 * Any protocol or device that holds a reference should register 11442 * for netdevice notification, and cleanup and put back the 11443 * reference if they receive an UNREGISTER event. 11444 * We can get stuck here if buggy protocols don't correctly 11445 * call dev_put. 11446 */ 11447 static struct net_device *netdev_wait_allrefs_any(struct list_head *list) 11448 { 11449 unsigned long rebroadcast_time, warning_time; 11450 struct net_device *dev; 11451 int wait = 0; 11452 11453 rebroadcast_time = warning_time = jiffies; 11454 11455 list_for_each_entry(dev, list, todo_list) 11456 if (netdev_refcnt_read(dev) == 1) 11457 return dev; 11458 11459 while (true) { 11460 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) { 11461 rtnl_lock(); 11462 11463 /* Rebroadcast unregister notification */ 11464 list_for_each_entry(dev, list, todo_list) 11465 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 11466 11467 __rtnl_unlock(); 11468 rcu_barrier(); 11469 rtnl_lock(); 11470 11471 list_for_each_entry(dev, list, todo_list) 11472 if (test_bit(__LINK_STATE_LINKWATCH_PENDING, 11473 &dev->state)) { 11474 /* We must not have linkwatch events 11475 * pending on unregister. If this 11476 * happens, we simply run the queue 11477 * unscheduled, resulting in a noop 11478 * for this device. 11479 */ 11480 linkwatch_run_queue(); 11481 break; 11482 } 11483 11484 __rtnl_unlock(); 11485 11486 rebroadcast_time = jiffies; 11487 } 11488 11489 rcu_barrier(); 11490 11491 if (!wait) { 11492 wait = WAIT_REFS_MIN_MSECS; 11493 } else { 11494 msleep(wait); 11495 wait = min(wait << 1, WAIT_REFS_MAX_MSECS); 11496 } 11497 11498 list_for_each_entry(dev, list, todo_list) 11499 if (netdev_refcnt_read(dev) == 1) 11500 return dev; 11501 11502 if (time_after(jiffies, warning_time + 11503 READ_ONCE(netdev_unregister_timeout_secs) * HZ)) { 11504 list_for_each_entry(dev, list, todo_list) { 11505 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n", 11506 dev->name, netdev_refcnt_read(dev)); 11507 ref_tracker_dir_print(&dev->refcnt_tracker, 10); 11508 } 11509 11510 warning_time = jiffies; 11511 } 11512 } 11513 } 11514 11515 /* The sequence is: 11516 * 11517 * rtnl_lock(); 11518 * ... 11519 * register_netdevice(x1); 11520 * register_netdevice(x2); 11521 * ... 11522 * unregister_netdevice(y1); 11523 * unregister_netdevice(y2); 11524 * ... 11525 * rtnl_unlock(); 11526 * free_netdev(y1); 11527 * free_netdev(y2); 11528 * 11529 * We are invoked by rtnl_unlock(). 11530 * This allows us to deal with problems: 11531 * 1) We can delete sysfs objects which invoke hotplug 11532 * without deadlocking with linkwatch via keventd. 11533 * 2) Since we run with the RTNL semaphore not held, we can sleep 11534 * safely in order to wait for the netdev refcnt to drop to zero. 11535 * 11536 * We must not return until all unregister events added during 11537 * the interval the lock was held have been completed. 11538 */ 11539 void netdev_run_todo(void) 11540 { 11541 struct net_device *dev, *tmp; 11542 struct list_head list; 11543 int cnt; 11544 #ifdef CONFIG_LOCKDEP 11545 struct list_head unlink_list; 11546 11547 list_replace_init(&net_unlink_list, &unlink_list); 11548 11549 while (!list_empty(&unlink_list)) { 11550 dev = list_first_entry(&unlink_list, struct net_device, 11551 unlink_list); 11552 list_del_init(&dev->unlink_list); 11553 dev->nested_level = dev->lower_level - 1; 11554 } 11555 #endif 11556 11557 /* Snapshot list, allow later requests */ 11558 list_replace_init(&net_todo_list, &list); 11559 11560 __rtnl_unlock(); 11561 11562 /* Wait for rcu callbacks to finish before next phase */ 11563 if (!list_empty(&list)) 11564 rcu_barrier(); 11565 11566 list_for_each_entry_safe(dev, tmp, &list, todo_list) { 11567 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) { 11568 netdev_WARN(dev, "run_todo but not unregistering\n"); 11569 list_del(&dev->todo_list); 11570 continue; 11571 } 11572 11573 netdev_lock(dev); 11574 WRITE_ONCE(dev->reg_state, NETREG_UNREGISTERED); 11575 netdev_unlock(dev); 11576 linkwatch_sync_dev(dev); 11577 } 11578 11579 cnt = 0; 11580 while (!list_empty(&list)) { 11581 dev = netdev_wait_allrefs_any(&list); 11582 list_del(&dev->todo_list); 11583 11584 /* paranoia */ 11585 BUG_ON(netdev_refcnt_read(dev) != 1); 11586 BUG_ON(!list_empty(&dev->ptype_all)); 11587 BUG_ON(!list_empty(&dev->ptype_specific)); 11588 WARN_ON(rcu_access_pointer(dev->ip_ptr)); 11589 WARN_ON(rcu_access_pointer(dev->ip6_ptr)); 11590 11591 netdev_do_free_pcpu_stats(dev); 11592 if (dev->priv_destructor) 11593 dev->priv_destructor(dev); 11594 if (dev->needs_free_netdev) 11595 free_netdev(dev); 11596 11597 cnt++; 11598 11599 /* Free network device */ 11600 kobject_put(&dev->dev.kobj); 11601 } 11602 if (cnt && atomic_sub_and_test(cnt, &dev_unreg_count)) 11603 wake_up(&netdev_unregistering_wq); 11604 } 11605 11606 /* Collate per-cpu network dstats statistics 11607 * 11608 * Read per-cpu network statistics from dev->dstats and populate the related 11609 * fields in @s. 11610 */ 11611 static void dev_fetch_dstats(struct rtnl_link_stats64 *s, 11612 const struct pcpu_dstats __percpu *dstats) 11613 { 11614 int cpu; 11615 11616 for_each_possible_cpu(cpu) { 11617 u64 rx_packets, rx_bytes, rx_drops; 11618 u64 tx_packets, tx_bytes, tx_drops; 11619 const struct pcpu_dstats *stats; 11620 unsigned int start; 11621 11622 stats = per_cpu_ptr(dstats, cpu); 11623 do { 11624 start = u64_stats_fetch_begin(&stats->syncp); 11625 rx_packets = u64_stats_read(&stats->rx_packets); 11626 rx_bytes = u64_stats_read(&stats->rx_bytes); 11627 rx_drops = u64_stats_read(&stats->rx_drops); 11628 tx_packets = u64_stats_read(&stats->tx_packets); 11629 tx_bytes = u64_stats_read(&stats->tx_bytes); 11630 tx_drops = u64_stats_read(&stats->tx_drops); 11631 } while (u64_stats_fetch_retry(&stats->syncp, start)); 11632 11633 s->rx_packets += rx_packets; 11634 s->rx_bytes += rx_bytes; 11635 s->rx_dropped += rx_drops; 11636 s->tx_packets += tx_packets; 11637 s->tx_bytes += tx_bytes; 11638 s->tx_dropped += tx_drops; 11639 } 11640 } 11641 11642 /* ndo_get_stats64 implementation for dtstats-based accounting. 11643 * 11644 * Populate @s from dev->stats and dev->dstats. This is used internally by the 11645 * core for NETDEV_PCPU_STAT_DSTAT-type stats collection. 11646 */ 11647 static void dev_get_dstats64(const struct net_device *dev, 11648 struct rtnl_link_stats64 *s) 11649 { 11650 netdev_stats_to_stats64(s, &dev->stats); 11651 dev_fetch_dstats(s, dev->dstats); 11652 } 11653 11654 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has 11655 * all the same fields in the same order as net_device_stats, with only 11656 * the type differing, but rtnl_link_stats64 may have additional fields 11657 * at the end for newer counters. 11658 */ 11659 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 11660 const struct net_device_stats *netdev_stats) 11661 { 11662 size_t i, n = sizeof(*netdev_stats) / sizeof(atomic_long_t); 11663 const atomic_long_t *src = (atomic_long_t *)netdev_stats; 11664 u64 *dst = (u64 *)stats64; 11665 11666 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64)); 11667 for (i = 0; i < n; i++) 11668 dst[i] = (unsigned long)atomic_long_read(&src[i]); 11669 /* zero out counters that only exist in rtnl_link_stats64 */ 11670 memset((char *)stats64 + n * sizeof(u64), 0, 11671 sizeof(*stats64) - n * sizeof(u64)); 11672 } 11673 EXPORT_SYMBOL(netdev_stats_to_stats64); 11674 11675 static __cold struct net_device_core_stats __percpu *netdev_core_stats_alloc( 11676 struct net_device *dev) 11677 { 11678 struct net_device_core_stats __percpu *p; 11679 11680 p = alloc_percpu_gfp(struct net_device_core_stats, 11681 GFP_ATOMIC | __GFP_NOWARN); 11682 11683 if (p && cmpxchg(&dev->core_stats, NULL, p)) 11684 free_percpu(p); 11685 11686 /* This READ_ONCE() pairs with the cmpxchg() above */ 11687 return READ_ONCE(dev->core_stats); 11688 } 11689 11690 noinline void netdev_core_stats_inc(struct net_device *dev, u32 offset) 11691 { 11692 /* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */ 11693 struct net_device_core_stats __percpu *p = READ_ONCE(dev->core_stats); 11694 unsigned long __percpu *field; 11695 11696 if (unlikely(!p)) { 11697 p = netdev_core_stats_alloc(dev); 11698 if (!p) 11699 return; 11700 } 11701 11702 field = (unsigned long __percpu *)((void __percpu *)p + offset); 11703 this_cpu_inc(*field); 11704 } 11705 EXPORT_SYMBOL_GPL(netdev_core_stats_inc); 11706 11707 /** 11708 * dev_get_stats - get network device statistics 11709 * @dev: device to get statistics from 11710 * @storage: place to store stats 11711 * 11712 * Get network statistics from device. Return @storage. 11713 * The device driver may provide its own method by setting 11714 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats; 11715 * otherwise the internal statistics structure is used. 11716 */ 11717 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 11718 struct rtnl_link_stats64 *storage) 11719 { 11720 const struct net_device_ops *ops = dev->netdev_ops; 11721 const struct net_device_core_stats __percpu *p; 11722 11723 /* 11724 * IPv{4,6} and udp tunnels share common stat helpers and use 11725 * different stat type (NETDEV_PCPU_STAT_TSTATS vs 11726 * NETDEV_PCPU_STAT_DSTATS). Ensure the accounting is consistent. 11727 */ 11728 BUILD_BUG_ON(offsetof(struct pcpu_sw_netstats, rx_bytes) != 11729 offsetof(struct pcpu_dstats, rx_bytes)); 11730 BUILD_BUG_ON(offsetof(struct pcpu_sw_netstats, rx_packets) != 11731 offsetof(struct pcpu_dstats, rx_packets)); 11732 BUILD_BUG_ON(offsetof(struct pcpu_sw_netstats, tx_bytes) != 11733 offsetof(struct pcpu_dstats, tx_bytes)); 11734 BUILD_BUG_ON(offsetof(struct pcpu_sw_netstats, tx_packets) != 11735 offsetof(struct pcpu_dstats, tx_packets)); 11736 11737 if (ops->ndo_get_stats64) { 11738 memset(storage, 0, sizeof(*storage)); 11739 ops->ndo_get_stats64(dev, storage); 11740 } else if (ops->ndo_get_stats) { 11741 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev)); 11742 } else if (dev->pcpu_stat_type == NETDEV_PCPU_STAT_TSTATS) { 11743 dev_get_tstats64(dev, storage); 11744 } else if (dev->pcpu_stat_type == NETDEV_PCPU_STAT_DSTATS) { 11745 dev_get_dstats64(dev, storage); 11746 } else { 11747 netdev_stats_to_stats64(storage, &dev->stats); 11748 } 11749 11750 /* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */ 11751 p = READ_ONCE(dev->core_stats); 11752 if (p) { 11753 const struct net_device_core_stats *core_stats; 11754 int i; 11755 11756 for_each_possible_cpu(i) { 11757 core_stats = per_cpu_ptr(p, i); 11758 storage->rx_dropped += READ_ONCE(core_stats->rx_dropped); 11759 storage->tx_dropped += READ_ONCE(core_stats->tx_dropped); 11760 storage->rx_nohandler += READ_ONCE(core_stats->rx_nohandler); 11761 storage->rx_otherhost_dropped += READ_ONCE(core_stats->rx_otherhost_dropped); 11762 } 11763 } 11764 return storage; 11765 } 11766 EXPORT_SYMBOL(dev_get_stats); 11767 11768 /** 11769 * dev_fetch_sw_netstats - get per-cpu network device statistics 11770 * @s: place to store stats 11771 * @netstats: per-cpu network stats to read from 11772 * 11773 * Read per-cpu network statistics and populate the related fields in @s. 11774 */ 11775 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s, 11776 const struct pcpu_sw_netstats __percpu *netstats) 11777 { 11778 int cpu; 11779 11780 for_each_possible_cpu(cpu) { 11781 u64 rx_packets, rx_bytes, tx_packets, tx_bytes; 11782 const struct pcpu_sw_netstats *stats; 11783 unsigned int start; 11784 11785 stats = per_cpu_ptr(netstats, cpu); 11786 do { 11787 start = u64_stats_fetch_begin(&stats->syncp); 11788 rx_packets = u64_stats_read(&stats->rx_packets); 11789 rx_bytes = u64_stats_read(&stats->rx_bytes); 11790 tx_packets = u64_stats_read(&stats->tx_packets); 11791 tx_bytes = u64_stats_read(&stats->tx_bytes); 11792 } while (u64_stats_fetch_retry(&stats->syncp, start)); 11793 11794 s->rx_packets += rx_packets; 11795 s->rx_bytes += rx_bytes; 11796 s->tx_packets += tx_packets; 11797 s->tx_bytes += tx_bytes; 11798 } 11799 } 11800 EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats); 11801 11802 /** 11803 * dev_get_tstats64 - ndo_get_stats64 implementation 11804 * @dev: device to get statistics from 11805 * @s: place to store stats 11806 * 11807 * Populate @s from dev->stats and dev->tstats. Can be used as 11808 * ndo_get_stats64() callback. 11809 */ 11810 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s) 11811 { 11812 netdev_stats_to_stats64(s, &dev->stats); 11813 dev_fetch_sw_netstats(s, dev->tstats); 11814 } 11815 EXPORT_SYMBOL_GPL(dev_get_tstats64); 11816 11817 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev) 11818 { 11819 struct netdev_queue *queue = dev_ingress_queue(dev); 11820 11821 #ifdef CONFIG_NET_CLS_ACT 11822 if (queue) 11823 return queue; 11824 queue = kzalloc(sizeof(*queue), GFP_KERNEL); 11825 if (!queue) 11826 return NULL; 11827 netdev_init_one_queue(dev, queue, NULL); 11828 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc); 11829 RCU_INIT_POINTER(queue->qdisc_sleeping, &noop_qdisc); 11830 rcu_assign_pointer(dev->ingress_queue, queue); 11831 #endif 11832 return queue; 11833 } 11834 11835 static const struct ethtool_ops default_ethtool_ops; 11836 11837 void netdev_set_default_ethtool_ops(struct net_device *dev, 11838 const struct ethtool_ops *ops) 11839 { 11840 if (dev->ethtool_ops == &default_ethtool_ops) 11841 dev->ethtool_ops = ops; 11842 } 11843 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops); 11844 11845 /** 11846 * netdev_sw_irq_coalesce_default_on() - enable SW IRQ coalescing by default 11847 * @dev: netdev to enable the IRQ coalescing on 11848 * 11849 * Sets a conservative default for SW IRQ coalescing. Users can use 11850 * sysfs attributes to override the default values. 11851 */ 11852 void netdev_sw_irq_coalesce_default_on(struct net_device *dev) 11853 { 11854 WARN_ON(dev->reg_state == NETREG_REGISTERED); 11855 11856 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) { 11857 netdev_set_gro_flush_timeout(dev, 20000); 11858 netdev_set_defer_hard_irqs(dev, 1); 11859 } 11860 } 11861 EXPORT_SYMBOL_GPL(netdev_sw_irq_coalesce_default_on); 11862 11863 /** 11864 * alloc_netdev_mqs - allocate network device 11865 * @sizeof_priv: size of private data to allocate space for 11866 * @name: device name format string 11867 * @name_assign_type: origin of device name 11868 * @setup: callback to initialize device 11869 * @txqs: the number of TX subqueues to allocate 11870 * @rxqs: the number of RX subqueues to allocate 11871 * 11872 * Allocates a struct net_device with private data area for driver use 11873 * and performs basic initialization. Also allocates subqueue structs 11874 * for each queue on the device. 11875 */ 11876 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 11877 unsigned char name_assign_type, 11878 void (*setup)(struct net_device *), 11879 unsigned int txqs, unsigned int rxqs) 11880 { 11881 struct net_device *dev; 11882 size_t napi_config_sz; 11883 unsigned int maxqs; 11884 11885 BUG_ON(strlen(name) >= sizeof(dev->name)); 11886 11887 if (txqs < 1) { 11888 pr_err("alloc_netdev: Unable to allocate device with zero queues\n"); 11889 return NULL; 11890 } 11891 11892 if (rxqs < 1) { 11893 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n"); 11894 return NULL; 11895 } 11896 11897 maxqs = max(txqs, rxqs); 11898 11899 dev = kvzalloc(struct_size(dev, priv, sizeof_priv), 11900 GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL); 11901 if (!dev) 11902 return NULL; 11903 11904 dev->priv_len = sizeof_priv; 11905 11906 ref_tracker_dir_init(&dev->refcnt_tracker, 128, "netdev"); 11907 #ifdef CONFIG_PCPU_DEV_REFCNT 11908 dev->pcpu_refcnt = alloc_percpu(int); 11909 if (!dev->pcpu_refcnt) 11910 goto free_dev; 11911 __dev_hold(dev); 11912 #else 11913 refcount_set(&dev->dev_refcnt, 1); 11914 #endif 11915 11916 if (dev_addr_init(dev)) 11917 goto free_pcpu; 11918 11919 dev_mc_init(dev); 11920 dev_uc_init(dev); 11921 11922 dev_net_set(dev, &init_net); 11923 11924 dev->gso_max_size = GSO_LEGACY_MAX_SIZE; 11925 dev->xdp_zc_max_segs = 1; 11926 dev->gso_max_segs = GSO_MAX_SEGS; 11927 dev->gro_max_size = GRO_LEGACY_MAX_SIZE; 11928 dev->gso_ipv4_max_size = GSO_LEGACY_MAX_SIZE; 11929 dev->gro_ipv4_max_size = GRO_LEGACY_MAX_SIZE; 11930 dev->tso_max_size = TSO_LEGACY_MAX_SIZE; 11931 dev->tso_max_segs = TSO_MAX_SEGS; 11932 dev->upper_level = 1; 11933 dev->lower_level = 1; 11934 #ifdef CONFIG_LOCKDEP 11935 dev->nested_level = 0; 11936 INIT_LIST_HEAD(&dev->unlink_list); 11937 #endif 11938 11939 INIT_LIST_HEAD(&dev->napi_list); 11940 INIT_LIST_HEAD(&dev->unreg_list); 11941 INIT_LIST_HEAD(&dev->close_list); 11942 INIT_LIST_HEAD(&dev->link_watch_list); 11943 INIT_LIST_HEAD(&dev->adj_list.upper); 11944 INIT_LIST_HEAD(&dev->adj_list.lower); 11945 INIT_LIST_HEAD(&dev->ptype_all); 11946 INIT_LIST_HEAD(&dev->ptype_specific); 11947 INIT_LIST_HEAD(&dev->net_notifier_list); 11948 #ifdef CONFIG_NET_SCHED 11949 hash_init(dev->qdisc_hash); 11950 #endif 11951 11952 mutex_init(&dev->lock); 11953 11954 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM; 11955 setup(dev); 11956 11957 if (!dev->tx_queue_len) { 11958 dev->priv_flags |= IFF_NO_QUEUE; 11959 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN; 11960 } 11961 11962 dev->num_tx_queues = txqs; 11963 dev->real_num_tx_queues = txqs; 11964 if (netif_alloc_netdev_queues(dev)) 11965 goto free_all; 11966 11967 dev->num_rx_queues = rxqs; 11968 dev->real_num_rx_queues = rxqs; 11969 if (netif_alloc_rx_queues(dev)) 11970 goto free_all; 11971 dev->ethtool = kzalloc(sizeof(*dev->ethtool), GFP_KERNEL_ACCOUNT); 11972 if (!dev->ethtool) 11973 goto free_all; 11974 11975 dev->cfg = kzalloc(sizeof(*dev->cfg), GFP_KERNEL_ACCOUNT); 11976 if (!dev->cfg) 11977 goto free_all; 11978 dev->cfg_pending = dev->cfg; 11979 11980 dev->num_napi_configs = maxqs; 11981 napi_config_sz = array_size(maxqs, sizeof(*dev->napi_config)); 11982 dev->napi_config = kvzalloc(napi_config_sz, GFP_KERNEL_ACCOUNT); 11983 if (!dev->napi_config) 11984 goto free_all; 11985 11986 strscpy(dev->name, name); 11987 dev->name_assign_type = name_assign_type; 11988 dev->group = INIT_NETDEV_GROUP; 11989 if (!dev->ethtool_ops) 11990 dev->ethtool_ops = &default_ethtool_ops; 11991 11992 nf_hook_netdev_init(dev); 11993 11994 return dev; 11995 11996 free_all: 11997 free_netdev(dev); 11998 return NULL; 11999 12000 free_pcpu: 12001 #ifdef CONFIG_PCPU_DEV_REFCNT 12002 free_percpu(dev->pcpu_refcnt); 12003 free_dev: 12004 #endif 12005 kvfree(dev); 12006 return NULL; 12007 } 12008 EXPORT_SYMBOL(alloc_netdev_mqs); 12009 12010 static void netdev_napi_exit(struct net_device *dev) 12011 { 12012 if (!list_empty(&dev->napi_list)) { 12013 struct napi_struct *p, *n; 12014 12015 netdev_lock(dev); 12016 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list) 12017 __netif_napi_del_locked(p); 12018 netdev_unlock(dev); 12019 12020 synchronize_net(); 12021 } 12022 12023 kvfree(dev->napi_config); 12024 } 12025 12026 /** 12027 * free_netdev - free network device 12028 * @dev: device 12029 * 12030 * This function does the last stage of destroying an allocated device 12031 * interface. The reference to the device object is released. If this 12032 * is the last reference then it will be freed.Must be called in process 12033 * context. 12034 */ 12035 void free_netdev(struct net_device *dev) 12036 { 12037 might_sleep(); 12038 12039 /* When called immediately after register_netdevice() failed the unwind 12040 * handling may still be dismantling the device. Handle that case by 12041 * deferring the free. 12042 */ 12043 if (dev->reg_state == NETREG_UNREGISTERING) { 12044 ASSERT_RTNL(); 12045 dev->needs_free_netdev = true; 12046 return; 12047 } 12048 12049 WARN_ON(dev->cfg != dev->cfg_pending); 12050 kfree(dev->cfg); 12051 kfree(dev->ethtool); 12052 netif_free_tx_queues(dev); 12053 netif_free_rx_queues(dev); 12054 12055 kfree(rcu_dereference_protected(dev->ingress_queue, 1)); 12056 12057 /* Flush device addresses */ 12058 dev_addr_flush(dev); 12059 12060 netdev_napi_exit(dev); 12061 12062 netif_del_cpu_rmap(dev); 12063 12064 ref_tracker_dir_exit(&dev->refcnt_tracker); 12065 #ifdef CONFIG_PCPU_DEV_REFCNT 12066 free_percpu(dev->pcpu_refcnt); 12067 dev->pcpu_refcnt = NULL; 12068 #endif 12069 free_percpu(dev->core_stats); 12070 dev->core_stats = NULL; 12071 free_percpu(dev->xdp_bulkq); 12072 dev->xdp_bulkq = NULL; 12073 12074 netdev_free_phy_link_topology(dev); 12075 12076 mutex_destroy(&dev->lock); 12077 12078 /* Compatibility with error handling in drivers */ 12079 if (dev->reg_state == NETREG_UNINITIALIZED || 12080 dev->reg_state == NETREG_DUMMY) { 12081 kvfree(dev); 12082 return; 12083 } 12084 12085 BUG_ON(dev->reg_state != NETREG_UNREGISTERED); 12086 WRITE_ONCE(dev->reg_state, NETREG_RELEASED); 12087 12088 /* will free via device release */ 12089 put_device(&dev->dev); 12090 } 12091 EXPORT_SYMBOL(free_netdev); 12092 12093 /** 12094 * alloc_netdev_dummy - Allocate and initialize a dummy net device. 12095 * @sizeof_priv: size of private data to allocate space for 12096 * 12097 * Return: the allocated net_device on success, NULL otherwise 12098 */ 12099 struct net_device *alloc_netdev_dummy(int sizeof_priv) 12100 { 12101 return alloc_netdev(sizeof_priv, "dummy#", NET_NAME_UNKNOWN, 12102 init_dummy_netdev); 12103 } 12104 EXPORT_SYMBOL_GPL(alloc_netdev_dummy); 12105 12106 /** 12107 * synchronize_net - Synchronize with packet receive processing 12108 * 12109 * Wait for packets currently being received to be done. 12110 * Does not block later packets from starting. 12111 */ 12112 void synchronize_net(void) 12113 { 12114 might_sleep(); 12115 if (from_cleanup_net() || rtnl_is_locked()) 12116 synchronize_rcu_expedited(); 12117 else 12118 synchronize_rcu(); 12119 } 12120 EXPORT_SYMBOL(synchronize_net); 12121 12122 static void netdev_rss_contexts_free(struct net_device *dev) 12123 { 12124 struct ethtool_rxfh_context *ctx; 12125 unsigned long context; 12126 12127 mutex_lock(&dev->ethtool->rss_lock); 12128 xa_for_each(&dev->ethtool->rss_ctx, context, ctx) { 12129 xa_erase(&dev->ethtool->rss_ctx, context); 12130 dev->ethtool_ops->remove_rxfh_context(dev, ctx, context, NULL); 12131 kfree(ctx); 12132 } 12133 xa_destroy(&dev->ethtool->rss_ctx); 12134 mutex_unlock(&dev->ethtool->rss_lock); 12135 } 12136 12137 /** 12138 * unregister_netdevice_queue - remove device from the kernel 12139 * @dev: device 12140 * @head: list 12141 * 12142 * This function shuts down a device interface and removes it 12143 * from the kernel tables. 12144 * If head not NULL, device is queued to be unregistered later. 12145 * 12146 * Callers must hold the rtnl semaphore. You may want 12147 * unregister_netdev() instead of this. 12148 */ 12149 12150 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head) 12151 { 12152 ASSERT_RTNL(); 12153 12154 if (head) { 12155 list_move_tail(&dev->unreg_list, head); 12156 } else { 12157 LIST_HEAD(single); 12158 12159 list_add(&dev->unreg_list, &single); 12160 unregister_netdevice_many(&single); 12161 } 12162 } 12163 EXPORT_SYMBOL(unregister_netdevice_queue); 12164 12165 static void dev_memory_provider_uninstall(struct net_device *dev) 12166 { 12167 unsigned int i; 12168 12169 for (i = 0; i < dev->real_num_rx_queues; i++) { 12170 struct netdev_rx_queue *rxq = &dev->_rx[i]; 12171 struct pp_memory_provider_params *p = &rxq->mp_params; 12172 12173 if (p->mp_ops && p->mp_ops->uninstall) 12174 p->mp_ops->uninstall(rxq->mp_params.mp_priv, rxq); 12175 } 12176 } 12177 12178 void unregister_netdevice_many_notify(struct list_head *head, 12179 u32 portid, const struct nlmsghdr *nlh) 12180 { 12181 struct net_device *dev, *tmp; 12182 LIST_HEAD(close_head); 12183 int cnt = 0; 12184 12185 BUG_ON(dev_boot_phase); 12186 ASSERT_RTNL(); 12187 12188 if (list_empty(head)) 12189 return; 12190 12191 list_for_each_entry_safe(dev, tmp, head, unreg_list) { 12192 /* Some devices call without registering 12193 * for initialization unwind. Remove those 12194 * devices and proceed with the remaining. 12195 */ 12196 if (dev->reg_state == NETREG_UNINITIALIZED) { 12197 pr_debug("unregister_netdevice: device %s/%p never was registered\n", 12198 dev->name, dev); 12199 12200 WARN_ON(1); 12201 list_del(&dev->unreg_list); 12202 continue; 12203 } 12204 dev->dismantle = true; 12205 BUG_ON(dev->reg_state != NETREG_REGISTERED); 12206 } 12207 12208 /* If device is running, close it first. Start with ops locked... */ 12209 list_for_each_entry(dev, head, unreg_list) { 12210 if (netdev_need_ops_lock(dev)) { 12211 list_add_tail(&dev->close_list, &close_head); 12212 netdev_lock(dev); 12213 } 12214 } 12215 netif_close_many(&close_head, true); 12216 /* ... now unlock them and go over the rest. */ 12217 list_for_each_entry(dev, head, unreg_list) { 12218 if (netdev_need_ops_lock(dev)) 12219 netdev_unlock(dev); 12220 else 12221 list_add_tail(&dev->close_list, &close_head); 12222 } 12223 netif_close_many(&close_head, true); 12224 12225 list_for_each_entry(dev, head, unreg_list) { 12226 /* And unlink it from device chain. */ 12227 unlist_netdevice(dev); 12228 netdev_lock(dev); 12229 WRITE_ONCE(dev->reg_state, NETREG_UNREGISTERING); 12230 netdev_unlock(dev); 12231 } 12232 flush_all_backlogs(); 12233 12234 synchronize_net(); 12235 12236 list_for_each_entry(dev, head, unreg_list) { 12237 struct sk_buff *skb = NULL; 12238 12239 /* Shutdown queueing discipline. */ 12240 netdev_lock_ops(dev); 12241 dev_shutdown(dev); 12242 dev_tcx_uninstall(dev); 12243 dev_xdp_uninstall(dev); 12244 dev_memory_provider_uninstall(dev); 12245 netdev_unlock_ops(dev); 12246 bpf_dev_bound_netdev_unregister(dev); 12247 12248 netdev_offload_xstats_disable_all(dev); 12249 12250 /* Notify protocols, that we are about to destroy 12251 * this device. They should clean all the things. 12252 */ 12253 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 12254 12255 if (!(dev->rtnl_link_ops && dev->rtnl_link_initializing)) 12256 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0, 12257 GFP_KERNEL, NULL, 0, 12258 portid, nlh); 12259 12260 /* 12261 * Flush the unicast and multicast chains 12262 */ 12263 dev_uc_flush(dev); 12264 dev_mc_flush(dev); 12265 12266 netdev_name_node_alt_flush(dev); 12267 netdev_name_node_free(dev->name_node); 12268 12269 netdev_rss_contexts_free(dev); 12270 12271 call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev); 12272 12273 if (dev->netdev_ops->ndo_uninit) 12274 dev->netdev_ops->ndo_uninit(dev); 12275 12276 mutex_destroy(&dev->ethtool->rss_lock); 12277 12278 net_shaper_flush_netdev(dev); 12279 12280 if (skb) 12281 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL, portid, nlh); 12282 12283 /* Notifier chain MUST detach us all upper devices. */ 12284 WARN_ON(netdev_has_any_upper_dev(dev)); 12285 WARN_ON(netdev_has_any_lower_dev(dev)); 12286 12287 /* Remove entries from kobject tree */ 12288 netdev_unregister_kobject(dev); 12289 #ifdef CONFIG_XPS 12290 /* Remove XPS queueing entries */ 12291 netif_reset_xps_queues_gt(dev, 0); 12292 #endif 12293 } 12294 12295 synchronize_net(); 12296 12297 list_for_each_entry(dev, head, unreg_list) { 12298 netdev_put(dev, &dev->dev_registered_tracker); 12299 net_set_todo(dev); 12300 cnt++; 12301 } 12302 atomic_add(cnt, &dev_unreg_count); 12303 12304 list_del(head); 12305 } 12306 12307 /** 12308 * unregister_netdevice_many - unregister many devices 12309 * @head: list of devices 12310 * 12311 * Note: As most callers use a stack allocated list_head, 12312 * we force a list_del() to make sure stack won't be corrupted later. 12313 */ 12314 void unregister_netdevice_many(struct list_head *head) 12315 { 12316 unregister_netdevice_many_notify(head, 0, NULL); 12317 } 12318 EXPORT_SYMBOL(unregister_netdevice_many); 12319 12320 /** 12321 * unregister_netdev - remove device from the kernel 12322 * @dev: device 12323 * 12324 * This function shuts down a device interface and removes it 12325 * from the kernel tables. 12326 * 12327 * This is just a wrapper for unregister_netdevice that takes 12328 * the rtnl semaphore. In general you want to use this and not 12329 * unregister_netdevice. 12330 */ 12331 void unregister_netdev(struct net_device *dev) 12332 { 12333 rtnl_net_dev_lock(dev); 12334 unregister_netdevice(dev); 12335 rtnl_net_dev_unlock(dev); 12336 } 12337 EXPORT_SYMBOL(unregister_netdev); 12338 12339 int __dev_change_net_namespace(struct net_device *dev, struct net *net, 12340 const char *pat, int new_ifindex, 12341 struct netlink_ext_ack *extack) 12342 { 12343 struct netdev_name_node *name_node; 12344 struct net *net_old = dev_net(dev); 12345 char new_name[IFNAMSIZ] = {}; 12346 int err, new_nsid; 12347 12348 ASSERT_RTNL(); 12349 12350 /* Don't allow namespace local devices to be moved. */ 12351 err = -EINVAL; 12352 if (dev->netns_immutable) { 12353 NL_SET_ERR_MSG(extack, "The interface netns is immutable"); 12354 goto out; 12355 } 12356 12357 /* Ensure the device has been registered */ 12358 if (dev->reg_state != NETREG_REGISTERED) { 12359 NL_SET_ERR_MSG(extack, "The interface isn't registered"); 12360 goto out; 12361 } 12362 12363 /* Get out if there is nothing todo */ 12364 err = 0; 12365 if (net_eq(net_old, net)) 12366 goto out; 12367 12368 /* Pick the destination device name, and ensure 12369 * we can use it in the destination network namespace. 12370 */ 12371 err = -EEXIST; 12372 if (netdev_name_in_use(net, dev->name)) { 12373 /* We get here if we can't use the current device name */ 12374 if (!pat) { 12375 NL_SET_ERR_MSG(extack, 12376 "An interface with the same name exists in the target netns"); 12377 goto out; 12378 } 12379 err = dev_prep_valid_name(net, dev, pat, new_name, EEXIST); 12380 if (err < 0) { 12381 NL_SET_ERR_MSG_FMT(extack, 12382 "Unable to use '%s' for the new interface name in the target netns", 12383 pat); 12384 goto out; 12385 } 12386 } 12387 /* Check that none of the altnames conflicts. */ 12388 err = -EEXIST; 12389 netdev_for_each_altname(dev, name_node) { 12390 if (netdev_name_in_use(net, name_node->name)) { 12391 NL_SET_ERR_MSG_FMT(extack, 12392 "An interface with the altname %s exists in the target netns", 12393 name_node->name); 12394 goto out; 12395 } 12396 } 12397 12398 /* Check that new_ifindex isn't used yet. */ 12399 if (new_ifindex) { 12400 err = dev_index_reserve(net, new_ifindex); 12401 if (err < 0) { 12402 NL_SET_ERR_MSG_FMT(extack, 12403 "The ifindex %d is not available in the target netns", 12404 new_ifindex); 12405 goto out; 12406 } 12407 } else { 12408 /* If there is an ifindex conflict assign a new one */ 12409 err = dev_index_reserve(net, dev->ifindex); 12410 if (err == -EBUSY) 12411 err = dev_index_reserve(net, 0); 12412 if (err < 0) { 12413 NL_SET_ERR_MSG(extack, 12414 "Unable to allocate a new ifindex in the target netns"); 12415 goto out; 12416 } 12417 new_ifindex = err; 12418 } 12419 12420 /* 12421 * And now a mini version of register_netdevice unregister_netdevice. 12422 */ 12423 12424 netdev_lock_ops(dev); 12425 /* If device is running close it first. */ 12426 netif_close(dev); 12427 /* And unlink it from device chain */ 12428 unlist_netdevice(dev); 12429 12430 if (!netdev_need_ops_lock(dev)) 12431 netdev_lock(dev); 12432 dev->moving_ns = true; 12433 netdev_unlock(dev); 12434 12435 synchronize_net(); 12436 12437 /* Shutdown queueing discipline. */ 12438 netdev_lock_ops(dev); 12439 dev_shutdown(dev); 12440 netdev_unlock_ops(dev); 12441 12442 /* Notify protocols, that we are about to destroy 12443 * this device. They should clean all the things. 12444 * 12445 * Note that dev->reg_state stays at NETREG_REGISTERED. 12446 * This is wanted because this way 8021q and macvlan know 12447 * the device is just moving and can keep their slaves up. 12448 */ 12449 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 12450 rcu_barrier(); 12451 12452 new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL); 12453 12454 rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid, 12455 new_ifindex); 12456 12457 /* 12458 * Flush the unicast and multicast chains 12459 */ 12460 dev_uc_flush(dev); 12461 dev_mc_flush(dev); 12462 12463 /* Send a netdev-removed uevent to the old namespace */ 12464 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE); 12465 netdev_adjacent_del_links(dev); 12466 12467 /* Move per-net netdevice notifiers that are following the netdevice */ 12468 move_netdevice_notifiers_dev_net(dev, net); 12469 12470 /* Actually switch the network namespace */ 12471 netdev_lock(dev); 12472 dev_net_set(dev, net); 12473 netdev_unlock(dev); 12474 dev->ifindex = new_ifindex; 12475 12476 if (new_name[0]) { 12477 /* Rename the netdev to prepared name */ 12478 write_seqlock_bh(&netdev_rename_lock); 12479 strscpy(dev->name, new_name, IFNAMSIZ); 12480 write_sequnlock_bh(&netdev_rename_lock); 12481 } 12482 12483 /* Fixup kobjects */ 12484 dev_set_uevent_suppress(&dev->dev, 1); 12485 err = device_rename(&dev->dev, dev->name); 12486 dev_set_uevent_suppress(&dev->dev, 0); 12487 WARN_ON(err); 12488 12489 /* Send a netdev-add uevent to the new namespace */ 12490 kobject_uevent(&dev->dev.kobj, KOBJ_ADD); 12491 netdev_adjacent_add_links(dev); 12492 12493 /* Adapt owner in case owning user namespace of target network 12494 * namespace is different from the original one. 12495 */ 12496 err = netdev_change_owner(dev, net_old, net); 12497 WARN_ON(err); 12498 12499 netdev_lock(dev); 12500 dev->moving_ns = false; 12501 if (!netdev_need_ops_lock(dev)) 12502 netdev_unlock(dev); 12503 12504 /* Add the device back in the hashes */ 12505 list_netdevice(dev); 12506 /* Notify protocols, that a new device appeared. */ 12507 call_netdevice_notifiers(NETDEV_REGISTER, dev); 12508 netdev_unlock_ops(dev); 12509 12510 /* 12511 * Prevent userspace races by waiting until the network 12512 * device is fully setup before sending notifications. 12513 */ 12514 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL); 12515 12516 synchronize_net(); 12517 err = 0; 12518 out: 12519 return err; 12520 } 12521 12522 static int dev_cpu_dead(unsigned int oldcpu) 12523 { 12524 struct sk_buff **list_skb; 12525 struct sk_buff *skb; 12526 unsigned int cpu; 12527 struct softnet_data *sd, *oldsd, *remsd = NULL; 12528 12529 local_irq_disable(); 12530 cpu = smp_processor_id(); 12531 sd = &per_cpu(softnet_data, cpu); 12532 oldsd = &per_cpu(softnet_data, oldcpu); 12533 12534 /* Find end of our completion_queue. */ 12535 list_skb = &sd->completion_queue; 12536 while (*list_skb) 12537 list_skb = &(*list_skb)->next; 12538 /* Append completion queue from offline CPU. */ 12539 *list_skb = oldsd->completion_queue; 12540 oldsd->completion_queue = NULL; 12541 12542 /* Append output queue from offline CPU. */ 12543 if (oldsd->output_queue) { 12544 *sd->output_queue_tailp = oldsd->output_queue; 12545 sd->output_queue_tailp = oldsd->output_queue_tailp; 12546 oldsd->output_queue = NULL; 12547 oldsd->output_queue_tailp = &oldsd->output_queue; 12548 } 12549 /* Append NAPI poll list from offline CPU, with one exception : 12550 * process_backlog() must be called by cpu owning percpu backlog. 12551 * We properly handle process_queue & input_pkt_queue later. 12552 */ 12553 while (!list_empty(&oldsd->poll_list)) { 12554 struct napi_struct *napi = list_first_entry(&oldsd->poll_list, 12555 struct napi_struct, 12556 poll_list); 12557 12558 list_del_init(&napi->poll_list); 12559 if (napi->poll == process_backlog) 12560 napi->state &= NAPIF_STATE_THREADED; 12561 else 12562 ____napi_schedule(sd, napi); 12563 } 12564 12565 raise_softirq_irqoff(NET_TX_SOFTIRQ); 12566 local_irq_enable(); 12567 12568 if (!use_backlog_threads()) { 12569 #ifdef CONFIG_RPS 12570 remsd = oldsd->rps_ipi_list; 12571 oldsd->rps_ipi_list = NULL; 12572 #endif 12573 /* send out pending IPI's on offline CPU */ 12574 net_rps_send_ipi(remsd); 12575 } 12576 12577 /* Process offline CPU's input_pkt_queue */ 12578 while ((skb = __skb_dequeue(&oldsd->process_queue))) { 12579 netif_rx(skb); 12580 rps_input_queue_head_incr(oldsd); 12581 } 12582 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) { 12583 netif_rx(skb); 12584 rps_input_queue_head_incr(oldsd); 12585 } 12586 12587 return 0; 12588 } 12589 12590 /** 12591 * netdev_increment_features - increment feature set by one 12592 * @all: current feature set 12593 * @one: new feature set 12594 * @mask: mask feature set 12595 * 12596 * Computes a new feature set after adding a device with feature set 12597 * @one to the master device with current feature set @all. Will not 12598 * enable anything that is off in @mask. Returns the new feature set. 12599 */ 12600 netdev_features_t netdev_increment_features(netdev_features_t all, 12601 netdev_features_t one, netdev_features_t mask) 12602 { 12603 if (mask & NETIF_F_HW_CSUM) 12604 mask |= NETIF_F_CSUM_MASK; 12605 mask |= NETIF_F_VLAN_CHALLENGED; 12606 12607 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask; 12608 all &= one | ~NETIF_F_ALL_FOR_ALL; 12609 12610 /* If one device supports hw checksumming, set for all. */ 12611 if (all & NETIF_F_HW_CSUM) 12612 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM); 12613 12614 return all; 12615 } 12616 EXPORT_SYMBOL(netdev_increment_features); 12617 12618 static struct hlist_head * __net_init netdev_create_hash(void) 12619 { 12620 int i; 12621 struct hlist_head *hash; 12622 12623 hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL); 12624 if (hash != NULL) 12625 for (i = 0; i < NETDEV_HASHENTRIES; i++) 12626 INIT_HLIST_HEAD(&hash[i]); 12627 12628 return hash; 12629 } 12630 12631 /* Initialize per network namespace state */ 12632 static int __net_init netdev_init(struct net *net) 12633 { 12634 BUILD_BUG_ON(GRO_HASH_BUCKETS > 12635 BITS_PER_BYTE * sizeof_field(struct gro_node, bitmask)); 12636 12637 INIT_LIST_HEAD(&net->dev_base_head); 12638 12639 net->dev_name_head = netdev_create_hash(); 12640 if (net->dev_name_head == NULL) 12641 goto err_name; 12642 12643 net->dev_index_head = netdev_create_hash(); 12644 if (net->dev_index_head == NULL) 12645 goto err_idx; 12646 12647 xa_init_flags(&net->dev_by_index, XA_FLAGS_ALLOC1); 12648 12649 RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain); 12650 12651 return 0; 12652 12653 err_idx: 12654 kfree(net->dev_name_head); 12655 err_name: 12656 return -ENOMEM; 12657 } 12658 12659 /** 12660 * netdev_drivername - network driver for the device 12661 * @dev: network device 12662 * 12663 * Determine network driver for device. 12664 */ 12665 const char *netdev_drivername(const struct net_device *dev) 12666 { 12667 const struct device_driver *driver; 12668 const struct device *parent; 12669 const char *empty = ""; 12670 12671 parent = dev->dev.parent; 12672 if (!parent) 12673 return empty; 12674 12675 driver = parent->driver; 12676 if (driver && driver->name) 12677 return driver->name; 12678 return empty; 12679 } 12680 12681 static void __netdev_printk(const char *level, const struct net_device *dev, 12682 struct va_format *vaf) 12683 { 12684 if (dev && dev->dev.parent) { 12685 dev_printk_emit(level[1] - '0', 12686 dev->dev.parent, 12687 "%s %s %s%s: %pV", 12688 dev_driver_string(dev->dev.parent), 12689 dev_name(dev->dev.parent), 12690 netdev_name(dev), netdev_reg_state(dev), 12691 vaf); 12692 } else if (dev) { 12693 printk("%s%s%s: %pV", 12694 level, netdev_name(dev), netdev_reg_state(dev), vaf); 12695 } else { 12696 printk("%s(NULL net_device): %pV", level, vaf); 12697 } 12698 } 12699 12700 void netdev_printk(const char *level, const struct net_device *dev, 12701 const char *format, ...) 12702 { 12703 struct va_format vaf; 12704 va_list args; 12705 12706 va_start(args, format); 12707 12708 vaf.fmt = format; 12709 vaf.va = &args; 12710 12711 __netdev_printk(level, dev, &vaf); 12712 12713 va_end(args); 12714 } 12715 EXPORT_SYMBOL(netdev_printk); 12716 12717 #define define_netdev_printk_level(func, level) \ 12718 void func(const struct net_device *dev, const char *fmt, ...) \ 12719 { \ 12720 struct va_format vaf; \ 12721 va_list args; \ 12722 \ 12723 va_start(args, fmt); \ 12724 \ 12725 vaf.fmt = fmt; \ 12726 vaf.va = &args; \ 12727 \ 12728 __netdev_printk(level, dev, &vaf); \ 12729 \ 12730 va_end(args); \ 12731 } \ 12732 EXPORT_SYMBOL(func); 12733 12734 define_netdev_printk_level(netdev_emerg, KERN_EMERG); 12735 define_netdev_printk_level(netdev_alert, KERN_ALERT); 12736 define_netdev_printk_level(netdev_crit, KERN_CRIT); 12737 define_netdev_printk_level(netdev_err, KERN_ERR); 12738 define_netdev_printk_level(netdev_warn, KERN_WARNING); 12739 define_netdev_printk_level(netdev_notice, KERN_NOTICE); 12740 define_netdev_printk_level(netdev_info, KERN_INFO); 12741 12742 static void __net_exit netdev_exit(struct net *net) 12743 { 12744 kfree(net->dev_name_head); 12745 kfree(net->dev_index_head); 12746 xa_destroy(&net->dev_by_index); 12747 if (net != &init_net) 12748 WARN_ON_ONCE(!list_empty(&net->dev_base_head)); 12749 } 12750 12751 static struct pernet_operations __net_initdata netdev_net_ops = { 12752 .init = netdev_init, 12753 .exit = netdev_exit, 12754 }; 12755 12756 static void __net_exit default_device_exit_net(struct net *net) 12757 { 12758 struct netdev_name_node *name_node, *tmp; 12759 struct net_device *dev, *aux; 12760 /* 12761 * Push all migratable network devices back to the 12762 * initial network namespace 12763 */ 12764 ASSERT_RTNL(); 12765 for_each_netdev_safe(net, dev, aux) { 12766 int err; 12767 char fb_name[IFNAMSIZ]; 12768 12769 /* Ignore unmoveable devices (i.e. loopback) */ 12770 if (dev->netns_immutable) 12771 continue; 12772 12773 /* Leave virtual devices for the generic cleanup */ 12774 if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund) 12775 continue; 12776 12777 /* Push remaining network devices to init_net */ 12778 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex); 12779 if (netdev_name_in_use(&init_net, fb_name)) 12780 snprintf(fb_name, IFNAMSIZ, "dev%%d"); 12781 12782 netdev_for_each_altname_safe(dev, name_node, tmp) 12783 if (netdev_name_in_use(&init_net, name_node->name)) 12784 __netdev_name_node_alt_destroy(name_node); 12785 12786 err = dev_change_net_namespace(dev, &init_net, fb_name); 12787 if (err) { 12788 pr_emerg("%s: failed to move %s to init_net: %d\n", 12789 __func__, dev->name, err); 12790 BUG(); 12791 } 12792 } 12793 } 12794 12795 static void __net_exit default_device_exit_batch(struct list_head *net_list) 12796 { 12797 /* At exit all network devices most be removed from a network 12798 * namespace. Do this in the reverse order of registration. 12799 * Do this across as many network namespaces as possible to 12800 * improve batching efficiency. 12801 */ 12802 struct net_device *dev; 12803 struct net *net; 12804 LIST_HEAD(dev_kill_list); 12805 12806 rtnl_lock(); 12807 list_for_each_entry(net, net_list, exit_list) { 12808 default_device_exit_net(net); 12809 cond_resched(); 12810 } 12811 12812 list_for_each_entry(net, net_list, exit_list) { 12813 for_each_netdev_reverse(net, dev) { 12814 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink) 12815 dev->rtnl_link_ops->dellink(dev, &dev_kill_list); 12816 else 12817 unregister_netdevice_queue(dev, &dev_kill_list); 12818 } 12819 } 12820 unregister_netdevice_many(&dev_kill_list); 12821 rtnl_unlock(); 12822 } 12823 12824 static struct pernet_operations __net_initdata default_device_ops = { 12825 .exit_batch = default_device_exit_batch, 12826 }; 12827 12828 static void __init net_dev_struct_check(void) 12829 { 12830 /* TX read-mostly hotpath */ 12831 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, priv_flags_fast); 12832 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, netdev_ops); 12833 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, header_ops); 12834 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, _tx); 12835 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, real_num_tx_queues); 12836 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_max_size); 12837 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_ipv4_max_size); 12838 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_max_segs); 12839 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_partial_features); 12840 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, num_tc); 12841 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, mtu); 12842 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, needed_headroom); 12843 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, tc_to_txq); 12844 #ifdef CONFIG_XPS 12845 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, xps_maps); 12846 #endif 12847 #ifdef CONFIG_NETFILTER_EGRESS 12848 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, nf_hooks_egress); 12849 #endif 12850 #ifdef CONFIG_NET_XGRESS 12851 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, tcx_egress); 12852 #endif 12853 CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_tx, 160); 12854 12855 /* TXRX read-mostly hotpath */ 12856 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, lstats); 12857 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, state); 12858 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, flags); 12859 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, hard_header_len); 12860 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, features); 12861 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, ip6_ptr); 12862 CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_txrx, 46); 12863 12864 /* RX read-mostly hotpath */ 12865 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, ptype_specific); 12866 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, ifindex); 12867 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, real_num_rx_queues); 12868 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, _rx); 12869 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_max_size); 12870 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_ipv4_max_size); 12871 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, rx_handler); 12872 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, rx_handler_data); 12873 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, nd_net); 12874 #ifdef CONFIG_NETPOLL 12875 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, npinfo); 12876 #endif 12877 #ifdef CONFIG_NET_XGRESS 12878 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, tcx_ingress); 12879 #endif 12880 CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_rx, 92); 12881 } 12882 12883 /* 12884 * Initialize the DEV module. At boot time this walks the device list and 12885 * unhooks any devices that fail to initialise (normally hardware not 12886 * present) and leaves us with a valid list of present and active devices. 12887 * 12888 */ 12889 12890 /* We allocate 256 pages for each CPU if PAGE_SHIFT is 12 */ 12891 #define SYSTEM_PERCPU_PAGE_POOL_SIZE ((1 << 20) / PAGE_SIZE) 12892 12893 static int net_page_pool_create(int cpuid) 12894 { 12895 #if IS_ENABLED(CONFIG_PAGE_POOL) 12896 struct page_pool_params page_pool_params = { 12897 .pool_size = SYSTEM_PERCPU_PAGE_POOL_SIZE, 12898 .flags = PP_FLAG_SYSTEM_POOL, 12899 .nid = cpu_to_mem(cpuid), 12900 }; 12901 struct page_pool *pp_ptr; 12902 int err; 12903 12904 pp_ptr = page_pool_create_percpu(&page_pool_params, cpuid); 12905 if (IS_ERR(pp_ptr)) 12906 return -ENOMEM; 12907 12908 err = xdp_reg_page_pool(pp_ptr); 12909 if (err) { 12910 page_pool_destroy(pp_ptr); 12911 return err; 12912 } 12913 12914 per_cpu(system_page_pool.pool, cpuid) = pp_ptr; 12915 #endif 12916 return 0; 12917 } 12918 12919 static int backlog_napi_should_run(unsigned int cpu) 12920 { 12921 struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu); 12922 struct napi_struct *napi = &sd->backlog; 12923 12924 return test_bit(NAPI_STATE_SCHED_THREADED, &napi->state); 12925 } 12926 12927 static void run_backlog_napi(unsigned int cpu) 12928 { 12929 struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu); 12930 12931 napi_threaded_poll_loop(&sd->backlog); 12932 } 12933 12934 static void backlog_napi_setup(unsigned int cpu) 12935 { 12936 struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu); 12937 struct napi_struct *napi = &sd->backlog; 12938 12939 napi->thread = this_cpu_read(backlog_napi); 12940 set_bit(NAPI_STATE_THREADED, &napi->state); 12941 } 12942 12943 static struct smp_hotplug_thread backlog_threads = { 12944 .store = &backlog_napi, 12945 .thread_should_run = backlog_napi_should_run, 12946 .thread_fn = run_backlog_napi, 12947 .thread_comm = "backlog_napi/%u", 12948 .setup = backlog_napi_setup, 12949 }; 12950 12951 /* 12952 * This is called single threaded during boot, so no need 12953 * to take the rtnl semaphore. 12954 */ 12955 static int __init net_dev_init(void) 12956 { 12957 int i, rc = -ENOMEM; 12958 12959 BUG_ON(!dev_boot_phase); 12960 12961 net_dev_struct_check(); 12962 12963 if (dev_proc_init()) 12964 goto out; 12965 12966 if (netdev_kobject_init()) 12967 goto out; 12968 12969 for (i = 0; i < PTYPE_HASH_SIZE; i++) 12970 INIT_LIST_HEAD(&ptype_base[i]); 12971 12972 if (register_pernet_subsys(&netdev_net_ops)) 12973 goto out; 12974 12975 /* 12976 * Initialise the packet receive queues. 12977 */ 12978 12979 flush_backlogs_fallback = flush_backlogs_alloc(); 12980 if (!flush_backlogs_fallback) 12981 goto out; 12982 12983 for_each_possible_cpu(i) { 12984 struct softnet_data *sd = &per_cpu(softnet_data, i); 12985 12986 skb_queue_head_init(&sd->input_pkt_queue); 12987 skb_queue_head_init(&sd->process_queue); 12988 #ifdef CONFIG_XFRM_OFFLOAD 12989 skb_queue_head_init(&sd->xfrm_backlog); 12990 #endif 12991 INIT_LIST_HEAD(&sd->poll_list); 12992 sd->output_queue_tailp = &sd->output_queue; 12993 #ifdef CONFIG_RPS 12994 INIT_CSD(&sd->csd, rps_trigger_softirq, sd); 12995 sd->cpu = i; 12996 #endif 12997 INIT_CSD(&sd->defer_csd, trigger_rx_softirq, sd); 12998 spin_lock_init(&sd->defer_lock); 12999 13000 gro_init(&sd->backlog.gro); 13001 sd->backlog.poll = process_backlog; 13002 sd->backlog.weight = weight_p; 13003 INIT_LIST_HEAD(&sd->backlog.poll_list); 13004 13005 if (net_page_pool_create(i)) 13006 goto out; 13007 } 13008 if (use_backlog_threads()) 13009 smpboot_register_percpu_thread(&backlog_threads); 13010 13011 dev_boot_phase = 0; 13012 13013 /* The loopback device is special if any other network devices 13014 * is present in a network namespace the loopback device must 13015 * be present. Since we now dynamically allocate and free the 13016 * loopback device ensure this invariant is maintained by 13017 * keeping the loopback device as the first device on the 13018 * list of network devices. Ensuring the loopback devices 13019 * is the first device that appears and the last network device 13020 * that disappears. 13021 */ 13022 if (register_pernet_device(&loopback_net_ops)) 13023 goto out; 13024 13025 if (register_pernet_device(&default_device_ops)) 13026 goto out; 13027 13028 open_softirq(NET_TX_SOFTIRQ, net_tx_action); 13029 open_softirq(NET_RX_SOFTIRQ, net_rx_action); 13030 13031 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead", 13032 NULL, dev_cpu_dead); 13033 WARN_ON(rc < 0); 13034 rc = 0; 13035 13036 /* avoid static key IPIs to isolated CPUs */ 13037 if (housekeeping_enabled(HK_TYPE_MISC)) 13038 net_enable_timestamp(); 13039 out: 13040 if (rc < 0) { 13041 for_each_possible_cpu(i) { 13042 struct page_pool *pp_ptr; 13043 13044 pp_ptr = per_cpu(system_page_pool.pool, i); 13045 if (!pp_ptr) 13046 continue; 13047 13048 xdp_unreg_page_pool(pp_ptr); 13049 page_pool_destroy(pp_ptr); 13050 per_cpu(system_page_pool.pool, i) = NULL; 13051 } 13052 } 13053 13054 return rc; 13055 } 13056 13057 subsys_initcall(net_dev_init); 13058