xref: /linux/net/core/dev.c (revision 8a5f956a9fb7d74fff681145082acfad5afa6bb8)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *      NET3    Protocol independent device support routines.
4  *
5  *	Derived from the non IP parts of dev.c 1.0.19
6  *              Authors:	Ross Biro
7  *				Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8  *				Mark Evans, <evansmp@uhura.aston.ac.uk>
9  *
10  *	Additional Authors:
11  *		Florian la Roche <rzsfl@rz.uni-sb.de>
12  *		Alan Cox <gw4pts@gw4pts.ampr.org>
13  *		David Hinds <dahinds@users.sourceforge.net>
14  *		Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15  *		Adam Sulmicki <adam@cfar.umd.edu>
16  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
17  *
18  *	Changes:
19  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
20  *                                      to 2 if register_netdev gets called
21  *                                      before net_dev_init & also removed a
22  *                                      few lines of code in the process.
23  *		Alan Cox	:	device private ioctl copies fields back.
24  *		Alan Cox	:	Transmit queue code does relevant
25  *					stunts to keep the queue safe.
26  *		Alan Cox	:	Fixed double lock.
27  *		Alan Cox	:	Fixed promisc NULL pointer trap
28  *		????????	:	Support the full private ioctl range
29  *		Alan Cox	:	Moved ioctl permission check into
30  *					drivers
31  *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
32  *		Alan Cox	:	100 backlog just doesn't cut it when
33  *					you start doing multicast video 8)
34  *		Alan Cox	:	Rewrote net_bh and list manager.
35  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
36  *		Alan Cox	:	Took out transmit every packet pass
37  *					Saved a few bytes in the ioctl handler
38  *		Alan Cox	:	Network driver sets packet type before
39  *					calling netif_rx. Saves a function
40  *					call a packet.
41  *		Alan Cox	:	Hashed net_bh()
42  *		Richard Kooijman:	Timestamp fixes.
43  *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
44  *		Alan Cox	:	Device lock protection.
45  *              Alan Cox        :       Fixed nasty side effect of device close
46  *					changes.
47  *		Rudi Cilibrasi	:	Pass the right thing to
48  *					set_mac_address()
49  *		Dave Miller	:	32bit quantity for the device lock to
50  *					make it work out on a Sparc.
51  *		Bjorn Ekwall	:	Added KERNELD hack.
52  *		Alan Cox	:	Cleaned up the backlog initialise.
53  *		Craig Metz	:	SIOCGIFCONF fix if space for under
54  *					1 device.
55  *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
56  *					is no device open function.
57  *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
58  *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
59  *		Cyrus Durgin	:	Cleaned for KMOD
60  *		Adam Sulmicki   :	Bug Fix : Network Device Unload
61  *					A network device unload needs to purge
62  *					the backlog queue.
63  *	Paul Rusty Russell	:	SIOCSIFNAME
64  *              Pekka Riikonen  :	Netdev boot-time settings code
65  *              Andrew Morton   :       Make unregister_netdevice wait
66  *                                      indefinitely on dev->refcnt
67  *              J Hadi Salim    :       - Backlog queue sampling
68  *				        - netif_rx() feedback
69  */
70 
71 #include <linux/uaccess.h>
72 #include <linux/bitmap.h>
73 #include <linux/capability.h>
74 #include <linux/cpu.h>
75 #include <linux/types.h>
76 #include <linux/kernel.h>
77 #include <linux/hash.h>
78 #include <linux/slab.h>
79 #include <linux/sched.h>
80 #include <linux/sched/isolation.h>
81 #include <linux/sched/mm.h>
82 #include <linux/smpboot.h>
83 #include <linux/mutex.h>
84 #include <linux/rwsem.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/ethtool_netlink.h>
96 #include <linux/skbuff.h>
97 #include <linux/kthread.h>
98 #include <linux/bpf.h>
99 #include <linux/bpf_trace.h>
100 #include <net/net_namespace.h>
101 #include <net/sock.h>
102 #include <net/busy_poll.h>
103 #include <linux/rtnetlink.h>
104 #include <linux/stat.h>
105 #include <net/dsa.h>
106 #include <net/dst.h>
107 #include <net/dst_metadata.h>
108 #include <net/gro.h>
109 #include <net/netdev_queues.h>
110 #include <net/pkt_sched.h>
111 #include <net/pkt_cls.h>
112 #include <net/checksum.h>
113 #include <net/xfrm.h>
114 #include <net/tcx.h>
115 #include <linux/highmem.h>
116 #include <linux/init.h>
117 #include <linux/module.h>
118 #include <linux/netpoll.h>
119 #include <linux/rcupdate.h>
120 #include <linux/delay.h>
121 #include <net/iw_handler.h>
122 #include <asm/current.h>
123 #include <linux/audit.h>
124 #include <linux/dmaengine.h>
125 #include <linux/err.h>
126 #include <linux/ctype.h>
127 #include <linux/if_arp.h>
128 #include <linux/if_vlan.h>
129 #include <linux/ip.h>
130 #include <net/ip.h>
131 #include <net/mpls.h>
132 #include <linux/ipv6.h>
133 #include <linux/in.h>
134 #include <linux/jhash.h>
135 #include <linux/random.h>
136 #include <trace/events/napi.h>
137 #include <trace/events/net.h>
138 #include <trace/events/skb.h>
139 #include <trace/events/qdisc.h>
140 #include <trace/events/xdp.h>
141 #include <linux/inetdevice.h>
142 #include <linux/cpu_rmap.h>
143 #include <linux/static_key.h>
144 #include <linux/hashtable.h>
145 #include <linux/vmalloc.h>
146 #include <linux/if_macvlan.h>
147 #include <linux/errqueue.h>
148 #include <linux/hrtimer.h>
149 #include <linux/netfilter_netdev.h>
150 #include <linux/crash_dump.h>
151 #include <linux/sctp.h>
152 #include <net/udp_tunnel.h>
153 #include <linux/net_namespace.h>
154 #include <linux/indirect_call_wrapper.h>
155 #include <net/devlink.h>
156 #include <linux/pm_runtime.h>
157 #include <linux/prandom.h>
158 #include <linux/once_lite.h>
159 #include <net/netdev_lock.h>
160 #include <net/netdev_rx_queue.h>
161 #include <net/page_pool/types.h>
162 #include <net/page_pool/helpers.h>
163 #include <net/page_pool/memory_provider.h>
164 #include <net/rps.h>
165 #include <linux/phy_link_topology.h>
166 
167 #include "dev.h"
168 #include "devmem.h"
169 #include "net-sysfs.h"
170 
171 static DEFINE_SPINLOCK(ptype_lock);
172 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
173 
174 static int netif_rx_internal(struct sk_buff *skb);
175 static int call_netdevice_notifiers_extack(unsigned long val,
176 					   struct net_device *dev,
177 					   struct netlink_ext_ack *extack);
178 
179 static DEFINE_MUTEX(ifalias_mutex);
180 
181 /* protects napi_hash addition/deletion and napi_gen_id */
182 static DEFINE_SPINLOCK(napi_hash_lock);
183 
184 static unsigned int napi_gen_id = NR_CPUS;
185 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
186 
187 static inline void dev_base_seq_inc(struct net *net)
188 {
189 	unsigned int val = net->dev_base_seq + 1;
190 
191 	WRITE_ONCE(net->dev_base_seq, val ?: 1);
192 }
193 
194 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
195 {
196 	unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
197 
198 	return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
199 }
200 
201 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
202 {
203 	return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
204 }
205 
206 #ifndef CONFIG_PREEMPT_RT
207 
208 static DEFINE_STATIC_KEY_FALSE(use_backlog_threads_key);
209 
210 static int __init setup_backlog_napi_threads(char *arg)
211 {
212 	static_branch_enable(&use_backlog_threads_key);
213 	return 0;
214 }
215 early_param("thread_backlog_napi", setup_backlog_napi_threads);
216 
217 static bool use_backlog_threads(void)
218 {
219 	return static_branch_unlikely(&use_backlog_threads_key);
220 }
221 
222 #else
223 
224 static bool use_backlog_threads(void)
225 {
226 	return true;
227 }
228 
229 #endif
230 
231 static inline void backlog_lock_irq_save(struct softnet_data *sd,
232 					 unsigned long *flags)
233 {
234 	if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads())
235 		spin_lock_irqsave(&sd->input_pkt_queue.lock, *flags);
236 	else
237 		local_irq_save(*flags);
238 }
239 
240 static inline void backlog_lock_irq_disable(struct softnet_data *sd)
241 {
242 	if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads())
243 		spin_lock_irq(&sd->input_pkt_queue.lock);
244 	else
245 		local_irq_disable();
246 }
247 
248 static inline void backlog_unlock_irq_restore(struct softnet_data *sd,
249 					      unsigned long *flags)
250 {
251 	if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads())
252 		spin_unlock_irqrestore(&sd->input_pkt_queue.lock, *flags);
253 	else
254 		local_irq_restore(*flags);
255 }
256 
257 static inline void backlog_unlock_irq_enable(struct softnet_data *sd)
258 {
259 	if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads())
260 		spin_unlock_irq(&sd->input_pkt_queue.lock);
261 	else
262 		local_irq_enable();
263 }
264 
265 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
266 						       const char *name)
267 {
268 	struct netdev_name_node *name_node;
269 
270 	name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
271 	if (!name_node)
272 		return NULL;
273 	INIT_HLIST_NODE(&name_node->hlist);
274 	name_node->dev = dev;
275 	name_node->name = name;
276 	return name_node;
277 }
278 
279 static struct netdev_name_node *
280 netdev_name_node_head_alloc(struct net_device *dev)
281 {
282 	struct netdev_name_node *name_node;
283 
284 	name_node = netdev_name_node_alloc(dev, dev->name);
285 	if (!name_node)
286 		return NULL;
287 	INIT_LIST_HEAD(&name_node->list);
288 	return name_node;
289 }
290 
291 static void netdev_name_node_free(struct netdev_name_node *name_node)
292 {
293 	kfree(name_node);
294 }
295 
296 static void netdev_name_node_add(struct net *net,
297 				 struct netdev_name_node *name_node)
298 {
299 	hlist_add_head_rcu(&name_node->hlist,
300 			   dev_name_hash(net, name_node->name));
301 }
302 
303 static void netdev_name_node_del(struct netdev_name_node *name_node)
304 {
305 	hlist_del_rcu(&name_node->hlist);
306 }
307 
308 static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
309 							const char *name)
310 {
311 	struct hlist_head *head = dev_name_hash(net, name);
312 	struct netdev_name_node *name_node;
313 
314 	hlist_for_each_entry(name_node, head, hlist)
315 		if (!strcmp(name_node->name, name))
316 			return name_node;
317 	return NULL;
318 }
319 
320 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
321 							    const char *name)
322 {
323 	struct hlist_head *head = dev_name_hash(net, name);
324 	struct netdev_name_node *name_node;
325 
326 	hlist_for_each_entry_rcu(name_node, head, hlist)
327 		if (!strcmp(name_node->name, name))
328 			return name_node;
329 	return NULL;
330 }
331 
332 bool netdev_name_in_use(struct net *net, const char *name)
333 {
334 	return netdev_name_node_lookup(net, name);
335 }
336 EXPORT_SYMBOL(netdev_name_in_use);
337 
338 int netdev_name_node_alt_create(struct net_device *dev, const char *name)
339 {
340 	struct netdev_name_node *name_node;
341 	struct net *net = dev_net(dev);
342 
343 	name_node = netdev_name_node_lookup(net, name);
344 	if (name_node)
345 		return -EEXIST;
346 	name_node = netdev_name_node_alloc(dev, name);
347 	if (!name_node)
348 		return -ENOMEM;
349 	netdev_name_node_add(net, name_node);
350 	/* The node that holds dev->name acts as a head of per-device list. */
351 	list_add_tail_rcu(&name_node->list, &dev->name_node->list);
352 
353 	return 0;
354 }
355 
356 static void netdev_name_node_alt_free(struct rcu_head *head)
357 {
358 	struct netdev_name_node *name_node =
359 		container_of(head, struct netdev_name_node, rcu);
360 
361 	kfree(name_node->name);
362 	netdev_name_node_free(name_node);
363 }
364 
365 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
366 {
367 	netdev_name_node_del(name_node);
368 	list_del(&name_node->list);
369 	call_rcu(&name_node->rcu, netdev_name_node_alt_free);
370 }
371 
372 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
373 {
374 	struct netdev_name_node *name_node;
375 	struct net *net = dev_net(dev);
376 
377 	name_node = netdev_name_node_lookup(net, name);
378 	if (!name_node)
379 		return -ENOENT;
380 	/* lookup might have found our primary name or a name belonging
381 	 * to another device.
382 	 */
383 	if (name_node == dev->name_node || name_node->dev != dev)
384 		return -EINVAL;
385 
386 	__netdev_name_node_alt_destroy(name_node);
387 	return 0;
388 }
389 
390 static void netdev_name_node_alt_flush(struct net_device *dev)
391 {
392 	struct netdev_name_node *name_node, *tmp;
393 
394 	list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list) {
395 		list_del(&name_node->list);
396 		netdev_name_node_alt_free(&name_node->rcu);
397 	}
398 }
399 
400 /* Device list insertion */
401 static void list_netdevice(struct net_device *dev)
402 {
403 	struct netdev_name_node *name_node;
404 	struct net *net = dev_net(dev);
405 
406 	ASSERT_RTNL();
407 
408 	list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
409 	netdev_name_node_add(net, dev->name_node);
410 	hlist_add_head_rcu(&dev->index_hlist,
411 			   dev_index_hash(net, dev->ifindex));
412 
413 	netdev_for_each_altname(dev, name_node)
414 		netdev_name_node_add(net, name_node);
415 
416 	/* We reserved the ifindex, this can't fail */
417 	WARN_ON(xa_store(&net->dev_by_index, dev->ifindex, dev, GFP_KERNEL));
418 
419 	dev_base_seq_inc(net);
420 }
421 
422 /* Device list removal
423  * caller must respect a RCU grace period before freeing/reusing dev
424  */
425 static void unlist_netdevice(struct net_device *dev)
426 {
427 	struct netdev_name_node *name_node;
428 	struct net *net = dev_net(dev);
429 
430 	ASSERT_RTNL();
431 
432 	xa_erase(&net->dev_by_index, dev->ifindex);
433 
434 	netdev_for_each_altname(dev, name_node)
435 		netdev_name_node_del(name_node);
436 
437 	/* Unlink dev from the device chain */
438 	list_del_rcu(&dev->dev_list);
439 	netdev_name_node_del(dev->name_node);
440 	hlist_del_rcu(&dev->index_hlist);
441 
442 	dev_base_seq_inc(dev_net(dev));
443 }
444 
445 /*
446  *	Our notifier list
447  */
448 
449 static RAW_NOTIFIER_HEAD(netdev_chain);
450 
451 /*
452  *	Device drivers call our routines to queue packets here. We empty the
453  *	queue in the local softnet handler.
454  */
455 
456 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data) = {
457 	.process_queue_bh_lock = INIT_LOCAL_LOCK(process_queue_bh_lock),
458 };
459 EXPORT_PER_CPU_SYMBOL(softnet_data);
460 
461 /* Page_pool has a lockless array/stack to alloc/recycle pages.
462  * PP consumers must pay attention to run APIs in the appropriate context
463  * (e.g. NAPI context).
464  */
465 DEFINE_PER_CPU(struct page_pool_bh, system_page_pool) = {
466 	.bh_lock = INIT_LOCAL_LOCK(bh_lock),
467 };
468 
469 #ifdef CONFIG_LOCKDEP
470 /*
471  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
472  * according to dev->type
473  */
474 static const unsigned short netdev_lock_type[] = {
475 	 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
476 	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
477 	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
478 	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
479 	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
480 	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
481 	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
482 	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
483 	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
484 	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
485 	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
486 	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
487 	 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
488 	 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
489 	 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
490 
491 static const char *const netdev_lock_name[] = {
492 	"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
493 	"_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
494 	"_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
495 	"_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
496 	"_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
497 	"_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
498 	"_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
499 	"_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
500 	"_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
501 	"_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
502 	"_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
503 	"_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
504 	"_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
505 	"_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
506 	"_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
507 
508 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
509 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
510 
511 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
512 {
513 	int i;
514 
515 	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
516 		if (netdev_lock_type[i] == dev_type)
517 			return i;
518 	/* the last key is used by default */
519 	return ARRAY_SIZE(netdev_lock_type) - 1;
520 }
521 
522 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
523 						 unsigned short dev_type)
524 {
525 	int i;
526 
527 	i = netdev_lock_pos(dev_type);
528 	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
529 				   netdev_lock_name[i]);
530 }
531 
532 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
533 {
534 	int i;
535 
536 	i = netdev_lock_pos(dev->type);
537 	lockdep_set_class_and_name(&dev->addr_list_lock,
538 				   &netdev_addr_lock_key[i],
539 				   netdev_lock_name[i]);
540 }
541 #else
542 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
543 						 unsigned short dev_type)
544 {
545 }
546 
547 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
548 {
549 }
550 #endif
551 
552 /*******************************************************************************
553  *
554  *		Protocol management and registration routines
555  *
556  *******************************************************************************/
557 
558 
559 /*
560  *	Add a protocol ID to the list. Now that the input handler is
561  *	smarter we can dispense with all the messy stuff that used to be
562  *	here.
563  *
564  *	BEWARE!!! Protocol handlers, mangling input packets,
565  *	MUST BE last in hash buckets and checking protocol handlers
566  *	MUST start from promiscuous ptype_all chain in net_bh.
567  *	It is true now, do not change it.
568  *	Explanation follows: if protocol handler, mangling packet, will
569  *	be the first on list, it is not able to sense, that packet
570  *	is cloned and should be copied-on-write, so that it will
571  *	change it and subsequent readers will get broken packet.
572  *							--ANK (980803)
573  */
574 
575 static inline struct list_head *ptype_head(const struct packet_type *pt)
576 {
577 	if (pt->type == htons(ETH_P_ALL)) {
578 		if (!pt->af_packet_net && !pt->dev)
579 			return NULL;
580 
581 		return pt->dev ? &pt->dev->ptype_all :
582 				 &pt->af_packet_net->ptype_all;
583 	}
584 
585 	if (pt->dev)
586 		return &pt->dev->ptype_specific;
587 
588 	return pt->af_packet_net ? &pt->af_packet_net->ptype_specific :
589 				 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
590 }
591 
592 /**
593  *	dev_add_pack - add packet handler
594  *	@pt: packet type declaration
595  *
596  *	Add a protocol handler to the networking stack. The passed &packet_type
597  *	is linked into kernel lists and may not be freed until it has been
598  *	removed from the kernel lists.
599  *
600  *	This call does not sleep therefore it can not
601  *	guarantee all CPU's that are in middle of receiving packets
602  *	will see the new packet type (until the next received packet).
603  */
604 
605 void dev_add_pack(struct packet_type *pt)
606 {
607 	struct list_head *head = ptype_head(pt);
608 
609 	if (WARN_ON_ONCE(!head))
610 		return;
611 
612 	spin_lock(&ptype_lock);
613 	list_add_rcu(&pt->list, head);
614 	spin_unlock(&ptype_lock);
615 }
616 EXPORT_SYMBOL(dev_add_pack);
617 
618 /**
619  *	__dev_remove_pack	 - remove packet handler
620  *	@pt: packet type declaration
621  *
622  *	Remove a protocol handler that was previously added to the kernel
623  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
624  *	from the kernel lists and can be freed or reused once this function
625  *	returns.
626  *
627  *      The packet type might still be in use by receivers
628  *	and must not be freed until after all the CPU's have gone
629  *	through a quiescent state.
630  */
631 void __dev_remove_pack(struct packet_type *pt)
632 {
633 	struct list_head *head = ptype_head(pt);
634 	struct packet_type *pt1;
635 
636 	if (!head)
637 		return;
638 
639 	spin_lock(&ptype_lock);
640 
641 	list_for_each_entry(pt1, head, list) {
642 		if (pt == pt1) {
643 			list_del_rcu(&pt->list);
644 			goto out;
645 		}
646 	}
647 
648 	pr_warn("dev_remove_pack: %p not found\n", pt);
649 out:
650 	spin_unlock(&ptype_lock);
651 }
652 EXPORT_SYMBOL(__dev_remove_pack);
653 
654 /**
655  *	dev_remove_pack	 - remove packet handler
656  *	@pt: packet type declaration
657  *
658  *	Remove a protocol handler that was previously added to the kernel
659  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
660  *	from the kernel lists and can be freed or reused once this function
661  *	returns.
662  *
663  *	This call sleeps to guarantee that no CPU is looking at the packet
664  *	type after return.
665  */
666 void dev_remove_pack(struct packet_type *pt)
667 {
668 	__dev_remove_pack(pt);
669 
670 	synchronize_net();
671 }
672 EXPORT_SYMBOL(dev_remove_pack);
673 
674 
675 /*******************************************************************************
676  *
677  *			    Device Interface Subroutines
678  *
679  *******************************************************************************/
680 
681 /**
682  *	dev_get_iflink	- get 'iflink' value of a interface
683  *	@dev: targeted interface
684  *
685  *	Indicates the ifindex the interface is linked to.
686  *	Physical interfaces have the same 'ifindex' and 'iflink' values.
687  */
688 
689 int dev_get_iflink(const struct net_device *dev)
690 {
691 	if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
692 		return dev->netdev_ops->ndo_get_iflink(dev);
693 
694 	return READ_ONCE(dev->ifindex);
695 }
696 EXPORT_SYMBOL(dev_get_iflink);
697 
698 /**
699  *	dev_fill_metadata_dst - Retrieve tunnel egress information.
700  *	@dev: targeted interface
701  *	@skb: The packet.
702  *
703  *	For better visibility of tunnel traffic OVS needs to retrieve
704  *	egress tunnel information for a packet. Following API allows
705  *	user to get this info.
706  */
707 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
708 {
709 	struct ip_tunnel_info *info;
710 
711 	if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
712 		return -EINVAL;
713 
714 	info = skb_tunnel_info_unclone(skb);
715 	if (!info)
716 		return -ENOMEM;
717 	if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
718 		return -EINVAL;
719 
720 	return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
721 }
722 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
723 
724 static struct net_device_path *dev_fwd_path(struct net_device_path_stack *stack)
725 {
726 	int k = stack->num_paths++;
727 
728 	if (WARN_ON_ONCE(k >= NET_DEVICE_PATH_STACK_MAX))
729 		return NULL;
730 
731 	return &stack->path[k];
732 }
733 
734 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
735 			  struct net_device_path_stack *stack)
736 {
737 	const struct net_device *last_dev;
738 	struct net_device_path_ctx ctx = {
739 		.dev	= dev,
740 	};
741 	struct net_device_path *path;
742 	int ret = 0;
743 
744 	memcpy(ctx.daddr, daddr, sizeof(ctx.daddr));
745 	stack->num_paths = 0;
746 	while (ctx.dev && ctx.dev->netdev_ops->ndo_fill_forward_path) {
747 		last_dev = ctx.dev;
748 		path = dev_fwd_path(stack);
749 		if (!path)
750 			return -1;
751 
752 		memset(path, 0, sizeof(struct net_device_path));
753 		ret = ctx.dev->netdev_ops->ndo_fill_forward_path(&ctx, path);
754 		if (ret < 0)
755 			return -1;
756 
757 		if (WARN_ON_ONCE(last_dev == ctx.dev))
758 			return -1;
759 	}
760 
761 	if (!ctx.dev)
762 		return ret;
763 
764 	path = dev_fwd_path(stack);
765 	if (!path)
766 		return -1;
767 	path->type = DEV_PATH_ETHERNET;
768 	path->dev = ctx.dev;
769 
770 	return ret;
771 }
772 EXPORT_SYMBOL_GPL(dev_fill_forward_path);
773 
774 /* must be called under rcu_read_lock(), as we dont take a reference */
775 static struct napi_struct *napi_by_id(unsigned int napi_id)
776 {
777 	unsigned int hash = napi_id % HASH_SIZE(napi_hash);
778 	struct napi_struct *napi;
779 
780 	hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
781 		if (napi->napi_id == napi_id)
782 			return napi;
783 
784 	return NULL;
785 }
786 
787 /* must be called under rcu_read_lock(), as we dont take a reference */
788 static struct napi_struct *
789 netdev_napi_by_id(struct net *net, unsigned int napi_id)
790 {
791 	struct napi_struct *napi;
792 
793 	napi = napi_by_id(napi_id);
794 	if (!napi)
795 		return NULL;
796 
797 	if (WARN_ON_ONCE(!napi->dev))
798 		return NULL;
799 	if (!net_eq(net, dev_net(napi->dev)))
800 		return NULL;
801 
802 	return napi;
803 }
804 
805 /**
806  *	netdev_napi_by_id_lock() - find a device by NAPI ID and lock it
807  *	@net: the applicable net namespace
808  *	@napi_id: ID of a NAPI of a target device
809  *
810  *	Find a NAPI instance with @napi_id. Lock its device.
811  *	The device must be in %NETREG_REGISTERED state for lookup to succeed.
812  *	netdev_unlock() must be called to release it.
813  *
814  *	Return: pointer to NAPI, its device with lock held, NULL if not found.
815  */
816 struct napi_struct *
817 netdev_napi_by_id_lock(struct net *net, unsigned int napi_id)
818 {
819 	struct napi_struct *napi;
820 	struct net_device *dev;
821 
822 	rcu_read_lock();
823 	napi = netdev_napi_by_id(net, napi_id);
824 	if (!napi || READ_ONCE(napi->dev->reg_state) != NETREG_REGISTERED) {
825 		rcu_read_unlock();
826 		return NULL;
827 	}
828 
829 	dev = napi->dev;
830 	dev_hold(dev);
831 	rcu_read_unlock();
832 
833 	dev = __netdev_put_lock(dev, net);
834 	if (!dev)
835 		return NULL;
836 
837 	rcu_read_lock();
838 	napi = netdev_napi_by_id(net, napi_id);
839 	if (napi && napi->dev != dev)
840 		napi = NULL;
841 	rcu_read_unlock();
842 
843 	if (!napi)
844 		netdev_unlock(dev);
845 	return napi;
846 }
847 
848 /**
849  *	__dev_get_by_name	- find a device by its name
850  *	@net: the applicable net namespace
851  *	@name: name to find
852  *
853  *	Find an interface by name. Must be called under RTNL semaphore.
854  *	If the name is found a pointer to the device is returned.
855  *	If the name is not found then %NULL is returned. The
856  *	reference counters are not incremented so the caller must be
857  *	careful with locks.
858  */
859 
860 struct net_device *__dev_get_by_name(struct net *net, const char *name)
861 {
862 	struct netdev_name_node *node_name;
863 
864 	node_name = netdev_name_node_lookup(net, name);
865 	return node_name ? node_name->dev : NULL;
866 }
867 EXPORT_SYMBOL(__dev_get_by_name);
868 
869 /**
870  * dev_get_by_name_rcu	- find a device by its name
871  * @net: the applicable net namespace
872  * @name: name to find
873  *
874  * Find an interface by name.
875  * If the name is found a pointer to the device is returned.
876  * If the name is not found then %NULL is returned.
877  * The reference counters are not incremented so the caller must be
878  * careful with locks. The caller must hold RCU lock.
879  */
880 
881 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
882 {
883 	struct netdev_name_node *node_name;
884 
885 	node_name = netdev_name_node_lookup_rcu(net, name);
886 	return node_name ? node_name->dev : NULL;
887 }
888 EXPORT_SYMBOL(dev_get_by_name_rcu);
889 
890 /* Deprecated for new users, call netdev_get_by_name() instead */
891 struct net_device *dev_get_by_name(struct net *net, const char *name)
892 {
893 	struct net_device *dev;
894 
895 	rcu_read_lock();
896 	dev = dev_get_by_name_rcu(net, name);
897 	dev_hold(dev);
898 	rcu_read_unlock();
899 	return dev;
900 }
901 EXPORT_SYMBOL(dev_get_by_name);
902 
903 /**
904  *	netdev_get_by_name() - find a device by its name
905  *	@net: the applicable net namespace
906  *	@name: name to find
907  *	@tracker: tracking object for the acquired reference
908  *	@gfp: allocation flags for the tracker
909  *
910  *	Find an interface by name. This can be called from any
911  *	context and does its own locking. The returned handle has
912  *	the usage count incremented and the caller must use netdev_put() to
913  *	release it when it is no longer needed. %NULL is returned if no
914  *	matching device is found.
915  */
916 struct net_device *netdev_get_by_name(struct net *net, const char *name,
917 				      netdevice_tracker *tracker, gfp_t gfp)
918 {
919 	struct net_device *dev;
920 
921 	dev = dev_get_by_name(net, name);
922 	if (dev)
923 		netdev_tracker_alloc(dev, tracker, gfp);
924 	return dev;
925 }
926 EXPORT_SYMBOL(netdev_get_by_name);
927 
928 /**
929  *	__dev_get_by_index - find a device by its ifindex
930  *	@net: the applicable net namespace
931  *	@ifindex: index of device
932  *
933  *	Search for an interface by index. Returns %NULL if the device
934  *	is not found or a pointer to the device. The device has not
935  *	had its reference counter increased so the caller must be careful
936  *	about locking. The caller must hold the RTNL semaphore.
937  */
938 
939 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
940 {
941 	struct net_device *dev;
942 	struct hlist_head *head = dev_index_hash(net, ifindex);
943 
944 	hlist_for_each_entry(dev, head, index_hlist)
945 		if (dev->ifindex == ifindex)
946 			return dev;
947 
948 	return NULL;
949 }
950 EXPORT_SYMBOL(__dev_get_by_index);
951 
952 /**
953  *	dev_get_by_index_rcu - find a device by its ifindex
954  *	@net: the applicable net namespace
955  *	@ifindex: index of device
956  *
957  *	Search for an interface by index. Returns %NULL if the device
958  *	is not found or a pointer to the device. The device has not
959  *	had its reference counter increased so the caller must be careful
960  *	about locking. The caller must hold RCU lock.
961  */
962 
963 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
964 {
965 	struct net_device *dev;
966 	struct hlist_head *head = dev_index_hash(net, ifindex);
967 
968 	hlist_for_each_entry_rcu(dev, head, index_hlist)
969 		if (dev->ifindex == ifindex)
970 			return dev;
971 
972 	return NULL;
973 }
974 EXPORT_SYMBOL(dev_get_by_index_rcu);
975 
976 /* Deprecated for new users, call netdev_get_by_index() instead */
977 struct net_device *dev_get_by_index(struct net *net, int ifindex)
978 {
979 	struct net_device *dev;
980 
981 	rcu_read_lock();
982 	dev = dev_get_by_index_rcu(net, ifindex);
983 	dev_hold(dev);
984 	rcu_read_unlock();
985 	return dev;
986 }
987 EXPORT_SYMBOL(dev_get_by_index);
988 
989 /**
990  *	netdev_get_by_index() - find a device by its ifindex
991  *	@net: the applicable net namespace
992  *	@ifindex: index of device
993  *	@tracker: tracking object for the acquired reference
994  *	@gfp: allocation flags for the tracker
995  *
996  *	Search for an interface by index. Returns NULL if the device
997  *	is not found or a pointer to the device. The device returned has
998  *	had a reference added and the pointer is safe until the user calls
999  *	netdev_put() to indicate they have finished with it.
1000  */
1001 struct net_device *netdev_get_by_index(struct net *net, int ifindex,
1002 				       netdevice_tracker *tracker, gfp_t gfp)
1003 {
1004 	struct net_device *dev;
1005 
1006 	dev = dev_get_by_index(net, ifindex);
1007 	if (dev)
1008 		netdev_tracker_alloc(dev, tracker, gfp);
1009 	return dev;
1010 }
1011 EXPORT_SYMBOL(netdev_get_by_index);
1012 
1013 /**
1014  *	dev_get_by_napi_id - find a device by napi_id
1015  *	@napi_id: ID of the NAPI struct
1016  *
1017  *	Search for an interface by NAPI ID. Returns %NULL if the device
1018  *	is not found or a pointer to the device. The device has not had
1019  *	its reference counter increased so the caller must be careful
1020  *	about locking. The caller must hold RCU lock.
1021  */
1022 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
1023 {
1024 	struct napi_struct *napi;
1025 
1026 	WARN_ON_ONCE(!rcu_read_lock_held());
1027 
1028 	if (!napi_id_valid(napi_id))
1029 		return NULL;
1030 
1031 	napi = napi_by_id(napi_id);
1032 
1033 	return napi ? napi->dev : NULL;
1034 }
1035 
1036 /* Release the held reference on the net_device, and if the net_device
1037  * is still registered try to lock the instance lock. If device is being
1038  * unregistered NULL will be returned (but the reference has been released,
1039  * either way!)
1040  *
1041  * This helper is intended for locking net_device after it has been looked up
1042  * using a lockless lookup helper. Lock prevents the instance from going away.
1043  */
1044 struct net_device *__netdev_put_lock(struct net_device *dev, struct net *net)
1045 {
1046 	netdev_lock(dev);
1047 	if (dev->reg_state > NETREG_REGISTERED ||
1048 	    dev->moving_ns || !net_eq(dev_net(dev), net)) {
1049 		netdev_unlock(dev);
1050 		dev_put(dev);
1051 		return NULL;
1052 	}
1053 	dev_put(dev);
1054 	return dev;
1055 }
1056 
1057 static struct net_device *
1058 __netdev_put_lock_ops_compat(struct net_device *dev, struct net *net)
1059 {
1060 	netdev_lock_ops_compat(dev);
1061 	if (dev->reg_state > NETREG_REGISTERED ||
1062 	    dev->moving_ns || !net_eq(dev_net(dev), net)) {
1063 		netdev_unlock_ops_compat(dev);
1064 		dev_put(dev);
1065 		return NULL;
1066 	}
1067 	dev_put(dev);
1068 	return dev;
1069 }
1070 
1071 /**
1072  *	netdev_get_by_index_lock() - find a device by its ifindex
1073  *	@net: the applicable net namespace
1074  *	@ifindex: index of device
1075  *
1076  *	Search for an interface by index. If a valid device
1077  *	with @ifindex is found it will be returned with netdev->lock held.
1078  *	netdev_unlock() must be called to release it.
1079  *
1080  *	Return: pointer to a device with lock held, NULL if not found.
1081  */
1082 struct net_device *netdev_get_by_index_lock(struct net *net, int ifindex)
1083 {
1084 	struct net_device *dev;
1085 
1086 	dev = dev_get_by_index(net, ifindex);
1087 	if (!dev)
1088 		return NULL;
1089 
1090 	return __netdev_put_lock(dev, net);
1091 }
1092 
1093 struct net_device *
1094 netdev_get_by_index_lock_ops_compat(struct net *net, int ifindex)
1095 {
1096 	struct net_device *dev;
1097 
1098 	dev = dev_get_by_index(net, ifindex);
1099 	if (!dev)
1100 		return NULL;
1101 
1102 	return __netdev_put_lock_ops_compat(dev, net);
1103 }
1104 
1105 struct net_device *
1106 netdev_xa_find_lock(struct net *net, struct net_device *dev,
1107 		    unsigned long *index)
1108 {
1109 	if (dev)
1110 		netdev_unlock(dev);
1111 
1112 	do {
1113 		rcu_read_lock();
1114 		dev = xa_find(&net->dev_by_index, index, ULONG_MAX, XA_PRESENT);
1115 		if (!dev) {
1116 			rcu_read_unlock();
1117 			return NULL;
1118 		}
1119 		dev_hold(dev);
1120 		rcu_read_unlock();
1121 
1122 		dev = __netdev_put_lock(dev, net);
1123 		if (dev)
1124 			return dev;
1125 
1126 		(*index)++;
1127 	} while (true);
1128 }
1129 
1130 struct net_device *
1131 netdev_xa_find_lock_ops_compat(struct net *net, struct net_device *dev,
1132 			       unsigned long *index)
1133 {
1134 	if (dev)
1135 		netdev_unlock_ops_compat(dev);
1136 
1137 	do {
1138 		rcu_read_lock();
1139 		dev = xa_find(&net->dev_by_index, index, ULONG_MAX, XA_PRESENT);
1140 		if (!dev) {
1141 			rcu_read_unlock();
1142 			return NULL;
1143 		}
1144 		dev_hold(dev);
1145 		rcu_read_unlock();
1146 
1147 		dev = __netdev_put_lock_ops_compat(dev, net);
1148 		if (dev)
1149 			return dev;
1150 
1151 		(*index)++;
1152 	} while (true);
1153 }
1154 
1155 static DEFINE_SEQLOCK(netdev_rename_lock);
1156 
1157 void netdev_copy_name(struct net_device *dev, char *name)
1158 {
1159 	unsigned int seq;
1160 
1161 	do {
1162 		seq = read_seqbegin(&netdev_rename_lock);
1163 		strscpy(name, dev->name, IFNAMSIZ);
1164 	} while (read_seqretry(&netdev_rename_lock, seq));
1165 }
1166 
1167 /**
1168  *	netdev_get_name - get a netdevice name, knowing its ifindex.
1169  *	@net: network namespace
1170  *	@name: a pointer to the buffer where the name will be stored.
1171  *	@ifindex: the ifindex of the interface to get the name from.
1172  */
1173 int netdev_get_name(struct net *net, char *name, int ifindex)
1174 {
1175 	struct net_device *dev;
1176 	int ret;
1177 
1178 	rcu_read_lock();
1179 
1180 	dev = dev_get_by_index_rcu(net, ifindex);
1181 	if (!dev) {
1182 		ret = -ENODEV;
1183 		goto out;
1184 	}
1185 
1186 	netdev_copy_name(dev, name);
1187 
1188 	ret = 0;
1189 out:
1190 	rcu_read_unlock();
1191 	return ret;
1192 }
1193 
1194 static bool dev_addr_cmp(struct net_device *dev, unsigned short type,
1195 			 const char *ha)
1196 {
1197 	return dev->type == type && !memcmp(dev->dev_addr, ha, dev->addr_len);
1198 }
1199 
1200 /**
1201  *	dev_getbyhwaddr_rcu - find a device by its hardware address
1202  *	@net: the applicable net namespace
1203  *	@type: media type of device
1204  *	@ha: hardware address
1205  *
1206  *	Search for an interface by MAC address. Returns NULL if the device
1207  *	is not found or a pointer to the device.
1208  *	The caller must hold RCU.
1209  *	The returned device has not had its ref count increased
1210  *	and the caller must therefore be careful about locking
1211  *
1212  */
1213 
1214 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
1215 				       const char *ha)
1216 {
1217 	struct net_device *dev;
1218 
1219 	for_each_netdev_rcu(net, dev)
1220 		if (dev_addr_cmp(dev, type, ha))
1221 			return dev;
1222 
1223 	return NULL;
1224 }
1225 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
1226 
1227 /**
1228  * dev_getbyhwaddr() - find a device by its hardware address
1229  * @net: the applicable net namespace
1230  * @type: media type of device
1231  * @ha: hardware address
1232  *
1233  * Similar to dev_getbyhwaddr_rcu(), but the owner needs to hold
1234  * rtnl_lock.
1235  *
1236  * Context: rtnl_lock() must be held.
1237  * Return: pointer to the net_device, or NULL if not found
1238  */
1239 struct net_device *dev_getbyhwaddr(struct net *net, unsigned short type,
1240 				   const char *ha)
1241 {
1242 	struct net_device *dev;
1243 
1244 	ASSERT_RTNL();
1245 	for_each_netdev(net, dev)
1246 		if (dev_addr_cmp(dev, type, ha))
1247 			return dev;
1248 
1249 	return NULL;
1250 }
1251 EXPORT_SYMBOL(dev_getbyhwaddr);
1252 
1253 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
1254 {
1255 	struct net_device *dev, *ret = NULL;
1256 
1257 	rcu_read_lock();
1258 	for_each_netdev_rcu(net, dev)
1259 		if (dev->type == type) {
1260 			dev_hold(dev);
1261 			ret = dev;
1262 			break;
1263 		}
1264 	rcu_read_unlock();
1265 	return ret;
1266 }
1267 EXPORT_SYMBOL(dev_getfirstbyhwtype);
1268 
1269 /**
1270  * netdev_get_by_flags_rcu - find any device with given flags
1271  * @net: the applicable net namespace
1272  * @tracker: tracking object for the acquired reference
1273  * @if_flags: IFF_* values
1274  * @mask: bitmask of bits in if_flags to check
1275  *
1276  * Search for any interface with the given flags.
1277  *
1278  * Context: rcu_read_lock() must be held.
1279  * Returns: NULL if a device is not found or a pointer to the device.
1280  */
1281 struct net_device *netdev_get_by_flags_rcu(struct net *net, netdevice_tracker *tracker,
1282 					   unsigned short if_flags, unsigned short mask)
1283 {
1284 	struct net_device *dev;
1285 
1286 	for_each_netdev_rcu(net, dev) {
1287 		if (((READ_ONCE(dev->flags) ^ if_flags) & mask) == 0) {
1288 			netdev_hold(dev, tracker, GFP_ATOMIC);
1289 			return dev;
1290 		}
1291 	}
1292 
1293 	return NULL;
1294 }
1295 EXPORT_IPV6_MOD(netdev_get_by_flags_rcu);
1296 
1297 /**
1298  *	dev_valid_name - check if name is okay for network device
1299  *	@name: name string
1300  *
1301  *	Network device names need to be valid file names to
1302  *	allow sysfs to work.  We also disallow any kind of
1303  *	whitespace.
1304  */
1305 bool dev_valid_name(const char *name)
1306 {
1307 	if (*name == '\0')
1308 		return false;
1309 	if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1310 		return false;
1311 	if (!strcmp(name, ".") || !strcmp(name, ".."))
1312 		return false;
1313 
1314 	while (*name) {
1315 		if (*name == '/' || *name == ':' || isspace(*name))
1316 			return false;
1317 		name++;
1318 	}
1319 	return true;
1320 }
1321 EXPORT_SYMBOL(dev_valid_name);
1322 
1323 /**
1324  *	__dev_alloc_name - allocate a name for a device
1325  *	@net: network namespace to allocate the device name in
1326  *	@name: name format string
1327  *	@res: result name string
1328  *
1329  *	Passed a format string - eg "lt%d" it will try and find a suitable
1330  *	id. It scans list of devices to build up a free map, then chooses
1331  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1332  *	while allocating the name and adding the device in order to avoid
1333  *	duplicates.
1334  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1335  *	Returns the number of the unit assigned or a negative errno code.
1336  */
1337 
1338 static int __dev_alloc_name(struct net *net, const char *name, char *res)
1339 {
1340 	int i = 0;
1341 	const char *p;
1342 	const int max_netdevices = 8*PAGE_SIZE;
1343 	unsigned long *inuse;
1344 	struct net_device *d;
1345 	char buf[IFNAMSIZ];
1346 
1347 	/* Verify the string as this thing may have come from the user.
1348 	 * There must be one "%d" and no other "%" characters.
1349 	 */
1350 	p = strchr(name, '%');
1351 	if (!p || p[1] != 'd' || strchr(p + 2, '%'))
1352 		return -EINVAL;
1353 
1354 	/* Use one page as a bit array of possible slots */
1355 	inuse = bitmap_zalloc(max_netdevices, GFP_ATOMIC);
1356 	if (!inuse)
1357 		return -ENOMEM;
1358 
1359 	for_each_netdev(net, d) {
1360 		struct netdev_name_node *name_node;
1361 
1362 		netdev_for_each_altname(d, name_node) {
1363 			if (!sscanf(name_node->name, name, &i))
1364 				continue;
1365 			if (i < 0 || i >= max_netdevices)
1366 				continue;
1367 
1368 			/* avoid cases where sscanf is not exact inverse of printf */
1369 			snprintf(buf, IFNAMSIZ, name, i);
1370 			if (!strncmp(buf, name_node->name, IFNAMSIZ))
1371 				__set_bit(i, inuse);
1372 		}
1373 		if (!sscanf(d->name, name, &i))
1374 			continue;
1375 		if (i < 0 || i >= max_netdevices)
1376 			continue;
1377 
1378 		/* avoid cases where sscanf is not exact inverse of printf */
1379 		snprintf(buf, IFNAMSIZ, name, i);
1380 		if (!strncmp(buf, d->name, IFNAMSIZ))
1381 			__set_bit(i, inuse);
1382 	}
1383 
1384 	i = find_first_zero_bit(inuse, max_netdevices);
1385 	bitmap_free(inuse);
1386 	if (i == max_netdevices)
1387 		return -ENFILE;
1388 
1389 	/* 'res' and 'name' could overlap, use 'buf' as an intermediate buffer */
1390 	strscpy(buf, name, IFNAMSIZ);
1391 	snprintf(res, IFNAMSIZ, buf, i);
1392 	return i;
1393 }
1394 
1395 /* Returns negative errno or allocated unit id (see __dev_alloc_name()) */
1396 static int dev_prep_valid_name(struct net *net, struct net_device *dev,
1397 			       const char *want_name, char *out_name,
1398 			       int dup_errno)
1399 {
1400 	if (!dev_valid_name(want_name))
1401 		return -EINVAL;
1402 
1403 	if (strchr(want_name, '%'))
1404 		return __dev_alloc_name(net, want_name, out_name);
1405 
1406 	if (netdev_name_in_use(net, want_name))
1407 		return -dup_errno;
1408 	if (out_name != want_name)
1409 		strscpy(out_name, want_name, IFNAMSIZ);
1410 	return 0;
1411 }
1412 
1413 /**
1414  *	dev_alloc_name - allocate a name for a device
1415  *	@dev: device
1416  *	@name: name format string
1417  *
1418  *	Passed a format string - eg "lt%d" it will try and find a suitable
1419  *	id. It scans list of devices to build up a free map, then chooses
1420  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1421  *	while allocating the name and adding the device in order to avoid
1422  *	duplicates.
1423  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1424  *	Returns the number of the unit assigned or a negative errno code.
1425  */
1426 
1427 int dev_alloc_name(struct net_device *dev, const char *name)
1428 {
1429 	return dev_prep_valid_name(dev_net(dev), dev, name, dev->name, ENFILE);
1430 }
1431 EXPORT_SYMBOL(dev_alloc_name);
1432 
1433 static int dev_get_valid_name(struct net *net, struct net_device *dev,
1434 			      const char *name)
1435 {
1436 	int ret;
1437 
1438 	ret = dev_prep_valid_name(net, dev, name, dev->name, EEXIST);
1439 	return ret < 0 ? ret : 0;
1440 }
1441 
1442 int netif_change_name(struct net_device *dev, const char *newname)
1443 {
1444 	struct net *net = dev_net(dev);
1445 	unsigned char old_assign_type;
1446 	char oldname[IFNAMSIZ];
1447 	int err = 0;
1448 	int ret;
1449 
1450 	ASSERT_RTNL_NET(net);
1451 
1452 	if (!strncmp(newname, dev->name, IFNAMSIZ))
1453 		return 0;
1454 
1455 	memcpy(oldname, dev->name, IFNAMSIZ);
1456 
1457 	write_seqlock_bh(&netdev_rename_lock);
1458 	err = dev_get_valid_name(net, dev, newname);
1459 	write_sequnlock_bh(&netdev_rename_lock);
1460 
1461 	if (err < 0)
1462 		return err;
1463 
1464 	if (oldname[0] && !strchr(oldname, '%'))
1465 		netdev_info(dev, "renamed from %s%s\n", oldname,
1466 			    dev->flags & IFF_UP ? " (while UP)" : "");
1467 
1468 	old_assign_type = dev->name_assign_type;
1469 	WRITE_ONCE(dev->name_assign_type, NET_NAME_RENAMED);
1470 
1471 rollback:
1472 	ret = device_rename(&dev->dev, dev->name);
1473 	if (ret) {
1474 		write_seqlock_bh(&netdev_rename_lock);
1475 		memcpy(dev->name, oldname, IFNAMSIZ);
1476 		write_sequnlock_bh(&netdev_rename_lock);
1477 		WRITE_ONCE(dev->name_assign_type, old_assign_type);
1478 		return ret;
1479 	}
1480 
1481 	netdev_adjacent_rename_links(dev, oldname);
1482 
1483 	netdev_name_node_del(dev->name_node);
1484 
1485 	synchronize_net();
1486 
1487 	netdev_name_node_add(net, dev->name_node);
1488 
1489 	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1490 	ret = notifier_to_errno(ret);
1491 
1492 	if (ret) {
1493 		/* err >= 0 after dev_alloc_name() or stores the first errno */
1494 		if (err >= 0) {
1495 			err = ret;
1496 			write_seqlock_bh(&netdev_rename_lock);
1497 			memcpy(dev->name, oldname, IFNAMSIZ);
1498 			write_sequnlock_bh(&netdev_rename_lock);
1499 			memcpy(oldname, newname, IFNAMSIZ);
1500 			WRITE_ONCE(dev->name_assign_type, old_assign_type);
1501 			old_assign_type = NET_NAME_RENAMED;
1502 			goto rollback;
1503 		} else {
1504 			netdev_err(dev, "name change rollback failed: %d\n",
1505 				   ret);
1506 		}
1507 	}
1508 
1509 	return err;
1510 }
1511 
1512 int netif_set_alias(struct net_device *dev, const char *alias, size_t len)
1513 {
1514 	struct dev_ifalias *new_alias = NULL;
1515 
1516 	if (len >= IFALIASZ)
1517 		return -EINVAL;
1518 
1519 	if (len) {
1520 		new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1521 		if (!new_alias)
1522 			return -ENOMEM;
1523 
1524 		memcpy(new_alias->ifalias, alias, len);
1525 		new_alias->ifalias[len] = 0;
1526 	}
1527 
1528 	mutex_lock(&ifalias_mutex);
1529 	new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1530 					mutex_is_locked(&ifalias_mutex));
1531 	mutex_unlock(&ifalias_mutex);
1532 
1533 	if (new_alias)
1534 		kfree_rcu(new_alias, rcuhead);
1535 
1536 	return len;
1537 }
1538 
1539 /**
1540  *	dev_get_alias - get ifalias of a device
1541  *	@dev: device
1542  *	@name: buffer to store name of ifalias
1543  *	@len: size of buffer
1544  *
1545  *	get ifalias for a device.  Caller must make sure dev cannot go
1546  *	away,  e.g. rcu read lock or own a reference count to device.
1547  */
1548 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1549 {
1550 	const struct dev_ifalias *alias;
1551 	int ret = 0;
1552 
1553 	rcu_read_lock();
1554 	alias = rcu_dereference(dev->ifalias);
1555 	if (alias)
1556 		ret = snprintf(name, len, "%s", alias->ifalias);
1557 	rcu_read_unlock();
1558 
1559 	return ret;
1560 }
1561 
1562 /**
1563  *	netdev_features_change - device changes features
1564  *	@dev: device to cause notification
1565  *
1566  *	Called to indicate a device has changed features.
1567  */
1568 void netdev_features_change(struct net_device *dev)
1569 {
1570 	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1571 }
1572 EXPORT_SYMBOL(netdev_features_change);
1573 
1574 void netif_state_change(struct net_device *dev)
1575 {
1576 	netdev_ops_assert_locked_or_invisible(dev);
1577 
1578 	if (dev->flags & IFF_UP) {
1579 		struct netdev_notifier_change_info change_info = {
1580 			.info.dev = dev,
1581 		};
1582 
1583 		call_netdevice_notifiers_info(NETDEV_CHANGE,
1584 					      &change_info.info);
1585 		rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL, 0, NULL);
1586 	}
1587 }
1588 
1589 /**
1590  * __netdev_notify_peers - notify network peers about existence of @dev,
1591  * to be called when rtnl lock is already held.
1592  * @dev: network device
1593  *
1594  * Generate traffic such that interested network peers are aware of
1595  * @dev, such as by generating a gratuitous ARP. This may be used when
1596  * a device wants to inform the rest of the network about some sort of
1597  * reconfiguration such as a failover event or virtual machine
1598  * migration.
1599  */
1600 void __netdev_notify_peers(struct net_device *dev)
1601 {
1602 	ASSERT_RTNL();
1603 	call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1604 	call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1605 }
1606 EXPORT_SYMBOL(__netdev_notify_peers);
1607 
1608 /**
1609  * netdev_notify_peers - notify network peers about existence of @dev
1610  * @dev: network device
1611  *
1612  * Generate traffic such that interested network peers are aware of
1613  * @dev, such as by generating a gratuitous ARP. This may be used when
1614  * a device wants to inform the rest of the network about some sort of
1615  * reconfiguration such as a failover event or virtual machine
1616  * migration.
1617  */
1618 void netdev_notify_peers(struct net_device *dev)
1619 {
1620 	rtnl_lock();
1621 	__netdev_notify_peers(dev);
1622 	rtnl_unlock();
1623 }
1624 EXPORT_SYMBOL(netdev_notify_peers);
1625 
1626 static int napi_threaded_poll(void *data);
1627 
1628 static int napi_kthread_create(struct napi_struct *n)
1629 {
1630 	int err = 0;
1631 
1632 	/* Create and wake up the kthread once to put it in
1633 	 * TASK_INTERRUPTIBLE mode to avoid the blocked task
1634 	 * warning and work with loadavg.
1635 	 */
1636 	n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d",
1637 				n->dev->name, n->napi_id);
1638 	if (IS_ERR(n->thread)) {
1639 		err = PTR_ERR(n->thread);
1640 		pr_err("kthread_run failed with err %d\n", err);
1641 		n->thread = NULL;
1642 	}
1643 
1644 	return err;
1645 }
1646 
1647 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1648 {
1649 	const struct net_device_ops *ops = dev->netdev_ops;
1650 	int ret;
1651 
1652 	ASSERT_RTNL();
1653 	dev_addr_check(dev);
1654 
1655 	if (!netif_device_present(dev)) {
1656 		/* may be detached because parent is runtime-suspended */
1657 		if (dev->dev.parent)
1658 			pm_runtime_resume(dev->dev.parent);
1659 		if (!netif_device_present(dev))
1660 			return -ENODEV;
1661 	}
1662 
1663 	/* Block netpoll from trying to do any rx path servicing.
1664 	 * If we don't do this there is a chance ndo_poll_controller
1665 	 * or ndo_poll may be running while we open the device
1666 	 */
1667 	netpoll_poll_disable(dev);
1668 
1669 	ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1670 	ret = notifier_to_errno(ret);
1671 	if (ret)
1672 		return ret;
1673 
1674 	set_bit(__LINK_STATE_START, &dev->state);
1675 
1676 	netdev_ops_assert_locked(dev);
1677 
1678 	if (ops->ndo_validate_addr)
1679 		ret = ops->ndo_validate_addr(dev);
1680 
1681 	if (!ret && ops->ndo_open)
1682 		ret = ops->ndo_open(dev);
1683 
1684 	netpoll_poll_enable(dev);
1685 
1686 	if (ret)
1687 		clear_bit(__LINK_STATE_START, &dev->state);
1688 	else {
1689 		netif_set_up(dev, true);
1690 		dev_set_rx_mode(dev);
1691 		dev_activate(dev);
1692 		add_device_randomness(dev->dev_addr, dev->addr_len);
1693 	}
1694 
1695 	return ret;
1696 }
1697 
1698 int netif_open(struct net_device *dev, struct netlink_ext_ack *extack)
1699 {
1700 	int ret;
1701 
1702 	if (dev->flags & IFF_UP)
1703 		return 0;
1704 
1705 	ret = __dev_open(dev, extack);
1706 	if (ret < 0)
1707 		return ret;
1708 
1709 	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL);
1710 	call_netdevice_notifiers(NETDEV_UP, dev);
1711 
1712 	return ret;
1713 }
1714 
1715 static void __dev_close_many(struct list_head *head)
1716 {
1717 	struct net_device *dev;
1718 
1719 	ASSERT_RTNL();
1720 	might_sleep();
1721 
1722 	list_for_each_entry(dev, head, close_list) {
1723 		/* Temporarily disable netpoll until the interface is down */
1724 		netpoll_poll_disable(dev);
1725 
1726 		call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1727 
1728 		clear_bit(__LINK_STATE_START, &dev->state);
1729 
1730 		/* Synchronize to scheduled poll. We cannot touch poll list, it
1731 		 * can be even on different cpu. So just clear netif_running().
1732 		 *
1733 		 * dev->stop() will invoke napi_disable() on all of it's
1734 		 * napi_struct instances on this device.
1735 		 */
1736 		smp_mb__after_atomic(); /* Commit netif_running(). */
1737 	}
1738 
1739 	dev_deactivate_many(head);
1740 
1741 	list_for_each_entry(dev, head, close_list) {
1742 		const struct net_device_ops *ops = dev->netdev_ops;
1743 
1744 		/*
1745 		 *	Call the device specific close. This cannot fail.
1746 		 *	Only if device is UP
1747 		 *
1748 		 *	We allow it to be called even after a DETACH hot-plug
1749 		 *	event.
1750 		 */
1751 
1752 		netdev_ops_assert_locked(dev);
1753 
1754 		if (ops->ndo_stop)
1755 			ops->ndo_stop(dev);
1756 
1757 		netif_set_up(dev, false);
1758 		netpoll_poll_enable(dev);
1759 	}
1760 }
1761 
1762 static void __dev_close(struct net_device *dev)
1763 {
1764 	LIST_HEAD(single);
1765 
1766 	list_add(&dev->close_list, &single);
1767 	__dev_close_many(&single);
1768 	list_del(&single);
1769 }
1770 
1771 void netif_close_many(struct list_head *head, bool unlink)
1772 {
1773 	struct net_device *dev, *tmp;
1774 
1775 	/* Remove the devices that don't need to be closed */
1776 	list_for_each_entry_safe(dev, tmp, head, close_list)
1777 		if (!(dev->flags & IFF_UP))
1778 			list_del_init(&dev->close_list);
1779 
1780 	__dev_close_many(head);
1781 
1782 	list_for_each_entry_safe(dev, tmp, head, close_list) {
1783 		rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL);
1784 		call_netdevice_notifiers(NETDEV_DOWN, dev);
1785 		if (unlink)
1786 			list_del_init(&dev->close_list);
1787 	}
1788 }
1789 EXPORT_SYMBOL_NS_GPL(netif_close_many, "NETDEV_INTERNAL");
1790 
1791 void netif_close(struct net_device *dev)
1792 {
1793 	if (dev->flags & IFF_UP) {
1794 		LIST_HEAD(single);
1795 
1796 		list_add(&dev->close_list, &single);
1797 		netif_close_many(&single, true);
1798 		list_del(&single);
1799 	}
1800 }
1801 EXPORT_SYMBOL(netif_close);
1802 
1803 void netif_disable_lro(struct net_device *dev)
1804 {
1805 	struct net_device *lower_dev;
1806 	struct list_head *iter;
1807 
1808 	dev->wanted_features &= ~NETIF_F_LRO;
1809 	netdev_update_features(dev);
1810 
1811 	if (unlikely(dev->features & NETIF_F_LRO))
1812 		netdev_WARN(dev, "failed to disable LRO!\n");
1813 
1814 	netdev_for_each_lower_dev(dev, lower_dev, iter) {
1815 		netdev_lock_ops(lower_dev);
1816 		netif_disable_lro(lower_dev);
1817 		netdev_unlock_ops(lower_dev);
1818 	}
1819 }
1820 EXPORT_IPV6_MOD(netif_disable_lro);
1821 
1822 /**
1823  *	dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1824  *	@dev: device
1825  *
1826  *	Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1827  *	called under RTNL.  This is needed if Generic XDP is installed on
1828  *	the device.
1829  */
1830 static void dev_disable_gro_hw(struct net_device *dev)
1831 {
1832 	dev->wanted_features &= ~NETIF_F_GRO_HW;
1833 	netdev_update_features(dev);
1834 
1835 	if (unlikely(dev->features & NETIF_F_GRO_HW))
1836 		netdev_WARN(dev, "failed to disable GRO_HW!\n");
1837 }
1838 
1839 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1840 {
1841 #define N(val) 						\
1842 	case NETDEV_##val:				\
1843 		return "NETDEV_" __stringify(val);
1844 	switch (cmd) {
1845 	N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1846 	N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1847 	N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1848 	N(POST_INIT) N(PRE_UNINIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN)
1849 	N(CHANGEUPPER) N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA)
1850 	N(BONDING_INFO) N(PRECHANGEUPPER) N(CHANGELOWERSTATE)
1851 	N(UDP_TUNNEL_PUSH_INFO) N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1852 	N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1853 	N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1854 	N(PRE_CHANGEADDR) N(OFFLOAD_XSTATS_ENABLE) N(OFFLOAD_XSTATS_DISABLE)
1855 	N(OFFLOAD_XSTATS_REPORT_USED) N(OFFLOAD_XSTATS_REPORT_DELTA)
1856 	N(XDP_FEAT_CHANGE)
1857 	}
1858 #undef N
1859 	return "UNKNOWN_NETDEV_EVENT";
1860 }
1861 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1862 
1863 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1864 				   struct net_device *dev)
1865 {
1866 	struct netdev_notifier_info info = {
1867 		.dev = dev,
1868 	};
1869 
1870 	return nb->notifier_call(nb, val, &info);
1871 }
1872 
1873 static int call_netdevice_register_notifiers(struct notifier_block *nb,
1874 					     struct net_device *dev)
1875 {
1876 	int err;
1877 
1878 	err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1879 	err = notifier_to_errno(err);
1880 	if (err)
1881 		return err;
1882 
1883 	if (!(dev->flags & IFF_UP))
1884 		return 0;
1885 
1886 	call_netdevice_notifier(nb, NETDEV_UP, dev);
1887 	return 0;
1888 }
1889 
1890 static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1891 						struct net_device *dev)
1892 {
1893 	if (dev->flags & IFF_UP) {
1894 		call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1895 					dev);
1896 		call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1897 	}
1898 	call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1899 }
1900 
1901 static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1902 						 struct net *net)
1903 {
1904 	struct net_device *dev;
1905 	int err;
1906 
1907 	for_each_netdev(net, dev) {
1908 		netdev_lock_ops(dev);
1909 		err = call_netdevice_register_notifiers(nb, dev);
1910 		netdev_unlock_ops(dev);
1911 		if (err)
1912 			goto rollback;
1913 	}
1914 	return 0;
1915 
1916 rollback:
1917 	for_each_netdev_continue_reverse(net, dev)
1918 		call_netdevice_unregister_notifiers(nb, dev);
1919 	return err;
1920 }
1921 
1922 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1923 						    struct net *net)
1924 {
1925 	struct net_device *dev;
1926 
1927 	for_each_netdev(net, dev)
1928 		call_netdevice_unregister_notifiers(nb, dev);
1929 }
1930 
1931 static int dev_boot_phase = 1;
1932 
1933 /**
1934  * register_netdevice_notifier - register a network notifier block
1935  * @nb: notifier
1936  *
1937  * Register a notifier to be called when network device events occur.
1938  * The notifier passed is linked into the kernel structures and must
1939  * not be reused until it has been unregistered. A negative errno code
1940  * is returned on a failure.
1941  *
1942  * When registered all registration and up events are replayed
1943  * to the new notifier to allow device to have a race free
1944  * view of the network device list.
1945  */
1946 
1947 int register_netdevice_notifier(struct notifier_block *nb)
1948 {
1949 	struct net *net;
1950 	int err;
1951 
1952 	/* Close race with setup_net() and cleanup_net() */
1953 	down_write(&pernet_ops_rwsem);
1954 
1955 	/* When RTNL is removed, we need protection for netdev_chain. */
1956 	rtnl_lock();
1957 
1958 	err = raw_notifier_chain_register(&netdev_chain, nb);
1959 	if (err)
1960 		goto unlock;
1961 	if (dev_boot_phase)
1962 		goto unlock;
1963 	for_each_net(net) {
1964 		__rtnl_net_lock(net);
1965 		err = call_netdevice_register_net_notifiers(nb, net);
1966 		__rtnl_net_unlock(net);
1967 		if (err)
1968 			goto rollback;
1969 	}
1970 
1971 unlock:
1972 	rtnl_unlock();
1973 	up_write(&pernet_ops_rwsem);
1974 	return err;
1975 
1976 rollback:
1977 	for_each_net_continue_reverse(net) {
1978 		__rtnl_net_lock(net);
1979 		call_netdevice_unregister_net_notifiers(nb, net);
1980 		__rtnl_net_unlock(net);
1981 	}
1982 
1983 	raw_notifier_chain_unregister(&netdev_chain, nb);
1984 	goto unlock;
1985 }
1986 EXPORT_SYMBOL(register_netdevice_notifier);
1987 
1988 /**
1989  * unregister_netdevice_notifier - unregister a network notifier block
1990  * @nb: notifier
1991  *
1992  * Unregister a notifier previously registered by
1993  * register_netdevice_notifier(). The notifier is unlinked into the
1994  * kernel structures and may then be reused. A negative errno code
1995  * is returned on a failure.
1996  *
1997  * After unregistering unregister and down device events are synthesized
1998  * for all devices on the device list to the removed notifier to remove
1999  * the need for special case cleanup code.
2000  */
2001 
2002 int unregister_netdevice_notifier(struct notifier_block *nb)
2003 {
2004 	struct net *net;
2005 	int err;
2006 
2007 	/* Close race with setup_net() and cleanup_net() */
2008 	down_write(&pernet_ops_rwsem);
2009 	rtnl_lock();
2010 	err = raw_notifier_chain_unregister(&netdev_chain, nb);
2011 	if (err)
2012 		goto unlock;
2013 
2014 	for_each_net(net) {
2015 		__rtnl_net_lock(net);
2016 		call_netdevice_unregister_net_notifiers(nb, net);
2017 		__rtnl_net_unlock(net);
2018 	}
2019 
2020 unlock:
2021 	rtnl_unlock();
2022 	up_write(&pernet_ops_rwsem);
2023 	return err;
2024 }
2025 EXPORT_SYMBOL(unregister_netdevice_notifier);
2026 
2027 static int __register_netdevice_notifier_net(struct net *net,
2028 					     struct notifier_block *nb,
2029 					     bool ignore_call_fail)
2030 {
2031 	int err;
2032 
2033 	err = raw_notifier_chain_register(&net->netdev_chain, nb);
2034 	if (err)
2035 		return err;
2036 	if (dev_boot_phase)
2037 		return 0;
2038 
2039 	err = call_netdevice_register_net_notifiers(nb, net);
2040 	if (err && !ignore_call_fail)
2041 		goto chain_unregister;
2042 
2043 	return 0;
2044 
2045 chain_unregister:
2046 	raw_notifier_chain_unregister(&net->netdev_chain, nb);
2047 	return err;
2048 }
2049 
2050 static int __unregister_netdevice_notifier_net(struct net *net,
2051 					       struct notifier_block *nb)
2052 {
2053 	int err;
2054 
2055 	err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
2056 	if (err)
2057 		return err;
2058 
2059 	call_netdevice_unregister_net_notifiers(nb, net);
2060 	return 0;
2061 }
2062 
2063 /**
2064  * register_netdevice_notifier_net - register a per-netns network notifier block
2065  * @net: network namespace
2066  * @nb: notifier
2067  *
2068  * Register a notifier to be called when network device events occur.
2069  * The notifier passed is linked into the kernel structures and must
2070  * not be reused until it has been unregistered. A negative errno code
2071  * is returned on a failure.
2072  *
2073  * When registered all registration and up events are replayed
2074  * to the new notifier to allow device to have a race free
2075  * view of the network device list.
2076  */
2077 
2078 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
2079 {
2080 	int err;
2081 
2082 	rtnl_net_lock(net);
2083 	err = __register_netdevice_notifier_net(net, nb, false);
2084 	rtnl_net_unlock(net);
2085 
2086 	return err;
2087 }
2088 EXPORT_SYMBOL(register_netdevice_notifier_net);
2089 
2090 /**
2091  * unregister_netdevice_notifier_net - unregister a per-netns
2092  *                                     network notifier block
2093  * @net: network namespace
2094  * @nb: notifier
2095  *
2096  * Unregister a notifier previously registered by
2097  * register_netdevice_notifier_net(). The notifier is unlinked from the
2098  * kernel structures and may then be reused. A negative errno code
2099  * is returned on a failure.
2100  *
2101  * After unregistering unregister and down device events are synthesized
2102  * for all devices on the device list to the removed notifier to remove
2103  * the need for special case cleanup code.
2104  */
2105 
2106 int unregister_netdevice_notifier_net(struct net *net,
2107 				      struct notifier_block *nb)
2108 {
2109 	int err;
2110 
2111 	rtnl_net_lock(net);
2112 	err = __unregister_netdevice_notifier_net(net, nb);
2113 	rtnl_net_unlock(net);
2114 
2115 	return err;
2116 }
2117 EXPORT_SYMBOL(unregister_netdevice_notifier_net);
2118 
2119 static void __move_netdevice_notifier_net(struct net *src_net,
2120 					  struct net *dst_net,
2121 					  struct notifier_block *nb)
2122 {
2123 	__unregister_netdevice_notifier_net(src_net, nb);
2124 	__register_netdevice_notifier_net(dst_net, nb, true);
2125 }
2126 
2127 static void rtnl_net_dev_lock(struct net_device *dev)
2128 {
2129 	bool again;
2130 
2131 	do {
2132 		struct net *net;
2133 
2134 		again = false;
2135 
2136 		/* netns might be being dismantled. */
2137 		rcu_read_lock();
2138 		net = dev_net_rcu(dev);
2139 		net_passive_inc(net);
2140 		rcu_read_unlock();
2141 
2142 		rtnl_net_lock(net);
2143 
2144 #ifdef CONFIG_NET_NS
2145 		/* dev might have been moved to another netns. */
2146 		if (!net_eq(net, rcu_access_pointer(dev->nd_net.net))) {
2147 			rtnl_net_unlock(net);
2148 			net_passive_dec(net);
2149 			again = true;
2150 		}
2151 #endif
2152 	} while (again);
2153 }
2154 
2155 static void rtnl_net_dev_unlock(struct net_device *dev)
2156 {
2157 	struct net *net = dev_net(dev);
2158 
2159 	rtnl_net_unlock(net);
2160 	net_passive_dec(net);
2161 }
2162 
2163 int register_netdevice_notifier_dev_net(struct net_device *dev,
2164 					struct notifier_block *nb,
2165 					struct netdev_net_notifier *nn)
2166 {
2167 	int err;
2168 
2169 	rtnl_net_dev_lock(dev);
2170 	err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
2171 	if (!err) {
2172 		nn->nb = nb;
2173 		list_add(&nn->list, &dev->net_notifier_list);
2174 	}
2175 	rtnl_net_dev_unlock(dev);
2176 
2177 	return err;
2178 }
2179 EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
2180 
2181 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
2182 					  struct notifier_block *nb,
2183 					  struct netdev_net_notifier *nn)
2184 {
2185 	int err;
2186 
2187 	rtnl_net_dev_lock(dev);
2188 	list_del(&nn->list);
2189 	err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
2190 	rtnl_net_dev_unlock(dev);
2191 
2192 	return err;
2193 }
2194 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
2195 
2196 static void move_netdevice_notifiers_dev_net(struct net_device *dev,
2197 					     struct net *net)
2198 {
2199 	struct netdev_net_notifier *nn;
2200 
2201 	list_for_each_entry(nn, &dev->net_notifier_list, list)
2202 		__move_netdevice_notifier_net(dev_net(dev), net, nn->nb);
2203 }
2204 
2205 /**
2206  *	call_netdevice_notifiers_info - call all network notifier blocks
2207  *	@val: value passed unmodified to notifier function
2208  *	@info: notifier information data
2209  *
2210  *	Call all network notifier blocks.  Parameters and return value
2211  *	are as for raw_notifier_call_chain().
2212  */
2213 
2214 int call_netdevice_notifiers_info(unsigned long val,
2215 				  struct netdev_notifier_info *info)
2216 {
2217 	struct net *net = dev_net(info->dev);
2218 	int ret;
2219 
2220 	ASSERT_RTNL();
2221 
2222 	/* Run per-netns notifier block chain first, then run the global one.
2223 	 * Hopefully, one day, the global one is going to be removed after
2224 	 * all notifier block registrators get converted to be per-netns.
2225 	 */
2226 	ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
2227 	if (ret & NOTIFY_STOP_MASK)
2228 		return ret;
2229 	return raw_notifier_call_chain(&netdev_chain, val, info);
2230 }
2231 
2232 /**
2233  *	call_netdevice_notifiers_info_robust - call per-netns notifier blocks
2234  *	                                       for and rollback on error
2235  *	@val_up: value passed unmodified to notifier function
2236  *	@val_down: value passed unmodified to the notifier function when
2237  *	           recovering from an error on @val_up
2238  *	@info: notifier information data
2239  *
2240  *	Call all per-netns network notifier blocks, but not notifier blocks on
2241  *	the global notifier chain. Parameters and return value are as for
2242  *	raw_notifier_call_chain_robust().
2243  */
2244 
2245 static int
2246 call_netdevice_notifiers_info_robust(unsigned long val_up,
2247 				     unsigned long val_down,
2248 				     struct netdev_notifier_info *info)
2249 {
2250 	struct net *net = dev_net(info->dev);
2251 
2252 	ASSERT_RTNL();
2253 
2254 	return raw_notifier_call_chain_robust(&net->netdev_chain,
2255 					      val_up, val_down, info);
2256 }
2257 
2258 static int call_netdevice_notifiers_extack(unsigned long val,
2259 					   struct net_device *dev,
2260 					   struct netlink_ext_ack *extack)
2261 {
2262 	struct netdev_notifier_info info = {
2263 		.dev = dev,
2264 		.extack = extack,
2265 	};
2266 
2267 	return call_netdevice_notifiers_info(val, &info);
2268 }
2269 
2270 /**
2271  *	call_netdevice_notifiers - call all network notifier blocks
2272  *      @val: value passed unmodified to notifier function
2273  *      @dev: net_device pointer passed unmodified to notifier function
2274  *
2275  *	Call all network notifier blocks.  Parameters and return value
2276  *	are as for raw_notifier_call_chain().
2277  */
2278 
2279 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
2280 {
2281 	return call_netdevice_notifiers_extack(val, dev, NULL);
2282 }
2283 EXPORT_SYMBOL(call_netdevice_notifiers);
2284 
2285 /**
2286  *	call_netdevice_notifiers_mtu - call all network notifier blocks
2287  *	@val: value passed unmodified to notifier function
2288  *	@dev: net_device pointer passed unmodified to notifier function
2289  *	@arg: additional u32 argument passed to the notifier function
2290  *
2291  *	Call all network notifier blocks.  Parameters and return value
2292  *	are as for raw_notifier_call_chain().
2293  */
2294 static int call_netdevice_notifiers_mtu(unsigned long val,
2295 					struct net_device *dev, u32 arg)
2296 {
2297 	struct netdev_notifier_info_ext info = {
2298 		.info.dev = dev,
2299 		.ext.mtu = arg,
2300 	};
2301 
2302 	BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2303 
2304 	return call_netdevice_notifiers_info(val, &info.info);
2305 }
2306 
2307 #ifdef CONFIG_NET_INGRESS
2308 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2309 
2310 void net_inc_ingress_queue(void)
2311 {
2312 	static_branch_inc(&ingress_needed_key);
2313 }
2314 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2315 
2316 void net_dec_ingress_queue(void)
2317 {
2318 	static_branch_dec(&ingress_needed_key);
2319 }
2320 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2321 #endif
2322 
2323 #ifdef CONFIG_NET_EGRESS
2324 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2325 
2326 void net_inc_egress_queue(void)
2327 {
2328 	static_branch_inc(&egress_needed_key);
2329 }
2330 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2331 
2332 void net_dec_egress_queue(void)
2333 {
2334 	static_branch_dec(&egress_needed_key);
2335 }
2336 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2337 #endif
2338 
2339 #ifdef CONFIG_NET_CLS_ACT
2340 DEFINE_STATIC_KEY_FALSE(tcf_sw_enabled_key);
2341 EXPORT_SYMBOL(tcf_sw_enabled_key);
2342 #endif
2343 
2344 DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2345 EXPORT_SYMBOL(netstamp_needed_key);
2346 #ifdef CONFIG_JUMP_LABEL
2347 static atomic_t netstamp_needed_deferred;
2348 static atomic_t netstamp_wanted;
2349 static void netstamp_clear(struct work_struct *work)
2350 {
2351 	int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2352 	int wanted;
2353 
2354 	wanted = atomic_add_return(deferred, &netstamp_wanted);
2355 	if (wanted > 0)
2356 		static_branch_enable(&netstamp_needed_key);
2357 	else
2358 		static_branch_disable(&netstamp_needed_key);
2359 }
2360 static DECLARE_WORK(netstamp_work, netstamp_clear);
2361 #endif
2362 
2363 void net_enable_timestamp(void)
2364 {
2365 #ifdef CONFIG_JUMP_LABEL
2366 	int wanted = atomic_read(&netstamp_wanted);
2367 
2368 	while (wanted > 0) {
2369 		if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted + 1))
2370 			return;
2371 	}
2372 	atomic_inc(&netstamp_needed_deferred);
2373 	schedule_work(&netstamp_work);
2374 #else
2375 	static_branch_inc(&netstamp_needed_key);
2376 #endif
2377 }
2378 EXPORT_SYMBOL(net_enable_timestamp);
2379 
2380 void net_disable_timestamp(void)
2381 {
2382 #ifdef CONFIG_JUMP_LABEL
2383 	int wanted = atomic_read(&netstamp_wanted);
2384 
2385 	while (wanted > 1) {
2386 		if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted - 1))
2387 			return;
2388 	}
2389 	atomic_dec(&netstamp_needed_deferred);
2390 	schedule_work(&netstamp_work);
2391 #else
2392 	static_branch_dec(&netstamp_needed_key);
2393 #endif
2394 }
2395 EXPORT_SYMBOL(net_disable_timestamp);
2396 
2397 static inline void net_timestamp_set(struct sk_buff *skb)
2398 {
2399 	skb->tstamp = 0;
2400 	skb->tstamp_type = SKB_CLOCK_REALTIME;
2401 	if (static_branch_unlikely(&netstamp_needed_key))
2402 		skb->tstamp = ktime_get_real();
2403 }
2404 
2405 #define net_timestamp_check(COND, SKB)				\
2406 	if (static_branch_unlikely(&netstamp_needed_key)) {	\
2407 		if ((COND) && !(SKB)->tstamp)			\
2408 			(SKB)->tstamp = ktime_get_real();	\
2409 	}							\
2410 
2411 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2412 {
2413 	return __is_skb_forwardable(dev, skb, true);
2414 }
2415 EXPORT_SYMBOL_GPL(is_skb_forwardable);
2416 
2417 static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb,
2418 			      bool check_mtu)
2419 {
2420 	int ret = ____dev_forward_skb(dev, skb, check_mtu);
2421 
2422 	if (likely(!ret)) {
2423 		skb->protocol = eth_type_trans(skb, dev);
2424 		skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2425 	}
2426 
2427 	return ret;
2428 }
2429 
2430 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2431 {
2432 	return __dev_forward_skb2(dev, skb, true);
2433 }
2434 EXPORT_SYMBOL_GPL(__dev_forward_skb);
2435 
2436 /**
2437  * dev_forward_skb - loopback an skb to another netif
2438  *
2439  * @dev: destination network device
2440  * @skb: buffer to forward
2441  *
2442  * return values:
2443  *	NET_RX_SUCCESS	(no congestion)
2444  *	NET_RX_DROP     (packet was dropped, but freed)
2445  *
2446  * dev_forward_skb can be used for injecting an skb from the
2447  * start_xmit function of one device into the receive queue
2448  * of another device.
2449  *
2450  * The receiving device may be in another namespace, so
2451  * we have to clear all information in the skb that could
2452  * impact namespace isolation.
2453  */
2454 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2455 {
2456 	return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2457 }
2458 EXPORT_SYMBOL_GPL(dev_forward_skb);
2459 
2460 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb)
2461 {
2462 	return __dev_forward_skb2(dev, skb, false) ?: netif_rx_internal(skb);
2463 }
2464 
2465 static inline int deliver_skb(struct sk_buff *skb,
2466 			      struct packet_type *pt_prev,
2467 			      struct net_device *orig_dev)
2468 {
2469 	if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2470 		return -ENOMEM;
2471 	refcount_inc(&skb->users);
2472 	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2473 }
2474 
2475 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2476 					  struct packet_type **pt,
2477 					  struct net_device *orig_dev,
2478 					  __be16 type,
2479 					  struct list_head *ptype_list)
2480 {
2481 	struct packet_type *ptype, *pt_prev = *pt;
2482 
2483 	list_for_each_entry_rcu(ptype, ptype_list, list) {
2484 		if (ptype->type != type)
2485 			continue;
2486 		if (pt_prev)
2487 			deliver_skb(skb, pt_prev, orig_dev);
2488 		pt_prev = ptype;
2489 	}
2490 	*pt = pt_prev;
2491 }
2492 
2493 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2494 {
2495 	if (!ptype->af_packet_priv || !skb->sk)
2496 		return false;
2497 
2498 	if (ptype->id_match)
2499 		return ptype->id_match(ptype, skb->sk);
2500 	else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2501 		return true;
2502 
2503 	return false;
2504 }
2505 
2506 /**
2507  * dev_nit_active_rcu - return true if any network interface taps are in use
2508  *
2509  * The caller must hold the RCU lock
2510  *
2511  * @dev: network device to check for the presence of taps
2512  */
2513 bool dev_nit_active_rcu(const struct net_device *dev)
2514 {
2515 	/* Callers may hold either RCU or RCU BH lock */
2516 	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
2517 
2518 	return !list_empty(&dev_net(dev)->ptype_all) ||
2519 	       !list_empty(&dev->ptype_all);
2520 }
2521 EXPORT_SYMBOL_GPL(dev_nit_active_rcu);
2522 
2523 /*
2524  *	Support routine. Sends outgoing frames to any network
2525  *	taps currently in use.
2526  */
2527 
2528 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2529 {
2530 	struct packet_type *ptype, *pt_prev = NULL;
2531 	struct list_head *ptype_list;
2532 	struct sk_buff *skb2 = NULL;
2533 
2534 	rcu_read_lock();
2535 	ptype_list = &dev_net_rcu(dev)->ptype_all;
2536 again:
2537 	list_for_each_entry_rcu(ptype, ptype_list, list) {
2538 		if (READ_ONCE(ptype->ignore_outgoing))
2539 			continue;
2540 
2541 		/* Never send packets back to the socket
2542 		 * they originated from - MvS (miquels@drinkel.ow.org)
2543 		 */
2544 		if (skb_loop_sk(ptype, skb))
2545 			continue;
2546 
2547 		if (pt_prev) {
2548 			deliver_skb(skb2, pt_prev, skb->dev);
2549 			pt_prev = ptype;
2550 			continue;
2551 		}
2552 
2553 		/* need to clone skb, done only once */
2554 		skb2 = skb_clone(skb, GFP_ATOMIC);
2555 		if (!skb2)
2556 			goto out_unlock;
2557 
2558 		net_timestamp_set(skb2);
2559 
2560 		/* skb->nh should be correctly
2561 		 * set by sender, so that the second statement is
2562 		 * just protection against buggy protocols.
2563 		 */
2564 		skb_reset_mac_header(skb2);
2565 
2566 		if (skb_network_header(skb2) < skb2->data ||
2567 		    skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2568 			net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2569 					     ntohs(skb2->protocol),
2570 					     dev->name);
2571 			skb_reset_network_header(skb2);
2572 		}
2573 
2574 		skb2->transport_header = skb2->network_header;
2575 		skb2->pkt_type = PACKET_OUTGOING;
2576 		pt_prev = ptype;
2577 	}
2578 
2579 	if (ptype_list != &dev->ptype_all) {
2580 		ptype_list = &dev->ptype_all;
2581 		goto again;
2582 	}
2583 out_unlock:
2584 	if (pt_prev) {
2585 		if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2586 			pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2587 		else
2588 			kfree_skb(skb2);
2589 	}
2590 	rcu_read_unlock();
2591 }
2592 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2593 
2594 /**
2595  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2596  * @dev: Network device
2597  * @txq: number of queues available
2598  *
2599  * If real_num_tx_queues is changed the tc mappings may no longer be
2600  * valid. To resolve this verify the tc mapping remains valid and if
2601  * not NULL the mapping. With no priorities mapping to this
2602  * offset/count pair it will no longer be used. In the worst case TC0
2603  * is invalid nothing can be done so disable priority mappings. If is
2604  * expected that drivers will fix this mapping if they can before
2605  * calling netif_set_real_num_tx_queues.
2606  */
2607 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2608 {
2609 	int i;
2610 	struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2611 
2612 	/* If TC0 is invalidated disable TC mapping */
2613 	if (tc->offset + tc->count > txq) {
2614 		netdev_warn(dev, "Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2615 		dev->num_tc = 0;
2616 		return;
2617 	}
2618 
2619 	/* Invalidated prio to tc mappings set to TC0 */
2620 	for (i = 1; i < TC_BITMASK + 1; i++) {
2621 		int q = netdev_get_prio_tc_map(dev, i);
2622 
2623 		tc = &dev->tc_to_txq[q];
2624 		if (tc->offset + tc->count > txq) {
2625 			netdev_warn(dev, "Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2626 				    i, q);
2627 			netdev_set_prio_tc_map(dev, i, 0);
2628 		}
2629 	}
2630 }
2631 
2632 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2633 {
2634 	if (dev->num_tc) {
2635 		struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2636 		int i;
2637 
2638 		/* walk through the TCs and see if it falls into any of them */
2639 		for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2640 			if ((txq - tc->offset) < tc->count)
2641 				return i;
2642 		}
2643 
2644 		/* didn't find it, just return -1 to indicate no match */
2645 		return -1;
2646 	}
2647 
2648 	return 0;
2649 }
2650 EXPORT_SYMBOL(netdev_txq_to_tc);
2651 
2652 #ifdef CONFIG_XPS
2653 static struct static_key xps_needed __read_mostly;
2654 static struct static_key xps_rxqs_needed __read_mostly;
2655 static DEFINE_MUTEX(xps_map_mutex);
2656 #define xmap_dereference(P)		\
2657 	rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2658 
2659 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2660 			     struct xps_dev_maps *old_maps, int tci, u16 index)
2661 {
2662 	struct xps_map *map = NULL;
2663 	int pos;
2664 
2665 	map = xmap_dereference(dev_maps->attr_map[tci]);
2666 	if (!map)
2667 		return false;
2668 
2669 	for (pos = map->len; pos--;) {
2670 		if (map->queues[pos] != index)
2671 			continue;
2672 
2673 		if (map->len > 1) {
2674 			map->queues[pos] = map->queues[--map->len];
2675 			break;
2676 		}
2677 
2678 		if (old_maps)
2679 			RCU_INIT_POINTER(old_maps->attr_map[tci], NULL);
2680 		RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2681 		kfree_rcu(map, rcu);
2682 		return false;
2683 	}
2684 
2685 	return true;
2686 }
2687 
2688 static bool remove_xps_queue_cpu(struct net_device *dev,
2689 				 struct xps_dev_maps *dev_maps,
2690 				 int cpu, u16 offset, u16 count)
2691 {
2692 	int num_tc = dev_maps->num_tc;
2693 	bool active = false;
2694 	int tci;
2695 
2696 	for (tci = cpu * num_tc; num_tc--; tci++) {
2697 		int i, j;
2698 
2699 		for (i = count, j = offset; i--; j++) {
2700 			if (!remove_xps_queue(dev_maps, NULL, tci, j))
2701 				break;
2702 		}
2703 
2704 		active |= i < 0;
2705 	}
2706 
2707 	return active;
2708 }
2709 
2710 static void reset_xps_maps(struct net_device *dev,
2711 			   struct xps_dev_maps *dev_maps,
2712 			   enum xps_map_type type)
2713 {
2714 	static_key_slow_dec_cpuslocked(&xps_needed);
2715 	if (type == XPS_RXQS)
2716 		static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2717 
2718 	RCU_INIT_POINTER(dev->xps_maps[type], NULL);
2719 
2720 	kfree_rcu(dev_maps, rcu);
2721 }
2722 
2723 static void clean_xps_maps(struct net_device *dev, enum xps_map_type type,
2724 			   u16 offset, u16 count)
2725 {
2726 	struct xps_dev_maps *dev_maps;
2727 	bool active = false;
2728 	int i, j;
2729 
2730 	dev_maps = xmap_dereference(dev->xps_maps[type]);
2731 	if (!dev_maps)
2732 		return;
2733 
2734 	for (j = 0; j < dev_maps->nr_ids; j++)
2735 		active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, count);
2736 	if (!active)
2737 		reset_xps_maps(dev, dev_maps, type);
2738 
2739 	if (type == XPS_CPUS) {
2740 		for (i = offset + (count - 1); count--; i--)
2741 			netdev_queue_numa_node_write(
2742 				netdev_get_tx_queue(dev, i), NUMA_NO_NODE);
2743 	}
2744 }
2745 
2746 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2747 				   u16 count)
2748 {
2749 	if (!static_key_false(&xps_needed))
2750 		return;
2751 
2752 	cpus_read_lock();
2753 	mutex_lock(&xps_map_mutex);
2754 
2755 	if (static_key_false(&xps_rxqs_needed))
2756 		clean_xps_maps(dev, XPS_RXQS, offset, count);
2757 
2758 	clean_xps_maps(dev, XPS_CPUS, offset, count);
2759 
2760 	mutex_unlock(&xps_map_mutex);
2761 	cpus_read_unlock();
2762 }
2763 
2764 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2765 {
2766 	netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2767 }
2768 
2769 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2770 				      u16 index, bool is_rxqs_map)
2771 {
2772 	struct xps_map *new_map;
2773 	int alloc_len = XPS_MIN_MAP_ALLOC;
2774 	int i, pos;
2775 
2776 	for (pos = 0; map && pos < map->len; pos++) {
2777 		if (map->queues[pos] != index)
2778 			continue;
2779 		return map;
2780 	}
2781 
2782 	/* Need to add tx-queue to this CPU's/rx-queue's existing map */
2783 	if (map) {
2784 		if (pos < map->alloc_len)
2785 			return map;
2786 
2787 		alloc_len = map->alloc_len * 2;
2788 	}
2789 
2790 	/* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2791 	 *  map
2792 	 */
2793 	if (is_rxqs_map)
2794 		new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2795 	else
2796 		new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2797 				       cpu_to_node(attr_index));
2798 	if (!new_map)
2799 		return NULL;
2800 
2801 	for (i = 0; i < pos; i++)
2802 		new_map->queues[i] = map->queues[i];
2803 	new_map->alloc_len = alloc_len;
2804 	new_map->len = pos;
2805 
2806 	return new_map;
2807 }
2808 
2809 /* Copy xps maps at a given index */
2810 static void xps_copy_dev_maps(struct xps_dev_maps *dev_maps,
2811 			      struct xps_dev_maps *new_dev_maps, int index,
2812 			      int tc, bool skip_tc)
2813 {
2814 	int i, tci = index * dev_maps->num_tc;
2815 	struct xps_map *map;
2816 
2817 	/* copy maps belonging to foreign traffic classes */
2818 	for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2819 		if (i == tc && skip_tc)
2820 			continue;
2821 
2822 		/* fill in the new device map from the old device map */
2823 		map = xmap_dereference(dev_maps->attr_map[tci]);
2824 		RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2825 	}
2826 }
2827 
2828 /* Must be called under cpus_read_lock */
2829 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2830 			  u16 index, enum xps_map_type type)
2831 {
2832 	struct xps_dev_maps *dev_maps, *new_dev_maps = NULL, *old_dev_maps = NULL;
2833 	const unsigned long *online_mask = NULL;
2834 	bool active = false, copy = false;
2835 	int i, j, tci, numa_node_id = -2;
2836 	int maps_sz, num_tc = 1, tc = 0;
2837 	struct xps_map *map, *new_map;
2838 	unsigned int nr_ids;
2839 
2840 	WARN_ON_ONCE(index >= dev->num_tx_queues);
2841 
2842 	if (dev->num_tc) {
2843 		/* Do not allow XPS on subordinate device directly */
2844 		num_tc = dev->num_tc;
2845 		if (num_tc < 0)
2846 			return -EINVAL;
2847 
2848 		/* If queue belongs to subordinate dev use its map */
2849 		dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2850 
2851 		tc = netdev_txq_to_tc(dev, index);
2852 		if (tc < 0)
2853 			return -EINVAL;
2854 	}
2855 
2856 	mutex_lock(&xps_map_mutex);
2857 
2858 	dev_maps = xmap_dereference(dev->xps_maps[type]);
2859 	if (type == XPS_RXQS) {
2860 		maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2861 		nr_ids = dev->num_rx_queues;
2862 	} else {
2863 		maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2864 		if (num_possible_cpus() > 1)
2865 			online_mask = cpumask_bits(cpu_online_mask);
2866 		nr_ids = nr_cpu_ids;
2867 	}
2868 
2869 	if (maps_sz < L1_CACHE_BYTES)
2870 		maps_sz = L1_CACHE_BYTES;
2871 
2872 	/* The old dev_maps could be larger or smaller than the one we're
2873 	 * setting up now, as dev->num_tc or nr_ids could have been updated in
2874 	 * between. We could try to be smart, but let's be safe instead and only
2875 	 * copy foreign traffic classes if the two map sizes match.
2876 	 */
2877 	if (dev_maps &&
2878 	    dev_maps->num_tc == num_tc && dev_maps->nr_ids == nr_ids)
2879 		copy = true;
2880 
2881 	/* allocate memory for queue storage */
2882 	for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2883 	     j < nr_ids;) {
2884 		if (!new_dev_maps) {
2885 			new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2886 			if (!new_dev_maps) {
2887 				mutex_unlock(&xps_map_mutex);
2888 				return -ENOMEM;
2889 			}
2890 
2891 			new_dev_maps->nr_ids = nr_ids;
2892 			new_dev_maps->num_tc = num_tc;
2893 		}
2894 
2895 		tci = j * num_tc + tc;
2896 		map = copy ? xmap_dereference(dev_maps->attr_map[tci]) : NULL;
2897 
2898 		map = expand_xps_map(map, j, index, type == XPS_RXQS);
2899 		if (!map)
2900 			goto error;
2901 
2902 		RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2903 	}
2904 
2905 	if (!new_dev_maps)
2906 		goto out_no_new_maps;
2907 
2908 	if (!dev_maps) {
2909 		/* Increment static keys at most once per type */
2910 		static_key_slow_inc_cpuslocked(&xps_needed);
2911 		if (type == XPS_RXQS)
2912 			static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2913 	}
2914 
2915 	for (j = 0; j < nr_ids; j++) {
2916 		bool skip_tc = false;
2917 
2918 		tci = j * num_tc + tc;
2919 		if (netif_attr_test_mask(j, mask, nr_ids) &&
2920 		    netif_attr_test_online(j, online_mask, nr_ids)) {
2921 			/* add tx-queue to CPU/rx-queue maps */
2922 			int pos = 0;
2923 
2924 			skip_tc = true;
2925 
2926 			map = xmap_dereference(new_dev_maps->attr_map[tci]);
2927 			while ((pos < map->len) && (map->queues[pos] != index))
2928 				pos++;
2929 
2930 			if (pos == map->len)
2931 				map->queues[map->len++] = index;
2932 #ifdef CONFIG_NUMA
2933 			if (type == XPS_CPUS) {
2934 				if (numa_node_id == -2)
2935 					numa_node_id = cpu_to_node(j);
2936 				else if (numa_node_id != cpu_to_node(j))
2937 					numa_node_id = -1;
2938 			}
2939 #endif
2940 		}
2941 
2942 		if (copy)
2943 			xps_copy_dev_maps(dev_maps, new_dev_maps, j, tc,
2944 					  skip_tc);
2945 	}
2946 
2947 	rcu_assign_pointer(dev->xps_maps[type], new_dev_maps);
2948 
2949 	/* Cleanup old maps */
2950 	if (!dev_maps)
2951 		goto out_no_old_maps;
2952 
2953 	for (j = 0; j < dev_maps->nr_ids; j++) {
2954 		for (i = num_tc, tci = j * dev_maps->num_tc; i--; tci++) {
2955 			map = xmap_dereference(dev_maps->attr_map[tci]);
2956 			if (!map)
2957 				continue;
2958 
2959 			if (copy) {
2960 				new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2961 				if (map == new_map)
2962 					continue;
2963 			}
2964 
2965 			RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2966 			kfree_rcu(map, rcu);
2967 		}
2968 	}
2969 
2970 	old_dev_maps = dev_maps;
2971 
2972 out_no_old_maps:
2973 	dev_maps = new_dev_maps;
2974 	active = true;
2975 
2976 out_no_new_maps:
2977 	if (type == XPS_CPUS)
2978 		/* update Tx queue numa node */
2979 		netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2980 					     (numa_node_id >= 0) ?
2981 					     numa_node_id : NUMA_NO_NODE);
2982 
2983 	if (!dev_maps)
2984 		goto out_no_maps;
2985 
2986 	/* removes tx-queue from unused CPUs/rx-queues */
2987 	for (j = 0; j < dev_maps->nr_ids; j++) {
2988 		tci = j * dev_maps->num_tc;
2989 
2990 		for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2991 			if (i == tc &&
2992 			    netif_attr_test_mask(j, mask, dev_maps->nr_ids) &&
2993 			    netif_attr_test_online(j, online_mask, dev_maps->nr_ids))
2994 				continue;
2995 
2996 			active |= remove_xps_queue(dev_maps,
2997 						   copy ? old_dev_maps : NULL,
2998 						   tci, index);
2999 		}
3000 	}
3001 
3002 	if (old_dev_maps)
3003 		kfree_rcu(old_dev_maps, rcu);
3004 
3005 	/* free map if not active */
3006 	if (!active)
3007 		reset_xps_maps(dev, dev_maps, type);
3008 
3009 out_no_maps:
3010 	mutex_unlock(&xps_map_mutex);
3011 
3012 	return 0;
3013 error:
3014 	/* remove any maps that we added */
3015 	for (j = 0; j < nr_ids; j++) {
3016 		for (i = num_tc, tci = j * num_tc; i--; tci++) {
3017 			new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
3018 			map = copy ?
3019 			      xmap_dereference(dev_maps->attr_map[tci]) :
3020 			      NULL;
3021 			if (new_map && new_map != map)
3022 				kfree(new_map);
3023 		}
3024 	}
3025 
3026 	mutex_unlock(&xps_map_mutex);
3027 
3028 	kfree(new_dev_maps);
3029 	return -ENOMEM;
3030 }
3031 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
3032 
3033 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
3034 			u16 index)
3035 {
3036 	int ret;
3037 
3038 	cpus_read_lock();
3039 	ret =  __netif_set_xps_queue(dev, cpumask_bits(mask), index, XPS_CPUS);
3040 	cpus_read_unlock();
3041 
3042 	return ret;
3043 }
3044 EXPORT_SYMBOL(netif_set_xps_queue);
3045 
3046 #endif
3047 static void netdev_unbind_all_sb_channels(struct net_device *dev)
3048 {
3049 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
3050 
3051 	/* Unbind any subordinate channels */
3052 	while (txq-- != &dev->_tx[0]) {
3053 		if (txq->sb_dev)
3054 			netdev_unbind_sb_channel(dev, txq->sb_dev);
3055 	}
3056 }
3057 
3058 void netdev_reset_tc(struct net_device *dev)
3059 {
3060 #ifdef CONFIG_XPS
3061 	netif_reset_xps_queues_gt(dev, 0);
3062 #endif
3063 	netdev_unbind_all_sb_channels(dev);
3064 
3065 	/* Reset TC configuration of device */
3066 	dev->num_tc = 0;
3067 	memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
3068 	memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
3069 }
3070 EXPORT_SYMBOL(netdev_reset_tc);
3071 
3072 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
3073 {
3074 	if (tc >= dev->num_tc)
3075 		return -EINVAL;
3076 
3077 #ifdef CONFIG_XPS
3078 	netif_reset_xps_queues(dev, offset, count);
3079 #endif
3080 	dev->tc_to_txq[tc].count = count;
3081 	dev->tc_to_txq[tc].offset = offset;
3082 	return 0;
3083 }
3084 EXPORT_SYMBOL(netdev_set_tc_queue);
3085 
3086 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
3087 {
3088 	if (num_tc > TC_MAX_QUEUE)
3089 		return -EINVAL;
3090 
3091 #ifdef CONFIG_XPS
3092 	netif_reset_xps_queues_gt(dev, 0);
3093 #endif
3094 	netdev_unbind_all_sb_channels(dev);
3095 
3096 	dev->num_tc = num_tc;
3097 	return 0;
3098 }
3099 EXPORT_SYMBOL(netdev_set_num_tc);
3100 
3101 void netdev_unbind_sb_channel(struct net_device *dev,
3102 			      struct net_device *sb_dev)
3103 {
3104 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
3105 
3106 #ifdef CONFIG_XPS
3107 	netif_reset_xps_queues_gt(sb_dev, 0);
3108 #endif
3109 	memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
3110 	memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
3111 
3112 	while (txq-- != &dev->_tx[0]) {
3113 		if (txq->sb_dev == sb_dev)
3114 			txq->sb_dev = NULL;
3115 	}
3116 }
3117 EXPORT_SYMBOL(netdev_unbind_sb_channel);
3118 
3119 int netdev_bind_sb_channel_queue(struct net_device *dev,
3120 				 struct net_device *sb_dev,
3121 				 u8 tc, u16 count, u16 offset)
3122 {
3123 	/* Make certain the sb_dev and dev are already configured */
3124 	if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
3125 		return -EINVAL;
3126 
3127 	/* We cannot hand out queues we don't have */
3128 	if ((offset + count) > dev->real_num_tx_queues)
3129 		return -EINVAL;
3130 
3131 	/* Record the mapping */
3132 	sb_dev->tc_to_txq[tc].count = count;
3133 	sb_dev->tc_to_txq[tc].offset = offset;
3134 
3135 	/* Provide a way for Tx queue to find the tc_to_txq map or
3136 	 * XPS map for itself.
3137 	 */
3138 	while (count--)
3139 		netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
3140 
3141 	return 0;
3142 }
3143 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
3144 
3145 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
3146 {
3147 	/* Do not use a multiqueue device to represent a subordinate channel */
3148 	if (netif_is_multiqueue(dev))
3149 		return -ENODEV;
3150 
3151 	/* We allow channels 1 - 32767 to be used for subordinate channels.
3152 	 * Channel 0 is meant to be "native" mode and used only to represent
3153 	 * the main root device. We allow writing 0 to reset the device back
3154 	 * to normal mode after being used as a subordinate channel.
3155 	 */
3156 	if (channel > S16_MAX)
3157 		return -EINVAL;
3158 
3159 	dev->num_tc = -channel;
3160 
3161 	return 0;
3162 }
3163 EXPORT_SYMBOL(netdev_set_sb_channel);
3164 
3165 /*
3166  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
3167  * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
3168  */
3169 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
3170 {
3171 	bool disabling;
3172 	int rc;
3173 
3174 	disabling = txq < dev->real_num_tx_queues;
3175 
3176 	if (txq < 1 || txq > dev->num_tx_queues)
3177 		return -EINVAL;
3178 
3179 	if (dev->reg_state == NETREG_REGISTERED ||
3180 	    dev->reg_state == NETREG_UNREGISTERING) {
3181 		netdev_ops_assert_locked(dev);
3182 
3183 		rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
3184 						  txq);
3185 		if (rc)
3186 			return rc;
3187 
3188 		if (dev->num_tc)
3189 			netif_setup_tc(dev, txq);
3190 
3191 		net_shaper_set_real_num_tx_queues(dev, txq);
3192 
3193 		dev_qdisc_change_real_num_tx(dev, txq);
3194 
3195 		dev->real_num_tx_queues = txq;
3196 
3197 		if (disabling) {
3198 			synchronize_net();
3199 			qdisc_reset_all_tx_gt(dev, txq);
3200 #ifdef CONFIG_XPS
3201 			netif_reset_xps_queues_gt(dev, txq);
3202 #endif
3203 		}
3204 	} else {
3205 		dev->real_num_tx_queues = txq;
3206 	}
3207 
3208 	return 0;
3209 }
3210 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
3211 
3212 /**
3213  *	netif_set_real_num_rx_queues - set actual number of RX queues used
3214  *	@dev: Network device
3215  *	@rxq: Actual number of RX queues
3216  *
3217  *	This must be called either with the rtnl_lock held or before
3218  *	registration of the net device.  Returns 0 on success, or a
3219  *	negative error code.  If called before registration, it always
3220  *	succeeds.
3221  */
3222 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
3223 {
3224 	int rc;
3225 
3226 	if (rxq < 1 || rxq > dev->num_rx_queues)
3227 		return -EINVAL;
3228 
3229 	if (dev->reg_state == NETREG_REGISTERED) {
3230 		netdev_ops_assert_locked(dev);
3231 
3232 		rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
3233 						  rxq);
3234 		if (rc)
3235 			return rc;
3236 	}
3237 
3238 	dev->real_num_rx_queues = rxq;
3239 	return 0;
3240 }
3241 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
3242 
3243 /**
3244  *	netif_set_real_num_queues - set actual number of RX and TX queues used
3245  *	@dev: Network device
3246  *	@txq: Actual number of TX queues
3247  *	@rxq: Actual number of RX queues
3248  *
3249  *	Set the real number of both TX and RX queues.
3250  *	Does nothing if the number of queues is already correct.
3251  */
3252 int netif_set_real_num_queues(struct net_device *dev,
3253 			      unsigned int txq, unsigned int rxq)
3254 {
3255 	unsigned int old_rxq = dev->real_num_rx_queues;
3256 	int err;
3257 
3258 	if (txq < 1 || txq > dev->num_tx_queues ||
3259 	    rxq < 1 || rxq > dev->num_rx_queues)
3260 		return -EINVAL;
3261 
3262 	/* Start from increases, so the error path only does decreases -
3263 	 * decreases can't fail.
3264 	 */
3265 	if (rxq > dev->real_num_rx_queues) {
3266 		err = netif_set_real_num_rx_queues(dev, rxq);
3267 		if (err)
3268 			return err;
3269 	}
3270 	if (txq > dev->real_num_tx_queues) {
3271 		err = netif_set_real_num_tx_queues(dev, txq);
3272 		if (err)
3273 			goto undo_rx;
3274 	}
3275 	if (rxq < dev->real_num_rx_queues)
3276 		WARN_ON(netif_set_real_num_rx_queues(dev, rxq));
3277 	if (txq < dev->real_num_tx_queues)
3278 		WARN_ON(netif_set_real_num_tx_queues(dev, txq));
3279 
3280 	return 0;
3281 undo_rx:
3282 	WARN_ON(netif_set_real_num_rx_queues(dev, old_rxq));
3283 	return err;
3284 }
3285 EXPORT_SYMBOL(netif_set_real_num_queues);
3286 
3287 /**
3288  * netif_set_tso_max_size() - set the max size of TSO frames supported
3289  * @dev:	netdev to update
3290  * @size:	max skb->len of a TSO frame
3291  *
3292  * Set the limit on the size of TSO super-frames the device can handle.
3293  * Unless explicitly set the stack will assume the value of
3294  * %GSO_LEGACY_MAX_SIZE.
3295  */
3296 void netif_set_tso_max_size(struct net_device *dev, unsigned int size)
3297 {
3298 	dev->tso_max_size = min(GSO_MAX_SIZE, size);
3299 	if (size < READ_ONCE(dev->gso_max_size))
3300 		netif_set_gso_max_size(dev, size);
3301 	if (size < READ_ONCE(dev->gso_ipv4_max_size))
3302 		netif_set_gso_ipv4_max_size(dev, size);
3303 }
3304 EXPORT_SYMBOL(netif_set_tso_max_size);
3305 
3306 /**
3307  * netif_set_tso_max_segs() - set the max number of segs supported for TSO
3308  * @dev:	netdev to update
3309  * @segs:	max number of TCP segments
3310  *
3311  * Set the limit on the number of TCP segments the device can generate from
3312  * a single TSO super-frame.
3313  * Unless explicitly set the stack will assume the value of %GSO_MAX_SEGS.
3314  */
3315 void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs)
3316 {
3317 	dev->tso_max_segs = segs;
3318 	if (segs < READ_ONCE(dev->gso_max_segs))
3319 		netif_set_gso_max_segs(dev, segs);
3320 }
3321 EXPORT_SYMBOL(netif_set_tso_max_segs);
3322 
3323 /**
3324  * netif_inherit_tso_max() - copy all TSO limits from a lower device to an upper
3325  * @to:		netdev to update
3326  * @from:	netdev from which to copy the limits
3327  */
3328 void netif_inherit_tso_max(struct net_device *to, const struct net_device *from)
3329 {
3330 	netif_set_tso_max_size(to, from->tso_max_size);
3331 	netif_set_tso_max_segs(to, from->tso_max_segs);
3332 }
3333 EXPORT_SYMBOL(netif_inherit_tso_max);
3334 
3335 /**
3336  * netif_get_num_default_rss_queues - default number of RSS queues
3337  *
3338  * Default value is the number of physical cores if there are only 1 or 2, or
3339  * divided by 2 if there are more.
3340  */
3341 int netif_get_num_default_rss_queues(void)
3342 {
3343 	cpumask_var_t cpus;
3344 	int cpu, count = 0;
3345 
3346 	if (unlikely(is_kdump_kernel() || !zalloc_cpumask_var(&cpus, GFP_KERNEL)))
3347 		return 1;
3348 
3349 	cpumask_copy(cpus, cpu_online_mask);
3350 	for_each_cpu(cpu, cpus) {
3351 		++count;
3352 		cpumask_andnot(cpus, cpus, topology_sibling_cpumask(cpu));
3353 	}
3354 	free_cpumask_var(cpus);
3355 
3356 	return count > 2 ? DIV_ROUND_UP(count, 2) : count;
3357 }
3358 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3359 
3360 static void __netif_reschedule(struct Qdisc *q)
3361 {
3362 	struct softnet_data *sd;
3363 	unsigned long flags;
3364 
3365 	local_irq_save(flags);
3366 	sd = this_cpu_ptr(&softnet_data);
3367 	q->next_sched = NULL;
3368 	*sd->output_queue_tailp = q;
3369 	sd->output_queue_tailp = &q->next_sched;
3370 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
3371 	local_irq_restore(flags);
3372 }
3373 
3374 void __netif_schedule(struct Qdisc *q)
3375 {
3376 	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3377 		__netif_reschedule(q);
3378 }
3379 EXPORT_SYMBOL(__netif_schedule);
3380 
3381 struct dev_kfree_skb_cb {
3382 	enum skb_drop_reason reason;
3383 };
3384 
3385 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
3386 {
3387 	return (struct dev_kfree_skb_cb *)skb->cb;
3388 }
3389 
3390 void netif_schedule_queue(struct netdev_queue *txq)
3391 {
3392 	rcu_read_lock();
3393 	if (!netif_xmit_stopped(txq)) {
3394 		struct Qdisc *q = rcu_dereference(txq->qdisc);
3395 
3396 		__netif_schedule(q);
3397 	}
3398 	rcu_read_unlock();
3399 }
3400 EXPORT_SYMBOL(netif_schedule_queue);
3401 
3402 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3403 {
3404 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3405 		struct Qdisc *q;
3406 
3407 		rcu_read_lock();
3408 		q = rcu_dereference(dev_queue->qdisc);
3409 		__netif_schedule(q);
3410 		rcu_read_unlock();
3411 	}
3412 }
3413 EXPORT_SYMBOL(netif_tx_wake_queue);
3414 
3415 void dev_kfree_skb_irq_reason(struct sk_buff *skb, enum skb_drop_reason reason)
3416 {
3417 	unsigned long flags;
3418 
3419 	if (unlikely(!skb))
3420 		return;
3421 
3422 	if (likely(refcount_read(&skb->users) == 1)) {
3423 		smp_rmb();
3424 		refcount_set(&skb->users, 0);
3425 	} else if (likely(!refcount_dec_and_test(&skb->users))) {
3426 		return;
3427 	}
3428 	get_kfree_skb_cb(skb)->reason = reason;
3429 	local_irq_save(flags);
3430 	skb->next = __this_cpu_read(softnet_data.completion_queue);
3431 	__this_cpu_write(softnet_data.completion_queue, skb);
3432 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
3433 	local_irq_restore(flags);
3434 }
3435 EXPORT_SYMBOL(dev_kfree_skb_irq_reason);
3436 
3437 void dev_kfree_skb_any_reason(struct sk_buff *skb, enum skb_drop_reason reason)
3438 {
3439 	if (in_hardirq() || irqs_disabled())
3440 		dev_kfree_skb_irq_reason(skb, reason);
3441 	else
3442 		kfree_skb_reason(skb, reason);
3443 }
3444 EXPORT_SYMBOL(dev_kfree_skb_any_reason);
3445 
3446 
3447 /**
3448  * netif_device_detach - mark device as removed
3449  * @dev: network device
3450  *
3451  * Mark device as removed from system and therefore no longer available.
3452  */
3453 void netif_device_detach(struct net_device *dev)
3454 {
3455 	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3456 	    netif_running(dev)) {
3457 		netif_tx_stop_all_queues(dev);
3458 	}
3459 }
3460 EXPORT_SYMBOL(netif_device_detach);
3461 
3462 /**
3463  * netif_device_attach - mark device as attached
3464  * @dev: network device
3465  *
3466  * Mark device as attached from system and restart if needed.
3467  */
3468 void netif_device_attach(struct net_device *dev)
3469 {
3470 	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3471 	    netif_running(dev)) {
3472 		netif_tx_wake_all_queues(dev);
3473 		netdev_watchdog_up(dev);
3474 	}
3475 }
3476 EXPORT_SYMBOL(netif_device_attach);
3477 
3478 /*
3479  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3480  * to be used as a distribution range.
3481  */
3482 static u16 skb_tx_hash(const struct net_device *dev,
3483 		       const struct net_device *sb_dev,
3484 		       struct sk_buff *skb)
3485 {
3486 	u32 hash;
3487 	u16 qoffset = 0;
3488 	u16 qcount = dev->real_num_tx_queues;
3489 
3490 	if (dev->num_tc) {
3491 		u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3492 
3493 		qoffset = sb_dev->tc_to_txq[tc].offset;
3494 		qcount = sb_dev->tc_to_txq[tc].count;
3495 		if (unlikely(!qcount)) {
3496 			net_warn_ratelimited("%s: invalid qcount, qoffset %u for tc %u\n",
3497 					     sb_dev->name, qoffset, tc);
3498 			qoffset = 0;
3499 			qcount = dev->real_num_tx_queues;
3500 		}
3501 	}
3502 
3503 	if (skb_rx_queue_recorded(skb)) {
3504 		DEBUG_NET_WARN_ON_ONCE(qcount == 0);
3505 		hash = skb_get_rx_queue(skb);
3506 		if (hash >= qoffset)
3507 			hash -= qoffset;
3508 		while (unlikely(hash >= qcount))
3509 			hash -= qcount;
3510 		return hash + qoffset;
3511 	}
3512 
3513 	return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3514 }
3515 
3516 void skb_warn_bad_offload(const struct sk_buff *skb)
3517 {
3518 	static const netdev_features_t null_features;
3519 	struct net_device *dev = skb->dev;
3520 	const char *name = "";
3521 
3522 	if (!net_ratelimit())
3523 		return;
3524 
3525 	if (dev) {
3526 		if (dev->dev.parent)
3527 			name = dev_driver_string(dev->dev.parent);
3528 		else
3529 			name = netdev_name(dev);
3530 	}
3531 	skb_dump(KERN_WARNING, skb, false);
3532 	WARN(1, "%s: caps=(%pNF, %pNF)\n",
3533 	     name, dev ? &dev->features : &null_features,
3534 	     skb->sk ? &skb->sk->sk_route_caps : &null_features);
3535 }
3536 
3537 /*
3538  * Invalidate hardware checksum when packet is to be mangled, and
3539  * complete checksum manually on outgoing path.
3540  */
3541 int skb_checksum_help(struct sk_buff *skb)
3542 {
3543 	__wsum csum;
3544 	int ret = 0, offset;
3545 
3546 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3547 		goto out_set_summed;
3548 
3549 	if (unlikely(skb_is_gso(skb))) {
3550 		skb_warn_bad_offload(skb);
3551 		return -EINVAL;
3552 	}
3553 
3554 	if (!skb_frags_readable(skb)) {
3555 		return -EFAULT;
3556 	}
3557 
3558 	/* Before computing a checksum, we should make sure no frag could
3559 	 * be modified by an external entity : checksum could be wrong.
3560 	 */
3561 	if (skb_has_shared_frag(skb)) {
3562 		ret = __skb_linearize(skb);
3563 		if (ret)
3564 			goto out;
3565 	}
3566 
3567 	offset = skb_checksum_start_offset(skb);
3568 	ret = -EINVAL;
3569 	if (unlikely(offset >= skb_headlen(skb))) {
3570 		DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3571 		WARN_ONCE(true, "offset (%d) >= skb_headlen() (%u)\n",
3572 			  offset, skb_headlen(skb));
3573 		goto out;
3574 	}
3575 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
3576 
3577 	offset += skb->csum_offset;
3578 	if (unlikely(offset + sizeof(__sum16) > skb_headlen(skb))) {
3579 		DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3580 		WARN_ONCE(true, "offset+2 (%zu) > skb_headlen() (%u)\n",
3581 			  offset + sizeof(__sum16), skb_headlen(skb));
3582 		goto out;
3583 	}
3584 	ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3585 	if (ret)
3586 		goto out;
3587 
3588 	*(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3589 out_set_summed:
3590 	skb->ip_summed = CHECKSUM_NONE;
3591 out:
3592 	return ret;
3593 }
3594 EXPORT_SYMBOL(skb_checksum_help);
3595 
3596 #ifdef CONFIG_NET_CRC32C
3597 int skb_crc32c_csum_help(struct sk_buff *skb)
3598 {
3599 	u32 crc;
3600 	int ret = 0, offset, start;
3601 
3602 	if (skb->ip_summed != CHECKSUM_PARTIAL)
3603 		goto out;
3604 
3605 	if (unlikely(skb_is_gso(skb)))
3606 		goto out;
3607 
3608 	/* Before computing a checksum, we should make sure no frag could
3609 	 * be modified by an external entity : checksum could be wrong.
3610 	 */
3611 	if (unlikely(skb_has_shared_frag(skb))) {
3612 		ret = __skb_linearize(skb);
3613 		if (ret)
3614 			goto out;
3615 	}
3616 	start = skb_checksum_start_offset(skb);
3617 	offset = start + offsetof(struct sctphdr, checksum);
3618 	if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3619 		ret = -EINVAL;
3620 		goto out;
3621 	}
3622 
3623 	ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3624 	if (ret)
3625 		goto out;
3626 
3627 	crc = ~skb_crc32c(skb, start, skb->len - start, ~0);
3628 	*(__le32 *)(skb->data + offset) = cpu_to_le32(crc);
3629 	skb_reset_csum_not_inet(skb);
3630 out:
3631 	return ret;
3632 }
3633 EXPORT_SYMBOL(skb_crc32c_csum_help);
3634 #endif /* CONFIG_NET_CRC32C */
3635 
3636 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3637 {
3638 	__be16 type = skb->protocol;
3639 
3640 	/* Tunnel gso handlers can set protocol to ethernet. */
3641 	if (type == htons(ETH_P_TEB)) {
3642 		struct ethhdr *eth;
3643 
3644 		if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3645 			return 0;
3646 
3647 		eth = (struct ethhdr *)skb->data;
3648 		type = eth->h_proto;
3649 	}
3650 
3651 	return vlan_get_protocol_and_depth(skb, type, depth);
3652 }
3653 
3654 
3655 /* Take action when hardware reception checksum errors are detected. */
3656 #ifdef CONFIG_BUG
3657 static void do_netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3658 {
3659 	netdev_err(dev, "hw csum failure\n");
3660 	skb_dump(KERN_ERR, skb, true);
3661 	dump_stack();
3662 }
3663 
3664 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3665 {
3666 	DO_ONCE_LITE(do_netdev_rx_csum_fault, dev, skb);
3667 }
3668 EXPORT_SYMBOL(netdev_rx_csum_fault);
3669 #endif
3670 
3671 /* XXX: check that highmem exists at all on the given machine. */
3672 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3673 {
3674 #ifdef CONFIG_HIGHMEM
3675 	int i;
3676 
3677 	if (!(dev->features & NETIF_F_HIGHDMA)) {
3678 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3679 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3680 			struct page *page = skb_frag_page(frag);
3681 
3682 			if (page && PageHighMem(page))
3683 				return 1;
3684 		}
3685 	}
3686 #endif
3687 	return 0;
3688 }
3689 
3690 /* If MPLS offload request, verify we are testing hardware MPLS features
3691  * instead of standard features for the netdev.
3692  */
3693 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3694 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3695 					   netdev_features_t features,
3696 					   __be16 type)
3697 {
3698 	if (eth_p_mpls(type))
3699 		features &= skb->dev->mpls_features;
3700 
3701 	return features;
3702 }
3703 #else
3704 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3705 					   netdev_features_t features,
3706 					   __be16 type)
3707 {
3708 	return features;
3709 }
3710 #endif
3711 
3712 static netdev_features_t harmonize_features(struct sk_buff *skb,
3713 	netdev_features_t features)
3714 {
3715 	__be16 type;
3716 
3717 	type = skb_network_protocol(skb, NULL);
3718 	features = net_mpls_features(skb, features, type);
3719 
3720 	if (skb->ip_summed != CHECKSUM_NONE &&
3721 	    !can_checksum_protocol(features, type)) {
3722 		features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3723 	}
3724 	if (illegal_highdma(skb->dev, skb))
3725 		features &= ~NETIF_F_SG;
3726 
3727 	return features;
3728 }
3729 
3730 netdev_features_t passthru_features_check(struct sk_buff *skb,
3731 					  struct net_device *dev,
3732 					  netdev_features_t features)
3733 {
3734 	return features;
3735 }
3736 EXPORT_SYMBOL(passthru_features_check);
3737 
3738 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3739 					     struct net_device *dev,
3740 					     netdev_features_t features)
3741 {
3742 	return vlan_features_check(skb, features);
3743 }
3744 
3745 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3746 					    struct net_device *dev,
3747 					    netdev_features_t features)
3748 {
3749 	u16 gso_segs = skb_shinfo(skb)->gso_segs;
3750 
3751 	if (gso_segs > READ_ONCE(dev->gso_max_segs))
3752 		return features & ~NETIF_F_GSO_MASK;
3753 
3754 	if (unlikely(skb->len >= netif_get_gso_max_size(dev, skb)))
3755 		return features & ~NETIF_F_GSO_MASK;
3756 
3757 	if (!skb_shinfo(skb)->gso_type) {
3758 		skb_warn_bad_offload(skb);
3759 		return features & ~NETIF_F_GSO_MASK;
3760 	}
3761 
3762 	/* Support for GSO partial features requires software
3763 	 * intervention before we can actually process the packets
3764 	 * so we need to strip support for any partial features now
3765 	 * and we can pull them back in after we have partially
3766 	 * segmented the frame.
3767 	 */
3768 	if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3769 		features &= ~dev->gso_partial_features;
3770 
3771 	/* Make sure to clear the IPv4 ID mangling feature if the IPv4 header
3772 	 * has the potential to be fragmented so that TSO does not generate
3773 	 * segments with the same ID. For encapsulated packets, the ID mangling
3774 	 * feature is guaranteed not to use the same ID for the outer IPv4
3775 	 * headers of the generated segments if the headers have the potential
3776 	 * to be fragmented, so there is no need to clear the IPv4 ID mangling
3777 	 * feature (see the section about NETIF_F_TSO_MANGLEID in
3778 	 * segmentation-offloads.rst).
3779 	 */
3780 	if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3781 		struct iphdr *iph = skb->encapsulation ?
3782 				    inner_ip_hdr(skb) : ip_hdr(skb);
3783 
3784 		if (!(iph->frag_off & htons(IP_DF)))
3785 			features &= ~NETIF_F_TSO_MANGLEID;
3786 	}
3787 
3788 	/* NETIF_F_IPV6_CSUM does not support IPv6 extension headers,
3789 	 * so neither does TSO that depends on it.
3790 	 */
3791 	if (features & NETIF_F_IPV6_CSUM &&
3792 	    (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6 ||
3793 	     (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4 &&
3794 	      vlan_get_protocol(skb) == htons(ETH_P_IPV6))) &&
3795 	    skb_transport_header_was_set(skb) &&
3796 	    skb_network_header_len(skb) != sizeof(struct ipv6hdr) &&
3797 	    !ipv6_has_hopopt_jumbo(skb))
3798 		features &= ~(NETIF_F_IPV6_CSUM | NETIF_F_TSO6 | NETIF_F_GSO_UDP_L4);
3799 
3800 	return features;
3801 }
3802 
3803 netdev_features_t netif_skb_features(struct sk_buff *skb)
3804 {
3805 	struct net_device *dev = skb->dev;
3806 	netdev_features_t features = dev->features;
3807 
3808 	if (skb_is_gso(skb))
3809 		features = gso_features_check(skb, dev, features);
3810 
3811 	/* If encapsulation offload request, verify we are testing
3812 	 * hardware encapsulation features instead of standard
3813 	 * features for the netdev
3814 	 */
3815 	if (skb->encapsulation)
3816 		features &= dev->hw_enc_features;
3817 
3818 	if (skb_vlan_tagged(skb))
3819 		features = netdev_intersect_features(features,
3820 						     dev->vlan_features |
3821 						     NETIF_F_HW_VLAN_CTAG_TX |
3822 						     NETIF_F_HW_VLAN_STAG_TX);
3823 
3824 	if (dev->netdev_ops->ndo_features_check)
3825 		features &= dev->netdev_ops->ndo_features_check(skb, dev,
3826 								features);
3827 	else
3828 		features &= dflt_features_check(skb, dev, features);
3829 
3830 	return harmonize_features(skb, features);
3831 }
3832 EXPORT_SYMBOL(netif_skb_features);
3833 
3834 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3835 		    struct netdev_queue *txq, bool more)
3836 {
3837 	unsigned int len;
3838 	int rc;
3839 
3840 	if (dev_nit_active_rcu(dev))
3841 		dev_queue_xmit_nit(skb, dev);
3842 
3843 	len = skb->len;
3844 	trace_net_dev_start_xmit(skb, dev);
3845 	rc = netdev_start_xmit(skb, dev, txq, more);
3846 	trace_net_dev_xmit(skb, rc, dev, len);
3847 
3848 	return rc;
3849 }
3850 
3851 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3852 				    struct netdev_queue *txq, int *ret)
3853 {
3854 	struct sk_buff *skb = first;
3855 	int rc = NETDEV_TX_OK;
3856 
3857 	while (skb) {
3858 		struct sk_buff *next = skb->next;
3859 
3860 		skb_mark_not_on_list(skb);
3861 		rc = xmit_one(skb, dev, txq, next != NULL);
3862 		if (unlikely(!dev_xmit_complete(rc))) {
3863 			skb->next = next;
3864 			goto out;
3865 		}
3866 
3867 		skb = next;
3868 		if (netif_tx_queue_stopped(txq) && skb) {
3869 			rc = NETDEV_TX_BUSY;
3870 			break;
3871 		}
3872 	}
3873 
3874 out:
3875 	*ret = rc;
3876 	return skb;
3877 }
3878 
3879 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3880 					  netdev_features_t features)
3881 {
3882 	if (skb_vlan_tag_present(skb) &&
3883 	    !vlan_hw_offload_capable(features, skb->vlan_proto))
3884 		skb = __vlan_hwaccel_push_inside(skb);
3885 	return skb;
3886 }
3887 
3888 int skb_csum_hwoffload_help(struct sk_buff *skb,
3889 			    const netdev_features_t features)
3890 {
3891 	if (unlikely(skb_csum_is_sctp(skb)))
3892 		return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3893 			skb_crc32c_csum_help(skb);
3894 
3895 	if (features & NETIF_F_HW_CSUM)
3896 		return 0;
3897 
3898 	if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
3899 		if (vlan_get_protocol(skb) == htons(ETH_P_IPV6) &&
3900 		    skb_network_header_len(skb) != sizeof(struct ipv6hdr) &&
3901 		    !ipv6_has_hopopt_jumbo(skb))
3902 			goto sw_checksum;
3903 
3904 		switch (skb->csum_offset) {
3905 		case offsetof(struct tcphdr, check):
3906 		case offsetof(struct udphdr, check):
3907 			return 0;
3908 		}
3909 	}
3910 
3911 sw_checksum:
3912 	return skb_checksum_help(skb);
3913 }
3914 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3915 
3916 /* Checks if this SKB belongs to an HW offloaded socket
3917  * and whether any SW fallbacks are required based on dev.
3918  * Check decrypted mark in case skb_orphan() cleared socket.
3919  */
3920 static struct sk_buff *sk_validate_xmit_skb(struct sk_buff *skb,
3921 					    struct net_device *dev)
3922 {
3923 #ifdef CONFIG_SOCK_VALIDATE_XMIT
3924 	struct sk_buff *(*sk_validate)(struct sock *sk, struct net_device *dev,
3925 				       struct sk_buff *skb);
3926 	struct sock *sk = skb->sk;
3927 
3928 	sk_validate = NULL;
3929 	if (sk) {
3930 		if (sk_fullsock(sk))
3931 			sk_validate = sk->sk_validate_xmit_skb;
3932 		else if (sk_is_inet(sk) && sk->sk_state == TCP_TIME_WAIT)
3933 			sk_validate = inet_twsk(sk)->tw_validate_xmit_skb;
3934 	}
3935 
3936 	if (sk_validate) {
3937 		skb = sk_validate(sk, dev, skb);
3938 	} else if (unlikely(skb_is_decrypted(skb))) {
3939 		pr_warn_ratelimited("unencrypted skb with no associated socket - dropping\n");
3940 		kfree_skb(skb);
3941 		skb = NULL;
3942 	}
3943 #endif
3944 
3945 	return skb;
3946 }
3947 
3948 static struct sk_buff *validate_xmit_unreadable_skb(struct sk_buff *skb,
3949 						    struct net_device *dev)
3950 {
3951 	struct skb_shared_info *shinfo;
3952 	struct net_iov *niov;
3953 
3954 	if (likely(skb_frags_readable(skb)))
3955 		goto out;
3956 
3957 	if (!dev->netmem_tx)
3958 		goto out_free;
3959 
3960 	shinfo = skb_shinfo(skb);
3961 
3962 	if (shinfo->nr_frags > 0) {
3963 		niov = netmem_to_net_iov(skb_frag_netmem(&shinfo->frags[0]));
3964 		if (net_is_devmem_iov(niov) &&
3965 		    net_devmem_iov_binding(niov)->dev != dev)
3966 			goto out_free;
3967 	}
3968 
3969 out:
3970 	return skb;
3971 
3972 out_free:
3973 	kfree_skb(skb);
3974 	return NULL;
3975 }
3976 
3977 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3978 {
3979 	netdev_features_t features;
3980 
3981 	skb = validate_xmit_unreadable_skb(skb, dev);
3982 	if (unlikely(!skb))
3983 		goto out_null;
3984 
3985 	features = netif_skb_features(skb);
3986 	skb = validate_xmit_vlan(skb, features);
3987 	if (unlikely(!skb))
3988 		goto out_null;
3989 
3990 	skb = sk_validate_xmit_skb(skb, dev);
3991 	if (unlikely(!skb))
3992 		goto out_null;
3993 
3994 	if (netif_needs_gso(skb, features)) {
3995 		struct sk_buff *segs;
3996 
3997 		segs = skb_gso_segment(skb, features);
3998 		if (IS_ERR(segs)) {
3999 			goto out_kfree_skb;
4000 		} else if (segs) {
4001 			consume_skb(skb);
4002 			skb = segs;
4003 		}
4004 	} else {
4005 		if (skb_needs_linearize(skb, features) &&
4006 		    __skb_linearize(skb))
4007 			goto out_kfree_skb;
4008 
4009 		/* If packet is not checksummed and device does not
4010 		 * support checksumming for this protocol, complete
4011 		 * checksumming here.
4012 		 */
4013 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
4014 			if (skb->encapsulation)
4015 				skb_set_inner_transport_header(skb,
4016 							       skb_checksum_start_offset(skb));
4017 			else
4018 				skb_set_transport_header(skb,
4019 							 skb_checksum_start_offset(skb));
4020 			if (skb_csum_hwoffload_help(skb, features))
4021 				goto out_kfree_skb;
4022 		}
4023 	}
4024 
4025 	skb = validate_xmit_xfrm(skb, features, again);
4026 
4027 	return skb;
4028 
4029 out_kfree_skb:
4030 	kfree_skb(skb);
4031 out_null:
4032 	dev_core_stats_tx_dropped_inc(dev);
4033 	return NULL;
4034 }
4035 
4036 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
4037 {
4038 	struct sk_buff *next, *head = NULL, *tail;
4039 
4040 	for (; skb != NULL; skb = next) {
4041 		next = skb->next;
4042 		skb_mark_not_on_list(skb);
4043 
4044 		/* in case skb won't be segmented, point to itself */
4045 		skb->prev = skb;
4046 
4047 		skb = validate_xmit_skb(skb, dev, again);
4048 		if (!skb)
4049 			continue;
4050 
4051 		if (!head)
4052 			head = skb;
4053 		else
4054 			tail->next = skb;
4055 		/* If skb was segmented, skb->prev points to
4056 		 * the last segment. If not, it still contains skb.
4057 		 */
4058 		tail = skb->prev;
4059 	}
4060 	return head;
4061 }
4062 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
4063 
4064 static void qdisc_pkt_len_init(struct sk_buff *skb)
4065 {
4066 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
4067 
4068 	qdisc_skb_cb(skb)->pkt_len = skb->len;
4069 
4070 	/* To get more precise estimation of bytes sent on wire,
4071 	 * we add to pkt_len the headers size of all segments
4072 	 */
4073 	if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
4074 		u16 gso_segs = shinfo->gso_segs;
4075 		unsigned int hdr_len;
4076 
4077 		/* mac layer + network layer */
4078 		if (!skb->encapsulation)
4079 			hdr_len = skb_transport_offset(skb);
4080 		else
4081 			hdr_len = skb_inner_transport_offset(skb);
4082 
4083 		/* + transport layer */
4084 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
4085 			const struct tcphdr *th;
4086 			struct tcphdr _tcphdr;
4087 
4088 			th = skb_header_pointer(skb, hdr_len,
4089 						sizeof(_tcphdr), &_tcphdr);
4090 			if (likely(th))
4091 				hdr_len += __tcp_hdrlen(th);
4092 		} else if (shinfo->gso_type & SKB_GSO_UDP_L4) {
4093 			struct udphdr _udphdr;
4094 
4095 			if (skb_header_pointer(skb, hdr_len,
4096 					       sizeof(_udphdr), &_udphdr))
4097 				hdr_len += sizeof(struct udphdr);
4098 		}
4099 
4100 		if (unlikely(shinfo->gso_type & SKB_GSO_DODGY)) {
4101 			int payload = skb->len - hdr_len;
4102 
4103 			/* Malicious packet. */
4104 			if (payload <= 0)
4105 				return;
4106 			gso_segs = DIV_ROUND_UP(payload, shinfo->gso_size);
4107 		}
4108 		qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
4109 	}
4110 }
4111 
4112 static int dev_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *q,
4113 			     struct sk_buff **to_free,
4114 			     struct netdev_queue *txq)
4115 {
4116 	int rc;
4117 
4118 	rc = q->enqueue(skb, q, to_free) & NET_XMIT_MASK;
4119 	if (rc == NET_XMIT_SUCCESS)
4120 		trace_qdisc_enqueue(q, txq, skb);
4121 	return rc;
4122 }
4123 
4124 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
4125 				 struct net_device *dev,
4126 				 struct netdev_queue *txq)
4127 {
4128 	spinlock_t *root_lock = qdisc_lock(q);
4129 	struct sk_buff *to_free = NULL;
4130 	bool contended;
4131 	int rc;
4132 
4133 	qdisc_calculate_pkt_len(skb, q);
4134 
4135 	tcf_set_drop_reason(skb, SKB_DROP_REASON_QDISC_DROP);
4136 
4137 	if (q->flags & TCQ_F_NOLOCK) {
4138 		if (q->flags & TCQ_F_CAN_BYPASS && nolock_qdisc_is_empty(q) &&
4139 		    qdisc_run_begin(q)) {
4140 			/* Retest nolock_qdisc_is_empty() within the protection
4141 			 * of q->seqlock to protect from racing with requeuing.
4142 			 */
4143 			if (unlikely(!nolock_qdisc_is_empty(q))) {
4144 				rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
4145 				__qdisc_run(q);
4146 				qdisc_run_end(q);
4147 
4148 				goto no_lock_out;
4149 			}
4150 
4151 			qdisc_bstats_cpu_update(q, skb);
4152 			if (sch_direct_xmit(skb, q, dev, txq, NULL, true) &&
4153 			    !nolock_qdisc_is_empty(q))
4154 				__qdisc_run(q);
4155 
4156 			qdisc_run_end(q);
4157 			return NET_XMIT_SUCCESS;
4158 		}
4159 
4160 		rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
4161 		qdisc_run(q);
4162 
4163 no_lock_out:
4164 		if (unlikely(to_free))
4165 			kfree_skb_list_reason(to_free,
4166 					      tcf_get_drop_reason(to_free));
4167 		return rc;
4168 	}
4169 
4170 	if (unlikely(READ_ONCE(q->owner) == smp_processor_id())) {
4171 		kfree_skb_reason(skb, SKB_DROP_REASON_TC_RECLASSIFY_LOOP);
4172 		return NET_XMIT_DROP;
4173 	}
4174 	/*
4175 	 * Heuristic to force contended enqueues to serialize on a
4176 	 * separate lock before trying to get qdisc main lock.
4177 	 * This permits qdisc->running owner to get the lock more
4178 	 * often and dequeue packets faster.
4179 	 * On PREEMPT_RT it is possible to preempt the qdisc owner during xmit
4180 	 * and then other tasks will only enqueue packets. The packets will be
4181 	 * sent after the qdisc owner is scheduled again. To prevent this
4182 	 * scenario the task always serialize on the lock.
4183 	 */
4184 	contended = qdisc_is_running(q) || IS_ENABLED(CONFIG_PREEMPT_RT);
4185 	if (unlikely(contended))
4186 		spin_lock(&q->busylock);
4187 
4188 	spin_lock(root_lock);
4189 	if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
4190 		__qdisc_drop(skb, &to_free);
4191 		rc = NET_XMIT_DROP;
4192 	} else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
4193 		   qdisc_run_begin(q)) {
4194 		/*
4195 		 * This is a work-conserving queue; there are no old skbs
4196 		 * waiting to be sent out; and the qdisc is not running -
4197 		 * xmit the skb directly.
4198 		 */
4199 
4200 		qdisc_bstats_update(q, skb);
4201 
4202 		if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
4203 			if (unlikely(contended)) {
4204 				spin_unlock(&q->busylock);
4205 				contended = false;
4206 			}
4207 			__qdisc_run(q);
4208 		}
4209 
4210 		qdisc_run_end(q);
4211 		rc = NET_XMIT_SUCCESS;
4212 	} else {
4213 		WRITE_ONCE(q->owner, smp_processor_id());
4214 		rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
4215 		WRITE_ONCE(q->owner, -1);
4216 		if (qdisc_run_begin(q)) {
4217 			if (unlikely(contended)) {
4218 				spin_unlock(&q->busylock);
4219 				contended = false;
4220 			}
4221 			__qdisc_run(q);
4222 			qdisc_run_end(q);
4223 		}
4224 	}
4225 	spin_unlock(root_lock);
4226 	if (unlikely(to_free))
4227 		kfree_skb_list_reason(to_free,
4228 				      tcf_get_drop_reason(to_free));
4229 	if (unlikely(contended))
4230 		spin_unlock(&q->busylock);
4231 	return rc;
4232 }
4233 
4234 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
4235 static void skb_update_prio(struct sk_buff *skb)
4236 {
4237 	const struct netprio_map *map;
4238 	const struct sock *sk;
4239 	unsigned int prioidx;
4240 
4241 	if (skb->priority)
4242 		return;
4243 	map = rcu_dereference_bh(skb->dev->priomap);
4244 	if (!map)
4245 		return;
4246 	sk = skb_to_full_sk(skb);
4247 	if (!sk)
4248 		return;
4249 
4250 	prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
4251 
4252 	if (prioidx < map->priomap_len)
4253 		skb->priority = map->priomap[prioidx];
4254 }
4255 #else
4256 #define skb_update_prio(skb)
4257 #endif
4258 
4259 /**
4260  *	dev_loopback_xmit - loop back @skb
4261  *	@net: network namespace this loopback is happening in
4262  *	@sk:  sk needed to be a netfilter okfn
4263  *	@skb: buffer to transmit
4264  */
4265 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
4266 {
4267 	skb_reset_mac_header(skb);
4268 	__skb_pull(skb, skb_network_offset(skb));
4269 	skb->pkt_type = PACKET_LOOPBACK;
4270 	if (skb->ip_summed == CHECKSUM_NONE)
4271 		skb->ip_summed = CHECKSUM_UNNECESSARY;
4272 	DEBUG_NET_WARN_ON_ONCE(!skb_dst(skb));
4273 	skb_dst_force(skb);
4274 	netif_rx(skb);
4275 	return 0;
4276 }
4277 EXPORT_SYMBOL(dev_loopback_xmit);
4278 
4279 #ifdef CONFIG_NET_EGRESS
4280 static struct netdev_queue *
4281 netdev_tx_queue_mapping(struct net_device *dev, struct sk_buff *skb)
4282 {
4283 	int qm = skb_get_queue_mapping(skb);
4284 
4285 	return netdev_get_tx_queue(dev, netdev_cap_txqueue(dev, qm));
4286 }
4287 
4288 #ifndef CONFIG_PREEMPT_RT
4289 static bool netdev_xmit_txqueue_skipped(void)
4290 {
4291 	return __this_cpu_read(softnet_data.xmit.skip_txqueue);
4292 }
4293 
4294 void netdev_xmit_skip_txqueue(bool skip)
4295 {
4296 	__this_cpu_write(softnet_data.xmit.skip_txqueue, skip);
4297 }
4298 EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue);
4299 
4300 #else
4301 static bool netdev_xmit_txqueue_skipped(void)
4302 {
4303 	return current->net_xmit.skip_txqueue;
4304 }
4305 
4306 void netdev_xmit_skip_txqueue(bool skip)
4307 {
4308 	current->net_xmit.skip_txqueue = skip;
4309 }
4310 EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue);
4311 #endif
4312 #endif /* CONFIG_NET_EGRESS */
4313 
4314 #ifdef CONFIG_NET_XGRESS
4315 static int tc_run(struct tcx_entry *entry, struct sk_buff *skb,
4316 		  enum skb_drop_reason *drop_reason)
4317 {
4318 	int ret = TC_ACT_UNSPEC;
4319 #ifdef CONFIG_NET_CLS_ACT
4320 	struct mini_Qdisc *miniq = rcu_dereference_bh(entry->miniq);
4321 	struct tcf_result res;
4322 
4323 	if (!miniq)
4324 		return ret;
4325 
4326 	/* Global bypass */
4327 	if (!static_branch_likely(&tcf_sw_enabled_key))
4328 		return ret;
4329 
4330 	/* Block-wise bypass */
4331 	if (tcf_block_bypass_sw(miniq->block))
4332 		return ret;
4333 
4334 	tc_skb_cb(skb)->mru = 0;
4335 	tc_skb_cb(skb)->post_ct = false;
4336 	tcf_set_drop_reason(skb, *drop_reason);
4337 
4338 	mini_qdisc_bstats_cpu_update(miniq, skb);
4339 	ret = tcf_classify(skb, miniq->block, miniq->filter_list, &res, false);
4340 	/* Only tcf related quirks below. */
4341 	switch (ret) {
4342 	case TC_ACT_SHOT:
4343 		*drop_reason = tcf_get_drop_reason(skb);
4344 		mini_qdisc_qstats_cpu_drop(miniq);
4345 		break;
4346 	case TC_ACT_OK:
4347 	case TC_ACT_RECLASSIFY:
4348 		skb->tc_index = TC_H_MIN(res.classid);
4349 		break;
4350 	}
4351 #endif /* CONFIG_NET_CLS_ACT */
4352 	return ret;
4353 }
4354 
4355 static DEFINE_STATIC_KEY_FALSE(tcx_needed_key);
4356 
4357 void tcx_inc(void)
4358 {
4359 	static_branch_inc(&tcx_needed_key);
4360 }
4361 
4362 void tcx_dec(void)
4363 {
4364 	static_branch_dec(&tcx_needed_key);
4365 }
4366 
4367 static __always_inline enum tcx_action_base
4368 tcx_run(const struct bpf_mprog_entry *entry, struct sk_buff *skb,
4369 	const bool needs_mac)
4370 {
4371 	const struct bpf_mprog_fp *fp;
4372 	const struct bpf_prog *prog;
4373 	int ret = TCX_NEXT;
4374 
4375 	if (needs_mac)
4376 		__skb_push(skb, skb->mac_len);
4377 	bpf_mprog_foreach_prog(entry, fp, prog) {
4378 		bpf_compute_data_pointers(skb);
4379 		ret = bpf_prog_run(prog, skb);
4380 		if (ret != TCX_NEXT)
4381 			break;
4382 	}
4383 	if (needs_mac)
4384 		__skb_pull(skb, skb->mac_len);
4385 	return tcx_action_code(skb, ret);
4386 }
4387 
4388 static __always_inline struct sk_buff *
4389 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4390 		   struct net_device *orig_dev, bool *another)
4391 {
4392 	struct bpf_mprog_entry *entry = rcu_dereference_bh(skb->dev->tcx_ingress);
4393 	enum skb_drop_reason drop_reason = SKB_DROP_REASON_TC_INGRESS;
4394 	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
4395 	int sch_ret;
4396 
4397 	if (!entry)
4398 		return skb;
4399 
4400 	bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
4401 	if (*pt_prev) {
4402 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
4403 		*pt_prev = NULL;
4404 	}
4405 
4406 	qdisc_skb_cb(skb)->pkt_len = skb->len;
4407 	tcx_set_ingress(skb, true);
4408 
4409 	if (static_branch_unlikely(&tcx_needed_key)) {
4410 		sch_ret = tcx_run(entry, skb, true);
4411 		if (sch_ret != TC_ACT_UNSPEC)
4412 			goto ingress_verdict;
4413 	}
4414 	sch_ret = tc_run(tcx_entry(entry), skb, &drop_reason);
4415 ingress_verdict:
4416 	switch (sch_ret) {
4417 	case TC_ACT_REDIRECT:
4418 		/* skb_mac_header check was done by BPF, so we can safely
4419 		 * push the L2 header back before redirecting to another
4420 		 * netdev.
4421 		 */
4422 		__skb_push(skb, skb->mac_len);
4423 		if (skb_do_redirect(skb) == -EAGAIN) {
4424 			__skb_pull(skb, skb->mac_len);
4425 			*another = true;
4426 			break;
4427 		}
4428 		*ret = NET_RX_SUCCESS;
4429 		bpf_net_ctx_clear(bpf_net_ctx);
4430 		return NULL;
4431 	case TC_ACT_SHOT:
4432 		kfree_skb_reason(skb, drop_reason);
4433 		*ret = NET_RX_DROP;
4434 		bpf_net_ctx_clear(bpf_net_ctx);
4435 		return NULL;
4436 	/* used by tc_run */
4437 	case TC_ACT_STOLEN:
4438 	case TC_ACT_QUEUED:
4439 	case TC_ACT_TRAP:
4440 		consume_skb(skb);
4441 		fallthrough;
4442 	case TC_ACT_CONSUMED:
4443 		*ret = NET_RX_SUCCESS;
4444 		bpf_net_ctx_clear(bpf_net_ctx);
4445 		return NULL;
4446 	}
4447 	bpf_net_ctx_clear(bpf_net_ctx);
4448 
4449 	return skb;
4450 }
4451 
4452 static __always_inline struct sk_buff *
4453 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
4454 {
4455 	struct bpf_mprog_entry *entry = rcu_dereference_bh(dev->tcx_egress);
4456 	enum skb_drop_reason drop_reason = SKB_DROP_REASON_TC_EGRESS;
4457 	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
4458 	int sch_ret;
4459 
4460 	if (!entry)
4461 		return skb;
4462 
4463 	bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
4464 
4465 	/* qdisc_skb_cb(skb)->pkt_len & tcx_set_ingress() was
4466 	 * already set by the caller.
4467 	 */
4468 	if (static_branch_unlikely(&tcx_needed_key)) {
4469 		sch_ret = tcx_run(entry, skb, false);
4470 		if (sch_ret != TC_ACT_UNSPEC)
4471 			goto egress_verdict;
4472 	}
4473 	sch_ret = tc_run(tcx_entry(entry), skb, &drop_reason);
4474 egress_verdict:
4475 	switch (sch_ret) {
4476 	case TC_ACT_REDIRECT:
4477 		/* No need to push/pop skb's mac_header here on egress! */
4478 		skb_do_redirect(skb);
4479 		*ret = NET_XMIT_SUCCESS;
4480 		bpf_net_ctx_clear(bpf_net_ctx);
4481 		return NULL;
4482 	case TC_ACT_SHOT:
4483 		kfree_skb_reason(skb, drop_reason);
4484 		*ret = NET_XMIT_DROP;
4485 		bpf_net_ctx_clear(bpf_net_ctx);
4486 		return NULL;
4487 	/* used by tc_run */
4488 	case TC_ACT_STOLEN:
4489 	case TC_ACT_QUEUED:
4490 	case TC_ACT_TRAP:
4491 		consume_skb(skb);
4492 		fallthrough;
4493 	case TC_ACT_CONSUMED:
4494 		*ret = NET_XMIT_SUCCESS;
4495 		bpf_net_ctx_clear(bpf_net_ctx);
4496 		return NULL;
4497 	}
4498 	bpf_net_ctx_clear(bpf_net_ctx);
4499 
4500 	return skb;
4501 }
4502 #else
4503 static __always_inline struct sk_buff *
4504 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4505 		   struct net_device *orig_dev, bool *another)
4506 {
4507 	return skb;
4508 }
4509 
4510 static __always_inline struct sk_buff *
4511 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
4512 {
4513 	return skb;
4514 }
4515 #endif /* CONFIG_NET_XGRESS */
4516 
4517 #ifdef CONFIG_XPS
4518 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
4519 			       struct xps_dev_maps *dev_maps, unsigned int tci)
4520 {
4521 	int tc = netdev_get_prio_tc_map(dev, skb->priority);
4522 	struct xps_map *map;
4523 	int queue_index = -1;
4524 
4525 	if (tc >= dev_maps->num_tc || tci >= dev_maps->nr_ids)
4526 		return queue_index;
4527 
4528 	tci *= dev_maps->num_tc;
4529 	tci += tc;
4530 
4531 	map = rcu_dereference(dev_maps->attr_map[tci]);
4532 	if (map) {
4533 		if (map->len == 1)
4534 			queue_index = map->queues[0];
4535 		else
4536 			queue_index = map->queues[reciprocal_scale(
4537 						skb_get_hash(skb), map->len)];
4538 		if (unlikely(queue_index >= dev->real_num_tx_queues))
4539 			queue_index = -1;
4540 	}
4541 	return queue_index;
4542 }
4543 #endif
4544 
4545 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
4546 			 struct sk_buff *skb)
4547 {
4548 #ifdef CONFIG_XPS
4549 	struct xps_dev_maps *dev_maps;
4550 	struct sock *sk = skb->sk;
4551 	int queue_index = -1;
4552 
4553 	if (!static_key_false(&xps_needed))
4554 		return -1;
4555 
4556 	rcu_read_lock();
4557 	if (!static_key_false(&xps_rxqs_needed))
4558 		goto get_cpus_map;
4559 
4560 	dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_RXQS]);
4561 	if (dev_maps) {
4562 		int tci = sk_rx_queue_get(sk);
4563 
4564 		if (tci >= 0)
4565 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4566 							  tci);
4567 	}
4568 
4569 get_cpus_map:
4570 	if (queue_index < 0) {
4571 		dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_CPUS]);
4572 		if (dev_maps) {
4573 			unsigned int tci = skb->sender_cpu - 1;
4574 
4575 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4576 							  tci);
4577 		}
4578 	}
4579 	rcu_read_unlock();
4580 
4581 	return queue_index;
4582 #else
4583 	return -1;
4584 #endif
4585 }
4586 
4587 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
4588 		     struct net_device *sb_dev)
4589 {
4590 	return 0;
4591 }
4592 EXPORT_SYMBOL(dev_pick_tx_zero);
4593 
4594 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
4595 		     struct net_device *sb_dev)
4596 {
4597 	struct sock *sk = skb->sk;
4598 	int queue_index = sk_tx_queue_get(sk);
4599 
4600 	sb_dev = sb_dev ? : dev;
4601 
4602 	if (queue_index < 0 || skb->ooo_okay ||
4603 	    queue_index >= dev->real_num_tx_queues) {
4604 		int new_index = get_xps_queue(dev, sb_dev, skb);
4605 
4606 		if (new_index < 0)
4607 			new_index = skb_tx_hash(dev, sb_dev, skb);
4608 
4609 		if (queue_index != new_index && sk &&
4610 		    sk_fullsock(sk) &&
4611 		    rcu_access_pointer(sk->sk_dst_cache))
4612 			sk_tx_queue_set(sk, new_index);
4613 
4614 		queue_index = new_index;
4615 	}
4616 
4617 	return queue_index;
4618 }
4619 EXPORT_SYMBOL(netdev_pick_tx);
4620 
4621 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
4622 					 struct sk_buff *skb,
4623 					 struct net_device *sb_dev)
4624 {
4625 	int queue_index = 0;
4626 
4627 #ifdef CONFIG_XPS
4628 	u32 sender_cpu = skb->sender_cpu - 1;
4629 
4630 	if (sender_cpu >= (u32)NR_CPUS)
4631 		skb->sender_cpu = raw_smp_processor_id() + 1;
4632 #endif
4633 
4634 	if (dev->real_num_tx_queues != 1) {
4635 		const struct net_device_ops *ops = dev->netdev_ops;
4636 
4637 		if (ops->ndo_select_queue)
4638 			queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
4639 		else
4640 			queue_index = netdev_pick_tx(dev, skb, sb_dev);
4641 
4642 		queue_index = netdev_cap_txqueue(dev, queue_index);
4643 	}
4644 
4645 	skb_set_queue_mapping(skb, queue_index);
4646 	return netdev_get_tx_queue(dev, queue_index);
4647 }
4648 
4649 /**
4650  * __dev_queue_xmit() - transmit a buffer
4651  * @skb:	buffer to transmit
4652  * @sb_dev:	suboordinate device used for L2 forwarding offload
4653  *
4654  * Queue a buffer for transmission to a network device. The caller must
4655  * have set the device and priority and built the buffer before calling
4656  * this function. The function can be called from an interrupt.
4657  *
4658  * When calling this method, interrupts MUST be enabled. This is because
4659  * the BH enable code must have IRQs enabled so that it will not deadlock.
4660  *
4661  * Regardless of the return value, the skb is consumed, so it is currently
4662  * difficult to retry a send to this method. (You can bump the ref count
4663  * before sending to hold a reference for retry if you are careful.)
4664  *
4665  * Return:
4666  * * 0				- buffer successfully transmitted
4667  * * positive qdisc return code	- NET_XMIT_DROP etc.
4668  * * negative errno		- other errors
4669  */
4670 int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
4671 {
4672 	struct net_device *dev = skb->dev;
4673 	struct netdev_queue *txq = NULL;
4674 	struct Qdisc *q;
4675 	int rc = -ENOMEM;
4676 	bool again = false;
4677 
4678 	skb_reset_mac_header(skb);
4679 	skb_assert_len(skb);
4680 
4681 	if (unlikely(skb_shinfo(skb)->tx_flags &
4682 		     (SKBTX_SCHED_TSTAMP | SKBTX_BPF)))
4683 		__skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED);
4684 
4685 	/* Disable soft irqs for various locks below. Also
4686 	 * stops preemption for RCU.
4687 	 */
4688 	rcu_read_lock_bh();
4689 
4690 	skb_update_prio(skb);
4691 
4692 	qdisc_pkt_len_init(skb);
4693 	tcx_set_ingress(skb, false);
4694 #ifdef CONFIG_NET_EGRESS
4695 	if (static_branch_unlikely(&egress_needed_key)) {
4696 		if (nf_hook_egress_active()) {
4697 			skb = nf_hook_egress(skb, &rc, dev);
4698 			if (!skb)
4699 				goto out;
4700 		}
4701 
4702 		netdev_xmit_skip_txqueue(false);
4703 
4704 		nf_skip_egress(skb, true);
4705 		skb = sch_handle_egress(skb, &rc, dev);
4706 		if (!skb)
4707 			goto out;
4708 		nf_skip_egress(skb, false);
4709 
4710 		if (netdev_xmit_txqueue_skipped())
4711 			txq = netdev_tx_queue_mapping(dev, skb);
4712 	}
4713 #endif
4714 	/* If device/qdisc don't need skb->dst, release it right now while
4715 	 * its hot in this cpu cache.
4716 	 */
4717 	if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4718 		skb_dst_drop(skb);
4719 	else
4720 		skb_dst_force(skb);
4721 
4722 	if (!txq)
4723 		txq = netdev_core_pick_tx(dev, skb, sb_dev);
4724 
4725 	q = rcu_dereference_bh(txq->qdisc);
4726 
4727 	trace_net_dev_queue(skb);
4728 	if (q->enqueue) {
4729 		rc = __dev_xmit_skb(skb, q, dev, txq);
4730 		goto out;
4731 	}
4732 
4733 	/* The device has no queue. Common case for software devices:
4734 	 * loopback, all the sorts of tunnels...
4735 
4736 	 * Really, it is unlikely that netif_tx_lock protection is necessary
4737 	 * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
4738 	 * counters.)
4739 	 * However, it is possible, that they rely on protection
4740 	 * made by us here.
4741 
4742 	 * Check this and shot the lock. It is not prone from deadlocks.
4743 	 *Either shot noqueue qdisc, it is even simpler 8)
4744 	 */
4745 	if (dev->flags & IFF_UP) {
4746 		int cpu = smp_processor_id(); /* ok because BHs are off */
4747 
4748 		/* Other cpus might concurrently change txq->xmit_lock_owner
4749 		 * to -1 or to their cpu id, but not to our id.
4750 		 */
4751 		if (READ_ONCE(txq->xmit_lock_owner) != cpu) {
4752 			if (dev_xmit_recursion())
4753 				goto recursion_alert;
4754 
4755 			skb = validate_xmit_skb(skb, dev, &again);
4756 			if (!skb)
4757 				goto out;
4758 
4759 			HARD_TX_LOCK(dev, txq, cpu);
4760 
4761 			if (!netif_xmit_stopped(txq)) {
4762 				dev_xmit_recursion_inc();
4763 				skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4764 				dev_xmit_recursion_dec();
4765 				if (dev_xmit_complete(rc)) {
4766 					HARD_TX_UNLOCK(dev, txq);
4767 					goto out;
4768 				}
4769 			}
4770 			HARD_TX_UNLOCK(dev, txq);
4771 			net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4772 					     dev->name);
4773 		} else {
4774 			/* Recursion is detected! It is possible,
4775 			 * unfortunately
4776 			 */
4777 recursion_alert:
4778 			net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4779 					     dev->name);
4780 		}
4781 	}
4782 
4783 	rc = -ENETDOWN;
4784 	rcu_read_unlock_bh();
4785 
4786 	dev_core_stats_tx_dropped_inc(dev);
4787 	kfree_skb_list(skb);
4788 	return rc;
4789 out:
4790 	rcu_read_unlock_bh();
4791 	return rc;
4792 }
4793 EXPORT_SYMBOL(__dev_queue_xmit);
4794 
4795 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4796 {
4797 	struct net_device *dev = skb->dev;
4798 	struct sk_buff *orig_skb = skb;
4799 	struct netdev_queue *txq;
4800 	int ret = NETDEV_TX_BUSY;
4801 	bool again = false;
4802 
4803 	if (unlikely(!netif_running(dev) ||
4804 		     !netif_carrier_ok(dev)))
4805 		goto drop;
4806 
4807 	skb = validate_xmit_skb_list(skb, dev, &again);
4808 	if (skb != orig_skb)
4809 		goto drop;
4810 
4811 	skb_set_queue_mapping(skb, queue_id);
4812 	txq = skb_get_tx_queue(dev, skb);
4813 
4814 	local_bh_disable();
4815 
4816 	dev_xmit_recursion_inc();
4817 	HARD_TX_LOCK(dev, txq, smp_processor_id());
4818 	if (!netif_xmit_frozen_or_drv_stopped(txq))
4819 		ret = netdev_start_xmit(skb, dev, txq, false);
4820 	HARD_TX_UNLOCK(dev, txq);
4821 	dev_xmit_recursion_dec();
4822 
4823 	local_bh_enable();
4824 	return ret;
4825 drop:
4826 	dev_core_stats_tx_dropped_inc(dev);
4827 	kfree_skb_list(skb);
4828 	return NET_XMIT_DROP;
4829 }
4830 EXPORT_SYMBOL(__dev_direct_xmit);
4831 
4832 /*************************************************************************
4833  *			Receiver routines
4834  *************************************************************************/
4835 static DEFINE_PER_CPU(struct task_struct *, backlog_napi);
4836 
4837 int weight_p __read_mostly = 64;           /* old backlog weight */
4838 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
4839 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
4840 
4841 /* Called with irq disabled */
4842 static inline void ____napi_schedule(struct softnet_data *sd,
4843 				     struct napi_struct *napi)
4844 {
4845 	struct task_struct *thread;
4846 
4847 	lockdep_assert_irqs_disabled();
4848 
4849 	if (test_bit(NAPI_STATE_THREADED, &napi->state)) {
4850 		/* Paired with smp_mb__before_atomic() in
4851 		 * napi_enable()/netif_set_threaded().
4852 		 * Use READ_ONCE() to guarantee a complete
4853 		 * read on napi->thread. Only call
4854 		 * wake_up_process() when it's not NULL.
4855 		 */
4856 		thread = READ_ONCE(napi->thread);
4857 		if (thread) {
4858 			if (use_backlog_threads() && thread == raw_cpu_read(backlog_napi))
4859 				goto use_local_napi;
4860 
4861 			set_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
4862 			wake_up_process(thread);
4863 			return;
4864 		}
4865 	}
4866 
4867 use_local_napi:
4868 	DEBUG_NET_WARN_ON_ONCE(!list_empty(&napi->poll_list));
4869 	list_add_tail(&napi->poll_list, &sd->poll_list);
4870 	WRITE_ONCE(napi->list_owner, smp_processor_id());
4871 	/* If not called from net_rx_action()
4872 	 * we have to raise NET_RX_SOFTIRQ.
4873 	 */
4874 	if (!sd->in_net_rx_action)
4875 		raise_softirq_irqoff(NET_RX_SOFTIRQ);
4876 }
4877 
4878 #ifdef CONFIG_RPS
4879 
4880 struct static_key_false rps_needed __read_mostly;
4881 EXPORT_SYMBOL(rps_needed);
4882 struct static_key_false rfs_needed __read_mostly;
4883 EXPORT_SYMBOL(rfs_needed);
4884 
4885 static u32 rfs_slot(u32 hash, const struct rps_dev_flow_table *flow_table)
4886 {
4887 	return hash_32(hash, flow_table->log);
4888 }
4889 
4890 #ifdef CONFIG_RFS_ACCEL
4891 /**
4892  * rps_flow_is_active - check whether the flow is recently active.
4893  * @rflow: Specific flow to check activity.
4894  * @flow_table: per-queue flowtable that @rflow belongs to.
4895  * @cpu: CPU saved in @rflow.
4896  *
4897  * If the CPU has processed many packets since the flow's last activity
4898  * (beyond 10 times the table size), the flow is considered stale.
4899  *
4900  * Return: true if flow was recently active.
4901  */
4902 static bool rps_flow_is_active(struct rps_dev_flow *rflow,
4903 			       struct rps_dev_flow_table *flow_table,
4904 			       unsigned int cpu)
4905 {
4906 	unsigned int flow_last_active;
4907 	unsigned int sd_input_head;
4908 
4909 	if (cpu >= nr_cpu_ids)
4910 		return false;
4911 
4912 	sd_input_head = READ_ONCE(per_cpu(softnet_data, cpu).input_queue_head);
4913 	flow_last_active = READ_ONCE(rflow->last_qtail);
4914 
4915 	return (int)(sd_input_head - flow_last_active) <
4916 		(int)(10 << flow_table->log);
4917 }
4918 #endif
4919 
4920 static struct rps_dev_flow *
4921 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4922 	    struct rps_dev_flow *rflow, u16 next_cpu, u32 hash,
4923 	    u32 flow_id)
4924 {
4925 	if (next_cpu < nr_cpu_ids) {
4926 		u32 head;
4927 #ifdef CONFIG_RFS_ACCEL
4928 		struct netdev_rx_queue *rxqueue;
4929 		struct rps_dev_flow_table *flow_table;
4930 		struct rps_dev_flow *old_rflow;
4931 		struct rps_dev_flow *tmp_rflow;
4932 		unsigned int tmp_cpu;
4933 		u16 rxq_index;
4934 		int rc;
4935 
4936 		/* Should we steer this flow to a different hardware queue? */
4937 		if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4938 		    !(dev->features & NETIF_F_NTUPLE))
4939 			goto out;
4940 		rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4941 		if (rxq_index == skb_get_rx_queue(skb))
4942 			goto out;
4943 
4944 		rxqueue = dev->_rx + rxq_index;
4945 		flow_table = rcu_dereference(rxqueue->rps_flow_table);
4946 		if (!flow_table)
4947 			goto out;
4948 
4949 		tmp_rflow = &flow_table->flows[flow_id];
4950 		tmp_cpu = READ_ONCE(tmp_rflow->cpu);
4951 
4952 		if (READ_ONCE(tmp_rflow->filter) != RPS_NO_FILTER) {
4953 			if (rps_flow_is_active(tmp_rflow, flow_table,
4954 					       tmp_cpu)) {
4955 				if (hash != READ_ONCE(tmp_rflow->hash) ||
4956 				    next_cpu == tmp_cpu)
4957 					goto out;
4958 			}
4959 		}
4960 
4961 		rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4962 							rxq_index, flow_id);
4963 		if (rc < 0)
4964 			goto out;
4965 
4966 		old_rflow = rflow;
4967 		rflow = tmp_rflow;
4968 		WRITE_ONCE(rflow->filter, rc);
4969 		WRITE_ONCE(rflow->hash, hash);
4970 
4971 		if (old_rflow->filter == rc)
4972 			WRITE_ONCE(old_rflow->filter, RPS_NO_FILTER);
4973 	out:
4974 #endif
4975 		head = READ_ONCE(per_cpu(softnet_data, next_cpu).input_queue_head);
4976 		rps_input_queue_tail_save(&rflow->last_qtail, head);
4977 	}
4978 
4979 	WRITE_ONCE(rflow->cpu, next_cpu);
4980 	return rflow;
4981 }
4982 
4983 /*
4984  * get_rps_cpu is called from netif_receive_skb and returns the target
4985  * CPU from the RPS map of the receiving queue for a given skb.
4986  * rcu_read_lock must be held on entry.
4987  */
4988 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4989 		       struct rps_dev_flow **rflowp)
4990 {
4991 	const struct rps_sock_flow_table *sock_flow_table;
4992 	struct netdev_rx_queue *rxqueue = dev->_rx;
4993 	struct rps_dev_flow_table *flow_table;
4994 	struct rps_map *map;
4995 	int cpu = -1;
4996 	u32 flow_id;
4997 	u32 tcpu;
4998 	u32 hash;
4999 
5000 	if (skb_rx_queue_recorded(skb)) {
5001 		u16 index = skb_get_rx_queue(skb);
5002 
5003 		if (unlikely(index >= dev->real_num_rx_queues)) {
5004 			WARN_ONCE(dev->real_num_rx_queues > 1,
5005 				  "%s received packet on queue %u, but number "
5006 				  "of RX queues is %u\n",
5007 				  dev->name, index, dev->real_num_rx_queues);
5008 			goto done;
5009 		}
5010 		rxqueue += index;
5011 	}
5012 
5013 	/* Avoid computing hash if RFS/RPS is not active for this rxqueue */
5014 
5015 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
5016 	map = rcu_dereference(rxqueue->rps_map);
5017 	if (!flow_table && !map)
5018 		goto done;
5019 
5020 	skb_reset_network_header(skb);
5021 	hash = skb_get_hash(skb);
5022 	if (!hash)
5023 		goto done;
5024 
5025 	sock_flow_table = rcu_dereference(net_hotdata.rps_sock_flow_table);
5026 	if (flow_table && sock_flow_table) {
5027 		struct rps_dev_flow *rflow;
5028 		u32 next_cpu;
5029 		u32 ident;
5030 
5031 		/* First check into global flow table if there is a match.
5032 		 * This READ_ONCE() pairs with WRITE_ONCE() from rps_record_sock_flow().
5033 		 */
5034 		ident = READ_ONCE(sock_flow_table->ents[hash & sock_flow_table->mask]);
5035 		if ((ident ^ hash) & ~net_hotdata.rps_cpu_mask)
5036 			goto try_rps;
5037 
5038 		next_cpu = ident & net_hotdata.rps_cpu_mask;
5039 
5040 		/* OK, now we know there is a match,
5041 		 * we can look at the local (per receive queue) flow table
5042 		 */
5043 		flow_id = rfs_slot(hash, flow_table);
5044 		rflow = &flow_table->flows[flow_id];
5045 		tcpu = rflow->cpu;
5046 
5047 		/*
5048 		 * If the desired CPU (where last recvmsg was done) is
5049 		 * different from current CPU (one in the rx-queue flow
5050 		 * table entry), switch if one of the following holds:
5051 		 *   - Current CPU is unset (>= nr_cpu_ids).
5052 		 *   - Current CPU is offline.
5053 		 *   - The current CPU's queue tail has advanced beyond the
5054 		 *     last packet that was enqueued using this table entry.
5055 		 *     This guarantees that all previous packets for the flow
5056 		 *     have been dequeued, thus preserving in order delivery.
5057 		 */
5058 		if (unlikely(tcpu != next_cpu) &&
5059 		    (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
5060 		     ((int)(READ_ONCE(per_cpu(softnet_data, tcpu).input_queue_head) -
5061 		      rflow->last_qtail)) >= 0)) {
5062 			tcpu = next_cpu;
5063 			rflow = set_rps_cpu(dev, skb, rflow, next_cpu, hash,
5064 					    flow_id);
5065 		}
5066 
5067 		if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
5068 			*rflowp = rflow;
5069 			cpu = tcpu;
5070 			goto done;
5071 		}
5072 	}
5073 
5074 try_rps:
5075 
5076 	if (map) {
5077 		tcpu = map->cpus[reciprocal_scale(hash, map->len)];
5078 		if (cpu_online(tcpu)) {
5079 			cpu = tcpu;
5080 			goto done;
5081 		}
5082 	}
5083 
5084 done:
5085 	return cpu;
5086 }
5087 
5088 #ifdef CONFIG_RFS_ACCEL
5089 
5090 /**
5091  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
5092  * @dev: Device on which the filter was set
5093  * @rxq_index: RX queue index
5094  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
5095  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
5096  *
5097  * Drivers that implement ndo_rx_flow_steer() should periodically call
5098  * this function for each installed filter and remove the filters for
5099  * which it returns %true.
5100  */
5101 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
5102 			 u32 flow_id, u16 filter_id)
5103 {
5104 	struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
5105 	struct rps_dev_flow_table *flow_table;
5106 	struct rps_dev_flow *rflow;
5107 	bool expire = true;
5108 
5109 	rcu_read_lock();
5110 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
5111 	if (flow_table && flow_id < (1UL << flow_table->log)) {
5112 		unsigned int cpu;
5113 
5114 		rflow = &flow_table->flows[flow_id];
5115 		cpu = READ_ONCE(rflow->cpu);
5116 		if (READ_ONCE(rflow->filter) == filter_id &&
5117 		    rps_flow_is_active(rflow, flow_table, cpu))
5118 			expire = false;
5119 	}
5120 	rcu_read_unlock();
5121 	return expire;
5122 }
5123 EXPORT_SYMBOL(rps_may_expire_flow);
5124 
5125 #endif /* CONFIG_RFS_ACCEL */
5126 
5127 /* Called from hardirq (IPI) context */
5128 static void rps_trigger_softirq(void *data)
5129 {
5130 	struct softnet_data *sd = data;
5131 
5132 	____napi_schedule(sd, &sd->backlog);
5133 	/* Pairs with READ_ONCE() in softnet_seq_show() */
5134 	WRITE_ONCE(sd->received_rps, sd->received_rps + 1);
5135 }
5136 
5137 #endif /* CONFIG_RPS */
5138 
5139 /* Called from hardirq (IPI) context */
5140 static void trigger_rx_softirq(void *data)
5141 {
5142 	struct softnet_data *sd = data;
5143 
5144 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
5145 	smp_store_release(&sd->defer_ipi_scheduled, 0);
5146 }
5147 
5148 /*
5149  * After we queued a packet into sd->input_pkt_queue,
5150  * we need to make sure this queue is serviced soon.
5151  *
5152  * - If this is another cpu queue, link it to our rps_ipi_list,
5153  *   and make sure we will process rps_ipi_list from net_rx_action().
5154  *
5155  * - If this is our own queue, NAPI schedule our backlog.
5156  *   Note that this also raises NET_RX_SOFTIRQ.
5157  */
5158 static void napi_schedule_rps(struct softnet_data *sd)
5159 {
5160 	struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
5161 
5162 #ifdef CONFIG_RPS
5163 	if (sd != mysd) {
5164 		if (use_backlog_threads()) {
5165 			__napi_schedule_irqoff(&sd->backlog);
5166 			return;
5167 		}
5168 
5169 		sd->rps_ipi_next = mysd->rps_ipi_list;
5170 		mysd->rps_ipi_list = sd;
5171 
5172 		/* If not called from net_rx_action() or napi_threaded_poll()
5173 		 * we have to raise NET_RX_SOFTIRQ.
5174 		 */
5175 		if (!mysd->in_net_rx_action && !mysd->in_napi_threaded_poll)
5176 			__raise_softirq_irqoff(NET_RX_SOFTIRQ);
5177 		return;
5178 	}
5179 #endif /* CONFIG_RPS */
5180 	__napi_schedule_irqoff(&mysd->backlog);
5181 }
5182 
5183 void kick_defer_list_purge(struct softnet_data *sd, unsigned int cpu)
5184 {
5185 	unsigned long flags;
5186 
5187 	if (use_backlog_threads()) {
5188 		backlog_lock_irq_save(sd, &flags);
5189 
5190 		if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state))
5191 			__napi_schedule_irqoff(&sd->backlog);
5192 
5193 		backlog_unlock_irq_restore(sd, &flags);
5194 
5195 	} else if (!cmpxchg(&sd->defer_ipi_scheduled, 0, 1)) {
5196 		smp_call_function_single_async(cpu, &sd->defer_csd);
5197 	}
5198 }
5199 
5200 #ifdef CONFIG_NET_FLOW_LIMIT
5201 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
5202 #endif
5203 
5204 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
5205 {
5206 #ifdef CONFIG_NET_FLOW_LIMIT
5207 	struct sd_flow_limit *fl;
5208 	struct softnet_data *sd;
5209 	unsigned int old_flow, new_flow;
5210 
5211 	if (qlen < (READ_ONCE(net_hotdata.max_backlog) >> 1))
5212 		return false;
5213 
5214 	sd = this_cpu_ptr(&softnet_data);
5215 
5216 	rcu_read_lock();
5217 	fl = rcu_dereference(sd->flow_limit);
5218 	if (fl) {
5219 		new_flow = hash_32(skb_get_hash(skb), fl->log_buckets);
5220 		old_flow = fl->history[fl->history_head];
5221 		fl->history[fl->history_head] = new_flow;
5222 
5223 		fl->history_head++;
5224 		fl->history_head &= FLOW_LIMIT_HISTORY - 1;
5225 
5226 		if (likely(fl->buckets[old_flow]))
5227 			fl->buckets[old_flow]--;
5228 
5229 		if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
5230 			/* Pairs with READ_ONCE() in softnet_seq_show() */
5231 			WRITE_ONCE(fl->count, fl->count + 1);
5232 			rcu_read_unlock();
5233 			return true;
5234 		}
5235 	}
5236 	rcu_read_unlock();
5237 #endif
5238 	return false;
5239 }
5240 
5241 /*
5242  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
5243  * queue (may be a remote CPU queue).
5244  */
5245 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
5246 			      unsigned int *qtail)
5247 {
5248 	enum skb_drop_reason reason;
5249 	struct softnet_data *sd;
5250 	unsigned long flags;
5251 	unsigned int qlen;
5252 	int max_backlog;
5253 	u32 tail;
5254 
5255 	reason = SKB_DROP_REASON_DEV_READY;
5256 	if (!netif_running(skb->dev))
5257 		goto bad_dev;
5258 
5259 	reason = SKB_DROP_REASON_CPU_BACKLOG;
5260 	sd = &per_cpu(softnet_data, cpu);
5261 
5262 	qlen = skb_queue_len_lockless(&sd->input_pkt_queue);
5263 	max_backlog = READ_ONCE(net_hotdata.max_backlog);
5264 	if (unlikely(qlen > max_backlog))
5265 		goto cpu_backlog_drop;
5266 	backlog_lock_irq_save(sd, &flags);
5267 	qlen = skb_queue_len(&sd->input_pkt_queue);
5268 	if (qlen <= max_backlog && !skb_flow_limit(skb, qlen)) {
5269 		if (!qlen) {
5270 			/* Schedule NAPI for backlog device. We can use
5271 			 * non atomic operation as we own the queue lock.
5272 			 */
5273 			if (!__test_and_set_bit(NAPI_STATE_SCHED,
5274 						&sd->backlog.state))
5275 				napi_schedule_rps(sd);
5276 		}
5277 		__skb_queue_tail(&sd->input_pkt_queue, skb);
5278 		tail = rps_input_queue_tail_incr(sd);
5279 		backlog_unlock_irq_restore(sd, &flags);
5280 
5281 		/* save the tail outside of the critical section */
5282 		rps_input_queue_tail_save(qtail, tail);
5283 		return NET_RX_SUCCESS;
5284 	}
5285 
5286 	backlog_unlock_irq_restore(sd, &flags);
5287 
5288 cpu_backlog_drop:
5289 	numa_drop_add(&sd->drop_counters, 1);
5290 bad_dev:
5291 	dev_core_stats_rx_dropped_inc(skb->dev);
5292 	kfree_skb_reason(skb, reason);
5293 	return NET_RX_DROP;
5294 }
5295 
5296 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
5297 {
5298 	struct net_device *dev = skb->dev;
5299 	struct netdev_rx_queue *rxqueue;
5300 
5301 	rxqueue = dev->_rx;
5302 
5303 	if (skb_rx_queue_recorded(skb)) {
5304 		u16 index = skb_get_rx_queue(skb);
5305 
5306 		if (unlikely(index >= dev->real_num_rx_queues)) {
5307 			WARN_ONCE(dev->real_num_rx_queues > 1,
5308 				  "%s received packet on queue %u, but number "
5309 				  "of RX queues is %u\n",
5310 				  dev->name, index, dev->real_num_rx_queues);
5311 
5312 			return rxqueue; /* Return first rxqueue */
5313 		}
5314 		rxqueue += index;
5315 	}
5316 	return rxqueue;
5317 }
5318 
5319 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp,
5320 			     const struct bpf_prog *xdp_prog)
5321 {
5322 	void *orig_data, *orig_data_end, *hard_start;
5323 	struct netdev_rx_queue *rxqueue;
5324 	bool orig_bcast, orig_host;
5325 	u32 mac_len, frame_sz;
5326 	__be16 orig_eth_type;
5327 	struct ethhdr *eth;
5328 	u32 metalen, act;
5329 	int off;
5330 
5331 	/* The XDP program wants to see the packet starting at the MAC
5332 	 * header.
5333 	 */
5334 	mac_len = skb->data - skb_mac_header(skb);
5335 	hard_start = skb->data - skb_headroom(skb);
5336 
5337 	/* SKB "head" area always have tailroom for skb_shared_info */
5338 	frame_sz = (void *)skb_end_pointer(skb) - hard_start;
5339 	frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
5340 
5341 	rxqueue = netif_get_rxqueue(skb);
5342 	xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq);
5343 	xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len,
5344 			 skb_headlen(skb) + mac_len, true);
5345 	if (skb_is_nonlinear(skb)) {
5346 		skb_shinfo(skb)->xdp_frags_size = skb->data_len;
5347 		xdp_buff_set_frags_flag(xdp);
5348 	} else {
5349 		xdp_buff_clear_frags_flag(xdp);
5350 	}
5351 
5352 	orig_data_end = xdp->data_end;
5353 	orig_data = xdp->data;
5354 	eth = (struct ethhdr *)xdp->data;
5355 	orig_host = ether_addr_equal_64bits(eth->h_dest, skb->dev->dev_addr);
5356 	orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
5357 	orig_eth_type = eth->h_proto;
5358 
5359 	act = bpf_prog_run_xdp(xdp_prog, xdp);
5360 
5361 	/* check if bpf_xdp_adjust_head was used */
5362 	off = xdp->data - orig_data;
5363 	if (off) {
5364 		if (off > 0)
5365 			__skb_pull(skb, off);
5366 		else if (off < 0)
5367 			__skb_push(skb, -off);
5368 
5369 		skb->mac_header += off;
5370 		skb_reset_network_header(skb);
5371 	}
5372 
5373 	/* check if bpf_xdp_adjust_tail was used */
5374 	off = xdp->data_end - orig_data_end;
5375 	if (off != 0) {
5376 		skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
5377 		skb->len += off; /* positive on grow, negative on shrink */
5378 	}
5379 
5380 	/* XDP frag metadata (e.g. nr_frags) are updated in eBPF helpers
5381 	 * (e.g. bpf_xdp_adjust_tail), we need to update data_len here.
5382 	 */
5383 	if (xdp_buff_has_frags(xdp))
5384 		skb->data_len = skb_shinfo(skb)->xdp_frags_size;
5385 	else
5386 		skb->data_len = 0;
5387 
5388 	/* check if XDP changed eth hdr such SKB needs update */
5389 	eth = (struct ethhdr *)xdp->data;
5390 	if ((orig_eth_type != eth->h_proto) ||
5391 	    (orig_host != ether_addr_equal_64bits(eth->h_dest,
5392 						  skb->dev->dev_addr)) ||
5393 	    (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
5394 		__skb_push(skb, ETH_HLEN);
5395 		skb->pkt_type = PACKET_HOST;
5396 		skb->protocol = eth_type_trans(skb, skb->dev);
5397 	}
5398 
5399 	/* Redirect/Tx gives L2 packet, code that will reuse skb must __skb_pull
5400 	 * before calling us again on redirect path. We do not call do_redirect
5401 	 * as we leave that up to the caller.
5402 	 *
5403 	 * Caller is responsible for managing lifetime of skb (i.e. calling
5404 	 * kfree_skb in response to actions it cannot handle/XDP_DROP).
5405 	 */
5406 	switch (act) {
5407 	case XDP_REDIRECT:
5408 	case XDP_TX:
5409 		__skb_push(skb, mac_len);
5410 		break;
5411 	case XDP_PASS:
5412 		metalen = xdp->data - xdp->data_meta;
5413 		if (metalen)
5414 			skb_metadata_set(skb, metalen);
5415 		break;
5416 	}
5417 
5418 	return act;
5419 }
5420 
5421 static int
5422 netif_skb_check_for_xdp(struct sk_buff **pskb, const struct bpf_prog *prog)
5423 {
5424 	struct sk_buff *skb = *pskb;
5425 	int err, hroom, troom;
5426 
5427 	local_lock_nested_bh(&system_page_pool.bh_lock);
5428 	err = skb_cow_data_for_xdp(this_cpu_read(system_page_pool.pool), pskb, prog);
5429 	local_unlock_nested_bh(&system_page_pool.bh_lock);
5430 	if (!err)
5431 		return 0;
5432 
5433 	/* In case we have to go down the path and also linearize,
5434 	 * then lets do the pskb_expand_head() work just once here.
5435 	 */
5436 	hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
5437 	troom = skb->tail + skb->data_len - skb->end;
5438 	err = pskb_expand_head(skb,
5439 			       hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
5440 			       troom > 0 ? troom + 128 : 0, GFP_ATOMIC);
5441 	if (err)
5442 		return err;
5443 
5444 	return skb_linearize(skb);
5445 }
5446 
5447 static u32 netif_receive_generic_xdp(struct sk_buff **pskb,
5448 				     struct xdp_buff *xdp,
5449 				     const struct bpf_prog *xdp_prog)
5450 {
5451 	struct sk_buff *skb = *pskb;
5452 	u32 mac_len, act = XDP_DROP;
5453 
5454 	/* Reinjected packets coming from act_mirred or similar should
5455 	 * not get XDP generic processing.
5456 	 */
5457 	if (skb_is_redirected(skb))
5458 		return XDP_PASS;
5459 
5460 	/* XDP packets must have sufficient headroom of XDP_PACKET_HEADROOM
5461 	 * bytes. This is the guarantee that also native XDP provides,
5462 	 * thus we need to do it here as well.
5463 	 */
5464 	mac_len = skb->data - skb_mac_header(skb);
5465 	__skb_push(skb, mac_len);
5466 
5467 	if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
5468 	    skb_headroom(skb) < XDP_PACKET_HEADROOM) {
5469 		if (netif_skb_check_for_xdp(pskb, xdp_prog))
5470 			goto do_drop;
5471 	}
5472 
5473 	__skb_pull(*pskb, mac_len);
5474 
5475 	act = bpf_prog_run_generic_xdp(*pskb, xdp, xdp_prog);
5476 	switch (act) {
5477 	case XDP_REDIRECT:
5478 	case XDP_TX:
5479 	case XDP_PASS:
5480 		break;
5481 	default:
5482 		bpf_warn_invalid_xdp_action((*pskb)->dev, xdp_prog, act);
5483 		fallthrough;
5484 	case XDP_ABORTED:
5485 		trace_xdp_exception((*pskb)->dev, xdp_prog, act);
5486 		fallthrough;
5487 	case XDP_DROP:
5488 	do_drop:
5489 		kfree_skb(*pskb);
5490 		break;
5491 	}
5492 
5493 	return act;
5494 }
5495 
5496 /* When doing generic XDP we have to bypass the qdisc layer and the
5497  * network taps in order to match in-driver-XDP behavior. This also means
5498  * that XDP packets are able to starve other packets going through a qdisc,
5499  * and DDOS attacks will be more effective. In-driver-XDP use dedicated TX
5500  * queues, so they do not have this starvation issue.
5501  */
5502 void generic_xdp_tx(struct sk_buff *skb, const struct bpf_prog *xdp_prog)
5503 {
5504 	struct net_device *dev = skb->dev;
5505 	struct netdev_queue *txq;
5506 	bool free_skb = true;
5507 	int cpu, rc;
5508 
5509 	txq = netdev_core_pick_tx(dev, skb, NULL);
5510 	cpu = smp_processor_id();
5511 	HARD_TX_LOCK(dev, txq, cpu);
5512 	if (!netif_xmit_frozen_or_drv_stopped(txq)) {
5513 		rc = netdev_start_xmit(skb, dev, txq, 0);
5514 		if (dev_xmit_complete(rc))
5515 			free_skb = false;
5516 	}
5517 	HARD_TX_UNLOCK(dev, txq);
5518 	if (free_skb) {
5519 		trace_xdp_exception(dev, xdp_prog, XDP_TX);
5520 		dev_core_stats_tx_dropped_inc(dev);
5521 		kfree_skb(skb);
5522 	}
5523 }
5524 
5525 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
5526 
5527 int do_xdp_generic(const struct bpf_prog *xdp_prog, struct sk_buff **pskb)
5528 {
5529 	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
5530 
5531 	if (xdp_prog) {
5532 		struct xdp_buff xdp;
5533 		u32 act;
5534 		int err;
5535 
5536 		bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
5537 		act = netif_receive_generic_xdp(pskb, &xdp, xdp_prog);
5538 		if (act != XDP_PASS) {
5539 			switch (act) {
5540 			case XDP_REDIRECT:
5541 				err = xdp_do_generic_redirect((*pskb)->dev, *pskb,
5542 							      &xdp, xdp_prog);
5543 				if (err)
5544 					goto out_redir;
5545 				break;
5546 			case XDP_TX:
5547 				generic_xdp_tx(*pskb, xdp_prog);
5548 				break;
5549 			}
5550 			bpf_net_ctx_clear(bpf_net_ctx);
5551 			return XDP_DROP;
5552 		}
5553 		bpf_net_ctx_clear(bpf_net_ctx);
5554 	}
5555 	return XDP_PASS;
5556 out_redir:
5557 	bpf_net_ctx_clear(bpf_net_ctx);
5558 	kfree_skb_reason(*pskb, SKB_DROP_REASON_XDP);
5559 	return XDP_DROP;
5560 }
5561 EXPORT_SYMBOL_GPL(do_xdp_generic);
5562 
5563 static int netif_rx_internal(struct sk_buff *skb)
5564 {
5565 	int ret;
5566 
5567 	net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue), skb);
5568 
5569 	trace_netif_rx(skb);
5570 
5571 #ifdef CONFIG_RPS
5572 	if (static_branch_unlikely(&rps_needed)) {
5573 		struct rps_dev_flow voidflow, *rflow = &voidflow;
5574 		int cpu;
5575 
5576 		rcu_read_lock();
5577 
5578 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
5579 		if (cpu < 0)
5580 			cpu = smp_processor_id();
5581 
5582 		ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5583 
5584 		rcu_read_unlock();
5585 	} else
5586 #endif
5587 	{
5588 		unsigned int qtail;
5589 
5590 		ret = enqueue_to_backlog(skb, smp_processor_id(), &qtail);
5591 	}
5592 	return ret;
5593 }
5594 
5595 /**
5596  *	__netif_rx	-	Slightly optimized version of netif_rx
5597  *	@skb: buffer to post
5598  *
5599  *	This behaves as netif_rx except that it does not disable bottom halves.
5600  *	As a result this function may only be invoked from the interrupt context
5601  *	(either hard or soft interrupt).
5602  */
5603 int __netif_rx(struct sk_buff *skb)
5604 {
5605 	int ret;
5606 
5607 	lockdep_assert_once(hardirq_count() | softirq_count());
5608 
5609 	trace_netif_rx_entry(skb);
5610 	ret = netif_rx_internal(skb);
5611 	trace_netif_rx_exit(ret);
5612 	return ret;
5613 }
5614 EXPORT_SYMBOL(__netif_rx);
5615 
5616 /**
5617  *	netif_rx	-	post buffer to the network code
5618  *	@skb: buffer to post
5619  *
5620  *	This function receives a packet from a device driver and queues it for
5621  *	the upper (protocol) levels to process via the backlog NAPI device. It
5622  *	always succeeds. The buffer may be dropped during processing for
5623  *	congestion control or by the protocol layers.
5624  *	The network buffer is passed via the backlog NAPI device. Modern NIC
5625  *	driver should use NAPI and GRO.
5626  *	This function can used from interrupt and from process context. The
5627  *	caller from process context must not disable interrupts before invoking
5628  *	this function.
5629  *
5630  *	return values:
5631  *	NET_RX_SUCCESS	(no congestion)
5632  *	NET_RX_DROP     (packet was dropped)
5633  *
5634  */
5635 int netif_rx(struct sk_buff *skb)
5636 {
5637 	bool need_bh_off = !(hardirq_count() | softirq_count());
5638 	int ret;
5639 
5640 	if (need_bh_off)
5641 		local_bh_disable();
5642 	trace_netif_rx_entry(skb);
5643 	ret = netif_rx_internal(skb);
5644 	trace_netif_rx_exit(ret);
5645 	if (need_bh_off)
5646 		local_bh_enable();
5647 	return ret;
5648 }
5649 EXPORT_SYMBOL(netif_rx);
5650 
5651 static __latent_entropy void net_tx_action(void)
5652 {
5653 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5654 
5655 	if (sd->completion_queue) {
5656 		struct sk_buff *clist;
5657 
5658 		local_irq_disable();
5659 		clist = sd->completion_queue;
5660 		sd->completion_queue = NULL;
5661 		local_irq_enable();
5662 
5663 		while (clist) {
5664 			struct sk_buff *skb = clist;
5665 
5666 			clist = clist->next;
5667 
5668 			WARN_ON(refcount_read(&skb->users));
5669 			if (likely(get_kfree_skb_cb(skb)->reason == SKB_CONSUMED))
5670 				trace_consume_skb(skb, net_tx_action);
5671 			else
5672 				trace_kfree_skb(skb, net_tx_action,
5673 						get_kfree_skb_cb(skb)->reason, NULL);
5674 
5675 			if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
5676 				__kfree_skb(skb);
5677 			else
5678 				__napi_kfree_skb(skb,
5679 						 get_kfree_skb_cb(skb)->reason);
5680 		}
5681 	}
5682 
5683 	if (sd->output_queue) {
5684 		struct Qdisc *head;
5685 
5686 		local_irq_disable();
5687 		head = sd->output_queue;
5688 		sd->output_queue = NULL;
5689 		sd->output_queue_tailp = &sd->output_queue;
5690 		local_irq_enable();
5691 
5692 		rcu_read_lock();
5693 
5694 		while (head) {
5695 			struct Qdisc *q = head;
5696 			spinlock_t *root_lock = NULL;
5697 
5698 			head = head->next_sched;
5699 
5700 			/* We need to make sure head->next_sched is read
5701 			 * before clearing __QDISC_STATE_SCHED
5702 			 */
5703 			smp_mb__before_atomic();
5704 
5705 			if (!(q->flags & TCQ_F_NOLOCK)) {
5706 				root_lock = qdisc_lock(q);
5707 				spin_lock(root_lock);
5708 			} else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED,
5709 						     &q->state))) {
5710 				/* There is a synchronize_net() between
5711 				 * STATE_DEACTIVATED flag being set and
5712 				 * qdisc_reset()/some_qdisc_is_busy() in
5713 				 * dev_deactivate(), so we can safely bail out
5714 				 * early here to avoid data race between
5715 				 * qdisc_deactivate() and some_qdisc_is_busy()
5716 				 * for lockless qdisc.
5717 				 */
5718 				clear_bit(__QDISC_STATE_SCHED, &q->state);
5719 				continue;
5720 			}
5721 
5722 			clear_bit(__QDISC_STATE_SCHED, &q->state);
5723 			qdisc_run(q);
5724 			if (root_lock)
5725 				spin_unlock(root_lock);
5726 		}
5727 
5728 		rcu_read_unlock();
5729 	}
5730 
5731 	xfrm_dev_backlog(sd);
5732 }
5733 
5734 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
5735 /* This hook is defined here for ATM LANE */
5736 int (*br_fdb_test_addr_hook)(struct net_device *dev,
5737 			     unsigned char *addr) __read_mostly;
5738 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
5739 #endif
5740 
5741 /**
5742  *	netdev_is_rx_handler_busy - check if receive handler is registered
5743  *	@dev: device to check
5744  *
5745  *	Check if a receive handler is already registered for a given device.
5746  *	Return true if there one.
5747  *
5748  *	The caller must hold the rtnl_mutex.
5749  */
5750 bool netdev_is_rx_handler_busy(struct net_device *dev)
5751 {
5752 	ASSERT_RTNL();
5753 	return dev && rtnl_dereference(dev->rx_handler);
5754 }
5755 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
5756 
5757 /**
5758  *	netdev_rx_handler_register - register receive handler
5759  *	@dev: device to register a handler for
5760  *	@rx_handler: receive handler to register
5761  *	@rx_handler_data: data pointer that is used by rx handler
5762  *
5763  *	Register a receive handler for a device. This handler will then be
5764  *	called from __netif_receive_skb. A negative errno code is returned
5765  *	on a failure.
5766  *
5767  *	The caller must hold the rtnl_mutex.
5768  *
5769  *	For a general description of rx_handler, see enum rx_handler_result.
5770  */
5771 int netdev_rx_handler_register(struct net_device *dev,
5772 			       rx_handler_func_t *rx_handler,
5773 			       void *rx_handler_data)
5774 {
5775 	if (netdev_is_rx_handler_busy(dev))
5776 		return -EBUSY;
5777 
5778 	if (dev->priv_flags & IFF_NO_RX_HANDLER)
5779 		return -EINVAL;
5780 
5781 	/* Note: rx_handler_data must be set before rx_handler */
5782 	rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
5783 	rcu_assign_pointer(dev->rx_handler, rx_handler);
5784 
5785 	return 0;
5786 }
5787 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5788 
5789 /**
5790  *	netdev_rx_handler_unregister - unregister receive handler
5791  *	@dev: device to unregister a handler from
5792  *
5793  *	Unregister a receive handler from a device.
5794  *
5795  *	The caller must hold the rtnl_mutex.
5796  */
5797 void netdev_rx_handler_unregister(struct net_device *dev)
5798 {
5799 
5800 	ASSERT_RTNL();
5801 	RCU_INIT_POINTER(dev->rx_handler, NULL);
5802 	/* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5803 	 * section has a guarantee to see a non NULL rx_handler_data
5804 	 * as well.
5805 	 */
5806 	synchronize_net();
5807 	RCU_INIT_POINTER(dev->rx_handler_data, NULL);
5808 }
5809 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5810 
5811 /*
5812  * Limit the use of PFMEMALLOC reserves to those protocols that implement
5813  * the special handling of PFMEMALLOC skbs.
5814  */
5815 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5816 {
5817 	switch (skb->protocol) {
5818 	case htons(ETH_P_ARP):
5819 	case htons(ETH_P_IP):
5820 	case htons(ETH_P_IPV6):
5821 	case htons(ETH_P_8021Q):
5822 	case htons(ETH_P_8021AD):
5823 		return true;
5824 	default:
5825 		return false;
5826 	}
5827 }
5828 
5829 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5830 			     int *ret, struct net_device *orig_dev)
5831 {
5832 	if (nf_hook_ingress_active(skb)) {
5833 		int ingress_retval;
5834 
5835 		if (*pt_prev) {
5836 			*ret = deliver_skb(skb, *pt_prev, orig_dev);
5837 			*pt_prev = NULL;
5838 		}
5839 
5840 		rcu_read_lock();
5841 		ingress_retval = nf_hook_ingress(skb);
5842 		rcu_read_unlock();
5843 		return ingress_retval;
5844 	}
5845 	return 0;
5846 }
5847 
5848 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
5849 				    struct packet_type **ppt_prev)
5850 {
5851 	enum skb_drop_reason drop_reason = SKB_DROP_REASON_UNHANDLED_PROTO;
5852 	struct packet_type *ptype, *pt_prev;
5853 	rx_handler_func_t *rx_handler;
5854 	struct sk_buff *skb = *pskb;
5855 	struct net_device *orig_dev;
5856 	bool deliver_exact = false;
5857 	int ret = NET_RX_DROP;
5858 	__be16 type;
5859 
5860 	net_timestamp_check(!READ_ONCE(net_hotdata.tstamp_prequeue), skb);
5861 
5862 	trace_netif_receive_skb(skb);
5863 
5864 	orig_dev = skb->dev;
5865 
5866 	skb_reset_network_header(skb);
5867 #if !defined(CONFIG_DEBUG_NET)
5868 	/* We plan to no longer reset the transport header here.
5869 	 * Give some time to fuzzers and dev build to catch bugs
5870 	 * in network stacks.
5871 	 */
5872 	if (!skb_transport_header_was_set(skb))
5873 		skb_reset_transport_header(skb);
5874 #endif
5875 	skb_reset_mac_len(skb);
5876 
5877 	pt_prev = NULL;
5878 
5879 another_round:
5880 	skb->skb_iif = skb->dev->ifindex;
5881 
5882 	__this_cpu_inc(softnet_data.processed);
5883 
5884 	if (static_branch_unlikely(&generic_xdp_needed_key)) {
5885 		int ret2;
5886 
5887 		migrate_disable();
5888 		ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog),
5889 				      &skb);
5890 		migrate_enable();
5891 
5892 		if (ret2 != XDP_PASS) {
5893 			ret = NET_RX_DROP;
5894 			goto out;
5895 		}
5896 	}
5897 
5898 	if (eth_type_vlan(skb->protocol)) {
5899 		skb = skb_vlan_untag(skb);
5900 		if (unlikely(!skb))
5901 			goto out;
5902 	}
5903 
5904 	if (skb_skip_tc_classify(skb))
5905 		goto skip_classify;
5906 
5907 	if (pfmemalloc)
5908 		goto skip_taps;
5909 
5910 	list_for_each_entry_rcu(ptype, &dev_net_rcu(skb->dev)->ptype_all,
5911 				list) {
5912 		if (pt_prev)
5913 			ret = deliver_skb(skb, pt_prev, orig_dev);
5914 		pt_prev = ptype;
5915 	}
5916 
5917 	list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5918 		if (pt_prev)
5919 			ret = deliver_skb(skb, pt_prev, orig_dev);
5920 		pt_prev = ptype;
5921 	}
5922 
5923 skip_taps:
5924 #ifdef CONFIG_NET_INGRESS
5925 	if (static_branch_unlikely(&ingress_needed_key)) {
5926 		bool another = false;
5927 
5928 		nf_skip_egress(skb, true);
5929 		skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev,
5930 					 &another);
5931 		if (another)
5932 			goto another_round;
5933 		if (!skb)
5934 			goto out;
5935 
5936 		nf_skip_egress(skb, false);
5937 		if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5938 			goto out;
5939 	}
5940 #endif
5941 	skb_reset_redirect(skb);
5942 skip_classify:
5943 	if (pfmemalloc && !skb_pfmemalloc_protocol(skb)) {
5944 		drop_reason = SKB_DROP_REASON_PFMEMALLOC;
5945 		goto drop;
5946 	}
5947 
5948 	if (skb_vlan_tag_present(skb)) {
5949 		if (pt_prev) {
5950 			ret = deliver_skb(skb, pt_prev, orig_dev);
5951 			pt_prev = NULL;
5952 		}
5953 		if (vlan_do_receive(&skb))
5954 			goto another_round;
5955 		else if (unlikely(!skb))
5956 			goto out;
5957 	}
5958 
5959 	rx_handler = rcu_dereference(skb->dev->rx_handler);
5960 	if (rx_handler) {
5961 		if (pt_prev) {
5962 			ret = deliver_skb(skb, pt_prev, orig_dev);
5963 			pt_prev = NULL;
5964 		}
5965 		switch (rx_handler(&skb)) {
5966 		case RX_HANDLER_CONSUMED:
5967 			ret = NET_RX_SUCCESS;
5968 			goto out;
5969 		case RX_HANDLER_ANOTHER:
5970 			goto another_round;
5971 		case RX_HANDLER_EXACT:
5972 			deliver_exact = true;
5973 			break;
5974 		case RX_HANDLER_PASS:
5975 			break;
5976 		default:
5977 			BUG();
5978 		}
5979 	}
5980 
5981 	if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) {
5982 check_vlan_id:
5983 		if (skb_vlan_tag_get_id(skb)) {
5984 			/* Vlan id is non 0 and vlan_do_receive() above couldn't
5985 			 * find vlan device.
5986 			 */
5987 			skb->pkt_type = PACKET_OTHERHOST;
5988 		} else if (eth_type_vlan(skb->protocol)) {
5989 			/* Outer header is 802.1P with vlan 0, inner header is
5990 			 * 802.1Q or 802.1AD and vlan_do_receive() above could
5991 			 * not find vlan dev for vlan id 0.
5992 			 */
5993 			__vlan_hwaccel_clear_tag(skb);
5994 			skb = skb_vlan_untag(skb);
5995 			if (unlikely(!skb))
5996 				goto out;
5997 			if (vlan_do_receive(&skb))
5998 				/* After stripping off 802.1P header with vlan 0
5999 				 * vlan dev is found for inner header.
6000 				 */
6001 				goto another_round;
6002 			else if (unlikely(!skb))
6003 				goto out;
6004 			else
6005 				/* We have stripped outer 802.1P vlan 0 header.
6006 				 * But could not find vlan dev.
6007 				 * check again for vlan id to set OTHERHOST.
6008 				 */
6009 				goto check_vlan_id;
6010 		}
6011 		/* Note: we might in the future use prio bits
6012 		 * and set skb->priority like in vlan_do_receive()
6013 		 * For the time being, just ignore Priority Code Point
6014 		 */
6015 		__vlan_hwaccel_clear_tag(skb);
6016 	}
6017 
6018 	type = skb->protocol;
6019 
6020 	/* deliver only exact match when indicated */
6021 	if (likely(!deliver_exact)) {
6022 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
6023 				       &ptype_base[ntohs(type) &
6024 						   PTYPE_HASH_MASK]);
6025 
6026 		/* orig_dev and skb->dev could belong to different netns;
6027 		 * Even in such case we need to traverse only the list
6028 		 * coming from skb->dev, as the ptype owner (packet socket)
6029 		 * will use dev_net(skb->dev) to do namespace filtering.
6030 		 */
6031 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
6032 				       &dev_net_rcu(skb->dev)->ptype_specific);
6033 	}
6034 
6035 	deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
6036 			       &orig_dev->ptype_specific);
6037 
6038 	if (unlikely(skb->dev != orig_dev)) {
6039 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
6040 				       &skb->dev->ptype_specific);
6041 	}
6042 
6043 	if (pt_prev) {
6044 		*ppt_prev = pt_prev;
6045 	} else {
6046 drop:
6047 		if (!deliver_exact)
6048 			dev_core_stats_rx_dropped_inc(skb->dev);
6049 		else
6050 			dev_core_stats_rx_nohandler_inc(skb->dev);
6051 
6052 		kfree_skb_reason(skb, drop_reason);
6053 		/* Jamal, now you will not able to escape explaining
6054 		 * me how you were going to use this. :-)
6055 		 */
6056 		ret = NET_RX_DROP;
6057 	}
6058 
6059 out:
6060 	/* The invariant here is that if *ppt_prev is not NULL
6061 	 * then skb should also be non-NULL.
6062 	 *
6063 	 * Apparently *ppt_prev assignment above holds this invariant due to
6064 	 * skb dereferencing near it.
6065 	 */
6066 	*pskb = skb;
6067 	return ret;
6068 }
6069 
6070 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
6071 {
6072 	struct net_device *orig_dev = skb->dev;
6073 	struct packet_type *pt_prev = NULL;
6074 	int ret;
6075 
6076 	ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
6077 	if (pt_prev)
6078 		ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
6079 					 skb->dev, pt_prev, orig_dev);
6080 	return ret;
6081 }
6082 
6083 /**
6084  *	netif_receive_skb_core - special purpose version of netif_receive_skb
6085  *	@skb: buffer to process
6086  *
6087  *	More direct receive version of netif_receive_skb().  It should
6088  *	only be used by callers that have a need to skip RPS and Generic XDP.
6089  *	Caller must also take care of handling if ``(page_is_)pfmemalloc``.
6090  *
6091  *	This function may only be called from softirq context and interrupts
6092  *	should be enabled.
6093  *
6094  *	Return values (usually ignored):
6095  *	NET_RX_SUCCESS: no congestion
6096  *	NET_RX_DROP: packet was dropped
6097  */
6098 int netif_receive_skb_core(struct sk_buff *skb)
6099 {
6100 	int ret;
6101 
6102 	rcu_read_lock();
6103 	ret = __netif_receive_skb_one_core(skb, false);
6104 	rcu_read_unlock();
6105 
6106 	return ret;
6107 }
6108 EXPORT_SYMBOL(netif_receive_skb_core);
6109 
6110 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
6111 						  struct packet_type *pt_prev,
6112 						  struct net_device *orig_dev)
6113 {
6114 	struct sk_buff *skb, *next;
6115 
6116 	if (!pt_prev)
6117 		return;
6118 	if (list_empty(head))
6119 		return;
6120 	if (pt_prev->list_func != NULL)
6121 		INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
6122 				   ip_list_rcv, head, pt_prev, orig_dev);
6123 	else
6124 		list_for_each_entry_safe(skb, next, head, list) {
6125 			skb_list_del_init(skb);
6126 			pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
6127 		}
6128 }
6129 
6130 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
6131 {
6132 	/* Fast-path assumptions:
6133 	 * - There is no RX handler.
6134 	 * - Only one packet_type matches.
6135 	 * If either of these fails, we will end up doing some per-packet
6136 	 * processing in-line, then handling the 'last ptype' for the whole
6137 	 * sublist.  This can't cause out-of-order delivery to any single ptype,
6138 	 * because the 'last ptype' must be constant across the sublist, and all
6139 	 * other ptypes are handled per-packet.
6140 	 */
6141 	/* Current (common) ptype of sublist */
6142 	struct packet_type *pt_curr = NULL;
6143 	/* Current (common) orig_dev of sublist */
6144 	struct net_device *od_curr = NULL;
6145 	struct sk_buff *skb, *next;
6146 	LIST_HEAD(sublist);
6147 
6148 	list_for_each_entry_safe(skb, next, head, list) {
6149 		struct net_device *orig_dev = skb->dev;
6150 		struct packet_type *pt_prev = NULL;
6151 
6152 		skb_list_del_init(skb);
6153 		__netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
6154 		if (!pt_prev)
6155 			continue;
6156 		if (pt_curr != pt_prev || od_curr != orig_dev) {
6157 			/* dispatch old sublist */
6158 			__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
6159 			/* start new sublist */
6160 			INIT_LIST_HEAD(&sublist);
6161 			pt_curr = pt_prev;
6162 			od_curr = orig_dev;
6163 		}
6164 		list_add_tail(&skb->list, &sublist);
6165 	}
6166 
6167 	/* dispatch final sublist */
6168 	__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
6169 }
6170 
6171 static int __netif_receive_skb(struct sk_buff *skb)
6172 {
6173 	int ret;
6174 
6175 	if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
6176 		unsigned int noreclaim_flag;
6177 
6178 		/*
6179 		 * PFMEMALLOC skbs are special, they should
6180 		 * - be delivered to SOCK_MEMALLOC sockets only
6181 		 * - stay away from userspace
6182 		 * - have bounded memory usage
6183 		 *
6184 		 * Use PF_MEMALLOC as this saves us from propagating the allocation
6185 		 * context down to all allocation sites.
6186 		 */
6187 		noreclaim_flag = memalloc_noreclaim_save();
6188 		ret = __netif_receive_skb_one_core(skb, true);
6189 		memalloc_noreclaim_restore(noreclaim_flag);
6190 	} else
6191 		ret = __netif_receive_skb_one_core(skb, false);
6192 
6193 	return ret;
6194 }
6195 
6196 static void __netif_receive_skb_list(struct list_head *head)
6197 {
6198 	unsigned long noreclaim_flag = 0;
6199 	struct sk_buff *skb, *next;
6200 	bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
6201 
6202 	list_for_each_entry_safe(skb, next, head, list) {
6203 		if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
6204 			struct list_head sublist;
6205 
6206 			/* Handle the previous sublist */
6207 			list_cut_before(&sublist, head, &skb->list);
6208 			if (!list_empty(&sublist))
6209 				__netif_receive_skb_list_core(&sublist, pfmemalloc);
6210 			pfmemalloc = !pfmemalloc;
6211 			/* See comments in __netif_receive_skb */
6212 			if (pfmemalloc)
6213 				noreclaim_flag = memalloc_noreclaim_save();
6214 			else
6215 				memalloc_noreclaim_restore(noreclaim_flag);
6216 		}
6217 	}
6218 	/* Handle the remaining sublist */
6219 	if (!list_empty(head))
6220 		__netif_receive_skb_list_core(head, pfmemalloc);
6221 	/* Restore pflags */
6222 	if (pfmemalloc)
6223 		memalloc_noreclaim_restore(noreclaim_flag);
6224 }
6225 
6226 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
6227 {
6228 	struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
6229 	struct bpf_prog *new = xdp->prog;
6230 	int ret = 0;
6231 
6232 	switch (xdp->command) {
6233 	case XDP_SETUP_PROG:
6234 		rcu_assign_pointer(dev->xdp_prog, new);
6235 		if (old)
6236 			bpf_prog_put(old);
6237 
6238 		if (old && !new) {
6239 			static_branch_dec(&generic_xdp_needed_key);
6240 		} else if (new && !old) {
6241 			static_branch_inc(&generic_xdp_needed_key);
6242 			netif_disable_lro(dev);
6243 			dev_disable_gro_hw(dev);
6244 		}
6245 		break;
6246 
6247 	default:
6248 		ret = -EINVAL;
6249 		break;
6250 	}
6251 
6252 	return ret;
6253 }
6254 
6255 static int netif_receive_skb_internal(struct sk_buff *skb)
6256 {
6257 	int ret;
6258 
6259 	net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue), skb);
6260 
6261 	if (skb_defer_rx_timestamp(skb))
6262 		return NET_RX_SUCCESS;
6263 
6264 	rcu_read_lock();
6265 #ifdef CONFIG_RPS
6266 	if (static_branch_unlikely(&rps_needed)) {
6267 		struct rps_dev_flow voidflow, *rflow = &voidflow;
6268 		int cpu = get_rps_cpu(skb->dev, skb, &rflow);
6269 
6270 		if (cpu >= 0) {
6271 			ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
6272 			rcu_read_unlock();
6273 			return ret;
6274 		}
6275 	}
6276 #endif
6277 	ret = __netif_receive_skb(skb);
6278 	rcu_read_unlock();
6279 	return ret;
6280 }
6281 
6282 void netif_receive_skb_list_internal(struct list_head *head)
6283 {
6284 	struct sk_buff *skb, *next;
6285 	LIST_HEAD(sublist);
6286 
6287 	list_for_each_entry_safe(skb, next, head, list) {
6288 		net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue),
6289 				    skb);
6290 		skb_list_del_init(skb);
6291 		if (!skb_defer_rx_timestamp(skb))
6292 			list_add_tail(&skb->list, &sublist);
6293 	}
6294 	list_splice_init(&sublist, head);
6295 
6296 	rcu_read_lock();
6297 #ifdef CONFIG_RPS
6298 	if (static_branch_unlikely(&rps_needed)) {
6299 		list_for_each_entry_safe(skb, next, head, list) {
6300 			struct rps_dev_flow voidflow, *rflow = &voidflow;
6301 			int cpu = get_rps_cpu(skb->dev, skb, &rflow);
6302 
6303 			if (cpu >= 0) {
6304 				/* Will be handled, remove from list */
6305 				skb_list_del_init(skb);
6306 				enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
6307 			}
6308 		}
6309 	}
6310 #endif
6311 	__netif_receive_skb_list(head);
6312 	rcu_read_unlock();
6313 }
6314 
6315 /**
6316  *	netif_receive_skb - process receive buffer from network
6317  *	@skb: buffer to process
6318  *
6319  *	netif_receive_skb() is the main receive data processing function.
6320  *	It always succeeds. The buffer may be dropped during processing
6321  *	for congestion control or by the protocol layers.
6322  *
6323  *	This function may only be called from softirq context and interrupts
6324  *	should be enabled.
6325  *
6326  *	Return values (usually ignored):
6327  *	NET_RX_SUCCESS: no congestion
6328  *	NET_RX_DROP: packet was dropped
6329  */
6330 int netif_receive_skb(struct sk_buff *skb)
6331 {
6332 	int ret;
6333 
6334 	trace_netif_receive_skb_entry(skb);
6335 
6336 	ret = netif_receive_skb_internal(skb);
6337 	trace_netif_receive_skb_exit(ret);
6338 
6339 	return ret;
6340 }
6341 EXPORT_SYMBOL(netif_receive_skb);
6342 
6343 /**
6344  *	netif_receive_skb_list - process many receive buffers from network
6345  *	@head: list of skbs to process.
6346  *
6347  *	Since return value of netif_receive_skb() is normally ignored, and
6348  *	wouldn't be meaningful for a list, this function returns void.
6349  *
6350  *	This function may only be called from softirq context and interrupts
6351  *	should be enabled.
6352  */
6353 void netif_receive_skb_list(struct list_head *head)
6354 {
6355 	struct sk_buff *skb;
6356 
6357 	if (list_empty(head))
6358 		return;
6359 	if (trace_netif_receive_skb_list_entry_enabled()) {
6360 		list_for_each_entry(skb, head, list)
6361 			trace_netif_receive_skb_list_entry(skb);
6362 	}
6363 	netif_receive_skb_list_internal(head);
6364 	trace_netif_receive_skb_list_exit(0);
6365 }
6366 EXPORT_SYMBOL(netif_receive_skb_list);
6367 
6368 /* Network device is going away, flush any packets still pending */
6369 static void flush_backlog(struct work_struct *work)
6370 {
6371 	struct sk_buff *skb, *tmp;
6372 	struct sk_buff_head list;
6373 	struct softnet_data *sd;
6374 
6375 	__skb_queue_head_init(&list);
6376 	local_bh_disable();
6377 	sd = this_cpu_ptr(&softnet_data);
6378 
6379 	backlog_lock_irq_disable(sd);
6380 	skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
6381 		if (READ_ONCE(skb->dev->reg_state) == NETREG_UNREGISTERING) {
6382 			__skb_unlink(skb, &sd->input_pkt_queue);
6383 			__skb_queue_tail(&list, skb);
6384 			rps_input_queue_head_incr(sd);
6385 		}
6386 	}
6387 	backlog_unlock_irq_enable(sd);
6388 
6389 	local_lock_nested_bh(&softnet_data.process_queue_bh_lock);
6390 	skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
6391 		if (READ_ONCE(skb->dev->reg_state) == NETREG_UNREGISTERING) {
6392 			__skb_unlink(skb, &sd->process_queue);
6393 			__skb_queue_tail(&list, skb);
6394 			rps_input_queue_head_incr(sd);
6395 		}
6396 	}
6397 	local_unlock_nested_bh(&softnet_data.process_queue_bh_lock);
6398 	local_bh_enable();
6399 
6400 	__skb_queue_purge_reason(&list, SKB_DROP_REASON_DEV_READY);
6401 }
6402 
6403 static bool flush_required(int cpu)
6404 {
6405 #if IS_ENABLED(CONFIG_RPS)
6406 	struct softnet_data *sd = &per_cpu(softnet_data, cpu);
6407 	bool do_flush;
6408 
6409 	backlog_lock_irq_disable(sd);
6410 
6411 	/* as insertion into process_queue happens with the rps lock held,
6412 	 * process_queue access may race only with dequeue
6413 	 */
6414 	do_flush = !skb_queue_empty(&sd->input_pkt_queue) ||
6415 		   !skb_queue_empty_lockless(&sd->process_queue);
6416 	backlog_unlock_irq_enable(sd);
6417 
6418 	return do_flush;
6419 #endif
6420 	/* without RPS we can't safely check input_pkt_queue: during a
6421 	 * concurrent remote skb_queue_splice() we can detect as empty both
6422 	 * input_pkt_queue and process_queue even if the latter could end-up
6423 	 * containing a lot of packets.
6424 	 */
6425 	return true;
6426 }
6427 
6428 struct flush_backlogs {
6429 	cpumask_t		flush_cpus;
6430 	struct work_struct	w[];
6431 };
6432 
6433 static struct flush_backlogs *flush_backlogs_alloc(void)
6434 {
6435 	return kmalloc(struct_size_t(struct flush_backlogs, w, nr_cpu_ids),
6436 		       GFP_KERNEL);
6437 }
6438 
6439 static struct flush_backlogs *flush_backlogs_fallback;
6440 static DEFINE_MUTEX(flush_backlogs_mutex);
6441 
6442 static void flush_all_backlogs(void)
6443 {
6444 	struct flush_backlogs *ptr = flush_backlogs_alloc();
6445 	unsigned int cpu;
6446 
6447 	if (!ptr) {
6448 		mutex_lock(&flush_backlogs_mutex);
6449 		ptr = flush_backlogs_fallback;
6450 	}
6451 	cpumask_clear(&ptr->flush_cpus);
6452 
6453 	cpus_read_lock();
6454 
6455 	for_each_online_cpu(cpu) {
6456 		if (flush_required(cpu)) {
6457 			INIT_WORK(&ptr->w[cpu], flush_backlog);
6458 			queue_work_on(cpu, system_highpri_wq, &ptr->w[cpu]);
6459 			__cpumask_set_cpu(cpu, &ptr->flush_cpus);
6460 		}
6461 	}
6462 
6463 	/* we can have in flight packet[s] on the cpus we are not flushing,
6464 	 * synchronize_net() in unregister_netdevice_many() will take care of
6465 	 * them.
6466 	 */
6467 	for_each_cpu(cpu, &ptr->flush_cpus)
6468 		flush_work(&ptr->w[cpu]);
6469 
6470 	cpus_read_unlock();
6471 
6472 	if (ptr != flush_backlogs_fallback)
6473 		kfree(ptr);
6474 	else
6475 		mutex_unlock(&flush_backlogs_mutex);
6476 }
6477 
6478 static void net_rps_send_ipi(struct softnet_data *remsd)
6479 {
6480 #ifdef CONFIG_RPS
6481 	while (remsd) {
6482 		struct softnet_data *next = remsd->rps_ipi_next;
6483 
6484 		if (cpu_online(remsd->cpu))
6485 			smp_call_function_single_async(remsd->cpu, &remsd->csd);
6486 		remsd = next;
6487 	}
6488 #endif
6489 }
6490 
6491 /*
6492  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
6493  * Note: called with local irq disabled, but exits with local irq enabled.
6494  */
6495 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
6496 {
6497 #ifdef CONFIG_RPS
6498 	struct softnet_data *remsd = sd->rps_ipi_list;
6499 
6500 	if (!use_backlog_threads() && remsd) {
6501 		sd->rps_ipi_list = NULL;
6502 
6503 		local_irq_enable();
6504 
6505 		/* Send pending IPI's to kick RPS processing on remote cpus. */
6506 		net_rps_send_ipi(remsd);
6507 	} else
6508 #endif
6509 		local_irq_enable();
6510 }
6511 
6512 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
6513 {
6514 #ifdef CONFIG_RPS
6515 	return !use_backlog_threads() && sd->rps_ipi_list;
6516 #else
6517 	return false;
6518 #endif
6519 }
6520 
6521 static int process_backlog(struct napi_struct *napi, int quota)
6522 {
6523 	struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
6524 	bool again = true;
6525 	int work = 0;
6526 
6527 	/* Check if we have pending ipi, its better to send them now,
6528 	 * not waiting net_rx_action() end.
6529 	 */
6530 	if (sd_has_rps_ipi_waiting(sd)) {
6531 		local_irq_disable();
6532 		net_rps_action_and_irq_enable(sd);
6533 	}
6534 
6535 	napi->weight = READ_ONCE(net_hotdata.dev_rx_weight);
6536 	while (again) {
6537 		struct sk_buff *skb;
6538 
6539 		local_lock_nested_bh(&softnet_data.process_queue_bh_lock);
6540 		while ((skb = __skb_dequeue(&sd->process_queue))) {
6541 			local_unlock_nested_bh(&softnet_data.process_queue_bh_lock);
6542 			rcu_read_lock();
6543 			__netif_receive_skb(skb);
6544 			rcu_read_unlock();
6545 			if (++work >= quota) {
6546 				rps_input_queue_head_add(sd, work);
6547 				return work;
6548 			}
6549 
6550 			local_lock_nested_bh(&softnet_data.process_queue_bh_lock);
6551 		}
6552 		local_unlock_nested_bh(&softnet_data.process_queue_bh_lock);
6553 
6554 		backlog_lock_irq_disable(sd);
6555 		if (skb_queue_empty(&sd->input_pkt_queue)) {
6556 			/*
6557 			 * Inline a custom version of __napi_complete().
6558 			 * only current cpu owns and manipulates this napi,
6559 			 * and NAPI_STATE_SCHED is the only possible flag set
6560 			 * on backlog.
6561 			 * We can use a plain write instead of clear_bit(),
6562 			 * and we dont need an smp_mb() memory barrier.
6563 			 */
6564 			napi->state &= NAPIF_STATE_THREADED;
6565 			again = false;
6566 		} else {
6567 			local_lock_nested_bh(&softnet_data.process_queue_bh_lock);
6568 			skb_queue_splice_tail_init(&sd->input_pkt_queue,
6569 						   &sd->process_queue);
6570 			local_unlock_nested_bh(&softnet_data.process_queue_bh_lock);
6571 		}
6572 		backlog_unlock_irq_enable(sd);
6573 	}
6574 
6575 	if (work)
6576 		rps_input_queue_head_add(sd, work);
6577 	return work;
6578 }
6579 
6580 /**
6581  * __napi_schedule - schedule for receive
6582  * @n: entry to schedule
6583  *
6584  * The entry's receive function will be scheduled to run.
6585  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
6586  */
6587 void __napi_schedule(struct napi_struct *n)
6588 {
6589 	unsigned long flags;
6590 
6591 	local_irq_save(flags);
6592 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
6593 	local_irq_restore(flags);
6594 }
6595 EXPORT_SYMBOL(__napi_schedule);
6596 
6597 /**
6598  *	napi_schedule_prep - check if napi can be scheduled
6599  *	@n: napi context
6600  *
6601  * Test if NAPI routine is already running, and if not mark
6602  * it as running.  This is used as a condition variable to
6603  * insure only one NAPI poll instance runs.  We also make
6604  * sure there is no pending NAPI disable.
6605  */
6606 bool napi_schedule_prep(struct napi_struct *n)
6607 {
6608 	unsigned long new, val = READ_ONCE(n->state);
6609 
6610 	do {
6611 		if (unlikely(val & NAPIF_STATE_DISABLE))
6612 			return false;
6613 		new = val | NAPIF_STATE_SCHED;
6614 
6615 		/* Sets STATE_MISSED bit if STATE_SCHED was already set
6616 		 * This was suggested by Alexander Duyck, as compiler
6617 		 * emits better code than :
6618 		 * if (val & NAPIF_STATE_SCHED)
6619 		 *     new |= NAPIF_STATE_MISSED;
6620 		 */
6621 		new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6622 						   NAPIF_STATE_MISSED;
6623 	} while (!try_cmpxchg(&n->state, &val, new));
6624 
6625 	return !(val & NAPIF_STATE_SCHED);
6626 }
6627 EXPORT_SYMBOL(napi_schedule_prep);
6628 
6629 /**
6630  * __napi_schedule_irqoff - schedule for receive
6631  * @n: entry to schedule
6632  *
6633  * Variant of __napi_schedule() assuming hard irqs are masked.
6634  *
6635  * On PREEMPT_RT enabled kernels this maps to __napi_schedule()
6636  * because the interrupt disabled assumption might not be true
6637  * due to force-threaded interrupts and spinlock substitution.
6638  */
6639 void __napi_schedule_irqoff(struct napi_struct *n)
6640 {
6641 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6642 		____napi_schedule(this_cpu_ptr(&softnet_data), n);
6643 	else
6644 		__napi_schedule(n);
6645 }
6646 EXPORT_SYMBOL(__napi_schedule_irqoff);
6647 
6648 bool napi_complete_done(struct napi_struct *n, int work_done)
6649 {
6650 	unsigned long flags, val, new, timeout = 0;
6651 	bool ret = true;
6652 
6653 	/*
6654 	 * 1) Don't let napi dequeue from the cpu poll list
6655 	 *    just in case its running on a different cpu.
6656 	 * 2) If we are busy polling, do nothing here, we have
6657 	 *    the guarantee we will be called later.
6658 	 */
6659 	if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6660 				 NAPIF_STATE_IN_BUSY_POLL)))
6661 		return false;
6662 
6663 	if (work_done) {
6664 		if (n->gro.bitmask)
6665 			timeout = napi_get_gro_flush_timeout(n);
6666 		n->defer_hard_irqs_count = napi_get_defer_hard_irqs(n);
6667 	}
6668 	if (n->defer_hard_irqs_count > 0) {
6669 		n->defer_hard_irqs_count--;
6670 		timeout = napi_get_gro_flush_timeout(n);
6671 		if (timeout)
6672 			ret = false;
6673 	}
6674 
6675 	/*
6676 	 * When the NAPI instance uses a timeout and keeps postponing
6677 	 * it, we need to bound somehow the time packets are kept in
6678 	 * the GRO layer.
6679 	 */
6680 	gro_flush_normal(&n->gro, !!timeout);
6681 
6682 	if (unlikely(!list_empty(&n->poll_list))) {
6683 		/* If n->poll_list is not empty, we need to mask irqs */
6684 		local_irq_save(flags);
6685 		list_del_init(&n->poll_list);
6686 		local_irq_restore(flags);
6687 	}
6688 	WRITE_ONCE(n->list_owner, -1);
6689 
6690 	val = READ_ONCE(n->state);
6691 	do {
6692 		WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6693 
6694 		new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED |
6695 			      NAPIF_STATE_SCHED_THREADED |
6696 			      NAPIF_STATE_PREFER_BUSY_POLL);
6697 
6698 		/* If STATE_MISSED was set, leave STATE_SCHED set,
6699 		 * because we will call napi->poll() one more time.
6700 		 * This C code was suggested by Alexander Duyck to help gcc.
6701 		 */
6702 		new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6703 						    NAPIF_STATE_SCHED;
6704 	} while (!try_cmpxchg(&n->state, &val, new));
6705 
6706 	if (unlikely(val & NAPIF_STATE_MISSED)) {
6707 		__napi_schedule(n);
6708 		return false;
6709 	}
6710 
6711 	if (timeout)
6712 		hrtimer_start(&n->timer, ns_to_ktime(timeout),
6713 			      HRTIMER_MODE_REL_PINNED);
6714 	return ret;
6715 }
6716 EXPORT_SYMBOL(napi_complete_done);
6717 
6718 static void skb_defer_free_flush(struct softnet_data *sd)
6719 {
6720 	struct sk_buff *skb, *next;
6721 
6722 	/* Paired with WRITE_ONCE() in skb_attempt_defer_free() */
6723 	if (!READ_ONCE(sd->defer_list))
6724 		return;
6725 
6726 	spin_lock(&sd->defer_lock);
6727 	skb = sd->defer_list;
6728 	sd->defer_list = NULL;
6729 	sd->defer_count = 0;
6730 	spin_unlock(&sd->defer_lock);
6731 
6732 	while (skb != NULL) {
6733 		next = skb->next;
6734 		napi_consume_skb(skb, 1);
6735 		skb = next;
6736 	}
6737 }
6738 
6739 #if defined(CONFIG_NET_RX_BUSY_POLL)
6740 
6741 static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule)
6742 {
6743 	if (!skip_schedule) {
6744 		gro_normal_list(&napi->gro);
6745 		__napi_schedule(napi);
6746 		return;
6747 	}
6748 
6749 	/* Flush too old packets. If HZ < 1000, flush all packets */
6750 	gro_flush_normal(&napi->gro, HZ >= 1000);
6751 
6752 	clear_bit(NAPI_STATE_SCHED, &napi->state);
6753 }
6754 
6755 enum {
6756 	NAPI_F_PREFER_BUSY_POLL	= 1,
6757 	NAPI_F_END_ON_RESCHED	= 2,
6758 };
6759 
6760 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock,
6761 			   unsigned flags, u16 budget)
6762 {
6763 	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
6764 	bool skip_schedule = false;
6765 	unsigned long timeout;
6766 	int rc;
6767 
6768 	/* Busy polling means there is a high chance device driver hard irq
6769 	 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6770 	 * set in napi_schedule_prep().
6771 	 * Since we are about to call napi->poll() once more, we can safely
6772 	 * clear NAPI_STATE_MISSED.
6773 	 *
6774 	 * Note: x86 could use a single "lock and ..." instruction
6775 	 * to perform these two clear_bit()
6776 	 */
6777 	clear_bit(NAPI_STATE_MISSED, &napi->state);
6778 	clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6779 
6780 	local_bh_disable();
6781 	bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
6782 
6783 	if (flags & NAPI_F_PREFER_BUSY_POLL) {
6784 		napi->defer_hard_irqs_count = napi_get_defer_hard_irqs(napi);
6785 		timeout = napi_get_gro_flush_timeout(napi);
6786 		if (napi->defer_hard_irqs_count && timeout) {
6787 			hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED);
6788 			skip_schedule = true;
6789 		}
6790 	}
6791 
6792 	/* All we really want here is to re-enable device interrupts.
6793 	 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6794 	 */
6795 	rc = napi->poll(napi, budget);
6796 	/* We can't gro_normal_list() here, because napi->poll() might have
6797 	 * rearmed the napi (napi_complete_done()) in which case it could
6798 	 * already be running on another CPU.
6799 	 */
6800 	trace_napi_poll(napi, rc, budget);
6801 	netpoll_poll_unlock(have_poll_lock);
6802 	if (rc == budget)
6803 		__busy_poll_stop(napi, skip_schedule);
6804 	bpf_net_ctx_clear(bpf_net_ctx);
6805 	local_bh_enable();
6806 }
6807 
6808 static void __napi_busy_loop(unsigned int napi_id,
6809 		      bool (*loop_end)(void *, unsigned long),
6810 		      void *loop_end_arg, unsigned flags, u16 budget)
6811 {
6812 	unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6813 	int (*napi_poll)(struct napi_struct *napi, int budget);
6814 	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
6815 	void *have_poll_lock = NULL;
6816 	struct napi_struct *napi;
6817 
6818 	WARN_ON_ONCE(!rcu_read_lock_held());
6819 
6820 restart:
6821 	napi_poll = NULL;
6822 
6823 	napi = napi_by_id(napi_id);
6824 	if (!napi)
6825 		return;
6826 
6827 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6828 		preempt_disable();
6829 	for (;;) {
6830 		int work = 0;
6831 
6832 		local_bh_disable();
6833 		bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
6834 		if (!napi_poll) {
6835 			unsigned long val = READ_ONCE(napi->state);
6836 
6837 			/* If multiple threads are competing for this napi,
6838 			 * we avoid dirtying napi->state as much as we can.
6839 			 */
6840 			if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6841 				   NAPIF_STATE_IN_BUSY_POLL)) {
6842 				if (flags & NAPI_F_PREFER_BUSY_POLL)
6843 					set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6844 				goto count;
6845 			}
6846 			if (cmpxchg(&napi->state, val,
6847 				    val | NAPIF_STATE_IN_BUSY_POLL |
6848 					  NAPIF_STATE_SCHED) != val) {
6849 				if (flags & NAPI_F_PREFER_BUSY_POLL)
6850 					set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6851 				goto count;
6852 			}
6853 			have_poll_lock = netpoll_poll_lock(napi);
6854 			napi_poll = napi->poll;
6855 		}
6856 		work = napi_poll(napi, budget);
6857 		trace_napi_poll(napi, work, budget);
6858 		gro_normal_list(&napi->gro);
6859 count:
6860 		if (work > 0)
6861 			__NET_ADD_STATS(dev_net(napi->dev),
6862 					LINUX_MIB_BUSYPOLLRXPACKETS, work);
6863 		skb_defer_free_flush(this_cpu_ptr(&softnet_data));
6864 		bpf_net_ctx_clear(bpf_net_ctx);
6865 		local_bh_enable();
6866 
6867 		if (!loop_end || loop_end(loop_end_arg, start_time))
6868 			break;
6869 
6870 		if (unlikely(need_resched())) {
6871 			if (flags & NAPI_F_END_ON_RESCHED)
6872 				break;
6873 			if (napi_poll)
6874 				busy_poll_stop(napi, have_poll_lock, flags, budget);
6875 			if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6876 				preempt_enable();
6877 			rcu_read_unlock();
6878 			cond_resched();
6879 			rcu_read_lock();
6880 			if (loop_end(loop_end_arg, start_time))
6881 				return;
6882 			goto restart;
6883 		}
6884 		cpu_relax();
6885 	}
6886 	if (napi_poll)
6887 		busy_poll_stop(napi, have_poll_lock, flags, budget);
6888 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6889 		preempt_enable();
6890 }
6891 
6892 void napi_busy_loop_rcu(unsigned int napi_id,
6893 			bool (*loop_end)(void *, unsigned long),
6894 			void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6895 {
6896 	unsigned flags = NAPI_F_END_ON_RESCHED;
6897 
6898 	if (prefer_busy_poll)
6899 		flags |= NAPI_F_PREFER_BUSY_POLL;
6900 
6901 	__napi_busy_loop(napi_id, loop_end, loop_end_arg, flags, budget);
6902 }
6903 
6904 void napi_busy_loop(unsigned int napi_id,
6905 		    bool (*loop_end)(void *, unsigned long),
6906 		    void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6907 {
6908 	unsigned flags = prefer_busy_poll ? NAPI_F_PREFER_BUSY_POLL : 0;
6909 
6910 	rcu_read_lock();
6911 	__napi_busy_loop(napi_id, loop_end, loop_end_arg, flags, budget);
6912 	rcu_read_unlock();
6913 }
6914 EXPORT_SYMBOL(napi_busy_loop);
6915 
6916 void napi_suspend_irqs(unsigned int napi_id)
6917 {
6918 	struct napi_struct *napi;
6919 
6920 	rcu_read_lock();
6921 	napi = napi_by_id(napi_id);
6922 	if (napi) {
6923 		unsigned long timeout = napi_get_irq_suspend_timeout(napi);
6924 
6925 		if (timeout)
6926 			hrtimer_start(&napi->timer, ns_to_ktime(timeout),
6927 				      HRTIMER_MODE_REL_PINNED);
6928 	}
6929 	rcu_read_unlock();
6930 }
6931 
6932 void napi_resume_irqs(unsigned int napi_id)
6933 {
6934 	struct napi_struct *napi;
6935 
6936 	rcu_read_lock();
6937 	napi = napi_by_id(napi_id);
6938 	if (napi) {
6939 		/* If irq_suspend_timeout is set to 0 between the call to
6940 		 * napi_suspend_irqs and now, the original value still
6941 		 * determines the safety timeout as intended and napi_watchdog
6942 		 * will resume irq processing.
6943 		 */
6944 		if (napi_get_irq_suspend_timeout(napi)) {
6945 			local_bh_disable();
6946 			napi_schedule(napi);
6947 			local_bh_enable();
6948 		}
6949 	}
6950 	rcu_read_unlock();
6951 }
6952 
6953 #endif /* CONFIG_NET_RX_BUSY_POLL */
6954 
6955 static void __napi_hash_add_with_id(struct napi_struct *napi,
6956 				    unsigned int napi_id)
6957 {
6958 	napi->gro.cached_napi_id = napi_id;
6959 
6960 	WRITE_ONCE(napi->napi_id, napi_id);
6961 	hlist_add_head_rcu(&napi->napi_hash_node,
6962 			   &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6963 }
6964 
6965 static void napi_hash_add_with_id(struct napi_struct *napi,
6966 				  unsigned int napi_id)
6967 {
6968 	unsigned long flags;
6969 
6970 	spin_lock_irqsave(&napi_hash_lock, flags);
6971 	WARN_ON_ONCE(napi_by_id(napi_id));
6972 	__napi_hash_add_with_id(napi, napi_id);
6973 	spin_unlock_irqrestore(&napi_hash_lock, flags);
6974 }
6975 
6976 static void napi_hash_add(struct napi_struct *napi)
6977 {
6978 	unsigned long flags;
6979 
6980 	if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state))
6981 		return;
6982 
6983 	spin_lock_irqsave(&napi_hash_lock, flags);
6984 
6985 	/* 0..NR_CPUS range is reserved for sender_cpu use */
6986 	do {
6987 		if (unlikely(!napi_id_valid(++napi_gen_id)))
6988 			napi_gen_id = MIN_NAPI_ID;
6989 	} while (napi_by_id(napi_gen_id));
6990 
6991 	__napi_hash_add_with_id(napi, napi_gen_id);
6992 
6993 	spin_unlock_irqrestore(&napi_hash_lock, flags);
6994 }
6995 
6996 /* Warning : caller is responsible to make sure rcu grace period
6997  * is respected before freeing memory containing @napi
6998  */
6999 static void napi_hash_del(struct napi_struct *napi)
7000 {
7001 	unsigned long flags;
7002 
7003 	spin_lock_irqsave(&napi_hash_lock, flags);
7004 
7005 	hlist_del_init_rcu(&napi->napi_hash_node);
7006 
7007 	spin_unlock_irqrestore(&napi_hash_lock, flags);
7008 }
7009 
7010 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
7011 {
7012 	struct napi_struct *napi;
7013 
7014 	napi = container_of(timer, struct napi_struct, timer);
7015 
7016 	/* Note : we use a relaxed variant of napi_schedule_prep() not setting
7017 	 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
7018 	 */
7019 	if (!napi_disable_pending(napi) &&
7020 	    !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) {
7021 		clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
7022 		__napi_schedule_irqoff(napi);
7023 	}
7024 
7025 	return HRTIMER_NORESTART;
7026 }
7027 
7028 static void napi_stop_kthread(struct napi_struct *napi)
7029 {
7030 	unsigned long val, new;
7031 
7032 	/* Wait until the napi STATE_THREADED is unset. */
7033 	while (true) {
7034 		val = READ_ONCE(napi->state);
7035 
7036 		/* If napi kthread own this napi or the napi is idle,
7037 		 * STATE_THREADED can be unset here.
7038 		 */
7039 		if ((val & NAPIF_STATE_SCHED_THREADED) ||
7040 		    !(val & NAPIF_STATE_SCHED)) {
7041 			new = val & (~NAPIF_STATE_THREADED);
7042 		} else {
7043 			msleep(20);
7044 			continue;
7045 		}
7046 
7047 		if (try_cmpxchg(&napi->state, &val, new))
7048 			break;
7049 	}
7050 
7051 	/* Once STATE_THREADED is unset, wait for SCHED_THREADED to be unset by
7052 	 * the kthread.
7053 	 */
7054 	while (true) {
7055 		if (!test_bit(NAPI_STATE_SCHED_THREADED, &napi->state))
7056 			break;
7057 
7058 		msleep(20);
7059 	}
7060 
7061 	kthread_stop(napi->thread);
7062 	napi->thread = NULL;
7063 }
7064 
7065 int napi_set_threaded(struct napi_struct *napi,
7066 		      enum netdev_napi_threaded threaded)
7067 {
7068 	if (threaded) {
7069 		if (!napi->thread) {
7070 			int err = napi_kthread_create(napi);
7071 
7072 			if (err)
7073 				return err;
7074 		}
7075 	}
7076 
7077 	if (napi->config)
7078 		napi->config->threaded = threaded;
7079 
7080 	/* Setting/unsetting threaded mode on a napi might not immediately
7081 	 * take effect, if the current napi instance is actively being
7082 	 * polled. In this case, the switch between threaded mode and
7083 	 * softirq mode will happen in the next round of napi_schedule().
7084 	 * This should not cause hiccups/stalls to the live traffic.
7085 	 */
7086 	if (!threaded && napi->thread) {
7087 		napi_stop_kthread(napi);
7088 	} else {
7089 		/* Make sure kthread is created before THREADED bit is set. */
7090 		smp_mb__before_atomic();
7091 		assign_bit(NAPI_STATE_THREADED, &napi->state, threaded);
7092 	}
7093 
7094 	return 0;
7095 }
7096 
7097 int netif_set_threaded(struct net_device *dev,
7098 		       enum netdev_napi_threaded threaded)
7099 {
7100 	struct napi_struct *napi;
7101 	int i, err = 0;
7102 
7103 	netdev_assert_locked_or_invisible(dev);
7104 
7105 	if (threaded) {
7106 		list_for_each_entry(napi, &dev->napi_list, dev_list) {
7107 			if (!napi->thread) {
7108 				err = napi_kthread_create(napi);
7109 				if (err) {
7110 					threaded = NETDEV_NAPI_THREADED_DISABLED;
7111 					break;
7112 				}
7113 			}
7114 		}
7115 	}
7116 
7117 	WRITE_ONCE(dev->threaded, threaded);
7118 
7119 	/* The error should not occur as the kthreads are already created. */
7120 	list_for_each_entry(napi, &dev->napi_list, dev_list)
7121 		WARN_ON_ONCE(napi_set_threaded(napi, threaded));
7122 
7123 	/* Override the config for all NAPIs even if currently not listed */
7124 	for (i = 0; i < dev->num_napi_configs; i++)
7125 		dev->napi_config[i].threaded = threaded;
7126 
7127 	return err;
7128 }
7129 
7130 /**
7131  * netif_threaded_enable() - enable threaded NAPIs
7132  * @dev: net_device instance
7133  *
7134  * Enable threaded mode for the NAPI instances of the device. This may be useful
7135  * for devices where multiple NAPI instances get scheduled by a single
7136  * interrupt. Threaded NAPI allows moving the NAPI processing to cores other
7137  * than the core where IRQ is mapped.
7138  *
7139  * This function should be called before @dev is registered.
7140  */
7141 void netif_threaded_enable(struct net_device *dev)
7142 {
7143 	WARN_ON_ONCE(netif_set_threaded(dev, NETDEV_NAPI_THREADED_ENABLED));
7144 }
7145 EXPORT_SYMBOL(netif_threaded_enable);
7146 
7147 /**
7148  * netif_queue_set_napi - Associate queue with the napi
7149  * @dev: device to which NAPI and queue belong
7150  * @queue_index: Index of queue
7151  * @type: queue type as RX or TX
7152  * @napi: NAPI context, pass NULL to clear previously set NAPI
7153  *
7154  * Set queue with its corresponding napi context. This should be done after
7155  * registering the NAPI handler for the queue-vector and the queues have been
7156  * mapped to the corresponding interrupt vector.
7157  */
7158 void netif_queue_set_napi(struct net_device *dev, unsigned int queue_index,
7159 			  enum netdev_queue_type type, struct napi_struct *napi)
7160 {
7161 	struct netdev_rx_queue *rxq;
7162 	struct netdev_queue *txq;
7163 
7164 	if (WARN_ON_ONCE(napi && !napi->dev))
7165 		return;
7166 	netdev_ops_assert_locked_or_invisible(dev);
7167 
7168 	switch (type) {
7169 	case NETDEV_QUEUE_TYPE_RX:
7170 		rxq = __netif_get_rx_queue(dev, queue_index);
7171 		rxq->napi = napi;
7172 		return;
7173 	case NETDEV_QUEUE_TYPE_TX:
7174 		txq = netdev_get_tx_queue(dev, queue_index);
7175 		txq->napi = napi;
7176 		return;
7177 	default:
7178 		return;
7179 	}
7180 }
7181 EXPORT_SYMBOL(netif_queue_set_napi);
7182 
7183 static void
7184 netif_napi_irq_notify(struct irq_affinity_notify *notify,
7185 		      const cpumask_t *mask)
7186 {
7187 	struct napi_struct *napi =
7188 		container_of(notify, struct napi_struct, notify);
7189 #ifdef CONFIG_RFS_ACCEL
7190 	struct cpu_rmap *rmap = napi->dev->rx_cpu_rmap;
7191 	int err;
7192 #endif
7193 
7194 	if (napi->config && napi->dev->irq_affinity_auto)
7195 		cpumask_copy(&napi->config->affinity_mask, mask);
7196 
7197 #ifdef CONFIG_RFS_ACCEL
7198 	if (napi->dev->rx_cpu_rmap_auto) {
7199 		err = cpu_rmap_update(rmap, napi->napi_rmap_idx, mask);
7200 		if (err)
7201 			netdev_warn(napi->dev, "RMAP update failed (%d)\n",
7202 				    err);
7203 	}
7204 #endif
7205 }
7206 
7207 #ifdef CONFIG_RFS_ACCEL
7208 static void netif_napi_affinity_release(struct kref *ref)
7209 {
7210 	struct napi_struct *napi =
7211 		container_of(ref, struct napi_struct, notify.kref);
7212 	struct cpu_rmap *rmap = napi->dev->rx_cpu_rmap;
7213 
7214 	netdev_assert_locked(napi->dev);
7215 	WARN_ON(test_and_clear_bit(NAPI_STATE_HAS_NOTIFIER,
7216 				   &napi->state));
7217 
7218 	if (!napi->dev->rx_cpu_rmap_auto)
7219 		return;
7220 	rmap->obj[napi->napi_rmap_idx] = NULL;
7221 	napi->napi_rmap_idx = -1;
7222 	cpu_rmap_put(rmap);
7223 }
7224 
7225 int netif_enable_cpu_rmap(struct net_device *dev, unsigned int num_irqs)
7226 {
7227 	if (dev->rx_cpu_rmap_auto)
7228 		return 0;
7229 
7230 	dev->rx_cpu_rmap = alloc_irq_cpu_rmap(num_irqs);
7231 	if (!dev->rx_cpu_rmap)
7232 		return -ENOMEM;
7233 
7234 	dev->rx_cpu_rmap_auto = true;
7235 	return 0;
7236 }
7237 EXPORT_SYMBOL(netif_enable_cpu_rmap);
7238 
7239 static void netif_del_cpu_rmap(struct net_device *dev)
7240 {
7241 	struct cpu_rmap *rmap = dev->rx_cpu_rmap;
7242 
7243 	if (!dev->rx_cpu_rmap_auto)
7244 		return;
7245 
7246 	/* Free the rmap */
7247 	cpu_rmap_put(rmap);
7248 	dev->rx_cpu_rmap = NULL;
7249 	dev->rx_cpu_rmap_auto = false;
7250 }
7251 
7252 #else
7253 static void netif_napi_affinity_release(struct kref *ref)
7254 {
7255 }
7256 
7257 int netif_enable_cpu_rmap(struct net_device *dev, unsigned int num_irqs)
7258 {
7259 	return 0;
7260 }
7261 EXPORT_SYMBOL(netif_enable_cpu_rmap);
7262 
7263 static void netif_del_cpu_rmap(struct net_device *dev)
7264 {
7265 }
7266 #endif
7267 
7268 void netif_set_affinity_auto(struct net_device *dev)
7269 {
7270 	unsigned int i, maxqs, numa;
7271 
7272 	maxqs = max(dev->num_tx_queues, dev->num_rx_queues);
7273 	numa = dev_to_node(&dev->dev);
7274 
7275 	for (i = 0; i < maxqs; i++)
7276 		cpumask_set_cpu(cpumask_local_spread(i, numa),
7277 				&dev->napi_config[i].affinity_mask);
7278 
7279 	dev->irq_affinity_auto = true;
7280 }
7281 EXPORT_SYMBOL(netif_set_affinity_auto);
7282 
7283 void netif_napi_set_irq_locked(struct napi_struct *napi, int irq)
7284 {
7285 	int rc;
7286 
7287 	netdev_assert_locked_or_invisible(napi->dev);
7288 
7289 	if (napi->irq == irq)
7290 		return;
7291 
7292 	/* Remove existing resources */
7293 	if (test_and_clear_bit(NAPI_STATE_HAS_NOTIFIER, &napi->state))
7294 		irq_set_affinity_notifier(napi->irq, NULL);
7295 
7296 	napi->irq = irq;
7297 	if (irq < 0 ||
7298 	    (!napi->dev->rx_cpu_rmap_auto && !napi->dev->irq_affinity_auto))
7299 		return;
7300 
7301 	/* Abort for buggy drivers */
7302 	if (napi->dev->irq_affinity_auto && WARN_ON_ONCE(!napi->config))
7303 		return;
7304 
7305 #ifdef CONFIG_RFS_ACCEL
7306 	if (napi->dev->rx_cpu_rmap_auto) {
7307 		rc = cpu_rmap_add(napi->dev->rx_cpu_rmap, napi);
7308 		if (rc < 0)
7309 			return;
7310 
7311 		cpu_rmap_get(napi->dev->rx_cpu_rmap);
7312 		napi->napi_rmap_idx = rc;
7313 	}
7314 #endif
7315 
7316 	/* Use core IRQ notifier */
7317 	napi->notify.notify = netif_napi_irq_notify;
7318 	napi->notify.release = netif_napi_affinity_release;
7319 	rc = irq_set_affinity_notifier(irq, &napi->notify);
7320 	if (rc) {
7321 		netdev_warn(napi->dev, "Unable to set IRQ notifier (%d)\n",
7322 			    rc);
7323 		goto put_rmap;
7324 	}
7325 
7326 	set_bit(NAPI_STATE_HAS_NOTIFIER, &napi->state);
7327 	return;
7328 
7329 put_rmap:
7330 #ifdef CONFIG_RFS_ACCEL
7331 	if (napi->dev->rx_cpu_rmap_auto) {
7332 		napi->dev->rx_cpu_rmap->obj[napi->napi_rmap_idx] = NULL;
7333 		cpu_rmap_put(napi->dev->rx_cpu_rmap);
7334 		napi->napi_rmap_idx = -1;
7335 	}
7336 #endif
7337 	napi->notify.notify = NULL;
7338 	napi->notify.release = NULL;
7339 }
7340 EXPORT_SYMBOL(netif_napi_set_irq_locked);
7341 
7342 static void napi_restore_config(struct napi_struct *n)
7343 {
7344 	n->defer_hard_irqs = n->config->defer_hard_irqs;
7345 	n->gro_flush_timeout = n->config->gro_flush_timeout;
7346 	n->irq_suspend_timeout = n->config->irq_suspend_timeout;
7347 
7348 	if (n->dev->irq_affinity_auto &&
7349 	    test_bit(NAPI_STATE_HAS_NOTIFIER, &n->state))
7350 		irq_set_affinity(n->irq, &n->config->affinity_mask);
7351 
7352 	/* a NAPI ID might be stored in the config, if so use it. if not, use
7353 	 * napi_hash_add to generate one for us.
7354 	 */
7355 	if (n->config->napi_id) {
7356 		napi_hash_add_with_id(n, n->config->napi_id);
7357 	} else {
7358 		napi_hash_add(n);
7359 		n->config->napi_id = n->napi_id;
7360 	}
7361 
7362 	WARN_ON_ONCE(napi_set_threaded(n, n->config->threaded));
7363 }
7364 
7365 static void napi_save_config(struct napi_struct *n)
7366 {
7367 	n->config->defer_hard_irqs = n->defer_hard_irqs;
7368 	n->config->gro_flush_timeout = n->gro_flush_timeout;
7369 	n->config->irq_suspend_timeout = n->irq_suspend_timeout;
7370 	napi_hash_del(n);
7371 }
7372 
7373 /* Netlink wants the NAPI list to be sorted by ID, if adding a NAPI which will
7374  * inherit an existing ID try to insert it at the right position.
7375  */
7376 static void
7377 netif_napi_dev_list_add(struct net_device *dev, struct napi_struct *napi)
7378 {
7379 	unsigned int new_id, pos_id;
7380 	struct list_head *higher;
7381 	struct napi_struct *pos;
7382 
7383 	new_id = UINT_MAX;
7384 	if (napi->config && napi->config->napi_id)
7385 		new_id = napi->config->napi_id;
7386 
7387 	higher = &dev->napi_list;
7388 	list_for_each_entry(pos, &dev->napi_list, dev_list) {
7389 		if (napi_id_valid(pos->napi_id))
7390 			pos_id = pos->napi_id;
7391 		else if (pos->config)
7392 			pos_id = pos->config->napi_id;
7393 		else
7394 			pos_id = UINT_MAX;
7395 
7396 		if (pos_id <= new_id)
7397 			break;
7398 		higher = &pos->dev_list;
7399 	}
7400 	list_add_rcu(&napi->dev_list, higher); /* adds after higher */
7401 }
7402 
7403 /* Double check that napi_get_frags() allocates skbs with
7404  * skb->head being backed by slab, not a page fragment.
7405  * This is to make sure bug fixed in 3226b158e67c
7406  * ("net: avoid 32 x truesize under-estimation for tiny skbs")
7407  * does not accidentally come back.
7408  */
7409 static void napi_get_frags_check(struct napi_struct *napi)
7410 {
7411 	struct sk_buff *skb;
7412 
7413 	local_bh_disable();
7414 	skb = napi_get_frags(napi);
7415 	WARN_ON_ONCE(skb && skb->head_frag);
7416 	napi_free_frags(napi);
7417 	local_bh_enable();
7418 }
7419 
7420 void netif_napi_add_weight_locked(struct net_device *dev,
7421 				  struct napi_struct *napi,
7422 				  int (*poll)(struct napi_struct *, int),
7423 				  int weight)
7424 {
7425 	netdev_assert_locked(dev);
7426 	if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state)))
7427 		return;
7428 
7429 	INIT_LIST_HEAD(&napi->poll_list);
7430 	INIT_HLIST_NODE(&napi->napi_hash_node);
7431 	hrtimer_setup(&napi->timer, napi_watchdog, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
7432 	gro_init(&napi->gro);
7433 	napi->skb = NULL;
7434 	napi->poll = poll;
7435 	if (weight > NAPI_POLL_WEIGHT)
7436 		netdev_err_once(dev, "%s() called with weight %d\n", __func__,
7437 				weight);
7438 	napi->weight = weight;
7439 	napi->dev = dev;
7440 #ifdef CONFIG_NETPOLL
7441 	napi->poll_owner = -1;
7442 #endif
7443 	napi->list_owner = -1;
7444 	set_bit(NAPI_STATE_SCHED, &napi->state);
7445 	set_bit(NAPI_STATE_NPSVC, &napi->state);
7446 	netif_napi_dev_list_add(dev, napi);
7447 
7448 	/* default settings from sysfs are applied to all NAPIs. any per-NAPI
7449 	 * configuration will be loaded in napi_enable
7450 	 */
7451 	napi_set_defer_hard_irqs(napi, READ_ONCE(dev->napi_defer_hard_irqs));
7452 	napi_set_gro_flush_timeout(napi, READ_ONCE(dev->gro_flush_timeout));
7453 
7454 	napi_get_frags_check(napi);
7455 	/* Create kthread for this napi if dev->threaded is set.
7456 	 * Clear dev->threaded if kthread creation failed so that
7457 	 * threaded mode will not be enabled in napi_enable().
7458 	 */
7459 	if (napi_get_threaded_config(dev, napi))
7460 		if (napi_kthread_create(napi))
7461 			dev->threaded = NETDEV_NAPI_THREADED_DISABLED;
7462 	netif_napi_set_irq_locked(napi, -1);
7463 }
7464 EXPORT_SYMBOL(netif_napi_add_weight_locked);
7465 
7466 void napi_disable_locked(struct napi_struct *n)
7467 {
7468 	unsigned long val, new;
7469 
7470 	might_sleep();
7471 	netdev_assert_locked(n->dev);
7472 
7473 	set_bit(NAPI_STATE_DISABLE, &n->state);
7474 
7475 	val = READ_ONCE(n->state);
7476 	do {
7477 		while (val & (NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC)) {
7478 			usleep_range(20, 200);
7479 			val = READ_ONCE(n->state);
7480 		}
7481 
7482 		new = val | NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC;
7483 		new &= ~(NAPIF_STATE_THREADED | NAPIF_STATE_PREFER_BUSY_POLL);
7484 	} while (!try_cmpxchg(&n->state, &val, new));
7485 
7486 	hrtimer_cancel(&n->timer);
7487 
7488 	if (n->config)
7489 		napi_save_config(n);
7490 	else
7491 		napi_hash_del(n);
7492 
7493 	clear_bit(NAPI_STATE_DISABLE, &n->state);
7494 }
7495 EXPORT_SYMBOL(napi_disable_locked);
7496 
7497 /**
7498  * napi_disable() - prevent NAPI from scheduling
7499  * @n: NAPI context
7500  *
7501  * Stop NAPI from being scheduled on this context.
7502  * Waits till any outstanding processing completes.
7503  * Takes netdev_lock() for associated net_device.
7504  */
7505 void napi_disable(struct napi_struct *n)
7506 {
7507 	netdev_lock(n->dev);
7508 	napi_disable_locked(n);
7509 	netdev_unlock(n->dev);
7510 }
7511 EXPORT_SYMBOL(napi_disable);
7512 
7513 void napi_enable_locked(struct napi_struct *n)
7514 {
7515 	unsigned long new, val = READ_ONCE(n->state);
7516 
7517 	if (n->config)
7518 		napi_restore_config(n);
7519 	else
7520 		napi_hash_add(n);
7521 
7522 	do {
7523 		BUG_ON(!test_bit(NAPI_STATE_SCHED, &val));
7524 
7525 		new = val & ~(NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC);
7526 		if (n->dev->threaded && n->thread)
7527 			new |= NAPIF_STATE_THREADED;
7528 	} while (!try_cmpxchg(&n->state, &val, new));
7529 }
7530 EXPORT_SYMBOL(napi_enable_locked);
7531 
7532 /**
7533  * napi_enable() - enable NAPI scheduling
7534  * @n: NAPI context
7535  *
7536  * Enable scheduling of a NAPI instance.
7537  * Must be paired with napi_disable().
7538  * Takes netdev_lock() for associated net_device.
7539  */
7540 void napi_enable(struct napi_struct *n)
7541 {
7542 	netdev_lock(n->dev);
7543 	napi_enable_locked(n);
7544 	netdev_unlock(n->dev);
7545 }
7546 EXPORT_SYMBOL(napi_enable);
7547 
7548 /* Must be called in process context */
7549 void __netif_napi_del_locked(struct napi_struct *napi)
7550 {
7551 	netdev_assert_locked(napi->dev);
7552 
7553 	if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state))
7554 		return;
7555 
7556 	/* Make sure NAPI is disabled (or was never enabled). */
7557 	WARN_ON(!test_bit(NAPI_STATE_SCHED, &napi->state));
7558 
7559 	if (test_and_clear_bit(NAPI_STATE_HAS_NOTIFIER, &napi->state))
7560 		irq_set_affinity_notifier(napi->irq, NULL);
7561 
7562 	if (napi->config) {
7563 		napi->index = -1;
7564 		napi->config = NULL;
7565 	}
7566 
7567 	list_del_rcu(&napi->dev_list);
7568 	napi_free_frags(napi);
7569 
7570 	gro_cleanup(&napi->gro);
7571 
7572 	if (napi->thread) {
7573 		kthread_stop(napi->thread);
7574 		napi->thread = NULL;
7575 	}
7576 }
7577 EXPORT_SYMBOL(__netif_napi_del_locked);
7578 
7579 static int __napi_poll(struct napi_struct *n, bool *repoll)
7580 {
7581 	int work, weight;
7582 
7583 	weight = n->weight;
7584 
7585 	/* This NAPI_STATE_SCHED test is for avoiding a race
7586 	 * with netpoll's poll_napi().  Only the entity which
7587 	 * obtains the lock and sees NAPI_STATE_SCHED set will
7588 	 * actually make the ->poll() call.  Therefore we avoid
7589 	 * accidentally calling ->poll() when NAPI is not scheduled.
7590 	 */
7591 	work = 0;
7592 	if (napi_is_scheduled(n)) {
7593 		work = n->poll(n, weight);
7594 		trace_napi_poll(n, work, weight);
7595 
7596 		xdp_do_check_flushed(n);
7597 	}
7598 
7599 	if (unlikely(work > weight))
7600 		netdev_err_once(n->dev, "NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
7601 				n->poll, work, weight);
7602 
7603 	if (likely(work < weight))
7604 		return work;
7605 
7606 	/* Drivers must not modify the NAPI state if they
7607 	 * consume the entire weight.  In such cases this code
7608 	 * still "owns" the NAPI instance and therefore can
7609 	 * move the instance around on the list at-will.
7610 	 */
7611 	if (unlikely(napi_disable_pending(n))) {
7612 		napi_complete(n);
7613 		return work;
7614 	}
7615 
7616 	/* The NAPI context has more processing work, but busy-polling
7617 	 * is preferred. Exit early.
7618 	 */
7619 	if (napi_prefer_busy_poll(n)) {
7620 		if (napi_complete_done(n, work)) {
7621 			/* If timeout is not set, we need to make sure
7622 			 * that the NAPI is re-scheduled.
7623 			 */
7624 			napi_schedule(n);
7625 		}
7626 		return work;
7627 	}
7628 
7629 	/* Flush too old packets. If HZ < 1000, flush all packets */
7630 	gro_flush_normal(&n->gro, HZ >= 1000);
7631 
7632 	/* Some drivers may have called napi_schedule
7633 	 * prior to exhausting their budget.
7634 	 */
7635 	if (unlikely(!list_empty(&n->poll_list))) {
7636 		pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
7637 			     n->dev ? n->dev->name : "backlog");
7638 		return work;
7639 	}
7640 
7641 	*repoll = true;
7642 
7643 	return work;
7644 }
7645 
7646 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
7647 {
7648 	bool do_repoll = false;
7649 	void *have;
7650 	int work;
7651 
7652 	list_del_init(&n->poll_list);
7653 
7654 	have = netpoll_poll_lock(n);
7655 
7656 	work = __napi_poll(n, &do_repoll);
7657 
7658 	if (do_repoll) {
7659 #if defined(CONFIG_DEBUG_NET)
7660 		if (unlikely(!napi_is_scheduled(n)))
7661 			pr_crit("repoll requested for device %s %ps but napi is not scheduled.\n",
7662 				n->dev->name, n->poll);
7663 #endif
7664 		list_add_tail(&n->poll_list, repoll);
7665 	}
7666 	netpoll_poll_unlock(have);
7667 
7668 	return work;
7669 }
7670 
7671 static int napi_thread_wait(struct napi_struct *napi)
7672 {
7673 	set_current_state(TASK_INTERRUPTIBLE);
7674 
7675 	while (!kthread_should_stop()) {
7676 		/* Testing SCHED_THREADED bit here to make sure the current
7677 		 * kthread owns this napi and could poll on this napi.
7678 		 * Testing SCHED bit is not enough because SCHED bit might be
7679 		 * set by some other busy poll thread or by napi_disable().
7680 		 */
7681 		if (test_bit(NAPI_STATE_SCHED_THREADED, &napi->state)) {
7682 			WARN_ON(!list_empty(&napi->poll_list));
7683 			__set_current_state(TASK_RUNNING);
7684 			return 0;
7685 		}
7686 
7687 		schedule();
7688 		set_current_state(TASK_INTERRUPTIBLE);
7689 	}
7690 	__set_current_state(TASK_RUNNING);
7691 
7692 	return -1;
7693 }
7694 
7695 static void napi_threaded_poll_loop(struct napi_struct *napi)
7696 {
7697 	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
7698 	struct softnet_data *sd;
7699 	unsigned long last_qs = jiffies;
7700 
7701 	for (;;) {
7702 		bool repoll = false;
7703 		void *have;
7704 
7705 		local_bh_disable();
7706 		bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
7707 
7708 		sd = this_cpu_ptr(&softnet_data);
7709 		sd->in_napi_threaded_poll = true;
7710 
7711 		have = netpoll_poll_lock(napi);
7712 		__napi_poll(napi, &repoll);
7713 		netpoll_poll_unlock(have);
7714 
7715 		sd->in_napi_threaded_poll = false;
7716 		barrier();
7717 
7718 		if (sd_has_rps_ipi_waiting(sd)) {
7719 			local_irq_disable();
7720 			net_rps_action_and_irq_enable(sd);
7721 		}
7722 		skb_defer_free_flush(sd);
7723 		bpf_net_ctx_clear(bpf_net_ctx);
7724 		local_bh_enable();
7725 
7726 		if (!repoll)
7727 			break;
7728 
7729 		rcu_softirq_qs_periodic(last_qs);
7730 		cond_resched();
7731 	}
7732 }
7733 
7734 static int napi_threaded_poll(void *data)
7735 {
7736 	struct napi_struct *napi = data;
7737 
7738 	while (!napi_thread_wait(napi))
7739 		napi_threaded_poll_loop(napi);
7740 
7741 	return 0;
7742 }
7743 
7744 static __latent_entropy void net_rx_action(void)
7745 {
7746 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
7747 	unsigned long time_limit = jiffies +
7748 		usecs_to_jiffies(READ_ONCE(net_hotdata.netdev_budget_usecs));
7749 	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
7750 	int budget = READ_ONCE(net_hotdata.netdev_budget);
7751 	LIST_HEAD(list);
7752 	LIST_HEAD(repoll);
7753 
7754 	bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
7755 start:
7756 	sd->in_net_rx_action = true;
7757 	local_irq_disable();
7758 	list_splice_init(&sd->poll_list, &list);
7759 	local_irq_enable();
7760 
7761 	for (;;) {
7762 		struct napi_struct *n;
7763 
7764 		skb_defer_free_flush(sd);
7765 
7766 		if (list_empty(&list)) {
7767 			if (list_empty(&repoll)) {
7768 				sd->in_net_rx_action = false;
7769 				barrier();
7770 				/* We need to check if ____napi_schedule()
7771 				 * had refilled poll_list while
7772 				 * sd->in_net_rx_action was true.
7773 				 */
7774 				if (!list_empty(&sd->poll_list))
7775 					goto start;
7776 				if (!sd_has_rps_ipi_waiting(sd))
7777 					goto end;
7778 			}
7779 			break;
7780 		}
7781 
7782 		n = list_first_entry(&list, struct napi_struct, poll_list);
7783 		budget -= napi_poll(n, &repoll);
7784 
7785 		/* If softirq window is exhausted then punt.
7786 		 * Allow this to run for 2 jiffies since which will allow
7787 		 * an average latency of 1.5/HZ.
7788 		 */
7789 		if (unlikely(budget <= 0 ||
7790 			     time_after_eq(jiffies, time_limit))) {
7791 			/* Pairs with READ_ONCE() in softnet_seq_show() */
7792 			WRITE_ONCE(sd->time_squeeze, sd->time_squeeze + 1);
7793 			break;
7794 		}
7795 	}
7796 
7797 	local_irq_disable();
7798 
7799 	list_splice_tail_init(&sd->poll_list, &list);
7800 	list_splice_tail(&repoll, &list);
7801 	list_splice(&list, &sd->poll_list);
7802 	if (!list_empty(&sd->poll_list))
7803 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
7804 	else
7805 		sd->in_net_rx_action = false;
7806 
7807 	net_rps_action_and_irq_enable(sd);
7808 end:
7809 	bpf_net_ctx_clear(bpf_net_ctx);
7810 }
7811 
7812 struct netdev_adjacent {
7813 	struct net_device *dev;
7814 	netdevice_tracker dev_tracker;
7815 
7816 	/* upper master flag, there can only be one master device per list */
7817 	bool master;
7818 
7819 	/* lookup ignore flag */
7820 	bool ignore;
7821 
7822 	/* counter for the number of times this device was added to us */
7823 	u16 ref_nr;
7824 
7825 	/* private field for the users */
7826 	void *private;
7827 
7828 	struct list_head list;
7829 	struct rcu_head rcu;
7830 };
7831 
7832 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
7833 						 struct list_head *adj_list)
7834 {
7835 	struct netdev_adjacent *adj;
7836 
7837 	list_for_each_entry(adj, adj_list, list) {
7838 		if (adj->dev == adj_dev)
7839 			return adj;
7840 	}
7841 	return NULL;
7842 }
7843 
7844 static int ____netdev_has_upper_dev(struct net_device *upper_dev,
7845 				    struct netdev_nested_priv *priv)
7846 {
7847 	struct net_device *dev = (struct net_device *)priv->data;
7848 
7849 	return upper_dev == dev;
7850 }
7851 
7852 /**
7853  * netdev_has_upper_dev - Check if device is linked to an upper device
7854  * @dev: device
7855  * @upper_dev: upper device to check
7856  *
7857  * Find out if a device is linked to specified upper device and return true
7858  * in case it is. Note that this checks only immediate upper device,
7859  * not through a complete stack of devices. The caller must hold the RTNL lock.
7860  */
7861 bool netdev_has_upper_dev(struct net_device *dev,
7862 			  struct net_device *upper_dev)
7863 {
7864 	struct netdev_nested_priv priv = {
7865 		.data = (void *)upper_dev,
7866 	};
7867 
7868 	ASSERT_RTNL();
7869 
7870 	return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
7871 					     &priv);
7872 }
7873 EXPORT_SYMBOL(netdev_has_upper_dev);
7874 
7875 /**
7876  * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device
7877  * @dev: device
7878  * @upper_dev: upper device to check
7879  *
7880  * Find out if a device is linked to specified upper device and return true
7881  * in case it is. Note that this checks the entire upper device chain.
7882  * The caller must hold rcu lock.
7883  */
7884 
7885 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
7886 				  struct net_device *upper_dev)
7887 {
7888 	struct netdev_nested_priv priv = {
7889 		.data = (void *)upper_dev,
7890 	};
7891 
7892 	return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
7893 					       &priv);
7894 }
7895 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
7896 
7897 /**
7898  * netdev_has_any_upper_dev - Check if device is linked to some device
7899  * @dev: device
7900  *
7901  * Find out if a device is linked to an upper device and return true in case
7902  * it is. The caller must hold the RTNL lock.
7903  */
7904 bool netdev_has_any_upper_dev(struct net_device *dev)
7905 {
7906 	ASSERT_RTNL();
7907 
7908 	return !list_empty(&dev->adj_list.upper);
7909 }
7910 EXPORT_SYMBOL(netdev_has_any_upper_dev);
7911 
7912 /**
7913  * netdev_master_upper_dev_get - Get master upper device
7914  * @dev: device
7915  *
7916  * Find a master upper device and return pointer to it or NULL in case
7917  * it's not there. The caller must hold the RTNL lock.
7918  */
7919 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
7920 {
7921 	struct netdev_adjacent *upper;
7922 
7923 	ASSERT_RTNL();
7924 
7925 	if (list_empty(&dev->adj_list.upper))
7926 		return NULL;
7927 
7928 	upper = list_first_entry(&dev->adj_list.upper,
7929 				 struct netdev_adjacent, list);
7930 	if (likely(upper->master))
7931 		return upper->dev;
7932 	return NULL;
7933 }
7934 EXPORT_SYMBOL(netdev_master_upper_dev_get);
7935 
7936 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
7937 {
7938 	struct netdev_adjacent *upper;
7939 
7940 	ASSERT_RTNL();
7941 
7942 	if (list_empty(&dev->adj_list.upper))
7943 		return NULL;
7944 
7945 	upper = list_first_entry(&dev->adj_list.upper,
7946 				 struct netdev_adjacent, list);
7947 	if (likely(upper->master) && !upper->ignore)
7948 		return upper->dev;
7949 	return NULL;
7950 }
7951 
7952 /**
7953  * netdev_has_any_lower_dev - Check if device is linked to some device
7954  * @dev: device
7955  *
7956  * Find out if a device is linked to a lower device and return true in case
7957  * it is. The caller must hold the RTNL lock.
7958  */
7959 static bool netdev_has_any_lower_dev(struct net_device *dev)
7960 {
7961 	ASSERT_RTNL();
7962 
7963 	return !list_empty(&dev->adj_list.lower);
7964 }
7965 
7966 void *netdev_adjacent_get_private(struct list_head *adj_list)
7967 {
7968 	struct netdev_adjacent *adj;
7969 
7970 	adj = list_entry(adj_list, struct netdev_adjacent, list);
7971 
7972 	return adj->private;
7973 }
7974 EXPORT_SYMBOL(netdev_adjacent_get_private);
7975 
7976 /**
7977  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
7978  * @dev: device
7979  * @iter: list_head ** of the current position
7980  *
7981  * Gets the next device from the dev's upper list, starting from iter
7982  * position. The caller must hold RCU read lock.
7983  */
7984 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
7985 						 struct list_head **iter)
7986 {
7987 	struct netdev_adjacent *upper;
7988 
7989 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7990 
7991 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7992 
7993 	if (&upper->list == &dev->adj_list.upper)
7994 		return NULL;
7995 
7996 	*iter = &upper->list;
7997 
7998 	return upper->dev;
7999 }
8000 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
8001 
8002 static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
8003 						  struct list_head **iter,
8004 						  bool *ignore)
8005 {
8006 	struct netdev_adjacent *upper;
8007 
8008 	upper = list_entry((*iter)->next, struct netdev_adjacent, list);
8009 
8010 	if (&upper->list == &dev->adj_list.upper)
8011 		return NULL;
8012 
8013 	*iter = &upper->list;
8014 	*ignore = upper->ignore;
8015 
8016 	return upper->dev;
8017 }
8018 
8019 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
8020 						    struct list_head **iter)
8021 {
8022 	struct netdev_adjacent *upper;
8023 
8024 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
8025 
8026 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
8027 
8028 	if (&upper->list == &dev->adj_list.upper)
8029 		return NULL;
8030 
8031 	*iter = &upper->list;
8032 
8033 	return upper->dev;
8034 }
8035 
8036 static int __netdev_walk_all_upper_dev(struct net_device *dev,
8037 				       int (*fn)(struct net_device *dev,
8038 					 struct netdev_nested_priv *priv),
8039 				       struct netdev_nested_priv *priv)
8040 {
8041 	struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
8042 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
8043 	int ret, cur = 0;
8044 	bool ignore;
8045 
8046 	now = dev;
8047 	iter = &dev->adj_list.upper;
8048 
8049 	while (1) {
8050 		if (now != dev) {
8051 			ret = fn(now, priv);
8052 			if (ret)
8053 				return ret;
8054 		}
8055 
8056 		next = NULL;
8057 		while (1) {
8058 			udev = __netdev_next_upper_dev(now, &iter, &ignore);
8059 			if (!udev)
8060 				break;
8061 			if (ignore)
8062 				continue;
8063 
8064 			next = udev;
8065 			niter = &udev->adj_list.upper;
8066 			dev_stack[cur] = now;
8067 			iter_stack[cur++] = iter;
8068 			break;
8069 		}
8070 
8071 		if (!next) {
8072 			if (!cur)
8073 				return 0;
8074 			next = dev_stack[--cur];
8075 			niter = iter_stack[cur];
8076 		}
8077 
8078 		now = next;
8079 		iter = niter;
8080 	}
8081 
8082 	return 0;
8083 }
8084 
8085 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
8086 				  int (*fn)(struct net_device *dev,
8087 					    struct netdev_nested_priv *priv),
8088 				  struct netdev_nested_priv *priv)
8089 {
8090 	struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
8091 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
8092 	int ret, cur = 0;
8093 
8094 	now = dev;
8095 	iter = &dev->adj_list.upper;
8096 
8097 	while (1) {
8098 		if (now != dev) {
8099 			ret = fn(now, priv);
8100 			if (ret)
8101 				return ret;
8102 		}
8103 
8104 		next = NULL;
8105 		while (1) {
8106 			udev = netdev_next_upper_dev_rcu(now, &iter);
8107 			if (!udev)
8108 				break;
8109 
8110 			next = udev;
8111 			niter = &udev->adj_list.upper;
8112 			dev_stack[cur] = now;
8113 			iter_stack[cur++] = iter;
8114 			break;
8115 		}
8116 
8117 		if (!next) {
8118 			if (!cur)
8119 				return 0;
8120 			next = dev_stack[--cur];
8121 			niter = iter_stack[cur];
8122 		}
8123 
8124 		now = next;
8125 		iter = niter;
8126 	}
8127 
8128 	return 0;
8129 }
8130 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
8131 
8132 static bool __netdev_has_upper_dev(struct net_device *dev,
8133 				   struct net_device *upper_dev)
8134 {
8135 	struct netdev_nested_priv priv = {
8136 		.flags = 0,
8137 		.data = (void *)upper_dev,
8138 	};
8139 
8140 	ASSERT_RTNL();
8141 
8142 	return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
8143 					   &priv);
8144 }
8145 
8146 /**
8147  * netdev_lower_get_next_private - Get the next ->private from the
8148  *				   lower neighbour list
8149  * @dev: device
8150  * @iter: list_head ** of the current position
8151  *
8152  * Gets the next netdev_adjacent->private from the dev's lower neighbour
8153  * list, starting from iter position. The caller must hold either hold the
8154  * RTNL lock or its own locking that guarantees that the neighbour lower
8155  * list will remain unchanged.
8156  */
8157 void *netdev_lower_get_next_private(struct net_device *dev,
8158 				    struct list_head **iter)
8159 {
8160 	struct netdev_adjacent *lower;
8161 
8162 	lower = list_entry(*iter, struct netdev_adjacent, list);
8163 
8164 	if (&lower->list == &dev->adj_list.lower)
8165 		return NULL;
8166 
8167 	*iter = lower->list.next;
8168 
8169 	return lower->private;
8170 }
8171 EXPORT_SYMBOL(netdev_lower_get_next_private);
8172 
8173 /**
8174  * netdev_lower_get_next_private_rcu - Get the next ->private from the
8175  *				       lower neighbour list, RCU
8176  *				       variant
8177  * @dev: device
8178  * @iter: list_head ** of the current position
8179  *
8180  * Gets the next netdev_adjacent->private from the dev's lower neighbour
8181  * list, starting from iter position. The caller must hold RCU read lock.
8182  */
8183 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
8184 					struct list_head **iter)
8185 {
8186 	struct netdev_adjacent *lower;
8187 
8188 	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
8189 
8190 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
8191 
8192 	if (&lower->list == &dev->adj_list.lower)
8193 		return NULL;
8194 
8195 	*iter = &lower->list;
8196 
8197 	return lower->private;
8198 }
8199 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
8200 
8201 /**
8202  * netdev_lower_get_next - Get the next device from the lower neighbour
8203  *                         list
8204  * @dev: device
8205  * @iter: list_head ** of the current position
8206  *
8207  * Gets the next netdev_adjacent from the dev's lower neighbour
8208  * list, starting from iter position. The caller must hold RTNL lock or
8209  * its own locking that guarantees that the neighbour lower
8210  * list will remain unchanged.
8211  */
8212 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
8213 {
8214 	struct netdev_adjacent *lower;
8215 
8216 	lower = list_entry(*iter, struct netdev_adjacent, list);
8217 
8218 	if (&lower->list == &dev->adj_list.lower)
8219 		return NULL;
8220 
8221 	*iter = lower->list.next;
8222 
8223 	return lower->dev;
8224 }
8225 EXPORT_SYMBOL(netdev_lower_get_next);
8226 
8227 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
8228 						struct list_head **iter)
8229 {
8230 	struct netdev_adjacent *lower;
8231 
8232 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
8233 
8234 	if (&lower->list == &dev->adj_list.lower)
8235 		return NULL;
8236 
8237 	*iter = &lower->list;
8238 
8239 	return lower->dev;
8240 }
8241 
8242 static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
8243 						  struct list_head **iter,
8244 						  bool *ignore)
8245 {
8246 	struct netdev_adjacent *lower;
8247 
8248 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
8249 
8250 	if (&lower->list == &dev->adj_list.lower)
8251 		return NULL;
8252 
8253 	*iter = &lower->list;
8254 	*ignore = lower->ignore;
8255 
8256 	return lower->dev;
8257 }
8258 
8259 int netdev_walk_all_lower_dev(struct net_device *dev,
8260 			      int (*fn)(struct net_device *dev,
8261 					struct netdev_nested_priv *priv),
8262 			      struct netdev_nested_priv *priv)
8263 {
8264 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
8265 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
8266 	int ret, cur = 0;
8267 
8268 	now = dev;
8269 	iter = &dev->adj_list.lower;
8270 
8271 	while (1) {
8272 		if (now != dev) {
8273 			ret = fn(now, priv);
8274 			if (ret)
8275 				return ret;
8276 		}
8277 
8278 		next = NULL;
8279 		while (1) {
8280 			ldev = netdev_next_lower_dev(now, &iter);
8281 			if (!ldev)
8282 				break;
8283 
8284 			next = ldev;
8285 			niter = &ldev->adj_list.lower;
8286 			dev_stack[cur] = now;
8287 			iter_stack[cur++] = iter;
8288 			break;
8289 		}
8290 
8291 		if (!next) {
8292 			if (!cur)
8293 				return 0;
8294 			next = dev_stack[--cur];
8295 			niter = iter_stack[cur];
8296 		}
8297 
8298 		now = next;
8299 		iter = niter;
8300 	}
8301 
8302 	return 0;
8303 }
8304 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
8305 
8306 static int __netdev_walk_all_lower_dev(struct net_device *dev,
8307 				       int (*fn)(struct net_device *dev,
8308 					 struct netdev_nested_priv *priv),
8309 				       struct netdev_nested_priv *priv)
8310 {
8311 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
8312 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
8313 	int ret, cur = 0;
8314 	bool ignore;
8315 
8316 	now = dev;
8317 	iter = &dev->adj_list.lower;
8318 
8319 	while (1) {
8320 		if (now != dev) {
8321 			ret = fn(now, priv);
8322 			if (ret)
8323 				return ret;
8324 		}
8325 
8326 		next = NULL;
8327 		while (1) {
8328 			ldev = __netdev_next_lower_dev(now, &iter, &ignore);
8329 			if (!ldev)
8330 				break;
8331 			if (ignore)
8332 				continue;
8333 
8334 			next = ldev;
8335 			niter = &ldev->adj_list.lower;
8336 			dev_stack[cur] = now;
8337 			iter_stack[cur++] = iter;
8338 			break;
8339 		}
8340 
8341 		if (!next) {
8342 			if (!cur)
8343 				return 0;
8344 			next = dev_stack[--cur];
8345 			niter = iter_stack[cur];
8346 		}
8347 
8348 		now = next;
8349 		iter = niter;
8350 	}
8351 
8352 	return 0;
8353 }
8354 
8355 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
8356 					     struct list_head **iter)
8357 {
8358 	struct netdev_adjacent *lower;
8359 
8360 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
8361 	if (&lower->list == &dev->adj_list.lower)
8362 		return NULL;
8363 
8364 	*iter = &lower->list;
8365 
8366 	return lower->dev;
8367 }
8368 EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
8369 
8370 static u8 __netdev_upper_depth(struct net_device *dev)
8371 {
8372 	struct net_device *udev;
8373 	struct list_head *iter;
8374 	u8 max_depth = 0;
8375 	bool ignore;
8376 
8377 	for (iter = &dev->adj_list.upper,
8378 	     udev = __netdev_next_upper_dev(dev, &iter, &ignore);
8379 	     udev;
8380 	     udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
8381 		if (ignore)
8382 			continue;
8383 		if (max_depth < udev->upper_level)
8384 			max_depth = udev->upper_level;
8385 	}
8386 
8387 	return max_depth;
8388 }
8389 
8390 static u8 __netdev_lower_depth(struct net_device *dev)
8391 {
8392 	struct net_device *ldev;
8393 	struct list_head *iter;
8394 	u8 max_depth = 0;
8395 	bool ignore;
8396 
8397 	for (iter = &dev->adj_list.lower,
8398 	     ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
8399 	     ldev;
8400 	     ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
8401 		if (ignore)
8402 			continue;
8403 		if (max_depth < ldev->lower_level)
8404 			max_depth = ldev->lower_level;
8405 	}
8406 
8407 	return max_depth;
8408 }
8409 
8410 static int __netdev_update_upper_level(struct net_device *dev,
8411 				       struct netdev_nested_priv *__unused)
8412 {
8413 	dev->upper_level = __netdev_upper_depth(dev) + 1;
8414 	return 0;
8415 }
8416 
8417 #ifdef CONFIG_LOCKDEP
8418 static LIST_HEAD(net_unlink_list);
8419 
8420 static void net_unlink_todo(struct net_device *dev)
8421 {
8422 	if (list_empty(&dev->unlink_list))
8423 		list_add_tail(&dev->unlink_list, &net_unlink_list);
8424 }
8425 #endif
8426 
8427 static int __netdev_update_lower_level(struct net_device *dev,
8428 				       struct netdev_nested_priv *priv)
8429 {
8430 	dev->lower_level = __netdev_lower_depth(dev) + 1;
8431 
8432 #ifdef CONFIG_LOCKDEP
8433 	if (!priv)
8434 		return 0;
8435 
8436 	if (priv->flags & NESTED_SYNC_IMM)
8437 		dev->nested_level = dev->lower_level - 1;
8438 	if (priv->flags & NESTED_SYNC_TODO)
8439 		net_unlink_todo(dev);
8440 #endif
8441 	return 0;
8442 }
8443 
8444 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
8445 				  int (*fn)(struct net_device *dev,
8446 					    struct netdev_nested_priv *priv),
8447 				  struct netdev_nested_priv *priv)
8448 {
8449 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
8450 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
8451 	int ret, cur = 0;
8452 
8453 	now = dev;
8454 	iter = &dev->adj_list.lower;
8455 
8456 	while (1) {
8457 		if (now != dev) {
8458 			ret = fn(now, priv);
8459 			if (ret)
8460 				return ret;
8461 		}
8462 
8463 		next = NULL;
8464 		while (1) {
8465 			ldev = netdev_next_lower_dev_rcu(now, &iter);
8466 			if (!ldev)
8467 				break;
8468 
8469 			next = ldev;
8470 			niter = &ldev->adj_list.lower;
8471 			dev_stack[cur] = now;
8472 			iter_stack[cur++] = iter;
8473 			break;
8474 		}
8475 
8476 		if (!next) {
8477 			if (!cur)
8478 				return 0;
8479 			next = dev_stack[--cur];
8480 			niter = iter_stack[cur];
8481 		}
8482 
8483 		now = next;
8484 		iter = niter;
8485 	}
8486 
8487 	return 0;
8488 }
8489 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
8490 
8491 /**
8492  * netdev_lower_get_first_private_rcu - Get the first ->private from the
8493  *				       lower neighbour list, RCU
8494  *				       variant
8495  * @dev: device
8496  *
8497  * Gets the first netdev_adjacent->private from the dev's lower neighbour
8498  * list. The caller must hold RCU read lock.
8499  */
8500 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
8501 {
8502 	struct netdev_adjacent *lower;
8503 
8504 	lower = list_first_or_null_rcu(&dev->adj_list.lower,
8505 			struct netdev_adjacent, list);
8506 	if (lower)
8507 		return lower->private;
8508 	return NULL;
8509 }
8510 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
8511 
8512 /**
8513  * netdev_master_upper_dev_get_rcu - Get master upper device
8514  * @dev: device
8515  *
8516  * Find a master upper device and return pointer to it or NULL in case
8517  * it's not there. The caller must hold the RCU read lock.
8518  */
8519 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
8520 {
8521 	struct netdev_adjacent *upper;
8522 
8523 	upper = list_first_or_null_rcu(&dev->adj_list.upper,
8524 				       struct netdev_adjacent, list);
8525 	if (upper && likely(upper->master))
8526 		return upper->dev;
8527 	return NULL;
8528 }
8529 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
8530 
8531 static int netdev_adjacent_sysfs_add(struct net_device *dev,
8532 			      struct net_device *adj_dev,
8533 			      struct list_head *dev_list)
8534 {
8535 	char linkname[IFNAMSIZ+7];
8536 
8537 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
8538 		"upper_%s" : "lower_%s", adj_dev->name);
8539 	return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
8540 				 linkname);
8541 }
8542 static void netdev_adjacent_sysfs_del(struct net_device *dev,
8543 			       char *name,
8544 			       struct list_head *dev_list)
8545 {
8546 	char linkname[IFNAMSIZ+7];
8547 
8548 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
8549 		"upper_%s" : "lower_%s", name);
8550 	sysfs_remove_link(&(dev->dev.kobj), linkname);
8551 }
8552 
8553 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
8554 						 struct net_device *adj_dev,
8555 						 struct list_head *dev_list)
8556 {
8557 	return (dev_list == &dev->adj_list.upper ||
8558 		dev_list == &dev->adj_list.lower) &&
8559 		net_eq(dev_net(dev), dev_net(adj_dev));
8560 }
8561 
8562 static int __netdev_adjacent_dev_insert(struct net_device *dev,
8563 					struct net_device *adj_dev,
8564 					struct list_head *dev_list,
8565 					void *private, bool master)
8566 {
8567 	struct netdev_adjacent *adj;
8568 	int ret;
8569 
8570 	adj = __netdev_find_adj(adj_dev, dev_list);
8571 
8572 	if (adj) {
8573 		adj->ref_nr += 1;
8574 		pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
8575 			 dev->name, adj_dev->name, adj->ref_nr);
8576 
8577 		return 0;
8578 	}
8579 
8580 	adj = kmalloc(sizeof(*adj), GFP_KERNEL);
8581 	if (!adj)
8582 		return -ENOMEM;
8583 
8584 	adj->dev = adj_dev;
8585 	adj->master = master;
8586 	adj->ref_nr = 1;
8587 	adj->private = private;
8588 	adj->ignore = false;
8589 	netdev_hold(adj_dev, &adj->dev_tracker, GFP_KERNEL);
8590 
8591 	pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
8592 		 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
8593 
8594 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
8595 		ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
8596 		if (ret)
8597 			goto free_adj;
8598 	}
8599 
8600 	/* Ensure that master link is always the first item in list. */
8601 	if (master) {
8602 		ret = sysfs_create_link(&(dev->dev.kobj),
8603 					&(adj_dev->dev.kobj), "master");
8604 		if (ret)
8605 			goto remove_symlinks;
8606 
8607 		list_add_rcu(&adj->list, dev_list);
8608 	} else {
8609 		list_add_tail_rcu(&adj->list, dev_list);
8610 	}
8611 
8612 	return 0;
8613 
8614 remove_symlinks:
8615 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
8616 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
8617 free_adj:
8618 	netdev_put(adj_dev, &adj->dev_tracker);
8619 	kfree(adj);
8620 
8621 	return ret;
8622 }
8623 
8624 static void __netdev_adjacent_dev_remove(struct net_device *dev,
8625 					 struct net_device *adj_dev,
8626 					 u16 ref_nr,
8627 					 struct list_head *dev_list)
8628 {
8629 	struct netdev_adjacent *adj;
8630 
8631 	pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
8632 		 dev->name, adj_dev->name, ref_nr);
8633 
8634 	adj = __netdev_find_adj(adj_dev, dev_list);
8635 
8636 	if (!adj) {
8637 		pr_err("Adjacency does not exist for device %s from %s\n",
8638 		       dev->name, adj_dev->name);
8639 		WARN_ON(1);
8640 		return;
8641 	}
8642 
8643 	if (adj->ref_nr > ref_nr) {
8644 		pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
8645 			 dev->name, adj_dev->name, ref_nr,
8646 			 adj->ref_nr - ref_nr);
8647 		adj->ref_nr -= ref_nr;
8648 		return;
8649 	}
8650 
8651 	if (adj->master)
8652 		sysfs_remove_link(&(dev->dev.kobj), "master");
8653 
8654 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
8655 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
8656 
8657 	list_del_rcu(&adj->list);
8658 	pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
8659 		 adj_dev->name, dev->name, adj_dev->name);
8660 	netdev_put(adj_dev, &adj->dev_tracker);
8661 	kfree_rcu(adj, rcu);
8662 }
8663 
8664 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
8665 					    struct net_device *upper_dev,
8666 					    struct list_head *up_list,
8667 					    struct list_head *down_list,
8668 					    void *private, bool master)
8669 {
8670 	int ret;
8671 
8672 	ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
8673 					   private, master);
8674 	if (ret)
8675 		return ret;
8676 
8677 	ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
8678 					   private, false);
8679 	if (ret) {
8680 		__netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
8681 		return ret;
8682 	}
8683 
8684 	return 0;
8685 }
8686 
8687 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
8688 					       struct net_device *upper_dev,
8689 					       u16 ref_nr,
8690 					       struct list_head *up_list,
8691 					       struct list_head *down_list)
8692 {
8693 	__netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
8694 	__netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
8695 }
8696 
8697 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
8698 						struct net_device *upper_dev,
8699 						void *private, bool master)
8700 {
8701 	return __netdev_adjacent_dev_link_lists(dev, upper_dev,
8702 						&dev->adj_list.upper,
8703 						&upper_dev->adj_list.lower,
8704 						private, master);
8705 }
8706 
8707 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
8708 						   struct net_device *upper_dev)
8709 {
8710 	__netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
8711 					   &dev->adj_list.upper,
8712 					   &upper_dev->adj_list.lower);
8713 }
8714 
8715 static int __netdev_upper_dev_link(struct net_device *dev,
8716 				   struct net_device *upper_dev, bool master,
8717 				   void *upper_priv, void *upper_info,
8718 				   struct netdev_nested_priv *priv,
8719 				   struct netlink_ext_ack *extack)
8720 {
8721 	struct netdev_notifier_changeupper_info changeupper_info = {
8722 		.info = {
8723 			.dev = dev,
8724 			.extack = extack,
8725 		},
8726 		.upper_dev = upper_dev,
8727 		.master = master,
8728 		.linking = true,
8729 		.upper_info = upper_info,
8730 	};
8731 	struct net_device *master_dev;
8732 	int ret = 0;
8733 
8734 	ASSERT_RTNL();
8735 
8736 	if (dev == upper_dev)
8737 		return -EBUSY;
8738 
8739 	/* To prevent loops, check if dev is not upper device to upper_dev. */
8740 	if (__netdev_has_upper_dev(upper_dev, dev))
8741 		return -EBUSY;
8742 
8743 	if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
8744 		return -EMLINK;
8745 
8746 	if (!master) {
8747 		if (__netdev_has_upper_dev(dev, upper_dev))
8748 			return -EEXIST;
8749 	} else {
8750 		master_dev = __netdev_master_upper_dev_get(dev);
8751 		if (master_dev)
8752 			return master_dev == upper_dev ? -EEXIST : -EBUSY;
8753 	}
8754 
8755 	ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
8756 					    &changeupper_info.info);
8757 	ret = notifier_to_errno(ret);
8758 	if (ret)
8759 		return ret;
8760 
8761 	ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
8762 						   master);
8763 	if (ret)
8764 		return ret;
8765 
8766 	ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
8767 					    &changeupper_info.info);
8768 	ret = notifier_to_errno(ret);
8769 	if (ret)
8770 		goto rollback;
8771 
8772 	__netdev_update_upper_level(dev, NULL);
8773 	__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
8774 
8775 	__netdev_update_lower_level(upper_dev, priv);
8776 	__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
8777 				    priv);
8778 
8779 	return 0;
8780 
8781 rollback:
8782 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
8783 
8784 	return ret;
8785 }
8786 
8787 /**
8788  * netdev_upper_dev_link - Add a link to the upper device
8789  * @dev: device
8790  * @upper_dev: new upper device
8791  * @extack: netlink extended ack
8792  *
8793  * Adds a link to device which is upper to this one. The caller must hold
8794  * the RTNL lock. On a failure a negative errno code is returned.
8795  * On success the reference counts are adjusted and the function
8796  * returns zero.
8797  */
8798 int netdev_upper_dev_link(struct net_device *dev,
8799 			  struct net_device *upper_dev,
8800 			  struct netlink_ext_ack *extack)
8801 {
8802 	struct netdev_nested_priv priv = {
8803 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8804 		.data = NULL,
8805 	};
8806 
8807 	return __netdev_upper_dev_link(dev, upper_dev, false,
8808 				       NULL, NULL, &priv, extack);
8809 }
8810 EXPORT_SYMBOL(netdev_upper_dev_link);
8811 
8812 /**
8813  * netdev_master_upper_dev_link - Add a master link to the upper device
8814  * @dev: device
8815  * @upper_dev: new upper device
8816  * @upper_priv: upper device private
8817  * @upper_info: upper info to be passed down via notifier
8818  * @extack: netlink extended ack
8819  *
8820  * Adds a link to device which is upper to this one. In this case, only
8821  * one master upper device can be linked, although other non-master devices
8822  * might be linked as well. The caller must hold the RTNL lock.
8823  * On a failure a negative errno code is returned. On success the reference
8824  * counts are adjusted and the function returns zero.
8825  */
8826 int netdev_master_upper_dev_link(struct net_device *dev,
8827 				 struct net_device *upper_dev,
8828 				 void *upper_priv, void *upper_info,
8829 				 struct netlink_ext_ack *extack)
8830 {
8831 	struct netdev_nested_priv priv = {
8832 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8833 		.data = NULL,
8834 	};
8835 
8836 	return __netdev_upper_dev_link(dev, upper_dev, true,
8837 				       upper_priv, upper_info, &priv, extack);
8838 }
8839 EXPORT_SYMBOL(netdev_master_upper_dev_link);
8840 
8841 static void __netdev_upper_dev_unlink(struct net_device *dev,
8842 				      struct net_device *upper_dev,
8843 				      struct netdev_nested_priv *priv)
8844 {
8845 	struct netdev_notifier_changeupper_info changeupper_info = {
8846 		.info = {
8847 			.dev = dev,
8848 		},
8849 		.upper_dev = upper_dev,
8850 		.linking = false,
8851 	};
8852 
8853 	ASSERT_RTNL();
8854 
8855 	changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
8856 
8857 	call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
8858 				      &changeupper_info.info);
8859 
8860 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
8861 
8862 	call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
8863 				      &changeupper_info.info);
8864 
8865 	__netdev_update_upper_level(dev, NULL);
8866 	__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
8867 
8868 	__netdev_update_lower_level(upper_dev, priv);
8869 	__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
8870 				    priv);
8871 }
8872 
8873 /**
8874  * netdev_upper_dev_unlink - Removes a link to upper device
8875  * @dev: device
8876  * @upper_dev: new upper device
8877  *
8878  * Removes a link to device which is upper to this one. The caller must hold
8879  * the RTNL lock.
8880  */
8881 void netdev_upper_dev_unlink(struct net_device *dev,
8882 			     struct net_device *upper_dev)
8883 {
8884 	struct netdev_nested_priv priv = {
8885 		.flags = NESTED_SYNC_TODO,
8886 		.data = NULL,
8887 	};
8888 
8889 	__netdev_upper_dev_unlink(dev, upper_dev, &priv);
8890 }
8891 EXPORT_SYMBOL(netdev_upper_dev_unlink);
8892 
8893 static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
8894 				      struct net_device *lower_dev,
8895 				      bool val)
8896 {
8897 	struct netdev_adjacent *adj;
8898 
8899 	adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
8900 	if (adj)
8901 		adj->ignore = val;
8902 
8903 	adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
8904 	if (adj)
8905 		adj->ignore = val;
8906 }
8907 
8908 static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
8909 					struct net_device *lower_dev)
8910 {
8911 	__netdev_adjacent_dev_set(upper_dev, lower_dev, true);
8912 }
8913 
8914 static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
8915 				       struct net_device *lower_dev)
8916 {
8917 	__netdev_adjacent_dev_set(upper_dev, lower_dev, false);
8918 }
8919 
8920 int netdev_adjacent_change_prepare(struct net_device *old_dev,
8921 				   struct net_device *new_dev,
8922 				   struct net_device *dev,
8923 				   struct netlink_ext_ack *extack)
8924 {
8925 	struct netdev_nested_priv priv = {
8926 		.flags = 0,
8927 		.data = NULL,
8928 	};
8929 	int err;
8930 
8931 	if (!new_dev)
8932 		return 0;
8933 
8934 	if (old_dev && new_dev != old_dev)
8935 		netdev_adjacent_dev_disable(dev, old_dev);
8936 	err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv,
8937 				      extack);
8938 	if (err) {
8939 		if (old_dev && new_dev != old_dev)
8940 			netdev_adjacent_dev_enable(dev, old_dev);
8941 		return err;
8942 	}
8943 
8944 	return 0;
8945 }
8946 EXPORT_SYMBOL(netdev_adjacent_change_prepare);
8947 
8948 void netdev_adjacent_change_commit(struct net_device *old_dev,
8949 				   struct net_device *new_dev,
8950 				   struct net_device *dev)
8951 {
8952 	struct netdev_nested_priv priv = {
8953 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8954 		.data = NULL,
8955 	};
8956 
8957 	if (!new_dev || !old_dev)
8958 		return;
8959 
8960 	if (new_dev == old_dev)
8961 		return;
8962 
8963 	netdev_adjacent_dev_enable(dev, old_dev);
8964 	__netdev_upper_dev_unlink(old_dev, dev, &priv);
8965 }
8966 EXPORT_SYMBOL(netdev_adjacent_change_commit);
8967 
8968 void netdev_adjacent_change_abort(struct net_device *old_dev,
8969 				  struct net_device *new_dev,
8970 				  struct net_device *dev)
8971 {
8972 	struct netdev_nested_priv priv = {
8973 		.flags = 0,
8974 		.data = NULL,
8975 	};
8976 
8977 	if (!new_dev)
8978 		return;
8979 
8980 	if (old_dev && new_dev != old_dev)
8981 		netdev_adjacent_dev_enable(dev, old_dev);
8982 
8983 	__netdev_upper_dev_unlink(new_dev, dev, &priv);
8984 }
8985 EXPORT_SYMBOL(netdev_adjacent_change_abort);
8986 
8987 /**
8988  * netdev_bonding_info_change - Dispatch event about slave change
8989  * @dev: device
8990  * @bonding_info: info to dispatch
8991  *
8992  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
8993  * The caller must hold the RTNL lock.
8994  */
8995 void netdev_bonding_info_change(struct net_device *dev,
8996 				struct netdev_bonding_info *bonding_info)
8997 {
8998 	struct netdev_notifier_bonding_info info = {
8999 		.info.dev = dev,
9000 	};
9001 
9002 	memcpy(&info.bonding_info, bonding_info,
9003 	       sizeof(struct netdev_bonding_info));
9004 	call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
9005 				      &info.info);
9006 }
9007 EXPORT_SYMBOL(netdev_bonding_info_change);
9008 
9009 static int netdev_offload_xstats_enable_l3(struct net_device *dev,
9010 					   struct netlink_ext_ack *extack)
9011 {
9012 	struct netdev_notifier_offload_xstats_info info = {
9013 		.info.dev = dev,
9014 		.info.extack = extack,
9015 		.type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
9016 	};
9017 	int err;
9018 	int rc;
9019 
9020 	dev->offload_xstats_l3 = kzalloc(sizeof(*dev->offload_xstats_l3),
9021 					 GFP_KERNEL);
9022 	if (!dev->offload_xstats_l3)
9023 		return -ENOMEM;
9024 
9025 	rc = call_netdevice_notifiers_info_robust(NETDEV_OFFLOAD_XSTATS_ENABLE,
9026 						  NETDEV_OFFLOAD_XSTATS_DISABLE,
9027 						  &info.info);
9028 	err = notifier_to_errno(rc);
9029 	if (err)
9030 		goto free_stats;
9031 
9032 	return 0;
9033 
9034 free_stats:
9035 	kfree(dev->offload_xstats_l3);
9036 	dev->offload_xstats_l3 = NULL;
9037 	return err;
9038 }
9039 
9040 int netdev_offload_xstats_enable(struct net_device *dev,
9041 				 enum netdev_offload_xstats_type type,
9042 				 struct netlink_ext_ack *extack)
9043 {
9044 	ASSERT_RTNL();
9045 
9046 	if (netdev_offload_xstats_enabled(dev, type))
9047 		return -EALREADY;
9048 
9049 	switch (type) {
9050 	case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
9051 		return netdev_offload_xstats_enable_l3(dev, extack);
9052 	}
9053 
9054 	WARN_ON(1);
9055 	return -EINVAL;
9056 }
9057 EXPORT_SYMBOL(netdev_offload_xstats_enable);
9058 
9059 static void netdev_offload_xstats_disable_l3(struct net_device *dev)
9060 {
9061 	struct netdev_notifier_offload_xstats_info info = {
9062 		.info.dev = dev,
9063 		.type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
9064 	};
9065 
9066 	call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_DISABLE,
9067 				      &info.info);
9068 	kfree(dev->offload_xstats_l3);
9069 	dev->offload_xstats_l3 = NULL;
9070 }
9071 
9072 int netdev_offload_xstats_disable(struct net_device *dev,
9073 				  enum netdev_offload_xstats_type type)
9074 {
9075 	ASSERT_RTNL();
9076 
9077 	if (!netdev_offload_xstats_enabled(dev, type))
9078 		return -EALREADY;
9079 
9080 	switch (type) {
9081 	case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
9082 		netdev_offload_xstats_disable_l3(dev);
9083 		return 0;
9084 	}
9085 
9086 	WARN_ON(1);
9087 	return -EINVAL;
9088 }
9089 EXPORT_SYMBOL(netdev_offload_xstats_disable);
9090 
9091 static void netdev_offload_xstats_disable_all(struct net_device *dev)
9092 {
9093 	netdev_offload_xstats_disable(dev, NETDEV_OFFLOAD_XSTATS_TYPE_L3);
9094 }
9095 
9096 static struct rtnl_hw_stats64 *
9097 netdev_offload_xstats_get_ptr(const struct net_device *dev,
9098 			      enum netdev_offload_xstats_type type)
9099 {
9100 	switch (type) {
9101 	case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
9102 		return dev->offload_xstats_l3;
9103 	}
9104 
9105 	WARN_ON(1);
9106 	return NULL;
9107 }
9108 
9109 bool netdev_offload_xstats_enabled(const struct net_device *dev,
9110 				   enum netdev_offload_xstats_type type)
9111 {
9112 	ASSERT_RTNL();
9113 
9114 	return netdev_offload_xstats_get_ptr(dev, type);
9115 }
9116 EXPORT_SYMBOL(netdev_offload_xstats_enabled);
9117 
9118 struct netdev_notifier_offload_xstats_ru {
9119 	bool used;
9120 };
9121 
9122 struct netdev_notifier_offload_xstats_rd {
9123 	struct rtnl_hw_stats64 stats;
9124 	bool used;
9125 };
9126 
9127 static void netdev_hw_stats64_add(struct rtnl_hw_stats64 *dest,
9128 				  const struct rtnl_hw_stats64 *src)
9129 {
9130 	dest->rx_packets	  += src->rx_packets;
9131 	dest->tx_packets	  += src->tx_packets;
9132 	dest->rx_bytes		  += src->rx_bytes;
9133 	dest->tx_bytes		  += src->tx_bytes;
9134 	dest->rx_errors		  += src->rx_errors;
9135 	dest->tx_errors		  += src->tx_errors;
9136 	dest->rx_dropped	  += src->rx_dropped;
9137 	dest->tx_dropped	  += src->tx_dropped;
9138 	dest->multicast		  += src->multicast;
9139 }
9140 
9141 static int netdev_offload_xstats_get_used(struct net_device *dev,
9142 					  enum netdev_offload_xstats_type type,
9143 					  bool *p_used,
9144 					  struct netlink_ext_ack *extack)
9145 {
9146 	struct netdev_notifier_offload_xstats_ru report_used = {};
9147 	struct netdev_notifier_offload_xstats_info info = {
9148 		.info.dev = dev,
9149 		.info.extack = extack,
9150 		.type = type,
9151 		.report_used = &report_used,
9152 	};
9153 	int rc;
9154 
9155 	WARN_ON(!netdev_offload_xstats_enabled(dev, type));
9156 	rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_USED,
9157 					   &info.info);
9158 	*p_used = report_used.used;
9159 	return notifier_to_errno(rc);
9160 }
9161 
9162 static int netdev_offload_xstats_get_stats(struct net_device *dev,
9163 					   enum netdev_offload_xstats_type type,
9164 					   struct rtnl_hw_stats64 *p_stats,
9165 					   bool *p_used,
9166 					   struct netlink_ext_ack *extack)
9167 {
9168 	struct netdev_notifier_offload_xstats_rd report_delta = {};
9169 	struct netdev_notifier_offload_xstats_info info = {
9170 		.info.dev = dev,
9171 		.info.extack = extack,
9172 		.type = type,
9173 		.report_delta = &report_delta,
9174 	};
9175 	struct rtnl_hw_stats64 *stats;
9176 	int rc;
9177 
9178 	stats = netdev_offload_xstats_get_ptr(dev, type);
9179 	if (WARN_ON(!stats))
9180 		return -EINVAL;
9181 
9182 	rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_DELTA,
9183 					   &info.info);
9184 
9185 	/* Cache whatever we got, even if there was an error, otherwise the
9186 	 * successful stats retrievals would get lost.
9187 	 */
9188 	netdev_hw_stats64_add(stats, &report_delta.stats);
9189 
9190 	if (p_stats)
9191 		*p_stats = *stats;
9192 	*p_used = report_delta.used;
9193 
9194 	return notifier_to_errno(rc);
9195 }
9196 
9197 int netdev_offload_xstats_get(struct net_device *dev,
9198 			      enum netdev_offload_xstats_type type,
9199 			      struct rtnl_hw_stats64 *p_stats, bool *p_used,
9200 			      struct netlink_ext_ack *extack)
9201 {
9202 	ASSERT_RTNL();
9203 
9204 	if (p_stats)
9205 		return netdev_offload_xstats_get_stats(dev, type, p_stats,
9206 						       p_used, extack);
9207 	else
9208 		return netdev_offload_xstats_get_used(dev, type, p_used,
9209 						      extack);
9210 }
9211 EXPORT_SYMBOL(netdev_offload_xstats_get);
9212 
9213 void
9214 netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *report_delta,
9215 				   const struct rtnl_hw_stats64 *stats)
9216 {
9217 	report_delta->used = true;
9218 	netdev_hw_stats64_add(&report_delta->stats, stats);
9219 }
9220 EXPORT_SYMBOL(netdev_offload_xstats_report_delta);
9221 
9222 void
9223 netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *report_used)
9224 {
9225 	report_used->used = true;
9226 }
9227 EXPORT_SYMBOL(netdev_offload_xstats_report_used);
9228 
9229 void netdev_offload_xstats_push_delta(struct net_device *dev,
9230 				      enum netdev_offload_xstats_type type,
9231 				      const struct rtnl_hw_stats64 *p_stats)
9232 {
9233 	struct rtnl_hw_stats64 *stats;
9234 
9235 	ASSERT_RTNL();
9236 
9237 	stats = netdev_offload_xstats_get_ptr(dev, type);
9238 	if (WARN_ON(!stats))
9239 		return;
9240 
9241 	netdev_hw_stats64_add(stats, p_stats);
9242 }
9243 EXPORT_SYMBOL(netdev_offload_xstats_push_delta);
9244 
9245 /**
9246  * netdev_get_xmit_slave - Get the xmit slave of master device
9247  * @dev: device
9248  * @skb: The packet
9249  * @all_slaves: assume all the slaves are active
9250  *
9251  * The reference counters are not incremented so the caller must be
9252  * careful with locks. The caller must hold RCU lock.
9253  * %NULL is returned if no slave is found.
9254  */
9255 
9256 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
9257 					 struct sk_buff *skb,
9258 					 bool all_slaves)
9259 {
9260 	const struct net_device_ops *ops = dev->netdev_ops;
9261 
9262 	if (!ops->ndo_get_xmit_slave)
9263 		return NULL;
9264 	return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
9265 }
9266 EXPORT_SYMBOL(netdev_get_xmit_slave);
9267 
9268 static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev,
9269 						  struct sock *sk)
9270 {
9271 	const struct net_device_ops *ops = dev->netdev_ops;
9272 
9273 	if (!ops->ndo_sk_get_lower_dev)
9274 		return NULL;
9275 	return ops->ndo_sk_get_lower_dev(dev, sk);
9276 }
9277 
9278 /**
9279  * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket
9280  * @dev: device
9281  * @sk: the socket
9282  *
9283  * %NULL is returned if no lower device is found.
9284  */
9285 
9286 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
9287 					    struct sock *sk)
9288 {
9289 	struct net_device *lower;
9290 
9291 	lower = netdev_sk_get_lower_dev(dev, sk);
9292 	while (lower) {
9293 		dev = lower;
9294 		lower = netdev_sk_get_lower_dev(dev, sk);
9295 	}
9296 
9297 	return dev;
9298 }
9299 EXPORT_SYMBOL(netdev_sk_get_lowest_dev);
9300 
9301 static void netdev_adjacent_add_links(struct net_device *dev)
9302 {
9303 	struct netdev_adjacent *iter;
9304 
9305 	struct net *net = dev_net(dev);
9306 
9307 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
9308 		if (!net_eq(net, dev_net(iter->dev)))
9309 			continue;
9310 		netdev_adjacent_sysfs_add(iter->dev, dev,
9311 					  &iter->dev->adj_list.lower);
9312 		netdev_adjacent_sysfs_add(dev, iter->dev,
9313 					  &dev->adj_list.upper);
9314 	}
9315 
9316 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
9317 		if (!net_eq(net, dev_net(iter->dev)))
9318 			continue;
9319 		netdev_adjacent_sysfs_add(iter->dev, dev,
9320 					  &iter->dev->adj_list.upper);
9321 		netdev_adjacent_sysfs_add(dev, iter->dev,
9322 					  &dev->adj_list.lower);
9323 	}
9324 }
9325 
9326 static void netdev_adjacent_del_links(struct net_device *dev)
9327 {
9328 	struct netdev_adjacent *iter;
9329 
9330 	struct net *net = dev_net(dev);
9331 
9332 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
9333 		if (!net_eq(net, dev_net(iter->dev)))
9334 			continue;
9335 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
9336 					  &iter->dev->adj_list.lower);
9337 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
9338 					  &dev->adj_list.upper);
9339 	}
9340 
9341 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
9342 		if (!net_eq(net, dev_net(iter->dev)))
9343 			continue;
9344 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
9345 					  &iter->dev->adj_list.upper);
9346 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
9347 					  &dev->adj_list.lower);
9348 	}
9349 }
9350 
9351 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
9352 {
9353 	struct netdev_adjacent *iter;
9354 
9355 	struct net *net = dev_net(dev);
9356 
9357 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
9358 		if (!net_eq(net, dev_net(iter->dev)))
9359 			continue;
9360 		netdev_adjacent_sysfs_del(iter->dev, oldname,
9361 					  &iter->dev->adj_list.lower);
9362 		netdev_adjacent_sysfs_add(iter->dev, dev,
9363 					  &iter->dev->adj_list.lower);
9364 	}
9365 
9366 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
9367 		if (!net_eq(net, dev_net(iter->dev)))
9368 			continue;
9369 		netdev_adjacent_sysfs_del(iter->dev, oldname,
9370 					  &iter->dev->adj_list.upper);
9371 		netdev_adjacent_sysfs_add(iter->dev, dev,
9372 					  &iter->dev->adj_list.upper);
9373 	}
9374 }
9375 
9376 void *netdev_lower_dev_get_private(struct net_device *dev,
9377 				   struct net_device *lower_dev)
9378 {
9379 	struct netdev_adjacent *lower;
9380 
9381 	if (!lower_dev)
9382 		return NULL;
9383 	lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
9384 	if (!lower)
9385 		return NULL;
9386 
9387 	return lower->private;
9388 }
9389 EXPORT_SYMBOL(netdev_lower_dev_get_private);
9390 
9391 
9392 /**
9393  * netdev_lower_state_changed - Dispatch event about lower device state change
9394  * @lower_dev: device
9395  * @lower_state_info: state to dispatch
9396  *
9397  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
9398  * The caller must hold the RTNL lock.
9399  */
9400 void netdev_lower_state_changed(struct net_device *lower_dev,
9401 				void *lower_state_info)
9402 {
9403 	struct netdev_notifier_changelowerstate_info changelowerstate_info = {
9404 		.info.dev = lower_dev,
9405 	};
9406 
9407 	ASSERT_RTNL();
9408 	changelowerstate_info.lower_state_info = lower_state_info;
9409 	call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
9410 				      &changelowerstate_info.info);
9411 }
9412 EXPORT_SYMBOL(netdev_lower_state_changed);
9413 
9414 static void dev_change_rx_flags(struct net_device *dev, int flags)
9415 {
9416 	const struct net_device_ops *ops = dev->netdev_ops;
9417 
9418 	if (ops->ndo_change_rx_flags)
9419 		ops->ndo_change_rx_flags(dev, flags);
9420 }
9421 
9422 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
9423 {
9424 	unsigned int old_flags = dev->flags;
9425 	unsigned int promiscuity, flags;
9426 	kuid_t uid;
9427 	kgid_t gid;
9428 
9429 	ASSERT_RTNL();
9430 
9431 	promiscuity = dev->promiscuity + inc;
9432 	if (promiscuity == 0) {
9433 		/*
9434 		 * Avoid overflow.
9435 		 * If inc causes overflow, untouch promisc and return error.
9436 		 */
9437 		if (unlikely(inc > 0)) {
9438 			netdev_warn(dev, "promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n");
9439 			return -EOVERFLOW;
9440 		}
9441 		flags = old_flags & ~IFF_PROMISC;
9442 	} else {
9443 		flags = old_flags | IFF_PROMISC;
9444 	}
9445 	WRITE_ONCE(dev->promiscuity, promiscuity);
9446 	if (flags != old_flags) {
9447 		WRITE_ONCE(dev->flags, flags);
9448 		netdev_info(dev, "%s promiscuous mode\n",
9449 			    dev->flags & IFF_PROMISC ? "entered" : "left");
9450 		if (audit_enabled) {
9451 			current_uid_gid(&uid, &gid);
9452 			audit_log(audit_context(), GFP_ATOMIC,
9453 				  AUDIT_ANOM_PROMISCUOUS,
9454 				  "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
9455 				  dev->name, (dev->flags & IFF_PROMISC),
9456 				  (old_flags & IFF_PROMISC),
9457 				  from_kuid(&init_user_ns, audit_get_loginuid(current)),
9458 				  from_kuid(&init_user_ns, uid),
9459 				  from_kgid(&init_user_ns, gid),
9460 				  audit_get_sessionid(current));
9461 		}
9462 
9463 		dev_change_rx_flags(dev, IFF_PROMISC);
9464 	}
9465 	if (notify) {
9466 		/* The ops lock is only required to ensure consistent locking
9467 		 * for `NETDEV_CHANGE` notifiers. This function is sometimes
9468 		 * called without the lock, even for devices that are ops
9469 		 * locked, such as in `dev_uc_sync_multiple` when using
9470 		 * bonding or teaming.
9471 		 */
9472 		netdev_ops_assert_locked(dev);
9473 		__dev_notify_flags(dev, old_flags, IFF_PROMISC, 0, NULL);
9474 	}
9475 	return 0;
9476 }
9477 
9478 int netif_set_promiscuity(struct net_device *dev, int inc)
9479 {
9480 	unsigned int old_flags = dev->flags;
9481 	int err;
9482 
9483 	err = __dev_set_promiscuity(dev, inc, true);
9484 	if (err < 0)
9485 		return err;
9486 	if (dev->flags != old_flags)
9487 		dev_set_rx_mode(dev);
9488 	return err;
9489 }
9490 
9491 int netif_set_allmulti(struct net_device *dev, int inc, bool notify)
9492 {
9493 	unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
9494 	unsigned int allmulti, flags;
9495 
9496 	ASSERT_RTNL();
9497 
9498 	allmulti = dev->allmulti + inc;
9499 	if (allmulti == 0) {
9500 		/*
9501 		 * Avoid overflow.
9502 		 * If inc causes overflow, untouch allmulti and return error.
9503 		 */
9504 		if (unlikely(inc > 0)) {
9505 			netdev_warn(dev, "allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n");
9506 			return -EOVERFLOW;
9507 		}
9508 		flags = old_flags & ~IFF_ALLMULTI;
9509 	} else {
9510 		flags = old_flags | IFF_ALLMULTI;
9511 	}
9512 	WRITE_ONCE(dev->allmulti, allmulti);
9513 	if (flags != old_flags) {
9514 		WRITE_ONCE(dev->flags, flags);
9515 		netdev_info(dev, "%s allmulticast mode\n",
9516 			    dev->flags & IFF_ALLMULTI ? "entered" : "left");
9517 		dev_change_rx_flags(dev, IFF_ALLMULTI);
9518 		dev_set_rx_mode(dev);
9519 		if (notify)
9520 			__dev_notify_flags(dev, old_flags,
9521 					   dev->gflags ^ old_gflags, 0, NULL);
9522 	}
9523 	return 0;
9524 }
9525 
9526 /*
9527  *	Upload unicast and multicast address lists to device and
9528  *	configure RX filtering. When the device doesn't support unicast
9529  *	filtering it is put in promiscuous mode while unicast addresses
9530  *	are present.
9531  */
9532 void __dev_set_rx_mode(struct net_device *dev)
9533 {
9534 	const struct net_device_ops *ops = dev->netdev_ops;
9535 
9536 	/* dev_open will call this function so the list will stay sane. */
9537 	if (!(dev->flags&IFF_UP))
9538 		return;
9539 
9540 	if (!netif_device_present(dev))
9541 		return;
9542 
9543 	if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
9544 		/* Unicast addresses changes may only happen under the rtnl,
9545 		 * therefore calling __dev_set_promiscuity here is safe.
9546 		 */
9547 		if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
9548 			__dev_set_promiscuity(dev, 1, false);
9549 			dev->uc_promisc = true;
9550 		} else if (netdev_uc_empty(dev) && dev->uc_promisc) {
9551 			__dev_set_promiscuity(dev, -1, false);
9552 			dev->uc_promisc = false;
9553 		}
9554 	}
9555 
9556 	if (ops->ndo_set_rx_mode)
9557 		ops->ndo_set_rx_mode(dev);
9558 }
9559 
9560 void dev_set_rx_mode(struct net_device *dev)
9561 {
9562 	netif_addr_lock_bh(dev);
9563 	__dev_set_rx_mode(dev);
9564 	netif_addr_unlock_bh(dev);
9565 }
9566 
9567 /**
9568  * netif_get_flags() - get flags reported to userspace
9569  * @dev: device
9570  *
9571  * Get the combination of flag bits exported through APIs to userspace.
9572  */
9573 unsigned int netif_get_flags(const struct net_device *dev)
9574 {
9575 	unsigned int flags;
9576 
9577 	flags = (READ_ONCE(dev->flags) & ~(IFF_PROMISC |
9578 				IFF_ALLMULTI |
9579 				IFF_RUNNING |
9580 				IFF_LOWER_UP |
9581 				IFF_DORMANT)) |
9582 		(READ_ONCE(dev->gflags) & (IFF_PROMISC |
9583 				IFF_ALLMULTI));
9584 
9585 	if (netif_running(dev)) {
9586 		if (netif_oper_up(dev))
9587 			flags |= IFF_RUNNING;
9588 		if (netif_carrier_ok(dev))
9589 			flags |= IFF_LOWER_UP;
9590 		if (netif_dormant(dev))
9591 			flags |= IFF_DORMANT;
9592 	}
9593 
9594 	return flags;
9595 }
9596 EXPORT_SYMBOL(netif_get_flags);
9597 
9598 int __dev_change_flags(struct net_device *dev, unsigned int flags,
9599 		       struct netlink_ext_ack *extack)
9600 {
9601 	unsigned int old_flags = dev->flags;
9602 	int ret;
9603 
9604 	ASSERT_RTNL();
9605 
9606 	/*
9607 	 *	Set the flags on our device.
9608 	 */
9609 
9610 	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
9611 			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
9612 			       IFF_AUTOMEDIA)) |
9613 		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
9614 				    IFF_ALLMULTI));
9615 
9616 	/*
9617 	 *	Load in the correct multicast list now the flags have changed.
9618 	 */
9619 
9620 	if ((old_flags ^ flags) & IFF_MULTICAST)
9621 		dev_change_rx_flags(dev, IFF_MULTICAST);
9622 
9623 	dev_set_rx_mode(dev);
9624 
9625 	/*
9626 	 *	Have we downed the interface. We handle IFF_UP ourselves
9627 	 *	according to user attempts to set it, rather than blindly
9628 	 *	setting it.
9629 	 */
9630 
9631 	ret = 0;
9632 	if ((old_flags ^ flags) & IFF_UP) {
9633 		if (old_flags & IFF_UP)
9634 			__dev_close(dev);
9635 		else
9636 			ret = __dev_open(dev, extack);
9637 	}
9638 
9639 	if ((flags ^ dev->gflags) & IFF_PROMISC) {
9640 		int inc = (flags & IFF_PROMISC) ? 1 : -1;
9641 		old_flags = dev->flags;
9642 
9643 		dev->gflags ^= IFF_PROMISC;
9644 
9645 		if (__dev_set_promiscuity(dev, inc, false) >= 0)
9646 			if (dev->flags != old_flags)
9647 				dev_set_rx_mode(dev);
9648 	}
9649 
9650 	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
9651 	 * is important. Some (broken) drivers set IFF_PROMISC, when
9652 	 * IFF_ALLMULTI is requested not asking us and not reporting.
9653 	 */
9654 	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
9655 		int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
9656 
9657 		dev->gflags ^= IFF_ALLMULTI;
9658 		netif_set_allmulti(dev, inc, false);
9659 	}
9660 
9661 	return ret;
9662 }
9663 
9664 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
9665 			unsigned int gchanges, u32 portid,
9666 			const struct nlmsghdr *nlh)
9667 {
9668 	unsigned int changes = dev->flags ^ old_flags;
9669 
9670 	if (gchanges)
9671 		rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC, portid, nlh);
9672 
9673 	if (changes & IFF_UP) {
9674 		if (dev->flags & IFF_UP)
9675 			call_netdevice_notifiers(NETDEV_UP, dev);
9676 		else
9677 			call_netdevice_notifiers(NETDEV_DOWN, dev);
9678 	}
9679 
9680 	if (dev->flags & IFF_UP &&
9681 	    (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
9682 		struct netdev_notifier_change_info change_info = {
9683 			.info = {
9684 				.dev = dev,
9685 			},
9686 			.flags_changed = changes,
9687 		};
9688 
9689 		call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
9690 	}
9691 }
9692 
9693 int netif_change_flags(struct net_device *dev, unsigned int flags,
9694 		       struct netlink_ext_ack *extack)
9695 {
9696 	int ret;
9697 	unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
9698 
9699 	ret = __dev_change_flags(dev, flags, extack);
9700 	if (ret < 0)
9701 		return ret;
9702 
9703 	changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
9704 	__dev_notify_flags(dev, old_flags, changes, 0, NULL);
9705 	return ret;
9706 }
9707 
9708 int __netif_set_mtu(struct net_device *dev, int new_mtu)
9709 {
9710 	const struct net_device_ops *ops = dev->netdev_ops;
9711 
9712 	if (ops->ndo_change_mtu)
9713 		return ops->ndo_change_mtu(dev, new_mtu);
9714 
9715 	/* Pairs with all the lockless reads of dev->mtu in the stack */
9716 	WRITE_ONCE(dev->mtu, new_mtu);
9717 	return 0;
9718 }
9719 EXPORT_SYMBOL_NS_GPL(__netif_set_mtu, "NETDEV_INTERNAL");
9720 
9721 int dev_validate_mtu(struct net_device *dev, int new_mtu,
9722 		     struct netlink_ext_ack *extack)
9723 {
9724 	/* MTU must be positive, and in range */
9725 	if (new_mtu < 0 || new_mtu < dev->min_mtu) {
9726 		NL_SET_ERR_MSG(extack, "mtu less than device minimum");
9727 		return -EINVAL;
9728 	}
9729 
9730 	if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
9731 		NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
9732 		return -EINVAL;
9733 	}
9734 	return 0;
9735 }
9736 
9737 /**
9738  * netif_set_mtu_ext() - Change maximum transfer unit
9739  * @dev: device
9740  * @new_mtu: new transfer unit
9741  * @extack: netlink extended ack
9742  *
9743  * Change the maximum transfer size of the network device.
9744  *
9745  * Return: 0 on success, -errno on failure.
9746  */
9747 int netif_set_mtu_ext(struct net_device *dev, int new_mtu,
9748 		      struct netlink_ext_ack *extack)
9749 {
9750 	int err, orig_mtu;
9751 
9752 	netdev_ops_assert_locked(dev);
9753 
9754 	if (new_mtu == dev->mtu)
9755 		return 0;
9756 
9757 	err = dev_validate_mtu(dev, new_mtu, extack);
9758 	if (err)
9759 		return err;
9760 
9761 	if (!netif_device_present(dev))
9762 		return -ENODEV;
9763 
9764 	err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
9765 	err = notifier_to_errno(err);
9766 	if (err)
9767 		return err;
9768 
9769 	orig_mtu = dev->mtu;
9770 	err = __netif_set_mtu(dev, new_mtu);
9771 
9772 	if (!err) {
9773 		err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
9774 						   orig_mtu);
9775 		err = notifier_to_errno(err);
9776 		if (err) {
9777 			/* setting mtu back and notifying everyone again,
9778 			 * so that they have a chance to revert changes.
9779 			 */
9780 			__netif_set_mtu(dev, orig_mtu);
9781 			call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
9782 						     new_mtu);
9783 		}
9784 	}
9785 	return err;
9786 }
9787 
9788 int netif_set_mtu(struct net_device *dev, int new_mtu)
9789 {
9790 	struct netlink_ext_ack extack;
9791 	int err;
9792 
9793 	memset(&extack, 0, sizeof(extack));
9794 	err = netif_set_mtu_ext(dev, new_mtu, &extack);
9795 	if (err && extack._msg)
9796 		net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
9797 	return err;
9798 }
9799 EXPORT_SYMBOL(netif_set_mtu);
9800 
9801 int netif_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
9802 {
9803 	unsigned int orig_len = dev->tx_queue_len;
9804 	int res;
9805 
9806 	if (new_len != (unsigned int)new_len)
9807 		return -ERANGE;
9808 
9809 	if (new_len != orig_len) {
9810 		WRITE_ONCE(dev->tx_queue_len, new_len);
9811 		res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
9812 		res = notifier_to_errno(res);
9813 		if (res)
9814 			goto err_rollback;
9815 		res = dev_qdisc_change_tx_queue_len(dev);
9816 		if (res)
9817 			goto err_rollback;
9818 	}
9819 
9820 	return 0;
9821 
9822 err_rollback:
9823 	netdev_err(dev, "refused to change device tx_queue_len\n");
9824 	WRITE_ONCE(dev->tx_queue_len, orig_len);
9825 	return res;
9826 }
9827 
9828 void netif_set_group(struct net_device *dev, int new_group)
9829 {
9830 	dev->group = new_group;
9831 }
9832 
9833 /**
9834  * netif_pre_changeaddr_notify() - Call NETDEV_PRE_CHANGEADDR.
9835  * @dev: device
9836  * @addr: new address
9837  * @extack: netlink extended ack
9838  *
9839  * Return: 0 on success, -errno on failure.
9840  */
9841 int netif_pre_changeaddr_notify(struct net_device *dev, const char *addr,
9842 				struct netlink_ext_ack *extack)
9843 {
9844 	struct netdev_notifier_pre_changeaddr_info info = {
9845 		.info.dev = dev,
9846 		.info.extack = extack,
9847 		.dev_addr = addr,
9848 	};
9849 	int rc;
9850 
9851 	rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
9852 	return notifier_to_errno(rc);
9853 }
9854 EXPORT_SYMBOL_NS_GPL(netif_pre_changeaddr_notify, "NETDEV_INTERNAL");
9855 
9856 int netif_set_mac_address(struct net_device *dev, struct sockaddr_storage *ss,
9857 			  struct netlink_ext_ack *extack)
9858 {
9859 	const struct net_device_ops *ops = dev->netdev_ops;
9860 	int err;
9861 
9862 	if (!ops->ndo_set_mac_address)
9863 		return -EOPNOTSUPP;
9864 	if (ss->ss_family != dev->type)
9865 		return -EINVAL;
9866 	if (!netif_device_present(dev))
9867 		return -ENODEV;
9868 	err = netif_pre_changeaddr_notify(dev, ss->__data, extack);
9869 	if (err)
9870 		return err;
9871 	if (memcmp(dev->dev_addr, ss->__data, dev->addr_len)) {
9872 		err = ops->ndo_set_mac_address(dev, ss);
9873 		if (err)
9874 			return err;
9875 	}
9876 	dev->addr_assign_type = NET_ADDR_SET;
9877 	call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
9878 	add_device_randomness(dev->dev_addr, dev->addr_len);
9879 	return 0;
9880 }
9881 
9882 DECLARE_RWSEM(dev_addr_sem);
9883 
9884 /* "sa" is a true struct sockaddr with limited "sa_data" member. */
9885 int netif_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name)
9886 {
9887 	size_t size = sizeof(sa->sa_data_min);
9888 	struct net_device *dev;
9889 	int ret = 0;
9890 
9891 	down_read(&dev_addr_sem);
9892 	rcu_read_lock();
9893 
9894 	dev = dev_get_by_name_rcu(net, dev_name);
9895 	if (!dev) {
9896 		ret = -ENODEV;
9897 		goto unlock;
9898 	}
9899 	if (!dev->addr_len)
9900 		memset(sa->sa_data, 0, size);
9901 	else
9902 		memcpy(sa->sa_data, dev->dev_addr,
9903 		       min_t(size_t, size, dev->addr_len));
9904 	sa->sa_family = dev->type;
9905 
9906 unlock:
9907 	rcu_read_unlock();
9908 	up_read(&dev_addr_sem);
9909 	return ret;
9910 }
9911 EXPORT_SYMBOL_NS_GPL(netif_get_mac_address, "NETDEV_INTERNAL");
9912 
9913 int netif_change_carrier(struct net_device *dev, bool new_carrier)
9914 {
9915 	const struct net_device_ops *ops = dev->netdev_ops;
9916 
9917 	if (!ops->ndo_change_carrier)
9918 		return -EOPNOTSUPP;
9919 	if (!netif_device_present(dev))
9920 		return -ENODEV;
9921 	return ops->ndo_change_carrier(dev, new_carrier);
9922 }
9923 
9924 /**
9925  *	dev_get_phys_port_id - Get device physical port ID
9926  *	@dev: device
9927  *	@ppid: port ID
9928  *
9929  *	Get device physical port ID
9930  */
9931 int dev_get_phys_port_id(struct net_device *dev,
9932 			 struct netdev_phys_item_id *ppid)
9933 {
9934 	const struct net_device_ops *ops = dev->netdev_ops;
9935 
9936 	if (!ops->ndo_get_phys_port_id)
9937 		return -EOPNOTSUPP;
9938 	return ops->ndo_get_phys_port_id(dev, ppid);
9939 }
9940 
9941 /**
9942  *	dev_get_phys_port_name - Get device physical port name
9943  *	@dev: device
9944  *	@name: port name
9945  *	@len: limit of bytes to copy to name
9946  *
9947  *	Get device physical port name
9948  */
9949 int dev_get_phys_port_name(struct net_device *dev,
9950 			   char *name, size_t len)
9951 {
9952 	const struct net_device_ops *ops = dev->netdev_ops;
9953 	int err;
9954 
9955 	if (ops->ndo_get_phys_port_name) {
9956 		err = ops->ndo_get_phys_port_name(dev, name, len);
9957 		if (err != -EOPNOTSUPP)
9958 			return err;
9959 	}
9960 	return devlink_compat_phys_port_name_get(dev, name, len);
9961 }
9962 
9963 /**
9964  * netif_get_port_parent_id() - Get the device's port parent identifier
9965  * @dev: network device
9966  * @ppid: pointer to a storage for the port's parent identifier
9967  * @recurse: allow/disallow recursion to lower devices
9968  *
9969  * Get the devices's port parent identifier.
9970  *
9971  * Return: 0 on success, -errno on failure.
9972  */
9973 int netif_get_port_parent_id(struct net_device *dev,
9974 			     struct netdev_phys_item_id *ppid, bool recurse)
9975 {
9976 	const struct net_device_ops *ops = dev->netdev_ops;
9977 	struct netdev_phys_item_id first = { };
9978 	struct net_device *lower_dev;
9979 	struct list_head *iter;
9980 	int err;
9981 
9982 	if (ops->ndo_get_port_parent_id) {
9983 		err = ops->ndo_get_port_parent_id(dev, ppid);
9984 		if (err != -EOPNOTSUPP)
9985 			return err;
9986 	}
9987 
9988 	err = devlink_compat_switch_id_get(dev, ppid);
9989 	if (!recurse || err != -EOPNOTSUPP)
9990 		return err;
9991 
9992 	netdev_for_each_lower_dev(dev, lower_dev, iter) {
9993 		err = netif_get_port_parent_id(lower_dev, ppid, true);
9994 		if (err)
9995 			break;
9996 		if (!first.id_len)
9997 			first = *ppid;
9998 		else if (memcmp(&first, ppid, sizeof(*ppid)))
9999 			return -EOPNOTSUPP;
10000 	}
10001 
10002 	return err;
10003 }
10004 EXPORT_SYMBOL(netif_get_port_parent_id);
10005 
10006 /**
10007  *	netdev_port_same_parent_id - Indicate if two network devices have
10008  *	the same port parent identifier
10009  *	@a: first network device
10010  *	@b: second network device
10011  */
10012 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
10013 {
10014 	struct netdev_phys_item_id a_id = { };
10015 	struct netdev_phys_item_id b_id = { };
10016 
10017 	if (netif_get_port_parent_id(a, &a_id, true) ||
10018 	    netif_get_port_parent_id(b, &b_id, true))
10019 		return false;
10020 
10021 	return netdev_phys_item_id_same(&a_id, &b_id);
10022 }
10023 EXPORT_SYMBOL(netdev_port_same_parent_id);
10024 
10025 int netif_change_proto_down(struct net_device *dev, bool proto_down)
10026 {
10027 	if (!dev->change_proto_down)
10028 		return -EOPNOTSUPP;
10029 	if (!netif_device_present(dev))
10030 		return -ENODEV;
10031 	if (proto_down)
10032 		netif_carrier_off(dev);
10033 	else
10034 		netif_carrier_on(dev);
10035 	WRITE_ONCE(dev->proto_down, proto_down);
10036 	return 0;
10037 }
10038 
10039 /**
10040  *	netdev_change_proto_down_reason_locked - proto down reason
10041  *
10042  *	@dev: device
10043  *	@mask: proto down mask
10044  *	@value: proto down value
10045  */
10046 void netdev_change_proto_down_reason_locked(struct net_device *dev,
10047 					    unsigned long mask, u32 value)
10048 {
10049 	u32 proto_down_reason;
10050 	int b;
10051 
10052 	if (!mask) {
10053 		proto_down_reason = value;
10054 	} else {
10055 		proto_down_reason = dev->proto_down_reason;
10056 		for_each_set_bit(b, &mask, 32) {
10057 			if (value & (1 << b))
10058 				proto_down_reason |= BIT(b);
10059 			else
10060 				proto_down_reason &= ~BIT(b);
10061 		}
10062 	}
10063 	WRITE_ONCE(dev->proto_down_reason, proto_down_reason);
10064 }
10065 
10066 struct bpf_xdp_link {
10067 	struct bpf_link link;
10068 	struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
10069 	int flags;
10070 };
10071 
10072 static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags)
10073 {
10074 	if (flags & XDP_FLAGS_HW_MODE)
10075 		return XDP_MODE_HW;
10076 	if (flags & XDP_FLAGS_DRV_MODE)
10077 		return XDP_MODE_DRV;
10078 	if (flags & XDP_FLAGS_SKB_MODE)
10079 		return XDP_MODE_SKB;
10080 	return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB;
10081 }
10082 
10083 static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
10084 {
10085 	switch (mode) {
10086 	case XDP_MODE_SKB:
10087 		return generic_xdp_install;
10088 	case XDP_MODE_DRV:
10089 	case XDP_MODE_HW:
10090 		return dev->netdev_ops->ndo_bpf;
10091 	default:
10092 		return NULL;
10093 	}
10094 }
10095 
10096 static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
10097 					 enum bpf_xdp_mode mode)
10098 {
10099 	return dev->xdp_state[mode].link;
10100 }
10101 
10102 static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
10103 				     enum bpf_xdp_mode mode)
10104 {
10105 	struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
10106 
10107 	if (link)
10108 		return link->link.prog;
10109 	return dev->xdp_state[mode].prog;
10110 }
10111 
10112 u8 dev_xdp_prog_count(struct net_device *dev)
10113 {
10114 	u8 count = 0;
10115 	int i;
10116 
10117 	for (i = 0; i < __MAX_XDP_MODE; i++)
10118 		if (dev->xdp_state[i].prog || dev->xdp_state[i].link)
10119 			count++;
10120 	return count;
10121 }
10122 EXPORT_SYMBOL_GPL(dev_xdp_prog_count);
10123 
10124 u8 dev_xdp_sb_prog_count(struct net_device *dev)
10125 {
10126 	u8 count = 0;
10127 	int i;
10128 
10129 	for (i = 0; i < __MAX_XDP_MODE; i++)
10130 		if (dev->xdp_state[i].prog &&
10131 		    !dev->xdp_state[i].prog->aux->xdp_has_frags)
10132 			count++;
10133 	return count;
10134 }
10135 
10136 int netif_xdp_propagate(struct net_device *dev, struct netdev_bpf *bpf)
10137 {
10138 	if (!dev->netdev_ops->ndo_bpf)
10139 		return -EOPNOTSUPP;
10140 
10141 	if (dev->cfg->hds_config == ETHTOOL_TCP_DATA_SPLIT_ENABLED &&
10142 	    bpf->command == XDP_SETUP_PROG &&
10143 	    bpf->prog && !bpf->prog->aux->xdp_has_frags) {
10144 		NL_SET_ERR_MSG(bpf->extack,
10145 			       "unable to propagate XDP to device using tcp-data-split");
10146 		return -EBUSY;
10147 	}
10148 
10149 	if (dev_get_min_mp_channel_count(dev)) {
10150 		NL_SET_ERR_MSG(bpf->extack, "unable to propagate XDP to device using memory provider");
10151 		return -EBUSY;
10152 	}
10153 
10154 	return dev->netdev_ops->ndo_bpf(dev, bpf);
10155 }
10156 EXPORT_SYMBOL_GPL(netif_xdp_propagate);
10157 
10158 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
10159 {
10160 	struct bpf_prog *prog = dev_xdp_prog(dev, mode);
10161 
10162 	return prog ? prog->aux->id : 0;
10163 }
10164 
10165 static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
10166 			     struct bpf_xdp_link *link)
10167 {
10168 	dev->xdp_state[mode].link = link;
10169 	dev->xdp_state[mode].prog = NULL;
10170 }
10171 
10172 static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
10173 			     struct bpf_prog *prog)
10174 {
10175 	dev->xdp_state[mode].link = NULL;
10176 	dev->xdp_state[mode].prog = prog;
10177 }
10178 
10179 static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
10180 			   bpf_op_t bpf_op, struct netlink_ext_ack *extack,
10181 			   u32 flags, struct bpf_prog *prog)
10182 {
10183 	struct netdev_bpf xdp;
10184 	int err;
10185 
10186 	netdev_ops_assert_locked(dev);
10187 
10188 	if (dev->cfg->hds_config == ETHTOOL_TCP_DATA_SPLIT_ENABLED &&
10189 	    prog && !prog->aux->xdp_has_frags) {
10190 		NL_SET_ERR_MSG(extack, "unable to install XDP to device using tcp-data-split");
10191 		return -EBUSY;
10192 	}
10193 
10194 	if (dev_get_min_mp_channel_count(dev)) {
10195 		NL_SET_ERR_MSG(extack, "unable to install XDP to device using memory provider");
10196 		return -EBUSY;
10197 	}
10198 
10199 	memset(&xdp, 0, sizeof(xdp));
10200 	xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
10201 	xdp.extack = extack;
10202 	xdp.flags = flags;
10203 	xdp.prog = prog;
10204 
10205 	/* Drivers assume refcnt is already incremented (i.e, prog pointer is
10206 	 * "moved" into driver), so they don't increment it on their own, but
10207 	 * they do decrement refcnt when program is detached or replaced.
10208 	 * Given net_device also owns link/prog, we need to bump refcnt here
10209 	 * to prevent drivers from underflowing it.
10210 	 */
10211 	if (prog)
10212 		bpf_prog_inc(prog);
10213 	err = bpf_op(dev, &xdp);
10214 	if (err) {
10215 		if (prog)
10216 			bpf_prog_put(prog);
10217 		return err;
10218 	}
10219 
10220 	if (mode != XDP_MODE_HW)
10221 		bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog);
10222 
10223 	return 0;
10224 }
10225 
10226 static void dev_xdp_uninstall(struct net_device *dev)
10227 {
10228 	struct bpf_xdp_link *link;
10229 	struct bpf_prog *prog;
10230 	enum bpf_xdp_mode mode;
10231 	bpf_op_t bpf_op;
10232 
10233 	ASSERT_RTNL();
10234 
10235 	for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
10236 		prog = dev_xdp_prog(dev, mode);
10237 		if (!prog)
10238 			continue;
10239 
10240 		bpf_op = dev_xdp_bpf_op(dev, mode);
10241 		if (!bpf_op)
10242 			continue;
10243 
10244 		WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
10245 
10246 		/* auto-detach link from net device */
10247 		link = dev_xdp_link(dev, mode);
10248 		if (link)
10249 			link->dev = NULL;
10250 		else
10251 			bpf_prog_put(prog);
10252 
10253 		dev_xdp_set_link(dev, mode, NULL);
10254 	}
10255 }
10256 
10257 static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
10258 			  struct bpf_xdp_link *link, struct bpf_prog *new_prog,
10259 			  struct bpf_prog *old_prog, u32 flags)
10260 {
10261 	unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES);
10262 	struct bpf_prog *cur_prog;
10263 	struct net_device *upper;
10264 	struct list_head *iter;
10265 	enum bpf_xdp_mode mode;
10266 	bpf_op_t bpf_op;
10267 	int err;
10268 
10269 	ASSERT_RTNL();
10270 
10271 	/* either link or prog attachment, never both */
10272 	if (link && (new_prog || old_prog))
10273 		return -EINVAL;
10274 	/* link supports only XDP mode flags */
10275 	if (link && (flags & ~XDP_FLAGS_MODES)) {
10276 		NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
10277 		return -EINVAL;
10278 	}
10279 	/* just one XDP mode bit should be set, zero defaults to drv/skb mode */
10280 	if (num_modes > 1) {
10281 		NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
10282 		return -EINVAL;
10283 	}
10284 	/* avoid ambiguity if offload + drv/skb mode progs are both loaded */
10285 	if (!num_modes && dev_xdp_prog_count(dev) > 1) {
10286 		NL_SET_ERR_MSG(extack,
10287 			       "More than one program loaded, unset mode is ambiguous");
10288 		return -EINVAL;
10289 	}
10290 	/* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
10291 	if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
10292 		NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
10293 		return -EINVAL;
10294 	}
10295 
10296 	mode = dev_xdp_mode(dev, flags);
10297 	/* can't replace attached link */
10298 	if (dev_xdp_link(dev, mode)) {
10299 		NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
10300 		return -EBUSY;
10301 	}
10302 
10303 	/* don't allow if an upper device already has a program */
10304 	netdev_for_each_upper_dev_rcu(dev, upper, iter) {
10305 		if (dev_xdp_prog_count(upper) > 0) {
10306 			NL_SET_ERR_MSG(extack, "Cannot attach when an upper device already has a program");
10307 			return -EEXIST;
10308 		}
10309 	}
10310 
10311 	cur_prog = dev_xdp_prog(dev, mode);
10312 	/* can't replace attached prog with link */
10313 	if (link && cur_prog) {
10314 		NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
10315 		return -EBUSY;
10316 	}
10317 	if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
10318 		NL_SET_ERR_MSG(extack, "Active program does not match expected");
10319 		return -EEXIST;
10320 	}
10321 
10322 	/* put effective new program into new_prog */
10323 	if (link)
10324 		new_prog = link->link.prog;
10325 
10326 	if (new_prog) {
10327 		bool offload = mode == XDP_MODE_HW;
10328 		enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
10329 					       ? XDP_MODE_DRV : XDP_MODE_SKB;
10330 
10331 		if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
10332 			NL_SET_ERR_MSG(extack, "XDP program already attached");
10333 			return -EBUSY;
10334 		}
10335 		if (!offload && dev_xdp_prog(dev, other_mode)) {
10336 			NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
10337 			return -EEXIST;
10338 		}
10339 		if (!offload && bpf_prog_is_offloaded(new_prog->aux)) {
10340 			NL_SET_ERR_MSG(extack, "Using offloaded program without HW_MODE flag is not supported");
10341 			return -EINVAL;
10342 		}
10343 		if (bpf_prog_is_dev_bound(new_prog->aux) && !bpf_offload_dev_match(new_prog, dev)) {
10344 			NL_SET_ERR_MSG(extack, "Program bound to different device");
10345 			return -EINVAL;
10346 		}
10347 		if (bpf_prog_is_dev_bound(new_prog->aux) && mode == XDP_MODE_SKB) {
10348 			NL_SET_ERR_MSG(extack, "Can't attach device-bound programs in generic mode");
10349 			return -EINVAL;
10350 		}
10351 		if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
10352 			NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
10353 			return -EINVAL;
10354 		}
10355 		if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
10356 			NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
10357 			return -EINVAL;
10358 		}
10359 	}
10360 
10361 	/* don't call drivers if the effective program didn't change */
10362 	if (new_prog != cur_prog) {
10363 		bpf_op = dev_xdp_bpf_op(dev, mode);
10364 		if (!bpf_op) {
10365 			NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
10366 			return -EOPNOTSUPP;
10367 		}
10368 
10369 		err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog);
10370 		if (err)
10371 			return err;
10372 	}
10373 
10374 	if (link)
10375 		dev_xdp_set_link(dev, mode, link);
10376 	else
10377 		dev_xdp_set_prog(dev, mode, new_prog);
10378 	if (cur_prog)
10379 		bpf_prog_put(cur_prog);
10380 
10381 	return 0;
10382 }
10383 
10384 static int dev_xdp_attach_link(struct net_device *dev,
10385 			       struct netlink_ext_ack *extack,
10386 			       struct bpf_xdp_link *link)
10387 {
10388 	return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags);
10389 }
10390 
10391 static int dev_xdp_detach_link(struct net_device *dev,
10392 			       struct netlink_ext_ack *extack,
10393 			       struct bpf_xdp_link *link)
10394 {
10395 	enum bpf_xdp_mode mode;
10396 	bpf_op_t bpf_op;
10397 
10398 	ASSERT_RTNL();
10399 
10400 	mode = dev_xdp_mode(dev, link->flags);
10401 	if (dev_xdp_link(dev, mode) != link)
10402 		return -EINVAL;
10403 
10404 	bpf_op = dev_xdp_bpf_op(dev, mode);
10405 	WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
10406 	dev_xdp_set_link(dev, mode, NULL);
10407 	return 0;
10408 }
10409 
10410 static void bpf_xdp_link_release(struct bpf_link *link)
10411 {
10412 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
10413 
10414 	rtnl_lock();
10415 
10416 	/* if racing with net_device's tear down, xdp_link->dev might be
10417 	 * already NULL, in which case link was already auto-detached
10418 	 */
10419 	if (xdp_link->dev) {
10420 		netdev_lock_ops(xdp_link->dev);
10421 		WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
10422 		netdev_unlock_ops(xdp_link->dev);
10423 		xdp_link->dev = NULL;
10424 	}
10425 
10426 	rtnl_unlock();
10427 }
10428 
10429 static int bpf_xdp_link_detach(struct bpf_link *link)
10430 {
10431 	bpf_xdp_link_release(link);
10432 	return 0;
10433 }
10434 
10435 static void bpf_xdp_link_dealloc(struct bpf_link *link)
10436 {
10437 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
10438 
10439 	kfree(xdp_link);
10440 }
10441 
10442 static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link,
10443 				     struct seq_file *seq)
10444 {
10445 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
10446 	u32 ifindex = 0;
10447 
10448 	rtnl_lock();
10449 	if (xdp_link->dev)
10450 		ifindex = xdp_link->dev->ifindex;
10451 	rtnl_unlock();
10452 
10453 	seq_printf(seq, "ifindex:\t%u\n", ifindex);
10454 }
10455 
10456 static int bpf_xdp_link_fill_link_info(const struct bpf_link *link,
10457 				       struct bpf_link_info *info)
10458 {
10459 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
10460 	u32 ifindex = 0;
10461 
10462 	rtnl_lock();
10463 	if (xdp_link->dev)
10464 		ifindex = xdp_link->dev->ifindex;
10465 	rtnl_unlock();
10466 
10467 	info->xdp.ifindex = ifindex;
10468 	return 0;
10469 }
10470 
10471 static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
10472 			       struct bpf_prog *old_prog)
10473 {
10474 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
10475 	enum bpf_xdp_mode mode;
10476 	bpf_op_t bpf_op;
10477 	int err = 0;
10478 
10479 	rtnl_lock();
10480 
10481 	/* link might have been auto-released already, so fail */
10482 	if (!xdp_link->dev) {
10483 		err = -ENOLINK;
10484 		goto out_unlock;
10485 	}
10486 
10487 	if (old_prog && link->prog != old_prog) {
10488 		err = -EPERM;
10489 		goto out_unlock;
10490 	}
10491 	old_prog = link->prog;
10492 	if (old_prog->type != new_prog->type ||
10493 	    old_prog->expected_attach_type != new_prog->expected_attach_type) {
10494 		err = -EINVAL;
10495 		goto out_unlock;
10496 	}
10497 
10498 	if (old_prog == new_prog) {
10499 		/* no-op, don't disturb drivers */
10500 		bpf_prog_put(new_prog);
10501 		goto out_unlock;
10502 	}
10503 
10504 	netdev_lock_ops(xdp_link->dev);
10505 	mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags);
10506 	bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode);
10507 	err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL,
10508 			      xdp_link->flags, new_prog);
10509 	netdev_unlock_ops(xdp_link->dev);
10510 	if (err)
10511 		goto out_unlock;
10512 
10513 	old_prog = xchg(&link->prog, new_prog);
10514 	bpf_prog_put(old_prog);
10515 
10516 out_unlock:
10517 	rtnl_unlock();
10518 	return err;
10519 }
10520 
10521 static const struct bpf_link_ops bpf_xdp_link_lops = {
10522 	.release = bpf_xdp_link_release,
10523 	.dealloc = bpf_xdp_link_dealloc,
10524 	.detach = bpf_xdp_link_detach,
10525 	.show_fdinfo = bpf_xdp_link_show_fdinfo,
10526 	.fill_link_info = bpf_xdp_link_fill_link_info,
10527 	.update_prog = bpf_xdp_link_update,
10528 };
10529 
10530 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
10531 {
10532 	struct net *net = current->nsproxy->net_ns;
10533 	struct bpf_link_primer link_primer;
10534 	struct netlink_ext_ack extack = {};
10535 	struct bpf_xdp_link *link;
10536 	struct net_device *dev;
10537 	int err, fd;
10538 
10539 	rtnl_lock();
10540 	dev = dev_get_by_index(net, attr->link_create.target_ifindex);
10541 	if (!dev) {
10542 		rtnl_unlock();
10543 		return -EINVAL;
10544 	}
10545 
10546 	link = kzalloc(sizeof(*link), GFP_USER);
10547 	if (!link) {
10548 		err = -ENOMEM;
10549 		goto unlock;
10550 	}
10551 
10552 	bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog,
10553 		      attr->link_create.attach_type);
10554 	link->dev = dev;
10555 	link->flags = attr->link_create.flags;
10556 
10557 	err = bpf_link_prime(&link->link, &link_primer);
10558 	if (err) {
10559 		kfree(link);
10560 		goto unlock;
10561 	}
10562 
10563 	netdev_lock_ops(dev);
10564 	err = dev_xdp_attach_link(dev, &extack, link);
10565 	netdev_unlock_ops(dev);
10566 	rtnl_unlock();
10567 
10568 	if (err) {
10569 		link->dev = NULL;
10570 		bpf_link_cleanup(&link_primer);
10571 		trace_bpf_xdp_link_attach_failed(extack._msg);
10572 		goto out_put_dev;
10573 	}
10574 
10575 	fd = bpf_link_settle(&link_primer);
10576 	/* link itself doesn't hold dev's refcnt to not complicate shutdown */
10577 	dev_put(dev);
10578 	return fd;
10579 
10580 unlock:
10581 	rtnl_unlock();
10582 
10583 out_put_dev:
10584 	dev_put(dev);
10585 	return err;
10586 }
10587 
10588 /**
10589  *	dev_change_xdp_fd - set or clear a bpf program for a device rx path
10590  *	@dev: device
10591  *	@extack: netlink extended ack
10592  *	@fd: new program fd or negative value to clear
10593  *	@expected_fd: old program fd that userspace expects to replace or clear
10594  *	@flags: xdp-related flags
10595  *
10596  *	Set or clear a bpf program for a device
10597  */
10598 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
10599 		      int fd, int expected_fd, u32 flags)
10600 {
10601 	enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags);
10602 	struct bpf_prog *new_prog = NULL, *old_prog = NULL;
10603 	int err;
10604 
10605 	ASSERT_RTNL();
10606 
10607 	if (fd >= 0) {
10608 		new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
10609 						 mode != XDP_MODE_SKB);
10610 		if (IS_ERR(new_prog))
10611 			return PTR_ERR(new_prog);
10612 	}
10613 
10614 	if (expected_fd >= 0) {
10615 		old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP,
10616 						 mode != XDP_MODE_SKB);
10617 		if (IS_ERR(old_prog)) {
10618 			err = PTR_ERR(old_prog);
10619 			old_prog = NULL;
10620 			goto err_out;
10621 		}
10622 	}
10623 
10624 	err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
10625 
10626 err_out:
10627 	if (err && new_prog)
10628 		bpf_prog_put(new_prog);
10629 	if (old_prog)
10630 		bpf_prog_put(old_prog);
10631 	return err;
10632 }
10633 
10634 u32 dev_get_min_mp_channel_count(const struct net_device *dev)
10635 {
10636 	int i;
10637 
10638 	netdev_ops_assert_locked(dev);
10639 
10640 	for (i = dev->real_num_rx_queues - 1; i >= 0; i--)
10641 		if (dev->_rx[i].mp_params.mp_priv)
10642 			/* The channel count is the idx plus 1. */
10643 			return i + 1;
10644 
10645 	return 0;
10646 }
10647 
10648 /**
10649  * dev_index_reserve() - allocate an ifindex in a namespace
10650  * @net: the applicable net namespace
10651  * @ifindex: requested ifindex, pass %0 to get one allocated
10652  *
10653  * Allocate a ifindex for a new device. Caller must either use the ifindex
10654  * to store the device (via list_netdevice()) or call dev_index_release()
10655  * to give the index up.
10656  *
10657  * Return: a suitable unique value for a new device interface number or -errno.
10658  */
10659 static int dev_index_reserve(struct net *net, u32 ifindex)
10660 {
10661 	int err;
10662 
10663 	if (ifindex > INT_MAX) {
10664 		DEBUG_NET_WARN_ON_ONCE(1);
10665 		return -EINVAL;
10666 	}
10667 
10668 	if (!ifindex)
10669 		err = xa_alloc_cyclic(&net->dev_by_index, &ifindex, NULL,
10670 				      xa_limit_31b, &net->ifindex, GFP_KERNEL);
10671 	else
10672 		err = xa_insert(&net->dev_by_index, ifindex, NULL, GFP_KERNEL);
10673 	if (err < 0)
10674 		return err;
10675 
10676 	return ifindex;
10677 }
10678 
10679 static void dev_index_release(struct net *net, int ifindex)
10680 {
10681 	/* Expect only unused indexes, unlist_netdevice() removes the used */
10682 	WARN_ON(xa_erase(&net->dev_by_index, ifindex));
10683 }
10684 
10685 static bool from_cleanup_net(void)
10686 {
10687 #ifdef CONFIG_NET_NS
10688 	return current == READ_ONCE(cleanup_net_task);
10689 #else
10690 	return false;
10691 #endif
10692 }
10693 
10694 /* Delayed registration/unregisteration */
10695 LIST_HEAD(net_todo_list);
10696 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
10697 atomic_t dev_unreg_count = ATOMIC_INIT(0);
10698 
10699 static void net_set_todo(struct net_device *dev)
10700 {
10701 	list_add_tail(&dev->todo_list, &net_todo_list);
10702 }
10703 
10704 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
10705 	struct net_device *upper, netdev_features_t features)
10706 {
10707 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
10708 	netdev_features_t feature;
10709 	int feature_bit;
10710 
10711 	for_each_netdev_feature(upper_disables, feature_bit) {
10712 		feature = __NETIF_F_BIT(feature_bit);
10713 		if (!(upper->wanted_features & feature)
10714 		    && (features & feature)) {
10715 			netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
10716 				   &feature, upper->name);
10717 			features &= ~feature;
10718 		}
10719 	}
10720 
10721 	return features;
10722 }
10723 
10724 static void netdev_sync_lower_features(struct net_device *upper,
10725 	struct net_device *lower, netdev_features_t features)
10726 {
10727 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
10728 	netdev_features_t feature;
10729 	int feature_bit;
10730 
10731 	for_each_netdev_feature(upper_disables, feature_bit) {
10732 		feature = __NETIF_F_BIT(feature_bit);
10733 		if (!(features & feature) && (lower->features & feature)) {
10734 			netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
10735 				   &feature, lower->name);
10736 			netdev_lock_ops(lower);
10737 			lower->wanted_features &= ~feature;
10738 			__netdev_update_features(lower);
10739 
10740 			if (unlikely(lower->features & feature))
10741 				netdev_WARN(upper, "failed to disable %pNF on %s!\n",
10742 					    &feature, lower->name);
10743 			else
10744 				netdev_features_change(lower);
10745 			netdev_unlock_ops(lower);
10746 		}
10747 	}
10748 }
10749 
10750 static bool netdev_has_ip_or_hw_csum(netdev_features_t features)
10751 {
10752 	netdev_features_t ip_csum_mask = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
10753 	bool ip_csum = (features & ip_csum_mask) == ip_csum_mask;
10754 	bool hw_csum = features & NETIF_F_HW_CSUM;
10755 
10756 	return ip_csum || hw_csum;
10757 }
10758 
10759 static netdev_features_t netdev_fix_features(struct net_device *dev,
10760 	netdev_features_t features)
10761 {
10762 	/* Fix illegal checksum combinations */
10763 	if ((features & NETIF_F_HW_CSUM) &&
10764 	    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
10765 		netdev_warn(dev, "mixed HW and IP checksum settings.\n");
10766 		features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
10767 	}
10768 
10769 	/* TSO requires that SG is present as well. */
10770 	if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
10771 		netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
10772 		features &= ~NETIF_F_ALL_TSO;
10773 	}
10774 
10775 	if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
10776 					!(features & NETIF_F_IP_CSUM)) {
10777 		netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
10778 		features &= ~NETIF_F_TSO;
10779 		features &= ~NETIF_F_TSO_ECN;
10780 	}
10781 
10782 	if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
10783 					 !(features & NETIF_F_IPV6_CSUM)) {
10784 		netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
10785 		features &= ~NETIF_F_TSO6;
10786 	}
10787 
10788 	/* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
10789 	if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
10790 		features &= ~NETIF_F_TSO_MANGLEID;
10791 
10792 	/* TSO ECN requires that TSO is present as well. */
10793 	if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
10794 		features &= ~NETIF_F_TSO_ECN;
10795 
10796 	/* Software GSO depends on SG. */
10797 	if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
10798 		netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
10799 		features &= ~NETIF_F_GSO;
10800 	}
10801 
10802 	/* GSO partial features require GSO partial be set */
10803 	if ((features & dev->gso_partial_features) &&
10804 	    !(features & NETIF_F_GSO_PARTIAL)) {
10805 		netdev_dbg(dev,
10806 			   "Dropping partially supported GSO features since no GSO partial.\n");
10807 		features &= ~dev->gso_partial_features;
10808 	}
10809 
10810 	if (!(features & NETIF_F_RXCSUM)) {
10811 		/* NETIF_F_GRO_HW implies doing RXCSUM since every packet
10812 		 * successfully merged by hardware must also have the
10813 		 * checksum verified by hardware.  If the user does not
10814 		 * want to enable RXCSUM, logically, we should disable GRO_HW.
10815 		 */
10816 		if (features & NETIF_F_GRO_HW) {
10817 			netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
10818 			features &= ~NETIF_F_GRO_HW;
10819 		}
10820 	}
10821 
10822 	/* LRO/HW-GRO features cannot be combined with RX-FCS */
10823 	if (features & NETIF_F_RXFCS) {
10824 		if (features & NETIF_F_LRO) {
10825 			netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
10826 			features &= ~NETIF_F_LRO;
10827 		}
10828 
10829 		if (features & NETIF_F_GRO_HW) {
10830 			netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
10831 			features &= ~NETIF_F_GRO_HW;
10832 		}
10833 	}
10834 
10835 	if ((features & NETIF_F_GRO_HW) && (features & NETIF_F_LRO)) {
10836 		netdev_dbg(dev, "Dropping LRO feature since HW-GRO is requested.\n");
10837 		features &= ~NETIF_F_LRO;
10838 	}
10839 
10840 	if ((features & NETIF_F_HW_TLS_TX) && !netdev_has_ip_or_hw_csum(features)) {
10841 		netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n");
10842 		features &= ~NETIF_F_HW_TLS_TX;
10843 	}
10844 
10845 	if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) {
10846 		netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n");
10847 		features &= ~NETIF_F_HW_TLS_RX;
10848 	}
10849 
10850 	if ((features & NETIF_F_GSO_UDP_L4) && !netdev_has_ip_or_hw_csum(features)) {
10851 		netdev_dbg(dev, "Dropping USO feature since no CSUM feature.\n");
10852 		features &= ~NETIF_F_GSO_UDP_L4;
10853 	}
10854 
10855 	return features;
10856 }
10857 
10858 int __netdev_update_features(struct net_device *dev)
10859 {
10860 	struct net_device *upper, *lower;
10861 	netdev_features_t features;
10862 	struct list_head *iter;
10863 	int err = -1;
10864 
10865 	ASSERT_RTNL();
10866 	netdev_ops_assert_locked(dev);
10867 
10868 	features = netdev_get_wanted_features(dev);
10869 
10870 	if (dev->netdev_ops->ndo_fix_features)
10871 		features = dev->netdev_ops->ndo_fix_features(dev, features);
10872 
10873 	/* driver might be less strict about feature dependencies */
10874 	features = netdev_fix_features(dev, features);
10875 
10876 	/* some features can't be enabled if they're off on an upper device */
10877 	netdev_for_each_upper_dev_rcu(dev, upper, iter)
10878 		features = netdev_sync_upper_features(dev, upper, features);
10879 
10880 	if (dev->features == features)
10881 		goto sync_lower;
10882 
10883 	netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
10884 		&dev->features, &features);
10885 
10886 	if (dev->netdev_ops->ndo_set_features)
10887 		err = dev->netdev_ops->ndo_set_features(dev, features);
10888 	else
10889 		err = 0;
10890 
10891 	if (unlikely(err < 0)) {
10892 		netdev_err(dev,
10893 			"set_features() failed (%d); wanted %pNF, left %pNF\n",
10894 			err, &features, &dev->features);
10895 		/* return non-0 since some features might have changed and
10896 		 * it's better to fire a spurious notification than miss it
10897 		 */
10898 		return -1;
10899 	}
10900 
10901 sync_lower:
10902 	/* some features must be disabled on lower devices when disabled
10903 	 * on an upper device (think: bonding master or bridge)
10904 	 */
10905 	netdev_for_each_lower_dev(dev, lower, iter)
10906 		netdev_sync_lower_features(dev, lower, features);
10907 
10908 	if (!err) {
10909 		netdev_features_t diff = features ^ dev->features;
10910 
10911 		if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
10912 			/* udp_tunnel_{get,drop}_rx_info both need
10913 			 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
10914 			 * device, or they won't do anything.
10915 			 * Thus we need to update dev->features
10916 			 * *before* calling udp_tunnel_get_rx_info,
10917 			 * but *after* calling udp_tunnel_drop_rx_info.
10918 			 */
10919 			udp_tunnel_nic_lock(dev);
10920 			if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
10921 				dev->features = features;
10922 				udp_tunnel_get_rx_info(dev);
10923 			} else {
10924 				udp_tunnel_drop_rx_info(dev);
10925 			}
10926 			udp_tunnel_nic_unlock(dev);
10927 		}
10928 
10929 		if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
10930 			if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
10931 				dev->features = features;
10932 				err |= vlan_get_rx_ctag_filter_info(dev);
10933 			} else {
10934 				vlan_drop_rx_ctag_filter_info(dev);
10935 			}
10936 		}
10937 
10938 		if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
10939 			if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
10940 				dev->features = features;
10941 				err |= vlan_get_rx_stag_filter_info(dev);
10942 			} else {
10943 				vlan_drop_rx_stag_filter_info(dev);
10944 			}
10945 		}
10946 
10947 		dev->features = features;
10948 	}
10949 
10950 	return err < 0 ? 0 : 1;
10951 }
10952 
10953 /**
10954  *	netdev_update_features - recalculate device features
10955  *	@dev: the device to check
10956  *
10957  *	Recalculate dev->features set and send notifications if it
10958  *	has changed. Should be called after driver or hardware dependent
10959  *	conditions might have changed that influence the features.
10960  */
10961 void netdev_update_features(struct net_device *dev)
10962 {
10963 	if (__netdev_update_features(dev))
10964 		netdev_features_change(dev);
10965 }
10966 EXPORT_SYMBOL(netdev_update_features);
10967 
10968 /**
10969  *	netdev_change_features - recalculate device features
10970  *	@dev: the device to check
10971  *
10972  *	Recalculate dev->features set and send notifications even
10973  *	if they have not changed. Should be called instead of
10974  *	netdev_update_features() if also dev->vlan_features might
10975  *	have changed to allow the changes to be propagated to stacked
10976  *	VLAN devices.
10977  */
10978 void netdev_change_features(struct net_device *dev)
10979 {
10980 	__netdev_update_features(dev);
10981 	netdev_features_change(dev);
10982 }
10983 EXPORT_SYMBOL(netdev_change_features);
10984 
10985 /**
10986  *	netif_stacked_transfer_operstate -	transfer operstate
10987  *	@rootdev: the root or lower level device to transfer state from
10988  *	@dev: the device to transfer operstate to
10989  *
10990  *	Transfer operational state from root to device. This is normally
10991  *	called when a stacking relationship exists between the root
10992  *	device and the device(a leaf device).
10993  */
10994 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
10995 					struct net_device *dev)
10996 {
10997 	if (rootdev->operstate == IF_OPER_DORMANT)
10998 		netif_dormant_on(dev);
10999 	else
11000 		netif_dormant_off(dev);
11001 
11002 	if (rootdev->operstate == IF_OPER_TESTING)
11003 		netif_testing_on(dev);
11004 	else
11005 		netif_testing_off(dev);
11006 
11007 	if (netif_carrier_ok(rootdev))
11008 		netif_carrier_on(dev);
11009 	else
11010 		netif_carrier_off(dev);
11011 }
11012 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
11013 
11014 static int netif_alloc_rx_queues(struct net_device *dev)
11015 {
11016 	unsigned int i, count = dev->num_rx_queues;
11017 	struct netdev_rx_queue *rx;
11018 	size_t sz = count * sizeof(*rx);
11019 	int err = 0;
11020 
11021 	BUG_ON(count < 1);
11022 
11023 	rx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
11024 	if (!rx)
11025 		return -ENOMEM;
11026 
11027 	dev->_rx = rx;
11028 
11029 	for (i = 0; i < count; i++) {
11030 		rx[i].dev = dev;
11031 
11032 		/* XDP RX-queue setup */
11033 		err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0);
11034 		if (err < 0)
11035 			goto err_rxq_info;
11036 	}
11037 	return 0;
11038 
11039 err_rxq_info:
11040 	/* Rollback successful reg's and free other resources */
11041 	while (i--)
11042 		xdp_rxq_info_unreg(&rx[i].xdp_rxq);
11043 	kvfree(dev->_rx);
11044 	dev->_rx = NULL;
11045 	return err;
11046 }
11047 
11048 static void netif_free_rx_queues(struct net_device *dev)
11049 {
11050 	unsigned int i, count = dev->num_rx_queues;
11051 
11052 	/* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
11053 	if (!dev->_rx)
11054 		return;
11055 
11056 	for (i = 0; i < count; i++)
11057 		xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
11058 
11059 	kvfree(dev->_rx);
11060 }
11061 
11062 static void netdev_init_one_queue(struct net_device *dev,
11063 				  struct netdev_queue *queue, void *_unused)
11064 {
11065 	/* Initialize queue lock */
11066 	spin_lock_init(&queue->_xmit_lock);
11067 	netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
11068 	queue->xmit_lock_owner = -1;
11069 	netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
11070 	queue->dev = dev;
11071 #ifdef CONFIG_BQL
11072 	dql_init(&queue->dql, HZ);
11073 #endif
11074 }
11075 
11076 static void netif_free_tx_queues(struct net_device *dev)
11077 {
11078 	kvfree(dev->_tx);
11079 }
11080 
11081 static int netif_alloc_netdev_queues(struct net_device *dev)
11082 {
11083 	unsigned int count = dev->num_tx_queues;
11084 	struct netdev_queue *tx;
11085 	size_t sz = count * sizeof(*tx);
11086 
11087 	if (count < 1 || count > 0xffff)
11088 		return -EINVAL;
11089 
11090 	tx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
11091 	if (!tx)
11092 		return -ENOMEM;
11093 
11094 	dev->_tx = tx;
11095 
11096 	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
11097 	spin_lock_init(&dev->tx_global_lock);
11098 
11099 	return 0;
11100 }
11101 
11102 void netif_tx_stop_all_queues(struct net_device *dev)
11103 {
11104 	unsigned int i;
11105 
11106 	for (i = 0; i < dev->num_tx_queues; i++) {
11107 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
11108 
11109 		netif_tx_stop_queue(txq);
11110 	}
11111 }
11112 EXPORT_SYMBOL(netif_tx_stop_all_queues);
11113 
11114 static int netdev_do_alloc_pcpu_stats(struct net_device *dev)
11115 {
11116 	void __percpu *v;
11117 
11118 	/* Drivers implementing ndo_get_peer_dev must support tstat
11119 	 * accounting, so that skb_do_redirect() can bump the dev's
11120 	 * RX stats upon network namespace switch.
11121 	 */
11122 	if (dev->netdev_ops->ndo_get_peer_dev &&
11123 	    dev->pcpu_stat_type != NETDEV_PCPU_STAT_TSTATS)
11124 		return -EOPNOTSUPP;
11125 
11126 	switch (dev->pcpu_stat_type) {
11127 	case NETDEV_PCPU_STAT_NONE:
11128 		return 0;
11129 	case NETDEV_PCPU_STAT_LSTATS:
11130 		v = dev->lstats = netdev_alloc_pcpu_stats(struct pcpu_lstats);
11131 		break;
11132 	case NETDEV_PCPU_STAT_TSTATS:
11133 		v = dev->tstats = netdev_alloc_pcpu_stats(struct pcpu_sw_netstats);
11134 		break;
11135 	case NETDEV_PCPU_STAT_DSTATS:
11136 		v = dev->dstats = netdev_alloc_pcpu_stats(struct pcpu_dstats);
11137 		break;
11138 	default:
11139 		return -EINVAL;
11140 	}
11141 
11142 	return v ? 0 : -ENOMEM;
11143 }
11144 
11145 static void netdev_do_free_pcpu_stats(struct net_device *dev)
11146 {
11147 	switch (dev->pcpu_stat_type) {
11148 	case NETDEV_PCPU_STAT_NONE:
11149 		return;
11150 	case NETDEV_PCPU_STAT_LSTATS:
11151 		free_percpu(dev->lstats);
11152 		break;
11153 	case NETDEV_PCPU_STAT_TSTATS:
11154 		free_percpu(dev->tstats);
11155 		break;
11156 	case NETDEV_PCPU_STAT_DSTATS:
11157 		free_percpu(dev->dstats);
11158 		break;
11159 	}
11160 }
11161 
11162 static void netdev_free_phy_link_topology(struct net_device *dev)
11163 {
11164 	struct phy_link_topology *topo = dev->link_topo;
11165 
11166 	if (IS_ENABLED(CONFIG_PHYLIB) && topo) {
11167 		xa_destroy(&topo->phys);
11168 		kfree(topo);
11169 		dev->link_topo = NULL;
11170 	}
11171 }
11172 
11173 /**
11174  * register_netdevice() - register a network device
11175  * @dev: device to register
11176  *
11177  * Take a prepared network device structure and make it externally accessible.
11178  * A %NETDEV_REGISTER message is sent to the netdev notifier chain.
11179  * Callers must hold the rtnl lock - you may want register_netdev()
11180  * instead of this.
11181  */
11182 int register_netdevice(struct net_device *dev)
11183 {
11184 	int ret;
11185 	struct net *net = dev_net(dev);
11186 
11187 	BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
11188 		     NETDEV_FEATURE_COUNT);
11189 	BUG_ON(dev_boot_phase);
11190 	ASSERT_RTNL();
11191 
11192 	might_sleep();
11193 
11194 	/* When net_device's are persistent, this will be fatal. */
11195 	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
11196 	BUG_ON(!net);
11197 
11198 	ret = ethtool_check_ops(dev->ethtool_ops);
11199 	if (ret)
11200 		return ret;
11201 
11202 	/* rss ctx ID 0 is reserved for the default context, start from 1 */
11203 	xa_init_flags(&dev->ethtool->rss_ctx, XA_FLAGS_ALLOC1);
11204 	mutex_init(&dev->ethtool->rss_lock);
11205 
11206 	spin_lock_init(&dev->addr_list_lock);
11207 	netdev_set_addr_lockdep_class(dev);
11208 
11209 	ret = dev_get_valid_name(net, dev, dev->name);
11210 	if (ret < 0)
11211 		goto out;
11212 
11213 	ret = -ENOMEM;
11214 	dev->name_node = netdev_name_node_head_alloc(dev);
11215 	if (!dev->name_node)
11216 		goto out;
11217 
11218 	/* Init, if this function is available */
11219 	if (dev->netdev_ops->ndo_init) {
11220 		ret = dev->netdev_ops->ndo_init(dev);
11221 		if (ret) {
11222 			if (ret > 0)
11223 				ret = -EIO;
11224 			goto err_free_name;
11225 		}
11226 	}
11227 
11228 	if (((dev->hw_features | dev->features) &
11229 	     NETIF_F_HW_VLAN_CTAG_FILTER) &&
11230 	    (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
11231 	     !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
11232 		netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
11233 		ret = -EINVAL;
11234 		goto err_uninit;
11235 	}
11236 
11237 	ret = netdev_do_alloc_pcpu_stats(dev);
11238 	if (ret)
11239 		goto err_uninit;
11240 
11241 	ret = dev_index_reserve(net, dev->ifindex);
11242 	if (ret < 0)
11243 		goto err_free_pcpu;
11244 	dev->ifindex = ret;
11245 
11246 	/* Transfer changeable features to wanted_features and enable
11247 	 * software offloads (GSO and GRO).
11248 	 */
11249 	dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
11250 	dev->features |= NETIF_F_SOFT_FEATURES;
11251 
11252 	if (dev->udp_tunnel_nic_info) {
11253 		dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
11254 		dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
11255 	}
11256 
11257 	dev->wanted_features = dev->features & dev->hw_features;
11258 
11259 	if (!(dev->flags & IFF_LOOPBACK))
11260 		dev->hw_features |= NETIF_F_NOCACHE_COPY;
11261 
11262 	/* If IPv4 TCP segmentation offload is supported we should also
11263 	 * allow the device to enable segmenting the frame with the option
11264 	 * of ignoring a static IP ID value.  This doesn't enable the
11265 	 * feature itself but allows the user to enable it later.
11266 	 */
11267 	if (dev->hw_features & NETIF_F_TSO)
11268 		dev->hw_features |= NETIF_F_TSO_MANGLEID;
11269 	if (dev->vlan_features & NETIF_F_TSO)
11270 		dev->vlan_features |= NETIF_F_TSO_MANGLEID;
11271 	if (dev->mpls_features & NETIF_F_TSO)
11272 		dev->mpls_features |= NETIF_F_TSO_MANGLEID;
11273 	if (dev->hw_enc_features & NETIF_F_TSO)
11274 		dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
11275 
11276 	/* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
11277 	 */
11278 	dev->vlan_features |= NETIF_F_HIGHDMA;
11279 
11280 	/* Make NETIF_F_SG inheritable to tunnel devices.
11281 	 */
11282 	dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
11283 
11284 	/* Make NETIF_F_SG inheritable to MPLS.
11285 	 */
11286 	dev->mpls_features |= NETIF_F_SG;
11287 
11288 	ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
11289 	ret = notifier_to_errno(ret);
11290 	if (ret)
11291 		goto err_ifindex_release;
11292 
11293 	ret = netdev_register_kobject(dev);
11294 
11295 	netdev_lock(dev);
11296 	WRITE_ONCE(dev->reg_state, ret ? NETREG_UNREGISTERED : NETREG_REGISTERED);
11297 	netdev_unlock(dev);
11298 
11299 	if (ret)
11300 		goto err_uninit_notify;
11301 
11302 	netdev_lock_ops(dev);
11303 	__netdev_update_features(dev);
11304 	netdev_unlock_ops(dev);
11305 
11306 	/*
11307 	 *	Default initial state at registry is that the
11308 	 *	device is present.
11309 	 */
11310 
11311 	set_bit(__LINK_STATE_PRESENT, &dev->state);
11312 
11313 	linkwatch_init_dev(dev);
11314 
11315 	dev_init_scheduler(dev);
11316 
11317 	netdev_hold(dev, &dev->dev_registered_tracker, GFP_KERNEL);
11318 	list_netdevice(dev);
11319 
11320 	add_device_randomness(dev->dev_addr, dev->addr_len);
11321 
11322 	/* If the device has permanent device address, driver should
11323 	 * set dev_addr and also addr_assign_type should be set to
11324 	 * NET_ADDR_PERM (default value).
11325 	 */
11326 	if (dev->addr_assign_type == NET_ADDR_PERM)
11327 		memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
11328 
11329 	/* Notify protocols, that a new device appeared. */
11330 	netdev_lock_ops(dev);
11331 	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
11332 	netdev_unlock_ops(dev);
11333 	ret = notifier_to_errno(ret);
11334 	if (ret) {
11335 		/* Expect explicit free_netdev() on failure */
11336 		dev->needs_free_netdev = false;
11337 		unregister_netdevice_queue(dev, NULL);
11338 		goto out;
11339 	}
11340 	/*
11341 	 *	Prevent userspace races by waiting until the network
11342 	 *	device is fully setup before sending notifications.
11343 	 */
11344 	if (!(dev->rtnl_link_ops && dev->rtnl_link_initializing))
11345 		rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL);
11346 
11347 out:
11348 	return ret;
11349 
11350 err_uninit_notify:
11351 	call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev);
11352 err_ifindex_release:
11353 	dev_index_release(net, dev->ifindex);
11354 err_free_pcpu:
11355 	netdev_do_free_pcpu_stats(dev);
11356 err_uninit:
11357 	if (dev->netdev_ops->ndo_uninit)
11358 		dev->netdev_ops->ndo_uninit(dev);
11359 	if (dev->priv_destructor)
11360 		dev->priv_destructor(dev);
11361 err_free_name:
11362 	netdev_name_node_free(dev->name_node);
11363 	goto out;
11364 }
11365 EXPORT_SYMBOL(register_netdevice);
11366 
11367 /* Initialize the core of a dummy net device.
11368  * The setup steps dummy netdevs need which normal netdevs get by going
11369  * through register_netdevice().
11370  */
11371 static void init_dummy_netdev(struct net_device *dev)
11372 {
11373 	/* make sure we BUG if trying to hit standard
11374 	 * register/unregister code path
11375 	 */
11376 	dev->reg_state = NETREG_DUMMY;
11377 
11378 	/* a dummy interface is started by default */
11379 	set_bit(__LINK_STATE_PRESENT, &dev->state);
11380 	set_bit(__LINK_STATE_START, &dev->state);
11381 
11382 	/* Note : We dont allocate pcpu_refcnt for dummy devices,
11383 	 * because users of this 'device' dont need to change
11384 	 * its refcount.
11385 	 */
11386 }
11387 
11388 /**
11389  *	register_netdev	- register a network device
11390  *	@dev: device to register
11391  *
11392  *	Take a completed network device structure and add it to the kernel
11393  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
11394  *	chain. 0 is returned on success. A negative errno code is returned
11395  *	on a failure to set up the device, or if the name is a duplicate.
11396  *
11397  *	This is a wrapper around register_netdevice that takes the rtnl semaphore
11398  *	and expands the device name if you passed a format string to
11399  *	alloc_netdev.
11400  */
11401 int register_netdev(struct net_device *dev)
11402 {
11403 	struct net *net = dev_net(dev);
11404 	int err;
11405 
11406 	if (rtnl_net_lock_killable(net))
11407 		return -EINTR;
11408 
11409 	err = register_netdevice(dev);
11410 
11411 	rtnl_net_unlock(net);
11412 
11413 	return err;
11414 }
11415 EXPORT_SYMBOL(register_netdev);
11416 
11417 int netdev_refcnt_read(const struct net_device *dev)
11418 {
11419 #ifdef CONFIG_PCPU_DEV_REFCNT
11420 	int i, refcnt = 0;
11421 
11422 	for_each_possible_cpu(i)
11423 		refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
11424 	return refcnt;
11425 #else
11426 	return refcount_read(&dev->dev_refcnt);
11427 #endif
11428 }
11429 EXPORT_SYMBOL(netdev_refcnt_read);
11430 
11431 int netdev_unregister_timeout_secs __read_mostly = 10;
11432 
11433 #define WAIT_REFS_MIN_MSECS 1
11434 #define WAIT_REFS_MAX_MSECS 250
11435 /**
11436  * netdev_wait_allrefs_any - wait until all references are gone.
11437  * @list: list of net_devices to wait on
11438  *
11439  * This is called when unregistering network devices.
11440  *
11441  * Any protocol or device that holds a reference should register
11442  * for netdevice notification, and cleanup and put back the
11443  * reference if they receive an UNREGISTER event.
11444  * We can get stuck here if buggy protocols don't correctly
11445  * call dev_put.
11446  */
11447 static struct net_device *netdev_wait_allrefs_any(struct list_head *list)
11448 {
11449 	unsigned long rebroadcast_time, warning_time;
11450 	struct net_device *dev;
11451 	int wait = 0;
11452 
11453 	rebroadcast_time = warning_time = jiffies;
11454 
11455 	list_for_each_entry(dev, list, todo_list)
11456 		if (netdev_refcnt_read(dev) == 1)
11457 			return dev;
11458 
11459 	while (true) {
11460 		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
11461 			rtnl_lock();
11462 
11463 			/* Rebroadcast unregister notification */
11464 			list_for_each_entry(dev, list, todo_list)
11465 				call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11466 
11467 			__rtnl_unlock();
11468 			rcu_barrier();
11469 			rtnl_lock();
11470 
11471 			list_for_each_entry(dev, list, todo_list)
11472 				if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
11473 					     &dev->state)) {
11474 					/* We must not have linkwatch events
11475 					 * pending on unregister. If this
11476 					 * happens, we simply run the queue
11477 					 * unscheduled, resulting in a noop
11478 					 * for this device.
11479 					 */
11480 					linkwatch_run_queue();
11481 					break;
11482 				}
11483 
11484 			__rtnl_unlock();
11485 
11486 			rebroadcast_time = jiffies;
11487 		}
11488 
11489 		rcu_barrier();
11490 
11491 		if (!wait) {
11492 			wait = WAIT_REFS_MIN_MSECS;
11493 		} else {
11494 			msleep(wait);
11495 			wait = min(wait << 1, WAIT_REFS_MAX_MSECS);
11496 		}
11497 
11498 		list_for_each_entry(dev, list, todo_list)
11499 			if (netdev_refcnt_read(dev) == 1)
11500 				return dev;
11501 
11502 		if (time_after(jiffies, warning_time +
11503 			       READ_ONCE(netdev_unregister_timeout_secs) * HZ)) {
11504 			list_for_each_entry(dev, list, todo_list) {
11505 				pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
11506 					 dev->name, netdev_refcnt_read(dev));
11507 				ref_tracker_dir_print(&dev->refcnt_tracker, 10);
11508 			}
11509 
11510 			warning_time = jiffies;
11511 		}
11512 	}
11513 }
11514 
11515 /* The sequence is:
11516  *
11517  *	rtnl_lock();
11518  *	...
11519  *	register_netdevice(x1);
11520  *	register_netdevice(x2);
11521  *	...
11522  *	unregister_netdevice(y1);
11523  *	unregister_netdevice(y2);
11524  *      ...
11525  *	rtnl_unlock();
11526  *	free_netdev(y1);
11527  *	free_netdev(y2);
11528  *
11529  * We are invoked by rtnl_unlock().
11530  * This allows us to deal with problems:
11531  * 1) We can delete sysfs objects which invoke hotplug
11532  *    without deadlocking with linkwatch via keventd.
11533  * 2) Since we run with the RTNL semaphore not held, we can sleep
11534  *    safely in order to wait for the netdev refcnt to drop to zero.
11535  *
11536  * We must not return until all unregister events added during
11537  * the interval the lock was held have been completed.
11538  */
11539 void netdev_run_todo(void)
11540 {
11541 	struct net_device *dev, *tmp;
11542 	struct list_head list;
11543 	int cnt;
11544 #ifdef CONFIG_LOCKDEP
11545 	struct list_head unlink_list;
11546 
11547 	list_replace_init(&net_unlink_list, &unlink_list);
11548 
11549 	while (!list_empty(&unlink_list)) {
11550 		dev = list_first_entry(&unlink_list, struct net_device,
11551 				       unlink_list);
11552 		list_del_init(&dev->unlink_list);
11553 		dev->nested_level = dev->lower_level - 1;
11554 	}
11555 #endif
11556 
11557 	/* Snapshot list, allow later requests */
11558 	list_replace_init(&net_todo_list, &list);
11559 
11560 	__rtnl_unlock();
11561 
11562 	/* Wait for rcu callbacks to finish before next phase */
11563 	if (!list_empty(&list))
11564 		rcu_barrier();
11565 
11566 	list_for_each_entry_safe(dev, tmp, &list, todo_list) {
11567 		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
11568 			netdev_WARN(dev, "run_todo but not unregistering\n");
11569 			list_del(&dev->todo_list);
11570 			continue;
11571 		}
11572 
11573 		netdev_lock(dev);
11574 		WRITE_ONCE(dev->reg_state, NETREG_UNREGISTERED);
11575 		netdev_unlock(dev);
11576 		linkwatch_sync_dev(dev);
11577 	}
11578 
11579 	cnt = 0;
11580 	while (!list_empty(&list)) {
11581 		dev = netdev_wait_allrefs_any(&list);
11582 		list_del(&dev->todo_list);
11583 
11584 		/* paranoia */
11585 		BUG_ON(netdev_refcnt_read(dev) != 1);
11586 		BUG_ON(!list_empty(&dev->ptype_all));
11587 		BUG_ON(!list_empty(&dev->ptype_specific));
11588 		WARN_ON(rcu_access_pointer(dev->ip_ptr));
11589 		WARN_ON(rcu_access_pointer(dev->ip6_ptr));
11590 
11591 		netdev_do_free_pcpu_stats(dev);
11592 		if (dev->priv_destructor)
11593 			dev->priv_destructor(dev);
11594 		if (dev->needs_free_netdev)
11595 			free_netdev(dev);
11596 
11597 		cnt++;
11598 
11599 		/* Free network device */
11600 		kobject_put(&dev->dev.kobj);
11601 	}
11602 	if (cnt && atomic_sub_and_test(cnt, &dev_unreg_count))
11603 		wake_up(&netdev_unregistering_wq);
11604 }
11605 
11606 /* Collate per-cpu network dstats statistics
11607  *
11608  * Read per-cpu network statistics from dev->dstats and populate the related
11609  * fields in @s.
11610  */
11611 static void dev_fetch_dstats(struct rtnl_link_stats64 *s,
11612 			     const struct pcpu_dstats __percpu *dstats)
11613 {
11614 	int cpu;
11615 
11616 	for_each_possible_cpu(cpu) {
11617 		u64 rx_packets, rx_bytes, rx_drops;
11618 		u64 tx_packets, tx_bytes, tx_drops;
11619 		const struct pcpu_dstats *stats;
11620 		unsigned int start;
11621 
11622 		stats = per_cpu_ptr(dstats, cpu);
11623 		do {
11624 			start = u64_stats_fetch_begin(&stats->syncp);
11625 			rx_packets = u64_stats_read(&stats->rx_packets);
11626 			rx_bytes   = u64_stats_read(&stats->rx_bytes);
11627 			rx_drops   = u64_stats_read(&stats->rx_drops);
11628 			tx_packets = u64_stats_read(&stats->tx_packets);
11629 			tx_bytes   = u64_stats_read(&stats->tx_bytes);
11630 			tx_drops   = u64_stats_read(&stats->tx_drops);
11631 		} while (u64_stats_fetch_retry(&stats->syncp, start));
11632 
11633 		s->rx_packets += rx_packets;
11634 		s->rx_bytes   += rx_bytes;
11635 		s->rx_dropped += rx_drops;
11636 		s->tx_packets += tx_packets;
11637 		s->tx_bytes   += tx_bytes;
11638 		s->tx_dropped += tx_drops;
11639 	}
11640 }
11641 
11642 /* ndo_get_stats64 implementation for dtstats-based accounting.
11643  *
11644  * Populate @s from dev->stats and dev->dstats. This is used internally by the
11645  * core for NETDEV_PCPU_STAT_DSTAT-type stats collection.
11646  */
11647 static void dev_get_dstats64(const struct net_device *dev,
11648 			     struct rtnl_link_stats64 *s)
11649 {
11650 	netdev_stats_to_stats64(s, &dev->stats);
11651 	dev_fetch_dstats(s, dev->dstats);
11652 }
11653 
11654 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
11655  * all the same fields in the same order as net_device_stats, with only
11656  * the type differing, but rtnl_link_stats64 may have additional fields
11657  * at the end for newer counters.
11658  */
11659 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
11660 			     const struct net_device_stats *netdev_stats)
11661 {
11662 	size_t i, n = sizeof(*netdev_stats) / sizeof(atomic_long_t);
11663 	const atomic_long_t *src = (atomic_long_t *)netdev_stats;
11664 	u64 *dst = (u64 *)stats64;
11665 
11666 	BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
11667 	for (i = 0; i < n; i++)
11668 		dst[i] = (unsigned long)atomic_long_read(&src[i]);
11669 	/* zero out counters that only exist in rtnl_link_stats64 */
11670 	memset((char *)stats64 + n * sizeof(u64), 0,
11671 	       sizeof(*stats64) - n * sizeof(u64));
11672 }
11673 EXPORT_SYMBOL(netdev_stats_to_stats64);
11674 
11675 static __cold struct net_device_core_stats __percpu *netdev_core_stats_alloc(
11676 		struct net_device *dev)
11677 {
11678 	struct net_device_core_stats __percpu *p;
11679 
11680 	p = alloc_percpu_gfp(struct net_device_core_stats,
11681 			     GFP_ATOMIC | __GFP_NOWARN);
11682 
11683 	if (p && cmpxchg(&dev->core_stats, NULL, p))
11684 		free_percpu(p);
11685 
11686 	/* This READ_ONCE() pairs with the cmpxchg() above */
11687 	return READ_ONCE(dev->core_stats);
11688 }
11689 
11690 noinline void netdev_core_stats_inc(struct net_device *dev, u32 offset)
11691 {
11692 	/* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
11693 	struct net_device_core_stats __percpu *p = READ_ONCE(dev->core_stats);
11694 	unsigned long __percpu *field;
11695 
11696 	if (unlikely(!p)) {
11697 		p = netdev_core_stats_alloc(dev);
11698 		if (!p)
11699 			return;
11700 	}
11701 
11702 	field = (unsigned long __percpu *)((void __percpu *)p + offset);
11703 	this_cpu_inc(*field);
11704 }
11705 EXPORT_SYMBOL_GPL(netdev_core_stats_inc);
11706 
11707 /**
11708  *	dev_get_stats	- get network device statistics
11709  *	@dev: device to get statistics from
11710  *	@storage: place to store stats
11711  *
11712  *	Get network statistics from device. Return @storage.
11713  *	The device driver may provide its own method by setting
11714  *	dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
11715  *	otherwise the internal statistics structure is used.
11716  */
11717 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
11718 					struct rtnl_link_stats64 *storage)
11719 {
11720 	const struct net_device_ops *ops = dev->netdev_ops;
11721 	const struct net_device_core_stats __percpu *p;
11722 
11723 	/*
11724 	 * IPv{4,6} and udp tunnels share common stat helpers and use
11725 	 * different stat type (NETDEV_PCPU_STAT_TSTATS vs
11726 	 * NETDEV_PCPU_STAT_DSTATS). Ensure the accounting is consistent.
11727 	 */
11728 	BUILD_BUG_ON(offsetof(struct pcpu_sw_netstats, rx_bytes) !=
11729 		     offsetof(struct pcpu_dstats, rx_bytes));
11730 	BUILD_BUG_ON(offsetof(struct pcpu_sw_netstats, rx_packets) !=
11731 		     offsetof(struct pcpu_dstats, rx_packets));
11732 	BUILD_BUG_ON(offsetof(struct pcpu_sw_netstats, tx_bytes) !=
11733 		     offsetof(struct pcpu_dstats, tx_bytes));
11734 	BUILD_BUG_ON(offsetof(struct pcpu_sw_netstats, tx_packets) !=
11735 		     offsetof(struct pcpu_dstats, tx_packets));
11736 
11737 	if (ops->ndo_get_stats64) {
11738 		memset(storage, 0, sizeof(*storage));
11739 		ops->ndo_get_stats64(dev, storage);
11740 	} else if (ops->ndo_get_stats) {
11741 		netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
11742 	} else if (dev->pcpu_stat_type == NETDEV_PCPU_STAT_TSTATS) {
11743 		dev_get_tstats64(dev, storage);
11744 	} else if (dev->pcpu_stat_type == NETDEV_PCPU_STAT_DSTATS) {
11745 		dev_get_dstats64(dev, storage);
11746 	} else {
11747 		netdev_stats_to_stats64(storage, &dev->stats);
11748 	}
11749 
11750 	/* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
11751 	p = READ_ONCE(dev->core_stats);
11752 	if (p) {
11753 		const struct net_device_core_stats *core_stats;
11754 		int i;
11755 
11756 		for_each_possible_cpu(i) {
11757 			core_stats = per_cpu_ptr(p, i);
11758 			storage->rx_dropped += READ_ONCE(core_stats->rx_dropped);
11759 			storage->tx_dropped += READ_ONCE(core_stats->tx_dropped);
11760 			storage->rx_nohandler += READ_ONCE(core_stats->rx_nohandler);
11761 			storage->rx_otherhost_dropped += READ_ONCE(core_stats->rx_otherhost_dropped);
11762 		}
11763 	}
11764 	return storage;
11765 }
11766 EXPORT_SYMBOL(dev_get_stats);
11767 
11768 /**
11769  *	dev_fetch_sw_netstats - get per-cpu network device statistics
11770  *	@s: place to store stats
11771  *	@netstats: per-cpu network stats to read from
11772  *
11773  *	Read per-cpu network statistics and populate the related fields in @s.
11774  */
11775 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
11776 			   const struct pcpu_sw_netstats __percpu *netstats)
11777 {
11778 	int cpu;
11779 
11780 	for_each_possible_cpu(cpu) {
11781 		u64 rx_packets, rx_bytes, tx_packets, tx_bytes;
11782 		const struct pcpu_sw_netstats *stats;
11783 		unsigned int start;
11784 
11785 		stats = per_cpu_ptr(netstats, cpu);
11786 		do {
11787 			start = u64_stats_fetch_begin(&stats->syncp);
11788 			rx_packets = u64_stats_read(&stats->rx_packets);
11789 			rx_bytes   = u64_stats_read(&stats->rx_bytes);
11790 			tx_packets = u64_stats_read(&stats->tx_packets);
11791 			tx_bytes   = u64_stats_read(&stats->tx_bytes);
11792 		} while (u64_stats_fetch_retry(&stats->syncp, start));
11793 
11794 		s->rx_packets += rx_packets;
11795 		s->rx_bytes   += rx_bytes;
11796 		s->tx_packets += tx_packets;
11797 		s->tx_bytes   += tx_bytes;
11798 	}
11799 }
11800 EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats);
11801 
11802 /**
11803  *	dev_get_tstats64 - ndo_get_stats64 implementation
11804  *	@dev: device to get statistics from
11805  *	@s: place to store stats
11806  *
11807  *	Populate @s from dev->stats and dev->tstats. Can be used as
11808  *	ndo_get_stats64() callback.
11809  */
11810 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s)
11811 {
11812 	netdev_stats_to_stats64(s, &dev->stats);
11813 	dev_fetch_sw_netstats(s, dev->tstats);
11814 }
11815 EXPORT_SYMBOL_GPL(dev_get_tstats64);
11816 
11817 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
11818 {
11819 	struct netdev_queue *queue = dev_ingress_queue(dev);
11820 
11821 #ifdef CONFIG_NET_CLS_ACT
11822 	if (queue)
11823 		return queue;
11824 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
11825 	if (!queue)
11826 		return NULL;
11827 	netdev_init_one_queue(dev, queue, NULL);
11828 	RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
11829 	RCU_INIT_POINTER(queue->qdisc_sleeping, &noop_qdisc);
11830 	rcu_assign_pointer(dev->ingress_queue, queue);
11831 #endif
11832 	return queue;
11833 }
11834 
11835 static const struct ethtool_ops default_ethtool_ops;
11836 
11837 void netdev_set_default_ethtool_ops(struct net_device *dev,
11838 				    const struct ethtool_ops *ops)
11839 {
11840 	if (dev->ethtool_ops == &default_ethtool_ops)
11841 		dev->ethtool_ops = ops;
11842 }
11843 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
11844 
11845 /**
11846  * netdev_sw_irq_coalesce_default_on() - enable SW IRQ coalescing by default
11847  * @dev: netdev to enable the IRQ coalescing on
11848  *
11849  * Sets a conservative default for SW IRQ coalescing. Users can use
11850  * sysfs attributes to override the default values.
11851  */
11852 void netdev_sw_irq_coalesce_default_on(struct net_device *dev)
11853 {
11854 	WARN_ON(dev->reg_state == NETREG_REGISTERED);
11855 
11856 	if (!IS_ENABLED(CONFIG_PREEMPT_RT)) {
11857 		netdev_set_gro_flush_timeout(dev, 20000);
11858 		netdev_set_defer_hard_irqs(dev, 1);
11859 	}
11860 }
11861 EXPORT_SYMBOL_GPL(netdev_sw_irq_coalesce_default_on);
11862 
11863 /**
11864  * alloc_netdev_mqs - allocate network device
11865  * @sizeof_priv: size of private data to allocate space for
11866  * @name: device name format string
11867  * @name_assign_type: origin of device name
11868  * @setup: callback to initialize device
11869  * @txqs: the number of TX subqueues to allocate
11870  * @rxqs: the number of RX subqueues to allocate
11871  *
11872  * Allocates a struct net_device with private data area for driver use
11873  * and performs basic initialization.  Also allocates subqueue structs
11874  * for each queue on the device.
11875  */
11876 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
11877 		unsigned char name_assign_type,
11878 		void (*setup)(struct net_device *),
11879 		unsigned int txqs, unsigned int rxqs)
11880 {
11881 	struct net_device *dev;
11882 	size_t napi_config_sz;
11883 	unsigned int maxqs;
11884 
11885 	BUG_ON(strlen(name) >= sizeof(dev->name));
11886 
11887 	if (txqs < 1) {
11888 		pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
11889 		return NULL;
11890 	}
11891 
11892 	if (rxqs < 1) {
11893 		pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
11894 		return NULL;
11895 	}
11896 
11897 	maxqs = max(txqs, rxqs);
11898 
11899 	dev = kvzalloc(struct_size(dev, priv, sizeof_priv),
11900 		       GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
11901 	if (!dev)
11902 		return NULL;
11903 
11904 	dev->priv_len = sizeof_priv;
11905 
11906 	ref_tracker_dir_init(&dev->refcnt_tracker, 128, "netdev");
11907 #ifdef CONFIG_PCPU_DEV_REFCNT
11908 	dev->pcpu_refcnt = alloc_percpu(int);
11909 	if (!dev->pcpu_refcnt)
11910 		goto free_dev;
11911 	__dev_hold(dev);
11912 #else
11913 	refcount_set(&dev->dev_refcnt, 1);
11914 #endif
11915 
11916 	if (dev_addr_init(dev))
11917 		goto free_pcpu;
11918 
11919 	dev_mc_init(dev);
11920 	dev_uc_init(dev);
11921 
11922 	dev_net_set(dev, &init_net);
11923 
11924 	dev->gso_max_size = GSO_LEGACY_MAX_SIZE;
11925 	dev->xdp_zc_max_segs = 1;
11926 	dev->gso_max_segs = GSO_MAX_SEGS;
11927 	dev->gro_max_size = GRO_LEGACY_MAX_SIZE;
11928 	dev->gso_ipv4_max_size = GSO_LEGACY_MAX_SIZE;
11929 	dev->gro_ipv4_max_size = GRO_LEGACY_MAX_SIZE;
11930 	dev->tso_max_size = TSO_LEGACY_MAX_SIZE;
11931 	dev->tso_max_segs = TSO_MAX_SEGS;
11932 	dev->upper_level = 1;
11933 	dev->lower_level = 1;
11934 #ifdef CONFIG_LOCKDEP
11935 	dev->nested_level = 0;
11936 	INIT_LIST_HEAD(&dev->unlink_list);
11937 #endif
11938 
11939 	INIT_LIST_HEAD(&dev->napi_list);
11940 	INIT_LIST_HEAD(&dev->unreg_list);
11941 	INIT_LIST_HEAD(&dev->close_list);
11942 	INIT_LIST_HEAD(&dev->link_watch_list);
11943 	INIT_LIST_HEAD(&dev->adj_list.upper);
11944 	INIT_LIST_HEAD(&dev->adj_list.lower);
11945 	INIT_LIST_HEAD(&dev->ptype_all);
11946 	INIT_LIST_HEAD(&dev->ptype_specific);
11947 	INIT_LIST_HEAD(&dev->net_notifier_list);
11948 #ifdef CONFIG_NET_SCHED
11949 	hash_init(dev->qdisc_hash);
11950 #endif
11951 
11952 	mutex_init(&dev->lock);
11953 
11954 	dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
11955 	setup(dev);
11956 
11957 	if (!dev->tx_queue_len) {
11958 		dev->priv_flags |= IFF_NO_QUEUE;
11959 		dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
11960 	}
11961 
11962 	dev->num_tx_queues = txqs;
11963 	dev->real_num_tx_queues = txqs;
11964 	if (netif_alloc_netdev_queues(dev))
11965 		goto free_all;
11966 
11967 	dev->num_rx_queues = rxqs;
11968 	dev->real_num_rx_queues = rxqs;
11969 	if (netif_alloc_rx_queues(dev))
11970 		goto free_all;
11971 	dev->ethtool = kzalloc(sizeof(*dev->ethtool), GFP_KERNEL_ACCOUNT);
11972 	if (!dev->ethtool)
11973 		goto free_all;
11974 
11975 	dev->cfg = kzalloc(sizeof(*dev->cfg), GFP_KERNEL_ACCOUNT);
11976 	if (!dev->cfg)
11977 		goto free_all;
11978 	dev->cfg_pending = dev->cfg;
11979 
11980 	dev->num_napi_configs = maxqs;
11981 	napi_config_sz = array_size(maxqs, sizeof(*dev->napi_config));
11982 	dev->napi_config = kvzalloc(napi_config_sz, GFP_KERNEL_ACCOUNT);
11983 	if (!dev->napi_config)
11984 		goto free_all;
11985 
11986 	strscpy(dev->name, name);
11987 	dev->name_assign_type = name_assign_type;
11988 	dev->group = INIT_NETDEV_GROUP;
11989 	if (!dev->ethtool_ops)
11990 		dev->ethtool_ops = &default_ethtool_ops;
11991 
11992 	nf_hook_netdev_init(dev);
11993 
11994 	return dev;
11995 
11996 free_all:
11997 	free_netdev(dev);
11998 	return NULL;
11999 
12000 free_pcpu:
12001 #ifdef CONFIG_PCPU_DEV_REFCNT
12002 	free_percpu(dev->pcpu_refcnt);
12003 free_dev:
12004 #endif
12005 	kvfree(dev);
12006 	return NULL;
12007 }
12008 EXPORT_SYMBOL(alloc_netdev_mqs);
12009 
12010 static void netdev_napi_exit(struct net_device *dev)
12011 {
12012 	if (!list_empty(&dev->napi_list)) {
12013 		struct napi_struct *p, *n;
12014 
12015 		netdev_lock(dev);
12016 		list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
12017 			__netif_napi_del_locked(p);
12018 		netdev_unlock(dev);
12019 
12020 		synchronize_net();
12021 	}
12022 
12023 	kvfree(dev->napi_config);
12024 }
12025 
12026 /**
12027  * free_netdev - free network device
12028  * @dev: device
12029  *
12030  * This function does the last stage of destroying an allocated device
12031  * interface. The reference to the device object is released. If this
12032  * is the last reference then it will be freed.Must be called in process
12033  * context.
12034  */
12035 void free_netdev(struct net_device *dev)
12036 {
12037 	might_sleep();
12038 
12039 	/* When called immediately after register_netdevice() failed the unwind
12040 	 * handling may still be dismantling the device. Handle that case by
12041 	 * deferring the free.
12042 	 */
12043 	if (dev->reg_state == NETREG_UNREGISTERING) {
12044 		ASSERT_RTNL();
12045 		dev->needs_free_netdev = true;
12046 		return;
12047 	}
12048 
12049 	WARN_ON(dev->cfg != dev->cfg_pending);
12050 	kfree(dev->cfg);
12051 	kfree(dev->ethtool);
12052 	netif_free_tx_queues(dev);
12053 	netif_free_rx_queues(dev);
12054 
12055 	kfree(rcu_dereference_protected(dev->ingress_queue, 1));
12056 
12057 	/* Flush device addresses */
12058 	dev_addr_flush(dev);
12059 
12060 	netdev_napi_exit(dev);
12061 
12062 	netif_del_cpu_rmap(dev);
12063 
12064 	ref_tracker_dir_exit(&dev->refcnt_tracker);
12065 #ifdef CONFIG_PCPU_DEV_REFCNT
12066 	free_percpu(dev->pcpu_refcnt);
12067 	dev->pcpu_refcnt = NULL;
12068 #endif
12069 	free_percpu(dev->core_stats);
12070 	dev->core_stats = NULL;
12071 	free_percpu(dev->xdp_bulkq);
12072 	dev->xdp_bulkq = NULL;
12073 
12074 	netdev_free_phy_link_topology(dev);
12075 
12076 	mutex_destroy(&dev->lock);
12077 
12078 	/*  Compatibility with error handling in drivers */
12079 	if (dev->reg_state == NETREG_UNINITIALIZED ||
12080 	    dev->reg_state == NETREG_DUMMY) {
12081 		kvfree(dev);
12082 		return;
12083 	}
12084 
12085 	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
12086 	WRITE_ONCE(dev->reg_state, NETREG_RELEASED);
12087 
12088 	/* will free via device release */
12089 	put_device(&dev->dev);
12090 }
12091 EXPORT_SYMBOL(free_netdev);
12092 
12093 /**
12094  * alloc_netdev_dummy - Allocate and initialize a dummy net device.
12095  * @sizeof_priv: size of private data to allocate space for
12096  *
12097  * Return: the allocated net_device on success, NULL otherwise
12098  */
12099 struct net_device *alloc_netdev_dummy(int sizeof_priv)
12100 {
12101 	return alloc_netdev(sizeof_priv, "dummy#", NET_NAME_UNKNOWN,
12102 			    init_dummy_netdev);
12103 }
12104 EXPORT_SYMBOL_GPL(alloc_netdev_dummy);
12105 
12106 /**
12107  *	synchronize_net -  Synchronize with packet receive processing
12108  *
12109  *	Wait for packets currently being received to be done.
12110  *	Does not block later packets from starting.
12111  */
12112 void synchronize_net(void)
12113 {
12114 	might_sleep();
12115 	if (from_cleanup_net() || rtnl_is_locked())
12116 		synchronize_rcu_expedited();
12117 	else
12118 		synchronize_rcu();
12119 }
12120 EXPORT_SYMBOL(synchronize_net);
12121 
12122 static void netdev_rss_contexts_free(struct net_device *dev)
12123 {
12124 	struct ethtool_rxfh_context *ctx;
12125 	unsigned long context;
12126 
12127 	mutex_lock(&dev->ethtool->rss_lock);
12128 	xa_for_each(&dev->ethtool->rss_ctx, context, ctx) {
12129 		xa_erase(&dev->ethtool->rss_ctx, context);
12130 		dev->ethtool_ops->remove_rxfh_context(dev, ctx, context, NULL);
12131 		kfree(ctx);
12132 	}
12133 	xa_destroy(&dev->ethtool->rss_ctx);
12134 	mutex_unlock(&dev->ethtool->rss_lock);
12135 }
12136 
12137 /**
12138  *	unregister_netdevice_queue - remove device from the kernel
12139  *	@dev: device
12140  *	@head: list
12141  *
12142  *	This function shuts down a device interface and removes it
12143  *	from the kernel tables.
12144  *	If head not NULL, device is queued to be unregistered later.
12145  *
12146  *	Callers must hold the rtnl semaphore.  You may want
12147  *	unregister_netdev() instead of this.
12148  */
12149 
12150 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
12151 {
12152 	ASSERT_RTNL();
12153 
12154 	if (head) {
12155 		list_move_tail(&dev->unreg_list, head);
12156 	} else {
12157 		LIST_HEAD(single);
12158 
12159 		list_add(&dev->unreg_list, &single);
12160 		unregister_netdevice_many(&single);
12161 	}
12162 }
12163 EXPORT_SYMBOL(unregister_netdevice_queue);
12164 
12165 static void dev_memory_provider_uninstall(struct net_device *dev)
12166 {
12167 	unsigned int i;
12168 
12169 	for (i = 0; i < dev->real_num_rx_queues; i++) {
12170 		struct netdev_rx_queue *rxq = &dev->_rx[i];
12171 		struct pp_memory_provider_params *p = &rxq->mp_params;
12172 
12173 		if (p->mp_ops && p->mp_ops->uninstall)
12174 			p->mp_ops->uninstall(rxq->mp_params.mp_priv, rxq);
12175 	}
12176 }
12177 
12178 void unregister_netdevice_many_notify(struct list_head *head,
12179 				      u32 portid, const struct nlmsghdr *nlh)
12180 {
12181 	struct net_device *dev, *tmp;
12182 	LIST_HEAD(close_head);
12183 	int cnt = 0;
12184 
12185 	BUG_ON(dev_boot_phase);
12186 	ASSERT_RTNL();
12187 
12188 	if (list_empty(head))
12189 		return;
12190 
12191 	list_for_each_entry_safe(dev, tmp, head, unreg_list) {
12192 		/* Some devices call without registering
12193 		 * for initialization unwind. Remove those
12194 		 * devices and proceed with the remaining.
12195 		 */
12196 		if (dev->reg_state == NETREG_UNINITIALIZED) {
12197 			pr_debug("unregister_netdevice: device %s/%p never was registered\n",
12198 				 dev->name, dev);
12199 
12200 			WARN_ON(1);
12201 			list_del(&dev->unreg_list);
12202 			continue;
12203 		}
12204 		dev->dismantle = true;
12205 		BUG_ON(dev->reg_state != NETREG_REGISTERED);
12206 	}
12207 
12208 	/* If device is running, close it first. Start with ops locked... */
12209 	list_for_each_entry(dev, head, unreg_list) {
12210 		if (netdev_need_ops_lock(dev)) {
12211 			list_add_tail(&dev->close_list, &close_head);
12212 			netdev_lock(dev);
12213 		}
12214 	}
12215 	netif_close_many(&close_head, true);
12216 	/* ... now unlock them and go over the rest. */
12217 	list_for_each_entry(dev, head, unreg_list) {
12218 		if (netdev_need_ops_lock(dev))
12219 			netdev_unlock(dev);
12220 		else
12221 			list_add_tail(&dev->close_list, &close_head);
12222 	}
12223 	netif_close_many(&close_head, true);
12224 
12225 	list_for_each_entry(dev, head, unreg_list) {
12226 		/* And unlink it from device chain. */
12227 		unlist_netdevice(dev);
12228 		netdev_lock(dev);
12229 		WRITE_ONCE(dev->reg_state, NETREG_UNREGISTERING);
12230 		netdev_unlock(dev);
12231 	}
12232 	flush_all_backlogs();
12233 
12234 	synchronize_net();
12235 
12236 	list_for_each_entry(dev, head, unreg_list) {
12237 		struct sk_buff *skb = NULL;
12238 
12239 		/* Shutdown queueing discipline. */
12240 		netdev_lock_ops(dev);
12241 		dev_shutdown(dev);
12242 		dev_tcx_uninstall(dev);
12243 		dev_xdp_uninstall(dev);
12244 		dev_memory_provider_uninstall(dev);
12245 		netdev_unlock_ops(dev);
12246 		bpf_dev_bound_netdev_unregister(dev);
12247 
12248 		netdev_offload_xstats_disable_all(dev);
12249 
12250 		/* Notify protocols, that we are about to destroy
12251 		 * this device. They should clean all the things.
12252 		 */
12253 		call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
12254 
12255 		if (!(dev->rtnl_link_ops && dev->rtnl_link_initializing))
12256 			skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
12257 						     GFP_KERNEL, NULL, 0,
12258 						     portid, nlh);
12259 
12260 		/*
12261 		 *	Flush the unicast and multicast chains
12262 		 */
12263 		dev_uc_flush(dev);
12264 		dev_mc_flush(dev);
12265 
12266 		netdev_name_node_alt_flush(dev);
12267 		netdev_name_node_free(dev->name_node);
12268 
12269 		netdev_rss_contexts_free(dev);
12270 
12271 		call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev);
12272 
12273 		if (dev->netdev_ops->ndo_uninit)
12274 			dev->netdev_ops->ndo_uninit(dev);
12275 
12276 		mutex_destroy(&dev->ethtool->rss_lock);
12277 
12278 		net_shaper_flush_netdev(dev);
12279 
12280 		if (skb)
12281 			rtmsg_ifinfo_send(skb, dev, GFP_KERNEL, portid, nlh);
12282 
12283 		/* Notifier chain MUST detach us all upper devices. */
12284 		WARN_ON(netdev_has_any_upper_dev(dev));
12285 		WARN_ON(netdev_has_any_lower_dev(dev));
12286 
12287 		/* Remove entries from kobject tree */
12288 		netdev_unregister_kobject(dev);
12289 #ifdef CONFIG_XPS
12290 		/* Remove XPS queueing entries */
12291 		netif_reset_xps_queues_gt(dev, 0);
12292 #endif
12293 	}
12294 
12295 	synchronize_net();
12296 
12297 	list_for_each_entry(dev, head, unreg_list) {
12298 		netdev_put(dev, &dev->dev_registered_tracker);
12299 		net_set_todo(dev);
12300 		cnt++;
12301 	}
12302 	atomic_add(cnt, &dev_unreg_count);
12303 
12304 	list_del(head);
12305 }
12306 
12307 /**
12308  *	unregister_netdevice_many - unregister many devices
12309  *	@head: list of devices
12310  *
12311  *  Note: As most callers use a stack allocated list_head,
12312  *  we force a list_del() to make sure stack won't be corrupted later.
12313  */
12314 void unregister_netdevice_many(struct list_head *head)
12315 {
12316 	unregister_netdevice_many_notify(head, 0, NULL);
12317 }
12318 EXPORT_SYMBOL(unregister_netdevice_many);
12319 
12320 /**
12321  *	unregister_netdev - remove device from the kernel
12322  *	@dev: device
12323  *
12324  *	This function shuts down a device interface and removes it
12325  *	from the kernel tables.
12326  *
12327  *	This is just a wrapper for unregister_netdevice that takes
12328  *	the rtnl semaphore.  In general you want to use this and not
12329  *	unregister_netdevice.
12330  */
12331 void unregister_netdev(struct net_device *dev)
12332 {
12333 	rtnl_net_dev_lock(dev);
12334 	unregister_netdevice(dev);
12335 	rtnl_net_dev_unlock(dev);
12336 }
12337 EXPORT_SYMBOL(unregister_netdev);
12338 
12339 int __dev_change_net_namespace(struct net_device *dev, struct net *net,
12340 			       const char *pat, int new_ifindex,
12341 			       struct netlink_ext_ack *extack)
12342 {
12343 	struct netdev_name_node *name_node;
12344 	struct net *net_old = dev_net(dev);
12345 	char new_name[IFNAMSIZ] = {};
12346 	int err, new_nsid;
12347 
12348 	ASSERT_RTNL();
12349 
12350 	/* Don't allow namespace local devices to be moved. */
12351 	err = -EINVAL;
12352 	if (dev->netns_immutable) {
12353 		NL_SET_ERR_MSG(extack, "The interface netns is immutable");
12354 		goto out;
12355 	}
12356 
12357 	/* Ensure the device has been registered */
12358 	if (dev->reg_state != NETREG_REGISTERED) {
12359 		NL_SET_ERR_MSG(extack, "The interface isn't registered");
12360 		goto out;
12361 	}
12362 
12363 	/* Get out if there is nothing todo */
12364 	err = 0;
12365 	if (net_eq(net_old, net))
12366 		goto out;
12367 
12368 	/* Pick the destination device name, and ensure
12369 	 * we can use it in the destination network namespace.
12370 	 */
12371 	err = -EEXIST;
12372 	if (netdev_name_in_use(net, dev->name)) {
12373 		/* We get here if we can't use the current device name */
12374 		if (!pat) {
12375 			NL_SET_ERR_MSG(extack,
12376 				       "An interface with the same name exists in the target netns");
12377 			goto out;
12378 		}
12379 		err = dev_prep_valid_name(net, dev, pat, new_name, EEXIST);
12380 		if (err < 0) {
12381 			NL_SET_ERR_MSG_FMT(extack,
12382 					   "Unable to use '%s' for the new interface name in the target netns",
12383 					   pat);
12384 			goto out;
12385 		}
12386 	}
12387 	/* Check that none of the altnames conflicts. */
12388 	err = -EEXIST;
12389 	netdev_for_each_altname(dev, name_node) {
12390 		if (netdev_name_in_use(net, name_node->name)) {
12391 			NL_SET_ERR_MSG_FMT(extack,
12392 					   "An interface with the altname %s exists in the target netns",
12393 					   name_node->name);
12394 			goto out;
12395 		}
12396 	}
12397 
12398 	/* Check that new_ifindex isn't used yet. */
12399 	if (new_ifindex) {
12400 		err = dev_index_reserve(net, new_ifindex);
12401 		if (err < 0) {
12402 			NL_SET_ERR_MSG_FMT(extack,
12403 					   "The ifindex %d is not available in the target netns",
12404 					   new_ifindex);
12405 			goto out;
12406 		}
12407 	} else {
12408 		/* If there is an ifindex conflict assign a new one */
12409 		err = dev_index_reserve(net, dev->ifindex);
12410 		if (err == -EBUSY)
12411 			err = dev_index_reserve(net, 0);
12412 		if (err < 0) {
12413 			NL_SET_ERR_MSG(extack,
12414 				       "Unable to allocate a new ifindex in the target netns");
12415 			goto out;
12416 		}
12417 		new_ifindex = err;
12418 	}
12419 
12420 	/*
12421 	 * And now a mini version of register_netdevice unregister_netdevice.
12422 	 */
12423 
12424 	netdev_lock_ops(dev);
12425 	/* If device is running close it first. */
12426 	netif_close(dev);
12427 	/* And unlink it from device chain */
12428 	unlist_netdevice(dev);
12429 
12430 	if (!netdev_need_ops_lock(dev))
12431 		netdev_lock(dev);
12432 	dev->moving_ns = true;
12433 	netdev_unlock(dev);
12434 
12435 	synchronize_net();
12436 
12437 	/* Shutdown queueing discipline. */
12438 	netdev_lock_ops(dev);
12439 	dev_shutdown(dev);
12440 	netdev_unlock_ops(dev);
12441 
12442 	/* Notify protocols, that we are about to destroy
12443 	 * this device. They should clean all the things.
12444 	 *
12445 	 * Note that dev->reg_state stays at NETREG_REGISTERED.
12446 	 * This is wanted because this way 8021q and macvlan know
12447 	 * the device is just moving and can keep their slaves up.
12448 	 */
12449 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
12450 	rcu_barrier();
12451 
12452 	new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
12453 
12454 	rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
12455 			    new_ifindex);
12456 
12457 	/*
12458 	 *	Flush the unicast and multicast chains
12459 	 */
12460 	dev_uc_flush(dev);
12461 	dev_mc_flush(dev);
12462 
12463 	/* Send a netdev-removed uevent to the old namespace */
12464 	kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
12465 	netdev_adjacent_del_links(dev);
12466 
12467 	/* Move per-net netdevice notifiers that are following the netdevice */
12468 	move_netdevice_notifiers_dev_net(dev, net);
12469 
12470 	/* Actually switch the network namespace */
12471 	netdev_lock(dev);
12472 	dev_net_set(dev, net);
12473 	netdev_unlock(dev);
12474 	dev->ifindex = new_ifindex;
12475 
12476 	if (new_name[0]) {
12477 		/* Rename the netdev to prepared name */
12478 		write_seqlock_bh(&netdev_rename_lock);
12479 		strscpy(dev->name, new_name, IFNAMSIZ);
12480 		write_sequnlock_bh(&netdev_rename_lock);
12481 	}
12482 
12483 	/* Fixup kobjects */
12484 	dev_set_uevent_suppress(&dev->dev, 1);
12485 	err = device_rename(&dev->dev, dev->name);
12486 	dev_set_uevent_suppress(&dev->dev, 0);
12487 	WARN_ON(err);
12488 
12489 	/* Send a netdev-add uevent to the new namespace */
12490 	kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
12491 	netdev_adjacent_add_links(dev);
12492 
12493 	/* Adapt owner in case owning user namespace of target network
12494 	 * namespace is different from the original one.
12495 	 */
12496 	err = netdev_change_owner(dev, net_old, net);
12497 	WARN_ON(err);
12498 
12499 	netdev_lock(dev);
12500 	dev->moving_ns = false;
12501 	if (!netdev_need_ops_lock(dev))
12502 		netdev_unlock(dev);
12503 
12504 	/* Add the device back in the hashes */
12505 	list_netdevice(dev);
12506 	/* Notify protocols, that a new device appeared. */
12507 	call_netdevice_notifiers(NETDEV_REGISTER, dev);
12508 	netdev_unlock_ops(dev);
12509 
12510 	/*
12511 	 *	Prevent userspace races by waiting until the network
12512 	 *	device is fully setup before sending notifications.
12513 	 */
12514 	rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL);
12515 
12516 	synchronize_net();
12517 	err = 0;
12518 out:
12519 	return err;
12520 }
12521 
12522 static int dev_cpu_dead(unsigned int oldcpu)
12523 {
12524 	struct sk_buff **list_skb;
12525 	struct sk_buff *skb;
12526 	unsigned int cpu;
12527 	struct softnet_data *sd, *oldsd, *remsd = NULL;
12528 
12529 	local_irq_disable();
12530 	cpu = smp_processor_id();
12531 	sd = &per_cpu(softnet_data, cpu);
12532 	oldsd = &per_cpu(softnet_data, oldcpu);
12533 
12534 	/* Find end of our completion_queue. */
12535 	list_skb = &sd->completion_queue;
12536 	while (*list_skb)
12537 		list_skb = &(*list_skb)->next;
12538 	/* Append completion queue from offline CPU. */
12539 	*list_skb = oldsd->completion_queue;
12540 	oldsd->completion_queue = NULL;
12541 
12542 	/* Append output queue from offline CPU. */
12543 	if (oldsd->output_queue) {
12544 		*sd->output_queue_tailp = oldsd->output_queue;
12545 		sd->output_queue_tailp = oldsd->output_queue_tailp;
12546 		oldsd->output_queue = NULL;
12547 		oldsd->output_queue_tailp = &oldsd->output_queue;
12548 	}
12549 	/* Append NAPI poll list from offline CPU, with one exception :
12550 	 * process_backlog() must be called by cpu owning percpu backlog.
12551 	 * We properly handle process_queue & input_pkt_queue later.
12552 	 */
12553 	while (!list_empty(&oldsd->poll_list)) {
12554 		struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
12555 							    struct napi_struct,
12556 							    poll_list);
12557 
12558 		list_del_init(&napi->poll_list);
12559 		if (napi->poll == process_backlog)
12560 			napi->state &= NAPIF_STATE_THREADED;
12561 		else
12562 			____napi_schedule(sd, napi);
12563 	}
12564 
12565 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
12566 	local_irq_enable();
12567 
12568 	if (!use_backlog_threads()) {
12569 #ifdef CONFIG_RPS
12570 		remsd = oldsd->rps_ipi_list;
12571 		oldsd->rps_ipi_list = NULL;
12572 #endif
12573 		/* send out pending IPI's on offline CPU */
12574 		net_rps_send_ipi(remsd);
12575 	}
12576 
12577 	/* Process offline CPU's input_pkt_queue */
12578 	while ((skb = __skb_dequeue(&oldsd->process_queue))) {
12579 		netif_rx(skb);
12580 		rps_input_queue_head_incr(oldsd);
12581 	}
12582 	while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
12583 		netif_rx(skb);
12584 		rps_input_queue_head_incr(oldsd);
12585 	}
12586 
12587 	return 0;
12588 }
12589 
12590 /**
12591  *	netdev_increment_features - increment feature set by one
12592  *	@all: current feature set
12593  *	@one: new feature set
12594  *	@mask: mask feature set
12595  *
12596  *	Computes a new feature set after adding a device with feature set
12597  *	@one to the master device with current feature set @all.  Will not
12598  *	enable anything that is off in @mask. Returns the new feature set.
12599  */
12600 netdev_features_t netdev_increment_features(netdev_features_t all,
12601 	netdev_features_t one, netdev_features_t mask)
12602 {
12603 	if (mask & NETIF_F_HW_CSUM)
12604 		mask |= NETIF_F_CSUM_MASK;
12605 	mask |= NETIF_F_VLAN_CHALLENGED;
12606 
12607 	all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
12608 	all &= one | ~NETIF_F_ALL_FOR_ALL;
12609 
12610 	/* If one device supports hw checksumming, set for all. */
12611 	if (all & NETIF_F_HW_CSUM)
12612 		all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
12613 
12614 	return all;
12615 }
12616 EXPORT_SYMBOL(netdev_increment_features);
12617 
12618 static struct hlist_head * __net_init netdev_create_hash(void)
12619 {
12620 	int i;
12621 	struct hlist_head *hash;
12622 
12623 	hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
12624 	if (hash != NULL)
12625 		for (i = 0; i < NETDEV_HASHENTRIES; i++)
12626 			INIT_HLIST_HEAD(&hash[i]);
12627 
12628 	return hash;
12629 }
12630 
12631 /* Initialize per network namespace state */
12632 static int __net_init netdev_init(struct net *net)
12633 {
12634 	BUILD_BUG_ON(GRO_HASH_BUCKETS >
12635 		     BITS_PER_BYTE * sizeof_field(struct gro_node, bitmask));
12636 
12637 	INIT_LIST_HEAD(&net->dev_base_head);
12638 
12639 	net->dev_name_head = netdev_create_hash();
12640 	if (net->dev_name_head == NULL)
12641 		goto err_name;
12642 
12643 	net->dev_index_head = netdev_create_hash();
12644 	if (net->dev_index_head == NULL)
12645 		goto err_idx;
12646 
12647 	xa_init_flags(&net->dev_by_index, XA_FLAGS_ALLOC1);
12648 
12649 	RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
12650 
12651 	return 0;
12652 
12653 err_idx:
12654 	kfree(net->dev_name_head);
12655 err_name:
12656 	return -ENOMEM;
12657 }
12658 
12659 /**
12660  *	netdev_drivername - network driver for the device
12661  *	@dev: network device
12662  *
12663  *	Determine network driver for device.
12664  */
12665 const char *netdev_drivername(const struct net_device *dev)
12666 {
12667 	const struct device_driver *driver;
12668 	const struct device *parent;
12669 	const char *empty = "";
12670 
12671 	parent = dev->dev.parent;
12672 	if (!parent)
12673 		return empty;
12674 
12675 	driver = parent->driver;
12676 	if (driver && driver->name)
12677 		return driver->name;
12678 	return empty;
12679 }
12680 
12681 static void __netdev_printk(const char *level, const struct net_device *dev,
12682 			    struct va_format *vaf)
12683 {
12684 	if (dev && dev->dev.parent) {
12685 		dev_printk_emit(level[1] - '0',
12686 				dev->dev.parent,
12687 				"%s %s %s%s: %pV",
12688 				dev_driver_string(dev->dev.parent),
12689 				dev_name(dev->dev.parent),
12690 				netdev_name(dev), netdev_reg_state(dev),
12691 				vaf);
12692 	} else if (dev) {
12693 		printk("%s%s%s: %pV",
12694 		       level, netdev_name(dev), netdev_reg_state(dev), vaf);
12695 	} else {
12696 		printk("%s(NULL net_device): %pV", level, vaf);
12697 	}
12698 }
12699 
12700 void netdev_printk(const char *level, const struct net_device *dev,
12701 		   const char *format, ...)
12702 {
12703 	struct va_format vaf;
12704 	va_list args;
12705 
12706 	va_start(args, format);
12707 
12708 	vaf.fmt = format;
12709 	vaf.va = &args;
12710 
12711 	__netdev_printk(level, dev, &vaf);
12712 
12713 	va_end(args);
12714 }
12715 EXPORT_SYMBOL(netdev_printk);
12716 
12717 #define define_netdev_printk_level(func, level)			\
12718 void func(const struct net_device *dev, const char *fmt, ...)	\
12719 {								\
12720 	struct va_format vaf;					\
12721 	va_list args;						\
12722 								\
12723 	va_start(args, fmt);					\
12724 								\
12725 	vaf.fmt = fmt;						\
12726 	vaf.va = &args;						\
12727 								\
12728 	__netdev_printk(level, dev, &vaf);			\
12729 								\
12730 	va_end(args);						\
12731 }								\
12732 EXPORT_SYMBOL(func);
12733 
12734 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
12735 define_netdev_printk_level(netdev_alert, KERN_ALERT);
12736 define_netdev_printk_level(netdev_crit, KERN_CRIT);
12737 define_netdev_printk_level(netdev_err, KERN_ERR);
12738 define_netdev_printk_level(netdev_warn, KERN_WARNING);
12739 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
12740 define_netdev_printk_level(netdev_info, KERN_INFO);
12741 
12742 static void __net_exit netdev_exit(struct net *net)
12743 {
12744 	kfree(net->dev_name_head);
12745 	kfree(net->dev_index_head);
12746 	xa_destroy(&net->dev_by_index);
12747 	if (net != &init_net)
12748 		WARN_ON_ONCE(!list_empty(&net->dev_base_head));
12749 }
12750 
12751 static struct pernet_operations __net_initdata netdev_net_ops = {
12752 	.init = netdev_init,
12753 	.exit = netdev_exit,
12754 };
12755 
12756 static void __net_exit default_device_exit_net(struct net *net)
12757 {
12758 	struct netdev_name_node *name_node, *tmp;
12759 	struct net_device *dev, *aux;
12760 	/*
12761 	 * Push all migratable network devices back to the
12762 	 * initial network namespace
12763 	 */
12764 	ASSERT_RTNL();
12765 	for_each_netdev_safe(net, dev, aux) {
12766 		int err;
12767 		char fb_name[IFNAMSIZ];
12768 
12769 		/* Ignore unmoveable devices (i.e. loopback) */
12770 		if (dev->netns_immutable)
12771 			continue;
12772 
12773 		/* Leave virtual devices for the generic cleanup */
12774 		if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund)
12775 			continue;
12776 
12777 		/* Push remaining network devices to init_net */
12778 		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
12779 		if (netdev_name_in_use(&init_net, fb_name))
12780 			snprintf(fb_name, IFNAMSIZ, "dev%%d");
12781 
12782 		netdev_for_each_altname_safe(dev, name_node, tmp)
12783 			if (netdev_name_in_use(&init_net, name_node->name))
12784 				__netdev_name_node_alt_destroy(name_node);
12785 
12786 		err = dev_change_net_namespace(dev, &init_net, fb_name);
12787 		if (err) {
12788 			pr_emerg("%s: failed to move %s to init_net: %d\n",
12789 				 __func__, dev->name, err);
12790 			BUG();
12791 		}
12792 	}
12793 }
12794 
12795 static void __net_exit default_device_exit_batch(struct list_head *net_list)
12796 {
12797 	/* At exit all network devices most be removed from a network
12798 	 * namespace.  Do this in the reverse order of registration.
12799 	 * Do this across as many network namespaces as possible to
12800 	 * improve batching efficiency.
12801 	 */
12802 	struct net_device *dev;
12803 	struct net *net;
12804 	LIST_HEAD(dev_kill_list);
12805 
12806 	rtnl_lock();
12807 	list_for_each_entry(net, net_list, exit_list) {
12808 		default_device_exit_net(net);
12809 		cond_resched();
12810 	}
12811 
12812 	list_for_each_entry(net, net_list, exit_list) {
12813 		for_each_netdev_reverse(net, dev) {
12814 			if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
12815 				dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
12816 			else
12817 				unregister_netdevice_queue(dev, &dev_kill_list);
12818 		}
12819 	}
12820 	unregister_netdevice_many(&dev_kill_list);
12821 	rtnl_unlock();
12822 }
12823 
12824 static struct pernet_operations __net_initdata default_device_ops = {
12825 	.exit_batch = default_device_exit_batch,
12826 };
12827 
12828 static void __init net_dev_struct_check(void)
12829 {
12830 	/* TX read-mostly hotpath */
12831 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, priv_flags_fast);
12832 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, netdev_ops);
12833 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, header_ops);
12834 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, _tx);
12835 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, real_num_tx_queues);
12836 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_max_size);
12837 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_ipv4_max_size);
12838 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_max_segs);
12839 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_partial_features);
12840 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, num_tc);
12841 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, mtu);
12842 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, needed_headroom);
12843 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, tc_to_txq);
12844 #ifdef CONFIG_XPS
12845 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, xps_maps);
12846 #endif
12847 #ifdef CONFIG_NETFILTER_EGRESS
12848 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, nf_hooks_egress);
12849 #endif
12850 #ifdef CONFIG_NET_XGRESS
12851 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, tcx_egress);
12852 #endif
12853 	CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_tx, 160);
12854 
12855 	/* TXRX read-mostly hotpath */
12856 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, lstats);
12857 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, state);
12858 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, flags);
12859 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, hard_header_len);
12860 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, features);
12861 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, ip6_ptr);
12862 	CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_txrx, 46);
12863 
12864 	/* RX read-mostly hotpath */
12865 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, ptype_specific);
12866 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, ifindex);
12867 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, real_num_rx_queues);
12868 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, _rx);
12869 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_max_size);
12870 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_ipv4_max_size);
12871 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, rx_handler);
12872 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, rx_handler_data);
12873 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, nd_net);
12874 #ifdef CONFIG_NETPOLL
12875 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, npinfo);
12876 #endif
12877 #ifdef CONFIG_NET_XGRESS
12878 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, tcx_ingress);
12879 #endif
12880 	CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_rx, 92);
12881 }
12882 
12883 /*
12884  *	Initialize the DEV module. At boot time this walks the device list and
12885  *	unhooks any devices that fail to initialise (normally hardware not
12886  *	present) and leaves us with a valid list of present and active devices.
12887  *
12888  */
12889 
12890 /* We allocate 256 pages for each CPU if PAGE_SHIFT is 12 */
12891 #define SYSTEM_PERCPU_PAGE_POOL_SIZE	((1 << 20) / PAGE_SIZE)
12892 
12893 static int net_page_pool_create(int cpuid)
12894 {
12895 #if IS_ENABLED(CONFIG_PAGE_POOL)
12896 	struct page_pool_params page_pool_params = {
12897 		.pool_size = SYSTEM_PERCPU_PAGE_POOL_SIZE,
12898 		.flags = PP_FLAG_SYSTEM_POOL,
12899 		.nid = cpu_to_mem(cpuid),
12900 	};
12901 	struct page_pool *pp_ptr;
12902 	int err;
12903 
12904 	pp_ptr = page_pool_create_percpu(&page_pool_params, cpuid);
12905 	if (IS_ERR(pp_ptr))
12906 		return -ENOMEM;
12907 
12908 	err = xdp_reg_page_pool(pp_ptr);
12909 	if (err) {
12910 		page_pool_destroy(pp_ptr);
12911 		return err;
12912 	}
12913 
12914 	per_cpu(system_page_pool.pool, cpuid) = pp_ptr;
12915 #endif
12916 	return 0;
12917 }
12918 
12919 static int backlog_napi_should_run(unsigned int cpu)
12920 {
12921 	struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu);
12922 	struct napi_struct *napi = &sd->backlog;
12923 
12924 	return test_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
12925 }
12926 
12927 static void run_backlog_napi(unsigned int cpu)
12928 {
12929 	struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu);
12930 
12931 	napi_threaded_poll_loop(&sd->backlog);
12932 }
12933 
12934 static void backlog_napi_setup(unsigned int cpu)
12935 {
12936 	struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu);
12937 	struct napi_struct *napi = &sd->backlog;
12938 
12939 	napi->thread = this_cpu_read(backlog_napi);
12940 	set_bit(NAPI_STATE_THREADED, &napi->state);
12941 }
12942 
12943 static struct smp_hotplug_thread backlog_threads = {
12944 	.store			= &backlog_napi,
12945 	.thread_should_run	= backlog_napi_should_run,
12946 	.thread_fn		= run_backlog_napi,
12947 	.thread_comm		= "backlog_napi/%u",
12948 	.setup			= backlog_napi_setup,
12949 };
12950 
12951 /*
12952  *       This is called single threaded during boot, so no need
12953  *       to take the rtnl semaphore.
12954  */
12955 static int __init net_dev_init(void)
12956 {
12957 	int i, rc = -ENOMEM;
12958 
12959 	BUG_ON(!dev_boot_phase);
12960 
12961 	net_dev_struct_check();
12962 
12963 	if (dev_proc_init())
12964 		goto out;
12965 
12966 	if (netdev_kobject_init())
12967 		goto out;
12968 
12969 	for (i = 0; i < PTYPE_HASH_SIZE; i++)
12970 		INIT_LIST_HEAD(&ptype_base[i]);
12971 
12972 	if (register_pernet_subsys(&netdev_net_ops))
12973 		goto out;
12974 
12975 	/*
12976 	 *	Initialise the packet receive queues.
12977 	 */
12978 
12979 	flush_backlogs_fallback = flush_backlogs_alloc();
12980 	if (!flush_backlogs_fallback)
12981 		goto out;
12982 
12983 	for_each_possible_cpu(i) {
12984 		struct softnet_data *sd = &per_cpu(softnet_data, i);
12985 
12986 		skb_queue_head_init(&sd->input_pkt_queue);
12987 		skb_queue_head_init(&sd->process_queue);
12988 #ifdef CONFIG_XFRM_OFFLOAD
12989 		skb_queue_head_init(&sd->xfrm_backlog);
12990 #endif
12991 		INIT_LIST_HEAD(&sd->poll_list);
12992 		sd->output_queue_tailp = &sd->output_queue;
12993 #ifdef CONFIG_RPS
12994 		INIT_CSD(&sd->csd, rps_trigger_softirq, sd);
12995 		sd->cpu = i;
12996 #endif
12997 		INIT_CSD(&sd->defer_csd, trigger_rx_softirq, sd);
12998 		spin_lock_init(&sd->defer_lock);
12999 
13000 		gro_init(&sd->backlog.gro);
13001 		sd->backlog.poll = process_backlog;
13002 		sd->backlog.weight = weight_p;
13003 		INIT_LIST_HEAD(&sd->backlog.poll_list);
13004 
13005 		if (net_page_pool_create(i))
13006 			goto out;
13007 	}
13008 	if (use_backlog_threads())
13009 		smpboot_register_percpu_thread(&backlog_threads);
13010 
13011 	dev_boot_phase = 0;
13012 
13013 	/* The loopback device is special if any other network devices
13014 	 * is present in a network namespace the loopback device must
13015 	 * be present. Since we now dynamically allocate and free the
13016 	 * loopback device ensure this invariant is maintained by
13017 	 * keeping the loopback device as the first device on the
13018 	 * list of network devices.  Ensuring the loopback devices
13019 	 * is the first device that appears and the last network device
13020 	 * that disappears.
13021 	 */
13022 	if (register_pernet_device(&loopback_net_ops))
13023 		goto out;
13024 
13025 	if (register_pernet_device(&default_device_ops))
13026 		goto out;
13027 
13028 	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
13029 	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
13030 
13031 	rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
13032 				       NULL, dev_cpu_dead);
13033 	WARN_ON(rc < 0);
13034 	rc = 0;
13035 
13036 	/* avoid static key IPIs to isolated CPUs */
13037 	if (housekeeping_enabled(HK_TYPE_MISC))
13038 		net_enable_timestamp();
13039 out:
13040 	if (rc < 0) {
13041 		for_each_possible_cpu(i) {
13042 			struct page_pool *pp_ptr;
13043 
13044 			pp_ptr = per_cpu(system_page_pool.pool, i);
13045 			if (!pp_ptr)
13046 				continue;
13047 
13048 			xdp_unreg_page_pool(pp_ptr);
13049 			page_pool_destroy(pp_ptr);
13050 			per_cpu(system_page_pool.pool, i) = NULL;
13051 		}
13052 	}
13053 
13054 	return rc;
13055 }
13056 
13057 subsys_initcall(net_dev_init);
13058