1 /* 2 * NET3 Protocol independent device support routines. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public License 6 * as published by the Free Software Foundation; either version 7 * 2 of the License, or (at your option) any later version. 8 * 9 * Derived from the non IP parts of dev.c 1.0.19 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Mark Evans, <evansmp@uhura.aston.ac.uk> 13 * 14 * Additional Authors: 15 * Florian la Roche <rzsfl@rz.uni-sb.de> 16 * Alan Cox <gw4pts@gw4pts.ampr.org> 17 * David Hinds <dahinds@users.sourceforge.net> 18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> 19 * Adam Sulmicki <adam@cfar.umd.edu> 20 * Pekka Riikonen <priikone@poesidon.pspt.fi> 21 * 22 * Changes: 23 * D.J. Barrow : Fixed bug where dev->refcnt gets set 24 * to 2 if register_netdev gets called 25 * before net_dev_init & also removed a 26 * few lines of code in the process. 27 * Alan Cox : device private ioctl copies fields back. 28 * Alan Cox : Transmit queue code does relevant 29 * stunts to keep the queue safe. 30 * Alan Cox : Fixed double lock. 31 * Alan Cox : Fixed promisc NULL pointer trap 32 * ???????? : Support the full private ioctl range 33 * Alan Cox : Moved ioctl permission check into 34 * drivers 35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI 36 * Alan Cox : 100 backlog just doesn't cut it when 37 * you start doing multicast video 8) 38 * Alan Cox : Rewrote net_bh and list manager. 39 * Alan Cox : Fix ETH_P_ALL echoback lengths. 40 * Alan Cox : Took out transmit every packet pass 41 * Saved a few bytes in the ioctl handler 42 * Alan Cox : Network driver sets packet type before 43 * calling netif_rx. Saves a function 44 * call a packet. 45 * Alan Cox : Hashed net_bh() 46 * Richard Kooijman: Timestamp fixes. 47 * Alan Cox : Wrong field in SIOCGIFDSTADDR 48 * Alan Cox : Device lock protection. 49 * Alan Cox : Fixed nasty side effect of device close 50 * changes. 51 * Rudi Cilibrasi : Pass the right thing to 52 * set_mac_address() 53 * Dave Miller : 32bit quantity for the device lock to 54 * make it work out on a Sparc. 55 * Bjorn Ekwall : Added KERNELD hack. 56 * Alan Cox : Cleaned up the backlog initialise. 57 * Craig Metz : SIOCGIFCONF fix if space for under 58 * 1 device. 59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there 60 * is no device open function. 61 * Andi Kleen : Fix error reporting for SIOCGIFCONF 62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF 63 * Cyrus Durgin : Cleaned for KMOD 64 * Adam Sulmicki : Bug Fix : Network Device Unload 65 * A network device unload needs to purge 66 * the backlog queue. 67 * Paul Rusty Russell : SIOCSIFNAME 68 * Pekka Riikonen : Netdev boot-time settings code 69 * Andrew Morton : Make unregister_netdevice wait 70 * indefinitely on dev->refcnt 71 * J Hadi Salim : - Backlog queue sampling 72 * - netif_rx() feedback 73 */ 74 75 #include <asm/uaccess.h> 76 #include <linux/bitops.h> 77 #include <linux/capability.h> 78 #include <linux/cpu.h> 79 #include <linux/types.h> 80 #include <linux/kernel.h> 81 #include <linux/hash.h> 82 #include <linux/slab.h> 83 #include <linux/sched.h> 84 #include <linux/mutex.h> 85 #include <linux/string.h> 86 #include <linux/mm.h> 87 #include <linux/socket.h> 88 #include <linux/sockios.h> 89 #include <linux/errno.h> 90 #include <linux/interrupt.h> 91 #include <linux/if_ether.h> 92 #include <linux/netdevice.h> 93 #include <linux/etherdevice.h> 94 #include <linux/ethtool.h> 95 #include <linux/notifier.h> 96 #include <linux/skbuff.h> 97 #include <net/net_namespace.h> 98 #include <net/sock.h> 99 #include <linux/rtnetlink.h> 100 #include <linux/stat.h> 101 #include <net/dst.h> 102 #include <net/pkt_sched.h> 103 #include <net/checksum.h> 104 #include <net/xfrm.h> 105 #include <linux/highmem.h> 106 #include <linux/init.h> 107 #include <linux/module.h> 108 #include <linux/netpoll.h> 109 #include <linux/rcupdate.h> 110 #include <linux/delay.h> 111 #include <net/iw_handler.h> 112 #include <asm/current.h> 113 #include <linux/audit.h> 114 #include <linux/dmaengine.h> 115 #include <linux/err.h> 116 #include <linux/ctype.h> 117 #include <linux/if_arp.h> 118 #include <linux/if_vlan.h> 119 #include <linux/ip.h> 120 #include <net/ip.h> 121 #include <linux/ipv6.h> 122 #include <linux/in.h> 123 #include <linux/jhash.h> 124 #include <linux/random.h> 125 #include <trace/events/napi.h> 126 #include <trace/events/net.h> 127 #include <trace/events/skb.h> 128 #include <linux/pci.h> 129 #include <linux/inetdevice.h> 130 #include <linux/cpu_rmap.h> 131 #include <linux/static_key.h> 132 #include <linux/hashtable.h> 133 #include <linux/vmalloc.h> 134 #include <linux/if_macvlan.h> 135 136 #include "net-sysfs.h" 137 138 /* Instead of increasing this, you should create a hash table. */ 139 #define MAX_GRO_SKBS 8 140 141 /* This should be increased if a protocol with a bigger head is added. */ 142 #define GRO_MAX_HEAD (MAX_HEADER + 128) 143 144 static DEFINE_SPINLOCK(ptype_lock); 145 static DEFINE_SPINLOCK(offload_lock); 146 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly; 147 struct list_head ptype_all __read_mostly; /* Taps */ 148 static struct list_head offload_base __read_mostly; 149 150 /* 151 * The @dev_base_head list is protected by @dev_base_lock and the rtnl 152 * semaphore. 153 * 154 * Pure readers hold dev_base_lock for reading, or rcu_read_lock() 155 * 156 * Writers must hold the rtnl semaphore while they loop through the 157 * dev_base_head list, and hold dev_base_lock for writing when they do the 158 * actual updates. This allows pure readers to access the list even 159 * while a writer is preparing to update it. 160 * 161 * To put it another way, dev_base_lock is held for writing only to 162 * protect against pure readers; the rtnl semaphore provides the 163 * protection against other writers. 164 * 165 * See, for example usages, register_netdevice() and 166 * unregister_netdevice(), which must be called with the rtnl 167 * semaphore held. 168 */ 169 DEFINE_RWLOCK(dev_base_lock); 170 EXPORT_SYMBOL(dev_base_lock); 171 172 /* protects napi_hash addition/deletion and napi_gen_id */ 173 static DEFINE_SPINLOCK(napi_hash_lock); 174 175 static unsigned int napi_gen_id; 176 static DEFINE_HASHTABLE(napi_hash, 8); 177 178 static seqcount_t devnet_rename_seq; 179 180 static inline void dev_base_seq_inc(struct net *net) 181 { 182 while (++net->dev_base_seq == 0); 183 } 184 185 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name) 186 { 187 unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ)); 188 189 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)]; 190 } 191 192 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex) 193 { 194 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)]; 195 } 196 197 static inline void rps_lock(struct softnet_data *sd) 198 { 199 #ifdef CONFIG_RPS 200 spin_lock(&sd->input_pkt_queue.lock); 201 #endif 202 } 203 204 static inline void rps_unlock(struct softnet_data *sd) 205 { 206 #ifdef CONFIG_RPS 207 spin_unlock(&sd->input_pkt_queue.lock); 208 #endif 209 } 210 211 /* Device list insertion */ 212 static void list_netdevice(struct net_device *dev) 213 { 214 struct net *net = dev_net(dev); 215 216 ASSERT_RTNL(); 217 218 write_lock_bh(&dev_base_lock); 219 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head); 220 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name)); 221 hlist_add_head_rcu(&dev->index_hlist, 222 dev_index_hash(net, dev->ifindex)); 223 write_unlock_bh(&dev_base_lock); 224 225 dev_base_seq_inc(net); 226 } 227 228 /* Device list removal 229 * caller must respect a RCU grace period before freeing/reusing dev 230 */ 231 static void unlist_netdevice(struct net_device *dev) 232 { 233 ASSERT_RTNL(); 234 235 /* Unlink dev from the device chain */ 236 write_lock_bh(&dev_base_lock); 237 list_del_rcu(&dev->dev_list); 238 hlist_del_rcu(&dev->name_hlist); 239 hlist_del_rcu(&dev->index_hlist); 240 write_unlock_bh(&dev_base_lock); 241 242 dev_base_seq_inc(dev_net(dev)); 243 } 244 245 /* 246 * Our notifier list 247 */ 248 249 static RAW_NOTIFIER_HEAD(netdev_chain); 250 251 /* 252 * Device drivers call our routines to queue packets here. We empty the 253 * queue in the local softnet handler. 254 */ 255 256 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 257 EXPORT_PER_CPU_SYMBOL(softnet_data); 258 259 #ifdef CONFIG_LOCKDEP 260 /* 261 * register_netdevice() inits txq->_xmit_lock and sets lockdep class 262 * according to dev->type 263 */ 264 static const unsigned short netdev_lock_type[] = 265 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25, 266 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET, 267 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM, 268 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP, 269 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD, 270 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25, 271 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP, 272 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD, 273 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI, 274 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE, 275 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET, 276 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL, 277 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM, 278 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE, 279 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE}; 280 281 static const char *const netdev_lock_name[] = 282 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25", 283 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET", 284 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM", 285 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP", 286 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD", 287 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25", 288 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP", 289 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD", 290 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI", 291 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE", 292 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET", 293 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL", 294 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM", 295 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE", 296 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"}; 297 298 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)]; 299 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)]; 300 301 static inline unsigned short netdev_lock_pos(unsigned short dev_type) 302 { 303 int i; 304 305 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++) 306 if (netdev_lock_type[i] == dev_type) 307 return i; 308 /* the last key is used by default */ 309 return ARRAY_SIZE(netdev_lock_type) - 1; 310 } 311 312 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 313 unsigned short dev_type) 314 { 315 int i; 316 317 i = netdev_lock_pos(dev_type); 318 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i], 319 netdev_lock_name[i]); 320 } 321 322 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 323 { 324 int i; 325 326 i = netdev_lock_pos(dev->type); 327 lockdep_set_class_and_name(&dev->addr_list_lock, 328 &netdev_addr_lock_key[i], 329 netdev_lock_name[i]); 330 } 331 #else 332 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 333 unsigned short dev_type) 334 { 335 } 336 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 337 { 338 } 339 #endif 340 341 /******************************************************************************* 342 343 Protocol management and registration routines 344 345 *******************************************************************************/ 346 347 /* 348 * Add a protocol ID to the list. Now that the input handler is 349 * smarter we can dispense with all the messy stuff that used to be 350 * here. 351 * 352 * BEWARE!!! Protocol handlers, mangling input packets, 353 * MUST BE last in hash buckets and checking protocol handlers 354 * MUST start from promiscuous ptype_all chain in net_bh. 355 * It is true now, do not change it. 356 * Explanation follows: if protocol handler, mangling packet, will 357 * be the first on list, it is not able to sense, that packet 358 * is cloned and should be copied-on-write, so that it will 359 * change it and subsequent readers will get broken packet. 360 * --ANK (980803) 361 */ 362 363 static inline struct list_head *ptype_head(const struct packet_type *pt) 364 { 365 if (pt->type == htons(ETH_P_ALL)) 366 return &ptype_all; 367 else 368 return &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK]; 369 } 370 371 /** 372 * dev_add_pack - add packet handler 373 * @pt: packet type declaration 374 * 375 * Add a protocol handler to the networking stack. The passed &packet_type 376 * is linked into kernel lists and may not be freed until it has been 377 * removed from the kernel lists. 378 * 379 * This call does not sleep therefore it can not 380 * guarantee all CPU's that are in middle of receiving packets 381 * will see the new packet type (until the next received packet). 382 */ 383 384 void dev_add_pack(struct packet_type *pt) 385 { 386 struct list_head *head = ptype_head(pt); 387 388 spin_lock(&ptype_lock); 389 list_add_rcu(&pt->list, head); 390 spin_unlock(&ptype_lock); 391 } 392 EXPORT_SYMBOL(dev_add_pack); 393 394 /** 395 * __dev_remove_pack - remove packet handler 396 * @pt: packet type declaration 397 * 398 * Remove a protocol handler that was previously added to the kernel 399 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 400 * from the kernel lists and can be freed or reused once this function 401 * returns. 402 * 403 * The packet type might still be in use by receivers 404 * and must not be freed until after all the CPU's have gone 405 * through a quiescent state. 406 */ 407 void __dev_remove_pack(struct packet_type *pt) 408 { 409 struct list_head *head = ptype_head(pt); 410 struct packet_type *pt1; 411 412 spin_lock(&ptype_lock); 413 414 list_for_each_entry(pt1, head, list) { 415 if (pt == pt1) { 416 list_del_rcu(&pt->list); 417 goto out; 418 } 419 } 420 421 pr_warn("dev_remove_pack: %p not found\n", pt); 422 out: 423 spin_unlock(&ptype_lock); 424 } 425 EXPORT_SYMBOL(__dev_remove_pack); 426 427 /** 428 * dev_remove_pack - remove packet handler 429 * @pt: packet type declaration 430 * 431 * Remove a protocol handler that was previously added to the kernel 432 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 433 * from the kernel lists and can be freed or reused once this function 434 * returns. 435 * 436 * This call sleeps to guarantee that no CPU is looking at the packet 437 * type after return. 438 */ 439 void dev_remove_pack(struct packet_type *pt) 440 { 441 __dev_remove_pack(pt); 442 443 synchronize_net(); 444 } 445 EXPORT_SYMBOL(dev_remove_pack); 446 447 448 /** 449 * dev_add_offload - register offload handlers 450 * @po: protocol offload declaration 451 * 452 * Add protocol offload handlers to the networking stack. The passed 453 * &proto_offload is linked into kernel lists and may not be freed until 454 * it has been removed from the kernel lists. 455 * 456 * This call does not sleep therefore it can not 457 * guarantee all CPU's that are in middle of receiving packets 458 * will see the new offload handlers (until the next received packet). 459 */ 460 void dev_add_offload(struct packet_offload *po) 461 { 462 struct list_head *head = &offload_base; 463 464 spin_lock(&offload_lock); 465 list_add_rcu(&po->list, head); 466 spin_unlock(&offload_lock); 467 } 468 EXPORT_SYMBOL(dev_add_offload); 469 470 /** 471 * __dev_remove_offload - remove offload handler 472 * @po: packet offload declaration 473 * 474 * Remove a protocol offload handler that was previously added to the 475 * kernel offload handlers by dev_add_offload(). The passed &offload_type 476 * is removed from the kernel lists and can be freed or reused once this 477 * function returns. 478 * 479 * The packet type might still be in use by receivers 480 * and must not be freed until after all the CPU's have gone 481 * through a quiescent state. 482 */ 483 void __dev_remove_offload(struct packet_offload *po) 484 { 485 struct list_head *head = &offload_base; 486 struct packet_offload *po1; 487 488 spin_lock(&offload_lock); 489 490 list_for_each_entry(po1, head, list) { 491 if (po == po1) { 492 list_del_rcu(&po->list); 493 goto out; 494 } 495 } 496 497 pr_warn("dev_remove_offload: %p not found\n", po); 498 out: 499 spin_unlock(&offload_lock); 500 } 501 EXPORT_SYMBOL(__dev_remove_offload); 502 503 /** 504 * dev_remove_offload - remove packet offload handler 505 * @po: packet offload declaration 506 * 507 * Remove a packet offload handler that was previously added to the kernel 508 * offload handlers by dev_add_offload(). The passed &offload_type is 509 * removed from the kernel lists and can be freed or reused once this 510 * function returns. 511 * 512 * This call sleeps to guarantee that no CPU is looking at the packet 513 * type after return. 514 */ 515 void dev_remove_offload(struct packet_offload *po) 516 { 517 __dev_remove_offload(po); 518 519 synchronize_net(); 520 } 521 EXPORT_SYMBOL(dev_remove_offload); 522 523 /****************************************************************************** 524 525 Device Boot-time Settings Routines 526 527 *******************************************************************************/ 528 529 /* Boot time configuration table */ 530 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX]; 531 532 /** 533 * netdev_boot_setup_add - add new setup entry 534 * @name: name of the device 535 * @map: configured settings for the device 536 * 537 * Adds new setup entry to the dev_boot_setup list. The function 538 * returns 0 on error and 1 on success. This is a generic routine to 539 * all netdevices. 540 */ 541 static int netdev_boot_setup_add(char *name, struct ifmap *map) 542 { 543 struct netdev_boot_setup *s; 544 int i; 545 546 s = dev_boot_setup; 547 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 548 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') { 549 memset(s[i].name, 0, sizeof(s[i].name)); 550 strlcpy(s[i].name, name, IFNAMSIZ); 551 memcpy(&s[i].map, map, sizeof(s[i].map)); 552 break; 553 } 554 } 555 556 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1; 557 } 558 559 /** 560 * netdev_boot_setup_check - check boot time settings 561 * @dev: the netdevice 562 * 563 * Check boot time settings for the device. 564 * The found settings are set for the device to be used 565 * later in the device probing. 566 * Returns 0 if no settings found, 1 if they are. 567 */ 568 int netdev_boot_setup_check(struct net_device *dev) 569 { 570 struct netdev_boot_setup *s = dev_boot_setup; 571 int i; 572 573 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 574 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' && 575 !strcmp(dev->name, s[i].name)) { 576 dev->irq = s[i].map.irq; 577 dev->base_addr = s[i].map.base_addr; 578 dev->mem_start = s[i].map.mem_start; 579 dev->mem_end = s[i].map.mem_end; 580 return 1; 581 } 582 } 583 return 0; 584 } 585 EXPORT_SYMBOL(netdev_boot_setup_check); 586 587 588 /** 589 * netdev_boot_base - get address from boot time settings 590 * @prefix: prefix for network device 591 * @unit: id for network device 592 * 593 * Check boot time settings for the base address of device. 594 * The found settings are set for the device to be used 595 * later in the device probing. 596 * Returns 0 if no settings found. 597 */ 598 unsigned long netdev_boot_base(const char *prefix, int unit) 599 { 600 const struct netdev_boot_setup *s = dev_boot_setup; 601 char name[IFNAMSIZ]; 602 int i; 603 604 sprintf(name, "%s%d", prefix, unit); 605 606 /* 607 * If device already registered then return base of 1 608 * to indicate not to probe for this interface 609 */ 610 if (__dev_get_by_name(&init_net, name)) 611 return 1; 612 613 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) 614 if (!strcmp(name, s[i].name)) 615 return s[i].map.base_addr; 616 return 0; 617 } 618 619 /* 620 * Saves at boot time configured settings for any netdevice. 621 */ 622 int __init netdev_boot_setup(char *str) 623 { 624 int ints[5]; 625 struct ifmap map; 626 627 str = get_options(str, ARRAY_SIZE(ints), ints); 628 if (!str || !*str) 629 return 0; 630 631 /* Save settings */ 632 memset(&map, 0, sizeof(map)); 633 if (ints[0] > 0) 634 map.irq = ints[1]; 635 if (ints[0] > 1) 636 map.base_addr = ints[2]; 637 if (ints[0] > 2) 638 map.mem_start = ints[3]; 639 if (ints[0] > 3) 640 map.mem_end = ints[4]; 641 642 /* Add new entry to the list */ 643 return netdev_boot_setup_add(str, &map); 644 } 645 646 __setup("netdev=", netdev_boot_setup); 647 648 /******************************************************************************* 649 650 Device Interface Subroutines 651 652 *******************************************************************************/ 653 654 /** 655 * __dev_get_by_name - find a device by its name 656 * @net: the applicable net namespace 657 * @name: name to find 658 * 659 * Find an interface by name. Must be called under RTNL semaphore 660 * or @dev_base_lock. If the name is found a pointer to the device 661 * is returned. If the name is not found then %NULL is returned. The 662 * reference counters are not incremented so the caller must be 663 * careful with locks. 664 */ 665 666 struct net_device *__dev_get_by_name(struct net *net, const char *name) 667 { 668 struct net_device *dev; 669 struct hlist_head *head = dev_name_hash(net, name); 670 671 hlist_for_each_entry(dev, head, name_hlist) 672 if (!strncmp(dev->name, name, IFNAMSIZ)) 673 return dev; 674 675 return NULL; 676 } 677 EXPORT_SYMBOL(__dev_get_by_name); 678 679 /** 680 * dev_get_by_name_rcu - find a device by its name 681 * @net: the applicable net namespace 682 * @name: name to find 683 * 684 * Find an interface by name. 685 * If the name is found a pointer to the device is returned. 686 * If the name is not found then %NULL is returned. 687 * The reference counters are not incremented so the caller must be 688 * careful with locks. The caller must hold RCU lock. 689 */ 690 691 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name) 692 { 693 struct net_device *dev; 694 struct hlist_head *head = dev_name_hash(net, name); 695 696 hlist_for_each_entry_rcu(dev, head, name_hlist) 697 if (!strncmp(dev->name, name, IFNAMSIZ)) 698 return dev; 699 700 return NULL; 701 } 702 EXPORT_SYMBOL(dev_get_by_name_rcu); 703 704 /** 705 * dev_get_by_name - find a device by its name 706 * @net: the applicable net namespace 707 * @name: name to find 708 * 709 * Find an interface by name. This can be called from any 710 * context and does its own locking. The returned handle has 711 * the usage count incremented and the caller must use dev_put() to 712 * release it when it is no longer needed. %NULL is returned if no 713 * matching device is found. 714 */ 715 716 struct net_device *dev_get_by_name(struct net *net, const char *name) 717 { 718 struct net_device *dev; 719 720 rcu_read_lock(); 721 dev = dev_get_by_name_rcu(net, name); 722 if (dev) 723 dev_hold(dev); 724 rcu_read_unlock(); 725 return dev; 726 } 727 EXPORT_SYMBOL(dev_get_by_name); 728 729 /** 730 * __dev_get_by_index - find a device by its ifindex 731 * @net: the applicable net namespace 732 * @ifindex: index of device 733 * 734 * Search for an interface by index. Returns %NULL if the device 735 * is not found or a pointer to the device. The device has not 736 * had its reference counter increased so the caller must be careful 737 * about locking. The caller must hold either the RTNL semaphore 738 * or @dev_base_lock. 739 */ 740 741 struct net_device *__dev_get_by_index(struct net *net, int ifindex) 742 { 743 struct net_device *dev; 744 struct hlist_head *head = dev_index_hash(net, ifindex); 745 746 hlist_for_each_entry(dev, head, index_hlist) 747 if (dev->ifindex == ifindex) 748 return dev; 749 750 return NULL; 751 } 752 EXPORT_SYMBOL(__dev_get_by_index); 753 754 /** 755 * dev_get_by_index_rcu - find a device by its ifindex 756 * @net: the applicable net namespace 757 * @ifindex: index of device 758 * 759 * Search for an interface by index. Returns %NULL if the device 760 * is not found or a pointer to the device. The device has not 761 * had its reference counter increased so the caller must be careful 762 * about locking. The caller must hold RCU lock. 763 */ 764 765 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex) 766 { 767 struct net_device *dev; 768 struct hlist_head *head = dev_index_hash(net, ifindex); 769 770 hlist_for_each_entry_rcu(dev, head, index_hlist) 771 if (dev->ifindex == ifindex) 772 return dev; 773 774 return NULL; 775 } 776 EXPORT_SYMBOL(dev_get_by_index_rcu); 777 778 779 /** 780 * dev_get_by_index - find a device by its ifindex 781 * @net: the applicable net namespace 782 * @ifindex: index of device 783 * 784 * Search for an interface by index. Returns NULL if the device 785 * is not found or a pointer to the device. The device returned has 786 * had a reference added and the pointer is safe until the user calls 787 * dev_put to indicate they have finished with it. 788 */ 789 790 struct net_device *dev_get_by_index(struct net *net, int ifindex) 791 { 792 struct net_device *dev; 793 794 rcu_read_lock(); 795 dev = dev_get_by_index_rcu(net, ifindex); 796 if (dev) 797 dev_hold(dev); 798 rcu_read_unlock(); 799 return dev; 800 } 801 EXPORT_SYMBOL(dev_get_by_index); 802 803 /** 804 * netdev_get_name - get a netdevice name, knowing its ifindex. 805 * @net: network namespace 806 * @name: a pointer to the buffer where the name will be stored. 807 * @ifindex: the ifindex of the interface to get the name from. 808 * 809 * The use of raw_seqcount_begin() and cond_resched() before 810 * retrying is required as we want to give the writers a chance 811 * to complete when CONFIG_PREEMPT is not set. 812 */ 813 int netdev_get_name(struct net *net, char *name, int ifindex) 814 { 815 struct net_device *dev; 816 unsigned int seq; 817 818 retry: 819 seq = raw_seqcount_begin(&devnet_rename_seq); 820 rcu_read_lock(); 821 dev = dev_get_by_index_rcu(net, ifindex); 822 if (!dev) { 823 rcu_read_unlock(); 824 return -ENODEV; 825 } 826 827 strcpy(name, dev->name); 828 rcu_read_unlock(); 829 if (read_seqcount_retry(&devnet_rename_seq, seq)) { 830 cond_resched(); 831 goto retry; 832 } 833 834 return 0; 835 } 836 837 /** 838 * dev_getbyhwaddr_rcu - find a device by its hardware address 839 * @net: the applicable net namespace 840 * @type: media type of device 841 * @ha: hardware address 842 * 843 * Search for an interface by MAC address. Returns NULL if the device 844 * is not found or a pointer to the device. 845 * The caller must hold RCU or RTNL. 846 * The returned device has not had its ref count increased 847 * and the caller must therefore be careful about locking 848 * 849 */ 850 851 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 852 const char *ha) 853 { 854 struct net_device *dev; 855 856 for_each_netdev_rcu(net, dev) 857 if (dev->type == type && 858 !memcmp(dev->dev_addr, ha, dev->addr_len)) 859 return dev; 860 861 return NULL; 862 } 863 EXPORT_SYMBOL(dev_getbyhwaddr_rcu); 864 865 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type) 866 { 867 struct net_device *dev; 868 869 ASSERT_RTNL(); 870 for_each_netdev(net, dev) 871 if (dev->type == type) 872 return dev; 873 874 return NULL; 875 } 876 EXPORT_SYMBOL(__dev_getfirstbyhwtype); 877 878 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type) 879 { 880 struct net_device *dev, *ret = NULL; 881 882 rcu_read_lock(); 883 for_each_netdev_rcu(net, dev) 884 if (dev->type == type) { 885 dev_hold(dev); 886 ret = dev; 887 break; 888 } 889 rcu_read_unlock(); 890 return ret; 891 } 892 EXPORT_SYMBOL(dev_getfirstbyhwtype); 893 894 /** 895 * dev_get_by_flags_rcu - find any device with given flags 896 * @net: the applicable net namespace 897 * @if_flags: IFF_* values 898 * @mask: bitmask of bits in if_flags to check 899 * 900 * Search for any interface with the given flags. Returns NULL if a device 901 * is not found or a pointer to the device. Must be called inside 902 * rcu_read_lock(), and result refcount is unchanged. 903 */ 904 905 struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short if_flags, 906 unsigned short mask) 907 { 908 struct net_device *dev, *ret; 909 910 ret = NULL; 911 for_each_netdev_rcu(net, dev) { 912 if (((dev->flags ^ if_flags) & mask) == 0) { 913 ret = dev; 914 break; 915 } 916 } 917 return ret; 918 } 919 EXPORT_SYMBOL(dev_get_by_flags_rcu); 920 921 /** 922 * dev_valid_name - check if name is okay for network device 923 * @name: name string 924 * 925 * Network device names need to be valid file names to 926 * to allow sysfs to work. We also disallow any kind of 927 * whitespace. 928 */ 929 bool dev_valid_name(const char *name) 930 { 931 if (*name == '\0') 932 return false; 933 if (strlen(name) >= IFNAMSIZ) 934 return false; 935 if (!strcmp(name, ".") || !strcmp(name, "..")) 936 return false; 937 938 while (*name) { 939 if (*name == '/' || isspace(*name)) 940 return false; 941 name++; 942 } 943 return true; 944 } 945 EXPORT_SYMBOL(dev_valid_name); 946 947 /** 948 * __dev_alloc_name - allocate a name for a device 949 * @net: network namespace to allocate the device name in 950 * @name: name format string 951 * @buf: scratch buffer and result name string 952 * 953 * Passed a format string - eg "lt%d" it will try and find a suitable 954 * id. It scans list of devices to build up a free map, then chooses 955 * the first empty slot. The caller must hold the dev_base or rtnl lock 956 * while allocating the name and adding the device in order to avoid 957 * duplicates. 958 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 959 * Returns the number of the unit assigned or a negative errno code. 960 */ 961 962 static int __dev_alloc_name(struct net *net, const char *name, char *buf) 963 { 964 int i = 0; 965 const char *p; 966 const int max_netdevices = 8*PAGE_SIZE; 967 unsigned long *inuse; 968 struct net_device *d; 969 970 p = strnchr(name, IFNAMSIZ-1, '%'); 971 if (p) { 972 /* 973 * Verify the string as this thing may have come from 974 * the user. There must be either one "%d" and no other "%" 975 * characters. 976 */ 977 if (p[1] != 'd' || strchr(p + 2, '%')) 978 return -EINVAL; 979 980 /* Use one page as a bit array of possible slots */ 981 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC); 982 if (!inuse) 983 return -ENOMEM; 984 985 for_each_netdev(net, d) { 986 if (!sscanf(d->name, name, &i)) 987 continue; 988 if (i < 0 || i >= max_netdevices) 989 continue; 990 991 /* avoid cases where sscanf is not exact inverse of printf */ 992 snprintf(buf, IFNAMSIZ, name, i); 993 if (!strncmp(buf, d->name, IFNAMSIZ)) 994 set_bit(i, inuse); 995 } 996 997 i = find_first_zero_bit(inuse, max_netdevices); 998 free_page((unsigned long) inuse); 999 } 1000 1001 if (buf != name) 1002 snprintf(buf, IFNAMSIZ, name, i); 1003 if (!__dev_get_by_name(net, buf)) 1004 return i; 1005 1006 /* It is possible to run out of possible slots 1007 * when the name is long and there isn't enough space left 1008 * for the digits, or if all bits are used. 1009 */ 1010 return -ENFILE; 1011 } 1012 1013 /** 1014 * dev_alloc_name - allocate a name for a device 1015 * @dev: device 1016 * @name: name format string 1017 * 1018 * Passed a format string - eg "lt%d" it will try and find a suitable 1019 * id. It scans list of devices to build up a free map, then chooses 1020 * the first empty slot. The caller must hold the dev_base or rtnl lock 1021 * while allocating the name and adding the device in order to avoid 1022 * duplicates. 1023 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 1024 * Returns the number of the unit assigned or a negative errno code. 1025 */ 1026 1027 int dev_alloc_name(struct net_device *dev, const char *name) 1028 { 1029 char buf[IFNAMSIZ]; 1030 struct net *net; 1031 int ret; 1032 1033 BUG_ON(!dev_net(dev)); 1034 net = dev_net(dev); 1035 ret = __dev_alloc_name(net, name, buf); 1036 if (ret >= 0) 1037 strlcpy(dev->name, buf, IFNAMSIZ); 1038 return ret; 1039 } 1040 EXPORT_SYMBOL(dev_alloc_name); 1041 1042 static int dev_alloc_name_ns(struct net *net, 1043 struct net_device *dev, 1044 const char *name) 1045 { 1046 char buf[IFNAMSIZ]; 1047 int ret; 1048 1049 ret = __dev_alloc_name(net, name, buf); 1050 if (ret >= 0) 1051 strlcpy(dev->name, buf, IFNAMSIZ); 1052 return ret; 1053 } 1054 1055 static int dev_get_valid_name(struct net *net, 1056 struct net_device *dev, 1057 const char *name) 1058 { 1059 BUG_ON(!net); 1060 1061 if (!dev_valid_name(name)) 1062 return -EINVAL; 1063 1064 if (strchr(name, '%')) 1065 return dev_alloc_name_ns(net, dev, name); 1066 else if (__dev_get_by_name(net, name)) 1067 return -EEXIST; 1068 else if (dev->name != name) 1069 strlcpy(dev->name, name, IFNAMSIZ); 1070 1071 return 0; 1072 } 1073 1074 /** 1075 * dev_change_name - change name of a device 1076 * @dev: device 1077 * @newname: name (or format string) must be at least IFNAMSIZ 1078 * 1079 * Change name of a device, can pass format strings "eth%d". 1080 * for wildcarding. 1081 */ 1082 int dev_change_name(struct net_device *dev, const char *newname) 1083 { 1084 char oldname[IFNAMSIZ]; 1085 int err = 0; 1086 int ret; 1087 struct net *net; 1088 1089 ASSERT_RTNL(); 1090 BUG_ON(!dev_net(dev)); 1091 1092 net = dev_net(dev); 1093 if (dev->flags & IFF_UP) 1094 return -EBUSY; 1095 1096 write_seqcount_begin(&devnet_rename_seq); 1097 1098 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) { 1099 write_seqcount_end(&devnet_rename_seq); 1100 return 0; 1101 } 1102 1103 memcpy(oldname, dev->name, IFNAMSIZ); 1104 1105 err = dev_get_valid_name(net, dev, newname); 1106 if (err < 0) { 1107 write_seqcount_end(&devnet_rename_seq); 1108 return err; 1109 } 1110 1111 rollback: 1112 ret = device_rename(&dev->dev, dev->name); 1113 if (ret) { 1114 memcpy(dev->name, oldname, IFNAMSIZ); 1115 write_seqcount_end(&devnet_rename_seq); 1116 return ret; 1117 } 1118 1119 write_seqcount_end(&devnet_rename_seq); 1120 1121 write_lock_bh(&dev_base_lock); 1122 hlist_del_rcu(&dev->name_hlist); 1123 write_unlock_bh(&dev_base_lock); 1124 1125 synchronize_rcu(); 1126 1127 write_lock_bh(&dev_base_lock); 1128 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name)); 1129 write_unlock_bh(&dev_base_lock); 1130 1131 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev); 1132 ret = notifier_to_errno(ret); 1133 1134 if (ret) { 1135 /* err >= 0 after dev_alloc_name() or stores the first errno */ 1136 if (err >= 0) { 1137 err = ret; 1138 write_seqcount_begin(&devnet_rename_seq); 1139 memcpy(dev->name, oldname, IFNAMSIZ); 1140 goto rollback; 1141 } else { 1142 pr_err("%s: name change rollback failed: %d\n", 1143 dev->name, ret); 1144 } 1145 } 1146 1147 return err; 1148 } 1149 1150 /** 1151 * dev_set_alias - change ifalias of a device 1152 * @dev: device 1153 * @alias: name up to IFALIASZ 1154 * @len: limit of bytes to copy from info 1155 * 1156 * Set ifalias for a device, 1157 */ 1158 int dev_set_alias(struct net_device *dev, const char *alias, size_t len) 1159 { 1160 char *new_ifalias; 1161 1162 ASSERT_RTNL(); 1163 1164 if (len >= IFALIASZ) 1165 return -EINVAL; 1166 1167 if (!len) { 1168 kfree(dev->ifalias); 1169 dev->ifalias = NULL; 1170 return 0; 1171 } 1172 1173 new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL); 1174 if (!new_ifalias) 1175 return -ENOMEM; 1176 dev->ifalias = new_ifalias; 1177 1178 strlcpy(dev->ifalias, alias, len+1); 1179 return len; 1180 } 1181 1182 1183 /** 1184 * netdev_features_change - device changes features 1185 * @dev: device to cause notification 1186 * 1187 * Called to indicate a device has changed features. 1188 */ 1189 void netdev_features_change(struct net_device *dev) 1190 { 1191 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev); 1192 } 1193 EXPORT_SYMBOL(netdev_features_change); 1194 1195 /** 1196 * netdev_state_change - device changes state 1197 * @dev: device to cause notification 1198 * 1199 * Called to indicate a device has changed state. This function calls 1200 * the notifier chains for netdev_chain and sends a NEWLINK message 1201 * to the routing socket. 1202 */ 1203 void netdev_state_change(struct net_device *dev) 1204 { 1205 if (dev->flags & IFF_UP) { 1206 call_netdevice_notifiers(NETDEV_CHANGE, dev); 1207 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL); 1208 } 1209 } 1210 EXPORT_SYMBOL(netdev_state_change); 1211 1212 /** 1213 * netdev_notify_peers - notify network peers about existence of @dev 1214 * @dev: network device 1215 * 1216 * Generate traffic such that interested network peers are aware of 1217 * @dev, such as by generating a gratuitous ARP. This may be used when 1218 * a device wants to inform the rest of the network about some sort of 1219 * reconfiguration such as a failover event or virtual machine 1220 * migration. 1221 */ 1222 void netdev_notify_peers(struct net_device *dev) 1223 { 1224 rtnl_lock(); 1225 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev); 1226 rtnl_unlock(); 1227 } 1228 EXPORT_SYMBOL(netdev_notify_peers); 1229 1230 static int __dev_open(struct net_device *dev) 1231 { 1232 const struct net_device_ops *ops = dev->netdev_ops; 1233 int ret; 1234 1235 ASSERT_RTNL(); 1236 1237 if (!netif_device_present(dev)) 1238 return -ENODEV; 1239 1240 /* Block netpoll from trying to do any rx path servicing. 1241 * If we don't do this there is a chance ndo_poll_controller 1242 * or ndo_poll may be running while we open the device 1243 */ 1244 netpoll_rx_disable(dev); 1245 1246 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev); 1247 ret = notifier_to_errno(ret); 1248 if (ret) 1249 return ret; 1250 1251 set_bit(__LINK_STATE_START, &dev->state); 1252 1253 if (ops->ndo_validate_addr) 1254 ret = ops->ndo_validate_addr(dev); 1255 1256 if (!ret && ops->ndo_open) 1257 ret = ops->ndo_open(dev); 1258 1259 netpoll_rx_enable(dev); 1260 1261 if (ret) 1262 clear_bit(__LINK_STATE_START, &dev->state); 1263 else { 1264 dev->flags |= IFF_UP; 1265 net_dmaengine_get(); 1266 dev_set_rx_mode(dev); 1267 dev_activate(dev); 1268 add_device_randomness(dev->dev_addr, dev->addr_len); 1269 } 1270 1271 return ret; 1272 } 1273 1274 /** 1275 * dev_open - prepare an interface for use. 1276 * @dev: device to open 1277 * 1278 * Takes a device from down to up state. The device's private open 1279 * function is invoked and then the multicast lists are loaded. Finally 1280 * the device is moved into the up state and a %NETDEV_UP message is 1281 * sent to the netdev notifier chain. 1282 * 1283 * Calling this function on an active interface is a nop. On a failure 1284 * a negative errno code is returned. 1285 */ 1286 int dev_open(struct net_device *dev) 1287 { 1288 int ret; 1289 1290 if (dev->flags & IFF_UP) 1291 return 0; 1292 1293 ret = __dev_open(dev); 1294 if (ret < 0) 1295 return ret; 1296 1297 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL); 1298 call_netdevice_notifiers(NETDEV_UP, dev); 1299 1300 return ret; 1301 } 1302 EXPORT_SYMBOL(dev_open); 1303 1304 static int __dev_close_many(struct list_head *head) 1305 { 1306 struct net_device *dev; 1307 1308 ASSERT_RTNL(); 1309 might_sleep(); 1310 1311 list_for_each_entry(dev, head, close_list) { 1312 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev); 1313 1314 clear_bit(__LINK_STATE_START, &dev->state); 1315 1316 /* Synchronize to scheduled poll. We cannot touch poll list, it 1317 * can be even on different cpu. So just clear netif_running(). 1318 * 1319 * dev->stop() will invoke napi_disable() on all of it's 1320 * napi_struct instances on this device. 1321 */ 1322 smp_mb__after_clear_bit(); /* Commit netif_running(). */ 1323 } 1324 1325 dev_deactivate_many(head); 1326 1327 list_for_each_entry(dev, head, close_list) { 1328 const struct net_device_ops *ops = dev->netdev_ops; 1329 1330 /* 1331 * Call the device specific close. This cannot fail. 1332 * Only if device is UP 1333 * 1334 * We allow it to be called even after a DETACH hot-plug 1335 * event. 1336 */ 1337 if (ops->ndo_stop) 1338 ops->ndo_stop(dev); 1339 1340 dev->flags &= ~IFF_UP; 1341 net_dmaengine_put(); 1342 } 1343 1344 return 0; 1345 } 1346 1347 static int __dev_close(struct net_device *dev) 1348 { 1349 int retval; 1350 LIST_HEAD(single); 1351 1352 /* Temporarily disable netpoll until the interface is down */ 1353 netpoll_rx_disable(dev); 1354 1355 list_add(&dev->close_list, &single); 1356 retval = __dev_close_many(&single); 1357 list_del(&single); 1358 1359 netpoll_rx_enable(dev); 1360 return retval; 1361 } 1362 1363 static int dev_close_many(struct list_head *head) 1364 { 1365 struct net_device *dev, *tmp; 1366 1367 /* Remove the devices that don't need to be closed */ 1368 list_for_each_entry_safe(dev, tmp, head, close_list) 1369 if (!(dev->flags & IFF_UP)) 1370 list_del_init(&dev->close_list); 1371 1372 __dev_close_many(head); 1373 1374 list_for_each_entry_safe(dev, tmp, head, close_list) { 1375 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL); 1376 call_netdevice_notifiers(NETDEV_DOWN, dev); 1377 list_del_init(&dev->close_list); 1378 } 1379 1380 return 0; 1381 } 1382 1383 /** 1384 * dev_close - shutdown an interface. 1385 * @dev: device to shutdown 1386 * 1387 * This function moves an active device into down state. A 1388 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device 1389 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier 1390 * chain. 1391 */ 1392 int dev_close(struct net_device *dev) 1393 { 1394 if (dev->flags & IFF_UP) { 1395 LIST_HEAD(single); 1396 1397 /* Block netpoll rx while the interface is going down */ 1398 netpoll_rx_disable(dev); 1399 1400 list_add(&dev->close_list, &single); 1401 dev_close_many(&single); 1402 list_del(&single); 1403 1404 netpoll_rx_enable(dev); 1405 } 1406 return 0; 1407 } 1408 EXPORT_SYMBOL(dev_close); 1409 1410 1411 /** 1412 * dev_disable_lro - disable Large Receive Offload on a device 1413 * @dev: device 1414 * 1415 * Disable Large Receive Offload (LRO) on a net device. Must be 1416 * called under RTNL. This is needed if received packets may be 1417 * forwarded to another interface. 1418 */ 1419 void dev_disable_lro(struct net_device *dev) 1420 { 1421 /* 1422 * If we're trying to disable lro on a vlan device 1423 * use the underlying physical device instead 1424 */ 1425 if (is_vlan_dev(dev)) 1426 dev = vlan_dev_real_dev(dev); 1427 1428 /* the same for macvlan devices */ 1429 if (netif_is_macvlan(dev)) 1430 dev = macvlan_dev_real_dev(dev); 1431 1432 dev->wanted_features &= ~NETIF_F_LRO; 1433 netdev_update_features(dev); 1434 1435 if (unlikely(dev->features & NETIF_F_LRO)) 1436 netdev_WARN(dev, "failed to disable LRO!\n"); 1437 } 1438 EXPORT_SYMBOL(dev_disable_lro); 1439 1440 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val, 1441 struct net_device *dev) 1442 { 1443 struct netdev_notifier_info info; 1444 1445 netdev_notifier_info_init(&info, dev); 1446 return nb->notifier_call(nb, val, &info); 1447 } 1448 1449 static int dev_boot_phase = 1; 1450 1451 /** 1452 * register_netdevice_notifier - register a network notifier block 1453 * @nb: notifier 1454 * 1455 * Register a notifier to be called when network device events occur. 1456 * The notifier passed is linked into the kernel structures and must 1457 * not be reused until it has been unregistered. A negative errno code 1458 * is returned on a failure. 1459 * 1460 * When registered all registration and up events are replayed 1461 * to the new notifier to allow device to have a race free 1462 * view of the network device list. 1463 */ 1464 1465 int register_netdevice_notifier(struct notifier_block *nb) 1466 { 1467 struct net_device *dev; 1468 struct net_device *last; 1469 struct net *net; 1470 int err; 1471 1472 rtnl_lock(); 1473 err = raw_notifier_chain_register(&netdev_chain, nb); 1474 if (err) 1475 goto unlock; 1476 if (dev_boot_phase) 1477 goto unlock; 1478 for_each_net(net) { 1479 for_each_netdev(net, dev) { 1480 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev); 1481 err = notifier_to_errno(err); 1482 if (err) 1483 goto rollback; 1484 1485 if (!(dev->flags & IFF_UP)) 1486 continue; 1487 1488 call_netdevice_notifier(nb, NETDEV_UP, dev); 1489 } 1490 } 1491 1492 unlock: 1493 rtnl_unlock(); 1494 return err; 1495 1496 rollback: 1497 last = dev; 1498 for_each_net(net) { 1499 for_each_netdev(net, dev) { 1500 if (dev == last) 1501 goto outroll; 1502 1503 if (dev->flags & IFF_UP) { 1504 call_netdevice_notifier(nb, NETDEV_GOING_DOWN, 1505 dev); 1506 call_netdevice_notifier(nb, NETDEV_DOWN, dev); 1507 } 1508 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev); 1509 } 1510 } 1511 1512 outroll: 1513 raw_notifier_chain_unregister(&netdev_chain, nb); 1514 goto unlock; 1515 } 1516 EXPORT_SYMBOL(register_netdevice_notifier); 1517 1518 /** 1519 * unregister_netdevice_notifier - unregister a network notifier block 1520 * @nb: notifier 1521 * 1522 * Unregister a notifier previously registered by 1523 * register_netdevice_notifier(). The notifier is unlinked into the 1524 * kernel structures and may then be reused. A negative errno code 1525 * is returned on a failure. 1526 * 1527 * After unregistering unregister and down device events are synthesized 1528 * for all devices on the device list to the removed notifier to remove 1529 * the need for special case cleanup code. 1530 */ 1531 1532 int unregister_netdevice_notifier(struct notifier_block *nb) 1533 { 1534 struct net_device *dev; 1535 struct net *net; 1536 int err; 1537 1538 rtnl_lock(); 1539 err = raw_notifier_chain_unregister(&netdev_chain, nb); 1540 if (err) 1541 goto unlock; 1542 1543 for_each_net(net) { 1544 for_each_netdev(net, dev) { 1545 if (dev->flags & IFF_UP) { 1546 call_netdevice_notifier(nb, NETDEV_GOING_DOWN, 1547 dev); 1548 call_netdevice_notifier(nb, NETDEV_DOWN, dev); 1549 } 1550 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev); 1551 } 1552 } 1553 unlock: 1554 rtnl_unlock(); 1555 return err; 1556 } 1557 EXPORT_SYMBOL(unregister_netdevice_notifier); 1558 1559 /** 1560 * call_netdevice_notifiers_info - call all network notifier blocks 1561 * @val: value passed unmodified to notifier function 1562 * @dev: net_device pointer passed unmodified to notifier function 1563 * @info: notifier information data 1564 * 1565 * Call all network notifier blocks. Parameters and return value 1566 * are as for raw_notifier_call_chain(). 1567 */ 1568 1569 int call_netdevice_notifiers_info(unsigned long val, struct net_device *dev, 1570 struct netdev_notifier_info *info) 1571 { 1572 ASSERT_RTNL(); 1573 netdev_notifier_info_init(info, dev); 1574 return raw_notifier_call_chain(&netdev_chain, val, info); 1575 } 1576 EXPORT_SYMBOL(call_netdevice_notifiers_info); 1577 1578 /** 1579 * call_netdevice_notifiers - call all network notifier blocks 1580 * @val: value passed unmodified to notifier function 1581 * @dev: net_device pointer passed unmodified to notifier function 1582 * 1583 * Call all network notifier blocks. Parameters and return value 1584 * are as for raw_notifier_call_chain(). 1585 */ 1586 1587 int call_netdevice_notifiers(unsigned long val, struct net_device *dev) 1588 { 1589 struct netdev_notifier_info info; 1590 1591 return call_netdevice_notifiers_info(val, dev, &info); 1592 } 1593 EXPORT_SYMBOL(call_netdevice_notifiers); 1594 1595 static struct static_key netstamp_needed __read_mostly; 1596 #ifdef HAVE_JUMP_LABEL 1597 /* We are not allowed to call static_key_slow_dec() from irq context 1598 * If net_disable_timestamp() is called from irq context, defer the 1599 * static_key_slow_dec() calls. 1600 */ 1601 static atomic_t netstamp_needed_deferred; 1602 #endif 1603 1604 void net_enable_timestamp(void) 1605 { 1606 #ifdef HAVE_JUMP_LABEL 1607 int deferred = atomic_xchg(&netstamp_needed_deferred, 0); 1608 1609 if (deferred) { 1610 while (--deferred) 1611 static_key_slow_dec(&netstamp_needed); 1612 return; 1613 } 1614 #endif 1615 static_key_slow_inc(&netstamp_needed); 1616 } 1617 EXPORT_SYMBOL(net_enable_timestamp); 1618 1619 void net_disable_timestamp(void) 1620 { 1621 #ifdef HAVE_JUMP_LABEL 1622 if (in_interrupt()) { 1623 atomic_inc(&netstamp_needed_deferred); 1624 return; 1625 } 1626 #endif 1627 static_key_slow_dec(&netstamp_needed); 1628 } 1629 EXPORT_SYMBOL(net_disable_timestamp); 1630 1631 static inline void net_timestamp_set(struct sk_buff *skb) 1632 { 1633 skb->tstamp.tv64 = 0; 1634 if (static_key_false(&netstamp_needed)) 1635 __net_timestamp(skb); 1636 } 1637 1638 #define net_timestamp_check(COND, SKB) \ 1639 if (static_key_false(&netstamp_needed)) { \ 1640 if ((COND) && !(SKB)->tstamp.tv64) \ 1641 __net_timestamp(SKB); \ 1642 } \ 1643 1644 static inline bool is_skb_forwardable(struct net_device *dev, 1645 struct sk_buff *skb) 1646 { 1647 unsigned int len; 1648 1649 if (!(dev->flags & IFF_UP)) 1650 return false; 1651 1652 len = dev->mtu + dev->hard_header_len + VLAN_HLEN; 1653 if (skb->len <= len) 1654 return true; 1655 1656 /* if TSO is enabled, we don't care about the length as the packet 1657 * could be forwarded without being segmented before 1658 */ 1659 if (skb_is_gso(skb)) 1660 return true; 1661 1662 return false; 1663 } 1664 1665 /** 1666 * dev_forward_skb - loopback an skb to another netif 1667 * 1668 * @dev: destination network device 1669 * @skb: buffer to forward 1670 * 1671 * return values: 1672 * NET_RX_SUCCESS (no congestion) 1673 * NET_RX_DROP (packet was dropped, but freed) 1674 * 1675 * dev_forward_skb can be used for injecting an skb from the 1676 * start_xmit function of one device into the receive queue 1677 * of another device. 1678 * 1679 * The receiving device may be in another namespace, so 1680 * we have to clear all information in the skb that could 1681 * impact namespace isolation. 1682 */ 1683 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 1684 { 1685 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) { 1686 if (skb_copy_ubufs(skb, GFP_ATOMIC)) { 1687 atomic_long_inc(&dev->rx_dropped); 1688 kfree_skb(skb); 1689 return NET_RX_DROP; 1690 } 1691 } 1692 1693 if (unlikely(!is_skb_forwardable(dev, skb))) { 1694 atomic_long_inc(&dev->rx_dropped); 1695 kfree_skb(skb); 1696 return NET_RX_DROP; 1697 } 1698 1699 skb_scrub_packet(skb, true); 1700 skb->protocol = eth_type_trans(skb, dev); 1701 1702 return netif_rx(skb); 1703 } 1704 EXPORT_SYMBOL_GPL(dev_forward_skb); 1705 1706 static inline int deliver_skb(struct sk_buff *skb, 1707 struct packet_type *pt_prev, 1708 struct net_device *orig_dev) 1709 { 1710 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC))) 1711 return -ENOMEM; 1712 atomic_inc(&skb->users); 1713 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 1714 } 1715 1716 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb) 1717 { 1718 if (!ptype->af_packet_priv || !skb->sk) 1719 return false; 1720 1721 if (ptype->id_match) 1722 return ptype->id_match(ptype, skb->sk); 1723 else if ((struct sock *)ptype->af_packet_priv == skb->sk) 1724 return true; 1725 1726 return false; 1727 } 1728 1729 /* 1730 * Support routine. Sends outgoing frames to any network 1731 * taps currently in use. 1732 */ 1733 1734 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev) 1735 { 1736 struct packet_type *ptype; 1737 struct sk_buff *skb2 = NULL; 1738 struct packet_type *pt_prev = NULL; 1739 1740 rcu_read_lock(); 1741 list_for_each_entry_rcu(ptype, &ptype_all, list) { 1742 /* Never send packets back to the socket 1743 * they originated from - MvS (miquels@drinkel.ow.org) 1744 */ 1745 if ((ptype->dev == dev || !ptype->dev) && 1746 (!skb_loop_sk(ptype, skb))) { 1747 if (pt_prev) { 1748 deliver_skb(skb2, pt_prev, skb->dev); 1749 pt_prev = ptype; 1750 continue; 1751 } 1752 1753 skb2 = skb_clone(skb, GFP_ATOMIC); 1754 if (!skb2) 1755 break; 1756 1757 net_timestamp_set(skb2); 1758 1759 /* skb->nh should be correctly 1760 set by sender, so that the second statement is 1761 just protection against buggy protocols. 1762 */ 1763 skb_reset_mac_header(skb2); 1764 1765 if (skb_network_header(skb2) < skb2->data || 1766 skb_network_header(skb2) > skb_tail_pointer(skb2)) { 1767 net_crit_ratelimited("protocol %04x is buggy, dev %s\n", 1768 ntohs(skb2->protocol), 1769 dev->name); 1770 skb_reset_network_header(skb2); 1771 } 1772 1773 skb2->transport_header = skb2->network_header; 1774 skb2->pkt_type = PACKET_OUTGOING; 1775 pt_prev = ptype; 1776 } 1777 } 1778 if (pt_prev) 1779 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev); 1780 rcu_read_unlock(); 1781 } 1782 1783 /** 1784 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change 1785 * @dev: Network device 1786 * @txq: number of queues available 1787 * 1788 * If real_num_tx_queues is changed the tc mappings may no longer be 1789 * valid. To resolve this verify the tc mapping remains valid and if 1790 * not NULL the mapping. With no priorities mapping to this 1791 * offset/count pair it will no longer be used. In the worst case TC0 1792 * is invalid nothing can be done so disable priority mappings. If is 1793 * expected that drivers will fix this mapping if they can before 1794 * calling netif_set_real_num_tx_queues. 1795 */ 1796 static void netif_setup_tc(struct net_device *dev, unsigned int txq) 1797 { 1798 int i; 1799 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 1800 1801 /* If TC0 is invalidated disable TC mapping */ 1802 if (tc->offset + tc->count > txq) { 1803 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n"); 1804 dev->num_tc = 0; 1805 return; 1806 } 1807 1808 /* Invalidated prio to tc mappings set to TC0 */ 1809 for (i = 1; i < TC_BITMASK + 1; i++) { 1810 int q = netdev_get_prio_tc_map(dev, i); 1811 1812 tc = &dev->tc_to_txq[q]; 1813 if (tc->offset + tc->count > txq) { 1814 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n", 1815 i, q); 1816 netdev_set_prio_tc_map(dev, i, 0); 1817 } 1818 } 1819 } 1820 1821 #ifdef CONFIG_XPS 1822 static DEFINE_MUTEX(xps_map_mutex); 1823 #define xmap_dereference(P) \ 1824 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex)) 1825 1826 static struct xps_map *remove_xps_queue(struct xps_dev_maps *dev_maps, 1827 int cpu, u16 index) 1828 { 1829 struct xps_map *map = NULL; 1830 int pos; 1831 1832 if (dev_maps) 1833 map = xmap_dereference(dev_maps->cpu_map[cpu]); 1834 1835 for (pos = 0; map && pos < map->len; pos++) { 1836 if (map->queues[pos] == index) { 1837 if (map->len > 1) { 1838 map->queues[pos] = map->queues[--map->len]; 1839 } else { 1840 RCU_INIT_POINTER(dev_maps->cpu_map[cpu], NULL); 1841 kfree_rcu(map, rcu); 1842 map = NULL; 1843 } 1844 break; 1845 } 1846 } 1847 1848 return map; 1849 } 1850 1851 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index) 1852 { 1853 struct xps_dev_maps *dev_maps; 1854 int cpu, i; 1855 bool active = false; 1856 1857 mutex_lock(&xps_map_mutex); 1858 dev_maps = xmap_dereference(dev->xps_maps); 1859 1860 if (!dev_maps) 1861 goto out_no_maps; 1862 1863 for_each_possible_cpu(cpu) { 1864 for (i = index; i < dev->num_tx_queues; i++) { 1865 if (!remove_xps_queue(dev_maps, cpu, i)) 1866 break; 1867 } 1868 if (i == dev->num_tx_queues) 1869 active = true; 1870 } 1871 1872 if (!active) { 1873 RCU_INIT_POINTER(dev->xps_maps, NULL); 1874 kfree_rcu(dev_maps, rcu); 1875 } 1876 1877 for (i = index; i < dev->num_tx_queues; i++) 1878 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i), 1879 NUMA_NO_NODE); 1880 1881 out_no_maps: 1882 mutex_unlock(&xps_map_mutex); 1883 } 1884 1885 static struct xps_map *expand_xps_map(struct xps_map *map, 1886 int cpu, u16 index) 1887 { 1888 struct xps_map *new_map; 1889 int alloc_len = XPS_MIN_MAP_ALLOC; 1890 int i, pos; 1891 1892 for (pos = 0; map && pos < map->len; pos++) { 1893 if (map->queues[pos] != index) 1894 continue; 1895 return map; 1896 } 1897 1898 /* Need to add queue to this CPU's existing map */ 1899 if (map) { 1900 if (pos < map->alloc_len) 1901 return map; 1902 1903 alloc_len = map->alloc_len * 2; 1904 } 1905 1906 /* Need to allocate new map to store queue on this CPU's map */ 1907 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL, 1908 cpu_to_node(cpu)); 1909 if (!new_map) 1910 return NULL; 1911 1912 for (i = 0; i < pos; i++) 1913 new_map->queues[i] = map->queues[i]; 1914 new_map->alloc_len = alloc_len; 1915 new_map->len = pos; 1916 1917 return new_map; 1918 } 1919 1920 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask, 1921 u16 index) 1922 { 1923 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL; 1924 struct xps_map *map, *new_map; 1925 int maps_sz = max_t(unsigned int, XPS_DEV_MAPS_SIZE, L1_CACHE_BYTES); 1926 int cpu, numa_node_id = -2; 1927 bool active = false; 1928 1929 mutex_lock(&xps_map_mutex); 1930 1931 dev_maps = xmap_dereference(dev->xps_maps); 1932 1933 /* allocate memory for queue storage */ 1934 for_each_online_cpu(cpu) { 1935 if (!cpumask_test_cpu(cpu, mask)) 1936 continue; 1937 1938 if (!new_dev_maps) 1939 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL); 1940 if (!new_dev_maps) { 1941 mutex_unlock(&xps_map_mutex); 1942 return -ENOMEM; 1943 } 1944 1945 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) : 1946 NULL; 1947 1948 map = expand_xps_map(map, cpu, index); 1949 if (!map) 1950 goto error; 1951 1952 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map); 1953 } 1954 1955 if (!new_dev_maps) 1956 goto out_no_new_maps; 1957 1958 for_each_possible_cpu(cpu) { 1959 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) { 1960 /* add queue to CPU maps */ 1961 int pos = 0; 1962 1963 map = xmap_dereference(new_dev_maps->cpu_map[cpu]); 1964 while ((pos < map->len) && (map->queues[pos] != index)) 1965 pos++; 1966 1967 if (pos == map->len) 1968 map->queues[map->len++] = index; 1969 #ifdef CONFIG_NUMA 1970 if (numa_node_id == -2) 1971 numa_node_id = cpu_to_node(cpu); 1972 else if (numa_node_id != cpu_to_node(cpu)) 1973 numa_node_id = -1; 1974 #endif 1975 } else if (dev_maps) { 1976 /* fill in the new device map from the old device map */ 1977 map = xmap_dereference(dev_maps->cpu_map[cpu]); 1978 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map); 1979 } 1980 1981 } 1982 1983 rcu_assign_pointer(dev->xps_maps, new_dev_maps); 1984 1985 /* Cleanup old maps */ 1986 if (dev_maps) { 1987 for_each_possible_cpu(cpu) { 1988 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]); 1989 map = xmap_dereference(dev_maps->cpu_map[cpu]); 1990 if (map && map != new_map) 1991 kfree_rcu(map, rcu); 1992 } 1993 1994 kfree_rcu(dev_maps, rcu); 1995 } 1996 1997 dev_maps = new_dev_maps; 1998 active = true; 1999 2000 out_no_new_maps: 2001 /* update Tx queue numa node */ 2002 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index), 2003 (numa_node_id >= 0) ? numa_node_id : 2004 NUMA_NO_NODE); 2005 2006 if (!dev_maps) 2007 goto out_no_maps; 2008 2009 /* removes queue from unused CPUs */ 2010 for_each_possible_cpu(cpu) { 2011 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) 2012 continue; 2013 2014 if (remove_xps_queue(dev_maps, cpu, index)) 2015 active = true; 2016 } 2017 2018 /* free map if not active */ 2019 if (!active) { 2020 RCU_INIT_POINTER(dev->xps_maps, NULL); 2021 kfree_rcu(dev_maps, rcu); 2022 } 2023 2024 out_no_maps: 2025 mutex_unlock(&xps_map_mutex); 2026 2027 return 0; 2028 error: 2029 /* remove any maps that we added */ 2030 for_each_possible_cpu(cpu) { 2031 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]); 2032 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) : 2033 NULL; 2034 if (new_map && new_map != map) 2035 kfree(new_map); 2036 } 2037 2038 mutex_unlock(&xps_map_mutex); 2039 2040 kfree(new_dev_maps); 2041 return -ENOMEM; 2042 } 2043 EXPORT_SYMBOL(netif_set_xps_queue); 2044 2045 #endif 2046 /* 2047 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues 2048 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed. 2049 */ 2050 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq) 2051 { 2052 int rc; 2053 2054 if (txq < 1 || txq > dev->num_tx_queues) 2055 return -EINVAL; 2056 2057 if (dev->reg_state == NETREG_REGISTERED || 2058 dev->reg_state == NETREG_UNREGISTERING) { 2059 ASSERT_RTNL(); 2060 2061 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues, 2062 txq); 2063 if (rc) 2064 return rc; 2065 2066 if (dev->num_tc) 2067 netif_setup_tc(dev, txq); 2068 2069 if (txq < dev->real_num_tx_queues) { 2070 qdisc_reset_all_tx_gt(dev, txq); 2071 #ifdef CONFIG_XPS 2072 netif_reset_xps_queues_gt(dev, txq); 2073 #endif 2074 } 2075 } 2076 2077 dev->real_num_tx_queues = txq; 2078 return 0; 2079 } 2080 EXPORT_SYMBOL(netif_set_real_num_tx_queues); 2081 2082 #ifdef CONFIG_RPS 2083 /** 2084 * netif_set_real_num_rx_queues - set actual number of RX queues used 2085 * @dev: Network device 2086 * @rxq: Actual number of RX queues 2087 * 2088 * This must be called either with the rtnl_lock held or before 2089 * registration of the net device. Returns 0 on success, or a 2090 * negative error code. If called before registration, it always 2091 * succeeds. 2092 */ 2093 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq) 2094 { 2095 int rc; 2096 2097 if (rxq < 1 || rxq > dev->num_rx_queues) 2098 return -EINVAL; 2099 2100 if (dev->reg_state == NETREG_REGISTERED) { 2101 ASSERT_RTNL(); 2102 2103 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues, 2104 rxq); 2105 if (rc) 2106 return rc; 2107 } 2108 2109 dev->real_num_rx_queues = rxq; 2110 return 0; 2111 } 2112 EXPORT_SYMBOL(netif_set_real_num_rx_queues); 2113 #endif 2114 2115 /** 2116 * netif_get_num_default_rss_queues - default number of RSS queues 2117 * 2118 * This routine should set an upper limit on the number of RSS queues 2119 * used by default by multiqueue devices. 2120 */ 2121 int netif_get_num_default_rss_queues(void) 2122 { 2123 return min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus()); 2124 } 2125 EXPORT_SYMBOL(netif_get_num_default_rss_queues); 2126 2127 static inline void __netif_reschedule(struct Qdisc *q) 2128 { 2129 struct softnet_data *sd; 2130 unsigned long flags; 2131 2132 local_irq_save(flags); 2133 sd = &__get_cpu_var(softnet_data); 2134 q->next_sched = NULL; 2135 *sd->output_queue_tailp = q; 2136 sd->output_queue_tailp = &q->next_sched; 2137 raise_softirq_irqoff(NET_TX_SOFTIRQ); 2138 local_irq_restore(flags); 2139 } 2140 2141 void __netif_schedule(struct Qdisc *q) 2142 { 2143 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state)) 2144 __netif_reschedule(q); 2145 } 2146 EXPORT_SYMBOL(__netif_schedule); 2147 2148 struct dev_kfree_skb_cb { 2149 enum skb_free_reason reason; 2150 }; 2151 2152 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb) 2153 { 2154 return (struct dev_kfree_skb_cb *)skb->cb; 2155 } 2156 2157 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason) 2158 { 2159 unsigned long flags; 2160 2161 if (likely(atomic_read(&skb->users) == 1)) { 2162 smp_rmb(); 2163 atomic_set(&skb->users, 0); 2164 } else if (likely(!atomic_dec_and_test(&skb->users))) { 2165 return; 2166 } 2167 get_kfree_skb_cb(skb)->reason = reason; 2168 local_irq_save(flags); 2169 skb->next = __this_cpu_read(softnet_data.completion_queue); 2170 __this_cpu_write(softnet_data.completion_queue, skb); 2171 raise_softirq_irqoff(NET_TX_SOFTIRQ); 2172 local_irq_restore(flags); 2173 } 2174 EXPORT_SYMBOL(__dev_kfree_skb_irq); 2175 2176 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason) 2177 { 2178 if (in_irq() || irqs_disabled()) 2179 __dev_kfree_skb_irq(skb, reason); 2180 else 2181 dev_kfree_skb(skb); 2182 } 2183 EXPORT_SYMBOL(__dev_kfree_skb_any); 2184 2185 2186 /** 2187 * netif_device_detach - mark device as removed 2188 * @dev: network device 2189 * 2190 * Mark device as removed from system and therefore no longer available. 2191 */ 2192 void netif_device_detach(struct net_device *dev) 2193 { 2194 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) && 2195 netif_running(dev)) { 2196 netif_tx_stop_all_queues(dev); 2197 } 2198 } 2199 EXPORT_SYMBOL(netif_device_detach); 2200 2201 /** 2202 * netif_device_attach - mark device as attached 2203 * @dev: network device 2204 * 2205 * Mark device as attached from system and restart if needed. 2206 */ 2207 void netif_device_attach(struct net_device *dev) 2208 { 2209 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) && 2210 netif_running(dev)) { 2211 netif_tx_wake_all_queues(dev); 2212 __netdev_watchdog_up(dev); 2213 } 2214 } 2215 EXPORT_SYMBOL(netif_device_attach); 2216 2217 static void skb_warn_bad_offload(const struct sk_buff *skb) 2218 { 2219 static const netdev_features_t null_features = 0; 2220 struct net_device *dev = skb->dev; 2221 const char *driver = ""; 2222 2223 if (!net_ratelimit()) 2224 return; 2225 2226 if (dev && dev->dev.parent) 2227 driver = dev_driver_string(dev->dev.parent); 2228 2229 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d " 2230 "gso_type=%d ip_summed=%d\n", 2231 driver, dev ? &dev->features : &null_features, 2232 skb->sk ? &skb->sk->sk_route_caps : &null_features, 2233 skb->len, skb->data_len, skb_shinfo(skb)->gso_size, 2234 skb_shinfo(skb)->gso_type, skb->ip_summed); 2235 } 2236 2237 /* 2238 * Invalidate hardware checksum when packet is to be mangled, and 2239 * complete checksum manually on outgoing path. 2240 */ 2241 int skb_checksum_help(struct sk_buff *skb) 2242 { 2243 __wsum csum; 2244 int ret = 0, offset; 2245 2246 if (skb->ip_summed == CHECKSUM_COMPLETE) 2247 goto out_set_summed; 2248 2249 if (unlikely(skb_shinfo(skb)->gso_size)) { 2250 skb_warn_bad_offload(skb); 2251 return -EINVAL; 2252 } 2253 2254 /* Before computing a checksum, we should make sure no frag could 2255 * be modified by an external entity : checksum could be wrong. 2256 */ 2257 if (skb_has_shared_frag(skb)) { 2258 ret = __skb_linearize(skb); 2259 if (ret) 2260 goto out; 2261 } 2262 2263 offset = skb_checksum_start_offset(skb); 2264 BUG_ON(offset >= skb_headlen(skb)); 2265 csum = skb_checksum(skb, offset, skb->len - offset, 0); 2266 2267 offset += skb->csum_offset; 2268 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb)); 2269 2270 if (skb_cloned(skb) && 2271 !skb_clone_writable(skb, offset + sizeof(__sum16))) { 2272 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 2273 if (ret) 2274 goto out; 2275 } 2276 2277 *(__sum16 *)(skb->data + offset) = csum_fold(csum); 2278 out_set_summed: 2279 skb->ip_summed = CHECKSUM_NONE; 2280 out: 2281 return ret; 2282 } 2283 EXPORT_SYMBOL(skb_checksum_help); 2284 2285 __be16 skb_network_protocol(struct sk_buff *skb) 2286 { 2287 __be16 type = skb->protocol; 2288 int vlan_depth = ETH_HLEN; 2289 2290 /* Tunnel gso handlers can set protocol to ethernet. */ 2291 if (type == htons(ETH_P_TEB)) { 2292 struct ethhdr *eth; 2293 2294 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr)))) 2295 return 0; 2296 2297 eth = (struct ethhdr *)skb_mac_header(skb); 2298 type = eth->h_proto; 2299 } 2300 2301 while (type == htons(ETH_P_8021Q) || type == htons(ETH_P_8021AD)) { 2302 struct vlan_hdr *vh; 2303 2304 if (unlikely(!pskb_may_pull(skb, vlan_depth + VLAN_HLEN))) 2305 return 0; 2306 2307 vh = (struct vlan_hdr *)(skb->data + vlan_depth); 2308 type = vh->h_vlan_encapsulated_proto; 2309 vlan_depth += VLAN_HLEN; 2310 } 2311 2312 return type; 2313 } 2314 2315 /** 2316 * skb_mac_gso_segment - mac layer segmentation handler. 2317 * @skb: buffer to segment 2318 * @features: features for the output path (see dev->features) 2319 */ 2320 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb, 2321 netdev_features_t features) 2322 { 2323 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT); 2324 struct packet_offload *ptype; 2325 __be16 type = skb_network_protocol(skb); 2326 2327 if (unlikely(!type)) 2328 return ERR_PTR(-EINVAL); 2329 2330 __skb_pull(skb, skb->mac_len); 2331 2332 rcu_read_lock(); 2333 list_for_each_entry_rcu(ptype, &offload_base, list) { 2334 if (ptype->type == type && ptype->callbacks.gso_segment) { 2335 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) { 2336 int err; 2337 2338 err = ptype->callbacks.gso_send_check(skb); 2339 segs = ERR_PTR(err); 2340 if (err || skb_gso_ok(skb, features)) 2341 break; 2342 __skb_push(skb, (skb->data - 2343 skb_network_header(skb))); 2344 } 2345 segs = ptype->callbacks.gso_segment(skb, features); 2346 break; 2347 } 2348 } 2349 rcu_read_unlock(); 2350 2351 __skb_push(skb, skb->data - skb_mac_header(skb)); 2352 2353 return segs; 2354 } 2355 EXPORT_SYMBOL(skb_mac_gso_segment); 2356 2357 2358 /* openvswitch calls this on rx path, so we need a different check. 2359 */ 2360 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path) 2361 { 2362 if (tx_path) 2363 return skb->ip_summed != CHECKSUM_PARTIAL; 2364 else 2365 return skb->ip_summed == CHECKSUM_NONE; 2366 } 2367 2368 /** 2369 * __skb_gso_segment - Perform segmentation on skb. 2370 * @skb: buffer to segment 2371 * @features: features for the output path (see dev->features) 2372 * @tx_path: whether it is called in TX path 2373 * 2374 * This function segments the given skb and returns a list of segments. 2375 * 2376 * It may return NULL if the skb requires no segmentation. This is 2377 * only possible when GSO is used for verifying header integrity. 2378 */ 2379 struct sk_buff *__skb_gso_segment(struct sk_buff *skb, 2380 netdev_features_t features, bool tx_path) 2381 { 2382 if (unlikely(skb_needs_check(skb, tx_path))) { 2383 int err; 2384 2385 skb_warn_bad_offload(skb); 2386 2387 if (skb_header_cloned(skb) && 2388 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))) 2389 return ERR_PTR(err); 2390 } 2391 2392 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb); 2393 SKB_GSO_CB(skb)->encap_level = 0; 2394 2395 skb_reset_mac_header(skb); 2396 skb_reset_mac_len(skb); 2397 2398 return skb_mac_gso_segment(skb, features); 2399 } 2400 EXPORT_SYMBOL(__skb_gso_segment); 2401 2402 /* Take action when hardware reception checksum errors are detected. */ 2403 #ifdef CONFIG_BUG 2404 void netdev_rx_csum_fault(struct net_device *dev) 2405 { 2406 if (net_ratelimit()) { 2407 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>"); 2408 dump_stack(); 2409 } 2410 } 2411 EXPORT_SYMBOL(netdev_rx_csum_fault); 2412 #endif 2413 2414 /* Actually, we should eliminate this check as soon as we know, that: 2415 * 1. IOMMU is present and allows to map all the memory. 2416 * 2. No high memory really exists on this machine. 2417 */ 2418 2419 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb) 2420 { 2421 #ifdef CONFIG_HIGHMEM 2422 int i; 2423 if (!(dev->features & NETIF_F_HIGHDMA)) { 2424 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2425 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2426 if (PageHighMem(skb_frag_page(frag))) 2427 return 1; 2428 } 2429 } 2430 2431 if (PCI_DMA_BUS_IS_PHYS) { 2432 struct device *pdev = dev->dev.parent; 2433 2434 if (!pdev) 2435 return 0; 2436 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2437 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2438 dma_addr_t addr = page_to_phys(skb_frag_page(frag)); 2439 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask) 2440 return 1; 2441 } 2442 } 2443 #endif 2444 return 0; 2445 } 2446 2447 struct dev_gso_cb { 2448 void (*destructor)(struct sk_buff *skb); 2449 }; 2450 2451 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb) 2452 2453 static void dev_gso_skb_destructor(struct sk_buff *skb) 2454 { 2455 struct dev_gso_cb *cb; 2456 2457 do { 2458 struct sk_buff *nskb = skb->next; 2459 2460 skb->next = nskb->next; 2461 nskb->next = NULL; 2462 kfree_skb(nskb); 2463 } while (skb->next); 2464 2465 cb = DEV_GSO_CB(skb); 2466 if (cb->destructor) 2467 cb->destructor(skb); 2468 } 2469 2470 /** 2471 * dev_gso_segment - Perform emulated hardware segmentation on skb. 2472 * @skb: buffer to segment 2473 * @features: device features as applicable to this skb 2474 * 2475 * This function segments the given skb and stores the list of segments 2476 * in skb->next. 2477 */ 2478 static int dev_gso_segment(struct sk_buff *skb, netdev_features_t features) 2479 { 2480 struct sk_buff *segs; 2481 2482 segs = skb_gso_segment(skb, features); 2483 2484 /* Verifying header integrity only. */ 2485 if (!segs) 2486 return 0; 2487 2488 if (IS_ERR(segs)) 2489 return PTR_ERR(segs); 2490 2491 skb->next = segs; 2492 DEV_GSO_CB(skb)->destructor = skb->destructor; 2493 skb->destructor = dev_gso_skb_destructor; 2494 2495 return 0; 2496 } 2497 2498 static netdev_features_t harmonize_features(struct sk_buff *skb, 2499 netdev_features_t features) 2500 { 2501 if (skb->ip_summed != CHECKSUM_NONE && 2502 !can_checksum_protocol(features, skb_network_protocol(skb))) { 2503 features &= ~NETIF_F_ALL_CSUM; 2504 } else if (illegal_highdma(skb->dev, skb)) { 2505 features &= ~NETIF_F_SG; 2506 } 2507 2508 return features; 2509 } 2510 2511 netdev_features_t netif_skb_features(struct sk_buff *skb) 2512 { 2513 __be16 protocol = skb->protocol; 2514 netdev_features_t features = skb->dev->features; 2515 2516 if (skb_shinfo(skb)->gso_segs > skb->dev->gso_max_segs) 2517 features &= ~NETIF_F_GSO_MASK; 2518 2519 if (protocol == htons(ETH_P_8021Q) || protocol == htons(ETH_P_8021AD)) { 2520 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data; 2521 protocol = veh->h_vlan_encapsulated_proto; 2522 } else if (!vlan_tx_tag_present(skb)) { 2523 return harmonize_features(skb, features); 2524 } 2525 2526 features &= (skb->dev->vlan_features | NETIF_F_HW_VLAN_CTAG_TX | 2527 NETIF_F_HW_VLAN_STAG_TX); 2528 2529 if (protocol == htons(ETH_P_8021Q) || protocol == htons(ETH_P_8021AD)) 2530 features &= NETIF_F_SG | NETIF_F_HIGHDMA | NETIF_F_FRAGLIST | 2531 NETIF_F_GEN_CSUM | NETIF_F_HW_VLAN_CTAG_TX | 2532 NETIF_F_HW_VLAN_STAG_TX; 2533 2534 return harmonize_features(skb, features); 2535 } 2536 EXPORT_SYMBOL(netif_skb_features); 2537 2538 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev, 2539 struct netdev_queue *txq, void *accel_priv) 2540 { 2541 const struct net_device_ops *ops = dev->netdev_ops; 2542 int rc = NETDEV_TX_OK; 2543 unsigned int skb_len; 2544 2545 if (likely(!skb->next)) { 2546 netdev_features_t features; 2547 2548 /* 2549 * If device doesn't need skb->dst, release it right now while 2550 * its hot in this cpu cache 2551 */ 2552 if (dev->priv_flags & IFF_XMIT_DST_RELEASE) 2553 skb_dst_drop(skb); 2554 2555 features = netif_skb_features(skb); 2556 2557 if (vlan_tx_tag_present(skb) && 2558 !vlan_hw_offload_capable(features, skb->vlan_proto)) { 2559 skb = __vlan_put_tag(skb, skb->vlan_proto, 2560 vlan_tx_tag_get(skb)); 2561 if (unlikely(!skb)) 2562 goto out; 2563 2564 skb->vlan_tci = 0; 2565 } 2566 2567 /* If encapsulation offload request, verify we are testing 2568 * hardware encapsulation features instead of standard 2569 * features for the netdev 2570 */ 2571 if (skb->encapsulation) 2572 features &= dev->hw_enc_features; 2573 2574 if (netif_needs_gso(skb, features)) { 2575 if (unlikely(dev_gso_segment(skb, features))) 2576 goto out_kfree_skb; 2577 if (skb->next) 2578 goto gso; 2579 } else { 2580 if (skb_needs_linearize(skb, features) && 2581 __skb_linearize(skb)) 2582 goto out_kfree_skb; 2583 2584 /* If packet is not checksummed and device does not 2585 * support checksumming for this protocol, complete 2586 * checksumming here. 2587 */ 2588 if (skb->ip_summed == CHECKSUM_PARTIAL) { 2589 if (skb->encapsulation) 2590 skb_set_inner_transport_header(skb, 2591 skb_checksum_start_offset(skb)); 2592 else 2593 skb_set_transport_header(skb, 2594 skb_checksum_start_offset(skb)); 2595 if (!(features & NETIF_F_ALL_CSUM) && 2596 skb_checksum_help(skb)) 2597 goto out_kfree_skb; 2598 } 2599 } 2600 2601 if (!list_empty(&ptype_all)) 2602 dev_queue_xmit_nit(skb, dev); 2603 2604 skb_len = skb->len; 2605 if (accel_priv) 2606 rc = ops->ndo_dfwd_start_xmit(skb, dev, accel_priv); 2607 else 2608 rc = ops->ndo_start_xmit(skb, dev); 2609 2610 trace_net_dev_xmit(skb, rc, dev, skb_len); 2611 if (rc == NETDEV_TX_OK && txq) 2612 txq_trans_update(txq); 2613 return rc; 2614 } 2615 2616 gso: 2617 do { 2618 struct sk_buff *nskb = skb->next; 2619 2620 skb->next = nskb->next; 2621 nskb->next = NULL; 2622 2623 if (!list_empty(&ptype_all)) 2624 dev_queue_xmit_nit(nskb, dev); 2625 2626 skb_len = nskb->len; 2627 if (accel_priv) 2628 rc = ops->ndo_dfwd_start_xmit(nskb, dev, accel_priv); 2629 else 2630 rc = ops->ndo_start_xmit(nskb, dev); 2631 trace_net_dev_xmit(nskb, rc, dev, skb_len); 2632 if (unlikely(rc != NETDEV_TX_OK)) { 2633 if (rc & ~NETDEV_TX_MASK) 2634 goto out_kfree_gso_skb; 2635 nskb->next = skb->next; 2636 skb->next = nskb; 2637 return rc; 2638 } 2639 txq_trans_update(txq); 2640 if (unlikely(netif_xmit_stopped(txq) && skb->next)) 2641 return NETDEV_TX_BUSY; 2642 } while (skb->next); 2643 2644 out_kfree_gso_skb: 2645 if (likely(skb->next == NULL)) { 2646 skb->destructor = DEV_GSO_CB(skb)->destructor; 2647 consume_skb(skb); 2648 return rc; 2649 } 2650 out_kfree_skb: 2651 kfree_skb(skb); 2652 out: 2653 return rc; 2654 } 2655 EXPORT_SYMBOL_GPL(dev_hard_start_xmit); 2656 2657 static void qdisc_pkt_len_init(struct sk_buff *skb) 2658 { 2659 const struct skb_shared_info *shinfo = skb_shinfo(skb); 2660 2661 qdisc_skb_cb(skb)->pkt_len = skb->len; 2662 2663 /* To get more precise estimation of bytes sent on wire, 2664 * we add to pkt_len the headers size of all segments 2665 */ 2666 if (shinfo->gso_size) { 2667 unsigned int hdr_len; 2668 u16 gso_segs = shinfo->gso_segs; 2669 2670 /* mac layer + network layer */ 2671 hdr_len = skb_transport_header(skb) - skb_mac_header(skb); 2672 2673 /* + transport layer */ 2674 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) 2675 hdr_len += tcp_hdrlen(skb); 2676 else 2677 hdr_len += sizeof(struct udphdr); 2678 2679 if (shinfo->gso_type & SKB_GSO_DODGY) 2680 gso_segs = DIV_ROUND_UP(skb->len - hdr_len, 2681 shinfo->gso_size); 2682 2683 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len; 2684 } 2685 } 2686 2687 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q, 2688 struct net_device *dev, 2689 struct netdev_queue *txq) 2690 { 2691 spinlock_t *root_lock = qdisc_lock(q); 2692 bool contended; 2693 int rc; 2694 2695 qdisc_pkt_len_init(skb); 2696 qdisc_calculate_pkt_len(skb, q); 2697 /* 2698 * Heuristic to force contended enqueues to serialize on a 2699 * separate lock before trying to get qdisc main lock. 2700 * This permits __QDISC_STATE_RUNNING owner to get the lock more often 2701 * and dequeue packets faster. 2702 */ 2703 contended = qdisc_is_running(q); 2704 if (unlikely(contended)) 2705 spin_lock(&q->busylock); 2706 2707 spin_lock(root_lock); 2708 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) { 2709 kfree_skb(skb); 2710 rc = NET_XMIT_DROP; 2711 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) && 2712 qdisc_run_begin(q)) { 2713 /* 2714 * This is a work-conserving queue; there are no old skbs 2715 * waiting to be sent out; and the qdisc is not running - 2716 * xmit the skb directly. 2717 */ 2718 if (!(dev->priv_flags & IFF_XMIT_DST_RELEASE)) 2719 skb_dst_force(skb); 2720 2721 qdisc_bstats_update(q, skb); 2722 2723 if (sch_direct_xmit(skb, q, dev, txq, root_lock)) { 2724 if (unlikely(contended)) { 2725 spin_unlock(&q->busylock); 2726 contended = false; 2727 } 2728 __qdisc_run(q); 2729 } else 2730 qdisc_run_end(q); 2731 2732 rc = NET_XMIT_SUCCESS; 2733 } else { 2734 skb_dst_force(skb); 2735 rc = q->enqueue(skb, q) & NET_XMIT_MASK; 2736 if (qdisc_run_begin(q)) { 2737 if (unlikely(contended)) { 2738 spin_unlock(&q->busylock); 2739 contended = false; 2740 } 2741 __qdisc_run(q); 2742 } 2743 } 2744 spin_unlock(root_lock); 2745 if (unlikely(contended)) 2746 spin_unlock(&q->busylock); 2747 return rc; 2748 } 2749 2750 #if IS_ENABLED(CONFIG_NETPRIO_CGROUP) 2751 static void skb_update_prio(struct sk_buff *skb) 2752 { 2753 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap); 2754 2755 if (!skb->priority && skb->sk && map) { 2756 unsigned int prioidx = skb->sk->sk_cgrp_prioidx; 2757 2758 if (prioidx < map->priomap_len) 2759 skb->priority = map->priomap[prioidx]; 2760 } 2761 } 2762 #else 2763 #define skb_update_prio(skb) 2764 #endif 2765 2766 static DEFINE_PER_CPU(int, xmit_recursion); 2767 #define RECURSION_LIMIT 10 2768 2769 /** 2770 * dev_loopback_xmit - loop back @skb 2771 * @skb: buffer to transmit 2772 */ 2773 int dev_loopback_xmit(struct sk_buff *skb) 2774 { 2775 skb_reset_mac_header(skb); 2776 __skb_pull(skb, skb_network_offset(skb)); 2777 skb->pkt_type = PACKET_LOOPBACK; 2778 skb->ip_summed = CHECKSUM_UNNECESSARY; 2779 WARN_ON(!skb_dst(skb)); 2780 skb_dst_force(skb); 2781 netif_rx_ni(skb); 2782 return 0; 2783 } 2784 EXPORT_SYMBOL(dev_loopback_xmit); 2785 2786 /** 2787 * dev_queue_xmit - transmit a buffer 2788 * @skb: buffer to transmit 2789 * 2790 * Queue a buffer for transmission to a network device. The caller must 2791 * have set the device and priority and built the buffer before calling 2792 * this function. The function can be called from an interrupt. 2793 * 2794 * A negative errno code is returned on a failure. A success does not 2795 * guarantee the frame will be transmitted as it may be dropped due 2796 * to congestion or traffic shaping. 2797 * 2798 * ----------------------------------------------------------------------------------- 2799 * I notice this method can also return errors from the queue disciplines, 2800 * including NET_XMIT_DROP, which is a positive value. So, errors can also 2801 * be positive. 2802 * 2803 * Regardless of the return value, the skb is consumed, so it is currently 2804 * difficult to retry a send to this method. (You can bump the ref count 2805 * before sending to hold a reference for retry if you are careful.) 2806 * 2807 * When calling this method, interrupts MUST be enabled. This is because 2808 * the BH enable code must have IRQs enabled so that it will not deadlock. 2809 * --BLG 2810 */ 2811 int dev_queue_xmit(struct sk_buff *skb) 2812 { 2813 struct net_device *dev = skb->dev; 2814 struct netdev_queue *txq; 2815 struct Qdisc *q; 2816 int rc = -ENOMEM; 2817 2818 skb_reset_mac_header(skb); 2819 2820 /* Disable soft irqs for various locks below. Also 2821 * stops preemption for RCU. 2822 */ 2823 rcu_read_lock_bh(); 2824 2825 skb_update_prio(skb); 2826 2827 txq = netdev_pick_tx(dev, skb); 2828 q = rcu_dereference_bh(txq->qdisc); 2829 2830 #ifdef CONFIG_NET_CLS_ACT 2831 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS); 2832 #endif 2833 trace_net_dev_queue(skb); 2834 if (q->enqueue) { 2835 rc = __dev_xmit_skb(skb, q, dev, txq); 2836 goto out; 2837 } 2838 2839 /* The device has no queue. Common case for software devices: 2840 loopback, all the sorts of tunnels... 2841 2842 Really, it is unlikely that netif_tx_lock protection is necessary 2843 here. (f.e. loopback and IP tunnels are clean ignoring statistics 2844 counters.) 2845 However, it is possible, that they rely on protection 2846 made by us here. 2847 2848 Check this and shot the lock. It is not prone from deadlocks. 2849 Either shot noqueue qdisc, it is even simpler 8) 2850 */ 2851 if (dev->flags & IFF_UP) { 2852 int cpu = smp_processor_id(); /* ok because BHs are off */ 2853 2854 if (txq->xmit_lock_owner != cpu) { 2855 2856 if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT) 2857 goto recursion_alert; 2858 2859 HARD_TX_LOCK(dev, txq, cpu); 2860 2861 if (!netif_xmit_stopped(txq)) { 2862 __this_cpu_inc(xmit_recursion); 2863 rc = dev_hard_start_xmit(skb, dev, txq, NULL); 2864 __this_cpu_dec(xmit_recursion); 2865 if (dev_xmit_complete(rc)) { 2866 HARD_TX_UNLOCK(dev, txq); 2867 goto out; 2868 } 2869 } 2870 HARD_TX_UNLOCK(dev, txq); 2871 net_crit_ratelimited("Virtual device %s asks to queue packet!\n", 2872 dev->name); 2873 } else { 2874 /* Recursion is detected! It is possible, 2875 * unfortunately 2876 */ 2877 recursion_alert: 2878 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n", 2879 dev->name); 2880 } 2881 } 2882 2883 rc = -ENETDOWN; 2884 rcu_read_unlock_bh(); 2885 2886 kfree_skb(skb); 2887 return rc; 2888 out: 2889 rcu_read_unlock_bh(); 2890 return rc; 2891 } 2892 EXPORT_SYMBOL(dev_queue_xmit); 2893 2894 2895 /*======================================================================= 2896 Receiver routines 2897 =======================================================================*/ 2898 2899 int netdev_max_backlog __read_mostly = 1000; 2900 EXPORT_SYMBOL(netdev_max_backlog); 2901 2902 int netdev_tstamp_prequeue __read_mostly = 1; 2903 int netdev_budget __read_mostly = 300; 2904 int weight_p __read_mostly = 64; /* old backlog weight */ 2905 2906 /* Called with irq disabled */ 2907 static inline void ____napi_schedule(struct softnet_data *sd, 2908 struct napi_struct *napi) 2909 { 2910 list_add_tail(&napi->poll_list, &sd->poll_list); 2911 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 2912 } 2913 2914 #ifdef CONFIG_RPS 2915 2916 /* One global table that all flow-based protocols share. */ 2917 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly; 2918 EXPORT_SYMBOL(rps_sock_flow_table); 2919 2920 struct static_key rps_needed __read_mostly; 2921 2922 static struct rps_dev_flow * 2923 set_rps_cpu(struct net_device *dev, struct sk_buff *skb, 2924 struct rps_dev_flow *rflow, u16 next_cpu) 2925 { 2926 if (next_cpu != RPS_NO_CPU) { 2927 #ifdef CONFIG_RFS_ACCEL 2928 struct netdev_rx_queue *rxqueue; 2929 struct rps_dev_flow_table *flow_table; 2930 struct rps_dev_flow *old_rflow; 2931 u32 flow_id; 2932 u16 rxq_index; 2933 int rc; 2934 2935 /* Should we steer this flow to a different hardware queue? */ 2936 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap || 2937 !(dev->features & NETIF_F_NTUPLE)) 2938 goto out; 2939 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu); 2940 if (rxq_index == skb_get_rx_queue(skb)) 2941 goto out; 2942 2943 rxqueue = dev->_rx + rxq_index; 2944 flow_table = rcu_dereference(rxqueue->rps_flow_table); 2945 if (!flow_table) 2946 goto out; 2947 flow_id = skb->rxhash & flow_table->mask; 2948 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb, 2949 rxq_index, flow_id); 2950 if (rc < 0) 2951 goto out; 2952 old_rflow = rflow; 2953 rflow = &flow_table->flows[flow_id]; 2954 rflow->filter = rc; 2955 if (old_rflow->filter == rflow->filter) 2956 old_rflow->filter = RPS_NO_FILTER; 2957 out: 2958 #endif 2959 rflow->last_qtail = 2960 per_cpu(softnet_data, next_cpu).input_queue_head; 2961 } 2962 2963 rflow->cpu = next_cpu; 2964 return rflow; 2965 } 2966 2967 /* 2968 * get_rps_cpu is called from netif_receive_skb and returns the target 2969 * CPU from the RPS map of the receiving queue for a given skb. 2970 * rcu_read_lock must be held on entry. 2971 */ 2972 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb, 2973 struct rps_dev_flow **rflowp) 2974 { 2975 struct netdev_rx_queue *rxqueue; 2976 struct rps_map *map; 2977 struct rps_dev_flow_table *flow_table; 2978 struct rps_sock_flow_table *sock_flow_table; 2979 int cpu = -1; 2980 u16 tcpu; 2981 2982 if (skb_rx_queue_recorded(skb)) { 2983 u16 index = skb_get_rx_queue(skb); 2984 if (unlikely(index >= dev->real_num_rx_queues)) { 2985 WARN_ONCE(dev->real_num_rx_queues > 1, 2986 "%s received packet on queue %u, but number " 2987 "of RX queues is %u\n", 2988 dev->name, index, dev->real_num_rx_queues); 2989 goto done; 2990 } 2991 rxqueue = dev->_rx + index; 2992 } else 2993 rxqueue = dev->_rx; 2994 2995 map = rcu_dereference(rxqueue->rps_map); 2996 if (map) { 2997 if (map->len == 1 && 2998 !rcu_access_pointer(rxqueue->rps_flow_table)) { 2999 tcpu = map->cpus[0]; 3000 if (cpu_online(tcpu)) 3001 cpu = tcpu; 3002 goto done; 3003 } 3004 } else if (!rcu_access_pointer(rxqueue->rps_flow_table)) { 3005 goto done; 3006 } 3007 3008 skb_reset_network_header(skb); 3009 if (!skb_get_rxhash(skb)) 3010 goto done; 3011 3012 flow_table = rcu_dereference(rxqueue->rps_flow_table); 3013 sock_flow_table = rcu_dereference(rps_sock_flow_table); 3014 if (flow_table && sock_flow_table) { 3015 u16 next_cpu; 3016 struct rps_dev_flow *rflow; 3017 3018 rflow = &flow_table->flows[skb->rxhash & flow_table->mask]; 3019 tcpu = rflow->cpu; 3020 3021 next_cpu = sock_flow_table->ents[skb->rxhash & 3022 sock_flow_table->mask]; 3023 3024 /* 3025 * If the desired CPU (where last recvmsg was done) is 3026 * different from current CPU (one in the rx-queue flow 3027 * table entry), switch if one of the following holds: 3028 * - Current CPU is unset (equal to RPS_NO_CPU). 3029 * - Current CPU is offline. 3030 * - The current CPU's queue tail has advanced beyond the 3031 * last packet that was enqueued using this table entry. 3032 * This guarantees that all previous packets for the flow 3033 * have been dequeued, thus preserving in order delivery. 3034 */ 3035 if (unlikely(tcpu != next_cpu) && 3036 (tcpu == RPS_NO_CPU || !cpu_online(tcpu) || 3037 ((int)(per_cpu(softnet_data, tcpu).input_queue_head - 3038 rflow->last_qtail)) >= 0)) { 3039 tcpu = next_cpu; 3040 rflow = set_rps_cpu(dev, skb, rflow, next_cpu); 3041 } 3042 3043 if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) { 3044 *rflowp = rflow; 3045 cpu = tcpu; 3046 goto done; 3047 } 3048 } 3049 3050 if (map) { 3051 tcpu = map->cpus[((u64) skb->rxhash * map->len) >> 32]; 3052 3053 if (cpu_online(tcpu)) { 3054 cpu = tcpu; 3055 goto done; 3056 } 3057 } 3058 3059 done: 3060 return cpu; 3061 } 3062 3063 #ifdef CONFIG_RFS_ACCEL 3064 3065 /** 3066 * rps_may_expire_flow - check whether an RFS hardware filter may be removed 3067 * @dev: Device on which the filter was set 3068 * @rxq_index: RX queue index 3069 * @flow_id: Flow ID passed to ndo_rx_flow_steer() 3070 * @filter_id: Filter ID returned by ndo_rx_flow_steer() 3071 * 3072 * Drivers that implement ndo_rx_flow_steer() should periodically call 3073 * this function for each installed filter and remove the filters for 3074 * which it returns %true. 3075 */ 3076 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, 3077 u32 flow_id, u16 filter_id) 3078 { 3079 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index; 3080 struct rps_dev_flow_table *flow_table; 3081 struct rps_dev_flow *rflow; 3082 bool expire = true; 3083 int cpu; 3084 3085 rcu_read_lock(); 3086 flow_table = rcu_dereference(rxqueue->rps_flow_table); 3087 if (flow_table && flow_id <= flow_table->mask) { 3088 rflow = &flow_table->flows[flow_id]; 3089 cpu = ACCESS_ONCE(rflow->cpu); 3090 if (rflow->filter == filter_id && cpu != RPS_NO_CPU && 3091 ((int)(per_cpu(softnet_data, cpu).input_queue_head - 3092 rflow->last_qtail) < 3093 (int)(10 * flow_table->mask))) 3094 expire = false; 3095 } 3096 rcu_read_unlock(); 3097 return expire; 3098 } 3099 EXPORT_SYMBOL(rps_may_expire_flow); 3100 3101 #endif /* CONFIG_RFS_ACCEL */ 3102 3103 /* Called from hardirq (IPI) context */ 3104 static void rps_trigger_softirq(void *data) 3105 { 3106 struct softnet_data *sd = data; 3107 3108 ____napi_schedule(sd, &sd->backlog); 3109 sd->received_rps++; 3110 } 3111 3112 #endif /* CONFIG_RPS */ 3113 3114 /* 3115 * Check if this softnet_data structure is another cpu one 3116 * If yes, queue it to our IPI list and return 1 3117 * If no, return 0 3118 */ 3119 static int rps_ipi_queued(struct softnet_data *sd) 3120 { 3121 #ifdef CONFIG_RPS 3122 struct softnet_data *mysd = &__get_cpu_var(softnet_data); 3123 3124 if (sd != mysd) { 3125 sd->rps_ipi_next = mysd->rps_ipi_list; 3126 mysd->rps_ipi_list = sd; 3127 3128 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 3129 return 1; 3130 } 3131 #endif /* CONFIG_RPS */ 3132 return 0; 3133 } 3134 3135 #ifdef CONFIG_NET_FLOW_LIMIT 3136 int netdev_flow_limit_table_len __read_mostly = (1 << 12); 3137 #endif 3138 3139 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen) 3140 { 3141 #ifdef CONFIG_NET_FLOW_LIMIT 3142 struct sd_flow_limit *fl; 3143 struct softnet_data *sd; 3144 unsigned int old_flow, new_flow; 3145 3146 if (qlen < (netdev_max_backlog >> 1)) 3147 return false; 3148 3149 sd = &__get_cpu_var(softnet_data); 3150 3151 rcu_read_lock(); 3152 fl = rcu_dereference(sd->flow_limit); 3153 if (fl) { 3154 new_flow = skb_get_rxhash(skb) & (fl->num_buckets - 1); 3155 old_flow = fl->history[fl->history_head]; 3156 fl->history[fl->history_head] = new_flow; 3157 3158 fl->history_head++; 3159 fl->history_head &= FLOW_LIMIT_HISTORY - 1; 3160 3161 if (likely(fl->buckets[old_flow])) 3162 fl->buckets[old_flow]--; 3163 3164 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) { 3165 fl->count++; 3166 rcu_read_unlock(); 3167 return true; 3168 } 3169 } 3170 rcu_read_unlock(); 3171 #endif 3172 return false; 3173 } 3174 3175 /* 3176 * enqueue_to_backlog is called to queue an skb to a per CPU backlog 3177 * queue (may be a remote CPU queue). 3178 */ 3179 static int enqueue_to_backlog(struct sk_buff *skb, int cpu, 3180 unsigned int *qtail) 3181 { 3182 struct softnet_data *sd; 3183 unsigned long flags; 3184 unsigned int qlen; 3185 3186 sd = &per_cpu(softnet_data, cpu); 3187 3188 local_irq_save(flags); 3189 3190 rps_lock(sd); 3191 qlen = skb_queue_len(&sd->input_pkt_queue); 3192 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) { 3193 if (skb_queue_len(&sd->input_pkt_queue)) { 3194 enqueue: 3195 __skb_queue_tail(&sd->input_pkt_queue, skb); 3196 input_queue_tail_incr_save(sd, qtail); 3197 rps_unlock(sd); 3198 local_irq_restore(flags); 3199 return NET_RX_SUCCESS; 3200 } 3201 3202 /* Schedule NAPI for backlog device 3203 * We can use non atomic operation since we own the queue lock 3204 */ 3205 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) { 3206 if (!rps_ipi_queued(sd)) 3207 ____napi_schedule(sd, &sd->backlog); 3208 } 3209 goto enqueue; 3210 } 3211 3212 sd->dropped++; 3213 rps_unlock(sd); 3214 3215 local_irq_restore(flags); 3216 3217 atomic_long_inc(&skb->dev->rx_dropped); 3218 kfree_skb(skb); 3219 return NET_RX_DROP; 3220 } 3221 3222 /** 3223 * netif_rx - post buffer to the network code 3224 * @skb: buffer to post 3225 * 3226 * This function receives a packet from a device driver and queues it for 3227 * the upper (protocol) levels to process. It always succeeds. The buffer 3228 * may be dropped during processing for congestion control or by the 3229 * protocol layers. 3230 * 3231 * return values: 3232 * NET_RX_SUCCESS (no congestion) 3233 * NET_RX_DROP (packet was dropped) 3234 * 3235 */ 3236 3237 int netif_rx(struct sk_buff *skb) 3238 { 3239 int ret; 3240 3241 /* if netpoll wants it, pretend we never saw it */ 3242 if (netpoll_rx(skb)) 3243 return NET_RX_DROP; 3244 3245 net_timestamp_check(netdev_tstamp_prequeue, skb); 3246 3247 trace_netif_rx(skb); 3248 #ifdef CONFIG_RPS 3249 if (static_key_false(&rps_needed)) { 3250 struct rps_dev_flow voidflow, *rflow = &voidflow; 3251 int cpu; 3252 3253 preempt_disable(); 3254 rcu_read_lock(); 3255 3256 cpu = get_rps_cpu(skb->dev, skb, &rflow); 3257 if (cpu < 0) 3258 cpu = smp_processor_id(); 3259 3260 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 3261 3262 rcu_read_unlock(); 3263 preempt_enable(); 3264 } else 3265 #endif 3266 { 3267 unsigned int qtail; 3268 ret = enqueue_to_backlog(skb, get_cpu(), &qtail); 3269 put_cpu(); 3270 } 3271 return ret; 3272 } 3273 EXPORT_SYMBOL(netif_rx); 3274 3275 int netif_rx_ni(struct sk_buff *skb) 3276 { 3277 int err; 3278 3279 preempt_disable(); 3280 err = netif_rx(skb); 3281 if (local_softirq_pending()) 3282 do_softirq(); 3283 preempt_enable(); 3284 3285 return err; 3286 } 3287 EXPORT_SYMBOL(netif_rx_ni); 3288 3289 static void net_tx_action(struct softirq_action *h) 3290 { 3291 struct softnet_data *sd = &__get_cpu_var(softnet_data); 3292 3293 if (sd->completion_queue) { 3294 struct sk_buff *clist; 3295 3296 local_irq_disable(); 3297 clist = sd->completion_queue; 3298 sd->completion_queue = NULL; 3299 local_irq_enable(); 3300 3301 while (clist) { 3302 struct sk_buff *skb = clist; 3303 clist = clist->next; 3304 3305 WARN_ON(atomic_read(&skb->users)); 3306 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED)) 3307 trace_consume_skb(skb); 3308 else 3309 trace_kfree_skb(skb, net_tx_action); 3310 __kfree_skb(skb); 3311 } 3312 } 3313 3314 if (sd->output_queue) { 3315 struct Qdisc *head; 3316 3317 local_irq_disable(); 3318 head = sd->output_queue; 3319 sd->output_queue = NULL; 3320 sd->output_queue_tailp = &sd->output_queue; 3321 local_irq_enable(); 3322 3323 while (head) { 3324 struct Qdisc *q = head; 3325 spinlock_t *root_lock; 3326 3327 head = head->next_sched; 3328 3329 root_lock = qdisc_lock(q); 3330 if (spin_trylock(root_lock)) { 3331 smp_mb__before_clear_bit(); 3332 clear_bit(__QDISC_STATE_SCHED, 3333 &q->state); 3334 qdisc_run(q); 3335 spin_unlock(root_lock); 3336 } else { 3337 if (!test_bit(__QDISC_STATE_DEACTIVATED, 3338 &q->state)) { 3339 __netif_reschedule(q); 3340 } else { 3341 smp_mb__before_clear_bit(); 3342 clear_bit(__QDISC_STATE_SCHED, 3343 &q->state); 3344 } 3345 } 3346 } 3347 } 3348 } 3349 3350 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \ 3351 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE)) 3352 /* This hook is defined here for ATM LANE */ 3353 int (*br_fdb_test_addr_hook)(struct net_device *dev, 3354 unsigned char *addr) __read_mostly; 3355 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook); 3356 #endif 3357 3358 #ifdef CONFIG_NET_CLS_ACT 3359 /* TODO: Maybe we should just force sch_ingress to be compiled in 3360 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions 3361 * a compare and 2 stores extra right now if we dont have it on 3362 * but have CONFIG_NET_CLS_ACT 3363 * NOTE: This doesn't stop any functionality; if you dont have 3364 * the ingress scheduler, you just can't add policies on ingress. 3365 * 3366 */ 3367 static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq) 3368 { 3369 struct net_device *dev = skb->dev; 3370 u32 ttl = G_TC_RTTL(skb->tc_verd); 3371 int result = TC_ACT_OK; 3372 struct Qdisc *q; 3373 3374 if (unlikely(MAX_RED_LOOP < ttl++)) { 3375 net_warn_ratelimited("Redir loop detected Dropping packet (%d->%d)\n", 3376 skb->skb_iif, dev->ifindex); 3377 return TC_ACT_SHOT; 3378 } 3379 3380 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl); 3381 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS); 3382 3383 q = rxq->qdisc; 3384 if (q != &noop_qdisc) { 3385 spin_lock(qdisc_lock(q)); 3386 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) 3387 result = qdisc_enqueue_root(skb, q); 3388 spin_unlock(qdisc_lock(q)); 3389 } 3390 3391 return result; 3392 } 3393 3394 static inline struct sk_buff *handle_ing(struct sk_buff *skb, 3395 struct packet_type **pt_prev, 3396 int *ret, struct net_device *orig_dev) 3397 { 3398 struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue); 3399 3400 if (!rxq || rxq->qdisc == &noop_qdisc) 3401 goto out; 3402 3403 if (*pt_prev) { 3404 *ret = deliver_skb(skb, *pt_prev, orig_dev); 3405 *pt_prev = NULL; 3406 } 3407 3408 switch (ing_filter(skb, rxq)) { 3409 case TC_ACT_SHOT: 3410 case TC_ACT_STOLEN: 3411 kfree_skb(skb); 3412 return NULL; 3413 } 3414 3415 out: 3416 skb->tc_verd = 0; 3417 return skb; 3418 } 3419 #endif 3420 3421 /** 3422 * netdev_rx_handler_register - register receive handler 3423 * @dev: device to register a handler for 3424 * @rx_handler: receive handler to register 3425 * @rx_handler_data: data pointer that is used by rx handler 3426 * 3427 * Register a receive hander for a device. This handler will then be 3428 * called from __netif_receive_skb. A negative errno code is returned 3429 * on a failure. 3430 * 3431 * The caller must hold the rtnl_mutex. 3432 * 3433 * For a general description of rx_handler, see enum rx_handler_result. 3434 */ 3435 int netdev_rx_handler_register(struct net_device *dev, 3436 rx_handler_func_t *rx_handler, 3437 void *rx_handler_data) 3438 { 3439 ASSERT_RTNL(); 3440 3441 if (dev->rx_handler) 3442 return -EBUSY; 3443 3444 /* Note: rx_handler_data must be set before rx_handler */ 3445 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data); 3446 rcu_assign_pointer(dev->rx_handler, rx_handler); 3447 3448 return 0; 3449 } 3450 EXPORT_SYMBOL_GPL(netdev_rx_handler_register); 3451 3452 /** 3453 * netdev_rx_handler_unregister - unregister receive handler 3454 * @dev: device to unregister a handler from 3455 * 3456 * Unregister a receive handler from a device. 3457 * 3458 * The caller must hold the rtnl_mutex. 3459 */ 3460 void netdev_rx_handler_unregister(struct net_device *dev) 3461 { 3462 3463 ASSERT_RTNL(); 3464 RCU_INIT_POINTER(dev->rx_handler, NULL); 3465 /* a reader seeing a non NULL rx_handler in a rcu_read_lock() 3466 * section has a guarantee to see a non NULL rx_handler_data 3467 * as well. 3468 */ 3469 synchronize_net(); 3470 RCU_INIT_POINTER(dev->rx_handler_data, NULL); 3471 } 3472 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister); 3473 3474 /* 3475 * Limit the use of PFMEMALLOC reserves to those protocols that implement 3476 * the special handling of PFMEMALLOC skbs. 3477 */ 3478 static bool skb_pfmemalloc_protocol(struct sk_buff *skb) 3479 { 3480 switch (skb->protocol) { 3481 case __constant_htons(ETH_P_ARP): 3482 case __constant_htons(ETH_P_IP): 3483 case __constant_htons(ETH_P_IPV6): 3484 case __constant_htons(ETH_P_8021Q): 3485 case __constant_htons(ETH_P_8021AD): 3486 return true; 3487 default: 3488 return false; 3489 } 3490 } 3491 3492 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc) 3493 { 3494 struct packet_type *ptype, *pt_prev; 3495 rx_handler_func_t *rx_handler; 3496 struct net_device *orig_dev; 3497 struct net_device *null_or_dev; 3498 bool deliver_exact = false; 3499 int ret = NET_RX_DROP; 3500 __be16 type; 3501 3502 net_timestamp_check(!netdev_tstamp_prequeue, skb); 3503 3504 trace_netif_receive_skb(skb); 3505 3506 /* if we've gotten here through NAPI, check netpoll */ 3507 if (netpoll_receive_skb(skb)) 3508 goto out; 3509 3510 orig_dev = skb->dev; 3511 3512 skb_reset_network_header(skb); 3513 if (!skb_transport_header_was_set(skb)) 3514 skb_reset_transport_header(skb); 3515 skb_reset_mac_len(skb); 3516 3517 pt_prev = NULL; 3518 3519 rcu_read_lock(); 3520 3521 another_round: 3522 skb->skb_iif = skb->dev->ifindex; 3523 3524 __this_cpu_inc(softnet_data.processed); 3525 3526 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) || 3527 skb->protocol == cpu_to_be16(ETH_P_8021AD)) { 3528 skb = vlan_untag(skb); 3529 if (unlikely(!skb)) 3530 goto unlock; 3531 } 3532 3533 #ifdef CONFIG_NET_CLS_ACT 3534 if (skb->tc_verd & TC_NCLS) { 3535 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd); 3536 goto ncls; 3537 } 3538 #endif 3539 3540 if (pfmemalloc) 3541 goto skip_taps; 3542 3543 list_for_each_entry_rcu(ptype, &ptype_all, list) { 3544 if (!ptype->dev || ptype->dev == skb->dev) { 3545 if (pt_prev) 3546 ret = deliver_skb(skb, pt_prev, orig_dev); 3547 pt_prev = ptype; 3548 } 3549 } 3550 3551 skip_taps: 3552 #ifdef CONFIG_NET_CLS_ACT 3553 skb = handle_ing(skb, &pt_prev, &ret, orig_dev); 3554 if (!skb) 3555 goto unlock; 3556 ncls: 3557 #endif 3558 3559 if (pfmemalloc && !skb_pfmemalloc_protocol(skb)) 3560 goto drop; 3561 3562 if (vlan_tx_tag_present(skb)) { 3563 if (pt_prev) { 3564 ret = deliver_skb(skb, pt_prev, orig_dev); 3565 pt_prev = NULL; 3566 } 3567 if (vlan_do_receive(&skb)) 3568 goto another_round; 3569 else if (unlikely(!skb)) 3570 goto unlock; 3571 } 3572 3573 rx_handler = rcu_dereference(skb->dev->rx_handler); 3574 if (rx_handler) { 3575 if (pt_prev) { 3576 ret = deliver_skb(skb, pt_prev, orig_dev); 3577 pt_prev = NULL; 3578 } 3579 switch (rx_handler(&skb)) { 3580 case RX_HANDLER_CONSUMED: 3581 ret = NET_RX_SUCCESS; 3582 goto unlock; 3583 case RX_HANDLER_ANOTHER: 3584 goto another_round; 3585 case RX_HANDLER_EXACT: 3586 deliver_exact = true; 3587 case RX_HANDLER_PASS: 3588 break; 3589 default: 3590 BUG(); 3591 } 3592 } 3593 3594 if (unlikely(vlan_tx_tag_present(skb))) { 3595 if (vlan_tx_tag_get_id(skb)) 3596 skb->pkt_type = PACKET_OTHERHOST; 3597 /* Note: we might in the future use prio bits 3598 * and set skb->priority like in vlan_do_receive() 3599 * For the time being, just ignore Priority Code Point 3600 */ 3601 skb->vlan_tci = 0; 3602 } 3603 3604 /* deliver only exact match when indicated */ 3605 null_or_dev = deliver_exact ? skb->dev : NULL; 3606 3607 type = skb->protocol; 3608 list_for_each_entry_rcu(ptype, 3609 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) { 3610 if (ptype->type == type && 3611 (ptype->dev == null_or_dev || ptype->dev == skb->dev || 3612 ptype->dev == orig_dev)) { 3613 if (pt_prev) 3614 ret = deliver_skb(skb, pt_prev, orig_dev); 3615 pt_prev = ptype; 3616 } 3617 } 3618 3619 if (pt_prev) { 3620 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC))) 3621 goto drop; 3622 else 3623 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 3624 } else { 3625 drop: 3626 atomic_long_inc(&skb->dev->rx_dropped); 3627 kfree_skb(skb); 3628 /* Jamal, now you will not able to escape explaining 3629 * me how you were going to use this. :-) 3630 */ 3631 ret = NET_RX_DROP; 3632 } 3633 3634 unlock: 3635 rcu_read_unlock(); 3636 out: 3637 return ret; 3638 } 3639 3640 static int __netif_receive_skb(struct sk_buff *skb) 3641 { 3642 int ret; 3643 3644 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) { 3645 unsigned long pflags = current->flags; 3646 3647 /* 3648 * PFMEMALLOC skbs are special, they should 3649 * - be delivered to SOCK_MEMALLOC sockets only 3650 * - stay away from userspace 3651 * - have bounded memory usage 3652 * 3653 * Use PF_MEMALLOC as this saves us from propagating the allocation 3654 * context down to all allocation sites. 3655 */ 3656 current->flags |= PF_MEMALLOC; 3657 ret = __netif_receive_skb_core(skb, true); 3658 tsk_restore_flags(current, pflags, PF_MEMALLOC); 3659 } else 3660 ret = __netif_receive_skb_core(skb, false); 3661 3662 return ret; 3663 } 3664 3665 /** 3666 * netif_receive_skb - process receive buffer from network 3667 * @skb: buffer to process 3668 * 3669 * netif_receive_skb() is the main receive data processing function. 3670 * It always succeeds. The buffer may be dropped during processing 3671 * for congestion control or by the protocol layers. 3672 * 3673 * This function may only be called from softirq context and interrupts 3674 * should be enabled. 3675 * 3676 * Return values (usually ignored): 3677 * NET_RX_SUCCESS: no congestion 3678 * NET_RX_DROP: packet was dropped 3679 */ 3680 int netif_receive_skb(struct sk_buff *skb) 3681 { 3682 net_timestamp_check(netdev_tstamp_prequeue, skb); 3683 3684 if (skb_defer_rx_timestamp(skb)) 3685 return NET_RX_SUCCESS; 3686 3687 #ifdef CONFIG_RPS 3688 if (static_key_false(&rps_needed)) { 3689 struct rps_dev_flow voidflow, *rflow = &voidflow; 3690 int cpu, ret; 3691 3692 rcu_read_lock(); 3693 3694 cpu = get_rps_cpu(skb->dev, skb, &rflow); 3695 3696 if (cpu >= 0) { 3697 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 3698 rcu_read_unlock(); 3699 return ret; 3700 } 3701 rcu_read_unlock(); 3702 } 3703 #endif 3704 return __netif_receive_skb(skb); 3705 } 3706 EXPORT_SYMBOL(netif_receive_skb); 3707 3708 /* Network device is going away, flush any packets still pending 3709 * Called with irqs disabled. 3710 */ 3711 static void flush_backlog(void *arg) 3712 { 3713 struct net_device *dev = arg; 3714 struct softnet_data *sd = &__get_cpu_var(softnet_data); 3715 struct sk_buff *skb, *tmp; 3716 3717 rps_lock(sd); 3718 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) { 3719 if (skb->dev == dev) { 3720 __skb_unlink(skb, &sd->input_pkt_queue); 3721 kfree_skb(skb); 3722 input_queue_head_incr(sd); 3723 } 3724 } 3725 rps_unlock(sd); 3726 3727 skb_queue_walk_safe(&sd->process_queue, skb, tmp) { 3728 if (skb->dev == dev) { 3729 __skb_unlink(skb, &sd->process_queue); 3730 kfree_skb(skb); 3731 input_queue_head_incr(sd); 3732 } 3733 } 3734 } 3735 3736 static int napi_gro_complete(struct sk_buff *skb) 3737 { 3738 struct packet_offload *ptype; 3739 __be16 type = skb->protocol; 3740 struct list_head *head = &offload_base; 3741 int err = -ENOENT; 3742 3743 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb)); 3744 3745 if (NAPI_GRO_CB(skb)->count == 1) { 3746 skb_shinfo(skb)->gso_size = 0; 3747 goto out; 3748 } 3749 3750 rcu_read_lock(); 3751 list_for_each_entry_rcu(ptype, head, list) { 3752 if (ptype->type != type || !ptype->callbacks.gro_complete) 3753 continue; 3754 3755 err = ptype->callbacks.gro_complete(skb, 0); 3756 break; 3757 } 3758 rcu_read_unlock(); 3759 3760 if (err) { 3761 WARN_ON(&ptype->list == head); 3762 kfree_skb(skb); 3763 return NET_RX_SUCCESS; 3764 } 3765 3766 out: 3767 return netif_receive_skb(skb); 3768 } 3769 3770 /* napi->gro_list contains packets ordered by age. 3771 * youngest packets at the head of it. 3772 * Complete skbs in reverse order to reduce latencies. 3773 */ 3774 void napi_gro_flush(struct napi_struct *napi, bool flush_old) 3775 { 3776 struct sk_buff *skb, *prev = NULL; 3777 3778 /* scan list and build reverse chain */ 3779 for (skb = napi->gro_list; skb != NULL; skb = skb->next) { 3780 skb->prev = prev; 3781 prev = skb; 3782 } 3783 3784 for (skb = prev; skb; skb = prev) { 3785 skb->next = NULL; 3786 3787 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies) 3788 return; 3789 3790 prev = skb->prev; 3791 napi_gro_complete(skb); 3792 napi->gro_count--; 3793 } 3794 3795 napi->gro_list = NULL; 3796 } 3797 EXPORT_SYMBOL(napi_gro_flush); 3798 3799 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb) 3800 { 3801 struct sk_buff *p; 3802 unsigned int maclen = skb->dev->hard_header_len; 3803 3804 for (p = napi->gro_list; p; p = p->next) { 3805 unsigned long diffs; 3806 3807 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev; 3808 diffs |= p->vlan_tci ^ skb->vlan_tci; 3809 if (maclen == ETH_HLEN) 3810 diffs |= compare_ether_header(skb_mac_header(p), 3811 skb_gro_mac_header(skb)); 3812 else if (!diffs) 3813 diffs = memcmp(skb_mac_header(p), 3814 skb_gro_mac_header(skb), 3815 maclen); 3816 NAPI_GRO_CB(p)->same_flow = !diffs; 3817 NAPI_GRO_CB(p)->flush = 0; 3818 } 3819 } 3820 3821 static void skb_gro_reset_offset(struct sk_buff *skb) 3822 { 3823 const struct skb_shared_info *pinfo = skb_shinfo(skb); 3824 const skb_frag_t *frag0 = &pinfo->frags[0]; 3825 3826 NAPI_GRO_CB(skb)->data_offset = 0; 3827 NAPI_GRO_CB(skb)->frag0 = NULL; 3828 NAPI_GRO_CB(skb)->frag0_len = 0; 3829 3830 if (skb_mac_header(skb) == skb_tail_pointer(skb) && 3831 pinfo->nr_frags && 3832 !PageHighMem(skb_frag_page(frag0))) { 3833 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0); 3834 NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0); 3835 } 3836 } 3837 3838 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 3839 { 3840 struct sk_buff **pp = NULL; 3841 struct packet_offload *ptype; 3842 __be16 type = skb->protocol; 3843 struct list_head *head = &offload_base; 3844 int same_flow; 3845 enum gro_result ret; 3846 3847 if (!(skb->dev->features & NETIF_F_GRO) || netpoll_rx_on(skb)) 3848 goto normal; 3849 3850 if (skb_is_gso(skb) || skb_has_frag_list(skb)) 3851 goto normal; 3852 3853 skb_gro_reset_offset(skb); 3854 gro_list_prepare(napi, skb); 3855 3856 rcu_read_lock(); 3857 list_for_each_entry_rcu(ptype, head, list) { 3858 if (ptype->type != type || !ptype->callbacks.gro_receive) 3859 continue; 3860 3861 skb_set_network_header(skb, skb_gro_offset(skb)); 3862 skb_reset_mac_len(skb); 3863 NAPI_GRO_CB(skb)->same_flow = 0; 3864 NAPI_GRO_CB(skb)->flush = 0; 3865 NAPI_GRO_CB(skb)->free = 0; 3866 3867 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb); 3868 break; 3869 } 3870 rcu_read_unlock(); 3871 3872 if (&ptype->list == head) 3873 goto normal; 3874 3875 same_flow = NAPI_GRO_CB(skb)->same_flow; 3876 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED; 3877 3878 if (pp) { 3879 struct sk_buff *nskb = *pp; 3880 3881 *pp = nskb->next; 3882 nskb->next = NULL; 3883 napi_gro_complete(nskb); 3884 napi->gro_count--; 3885 } 3886 3887 if (same_flow) 3888 goto ok; 3889 3890 if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS) 3891 goto normal; 3892 3893 napi->gro_count++; 3894 NAPI_GRO_CB(skb)->count = 1; 3895 NAPI_GRO_CB(skb)->age = jiffies; 3896 skb_shinfo(skb)->gso_size = skb_gro_len(skb); 3897 skb->next = napi->gro_list; 3898 napi->gro_list = skb; 3899 ret = GRO_HELD; 3900 3901 pull: 3902 if (skb_headlen(skb) < skb_gro_offset(skb)) { 3903 int grow = skb_gro_offset(skb) - skb_headlen(skb); 3904 3905 BUG_ON(skb->end - skb->tail < grow); 3906 3907 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow); 3908 3909 skb->tail += grow; 3910 skb->data_len -= grow; 3911 3912 skb_shinfo(skb)->frags[0].page_offset += grow; 3913 skb_frag_size_sub(&skb_shinfo(skb)->frags[0], grow); 3914 3915 if (unlikely(!skb_frag_size(&skb_shinfo(skb)->frags[0]))) { 3916 skb_frag_unref(skb, 0); 3917 memmove(skb_shinfo(skb)->frags, 3918 skb_shinfo(skb)->frags + 1, 3919 --skb_shinfo(skb)->nr_frags * sizeof(skb_frag_t)); 3920 } 3921 } 3922 3923 ok: 3924 return ret; 3925 3926 normal: 3927 ret = GRO_NORMAL; 3928 goto pull; 3929 } 3930 3931 3932 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb) 3933 { 3934 switch (ret) { 3935 case GRO_NORMAL: 3936 if (netif_receive_skb(skb)) 3937 ret = GRO_DROP; 3938 break; 3939 3940 case GRO_DROP: 3941 kfree_skb(skb); 3942 break; 3943 3944 case GRO_MERGED_FREE: 3945 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) 3946 kmem_cache_free(skbuff_head_cache, skb); 3947 else 3948 __kfree_skb(skb); 3949 break; 3950 3951 case GRO_HELD: 3952 case GRO_MERGED: 3953 break; 3954 } 3955 3956 return ret; 3957 } 3958 3959 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 3960 { 3961 return napi_skb_finish(dev_gro_receive(napi, skb), skb); 3962 } 3963 EXPORT_SYMBOL(napi_gro_receive); 3964 3965 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb) 3966 { 3967 __skb_pull(skb, skb_headlen(skb)); 3968 /* restore the reserve we had after netdev_alloc_skb_ip_align() */ 3969 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb)); 3970 skb->vlan_tci = 0; 3971 skb->dev = napi->dev; 3972 skb->skb_iif = 0; 3973 3974 napi->skb = skb; 3975 } 3976 3977 struct sk_buff *napi_get_frags(struct napi_struct *napi) 3978 { 3979 struct sk_buff *skb = napi->skb; 3980 3981 if (!skb) { 3982 skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD); 3983 napi->skb = skb; 3984 } 3985 return skb; 3986 } 3987 EXPORT_SYMBOL(napi_get_frags); 3988 3989 static gro_result_t napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb, 3990 gro_result_t ret) 3991 { 3992 switch (ret) { 3993 case GRO_NORMAL: 3994 if (netif_receive_skb(skb)) 3995 ret = GRO_DROP; 3996 break; 3997 3998 case GRO_DROP: 3999 case GRO_MERGED_FREE: 4000 napi_reuse_skb(napi, skb); 4001 break; 4002 4003 case GRO_HELD: 4004 case GRO_MERGED: 4005 break; 4006 } 4007 4008 return ret; 4009 } 4010 4011 static struct sk_buff *napi_frags_skb(struct napi_struct *napi) 4012 { 4013 struct sk_buff *skb = napi->skb; 4014 4015 napi->skb = NULL; 4016 4017 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr)))) { 4018 napi_reuse_skb(napi, skb); 4019 return NULL; 4020 } 4021 skb->protocol = eth_type_trans(skb, skb->dev); 4022 4023 return skb; 4024 } 4025 4026 gro_result_t napi_gro_frags(struct napi_struct *napi) 4027 { 4028 struct sk_buff *skb = napi_frags_skb(napi); 4029 4030 if (!skb) 4031 return GRO_DROP; 4032 4033 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb)); 4034 } 4035 EXPORT_SYMBOL(napi_gro_frags); 4036 4037 /* 4038 * net_rps_action sends any pending IPI's for rps. 4039 * Note: called with local irq disabled, but exits with local irq enabled. 4040 */ 4041 static void net_rps_action_and_irq_enable(struct softnet_data *sd) 4042 { 4043 #ifdef CONFIG_RPS 4044 struct softnet_data *remsd = sd->rps_ipi_list; 4045 4046 if (remsd) { 4047 sd->rps_ipi_list = NULL; 4048 4049 local_irq_enable(); 4050 4051 /* Send pending IPI's to kick RPS processing on remote cpus. */ 4052 while (remsd) { 4053 struct softnet_data *next = remsd->rps_ipi_next; 4054 4055 if (cpu_online(remsd->cpu)) 4056 __smp_call_function_single(remsd->cpu, 4057 &remsd->csd, 0); 4058 remsd = next; 4059 } 4060 } else 4061 #endif 4062 local_irq_enable(); 4063 } 4064 4065 static int process_backlog(struct napi_struct *napi, int quota) 4066 { 4067 int work = 0; 4068 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog); 4069 4070 #ifdef CONFIG_RPS 4071 /* Check if we have pending ipi, its better to send them now, 4072 * not waiting net_rx_action() end. 4073 */ 4074 if (sd->rps_ipi_list) { 4075 local_irq_disable(); 4076 net_rps_action_and_irq_enable(sd); 4077 } 4078 #endif 4079 napi->weight = weight_p; 4080 local_irq_disable(); 4081 while (work < quota) { 4082 struct sk_buff *skb; 4083 unsigned int qlen; 4084 4085 while ((skb = __skb_dequeue(&sd->process_queue))) { 4086 local_irq_enable(); 4087 __netif_receive_skb(skb); 4088 local_irq_disable(); 4089 input_queue_head_incr(sd); 4090 if (++work >= quota) { 4091 local_irq_enable(); 4092 return work; 4093 } 4094 } 4095 4096 rps_lock(sd); 4097 qlen = skb_queue_len(&sd->input_pkt_queue); 4098 if (qlen) 4099 skb_queue_splice_tail_init(&sd->input_pkt_queue, 4100 &sd->process_queue); 4101 4102 if (qlen < quota - work) { 4103 /* 4104 * Inline a custom version of __napi_complete(). 4105 * only current cpu owns and manipulates this napi, 4106 * and NAPI_STATE_SCHED is the only possible flag set on backlog. 4107 * we can use a plain write instead of clear_bit(), 4108 * and we dont need an smp_mb() memory barrier. 4109 */ 4110 list_del(&napi->poll_list); 4111 napi->state = 0; 4112 4113 quota = work + qlen; 4114 } 4115 rps_unlock(sd); 4116 } 4117 local_irq_enable(); 4118 4119 return work; 4120 } 4121 4122 /** 4123 * __napi_schedule - schedule for receive 4124 * @n: entry to schedule 4125 * 4126 * The entry's receive function will be scheduled to run 4127 */ 4128 void __napi_schedule(struct napi_struct *n) 4129 { 4130 unsigned long flags; 4131 4132 local_irq_save(flags); 4133 ____napi_schedule(&__get_cpu_var(softnet_data), n); 4134 local_irq_restore(flags); 4135 } 4136 EXPORT_SYMBOL(__napi_schedule); 4137 4138 void __napi_complete(struct napi_struct *n) 4139 { 4140 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state)); 4141 BUG_ON(n->gro_list); 4142 4143 list_del(&n->poll_list); 4144 smp_mb__before_clear_bit(); 4145 clear_bit(NAPI_STATE_SCHED, &n->state); 4146 } 4147 EXPORT_SYMBOL(__napi_complete); 4148 4149 void napi_complete(struct napi_struct *n) 4150 { 4151 unsigned long flags; 4152 4153 /* 4154 * don't let napi dequeue from the cpu poll list 4155 * just in case its running on a different cpu 4156 */ 4157 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state))) 4158 return; 4159 4160 napi_gro_flush(n, false); 4161 local_irq_save(flags); 4162 __napi_complete(n); 4163 local_irq_restore(flags); 4164 } 4165 EXPORT_SYMBOL(napi_complete); 4166 4167 /* must be called under rcu_read_lock(), as we dont take a reference */ 4168 struct napi_struct *napi_by_id(unsigned int napi_id) 4169 { 4170 unsigned int hash = napi_id % HASH_SIZE(napi_hash); 4171 struct napi_struct *napi; 4172 4173 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node) 4174 if (napi->napi_id == napi_id) 4175 return napi; 4176 4177 return NULL; 4178 } 4179 EXPORT_SYMBOL_GPL(napi_by_id); 4180 4181 void napi_hash_add(struct napi_struct *napi) 4182 { 4183 if (!test_and_set_bit(NAPI_STATE_HASHED, &napi->state)) { 4184 4185 spin_lock(&napi_hash_lock); 4186 4187 /* 0 is not a valid id, we also skip an id that is taken 4188 * we expect both events to be extremely rare 4189 */ 4190 napi->napi_id = 0; 4191 while (!napi->napi_id) { 4192 napi->napi_id = ++napi_gen_id; 4193 if (napi_by_id(napi->napi_id)) 4194 napi->napi_id = 0; 4195 } 4196 4197 hlist_add_head_rcu(&napi->napi_hash_node, 4198 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]); 4199 4200 spin_unlock(&napi_hash_lock); 4201 } 4202 } 4203 EXPORT_SYMBOL_GPL(napi_hash_add); 4204 4205 /* Warning : caller is responsible to make sure rcu grace period 4206 * is respected before freeing memory containing @napi 4207 */ 4208 void napi_hash_del(struct napi_struct *napi) 4209 { 4210 spin_lock(&napi_hash_lock); 4211 4212 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) 4213 hlist_del_rcu(&napi->napi_hash_node); 4214 4215 spin_unlock(&napi_hash_lock); 4216 } 4217 EXPORT_SYMBOL_GPL(napi_hash_del); 4218 4219 void netif_napi_add(struct net_device *dev, struct napi_struct *napi, 4220 int (*poll)(struct napi_struct *, int), int weight) 4221 { 4222 INIT_LIST_HEAD(&napi->poll_list); 4223 napi->gro_count = 0; 4224 napi->gro_list = NULL; 4225 napi->skb = NULL; 4226 napi->poll = poll; 4227 if (weight > NAPI_POLL_WEIGHT) 4228 pr_err_once("netif_napi_add() called with weight %d on device %s\n", 4229 weight, dev->name); 4230 napi->weight = weight; 4231 list_add(&napi->dev_list, &dev->napi_list); 4232 napi->dev = dev; 4233 #ifdef CONFIG_NETPOLL 4234 spin_lock_init(&napi->poll_lock); 4235 napi->poll_owner = -1; 4236 #endif 4237 set_bit(NAPI_STATE_SCHED, &napi->state); 4238 } 4239 EXPORT_SYMBOL(netif_napi_add); 4240 4241 void netif_napi_del(struct napi_struct *napi) 4242 { 4243 struct sk_buff *skb, *next; 4244 4245 list_del_init(&napi->dev_list); 4246 napi_free_frags(napi); 4247 4248 for (skb = napi->gro_list; skb; skb = next) { 4249 next = skb->next; 4250 skb->next = NULL; 4251 kfree_skb(skb); 4252 } 4253 4254 napi->gro_list = NULL; 4255 napi->gro_count = 0; 4256 } 4257 EXPORT_SYMBOL(netif_napi_del); 4258 4259 static void net_rx_action(struct softirq_action *h) 4260 { 4261 struct softnet_data *sd = &__get_cpu_var(softnet_data); 4262 unsigned long time_limit = jiffies + 2; 4263 int budget = netdev_budget; 4264 void *have; 4265 4266 local_irq_disable(); 4267 4268 while (!list_empty(&sd->poll_list)) { 4269 struct napi_struct *n; 4270 int work, weight; 4271 4272 /* If softirq window is exhuasted then punt. 4273 * Allow this to run for 2 jiffies since which will allow 4274 * an average latency of 1.5/HZ. 4275 */ 4276 if (unlikely(budget <= 0 || time_after_eq(jiffies, time_limit))) 4277 goto softnet_break; 4278 4279 local_irq_enable(); 4280 4281 /* Even though interrupts have been re-enabled, this 4282 * access is safe because interrupts can only add new 4283 * entries to the tail of this list, and only ->poll() 4284 * calls can remove this head entry from the list. 4285 */ 4286 n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list); 4287 4288 have = netpoll_poll_lock(n); 4289 4290 weight = n->weight; 4291 4292 /* This NAPI_STATE_SCHED test is for avoiding a race 4293 * with netpoll's poll_napi(). Only the entity which 4294 * obtains the lock and sees NAPI_STATE_SCHED set will 4295 * actually make the ->poll() call. Therefore we avoid 4296 * accidentally calling ->poll() when NAPI is not scheduled. 4297 */ 4298 work = 0; 4299 if (test_bit(NAPI_STATE_SCHED, &n->state)) { 4300 work = n->poll(n, weight); 4301 trace_napi_poll(n); 4302 } 4303 4304 WARN_ON_ONCE(work > weight); 4305 4306 budget -= work; 4307 4308 local_irq_disable(); 4309 4310 /* Drivers must not modify the NAPI state if they 4311 * consume the entire weight. In such cases this code 4312 * still "owns" the NAPI instance and therefore can 4313 * move the instance around on the list at-will. 4314 */ 4315 if (unlikely(work == weight)) { 4316 if (unlikely(napi_disable_pending(n))) { 4317 local_irq_enable(); 4318 napi_complete(n); 4319 local_irq_disable(); 4320 } else { 4321 if (n->gro_list) { 4322 /* flush too old packets 4323 * If HZ < 1000, flush all packets. 4324 */ 4325 local_irq_enable(); 4326 napi_gro_flush(n, HZ >= 1000); 4327 local_irq_disable(); 4328 } 4329 list_move_tail(&n->poll_list, &sd->poll_list); 4330 } 4331 } 4332 4333 netpoll_poll_unlock(have); 4334 } 4335 out: 4336 net_rps_action_and_irq_enable(sd); 4337 4338 #ifdef CONFIG_NET_DMA 4339 /* 4340 * There may not be any more sk_buffs coming right now, so push 4341 * any pending DMA copies to hardware 4342 */ 4343 dma_issue_pending_all(); 4344 #endif 4345 4346 return; 4347 4348 softnet_break: 4349 sd->time_squeeze++; 4350 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 4351 goto out; 4352 } 4353 4354 struct netdev_adjacent { 4355 struct net_device *dev; 4356 4357 /* upper master flag, there can only be one master device per list */ 4358 bool master; 4359 4360 /* counter for the number of times this device was added to us */ 4361 u16 ref_nr; 4362 4363 /* private field for the users */ 4364 void *private; 4365 4366 struct list_head list; 4367 struct rcu_head rcu; 4368 }; 4369 4370 static struct netdev_adjacent *__netdev_find_adj_rcu(struct net_device *dev, 4371 struct net_device *adj_dev, 4372 struct list_head *adj_list) 4373 { 4374 struct netdev_adjacent *adj; 4375 4376 list_for_each_entry_rcu(adj, adj_list, list) { 4377 if (adj->dev == adj_dev) 4378 return adj; 4379 } 4380 return NULL; 4381 } 4382 4383 static struct netdev_adjacent *__netdev_find_adj(struct net_device *dev, 4384 struct net_device *adj_dev, 4385 struct list_head *adj_list) 4386 { 4387 struct netdev_adjacent *adj; 4388 4389 list_for_each_entry(adj, adj_list, list) { 4390 if (adj->dev == adj_dev) 4391 return adj; 4392 } 4393 return NULL; 4394 } 4395 4396 /** 4397 * netdev_has_upper_dev - Check if device is linked to an upper device 4398 * @dev: device 4399 * @upper_dev: upper device to check 4400 * 4401 * Find out if a device is linked to specified upper device and return true 4402 * in case it is. Note that this checks only immediate upper device, 4403 * not through a complete stack of devices. The caller must hold the RTNL lock. 4404 */ 4405 bool netdev_has_upper_dev(struct net_device *dev, 4406 struct net_device *upper_dev) 4407 { 4408 ASSERT_RTNL(); 4409 4410 return __netdev_find_adj(dev, upper_dev, &dev->all_adj_list.upper); 4411 } 4412 EXPORT_SYMBOL(netdev_has_upper_dev); 4413 4414 /** 4415 * netdev_has_any_upper_dev - Check if device is linked to some device 4416 * @dev: device 4417 * 4418 * Find out if a device is linked to an upper device and return true in case 4419 * it is. The caller must hold the RTNL lock. 4420 */ 4421 bool netdev_has_any_upper_dev(struct net_device *dev) 4422 { 4423 ASSERT_RTNL(); 4424 4425 return !list_empty(&dev->all_adj_list.upper); 4426 } 4427 EXPORT_SYMBOL(netdev_has_any_upper_dev); 4428 4429 /** 4430 * netdev_master_upper_dev_get - Get master upper device 4431 * @dev: device 4432 * 4433 * Find a master upper device and return pointer to it or NULL in case 4434 * it's not there. The caller must hold the RTNL lock. 4435 */ 4436 struct net_device *netdev_master_upper_dev_get(struct net_device *dev) 4437 { 4438 struct netdev_adjacent *upper; 4439 4440 ASSERT_RTNL(); 4441 4442 if (list_empty(&dev->adj_list.upper)) 4443 return NULL; 4444 4445 upper = list_first_entry(&dev->adj_list.upper, 4446 struct netdev_adjacent, list); 4447 if (likely(upper->master)) 4448 return upper->dev; 4449 return NULL; 4450 } 4451 EXPORT_SYMBOL(netdev_master_upper_dev_get); 4452 4453 void *netdev_adjacent_get_private(struct list_head *adj_list) 4454 { 4455 struct netdev_adjacent *adj; 4456 4457 adj = list_entry(adj_list, struct netdev_adjacent, list); 4458 4459 return adj->private; 4460 } 4461 EXPORT_SYMBOL(netdev_adjacent_get_private); 4462 4463 /** 4464 * netdev_all_upper_get_next_dev_rcu - Get the next dev from upper list 4465 * @dev: device 4466 * @iter: list_head ** of the current position 4467 * 4468 * Gets the next device from the dev's upper list, starting from iter 4469 * position. The caller must hold RCU read lock. 4470 */ 4471 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev, 4472 struct list_head **iter) 4473 { 4474 struct netdev_adjacent *upper; 4475 4476 WARN_ON_ONCE(!rcu_read_lock_held()); 4477 4478 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 4479 4480 if (&upper->list == &dev->all_adj_list.upper) 4481 return NULL; 4482 4483 *iter = &upper->list; 4484 4485 return upper->dev; 4486 } 4487 EXPORT_SYMBOL(netdev_all_upper_get_next_dev_rcu); 4488 4489 /** 4490 * netdev_lower_get_next_private - Get the next ->private from the 4491 * lower neighbour list 4492 * @dev: device 4493 * @iter: list_head ** of the current position 4494 * 4495 * Gets the next netdev_adjacent->private from the dev's lower neighbour 4496 * list, starting from iter position. The caller must hold either hold the 4497 * RTNL lock or its own locking that guarantees that the neighbour lower 4498 * list will remain unchainged. 4499 */ 4500 void *netdev_lower_get_next_private(struct net_device *dev, 4501 struct list_head **iter) 4502 { 4503 struct netdev_adjacent *lower; 4504 4505 lower = list_entry(*iter, struct netdev_adjacent, list); 4506 4507 if (&lower->list == &dev->adj_list.lower) 4508 return NULL; 4509 4510 if (iter) 4511 *iter = lower->list.next; 4512 4513 return lower->private; 4514 } 4515 EXPORT_SYMBOL(netdev_lower_get_next_private); 4516 4517 /** 4518 * netdev_lower_get_next_private_rcu - Get the next ->private from the 4519 * lower neighbour list, RCU 4520 * variant 4521 * @dev: device 4522 * @iter: list_head ** of the current position 4523 * 4524 * Gets the next netdev_adjacent->private from the dev's lower neighbour 4525 * list, starting from iter position. The caller must hold RCU read lock. 4526 */ 4527 void *netdev_lower_get_next_private_rcu(struct net_device *dev, 4528 struct list_head **iter) 4529 { 4530 struct netdev_adjacent *lower; 4531 4532 WARN_ON_ONCE(!rcu_read_lock_held()); 4533 4534 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 4535 4536 if (&lower->list == &dev->adj_list.lower) 4537 return NULL; 4538 4539 if (iter) 4540 *iter = &lower->list; 4541 4542 return lower->private; 4543 } 4544 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu); 4545 4546 /** 4547 * netdev_lower_get_first_private_rcu - Get the first ->private from the 4548 * lower neighbour list, RCU 4549 * variant 4550 * @dev: device 4551 * 4552 * Gets the first netdev_adjacent->private from the dev's lower neighbour 4553 * list. The caller must hold RCU read lock. 4554 */ 4555 void *netdev_lower_get_first_private_rcu(struct net_device *dev) 4556 { 4557 struct netdev_adjacent *lower; 4558 4559 lower = list_first_or_null_rcu(&dev->adj_list.lower, 4560 struct netdev_adjacent, list); 4561 if (lower) 4562 return lower->private; 4563 return NULL; 4564 } 4565 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu); 4566 4567 /** 4568 * netdev_master_upper_dev_get_rcu - Get master upper device 4569 * @dev: device 4570 * 4571 * Find a master upper device and return pointer to it or NULL in case 4572 * it's not there. The caller must hold the RCU read lock. 4573 */ 4574 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev) 4575 { 4576 struct netdev_adjacent *upper; 4577 4578 upper = list_first_or_null_rcu(&dev->adj_list.upper, 4579 struct netdev_adjacent, list); 4580 if (upper && likely(upper->master)) 4581 return upper->dev; 4582 return NULL; 4583 } 4584 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu); 4585 4586 static int __netdev_adjacent_dev_insert(struct net_device *dev, 4587 struct net_device *adj_dev, 4588 struct list_head *dev_list, 4589 void *private, bool master) 4590 { 4591 struct netdev_adjacent *adj; 4592 char linkname[IFNAMSIZ+7]; 4593 int ret; 4594 4595 adj = __netdev_find_adj(dev, adj_dev, dev_list); 4596 4597 if (adj) { 4598 adj->ref_nr++; 4599 return 0; 4600 } 4601 4602 adj = kmalloc(sizeof(*adj), GFP_KERNEL); 4603 if (!adj) 4604 return -ENOMEM; 4605 4606 adj->dev = adj_dev; 4607 adj->master = master; 4608 adj->ref_nr = 1; 4609 adj->private = private; 4610 dev_hold(adj_dev); 4611 4612 pr_debug("dev_hold for %s, because of link added from %s to %s\n", 4613 adj_dev->name, dev->name, adj_dev->name); 4614 4615 if (dev_list == &dev->adj_list.lower) { 4616 sprintf(linkname, "lower_%s", adj_dev->name); 4617 ret = sysfs_create_link(&(dev->dev.kobj), 4618 &(adj_dev->dev.kobj), linkname); 4619 if (ret) 4620 goto free_adj; 4621 } else if (dev_list == &dev->adj_list.upper) { 4622 sprintf(linkname, "upper_%s", adj_dev->name); 4623 ret = sysfs_create_link(&(dev->dev.kobj), 4624 &(adj_dev->dev.kobj), linkname); 4625 if (ret) 4626 goto free_adj; 4627 } 4628 4629 /* Ensure that master link is always the first item in list. */ 4630 if (master) { 4631 ret = sysfs_create_link(&(dev->dev.kobj), 4632 &(adj_dev->dev.kobj), "master"); 4633 if (ret) 4634 goto remove_symlinks; 4635 4636 list_add_rcu(&adj->list, dev_list); 4637 } else { 4638 list_add_tail_rcu(&adj->list, dev_list); 4639 } 4640 4641 return 0; 4642 4643 remove_symlinks: 4644 if (dev_list == &dev->adj_list.lower) { 4645 sprintf(linkname, "lower_%s", adj_dev->name); 4646 sysfs_remove_link(&(dev->dev.kobj), linkname); 4647 } else if (dev_list == &dev->adj_list.upper) { 4648 sprintf(linkname, "upper_%s", adj_dev->name); 4649 sysfs_remove_link(&(dev->dev.kobj), linkname); 4650 } 4651 4652 free_adj: 4653 kfree(adj); 4654 dev_put(adj_dev); 4655 4656 return ret; 4657 } 4658 4659 void __netdev_adjacent_dev_remove(struct net_device *dev, 4660 struct net_device *adj_dev, 4661 struct list_head *dev_list) 4662 { 4663 struct netdev_adjacent *adj; 4664 char linkname[IFNAMSIZ+7]; 4665 4666 adj = __netdev_find_adj(dev, adj_dev, dev_list); 4667 4668 if (!adj) { 4669 pr_err("tried to remove device %s from %s\n", 4670 dev->name, adj_dev->name); 4671 BUG(); 4672 } 4673 4674 if (adj->ref_nr > 1) { 4675 pr_debug("%s to %s ref_nr-- = %d\n", dev->name, adj_dev->name, 4676 adj->ref_nr-1); 4677 adj->ref_nr--; 4678 return; 4679 } 4680 4681 if (adj->master) 4682 sysfs_remove_link(&(dev->dev.kobj), "master"); 4683 4684 if (dev_list == &dev->adj_list.lower) { 4685 sprintf(linkname, "lower_%s", adj_dev->name); 4686 sysfs_remove_link(&(dev->dev.kobj), linkname); 4687 } else if (dev_list == &dev->adj_list.upper) { 4688 sprintf(linkname, "upper_%s", adj_dev->name); 4689 sysfs_remove_link(&(dev->dev.kobj), linkname); 4690 } 4691 4692 list_del_rcu(&adj->list); 4693 pr_debug("dev_put for %s, because link removed from %s to %s\n", 4694 adj_dev->name, dev->name, adj_dev->name); 4695 dev_put(adj_dev); 4696 kfree_rcu(adj, rcu); 4697 } 4698 4699 int __netdev_adjacent_dev_link_lists(struct net_device *dev, 4700 struct net_device *upper_dev, 4701 struct list_head *up_list, 4702 struct list_head *down_list, 4703 void *private, bool master) 4704 { 4705 int ret; 4706 4707 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, private, 4708 master); 4709 if (ret) 4710 return ret; 4711 4712 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, private, 4713 false); 4714 if (ret) { 4715 __netdev_adjacent_dev_remove(dev, upper_dev, up_list); 4716 return ret; 4717 } 4718 4719 return 0; 4720 } 4721 4722 int __netdev_adjacent_dev_link(struct net_device *dev, 4723 struct net_device *upper_dev) 4724 { 4725 return __netdev_adjacent_dev_link_lists(dev, upper_dev, 4726 &dev->all_adj_list.upper, 4727 &upper_dev->all_adj_list.lower, 4728 NULL, false); 4729 } 4730 4731 void __netdev_adjacent_dev_unlink_lists(struct net_device *dev, 4732 struct net_device *upper_dev, 4733 struct list_head *up_list, 4734 struct list_head *down_list) 4735 { 4736 __netdev_adjacent_dev_remove(dev, upper_dev, up_list); 4737 __netdev_adjacent_dev_remove(upper_dev, dev, down_list); 4738 } 4739 4740 void __netdev_adjacent_dev_unlink(struct net_device *dev, 4741 struct net_device *upper_dev) 4742 { 4743 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 4744 &dev->all_adj_list.upper, 4745 &upper_dev->all_adj_list.lower); 4746 } 4747 4748 int __netdev_adjacent_dev_link_neighbour(struct net_device *dev, 4749 struct net_device *upper_dev, 4750 void *private, bool master) 4751 { 4752 int ret = __netdev_adjacent_dev_link(dev, upper_dev); 4753 4754 if (ret) 4755 return ret; 4756 4757 ret = __netdev_adjacent_dev_link_lists(dev, upper_dev, 4758 &dev->adj_list.upper, 4759 &upper_dev->adj_list.lower, 4760 private, master); 4761 if (ret) { 4762 __netdev_adjacent_dev_unlink(dev, upper_dev); 4763 return ret; 4764 } 4765 4766 return 0; 4767 } 4768 4769 void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev, 4770 struct net_device *upper_dev) 4771 { 4772 __netdev_adjacent_dev_unlink(dev, upper_dev); 4773 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 4774 &dev->adj_list.upper, 4775 &upper_dev->adj_list.lower); 4776 } 4777 4778 static int __netdev_upper_dev_link(struct net_device *dev, 4779 struct net_device *upper_dev, bool master, 4780 void *private) 4781 { 4782 struct netdev_adjacent *i, *j, *to_i, *to_j; 4783 int ret = 0; 4784 4785 ASSERT_RTNL(); 4786 4787 if (dev == upper_dev) 4788 return -EBUSY; 4789 4790 /* To prevent loops, check if dev is not upper device to upper_dev. */ 4791 if (__netdev_find_adj(upper_dev, dev, &upper_dev->all_adj_list.upper)) 4792 return -EBUSY; 4793 4794 if (__netdev_find_adj(dev, upper_dev, &dev->all_adj_list.upper)) 4795 return -EEXIST; 4796 4797 if (master && netdev_master_upper_dev_get(dev)) 4798 return -EBUSY; 4799 4800 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, private, 4801 master); 4802 if (ret) 4803 return ret; 4804 4805 /* Now that we linked these devs, make all the upper_dev's 4806 * all_adj_list.upper visible to every dev's all_adj_list.lower an 4807 * versa, and don't forget the devices itself. All of these 4808 * links are non-neighbours. 4809 */ 4810 list_for_each_entry(i, &dev->all_adj_list.lower, list) { 4811 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) { 4812 pr_debug("Interlinking %s with %s, non-neighbour\n", 4813 i->dev->name, j->dev->name); 4814 ret = __netdev_adjacent_dev_link(i->dev, j->dev); 4815 if (ret) 4816 goto rollback_mesh; 4817 } 4818 } 4819 4820 /* add dev to every upper_dev's upper device */ 4821 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) { 4822 pr_debug("linking %s's upper device %s with %s\n", 4823 upper_dev->name, i->dev->name, dev->name); 4824 ret = __netdev_adjacent_dev_link(dev, i->dev); 4825 if (ret) 4826 goto rollback_upper_mesh; 4827 } 4828 4829 /* add upper_dev to every dev's lower device */ 4830 list_for_each_entry(i, &dev->all_adj_list.lower, list) { 4831 pr_debug("linking %s's lower device %s with %s\n", dev->name, 4832 i->dev->name, upper_dev->name); 4833 ret = __netdev_adjacent_dev_link(i->dev, upper_dev); 4834 if (ret) 4835 goto rollback_lower_mesh; 4836 } 4837 4838 call_netdevice_notifiers(NETDEV_CHANGEUPPER, dev); 4839 return 0; 4840 4841 rollback_lower_mesh: 4842 to_i = i; 4843 list_for_each_entry(i, &dev->all_adj_list.lower, list) { 4844 if (i == to_i) 4845 break; 4846 __netdev_adjacent_dev_unlink(i->dev, upper_dev); 4847 } 4848 4849 i = NULL; 4850 4851 rollback_upper_mesh: 4852 to_i = i; 4853 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) { 4854 if (i == to_i) 4855 break; 4856 __netdev_adjacent_dev_unlink(dev, i->dev); 4857 } 4858 4859 i = j = NULL; 4860 4861 rollback_mesh: 4862 to_i = i; 4863 to_j = j; 4864 list_for_each_entry(i, &dev->all_adj_list.lower, list) { 4865 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) { 4866 if (i == to_i && j == to_j) 4867 break; 4868 __netdev_adjacent_dev_unlink(i->dev, j->dev); 4869 } 4870 if (i == to_i) 4871 break; 4872 } 4873 4874 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 4875 4876 return ret; 4877 } 4878 4879 /** 4880 * netdev_upper_dev_link - Add a link to the upper device 4881 * @dev: device 4882 * @upper_dev: new upper device 4883 * 4884 * Adds a link to device which is upper to this one. The caller must hold 4885 * the RTNL lock. On a failure a negative errno code is returned. 4886 * On success the reference counts are adjusted and the function 4887 * returns zero. 4888 */ 4889 int netdev_upper_dev_link(struct net_device *dev, 4890 struct net_device *upper_dev) 4891 { 4892 return __netdev_upper_dev_link(dev, upper_dev, false, NULL); 4893 } 4894 EXPORT_SYMBOL(netdev_upper_dev_link); 4895 4896 /** 4897 * netdev_master_upper_dev_link - Add a master link to the upper device 4898 * @dev: device 4899 * @upper_dev: new upper device 4900 * 4901 * Adds a link to device which is upper to this one. In this case, only 4902 * one master upper device can be linked, although other non-master devices 4903 * might be linked as well. The caller must hold the RTNL lock. 4904 * On a failure a negative errno code is returned. On success the reference 4905 * counts are adjusted and the function returns zero. 4906 */ 4907 int netdev_master_upper_dev_link(struct net_device *dev, 4908 struct net_device *upper_dev) 4909 { 4910 return __netdev_upper_dev_link(dev, upper_dev, true, NULL); 4911 } 4912 EXPORT_SYMBOL(netdev_master_upper_dev_link); 4913 4914 int netdev_master_upper_dev_link_private(struct net_device *dev, 4915 struct net_device *upper_dev, 4916 void *private) 4917 { 4918 return __netdev_upper_dev_link(dev, upper_dev, true, private); 4919 } 4920 EXPORT_SYMBOL(netdev_master_upper_dev_link_private); 4921 4922 /** 4923 * netdev_upper_dev_unlink - Removes a link to upper device 4924 * @dev: device 4925 * @upper_dev: new upper device 4926 * 4927 * Removes a link to device which is upper to this one. The caller must hold 4928 * the RTNL lock. 4929 */ 4930 void netdev_upper_dev_unlink(struct net_device *dev, 4931 struct net_device *upper_dev) 4932 { 4933 struct netdev_adjacent *i, *j; 4934 ASSERT_RTNL(); 4935 4936 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 4937 4938 /* Here is the tricky part. We must remove all dev's lower 4939 * devices from all upper_dev's upper devices and vice 4940 * versa, to maintain the graph relationship. 4941 */ 4942 list_for_each_entry(i, &dev->all_adj_list.lower, list) 4943 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) 4944 __netdev_adjacent_dev_unlink(i->dev, j->dev); 4945 4946 /* remove also the devices itself from lower/upper device 4947 * list 4948 */ 4949 list_for_each_entry(i, &dev->all_adj_list.lower, list) 4950 __netdev_adjacent_dev_unlink(i->dev, upper_dev); 4951 4952 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) 4953 __netdev_adjacent_dev_unlink(dev, i->dev); 4954 4955 call_netdevice_notifiers(NETDEV_CHANGEUPPER, dev); 4956 } 4957 EXPORT_SYMBOL(netdev_upper_dev_unlink); 4958 4959 void *netdev_lower_dev_get_private_rcu(struct net_device *dev, 4960 struct net_device *lower_dev) 4961 { 4962 struct netdev_adjacent *lower; 4963 4964 if (!lower_dev) 4965 return NULL; 4966 lower = __netdev_find_adj_rcu(dev, lower_dev, &dev->adj_list.lower); 4967 if (!lower) 4968 return NULL; 4969 4970 return lower->private; 4971 } 4972 EXPORT_SYMBOL(netdev_lower_dev_get_private_rcu); 4973 4974 void *netdev_lower_dev_get_private(struct net_device *dev, 4975 struct net_device *lower_dev) 4976 { 4977 struct netdev_adjacent *lower; 4978 4979 if (!lower_dev) 4980 return NULL; 4981 lower = __netdev_find_adj(dev, lower_dev, &dev->adj_list.lower); 4982 if (!lower) 4983 return NULL; 4984 4985 return lower->private; 4986 } 4987 EXPORT_SYMBOL(netdev_lower_dev_get_private); 4988 4989 static void dev_change_rx_flags(struct net_device *dev, int flags) 4990 { 4991 const struct net_device_ops *ops = dev->netdev_ops; 4992 4993 if (ops->ndo_change_rx_flags) 4994 ops->ndo_change_rx_flags(dev, flags); 4995 } 4996 4997 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify) 4998 { 4999 unsigned int old_flags = dev->flags; 5000 kuid_t uid; 5001 kgid_t gid; 5002 5003 ASSERT_RTNL(); 5004 5005 dev->flags |= IFF_PROMISC; 5006 dev->promiscuity += inc; 5007 if (dev->promiscuity == 0) { 5008 /* 5009 * Avoid overflow. 5010 * If inc causes overflow, untouch promisc and return error. 5011 */ 5012 if (inc < 0) 5013 dev->flags &= ~IFF_PROMISC; 5014 else { 5015 dev->promiscuity -= inc; 5016 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n", 5017 dev->name); 5018 return -EOVERFLOW; 5019 } 5020 } 5021 if (dev->flags != old_flags) { 5022 pr_info("device %s %s promiscuous mode\n", 5023 dev->name, 5024 dev->flags & IFF_PROMISC ? "entered" : "left"); 5025 if (audit_enabled) { 5026 current_uid_gid(&uid, &gid); 5027 audit_log(current->audit_context, GFP_ATOMIC, 5028 AUDIT_ANOM_PROMISCUOUS, 5029 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u", 5030 dev->name, (dev->flags & IFF_PROMISC), 5031 (old_flags & IFF_PROMISC), 5032 from_kuid(&init_user_ns, audit_get_loginuid(current)), 5033 from_kuid(&init_user_ns, uid), 5034 from_kgid(&init_user_ns, gid), 5035 audit_get_sessionid(current)); 5036 } 5037 5038 dev_change_rx_flags(dev, IFF_PROMISC); 5039 } 5040 if (notify) 5041 __dev_notify_flags(dev, old_flags, IFF_PROMISC); 5042 return 0; 5043 } 5044 5045 /** 5046 * dev_set_promiscuity - update promiscuity count on a device 5047 * @dev: device 5048 * @inc: modifier 5049 * 5050 * Add or remove promiscuity from a device. While the count in the device 5051 * remains above zero the interface remains promiscuous. Once it hits zero 5052 * the device reverts back to normal filtering operation. A negative inc 5053 * value is used to drop promiscuity on the device. 5054 * Return 0 if successful or a negative errno code on error. 5055 */ 5056 int dev_set_promiscuity(struct net_device *dev, int inc) 5057 { 5058 unsigned int old_flags = dev->flags; 5059 int err; 5060 5061 err = __dev_set_promiscuity(dev, inc, true); 5062 if (err < 0) 5063 return err; 5064 if (dev->flags != old_flags) 5065 dev_set_rx_mode(dev); 5066 return err; 5067 } 5068 EXPORT_SYMBOL(dev_set_promiscuity); 5069 5070 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify) 5071 { 5072 unsigned int old_flags = dev->flags, old_gflags = dev->gflags; 5073 5074 ASSERT_RTNL(); 5075 5076 dev->flags |= IFF_ALLMULTI; 5077 dev->allmulti += inc; 5078 if (dev->allmulti == 0) { 5079 /* 5080 * Avoid overflow. 5081 * If inc causes overflow, untouch allmulti and return error. 5082 */ 5083 if (inc < 0) 5084 dev->flags &= ~IFF_ALLMULTI; 5085 else { 5086 dev->allmulti -= inc; 5087 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n", 5088 dev->name); 5089 return -EOVERFLOW; 5090 } 5091 } 5092 if (dev->flags ^ old_flags) { 5093 dev_change_rx_flags(dev, IFF_ALLMULTI); 5094 dev_set_rx_mode(dev); 5095 if (notify) 5096 __dev_notify_flags(dev, old_flags, 5097 dev->gflags ^ old_gflags); 5098 } 5099 return 0; 5100 } 5101 5102 /** 5103 * dev_set_allmulti - update allmulti count on a device 5104 * @dev: device 5105 * @inc: modifier 5106 * 5107 * Add or remove reception of all multicast frames to a device. While the 5108 * count in the device remains above zero the interface remains listening 5109 * to all interfaces. Once it hits zero the device reverts back to normal 5110 * filtering operation. A negative @inc value is used to drop the counter 5111 * when releasing a resource needing all multicasts. 5112 * Return 0 if successful or a negative errno code on error. 5113 */ 5114 5115 int dev_set_allmulti(struct net_device *dev, int inc) 5116 { 5117 return __dev_set_allmulti(dev, inc, true); 5118 } 5119 EXPORT_SYMBOL(dev_set_allmulti); 5120 5121 /* 5122 * Upload unicast and multicast address lists to device and 5123 * configure RX filtering. When the device doesn't support unicast 5124 * filtering it is put in promiscuous mode while unicast addresses 5125 * are present. 5126 */ 5127 void __dev_set_rx_mode(struct net_device *dev) 5128 { 5129 const struct net_device_ops *ops = dev->netdev_ops; 5130 5131 /* dev_open will call this function so the list will stay sane. */ 5132 if (!(dev->flags&IFF_UP)) 5133 return; 5134 5135 if (!netif_device_present(dev)) 5136 return; 5137 5138 if (!(dev->priv_flags & IFF_UNICAST_FLT)) { 5139 /* Unicast addresses changes may only happen under the rtnl, 5140 * therefore calling __dev_set_promiscuity here is safe. 5141 */ 5142 if (!netdev_uc_empty(dev) && !dev->uc_promisc) { 5143 __dev_set_promiscuity(dev, 1, false); 5144 dev->uc_promisc = true; 5145 } else if (netdev_uc_empty(dev) && dev->uc_promisc) { 5146 __dev_set_promiscuity(dev, -1, false); 5147 dev->uc_promisc = false; 5148 } 5149 } 5150 5151 if (ops->ndo_set_rx_mode) 5152 ops->ndo_set_rx_mode(dev); 5153 } 5154 5155 void dev_set_rx_mode(struct net_device *dev) 5156 { 5157 netif_addr_lock_bh(dev); 5158 __dev_set_rx_mode(dev); 5159 netif_addr_unlock_bh(dev); 5160 } 5161 5162 /** 5163 * dev_get_flags - get flags reported to userspace 5164 * @dev: device 5165 * 5166 * Get the combination of flag bits exported through APIs to userspace. 5167 */ 5168 unsigned int dev_get_flags(const struct net_device *dev) 5169 { 5170 unsigned int flags; 5171 5172 flags = (dev->flags & ~(IFF_PROMISC | 5173 IFF_ALLMULTI | 5174 IFF_RUNNING | 5175 IFF_LOWER_UP | 5176 IFF_DORMANT)) | 5177 (dev->gflags & (IFF_PROMISC | 5178 IFF_ALLMULTI)); 5179 5180 if (netif_running(dev)) { 5181 if (netif_oper_up(dev)) 5182 flags |= IFF_RUNNING; 5183 if (netif_carrier_ok(dev)) 5184 flags |= IFF_LOWER_UP; 5185 if (netif_dormant(dev)) 5186 flags |= IFF_DORMANT; 5187 } 5188 5189 return flags; 5190 } 5191 EXPORT_SYMBOL(dev_get_flags); 5192 5193 int __dev_change_flags(struct net_device *dev, unsigned int flags) 5194 { 5195 unsigned int old_flags = dev->flags; 5196 int ret; 5197 5198 ASSERT_RTNL(); 5199 5200 /* 5201 * Set the flags on our device. 5202 */ 5203 5204 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP | 5205 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL | 5206 IFF_AUTOMEDIA)) | 5207 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC | 5208 IFF_ALLMULTI)); 5209 5210 /* 5211 * Load in the correct multicast list now the flags have changed. 5212 */ 5213 5214 if ((old_flags ^ flags) & IFF_MULTICAST) 5215 dev_change_rx_flags(dev, IFF_MULTICAST); 5216 5217 dev_set_rx_mode(dev); 5218 5219 /* 5220 * Have we downed the interface. We handle IFF_UP ourselves 5221 * according to user attempts to set it, rather than blindly 5222 * setting it. 5223 */ 5224 5225 ret = 0; 5226 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */ 5227 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev); 5228 5229 if (!ret) 5230 dev_set_rx_mode(dev); 5231 } 5232 5233 if ((flags ^ dev->gflags) & IFF_PROMISC) { 5234 int inc = (flags & IFF_PROMISC) ? 1 : -1; 5235 unsigned int old_flags = dev->flags; 5236 5237 dev->gflags ^= IFF_PROMISC; 5238 5239 if (__dev_set_promiscuity(dev, inc, false) >= 0) 5240 if (dev->flags != old_flags) 5241 dev_set_rx_mode(dev); 5242 } 5243 5244 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI 5245 is important. Some (broken) drivers set IFF_PROMISC, when 5246 IFF_ALLMULTI is requested not asking us and not reporting. 5247 */ 5248 if ((flags ^ dev->gflags) & IFF_ALLMULTI) { 5249 int inc = (flags & IFF_ALLMULTI) ? 1 : -1; 5250 5251 dev->gflags ^= IFF_ALLMULTI; 5252 __dev_set_allmulti(dev, inc, false); 5253 } 5254 5255 return ret; 5256 } 5257 5258 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags, 5259 unsigned int gchanges) 5260 { 5261 unsigned int changes = dev->flags ^ old_flags; 5262 5263 if (gchanges) 5264 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC); 5265 5266 if (changes & IFF_UP) { 5267 if (dev->flags & IFF_UP) 5268 call_netdevice_notifiers(NETDEV_UP, dev); 5269 else 5270 call_netdevice_notifiers(NETDEV_DOWN, dev); 5271 } 5272 5273 if (dev->flags & IFF_UP && 5274 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) { 5275 struct netdev_notifier_change_info change_info; 5276 5277 change_info.flags_changed = changes; 5278 call_netdevice_notifiers_info(NETDEV_CHANGE, dev, 5279 &change_info.info); 5280 } 5281 } 5282 5283 /** 5284 * dev_change_flags - change device settings 5285 * @dev: device 5286 * @flags: device state flags 5287 * 5288 * Change settings on device based state flags. The flags are 5289 * in the userspace exported format. 5290 */ 5291 int dev_change_flags(struct net_device *dev, unsigned int flags) 5292 { 5293 int ret; 5294 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags; 5295 5296 ret = __dev_change_flags(dev, flags); 5297 if (ret < 0) 5298 return ret; 5299 5300 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags); 5301 __dev_notify_flags(dev, old_flags, changes); 5302 return ret; 5303 } 5304 EXPORT_SYMBOL(dev_change_flags); 5305 5306 /** 5307 * dev_set_mtu - Change maximum transfer unit 5308 * @dev: device 5309 * @new_mtu: new transfer unit 5310 * 5311 * Change the maximum transfer size of the network device. 5312 */ 5313 int dev_set_mtu(struct net_device *dev, int new_mtu) 5314 { 5315 const struct net_device_ops *ops = dev->netdev_ops; 5316 int err; 5317 5318 if (new_mtu == dev->mtu) 5319 return 0; 5320 5321 /* MTU must be positive. */ 5322 if (new_mtu < 0) 5323 return -EINVAL; 5324 5325 if (!netif_device_present(dev)) 5326 return -ENODEV; 5327 5328 err = 0; 5329 if (ops->ndo_change_mtu) 5330 err = ops->ndo_change_mtu(dev, new_mtu); 5331 else 5332 dev->mtu = new_mtu; 5333 5334 if (!err) 5335 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev); 5336 return err; 5337 } 5338 EXPORT_SYMBOL(dev_set_mtu); 5339 5340 /** 5341 * dev_set_group - Change group this device belongs to 5342 * @dev: device 5343 * @new_group: group this device should belong to 5344 */ 5345 void dev_set_group(struct net_device *dev, int new_group) 5346 { 5347 dev->group = new_group; 5348 } 5349 EXPORT_SYMBOL(dev_set_group); 5350 5351 /** 5352 * dev_set_mac_address - Change Media Access Control Address 5353 * @dev: device 5354 * @sa: new address 5355 * 5356 * Change the hardware (MAC) address of the device 5357 */ 5358 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa) 5359 { 5360 const struct net_device_ops *ops = dev->netdev_ops; 5361 int err; 5362 5363 if (!ops->ndo_set_mac_address) 5364 return -EOPNOTSUPP; 5365 if (sa->sa_family != dev->type) 5366 return -EINVAL; 5367 if (!netif_device_present(dev)) 5368 return -ENODEV; 5369 err = ops->ndo_set_mac_address(dev, sa); 5370 if (err) 5371 return err; 5372 dev->addr_assign_type = NET_ADDR_SET; 5373 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 5374 add_device_randomness(dev->dev_addr, dev->addr_len); 5375 return 0; 5376 } 5377 EXPORT_SYMBOL(dev_set_mac_address); 5378 5379 /** 5380 * dev_change_carrier - Change device carrier 5381 * @dev: device 5382 * @new_carrier: new value 5383 * 5384 * Change device carrier 5385 */ 5386 int dev_change_carrier(struct net_device *dev, bool new_carrier) 5387 { 5388 const struct net_device_ops *ops = dev->netdev_ops; 5389 5390 if (!ops->ndo_change_carrier) 5391 return -EOPNOTSUPP; 5392 if (!netif_device_present(dev)) 5393 return -ENODEV; 5394 return ops->ndo_change_carrier(dev, new_carrier); 5395 } 5396 EXPORT_SYMBOL(dev_change_carrier); 5397 5398 /** 5399 * dev_get_phys_port_id - Get device physical port ID 5400 * @dev: device 5401 * @ppid: port ID 5402 * 5403 * Get device physical port ID 5404 */ 5405 int dev_get_phys_port_id(struct net_device *dev, 5406 struct netdev_phys_port_id *ppid) 5407 { 5408 const struct net_device_ops *ops = dev->netdev_ops; 5409 5410 if (!ops->ndo_get_phys_port_id) 5411 return -EOPNOTSUPP; 5412 return ops->ndo_get_phys_port_id(dev, ppid); 5413 } 5414 EXPORT_SYMBOL(dev_get_phys_port_id); 5415 5416 /** 5417 * dev_new_index - allocate an ifindex 5418 * @net: the applicable net namespace 5419 * 5420 * Returns a suitable unique value for a new device interface 5421 * number. The caller must hold the rtnl semaphore or the 5422 * dev_base_lock to be sure it remains unique. 5423 */ 5424 static int dev_new_index(struct net *net) 5425 { 5426 int ifindex = net->ifindex; 5427 for (;;) { 5428 if (++ifindex <= 0) 5429 ifindex = 1; 5430 if (!__dev_get_by_index(net, ifindex)) 5431 return net->ifindex = ifindex; 5432 } 5433 } 5434 5435 /* Delayed registration/unregisteration */ 5436 static LIST_HEAD(net_todo_list); 5437 static DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq); 5438 5439 static void net_set_todo(struct net_device *dev) 5440 { 5441 list_add_tail(&dev->todo_list, &net_todo_list); 5442 dev_net(dev)->dev_unreg_count++; 5443 } 5444 5445 static void rollback_registered_many(struct list_head *head) 5446 { 5447 struct net_device *dev, *tmp; 5448 LIST_HEAD(close_head); 5449 5450 BUG_ON(dev_boot_phase); 5451 ASSERT_RTNL(); 5452 5453 list_for_each_entry_safe(dev, tmp, head, unreg_list) { 5454 /* Some devices call without registering 5455 * for initialization unwind. Remove those 5456 * devices and proceed with the remaining. 5457 */ 5458 if (dev->reg_state == NETREG_UNINITIALIZED) { 5459 pr_debug("unregister_netdevice: device %s/%p never was registered\n", 5460 dev->name, dev); 5461 5462 WARN_ON(1); 5463 list_del(&dev->unreg_list); 5464 continue; 5465 } 5466 dev->dismantle = true; 5467 BUG_ON(dev->reg_state != NETREG_REGISTERED); 5468 } 5469 5470 /* If device is running, close it first. */ 5471 list_for_each_entry(dev, head, unreg_list) 5472 list_add_tail(&dev->close_list, &close_head); 5473 dev_close_many(&close_head); 5474 5475 list_for_each_entry(dev, head, unreg_list) { 5476 /* And unlink it from device chain. */ 5477 unlist_netdevice(dev); 5478 5479 dev->reg_state = NETREG_UNREGISTERING; 5480 } 5481 5482 synchronize_net(); 5483 5484 list_for_each_entry(dev, head, unreg_list) { 5485 /* Shutdown queueing discipline. */ 5486 dev_shutdown(dev); 5487 5488 5489 /* Notify protocols, that we are about to destroy 5490 this device. They should clean all the things. 5491 */ 5492 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 5493 5494 if (!dev->rtnl_link_ops || 5495 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 5496 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL); 5497 5498 /* 5499 * Flush the unicast and multicast chains 5500 */ 5501 dev_uc_flush(dev); 5502 dev_mc_flush(dev); 5503 5504 if (dev->netdev_ops->ndo_uninit) 5505 dev->netdev_ops->ndo_uninit(dev); 5506 5507 /* Notifier chain MUST detach us all upper devices. */ 5508 WARN_ON(netdev_has_any_upper_dev(dev)); 5509 5510 /* Remove entries from kobject tree */ 5511 netdev_unregister_kobject(dev); 5512 #ifdef CONFIG_XPS 5513 /* Remove XPS queueing entries */ 5514 netif_reset_xps_queues_gt(dev, 0); 5515 #endif 5516 } 5517 5518 synchronize_net(); 5519 5520 list_for_each_entry(dev, head, unreg_list) 5521 dev_put(dev); 5522 } 5523 5524 static void rollback_registered(struct net_device *dev) 5525 { 5526 LIST_HEAD(single); 5527 5528 list_add(&dev->unreg_list, &single); 5529 rollback_registered_many(&single); 5530 list_del(&single); 5531 } 5532 5533 static netdev_features_t netdev_fix_features(struct net_device *dev, 5534 netdev_features_t features) 5535 { 5536 /* Fix illegal checksum combinations */ 5537 if ((features & NETIF_F_HW_CSUM) && 5538 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 5539 netdev_warn(dev, "mixed HW and IP checksum settings.\n"); 5540 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 5541 } 5542 5543 /* TSO requires that SG is present as well. */ 5544 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) { 5545 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n"); 5546 features &= ~NETIF_F_ALL_TSO; 5547 } 5548 5549 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) && 5550 !(features & NETIF_F_IP_CSUM)) { 5551 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n"); 5552 features &= ~NETIF_F_TSO; 5553 features &= ~NETIF_F_TSO_ECN; 5554 } 5555 5556 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) && 5557 !(features & NETIF_F_IPV6_CSUM)) { 5558 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n"); 5559 features &= ~NETIF_F_TSO6; 5560 } 5561 5562 /* TSO ECN requires that TSO is present as well. */ 5563 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN) 5564 features &= ~NETIF_F_TSO_ECN; 5565 5566 /* Software GSO depends on SG. */ 5567 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) { 5568 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n"); 5569 features &= ~NETIF_F_GSO; 5570 } 5571 5572 /* UFO needs SG and checksumming */ 5573 if (features & NETIF_F_UFO) { 5574 /* maybe split UFO into V4 and V6? */ 5575 if (!((features & NETIF_F_GEN_CSUM) || 5576 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM)) 5577 == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 5578 netdev_dbg(dev, 5579 "Dropping NETIF_F_UFO since no checksum offload features.\n"); 5580 features &= ~NETIF_F_UFO; 5581 } 5582 5583 if (!(features & NETIF_F_SG)) { 5584 netdev_dbg(dev, 5585 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n"); 5586 features &= ~NETIF_F_UFO; 5587 } 5588 } 5589 5590 return features; 5591 } 5592 5593 int __netdev_update_features(struct net_device *dev) 5594 { 5595 netdev_features_t features; 5596 int err = 0; 5597 5598 ASSERT_RTNL(); 5599 5600 features = netdev_get_wanted_features(dev); 5601 5602 if (dev->netdev_ops->ndo_fix_features) 5603 features = dev->netdev_ops->ndo_fix_features(dev, features); 5604 5605 /* driver might be less strict about feature dependencies */ 5606 features = netdev_fix_features(dev, features); 5607 5608 if (dev->features == features) 5609 return 0; 5610 5611 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n", 5612 &dev->features, &features); 5613 5614 if (dev->netdev_ops->ndo_set_features) 5615 err = dev->netdev_ops->ndo_set_features(dev, features); 5616 5617 if (unlikely(err < 0)) { 5618 netdev_err(dev, 5619 "set_features() failed (%d); wanted %pNF, left %pNF\n", 5620 err, &features, &dev->features); 5621 return -1; 5622 } 5623 5624 if (!err) 5625 dev->features = features; 5626 5627 return 1; 5628 } 5629 5630 /** 5631 * netdev_update_features - recalculate device features 5632 * @dev: the device to check 5633 * 5634 * Recalculate dev->features set and send notifications if it 5635 * has changed. Should be called after driver or hardware dependent 5636 * conditions might have changed that influence the features. 5637 */ 5638 void netdev_update_features(struct net_device *dev) 5639 { 5640 if (__netdev_update_features(dev)) 5641 netdev_features_change(dev); 5642 } 5643 EXPORT_SYMBOL(netdev_update_features); 5644 5645 /** 5646 * netdev_change_features - recalculate device features 5647 * @dev: the device to check 5648 * 5649 * Recalculate dev->features set and send notifications even 5650 * if they have not changed. Should be called instead of 5651 * netdev_update_features() if also dev->vlan_features might 5652 * have changed to allow the changes to be propagated to stacked 5653 * VLAN devices. 5654 */ 5655 void netdev_change_features(struct net_device *dev) 5656 { 5657 __netdev_update_features(dev); 5658 netdev_features_change(dev); 5659 } 5660 EXPORT_SYMBOL(netdev_change_features); 5661 5662 /** 5663 * netif_stacked_transfer_operstate - transfer operstate 5664 * @rootdev: the root or lower level device to transfer state from 5665 * @dev: the device to transfer operstate to 5666 * 5667 * Transfer operational state from root to device. This is normally 5668 * called when a stacking relationship exists between the root 5669 * device and the device(a leaf device). 5670 */ 5671 void netif_stacked_transfer_operstate(const struct net_device *rootdev, 5672 struct net_device *dev) 5673 { 5674 if (rootdev->operstate == IF_OPER_DORMANT) 5675 netif_dormant_on(dev); 5676 else 5677 netif_dormant_off(dev); 5678 5679 if (netif_carrier_ok(rootdev)) { 5680 if (!netif_carrier_ok(dev)) 5681 netif_carrier_on(dev); 5682 } else { 5683 if (netif_carrier_ok(dev)) 5684 netif_carrier_off(dev); 5685 } 5686 } 5687 EXPORT_SYMBOL(netif_stacked_transfer_operstate); 5688 5689 #ifdef CONFIG_RPS 5690 static int netif_alloc_rx_queues(struct net_device *dev) 5691 { 5692 unsigned int i, count = dev->num_rx_queues; 5693 struct netdev_rx_queue *rx; 5694 5695 BUG_ON(count < 1); 5696 5697 rx = kcalloc(count, sizeof(struct netdev_rx_queue), GFP_KERNEL); 5698 if (!rx) 5699 return -ENOMEM; 5700 5701 dev->_rx = rx; 5702 5703 for (i = 0; i < count; i++) 5704 rx[i].dev = dev; 5705 return 0; 5706 } 5707 #endif 5708 5709 static void netdev_init_one_queue(struct net_device *dev, 5710 struct netdev_queue *queue, void *_unused) 5711 { 5712 /* Initialize queue lock */ 5713 spin_lock_init(&queue->_xmit_lock); 5714 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type); 5715 queue->xmit_lock_owner = -1; 5716 netdev_queue_numa_node_write(queue, NUMA_NO_NODE); 5717 queue->dev = dev; 5718 #ifdef CONFIG_BQL 5719 dql_init(&queue->dql, HZ); 5720 #endif 5721 } 5722 5723 static void netif_free_tx_queues(struct net_device *dev) 5724 { 5725 if (is_vmalloc_addr(dev->_tx)) 5726 vfree(dev->_tx); 5727 else 5728 kfree(dev->_tx); 5729 } 5730 5731 static int netif_alloc_netdev_queues(struct net_device *dev) 5732 { 5733 unsigned int count = dev->num_tx_queues; 5734 struct netdev_queue *tx; 5735 size_t sz = count * sizeof(*tx); 5736 5737 BUG_ON(count < 1 || count > 0xffff); 5738 5739 tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT); 5740 if (!tx) { 5741 tx = vzalloc(sz); 5742 if (!tx) 5743 return -ENOMEM; 5744 } 5745 dev->_tx = tx; 5746 5747 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL); 5748 spin_lock_init(&dev->tx_global_lock); 5749 5750 return 0; 5751 } 5752 5753 /** 5754 * register_netdevice - register a network device 5755 * @dev: device to register 5756 * 5757 * Take a completed network device structure and add it to the kernel 5758 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 5759 * chain. 0 is returned on success. A negative errno code is returned 5760 * on a failure to set up the device, or if the name is a duplicate. 5761 * 5762 * Callers must hold the rtnl semaphore. You may want 5763 * register_netdev() instead of this. 5764 * 5765 * BUGS: 5766 * The locking appears insufficient to guarantee two parallel registers 5767 * will not get the same name. 5768 */ 5769 5770 int register_netdevice(struct net_device *dev) 5771 { 5772 int ret; 5773 struct net *net = dev_net(dev); 5774 5775 BUG_ON(dev_boot_phase); 5776 ASSERT_RTNL(); 5777 5778 might_sleep(); 5779 5780 /* When net_device's are persistent, this will be fatal. */ 5781 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED); 5782 BUG_ON(!net); 5783 5784 spin_lock_init(&dev->addr_list_lock); 5785 netdev_set_addr_lockdep_class(dev); 5786 5787 dev->iflink = -1; 5788 5789 ret = dev_get_valid_name(net, dev, dev->name); 5790 if (ret < 0) 5791 goto out; 5792 5793 /* Init, if this function is available */ 5794 if (dev->netdev_ops->ndo_init) { 5795 ret = dev->netdev_ops->ndo_init(dev); 5796 if (ret) { 5797 if (ret > 0) 5798 ret = -EIO; 5799 goto out; 5800 } 5801 } 5802 5803 if (((dev->hw_features | dev->features) & 5804 NETIF_F_HW_VLAN_CTAG_FILTER) && 5805 (!dev->netdev_ops->ndo_vlan_rx_add_vid || 5806 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) { 5807 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n"); 5808 ret = -EINVAL; 5809 goto err_uninit; 5810 } 5811 5812 ret = -EBUSY; 5813 if (!dev->ifindex) 5814 dev->ifindex = dev_new_index(net); 5815 else if (__dev_get_by_index(net, dev->ifindex)) 5816 goto err_uninit; 5817 5818 if (dev->iflink == -1) 5819 dev->iflink = dev->ifindex; 5820 5821 /* Transfer changeable features to wanted_features and enable 5822 * software offloads (GSO and GRO). 5823 */ 5824 dev->hw_features |= NETIF_F_SOFT_FEATURES; 5825 dev->features |= NETIF_F_SOFT_FEATURES; 5826 dev->wanted_features = dev->features & dev->hw_features; 5827 5828 /* Turn on no cache copy if HW is doing checksum */ 5829 if (!(dev->flags & IFF_LOOPBACK)) { 5830 dev->hw_features |= NETIF_F_NOCACHE_COPY; 5831 if (dev->features & NETIF_F_ALL_CSUM) { 5832 dev->wanted_features |= NETIF_F_NOCACHE_COPY; 5833 dev->features |= NETIF_F_NOCACHE_COPY; 5834 } 5835 } 5836 5837 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices. 5838 */ 5839 dev->vlan_features |= NETIF_F_HIGHDMA; 5840 5841 /* Make NETIF_F_SG inheritable to tunnel devices. 5842 */ 5843 dev->hw_enc_features |= NETIF_F_SG; 5844 5845 /* Make NETIF_F_SG inheritable to MPLS. 5846 */ 5847 dev->mpls_features |= NETIF_F_SG; 5848 5849 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev); 5850 ret = notifier_to_errno(ret); 5851 if (ret) 5852 goto err_uninit; 5853 5854 ret = netdev_register_kobject(dev); 5855 if (ret) 5856 goto err_uninit; 5857 dev->reg_state = NETREG_REGISTERED; 5858 5859 __netdev_update_features(dev); 5860 5861 /* 5862 * Default initial state at registry is that the 5863 * device is present. 5864 */ 5865 5866 set_bit(__LINK_STATE_PRESENT, &dev->state); 5867 5868 linkwatch_init_dev(dev); 5869 5870 dev_init_scheduler(dev); 5871 dev_hold(dev); 5872 list_netdevice(dev); 5873 add_device_randomness(dev->dev_addr, dev->addr_len); 5874 5875 /* If the device has permanent device address, driver should 5876 * set dev_addr and also addr_assign_type should be set to 5877 * NET_ADDR_PERM (default value). 5878 */ 5879 if (dev->addr_assign_type == NET_ADDR_PERM) 5880 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len); 5881 5882 /* Notify protocols, that a new device appeared. */ 5883 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev); 5884 ret = notifier_to_errno(ret); 5885 if (ret) { 5886 rollback_registered(dev); 5887 dev->reg_state = NETREG_UNREGISTERED; 5888 } 5889 /* 5890 * Prevent userspace races by waiting until the network 5891 * device is fully setup before sending notifications. 5892 */ 5893 if (!dev->rtnl_link_ops || 5894 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 5895 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL); 5896 5897 out: 5898 return ret; 5899 5900 err_uninit: 5901 if (dev->netdev_ops->ndo_uninit) 5902 dev->netdev_ops->ndo_uninit(dev); 5903 goto out; 5904 } 5905 EXPORT_SYMBOL(register_netdevice); 5906 5907 /** 5908 * init_dummy_netdev - init a dummy network device for NAPI 5909 * @dev: device to init 5910 * 5911 * This takes a network device structure and initialize the minimum 5912 * amount of fields so it can be used to schedule NAPI polls without 5913 * registering a full blown interface. This is to be used by drivers 5914 * that need to tie several hardware interfaces to a single NAPI 5915 * poll scheduler due to HW limitations. 5916 */ 5917 int init_dummy_netdev(struct net_device *dev) 5918 { 5919 /* Clear everything. Note we don't initialize spinlocks 5920 * are they aren't supposed to be taken by any of the 5921 * NAPI code and this dummy netdev is supposed to be 5922 * only ever used for NAPI polls 5923 */ 5924 memset(dev, 0, sizeof(struct net_device)); 5925 5926 /* make sure we BUG if trying to hit standard 5927 * register/unregister code path 5928 */ 5929 dev->reg_state = NETREG_DUMMY; 5930 5931 /* NAPI wants this */ 5932 INIT_LIST_HEAD(&dev->napi_list); 5933 5934 /* a dummy interface is started by default */ 5935 set_bit(__LINK_STATE_PRESENT, &dev->state); 5936 set_bit(__LINK_STATE_START, &dev->state); 5937 5938 /* Note : We dont allocate pcpu_refcnt for dummy devices, 5939 * because users of this 'device' dont need to change 5940 * its refcount. 5941 */ 5942 5943 return 0; 5944 } 5945 EXPORT_SYMBOL_GPL(init_dummy_netdev); 5946 5947 5948 /** 5949 * register_netdev - register a network device 5950 * @dev: device to register 5951 * 5952 * Take a completed network device structure and add it to the kernel 5953 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 5954 * chain. 0 is returned on success. A negative errno code is returned 5955 * on a failure to set up the device, or if the name is a duplicate. 5956 * 5957 * This is a wrapper around register_netdevice that takes the rtnl semaphore 5958 * and expands the device name if you passed a format string to 5959 * alloc_netdev. 5960 */ 5961 int register_netdev(struct net_device *dev) 5962 { 5963 int err; 5964 5965 rtnl_lock(); 5966 err = register_netdevice(dev); 5967 rtnl_unlock(); 5968 return err; 5969 } 5970 EXPORT_SYMBOL(register_netdev); 5971 5972 int netdev_refcnt_read(const struct net_device *dev) 5973 { 5974 int i, refcnt = 0; 5975 5976 for_each_possible_cpu(i) 5977 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i); 5978 return refcnt; 5979 } 5980 EXPORT_SYMBOL(netdev_refcnt_read); 5981 5982 /** 5983 * netdev_wait_allrefs - wait until all references are gone. 5984 * @dev: target net_device 5985 * 5986 * This is called when unregistering network devices. 5987 * 5988 * Any protocol or device that holds a reference should register 5989 * for netdevice notification, and cleanup and put back the 5990 * reference if they receive an UNREGISTER event. 5991 * We can get stuck here if buggy protocols don't correctly 5992 * call dev_put. 5993 */ 5994 static void netdev_wait_allrefs(struct net_device *dev) 5995 { 5996 unsigned long rebroadcast_time, warning_time; 5997 int refcnt; 5998 5999 linkwatch_forget_dev(dev); 6000 6001 rebroadcast_time = warning_time = jiffies; 6002 refcnt = netdev_refcnt_read(dev); 6003 6004 while (refcnt != 0) { 6005 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) { 6006 rtnl_lock(); 6007 6008 /* Rebroadcast unregister notification */ 6009 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 6010 6011 __rtnl_unlock(); 6012 rcu_barrier(); 6013 rtnl_lock(); 6014 6015 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev); 6016 if (test_bit(__LINK_STATE_LINKWATCH_PENDING, 6017 &dev->state)) { 6018 /* We must not have linkwatch events 6019 * pending on unregister. If this 6020 * happens, we simply run the queue 6021 * unscheduled, resulting in a noop 6022 * for this device. 6023 */ 6024 linkwatch_run_queue(); 6025 } 6026 6027 __rtnl_unlock(); 6028 6029 rebroadcast_time = jiffies; 6030 } 6031 6032 msleep(250); 6033 6034 refcnt = netdev_refcnt_read(dev); 6035 6036 if (time_after(jiffies, warning_time + 10 * HZ)) { 6037 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n", 6038 dev->name, refcnt); 6039 warning_time = jiffies; 6040 } 6041 } 6042 } 6043 6044 /* The sequence is: 6045 * 6046 * rtnl_lock(); 6047 * ... 6048 * register_netdevice(x1); 6049 * register_netdevice(x2); 6050 * ... 6051 * unregister_netdevice(y1); 6052 * unregister_netdevice(y2); 6053 * ... 6054 * rtnl_unlock(); 6055 * free_netdev(y1); 6056 * free_netdev(y2); 6057 * 6058 * We are invoked by rtnl_unlock(). 6059 * This allows us to deal with problems: 6060 * 1) We can delete sysfs objects which invoke hotplug 6061 * without deadlocking with linkwatch via keventd. 6062 * 2) Since we run with the RTNL semaphore not held, we can sleep 6063 * safely in order to wait for the netdev refcnt to drop to zero. 6064 * 6065 * We must not return until all unregister events added during 6066 * the interval the lock was held have been completed. 6067 */ 6068 void netdev_run_todo(void) 6069 { 6070 struct list_head list; 6071 6072 /* Snapshot list, allow later requests */ 6073 list_replace_init(&net_todo_list, &list); 6074 6075 __rtnl_unlock(); 6076 6077 6078 /* Wait for rcu callbacks to finish before next phase */ 6079 if (!list_empty(&list)) 6080 rcu_barrier(); 6081 6082 while (!list_empty(&list)) { 6083 struct net_device *dev 6084 = list_first_entry(&list, struct net_device, todo_list); 6085 list_del(&dev->todo_list); 6086 6087 rtnl_lock(); 6088 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev); 6089 __rtnl_unlock(); 6090 6091 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) { 6092 pr_err("network todo '%s' but state %d\n", 6093 dev->name, dev->reg_state); 6094 dump_stack(); 6095 continue; 6096 } 6097 6098 dev->reg_state = NETREG_UNREGISTERED; 6099 6100 on_each_cpu(flush_backlog, dev, 1); 6101 6102 netdev_wait_allrefs(dev); 6103 6104 /* paranoia */ 6105 BUG_ON(netdev_refcnt_read(dev)); 6106 WARN_ON(rcu_access_pointer(dev->ip_ptr)); 6107 WARN_ON(rcu_access_pointer(dev->ip6_ptr)); 6108 WARN_ON(dev->dn_ptr); 6109 6110 if (dev->destructor) 6111 dev->destructor(dev); 6112 6113 /* Report a network device has been unregistered */ 6114 rtnl_lock(); 6115 dev_net(dev)->dev_unreg_count--; 6116 __rtnl_unlock(); 6117 wake_up(&netdev_unregistering_wq); 6118 6119 /* Free network device */ 6120 kobject_put(&dev->dev.kobj); 6121 } 6122 } 6123 6124 /* Convert net_device_stats to rtnl_link_stats64. They have the same 6125 * fields in the same order, with only the type differing. 6126 */ 6127 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 6128 const struct net_device_stats *netdev_stats) 6129 { 6130 #if BITS_PER_LONG == 64 6131 BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats)); 6132 memcpy(stats64, netdev_stats, sizeof(*stats64)); 6133 #else 6134 size_t i, n = sizeof(*stats64) / sizeof(u64); 6135 const unsigned long *src = (const unsigned long *)netdev_stats; 6136 u64 *dst = (u64 *)stats64; 6137 6138 BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) != 6139 sizeof(*stats64) / sizeof(u64)); 6140 for (i = 0; i < n; i++) 6141 dst[i] = src[i]; 6142 #endif 6143 } 6144 EXPORT_SYMBOL(netdev_stats_to_stats64); 6145 6146 /** 6147 * dev_get_stats - get network device statistics 6148 * @dev: device to get statistics from 6149 * @storage: place to store stats 6150 * 6151 * Get network statistics from device. Return @storage. 6152 * The device driver may provide its own method by setting 6153 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats; 6154 * otherwise the internal statistics structure is used. 6155 */ 6156 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 6157 struct rtnl_link_stats64 *storage) 6158 { 6159 const struct net_device_ops *ops = dev->netdev_ops; 6160 6161 if (ops->ndo_get_stats64) { 6162 memset(storage, 0, sizeof(*storage)); 6163 ops->ndo_get_stats64(dev, storage); 6164 } else if (ops->ndo_get_stats) { 6165 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev)); 6166 } else { 6167 netdev_stats_to_stats64(storage, &dev->stats); 6168 } 6169 storage->rx_dropped += atomic_long_read(&dev->rx_dropped); 6170 return storage; 6171 } 6172 EXPORT_SYMBOL(dev_get_stats); 6173 6174 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev) 6175 { 6176 struct netdev_queue *queue = dev_ingress_queue(dev); 6177 6178 #ifdef CONFIG_NET_CLS_ACT 6179 if (queue) 6180 return queue; 6181 queue = kzalloc(sizeof(*queue), GFP_KERNEL); 6182 if (!queue) 6183 return NULL; 6184 netdev_init_one_queue(dev, queue, NULL); 6185 queue->qdisc = &noop_qdisc; 6186 queue->qdisc_sleeping = &noop_qdisc; 6187 rcu_assign_pointer(dev->ingress_queue, queue); 6188 #endif 6189 return queue; 6190 } 6191 6192 static const struct ethtool_ops default_ethtool_ops; 6193 6194 void netdev_set_default_ethtool_ops(struct net_device *dev, 6195 const struct ethtool_ops *ops) 6196 { 6197 if (dev->ethtool_ops == &default_ethtool_ops) 6198 dev->ethtool_ops = ops; 6199 } 6200 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops); 6201 6202 void netdev_freemem(struct net_device *dev) 6203 { 6204 char *addr = (char *)dev - dev->padded; 6205 6206 if (is_vmalloc_addr(addr)) 6207 vfree(addr); 6208 else 6209 kfree(addr); 6210 } 6211 6212 /** 6213 * alloc_netdev_mqs - allocate network device 6214 * @sizeof_priv: size of private data to allocate space for 6215 * @name: device name format string 6216 * @setup: callback to initialize device 6217 * @txqs: the number of TX subqueues to allocate 6218 * @rxqs: the number of RX subqueues to allocate 6219 * 6220 * Allocates a struct net_device with private data area for driver use 6221 * and performs basic initialization. Also allocates subquue structs 6222 * for each queue on the device. 6223 */ 6224 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 6225 void (*setup)(struct net_device *), 6226 unsigned int txqs, unsigned int rxqs) 6227 { 6228 struct net_device *dev; 6229 size_t alloc_size; 6230 struct net_device *p; 6231 6232 BUG_ON(strlen(name) >= sizeof(dev->name)); 6233 6234 if (txqs < 1) { 6235 pr_err("alloc_netdev: Unable to allocate device with zero queues\n"); 6236 return NULL; 6237 } 6238 6239 #ifdef CONFIG_RPS 6240 if (rxqs < 1) { 6241 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n"); 6242 return NULL; 6243 } 6244 #endif 6245 6246 alloc_size = sizeof(struct net_device); 6247 if (sizeof_priv) { 6248 /* ensure 32-byte alignment of private area */ 6249 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN); 6250 alloc_size += sizeof_priv; 6251 } 6252 /* ensure 32-byte alignment of whole construct */ 6253 alloc_size += NETDEV_ALIGN - 1; 6254 6255 p = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT); 6256 if (!p) 6257 p = vzalloc(alloc_size); 6258 if (!p) 6259 return NULL; 6260 6261 dev = PTR_ALIGN(p, NETDEV_ALIGN); 6262 dev->padded = (char *)dev - (char *)p; 6263 6264 dev->pcpu_refcnt = alloc_percpu(int); 6265 if (!dev->pcpu_refcnt) 6266 goto free_dev; 6267 6268 if (dev_addr_init(dev)) 6269 goto free_pcpu; 6270 6271 dev_mc_init(dev); 6272 dev_uc_init(dev); 6273 6274 dev_net_set(dev, &init_net); 6275 6276 dev->gso_max_size = GSO_MAX_SIZE; 6277 dev->gso_max_segs = GSO_MAX_SEGS; 6278 6279 INIT_LIST_HEAD(&dev->napi_list); 6280 INIT_LIST_HEAD(&dev->unreg_list); 6281 INIT_LIST_HEAD(&dev->close_list); 6282 INIT_LIST_HEAD(&dev->link_watch_list); 6283 INIT_LIST_HEAD(&dev->adj_list.upper); 6284 INIT_LIST_HEAD(&dev->adj_list.lower); 6285 INIT_LIST_HEAD(&dev->all_adj_list.upper); 6286 INIT_LIST_HEAD(&dev->all_adj_list.lower); 6287 dev->priv_flags = IFF_XMIT_DST_RELEASE; 6288 setup(dev); 6289 6290 dev->num_tx_queues = txqs; 6291 dev->real_num_tx_queues = txqs; 6292 if (netif_alloc_netdev_queues(dev)) 6293 goto free_all; 6294 6295 #ifdef CONFIG_RPS 6296 dev->num_rx_queues = rxqs; 6297 dev->real_num_rx_queues = rxqs; 6298 if (netif_alloc_rx_queues(dev)) 6299 goto free_all; 6300 #endif 6301 6302 strcpy(dev->name, name); 6303 dev->group = INIT_NETDEV_GROUP; 6304 if (!dev->ethtool_ops) 6305 dev->ethtool_ops = &default_ethtool_ops; 6306 return dev; 6307 6308 free_all: 6309 free_netdev(dev); 6310 return NULL; 6311 6312 free_pcpu: 6313 free_percpu(dev->pcpu_refcnt); 6314 netif_free_tx_queues(dev); 6315 #ifdef CONFIG_RPS 6316 kfree(dev->_rx); 6317 #endif 6318 6319 free_dev: 6320 netdev_freemem(dev); 6321 return NULL; 6322 } 6323 EXPORT_SYMBOL(alloc_netdev_mqs); 6324 6325 /** 6326 * free_netdev - free network device 6327 * @dev: device 6328 * 6329 * This function does the last stage of destroying an allocated device 6330 * interface. The reference to the device object is released. 6331 * If this is the last reference then it will be freed. 6332 */ 6333 void free_netdev(struct net_device *dev) 6334 { 6335 struct napi_struct *p, *n; 6336 6337 release_net(dev_net(dev)); 6338 6339 netif_free_tx_queues(dev); 6340 #ifdef CONFIG_RPS 6341 kfree(dev->_rx); 6342 #endif 6343 6344 kfree(rcu_dereference_protected(dev->ingress_queue, 1)); 6345 6346 /* Flush device addresses */ 6347 dev_addr_flush(dev); 6348 6349 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list) 6350 netif_napi_del(p); 6351 6352 free_percpu(dev->pcpu_refcnt); 6353 dev->pcpu_refcnt = NULL; 6354 6355 /* Compatibility with error handling in drivers */ 6356 if (dev->reg_state == NETREG_UNINITIALIZED) { 6357 netdev_freemem(dev); 6358 return; 6359 } 6360 6361 BUG_ON(dev->reg_state != NETREG_UNREGISTERED); 6362 dev->reg_state = NETREG_RELEASED; 6363 6364 /* will free via device release */ 6365 put_device(&dev->dev); 6366 } 6367 EXPORT_SYMBOL(free_netdev); 6368 6369 /** 6370 * synchronize_net - Synchronize with packet receive processing 6371 * 6372 * Wait for packets currently being received to be done. 6373 * Does not block later packets from starting. 6374 */ 6375 void synchronize_net(void) 6376 { 6377 might_sleep(); 6378 if (rtnl_is_locked()) 6379 synchronize_rcu_expedited(); 6380 else 6381 synchronize_rcu(); 6382 } 6383 EXPORT_SYMBOL(synchronize_net); 6384 6385 /** 6386 * unregister_netdevice_queue - remove device from the kernel 6387 * @dev: device 6388 * @head: list 6389 * 6390 * This function shuts down a device interface and removes it 6391 * from the kernel tables. 6392 * If head not NULL, device is queued to be unregistered later. 6393 * 6394 * Callers must hold the rtnl semaphore. You may want 6395 * unregister_netdev() instead of this. 6396 */ 6397 6398 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head) 6399 { 6400 ASSERT_RTNL(); 6401 6402 if (head) { 6403 list_move_tail(&dev->unreg_list, head); 6404 } else { 6405 rollback_registered(dev); 6406 /* Finish processing unregister after unlock */ 6407 net_set_todo(dev); 6408 } 6409 } 6410 EXPORT_SYMBOL(unregister_netdevice_queue); 6411 6412 /** 6413 * unregister_netdevice_many - unregister many devices 6414 * @head: list of devices 6415 */ 6416 void unregister_netdevice_many(struct list_head *head) 6417 { 6418 struct net_device *dev; 6419 6420 if (!list_empty(head)) { 6421 rollback_registered_many(head); 6422 list_for_each_entry(dev, head, unreg_list) 6423 net_set_todo(dev); 6424 } 6425 } 6426 EXPORT_SYMBOL(unregister_netdevice_many); 6427 6428 /** 6429 * unregister_netdev - remove device from the kernel 6430 * @dev: device 6431 * 6432 * This function shuts down a device interface and removes it 6433 * from the kernel tables. 6434 * 6435 * This is just a wrapper for unregister_netdevice that takes 6436 * the rtnl semaphore. In general you want to use this and not 6437 * unregister_netdevice. 6438 */ 6439 void unregister_netdev(struct net_device *dev) 6440 { 6441 rtnl_lock(); 6442 unregister_netdevice(dev); 6443 rtnl_unlock(); 6444 } 6445 EXPORT_SYMBOL(unregister_netdev); 6446 6447 /** 6448 * dev_change_net_namespace - move device to different nethost namespace 6449 * @dev: device 6450 * @net: network namespace 6451 * @pat: If not NULL name pattern to try if the current device name 6452 * is already taken in the destination network namespace. 6453 * 6454 * This function shuts down a device interface and moves it 6455 * to a new network namespace. On success 0 is returned, on 6456 * a failure a netagive errno code is returned. 6457 * 6458 * Callers must hold the rtnl semaphore. 6459 */ 6460 6461 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat) 6462 { 6463 int err; 6464 6465 ASSERT_RTNL(); 6466 6467 /* Don't allow namespace local devices to be moved. */ 6468 err = -EINVAL; 6469 if (dev->features & NETIF_F_NETNS_LOCAL) 6470 goto out; 6471 6472 /* Ensure the device has been registrered */ 6473 if (dev->reg_state != NETREG_REGISTERED) 6474 goto out; 6475 6476 /* Get out if there is nothing todo */ 6477 err = 0; 6478 if (net_eq(dev_net(dev), net)) 6479 goto out; 6480 6481 /* Pick the destination device name, and ensure 6482 * we can use it in the destination network namespace. 6483 */ 6484 err = -EEXIST; 6485 if (__dev_get_by_name(net, dev->name)) { 6486 /* We get here if we can't use the current device name */ 6487 if (!pat) 6488 goto out; 6489 if (dev_get_valid_name(net, dev, pat) < 0) 6490 goto out; 6491 } 6492 6493 /* 6494 * And now a mini version of register_netdevice unregister_netdevice. 6495 */ 6496 6497 /* If device is running close it first. */ 6498 dev_close(dev); 6499 6500 /* And unlink it from device chain */ 6501 err = -ENODEV; 6502 unlist_netdevice(dev); 6503 6504 synchronize_net(); 6505 6506 /* Shutdown queueing discipline. */ 6507 dev_shutdown(dev); 6508 6509 /* Notify protocols, that we are about to destroy 6510 this device. They should clean all the things. 6511 6512 Note that dev->reg_state stays at NETREG_REGISTERED. 6513 This is wanted because this way 8021q and macvlan know 6514 the device is just moving and can keep their slaves up. 6515 */ 6516 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 6517 rcu_barrier(); 6518 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev); 6519 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL); 6520 6521 /* 6522 * Flush the unicast and multicast chains 6523 */ 6524 dev_uc_flush(dev); 6525 dev_mc_flush(dev); 6526 6527 /* Send a netdev-removed uevent to the old namespace */ 6528 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE); 6529 6530 /* Actually switch the network namespace */ 6531 dev_net_set(dev, net); 6532 6533 /* If there is an ifindex conflict assign a new one */ 6534 if (__dev_get_by_index(net, dev->ifindex)) { 6535 int iflink = (dev->iflink == dev->ifindex); 6536 dev->ifindex = dev_new_index(net); 6537 if (iflink) 6538 dev->iflink = dev->ifindex; 6539 } 6540 6541 /* Send a netdev-add uevent to the new namespace */ 6542 kobject_uevent(&dev->dev.kobj, KOBJ_ADD); 6543 6544 /* Fixup kobjects */ 6545 err = device_rename(&dev->dev, dev->name); 6546 WARN_ON(err); 6547 6548 /* Add the device back in the hashes */ 6549 list_netdevice(dev); 6550 6551 /* Notify protocols, that a new device appeared. */ 6552 call_netdevice_notifiers(NETDEV_REGISTER, dev); 6553 6554 /* 6555 * Prevent userspace races by waiting until the network 6556 * device is fully setup before sending notifications. 6557 */ 6558 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL); 6559 6560 synchronize_net(); 6561 err = 0; 6562 out: 6563 return err; 6564 } 6565 EXPORT_SYMBOL_GPL(dev_change_net_namespace); 6566 6567 static int dev_cpu_callback(struct notifier_block *nfb, 6568 unsigned long action, 6569 void *ocpu) 6570 { 6571 struct sk_buff **list_skb; 6572 struct sk_buff *skb; 6573 unsigned int cpu, oldcpu = (unsigned long)ocpu; 6574 struct softnet_data *sd, *oldsd; 6575 6576 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN) 6577 return NOTIFY_OK; 6578 6579 local_irq_disable(); 6580 cpu = smp_processor_id(); 6581 sd = &per_cpu(softnet_data, cpu); 6582 oldsd = &per_cpu(softnet_data, oldcpu); 6583 6584 /* Find end of our completion_queue. */ 6585 list_skb = &sd->completion_queue; 6586 while (*list_skb) 6587 list_skb = &(*list_skb)->next; 6588 /* Append completion queue from offline CPU. */ 6589 *list_skb = oldsd->completion_queue; 6590 oldsd->completion_queue = NULL; 6591 6592 /* Append output queue from offline CPU. */ 6593 if (oldsd->output_queue) { 6594 *sd->output_queue_tailp = oldsd->output_queue; 6595 sd->output_queue_tailp = oldsd->output_queue_tailp; 6596 oldsd->output_queue = NULL; 6597 oldsd->output_queue_tailp = &oldsd->output_queue; 6598 } 6599 /* Append NAPI poll list from offline CPU. */ 6600 if (!list_empty(&oldsd->poll_list)) { 6601 list_splice_init(&oldsd->poll_list, &sd->poll_list); 6602 raise_softirq_irqoff(NET_RX_SOFTIRQ); 6603 } 6604 6605 raise_softirq_irqoff(NET_TX_SOFTIRQ); 6606 local_irq_enable(); 6607 6608 /* Process offline CPU's input_pkt_queue */ 6609 while ((skb = __skb_dequeue(&oldsd->process_queue))) { 6610 netif_rx(skb); 6611 input_queue_head_incr(oldsd); 6612 } 6613 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) { 6614 netif_rx(skb); 6615 input_queue_head_incr(oldsd); 6616 } 6617 6618 return NOTIFY_OK; 6619 } 6620 6621 6622 /** 6623 * netdev_increment_features - increment feature set by one 6624 * @all: current feature set 6625 * @one: new feature set 6626 * @mask: mask feature set 6627 * 6628 * Computes a new feature set after adding a device with feature set 6629 * @one to the master device with current feature set @all. Will not 6630 * enable anything that is off in @mask. Returns the new feature set. 6631 */ 6632 netdev_features_t netdev_increment_features(netdev_features_t all, 6633 netdev_features_t one, netdev_features_t mask) 6634 { 6635 if (mask & NETIF_F_GEN_CSUM) 6636 mask |= NETIF_F_ALL_CSUM; 6637 mask |= NETIF_F_VLAN_CHALLENGED; 6638 6639 all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask; 6640 all &= one | ~NETIF_F_ALL_FOR_ALL; 6641 6642 /* If one device supports hw checksumming, set for all. */ 6643 if (all & NETIF_F_GEN_CSUM) 6644 all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM); 6645 6646 return all; 6647 } 6648 EXPORT_SYMBOL(netdev_increment_features); 6649 6650 static struct hlist_head * __net_init netdev_create_hash(void) 6651 { 6652 int i; 6653 struct hlist_head *hash; 6654 6655 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL); 6656 if (hash != NULL) 6657 for (i = 0; i < NETDEV_HASHENTRIES; i++) 6658 INIT_HLIST_HEAD(&hash[i]); 6659 6660 return hash; 6661 } 6662 6663 /* Initialize per network namespace state */ 6664 static int __net_init netdev_init(struct net *net) 6665 { 6666 if (net != &init_net) 6667 INIT_LIST_HEAD(&net->dev_base_head); 6668 6669 net->dev_name_head = netdev_create_hash(); 6670 if (net->dev_name_head == NULL) 6671 goto err_name; 6672 6673 net->dev_index_head = netdev_create_hash(); 6674 if (net->dev_index_head == NULL) 6675 goto err_idx; 6676 6677 return 0; 6678 6679 err_idx: 6680 kfree(net->dev_name_head); 6681 err_name: 6682 return -ENOMEM; 6683 } 6684 6685 /** 6686 * netdev_drivername - network driver for the device 6687 * @dev: network device 6688 * 6689 * Determine network driver for device. 6690 */ 6691 const char *netdev_drivername(const struct net_device *dev) 6692 { 6693 const struct device_driver *driver; 6694 const struct device *parent; 6695 const char *empty = ""; 6696 6697 parent = dev->dev.parent; 6698 if (!parent) 6699 return empty; 6700 6701 driver = parent->driver; 6702 if (driver && driver->name) 6703 return driver->name; 6704 return empty; 6705 } 6706 6707 static int __netdev_printk(const char *level, const struct net_device *dev, 6708 struct va_format *vaf) 6709 { 6710 int r; 6711 6712 if (dev && dev->dev.parent) { 6713 r = dev_printk_emit(level[1] - '0', 6714 dev->dev.parent, 6715 "%s %s %s: %pV", 6716 dev_driver_string(dev->dev.parent), 6717 dev_name(dev->dev.parent), 6718 netdev_name(dev), vaf); 6719 } else if (dev) { 6720 r = printk("%s%s: %pV", level, netdev_name(dev), vaf); 6721 } else { 6722 r = printk("%s(NULL net_device): %pV", level, vaf); 6723 } 6724 6725 return r; 6726 } 6727 6728 int netdev_printk(const char *level, const struct net_device *dev, 6729 const char *format, ...) 6730 { 6731 struct va_format vaf; 6732 va_list args; 6733 int r; 6734 6735 va_start(args, format); 6736 6737 vaf.fmt = format; 6738 vaf.va = &args; 6739 6740 r = __netdev_printk(level, dev, &vaf); 6741 6742 va_end(args); 6743 6744 return r; 6745 } 6746 EXPORT_SYMBOL(netdev_printk); 6747 6748 #define define_netdev_printk_level(func, level) \ 6749 int func(const struct net_device *dev, const char *fmt, ...) \ 6750 { \ 6751 int r; \ 6752 struct va_format vaf; \ 6753 va_list args; \ 6754 \ 6755 va_start(args, fmt); \ 6756 \ 6757 vaf.fmt = fmt; \ 6758 vaf.va = &args; \ 6759 \ 6760 r = __netdev_printk(level, dev, &vaf); \ 6761 \ 6762 va_end(args); \ 6763 \ 6764 return r; \ 6765 } \ 6766 EXPORT_SYMBOL(func); 6767 6768 define_netdev_printk_level(netdev_emerg, KERN_EMERG); 6769 define_netdev_printk_level(netdev_alert, KERN_ALERT); 6770 define_netdev_printk_level(netdev_crit, KERN_CRIT); 6771 define_netdev_printk_level(netdev_err, KERN_ERR); 6772 define_netdev_printk_level(netdev_warn, KERN_WARNING); 6773 define_netdev_printk_level(netdev_notice, KERN_NOTICE); 6774 define_netdev_printk_level(netdev_info, KERN_INFO); 6775 6776 static void __net_exit netdev_exit(struct net *net) 6777 { 6778 kfree(net->dev_name_head); 6779 kfree(net->dev_index_head); 6780 } 6781 6782 static struct pernet_operations __net_initdata netdev_net_ops = { 6783 .init = netdev_init, 6784 .exit = netdev_exit, 6785 }; 6786 6787 static void __net_exit default_device_exit(struct net *net) 6788 { 6789 struct net_device *dev, *aux; 6790 /* 6791 * Push all migratable network devices back to the 6792 * initial network namespace 6793 */ 6794 rtnl_lock(); 6795 for_each_netdev_safe(net, dev, aux) { 6796 int err; 6797 char fb_name[IFNAMSIZ]; 6798 6799 /* Ignore unmoveable devices (i.e. loopback) */ 6800 if (dev->features & NETIF_F_NETNS_LOCAL) 6801 continue; 6802 6803 /* Leave virtual devices for the generic cleanup */ 6804 if (dev->rtnl_link_ops) 6805 continue; 6806 6807 /* Push remaining network devices to init_net */ 6808 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex); 6809 err = dev_change_net_namespace(dev, &init_net, fb_name); 6810 if (err) { 6811 pr_emerg("%s: failed to move %s to init_net: %d\n", 6812 __func__, dev->name, err); 6813 BUG(); 6814 } 6815 } 6816 rtnl_unlock(); 6817 } 6818 6819 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list) 6820 { 6821 /* Return with the rtnl_lock held when there are no network 6822 * devices unregistering in any network namespace in net_list. 6823 */ 6824 struct net *net; 6825 bool unregistering; 6826 DEFINE_WAIT(wait); 6827 6828 for (;;) { 6829 prepare_to_wait(&netdev_unregistering_wq, &wait, 6830 TASK_UNINTERRUPTIBLE); 6831 unregistering = false; 6832 rtnl_lock(); 6833 list_for_each_entry(net, net_list, exit_list) { 6834 if (net->dev_unreg_count > 0) { 6835 unregistering = true; 6836 break; 6837 } 6838 } 6839 if (!unregistering) 6840 break; 6841 __rtnl_unlock(); 6842 schedule(); 6843 } 6844 finish_wait(&netdev_unregistering_wq, &wait); 6845 } 6846 6847 static void __net_exit default_device_exit_batch(struct list_head *net_list) 6848 { 6849 /* At exit all network devices most be removed from a network 6850 * namespace. Do this in the reverse order of registration. 6851 * Do this across as many network namespaces as possible to 6852 * improve batching efficiency. 6853 */ 6854 struct net_device *dev; 6855 struct net *net; 6856 LIST_HEAD(dev_kill_list); 6857 6858 /* To prevent network device cleanup code from dereferencing 6859 * loopback devices or network devices that have been freed 6860 * wait here for all pending unregistrations to complete, 6861 * before unregistring the loopback device and allowing the 6862 * network namespace be freed. 6863 * 6864 * The netdev todo list containing all network devices 6865 * unregistrations that happen in default_device_exit_batch 6866 * will run in the rtnl_unlock() at the end of 6867 * default_device_exit_batch. 6868 */ 6869 rtnl_lock_unregistering(net_list); 6870 list_for_each_entry(net, net_list, exit_list) { 6871 for_each_netdev_reverse(net, dev) { 6872 if (dev->rtnl_link_ops) 6873 dev->rtnl_link_ops->dellink(dev, &dev_kill_list); 6874 else 6875 unregister_netdevice_queue(dev, &dev_kill_list); 6876 } 6877 } 6878 unregister_netdevice_many(&dev_kill_list); 6879 list_del(&dev_kill_list); 6880 rtnl_unlock(); 6881 } 6882 6883 static struct pernet_operations __net_initdata default_device_ops = { 6884 .exit = default_device_exit, 6885 .exit_batch = default_device_exit_batch, 6886 }; 6887 6888 /* 6889 * Initialize the DEV module. At boot time this walks the device list and 6890 * unhooks any devices that fail to initialise (normally hardware not 6891 * present) and leaves us with a valid list of present and active devices. 6892 * 6893 */ 6894 6895 /* 6896 * This is called single threaded during boot, so no need 6897 * to take the rtnl semaphore. 6898 */ 6899 static int __init net_dev_init(void) 6900 { 6901 int i, rc = -ENOMEM; 6902 6903 BUG_ON(!dev_boot_phase); 6904 6905 if (dev_proc_init()) 6906 goto out; 6907 6908 if (netdev_kobject_init()) 6909 goto out; 6910 6911 INIT_LIST_HEAD(&ptype_all); 6912 for (i = 0; i < PTYPE_HASH_SIZE; i++) 6913 INIT_LIST_HEAD(&ptype_base[i]); 6914 6915 INIT_LIST_HEAD(&offload_base); 6916 6917 if (register_pernet_subsys(&netdev_net_ops)) 6918 goto out; 6919 6920 /* 6921 * Initialise the packet receive queues. 6922 */ 6923 6924 for_each_possible_cpu(i) { 6925 struct softnet_data *sd = &per_cpu(softnet_data, i); 6926 6927 memset(sd, 0, sizeof(*sd)); 6928 skb_queue_head_init(&sd->input_pkt_queue); 6929 skb_queue_head_init(&sd->process_queue); 6930 sd->completion_queue = NULL; 6931 INIT_LIST_HEAD(&sd->poll_list); 6932 sd->output_queue = NULL; 6933 sd->output_queue_tailp = &sd->output_queue; 6934 #ifdef CONFIG_RPS 6935 sd->csd.func = rps_trigger_softirq; 6936 sd->csd.info = sd; 6937 sd->csd.flags = 0; 6938 sd->cpu = i; 6939 #endif 6940 6941 sd->backlog.poll = process_backlog; 6942 sd->backlog.weight = weight_p; 6943 sd->backlog.gro_list = NULL; 6944 sd->backlog.gro_count = 0; 6945 6946 #ifdef CONFIG_NET_FLOW_LIMIT 6947 sd->flow_limit = NULL; 6948 #endif 6949 } 6950 6951 dev_boot_phase = 0; 6952 6953 /* The loopback device is special if any other network devices 6954 * is present in a network namespace the loopback device must 6955 * be present. Since we now dynamically allocate and free the 6956 * loopback device ensure this invariant is maintained by 6957 * keeping the loopback device as the first device on the 6958 * list of network devices. Ensuring the loopback devices 6959 * is the first device that appears and the last network device 6960 * that disappears. 6961 */ 6962 if (register_pernet_device(&loopback_net_ops)) 6963 goto out; 6964 6965 if (register_pernet_device(&default_device_ops)) 6966 goto out; 6967 6968 open_softirq(NET_TX_SOFTIRQ, net_tx_action); 6969 open_softirq(NET_RX_SOFTIRQ, net_rx_action); 6970 6971 hotcpu_notifier(dev_cpu_callback, 0); 6972 dst_init(); 6973 rc = 0; 6974 out: 6975 return rc; 6976 } 6977 6978 subsys_initcall(net_dev_init); 6979