xref: /linux/net/core/dev.c (revision 83a37b3292f4aca799b355179ad6fbdd78a08e10)
1 /*
2  *      NET3    Protocol independent device support routines.
3  *
4  *		This program is free software; you can redistribute it and/or
5  *		modify it under the terms of the GNU General Public License
6  *		as published by the Free Software Foundation; either version
7  *		2 of the License, or (at your option) any later version.
8  *
9  *	Derived from the non IP parts of dev.c 1.0.19
10  *              Authors:	Ross Biro
11  *				Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *				Mark Evans, <evansmp@uhura.aston.ac.uk>
13  *
14  *	Additional Authors:
15  *		Florian la Roche <rzsfl@rz.uni-sb.de>
16  *		Alan Cox <gw4pts@gw4pts.ampr.org>
17  *		David Hinds <dahinds@users.sourceforge.net>
18  *		Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19  *		Adam Sulmicki <adam@cfar.umd.edu>
20  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
21  *
22  *	Changes:
23  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
24  *                                      to 2 if register_netdev gets called
25  *                                      before net_dev_init & also removed a
26  *                                      few lines of code in the process.
27  *		Alan Cox	:	device private ioctl copies fields back.
28  *		Alan Cox	:	Transmit queue code does relevant
29  *					stunts to keep the queue safe.
30  *		Alan Cox	:	Fixed double lock.
31  *		Alan Cox	:	Fixed promisc NULL pointer trap
32  *		????????	:	Support the full private ioctl range
33  *		Alan Cox	:	Moved ioctl permission check into
34  *					drivers
35  *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
36  *		Alan Cox	:	100 backlog just doesn't cut it when
37  *					you start doing multicast video 8)
38  *		Alan Cox	:	Rewrote net_bh and list manager.
39  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
40  *		Alan Cox	:	Took out transmit every packet pass
41  *					Saved a few bytes in the ioctl handler
42  *		Alan Cox	:	Network driver sets packet type before
43  *					calling netif_rx. Saves a function
44  *					call a packet.
45  *		Alan Cox	:	Hashed net_bh()
46  *		Richard Kooijman:	Timestamp fixes.
47  *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
48  *		Alan Cox	:	Device lock protection.
49  *              Alan Cox        :       Fixed nasty side effect of device close
50  *					changes.
51  *		Rudi Cilibrasi	:	Pass the right thing to
52  *					set_mac_address()
53  *		Dave Miller	:	32bit quantity for the device lock to
54  *					make it work out on a Sparc.
55  *		Bjorn Ekwall	:	Added KERNELD hack.
56  *		Alan Cox	:	Cleaned up the backlog initialise.
57  *		Craig Metz	:	SIOCGIFCONF fix if space for under
58  *					1 device.
59  *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
60  *					is no device open function.
61  *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
62  *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
63  *		Cyrus Durgin	:	Cleaned for KMOD
64  *		Adam Sulmicki   :	Bug Fix : Network Device Unload
65  *					A network device unload needs to purge
66  *					the backlog queue.
67  *	Paul Rusty Russell	:	SIOCSIFNAME
68  *              Pekka Riikonen  :	Netdev boot-time settings code
69  *              Andrew Morton   :       Make unregister_netdevice wait
70  *                                      indefinitely on dev->refcnt
71  *              J Hadi Salim    :       - Backlog queue sampling
72  *				        - netif_rx() feedback
73  */
74 
75 #include <linux/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/sched/mm.h>
85 #include <linux/mutex.h>
86 #include <linux/string.h>
87 #include <linux/mm.h>
88 #include <linux/socket.h>
89 #include <linux/sockios.h>
90 #include <linux/errno.h>
91 #include <linux/interrupt.h>
92 #include <linux/if_ether.h>
93 #include <linux/netdevice.h>
94 #include <linux/etherdevice.h>
95 #include <linux/ethtool.h>
96 #include <linux/notifier.h>
97 #include <linux/skbuff.h>
98 #include <linux/bpf.h>
99 #include <linux/bpf_trace.h>
100 #include <net/net_namespace.h>
101 #include <net/sock.h>
102 #include <net/busy_poll.h>
103 #include <linux/rtnetlink.h>
104 #include <linux/stat.h>
105 #include <net/dst.h>
106 #include <net/dst_metadata.h>
107 #include <net/pkt_sched.h>
108 #include <net/pkt_cls.h>
109 #include <net/checksum.h>
110 #include <net/xfrm.h>
111 #include <linux/highmem.h>
112 #include <linux/init.h>
113 #include <linux/module.h>
114 #include <linux/netpoll.h>
115 #include <linux/rcupdate.h>
116 #include <linux/delay.h>
117 #include <net/iw_handler.h>
118 #include <asm/current.h>
119 #include <linux/audit.h>
120 #include <linux/dmaengine.h>
121 #include <linux/err.h>
122 #include <linux/ctype.h>
123 #include <linux/if_arp.h>
124 #include <linux/if_vlan.h>
125 #include <linux/ip.h>
126 #include <net/ip.h>
127 #include <net/mpls.h>
128 #include <linux/ipv6.h>
129 #include <linux/in.h>
130 #include <linux/jhash.h>
131 #include <linux/random.h>
132 #include <trace/events/napi.h>
133 #include <trace/events/net.h>
134 #include <trace/events/skb.h>
135 #include <linux/pci.h>
136 #include <linux/inetdevice.h>
137 #include <linux/cpu_rmap.h>
138 #include <linux/static_key.h>
139 #include <linux/hashtable.h>
140 #include <linux/vmalloc.h>
141 #include <linux/if_macvlan.h>
142 #include <linux/errqueue.h>
143 #include <linux/hrtimer.h>
144 #include <linux/netfilter_ingress.h>
145 #include <linux/crash_dump.h>
146 #include <linux/sctp.h>
147 #include <net/udp_tunnel.h>
148 #include <linux/net_namespace.h>
149 
150 #include "net-sysfs.h"
151 
152 /* Instead of increasing this, you should create a hash table. */
153 #define MAX_GRO_SKBS 8
154 
155 /* This should be increased if a protocol with a bigger head is added. */
156 #define GRO_MAX_HEAD (MAX_HEADER + 128)
157 
158 static DEFINE_SPINLOCK(ptype_lock);
159 static DEFINE_SPINLOCK(offload_lock);
160 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
161 struct list_head ptype_all __read_mostly;	/* Taps */
162 static struct list_head offload_base __read_mostly;
163 
164 static int netif_rx_internal(struct sk_buff *skb);
165 static int call_netdevice_notifiers_info(unsigned long val,
166 					 struct netdev_notifier_info *info);
167 static struct napi_struct *napi_by_id(unsigned int napi_id);
168 
169 /*
170  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
171  * semaphore.
172  *
173  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
174  *
175  * Writers must hold the rtnl semaphore while they loop through the
176  * dev_base_head list, and hold dev_base_lock for writing when they do the
177  * actual updates.  This allows pure readers to access the list even
178  * while a writer is preparing to update it.
179  *
180  * To put it another way, dev_base_lock is held for writing only to
181  * protect against pure readers; the rtnl semaphore provides the
182  * protection against other writers.
183  *
184  * See, for example usages, register_netdevice() and
185  * unregister_netdevice(), which must be called with the rtnl
186  * semaphore held.
187  */
188 DEFINE_RWLOCK(dev_base_lock);
189 EXPORT_SYMBOL(dev_base_lock);
190 
191 static DEFINE_MUTEX(ifalias_mutex);
192 
193 /* protects napi_hash addition/deletion and napi_gen_id */
194 static DEFINE_SPINLOCK(napi_hash_lock);
195 
196 static unsigned int napi_gen_id = NR_CPUS;
197 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
198 
199 static seqcount_t devnet_rename_seq;
200 
201 static inline void dev_base_seq_inc(struct net *net)
202 {
203 	while (++net->dev_base_seq == 0)
204 		;
205 }
206 
207 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
208 {
209 	unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
210 
211 	return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
212 }
213 
214 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
215 {
216 	return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
217 }
218 
219 static inline void rps_lock(struct softnet_data *sd)
220 {
221 #ifdef CONFIG_RPS
222 	spin_lock(&sd->input_pkt_queue.lock);
223 #endif
224 }
225 
226 static inline void rps_unlock(struct softnet_data *sd)
227 {
228 #ifdef CONFIG_RPS
229 	spin_unlock(&sd->input_pkt_queue.lock);
230 #endif
231 }
232 
233 /* Device list insertion */
234 static void list_netdevice(struct net_device *dev)
235 {
236 	struct net *net = dev_net(dev);
237 
238 	ASSERT_RTNL();
239 
240 	write_lock_bh(&dev_base_lock);
241 	list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
242 	hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
243 	hlist_add_head_rcu(&dev->index_hlist,
244 			   dev_index_hash(net, dev->ifindex));
245 	write_unlock_bh(&dev_base_lock);
246 
247 	dev_base_seq_inc(net);
248 }
249 
250 /* Device list removal
251  * caller must respect a RCU grace period before freeing/reusing dev
252  */
253 static void unlist_netdevice(struct net_device *dev)
254 {
255 	ASSERT_RTNL();
256 
257 	/* Unlink dev from the device chain */
258 	write_lock_bh(&dev_base_lock);
259 	list_del_rcu(&dev->dev_list);
260 	hlist_del_rcu(&dev->name_hlist);
261 	hlist_del_rcu(&dev->index_hlist);
262 	write_unlock_bh(&dev_base_lock);
263 
264 	dev_base_seq_inc(dev_net(dev));
265 }
266 
267 /*
268  *	Our notifier list
269  */
270 
271 static RAW_NOTIFIER_HEAD(netdev_chain);
272 
273 /*
274  *	Device drivers call our routines to queue packets here. We empty the
275  *	queue in the local softnet handler.
276  */
277 
278 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
279 EXPORT_PER_CPU_SYMBOL(softnet_data);
280 
281 #ifdef CONFIG_LOCKDEP
282 /*
283  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
284  * according to dev->type
285  */
286 static const unsigned short netdev_lock_type[] = {
287 	 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
288 	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
289 	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
290 	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
291 	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
292 	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
293 	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
294 	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
295 	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
296 	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
297 	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
298 	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
299 	 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
300 	 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
301 	 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
302 
303 static const char *const netdev_lock_name[] = {
304 	"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
305 	"_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
306 	"_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
307 	"_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
308 	"_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
309 	"_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
310 	"_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
311 	"_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
312 	"_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
313 	"_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
314 	"_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
315 	"_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
316 	"_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
317 	"_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
318 	"_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
319 
320 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
321 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
322 
323 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
324 {
325 	int i;
326 
327 	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
328 		if (netdev_lock_type[i] == dev_type)
329 			return i;
330 	/* the last key is used by default */
331 	return ARRAY_SIZE(netdev_lock_type) - 1;
332 }
333 
334 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
335 						 unsigned short dev_type)
336 {
337 	int i;
338 
339 	i = netdev_lock_pos(dev_type);
340 	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
341 				   netdev_lock_name[i]);
342 }
343 
344 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
345 {
346 	int i;
347 
348 	i = netdev_lock_pos(dev->type);
349 	lockdep_set_class_and_name(&dev->addr_list_lock,
350 				   &netdev_addr_lock_key[i],
351 				   netdev_lock_name[i]);
352 }
353 #else
354 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
355 						 unsigned short dev_type)
356 {
357 }
358 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
359 {
360 }
361 #endif
362 
363 /*******************************************************************************
364  *
365  *		Protocol management and registration routines
366  *
367  *******************************************************************************/
368 
369 
370 /*
371  *	Add a protocol ID to the list. Now that the input handler is
372  *	smarter we can dispense with all the messy stuff that used to be
373  *	here.
374  *
375  *	BEWARE!!! Protocol handlers, mangling input packets,
376  *	MUST BE last in hash buckets and checking protocol handlers
377  *	MUST start from promiscuous ptype_all chain in net_bh.
378  *	It is true now, do not change it.
379  *	Explanation follows: if protocol handler, mangling packet, will
380  *	be the first on list, it is not able to sense, that packet
381  *	is cloned and should be copied-on-write, so that it will
382  *	change it and subsequent readers will get broken packet.
383  *							--ANK (980803)
384  */
385 
386 static inline struct list_head *ptype_head(const struct packet_type *pt)
387 {
388 	if (pt->type == htons(ETH_P_ALL))
389 		return pt->dev ? &pt->dev->ptype_all : &ptype_all;
390 	else
391 		return pt->dev ? &pt->dev->ptype_specific :
392 				 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
393 }
394 
395 /**
396  *	dev_add_pack - add packet handler
397  *	@pt: packet type declaration
398  *
399  *	Add a protocol handler to the networking stack. The passed &packet_type
400  *	is linked into kernel lists and may not be freed until it has been
401  *	removed from the kernel lists.
402  *
403  *	This call does not sleep therefore it can not
404  *	guarantee all CPU's that are in middle of receiving packets
405  *	will see the new packet type (until the next received packet).
406  */
407 
408 void dev_add_pack(struct packet_type *pt)
409 {
410 	struct list_head *head = ptype_head(pt);
411 
412 	spin_lock(&ptype_lock);
413 	list_add_rcu(&pt->list, head);
414 	spin_unlock(&ptype_lock);
415 }
416 EXPORT_SYMBOL(dev_add_pack);
417 
418 /**
419  *	__dev_remove_pack	 - remove packet handler
420  *	@pt: packet type declaration
421  *
422  *	Remove a protocol handler that was previously added to the kernel
423  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
424  *	from the kernel lists and can be freed or reused once this function
425  *	returns.
426  *
427  *      The packet type might still be in use by receivers
428  *	and must not be freed until after all the CPU's have gone
429  *	through a quiescent state.
430  */
431 void __dev_remove_pack(struct packet_type *pt)
432 {
433 	struct list_head *head = ptype_head(pt);
434 	struct packet_type *pt1;
435 
436 	spin_lock(&ptype_lock);
437 
438 	list_for_each_entry(pt1, head, list) {
439 		if (pt == pt1) {
440 			list_del_rcu(&pt->list);
441 			goto out;
442 		}
443 	}
444 
445 	pr_warn("dev_remove_pack: %p not found\n", pt);
446 out:
447 	spin_unlock(&ptype_lock);
448 }
449 EXPORT_SYMBOL(__dev_remove_pack);
450 
451 /**
452  *	dev_remove_pack	 - remove packet handler
453  *	@pt: packet type declaration
454  *
455  *	Remove a protocol handler that was previously added to the kernel
456  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
457  *	from the kernel lists and can be freed or reused once this function
458  *	returns.
459  *
460  *	This call sleeps to guarantee that no CPU is looking at the packet
461  *	type after return.
462  */
463 void dev_remove_pack(struct packet_type *pt)
464 {
465 	__dev_remove_pack(pt);
466 
467 	synchronize_net();
468 }
469 EXPORT_SYMBOL(dev_remove_pack);
470 
471 
472 /**
473  *	dev_add_offload - register offload handlers
474  *	@po: protocol offload declaration
475  *
476  *	Add protocol offload handlers to the networking stack. The passed
477  *	&proto_offload is linked into kernel lists and may not be freed until
478  *	it has been removed from the kernel lists.
479  *
480  *	This call does not sleep therefore it can not
481  *	guarantee all CPU's that are in middle of receiving packets
482  *	will see the new offload handlers (until the next received packet).
483  */
484 void dev_add_offload(struct packet_offload *po)
485 {
486 	struct packet_offload *elem;
487 
488 	spin_lock(&offload_lock);
489 	list_for_each_entry(elem, &offload_base, list) {
490 		if (po->priority < elem->priority)
491 			break;
492 	}
493 	list_add_rcu(&po->list, elem->list.prev);
494 	spin_unlock(&offload_lock);
495 }
496 EXPORT_SYMBOL(dev_add_offload);
497 
498 /**
499  *	__dev_remove_offload	 - remove offload handler
500  *	@po: packet offload declaration
501  *
502  *	Remove a protocol offload handler that was previously added to the
503  *	kernel offload handlers by dev_add_offload(). The passed &offload_type
504  *	is removed from the kernel lists and can be freed or reused once this
505  *	function returns.
506  *
507  *      The packet type might still be in use by receivers
508  *	and must not be freed until after all the CPU's have gone
509  *	through a quiescent state.
510  */
511 static void __dev_remove_offload(struct packet_offload *po)
512 {
513 	struct list_head *head = &offload_base;
514 	struct packet_offload *po1;
515 
516 	spin_lock(&offload_lock);
517 
518 	list_for_each_entry(po1, head, list) {
519 		if (po == po1) {
520 			list_del_rcu(&po->list);
521 			goto out;
522 		}
523 	}
524 
525 	pr_warn("dev_remove_offload: %p not found\n", po);
526 out:
527 	spin_unlock(&offload_lock);
528 }
529 
530 /**
531  *	dev_remove_offload	 - remove packet offload handler
532  *	@po: packet offload declaration
533  *
534  *	Remove a packet offload handler that was previously added to the kernel
535  *	offload handlers by dev_add_offload(). The passed &offload_type is
536  *	removed from the kernel lists and can be freed or reused once this
537  *	function returns.
538  *
539  *	This call sleeps to guarantee that no CPU is looking at the packet
540  *	type after return.
541  */
542 void dev_remove_offload(struct packet_offload *po)
543 {
544 	__dev_remove_offload(po);
545 
546 	synchronize_net();
547 }
548 EXPORT_SYMBOL(dev_remove_offload);
549 
550 /******************************************************************************
551  *
552  *		      Device Boot-time Settings Routines
553  *
554  ******************************************************************************/
555 
556 /* Boot time configuration table */
557 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
558 
559 /**
560  *	netdev_boot_setup_add	- add new setup entry
561  *	@name: name of the device
562  *	@map: configured settings for the device
563  *
564  *	Adds new setup entry to the dev_boot_setup list.  The function
565  *	returns 0 on error and 1 on success.  This is a generic routine to
566  *	all netdevices.
567  */
568 static int netdev_boot_setup_add(char *name, struct ifmap *map)
569 {
570 	struct netdev_boot_setup *s;
571 	int i;
572 
573 	s = dev_boot_setup;
574 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
575 		if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
576 			memset(s[i].name, 0, sizeof(s[i].name));
577 			strlcpy(s[i].name, name, IFNAMSIZ);
578 			memcpy(&s[i].map, map, sizeof(s[i].map));
579 			break;
580 		}
581 	}
582 
583 	return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
584 }
585 
586 /**
587  * netdev_boot_setup_check	- check boot time settings
588  * @dev: the netdevice
589  *
590  * Check boot time settings for the device.
591  * The found settings are set for the device to be used
592  * later in the device probing.
593  * Returns 0 if no settings found, 1 if they are.
594  */
595 int netdev_boot_setup_check(struct net_device *dev)
596 {
597 	struct netdev_boot_setup *s = dev_boot_setup;
598 	int i;
599 
600 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
601 		if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
602 		    !strcmp(dev->name, s[i].name)) {
603 			dev->irq = s[i].map.irq;
604 			dev->base_addr = s[i].map.base_addr;
605 			dev->mem_start = s[i].map.mem_start;
606 			dev->mem_end = s[i].map.mem_end;
607 			return 1;
608 		}
609 	}
610 	return 0;
611 }
612 EXPORT_SYMBOL(netdev_boot_setup_check);
613 
614 
615 /**
616  * netdev_boot_base	- get address from boot time settings
617  * @prefix: prefix for network device
618  * @unit: id for network device
619  *
620  * Check boot time settings for the base address of device.
621  * The found settings are set for the device to be used
622  * later in the device probing.
623  * Returns 0 if no settings found.
624  */
625 unsigned long netdev_boot_base(const char *prefix, int unit)
626 {
627 	const struct netdev_boot_setup *s = dev_boot_setup;
628 	char name[IFNAMSIZ];
629 	int i;
630 
631 	sprintf(name, "%s%d", prefix, unit);
632 
633 	/*
634 	 * If device already registered then return base of 1
635 	 * to indicate not to probe for this interface
636 	 */
637 	if (__dev_get_by_name(&init_net, name))
638 		return 1;
639 
640 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
641 		if (!strcmp(name, s[i].name))
642 			return s[i].map.base_addr;
643 	return 0;
644 }
645 
646 /*
647  * Saves at boot time configured settings for any netdevice.
648  */
649 int __init netdev_boot_setup(char *str)
650 {
651 	int ints[5];
652 	struct ifmap map;
653 
654 	str = get_options(str, ARRAY_SIZE(ints), ints);
655 	if (!str || !*str)
656 		return 0;
657 
658 	/* Save settings */
659 	memset(&map, 0, sizeof(map));
660 	if (ints[0] > 0)
661 		map.irq = ints[1];
662 	if (ints[0] > 1)
663 		map.base_addr = ints[2];
664 	if (ints[0] > 2)
665 		map.mem_start = ints[3];
666 	if (ints[0] > 3)
667 		map.mem_end = ints[4];
668 
669 	/* Add new entry to the list */
670 	return netdev_boot_setup_add(str, &map);
671 }
672 
673 __setup("netdev=", netdev_boot_setup);
674 
675 /*******************************************************************************
676  *
677  *			    Device Interface Subroutines
678  *
679  *******************************************************************************/
680 
681 /**
682  *	dev_get_iflink	- get 'iflink' value of a interface
683  *	@dev: targeted interface
684  *
685  *	Indicates the ifindex the interface is linked to.
686  *	Physical interfaces have the same 'ifindex' and 'iflink' values.
687  */
688 
689 int dev_get_iflink(const struct net_device *dev)
690 {
691 	if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
692 		return dev->netdev_ops->ndo_get_iflink(dev);
693 
694 	return dev->ifindex;
695 }
696 EXPORT_SYMBOL(dev_get_iflink);
697 
698 /**
699  *	dev_fill_metadata_dst - Retrieve tunnel egress information.
700  *	@dev: targeted interface
701  *	@skb: The packet.
702  *
703  *	For better visibility of tunnel traffic OVS needs to retrieve
704  *	egress tunnel information for a packet. Following API allows
705  *	user to get this info.
706  */
707 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
708 {
709 	struct ip_tunnel_info *info;
710 
711 	if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
712 		return -EINVAL;
713 
714 	info = skb_tunnel_info_unclone(skb);
715 	if (!info)
716 		return -ENOMEM;
717 	if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
718 		return -EINVAL;
719 
720 	return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
721 }
722 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
723 
724 /**
725  *	__dev_get_by_name	- find a device by its name
726  *	@net: the applicable net namespace
727  *	@name: name to find
728  *
729  *	Find an interface by name. Must be called under RTNL semaphore
730  *	or @dev_base_lock. If the name is found a pointer to the device
731  *	is returned. If the name is not found then %NULL is returned. The
732  *	reference counters are not incremented so the caller must be
733  *	careful with locks.
734  */
735 
736 struct net_device *__dev_get_by_name(struct net *net, const char *name)
737 {
738 	struct net_device *dev;
739 	struct hlist_head *head = dev_name_hash(net, name);
740 
741 	hlist_for_each_entry(dev, head, name_hlist)
742 		if (!strncmp(dev->name, name, IFNAMSIZ))
743 			return dev;
744 
745 	return NULL;
746 }
747 EXPORT_SYMBOL(__dev_get_by_name);
748 
749 /**
750  * dev_get_by_name_rcu	- find a device by its name
751  * @net: the applicable net namespace
752  * @name: name to find
753  *
754  * Find an interface by name.
755  * If the name is found a pointer to the device is returned.
756  * If the name is not found then %NULL is returned.
757  * The reference counters are not incremented so the caller must be
758  * careful with locks. The caller must hold RCU lock.
759  */
760 
761 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
762 {
763 	struct net_device *dev;
764 	struct hlist_head *head = dev_name_hash(net, name);
765 
766 	hlist_for_each_entry_rcu(dev, head, name_hlist)
767 		if (!strncmp(dev->name, name, IFNAMSIZ))
768 			return dev;
769 
770 	return NULL;
771 }
772 EXPORT_SYMBOL(dev_get_by_name_rcu);
773 
774 /**
775  *	dev_get_by_name		- find a device by its name
776  *	@net: the applicable net namespace
777  *	@name: name to find
778  *
779  *	Find an interface by name. This can be called from any
780  *	context and does its own locking. The returned handle has
781  *	the usage count incremented and the caller must use dev_put() to
782  *	release it when it is no longer needed. %NULL is returned if no
783  *	matching device is found.
784  */
785 
786 struct net_device *dev_get_by_name(struct net *net, const char *name)
787 {
788 	struct net_device *dev;
789 
790 	rcu_read_lock();
791 	dev = dev_get_by_name_rcu(net, name);
792 	if (dev)
793 		dev_hold(dev);
794 	rcu_read_unlock();
795 	return dev;
796 }
797 EXPORT_SYMBOL(dev_get_by_name);
798 
799 /**
800  *	__dev_get_by_index - find a device by its ifindex
801  *	@net: the applicable net namespace
802  *	@ifindex: index of device
803  *
804  *	Search for an interface by index. Returns %NULL if the device
805  *	is not found or a pointer to the device. The device has not
806  *	had its reference counter increased so the caller must be careful
807  *	about locking. The caller must hold either the RTNL semaphore
808  *	or @dev_base_lock.
809  */
810 
811 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
812 {
813 	struct net_device *dev;
814 	struct hlist_head *head = dev_index_hash(net, ifindex);
815 
816 	hlist_for_each_entry(dev, head, index_hlist)
817 		if (dev->ifindex == ifindex)
818 			return dev;
819 
820 	return NULL;
821 }
822 EXPORT_SYMBOL(__dev_get_by_index);
823 
824 /**
825  *	dev_get_by_index_rcu - find a device by its ifindex
826  *	@net: the applicable net namespace
827  *	@ifindex: index of device
828  *
829  *	Search for an interface by index. Returns %NULL if the device
830  *	is not found or a pointer to the device. The device has not
831  *	had its reference counter increased so the caller must be careful
832  *	about locking. The caller must hold RCU lock.
833  */
834 
835 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
836 {
837 	struct net_device *dev;
838 	struct hlist_head *head = dev_index_hash(net, ifindex);
839 
840 	hlist_for_each_entry_rcu(dev, head, index_hlist)
841 		if (dev->ifindex == ifindex)
842 			return dev;
843 
844 	return NULL;
845 }
846 EXPORT_SYMBOL(dev_get_by_index_rcu);
847 
848 
849 /**
850  *	dev_get_by_index - find a device by its ifindex
851  *	@net: the applicable net namespace
852  *	@ifindex: index of device
853  *
854  *	Search for an interface by index. Returns NULL if the device
855  *	is not found or a pointer to the device. The device returned has
856  *	had a reference added and the pointer is safe until the user calls
857  *	dev_put to indicate they have finished with it.
858  */
859 
860 struct net_device *dev_get_by_index(struct net *net, int ifindex)
861 {
862 	struct net_device *dev;
863 
864 	rcu_read_lock();
865 	dev = dev_get_by_index_rcu(net, ifindex);
866 	if (dev)
867 		dev_hold(dev);
868 	rcu_read_unlock();
869 	return dev;
870 }
871 EXPORT_SYMBOL(dev_get_by_index);
872 
873 /**
874  *	dev_get_by_napi_id - find a device by napi_id
875  *	@napi_id: ID of the NAPI struct
876  *
877  *	Search for an interface by NAPI ID. Returns %NULL if the device
878  *	is not found or a pointer to the device. The device has not had
879  *	its reference counter increased so the caller must be careful
880  *	about locking. The caller must hold RCU lock.
881  */
882 
883 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
884 {
885 	struct napi_struct *napi;
886 
887 	WARN_ON_ONCE(!rcu_read_lock_held());
888 
889 	if (napi_id < MIN_NAPI_ID)
890 		return NULL;
891 
892 	napi = napi_by_id(napi_id);
893 
894 	return napi ? napi->dev : NULL;
895 }
896 EXPORT_SYMBOL(dev_get_by_napi_id);
897 
898 /**
899  *	netdev_get_name - get a netdevice name, knowing its ifindex.
900  *	@net: network namespace
901  *	@name: a pointer to the buffer where the name will be stored.
902  *	@ifindex: the ifindex of the interface to get the name from.
903  *
904  *	The use of raw_seqcount_begin() and cond_resched() before
905  *	retrying is required as we want to give the writers a chance
906  *	to complete when CONFIG_PREEMPT is not set.
907  */
908 int netdev_get_name(struct net *net, char *name, int ifindex)
909 {
910 	struct net_device *dev;
911 	unsigned int seq;
912 
913 retry:
914 	seq = raw_seqcount_begin(&devnet_rename_seq);
915 	rcu_read_lock();
916 	dev = dev_get_by_index_rcu(net, ifindex);
917 	if (!dev) {
918 		rcu_read_unlock();
919 		return -ENODEV;
920 	}
921 
922 	strcpy(name, dev->name);
923 	rcu_read_unlock();
924 	if (read_seqcount_retry(&devnet_rename_seq, seq)) {
925 		cond_resched();
926 		goto retry;
927 	}
928 
929 	return 0;
930 }
931 
932 /**
933  *	dev_getbyhwaddr_rcu - find a device by its hardware address
934  *	@net: the applicable net namespace
935  *	@type: media type of device
936  *	@ha: hardware address
937  *
938  *	Search for an interface by MAC address. Returns NULL if the device
939  *	is not found or a pointer to the device.
940  *	The caller must hold RCU or RTNL.
941  *	The returned device has not had its ref count increased
942  *	and the caller must therefore be careful about locking
943  *
944  */
945 
946 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
947 				       const char *ha)
948 {
949 	struct net_device *dev;
950 
951 	for_each_netdev_rcu(net, dev)
952 		if (dev->type == type &&
953 		    !memcmp(dev->dev_addr, ha, dev->addr_len))
954 			return dev;
955 
956 	return NULL;
957 }
958 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
959 
960 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
961 {
962 	struct net_device *dev;
963 
964 	ASSERT_RTNL();
965 	for_each_netdev(net, dev)
966 		if (dev->type == type)
967 			return dev;
968 
969 	return NULL;
970 }
971 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
972 
973 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
974 {
975 	struct net_device *dev, *ret = NULL;
976 
977 	rcu_read_lock();
978 	for_each_netdev_rcu(net, dev)
979 		if (dev->type == type) {
980 			dev_hold(dev);
981 			ret = dev;
982 			break;
983 		}
984 	rcu_read_unlock();
985 	return ret;
986 }
987 EXPORT_SYMBOL(dev_getfirstbyhwtype);
988 
989 /**
990  *	__dev_get_by_flags - find any device with given flags
991  *	@net: the applicable net namespace
992  *	@if_flags: IFF_* values
993  *	@mask: bitmask of bits in if_flags to check
994  *
995  *	Search for any interface with the given flags. Returns NULL if a device
996  *	is not found or a pointer to the device. Must be called inside
997  *	rtnl_lock(), and result refcount is unchanged.
998  */
999 
1000 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1001 				      unsigned short mask)
1002 {
1003 	struct net_device *dev, *ret;
1004 
1005 	ASSERT_RTNL();
1006 
1007 	ret = NULL;
1008 	for_each_netdev(net, dev) {
1009 		if (((dev->flags ^ if_flags) & mask) == 0) {
1010 			ret = dev;
1011 			break;
1012 		}
1013 	}
1014 	return ret;
1015 }
1016 EXPORT_SYMBOL(__dev_get_by_flags);
1017 
1018 /**
1019  *	dev_valid_name - check if name is okay for network device
1020  *	@name: name string
1021  *
1022  *	Network device names need to be valid file names to
1023  *	to allow sysfs to work.  We also disallow any kind of
1024  *	whitespace.
1025  */
1026 bool dev_valid_name(const char *name)
1027 {
1028 	if (*name == '\0')
1029 		return false;
1030 	if (strlen(name) >= IFNAMSIZ)
1031 		return false;
1032 	if (!strcmp(name, ".") || !strcmp(name, ".."))
1033 		return false;
1034 
1035 	while (*name) {
1036 		if (*name == '/' || *name == ':' || isspace(*name))
1037 			return false;
1038 		name++;
1039 	}
1040 	return true;
1041 }
1042 EXPORT_SYMBOL(dev_valid_name);
1043 
1044 /**
1045  *	__dev_alloc_name - allocate a name for a device
1046  *	@net: network namespace to allocate the device name in
1047  *	@name: name format string
1048  *	@buf:  scratch buffer and result name string
1049  *
1050  *	Passed a format string - eg "lt%d" it will try and find a suitable
1051  *	id. It scans list of devices to build up a free map, then chooses
1052  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1053  *	while allocating the name and adding the device in order to avoid
1054  *	duplicates.
1055  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1056  *	Returns the number of the unit assigned or a negative errno code.
1057  */
1058 
1059 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1060 {
1061 	int i = 0;
1062 	const char *p;
1063 	const int max_netdevices = 8*PAGE_SIZE;
1064 	unsigned long *inuse;
1065 	struct net_device *d;
1066 
1067 	p = strnchr(name, IFNAMSIZ-1, '%');
1068 	if (p) {
1069 		/*
1070 		 * Verify the string as this thing may have come from
1071 		 * the user.  There must be either one "%d" and no other "%"
1072 		 * characters.
1073 		 */
1074 		if (p[1] != 'd' || strchr(p + 2, '%'))
1075 			return -EINVAL;
1076 
1077 		/* Use one page as a bit array of possible slots */
1078 		inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1079 		if (!inuse)
1080 			return -ENOMEM;
1081 
1082 		for_each_netdev(net, d) {
1083 			if (!sscanf(d->name, name, &i))
1084 				continue;
1085 			if (i < 0 || i >= max_netdevices)
1086 				continue;
1087 
1088 			/*  avoid cases where sscanf is not exact inverse of printf */
1089 			snprintf(buf, IFNAMSIZ, name, i);
1090 			if (!strncmp(buf, d->name, IFNAMSIZ))
1091 				set_bit(i, inuse);
1092 		}
1093 
1094 		i = find_first_zero_bit(inuse, max_netdevices);
1095 		free_page((unsigned long) inuse);
1096 	}
1097 
1098 	if (buf != name)
1099 		snprintf(buf, IFNAMSIZ, name, i);
1100 	if (!__dev_get_by_name(net, buf))
1101 		return i;
1102 
1103 	/* It is possible to run out of possible slots
1104 	 * when the name is long and there isn't enough space left
1105 	 * for the digits, or if all bits are used.
1106 	 */
1107 	return -ENFILE;
1108 }
1109 
1110 /**
1111  *	dev_alloc_name - allocate a name for a device
1112  *	@dev: device
1113  *	@name: name format string
1114  *
1115  *	Passed a format string - eg "lt%d" it will try and find a suitable
1116  *	id. It scans list of devices to build up a free map, then chooses
1117  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1118  *	while allocating the name and adding the device in order to avoid
1119  *	duplicates.
1120  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1121  *	Returns the number of the unit assigned or a negative errno code.
1122  */
1123 
1124 int dev_alloc_name(struct net_device *dev, const char *name)
1125 {
1126 	char buf[IFNAMSIZ];
1127 	struct net *net;
1128 	int ret;
1129 
1130 	BUG_ON(!dev_net(dev));
1131 	net = dev_net(dev);
1132 	ret = __dev_alloc_name(net, name, buf);
1133 	if (ret >= 0)
1134 		strlcpy(dev->name, buf, IFNAMSIZ);
1135 	return ret;
1136 }
1137 EXPORT_SYMBOL(dev_alloc_name);
1138 
1139 static int dev_alloc_name_ns(struct net *net,
1140 			     struct net_device *dev,
1141 			     const char *name)
1142 {
1143 	char buf[IFNAMSIZ];
1144 	int ret;
1145 
1146 	ret = __dev_alloc_name(net, name, buf);
1147 	if (ret >= 0)
1148 		strlcpy(dev->name, buf, IFNAMSIZ);
1149 	return ret;
1150 }
1151 
1152 static int dev_get_valid_name(struct net *net,
1153 			      struct net_device *dev,
1154 			      const char *name)
1155 {
1156 	BUG_ON(!net);
1157 
1158 	if (!dev_valid_name(name))
1159 		return -EINVAL;
1160 
1161 	if (strchr(name, '%'))
1162 		return dev_alloc_name_ns(net, dev, name);
1163 	else if (__dev_get_by_name(net, name))
1164 		return -EEXIST;
1165 	else if (dev->name != name)
1166 		strlcpy(dev->name, name, IFNAMSIZ);
1167 
1168 	return 0;
1169 }
1170 
1171 /**
1172  *	dev_change_name - change name of a device
1173  *	@dev: device
1174  *	@newname: name (or format string) must be at least IFNAMSIZ
1175  *
1176  *	Change name of a device, can pass format strings "eth%d".
1177  *	for wildcarding.
1178  */
1179 int dev_change_name(struct net_device *dev, const char *newname)
1180 {
1181 	unsigned char old_assign_type;
1182 	char oldname[IFNAMSIZ];
1183 	int err = 0;
1184 	int ret;
1185 	struct net *net;
1186 
1187 	ASSERT_RTNL();
1188 	BUG_ON(!dev_net(dev));
1189 
1190 	net = dev_net(dev);
1191 	if (dev->flags & IFF_UP)
1192 		return -EBUSY;
1193 
1194 	write_seqcount_begin(&devnet_rename_seq);
1195 
1196 	if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1197 		write_seqcount_end(&devnet_rename_seq);
1198 		return 0;
1199 	}
1200 
1201 	memcpy(oldname, dev->name, IFNAMSIZ);
1202 
1203 	err = dev_get_valid_name(net, dev, newname);
1204 	if (err < 0) {
1205 		write_seqcount_end(&devnet_rename_seq);
1206 		return err;
1207 	}
1208 
1209 	if (oldname[0] && !strchr(oldname, '%'))
1210 		netdev_info(dev, "renamed from %s\n", oldname);
1211 
1212 	old_assign_type = dev->name_assign_type;
1213 	dev->name_assign_type = NET_NAME_RENAMED;
1214 
1215 rollback:
1216 	ret = device_rename(&dev->dev, dev->name);
1217 	if (ret) {
1218 		memcpy(dev->name, oldname, IFNAMSIZ);
1219 		dev->name_assign_type = old_assign_type;
1220 		write_seqcount_end(&devnet_rename_seq);
1221 		return ret;
1222 	}
1223 
1224 	write_seqcount_end(&devnet_rename_seq);
1225 
1226 	netdev_adjacent_rename_links(dev, oldname);
1227 
1228 	write_lock_bh(&dev_base_lock);
1229 	hlist_del_rcu(&dev->name_hlist);
1230 	write_unlock_bh(&dev_base_lock);
1231 
1232 	synchronize_rcu();
1233 
1234 	write_lock_bh(&dev_base_lock);
1235 	hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1236 	write_unlock_bh(&dev_base_lock);
1237 
1238 	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1239 	ret = notifier_to_errno(ret);
1240 
1241 	if (ret) {
1242 		/* err >= 0 after dev_alloc_name() or stores the first errno */
1243 		if (err >= 0) {
1244 			err = ret;
1245 			write_seqcount_begin(&devnet_rename_seq);
1246 			memcpy(dev->name, oldname, IFNAMSIZ);
1247 			memcpy(oldname, newname, IFNAMSIZ);
1248 			dev->name_assign_type = old_assign_type;
1249 			old_assign_type = NET_NAME_RENAMED;
1250 			goto rollback;
1251 		} else {
1252 			pr_err("%s: name change rollback failed: %d\n",
1253 			       dev->name, ret);
1254 		}
1255 	}
1256 
1257 	return err;
1258 }
1259 
1260 /**
1261  *	dev_set_alias - change ifalias of a device
1262  *	@dev: device
1263  *	@alias: name up to IFALIASZ
1264  *	@len: limit of bytes to copy from info
1265  *
1266  *	Set ifalias for a device,
1267  */
1268 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1269 {
1270 	struct dev_ifalias *new_alias = NULL;
1271 
1272 	if (len >= IFALIASZ)
1273 		return -EINVAL;
1274 
1275 	if (len) {
1276 		new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1277 		if (!new_alias)
1278 			return -ENOMEM;
1279 
1280 		memcpy(new_alias->ifalias, alias, len);
1281 		new_alias->ifalias[len] = 0;
1282 	}
1283 
1284 	mutex_lock(&ifalias_mutex);
1285 	rcu_swap_protected(dev->ifalias, new_alias,
1286 			   mutex_is_locked(&ifalias_mutex));
1287 	mutex_unlock(&ifalias_mutex);
1288 
1289 	if (new_alias)
1290 		kfree_rcu(new_alias, rcuhead);
1291 
1292 	return len;
1293 }
1294 
1295 /**
1296  *	dev_get_alias - get ifalias of a device
1297  *	@dev: device
1298  *	@name: buffer to store name of ifalias
1299  *	@len: size of buffer
1300  *
1301  *	get ifalias for a device.  Caller must make sure dev cannot go
1302  *	away,  e.g. rcu read lock or own a reference count to device.
1303  */
1304 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1305 {
1306 	const struct dev_ifalias *alias;
1307 	int ret = 0;
1308 
1309 	rcu_read_lock();
1310 	alias = rcu_dereference(dev->ifalias);
1311 	if (alias)
1312 		ret = snprintf(name, len, "%s", alias->ifalias);
1313 	rcu_read_unlock();
1314 
1315 	return ret;
1316 }
1317 
1318 /**
1319  *	netdev_features_change - device changes features
1320  *	@dev: device to cause notification
1321  *
1322  *	Called to indicate a device has changed features.
1323  */
1324 void netdev_features_change(struct net_device *dev)
1325 {
1326 	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1327 }
1328 EXPORT_SYMBOL(netdev_features_change);
1329 
1330 /**
1331  *	netdev_state_change - device changes state
1332  *	@dev: device to cause notification
1333  *
1334  *	Called to indicate a device has changed state. This function calls
1335  *	the notifier chains for netdev_chain and sends a NEWLINK message
1336  *	to the routing socket.
1337  */
1338 void netdev_state_change(struct net_device *dev)
1339 {
1340 	if (dev->flags & IFF_UP) {
1341 		struct netdev_notifier_change_info change_info = {
1342 			.info.dev = dev,
1343 		};
1344 
1345 		call_netdevice_notifiers_info(NETDEV_CHANGE,
1346 					      &change_info.info);
1347 		rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1348 	}
1349 }
1350 EXPORT_SYMBOL(netdev_state_change);
1351 
1352 /**
1353  * netdev_notify_peers - notify network peers about existence of @dev
1354  * @dev: network device
1355  *
1356  * Generate traffic such that interested network peers are aware of
1357  * @dev, such as by generating a gratuitous ARP. This may be used when
1358  * a device wants to inform the rest of the network about some sort of
1359  * reconfiguration such as a failover event or virtual machine
1360  * migration.
1361  */
1362 void netdev_notify_peers(struct net_device *dev)
1363 {
1364 	rtnl_lock();
1365 	call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1366 	call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1367 	rtnl_unlock();
1368 }
1369 EXPORT_SYMBOL(netdev_notify_peers);
1370 
1371 static int __dev_open(struct net_device *dev)
1372 {
1373 	const struct net_device_ops *ops = dev->netdev_ops;
1374 	int ret;
1375 
1376 	ASSERT_RTNL();
1377 
1378 	if (!netif_device_present(dev))
1379 		return -ENODEV;
1380 
1381 	/* Block netpoll from trying to do any rx path servicing.
1382 	 * If we don't do this there is a chance ndo_poll_controller
1383 	 * or ndo_poll may be running while we open the device
1384 	 */
1385 	netpoll_poll_disable(dev);
1386 
1387 	ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1388 	ret = notifier_to_errno(ret);
1389 	if (ret)
1390 		return ret;
1391 
1392 	set_bit(__LINK_STATE_START, &dev->state);
1393 
1394 	if (ops->ndo_validate_addr)
1395 		ret = ops->ndo_validate_addr(dev);
1396 
1397 	if (!ret && ops->ndo_open)
1398 		ret = ops->ndo_open(dev);
1399 
1400 	netpoll_poll_enable(dev);
1401 
1402 	if (ret)
1403 		clear_bit(__LINK_STATE_START, &dev->state);
1404 	else {
1405 		dev->flags |= IFF_UP;
1406 		dev_set_rx_mode(dev);
1407 		dev_activate(dev);
1408 		add_device_randomness(dev->dev_addr, dev->addr_len);
1409 	}
1410 
1411 	return ret;
1412 }
1413 
1414 /**
1415  *	dev_open	- prepare an interface for use.
1416  *	@dev:	device to open
1417  *
1418  *	Takes a device from down to up state. The device's private open
1419  *	function is invoked and then the multicast lists are loaded. Finally
1420  *	the device is moved into the up state and a %NETDEV_UP message is
1421  *	sent to the netdev notifier chain.
1422  *
1423  *	Calling this function on an active interface is a nop. On a failure
1424  *	a negative errno code is returned.
1425  */
1426 int dev_open(struct net_device *dev)
1427 {
1428 	int ret;
1429 
1430 	if (dev->flags & IFF_UP)
1431 		return 0;
1432 
1433 	ret = __dev_open(dev);
1434 	if (ret < 0)
1435 		return ret;
1436 
1437 	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1438 	call_netdevice_notifiers(NETDEV_UP, dev);
1439 
1440 	return ret;
1441 }
1442 EXPORT_SYMBOL(dev_open);
1443 
1444 static void __dev_close_many(struct list_head *head)
1445 {
1446 	struct net_device *dev;
1447 
1448 	ASSERT_RTNL();
1449 	might_sleep();
1450 
1451 	list_for_each_entry(dev, head, close_list) {
1452 		/* Temporarily disable netpoll until the interface is down */
1453 		netpoll_poll_disable(dev);
1454 
1455 		call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1456 
1457 		clear_bit(__LINK_STATE_START, &dev->state);
1458 
1459 		/* Synchronize to scheduled poll. We cannot touch poll list, it
1460 		 * can be even on different cpu. So just clear netif_running().
1461 		 *
1462 		 * dev->stop() will invoke napi_disable() on all of it's
1463 		 * napi_struct instances on this device.
1464 		 */
1465 		smp_mb__after_atomic(); /* Commit netif_running(). */
1466 	}
1467 
1468 	dev_deactivate_many(head);
1469 
1470 	list_for_each_entry(dev, head, close_list) {
1471 		const struct net_device_ops *ops = dev->netdev_ops;
1472 
1473 		/*
1474 		 *	Call the device specific close. This cannot fail.
1475 		 *	Only if device is UP
1476 		 *
1477 		 *	We allow it to be called even after a DETACH hot-plug
1478 		 *	event.
1479 		 */
1480 		if (ops->ndo_stop)
1481 			ops->ndo_stop(dev);
1482 
1483 		dev->flags &= ~IFF_UP;
1484 		netpoll_poll_enable(dev);
1485 	}
1486 }
1487 
1488 static void __dev_close(struct net_device *dev)
1489 {
1490 	LIST_HEAD(single);
1491 
1492 	list_add(&dev->close_list, &single);
1493 	__dev_close_many(&single);
1494 	list_del(&single);
1495 }
1496 
1497 void dev_close_many(struct list_head *head, bool unlink)
1498 {
1499 	struct net_device *dev, *tmp;
1500 
1501 	/* Remove the devices that don't need to be closed */
1502 	list_for_each_entry_safe(dev, tmp, head, close_list)
1503 		if (!(dev->flags & IFF_UP))
1504 			list_del_init(&dev->close_list);
1505 
1506 	__dev_close_many(head);
1507 
1508 	list_for_each_entry_safe(dev, tmp, head, close_list) {
1509 		rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1510 		call_netdevice_notifiers(NETDEV_DOWN, dev);
1511 		if (unlink)
1512 			list_del_init(&dev->close_list);
1513 	}
1514 }
1515 EXPORT_SYMBOL(dev_close_many);
1516 
1517 /**
1518  *	dev_close - shutdown an interface.
1519  *	@dev: device to shutdown
1520  *
1521  *	This function moves an active device into down state. A
1522  *	%NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1523  *	is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1524  *	chain.
1525  */
1526 void dev_close(struct net_device *dev)
1527 {
1528 	if (dev->flags & IFF_UP) {
1529 		LIST_HEAD(single);
1530 
1531 		list_add(&dev->close_list, &single);
1532 		dev_close_many(&single, true);
1533 		list_del(&single);
1534 	}
1535 }
1536 EXPORT_SYMBOL(dev_close);
1537 
1538 
1539 /**
1540  *	dev_disable_lro - disable Large Receive Offload on a device
1541  *	@dev: device
1542  *
1543  *	Disable Large Receive Offload (LRO) on a net device.  Must be
1544  *	called under RTNL.  This is needed if received packets may be
1545  *	forwarded to another interface.
1546  */
1547 void dev_disable_lro(struct net_device *dev)
1548 {
1549 	struct net_device *lower_dev;
1550 	struct list_head *iter;
1551 
1552 	dev->wanted_features &= ~NETIF_F_LRO;
1553 	netdev_update_features(dev);
1554 
1555 	if (unlikely(dev->features & NETIF_F_LRO))
1556 		netdev_WARN(dev, "failed to disable LRO!\n");
1557 
1558 	netdev_for_each_lower_dev(dev, lower_dev, iter)
1559 		dev_disable_lro(lower_dev);
1560 }
1561 EXPORT_SYMBOL(dev_disable_lro);
1562 
1563 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1564 				   struct net_device *dev)
1565 {
1566 	struct netdev_notifier_info info = {
1567 		.dev = dev,
1568 	};
1569 
1570 	return nb->notifier_call(nb, val, &info);
1571 }
1572 
1573 static int dev_boot_phase = 1;
1574 
1575 /**
1576  * register_netdevice_notifier - register a network notifier block
1577  * @nb: notifier
1578  *
1579  * Register a notifier to be called when network device events occur.
1580  * The notifier passed is linked into the kernel structures and must
1581  * not be reused until it has been unregistered. A negative errno code
1582  * is returned on a failure.
1583  *
1584  * When registered all registration and up events are replayed
1585  * to the new notifier to allow device to have a race free
1586  * view of the network device list.
1587  */
1588 
1589 int register_netdevice_notifier(struct notifier_block *nb)
1590 {
1591 	struct net_device *dev;
1592 	struct net_device *last;
1593 	struct net *net;
1594 	int err;
1595 
1596 	rtnl_lock();
1597 	err = raw_notifier_chain_register(&netdev_chain, nb);
1598 	if (err)
1599 		goto unlock;
1600 	if (dev_boot_phase)
1601 		goto unlock;
1602 	for_each_net(net) {
1603 		for_each_netdev(net, dev) {
1604 			err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1605 			err = notifier_to_errno(err);
1606 			if (err)
1607 				goto rollback;
1608 
1609 			if (!(dev->flags & IFF_UP))
1610 				continue;
1611 
1612 			call_netdevice_notifier(nb, NETDEV_UP, dev);
1613 		}
1614 	}
1615 
1616 unlock:
1617 	rtnl_unlock();
1618 	return err;
1619 
1620 rollback:
1621 	last = dev;
1622 	for_each_net(net) {
1623 		for_each_netdev(net, dev) {
1624 			if (dev == last)
1625 				goto outroll;
1626 
1627 			if (dev->flags & IFF_UP) {
1628 				call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1629 							dev);
1630 				call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1631 			}
1632 			call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1633 		}
1634 	}
1635 
1636 outroll:
1637 	raw_notifier_chain_unregister(&netdev_chain, nb);
1638 	goto unlock;
1639 }
1640 EXPORT_SYMBOL(register_netdevice_notifier);
1641 
1642 /**
1643  * unregister_netdevice_notifier - unregister a network notifier block
1644  * @nb: notifier
1645  *
1646  * Unregister a notifier previously registered by
1647  * register_netdevice_notifier(). The notifier is unlinked into the
1648  * kernel structures and may then be reused. A negative errno code
1649  * is returned on a failure.
1650  *
1651  * After unregistering unregister and down device events are synthesized
1652  * for all devices on the device list to the removed notifier to remove
1653  * the need for special case cleanup code.
1654  */
1655 
1656 int unregister_netdevice_notifier(struct notifier_block *nb)
1657 {
1658 	struct net_device *dev;
1659 	struct net *net;
1660 	int err;
1661 
1662 	rtnl_lock();
1663 	err = raw_notifier_chain_unregister(&netdev_chain, nb);
1664 	if (err)
1665 		goto unlock;
1666 
1667 	for_each_net(net) {
1668 		for_each_netdev(net, dev) {
1669 			if (dev->flags & IFF_UP) {
1670 				call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1671 							dev);
1672 				call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1673 			}
1674 			call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1675 		}
1676 	}
1677 unlock:
1678 	rtnl_unlock();
1679 	return err;
1680 }
1681 EXPORT_SYMBOL(unregister_netdevice_notifier);
1682 
1683 /**
1684  *	call_netdevice_notifiers_info - call all network notifier blocks
1685  *	@val: value passed unmodified to notifier function
1686  *	@dev: net_device pointer passed unmodified to notifier function
1687  *	@info: notifier information data
1688  *
1689  *	Call all network notifier blocks.  Parameters and return value
1690  *	are as for raw_notifier_call_chain().
1691  */
1692 
1693 static int call_netdevice_notifiers_info(unsigned long val,
1694 					 struct netdev_notifier_info *info)
1695 {
1696 	ASSERT_RTNL();
1697 	return raw_notifier_call_chain(&netdev_chain, val, info);
1698 }
1699 
1700 /**
1701  *	call_netdevice_notifiers - call all network notifier blocks
1702  *      @val: value passed unmodified to notifier function
1703  *      @dev: net_device pointer passed unmodified to notifier function
1704  *
1705  *	Call all network notifier blocks.  Parameters and return value
1706  *	are as for raw_notifier_call_chain().
1707  */
1708 
1709 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1710 {
1711 	struct netdev_notifier_info info = {
1712 		.dev = dev,
1713 	};
1714 
1715 	return call_netdevice_notifiers_info(val, &info);
1716 }
1717 EXPORT_SYMBOL(call_netdevice_notifiers);
1718 
1719 #ifdef CONFIG_NET_INGRESS
1720 static struct static_key ingress_needed __read_mostly;
1721 
1722 void net_inc_ingress_queue(void)
1723 {
1724 	static_key_slow_inc(&ingress_needed);
1725 }
1726 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1727 
1728 void net_dec_ingress_queue(void)
1729 {
1730 	static_key_slow_dec(&ingress_needed);
1731 }
1732 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1733 #endif
1734 
1735 #ifdef CONFIG_NET_EGRESS
1736 static struct static_key egress_needed __read_mostly;
1737 
1738 void net_inc_egress_queue(void)
1739 {
1740 	static_key_slow_inc(&egress_needed);
1741 }
1742 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
1743 
1744 void net_dec_egress_queue(void)
1745 {
1746 	static_key_slow_dec(&egress_needed);
1747 }
1748 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
1749 #endif
1750 
1751 static struct static_key netstamp_needed __read_mostly;
1752 #ifdef HAVE_JUMP_LABEL
1753 static atomic_t netstamp_needed_deferred;
1754 static atomic_t netstamp_wanted;
1755 static void netstamp_clear(struct work_struct *work)
1756 {
1757 	int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1758 	int wanted;
1759 
1760 	wanted = atomic_add_return(deferred, &netstamp_wanted);
1761 	if (wanted > 0)
1762 		static_key_enable(&netstamp_needed);
1763 	else
1764 		static_key_disable(&netstamp_needed);
1765 }
1766 static DECLARE_WORK(netstamp_work, netstamp_clear);
1767 #endif
1768 
1769 void net_enable_timestamp(void)
1770 {
1771 #ifdef HAVE_JUMP_LABEL
1772 	int wanted;
1773 
1774 	while (1) {
1775 		wanted = atomic_read(&netstamp_wanted);
1776 		if (wanted <= 0)
1777 			break;
1778 		if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
1779 			return;
1780 	}
1781 	atomic_inc(&netstamp_needed_deferred);
1782 	schedule_work(&netstamp_work);
1783 #else
1784 	static_key_slow_inc(&netstamp_needed);
1785 #endif
1786 }
1787 EXPORT_SYMBOL(net_enable_timestamp);
1788 
1789 void net_disable_timestamp(void)
1790 {
1791 #ifdef HAVE_JUMP_LABEL
1792 	int wanted;
1793 
1794 	while (1) {
1795 		wanted = atomic_read(&netstamp_wanted);
1796 		if (wanted <= 1)
1797 			break;
1798 		if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
1799 			return;
1800 	}
1801 	atomic_dec(&netstamp_needed_deferred);
1802 	schedule_work(&netstamp_work);
1803 #else
1804 	static_key_slow_dec(&netstamp_needed);
1805 #endif
1806 }
1807 EXPORT_SYMBOL(net_disable_timestamp);
1808 
1809 static inline void net_timestamp_set(struct sk_buff *skb)
1810 {
1811 	skb->tstamp = 0;
1812 	if (static_key_false(&netstamp_needed))
1813 		__net_timestamp(skb);
1814 }
1815 
1816 #define net_timestamp_check(COND, SKB)			\
1817 	if (static_key_false(&netstamp_needed)) {		\
1818 		if ((COND) && !(SKB)->tstamp)	\
1819 			__net_timestamp(SKB);		\
1820 	}						\
1821 
1822 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
1823 {
1824 	unsigned int len;
1825 
1826 	if (!(dev->flags & IFF_UP))
1827 		return false;
1828 
1829 	len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1830 	if (skb->len <= len)
1831 		return true;
1832 
1833 	/* if TSO is enabled, we don't care about the length as the packet
1834 	 * could be forwarded without being segmented before
1835 	 */
1836 	if (skb_is_gso(skb))
1837 		return true;
1838 
1839 	return false;
1840 }
1841 EXPORT_SYMBOL_GPL(is_skb_forwardable);
1842 
1843 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1844 {
1845 	int ret = ____dev_forward_skb(dev, skb);
1846 
1847 	if (likely(!ret)) {
1848 		skb->protocol = eth_type_trans(skb, dev);
1849 		skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1850 	}
1851 
1852 	return ret;
1853 }
1854 EXPORT_SYMBOL_GPL(__dev_forward_skb);
1855 
1856 /**
1857  * dev_forward_skb - loopback an skb to another netif
1858  *
1859  * @dev: destination network device
1860  * @skb: buffer to forward
1861  *
1862  * return values:
1863  *	NET_RX_SUCCESS	(no congestion)
1864  *	NET_RX_DROP     (packet was dropped, but freed)
1865  *
1866  * dev_forward_skb can be used for injecting an skb from the
1867  * start_xmit function of one device into the receive queue
1868  * of another device.
1869  *
1870  * The receiving device may be in another namespace, so
1871  * we have to clear all information in the skb that could
1872  * impact namespace isolation.
1873  */
1874 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1875 {
1876 	return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1877 }
1878 EXPORT_SYMBOL_GPL(dev_forward_skb);
1879 
1880 static inline int deliver_skb(struct sk_buff *skb,
1881 			      struct packet_type *pt_prev,
1882 			      struct net_device *orig_dev)
1883 {
1884 	if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
1885 		return -ENOMEM;
1886 	refcount_inc(&skb->users);
1887 	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1888 }
1889 
1890 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1891 					  struct packet_type **pt,
1892 					  struct net_device *orig_dev,
1893 					  __be16 type,
1894 					  struct list_head *ptype_list)
1895 {
1896 	struct packet_type *ptype, *pt_prev = *pt;
1897 
1898 	list_for_each_entry_rcu(ptype, ptype_list, list) {
1899 		if (ptype->type != type)
1900 			continue;
1901 		if (pt_prev)
1902 			deliver_skb(skb, pt_prev, orig_dev);
1903 		pt_prev = ptype;
1904 	}
1905 	*pt = pt_prev;
1906 }
1907 
1908 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1909 {
1910 	if (!ptype->af_packet_priv || !skb->sk)
1911 		return false;
1912 
1913 	if (ptype->id_match)
1914 		return ptype->id_match(ptype, skb->sk);
1915 	else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1916 		return true;
1917 
1918 	return false;
1919 }
1920 
1921 /*
1922  *	Support routine. Sends outgoing frames to any network
1923  *	taps currently in use.
1924  */
1925 
1926 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1927 {
1928 	struct packet_type *ptype;
1929 	struct sk_buff *skb2 = NULL;
1930 	struct packet_type *pt_prev = NULL;
1931 	struct list_head *ptype_list = &ptype_all;
1932 
1933 	rcu_read_lock();
1934 again:
1935 	list_for_each_entry_rcu(ptype, ptype_list, list) {
1936 		/* Never send packets back to the socket
1937 		 * they originated from - MvS (miquels@drinkel.ow.org)
1938 		 */
1939 		if (skb_loop_sk(ptype, skb))
1940 			continue;
1941 
1942 		if (pt_prev) {
1943 			deliver_skb(skb2, pt_prev, skb->dev);
1944 			pt_prev = ptype;
1945 			continue;
1946 		}
1947 
1948 		/* need to clone skb, done only once */
1949 		skb2 = skb_clone(skb, GFP_ATOMIC);
1950 		if (!skb2)
1951 			goto out_unlock;
1952 
1953 		net_timestamp_set(skb2);
1954 
1955 		/* skb->nh should be correctly
1956 		 * set by sender, so that the second statement is
1957 		 * just protection against buggy protocols.
1958 		 */
1959 		skb_reset_mac_header(skb2);
1960 
1961 		if (skb_network_header(skb2) < skb2->data ||
1962 		    skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1963 			net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1964 					     ntohs(skb2->protocol),
1965 					     dev->name);
1966 			skb_reset_network_header(skb2);
1967 		}
1968 
1969 		skb2->transport_header = skb2->network_header;
1970 		skb2->pkt_type = PACKET_OUTGOING;
1971 		pt_prev = ptype;
1972 	}
1973 
1974 	if (ptype_list == &ptype_all) {
1975 		ptype_list = &dev->ptype_all;
1976 		goto again;
1977 	}
1978 out_unlock:
1979 	if (pt_prev) {
1980 		if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
1981 			pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1982 		else
1983 			kfree_skb(skb2);
1984 	}
1985 	rcu_read_unlock();
1986 }
1987 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
1988 
1989 /**
1990  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1991  * @dev: Network device
1992  * @txq: number of queues available
1993  *
1994  * If real_num_tx_queues is changed the tc mappings may no longer be
1995  * valid. To resolve this verify the tc mapping remains valid and if
1996  * not NULL the mapping. With no priorities mapping to this
1997  * offset/count pair it will no longer be used. In the worst case TC0
1998  * is invalid nothing can be done so disable priority mappings. If is
1999  * expected that drivers will fix this mapping if they can before
2000  * calling netif_set_real_num_tx_queues.
2001  */
2002 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2003 {
2004 	int i;
2005 	struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2006 
2007 	/* If TC0 is invalidated disable TC mapping */
2008 	if (tc->offset + tc->count > txq) {
2009 		pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2010 		dev->num_tc = 0;
2011 		return;
2012 	}
2013 
2014 	/* Invalidated prio to tc mappings set to TC0 */
2015 	for (i = 1; i < TC_BITMASK + 1; i++) {
2016 		int q = netdev_get_prio_tc_map(dev, i);
2017 
2018 		tc = &dev->tc_to_txq[q];
2019 		if (tc->offset + tc->count > txq) {
2020 			pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2021 				i, q);
2022 			netdev_set_prio_tc_map(dev, i, 0);
2023 		}
2024 	}
2025 }
2026 
2027 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2028 {
2029 	if (dev->num_tc) {
2030 		struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2031 		int i;
2032 
2033 		for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2034 			if ((txq - tc->offset) < tc->count)
2035 				return i;
2036 		}
2037 
2038 		return -1;
2039 	}
2040 
2041 	return 0;
2042 }
2043 EXPORT_SYMBOL(netdev_txq_to_tc);
2044 
2045 #ifdef CONFIG_XPS
2046 static DEFINE_MUTEX(xps_map_mutex);
2047 #define xmap_dereference(P)		\
2048 	rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2049 
2050 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2051 			     int tci, u16 index)
2052 {
2053 	struct xps_map *map = NULL;
2054 	int pos;
2055 
2056 	if (dev_maps)
2057 		map = xmap_dereference(dev_maps->cpu_map[tci]);
2058 	if (!map)
2059 		return false;
2060 
2061 	for (pos = map->len; pos--;) {
2062 		if (map->queues[pos] != index)
2063 			continue;
2064 
2065 		if (map->len > 1) {
2066 			map->queues[pos] = map->queues[--map->len];
2067 			break;
2068 		}
2069 
2070 		RCU_INIT_POINTER(dev_maps->cpu_map[tci], NULL);
2071 		kfree_rcu(map, rcu);
2072 		return false;
2073 	}
2074 
2075 	return true;
2076 }
2077 
2078 static bool remove_xps_queue_cpu(struct net_device *dev,
2079 				 struct xps_dev_maps *dev_maps,
2080 				 int cpu, u16 offset, u16 count)
2081 {
2082 	int num_tc = dev->num_tc ? : 1;
2083 	bool active = false;
2084 	int tci;
2085 
2086 	for (tci = cpu * num_tc; num_tc--; tci++) {
2087 		int i, j;
2088 
2089 		for (i = count, j = offset; i--; j++) {
2090 			if (!remove_xps_queue(dev_maps, cpu, j))
2091 				break;
2092 		}
2093 
2094 		active |= i < 0;
2095 	}
2096 
2097 	return active;
2098 }
2099 
2100 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2101 				   u16 count)
2102 {
2103 	struct xps_dev_maps *dev_maps;
2104 	int cpu, i;
2105 	bool active = false;
2106 
2107 	mutex_lock(&xps_map_mutex);
2108 	dev_maps = xmap_dereference(dev->xps_maps);
2109 
2110 	if (!dev_maps)
2111 		goto out_no_maps;
2112 
2113 	for_each_possible_cpu(cpu)
2114 		active |= remove_xps_queue_cpu(dev, dev_maps, cpu,
2115 					       offset, count);
2116 
2117 	if (!active) {
2118 		RCU_INIT_POINTER(dev->xps_maps, NULL);
2119 		kfree_rcu(dev_maps, rcu);
2120 	}
2121 
2122 	for (i = offset + (count - 1); count--; i--)
2123 		netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
2124 					     NUMA_NO_NODE);
2125 
2126 out_no_maps:
2127 	mutex_unlock(&xps_map_mutex);
2128 }
2129 
2130 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2131 {
2132 	netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2133 }
2134 
2135 static struct xps_map *expand_xps_map(struct xps_map *map,
2136 				      int cpu, u16 index)
2137 {
2138 	struct xps_map *new_map;
2139 	int alloc_len = XPS_MIN_MAP_ALLOC;
2140 	int i, pos;
2141 
2142 	for (pos = 0; map && pos < map->len; pos++) {
2143 		if (map->queues[pos] != index)
2144 			continue;
2145 		return map;
2146 	}
2147 
2148 	/* Need to add queue to this CPU's existing map */
2149 	if (map) {
2150 		if (pos < map->alloc_len)
2151 			return map;
2152 
2153 		alloc_len = map->alloc_len * 2;
2154 	}
2155 
2156 	/* Need to allocate new map to store queue on this CPU's map */
2157 	new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2158 			       cpu_to_node(cpu));
2159 	if (!new_map)
2160 		return NULL;
2161 
2162 	for (i = 0; i < pos; i++)
2163 		new_map->queues[i] = map->queues[i];
2164 	new_map->alloc_len = alloc_len;
2165 	new_map->len = pos;
2166 
2167 	return new_map;
2168 }
2169 
2170 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2171 			u16 index)
2172 {
2173 	struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2174 	int i, cpu, tci, numa_node_id = -2;
2175 	int maps_sz, num_tc = 1, tc = 0;
2176 	struct xps_map *map, *new_map;
2177 	bool active = false;
2178 
2179 	if (dev->num_tc) {
2180 		num_tc = dev->num_tc;
2181 		tc = netdev_txq_to_tc(dev, index);
2182 		if (tc < 0)
2183 			return -EINVAL;
2184 	}
2185 
2186 	maps_sz = XPS_DEV_MAPS_SIZE(num_tc);
2187 	if (maps_sz < L1_CACHE_BYTES)
2188 		maps_sz = L1_CACHE_BYTES;
2189 
2190 	mutex_lock(&xps_map_mutex);
2191 
2192 	dev_maps = xmap_dereference(dev->xps_maps);
2193 
2194 	/* allocate memory for queue storage */
2195 	for_each_cpu_and(cpu, cpu_online_mask, mask) {
2196 		if (!new_dev_maps)
2197 			new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2198 		if (!new_dev_maps) {
2199 			mutex_unlock(&xps_map_mutex);
2200 			return -ENOMEM;
2201 		}
2202 
2203 		tci = cpu * num_tc + tc;
2204 		map = dev_maps ? xmap_dereference(dev_maps->cpu_map[tci]) :
2205 				 NULL;
2206 
2207 		map = expand_xps_map(map, cpu, index);
2208 		if (!map)
2209 			goto error;
2210 
2211 		RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2212 	}
2213 
2214 	if (!new_dev_maps)
2215 		goto out_no_new_maps;
2216 
2217 	for_each_possible_cpu(cpu) {
2218 		/* copy maps belonging to foreign traffic classes */
2219 		for (i = tc, tci = cpu * num_tc; dev_maps && i--; tci++) {
2220 			/* fill in the new device map from the old device map */
2221 			map = xmap_dereference(dev_maps->cpu_map[tci]);
2222 			RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2223 		}
2224 
2225 		/* We need to explicitly update tci as prevous loop
2226 		 * could break out early if dev_maps is NULL.
2227 		 */
2228 		tci = cpu * num_tc + tc;
2229 
2230 		if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
2231 			/* add queue to CPU maps */
2232 			int pos = 0;
2233 
2234 			map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2235 			while ((pos < map->len) && (map->queues[pos] != index))
2236 				pos++;
2237 
2238 			if (pos == map->len)
2239 				map->queues[map->len++] = index;
2240 #ifdef CONFIG_NUMA
2241 			if (numa_node_id == -2)
2242 				numa_node_id = cpu_to_node(cpu);
2243 			else if (numa_node_id != cpu_to_node(cpu))
2244 				numa_node_id = -1;
2245 #endif
2246 		} else if (dev_maps) {
2247 			/* fill in the new device map from the old device map */
2248 			map = xmap_dereference(dev_maps->cpu_map[tci]);
2249 			RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2250 		}
2251 
2252 		/* copy maps belonging to foreign traffic classes */
2253 		for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2254 			/* fill in the new device map from the old device map */
2255 			map = xmap_dereference(dev_maps->cpu_map[tci]);
2256 			RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2257 		}
2258 	}
2259 
2260 	rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2261 
2262 	/* Cleanup old maps */
2263 	if (!dev_maps)
2264 		goto out_no_old_maps;
2265 
2266 	for_each_possible_cpu(cpu) {
2267 		for (i = num_tc, tci = cpu * num_tc; i--; tci++) {
2268 			new_map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2269 			map = xmap_dereference(dev_maps->cpu_map[tci]);
2270 			if (map && map != new_map)
2271 				kfree_rcu(map, rcu);
2272 		}
2273 	}
2274 
2275 	kfree_rcu(dev_maps, rcu);
2276 
2277 out_no_old_maps:
2278 	dev_maps = new_dev_maps;
2279 	active = true;
2280 
2281 out_no_new_maps:
2282 	/* update Tx queue numa node */
2283 	netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2284 				     (numa_node_id >= 0) ? numa_node_id :
2285 				     NUMA_NO_NODE);
2286 
2287 	if (!dev_maps)
2288 		goto out_no_maps;
2289 
2290 	/* removes queue from unused CPUs */
2291 	for_each_possible_cpu(cpu) {
2292 		for (i = tc, tci = cpu * num_tc; i--; tci++)
2293 			active |= remove_xps_queue(dev_maps, tci, index);
2294 		if (!cpumask_test_cpu(cpu, mask) || !cpu_online(cpu))
2295 			active |= remove_xps_queue(dev_maps, tci, index);
2296 		for (i = num_tc - tc, tci++; --i; tci++)
2297 			active |= remove_xps_queue(dev_maps, tci, index);
2298 	}
2299 
2300 	/* free map if not active */
2301 	if (!active) {
2302 		RCU_INIT_POINTER(dev->xps_maps, NULL);
2303 		kfree_rcu(dev_maps, rcu);
2304 	}
2305 
2306 out_no_maps:
2307 	mutex_unlock(&xps_map_mutex);
2308 
2309 	return 0;
2310 error:
2311 	/* remove any maps that we added */
2312 	for_each_possible_cpu(cpu) {
2313 		for (i = num_tc, tci = cpu * num_tc; i--; tci++) {
2314 			new_map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2315 			map = dev_maps ?
2316 			      xmap_dereference(dev_maps->cpu_map[tci]) :
2317 			      NULL;
2318 			if (new_map && new_map != map)
2319 				kfree(new_map);
2320 		}
2321 	}
2322 
2323 	mutex_unlock(&xps_map_mutex);
2324 
2325 	kfree(new_dev_maps);
2326 	return -ENOMEM;
2327 }
2328 EXPORT_SYMBOL(netif_set_xps_queue);
2329 
2330 #endif
2331 void netdev_reset_tc(struct net_device *dev)
2332 {
2333 #ifdef CONFIG_XPS
2334 	netif_reset_xps_queues_gt(dev, 0);
2335 #endif
2336 	dev->num_tc = 0;
2337 	memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2338 	memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2339 }
2340 EXPORT_SYMBOL(netdev_reset_tc);
2341 
2342 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2343 {
2344 	if (tc >= dev->num_tc)
2345 		return -EINVAL;
2346 
2347 #ifdef CONFIG_XPS
2348 	netif_reset_xps_queues(dev, offset, count);
2349 #endif
2350 	dev->tc_to_txq[tc].count = count;
2351 	dev->tc_to_txq[tc].offset = offset;
2352 	return 0;
2353 }
2354 EXPORT_SYMBOL(netdev_set_tc_queue);
2355 
2356 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2357 {
2358 	if (num_tc > TC_MAX_QUEUE)
2359 		return -EINVAL;
2360 
2361 #ifdef CONFIG_XPS
2362 	netif_reset_xps_queues_gt(dev, 0);
2363 #endif
2364 	dev->num_tc = num_tc;
2365 	return 0;
2366 }
2367 EXPORT_SYMBOL(netdev_set_num_tc);
2368 
2369 /*
2370  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2371  * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2372  */
2373 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2374 {
2375 	int rc;
2376 
2377 	if (txq < 1 || txq > dev->num_tx_queues)
2378 		return -EINVAL;
2379 
2380 	if (dev->reg_state == NETREG_REGISTERED ||
2381 	    dev->reg_state == NETREG_UNREGISTERING) {
2382 		ASSERT_RTNL();
2383 
2384 		rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2385 						  txq);
2386 		if (rc)
2387 			return rc;
2388 
2389 		if (dev->num_tc)
2390 			netif_setup_tc(dev, txq);
2391 
2392 		if (txq < dev->real_num_tx_queues) {
2393 			qdisc_reset_all_tx_gt(dev, txq);
2394 #ifdef CONFIG_XPS
2395 			netif_reset_xps_queues_gt(dev, txq);
2396 #endif
2397 		}
2398 	}
2399 
2400 	dev->real_num_tx_queues = txq;
2401 	return 0;
2402 }
2403 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2404 
2405 #ifdef CONFIG_SYSFS
2406 /**
2407  *	netif_set_real_num_rx_queues - set actual number of RX queues used
2408  *	@dev: Network device
2409  *	@rxq: Actual number of RX queues
2410  *
2411  *	This must be called either with the rtnl_lock held or before
2412  *	registration of the net device.  Returns 0 on success, or a
2413  *	negative error code.  If called before registration, it always
2414  *	succeeds.
2415  */
2416 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2417 {
2418 	int rc;
2419 
2420 	if (rxq < 1 || rxq > dev->num_rx_queues)
2421 		return -EINVAL;
2422 
2423 	if (dev->reg_state == NETREG_REGISTERED) {
2424 		ASSERT_RTNL();
2425 
2426 		rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2427 						  rxq);
2428 		if (rc)
2429 			return rc;
2430 	}
2431 
2432 	dev->real_num_rx_queues = rxq;
2433 	return 0;
2434 }
2435 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2436 #endif
2437 
2438 /**
2439  * netif_get_num_default_rss_queues - default number of RSS queues
2440  *
2441  * This routine should set an upper limit on the number of RSS queues
2442  * used by default by multiqueue devices.
2443  */
2444 int netif_get_num_default_rss_queues(void)
2445 {
2446 	return is_kdump_kernel() ?
2447 		1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2448 }
2449 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2450 
2451 static void __netif_reschedule(struct Qdisc *q)
2452 {
2453 	struct softnet_data *sd;
2454 	unsigned long flags;
2455 
2456 	local_irq_save(flags);
2457 	sd = this_cpu_ptr(&softnet_data);
2458 	q->next_sched = NULL;
2459 	*sd->output_queue_tailp = q;
2460 	sd->output_queue_tailp = &q->next_sched;
2461 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
2462 	local_irq_restore(flags);
2463 }
2464 
2465 void __netif_schedule(struct Qdisc *q)
2466 {
2467 	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2468 		__netif_reschedule(q);
2469 }
2470 EXPORT_SYMBOL(__netif_schedule);
2471 
2472 struct dev_kfree_skb_cb {
2473 	enum skb_free_reason reason;
2474 };
2475 
2476 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2477 {
2478 	return (struct dev_kfree_skb_cb *)skb->cb;
2479 }
2480 
2481 void netif_schedule_queue(struct netdev_queue *txq)
2482 {
2483 	rcu_read_lock();
2484 	if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2485 		struct Qdisc *q = rcu_dereference(txq->qdisc);
2486 
2487 		__netif_schedule(q);
2488 	}
2489 	rcu_read_unlock();
2490 }
2491 EXPORT_SYMBOL(netif_schedule_queue);
2492 
2493 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2494 {
2495 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2496 		struct Qdisc *q;
2497 
2498 		rcu_read_lock();
2499 		q = rcu_dereference(dev_queue->qdisc);
2500 		__netif_schedule(q);
2501 		rcu_read_unlock();
2502 	}
2503 }
2504 EXPORT_SYMBOL(netif_tx_wake_queue);
2505 
2506 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2507 {
2508 	unsigned long flags;
2509 
2510 	if (unlikely(!skb))
2511 		return;
2512 
2513 	if (likely(refcount_read(&skb->users) == 1)) {
2514 		smp_rmb();
2515 		refcount_set(&skb->users, 0);
2516 	} else if (likely(!refcount_dec_and_test(&skb->users))) {
2517 		return;
2518 	}
2519 	get_kfree_skb_cb(skb)->reason = reason;
2520 	local_irq_save(flags);
2521 	skb->next = __this_cpu_read(softnet_data.completion_queue);
2522 	__this_cpu_write(softnet_data.completion_queue, skb);
2523 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
2524 	local_irq_restore(flags);
2525 }
2526 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2527 
2528 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2529 {
2530 	if (in_irq() || irqs_disabled())
2531 		__dev_kfree_skb_irq(skb, reason);
2532 	else
2533 		dev_kfree_skb(skb);
2534 }
2535 EXPORT_SYMBOL(__dev_kfree_skb_any);
2536 
2537 
2538 /**
2539  * netif_device_detach - mark device as removed
2540  * @dev: network device
2541  *
2542  * Mark device as removed from system and therefore no longer available.
2543  */
2544 void netif_device_detach(struct net_device *dev)
2545 {
2546 	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2547 	    netif_running(dev)) {
2548 		netif_tx_stop_all_queues(dev);
2549 	}
2550 }
2551 EXPORT_SYMBOL(netif_device_detach);
2552 
2553 /**
2554  * netif_device_attach - mark device as attached
2555  * @dev: network device
2556  *
2557  * Mark device as attached from system and restart if needed.
2558  */
2559 void netif_device_attach(struct net_device *dev)
2560 {
2561 	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2562 	    netif_running(dev)) {
2563 		netif_tx_wake_all_queues(dev);
2564 		__netdev_watchdog_up(dev);
2565 	}
2566 }
2567 EXPORT_SYMBOL(netif_device_attach);
2568 
2569 /*
2570  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2571  * to be used as a distribution range.
2572  */
2573 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
2574 		  unsigned int num_tx_queues)
2575 {
2576 	u32 hash;
2577 	u16 qoffset = 0;
2578 	u16 qcount = num_tx_queues;
2579 
2580 	if (skb_rx_queue_recorded(skb)) {
2581 		hash = skb_get_rx_queue(skb);
2582 		while (unlikely(hash >= num_tx_queues))
2583 			hash -= num_tx_queues;
2584 		return hash;
2585 	}
2586 
2587 	if (dev->num_tc) {
2588 		u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2589 
2590 		qoffset = dev->tc_to_txq[tc].offset;
2591 		qcount = dev->tc_to_txq[tc].count;
2592 	}
2593 
2594 	return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2595 }
2596 EXPORT_SYMBOL(__skb_tx_hash);
2597 
2598 static void skb_warn_bad_offload(const struct sk_buff *skb)
2599 {
2600 	static const netdev_features_t null_features;
2601 	struct net_device *dev = skb->dev;
2602 	const char *name = "";
2603 
2604 	if (!net_ratelimit())
2605 		return;
2606 
2607 	if (dev) {
2608 		if (dev->dev.parent)
2609 			name = dev_driver_string(dev->dev.parent);
2610 		else
2611 			name = netdev_name(dev);
2612 	}
2613 	WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2614 	     "gso_type=%d ip_summed=%d\n",
2615 	     name, dev ? &dev->features : &null_features,
2616 	     skb->sk ? &skb->sk->sk_route_caps : &null_features,
2617 	     skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2618 	     skb_shinfo(skb)->gso_type, skb->ip_summed);
2619 }
2620 
2621 /*
2622  * Invalidate hardware checksum when packet is to be mangled, and
2623  * complete checksum manually on outgoing path.
2624  */
2625 int skb_checksum_help(struct sk_buff *skb)
2626 {
2627 	__wsum csum;
2628 	int ret = 0, offset;
2629 
2630 	if (skb->ip_summed == CHECKSUM_COMPLETE)
2631 		goto out_set_summed;
2632 
2633 	if (unlikely(skb_shinfo(skb)->gso_size)) {
2634 		skb_warn_bad_offload(skb);
2635 		return -EINVAL;
2636 	}
2637 
2638 	/* Before computing a checksum, we should make sure no frag could
2639 	 * be modified by an external entity : checksum could be wrong.
2640 	 */
2641 	if (skb_has_shared_frag(skb)) {
2642 		ret = __skb_linearize(skb);
2643 		if (ret)
2644 			goto out;
2645 	}
2646 
2647 	offset = skb_checksum_start_offset(skb);
2648 	BUG_ON(offset >= skb_headlen(skb));
2649 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
2650 
2651 	offset += skb->csum_offset;
2652 	BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2653 
2654 	if (skb_cloned(skb) &&
2655 	    !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2656 		ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2657 		if (ret)
2658 			goto out;
2659 	}
2660 
2661 	*(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
2662 out_set_summed:
2663 	skb->ip_summed = CHECKSUM_NONE;
2664 out:
2665 	return ret;
2666 }
2667 EXPORT_SYMBOL(skb_checksum_help);
2668 
2669 int skb_crc32c_csum_help(struct sk_buff *skb)
2670 {
2671 	__le32 crc32c_csum;
2672 	int ret = 0, offset, start;
2673 
2674 	if (skb->ip_summed != CHECKSUM_PARTIAL)
2675 		goto out;
2676 
2677 	if (unlikely(skb_is_gso(skb)))
2678 		goto out;
2679 
2680 	/* Before computing a checksum, we should make sure no frag could
2681 	 * be modified by an external entity : checksum could be wrong.
2682 	 */
2683 	if (unlikely(skb_has_shared_frag(skb))) {
2684 		ret = __skb_linearize(skb);
2685 		if (ret)
2686 			goto out;
2687 	}
2688 	start = skb_checksum_start_offset(skb);
2689 	offset = start + offsetof(struct sctphdr, checksum);
2690 	if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
2691 		ret = -EINVAL;
2692 		goto out;
2693 	}
2694 	if (skb_cloned(skb) &&
2695 	    !skb_clone_writable(skb, offset + sizeof(__le32))) {
2696 		ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2697 		if (ret)
2698 			goto out;
2699 	}
2700 	crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
2701 						  skb->len - start, ~(__u32)0,
2702 						  crc32c_csum_stub));
2703 	*(__le32 *)(skb->data + offset) = crc32c_csum;
2704 	skb->ip_summed = CHECKSUM_NONE;
2705 	skb->csum_not_inet = 0;
2706 out:
2707 	return ret;
2708 }
2709 
2710 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2711 {
2712 	__be16 type = skb->protocol;
2713 
2714 	/* Tunnel gso handlers can set protocol to ethernet. */
2715 	if (type == htons(ETH_P_TEB)) {
2716 		struct ethhdr *eth;
2717 
2718 		if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2719 			return 0;
2720 
2721 		eth = (struct ethhdr *)skb_mac_header(skb);
2722 		type = eth->h_proto;
2723 	}
2724 
2725 	return __vlan_get_protocol(skb, type, depth);
2726 }
2727 
2728 /**
2729  *	skb_mac_gso_segment - mac layer segmentation handler.
2730  *	@skb: buffer to segment
2731  *	@features: features for the output path (see dev->features)
2732  */
2733 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2734 				    netdev_features_t features)
2735 {
2736 	struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2737 	struct packet_offload *ptype;
2738 	int vlan_depth = skb->mac_len;
2739 	__be16 type = skb_network_protocol(skb, &vlan_depth);
2740 
2741 	if (unlikely(!type))
2742 		return ERR_PTR(-EINVAL);
2743 
2744 	__skb_pull(skb, vlan_depth);
2745 
2746 	rcu_read_lock();
2747 	list_for_each_entry_rcu(ptype, &offload_base, list) {
2748 		if (ptype->type == type && ptype->callbacks.gso_segment) {
2749 			segs = ptype->callbacks.gso_segment(skb, features);
2750 			break;
2751 		}
2752 	}
2753 	rcu_read_unlock();
2754 
2755 	__skb_push(skb, skb->data - skb_mac_header(skb));
2756 
2757 	return segs;
2758 }
2759 EXPORT_SYMBOL(skb_mac_gso_segment);
2760 
2761 
2762 /* openvswitch calls this on rx path, so we need a different check.
2763  */
2764 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2765 {
2766 	if (tx_path)
2767 		return skb->ip_summed != CHECKSUM_PARTIAL;
2768 
2769 	return skb->ip_summed == CHECKSUM_NONE;
2770 }
2771 
2772 /**
2773  *	__skb_gso_segment - Perform segmentation on skb.
2774  *	@skb: buffer to segment
2775  *	@features: features for the output path (see dev->features)
2776  *	@tx_path: whether it is called in TX path
2777  *
2778  *	This function segments the given skb and returns a list of segments.
2779  *
2780  *	It may return NULL if the skb requires no segmentation.  This is
2781  *	only possible when GSO is used for verifying header integrity.
2782  *
2783  *	Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
2784  */
2785 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2786 				  netdev_features_t features, bool tx_path)
2787 {
2788 	struct sk_buff *segs;
2789 
2790 	if (unlikely(skb_needs_check(skb, tx_path))) {
2791 		int err;
2792 
2793 		/* We're going to init ->check field in TCP or UDP header */
2794 		err = skb_cow_head(skb, 0);
2795 		if (err < 0)
2796 			return ERR_PTR(err);
2797 	}
2798 
2799 	/* Only report GSO partial support if it will enable us to
2800 	 * support segmentation on this frame without needing additional
2801 	 * work.
2802 	 */
2803 	if (features & NETIF_F_GSO_PARTIAL) {
2804 		netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
2805 		struct net_device *dev = skb->dev;
2806 
2807 		partial_features |= dev->features & dev->gso_partial_features;
2808 		if (!skb_gso_ok(skb, features | partial_features))
2809 			features &= ~NETIF_F_GSO_PARTIAL;
2810 	}
2811 
2812 	BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
2813 		     sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
2814 
2815 	SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2816 	SKB_GSO_CB(skb)->encap_level = 0;
2817 
2818 	skb_reset_mac_header(skb);
2819 	skb_reset_mac_len(skb);
2820 
2821 	segs = skb_mac_gso_segment(skb, features);
2822 
2823 	if (unlikely(skb_needs_check(skb, tx_path)))
2824 		skb_warn_bad_offload(skb);
2825 
2826 	return segs;
2827 }
2828 EXPORT_SYMBOL(__skb_gso_segment);
2829 
2830 /* Take action when hardware reception checksum errors are detected. */
2831 #ifdef CONFIG_BUG
2832 void netdev_rx_csum_fault(struct net_device *dev)
2833 {
2834 	if (net_ratelimit()) {
2835 		pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2836 		dump_stack();
2837 	}
2838 }
2839 EXPORT_SYMBOL(netdev_rx_csum_fault);
2840 #endif
2841 
2842 /* Actually, we should eliminate this check as soon as we know, that:
2843  * 1. IOMMU is present and allows to map all the memory.
2844  * 2. No high memory really exists on this machine.
2845  */
2846 
2847 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2848 {
2849 #ifdef CONFIG_HIGHMEM
2850 	int i;
2851 
2852 	if (!(dev->features & NETIF_F_HIGHDMA)) {
2853 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2854 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2855 
2856 			if (PageHighMem(skb_frag_page(frag)))
2857 				return 1;
2858 		}
2859 	}
2860 
2861 	if (PCI_DMA_BUS_IS_PHYS) {
2862 		struct device *pdev = dev->dev.parent;
2863 
2864 		if (!pdev)
2865 			return 0;
2866 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2867 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2868 			dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2869 
2870 			if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2871 				return 1;
2872 		}
2873 	}
2874 #endif
2875 	return 0;
2876 }
2877 
2878 /* If MPLS offload request, verify we are testing hardware MPLS features
2879  * instead of standard features for the netdev.
2880  */
2881 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
2882 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2883 					   netdev_features_t features,
2884 					   __be16 type)
2885 {
2886 	if (eth_p_mpls(type))
2887 		features &= skb->dev->mpls_features;
2888 
2889 	return features;
2890 }
2891 #else
2892 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2893 					   netdev_features_t features,
2894 					   __be16 type)
2895 {
2896 	return features;
2897 }
2898 #endif
2899 
2900 static netdev_features_t harmonize_features(struct sk_buff *skb,
2901 	netdev_features_t features)
2902 {
2903 	int tmp;
2904 	__be16 type;
2905 
2906 	type = skb_network_protocol(skb, &tmp);
2907 	features = net_mpls_features(skb, features, type);
2908 
2909 	if (skb->ip_summed != CHECKSUM_NONE &&
2910 	    !can_checksum_protocol(features, type)) {
2911 		features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
2912 	}
2913 	if (illegal_highdma(skb->dev, skb))
2914 		features &= ~NETIF_F_SG;
2915 
2916 	return features;
2917 }
2918 
2919 netdev_features_t passthru_features_check(struct sk_buff *skb,
2920 					  struct net_device *dev,
2921 					  netdev_features_t features)
2922 {
2923 	return features;
2924 }
2925 EXPORT_SYMBOL(passthru_features_check);
2926 
2927 static netdev_features_t dflt_features_check(const struct sk_buff *skb,
2928 					     struct net_device *dev,
2929 					     netdev_features_t features)
2930 {
2931 	return vlan_features_check(skb, features);
2932 }
2933 
2934 static netdev_features_t gso_features_check(const struct sk_buff *skb,
2935 					    struct net_device *dev,
2936 					    netdev_features_t features)
2937 {
2938 	u16 gso_segs = skb_shinfo(skb)->gso_segs;
2939 
2940 	if (gso_segs > dev->gso_max_segs)
2941 		return features & ~NETIF_F_GSO_MASK;
2942 
2943 	/* Support for GSO partial features requires software
2944 	 * intervention before we can actually process the packets
2945 	 * so we need to strip support for any partial features now
2946 	 * and we can pull them back in after we have partially
2947 	 * segmented the frame.
2948 	 */
2949 	if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
2950 		features &= ~dev->gso_partial_features;
2951 
2952 	/* Make sure to clear the IPv4 ID mangling feature if the
2953 	 * IPv4 header has the potential to be fragmented.
2954 	 */
2955 	if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
2956 		struct iphdr *iph = skb->encapsulation ?
2957 				    inner_ip_hdr(skb) : ip_hdr(skb);
2958 
2959 		if (!(iph->frag_off & htons(IP_DF)))
2960 			features &= ~NETIF_F_TSO_MANGLEID;
2961 	}
2962 
2963 	return features;
2964 }
2965 
2966 netdev_features_t netif_skb_features(struct sk_buff *skb)
2967 {
2968 	struct net_device *dev = skb->dev;
2969 	netdev_features_t features = dev->features;
2970 
2971 	if (skb_is_gso(skb))
2972 		features = gso_features_check(skb, dev, features);
2973 
2974 	/* If encapsulation offload request, verify we are testing
2975 	 * hardware encapsulation features instead of standard
2976 	 * features for the netdev
2977 	 */
2978 	if (skb->encapsulation)
2979 		features &= dev->hw_enc_features;
2980 
2981 	if (skb_vlan_tagged(skb))
2982 		features = netdev_intersect_features(features,
2983 						     dev->vlan_features |
2984 						     NETIF_F_HW_VLAN_CTAG_TX |
2985 						     NETIF_F_HW_VLAN_STAG_TX);
2986 
2987 	if (dev->netdev_ops->ndo_features_check)
2988 		features &= dev->netdev_ops->ndo_features_check(skb, dev,
2989 								features);
2990 	else
2991 		features &= dflt_features_check(skb, dev, features);
2992 
2993 	return harmonize_features(skb, features);
2994 }
2995 EXPORT_SYMBOL(netif_skb_features);
2996 
2997 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
2998 		    struct netdev_queue *txq, bool more)
2999 {
3000 	unsigned int len;
3001 	int rc;
3002 
3003 	if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all))
3004 		dev_queue_xmit_nit(skb, dev);
3005 
3006 	len = skb->len;
3007 	trace_net_dev_start_xmit(skb, dev);
3008 	rc = netdev_start_xmit(skb, dev, txq, more);
3009 	trace_net_dev_xmit(skb, rc, dev, len);
3010 
3011 	return rc;
3012 }
3013 
3014 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3015 				    struct netdev_queue *txq, int *ret)
3016 {
3017 	struct sk_buff *skb = first;
3018 	int rc = NETDEV_TX_OK;
3019 
3020 	while (skb) {
3021 		struct sk_buff *next = skb->next;
3022 
3023 		skb->next = NULL;
3024 		rc = xmit_one(skb, dev, txq, next != NULL);
3025 		if (unlikely(!dev_xmit_complete(rc))) {
3026 			skb->next = next;
3027 			goto out;
3028 		}
3029 
3030 		skb = next;
3031 		if (netif_xmit_stopped(txq) && skb) {
3032 			rc = NETDEV_TX_BUSY;
3033 			break;
3034 		}
3035 	}
3036 
3037 out:
3038 	*ret = rc;
3039 	return skb;
3040 }
3041 
3042 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3043 					  netdev_features_t features)
3044 {
3045 	if (skb_vlan_tag_present(skb) &&
3046 	    !vlan_hw_offload_capable(features, skb->vlan_proto))
3047 		skb = __vlan_hwaccel_push_inside(skb);
3048 	return skb;
3049 }
3050 
3051 int skb_csum_hwoffload_help(struct sk_buff *skb,
3052 			    const netdev_features_t features)
3053 {
3054 	if (unlikely(skb->csum_not_inet))
3055 		return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3056 			skb_crc32c_csum_help(skb);
3057 
3058 	return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb);
3059 }
3060 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3061 
3062 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev)
3063 {
3064 	netdev_features_t features;
3065 
3066 	features = netif_skb_features(skb);
3067 	skb = validate_xmit_vlan(skb, features);
3068 	if (unlikely(!skb))
3069 		goto out_null;
3070 
3071 	if (netif_needs_gso(skb, features)) {
3072 		struct sk_buff *segs;
3073 
3074 		segs = skb_gso_segment(skb, features);
3075 		if (IS_ERR(segs)) {
3076 			goto out_kfree_skb;
3077 		} else if (segs) {
3078 			consume_skb(skb);
3079 			skb = segs;
3080 		}
3081 	} else {
3082 		if (skb_needs_linearize(skb, features) &&
3083 		    __skb_linearize(skb))
3084 			goto out_kfree_skb;
3085 
3086 		if (validate_xmit_xfrm(skb, features))
3087 			goto out_kfree_skb;
3088 
3089 		/* If packet is not checksummed and device does not
3090 		 * support checksumming for this protocol, complete
3091 		 * checksumming here.
3092 		 */
3093 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
3094 			if (skb->encapsulation)
3095 				skb_set_inner_transport_header(skb,
3096 							       skb_checksum_start_offset(skb));
3097 			else
3098 				skb_set_transport_header(skb,
3099 							 skb_checksum_start_offset(skb));
3100 			if (skb_csum_hwoffload_help(skb, features))
3101 				goto out_kfree_skb;
3102 		}
3103 	}
3104 
3105 	return skb;
3106 
3107 out_kfree_skb:
3108 	kfree_skb(skb);
3109 out_null:
3110 	atomic_long_inc(&dev->tx_dropped);
3111 	return NULL;
3112 }
3113 
3114 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev)
3115 {
3116 	struct sk_buff *next, *head = NULL, *tail;
3117 
3118 	for (; skb != NULL; skb = next) {
3119 		next = skb->next;
3120 		skb->next = NULL;
3121 
3122 		/* in case skb wont be segmented, point to itself */
3123 		skb->prev = skb;
3124 
3125 		skb = validate_xmit_skb(skb, dev);
3126 		if (!skb)
3127 			continue;
3128 
3129 		if (!head)
3130 			head = skb;
3131 		else
3132 			tail->next = skb;
3133 		/* If skb was segmented, skb->prev points to
3134 		 * the last segment. If not, it still contains skb.
3135 		 */
3136 		tail = skb->prev;
3137 	}
3138 	return head;
3139 }
3140 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3141 
3142 static void qdisc_pkt_len_init(struct sk_buff *skb)
3143 {
3144 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
3145 
3146 	qdisc_skb_cb(skb)->pkt_len = skb->len;
3147 
3148 	/* To get more precise estimation of bytes sent on wire,
3149 	 * we add to pkt_len the headers size of all segments
3150 	 */
3151 	if (shinfo->gso_size)  {
3152 		unsigned int hdr_len;
3153 		u16 gso_segs = shinfo->gso_segs;
3154 
3155 		/* mac layer + network layer */
3156 		hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3157 
3158 		/* + transport layer */
3159 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
3160 			hdr_len += tcp_hdrlen(skb);
3161 		else
3162 			hdr_len += sizeof(struct udphdr);
3163 
3164 		if (shinfo->gso_type & SKB_GSO_DODGY)
3165 			gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3166 						shinfo->gso_size);
3167 
3168 		qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3169 	}
3170 }
3171 
3172 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3173 				 struct net_device *dev,
3174 				 struct netdev_queue *txq)
3175 {
3176 	spinlock_t *root_lock = qdisc_lock(q);
3177 	struct sk_buff *to_free = NULL;
3178 	bool contended;
3179 	int rc;
3180 
3181 	qdisc_calculate_pkt_len(skb, q);
3182 	/*
3183 	 * Heuristic to force contended enqueues to serialize on a
3184 	 * separate lock before trying to get qdisc main lock.
3185 	 * This permits qdisc->running owner to get the lock more
3186 	 * often and dequeue packets faster.
3187 	 */
3188 	contended = qdisc_is_running(q);
3189 	if (unlikely(contended))
3190 		spin_lock(&q->busylock);
3191 
3192 	spin_lock(root_lock);
3193 	if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3194 		__qdisc_drop(skb, &to_free);
3195 		rc = NET_XMIT_DROP;
3196 	} else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3197 		   qdisc_run_begin(q)) {
3198 		/*
3199 		 * This is a work-conserving queue; there are no old skbs
3200 		 * waiting to be sent out; and the qdisc is not running -
3201 		 * xmit the skb directly.
3202 		 */
3203 
3204 		qdisc_bstats_update(q, skb);
3205 
3206 		if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3207 			if (unlikely(contended)) {
3208 				spin_unlock(&q->busylock);
3209 				contended = false;
3210 			}
3211 			__qdisc_run(q);
3212 		} else
3213 			qdisc_run_end(q);
3214 
3215 		rc = NET_XMIT_SUCCESS;
3216 	} else {
3217 		rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3218 		if (qdisc_run_begin(q)) {
3219 			if (unlikely(contended)) {
3220 				spin_unlock(&q->busylock);
3221 				contended = false;
3222 			}
3223 			__qdisc_run(q);
3224 		}
3225 	}
3226 	spin_unlock(root_lock);
3227 	if (unlikely(to_free))
3228 		kfree_skb_list(to_free);
3229 	if (unlikely(contended))
3230 		spin_unlock(&q->busylock);
3231 	return rc;
3232 }
3233 
3234 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3235 static void skb_update_prio(struct sk_buff *skb)
3236 {
3237 	struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
3238 
3239 	if (!skb->priority && skb->sk && map) {
3240 		unsigned int prioidx =
3241 			sock_cgroup_prioidx(&skb->sk->sk_cgrp_data);
3242 
3243 		if (prioidx < map->priomap_len)
3244 			skb->priority = map->priomap[prioidx];
3245 	}
3246 }
3247 #else
3248 #define skb_update_prio(skb)
3249 #endif
3250 
3251 DEFINE_PER_CPU(int, xmit_recursion);
3252 EXPORT_SYMBOL(xmit_recursion);
3253 
3254 /**
3255  *	dev_loopback_xmit - loop back @skb
3256  *	@net: network namespace this loopback is happening in
3257  *	@sk:  sk needed to be a netfilter okfn
3258  *	@skb: buffer to transmit
3259  */
3260 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3261 {
3262 	skb_reset_mac_header(skb);
3263 	__skb_pull(skb, skb_network_offset(skb));
3264 	skb->pkt_type = PACKET_LOOPBACK;
3265 	skb->ip_summed = CHECKSUM_UNNECESSARY;
3266 	WARN_ON(!skb_dst(skb));
3267 	skb_dst_force(skb);
3268 	netif_rx_ni(skb);
3269 	return 0;
3270 }
3271 EXPORT_SYMBOL(dev_loopback_xmit);
3272 
3273 #ifdef CONFIG_NET_EGRESS
3274 static struct sk_buff *
3275 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3276 {
3277 	struct tcf_proto *cl = rcu_dereference_bh(dev->egress_cl_list);
3278 	struct tcf_result cl_res;
3279 
3280 	if (!cl)
3281 		return skb;
3282 
3283 	/* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3284 	qdisc_bstats_cpu_update(cl->q, skb);
3285 
3286 	switch (tcf_classify(skb, cl, &cl_res, false)) {
3287 	case TC_ACT_OK:
3288 	case TC_ACT_RECLASSIFY:
3289 		skb->tc_index = TC_H_MIN(cl_res.classid);
3290 		break;
3291 	case TC_ACT_SHOT:
3292 		qdisc_qstats_cpu_drop(cl->q);
3293 		*ret = NET_XMIT_DROP;
3294 		kfree_skb(skb);
3295 		return NULL;
3296 	case TC_ACT_STOLEN:
3297 	case TC_ACT_QUEUED:
3298 	case TC_ACT_TRAP:
3299 		*ret = NET_XMIT_SUCCESS;
3300 		consume_skb(skb);
3301 		return NULL;
3302 	case TC_ACT_REDIRECT:
3303 		/* No need to push/pop skb's mac_header here on egress! */
3304 		skb_do_redirect(skb);
3305 		*ret = NET_XMIT_SUCCESS;
3306 		return NULL;
3307 	default:
3308 		break;
3309 	}
3310 
3311 	return skb;
3312 }
3313 #endif /* CONFIG_NET_EGRESS */
3314 
3315 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
3316 {
3317 #ifdef CONFIG_XPS
3318 	struct xps_dev_maps *dev_maps;
3319 	struct xps_map *map;
3320 	int queue_index = -1;
3321 
3322 	rcu_read_lock();
3323 	dev_maps = rcu_dereference(dev->xps_maps);
3324 	if (dev_maps) {
3325 		unsigned int tci = skb->sender_cpu - 1;
3326 
3327 		if (dev->num_tc) {
3328 			tci *= dev->num_tc;
3329 			tci += netdev_get_prio_tc_map(dev, skb->priority);
3330 		}
3331 
3332 		map = rcu_dereference(dev_maps->cpu_map[tci]);
3333 		if (map) {
3334 			if (map->len == 1)
3335 				queue_index = map->queues[0];
3336 			else
3337 				queue_index = map->queues[reciprocal_scale(skb_get_hash(skb),
3338 									   map->len)];
3339 			if (unlikely(queue_index >= dev->real_num_tx_queues))
3340 				queue_index = -1;
3341 		}
3342 	}
3343 	rcu_read_unlock();
3344 
3345 	return queue_index;
3346 #else
3347 	return -1;
3348 #endif
3349 }
3350 
3351 static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb)
3352 {
3353 	struct sock *sk = skb->sk;
3354 	int queue_index = sk_tx_queue_get(sk);
3355 
3356 	if (queue_index < 0 || skb->ooo_okay ||
3357 	    queue_index >= dev->real_num_tx_queues) {
3358 		int new_index = get_xps_queue(dev, skb);
3359 
3360 		if (new_index < 0)
3361 			new_index = skb_tx_hash(dev, skb);
3362 
3363 		if (queue_index != new_index && sk &&
3364 		    sk_fullsock(sk) &&
3365 		    rcu_access_pointer(sk->sk_dst_cache))
3366 			sk_tx_queue_set(sk, new_index);
3367 
3368 		queue_index = new_index;
3369 	}
3370 
3371 	return queue_index;
3372 }
3373 
3374 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
3375 				    struct sk_buff *skb,
3376 				    void *accel_priv)
3377 {
3378 	int queue_index = 0;
3379 
3380 #ifdef CONFIG_XPS
3381 	u32 sender_cpu = skb->sender_cpu - 1;
3382 
3383 	if (sender_cpu >= (u32)NR_CPUS)
3384 		skb->sender_cpu = raw_smp_processor_id() + 1;
3385 #endif
3386 
3387 	if (dev->real_num_tx_queues != 1) {
3388 		const struct net_device_ops *ops = dev->netdev_ops;
3389 
3390 		if (ops->ndo_select_queue)
3391 			queue_index = ops->ndo_select_queue(dev, skb, accel_priv,
3392 							    __netdev_pick_tx);
3393 		else
3394 			queue_index = __netdev_pick_tx(dev, skb);
3395 
3396 		if (!accel_priv)
3397 			queue_index = netdev_cap_txqueue(dev, queue_index);
3398 	}
3399 
3400 	skb_set_queue_mapping(skb, queue_index);
3401 	return netdev_get_tx_queue(dev, queue_index);
3402 }
3403 
3404 /**
3405  *	__dev_queue_xmit - transmit a buffer
3406  *	@skb: buffer to transmit
3407  *	@accel_priv: private data used for L2 forwarding offload
3408  *
3409  *	Queue a buffer for transmission to a network device. The caller must
3410  *	have set the device and priority and built the buffer before calling
3411  *	this function. The function can be called from an interrupt.
3412  *
3413  *	A negative errno code is returned on a failure. A success does not
3414  *	guarantee the frame will be transmitted as it may be dropped due
3415  *	to congestion or traffic shaping.
3416  *
3417  * -----------------------------------------------------------------------------------
3418  *      I notice this method can also return errors from the queue disciplines,
3419  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
3420  *      be positive.
3421  *
3422  *      Regardless of the return value, the skb is consumed, so it is currently
3423  *      difficult to retry a send to this method.  (You can bump the ref count
3424  *      before sending to hold a reference for retry if you are careful.)
3425  *
3426  *      When calling this method, interrupts MUST be enabled.  This is because
3427  *      the BH enable code must have IRQs enabled so that it will not deadlock.
3428  *          --BLG
3429  */
3430 static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
3431 {
3432 	struct net_device *dev = skb->dev;
3433 	struct netdev_queue *txq;
3434 	struct Qdisc *q;
3435 	int rc = -ENOMEM;
3436 
3437 	skb_reset_mac_header(skb);
3438 
3439 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3440 		__skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3441 
3442 	/* Disable soft irqs for various locks below. Also
3443 	 * stops preemption for RCU.
3444 	 */
3445 	rcu_read_lock_bh();
3446 
3447 	skb_update_prio(skb);
3448 
3449 	qdisc_pkt_len_init(skb);
3450 #ifdef CONFIG_NET_CLS_ACT
3451 	skb->tc_at_ingress = 0;
3452 # ifdef CONFIG_NET_EGRESS
3453 	if (static_key_false(&egress_needed)) {
3454 		skb = sch_handle_egress(skb, &rc, dev);
3455 		if (!skb)
3456 			goto out;
3457 	}
3458 # endif
3459 #endif
3460 	/* If device/qdisc don't need skb->dst, release it right now while
3461 	 * its hot in this cpu cache.
3462 	 */
3463 	if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3464 		skb_dst_drop(skb);
3465 	else
3466 		skb_dst_force(skb);
3467 
3468 	txq = netdev_pick_tx(dev, skb, accel_priv);
3469 	q = rcu_dereference_bh(txq->qdisc);
3470 
3471 	trace_net_dev_queue(skb);
3472 	if (q->enqueue) {
3473 		rc = __dev_xmit_skb(skb, q, dev, txq);
3474 		goto out;
3475 	}
3476 
3477 	/* The device has no queue. Common case for software devices:
3478 	 * loopback, all the sorts of tunnels...
3479 
3480 	 * Really, it is unlikely that netif_tx_lock protection is necessary
3481 	 * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
3482 	 * counters.)
3483 	 * However, it is possible, that they rely on protection
3484 	 * made by us here.
3485 
3486 	 * Check this and shot the lock. It is not prone from deadlocks.
3487 	 *Either shot noqueue qdisc, it is even simpler 8)
3488 	 */
3489 	if (dev->flags & IFF_UP) {
3490 		int cpu = smp_processor_id(); /* ok because BHs are off */
3491 
3492 		if (txq->xmit_lock_owner != cpu) {
3493 			if (unlikely(__this_cpu_read(xmit_recursion) >
3494 				     XMIT_RECURSION_LIMIT))
3495 				goto recursion_alert;
3496 
3497 			skb = validate_xmit_skb(skb, dev);
3498 			if (!skb)
3499 				goto out;
3500 
3501 			HARD_TX_LOCK(dev, txq, cpu);
3502 
3503 			if (!netif_xmit_stopped(txq)) {
3504 				__this_cpu_inc(xmit_recursion);
3505 				skb = dev_hard_start_xmit(skb, dev, txq, &rc);
3506 				__this_cpu_dec(xmit_recursion);
3507 				if (dev_xmit_complete(rc)) {
3508 					HARD_TX_UNLOCK(dev, txq);
3509 					goto out;
3510 				}
3511 			}
3512 			HARD_TX_UNLOCK(dev, txq);
3513 			net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3514 					     dev->name);
3515 		} else {
3516 			/* Recursion is detected! It is possible,
3517 			 * unfortunately
3518 			 */
3519 recursion_alert:
3520 			net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3521 					     dev->name);
3522 		}
3523 	}
3524 
3525 	rc = -ENETDOWN;
3526 	rcu_read_unlock_bh();
3527 
3528 	atomic_long_inc(&dev->tx_dropped);
3529 	kfree_skb_list(skb);
3530 	return rc;
3531 out:
3532 	rcu_read_unlock_bh();
3533 	return rc;
3534 }
3535 
3536 int dev_queue_xmit(struct sk_buff *skb)
3537 {
3538 	return __dev_queue_xmit(skb, NULL);
3539 }
3540 EXPORT_SYMBOL(dev_queue_xmit);
3541 
3542 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
3543 {
3544 	return __dev_queue_xmit(skb, accel_priv);
3545 }
3546 EXPORT_SYMBOL(dev_queue_xmit_accel);
3547 
3548 
3549 /*************************************************************************
3550  *			Receiver routines
3551  *************************************************************************/
3552 
3553 int netdev_max_backlog __read_mostly = 1000;
3554 EXPORT_SYMBOL(netdev_max_backlog);
3555 
3556 int netdev_tstamp_prequeue __read_mostly = 1;
3557 int netdev_budget __read_mostly = 300;
3558 unsigned int __read_mostly netdev_budget_usecs = 2000;
3559 int weight_p __read_mostly = 64;           /* old backlog weight */
3560 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
3561 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
3562 int dev_rx_weight __read_mostly = 64;
3563 int dev_tx_weight __read_mostly = 64;
3564 
3565 /* Called with irq disabled */
3566 static inline void ____napi_schedule(struct softnet_data *sd,
3567 				     struct napi_struct *napi)
3568 {
3569 	list_add_tail(&napi->poll_list, &sd->poll_list);
3570 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
3571 }
3572 
3573 #ifdef CONFIG_RPS
3574 
3575 /* One global table that all flow-based protocols share. */
3576 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3577 EXPORT_SYMBOL(rps_sock_flow_table);
3578 u32 rps_cpu_mask __read_mostly;
3579 EXPORT_SYMBOL(rps_cpu_mask);
3580 
3581 struct static_key rps_needed __read_mostly;
3582 EXPORT_SYMBOL(rps_needed);
3583 struct static_key rfs_needed __read_mostly;
3584 EXPORT_SYMBOL(rfs_needed);
3585 
3586 static struct rps_dev_flow *
3587 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3588 	    struct rps_dev_flow *rflow, u16 next_cpu)
3589 {
3590 	if (next_cpu < nr_cpu_ids) {
3591 #ifdef CONFIG_RFS_ACCEL
3592 		struct netdev_rx_queue *rxqueue;
3593 		struct rps_dev_flow_table *flow_table;
3594 		struct rps_dev_flow *old_rflow;
3595 		u32 flow_id;
3596 		u16 rxq_index;
3597 		int rc;
3598 
3599 		/* Should we steer this flow to a different hardware queue? */
3600 		if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3601 		    !(dev->features & NETIF_F_NTUPLE))
3602 			goto out;
3603 		rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3604 		if (rxq_index == skb_get_rx_queue(skb))
3605 			goto out;
3606 
3607 		rxqueue = dev->_rx + rxq_index;
3608 		flow_table = rcu_dereference(rxqueue->rps_flow_table);
3609 		if (!flow_table)
3610 			goto out;
3611 		flow_id = skb_get_hash(skb) & flow_table->mask;
3612 		rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3613 							rxq_index, flow_id);
3614 		if (rc < 0)
3615 			goto out;
3616 		old_rflow = rflow;
3617 		rflow = &flow_table->flows[flow_id];
3618 		rflow->filter = rc;
3619 		if (old_rflow->filter == rflow->filter)
3620 			old_rflow->filter = RPS_NO_FILTER;
3621 	out:
3622 #endif
3623 		rflow->last_qtail =
3624 			per_cpu(softnet_data, next_cpu).input_queue_head;
3625 	}
3626 
3627 	rflow->cpu = next_cpu;
3628 	return rflow;
3629 }
3630 
3631 /*
3632  * get_rps_cpu is called from netif_receive_skb and returns the target
3633  * CPU from the RPS map of the receiving queue for a given skb.
3634  * rcu_read_lock must be held on entry.
3635  */
3636 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3637 		       struct rps_dev_flow **rflowp)
3638 {
3639 	const struct rps_sock_flow_table *sock_flow_table;
3640 	struct netdev_rx_queue *rxqueue = dev->_rx;
3641 	struct rps_dev_flow_table *flow_table;
3642 	struct rps_map *map;
3643 	int cpu = -1;
3644 	u32 tcpu;
3645 	u32 hash;
3646 
3647 	if (skb_rx_queue_recorded(skb)) {
3648 		u16 index = skb_get_rx_queue(skb);
3649 
3650 		if (unlikely(index >= dev->real_num_rx_queues)) {
3651 			WARN_ONCE(dev->real_num_rx_queues > 1,
3652 				  "%s received packet on queue %u, but number "
3653 				  "of RX queues is %u\n",
3654 				  dev->name, index, dev->real_num_rx_queues);
3655 			goto done;
3656 		}
3657 		rxqueue += index;
3658 	}
3659 
3660 	/* Avoid computing hash if RFS/RPS is not active for this rxqueue */
3661 
3662 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
3663 	map = rcu_dereference(rxqueue->rps_map);
3664 	if (!flow_table && !map)
3665 		goto done;
3666 
3667 	skb_reset_network_header(skb);
3668 	hash = skb_get_hash(skb);
3669 	if (!hash)
3670 		goto done;
3671 
3672 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
3673 	if (flow_table && sock_flow_table) {
3674 		struct rps_dev_flow *rflow;
3675 		u32 next_cpu;
3676 		u32 ident;
3677 
3678 		/* First check into global flow table if there is a match */
3679 		ident = sock_flow_table->ents[hash & sock_flow_table->mask];
3680 		if ((ident ^ hash) & ~rps_cpu_mask)
3681 			goto try_rps;
3682 
3683 		next_cpu = ident & rps_cpu_mask;
3684 
3685 		/* OK, now we know there is a match,
3686 		 * we can look at the local (per receive queue) flow table
3687 		 */
3688 		rflow = &flow_table->flows[hash & flow_table->mask];
3689 		tcpu = rflow->cpu;
3690 
3691 		/*
3692 		 * If the desired CPU (where last recvmsg was done) is
3693 		 * different from current CPU (one in the rx-queue flow
3694 		 * table entry), switch if one of the following holds:
3695 		 *   - Current CPU is unset (>= nr_cpu_ids).
3696 		 *   - Current CPU is offline.
3697 		 *   - The current CPU's queue tail has advanced beyond the
3698 		 *     last packet that was enqueued using this table entry.
3699 		 *     This guarantees that all previous packets for the flow
3700 		 *     have been dequeued, thus preserving in order delivery.
3701 		 */
3702 		if (unlikely(tcpu != next_cpu) &&
3703 		    (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
3704 		     ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
3705 		      rflow->last_qtail)) >= 0)) {
3706 			tcpu = next_cpu;
3707 			rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
3708 		}
3709 
3710 		if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
3711 			*rflowp = rflow;
3712 			cpu = tcpu;
3713 			goto done;
3714 		}
3715 	}
3716 
3717 try_rps:
3718 
3719 	if (map) {
3720 		tcpu = map->cpus[reciprocal_scale(hash, map->len)];
3721 		if (cpu_online(tcpu)) {
3722 			cpu = tcpu;
3723 			goto done;
3724 		}
3725 	}
3726 
3727 done:
3728 	return cpu;
3729 }
3730 
3731 #ifdef CONFIG_RFS_ACCEL
3732 
3733 /**
3734  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3735  * @dev: Device on which the filter was set
3736  * @rxq_index: RX queue index
3737  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3738  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3739  *
3740  * Drivers that implement ndo_rx_flow_steer() should periodically call
3741  * this function for each installed filter and remove the filters for
3742  * which it returns %true.
3743  */
3744 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3745 			 u32 flow_id, u16 filter_id)
3746 {
3747 	struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3748 	struct rps_dev_flow_table *flow_table;
3749 	struct rps_dev_flow *rflow;
3750 	bool expire = true;
3751 	unsigned int cpu;
3752 
3753 	rcu_read_lock();
3754 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
3755 	if (flow_table && flow_id <= flow_table->mask) {
3756 		rflow = &flow_table->flows[flow_id];
3757 		cpu = ACCESS_ONCE(rflow->cpu);
3758 		if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
3759 		    ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3760 			   rflow->last_qtail) <
3761 		     (int)(10 * flow_table->mask)))
3762 			expire = false;
3763 	}
3764 	rcu_read_unlock();
3765 	return expire;
3766 }
3767 EXPORT_SYMBOL(rps_may_expire_flow);
3768 
3769 #endif /* CONFIG_RFS_ACCEL */
3770 
3771 /* Called from hardirq (IPI) context */
3772 static void rps_trigger_softirq(void *data)
3773 {
3774 	struct softnet_data *sd = data;
3775 
3776 	____napi_schedule(sd, &sd->backlog);
3777 	sd->received_rps++;
3778 }
3779 
3780 #endif /* CONFIG_RPS */
3781 
3782 /*
3783  * Check if this softnet_data structure is another cpu one
3784  * If yes, queue it to our IPI list and return 1
3785  * If no, return 0
3786  */
3787 static int rps_ipi_queued(struct softnet_data *sd)
3788 {
3789 #ifdef CONFIG_RPS
3790 	struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
3791 
3792 	if (sd != mysd) {
3793 		sd->rps_ipi_next = mysd->rps_ipi_list;
3794 		mysd->rps_ipi_list = sd;
3795 
3796 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
3797 		return 1;
3798 	}
3799 #endif /* CONFIG_RPS */
3800 	return 0;
3801 }
3802 
3803 #ifdef CONFIG_NET_FLOW_LIMIT
3804 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3805 #endif
3806 
3807 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3808 {
3809 #ifdef CONFIG_NET_FLOW_LIMIT
3810 	struct sd_flow_limit *fl;
3811 	struct softnet_data *sd;
3812 	unsigned int old_flow, new_flow;
3813 
3814 	if (qlen < (netdev_max_backlog >> 1))
3815 		return false;
3816 
3817 	sd = this_cpu_ptr(&softnet_data);
3818 
3819 	rcu_read_lock();
3820 	fl = rcu_dereference(sd->flow_limit);
3821 	if (fl) {
3822 		new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
3823 		old_flow = fl->history[fl->history_head];
3824 		fl->history[fl->history_head] = new_flow;
3825 
3826 		fl->history_head++;
3827 		fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3828 
3829 		if (likely(fl->buckets[old_flow]))
3830 			fl->buckets[old_flow]--;
3831 
3832 		if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3833 			fl->count++;
3834 			rcu_read_unlock();
3835 			return true;
3836 		}
3837 	}
3838 	rcu_read_unlock();
3839 #endif
3840 	return false;
3841 }
3842 
3843 /*
3844  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3845  * queue (may be a remote CPU queue).
3846  */
3847 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3848 			      unsigned int *qtail)
3849 {
3850 	struct softnet_data *sd;
3851 	unsigned long flags;
3852 	unsigned int qlen;
3853 
3854 	sd = &per_cpu(softnet_data, cpu);
3855 
3856 	local_irq_save(flags);
3857 
3858 	rps_lock(sd);
3859 	if (!netif_running(skb->dev))
3860 		goto drop;
3861 	qlen = skb_queue_len(&sd->input_pkt_queue);
3862 	if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
3863 		if (qlen) {
3864 enqueue:
3865 			__skb_queue_tail(&sd->input_pkt_queue, skb);
3866 			input_queue_tail_incr_save(sd, qtail);
3867 			rps_unlock(sd);
3868 			local_irq_restore(flags);
3869 			return NET_RX_SUCCESS;
3870 		}
3871 
3872 		/* Schedule NAPI for backlog device
3873 		 * We can use non atomic operation since we own the queue lock
3874 		 */
3875 		if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3876 			if (!rps_ipi_queued(sd))
3877 				____napi_schedule(sd, &sd->backlog);
3878 		}
3879 		goto enqueue;
3880 	}
3881 
3882 drop:
3883 	sd->dropped++;
3884 	rps_unlock(sd);
3885 
3886 	local_irq_restore(flags);
3887 
3888 	atomic_long_inc(&skb->dev->rx_dropped);
3889 	kfree_skb(skb);
3890 	return NET_RX_DROP;
3891 }
3892 
3893 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
3894 				     struct bpf_prog *xdp_prog)
3895 {
3896 	u32 metalen, act = XDP_DROP;
3897 	struct xdp_buff xdp;
3898 	void *orig_data;
3899 	int hlen, off;
3900 	u32 mac_len;
3901 
3902 	/* Reinjected packets coming from act_mirred or similar should
3903 	 * not get XDP generic processing.
3904 	 */
3905 	if (skb_cloned(skb))
3906 		return XDP_PASS;
3907 
3908 	/* XDP packets must be linear and must have sufficient headroom
3909 	 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
3910 	 * native XDP provides, thus we need to do it here as well.
3911 	 */
3912 	if (skb_is_nonlinear(skb) ||
3913 	    skb_headroom(skb) < XDP_PACKET_HEADROOM) {
3914 		int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
3915 		int troom = skb->tail + skb->data_len - skb->end;
3916 
3917 		/* In case we have to go down the path and also linearize,
3918 		 * then lets do the pskb_expand_head() work just once here.
3919 		 */
3920 		if (pskb_expand_head(skb,
3921 				     hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
3922 				     troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
3923 			goto do_drop;
3924 		if (troom > 0 && __skb_linearize(skb))
3925 			goto do_drop;
3926 	}
3927 
3928 	/* The XDP program wants to see the packet starting at the MAC
3929 	 * header.
3930 	 */
3931 	mac_len = skb->data - skb_mac_header(skb);
3932 	hlen = skb_headlen(skb) + mac_len;
3933 	xdp.data = skb->data - mac_len;
3934 	xdp.data_meta = xdp.data;
3935 	xdp.data_end = xdp.data + hlen;
3936 	xdp.data_hard_start = skb->data - skb_headroom(skb);
3937 	orig_data = xdp.data;
3938 
3939 	act = bpf_prog_run_xdp(xdp_prog, &xdp);
3940 
3941 	off = xdp.data - orig_data;
3942 	if (off > 0)
3943 		__skb_pull(skb, off);
3944 	else if (off < 0)
3945 		__skb_push(skb, -off);
3946 	skb->mac_header += off;
3947 
3948 	switch (act) {
3949 	case XDP_REDIRECT:
3950 	case XDP_TX:
3951 		__skb_push(skb, mac_len);
3952 		break;
3953 	case XDP_PASS:
3954 		metalen = xdp.data - xdp.data_meta;
3955 		if (metalen)
3956 			skb_metadata_set(skb, metalen);
3957 		break;
3958 	default:
3959 		bpf_warn_invalid_xdp_action(act);
3960 		/* fall through */
3961 	case XDP_ABORTED:
3962 		trace_xdp_exception(skb->dev, xdp_prog, act);
3963 		/* fall through */
3964 	case XDP_DROP:
3965 	do_drop:
3966 		kfree_skb(skb);
3967 		break;
3968 	}
3969 
3970 	return act;
3971 }
3972 
3973 /* When doing generic XDP we have to bypass the qdisc layer and the
3974  * network taps in order to match in-driver-XDP behavior.
3975  */
3976 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
3977 {
3978 	struct net_device *dev = skb->dev;
3979 	struct netdev_queue *txq;
3980 	bool free_skb = true;
3981 	int cpu, rc;
3982 
3983 	txq = netdev_pick_tx(dev, skb, NULL);
3984 	cpu = smp_processor_id();
3985 	HARD_TX_LOCK(dev, txq, cpu);
3986 	if (!netif_xmit_stopped(txq)) {
3987 		rc = netdev_start_xmit(skb, dev, txq, 0);
3988 		if (dev_xmit_complete(rc))
3989 			free_skb = false;
3990 	}
3991 	HARD_TX_UNLOCK(dev, txq);
3992 	if (free_skb) {
3993 		trace_xdp_exception(dev, xdp_prog, XDP_TX);
3994 		kfree_skb(skb);
3995 	}
3996 }
3997 EXPORT_SYMBOL_GPL(generic_xdp_tx);
3998 
3999 static struct static_key generic_xdp_needed __read_mostly;
4000 
4001 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4002 {
4003 	if (xdp_prog) {
4004 		u32 act = netif_receive_generic_xdp(skb, xdp_prog);
4005 		int err;
4006 
4007 		if (act != XDP_PASS) {
4008 			switch (act) {
4009 			case XDP_REDIRECT:
4010 				err = xdp_do_generic_redirect(skb->dev, skb,
4011 							      xdp_prog);
4012 				if (err)
4013 					goto out_redir;
4014 			/* fallthru to submit skb */
4015 			case XDP_TX:
4016 				generic_xdp_tx(skb, xdp_prog);
4017 				break;
4018 			}
4019 			return XDP_DROP;
4020 		}
4021 	}
4022 	return XDP_PASS;
4023 out_redir:
4024 	kfree_skb(skb);
4025 	return XDP_DROP;
4026 }
4027 EXPORT_SYMBOL_GPL(do_xdp_generic);
4028 
4029 static int netif_rx_internal(struct sk_buff *skb)
4030 {
4031 	int ret;
4032 
4033 	net_timestamp_check(netdev_tstamp_prequeue, skb);
4034 
4035 	trace_netif_rx(skb);
4036 
4037 	if (static_key_false(&generic_xdp_needed)) {
4038 		int ret;
4039 
4040 		preempt_disable();
4041 		rcu_read_lock();
4042 		ret = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
4043 		rcu_read_unlock();
4044 		preempt_enable();
4045 
4046 		/* Consider XDP consuming the packet a success from
4047 		 * the netdev point of view we do not want to count
4048 		 * this as an error.
4049 		 */
4050 		if (ret != XDP_PASS)
4051 			return NET_RX_SUCCESS;
4052 	}
4053 
4054 #ifdef CONFIG_RPS
4055 	if (static_key_false(&rps_needed)) {
4056 		struct rps_dev_flow voidflow, *rflow = &voidflow;
4057 		int cpu;
4058 
4059 		preempt_disable();
4060 		rcu_read_lock();
4061 
4062 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
4063 		if (cpu < 0)
4064 			cpu = smp_processor_id();
4065 
4066 		ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4067 
4068 		rcu_read_unlock();
4069 		preempt_enable();
4070 	} else
4071 #endif
4072 	{
4073 		unsigned int qtail;
4074 
4075 		ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4076 		put_cpu();
4077 	}
4078 	return ret;
4079 }
4080 
4081 /**
4082  *	netif_rx	-	post buffer to the network code
4083  *	@skb: buffer to post
4084  *
4085  *	This function receives a packet from a device driver and queues it for
4086  *	the upper (protocol) levels to process.  It always succeeds. The buffer
4087  *	may be dropped during processing for congestion control or by the
4088  *	protocol layers.
4089  *
4090  *	return values:
4091  *	NET_RX_SUCCESS	(no congestion)
4092  *	NET_RX_DROP     (packet was dropped)
4093  *
4094  */
4095 
4096 int netif_rx(struct sk_buff *skb)
4097 {
4098 	trace_netif_rx_entry(skb);
4099 
4100 	return netif_rx_internal(skb);
4101 }
4102 EXPORT_SYMBOL(netif_rx);
4103 
4104 int netif_rx_ni(struct sk_buff *skb)
4105 {
4106 	int err;
4107 
4108 	trace_netif_rx_ni_entry(skb);
4109 
4110 	preempt_disable();
4111 	err = netif_rx_internal(skb);
4112 	if (local_softirq_pending())
4113 		do_softirq();
4114 	preempt_enable();
4115 
4116 	return err;
4117 }
4118 EXPORT_SYMBOL(netif_rx_ni);
4119 
4120 static __latent_entropy void net_tx_action(struct softirq_action *h)
4121 {
4122 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4123 
4124 	if (sd->completion_queue) {
4125 		struct sk_buff *clist;
4126 
4127 		local_irq_disable();
4128 		clist = sd->completion_queue;
4129 		sd->completion_queue = NULL;
4130 		local_irq_enable();
4131 
4132 		while (clist) {
4133 			struct sk_buff *skb = clist;
4134 
4135 			clist = clist->next;
4136 
4137 			WARN_ON(refcount_read(&skb->users));
4138 			if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
4139 				trace_consume_skb(skb);
4140 			else
4141 				trace_kfree_skb(skb, net_tx_action);
4142 
4143 			if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
4144 				__kfree_skb(skb);
4145 			else
4146 				__kfree_skb_defer(skb);
4147 		}
4148 
4149 		__kfree_skb_flush();
4150 	}
4151 
4152 	if (sd->output_queue) {
4153 		struct Qdisc *head;
4154 
4155 		local_irq_disable();
4156 		head = sd->output_queue;
4157 		sd->output_queue = NULL;
4158 		sd->output_queue_tailp = &sd->output_queue;
4159 		local_irq_enable();
4160 
4161 		while (head) {
4162 			struct Qdisc *q = head;
4163 			spinlock_t *root_lock;
4164 
4165 			head = head->next_sched;
4166 
4167 			root_lock = qdisc_lock(q);
4168 			spin_lock(root_lock);
4169 			/* We need to make sure head->next_sched is read
4170 			 * before clearing __QDISC_STATE_SCHED
4171 			 */
4172 			smp_mb__before_atomic();
4173 			clear_bit(__QDISC_STATE_SCHED, &q->state);
4174 			qdisc_run(q);
4175 			spin_unlock(root_lock);
4176 		}
4177 	}
4178 }
4179 
4180 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
4181 /* This hook is defined here for ATM LANE */
4182 int (*br_fdb_test_addr_hook)(struct net_device *dev,
4183 			     unsigned char *addr) __read_mostly;
4184 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
4185 #endif
4186 
4187 static inline struct sk_buff *
4188 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4189 		   struct net_device *orig_dev)
4190 {
4191 #ifdef CONFIG_NET_CLS_ACT
4192 	struct tcf_proto *cl = rcu_dereference_bh(skb->dev->ingress_cl_list);
4193 	struct tcf_result cl_res;
4194 
4195 	/* If there's at least one ingress present somewhere (so
4196 	 * we get here via enabled static key), remaining devices
4197 	 * that are not configured with an ingress qdisc will bail
4198 	 * out here.
4199 	 */
4200 	if (!cl)
4201 		return skb;
4202 	if (*pt_prev) {
4203 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
4204 		*pt_prev = NULL;
4205 	}
4206 
4207 	qdisc_skb_cb(skb)->pkt_len = skb->len;
4208 	skb->tc_at_ingress = 1;
4209 	qdisc_bstats_cpu_update(cl->q, skb);
4210 
4211 	switch (tcf_classify(skb, cl, &cl_res, false)) {
4212 	case TC_ACT_OK:
4213 	case TC_ACT_RECLASSIFY:
4214 		skb->tc_index = TC_H_MIN(cl_res.classid);
4215 		break;
4216 	case TC_ACT_SHOT:
4217 		qdisc_qstats_cpu_drop(cl->q);
4218 		kfree_skb(skb);
4219 		return NULL;
4220 	case TC_ACT_STOLEN:
4221 	case TC_ACT_QUEUED:
4222 	case TC_ACT_TRAP:
4223 		consume_skb(skb);
4224 		return NULL;
4225 	case TC_ACT_REDIRECT:
4226 		/* skb_mac_header check was done by cls/act_bpf, so
4227 		 * we can safely push the L2 header back before
4228 		 * redirecting to another netdev
4229 		 */
4230 		__skb_push(skb, skb->mac_len);
4231 		skb_do_redirect(skb);
4232 		return NULL;
4233 	default:
4234 		break;
4235 	}
4236 #endif /* CONFIG_NET_CLS_ACT */
4237 	return skb;
4238 }
4239 
4240 /**
4241  *	netdev_is_rx_handler_busy - check if receive handler is registered
4242  *	@dev: device to check
4243  *
4244  *	Check if a receive handler is already registered for a given device.
4245  *	Return true if there one.
4246  *
4247  *	The caller must hold the rtnl_mutex.
4248  */
4249 bool netdev_is_rx_handler_busy(struct net_device *dev)
4250 {
4251 	ASSERT_RTNL();
4252 	return dev && rtnl_dereference(dev->rx_handler);
4253 }
4254 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
4255 
4256 /**
4257  *	netdev_rx_handler_register - register receive handler
4258  *	@dev: device to register a handler for
4259  *	@rx_handler: receive handler to register
4260  *	@rx_handler_data: data pointer that is used by rx handler
4261  *
4262  *	Register a receive handler for a device. This handler will then be
4263  *	called from __netif_receive_skb. A negative errno code is returned
4264  *	on a failure.
4265  *
4266  *	The caller must hold the rtnl_mutex.
4267  *
4268  *	For a general description of rx_handler, see enum rx_handler_result.
4269  */
4270 int netdev_rx_handler_register(struct net_device *dev,
4271 			       rx_handler_func_t *rx_handler,
4272 			       void *rx_handler_data)
4273 {
4274 	if (netdev_is_rx_handler_busy(dev))
4275 		return -EBUSY;
4276 
4277 	/* Note: rx_handler_data must be set before rx_handler */
4278 	rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
4279 	rcu_assign_pointer(dev->rx_handler, rx_handler);
4280 
4281 	return 0;
4282 }
4283 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
4284 
4285 /**
4286  *	netdev_rx_handler_unregister - unregister receive handler
4287  *	@dev: device to unregister a handler from
4288  *
4289  *	Unregister a receive handler from a device.
4290  *
4291  *	The caller must hold the rtnl_mutex.
4292  */
4293 void netdev_rx_handler_unregister(struct net_device *dev)
4294 {
4295 
4296 	ASSERT_RTNL();
4297 	RCU_INIT_POINTER(dev->rx_handler, NULL);
4298 	/* a reader seeing a non NULL rx_handler in a rcu_read_lock()
4299 	 * section has a guarantee to see a non NULL rx_handler_data
4300 	 * as well.
4301 	 */
4302 	synchronize_net();
4303 	RCU_INIT_POINTER(dev->rx_handler_data, NULL);
4304 }
4305 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
4306 
4307 /*
4308  * Limit the use of PFMEMALLOC reserves to those protocols that implement
4309  * the special handling of PFMEMALLOC skbs.
4310  */
4311 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
4312 {
4313 	switch (skb->protocol) {
4314 	case htons(ETH_P_ARP):
4315 	case htons(ETH_P_IP):
4316 	case htons(ETH_P_IPV6):
4317 	case htons(ETH_P_8021Q):
4318 	case htons(ETH_P_8021AD):
4319 		return true;
4320 	default:
4321 		return false;
4322 	}
4323 }
4324 
4325 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
4326 			     int *ret, struct net_device *orig_dev)
4327 {
4328 #ifdef CONFIG_NETFILTER_INGRESS
4329 	if (nf_hook_ingress_active(skb)) {
4330 		int ingress_retval;
4331 
4332 		if (*pt_prev) {
4333 			*ret = deliver_skb(skb, *pt_prev, orig_dev);
4334 			*pt_prev = NULL;
4335 		}
4336 
4337 		rcu_read_lock();
4338 		ingress_retval = nf_hook_ingress(skb);
4339 		rcu_read_unlock();
4340 		return ingress_retval;
4341 	}
4342 #endif /* CONFIG_NETFILTER_INGRESS */
4343 	return 0;
4344 }
4345 
4346 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
4347 {
4348 	struct packet_type *ptype, *pt_prev;
4349 	rx_handler_func_t *rx_handler;
4350 	struct net_device *orig_dev;
4351 	bool deliver_exact = false;
4352 	int ret = NET_RX_DROP;
4353 	__be16 type;
4354 
4355 	net_timestamp_check(!netdev_tstamp_prequeue, skb);
4356 
4357 	trace_netif_receive_skb(skb);
4358 
4359 	orig_dev = skb->dev;
4360 
4361 	skb_reset_network_header(skb);
4362 	if (!skb_transport_header_was_set(skb))
4363 		skb_reset_transport_header(skb);
4364 	skb_reset_mac_len(skb);
4365 
4366 	pt_prev = NULL;
4367 
4368 another_round:
4369 	skb->skb_iif = skb->dev->ifindex;
4370 
4371 	__this_cpu_inc(softnet_data.processed);
4372 
4373 	if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4374 	    skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
4375 		skb = skb_vlan_untag(skb);
4376 		if (unlikely(!skb))
4377 			goto out;
4378 	}
4379 
4380 	if (skb_skip_tc_classify(skb))
4381 		goto skip_classify;
4382 
4383 	if (pfmemalloc)
4384 		goto skip_taps;
4385 
4386 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
4387 		if (pt_prev)
4388 			ret = deliver_skb(skb, pt_prev, orig_dev);
4389 		pt_prev = ptype;
4390 	}
4391 
4392 	list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
4393 		if (pt_prev)
4394 			ret = deliver_skb(skb, pt_prev, orig_dev);
4395 		pt_prev = ptype;
4396 	}
4397 
4398 skip_taps:
4399 #ifdef CONFIG_NET_INGRESS
4400 	if (static_key_false(&ingress_needed)) {
4401 		skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
4402 		if (!skb)
4403 			goto out;
4404 
4405 		if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
4406 			goto out;
4407 	}
4408 #endif
4409 	skb_reset_tc(skb);
4410 skip_classify:
4411 	if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
4412 		goto drop;
4413 
4414 	if (skb_vlan_tag_present(skb)) {
4415 		if (pt_prev) {
4416 			ret = deliver_skb(skb, pt_prev, orig_dev);
4417 			pt_prev = NULL;
4418 		}
4419 		if (vlan_do_receive(&skb))
4420 			goto another_round;
4421 		else if (unlikely(!skb))
4422 			goto out;
4423 	}
4424 
4425 	rx_handler = rcu_dereference(skb->dev->rx_handler);
4426 	if (rx_handler) {
4427 		if (pt_prev) {
4428 			ret = deliver_skb(skb, pt_prev, orig_dev);
4429 			pt_prev = NULL;
4430 		}
4431 		switch (rx_handler(&skb)) {
4432 		case RX_HANDLER_CONSUMED:
4433 			ret = NET_RX_SUCCESS;
4434 			goto out;
4435 		case RX_HANDLER_ANOTHER:
4436 			goto another_round;
4437 		case RX_HANDLER_EXACT:
4438 			deliver_exact = true;
4439 		case RX_HANDLER_PASS:
4440 			break;
4441 		default:
4442 			BUG();
4443 		}
4444 	}
4445 
4446 	if (unlikely(skb_vlan_tag_present(skb))) {
4447 		if (skb_vlan_tag_get_id(skb))
4448 			skb->pkt_type = PACKET_OTHERHOST;
4449 		/* Note: we might in the future use prio bits
4450 		 * and set skb->priority like in vlan_do_receive()
4451 		 * For the time being, just ignore Priority Code Point
4452 		 */
4453 		skb->vlan_tci = 0;
4454 	}
4455 
4456 	type = skb->protocol;
4457 
4458 	/* deliver only exact match when indicated */
4459 	if (likely(!deliver_exact)) {
4460 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4461 				       &ptype_base[ntohs(type) &
4462 						   PTYPE_HASH_MASK]);
4463 	}
4464 
4465 	deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4466 			       &orig_dev->ptype_specific);
4467 
4468 	if (unlikely(skb->dev != orig_dev)) {
4469 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4470 				       &skb->dev->ptype_specific);
4471 	}
4472 
4473 	if (pt_prev) {
4474 		if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
4475 			goto drop;
4476 		else
4477 			ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
4478 	} else {
4479 drop:
4480 		if (!deliver_exact)
4481 			atomic_long_inc(&skb->dev->rx_dropped);
4482 		else
4483 			atomic_long_inc(&skb->dev->rx_nohandler);
4484 		kfree_skb(skb);
4485 		/* Jamal, now you will not able to escape explaining
4486 		 * me how you were going to use this. :-)
4487 		 */
4488 		ret = NET_RX_DROP;
4489 	}
4490 
4491 out:
4492 	return ret;
4493 }
4494 
4495 /**
4496  *	netif_receive_skb_core - special purpose version of netif_receive_skb
4497  *	@skb: buffer to process
4498  *
4499  *	More direct receive version of netif_receive_skb().  It should
4500  *	only be used by callers that have a need to skip RPS and Generic XDP.
4501  *	Caller must also take care of handling if (page_is_)pfmemalloc.
4502  *
4503  *	This function may only be called from softirq context and interrupts
4504  *	should be enabled.
4505  *
4506  *	Return values (usually ignored):
4507  *	NET_RX_SUCCESS: no congestion
4508  *	NET_RX_DROP: packet was dropped
4509  */
4510 int netif_receive_skb_core(struct sk_buff *skb)
4511 {
4512 	int ret;
4513 
4514 	rcu_read_lock();
4515 	ret = __netif_receive_skb_core(skb, false);
4516 	rcu_read_unlock();
4517 
4518 	return ret;
4519 }
4520 EXPORT_SYMBOL(netif_receive_skb_core);
4521 
4522 static int __netif_receive_skb(struct sk_buff *skb)
4523 {
4524 	int ret;
4525 
4526 	if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
4527 		unsigned int noreclaim_flag;
4528 
4529 		/*
4530 		 * PFMEMALLOC skbs are special, they should
4531 		 * - be delivered to SOCK_MEMALLOC sockets only
4532 		 * - stay away from userspace
4533 		 * - have bounded memory usage
4534 		 *
4535 		 * Use PF_MEMALLOC as this saves us from propagating the allocation
4536 		 * context down to all allocation sites.
4537 		 */
4538 		noreclaim_flag = memalloc_noreclaim_save();
4539 		ret = __netif_receive_skb_core(skb, true);
4540 		memalloc_noreclaim_restore(noreclaim_flag);
4541 	} else
4542 		ret = __netif_receive_skb_core(skb, false);
4543 
4544 	return ret;
4545 }
4546 
4547 static int generic_xdp_install(struct net_device *dev, struct netdev_xdp *xdp)
4548 {
4549 	struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
4550 	struct bpf_prog *new = xdp->prog;
4551 	int ret = 0;
4552 
4553 	switch (xdp->command) {
4554 	case XDP_SETUP_PROG:
4555 		rcu_assign_pointer(dev->xdp_prog, new);
4556 		if (old)
4557 			bpf_prog_put(old);
4558 
4559 		if (old && !new) {
4560 			static_key_slow_dec(&generic_xdp_needed);
4561 		} else if (new && !old) {
4562 			static_key_slow_inc(&generic_xdp_needed);
4563 			dev_disable_lro(dev);
4564 		}
4565 		break;
4566 
4567 	case XDP_QUERY_PROG:
4568 		xdp->prog_attached = !!old;
4569 		xdp->prog_id = old ? old->aux->id : 0;
4570 		break;
4571 
4572 	default:
4573 		ret = -EINVAL;
4574 		break;
4575 	}
4576 
4577 	return ret;
4578 }
4579 
4580 static int netif_receive_skb_internal(struct sk_buff *skb)
4581 {
4582 	int ret;
4583 
4584 	net_timestamp_check(netdev_tstamp_prequeue, skb);
4585 
4586 	if (skb_defer_rx_timestamp(skb))
4587 		return NET_RX_SUCCESS;
4588 
4589 	if (static_key_false(&generic_xdp_needed)) {
4590 		int ret;
4591 
4592 		preempt_disable();
4593 		rcu_read_lock();
4594 		ret = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
4595 		rcu_read_unlock();
4596 		preempt_enable();
4597 
4598 		if (ret != XDP_PASS)
4599 			return NET_RX_DROP;
4600 	}
4601 
4602 	rcu_read_lock();
4603 #ifdef CONFIG_RPS
4604 	if (static_key_false(&rps_needed)) {
4605 		struct rps_dev_flow voidflow, *rflow = &voidflow;
4606 		int cpu = get_rps_cpu(skb->dev, skb, &rflow);
4607 
4608 		if (cpu >= 0) {
4609 			ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4610 			rcu_read_unlock();
4611 			return ret;
4612 		}
4613 	}
4614 #endif
4615 	ret = __netif_receive_skb(skb);
4616 	rcu_read_unlock();
4617 	return ret;
4618 }
4619 
4620 /**
4621  *	netif_receive_skb - process receive buffer from network
4622  *	@skb: buffer to process
4623  *
4624  *	netif_receive_skb() is the main receive data processing function.
4625  *	It always succeeds. The buffer may be dropped during processing
4626  *	for congestion control or by the protocol layers.
4627  *
4628  *	This function may only be called from softirq context and interrupts
4629  *	should be enabled.
4630  *
4631  *	Return values (usually ignored):
4632  *	NET_RX_SUCCESS: no congestion
4633  *	NET_RX_DROP: packet was dropped
4634  */
4635 int netif_receive_skb(struct sk_buff *skb)
4636 {
4637 	trace_netif_receive_skb_entry(skb);
4638 
4639 	return netif_receive_skb_internal(skb);
4640 }
4641 EXPORT_SYMBOL(netif_receive_skb);
4642 
4643 DEFINE_PER_CPU(struct work_struct, flush_works);
4644 
4645 /* Network device is going away, flush any packets still pending */
4646 static void flush_backlog(struct work_struct *work)
4647 {
4648 	struct sk_buff *skb, *tmp;
4649 	struct softnet_data *sd;
4650 
4651 	local_bh_disable();
4652 	sd = this_cpu_ptr(&softnet_data);
4653 
4654 	local_irq_disable();
4655 	rps_lock(sd);
4656 	skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
4657 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
4658 			__skb_unlink(skb, &sd->input_pkt_queue);
4659 			kfree_skb(skb);
4660 			input_queue_head_incr(sd);
4661 		}
4662 	}
4663 	rps_unlock(sd);
4664 	local_irq_enable();
4665 
4666 	skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
4667 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
4668 			__skb_unlink(skb, &sd->process_queue);
4669 			kfree_skb(skb);
4670 			input_queue_head_incr(sd);
4671 		}
4672 	}
4673 	local_bh_enable();
4674 }
4675 
4676 static void flush_all_backlogs(void)
4677 {
4678 	unsigned int cpu;
4679 
4680 	get_online_cpus();
4681 
4682 	for_each_online_cpu(cpu)
4683 		queue_work_on(cpu, system_highpri_wq,
4684 			      per_cpu_ptr(&flush_works, cpu));
4685 
4686 	for_each_online_cpu(cpu)
4687 		flush_work(per_cpu_ptr(&flush_works, cpu));
4688 
4689 	put_online_cpus();
4690 }
4691 
4692 static int napi_gro_complete(struct sk_buff *skb)
4693 {
4694 	struct packet_offload *ptype;
4695 	__be16 type = skb->protocol;
4696 	struct list_head *head = &offload_base;
4697 	int err = -ENOENT;
4698 
4699 	BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
4700 
4701 	if (NAPI_GRO_CB(skb)->count == 1) {
4702 		skb_shinfo(skb)->gso_size = 0;
4703 		goto out;
4704 	}
4705 
4706 	rcu_read_lock();
4707 	list_for_each_entry_rcu(ptype, head, list) {
4708 		if (ptype->type != type || !ptype->callbacks.gro_complete)
4709 			continue;
4710 
4711 		err = ptype->callbacks.gro_complete(skb, 0);
4712 		break;
4713 	}
4714 	rcu_read_unlock();
4715 
4716 	if (err) {
4717 		WARN_ON(&ptype->list == head);
4718 		kfree_skb(skb);
4719 		return NET_RX_SUCCESS;
4720 	}
4721 
4722 out:
4723 	return netif_receive_skb_internal(skb);
4724 }
4725 
4726 /* napi->gro_list contains packets ordered by age.
4727  * youngest packets at the head of it.
4728  * Complete skbs in reverse order to reduce latencies.
4729  */
4730 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
4731 {
4732 	struct sk_buff *skb, *prev = NULL;
4733 
4734 	/* scan list and build reverse chain */
4735 	for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
4736 		skb->prev = prev;
4737 		prev = skb;
4738 	}
4739 
4740 	for (skb = prev; skb; skb = prev) {
4741 		skb->next = NULL;
4742 
4743 		if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
4744 			return;
4745 
4746 		prev = skb->prev;
4747 		napi_gro_complete(skb);
4748 		napi->gro_count--;
4749 	}
4750 
4751 	napi->gro_list = NULL;
4752 }
4753 EXPORT_SYMBOL(napi_gro_flush);
4754 
4755 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
4756 {
4757 	struct sk_buff *p;
4758 	unsigned int maclen = skb->dev->hard_header_len;
4759 	u32 hash = skb_get_hash_raw(skb);
4760 
4761 	for (p = napi->gro_list; p; p = p->next) {
4762 		unsigned long diffs;
4763 
4764 		NAPI_GRO_CB(p)->flush = 0;
4765 
4766 		if (hash != skb_get_hash_raw(p)) {
4767 			NAPI_GRO_CB(p)->same_flow = 0;
4768 			continue;
4769 		}
4770 
4771 		diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
4772 		diffs |= p->vlan_tci ^ skb->vlan_tci;
4773 		diffs |= skb_metadata_dst_cmp(p, skb);
4774 		diffs |= skb_metadata_differs(p, skb);
4775 		if (maclen == ETH_HLEN)
4776 			diffs |= compare_ether_header(skb_mac_header(p),
4777 						      skb_mac_header(skb));
4778 		else if (!diffs)
4779 			diffs = memcmp(skb_mac_header(p),
4780 				       skb_mac_header(skb),
4781 				       maclen);
4782 		NAPI_GRO_CB(p)->same_flow = !diffs;
4783 	}
4784 }
4785 
4786 static void skb_gro_reset_offset(struct sk_buff *skb)
4787 {
4788 	const struct skb_shared_info *pinfo = skb_shinfo(skb);
4789 	const skb_frag_t *frag0 = &pinfo->frags[0];
4790 
4791 	NAPI_GRO_CB(skb)->data_offset = 0;
4792 	NAPI_GRO_CB(skb)->frag0 = NULL;
4793 	NAPI_GRO_CB(skb)->frag0_len = 0;
4794 
4795 	if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
4796 	    pinfo->nr_frags &&
4797 	    !PageHighMem(skb_frag_page(frag0))) {
4798 		NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
4799 		NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
4800 						    skb_frag_size(frag0),
4801 						    skb->end - skb->tail);
4802 	}
4803 }
4804 
4805 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
4806 {
4807 	struct skb_shared_info *pinfo = skb_shinfo(skb);
4808 
4809 	BUG_ON(skb->end - skb->tail < grow);
4810 
4811 	memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
4812 
4813 	skb->data_len -= grow;
4814 	skb->tail += grow;
4815 
4816 	pinfo->frags[0].page_offset += grow;
4817 	skb_frag_size_sub(&pinfo->frags[0], grow);
4818 
4819 	if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
4820 		skb_frag_unref(skb, 0);
4821 		memmove(pinfo->frags, pinfo->frags + 1,
4822 			--pinfo->nr_frags * sizeof(pinfo->frags[0]));
4823 	}
4824 }
4825 
4826 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4827 {
4828 	struct sk_buff **pp = NULL;
4829 	struct packet_offload *ptype;
4830 	__be16 type = skb->protocol;
4831 	struct list_head *head = &offload_base;
4832 	int same_flow;
4833 	enum gro_result ret;
4834 	int grow;
4835 
4836 	if (netif_elide_gro(skb->dev))
4837 		goto normal;
4838 
4839 	gro_list_prepare(napi, skb);
4840 
4841 	rcu_read_lock();
4842 	list_for_each_entry_rcu(ptype, head, list) {
4843 		if (ptype->type != type || !ptype->callbacks.gro_receive)
4844 			continue;
4845 
4846 		skb_set_network_header(skb, skb_gro_offset(skb));
4847 		skb_reset_mac_len(skb);
4848 		NAPI_GRO_CB(skb)->same_flow = 0;
4849 		NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
4850 		NAPI_GRO_CB(skb)->free = 0;
4851 		NAPI_GRO_CB(skb)->encap_mark = 0;
4852 		NAPI_GRO_CB(skb)->recursion_counter = 0;
4853 		NAPI_GRO_CB(skb)->is_fou = 0;
4854 		NAPI_GRO_CB(skb)->is_atomic = 1;
4855 		NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
4856 
4857 		/* Setup for GRO checksum validation */
4858 		switch (skb->ip_summed) {
4859 		case CHECKSUM_COMPLETE:
4860 			NAPI_GRO_CB(skb)->csum = skb->csum;
4861 			NAPI_GRO_CB(skb)->csum_valid = 1;
4862 			NAPI_GRO_CB(skb)->csum_cnt = 0;
4863 			break;
4864 		case CHECKSUM_UNNECESSARY:
4865 			NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
4866 			NAPI_GRO_CB(skb)->csum_valid = 0;
4867 			break;
4868 		default:
4869 			NAPI_GRO_CB(skb)->csum_cnt = 0;
4870 			NAPI_GRO_CB(skb)->csum_valid = 0;
4871 		}
4872 
4873 		pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
4874 		break;
4875 	}
4876 	rcu_read_unlock();
4877 
4878 	if (&ptype->list == head)
4879 		goto normal;
4880 
4881 	if (IS_ERR(pp) && PTR_ERR(pp) == -EINPROGRESS) {
4882 		ret = GRO_CONSUMED;
4883 		goto ok;
4884 	}
4885 
4886 	same_flow = NAPI_GRO_CB(skb)->same_flow;
4887 	ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
4888 
4889 	if (pp) {
4890 		struct sk_buff *nskb = *pp;
4891 
4892 		*pp = nskb->next;
4893 		nskb->next = NULL;
4894 		napi_gro_complete(nskb);
4895 		napi->gro_count--;
4896 	}
4897 
4898 	if (same_flow)
4899 		goto ok;
4900 
4901 	if (NAPI_GRO_CB(skb)->flush)
4902 		goto normal;
4903 
4904 	if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
4905 		struct sk_buff *nskb = napi->gro_list;
4906 
4907 		/* locate the end of the list to select the 'oldest' flow */
4908 		while (nskb->next) {
4909 			pp = &nskb->next;
4910 			nskb = *pp;
4911 		}
4912 		*pp = NULL;
4913 		nskb->next = NULL;
4914 		napi_gro_complete(nskb);
4915 	} else {
4916 		napi->gro_count++;
4917 	}
4918 	NAPI_GRO_CB(skb)->count = 1;
4919 	NAPI_GRO_CB(skb)->age = jiffies;
4920 	NAPI_GRO_CB(skb)->last = skb;
4921 	skb_shinfo(skb)->gso_size = skb_gro_len(skb);
4922 	skb->next = napi->gro_list;
4923 	napi->gro_list = skb;
4924 	ret = GRO_HELD;
4925 
4926 pull:
4927 	grow = skb_gro_offset(skb) - skb_headlen(skb);
4928 	if (grow > 0)
4929 		gro_pull_from_frag0(skb, grow);
4930 ok:
4931 	return ret;
4932 
4933 normal:
4934 	ret = GRO_NORMAL;
4935 	goto pull;
4936 }
4937 
4938 struct packet_offload *gro_find_receive_by_type(__be16 type)
4939 {
4940 	struct list_head *offload_head = &offload_base;
4941 	struct packet_offload *ptype;
4942 
4943 	list_for_each_entry_rcu(ptype, offload_head, list) {
4944 		if (ptype->type != type || !ptype->callbacks.gro_receive)
4945 			continue;
4946 		return ptype;
4947 	}
4948 	return NULL;
4949 }
4950 EXPORT_SYMBOL(gro_find_receive_by_type);
4951 
4952 struct packet_offload *gro_find_complete_by_type(__be16 type)
4953 {
4954 	struct list_head *offload_head = &offload_base;
4955 	struct packet_offload *ptype;
4956 
4957 	list_for_each_entry_rcu(ptype, offload_head, list) {
4958 		if (ptype->type != type || !ptype->callbacks.gro_complete)
4959 			continue;
4960 		return ptype;
4961 	}
4962 	return NULL;
4963 }
4964 EXPORT_SYMBOL(gro_find_complete_by_type);
4965 
4966 static void napi_skb_free_stolen_head(struct sk_buff *skb)
4967 {
4968 	skb_dst_drop(skb);
4969 	secpath_reset(skb);
4970 	kmem_cache_free(skbuff_head_cache, skb);
4971 }
4972 
4973 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
4974 {
4975 	switch (ret) {
4976 	case GRO_NORMAL:
4977 		if (netif_receive_skb_internal(skb))
4978 			ret = GRO_DROP;
4979 		break;
4980 
4981 	case GRO_DROP:
4982 		kfree_skb(skb);
4983 		break;
4984 
4985 	case GRO_MERGED_FREE:
4986 		if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
4987 			napi_skb_free_stolen_head(skb);
4988 		else
4989 			__kfree_skb(skb);
4990 		break;
4991 
4992 	case GRO_HELD:
4993 	case GRO_MERGED:
4994 	case GRO_CONSUMED:
4995 		break;
4996 	}
4997 
4998 	return ret;
4999 }
5000 
5001 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5002 {
5003 	skb_mark_napi_id(skb, napi);
5004 	trace_napi_gro_receive_entry(skb);
5005 
5006 	skb_gro_reset_offset(skb);
5007 
5008 	return napi_skb_finish(dev_gro_receive(napi, skb), skb);
5009 }
5010 EXPORT_SYMBOL(napi_gro_receive);
5011 
5012 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
5013 {
5014 	if (unlikely(skb->pfmemalloc)) {
5015 		consume_skb(skb);
5016 		return;
5017 	}
5018 	__skb_pull(skb, skb_headlen(skb));
5019 	/* restore the reserve we had after netdev_alloc_skb_ip_align() */
5020 	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
5021 	skb->vlan_tci = 0;
5022 	skb->dev = napi->dev;
5023 	skb->skb_iif = 0;
5024 	skb->encapsulation = 0;
5025 	skb_shinfo(skb)->gso_type = 0;
5026 	skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
5027 	secpath_reset(skb);
5028 
5029 	napi->skb = skb;
5030 }
5031 
5032 struct sk_buff *napi_get_frags(struct napi_struct *napi)
5033 {
5034 	struct sk_buff *skb = napi->skb;
5035 
5036 	if (!skb) {
5037 		skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
5038 		if (skb) {
5039 			napi->skb = skb;
5040 			skb_mark_napi_id(skb, napi);
5041 		}
5042 	}
5043 	return skb;
5044 }
5045 EXPORT_SYMBOL(napi_get_frags);
5046 
5047 static gro_result_t napi_frags_finish(struct napi_struct *napi,
5048 				      struct sk_buff *skb,
5049 				      gro_result_t ret)
5050 {
5051 	switch (ret) {
5052 	case GRO_NORMAL:
5053 	case GRO_HELD:
5054 		__skb_push(skb, ETH_HLEN);
5055 		skb->protocol = eth_type_trans(skb, skb->dev);
5056 		if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
5057 			ret = GRO_DROP;
5058 		break;
5059 
5060 	case GRO_DROP:
5061 		napi_reuse_skb(napi, skb);
5062 		break;
5063 
5064 	case GRO_MERGED_FREE:
5065 		if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5066 			napi_skb_free_stolen_head(skb);
5067 		else
5068 			napi_reuse_skb(napi, skb);
5069 		break;
5070 
5071 	case GRO_MERGED:
5072 	case GRO_CONSUMED:
5073 		break;
5074 	}
5075 
5076 	return ret;
5077 }
5078 
5079 /* Upper GRO stack assumes network header starts at gro_offset=0
5080  * Drivers could call both napi_gro_frags() and napi_gro_receive()
5081  * We copy ethernet header into skb->data to have a common layout.
5082  */
5083 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
5084 {
5085 	struct sk_buff *skb = napi->skb;
5086 	const struct ethhdr *eth;
5087 	unsigned int hlen = sizeof(*eth);
5088 
5089 	napi->skb = NULL;
5090 
5091 	skb_reset_mac_header(skb);
5092 	skb_gro_reset_offset(skb);
5093 
5094 	eth = skb_gro_header_fast(skb, 0);
5095 	if (unlikely(skb_gro_header_hard(skb, hlen))) {
5096 		eth = skb_gro_header_slow(skb, hlen, 0);
5097 		if (unlikely(!eth)) {
5098 			net_warn_ratelimited("%s: dropping impossible skb from %s\n",
5099 					     __func__, napi->dev->name);
5100 			napi_reuse_skb(napi, skb);
5101 			return NULL;
5102 		}
5103 	} else {
5104 		gro_pull_from_frag0(skb, hlen);
5105 		NAPI_GRO_CB(skb)->frag0 += hlen;
5106 		NAPI_GRO_CB(skb)->frag0_len -= hlen;
5107 	}
5108 	__skb_pull(skb, hlen);
5109 
5110 	/*
5111 	 * This works because the only protocols we care about don't require
5112 	 * special handling.
5113 	 * We'll fix it up properly in napi_frags_finish()
5114 	 */
5115 	skb->protocol = eth->h_proto;
5116 
5117 	return skb;
5118 }
5119 
5120 gro_result_t napi_gro_frags(struct napi_struct *napi)
5121 {
5122 	struct sk_buff *skb = napi_frags_skb(napi);
5123 
5124 	if (!skb)
5125 		return GRO_DROP;
5126 
5127 	trace_napi_gro_frags_entry(skb);
5128 
5129 	return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
5130 }
5131 EXPORT_SYMBOL(napi_gro_frags);
5132 
5133 /* Compute the checksum from gro_offset and return the folded value
5134  * after adding in any pseudo checksum.
5135  */
5136 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
5137 {
5138 	__wsum wsum;
5139 	__sum16 sum;
5140 
5141 	wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
5142 
5143 	/* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
5144 	sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
5145 	if (likely(!sum)) {
5146 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
5147 		    !skb->csum_complete_sw)
5148 			netdev_rx_csum_fault(skb->dev);
5149 	}
5150 
5151 	NAPI_GRO_CB(skb)->csum = wsum;
5152 	NAPI_GRO_CB(skb)->csum_valid = 1;
5153 
5154 	return sum;
5155 }
5156 EXPORT_SYMBOL(__skb_gro_checksum_complete);
5157 
5158 static void net_rps_send_ipi(struct softnet_data *remsd)
5159 {
5160 #ifdef CONFIG_RPS
5161 	while (remsd) {
5162 		struct softnet_data *next = remsd->rps_ipi_next;
5163 
5164 		if (cpu_online(remsd->cpu))
5165 			smp_call_function_single_async(remsd->cpu, &remsd->csd);
5166 		remsd = next;
5167 	}
5168 #endif
5169 }
5170 
5171 /*
5172  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
5173  * Note: called with local irq disabled, but exits with local irq enabled.
5174  */
5175 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
5176 {
5177 #ifdef CONFIG_RPS
5178 	struct softnet_data *remsd = sd->rps_ipi_list;
5179 
5180 	if (remsd) {
5181 		sd->rps_ipi_list = NULL;
5182 
5183 		local_irq_enable();
5184 
5185 		/* Send pending IPI's to kick RPS processing on remote cpus. */
5186 		net_rps_send_ipi(remsd);
5187 	} else
5188 #endif
5189 		local_irq_enable();
5190 }
5191 
5192 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
5193 {
5194 #ifdef CONFIG_RPS
5195 	return sd->rps_ipi_list != NULL;
5196 #else
5197 	return false;
5198 #endif
5199 }
5200 
5201 static int process_backlog(struct napi_struct *napi, int quota)
5202 {
5203 	struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
5204 	bool again = true;
5205 	int work = 0;
5206 
5207 	/* Check if we have pending ipi, its better to send them now,
5208 	 * not waiting net_rx_action() end.
5209 	 */
5210 	if (sd_has_rps_ipi_waiting(sd)) {
5211 		local_irq_disable();
5212 		net_rps_action_and_irq_enable(sd);
5213 	}
5214 
5215 	napi->weight = dev_rx_weight;
5216 	while (again) {
5217 		struct sk_buff *skb;
5218 
5219 		while ((skb = __skb_dequeue(&sd->process_queue))) {
5220 			rcu_read_lock();
5221 			__netif_receive_skb(skb);
5222 			rcu_read_unlock();
5223 			input_queue_head_incr(sd);
5224 			if (++work >= quota)
5225 				return work;
5226 
5227 		}
5228 
5229 		local_irq_disable();
5230 		rps_lock(sd);
5231 		if (skb_queue_empty(&sd->input_pkt_queue)) {
5232 			/*
5233 			 * Inline a custom version of __napi_complete().
5234 			 * only current cpu owns and manipulates this napi,
5235 			 * and NAPI_STATE_SCHED is the only possible flag set
5236 			 * on backlog.
5237 			 * We can use a plain write instead of clear_bit(),
5238 			 * and we dont need an smp_mb() memory barrier.
5239 			 */
5240 			napi->state = 0;
5241 			again = false;
5242 		} else {
5243 			skb_queue_splice_tail_init(&sd->input_pkt_queue,
5244 						   &sd->process_queue);
5245 		}
5246 		rps_unlock(sd);
5247 		local_irq_enable();
5248 	}
5249 
5250 	return work;
5251 }
5252 
5253 /**
5254  * __napi_schedule - schedule for receive
5255  * @n: entry to schedule
5256  *
5257  * The entry's receive function will be scheduled to run.
5258  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
5259  */
5260 void __napi_schedule(struct napi_struct *n)
5261 {
5262 	unsigned long flags;
5263 
5264 	local_irq_save(flags);
5265 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
5266 	local_irq_restore(flags);
5267 }
5268 EXPORT_SYMBOL(__napi_schedule);
5269 
5270 /**
5271  *	napi_schedule_prep - check if napi can be scheduled
5272  *	@n: napi context
5273  *
5274  * Test if NAPI routine is already running, and if not mark
5275  * it as running.  This is used as a condition variable
5276  * insure only one NAPI poll instance runs.  We also make
5277  * sure there is no pending NAPI disable.
5278  */
5279 bool napi_schedule_prep(struct napi_struct *n)
5280 {
5281 	unsigned long val, new;
5282 
5283 	do {
5284 		val = READ_ONCE(n->state);
5285 		if (unlikely(val & NAPIF_STATE_DISABLE))
5286 			return false;
5287 		new = val | NAPIF_STATE_SCHED;
5288 
5289 		/* Sets STATE_MISSED bit if STATE_SCHED was already set
5290 		 * This was suggested by Alexander Duyck, as compiler
5291 		 * emits better code than :
5292 		 * if (val & NAPIF_STATE_SCHED)
5293 		 *     new |= NAPIF_STATE_MISSED;
5294 		 */
5295 		new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
5296 						   NAPIF_STATE_MISSED;
5297 	} while (cmpxchg(&n->state, val, new) != val);
5298 
5299 	return !(val & NAPIF_STATE_SCHED);
5300 }
5301 EXPORT_SYMBOL(napi_schedule_prep);
5302 
5303 /**
5304  * __napi_schedule_irqoff - schedule for receive
5305  * @n: entry to schedule
5306  *
5307  * Variant of __napi_schedule() assuming hard irqs are masked
5308  */
5309 void __napi_schedule_irqoff(struct napi_struct *n)
5310 {
5311 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
5312 }
5313 EXPORT_SYMBOL(__napi_schedule_irqoff);
5314 
5315 bool napi_complete_done(struct napi_struct *n, int work_done)
5316 {
5317 	unsigned long flags, val, new;
5318 
5319 	/*
5320 	 * 1) Don't let napi dequeue from the cpu poll list
5321 	 *    just in case its running on a different cpu.
5322 	 * 2) If we are busy polling, do nothing here, we have
5323 	 *    the guarantee we will be called later.
5324 	 */
5325 	if (unlikely(n->state & (NAPIF_STATE_NPSVC |
5326 				 NAPIF_STATE_IN_BUSY_POLL)))
5327 		return false;
5328 
5329 	if (n->gro_list) {
5330 		unsigned long timeout = 0;
5331 
5332 		if (work_done)
5333 			timeout = n->dev->gro_flush_timeout;
5334 
5335 		if (timeout)
5336 			hrtimer_start(&n->timer, ns_to_ktime(timeout),
5337 				      HRTIMER_MODE_REL_PINNED);
5338 		else
5339 			napi_gro_flush(n, false);
5340 	}
5341 	if (unlikely(!list_empty(&n->poll_list))) {
5342 		/* If n->poll_list is not empty, we need to mask irqs */
5343 		local_irq_save(flags);
5344 		list_del_init(&n->poll_list);
5345 		local_irq_restore(flags);
5346 	}
5347 
5348 	do {
5349 		val = READ_ONCE(n->state);
5350 
5351 		WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
5352 
5353 		new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED);
5354 
5355 		/* If STATE_MISSED was set, leave STATE_SCHED set,
5356 		 * because we will call napi->poll() one more time.
5357 		 * This C code was suggested by Alexander Duyck to help gcc.
5358 		 */
5359 		new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
5360 						    NAPIF_STATE_SCHED;
5361 	} while (cmpxchg(&n->state, val, new) != val);
5362 
5363 	if (unlikely(val & NAPIF_STATE_MISSED)) {
5364 		__napi_schedule(n);
5365 		return false;
5366 	}
5367 
5368 	return true;
5369 }
5370 EXPORT_SYMBOL(napi_complete_done);
5371 
5372 /* must be called under rcu_read_lock(), as we dont take a reference */
5373 static struct napi_struct *napi_by_id(unsigned int napi_id)
5374 {
5375 	unsigned int hash = napi_id % HASH_SIZE(napi_hash);
5376 	struct napi_struct *napi;
5377 
5378 	hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
5379 		if (napi->napi_id == napi_id)
5380 			return napi;
5381 
5382 	return NULL;
5383 }
5384 
5385 #if defined(CONFIG_NET_RX_BUSY_POLL)
5386 
5387 #define BUSY_POLL_BUDGET 8
5388 
5389 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock)
5390 {
5391 	int rc;
5392 
5393 	/* Busy polling means there is a high chance device driver hard irq
5394 	 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
5395 	 * set in napi_schedule_prep().
5396 	 * Since we are about to call napi->poll() once more, we can safely
5397 	 * clear NAPI_STATE_MISSED.
5398 	 *
5399 	 * Note: x86 could use a single "lock and ..." instruction
5400 	 * to perform these two clear_bit()
5401 	 */
5402 	clear_bit(NAPI_STATE_MISSED, &napi->state);
5403 	clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
5404 
5405 	local_bh_disable();
5406 
5407 	/* All we really want here is to re-enable device interrupts.
5408 	 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
5409 	 */
5410 	rc = napi->poll(napi, BUSY_POLL_BUDGET);
5411 	trace_napi_poll(napi, rc, BUSY_POLL_BUDGET);
5412 	netpoll_poll_unlock(have_poll_lock);
5413 	if (rc == BUSY_POLL_BUDGET)
5414 		__napi_schedule(napi);
5415 	local_bh_enable();
5416 }
5417 
5418 void napi_busy_loop(unsigned int napi_id,
5419 		    bool (*loop_end)(void *, unsigned long),
5420 		    void *loop_end_arg)
5421 {
5422 	unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
5423 	int (*napi_poll)(struct napi_struct *napi, int budget);
5424 	void *have_poll_lock = NULL;
5425 	struct napi_struct *napi;
5426 
5427 restart:
5428 	napi_poll = NULL;
5429 
5430 	rcu_read_lock();
5431 
5432 	napi = napi_by_id(napi_id);
5433 	if (!napi)
5434 		goto out;
5435 
5436 	preempt_disable();
5437 	for (;;) {
5438 		int work = 0;
5439 
5440 		local_bh_disable();
5441 		if (!napi_poll) {
5442 			unsigned long val = READ_ONCE(napi->state);
5443 
5444 			/* If multiple threads are competing for this napi,
5445 			 * we avoid dirtying napi->state as much as we can.
5446 			 */
5447 			if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
5448 				   NAPIF_STATE_IN_BUSY_POLL))
5449 				goto count;
5450 			if (cmpxchg(&napi->state, val,
5451 				    val | NAPIF_STATE_IN_BUSY_POLL |
5452 					  NAPIF_STATE_SCHED) != val)
5453 				goto count;
5454 			have_poll_lock = netpoll_poll_lock(napi);
5455 			napi_poll = napi->poll;
5456 		}
5457 		work = napi_poll(napi, BUSY_POLL_BUDGET);
5458 		trace_napi_poll(napi, work, BUSY_POLL_BUDGET);
5459 count:
5460 		if (work > 0)
5461 			__NET_ADD_STATS(dev_net(napi->dev),
5462 					LINUX_MIB_BUSYPOLLRXPACKETS, work);
5463 		local_bh_enable();
5464 
5465 		if (!loop_end || loop_end(loop_end_arg, start_time))
5466 			break;
5467 
5468 		if (unlikely(need_resched())) {
5469 			if (napi_poll)
5470 				busy_poll_stop(napi, have_poll_lock);
5471 			preempt_enable();
5472 			rcu_read_unlock();
5473 			cond_resched();
5474 			if (loop_end(loop_end_arg, start_time))
5475 				return;
5476 			goto restart;
5477 		}
5478 		cpu_relax();
5479 	}
5480 	if (napi_poll)
5481 		busy_poll_stop(napi, have_poll_lock);
5482 	preempt_enable();
5483 out:
5484 	rcu_read_unlock();
5485 }
5486 EXPORT_SYMBOL(napi_busy_loop);
5487 
5488 #endif /* CONFIG_NET_RX_BUSY_POLL */
5489 
5490 static void napi_hash_add(struct napi_struct *napi)
5491 {
5492 	if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
5493 	    test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
5494 		return;
5495 
5496 	spin_lock(&napi_hash_lock);
5497 
5498 	/* 0..NR_CPUS range is reserved for sender_cpu use */
5499 	do {
5500 		if (unlikely(++napi_gen_id < MIN_NAPI_ID))
5501 			napi_gen_id = MIN_NAPI_ID;
5502 	} while (napi_by_id(napi_gen_id));
5503 	napi->napi_id = napi_gen_id;
5504 
5505 	hlist_add_head_rcu(&napi->napi_hash_node,
5506 			   &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
5507 
5508 	spin_unlock(&napi_hash_lock);
5509 }
5510 
5511 /* Warning : caller is responsible to make sure rcu grace period
5512  * is respected before freeing memory containing @napi
5513  */
5514 bool napi_hash_del(struct napi_struct *napi)
5515 {
5516 	bool rcu_sync_needed = false;
5517 
5518 	spin_lock(&napi_hash_lock);
5519 
5520 	if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
5521 		rcu_sync_needed = true;
5522 		hlist_del_rcu(&napi->napi_hash_node);
5523 	}
5524 	spin_unlock(&napi_hash_lock);
5525 	return rcu_sync_needed;
5526 }
5527 EXPORT_SYMBOL_GPL(napi_hash_del);
5528 
5529 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
5530 {
5531 	struct napi_struct *napi;
5532 
5533 	napi = container_of(timer, struct napi_struct, timer);
5534 
5535 	/* Note : we use a relaxed variant of napi_schedule_prep() not setting
5536 	 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
5537 	 */
5538 	if (napi->gro_list && !napi_disable_pending(napi) &&
5539 	    !test_and_set_bit(NAPI_STATE_SCHED, &napi->state))
5540 		__napi_schedule_irqoff(napi);
5541 
5542 	return HRTIMER_NORESTART;
5543 }
5544 
5545 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
5546 		    int (*poll)(struct napi_struct *, int), int weight)
5547 {
5548 	INIT_LIST_HEAD(&napi->poll_list);
5549 	hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
5550 	napi->timer.function = napi_watchdog;
5551 	napi->gro_count = 0;
5552 	napi->gro_list = NULL;
5553 	napi->skb = NULL;
5554 	napi->poll = poll;
5555 	if (weight > NAPI_POLL_WEIGHT)
5556 		pr_err_once("netif_napi_add() called with weight %d on device %s\n",
5557 			    weight, dev->name);
5558 	napi->weight = weight;
5559 	list_add(&napi->dev_list, &dev->napi_list);
5560 	napi->dev = dev;
5561 #ifdef CONFIG_NETPOLL
5562 	napi->poll_owner = -1;
5563 #endif
5564 	set_bit(NAPI_STATE_SCHED, &napi->state);
5565 	napi_hash_add(napi);
5566 }
5567 EXPORT_SYMBOL(netif_napi_add);
5568 
5569 void napi_disable(struct napi_struct *n)
5570 {
5571 	might_sleep();
5572 	set_bit(NAPI_STATE_DISABLE, &n->state);
5573 
5574 	while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
5575 		msleep(1);
5576 	while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
5577 		msleep(1);
5578 
5579 	hrtimer_cancel(&n->timer);
5580 
5581 	clear_bit(NAPI_STATE_DISABLE, &n->state);
5582 }
5583 EXPORT_SYMBOL(napi_disable);
5584 
5585 /* Must be called in process context */
5586 void netif_napi_del(struct napi_struct *napi)
5587 {
5588 	might_sleep();
5589 	if (napi_hash_del(napi))
5590 		synchronize_net();
5591 	list_del_init(&napi->dev_list);
5592 	napi_free_frags(napi);
5593 
5594 	kfree_skb_list(napi->gro_list);
5595 	napi->gro_list = NULL;
5596 	napi->gro_count = 0;
5597 }
5598 EXPORT_SYMBOL(netif_napi_del);
5599 
5600 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
5601 {
5602 	void *have;
5603 	int work, weight;
5604 
5605 	list_del_init(&n->poll_list);
5606 
5607 	have = netpoll_poll_lock(n);
5608 
5609 	weight = n->weight;
5610 
5611 	/* This NAPI_STATE_SCHED test is for avoiding a race
5612 	 * with netpoll's poll_napi().  Only the entity which
5613 	 * obtains the lock and sees NAPI_STATE_SCHED set will
5614 	 * actually make the ->poll() call.  Therefore we avoid
5615 	 * accidentally calling ->poll() when NAPI is not scheduled.
5616 	 */
5617 	work = 0;
5618 	if (test_bit(NAPI_STATE_SCHED, &n->state)) {
5619 		work = n->poll(n, weight);
5620 		trace_napi_poll(n, work, weight);
5621 	}
5622 
5623 	WARN_ON_ONCE(work > weight);
5624 
5625 	if (likely(work < weight))
5626 		goto out_unlock;
5627 
5628 	/* Drivers must not modify the NAPI state if they
5629 	 * consume the entire weight.  In such cases this code
5630 	 * still "owns" the NAPI instance and therefore can
5631 	 * move the instance around on the list at-will.
5632 	 */
5633 	if (unlikely(napi_disable_pending(n))) {
5634 		napi_complete(n);
5635 		goto out_unlock;
5636 	}
5637 
5638 	if (n->gro_list) {
5639 		/* flush too old packets
5640 		 * If HZ < 1000, flush all packets.
5641 		 */
5642 		napi_gro_flush(n, HZ >= 1000);
5643 	}
5644 
5645 	/* Some drivers may have called napi_schedule
5646 	 * prior to exhausting their budget.
5647 	 */
5648 	if (unlikely(!list_empty(&n->poll_list))) {
5649 		pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
5650 			     n->dev ? n->dev->name : "backlog");
5651 		goto out_unlock;
5652 	}
5653 
5654 	list_add_tail(&n->poll_list, repoll);
5655 
5656 out_unlock:
5657 	netpoll_poll_unlock(have);
5658 
5659 	return work;
5660 }
5661 
5662 static __latent_entropy void net_rx_action(struct softirq_action *h)
5663 {
5664 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5665 	unsigned long time_limit = jiffies +
5666 		usecs_to_jiffies(netdev_budget_usecs);
5667 	int budget = netdev_budget;
5668 	LIST_HEAD(list);
5669 	LIST_HEAD(repoll);
5670 
5671 	local_irq_disable();
5672 	list_splice_init(&sd->poll_list, &list);
5673 	local_irq_enable();
5674 
5675 	for (;;) {
5676 		struct napi_struct *n;
5677 
5678 		if (list_empty(&list)) {
5679 			if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
5680 				goto out;
5681 			break;
5682 		}
5683 
5684 		n = list_first_entry(&list, struct napi_struct, poll_list);
5685 		budget -= napi_poll(n, &repoll);
5686 
5687 		/* If softirq window is exhausted then punt.
5688 		 * Allow this to run for 2 jiffies since which will allow
5689 		 * an average latency of 1.5/HZ.
5690 		 */
5691 		if (unlikely(budget <= 0 ||
5692 			     time_after_eq(jiffies, time_limit))) {
5693 			sd->time_squeeze++;
5694 			break;
5695 		}
5696 	}
5697 
5698 	local_irq_disable();
5699 
5700 	list_splice_tail_init(&sd->poll_list, &list);
5701 	list_splice_tail(&repoll, &list);
5702 	list_splice(&list, &sd->poll_list);
5703 	if (!list_empty(&sd->poll_list))
5704 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
5705 
5706 	net_rps_action_and_irq_enable(sd);
5707 out:
5708 	__kfree_skb_flush();
5709 }
5710 
5711 struct netdev_adjacent {
5712 	struct net_device *dev;
5713 
5714 	/* upper master flag, there can only be one master device per list */
5715 	bool master;
5716 
5717 	/* counter for the number of times this device was added to us */
5718 	u16 ref_nr;
5719 
5720 	/* private field for the users */
5721 	void *private;
5722 
5723 	struct list_head list;
5724 	struct rcu_head rcu;
5725 };
5726 
5727 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
5728 						 struct list_head *adj_list)
5729 {
5730 	struct netdev_adjacent *adj;
5731 
5732 	list_for_each_entry(adj, adj_list, list) {
5733 		if (adj->dev == adj_dev)
5734 			return adj;
5735 	}
5736 	return NULL;
5737 }
5738 
5739 static int __netdev_has_upper_dev(struct net_device *upper_dev, void *data)
5740 {
5741 	struct net_device *dev = data;
5742 
5743 	return upper_dev == dev;
5744 }
5745 
5746 /**
5747  * netdev_has_upper_dev - Check if device is linked to an upper device
5748  * @dev: device
5749  * @upper_dev: upper device to check
5750  *
5751  * Find out if a device is linked to specified upper device and return true
5752  * in case it is. Note that this checks only immediate upper device,
5753  * not through a complete stack of devices. The caller must hold the RTNL lock.
5754  */
5755 bool netdev_has_upper_dev(struct net_device *dev,
5756 			  struct net_device *upper_dev)
5757 {
5758 	ASSERT_RTNL();
5759 
5760 	return netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
5761 					     upper_dev);
5762 }
5763 EXPORT_SYMBOL(netdev_has_upper_dev);
5764 
5765 /**
5766  * netdev_has_upper_dev_all - Check if device is linked to an upper device
5767  * @dev: device
5768  * @upper_dev: upper device to check
5769  *
5770  * Find out if a device is linked to specified upper device and return true
5771  * in case it is. Note that this checks the entire upper device chain.
5772  * The caller must hold rcu lock.
5773  */
5774 
5775 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
5776 				  struct net_device *upper_dev)
5777 {
5778 	return !!netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
5779 					       upper_dev);
5780 }
5781 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
5782 
5783 /**
5784  * netdev_has_any_upper_dev - Check if device is linked to some device
5785  * @dev: device
5786  *
5787  * Find out if a device is linked to an upper device and return true in case
5788  * it is. The caller must hold the RTNL lock.
5789  */
5790 bool netdev_has_any_upper_dev(struct net_device *dev)
5791 {
5792 	ASSERT_RTNL();
5793 
5794 	return !list_empty(&dev->adj_list.upper);
5795 }
5796 EXPORT_SYMBOL(netdev_has_any_upper_dev);
5797 
5798 /**
5799  * netdev_master_upper_dev_get - Get master upper device
5800  * @dev: device
5801  *
5802  * Find a master upper device and return pointer to it or NULL in case
5803  * it's not there. The caller must hold the RTNL lock.
5804  */
5805 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
5806 {
5807 	struct netdev_adjacent *upper;
5808 
5809 	ASSERT_RTNL();
5810 
5811 	if (list_empty(&dev->adj_list.upper))
5812 		return NULL;
5813 
5814 	upper = list_first_entry(&dev->adj_list.upper,
5815 				 struct netdev_adjacent, list);
5816 	if (likely(upper->master))
5817 		return upper->dev;
5818 	return NULL;
5819 }
5820 EXPORT_SYMBOL(netdev_master_upper_dev_get);
5821 
5822 /**
5823  * netdev_has_any_lower_dev - Check if device is linked to some device
5824  * @dev: device
5825  *
5826  * Find out if a device is linked to a lower device and return true in case
5827  * it is. The caller must hold the RTNL lock.
5828  */
5829 static bool netdev_has_any_lower_dev(struct net_device *dev)
5830 {
5831 	ASSERT_RTNL();
5832 
5833 	return !list_empty(&dev->adj_list.lower);
5834 }
5835 
5836 void *netdev_adjacent_get_private(struct list_head *adj_list)
5837 {
5838 	struct netdev_adjacent *adj;
5839 
5840 	adj = list_entry(adj_list, struct netdev_adjacent, list);
5841 
5842 	return adj->private;
5843 }
5844 EXPORT_SYMBOL(netdev_adjacent_get_private);
5845 
5846 /**
5847  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
5848  * @dev: device
5849  * @iter: list_head ** of the current position
5850  *
5851  * Gets the next device from the dev's upper list, starting from iter
5852  * position. The caller must hold RCU read lock.
5853  */
5854 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
5855 						 struct list_head **iter)
5856 {
5857 	struct netdev_adjacent *upper;
5858 
5859 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5860 
5861 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5862 
5863 	if (&upper->list == &dev->adj_list.upper)
5864 		return NULL;
5865 
5866 	*iter = &upper->list;
5867 
5868 	return upper->dev;
5869 }
5870 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
5871 
5872 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
5873 						    struct list_head **iter)
5874 {
5875 	struct netdev_adjacent *upper;
5876 
5877 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5878 
5879 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5880 
5881 	if (&upper->list == &dev->adj_list.upper)
5882 		return NULL;
5883 
5884 	*iter = &upper->list;
5885 
5886 	return upper->dev;
5887 }
5888 
5889 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
5890 				  int (*fn)(struct net_device *dev,
5891 					    void *data),
5892 				  void *data)
5893 {
5894 	struct net_device *udev;
5895 	struct list_head *iter;
5896 	int ret;
5897 
5898 	for (iter = &dev->adj_list.upper,
5899 	     udev = netdev_next_upper_dev_rcu(dev, &iter);
5900 	     udev;
5901 	     udev = netdev_next_upper_dev_rcu(dev, &iter)) {
5902 		/* first is the upper device itself */
5903 		ret = fn(udev, data);
5904 		if (ret)
5905 			return ret;
5906 
5907 		/* then look at all of its upper devices */
5908 		ret = netdev_walk_all_upper_dev_rcu(udev, fn, data);
5909 		if (ret)
5910 			return ret;
5911 	}
5912 
5913 	return 0;
5914 }
5915 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
5916 
5917 /**
5918  * netdev_lower_get_next_private - Get the next ->private from the
5919  *				   lower neighbour list
5920  * @dev: device
5921  * @iter: list_head ** of the current position
5922  *
5923  * Gets the next netdev_adjacent->private from the dev's lower neighbour
5924  * list, starting from iter position. The caller must hold either hold the
5925  * RTNL lock or its own locking that guarantees that the neighbour lower
5926  * list will remain unchanged.
5927  */
5928 void *netdev_lower_get_next_private(struct net_device *dev,
5929 				    struct list_head **iter)
5930 {
5931 	struct netdev_adjacent *lower;
5932 
5933 	lower = list_entry(*iter, struct netdev_adjacent, list);
5934 
5935 	if (&lower->list == &dev->adj_list.lower)
5936 		return NULL;
5937 
5938 	*iter = lower->list.next;
5939 
5940 	return lower->private;
5941 }
5942 EXPORT_SYMBOL(netdev_lower_get_next_private);
5943 
5944 /**
5945  * netdev_lower_get_next_private_rcu - Get the next ->private from the
5946  *				       lower neighbour list, RCU
5947  *				       variant
5948  * @dev: device
5949  * @iter: list_head ** of the current position
5950  *
5951  * Gets the next netdev_adjacent->private from the dev's lower neighbour
5952  * list, starting from iter position. The caller must hold RCU read lock.
5953  */
5954 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
5955 					struct list_head **iter)
5956 {
5957 	struct netdev_adjacent *lower;
5958 
5959 	WARN_ON_ONCE(!rcu_read_lock_held());
5960 
5961 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5962 
5963 	if (&lower->list == &dev->adj_list.lower)
5964 		return NULL;
5965 
5966 	*iter = &lower->list;
5967 
5968 	return lower->private;
5969 }
5970 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
5971 
5972 /**
5973  * netdev_lower_get_next - Get the next device from the lower neighbour
5974  *                         list
5975  * @dev: device
5976  * @iter: list_head ** of the current position
5977  *
5978  * Gets the next netdev_adjacent from the dev's lower neighbour
5979  * list, starting from iter position. The caller must hold RTNL lock or
5980  * its own locking that guarantees that the neighbour lower
5981  * list will remain unchanged.
5982  */
5983 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
5984 {
5985 	struct netdev_adjacent *lower;
5986 
5987 	lower = list_entry(*iter, struct netdev_adjacent, list);
5988 
5989 	if (&lower->list == &dev->adj_list.lower)
5990 		return NULL;
5991 
5992 	*iter = lower->list.next;
5993 
5994 	return lower->dev;
5995 }
5996 EXPORT_SYMBOL(netdev_lower_get_next);
5997 
5998 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
5999 						struct list_head **iter)
6000 {
6001 	struct netdev_adjacent *lower;
6002 
6003 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
6004 
6005 	if (&lower->list == &dev->adj_list.lower)
6006 		return NULL;
6007 
6008 	*iter = &lower->list;
6009 
6010 	return lower->dev;
6011 }
6012 
6013 int netdev_walk_all_lower_dev(struct net_device *dev,
6014 			      int (*fn)(struct net_device *dev,
6015 					void *data),
6016 			      void *data)
6017 {
6018 	struct net_device *ldev;
6019 	struct list_head *iter;
6020 	int ret;
6021 
6022 	for (iter = &dev->adj_list.lower,
6023 	     ldev = netdev_next_lower_dev(dev, &iter);
6024 	     ldev;
6025 	     ldev = netdev_next_lower_dev(dev, &iter)) {
6026 		/* first is the lower device itself */
6027 		ret = fn(ldev, data);
6028 		if (ret)
6029 			return ret;
6030 
6031 		/* then look at all of its lower devices */
6032 		ret = netdev_walk_all_lower_dev(ldev, fn, data);
6033 		if (ret)
6034 			return ret;
6035 	}
6036 
6037 	return 0;
6038 }
6039 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
6040 
6041 static struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
6042 						    struct list_head **iter)
6043 {
6044 	struct netdev_adjacent *lower;
6045 
6046 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6047 	if (&lower->list == &dev->adj_list.lower)
6048 		return NULL;
6049 
6050 	*iter = &lower->list;
6051 
6052 	return lower->dev;
6053 }
6054 
6055 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
6056 				  int (*fn)(struct net_device *dev,
6057 					    void *data),
6058 				  void *data)
6059 {
6060 	struct net_device *ldev;
6061 	struct list_head *iter;
6062 	int ret;
6063 
6064 	for (iter = &dev->adj_list.lower,
6065 	     ldev = netdev_next_lower_dev_rcu(dev, &iter);
6066 	     ldev;
6067 	     ldev = netdev_next_lower_dev_rcu(dev, &iter)) {
6068 		/* first is the lower device itself */
6069 		ret = fn(ldev, data);
6070 		if (ret)
6071 			return ret;
6072 
6073 		/* then look at all of its lower devices */
6074 		ret = netdev_walk_all_lower_dev_rcu(ldev, fn, data);
6075 		if (ret)
6076 			return ret;
6077 	}
6078 
6079 	return 0;
6080 }
6081 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
6082 
6083 /**
6084  * netdev_lower_get_first_private_rcu - Get the first ->private from the
6085  *				       lower neighbour list, RCU
6086  *				       variant
6087  * @dev: device
6088  *
6089  * Gets the first netdev_adjacent->private from the dev's lower neighbour
6090  * list. The caller must hold RCU read lock.
6091  */
6092 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
6093 {
6094 	struct netdev_adjacent *lower;
6095 
6096 	lower = list_first_or_null_rcu(&dev->adj_list.lower,
6097 			struct netdev_adjacent, list);
6098 	if (lower)
6099 		return lower->private;
6100 	return NULL;
6101 }
6102 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
6103 
6104 /**
6105  * netdev_master_upper_dev_get_rcu - Get master upper device
6106  * @dev: device
6107  *
6108  * Find a master upper device and return pointer to it or NULL in case
6109  * it's not there. The caller must hold the RCU read lock.
6110  */
6111 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
6112 {
6113 	struct netdev_adjacent *upper;
6114 
6115 	upper = list_first_or_null_rcu(&dev->adj_list.upper,
6116 				       struct netdev_adjacent, list);
6117 	if (upper && likely(upper->master))
6118 		return upper->dev;
6119 	return NULL;
6120 }
6121 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
6122 
6123 static int netdev_adjacent_sysfs_add(struct net_device *dev,
6124 			      struct net_device *adj_dev,
6125 			      struct list_head *dev_list)
6126 {
6127 	char linkname[IFNAMSIZ+7];
6128 
6129 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
6130 		"upper_%s" : "lower_%s", adj_dev->name);
6131 	return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
6132 				 linkname);
6133 }
6134 static void netdev_adjacent_sysfs_del(struct net_device *dev,
6135 			       char *name,
6136 			       struct list_head *dev_list)
6137 {
6138 	char linkname[IFNAMSIZ+7];
6139 
6140 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
6141 		"upper_%s" : "lower_%s", name);
6142 	sysfs_remove_link(&(dev->dev.kobj), linkname);
6143 }
6144 
6145 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
6146 						 struct net_device *adj_dev,
6147 						 struct list_head *dev_list)
6148 {
6149 	return (dev_list == &dev->adj_list.upper ||
6150 		dev_list == &dev->adj_list.lower) &&
6151 		net_eq(dev_net(dev), dev_net(adj_dev));
6152 }
6153 
6154 static int __netdev_adjacent_dev_insert(struct net_device *dev,
6155 					struct net_device *adj_dev,
6156 					struct list_head *dev_list,
6157 					void *private, bool master)
6158 {
6159 	struct netdev_adjacent *adj;
6160 	int ret;
6161 
6162 	adj = __netdev_find_adj(adj_dev, dev_list);
6163 
6164 	if (adj) {
6165 		adj->ref_nr += 1;
6166 		pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
6167 			 dev->name, adj_dev->name, adj->ref_nr);
6168 
6169 		return 0;
6170 	}
6171 
6172 	adj = kmalloc(sizeof(*adj), GFP_KERNEL);
6173 	if (!adj)
6174 		return -ENOMEM;
6175 
6176 	adj->dev = adj_dev;
6177 	adj->master = master;
6178 	adj->ref_nr = 1;
6179 	adj->private = private;
6180 	dev_hold(adj_dev);
6181 
6182 	pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
6183 		 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
6184 
6185 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
6186 		ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
6187 		if (ret)
6188 			goto free_adj;
6189 	}
6190 
6191 	/* Ensure that master link is always the first item in list. */
6192 	if (master) {
6193 		ret = sysfs_create_link(&(dev->dev.kobj),
6194 					&(adj_dev->dev.kobj), "master");
6195 		if (ret)
6196 			goto remove_symlinks;
6197 
6198 		list_add_rcu(&adj->list, dev_list);
6199 	} else {
6200 		list_add_tail_rcu(&adj->list, dev_list);
6201 	}
6202 
6203 	return 0;
6204 
6205 remove_symlinks:
6206 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
6207 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
6208 free_adj:
6209 	kfree(adj);
6210 	dev_put(adj_dev);
6211 
6212 	return ret;
6213 }
6214 
6215 static void __netdev_adjacent_dev_remove(struct net_device *dev,
6216 					 struct net_device *adj_dev,
6217 					 u16 ref_nr,
6218 					 struct list_head *dev_list)
6219 {
6220 	struct netdev_adjacent *adj;
6221 
6222 	pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
6223 		 dev->name, adj_dev->name, ref_nr);
6224 
6225 	adj = __netdev_find_adj(adj_dev, dev_list);
6226 
6227 	if (!adj) {
6228 		pr_err("Adjacency does not exist for device %s from %s\n",
6229 		       dev->name, adj_dev->name);
6230 		WARN_ON(1);
6231 		return;
6232 	}
6233 
6234 	if (adj->ref_nr > ref_nr) {
6235 		pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
6236 			 dev->name, adj_dev->name, ref_nr,
6237 			 adj->ref_nr - ref_nr);
6238 		adj->ref_nr -= ref_nr;
6239 		return;
6240 	}
6241 
6242 	if (adj->master)
6243 		sysfs_remove_link(&(dev->dev.kobj), "master");
6244 
6245 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
6246 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
6247 
6248 	list_del_rcu(&adj->list);
6249 	pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
6250 		 adj_dev->name, dev->name, adj_dev->name);
6251 	dev_put(adj_dev);
6252 	kfree_rcu(adj, rcu);
6253 }
6254 
6255 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
6256 					    struct net_device *upper_dev,
6257 					    struct list_head *up_list,
6258 					    struct list_head *down_list,
6259 					    void *private, bool master)
6260 {
6261 	int ret;
6262 
6263 	ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
6264 					   private, master);
6265 	if (ret)
6266 		return ret;
6267 
6268 	ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
6269 					   private, false);
6270 	if (ret) {
6271 		__netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
6272 		return ret;
6273 	}
6274 
6275 	return 0;
6276 }
6277 
6278 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
6279 					       struct net_device *upper_dev,
6280 					       u16 ref_nr,
6281 					       struct list_head *up_list,
6282 					       struct list_head *down_list)
6283 {
6284 	__netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
6285 	__netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
6286 }
6287 
6288 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
6289 						struct net_device *upper_dev,
6290 						void *private, bool master)
6291 {
6292 	return __netdev_adjacent_dev_link_lists(dev, upper_dev,
6293 						&dev->adj_list.upper,
6294 						&upper_dev->adj_list.lower,
6295 						private, master);
6296 }
6297 
6298 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
6299 						   struct net_device *upper_dev)
6300 {
6301 	__netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
6302 					   &dev->adj_list.upper,
6303 					   &upper_dev->adj_list.lower);
6304 }
6305 
6306 static int __netdev_upper_dev_link(struct net_device *dev,
6307 				   struct net_device *upper_dev, bool master,
6308 				   void *upper_priv, void *upper_info,
6309 				   struct netlink_ext_ack *extack)
6310 {
6311 	struct netdev_notifier_changeupper_info changeupper_info = {
6312 		.info = {
6313 			.dev = dev,
6314 			.extack = extack,
6315 		},
6316 		.upper_dev = upper_dev,
6317 		.master = master,
6318 		.linking = true,
6319 		.upper_info = upper_info,
6320 	};
6321 	int ret = 0;
6322 
6323 	ASSERT_RTNL();
6324 
6325 	if (dev == upper_dev)
6326 		return -EBUSY;
6327 
6328 	/* To prevent loops, check if dev is not upper device to upper_dev. */
6329 	if (netdev_has_upper_dev(upper_dev, dev))
6330 		return -EBUSY;
6331 
6332 	if (netdev_has_upper_dev(dev, upper_dev))
6333 		return -EEXIST;
6334 
6335 	if (master && netdev_master_upper_dev_get(dev))
6336 		return -EBUSY;
6337 
6338 	ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
6339 					    &changeupper_info.info);
6340 	ret = notifier_to_errno(ret);
6341 	if (ret)
6342 		return ret;
6343 
6344 	ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
6345 						   master);
6346 	if (ret)
6347 		return ret;
6348 
6349 	ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
6350 					    &changeupper_info.info);
6351 	ret = notifier_to_errno(ret);
6352 	if (ret)
6353 		goto rollback;
6354 
6355 	return 0;
6356 
6357 rollback:
6358 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
6359 
6360 	return ret;
6361 }
6362 
6363 /**
6364  * netdev_upper_dev_link - Add a link to the upper device
6365  * @dev: device
6366  * @upper_dev: new upper device
6367  *
6368  * Adds a link to device which is upper to this one. The caller must hold
6369  * the RTNL lock. On a failure a negative errno code is returned.
6370  * On success the reference counts are adjusted and the function
6371  * returns zero.
6372  */
6373 int netdev_upper_dev_link(struct net_device *dev,
6374 			  struct net_device *upper_dev,
6375 			  struct netlink_ext_ack *extack)
6376 {
6377 	return __netdev_upper_dev_link(dev, upper_dev, false,
6378 				       NULL, NULL, extack);
6379 }
6380 EXPORT_SYMBOL(netdev_upper_dev_link);
6381 
6382 /**
6383  * netdev_master_upper_dev_link - Add a master link to the upper device
6384  * @dev: device
6385  * @upper_dev: new upper device
6386  * @upper_priv: upper device private
6387  * @upper_info: upper info to be passed down via notifier
6388  *
6389  * Adds a link to device which is upper to this one. In this case, only
6390  * one master upper device can be linked, although other non-master devices
6391  * might be linked as well. The caller must hold the RTNL lock.
6392  * On a failure a negative errno code is returned. On success the reference
6393  * counts are adjusted and the function returns zero.
6394  */
6395 int netdev_master_upper_dev_link(struct net_device *dev,
6396 				 struct net_device *upper_dev,
6397 				 void *upper_priv, void *upper_info,
6398 				 struct netlink_ext_ack *extack)
6399 {
6400 	return __netdev_upper_dev_link(dev, upper_dev, true,
6401 				       upper_priv, upper_info, extack);
6402 }
6403 EXPORT_SYMBOL(netdev_master_upper_dev_link);
6404 
6405 /**
6406  * netdev_upper_dev_unlink - Removes a link to upper device
6407  * @dev: device
6408  * @upper_dev: new upper device
6409  *
6410  * Removes a link to device which is upper to this one. The caller must hold
6411  * the RTNL lock.
6412  */
6413 void netdev_upper_dev_unlink(struct net_device *dev,
6414 			     struct net_device *upper_dev)
6415 {
6416 	struct netdev_notifier_changeupper_info changeupper_info = {
6417 		.info = {
6418 			.dev = dev,
6419 		},
6420 		.upper_dev = upper_dev,
6421 		.linking = false,
6422 	};
6423 
6424 	ASSERT_RTNL();
6425 
6426 	changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
6427 
6428 	call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
6429 				      &changeupper_info.info);
6430 
6431 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
6432 
6433 	call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
6434 				      &changeupper_info.info);
6435 }
6436 EXPORT_SYMBOL(netdev_upper_dev_unlink);
6437 
6438 /**
6439  * netdev_bonding_info_change - Dispatch event about slave change
6440  * @dev: device
6441  * @bonding_info: info to dispatch
6442  *
6443  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
6444  * The caller must hold the RTNL lock.
6445  */
6446 void netdev_bonding_info_change(struct net_device *dev,
6447 				struct netdev_bonding_info *bonding_info)
6448 {
6449 	struct netdev_notifier_bonding_info info = {
6450 		.info.dev = dev,
6451 	};
6452 
6453 	memcpy(&info.bonding_info, bonding_info,
6454 	       sizeof(struct netdev_bonding_info));
6455 	call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
6456 				      &info.info);
6457 }
6458 EXPORT_SYMBOL(netdev_bonding_info_change);
6459 
6460 static void netdev_adjacent_add_links(struct net_device *dev)
6461 {
6462 	struct netdev_adjacent *iter;
6463 
6464 	struct net *net = dev_net(dev);
6465 
6466 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
6467 		if (!net_eq(net, dev_net(iter->dev)))
6468 			continue;
6469 		netdev_adjacent_sysfs_add(iter->dev, dev,
6470 					  &iter->dev->adj_list.lower);
6471 		netdev_adjacent_sysfs_add(dev, iter->dev,
6472 					  &dev->adj_list.upper);
6473 	}
6474 
6475 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
6476 		if (!net_eq(net, dev_net(iter->dev)))
6477 			continue;
6478 		netdev_adjacent_sysfs_add(iter->dev, dev,
6479 					  &iter->dev->adj_list.upper);
6480 		netdev_adjacent_sysfs_add(dev, iter->dev,
6481 					  &dev->adj_list.lower);
6482 	}
6483 }
6484 
6485 static void netdev_adjacent_del_links(struct net_device *dev)
6486 {
6487 	struct netdev_adjacent *iter;
6488 
6489 	struct net *net = dev_net(dev);
6490 
6491 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
6492 		if (!net_eq(net, dev_net(iter->dev)))
6493 			continue;
6494 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
6495 					  &iter->dev->adj_list.lower);
6496 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
6497 					  &dev->adj_list.upper);
6498 	}
6499 
6500 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
6501 		if (!net_eq(net, dev_net(iter->dev)))
6502 			continue;
6503 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
6504 					  &iter->dev->adj_list.upper);
6505 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
6506 					  &dev->adj_list.lower);
6507 	}
6508 }
6509 
6510 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
6511 {
6512 	struct netdev_adjacent *iter;
6513 
6514 	struct net *net = dev_net(dev);
6515 
6516 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
6517 		if (!net_eq(net, dev_net(iter->dev)))
6518 			continue;
6519 		netdev_adjacent_sysfs_del(iter->dev, oldname,
6520 					  &iter->dev->adj_list.lower);
6521 		netdev_adjacent_sysfs_add(iter->dev, dev,
6522 					  &iter->dev->adj_list.lower);
6523 	}
6524 
6525 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
6526 		if (!net_eq(net, dev_net(iter->dev)))
6527 			continue;
6528 		netdev_adjacent_sysfs_del(iter->dev, oldname,
6529 					  &iter->dev->adj_list.upper);
6530 		netdev_adjacent_sysfs_add(iter->dev, dev,
6531 					  &iter->dev->adj_list.upper);
6532 	}
6533 }
6534 
6535 void *netdev_lower_dev_get_private(struct net_device *dev,
6536 				   struct net_device *lower_dev)
6537 {
6538 	struct netdev_adjacent *lower;
6539 
6540 	if (!lower_dev)
6541 		return NULL;
6542 	lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
6543 	if (!lower)
6544 		return NULL;
6545 
6546 	return lower->private;
6547 }
6548 EXPORT_SYMBOL(netdev_lower_dev_get_private);
6549 
6550 
6551 int dev_get_nest_level(struct net_device *dev)
6552 {
6553 	struct net_device *lower = NULL;
6554 	struct list_head *iter;
6555 	int max_nest = -1;
6556 	int nest;
6557 
6558 	ASSERT_RTNL();
6559 
6560 	netdev_for_each_lower_dev(dev, lower, iter) {
6561 		nest = dev_get_nest_level(lower);
6562 		if (max_nest < nest)
6563 			max_nest = nest;
6564 	}
6565 
6566 	return max_nest + 1;
6567 }
6568 EXPORT_SYMBOL(dev_get_nest_level);
6569 
6570 /**
6571  * netdev_lower_change - Dispatch event about lower device state change
6572  * @lower_dev: device
6573  * @lower_state_info: state to dispatch
6574  *
6575  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
6576  * The caller must hold the RTNL lock.
6577  */
6578 void netdev_lower_state_changed(struct net_device *lower_dev,
6579 				void *lower_state_info)
6580 {
6581 	struct netdev_notifier_changelowerstate_info changelowerstate_info = {
6582 		.info.dev = lower_dev,
6583 	};
6584 
6585 	ASSERT_RTNL();
6586 	changelowerstate_info.lower_state_info = lower_state_info;
6587 	call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
6588 				      &changelowerstate_info.info);
6589 }
6590 EXPORT_SYMBOL(netdev_lower_state_changed);
6591 
6592 static void dev_change_rx_flags(struct net_device *dev, int flags)
6593 {
6594 	const struct net_device_ops *ops = dev->netdev_ops;
6595 
6596 	if (ops->ndo_change_rx_flags)
6597 		ops->ndo_change_rx_flags(dev, flags);
6598 }
6599 
6600 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
6601 {
6602 	unsigned int old_flags = dev->flags;
6603 	kuid_t uid;
6604 	kgid_t gid;
6605 
6606 	ASSERT_RTNL();
6607 
6608 	dev->flags |= IFF_PROMISC;
6609 	dev->promiscuity += inc;
6610 	if (dev->promiscuity == 0) {
6611 		/*
6612 		 * Avoid overflow.
6613 		 * If inc causes overflow, untouch promisc and return error.
6614 		 */
6615 		if (inc < 0)
6616 			dev->flags &= ~IFF_PROMISC;
6617 		else {
6618 			dev->promiscuity -= inc;
6619 			pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
6620 				dev->name);
6621 			return -EOVERFLOW;
6622 		}
6623 	}
6624 	if (dev->flags != old_flags) {
6625 		pr_info("device %s %s promiscuous mode\n",
6626 			dev->name,
6627 			dev->flags & IFF_PROMISC ? "entered" : "left");
6628 		if (audit_enabled) {
6629 			current_uid_gid(&uid, &gid);
6630 			audit_log(current->audit_context, GFP_ATOMIC,
6631 				AUDIT_ANOM_PROMISCUOUS,
6632 				"dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
6633 				dev->name, (dev->flags & IFF_PROMISC),
6634 				(old_flags & IFF_PROMISC),
6635 				from_kuid(&init_user_ns, audit_get_loginuid(current)),
6636 				from_kuid(&init_user_ns, uid),
6637 				from_kgid(&init_user_ns, gid),
6638 				audit_get_sessionid(current));
6639 		}
6640 
6641 		dev_change_rx_flags(dev, IFF_PROMISC);
6642 	}
6643 	if (notify)
6644 		__dev_notify_flags(dev, old_flags, IFF_PROMISC);
6645 	return 0;
6646 }
6647 
6648 /**
6649  *	dev_set_promiscuity	- update promiscuity count on a device
6650  *	@dev: device
6651  *	@inc: modifier
6652  *
6653  *	Add or remove promiscuity from a device. While the count in the device
6654  *	remains above zero the interface remains promiscuous. Once it hits zero
6655  *	the device reverts back to normal filtering operation. A negative inc
6656  *	value is used to drop promiscuity on the device.
6657  *	Return 0 if successful or a negative errno code on error.
6658  */
6659 int dev_set_promiscuity(struct net_device *dev, int inc)
6660 {
6661 	unsigned int old_flags = dev->flags;
6662 	int err;
6663 
6664 	err = __dev_set_promiscuity(dev, inc, true);
6665 	if (err < 0)
6666 		return err;
6667 	if (dev->flags != old_flags)
6668 		dev_set_rx_mode(dev);
6669 	return err;
6670 }
6671 EXPORT_SYMBOL(dev_set_promiscuity);
6672 
6673 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
6674 {
6675 	unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
6676 
6677 	ASSERT_RTNL();
6678 
6679 	dev->flags |= IFF_ALLMULTI;
6680 	dev->allmulti += inc;
6681 	if (dev->allmulti == 0) {
6682 		/*
6683 		 * Avoid overflow.
6684 		 * If inc causes overflow, untouch allmulti and return error.
6685 		 */
6686 		if (inc < 0)
6687 			dev->flags &= ~IFF_ALLMULTI;
6688 		else {
6689 			dev->allmulti -= inc;
6690 			pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
6691 				dev->name);
6692 			return -EOVERFLOW;
6693 		}
6694 	}
6695 	if (dev->flags ^ old_flags) {
6696 		dev_change_rx_flags(dev, IFF_ALLMULTI);
6697 		dev_set_rx_mode(dev);
6698 		if (notify)
6699 			__dev_notify_flags(dev, old_flags,
6700 					   dev->gflags ^ old_gflags);
6701 	}
6702 	return 0;
6703 }
6704 
6705 /**
6706  *	dev_set_allmulti	- update allmulti count on a device
6707  *	@dev: device
6708  *	@inc: modifier
6709  *
6710  *	Add or remove reception of all multicast frames to a device. While the
6711  *	count in the device remains above zero the interface remains listening
6712  *	to all interfaces. Once it hits zero the device reverts back to normal
6713  *	filtering operation. A negative @inc value is used to drop the counter
6714  *	when releasing a resource needing all multicasts.
6715  *	Return 0 if successful or a negative errno code on error.
6716  */
6717 
6718 int dev_set_allmulti(struct net_device *dev, int inc)
6719 {
6720 	return __dev_set_allmulti(dev, inc, true);
6721 }
6722 EXPORT_SYMBOL(dev_set_allmulti);
6723 
6724 /*
6725  *	Upload unicast and multicast address lists to device and
6726  *	configure RX filtering. When the device doesn't support unicast
6727  *	filtering it is put in promiscuous mode while unicast addresses
6728  *	are present.
6729  */
6730 void __dev_set_rx_mode(struct net_device *dev)
6731 {
6732 	const struct net_device_ops *ops = dev->netdev_ops;
6733 
6734 	/* dev_open will call this function so the list will stay sane. */
6735 	if (!(dev->flags&IFF_UP))
6736 		return;
6737 
6738 	if (!netif_device_present(dev))
6739 		return;
6740 
6741 	if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
6742 		/* Unicast addresses changes may only happen under the rtnl,
6743 		 * therefore calling __dev_set_promiscuity here is safe.
6744 		 */
6745 		if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
6746 			__dev_set_promiscuity(dev, 1, false);
6747 			dev->uc_promisc = true;
6748 		} else if (netdev_uc_empty(dev) && dev->uc_promisc) {
6749 			__dev_set_promiscuity(dev, -1, false);
6750 			dev->uc_promisc = false;
6751 		}
6752 	}
6753 
6754 	if (ops->ndo_set_rx_mode)
6755 		ops->ndo_set_rx_mode(dev);
6756 }
6757 
6758 void dev_set_rx_mode(struct net_device *dev)
6759 {
6760 	netif_addr_lock_bh(dev);
6761 	__dev_set_rx_mode(dev);
6762 	netif_addr_unlock_bh(dev);
6763 }
6764 
6765 /**
6766  *	dev_get_flags - get flags reported to userspace
6767  *	@dev: device
6768  *
6769  *	Get the combination of flag bits exported through APIs to userspace.
6770  */
6771 unsigned int dev_get_flags(const struct net_device *dev)
6772 {
6773 	unsigned int flags;
6774 
6775 	flags = (dev->flags & ~(IFF_PROMISC |
6776 				IFF_ALLMULTI |
6777 				IFF_RUNNING |
6778 				IFF_LOWER_UP |
6779 				IFF_DORMANT)) |
6780 		(dev->gflags & (IFF_PROMISC |
6781 				IFF_ALLMULTI));
6782 
6783 	if (netif_running(dev)) {
6784 		if (netif_oper_up(dev))
6785 			flags |= IFF_RUNNING;
6786 		if (netif_carrier_ok(dev))
6787 			flags |= IFF_LOWER_UP;
6788 		if (netif_dormant(dev))
6789 			flags |= IFF_DORMANT;
6790 	}
6791 
6792 	return flags;
6793 }
6794 EXPORT_SYMBOL(dev_get_flags);
6795 
6796 int __dev_change_flags(struct net_device *dev, unsigned int flags)
6797 {
6798 	unsigned int old_flags = dev->flags;
6799 	int ret;
6800 
6801 	ASSERT_RTNL();
6802 
6803 	/*
6804 	 *	Set the flags on our device.
6805 	 */
6806 
6807 	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
6808 			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
6809 			       IFF_AUTOMEDIA)) |
6810 		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
6811 				    IFF_ALLMULTI));
6812 
6813 	/*
6814 	 *	Load in the correct multicast list now the flags have changed.
6815 	 */
6816 
6817 	if ((old_flags ^ flags) & IFF_MULTICAST)
6818 		dev_change_rx_flags(dev, IFF_MULTICAST);
6819 
6820 	dev_set_rx_mode(dev);
6821 
6822 	/*
6823 	 *	Have we downed the interface. We handle IFF_UP ourselves
6824 	 *	according to user attempts to set it, rather than blindly
6825 	 *	setting it.
6826 	 */
6827 
6828 	ret = 0;
6829 	if ((old_flags ^ flags) & IFF_UP) {
6830 		if (old_flags & IFF_UP)
6831 			__dev_close(dev);
6832 		else
6833 			ret = __dev_open(dev);
6834 	}
6835 
6836 	if ((flags ^ dev->gflags) & IFF_PROMISC) {
6837 		int inc = (flags & IFF_PROMISC) ? 1 : -1;
6838 		unsigned int old_flags = dev->flags;
6839 
6840 		dev->gflags ^= IFF_PROMISC;
6841 
6842 		if (__dev_set_promiscuity(dev, inc, false) >= 0)
6843 			if (dev->flags != old_flags)
6844 				dev_set_rx_mode(dev);
6845 	}
6846 
6847 	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
6848 	 * is important. Some (broken) drivers set IFF_PROMISC, when
6849 	 * IFF_ALLMULTI is requested not asking us and not reporting.
6850 	 */
6851 	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
6852 		int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
6853 
6854 		dev->gflags ^= IFF_ALLMULTI;
6855 		__dev_set_allmulti(dev, inc, false);
6856 	}
6857 
6858 	return ret;
6859 }
6860 
6861 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
6862 			unsigned int gchanges)
6863 {
6864 	unsigned int changes = dev->flags ^ old_flags;
6865 
6866 	if (gchanges)
6867 		rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
6868 
6869 	if (changes & IFF_UP) {
6870 		if (dev->flags & IFF_UP)
6871 			call_netdevice_notifiers(NETDEV_UP, dev);
6872 		else
6873 			call_netdevice_notifiers(NETDEV_DOWN, dev);
6874 	}
6875 
6876 	if (dev->flags & IFF_UP &&
6877 	    (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
6878 		struct netdev_notifier_change_info change_info = {
6879 			.info = {
6880 				.dev = dev,
6881 			},
6882 			.flags_changed = changes,
6883 		};
6884 
6885 		call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
6886 	}
6887 }
6888 
6889 /**
6890  *	dev_change_flags - change device settings
6891  *	@dev: device
6892  *	@flags: device state flags
6893  *
6894  *	Change settings on device based state flags. The flags are
6895  *	in the userspace exported format.
6896  */
6897 int dev_change_flags(struct net_device *dev, unsigned int flags)
6898 {
6899 	int ret;
6900 	unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
6901 
6902 	ret = __dev_change_flags(dev, flags);
6903 	if (ret < 0)
6904 		return ret;
6905 
6906 	changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
6907 	__dev_notify_flags(dev, old_flags, changes);
6908 	return ret;
6909 }
6910 EXPORT_SYMBOL(dev_change_flags);
6911 
6912 int __dev_set_mtu(struct net_device *dev, int new_mtu)
6913 {
6914 	const struct net_device_ops *ops = dev->netdev_ops;
6915 
6916 	if (ops->ndo_change_mtu)
6917 		return ops->ndo_change_mtu(dev, new_mtu);
6918 
6919 	dev->mtu = new_mtu;
6920 	return 0;
6921 }
6922 EXPORT_SYMBOL(__dev_set_mtu);
6923 
6924 /**
6925  *	dev_set_mtu - Change maximum transfer unit
6926  *	@dev: device
6927  *	@new_mtu: new transfer unit
6928  *
6929  *	Change the maximum transfer size of the network device.
6930  */
6931 int dev_set_mtu(struct net_device *dev, int new_mtu)
6932 {
6933 	int err, orig_mtu;
6934 
6935 	if (new_mtu == dev->mtu)
6936 		return 0;
6937 
6938 	/* MTU must be positive, and in range */
6939 	if (new_mtu < 0 || new_mtu < dev->min_mtu) {
6940 		net_err_ratelimited("%s: Invalid MTU %d requested, hw min %d\n",
6941 				    dev->name, new_mtu, dev->min_mtu);
6942 		return -EINVAL;
6943 	}
6944 
6945 	if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
6946 		net_err_ratelimited("%s: Invalid MTU %d requested, hw max %d\n",
6947 				    dev->name, new_mtu, dev->max_mtu);
6948 		return -EINVAL;
6949 	}
6950 
6951 	if (!netif_device_present(dev))
6952 		return -ENODEV;
6953 
6954 	err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
6955 	err = notifier_to_errno(err);
6956 	if (err)
6957 		return err;
6958 
6959 	orig_mtu = dev->mtu;
6960 	err = __dev_set_mtu(dev, new_mtu);
6961 
6962 	if (!err) {
6963 		err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6964 		err = notifier_to_errno(err);
6965 		if (err) {
6966 			/* setting mtu back and notifying everyone again,
6967 			 * so that they have a chance to revert changes.
6968 			 */
6969 			__dev_set_mtu(dev, orig_mtu);
6970 			call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6971 		}
6972 	}
6973 	return err;
6974 }
6975 EXPORT_SYMBOL(dev_set_mtu);
6976 
6977 /**
6978  *	dev_set_group - Change group this device belongs to
6979  *	@dev: device
6980  *	@new_group: group this device should belong to
6981  */
6982 void dev_set_group(struct net_device *dev, int new_group)
6983 {
6984 	dev->group = new_group;
6985 }
6986 EXPORT_SYMBOL(dev_set_group);
6987 
6988 /**
6989  *	dev_set_mac_address - Change Media Access Control Address
6990  *	@dev: device
6991  *	@sa: new address
6992  *
6993  *	Change the hardware (MAC) address of the device
6994  */
6995 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
6996 {
6997 	const struct net_device_ops *ops = dev->netdev_ops;
6998 	int err;
6999 
7000 	if (!ops->ndo_set_mac_address)
7001 		return -EOPNOTSUPP;
7002 	if (sa->sa_family != dev->type)
7003 		return -EINVAL;
7004 	if (!netif_device_present(dev))
7005 		return -ENODEV;
7006 	err = ops->ndo_set_mac_address(dev, sa);
7007 	if (err)
7008 		return err;
7009 	dev->addr_assign_type = NET_ADDR_SET;
7010 	call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
7011 	add_device_randomness(dev->dev_addr, dev->addr_len);
7012 	return 0;
7013 }
7014 EXPORT_SYMBOL(dev_set_mac_address);
7015 
7016 /**
7017  *	dev_change_carrier - Change device carrier
7018  *	@dev: device
7019  *	@new_carrier: new value
7020  *
7021  *	Change device carrier
7022  */
7023 int dev_change_carrier(struct net_device *dev, bool new_carrier)
7024 {
7025 	const struct net_device_ops *ops = dev->netdev_ops;
7026 
7027 	if (!ops->ndo_change_carrier)
7028 		return -EOPNOTSUPP;
7029 	if (!netif_device_present(dev))
7030 		return -ENODEV;
7031 	return ops->ndo_change_carrier(dev, new_carrier);
7032 }
7033 EXPORT_SYMBOL(dev_change_carrier);
7034 
7035 /**
7036  *	dev_get_phys_port_id - Get device physical port ID
7037  *	@dev: device
7038  *	@ppid: port ID
7039  *
7040  *	Get device physical port ID
7041  */
7042 int dev_get_phys_port_id(struct net_device *dev,
7043 			 struct netdev_phys_item_id *ppid)
7044 {
7045 	const struct net_device_ops *ops = dev->netdev_ops;
7046 
7047 	if (!ops->ndo_get_phys_port_id)
7048 		return -EOPNOTSUPP;
7049 	return ops->ndo_get_phys_port_id(dev, ppid);
7050 }
7051 EXPORT_SYMBOL(dev_get_phys_port_id);
7052 
7053 /**
7054  *	dev_get_phys_port_name - Get device physical port name
7055  *	@dev: device
7056  *	@name: port name
7057  *	@len: limit of bytes to copy to name
7058  *
7059  *	Get device physical port name
7060  */
7061 int dev_get_phys_port_name(struct net_device *dev,
7062 			   char *name, size_t len)
7063 {
7064 	const struct net_device_ops *ops = dev->netdev_ops;
7065 
7066 	if (!ops->ndo_get_phys_port_name)
7067 		return -EOPNOTSUPP;
7068 	return ops->ndo_get_phys_port_name(dev, name, len);
7069 }
7070 EXPORT_SYMBOL(dev_get_phys_port_name);
7071 
7072 /**
7073  *	dev_change_proto_down - update protocol port state information
7074  *	@dev: device
7075  *	@proto_down: new value
7076  *
7077  *	This info can be used by switch drivers to set the phys state of the
7078  *	port.
7079  */
7080 int dev_change_proto_down(struct net_device *dev, bool proto_down)
7081 {
7082 	const struct net_device_ops *ops = dev->netdev_ops;
7083 
7084 	if (!ops->ndo_change_proto_down)
7085 		return -EOPNOTSUPP;
7086 	if (!netif_device_present(dev))
7087 		return -ENODEV;
7088 	return ops->ndo_change_proto_down(dev, proto_down);
7089 }
7090 EXPORT_SYMBOL(dev_change_proto_down);
7091 
7092 u8 __dev_xdp_attached(struct net_device *dev, xdp_op_t xdp_op, u32 *prog_id)
7093 {
7094 	struct netdev_xdp xdp;
7095 
7096 	memset(&xdp, 0, sizeof(xdp));
7097 	xdp.command = XDP_QUERY_PROG;
7098 
7099 	/* Query must always succeed. */
7100 	WARN_ON(xdp_op(dev, &xdp) < 0);
7101 	if (prog_id)
7102 		*prog_id = xdp.prog_id;
7103 
7104 	return xdp.prog_attached;
7105 }
7106 
7107 static int dev_xdp_install(struct net_device *dev, xdp_op_t xdp_op,
7108 			   struct netlink_ext_ack *extack, u32 flags,
7109 			   struct bpf_prog *prog)
7110 {
7111 	struct netdev_xdp xdp;
7112 
7113 	memset(&xdp, 0, sizeof(xdp));
7114 	if (flags & XDP_FLAGS_HW_MODE)
7115 		xdp.command = XDP_SETUP_PROG_HW;
7116 	else
7117 		xdp.command = XDP_SETUP_PROG;
7118 	xdp.extack = extack;
7119 	xdp.flags = flags;
7120 	xdp.prog = prog;
7121 
7122 	return xdp_op(dev, &xdp);
7123 }
7124 
7125 /**
7126  *	dev_change_xdp_fd - set or clear a bpf program for a device rx path
7127  *	@dev: device
7128  *	@extack: netlink extended ack
7129  *	@fd: new program fd or negative value to clear
7130  *	@flags: xdp-related flags
7131  *
7132  *	Set or clear a bpf program for a device
7133  */
7134 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
7135 		      int fd, u32 flags)
7136 {
7137 	const struct net_device_ops *ops = dev->netdev_ops;
7138 	struct bpf_prog *prog = NULL;
7139 	xdp_op_t xdp_op, xdp_chk;
7140 	int err;
7141 
7142 	ASSERT_RTNL();
7143 
7144 	xdp_op = xdp_chk = ops->ndo_xdp;
7145 	if (!xdp_op && (flags & (XDP_FLAGS_DRV_MODE | XDP_FLAGS_HW_MODE)))
7146 		return -EOPNOTSUPP;
7147 	if (!xdp_op || (flags & XDP_FLAGS_SKB_MODE))
7148 		xdp_op = generic_xdp_install;
7149 	if (xdp_op == xdp_chk)
7150 		xdp_chk = generic_xdp_install;
7151 
7152 	if (fd >= 0) {
7153 		if (xdp_chk && __dev_xdp_attached(dev, xdp_chk, NULL))
7154 			return -EEXIST;
7155 		if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) &&
7156 		    __dev_xdp_attached(dev, xdp_op, NULL))
7157 			return -EBUSY;
7158 
7159 		prog = bpf_prog_get_type(fd, BPF_PROG_TYPE_XDP);
7160 		if (IS_ERR(prog))
7161 			return PTR_ERR(prog);
7162 	}
7163 
7164 	err = dev_xdp_install(dev, xdp_op, extack, flags, prog);
7165 	if (err < 0 && prog)
7166 		bpf_prog_put(prog);
7167 
7168 	return err;
7169 }
7170 
7171 /**
7172  *	dev_new_index	-	allocate an ifindex
7173  *	@net: the applicable net namespace
7174  *
7175  *	Returns a suitable unique value for a new device interface
7176  *	number.  The caller must hold the rtnl semaphore or the
7177  *	dev_base_lock to be sure it remains unique.
7178  */
7179 static int dev_new_index(struct net *net)
7180 {
7181 	int ifindex = net->ifindex;
7182 
7183 	for (;;) {
7184 		if (++ifindex <= 0)
7185 			ifindex = 1;
7186 		if (!__dev_get_by_index(net, ifindex))
7187 			return net->ifindex = ifindex;
7188 	}
7189 }
7190 
7191 /* Delayed registration/unregisteration */
7192 static LIST_HEAD(net_todo_list);
7193 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
7194 
7195 static void net_set_todo(struct net_device *dev)
7196 {
7197 	list_add_tail(&dev->todo_list, &net_todo_list);
7198 	dev_net(dev)->dev_unreg_count++;
7199 }
7200 
7201 static void rollback_registered_many(struct list_head *head)
7202 {
7203 	struct net_device *dev, *tmp;
7204 	LIST_HEAD(close_head);
7205 
7206 	BUG_ON(dev_boot_phase);
7207 	ASSERT_RTNL();
7208 
7209 	list_for_each_entry_safe(dev, tmp, head, unreg_list) {
7210 		/* Some devices call without registering
7211 		 * for initialization unwind. Remove those
7212 		 * devices and proceed with the remaining.
7213 		 */
7214 		if (dev->reg_state == NETREG_UNINITIALIZED) {
7215 			pr_debug("unregister_netdevice: device %s/%p never was registered\n",
7216 				 dev->name, dev);
7217 
7218 			WARN_ON(1);
7219 			list_del(&dev->unreg_list);
7220 			continue;
7221 		}
7222 		dev->dismantle = true;
7223 		BUG_ON(dev->reg_state != NETREG_REGISTERED);
7224 	}
7225 
7226 	/* If device is running, close it first. */
7227 	list_for_each_entry(dev, head, unreg_list)
7228 		list_add_tail(&dev->close_list, &close_head);
7229 	dev_close_many(&close_head, true);
7230 
7231 	list_for_each_entry(dev, head, unreg_list) {
7232 		/* And unlink it from device chain. */
7233 		unlist_netdevice(dev);
7234 
7235 		dev->reg_state = NETREG_UNREGISTERING;
7236 	}
7237 	flush_all_backlogs();
7238 
7239 	synchronize_net();
7240 
7241 	list_for_each_entry(dev, head, unreg_list) {
7242 		struct sk_buff *skb = NULL;
7243 
7244 		/* Shutdown queueing discipline. */
7245 		dev_shutdown(dev);
7246 
7247 
7248 		/* Notify protocols, that we are about to destroy
7249 		 * this device. They should clean all the things.
7250 		 */
7251 		call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7252 
7253 		if (!dev->rtnl_link_ops ||
7254 		    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7255 			skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
7256 						     GFP_KERNEL, NULL);
7257 
7258 		/*
7259 		 *	Flush the unicast and multicast chains
7260 		 */
7261 		dev_uc_flush(dev);
7262 		dev_mc_flush(dev);
7263 
7264 		if (dev->netdev_ops->ndo_uninit)
7265 			dev->netdev_ops->ndo_uninit(dev);
7266 
7267 		if (skb)
7268 			rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
7269 
7270 		/* Notifier chain MUST detach us all upper devices. */
7271 		WARN_ON(netdev_has_any_upper_dev(dev));
7272 		WARN_ON(netdev_has_any_lower_dev(dev));
7273 
7274 		/* Remove entries from kobject tree */
7275 		netdev_unregister_kobject(dev);
7276 #ifdef CONFIG_XPS
7277 		/* Remove XPS queueing entries */
7278 		netif_reset_xps_queues_gt(dev, 0);
7279 #endif
7280 	}
7281 
7282 	synchronize_net();
7283 
7284 	list_for_each_entry(dev, head, unreg_list)
7285 		dev_put(dev);
7286 }
7287 
7288 static void rollback_registered(struct net_device *dev)
7289 {
7290 	LIST_HEAD(single);
7291 
7292 	list_add(&dev->unreg_list, &single);
7293 	rollback_registered_many(&single);
7294 	list_del(&single);
7295 }
7296 
7297 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
7298 	struct net_device *upper, netdev_features_t features)
7299 {
7300 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
7301 	netdev_features_t feature;
7302 	int feature_bit;
7303 
7304 	for_each_netdev_feature(&upper_disables, feature_bit) {
7305 		feature = __NETIF_F_BIT(feature_bit);
7306 		if (!(upper->wanted_features & feature)
7307 		    && (features & feature)) {
7308 			netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
7309 				   &feature, upper->name);
7310 			features &= ~feature;
7311 		}
7312 	}
7313 
7314 	return features;
7315 }
7316 
7317 static void netdev_sync_lower_features(struct net_device *upper,
7318 	struct net_device *lower, netdev_features_t features)
7319 {
7320 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
7321 	netdev_features_t feature;
7322 	int feature_bit;
7323 
7324 	for_each_netdev_feature(&upper_disables, feature_bit) {
7325 		feature = __NETIF_F_BIT(feature_bit);
7326 		if (!(features & feature) && (lower->features & feature)) {
7327 			netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
7328 				   &feature, lower->name);
7329 			lower->wanted_features &= ~feature;
7330 			netdev_update_features(lower);
7331 
7332 			if (unlikely(lower->features & feature))
7333 				netdev_WARN(upper, "failed to disable %pNF on %s!\n",
7334 					    &feature, lower->name);
7335 		}
7336 	}
7337 }
7338 
7339 static netdev_features_t netdev_fix_features(struct net_device *dev,
7340 	netdev_features_t features)
7341 {
7342 	/* Fix illegal checksum combinations */
7343 	if ((features & NETIF_F_HW_CSUM) &&
7344 	    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
7345 		netdev_warn(dev, "mixed HW and IP checksum settings.\n");
7346 		features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
7347 	}
7348 
7349 	/* TSO requires that SG is present as well. */
7350 	if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
7351 		netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
7352 		features &= ~NETIF_F_ALL_TSO;
7353 	}
7354 
7355 	if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
7356 					!(features & NETIF_F_IP_CSUM)) {
7357 		netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
7358 		features &= ~NETIF_F_TSO;
7359 		features &= ~NETIF_F_TSO_ECN;
7360 	}
7361 
7362 	if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
7363 					 !(features & NETIF_F_IPV6_CSUM)) {
7364 		netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
7365 		features &= ~NETIF_F_TSO6;
7366 	}
7367 
7368 	/* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
7369 	if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
7370 		features &= ~NETIF_F_TSO_MANGLEID;
7371 
7372 	/* TSO ECN requires that TSO is present as well. */
7373 	if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
7374 		features &= ~NETIF_F_TSO_ECN;
7375 
7376 	/* Software GSO depends on SG. */
7377 	if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
7378 		netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
7379 		features &= ~NETIF_F_GSO;
7380 	}
7381 
7382 	/* GSO partial features require GSO partial be set */
7383 	if ((features & dev->gso_partial_features) &&
7384 	    !(features & NETIF_F_GSO_PARTIAL)) {
7385 		netdev_dbg(dev,
7386 			   "Dropping partially supported GSO features since no GSO partial.\n");
7387 		features &= ~dev->gso_partial_features;
7388 	}
7389 
7390 	return features;
7391 }
7392 
7393 int __netdev_update_features(struct net_device *dev)
7394 {
7395 	struct net_device *upper, *lower;
7396 	netdev_features_t features;
7397 	struct list_head *iter;
7398 	int err = -1;
7399 
7400 	ASSERT_RTNL();
7401 
7402 	features = netdev_get_wanted_features(dev);
7403 
7404 	if (dev->netdev_ops->ndo_fix_features)
7405 		features = dev->netdev_ops->ndo_fix_features(dev, features);
7406 
7407 	/* driver might be less strict about feature dependencies */
7408 	features = netdev_fix_features(dev, features);
7409 
7410 	/* some features can't be enabled if they're off an an upper device */
7411 	netdev_for_each_upper_dev_rcu(dev, upper, iter)
7412 		features = netdev_sync_upper_features(dev, upper, features);
7413 
7414 	if (dev->features == features)
7415 		goto sync_lower;
7416 
7417 	netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
7418 		&dev->features, &features);
7419 
7420 	if (dev->netdev_ops->ndo_set_features)
7421 		err = dev->netdev_ops->ndo_set_features(dev, features);
7422 	else
7423 		err = 0;
7424 
7425 	if (unlikely(err < 0)) {
7426 		netdev_err(dev,
7427 			"set_features() failed (%d); wanted %pNF, left %pNF\n",
7428 			err, &features, &dev->features);
7429 		/* return non-0 since some features might have changed and
7430 		 * it's better to fire a spurious notification than miss it
7431 		 */
7432 		return -1;
7433 	}
7434 
7435 sync_lower:
7436 	/* some features must be disabled on lower devices when disabled
7437 	 * on an upper device (think: bonding master or bridge)
7438 	 */
7439 	netdev_for_each_lower_dev(dev, lower, iter)
7440 		netdev_sync_lower_features(dev, lower, features);
7441 
7442 	if (!err) {
7443 		netdev_features_t diff = features ^ dev->features;
7444 
7445 		if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
7446 			/* udp_tunnel_{get,drop}_rx_info both need
7447 			 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
7448 			 * device, or they won't do anything.
7449 			 * Thus we need to update dev->features
7450 			 * *before* calling udp_tunnel_get_rx_info,
7451 			 * but *after* calling udp_tunnel_drop_rx_info.
7452 			 */
7453 			if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
7454 				dev->features = features;
7455 				udp_tunnel_get_rx_info(dev);
7456 			} else {
7457 				udp_tunnel_drop_rx_info(dev);
7458 			}
7459 		}
7460 
7461 		dev->features = features;
7462 	}
7463 
7464 	return err < 0 ? 0 : 1;
7465 }
7466 
7467 /**
7468  *	netdev_update_features - recalculate device features
7469  *	@dev: the device to check
7470  *
7471  *	Recalculate dev->features set and send notifications if it
7472  *	has changed. Should be called after driver or hardware dependent
7473  *	conditions might have changed that influence the features.
7474  */
7475 void netdev_update_features(struct net_device *dev)
7476 {
7477 	if (__netdev_update_features(dev))
7478 		netdev_features_change(dev);
7479 }
7480 EXPORT_SYMBOL(netdev_update_features);
7481 
7482 /**
7483  *	netdev_change_features - recalculate device features
7484  *	@dev: the device to check
7485  *
7486  *	Recalculate dev->features set and send notifications even
7487  *	if they have not changed. Should be called instead of
7488  *	netdev_update_features() if also dev->vlan_features might
7489  *	have changed to allow the changes to be propagated to stacked
7490  *	VLAN devices.
7491  */
7492 void netdev_change_features(struct net_device *dev)
7493 {
7494 	__netdev_update_features(dev);
7495 	netdev_features_change(dev);
7496 }
7497 EXPORT_SYMBOL(netdev_change_features);
7498 
7499 /**
7500  *	netif_stacked_transfer_operstate -	transfer operstate
7501  *	@rootdev: the root or lower level device to transfer state from
7502  *	@dev: the device to transfer operstate to
7503  *
7504  *	Transfer operational state from root to device. This is normally
7505  *	called when a stacking relationship exists between the root
7506  *	device and the device(a leaf device).
7507  */
7508 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
7509 					struct net_device *dev)
7510 {
7511 	if (rootdev->operstate == IF_OPER_DORMANT)
7512 		netif_dormant_on(dev);
7513 	else
7514 		netif_dormant_off(dev);
7515 
7516 	if (netif_carrier_ok(rootdev))
7517 		netif_carrier_on(dev);
7518 	else
7519 		netif_carrier_off(dev);
7520 }
7521 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
7522 
7523 #ifdef CONFIG_SYSFS
7524 static int netif_alloc_rx_queues(struct net_device *dev)
7525 {
7526 	unsigned int i, count = dev->num_rx_queues;
7527 	struct netdev_rx_queue *rx;
7528 	size_t sz = count * sizeof(*rx);
7529 
7530 	BUG_ON(count < 1);
7531 
7532 	rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
7533 	if (!rx)
7534 		return -ENOMEM;
7535 
7536 	dev->_rx = rx;
7537 
7538 	for (i = 0; i < count; i++)
7539 		rx[i].dev = dev;
7540 	return 0;
7541 }
7542 #endif
7543 
7544 static void netdev_init_one_queue(struct net_device *dev,
7545 				  struct netdev_queue *queue, void *_unused)
7546 {
7547 	/* Initialize queue lock */
7548 	spin_lock_init(&queue->_xmit_lock);
7549 	netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
7550 	queue->xmit_lock_owner = -1;
7551 	netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
7552 	queue->dev = dev;
7553 #ifdef CONFIG_BQL
7554 	dql_init(&queue->dql, HZ);
7555 #endif
7556 }
7557 
7558 static void netif_free_tx_queues(struct net_device *dev)
7559 {
7560 	kvfree(dev->_tx);
7561 }
7562 
7563 static int netif_alloc_netdev_queues(struct net_device *dev)
7564 {
7565 	unsigned int count = dev->num_tx_queues;
7566 	struct netdev_queue *tx;
7567 	size_t sz = count * sizeof(*tx);
7568 
7569 	if (count < 1 || count > 0xffff)
7570 		return -EINVAL;
7571 
7572 	tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
7573 	if (!tx)
7574 		return -ENOMEM;
7575 
7576 	dev->_tx = tx;
7577 
7578 	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
7579 	spin_lock_init(&dev->tx_global_lock);
7580 
7581 	return 0;
7582 }
7583 
7584 void netif_tx_stop_all_queues(struct net_device *dev)
7585 {
7586 	unsigned int i;
7587 
7588 	for (i = 0; i < dev->num_tx_queues; i++) {
7589 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
7590 
7591 		netif_tx_stop_queue(txq);
7592 	}
7593 }
7594 EXPORT_SYMBOL(netif_tx_stop_all_queues);
7595 
7596 /**
7597  *	register_netdevice	- register a network device
7598  *	@dev: device to register
7599  *
7600  *	Take a completed network device structure and add it to the kernel
7601  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7602  *	chain. 0 is returned on success. A negative errno code is returned
7603  *	on a failure to set up the device, or if the name is a duplicate.
7604  *
7605  *	Callers must hold the rtnl semaphore. You may want
7606  *	register_netdev() instead of this.
7607  *
7608  *	BUGS:
7609  *	The locking appears insufficient to guarantee two parallel registers
7610  *	will not get the same name.
7611  */
7612 
7613 int register_netdevice(struct net_device *dev)
7614 {
7615 	int ret;
7616 	struct net *net = dev_net(dev);
7617 
7618 	BUG_ON(dev_boot_phase);
7619 	ASSERT_RTNL();
7620 
7621 	might_sleep();
7622 
7623 	/* When net_device's are persistent, this will be fatal. */
7624 	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
7625 	BUG_ON(!net);
7626 
7627 	spin_lock_init(&dev->addr_list_lock);
7628 	netdev_set_addr_lockdep_class(dev);
7629 
7630 	ret = dev_get_valid_name(net, dev, dev->name);
7631 	if (ret < 0)
7632 		goto out;
7633 
7634 	/* Init, if this function is available */
7635 	if (dev->netdev_ops->ndo_init) {
7636 		ret = dev->netdev_ops->ndo_init(dev);
7637 		if (ret) {
7638 			if (ret > 0)
7639 				ret = -EIO;
7640 			goto out;
7641 		}
7642 	}
7643 
7644 	if (((dev->hw_features | dev->features) &
7645 	     NETIF_F_HW_VLAN_CTAG_FILTER) &&
7646 	    (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
7647 	     !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
7648 		netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
7649 		ret = -EINVAL;
7650 		goto err_uninit;
7651 	}
7652 
7653 	ret = -EBUSY;
7654 	if (!dev->ifindex)
7655 		dev->ifindex = dev_new_index(net);
7656 	else if (__dev_get_by_index(net, dev->ifindex))
7657 		goto err_uninit;
7658 
7659 	/* Transfer changeable features to wanted_features and enable
7660 	 * software offloads (GSO and GRO).
7661 	 */
7662 	dev->hw_features |= NETIF_F_SOFT_FEATURES;
7663 	dev->features |= NETIF_F_SOFT_FEATURES;
7664 
7665 	if (dev->netdev_ops->ndo_udp_tunnel_add) {
7666 		dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
7667 		dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
7668 	}
7669 
7670 	dev->wanted_features = dev->features & dev->hw_features;
7671 
7672 	if (!(dev->flags & IFF_LOOPBACK))
7673 		dev->hw_features |= NETIF_F_NOCACHE_COPY;
7674 
7675 	/* If IPv4 TCP segmentation offload is supported we should also
7676 	 * allow the device to enable segmenting the frame with the option
7677 	 * of ignoring a static IP ID value.  This doesn't enable the
7678 	 * feature itself but allows the user to enable it later.
7679 	 */
7680 	if (dev->hw_features & NETIF_F_TSO)
7681 		dev->hw_features |= NETIF_F_TSO_MANGLEID;
7682 	if (dev->vlan_features & NETIF_F_TSO)
7683 		dev->vlan_features |= NETIF_F_TSO_MANGLEID;
7684 	if (dev->mpls_features & NETIF_F_TSO)
7685 		dev->mpls_features |= NETIF_F_TSO_MANGLEID;
7686 	if (dev->hw_enc_features & NETIF_F_TSO)
7687 		dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
7688 
7689 	/* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
7690 	 */
7691 	dev->vlan_features |= NETIF_F_HIGHDMA;
7692 
7693 	/* Make NETIF_F_SG inheritable to tunnel devices.
7694 	 */
7695 	dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
7696 
7697 	/* Make NETIF_F_SG inheritable to MPLS.
7698 	 */
7699 	dev->mpls_features |= NETIF_F_SG;
7700 
7701 	ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
7702 	ret = notifier_to_errno(ret);
7703 	if (ret)
7704 		goto err_uninit;
7705 
7706 	ret = netdev_register_kobject(dev);
7707 	if (ret)
7708 		goto err_uninit;
7709 	dev->reg_state = NETREG_REGISTERED;
7710 
7711 	__netdev_update_features(dev);
7712 
7713 	/*
7714 	 *	Default initial state at registry is that the
7715 	 *	device is present.
7716 	 */
7717 
7718 	set_bit(__LINK_STATE_PRESENT, &dev->state);
7719 
7720 	linkwatch_init_dev(dev);
7721 
7722 	dev_init_scheduler(dev);
7723 	dev_hold(dev);
7724 	list_netdevice(dev);
7725 	add_device_randomness(dev->dev_addr, dev->addr_len);
7726 
7727 	/* If the device has permanent device address, driver should
7728 	 * set dev_addr and also addr_assign_type should be set to
7729 	 * NET_ADDR_PERM (default value).
7730 	 */
7731 	if (dev->addr_assign_type == NET_ADDR_PERM)
7732 		memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
7733 
7734 	/* Notify protocols, that a new device appeared. */
7735 	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
7736 	ret = notifier_to_errno(ret);
7737 	if (ret) {
7738 		rollback_registered(dev);
7739 		dev->reg_state = NETREG_UNREGISTERED;
7740 	}
7741 	/*
7742 	 *	Prevent userspace races by waiting until the network
7743 	 *	device is fully setup before sending notifications.
7744 	 */
7745 	if (!dev->rtnl_link_ops ||
7746 	    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7747 		rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
7748 
7749 out:
7750 	return ret;
7751 
7752 err_uninit:
7753 	if (dev->netdev_ops->ndo_uninit)
7754 		dev->netdev_ops->ndo_uninit(dev);
7755 	if (dev->priv_destructor)
7756 		dev->priv_destructor(dev);
7757 	goto out;
7758 }
7759 EXPORT_SYMBOL(register_netdevice);
7760 
7761 /**
7762  *	init_dummy_netdev	- init a dummy network device for NAPI
7763  *	@dev: device to init
7764  *
7765  *	This takes a network device structure and initialize the minimum
7766  *	amount of fields so it can be used to schedule NAPI polls without
7767  *	registering a full blown interface. This is to be used by drivers
7768  *	that need to tie several hardware interfaces to a single NAPI
7769  *	poll scheduler due to HW limitations.
7770  */
7771 int init_dummy_netdev(struct net_device *dev)
7772 {
7773 	/* Clear everything. Note we don't initialize spinlocks
7774 	 * are they aren't supposed to be taken by any of the
7775 	 * NAPI code and this dummy netdev is supposed to be
7776 	 * only ever used for NAPI polls
7777 	 */
7778 	memset(dev, 0, sizeof(struct net_device));
7779 
7780 	/* make sure we BUG if trying to hit standard
7781 	 * register/unregister code path
7782 	 */
7783 	dev->reg_state = NETREG_DUMMY;
7784 
7785 	/* NAPI wants this */
7786 	INIT_LIST_HEAD(&dev->napi_list);
7787 
7788 	/* a dummy interface is started by default */
7789 	set_bit(__LINK_STATE_PRESENT, &dev->state);
7790 	set_bit(__LINK_STATE_START, &dev->state);
7791 
7792 	/* Note : We dont allocate pcpu_refcnt for dummy devices,
7793 	 * because users of this 'device' dont need to change
7794 	 * its refcount.
7795 	 */
7796 
7797 	return 0;
7798 }
7799 EXPORT_SYMBOL_GPL(init_dummy_netdev);
7800 
7801 
7802 /**
7803  *	register_netdev	- register a network device
7804  *	@dev: device to register
7805  *
7806  *	Take a completed network device structure and add it to the kernel
7807  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7808  *	chain. 0 is returned on success. A negative errno code is returned
7809  *	on a failure to set up the device, or if the name is a duplicate.
7810  *
7811  *	This is a wrapper around register_netdevice that takes the rtnl semaphore
7812  *	and expands the device name if you passed a format string to
7813  *	alloc_netdev.
7814  */
7815 int register_netdev(struct net_device *dev)
7816 {
7817 	int err;
7818 
7819 	rtnl_lock();
7820 	err = register_netdevice(dev);
7821 	rtnl_unlock();
7822 	return err;
7823 }
7824 EXPORT_SYMBOL(register_netdev);
7825 
7826 int netdev_refcnt_read(const struct net_device *dev)
7827 {
7828 	int i, refcnt = 0;
7829 
7830 	for_each_possible_cpu(i)
7831 		refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
7832 	return refcnt;
7833 }
7834 EXPORT_SYMBOL(netdev_refcnt_read);
7835 
7836 /**
7837  * netdev_wait_allrefs - wait until all references are gone.
7838  * @dev: target net_device
7839  *
7840  * This is called when unregistering network devices.
7841  *
7842  * Any protocol or device that holds a reference should register
7843  * for netdevice notification, and cleanup and put back the
7844  * reference if they receive an UNREGISTER event.
7845  * We can get stuck here if buggy protocols don't correctly
7846  * call dev_put.
7847  */
7848 static void netdev_wait_allrefs(struct net_device *dev)
7849 {
7850 	unsigned long rebroadcast_time, warning_time;
7851 	int refcnt;
7852 
7853 	linkwatch_forget_dev(dev);
7854 
7855 	rebroadcast_time = warning_time = jiffies;
7856 	refcnt = netdev_refcnt_read(dev);
7857 
7858 	while (refcnt != 0) {
7859 		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
7860 			rtnl_lock();
7861 
7862 			/* Rebroadcast unregister notification */
7863 			call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7864 
7865 			__rtnl_unlock();
7866 			rcu_barrier();
7867 			rtnl_lock();
7868 
7869 			call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7870 			if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
7871 				     &dev->state)) {
7872 				/* We must not have linkwatch events
7873 				 * pending on unregister. If this
7874 				 * happens, we simply run the queue
7875 				 * unscheduled, resulting in a noop
7876 				 * for this device.
7877 				 */
7878 				linkwatch_run_queue();
7879 			}
7880 
7881 			__rtnl_unlock();
7882 
7883 			rebroadcast_time = jiffies;
7884 		}
7885 
7886 		msleep(250);
7887 
7888 		refcnt = netdev_refcnt_read(dev);
7889 
7890 		if (time_after(jiffies, warning_time + 10 * HZ)) {
7891 			pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
7892 				 dev->name, refcnt);
7893 			warning_time = jiffies;
7894 		}
7895 	}
7896 }
7897 
7898 /* The sequence is:
7899  *
7900  *	rtnl_lock();
7901  *	...
7902  *	register_netdevice(x1);
7903  *	register_netdevice(x2);
7904  *	...
7905  *	unregister_netdevice(y1);
7906  *	unregister_netdevice(y2);
7907  *      ...
7908  *	rtnl_unlock();
7909  *	free_netdev(y1);
7910  *	free_netdev(y2);
7911  *
7912  * We are invoked by rtnl_unlock().
7913  * This allows us to deal with problems:
7914  * 1) We can delete sysfs objects which invoke hotplug
7915  *    without deadlocking with linkwatch via keventd.
7916  * 2) Since we run with the RTNL semaphore not held, we can sleep
7917  *    safely in order to wait for the netdev refcnt to drop to zero.
7918  *
7919  * We must not return until all unregister events added during
7920  * the interval the lock was held have been completed.
7921  */
7922 void netdev_run_todo(void)
7923 {
7924 	struct list_head list;
7925 
7926 	/* Snapshot list, allow later requests */
7927 	list_replace_init(&net_todo_list, &list);
7928 
7929 	__rtnl_unlock();
7930 
7931 
7932 	/* Wait for rcu callbacks to finish before next phase */
7933 	if (!list_empty(&list))
7934 		rcu_barrier();
7935 
7936 	while (!list_empty(&list)) {
7937 		struct net_device *dev
7938 			= list_first_entry(&list, struct net_device, todo_list);
7939 		list_del(&dev->todo_list);
7940 
7941 		rtnl_lock();
7942 		call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7943 		__rtnl_unlock();
7944 
7945 		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
7946 			pr_err("network todo '%s' but state %d\n",
7947 			       dev->name, dev->reg_state);
7948 			dump_stack();
7949 			continue;
7950 		}
7951 
7952 		dev->reg_state = NETREG_UNREGISTERED;
7953 
7954 		netdev_wait_allrefs(dev);
7955 
7956 		/* paranoia */
7957 		BUG_ON(netdev_refcnt_read(dev));
7958 		BUG_ON(!list_empty(&dev->ptype_all));
7959 		BUG_ON(!list_empty(&dev->ptype_specific));
7960 		WARN_ON(rcu_access_pointer(dev->ip_ptr));
7961 		WARN_ON(rcu_access_pointer(dev->ip6_ptr));
7962 		WARN_ON(dev->dn_ptr);
7963 
7964 		if (dev->priv_destructor)
7965 			dev->priv_destructor(dev);
7966 		if (dev->needs_free_netdev)
7967 			free_netdev(dev);
7968 
7969 		/* Report a network device has been unregistered */
7970 		rtnl_lock();
7971 		dev_net(dev)->dev_unreg_count--;
7972 		__rtnl_unlock();
7973 		wake_up(&netdev_unregistering_wq);
7974 
7975 		/* Free network device */
7976 		kobject_put(&dev->dev.kobj);
7977 	}
7978 }
7979 
7980 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
7981  * all the same fields in the same order as net_device_stats, with only
7982  * the type differing, but rtnl_link_stats64 may have additional fields
7983  * at the end for newer counters.
7984  */
7985 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
7986 			     const struct net_device_stats *netdev_stats)
7987 {
7988 #if BITS_PER_LONG == 64
7989 	BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
7990 	memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
7991 	/* zero out counters that only exist in rtnl_link_stats64 */
7992 	memset((char *)stats64 + sizeof(*netdev_stats), 0,
7993 	       sizeof(*stats64) - sizeof(*netdev_stats));
7994 #else
7995 	size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
7996 	const unsigned long *src = (const unsigned long *)netdev_stats;
7997 	u64 *dst = (u64 *)stats64;
7998 
7999 	BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
8000 	for (i = 0; i < n; i++)
8001 		dst[i] = src[i];
8002 	/* zero out counters that only exist in rtnl_link_stats64 */
8003 	memset((char *)stats64 + n * sizeof(u64), 0,
8004 	       sizeof(*stats64) - n * sizeof(u64));
8005 #endif
8006 }
8007 EXPORT_SYMBOL(netdev_stats_to_stats64);
8008 
8009 /**
8010  *	dev_get_stats	- get network device statistics
8011  *	@dev: device to get statistics from
8012  *	@storage: place to store stats
8013  *
8014  *	Get network statistics from device. Return @storage.
8015  *	The device driver may provide its own method by setting
8016  *	dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
8017  *	otherwise the internal statistics structure is used.
8018  */
8019 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
8020 					struct rtnl_link_stats64 *storage)
8021 {
8022 	const struct net_device_ops *ops = dev->netdev_ops;
8023 
8024 	if (ops->ndo_get_stats64) {
8025 		memset(storage, 0, sizeof(*storage));
8026 		ops->ndo_get_stats64(dev, storage);
8027 	} else if (ops->ndo_get_stats) {
8028 		netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
8029 	} else {
8030 		netdev_stats_to_stats64(storage, &dev->stats);
8031 	}
8032 	storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
8033 	storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
8034 	storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
8035 	return storage;
8036 }
8037 EXPORT_SYMBOL(dev_get_stats);
8038 
8039 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
8040 {
8041 	struct netdev_queue *queue = dev_ingress_queue(dev);
8042 
8043 #ifdef CONFIG_NET_CLS_ACT
8044 	if (queue)
8045 		return queue;
8046 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
8047 	if (!queue)
8048 		return NULL;
8049 	netdev_init_one_queue(dev, queue, NULL);
8050 	RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
8051 	queue->qdisc_sleeping = &noop_qdisc;
8052 	rcu_assign_pointer(dev->ingress_queue, queue);
8053 #endif
8054 	return queue;
8055 }
8056 
8057 static const struct ethtool_ops default_ethtool_ops;
8058 
8059 void netdev_set_default_ethtool_ops(struct net_device *dev,
8060 				    const struct ethtool_ops *ops)
8061 {
8062 	if (dev->ethtool_ops == &default_ethtool_ops)
8063 		dev->ethtool_ops = ops;
8064 }
8065 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
8066 
8067 void netdev_freemem(struct net_device *dev)
8068 {
8069 	char *addr = (char *)dev - dev->padded;
8070 
8071 	kvfree(addr);
8072 }
8073 
8074 /**
8075  * alloc_netdev_mqs - allocate network device
8076  * @sizeof_priv: size of private data to allocate space for
8077  * @name: device name format string
8078  * @name_assign_type: origin of device name
8079  * @setup: callback to initialize device
8080  * @txqs: the number of TX subqueues to allocate
8081  * @rxqs: the number of RX subqueues to allocate
8082  *
8083  * Allocates a struct net_device with private data area for driver use
8084  * and performs basic initialization.  Also allocates subqueue structs
8085  * for each queue on the device.
8086  */
8087 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
8088 		unsigned char name_assign_type,
8089 		void (*setup)(struct net_device *),
8090 		unsigned int txqs, unsigned int rxqs)
8091 {
8092 	struct net_device *dev;
8093 	unsigned int alloc_size;
8094 	struct net_device *p;
8095 
8096 	BUG_ON(strlen(name) >= sizeof(dev->name));
8097 
8098 	if (txqs < 1) {
8099 		pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
8100 		return NULL;
8101 	}
8102 
8103 #ifdef CONFIG_SYSFS
8104 	if (rxqs < 1) {
8105 		pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
8106 		return NULL;
8107 	}
8108 #endif
8109 
8110 	alloc_size = sizeof(struct net_device);
8111 	if (sizeof_priv) {
8112 		/* ensure 32-byte alignment of private area */
8113 		alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
8114 		alloc_size += sizeof_priv;
8115 	}
8116 	/* ensure 32-byte alignment of whole construct */
8117 	alloc_size += NETDEV_ALIGN - 1;
8118 
8119 	p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
8120 	if (!p)
8121 		return NULL;
8122 
8123 	dev = PTR_ALIGN(p, NETDEV_ALIGN);
8124 	dev->padded = (char *)dev - (char *)p;
8125 
8126 	dev->pcpu_refcnt = alloc_percpu(int);
8127 	if (!dev->pcpu_refcnt)
8128 		goto free_dev;
8129 
8130 	if (dev_addr_init(dev))
8131 		goto free_pcpu;
8132 
8133 	dev_mc_init(dev);
8134 	dev_uc_init(dev);
8135 
8136 	dev_net_set(dev, &init_net);
8137 
8138 	dev->gso_max_size = GSO_MAX_SIZE;
8139 	dev->gso_max_segs = GSO_MAX_SEGS;
8140 
8141 	INIT_LIST_HEAD(&dev->napi_list);
8142 	INIT_LIST_HEAD(&dev->unreg_list);
8143 	INIT_LIST_HEAD(&dev->close_list);
8144 	INIT_LIST_HEAD(&dev->link_watch_list);
8145 	INIT_LIST_HEAD(&dev->adj_list.upper);
8146 	INIT_LIST_HEAD(&dev->adj_list.lower);
8147 	INIT_LIST_HEAD(&dev->ptype_all);
8148 	INIT_LIST_HEAD(&dev->ptype_specific);
8149 #ifdef CONFIG_NET_SCHED
8150 	hash_init(dev->qdisc_hash);
8151 #endif
8152 	dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
8153 	setup(dev);
8154 
8155 	if (!dev->tx_queue_len) {
8156 		dev->priv_flags |= IFF_NO_QUEUE;
8157 		dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
8158 	}
8159 
8160 	dev->num_tx_queues = txqs;
8161 	dev->real_num_tx_queues = txqs;
8162 	if (netif_alloc_netdev_queues(dev))
8163 		goto free_all;
8164 
8165 #ifdef CONFIG_SYSFS
8166 	dev->num_rx_queues = rxqs;
8167 	dev->real_num_rx_queues = rxqs;
8168 	if (netif_alloc_rx_queues(dev))
8169 		goto free_all;
8170 #endif
8171 
8172 	strcpy(dev->name, name);
8173 	dev->name_assign_type = name_assign_type;
8174 	dev->group = INIT_NETDEV_GROUP;
8175 	if (!dev->ethtool_ops)
8176 		dev->ethtool_ops = &default_ethtool_ops;
8177 
8178 	nf_hook_ingress_init(dev);
8179 
8180 	return dev;
8181 
8182 free_all:
8183 	free_netdev(dev);
8184 	return NULL;
8185 
8186 free_pcpu:
8187 	free_percpu(dev->pcpu_refcnt);
8188 free_dev:
8189 	netdev_freemem(dev);
8190 	return NULL;
8191 }
8192 EXPORT_SYMBOL(alloc_netdev_mqs);
8193 
8194 /**
8195  * free_netdev - free network device
8196  * @dev: device
8197  *
8198  * This function does the last stage of destroying an allocated device
8199  * interface. The reference to the device object is released. If this
8200  * is the last reference then it will be freed.Must be called in process
8201  * context.
8202  */
8203 void free_netdev(struct net_device *dev)
8204 {
8205 	struct napi_struct *p, *n;
8206 	struct bpf_prog *prog;
8207 
8208 	might_sleep();
8209 	netif_free_tx_queues(dev);
8210 #ifdef CONFIG_SYSFS
8211 	kvfree(dev->_rx);
8212 #endif
8213 
8214 	kfree(rcu_dereference_protected(dev->ingress_queue, 1));
8215 
8216 	/* Flush device addresses */
8217 	dev_addr_flush(dev);
8218 
8219 	list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
8220 		netif_napi_del(p);
8221 
8222 	free_percpu(dev->pcpu_refcnt);
8223 	dev->pcpu_refcnt = NULL;
8224 
8225 	prog = rcu_dereference_protected(dev->xdp_prog, 1);
8226 	if (prog) {
8227 		bpf_prog_put(prog);
8228 		static_key_slow_dec(&generic_xdp_needed);
8229 	}
8230 
8231 	/*  Compatibility with error handling in drivers */
8232 	if (dev->reg_state == NETREG_UNINITIALIZED) {
8233 		netdev_freemem(dev);
8234 		return;
8235 	}
8236 
8237 	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
8238 	dev->reg_state = NETREG_RELEASED;
8239 
8240 	/* will free via device release */
8241 	put_device(&dev->dev);
8242 }
8243 EXPORT_SYMBOL(free_netdev);
8244 
8245 /**
8246  *	synchronize_net -  Synchronize with packet receive processing
8247  *
8248  *	Wait for packets currently being received to be done.
8249  *	Does not block later packets from starting.
8250  */
8251 void synchronize_net(void)
8252 {
8253 	might_sleep();
8254 	if (rtnl_is_locked())
8255 		synchronize_rcu_expedited();
8256 	else
8257 		synchronize_rcu();
8258 }
8259 EXPORT_SYMBOL(synchronize_net);
8260 
8261 /**
8262  *	unregister_netdevice_queue - remove device from the kernel
8263  *	@dev: device
8264  *	@head: list
8265  *
8266  *	This function shuts down a device interface and removes it
8267  *	from the kernel tables.
8268  *	If head not NULL, device is queued to be unregistered later.
8269  *
8270  *	Callers must hold the rtnl semaphore.  You may want
8271  *	unregister_netdev() instead of this.
8272  */
8273 
8274 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
8275 {
8276 	ASSERT_RTNL();
8277 
8278 	if (head) {
8279 		list_move_tail(&dev->unreg_list, head);
8280 	} else {
8281 		rollback_registered(dev);
8282 		/* Finish processing unregister after unlock */
8283 		net_set_todo(dev);
8284 	}
8285 }
8286 EXPORT_SYMBOL(unregister_netdevice_queue);
8287 
8288 /**
8289  *	unregister_netdevice_many - unregister many devices
8290  *	@head: list of devices
8291  *
8292  *  Note: As most callers use a stack allocated list_head,
8293  *  we force a list_del() to make sure stack wont be corrupted later.
8294  */
8295 void unregister_netdevice_many(struct list_head *head)
8296 {
8297 	struct net_device *dev;
8298 
8299 	if (!list_empty(head)) {
8300 		rollback_registered_many(head);
8301 		list_for_each_entry(dev, head, unreg_list)
8302 			net_set_todo(dev);
8303 		list_del(head);
8304 	}
8305 }
8306 EXPORT_SYMBOL(unregister_netdevice_many);
8307 
8308 /**
8309  *	unregister_netdev - remove device from the kernel
8310  *	@dev: device
8311  *
8312  *	This function shuts down a device interface and removes it
8313  *	from the kernel tables.
8314  *
8315  *	This is just a wrapper for unregister_netdevice that takes
8316  *	the rtnl semaphore.  In general you want to use this and not
8317  *	unregister_netdevice.
8318  */
8319 void unregister_netdev(struct net_device *dev)
8320 {
8321 	rtnl_lock();
8322 	unregister_netdevice(dev);
8323 	rtnl_unlock();
8324 }
8325 EXPORT_SYMBOL(unregister_netdev);
8326 
8327 /**
8328  *	dev_change_net_namespace - move device to different nethost namespace
8329  *	@dev: device
8330  *	@net: network namespace
8331  *	@pat: If not NULL name pattern to try if the current device name
8332  *	      is already taken in the destination network namespace.
8333  *
8334  *	This function shuts down a device interface and moves it
8335  *	to a new network namespace. On success 0 is returned, on
8336  *	a failure a netagive errno code is returned.
8337  *
8338  *	Callers must hold the rtnl semaphore.
8339  */
8340 
8341 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
8342 {
8343 	int err, new_nsid;
8344 
8345 	ASSERT_RTNL();
8346 
8347 	/* Don't allow namespace local devices to be moved. */
8348 	err = -EINVAL;
8349 	if (dev->features & NETIF_F_NETNS_LOCAL)
8350 		goto out;
8351 
8352 	/* Ensure the device has been registrered */
8353 	if (dev->reg_state != NETREG_REGISTERED)
8354 		goto out;
8355 
8356 	/* Get out if there is nothing todo */
8357 	err = 0;
8358 	if (net_eq(dev_net(dev), net))
8359 		goto out;
8360 
8361 	/* Pick the destination device name, and ensure
8362 	 * we can use it in the destination network namespace.
8363 	 */
8364 	err = -EEXIST;
8365 	if (__dev_get_by_name(net, dev->name)) {
8366 		/* We get here if we can't use the current device name */
8367 		if (!pat)
8368 			goto out;
8369 		if (dev_get_valid_name(net, dev, pat) < 0)
8370 			goto out;
8371 	}
8372 
8373 	/*
8374 	 * And now a mini version of register_netdevice unregister_netdevice.
8375 	 */
8376 
8377 	/* If device is running close it first. */
8378 	dev_close(dev);
8379 
8380 	/* And unlink it from device chain */
8381 	err = -ENODEV;
8382 	unlist_netdevice(dev);
8383 
8384 	synchronize_net();
8385 
8386 	/* Shutdown queueing discipline. */
8387 	dev_shutdown(dev);
8388 
8389 	/* Notify protocols, that we are about to destroy
8390 	 * this device. They should clean all the things.
8391 	 *
8392 	 * Note that dev->reg_state stays at NETREG_REGISTERED.
8393 	 * This is wanted because this way 8021q and macvlan know
8394 	 * the device is just moving and can keep their slaves up.
8395 	 */
8396 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
8397 	rcu_barrier();
8398 	call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
8399 	if (dev->rtnl_link_ops && dev->rtnl_link_ops->get_link_net)
8400 		new_nsid = peernet2id_alloc(dev_net(dev), net);
8401 	else
8402 		new_nsid = peernet2id(dev_net(dev), net);
8403 	rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid);
8404 
8405 	/*
8406 	 *	Flush the unicast and multicast chains
8407 	 */
8408 	dev_uc_flush(dev);
8409 	dev_mc_flush(dev);
8410 
8411 	/* Send a netdev-removed uevent to the old namespace */
8412 	kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
8413 	netdev_adjacent_del_links(dev);
8414 
8415 	/* Actually switch the network namespace */
8416 	dev_net_set(dev, net);
8417 
8418 	/* If there is an ifindex conflict assign a new one */
8419 	if (__dev_get_by_index(net, dev->ifindex))
8420 		dev->ifindex = dev_new_index(net);
8421 
8422 	/* Send a netdev-add uevent to the new namespace */
8423 	kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
8424 	netdev_adjacent_add_links(dev);
8425 
8426 	/* Fixup kobjects */
8427 	err = device_rename(&dev->dev, dev->name);
8428 	WARN_ON(err);
8429 
8430 	/* Add the device back in the hashes */
8431 	list_netdevice(dev);
8432 
8433 	/* Notify protocols, that a new device appeared. */
8434 	call_netdevice_notifiers(NETDEV_REGISTER, dev);
8435 
8436 	/*
8437 	 *	Prevent userspace races by waiting until the network
8438 	 *	device is fully setup before sending notifications.
8439 	 */
8440 	rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
8441 
8442 	synchronize_net();
8443 	err = 0;
8444 out:
8445 	return err;
8446 }
8447 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
8448 
8449 static int dev_cpu_dead(unsigned int oldcpu)
8450 {
8451 	struct sk_buff **list_skb;
8452 	struct sk_buff *skb;
8453 	unsigned int cpu;
8454 	struct softnet_data *sd, *oldsd, *remsd = NULL;
8455 
8456 	local_irq_disable();
8457 	cpu = smp_processor_id();
8458 	sd = &per_cpu(softnet_data, cpu);
8459 	oldsd = &per_cpu(softnet_data, oldcpu);
8460 
8461 	/* Find end of our completion_queue. */
8462 	list_skb = &sd->completion_queue;
8463 	while (*list_skb)
8464 		list_skb = &(*list_skb)->next;
8465 	/* Append completion queue from offline CPU. */
8466 	*list_skb = oldsd->completion_queue;
8467 	oldsd->completion_queue = NULL;
8468 
8469 	/* Append output queue from offline CPU. */
8470 	if (oldsd->output_queue) {
8471 		*sd->output_queue_tailp = oldsd->output_queue;
8472 		sd->output_queue_tailp = oldsd->output_queue_tailp;
8473 		oldsd->output_queue = NULL;
8474 		oldsd->output_queue_tailp = &oldsd->output_queue;
8475 	}
8476 	/* Append NAPI poll list from offline CPU, with one exception :
8477 	 * process_backlog() must be called by cpu owning percpu backlog.
8478 	 * We properly handle process_queue & input_pkt_queue later.
8479 	 */
8480 	while (!list_empty(&oldsd->poll_list)) {
8481 		struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
8482 							    struct napi_struct,
8483 							    poll_list);
8484 
8485 		list_del_init(&napi->poll_list);
8486 		if (napi->poll == process_backlog)
8487 			napi->state = 0;
8488 		else
8489 			____napi_schedule(sd, napi);
8490 	}
8491 
8492 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
8493 	local_irq_enable();
8494 
8495 #ifdef CONFIG_RPS
8496 	remsd = oldsd->rps_ipi_list;
8497 	oldsd->rps_ipi_list = NULL;
8498 #endif
8499 	/* send out pending IPI's on offline CPU */
8500 	net_rps_send_ipi(remsd);
8501 
8502 	/* Process offline CPU's input_pkt_queue */
8503 	while ((skb = __skb_dequeue(&oldsd->process_queue))) {
8504 		netif_rx_ni(skb);
8505 		input_queue_head_incr(oldsd);
8506 	}
8507 	while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
8508 		netif_rx_ni(skb);
8509 		input_queue_head_incr(oldsd);
8510 	}
8511 
8512 	return 0;
8513 }
8514 
8515 /**
8516  *	netdev_increment_features - increment feature set by one
8517  *	@all: current feature set
8518  *	@one: new feature set
8519  *	@mask: mask feature set
8520  *
8521  *	Computes a new feature set after adding a device with feature set
8522  *	@one to the master device with current feature set @all.  Will not
8523  *	enable anything that is off in @mask. Returns the new feature set.
8524  */
8525 netdev_features_t netdev_increment_features(netdev_features_t all,
8526 	netdev_features_t one, netdev_features_t mask)
8527 {
8528 	if (mask & NETIF_F_HW_CSUM)
8529 		mask |= NETIF_F_CSUM_MASK;
8530 	mask |= NETIF_F_VLAN_CHALLENGED;
8531 
8532 	all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
8533 	all &= one | ~NETIF_F_ALL_FOR_ALL;
8534 
8535 	/* If one device supports hw checksumming, set for all. */
8536 	if (all & NETIF_F_HW_CSUM)
8537 		all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
8538 
8539 	return all;
8540 }
8541 EXPORT_SYMBOL(netdev_increment_features);
8542 
8543 static struct hlist_head * __net_init netdev_create_hash(void)
8544 {
8545 	int i;
8546 	struct hlist_head *hash;
8547 
8548 	hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
8549 	if (hash != NULL)
8550 		for (i = 0; i < NETDEV_HASHENTRIES; i++)
8551 			INIT_HLIST_HEAD(&hash[i]);
8552 
8553 	return hash;
8554 }
8555 
8556 /* Initialize per network namespace state */
8557 static int __net_init netdev_init(struct net *net)
8558 {
8559 	if (net != &init_net)
8560 		INIT_LIST_HEAD(&net->dev_base_head);
8561 
8562 	net->dev_name_head = netdev_create_hash();
8563 	if (net->dev_name_head == NULL)
8564 		goto err_name;
8565 
8566 	net->dev_index_head = netdev_create_hash();
8567 	if (net->dev_index_head == NULL)
8568 		goto err_idx;
8569 
8570 	return 0;
8571 
8572 err_idx:
8573 	kfree(net->dev_name_head);
8574 err_name:
8575 	return -ENOMEM;
8576 }
8577 
8578 /**
8579  *	netdev_drivername - network driver for the device
8580  *	@dev: network device
8581  *
8582  *	Determine network driver for device.
8583  */
8584 const char *netdev_drivername(const struct net_device *dev)
8585 {
8586 	const struct device_driver *driver;
8587 	const struct device *parent;
8588 	const char *empty = "";
8589 
8590 	parent = dev->dev.parent;
8591 	if (!parent)
8592 		return empty;
8593 
8594 	driver = parent->driver;
8595 	if (driver && driver->name)
8596 		return driver->name;
8597 	return empty;
8598 }
8599 
8600 static void __netdev_printk(const char *level, const struct net_device *dev,
8601 			    struct va_format *vaf)
8602 {
8603 	if (dev && dev->dev.parent) {
8604 		dev_printk_emit(level[1] - '0',
8605 				dev->dev.parent,
8606 				"%s %s %s%s: %pV",
8607 				dev_driver_string(dev->dev.parent),
8608 				dev_name(dev->dev.parent),
8609 				netdev_name(dev), netdev_reg_state(dev),
8610 				vaf);
8611 	} else if (dev) {
8612 		printk("%s%s%s: %pV",
8613 		       level, netdev_name(dev), netdev_reg_state(dev), vaf);
8614 	} else {
8615 		printk("%s(NULL net_device): %pV", level, vaf);
8616 	}
8617 }
8618 
8619 void netdev_printk(const char *level, const struct net_device *dev,
8620 		   const char *format, ...)
8621 {
8622 	struct va_format vaf;
8623 	va_list args;
8624 
8625 	va_start(args, format);
8626 
8627 	vaf.fmt = format;
8628 	vaf.va = &args;
8629 
8630 	__netdev_printk(level, dev, &vaf);
8631 
8632 	va_end(args);
8633 }
8634 EXPORT_SYMBOL(netdev_printk);
8635 
8636 #define define_netdev_printk_level(func, level)			\
8637 void func(const struct net_device *dev, const char *fmt, ...)	\
8638 {								\
8639 	struct va_format vaf;					\
8640 	va_list args;						\
8641 								\
8642 	va_start(args, fmt);					\
8643 								\
8644 	vaf.fmt = fmt;						\
8645 	vaf.va = &args;						\
8646 								\
8647 	__netdev_printk(level, dev, &vaf);			\
8648 								\
8649 	va_end(args);						\
8650 }								\
8651 EXPORT_SYMBOL(func);
8652 
8653 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
8654 define_netdev_printk_level(netdev_alert, KERN_ALERT);
8655 define_netdev_printk_level(netdev_crit, KERN_CRIT);
8656 define_netdev_printk_level(netdev_err, KERN_ERR);
8657 define_netdev_printk_level(netdev_warn, KERN_WARNING);
8658 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
8659 define_netdev_printk_level(netdev_info, KERN_INFO);
8660 
8661 static void __net_exit netdev_exit(struct net *net)
8662 {
8663 	kfree(net->dev_name_head);
8664 	kfree(net->dev_index_head);
8665 }
8666 
8667 static struct pernet_operations __net_initdata netdev_net_ops = {
8668 	.init = netdev_init,
8669 	.exit = netdev_exit,
8670 };
8671 
8672 static void __net_exit default_device_exit(struct net *net)
8673 {
8674 	struct net_device *dev, *aux;
8675 	/*
8676 	 * Push all migratable network devices back to the
8677 	 * initial network namespace
8678 	 */
8679 	rtnl_lock();
8680 	for_each_netdev_safe(net, dev, aux) {
8681 		int err;
8682 		char fb_name[IFNAMSIZ];
8683 
8684 		/* Ignore unmoveable devices (i.e. loopback) */
8685 		if (dev->features & NETIF_F_NETNS_LOCAL)
8686 			continue;
8687 
8688 		/* Leave virtual devices for the generic cleanup */
8689 		if (dev->rtnl_link_ops)
8690 			continue;
8691 
8692 		/* Push remaining network devices to init_net */
8693 		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
8694 		err = dev_change_net_namespace(dev, &init_net, fb_name);
8695 		if (err) {
8696 			pr_emerg("%s: failed to move %s to init_net: %d\n",
8697 				 __func__, dev->name, err);
8698 			BUG();
8699 		}
8700 	}
8701 	rtnl_unlock();
8702 }
8703 
8704 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
8705 {
8706 	/* Return with the rtnl_lock held when there are no network
8707 	 * devices unregistering in any network namespace in net_list.
8708 	 */
8709 	struct net *net;
8710 	bool unregistering;
8711 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
8712 
8713 	add_wait_queue(&netdev_unregistering_wq, &wait);
8714 	for (;;) {
8715 		unregistering = false;
8716 		rtnl_lock();
8717 		list_for_each_entry(net, net_list, exit_list) {
8718 			if (net->dev_unreg_count > 0) {
8719 				unregistering = true;
8720 				break;
8721 			}
8722 		}
8723 		if (!unregistering)
8724 			break;
8725 		__rtnl_unlock();
8726 
8727 		wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
8728 	}
8729 	remove_wait_queue(&netdev_unregistering_wq, &wait);
8730 }
8731 
8732 static void __net_exit default_device_exit_batch(struct list_head *net_list)
8733 {
8734 	/* At exit all network devices most be removed from a network
8735 	 * namespace.  Do this in the reverse order of registration.
8736 	 * Do this across as many network namespaces as possible to
8737 	 * improve batching efficiency.
8738 	 */
8739 	struct net_device *dev;
8740 	struct net *net;
8741 	LIST_HEAD(dev_kill_list);
8742 
8743 	/* To prevent network device cleanup code from dereferencing
8744 	 * loopback devices or network devices that have been freed
8745 	 * wait here for all pending unregistrations to complete,
8746 	 * before unregistring the loopback device and allowing the
8747 	 * network namespace be freed.
8748 	 *
8749 	 * The netdev todo list containing all network devices
8750 	 * unregistrations that happen in default_device_exit_batch
8751 	 * will run in the rtnl_unlock() at the end of
8752 	 * default_device_exit_batch.
8753 	 */
8754 	rtnl_lock_unregistering(net_list);
8755 	list_for_each_entry(net, net_list, exit_list) {
8756 		for_each_netdev_reverse(net, dev) {
8757 			if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
8758 				dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
8759 			else
8760 				unregister_netdevice_queue(dev, &dev_kill_list);
8761 		}
8762 	}
8763 	unregister_netdevice_many(&dev_kill_list);
8764 	rtnl_unlock();
8765 }
8766 
8767 static struct pernet_operations __net_initdata default_device_ops = {
8768 	.exit = default_device_exit,
8769 	.exit_batch = default_device_exit_batch,
8770 };
8771 
8772 /*
8773  *	Initialize the DEV module. At boot time this walks the device list and
8774  *	unhooks any devices that fail to initialise (normally hardware not
8775  *	present) and leaves us with a valid list of present and active devices.
8776  *
8777  */
8778 
8779 /*
8780  *       This is called single threaded during boot, so no need
8781  *       to take the rtnl semaphore.
8782  */
8783 static int __init net_dev_init(void)
8784 {
8785 	int i, rc = -ENOMEM;
8786 
8787 	BUG_ON(!dev_boot_phase);
8788 
8789 	if (dev_proc_init())
8790 		goto out;
8791 
8792 	if (netdev_kobject_init())
8793 		goto out;
8794 
8795 	INIT_LIST_HEAD(&ptype_all);
8796 	for (i = 0; i < PTYPE_HASH_SIZE; i++)
8797 		INIT_LIST_HEAD(&ptype_base[i]);
8798 
8799 	INIT_LIST_HEAD(&offload_base);
8800 
8801 	if (register_pernet_subsys(&netdev_net_ops))
8802 		goto out;
8803 
8804 	/*
8805 	 *	Initialise the packet receive queues.
8806 	 */
8807 
8808 	for_each_possible_cpu(i) {
8809 		struct work_struct *flush = per_cpu_ptr(&flush_works, i);
8810 		struct softnet_data *sd = &per_cpu(softnet_data, i);
8811 
8812 		INIT_WORK(flush, flush_backlog);
8813 
8814 		skb_queue_head_init(&sd->input_pkt_queue);
8815 		skb_queue_head_init(&sd->process_queue);
8816 		INIT_LIST_HEAD(&sd->poll_list);
8817 		sd->output_queue_tailp = &sd->output_queue;
8818 #ifdef CONFIG_RPS
8819 		sd->csd.func = rps_trigger_softirq;
8820 		sd->csd.info = sd;
8821 		sd->cpu = i;
8822 #endif
8823 
8824 		sd->backlog.poll = process_backlog;
8825 		sd->backlog.weight = weight_p;
8826 	}
8827 
8828 	dev_boot_phase = 0;
8829 
8830 	/* The loopback device is special if any other network devices
8831 	 * is present in a network namespace the loopback device must
8832 	 * be present. Since we now dynamically allocate and free the
8833 	 * loopback device ensure this invariant is maintained by
8834 	 * keeping the loopback device as the first device on the
8835 	 * list of network devices.  Ensuring the loopback devices
8836 	 * is the first device that appears and the last network device
8837 	 * that disappears.
8838 	 */
8839 	if (register_pernet_device(&loopback_net_ops))
8840 		goto out;
8841 
8842 	if (register_pernet_device(&default_device_ops))
8843 		goto out;
8844 
8845 	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
8846 	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
8847 
8848 	rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
8849 				       NULL, dev_cpu_dead);
8850 	WARN_ON(rc < 0);
8851 	rc = 0;
8852 out:
8853 	return rc;
8854 }
8855 
8856 subsys_initcall(net_dev_init);
8857