xref: /linux/net/core/dev.c (revision 816b02e63a759c4458edee142b721ab09c918b3d)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *      NET3    Protocol independent device support routines.
4  *
5  *	Derived from the non IP parts of dev.c 1.0.19
6  *              Authors:	Ross Biro
7  *				Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8  *				Mark Evans, <evansmp@uhura.aston.ac.uk>
9  *
10  *	Additional Authors:
11  *		Florian la Roche <rzsfl@rz.uni-sb.de>
12  *		Alan Cox <gw4pts@gw4pts.ampr.org>
13  *		David Hinds <dahinds@users.sourceforge.net>
14  *		Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15  *		Adam Sulmicki <adam@cfar.umd.edu>
16  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
17  *
18  *	Changes:
19  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
20  *                                      to 2 if register_netdev gets called
21  *                                      before net_dev_init & also removed a
22  *                                      few lines of code in the process.
23  *		Alan Cox	:	device private ioctl copies fields back.
24  *		Alan Cox	:	Transmit queue code does relevant
25  *					stunts to keep the queue safe.
26  *		Alan Cox	:	Fixed double lock.
27  *		Alan Cox	:	Fixed promisc NULL pointer trap
28  *		????????	:	Support the full private ioctl range
29  *		Alan Cox	:	Moved ioctl permission check into
30  *					drivers
31  *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
32  *		Alan Cox	:	100 backlog just doesn't cut it when
33  *					you start doing multicast video 8)
34  *		Alan Cox	:	Rewrote net_bh and list manager.
35  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
36  *		Alan Cox	:	Took out transmit every packet pass
37  *					Saved a few bytes in the ioctl handler
38  *		Alan Cox	:	Network driver sets packet type before
39  *					calling netif_rx. Saves a function
40  *					call a packet.
41  *		Alan Cox	:	Hashed net_bh()
42  *		Richard Kooijman:	Timestamp fixes.
43  *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
44  *		Alan Cox	:	Device lock protection.
45  *              Alan Cox        :       Fixed nasty side effect of device close
46  *					changes.
47  *		Rudi Cilibrasi	:	Pass the right thing to
48  *					set_mac_address()
49  *		Dave Miller	:	32bit quantity for the device lock to
50  *					make it work out on a Sparc.
51  *		Bjorn Ekwall	:	Added KERNELD hack.
52  *		Alan Cox	:	Cleaned up the backlog initialise.
53  *		Craig Metz	:	SIOCGIFCONF fix if space for under
54  *					1 device.
55  *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
56  *					is no device open function.
57  *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
58  *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
59  *		Cyrus Durgin	:	Cleaned for KMOD
60  *		Adam Sulmicki   :	Bug Fix : Network Device Unload
61  *					A network device unload needs to purge
62  *					the backlog queue.
63  *	Paul Rusty Russell	:	SIOCSIFNAME
64  *              Pekka Riikonen  :	Netdev boot-time settings code
65  *              Andrew Morton   :       Make unregister_netdevice wait
66  *                                      indefinitely on dev->refcnt
67  *              J Hadi Salim    :       - Backlog queue sampling
68  *				        - netif_rx() feedback
69  */
70 
71 #include <linux/uaccess.h>
72 #include <linux/bitmap.h>
73 #include <linux/capability.h>
74 #include <linux/cpu.h>
75 #include <linux/types.h>
76 #include <linux/kernel.h>
77 #include <linux/hash.h>
78 #include <linux/slab.h>
79 #include <linux/sched.h>
80 #include <linux/sched/isolation.h>
81 #include <linux/sched/mm.h>
82 #include <linux/smpboot.h>
83 #include <linux/mutex.h>
84 #include <linux/rwsem.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/skbuff.h>
96 #include <linux/kthread.h>
97 #include <linux/bpf.h>
98 #include <linux/bpf_trace.h>
99 #include <net/net_namespace.h>
100 #include <net/sock.h>
101 #include <net/busy_poll.h>
102 #include <linux/rtnetlink.h>
103 #include <linux/stat.h>
104 #include <net/dsa.h>
105 #include <net/dst.h>
106 #include <net/dst_metadata.h>
107 #include <net/gro.h>
108 #include <net/pkt_sched.h>
109 #include <net/pkt_cls.h>
110 #include <net/checksum.h>
111 #include <net/xfrm.h>
112 #include <net/tcx.h>
113 #include <linux/highmem.h>
114 #include <linux/init.h>
115 #include <linux/module.h>
116 #include <linux/netpoll.h>
117 #include <linux/rcupdate.h>
118 #include <linux/delay.h>
119 #include <net/iw_handler.h>
120 #include <asm/current.h>
121 #include <linux/audit.h>
122 #include <linux/dmaengine.h>
123 #include <linux/err.h>
124 #include <linux/ctype.h>
125 #include <linux/if_arp.h>
126 #include <linux/if_vlan.h>
127 #include <linux/ip.h>
128 #include <net/ip.h>
129 #include <net/mpls.h>
130 #include <linux/ipv6.h>
131 #include <linux/in.h>
132 #include <linux/jhash.h>
133 #include <linux/random.h>
134 #include <trace/events/napi.h>
135 #include <trace/events/net.h>
136 #include <trace/events/skb.h>
137 #include <trace/events/qdisc.h>
138 #include <trace/events/xdp.h>
139 #include <linux/inetdevice.h>
140 #include <linux/cpu_rmap.h>
141 #include <linux/static_key.h>
142 #include <linux/hashtable.h>
143 #include <linux/vmalloc.h>
144 #include <linux/if_macvlan.h>
145 #include <linux/errqueue.h>
146 #include <linux/hrtimer.h>
147 #include <linux/netfilter_netdev.h>
148 #include <linux/crash_dump.h>
149 #include <linux/sctp.h>
150 #include <net/udp_tunnel.h>
151 #include <linux/net_namespace.h>
152 #include <linux/indirect_call_wrapper.h>
153 #include <net/devlink.h>
154 #include <linux/pm_runtime.h>
155 #include <linux/prandom.h>
156 #include <linux/once_lite.h>
157 #include <net/netdev_rx_queue.h>
158 #include <net/page_pool/types.h>
159 #include <net/page_pool/helpers.h>
160 #include <net/rps.h>
161 #include <linux/phy_link_topology.h>
162 
163 #include "dev.h"
164 #include "devmem.h"
165 #include "net-sysfs.h"
166 
167 static DEFINE_SPINLOCK(ptype_lock);
168 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
169 
170 static int netif_rx_internal(struct sk_buff *skb);
171 static int call_netdevice_notifiers_extack(unsigned long val,
172 					   struct net_device *dev,
173 					   struct netlink_ext_ack *extack);
174 
175 static DEFINE_MUTEX(ifalias_mutex);
176 
177 /* protects napi_hash addition/deletion and napi_gen_id */
178 static DEFINE_SPINLOCK(napi_hash_lock);
179 
180 static unsigned int napi_gen_id = NR_CPUS;
181 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
182 
183 static DECLARE_RWSEM(devnet_rename_sem);
184 
185 static inline void dev_base_seq_inc(struct net *net)
186 {
187 	unsigned int val = net->dev_base_seq + 1;
188 
189 	WRITE_ONCE(net->dev_base_seq, val ?: 1);
190 }
191 
192 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
193 {
194 	unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
195 
196 	return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
197 }
198 
199 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
200 {
201 	return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
202 }
203 
204 #ifndef CONFIG_PREEMPT_RT
205 
206 static DEFINE_STATIC_KEY_FALSE(use_backlog_threads_key);
207 
208 static int __init setup_backlog_napi_threads(char *arg)
209 {
210 	static_branch_enable(&use_backlog_threads_key);
211 	return 0;
212 }
213 early_param("thread_backlog_napi", setup_backlog_napi_threads);
214 
215 static bool use_backlog_threads(void)
216 {
217 	return static_branch_unlikely(&use_backlog_threads_key);
218 }
219 
220 #else
221 
222 static bool use_backlog_threads(void)
223 {
224 	return true;
225 }
226 
227 #endif
228 
229 static inline void backlog_lock_irq_save(struct softnet_data *sd,
230 					 unsigned long *flags)
231 {
232 	if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads())
233 		spin_lock_irqsave(&sd->input_pkt_queue.lock, *flags);
234 	else
235 		local_irq_save(*flags);
236 }
237 
238 static inline void backlog_lock_irq_disable(struct softnet_data *sd)
239 {
240 	if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads())
241 		spin_lock_irq(&sd->input_pkt_queue.lock);
242 	else
243 		local_irq_disable();
244 }
245 
246 static inline void backlog_unlock_irq_restore(struct softnet_data *sd,
247 					      unsigned long *flags)
248 {
249 	if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads())
250 		spin_unlock_irqrestore(&sd->input_pkt_queue.lock, *flags);
251 	else
252 		local_irq_restore(*flags);
253 }
254 
255 static inline void backlog_unlock_irq_enable(struct softnet_data *sd)
256 {
257 	if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads())
258 		spin_unlock_irq(&sd->input_pkt_queue.lock);
259 	else
260 		local_irq_enable();
261 }
262 
263 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
264 						       const char *name)
265 {
266 	struct netdev_name_node *name_node;
267 
268 	name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
269 	if (!name_node)
270 		return NULL;
271 	INIT_HLIST_NODE(&name_node->hlist);
272 	name_node->dev = dev;
273 	name_node->name = name;
274 	return name_node;
275 }
276 
277 static struct netdev_name_node *
278 netdev_name_node_head_alloc(struct net_device *dev)
279 {
280 	struct netdev_name_node *name_node;
281 
282 	name_node = netdev_name_node_alloc(dev, dev->name);
283 	if (!name_node)
284 		return NULL;
285 	INIT_LIST_HEAD(&name_node->list);
286 	return name_node;
287 }
288 
289 static void netdev_name_node_free(struct netdev_name_node *name_node)
290 {
291 	kfree(name_node);
292 }
293 
294 static void netdev_name_node_add(struct net *net,
295 				 struct netdev_name_node *name_node)
296 {
297 	hlist_add_head_rcu(&name_node->hlist,
298 			   dev_name_hash(net, name_node->name));
299 }
300 
301 static void netdev_name_node_del(struct netdev_name_node *name_node)
302 {
303 	hlist_del_rcu(&name_node->hlist);
304 }
305 
306 static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
307 							const char *name)
308 {
309 	struct hlist_head *head = dev_name_hash(net, name);
310 	struct netdev_name_node *name_node;
311 
312 	hlist_for_each_entry(name_node, head, hlist)
313 		if (!strcmp(name_node->name, name))
314 			return name_node;
315 	return NULL;
316 }
317 
318 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
319 							    const char *name)
320 {
321 	struct hlist_head *head = dev_name_hash(net, name);
322 	struct netdev_name_node *name_node;
323 
324 	hlist_for_each_entry_rcu(name_node, head, hlist)
325 		if (!strcmp(name_node->name, name))
326 			return name_node;
327 	return NULL;
328 }
329 
330 bool netdev_name_in_use(struct net *net, const char *name)
331 {
332 	return netdev_name_node_lookup(net, name);
333 }
334 EXPORT_SYMBOL(netdev_name_in_use);
335 
336 int netdev_name_node_alt_create(struct net_device *dev, const char *name)
337 {
338 	struct netdev_name_node *name_node;
339 	struct net *net = dev_net(dev);
340 
341 	name_node = netdev_name_node_lookup(net, name);
342 	if (name_node)
343 		return -EEXIST;
344 	name_node = netdev_name_node_alloc(dev, name);
345 	if (!name_node)
346 		return -ENOMEM;
347 	netdev_name_node_add(net, name_node);
348 	/* The node that holds dev->name acts as a head of per-device list. */
349 	list_add_tail_rcu(&name_node->list, &dev->name_node->list);
350 
351 	return 0;
352 }
353 
354 static void netdev_name_node_alt_free(struct rcu_head *head)
355 {
356 	struct netdev_name_node *name_node =
357 		container_of(head, struct netdev_name_node, rcu);
358 
359 	kfree(name_node->name);
360 	netdev_name_node_free(name_node);
361 }
362 
363 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
364 {
365 	netdev_name_node_del(name_node);
366 	list_del(&name_node->list);
367 	call_rcu(&name_node->rcu, netdev_name_node_alt_free);
368 }
369 
370 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
371 {
372 	struct netdev_name_node *name_node;
373 	struct net *net = dev_net(dev);
374 
375 	name_node = netdev_name_node_lookup(net, name);
376 	if (!name_node)
377 		return -ENOENT;
378 	/* lookup might have found our primary name or a name belonging
379 	 * to another device.
380 	 */
381 	if (name_node == dev->name_node || name_node->dev != dev)
382 		return -EINVAL;
383 
384 	__netdev_name_node_alt_destroy(name_node);
385 	return 0;
386 }
387 
388 static void netdev_name_node_alt_flush(struct net_device *dev)
389 {
390 	struct netdev_name_node *name_node, *tmp;
391 
392 	list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list) {
393 		list_del(&name_node->list);
394 		netdev_name_node_alt_free(&name_node->rcu);
395 	}
396 }
397 
398 /* Device list insertion */
399 static void list_netdevice(struct net_device *dev)
400 {
401 	struct netdev_name_node *name_node;
402 	struct net *net = dev_net(dev);
403 
404 	ASSERT_RTNL();
405 
406 	list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
407 	netdev_name_node_add(net, dev->name_node);
408 	hlist_add_head_rcu(&dev->index_hlist,
409 			   dev_index_hash(net, dev->ifindex));
410 
411 	netdev_for_each_altname(dev, name_node)
412 		netdev_name_node_add(net, name_node);
413 
414 	/* We reserved the ifindex, this can't fail */
415 	WARN_ON(xa_store(&net->dev_by_index, dev->ifindex, dev, GFP_KERNEL));
416 
417 	dev_base_seq_inc(net);
418 }
419 
420 /* Device list removal
421  * caller must respect a RCU grace period before freeing/reusing dev
422  */
423 static void unlist_netdevice(struct net_device *dev)
424 {
425 	struct netdev_name_node *name_node;
426 	struct net *net = dev_net(dev);
427 
428 	ASSERT_RTNL();
429 
430 	xa_erase(&net->dev_by_index, dev->ifindex);
431 
432 	netdev_for_each_altname(dev, name_node)
433 		netdev_name_node_del(name_node);
434 
435 	/* Unlink dev from the device chain */
436 	list_del_rcu(&dev->dev_list);
437 	netdev_name_node_del(dev->name_node);
438 	hlist_del_rcu(&dev->index_hlist);
439 
440 	dev_base_seq_inc(dev_net(dev));
441 }
442 
443 /*
444  *	Our notifier list
445  */
446 
447 static RAW_NOTIFIER_HEAD(netdev_chain);
448 
449 /*
450  *	Device drivers call our routines to queue packets here. We empty the
451  *	queue in the local softnet handler.
452  */
453 
454 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data) = {
455 	.process_queue_bh_lock = INIT_LOCAL_LOCK(process_queue_bh_lock),
456 };
457 EXPORT_PER_CPU_SYMBOL(softnet_data);
458 
459 /* Page_pool has a lockless array/stack to alloc/recycle pages.
460  * PP consumers must pay attention to run APIs in the appropriate context
461  * (e.g. NAPI context).
462  */
463 DEFINE_PER_CPU(struct page_pool *, system_page_pool);
464 
465 #ifdef CONFIG_LOCKDEP
466 /*
467  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
468  * according to dev->type
469  */
470 static const unsigned short netdev_lock_type[] = {
471 	 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
472 	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
473 	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
474 	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
475 	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
476 	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
477 	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
478 	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
479 	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
480 	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
481 	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
482 	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
483 	 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
484 	 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
485 	 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
486 
487 static const char *const netdev_lock_name[] = {
488 	"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
489 	"_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
490 	"_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
491 	"_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
492 	"_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
493 	"_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
494 	"_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
495 	"_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
496 	"_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
497 	"_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
498 	"_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
499 	"_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
500 	"_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
501 	"_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
502 	"_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
503 
504 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
505 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
506 
507 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
508 {
509 	int i;
510 
511 	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
512 		if (netdev_lock_type[i] == dev_type)
513 			return i;
514 	/* the last key is used by default */
515 	return ARRAY_SIZE(netdev_lock_type) - 1;
516 }
517 
518 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
519 						 unsigned short dev_type)
520 {
521 	int i;
522 
523 	i = netdev_lock_pos(dev_type);
524 	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
525 				   netdev_lock_name[i]);
526 }
527 
528 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
529 {
530 	int i;
531 
532 	i = netdev_lock_pos(dev->type);
533 	lockdep_set_class_and_name(&dev->addr_list_lock,
534 				   &netdev_addr_lock_key[i],
535 				   netdev_lock_name[i]);
536 }
537 #else
538 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
539 						 unsigned short dev_type)
540 {
541 }
542 
543 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
544 {
545 }
546 #endif
547 
548 /*******************************************************************************
549  *
550  *		Protocol management and registration routines
551  *
552  *******************************************************************************/
553 
554 
555 /*
556  *	Add a protocol ID to the list. Now that the input handler is
557  *	smarter we can dispense with all the messy stuff that used to be
558  *	here.
559  *
560  *	BEWARE!!! Protocol handlers, mangling input packets,
561  *	MUST BE last in hash buckets and checking protocol handlers
562  *	MUST start from promiscuous ptype_all chain in net_bh.
563  *	It is true now, do not change it.
564  *	Explanation follows: if protocol handler, mangling packet, will
565  *	be the first on list, it is not able to sense, that packet
566  *	is cloned and should be copied-on-write, so that it will
567  *	change it and subsequent readers will get broken packet.
568  *							--ANK (980803)
569  */
570 
571 static inline struct list_head *ptype_head(const struct packet_type *pt)
572 {
573 	if (pt->type == htons(ETH_P_ALL))
574 		return pt->dev ? &pt->dev->ptype_all : &net_hotdata.ptype_all;
575 	else
576 		return pt->dev ? &pt->dev->ptype_specific :
577 				 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
578 }
579 
580 /**
581  *	dev_add_pack - add packet handler
582  *	@pt: packet type declaration
583  *
584  *	Add a protocol handler to the networking stack. The passed &packet_type
585  *	is linked into kernel lists and may not be freed until it has been
586  *	removed from the kernel lists.
587  *
588  *	This call does not sleep therefore it can not
589  *	guarantee all CPU's that are in middle of receiving packets
590  *	will see the new packet type (until the next received packet).
591  */
592 
593 void dev_add_pack(struct packet_type *pt)
594 {
595 	struct list_head *head = ptype_head(pt);
596 
597 	spin_lock(&ptype_lock);
598 	list_add_rcu(&pt->list, head);
599 	spin_unlock(&ptype_lock);
600 }
601 EXPORT_SYMBOL(dev_add_pack);
602 
603 /**
604  *	__dev_remove_pack	 - remove packet handler
605  *	@pt: packet type declaration
606  *
607  *	Remove a protocol handler that was previously added to the kernel
608  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
609  *	from the kernel lists and can be freed or reused once this function
610  *	returns.
611  *
612  *      The packet type might still be in use by receivers
613  *	and must not be freed until after all the CPU's have gone
614  *	through a quiescent state.
615  */
616 void __dev_remove_pack(struct packet_type *pt)
617 {
618 	struct list_head *head = ptype_head(pt);
619 	struct packet_type *pt1;
620 
621 	spin_lock(&ptype_lock);
622 
623 	list_for_each_entry(pt1, head, list) {
624 		if (pt == pt1) {
625 			list_del_rcu(&pt->list);
626 			goto out;
627 		}
628 	}
629 
630 	pr_warn("dev_remove_pack: %p not found\n", pt);
631 out:
632 	spin_unlock(&ptype_lock);
633 }
634 EXPORT_SYMBOL(__dev_remove_pack);
635 
636 /**
637  *	dev_remove_pack	 - remove packet handler
638  *	@pt: packet type declaration
639  *
640  *	Remove a protocol handler that was previously added to the kernel
641  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
642  *	from the kernel lists and can be freed or reused once this function
643  *	returns.
644  *
645  *	This call sleeps to guarantee that no CPU is looking at the packet
646  *	type after return.
647  */
648 void dev_remove_pack(struct packet_type *pt)
649 {
650 	__dev_remove_pack(pt);
651 
652 	synchronize_net();
653 }
654 EXPORT_SYMBOL(dev_remove_pack);
655 
656 
657 /*******************************************************************************
658  *
659  *			    Device Interface Subroutines
660  *
661  *******************************************************************************/
662 
663 /**
664  *	dev_get_iflink	- get 'iflink' value of a interface
665  *	@dev: targeted interface
666  *
667  *	Indicates the ifindex the interface is linked to.
668  *	Physical interfaces have the same 'ifindex' and 'iflink' values.
669  */
670 
671 int dev_get_iflink(const struct net_device *dev)
672 {
673 	if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
674 		return dev->netdev_ops->ndo_get_iflink(dev);
675 
676 	return READ_ONCE(dev->ifindex);
677 }
678 EXPORT_SYMBOL(dev_get_iflink);
679 
680 /**
681  *	dev_fill_metadata_dst - Retrieve tunnel egress information.
682  *	@dev: targeted interface
683  *	@skb: The packet.
684  *
685  *	For better visibility of tunnel traffic OVS needs to retrieve
686  *	egress tunnel information for a packet. Following API allows
687  *	user to get this info.
688  */
689 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
690 {
691 	struct ip_tunnel_info *info;
692 
693 	if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
694 		return -EINVAL;
695 
696 	info = skb_tunnel_info_unclone(skb);
697 	if (!info)
698 		return -ENOMEM;
699 	if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
700 		return -EINVAL;
701 
702 	return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
703 }
704 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
705 
706 static struct net_device_path *dev_fwd_path(struct net_device_path_stack *stack)
707 {
708 	int k = stack->num_paths++;
709 
710 	if (WARN_ON_ONCE(k >= NET_DEVICE_PATH_STACK_MAX))
711 		return NULL;
712 
713 	return &stack->path[k];
714 }
715 
716 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
717 			  struct net_device_path_stack *stack)
718 {
719 	const struct net_device *last_dev;
720 	struct net_device_path_ctx ctx = {
721 		.dev	= dev,
722 	};
723 	struct net_device_path *path;
724 	int ret = 0;
725 
726 	memcpy(ctx.daddr, daddr, sizeof(ctx.daddr));
727 	stack->num_paths = 0;
728 	while (ctx.dev && ctx.dev->netdev_ops->ndo_fill_forward_path) {
729 		last_dev = ctx.dev;
730 		path = dev_fwd_path(stack);
731 		if (!path)
732 			return -1;
733 
734 		memset(path, 0, sizeof(struct net_device_path));
735 		ret = ctx.dev->netdev_ops->ndo_fill_forward_path(&ctx, path);
736 		if (ret < 0)
737 			return -1;
738 
739 		if (WARN_ON_ONCE(last_dev == ctx.dev))
740 			return -1;
741 	}
742 
743 	if (!ctx.dev)
744 		return ret;
745 
746 	path = dev_fwd_path(stack);
747 	if (!path)
748 		return -1;
749 	path->type = DEV_PATH_ETHERNET;
750 	path->dev = ctx.dev;
751 
752 	return ret;
753 }
754 EXPORT_SYMBOL_GPL(dev_fill_forward_path);
755 
756 /* must be called under rcu_read_lock(), as we dont take a reference */
757 static struct napi_struct *napi_by_id(unsigned int napi_id)
758 {
759 	unsigned int hash = napi_id % HASH_SIZE(napi_hash);
760 	struct napi_struct *napi;
761 
762 	hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
763 		if (napi->napi_id == napi_id)
764 			return napi;
765 
766 	return NULL;
767 }
768 
769 /* must be called under rcu_read_lock(), as we dont take a reference */
770 struct napi_struct *netdev_napi_by_id(struct net *net, unsigned int napi_id)
771 {
772 	struct napi_struct *napi;
773 
774 	napi = napi_by_id(napi_id);
775 	if (!napi)
776 		return NULL;
777 
778 	if (WARN_ON_ONCE(!napi->dev))
779 		return NULL;
780 	if (!net_eq(net, dev_net(napi->dev)))
781 		return NULL;
782 
783 	return napi;
784 }
785 
786 /**
787  *	__dev_get_by_name	- find a device by its name
788  *	@net: the applicable net namespace
789  *	@name: name to find
790  *
791  *	Find an interface by name. Must be called under RTNL semaphore.
792  *	If the name is found a pointer to the device is returned.
793  *	If the name is not found then %NULL is returned. The
794  *	reference counters are not incremented so the caller must be
795  *	careful with locks.
796  */
797 
798 struct net_device *__dev_get_by_name(struct net *net, const char *name)
799 {
800 	struct netdev_name_node *node_name;
801 
802 	node_name = netdev_name_node_lookup(net, name);
803 	return node_name ? node_name->dev : NULL;
804 }
805 EXPORT_SYMBOL(__dev_get_by_name);
806 
807 /**
808  * dev_get_by_name_rcu	- find a device by its name
809  * @net: the applicable net namespace
810  * @name: name to find
811  *
812  * Find an interface by name.
813  * If the name is found a pointer to the device is returned.
814  * If the name is not found then %NULL is returned.
815  * The reference counters are not incremented so the caller must be
816  * careful with locks. The caller must hold RCU lock.
817  */
818 
819 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
820 {
821 	struct netdev_name_node *node_name;
822 
823 	node_name = netdev_name_node_lookup_rcu(net, name);
824 	return node_name ? node_name->dev : NULL;
825 }
826 EXPORT_SYMBOL(dev_get_by_name_rcu);
827 
828 /* Deprecated for new users, call netdev_get_by_name() instead */
829 struct net_device *dev_get_by_name(struct net *net, const char *name)
830 {
831 	struct net_device *dev;
832 
833 	rcu_read_lock();
834 	dev = dev_get_by_name_rcu(net, name);
835 	dev_hold(dev);
836 	rcu_read_unlock();
837 	return dev;
838 }
839 EXPORT_SYMBOL(dev_get_by_name);
840 
841 /**
842  *	netdev_get_by_name() - find a device by its name
843  *	@net: the applicable net namespace
844  *	@name: name to find
845  *	@tracker: tracking object for the acquired reference
846  *	@gfp: allocation flags for the tracker
847  *
848  *	Find an interface by name. This can be called from any
849  *	context and does its own locking. The returned handle has
850  *	the usage count incremented and the caller must use netdev_put() to
851  *	release it when it is no longer needed. %NULL is returned if no
852  *	matching device is found.
853  */
854 struct net_device *netdev_get_by_name(struct net *net, const char *name,
855 				      netdevice_tracker *tracker, gfp_t gfp)
856 {
857 	struct net_device *dev;
858 
859 	dev = dev_get_by_name(net, name);
860 	if (dev)
861 		netdev_tracker_alloc(dev, tracker, gfp);
862 	return dev;
863 }
864 EXPORT_SYMBOL(netdev_get_by_name);
865 
866 /**
867  *	__dev_get_by_index - find a device by its ifindex
868  *	@net: the applicable net namespace
869  *	@ifindex: index of device
870  *
871  *	Search for an interface by index. Returns %NULL if the device
872  *	is not found or a pointer to the device. The device has not
873  *	had its reference counter increased so the caller must be careful
874  *	about locking. The caller must hold the RTNL semaphore.
875  */
876 
877 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
878 {
879 	struct net_device *dev;
880 	struct hlist_head *head = dev_index_hash(net, ifindex);
881 
882 	hlist_for_each_entry(dev, head, index_hlist)
883 		if (dev->ifindex == ifindex)
884 			return dev;
885 
886 	return NULL;
887 }
888 EXPORT_SYMBOL(__dev_get_by_index);
889 
890 /**
891  *	dev_get_by_index_rcu - find a device by its ifindex
892  *	@net: the applicable net namespace
893  *	@ifindex: index of device
894  *
895  *	Search for an interface by index. Returns %NULL if the device
896  *	is not found or a pointer to the device. The device has not
897  *	had its reference counter increased so the caller must be careful
898  *	about locking. The caller must hold RCU lock.
899  */
900 
901 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
902 {
903 	struct net_device *dev;
904 	struct hlist_head *head = dev_index_hash(net, ifindex);
905 
906 	hlist_for_each_entry_rcu(dev, head, index_hlist)
907 		if (dev->ifindex == ifindex)
908 			return dev;
909 
910 	return NULL;
911 }
912 EXPORT_SYMBOL(dev_get_by_index_rcu);
913 
914 /* Deprecated for new users, call netdev_get_by_index() instead */
915 struct net_device *dev_get_by_index(struct net *net, int ifindex)
916 {
917 	struct net_device *dev;
918 
919 	rcu_read_lock();
920 	dev = dev_get_by_index_rcu(net, ifindex);
921 	dev_hold(dev);
922 	rcu_read_unlock();
923 	return dev;
924 }
925 EXPORT_SYMBOL(dev_get_by_index);
926 
927 /**
928  *	netdev_get_by_index() - find a device by its ifindex
929  *	@net: the applicable net namespace
930  *	@ifindex: index of device
931  *	@tracker: tracking object for the acquired reference
932  *	@gfp: allocation flags for the tracker
933  *
934  *	Search for an interface by index. Returns NULL if the device
935  *	is not found or a pointer to the device. The device returned has
936  *	had a reference added and the pointer is safe until the user calls
937  *	netdev_put() to indicate they have finished with it.
938  */
939 struct net_device *netdev_get_by_index(struct net *net, int ifindex,
940 				       netdevice_tracker *tracker, gfp_t gfp)
941 {
942 	struct net_device *dev;
943 
944 	dev = dev_get_by_index(net, ifindex);
945 	if (dev)
946 		netdev_tracker_alloc(dev, tracker, gfp);
947 	return dev;
948 }
949 EXPORT_SYMBOL(netdev_get_by_index);
950 
951 /**
952  *	dev_get_by_napi_id - find a device by napi_id
953  *	@napi_id: ID of the NAPI struct
954  *
955  *	Search for an interface by NAPI ID. Returns %NULL if the device
956  *	is not found or a pointer to the device. The device has not had
957  *	its reference counter increased so the caller must be careful
958  *	about locking. The caller must hold RCU lock.
959  */
960 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
961 {
962 	struct napi_struct *napi;
963 
964 	WARN_ON_ONCE(!rcu_read_lock_held());
965 
966 	if (napi_id < MIN_NAPI_ID)
967 		return NULL;
968 
969 	napi = napi_by_id(napi_id);
970 
971 	return napi ? napi->dev : NULL;
972 }
973 
974 static DEFINE_SEQLOCK(netdev_rename_lock);
975 
976 void netdev_copy_name(struct net_device *dev, char *name)
977 {
978 	unsigned int seq;
979 
980 	do {
981 		seq = read_seqbegin(&netdev_rename_lock);
982 		strscpy(name, dev->name, IFNAMSIZ);
983 	} while (read_seqretry(&netdev_rename_lock, seq));
984 }
985 
986 /**
987  *	netdev_get_name - get a netdevice name, knowing its ifindex.
988  *	@net: network namespace
989  *	@name: a pointer to the buffer where the name will be stored.
990  *	@ifindex: the ifindex of the interface to get the name from.
991  */
992 int netdev_get_name(struct net *net, char *name, int ifindex)
993 {
994 	struct net_device *dev;
995 	int ret;
996 
997 	rcu_read_lock();
998 
999 	dev = dev_get_by_index_rcu(net, ifindex);
1000 	if (!dev) {
1001 		ret = -ENODEV;
1002 		goto out;
1003 	}
1004 
1005 	netdev_copy_name(dev, name);
1006 
1007 	ret = 0;
1008 out:
1009 	rcu_read_unlock();
1010 	return ret;
1011 }
1012 
1013 /**
1014  *	dev_getbyhwaddr_rcu - find a device by its hardware address
1015  *	@net: the applicable net namespace
1016  *	@type: media type of device
1017  *	@ha: hardware address
1018  *
1019  *	Search for an interface by MAC address. Returns NULL if the device
1020  *	is not found or a pointer to the device.
1021  *	The caller must hold RCU or RTNL.
1022  *	The returned device has not had its ref count increased
1023  *	and the caller must therefore be careful about locking
1024  *
1025  */
1026 
1027 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
1028 				       const char *ha)
1029 {
1030 	struct net_device *dev;
1031 
1032 	for_each_netdev_rcu(net, dev)
1033 		if (dev->type == type &&
1034 		    !memcmp(dev->dev_addr, ha, dev->addr_len))
1035 			return dev;
1036 
1037 	return NULL;
1038 }
1039 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
1040 
1041 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
1042 {
1043 	struct net_device *dev, *ret = NULL;
1044 
1045 	rcu_read_lock();
1046 	for_each_netdev_rcu(net, dev)
1047 		if (dev->type == type) {
1048 			dev_hold(dev);
1049 			ret = dev;
1050 			break;
1051 		}
1052 	rcu_read_unlock();
1053 	return ret;
1054 }
1055 EXPORT_SYMBOL(dev_getfirstbyhwtype);
1056 
1057 /**
1058  *	__dev_get_by_flags - find any device with given flags
1059  *	@net: the applicable net namespace
1060  *	@if_flags: IFF_* values
1061  *	@mask: bitmask of bits in if_flags to check
1062  *
1063  *	Search for any interface with the given flags. Returns NULL if a device
1064  *	is not found or a pointer to the device. Must be called inside
1065  *	rtnl_lock(), and result refcount is unchanged.
1066  */
1067 
1068 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1069 				      unsigned short mask)
1070 {
1071 	struct net_device *dev, *ret;
1072 
1073 	ASSERT_RTNL();
1074 
1075 	ret = NULL;
1076 	for_each_netdev(net, dev) {
1077 		if (((dev->flags ^ if_flags) & mask) == 0) {
1078 			ret = dev;
1079 			break;
1080 		}
1081 	}
1082 	return ret;
1083 }
1084 EXPORT_SYMBOL(__dev_get_by_flags);
1085 
1086 /**
1087  *	dev_valid_name - check if name is okay for network device
1088  *	@name: name string
1089  *
1090  *	Network device names need to be valid file names to
1091  *	allow sysfs to work.  We also disallow any kind of
1092  *	whitespace.
1093  */
1094 bool dev_valid_name(const char *name)
1095 {
1096 	if (*name == '\0')
1097 		return false;
1098 	if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1099 		return false;
1100 	if (!strcmp(name, ".") || !strcmp(name, ".."))
1101 		return false;
1102 
1103 	while (*name) {
1104 		if (*name == '/' || *name == ':' || isspace(*name))
1105 			return false;
1106 		name++;
1107 	}
1108 	return true;
1109 }
1110 EXPORT_SYMBOL(dev_valid_name);
1111 
1112 /**
1113  *	__dev_alloc_name - allocate a name for a device
1114  *	@net: network namespace to allocate the device name in
1115  *	@name: name format string
1116  *	@res: result name string
1117  *
1118  *	Passed a format string - eg "lt%d" it will try and find a suitable
1119  *	id. It scans list of devices to build up a free map, then chooses
1120  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1121  *	while allocating the name and adding the device in order to avoid
1122  *	duplicates.
1123  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1124  *	Returns the number of the unit assigned or a negative errno code.
1125  */
1126 
1127 static int __dev_alloc_name(struct net *net, const char *name, char *res)
1128 {
1129 	int i = 0;
1130 	const char *p;
1131 	const int max_netdevices = 8*PAGE_SIZE;
1132 	unsigned long *inuse;
1133 	struct net_device *d;
1134 	char buf[IFNAMSIZ];
1135 
1136 	/* Verify the string as this thing may have come from the user.
1137 	 * There must be one "%d" and no other "%" characters.
1138 	 */
1139 	p = strchr(name, '%');
1140 	if (!p || p[1] != 'd' || strchr(p + 2, '%'))
1141 		return -EINVAL;
1142 
1143 	/* Use one page as a bit array of possible slots */
1144 	inuse = bitmap_zalloc(max_netdevices, GFP_ATOMIC);
1145 	if (!inuse)
1146 		return -ENOMEM;
1147 
1148 	for_each_netdev(net, d) {
1149 		struct netdev_name_node *name_node;
1150 
1151 		netdev_for_each_altname(d, name_node) {
1152 			if (!sscanf(name_node->name, name, &i))
1153 				continue;
1154 			if (i < 0 || i >= max_netdevices)
1155 				continue;
1156 
1157 			/* avoid cases where sscanf is not exact inverse of printf */
1158 			snprintf(buf, IFNAMSIZ, name, i);
1159 			if (!strncmp(buf, name_node->name, IFNAMSIZ))
1160 				__set_bit(i, inuse);
1161 		}
1162 		if (!sscanf(d->name, name, &i))
1163 			continue;
1164 		if (i < 0 || i >= max_netdevices)
1165 			continue;
1166 
1167 		/* avoid cases where sscanf is not exact inverse of printf */
1168 		snprintf(buf, IFNAMSIZ, name, i);
1169 		if (!strncmp(buf, d->name, IFNAMSIZ))
1170 			__set_bit(i, inuse);
1171 	}
1172 
1173 	i = find_first_zero_bit(inuse, max_netdevices);
1174 	bitmap_free(inuse);
1175 	if (i == max_netdevices)
1176 		return -ENFILE;
1177 
1178 	/* 'res' and 'name' could overlap, use 'buf' as an intermediate buffer */
1179 	strscpy(buf, name, IFNAMSIZ);
1180 	snprintf(res, IFNAMSIZ, buf, i);
1181 	return i;
1182 }
1183 
1184 /* Returns negative errno or allocated unit id (see __dev_alloc_name()) */
1185 static int dev_prep_valid_name(struct net *net, struct net_device *dev,
1186 			       const char *want_name, char *out_name,
1187 			       int dup_errno)
1188 {
1189 	if (!dev_valid_name(want_name))
1190 		return -EINVAL;
1191 
1192 	if (strchr(want_name, '%'))
1193 		return __dev_alloc_name(net, want_name, out_name);
1194 
1195 	if (netdev_name_in_use(net, want_name))
1196 		return -dup_errno;
1197 	if (out_name != want_name)
1198 		strscpy(out_name, want_name, IFNAMSIZ);
1199 	return 0;
1200 }
1201 
1202 /**
1203  *	dev_alloc_name - allocate a name for a device
1204  *	@dev: device
1205  *	@name: name format string
1206  *
1207  *	Passed a format string - eg "lt%d" it will try and find a suitable
1208  *	id. It scans list of devices to build up a free map, then chooses
1209  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1210  *	while allocating the name and adding the device in order to avoid
1211  *	duplicates.
1212  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1213  *	Returns the number of the unit assigned or a negative errno code.
1214  */
1215 
1216 int dev_alloc_name(struct net_device *dev, const char *name)
1217 {
1218 	return dev_prep_valid_name(dev_net(dev), dev, name, dev->name, ENFILE);
1219 }
1220 EXPORT_SYMBOL(dev_alloc_name);
1221 
1222 static int dev_get_valid_name(struct net *net, struct net_device *dev,
1223 			      const char *name)
1224 {
1225 	int ret;
1226 
1227 	ret = dev_prep_valid_name(net, dev, name, dev->name, EEXIST);
1228 	return ret < 0 ? ret : 0;
1229 }
1230 
1231 /**
1232  *	dev_change_name - change name of a device
1233  *	@dev: device
1234  *	@newname: name (or format string) must be at least IFNAMSIZ
1235  *
1236  *	Change name of a device, can pass format strings "eth%d".
1237  *	for wildcarding.
1238  */
1239 int dev_change_name(struct net_device *dev, const char *newname)
1240 {
1241 	unsigned char old_assign_type;
1242 	char oldname[IFNAMSIZ];
1243 	int err = 0;
1244 	int ret;
1245 	struct net *net;
1246 
1247 	ASSERT_RTNL();
1248 	BUG_ON(!dev_net(dev));
1249 
1250 	net = dev_net(dev);
1251 
1252 	down_write(&devnet_rename_sem);
1253 
1254 	if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1255 		up_write(&devnet_rename_sem);
1256 		return 0;
1257 	}
1258 
1259 	memcpy(oldname, dev->name, IFNAMSIZ);
1260 
1261 	write_seqlock_bh(&netdev_rename_lock);
1262 	err = dev_get_valid_name(net, dev, newname);
1263 	write_sequnlock_bh(&netdev_rename_lock);
1264 
1265 	if (err < 0) {
1266 		up_write(&devnet_rename_sem);
1267 		return err;
1268 	}
1269 
1270 	if (oldname[0] && !strchr(oldname, '%'))
1271 		netdev_info(dev, "renamed from %s%s\n", oldname,
1272 			    dev->flags & IFF_UP ? " (while UP)" : "");
1273 
1274 	old_assign_type = dev->name_assign_type;
1275 	WRITE_ONCE(dev->name_assign_type, NET_NAME_RENAMED);
1276 
1277 rollback:
1278 	ret = device_rename(&dev->dev, dev->name);
1279 	if (ret) {
1280 		memcpy(dev->name, oldname, IFNAMSIZ);
1281 		WRITE_ONCE(dev->name_assign_type, old_assign_type);
1282 		up_write(&devnet_rename_sem);
1283 		return ret;
1284 	}
1285 
1286 	up_write(&devnet_rename_sem);
1287 
1288 	netdev_adjacent_rename_links(dev, oldname);
1289 
1290 	netdev_name_node_del(dev->name_node);
1291 
1292 	synchronize_net();
1293 
1294 	netdev_name_node_add(net, dev->name_node);
1295 
1296 	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1297 	ret = notifier_to_errno(ret);
1298 
1299 	if (ret) {
1300 		/* err >= 0 after dev_alloc_name() or stores the first errno */
1301 		if (err >= 0) {
1302 			err = ret;
1303 			down_write(&devnet_rename_sem);
1304 			write_seqlock_bh(&netdev_rename_lock);
1305 			memcpy(dev->name, oldname, IFNAMSIZ);
1306 			write_sequnlock_bh(&netdev_rename_lock);
1307 			memcpy(oldname, newname, IFNAMSIZ);
1308 			WRITE_ONCE(dev->name_assign_type, old_assign_type);
1309 			old_assign_type = NET_NAME_RENAMED;
1310 			goto rollback;
1311 		} else {
1312 			netdev_err(dev, "name change rollback failed: %d\n",
1313 				   ret);
1314 		}
1315 	}
1316 
1317 	return err;
1318 }
1319 
1320 /**
1321  *	dev_set_alias - change ifalias of a device
1322  *	@dev: device
1323  *	@alias: name up to IFALIASZ
1324  *	@len: limit of bytes to copy from info
1325  *
1326  *	Set ifalias for a device,
1327  */
1328 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1329 {
1330 	struct dev_ifalias *new_alias = NULL;
1331 
1332 	if (len >= IFALIASZ)
1333 		return -EINVAL;
1334 
1335 	if (len) {
1336 		new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1337 		if (!new_alias)
1338 			return -ENOMEM;
1339 
1340 		memcpy(new_alias->ifalias, alias, len);
1341 		new_alias->ifalias[len] = 0;
1342 	}
1343 
1344 	mutex_lock(&ifalias_mutex);
1345 	new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1346 					mutex_is_locked(&ifalias_mutex));
1347 	mutex_unlock(&ifalias_mutex);
1348 
1349 	if (new_alias)
1350 		kfree_rcu(new_alias, rcuhead);
1351 
1352 	return len;
1353 }
1354 EXPORT_SYMBOL(dev_set_alias);
1355 
1356 /**
1357  *	dev_get_alias - get ifalias of a device
1358  *	@dev: device
1359  *	@name: buffer to store name of ifalias
1360  *	@len: size of buffer
1361  *
1362  *	get ifalias for a device.  Caller must make sure dev cannot go
1363  *	away,  e.g. rcu read lock or own a reference count to device.
1364  */
1365 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1366 {
1367 	const struct dev_ifalias *alias;
1368 	int ret = 0;
1369 
1370 	rcu_read_lock();
1371 	alias = rcu_dereference(dev->ifalias);
1372 	if (alias)
1373 		ret = snprintf(name, len, "%s", alias->ifalias);
1374 	rcu_read_unlock();
1375 
1376 	return ret;
1377 }
1378 
1379 /**
1380  *	netdev_features_change - device changes features
1381  *	@dev: device to cause notification
1382  *
1383  *	Called to indicate a device has changed features.
1384  */
1385 void netdev_features_change(struct net_device *dev)
1386 {
1387 	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1388 }
1389 EXPORT_SYMBOL(netdev_features_change);
1390 
1391 /**
1392  *	netdev_state_change - device changes state
1393  *	@dev: device to cause notification
1394  *
1395  *	Called to indicate a device has changed state. This function calls
1396  *	the notifier chains for netdev_chain and sends a NEWLINK message
1397  *	to the routing socket.
1398  */
1399 void netdev_state_change(struct net_device *dev)
1400 {
1401 	if (dev->flags & IFF_UP) {
1402 		struct netdev_notifier_change_info change_info = {
1403 			.info.dev = dev,
1404 		};
1405 
1406 		call_netdevice_notifiers_info(NETDEV_CHANGE,
1407 					      &change_info.info);
1408 		rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL, 0, NULL);
1409 	}
1410 }
1411 EXPORT_SYMBOL(netdev_state_change);
1412 
1413 /**
1414  * __netdev_notify_peers - notify network peers about existence of @dev,
1415  * to be called when rtnl lock is already held.
1416  * @dev: network device
1417  *
1418  * Generate traffic such that interested network peers are aware of
1419  * @dev, such as by generating a gratuitous ARP. This may be used when
1420  * a device wants to inform the rest of the network about some sort of
1421  * reconfiguration such as a failover event or virtual machine
1422  * migration.
1423  */
1424 void __netdev_notify_peers(struct net_device *dev)
1425 {
1426 	ASSERT_RTNL();
1427 	call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1428 	call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1429 }
1430 EXPORT_SYMBOL(__netdev_notify_peers);
1431 
1432 /**
1433  * netdev_notify_peers - notify network peers about existence of @dev
1434  * @dev: network device
1435  *
1436  * Generate traffic such that interested network peers are aware of
1437  * @dev, such as by generating a gratuitous ARP. This may be used when
1438  * a device wants to inform the rest of the network about some sort of
1439  * reconfiguration such as a failover event or virtual machine
1440  * migration.
1441  */
1442 void netdev_notify_peers(struct net_device *dev)
1443 {
1444 	rtnl_lock();
1445 	__netdev_notify_peers(dev);
1446 	rtnl_unlock();
1447 }
1448 EXPORT_SYMBOL(netdev_notify_peers);
1449 
1450 static int napi_threaded_poll(void *data);
1451 
1452 static int napi_kthread_create(struct napi_struct *n)
1453 {
1454 	int err = 0;
1455 
1456 	/* Create and wake up the kthread once to put it in
1457 	 * TASK_INTERRUPTIBLE mode to avoid the blocked task
1458 	 * warning and work with loadavg.
1459 	 */
1460 	n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d",
1461 				n->dev->name, n->napi_id);
1462 	if (IS_ERR(n->thread)) {
1463 		err = PTR_ERR(n->thread);
1464 		pr_err("kthread_run failed with err %d\n", err);
1465 		n->thread = NULL;
1466 	}
1467 
1468 	return err;
1469 }
1470 
1471 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1472 {
1473 	const struct net_device_ops *ops = dev->netdev_ops;
1474 	int ret;
1475 
1476 	ASSERT_RTNL();
1477 	dev_addr_check(dev);
1478 
1479 	if (!netif_device_present(dev)) {
1480 		/* may be detached because parent is runtime-suspended */
1481 		if (dev->dev.parent)
1482 			pm_runtime_resume(dev->dev.parent);
1483 		if (!netif_device_present(dev))
1484 			return -ENODEV;
1485 	}
1486 
1487 	/* Block netpoll from trying to do any rx path servicing.
1488 	 * If we don't do this there is a chance ndo_poll_controller
1489 	 * or ndo_poll may be running while we open the device
1490 	 */
1491 	netpoll_poll_disable(dev);
1492 
1493 	ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1494 	ret = notifier_to_errno(ret);
1495 	if (ret)
1496 		return ret;
1497 
1498 	set_bit(__LINK_STATE_START, &dev->state);
1499 
1500 	if (ops->ndo_validate_addr)
1501 		ret = ops->ndo_validate_addr(dev);
1502 
1503 	if (!ret && ops->ndo_open)
1504 		ret = ops->ndo_open(dev);
1505 
1506 	netpoll_poll_enable(dev);
1507 
1508 	if (ret)
1509 		clear_bit(__LINK_STATE_START, &dev->state);
1510 	else {
1511 		dev->flags |= IFF_UP;
1512 		dev_set_rx_mode(dev);
1513 		dev_activate(dev);
1514 		add_device_randomness(dev->dev_addr, dev->addr_len);
1515 	}
1516 
1517 	return ret;
1518 }
1519 
1520 /**
1521  *	dev_open	- prepare an interface for use.
1522  *	@dev: device to open
1523  *	@extack: netlink extended ack
1524  *
1525  *	Takes a device from down to up state. The device's private open
1526  *	function is invoked and then the multicast lists are loaded. Finally
1527  *	the device is moved into the up state and a %NETDEV_UP message is
1528  *	sent to the netdev notifier chain.
1529  *
1530  *	Calling this function on an active interface is a nop. On a failure
1531  *	a negative errno code is returned.
1532  */
1533 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1534 {
1535 	int ret;
1536 
1537 	if (dev->flags & IFF_UP)
1538 		return 0;
1539 
1540 	ret = __dev_open(dev, extack);
1541 	if (ret < 0)
1542 		return ret;
1543 
1544 	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL);
1545 	call_netdevice_notifiers(NETDEV_UP, dev);
1546 
1547 	return ret;
1548 }
1549 EXPORT_SYMBOL(dev_open);
1550 
1551 static void __dev_close_many(struct list_head *head)
1552 {
1553 	struct net_device *dev;
1554 
1555 	ASSERT_RTNL();
1556 	might_sleep();
1557 
1558 	list_for_each_entry(dev, head, close_list) {
1559 		/* Temporarily disable netpoll until the interface is down */
1560 		netpoll_poll_disable(dev);
1561 
1562 		call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1563 
1564 		clear_bit(__LINK_STATE_START, &dev->state);
1565 
1566 		/* Synchronize to scheduled poll. We cannot touch poll list, it
1567 		 * can be even on different cpu. So just clear netif_running().
1568 		 *
1569 		 * dev->stop() will invoke napi_disable() on all of it's
1570 		 * napi_struct instances on this device.
1571 		 */
1572 		smp_mb__after_atomic(); /* Commit netif_running(). */
1573 	}
1574 
1575 	dev_deactivate_many(head);
1576 
1577 	list_for_each_entry(dev, head, close_list) {
1578 		const struct net_device_ops *ops = dev->netdev_ops;
1579 
1580 		/*
1581 		 *	Call the device specific close. This cannot fail.
1582 		 *	Only if device is UP
1583 		 *
1584 		 *	We allow it to be called even after a DETACH hot-plug
1585 		 *	event.
1586 		 */
1587 		if (ops->ndo_stop)
1588 			ops->ndo_stop(dev);
1589 
1590 		dev->flags &= ~IFF_UP;
1591 		netpoll_poll_enable(dev);
1592 	}
1593 }
1594 
1595 static void __dev_close(struct net_device *dev)
1596 {
1597 	LIST_HEAD(single);
1598 
1599 	list_add(&dev->close_list, &single);
1600 	__dev_close_many(&single);
1601 	list_del(&single);
1602 }
1603 
1604 void dev_close_many(struct list_head *head, bool unlink)
1605 {
1606 	struct net_device *dev, *tmp;
1607 
1608 	/* Remove the devices that don't need to be closed */
1609 	list_for_each_entry_safe(dev, tmp, head, close_list)
1610 		if (!(dev->flags & IFF_UP))
1611 			list_del_init(&dev->close_list);
1612 
1613 	__dev_close_many(head);
1614 
1615 	list_for_each_entry_safe(dev, tmp, head, close_list) {
1616 		rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL);
1617 		call_netdevice_notifiers(NETDEV_DOWN, dev);
1618 		if (unlink)
1619 			list_del_init(&dev->close_list);
1620 	}
1621 }
1622 EXPORT_SYMBOL(dev_close_many);
1623 
1624 /**
1625  *	dev_close - shutdown an interface.
1626  *	@dev: device to shutdown
1627  *
1628  *	This function moves an active device into down state. A
1629  *	%NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1630  *	is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1631  *	chain.
1632  */
1633 void dev_close(struct net_device *dev)
1634 {
1635 	if (dev->flags & IFF_UP) {
1636 		LIST_HEAD(single);
1637 
1638 		list_add(&dev->close_list, &single);
1639 		dev_close_many(&single, true);
1640 		list_del(&single);
1641 	}
1642 }
1643 EXPORT_SYMBOL(dev_close);
1644 
1645 
1646 /**
1647  *	dev_disable_lro - disable Large Receive Offload on a device
1648  *	@dev: device
1649  *
1650  *	Disable Large Receive Offload (LRO) on a net device.  Must be
1651  *	called under RTNL.  This is needed if received packets may be
1652  *	forwarded to another interface.
1653  */
1654 void dev_disable_lro(struct net_device *dev)
1655 {
1656 	struct net_device *lower_dev;
1657 	struct list_head *iter;
1658 
1659 	dev->wanted_features &= ~NETIF_F_LRO;
1660 	netdev_update_features(dev);
1661 
1662 	if (unlikely(dev->features & NETIF_F_LRO))
1663 		netdev_WARN(dev, "failed to disable LRO!\n");
1664 
1665 	netdev_for_each_lower_dev(dev, lower_dev, iter)
1666 		dev_disable_lro(lower_dev);
1667 }
1668 EXPORT_SYMBOL(dev_disable_lro);
1669 
1670 /**
1671  *	dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1672  *	@dev: device
1673  *
1674  *	Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1675  *	called under RTNL.  This is needed if Generic XDP is installed on
1676  *	the device.
1677  */
1678 static void dev_disable_gro_hw(struct net_device *dev)
1679 {
1680 	dev->wanted_features &= ~NETIF_F_GRO_HW;
1681 	netdev_update_features(dev);
1682 
1683 	if (unlikely(dev->features & NETIF_F_GRO_HW))
1684 		netdev_WARN(dev, "failed to disable GRO_HW!\n");
1685 }
1686 
1687 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1688 {
1689 #define N(val) 						\
1690 	case NETDEV_##val:				\
1691 		return "NETDEV_" __stringify(val);
1692 	switch (cmd) {
1693 	N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1694 	N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1695 	N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1696 	N(POST_INIT) N(PRE_UNINIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN)
1697 	N(CHANGEUPPER) N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA)
1698 	N(BONDING_INFO) N(PRECHANGEUPPER) N(CHANGELOWERSTATE)
1699 	N(UDP_TUNNEL_PUSH_INFO) N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1700 	N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1701 	N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1702 	N(PRE_CHANGEADDR) N(OFFLOAD_XSTATS_ENABLE) N(OFFLOAD_XSTATS_DISABLE)
1703 	N(OFFLOAD_XSTATS_REPORT_USED) N(OFFLOAD_XSTATS_REPORT_DELTA)
1704 	N(XDP_FEAT_CHANGE)
1705 	}
1706 #undef N
1707 	return "UNKNOWN_NETDEV_EVENT";
1708 }
1709 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1710 
1711 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1712 				   struct net_device *dev)
1713 {
1714 	struct netdev_notifier_info info = {
1715 		.dev = dev,
1716 	};
1717 
1718 	return nb->notifier_call(nb, val, &info);
1719 }
1720 
1721 static int call_netdevice_register_notifiers(struct notifier_block *nb,
1722 					     struct net_device *dev)
1723 {
1724 	int err;
1725 
1726 	err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1727 	err = notifier_to_errno(err);
1728 	if (err)
1729 		return err;
1730 
1731 	if (!(dev->flags & IFF_UP))
1732 		return 0;
1733 
1734 	call_netdevice_notifier(nb, NETDEV_UP, dev);
1735 	return 0;
1736 }
1737 
1738 static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1739 						struct net_device *dev)
1740 {
1741 	if (dev->flags & IFF_UP) {
1742 		call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1743 					dev);
1744 		call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1745 	}
1746 	call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1747 }
1748 
1749 static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1750 						 struct net *net)
1751 {
1752 	struct net_device *dev;
1753 	int err;
1754 
1755 	for_each_netdev(net, dev) {
1756 		err = call_netdevice_register_notifiers(nb, dev);
1757 		if (err)
1758 			goto rollback;
1759 	}
1760 	return 0;
1761 
1762 rollback:
1763 	for_each_netdev_continue_reverse(net, dev)
1764 		call_netdevice_unregister_notifiers(nb, dev);
1765 	return err;
1766 }
1767 
1768 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1769 						    struct net *net)
1770 {
1771 	struct net_device *dev;
1772 
1773 	for_each_netdev(net, dev)
1774 		call_netdevice_unregister_notifiers(nb, dev);
1775 }
1776 
1777 static int dev_boot_phase = 1;
1778 
1779 /**
1780  * register_netdevice_notifier - register a network notifier block
1781  * @nb: notifier
1782  *
1783  * Register a notifier to be called when network device events occur.
1784  * The notifier passed is linked into the kernel structures and must
1785  * not be reused until it has been unregistered. A negative errno code
1786  * is returned on a failure.
1787  *
1788  * When registered all registration and up events are replayed
1789  * to the new notifier to allow device to have a race free
1790  * view of the network device list.
1791  */
1792 
1793 int register_netdevice_notifier(struct notifier_block *nb)
1794 {
1795 	struct net *net;
1796 	int err;
1797 
1798 	/* Close race with setup_net() and cleanup_net() */
1799 	down_write(&pernet_ops_rwsem);
1800 
1801 	/* When RTNL is removed, we need protection for netdev_chain. */
1802 	rtnl_lock();
1803 
1804 	err = raw_notifier_chain_register(&netdev_chain, nb);
1805 	if (err)
1806 		goto unlock;
1807 	if (dev_boot_phase)
1808 		goto unlock;
1809 	for_each_net(net) {
1810 		__rtnl_net_lock(net);
1811 		err = call_netdevice_register_net_notifiers(nb, net);
1812 		__rtnl_net_unlock(net);
1813 		if (err)
1814 			goto rollback;
1815 	}
1816 
1817 unlock:
1818 	rtnl_unlock();
1819 	up_write(&pernet_ops_rwsem);
1820 	return err;
1821 
1822 rollback:
1823 	for_each_net_continue_reverse(net) {
1824 		__rtnl_net_lock(net);
1825 		call_netdevice_unregister_net_notifiers(nb, net);
1826 		__rtnl_net_unlock(net);
1827 	}
1828 
1829 	raw_notifier_chain_unregister(&netdev_chain, nb);
1830 	goto unlock;
1831 }
1832 EXPORT_SYMBOL(register_netdevice_notifier);
1833 
1834 /**
1835  * unregister_netdevice_notifier - unregister a network notifier block
1836  * @nb: notifier
1837  *
1838  * Unregister a notifier previously registered by
1839  * register_netdevice_notifier(). The notifier is unlinked into the
1840  * kernel structures and may then be reused. A negative errno code
1841  * is returned on a failure.
1842  *
1843  * After unregistering unregister and down device events are synthesized
1844  * for all devices on the device list to the removed notifier to remove
1845  * the need for special case cleanup code.
1846  */
1847 
1848 int unregister_netdevice_notifier(struct notifier_block *nb)
1849 {
1850 	struct net *net;
1851 	int err;
1852 
1853 	/* Close race with setup_net() and cleanup_net() */
1854 	down_write(&pernet_ops_rwsem);
1855 	rtnl_lock();
1856 	err = raw_notifier_chain_unregister(&netdev_chain, nb);
1857 	if (err)
1858 		goto unlock;
1859 
1860 	for_each_net(net) {
1861 		__rtnl_net_lock(net);
1862 		call_netdevice_unregister_net_notifiers(nb, net);
1863 		__rtnl_net_unlock(net);
1864 	}
1865 
1866 unlock:
1867 	rtnl_unlock();
1868 	up_write(&pernet_ops_rwsem);
1869 	return err;
1870 }
1871 EXPORT_SYMBOL(unregister_netdevice_notifier);
1872 
1873 static int __register_netdevice_notifier_net(struct net *net,
1874 					     struct notifier_block *nb,
1875 					     bool ignore_call_fail)
1876 {
1877 	int err;
1878 
1879 	err = raw_notifier_chain_register(&net->netdev_chain, nb);
1880 	if (err)
1881 		return err;
1882 	if (dev_boot_phase)
1883 		return 0;
1884 
1885 	err = call_netdevice_register_net_notifiers(nb, net);
1886 	if (err && !ignore_call_fail)
1887 		goto chain_unregister;
1888 
1889 	return 0;
1890 
1891 chain_unregister:
1892 	raw_notifier_chain_unregister(&net->netdev_chain, nb);
1893 	return err;
1894 }
1895 
1896 static int __unregister_netdevice_notifier_net(struct net *net,
1897 					       struct notifier_block *nb)
1898 {
1899 	int err;
1900 
1901 	err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
1902 	if (err)
1903 		return err;
1904 
1905 	call_netdevice_unregister_net_notifiers(nb, net);
1906 	return 0;
1907 }
1908 
1909 /**
1910  * register_netdevice_notifier_net - register a per-netns network notifier block
1911  * @net: network namespace
1912  * @nb: notifier
1913  *
1914  * Register a notifier to be called when network device events occur.
1915  * The notifier passed is linked into the kernel structures and must
1916  * not be reused until it has been unregistered. A negative errno code
1917  * is returned on a failure.
1918  *
1919  * When registered all registration and up events are replayed
1920  * to the new notifier to allow device to have a race free
1921  * view of the network device list.
1922  */
1923 
1924 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
1925 {
1926 	int err;
1927 
1928 	rtnl_net_lock(net);
1929 	err = __register_netdevice_notifier_net(net, nb, false);
1930 	rtnl_net_unlock(net);
1931 
1932 	return err;
1933 }
1934 EXPORT_SYMBOL(register_netdevice_notifier_net);
1935 
1936 /**
1937  * unregister_netdevice_notifier_net - unregister a per-netns
1938  *                                     network notifier block
1939  * @net: network namespace
1940  * @nb: notifier
1941  *
1942  * Unregister a notifier previously registered by
1943  * register_netdevice_notifier_net(). The notifier is unlinked from the
1944  * kernel structures and may then be reused. A negative errno code
1945  * is returned on a failure.
1946  *
1947  * After unregistering unregister and down device events are synthesized
1948  * for all devices on the device list to the removed notifier to remove
1949  * the need for special case cleanup code.
1950  */
1951 
1952 int unregister_netdevice_notifier_net(struct net *net,
1953 				      struct notifier_block *nb)
1954 {
1955 	int err;
1956 
1957 	rtnl_net_lock(net);
1958 	err = __unregister_netdevice_notifier_net(net, nb);
1959 	rtnl_net_unlock(net);
1960 
1961 	return err;
1962 }
1963 EXPORT_SYMBOL(unregister_netdevice_notifier_net);
1964 
1965 static void __move_netdevice_notifier_net(struct net *src_net,
1966 					  struct net *dst_net,
1967 					  struct notifier_block *nb)
1968 {
1969 	__unregister_netdevice_notifier_net(src_net, nb);
1970 	__register_netdevice_notifier_net(dst_net, nb, true);
1971 }
1972 
1973 int register_netdevice_notifier_dev_net(struct net_device *dev,
1974 					struct notifier_block *nb,
1975 					struct netdev_net_notifier *nn)
1976 {
1977 	struct net *net = dev_net(dev);
1978 	int err;
1979 
1980 	rtnl_net_lock(net);
1981 	err = __register_netdevice_notifier_net(net, nb, false);
1982 	if (!err) {
1983 		nn->nb = nb;
1984 		list_add(&nn->list, &dev->net_notifier_list);
1985 	}
1986 	rtnl_net_unlock(net);
1987 
1988 	return err;
1989 }
1990 EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
1991 
1992 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
1993 					  struct notifier_block *nb,
1994 					  struct netdev_net_notifier *nn)
1995 {
1996 	struct net *net = dev_net(dev);
1997 	int err;
1998 
1999 	rtnl_net_lock(net);
2000 	list_del(&nn->list);
2001 	err = __unregister_netdevice_notifier_net(net, nb);
2002 	rtnl_net_unlock(net);
2003 
2004 	return err;
2005 }
2006 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
2007 
2008 static void move_netdevice_notifiers_dev_net(struct net_device *dev,
2009 					     struct net *net)
2010 {
2011 	struct netdev_net_notifier *nn;
2012 
2013 	list_for_each_entry(nn, &dev->net_notifier_list, list)
2014 		__move_netdevice_notifier_net(dev_net(dev), net, nn->nb);
2015 }
2016 
2017 /**
2018  *	call_netdevice_notifiers_info - call all network notifier blocks
2019  *	@val: value passed unmodified to notifier function
2020  *	@info: notifier information data
2021  *
2022  *	Call all network notifier blocks.  Parameters and return value
2023  *	are as for raw_notifier_call_chain().
2024  */
2025 
2026 int call_netdevice_notifiers_info(unsigned long val,
2027 				  struct netdev_notifier_info *info)
2028 {
2029 	struct net *net = dev_net(info->dev);
2030 	int ret;
2031 
2032 	ASSERT_RTNL();
2033 
2034 	/* Run per-netns notifier block chain first, then run the global one.
2035 	 * Hopefully, one day, the global one is going to be removed after
2036 	 * all notifier block registrators get converted to be per-netns.
2037 	 */
2038 	ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
2039 	if (ret & NOTIFY_STOP_MASK)
2040 		return ret;
2041 	return raw_notifier_call_chain(&netdev_chain, val, info);
2042 }
2043 
2044 /**
2045  *	call_netdevice_notifiers_info_robust - call per-netns notifier blocks
2046  *	                                       for and rollback on error
2047  *	@val_up: value passed unmodified to notifier function
2048  *	@val_down: value passed unmodified to the notifier function when
2049  *	           recovering from an error on @val_up
2050  *	@info: notifier information data
2051  *
2052  *	Call all per-netns network notifier blocks, but not notifier blocks on
2053  *	the global notifier chain. Parameters and return value are as for
2054  *	raw_notifier_call_chain_robust().
2055  */
2056 
2057 static int
2058 call_netdevice_notifiers_info_robust(unsigned long val_up,
2059 				     unsigned long val_down,
2060 				     struct netdev_notifier_info *info)
2061 {
2062 	struct net *net = dev_net(info->dev);
2063 
2064 	ASSERT_RTNL();
2065 
2066 	return raw_notifier_call_chain_robust(&net->netdev_chain,
2067 					      val_up, val_down, info);
2068 }
2069 
2070 static int call_netdevice_notifiers_extack(unsigned long val,
2071 					   struct net_device *dev,
2072 					   struct netlink_ext_ack *extack)
2073 {
2074 	struct netdev_notifier_info info = {
2075 		.dev = dev,
2076 		.extack = extack,
2077 	};
2078 
2079 	return call_netdevice_notifiers_info(val, &info);
2080 }
2081 
2082 /**
2083  *	call_netdevice_notifiers - call all network notifier blocks
2084  *      @val: value passed unmodified to notifier function
2085  *      @dev: net_device pointer passed unmodified to notifier function
2086  *
2087  *	Call all network notifier blocks.  Parameters and return value
2088  *	are as for raw_notifier_call_chain().
2089  */
2090 
2091 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
2092 {
2093 	return call_netdevice_notifiers_extack(val, dev, NULL);
2094 }
2095 EXPORT_SYMBOL(call_netdevice_notifiers);
2096 
2097 /**
2098  *	call_netdevice_notifiers_mtu - call all network notifier blocks
2099  *	@val: value passed unmodified to notifier function
2100  *	@dev: net_device pointer passed unmodified to notifier function
2101  *	@arg: additional u32 argument passed to the notifier function
2102  *
2103  *	Call all network notifier blocks.  Parameters and return value
2104  *	are as for raw_notifier_call_chain().
2105  */
2106 static int call_netdevice_notifiers_mtu(unsigned long val,
2107 					struct net_device *dev, u32 arg)
2108 {
2109 	struct netdev_notifier_info_ext info = {
2110 		.info.dev = dev,
2111 		.ext.mtu = arg,
2112 	};
2113 
2114 	BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2115 
2116 	return call_netdevice_notifiers_info(val, &info.info);
2117 }
2118 
2119 #ifdef CONFIG_NET_INGRESS
2120 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2121 
2122 void net_inc_ingress_queue(void)
2123 {
2124 	static_branch_inc(&ingress_needed_key);
2125 }
2126 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2127 
2128 void net_dec_ingress_queue(void)
2129 {
2130 	static_branch_dec(&ingress_needed_key);
2131 }
2132 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2133 #endif
2134 
2135 #ifdef CONFIG_NET_EGRESS
2136 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2137 
2138 void net_inc_egress_queue(void)
2139 {
2140 	static_branch_inc(&egress_needed_key);
2141 }
2142 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2143 
2144 void net_dec_egress_queue(void)
2145 {
2146 	static_branch_dec(&egress_needed_key);
2147 }
2148 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2149 #endif
2150 
2151 #ifdef CONFIG_NET_CLS_ACT
2152 DEFINE_STATIC_KEY_FALSE(tcf_bypass_check_needed_key);
2153 EXPORT_SYMBOL(tcf_bypass_check_needed_key);
2154 #endif
2155 
2156 DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2157 EXPORT_SYMBOL(netstamp_needed_key);
2158 #ifdef CONFIG_JUMP_LABEL
2159 static atomic_t netstamp_needed_deferred;
2160 static atomic_t netstamp_wanted;
2161 static void netstamp_clear(struct work_struct *work)
2162 {
2163 	int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2164 	int wanted;
2165 
2166 	wanted = atomic_add_return(deferred, &netstamp_wanted);
2167 	if (wanted > 0)
2168 		static_branch_enable(&netstamp_needed_key);
2169 	else
2170 		static_branch_disable(&netstamp_needed_key);
2171 }
2172 static DECLARE_WORK(netstamp_work, netstamp_clear);
2173 #endif
2174 
2175 void net_enable_timestamp(void)
2176 {
2177 #ifdef CONFIG_JUMP_LABEL
2178 	int wanted = atomic_read(&netstamp_wanted);
2179 
2180 	while (wanted > 0) {
2181 		if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted + 1))
2182 			return;
2183 	}
2184 	atomic_inc(&netstamp_needed_deferred);
2185 	schedule_work(&netstamp_work);
2186 #else
2187 	static_branch_inc(&netstamp_needed_key);
2188 #endif
2189 }
2190 EXPORT_SYMBOL(net_enable_timestamp);
2191 
2192 void net_disable_timestamp(void)
2193 {
2194 #ifdef CONFIG_JUMP_LABEL
2195 	int wanted = atomic_read(&netstamp_wanted);
2196 
2197 	while (wanted > 1) {
2198 		if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted - 1))
2199 			return;
2200 	}
2201 	atomic_dec(&netstamp_needed_deferred);
2202 	schedule_work(&netstamp_work);
2203 #else
2204 	static_branch_dec(&netstamp_needed_key);
2205 #endif
2206 }
2207 EXPORT_SYMBOL(net_disable_timestamp);
2208 
2209 static inline void net_timestamp_set(struct sk_buff *skb)
2210 {
2211 	skb->tstamp = 0;
2212 	skb->tstamp_type = SKB_CLOCK_REALTIME;
2213 	if (static_branch_unlikely(&netstamp_needed_key))
2214 		skb->tstamp = ktime_get_real();
2215 }
2216 
2217 #define net_timestamp_check(COND, SKB)				\
2218 	if (static_branch_unlikely(&netstamp_needed_key)) {	\
2219 		if ((COND) && !(SKB)->tstamp)			\
2220 			(SKB)->tstamp = ktime_get_real();	\
2221 	}							\
2222 
2223 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2224 {
2225 	return __is_skb_forwardable(dev, skb, true);
2226 }
2227 EXPORT_SYMBOL_GPL(is_skb_forwardable);
2228 
2229 static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb,
2230 			      bool check_mtu)
2231 {
2232 	int ret = ____dev_forward_skb(dev, skb, check_mtu);
2233 
2234 	if (likely(!ret)) {
2235 		skb->protocol = eth_type_trans(skb, dev);
2236 		skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2237 	}
2238 
2239 	return ret;
2240 }
2241 
2242 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2243 {
2244 	return __dev_forward_skb2(dev, skb, true);
2245 }
2246 EXPORT_SYMBOL_GPL(__dev_forward_skb);
2247 
2248 /**
2249  * dev_forward_skb - loopback an skb to another netif
2250  *
2251  * @dev: destination network device
2252  * @skb: buffer to forward
2253  *
2254  * return values:
2255  *	NET_RX_SUCCESS	(no congestion)
2256  *	NET_RX_DROP     (packet was dropped, but freed)
2257  *
2258  * dev_forward_skb can be used for injecting an skb from the
2259  * start_xmit function of one device into the receive queue
2260  * of another device.
2261  *
2262  * The receiving device may be in another namespace, so
2263  * we have to clear all information in the skb that could
2264  * impact namespace isolation.
2265  */
2266 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2267 {
2268 	return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2269 }
2270 EXPORT_SYMBOL_GPL(dev_forward_skb);
2271 
2272 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb)
2273 {
2274 	return __dev_forward_skb2(dev, skb, false) ?: netif_rx_internal(skb);
2275 }
2276 
2277 static inline int deliver_skb(struct sk_buff *skb,
2278 			      struct packet_type *pt_prev,
2279 			      struct net_device *orig_dev)
2280 {
2281 	if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2282 		return -ENOMEM;
2283 	refcount_inc(&skb->users);
2284 	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2285 }
2286 
2287 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2288 					  struct packet_type **pt,
2289 					  struct net_device *orig_dev,
2290 					  __be16 type,
2291 					  struct list_head *ptype_list)
2292 {
2293 	struct packet_type *ptype, *pt_prev = *pt;
2294 
2295 	list_for_each_entry_rcu(ptype, ptype_list, list) {
2296 		if (ptype->type != type)
2297 			continue;
2298 		if (pt_prev)
2299 			deliver_skb(skb, pt_prev, orig_dev);
2300 		pt_prev = ptype;
2301 	}
2302 	*pt = pt_prev;
2303 }
2304 
2305 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2306 {
2307 	if (!ptype->af_packet_priv || !skb->sk)
2308 		return false;
2309 
2310 	if (ptype->id_match)
2311 		return ptype->id_match(ptype, skb->sk);
2312 	else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2313 		return true;
2314 
2315 	return false;
2316 }
2317 
2318 /**
2319  * dev_nit_active - return true if any network interface taps are in use
2320  *
2321  * @dev: network device to check for the presence of taps
2322  */
2323 bool dev_nit_active(struct net_device *dev)
2324 {
2325 	return !list_empty(&net_hotdata.ptype_all) ||
2326 	       !list_empty(&dev->ptype_all);
2327 }
2328 EXPORT_SYMBOL_GPL(dev_nit_active);
2329 
2330 /*
2331  *	Support routine. Sends outgoing frames to any network
2332  *	taps currently in use.
2333  */
2334 
2335 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2336 {
2337 	struct list_head *ptype_list = &net_hotdata.ptype_all;
2338 	struct packet_type *ptype, *pt_prev = NULL;
2339 	struct sk_buff *skb2 = NULL;
2340 
2341 	rcu_read_lock();
2342 again:
2343 	list_for_each_entry_rcu(ptype, ptype_list, list) {
2344 		if (READ_ONCE(ptype->ignore_outgoing))
2345 			continue;
2346 
2347 		/* Never send packets back to the socket
2348 		 * they originated from - MvS (miquels@drinkel.ow.org)
2349 		 */
2350 		if (skb_loop_sk(ptype, skb))
2351 			continue;
2352 
2353 		if (pt_prev) {
2354 			deliver_skb(skb2, pt_prev, skb->dev);
2355 			pt_prev = ptype;
2356 			continue;
2357 		}
2358 
2359 		/* need to clone skb, done only once */
2360 		skb2 = skb_clone(skb, GFP_ATOMIC);
2361 		if (!skb2)
2362 			goto out_unlock;
2363 
2364 		net_timestamp_set(skb2);
2365 
2366 		/* skb->nh should be correctly
2367 		 * set by sender, so that the second statement is
2368 		 * just protection against buggy protocols.
2369 		 */
2370 		skb_reset_mac_header(skb2);
2371 
2372 		if (skb_network_header(skb2) < skb2->data ||
2373 		    skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2374 			net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2375 					     ntohs(skb2->protocol),
2376 					     dev->name);
2377 			skb_reset_network_header(skb2);
2378 		}
2379 
2380 		skb2->transport_header = skb2->network_header;
2381 		skb2->pkt_type = PACKET_OUTGOING;
2382 		pt_prev = ptype;
2383 	}
2384 
2385 	if (ptype_list == &net_hotdata.ptype_all) {
2386 		ptype_list = &dev->ptype_all;
2387 		goto again;
2388 	}
2389 out_unlock:
2390 	if (pt_prev) {
2391 		if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2392 			pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2393 		else
2394 			kfree_skb(skb2);
2395 	}
2396 	rcu_read_unlock();
2397 }
2398 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2399 
2400 /**
2401  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2402  * @dev: Network device
2403  * @txq: number of queues available
2404  *
2405  * If real_num_tx_queues is changed the tc mappings may no longer be
2406  * valid. To resolve this verify the tc mapping remains valid and if
2407  * not NULL the mapping. With no priorities mapping to this
2408  * offset/count pair it will no longer be used. In the worst case TC0
2409  * is invalid nothing can be done so disable priority mappings. If is
2410  * expected that drivers will fix this mapping if they can before
2411  * calling netif_set_real_num_tx_queues.
2412  */
2413 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2414 {
2415 	int i;
2416 	struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2417 
2418 	/* If TC0 is invalidated disable TC mapping */
2419 	if (tc->offset + tc->count > txq) {
2420 		netdev_warn(dev, "Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2421 		dev->num_tc = 0;
2422 		return;
2423 	}
2424 
2425 	/* Invalidated prio to tc mappings set to TC0 */
2426 	for (i = 1; i < TC_BITMASK + 1; i++) {
2427 		int q = netdev_get_prio_tc_map(dev, i);
2428 
2429 		tc = &dev->tc_to_txq[q];
2430 		if (tc->offset + tc->count > txq) {
2431 			netdev_warn(dev, "Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2432 				    i, q);
2433 			netdev_set_prio_tc_map(dev, i, 0);
2434 		}
2435 	}
2436 }
2437 
2438 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2439 {
2440 	if (dev->num_tc) {
2441 		struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2442 		int i;
2443 
2444 		/* walk through the TCs and see if it falls into any of them */
2445 		for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2446 			if ((txq - tc->offset) < tc->count)
2447 				return i;
2448 		}
2449 
2450 		/* didn't find it, just return -1 to indicate no match */
2451 		return -1;
2452 	}
2453 
2454 	return 0;
2455 }
2456 EXPORT_SYMBOL(netdev_txq_to_tc);
2457 
2458 #ifdef CONFIG_XPS
2459 static struct static_key xps_needed __read_mostly;
2460 static struct static_key xps_rxqs_needed __read_mostly;
2461 static DEFINE_MUTEX(xps_map_mutex);
2462 #define xmap_dereference(P)		\
2463 	rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2464 
2465 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2466 			     struct xps_dev_maps *old_maps, int tci, u16 index)
2467 {
2468 	struct xps_map *map = NULL;
2469 	int pos;
2470 
2471 	map = xmap_dereference(dev_maps->attr_map[tci]);
2472 	if (!map)
2473 		return false;
2474 
2475 	for (pos = map->len; pos--;) {
2476 		if (map->queues[pos] != index)
2477 			continue;
2478 
2479 		if (map->len > 1) {
2480 			map->queues[pos] = map->queues[--map->len];
2481 			break;
2482 		}
2483 
2484 		if (old_maps)
2485 			RCU_INIT_POINTER(old_maps->attr_map[tci], NULL);
2486 		RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2487 		kfree_rcu(map, rcu);
2488 		return false;
2489 	}
2490 
2491 	return true;
2492 }
2493 
2494 static bool remove_xps_queue_cpu(struct net_device *dev,
2495 				 struct xps_dev_maps *dev_maps,
2496 				 int cpu, u16 offset, u16 count)
2497 {
2498 	int num_tc = dev_maps->num_tc;
2499 	bool active = false;
2500 	int tci;
2501 
2502 	for (tci = cpu * num_tc; num_tc--; tci++) {
2503 		int i, j;
2504 
2505 		for (i = count, j = offset; i--; j++) {
2506 			if (!remove_xps_queue(dev_maps, NULL, tci, j))
2507 				break;
2508 		}
2509 
2510 		active |= i < 0;
2511 	}
2512 
2513 	return active;
2514 }
2515 
2516 static void reset_xps_maps(struct net_device *dev,
2517 			   struct xps_dev_maps *dev_maps,
2518 			   enum xps_map_type type)
2519 {
2520 	static_key_slow_dec_cpuslocked(&xps_needed);
2521 	if (type == XPS_RXQS)
2522 		static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2523 
2524 	RCU_INIT_POINTER(dev->xps_maps[type], NULL);
2525 
2526 	kfree_rcu(dev_maps, rcu);
2527 }
2528 
2529 static void clean_xps_maps(struct net_device *dev, enum xps_map_type type,
2530 			   u16 offset, u16 count)
2531 {
2532 	struct xps_dev_maps *dev_maps;
2533 	bool active = false;
2534 	int i, j;
2535 
2536 	dev_maps = xmap_dereference(dev->xps_maps[type]);
2537 	if (!dev_maps)
2538 		return;
2539 
2540 	for (j = 0; j < dev_maps->nr_ids; j++)
2541 		active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, count);
2542 	if (!active)
2543 		reset_xps_maps(dev, dev_maps, type);
2544 
2545 	if (type == XPS_CPUS) {
2546 		for (i = offset + (count - 1); count--; i--)
2547 			netdev_queue_numa_node_write(
2548 				netdev_get_tx_queue(dev, i), NUMA_NO_NODE);
2549 	}
2550 }
2551 
2552 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2553 				   u16 count)
2554 {
2555 	if (!static_key_false(&xps_needed))
2556 		return;
2557 
2558 	cpus_read_lock();
2559 	mutex_lock(&xps_map_mutex);
2560 
2561 	if (static_key_false(&xps_rxqs_needed))
2562 		clean_xps_maps(dev, XPS_RXQS, offset, count);
2563 
2564 	clean_xps_maps(dev, XPS_CPUS, offset, count);
2565 
2566 	mutex_unlock(&xps_map_mutex);
2567 	cpus_read_unlock();
2568 }
2569 
2570 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2571 {
2572 	netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2573 }
2574 
2575 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2576 				      u16 index, bool is_rxqs_map)
2577 {
2578 	struct xps_map *new_map;
2579 	int alloc_len = XPS_MIN_MAP_ALLOC;
2580 	int i, pos;
2581 
2582 	for (pos = 0; map && pos < map->len; pos++) {
2583 		if (map->queues[pos] != index)
2584 			continue;
2585 		return map;
2586 	}
2587 
2588 	/* Need to add tx-queue to this CPU's/rx-queue's existing map */
2589 	if (map) {
2590 		if (pos < map->alloc_len)
2591 			return map;
2592 
2593 		alloc_len = map->alloc_len * 2;
2594 	}
2595 
2596 	/* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2597 	 *  map
2598 	 */
2599 	if (is_rxqs_map)
2600 		new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2601 	else
2602 		new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2603 				       cpu_to_node(attr_index));
2604 	if (!new_map)
2605 		return NULL;
2606 
2607 	for (i = 0; i < pos; i++)
2608 		new_map->queues[i] = map->queues[i];
2609 	new_map->alloc_len = alloc_len;
2610 	new_map->len = pos;
2611 
2612 	return new_map;
2613 }
2614 
2615 /* Copy xps maps at a given index */
2616 static void xps_copy_dev_maps(struct xps_dev_maps *dev_maps,
2617 			      struct xps_dev_maps *new_dev_maps, int index,
2618 			      int tc, bool skip_tc)
2619 {
2620 	int i, tci = index * dev_maps->num_tc;
2621 	struct xps_map *map;
2622 
2623 	/* copy maps belonging to foreign traffic classes */
2624 	for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2625 		if (i == tc && skip_tc)
2626 			continue;
2627 
2628 		/* fill in the new device map from the old device map */
2629 		map = xmap_dereference(dev_maps->attr_map[tci]);
2630 		RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2631 	}
2632 }
2633 
2634 /* Must be called under cpus_read_lock */
2635 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2636 			  u16 index, enum xps_map_type type)
2637 {
2638 	struct xps_dev_maps *dev_maps, *new_dev_maps = NULL, *old_dev_maps = NULL;
2639 	const unsigned long *online_mask = NULL;
2640 	bool active = false, copy = false;
2641 	int i, j, tci, numa_node_id = -2;
2642 	int maps_sz, num_tc = 1, tc = 0;
2643 	struct xps_map *map, *new_map;
2644 	unsigned int nr_ids;
2645 
2646 	WARN_ON_ONCE(index >= dev->num_tx_queues);
2647 
2648 	if (dev->num_tc) {
2649 		/* Do not allow XPS on subordinate device directly */
2650 		num_tc = dev->num_tc;
2651 		if (num_tc < 0)
2652 			return -EINVAL;
2653 
2654 		/* If queue belongs to subordinate dev use its map */
2655 		dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2656 
2657 		tc = netdev_txq_to_tc(dev, index);
2658 		if (tc < 0)
2659 			return -EINVAL;
2660 	}
2661 
2662 	mutex_lock(&xps_map_mutex);
2663 
2664 	dev_maps = xmap_dereference(dev->xps_maps[type]);
2665 	if (type == XPS_RXQS) {
2666 		maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2667 		nr_ids = dev->num_rx_queues;
2668 	} else {
2669 		maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2670 		if (num_possible_cpus() > 1)
2671 			online_mask = cpumask_bits(cpu_online_mask);
2672 		nr_ids = nr_cpu_ids;
2673 	}
2674 
2675 	if (maps_sz < L1_CACHE_BYTES)
2676 		maps_sz = L1_CACHE_BYTES;
2677 
2678 	/* The old dev_maps could be larger or smaller than the one we're
2679 	 * setting up now, as dev->num_tc or nr_ids could have been updated in
2680 	 * between. We could try to be smart, but let's be safe instead and only
2681 	 * copy foreign traffic classes if the two map sizes match.
2682 	 */
2683 	if (dev_maps &&
2684 	    dev_maps->num_tc == num_tc && dev_maps->nr_ids == nr_ids)
2685 		copy = true;
2686 
2687 	/* allocate memory for queue storage */
2688 	for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2689 	     j < nr_ids;) {
2690 		if (!new_dev_maps) {
2691 			new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2692 			if (!new_dev_maps) {
2693 				mutex_unlock(&xps_map_mutex);
2694 				return -ENOMEM;
2695 			}
2696 
2697 			new_dev_maps->nr_ids = nr_ids;
2698 			new_dev_maps->num_tc = num_tc;
2699 		}
2700 
2701 		tci = j * num_tc + tc;
2702 		map = copy ? xmap_dereference(dev_maps->attr_map[tci]) : NULL;
2703 
2704 		map = expand_xps_map(map, j, index, type == XPS_RXQS);
2705 		if (!map)
2706 			goto error;
2707 
2708 		RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2709 	}
2710 
2711 	if (!new_dev_maps)
2712 		goto out_no_new_maps;
2713 
2714 	if (!dev_maps) {
2715 		/* Increment static keys at most once per type */
2716 		static_key_slow_inc_cpuslocked(&xps_needed);
2717 		if (type == XPS_RXQS)
2718 			static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2719 	}
2720 
2721 	for (j = 0; j < nr_ids; j++) {
2722 		bool skip_tc = false;
2723 
2724 		tci = j * num_tc + tc;
2725 		if (netif_attr_test_mask(j, mask, nr_ids) &&
2726 		    netif_attr_test_online(j, online_mask, nr_ids)) {
2727 			/* add tx-queue to CPU/rx-queue maps */
2728 			int pos = 0;
2729 
2730 			skip_tc = true;
2731 
2732 			map = xmap_dereference(new_dev_maps->attr_map[tci]);
2733 			while ((pos < map->len) && (map->queues[pos] != index))
2734 				pos++;
2735 
2736 			if (pos == map->len)
2737 				map->queues[map->len++] = index;
2738 #ifdef CONFIG_NUMA
2739 			if (type == XPS_CPUS) {
2740 				if (numa_node_id == -2)
2741 					numa_node_id = cpu_to_node(j);
2742 				else if (numa_node_id != cpu_to_node(j))
2743 					numa_node_id = -1;
2744 			}
2745 #endif
2746 		}
2747 
2748 		if (copy)
2749 			xps_copy_dev_maps(dev_maps, new_dev_maps, j, tc,
2750 					  skip_tc);
2751 	}
2752 
2753 	rcu_assign_pointer(dev->xps_maps[type], new_dev_maps);
2754 
2755 	/* Cleanup old maps */
2756 	if (!dev_maps)
2757 		goto out_no_old_maps;
2758 
2759 	for (j = 0; j < dev_maps->nr_ids; j++) {
2760 		for (i = num_tc, tci = j * dev_maps->num_tc; i--; tci++) {
2761 			map = xmap_dereference(dev_maps->attr_map[tci]);
2762 			if (!map)
2763 				continue;
2764 
2765 			if (copy) {
2766 				new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2767 				if (map == new_map)
2768 					continue;
2769 			}
2770 
2771 			RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2772 			kfree_rcu(map, rcu);
2773 		}
2774 	}
2775 
2776 	old_dev_maps = dev_maps;
2777 
2778 out_no_old_maps:
2779 	dev_maps = new_dev_maps;
2780 	active = true;
2781 
2782 out_no_new_maps:
2783 	if (type == XPS_CPUS)
2784 		/* update Tx queue numa node */
2785 		netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2786 					     (numa_node_id >= 0) ?
2787 					     numa_node_id : NUMA_NO_NODE);
2788 
2789 	if (!dev_maps)
2790 		goto out_no_maps;
2791 
2792 	/* removes tx-queue from unused CPUs/rx-queues */
2793 	for (j = 0; j < dev_maps->nr_ids; j++) {
2794 		tci = j * dev_maps->num_tc;
2795 
2796 		for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2797 			if (i == tc &&
2798 			    netif_attr_test_mask(j, mask, dev_maps->nr_ids) &&
2799 			    netif_attr_test_online(j, online_mask, dev_maps->nr_ids))
2800 				continue;
2801 
2802 			active |= remove_xps_queue(dev_maps,
2803 						   copy ? old_dev_maps : NULL,
2804 						   tci, index);
2805 		}
2806 	}
2807 
2808 	if (old_dev_maps)
2809 		kfree_rcu(old_dev_maps, rcu);
2810 
2811 	/* free map if not active */
2812 	if (!active)
2813 		reset_xps_maps(dev, dev_maps, type);
2814 
2815 out_no_maps:
2816 	mutex_unlock(&xps_map_mutex);
2817 
2818 	return 0;
2819 error:
2820 	/* remove any maps that we added */
2821 	for (j = 0; j < nr_ids; j++) {
2822 		for (i = num_tc, tci = j * num_tc; i--; tci++) {
2823 			new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2824 			map = copy ?
2825 			      xmap_dereference(dev_maps->attr_map[tci]) :
2826 			      NULL;
2827 			if (new_map && new_map != map)
2828 				kfree(new_map);
2829 		}
2830 	}
2831 
2832 	mutex_unlock(&xps_map_mutex);
2833 
2834 	kfree(new_dev_maps);
2835 	return -ENOMEM;
2836 }
2837 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2838 
2839 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2840 			u16 index)
2841 {
2842 	int ret;
2843 
2844 	cpus_read_lock();
2845 	ret =  __netif_set_xps_queue(dev, cpumask_bits(mask), index, XPS_CPUS);
2846 	cpus_read_unlock();
2847 
2848 	return ret;
2849 }
2850 EXPORT_SYMBOL(netif_set_xps_queue);
2851 
2852 #endif
2853 static void netdev_unbind_all_sb_channels(struct net_device *dev)
2854 {
2855 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2856 
2857 	/* Unbind any subordinate channels */
2858 	while (txq-- != &dev->_tx[0]) {
2859 		if (txq->sb_dev)
2860 			netdev_unbind_sb_channel(dev, txq->sb_dev);
2861 	}
2862 }
2863 
2864 void netdev_reset_tc(struct net_device *dev)
2865 {
2866 #ifdef CONFIG_XPS
2867 	netif_reset_xps_queues_gt(dev, 0);
2868 #endif
2869 	netdev_unbind_all_sb_channels(dev);
2870 
2871 	/* Reset TC configuration of device */
2872 	dev->num_tc = 0;
2873 	memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2874 	memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2875 }
2876 EXPORT_SYMBOL(netdev_reset_tc);
2877 
2878 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2879 {
2880 	if (tc >= dev->num_tc)
2881 		return -EINVAL;
2882 
2883 #ifdef CONFIG_XPS
2884 	netif_reset_xps_queues(dev, offset, count);
2885 #endif
2886 	dev->tc_to_txq[tc].count = count;
2887 	dev->tc_to_txq[tc].offset = offset;
2888 	return 0;
2889 }
2890 EXPORT_SYMBOL(netdev_set_tc_queue);
2891 
2892 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2893 {
2894 	if (num_tc > TC_MAX_QUEUE)
2895 		return -EINVAL;
2896 
2897 #ifdef CONFIG_XPS
2898 	netif_reset_xps_queues_gt(dev, 0);
2899 #endif
2900 	netdev_unbind_all_sb_channels(dev);
2901 
2902 	dev->num_tc = num_tc;
2903 	return 0;
2904 }
2905 EXPORT_SYMBOL(netdev_set_num_tc);
2906 
2907 void netdev_unbind_sb_channel(struct net_device *dev,
2908 			      struct net_device *sb_dev)
2909 {
2910 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2911 
2912 #ifdef CONFIG_XPS
2913 	netif_reset_xps_queues_gt(sb_dev, 0);
2914 #endif
2915 	memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2916 	memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2917 
2918 	while (txq-- != &dev->_tx[0]) {
2919 		if (txq->sb_dev == sb_dev)
2920 			txq->sb_dev = NULL;
2921 	}
2922 }
2923 EXPORT_SYMBOL(netdev_unbind_sb_channel);
2924 
2925 int netdev_bind_sb_channel_queue(struct net_device *dev,
2926 				 struct net_device *sb_dev,
2927 				 u8 tc, u16 count, u16 offset)
2928 {
2929 	/* Make certain the sb_dev and dev are already configured */
2930 	if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2931 		return -EINVAL;
2932 
2933 	/* We cannot hand out queues we don't have */
2934 	if ((offset + count) > dev->real_num_tx_queues)
2935 		return -EINVAL;
2936 
2937 	/* Record the mapping */
2938 	sb_dev->tc_to_txq[tc].count = count;
2939 	sb_dev->tc_to_txq[tc].offset = offset;
2940 
2941 	/* Provide a way for Tx queue to find the tc_to_txq map or
2942 	 * XPS map for itself.
2943 	 */
2944 	while (count--)
2945 		netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2946 
2947 	return 0;
2948 }
2949 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2950 
2951 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2952 {
2953 	/* Do not use a multiqueue device to represent a subordinate channel */
2954 	if (netif_is_multiqueue(dev))
2955 		return -ENODEV;
2956 
2957 	/* We allow channels 1 - 32767 to be used for subordinate channels.
2958 	 * Channel 0 is meant to be "native" mode and used only to represent
2959 	 * the main root device. We allow writing 0 to reset the device back
2960 	 * to normal mode after being used as a subordinate channel.
2961 	 */
2962 	if (channel > S16_MAX)
2963 		return -EINVAL;
2964 
2965 	dev->num_tc = -channel;
2966 
2967 	return 0;
2968 }
2969 EXPORT_SYMBOL(netdev_set_sb_channel);
2970 
2971 /*
2972  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2973  * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2974  */
2975 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2976 {
2977 	bool disabling;
2978 	int rc;
2979 
2980 	disabling = txq < dev->real_num_tx_queues;
2981 
2982 	if (txq < 1 || txq > dev->num_tx_queues)
2983 		return -EINVAL;
2984 
2985 	if (dev->reg_state == NETREG_REGISTERED ||
2986 	    dev->reg_state == NETREG_UNREGISTERING) {
2987 		ASSERT_RTNL();
2988 
2989 		rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2990 						  txq);
2991 		if (rc)
2992 			return rc;
2993 
2994 		if (dev->num_tc)
2995 			netif_setup_tc(dev, txq);
2996 
2997 		net_shaper_set_real_num_tx_queues(dev, txq);
2998 
2999 		dev_qdisc_change_real_num_tx(dev, txq);
3000 
3001 		dev->real_num_tx_queues = txq;
3002 
3003 		if (disabling) {
3004 			synchronize_net();
3005 			qdisc_reset_all_tx_gt(dev, txq);
3006 #ifdef CONFIG_XPS
3007 			netif_reset_xps_queues_gt(dev, txq);
3008 #endif
3009 		}
3010 	} else {
3011 		dev->real_num_tx_queues = txq;
3012 	}
3013 
3014 	return 0;
3015 }
3016 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
3017 
3018 #ifdef CONFIG_SYSFS
3019 /**
3020  *	netif_set_real_num_rx_queues - set actual number of RX queues used
3021  *	@dev: Network device
3022  *	@rxq: Actual number of RX queues
3023  *
3024  *	This must be called either with the rtnl_lock held or before
3025  *	registration of the net device.  Returns 0 on success, or a
3026  *	negative error code.  If called before registration, it always
3027  *	succeeds.
3028  */
3029 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
3030 {
3031 	int rc;
3032 
3033 	if (rxq < 1 || rxq > dev->num_rx_queues)
3034 		return -EINVAL;
3035 
3036 	if (dev->reg_state == NETREG_REGISTERED) {
3037 		ASSERT_RTNL();
3038 
3039 		rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
3040 						  rxq);
3041 		if (rc)
3042 			return rc;
3043 	}
3044 
3045 	dev->real_num_rx_queues = rxq;
3046 	return 0;
3047 }
3048 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
3049 #endif
3050 
3051 /**
3052  *	netif_set_real_num_queues - set actual number of RX and TX queues used
3053  *	@dev: Network device
3054  *	@txq: Actual number of TX queues
3055  *	@rxq: Actual number of RX queues
3056  *
3057  *	Set the real number of both TX and RX queues.
3058  *	Does nothing if the number of queues is already correct.
3059  */
3060 int netif_set_real_num_queues(struct net_device *dev,
3061 			      unsigned int txq, unsigned int rxq)
3062 {
3063 	unsigned int old_rxq = dev->real_num_rx_queues;
3064 	int err;
3065 
3066 	if (txq < 1 || txq > dev->num_tx_queues ||
3067 	    rxq < 1 || rxq > dev->num_rx_queues)
3068 		return -EINVAL;
3069 
3070 	/* Start from increases, so the error path only does decreases -
3071 	 * decreases can't fail.
3072 	 */
3073 	if (rxq > dev->real_num_rx_queues) {
3074 		err = netif_set_real_num_rx_queues(dev, rxq);
3075 		if (err)
3076 			return err;
3077 	}
3078 	if (txq > dev->real_num_tx_queues) {
3079 		err = netif_set_real_num_tx_queues(dev, txq);
3080 		if (err)
3081 			goto undo_rx;
3082 	}
3083 	if (rxq < dev->real_num_rx_queues)
3084 		WARN_ON(netif_set_real_num_rx_queues(dev, rxq));
3085 	if (txq < dev->real_num_tx_queues)
3086 		WARN_ON(netif_set_real_num_tx_queues(dev, txq));
3087 
3088 	return 0;
3089 undo_rx:
3090 	WARN_ON(netif_set_real_num_rx_queues(dev, old_rxq));
3091 	return err;
3092 }
3093 EXPORT_SYMBOL(netif_set_real_num_queues);
3094 
3095 /**
3096  * netif_set_tso_max_size() - set the max size of TSO frames supported
3097  * @dev:	netdev to update
3098  * @size:	max skb->len of a TSO frame
3099  *
3100  * Set the limit on the size of TSO super-frames the device can handle.
3101  * Unless explicitly set the stack will assume the value of
3102  * %GSO_LEGACY_MAX_SIZE.
3103  */
3104 void netif_set_tso_max_size(struct net_device *dev, unsigned int size)
3105 {
3106 	dev->tso_max_size = min(GSO_MAX_SIZE, size);
3107 	if (size < READ_ONCE(dev->gso_max_size))
3108 		netif_set_gso_max_size(dev, size);
3109 	if (size < READ_ONCE(dev->gso_ipv4_max_size))
3110 		netif_set_gso_ipv4_max_size(dev, size);
3111 }
3112 EXPORT_SYMBOL(netif_set_tso_max_size);
3113 
3114 /**
3115  * netif_set_tso_max_segs() - set the max number of segs supported for TSO
3116  * @dev:	netdev to update
3117  * @segs:	max number of TCP segments
3118  *
3119  * Set the limit on the number of TCP segments the device can generate from
3120  * a single TSO super-frame.
3121  * Unless explicitly set the stack will assume the value of %GSO_MAX_SEGS.
3122  */
3123 void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs)
3124 {
3125 	dev->tso_max_segs = segs;
3126 	if (segs < READ_ONCE(dev->gso_max_segs))
3127 		netif_set_gso_max_segs(dev, segs);
3128 }
3129 EXPORT_SYMBOL(netif_set_tso_max_segs);
3130 
3131 /**
3132  * netif_inherit_tso_max() - copy all TSO limits from a lower device to an upper
3133  * @to:		netdev to update
3134  * @from:	netdev from which to copy the limits
3135  */
3136 void netif_inherit_tso_max(struct net_device *to, const struct net_device *from)
3137 {
3138 	netif_set_tso_max_size(to, from->tso_max_size);
3139 	netif_set_tso_max_segs(to, from->tso_max_segs);
3140 }
3141 EXPORT_SYMBOL(netif_inherit_tso_max);
3142 
3143 /**
3144  * netif_get_num_default_rss_queues - default number of RSS queues
3145  *
3146  * Default value is the number of physical cores if there are only 1 or 2, or
3147  * divided by 2 if there are more.
3148  */
3149 int netif_get_num_default_rss_queues(void)
3150 {
3151 	cpumask_var_t cpus;
3152 	int cpu, count = 0;
3153 
3154 	if (unlikely(is_kdump_kernel() || !zalloc_cpumask_var(&cpus, GFP_KERNEL)))
3155 		return 1;
3156 
3157 	cpumask_copy(cpus, cpu_online_mask);
3158 	for_each_cpu(cpu, cpus) {
3159 		++count;
3160 		cpumask_andnot(cpus, cpus, topology_sibling_cpumask(cpu));
3161 	}
3162 	free_cpumask_var(cpus);
3163 
3164 	return count > 2 ? DIV_ROUND_UP(count, 2) : count;
3165 }
3166 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3167 
3168 static void __netif_reschedule(struct Qdisc *q)
3169 {
3170 	struct softnet_data *sd;
3171 	unsigned long flags;
3172 
3173 	local_irq_save(flags);
3174 	sd = this_cpu_ptr(&softnet_data);
3175 	q->next_sched = NULL;
3176 	*sd->output_queue_tailp = q;
3177 	sd->output_queue_tailp = &q->next_sched;
3178 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
3179 	local_irq_restore(flags);
3180 }
3181 
3182 void __netif_schedule(struct Qdisc *q)
3183 {
3184 	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3185 		__netif_reschedule(q);
3186 }
3187 EXPORT_SYMBOL(__netif_schedule);
3188 
3189 struct dev_kfree_skb_cb {
3190 	enum skb_drop_reason reason;
3191 };
3192 
3193 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
3194 {
3195 	return (struct dev_kfree_skb_cb *)skb->cb;
3196 }
3197 
3198 void netif_schedule_queue(struct netdev_queue *txq)
3199 {
3200 	rcu_read_lock();
3201 	if (!netif_xmit_stopped(txq)) {
3202 		struct Qdisc *q = rcu_dereference(txq->qdisc);
3203 
3204 		__netif_schedule(q);
3205 	}
3206 	rcu_read_unlock();
3207 }
3208 EXPORT_SYMBOL(netif_schedule_queue);
3209 
3210 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3211 {
3212 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3213 		struct Qdisc *q;
3214 
3215 		rcu_read_lock();
3216 		q = rcu_dereference(dev_queue->qdisc);
3217 		__netif_schedule(q);
3218 		rcu_read_unlock();
3219 	}
3220 }
3221 EXPORT_SYMBOL(netif_tx_wake_queue);
3222 
3223 void dev_kfree_skb_irq_reason(struct sk_buff *skb, enum skb_drop_reason reason)
3224 {
3225 	unsigned long flags;
3226 
3227 	if (unlikely(!skb))
3228 		return;
3229 
3230 	if (likely(refcount_read(&skb->users) == 1)) {
3231 		smp_rmb();
3232 		refcount_set(&skb->users, 0);
3233 	} else if (likely(!refcount_dec_and_test(&skb->users))) {
3234 		return;
3235 	}
3236 	get_kfree_skb_cb(skb)->reason = reason;
3237 	local_irq_save(flags);
3238 	skb->next = __this_cpu_read(softnet_data.completion_queue);
3239 	__this_cpu_write(softnet_data.completion_queue, skb);
3240 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
3241 	local_irq_restore(flags);
3242 }
3243 EXPORT_SYMBOL(dev_kfree_skb_irq_reason);
3244 
3245 void dev_kfree_skb_any_reason(struct sk_buff *skb, enum skb_drop_reason reason)
3246 {
3247 	if (in_hardirq() || irqs_disabled())
3248 		dev_kfree_skb_irq_reason(skb, reason);
3249 	else
3250 		kfree_skb_reason(skb, reason);
3251 }
3252 EXPORT_SYMBOL(dev_kfree_skb_any_reason);
3253 
3254 
3255 /**
3256  * netif_device_detach - mark device as removed
3257  * @dev: network device
3258  *
3259  * Mark device as removed from system and therefore no longer available.
3260  */
3261 void netif_device_detach(struct net_device *dev)
3262 {
3263 	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3264 	    netif_running(dev)) {
3265 		netif_tx_stop_all_queues(dev);
3266 	}
3267 }
3268 EXPORT_SYMBOL(netif_device_detach);
3269 
3270 /**
3271  * netif_device_attach - mark device as attached
3272  * @dev: network device
3273  *
3274  * Mark device as attached from system and restart if needed.
3275  */
3276 void netif_device_attach(struct net_device *dev)
3277 {
3278 	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3279 	    netif_running(dev)) {
3280 		netif_tx_wake_all_queues(dev);
3281 		netdev_watchdog_up(dev);
3282 	}
3283 }
3284 EXPORT_SYMBOL(netif_device_attach);
3285 
3286 /*
3287  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3288  * to be used as a distribution range.
3289  */
3290 static u16 skb_tx_hash(const struct net_device *dev,
3291 		       const struct net_device *sb_dev,
3292 		       struct sk_buff *skb)
3293 {
3294 	u32 hash;
3295 	u16 qoffset = 0;
3296 	u16 qcount = dev->real_num_tx_queues;
3297 
3298 	if (dev->num_tc) {
3299 		u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3300 
3301 		qoffset = sb_dev->tc_to_txq[tc].offset;
3302 		qcount = sb_dev->tc_to_txq[tc].count;
3303 		if (unlikely(!qcount)) {
3304 			net_warn_ratelimited("%s: invalid qcount, qoffset %u for tc %u\n",
3305 					     sb_dev->name, qoffset, tc);
3306 			qoffset = 0;
3307 			qcount = dev->real_num_tx_queues;
3308 		}
3309 	}
3310 
3311 	if (skb_rx_queue_recorded(skb)) {
3312 		DEBUG_NET_WARN_ON_ONCE(qcount == 0);
3313 		hash = skb_get_rx_queue(skb);
3314 		if (hash >= qoffset)
3315 			hash -= qoffset;
3316 		while (unlikely(hash >= qcount))
3317 			hash -= qcount;
3318 		return hash + qoffset;
3319 	}
3320 
3321 	return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3322 }
3323 
3324 void skb_warn_bad_offload(const struct sk_buff *skb)
3325 {
3326 	static const netdev_features_t null_features;
3327 	struct net_device *dev = skb->dev;
3328 	const char *name = "";
3329 
3330 	if (!net_ratelimit())
3331 		return;
3332 
3333 	if (dev) {
3334 		if (dev->dev.parent)
3335 			name = dev_driver_string(dev->dev.parent);
3336 		else
3337 			name = netdev_name(dev);
3338 	}
3339 	skb_dump(KERN_WARNING, skb, false);
3340 	WARN(1, "%s: caps=(%pNF, %pNF)\n",
3341 	     name, dev ? &dev->features : &null_features,
3342 	     skb->sk ? &skb->sk->sk_route_caps : &null_features);
3343 }
3344 
3345 /*
3346  * Invalidate hardware checksum when packet is to be mangled, and
3347  * complete checksum manually on outgoing path.
3348  */
3349 int skb_checksum_help(struct sk_buff *skb)
3350 {
3351 	__wsum csum;
3352 	int ret = 0, offset;
3353 
3354 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3355 		goto out_set_summed;
3356 
3357 	if (unlikely(skb_is_gso(skb))) {
3358 		skb_warn_bad_offload(skb);
3359 		return -EINVAL;
3360 	}
3361 
3362 	if (!skb_frags_readable(skb)) {
3363 		return -EFAULT;
3364 	}
3365 
3366 	/* Before computing a checksum, we should make sure no frag could
3367 	 * be modified by an external entity : checksum could be wrong.
3368 	 */
3369 	if (skb_has_shared_frag(skb)) {
3370 		ret = __skb_linearize(skb);
3371 		if (ret)
3372 			goto out;
3373 	}
3374 
3375 	offset = skb_checksum_start_offset(skb);
3376 	ret = -EINVAL;
3377 	if (unlikely(offset >= skb_headlen(skb))) {
3378 		DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3379 		WARN_ONCE(true, "offset (%d) >= skb_headlen() (%u)\n",
3380 			  offset, skb_headlen(skb));
3381 		goto out;
3382 	}
3383 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
3384 
3385 	offset += skb->csum_offset;
3386 	if (unlikely(offset + sizeof(__sum16) > skb_headlen(skb))) {
3387 		DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3388 		WARN_ONCE(true, "offset+2 (%zu) > skb_headlen() (%u)\n",
3389 			  offset + sizeof(__sum16), skb_headlen(skb));
3390 		goto out;
3391 	}
3392 	ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3393 	if (ret)
3394 		goto out;
3395 
3396 	*(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3397 out_set_summed:
3398 	skb->ip_summed = CHECKSUM_NONE;
3399 out:
3400 	return ret;
3401 }
3402 EXPORT_SYMBOL(skb_checksum_help);
3403 
3404 int skb_crc32c_csum_help(struct sk_buff *skb)
3405 {
3406 	__le32 crc32c_csum;
3407 	int ret = 0, offset, start;
3408 
3409 	if (skb->ip_summed != CHECKSUM_PARTIAL)
3410 		goto out;
3411 
3412 	if (unlikely(skb_is_gso(skb)))
3413 		goto out;
3414 
3415 	/* Before computing a checksum, we should make sure no frag could
3416 	 * be modified by an external entity : checksum could be wrong.
3417 	 */
3418 	if (unlikely(skb_has_shared_frag(skb))) {
3419 		ret = __skb_linearize(skb);
3420 		if (ret)
3421 			goto out;
3422 	}
3423 	start = skb_checksum_start_offset(skb);
3424 	offset = start + offsetof(struct sctphdr, checksum);
3425 	if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3426 		ret = -EINVAL;
3427 		goto out;
3428 	}
3429 
3430 	ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3431 	if (ret)
3432 		goto out;
3433 
3434 	crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3435 						  skb->len - start, ~(__u32)0,
3436 						  crc32c_csum_stub));
3437 	*(__le32 *)(skb->data + offset) = crc32c_csum;
3438 	skb_reset_csum_not_inet(skb);
3439 out:
3440 	return ret;
3441 }
3442 EXPORT_SYMBOL(skb_crc32c_csum_help);
3443 
3444 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3445 {
3446 	__be16 type = skb->protocol;
3447 
3448 	/* Tunnel gso handlers can set protocol to ethernet. */
3449 	if (type == htons(ETH_P_TEB)) {
3450 		struct ethhdr *eth;
3451 
3452 		if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3453 			return 0;
3454 
3455 		eth = (struct ethhdr *)skb->data;
3456 		type = eth->h_proto;
3457 	}
3458 
3459 	return vlan_get_protocol_and_depth(skb, type, depth);
3460 }
3461 
3462 
3463 /* Take action when hardware reception checksum errors are detected. */
3464 #ifdef CONFIG_BUG
3465 static void do_netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3466 {
3467 	netdev_err(dev, "hw csum failure\n");
3468 	skb_dump(KERN_ERR, skb, true);
3469 	dump_stack();
3470 }
3471 
3472 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3473 {
3474 	DO_ONCE_LITE(do_netdev_rx_csum_fault, dev, skb);
3475 }
3476 EXPORT_SYMBOL(netdev_rx_csum_fault);
3477 #endif
3478 
3479 /* XXX: check that highmem exists at all on the given machine. */
3480 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3481 {
3482 #ifdef CONFIG_HIGHMEM
3483 	int i;
3484 
3485 	if (!(dev->features & NETIF_F_HIGHDMA)) {
3486 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3487 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3488 			struct page *page = skb_frag_page(frag);
3489 
3490 			if (page && PageHighMem(page))
3491 				return 1;
3492 		}
3493 	}
3494 #endif
3495 	return 0;
3496 }
3497 
3498 /* If MPLS offload request, verify we are testing hardware MPLS features
3499  * instead of standard features for the netdev.
3500  */
3501 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3502 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3503 					   netdev_features_t features,
3504 					   __be16 type)
3505 {
3506 	if (eth_p_mpls(type))
3507 		features &= skb->dev->mpls_features;
3508 
3509 	return features;
3510 }
3511 #else
3512 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3513 					   netdev_features_t features,
3514 					   __be16 type)
3515 {
3516 	return features;
3517 }
3518 #endif
3519 
3520 static netdev_features_t harmonize_features(struct sk_buff *skb,
3521 	netdev_features_t features)
3522 {
3523 	__be16 type;
3524 
3525 	type = skb_network_protocol(skb, NULL);
3526 	features = net_mpls_features(skb, features, type);
3527 
3528 	if (skb->ip_summed != CHECKSUM_NONE &&
3529 	    !can_checksum_protocol(features, type)) {
3530 		features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3531 	}
3532 	if (illegal_highdma(skb->dev, skb))
3533 		features &= ~NETIF_F_SG;
3534 
3535 	return features;
3536 }
3537 
3538 netdev_features_t passthru_features_check(struct sk_buff *skb,
3539 					  struct net_device *dev,
3540 					  netdev_features_t features)
3541 {
3542 	return features;
3543 }
3544 EXPORT_SYMBOL(passthru_features_check);
3545 
3546 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3547 					     struct net_device *dev,
3548 					     netdev_features_t features)
3549 {
3550 	return vlan_features_check(skb, features);
3551 }
3552 
3553 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3554 					    struct net_device *dev,
3555 					    netdev_features_t features)
3556 {
3557 	u16 gso_segs = skb_shinfo(skb)->gso_segs;
3558 
3559 	if (gso_segs > READ_ONCE(dev->gso_max_segs))
3560 		return features & ~NETIF_F_GSO_MASK;
3561 
3562 	if (unlikely(skb->len >= netif_get_gso_max_size(dev, skb)))
3563 		return features & ~NETIF_F_GSO_MASK;
3564 
3565 	if (!skb_shinfo(skb)->gso_type) {
3566 		skb_warn_bad_offload(skb);
3567 		return features & ~NETIF_F_GSO_MASK;
3568 	}
3569 
3570 	/* Support for GSO partial features requires software
3571 	 * intervention before we can actually process the packets
3572 	 * so we need to strip support for any partial features now
3573 	 * and we can pull them back in after we have partially
3574 	 * segmented the frame.
3575 	 */
3576 	if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3577 		features &= ~dev->gso_partial_features;
3578 
3579 	/* Make sure to clear the IPv4 ID mangling feature if the
3580 	 * IPv4 header has the potential to be fragmented.
3581 	 */
3582 	if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3583 		struct iphdr *iph = skb->encapsulation ?
3584 				    inner_ip_hdr(skb) : ip_hdr(skb);
3585 
3586 		if (!(iph->frag_off & htons(IP_DF)))
3587 			features &= ~NETIF_F_TSO_MANGLEID;
3588 	}
3589 
3590 	return features;
3591 }
3592 
3593 netdev_features_t netif_skb_features(struct sk_buff *skb)
3594 {
3595 	struct net_device *dev = skb->dev;
3596 	netdev_features_t features = dev->features;
3597 
3598 	if (skb_is_gso(skb))
3599 		features = gso_features_check(skb, dev, features);
3600 
3601 	/* If encapsulation offload request, verify we are testing
3602 	 * hardware encapsulation features instead of standard
3603 	 * features for the netdev
3604 	 */
3605 	if (skb->encapsulation)
3606 		features &= dev->hw_enc_features;
3607 
3608 	if (skb_vlan_tagged(skb))
3609 		features = netdev_intersect_features(features,
3610 						     dev->vlan_features |
3611 						     NETIF_F_HW_VLAN_CTAG_TX |
3612 						     NETIF_F_HW_VLAN_STAG_TX);
3613 
3614 	if (dev->netdev_ops->ndo_features_check)
3615 		features &= dev->netdev_ops->ndo_features_check(skb, dev,
3616 								features);
3617 	else
3618 		features &= dflt_features_check(skb, dev, features);
3619 
3620 	return harmonize_features(skb, features);
3621 }
3622 EXPORT_SYMBOL(netif_skb_features);
3623 
3624 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3625 		    struct netdev_queue *txq, bool more)
3626 {
3627 	unsigned int len;
3628 	int rc;
3629 
3630 	if (dev_nit_active(dev))
3631 		dev_queue_xmit_nit(skb, dev);
3632 
3633 	len = skb->len;
3634 	trace_net_dev_start_xmit(skb, dev);
3635 	rc = netdev_start_xmit(skb, dev, txq, more);
3636 	trace_net_dev_xmit(skb, rc, dev, len);
3637 
3638 	return rc;
3639 }
3640 
3641 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3642 				    struct netdev_queue *txq, int *ret)
3643 {
3644 	struct sk_buff *skb = first;
3645 	int rc = NETDEV_TX_OK;
3646 
3647 	while (skb) {
3648 		struct sk_buff *next = skb->next;
3649 
3650 		skb_mark_not_on_list(skb);
3651 		rc = xmit_one(skb, dev, txq, next != NULL);
3652 		if (unlikely(!dev_xmit_complete(rc))) {
3653 			skb->next = next;
3654 			goto out;
3655 		}
3656 
3657 		skb = next;
3658 		if (netif_tx_queue_stopped(txq) && skb) {
3659 			rc = NETDEV_TX_BUSY;
3660 			break;
3661 		}
3662 	}
3663 
3664 out:
3665 	*ret = rc;
3666 	return skb;
3667 }
3668 
3669 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3670 					  netdev_features_t features)
3671 {
3672 	if (skb_vlan_tag_present(skb) &&
3673 	    !vlan_hw_offload_capable(features, skb->vlan_proto))
3674 		skb = __vlan_hwaccel_push_inside(skb);
3675 	return skb;
3676 }
3677 
3678 int skb_csum_hwoffload_help(struct sk_buff *skb,
3679 			    const netdev_features_t features)
3680 {
3681 	if (unlikely(skb_csum_is_sctp(skb)))
3682 		return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3683 			skb_crc32c_csum_help(skb);
3684 
3685 	if (features & NETIF_F_HW_CSUM)
3686 		return 0;
3687 
3688 	if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
3689 		if (vlan_get_protocol(skb) == htons(ETH_P_IPV6) &&
3690 		    skb_network_header_len(skb) != sizeof(struct ipv6hdr) &&
3691 		    !ipv6_has_hopopt_jumbo(skb))
3692 			goto sw_checksum;
3693 
3694 		switch (skb->csum_offset) {
3695 		case offsetof(struct tcphdr, check):
3696 		case offsetof(struct udphdr, check):
3697 			return 0;
3698 		}
3699 	}
3700 
3701 sw_checksum:
3702 	return skb_checksum_help(skb);
3703 }
3704 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3705 
3706 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3707 {
3708 	netdev_features_t features;
3709 
3710 	features = netif_skb_features(skb);
3711 	skb = validate_xmit_vlan(skb, features);
3712 	if (unlikely(!skb))
3713 		goto out_null;
3714 
3715 	skb = sk_validate_xmit_skb(skb, dev);
3716 	if (unlikely(!skb))
3717 		goto out_null;
3718 
3719 	if (netif_needs_gso(skb, features)) {
3720 		struct sk_buff *segs;
3721 
3722 		segs = skb_gso_segment(skb, features);
3723 		if (IS_ERR(segs)) {
3724 			goto out_kfree_skb;
3725 		} else if (segs) {
3726 			consume_skb(skb);
3727 			skb = segs;
3728 		}
3729 	} else {
3730 		if (skb_needs_linearize(skb, features) &&
3731 		    __skb_linearize(skb))
3732 			goto out_kfree_skb;
3733 
3734 		/* If packet is not checksummed and device does not
3735 		 * support checksumming for this protocol, complete
3736 		 * checksumming here.
3737 		 */
3738 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
3739 			if (skb->encapsulation)
3740 				skb_set_inner_transport_header(skb,
3741 							       skb_checksum_start_offset(skb));
3742 			else
3743 				skb_set_transport_header(skb,
3744 							 skb_checksum_start_offset(skb));
3745 			if (skb_csum_hwoffload_help(skb, features))
3746 				goto out_kfree_skb;
3747 		}
3748 	}
3749 
3750 	skb = validate_xmit_xfrm(skb, features, again);
3751 
3752 	return skb;
3753 
3754 out_kfree_skb:
3755 	kfree_skb(skb);
3756 out_null:
3757 	dev_core_stats_tx_dropped_inc(dev);
3758 	return NULL;
3759 }
3760 
3761 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3762 {
3763 	struct sk_buff *next, *head = NULL, *tail;
3764 
3765 	for (; skb != NULL; skb = next) {
3766 		next = skb->next;
3767 		skb_mark_not_on_list(skb);
3768 
3769 		/* in case skb won't be segmented, point to itself */
3770 		skb->prev = skb;
3771 
3772 		skb = validate_xmit_skb(skb, dev, again);
3773 		if (!skb)
3774 			continue;
3775 
3776 		if (!head)
3777 			head = skb;
3778 		else
3779 			tail->next = skb;
3780 		/* If skb was segmented, skb->prev points to
3781 		 * the last segment. If not, it still contains skb.
3782 		 */
3783 		tail = skb->prev;
3784 	}
3785 	return head;
3786 }
3787 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3788 
3789 static void qdisc_pkt_len_init(struct sk_buff *skb)
3790 {
3791 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
3792 
3793 	qdisc_skb_cb(skb)->pkt_len = skb->len;
3794 
3795 	/* To get more precise estimation of bytes sent on wire,
3796 	 * we add to pkt_len the headers size of all segments
3797 	 */
3798 	if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3799 		u16 gso_segs = shinfo->gso_segs;
3800 		unsigned int hdr_len;
3801 
3802 		/* mac layer + network layer */
3803 		hdr_len = skb_transport_offset(skb);
3804 
3805 		/* + transport layer */
3806 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3807 			const struct tcphdr *th;
3808 			struct tcphdr _tcphdr;
3809 
3810 			th = skb_header_pointer(skb, hdr_len,
3811 						sizeof(_tcphdr), &_tcphdr);
3812 			if (likely(th))
3813 				hdr_len += __tcp_hdrlen(th);
3814 		} else if (shinfo->gso_type & SKB_GSO_UDP_L4) {
3815 			struct udphdr _udphdr;
3816 
3817 			if (skb_header_pointer(skb, hdr_len,
3818 					       sizeof(_udphdr), &_udphdr))
3819 				hdr_len += sizeof(struct udphdr);
3820 		}
3821 
3822 		if (unlikely(shinfo->gso_type & SKB_GSO_DODGY)) {
3823 			int payload = skb->len - hdr_len;
3824 
3825 			/* Malicious packet. */
3826 			if (payload <= 0)
3827 				return;
3828 			gso_segs = DIV_ROUND_UP(payload, shinfo->gso_size);
3829 		}
3830 		qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3831 	}
3832 }
3833 
3834 static int dev_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *q,
3835 			     struct sk_buff **to_free,
3836 			     struct netdev_queue *txq)
3837 {
3838 	int rc;
3839 
3840 	rc = q->enqueue(skb, q, to_free) & NET_XMIT_MASK;
3841 	if (rc == NET_XMIT_SUCCESS)
3842 		trace_qdisc_enqueue(q, txq, skb);
3843 	return rc;
3844 }
3845 
3846 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3847 				 struct net_device *dev,
3848 				 struct netdev_queue *txq)
3849 {
3850 	spinlock_t *root_lock = qdisc_lock(q);
3851 	struct sk_buff *to_free = NULL;
3852 	bool contended;
3853 	int rc;
3854 
3855 	qdisc_calculate_pkt_len(skb, q);
3856 
3857 	tcf_set_drop_reason(skb, SKB_DROP_REASON_QDISC_DROP);
3858 
3859 	if (q->flags & TCQ_F_NOLOCK) {
3860 		if (q->flags & TCQ_F_CAN_BYPASS && nolock_qdisc_is_empty(q) &&
3861 		    qdisc_run_begin(q)) {
3862 			/* Retest nolock_qdisc_is_empty() within the protection
3863 			 * of q->seqlock to protect from racing with requeuing.
3864 			 */
3865 			if (unlikely(!nolock_qdisc_is_empty(q))) {
3866 				rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3867 				__qdisc_run(q);
3868 				qdisc_run_end(q);
3869 
3870 				goto no_lock_out;
3871 			}
3872 
3873 			qdisc_bstats_cpu_update(q, skb);
3874 			if (sch_direct_xmit(skb, q, dev, txq, NULL, true) &&
3875 			    !nolock_qdisc_is_empty(q))
3876 				__qdisc_run(q);
3877 
3878 			qdisc_run_end(q);
3879 			return NET_XMIT_SUCCESS;
3880 		}
3881 
3882 		rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3883 		qdisc_run(q);
3884 
3885 no_lock_out:
3886 		if (unlikely(to_free))
3887 			kfree_skb_list_reason(to_free,
3888 					      tcf_get_drop_reason(to_free));
3889 		return rc;
3890 	}
3891 
3892 	if (unlikely(READ_ONCE(q->owner) == smp_processor_id())) {
3893 		kfree_skb_reason(skb, SKB_DROP_REASON_TC_RECLASSIFY_LOOP);
3894 		return NET_XMIT_DROP;
3895 	}
3896 	/*
3897 	 * Heuristic to force contended enqueues to serialize on a
3898 	 * separate lock before trying to get qdisc main lock.
3899 	 * This permits qdisc->running owner to get the lock more
3900 	 * often and dequeue packets faster.
3901 	 * On PREEMPT_RT it is possible to preempt the qdisc owner during xmit
3902 	 * and then other tasks will only enqueue packets. The packets will be
3903 	 * sent after the qdisc owner is scheduled again. To prevent this
3904 	 * scenario the task always serialize on the lock.
3905 	 */
3906 	contended = qdisc_is_running(q) || IS_ENABLED(CONFIG_PREEMPT_RT);
3907 	if (unlikely(contended))
3908 		spin_lock(&q->busylock);
3909 
3910 	spin_lock(root_lock);
3911 	if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3912 		__qdisc_drop(skb, &to_free);
3913 		rc = NET_XMIT_DROP;
3914 	} else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3915 		   qdisc_run_begin(q)) {
3916 		/*
3917 		 * This is a work-conserving queue; there are no old skbs
3918 		 * waiting to be sent out; and the qdisc is not running -
3919 		 * xmit the skb directly.
3920 		 */
3921 
3922 		qdisc_bstats_update(q, skb);
3923 
3924 		if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3925 			if (unlikely(contended)) {
3926 				spin_unlock(&q->busylock);
3927 				contended = false;
3928 			}
3929 			__qdisc_run(q);
3930 		}
3931 
3932 		qdisc_run_end(q);
3933 		rc = NET_XMIT_SUCCESS;
3934 	} else {
3935 		WRITE_ONCE(q->owner, smp_processor_id());
3936 		rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3937 		WRITE_ONCE(q->owner, -1);
3938 		if (qdisc_run_begin(q)) {
3939 			if (unlikely(contended)) {
3940 				spin_unlock(&q->busylock);
3941 				contended = false;
3942 			}
3943 			__qdisc_run(q);
3944 			qdisc_run_end(q);
3945 		}
3946 	}
3947 	spin_unlock(root_lock);
3948 	if (unlikely(to_free))
3949 		kfree_skb_list_reason(to_free,
3950 				      tcf_get_drop_reason(to_free));
3951 	if (unlikely(contended))
3952 		spin_unlock(&q->busylock);
3953 	return rc;
3954 }
3955 
3956 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3957 static void skb_update_prio(struct sk_buff *skb)
3958 {
3959 	const struct netprio_map *map;
3960 	const struct sock *sk;
3961 	unsigned int prioidx;
3962 
3963 	if (skb->priority)
3964 		return;
3965 	map = rcu_dereference_bh(skb->dev->priomap);
3966 	if (!map)
3967 		return;
3968 	sk = skb_to_full_sk(skb);
3969 	if (!sk)
3970 		return;
3971 
3972 	prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3973 
3974 	if (prioidx < map->priomap_len)
3975 		skb->priority = map->priomap[prioidx];
3976 }
3977 #else
3978 #define skb_update_prio(skb)
3979 #endif
3980 
3981 /**
3982  *	dev_loopback_xmit - loop back @skb
3983  *	@net: network namespace this loopback is happening in
3984  *	@sk:  sk needed to be a netfilter okfn
3985  *	@skb: buffer to transmit
3986  */
3987 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3988 {
3989 	skb_reset_mac_header(skb);
3990 	__skb_pull(skb, skb_network_offset(skb));
3991 	skb->pkt_type = PACKET_LOOPBACK;
3992 	if (skb->ip_summed == CHECKSUM_NONE)
3993 		skb->ip_summed = CHECKSUM_UNNECESSARY;
3994 	DEBUG_NET_WARN_ON_ONCE(!skb_dst(skb));
3995 	skb_dst_force(skb);
3996 	netif_rx(skb);
3997 	return 0;
3998 }
3999 EXPORT_SYMBOL(dev_loopback_xmit);
4000 
4001 #ifdef CONFIG_NET_EGRESS
4002 static struct netdev_queue *
4003 netdev_tx_queue_mapping(struct net_device *dev, struct sk_buff *skb)
4004 {
4005 	int qm = skb_get_queue_mapping(skb);
4006 
4007 	return netdev_get_tx_queue(dev, netdev_cap_txqueue(dev, qm));
4008 }
4009 
4010 #ifndef CONFIG_PREEMPT_RT
4011 static bool netdev_xmit_txqueue_skipped(void)
4012 {
4013 	return __this_cpu_read(softnet_data.xmit.skip_txqueue);
4014 }
4015 
4016 void netdev_xmit_skip_txqueue(bool skip)
4017 {
4018 	__this_cpu_write(softnet_data.xmit.skip_txqueue, skip);
4019 }
4020 EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue);
4021 
4022 #else
4023 static bool netdev_xmit_txqueue_skipped(void)
4024 {
4025 	return current->net_xmit.skip_txqueue;
4026 }
4027 
4028 void netdev_xmit_skip_txqueue(bool skip)
4029 {
4030 	current->net_xmit.skip_txqueue = skip;
4031 }
4032 EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue);
4033 #endif
4034 #endif /* CONFIG_NET_EGRESS */
4035 
4036 #ifdef CONFIG_NET_XGRESS
4037 static int tc_run(struct tcx_entry *entry, struct sk_buff *skb,
4038 		  enum skb_drop_reason *drop_reason)
4039 {
4040 	int ret = TC_ACT_UNSPEC;
4041 #ifdef CONFIG_NET_CLS_ACT
4042 	struct mini_Qdisc *miniq = rcu_dereference_bh(entry->miniq);
4043 	struct tcf_result res;
4044 
4045 	if (!miniq)
4046 		return ret;
4047 
4048 	if (static_branch_unlikely(&tcf_bypass_check_needed_key)) {
4049 		if (tcf_block_bypass_sw(miniq->block))
4050 			return ret;
4051 	}
4052 
4053 	tc_skb_cb(skb)->mru = 0;
4054 	tc_skb_cb(skb)->post_ct = false;
4055 	tcf_set_drop_reason(skb, *drop_reason);
4056 
4057 	mini_qdisc_bstats_cpu_update(miniq, skb);
4058 	ret = tcf_classify(skb, miniq->block, miniq->filter_list, &res, false);
4059 	/* Only tcf related quirks below. */
4060 	switch (ret) {
4061 	case TC_ACT_SHOT:
4062 		*drop_reason = tcf_get_drop_reason(skb);
4063 		mini_qdisc_qstats_cpu_drop(miniq);
4064 		break;
4065 	case TC_ACT_OK:
4066 	case TC_ACT_RECLASSIFY:
4067 		skb->tc_index = TC_H_MIN(res.classid);
4068 		break;
4069 	}
4070 #endif /* CONFIG_NET_CLS_ACT */
4071 	return ret;
4072 }
4073 
4074 static DEFINE_STATIC_KEY_FALSE(tcx_needed_key);
4075 
4076 void tcx_inc(void)
4077 {
4078 	static_branch_inc(&tcx_needed_key);
4079 }
4080 
4081 void tcx_dec(void)
4082 {
4083 	static_branch_dec(&tcx_needed_key);
4084 }
4085 
4086 static __always_inline enum tcx_action_base
4087 tcx_run(const struct bpf_mprog_entry *entry, struct sk_buff *skb,
4088 	const bool needs_mac)
4089 {
4090 	const struct bpf_mprog_fp *fp;
4091 	const struct bpf_prog *prog;
4092 	int ret = TCX_NEXT;
4093 
4094 	if (needs_mac)
4095 		__skb_push(skb, skb->mac_len);
4096 	bpf_mprog_foreach_prog(entry, fp, prog) {
4097 		bpf_compute_data_pointers(skb);
4098 		ret = bpf_prog_run(prog, skb);
4099 		if (ret != TCX_NEXT)
4100 			break;
4101 	}
4102 	if (needs_mac)
4103 		__skb_pull(skb, skb->mac_len);
4104 	return tcx_action_code(skb, ret);
4105 }
4106 
4107 static __always_inline struct sk_buff *
4108 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4109 		   struct net_device *orig_dev, bool *another)
4110 {
4111 	struct bpf_mprog_entry *entry = rcu_dereference_bh(skb->dev->tcx_ingress);
4112 	enum skb_drop_reason drop_reason = SKB_DROP_REASON_TC_INGRESS;
4113 	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
4114 	int sch_ret;
4115 
4116 	if (!entry)
4117 		return skb;
4118 
4119 	bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
4120 	if (*pt_prev) {
4121 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
4122 		*pt_prev = NULL;
4123 	}
4124 
4125 	qdisc_skb_cb(skb)->pkt_len = skb->len;
4126 	tcx_set_ingress(skb, true);
4127 
4128 	if (static_branch_unlikely(&tcx_needed_key)) {
4129 		sch_ret = tcx_run(entry, skb, true);
4130 		if (sch_ret != TC_ACT_UNSPEC)
4131 			goto ingress_verdict;
4132 	}
4133 	sch_ret = tc_run(tcx_entry(entry), skb, &drop_reason);
4134 ingress_verdict:
4135 	switch (sch_ret) {
4136 	case TC_ACT_REDIRECT:
4137 		/* skb_mac_header check was done by BPF, so we can safely
4138 		 * push the L2 header back before redirecting to another
4139 		 * netdev.
4140 		 */
4141 		__skb_push(skb, skb->mac_len);
4142 		if (skb_do_redirect(skb) == -EAGAIN) {
4143 			__skb_pull(skb, skb->mac_len);
4144 			*another = true;
4145 			break;
4146 		}
4147 		*ret = NET_RX_SUCCESS;
4148 		bpf_net_ctx_clear(bpf_net_ctx);
4149 		return NULL;
4150 	case TC_ACT_SHOT:
4151 		kfree_skb_reason(skb, drop_reason);
4152 		*ret = NET_RX_DROP;
4153 		bpf_net_ctx_clear(bpf_net_ctx);
4154 		return NULL;
4155 	/* used by tc_run */
4156 	case TC_ACT_STOLEN:
4157 	case TC_ACT_QUEUED:
4158 	case TC_ACT_TRAP:
4159 		consume_skb(skb);
4160 		fallthrough;
4161 	case TC_ACT_CONSUMED:
4162 		*ret = NET_RX_SUCCESS;
4163 		bpf_net_ctx_clear(bpf_net_ctx);
4164 		return NULL;
4165 	}
4166 	bpf_net_ctx_clear(bpf_net_ctx);
4167 
4168 	return skb;
4169 }
4170 
4171 static __always_inline struct sk_buff *
4172 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
4173 {
4174 	struct bpf_mprog_entry *entry = rcu_dereference_bh(dev->tcx_egress);
4175 	enum skb_drop_reason drop_reason = SKB_DROP_REASON_TC_EGRESS;
4176 	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
4177 	int sch_ret;
4178 
4179 	if (!entry)
4180 		return skb;
4181 
4182 	bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
4183 
4184 	/* qdisc_skb_cb(skb)->pkt_len & tcx_set_ingress() was
4185 	 * already set by the caller.
4186 	 */
4187 	if (static_branch_unlikely(&tcx_needed_key)) {
4188 		sch_ret = tcx_run(entry, skb, false);
4189 		if (sch_ret != TC_ACT_UNSPEC)
4190 			goto egress_verdict;
4191 	}
4192 	sch_ret = tc_run(tcx_entry(entry), skb, &drop_reason);
4193 egress_verdict:
4194 	switch (sch_ret) {
4195 	case TC_ACT_REDIRECT:
4196 		/* No need to push/pop skb's mac_header here on egress! */
4197 		skb_do_redirect(skb);
4198 		*ret = NET_XMIT_SUCCESS;
4199 		bpf_net_ctx_clear(bpf_net_ctx);
4200 		return NULL;
4201 	case TC_ACT_SHOT:
4202 		kfree_skb_reason(skb, drop_reason);
4203 		*ret = NET_XMIT_DROP;
4204 		bpf_net_ctx_clear(bpf_net_ctx);
4205 		return NULL;
4206 	/* used by tc_run */
4207 	case TC_ACT_STOLEN:
4208 	case TC_ACT_QUEUED:
4209 	case TC_ACT_TRAP:
4210 		consume_skb(skb);
4211 		fallthrough;
4212 	case TC_ACT_CONSUMED:
4213 		*ret = NET_XMIT_SUCCESS;
4214 		bpf_net_ctx_clear(bpf_net_ctx);
4215 		return NULL;
4216 	}
4217 	bpf_net_ctx_clear(bpf_net_ctx);
4218 
4219 	return skb;
4220 }
4221 #else
4222 static __always_inline struct sk_buff *
4223 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4224 		   struct net_device *orig_dev, bool *another)
4225 {
4226 	return skb;
4227 }
4228 
4229 static __always_inline struct sk_buff *
4230 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
4231 {
4232 	return skb;
4233 }
4234 #endif /* CONFIG_NET_XGRESS */
4235 
4236 #ifdef CONFIG_XPS
4237 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
4238 			       struct xps_dev_maps *dev_maps, unsigned int tci)
4239 {
4240 	int tc = netdev_get_prio_tc_map(dev, skb->priority);
4241 	struct xps_map *map;
4242 	int queue_index = -1;
4243 
4244 	if (tc >= dev_maps->num_tc || tci >= dev_maps->nr_ids)
4245 		return queue_index;
4246 
4247 	tci *= dev_maps->num_tc;
4248 	tci += tc;
4249 
4250 	map = rcu_dereference(dev_maps->attr_map[tci]);
4251 	if (map) {
4252 		if (map->len == 1)
4253 			queue_index = map->queues[0];
4254 		else
4255 			queue_index = map->queues[reciprocal_scale(
4256 						skb_get_hash(skb), map->len)];
4257 		if (unlikely(queue_index >= dev->real_num_tx_queues))
4258 			queue_index = -1;
4259 	}
4260 	return queue_index;
4261 }
4262 #endif
4263 
4264 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
4265 			 struct sk_buff *skb)
4266 {
4267 #ifdef CONFIG_XPS
4268 	struct xps_dev_maps *dev_maps;
4269 	struct sock *sk = skb->sk;
4270 	int queue_index = -1;
4271 
4272 	if (!static_key_false(&xps_needed))
4273 		return -1;
4274 
4275 	rcu_read_lock();
4276 	if (!static_key_false(&xps_rxqs_needed))
4277 		goto get_cpus_map;
4278 
4279 	dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_RXQS]);
4280 	if (dev_maps) {
4281 		int tci = sk_rx_queue_get(sk);
4282 
4283 		if (tci >= 0)
4284 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4285 							  tci);
4286 	}
4287 
4288 get_cpus_map:
4289 	if (queue_index < 0) {
4290 		dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_CPUS]);
4291 		if (dev_maps) {
4292 			unsigned int tci = skb->sender_cpu - 1;
4293 
4294 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4295 							  tci);
4296 		}
4297 	}
4298 	rcu_read_unlock();
4299 
4300 	return queue_index;
4301 #else
4302 	return -1;
4303 #endif
4304 }
4305 
4306 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
4307 		     struct net_device *sb_dev)
4308 {
4309 	return 0;
4310 }
4311 EXPORT_SYMBOL(dev_pick_tx_zero);
4312 
4313 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
4314 		     struct net_device *sb_dev)
4315 {
4316 	struct sock *sk = skb->sk;
4317 	int queue_index = sk_tx_queue_get(sk);
4318 
4319 	sb_dev = sb_dev ? : dev;
4320 
4321 	if (queue_index < 0 || skb->ooo_okay ||
4322 	    queue_index >= dev->real_num_tx_queues) {
4323 		int new_index = get_xps_queue(dev, sb_dev, skb);
4324 
4325 		if (new_index < 0)
4326 			new_index = skb_tx_hash(dev, sb_dev, skb);
4327 
4328 		if (queue_index != new_index && sk &&
4329 		    sk_fullsock(sk) &&
4330 		    rcu_access_pointer(sk->sk_dst_cache))
4331 			sk_tx_queue_set(sk, new_index);
4332 
4333 		queue_index = new_index;
4334 	}
4335 
4336 	return queue_index;
4337 }
4338 EXPORT_SYMBOL(netdev_pick_tx);
4339 
4340 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
4341 					 struct sk_buff *skb,
4342 					 struct net_device *sb_dev)
4343 {
4344 	int queue_index = 0;
4345 
4346 #ifdef CONFIG_XPS
4347 	u32 sender_cpu = skb->sender_cpu - 1;
4348 
4349 	if (sender_cpu >= (u32)NR_CPUS)
4350 		skb->sender_cpu = raw_smp_processor_id() + 1;
4351 #endif
4352 
4353 	if (dev->real_num_tx_queues != 1) {
4354 		const struct net_device_ops *ops = dev->netdev_ops;
4355 
4356 		if (ops->ndo_select_queue)
4357 			queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
4358 		else
4359 			queue_index = netdev_pick_tx(dev, skb, sb_dev);
4360 
4361 		queue_index = netdev_cap_txqueue(dev, queue_index);
4362 	}
4363 
4364 	skb_set_queue_mapping(skb, queue_index);
4365 	return netdev_get_tx_queue(dev, queue_index);
4366 }
4367 
4368 /**
4369  * __dev_queue_xmit() - transmit a buffer
4370  * @skb:	buffer to transmit
4371  * @sb_dev:	suboordinate device used for L2 forwarding offload
4372  *
4373  * Queue a buffer for transmission to a network device. The caller must
4374  * have set the device and priority and built the buffer before calling
4375  * this function. The function can be called from an interrupt.
4376  *
4377  * When calling this method, interrupts MUST be enabled. This is because
4378  * the BH enable code must have IRQs enabled so that it will not deadlock.
4379  *
4380  * Regardless of the return value, the skb is consumed, so it is currently
4381  * difficult to retry a send to this method. (You can bump the ref count
4382  * before sending to hold a reference for retry if you are careful.)
4383  *
4384  * Return:
4385  * * 0				- buffer successfully transmitted
4386  * * positive qdisc return code	- NET_XMIT_DROP etc.
4387  * * negative errno		- other errors
4388  */
4389 int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
4390 {
4391 	struct net_device *dev = skb->dev;
4392 	struct netdev_queue *txq = NULL;
4393 	struct Qdisc *q;
4394 	int rc = -ENOMEM;
4395 	bool again = false;
4396 
4397 	skb_reset_mac_header(skb);
4398 	skb_assert_len(skb);
4399 
4400 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
4401 		__skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED);
4402 
4403 	/* Disable soft irqs for various locks below. Also
4404 	 * stops preemption for RCU.
4405 	 */
4406 	rcu_read_lock_bh();
4407 
4408 	skb_update_prio(skb);
4409 
4410 	qdisc_pkt_len_init(skb);
4411 	tcx_set_ingress(skb, false);
4412 #ifdef CONFIG_NET_EGRESS
4413 	if (static_branch_unlikely(&egress_needed_key)) {
4414 		if (nf_hook_egress_active()) {
4415 			skb = nf_hook_egress(skb, &rc, dev);
4416 			if (!skb)
4417 				goto out;
4418 		}
4419 
4420 		netdev_xmit_skip_txqueue(false);
4421 
4422 		nf_skip_egress(skb, true);
4423 		skb = sch_handle_egress(skb, &rc, dev);
4424 		if (!skb)
4425 			goto out;
4426 		nf_skip_egress(skb, false);
4427 
4428 		if (netdev_xmit_txqueue_skipped())
4429 			txq = netdev_tx_queue_mapping(dev, skb);
4430 	}
4431 #endif
4432 	/* If device/qdisc don't need skb->dst, release it right now while
4433 	 * its hot in this cpu cache.
4434 	 */
4435 	if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4436 		skb_dst_drop(skb);
4437 	else
4438 		skb_dst_force(skb);
4439 
4440 	if (!txq)
4441 		txq = netdev_core_pick_tx(dev, skb, sb_dev);
4442 
4443 	q = rcu_dereference_bh(txq->qdisc);
4444 
4445 	trace_net_dev_queue(skb);
4446 	if (q->enqueue) {
4447 		rc = __dev_xmit_skb(skb, q, dev, txq);
4448 		goto out;
4449 	}
4450 
4451 	/* The device has no queue. Common case for software devices:
4452 	 * loopback, all the sorts of tunnels...
4453 
4454 	 * Really, it is unlikely that netif_tx_lock protection is necessary
4455 	 * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
4456 	 * counters.)
4457 	 * However, it is possible, that they rely on protection
4458 	 * made by us here.
4459 
4460 	 * Check this and shot the lock. It is not prone from deadlocks.
4461 	 *Either shot noqueue qdisc, it is even simpler 8)
4462 	 */
4463 	if (dev->flags & IFF_UP) {
4464 		int cpu = smp_processor_id(); /* ok because BHs are off */
4465 
4466 		/* Other cpus might concurrently change txq->xmit_lock_owner
4467 		 * to -1 or to their cpu id, but not to our id.
4468 		 */
4469 		if (READ_ONCE(txq->xmit_lock_owner) != cpu) {
4470 			if (dev_xmit_recursion())
4471 				goto recursion_alert;
4472 
4473 			skb = validate_xmit_skb(skb, dev, &again);
4474 			if (!skb)
4475 				goto out;
4476 
4477 			HARD_TX_LOCK(dev, txq, cpu);
4478 
4479 			if (!netif_xmit_stopped(txq)) {
4480 				dev_xmit_recursion_inc();
4481 				skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4482 				dev_xmit_recursion_dec();
4483 				if (dev_xmit_complete(rc)) {
4484 					HARD_TX_UNLOCK(dev, txq);
4485 					goto out;
4486 				}
4487 			}
4488 			HARD_TX_UNLOCK(dev, txq);
4489 			net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4490 					     dev->name);
4491 		} else {
4492 			/* Recursion is detected! It is possible,
4493 			 * unfortunately
4494 			 */
4495 recursion_alert:
4496 			net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4497 					     dev->name);
4498 		}
4499 	}
4500 
4501 	rc = -ENETDOWN;
4502 	rcu_read_unlock_bh();
4503 
4504 	dev_core_stats_tx_dropped_inc(dev);
4505 	kfree_skb_list(skb);
4506 	return rc;
4507 out:
4508 	rcu_read_unlock_bh();
4509 	return rc;
4510 }
4511 EXPORT_SYMBOL(__dev_queue_xmit);
4512 
4513 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4514 {
4515 	struct net_device *dev = skb->dev;
4516 	struct sk_buff *orig_skb = skb;
4517 	struct netdev_queue *txq;
4518 	int ret = NETDEV_TX_BUSY;
4519 	bool again = false;
4520 
4521 	if (unlikely(!netif_running(dev) ||
4522 		     !netif_carrier_ok(dev)))
4523 		goto drop;
4524 
4525 	skb = validate_xmit_skb_list(skb, dev, &again);
4526 	if (skb != orig_skb)
4527 		goto drop;
4528 
4529 	skb_set_queue_mapping(skb, queue_id);
4530 	txq = skb_get_tx_queue(dev, skb);
4531 
4532 	local_bh_disable();
4533 
4534 	dev_xmit_recursion_inc();
4535 	HARD_TX_LOCK(dev, txq, smp_processor_id());
4536 	if (!netif_xmit_frozen_or_drv_stopped(txq))
4537 		ret = netdev_start_xmit(skb, dev, txq, false);
4538 	HARD_TX_UNLOCK(dev, txq);
4539 	dev_xmit_recursion_dec();
4540 
4541 	local_bh_enable();
4542 	return ret;
4543 drop:
4544 	dev_core_stats_tx_dropped_inc(dev);
4545 	kfree_skb_list(skb);
4546 	return NET_XMIT_DROP;
4547 }
4548 EXPORT_SYMBOL(__dev_direct_xmit);
4549 
4550 /*************************************************************************
4551  *			Receiver routines
4552  *************************************************************************/
4553 static DEFINE_PER_CPU(struct task_struct *, backlog_napi);
4554 
4555 int weight_p __read_mostly = 64;           /* old backlog weight */
4556 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
4557 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
4558 
4559 /* Called with irq disabled */
4560 static inline void ____napi_schedule(struct softnet_data *sd,
4561 				     struct napi_struct *napi)
4562 {
4563 	struct task_struct *thread;
4564 
4565 	lockdep_assert_irqs_disabled();
4566 
4567 	if (test_bit(NAPI_STATE_THREADED, &napi->state)) {
4568 		/* Paired with smp_mb__before_atomic() in
4569 		 * napi_enable()/dev_set_threaded().
4570 		 * Use READ_ONCE() to guarantee a complete
4571 		 * read on napi->thread. Only call
4572 		 * wake_up_process() when it's not NULL.
4573 		 */
4574 		thread = READ_ONCE(napi->thread);
4575 		if (thread) {
4576 			if (use_backlog_threads() && thread == raw_cpu_read(backlog_napi))
4577 				goto use_local_napi;
4578 
4579 			set_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
4580 			wake_up_process(thread);
4581 			return;
4582 		}
4583 	}
4584 
4585 use_local_napi:
4586 	list_add_tail(&napi->poll_list, &sd->poll_list);
4587 	WRITE_ONCE(napi->list_owner, smp_processor_id());
4588 	/* If not called from net_rx_action()
4589 	 * we have to raise NET_RX_SOFTIRQ.
4590 	 */
4591 	if (!sd->in_net_rx_action)
4592 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4593 }
4594 
4595 #ifdef CONFIG_RPS
4596 
4597 struct static_key_false rps_needed __read_mostly;
4598 EXPORT_SYMBOL(rps_needed);
4599 struct static_key_false rfs_needed __read_mostly;
4600 EXPORT_SYMBOL(rfs_needed);
4601 
4602 static struct rps_dev_flow *
4603 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4604 	    struct rps_dev_flow *rflow, u16 next_cpu)
4605 {
4606 	if (next_cpu < nr_cpu_ids) {
4607 		u32 head;
4608 #ifdef CONFIG_RFS_ACCEL
4609 		struct netdev_rx_queue *rxqueue;
4610 		struct rps_dev_flow_table *flow_table;
4611 		struct rps_dev_flow *old_rflow;
4612 		u16 rxq_index;
4613 		u32 flow_id;
4614 		int rc;
4615 
4616 		/* Should we steer this flow to a different hardware queue? */
4617 		if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4618 		    !(dev->features & NETIF_F_NTUPLE))
4619 			goto out;
4620 		rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4621 		if (rxq_index == skb_get_rx_queue(skb))
4622 			goto out;
4623 
4624 		rxqueue = dev->_rx + rxq_index;
4625 		flow_table = rcu_dereference(rxqueue->rps_flow_table);
4626 		if (!flow_table)
4627 			goto out;
4628 		flow_id = skb_get_hash(skb) & flow_table->mask;
4629 		rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4630 							rxq_index, flow_id);
4631 		if (rc < 0)
4632 			goto out;
4633 		old_rflow = rflow;
4634 		rflow = &flow_table->flows[flow_id];
4635 		WRITE_ONCE(rflow->filter, rc);
4636 		if (old_rflow->filter == rc)
4637 			WRITE_ONCE(old_rflow->filter, RPS_NO_FILTER);
4638 	out:
4639 #endif
4640 		head = READ_ONCE(per_cpu(softnet_data, next_cpu).input_queue_head);
4641 		rps_input_queue_tail_save(&rflow->last_qtail, head);
4642 	}
4643 
4644 	WRITE_ONCE(rflow->cpu, next_cpu);
4645 	return rflow;
4646 }
4647 
4648 /*
4649  * get_rps_cpu is called from netif_receive_skb and returns the target
4650  * CPU from the RPS map of the receiving queue for a given skb.
4651  * rcu_read_lock must be held on entry.
4652  */
4653 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4654 		       struct rps_dev_flow **rflowp)
4655 {
4656 	const struct rps_sock_flow_table *sock_flow_table;
4657 	struct netdev_rx_queue *rxqueue = dev->_rx;
4658 	struct rps_dev_flow_table *flow_table;
4659 	struct rps_map *map;
4660 	int cpu = -1;
4661 	u32 tcpu;
4662 	u32 hash;
4663 
4664 	if (skb_rx_queue_recorded(skb)) {
4665 		u16 index = skb_get_rx_queue(skb);
4666 
4667 		if (unlikely(index >= dev->real_num_rx_queues)) {
4668 			WARN_ONCE(dev->real_num_rx_queues > 1,
4669 				  "%s received packet on queue %u, but number "
4670 				  "of RX queues is %u\n",
4671 				  dev->name, index, dev->real_num_rx_queues);
4672 			goto done;
4673 		}
4674 		rxqueue += index;
4675 	}
4676 
4677 	/* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4678 
4679 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
4680 	map = rcu_dereference(rxqueue->rps_map);
4681 	if (!flow_table && !map)
4682 		goto done;
4683 
4684 	skb_reset_network_header(skb);
4685 	hash = skb_get_hash(skb);
4686 	if (!hash)
4687 		goto done;
4688 
4689 	sock_flow_table = rcu_dereference(net_hotdata.rps_sock_flow_table);
4690 	if (flow_table && sock_flow_table) {
4691 		struct rps_dev_flow *rflow;
4692 		u32 next_cpu;
4693 		u32 ident;
4694 
4695 		/* First check into global flow table if there is a match.
4696 		 * This READ_ONCE() pairs with WRITE_ONCE() from rps_record_sock_flow().
4697 		 */
4698 		ident = READ_ONCE(sock_flow_table->ents[hash & sock_flow_table->mask]);
4699 		if ((ident ^ hash) & ~net_hotdata.rps_cpu_mask)
4700 			goto try_rps;
4701 
4702 		next_cpu = ident & net_hotdata.rps_cpu_mask;
4703 
4704 		/* OK, now we know there is a match,
4705 		 * we can look at the local (per receive queue) flow table
4706 		 */
4707 		rflow = &flow_table->flows[hash & flow_table->mask];
4708 		tcpu = rflow->cpu;
4709 
4710 		/*
4711 		 * If the desired CPU (where last recvmsg was done) is
4712 		 * different from current CPU (one in the rx-queue flow
4713 		 * table entry), switch if one of the following holds:
4714 		 *   - Current CPU is unset (>= nr_cpu_ids).
4715 		 *   - Current CPU is offline.
4716 		 *   - The current CPU's queue tail has advanced beyond the
4717 		 *     last packet that was enqueued using this table entry.
4718 		 *     This guarantees that all previous packets for the flow
4719 		 *     have been dequeued, thus preserving in order delivery.
4720 		 */
4721 		if (unlikely(tcpu != next_cpu) &&
4722 		    (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4723 		     ((int)(READ_ONCE(per_cpu(softnet_data, tcpu).input_queue_head) -
4724 		      rflow->last_qtail)) >= 0)) {
4725 			tcpu = next_cpu;
4726 			rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4727 		}
4728 
4729 		if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4730 			*rflowp = rflow;
4731 			cpu = tcpu;
4732 			goto done;
4733 		}
4734 	}
4735 
4736 try_rps:
4737 
4738 	if (map) {
4739 		tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4740 		if (cpu_online(tcpu)) {
4741 			cpu = tcpu;
4742 			goto done;
4743 		}
4744 	}
4745 
4746 done:
4747 	return cpu;
4748 }
4749 
4750 #ifdef CONFIG_RFS_ACCEL
4751 
4752 /**
4753  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4754  * @dev: Device on which the filter was set
4755  * @rxq_index: RX queue index
4756  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4757  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4758  *
4759  * Drivers that implement ndo_rx_flow_steer() should periodically call
4760  * this function for each installed filter and remove the filters for
4761  * which it returns %true.
4762  */
4763 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4764 			 u32 flow_id, u16 filter_id)
4765 {
4766 	struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4767 	struct rps_dev_flow_table *flow_table;
4768 	struct rps_dev_flow *rflow;
4769 	bool expire = true;
4770 	unsigned int cpu;
4771 
4772 	rcu_read_lock();
4773 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
4774 	if (flow_table && flow_id <= flow_table->mask) {
4775 		rflow = &flow_table->flows[flow_id];
4776 		cpu = READ_ONCE(rflow->cpu);
4777 		if (READ_ONCE(rflow->filter) == filter_id && cpu < nr_cpu_ids &&
4778 		    ((int)(READ_ONCE(per_cpu(softnet_data, cpu).input_queue_head) -
4779 			   READ_ONCE(rflow->last_qtail)) <
4780 		     (int)(10 * flow_table->mask)))
4781 			expire = false;
4782 	}
4783 	rcu_read_unlock();
4784 	return expire;
4785 }
4786 EXPORT_SYMBOL(rps_may_expire_flow);
4787 
4788 #endif /* CONFIG_RFS_ACCEL */
4789 
4790 /* Called from hardirq (IPI) context */
4791 static void rps_trigger_softirq(void *data)
4792 {
4793 	struct softnet_data *sd = data;
4794 
4795 	____napi_schedule(sd, &sd->backlog);
4796 	sd->received_rps++;
4797 }
4798 
4799 #endif /* CONFIG_RPS */
4800 
4801 /* Called from hardirq (IPI) context */
4802 static void trigger_rx_softirq(void *data)
4803 {
4804 	struct softnet_data *sd = data;
4805 
4806 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4807 	smp_store_release(&sd->defer_ipi_scheduled, 0);
4808 }
4809 
4810 /*
4811  * After we queued a packet into sd->input_pkt_queue,
4812  * we need to make sure this queue is serviced soon.
4813  *
4814  * - If this is another cpu queue, link it to our rps_ipi_list,
4815  *   and make sure we will process rps_ipi_list from net_rx_action().
4816  *
4817  * - If this is our own queue, NAPI schedule our backlog.
4818  *   Note that this also raises NET_RX_SOFTIRQ.
4819  */
4820 static void napi_schedule_rps(struct softnet_data *sd)
4821 {
4822 	struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4823 
4824 #ifdef CONFIG_RPS
4825 	if (sd != mysd) {
4826 		if (use_backlog_threads()) {
4827 			__napi_schedule_irqoff(&sd->backlog);
4828 			return;
4829 		}
4830 
4831 		sd->rps_ipi_next = mysd->rps_ipi_list;
4832 		mysd->rps_ipi_list = sd;
4833 
4834 		/* If not called from net_rx_action() or napi_threaded_poll()
4835 		 * we have to raise NET_RX_SOFTIRQ.
4836 		 */
4837 		if (!mysd->in_net_rx_action && !mysd->in_napi_threaded_poll)
4838 			__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4839 		return;
4840 	}
4841 #endif /* CONFIG_RPS */
4842 	__napi_schedule_irqoff(&mysd->backlog);
4843 }
4844 
4845 void kick_defer_list_purge(struct softnet_data *sd, unsigned int cpu)
4846 {
4847 	unsigned long flags;
4848 
4849 	if (use_backlog_threads()) {
4850 		backlog_lock_irq_save(sd, &flags);
4851 
4852 		if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state))
4853 			__napi_schedule_irqoff(&sd->backlog);
4854 
4855 		backlog_unlock_irq_restore(sd, &flags);
4856 
4857 	} else if (!cmpxchg(&sd->defer_ipi_scheduled, 0, 1)) {
4858 		smp_call_function_single_async(cpu, &sd->defer_csd);
4859 	}
4860 }
4861 
4862 #ifdef CONFIG_NET_FLOW_LIMIT
4863 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4864 #endif
4865 
4866 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4867 {
4868 #ifdef CONFIG_NET_FLOW_LIMIT
4869 	struct sd_flow_limit *fl;
4870 	struct softnet_data *sd;
4871 	unsigned int old_flow, new_flow;
4872 
4873 	if (qlen < (READ_ONCE(net_hotdata.max_backlog) >> 1))
4874 		return false;
4875 
4876 	sd = this_cpu_ptr(&softnet_data);
4877 
4878 	rcu_read_lock();
4879 	fl = rcu_dereference(sd->flow_limit);
4880 	if (fl) {
4881 		new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4882 		old_flow = fl->history[fl->history_head];
4883 		fl->history[fl->history_head] = new_flow;
4884 
4885 		fl->history_head++;
4886 		fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4887 
4888 		if (likely(fl->buckets[old_flow]))
4889 			fl->buckets[old_flow]--;
4890 
4891 		if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4892 			fl->count++;
4893 			rcu_read_unlock();
4894 			return true;
4895 		}
4896 	}
4897 	rcu_read_unlock();
4898 #endif
4899 	return false;
4900 }
4901 
4902 /*
4903  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4904  * queue (may be a remote CPU queue).
4905  */
4906 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4907 			      unsigned int *qtail)
4908 {
4909 	enum skb_drop_reason reason;
4910 	struct softnet_data *sd;
4911 	unsigned long flags;
4912 	unsigned int qlen;
4913 	int max_backlog;
4914 	u32 tail;
4915 
4916 	reason = SKB_DROP_REASON_DEV_READY;
4917 	if (!netif_running(skb->dev))
4918 		goto bad_dev;
4919 
4920 	reason = SKB_DROP_REASON_CPU_BACKLOG;
4921 	sd = &per_cpu(softnet_data, cpu);
4922 
4923 	qlen = skb_queue_len_lockless(&sd->input_pkt_queue);
4924 	max_backlog = READ_ONCE(net_hotdata.max_backlog);
4925 	if (unlikely(qlen > max_backlog))
4926 		goto cpu_backlog_drop;
4927 	backlog_lock_irq_save(sd, &flags);
4928 	qlen = skb_queue_len(&sd->input_pkt_queue);
4929 	if (qlen <= max_backlog && !skb_flow_limit(skb, qlen)) {
4930 		if (!qlen) {
4931 			/* Schedule NAPI for backlog device. We can use
4932 			 * non atomic operation as we own the queue lock.
4933 			 */
4934 			if (!__test_and_set_bit(NAPI_STATE_SCHED,
4935 						&sd->backlog.state))
4936 				napi_schedule_rps(sd);
4937 		}
4938 		__skb_queue_tail(&sd->input_pkt_queue, skb);
4939 		tail = rps_input_queue_tail_incr(sd);
4940 		backlog_unlock_irq_restore(sd, &flags);
4941 
4942 		/* save the tail outside of the critical section */
4943 		rps_input_queue_tail_save(qtail, tail);
4944 		return NET_RX_SUCCESS;
4945 	}
4946 
4947 	backlog_unlock_irq_restore(sd, &flags);
4948 
4949 cpu_backlog_drop:
4950 	atomic_inc(&sd->dropped);
4951 bad_dev:
4952 	dev_core_stats_rx_dropped_inc(skb->dev);
4953 	kfree_skb_reason(skb, reason);
4954 	return NET_RX_DROP;
4955 }
4956 
4957 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4958 {
4959 	struct net_device *dev = skb->dev;
4960 	struct netdev_rx_queue *rxqueue;
4961 
4962 	rxqueue = dev->_rx;
4963 
4964 	if (skb_rx_queue_recorded(skb)) {
4965 		u16 index = skb_get_rx_queue(skb);
4966 
4967 		if (unlikely(index >= dev->real_num_rx_queues)) {
4968 			WARN_ONCE(dev->real_num_rx_queues > 1,
4969 				  "%s received packet on queue %u, but number "
4970 				  "of RX queues is %u\n",
4971 				  dev->name, index, dev->real_num_rx_queues);
4972 
4973 			return rxqueue; /* Return first rxqueue */
4974 		}
4975 		rxqueue += index;
4976 	}
4977 	return rxqueue;
4978 }
4979 
4980 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp,
4981 			     const struct bpf_prog *xdp_prog)
4982 {
4983 	void *orig_data, *orig_data_end, *hard_start;
4984 	struct netdev_rx_queue *rxqueue;
4985 	bool orig_bcast, orig_host;
4986 	u32 mac_len, frame_sz;
4987 	__be16 orig_eth_type;
4988 	struct ethhdr *eth;
4989 	u32 metalen, act;
4990 	int off;
4991 
4992 	/* The XDP program wants to see the packet starting at the MAC
4993 	 * header.
4994 	 */
4995 	mac_len = skb->data - skb_mac_header(skb);
4996 	hard_start = skb->data - skb_headroom(skb);
4997 
4998 	/* SKB "head" area always have tailroom for skb_shared_info */
4999 	frame_sz = (void *)skb_end_pointer(skb) - hard_start;
5000 	frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
5001 
5002 	rxqueue = netif_get_rxqueue(skb);
5003 	xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq);
5004 	xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len,
5005 			 skb_headlen(skb) + mac_len, true);
5006 	if (skb_is_nonlinear(skb)) {
5007 		skb_shinfo(skb)->xdp_frags_size = skb->data_len;
5008 		xdp_buff_set_frags_flag(xdp);
5009 	} else {
5010 		xdp_buff_clear_frags_flag(xdp);
5011 	}
5012 
5013 	orig_data_end = xdp->data_end;
5014 	orig_data = xdp->data;
5015 	eth = (struct ethhdr *)xdp->data;
5016 	orig_host = ether_addr_equal_64bits(eth->h_dest, skb->dev->dev_addr);
5017 	orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
5018 	orig_eth_type = eth->h_proto;
5019 
5020 	act = bpf_prog_run_xdp(xdp_prog, xdp);
5021 
5022 	/* check if bpf_xdp_adjust_head was used */
5023 	off = xdp->data - orig_data;
5024 	if (off) {
5025 		if (off > 0)
5026 			__skb_pull(skb, off);
5027 		else if (off < 0)
5028 			__skb_push(skb, -off);
5029 
5030 		skb->mac_header += off;
5031 		skb_reset_network_header(skb);
5032 	}
5033 
5034 	/* check if bpf_xdp_adjust_tail was used */
5035 	off = xdp->data_end - orig_data_end;
5036 	if (off != 0) {
5037 		skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
5038 		skb->len += off; /* positive on grow, negative on shrink */
5039 	}
5040 
5041 	/* XDP frag metadata (e.g. nr_frags) are updated in eBPF helpers
5042 	 * (e.g. bpf_xdp_adjust_tail), we need to update data_len here.
5043 	 */
5044 	if (xdp_buff_has_frags(xdp))
5045 		skb->data_len = skb_shinfo(skb)->xdp_frags_size;
5046 	else
5047 		skb->data_len = 0;
5048 
5049 	/* check if XDP changed eth hdr such SKB needs update */
5050 	eth = (struct ethhdr *)xdp->data;
5051 	if ((orig_eth_type != eth->h_proto) ||
5052 	    (orig_host != ether_addr_equal_64bits(eth->h_dest,
5053 						  skb->dev->dev_addr)) ||
5054 	    (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
5055 		__skb_push(skb, ETH_HLEN);
5056 		skb->pkt_type = PACKET_HOST;
5057 		skb->protocol = eth_type_trans(skb, skb->dev);
5058 	}
5059 
5060 	/* Redirect/Tx gives L2 packet, code that will reuse skb must __skb_pull
5061 	 * before calling us again on redirect path. We do not call do_redirect
5062 	 * as we leave that up to the caller.
5063 	 *
5064 	 * Caller is responsible for managing lifetime of skb (i.e. calling
5065 	 * kfree_skb in response to actions it cannot handle/XDP_DROP).
5066 	 */
5067 	switch (act) {
5068 	case XDP_REDIRECT:
5069 	case XDP_TX:
5070 		__skb_push(skb, mac_len);
5071 		break;
5072 	case XDP_PASS:
5073 		metalen = xdp->data - xdp->data_meta;
5074 		if (metalen)
5075 			skb_metadata_set(skb, metalen);
5076 		break;
5077 	}
5078 
5079 	return act;
5080 }
5081 
5082 static int
5083 netif_skb_check_for_xdp(struct sk_buff **pskb, const struct bpf_prog *prog)
5084 {
5085 	struct sk_buff *skb = *pskb;
5086 	int err, hroom, troom;
5087 
5088 	if (!skb_cow_data_for_xdp(this_cpu_read(system_page_pool), pskb, prog))
5089 		return 0;
5090 
5091 	/* In case we have to go down the path and also linearize,
5092 	 * then lets do the pskb_expand_head() work just once here.
5093 	 */
5094 	hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
5095 	troom = skb->tail + skb->data_len - skb->end;
5096 	err = pskb_expand_head(skb,
5097 			       hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
5098 			       troom > 0 ? troom + 128 : 0, GFP_ATOMIC);
5099 	if (err)
5100 		return err;
5101 
5102 	return skb_linearize(skb);
5103 }
5104 
5105 static u32 netif_receive_generic_xdp(struct sk_buff **pskb,
5106 				     struct xdp_buff *xdp,
5107 				     const struct bpf_prog *xdp_prog)
5108 {
5109 	struct sk_buff *skb = *pskb;
5110 	u32 mac_len, act = XDP_DROP;
5111 
5112 	/* Reinjected packets coming from act_mirred or similar should
5113 	 * not get XDP generic processing.
5114 	 */
5115 	if (skb_is_redirected(skb))
5116 		return XDP_PASS;
5117 
5118 	/* XDP packets must have sufficient headroom of XDP_PACKET_HEADROOM
5119 	 * bytes. This is the guarantee that also native XDP provides,
5120 	 * thus we need to do it here as well.
5121 	 */
5122 	mac_len = skb->data - skb_mac_header(skb);
5123 	__skb_push(skb, mac_len);
5124 
5125 	if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
5126 	    skb_headroom(skb) < XDP_PACKET_HEADROOM) {
5127 		if (netif_skb_check_for_xdp(pskb, xdp_prog))
5128 			goto do_drop;
5129 	}
5130 
5131 	__skb_pull(*pskb, mac_len);
5132 
5133 	act = bpf_prog_run_generic_xdp(*pskb, xdp, xdp_prog);
5134 	switch (act) {
5135 	case XDP_REDIRECT:
5136 	case XDP_TX:
5137 	case XDP_PASS:
5138 		break;
5139 	default:
5140 		bpf_warn_invalid_xdp_action((*pskb)->dev, xdp_prog, act);
5141 		fallthrough;
5142 	case XDP_ABORTED:
5143 		trace_xdp_exception((*pskb)->dev, xdp_prog, act);
5144 		fallthrough;
5145 	case XDP_DROP:
5146 	do_drop:
5147 		kfree_skb(*pskb);
5148 		break;
5149 	}
5150 
5151 	return act;
5152 }
5153 
5154 /* When doing generic XDP we have to bypass the qdisc layer and the
5155  * network taps in order to match in-driver-XDP behavior. This also means
5156  * that XDP packets are able to starve other packets going through a qdisc,
5157  * and DDOS attacks will be more effective. In-driver-XDP use dedicated TX
5158  * queues, so they do not have this starvation issue.
5159  */
5160 void generic_xdp_tx(struct sk_buff *skb, const struct bpf_prog *xdp_prog)
5161 {
5162 	struct net_device *dev = skb->dev;
5163 	struct netdev_queue *txq;
5164 	bool free_skb = true;
5165 	int cpu, rc;
5166 
5167 	txq = netdev_core_pick_tx(dev, skb, NULL);
5168 	cpu = smp_processor_id();
5169 	HARD_TX_LOCK(dev, txq, cpu);
5170 	if (!netif_xmit_frozen_or_drv_stopped(txq)) {
5171 		rc = netdev_start_xmit(skb, dev, txq, 0);
5172 		if (dev_xmit_complete(rc))
5173 			free_skb = false;
5174 	}
5175 	HARD_TX_UNLOCK(dev, txq);
5176 	if (free_skb) {
5177 		trace_xdp_exception(dev, xdp_prog, XDP_TX);
5178 		dev_core_stats_tx_dropped_inc(dev);
5179 		kfree_skb(skb);
5180 	}
5181 }
5182 
5183 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
5184 
5185 int do_xdp_generic(const struct bpf_prog *xdp_prog, struct sk_buff **pskb)
5186 {
5187 	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
5188 
5189 	if (xdp_prog) {
5190 		struct xdp_buff xdp;
5191 		u32 act;
5192 		int err;
5193 
5194 		bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
5195 		act = netif_receive_generic_xdp(pskb, &xdp, xdp_prog);
5196 		if (act != XDP_PASS) {
5197 			switch (act) {
5198 			case XDP_REDIRECT:
5199 				err = xdp_do_generic_redirect((*pskb)->dev, *pskb,
5200 							      &xdp, xdp_prog);
5201 				if (err)
5202 					goto out_redir;
5203 				break;
5204 			case XDP_TX:
5205 				generic_xdp_tx(*pskb, xdp_prog);
5206 				break;
5207 			}
5208 			bpf_net_ctx_clear(bpf_net_ctx);
5209 			return XDP_DROP;
5210 		}
5211 		bpf_net_ctx_clear(bpf_net_ctx);
5212 	}
5213 	return XDP_PASS;
5214 out_redir:
5215 	bpf_net_ctx_clear(bpf_net_ctx);
5216 	kfree_skb_reason(*pskb, SKB_DROP_REASON_XDP);
5217 	return XDP_DROP;
5218 }
5219 EXPORT_SYMBOL_GPL(do_xdp_generic);
5220 
5221 static int netif_rx_internal(struct sk_buff *skb)
5222 {
5223 	int ret;
5224 
5225 	net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue), skb);
5226 
5227 	trace_netif_rx(skb);
5228 
5229 #ifdef CONFIG_RPS
5230 	if (static_branch_unlikely(&rps_needed)) {
5231 		struct rps_dev_flow voidflow, *rflow = &voidflow;
5232 		int cpu;
5233 
5234 		rcu_read_lock();
5235 
5236 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
5237 		if (cpu < 0)
5238 			cpu = smp_processor_id();
5239 
5240 		ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5241 
5242 		rcu_read_unlock();
5243 	} else
5244 #endif
5245 	{
5246 		unsigned int qtail;
5247 
5248 		ret = enqueue_to_backlog(skb, smp_processor_id(), &qtail);
5249 	}
5250 	return ret;
5251 }
5252 
5253 /**
5254  *	__netif_rx	-	Slightly optimized version of netif_rx
5255  *	@skb: buffer to post
5256  *
5257  *	This behaves as netif_rx except that it does not disable bottom halves.
5258  *	As a result this function may only be invoked from the interrupt context
5259  *	(either hard or soft interrupt).
5260  */
5261 int __netif_rx(struct sk_buff *skb)
5262 {
5263 	int ret;
5264 
5265 	lockdep_assert_once(hardirq_count() | softirq_count());
5266 
5267 	trace_netif_rx_entry(skb);
5268 	ret = netif_rx_internal(skb);
5269 	trace_netif_rx_exit(ret);
5270 	return ret;
5271 }
5272 EXPORT_SYMBOL(__netif_rx);
5273 
5274 /**
5275  *	netif_rx	-	post buffer to the network code
5276  *	@skb: buffer to post
5277  *
5278  *	This function receives a packet from a device driver and queues it for
5279  *	the upper (protocol) levels to process via the backlog NAPI device. It
5280  *	always succeeds. The buffer may be dropped during processing for
5281  *	congestion control or by the protocol layers.
5282  *	The network buffer is passed via the backlog NAPI device. Modern NIC
5283  *	driver should use NAPI and GRO.
5284  *	This function can used from interrupt and from process context. The
5285  *	caller from process context must not disable interrupts before invoking
5286  *	this function.
5287  *
5288  *	return values:
5289  *	NET_RX_SUCCESS	(no congestion)
5290  *	NET_RX_DROP     (packet was dropped)
5291  *
5292  */
5293 int netif_rx(struct sk_buff *skb)
5294 {
5295 	bool need_bh_off = !(hardirq_count() | softirq_count());
5296 	int ret;
5297 
5298 	if (need_bh_off)
5299 		local_bh_disable();
5300 	trace_netif_rx_entry(skb);
5301 	ret = netif_rx_internal(skb);
5302 	trace_netif_rx_exit(ret);
5303 	if (need_bh_off)
5304 		local_bh_enable();
5305 	return ret;
5306 }
5307 EXPORT_SYMBOL(netif_rx);
5308 
5309 static __latent_entropy void net_tx_action(void)
5310 {
5311 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5312 
5313 	if (sd->completion_queue) {
5314 		struct sk_buff *clist;
5315 
5316 		local_irq_disable();
5317 		clist = sd->completion_queue;
5318 		sd->completion_queue = NULL;
5319 		local_irq_enable();
5320 
5321 		while (clist) {
5322 			struct sk_buff *skb = clist;
5323 
5324 			clist = clist->next;
5325 
5326 			WARN_ON(refcount_read(&skb->users));
5327 			if (likely(get_kfree_skb_cb(skb)->reason == SKB_CONSUMED))
5328 				trace_consume_skb(skb, net_tx_action);
5329 			else
5330 				trace_kfree_skb(skb, net_tx_action,
5331 						get_kfree_skb_cb(skb)->reason, NULL);
5332 
5333 			if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
5334 				__kfree_skb(skb);
5335 			else
5336 				__napi_kfree_skb(skb,
5337 						 get_kfree_skb_cb(skb)->reason);
5338 		}
5339 	}
5340 
5341 	if (sd->output_queue) {
5342 		struct Qdisc *head;
5343 
5344 		local_irq_disable();
5345 		head = sd->output_queue;
5346 		sd->output_queue = NULL;
5347 		sd->output_queue_tailp = &sd->output_queue;
5348 		local_irq_enable();
5349 
5350 		rcu_read_lock();
5351 
5352 		while (head) {
5353 			struct Qdisc *q = head;
5354 			spinlock_t *root_lock = NULL;
5355 
5356 			head = head->next_sched;
5357 
5358 			/* We need to make sure head->next_sched is read
5359 			 * before clearing __QDISC_STATE_SCHED
5360 			 */
5361 			smp_mb__before_atomic();
5362 
5363 			if (!(q->flags & TCQ_F_NOLOCK)) {
5364 				root_lock = qdisc_lock(q);
5365 				spin_lock(root_lock);
5366 			} else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED,
5367 						     &q->state))) {
5368 				/* There is a synchronize_net() between
5369 				 * STATE_DEACTIVATED flag being set and
5370 				 * qdisc_reset()/some_qdisc_is_busy() in
5371 				 * dev_deactivate(), so we can safely bail out
5372 				 * early here to avoid data race between
5373 				 * qdisc_deactivate() and some_qdisc_is_busy()
5374 				 * for lockless qdisc.
5375 				 */
5376 				clear_bit(__QDISC_STATE_SCHED, &q->state);
5377 				continue;
5378 			}
5379 
5380 			clear_bit(__QDISC_STATE_SCHED, &q->state);
5381 			qdisc_run(q);
5382 			if (root_lock)
5383 				spin_unlock(root_lock);
5384 		}
5385 
5386 		rcu_read_unlock();
5387 	}
5388 
5389 	xfrm_dev_backlog(sd);
5390 }
5391 
5392 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
5393 /* This hook is defined here for ATM LANE */
5394 int (*br_fdb_test_addr_hook)(struct net_device *dev,
5395 			     unsigned char *addr) __read_mostly;
5396 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
5397 #endif
5398 
5399 /**
5400  *	netdev_is_rx_handler_busy - check if receive handler is registered
5401  *	@dev: device to check
5402  *
5403  *	Check if a receive handler is already registered for a given device.
5404  *	Return true if there one.
5405  *
5406  *	The caller must hold the rtnl_mutex.
5407  */
5408 bool netdev_is_rx_handler_busy(struct net_device *dev)
5409 {
5410 	ASSERT_RTNL();
5411 	return dev && rtnl_dereference(dev->rx_handler);
5412 }
5413 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
5414 
5415 /**
5416  *	netdev_rx_handler_register - register receive handler
5417  *	@dev: device to register a handler for
5418  *	@rx_handler: receive handler to register
5419  *	@rx_handler_data: data pointer that is used by rx handler
5420  *
5421  *	Register a receive handler for a device. This handler will then be
5422  *	called from __netif_receive_skb. A negative errno code is returned
5423  *	on a failure.
5424  *
5425  *	The caller must hold the rtnl_mutex.
5426  *
5427  *	For a general description of rx_handler, see enum rx_handler_result.
5428  */
5429 int netdev_rx_handler_register(struct net_device *dev,
5430 			       rx_handler_func_t *rx_handler,
5431 			       void *rx_handler_data)
5432 {
5433 	if (netdev_is_rx_handler_busy(dev))
5434 		return -EBUSY;
5435 
5436 	if (dev->priv_flags & IFF_NO_RX_HANDLER)
5437 		return -EINVAL;
5438 
5439 	/* Note: rx_handler_data must be set before rx_handler */
5440 	rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
5441 	rcu_assign_pointer(dev->rx_handler, rx_handler);
5442 
5443 	return 0;
5444 }
5445 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5446 
5447 /**
5448  *	netdev_rx_handler_unregister - unregister receive handler
5449  *	@dev: device to unregister a handler from
5450  *
5451  *	Unregister a receive handler from a device.
5452  *
5453  *	The caller must hold the rtnl_mutex.
5454  */
5455 void netdev_rx_handler_unregister(struct net_device *dev)
5456 {
5457 
5458 	ASSERT_RTNL();
5459 	RCU_INIT_POINTER(dev->rx_handler, NULL);
5460 	/* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5461 	 * section has a guarantee to see a non NULL rx_handler_data
5462 	 * as well.
5463 	 */
5464 	synchronize_net();
5465 	RCU_INIT_POINTER(dev->rx_handler_data, NULL);
5466 }
5467 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5468 
5469 /*
5470  * Limit the use of PFMEMALLOC reserves to those protocols that implement
5471  * the special handling of PFMEMALLOC skbs.
5472  */
5473 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5474 {
5475 	switch (skb->protocol) {
5476 	case htons(ETH_P_ARP):
5477 	case htons(ETH_P_IP):
5478 	case htons(ETH_P_IPV6):
5479 	case htons(ETH_P_8021Q):
5480 	case htons(ETH_P_8021AD):
5481 		return true;
5482 	default:
5483 		return false;
5484 	}
5485 }
5486 
5487 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5488 			     int *ret, struct net_device *orig_dev)
5489 {
5490 	if (nf_hook_ingress_active(skb)) {
5491 		int ingress_retval;
5492 
5493 		if (*pt_prev) {
5494 			*ret = deliver_skb(skb, *pt_prev, orig_dev);
5495 			*pt_prev = NULL;
5496 		}
5497 
5498 		rcu_read_lock();
5499 		ingress_retval = nf_hook_ingress(skb);
5500 		rcu_read_unlock();
5501 		return ingress_retval;
5502 	}
5503 	return 0;
5504 }
5505 
5506 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
5507 				    struct packet_type **ppt_prev)
5508 {
5509 	struct packet_type *ptype, *pt_prev;
5510 	rx_handler_func_t *rx_handler;
5511 	struct sk_buff *skb = *pskb;
5512 	struct net_device *orig_dev;
5513 	bool deliver_exact = false;
5514 	int ret = NET_RX_DROP;
5515 	__be16 type;
5516 
5517 	net_timestamp_check(!READ_ONCE(net_hotdata.tstamp_prequeue), skb);
5518 
5519 	trace_netif_receive_skb(skb);
5520 
5521 	orig_dev = skb->dev;
5522 
5523 	skb_reset_network_header(skb);
5524 #if !defined(CONFIG_DEBUG_NET)
5525 	/* We plan to no longer reset the transport header here.
5526 	 * Give some time to fuzzers and dev build to catch bugs
5527 	 * in network stacks.
5528 	 */
5529 	if (!skb_transport_header_was_set(skb))
5530 		skb_reset_transport_header(skb);
5531 #endif
5532 	skb_reset_mac_len(skb);
5533 
5534 	pt_prev = NULL;
5535 
5536 another_round:
5537 	skb->skb_iif = skb->dev->ifindex;
5538 
5539 	__this_cpu_inc(softnet_data.processed);
5540 
5541 	if (static_branch_unlikely(&generic_xdp_needed_key)) {
5542 		int ret2;
5543 
5544 		migrate_disable();
5545 		ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog),
5546 				      &skb);
5547 		migrate_enable();
5548 
5549 		if (ret2 != XDP_PASS) {
5550 			ret = NET_RX_DROP;
5551 			goto out;
5552 		}
5553 	}
5554 
5555 	if (eth_type_vlan(skb->protocol)) {
5556 		skb = skb_vlan_untag(skb);
5557 		if (unlikely(!skb))
5558 			goto out;
5559 	}
5560 
5561 	if (skb_skip_tc_classify(skb))
5562 		goto skip_classify;
5563 
5564 	if (pfmemalloc)
5565 		goto skip_taps;
5566 
5567 	list_for_each_entry_rcu(ptype, &net_hotdata.ptype_all, list) {
5568 		if (pt_prev)
5569 			ret = deliver_skb(skb, pt_prev, orig_dev);
5570 		pt_prev = ptype;
5571 	}
5572 
5573 	list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5574 		if (pt_prev)
5575 			ret = deliver_skb(skb, pt_prev, orig_dev);
5576 		pt_prev = ptype;
5577 	}
5578 
5579 skip_taps:
5580 #ifdef CONFIG_NET_INGRESS
5581 	if (static_branch_unlikely(&ingress_needed_key)) {
5582 		bool another = false;
5583 
5584 		nf_skip_egress(skb, true);
5585 		skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev,
5586 					 &another);
5587 		if (another)
5588 			goto another_round;
5589 		if (!skb)
5590 			goto out;
5591 
5592 		nf_skip_egress(skb, false);
5593 		if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5594 			goto out;
5595 	}
5596 #endif
5597 	skb_reset_redirect(skb);
5598 skip_classify:
5599 	if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
5600 		goto drop;
5601 
5602 	if (skb_vlan_tag_present(skb)) {
5603 		if (pt_prev) {
5604 			ret = deliver_skb(skb, pt_prev, orig_dev);
5605 			pt_prev = NULL;
5606 		}
5607 		if (vlan_do_receive(&skb))
5608 			goto another_round;
5609 		else if (unlikely(!skb))
5610 			goto out;
5611 	}
5612 
5613 	rx_handler = rcu_dereference(skb->dev->rx_handler);
5614 	if (rx_handler) {
5615 		if (pt_prev) {
5616 			ret = deliver_skb(skb, pt_prev, orig_dev);
5617 			pt_prev = NULL;
5618 		}
5619 		switch (rx_handler(&skb)) {
5620 		case RX_HANDLER_CONSUMED:
5621 			ret = NET_RX_SUCCESS;
5622 			goto out;
5623 		case RX_HANDLER_ANOTHER:
5624 			goto another_round;
5625 		case RX_HANDLER_EXACT:
5626 			deliver_exact = true;
5627 			break;
5628 		case RX_HANDLER_PASS:
5629 			break;
5630 		default:
5631 			BUG();
5632 		}
5633 	}
5634 
5635 	if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) {
5636 check_vlan_id:
5637 		if (skb_vlan_tag_get_id(skb)) {
5638 			/* Vlan id is non 0 and vlan_do_receive() above couldn't
5639 			 * find vlan device.
5640 			 */
5641 			skb->pkt_type = PACKET_OTHERHOST;
5642 		} else if (eth_type_vlan(skb->protocol)) {
5643 			/* Outer header is 802.1P with vlan 0, inner header is
5644 			 * 802.1Q or 802.1AD and vlan_do_receive() above could
5645 			 * not find vlan dev for vlan id 0.
5646 			 */
5647 			__vlan_hwaccel_clear_tag(skb);
5648 			skb = skb_vlan_untag(skb);
5649 			if (unlikely(!skb))
5650 				goto out;
5651 			if (vlan_do_receive(&skb))
5652 				/* After stripping off 802.1P header with vlan 0
5653 				 * vlan dev is found for inner header.
5654 				 */
5655 				goto another_round;
5656 			else if (unlikely(!skb))
5657 				goto out;
5658 			else
5659 				/* We have stripped outer 802.1P vlan 0 header.
5660 				 * But could not find vlan dev.
5661 				 * check again for vlan id to set OTHERHOST.
5662 				 */
5663 				goto check_vlan_id;
5664 		}
5665 		/* Note: we might in the future use prio bits
5666 		 * and set skb->priority like in vlan_do_receive()
5667 		 * For the time being, just ignore Priority Code Point
5668 		 */
5669 		__vlan_hwaccel_clear_tag(skb);
5670 	}
5671 
5672 	type = skb->protocol;
5673 
5674 	/* deliver only exact match when indicated */
5675 	if (likely(!deliver_exact)) {
5676 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5677 				       &ptype_base[ntohs(type) &
5678 						   PTYPE_HASH_MASK]);
5679 	}
5680 
5681 	deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5682 			       &orig_dev->ptype_specific);
5683 
5684 	if (unlikely(skb->dev != orig_dev)) {
5685 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5686 				       &skb->dev->ptype_specific);
5687 	}
5688 
5689 	if (pt_prev) {
5690 		if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
5691 			goto drop;
5692 		*ppt_prev = pt_prev;
5693 	} else {
5694 drop:
5695 		if (!deliver_exact)
5696 			dev_core_stats_rx_dropped_inc(skb->dev);
5697 		else
5698 			dev_core_stats_rx_nohandler_inc(skb->dev);
5699 		kfree_skb_reason(skb, SKB_DROP_REASON_UNHANDLED_PROTO);
5700 		/* Jamal, now you will not able to escape explaining
5701 		 * me how you were going to use this. :-)
5702 		 */
5703 		ret = NET_RX_DROP;
5704 	}
5705 
5706 out:
5707 	/* The invariant here is that if *ppt_prev is not NULL
5708 	 * then skb should also be non-NULL.
5709 	 *
5710 	 * Apparently *ppt_prev assignment above holds this invariant due to
5711 	 * skb dereferencing near it.
5712 	 */
5713 	*pskb = skb;
5714 	return ret;
5715 }
5716 
5717 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5718 {
5719 	struct net_device *orig_dev = skb->dev;
5720 	struct packet_type *pt_prev = NULL;
5721 	int ret;
5722 
5723 	ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5724 	if (pt_prev)
5725 		ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5726 					 skb->dev, pt_prev, orig_dev);
5727 	return ret;
5728 }
5729 
5730 /**
5731  *	netif_receive_skb_core - special purpose version of netif_receive_skb
5732  *	@skb: buffer to process
5733  *
5734  *	More direct receive version of netif_receive_skb().  It should
5735  *	only be used by callers that have a need to skip RPS and Generic XDP.
5736  *	Caller must also take care of handling if ``(page_is_)pfmemalloc``.
5737  *
5738  *	This function may only be called from softirq context and interrupts
5739  *	should be enabled.
5740  *
5741  *	Return values (usually ignored):
5742  *	NET_RX_SUCCESS: no congestion
5743  *	NET_RX_DROP: packet was dropped
5744  */
5745 int netif_receive_skb_core(struct sk_buff *skb)
5746 {
5747 	int ret;
5748 
5749 	rcu_read_lock();
5750 	ret = __netif_receive_skb_one_core(skb, false);
5751 	rcu_read_unlock();
5752 
5753 	return ret;
5754 }
5755 EXPORT_SYMBOL(netif_receive_skb_core);
5756 
5757 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5758 						  struct packet_type *pt_prev,
5759 						  struct net_device *orig_dev)
5760 {
5761 	struct sk_buff *skb, *next;
5762 
5763 	if (!pt_prev)
5764 		return;
5765 	if (list_empty(head))
5766 		return;
5767 	if (pt_prev->list_func != NULL)
5768 		INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5769 				   ip_list_rcv, head, pt_prev, orig_dev);
5770 	else
5771 		list_for_each_entry_safe(skb, next, head, list) {
5772 			skb_list_del_init(skb);
5773 			pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5774 		}
5775 }
5776 
5777 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5778 {
5779 	/* Fast-path assumptions:
5780 	 * - There is no RX handler.
5781 	 * - Only one packet_type matches.
5782 	 * If either of these fails, we will end up doing some per-packet
5783 	 * processing in-line, then handling the 'last ptype' for the whole
5784 	 * sublist.  This can't cause out-of-order delivery to any single ptype,
5785 	 * because the 'last ptype' must be constant across the sublist, and all
5786 	 * other ptypes are handled per-packet.
5787 	 */
5788 	/* Current (common) ptype of sublist */
5789 	struct packet_type *pt_curr = NULL;
5790 	/* Current (common) orig_dev of sublist */
5791 	struct net_device *od_curr = NULL;
5792 	struct sk_buff *skb, *next;
5793 	LIST_HEAD(sublist);
5794 
5795 	list_for_each_entry_safe(skb, next, head, list) {
5796 		struct net_device *orig_dev = skb->dev;
5797 		struct packet_type *pt_prev = NULL;
5798 
5799 		skb_list_del_init(skb);
5800 		__netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5801 		if (!pt_prev)
5802 			continue;
5803 		if (pt_curr != pt_prev || od_curr != orig_dev) {
5804 			/* dispatch old sublist */
5805 			__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5806 			/* start new sublist */
5807 			INIT_LIST_HEAD(&sublist);
5808 			pt_curr = pt_prev;
5809 			od_curr = orig_dev;
5810 		}
5811 		list_add_tail(&skb->list, &sublist);
5812 	}
5813 
5814 	/* dispatch final sublist */
5815 	__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5816 }
5817 
5818 static int __netif_receive_skb(struct sk_buff *skb)
5819 {
5820 	int ret;
5821 
5822 	if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5823 		unsigned int noreclaim_flag;
5824 
5825 		/*
5826 		 * PFMEMALLOC skbs are special, they should
5827 		 * - be delivered to SOCK_MEMALLOC sockets only
5828 		 * - stay away from userspace
5829 		 * - have bounded memory usage
5830 		 *
5831 		 * Use PF_MEMALLOC as this saves us from propagating the allocation
5832 		 * context down to all allocation sites.
5833 		 */
5834 		noreclaim_flag = memalloc_noreclaim_save();
5835 		ret = __netif_receive_skb_one_core(skb, true);
5836 		memalloc_noreclaim_restore(noreclaim_flag);
5837 	} else
5838 		ret = __netif_receive_skb_one_core(skb, false);
5839 
5840 	return ret;
5841 }
5842 
5843 static void __netif_receive_skb_list(struct list_head *head)
5844 {
5845 	unsigned long noreclaim_flag = 0;
5846 	struct sk_buff *skb, *next;
5847 	bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5848 
5849 	list_for_each_entry_safe(skb, next, head, list) {
5850 		if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5851 			struct list_head sublist;
5852 
5853 			/* Handle the previous sublist */
5854 			list_cut_before(&sublist, head, &skb->list);
5855 			if (!list_empty(&sublist))
5856 				__netif_receive_skb_list_core(&sublist, pfmemalloc);
5857 			pfmemalloc = !pfmemalloc;
5858 			/* See comments in __netif_receive_skb */
5859 			if (pfmemalloc)
5860 				noreclaim_flag = memalloc_noreclaim_save();
5861 			else
5862 				memalloc_noreclaim_restore(noreclaim_flag);
5863 		}
5864 	}
5865 	/* Handle the remaining sublist */
5866 	if (!list_empty(head))
5867 		__netif_receive_skb_list_core(head, pfmemalloc);
5868 	/* Restore pflags */
5869 	if (pfmemalloc)
5870 		memalloc_noreclaim_restore(noreclaim_flag);
5871 }
5872 
5873 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5874 {
5875 	struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5876 	struct bpf_prog *new = xdp->prog;
5877 	int ret = 0;
5878 
5879 	switch (xdp->command) {
5880 	case XDP_SETUP_PROG:
5881 		rcu_assign_pointer(dev->xdp_prog, new);
5882 		if (old)
5883 			bpf_prog_put(old);
5884 
5885 		if (old && !new) {
5886 			static_branch_dec(&generic_xdp_needed_key);
5887 		} else if (new && !old) {
5888 			static_branch_inc(&generic_xdp_needed_key);
5889 			dev_disable_lro(dev);
5890 			dev_disable_gro_hw(dev);
5891 		}
5892 		break;
5893 
5894 	default:
5895 		ret = -EINVAL;
5896 		break;
5897 	}
5898 
5899 	return ret;
5900 }
5901 
5902 static int netif_receive_skb_internal(struct sk_buff *skb)
5903 {
5904 	int ret;
5905 
5906 	net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue), skb);
5907 
5908 	if (skb_defer_rx_timestamp(skb))
5909 		return NET_RX_SUCCESS;
5910 
5911 	rcu_read_lock();
5912 #ifdef CONFIG_RPS
5913 	if (static_branch_unlikely(&rps_needed)) {
5914 		struct rps_dev_flow voidflow, *rflow = &voidflow;
5915 		int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5916 
5917 		if (cpu >= 0) {
5918 			ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5919 			rcu_read_unlock();
5920 			return ret;
5921 		}
5922 	}
5923 #endif
5924 	ret = __netif_receive_skb(skb);
5925 	rcu_read_unlock();
5926 	return ret;
5927 }
5928 
5929 void netif_receive_skb_list_internal(struct list_head *head)
5930 {
5931 	struct sk_buff *skb, *next;
5932 	LIST_HEAD(sublist);
5933 
5934 	list_for_each_entry_safe(skb, next, head, list) {
5935 		net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue),
5936 				    skb);
5937 		skb_list_del_init(skb);
5938 		if (!skb_defer_rx_timestamp(skb))
5939 			list_add_tail(&skb->list, &sublist);
5940 	}
5941 	list_splice_init(&sublist, head);
5942 
5943 	rcu_read_lock();
5944 #ifdef CONFIG_RPS
5945 	if (static_branch_unlikely(&rps_needed)) {
5946 		list_for_each_entry_safe(skb, next, head, list) {
5947 			struct rps_dev_flow voidflow, *rflow = &voidflow;
5948 			int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5949 
5950 			if (cpu >= 0) {
5951 				/* Will be handled, remove from list */
5952 				skb_list_del_init(skb);
5953 				enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5954 			}
5955 		}
5956 	}
5957 #endif
5958 	__netif_receive_skb_list(head);
5959 	rcu_read_unlock();
5960 }
5961 
5962 /**
5963  *	netif_receive_skb - process receive buffer from network
5964  *	@skb: buffer to process
5965  *
5966  *	netif_receive_skb() is the main receive data processing function.
5967  *	It always succeeds. The buffer may be dropped during processing
5968  *	for congestion control or by the protocol layers.
5969  *
5970  *	This function may only be called from softirq context and interrupts
5971  *	should be enabled.
5972  *
5973  *	Return values (usually ignored):
5974  *	NET_RX_SUCCESS: no congestion
5975  *	NET_RX_DROP: packet was dropped
5976  */
5977 int netif_receive_skb(struct sk_buff *skb)
5978 {
5979 	int ret;
5980 
5981 	trace_netif_receive_skb_entry(skb);
5982 
5983 	ret = netif_receive_skb_internal(skb);
5984 	trace_netif_receive_skb_exit(ret);
5985 
5986 	return ret;
5987 }
5988 EXPORT_SYMBOL(netif_receive_skb);
5989 
5990 /**
5991  *	netif_receive_skb_list - process many receive buffers from network
5992  *	@head: list of skbs to process.
5993  *
5994  *	Since return value of netif_receive_skb() is normally ignored, and
5995  *	wouldn't be meaningful for a list, this function returns void.
5996  *
5997  *	This function may only be called from softirq context and interrupts
5998  *	should be enabled.
5999  */
6000 void netif_receive_skb_list(struct list_head *head)
6001 {
6002 	struct sk_buff *skb;
6003 
6004 	if (list_empty(head))
6005 		return;
6006 	if (trace_netif_receive_skb_list_entry_enabled()) {
6007 		list_for_each_entry(skb, head, list)
6008 			trace_netif_receive_skb_list_entry(skb);
6009 	}
6010 	netif_receive_skb_list_internal(head);
6011 	trace_netif_receive_skb_list_exit(0);
6012 }
6013 EXPORT_SYMBOL(netif_receive_skb_list);
6014 
6015 static DEFINE_PER_CPU(struct work_struct, flush_works);
6016 
6017 /* Network device is going away, flush any packets still pending */
6018 static void flush_backlog(struct work_struct *work)
6019 {
6020 	struct sk_buff *skb, *tmp;
6021 	struct softnet_data *sd;
6022 
6023 	local_bh_disable();
6024 	sd = this_cpu_ptr(&softnet_data);
6025 
6026 	backlog_lock_irq_disable(sd);
6027 	skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
6028 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
6029 			__skb_unlink(skb, &sd->input_pkt_queue);
6030 			dev_kfree_skb_irq(skb);
6031 			rps_input_queue_head_incr(sd);
6032 		}
6033 	}
6034 	backlog_unlock_irq_enable(sd);
6035 
6036 	local_lock_nested_bh(&softnet_data.process_queue_bh_lock);
6037 	skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
6038 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
6039 			__skb_unlink(skb, &sd->process_queue);
6040 			kfree_skb(skb);
6041 			rps_input_queue_head_incr(sd);
6042 		}
6043 	}
6044 	local_unlock_nested_bh(&softnet_data.process_queue_bh_lock);
6045 	local_bh_enable();
6046 }
6047 
6048 static bool flush_required(int cpu)
6049 {
6050 #if IS_ENABLED(CONFIG_RPS)
6051 	struct softnet_data *sd = &per_cpu(softnet_data, cpu);
6052 	bool do_flush;
6053 
6054 	backlog_lock_irq_disable(sd);
6055 
6056 	/* as insertion into process_queue happens with the rps lock held,
6057 	 * process_queue access may race only with dequeue
6058 	 */
6059 	do_flush = !skb_queue_empty(&sd->input_pkt_queue) ||
6060 		   !skb_queue_empty_lockless(&sd->process_queue);
6061 	backlog_unlock_irq_enable(sd);
6062 
6063 	return do_flush;
6064 #endif
6065 	/* without RPS we can't safely check input_pkt_queue: during a
6066 	 * concurrent remote skb_queue_splice() we can detect as empty both
6067 	 * input_pkt_queue and process_queue even if the latter could end-up
6068 	 * containing a lot of packets.
6069 	 */
6070 	return true;
6071 }
6072 
6073 static void flush_all_backlogs(void)
6074 {
6075 	static cpumask_t flush_cpus;
6076 	unsigned int cpu;
6077 
6078 	/* since we are under rtnl lock protection we can use static data
6079 	 * for the cpumask and avoid allocating on stack the possibly
6080 	 * large mask
6081 	 */
6082 	ASSERT_RTNL();
6083 
6084 	cpus_read_lock();
6085 
6086 	cpumask_clear(&flush_cpus);
6087 	for_each_online_cpu(cpu) {
6088 		if (flush_required(cpu)) {
6089 			queue_work_on(cpu, system_highpri_wq,
6090 				      per_cpu_ptr(&flush_works, cpu));
6091 			cpumask_set_cpu(cpu, &flush_cpus);
6092 		}
6093 	}
6094 
6095 	/* we can have in flight packet[s] on the cpus we are not flushing,
6096 	 * synchronize_net() in unregister_netdevice_many() will take care of
6097 	 * them
6098 	 */
6099 	for_each_cpu(cpu, &flush_cpus)
6100 		flush_work(per_cpu_ptr(&flush_works, cpu));
6101 
6102 	cpus_read_unlock();
6103 }
6104 
6105 static void net_rps_send_ipi(struct softnet_data *remsd)
6106 {
6107 #ifdef CONFIG_RPS
6108 	while (remsd) {
6109 		struct softnet_data *next = remsd->rps_ipi_next;
6110 
6111 		if (cpu_online(remsd->cpu))
6112 			smp_call_function_single_async(remsd->cpu, &remsd->csd);
6113 		remsd = next;
6114 	}
6115 #endif
6116 }
6117 
6118 /*
6119  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
6120  * Note: called with local irq disabled, but exits with local irq enabled.
6121  */
6122 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
6123 {
6124 #ifdef CONFIG_RPS
6125 	struct softnet_data *remsd = sd->rps_ipi_list;
6126 
6127 	if (!use_backlog_threads() && remsd) {
6128 		sd->rps_ipi_list = NULL;
6129 
6130 		local_irq_enable();
6131 
6132 		/* Send pending IPI's to kick RPS processing on remote cpus. */
6133 		net_rps_send_ipi(remsd);
6134 	} else
6135 #endif
6136 		local_irq_enable();
6137 }
6138 
6139 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
6140 {
6141 #ifdef CONFIG_RPS
6142 	return !use_backlog_threads() && sd->rps_ipi_list;
6143 #else
6144 	return false;
6145 #endif
6146 }
6147 
6148 static int process_backlog(struct napi_struct *napi, int quota)
6149 {
6150 	struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
6151 	bool again = true;
6152 	int work = 0;
6153 
6154 	/* Check if we have pending ipi, its better to send them now,
6155 	 * not waiting net_rx_action() end.
6156 	 */
6157 	if (sd_has_rps_ipi_waiting(sd)) {
6158 		local_irq_disable();
6159 		net_rps_action_and_irq_enable(sd);
6160 	}
6161 
6162 	napi->weight = READ_ONCE(net_hotdata.dev_rx_weight);
6163 	while (again) {
6164 		struct sk_buff *skb;
6165 
6166 		local_lock_nested_bh(&softnet_data.process_queue_bh_lock);
6167 		while ((skb = __skb_dequeue(&sd->process_queue))) {
6168 			local_unlock_nested_bh(&softnet_data.process_queue_bh_lock);
6169 			rcu_read_lock();
6170 			__netif_receive_skb(skb);
6171 			rcu_read_unlock();
6172 			if (++work >= quota) {
6173 				rps_input_queue_head_add(sd, work);
6174 				return work;
6175 			}
6176 
6177 			local_lock_nested_bh(&softnet_data.process_queue_bh_lock);
6178 		}
6179 		local_unlock_nested_bh(&softnet_data.process_queue_bh_lock);
6180 
6181 		backlog_lock_irq_disable(sd);
6182 		if (skb_queue_empty(&sd->input_pkt_queue)) {
6183 			/*
6184 			 * Inline a custom version of __napi_complete().
6185 			 * only current cpu owns and manipulates this napi,
6186 			 * and NAPI_STATE_SCHED is the only possible flag set
6187 			 * on backlog.
6188 			 * We can use a plain write instead of clear_bit(),
6189 			 * and we dont need an smp_mb() memory barrier.
6190 			 */
6191 			napi->state &= NAPIF_STATE_THREADED;
6192 			again = false;
6193 		} else {
6194 			local_lock_nested_bh(&softnet_data.process_queue_bh_lock);
6195 			skb_queue_splice_tail_init(&sd->input_pkt_queue,
6196 						   &sd->process_queue);
6197 			local_unlock_nested_bh(&softnet_data.process_queue_bh_lock);
6198 		}
6199 		backlog_unlock_irq_enable(sd);
6200 	}
6201 
6202 	if (work)
6203 		rps_input_queue_head_add(sd, work);
6204 	return work;
6205 }
6206 
6207 /**
6208  * __napi_schedule - schedule for receive
6209  * @n: entry to schedule
6210  *
6211  * The entry's receive function will be scheduled to run.
6212  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
6213  */
6214 void __napi_schedule(struct napi_struct *n)
6215 {
6216 	unsigned long flags;
6217 
6218 	local_irq_save(flags);
6219 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
6220 	local_irq_restore(flags);
6221 }
6222 EXPORT_SYMBOL(__napi_schedule);
6223 
6224 /**
6225  *	napi_schedule_prep - check if napi can be scheduled
6226  *	@n: napi context
6227  *
6228  * Test if NAPI routine is already running, and if not mark
6229  * it as running.  This is used as a condition variable to
6230  * insure only one NAPI poll instance runs.  We also make
6231  * sure there is no pending NAPI disable.
6232  */
6233 bool napi_schedule_prep(struct napi_struct *n)
6234 {
6235 	unsigned long new, val = READ_ONCE(n->state);
6236 
6237 	do {
6238 		if (unlikely(val & NAPIF_STATE_DISABLE))
6239 			return false;
6240 		new = val | NAPIF_STATE_SCHED;
6241 
6242 		/* Sets STATE_MISSED bit if STATE_SCHED was already set
6243 		 * This was suggested by Alexander Duyck, as compiler
6244 		 * emits better code than :
6245 		 * if (val & NAPIF_STATE_SCHED)
6246 		 *     new |= NAPIF_STATE_MISSED;
6247 		 */
6248 		new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6249 						   NAPIF_STATE_MISSED;
6250 	} while (!try_cmpxchg(&n->state, &val, new));
6251 
6252 	return !(val & NAPIF_STATE_SCHED);
6253 }
6254 EXPORT_SYMBOL(napi_schedule_prep);
6255 
6256 /**
6257  * __napi_schedule_irqoff - schedule for receive
6258  * @n: entry to schedule
6259  *
6260  * Variant of __napi_schedule() assuming hard irqs are masked.
6261  *
6262  * On PREEMPT_RT enabled kernels this maps to __napi_schedule()
6263  * because the interrupt disabled assumption might not be true
6264  * due to force-threaded interrupts and spinlock substitution.
6265  */
6266 void __napi_schedule_irqoff(struct napi_struct *n)
6267 {
6268 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6269 		____napi_schedule(this_cpu_ptr(&softnet_data), n);
6270 	else
6271 		__napi_schedule(n);
6272 }
6273 EXPORT_SYMBOL(__napi_schedule_irqoff);
6274 
6275 bool napi_complete_done(struct napi_struct *n, int work_done)
6276 {
6277 	unsigned long flags, val, new, timeout = 0;
6278 	bool ret = true;
6279 
6280 	/*
6281 	 * 1) Don't let napi dequeue from the cpu poll list
6282 	 *    just in case its running on a different cpu.
6283 	 * 2) If we are busy polling, do nothing here, we have
6284 	 *    the guarantee we will be called later.
6285 	 */
6286 	if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6287 				 NAPIF_STATE_IN_BUSY_POLL)))
6288 		return false;
6289 
6290 	if (work_done) {
6291 		if (n->gro_bitmask)
6292 			timeout = napi_get_gro_flush_timeout(n);
6293 		n->defer_hard_irqs_count = napi_get_defer_hard_irqs(n);
6294 	}
6295 	if (n->defer_hard_irqs_count > 0) {
6296 		n->defer_hard_irqs_count--;
6297 		timeout = napi_get_gro_flush_timeout(n);
6298 		if (timeout)
6299 			ret = false;
6300 	}
6301 	if (n->gro_bitmask) {
6302 		/* When the NAPI instance uses a timeout and keeps postponing
6303 		 * it, we need to bound somehow the time packets are kept in
6304 		 * the GRO layer
6305 		 */
6306 		napi_gro_flush(n, !!timeout);
6307 	}
6308 
6309 	gro_normal_list(n);
6310 
6311 	if (unlikely(!list_empty(&n->poll_list))) {
6312 		/* If n->poll_list is not empty, we need to mask irqs */
6313 		local_irq_save(flags);
6314 		list_del_init(&n->poll_list);
6315 		local_irq_restore(flags);
6316 	}
6317 	WRITE_ONCE(n->list_owner, -1);
6318 
6319 	val = READ_ONCE(n->state);
6320 	do {
6321 		WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6322 
6323 		new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED |
6324 			      NAPIF_STATE_SCHED_THREADED |
6325 			      NAPIF_STATE_PREFER_BUSY_POLL);
6326 
6327 		/* If STATE_MISSED was set, leave STATE_SCHED set,
6328 		 * because we will call napi->poll() one more time.
6329 		 * This C code was suggested by Alexander Duyck to help gcc.
6330 		 */
6331 		new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6332 						    NAPIF_STATE_SCHED;
6333 	} while (!try_cmpxchg(&n->state, &val, new));
6334 
6335 	if (unlikely(val & NAPIF_STATE_MISSED)) {
6336 		__napi_schedule(n);
6337 		return false;
6338 	}
6339 
6340 	if (timeout)
6341 		hrtimer_start(&n->timer, ns_to_ktime(timeout),
6342 			      HRTIMER_MODE_REL_PINNED);
6343 	return ret;
6344 }
6345 EXPORT_SYMBOL(napi_complete_done);
6346 
6347 static void skb_defer_free_flush(struct softnet_data *sd)
6348 {
6349 	struct sk_buff *skb, *next;
6350 
6351 	/* Paired with WRITE_ONCE() in skb_attempt_defer_free() */
6352 	if (!READ_ONCE(sd->defer_list))
6353 		return;
6354 
6355 	spin_lock(&sd->defer_lock);
6356 	skb = sd->defer_list;
6357 	sd->defer_list = NULL;
6358 	sd->defer_count = 0;
6359 	spin_unlock(&sd->defer_lock);
6360 
6361 	while (skb != NULL) {
6362 		next = skb->next;
6363 		napi_consume_skb(skb, 1);
6364 		skb = next;
6365 	}
6366 }
6367 
6368 #if defined(CONFIG_NET_RX_BUSY_POLL)
6369 
6370 static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule)
6371 {
6372 	if (!skip_schedule) {
6373 		gro_normal_list(napi);
6374 		__napi_schedule(napi);
6375 		return;
6376 	}
6377 
6378 	if (napi->gro_bitmask) {
6379 		/* flush too old packets
6380 		 * If HZ < 1000, flush all packets.
6381 		 */
6382 		napi_gro_flush(napi, HZ >= 1000);
6383 	}
6384 
6385 	gro_normal_list(napi);
6386 	clear_bit(NAPI_STATE_SCHED, &napi->state);
6387 }
6388 
6389 enum {
6390 	NAPI_F_PREFER_BUSY_POLL	= 1,
6391 	NAPI_F_END_ON_RESCHED	= 2,
6392 };
6393 
6394 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock,
6395 			   unsigned flags, u16 budget)
6396 {
6397 	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
6398 	bool skip_schedule = false;
6399 	unsigned long timeout;
6400 	int rc;
6401 
6402 	/* Busy polling means there is a high chance device driver hard irq
6403 	 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6404 	 * set in napi_schedule_prep().
6405 	 * Since we are about to call napi->poll() once more, we can safely
6406 	 * clear NAPI_STATE_MISSED.
6407 	 *
6408 	 * Note: x86 could use a single "lock and ..." instruction
6409 	 * to perform these two clear_bit()
6410 	 */
6411 	clear_bit(NAPI_STATE_MISSED, &napi->state);
6412 	clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6413 
6414 	local_bh_disable();
6415 	bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
6416 
6417 	if (flags & NAPI_F_PREFER_BUSY_POLL) {
6418 		napi->defer_hard_irqs_count = napi_get_defer_hard_irqs(napi);
6419 		timeout = napi_get_gro_flush_timeout(napi);
6420 		if (napi->defer_hard_irqs_count && timeout) {
6421 			hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED);
6422 			skip_schedule = true;
6423 		}
6424 	}
6425 
6426 	/* All we really want here is to re-enable device interrupts.
6427 	 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6428 	 */
6429 	rc = napi->poll(napi, budget);
6430 	/* We can't gro_normal_list() here, because napi->poll() might have
6431 	 * rearmed the napi (napi_complete_done()) in which case it could
6432 	 * already be running on another CPU.
6433 	 */
6434 	trace_napi_poll(napi, rc, budget);
6435 	netpoll_poll_unlock(have_poll_lock);
6436 	if (rc == budget)
6437 		__busy_poll_stop(napi, skip_schedule);
6438 	bpf_net_ctx_clear(bpf_net_ctx);
6439 	local_bh_enable();
6440 }
6441 
6442 static void __napi_busy_loop(unsigned int napi_id,
6443 		      bool (*loop_end)(void *, unsigned long),
6444 		      void *loop_end_arg, unsigned flags, u16 budget)
6445 {
6446 	unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6447 	int (*napi_poll)(struct napi_struct *napi, int budget);
6448 	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
6449 	void *have_poll_lock = NULL;
6450 	struct napi_struct *napi;
6451 
6452 	WARN_ON_ONCE(!rcu_read_lock_held());
6453 
6454 restart:
6455 	napi_poll = NULL;
6456 
6457 	napi = napi_by_id(napi_id);
6458 	if (!napi)
6459 		return;
6460 
6461 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6462 		preempt_disable();
6463 	for (;;) {
6464 		int work = 0;
6465 
6466 		local_bh_disable();
6467 		bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
6468 		if (!napi_poll) {
6469 			unsigned long val = READ_ONCE(napi->state);
6470 
6471 			/* If multiple threads are competing for this napi,
6472 			 * we avoid dirtying napi->state as much as we can.
6473 			 */
6474 			if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6475 				   NAPIF_STATE_IN_BUSY_POLL)) {
6476 				if (flags & NAPI_F_PREFER_BUSY_POLL)
6477 					set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6478 				goto count;
6479 			}
6480 			if (cmpxchg(&napi->state, val,
6481 				    val | NAPIF_STATE_IN_BUSY_POLL |
6482 					  NAPIF_STATE_SCHED) != val) {
6483 				if (flags & NAPI_F_PREFER_BUSY_POLL)
6484 					set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6485 				goto count;
6486 			}
6487 			have_poll_lock = netpoll_poll_lock(napi);
6488 			napi_poll = napi->poll;
6489 		}
6490 		work = napi_poll(napi, budget);
6491 		trace_napi_poll(napi, work, budget);
6492 		gro_normal_list(napi);
6493 count:
6494 		if (work > 0)
6495 			__NET_ADD_STATS(dev_net(napi->dev),
6496 					LINUX_MIB_BUSYPOLLRXPACKETS, work);
6497 		skb_defer_free_flush(this_cpu_ptr(&softnet_data));
6498 		bpf_net_ctx_clear(bpf_net_ctx);
6499 		local_bh_enable();
6500 
6501 		if (!loop_end || loop_end(loop_end_arg, start_time))
6502 			break;
6503 
6504 		if (unlikely(need_resched())) {
6505 			if (flags & NAPI_F_END_ON_RESCHED)
6506 				break;
6507 			if (napi_poll)
6508 				busy_poll_stop(napi, have_poll_lock, flags, budget);
6509 			if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6510 				preempt_enable();
6511 			rcu_read_unlock();
6512 			cond_resched();
6513 			rcu_read_lock();
6514 			if (loop_end(loop_end_arg, start_time))
6515 				return;
6516 			goto restart;
6517 		}
6518 		cpu_relax();
6519 	}
6520 	if (napi_poll)
6521 		busy_poll_stop(napi, have_poll_lock, flags, budget);
6522 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6523 		preempt_enable();
6524 }
6525 
6526 void napi_busy_loop_rcu(unsigned int napi_id,
6527 			bool (*loop_end)(void *, unsigned long),
6528 			void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6529 {
6530 	unsigned flags = NAPI_F_END_ON_RESCHED;
6531 
6532 	if (prefer_busy_poll)
6533 		flags |= NAPI_F_PREFER_BUSY_POLL;
6534 
6535 	__napi_busy_loop(napi_id, loop_end, loop_end_arg, flags, budget);
6536 }
6537 
6538 void napi_busy_loop(unsigned int napi_id,
6539 		    bool (*loop_end)(void *, unsigned long),
6540 		    void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6541 {
6542 	unsigned flags = prefer_busy_poll ? NAPI_F_PREFER_BUSY_POLL : 0;
6543 
6544 	rcu_read_lock();
6545 	__napi_busy_loop(napi_id, loop_end, loop_end_arg, flags, budget);
6546 	rcu_read_unlock();
6547 }
6548 EXPORT_SYMBOL(napi_busy_loop);
6549 
6550 void napi_suspend_irqs(unsigned int napi_id)
6551 {
6552 	struct napi_struct *napi;
6553 
6554 	rcu_read_lock();
6555 	napi = napi_by_id(napi_id);
6556 	if (napi) {
6557 		unsigned long timeout = napi_get_irq_suspend_timeout(napi);
6558 
6559 		if (timeout)
6560 			hrtimer_start(&napi->timer, ns_to_ktime(timeout),
6561 				      HRTIMER_MODE_REL_PINNED);
6562 	}
6563 	rcu_read_unlock();
6564 }
6565 
6566 void napi_resume_irqs(unsigned int napi_id)
6567 {
6568 	struct napi_struct *napi;
6569 
6570 	rcu_read_lock();
6571 	napi = napi_by_id(napi_id);
6572 	if (napi) {
6573 		/* If irq_suspend_timeout is set to 0 between the call to
6574 		 * napi_suspend_irqs and now, the original value still
6575 		 * determines the safety timeout as intended and napi_watchdog
6576 		 * will resume irq processing.
6577 		 */
6578 		if (napi_get_irq_suspend_timeout(napi)) {
6579 			local_bh_disable();
6580 			napi_schedule(napi);
6581 			local_bh_enable();
6582 		}
6583 	}
6584 	rcu_read_unlock();
6585 }
6586 
6587 #endif /* CONFIG_NET_RX_BUSY_POLL */
6588 
6589 static void __napi_hash_add_with_id(struct napi_struct *napi,
6590 				    unsigned int napi_id)
6591 {
6592 	napi->napi_id = napi_id;
6593 	hlist_add_head_rcu(&napi->napi_hash_node,
6594 			   &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6595 }
6596 
6597 static void napi_hash_add_with_id(struct napi_struct *napi,
6598 				  unsigned int napi_id)
6599 {
6600 	unsigned long flags;
6601 
6602 	spin_lock_irqsave(&napi_hash_lock, flags);
6603 	WARN_ON_ONCE(napi_by_id(napi_id));
6604 	__napi_hash_add_with_id(napi, napi_id);
6605 	spin_unlock_irqrestore(&napi_hash_lock, flags);
6606 }
6607 
6608 static void napi_hash_add(struct napi_struct *napi)
6609 {
6610 	unsigned long flags;
6611 
6612 	if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state))
6613 		return;
6614 
6615 	spin_lock_irqsave(&napi_hash_lock, flags);
6616 
6617 	/* 0..NR_CPUS range is reserved for sender_cpu use */
6618 	do {
6619 		if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6620 			napi_gen_id = MIN_NAPI_ID;
6621 	} while (napi_by_id(napi_gen_id));
6622 
6623 	__napi_hash_add_with_id(napi, napi_gen_id);
6624 
6625 	spin_unlock_irqrestore(&napi_hash_lock, flags);
6626 }
6627 
6628 /* Warning : caller is responsible to make sure rcu grace period
6629  * is respected before freeing memory containing @napi
6630  */
6631 static void napi_hash_del(struct napi_struct *napi)
6632 {
6633 	unsigned long flags;
6634 
6635 	spin_lock_irqsave(&napi_hash_lock, flags);
6636 
6637 	hlist_del_init_rcu(&napi->napi_hash_node);
6638 
6639 	spin_unlock_irqrestore(&napi_hash_lock, flags);
6640 }
6641 
6642 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6643 {
6644 	struct napi_struct *napi;
6645 
6646 	napi = container_of(timer, struct napi_struct, timer);
6647 
6648 	/* Note : we use a relaxed variant of napi_schedule_prep() not setting
6649 	 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6650 	 */
6651 	if (!napi_disable_pending(napi) &&
6652 	    !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) {
6653 		clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6654 		__napi_schedule_irqoff(napi);
6655 	}
6656 
6657 	return HRTIMER_NORESTART;
6658 }
6659 
6660 static void init_gro_hash(struct napi_struct *napi)
6661 {
6662 	int i;
6663 
6664 	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6665 		INIT_LIST_HEAD(&napi->gro_hash[i].list);
6666 		napi->gro_hash[i].count = 0;
6667 	}
6668 	napi->gro_bitmask = 0;
6669 }
6670 
6671 int dev_set_threaded(struct net_device *dev, bool threaded)
6672 {
6673 	struct napi_struct *napi;
6674 	int err = 0;
6675 
6676 	if (dev->threaded == threaded)
6677 		return 0;
6678 
6679 	if (threaded) {
6680 		list_for_each_entry(napi, &dev->napi_list, dev_list) {
6681 			if (!napi->thread) {
6682 				err = napi_kthread_create(napi);
6683 				if (err) {
6684 					threaded = false;
6685 					break;
6686 				}
6687 			}
6688 		}
6689 	}
6690 
6691 	WRITE_ONCE(dev->threaded, threaded);
6692 
6693 	/* Make sure kthread is created before THREADED bit
6694 	 * is set.
6695 	 */
6696 	smp_mb__before_atomic();
6697 
6698 	/* Setting/unsetting threaded mode on a napi might not immediately
6699 	 * take effect, if the current napi instance is actively being
6700 	 * polled. In this case, the switch between threaded mode and
6701 	 * softirq mode will happen in the next round of napi_schedule().
6702 	 * This should not cause hiccups/stalls to the live traffic.
6703 	 */
6704 	list_for_each_entry(napi, &dev->napi_list, dev_list)
6705 		assign_bit(NAPI_STATE_THREADED, &napi->state, threaded);
6706 
6707 	return err;
6708 }
6709 EXPORT_SYMBOL(dev_set_threaded);
6710 
6711 /**
6712  * netif_queue_set_napi - Associate queue with the napi
6713  * @dev: device to which NAPI and queue belong
6714  * @queue_index: Index of queue
6715  * @type: queue type as RX or TX
6716  * @napi: NAPI context, pass NULL to clear previously set NAPI
6717  *
6718  * Set queue with its corresponding napi context. This should be done after
6719  * registering the NAPI handler for the queue-vector and the queues have been
6720  * mapped to the corresponding interrupt vector.
6721  */
6722 void netif_queue_set_napi(struct net_device *dev, unsigned int queue_index,
6723 			  enum netdev_queue_type type, struct napi_struct *napi)
6724 {
6725 	struct netdev_rx_queue *rxq;
6726 	struct netdev_queue *txq;
6727 
6728 	if (WARN_ON_ONCE(napi && !napi->dev))
6729 		return;
6730 	if (dev->reg_state >= NETREG_REGISTERED)
6731 		ASSERT_RTNL();
6732 
6733 	switch (type) {
6734 	case NETDEV_QUEUE_TYPE_RX:
6735 		rxq = __netif_get_rx_queue(dev, queue_index);
6736 		rxq->napi = napi;
6737 		return;
6738 	case NETDEV_QUEUE_TYPE_TX:
6739 		txq = netdev_get_tx_queue(dev, queue_index);
6740 		txq->napi = napi;
6741 		return;
6742 	default:
6743 		return;
6744 	}
6745 }
6746 EXPORT_SYMBOL(netif_queue_set_napi);
6747 
6748 static void napi_restore_config(struct napi_struct *n)
6749 {
6750 	n->defer_hard_irqs = n->config->defer_hard_irqs;
6751 	n->gro_flush_timeout = n->config->gro_flush_timeout;
6752 	n->irq_suspend_timeout = n->config->irq_suspend_timeout;
6753 	/* a NAPI ID might be stored in the config, if so use it. if not, use
6754 	 * napi_hash_add to generate one for us.
6755 	 */
6756 	if (n->config->napi_id) {
6757 		napi_hash_add_with_id(n, n->config->napi_id);
6758 	} else {
6759 		napi_hash_add(n);
6760 		n->config->napi_id = n->napi_id;
6761 	}
6762 }
6763 
6764 static void napi_save_config(struct napi_struct *n)
6765 {
6766 	n->config->defer_hard_irqs = n->defer_hard_irqs;
6767 	n->config->gro_flush_timeout = n->gro_flush_timeout;
6768 	n->config->irq_suspend_timeout = n->irq_suspend_timeout;
6769 	napi_hash_del(n);
6770 }
6771 
6772 /* Netlink wants the NAPI list to be sorted by ID, if adding a NAPI which will
6773  * inherit an existing ID try to insert it at the right position.
6774  */
6775 static void
6776 netif_napi_dev_list_add(struct net_device *dev, struct napi_struct *napi)
6777 {
6778 	unsigned int new_id, pos_id;
6779 	struct list_head *higher;
6780 	struct napi_struct *pos;
6781 
6782 	new_id = UINT_MAX;
6783 	if (napi->config && napi->config->napi_id)
6784 		new_id = napi->config->napi_id;
6785 
6786 	higher = &dev->napi_list;
6787 	list_for_each_entry(pos, &dev->napi_list, dev_list) {
6788 		if (pos->napi_id >= MIN_NAPI_ID)
6789 			pos_id = pos->napi_id;
6790 		else if (pos->config)
6791 			pos_id = pos->config->napi_id;
6792 		else
6793 			pos_id = UINT_MAX;
6794 
6795 		if (pos_id <= new_id)
6796 			break;
6797 		higher = &pos->dev_list;
6798 	}
6799 	list_add_rcu(&napi->dev_list, higher); /* adds after higher */
6800 }
6801 
6802 void netif_napi_add_weight(struct net_device *dev, struct napi_struct *napi,
6803 			   int (*poll)(struct napi_struct *, int), int weight)
6804 {
6805 	if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state)))
6806 		return;
6807 
6808 	INIT_LIST_HEAD(&napi->poll_list);
6809 	INIT_HLIST_NODE(&napi->napi_hash_node);
6810 	hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6811 	napi->timer.function = napi_watchdog;
6812 	init_gro_hash(napi);
6813 	napi->skb = NULL;
6814 	INIT_LIST_HEAD(&napi->rx_list);
6815 	napi->rx_count = 0;
6816 	napi->poll = poll;
6817 	if (weight > NAPI_POLL_WEIGHT)
6818 		netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6819 				weight);
6820 	napi->weight = weight;
6821 	napi->dev = dev;
6822 #ifdef CONFIG_NETPOLL
6823 	napi->poll_owner = -1;
6824 #endif
6825 	napi->list_owner = -1;
6826 	set_bit(NAPI_STATE_SCHED, &napi->state);
6827 	set_bit(NAPI_STATE_NPSVC, &napi->state);
6828 	netif_napi_dev_list_add(dev, napi);
6829 
6830 	/* default settings from sysfs are applied to all NAPIs. any per-NAPI
6831 	 * configuration will be loaded in napi_enable
6832 	 */
6833 	napi_set_defer_hard_irqs(napi, READ_ONCE(dev->napi_defer_hard_irqs));
6834 	napi_set_gro_flush_timeout(napi, READ_ONCE(dev->gro_flush_timeout));
6835 
6836 	napi_get_frags_check(napi);
6837 	/* Create kthread for this napi if dev->threaded is set.
6838 	 * Clear dev->threaded if kthread creation failed so that
6839 	 * threaded mode will not be enabled in napi_enable().
6840 	 */
6841 	if (dev->threaded && napi_kthread_create(napi))
6842 		dev->threaded = false;
6843 	netif_napi_set_irq(napi, -1);
6844 }
6845 EXPORT_SYMBOL(netif_napi_add_weight);
6846 
6847 void napi_disable(struct napi_struct *n)
6848 {
6849 	unsigned long val, new;
6850 
6851 	might_sleep();
6852 	set_bit(NAPI_STATE_DISABLE, &n->state);
6853 
6854 	val = READ_ONCE(n->state);
6855 	do {
6856 		while (val & (NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC)) {
6857 			usleep_range(20, 200);
6858 			val = READ_ONCE(n->state);
6859 		}
6860 
6861 		new = val | NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC;
6862 		new &= ~(NAPIF_STATE_THREADED | NAPIF_STATE_PREFER_BUSY_POLL);
6863 	} while (!try_cmpxchg(&n->state, &val, new));
6864 
6865 	hrtimer_cancel(&n->timer);
6866 
6867 	if (n->config)
6868 		napi_save_config(n);
6869 	else
6870 		napi_hash_del(n);
6871 
6872 	clear_bit(NAPI_STATE_DISABLE, &n->state);
6873 }
6874 EXPORT_SYMBOL(napi_disable);
6875 
6876 /**
6877  *	napi_enable - enable NAPI scheduling
6878  *	@n: NAPI context
6879  *
6880  * Resume NAPI from being scheduled on this context.
6881  * Must be paired with napi_disable.
6882  */
6883 void napi_enable(struct napi_struct *n)
6884 {
6885 	unsigned long new, val = READ_ONCE(n->state);
6886 
6887 	if (n->config)
6888 		napi_restore_config(n);
6889 	else
6890 		napi_hash_add(n);
6891 
6892 	do {
6893 		BUG_ON(!test_bit(NAPI_STATE_SCHED, &val));
6894 
6895 		new = val & ~(NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC);
6896 		if (n->dev->threaded && n->thread)
6897 			new |= NAPIF_STATE_THREADED;
6898 	} while (!try_cmpxchg(&n->state, &val, new));
6899 }
6900 EXPORT_SYMBOL(napi_enable);
6901 
6902 static void flush_gro_hash(struct napi_struct *napi)
6903 {
6904 	int i;
6905 
6906 	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6907 		struct sk_buff *skb, *n;
6908 
6909 		list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6910 			kfree_skb(skb);
6911 		napi->gro_hash[i].count = 0;
6912 	}
6913 }
6914 
6915 /* Must be called in process context */
6916 void __netif_napi_del(struct napi_struct *napi)
6917 {
6918 	if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state))
6919 		return;
6920 
6921 	if (napi->config) {
6922 		napi->index = -1;
6923 		napi->config = NULL;
6924 	}
6925 
6926 	list_del_rcu(&napi->dev_list);
6927 	napi_free_frags(napi);
6928 
6929 	flush_gro_hash(napi);
6930 	napi->gro_bitmask = 0;
6931 
6932 	if (napi->thread) {
6933 		kthread_stop(napi->thread);
6934 		napi->thread = NULL;
6935 	}
6936 }
6937 EXPORT_SYMBOL(__netif_napi_del);
6938 
6939 static int __napi_poll(struct napi_struct *n, bool *repoll)
6940 {
6941 	int work, weight;
6942 
6943 	weight = n->weight;
6944 
6945 	/* This NAPI_STATE_SCHED test is for avoiding a race
6946 	 * with netpoll's poll_napi().  Only the entity which
6947 	 * obtains the lock and sees NAPI_STATE_SCHED set will
6948 	 * actually make the ->poll() call.  Therefore we avoid
6949 	 * accidentally calling ->poll() when NAPI is not scheduled.
6950 	 */
6951 	work = 0;
6952 	if (napi_is_scheduled(n)) {
6953 		work = n->poll(n, weight);
6954 		trace_napi_poll(n, work, weight);
6955 
6956 		xdp_do_check_flushed(n);
6957 	}
6958 
6959 	if (unlikely(work > weight))
6960 		netdev_err_once(n->dev, "NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
6961 				n->poll, work, weight);
6962 
6963 	if (likely(work < weight))
6964 		return work;
6965 
6966 	/* Drivers must not modify the NAPI state if they
6967 	 * consume the entire weight.  In such cases this code
6968 	 * still "owns" the NAPI instance and therefore can
6969 	 * move the instance around on the list at-will.
6970 	 */
6971 	if (unlikely(napi_disable_pending(n))) {
6972 		napi_complete(n);
6973 		return work;
6974 	}
6975 
6976 	/* The NAPI context has more processing work, but busy-polling
6977 	 * is preferred. Exit early.
6978 	 */
6979 	if (napi_prefer_busy_poll(n)) {
6980 		if (napi_complete_done(n, work)) {
6981 			/* If timeout is not set, we need to make sure
6982 			 * that the NAPI is re-scheduled.
6983 			 */
6984 			napi_schedule(n);
6985 		}
6986 		return work;
6987 	}
6988 
6989 	if (n->gro_bitmask) {
6990 		/* flush too old packets
6991 		 * If HZ < 1000, flush all packets.
6992 		 */
6993 		napi_gro_flush(n, HZ >= 1000);
6994 	}
6995 
6996 	gro_normal_list(n);
6997 
6998 	/* Some drivers may have called napi_schedule
6999 	 * prior to exhausting their budget.
7000 	 */
7001 	if (unlikely(!list_empty(&n->poll_list))) {
7002 		pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
7003 			     n->dev ? n->dev->name : "backlog");
7004 		return work;
7005 	}
7006 
7007 	*repoll = true;
7008 
7009 	return work;
7010 }
7011 
7012 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
7013 {
7014 	bool do_repoll = false;
7015 	void *have;
7016 	int work;
7017 
7018 	list_del_init(&n->poll_list);
7019 
7020 	have = netpoll_poll_lock(n);
7021 
7022 	work = __napi_poll(n, &do_repoll);
7023 
7024 	if (do_repoll)
7025 		list_add_tail(&n->poll_list, repoll);
7026 
7027 	netpoll_poll_unlock(have);
7028 
7029 	return work;
7030 }
7031 
7032 static int napi_thread_wait(struct napi_struct *napi)
7033 {
7034 	set_current_state(TASK_INTERRUPTIBLE);
7035 
7036 	while (!kthread_should_stop()) {
7037 		/* Testing SCHED_THREADED bit here to make sure the current
7038 		 * kthread owns this napi and could poll on this napi.
7039 		 * Testing SCHED bit is not enough because SCHED bit might be
7040 		 * set by some other busy poll thread or by napi_disable().
7041 		 */
7042 		if (test_bit(NAPI_STATE_SCHED_THREADED, &napi->state)) {
7043 			WARN_ON(!list_empty(&napi->poll_list));
7044 			__set_current_state(TASK_RUNNING);
7045 			return 0;
7046 		}
7047 
7048 		schedule();
7049 		set_current_state(TASK_INTERRUPTIBLE);
7050 	}
7051 	__set_current_state(TASK_RUNNING);
7052 
7053 	return -1;
7054 }
7055 
7056 static void napi_threaded_poll_loop(struct napi_struct *napi)
7057 {
7058 	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
7059 	struct softnet_data *sd;
7060 	unsigned long last_qs = jiffies;
7061 
7062 	for (;;) {
7063 		bool repoll = false;
7064 		void *have;
7065 
7066 		local_bh_disable();
7067 		bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
7068 
7069 		sd = this_cpu_ptr(&softnet_data);
7070 		sd->in_napi_threaded_poll = true;
7071 
7072 		have = netpoll_poll_lock(napi);
7073 		__napi_poll(napi, &repoll);
7074 		netpoll_poll_unlock(have);
7075 
7076 		sd->in_napi_threaded_poll = false;
7077 		barrier();
7078 
7079 		if (sd_has_rps_ipi_waiting(sd)) {
7080 			local_irq_disable();
7081 			net_rps_action_and_irq_enable(sd);
7082 		}
7083 		skb_defer_free_flush(sd);
7084 		bpf_net_ctx_clear(bpf_net_ctx);
7085 		local_bh_enable();
7086 
7087 		if (!repoll)
7088 			break;
7089 
7090 		rcu_softirq_qs_periodic(last_qs);
7091 		cond_resched();
7092 	}
7093 }
7094 
7095 static int napi_threaded_poll(void *data)
7096 {
7097 	struct napi_struct *napi = data;
7098 
7099 	while (!napi_thread_wait(napi))
7100 		napi_threaded_poll_loop(napi);
7101 
7102 	return 0;
7103 }
7104 
7105 static __latent_entropy void net_rx_action(void)
7106 {
7107 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
7108 	unsigned long time_limit = jiffies +
7109 		usecs_to_jiffies(READ_ONCE(net_hotdata.netdev_budget_usecs));
7110 	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
7111 	int budget = READ_ONCE(net_hotdata.netdev_budget);
7112 	LIST_HEAD(list);
7113 	LIST_HEAD(repoll);
7114 
7115 	bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
7116 start:
7117 	sd->in_net_rx_action = true;
7118 	local_irq_disable();
7119 	list_splice_init(&sd->poll_list, &list);
7120 	local_irq_enable();
7121 
7122 	for (;;) {
7123 		struct napi_struct *n;
7124 
7125 		skb_defer_free_flush(sd);
7126 
7127 		if (list_empty(&list)) {
7128 			if (list_empty(&repoll)) {
7129 				sd->in_net_rx_action = false;
7130 				barrier();
7131 				/* We need to check if ____napi_schedule()
7132 				 * had refilled poll_list while
7133 				 * sd->in_net_rx_action was true.
7134 				 */
7135 				if (!list_empty(&sd->poll_list))
7136 					goto start;
7137 				if (!sd_has_rps_ipi_waiting(sd))
7138 					goto end;
7139 			}
7140 			break;
7141 		}
7142 
7143 		n = list_first_entry(&list, struct napi_struct, poll_list);
7144 		budget -= napi_poll(n, &repoll);
7145 
7146 		/* If softirq window is exhausted then punt.
7147 		 * Allow this to run for 2 jiffies since which will allow
7148 		 * an average latency of 1.5/HZ.
7149 		 */
7150 		if (unlikely(budget <= 0 ||
7151 			     time_after_eq(jiffies, time_limit))) {
7152 			sd->time_squeeze++;
7153 			break;
7154 		}
7155 	}
7156 
7157 	local_irq_disable();
7158 
7159 	list_splice_tail_init(&sd->poll_list, &list);
7160 	list_splice_tail(&repoll, &list);
7161 	list_splice(&list, &sd->poll_list);
7162 	if (!list_empty(&sd->poll_list))
7163 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
7164 	else
7165 		sd->in_net_rx_action = false;
7166 
7167 	net_rps_action_and_irq_enable(sd);
7168 end:
7169 	bpf_net_ctx_clear(bpf_net_ctx);
7170 }
7171 
7172 struct netdev_adjacent {
7173 	struct net_device *dev;
7174 	netdevice_tracker dev_tracker;
7175 
7176 	/* upper master flag, there can only be one master device per list */
7177 	bool master;
7178 
7179 	/* lookup ignore flag */
7180 	bool ignore;
7181 
7182 	/* counter for the number of times this device was added to us */
7183 	u16 ref_nr;
7184 
7185 	/* private field for the users */
7186 	void *private;
7187 
7188 	struct list_head list;
7189 	struct rcu_head rcu;
7190 };
7191 
7192 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
7193 						 struct list_head *adj_list)
7194 {
7195 	struct netdev_adjacent *adj;
7196 
7197 	list_for_each_entry(adj, adj_list, list) {
7198 		if (adj->dev == adj_dev)
7199 			return adj;
7200 	}
7201 	return NULL;
7202 }
7203 
7204 static int ____netdev_has_upper_dev(struct net_device *upper_dev,
7205 				    struct netdev_nested_priv *priv)
7206 {
7207 	struct net_device *dev = (struct net_device *)priv->data;
7208 
7209 	return upper_dev == dev;
7210 }
7211 
7212 /**
7213  * netdev_has_upper_dev - Check if device is linked to an upper device
7214  * @dev: device
7215  * @upper_dev: upper device to check
7216  *
7217  * Find out if a device is linked to specified upper device and return true
7218  * in case it is. Note that this checks only immediate upper device,
7219  * not through a complete stack of devices. The caller must hold the RTNL lock.
7220  */
7221 bool netdev_has_upper_dev(struct net_device *dev,
7222 			  struct net_device *upper_dev)
7223 {
7224 	struct netdev_nested_priv priv = {
7225 		.data = (void *)upper_dev,
7226 	};
7227 
7228 	ASSERT_RTNL();
7229 
7230 	return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
7231 					     &priv);
7232 }
7233 EXPORT_SYMBOL(netdev_has_upper_dev);
7234 
7235 /**
7236  * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device
7237  * @dev: device
7238  * @upper_dev: upper device to check
7239  *
7240  * Find out if a device is linked to specified upper device and return true
7241  * in case it is. Note that this checks the entire upper device chain.
7242  * The caller must hold rcu lock.
7243  */
7244 
7245 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
7246 				  struct net_device *upper_dev)
7247 {
7248 	struct netdev_nested_priv priv = {
7249 		.data = (void *)upper_dev,
7250 	};
7251 
7252 	return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
7253 					       &priv);
7254 }
7255 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
7256 
7257 /**
7258  * netdev_has_any_upper_dev - Check if device is linked to some device
7259  * @dev: device
7260  *
7261  * Find out if a device is linked to an upper device and return true in case
7262  * it is. The caller must hold the RTNL lock.
7263  */
7264 bool netdev_has_any_upper_dev(struct net_device *dev)
7265 {
7266 	ASSERT_RTNL();
7267 
7268 	return !list_empty(&dev->adj_list.upper);
7269 }
7270 EXPORT_SYMBOL(netdev_has_any_upper_dev);
7271 
7272 /**
7273  * netdev_master_upper_dev_get - Get master upper device
7274  * @dev: device
7275  *
7276  * Find a master upper device and return pointer to it or NULL in case
7277  * it's not there. The caller must hold the RTNL lock.
7278  */
7279 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
7280 {
7281 	struct netdev_adjacent *upper;
7282 
7283 	ASSERT_RTNL();
7284 
7285 	if (list_empty(&dev->adj_list.upper))
7286 		return NULL;
7287 
7288 	upper = list_first_entry(&dev->adj_list.upper,
7289 				 struct netdev_adjacent, list);
7290 	if (likely(upper->master))
7291 		return upper->dev;
7292 	return NULL;
7293 }
7294 EXPORT_SYMBOL(netdev_master_upper_dev_get);
7295 
7296 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
7297 {
7298 	struct netdev_adjacent *upper;
7299 
7300 	ASSERT_RTNL();
7301 
7302 	if (list_empty(&dev->adj_list.upper))
7303 		return NULL;
7304 
7305 	upper = list_first_entry(&dev->adj_list.upper,
7306 				 struct netdev_adjacent, list);
7307 	if (likely(upper->master) && !upper->ignore)
7308 		return upper->dev;
7309 	return NULL;
7310 }
7311 
7312 /**
7313  * netdev_has_any_lower_dev - Check if device is linked to some device
7314  * @dev: device
7315  *
7316  * Find out if a device is linked to a lower device and return true in case
7317  * it is. The caller must hold the RTNL lock.
7318  */
7319 static bool netdev_has_any_lower_dev(struct net_device *dev)
7320 {
7321 	ASSERT_RTNL();
7322 
7323 	return !list_empty(&dev->adj_list.lower);
7324 }
7325 
7326 void *netdev_adjacent_get_private(struct list_head *adj_list)
7327 {
7328 	struct netdev_adjacent *adj;
7329 
7330 	adj = list_entry(adj_list, struct netdev_adjacent, list);
7331 
7332 	return adj->private;
7333 }
7334 EXPORT_SYMBOL(netdev_adjacent_get_private);
7335 
7336 /**
7337  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
7338  * @dev: device
7339  * @iter: list_head ** of the current position
7340  *
7341  * Gets the next device from the dev's upper list, starting from iter
7342  * position. The caller must hold RCU read lock.
7343  */
7344 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
7345 						 struct list_head **iter)
7346 {
7347 	struct netdev_adjacent *upper;
7348 
7349 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7350 
7351 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7352 
7353 	if (&upper->list == &dev->adj_list.upper)
7354 		return NULL;
7355 
7356 	*iter = &upper->list;
7357 
7358 	return upper->dev;
7359 }
7360 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
7361 
7362 static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
7363 						  struct list_head **iter,
7364 						  bool *ignore)
7365 {
7366 	struct netdev_adjacent *upper;
7367 
7368 	upper = list_entry((*iter)->next, struct netdev_adjacent, list);
7369 
7370 	if (&upper->list == &dev->adj_list.upper)
7371 		return NULL;
7372 
7373 	*iter = &upper->list;
7374 	*ignore = upper->ignore;
7375 
7376 	return upper->dev;
7377 }
7378 
7379 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
7380 						    struct list_head **iter)
7381 {
7382 	struct netdev_adjacent *upper;
7383 
7384 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7385 
7386 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7387 
7388 	if (&upper->list == &dev->adj_list.upper)
7389 		return NULL;
7390 
7391 	*iter = &upper->list;
7392 
7393 	return upper->dev;
7394 }
7395 
7396 static int __netdev_walk_all_upper_dev(struct net_device *dev,
7397 				       int (*fn)(struct net_device *dev,
7398 					 struct netdev_nested_priv *priv),
7399 				       struct netdev_nested_priv *priv)
7400 {
7401 	struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7402 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7403 	int ret, cur = 0;
7404 	bool ignore;
7405 
7406 	now = dev;
7407 	iter = &dev->adj_list.upper;
7408 
7409 	while (1) {
7410 		if (now != dev) {
7411 			ret = fn(now, priv);
7412 			if (ret)
7413 				return ret;
7414 		}
7415 
7416 		next = NULL;
7417 		while (1) {
7418 			udev = __netdev_next_upper_dev(now, &iter, &ignore);
7419 			if (!udev)
7420 				break;
7421 			if (ignore)
7422 				continue;
7423 
7424 			next = udev;
7425 			niter = &udev->adj_list.upper;
7426 			dev_stack[cur] = now;
7427 			iter_stack[cur++] = iter;
7428 			break;
7429 		}
7430 
7431 		if (!next) {
7432 			if (!cur)
7433 				return 0;
7434 			next = dev_stack[--cur];
7435 			niter = iter_stack[cur];
7436 		}
7437 
7438 		now = next;
7439 		iter = niter;
7440 	}
7441 
7442 	return 0;
7443 }
7444 
7445 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
7446 				  int (*fn)(struct net_device *dev,
7447 					    struct netdev_nested_priv *priv),
7448 				  struct netdev_nested_priv *priv)
7449 {
7450 	struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7451 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7452 	int ret, cur = 0;
7453 
7454 	now = dev;
7455 	iter = &dev->adj_list.upper;
7456 
7457 	while (1) {
7458 		if (now != dev) {
7459 			ret = fn(now, priv);
7460 			if (ret)
7461 				return ret;
7462 		}
7463 
7464 		next = NULL;
7465 		while (1) {
7466 			udev = netdev_next_upper_dev_rcu(now, &iter);
7467 			if (!udev)
7468 				break;
7469 
7470 			next = udev;
7471 			niter = &udev->adj_list.upper;
7472 			dev_stack[cur] = now;
7473 			iter_stack[cur++] = iter;
7474 			break;
7475 		}
7476 
7477 		if (!next) {
7478 			if (!cur)
7479 				return 0;
7480 			next = dev_stack[--cur];
7481 			niter = iter_stack[cur];
7482 		}
7483 
7484 		now = next;
7485 		iter = niter;
7486 	}
7487 
7488 	return 0;
7489 }
7490 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
7491 
7492 static bool __netdev_has_upper_dev(struct net_device *dev,
7493 				   struct net_device *upper_dev)
7494 {
7495 	struct netdev_nested_priv priv = {
7496 		.flags = 0,
7497 		.data = (void *)upper_dev,
7498 	};
7499 
7500 	ASSERT_RTNL();
7501 
7502 	return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
7503 					   &priv);
7504 }
7505 
7506 /**
7507  * netdev_lower_get_next_private - Get the next ->private from the
7508  *				   lower neighbour list
7509  * @dev: device
7510  * @iter: list_head ** of the current position
7511  *
7512  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7513  * list, starting from iter position. The caller must hold either hold the
7514  * RTNL lock or its own locking that guarantees that the neighbour lower
7515  * list will remain unchanged.
7516  */
7517 void *netdev_lower_get_next_private(struct net_device *dev,
7518 				    struct list_head **iter)
7519 {
7520 	struct netdev_adjacent *lower;
7521 
7522 	lower = list_entry(*iter, struct netdev_adjacent, list);
7523 
7524 	if (&lower->list == &dev->adj_list.lower)
7525 		return NULL;
7526 
7527 	*iter = lower->list.next;
7528 
7529 	return lower->private;
7530 }
7531 EXPORT_SYMBOL(netdev_lower_get_next_private);
7532 
7533 /**
7534  * netdev_lower_get_next_private_rcu - Get the next ->private from the
7535  *				       lower neighbour list, RCU
7536  *				       variant
7537  * @dev: device
7538  * @iter: list_head ** of the current position
7539  *
7540  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7541  * list, starting from iter position. The caller must hold RCU read lock.
7542  */
7543 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
7544 					struct list_head **iter)
7545 {
7546 	struct netdev_adjacent *lower;
7547 
7548 	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
7549 
7550 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7551 
7552 	if (&lower->list == &dev->adj_list.lower)
7553 		return NULL;
7554 
7555 	*iter = &lower->list;
7556 
7557 	return lower->private;
7558 }
7559 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
7560 
7561 /**
7562  * netdev_lower_get_next - Get the next device from the lower neighbour
7563  *                         list
7564  * @dev: device
7565  * @iter: list_head ** of the current position
7566  *
7567  * Gets the next netdev_adjacent from the dev's lower neighbour
7568  * list, starting from iter position. The caller must hold RTNL lock or
7569  * its own locking that guarantees that the neighbour lower
7570  * list will remain unchanged.
7571  */
7572 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
7573 {
7574 	struct netdev_adjacent *lower;
7575 
7576 	lower = list_entry(*iter, struct netdev_adjacent, list);
7577 
7578 	if (&lower->list == &dev->adj_list.lower)
7579 		return NULL;
7580 
7581 	*iter = lower->list.next;
7582 
7583 	return lower->dev;
7584 }
7585 EXPORT_SYMBOL(netdev_lower_get_next);
7586 
7587 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7588 						struct list_head **iter)
7589 {
7590 	struct netdev_adjacent *lower;
7591 
7592 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7593 
7594 	if (&lower->list == &dev->adj_list.lower)
7595 		return NULL;
7596 
7597 	*iter = &lower->list;
7598 
7599 	return lower->dev;
7600 }
7601 
7602 static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7603 						  struct list_head **iter,
7604 						  bool *ignore)
7605 {
7606 	struct netdev_adjacent *lower;
7607 
7608 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7609 
7610 	if (&lower->list == &dev->adj_list.lower)
7611 		return NULL;
7612 
7613 	*iter = &lower->list;
7614 	*ignore = lower->ignore;
7615 
7616 	return lower->dev;
7617 }
7618 
7619 int netdev_walk_all_lower_dev(struct net_device *dev,
7620 			      int (*fn)(struct net_device *dev,
7621 					struct netdev_nested_priv *priv),
7622 			      struct netdev_nested_priv *priv)
7623 {
7624 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7625 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7626 	int ret, cur = 0;
7627 
7628 	now = dev;
7629 	iter = &dev->adj_list.lower;
7630 
7631 	while (1) {
7632 		if (now != dev) {
7633 			ret = fn(now, priv);
7634 			if (ret)
7635 				return ret;
7636 		}
7637 
7638 		next = NULL;
7639 		while (1) {
7640 			ldev = netdev_next_lower_dev(now, &iter);
7641 			if (!ldev)
7642 				break;
7643 
7644 			next = ldev;
7645 			niter = &ldev->adj_list.lower;
7646 			dev_stack[cur] = now;
7647 			iter_stack[cur++] = iter;
7648 			break;
7649 		}
7650 
7651 		if (!next) {
7652 			if (!cur)
7653 				return 0;
7654 			next = dev_stack[--cur];
7655 			niter = iter_stack[cur];
7656 		}
7657 
7658 		now = next;
7659 		iter = niter;
7660 	}
7661 
7662 	return 0;
7663 }
7664 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
7665 
7666 static int __netdev_walk_all_lower_dev(struct net_device *dev,
7667 				       int (*fn)(struct net_device *dev,
7668 					 struct netdev_nested_priv *priv),
7669 				       struct netdev_nested_priv *priv)
7670 {
7671 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7672 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7673 	int ret, cur = 0;
7674 	bool ignore;
7675 
7676 	now = dev;
7677 	iter = &dev->adj_list.lower;
7678 
7679 	while (1) {
7680 		if (now != dev) {
7681 			ret = fn(now, priv);
7682 			if (ret)
7683 				return ret;
7684 		}
7685 
7686 		next = NULL;
7687 		while (1) {
7688 			ldev = __netdev_next_lower_dev(now, &iter, &ignore);
7689 			if (!ldev)
7690 				break;
7691 			if (ignore)
7692 				continue;
7693 
7694 			next = ldev;
7695 			niter = &ldev->adj_list.lower;
7696 			dev_stack[cur] = now;
7697 			iter_stack[cur++] = iter;
7698 			break;
7699 		}
7700 
7701 		if (!next) {
7702 			if (!cur)
7703 				return 0;
7704 			next = dev_stack[--cur];
7705 			niter = iter_stack[cur];
7706 		}
7707 
7708 		now = next;
7709 		iter = niter;
7710 	}
7711 
7712 	return 0;
7713 }
7714 
7715 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
7716 					     struct list_head **iter)
7717 {
7718 	struct netdev_adjacent *lower;
7719 
7720 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7721 	if (&lower->list == &dev->adj_list.lower)
7722 		return NULL;
7723 
7724 	*iter = &lower->list;
7725 
7726 	return lower->dev;
7727 }
7728 EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
7729 
7730 static u8 __netdev_upper_depth(struct net_device *dev)
7731 {
7732 	struct net_device *udev;
7733 	struct list_head *iter;
7734 	u8 max_depth = 0;
7735 	bool ignore;
7736 
7737 	for (iter = &dev->adj_list.upper,
7738 	     udev = __netdev_next_upper_dev(dev, &iter, &ignore);
7739 	     udev;
7740 	     udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
7741 		if (ignore)
7742 			continue;
7743 		if (max_depth < udev->upper_level)
7744 			max_depth = udev->upper_level;
7745 	}
7746 
7747 	return max_depth;
7748 }
7749 
7750 static u8 __netdev_lower_depth(struct net_device *dev)
7751 {
7752 	struct net_device *ldev;
7753 	struct list_head *iter;
7754 	u8 max_depth = 0;
7755 	bool ignore;
7756 
7757 	for (iter = &dev->adj_list.lower,
7758 	     ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
7759 	     ldev;
7760 	     ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
7761 		if (ignore)
7762 			continue;
7763 		if (max_depth < ldev->lower_level)
7764 			max_depth = ldev->lower_level;
7765 	}
7766 
7767 	return max_depth;
7768 }
7769 
7770 static int __netdev_update_upper_level(struct net_device *dev,
7771 				       struct netdev_nested_priv *__unused)
7772 {
7773 	dev->upper_level = __netdev_upper_depth(dev) + 1;
7774 	return 0;
7775 }
7776 
7777 #ifdef CONFIG_LOCKDEP
7778 static LIST_HEAD(net_unlink_list);
7779 
7780 static void net_unlink_todo(struct net_device *dev)
7781 {
7782 	if (list_empty(&dev->unlink_list))
7783 		list_add_tail(&dev->unlink_list, &net_unlink_list);
7784 }
7785 #endif
7786 
7787 static int __netdev_update_lower_level(struct net_device *dev,
7788 				       struct netdev_nested_priv *priv)
7789 {
7790 	dev->lower_level = __netdev_lower_depth(dev) + 1;
7791 
7792 #ifdef CONFIG_LOCKDEP
7793 	if (!priv)
7794 		return 0;
7795 
7796 	if (priv->flags & NESTED_SYNC_IMM)
7797 		dev->nested_level = dev->lower_level - 1;
7798 	if (priv->flags & NESTED_SYNC_TODO)
7799 		net_unlink_todo(dev);
7800 #endif
7801 	return 0;
7802 }
7803 
7804 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7805 				  int (*fn)(struct net_device *dev,
7806 					    struct netdev_nested_priv *priv),
7807 				  struct netdev_nested_priv *priv)
7808 {
7809 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7810 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7811 	int ret, cur = 0;
7812 
7813 	now = dev;
7814 	iter = &dev->adj_list.lower;
7815 
7816 	while (1) {
7817 		if (now != dev) {
7818 			ret = fn(now, priv);
7819 			if (ret)
7820 				return ret;
7821 		}
7822 
7823 		next = NULL;
7824 		while (1) {
7825 			ldev = netdev_next_lower_dev_rcu(now, &iter);
7826 			if (!ldev)
7827 				break;
7828 
7829 			next = ldev;
7830 			niter = &ldev->adj_list.lower;
7831 			dev_stack[cur] = now;
7832 			iter_stack[cur++] = iter;
7833 			break;
7834 		}
7835 
7836 		if (!next) {
7837 			if (!cur)
7838 				return 0;
7839 			next = dev_stack[--cur];
7840 			niter = iter_stack[cur];
7841 		}
7842 
7843 		now = next;
7844 		iter = niter;
7845 	}
7846 
7847 	return 0;
7848 }
7849 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
7850 
7851 /**
7852  * netdev_lower_get_first_private_rcu - Get the first ->private from the
7853  *				       lower neighbour list, RCU
7854  *				       variant
7855  * @dev: device
7856  *
7857  * Gets the first netdev_adjacent->private from the dev's lower neighbour
7858  * list. The caller must hold RCU read lock.
7859  */
7860 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
7861 {
7862 	struct netdev_adjacent *lower;
7863 
7864 	lower = list_first_or_null_rcu(&dev->adj_list.lower,
7865 			struct netdev_adjacent, list);
7866 	if (lower)
7867 		return lower->private;
7868 	return NULL;
7869 }
7870 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
7871 
7872 /**
7873  * netdev_master_upper_dev_get_rcu - Get master upper device
7874  * @dev: device
7875  *
7876  * Find a master upper device and return pointer to it or NULL in case
7877  * it's not there. The caller must hold the RCU read lock.
7878  */
7879 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
7880 {
7881 	struct netdev_adjacent *upper;
7882 
7883 	upper = list_first_or_null_rcu(&dev->adj_list.upper,
7884 				       struct netdev_adjacent, list);
7885 	if (upper && likely(upper->master))
7886 		return upper->dev;
7887 	return NULL;
7888 }
7889 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
7890 
7891 static int netdev_adjacent_sysfs_add(struct net_device *dev,
7892 			      struct net_device *adj_dev,
7893 			      struct list_head *dev_list)
7894 {
7895 	char linkname[IFNAMSIZ+7];
7896 
7897 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
7898 		"upper_%s" : "lower_%s", adj_dev->name);
7899 	return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
7900 				 linkname);
7901 }
7902 static void netdev_adjacent_sysfs_del(struct net_device *dev,
7903 			       char *name,
7904 			       struct list_head *dev_list)
7905 {
7906 	char linkname[IFNAMSIZ+7];
7907 
7908 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
7909 		"upper_%s" : "lower_%s", name);
7910 	sysfs_remove_link(&(dev->dev.kobj), linkname);
7911 }
7912 
7913 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
7914 						 struct net_device *adj_dev,
7915 						 struct list_head *dev_list)
7916 {
7917 	return (dev_list == &dev->adj_list.upper ||
7918 		dev_list == &dev->adj_list.lower) &&
7919 		net_eq(dev_net(dev), dev_net(adj_dev));
7920 }
7921 
7922 static int __netdev_adjacent_dev_insert(struct net_device *dev,
7923 					struct net_device *adj_dev,
7924 					struct list_head *dev_list,
7925 					void *private, bool master)
7926 {
7927 	struct netdev_adjacent *adj;
7928 	int ret;
7929 
7930 	adj = __netdev_find_adj(adj_dev, dev_list);
7931 
7932 	if (adj) {
7933 		adj->ref_nr += 1;
7934 		pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7935 			 dev->name, adj_dev->name, adj->ref_nr);
7936 
7937 		return 0;
7938 	}
7939 
7940 	adj = kmalloc(sizeof(*adj), GFP_KERNEL);
7941 	if (!adj)
7942 		return -ENOMEM;
7943 
7944 	adj->dev = adj_dev;
7945 	adj->master = master;
7946 	adj->ref_nr = 1;
7947 	adj->private = private;
7948 	adj->ignore = false;
7949 	netdev_hold(adj_dev, &adj->dev_tracker, GFP_KERNEL);
7950 
7951 	pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7952 		 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
7953 
7954 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
7955 		ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
7956 		if (ret)
7957 			goto free_adj;
7958 	}
7959 
7960 	/* Ensure that master link is always the first item in list. */
7961 	if (master) {
7962 		ret = sysfs_create_link(&(dev->dev.kobj),
7963 					&(adj_dev->dev.kobj), "master");
7964 		if (ret)
7965 			goto remove_symlinks;
7966 
7967 		list_add_rcu(&adj->list, dev_list);
7968 	} else {
7969 		list_add_tail_rcu(&adj->list, dev_list);
7970 	}
7971 
7972 	return 0;
7973 
7974 remove_symlinks:
7975 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7976 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7977 free_adj:
7978 	netdev_put(adj_dev, &adj->dev_tracker);
7979 	kfree(adj);
7980 
7981 	return ret;
7982 }
7983 
7984 static void __netdev_adjacent_dev_remove(struct net_device *dev,
7985 					 struct net_device *adj_dev,
7986 					 u16 ref_nr,
7987 					 struct list_head *dev_list)
7988 {
7989 	struct netdev_adjacent *adj;
7990 
7991 	pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
7992 		 dev->name, adj_dev->name, ref_nr);
7993 
7994 	adj = __netdev_find_adj(adj_dev, dev_list);
7995 
7996 	if (!adj) {
7997 		pr_err("Adjacency does not exist for device %s from %s\n",
7998 		       dev->name, adj_dev->name);
7999 		WARN_ON(1);
8000 		return;
8001 	}
8002 
8003 	if (adj->ref_nr > ref_nr) {
8004 		pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
8005 			 dev->name, adj_dev->name, ref_nr,
8006 			 adj->ref_nr - ref_nr);
8007 		adj->ref_nr -= ref_nr;
8008 		return;
8009 	}
8010 
8011 	if (adj->master)
8012 		sysfs_remove_link(&(dev->dev.kobj), "master");
8013 
8014 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
8015 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
8016 
8017 	list_del_rcu(&adj->list);
8018 	pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
8019 		 adj_dev->name, dev->name, adj_dev->name);
8020 	netdev_put(adj_dev, &adj->dev_tracker);
8021 	kfree_rcu(adj, rcu);
8022 }
8023 
8024 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
8025 					    struct net_device *upper_dev,
8026 					    struct list_head *up_list,
8027 					    struct list_head *down_list,
8028 					    void *private, bool master)
8029 {
8030 	int ret;
8031 
8032 	ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
8033 					   private, master);
8034 	if (ret)
8035 		return ret;
8036 
8037 	ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
8038 					   private, false);
8039 	if (ret) {
8040 		__netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
8041 		return ret;
8042 	}
8043 
8044 	return 0;
8045 }
8046 
8047 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
8048 					       struct net_device *upper_dev,
8049 					       u16 ref_nr,
8050 					       struct list_head *up_list,
8051 					       struct list_head *down_list)
8052 {
8053 	__netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
8054 	__netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
8055 }
8056 
8057 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
8058 						struct net_device *upper_dev,
8059 						void *private, bool master)
8060 {
8061 	return __netdev_adjacent_dev_link_lists(dev, upper_dev,
8062 						&dev->adj_list.upper,
8063 						&upper_dev->adj_list.lower,
8064 						private, master);
8065 }
8066 
8067 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
8068 						   struct net_device *upper_dev)
8069 {
8070 	__netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
8071 					   &dev->adj_list.upper,
8072 					   &upper_dev->adj_list.lower);
8073 }
8074 
8075 static int __netdev_upper_dev_link(struct net_device *dev,
8076 				   struct net_device *upper_dev, bool master,
8077 				   void *upper_priv, void *upper_info,
8078 				   struct netdev_nested_priv *priv,
8079 				   struct netlink_ext_ack *extack)
8080 {
8081 	struct netdev_notifier_changeupper_info changeupper_info = {
8082 		.info = {
8083 			.dev = dev,
8084 			.extack = extack,
8085 		},
8086 		.upper_dev = upper_dev,
8087 		.master = master,
8088 		.linking = true,
8089 		.upper_info = upper_info,
8090 	};
8091 	struct net_device *master_dev;
8092 	int ret = 0;
8093 
8094 	ASSERT_RTNL();
8095 
8096 	if (dev == upper_dev)
8097 		return -EBUSY;
8098 
8099 	/* To prevent loops, check if dev is not upper device to upper_dev. */
8100 	if (__netdev_has_upper_dev(upper_dev, dev))
8101 		return -EBUSY;
8102 
8103 	if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
8104 		return -EMLINK;
8105 
8106 	if (!master) {
8107 		if (__netdev_has_upper_dev(dev, upper_dev))
8108 			return -EEXIST;
8109 	} else {
8110 		master_dev = __netdev_master_upper_dev_get(dev);
8111 		if (master_dev)
8112 			return master_dev == upper_dev ? -EEXIST : -EBUSY;
8113 	}
8114 
8115 	ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
8116 					    &changeupper_info.info);
8117 	ret = notifier_to_errno(ret);
8118 	if (ret)
8119 		return ret;
8120 
8121 	ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
8122 						   master);
8123 	if (ret)
8124 		return ret;
8125 
8126 	ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
8127 					    &changeupper_info.info);
8128 	ret = notifier_to_errno(ret);
8129 	if (ret)
8130 		goto rollback;
8131 
8132 	__netdev_update_upper_level(dev, NULL);
8133 	__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
8134 
8135 	__netdev_update_lower_level(upper_dev, priv);
8136 	__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
8137 				    priv);
8138 
8139 	return 0;
8140 
8141 rollback:
8142 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
8143 
8144 	return ret;
8145 }
8146 
8147 /**
8148  * netdev_upper_dev_link - Add a link to the upper device
8149  * @dev: device
8150  * @upper_dev: new upper device
8151  * @extack: netlink extended ack
8152  *
8153  * Adds a link to device which is upper to this one. The caller must hold
8154  * the RTNL lock. On a failure a negative errno code is returned.
8155  * On success the reference counts are adjusted and the function
8156  * returns zero.
8157  */
8158 int netdev_upper_dev_link(struct net_device *dev,
8159 			  struct net_device *upper_dev,
8160 			  struct netlink_ext_ack *extack)
8161 {
8162 	struct netdev_nested_priv priv = {
8163 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8164 		.data = NULL,
8165 	};
8166 
8167 	return __netdev_upper_dev_link(dev, upper_dev, false,
8168 				       NULL, NULL, &priv, extack);
8169 }
8170 EXPORT_SYMBOL(netdev_upper_dev_link);
8171 
8172 /**
8173  * netdev_master_upper_dev_link - Add a master link to the upper device
8174  * @dev: device
8175  * @upper_dev: new upper device
8176  * @upper_priv: upper device private
8177  * @upper_info: upper info to be passed down via notifier
8178  * @extack: netlink extended ack
8179  *
8180  * Adds a link to device which is upper to this one. In this case, only
8181  * one master upper device can be linked, although other non-master devices
8182  * might be linked as well. The caller must hold the RTNL lock.
8183  * On a failure a negative errno code is returned. On success the reference
8184  * counts are adjusted and the function returns zero.
8185  */
8186 int netdev_master_upper_dev_link(struct net_device *dev,
8187 				 struct net_device *upper_dev,
8188 				 void *upper_priv, void *upper_info,
8189 				 struct netlink_ext_ack *extack)
8190 {
8191 	struct netdev_nested_priv priv = {
8192 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8193 		.data = NULL,
8194 	};
8195 
8196 	return __netdev_upper_dev_link(dev, upper_dev, true,
8197 				       upper_priv, upper_info, &priv, extack);
8198 }
8199 EXPORT_SYMBOL(netdev_master_upper_dev_link);
8200 
8201 static void __netdev_upper_dev_unlink(struct net_device *dev,
8202 				      struct net_device *upper_dev,
8203 				      struct netdev_nested_priv *priv)
8204 {
8205 	struct netdev_notifier_changeupper_info changeupper_info = {
8206 		.info = {
8207 			.dev = dev,
8208 		},
8209 		.upper_dev = upper_dev,
8210 		.linking = false,
8211 	};
8212 
8213 	ASSERT_RTNL();
8214 
8215 	changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
8216 
8217 	call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
8218 				      &changeupper_info.info);
8219 
8220 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
8221 
8222 	call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
8223 				      &changeupper_info.info);
8224 
8225 	__netdev_update_upper_level(dev, NULL);
8226 	__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
8227 
8228 	__netdev_update_lower_level(upper_dev, priv);
8229 	__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
8230 				    priv);
8231 }
8232 
8233 /**
8234  * netdev_upper_dev_unlink - Removes a link to upper device
8235  * @dev: device
8236  * @upper_dev: new upper device
8237  *
8238  * Removes a link to device which is upper to this one. The caller must hold
8239  * the RTNL lock.
8240  */
8241 void netdev_upper_dev_unlink(struct net_device *dev,
8242 			     struct net_device *upper_dev)
8243 {
8244 	struct netdev_nested_priv priv = {
8245 		.flags = NESTED_SYNC_TODO,
8246 		.data = NULL,
8247 	};
8248 
8249 	__netdev_upper_dev_unlink(dev, upper_dev, &priv);
8250 }
8251 EXPORT_SYMBOL(netdev_upper_dev_unlink);
8252 
8253 static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
8254 				      struct net_device *lower_dev,
8255 				      bool val)
8256 {
8257 	struct netdev_adjacent *adj;
8258 
8259 	adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
8260 	if (adj)
8261 		adj->ignore = val;
8262 
8263 	adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
8264 	if (adj)
8265 		adj->ignore = val;
8266 }
8267 
8268 static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
8269 					struct net_device *lower_dev)
8270 {
8271 	__netdev_adjacent_dev_set(upper_dev, lower_dev, true);
8272 }
8273 
8274 static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
8275 				       struct net_device *lower_dev)
8276 {
8277 	__netdev_adjacent_dev_set(upper_dev, lower_dev, false);
8278 }
8279 
8280 int netdev_adjacent_change_prepare(struct net_device *old_dev,
8281 				   struct net_device *new_dev,
8282 				   struct net_device *dev,
8283 				   struct netlink_ext_ack *extack)
8284 {
8285 	struct netdev_nested_priv priv = {
8286 		.flags = 0,
8287 		.data = NULL,
8288 	};
8289 	int err;
8290 
8291 	if (!new_dev)
8292 		return 0;
8293 
8294 	if (old_dev && new_dev != old_dev)
8295 		netdev_adjacent_dev_disable(dev, old_dev);
8296 	err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv,
8297 				      extack);
8298 	if (err) {
8299 		if (old_dev && new_dev != old_dev)
8300 			netdev_adjacent_dev_enable(dev, old_dev);
8301 		return err;
8302 	}
8303 
8304 	return 0;
8305 }
8306 EXPORT_SYMBOL(netdev_adjacent_change_prepare);
8307 
8308 void netdev_adjacent_change_commit(struct net_device *old_dev,
8309 				   struct net_device *new_dev,
8310 				   struct net_device *dev)
8311 {
8312 	struct netdev_nested_priv priv = {
8313 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8314 		.data = NULL,
8315 	};
8316 
8317 	if (!new_dev || !old_dev)
8318 		return;
8319 
8320 	if (new_dev == old_dev)
8321 		return;
8322 
8323 	netdev_adjacent_dev_enable(dev, old_dev);
8324 	__netdev_upper_dev_unlink(old_dev, dev, &priv);
8325 }
8326 EXPORT_SYMBOL(netdev_adjacent_change_commit);
8327 
8328 void netdev_adjacent_change_abort(struct net_device *old_dev,
8329 				  struct net_device *new_dev,
8330 				  struct net_device *dev)
8331 {
8332 	struct netdev_nested_priv priv = {
8333 		.flags = 0,
8334 		.data = NULL,
8335 	};
8336 
8337 	if (!new_dev)
8338 		return;
8339 
8340 	if (old_dev && new_dev != old_dev)
8341 		netdev_adjacent_dev_enable(dev, old_dev);
8342 
8343 	__netdev_upper_dev_unlink(new_dev, dev, &priv);
8344 }
8345 EXPORT_SYMBOL(netdev_adjacent_change_abort);
8346 
8347 /**
8348  * netdev_bonding_info_change - Dispatch event about slave change
8349  * @dev: device
8350  * @bonding_info: info to dispatch
8351  *
8352  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
8353  * The caller must hold the RTNL lock.
8354  */
8355 void netdev_bonding_info_change(struct net_device *dev,
8356 				struct netdev_bonding_info *bonding_info)
8357 {
8358 	struct netdev_notifier_bonding_info info = {
8359 		.info.dev = dev,
8360 	};
8361 
8362 	memcpy(&info.bonding_info, bonding_info,
8363 	       sizeof(struct netdev_bonding_info));
8364 	call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
8365 				      &info.info);
8366 }
8367 EXPORT_SYMBOL(netdev_bonding_info_change);
8368 
8369 static int netdev_offload_xstats_enable_l3(struct net_device *dev,
8370 					   struct netlink_ext_ack *extack)
8371 {
8372 	struct netdev_notifier_offload_xstats_info info = {
8373 		.info.dev = dev,
8374 		.info.extack = extack,
8375 		.type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
8376 	};
8377 	int err;
8378 	int rc;
8379 
8380 	dev->offload_xstats_l3 = kzalloc(sizeof(*dev->offload_xstats_l3),
8381 					 GFP_KERNEL);
8382 	if (!dev->offload_xstats_l3)
8383 		return -ENOMEM;
8384 
8385 	rc = call_netdevice_notifiers_info_robust(NETDEV_OFFLOAD_XSTATS_ENABLE,
8386 						  NETDEV_OFFLOAD_XSTATS_DISABLE,
8387 						  &info.info);
8388 	err = notifier_to_errno(rc);
8389 	if (err)
8390 		goto free_stats;
8391 
8392 	return 0;
8393 
8394 free_stats:
8395 	kfree(dev->offload_xstats_l3);
8396 	dev->offload_xstats_l3 = NULL;
8397 	return err;
8398 }
8399 
8400 int netdev_offload_xstats_enable(struct net_device *dev,
8401 				 enum netdev_offload_xstats_type type,
8402 				 struct netlink_ext_ack *extack)
8403 {
8404 	ASSERT_RTNL();
8405 
8406 	if (netdev_offload_xstats_enabled(dev, type))
8407 		return -EALREADY;
8408 
8409 	switch (type) {
8410 	case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8411 		return netdev_offload_xstats_enable_l3(dev, extack);
8412 	}
8413 
8414 	WARN_ON(1);
8415 	return -EINVAL;
8416 }
8417 EXPORT_SYMBOL(netdev_offload_xstats_enable);
8418 
8419 static void netdev_offload_xstats_disable_l3(struct net_device *dev)
8420 {
8421 	struct netdev_notifier_offload_xstats_info info = {
8422 		.info.dev = dev,
8423 		.type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
8424 	};
8425 
8426 	call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_DISABLE,
8427 				      &info.info);
8428 	kfree(dev->offload_xstats_l3);
8429 	dev->offload_xstats_l3 = NULL;
8430 }
8431 
8432 int netdev_offload_xstats_disable(struct net_device *dev,
8433 				  enum netdev_offload_xstats_type type)
8434 {
8435 	ASSERT_RTNL();
8436 
8437 	if (!netdev_offload_xstats_enabled(dev, type))
8438 		return -EALREADY;
8439 
8440 	switch (type) {
8441 	case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8442 		netdev_offload_xstats_disable_l3(dev);
8443 		return 0;
8444 	}
8445 
8446 	WARN_ON(1);
8447 	return -EINVAL;
8448 }
8449 EXPORT_SYMBOL(netdev_offload_xstats_disable);
8450 
8451 static void netdev_offload_xstats_disable_all(struct net_device *dev)
8452 {
8453 	netdev_offload_xstats_disable(dev, NETDEV_OFFLOAD_XSTATS_TYPE_L3);
8454 }
8455 
8456 static struct rtnl_hw_stats64 *
8457 netdev_offload_xstats_get_ptr(const struct net_device *dev,
8458 			      enum netdev_offload_xstats_type type)
8459 {
8460 	switch (type) {
8461 	case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8462 		return dev->offload_xstats_l3;
8463 	}
8464 
8465 	WARN_ON(1);
8466 	return NULL;
8467 }
8468 
8469 bool netdev_offload_xstats_enabled(const struct net_device *dev,
8470 				   enum netdev_offload_xstats_type type)
8471 {
8472 	ASSERT_RTNL();
8473 
8474 	return netdev_offload_xstats_get_ptr(dev, type);
8475 }
8476 EXPORT_SYMBOL(netdev_offload_xstats_enabled);
8477 
8478 struct netdev_notifier_offload_xstats_ru {
8479 	bool used;
8480 };
8481 
8482 struct netdev_notifier_offload_xstats_rd {
8483 	struct rtnl_hw_stats64 stats;
8484 	bool used;
8485 };
8486 
8487 static void netdev_hw_stats64_add(struct rtnl_hw_stats64 *dest,
8488 				  const struct rtnl_hw_stats64 *src)
8489 {
8490 	dest->rx_packets	  += src->rx_packets;
8491 	dest->tx_packets	  += src->tx_packets;
8492 	dest->rx_bytes		  += src->rx_bytes;
8493 	dest->tx_bytes		  += src->tx_bytes;
8494 	dest->rx_errors		  += src->rx_errors;
8495 	dest->tx_errors		  += src->tx_errors;
8496 	dest->rx_dropped	  += src->rx_dropped;
8497 	dest->tx_dropped	  += src->tx_dropped;
8498 	dest->multicast		  += src->multicast;
8499 }
8500 
8501 static int netdev_offload_xstats_get_used(struct net_device *dev,
8502 					  enum netdev_offload_xstats_type type,
8503 					  bool *p_used,
8504 					  struct netlink_ext_ack *extack)
8505 {
8506 	struct netdev_notifier_offload_xstats_ru report_used = {};
8507 	struct netdev_notifier_offload_xstats_info info = {
8508 		.info.dev = dev,
8509 		.info.extack = extack,
8510 		.type = type,
8511 		.report_used = &report_used,
8512 	};
8513 	int rc;
8514 
8515 	WARN_ON(!netdev_offload_xstats_enabled(dev, type));
8516 	rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_USED,
8517 					   &info.info);
8518 	*p_used = report_used.used;
8519 	return notifier_to_errno(rc);
8520 }
8521 
8522 static int netdev_offload_xstats_get_stats(struct net_device *dev,
8523 					   enum netdev_offload_xstats_type type,
8524 					   struct rtnl_hw_stats64 *p_stats,
8525 					   bool *p_used,
8526 					   struct netlink_ext_ack *extack)
8527 {
8528 	struct netdev_notifier_offload_xstats_rd report_delta = {};
8529 	struct netdev_notifier_offload_xstats_info info = {
8530 		.info.dev = dev,
8531 		.info.extack = extack,
8532 		.type = type,
8533 		.report_delta = &report_delta,
8534 	};
8535 	struct rtnl_hw_stats64 *stats;
8536 	int rc;
8537 
8538 	stats = netdev_offload_xstats_get_ptr(dev, type);
8539 	if (WARN_ON(!stats))
8540 		return -EINVAL;
8541 
8542 	rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_DELTA,
8543 					   &info.info);
8544 
8545 	/* Cache whatever we got, even if there was an error, otherwise the
8546 	 * successful stats retrievals would get lost.
8547 	 */
8548 	netdev_hw_stats64_add(stats, &report_delta.stats);
8549 
8550 	if (p_stats)
8551 		*p_stats = *stats;
8552 	*p_used = report_delta.used;
8553 
8554 	return notifier_to_errno(rc);
8555 }
8556 
8557 int netdev_offload_xstats_get(struct net_device *dev,
8558 			      enum netdev_offload_xstats_type type,
8559 			      struct rtnl_hw_stats64 *p_stats, bool *p_used,
8560 			      struct netlink_ext_ack *extack)
8561 {
8562 	ASSERT_RTNL();
8563 
8564 	if (p_stats)
8565 		return netdev_offload_xstats_get_stats(dev, type, p_stats,
8566 						       p_used, extack);
8567 	else
8568 		return netdev_offload_xstats_get_used(dev, type, p_used,
8569 						      extack);
8570 }
8571 EXPORT_SYMBOL(netdev_offload_xstats_get);
8572 
8573 void
8574 netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *report_delta,
8575 				   const struct rtnl_hw_stats64 *stats)
8576 {
8577 	report_delta->used = true;
8578 	netdev_hw_stats64_add(&report_delta->stats, stats);
8579 }
8580 EXPORT_SYMBOL(netdev_offload_xstats_report_delta);
8581 
8582 void
8583 netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *report_used)
8584 {
8585 	report_used->used = true;
8586 }
8587 EXPORT_SYMBOL(netdev_offload_xstats_report_used);
8588 
8589 void netdev_offload_xstats_push_delta(struct net_device *dev,
8590 				      enum netdev_offload_xstats_type type,
8591 				      const struct rtnl_hw_stats64 *p_stats)
8592 {
8593 	struct rtnl_hw_stats64 *stats;
8594 
8595 	ASSERT_RTNL();
8596 
8597 	stats = netdev_offload_xstats_get_ptr(dev, type);
8598 	if (WARN_ON(!stats))
8599 		return;
8600 
8601 	netdev_hw_stats64_add(stats, p_stats);
8602 }
8603 EXPORT_SYMBOL(netdev_offload_xstats_push_delta);
8604 
8605 /**
8606  * netdev_get_xmit_slave - Get the xmit slave of master device
8607  * @dev: device
8608  * @skb: The packet
8609  * @all_slaves: assume all the slaves are active
8610  *
8611  * The reference counters are not incremented so the caller must be
8612  * careful with locks. The caller must hold RCU lock.
8613  * %NULL is returned if no slave is found.
8614  */
8615 
8616 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
8617 					 struct sk_buff *skb,
8618 					 bool all_slaves)
8619 {
8620 	const struct net_device_ops *ops = dev->netdev_ops;
8621 
8622 	if (!ops->ndo_get_xmit_slave)
8623 		return NULL;
8624 	return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
8625 }
8626 EXPORT_SYMBOL(netdev_get_xmit_slave);
8627 
8628 static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev,
8629 						  struct sock *sk)
8630 {
8631 	const struct net_device_ops *ops = dev->netdev_ops;
8632 
8633 	if (!ops->ndo_sk_get_lower_dev)
8634 		return NULL;
8635 	return ops->ndo_sk_get_lower_dev(dev, sk);
8636 }
8637 
8638 /**
8639  * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket
8640  * @dev: device
8641  * @sk: the socket
8642  *
8643  * %NULL is returned if no lower device is found.
8644  */
8645 
8646 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
8647 					    struct sock *sk)
8648 {
8649 	struct net_device *lower;
8650 
8651 	lower = netdev_sk_get_lower_dev(dev, sk);
8652 	while (lower) {
8653 		dev = lower;
8654 		lower = netdev_sk_get_lower_dev(dev, sk);
8655 	}
8656 
8657 	return dev;
8658 }
8659 EXPORT_SYMBOL(netdev_sk_get_lowest_dev);
8660 
8661 static void netdev_adjacent_add_links(struct net_device *dev)
8662 {
8663 	struct netdev_adjacent *iter;
8664 
8665 	struct net *net = dev_net(dev);
8666 
8667 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
8668 		if (!net_eq(net, dev_net(iter->dev)))
8669 			continue;
8670 		netdev_adjacent_sysfs_add(iter->dev, dev,
8671 					  &iter->dev->adj_list.lower);
8672 		netdev_adjacent_sysfs_add(dev, iter->dev,
8673 					  &dev->adj_list.upper);
8674 	}
8675 
8676 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
8677 		if (!net_eq(net, dev_net(iter->dev)))
8678 			continue;
8679 		netdev_adjacent_sysfs_add(iter->dev, dev,
8680 					  &iter->dev->adj_list.upper);
8681 		netdev_adjacent_sysfs_add(dev, iter->dev,
8682 					  &dev->adj_list.lower);
8683 	}
8684 }
8685 
8686 static void netdev_adjacent_del_links(struct net_device *dev)
8687 {
8688 	struct netdev_adjacent *iter;
8689 
8690 	struct net *net = dev_net(dev);
8691 
8692 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
8693 		if (!net_eq(net, dev_net(iter->dev)))
8694 			continue;
8695 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
8696 					  &iter->dev->adj_list.lower);
8697 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
8698 					  &dev->adj_list.upper);
8699 	}
8700 
8701 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
8702 		if (!net_eq(net, dev_net(iter->dev)))
8703 			continue;
8704 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
8705 					  &iter->dev->adj_list.upper);
8706 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
8707 					  &dev->adj_list.lower);
8708 	}
8709 }
8710 
8711 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
8712 {
8713 	struct netdev_adjacent *iter;
8714 
8715 	struct net *net = dev_net(dev);
8716 
8717 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
8718 		if (!net_eq(net, dev_net(iter->dev)))
8719 			continue;
8720 		netdev_adjacent_sysfs_del(iter->dev, oldname,
8721 					  &iter->dev->adj_list.lower);
8722 		netdev_adjacent_sysfs_add(iter->dev, dev,
8723 					  &iter->dev->adj_list.lower);
8724 	}
8725 
8726 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
8727 		if (!net_eq(net, dev_net(iter->dev)))
8728 			continue;
8729 		netdev_adjacent_sysfs_del(iter->dev, oldname,
8730 					  &iter->dev->adj_list.upper);
8731 		netdev_adjacent_sysfs_add(iter->dev, dev,
8732 					  &iter->dev->adj_list.upper);
8733 	}
8734 }
8735 
8736 void *netdev_lower_dev_get_private(struct net_device *dev,
8737 				   struct net_device *lower_dev)
8738 {
8739 	struct netdev_adjacent *lower;
8740 
8741 	if (!lower_dev)
8742 		return NULL;
8743 	lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
8744 	if (!lower)
8745 		return NULL;
8746 
8747 	return lower->private;
8748 }
8749 EXPORT_SYMBOL(netdev_lower_dev_get_private);
8750 
8751 
8752 /**
8753  * netdev_lower_state_changed - Dispatch event about lower device state change
8754  * @lower_dev: device
8755  * @lower_state_info: state to dispatch
8756  *
8757  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
8758  * The caller must hold the RTNL lock.
8759  */
8760 void netdev_lower_state_changed(struct net_device *lower_dev,
8761 				void *lower_state_info)
8762 {
8763 	struct netdev_notifier_changelowerstate_info changelowerstate_info = {
8764 		.info.dev = lower_dev,
8765 	};
8766 
8767 	ASSERT_RTNL();
8768 	changelowerstate_info.lower_state_info = lower_state_info;
8769 	call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
8770 				      &changelowerstate_info.info);
8771 }
8772 EXPORT_SYMBOL(netdev_lower_state_changed);
8773 
8774 static void dev_change_rx_flags(struct net_device *dev, int flags)
8775 {
8776 	const struct net_device_ops *ops = dev->netdev_ops;
8777 
8778 	if (ops->ndo_change_rx_flags)
8779 		ops->ndo_change_rx_flags(dev, flags);
8780 }
8781 
8782 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
8783 {
8784 	unsigned int old_flags = dev->flags;
8785 	unsigned int promiscuity, flags;
8786 	kuid_t uid;
8787 	kgid_t gid;
8788 
8789 	ASSERT_RTNL();
8790 
8791 	promiscuity = dev->promiscuity + inc;
8792 	if (promiscuity == 0) {
8793 		/*
8794 		 * Avoid overflow.
8795 		 * If inc causes overflow, untouch promisc and return error.
8796 		 */
8797 		if (unlikely(inc > 0)) {
8798 			netdev_warn(dev, "promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n");
8799 			return -EOVERFLOW;
8800 		}
8801 		flags = old_flags & ~IFF_PROMISC;
8802 	} else {
8803 		flags = old_flags | IFF_PROMISC;
8804 	}
8805 	WRITE_ONCE(dev->promiscuity, promiscuity);
8806 	if (flags != old_flags) {
8807 		WRITE_ONCE(dev->flags, flags);
8808 		netdev_info(dev, "%s promiscuous mode\n",
8809 			    dev->flags & IFF_PROMISC ? "entered" : "left");
8810 		if (audit_enabled) {
8811 			current_uid_gid(&uid, &gid);
8812 			audit_log(audit_context(), GFP_ATOMIC,
8813 				  AUDIT_ANOM_PROMISCUOUS,
8814 				  "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
8815 				  dev->name, (dev->flags & IFF_PROMISC),
8816 				  (old_flags & IFF_PROMISC),
8817 				  from_kuid(&init_user_ns, audit_get_loginuid(current)),
8818 				  from_kuid(&init_user_ns, uid),
8819 				  from_kgid(&init_user_ns, gid),
8820 				  audit_get_sessionid(current));
8821 		}
8822 
8823 		dev_change_rx_flags(dev, IFF_PROMISC);
8824 	}
8825 	if (notify)
8826 		__dev_notify_flags(dev, old_flags, IFF_PROMISC, 0, NULL);
8827 	return 0;
8828 }
8829 
8830 /**
8831  *	dev_set_promiscuity	- update promiscuity count on a device
8832  *	@dev: device
8833  *	@inc: modifier
8834  *
8835  *	Add or remove promiscuity from a device. While the count in the device
8836  *	remains above zero the interface remains promiscuous. Once it hits zero
8837  *	the device reverts back to normal filtering operation. A negative inc
8838  *	value is used to drop promiscuity on the device.
8839  *	Return 0 if successful or a negative errno code on error.
8840  */
8841 int dev_set_promiscuity(struct net_device *dev, int inc)
8842 {
8843 	unsigned int old_flags = dev->flags;
8844 	int err;
8845 
8846 	err = __dev_set_promiscuity(dev, inc, true);
8847 	if (err < 0)
8848 		return err;
8849 	if (dev->flags != old_flags)
8850 		dev_set_rx_mode(dev);
8851 	return err;
8852 }
8853 EXPORT_SYMBOL(dev_set_promiscuity);
8854 
8855 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
8856 {
8857 	unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
8858 	unsigned int allmulti, flags;
8859 
8860 	ASSERT_RTNL();
8861 
8862 	allmulti = dev->allmulti + inc;
8863 	if (allmulti == 0) {
8864 		/*
8865 		 * Avoid overflow.
8866 		 * If inc causes overflow, untouch allmulti and return error.
8867 		 */
8868 		if (unlikely(inc > 0)) {
8869 			netdev_warn(dev, "allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n");
8870 			return -EOVERFLOW;
8871 		}
8872 		flags = old_flags & ~IFF_ALLMULTI;
8873 	} else {
8874 		flags = old_flags | IFF_ALLMULTI;
8875 	}
8876 	WRITE_ONCE(dev->allmulti, allmulti);
8877 	if (flags != old_flags) {
8878 		WRITE_ONCE(dev->flags, flags);
8879 		netdev_info(dev, "%s allmulticast mode\n",
8880 			    dev->flags & IFF_ALLMULTI ? "entered" : "left");
8881 		dev_change_rx_flags(dev, IFF_ALLMULTI);
8882 		dev_set_rx_mode(dev);
8883 		if (notify)
8884 			__dev_notify_flags(dev, old_flags,
8885 					   dev->gflags ^ old_gflags, 0, NULL);
8886 	}
8887 	return 0;
8888 }
8889 
8890 /**
8891  *	dev_set_allmulti	- update allmulti count on a device
8892  *	@dev: device
8893  *	@inc: modifier
8894  *
8895  *	Add or remove reception of all multicast frames to a device. While the
8896  *	count in the device remains above zero the interface remains listening
8897  *	to all interfaces. Once it hits zero the device reverts back to normal
8898  *	filtering operation. A negative @inc value is used to drop the counter
8899  *	when releasing a resource needing all multicasts.
8900  *	Return 0 if successful or a negative errno code on error.
8901  */
8902 
8903 int dev_set_allmulti(struct net_device *dev, int inc)
8904 {
8905 	return __dev_set_allmulti(dev, inc, true);
8906 }
8907 EXPORT_SYMBOL(dev_set_allmulti);
8908 
8909 /*
8910  *	Upload unicast and multicast address lists to device and
8911  *	configure RX filtering. When the device doesn't support unicast
8912  *	filtering it is put in promiscuous mode while unicast addresses
8913  *	are present.
8914  */
8915 void __dev_set_rx_mode(struct net_device *dev)
8916 {
8917 	const struct net_device_ops *ops = dev->netdev_ops;
8918 
8919 	/* dev_open will call this function so the list will stay sane. */
8920 	if (!(dev->flags&IFF_UP))
8921 		return;
8922 
8923 	if (!netif_device_present(dev))
8924 		return;
8925 
8926 	if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
8927 		/* Unicast addresses changes may only happen under the rtnl,
8928 		 * therefore calling __dev_set_promiscuity here is safe.
8929 		 */
8930 		if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
8931 			__dev_set_promiscuity(dev, 1, false);
8932 			dev->uc_promisc = true;
8933 		} else if (netdev_uc_empty(dev) && dev->uc_promisc) {
8934 			__dev_set_promiscuity(dev, -1, false);
8935 			dev->uc_promisc = false;
8936 		}
8937 	}
8938 
8939 	if (ops->ndo_set_rx_mode)
8940 		ops->ndo_set_rx_mode(dev);
8941 }
8942 
8943 void dev_set_rx_mode(struct net_device *dev)
8944 {
8945 	netif_addr_lock_bh(dev);
8946 	__dev_set_rx_mode(dev);
8947 	netif_addr_unlock_bh(dev);
8948 }
8949 
8950 /**
8951  *	dev_get_flags - get flags reported to userspace
8952  *	@dev: device
8953  *
8954  *	Get the combination of flag bits exported through APIs to userspace.
8955  */
8956 unsigned int dev_get_flags(const struct net_device *dev)
8957 {
8958 	unsigned int flags;
8959 
8960 	flags = (READ_ONCE(dev->flags) & ~(IFF_PROMISC |
8961 				IFF_ALLMULTI |
8962 				IFF_RUNNING |
8963 				IFF_LOWER_UP |
8964 				IFF_DORMANT)) |
8965 		(READ_ONCE(dev->gflags) & (IFF_PROMISC |
8966 				IFF_ALLMULTI));
8967 
8968 	if (netif_running(dev)) {
8969 		if (netif_oper_up(dev))
8970 			flags |= IFF_RUNNING;
8971 		if (netif_carrier_ok(dev))
8972 			flags |= IFF_LOWER_UP;
8973 		if (netif_dormant(dev))
8974 			flags |= IFF_DORMANT;
8975 	}
8976 
8977 	return flags;
8978 }
8979 EXPORT_SYMBOL(dev_get_flags);
8980 
8981 int __dev_change_flags(struct net_device *dev, unsigned int flags,
8982 		       struct netlink_ext_ack *extack)
8983 {
8984 	unsigned int old_flags = dev->flags;
8985 	int ret;
8986 
8987 	ASSERT_RTNL();
8988 
8989 	/*
8990 	 *	Set the flags on our device.
8991 	 */
8992 
8993 	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
8994 			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
8995 			       IFF_AUTOMEDIA)) |
8996 		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
8997 				    IFF_ALLMULTI));
8998 
8999 	/*
9000 	 *	Load in the correct multicast list now the flags have changed.
9001 	 */
9002 
9003 	if ((old_flags ^ flags) & IFF_MULTICAST)
9004 		dev_change_rx_flags(dev, IFF_MULTICAST);
9005 
9006 	dev_set_rx_mode(dev);
9007 
9008 	/*
9009 	 *	Have we downed the interface. We handle IFF_UP ourselves
9010 	 *	according to user attempts to set it, rather than blindly
9011 	 *	setting it.
9012 	 */
9013 
9014 	ret = 0;
9015 	if ((old_flags ^ flags) & IFF_UP) {
9016 		if (old_flags & IFF_UP)
9017 			__dev_close(dev);
9018 		else
9019 			ret = __dev_open(dev, extack);
9020 	}
9021 
9022 	if ((flags ^ dev->gflags) & IFF_PROMISC) {
9023 		int inc = (flags & IFF_PROMISC) ? 1 : -1;
9024 		unsigned int old_flags = dev->flags;
9025 
9026 		dev->gflags ^= IFF_PROMISC;
9027 
9028 		if (__dev_set_promiscuity(dev, inc, false) >= 0)
9029 			if (dev->flags != old_flags)
9030 				dev_set_rx_mode(dev);
9031 	}
9032 
9033 	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
9034 	 * is important. Some (broken) drivers set IFF_PROMISC, when
9035 	 * IFF_ALLMULTI is requested not asking us and not reporting.
9036 	 */
9037 	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
9038 		int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
9039 
9040 		dev->gflags ^= IFF_ALLMULTI;
9041 		__dev_set_allmulti(dev, inc, false);
9042 	}
9043 
9044 	return ret;
9045 }
9046 
9047 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
9048 			unsigned int gchanges, u32 portid,
9049 			const struct nlmsghdr *nlh)
9050 {
9051 	unsigned int changes = dev->flags ^ old_flags;
9052 
9053 	if (gchanges)
9054 		rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC, portid, nlh);
9055 
9056 	if (changes & IFF_UP) {
9057 		if (dev->flags & IFF_UP)
9058 			call_netdevice_notifiers(NETDEV_UP, dev);
9059 		else
9060 			call_netdevice_notifiers(NETDEV_DOWN, dev);
9061 	}
9062 
9063 	if (dev->flags & IFF_UP &&
9064 	    (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
9065 		struct netdev_notifier_change_info change_info = {
9066 			.info = {
9067 				.dev = dev,
9068 			},
9069 			.flags_changed = changes,
9070 		};
9071 
9072 		call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
9073 	}
9074 }
9075 
9076 /**
9077  *	dev_change_flags - change device settings
9078  *	@dev: device
9079  *	@flags: device state flags
9080  *	@extack: netlink extended ack
9081  *
9082  *	Change settings on device based state flags. The flags are
9083  *	in the userspace exported format.
9084  */
9085 int dev_change_flags(struct net_device *dev, unsigned int flags,
9086 		     struct netlink_ext_ack *extack)
9087 {
9088 	int ret;
9089 	unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
9090 
9091 	ret = __dev_change_flags(dev, flags, extack);
9092 	if (ret < 0)
9093 		return ret;
9094 
9095 	changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
9096 	__dev_notify_flags(dev, old_flags, changes, 0, NULL);
9097 	return ret;
9098 }
9099 EXPORT_SYMBOL(dev_change_flags);
9100 
9101 int __dev_set_mtu(struct net_device *dev, int new_mtu)
9102 {
9103 	const struct net_device_ops *ops = dev->netdev_ops;
9104 
9105 	if (ops->ndo_change_mtu)
9106 		return ops->ndo_change_mtu(dev, new_mtu);
9107 
9108 	/* Pairs with all the lockless reads of dev->mtu in the stack */
9109 	WRITE_ONCE(dev->mtu, new_mtu);
9110 	return 0;
9111 }
9112 EXPORT_SYMBOL(__dev_set_mtu);
9113 
9114 int dev_validate_mtu(struct net_device *dev, int new_mtu,
9115 		     struct netlink_ext_ack *extack)
9116 {
9117 	/* MTU must be positive, and in range */
9118 	if (new_mtu < 0 || new_mtu < dev->min_mtu) {
9119 		NL_SET_ERR_MSG(extack, "mtu less than device minimum");
9120 		return -EINVAL;
9121 	}
9122 
9123 	if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
9124 		NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
9125 		return -EINVAL;
9126 	}
9127 	return 0;
9128 }
9129 
9130 /**
9131  *	dev_set_mtu_ext - Change maximum transfer unit
9132  *	@dev: device
9133  *	@new_mtu: new transfer unit
9134  *	@extack: netlink extended ack
9135  *
9136  *	Change the maximum transfer size of the network device.
9137  */
9138 int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
9139 		    struct netlink_ext_ack *extack)
9140 {
9141 	int err, orig_mtu;
9142 
9143 	if (new_mtu == dev->mtu)
9144 		return 0;
9145 
9146 	err = dev_validate_mtu(dev, new_mtu, extack);
9147 	if (err)
9148 		return err;
9149 
9150 	if (!netif_device_present(dev))
9151 		return -ENODEV;
9152 
9153 	err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
9154 	err = notifier_to_errno(err);
9155 	if (err)
9156 		return err;
9157 
9158 	orig_mtu = dev->mtu;
9159 	err = __dev_set_mtu(dev, new_mtu);
9160 
9161 	if (!err) {
9162 		err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
9163 						   orig_mtu);
9164 		err = notifier_to_errno(err);
9165 		if (err) {
9166 			/* setting mtu back and notifying everyone again,
9167 			 * so that they have a chance to revert changes.
9168 			 */
9169 			__dev_set_mtu(dev, orig_mtu);
9170 			call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
9171 						     new_mtu);
9172 		}
9173 	}
9174 	return err;
9175 }
9176 
9177 int dev_set_mtu(struct net_device *dev, int new_mtu)
9178 {
9179 	struct netlink_ext_ack extack;
9180 	int err;
9181 
9182 	memset(&extack, 0, sizeof(extack));
9183 	err = dev_set_mtu_ext(dev, new_mtu, &extack);
9184 	if (err && extack._msg)
9185 		net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
9186 	return err;
9187 }
9188 EXPORT_SYMBOL(dev_set_mtu);
9189 
9190 /**
9191  *	dev_change_tx_queue_len - Change TX queue length of a netdevice
9192  *	@dev: device
9193  *	@new_len: new tx queue length
9194  */
9195 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
9196 {
9197 	unsigned int orig_len = dev->tx_queue_len;
9198 	int res;
9199 
9200 	if (new_len != (unsigned int)new_len)
9201 		return -ERANGE;
9202 
9203 	if (new_len != orig_len) {
9204 		WRITE_ONCE(dev->tx_queue_len, new_len);
9205 		res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
9206 		res = notifier_to_errno(res);
9207 		if (res)
9208 			goto err_rollback;
9209 		res = dev_qdisc_change_tx_queue_len(dev);
9210 		if (res)
9211 			goto err_rollback;
9212 	}
9213 
9214 	return 0;
9215 
9216 err_rollback:
9217 	netdev_err(dev, "refused to change device tx_queue_len\n");
9218 	WRITE_ONCE(dev->tx_queue_len, orig_len);
9219 	return res;
9220 }
9221 
9222 /**
9223  *	dev_set_group - Change group this device belongs to
9224  *	@dev: device
9225  *	@new_group: group this device should belong to
9226  */
9227 void dev_set_group(struct net_device *dev, int new_group)
9228 {
9229 	dev->group = new_group;
9230 }
9231 
9232 /**
9233  *	dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
9234  *	@dev: device
9235  *	@addr: new address
9236  *	@extack: netlink extended ack
9237  */
9238 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
9239 			      struct netlink_ext_ack *extack)
9240 {
9241 	struct netdev_notifier_pre_changeaddr_info info = {
9242 		.info.dev = dev,
9243 		.info.extack = extack,
9244 		.dev_addr = addr,
9245 	};
9246 	int rc;
9247 
9248 	rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
9249 	return notifier_to_errno(rc);
9250 }
9251 EXPORT_SYMBOL(dev_pre_changeaddr_notify);
9252 
9253 /**
9254  *	dev_set_mac_address - Change Media Access Control Address
9255  *	@dev: device
9256  *	@sa: new address
9257  *	@extack: netlink extended ack
9258  *
9259  *	Change the hardware (MAC) address of the device
9260  */
9261 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
9262 			struct netlink_ext_ack *extack)
9263 {
9264 	const struct net_device_ops *ops = dev->netdev_ops;
9265 	int err;
9266 
9267 	if (!ops->ndo_set_mac_address)
9268 		return -EOPNOTSUPP;
9269 	if (sa->sa_family != dev->type)
9270 		return -EINVAL;
9271 	if (!netif_device_present(dev))
9272 		return -ENODEV;
9273 	err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
9274 	if (err)
9275 		return err;
9276 	if (memcmp(dev->dev_addr, sa->sa_data, dev->addr_len)) {
9277 		err = ops->ndo_set_mac_address(dev, sa);
9278 		if (err)
9279 			return err;
9280 	}
9281 	dev->addr_assign_type = NET_ADDR_SET;
9282 	call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
9283 	add_device_randomness(dev->dev_addr, dev->addr_len);
9284 	return 0;
9285 }
9286 EXPORT_SYMBOL(dev_set_mac_address);
9287 
9288 DECLARE_RWSEM(dev_addr_sem);
9289 
9290 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
9291 			     struct netlink_ext_ack *extack)
9292 {
9293 	int ret;
9294 
9295 	down_write(&dev_addr_sem);
9296 	ret = dev_set_mac_address(dev, sa, extack);
9297 	up_write(&dev_addr_sem);
9298 	return ret;
9299 }
9300 EXPORT_SYMBOL(dev_set_mac_address_user);
9301 
9302 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name)
9303 {
9304 	size_t size = sizeof(sa->sa_data_min);
9305 	struct net_device *dev;
9306 	int ret = 0;
9307 
9308 	down_read(&dev_addr_sem);
9309 	rcu_read_lock();
9310 
9311 	dev = dev_get_by_name_rcu(net, dev_name);
9312 	if (!dev) {
9313 		ret = -ENODEV;
9314 		goto unlock;
9315 	}
9316 	if (!dev->addr_len)
9317 		memset(sa->sa_data, 0, size);
9318 	else
9319 		memcpy(sa->sa_data, dev->dev_addr,
9320 		       min_t(size_t, size, dev->addr_len));
9321 	sa->sa_family = dev->type;
9322 
9323 unlock:
9324 	rcu_read_unlock();
9325 	up_read(&dev_addr_sem);
9326 	return ret;
9327 }
9328 EXPORT_SYMBOL(dev_get_mac_address);
9329 
9330 /**
9331  *	dev_change_carrier - Change device carrier
9332  *	@dev: device
9333  *	@new_carrier: new value
9334  *
9335  *	Change device carrier
9336  */
9337 int dev_change_carrier(struct net_device *dev, bool new_carrier)
9338 {
9339 	const struct net_device_ops *ops = dev->netdev_ops;
9340 
9341 	if (!ops->ndo_change_carrier)
9342 		return -EOPNOTSUPP;
9343 	if (!netif_device_present(dev))
9344 		return -ENODEV;
9345 	return ops->ndo_change_carrier(dev, new_carrier);
9346 }
9347 
9348 /**
9349  *	dev_get_phys_port_id - Get device physical port ID
9350  *	@dev: device
9351  *	@ppid: port ID
9352  *
9353  *	Get device physical port ID
9354  */
9355 int dev_get_phys_port_id(struct net_device *dev,
9356 			 struct netdev_phys_item_id *ppid)
9357 {
9358 	const struct net_device_ops *ops = dev->netdev_ops;
9359 
9360 	if (!ops->ndo_get_phys_port_id)
9361 		return -EOPNOTSUPP;
9362 	return ops->ndo_get_phys_port_id(dev, ppid);
9363 }
9364 
9365 /**
9366  *	dev_get_phys_port_name - Get device physical port name
9367  *	@dev: device
9368  *	@name: port name
9369  *	@len: limit of bytes to copy to name
9370  *
9371  *	Get device physical port name
9372  */
9373 int dev_get_phys_port_name(struct net_device *dev,
9374 			   char *name, size_t len)
9375 {
9376 	const struct net_device_ops *ops = dev->netdev_ops;
9377 	int err;
9378 
9379 	if (ops->ndo_get_phys_port_name) {
9380 		err = ops->ndo_get_phys_port_name(dev, name, len);
9381 		if (err != -EOPNOTSUPP)
9382 			return err;
9383 	}
9384 	return devlink_compat_phys_port_name_get(dev, name, len);
9385 }
9386 
9387 /**
9388  *	dev_get_port_parent_id - Get the device's port parent identifier
9389  *	@dev: network device
9390  *	@ppid: pointer to a storage for the port's parent identifier
9391  *	@recurse: allow/disallow recursion to lower devices
9392  *
9393  *	Get the devices's port parent identifier
9394  */
9395 int dev_get_port_parent_id(struct net_device *dev,
9396 			   struct netdev_phys_item_id *ppid,
9397 			   bool recurse)
9398 {
9399 	const struct net_device_ops *ops = dev->netdev_ops;
9400 	struct netdev_phys_item_id first = { };
9401 	struct net_device *lower_dev;
9402 	struct list_head *iter;
9403 	int err;
9404 
9405 	if (ops->ndo_get_port_parent_id) {
9406 		err = ops->ndo_get_port_parent_id(dev, ppid);
9407 		if (err != -EOPNOTSUPP)
9408 			return err;
9409 	}
9410 
9411 	err = devlink_compat_switch_id_get(dev, ppid);
9412 	if (!recurse || err != -EOPNOTSUPP)
9413 		return err;
9414 
9415 	netdev_for_each_lower_dev(dev, lower_dev, iter) {
9416 		err = dev_get_port_parent_id(lower_dev, ppid, true);
9417 		if (err)
9418 			break;
9419 		if (!first.id_len)
9420 			first = *ppid;
9421 		else if (memcmp(&first, ppid, sizeof(*ppid)))
9422 			return -EOPNOTSUPP;
9423 	}
9424 
9425 	return err;
9426 }
9427 EXPORT_SYMBOL(dev_get_port_parent_id);
9428 
9429 /**
9430  *	netdev_port_same_parent_id - Indicate if two network devices have
9431  *	the same port parent identifier
9432  *	@a: first network device
9433  *	@b: second network device
9434  */
9435 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
9436 {
9437 	struct netdev_phys_item_id a_id = { };
9438 	struct netdev_phys_item_id b_id = { };
9439 
9440 	if (dev_get_port_parent_id(a, &a_id, true) ||
9441 	    dev_get_port_parent_id(b, &b_id, true))
9442 		return false;
9443 
9444 	return netdev_phys_item_id_same(&a_id, &b_id);
9445 }
9446 EXPORT_SYMBOL(netdev_port_same_parent_id);
9447 
9448 /**
9449  *	dev_change_proto_down - set carrier according to proto_down.
9450  *
9451  *	@dev: device
9452  *	@proto_down: new value
9453  */
9454 int dev_change_proto_down(struct net_device *dev, bool proto_down)
9455 {
9456 	if (!dev->change_proto_down)
9457 		return -EOPNOTSUPP;
9458 	if (!netif_device_present(dev))
9459 		return -ENODEV;
9460 	if (proto_down)
9461 		netif_carrier_off(dev);
9462 	else
9463 		netif_carrier_on(dev);
9464 	WRITE_ONCE(dev->proto_down, proto_down);
9465 	return 0;
9466 }
9467 
9468 /**
9469  *	dev_change_proto_down_reason - proto down reason
9470  *
9471  *	@dev: device
9472  *	@mask: proto down mask
9473  *	@value: proto down value
9474  */
9475 void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
9476 				  u32 value)
9477 {
9478 	u32 proto_down_reason;
9479 	int b;
9480 
9481 	if (!mask) {
9482 		proto_down_reason = value;
9483 	} else {
9484 		proto_down_reason = dev->proto_down_reason;
9485 		for_each_set_bit(b, &mask, 32) {
9486 			if (value & (1 << b))
9487 				proto_down_reason |= BIT(b);
9488 			else
9489 				proto_down_reason &= ~BIT(b);
9490 		}
9491 	}
9492 	WRITE_ONCE(dev->proto_down_reason, proto_down_reason);
9493 }
9494 
9495 struct bpf_xdp_link {
9496 	struct bpf_link link;
9497 	struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
9498 	int flags;
9499 };
9500 
9501 static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags)
9502 {
9503 	if (flags & XDP_FLAGS_HW_MODE)
9504 		return XDP_MODE_HW;
9505 	if (flags & XDP_FLAGS_DRV_MODE)
9506 		return XDP_MODE_DRV;
9507 	if (flags & XDP_FLAGS_SKB_MODE)
9508 		return XDP_MODE_SKB;
9509 	return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB;
9510 }
9511 
9512 static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
9513 {
9514 	switch (mode) {
9515 	case XDP_MODE_SKB:
9516 		return generic_xdp_install;
9517 	case XDP_MODE_DRV:
9518 	case XDP_MODE_HW:
9519 		return dev->netdev_ops->ndo_bpf;
9520 	default:
9521 		return NULL;
9522 	}
9523 }
9524 
9525 static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
9526 					 enum bpf_xdp_mode mode)
9527 {
9528 	return dev->xdp_state[mode].link;
9529 }
9530 
9531 static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
9532 				     enum bpf_xdp_mode mode)
9533 {
9534 	struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
9535 
9536 	if (link)
9537 		return link->link.prog;
9538 	return dev->xdp_state[mode].prog;
9539 }
9540 
9541 u8 dev_xdp_prog_count(struct net_device *dev)
9542 {
9543 	u8 count = 0;
9544 	int i;
9545 
9546 	for (i = 0; i < __MAX_XDP_MODE; i++)
9547 		if (dev->xdp_state[i].prog || dev->xdp_state[i].link)
9548 			count++;
9549 	return count;
9550 }
9551 EXPORT_SYMBOL_GPL(dev_xdp_prog_count);
9552 
9553 int dev_xdp_propagate(struct net_device *dev, struct netdev_bpf *bpf)
9554 {
9555 	if (!dev->netdev_ops->ndo_bpf)
9556 		return -EOPNOTSUPP;
9557 
9558 	if (dev_get_min_mp_channel_count(dev)) {
9559 		NL_SET_ERR_MSG(bpf->extack, "unable to propagate XDP to device using memory provider");
9560 		return -EBUSY;
9561 	}
9562 
9563 	return dev->netdev_ops->ndo_bpf(dev, bpf);
9564 }
9565 EXPORT_SYMBOL_GPL(dev_xdp_propagate);
9566 
9567 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
9568 {
9569 	struct bpf_prog *prog = dev_xdp_prog(dev, mode);
9570 
9571 	return prog ? prog->aux->id : 0;
9572 }
9573 
9574 static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
9575 			     struct bpf_xdp_link *link)
9576 {
9577 	dev->xdp_state[mode].link = link;
9578 	dev->xdp_state[mode].prog = NULL;
9579 }
9580 
9581 static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
9582 			     struct bpf_prog *prog)
9583 {
9584 	dev->xdp_state[mode].link = NULL;
9585 	dev->xdp_state[mode].prog = prog;
9586 }
9587 
9588 static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
9589 			   bpf_op_t bpf_op, struct netlink_ext_ack *extack,
9590 			   u32 flags, struct bpf_prog *prog)
9591 {
9592 	struct netdev_bpf xdp;
9593 	int err;
9594 
9595 	if (dev_get_min_mp_channel_count(dev)) {
9596 		NL_SET_ERR_MSG(extack, "unable to install XDP to device using memory provider");
9597 		return -EBUSY;
9598 	}
9599 
9600 	memset(&xdp, 0, sizeof(xdp));
9601 	xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
9602 	xdp.extack = extack;
9603 	xdp.flags = flags;
9604 	xdp.prog = prog;
9605 
9606 	/* Drivers assume refcnt is already incremented (i.e, prog pointer is
9607 	 * "moved" into driver), so they don't increment it on their own, but
9608 	 * they do decrement refcnt when program is detached or replaced.
9609 	 * Given net_device also owns link/prog, we need to bump refcnt here
9610 	 * to prevent drivers from underflowing it.
9611 	 */
9612 	if (prog)
9613 		bpf_prog_inc(prog);
9614 	err = bpf_op(dev, &xdp);
9615 	if (err) {
9616 		if (prog)
9617 			bpf_prog_put(prog);
9618 		return err;
9619 	}
9620 
9621 	if (mode != XDP_MODE_HW)
9622 		bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog);
9623 
9624 	return 0;
9625 }
9626 
9627 static void dev_xdp_uninstall(struct net_device *dev)
9628 {
9629 	struct bpf_xdp_link *link;
9630 	struct bpf_prog *prog;
9631 	enum bpf_xdp_mode mode;
9632 	bpf_op_t bpf_op;
9633 
9634 	ASSERT_RTNL();
9635 
9636 	for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
9637 		prog = dev_xdp_prog(dev, mode);
9638 		if (!prog)
9639 			continue;
9640 
9641 		bpf_op = dev_xdp_bpf_op(dev, mode);
9642 		if (!bpf_op)
9643 			continue;
9644 
9645 		WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9646 
9647 		/* auto-detach link from net device */
9648 		link = dev_xdp_link(dev, mode);
9649 		if (link)
9650 			link->dev = NULL;
9651 		else
9652 			bpf_prog_put(prog);
9653 
9654 		dev_xdp_set_link(dev, mode, NULL);
9655 	}
9656 }
9657 
9658 static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
9659 			  struct bpf_xdp_link *link, struct bpf_prog *new_prog,
9660 			  struct bpf_prog *old_prog, u32 flags)
9661 {
9662 	unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES);
9663 	struct bpf_prog *cur_prog;
9664 	struct net_device *upper;
9665 	struct list_head *iter;
9666 	enum bpf_xdp_mode mode;
9667 	bpf_op_t bpf_op;
9668 	int err;
9669 
9670 	ASSERT_RTNL();
9671 
9672 	/* either link or prog attachment, never both */
9673 	if (link && (new_prog || old_prog))
9674 		return -EINVAL;
9675 	/* link supports only XDP mode flags */
9676 	if (link && (flags & ~XDP_FLAGS_MODES)) {
9677 		NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
9678 		return -EINVAL;
9679 	}
9680 	/* just one XDP mode bit should be set, zero defaults to drv/skb mode */
9681 	if (num_modes > 1) {
9682 		NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
9683 		return -EINVAL;
9684 	}
9685 	/* avoid ambiguity if offload + drv/skb mode progs are both loaded */
9686 	if (!num_modes && dev_xdp_prog_count(dev) > 1) {
9687 		NL_SET_ERR_MSG(extack,
9688 			       "More than one program loaded, unset mode is ambiguous");
9689 		return -EINVAL;
9690 	}
9691 	/* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
9692 	if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
9693 		NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
9694 		return -EINVAL;
9695 	}
9696 
9697 	mode = dev_xdp_mode(dev, flags);
9698 	/* can't replace attached link */
9699 	if (dev_xdp_link(dev, mode)) {
9700 		NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
9701 		return -EBUSY;
9702 	}
9703 
9704 	/* don't allow if an upper device already has a program */
9705 	netdev_for_each_upper_dev_rcu(dev, upper, iter) {
9706 		if (dev_xdp_prog_count(upper) > 0) {
9707 			NL_SET_ERR_MSG(extack, "Cannot attach when an upper device already has a program");
9708 			return -EEXIST;
9709 		}
9710 	}
9711 
9712 	cur_prog = dev_xdp_prog(dev, mode);
9713 	/* can't replace attached prog with link */
9714 	if (link && cur_prog) {
9715 		NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
9716 		return -EBUSY;
9717 	}
9718 	if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
9719 		NL_SET_ERR_MSG(extack, "Active program does not match expected");
9720 		return -EEXIST;
9721 	}
9722 
9723 	/* put effective new program into new_prog */
9724 	if (link)
9725 		new_prog = link->link.prog;
9726 
9727 	if (new_prog) {
9728 		bool offload = mode == XDP_MODE_HW;
9729 		enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
9730 					       ? XDP_MODE_DRV : XDP_MODE_SKB;
9731 
9732 		if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
9733 			NL_SET_ERR_MSG(extack, "XDP program already attached");
9734 			return -EBUSY;
9735 		}
9736 		if (!offload && dev_xdp_prog(dev, other_mode)) {
9737 			NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
9738 			return -EEXIST;
9739 		}
9740 		if (!offload && bpf_prog_is_offloaded(new_prog->aux)) {
9741 			NL_SET_ERR_MSG(extack, "Using offloaded program without HW_MODE flag is not supported");
9742 			return -EINVAL;
9743 		}
9744 		if (bpf_prog_is_dev_bound(new_prog->aux) && !bpf_offload_dev_match(new_prog, dev)) {
9745 			NL_SET_ERR_MSG(extack, "Program bound to different device");
9746 			return -EINVAL;
9747 		}
9748 		if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
9749 			NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
9750 			return -EINVAL;
9751 		}
9752 		if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
9753 			NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
9754 			return -EINVAL;
9755 		}
9756 	}
9757 
9758 	/* don't call drivers if the effective program didn't change */
9759 	if (new_prog != cur_prog) {
9760 		bpf_op = dev_xdp_bpf_op(dev, mode);
9761 		if (!bpf_op) {
9762 			NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
9763 			return -EOPNOTSUPP;
9764 		}
9765 
9766 		err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog);
9767 		if (err)
9768 			return err;
9769 	}
9770 
9771 	if (link)
9772 		dev_xdp_set_link(dev, mode, link);
9773 	else
9774 		dev_xdp_set_prog(dev, mode, new_prog);
9775 	if (cur_prog)
9776 		bpf_prog_put(cur_prog);
9777 
9778 	return 0;
9779 }
9780 
9781 static int dev_xdp_attach_link(struct net_device *dev,
9782 			       struct netlink_ext_ack *extack,
9783 			       struct bpf_xdp_link *link)
9784 {
9785 	return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags);
9786 }
9787 
9788 static int dev_xdp_detach_link(struct net_device *dev,
9789 			       struct netlink_ext_ack *extack,
9790 			       struct bpf_xdp_link *link)
9791 {
9792 	enum bpf_xdp_mode mode;
9793 	bpf_op_t bpf_op;
9794 
9795 	ASSERT_RTNL();
9796 
9797 	mode = dev_xdp_mode(dev, link->flags);
9798 	if (dev_xdp_link(dev, mode) != link)
9799 		return -EINVAL;
9800 
9801 	bpf_op = dev_xdp_bpf_op(dev, mode);
9802 	WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9803 	dev_xdp_set_link(dev, mode, NULL);
9804 	return 0;
9805 }
9806 
9807 static void bpf_xdp_link_release(struct bpf_link *link)
9808 {
9809 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9810 
9811 	rtnl_lock();
9812 
9813 	/* if racing with net_device's tear down, xdp_link->dev might be
9814 	 * already NULL, in which case link was already auto-detached
9815 	 */
9816 	if (xdp_link->dev) {
9817 		WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
9818 		xdp_link->dev = NULL;
9819 	}
9820 
9821 	rtnl_unlock();
9822 }
9823 
9824 static int bpf_xdp_link_detach(struct bpf_link *link)
9825 {
9826 	bpf_xdp_link_release(link);
9827 	return 0;
9828 }
9829 
9830 static void bpf_xdp_link_dealloc(struct bpf_link *link)
9831 {
9832 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9833 
9834 	kfree(xdp_link);
9835 }
9836 
9837 static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link,
9838 				     struct seq_file *seq)
9839 {
9840 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9841 	u32 ifindex = 0;
9842 
9843 	rtnl_lock();
9844 	if (xdp_link->dev)
9845 		ifindex = xdp_link->dev->ifindex;
9846 	rtnl_unlock();
9847 
9848 	seq_printf(seq, "ifindex:\t%u\n", ifindex);
9849 }
9850 
9851 static int bpf_xdp_link_fill_link_info(const struct bpf_link *link,
9852 				       struct bpf_link_info *info)
9853 {
9854 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9855 	u32 ifindex = 0;
9856 
9857 	rtnl_lock();
9858 	if (xdp_link->dev)
9859 		ifindex = xdp_link->dev->ifindex;
9860 	rtnl_unlock();
9861 
9862 	info->xdp.ifindex = ifindex;
9863 	return 0;
9864 }
9865 
9866 static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
9867 			       struct bpf_prog *old_prog)
9868 {
9869 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9870 	enum bpf_xdp_mode mode;
9871 	bpf_op_t bpf_op;
9872 	int err = 0;
9873 
9874 	rtnl_lock();
9875 
9876 	/* link might have been auto-released already, so fail */
9877 	if (!xdp_link->dev) {
9878 		err = -ENOLINK;
9879 		goto out_unlock;
9880 	}
9881 
9882 	if (old_prog && link->prog != old_prog) {
9883 		err = -EPERM;
9884 		goto out_unlock;
9885 	}
9886 	old_prog = link->prog;
9887 	if (old_prog->type != new_prog->type ||
9888 	    old_prog->expected_attach_type != new_prog->expected_attach_type) {
9889 		err = -EINVAL;
9890 		goto out_unlock;
9891 	}
9892 
9893 	if (old_prog == new_prog) {
9894 		/* no-op, don't disturb drivers */
9895 		bpf_prog_put(new_prog);
9896 		goto out_unlock;
9897 	}
9898 
9899 	mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags);
9900 	bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode);
9901 	err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL,
9902 			      xdp_link->flags, new_prog);
9903 	if (err)
9904 		goto out_unlock;
9905 
9906 	old_prog = xchg(&link->prog, new_prog);
9907 	bpf_prog_put(old_prog);
9908 
9909 out_unlock:
9910 	rtnl_unlock();
9911 	return err;
9912 }
9913 
9914 static const struct bpf_link_ops bpf_xdp_link_lops = {
9915 	.release = bpf_xdp_link_release,
9916 	.dealloc = bpf_xdp_link_dealloc,
9917 	.detach = bpf_xdp_link_detach,
9918 	.show_fdinfo = bpf_xdp_link_show_fdinfo,
9919 	.fill_link_info = bpf_xdp_link_fill_link_info,
9920 	.update_prog = bpf_xdp_link_update,
9921 };
9922 
9923 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
9924 {
9925 	struct net *net = current->nsproxy->net_ns;
9926 	struct bpf_link_primer link_primer;
9927 	struct netlink_ext_ack extack = {};
9928 	struct bpf_xdp_link *link;
9929 	struct net_device *dev;
9930 	int err, fd;
9931 
9932 	rtnl_lock();
9933 	dev = dev_get_by_index(net, attr->link_create.target_ifindex);
9934 	if (!dev) {
9935 		rtnl_unlock();
9936 		return -EINVAL;
9937 	}
9938 
9939 	link = kzalloc(sizeof(*link), GFP_USER);
9940 	if (!link) {
9941 		err = -ENOMEM;
9942 		goto unlock;
9943 	}
9944 
9945 	bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog);
9946 	link->dev = dev;
9947 	link->flags = attr->link_create.flags;
9948 
9949 	err = bpf_link_prime(&link->link, &link_primer);
9950 	if (err) {
9951 		kfree(link);
9952 		goto unlock;
9953 	}
9954 
9955 	err = dev_xdp_attach_link(dev, &extack, link);
9956 	rtnl_unlock();
9957 
9958 	if (err) {
9959 		link->dev = NULL;
9960 		bpf_link_cleanup(&link_primer);
9961 		trace_bpf_xdp_link_attach_failed(extack._msg);
9962 		goto out_put_dev;
9963 	}
9964 
9965 	fd = bpf_link_settle(&link_primer);
9966 	/* link itself doesn't hold dev's refcnt to not complicate shutdown */
9967 	dev_put(dev);
9968 	return fd;
9969 
9970 unlock:
9971 	rtnl_unlock();
9972 
9973 out_put_dev:
9974 	dev_put(dev);
9975 	return err;
9976 }
9977 
9978 /**
9979  *	dev_change_xdp_fd - set or clear a bpf program for a device rx path
9980  *	@dev: device
9981  *	@extack: netlink extended ack
9982  *	@fd: new program fd or negative value to clear
9983  *	@expected_fd: old program fd that userspace expects to replace or clear
9984  *	@flags: xdp-related flags
9985  *
9986  *	Set or clear a bpf program for a device
9987  */
9988 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
9989 		      int fd, int expected_fd, u32 flags)
9990 {
9991 	enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags);
9992 	struct bpf_prog *new_prog = NULL, *old_prog = NULL;
9993 	int err;
9994 
9995 	ASSERT_RTNL();
9996 
9997 	if (fd >= 0) {
9998 		new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
9999 						 mode != XDP_MODE_SKB);
10000 		if (IS_ERR(new_prog))
10001 			return PTR_ERR(new_prog);
10002 	}
10003 
10004 	if (expected_fd >= 0) {
10005 		old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP,
10006 						 mode != XDP_MODE_SKB);
10007 		if (IS_ERR(old_prog)) {
10008 			err = PTR_ERR(old_prog);
10009 			old_prog = NULL;
10010 			goto err_out;
10011 		}
10012 	}
10013 
10014 	err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
10015 
10016 err_out:
10017 	if (err && new_prog)
10018 		bpf_prog_put(new_prog);
10019 	if (old_prog)
10020 		bpf_prog_put(old_prog);
10021 	return err;
10022 }
10023 
10024 u32 dev_get_min_mp_channel_count(const struct net_device *dev)
10025 {
10026 	int i;
10027 
10028 	ASSERT_RTNL();
10029 
10030 	for (i = dev->real_num_rx_queues - 1; i >= 0; i--)
10031 		if (dev->_rx[i].mp_params.mp_priv)
10032 			/* The channel count is the idx plus 1. */
10033 			return i + 1;
10034 
10035 	return 0;
10036 }
10037 
10038 /**
10039  * dev_index_reserve() - allocate an ifindex in a namespace
10040  * @net: the applicable net namespace
10041  * @ifindex: requested ifindex, pass %0 to get one allocated
10042  *
10043  * Allocate a ifindex for a new device. Caller must either use the ifindex
10044  * to store the device (via list_netdevice()) or call dev_index_release()
10045  * to give the index up.
10046  *
10047  * Return: a suitable unique value for a new device interface number or -errno.
10048  */
10049 static int dev_index_reserve(struct net *net, u32 ifindex)
10050 {
10051 	int err;
10052 
10053 	if (ifindex > INT_MAX) {
10054 		DEBUG_NET_WARN_ON_ONCE(1);
10055 		return -EINVAL;
10056 	}
10057 
10058 	if (!ifindex)
10059 		err = xa_alloc_cyclic(&net->dev_by_index, &ifindex, NULL,
10060 				      xa_limit_31b, &net->ifindex, GFP_KERNEL);
10061 	else
10062 		err = xa_insert(&net->dev_by_index, ifindex, NULL, GFP_KERNEL);
10063 	if (err < 0)
10064 		return err;
10065 
10066 	return ifindex;
10067 }
10068 
10069 static void dev_index_release(struct net *net, int ifindex)
10070 {
10071 	/* Expect only unused indexes, unlist_netdevice() removes the used */
10072 	WARN_ON(xa_erase(&net->dev_by_index, ifindex));
10073 }
10074 
10075 /* Delayed registration/unregisteration */
10076 LIST_HEAD(net_todo_list);
10077 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
10078 atomic_t dev_unreg_count = ATOMIC_INIT(0);
10079 
10080 static void net_set_todo(struct net_device *dev)
10081 {
10082 	list_add_tail(&dev->todo_list, &net_todo_list);
10083 }
10084 
10085 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
10086 	struct net_device *upper, netdev_features_t features)
10087 {
10088 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
10089 	netdev_features_t feature;
10090 	int feature_bit;
10091 
10092 	for_each_netdev_feature(upper_disables, feature_bit) {
10093 		feature = __NETIF_F_BIT(feature_bit);
10094 		if (!(upper->wanted_features & feature)
10095 		    && (features & feature)) {
10096 			netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
10097 				   &feature, upper->name);
10098 			features &= ~feature;
10099 		}
10100 	}
10101 
10102 	return features;
10103 }
10104 
10105 static void netdev_sync_lower_features(struct net_device *upper,
10106 	struct net_device *lower, netdev_features_t features)
10107 {
10108 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
10109 	netdev_features_t feature;
10110 	int feature_bit;
10111 
10112 	for_each_netdev_feature(upper_disables, feature_bit) {
10113 		feature = __NETIF_F_BIT(feature_bit);
10114 		if (!(features & feature) && (lower->features & feature)) {
10115 			netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
10116 				   &feature, lower->name);
10117 			lower->wanted_features &= ~feature;
10118 			__netdev_update_features(lower);
10119 
10120 			if (unlikely(lower->features & feature))
10121 				netdev_WARN(upper, "failed to disable %pNF on %s!\n",
10122 					    &feature, lower->name);
10123 			else
10124 				netdev_features_change(lower);
10125 		}
10126 	}
10127 }
10128 
10129 static bool netdev_has_ip_or_hw_csum(netdev_features_t features)
10130 {
10131 	netdev_features_t ip_csum_mask = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
10132 	bool ip_csum = (features & ip_csum_mask) == ip_csum_mask;
10133 	bool hw_csum = features & NETIF_F_HW_CSUM;
10134 
10135 	return ip_csum || hw_csum;
10136 }
10137 
10138 static netdev_features_t netdev_fix_features(struct net_device *dev,
10139 	netdev_features_t features)
10140 {
10141 	/* Fix illegal checksum combinations */
10142 	if ((features & NETIF_F_HW_CSUM) &&
10143 	    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
10144 		netdev_warn(dev, "mixed HW and IP checksum settings.\n");
10145 		features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
10146 	}
10147 
10148 	/* TSO requires that SG is present as well. */
10149 	if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
10150 		netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
10151 		features &= ~NETIF_F_ALL_TSO;
10152 	}
10153 
10154 	if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
10155 					!(features & NETIF_F_IP_CSUM)) {
10156 		netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
10157 		features &= ~NETIF_F_TSO;
10158 		features &= ~NETIF_F_TSO_ECN;
10159 	}
10160 
10161 	if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
10162 					 !(features & NETIF_F_IPV6_CSUM)) {
10163 		netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
10164 		features &= ~NETIF_F_TSO6;
10165 	}
10166 
10167 	/* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
10168 	if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
10169 		features &= ~NETIF_F_TSO_MANGLEID;
10170 
10171 	/* TSO ECN requires that TSO is present as well. */
10172 	if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
10173 		features &= ~NETIF_F_TSO_ECN;
10174 
10175 	/* Software GSO depends on SG. */
10176 	if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
10177 		netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
10178 		features &= ~NETIF_F_GSO;
10179 	}
10180 
10181 	/* GSO partial features require GSO partial be set */
10182 	if ((features & dev->gso_partial_features) &&
10183 	    !(features & NETIF_F_GSO_PARTIAL)) {
10184 		netdev_dbg(dev,
10185 			   "Dropping partially supported GSO features since no GSO partial.\n");
10186 		features &= ~dev->gso_partial_features;
10187 	}
10188 
10189 	if (!(features & NETIF_F_RXCSUM)) {
10190 		/* NETIF_F_GRO_HW implies doing RXCSUM since every packet
10191 		 * successfully merged by hardware must also have the
10192 		 * checksum verified by hardware.  If the user does not
10193 		 * want to enable RXCSUM, logically, we should disable GRO_HW.
10194 		 */
10195 		if (features & NETIF_F_GRO_HW) {
10196 			netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
10197 			features &= ~NETIF_F_GRO_HW;
10198 		}
10199 	}
10200 
10201 	/* LRO/HW-GRO features cannot be combined with RX-FCS */
10202 	if (features & NETIF_F_RXFCS) {
10203 		if (features & NETIF_F_LRO) {
10204 			netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
10205 			features &= ~NETIF_F_LRO;
10206 		}
10207 
10208 		if (features & NETIF_F_GRO_HW) {
10209 			netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
10210 			features &= ~NETIF_F_GRO_HW;
10211 		}
10212 	}
10213 
10214 	if ((features & NETIF_F_GRO_HW) && (features & NETIF_F_LRO)) {
10215 		netdev_dbg(dev, "Dropping LRO feature since HW-GRO is requested.\n");
10216 		features &= ~NETIF_F_LRO;
10217 	}
10218 
10219 	if ((features & NETIF_F_HW_TLS_TX) && !netdev_has_ip_or_hw_csum(features)) {
10220 		netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n");
10221 		features &= ~NETIF_F_HW_TLS_TX;
10222 	}
10223 
10224 	if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) {
10225 		netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n");
10226 		features &= ~NETIF_F_HW_TLS_RX;
10227 	}
10228 
10229 	if ((features & NETIF_F_GSO_UDP_L4) && !netdev_has_ip_or_hw_csum(features)) {
10230 		netdev_dbg(dev, "Dropping USO feature since no CSUM feature.\n");
10231 		features &= ~NETIF_F_GSO_UDP_L4;
10232 	}
10233 
10234 	return features;
10235 }
10236 
10237 int __netdev_update_features(struct net_device *dev)
10238 {
10239 	struct net_device *upper, *lower;
10240 	netdev_features_t features;
10241 	struct list_head *iter;
10242 	int err = -1;
10243 
10244 	ASSERT_RTNL();
10245 
10246 	features = netdev_get_wanted_features(dev);
10247 
10248 	if (dev->netdev_ops->ndo_fix_features)
10249 		features = dev->netdev_ops->ndo_fix_features(dev, features);
10250 
10251 	/* driver might be less strict about feature dependencies */
10252 	features = netdev_fix_features(dev, features);
10253 
10254 	/* some features can't be enabled if they're off on an upper device */
10255 	netdev_for_each_upper_dev_rcu(dev, upper, iter)
10256 		features = netdev_sync_upper_features(dev, upper, features);
10257 
10258 	if (dev->features == features)
10259 		goto sync_lower;
10260 
10261 	netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
10262 		&dev->features, &features);
10263 
10264 	if (dev->netdev_ops->ndo_set_features)
10265 		err = dev->netdev_ops->ndo_set_features(dev, features);
10266 	else
10267 		err = 0;
10268 
10269 	if (unlikely(err < 0)) {
10270 		netdev_err(dev,
10271 			"set_features() failed (%d); wanted %pNF, left %pNF\n",
10272 			err, &features, &dev->features);
10273 		/* return non-0 since some features might have changed and
10274 		 * it's better to fire a spurious notification than miss it
10275 		 */
10276 		return -1;
10277 	}
10278 
10279 sync_lower:
10280 	/* some features must be disabled on lower devices when disabled
10281 	 * on an upper device (think: bonding master or bridge)
10282 	 */
10283 	netdev_for_each_lower_dev(dev, lower, iter)
10284 		netdev_sync_lower_features(dev, lower, features);
10285 
10286 	if (!err) {
10287 		netdev_features_t diff = features ^ dev->features;
10288 
10289 		if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
10290 			/* udp_tunnel_{get,drop}_rx_info both need
10291 			 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
10292 			 * device, or they won't do anything.
10293 			 * Thus we need to update dev->features
10294 			 * *before* calling udp_tunnel_get_rx_info,
10295 			 * but *after* calling udp_tunnel_drop_rx_info.
10296 			 */
10297 			if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
10298 				dev->features = features;
10299 				udp_tunnel_get_rx_info(dev);
10300 			} else {
10301 				udp_tunnel_drop_rx_info(dev);
10302 			}
10303 		}
10304 
10305 		if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
10306 			if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
10307 				dev->features = features;
10308 				err |= vlan_get_rx_ctag_filter_info(dev);
10309 			} else {
10310 				vlan_drop_rx_ctag_filter_info(dev);
10311 			}
10312 		}
10313 
10314 		if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
10315 			if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
10316 				dev->features = features;
10317 				err |= vlan_get_rx_stag_filter_info(dev);
10318 			} else {
10319 				vlan_drop_rx_stag_filter_info(dev);
10320 			}
10321 		}
10322 
10323 		dev->features = features;
10324 	}
10325 
10326 	return err < 0 ? 0 : 1;
10327 }
10328 
10329 /**
10330  *	netdev_update_features - recalculate device features
10331  *	@dev: the device to check
10332  *
10333  *	Recalculate dev->features set and send notifications if it
10334  *	has changed. Should be called after driver or hardware dependent
10335  *	conditions might have changed that influence the features.
10336  */
10337 void netdev_update_features(struct net_device *dev)
10338 {
10339 	if (__netdev_update_features(dev))
10340 		netdev_features_change(dev);
10341 }
10342 EXPORT_SYMBOL(netdev_update_features);
10343 
10344 /**
10345  *	netdev_change_features - recalculate device features
10346  *	@dev: the device to check
10347  *
10348  *	Recalculate dev->features set and send notifications even
10349  *	if they have not changed. Should be called instead of
10350  *	netdev_update_features() if also dev->vlan_features might
10351  *	have changed to allow the changes to be propagated to stacked
10352  *	VLAN devices.
10353  */
10354 void netdev_change_features(struct net_device *dev)
10355 {
10356 	__netdev_update_features(dev);
10357 	netdev_features_change(dev);
10358 }
10359 EXPORT_SYMBOL(netdev_change_features);
10360 
10361 /**
10362  *	netif_stacked_transfer_operstate -	transfer operstate
10363  *	@rootdev: the root or lower level device to transfer state from
10364  *	@dev: the device to transfer operstate to
10365  *
10366  *	Transfer operational state from root to device. This is normally
10367  *	called when a stacking relationship exists between the root
10368  *	device and the device(a leaf device).
10369  */
10370 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
10371 					struct net_device *dev)
10372 {
10373 	if (rootdev->operstate == IF_OPER_DORMANT)
10374 		netif_dormant_on(dev);
10375 	else
10376 		netif_dormant_off(dev);
10377 
10378 	if (rootdev->operstate == IF_OPER_TESTING)
10379 		netif_testing_on(dev);
10380 	else
10381 		netif_testing_off(dev);
10382 
10383 	if (netif_carrier_ok(rootdev))
10384 		netif_carrier_on(dev);
10385 	else
10386 		netif_carrier_off(dev);
10387 }
10388 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
10389 
10390 static int netif_alloc_rx_queues(struct net_device *dev)
10391 {
10392 	unsigned int i, count = dev->num_rx_queues;
10393 	struct netdev_rx_queue *rx;
10394 	size_t sz = count * sizeof(*rx);
10395 	int err = 0;
10396 
10397 	BUG_ON(count < 1);
10398 
10399 	rx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10400 	if (!rx)
10401 		return -ENOMEM;
10402 
10403 	dev->_rx = rx;
10404 
10405 	for (i = 0; i < count; i++) {
10406 		rx[i].dev = dev;
10407 
10408 		/* XDP RX-queue setup */
10409 		err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0);
10410 		if (err < 0)
10411 			goto err_rxq_info;
10412 	}
10413 	return 0;
10414 
10415 err_rxq_info:
10416 	/* Rollback successful reg's and free other resources */
10417 	while (i--)
10418 		xdp_rxq_info_unreg(&rx[i].xdp_rxq);
10419 	kvfree(dev->_rx);
10420 	dev->_rx = NULL;
10421 	return err;
10422 }
10423 
10424 static void netif_free_rx_queues(struct net_device *dev)
10425 {
10426 	unsigned int i, count = dev->num_rx_queues;
10427 
10428 	/* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
10429 	if (!dev->_rx)
10430 		return;
10431 
10432 	for (i = 0; i < count; i++)
10433 		xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
10434 
10435 	kvfree(dev->_rx);
10436 }
10437 
10438 static void netdev_init_one_queue(struct net_device *dev,
10439 				  struct netdev_queue *queue, void *_unused)
10440 {
10441 	/* Initialize queue lock */
10442 	spin_lock_init(&queue->_xmit_lock);
10443 	netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
10444 	queue->xmit_lock_owner = -1;
10445 	netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
10446 	queue->dev = dev;
10447 #ifdef CONFIG_BQL
10448 	dql_init(&queue->dql, HZ);
10449 #endif
10450 }
10451 
10452 static void netif_free_tx_queues(struct net_device *dev)
10453 {
10454 	kvfree(dev->_tx);
10455 }
10456 
10457 static int netif_alloc_netdev_queues(struct net_device *dev)
10458 {
10459 	unsigned int count = dev->num_tx_queues;
10460 	struct netdev_queue *tx;
10461 	size_t sz = count * sizeof(*tx);
10462 
10463 	if (count < 1 || count > 0xffff)
10464 		return -EINVAL;
10465 
10466 	tx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10467 	if (!tx)
10468 		return -ENOMEM;
10469 
10470 	dev->_tx = tx;
10471 
10472 	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
10473 	spin_lock_init(&dev->tx_global_lock);
10474 
10475 	return 0;
10476 }
10477 
10478 void netif_tx_stop_all_queues(struct net_device *dev)
10479 {
10480 	unsigned int i;
10481 
10482 	for (i = 0; i < dev->num_tx_queues; i++) {
10483 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
10484 
10485 		netif_tx_stop_queue(txq);
10486 	}
10487 }
10488 EXPORT_SYMBOL(netif_tx_stop_all_queues);
10489 
10490 static int netdev_do_alloc_pcpu_stats(struct net_device *dev)
10491 {
10492 	void __percpu *v;
10493 
10494 	/* Drivers implementing ndo_get_peer_dev must support tstat
10495 	 * accounting, so that skb_do_redirect() can bump the dev's
10496 	 * RX stats upon network namespace switch.
10497 	 */
10498 	if (dev->netdev_ops->ndo_get_peer_dev &&
10499 	    dev->pcpu_stat_type != NETDEV_PCPU_STAT_TSTATS)
10500 		return -EOPNOTSUPP;
10501 
10502 	switch (dev->pcpu_stat_type) {
10503 	case NETDEV_PCPU_STAT_NONE:
10504 		return 0;
10505 	case NETDEV_PCPU_STAT_LSTATS:
10506 		v = dev->lstats = netdev_alloc_pcpu_stats(struct pcpu_lstats);
10507 		break;
10508 	case NETDEV_PCPU_STAT_TSTATS:
10509 		v = dev->tstats = netdev_alloc_pcpu_stats(struct pcpu_sw_netstats);
10510 		break;
10511 	case NETDEV_PCPU_STAT_DSTATS:
10512 		v = dev->dstats = netdev_alloc_pcpu_stats(struct pcpu_dstats);
10513 		break;
10514 	default:
10515 		return -EINVAL;
10516 	}
10517 
10518 	return v ? 0 : -ENOMEM;
10519 }
10520 
10521 static void netdev_do_free_pcpu_stats(struct net_device *dev)
10522 {
10523 	switch (dev->pcpu_stat_type) {
10524 	case NETDEV_PCPU_STAT_NONE:
10525 		return;
10526 	case NETDEV_PCPU_STAT_LSTATS:
10527 		free_percpu(dev->lstats);
10528 		break;
10529 	case NETDEV_PCPU_STAT_TSTATS:
10530 		free_percpu(dev->tstats);
10531 		break;
10532 	case NETDEV_PCPU_STAT_DSTATS:
10533 		free_percpu(dev->dstats);
10534 		break;
10535 	}
10536 }
10537 
10538 static void netdev_free_phy_link_topology(struct net_device *dev)
10539 {
10540 	struct phy_link_topology *topo = dev->link_topo;
10541 
10542 	if (IS_ENABLED(CONFIG_PHYLIB) && topo) {
10543 		xa_destroy(&topo->phys);
10544 		kfree(topo);
10545 		dev->link_topo = NULL;
10546 	}
10547 }
10548 
10549 /**
10550  * register_netdevice() - register a network device
10551  * @dev: device to register
10552  *
10553  * Take a prepared network device structure and make it externally accessible.
10554  * A %NETDEV_REGISTER message is sent to the netdev notifier chain.
10555  * Callers must hold the rtnl lock - you may want register_netdev()
10556  * instead of this.
10557  */
10558 int register_netdevice(struct net_device *dev)
10559 {
10560 	int ret;
10561 	struct net *net = dev_net(dev);
10562 
10563 	BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
10564 		     NETDEV_FEATURE_COUNT);
10565 	BUG_ON(dev_boot_phase);
10566 	ASSERT_RTNL();
10567 
10568 	might_sleep();
10569 
10570 	/* When net_device's are persistent, this will be fatal. */
10571 	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
10572 	BUG_ON(!net);
10573 
10574 	ret = ethtool_check_ops(dev->ethtool_ops);
10575 	if (ret)
10576 		return ret;
10577 
10578 	/* rss ctx ID 0 is reserved for the default context, start from 1 */
10579 	xa_init_flags(&dev->ethtool->rss_ctx, XA_FLAGS_ALLOC1);
10580 	mutex_init(&dev->ethtool->rss_lock);
10581 
10582 	spin_lock_init(&dev->addr_list_lock);
10583 	netdev_set_addr_lockdep_class(dev);
10584 
10585 	ret = dev_get_valid_name(net, dev, dev->name);
10586 	if (ret < 0)
10587 		goto out;
10588 
10589 	ret = -ENOMEM;
10590 	dev->name_node = netdev_name_node_head_alloc(dev);
10591 	if (!dev->name_node)
10592 		goto out;
10593 
10594 	/* Init, if this function is available */
10595 	if (dev->netdev_ops->ndo_init) {
10596 		ret = dev->netdev_ops->ndo_init(dev);
10597 		if (ret) {
10598 			if (ret > 0)
10599 				ret = -EIO;
10600 			goto err_free_name;
10601 		}
10602 	}
10603 
10604 	if (((dev->hw_features | dev->features) &
10605 	     NETIF_F_HW_VLAN_CTAG_FILTER) &&
10606 	    (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
10607 	     !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
10608 		netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
10609 		ret = -EINVAL;
10610 		goto err_uninit;
10611 	}
10612 
10613 	ret = netdev_do_alloc_pcpu_stats(dev);
10614 	if (ret)
10615 		goto err_uninit;
10616 
10617 	ret = dev_index_reserve(net, dev->ifindex);
10618 	if (ret < 0)
10619 		goto err_free_pcpu;
10620 	dev->ifindex = ret;
10621 
10622 	/* Transfer changeable features to wanted_features and enable
10623 	 * software offloads (GSO and GRO).
10624 	 */
10625 	dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
10626 	dev->features |= NETIF_F_SOFT_FEATURES;
10627 
10628 	if (dev->udp_tunnel_nic_info) {
10629 		dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10630 		dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10631 	}
10632 
10633 	dev->wanted_features = dev->features & dev->hw_features;
10634 
10635 	if (!(dev->flags & IFF_LOOPBACK))
10636 		dev->hw_features |= NETIF_F_NOCACHE_COPY;
10637 
10638 	/* If IPv4 TCP segmentation offload is supported we should also
10639 	 * allow the device to enable segmenting the frame with the option
10640 	 * of ignoring a static IP ID value.  This doesn't enable the
10641 	 * feature itself but allows the user to enable it later.
10642 	 */
10643 	if (dev->hw_features & NETIF_F_TSO)
10644 		dev->hw_features |= NETIF_F_TSO_MANGLEID;
10645 	if (dev->vlan_features & NETIF_F_TSO)
10646 		dev->vlan_features |= NETIF_F_TSO_MANGLEID;
10647 	if (dev->mpls_features & NETIF_F_TSO)
10648 		dev->mpls_features |= NETIF_F_TSO_MANGLEID;
10649 	if (dev->hw_enc_features & NETIF_F_TSO)
10650 		dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
10651 
10652 	/* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
10653 	 */
10654 	dev->vlan_features |= NETIF_F_HIGHDMA;
10655 
10656 	/* Make NETIF_F_SG inheritable to tunnel devices.
10657 	 */
10658 	dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
10659 
10660 	/* Make NETIF_F_SG inheritable to MPLS.
10661 	 */
10662 	dev->mpls_features |= NETIF_F_SG;
10663 
10664 	ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
10665 	ret = notifier_to_errno(ret);
10666 	if (ret)
10667 		goto err_ifindex_release;
10668 
10669 	ret = netdev_register_kobject(dev);
10670 
10671 	WRITE_ONCE(dev->reg_state, ret ? NETREG_UNREGISTERED : NETREG_REGISTERED);
10672 
10673 	if (ret)
10674 		goto err_uninit_notify;
10675 
10676 	__netdev_update_features(dev);
10677 
10678 	/*
10679 	 *	Default initial state at registry is that the
10680 	 *	device is present.
10681 	 */
10682 
10683 	set_bit(__LINK_STATE_PRESENT, &dev->state);
10684 
10685 	linkwatch_init_dev(dev);
10686 
10687 	dev_init_scheduler(dev);
10688 
10689 	netdev_hold(dev, &dev->dev_registered_tracker, GFP_KERNEL);
10690 	list_netdevice(dev);
10691 
10692 	add_device_randomness(dev->dev_addr, dev->addr_len);
10693 
10694 	/* If the device has permanent device address, driver should
10695 	 * set dev_addr and also addr_assign_type should be set to
10696 	 * NET_ADDR_PERM (default value).
10697 	 */
10698 	if (dev->addr_assign_type == NET_ADDR_PERM)
10699 		memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
10700 
10701 	/* Notify protocols, that a new device appeared. */
10702 	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
10703 	ret = notifier_to_errno(ret);
10704 	if (ret) {
10705 		/* Expect explicit free_netdev() on failure */
10706 		dev->needs_free_netdev = false;
10707 		unregister_netdevice_queue(dev, NULL);
10708 		goto out;
10709 	}
10710 	/*
10711 	 *	Prevent userspace races by waiting until the network
10712 	 *	device is fully setup before sending notifications.
10713 	 */
10714 	if (!dev->rtnl_link_ops ||
10715 	    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10716 		rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL);
10717 
10718 out:
10719 	return ret;
10720 
10721 err_uninit_notify:
10722 	call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev);
10723 err_ifindex_release:
10724 	dev_index_release(net, dev->ifindex);
10725 err_free_pcpu:
10726 	netdev_do_free_pcpu_stats(dev);
10727 err_uninit:
10728 	if (dev->netdev_ops->ndo_uninit)
10729 		dev->netdev_ops->ndo_uninit(dev);
10730 	if (dev->priv_destructor)
10731 		dev->priv_destructor(dev);
10732 err_free_name:
10733 	netdev_name_node_free(dev->name_node);
10734 	goto out;
10735 }
10736 EXPORT_SYMBOL(register_netdevice);
10737 
10738 /* Initialize the core of a dummy net device.
10739  * The setup steps dummy netdevs need which normal netdevs get by going
10740  * through register_netdevice().
10741  */
10742 static void init_dummy_netdev(struct net_device *dev)
10743 {
10744 	/* make sure we BUG if trying to hit standard
10745 	 * register/unregister code path
10746 	 */
10747 	dev->reg_state = NETREG_DUMMY;
10748 
10749 	/* a dummy interface is started by default */
10750 	set_bit(__LINK_STATE_PRESENT, &dev->state);
10751 	set_bit(__LINK_STATE_START, &dev->state);
10752 
10753 	/* Note : We dont allocate pcpu_refcnt for dummy devices,
10754 	 * because users of this 'device' dont need to change
10755 	 * its refcount.
10756 	 */
10757 }
10758 
10759 /**
10760  *	register_netdev	- register a network device
10761  *	@dev: device to register
10762  *
10763  *	Take a completed network device structure and add it to the kernel
10764  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10765  *	chain. 0 is returned on success. A negative errno code is returned
10766  *	on a failure to set up the device, or if the name is a duplicate.
10767  *
10768  *	This is a wrapper around register_netdevice that takes the rtnl semaphore
10769  *	and expands the device name if you passed a format string to
10770  *	alloc_netdev.
10771  */
10772 int register_netdev(struct net_device *dev)
10773 {
10774 	struct net *net = dev_net(dev);
10775 	int err;
10776 
10777 	if (rtnl_net_lock_killable(net))
10778 		return -EINTR;
10779 
10780 	err = register_netdevice(dev);
10781 
10782 	rtnl_net_unlock(net);
10783 
10784 	return err;
10785 }
10786 EXPORT_SYMBOL(register_netdev);
10787 
10788 int netdev_refcnt_read(const struct net_device *dev)
10789 {
10790 #ifdef CONFIG_PCPU_DEV_REFCNT
10791 	int i, refcnt = 0;
10792 
10793 	for_each_possible_cpu(i)
10794 		refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
10795 	return refcnt;
10796 #else
10797 	return refcount_read(&dev->dev_refcnt);
10798 #endif
10799 }
10800 EXPORT_SYMBOL(netdev_refcnt_read);
10801 
10802 int netdev_unregister_timeout_secs __read_mostly = 10;
10803 
10804 #define WAIT_REFS_MIN_MSECS 1
10805 #define WAIT_REFS_MAX_MSECS 250
10806 /**
10807  * netdev_wait_allrefs_any - wait until all references are gone.
10808  * @list: list of net_devices to wait on
10809  *
10810  * This is called when unregistering network devices.
10811  *
10812  * Any protocol or device that holds a reference should register
10813  * for netdevice notification, and cleanup and put back the
10814  * reference if they receive an UNREGISTER event.
10815  * We can get stuck here if buggy protocols don't correctly
10816  * call dev_put.
10817  */
10818 static struct net_device *netdev_wait_allrefs_any(struct list_head *list)
10819 {
10820 	unsigned long rebroadcast_time, warning_time;
10821 	struct net_device *dev;
10822 	int wait = 0;
10823 
10824 	rebroadcast_time = warning_time = jiffies;
10825 
10826 	list_for_each_entry(dev, list, todo_list)
10827 		if (netdev_refcnt_read(dev) == 1)
10828 			return dev;
10829 
10830 	while (true) {
10831 		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
10832 			rtnl_lock();
10833 
10834 			/* Rebroadcast unregister notification */
10835 			list_for_each_entry(dev, list, todo_list)
10836 				call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10837 
10838 			__rtnl_unlock();
10839 			rcu_barrier();
10840 			rtnl_lock();
10841 
10842 			list_for_each_entry(dev, list, todo_list)
10843 				if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
10844 					     &dev->state)) {
10845 					/* We must not have linkwatch events
10846 					 * pending on unregister. If this
10847 					 * happens, we simply run the queue
10848 					 * unscheduled, resulting in a noop
10849 					 * for this device.
10850 					 */
10851 					linkwatch_run_queue();
10852 					break;
10853 				}
10854 
10855 			__rtnl_unlock();
10856 
10857 			rebroadcast_time = jiffies;
10858 		}
10859 
10860 		rcu_barrier();
10861 
10862 		if (!wait) {
10863 			wait = WAIT_REFS_MIN_MSECS;
10864 		} else {
10865 			msleep(wait);
10866 			wait = min(wait << 1, WAIT_REFS_MAX_MSECS);
10867 		}
10868 
10869 		list_for_each_entry(dev, list, todo_list)
10870 			if (netdev_refcnt_read(dev) == 1)
10871 				return dev;
10872 
10873 		if (time_after(jiffies, warning_time +
10874 			       READ_ONCE(netdev_unregister_timeout_secs) * HZ)) {
10875 			list_for_each_entry(dev, list, todo_list) {
10876 				pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
10877 					 dev->name, netdev_refcnt_read(dev));
10878 				ref_tracker_dir_print(&dev->refcnt_tracker, 10);
10879 			}
10880 
10881 			warning_time = jiffies;
10882 		}
10883 	}
10884 }
10885 
10886 /* The sequence is:
10887  *
10888  *	rtnl_lock();
10889  *	...
10890  *	register_netdevice(x1);
10891  *	register_netdevice(x2);
10892  *	...
10893  *	unregister_netdevice(y1);
10894  *	unregister_netdevice(y2);
10895  *      ...
10896  *	rtnl_unlock();
10897  *	free_netdev(y1);
10898  *	free_netdev(y2);
10899  *
10900  * We are invoked by rtnl_unlock().
10901  * This allows us to deal with problems:
10902  * 1) We can delete sysfs objects which invoke hotplug
10903  *    without deadlocking with linkwatch via keventd.
10904  * 2) Since we run with the RTNL semaphore not held, we can sleep
10905  *    safely in order to wait for the netdev refcnt to drop to zero.
10906  *
10907  * We must not return until all unregister events added during
10908  * the interval the lock was held have been completed.
10909  */
10910 void netdev_run_todo(void)
10911 {
10912 	struct net_device *dev, *tmp;
10913 	struct list_head list;
10914 	int cnt;
10915 #ifdef CONFIG_LOCKDEP
10916 	struct list_head unlink_list;
10917 
10918 	list_replace_init(&net_unlink_list, &unlink_list);
10919 
10920 	while (!list_empty(&unlink_list)) {
10921 		struct net_device *dev = list_first_entry(&unlink_list,
10922 							  struct net_device,
10923 							  unlink_list);
10924 		list_del_init(&dev->unlink_list);
10925 		dev->nested_level = dev->lower_level - 1;
10926 	}
10927 #endif
10928 
10929 	/* Snapshot list, allow later requests */
10930 	list_replace_init(&net_todo_list, &list);
10931 
10932 	__rtnl_unlock();
10933 
10934 	/* Wait for rcu callbacks to finish before next phase */
10935 	if (!list_empty(&list))
10936 		rcu_barrier();
10937 
10938 	list_for_each_entry_safe(dev, tmp, &list, todo_list) {
10939 		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
10940 			netdev_WARN(dev, "run_todo but not unregistering\n");
10941 			list_del(&dev->todo_list);
10942 			continue;
10943 		}
10944 
10945 		WRITE_ONCE(dev->reg_state, NETREG_UNREGISTERED);
10946 		linkwatch_sync_dev(dev);
10947 	}
10948 
10949 	cnt = 0;
10950 	while (!list_empty(&list)) {
10951 		dev = netdev_wait_allrefs_any(&list);
10952 		list_del(&dev->todo_list);
10953 
10954 		/* paranoia */
10955 		BUG_ON(netdev_refcnt_read(dev) != 1);
10956 		BUG_ON(!list_empty(&dev->ptype_all));
10957 		BUG_ON(!list_empty(&dev->ptype_specific));
10958 		WARN_ON(rcu_access_pointer(dev->ip_ptr));
10959 		WARN_ON(rcu_access_pointer(dev->ip6_ptr));
10960 
10961 		netdev_do_free_pcpu_stats(dev);
10962 		if (dev->priv_destructor)
10963 			dev->priv_destructor(dev);
10964 		if (dev->needs_free_netdev)
10965 			free_netdev(dev);
10966 
10967 		cnt++;
10968 
10969 		/* Free network device */
10970 		kobject_put(&dev->dev.kobj);
10971 	}
10972 	if (cnt && atomic_sub_and_test(cnt, &dev_unreg_count))
10973 		wake_up(&netdev_unregistering_wq);
10974 }
10975 
10976 /* Collate per-cpu network dstats statistics
10977  *
10978  * Read per-cpu network statistics from dev->dstats and populate the related
10979  * fields in @s.
10980  */
10981 static void dev_fetch_dstats(struct rtnl_link_stats64 *s,
10982 			     const struct pcpu_dstats __percpu *dstats)
10983 {
10984 	int cpu;
10985 
10986 	for_each_possible_cpu(cpu) {
10987 		u64 rx_packets, rx_bytes, rx_drops;
10988 		u64 tx_packets, tx_bytes, tx_drops;
10989 		const struct pcpu_dstats *stats;
10990 		unsigned int start;
10991 
10992 		stats = per_cpu_ptr(dstats, cpu);
10993 		do {
10994 			start = u64_stats_fetch_begin(&stats->syncp);
10995 			rx_packets = u64_stats_read(&stats->rx_packets);
10996 			rx_bytes   = u64_stats_read(&stats->rx_bytes);
10997 			rx_drops   = u64_stats_read(&stats->rx_drops);
10998 			tx_packets = u64_stats_read(&stats->tx_packets);
10999 			tx_bytes   = u64_stats_read(&stats->tx_bytes);
11000 			tx_drops   = u64_stats_read(&stats->tx_drops);
11001 		} while (u64_stats_fetch_retry(&stats->syncp, start));
11002 
11003 		s->rx_packets += rx_packets;
11004 		s->rx_bytes   += rx_bytes;
11005 		s->rx_dropped += rx_drops;
11006 		s->tx_packets += tx_packets;
11007 		s->tx_bytes   += tx_bytes;
11008 		s->tx_dropped += tx_drops;
11009 	}
11010 }
11011 
11012 /* ndo_get_stats64 implementation for dtstats-based accounting.
11013  *
11014  * Populate @s from dev->stats and dev->dstats. This is used internally by the
11015  * core for NETDEV_PCPU_STAT_DSTAT-type stats collection.
11016  */
11017 static void dev_get_dstats64(const struct net_device *dev,
11018 			     struct rtnl_link_stats64 *s)
11019 {
11020 	netdev_stats_to_stats64(s, &dev->stats);
11021 	dev_fetch_dstats(s, dev->dstats);
11022 }
11023 
11024 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
11025  * all the same fields in the same order as net_device_stats, with only
11026  * the type differing, but rtnl_link_stats64 may have additional fields
11027  * at the end for newer counters.
11028  */
11029 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
11030 			     const struct net_device_stats *netdev_stats)
11031 {
11032 	size_t i, n = sizeof(*netdev_stats) / sizeof(atomic_long_t);
11033 	const atomic_long_t *src = (atomic_long_t *)netdev_stats;
11034 	u64 *dst = (u64 *)stats64;
11035 
11036 	BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
11037 	for (i = 0; i < n; i++)
11038 		dst[i] = (unsigned long)atomic_long_read(&src[i]);
11039 	/* zero out counters that only exist in rtnl_link_stats64 */
11040 	memset((char *)stats64 + n * sizeof(u64), 0,
11041 	       sizeof(*stats64) - n * sizeof(u64));
11042 }
11043 EXPORT_SYMBOL(netdev_stats_to_stats64);
11044 
11045 static __cold struct net_device_core_stats __percpu *netdev_core_stats_alloc(
11046 		struct net_device *dev)
11047 {
11048 	struct net_device_core_stats __percpu *p;
11049 
11050 	p = alloc_percpu_gfp(struct net_device_core_stats,
11051 			     GFP_ATOMIC | __GFP_NOWARN);
11052 
11053 	if (p && cmpxchg(&dev->core_stats, NULL, p))
11054 		free_percpu(p);
11055 
11056 	/* This READ_ONCE() pairs with the cmpxchg() above */
11057 	return READ_ONCE(dev->core_stats);
11058 }
11059 
11060 noinline void netdev_core_stats_inc(struct net_device *dev, u32 offset)
11061 {
11062 	/* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
11063 	struct net_device_core_stats __percpu *p = READ_ONCE(dev->core_stats);
11064 	unsigned long __percpu *field;
11065 
11066 	if (unlikely(!p)) {
11067 		p = netdev_core_stats_alloc(dev);
11068 		if (!p)
11069 			return;
11070 	}
11071 
11072 	field = (unsigned long __percpu *)((void __percpu *)p + offset);
11073 	this_cpu_inc(*field);
11074 }
11075 EXPORT_SYMBOL_GPL(netdev_core_stats_inc);
11076 
11077 /**
11078  *	dev_get_stats	- get network device statistics
11079  *	@dev: device to get statistics from
11080  *	@storage: place to store stats
11081  *
11082  *	Get network statistics from device. Return @storage.
11083  *	The device driver may provide its own method by setting
11084  *	dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
11085  *	otherwise the internal statistics structure is used.
11086  */
11087 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
11088 					struct rtnl_link_stats64 *storage)
11089 {
11090 	const struct net_device_ops *ops = dev->netdev_ops;
11091 	const struct net_device_core_stats __percpu *p;
11092 
11093 	if (ops->ndo_get_stats64) {
11094 		memset(storage, 0, sizeof(*storage));
11095 		ops->ndo_get_stats64(dev, storage);
11096 	} else if (ops->ndo_get_stats) {
11097 		netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
11098 	} else if (dev->pcpu_stat_type == NETDEV_PCPU_STAT_TSTATS) {
11099 		dev_get_tstats64(dev, storage);
11100 	} else if (dev->pcpu_stat_type == NETDEV_PCPU_STAT_DSTATS) {
11101 		dev_get_dstats64(dev, storage);
11102 	} else {
11103 		netdev_stats_to_stats64(storage, &dev->stats);
11104 	}
11105 
11106 	/* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
11107 	p = READ_ONCE(dev->core_stats);
11108 	if (p) {
11109 		const struct net_device_core_stats *core_stats;
11110 		int i;
11111 
11112 		for_each_possible_cpu(i) {
11113 			core_stats = per_cpu_ptr(p, i);
11114 			storage->rx_dropped += READ_ONCE(core_stats->rx_dropped);
11115 			storage->tx_dropped += READ_ONCE(core_stats->tx_dropped);
11116 			storage->rx_nohandler += READ_ONCE(core_stats->rx_nohandler);
11117 			storage->rx_otherhost_dropped += READ_ONCE(core_stats->rx_otherhost_dropped);
11118 		}
11119 	}
11120 	return storage;
11121 }
11122 EXPORT_SYMBOL(dev_get_stats);
11123 
11124 /**
11125  *	dev_fetch_sw_netstats - get per-cpu network device statistics
11126  *	@s: place to store stats
11127  *	@netstats: per-cpu network stats to read from
11128  *
11129  *	Read per-cpu network statistics and populate the related fields in @s.
11130  */
11131 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
11132 			   const struct pcpu_sw_netstats __percpu *netstats)
11133 {
11134 	int cpu;
11135 
11136 	for_each_possible_cpu(cpu) {
11137 		u64 rx_packets, rx_bytes, tx_packets, tx_bytes;
11138 		const struct pcpu_sw_netstats *stats;
11139 		unsigned int start;
11140 
11141 		stats = per_cpu_ptr(netstats, cpu);
11142 		do {
11143 			start = u64_stats_fetch_begin(&stats->syncp);
11144 			rx_packets = u64_stats_read(&stats->rx_packets);
11145 			rx_bytes   = u64_stats_read(&stats->rx_bytes);
11146 			tx_packets = u64_stats_read(&stats->tx_packets);
11147 			tx_bytes   = u64_stats_read(&stats->tx_bytes);
11148 		} while (u64_stats_fetch_retry(&stats->syncp, start));
11149 
11150 		s->rx_packets += rx_packets;
11151 		s->rx_bytes   += rx_bytes;
11152 		s->tx_packets += tx_packets;
11153 		s->tx_bytes   += tx_bytes;
11154 	}
11155 }
11156 EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats);
11157 
11158 /**
11159  *	dev_get_tstats64 - ndo_get_stats64 implementation
11160  *	@dev: device to get statistics from
11161  *	@s: place to store stats
11162  *
11163  *	Populate @s from dev->stats and dev->tstats. Can be used as
11164  *	ndo_get_stats64() callback.
11165  */
11166 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s)
11167 {
11168 	netdev_stats_to_stats64(s, &dev->stats);
11169 	dev_fetch_sw_netstats(s, dev->tstats);
11170 }
11171 EXPORT_SYMBOL_GPL(dev_get_tstats64);
11172 
11173 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
11174 {
11175 	struct netdev_queue *queue = dev_ingress_queue(dev);
11176 
11177 #ifdef CONFIG_NET_CLS_ACT
11178 	if (queue)
11179 		return queue;
11180 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
11181 	if (!queue)
11182 		return NULL;
11183 	netdev_init_one_queue(dev, queue, NULL);
11184 	RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
11185 	RCU_INIT_POINTER(queue->qdisc_sleeping, &noop_qdisc);
11186 	rcu_assign_pointer(dev->ingress_queue, queue);
11187 #endif
11188 	return queue;
11189 }
11190 
11191 static const struct ethtool_ops default_ethtool_ops;
11192 
11193 void netdev_set_default_ethtool_ops(struct net_device *dev,
11194 				    const struct ethtool_ops *ops)
11195 {
11196 	if (dev->ethtool_ops == &default_ethtool_ops)
11197 		dev->ethtool_ops = ops;
11198 }
11199 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
11200 
11201 /**
11202  * netdev_sw_irq_coalesce_default_on() - enable SW IRQ coalescing by default
11203  * @dev: netdev to enable the IRQ coalescing on
11204  *
11205  * Sets a conservative default for SW IRQ coalescing. Users can use
11206  * sysfs attributes to override the default values.
11207  */
11208 void netdev_sw_irq_coalesce_default_on(struct net_device *dev)
11209 {
11210 	WARN_ON(dev->reg_state == NETREG_REGISTERED);
11211 
11212 	if (!IS_ENABLED(CONFIG_PREEMPT_RT)) {
11213 		netdev_set_gro_flush_timeout(dev, 20000);
11214 		netdev_set_defer_hard_irqs(dev, 1);
11215 	}
11216 }
11217 EXPORT_SYMBOL_GPL(netdev_sw_irq_coalesce_default_on);
11218 
11219 /**
11220  * alloc_netdev_mqs - allocate network device
11221  * @sizeof_priv: size of private data to allocate space for
11222  * @name: device name format string
11223  * @name_assign_type: origin of device name
11224  * @setup: callback to initialize device
11225  * @txqs: the number of TX subqueues to allocate
11226  * @rxqs: the number of RX subqueues to allocate
11227  *
11228  * Allocates a struct net_device with private data area for driver use
11229  * and performs basic initialization.  Also allocates subqueue structs
11230  * for each queue on the device.
11231  */
11232 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
11233 		unsigned char name_assign_type,
11234 		void (*setup)(struct net_device *),
11235 		unsigned int txqs, unsigned int rxqs)
11236 {
11237 	struct net_device *dev;
11238 	size_t napi_config_sz;
11239 	unsigned int maxqs;
11240 
11241 	BUG_ON(strlen(name) >= sizeof(dev->name));
11242 
11243 	if (txqs < 1) {
11244 		pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
11245 		return NULL;
11246 	}
11247 
11248 	if (rxqs < 1) {
11249 		pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
11250 		return NULL;
11251 	}
11252 
11253 	maxqs = max(txqs, rxqs);
11254 
11255 	dev = kvzalloc(struct_size(dev, priv, sizeof_priv),
11256 		       GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
11257 	if (!dev)
11258 		return NULL;
11259 
11260 	dev->priv_len = sizeof_priv;
11261 
11262 	ref_tracker_dir_init(&dev->refcnt_tracker, 128, name);
11263 #ifdef CONFIG_PCPU_DEV_REFCNT
11264 	dev->pcpu_refcnt = alloc_percpu(int);
11265 	if (!dev->pcpu_refcnt)
11266 		goto free_dev;
11267 	__dev_hold(dev);
11268 #else
11269 	refcount_set(&dev->dev_refcnt, 1);
11270 #endif
11271 
11272 	if (dev_addr_init(dev))
11273 		goto free_pcpu;
11274 
11275 	dev_mc_init(dev);
11276 	dev_uc_init(dev);
11277 
11278 	dev_net_set(dev, &init_net);
11279 
11280 	dev->gso_max_size = GSO_LEGACY_MAX_SIZE;
11281 	dev->xdp_zc_max_segs = 1;
11282 	dev->gso_max_segs = GSO_MAX_SEGS;
11283 	dev->gro_max_size = GRO_LEGACY_MAX_SIZE;
11284 	dev->gso_ipv4_max_size = GSO_LEGACY_MAX_SIZE;
11285 	dev->gro_ipv4_max_size = GRO_LEGACY_MAX_SIZE;
11286 	dev->tso_max_size = TSO_LEGACY_MAX_SIZE;
11287 	dev->tso_max_segs = TSO_MAX_SEGS;
11288 	dev->upper_level = 1;
11289 	dev->lower_level = 1;
11290 #ifdef CONFIG_LOCKDEP
11291 	dev->nested_level = 0;
11292 	INIT_LIST_HEAD(&dev->unlink_list);
11293 #endif
11294 
11295 	INIT_LIST_HEAD(&dev->napi_list);
11296 	INIT_LIST_HEAD(&dev->unreg_list);
11297 	INIT_LIST_HEAD(&dev->close_list);
11298 	INIT_LIST_HEAD(&dev->link_watch_list);
11299 	INIT_LIST_HEAD(&dev->adj_list.upper);
11300 	INIT_LIST_HEAD(&dev->adj_list.lower);
11301 	INIT_LIST_HEAD(&dev->ptype_all);
11302 	INIT_LIST_HEAD(&dev->ptype_specific);
11303 	INIT_LIST_HEAD(&dev->net_notifier_list);
11304 #ifdef CONFIG_NET_SCHED
11305 	hash_init(dev->qdisc_hash);
11306 #endif
11307 
11308 	mutex_init(&dev->lock);
11309 
11310 	dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
11311 	setup(dev);
11312 
11313 	if (!dev->tx_queue_len) {
11314 		dev->priv_flags |= IFF_NO_QUEUE;
11315 		dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
11316 	}
11317 
11318 	dev->num_tx_queues = txqs;
11319 	dev->real_num_tx_queues = txqs;
11320 	if (netif_alloc_netdev_queues(dev))
11321 		goto free_all;
11322 
11323 	dev->num_rx_queues = rxqs;
11324 	dev->real_num_rx_queues = rxqs;
11325 	if (netif_alloc_rx_queues(dev))
11326 		goto free_all;
11327 	dev->ethtool = kzalloc(sizeof(*dev->ethtool), GFP_KERNEL_ACCOUNT);
11328 	if (!dev->ethtool)
11329 		goto free_all;
11330 
11331 	napi_config_sz = array_size(maxqs, sizeof(*dev->napi_config));
11332 	dev->napi_config = kvzalloc(napi_config_sz, GFP_KERNEL_ACCOUNT);
11333 	if (!dev->napi_config)
11334 		goto free_all;
11335 
11336 	strscpy(dev->name, name);
11337 	dev->name_assign_type = name_assign_type;
11338 	dev->group = INIT_NETDEV_GROUP;
11339 	if (!dev->ethtool_ops)
11340 		dev->ethtool_ops = &default_ethtool_ops;
11341 
11342 	nf_hook_netdev_init(dev);
11343 
11344 	return dev;
11345 
11346 free_all:
11347 	free_netdev(dev);
11348 	return NULL;
11349 
11350 free_pcpu:
11351 #ifdef CONFIG_PCPU_DEV_REFCNT
11352 	free_percpu(dev->pcpu_refcnt);
11353 free_dev:
11354 #endif
11355 	kvfree(dev);
11356 	return NULL;
11357 }
11358 EXPORT_SYMBOL(alloc_netdev_mqs);
11359 
11360 /**
11361  * free_netdev - free network device
11362  * @dev: device
11363  *
11364  * This function does the last stage of destroying an allocated device
11365  * interface. The reference to the device object is released. If this
11366  * is the last reference then it will be freed.Must be called in process
11367  * context.
11368  */
11369 void free_netdev(struct net_device *dev)
11370 {
11371 	struct napi_struct *p, *n;
11372 
11373 	might_sleep();
11374 
11375 	/* When called immediately after register_netdevice() failed the unwind
11376 	 * handling may still be dismantling the device. Handle that case by
11377 	 * deferring the free.
11378 	 */
11379 	if (dev->reg_state == NETREG_UNREGISTERING) {
11380 		ASSERT_RTNL();
11381 		dev->needs_free_netdev = true;
11382 		return;
11383 	}
11384 
11385 	mutex_destroy(&dev->lock);
11386 
11387 	kfree(dev->ethtool);
11388 	netif_free_tx_queues(dev);
11389 	netif_free_rx_queues(dev);
11390 
11391 	kfree(rcu_dereference_protected(dev->ingress_queue, 1));
11392 
11393 	/* Flush device addresses */
11394 	dev_addr_flush(dev);
11395 
11396 	list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
11397 		netif_napi_del(p);
11398 
11399 	kvfree(dev->napi_config);
11400 
11401 	ref_tracker_dir_exit(&dev->refcnt_tracker);
11402 #ifdef CONFIG_PCPU_DEV_REFCNT
11403 	free_percpu(dev->pcpu_refcnt);
11404 	dev->pcpu_refcnt = NULL;
11405 #endif
11406 	free_percpu(dev->core_stats);
11407 	dev->core_stats = NULL;
11408 	free_percpu(dev->xdp_bulkq);
11409 	dev->xdp_bulkq = NULL;
11410 
11411 	netdev_free_phy_link_topology(dev);
11412 
11413 	/*  Compatibility with error handling in drivers */
11414 	if (dev->reg_state == NETREG_UNINITIALIZED ||
11415 	    dev->reg_state == NETREG_DUMMY) {
11416 		kvfree(dev);
11417 		return;
11418 	}
11419 
11420 	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
11421 	WRITE_ONCE(dev->reg_state, NETREG_RELEASED);
11422 
11423 	/* will free via device release */
11424 	put_device(&dev->dev);
11425 }
11426 EXPORT_SYMBOL(free_netdev);
11427 
11428 /**
11429  * alloc_netdev_dummy - Allocate and initialize a dummy net device.
11430  * @sizeof_priv: size of private data to allocate space for
11431  *
11432  * Return: the allocated net_device on success, NULL otherwise
11433  */
11434 struct net_device *alloc_netdev_dummy(int sizeof_priv)
11435 {
11436 	return alloc_netdev(sizeof_priv, "dummy#", NET_NAME_UNKNOWN,
11437 			    init_dummy_netdev);
11438 }
11439 EXPORT_SYMBOL_GPL(alloc_netdev_dummy);
11440 
11441 /**
11442  *	synchronize_net -  Synchronize with packet receive processing
11443  *
11444  *	Wait for packets currently being received to be done.
11445  *	Does not block later packets from starting.
11446  */
11447 void synchronize_net(void)
11448 {
11449 	might_sleep();
11450 	if (rtnl_is_locked())
11451 		synchronize_rcu_expedited();
11452 	else
11453 		synchronize_rcu();
11454 }
11455 EXPORT_SYMBOL(synchronize_net);
11456 
11457 static void netdev_rss_contexts_free(struct net_device *dev)
11458 {
11459 	struct ethtool_rxfh_context *ctx;
11460 	unsigned long context;
11461 
11462 	mutex_lock(&dev->ethtool->rss_lock);
11463 	xa_for_each(&dev->ethtool->rss_ctx, context, ctx) {
11464 		struct ethtool_rxfh_param rxfh;
11465 
11466 		rxfh.indir = ethtool_rxfh_context_indir(ctx);
11467 		rxfh.key = ethtool_rxfh_context_key(ctx);
11468 		rxfh.hfunc = ctx->hfunc;
11469 		rxfh.input_xfrm = ctx->input_xfrm;
11470 		rxfh.rss_context = context;
11471 		rxfh.rss_delete = true;
11472 
11473 		xa_erase(&dev->ethtool->rss_ctx, context);
11474 		if (dev->ethtool_ops->create_rxfh_context)
11475 			dev->ethtool_ops->remove_rxfh_context(dev, ctx,
11476 							      context, NULL);
11477 		else
11478 			dev->ethtool_ops->set_rxfh(dev, &rxfh, NULL);
11479 		kfree(ctx);
11480 	}
11481 	xa_destroy(&dev->ethtool->rss_ctx);
11482 	mutex_unlock(&dev->ethtool->rss_lock);
11483 }
11484 
11485 /**
11486  *	unregister_netdevice_queue - remove device from the kernel
11487  *	@dev: device
11488  *	@head: list
11489  *
11490  *	This function shuts down a device interface and removes it
11491  *	from the kernel tables.
11492  *	If head not NULL, device is queued to be unregistered later.
11493  *
11494  *	Callers must hold the rtnl semaphore.  You may want
11495  *	unregister_netdev() instead of this.
11496  */
11497 
11498 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
11499 {
11500 	ASSERT_RTNL();
11501 
11502 	if (head) {
11503 		list_move_tail(&dev->unreg_list, head);
11504 	} else {
11505 		LIST_HEAD(single);
11506 
11507 		list_add(&dev->unreg_list, &single);
11508 		unregister_netdevice_many(&single);
11509 	}
11510 }
11511 EXPORT_SYMBOL(unregister_netdevice_queue);
11512 
11513 void unregister_netdevice_many_notify(struct list_head *head,
11514 				      u32 portid, const struct nlmsghdr *nlh)
11515 {
11516 	struct net_device *dev, *tmp;
11517 	LIST_HEAD(close_head);
11518 	int cnt = 0;
11519 
11520 	BUG_ON(dev_boot_phase);
11521 	ASSERT_RTNL();
11522 
11523 	if (list_empty(head))
11524 		return;
11525 
11526 	list_for_each_entry_safe(dev, tmp, head, unreg_list) {
11527 		/* Some devices call without registering
11528 		 * for initialization unwind. Remove those
11529 		 * devices and proceed with the remaining.
11530 		 */
11531 		if (dev->reg_state == NETREG_UNINITIALIZED) {
11532 			pr_debug("unregister_netdevice: device %s/%p never was registered\n",
11533 				 dev->name, dev);
11534 
11535 			WARN_ON(1);
11536 			list_del(&dev->unreg_list);
11537 			continue;
11538 		}
11539 		dev->dismantle = true;
11540 		BUG_ON(dev->reg_state != NETREG_REGISTERED);
11541 	}
11542 
11543 	/* If device is running, close it first. */
11544 	list_for_each_entry(dev, head, unreg_list)
11545 		list_add_tail(&dev->close_list, &close_head);
11546 	dev_close_many(&close_head, true);
11547 
11548 	list_for_each_entry(dev, head, unreg_list) {
11549 		/* And unlink it from device chain. */
11550 		unlist_netdevice(dev);
11551 		WRITE_ONCE(dev->reg_state, NETREG_UNREGISTERING);
11552 	}
11553 	flush_all_backlogs();
11554 
11555 	synchronize_net();
11556 
11557 	list_for_each_entry(dev, head, unreg_list) {
11558 		struct sk_buff *skb = NULL;
11559 
11560 		/* Shutdown queueing discipline. */
11561 		dev_shutdown(dev);
11562 		dev_tcx_uninstall(dev);
11563 		dev_xdp_uninstall(dev);
11564 		bpf_dev_bound_netdev_unregister(dev);
11565 		dev_dmabuf_uninstall(dev);
11566 
11567 		netdev_offload_xstats_disable_all(dev);
11568 
11569 		/* Notify protocols, that we are about to destroy
11570 		 * this device. They should clean all the things.
11571 		 */
11572 		call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11573 
11574 		if (!dev->rtnl_link_ops ||
11575 		    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
11576 			skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
11577 						     GFP_KERNEL, NULL, 0,
11578 						     portid, nlh);
11579 
11580 		/*
11581 		 *	Flush the unicast and multicast chains
11582 		 */
11583 		dev_uc_flush(dev);
11584 		dev_mc_flush(dev);
11585 
11586 		netdev_name_node_alt_flush(dev);
11587 		netdev_name_node_free(dev->name_node);
11588 
11589 		netdev_rss_contexts_free(dev);
11590 
11591 		call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev);
11592 
11593 		if (dev->netdev_ops->ndo_uninit)
11594 			dev->netdev_ops->ndo_uninit(dev);
11595 
11596 		mutex_destroy(&dev->ethtool->rss_lock);
11597 
11598 		net_shaper_flush_netdev(dev);
11599 
11600 		if (skb)
11601 			rtmsg_ifinfo_send(skb, dev, GFP_KERNEL, portid, nlh);
11602 
11603 		/* Notifier chain MUST detach us all upper devices. */
11604 		WARN_ON(netdev_has_any_upper_dev(dev));
11605 		WARN_ON(netdev_has_any_lower_dev(dev));
11606 
11607 		/* Remove entries from kobject tree */
11608 		netdev_unregister_kobject(dev);
11609 #ifdef CONFIG_XPS
11610 		/* Remove XPS queueing entries */
11611 		netif_reset_xps_queues_gt(dev, 0);
11612 #endif
11613 	}
11614 
11615 	synchronize_net();
11616 
11617 	list_for_each_entry(dev, head, unreg_list) {
11618 		netdev_put(dev, &dev->dev_registered_tracker);
11619 		net_set_todo(dev);
11620 		cnt++;
11621 	}
11622 	atomic_add(cnt, &dev_unreg_count);
11623 
11624 	list_del(head);
11625 }
11626 
11627 /**
11628  *	unregister_netdevice_many - unregister many devices
11629  *	@head: list of devices
11630  *
11631  *  Note: As most callers use a stack allocated list_head,
11632  *  we force a list_del() to make sure stack won't be corrupted later.
11633  */
11634 void unregister_netdevice_many(struct list_head *head)
11635 {
11636 	unregister_netdevice_many_notify(head, 0, NULL);
11637 }
11638 EXPORT_SYMBOL(unregister_netdevice_many);
11639 
11640 /**
11641  *	unregister_netdev - remove device from the kernel
11642  *	@dev: device
11643  *
11644  *	This function shuts down a device interface and removes it
11645  *	from the kernel tables.
11646  *
11647  *	This is just a wrapper for unregister_netdevice that takes
11648  *	the rtnl semaphore.  In general you want to use this and not
11649  *	unregister_netdevice.
11650  */
11651 void unregister_netdev(struct net_device *dev)
11652 {
11653 	struct net *net = dev_net(dev);
11654 
11655 	rtnl_net_lock(net);
11656 	unregister_netdevice(dev);
11657 	rtnl_net_unlock(net);
11658 }
11659 EXPORT_SYMBOL(unregister_netdev);
11660 
11661 /**
11662  *	__dev_change_net_namespace - move device to different nethost namespace
11663  *	@dev: device
11664  *	@net: network namespace
11665  *	@pat: If not NULL name pattern to try if the current device name
11666  *	      is already taken in the destination network namespace.
11667  *	@new_ifindex: If not zero, specifies device index in the target
11668  *	              namespace.
11669  *
11670  *	This function shuts down a device interface and moves it
11671  *	to a new network namespace. On success 0 is returned, on
11672  *	a failure a netagive errno code is returned.
11673  *
11674  *	Callers must hold the rtnl semaphore.
11675  */
11676 
11677 int __dev_change_net_namespace(struct net_device *dev, struct net *net,
11678 			       const char *pat, int new_ifindex)
11679 {
11680 	struct netdev_name_node *name_node;
11681 	struct net *net_old = dev_net(dev);
11682 	char new_name[IFNAMSIZ] = {};
11683 	int err, new_nsid;
11684 
11685 	ASSERT_RTNL();
11686 
11687 	/* Don't allow namespace local devices to be moved. */
11688 	err = -EINVAL;
11689 	if (dev->netns_local)
11690 		goto out;
11691 
11692 	/* Ensure the device has been registered */
11693 	if (dev->reg_state != NETREG_REGISTERED)
11694 		goto out;
11695 
11696 	/* Get out if there is nothing todo */
11697 	err = 0;
11698 	if (net_eq(net_old, net))
11699 		goto out;
11700 
11701 	/* Pick the destination device name, and ensure
11702 	 * we can use it in the destination network namespace.
11703 	 */
11704 	err = -EEXIST;
11705 	if (netdev_name_in_use(net, dev->name)) {
11706 		/* We get here if we can't use the current device name */
11707 		if (!pat)
11708 			goto out;
11709 		err = dev_prep_valid_name(net, dev, pat, new_name, EEXIST);
11710 		if (err < 0)
11711 			goto out;
11712 	}
11713 	/* Check that none of the altnames conflicts. */
11714 	err = -EEXIST;
11715 	netdev_for_each_altname(dev, name_node)
11716 		if (netdev_name_in_use(net, name_node->name))
11717 			goto out;
11718 
11719 	/* Check that new_ifindex isn't used yet. */
11720 	if (new_ifindex) {
11721 		err = dev_index_reserve(net, new_ifindex);
11722 		if (err < 0)
11723 			goto out;
11724 	} else {
11725 		/* If there is an ifindex conflict assign a new one */
11726 		err = dev_index_reserve(net, dev->ifindex);
11727 		if (err == -EBUSY)
11728 			err = dev_index_reserve(net, 0);
11729 		if (err < 0)
11730 			goto out;
11731 		new_ifindex = err;
11732 	}
11733 
11734 	/*
11735 	 * And now a mini version of register_netdevice unregister_netdevice.
11736 	 */
11737 
11738 	/* If device is running close it first. */
11739 	dev_close(dev);
11740 
11741 	/* And unlink it from device chain */
11742 	unlist_netdevice(dev);
11743 
11744 	synchronize_net();
11745 
11746 	/* Shutdown queueing discipline. */
11747 	dev_shutdown(dev);
11748 
11749 	/* Notify protocols, that we are about to destroy
11750 	 * this device. They should clean all the things.
11751 	 *
11752 	 * Note that dev->reg_state stays at NETREG_REGISTERED.
11753 	 * This is wanted because this way 8021q and macvlan know
11754 	 * the device is just moving and can keep their slaves up.
11755 	 */
11756 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11757 	rcu_barrier();
11758 
11759 	new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
11760 
11761 	rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
11762 			    new_ifindex);
11763 
11764 	/*
11765 	 *	Flush the unicast and multicast chains
11766 	 */
11767 	dev_uc_flush(dev);
11768 	dev_mc_flush(dev);
11769 
11770 	/* Send a netdev-removed uevent to the old namespace */
11771 	kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
11772 	netdev_adjacent_del_links(dev);
11773 
11774 	/* Move per-net netdevice notifiers that are following the netdevice */
11775 	move_netdevice_notifiers_dev_net(dev, net);
11776 
11777 	/* Actually switch the network namespace */
11778 	dev_net_set(dev, net);
11779 	dev->ifindex = new_ifindex;
11780 
11781 	if (new_name[0]) {
11782 		/* Rename the netdev to prepared name */
11783 		write_seqlock_bh(&netdev_rename_lock);
11784 		strscpy(dev->name, new_name, IFNAMSIZ);
11785 		write_sequnlock_bh(&netdev_rename_lock);
11786 	}
11787 
11788 	/* Fixup kobjects */
11789 	dev_set_uevent_suppress(&dev->dev, 1);
11790 	err = device_rename(&dev->dev, dev->name);
11791 	dev_set_uevent_suppress(&dev->dev, 0);
11792 	WARN_ON(err);
11793 
11794 	/* Send a netdev-add uevent to the new namespace */
11795 	kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
11796 	netdev_adjacent_add_links(dev);
11797 
11798 	/* Adapt owner in case owning user namespace of target network
11799 	 * namespace is different from the original one.
11800 	 */
11801 	err = netdev_change_owner(dev, net_old, net);
11802 	WARN_ON(err);
11803 
11804 	/* Add the device back in the hashes */
11805 	list_netdevice(dev);
11806 
11807 	/* Notify protocols, that a new device appeared. */
11808 	call_netdevice_notifiers(NETDEV_REGISTER, dev);
11809 
11810 	/*
11811 	 *	Prevent userspace races by waiting until the network
11812 	 *	device is fully setup before sending notifications.
11813 	 */
11814 	rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL);
11815 
11816 	synchronize_net();
11817 	err = 0;
11818 out:
11819 	return err;
11820 }
11821 EXPORT_SYMBOL_GPL(__dev_change_net_namespace);
11822 
11823 static int dev_cpu_dead(unsigned int oldcpu)
11824 {
11825 	struct sk_buff **list_skb;
11826 	struct sk_buff *skb;
11827 	unsigned int cpu;
11828 	struct softnet_data *sd, *oldsd, *remsd = NULL;
11829 
11830 	local_irq_disable();
11831 	cpu = smp_processor_id();
11832 	sd = &per_cpu(softnet_data, cpu);
11833 	oldsd = &per_cpu(softnet_data, oldcpu);
11834 
11835 	/* Find end of our completion_queue. */
11836 	list_skb = &sd->completion_queue;
11837 	while (*list_skb)
11838 		list_skb = &(*list_skb)->next;
11839 	/* Append completion queue from offline CPU. */
11840 	*list_skb = oldsd->completion_queue;
11841 	oldsd->completion_queue = NULL;
11842 
11843 	/* Append output queue from offline CPU. */
11844 	if (oldsd->output_queue) {
11845 		*sd->output_queue_tailp = oldsd->output_queue;
11846 		sd->output_queue_tailp = oldsd->output_queue_tailp;
11847 		oldsd->output_queue = NULL;
11848 		oldsd->output_queue_tailp = &oldsd->output_queue;
11849 	}
11850 	/* Append NAPI poll list from offline CPU, with one exception :
11851 	 * process_backlog() must be called by cpu owning percpu backlog.
11852 	 * We properly handle process_queue & input_pkt_queue later.
11853 	 */
11854 	while (!list_empty(&oldsd->poll_list)) {
11855 		struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
11856 							    struct napi_struct,
11857 							    poll_list);
11858 
11859 		list_del_init(&napi->poll_list);
11860 		if (napi->poll == process_backlog)
11861 			napi->state &= NAPIF_STATE_THREADED;
11862 		else
11863 			____napi_schedule(sd, napi);
11864 	}
11865 
11866 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
11867 	local_irq_enable();
11868 
11869 	if (!use_backlog_threads()) {
11870 #ifdef CONFIG_RPS
11871 		remsd = oldsd->rps_ipi_list;
11872 		oldsd->rps_ipi_list = NULL;
11873 #endif
11874 		/* send out pending IPI's on offline CPU */
11875 		net_rps_send_ipi(remsd);
11876 	}
11877 
11878 	/* Process offline CPU's input_pkt_queue */
11879 	while ((skb = __skb_dequeue(&oldsd->process_queue))) {
11880 		netif_rx(skb);
11881 		rps_input_queue_head_incr(oldsd);
11882 	}
11883 	while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
11884 		netif_rx(skb);
11885 		rps_input_queue_head_incr(oldsd);
11886 	}
11887 
11888 	return 0;
11889 }
11890 
11891 /**
11892  *	netdev_increment_features - increment feature set by one
11893  *	@all: current feature set
11894  *	@one: new feature set
11895  *	@mask: mask feature set
11896  *
11897  *	Computes a new feature set after adding a device with feature set
11898  *	@one to the master device with current feature set @all.  Will not
11899  *	enable anything that is off in @mask. Returns the new feature set.
11900  */
11901 netdev_features_t netdev_increment_features(netdev_features_t all,
11902 	netdev_features_t one, netdev_features_t mask)
11903 {
11904 	if (mask & NETIF_F_HW_CSUM)
11905 		mask |= NETIF_F_CSUM_MASK;
11906 	mask |= NETIF_F_VLAN_CHALLENGED;
11907 
11908 	all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
11909 	all &= one | ~NETIF_F_ALL_FOR_ALL;
11910 
11911 	/* If one device supports hw checksumming, set for all. */
11912 	if (all & NETIF_F_HW_CSUM)
11913 		all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
11914 
11915 	return all;
11916 }
11917 EXPORT_SYMBOL(netdev_increment_features);
11918 
11919 static struct hlist_head * __net_init netdev_create_hash(void)
11920 {
11921 	int i;
11922 	struct hlist_head *hash;
11923 
11924 	hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
11925 	if (hash != NULL)
11926 		for (i = 0; i < NETDEV_HASHENTRIES; i++)
11927 			INIT_HLIST_HEAD(&hash[i]);
11928 
11929 	return hash;
11930 }
11931 
11932 /* Initialize per network namespace state */
11933 static int __net_init netdev_init(struct net *net)
11934 {
11935 	BUILD_BUG_ON(GRO_HASH_BUCKETS >
11936 		     8 * sizeof_field(struct napi_struct, gro_bitmask));
11937 
11938 	INIT_LIST_HEAD(&net->dev_base_head);
11939 
11940 	net->dev_name_head = netdev_create_hash();
11941 	if (net->dev_name_head == NULL)
11942 		goto err_name;
11943 
11944 	net->dev_index_head = netdev_create_hash();
11945 	if (net->dev_index_head == NULL)
11946 		goto err_idx;
11947 
11948 	xa_init_flags(&net->dev_by_index, XA_FLAGS_ALLOC1);
11949 
11950 	RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
11951 
11952 	return 0;
11953 
11954 err_idx:
11955 	kfree(net->dev_name_head);
11956 err_name:
11957 	return -ENOMEM;
11958 }
11959 
11960 /**
11961  *	netdev_drivername - network driver for the device
11962  *	@dev: network device
11963  *
11964  *	Determine network driver for device.
11965  */
11966 const char *netdev_drivername(const struct net_device *dev)
11967 {
11968 	const struct device_driver *driver;
11969 	const struct device *parent;
11970 	const char *empty = "";
11971 
11972 	parent = dev->dev.parent;
11973 	if (!parent)
11974 		return empty;
11975 
11976 	driver = parent->driver;
11977 	if (driver && driver->name)
11978 		return driver->name;
11979 	return empty;
11980 }
11981 
11982 static void __netdev_printk(const char *level, const struct net_device *dev,
11983 			    struct va_format *vaf)
11984 {
11985 	if (dev && dev->dev.parent) {
11986 		dev_printk_emit(level[1] - '0',
11987 				dev->dev.parent,
11988 				"%s %s %s%s: %pV",
11989 				dev_driver_string(dev->dev.parent),
11990 				dev_name(dev->dev.parent),
11991 				netdev_name(dev), netdev_reg_state(dev),
11992 				vaf);
11993 	} else if (dev) {
11994 		printk("%s%s%s: %pV",
11995 		       level, netdev_name(dev), netdev_reg_state(dev), vaf);
11996 	} else {
11997 		printk("%s(NULL net_device): %pV", level, vaf);
11998 	}
11999 }
12000 
12001 void netdev_printk(const char *level, const struct net_device *dev,
12002 		   const char *format, ...)
12003 {
12004 	struct va_format vaf;
12005 	va_list args;
12006 
12007 	va_start(args, format);
12008 
12009 	vaf.fmt = format;
12010 	vaf.va = &args;
12011 
12012 	__netdev_printk(level, dev, &vaf);
12013 
12014 	va_end(args);
12015 }
12016 EXPORT_SYMBOL(netdev_printk);
12017 
12018 #define define_netdev_printk_level(func, level)			\
12019 void func(const struct net_device *dev, const char *fmt, ...)	\
12020 {								\
12021 	struct va_format vaf;					\
12022 	va_list args;						\
12023 								\
12024 	va_start(args, fmt);					\
12025 								\
12026 	vaf.fmt = fmt;						\
12027 	vaf.va = &args;						\
12028 								\
12029 	__netdev_printk(level, dev, &vaf);			\
12030 								\
12031 	va_end(args);						\
12032 }								\
12033 EXPORT_SYMBOL(func);
12034 
12035 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
12036 define_netdev_printk_level(netdev_alert, KERN_ALERT);
12037 define_netdev_printk_level(netdev_crit, KERN_CRIT);
12038 define_netdev_printk_level(netdev_err, KERN_ERR);
12039 define_netdev_printk_level(netdev_warn, KERN_WARNING);
12040 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
12041 define_netdev_printk_level(netdev_info, KERN_INFO);
12042 
12043 static void __net_exit netdev_exit(struct net *net)
12044 {
12045 	kfree(net->dev_name_head);
12046 	kfree(net->dev_index_head);
12047 	xa_destroy(&net->dev_by_index);
12048 	if (net != &init_net)
12049 		WARN_ON_ONCE(!list_empty(&net->dev_base_head));
12050 }
12051 
12052 static struct pernet_operations __net_initdata netdev_net_ops = {
12053 	.init = netdev_init,
12054 	.exit = netdev_exit,
12055 };
12056 
12057 static void __net_exit default_device_exit_net(struct net *net)
12058 {
12059 	struct netdev_name_node *name_node, *tmp;
12060 	struct net_device *dev, *aux;
12061 	/*
12062 	 * Push all migratable network devices back to the
12063 	 * initial network namespace
12064 	 */
12065 	ASSERT_RTNL();
12066 	for_each_netdev_safe(net, dev, aux) {
12067 		int err;
12068 		char fb_name[IFNAMSIZ];
12069 
12070 		/* Ignore unmoveable devices (i.e. loopback) */
12071 		if (dev->netns_local)
12072 			continue;
12073 
12074 		/* Leave virtual devices for the generic cleanup */
12075 		if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund)
12076 			continue;
12077 
12078 		/* Push remaining network devices to init_net */
12079 		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
12080 		if (netdev_name_in_use(&init_net, fb_name))
12081 			snprintf(fb_name, IFNAMSIZ, "dev%%d");
12082 
12083 		netdev_for_each_altname_safe(dev, name_node, tmp)
12084 			if (netdev_name_in_use(&init_net, name_node->name))
12085 				__netdev_name_node_alt_destroy(name_node);
12086 
12087 		err = dev_change_net_namespace(dev, &init_net, fb_name);
12088 		if (err) {
12089 			pr_emerg("%s: failed to move %s to init_net: %d\n",
12090 				 __func__, dev->name, err);
12091 			BUG();
12092 		}
12093 	}
12094 }
12095 
12096 static void __net_exit default_device_exit_batch(struct list_head *net_list)
12097 {
12098 	/* At exit all network devices most be removed from a network
12099 	 * namespace.  Do this in the reverse order of registration.
12100 	 * Do this across as many network namespaces as possible to
12101 	 * improve batching efficiency.
12102 	 */
12103 	struct net_device *dev;
12104 	struct net *net;
12105 	LIST_HEAD(dev_kill_list);
12106 
12107 	rtnl_lock();
12108 	list_for_each_entry(net, net_list, exit_list) {
12109 		default_device_exit_net(net);
12110 		cond_resched();
12111 	}
12112 
12113 	list_for_each_entry(net, net_list, exit_list) {
12114 		for_each_netdev_reverse(net, dev) {
12115 			if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
12116 				dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
12117 			else
12118 				unregister_netdevice_queue(dev, &dev_kill_list);
12119 		}
12120 	}
12121 	unregister_netdevice_many(&dev_kill_list);
12122 	rtnl_unlock();
12123 }
12124 
12125 static struct pernet_operations __net_initdata default_device_ops = {
12126 	.exit_batch = default_device_exit_batch,
12127 };
12128 
12129 static void __init net_dev_struct_check(void)
12130 {
12131 	/* TX read-mostly hotpath */
12132 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, priv_flags_fast);
12133 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, netdev_ops);
12134 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, header_ops);
12135 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, _tx);
12136 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, real_num_tx_queues);
12137 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_max_size);
12138 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_ipv4_max_size);
12139 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_max_segs);
12140 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_partial_features);
12141 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, num_tc);
12142 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, mtu);
12143 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, needed_headroom);
12144 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, tc_to_txq);
12145 #ifdef CONFIG_XPS
12146 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, xps_maps);
12147 #endif
12148 #ifdef CONFIG_NETFILTER_EGRESS
12149 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, nf_hooks_egress);
12150 #endif
12151 #ifdef CONFIG_NET_XGRESS
12152 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, tcx_egress);
12153 #endif
12154 	CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_tx, 160);
12155 
12156 	/* TXRX read-mostly hotpath */
12157 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, lstats);
12158 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, state);
12159 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, flags);
12160 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, hard_header_len);
12161 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, features);
12162 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, ip6_ptr);
12163 	CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_txrx, 46);
12164 
12165 	/* RX read-mostly hotpath */
12166 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, ptype_specific);
12167 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, ifindex);
12168 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, real_num_rx_queues);
12169 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, _rx);
12170 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_max_size);
12171 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_ipv4_max_size);
12172 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, rx_handler);
12173 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, rx_handler_data);
12174 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, nd_net);
12175 #ifdef CONFIG_NETPOLL
12176 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, npinfo);
12177 #endif
12178 #ifdef CONFIG_NET_XGRESS
12179 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, tcx_ingress);
12180 #endif
12181 	CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_rx, 92);
12182 }
12183 
12184 /*
12185  *	Initialize the DEV module. At boot time this walks the device list and
12186  *	unhooks any devices that fail to initialise (normally hardware not
12187  *	present) and leaves us with a valid list of present and active devices.
12188  *
12189  */
12190 
12191 /* We allocate 256 pages for each CPU if PAGE_SHIFT is 12 */
12192 #define SYSTEM_PERCPU_PAGE_POOL_SIZE	((1 << 20) / PAGE_SIZE)
12193 
12194 static int net_page_pool_create(int cpuid)
12195 {
12196 #if IS_ENABLED(CONFIG_PAGE_POOL)
12197 	struct page_pool_params page_pool_params = {
12198 		.pool_size = SYSTEM_PERCPU_PAGE_POOL_SIZE,
12199 		.flags = PP_FLAG_SYSTEM_POOL,
12200 		.nid = cpu_to_mem(cpuid),
12201 	};
12202 	struct page_pool *pp_ptr;
12203 	int err;
12204 
12205 	pp_ptr = page_pool_create_percpu(&page_pool_params, cpuid);
12206 	if (IS_ERR(pp_ptr))
12207 		return -ENOMEM;
12208 
12209 	err = xdp_reg_page_pool(pp_ptr);
12210 	if (err) {
12211 		page_pool_destroy(pp_ptr);
12212 		return err;
12213 	}
12214 
12215 	per_cpu(system_page_pool, cpuid) = pp_ptr;
12216 #endif
12217 	return 0;
12218 }
12219 
12220 static int backlog_napi_should_run(unsigned int cpu)
12221 {
12222 	struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu);
12223 	struct napi_struct *napi = &sd->backlog;
12224 
12225 	return test_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
12226 }
12227 
12228 static void run_backlog_napi(unsigned int cpu)
12229 {
12230 	struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu);
12231 
12232 	napi_threaded_poll_loop(&sd->backlog);
12233 }
12234 
12235 static void backlog_napi_setup(unsigned int cpu)
12236 {
12237 	struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu);
12238 	struct napi_struct *napi = &sd->backlog;
12239 
12240 	napi->thread = this_cpu_read(backlog_napi);
12241 	set_bit(NAPI_STATE_THREADED, &napi->state);
12242 }
12243 
12244 static struct smp_hotplug_thread backlog_threads = {
12245 	.store			= &backlog_napi,
12246 	.thread_should_run	= backlog_napi_should_run,
12247 	.thread_fn		= run_backlog_napi,
12248 	.thread_comm		= "backlog_napi/%u",
12249 	.setup			= backlog_napi_setup,
12250 };
12251 
12252 /*
12253  *       This is called single threaded during boot, so no need
12254  *       to take the rtnl semaphore.
12255  */
12256 static int __init net_dev_init(void)
12257 {
12258 	int i, rc = -ENOMEM;
12259 
12260 	BUG_ON(!dev_boot_phase);
12261 
12262 	net_dev_struct_check();
12263 
12264 	if (dev_proc_init())
12265 		goto out;
12266 
12267 	if (netdev_kobject_init())
12268 		goto out;
12269 
12270 	for (i = 0; i < PTYPE_HASH_SIZE; i++)
12271 		INIT_LIST_HEAD(&ptype_base[i]);
12272 
12273 	if (register_pernet_subsys(&netdev_net_ops))
12274 		goto out;
12275 
12276 	/*
12277 	 *	Initialise the packet receive queues.
12278 	 */
12279 
12280 	for_each_possible_cpu(i) {
12281 		struct work_struct *flush = per_cpu_ptr(&flush_works, i);
12282 		struct softnet_data *sd = &per_cpu(softnet_data, i);
12283 
12284 		INIT_WORK(flush, flush_backlog);
12285 
12286 		skb_queue_head_init(&sd->input_pkt_queue);
12287 		skb_queue_head_init(&sd->process_queue);
12288 #ifdef CONFIG_XFRM_OFFLOAD
12289 		skb_queue_head_init(&sd->xfrm_backlog);
12290 #endif
12291 		INIT_LIST_HEAD(&sd->poll_list);
12292 		sd->output_queue_tailp = &sd->output_queue;
12293 #ifdef CONFIG_RPS
12294 		INIT_CSD(&sd->csd, rps_trigger_softirq, sd);
12295 		sd->cpu = i;
12296 #endif
12297 		INIT_CSD(&sd->defer_csd, trigger_rx_softirq, sd);
12298 		spin_lock_init(&sd->defer_lock);
12299 
12300 		init_gro_hash(&sd->backlog);
12301 		sd->backlog.poll = process_backlog;
12302 		sd->backlog.weight = weight_p;
12303 		INIT_LIST_HEAD(&sd->backlog.poll_list);
12304 
12305 		if (net_page_pool_create(i))
12306 			goto out;
12307 	}
12308 	if (use_backlog_threads())
12309 		smpboot_register_percpu_thread(&backlog_threads);
12310 
12311 	dev_boot_phase = 0;
12312 
12313 	/* The loopback device is special if any other network devices
12314 	 * is present in a network namespace the loopback device must
12315 	 * be present. Since we now dynamically allocate and free the
12316 	 * loopback device ensure this invariant is maintained by
12317 	 * keeping the loopback device as the first device on the
12318 	 * list of network devices.  Ensuring the loopback devices
12319 	 * is the first device that appears and the last network device
12320 	 * that disappears.
12321 	 */
12322 	if (register_pernet_device(&loopback_net_ops))
12323 		goto out;
12324 
12325 	if (register_pernet_device(&default_device_ops))
12326 		goto out;
12327 
12328 	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
12329 	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
12330 
12331 	rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
12332 				       NULL, dev_cpu_dead);
12333 	WARN_ON(rc < 0);
12334 	rc = 0;
12335 
12336 	/* avoid static key IPIs to isolated CPUs */
12337 	if (housekeeping_enabled(HK_TYPE_MISC))
12338 		net_enable_timestamp();
12339 out:
12340 	if (rc < 0) {
12341 		for_each_possible_cpu(i) {
12342 			struct page_pool *pp_ptr;
12343 
12344 			pp_ptr = per_cpu(system_page_pool, i);
12345 			if (!pp_ptr)
12346 				continue;
12347 
12348 			xdp_unreg_page_pool(pp_ptr);
12349 			page_pool_destroy(pp_ptr);
12350 			per_cpu(system_page_pool, i) = NULL;
12351 		}
12352 	}
12353 
12354 	return rc;
12355 }
12356 
12357 subsys_initcall(net_dev_init);
12358