xref: /linux/net/core/dev.c (revision 7bb377107c72a40ab7505341f8626c8eb79a0cb7)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *      NET3    Protocol independent device support routines.
4  *
5  *	Derived from the non IP parts of dev.c 1.0.19
6  *              Authors:	Ross Biro
7  *				Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8  *				Mark Evans, <evansmp@uhura.aston.ac.uk>
9  *
10  *	Additional Authors:
11  *		Florian la Roche <rzsfl@rz.uni-sb.de>
12  *		Alan Cox <gw4pts@gw4pts.ampr.org>
13  *		David Hinds <dahinds@users.sourceforge.net>
14  *		Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15  *		Adam Sulmicki <adam@cfar.umd.edu>
16  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
17  *
18  *	Changes:
19  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
20  *                                      to 2 if register_netdev gets called
21  *                                      before net_dev_init & also removed a
22  *                                      few lines of code in the process.
23  *		Alan Cox	:	device private ioctl copies fields back.
24  *		Alan Cox	:	Transmit queue code does relevant
25  *					stunts to keep the queue safe.
26  *		Alan Cox	:	Fixed double lock.
27  *		Alan Cox	:	Fixed promisc NULL pointer trap
28  *		????????	:	Support the full private ioctl range
29  *		Alan Cox	:	Moved ioctl permission check into
30  *					drivers
31  *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
32  *		Alan Cox	:	100 backlog just doesn't cut it when
33  *					you start doing multicast video 8)
34  *		Alan Cox	:	Rewrote net_bh and list manager.
35  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
36  *		Alan Cox	:	Took out transmit every packet pass
37  *					Saved a few bytes in the ioctl handler
38  *		Alan Cox	:	Network driver sets packet type before
39  *					calling netif_rx. Saves a function
40  *					call a packet.
41  *		Alan Cox	:	Hashed net_bh()
42  *		Richard Kooijman:	Timestamp fixes.
43  *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
44  *		Alan Cox	:	Device lock protection.
45  *              Alan Cox        :       Fixed nasty side effect of device close
46  *					changes.
47  *		Rudi Cilibrasi	:	Pass the right thing to
48  *					set_mac_address()
49  *		Dave Miller	:	32bit quantity for the device lock to
50  *					make it work out on a Sparc.
51  *		Bjorn Ekwall	:	Added KERNELD hack.
52  *		Alan Cox	:	Cleaned up the backlog initialise.
53  *		Craig Metz	:	SIOCGIFCONF fix if space for under
54  *					1 device.
55  *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
56  *					is no device open function.
57  *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
58  *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
59  *		Cyrus Durgin	:	Cleaned for KMOD
60  *		Adam Sulmicki   :	Bug Fix : Network Device Unload
61  *					A network device unload needs to purge
62  *					the backlog queue.
63  *	Paul Rusty Russell	:	SIOCSIFNAME
64  *              Pekka Riikonen  :	Netdev boot-time settings code
65  *              Andrew Morton   :       Make unregister_netdevice wait
66  *                                      indefinitely on dev->refcnt
67  *              J Hadi Salim    :       - Backlog queue sampling
68  *				        - netif_rx() feedback
69  */
70 
71 #include <linux/uaccess.h>
72 #include <linux/bitops.h>
73 #include <linux/capability.h>
74 #include <linux/cpu.h>
75 #include <linux/types.h>
76 #include <linux/kernel.h>
77 #include <linux/hash.h>
78 #include <linux/slab.h>
79 #include <linux/sched.h>
80 #include <linux/sched/mm.h>
81 #include <linux/mutex.h>
82 #include <linux/string.h>
83 #include <linux/mm.h>
84 #include <linux/socket.h>
85 #include <linux/sockios.h>
86 #include <linux/errno.h>
87 #include <linux/interrupt.h>
88 #include <linux/if_ether.h>
89 #include <linux/netdevice.h>
90 #include <linux/etherdevice.h>
91 #include <linux/ethtool.h>
92 #include <linux/skbuff.h>
93 #include <linux/bpf.h>
94 #include <linux/bpf_trace.h>
95 #include <net/net_namespace.h>
96 #include <net/sock.h>
97 #include <net/busy_poll.h>
98 #include <linux/rtnetlink.h>
99 #include <linux/stat.h>
100 #include <net/dst.h>
101 #include <net/dst_metadata.h>
102 #include <net/pkt_sched.h>
103 #include <net/pkt_cls.h>
104 #include <net/checksum.h>
105 #include <net/xfrm.h>
106 #include <linux/highmem.h>
107 #include <linux/init.h>
108 #include <linux/module.h>
109 #include <linux/netpoll.h>
110 #include <linux/rcupdate.h>
111 #include <linux/delay.h>
112 #include <net/iw_handler.h>
113 #include <asm/current.h>
114 #include <linux/audit.h>
115 #include <linux/dmaengine.h>
116 #include <linux/err.h>
117 #include <linux/ctype.h>
118 #include <linux/if_arp.h>
119 #include <linux/if_vlan.h>
120 #include <linux/ip.h>
121 #include <net/ip.h>
122 #include <net/mpls.h>
123 #include <linux/ipv6.h>
124 #include <linux/in.h>
125 #include <linux/jhash.h>
126 #include <linux/random.h>
127 #include <trace/events/napi.h>
128 #include <trace/events/net.h>
129 #include <trace/events/skb.h>
130 #include <linux/inetdevice.h>
131 #include <linux/cpu_rmap.h>
132 #include <linux/static_key.h>
133 #include <linux/hashtable.h>
134 #include <linux/vmalloc.h>
135 #include <linux/if_macvlan.h>
136 #include <linux/errqueue.h>
137 #include <linux/hrtimer.h>
138 #include <linux/netfilter_ingress.h>
139 #include <linux/crash_dump.h>
140 #include <linux/sctp.h>
141 #include <net/udp_tunnel.h>
142 #include <linux/net_namespace.h>
143 #include <linux/indirect_call_wrapper.h>
144 #include <net/devlink.h>
145 
146 #include "net-sysfs.h"
147 
148 #define MAX_GRO_SKBS 8
149 
150 /* This should be increased if a protocol with a bigger head is added. */
151 #define GRO_MAX_HEAD (MAX_HEADER + 128)
152 
153 static DEFINE_SPINLOCK(ptype_lock);
154 static DEFINE_SPINLOCK(offload_lock);
155 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
156 struct list_head ptype_all __read_mostly;	/* Taps */
157 static struct list_head offload_base __read_mostly;
158 
159 static int netif_rx_internal(struct sk_buff *skb);
160 static int call_netdevice_notifiers_info(unsigned long val,
161 					 struct netdev_notifier_info *info);
162 static int call_netdevice_notifiers_extack(unsigned long val,
163 					   struct net_device *dev,
164 					   struct netlink_ext_ack *extack);
165 static struct napi_struct *napi_by_id(unsigned int napi_id);
166 
167 /*
168  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
169  * semaphore.
170  *
171  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
172  *
173  * Writers must hold the rtnl semaphore while they loop through the
174  * dev_base_head list, and hold dev_base_lock for writing when they do the
175  * actual updates.  This allows pure readers to access the list even
176  * while a writer is preparing to update it.
177  *
178  * To put it another way, dev_base_lock is held for writing only to
179  * protect against pure readers; the rtnl semaphore provides the
180  * protection against other writers.
181  *
182  * See, for example usages, register_netdevice() and
183  * unregister_netdevice(), which must be called with the rtnl
184  * semaphore held.
185  */
186 DEFINE_RWLOCK(dev_base_lock);
187 EXPORT_SYMBOL(dev_base_lock);
188 
189 static DEFINE_MUTEX(ifalias_mutex);
190 
191 /* protects napi_hash addition/deletion and napi_gen_id */
192 static DEFINE_SPINLOCK(napi_hash_lock);
193 
194 static unsigned int napi_gen_id = NR_CPUS;
195 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
196 
197 static seqcount_t devnet_rename_seq;
198 
199 static inline void dev_base_seq_inc(struct net *net)
200 {
201 	while (++net->dev_base_seq == 0)
202 		;
203 }
204 
205 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
206 {
207 	unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
208 
209 	return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
210 }
211 
212 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
213 {
214 	return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
215 }
216 
217 static inline void rps_lock(struct softnet_data *sd)
218 {
219 #ifdef CONFIG_RPS
220 	spin_lock(&sd->input_pkt_queue.lock);
221 #endif
222 }
223 
224 static inline void rps_unlock(struct softnet_data *sd)
225 {
226 #ifdef CONFIG_RPS
227 	spin_unlock(&sd->input_pkt_queue.lock);
228 #endif
229 }
230 
231 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
232 						       const char *name)
233 {
234 	struct netdev_name_node *name_node;
235 
236 	name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
237 	if (!name_node)
238 		return NULL;
239 	INIT_HLIST_NODE(&name_node->hlist);
240 	name_node->dev = dev;
241 	name_node->name = name;
242 	return name_node;
243 }
244 
245 static struct netdev_name_node *
246 netdev_name_node_head_alloc(struct net_device *dev)
247 {
248 	struct netdev_name_node *name_node;
249 
250 	name_node = netdev_name_node_alloc(dev, dev->name);
251 	if (!name_node)
252 		return NULL;
253 	INIT_LIST_HEAD(&name_node->list);
254 	return name_node;
255 }
256 
257 static void netdev_name_node_free(struct netdev_name_node *name_node)
258 {
259 	kfree(name_node);
260 }
261 
262 static void netdev_name_node_add(struct net *net,
263 				 struct netdev_name_node *name_node)
264 {
265 	hlist_add_head_rcu(&name_node->hlist,
266 			   dev_name_hash(net, name_node->name));
267 }
268 
269 static void netdev_name_node_del(struct netdev_name_node *name_node)
270 {
271 	hlist_del_rcu(&name_node->hlist);
272 }
273 
274 static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
275 							const char *name)
276 {
277 	struct hlist_head *head = dev_name_hash(net, name);
278 	struct netdev_name_node *name_node;
279 
280 	hlist_for_each_entry(name_node, head, hlist)
281 		if (!strcmp(name_node->name, name))
282 			return name_node;
283 	return NULL;
284 }
285 
286 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
287 							    const char *name)
288 {
289 	struct hlist_head *head = dev_name_hash(net, name);
290 	struct netdev_name_node *name_node;
291 
292 	hlist_for_each_entry_rcu(name_node, head, hlist)
293 		if (!strcmp(name_node->name, name))
294 			return name_node;
295 	return NULL;
296 }
297 
298 int netdev_name_node_alt_create(struct net_device *dev, const char *name)
299 {
300 	struct netdev_name_node *name_node;
301 	struct net *net = dev_net(dev);
302 
303 	name_node = netdev_name_node_lookup(net, name);
304 	if (name_node)
305 		return -EEXIST;
306 	name_node = netdev_name_node_alloc(dev, name);
307 	if (!name_node)
308 		return -ENOMEM;
309 	netdev_name_node_add(net, name_node);
310 	/* The node that holds dev->name acts as a head of per-device list. */
311 	list_add_tail(&name_node->list, &dev->name_node->list);
312 
313 	return 0;
314 }
315 EXPORT_SYMBOL(netdev_name_node_alt_create);
316 
317 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
318 {
319 	list_del(&name_node->list);
320 	netdev_name_node_del(name_node);
321 	kfree(name_node->name);
322 	netdev_name_node_free(name_node);
323 }
324 
325 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
326 {
327 	struct netdev_name_node *name_node;
328 	struct net *net = dev_net(dev);
329 
330 	name_node = netdev_name_node_lookup(net, name);
331 	if (!name_node)
332 		return -ENOENT;
333 	/* lookup might have found our primary name or a name belonging
334 	 * to another device.
335 	 */
336 	if (name_node == dev->name_node || name_node->dev != dev)
337 		return -EINVAL;
338 
339 	__netdev_name_node_alt_destroy(name_node);
340 
341 	return 0;
342 }
343 EXPORT_SYMBOL(netdev_name_node_alt_destroy);
344 
345 static void netdev_name_node_alt_flush(struct net_device *dev)
346 {
347 	struct netdev_name_node *name_node, *tmp;
348 
349 	list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list)
350 		__netdev_name_node_alt_destroy(name_node);
351 }
352 
353 /* Device list insertion */
354 static void list_netdevice(struct net_device *dev)
355 {
356 	struct net *net = dev_net(dev);
357 
358 	ASSERT_RTNL();
359 
360 	write_lock_bh(&dev_base_lock);
361 	list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
362 	netdev_name_node_add(net, dev->name_node);
363 	hlist_add_head_rcu(&dev->index_hlist,
364 			   dev_index_hash(net, dev->ifindex));
365 	write_unlock_bh(&dev_base_lock);
366 
367 	dev_base_seq_inc(net);
368 }
369 
370 /* Device list removal
371  * caller must respect a RCU grace period before freeing/reusing dev
372  */
373 static void unlist_netdevice(struct net_device *dev)
374 {
375 	ASSERT_RTNL();
376 
377 	/* Unlink dev from the device chain */
378 	write_lock_bh(&dev_base_lock);
379 	list_del_rcu(&dev->dev_list);
380 	netdev_name_node_del(dev->name_node);
381 	hlist_del_rcu(&dev->index_hlist);
382 	write_unlock_bh(&dev_base_lock);
383 
384 	dev_base_seq_inc(dev_net(dev));
385 }
386 
387 /*
388  *	Our notifier list
389  */
390 
391 static RAW_NOTIFIER_HEAD(netdev_chain);
392 
393 /*
394  *	Device drivers call our routines to queue packets here. We empty the
395  *	queue in the local softnet handler.
396  */
397 
398 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
399 EXPORT_PER_CPU_SYMBOL(softnet_data);
400 
401 #ifdef CONFIG_LOCKDEP
402 /*
403  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
404  * according to dev->type
405  */
406 static const unsigned short netdev_lock_type[] = {
407 	 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
408 	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
409 	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
410 	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
411 	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
412 	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
413 	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
414 	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
415 	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
416 	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
417 	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
418 	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
419 	 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
420 	 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
421 	 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
422 
423 static const char *const netdev_lock_name[] = {
424 	"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
425 	"_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
426 	"_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
427 	"_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
428 	"_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
429 	"_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
430 	"_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
431 	"_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
432 	"_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
433 	"_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
434 	"_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
435 	"_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
436 	"_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
437 	"_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
438 	"_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
439 
440 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
441 
442 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
443 {
444 	int i;
445 
446 	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
447 		if (netdev_lock_type[i] == dev_type)
448 			return i;
449 	/* the last key is used by default */
450 	return ARRAY_SIZE(netdev_lock_type) - 1;
451 }
452 
453 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
454 						 unsigned short dev_type)
455 {
456 	int i;
457 
458 	i = netdev_lock_pos(dev_type);
459 	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
460 				   netdev_lock_name[i]);
461 }
462 #else
463 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
464 						 unsigned short dev_type)
465 {
466 }
467 #endif
468 
469 /*******************************************************************************
470  *
471  *		Protocol management and registration routines
472  *
473  *******************************************************************************/
474 
475 
476 /*
477  *	Add a protocol ID to the list. Now that the input handler is
478  *	smarter we can dispense with all the messy stuff that used to be
479  *	here.
480  *
481  *	BEWARE!!! Protocol handlers, mangling input packets,
482  *	MUST BE last in hash buckets and checking protocol handlers
483  *	MUST start from promiscuous ptype_all chain in net_bh.
484  *	It is true now, do not change it.
485  *	Explanation follows: if protocol handler, mangling packet, will
486  *	be the first on list, it is not able to sense, that packet
487  *	is cloned and should be copied-on-write, so that it will
488  *	change it and subsequent readers will get broken packet.
489  *							--ANK (980803)
490  */
491 
492 static inline struct list_head *ptype_head(const struct packet_type *pt)
493 {
494 	if (pt->type == htons(ETH_P_ALL))
495 		return pt->dev ? &pt->dev->ptype_all : &ptype_all;
496 	else
497 		return pt->dev ? &pt->dev->ptype_specific :
498 				 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
499 }
500 
501 /**
502  *	dev_add_pack - add packet handler
503  *	@pt: packet type declaration
504  *
505  *	Add a protocol handler to the networking stack. The passed &packet_type
506  *	is linked into kernel lists and may not be freed until it has been
507  *	removed from the kernel lists.
508  *
509  *	This call does not sleep therefore it can not
510  *	guarantee all CPU's that are in middle of receiving packets
511  *	will see the new packet type (until the next received packet).
512  */
513 
514 void dev_add_pack(struct packet_type *pt)
515 {
516 	struct list_head *head = ptype_head(pt);
517 
518 	spin_lock(&ptype_lock);
519 	list_add_rcu(&pt->list, head);
520 	spin_unlock(&ptype_lock);
521 }
522 EXPORT_SYMBOL(dev_add_pack);
523 
524 /**
525  *	__dev_remove_pack	 - remove packet handler
526  *	@pt: packet type declaration
527  *
528  *	Remove a protocol handler that was previously added to the kernel
529  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
530  *	from the kernel lists and can be freed or reused once this function
531  *	returns.
532  *
533  *      The packet type might still be in use by receivers
534  *	and must not be freed until after all the CPU's have gone
535  *	through a quiescent state.
536  */
537 void __dev_remove_pack(struct packet_type *pt)
538 {
539 	struct list_head *head = ptype_head(pt);
540 	struct packet_type *pt1;
541 
542 	spin_lock(&ptype_lock);
543 
544 	list_for_each_entry(pt1, head, list) {
545 		if (pt == pt1) {
546 			list_del_rcu(&pt->list);
547 			goto out;
548 		}
549 	}
550 
551 	pr_warn("dev_remove_pack: %p not found\n", pt);
552 out:
553 	spin_unlock(&ptype_lock);
554 }
555 EXPORT_SYMBOL(__dev_remove_pack);
556 
557 /**
558  *	dev_remove_pack	 - remove packet handler
559  *	@pt: packet type declaration
560  *
561  *	Remove a protocol handler that was previously added to the kernel
562  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
563  *	from the kernel lists and can be freed or reused once this function
564  *	returns.
565  *
566  *	This call sleeps to guarantee that no CPU is looking at the packet
567  *	type after return.
568  */
569 void dev_remove_pack(struct packet_type *pt)
570 {
571 	__dev_remove_pack(pt);
572 
573 	synchronize_net();
574 }
575 EXPORT_SYMBOL(dev_remove_pack);
576 
577 
578 /**
579  *	dev_add_offload - register offload handlers
580  *	@po: protocol offload declaration
581  *
582  *	Add protocol offload handlers to the networking stack. The passed
583  *	&proto_offload is linked into kernel lists and may not be freed until
584  *	it has been removed from the kernel lists.
585  *
586  *	This call does not sleep therefore it can not
587  *	guarantee all CPU's that are in middle of receiving packets
588  *	will see the new offload handlers (until the next received packet).
589  */
590 void dev_add_offload(struct packet_offload *po)
591 {
592 	struct packet_offload *elem;
593 
594 	spin_lock(&offload_lock);
595 	list_for_each_entry(elem, &offload_base, list) {
596 		if (po->priority < elem->priority)
597 			break;
598 	}
599 	list_add_rcu(&po->list, elem->list.prev);
600 	spin_unlock(&offload_lock);
601 }
602 EXPORT_SYMBOL(dev_add_offload);
603 
604 /**
605  *	__dev_remove_offload	 - remove offload handler
606  *	@po: packet offload declaration
607  *
608  *	Remove a protocol offload handler that was previously added to the
609  *	kernel offload handlers by dev_add_offload(). The passed &offload_type
610  *	is removed from the kernel lists and can be freed or reused once this
611  *	function returns.
612  *
613  *      The packet type might still be in use by receivers
614  *	and must not be freed until after all the CPU's have gone
615  *	through a quiescent state.
616  */
617 static void __dev_remove_offload(struct packet_offload *po)
618 {
619 	struct list_head *head = &offload_base;
620 	struct packet_offload *po1;
621 
622 	spin_lock(&offload_lock);
623 
624 	list_for_each_entry(po1, head, list) {
625 		if (po == po1) {
626 			list_del_rcu(&po->list);
627 			goto out;
628 		}
629 	}
630 
631 	pr_warn("dev_remove_offload: %p not found\n", po);
632 out:
633 	spin_unlock(&offload_lock);
634 }
635 
636 /**
637  *	dev_remove_offload	 - remove packet offload handler
638  *	@po: packet offload declaration
639  *
640  *	Remove a packet offload handler that was previously added to the kernel
641  *	offload handlers by dev_add_offload(). The passed &offload_type is
642  *	removed from the kernel lists and can be freed or reused once this
643  *	function returns.
644  *
645  *	This call sleeps to guarantee that no CPU is looking at the packet
646  *	type after return.
647  */
648 void dev_remove_offload(struct packet_offload *po)
649 {
650 	__dev_remove_offload(po);
651 
652 	synchronize_net();
653 }
654 EXPORT_SYMBOL(dev_remove_offload);
655 
656 /******************************************************************************
657  *
658  *		      Device Boot-time Settings Routines
659  *
660  ******************************************************************************/
661 
662 /* Boot time configuration table */
663 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
664 
665 /**
666  *	netdev_boot_setup_add	- add new setup entry
667  *	@name: name of the device
668  *	@map: configured settings for the device
669  *
670  *	Adds new setup entry to the dev_boot_setup list.  The function
671  *	returns 0 on error and 1 on success.  This is a generic routine to
672  *	all netdevices.
673  */
674 static int netdev_boot_setup_add(char *name, struct ifmap *map)
675 {
676 	struct netdev_boot_setup *s;
677 	int i;
678 
679 	s = dev_boot_setup;
680 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
681 		if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
682 			memset(s[i].name, 0, sizeof(s[i].name));
683 			strlcpy(s[i].name, name, IFNAMSIZ);
684 			memcpy(&s[i].map, map, sizeof(s[i].map));
685 			break;
686 		}
687 	}
688 
689 	return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
690 }
691 
692 /**
693  * netdev_boot_setup_check	- check boot time settings
694  * @dev: the netdevice
695  *
696  * Check boot time settings for the device.
697  * The found settings are set for the device to be used
698  * later in the device probing.
699  * Returns 0 if no settings found, 1 if they are.
700  */
701 int netdev_boot_setup_check(struct net_device *dev)
702 {
703 	struct netdev_boot_setup *s = dev_boot_setup;
704 	int i;
705 
706 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
707 		if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
708 		    !strcmp(dev->name, s[i].name)) {
709 			dev->irq = s[i].map.irq;
710 			dev->base_addr = s[i].map.base_addr;
711 			dev->mem_start = s[i].map.mem_start;
712 			dev->mem_end = s[i].map.mem_end;
713 			return 1;
714 		}
715 	}
716 	return 0;
717 }
718 EXPORT_SYMBOL(netdev_boot_setup_check);
719 
720 
721 /**
722  * netdev_boot_base	- get address from boot time settings
723  * @prefix: prefix for network device
724  * @unit: id for network device
725  *
726  * Check boot time settings for the base address of device.
727  * The found settings are set for the device to be used
728  * later in the device probing.
729  * Returns 0 if no settings found.
730  */
731 unsigned long netdev_boot_base(const char *prefix, int unit)
732 {
733 	const struct netdev_boot_setup *s = dev_boot_setup;
734 	char name[IFNAMSIZ];
735 	int i;
736 
737 	sprintf(name, "%s%d", prefix, unit);
738 
739 	/*
740 	 * If device already registered then return base of 1
741 	 * to indicate not to probe for this interface
742 	 */
743 	if (__dev_get_by_name(&init_net, name))
744 		return 1;
745 
746 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
747 		if (!strcmp(name, s[i].name))
748 			return s[i].map.base_addr;
749 	return 0;
750 }
751 
752 /*
753  * Saves at boot time configured settings for any netdevice.
754  */
755 int __init netdev_boot_setup(char *str)
756 {
757 	int ints[5];
758 	struct ifmap map;
759 
760 	str = get_options(str, ARRAY_SIZE(ints), ints);
761 	if (!str || !*str)
762 		return 0;
763 
764 	/* Save settings */
765 	memset(&map, 0, sizeof(map));
766 	if (ints[0] > 0)
767 		map.irq = ints[1];
768 	if (ints[0] > 1)
769 		map.base_addr = ints[2];
770 	if (ints[0] > 2)
771 		map.mem_start = ints[3];
772 	if (ints[0] > 3)
773 		map.mem_end = ints[4];
774 
775 	/* Add new entry to the list */
776 	return netdev_boot_setup_add(str, &map);
777 }
778 
779 __setup("netdev=", netdev_boot_setup);
780 
781 /*******************************************************************************
782  *
783  *			    Device Interface Subroutines
784  *
785  *******************************************************************************/
786 
787 /**
788  *	dev_get_iflink	- get 'iflink' value of a interface
789  *	@dev: targeted interface
790  *
791  *	Indicates the ifindex the interface is linked to.
792  *	Physical interfaces have the same 'ifindex' and 'iflink' values.
793  */
794 
795 int dev_get_iflink(const struct net_device *dev)
796 {
797 	if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
798 		return dev->netdev_ops->ndo_get_iflink(dev);
799 
800 	return dev->ifindex;
801 }
802 EXPORT_SYMBOL(dev_get_iflink);
803 
804 /**
805  *	dev_fill_metadata_dst - Retrieve tunnel egress information.
806  *	@dev: targeted interface
807  *	@skb: The packet.
808  *
809  *	For better visibility of tunnel traffic OVS needs to retrieve
810  *	egress tunnel information for a packet. Following API allows
811  *	user to get this info.
812  */
813 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
814 {
815 	struct ip_tunnel_info *info;
816 
817 	if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
818 		return -EINVAL;
819 
820 	info = skb_tunnel_info_unclone(skb);
821 	if (!info)
822 		return -ENOMEM;
823 	if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
824 		return -EINVAL;
825 
826 	return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
827 }
828 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
829 
830 /**
831  *	__dev_get_by_name	- find a device by its name
832  *	@net: the applicable net namespace
833  *	@name: name to find
834  *
835  *	Find an interface by name. Must be called under RTNL semaphore
836  *	or @dev_base_lock. If the name is found a pointer to the device
837  *	is returned. If the name is not found then %NULL is returned. The
838  *	reference counters are not incremented so the caller must be
839  *	careful with locks.
840  */
841 
842 struct net_device *__dev_get_by_name(struct net *net, const char *name)
843 {
844 	struct netdev_name_node *node_name;
845 
846 	node_name = netdev_name_node_lookup(net, name);
847 	return node_name ? node_name->dev : NULL;
848 }
849 EXPORT_SYMBOL(__dev_get_by_name);
850 
851 /**
852  * dev_get_by_name_rcu	- find a device by its name
853  * @net: the applicable net namespace
854  * @name: name to find
855  *
856  * Find an interface by name.
857  * If the name is found a pointer to the device is returned.
858  * If the name is not found then %NULL is returned.
859  * The reference counters are not incremented so the caller must be
860  * careful with locks. The caller must hold RCU lock.
861  */
862 
863 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
864 {
865 	struct netdev_name_node *node_name;
866 
867 	node_name = netdev_name_node_lookup_rcu(net, name);
868 	return node_name ? node_name->dev : NULL;
869 }
870 EXPORT_SYMBOL(dev_get_by_name_rcu);
871 
872 /**
873  *	dev_get_by_name		- find a device by its name
874  *	@net: the applicable net namespace
875  *	@name: name to find
876  *
877  *	Find an interface by name. This can be called from any
878  *	context and does its own locking. The returned handle has
879  *	the usage count incremented and the caller must use dev_put() to
880  *	release it when it is no longer needed. %NULL is returned if no
881  *	matching device is found.
882  */
883 
884 struct net_device *dev_get_by_name(struct net *net, const char *name)
885 {
886 	struct net_device *dev;
887 
888 	rcu_read_lock();
889 	dev = dev_get_by_name_rcu(net, name);
890 	if (dev)
891 		dev_hold(dev);
892 	rcu_read_unlock();
893 	return dev;
894 }
895 EXPORT_SYMBOL(dev_get_by_name);
896 
897 /**
898  *	__dev_get_by_index - find a device by its ifindex
899  *	@net: the applicable net namespace
900  *	@ifindex: index of device
901  *
902  *	Search for an interface by index. Returns %NULL if the device
903  *	is not found or a pointer to the device. The device has not
904  *	had its reference counter increased so the caller must be careful
905  *	about locking. The caller must hold either the RTNL semaphore
906  *	or @dev_base_lock.
907  */
908 
909 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
910 {
911 	struct net_device *dev;
912 	struct hlist_head *head = dev_index_hash(net, ifindex);
913 
914 	hlist_for_each_entry(dev, head, index_hlist)
915 		if (dev->ifindex == ifindex)
916 			return dev;
917 
918 	return NULL;
919 }
920 EXPORT_SYMBOL(__dev_get_by_index);
921 
922 /**
923  *	dev_get_by_index_rcu - find a device by its ifindex
924  *	@net: the applicable net namespace
925  *	@ifindex: index of device
926  *
927  *	Search for an interface by index. Returns %NULL if the device
928  *	is not found or a pointer to the device. The device has not
929  *	had its reference counter increased so the caller must be careful
930  *	about locking. The caller must hold RCU lock.
931  */
932 
933 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
934 {
935 	struct net_device *dev;
936 	struct hlist_head *head = dev_index_hash(net, ifindex);
937 
938 	hlist_for_each_entry_rcu(dev, head, index_hlist)
939 		if (dev->ifindex == ifindex)
940 			return dev;
941 
942 	return NULL;
943 }
944 EXPORT_SYMBOL(dev_get_by_index_rcu);
945 
946 
947 /**
948  *	dev_get_by_index - find a device by its ifindex
949  *	@net: the applicable net namespace
950  *	@ifindex: index of device
951  *
952  *	Search for an interface by index. Returns NULL if the device
953  *	is not found or a pointer to the device. The device returned has
954  *	had a reference added and the pointer is safe until the user calls
955  *	dev_put to indicate they have finished with it.
956  */
957 
958 struct net_device *dev_get_by_index(struct net *net, int ifindex)
959 {
960 	struct net_device *dev;
961 
962 	rcu_read_lock();
963 	dev = dev_get_by_index_rcu(net, ifindex);
964 	if (dev)
965 		dev_hold(dev);
966 	rcu_read_unlock();
967 	return dev;
968 }
969 EXPORT_SYMBOL(dev_get_by_index);
970 
971 /**
972  *	dev_get_by_napi_id - find a device by napi_id
973  *	@napi_id: ID of the NAPI struct
974  *
975  *	Search for an interface by NAPI ID. Returns %NULL if the device
976  *	is not found or a pointer to the device. The device has not had
977  *	its reference counter increased so the caller must be careful
978  *	about locking. The caller must hold RCU lock.
979  */
980 
981 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
982 {
983 	struct napi_struct *napi;
984 
985 	WARN_ON_ONCE(!rcu_read_lock_held());
986 
987 	if (napi_id < MIN_NAPI_ID)
988 		return NULL;
989 
990 	napi = napi_by_id(napi_id);
991 
992 	return napi ? napi->dev : NULL;
993 }
994 EXPORT_SYMBOL(dev_get_by_napi_id);
995 
996 /**
997  *	netdev_get_name - get a netdevice name, knowing its ifindex.
998  *	@net: network namespace
999  *	@name: a pointer to the buffer where the name will be stored.
1000  *	@ifindex: the ifindex of the interface to get the name from.
1001  *
1002  *	The use of raw_seqcount_begin() and cond_resched() before
1003  *	retrying is required as we want to give the writers a chance
1004  *	to complete when CONFIG_PREEMPTION is not set.
1005  */
1006 int netdev_get_name(struct net *net, char *name, int ifindex)
1007 {
1008 	struct net_device *dev;
1009 	unsigned int seq;
1010 
1011 retry:
1012 	seq = raw_seqcount_begin(&devnet_rename_seq);
1013 	rcu_read_lock();
1014 	dev = dev_get_by_index_rcu(net, ifindex);
1015 	if (!dev) {
1016 		rcu_read_unlock();
1017 		return -ENODEV;
1018 	}
1019 
1020 	strcpy(name, dev->name);
1021 	rcu_read_unlock();
1022 	if (read_seqcount_retry(&devnet_rename_seq, seq)) {
1023 		cond_resched();
1024 		goto retry;
1025 	}
1026 
1027 	return 0;
1028 }
1029 
1030 /**
1031  *	dev_getbyhwaddr_rcu - find a device by its hardware address
1032  *	@net: the applicable net namespace
1033  *	@type: media type of device
1034  *	@ha: hardware address
1035  *
1036  *	Search for an interface by MAC address. Returns NULL if the device
1037  *	is not found or a pointer to the device.
1038  *	The caller must hold RCU or RTNL.
1039  *	The returned device has not had its ref count increased
1040  *	and the caller must therefore be careful about locking
1041  *
1042  */
1043 
1044 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
1045 				       const char *ha)
1046 {
1047 	struct net_device *dev;
1048 
1049 	for_each_netdev_rcu(net, dev)
1050 		if (dev->type == type &&
1051 		    !memcmp(dev->dev_addr, ha, dev->addr_len))
1052 			return dev;
1053 
1054 	return NULL;
1055 }
1056 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
1057 
1058 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
1059 {
1060 	struct net_device *dev;
1061 
1062 	ASSERT_RTNL();
1063 	for_each_netdev(net, dev)
1064 		if (dev->type == type)
1065 			return dev;
1066 
1067 	return NULL;
1068 }
1069 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
1070 
1071 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
1072 {
1073 	struct net_device *dev, *ret = NULL;
1074 
1075 	rcu_read_lock();
1076 	for_each_netdev_rcu(net, dev)
1077 		if (dev->type == type) {
1078 			dev_hold(dev);
1079 			ret = dev;
1080 			break;
1081 		}
1082 	rcu_read_unlock();
1083 	return ret;
1084 }
1085 EXPORT_SYMBOL(dev_getfirstbyhwtype);
1086 
1087 /**
1088  *	__dev_get_by_flags - find any device with given flags
1089  *	@net: the applicable net namespace
1090  *	@if_flags: IFF_* values
1091  *	@mask: bitmask of bits in if_flags to check
1092  *
1093  *	Search for any interface with the given flags. Returns NULL if a device
1094  *	is not found or a pointer to the device. Must be called inside
1095  *	rtnl_lock(), and result refcount is unchanged.
1096  */
1097 
1098 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1099 				      unsigned short mask)
1100 {
1101 	struct net_device *dev, *ret;
1102 
1103 	ASSERT_RTNL();
1104 
1105 	ret = NULL;
1106 	for_each_netdev(net, dev) {
1107 		if (((dev->flags ^ if_flags) & mask) == 0) {
1108 			ret = dev;
1109 			break;
1110 		}
1111 	}
1112 	return ret;
1113 }
1114 EXPORT_SYMBOL(__dev_get_by_flags);
1115 
1116 /**
1117  *	dev_valid_name - check if name is okay for network device
1118  *	@name: name string
1119  *
1120  *	Network device names need to be valid file names to
1121  *	to allow sysfs to work.  We also disallow any kind of
1122  *	whitespace.
1123  */
1124 bool dev_valid_name(const char *name)
1125 {
1126 	if (*name == '\0')
1127 		return false;
1128 	if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1129 		return false;
1130 	if (!strcmp(name, ".") || !strcmp(name, ".."))
1131 		return false;
1132 
1133 	while (*name) {
1134 		if (*name == '/' || *name == ':' || isspace(*name))
1135 			return false;
1136 		name++;
1137 	}
1138 	return true;
1139 }
1140 EXPORT_SYMBOL(dev_valid_name);
1141 
1142 /**
1143  *	__dev_alloc_name - allocate a name for a device
1144  *	@net: network namespace to allocate the device name in
1145  *	@name: name format string
1146  *	@buf:  scratch buffer and result name string
1147  *
1148  *	Passed a format string - eg "lt%d" it will try and find a suitable
1149  *	id. It scans list of devices to build up a free map, then chooses
1150  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1151  *	while allocating the name and adding the device in order to avoid
1152  *	duplicates.
1153  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1154  *	Returns the number of the unit assigned or a negative errno code.
1155  */
1156 
1157 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1158 {
1159 	int i = 0;
1160 	const char *p;
1161 	const int max_netdevices = 8*PAGE_SIZE;
1162 	unsigned long *inuse;
1163 	struct net_device *d;
1164 
1165 	if (!dev_valid_name(name))
1166 		return -EINVAL;
1167 
1168 	p = strchr(name, '%');
1169 	if (p) {
1170 		/*
1171 		 * Verify the string as this thing may have come from
1172 		 * the user.  There must be either one "%d" and no other "%"
1173 		 * characters.
1174 		 */
1175 		if (p[1] != 'd' || strchr(p + 2, '%'))
1176 			return -EINVAL;
1177 
1178 		/* Use one page as a bit array of possible slots */
1179 		inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1180 		if (!inuse)
1181 			return -ENOMEM;
1182 
1183 		for_each_netdev(net, d) {
1184 			if (!sscanf(d->name, name, &i))
1185 				continue;
1186 			if (i < 0 || i >= max_netdevices)
1187 				continue;
1188 
1189 			/*  avoid cases where sscanf is not exact inverse of printf */
1190 			snprintf(buf, IFNAMSIZ, name, i);
1191 			if (!strncmp(buf, d->name, IFNAMSIZ))
1192 				set_bit(i, inuse);
1193 		}
1194 
1195 		i = find_first_zero_bit(inuse, max_netdevices);
1196 		free_page((unsigned long) inuse);
1197 	}
1198 
1199 	snprintf(buf, IFNAMSIZ, name, i);
1200 	if (!__dev_get_by_name(net, buf))
1201 		return i;
1202 
1203 	/* It is possible to run out of possible slots
1204 	 * when the name is long and there isn't enough space left
1205 	 * for the digits, or if all bits are used.
1206 	 */
1207 	return -ENFILE;
1208 }
1209 
1210 static int dev_alloc_name_ns(struct net *net,
1211 			     struct net_device *dev,
1212 			     const char *name)
1213 {
1214 	char buf[IFNAMSIZ];
1215 	int ret;
1216 
1217 	BUG_ON(!net);
1218 	ret = __dev_alloc_name(net, name, buf);
1219 	if (ret >= 0)
1220 		strlcpy(dev->name, buf, IFNAMSIZ);
1221 	return ret;
1222 }
1223 
1224 /**
1225  *	dev_alloc_name - allocate a name for a device
1226  *	@dev: device
1227  *	@name: name format string
1228  *
1229  *	Passed a format string - eg "lt%d" it will try and find a suitable
1230  *	id. It scans list of devices to build up a free map, then chooses
1231  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1232  *	while allocating the name and adding the device in order to avoid
1233  *	duplicates.
1234  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1235  *	Returns the number of the unit assigned or a negative errno code.
1236  */
1237 
1238 int dev_alloc_name(struct net_device *dev, const char *name)
1239 {
1240 	return dev_alloc_name_ns(dev_net(dev), dev, name);
1241 }
1242 EXPORT_SYMBOL(dev_alloc_name);
1243 
1244 static int dev_get_valid_name(struct net *net, struct net_device *dev,
1245 			      const char *name)
1246 {
1247 	BUG_ON(!net);
1248 
1249 	if (!dev_valid_name(name))
1250 		return -EINVAL;
1251 
1252 	if (strchr(name, '%'))
1253 		return dev_alloc_name_ns(net, dev, name);
1254 	else if (__dev_get_by_name(net, name))
1255 		return -EEXIST;
1256 	else if (dev->name != name)
1257 		strlcpy(dev->name, name, IFNAMSIZ);
1258 
1259 	return 0;
1260 }
1261 
1262 /**
1263  *	dev_change_name - change name of a device
1264  *	@dev: device
1265  *	@newname: name (or format string) must be at least IFNAMSIZ
1266  *
1267  *	Change name of a device, can pass format strings "eth%d".
1268  *	for wildcarding.
1269  */
1270 int dev_change_name(struct net_device *dev, const char *newname)
1271 {
1272 	unsigned char old_assign_type;
1273 	char oldname[IFNAMSIZ];
1274 	int err = 0;
1275 	int ret;
1276 	struct net *net;
1277 
1278 	ASSERT_RTNL();
1279 	BUG_ON(!dev_net(dev));
1280 
1281 	net = dev_net(dev);
1282 
1283 	/* Some auto-enslaved devices e.g. failover slaves are
1284 	 * special, as userspace might rename the device after
1285 	 * the interface had been brought up and running since
1286 	 * the point kernel initiated auto-enslavement. Allow
1287 	 * live name change even when these slave devices are
1288 	 * up and running.
1289 	 *
1290 	 * Typically, users of these auto-enslaving devices
1291 	 * don't actually care about slave name change, as
1292 	 * they are supposed to operate on master interface
1293 	 * directly.
1294 	 */
1295 	if (dev->flags & IFF_UP &&
1296 	    likely(!(dev->priv_flags & IFF_LIVE_RENAME_OK)))
1297 		return -EBUSY;
1298 
1299 	write_seqcount_begin(&devnet_rename_seq);
1300 
1301 	if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1302 		write_seqcount_end(&devnet_rename_seq);
1303 		return 0;
1304 	}
1305 
1306 	memcpy(oldname, dev->name, IFNAMSIZ);
1307 
1308 	err = dev_get_valid_name(net, dev, newname);
1309 	if (err < 0) {
1310 		write_seqcount_end(&devnet_rename_seq);
1311 		return err;
1312 	}
1313 
1314 	if (oldname[0] && !strchr(oldname, '%'))
1315 		netdev_info(dev, "renamed from %s\n", oldname);
1316 
1317 	old_assign_type = dev->name_assign_type;
1318 	dev->name_assign_type = NET_NAME_RENAMED;
1319 
1320 rollback:
1321 	ret = device_rename(&dev->dev, dev->name);
1322 	if (ret) {
1323 		memcpy(dev->name, oldname, IFNAMSIZ);
1324 		dev->name_assign_type = old_assign_type;
1325 		write_seqcount_end(&devnet_rename_seq);
1326 		return ret;
1327 	}
1328 
1329 	write_seqcount_end(&devnet_rename_seq);
1330 
1331 	netdev_adjacent_rename_links(dev, oldname);
1332 
1333 	write_lock_bh(&dev_base_lock);
1334 	netdev_name_node_del(dev->name_node);
1335 	write_unlock_bh(&dev_base_lock);
1336 
1337 	synchronize_rcu();
1338 
1339 	write_lock_bh(&dev_base_lock);
1340 	netdev_name_node_add(net, dev->name_node);
1341 	write_unlock_bh(&dev_base_lock);
1342 
1343 	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1344 	ret = notifier_to_errno(ret);
1345 
1346 	if (ret) {
1347 		/* err >= 0 after dev_alloc_name() or stores the first errno */
1348 		if (err >= 0) {
1349 			err = ret;
1350 			write_seqcount_begin(&devnet_rename_seq);
1351 			memcpy(dev->name, oldname, IFNAMSIZ);
1352 			memcpy(oldname, newname, IFNAMSIZ);
1353 			dev->name_assign_type = old_assign_type;
1354 			old_assign_type = NET_NAME_RENAMED;
1355 			goto rollback;
1356 		} else {
1357 			pr_err("%s: name change rollback failed: %d\n",
1358 			       dev->name, ret);
1359 		}
1360 	}
1361 
1362 	return err;
1363 }
1364 
1365 /**
1366  *	dev_set_alias - change ifalias of a device
1367  *	@dev: device
1368  *	@alias: name up to IFALIASZ
1369  *	@len: limit of bytes to copy from info
1370  *
1371  *	Set ifalias for a device,
1372  */
1373 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1374 {
1375 	struct dev_ifalias *new_alias = NULL;
1376 
1377 	if (len >= IFALIASZ)
1378 		return -EINVAL;
1379 
1380 	if (len) {
1381 		new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1382 		if (!new_alias)
1383 			return -ENOMEM;
1384 
1385 		memcpy(new_alias->ifalias, alias, len);
1386 		new_alias->ifalias[len] = 0;
1387 	}
1388 
1389 	mutex_lock(&ifalias_mutex);
1390 	new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1391 					mutex_is_locked(&ifalias_mutex));
1392 	mutex_unlock(&ifalias_mutex);
1393 
1394 	if (new_alias)
1395 		kfree_rcu(new_alias, rcuhead);
1396 
1397 	return len;
1398 }
1399 EXPORT_SYMBOL(dev_set_alias);
1400 
1401 /**
1402  *	dev_get_alias - get ifalias of a device
1403  *	@dev: device
1404  *	@name: buffer to store name of ifalias
1405  *	@len: size of buffer
1406  *
1407  *	get ifalias for a device.  Caller must make sure dev cannot go
1408  *	away,  e.g. rcu read lock or own a reference count to device.
1409  */
1410 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1411 {
1412 	const struct dev_ifalias *alias;
1413 	int ret = 0;
1414 
1415 	rcu_read_lock();
1416 	alias = rcu_dereference(dev->ifalias);
1417 	if (alias)
1418 		ret = snprintf(name, len, "%s", alias->ifalias);
1419 	rcu_read_unlock();
1420 
1421 	return ret;
1422 }
1423 
1424 /**
1425  *	netdev_features_change - device changes features
1426  *	@dev: device to cause notification
1427  *
1428  *	Called to indicate a device has changed features.
1429  */
1430 void netdev_features_change(struct net_device *dev)
1431 {
1432 	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1433 }
1434 EXPORT_SYMBOL(netdev_features_change);
1435 
1436 /**
1437  *	netdev_state_change - device changes state
1438  *	@dev: device to cause notification
1439  *
1440  *	Called to indicate a device has changed state. This function calls
1441  *	the notifier chains for netdev_chain and sends a NEWLINK message
1442  *	to the routing socket.
1443  */
1444 void netdev_state_change(struct net_device *dev)
1445 {
1446 	if (dev->flags & IFF_UP) {
1447 		struct netdev_notifier_change_info change_info = {
1448 			.info.dev = dev,
1449 		};
1450 
1451 		call_netdevice_notifiers_info(NETDEV_CHANGE,
1452 					      &change_info.info);
1453 		rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1454 	}
1455 }
1456 EXPORT_SYMBOL(netdev_state_change);
1457 
1458 /**
1459  * netdev_notify_peers - notify network peers about existence of @dev
1460  * @dev: network device
1461  *
1462  * Generate traffic such that interested network peers are aware of
1463  * @dev, such as by generating a gratuitous ARP. This may be used when
1464  * a device wants to inform the rest of the network about some sort of
1465  * reconfiguration such as a failover event or virtual machine
1466  * migration.
1467  */
1468 void netdev_notify_peers(struct net_device *dev)
1469 {
1470 	rtnl_lock();
1471 	call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1472 	call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1473 	rtnl_unlock();
1474 }
1475 EXPORT_SYMBOL(netdev_notify_peers);
1476 
1477 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1478 {
1479 	const struct net_device_ops *ops = dev->netdev_ops;
1480 	int ret;
1481 
1482 	ASSERT_RTNL();
1483 
1484 	if (!netif_device_present(dev))
1485 		return -ENODEV;
1486 
1487 	/* Block netpoll from trying to do any rx path servicing.
1488 	 * If we don't do this there is a chance ndo_poll_controller
1489 	 * or ndo_poll may be running while we open the device
1490 	 */
1491 	netpoll_poll_disable(dev);
1492 
1493 	ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1494 	ret = notifier_to_errno(ret);
1495 	if (ret)
1496 		return ret;
1497 
1498 	set_bit(__LINK_STATE_START, &dev->state);
1499 
1500 	if (ops->ndo_validate_addr)
1501 		ret = ops->ndo_validate_addr(dev);
1502 
1503 	if (!ret && ops->ndo_open)
1504 		ret = ops->ndo_open(dev);
1505 
1506 	netpoll_poll_enable(dev);
1507 
1508 	if (ret)
1509 		clear_bit(__LINK_STATE_START, &dev->state);
1510 	else {
1511 		dev->flags |= IFF_UP;
1512 		dev_set_rx_mode(dev);
1513 		dev_activate(dev);
1514 		add_device_randomness(dev->dev_addr, dev->addr_len);
1515 	}
1516 
1517 	return ret;
1518 }
1519 
1520 /**
1521  *	dev_open	- prepare an interface for use.
1522  *	@dev: device to open
1523  *	@extack: netlink extended ack
1524  *
1525  *	Takes a device from down to up state. The device's private open
1526  *	function is invoked and then the multicast lists are loaded. Finally
1527  *	the device is moved into the up state and a %NETDEV_UP message is
1528  *	sent to the netdev notifier chain.
1529  *
1530  *	Calling this function on an active interface is a nop. On a failure
1531  *	a negative errno code is returned.
1532  */
1533 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1534 {
1535 	int ret;
1536 
1537 	if (dev->flags & IFF_UP)
1538 		return 0;
1539 
1540 	ret = __dev_open(dev, extack);
1541 	if (ret < 0)
1542 		return ret;
1543 
1544 	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1545 	call_netdevice_notifiers(NETDEV_UP, dev);
1546 
1547 	return ret;
1548 }
1549 EXPORT_SYMBOL(dev_open);
1550 
1551 static void __dev_close_many(struct list_head *head)
1552 {
1553 	struct net_device *dev;
1554 
1555 	ASSERT_RTNL();
1556 	might_sleep();
1557 
1558 	list_for_each_entry(dev, head, close_list) {
1559 		/* Temporarily disable netpoll until the interface is down */
1560 		netpoll_poll_disable(dev);
1561 
1562 		call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1563 
1564 		clear_bit(__LINK_STATE_START, &dev->state);
1565 
1566 		/* Synchronize to scheduled poll. We cannot touch poll list, it
1567 		 * can be even on different cpu. So just clear netif_running().
1568 		 *
1569 		 * dev->stop() will invoke napi_disable() on all of it's
1570 		 * napi_struct instances on this device.
1571 		 */
1572 		smp_mb__after_atomic(); /* Commit netif_running(). */
1573 	}
1574 
1575 	dev_deactivate_many(head);
1576 
1577 	list_for_each_entry(dev, head, close_list) {
1578 		const struct net_device_ops *ops = dev->netdev_ops;
1579 
1580 		/*
1581 		 *	Call the device specific close. This cannot fail.
1582 		 *	Only if device is UP
1583 		 *
1584 		 *	We allow it to be called even after a DETACH hot-plug
1585 		 *	event.
1586 		 */
1587 		if (ops->ndo_stop)
1588 			ops->ndo_stop(dev);
1589 
1590 		dev->flags &= ~IFF_UP;
1591 		netpoll_poll_enable(dev);
1592 	}
1593 }
1594 
1595 static void __dev_close(struct net_device *dev)
1596 {
1597 	LIST_HEAD(single);
1598 
1599 	list_add(&dev->close_list, &single);
1600 	__dev_close_many(&single);
1601 	list_del(&single);
1602 }
1603 
1604 void dev_close_many(struct list_head *head, bool unlink)
1605 {
1606 	struct net_device *dev, *tmp;
1607 
1608 	/* Remove the devices that don't need to be closed */
1609 	list_for_each_entry_safe(dev, tmp, head, close_list)
1610 		if (!(dev->flags & IFF_UP))
1611 			list_del_init(&dev->close_list);
1612 
1613 	__dev_close_many(head);
1614 
1615 	list_for_each_entry_safe(dev, tmp, head, close_list) {
1616 		rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1617 		call_netdevice_notifiers(NETDEV_DOWN, dev);
1618 		if (unlink)
1619 			list_del_init(&dev->close_list);
1620 	}
1621 }
1622 EXPORT_SYMBOL(dev_close_many);
1623 
1624 /**
1625  *	dev_close - shutdown an interface.
1626  *	@dev: device to shutdown
1627  *
1628  *	This function moves an active device into down state. A
1629  *	%NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1630  *	is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1631  *	chain.
1632  */
1633 void dev_close(struct net_device *dev)
1634 {
1635 	if (dev->flags & IFF_UP) {
1636 		LIST_HEAD(single);
1637 
1638 		list_add(&dev->close_list, &single);
1639 		dev_close_many(&single, true);
1640 		list_del(&single);
1641 	}
1642 }
1643 EXPORT_SYMBOL(dev_close);
1644 
1645 
1646 /**
1647  *	dev_disable_lro - disable Large Receive Offload on a device
1648  *	@dev: device
1649  *
1650  *	Disable Large Receive Offload (LRO) on a net device.  Must be
1651  *	called under RTNL.  This is needed if received packets may be
1652  *	forwarded to another interface.
1653  */
1654 void dev_disable_lro(struct net_device *dev)
1655 {
1656 	struct net_device *lower_dev;
1657 	struct list_head *iter;
1658 
1659 	dev->wanted_features &= ~NETIF_F_LRO;
1660 	netdev_update_features(dev);
1661 
1662 	if (unlikely(dev->features & NETIF_F_LRO))
1663 		netdev_WARN(dev, "failed to disable LRO!\n");
1664 
1665 	netdev_for_each_lower_dev(dev, lower_dev, iter)
1666 		dev_disable_lro(lower_dev);
1667 }
1668 EXPORT_SYMBOL(dev_disable_lro);
1669 
1670 /**
1671  *	dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1672  *	@dev: device
1673  *
1674  *	Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1675  *	called under RTNL.  This is needed if Generic XDP is installed on
1676  *	the device.
1677  */
1678 static void dev_disable_gro_hw(struct net_device *dev)
1679 {
1680 	dev->wanted_features &= ~NETIF_F_GRO_HW;
1681 	netdev_update_features(dev);
1682 
1683 	if (unlikely(dev->features & NETIF_F_GRO_HW))
1684 		netdev_WARN(dev, "failed to disable GRO_HW!\n");
1685 }
1686 
1687 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1688 {
1689 #define N(val) 						\
1690 	case NETDEV_##val:				\
1691 		return "NETDEV_" __stringify(val);
1692 	switch (cmd) {
1693 	N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1694 	N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1695 	N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1696 	N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
1697 	N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
1698 	N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
1699 	N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1700 	N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1701 	N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1702 	N(PRE_CHANGEADDR)
1703 	}
1704 #undef N
1705 	return "UNKNOWN_NETDEV_EVENT";
1706 }
1707 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1708 
1709 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1710 				   struct net_device *dev)
1711 {
1712 	struct netdev_notifier_info info = {
1713 		.dev = dev,
1714 	};
1715 
1716 	return nb->notifier_call(nb, val, &info);
1717 }
1718 
1719 static int call_netdevice_register_notifiers(struct notifier_block *nb,
1720 					     struct net_device *dev)
1721 {
1722 	int err;
1723 
1724 	err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1725 	err = notifier_to_errno(err);
1726 	if (err)
1727 		return err;
1728 
1729 	if (!(dev->flags & IFF_UP))
1730 		return 0;
1731 
1732 	call_netdevice_notifier(nb, NETDEV_UP, dev);
1733 	return 0;
1734 }
1735 
1736 static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1737 						struct net_device *dev)
1738 {
1739 	if (dev->flags & IFF_UP) {
1740 		call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1741 					dev);
1742 		call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1743 	}
1744 	call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1745 }
1746 
1747 static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1748 						 struct net *net)
1749 {
1750 	struct net_device *dev;
1751 	int err;
1752 
1753 	for_each_netdev(net, dev) {
1754 		err = call_netdevice_register_notifiers(nb, dev);
1755 		if (err)
1756 			goto rollback;
1757 	}
1758 	return 0;
1759 
1760 rollback:
1761 	for_each_netdev_continue_reverse(net, dev)
1762 		call_netdevice_unregister_notifiers(nb, dev);
1763 	return err;
1764 }
1765 
1766 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1767 						    struct net *net)
1768 {
1769 	struct net_device *dev;
1770 
1771 	for_each_netdev(net, dev)
1772 		call_netdevice_unregister_notifiers(nb, dev);
1773 }
1774 
1775 static int dev_boot_phase = 1;
1776 
1777 /**
1778  * register_netdevice_notifier - register a network notifier block
1779  * @nb: notifier
1780  *
1781  * Register a notifier to be called when network device events occur.
1782  * The notifier passed is linked into the kernel structures and must
1783  * not be reused until it has been unregistered. A negative errno code
1784  * is returned on a failure.
1785  *
1786  * When registered all registration and up events are replayed
1787  * to the new notifier to allow device to have a race free
1788  * view of the network device list.
1789  */
1790 
1791 int register_netdevice_notifier(struct notifier_block *nb)
1792 {
1793 	struct net *net;
1794 	int err;
1795 
1796 	/* Close race with setup_net() and cleanup_net() */
1797 	down_write(&pernet_ops_rwsem);
1798 	rtnl_lock();
1799 	err = raw_notifier_chain_register(&netdev_chain, nb);
1800 	if (err)
1801 		goto unlock;
1802 	if (dev_boot_phase)
1803 		goto unlock;
1804 	for_each_net(net) {
1805 		err = call_netdevice_register_net_notifiers(nb, net);
1806 		if (err)
1807 			goto rollback;
1808 	}
1809 
1810 unlock:
1811 	rtnl_unlock();
1812 	up_write(&pernet_ops_rwsem);
1813 	return err;
1814 
1815 rollback:
1816 	for_each_net_continue_reverse(net)
1817 		call_netdevice_unregister_net_notifiers(nb, net);
1818 
1819 	raw_notifier_chain_unregister(&netdev_chain, nb);
1820 	goto unlock;
1821 }
1822 EXPORT_SYMBOL(register_netdevice_notifier);
1823 
1824 /**
1825  * unregister_netdevice_notifier - unregister a network notifier block
1826  * @nb: notifier
1827  *
1828  * Unregister a notifier previously registered by
1829  * register_netdevice_notifier(). The notifier is unlinked into the
1830  * kernel structures and may then be reused. A negative errno code
1831  * is returned on a failure.
1832  *
1833  * After unregistering unregister and down device events are synthesized
1834  * for all devices on the device list to the removed notifier to remove
1835  * the need for special case cleanup code.
1836  */
1837 
1838 int unregister_netdevice_notifier(struct notifier_block *nb)
1839 {
1840 	struct net *net;
1841 	int err;
1842 
1843 	/* Close race with setup_net() and cleanup_net() */
1844 	down_write(&pernet_ops_rwsem);
1845 	rtnl_lock();
1846 	err = raw_notifier_chain_unregister(&netdev_chain, nb);
1847 	if (err)
1848 		goto unlock;
1849 
1850 	for_each_net(net)
1851 		call_netdevice_unregister_net_notifiers(nb, net);
1852 
1853 unlock:
1854 	rtnl_unlock();
1855 	up_write(&pernet_ops_rwsem);
1856 	return err;
1857 }
1858 EXPORT_SYMBOL(unregister_netdevice_notifier);
1859 
1860 static int __register_netdevice_notifier_net(struct net *net,
1861 					     struct notifier_block *nb,
1862 					     bool ignore_call_fail)
1863 {
1864 	int err;
1865 
1866 	err = raw_notifier_chain_register(&net->netdev_chain, nb);
1867 	if (err)
1868 		return err;
1869 	if (dev_boot_phase)
1870 		return 0;
1871 
1872 	err = call_netdevice_register_net_notifiers(nb, net);
1873 	if (err && !ignore_call_fail)
1874 		goto chain_unregister;
1875 
1876 	return 0;
1877 
1878 chain_unregister:
1879 	raw_notifier_chain_unregister(&net->netdev_chain, nb);
1880 	return err;
1881 }
1882 
1883 static int __unregister_netdevice_notifier_net(struct net *net,
1884 					       struct notifier_block *nb)
1885 {
1886 	int err;
1887 
1888 	err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
1889 	if (err)
1890 		return err;
1891 
1892 	call_netdevice_unregister_net_notifiers(nb, net);
1893 	return 0;
1894 }
1895 
1896 /**
1897  * register_netdevice_notifier_net - register a per-netns network notifier block
1898  * @net: network namespace
1899  * @nb: notifier
1900  *
1901  * Register a notifier to be called when network device events occur.
1902  * The notifier passed is linked into the kernel structures and must
1903  * not be reused until it has been unregistered. A negative errno code
1904  * is returned on a failure.
1905  *
1906  * When registered all registration and up events are replayed
1907  * to the new notifier to allow device to have a race free
1908  * view of the network device list.
1909  */
1910 
1911 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
1912 {
1913 	int err;
1914 
1915 	rtnl_lock();
1916 	err = __register_netdevice_notifier_net(net, nb, false);
1917 	rtnl_unlock();
1918 	return err;
1919 }
1920 EXPORT_SYMBOL(register_netdevice_notifier_net);
1921 
1922 /**
1923  * unregister_netdevice_notifier_net - unregister a per-netns
1924  *                                     network notifier block
1925  * @net: network namespace
1926  * @nb: notifier
1927  *
1928  * Unregister a notifier previously registered by
1929  * register_netdevice_notifier(). The notifier is unlinked into the
1930  * kernel structures and may then be reused. A negative errno code
1931  * is returned on a failure.
1932  *
1933  * After unregistering unregister and down device events are synthesized
1934  * for all devices on the device list to the removed notifier to remove
1935  * the need for special case cleanup code.
1936  */
1937 
1938 int unregister_netdevice_notifier_net(struct net *net,
1939 				      struct notifier_block *nb)
1940 {
1941 	int err;
1942 
1943 	rtnl_lock();
1944 	err = __unregister_netdevice_notifier_net(net, nb);
1945 	rtnl_unlock();
1946 	return err;
1947 }
1948 EXPORT_SYMBOL(unregister_netdevice_notifier_net);
1949 
1950 int register_netdevice_notifier_dev_net(struct net_device *dev,
1951 					struct notifier_block *nb,
1952 					struct netdev_net_notifier *nn)
1953 {
1954 	int err;
1955 
1956 	rtnl_lock();
1957 	err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
1958 	if (!err) {
1959 		nn->nb = nb;
1960 		list_add(&nn->list, &dev->net_notifier_list);
1961 	}
1962 	rtnl_unlock();
1963 	return err;
1964 }
1965 EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
1966 
1967 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
1968 					  struct notifier_block *nb,
1969 					  struct netdev_net_notifier *nn)
1970 {
1971 	int err;
1972 
1973 	rtnl_lock();
1974 	list_del(&nn->list);
1975 	err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
1976 	rtnl_unlock();
1977 	return err;
1978 }
1979 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
1980 
1981 static void move_netdevice_notifiers_dev_net(struct net_device *dev,
1982 					     struct net *net)
1983 {
1984 	struct netdev_net_notifier *nn;
1985 
1986 	list_for_each_entry(nn, &dev->net_notifier_list, list) {
1987 		__unregister_netdevice_notifier_net(dev_net(dev), nn->nb);
1988 		__register_netdevice_notifier_net(net, nn->nb, true);
1989 	}
1990 }
1991 
1992 /**
1993  *	call_netdevice_notifiers_info - call all network notifier blocks
1994  *	@val: value passed unmodified to notifier function
1995  *	@info: notifier information data
1996  *
1997  *	Call all network notifier blocks.  Parameters and return value
1998  *	are as for raw_notifier_call_chain().
1999  */
2000 
2001 static int call_netdevice_notifiers_info(unsigned long val,
2002 					 struct netdev_notifier_info *info)
2003 {
2004 	struct net *net = dev_net(info->dev);
2005 	int ret;
2006 
2007 	ASSERT_RTNL();
2008 
2009 	/* Run per-netns notifier block chain first, then run the global one.
2010 	 * Hopefully, one day, the global one is going to be removed after
2011 	 * all notifier block registrators get converted to be per-netns.
2012 	 */
2013 	ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
2014 	if (ret & NOTIFY_STOP_MASK)
2015 		return ret;
2016 	return raw_notifier_call_chain(&netdev_chain, val, info);
2017 }
2018 
2019 static int call_netdevice_notifiers_extack(unsigned long val,
2020 					   struct net_device *dev,
2021 					   struct netlink_ext_ack *extack)
2022 {
2023 	struct netdev_notifier_info info = {
2024 		.dev = dev,
2025 		.extack = extack,
2026 	};
2027 
2028 	return call_netdevice_notifiers_info(val, &info);
2029 }
2030 
2031 /**
2032  *	call_netdevice_notifiers - call all network notifier blocks
2033  *      @val: value passed unmodified to notifier function
2034  *      @dev: net_device pointer passed unmodified to notifier function
2035  *
2036  *	Call all network notifier blocks.  Parameters and return value
2037  *	are as for raw_notifier_call_chain().
2038  */
2039 
2040 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
2041 {
2042 	return call_netdevice_notifiers_extack(val, dev, NULL);
2043 }
2044 EXPORT_SYMBOL(call_netdevice_notifiers);
2045 
2046 /**
2047  *	call_netdevice_notifiers_mtu - call all network notifier blocks
2048  *	@val: value passed unmodified to notifier function
2049  *	@dev: net_device pointer passed unmodified to notifier function
2050  *	@arg: additional u32 argument passed to the notifier function
2051  *
2052  *	Call all network notifier blocks.  Parameters and return value
2053  *	are as for raw_notifier_call_chain().
2054  */
2055 static int call_netdevice_notifiers_mtu(unsigned long val,
2056 					struct net_device *dev, u32 arg)
2057 {
2058 	struct netdev_notifier_info_ext info = {
2059 		.info.dev = dev,
2060 		.ext.mtu = arg,
2061 	};
2062 
2063 	BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2064 
2065 	return call_netdevice_notifiers_info(val, &info.info);
2066 }
2067 
2068 #ifdef CONFIG_NET_INGRESS
2069 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2070 
2071 void net_inc_ingress_queue(void)
2072 {
2073 	static_branch_inc(&ingress_needed_key);
2074 }
2075 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2076 
2077 void net_dec_ingress_queue(void)
2078 {
2079 	static_branch_dec(&ingress_needed_key);
2080 }
2081 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2082 #endif
2083 
2084 #ifdef CONFIG_NET_EGRESS
2085 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2086 
2087 void net_inc_egress_queue(void)
2088 {
2089 	static_branch_inc(&egress_needed_key);
2090 }
2091 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2092 
2093 void net_dec_egress_queue(void)
2094 {
2095 	static_branch_dec(&egress_needed_key);
2096 }
2097 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2098 #endif
2099 
2100 static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2101 #ifdef CONFIG_JUMP_LABEL
2102 static atomic_t netstamp_needed_deferred;
2103 static atomic_t netstamp_wanted;
2104 static void netstamp_clear(struct work_struct *work)
2105 {
2106 	int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2107 	int wanted;
2108 
2109 	wanted = atomic_add_return(deferred, &netstamp_wanted);
2110 	if (wanted > 0)
2111 		static_branch_enable(&netstamp_needed_key);
2112 	else
2113 		static_branch_disable(&netstamp_needed_key);
2114 }
2115 static DECLARE_WORK(netstamp_work, netstamp_clear);
2116 #endif
2117 
2118 void net_enable_timestamp(void)
2119 {
2120 #ifdef CONFIG_JUMP_LABEL
2121 	int wanted;
2122 
2123 	while (1) {
2124 		wanted = atomic_read(&netstamp_wanted);
2125 		if (wanted <= 0)
2126 			break;
2127 		if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
2128 			return;
2129 	}
2130 	atomic_inc(&netstamp_needed_deferred);
2131 	schedule_work(&netstamp_work);
2132 #else
2133 	static_branch_inc(&netstamp_needed_key);
2134 #endif
2135 }
2136 EXPORT_SYMBOL(net_enable_timestamp);
2137 
2138 void net_disable_timestamp(void)
2139 {
2140 #ifdef CONFIG_JUMP_LABEL
2141 	int wanted;
2142 
2143 	while (1) {
2144 		wanted = atomic_read(&netstamp_wanted);
2145 		if (wanted <= 1)
2146 			break;
2147 		if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
2148 			return;
2149 	}
2150 	atomic_dec(&netstamp_needed_deferred);
2151 	schedule_work(&netstamp_work);
2152 #else
2153 	static_branch_dec(&netstamp_needed_key);
2154 #endif
2155 }
2156 EXPORT_SYMBOL(net_disable_timestamp);
2157 
2158 static inline void net_timestamp_set(struct sk_buff *skb)
2159 {
2160 	skb->tstamp = 0;
2161 	if (static_branch_unlikely(&netstamp_needed_key))
2162 		__net_timestamp(skb);
2163 }
2164 
2165 #define net_timestamp_check(COND, SKB)				\
2166 	if (static_branch_unlikely(&netstamp_needed_key)) {	\
2167 		if ((COND) && !(SKB)->tstamp)			\
2168 			__net_timestamp(SKB);			\
2169 	}							\
2170 
2171 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2172 {
2173 	unsigned int len;
2174 
2175 	if (!(dev->flags & IFF_UP))
2176 		return false;
2177 
2178 	len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
2179 	if (skb->len <= len)
2180 		return true;
2181 
2182 	/* if TSO is enabled, we don't care about the length as the packet
2183 	 * could be forwarded without being segmented before
2184 	 */
2185 	if (skb_is_gso(skb))
2186 		return true;
2187 
2188 	return false;
2189 }
2190 EXPORT_SYMBOL_GPL(is_skb_forwardable);
2191 
2192 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2193 {
2194 	int ret = ____dev_forward_skb(dev, skb);
2195 
2196 	if (likely(!ret)) {
2197 		skb->protocol = eth_type_trans(skb, dev);
2198 		skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2199 	}
2200 
2201 	return ret;
2202 }
2203 EXPORT_SYMBOL_GPL(__dev_forward_skb);
2204 
2205 /**
2206  * dev_forward_skb - loopback an skb to another netif
2207  *
2208  * @dev: destination network device
2209  * @skb: buffer to forward
2210  *
2211  * return values:
2212  *	NET_RX_SUCCESS	(no congestion)
2213  *	NET_RX_DROP     (packet was dropped, but freed)
2214  *
2215  * dev_forward_skb can be used for injecting an skb from the
2216  * start_xmit function of one device into the receive queue
2217  * of another device.
2218  *
2219  * The receiving device may be in another namespace, so
2220  * we have to clear all information in the skb that could
2221  * impact namespace isolation.
2222  */
2223 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2224 {
2225 	return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2226 }
2227 EXPORT_SYMBOL_GPL(dev_forward_skb);
2228 
2229 static inline int deliver_skb(struct sk_buff *skb,
2230 			      struct packet_type *pt_prev,
2231 			      struct net_device *orig_dev)
2232 {
2233 	if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2234 		return -ENOMEM;
2235 	refcount_inc(&skb->users);
2236 	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2237 }
2238 
2239 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2240 					  struct packet_type **pt,
2241 					  struct net_device *orig_dev,
2242 					  __be16 type,
2243 					  struct list_head *ptype_list)
2244 {
2245 	struct packet_type *ptype, *pt_prev = *pt;
2246 
2247 	list_for_each_entry_rcu(ptype, ptype_list, list) {
2248 		if (ptype->type != type)
2249 			continue;
2250 		if (pt_prev)
2251 			deliver_skb(skb, pt_prev, orig_dev);
2252 		pt_prev = ptype;
2253 	}
2254 	*pt = pt_prev;
2255 }
2256 
2257 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2258 {
2259 	if (!ptype->af_packet_priv || !skb->sk)
2260 		return false;
2261 
2262 	if (ptype->id_match)
2263 		return ptype->id_match(ptype, skb->sk);
2264 	else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2265 		return true;
2266 
2267 	return false;
2268 }
2269 
2270 /**
2271  * dev_nit_active - return true if any network interface taps are in use
2272  *
2273  * @dev: network device to check for the presence of taps
2274  */
2275 bool dev_nit_active(struct net_device *dev)
2276 {
2277 	return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
2278 }
2279 EXPORT_SYMBOL_GPL(dev_nit_active);
2280 
2281 /*
2282  *	Support routine. Sends outgoing frames to any network
2283  *	taps currently in use.
2284  */
2285 
2286 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2287 {
2288 	struct packet_type *ptype;
2289 	struct sk_buff *skb2 = NULL;
2290 	struct packet_type *pt_prev = NULL;
2291 	struct list_head *ptype_list = &ptype_all;
2292 
2293 	rcu_read_lock();
2294 again:
2295 	list_for_each_entry_rcu(ptype, ptype_list, list) {
2296 		if (ptype->ignore_outgoing)
2297 			continue;
2298 
2299 		/* Never send packets back to the socket
2300 		 * they originated from - MvS (miquels@drinkel.ow.org)
2301 		 */
2302 		if (skb_loop_sk(ptype, skb))
2303 			continue;
2304 
2305 		if (pt_prev) {
2306 			deliver_skb(skb2, pt_prev, skb->dev);
2307 			pt_prev = ptype;
2308 			continue;
2309 		}
2310 
2311 		/* need to clone skb, done only once */
2312 		skb2 = skb_clone(skb, GFP_ATOMIC);
2313 		if (!skb2)
2314 			goto out_unlock;
2315 
2316 		net_timestamp_set(skb2);
2317 
2318 		/* skb->nh should be correctly
2319 		 * set by sender, so that the second statement is
2320 		 * just protection against buggy protocols.
2321 		 */
2322 		skb_reset_mac_header(skb2);
2323 
2324 		if (skb_network_header(skb2) < skb2->data ||
2325 		    skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2326 			net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2327 					     ntohs(skb2->protocol),
2328 					     dev->name);
2329 			skb_reset_network_header(skb2);
2330 		}
2331 
2332 		skb2->transport_header = skb2->network_header;
2333 		skb2->pkt_type = PACKET_OUTGOING;
2334 		pt_prev = ptype;
2335 	}
2336 
2337 	if (ptype_list == &ptype_all) {
2338 		ptype_list = &dev->ptype_all;
2339 		goto again;
2340 	}
2341 out_unlock:
2342 	if (pt_prev) {
2343 		if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2344 			pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2345 		else
2346 			kfree_skb(skb2);
2347 	}
2348 	rcu_read_unlock();
2349 }
2350 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2351 
2352 /**
2353  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2354  * @dev: Network device
2355  * @txq: number of queues available
2356  *
2357  * If real_num_tx_queues is changed the tc mappings may no longer be
2358  * valid. To resolve this verify the tc mapping remains valid and if
2359  * not NULL the mapping. With no priorities mapping to this
2360  * offset/count pair it will no longer be used. In the worst case TC0
2361  * is invalid nothing can be done so disable priority mappings. If is
2362  * expected that drivers will fix this mapping if they can before
2363  * calling netif_set_real_num_tx_queues.
2364  */
2365 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2366 {
2367 	int i;
2368 	struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2369 
2370 	/* If TC0 is invalidated disable TC mapping */
2371 	if (tc->offset + tc->count > txq) {
2372 		pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2373 		dev->num_tc = 0;
2374 		return;
2375 	}
2376 
2377 	/* Invalidated prio to tc mappings set to TC0 */
2378 	for (i = 1; i < TC_BITMASK + 1; i++) {
2379 		int q = netdev_get_prio_tc_map(dev, i);
2380 
2381 		tc = &dev->tc_to_txq[q];
2382 		if (tc->offset + tc->count > txq) {
2383 			pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2384 				i, q);
2385 			netdev_set_prio_tc_map(dev, i, 0);
2386 		}
2387 	}
2388 }
2389 
2390 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2391 {
2392 	if (dev->num_tc) {
2393 		struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2394 		int i;
2395 
2396 		/* walk through the TCs and see if it falls into any of them */
2397 		for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2398 			if ((txq - tc->offset) < tc->count)
2399 				return i;
2400 		}
2401 
2402 		/* didn't find it, just return -1 to indicate no match */
2403 		return -1;
2404 	}
2405 
2406 	return 0;
2407 }
2408 EXPORT_SYMBOL(netdev_txq_to_tc);
2409 
2410 #ifdef CONFIG_XPS
2411 struct static_key xps_needed __read_mostly;
2412 EXPORT_SYMBOL(xps_needed);
2413 struct static_key xps_rxqs_needed __read_mostly;
2414 EXPORT_SYMBOL(xps_rxqs_needed);
2415 static DEFINE_MUTEX(xps_map_mutex);
2416 #define xmap_dereference(P)		\
2417 	rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2418 
2419 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2420 			     int tci, u16 index)
2421 {
2422 	struct xps_map *map = NULL;
2423 	int pos;
2424 
2425 	if (dev_maps)
2426 		map = xmap_dereference(dev_maps->attr_map[tci]);
2427 	if (!map)
2428 		return false;
2429 
2430 	for (pos = map->len; pos--;) {
2431 		if (map->queues[pos] != index)
2432 			continue;
2433 
2434 		if (map->len > 1) {
2435 			map->queues[pos] = map->queues[--map->len];
2436 			break;
2437 		}
2438 
2439 		RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2440 		kfree_rcu(map, rcu);
2441 		return false;
2442 	}
2443 
2444 	return true;
2445 }
2446 
2447 static bool remove_xps_queue_cpu(struct net_device *dev,
2448 				 struct xps_dev_maps *dev_maps,
2449 				 int cpu, u16 offset, u16 count)
2450 {
2451 	int num_tc = dev->num_tc ? : 1;
2452 	bool active = false;
2453 	int tci;
2454 
2455 	for (tci = cpu * num_tc; num_tc--; tci++) {
2456 		int i, j;
2457 
2458 		for (i = count, j = offset; i--; j++) {
2459 			if (!remove_xps_queue(dev_maps, tci, j))
2460 				break;
2461 		}
2462 
2463 		active |= i < 0;
2464 	}
2465 
2466 	return active;
2467 }
2468 
2469 static void reset_xps_maps(struct net_device *dev,
2470 			   struct xps_dev_maps *dev_maps,
2471 			   bool is_rxqs_map)
2472 {
2473 	if (is_rxqs_map) {
2474 		static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2475 		RCU_INIT_POINTER(dev->xps_rxqs_map, NULL);
2476 	} else {
2477 		RCU_INIT_POINTER(dev->xps_cpus_map, NULL);
2478 	}
2479 	static_key_slow_dec_cpuslocked(&xps_needed);
2480 	kfree_rcu(dev_maps, rcu);
2481 }
2482 
2483 static void clean_xps_maps(struct net_device *dev, const unsigned long *mask,
2484 			   struct xps_dev_maps *dev_maps, unsigned int nr_ids,
2485 			   u16 offset, u16 count, bool is_rxqs_map)
2486 {
2487 	bool active = false;
2488 	int i, j;
2489 
2490 	for (j = -1; j = netif_attrmask_next(j, mask, nr_ids),
2491 	     j < nr_ids;)
2492 		active |= remove_xps_queue_cpu(dev, dev_maps, j, offset,
2493 					       count);
2494 	if (!active)
2495 		reset_xps_maps(dev, dev_maps, is_rxqs_map);
2496 
2497 	if (!is_rxqs_map) {
2498 		for (i = offset + (count - 1); count--; i--) {
2499 			netdev_queue_numa_node_write(
2500 				netdev_get_tx_queue(dev, i),
2501 				NUMA_NO_NODE);
2502 		}
2503 	}
2504 }
2505 
2506 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2507 				   u16 count)
2508 {
2509 	const unsigned long *possible_mask = NULL;
2510 	struct xps_dev_maps *dev_maps;
2511 	unsigned int nr_ids;
2512 
2513 	if (!static_key_false(&xps_needed))
2514 		return;
2515 
2516 	cpus_read_lock();
2517 	mutex_lock(&xps_map_mutex);
2518 
2519 	if (static_key_false(&xps_rxqs_needed)) {
2520 		dev_maps = xmap_dereference(dev->xps_rxqs_map);
2521 		if (dev_maps) {
2522 			nr_ids = dev->num_rx_queues;
2523 			clean_xps_maps(dev, possible_mask, dev_maps, nr_ids,
2524 				       offset, count, true);
2525 		}
2526 	}
2527 
2528 	dev_maps = xmap_dereference(dev->xps_cpus_map);
2529 	if (!dev_maps)
2530 		goto out_no_maps;
2531 
2532 	if (num_possible_cpus() > 1)
2533 		possible_mask = cpumask_bits(cpu_possible_mask);
2534 	nr_ids = nr_cpu_ids;
2535 	clean_xps_maps(dev, possible_mask, dev_maps, nr_ids, offset, count,
2536 		       false);
2537 
2538 out_no_maps:
2539 	mutex_unlock(&xps_map_mutex);
2540 	cpus_read_unlock();
2541 }
2542 
2543 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2544 {
2545 	netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2546 }
2547 
2548 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2549 				      u16 index, bool is_rxqs_map)
2550 {
2551 	struct xps_map *new_map;
2552 	int alloc_len = XPS_MIN_MAP_ALLOC;
2553 	int i, pos;
2554 
2555 	for (pos = 0; map && pos < map->len; pos++) {
2556 		if (map->queues[pos] != index)
2557 			continue;
2558 		return map;
2559 	}
2560 
2561 	/* Need to add tx-queue to this CPU's/rx-queue's existing map */
2562 	if (map) {
2563 		if (pos < map->alloc_len)
2564 			return map;
2565 
2566 		alloc_len = map->alloc_len * 2;
2567 	}
2568 
2569 	/* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2570 	 *  map
2571 	 */
2572 	if (is_rxqs_map)
2573 		new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2574 	else
2575 		new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2576 				       cpu_to_node(attr_index));
2577 	if (!new_map)
2578 		return NULL;
2579 
2580 	for (i = 0; i < pos; i++)
2581 		new_map->queues[i] = map->queues[i];
2582 	new_map->alloc_len = alloc_len;
2583 	new_map->len = pos;
2584 
2585 	return new_map;
2586 }
2587 
2588 /* Must be called under cpus_read_lock */
2589 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2590 			  u16 index, bool is_rxqs_map)
2591 {
2592 	const unsigned long *online_mask = NULL, *possible_mask = NULL;
2593 	struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2594 	int i, j, tci, numa_node_id = -2;
2595 	int maps_sz, num_tc = 1, tc = 0;
2596 	struct xps_map *map, *new_map;
2597 	bool active = false;
2598 	unsigned int nr_ids;
2599 
2600 	if (dev->num_tc) {
2601 		/* Do not allow XPS on subordinate device directly */
2602 		num_tc = dev->num_tc;
2603 		if (num_tc < 0)
2604 			return -EINVAL;
2605 
2606 		/* If queue belongs to subordinate dev use its map */
2607 		dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2608 
2609 		tc = netdev_txq_to_tc(dev, index);
2610 		if (tc < 0)
2611 			return -EINVAL;
2612 	}
2613 
2614 	mutex_lock(&xps_map_mutex);
2615 	if (is_rxqs_map) {
2616 		maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2617 		dev_maps = xmap_dereference(dev->xps_rxqs_map);
2618 		nr_ids = dev->num_rx_queues;
2619 	} else {
2620 		maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2621 		if (num_possible_cpus() > 1) {
2622 			online_mask = cpumask_bits(cpu_online_mask);
2623 			possible_mask = cpumask_bits(cpu_possible_mask);
2624 		}
2625 		dev_maps = xmap_dereference(dev->xps_cpus_map);
2626 		nr_ids = nr_cpu_ids;
2627 	}
2628 
2629 	if (maps_sz < L1_CACHE_BYTES)
2630 		maps_sz = L1_CACHE_BYTES;
2631 
2632 	/* allocate memory for queue storage */
2633 	for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2634 	     j < nr_ids;) {
2635 		if (!new_dev_maps)
2636 			new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2637 		if (!new_dev_maps) {
2638 			mutex_unlock(&xps_map_mutex);
2639 			return -ENOMEM;
2640 		}
2641 
2642 		tci = j * num_tc + tc;
2643 		map = dev_maps ? xmap_dereference(dev_maps->attr_map[tci]) :
2644 				 NULL;
2645 
2646 		map = expand_xps_map(map, j, index, is_rxqs_map);
2647 		if (!map)
2648 			goto error;
2649 
2650 		RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2651 	}
2652 
2653 	if (!new_dev_maps)
2654 		goto out_no_new_maps;
2655 
2656 	if (!dev_maps) {
2657 		/* Increment static keys at most once per type */
2658 		static_key_slow_inc_cpuslocked(&xps_needed);
2659 		if (is_rxqs_map)
2660 			static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2661 	}
2662 
2663 	for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2664 	     j < nr_ids;) {
2665 		/* copy maps belonging to foreign traffic classes */
2666 		for (i = tc, tci = j * num_tc; dev_maps && i--; tci++) {
2667 			/* fill in the new device map from the old device map */
2668 			map = xmap_dereference(dev_maps->attr_map[tci]);
2669 			RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2670 		}
2671 
2672 		/* We need to explicitly update tci as prevous loop
2673 		 * could break out early if dev_maps is NULL.
2674 		 */
2675 		tci = j * num_tc + tc;
2676 
2677 		if (netif_attr_test_mask(j, mask, nr_ids) &&
2678 		    netif_attr_test_online(j, online_mask, nr_ids)) {
2679 			/* add tx-queue to CPU/rx-queue maps */
2680 			int pos = 0;
2681 
2682 			map = xmap_dereference(new_dev_maps->attr_map[tci]);
2683 			while ((pos < map->len) && (map->queues[pos] != index))
2684 				pos++;
2685 
2686 			if (pos == map->len)
2687 				map->queues[map->len++] = index;
2688 #ifdef CONFIG_NUMA
2689 			if (!is_rxqs_map) {
2690 				if (numa_node_id == -2)
2691 					numa_node_id = cpu_to_node(j);
2692 				else if (numa_node_id != cpu_to_node(j))
2693 					numa_node_id = -1;
2694 			}
2695 #endif
2696 		} else if (dev_maps) {
2697 			/* fill in the new device map from the old device map */
2698 			map = xmap_dereference(dev_maps->attr_map[tci]);
2699 			RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2700 		}
2701 
2702 		/* copy maps belonging to foreign traffic classes */
2703 		for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2704 			/* fill in the new device map from the old device map */
2705 			map = xmap_dereference(dev_maps->attr_map[tci]);
2706 			RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2707 		}
2708 	}
2709 
2710 	if (is_rxqs_map)
2711 		rcu_assign_pointer(dev->xps_rxqs_map, new_dev_maps);
2712 	else
2713 		rcu_assign_pointer(dev->xps_cpus_map, new_dev_maps);
2714 
2715 	/* Cleanup old maps */
2716 	if (!dev_maps)
2717 		goto out_no_old_maps;
2718 
2719 	for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2720 	     j < nr_ids;) {
2721 		for (i = num_tc, tci = j * num_tc; i--; tci++) {
2722 			new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2723 			map = xmap_dereference(dev_maps->attr_map[tci]);
2724 			if (map && map != new_map)
2725 				kfree_rcu(map, rcu);
2726 		}
2727 	}
2728 
2729 	kfree_rcu(dev_maps, rcu);
2730 
2731 out_no_old_maps:
2732 	dev_maps = new_dev_maps;
2733 	active = true;
2734 
2735 out_no_new_maps:
2736 	if (!is_rxqs_map) {
2737 		/* update Tx queue numa node */
2738 		netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2739 					     (numa_node_id >= 0) ?
2740 					     numa_node_id : NUMA_NO_NODE);
2741 	}
2742 
2743 	if (!dev_maps)
2744 		goto out_no_maps;
2745 
2746 	/* removes tx-queue from unused CPUs/rx-queues */
2747 	for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2748 	     j < nr_ids;) {
2749 		for (i = tc, tci = j * num_tc; i--; tci++)
2750 			active |= remove_xps_queue(dev_maps, tci, index);
2751 		if (!netif_attr_test_mask(j, mask, nr_ids) ||
2752 		    !netif_attr_test_online(j, online_mask, nr_ids))
2753 			active |= remove_xps_queue(dev_maps, tci, index);
2754 		for (i = num_tc - tc, tci++; --i; tci++)
2755 			active |= remove_xps_queue(dev_maps, tci, index);
2756 	}
2757 
2758 	/* free map if not active */
2759 	if (!active)
2760 		reset_xps_maps(dev, dev_maps, is_rxqs_map);
2761 
2762 out_no_maps:
2763 	mutex_unlock(&xps_map_mutex);
2764 
2765 	return 0;
2766 error:
2767 	/* remove any maps that we added */
2768 	for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2769 	     j < nr_ids;) {
2770 		for (i = num_tc, tci = j * num_tc; i--; tci++) {
2771 			new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2772 			map = dev_maps ?
2773 			      xmap_dereference(dev_maps->attr_map[tci]) :
2774 			      NULL;
2775 			if (new_map && new_map != map)
2776 				kfree(new_map);
2777 		}
2778 	}
2779 
2780 	mutex_unlock(&xps_map_mutex);
2781 
2782 	kfree(new_dev_maps);
2783 	return -ENOMEM;
2784 }
2785 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2786 
2787 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2788 			u16 index)
2789 {
2790 	int ret;
2791 
2792 	cpus_read_lock();
2793 	ret =  __netif_set_xps_queue(dev, cpumask_bits(mask), index, false);
2794 	cpus_read_unlock();
2795 
2796 	return ret;
2797 }
2798 EXPORT_SYMBOL(netif_set_xps_queue);
2799 
2800 #endif
2801 static void netdev_unbind_all_sb_channels(struct net_device *dev)
2802 {
2803 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2804 
2805 	/* Unbind any subordinate channels */
2806 	while (txq-- != &dev->_tx[0]) {
2807 		if (txq->sb_dev)
2808 			netdev_unbind_sb_channel(dev, txq->sb_dev);
2809 	}
2810 }
2811 
2812 void netdev_reset_tc(struct net_device *dev)
2813 {
2814 #ifdef CONFIG_XPS
2815 	netif_reset_xps_queues_gt(dev, 0);
2816 #endif
2817 	netdev_unbind_all_sb_channels(dev);
2818 
2819 	/* Reset TC configuration of device */
2820 	dev->num_tc = 0;
2821 	memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2822 	memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2823 }
2824 EXPORT_SYMBOL(netdev_reset_tc);
2825 
2826 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2827 {
2828 	if (tc >= dev->num_tc)
2829 		return -EINVAL;
2830 
2831 #ifdef CONFIG_XPS
2832 	netif_reset_xps_queues(dev, offset, count);
2833 #endif
2834 	dev->tc_to_txq[tc].count = count;
2835 	dev->tc_to_txq[tc].offset = offset;
2836 	return 0;
2837 }
2838 EXPORT_SYMBOL(netdev_set_tc_queue);
2839 
2840 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2841 {
2842 	if (num_tc > TC_MAX_QUEUE)
2843 		return -EINVAL;
2844 
2845 #ifdef CONFIG_XPS
2846 	netif_reset_xps_queues_gt(dev, 0);
2847 #endif
2848 	netdev_unbind_all_sb_channels(dev);
2849 
2850 	dev->num_tc = num_tc;
2851 	return 0;
2852 }
2853 EXPORT_SYMBOL(netdev_set_num_tc);
2854 
2855 void netdev_unbind_sb_channel(struct net_device *dev,
2856 			      struct net_device *sb_dev)
2857 {
2858 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2859 
2860 #ifdef CONFIG_XPS
2861 	netif_reset_xps_queues_gt(sb_dev, 0);
2862 #endif
2863 	memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2864 	memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2865 
2866 	while (txq-- != &dev->_tx[0]) {
2867 		if (txq->sb_dev == sb_dev)
2868 			txq->sb_dev = NULL;
2869 	}
2870 }
2871 EXPORT_SYMBOL(netdev_unbind_sb_channel);
2872 
2873 int netdev_bind_sb_channel_queue(struct net_device *dev,
2874 				 struct net_device *sb_dev,
2875 				 u8 tc, u16 count, u16 offset)
2876 {
2877 	/* Make certain the sb_dev and dev are already configured */
2878 	if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2879 		return -EINVAL;
2880 
2881 	/* We cannot hand out queues we don't have */
2882 	if ((offset + count) > dev->real_num_tx_queues)
2883 		return -EINVAL;
2884 
2885 	/* Record the mapping */
2886 	sb_dev->tc_to_txq[tc].count = count;
2887 	sb_dev->tc_to_txq[tc].offset = offset;
2888 
2889 	/* Provide a way for Tx queue to find the tc_to_txq map or
2890 	 * XPS map for itself.
2891 	 */
2892 	while (count--)
2893 		netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2894 
2895 	return 0;
2896 }
2897 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2898 
2899 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2900 {
2901 	/* Do not use a multiqueue device to represent a subordinate channel */
2902 	if (netif_is_multiqueue(dev))
2903 		return -ENODEV;
2904 
2905 	/* We allow channels 1 - 32767 to be used for subordinate channels.
2906 	 * Channel 0 is meant to be "native" mode and used only to represent
2907 	 * the main root device. We allow writing 0 to reset the device back
2908 	 * to normal mode after being used as a subordinate channel.
2909 	 */
2910 	if (channel > S16_MAX)
2911 		return -EINVAL;
2912 
2913 	dev->num_tc = -channel;
2914 
2915 	return 0;
2916 }
2917 EXPORT_SYMBOL(netdev_set_sb_channel);
2918 
2919 /*
2920  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2921  * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2922  */
2923 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2924 {
2925 	bool disabling;
2926 	int rc;
2927 
2928 	disabling = txq < dev->real_num_tx_queues;
2929 
2930 	if (txq < 1 || txq > dev->num_tx_queues)
2931 		return -EINVAL;
2932 
2933 	if (dev->reg_state == NETREG_REGISTERED ||
2934 	    dev->reg_state == NETREG_UNREGISTERING) {
2935 		ASSERT_RTNL();
2936 
2937 		rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2938 						  txq);
2939 		if (rc)
2940 			return rc;
2941 
2942 		if (dev->num_tc)
2943 			netif_setup_tc(dev, txq);
2944 
2945 		dev->real_num_tx_queues = txq;
2946 
2947 		if (disabling) {
2948 			synchronize_net();
2949 			qdisc_reset_all_tx_gt(dev, txq);
2950 #ifdef CONFIG_XPS
2951 			netif_reset_xps_queues_gt(dev, txq);
2952 #endif
2953 		}
2954 	} else {
2955 		dev->real_num_tx_queues = txq;
2956 	}
2957 
2958 	return 0;
2959 }
2960 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2961 
2962 #ifdef CONFIG_SYSFS
2963 /**
2964  *	netif_set_real_num_rx_queues - set actual number of RX queues used
2965  *	@dev: Network device
2966  *	@rxq: Actual number of RX queues
2967  *
2968  *	This must be called either with the rtnl_lock held or before
2969  *	registration of the net device.  Returns 0 on success, or a
2970  *	negative error code.  If called before registration, it always
2971  *	succeeds.
2972  */
2973 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2974 {
2975 	int rc;
2976 
2977 	if (rxq < 1 || rxq > dev->num_rx_queues)
2978 		return -EINVAL;
2979 
2980 	if (dev->reg_state == NETREG_REGISTERED) {
2981 		ASSERT_RTNL();
2982 
2983 		rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2984 						  rxq);
2985 		if (rc)
2986 			return rc;
2987 	}
2988 
2989 	dev->real_num_rx_queues = rxq;
2990 	return 0;
2991 }
2992 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2993 #endif
2994 
2995 /**
2996  * netif_get_num_default_rss_queues - default number of RSS queues
2997  *
2998  * This routine should set an upper limit on the number of RSS queues
2999  * used by default by multiqueue devices.
3000  */
3001 int netif_get_num_default_rss_queues(void)
3002 {
3003 	return is_kdump_kernel() ?
3004 		1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
3005 }
3006 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3007 
3008 static void __netif_reschedule(struct Qdisc *q)
3009 {
3010 	struct softnet_data *sd;
3011 	unsigned long flags;
3012 
3013 	local_irq_save(flags);
3014 	sd = this_cpu_ptr(&softnet_data);
3015 	q->next_sched = NULL;
3016 	*sd->output_queue_tailp = q;
3017 	sd->output_queue_tailp = &q->next_sched;
3018 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
3019 	local_irq_restore(flags);
3020 }
3021 
3022 void __netif_schedule(struct Qdisc *q)
3023 {
3024 	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3025 		__netif_reschedule(q);
3026 }
3027 EXPORT_SYMBOL(__netif_schedule);
3028 
3029 struct dev_kfree_skb_cb {
3030 	enum skb_free_reason reason;
3031 };
3032 
3033 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
3034 {
3035 	return (struct dev_kfree_skb_cb *)skb->cb;
3036 }
3037 
3038 void netif_schedule_queue(struct netdev_queue *txq)
3039 {
3040 	rcu_read_lock();
3041 	if (!netif_xmit_stopped(txq)) {
3042 		struct Qdisc *q = rcu_dereference(txq->qdisc);
3043 
3044 		__netif_schedule(q);
3045 	}
3046 	rcu_read_unlock();
3047 }
3048 EXPORT_SYMBOL(netif_schedule_queue);
3049 
3050 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3051 {
3052 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3053 		struct Qdisc *q;
3054 
3055 		rcu_read_lock();
3056 		q = rcu_dereference(dev_queue->qdisc);
3057 		__netif_schedule(q);
3058 		rcu_read_unlock();
3059 	}
3060 }
3061 EXPORT_SYMBOL(netif_tx_wake_queue);
3062 
3063 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
3064 {
3065 	unsigned long flags;
3066 
3067 	if (unlikely(!skb))
3068 		return;
3069 
3070 	if (likely(refcount_read(&skb->users) == 1)) {
3071 		smp_rmb();
3072 		refcount_set(&skb->users, 0);
3073 	} else if (likely(!refcount_dec_and_test(&skb->users))) {
3074 		return;
3075 	}
3076 	get_kfree_skb_cb(skb)->reason = reason;
3077 	local_irq_save(flags);
3078 	skb->next = __this_cpu_read(softnet_data.completion_queue);
3079 	__this_cpu_write(softnet_data.completion_queue, skb);
3080 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
3081 	local_irq_restore(flags);
3082 }
3083 EXPORT_SYMBOL(__dev_kfree_skb_irq);
3084 
3085 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
3086 {
3087 	if (in_irq() || irqs_disabled())
3088 		__dev_kfree_skb_irq(skb, reason);
3089 	else
3090 		dev_kfree_skb(skb);
3091 }
3092 EXPORT_SYMBOL(__dev_kfree_skb_any);
3093 
3094 
3095 /**
3096  * netif_device_detach - mark device as removed
3097  * @dev: network device
3098  *
3099  * Mark device as removed from system and therefore no longer available.
3100  */
3101 void netif_device_detach(struct net_device *dev)
3102 {
3103 	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3104 	    netif_running(dev)) {
3105 		netif_tx_stop_all_queues(dev);
3106 	}
3107 }
3108 EXPORT_SYMBOL(netif_device_detach);
3109 
3110 /**
3111  * netif_device_attach - mark device as attached
3112  * @dev: network device
3113  *
3114  * Mark device as attached from system and restart if needed.
3115  */
3116 void netif_device_attach(struct net_device *dev)
3117 {
3118 	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3119 	    netif_running(dev)) {
3120 		netif_tx_wake_all_queues(dev);
3121 		__netdev_watchdog_up(dev);
3122 	}
3123 }
3124 EXPORT_SYMBOL(netif_device_attach);
3125 
3126 /*
3127  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3128  * to be used as a distribution range.
3129  */
3130 static u16 skb_tx_hash(const struct net_device *dev,
3131 		       const struct net_device *sb_dev,
3132 		       struct sk_buff *skb)
3133 {
3134 	u32 hash;
3135 	u16 qoffset = 0;
3136 	u16 qcount = dev->real_num_tx_queues;
3137 
3138 	if (dev->num_tc) {
3139 		u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3140 
3141 		qoffset = sb_dev->tc_to_txq[tc].offset;
3142 		qcount = sb_dev->tc_to_txq[tc].count;
3143 	}
3144 
3145 	if (skb_rx_queue_recorded(skb)) {
3146 		hash = skb_get_rx_queue(skb);
3147 		if (hash >= qoffset)
3148 			hash -= qoffset;
3149 		while (unlikely(hash >= qcount))
3150 			hash -= qcount;
3151 		return hash + qoffset;
3152 	}
3153 
3154 	return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3155 }
3156 
3157 static void skb_warn_bad_offload(const struct sk_buff *skb)
3158 {
3159 	static const netdev_features_t null_features;
3160 	struct net_device *dev = skb->dev;
3161 	const char *name = "";
3162 
3163 	if (!net_ratelimit())
3164 		return;
3165 
3166 	if (dev) {
3167 		if (dev->dev.parent)
3168 			name = dev_driver_string(dev->dev.parent);
3169 		else
3170 			name = netdev_name(dev);
3171 	}
3172 	skb_dump(KERN_WARNING, skb, false);
3173 	WARN(1, "%s: caps=(%pNF, %pNF)\n",
3174 	     name, dev ? &dev->features : &null_features,
3175 	     skb->sk ? &skb->sk->sk_route_caps : &null_features);
3176 }
3177 
3178 /*
3179  * Invalidate hardware checksum when packet is to be mangled, and
3180  * complete checksum manually on outgoing path.
3181  */
3182 int skb_checksum_help(struct sk_buff *skb)
3183 {
3184 	__wsum csum;
3185 	int ret = 0, offset;
3186 
3187 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3188 		goto out_set_summed;
3189 
3190 	if (unlikely(skb_shinfo(skb)->gso_size)) {
3191 		skb_warn_bad_offload(skb);
3192 		return -EINVAL;
3193 	}
3194 
3195 	/* Before computing a checksum, we should make sure no frag could
3196 	 * be modified by an external entity : checksum could be wrong.
3197 	 */
3198 	if (skb_has_shared_frag(skb)) {
3199 		ret = __skb_linearize(skb);
3200 		if (ret)
3201 			goto out;
3202 	}
3203 
3204 	offset = skb_checksum_start_offset(skb);
3205 	BUG_ON(offset >= skb_headlen(skb));
3206 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
3207 
3208 	offset += skb->csum_offset;
3209 	BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
3210 
3211 	ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3212 	if (ret)
3213 		goto out;
3214 
3215 	*(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3216 out_set_summed:
3217 	skb->ip_summed = CHECKSUM_NONE;
3218 out:
3219 	return ret;
3220 }
3221 EXPORT_SYMBOL(skb_checksum_help);
3222 
3223 int skb_crc32c_csum_help(struct sk_buff *skb)
3224 {
3225 	__le32 crc32c_csum;
3226 	int ret = 0, offset, start;
3227 
3228 	if (skb->ip_summed != CHECKSUM_PARTIAL)
3229 		goto out;
3230 
3231 	if (unlikely(skb_is_gso(skb)))
3232 		goto out;
3233 
3234 	/* Before computing a checksum, we should make sure no frag could
3235 	 * be modified by an external entity : checksum could be wrong.
3236 	 */
3237 	if (unlikely(skb_has_shared_frag(skb))) {
3238 		ret = __skb_linearize(skb);
3239 		if (ret)
3240 			goto out;
3241 	}
3242 	start = skb_checksum_start_offset(skb);
3243 	offset = start + offsetof(struct sctphdr, checksum);
3244 	if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3245 		ret = -EINVAL;
3246 		goto out;
3247 	}
3248 
3249 	ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3250 	if (ret)
3251 		goto out;
3252 
3253 	crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3254 						  skb->len - start, ~(__u32)0,
3255 						  crc32c_csum_stub));
3256 	*(__le32 *)(skb->data + offset) = crc32c_csum;
3257 	skb->ip_summed = CHECKSUM_NONE;
3258 	skb->csum_not_inet = 0;
3259 out:
3260 	return ret;
3261 }
3262 
3263 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3264 {
3265 	__be16 type = skb->protocol;
3266 
3267 	/* Tunnel gso handlers can set protocol to ethernet. */
3268 	if (type == htons(ETH_P_TEB)) {
3269 		struct ethhdr *eth;
3270 
3271 		if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3272 			return 0;
3273 
3274 		eth = (struct ethhdr *)skb->data;
3275 		type = eth->h_proto;
3276 	}
3277 
3278 	return __vlan_get_protocol(skb, type, depth);
3279 }
3280 
3281 /**
3282  *	skb_mac_gso_segment - mac layer segmentation handler.
3283  *	@skb: buffer to segment
3284  *	@features: features for the output path (see dev->features)
3285  */
3286 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3287 				    netdev_features_t features)
3288 {
3289 	struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
3290 	struct packet_offload *ptype;
3291 	int vlan_depth = skb->mac_len;
3292 	__be16 type = skb_network_protocol(skb, &vlan_depth);
3293 
3294 	if (unlikely(!type))
3295 		return ERR_PTR(-EINVAL);
3296 
3297 	__skb_pull(skb, vlan_depth);
3298 
3299 	rcu_read_lock();
3300 	list_for_each_entry_rcu(ptype, &offload_base, list) {
3301 		if (ptype->type == type && ptype->callbacks.gso_segment) {
3302 			segs = ptype->callbacks.gso_segment(skb, features);
3303 			break;
3304 		}
3305 	}
3306 	rcu_read_unlock();
3307 
3308 	__skb_push(skb, skb->data - skb_mac_header(skb));
3309 
3310 	return segs;
3311 }
3312 EXPORT_SYMBOL(skb_mac_gso_segment);
3313 
3314 
3315 /* openvswitch calls this on rx path, so we need a different check.
3316  */
3317 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
3318 {
3319 	if (tx_path)
3320 		return skb->ip_summed != CHECKSUM_PARTIAL &&
3321 		       skb->ip_summed != CHECKSUM_UNNECESSARY;
3322 
3323 	return skb->ip_summed == CHECKSUM_NONE;
3324 }
3325 
3326 /**
3327  *	__skb_gso_segment - Perform segmentation on skb.
3328  *	@skb: buffer to segment
3329  *	@features: features for the output path (see dev->features)
3330  *	@tx_path: whether it is called in TX path
3331  *
3332  *	This function segments the given skb and returns a list of segments.
3333  *
3334  *	It may return NULL if the skb requires no segmentation.  This is
3335  *	only possible when GSO is used for verifying header integrity.
3336  *
3337  *	Segmentation preserves SKB_GSO_CB_OFFSET bytes of previous skb cb.
3338  */
3339 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3340 				  netdev_features_t features, bool tx_path)
3341 {
3342 	struct sk_buff *segs;
3343 
3344 	if (unlikely(skb_needs_check(skb, tx_path))) {
3345 		int err;
3346 
3347 		/* We're going to init ->check field in TCP or UDP header */
3348 		err = skb_cow_head(skb, 0);
3349 		if (err < 0)
3350 			return ERR_PTR(err);
3351 	}
3352 
3353 	/* Only report GSO partial support if it will enable us to
3354 	 * support segmentation on this frame without needing additional
3355 	 * work.
3356 	 */
3357 	if (features & NETIF_F_GSO_PARTIAL) {
3358 		netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
3359 		struct net_device *dev = skb->dev;
3360 
3361 		partial_features |= dev->features & dev->gso_partial_features;
3362 		if (!skb_gso_ok(skb, features | partial_features))
3363 			features &= ~NETIF_F_GSO_PARTIAL;
3364 	}
3365 
3366 	BUILD_BUG_ON(SKB_GSO_CB_OFFSET +
3367 		     sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
3368 
3369 	SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3370 	SKB_GSO_CB(skb)->encap_level = 0;
3371 
3372 	skb_reset_mac_header(skb);
3373 	skb_reset_mac_len(skb);
3374 
3375 	segs = skb_mac_gso_segment(skb, features);
3376 
3377 	if (segs != skb && unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
3378 		skb_warn_bad_offload(skb);
3379 
3380 	return segs;
3381 }
3382 EXPORT_SYMBOL(__skb_gso_segment);
3383 
3384 /* Take action when hardware reception checksum errors are detected. */
3385 #ifdef CONFIG_BUG
3386 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3387 {
3388 	if (net_ratelimit()) {
3389 		pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
3390 		skb_dump(KERN_ERR, skb, true);
3391 		dump_stack();
3392 	}
3393 }
3394 EXPORT_SYMBOL(netdev_rx_csum_fault);
3395 #endif
3396 
3397 /* XXX: check that highmem exists at all on the given machine. */
3398 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3399 {
3400 #ifdef CONFIG_HIGHMEM
3401 	int i;
3402 
3403 	if (!(dev->features & NETIF_F_HIGHDMA)) {
3404 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3405 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3406 
3407 			if (PageHighMem(skb_frag_page(frag)))
3408 				return 1;
3409 		}
3410 	}
3411 #endif
3412 	return 0;
3413 }
3414 
3415 /* If MPLS offload request, verify we are testing hardware MPLS features
3416  * instead of standard features for the netdev.
3417  */
3418 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3419 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3420 					   netdev_features_t features,
3421 					   __be16 type)
3422 {
3423 	if (eth_p_mpls(type))
3424 		features &= skb->dev->mpls_features;
3425 
3426 	return features;
3427 }
3428 #else
3429 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3430 					   netdev_features_t features,
3431 					   __be16 type)
3432 {
3433 	return features;
3434 }
3435 #endif
3436 
3437 static netdev_features_t harmonize_features(struct sk_buff *skb,
3438 	netdev_features_t features)
3439 {
3440 	int tmp;
3441 	__be16 type;
3442 
3443 	type = skb_network_protocol(skb, &tmp);
3444 	features = net_mpls_features(skb, features, type);
3445 
3446 	if (skb->ip_summed != CHECKSUM_NONE &&
3447 	    !can_checksum_protocol(features, type)) {
3448 		features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3449 	}
3450 	if (illegal_highdma(skb->dev, skb))
3451 		features &= ~NETIF_F_SG;
3452 
3453 	return features;
3454 }
3455 
3456 netdev_features_t passthru_features_check(struct sk_buff *skb,
3457 					  struct net_device *dev,
3458 					  netdev_features_t features)
3459 {
3460 	return features;
3461 }
3462 EXPORT_SYMBOL(passthru_features_check);
3463 
3464 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3465 					     struct net_device *dev,
3466 					     netdev_features_t features)
3467 {
3468 	return vlan_features_check(skb, features);
3469 }
3470 
3471 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3472 					    struct net_device *dev,
3473 					    netdev_features_t features)
3474 {
3475 	u16 gso_segs = skb_shinfo(skb)->gso_segs;
3476 
3477 	if (gso_segs > dev->gso_max_segs)
3478 		return features & ~NETIF_F_GSO_MASK;
3479 
3480 	/* Support for GSO partial features requires software
3481 	 * intervention before we can actually process the packets
3482 	 * so we need to strip support for any partial features now
3483 	 * and we can pull them back in after we have partially
3484 	 * segmented the frame.
3485 	 */
3486 	if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3487 		features &= ~dev->gso_partial_features;
3488 
3489 	/* Make sure to clear the IPv4 ID mangling feature if the
3490 	 * IPv4 header has the potential to be fragmented.
3491 	 */
3492 	if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3493 		struct iphdr *iph = skb->encapsulation ?
3494 				    inner_ip_hdr(skb) : ip_hdr(skb);
3495 
3496 		if (!(iph->frag_off & htons(IP_DF)))
3497 			features &= ~NETIF_F_TSO_MANGLEID;
3498 	}
3499 
3500 	return features;
3501 }
3502 
3503 netdev_features_t netif_skb_features(struct sk_buff *skb)
3504 {
3505 	struct net_device *dev = skb->dev;
3506 	netdev_features_t features = dev->features;
3507 
3508 	if (skb_is_gso(skb))
3509 		features = gso_features_check(skb, dev, features);
3510 
3511 	/* If encapsulation offload request, verify we are testing
3512 	 * hardware encapsulation features instead of standard
3513 	 * features for the netdev
3514 	 */
3515 	if (skb->encapsulation)
3516 		features &= dev->hw_enc_features;
3517 
3518 	if (skb_vlan_tagged(skb))
3519 		features = netdev_intersect_features(features,
3520 						     dev->vlan_features |
3521 						     NETIF_F_HW_VLAN_CTAG_TX |
3522 						     NETIF_F_HW_VLAN_STAG_TX);
3523 
3524 	if (dev->netdev_ops->ndo_features_check)
3525 		features &= dev->netdev_ops->ndo_features_check(skb, dev,
3526 								features);
3527 	else
3528 		features &= dflt_features_check(skb, dev, features);
3529 
3530 	return harmonize_features(skb, features);
3531 }
3532 EXPORT_SYMBOL(netif_skb_features);
3533 
3534 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3535 		    struct netdev_queue *txq, bool more)
3536 {
3537 	unsigned int len;
3538 	int rc;
3539 
3540 	if (dev_nit_active(dev))
3541 		dev_queue_xmit_nit(skb, dev);
3542 
3543 	len = skb->len;
3544 	trace_net_dev_start_xmit(skb, dev);
3545 	rc = netdev_start_xmit(skb, dev, txq, more);
3546 	trace_net_dev_xmit(skb, rc, dev, len);
3547 
3548 	return rc;
3549 }
3550 
3551 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3552 				    struct netdev_queue *txq, int *ret)
3553 {
3554 	struct sk_buff *skb = first;
3555 	int rc = NETDEV_TX_OK;
3556 
3557 	while (skb) {
3558 		struct sk_buff *next = skb->next;
3559 
3560 		skb_mark_not_on_list(skb);
3561 		rc = xmit_one(skb, dev, txq, next != NULL);
3562 		if (unlikely(!dev_xmit_complete(rc))) {
3563 			skb->next = next;
3564 			goto out;
3565 		}
3566 
3567 		skb = next;
3568 		if (netif_tx_queue_stopped(txq) && skb) {
3569 			rc = NETDEV_TX_BUSY;
3570 			break;
3571 		}
3572 	}
3573 
3574 out:
3575 	*ret = rc;
3576 	return skb;
3577 }
3578 
3579 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3580 					  netdev_features_t features)
3581 {
3582 	if (skb_vlan_tag_present(skb) &&
3583 	    !vlan_hw_offload_capable(features, skb->vlan_proto))
3584 		skb = __vlan_hwaccel_push_inside(skb);
3585 	return skb;
3586 }
3587 
3588 int skb_csum_hwoffload_help(struct sk_buff *skb,
3589 			    const netdev_features_t features)
3590 {
3591 	if (unlikely(skb->csum_not_inet))
3592 		return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3593 			skb_crc32c_csum_help(skb);
3594 
3595 	return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb);
3596 }
3597 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3598 
3599 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3600 {
3601 	netdev_features_t features;
3602 
3603 	features = netif_skb_features(skb);
3604 	skb = validate_xmit_vlan(skb, features);
3605 	if (unlikely(!skb))
3606 		goto out_null;
3607 
3608 	skb = sk_validate_xmit_skb(skb, dev);
3609 	if (unlikely(!skb))
3610 		goto out_null;
3611 
3612 	if (netif_needs_gso(skb, features)) {
3613 		struct sk_buff *segs;
3614 
3615 		segs = skb_gso_segment(skb, features);
3616 		if (IS_ERR(segs)) {
3617 			goto out_kfree_skb;
3618 		} else if (segs) {
3619 			consume_skb(skb);
3620 			skb = segs;
3621 		}
3622 	} else {
3623 		if (skb_needs_linearize(skb, features) &&
3624 		    __skb_linearize(skb))
3625 			goto out_kfree_skb;
3626 
3627 		/* If packet is not checksummed and device does not
3628 		 * support checksumming for this protocol, complete
3629 		 * checksumming here.
3630 		 */
3631 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
3632 			if (skb->encapsulation)
3633 				skb_set_inner_transport_header(skb,
3634 							       skb_checksum_start_offset(skb));
3635 			else
3636 				skb_set_transport_header(skb,
3637 							 skb_checksum_start_offset(skb));
3638 			if (skb_csum_hwoffload_help(skb, features))
3639 				goto out_kfree_skb;
3640 		}
3641 	}
3642 
3643 	skb = validate_xmit_xfrm(skb, features, again);
3644 
3645 	return skb;
3646 
3647 out_kfree_skb:
3648 	kfree_skb(skb);
3649 out_null:
3650 	atomic_long_inc(&dev->tx_dropped);
3651 	return NULL;
3652 }
3653 
3654 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3655 {
3656 	struct sk_buff *next, *head = NULL, *tail;
3657 
3658 	for (; skb != NULL; skb = next) {
3659 		next = skb->next;
3660 		skb_mark_not_on_list(skb);
3661 
3662 		/* in case skb wont be segmented, point to itself */
3663 		skb->prev = skb;
3664 
3665 		skb = validate_xmit_skb(skb, dev, again);
3666 		if (!skb)
3667 			continue;
3668 
3669 		if (!head)
3670 			head = skb;
3671 		else
3672 			tail->next = skb;
3673 		/* If skb was segmented, skb->prev points to
3674 		 * the last segment. If not, it still contains skb.
3675 		 */
3676 		tail = skb->prev;
3677 	}
3678 	return head;
3679 }
3680 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3681 
3682 static void qdisc_pkt_len_init(struct sk_buff *skb)
3683 {
3684 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
3685 
3686 	qdisc_skb_cb(skb)->pkt_len = skb->len;
3687 
3688 	/* To get more precise estimation of bytes sent on wire,
3689 	 * we add to pkt_len the headers size of all segments
3690 	 */
3691 	if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3692 		unsigned int hdr_len;
3693 		u16 gso_segs = shinfo->gso_segs;
3694 
3695 		/* mac layer + network layer */
3696 		hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3697 
3698 		/* + transport layer */
3699 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3700 			const struct tcphdr *th;
3701 			struct tcphdr _tcphdr;
3702 
3703 			th = skb_header_pointer(skb, skb_transport_offset(skb),
3704 						sizeof(_tcphdr), &_tcphdr);
3705 			if (likely(th))
3706 				hdr_len += __tcp_hdrlen(th);
3707 		} else {
3708 			struct udphdr _udphdr;
3709 
3710 			if (skb_header_pointer(skb, skb_transport_offset(skb),
3711 					       sizeof(_udphdr), &_udphdr))
3712 				hdr_len += sizeof(struct udphdr);
3713 		}
3714 
3715 		if (shinfo->gso_type & SKB_GSO_DODGY)
3716 			gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3717 						shinfo->gso_size);
3718 
3719 		qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3720 	}
3721 }
3722 
3723 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3724 				 struct net_device *dev,
3725 				 struct netdev_queue *txq)
3726 {
3727 	spinlock_t *root_lock = qdisc_lock(q);
3728 	struct sk_buff *to_free = NULL;
3729 	bool contended;
3730 	int rc;
3731 
3732 	qdisc_calculate_pkt_len(skb, q);
3733 
3734 	if (q->flags & TCQ_F_NOLOCK) {
3735 		rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3736 		qdisc_run(q);
3737 
3738 		if (unlikely(to_free))
3739 			kfree_skb_list(to_free);
3740 		return rc;
3741 	}
3742 
3743 	/*
3744 	 * Heuristic to force contended enqueues to serialize on a
3745 	 * separate lock before trying to get qdisc main lock.
3746 	 * This permits qdisc->running owner to get the lock more
3747 	 * often and dequeue packets faster.
3748 	 */
3749 	contended = qdisc_is_running(q);
3750 	if (unlikely(contended))
3751 		spin_lock(&q->busylock);
3752 
3753 	spin_lock(root_lock);
3754 	if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3755 		__qdisc_drop(skb, &to_free);
3756 		rc = NET_XMIT_DROP;
3757 	} else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3758 		   qdisc_run_begin(q)) {
3759 		/*
3760 		 * This is a work-conserving queue; there are no old skbs
3761 		 * waiting to be sent out; and the qdisc is not running -
3762 		 * xmit the skb directly.
3763 		 */
3764 
3765 		qdisc_bstats_update(q, skb);
3766 
3767 		if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3768 			if (unlikely(contended)) {
3769 				spin_unlock(&q->busylock);
3770 				contended = false;
3771 			}
3772 			__qdisc_run(q);
3773 		}
3774 
3775 		qdisc_run_end(q);
3776 		rc = NET_XMIT_SUCCESS;
3777 	} else {
3778 		rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3779 		if (qdisc_run_begin(q)) {
3780 			if (unlikely(contended)) {
3781 				spin_unlock(&q->busylock);
3782 				contended = false;
3783 			}
3784 			__qdisc_run(q);
3785 			qdisc_run_end(q);
3786 		}
3787 	}
3788 	spin_unlock(root_lock);
3789 	if (unlikely(to_free))
3790 		kfree_skb_list(to_free);
3791 	if (unlikely(contended))
3792 		spin_unlock(&q->busylock);
3793 	return rc;
3794 }
3795 
3796 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3797 static void skb_update_prio(struct sk_buff *skb)
3798 {
3799 	const struct netprio_map *map;
3800 	const struct sock *sk;
3801 	unsigned int prioidx;
3802 
3803 	if (skb->priority)
3804 		return;
3805 	map = rcu_dereference_bh(skb->dev->priomap);
3806 	if (!map)
3807 		return;
3808 	sk = skb_to_full_sk(skb);
3809 	if (!sk)
3810 		return;
3811 
3812 	prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3813 
3814 	if (prioidx < map->priomap_len)
3815 		skb->priority = map->priomap[prioidx];
3816 }
3817 #else
3818 #define skb_update_prio(skb)
3819 #endif
3820 
3821 /**
3822  *	dev_loopback_xmit - loop back @skb
3823  *	@net: network namespace this loopback is happening in
3824  *	@sk:  sk needed to be a netfilter okfn
3825  *	@skb: buffer to transmit
3826  */
3827 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3828 {
3829 	skb_reset_mac_header(skb);
3830 	__skb_pull(skb, skb_network_offset(skb));
3831 	skb->pkt_type = PACKET_LOOPBACK;
3832 	skb->ip_summed = CHECKSUM_UNNECESSARY;
3833 	WARN_ON(!skb_dst(skb));
3834 	skb_dst_force(skb);
3835 	netif_rx_ni(skb);
3836 	return 0;
3837 }
3838 EXPORT_SYMBOL(dev_loopback_xmit);
3839 
3840 #ifdef CONFIG_NET_EGRESS
3841 static struct sk_buff *
3842 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3843 {
3844 	struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3845 	struct tcf_result cl_res;
3846 
3847 	if (!miniq)
3848 		return skb;
3849 
3850 	/* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3851 	mini_qdisc_bstats_cpu_update(miniq, skb);
3852 
3853 	switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
3854 	case TC_ACT_OK:
3855 	case TC_ACT_RECLASSIFY:
3856 		skb->tc_index = TC_H_MIN(cl_res.classid);
3857 		break;
3858 	case TC_ACT_SHOT:
3859 		mini_qdisc_qstats_cpu_drop(miniq);
3860 		*ret = NET_XMIT_DROP;
3861 		kfree_skb(skb);
3862 		return NULL;
3863 	case TC_ACT_STOLEN:
3864 	case TC_ACT_QUEUED:
3865 	case TC_ACT_TRAP:
3866 		*ret = NET_XMIT_SUCCESS;
3867 		consume_skb(skb);
3868 		return NULL;
3869 	case TC_ACT_REDIRECT:
3870 		/* No need to push/pop skb's mac_header here on egress! */
3871 		skb_do_redirect(skb);
3872 		*ret = NET_XMIT_SUCCESS;
3873 		return NULL;
3874 	default:
3875 		break;
3876 	}
3877 
3878 	return skb;
3879 }
3880 #endif /* CONFIG_NET_EGRESS */
3881 
3882 #ifdef CONFIG_XPS
3883 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
3884 			       struct xps_dev_maps *dev_maps, unsigned int tci)
3885 {
3886 	struct xps_map *map;
3887 	int queue_index = -1;
3888 
3889 	if (dev->num_tc) {
3890 		tci *= dev->num_tc;
3891 		tci += netdev_get_prio_tc_map(dev, skb->priority);
3892 	}
3893 
3894 	map = rcu_dereference(dev_maps->attr_map[tci]);
3895 	if (map) {
3896 		if (map->len == 1)
3897 			queue_index = map->queues[0];
3898 		else
3899 			queue_index = map->queues[reciprocal_scale(
3900 						skb_get_hash(skb), map->len)];
3901 		if (unlikely(queue_index >= dev->real_num_tx_queues))
3902 			queue_index = -1;
3903 	}
3904 	return queue_index;
3905 }
3906 #endif
3907 
3908 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
3909 			 struct sk_buff *skb)
3910 {
3911 #ifdef CONFIG_XPS
3912 	struct xps_dev_maps *dev_maps;
3913 	struct sock *sk = skb->sk;
3914 	int queue_index = -1;
3915 
3916 	if (!static_key_false(&xps_needed))
3917 		return -1;
3918 
3919 	rcu_read_lock();
3920 	if (!static_key_false(&xps_rxqs_needed))
3921 		goto get_cpus_map;
3922 
3923 	dev_maps = rcu_dereference(sb_dev->xps_rxqs_map);
3924 	if (dev_maps) {
3925 		int tci = sk_rx_queue_get(sk);
3926 
3927 		if (tci >= 0 && tci < dev->num_rx_queues)
3928 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3929 							  tci);
3930 	}
3931 
3932 get_cpus_map:
3933 	if (queue_index < 0) {
3934 		dev_maps = rcu_dereference(sb_dev->xps_cpus_map);
3935 		if (dev_maps) {
3936 			unsigned int tci = skb->sender_cpu - 1;
3937 
3938 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3939 							  tci);
3940 		}
3941 	}
3942 	rcu_read_unlock();
3943 
3944 	return queue_index;
3945 #else
3946 	return -1;
3947 #endif
3948 }
3949 
3950 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
3951 		     struct net_device *sb_dev)
3952 {
3953 	return 0;
3954 }
3955 EXPORT_SYMBOL(dev_pick_tx_zero);
3956 
3957 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
3958 		       struct net_device *sb_dev)
3959 {
3960 	return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
3961 }
3962 EXPORT_SYMBOL(dev_pick_tx_cpu_id);
3963 
3964 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
3965 		     struct net_device *sb_dev)
3966 {
3967 	struct sock *sk = skb->sk;
3968 	int queue_index = sk_tx_queue_get(sk);
3969 
3970 	sb_dev = sb_dev ? : dev;
3971 
3972 	if (queue_index < 0 || skb->ooo_okay ||
3973 	    queue_index >= dev->real_num_tx_queues) {
3974 		int new_index = get_xps_queue(dev, sb_dev, skb);
3975 
3976 		if (new_index < 0)
3977 			new_index = skb_tx_hash(dev, sb_dev, skb);
3978 
3979 		if (queue_index != new_index && sk &&
3980 		    sk_fullsock(sk) &&
3981 		    rcu_access_pointer(sk->sk_dst_cache))
3982 			sk_tx_queue_set(sk, new_index);
3983 
3984 		queue_index = new_index;
3985 	}
3986 
3987 	return queue_index;
3988 }
3989 EXPORT_SYMBOL(netdev_pick_tx);
3990 
3991 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
3992 					 struct sk_buff *skb,
3993 					 struct net_device *sb_dev)
3994 {
3995 	int queue_index = 0;
3996 
3997 #ifdef CONFIG_XPS
3998 	u32 sender_cpu = skb->sender_cpu - 1;
3999 
4000 	if (sender_cpu >= (u32)NR_CPUS)
4001 		skb->sender_cpu = raw_smp_processor_id() + 1;
4002 #endif
4003 
4004 	if (dev->real_num_tx_queues != 1) {
4005 		const struct net_device_ops *ops = dev->netdev_ops;
4006 
4007 		if (ops->ndo_select_queue)
4008 			queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
4009 		else
4010 			queue_index = netdev_pick_tx(dev, skb, sb_dev);
4011 
4012 		queue_index = netdev_cap_txqueue(dev, queue_index);
4013 	}
4014 
4015 	skb_set_queue_mapping(skb, queue_index);
4016 	return netdev_get_tx_queue(dev, queue_index);
4017 }
4018 
4019 /**
4020  *	__dev_queue_xmit - transmit a buffer
4021  *	@skb: buffer to transmit
4022  *	@sb_dev: suboordinate device used for L2 forwarding offload
4023  *
4024  *	Queue a buffer for transmission to a network device. The caller must
4025  *	have set the device and priority and built the buffer before calling
4026  *	this function. The function can be called from an interrupt.
4027  *
4028  *	A negative errno code is returned on a failure. A success does not
4029  *	guarantee the frame will be transmitted as it may be dropped due
4030  *	to congestion or traffic shaping.
4031  *
4032  * -----------------------------------------------------------------------------------
4033  *      I notice this method can also return errors from the queue disciplines,
4034  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
4035  *      be positive.
4036  *
4037  *      Regardless of the return value, the skb is consumed, so it is currently
4038  *      difficult to retry a send to this method.  (You can bump the ref count
4039  *      before sending to hold a reference for retry if you are careful.)
4040  *
4041  *      When calling this method, interrupts MUST be enabled.  This is because
4042  *      the BH enable code must have IRQs enabled so that it will not deadlock.
4043  *          --BLG
4044  */
4045 static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
4046 {
4047 	struct net_device *dev = skb->dev;
4048 	struct netdev_queue *txq;
4049 	struct Qdisc *q;
4050 	int rc = -ENOMEM;
4051 	bool again = false;
4052 
4053 	skb_reset_mac_header(skb);
4054 
4055 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
4056 		__skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
4057 
4058 	/* Disable soft irqs for various locks below. Also
4059 	 * stops preemption for RCU.
4060 	 */
4061 	rcu_read_lock_bh();
4062 
4063 	skb_update_prio(skb);
4064 
4065 	qdisc_pkt_len_init(skb);
4066 #ifdef CONFIG_NET_CLS_ACT
4067 	skb->tc_at_ingress = 0;
4068 # ifdef CONFIG_NET_EGRESS
4069 	if (static_branch_unlikely(&egress_needed_key)) {
4070 		skb = sch_handle_egress(skb, &rc, dev);
4071 		if (!skb)
4072 			goto out;
4073 	}
4074 # endif
4075 #endif
4076 	/* If device/qdisc don't need skb->dst, release it right now while
4077 	 * its hot in this cpu cache.
4078 	 */
4079 	if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4080 		skb_dst_drop(skb);
4081 	else
4082 		skb_dst_force(skb);
4083 
4084 	txq = netdev_core_pick_tx(dev, skb, sb_dev);
4085 	q = rcu_dereference_bh(txq->qdisc);
4086 
4087 	trace_net_dev_queue(skb);
4088 	if (q->enqueue) {
4089 		rc = __dev_xmit_skb(skb, q, dev, txq);
4090 		goto out;
4091 	}
4092 
4093 	/* The device has no queue. Common case for software devices:
4094 	 * loopback, all the sorts of tunnels...
4095 
4096 	 * Really, it is unlikely that netif_tx_lock protection is necessary
4097 	 * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
4098 	 * counters.)
4099 	 * However, it is possible, that they rely on protection
4100 	 * made by us here.
4101 
4102 	 * Check this and shot the lock. It is not prone from deadlocks.
4103 	 *Either shot noqueue qdisc, it is even simpler 8)
4104 	 */
4105 	if (dev->flags & IFF_UP) {
4106 		int cpu = smp_processor_id(); /* ok because BHs are off */
4107 
4108 		if (txq->xmit_lock_owner != cpu) {
4109 			if (dev_xmit_recursion())
4110 				goto recursion_alert;
4111 
4112 			skb = validate_xmit_skb(skb, dev, &again);
4113 			if (!skb)
4114 				goto out;
4115 
4116 			HARD_TX_LOCK(dev, txq, cpu);
4117 
4118 			if (!netif_xmit_stopped(txq)) {
4119 				dev_xmit_recursion_inc();
4120 				skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4121 				dev_xmit_recursion_dec();
4122 				if (dev_xmit_complete(rc)) {
4123 					HARD_TX_UNLOCK(dev, txq);
4124 					goto out;
4125 				}
4126 			}
4127 			HARD_TX_UNLOCK(dev, txq);
4128 			net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4129 					     dev->name);
4130 		} else {
4131 			/* Recursion is detected! It is possible,
4132 			 * unfortunately
4133 			 */
4134 recursion_alert:
4135 			net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4136 					     dev->name);
4137 		}
4138 	}
4139 
4140 	rc = -ENETDOWN;
4141 	rcu_read_unlock_bh();
4142 
4143 	atomic_long_inc(&dev->tx_dropped);
4144 	kfree_skb_list(skb);
4145 	return rc;
4146 out:
4147 	rcu_read_unlock_bh();
4148 	return rc;
4149 }
4150 
4151 int dev_queue_xmit(struct sk_buff *skb)
4152 {
4153 	return __dev_queue_xmit(skb, NULL);
4154 }
4155 EXPORT_SYMBOL(dev_queue_xmit);
4156 
4157 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev)
4158 {
4159 	return __dev_queue_xmit(skb, sb_dev);
4160 }
4161 EXPORT_SYMBOL(dev_queue_xmit_accel);
4162 
4163 int dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4164 {
4165 	struct net_device *dev = skb->dev;
4166 	struct sk_buff *orig_skb = skb;
4167 	struct netdev_queue *txq;
4168 	int ret = NETDEV_TX_BUSY;
4169 	bool again = false;
4170 
4171 	if (unlikely(!netif_running(dev) ||
4172 		     !netif_carrier_ok(dev)))
4173 		goto drop;
4174 
4175 	skb = validate_xmit_skb_list(skb, dev, &again);
4176 	if (skb != orig_skb)
4177 		goto drop;
4178 
4179 	skb_set_queue_mapping(skb, queue_id);
4180 	txq = skb_get_tx_queue(dev, skb);
4181 
4182 	local_bh_disable();
4183 
4184 	HARD_TX_LOCK(dev, txq, smp_processor_id());
4185 	if (!netif_xmit_frozen_or_drv_stopped(txq))
4186 		ret = netdev_start_xmit(skb, dev, txq, false);
4187 	HARD_TX_UNLOCK(dev, txq);
4188 
4189 	local_bh_enable();
4190 
4191 	if (!dev_xmit_complete(ret))
4192 		kfree_skb(skb);
4193 
4194 	return ret;
4195 drop:
4196 	atomic_long_inc(&dev->tx_dropped);
4197 	kfree_skb_list(skb);
4198 	return NET_XMIT_DROP;
4199 }
4200 EXPORT_SYMBOL(dev_direct_xmit);
4201 
4202 /*************************************************************************
4203  *			Receiver routines
4204  *************************************************************************/
4205 
4206 int netdev_max_backlog __read_mostly = 1000;
4207 EXPORT_SYMBOL(netdev_max_backlog);
4208 
4209 int netdev_tstamp_prequeue __read_mostly = 1;
4210 int netdev_budget __read_mostly = 300;
4211 /* Must be at least 2 jiffes to guarantee 1 jiffy timeout */
4212 unsigned int __read_mostly netdev_budget_usecs = 2 * USEC_PER_SEC / HZ;
4213 int weight_p __read_mostly = 64;           /* old backlog weight */
4214 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
4215 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
4216 int dev_rx_weight __read_mostly = 64;
4217 int dev_tx_weight __read_mostly = 64;
4218 /* Maximum number of GRO_NORMAL skbs to batch up for list-RX */
4219 int gro_normal_batch __read_mostly = 8;
4220 
4221 /* Called with irq disabled */
4222 static inline void ____napi_schedule(struct softnet_data *sd,
4223 				     struct napi_struct *napi)
4224 {
4225 	list_add_tail(&napi->poll_list, &sd->poll_list);
4226 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4227 }
4228 
4229 #ifdef CONFIG_RPS
4230 
4231 /* One global table that all flow-based protocols share. */
4232 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
4233 EXPORT_SYMBOL(rps_sock_flow_table);
4234 u32 rps_cpu_mask __read_mostly;
4235 EXPORT_SYMBOL(rps_cpu_mask);
4236 
4237 struct static_key_false rps_needed __read_mostly;
4238 EXPORT_SYMBOL(rps_needed);
4239 struct static_key_false rfs_needed __read_mostly;
4240 EXPORT_SYMBOL(rfs_needed);
4241 
4242 static struct rps_dev_flow *
4243 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4244 	    struct rps_dev_flow *rflow, u16 next_cpu)
4245 {
4246 	if (next_cpu < nr_cpu_ids) {
4247 #ifdef CONFIG_RFS_ACCEL
4248 		struct netdev_rx_queue *rxqueue;
4249 		struct rps_dev_flow_table *flow_table;
4250 		struct rps_dev_flow *old_rflow;
4251 		u32 flow_id;
4252 		u16 rxq_index;
4253 		int rc;
4254 
4255 		/* Should we steer this flow to a different hardware queue? */
4256 		if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4257 		    !(dev->features & NETIF_F_NTUPLE))
4258 			goto out;
4259 		rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4260 		if (rxq_index == skb_get_rx_queue(skb))
4261 			goto out;
4262 
4263 		rxqueue = dev->_rx + rxq_index;
4264 		flow_table = rcu_dereference(rxqueue->rps_flow_table);
4265 		if (!flow_table)
4266 			goto out;
4267 		flow_id = skb_get_hash(skb) & flow_table->mask;
4268 		rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4269 							rxq_index, flow_id);
4270 		if (rc < 0)
4271 			goto out;
4272 		old_rflow = rflow;
4273 		rflow = &flow_table->flows[flow_id];
4274 		rflow->filter = rc;
4275 		if (old_rflow->filter == rflow->filter)
4276 			old_rflow->filter = RPS_NO_FILTER;
4277 	out:
4278 #endif
4279 		rflow->last_qtail =
4280 			per_cpu(softnet_data, next_cpu).input_queue_head;
4281 	}
4282 
4283 	rflow->cpu = next_cpu;
4284 	return rflow;
4285 }
4286 
4287 /*
4288  * get_rps_cpu is called from netif_receive_skb and returns the target
4289  * CPU from the RPS map of the receiving queue for a given skb.
4290  * rcu_read_lock must be held on entry.
4291  */
4292 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4293 		       struct rps_dev_flow **rflowp)
4294 {
4295 	const struct rps_sock_flow_table *sock_flow_table;
4296 	struct netdev_rx_queue *rxqueue = dev->_rx;
4297 	struct rps_dev_flow_table *flow_table;
4298 	struct rps_map *map;
4299 	int cpu = -1;
4300 	u32 tcpu;
4301 	u32 hash;
4302 
4303 	if (skb_rx_queue_recorded(skb)) {
4304 		u16 index = skb_get_rx_queue(skb);
4305 
4306 		if (unlikely(index >= dev->real_num_rx_queues)) {
4307 			WARN_ONCE(dev->real_num_rx_queues > 1,
4308 				  "%s received packet on queue %u, but number "
4309 				  "of RX queues is %u\n",
4310 				  dev->name, index, dev->real_num_rx_queues);
4311 			goto done;
4312 		}
4313 		rxqueue += index;
4314 	}
4315 
4316 	/* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4317 
4318 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
4319 	map = rcu_dereference(rxqueue->rps_map);
4320 	if (!flow_table && !map)
4321 		goto done;
4322 
4323 	skb_reset_network_header(skb);
4324 	hash = skb_get_hash(skb);
4325 	if (!hash)
4326 		goto done;
4327 
4328 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
4329 	if (flow_table && sock_flow_table) {
4330 		struct rps_dev_flow *rflow;
4331 		u32 next_cpu;
4332 		u32 ident;
4333 
4334 		/* First check into global flow table if there is a match */
4335 		ident = sock_flow_table->ents[hash & sock_flow_table->mask];
4336 		if ((ident ^ hash) & ~rps_cpu_mask)
4337 			goto try_rps;
4338 
4339 		next_cpu = ident & rps_cpu_mask;
4340 
4341 		/* OK, now we know there is a match,
4342 		 * we can look at the local (per receive queue) flow table
4343 		 */
4344 		rflow = &flow_table->flows[hash & flow_table->mask];
4345 		tcpu = rflow->cpu;
4346 
4347 		/*
4348 		 * If the desired CPU (where last recvmsg was done) is
4349 		 * different from current CPU (one in the rx-queue flow
4350 		 * table entry), switch if one of the following holds:
4351 		 *   - Current CPU is unset (>= nr_cpu_ids).
4352 		 *   - Current CPU is offline.
4353 		 *   - The current CPU's queue tail has advanced beyond the
4354 		 *     last packet that was enqueued using this table entry.
4355 		 *     This guarantees that all previous packets for the flow
4356 		 *     have been dequeued, thus preserving in order delivery.
4357 		 */
4358 		if (unlikely(tcpu != next_cpu) &&
4359 		    (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4360 		     ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4361 		      rflow->last_qtail)) >= 0)) {
4362 			tcpu = next_cpu;
4363 			rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4364 		}
4365 
4366 		if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4367 			*rflowp = rflow;
4368 			cpu = tcpu;
4369 			goto done;
4370 		}
4371 	}
4372 
4373 try_rps:
4374 
4375 	if (map) {
4376 		tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4377 		if (cpu_online(tcpu)) {
4378 			cpu = tcpu;
4379 			goto done;
4380 		}
4381 	}
4382 
4383 done:
4384 	return cpu;
4385 }
4386 
4387 #ifdef CONFIG_RFS_ACCEL
4388 
4389 /**
4390  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4391  * @dev: Device on which the filter was set
4392  * @rxq_index: RX queue index
4393  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4394  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4395  *
4396  * Drivers that implement ndo_rx_flow_steer() should periodically call
4397  * this function for each installed filter and remove the filters for
4398  * which it returns %true.
4399  */
4400 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4401 			 u32 flow_id, u16 filter_id)
4402 {
4403 	struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4404 	struct rps_dev_flow_table *flow_table;
4405 	struct rps_dev_flow *rflow;
4406 	bool expire = true;
4407 	unsigned int cpu;
4408 
4409 	rcu_read_lock();
4410 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
4411 	if (flow_table && flow_id <= flow_table->mask) {
4412 		rflow = &flow_table->flows[flow_id];
4413 		cpu = READ_ONCE(rflow->cpu);
4414 		if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4415 		    ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4416 			   rflow->last_qtail) <
4417 		     (int)(10 * flow_table->mask)))
4418 			expire = false;
4419 	}
4420 	rcu_read_unlock();
4421 	return expire;
4422 }
4423 EXPORT_SYMBOL(rps_may_expire_flow);
4424 
4425 #endif /* CONFIG_RFS_ACCEL */
4426 
4427 /* Called from hardirq (IPI) context */
4428 static void rps_trigger_softirq(void *data)
4429 {
4430 	struct softnet_data *sd = data;
4431 
4432 	____napi_schedule(sd, &sd->backlog);
4433 	sd->received_rps++;
4434 }
4435 
4436 #endif /* CONFIG_RPS */
4437 
4438 /*
4439  * Check if this softnet_data structure is another cpu one
4440  * If yes, queue it to our IPI list and return 1
4441  * If no, return 0
4442  */
4443 static int rps_ipi_queued(struct softnet_data *sd)
4444 {
4445 #ifdef CONFIG_RPS
4446 	struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4447 
4448 	if (sd != mysd) {
4449 		sd->rps_ipi_next = mysd->rps_ipi_list;
4450 		mysd->rps_ipi_list = sd;
4451 
4452 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4453 		return 1;
4454 	}
4455 #endif /* CONFIG_RPS */
4456 	return 0;
4457 }
4458 
4459 #ifdef CONFIG_NET_FLOW_LIMIT
4460 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4461 #endif
4462 
4463 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4464 {
4465 #ifdef CONFIG_NET_FLOW_LIMIT
4466 	struct sd_flow_limit *fl;
4467 	struct softnet_data *sd;
4468 	unsigned int old_flow, new_flow;
4469 
4470 	if (qlen < (netdev_max_backlog >> 1))
4471 		return false;
4472 
4473 	sd = this_cpu_ptr(&softnet_data);
4474 
4475 	rcu_read_lock();
4476 	fl = rcu_dereference(sd->flow_limit);
4477 	if (fl) {
4478 		new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4479 		old_flow = fl->history[fl->history_head];
4480 		fl->history[fl->history_head] = new_flow;
4481 
4482 		fl->history_head++;
4483 		fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4484 
4485 		if (likely(fl->buckets[old_flow]))
4486 			fl->buckets[old_flow]--;
4487 
4488 		if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4489 			fl->count++;
4490 			rcu_read_unlock();
4491 			return true;
4492 		}
4493 	}
4494 	rcu_read_unlock();
4495 #endif
4496 	return false;
4497 }
4498 
4499 /*
4500  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4501  * queue (may be a remote CPU queue).
4502  */
4503 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4504 			      unsigned int *qtail)
4505 {
4506 	struct softnet_data *sd;
4507 	unsigned long flags;
4508 	unsigned int qlen;
4509 
4510 	sd = &per_cpu(softnet_data, cpu);
4511 
4512 	local_irq_save(flags);
4513 
4514 	rps_lock(sd);
4515 	if (!netif_running(skb->dev))
4516 		goto drop;
4517 	qlen = skb_queue_len(&sd->input_pkt_queue);
4518 	if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
4519 		if (qlen) {
4520 enqueue:
4521 			__skb_queue_tail(&sd->input_pkt_queue, skb);
4522 			input_queue_tail_incr_save(sd, qtail);
4523 			rps_unlock(sd);
4524 			local_irq_restore(flags);
4525 			return NET_RX_SUCCESS;
4526 		}
4527 
4528 		/* Schedule NAPI for backlog device
4529 		 * We can use non atomic operation since we own the queue lock
4530 		 */
4531 		if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
4532 			if (!rps_ipi_queued(sd))
4533 				____napi_schedule(sd, &sd->backlog);
4534 		}
4535 		goto enqueue;
4536 	}
4537 
4538 drop:
4539 	sd->dropped++;
4540 	rps_unlock(sd);
4541 
4542 	local_irq_restore(flags);
4543 
4544 	atomic_long_inc(&skb->dev->rx_dropped);
4545 	kfree_skb(skb);
4546 	return NET_RX_DROP;
4547 }
4548 
4549 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4550 {
4551 	struct net_device *dev = skb->dev;
4552 	struct netdev_rx_queue *rxqueue;
4553 
4554 	rxqueue = dev->_rx;
4555 
4556 	if (skb_rx_queue_recorded(skb)) {
4557 		u16 index = skb_get_rx_queue(skb);
4558 
4559 		if (unlikely(index >= dev->real_num_rx_queues)) {
4560 			WARN_ONCE(dev->real_num_rx_queues > 1,
4561 				  "%s received packet on queue %u, but number "
4562 				  "of RX queues is %u\n",
4563 				  dev->name, index, dev->real_num_rx_queues);
4564 
4565 			return rxqueue; /* Return first rxqueue */
4566 		}
4567 		rxqueue += index;
4568 	}
4569 	return rxqueue;
4570 }
4571 
4572 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4573 				     struct xdp_buff *xdp,
4574 				     struct bpf_prog *xdp_prog)
4575 {
4576 	struct netdev_rx_queue *rxqueue;
4577 	void *orig_data, *orig_data_end;
4578 	u32 metalen, act = XDP_DROP;
4579 	__be16 orig_eth_type;
4580 	struct ethhdr *eth;
4581 	bool orig_bcast;
4582 	int hlen, off;
4583 	u32 mac_len;
4584 
4585 	/* Reinjected packets coming from act_mirred or similar should
4586 	 * not get XDP generic processing.
4587 	 */
4588 	if (skb_is_redirected(skb))
4589 		return XDP_PASS;
4590 
4591 	/* XDP packets must be linear and must have sufficient headroom
4592 	 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4593 	 * native XDP provides, thus we need to do it here as well.
4594 	 */
4595 	if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
4596 	    skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4597 		int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4598 		int troom = skb->tail + skb->data_len - skb->end;
4599 
4600 		/* In case we have to go down the path and also linearize,
4601 		 * then lets do the pskb_expand_head() work just once here.
4602 		 */
4603 		if (pskb_expand_head(skb,
4604 				     hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4605 				     troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4606 			goto do_drop;
4607 		if (skb_linearize(skb))
4608 			goto do_drop;
4609 	}
4610 
4611 	/* The XDP program wants to see the packet starting at the MAC
4612 	 * header.
4613 	 */
4614 	mac_len = skb->data - skb_mac_header(skb);
4615 	hlen = skb_headlen(skb) + mac_len;
4616 	xdp->data = skb->data - mac_len;
4617 	xdp->data_meta = xdp->data;
4618 	xdp->data_end = xdp->data + hlen;
4619 	xdp->data_hard_start = skb->data - skb_headroom(skb);
4620 	orig_data_end = xdp->data_end;
4621 	orig_data = xdp->data;
4622 	eth = (struct ethhdr *)xdp->data;
4623 	orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4624 	orig_eth_type = eth->h_proto;
4625 
4626 	rxqueue = netif_get_rxqueue(skb);
4627 	xdp->rxq = &rxqueue->xdp_rxq;
4628 
4629 	act = bpf_prog_run_xdp(xdp_prog, xdp);
4630 
4631 	/* check if bpf_xdp_adjust_head was used */
4632 	off = xdp->data - orig_data;
4633 	if (off) {
4634 		if (off > 0)
4635 			__skb_pull(skb, off);
4636 		else if (off < 0)
4637 			__skb_push(skb, -off);
4638 
4639 		skb->mac_header += off;
4640 		skb_reset_network_header(skb);
4641 	}
4642 
4643 	/* check if bpf_xdp_adjust_tail was used. it can only "shrink"
4644 	 * pckt.
4645 	 */
4646 	off = orig_data_end - xdp->data_end;
4647 	if (off != 0) {
4648 		skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4649 		skb->len -= off;
4650 
4651 	}
4652 
4653 	/* check if XDP changed eth hdr such SKB needs update */
4654 	eth = (struct ethhdr *)xdp->data;
4655 	if ((orig_eth_type != eth->h_proto) ||
4656 	    (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4657 		__skb_push(skb, ETH_HLEN);
4658 		skb->protocol = eth_type_trans(skb, skb->dev);
4659 	}
4660 
4661 	switch (act) {
4662 	case XDP_REDIRECT:
4663 	case XDP_TX:
4664 		__skb_push(skb, mac_len);
4665 		break;
4666 	case XDP_PASS:
4667 		metalen = xdp->data - xdp->data_meta;
4668 		if (metalen)
4669 			skb_metadata_set(skb, metalen);
4670 		break;
4671 	default:
4672 		bpf_warn_invalid_xdp_action(act);
4673 		/* fall through */
4674 	case XDP_ABORTED:
4675 		trace_xdp_exception(skb->dev, xdp_prog, act);
4676 		/* fall through */
4677 	case XDP_DROP:
4678 	do_drop:
4679 		kfree_skb(skb);
4680 		break;
4681 	}
4682 
4683 	return act;
4684 }
4685 
4686 /* When doing generic XDP we have to bypass the qdisc layer and the
4687  * network taps in order to match in-driver-XDP behavior.
4688  */
4689 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4690 {
4691 	struct net_device *dev = skb->dev;
4692 	struct netdev_queue *txq;
4693 	bool free_skb = true;
4694 	int cpu, rc;
4695 
4696 	txq = netdev_core_pick_tx(dev, skb, NULL);
4697 	cpu = smp_processor_id();
4698 	HARD_TX_LOCK(dev, txq, cpu);
4699 	if (!netif_xmit_stopped(txq)) {
4700 		rc = netdev_start_xmit(skb, dev, txq, 0);
4701 		if (dev_xmit_complete(rc))
4702 			free_skb = false;
4703 	}
4704 	HARD_TX_UNLOCK(dev, txq);
4705 	if (free_skb) {
4706 		trace_xdp_exception(dev, xdp_prog, XDP_TX);
4707 		kfree_skb(skb);
4708 	}
4709 }
4710 
4711 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
4712 
4713 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4714 {
4715 	if (xdp_prog) {
4716 		struct xdp_buff xdp;
4717 		u32 act;
4718 		int err;
4719 
4720 		act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
4721 		if (act != XDP_PASS) {
4722 			switch (act) {
4723 			case XDP_REDIRECT:
4724 				err = xdp_do_generic_redirect(skb->dev, skb,
4725 							      &xdp, xdp_prog);
4726 				if (err)
4727 					goto out_redir;
4728 				break;
4729 			case XDP_TX:
4730 				generic_xdp_tx(skb, xdp_prog);
4731 				break;
4732 			}
4733 			return XDP_DROP;
4734 		}
4735 	}
4736 	return XDP_PASS;
4737 out_redir:
4738 	kfree_skb(skb);
4739 	return XDP_DROP;
4740 }
4741 EXPORT_SYMBOL_GPL(do_xdp_generic);
4742 
4743 static int netif_rx_internal(struct sk_buff *skb)
4744 {
4745 	int ret;
4746 
4747 	net_timestamp_check(netdev_tstamp_prequeue, skb);
4748 
4749 	trace_netif_rx(skb);
4750 
4751 #ifdef CONFIG_RPS
4752 	if (static_branch_unlikely(&rps_needed)) {
4753 		struct rps_dev_flow voidflow, *rflow = &voidflow;
4754 		int cpu;
4755 
4756 		preempt_disable();
4757 		rcu_read_lock();
4758 
4759 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
4760 		if (cpu < 0)
4761 			cpu = smp_processor_id();
4762 
4763 		ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4764 
4765 		rcu_read_unlock();
4766 		preempt_enable();
4767 	} else
4768 #endif
4769 	{
4770 		unsigned int qtail;
4771 
4772 		ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4773 		put_cpu();
4774 	}
4775 	return ret;
4776 }
4777 
4778 /**
4779  *	netif_rx	-	post buffer to the network code
4780  *	@skb: buffer to post
4781  *
4782  *	This function receives a packet from a device driver and queues it for
4783  *	the upper (protocol) levels to process.  It always succeeds. The buffer
4784  *	may be dropped during processing for congestion control or by the
4785  *	protocol layers.
4786  *
4787  *	return values:
4788  *	NET_RX_SUCCESS	(no congestion)
4789  *	NET_RX_DROP     (packet was dropped)
4790  *
4791  */
4792 
4793 int netif_rx(struct sk_buff *skb)
4794 {
4795 	int ret;
4796 
4797 	trace_netif_rx_entry(skb);
4798 
4799 	ret = netif_rx_internal(skb);
4800 	trace_netif_rx_exit(ret);
4801 
4802 	return ret;
4803 }
4804 EXPORT_SYMBOL(netif_rx);
4805 
4806 int netif_rx_ni(struct sk_buff *skb)
4807 {
4808 	int err;
4809 
4810 	trace_netif_rx_ni_entry(skb);
4811 
4812 	preempt_disable();
4813 	err = netif_rx_internal(skb);
4814 	if (local_softirq_pending())
4815 		do_softirq();
4816 	preempt_enable();
4817 	trace_netif_rx_ni_exit(err);
4818 
4819 	return err;
4820 }
4821 EXPORT_SYMBOL(netif_rx_ni);
4822 
4823 static __latent_entropy void net_tx_action(struct softirq_action *h)
4824 {
4825 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4826 
4827 	if (sd->completion_queue) {
4828 		struct sk_buff *clist;
4829 
4830 		local_irq_disable();
4831 		clist = sd->completion_queue;
4832 		sd->completion_queue = NULL;
4833 		local_irq_enable();
4834 
4835 		while (clist) {
4836 			struct sk_buff *skb = clist;
4837 
4838 			clist = clist->next;
4839 
4840 			WARN_ON(refcount_read(&skb->users));
4841 			if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
4842 				trace_consume_skb(skb);
4843 			else
4844 				trace_kfree_skb(skb, net_tx_action);
4845 
4846 			if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
4847 				__kfree_skb(skb);
4848 			else
4849 				__kfree_skb_defer(skb);
4850 		}
4851 
4852 		__kfree_skb_flush();
4853 	}
4854 
4855 	if (sd->output_queue) {
4856 		struct Qdisc *head;
4857 
4858 		local_irq_disable();
4859 		head = sd->output_queue;
4860 		sd->output_queue = NULL;
4861 		sd->output_queue_tailp = &sd->output_queue;
4862 		local_irq_enable();
4863 
4864 		while (head) {
4865 			struct Qdisc *q = head;
4866 			spinlock_t *root_lock = NULL;
4867 
4868 			head = head->next_sched;
4869 
4870 			if (!(q->flags & TCQ_F_NOLOCK)) {
4871 				root_lock = qdisc_lock(q);
4872 				spin_lock(root_lock);
4873 			}
4874 			/* We need to make sure head->next_sched is read
4875 			 * before clearing __QDISC_STATE_SCHED
4876 			 */
4877 			smp_mb__before_atomic();
4878 			clear_bit(__QDISC_STATE_SCHED, &q->state);
4879 			qdisc_run(q);
4880 			if (root_lock)
4881 				spin_unlock(root_lock);
4882 		}
4883 	}
4884 
4885 	xfrm_dev_backlog(sd);
4886 }
4887 
4888 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
4889 /* This hook is defined here for ATM LANE */
4890 int (*br_fdb_test_addr_hook)(struct net_device *dev,
4891 			     unsigned char *addr) __read_mostly;
4892 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
4893 #endif
4894 
4895 static inline struct sk_buff *
4896 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4897 		   struct net_device *orig_dev)
4898 {
4899 #ifdef CONFIG_NET_CLS_ACT
4900 	struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
4901 	struct tcf_result cl_res;
4902 
4903 	/* If there's at least one ingress present somewhere (so
4904 	 * we get here via enabled static key), remaining devices
4905 	 * that are not configured with an ingress qdisc will bail
4906 	 * out here.
4907 	 */
4908 	if (!miniq)
4909 		return skb;
4910 
4911 	if (*pt_prev) {
4912 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
4913 		*pt_prev = NULL;
4914 	}
4915 
4916 	qdisc_skb_cb(skb)->pkt_len = skb->len;
4917 	skb->tc_at_ingress = 1;
4918 	mini_qdisc_bstats_cpu_update(miniq, skb);
4919 
4920 	switch (tcf_classify_ingress(skb, miniq->block, miniq->filter_list,
4921 				     &cl_res, false)) {
4922 	case TC_ACT_OK:
4923 	case TC_ACT_RECLASSIFY:
4924 		skb->tc_index = TC_H_MIN(cl_res.classid);
4925 		break;
4926 	case TC_ACT_SHOT:
4927 		mini_qdisc_qstats_cpu_drop(miniq);
4928 		kfree_skb(skb);
4929 		return NULL;
4930 	case TC_ACT_STOLEN:
4931 	case TC_ACT_QUEUED:
4932 	case TC_ACT_TRAP:
4933 		consume_skb(skb);
4934 		return NULL;
4935 	case TC_ACT_REDIRECT:
4936 		/* skb_mac_header check was done by cls/act_bpf, so
4937 		 * we can safely push the L2 header back before
4938 		 * redirecting to another netdev
4939 		 */
4940 		__skb_push(skb, skb->mac_len);
4941 		skb_do_redirect(skb);
4942 		return NULL;
4943 	case TC_ACT_CONSUMED:
4944 		return NULL;
4945 	default:
4946 		break;
4947 	}
4948 #endif /* CONFIG_NET_CLS_ACT */
4949 	return skb;
4950 }
4951 
4952 /**
4953  *	netdev_is_rx_handler_busy - check if receive handler is registered
4954  *	@dev: device to check
4955  *
4956  *	Check if a receive handler is already registered for a given device.
4957  *	Return true if there one.
4958  *
4959  *	The caller must hold the rtnl_mutex.
4960  */
4961 bool netdev_is_rx_handler_busy(struct net_device *dev)
4962 {
4963 	ASSERT_RTNL();
4964 	return dev && rtnl_dereference(dev->rx_handler);
4965 }
4966 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
4967 
4968 /**
4969  *	netdev_rx_handler_register - register receive handler
4970  *	@dev: device to register a handler for
4971  *	@rx_handler: receive handler to register
4972  *	@rx_handler_data: data pointer that is used by rx handler
4973  *
4974  *	Register a receive handler for a device. This handler will then be
4975  *	called from __netif_receive_skb. A negative errno code is returned
4976  *	on a failure.
4977  *
4978  *	The caller must hold the rtnl_mutex.
4979  *
4980  *	For a general description of rx_handler, see enum rx_handler_result.
4981  */
4982 int netdev_rx_handler_register(struct net_device *dev,
4983 			       rx_handler_func_t *rx_handler,
4984 			       void *rx_handler_data)
4985 {
4986 	if (netdev_is_rx_handler_busy(dev))
4987 		return -EBUSY;
4988 
4989 	if (dev->priv_flags & IFF_NO_RX_HANDLER)
4990 		return -EINVAL;
4991 
4992 	/* Note: rx_handler_data must be set before rx_handler */
4993 	rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
4994 	rcu_assign_pointer(dev->rx_handler, rx_handler);
4995 
4996 	return 0;
4997 }
4998 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
4999 
5000 /**
5001  *	netdev_rx_handler_unregister - unregister receive handler
5002  *	@dev: device to unregister a handler from
5003  *
5004  *	Unregister a receive handler from a device.
5005  *
5006  *	The caller must hold the rtnl_mutex.
5007  */
5008 void netdev_rx_handler_unregister(struct net_device *dev)
5009 {
5010 
5011 	ASSERT_RTNL();
5012 	RCU_INIT_POINTER(dev->rx_handler, NULL);
5013 	/* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5014 	 * section has a guarantee to see a non NULL rx_handler_data
5015 	 * as well.
5016 	 */
5017 	synchronize_net();
5018 	RCU_INIT_POINTER(dev->rx_handler_data, NULL);
5019 }
5020 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5021 
5022 /*
5023  * Limit the use of PFMEMALLOC reserves to those protocols that implement
5024  * the special handling of PFMEMALLOC skbs.
5025  */
5026 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5027 {
5028 	switch (skb->protocol) {
5029 	case htons(ETH_P_ARP):
5030 	case htons(ETH_P_IP):
5031 	case htons(ETH_P_IPV6):
5032 	case htons(ETH_P_8021Q):
5033 	case htons(ETH_P_8021AD):
5034 		return true;
5035 	default:
5036 		return false;
5037 	}
5038 }
5039 
5040 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5041 			     int *ret, struct net_device *orig_dev)
5042 {
5043 	if (nf_hook_ingress_active(skb)) {
5044 		int ingress_retval;
5045 
5046 		if (*pt_prev) {
5047 			*ret = deliver_skb(skb, *pt_prev, orig_dev);
5048 			*pt_prev = NULL;
5049 		}
5050 
5051 		rcu_read_lock();
5052 		ingress_retval = nf_hook_ingress(skb);
5053 		rcu_read_unlock();
5054 		return ingress_retval;
5055 	}
5056 	return 0;
5057 }
5058 
5059 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc,
5060 				    struct packet_type **ppt_prev)
5061 {
5062 	struct packet_type *ptype, *pt_prev;
5063 	rx_handler_func_t *rx_handler;
5064 	struct net_device *orig_dev;
5065 	bool deliver_exact = false;
5066 	int ret = NET_RX_DROP;
5067 	__be16 type;
5068 
5069 	net_timestamp_check(!netdev_tstamp_prequeue, skb);
5070 
5071 	trace_netif_receive_skb(skb);
5072 
5073 	orig_dev = skb->dev;
5074 
5075 	skb_reset_network_header(skb);
5076 	if (!skb_transport_header_was_set(skb))
5077 		skb_reset_transport_header(skb);
5078 	skb_reset_mac_len(skb);
5079 
5080 	pt_prev = NULL;
5081 
5082 another_round:
5083 	skb->skb_iif = skb->dev->ifindex;
5084 
5085 	__this_cpu_inc(softnet_data.processed);
5086 
5087 	if (static_branch_unlikely(&generic_xdp_needed_key)) {
5088 		int ret2;
5089 
5090 		preempt_disable();
5091 		ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
5092 		preempt_enable();
5093 
5094 		if (ret2 != XDP_PASS)
5095 			return NET_RX_DROP;
5096 		skb_reset_mac_len(skb);
5097 	}
5098 
5099 	if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
5100 	    skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
5101 		skb = skb_vlan_untag(skb);
5102 		if (unlikely(!skb))
5103 			goto out;
5104 	}
5105 
5106 	if (skb_skip_tc_classify(skb))
5107 		goto skip_classify;
5108 
5109 	if (pfmemalloc)
5110 		goto skip_taps;
5111 
5112 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
5113 		if (pt_prev)
5114 			ret = deliver_skb(skb, pt_prev, orig_dev);
5115 		pt_prev = ptype;
5116 	}
5117 
5118 	list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5119 		if (pt_prev)
5120 			ret = deliver_skb(skb, pt_prev, orig_dev);
5121 		pt_prev = ptype;
5122 	}
5123 
5124 skip_taps:
5125 #ifdef CONFIG_NET_INGRESS
5126 	if (static_branch_unlikely(&ingress_needed_key)) {
5127 		skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
5128 		if (!skb)
5129 			goto out;
5130 
5131 		if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5132 			goto out;
5133 	}
5134 #endif
5135 	skb_reset_redirect(skb);
5136 skip_classify:
5137 	if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
5138 		goto drop;
5139 
5140 	if (skb_vlan_tag_present(skb)) {
5141 		if (pt_prev) {
5142 			ret = deliver_skb(skb, pt_prev, orig_dev);
5143 			pt_prev = NULL;
5144 		}
5145 		if (vlan_do_receive(&skb))
5146 			goto another_round;
5147 		else if (unlikely(!skb))
5148 			goto out;
5149 	}
5150 
5151 	rx_handler = rcu_dereference(skb->dev->rx_handler);
5152 	if (rx_handler) {
5153 		if (pt_prev) {
5154 			ret = deliver_skb(skb, pt_prev, orig_dev);
5155 			pt_prev = NULL;
5156 		}
5157 		switch (rx_handler(&skb)) {
5158 		case RX_HANDLER_CONSUMED:
5159 			ret = NET_RX_SUCCESS;
5160 			goto out;
5161 		case RX_HANDLER_ANOTHER:
5162 			goto another_round;
5163 		case RX_HANDLER_EXACT:
5164 			deliver_exact = true;
5165 		case RX_HANDLER_PASS:
5166 			break;
5167 		default:
5168 			BUG();
5169 		}
5170 	}
5171 
5172 	if (unlikely(skb_vlan_tag_present(skb))) {
5173 check_vlan_id:
5174 		if (skb_vlan_tag_get_id(skb)) {
5175 			/* Vlan id is non 0 and vlan_do_receive() above couldn't
5176 			 * find vlan device.
5177 			 */
5178 			skb->pkt_type = PACKET_OTHERHOST;
5179 		} else if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
5180 			   skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
5181 			/* Outer header is 802.1P with vlan 0, inner header is
5182 			 * 802.1Q or 802.1AD and vlan_do_receive() above could
5183 			 * not find vlan dev for vlan id 0.
5184 			 */
5185 			__vlan_hwaccel_clear_tag(skb);
5186 			skb = skb_vlan_untag(skb);
5187 			if (unlikely(!skb))
5188 				goto out;
5189 			if (vlan_do_receive(&skb))
5190 				/* After stripping off 802.1P header with vlan 0
5191 				 * vlan dev is found for inner header.
5192 				 */
5193 				goto another_round;
5194 			else if (unlikely(!skb))
5195 				goto out;
5196 			else
5197 				/* We have stripped outer 802.1P vlan 0 header.
5198 				 * But could not find vlan dev.
5199 				 * check again for vlan id to set OTHERHOST.
5200 				 */
5201 				goto check_vlan_id;
5202 		}
5203 		/* Note: we might in the future use prio bits
5204 		 * and set skb->priority like in vlan_do_receive()
5205 		 * For the time being, just ignore Priority Code Point
5206 		 */
5207 		__vlan_hwaccel_clear_tag(skb);
5208 	}
5209 
5210 	type = skb->protocol;
5211 
5212 	/* deliver only exact match when indicated */
5213 	if (likely(!deliver_exact)) {
5214 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5215 				       &ptype_base[ntohs(type) &
5216 						   PTYPE_HASH_MASK]);
5217 	}
5218 
5219 	deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5220 			       &orig_dev->ptype_specific);
5221 
5222 	if (unlikely(skb->dev != orig_dev)) {
5223 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5224 				       &skb->dev->ptype_specific);
5225 	}
5226 
5227 	if (pt_prev) {
5228 		if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
5229 			goto drop;
5230 		*ppt_prev = pt_prev;
5231 	} else {
5232 drop:
5233 		if (!deliver_exact)
5234 			atomic_long_inc(&skb->dev->rx_dropped);
5235 		else
5236 			atomic_long_inc(&skb->dev->rx_nohandler);
5237 		kfree_skb(skb);
5238 		/* Jamal, now you will not able to escape explaining
5239 		 * me how you were going to use this. :-)
5240 		 */
5241 		ret = NET_RX_DROP;
5242 	}
5243 
5244 out:
5245 	return ret;
5246 }
5247 
5248 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5249 {
5250 	struct net_device *orig_dev = skb->dev;
5251 	struct packet_type *pt_prev = NULL;
5252 	int ret;
5253 
5254 	ret = __netif_receive_skb_core(skb, pfmemalloc, &pt_prev);
5255 	if (pt_prev)
5256 		ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5257 					 skb->dev, pt_prev, orig_dev);
5258 	return ret;
5259 }
5260 
5261 /**
5262  *	netif_receive_skb_core - special purpose version of netif_receive_skb
5263  *	@skb: buffer to process
5264  *
5265  *	More direct receive version of netif_receive_skb().  It should
5266  *	only be used by callers that have a need to skip RPS and Generic XDP.
5267  *	Caller must also take care of handling if ``(page_is_)pfmemalloc``.
5268  *
5269  *	This function may only be called from softirq context and interrupts
5270  *	should be enabled.
5271  *
5272  *	Return values (usually ignored):
5273  *	NET_RX_SUCCESS: no congestion
5274  *	NET_RX_DROP: packet was dropped
5275  */
5276 int netif_receive_skb_core(struct sk_buff *skb)
5277 {
5278 	int ret;
5279 
5280 	rcu_read_lock();
5281 	ret = __netif_receive_skb_one_core(skb, false);
5282 	rcu_read_unlock();
5283 
5284 	return ret;
5285 }
5286 EXPORT_SYMBOL(netif_receive_skb_core);
5287 
5288 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5289 						  struct packet_type *pt_prev,
5290 						  struct net_device *orig_dev)
5291 {
5292 	struct sk_buff *skb, *next;
5293 
5294 	if (!pt_prev)
5295 		return;
5296 	if (list_empty(head))
5297 		return;
5298 	if (pt_prev->list_func != NULL)
5299 		INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5300 				   ip_list_rcv, head, pt_prev, orig_dev);
5301 	else
5302 		list_for_each_entry_safe(skb, next, head, list) {
5303 			skb_list_del_init(skb);
5304 			pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5305 		}
5306 }
5307 
5308 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5309 {
5310 	/* Fast-path assumptions:
5311 	 * - There is no RX handler.
5312 	 * - Only one packet_type matches.
5313 	 * If either of these fails, we will end up doing some per-packet
5314 	 * processing in-line, then handling the 'last ptype' for the whole
5315 	 * sublist.  This can't cause out-of-order delivery to any single ptype,
5316 	 * because the 'last ptype' must be constant across the sublist, and all
5317 	 * other ptypes are handled per-packet.
5318 	 */
5319 	/* Current (common) ptype of sublist */
5320 	struct packet_type *pt_curr = NULL;
5321 	/* Current (common) orig_dev of sublist */
5322 	struct net_device *od_curr = NULL;
5323 	struct list_head sublist;
5324 	struct sk_buff *skb, *next;
5325 
5326 	INIT_LIST_HEAD(&sublist);
5327 	list_for_each_entry_safe(skb, next, head, list) {
5328 		struct net_device *orig_dev = skb->dev;
5329 		struct packet_type *pt_prev = NULL;
5330 
5331 		skb_list_del_init(skb);
5332 		__netif_receive_skb_core(skb, pfmemalloc, &pt_prev);
5333 		if (!pt_prev)
5334 			continue;
5335 		if (pt_curr != pt_prev || od_curr != orig_dev) {
5336 			/* dispatch old sublist */
5337 			__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5338 			/* start new sublist */
5339 			INIT_LIST_HEAD(&sublist);
5340 			pt_curr = pt_prev;
5341 			od_curr = orig_dev;
5342 		}
5343 		list_add_tail(&skb->list, &sublist);
5344 	}
5345 
5346 	/* dispatch final sublist */
5347 	__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5348 }
5349 
5350 static int __netif_receive_skb(struct sk_buff *skb)
5351 {
5352 	int ret;
5353 
5354 	if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5355 		unsigned int noreclaim_flag;
5356 
5357 		/*
5358 		 * PFMEMALLOC skbs are special, they should
5359 		 * - be delivered to SOCK_MEMALLOC sockets only
5360 		 * - stay away from userspace
5361 		 * - have bounded memory usage
5362 		 *
5363 		 * Use PF_MEMALLOC as this saves us from propagating the allocation
5364 		 * context down to all allocation sites.
5365 		 */
5366 		noreclaim_flag = memalloc_noreclaim_save();
5367 		ret = __netif_receive_skb_one_core(skb, true);
5368 		memalloc_noreclaim_restore(noreclaim_flag);
5369 	} else
5370 		ret = __netif_receive_skb_one_core(skb, false);
5371 
5372 	return ret;
5373 }
5374 
5375 static void __netif_receive_skb_list(struct list_head *head)
5376 {
5377 	unsigned long noreclaim_flag = 0;
5378 	struct sk_buff *skb, *next;
5379 	bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5380 
5381 	list_for_each_entry_safe(skb, next, head, list) {
5382 		if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5383 			struct list_head sublist;
5384 
5385 			/* Handle the previous sublist */
5386 			list_cut_before(&sublist, head, &skb->list);
5387 			if (!list_empty(&sublist))
5388 				__netif_receive_skb_list_core(&sublist, pfmemalloc);
5389 			pfmemalloc = !pfmemalloc;
5390 			/* See comments in __netif_receive_skb */
5391 			if (pfmemalloc)
5392 				noreclaim_flag = memalloc_noreclaim_save();
5393 			else
5394 				memalloc_noreclaim_restore(noreclaim_flag);
5395 		}
5396 	}
5397 	/* Handle the remaining sublist */
5398 	if (!list_empty(head))
5399 		__netif_receive_skb_list_core(head, pfmemalloc);
5400 	/* Restore pflags */
5401 	if (pfmemalloc)
5402 		memalloc_noreclaim_restore(noreclaim_flag);
5403 }
5404 
5405 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5406 {
5407 	struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5408 	struct bpf_prog *new = xdp->prog;
5409 	int ret = 0;
5410 
5411 	switch (xdp->command) {
5412 	case XDP_SETUP_PROG:
5413 		rcu_assign_pointer(dev->xdp_prog, new);
5414 		if (old)
5415 			bpf_prog_put(old);
5416 
5417 		if (old && !new) {
5418 			static_branch_dec(&generic_xdp_needed_key);
5419 		} else if (new && !old) {
5420 			static_branch_inc(&generic_xdp_needed_key);
5421 			dev_disable_lro(dev);
5422 			dev_disable_gro_hw(dev);
5423 		}
5424 		break;
5425 
5426 	case XDP_QUERY_PROG:
5427 		xdp->prog_id = old ? old->aux->id : 0;
5428 		break;
5429 
5430 	default:
5431 		ret = -EINVAL;
5432 		break;
5433 	}
5434 
5435 	return ret;
5436 }
5437 
5438 static int netif_receive_skb_internal(struct sk_buff *skb)
5439 {
5440 	int ret;
5441 
5442 	net_timestamp_check(netdev_tstamp_prequeue, skb);
5443 
5444 	if (skb_defer_rx_timestamp(skb))
5445 		return NET_RX_SUCCESS;
5446 
5447 	rcu_read_lock();
5448 #ifdef CONFIG_RPS
5449 	if (static_branch_unlikely(&rps_needed)) {
5450 		struct rps_dev_flow voidflow, *rflow = &voidflow;
5451 		int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5452 
5453 		if (cpu >= 0) {
5454 			ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5455 			rcu_read_unlock();
5456 			return ret;
5457 		}
5458 	}
5459 #endif
5460 	ret = __netif_receive_skb(skb);
5461 	rcu_read_unlock();
5462 	return ret;
5463 }
5464 
5465 static void netif_receive_skb_list_internal(struct list_head *head)
5466 {
5467 	struct sk_buff *skb, *next;
5468 	struct list_head sublist;
5469 
5470 	INIT_LIST_HEAD(&sublist);
5471 	list_for_each_entry_safe(skb, next, head, list) {
5472 		net_timestamp_check(netdev_tstamp_prequeue, skb);
5473 		skb_list_del_init(skb);
5474 		if (!skb_defer_rx_timestamp(skb))
5475 			list_add_tail(&skb->list, &sublist);
5476 	}
5477 	list_splice_init(&sublist, head);
5478 
5479 	rcu_read_lock();
5480 #ifdef CONFIG_RPS
5481 	if (static_branch_unlikely(&rps_needed)) {
5482 		list_for_each_entry_safe(skb, next, head, list) {
5483 			struct rps_dev_flow voidflow, *rflow = &voidflow;
5484 			int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5485 
5486 			if (cpu >= 0) {
5487 				/* Will be handled, remove from list */
5488 				skb_list_del_init(skb);
5489 				enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5490 			}
5491 		}
5492 	}
5493 #endif
5494 	__netif_receive_skb_list(head);
5495 	rcu_read_unlock();
5496 }
5497 
5498 /**
5499  *	netif_receive_skb - process receive buffer from network
5500  *	@skb: buffer to process
5501  *
5502  *	netif_receive_skb() is the main receive data processing function.
5503  *	It always succeeds. The buffer may be dropped during processing
5504  *	for congestion control or by the protocol layers.
5505  *
5506  *	This function may only be called from softirq context and interrupts
5507  *	should be enabled.
5508  *
5509  *	Return values (usually ignored):
5510  *	NET_RX_SUCCESS: no congestion
5511  *	NET_RX_DROP: packet was dropped
5512  */
5513 int netif_receive_skb(struct sk_buff *skb)
5514 {
5515 	int ret;
5516 
5517 	trace_netif_receive_skb_entry(skb);
5518 
5519 	ret = netif_receive_skb_internal(skb);
5520 	trace_netif_receive_skb_exit(ret);
5521 
5522 	return ret;
5523 }
5524 EXPORT_SYMBOL(netif_receive_skb);
5525 
5526 /**
5527  *	netif_receive_skb_list - process many receive buffers from network
5528  *	@head: list of skbs to process.
5529  *
5530  *	Since return value of netif_receive_skb() is normally ignored, and
5531  *	wouldn't be meaningful for a list, this function returns void.
5532  *
5533  *	This function may only be called from softirq context and interrupts
5534  *	should be enabled.
5535  */
5536 void netif_receive_skb_list(struct list_head *head)
5537 {
5538 	struct sk_buff *skb;
5539 
5540 	if (list_empty(head))
5541 		return;
5542 	if (trace_netif_receive_skb_list_entry_enabled()) {
5543 		list_for_each_entry(skb, head, list)
5544 			trace_netif_receive_skb_list_entry(skb);
5545 	}
5546 	netif_receive_skb_list_internal(head);
5547 	trace_netif_receive_skb_list_exit(0);
5548 }
5549 EXPORT_SYMBOL(netif_receive_skb_list);
5550 
5551 DEFINE_PER_CPU(struct work_struct, flush_works);
5552 
5553 /* Network device is going away, flush any packets still pending */
5554 static void flush_backlog(struct work_struct *work)
5555 {
5556 	struct sk_buff *skb, *tmp;
5557 	struct softnet_data *sd;
5558 
5559 	local_bh_disable();
5560 	sd = this_cpu_ptr(&softnet_data);
5561 
5562 	local_irq_disable();
5563 	rps_lock(sd);
5564 	skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5565 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5566 			__skb_unlink(skb, &sd->input_pkt_queue);
5567 			kfree_skb(skb);
5568 			input_queue_head_incr(sd);
5569 		}
5570 	}
5571 	rps_unlock(sd);
5572 	local_irq_enable();
5573 
5574 	skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5575 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5576 			__skb_unlink(skb, &sd->process_queue);
5577 			kfree_skb(skb);
5578 			input_queue_head_incr(sd);
5579 		}
5580 	}
5581 	local_bh_enable();
5582 }
5583 
5584 static void flush_all_backlogs(void)
5585 {
5586 	unsigned int cpu;
5587 
5588 	get_online_cpus();
5589 
5590 	for_each_online_cpu(cpu)
5591 		queue_work_on(cpu, system_highpri_wq,
5592 			      per_cpu_ptr(&flush_works, cpu));
5593 
5594 	for_each_online_cpu(cpu)
5595 		flush_work(per_cpu_ptr(&flush_works, cpu));
5596 
5597 	put_online_cpus();
5598 }
5599 
5600 /* Pass the currently batched GRO_NORMAL SKBs up to the stack. */
5601 static void gro_normal_list(struct napi_struct *napi)
5602 {
5603 	if (!napi->rx_count)
5604 		return;
5605 	netif_receive_skb_list_internal(&napi->rx_list);
5606 	INIT_LIST_HEAD(&napi->rx_list);
5607 	napi->rx_count = 0;
5608 }
5609 
5610 /* Queue one GRO_NORMAL SKB up for list processing. If batch size exceeded,
5611  * pass the whole batch up to the stack.
5612  */
5613 static void gro_normal_one(struct napi_struct *napi, struct sk_buff *skb)
5614 {
5615 	list_add_tail(&skb->list, &napi->rx_list);
5616 	if (++napi->rx_count >= gro_normal_batch)
5617 		gro_normal_list(napi);
5618 }
5619 
5620 INDIRECT_CALLABLE_DECLARE(int inet_gro_complete(struct sk_buff *, int));
5621 INDIRECT_CALLABLE_DECLARE(int ipv6_gro_complete(struct sk_buff *, int));
5622 static int napi_gro_complete(struct napi_struct *napi, struct sk_buff *skb)
5623 {
5624 	struct packet_offload *ptype;
5625 	__be16 type = skb->protocol;
5626 	struct list_head *head = &offload_base;
5627 	int err = -ENOENT;
5628 
5629 	BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
5630 
5631 	if (NAPI_GRO_CB(skb)->count == 1) {
5632 		skb_shinfo(skb)->gso_size = 0;
5633 		goto out;
5634 	}
5635 
5636 	rcu_read_lock();
5637 	list_for_each_entry_rcu(ptype, head, list) {
5638 		if (ptype->type != type || !ptype->callbacks.gro_complete)
5639 			continue;
5640 
5641 		err = INDIRECT_CALL_INET(ptype->callbacks.gro_complete,
5642 					 ipv6_gro_complete, inet_gro_complete,
5643 					 skb, 0);
5644 		break;
5645 	}
5646 	rcu_read_unlock();
5647 
5648 	if (err) {
5649 		WARN_ON(&ptype->list == head);
5650 		kfree_skb(skb);
5651 		return NET_RX_SUCCESS;
5652 	}
5653 
5654 out:
5655 	gro_normal_one(napi, skb);
5656 	return NET_RX_SUCCESS;
5657 }
5658 
5659 static void __napi_gro_flush_chain(struct napi_struct *napi, u32 index,
5660 				   bool flush_old)
5661 {
5662 	struct list_head *head = &napi->gro_hash[index].list;
5663 	struct sk_buff *skb, *p;
5664 
5665 	list_for_each_entry_safe_reverse(skb, p, head, list) {
5666 		if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
5667 			return;
5668 		skb_list_del_init(skb);
5669 		napi_gro_complete(napi, skb);
5670 		napi->gro_hash[index].count--;
5671 	}
5672 
5673 	if (!napi->gro_hash[index].count)
5674 		__clear_bit(index, &napi->gro_bitmask);
5675 }
5676 
5677 /* napi->gro_hash[].list contains packets ordered by age.
5678  * youngest packets at the head of it.
5679  * Complete skbs in reverse order to reduce latencies.
5680  */
5681 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
5682 {
5683 	unsigned long bitmask = napi->gro_bitmask;
5684 	unsigned int i, base = ~0U;
5685 
5686 	while ((i = ffs(bitmask)) != 0) {
5687 		bitmask >>= i;
5688 		base += i;
5689 		__napi_gro_flush_chain(napi, base, flush_old);
5690 	}
5691 }
5692 EXPORT_SYMBOL(napi_gro_flush);
5693 
5694 static struct list_head *gro_list_prepare(struct napi_struct *napi,
5695 					  struct sk_buff *skb)
5696 {
5697 	unsigned int maclen = skb->dev->hard_header_len;
5698 	u32 hash = skb_get_hash_raw(skb);
5699 	struct list_head *head;
5700 	struct sk_buff *p;
5701 
5702 	head = &napi->gro_hash[hash & (GRO_HASH_BUCKETS - 1)].list;
5703 	list_for_each_entry(p, head, list) {
5704 		unsigned long diffs;
5705 
5706 		NAPI_GRO_CB(p)->flush = 0;
5707 
5708 		if (hash != skb_get_hash_raw(p)) {
5709 			NAPI_GRO_CB(p)->same_flow = 0;
5710 			continue;
5711 		}
5712 
5713 		diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
5714 		diffs |= skb_vlan_tag_present(p) ^ skb_vlan_tag_present(skb);
5715 		if (skb_vlan_tag_present(p))
5716 			diffs |= skb_vlan_tag_get(p) ^ skb_vlan_tag_get(skb);
5717 		diffs |= skb_metadata_dst_cmp(p, skb);
5718 		diffs |= skb_metadata_differs(p, skb);
5719 		if (maclen == ETH_HLEN)
5720 			diffs |= compare_ether_header(skb_mac_header(p),
5721 						      skb_mac_header(skb));
5722 		else if (!diffs)
5723 			diffs = memcmp(skb_mac_header(p),
5724 				       skb_mac_header(skb),
5725 				       maclen);
5726 		NAPI_GRO_CB(p)->same_flow = !diffs;
5727 	}
5728 
5729 	return head;
5730 }
5731 
5732 static void skb_gro_reset_offset(struct sk_buff *skb)
5733 {
5734 	const struct skb_shared_info *pinfo = skb_shinfo(skb);
5735 	const skb_frag_t *frag0 = &pinfo->frags[0];
5736 
5737 	NAPI_GRO_CB(skb)->data_offset = 0;
5738 	NAPI_GRO_CB(skb)->frag0 = NULL;
5739 	NAPI_GRO_CB(skb)->frag0_len = 0;
5740 
5741 	if (!skb_headlen(skb) && pinfo->nr_frags &&
5742 	    !PageHighMem(skb_frag_page(frag0))) {
5743 		NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
5744 		NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
5745 						    skb_frag_size(frag0),
5746 						    skb->end - skb->tail);
5747 	}
5748 }
5749 
5750 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
5751 {
5752 	struct skb_shared_info *pinfo = skb_shinfo(skb);
5753 
5754 	BUG_ON(skb->end - skb->tail < grow);
5755 
5756 	memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
5757 
5758 	skb->data_len -= grow;
5759 	skb->tail += grow;
5760 
5761 	skb_frag_off_add(&pinfo->frags[0], grow);
5762 	skb_frag_size_sub(&pinfo->frags[0], grow);
5763 
5764 	if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
5765 		skb_frag_unref(skb, 0);
5766 		memmove(pinfo->frags, pinfo->frags + 1,
5767 			--pinfo->nr_frags * sizeof(pinfo->frags[0]));
5768 	}
5769 }
5770 
5771 static void gro_flush_oldest(struct napi_struct *napi, struct list_head *head)
5772 {
5773 	struct sk_buff *oldest;
5774 
5775 	oldest = list_last_entry(head, struct sk_buff, list);
5776 
5777 	/* We are called with head length >= MAX_GRO_SKBS, so this is
5778 	 * impossible.
5779 	 */
5780 	if (WARN_ON_ONCE(!oldest))
5781 		return;
5782 
5783 	/* Do not adjust napi->gro_hash[].count, caller is adding a new
5784 	 * SKB to the chain.
5785 	 */
5786 	skb_list_del_init(oldest);
5787 	napi_gro_complete(napi, oldest);
5788 }
5789 
5790 INDIRECT_CALLABLE_DECLARE(struct sk_buff *inet_gro_receive(struct list_head *,
5791 							   struct sk_buff *));
5792 INDIRECT_CALLABLE_DECLARE(struct sk_buff *ipv6_gro_receive(struct list_head *,
5793 							   struct sk_buff *));
5794 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5795 {
5796 	u32 hash = skb_get_hash_raw(skb) & (GRO_HASH_BUCKETS - 1);
5797 	struct list_head *head = &offload_base;
5798 	struct packet_offload *ptype;
5799 	__be16 type = skb->protocol;
5800 	struct list_head *gro_head;
5801 	struct sk_buff *pp = NULL;
5802 	enum gro_result ret;
5803 	int same_flow;
5804 	int grow;
5805 
5806 	if (netif_elide_gro(skb->dev))
5807 		goto normal;
5808 
5809 	gro_head = gro_list_prepare(napi, skb);
5810 
5811 	rcu_read_lock();
5812 	list_for_each_entry_rcu(ptype, head, list) {
5813 		if (ptype->type != type || !ptype->callbacks.gro_receive)
5814 			continue;
5815 
5816 		skb_set_network_header(skb, skb_gro_offset(skb));
5817 		skb_reset_mac_len(skb);
5818 		NAPI_GRO_CB(skb)->same_flow = 0;
5819 		NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
5820 		NAPI_GRO_CB(skb)->free = 0;
5821 		NAPI_GRO_CB(skb)->encap_mark = 0;
5822 		NAPI_GRO_CB(skb)->recursion_counter = 0;
5823 		NAPI_GRO_CB(skb)->is_fou = 0;
5824 		NAPI_GRO_CB(skb)->is_atomic = 1;
5825 		NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
5826 
5827 		/* Setup for GRO checksum validation */
5828 		switch (skb->ip_summed) {
5829 		case CHECKSUM_COMPLETE:
5830 			NAPI_GRO_CB(skb)->csum = skb->csum;
5831 			NAPI_GRO_CB(skb)->csum_valid = 1;
5832 			NAPI_GRO_CB(skb)->csum_cnt = 0;
5833 			break;
5834 		case CHECKSUM_UNNECESSARY:
5835 			NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
5836 			NAPI_GRO_CB(skb)->csum_valid = 0;
5837 			break;
5838 		default:
5839 			NAPI_GRO_CB(skb)->csum_cnt = 0;
5840 			NAPI_GRO_CB(skb)->csum_valid = 0;
5841 		}
5842 
5843 		pp = INDIRECT_CALL_INET(ptype->callbacks.gro_receive,
5844 					ipv6_gro_receive, inet_gro_receive,
5845 					gro_head, skb);
5846 		break;
5847 	}
5848 	rcu_read_unlock();
5849 
5850 	if (&ptype->list == head)
5851 		goto normal;
5852 
5853 	if (PTR_ERR(pp) == -EINPROGRESS) {
5854 		ret = GRO_CONSUMED;
5855 		goto ok;
5856 	}
5857 
5858 	same_flow = NAPI_GRO_CB(skb)->same_flow;
5859 	ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
5860 
5861 	if (pp) {
5862 		skb_list_del_init(pp);
5863 		napi_gro_complete(napi, pp);
5864 		napi->gro_hash[hash].count--;
5865 	}
5866 
5867 	if (same_flow)
5868 		goto ok;
5869 
5870 	if (NAPI_GRO_CB(skb)->flush)
5871 		goto normal;
5872 
5873 	if (unlikely(napi->gro_hash[hash].count >= MAX_GRO_SKBS)) {
5874 		gro_flush_oldest(napi, gro_head);
5875 	} else {
5876 		napi->gro_hash[hash].count++;
5877 	}
5878 	NAPI_GRO_CB(skb)->count = 1;
5879 	NAPI_GRO_CB(skb)->age = jiffies;
5880 	NAPI_GRO_CB(skb)->last = skb;
5881 	skb_shinfo(skb)->gso_size = skb_gro_len(skb);
5882 	list_add(&skb->list, gro_head);
5883 	ret = GRO_HELD;
5884 
5885 pull:
5886 	grow = skb_gro_offset(skb) - skb_headlen(skb);
5887 	if (grow > 0)
5888 		gro_pull_from_frag0(skb, grow);
5889 ok:
5890 	if (napi->gro_hash[hash].count) {
5891 		if (!test_bit(hash, &napi->gro_bitmask))
5892 			__set_bit(hash, &napi->gro_bitmask);
5893 	} else if (test_bit(hash, &napi->gro_bitmask)) {
5894 		__clear_bit(hash, &napi->gro_bitmask);
5895 	}
5896 
5897 	return ret;
5898 
5899 normal:
5900 	ret = GRO_NORMAL;
5901 	goto pull;
5902 }
5903 
5904 struct packet_offload *gro_find_receive_by_type(__be16 type)
5905 {
5906 	struct list_head *offload_head = &offload_base;
5907 	struct packet_offload *ptype;
5908 
5909 	list_for_each_entry_rcu(ptype, offload_head, list) {
5910 		if (ptype->type != type || !ptype->callbacks.gro_receive)
5911 			continue;
5912 		return ptype;
5913 	}
5914 	return NULL;
5915 }
5916 EXPORT_SYMBOL(gro_find_receive_by_type);
5917 
5918 struct packet_offload *gro_find_complete_by_type(__be16 type)
5919 {
5920 	struct list_head *offload_head = &offload_base;
5921 	struct packet_offload *ptype;
5922 
5923 	list_for_each_entry_rcu(ptype, offload_head, list) {
5924 		if (ptype->type != type || !ptype->callbacks.gro_complete)
5925 			continue;
5926 		return ptype;
5927 	}
5928 	return NULL;
5929 }
5930 EXPORT_SYMBOL(gro_find_complete_by_type);
5931 
5932 static void napi_skb_free_stolen_head(struct sk_buff *skb)
5933 {
5934 	skb_dst_drop(skb);
5935 	skb_ext_put(skb);
5936 	kmem_cache_free(skbuff_head_cache, skb);
5937 }
5938 
5939 static gro_result_t napi_skb_finish(struct napi_struct *napi,
5940 				    struct sk_buff *skb,
5941 				    gro_result_t ret)
5942 {
5943 	switch (ret) {
5944 	case GRO_NORMAL:
5945 		gro_normal_one(napi, skb);
5946 		break;
5947 
5948 	case GRO_DROP:
5949 		kfree_skb(skb);
5950 		break;
5951 
5952 	case GRO_MERGED_FREE:
5953 		if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5954 			napi_skb_free_stolen_head(skb);
5955 		else
5956 			__kfree_skb(skb);
5957 		break;
5958 
5959 	case GRO_HELD:
5960 	case GRO_MERGED:
5961 	case GRO_CONSUMED:
5962 		break;
5963 	}
5964 
5965 	return ret;
5966 }
5967 
5968 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5969 {
5970 	gro_result_t ret;
5971 
5972 	skb_mark_napi_id(skb, napi);
5973 	trace_napi_gro_receive_entry(skb);
5974 
5975 	skb_gro_reset_offset(skb);
5976 
5977 	ret = napi_skb_finish(napi, skb, dev_gro_receive(napi, skb));
5978 	trace_napi_gro_receive_exit(ret);
5979 
5980 	return ret;
5981 }
5982 EXPORT_SYMBOL(napi_gro_receive);
5983 
5984 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
5985 {
5986 	if (unlikely(skb->pfmemalloc)) {
5987 		consume_skb(skb);
5988 		return;
5989 	}
5990 	__skb_pull(skb, skb_headlen(skb));
5991 	/* restore the reserve we had after netdev_alloc_skb_ip_align() */
5992 	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
5993 	__vlan_hwaccel_clear_tag(skb);
5994 	skb->dev = napi->dev;
5995 	skb->skb_iif = 0;
5996 
5997 	/* eth_type_trans() assumes pkt_type is PACKET_HOST */
5998 	skb->pkt_type = PACKET_HOST;
5999 
6000 	skb->encapsulation = 0;
6001 	skb_shinfo(skb)->gso_type = 0;
6002 	skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
6003 	skb_ext_reset(skb);
6004 
6005 	napi->skb = skb;
6006 }
6007 
6008 struct sk_buff *napi_get_frags(struct napi_struct *napi)
6009 {
6010 	struct sk_buff *skb = napi->skb;
6011 
6012 	if (!skb) {
6013 		skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
6014 		if (skb) {
6015 			napi->skb = skb;
6016 			skb_mark_napi_id(skb, napi);
6017 		}
6018 	}
6019 	return skb;
6020 }
6021 EXPORT_SYMBOL(napi_get_frags);
6022 
6023 static gro_result_t napi_frags_finish(struct napi_struct *napi,
6024 				      struct sk_buff *skb,
6025 				      gro_result_t ret)
6026 {
6027 	switch (ret) {
6028 	case GRO_NORMAL:
6029 	case GRO_HELD:
6030 		__skb_push(skb, ETH_HLEN);
6031 		skb->protocol = eth_type_trans(skb, skb->dev);
6032 		if (ret == GRO_NORMAL)
6033 			gro_normal_one(napi, skb);
6034 		break;
6035 
6036 	case GRO_DROP:
6037 		napi_reuse_skb(napi, skb);
6038 		break;
6039 
6040 	case GRO_MERGED_FREE:
6041 		if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
6042 			napi_skb_free_stolen_head(skb);
6043 		else
6044 			napi_reuse_skb(napi, skb);
6045 		break;
6046 
6047 	case GRO_MERGED:
6048 	case GRO_CONSUMED:
6049 		break;
6050 	}
6051 
6052 	return ret;
6053 }
6054 
6055 /* Upper GRO stack assumes network header starts at gro_offset=0
6056  * Drivers could call both napi_gro_frags() and napi_gro_receive()
6057  * We copy ethernet header into skb->data to have a common layout.
6058  */
6059 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
6060 {
6061 	struct sk_buff *skb = napi->skb;
6062 	const struct ethhdr *eth;
6063 	unsigned int hlen = sizeof(*eth);
6064 
6065 	napi->skb = NULL;
6066 
6067 	skb_reset_mac_header(skb);
6068 	skb_gro_reset_offset(skb);
6069 
6070 	if (unlikely(skb_gro_header_hard(skb, hlen))) {
6071 		eth = skb_gro_header_slow(skb, hlen, 0);
6072 		if (unlikely(!eth)) {
6073 			net_warn_ratelimited("%s: dropping impossible skb from %s\n",
6074 					     __func__, napi->dev->name);
6075 			napi_reuse_skb(napi, skb);
6076 			return NULL;
6077 		}
6078 	} else {
6079 		eth = (const struct ethhdr *)skb->data;
6080 		gro_pull_from_frag0(skb, hlen);
6081 		NAPI_GRO_CB(skb)->frag0 += hlen;
6082 		NAPI_GRO_CB(skb)->frag0_len -= hlen;
6083 	}
6084 	__skb_pull(skb, hlen);
6085 
6086 	/*
6087 	 * This works because the only protocols we care about don't require
6088 	 * special handling.
6089 	 * We'll fix it up properly in napi_frags_finish()
6090 	 */
6091 	skb->protocol = eth->h_proto;
6092 
6093 	return skb;
6094 }
6095 
6096 gro_result_t napi_gro_frags(struct napi_struct *napi)
6097 {
6098 	gro_result_t ret;
6099 	struct sk_buff *skb = napi_frags_skb(napi);
6100 
6101 	if (!skb)
6102 		return GRO_DROP;
6103 
6104 	trace_napi_gro_frags_entry(skb);
6105 
6106 	ret = napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
6107 	trace_napi_gro_frags_exit(ret);
6108 
6109 	return ret;
6110 }
6111 EXPORT_SYMBOL(napi_gro_frags);
6112 
6113 /* Compute the checksum from gro_offset and return the folded value
6114  * after adding in any pseudo checksum.
6115  */
6116 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
6117 {
6118 	__wsum wsum;
6119 	__sum16 sum;
6120 
6121 	wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
6122 
6123 	/* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
6124 	sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
6125 	/* See comments in __skb_checksum_complete(). */
6126 	if (likely(!sum)) {
6127 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
6128 		    !skb->csum_complete_sw)
6129 			netdev_rx_csum_fault(skb->dev, skb);
6130 	}
6131 
6132 	NAPI_GRO_CB(skb)->csum = wsum;
6133 	NAPI_GRO_CB(skb)->csum_valid = 1;
6134 
6135 	return sum;
6136 }
6137 EXPORT_SYMBOL(__skb_gro_checksum_complete);
6138 
6139 static void net_rps_send_ipi(struct softnet_data *remsd)
6140 {
6141 #ifdef CONFIG_RPS
6142 	while (remsd) {
6143 		struct softnet_data *next = remsd->rps_ipi_next;
6144 
6145 		if (cpu_online(remsd->cpu))
6146 			smp_call_function_single_async(remsd->cpu, &remsd->csd);
6147 		remsd = next;
6148 	}
6149 #endif
6150 }
6151 
6152 /*
6153  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
6154  * Note: called with local irq disabled, but exits with local irq enabled.
6155  */
6156 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
6157 {
6158 #ifdef CONFIG_RPS
6159 	struct softnet_data *remsd = sd->rps_ipi_list;
6160 
6161 	if (remsd) {
6162 		sd->rps_ipi_list = NULL;
6163 
6164 		local_irq_enable();
6165 
6166 		/* Send pending IPI's to kick RPS processing on remote cpus. */
6167 		net_rps_send_ipi(remsd);
6168 	} else
6169 #endif
6170 		local_irq_enable();
6171 }
6172 
6173 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
6174 {
6175 #ifdef CONFIG_RPS
6176 	return sd->rps_ipi_list != NULL;
6177 #else
6178 	return false;
6179 #endif
6180 }
6181 
6182 static int process_backlog(struct napi_struct *napi, int quota)
6183 {
6184 	struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
6185 	bool again = true;
6186 	int work = 0;
6187 
6188 	/* Check if we have pending ipi, its better to send them now,
6189 	 * not waiting net_rx_action() end.
6190 	 */
6191 	if (sd_has_rps_ipi_waiting(sd)) {
6192 		local_irq_disable();
6193 		net_rps_action_and_irq_enable(sd);
6194 	}
6195 
6196 	napi->weight = dev_rx_weight;
6197 	while (again) {
6198 		struct sk_buff *skb;
6199 
6200 		while ((skb = __skb_dequeue(&sd->process_queue))) {
6201 			rcu_read_lock();
6202 			__netif_receive_skb(skb);
6203 			rcu_read_unlock();
6204 			input_queue_head_incr(sd);
6205 			if (++work >= quota)
6206 				return work;
6207 
6208 		}
6209 
6210 		local_irq_disable();
6211 		rps_lock(sd);
6212 		if (skb_queue_empty(&sd->input_pkt_queue)) {
6213 			/*
6214 			 * Inline a custom version of __napi_complete().
6215 			 * only current cpu owns and manipulates this napi,
6216 			 * and NAPI_STATE_SCHED is the only possible flag set
6217 			 * on backlog.
6218 			 * We can use a plain write instead of clear_bit(),
6219 			 * and we dont need an smp_mb() memory barrier.
6220 			 */
6221 			napi->state = 0;
6222 			again = false;
6223 		} else {
6224 			skb_queue_splice_tail_init(&sd->input_pkt_queue,
6225 						   &sd->process_queue);
6226 		}
6227 		rps_unlock(sd);
6228 		local_irq_enable();
6229 	}
6230 
6231 	return work;
6232 }
6233 
6234 /**
6235  * __napi_schedule - schedule for receive
6236  * @n: entry to schedule
6237  *
6238  * The entry's receive function will be scheduled to run.
6239  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
6240  */
6241 void __napi_schedule(struct napi_struct *n)
6242 {
6243 	unsigned long flags;
6244 
6245 	local_irq_save(flags);
6246 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
6247 	local_irq_restore(flags);
6248 }
6249 EXPORT_SYMBOL(__napi_schedule);
6250 
6251 /**
6252  *	napi_schedule_prep - check if napi can be scheduled
6253  *	@n: napi context
6254  *
6255  * Test if NAPI routine is already running, and if not mark
6256  * it as running.  This is used as a condition variable
6257  * insure only one NAPI poll instance runs.  We also make
6258  * sure there is no pending NAPI disable.
6259  */
6260 bool napi_schedule_prep(struct napi_struct *n)
6261 {
6262 	unsigned long val, new;
6263 
6264 	do {
6265 		val = READ_ONCE(n->state);
6266 		if (unlikely(val & NAPIF_STATE_DISABLE))
6267 			return false;
6268 		new = val | NAPIF_STATE_SCHED;
6269 
6270 		/* Sets STATE_MISSED bit if STATE_SCHED was already set
6271 		 * This was suggested by Alexander Duyck, as compiler
6272 		 * emits better code than :
6273 		 * if (val & NAPIF_STATE_SCHED)
6274 		 *     new |= NAPIF_STATE_MISSED;
6275 		 */
6276 		new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6277 						   NAPIF_STATE_MISSED;
6278 	} while (cmpxchg(&n->state, val, new) != val);
6279 
6280 	return !(val & NAPIF_STATE_SCHED);
6281 }
6282 EXPORT_SYMBOL(napi_schedule_prep);
6283 
6284 /**
6285  * __napi_schedule_irqoff - schedule for receive
6286  * @n: entry to schedule
6287  *
6288  * Variant of __napi_schedule() assuming hard irqs are masked
6289  */
6290 void __napi_schedule_irqoff(struct napi_struct *n)
6291 {
6292 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
6293 }
6294 EXPORT_SYMBOL(__napi_schedule_irqoff);
6295 
6296 bool napi_complete_done(struct napi_struct *n, int work_done)
6297 {
6298 	unsigned long flags, val, new, timeout = 0;
6299 	bool ret = true;
6300 
6301 	/*
6302 	 * 1) Don't let napi dequeue from the cpu poll list
6303 	 *    just in case its running on a different cpu.
6304 	 * 2) If we are busy polling, do nothing here, we have
6305 	 *    the guarantee we will be called later.
6306 	 */
6307 	if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6308 				 NAPIF_STATE_IN_BUSY_POLL)))
6309 		return false;
6310 
6311 	if (work_done) {
6312 		if (n->gro_bitmask)
6313 			timeout = READ_ONCE(n->dev->gro_flush_timeout);
6314 		n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs);
6315 	}
6316 	if (n->defer_hard_irqs_count > 0) {
6317 		n->defer_hard_irqs_count--;
6318 		timeout = READ_ONCE(n->dev->gro_flush_timeout);
6319 		if (timeout)
6320 			ret = false;
6321 	}
6322 	if (n->gro_bitmask) {
6323 		/* When the NAPI instance uses a timeout and keeps postponing
6324 		 * it, we need to bound somehow the time packets are kept in
6325 		 * the GRO layer
6326 		 */
6327 		napi_gro_flush(n, !!timeout);
6328 	}
6329 
6330 	gro_normal_list(n);
6331 
6332 	if (unlikely(!list_empty(&n->poll_list))) {
6333 		/* If n->poll_list is not empty, we need to mask irqs */
6334 		local_irq_save(flags);
6335 		list_del_init(&n->poll_list);
6336 		local_irq_restore(flags);
6337 	}
6338 
6339 	do {
6340 		val = READ_ONCE(n->state);
6341 
6342 		WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6343 
6344 		new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED);
6345 
6346 		/* If STATE_MISSED was set, leave STATE_SCHED set,
6347 		 * because we will call napi->poll() one more time.
6348 		 * This C code was suggested by Alexander Duyck to help gcc.
6349 		 */
6350 		new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6351 						    NAPIF_STATE_SCHED;
6352 	} while (cmpxchg(&n->state, val, new) != val);
6353 
6354 	if (unlikely(val & NAPIF_STATE_MISSED)) {
6355 		__napi_schedule(n);
6356 		return false;
6357 	}
6358 
6359 	if (timeout)
6360 		hrtimer_start(&n->timer, ns_to_ktime(timeout),
6361 			      HRTIMER_MODE_REL_PINNED);
6362 	return ret;
6363 }
6364 EXPORT_SYMBOL(napi_complete_done);
6365 
6366 /* must be called under rcu_read_lock(), as we dont take a reference */
6367 static struct napi_struct *napi_by_id(unsigned int napi_id)
6368 {
6369 	unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6370 	struct napi_struct *napi;
6371 
6372 	hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6373 		if (napi->napi_id == napi_id)
6374 			return napi;
6375 
6376 	return NULL;
6377 }
6378 
6379 #if defined(CONFIG_NET_RX_BUSY_POLL)
6380 
6381 #define BUSY_POLL_BUDGET 8
6382 
6383 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock)
6384 {
6385 	int rc;
6386 
6387 	/* Busy polling means there is a high chance device driver hard irq
6388 	 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6389 	 * set in napi_schedule_prep().
6390 	 * Since we are about to call napi->poll() once more, we can safely
6391 	 * clear NAPI_STATE_MISSED.
6392 	 *
6393 	 * Note: x86 could use a single "lock and ..." instruction
6394 	 * to perform these two clear_bit()
6395 	 */
6396 	clear_bit(NAPI_STATE_MISSED, &napi->state);
6397 	clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6398 
6399 	local_bh_disable();
6400 
6401 	/* All we really want here is to re-enable device interrupts.
6402 	 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6403 	 */
6404 	rc = napi->poll(napi, BUSY_POLL_BUDGET);
6405 	/* We can't gro_normal_list() here, because napi->poll() might have
6406 	 * rearmed the napi (napi_complete_done()) in which case it could
6407 	 * already be running on another CPU.
6408 	 */
6409 	trace_napi_poll(napi, rc, BUSY_POLL_BUDGET);
6410 	netpoll_poll_unlock(have_poll_lock);
6411 	if (rc == BUSY_POLL_BUDGET) {
6412 		/* As the whole budget was spent, we still own the napi so can
6413 		 * safely handle the rx_list.
6414 		 */
6415 		gro_normal_list(napi);
6416 		__napi_schedule(napi);
6417 	}
6418 	local_bh_enable();
6419 }
6420 
6421 void napi_busy_loop(unsigned int napi_id,
6422 		    bool (*loop_end)(void *, unsigned long),
6423 		    void *loop_end_arg)
6424 {
6425 	unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6426 	int (*napi_poll)(struct napi_struct *napi, int budget);
6427 	void *have_poll_lock = NULL;
6428 	struct napi_struct *napi;
6429 
6430 restart:
6431 	napi_poll = NULL;
6432 
6433 	rcu_read_lock();
6434 
6435 	napi = napi_by_id(napi_id);
6436 	if (!napi)
6437 		goto out;
6438 
6439 	preempt_disable();
6440 	for (;;) {
6441 		int work = 0;
6442 
6443 		local_bh_disable();
6444 		if (!napi_poll) {
6445 			unsigned long val = READ_ONCE(napi->state);
6446 
6447 			/* If multiple threads are competing for this napi,
6448 			 * we avoid dirtying napi->state as much as we can.
6449 			 */
6450 			if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6451 				   NAPIF_STATE_IN_BUSY_POLL))
6452 				goto count;
6453 			if (cmpxchg(&napi->state, val,
6454 				    val | NAPIF_STATE_IN_BUSY_POLL |
6455 					  NAPIF_STATE_SCHED) != val)
6456 				goto count;
6457 			have_poll_lock = netpoll_poll_lock(napi);
6458 			napi_poll = napi->poll;
6459 		}
6460 		work = napi_poll(napi, BUSY_POLL_BUDGET);
6461 		trace_napi_poll(napi, work, BUSY_POLL_BUDGET);
6462 		gro_normal_list(napi);
6463 count:
6464 		if (work > 0)
6465 			__NET_ADD_STATS(dev_net(napi->dev),
6466 					LINUX_MIB_BUSYPOLLRXPACKETS, work);
6467 		local_bh_enable();
6468 
6469 		if (!loop_end || loop_end(loop_end_arg, start_time))
6470 			break;
6471 
6472 		if (unlikely(need_resched())) {
6473 			if (napi_poll)
6474 				busy_poll_stop(napi, have_poll_lock);
6475 			preempt_enable();
6476 			rcu_read_unlock();
6477 			cond_resched();
6478 			if (loop_end(loop_end_arg, start_time))
6479 				return;
6480 			goto restart;
6481 		}
6482 		cpu_relax();
6483 	}
6484 	if (napi_poll)
6485 		busy_poll_stop(napi, have_poll_lock);
6486 	preempt_enable();
6487 out:
6488 	rcu_read_unlock();
6489 }
6490 EXPORT_SYMBOL(napi_busy_loop);
6491 
6492 #endif /* CONFIG_NET_RX_BUSY_POLL */
6493 
6494 static void napi_hash_add(struct napi_struct *napi)
6495 {
6496 	if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
6497 	    test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
6498 		return;
6499 
6500 	spin_lock(&napi_hash_lock);
6501 
6502 	/* 0..NR_CPUS range is reserved for sender_cpu use */
6503 	do {
6504 		if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6505 			napi_gen_id = MIN_NAPI_ID;
6506 	} while (napi_by_id(napi_gen_id));
6507 	napi->napi_id = napi_gen_id;
6508 
6509 	hlist_add_head_rcu(&napi->napi_hash_node,
6510 			   &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6511 
6512 	spin_unlock(&napi_hash_lock);
6513 }
6514 
6515 /* Warning : caller is responsible to make sure rcu grace period
6516  * is respected before freeing memory containing @napi
6517  */
6518 bool napi_hash_del(struct napi_struct *napi)
6519 {
6520 	bool rcu_sync_needed = false;
6521 
6522 	spin_lock(&napi_hash_lock);
6523 
6524 	if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
6525 		rcu_sync_needed = true;
6526 		hlist_del_rcu(&napi->napi_hash_node);
6527 	}
6528 	spin_unlock(&napi_hash_lock);
6529 	return rcu_sync_needed;
6530 }
6531 EXPORT_SYMBOL_GPL(napi_hash_del);
6532 
6533 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6534 {
6535 	struct napi_struct *napi;
6536 
6537 	napi = container_of(timer, struct napi_struct, timer);
6538 
6539 	/* Note : we use a relaxed variant of napi_schedule_prep() not setting
6540 	 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6541 	 */
6542 	if (!napi_disable_pending(napi) &&
6543 	    !test_and_set_bit(NAPI_STATE_SCHED, &napi->state))
6544 		__napi_schedule_irqoff(napi);
6545 
6546 	return HRTIMER_NORESTART;
6547 }
6548 
6549 static void init_gro_hash(struct napi_struct *napi)
6550 {
6551 	int i;
6552 
6553 	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6554 		INIT_LIST_HEAD(&napi->gro_hash[i].list);
6555 		napi->gro_hash[i].count = 0;
6556 	}
6557 	napi->gro_bitmask = 0;
6558 }
6559 
6560 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
6561 		    int (*poll)(struct napi_struct *, int), int weight)
6562 {
6563 	INIT_LIST_HEAD(&napi->poll_list);
6564 	hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6565 	napi->timer.function = napi_watchdog;
6566 	init_gro_hash(napi);
6567 	napi->skb = NULL;
6568 	INIT_LIST_HEAD(&napi->rx_list);
6569 	napi->rx_count = 0;
6570 	napi->poll = poll;
6571 	if (weight > NAPI_POLL_WEIGHT)
6572 		netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6573 				weight);
6574 	napi->weight = weight;
6575 	list_add(&napi->dev_list, &dev->napi_list);
6576 	napi->dev = dev;
6577 #ifdef CONFIG_NETPOLL
6578 	napi->poll_owner = -1;
6579 #endif
6580 	set_bit(NAPI_STATE_SCHED, &napi->state);
6581 	napi_hash_add(napi);
6582 }
6583 EXPORT_SYMBOL(netif_napi_add);
6584 
6585 void napi_disable(struct napi_struct *n)
6586 {
6587 	might_sleep();
6588 	set_bit(NAPI_STATE_DISABLE, &n->state);
6589 
6590 	while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
6591 		msleep(1);
6592 	while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
6593 		msleep(1);
6594 
6595 	hrtimer_cancel(&n->timer);
6596 
6597 	clear_bit(NAPI_STATE_DISABLE, &n->state);
6598 }
6599 EXPORT_SYMBOL(napi_disable);
6600 
6601 static void flush_gro_hash(struct napi_struct *napi)
6602 {
6603 	int i;
6604 
6605 	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6606 		struct sk_buff *skb, *n;
6607 
6608 		list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6609 			kfree_skb(skb);
6610 		napi->gro_hash[i].count = 0;
6611 	}
6612 }
6613 
6614 /* Must be called in process context */
6615 void netif_napi_del(struct napi_struct *napi)
6616 {
6617 	might_sleep();
6618 	if (napi_hash_del(napi))
6619 		synchronize_net();
6620 	list_del_init(&napi->dev_list);
6621 	napi_free_frags(napi);
6622 
6623 	flush_gro_hash(napi);
6624 	napi->gro_bitmask = 0;
6625 }
6626 EXPORT_SYMBOL(netif_napi_del);
6627 
6628 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6629 {
6630 	void *have;
6631 	int work, weight;
6632 
6633 	list_del_init(&n->poll_list);
6634 
6635 	have = netpoll_poll_lock(n);
6636 
6637 	weight = n->weight;
6638 
6639 	/* This NAPI_STATE_SCHED test is for avoiding a race
6640 	 * with netpoll's poll_napi().  Only the entity which
6641 	 * obtains the lock and sees NAPI_STATE_SCHED set will
6642 	 * actually make the ->poll() call.  Therefore we avoid
6643 	 * accidentally calling ->poll() when NAPI is not scheduled.
6644 	 */
6645 	work = 0;
6646 	if (test_bit(NAPI_STATE_SCHED, &n->state)) {
6647 		work = n->poll(n, weight);
6648 		trace_napi_poll(n, work, weight);
6649 	}
6650 
6651 	WARN_ON_ONCE(work > weight);
6652 
6653 	if (likely(work < weight))
6654 		goto out_unlock;
6655 
6656 	/* Drivers must not modify the NAPI state if they
6657 	 * consume the entire weight.  In such cases this code
6658 	 * still "owns" the NAPI instance and therefore can
6659 	 * move the instance around on the list at-will.
6660 	 */
6661 	if (unlikely(napi_disable_pending(n))) {
6662 		napi_complete(n);
6663 		goto out_unlock;
6664 	}
6665 
6666 	if (n->gro_bitmask) {
6667 		/* flush too old packets
6668 		 * If HZ < 1000, flush all packets.
6669 		 */
6670 		napi_gro_flush(n, HZ >= 1000);
6671 	}
6672 
6673 	gro_normal_list(n);
6674 
6675 	/* Some drivers may have called napi_schedule
6676 	 * prior to exhausting their budget.
6677 	 */
6678 	if (unlikely(!list_empty(&n->poll_list))) {
6679 		pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6680 			     n->dev ? n->dev->name : "backlog");
6681 		goto out_unlock;
6682 	}
6683 
6684 	list_add_tail(&n->poll_list, repoll);
6685 
6686 out_unlock:
6687 	netpoll_poll_unlock(have);
6688 
6689 	return work;
6690 }
6691 
6692 static __latent_entropy void net_rx_action(struct softirq_action *h)
6693 {
6694 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
6695 	unsigned long time_limit = jiffies +
6696 		usecs_to_jiffies(netdev_budget_usecs);
6697 	int budget = netdev_budget;
6698 	LIST_HEAD(list);
6699 	LIST_HEAD(repoll);
6700 
6701 	local_irq_disable();
6702 	list_splice_init(&sd->poll_list, &list);
6703 	local_irq_enable();
6704 
6705 	for (;;) {
6706 		struct napi_struct *n;
6707 
6708 		if (list_empty(&list)) {
6709 			if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
6710 				goto out;
6711 			break;
6712 		}
6713 
6714 		n = list_first_entry(&list, struct napi_struct, poll_list);
6715 		budget -= napi_poll(n, &repoll);
6716 
6717 		/* If softirq window is exhausted then punt.
6718 		 * Allow this to run for 2 jiffies since which will allow
6719 		 * an average latency of 1.5/HZ.
6720 		 */
6721 		if (unlikely(budget <= 0 ||
6722 			     time_after_eq(jiffies, time_limit))) {
6723 			sd->time_squeeze++;
6724 			break;
6725 		}
6726 	}
6727 
6728 	local_irq_disable();
6729 
6730 	list_splice_tail_init(&sd->poll_list, &list);
6731 	list_splice_tail(&repoll, &list);
6732 	list_splice(&list, &sd->poll_list);
6733 	if (!list_empty(&sd->poll_list))
6734 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
6735 
6736 	net_rps_action_and_irq_enable(sd);
6737 out:
6738 	__kfree_skb_flush();
6739 }
6740 
6741 struct netdev_adjacent {
6742 	struct net_device *dev;
6743 
6744 	/* upper master flag, there can only be one master device per list */
6745 	bool master;
6746 
6747 	/* lookup ignore flag */
6748 	bool ignore;
6749 
6750 	/* counter for the number of times this device was added to us */
6751 	u16 ref_nr;
6752 
6753 	/* private field for the users */
6754 	void *private;
6755 
6756 	struct list_head list;
6757 	struct rcu_head rcu;
6758 };
6759 
6760 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
6761 						 struct list_head *adj_list)
6762 {
6763 	struct netdev_adjacent *adj;
6764 
6765 	list_for_each_entry(adj, adj_list, list) {
6766 		if (adj->dev == adj_dev)
6767 			return adj;
6768 	}
6769 	return NULL;
6770 }
6771 
6772 static int ____netdev_has_upper_dev(struct net_device *upper_dev, void *data)
6773 {
6774 	struct net_device *dev = data;
6775 
6776 	return upper_dev == dev;
6777 }
6778 
6779 /**
6780  * netdev_has_upper_dev - Check if device is linked to an upper device
6781  * @dev: device
6782  * @upper_dev: upper device to check
6783  *
6784  * Find out if a device is linked to specified upper device and return true
6785  * in case it is. Note that this checks only immediate upper device,
6786  * not through a complete stack of devices. The caller must hold the RTNL lock.
6787  */
6788 bool netdev_has_upper_dev(struct net_device *dev,
6789 			  struct net_device *upper_dev)
6790 {
6791 	ASSERT_RTNL();
6792 
6793 	return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6794 					     upper_dev);
6795 }
6796 EXPORT_SYMBOL(netdev_has_upper_dev);
6797 
6798 /**
6799  * netdev_has_upper_dev_all - Check if device is linked to an upper device
6800  * @dev: device
6801  * @upper_dev: upper device to check
6802  *
6803  * Find out if a device is linked to specified upper device and return true
6804  * in case it is. Note that this checks the entire upper device chain.
6805  * The caller must hold rcu lock.
6806  */
6807 
6808 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
6809 				  struct net_device *upper_dev)
6810 {
6811 	return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6812 					       upper_dev);
6813 }
6814 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
6815 
6816 /**
6817  * netdev_has_any_upper_dev - Check if device is linked to some device
6818  * @dev: device
6819  *
6820  * Find out if a device is linked to an upper device and return true in case
6821  * it is. The caller must hold the RTNL lock.
6822  */
6823 bool netdev_has_any_upper_dev(struct net_device *dev)
6824 {
6825 	ASSERT_RTNL();
6826 
6827 	return !list_empty(&dev->adj_list.upper);
6828 }
6829 EXPORT_SYMBOL(netdev_has_any_upper_dev);
6830 
6831 /**
6832  * netdev_master_upper_dev_get - Get master upper device
6833  * @dev: device
6834  *
6835  * Find a master upper device and return pointer to it or NULL in case
6836  * it's not there. The caller must hold the RTNL lock.
6837  */
6838 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
6839 {
6840 	struct netdev_adjacent *upper;
6841 
6842 	ASSERT_RTNL();
6843 
6844 	if (list_empty(&dev->adj_list.upper))
6845 		return NULL;
6846 
6847 	upper = list_first_entry(&dev->adj_list.upper,
6848 				 struct netdev_adjacent, list);
6849 	if (likely(upper->master))
6850 		return upper->dev;
6851 	return NULL;
6852 }
6853 EXPORT_SYMBOL(netdev_master_upper_dev_get);
6854 
6855 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
6856 {
6857 	struct netdev_adjacent *upper;
6858 
6859 	ASSERT_RTNL();
6860 
6861 	if (list_empty(&dev->adj_list.upper))
6862 		return NULL;
6863 
6864 	upper = list_first_entry(&dev->adj_list.upper,
6865 				 struct netdev_adjacent, list);
6866 	if (likely(upper->master) && !upper->ignore)
6867 		return upper->dev;
6868 	return NULL;
6869 }
6870 
6871 /**
6872  * netdev_has_any_lower_dev - Check if device is linked to some device
6873  * @dev: device
6874  *
6875  * Find out if a device is linked to a lower device and return true in case
6876  * it is. The caller must hold the RTNL lock.
6877  */
6878 static bool netdev_has_any_lower_dev(struct net_device *dev)
6879 {
6880 	ASSERT_RTNL();
6881 
6882 	return !list_empty(&dev->adj_list.lower);
6883 }
6884 
6885 void *netdev_adjacent_get_private(struct list_head *adj_list)
6886 {
6887 	struct netdev_adjacent *adj;
6888 
6889 	adj = list_entry(adj_list, struct netdev_adjacent, list);
6890 
6891 	return adj->private;
6892 }
6893 EXPORT_SYMBOL(netdev_adjacent_get_private);
6894 
6895 /**
6896  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
6897  * @dev: device
6898  * @iter: list_head ** of the current position
6899  *
6900  * Gets the next device from the dev's upper list, starting from iter
6901  * position. The caller must hold RCU read lock.
6902  */
6903 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
6904 						 struct list_head **iter)
6905 {
6906 	struct netdev_adjacent *upper;
6907 
6908 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6909 
6910 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6911 
6912 	if (&upper->list == &dev->adj_list.upper)
6913 		return NULL;
6914 
6915 	*iter = &upper->list;
6916 
6917 	return upper->dev;
6918 }
6919 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
6920 
6921 static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
6922 						  struct list_head **iter,
6923 						  bool *ignore)
6924 {
6925 	struct netdev_adjacent *upper;
6926 
6927 	upper = list_entry((*iter)->next, struct netdev_adjacent, list);
6928 
6929 	if (&upper->list == &dev->adj_list.upper)
6930 		return NULL;
6931 
6932 	*iter = &upper->list;
6933 	*ignore = upper->ignore;
6934 
6935 	return upper->dev;
6936 }
6937 
6938 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
6939 						    struct list_head **iter)
6940 {
6941 	struct netdev_adjacent *upper;
6942 
6943 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6944 
6945 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6946 
6947 	if (&upper->list == &dev->adj_list.upper)
6948 		return NULL;
6949 
6950 	*iter = &upper->list;
6951 
6952 	return upper->dev;
6953 }
6954 
6955 static int __netdev_walk_all_upper_dev(struct net_device *dev,
6956 				       int (*fn)(struct net_device *dev,
6957 						 void *data),
6958 				       void *data)
6959 {
6960 	struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
6961 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
6962 	int ret, cur = 0;
6963 	bool ignore;
6964 
6965 	now = dev;
6966 	iter = &dev->adj_list.upper;
6967 
6968 	while (1) {
6969 		if (now != dev) {
6970 			ret = fn(now, data);
6971 			if (ret)
6972 				return ret;
6973 		}
6974 
6975 		next = NULL;
6976 		while (1) {
6977 			udev = __netdev_next_upper_dev(now, &iter, &ignore);
6978 			if (!udev)
6979 				break;
6980 			if (ignore)
6981 				continue;
6982 
6983 			next = udev;
6984 			niter = &udev->adj_list.upper;
6985 			dev_stack[cur] = now;
6986 			iter_stack[cur++] = iter;
6987 			break;
6988 		}
6989 
6990 		if (!next) {
6991 			if (!cur)
6992 				return 0;
6993 			next = dev_stack[--cur];
6994 			niter = iter_stack[cur];
6995 		}
6996 
6997 		now = next;
6998 		iter = niter;
6999 	}
7000 
7001 	return 0;
7002 }
7003 
7004 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
7005 				  int (*fn)(struct net_device *dev,
7006 					    void *data),
7007 				  void *data)
7008 {
7009 	struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7010 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7011 	int ret, cur = 0;
7012 
7013 	now = dev;
7014 	iter = &dev->adj_list.upper;
7015 
7016 	while (1) {
7017 		if (now != dev) {
7018 			ret = fn(now, data);
7019 			if (ret)
7020 				return ret;
7021 		}
7022 
7023 		next = NULL;
7024 		while (1) {
7025 			udev = netdev_next_upper_dev_rcu(now, &iter);
7026 			if (!udev)
7027 				break;
7028 
7029 			next = udev;
7030 			niter = &udev->adj_list.upper;
7031 			dev_stack[cur] = now;
7032 			iter_stack[cur++] = iter;
7033 			break;
7034 		}
7035 
7036 		if (!next) {
7037 			if (!cur)
7038 				return 0;
7039 			next = dev_stack[--cur];
7040 			niter = iter_stack[cur];
7041 		}
7042 
7043 		now = next;
7044 		iter = niter;
7045 	}
7046 
7047 	return 0;
7048 }
7049 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
7050 
7051 static bool __netdev_has_upper_dev(struct net_device *dev,
7052 				   struct net_device *upper_dev)
7053 {
7054 	ASSERT_RTNL();
7055 
7056 	return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
7057 					   upper_dev);
7058 }
7059 
7060 /**
7061  * netdev_lower_get_next_private - Get the next ->private from the
7062  *				   lower neighbour list
7063  * @dev: device
7064  * @iter: list_head ** of the current position
7065  *
7066  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7067  * list, starting from iter position. The caller must hold either hold the
7068  * RTNL lock or its own locking that guarantees that the neighbour lower
7069  * list will remain unchanged.
7070  */
7071 void *netdev_lower_get_next_private(struct net_device *dev,
7072 				    struct list_head **iter)
7073 {
7074 	struct netdev_adjacent *lower;
7075 
7076 	lower = list_entry(*iter, struct netdev_adjacent, list);
7077 
7078 	if (&lower->list == &dev->adj_list.lower)
7079 		return NULL;
7080 
7081 	*iter = lower->list.next;
7082 
7083 	return lower->private;
7084 }
7085 EXPORT_SYMBOL(netdev_lower_get_next_private);
7086 
7087 /**
7088  * netdev_lower_get_next_private_rcu - Get the next ->private from the
7089  *				       lower neighbour list, RCU
7090  *				       variant
7091  * @dev: device
7092  * @iter: list_head ** of the current position
7093  *
7094  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7095  * list, starting from iter position. The caller must hold RCU read lock.
7096  */
7097 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
7098 					struct list_head **iter)
7099 {
7100 	struct netdev_adjacent *lower;
7101 
7102 	WARN_ON_ONCE(!rcu_read_lock_held());
7103 
7104 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7105 
7106 	if (&lower->list == &dev->adj_list.lower)
7107 		return NULL;
7108 
7109 	*iter = &lower->list;
7110 
7111 	return lower->private;
7112 }
7113 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
7114 
7115 /**
7116  * netdev_lower_get_next - Get the next device from the lower neighbour
7117  *                         list
7118  * @dev: device
7119  * @iter: list_head ** of the current position
7120  *
7121  * Gets the next netdev_adjacent from the dev's lower neighbour
7122  * list, starting from iter position. The caller must hold RTNL lock or
7123  * its own locking that guarantees that the neighbour lower
7124  * list will remain unchanged.
7125  */
7126 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
7127 {
7128 	struct netdev_adjacent *lower;
7129 
7130 	lower = list_entry(*iter, struct netdev_adjacent, list);
7131 
7132 	if (&lower->list == &dev->adj_list.lower)
7133 		return NULL;
7134 
7135 	*iter = lower->list.next;
7136 
7137 	return lower->dev;
7138 }
7139 EXPORT_SYMBOL(netdev_lower_get_next);
7140 
7141 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7142 						struct list_head **iter)
7143 {
7144 	struct netdev_adjacent *lower;
7145 
7146 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7147 
7148 	if (&lower->list == &dev->adj_list.lower)
7149 		return NULL;
7150 
7151 	*iter = &lower->list;
7152 
7153 	return lower->dev;
7154 }
7155 
7156 static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7157 						  struct list_head **iter,
7158 						  bool *ignore)
7159 {
7160 	struct netdev_adjacent *lower;
7161 
7162 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7163 
7164 	if (&lower->list == &dev->adj_list.lower)
7165 		return NULL;
7166 
7167 	*iter = &lower->list;
7168 	*ignore = lower->ignore;
7169 
7170 	return lower->dev;
7171 }
7172 
7173 int netdev_walk_all_lower_dev(struct net_device *dev,
7174 			      int (*fn)(struct net_device *dev,
7175 					void *data),
7176 			      void *data)
7177 {
7178 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7179 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7180 	int ret, cur = 0;
7181 
7182 	now = dev;
7183 	iter = &dev->adj_list.lower;
7184 
7185 	while (1) {
7186 		if (now != dev) {
7187 			ret = fn(now, data);
7188 			if (ret)
7189 				return ret;
7190 		}
7191 
7192 		next = NULL;
7193 		while (1) {
7194 			ldev = netdev_next_lower_dev(now, &iter);
7195 			if (!ldev)
7196 				break;
7197 
7198 			next = ldev;
7199 			niter = &ldev->adj_list.lower;
7200 			dev_stack[cur] = now;
7201 			iter_stack[cur++] = iter;
7202 			break;
7203 		}
7204 
7205 		if (!next) {
7206 			if (!cur)
7207 				return 0;
7208 			next = dev_stack[--cur];
7209 			niter = iter_stack[cur];
7210 		}
7211 
7212 		now = next;
7213 		iter = niter;
7214 	}
7215 
7216 	return 0;
7217 }
7218 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
7219 
7220 static int __netdev_walk_all_lower_dev(struct net_device *dev,
7221 				       int (*fn)(struct net_device *dev,
7222 						 void *data),
7223 				       void *data)
7224 {
7225 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7226 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7227 	int ret, cur = 0;
7228 	bool ignore;
7229 
7230 	now = dev;
7231 	iter = &dev->adj_list.lower;
7232 
7233 	while (1) {
7234 		if (now != dev) {
7235 			ret = fn(now, data);
7236 			if (ret)
7237 				return ret;
7238 		}
7239 
7240 		next = NULL;
7241 		while (1) {
7242 			ldev = __netdev_next_lower_dev(now, &iter, &ignore);
7243 			if (!ldev)
7244 				break;
7245 			if (ignore)
7246 				continue;
7247 
7248 			next = ldev;
7249 			niter = &ldev->adj_list.lower;
7250 			dev_stack[cur] = now;
7251 			iter_stack[cur++] = iter;
7252 			break;
7253 		}
7254 
7255 		if (!next) {
7256 			if (!cur)
7257 				return 0;
7258 			next = dev_stack[--cur];
7259 			niter = iter_stack[cur];
7260 		}
7261 
7262 		now = next;
7263 		iter = niter;
7264 	}
7265 
7266 	return 0;
7267 }
7268 
7269 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
7270 					     struct list_head **iter)
7271 {
7272 	struct netdev_adjacent *lower;
7273 
7274 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7275 	if (&lower->list == &dev->adj_list.lower)
7276 		return NULL;
7277 
7278 	*iter = &lower->list;
7279 
7280 	return lower->dev;
7281 }
7282 EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
7283 
7284 static u8 __netdev_upper_depth(struct net_device *dev)
7285 {
7286 	struct net_device *udev;
7287 	struct list_head *iter;
7288 	u8 max_depth = 0;
7289 	bool ignore;
7290 
7291 	for (iter = &dev->adj_list.upper,
7292 	     udev = __netdev_next_upper_dev(dev, &iter, &ignore);
7293 	     udev;
7294 	     udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
7295 		if (ignore)
7296 			continue;
7297 		if (max_depth < udev->upper_level)
7298 			max_depth = udev->upper_level;
7299 	}
7300 
7301 	return max_depth;
7302 }
7303 
7304 static u8 __netdev_lower_depth(struct net_device *dev)
7305 {
7306 	struct net_device *ldev;
7307 	struct list_head *iter;
7308 	u8 max_depth = 0;
7309 	bool ignore;
7310 
7311 	for (iter = &dev->adj_list.lower,
7312 	     ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
7313 	     ldev;
7314 	     ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
7315 		if (ignore)
7316 			continue;
7317 		if (max_depth < ldev->lower_level)
7318 			max_depth = ldev->lower_level;
7319 	}
7320 
7321 	return max_depth;
7322 }
7323 
7324 static int __netdev_update_upper_level(struct net_device *dev, void *data)
7325 {
7326 	dev->upper_level = __netdev_upper_depth(dev) + 1;
7327 	return 0;
7328 }
7329 
7330 static int __netdev_update_lower_level(struct net_device *dev, void *data)
7331 {
7332 	dev->lower_level = __netdev_lower_depth(dev) + 1;
7333 	return 0;
7334 }
7335 
7336 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7337 				  int (*fn)(struct net_device *dev,
7338 					    void *data),
7339 				  void *data)
7340 {
7341 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7342 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7343 	int ret, cur = 0;
7344 
7345 	now = dev;
7346 	iter = &dev->adj_list.lower;
7347 
7348 	while (1) {
7349 		if (now != dev) {
7350 			ret = fn(now, data);
7351 			if (ret)
7352 				return ret;
7353 		}
7354 
7355 		next = NULL;
7356 		while (1) {
7357 			ldev = netdev_next_lower_dev_rcu(now, &iter);
7358 			if (!ldev)
7359 				break;
7360 
7361 			next = ldev;
7362 			niter = &ldev->adj_list.lower;
7363 			dev_stack[cur] = now;
7364 			iter_stack[cur++] = iter;
7365 			break;
7366 		}
7367 
7368 		if (!next) {
7369 			if (!cur)
7370 				return 0;
7371 			next = dev_stack[--cur];
7372 			niter = iter_stack[cur];
7373 		}
7374 
7375 		now = next;
7376 		iter = niter;
7377 	}
7378 
7379 	return 0;
7380 }
7381 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
7382 
7383 /**
7384  * netdev_lower_get_first_private_rcu - Get the first ->private from the
7385  *				       lower neighbour list, RCU
7386  *				       variant
7387  * @dev: device
7388  *
7389  * Gets the first netdev_adjacent->private from the dev's lower neighbour
7390  * list. The caller must hold RCU read lock.
7391  */
7392 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
7393 {
7394 	struct netdev_adjacent *lower;
7395 
7396 	lower = list_first_or_null_rcu(&dev->adj_list.lower,
7397 			struct netdev_adjacent, list);
7398 	if (lower)
7399 		return lower->private;
7400 	return NULL;
7401 }
7402 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
7403 
7404 /**
7405  * netdev_master_upper_dev_get_rcu - Get master upper device
7406  * @dev: device
7407  *
7408  * Find a master upper device and return pointer to it or NULL in case
7409  * it's not there. The caller must hold the RCU read lock.
7410  */
7411 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
7412 {
7413 	struct netdev_adjacent *upper;
7414 
7415 	upper = list_first_or_null_rcu(&dev->adj_list.upper,
7416 				       struct netdev_adjacent, list);
7417 	if (upper && likely(upper->master))
7418 		return upper->dev;
7419 	return NULL;
7420 }
7421 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
7422 
7423 static int netdev_adjacent_sysfs_add(struct net_device *dev,
7424 			      struct net_device *adj_dev,
7425 			      struct list_head *dev_list)
7426 {
7427 	char linkname[IFNAMSIZ+7];
7428 
7429 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
7430 		"upper_%s" : "lower_%s", adj_dev->name);
7431 	return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
7432 				 linkname);
7433 }
7434 static void netdev_adjacent_sysfs_del(struct net_device *dev,
7435 			       char *name,
7436 			       struct list_head *dev_list)
7437 {
7438 	char linkname[IFNAMSIZ+7];
7439 
7440 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
7441 		"upper_%s" : "lower_%s", name);
7442 	sysfs_remove_link(&(dev->dev.kobj), linkname);
7443 }
7444 
7445 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
7446 						 struct net_device *adj_dev,
7447 						 struct list_head *dev_list)
7448 {
7449 	return (dev_list == &dev->adj_list.upper ||
7450 		dev_list == &dev->adj_list.lower) &&
7451 		net_eq(dev_net(dev), dev_net(adj_dev));
7452 }
7453 
7454 static int __netdev_adjacent_dev_insert(struct net_device *dev,
7455 					struct net_device *adj_dev,
7456 					struct list_head *dev_list,
7457 					void *private, bool master)
7458 {
7459 	struct netdev_adjacent *adj;
7460 	int ret;
7461 
7462 	adj = __netdev_find_adj(adj_dev, dev_list);
7463 
7464 	if (adj) {
7465 		adj->ref_nr += 1;
7466 		pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7467 			 dev->name, adj_dev->name, adj->ref_nr);
7468 
7469 		return 0;
7470 	}
7471 
7472 	adj = kmalloc(sizeof(*adj), GFP_KERNEL);
7473 	if (!adj)
7474 		return -ENOMEM;
7475 
7476 	adj->dev = adj_dev;
7477 	adj->master = master;
7478 	adj->ref_nr = 1;
7479 	adj->private = private;
7480 	adj->ignore = false;
7481 	dev_hold(adj_dev);
7482 
7483 	pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7484 		 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
7485 
7486 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
7487 		ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
7488 		if (ret)
7489 			goto free_adj;
7490 	}
7491 
7492 	/* Ensure that master link is always the first item in list. */
7493 	if (master) {
7494 		ret = sysfs_create_link(&(dev->dev.kobj),
7495 					&(adj_dev->dev.kobj), "master");
7496 		if (ret)
7497 			goto remove_symlinks;
7498 
7499 		list_add_rcu(&adj->list, dev_list);
7500 	} else {
7501 		list_add_tail_rcu(&adj->list, dev_list);
7502 	}
7503 
7504 	return 0;
7505 
7506 remove_symlinks:
7507 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7508 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7509 free_adj:
7510 	kfree(adj);
7511 	dev_put(adj_dev);
7512 
7513 	return ret;
7514 }
7515 
7516 static void __netdev_adjacent_dev_remove(struct net_device *dev,
7517 					 struct net_device *adj_dev,
7518 					 u16 ref_nr,
7519 					 struct list_head *dev_list)
7520 {
7521 	struct netdev_adjacent *adj;
7522 
7523 	pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
7524 		 dev->name, adj_dev->name, ref_nr);
7525 
7526 	adj = __netdev_find_adj(adj_dev, dev_list);
7527 
7528 	if (!adj) {
7529 		pr_err("Adjacency does not exist for device %s from %s\n",
7530 		       dev->name, adj_dev->name);
7531 		WARN_ON(1);
7532 		return;
7533 	}
7534 
7535 	if (adj->ref_nr > ref_nr) {
7536 		pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
7537 			 dev->name, adj_dev->name, ref_nr,
7538 			 adj->ref_nr - ref_nr);
7539 		adj->ref_nr -= ref_nr;
7540 		return;
7541 	}
7542 
7543 	if (adj->master)
7544 		sysfs_remove_link(&(dev->dev.kobj), "master");
7545 
7546 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7547 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7548 
7549 	list_del_rcu(&adj->list);
7550 	pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
7551 		 adj_dev->name, dev->name, adj_dev->name);
7552 	dev_put(adj_dev);
7553 	kfree_rcu(adj, rcu);
7554 }
7555 
7556 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
7557 					    struct net_device *upper_dev,
7558 					    struct list_head *up_list,
7559 					    struct list_head *down_list,
7560 					    void *private, bool master)
7561 {
7562 	int ret;
7563 
7564 	ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
7565 					   private, master);
7566 	if (ret)
7567 		return ret;
7568 
7569 	ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
7570 					   private, false);
7571 	if (ret) {
7572 		__netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
7573 		return ret;
7574 	}
7575 
7576 	return 0;
7577 }
7578 
7579 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
7580 					       struct net_device *upper_dev,
7581 					       u16 ref_nr,
7582 					       struct list_head *up_list,
7583 					       struct list_head *down_list)
7584 {
7585 	__netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
7586 	__netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
7587 }
7588 
7589 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
7590 						struct net_device *upper_dev,
7591 						void *private, bool master)
7592 {
7593 	return __netdev_adjacent_dev_link_lists(dev, upper_dev,
7594 						&dev->adj_list.upper,
7595 						&upper_dev->adj_list.lower,
7596 						private, master);
7597 }
7598 
7599 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
7600 						   struct net_device *upper_dev)
7601 {
7602 	__netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
7603 					   &dev->adj_list.upper,
7604 					   &upper_dev->adj_list.lower);
7605 }
7606 
7607 static int __netdev_upper_dev_link(struct net_device *dev,
7608 				   struct net_device *upper_dev, bool master,
7609 				   void *upper_priv, void *upper_info,
7610 				   struct netlink_ext_ack *extack)
7611 {
7612 	struct netdev_notifier_changeupper_info changeupper_info = {
7613 		.info = {
7614 			.dev = dev,
7615 			.extack = extack,
7616 		},
7617 		.upper_dev = upper_dev,
7618 		.master = master,
7619 		.linking = true,
7620 		.upper_info = upper_info,
7621 	};
7622 	struct net_device *master_dev;
7623 	int ret = 0;
7624 
7625 	ASSERT_RTNL();
7626 
7627 	if (dev == upper_dev)
7628 		return -EBUSY;
7629 
7630 	/* To prevent loops, check if dev is not upper device to upper_dev. */
7631 	if (__netdev_has_upper_dev(upper_dev, dev))
7632 		return -EBUSY;
7633 
7634 	if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
7635 		return -EMLINK;
7636 
7637 	if (!master) {
7638 		if (__netdev_has_upper_dev(dev, upper_dev))
7639 			return -EEXIST;
7640 	} else {
7641 		master_dev = __netdev_master_upper_dev_get(dev);
7642 		if (master_dev)
7643 			return master_dev == upper_dev ? -EEXIST : -EBUSY;
7644 	}
7645 
7646 	ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7647 					    &changeupper_info.info);
7648 	ret = notifier_to_errno(ret);
7649 	if (ret)
7650 		return ret;
7651 
7652 	ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
7653 						   master);
7654 	if (ret)
7655 		return ret;
7656 
7657 	ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7658 					    &changeupper_info.info);
7659 	ret = notifier_to_errno(ret);
7660 	if (ret)
7661 		goto rollback;
7662 
7663 	__netdev_update_upper_level(dev, NULL);
7664 	__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7665 
7666 	__netdev_update_lower_level(upper_dev, NULL);
7667 	__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7668 				    NULL);
7669 
7670 	return 0;
7671 
7672 rollback:
7673 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7674 
7675 	return ret;
7676 }
7677 
7678 /**
7679  * netdev_upper_dev_link - Add a link to the upper device
7680  * @dev: device
7681  * @upper_dev: new upper device
7682  * @extack: netlink extended ack
7683  *
7684  * Adds a link to device which is upper to this one. The caller must hold
7685  * the RTNL lock. On a failure a negative errno code is returned.
7686  * On success the reference counts are adjusted and the function
7687  * returns zero.
7688  */
7689 int netdev_upper_dev_link(struct net_device *dev,
7690 			  struct net_device *upper_dev,
7691 			  struct netlink_ext_ack *extack)
7692 {
7693 	return __netdev_upper_dev_link(dev, upper_dev, false,
7694 				       NULL, NULL, extack);
7695 }
7696 EXPORT_SYMBOL(netdev_upper_dev_link);
7697 
7698 /**
7699  * netdev_master_upper_dev_link - Add a master link to the upper device
7700  * @dev: device
7701  * @upper_dev: new upper device
7702  * @upper_priv: upper device private
7703  * @upper_info: upper info to be passed down via notifier
7704  * @extack: netlink extended ack
7705  *
7706  * Adds a link to device which is upper to this one. In this case, only
7707  * one master upper device can be linked, although other non-master devices
7708  * might be linked as well. The caller must hold the RTNL lock.
7709  * On a failure a negative errno code is returned. On success the reference
7710  * counts are adjusted and the function returns zero.
7711  */
7712 int netdev_master_upper_dev_link(struct net_device *dev,
7713 				 struct net_device *upper_dev,
7714 				 void *upper_priv, void *upper_info,
7715 				 struct netlink_ext_ack *extack)
7716 {
7717 	return __netdev_upper_dev_link(dev, upper_dev, true,
7718 				       upper_priv, upper_info, extack);
7719 }
7720 EXPORT_SYMBOL(netdev_master_upper_dev_link);
7721 
7722 /**
7723  * netdev_upper_dev_unlink - Removes a link to upper device
7724  * @dev: device
7725  * @upper_dev: new upper device
7726  *
7727  * Removes a link to device which is upper to this one. The caller must hold
7728  * the RTNL lock.
7729  */
7730 void netdev_upper_dev_unlink(struct net_device *dev,
7731 			     struct net_device *upper_dev)
7732 {
7733 	struct netdev_notifier_changeupper_info changeupper_info = {
7734 		.info = {
7735 			.dev = dev,
7736 		},
7737 		.upper_dev = upper_dev,
7738 		.linking = false,
7739 	};
7740 
7741 	ASSERT_RTNL();
7742 
7743 	changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
7744 
7745 	call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7746 				      &changeupper_info.info);
7747 
7748 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7749 
7750 	call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7751 				      &changeupper_info.info);
7752 
7753 	__netdev_update_upper_level(dev, NULL);
7754 	__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7755 
7756 	__netdev_update_lower_level(upper_dev, NULL);
7757 	__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7758 				    NULL);
7759 }
7760 EXPORT_SYMBOL(netdev_upper_dev_unlink);
7761 
7762 static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
7763 				      struct net_device *lower_dev,
7764 				      bool val)
7765 {
7766 	struct netdev_adjacent *adj;
7767 
7768 	adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
7769 	if (adj)
7770 		adj->ignore = val;
7771 
7772 	adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
7773 	if (adj)
7774 		adj->ignore = val;
7775 }
7776 
7777 static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
7778 					struct net_device *lower_dev)
7779 {
7780 	__netdev_adjacent_dev_set(upper_dev, lower_dev, true);
7781 }
7782 
7783 static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
7784 				       struct net_device *lower_dev)
7785 {
7786 	__netdev_adjacent_dev_set(upper_dev, lower_dev, false);
7787 }
7788 
7789 int netdev_adjacent_change_prepare(struct net_device *old_dev,
7790 				   struct net_device *new_dev,
7791 				   struct net_device *dev,
7792 				   struct netlink_ext_ack *extack)
7793 {
7794 	int err;
7795 
7796 	if (!new_dev)
7797 		return 0;
7798 
7799 	if (old_dev && new_dev != old_dev)
7800 		netdev_adjacent_dev_disable(dev, old_dev);
7801 
7802 	err = netdev_upper_dev_link(new_dev, dev, extack);
7803 	if (err) {
7804 		if (old_dev && new_dev != old_dev)
7805 			netdev_adjacent_dev_enable(dev, old_dev);
7806 		return err;
7807 	}
7808 
7809 	return 0;
7810 }
7811 EXPORT_SYMBOL(netdev_adjacent_change_prepare);
7812 
7813 void netdev_adjacent_change_commit(struct net_device *old_dev,
7814 				   struct net_device *new_dev,
7815 				   struct net_device *dev)
7816 {
7817 	if (!new_dev || !old_dev)
7818 		return;
7819 
7820 	if (new_dev == old_dev)
7821 		return;
7822 
7823 	netdev_adjacent_dev_enable(dev, old_dev);
7824 	netdev_upper_dev_unlink(old_dev, dev);
7825 }
7826 EXPORT_SYMBOL(netdev_adjacent_change_commit);
7827 
7828 void netdev_adjacent_change_abort(struct net_device *old_dev,
7829 				  struct net_device *new_dev,
7830 				  struct net_device *dev)
7831 {
7832 	if (!new_dev)
7833 		return;
7834 
7835 	if (old_dev && new_dev != old_dev)
7836 		netdev_adjacent_dev_enable(dev, old_dev);
7837 
7838 	netdev_upper_dev_unlink(new_dev, dev);
7839 }
7840 EXPORT_SYMBOL(netdev_adjacent_change_abort);
7841 
7842 /**
7843  * netdev_bonding_info_change - Dispatch event about slave change
7844  * @dev: device
7845  * @bonding_info: info to dispatch
7846  *
7847  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
7848  * The caller must hold the RTNL lock.
7849  */
7850 void netdev_bonding_info_change(struct net_device *dev,
7851 				struct netdev_bonding_info *bonding_info)
7852 {
7853 	struct netdev_notifier_bonding_info info = {
7854 		.info.dev = dev,
7855 	};
7856 
7857 	memcpy(&info.bonding_info, bonding_info,
7858 	       sizeof(struct netdev_bonding_info));
7859 	call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
7860 				      &info.info);
7861 }
7862 EXPORT_SYMBOL(netdev_bonding_info_change);
7863 
7864 static void netdev_adjacent_add_links(struct net_device *dev)
7865 {
7866 	struct netdev_adjacent *iter;
7867 
7868 	struct net *net = dev_net(dev);
7869 
7870 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
7871 		if (!net_eq(net, dev_net(iter->dev)))
7872 			continue;
7873 		netdev_adjacent_sysfs_add(iter->dev, dev,
7874 					  &iter->dev->adj_list.lower);
7875 		netdev_adjacent_sysfs_add(dev, iter->dev,
7876 					  &dev->adj_list.upper);
7877 	}
7878 
7879 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
7880 		if (!net_eq(net, dev_net(iter->dev)))
7881 			continue;
7882 		netdev_adjacent_sysfs_add(iter->dev, dev,
7883 					  &iter->dev->adj_list.upper);
7884 		netdev_adjacent_sysfs_add(dev, iter->dev,
7885 					  &dev->adj_list.lower);
7886 	}
7887 }
7888 
7889 static void netdev_adjacent_del_links(struct net_device *dev)
7890 {
7891 	struct netdev_adjacent *iter;
7892 
7893 	struct net *net = dev_net(dev);
7894 
7895 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
7896 		if (!net_eq(net, dev_net(iter->dev)))
7897 			continue;
7898 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
7899 					  &iter->dev->adj_list.lower);
7900 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
7901 					  &dev->adj_list.upper);
7902 	}
7903 
7904 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
7905 		if (!net_eq(net, dev_net(iter->dev)))
7906 			continue;
7907 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
7908 					  &iter->dev->adj_list.upper);
7909 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
7910 					  &dev->adj_list.lower);
7911 	}
7912 }
7913 
7914 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
7915 {
7916 	struct netdev_adjacent *iter;
7917 
7918 	struct net *net = dev_net(dev);
7919 
7920 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
7921 		if (!net_eq(net, dev_net(iter->dev)))
7922 			continue;
7923 		netdev_adjacent_sysfs_del(iter->dev, oldname,
7924 					  &iter->dev->adj_list.lower);
7925 		netdev_adjacent_sysfs_add(iter->dev, dev,
7926 					  &iter->dev->adj_list.lower);
7927 	}
7928 
7929 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
7930 		if (!net_eq(net, dev_net(iter->dev)))
7931 			continue;
7932 		netdev_adjacent_sysfs_del(iter->dev, oldname,
7933 					  &iter->dev->adj_list.upper);
7934 		netdev_adjacent_sysfs_add(iter->dev, dev,
7935 					  &iter->dev->adj_list.upper);
7936 	}
7937 }
7938 
7939 void *netdev_lower_dev_get_private(struct net_device *dev,
7940 				   struct net_device *lower_dev)
7941 {
7942 	struct netdev_adjacent *lower;
7943 
7944 	if (!lower_dev)
7945 		return NULL;
7946 	lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
7947 	if (!lower)
7948 		return NULL;
7949 
7950 	return lower->private;
7951 }
7952 EXPORT_SYMBOL(netdev_lower_dev_get_private);
7953 
7954 
7955 /**
7956  * netdev_lower_change - Dispatch event about lower device state change
7957  * @lower_dev: device
7958  * @lower_state_info: state to dispatch
7959  *
7960  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
7961  * The caller must hold the RTNL lock.
7962  */
7963 void netdev_lower_state_changed(struct net_device *lower_dev,
7964 				void *lower_state_info)
7965 {
7966 	struct netdev_notifier_changelowerstate_info changelowerstate_info = {
7967 		.info.dev = lower_dev,
7968 	};
7969 
7970 	ASSERT_RTNL();
7971 	changelowerstate_info.lower_state_info = lower_state_info;
7972 	call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
7973 				      &changelowerstate_info.info);
7974 }
7975 EXPORT_SYMBOL(netdev_lower_state_changed);
7976 
7977 static void dev_change_rx_flags(struct net_device *dev, int flags)
7978 {
7979 	const struct net_device_ops *ops = dev->netdev_ops;
7980 
7981 	if (ops->ndo_change_rx_flags)
7982 		ops->ndo_change_rx_flags(dev, flags);
7983 }
7984 
7985 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
7986 {
7987 	unsigned int old_flags = dev->flags;
7988 	kuid_t uid;
7989 	kgid_t gid;
7990 
7991 	ASSERT_RTNL();
7992 
7993 	dev->flags |= IFF_PROMISC;
7994 	dev->promiscuity += inc;
7995 	if (dev->promiscuity == 0) {
7996 		/*
7997 		 * Avoid overflow.
7998 		 * If inc causes overflow, untouch promisc and return error.
7999 		 */
8000 		if (inc < 0)
8001 			dev->flags &= ~IFF_PROMISC;
8002 		else {
8003 			dev->promiscuity -= inc;
8004 			pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
8005 				dev->name);
8006 			return -EOVERFLOW;
8007 		}
8008 	}
8009 	if (dev->flags != old_flags) {
8010 		pr_info("device %s %s promiscuous mode\n",
8011 			dev->name,
8012 			dev->flags & IFF_PROMISC ? "entered" : "left");
8013 		if (audit_enabled) {
8014 			current_uid_gid(&uid, &gid);
8015 			audit_log(audit_context(), GFP_ATOMIC,
8016 				  AUDIT_ANOM_PROMISCUOUS,
8017 				  "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
8018 				  dev->name, (dev->flags & IFF_PROMISC),
8019 				  (old_flags & IFF_PROMISC),
8020 				  from_kuid(&init_user_ns, audit_get_loginuid(current)),
8021 				  from_kuid(&init_user_ns, uid),
8022 				  from_kgid(&init_user_ns, gid),
8023 				  audit_get_sessionid(current));
8024 		}
8025 
8026 		dev_change_rx_flags(dev, IFF_PROMISC);
8027 	}
8028 	if (notify)
8029 		__dev_notify_flags(dev, old_flags, IFF_PROMISC);
8030 	return 0;
8031 }
8032 
8033 /**
8034  *	dev_set_promiscuity	- update promiscuity count on a device
8035  *	@dev: device
8036  *	@inc: modifier
8037  *
8038  *	Add or remove promiscuity from a device. While the count in the device
8039  *	remains above zero the interface remains promiscuous. Once it hits zero
8040  *	the device reverts back to normal filtering operation. A negative inc
8041  *	value is used to drop promiscuity on the device.
8042  *	Return 0 if successful or a negative errno code on error.
8043  */
8044 int dev_set_promiscuity(struct net_device *dev, int inc)
8045 {
8046 	unsigned int old_flags = dev->flags;
8047 	int err;
8048 
8049 	err = __dev_set_promiscuity(dev, inc, true);
8050 	if (err < 0)
8051 		return err;
8052 	if (dev->flags != old_flags)
8053 		dev_set_rx_mode(dev);
8054 	return err;
8055 }
8056 EXPORT_SYMBOL(dev_set_promiscuity);
8057 
8058 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
8059 {
8060 	unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
8061 
8062 	ASSERT_RTNL();
8063 
8064 	dev->flags |= IFF_ALLMULTI;
8065 	dev->allmulti += inc;
8066 	if (dev->allmulti == 0) {
8067 		/*
8068 		 * Avoid overflow.
8069 		 * If inc causes overflow, untouch allmulti and return error.
8070 		 */
8071 		if (inc < 0)
8072 			dev->flags &= ~IFF_ALLMULTI;
8073 		else {
8074 			dev->allmulti -= inc;
8075 			pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
8076 				dev->name);
8077 			return -EOVERFLOW;
8078 		}
8079 	}
8080 	if (dev->flags ^ old_flags) {
8081 		dev_change_rx_flags(dev, IFF_ALLMULTI);
8082 		dev_set_rx_mode(dev);
8083 		if (notify)
8084 			__dev_notify_flags(dev, old_flags,
8085 					   dev->gflags ^ old_gflags);
8086 	}
8087 	return 0;
8088 }
8089 
8090 /**
8091  *	dev_set_allmulti	- update allmulti count on a device
8092  *	@dev: device
8093  *	@inc: modifier
8094  *
8095  *	Add or remove reception of all multicast frames to a device. While the
8096  *	count in the device remains above zero the interface remains listening
8097  *	to all interfaces. Once it hits zero the device reverts back to normal
8098  *	filtering operation. A negative @inc value is used to drop the counter
8099  *	when releasing a resource needing all multicasts.
8100  *	Return 0 if successful or a negative errno code on error.
8101  */
8102 
8103 int dev_set_allmulti(struct net_device *dev, int inc)
8104 {
8105 	return __dev_set_allmulti(dev, inc, true);
8106 }
8107 EXPORT_SYMBOL(dev_set_allmulti);
8108 
8109 /*
8110  *	Upload unicast and multicast address lists to device and
8111  *	configure RX filtering. When the device doesn't support unicast
8112  *	filtering it is put in promiscuous mode while unicast addresses
8113  *	are present.
8114  */
8115 void __dev_set_rx_mode(struct net_device *dev)
8116 {
8117 	const struct net_device_ops *ops = dev->netdev_ops;
8118 
8119 	/* dev_open will call this function so the list will stay sane. */
8120 	if (!(dev->flags&IFF_UP))
8121 		return;
8122 
8123 	if (!netif_device_present(dev))
8124 		return;
8125 
8126 	if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
8127 		/* Unicast addresses changes may only happen under the rtnl,
8128 		 * therefore calling __dev_set_promiscuity here is safe.
8129 		 */
8130 		if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
8131 			__dev_set_promiscuity(dev, 1, false);
8132 			dev->uc_promisc = true;
8133 		} else if (netdev_uc_empty(dev) && dev->uc_promisc) {
8134 			__dev_set_promiscuity(dev, -1, false);
8135 			dev->uc_promisc = false;
8136 		}
8137 	}
8138 
8139 	if (ops->ndo_set_rx_mode)
8140 		ops->ndo_set_rx_mode(dev);
8141 }
8142 
8143 void dev_set_rx_mode(struct net_device *dev)
8144 {
8145 	netif_addr_lock_bh(dev);
8146 	__dev_set_rx_mode(dev);
8147 	netif_addr_unlock_bh(dev);
8148 }
8149 
8150 /**
8151  *	dev_get_flags - get flags reported to userspace
8152  *	@dev: device
8153  *
8154  *	Get the combination of flag bits exported through APIs to userspace.
8155  */
8156 unsigned int dev_get_flags(const struct net_device *dev)
8157 {
8158 	unsigned int flags;
8159 
8160 	flags = (dev->flags & ~(IFF_PROMISC |
8161 				IFF_ALLMULTI |
8162 				IFF_RUNNING |
8163 				IFF_LOWER_UP |
8164 				IFF_DORMANT)) |
8165 		(dev->gflags & (IFF_PROMISC |
8166 				IFF_ALLMULTI));
8167 
8168 	if (netif_running(dev)) {
8169 		if (netif_oper_up(dev))
8170 			flags |= IFF_RUNNING;
8171 		if (netif_carrier_ok(dev))
8172 			flags |= IFF_LOWER_UP;
8173 		if (netif_dormant(dev))
8174 			flags |= IFF_DORMANT;
8175 	}
8176 
8177 	return flags;
8178 }
8179 EXPORT_SYMBOL(dev_get_flags);
8180 
8181 int __dev_change_flags(struct net_device *dev, unsigned int flags,
8182 		       struct netlink_ext_ack *extack)
8183 {
8184 	unsigned int old_flags = dev->flags;
8185 	int ret;
8186 
8187 	ASSERT_RTNL();
8188 
8189 	/*
8190 	 *	Set the flags on our device.
8191 	 */
8192 
8193 	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
8194 			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
8195 			       IFF_AUTOMEDIA)) |
8196 		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
8197 				    IFF_ALLMULTI));
8198 
8199 	/*
8200 	 *	Load in the correct multicast list now the flags have changed.
8201 	 */
8202 
8203 	if ((old_flags ^ flags) & IFF_MULTICAST)
8204 		dev_change_rx_flags(dev, IFF_MULTICAST);
8205 
8206 	dev_set_rx_mode(dev);
8207 
8208 	/*
8209 	 *	Have we downed the interface. We handle IFF_UP ourselves
8210 	 *	according to user attempts to set it, rather than blindly
8211 	 *	setting it.
8212 	 */
8213 
8214 	ret = 0;
8215 	if ((old_flags ^ flags) & IFF_UP) {
8216 		if (old_flags & IFF_UP)
8217 			__dev_close(dev);
8218 		else
8219 			ret = __dev_open(dev, extack);
8220 	}
8221 
8222 	if ((flags ^ dev->gflags) & IFF_PROMISC) {
8223 		int inc = (flags & IFF_PROMISC) ? 1 : -1;
8224 		unsigned int old_flags = dev->flags;
8225 
8226 		dev->gflags ^= IFF_PROMISC;
8227 
8228 		if (__dev_set_promiscuity(dev, inc, false) >= 0)
8229 			if (dev->flags != old_flags)
8230 				dev_set_rx_mode(dev);
8231 	}
8232 
8233 	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
8234 	 * is important. Some (broken) drivers set IFF_PROMISC, when
8235 	 * IFF_ALLMULTI is requested not asking us and not reporting.
8236 	 */
8237 	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
8238 		int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
8239 
8240 		dev->gflags ^= IFF_ALLMULTI;
8241 		__dev_set_allmulti(dev, inc, false);
8242 	}
8243 
8244 	return ret;
8245 }
8246 
8247 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
8248 			unsigned int gchanges)
8249 {
8250 	unsigned int changes = dev->flags ^ old_flags;
8251 
8252 	if (gchanges)
8253 		rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
8254 
8255 	if (changes & IFF_UP) {
8256 		if (dev->flags & IFF_UP)
8257 			call_netdevice_notifiers(NETDEV_UP, dev);
8258 		else
8259 			call_netdevice_notifiers(NETDEV_DOWN, dev);
8260 	}
8261 
8262 	if (dev->flags & IFF_UP &&
8263 	    (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
8264 		struct netdev_notifier_change_info change_info = {
8265 			.info = {
8266 				.dev = dev,
8267 			},
8268 			.flags_changed = changes,
8269 		};
8270 
8271 		call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
8272 	}
8273 }
8274 
8275 /**
8276  *	dev_change_flags - change device settings
8277  *	@dev: device
8278  *	@flags: device state flags
8279  *	@extack: netlink extended ack
8280  *
8281  *	Change settings on device based state flags. The flags are
8282  *	in the userspace exported format.
8283  */
8284 int dev_change_flags(struct net_device *dev, unsigned int flags,
8285 		     struct netlink_ext_ack *extack)
8286 {
8287 	int ret;
8288 	unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
8289 
8290 	ret = __dev_change_flags(dev, flags, extack);
8291 	if (ret < 0)
8292 		return ret;
8293 
8294 	changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
8295 	__dev_notify_flags(dev, old_flags, changes);
8296 	return ret;
8297 }
8298 EXPORT_SYMBOL(dev_change_flags);
8299 
8300 int __dev_set_mtu(struct net_device *dev, int new_mtu)
8301 {
8302 	const struct net_device_ops *ops = dev->netdev_ops;
8303 
8304 	if (ops->ndo_change_mtu)
8305 		return ops->ndo_change_mtu(dev, new_mtu);
8306 
8307 	/* Pairs with all the lockless reads of dev->mtu in the stack */
8308 	WRITE_ONCE(dev->mtu, new_mtu);
8309 	return 0;
8310 }
8311 EXPORT_SYMBOL(__dev_set_mtu);
8312 
8313 int dev_validate_mtu(struct net_device *dev, int new_mtu,
8314 		     struct netlink_ext_ack *extack)
8315 {
8316 	/* MTU must be positive, and in range */
8317 	if (new_mtu < 0 || new_mtu < dev->min_mtu) {
8318 		NL_SET_ERR_MSG(extack, "mtu less than device minimum");
8319 		return -EINVAL;
8320 	}
8321 
8322 	if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
8323 		NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
8324 		return -EINVAL;
8325 	}
8326 	return 0;
8327 }
8328 
8329 /**
8330  *	dev_set_mtu_ext - Change maximum transfer unit
8331  *	@dev: device
8332  *	@new_mtu: new transfer unit
8333  *	@extack: netlink extended ack
8334  *
8335  *	Change the maximum transfer size of the network device.
8336  */
8337 int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
8338 		    struct netlink_ext_ack *extack)
8339 {
8340 	int err, orig_mtu;
8341 
8342 	if (new_mtu == dev->mtu)
8343 		return 0;
8344 
8345 	err = dev_validate_mtu(dev, new_mtu, extack);
8346 	if (err)
8347 		return err;
8348 
8349 	if (!netif_device_present(dev))
8350 		return -ENODEV;
8351 
8352 	err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
8353 	err = notifier_to_errno(err);
8354 	if (err)
8355 		return err;
8356 
8357 	orig_mtu = dev->mtu;
8358 	err = __dev_set_mtu(dev, new_mtu);
8359 
8360 	if (!err) {
8361 		err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8362 						   orig_mtu);
8363 		err = notifier_to_errno(err);
8364 		if (err) {
8365 			/* setting mtu back and notifying everyone again,
8366 			 * so that they have a chance to revert changes.
8367 			 */
8368 			__dev_set_mtu(dev, orig_mtu);
8369 			call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8370 						     new_mtu);
8371 		}
8372 	}
8373 	return err;
8374 }
8375 
8376 int dev_set_mtu(struct net_device *dev, int new_mtu)
8377 {
8378 	struct netlink_ext_ack extack;
8379 	int err;
8380 
8381 	memset(&extack, 0, sizeof(extack));
8382 	err = dev_set_mtu_ext(dev, new_mtu, &extack);
8383 	if (err && extack._msg)
8384 		net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
8385 	return err;
8386 }
8387 EXPORT_SYMBOL(dev_set_mtu);
8388 
8389 /**
8390  *	dev_change_tx_queue_len - Change TX queue length of a netdevice
8391  *	@dev: device
8392  *	@new_len: new tx queue length
8393  */
8394 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
8395 {
8396 	unsigned int orig_len = dev->tx_queue_len;
8397 	int res;
8398 
8399 	if (new_len != (unsigned int)new_len)
8400 		return -ERANGE;
8401 
8402 	if (new_len != orig_len) {
8403 		dev->tx_queue_len = new_len;
8404 		res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
8405 		res = notifier_to_errno(res);
8406 		if (res)
8407 			goto err_rollback;
8408 		res = dev_qdisc_change_tx_queue_len(dev);
8409 		if (res)
8410 			goto err_rollback;
8411 	}
8412 
8413 	return 0;
8414 
8415 err_rollback:
8416 	netdev_err(dev, "refused to change device tx_queue_len\n");
8417 	dev->tx_queue_len = orig_len;
8418 	return res;
8419 }
8420 
8421 /**
8422  *	dev_set_group - Change group this device belongs to
8423  *	@dev: device
8424  *	@new_group: group this device should belong to
8425  */
8426 void dev_set_group(struct net_device *dev, int new_group)
8427 {
8428 	dev->group = new_group;
8429 }
8430 EXPORT_SYMBOL(dev_set_group);
8431 
8432 /**
8433  *	dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
8434  *	@dev: device
8435  *	@addr: new address
8436  *	@extack: netlink extended ack
8437  */
8438 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
8439 			      struct netlink_ext_ack *extack)
8440 {
8441 	struct netdev_notifier_pre_changeaddr_info info = {
8442 		.info.dev = dev,
8443 		.info.extack = extack,
8444 		.dev_addr = addr,
8445 	};
8446 	int rc;
8447 
8448 	rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
8449 	return notifier_to_errno(rc);
8450 }
8451 EXPORT_SYMBOL(dev_pre_changeaddr_notify);
8452 
8453 /**
8454  *	dev_set_mac_address - Change Media Access Control Address
8455  *	@dev: device
8456  *	@sa: new address
8457  *	@extack: netlink extended ack
8458  *
8459  *	Change the hardware (MAC) address of the device
8460  */
8461 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
8462 			struct netlink_ext_ack *extack)
8463 {
8464 	const struct net_device_ops *ops = dev->netdev_ops;
8465 	int err;
8466 
8467 	if (!ops->ndo_set_mac_address)
8468 		return -EOPNOTSUPP;
8469 	if (sa->sa_family != dev->type)
8470 		return -EINVAL;
8471 	if (!netif_device_present(dev))
8472 		return -ENODEV;
8473 	err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
8474 	if (err)
8475 		return err;
8476 	err = ops->ndo_set_mac_address(dev, sa);
8477 	if (err)
8478 		return err;
8479 	dev->addr_assign_type = NET_ADDR_SET;
8480 	call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
8481 	add_device_randomness(dev->dev_addr, dev->addr_len);
8482 	return 0;
8483 }
8484 EXPORT_SYMBOL(dev_set_mac_address);
8485 
8486 /**
8487  *	dev_change_carrier - Change device carrier
8488  *	@dev: device
8489  *	@new_carrier: new value
8490  *
8491  *	Change device carrier
8492  */
8493 int dev_change_carrier(struct net_device *dev, bool new_carrier)
8494 {
8495 	const struct net_device_ops *ops = dev->netdev_ops;
8496 
8497 	if (!ops->ndo_change_carrier)
8498 		return -EOPNOTSUPP;
8499 	if (!netif_device_present(dev))
8500 		return -ENODEV;
8501 	return ops->ndo_change_carrier(dev, new_carrier);
8502 }
8503 EXPORT_SYMBOL(dev_change_carrier);
8504 
8505 /**
8506  *	dev_get_phys_port_id - Get device physical port ID
8507  *	@dev: device
8508  *	@ppid: port ID
8509  *
8510  *	Get device physical port ID
8511  */
8512 int dev_get_phys_port_id(struct net_device *dev,
8513 			 struct netdev_phys_item_id *ppid)
8514 {
8515 	const struct net_device_ops *ops = dev->netdev_ops;
8516 
8517 	if (!ops->ndo_get_phys_port_id)
8518 		return -EOPNOTSUPP;
8519 	return ops->ndo_get_phys_port_id(dev, ppid);
8520 }
8521 EXPORT_SYMBOL(dev_get_phys_port_id);
8522 
8523 /**
8524  *	dev_get_phys_port_name - Get device physical port name
8525  *	@dev: device
8526  *	@name: port name
8527  *	@len: limit of bytes to copy to name
8528  *
8529  *	Get device physical port name
8530  */
8531 int dev_get_phys_port_name(struct net_device *dev,
8532 			   char *name, size_t len)
8533 {
8534 	const struct net_device_ops *ops = dev->netdev_ops;
8535 	int err;
8536 
8537 	if (ops->ndo_get_phys_port_name) {
8538 		err = ops->ndo_get_phys_port_name(dev, name, len);
8539 		if (err != -EOPNOTSUPP)
8540 			return err;
8541 	}
8542 	return devlink_compat_phys_port_name_get(dev, name, len);
8543 }
8544 EXPORT_SYMBOL(dev_get_phys_port_name);
8545 
8546 /**
8547  *	dev_get_port_parent_id - Get the device's port parent identifier
8548  *	@dev: network device
8549  *	@ppid: pointer to a storage for the port's parent identifier
8550  *	@recurse: allow/disallow recursion to lower devices
8551  *
8552  *	Get the devices's port parent identifier
8553  */
8554 int dev_get_port_parent_id(struct net_device *dev,
8555 			   struct netdev_phys_item_id *ppid,
8556 			   bool recurse)
8557 {
8558 	const struct net_device_ops *ops = dev->netdev_ops;
8559 	struct netdev_phys_item_id first = { };
8560 	struct net_device *lower_dev;
8561 	struct list_head *iter;
8562 	int err;
8563 
8564 	if (ops->ndo_get_port_parent_id) {
8565 		err = ops->ndo_get_port_parent_id(dev, ppid);
8566 		if (err != -EOPNOTSUPP)
8567 			return err;
8568 	}
8569 
8570 	err = devlink_compat_switch_id_get(dev, ppid);
8571 	if (!err || err != -EOPNOTSUPP)
8572 		return err;
8573 
8574 	if (!recurse)
8575 		return -EOPNOTSUPP;
8576 
8577 	netdev_for_each_lower_dev(dev, lower_dev, iter) {
8578 		err = dev_get_port_parent_id(lower_dev, ppid, recurse);
8579 		if (err)
8580 			break;
8581 		if (!first.id_len)
8582 			first = *ppid;
8583 		else if (memcmp(&first, ppid, sizeof(*ppid)))
8584 			return -ENODATA;
8585 	}
8586 
8587 	return err;
8588 }
8589 EXPORT_SYMBOL(dev_get_port_parent_id);
8590 
8591 /**
8592  *	netdev_port_same_parent_id - Indicate if two network devices have
8593  *	the same port parent identifier
8594  *	@a: first network device
8595  *	@b: second network device
8596  */
8597 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
8598 {
8599 	struct netdev_phys_item_id a_id = { };
8600 	struct netdev_phys_item_id b_id = { };
8601 
8602 	if (dev_get_port_parent_id(a, &a_id, true) ||
8603 	    dev_get_port_parent_id(b, &b_id, true))
8604 		return false;
8605 
8606 	return netdev_phys_item_id_same(&a_id, &b_id);
8607 }
8608 EXPORT_SYMBOL(netdev_port_same_parent_id);
8609 
8610 /**
8611  *	dev_change_proto_down - update protocol port state information
8612  *	@dev: device
8613  *	@proto_down: new value
8614  *
8615  *	This info can be used by switch drivers to set the phys state of the
8616  *	port.
8617  */
8618 int dev_change_proto_down(struct net_device *dev, bool proto_down)
8619 {
8620 	const struct net_device_ops *ops = dev->netdev_ops;
8621 
8622 	if (!ops->ndo_change_proto_down)
8623 		return -EOPNOTSUPP;
8624 	if (!netif_device_present(dev))
8625 		return -ENODEV;
8626 	return ops->ndo_change_proto_down(dev, proto_down);
8627 }
8628 EXPORT_SYMBOL(dev_change_proto_down);
8629 
8630 /**
8631  *	dev_change_proto_down_generic - generic implementation for
8632  * 	ndo_change_proto_down that sets carrier according to
8633  * 	proto_down.
8634  *
8635  *	@dev: device
8636  *	@proto_down: new value
8637  */
8638 int dev_change_proto_down_generic(struct net_device *dev, bool proto_down)
8639 {
8640 	if (proto_down)
8641 		netif_carrier_off(dev);
8642 	else
8643 		netif_carrier_on(dev);
8644 	dev->proto_down = proto_down;
8645 	return 0;
8646 }
8647 EXPORT_SYMBOL(dev_change_proto_down_generic);
8648 
8649 u32 __dev_xdp_query(struct net_device *dev, bpf_op_t bpf_op,
8650 		    enum bpf_netdev_command cmd)
8651 {
8652 	struct netdev_bpf xdp;
8653 
8654 	if (!bpf_op)
8655 		return 0;
8656 
8657 	memset(&xdp, 0, sizeof(xdp));
8658 	xdp.command = cmd;
8659 
8660 	/* Query must always succeed. */
8661 	WARN_ON(bpf_op(dev, &xdp) < 0 && cmd == XDP_QUERY_PROG);
8662 
8663 	return xdp.prog_id;
8664 }
8665 
8666 static int dev_xdp_install(struct net_device *dev, bpf_op_t bpf_op,
8667 			   struct netlink_ext_ack *extack, u32 flags,
8668 			   struct bpf_prog *prog)
8669 {
8670 	bool non_hw = !(flags & XDP_FLAGS_HW_MODE);
8671 	struct bpf_prog *prev_prog = NULL;
8672 	struct netdev_bpf xdp;
8673 	int err;
8674 
8675 	if (non_hw) {
8676 		prev_prog = bpf_prog_by_id(__dev_xdp_query(dev, bpf_op,
8677 							   XDP_QUERY_PROG));
8678 		if (IS_ERR(prev_prog))
8679 			prev_prog = NULL;
8680 	}
8681 
8682 	memset(&xdp, 0, sizeof(xdp));
8683 	if (flags & XDP_FLAGS_HW_MODE)
8684 		xdp.command = XDP_SETUP_PROG_HW;
8685 	else
8686 		xdp.command = XDP_SETUP_PROG;
8687 	xdp.extack = extack;
8688 	xdp.flags = flags;
8689 	xdp.prog = prog;
8690 
8691 	err = bpf_op(dev, &xdp);
8692 	if (!err && non_hw)
8693 		bpf_prog_change_xdp(prev_prog, prog);
8694 
8695 	if (prev_prog)
8696 		bpf_prog_put(prev_prog);
8697 
8698 	return err;
8699 }
8700 
8701 static void dev_xdp_uninstall(struct net_device *dev)
8702 {
8703 	struct netdev_bpf xdp;
8704 	bpf_op_t ndo_bpf;
8705 
8706 	/* Remove generic XDP */
8707 	WARN_ON(dev_xdp_install(dev, generic_xdp_install, NULL, 0, NULL));
8708 
8709 	/* Remove from the driver */
8710 	ndo_bpf = dev->netdev_ops->ndo_bpf;
8711 	if (!ndo_bpf)
8712 		return;
8713 
8714 	memset(&xdp, 0, sizeof(xdp));
8715 	xdp.command = XDP_QUERY_PROG;
8716 	WARN_ON(ndo_bpf(dev, &xdp));
8717 	if (xdp.prog_id)
8718 		WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags,
8719 					NULL));
8720 
8721 	/* Remove HW offload */
8722 	memset(&xdp, 0, sizeof(xdp));
8723 	xdp.command = XDP_QUERY_PROG_HW;
8724 	if (!ndo_bpf(dev, &xdp) && xdp.prog_id)
8725 		WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags,
8726 					NULL));
8727 }
8728 
8729 /**
8730  *	dev_change_xdp_fd - set or clear a bpf program for a device rx path
8731  *	@dev: device
8732  *	@extack: netlink extended ack
8733  *	@fd: new program fd or negative value to clear
8734  *	@expected_fd: old program fd that userspace expects to replace or clear
8735  *	@flags: xdp-related flags
8736  *
8737  *	Set or clear a bpf program for a device
8738  */
8739 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
8740 		      int fd, int expected_fd, u32 flags)
8741 {
8742 	const struct net_device_ops *ops = dev->netdev_ops;
8743 	enum bpf_netdev_command query;
8744 	u32 prog_id, expected_id = 0;
8745 	bpf_op_t bpf_op, bpf_chk;
8746 	struct bpf_prog *prog;
8747 	bool offload;
8748 	int err;
8749 
8750 	ASSERT_RTNL();
8751 
8752 	offload = flags & XDP_FLAGS_HW_MODE;
8753 	query = offload ? XDP_QUERY_PROG_HW : XDP_QUERY_PROG;
8754 
8755 	bpf_op = bpf_chk = ops->ndo_bpf;
8756 	if (!bpf_op && (flags & (XDP_FLAGS_DRV_MODE | XDP_FLAGS_HW_MODE))) {
8757 		NL_SET_ERR_MSG(extack, "underlying driver does not support XDP in native mode");
8758 		return -EOPNOTSUPP;
8759 	}
8760 	if (!bpf_op || (flags & XDP_FLAGS_SKB_MODE))
8761 		bpf_op = generic_xdp_install;
8762 	if (bpf_op == bpf_chk)
8763 		bpf_chk = generic_xdp_install;
8764 
8765 	prog_id = __dev_xdp_query(dev, bpf_op, query);
8766 	if (flags & XDP_FLAGS_REPLACE) {
8767 		if (expected_fd >= 0) {
8768 			prog = bpf_prog_get_type_dev(expected_fd,
8769 						     BPF_PROG_TYPE_XDP,
8770 						     bpf_op == ops->ndo_bpf);
8771 			if (IS_ERR(prog))
8772 				return PTR_ERR(prog);
8773 			expected_id = prog->aux->id;
8774 			bpf_prog_put(prog);
8775 		}
8776 
8777 		if (prog_id != expected_id) {
8778 			NL_SET_ERR_MSG(extack, "Active program does not match expected");
8779 			return -EEXIST;
8780 		}
8781 	}
8782 	if (fd >= 0) {
8783 		if (!offload && __dev_xdp_query(dev, bpf_chk, XDP_QUERY_PROG)) {
8784 			NL_SET_ERR_MSG(extack, "native and generic XDP can't be active at the same time");
8785 			return -EEXIST;
8786 		}
8787 
8788 		if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && prog_id) {
8789 			NL_SET_ERR_MSG(extack, "XDP program already attached");
8790 			return -EBUSY;
8791 		}
8792 
8793 		prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
8794 					     bpf_op == ops->ndo_bpf);
8795 		if (IS_ERR(prog))
8796 			return PTR_ERR(prog);
8797 
8798 		if (!offload && bpf_prog_is_dev_bound(prog->aux)) {
8799 			NL_SET_ERR_MSG(extack, "using device-bound program without HW_MODE flag is not supported");
8800 			bpf_prog_put(prog);
8801 			return -EINVAL;
8802 		}
8803 
8804 		/* prog->aux->id may be 0 for orphaned device-bound progs */
8805 		if (prog->aux->id && prog->aux->id == prog_id) {
8806 			bpf_prog_put(prog);
8807 			return 0;
8808 		}
8809 	} else {
8810 		if (!prog_id)
8811 			return 0;
8812 		prog = NULL;
8813 	}
8814 
8815 	err = dev_xdp_install(dev, bpf_op, extack, flags, prog);
8816 	if (err < 0 && prog)
8817 		bpf_prog_put(prog);
8818 
8819 	return err;
8820 }
8821 
8822 /**
8823  *	dev_new_index	-	allocate an ifindex
8824  *	@net: the applicable net namespace
8825  *
8826  *	Returns a suitable unique value for a new device interface
8827  *	number.  The caller must hold the rtnl semaphore or the
8828  *	dev_base_lock to be sure it remains unique.
8829  */
8830 static int dev_new_index(struct net *net)
8831 {
8832 	int ifindex = net->ifindex;
8833 
8834 	for (;;) {
8835 		if (++ifindex <= 0)
8836 			ifindex = 1;
8837 		if (!__dev_get_by_index(net, ifindex))
8838 			return net->ifindex = ifindex;
8839 	}
8840 }
8841 
8842 /* Delayed registration/unregisteration */
8843 static LIST_HEAD(net_todo_list);
8844 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
8845 
8846 static void net_set_todo(struct net_device *dev)
8847 {
8848 	list_add_tail(&dev->todo_list, &net_todo_list);
8849 	dev_net(dev)->dev_unreg_count++;
8850 }
8851 
8852 static void rollback_registered_many(struct list_head *head)
8853 {
8854 	struct net_device *dev, *tmp;
8855 	LIST_HEAD(close_head);
8856 
8857 	BUG_ON(dev_boot_phase);
8858 	ASSERT_RTNL();
8859 
8860 	list_for_each_entry_safe(dev, tmp, head, unreg_list) {
8861 		/* Some devices call without registering
8862 		 * for initialization unwind. Remove those
8863 		 * devices and proceed with the remaining.
8864 		 */
8865 		if (dev->reg_state == NETREG_UNINITIALIZED) {
8866 			pr_debug("unregister_netdevice: device %s/%p never was registered\n",
8867 				 dev->name, dev);
8868 
8869 			WARN_ON(1);
8870 			list_del(&dev->unreg_list);
8871 			continue;
8872 		}
8873 		dev->dismantle = true;
8874 		BUG_ON(dev->reg_state != NETREG_REGISTERED);
8875 	}
8876 
8877 	/* If device is running, close it first. */
8878 	list_for_each_entry(dev, head, unreg_list)
8879 		list_add_tail(&dev->close_list, &close_head);
8880 	dev_close_many(&close_head, true);
8881 
8882 	list_for_each_entry(dev, head, unreg_list) {
8883 		/* And unlink it from device chain. */
8884 		unlist_netdevice(dev);
8885 
8886 		dev->reg_state = NETREG_UNREGISTERING;
8887 	}
8888 	flush_all_backlogs();
8889 
8890 	synchronize_net();
8891 
8892 	list_for_each_entry(dev, head, unreg_list) {
8893 		struct sk_buff *skb = NULL;
8894 
8895 		/* Shutdown queueing discipline. */
8896 		dev_shutdown(dev);
8897 
8898 		dev_xdp_uninstall(dev);
8899 
8900 		/* Notify protocols, that we are about to destroy
8901 		 * this device. They should clean all the things.
8902 		 */
8903 		call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
8904 
8905 		if (!dev->rtnl_link_ops ||
8906 		    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
8907 			skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
8908 						     GFP_KERNEL, NULL, 0);
8909 
8910 		/*
8911 		 *	Flush the unicast and multicast chains
8912 		 */
8913 		dev_uc_flush(dev);
8914 		dev_mc_flush(dev);
8915 
8916 		netdev_name_node_alt_flush(dev);
8917 		netdev_name_node_free(dev->name_node);
8918 
8919 		if (dev->netdev_ops->ndo_uninit)
8920 			dev->netdev_ops->ndo_uninit(dev);
8921 
8922 		if (skb)
8923 			rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
8924 
8925 		/* Notifier chain MUST detach us all upper devices. */
8926 		WARN_ON(netdev_has_any_upper_dev(dev));
8927 		WARN_ON(netdev_has_any_lower_dev(dev));
8928 
8929 		/* Remove entries from kobject tree */
8930 		netdev_unregister_kobject(dev);
8931 #ifdef CONFIG_XPS
8932 		/* Remove XPS queueing entries */
8933 		netif_reset_xps_queues_gt(dev, 0);
8934 #endif
8935 	}
8936 
8937 	synchronize_net();
8938 
8939 	list_for_each_entry(dev, head, unreg_list)
8940 		dev_put(dev);
8941 }
8942 
8943 static void rollback_registered(struct net_device *dev)
8944 {
8945 	LIST_HEAD(single);
8946 
8947 	list_add(&dev->unreg_list, &single);
8948 	rollback_registered_many(&single);
8949 	list_del(&single);
8950 }
8951 
8952 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
8953 	struct net_device *upper, netdev_features_t features)
8954 {
8955 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
8956 	netdev_features_t feature;
8957 	int feature_bit;
8958 
8959 	for_each_netdev_feature(upper_disables, feature_bit) {
8960 		feature = __NETIF_F_BIT(feature_bit);
8961 		if (!(upper->wanted_features & feature)
8962 		    && (features & feature)) {
8963 			netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
8964 				   &feature, upper->name);
8965 			features &= ~feature;
8966 		}
8967 	}
8968 
8969 	return features;
8970 }
8971 
8972 static void netdev_sync_lower_features(struct net_device *upper,
8973 	struct net_device *lower, netdev_features_t features)
8974 {
8975 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
8976 	netdev_features_t feature;
8977 	int feature_bit;
8978 
8979 	for_each_netdev_feature(upper_disables, feature_bit) {
8980 		feature = __NETIF_F_BIT(feature_bit);
8981 		if (!(features & feature) && (lower->features & feature)) {
8982 			netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
8983 				   &feature, lower->name);
8984 			lower->wanted_features &= ~feature;
8985 			netdev_update_features(lower);
8986 
8987 			if (unlikely(lower->features & feature))
8988 				netdev_WARN(upper, "failed to disable %pNF on %s!\n",
8989 					    &feature, lower->name);
8990 		}
8991 	}
8992 }
8993 
8994 static netdev_features_t netdev_fix_features(struct net_device *dev,
8995 	netdev_features_t features)
8996 {
8997 	/* Fix illegal checksum combinations */
8998 	if ((features & NETIF_F_HW_CSUM) &&
8999 	    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
9000 		netdev_warn(dev, "mixed HW and IP checksum settings.\n");
9001 		features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
9002 	}
9003 
9004 	/* TSO requires that SG is present as well. */
9005 	if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
9006 		netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
9007 		features &= ~NETIF_F_ALL_TSO;
9008 	}
9009 
9010 	if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
9011 					!(features & NETIF_F_IP_CSUM)) {
9012 		netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
9013 		features &= ~NETIF_F_TSO;
9014 		features &= ~NETIF_F_TSO_ECN;
9015 	}
9016 
9017 	if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
9018 					 !(features & NETIF_F_IPV6_CSUM)) {
9019 		netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
9020 		features &= ~NETIF_F_TSO6;
9021 	}
9022 
9023 	/* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
9024 	if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
9025 		features &= ~NETIF_F_TSO_MANGLEID;
9026 
9027 	/* TSO ECN requires that TSO is present as well. */
9028 	if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
9029 		features &= ~NETIF_F_TSO_ECN;
9030 
9031 	/* Software GSO depends on SG. */
9032 	if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
9033 		netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
9034 		features &= ~NETIF_F_GSO;
9035 	}
9036 
9037 	/* GSO partial features require GSO partial be set */
9038 	if ((features & dev->gso_partial_features) &&
9039 	    !(features & NETIF_F_GSO_PARTIAL)) {
9040 		netdev_dbg(dev,
9041 			   "Dropping partially supported GSO features since no GSO partial.\n");
9042 		features &= ~dev->gso_partial_features;
9043 	}
9044 
9045 	if (!(features & NETIF_F_RXCSUM)) {
9046 		/* NETIF_F_GRO_HW implies doing RXCSUM since every packet
9047 		 * successfully merged by hardware must also have the
9048 		 * checksum verified by hardware.  If the user does not
9049 		 * want to enable RXCSUM, logically, we should disable GRO_HW.
9050 		 */
9051 		if (features & NETIF_F_GRO_HW) {
9052 			netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
9053 			features &= ~NETIF_F_GRO_HW;
9054 		}
9055 	}
9056 
9057 	/* LRO/HW-GRO features cannot be combined with RX-FCS */
9058 	if (features & NETIF_F_RXFCS) {
9059 		if (features & NETIF_F_LRO) {
9060 			netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
9061 			features &= ~NETIF_F_LRO;
9062 		}
9063 
9064 		if (features & NETIF_F_GRO_HW) {
9065 			netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
9066 			features &= ~NETIF_F_GRO_HW;
9067 		}
9068 	}
9069 
9070 	return features;
9071 }
9072 
9073 int __netdev_update_features(struct net_device *dev)
9074 {
9075 	struct net_device *upper, *lower;
9076 	netdev_features_t features;
9077 	struct list_head *iter;
9078 	int err = -1;
9079 
9080 	ASSERT_RTNL();
9081 
9082 	features = netdev_get_wanted_features(dev);
9083 
9084 	if (dev->netdev_ops->ndo_fix_features)
9085 		features = dev->netdev_ops->ndo_fix_features(dev, features);
9086 
9087 	/* driver might be less strict about feature dependencies */
9088 	features = netdev_fix_features(dev, features);
9089 
9090 	/* some features can't be enabled if they're off an an upper device */
9091 	netdev_for_each_upper_dev_rcu(dev, upper, iter)
9092 		features = netdev_sync_upper_features(dev, upper, features);
9093 
9094 	if (dev->features == features)
9095 		goto sync_lower;
9096 
9097 	netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
9098 		&dev->features, &features);
9099 
9100 	if (dev->netdev_ops->ndo_set_features)
9101 		err = dev->netdev_ops->ndo_set_features(dev, features);
9102 	else
9103 		err = 0;
9104 
9105 	if (unlikely(err < 0)) {
9106 		netdev_err(dev,
9107 			"set_features() failed (%d); wanted %pNF, left %pNF\n",
9108 			err, &features, &dev->features);
9109 		/* return non-0 since some features might have changed and
9110 		 * it's better to fire a spurious notification than miss it
9111 		 */
9112 		return -1;
9113 	}
9114 
9115 sync_lower:
9116 	/* some features must be disabled on lower devices when disabled
9117 	 * on an upper device (think: bonding master or bridge)
9118 	 */
9119 	netdev_for_each_lower_dev(dev, lower, iter)
9120 		netdev_sync_lower_features(dev, lower, features);
9121 
9122 	if (!err) {
9123 		netdev_features_t diff = features ^ dev->features;
9124 
9125 		if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
9126 			/* udp_tunnel_{get,drop}_rx_info both need
9127 			 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
9128 			 * device, or they won't do anything.
9129 			 * Thus we need to update dev->features
9130 			 * *before* calling udp_tunnel_get_rx_info,
9131 			 * but *after* calling udp_tunnel_drop_rx_info.
9132 			 */
9133 			if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
9134 				dev->features = features;
9135 				udp_tunnel_get_rx_info(dev);
9136 			} else {
9137 				udp_tunnel_drop_rx_info(dev);
9138 			}
9139 		}
9140 
9141 		if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
9142 			if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
9143 				dev->features = features;
9144 				err |= vlan_get_rx_ctag_filter_info(dev);
9145 			} else {
9146 				vlan_drop_rx_ctag_filter_info(dev);
9147 			}
9148 		}
9149 
9150 		if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
9151 			if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
9152 				dev->features = features;
9153 				err |= vlan_get_rx_stag_filter_info(dev);
9154 			} else {
9155 				vlan_drop_rx_stag_filter_info(dev);
9156 			}
9157 		}
9158 
9159 		dev->features = features;
9160 	}
9161 
9162 	return err < 0 ? 0 : 1;
9163 }
9164 
9165 /**
9166  *	netdev_update_features - recalculate device features
9167  *	@dev: the device to check
9168  *
9169  *	Recalculate dev->features set and send notifications if it
9170  *	has changed. Should be called after driver or hardware dependent
9171  *	conditions might have changed that influence the features.
9172  */
9173 void netdev_update_features(struct net_device *dev)
9174 {
9175 	if (__netdev_update_features(dev))
9176 		netdev_features_change(dev);
9177 }
9178 EXPORT_SYMBOL(netdev_update_features);
9179 
9180 /**
9181  *	netdev_change_features - recalculate device features
9182  *	@dev: the device to check
9183  *
9184  *	Recalculate dev->features set and send notifications even
9185  *	if they have not changed. Should be called instead of
9186  *	netdev_update_features() if also dev->vlan_features might
9187  *	have changed to allow the changes to be propagated to stacked
9188  *	VLAN devices.
9189  */
9190 void netdev_change_features(struct net_device *dev)
9191 {
9192 	__netdev_update_features(dev);
9193 	netdev_features_change(dev);
9194 }
9195 EXPORT_SYMBOL(netdev_change_features);
9196 
9197 /**
9198  *	netif_stacked_transfer_operstate -	transfer operstate
9199  *	@rootdev: the root or lower level device to transfer state from
9200  *	@dev: the device to transfer operstate to
9201  *
9202  *	Transfer operational state from root to device. This is normally
9203  *	called when a stacking relationship exists between the root
9204  *	device and the device(a leaf device).
9205  */
9206 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
9207 					struct net_device *dev)
9208 {
9209 	if (rootdev->operstate == IF_OPER_DORMANT)
9210 		netif_dormant_on(dev);
9211 	else
9212 		netif_dormant_off(dev);
9213 
9214 	if (rootdev->operstate == IF_OPER_TESTING)
9215 		netif_testing_on(dev);
9216 	else
9217 		netif_testing_off(dev);
9218 
9219 	if (netif_carrier_ok(rootdev))
9220 		netif_carrier_on(dev);
9221 	else
9222 		netif_carrier_off(dev);
9223 }
9224 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
9225 
9226 static int netif_alloc_rx_queues(struct net_device *dev)
9227 {
9228 	unsigned int i, count = dev->num_rx_queues;
9229 	struct netdev_rx_queue *rx;
9230 	size_t sz = count * sizeof(*rx);
9231 	int err = 0;
9232 
9233 	BUG_ON(count < 1);
9234 
9235 	rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
9236 	if (!rx)
9237 		return -ENOMEM;
9238 
9239 	dev->_rx = rx;
9240 
9241 	for (i = 0; i < count; i++) {
9242 		rx[i].dev = dev;
9243 
9244 		/* XDP RX-queue setup */
9245 		err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i);
9246 		if (err < 0)
9247 			goto err_rxq_info;
9248 	}
9249 	return 0;
9250 
9251 err_rxq_info:
9252 	/* Rollback successful reg's and free other resources */
9253 	while (i--)
9254 		xdp_rxq_info_unreg(&rx[i].xdp_rxq);
9255 	kvfree(dev->_rx);
9256 	dev->_rx = NULL;
9257 	return err;
9258 }
9259 
9260 static void netif_free_rx_queues(struct net_device *dev)
9261 {
9262 	unsigned int i, count = dev->num_rx_queues;
9263 
9264 	/* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
9265 	if (!dev->_rx)
9266 		return;
9267 
9268 	for (i = 0; i < count; i++)
9269 		xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
9270 
9271 	kvfree(dev->_rx);
9272 }
9273 
9274 static void netdev_init_one_queue(struct net_device *dev,
9275 				  struct netdev_queue *queue, void *_unused)
9276 {
9277 	/* Initialize queue lock */
9278 	spin_lock_init(&queue->_xmit_lock);
9279 	netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
9280 	queue->xmit_lock_owner = -1;
9281 	netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
9282 	queue->dev = dev;
9283 #ifdef CONFIG_BQL
9284 	dql_init(&queue->dql, HZ);
9285 #endif
9286 }
9287 
9288 static void netif_free_tx_queues(struct net_device *dev)
9289 {
9290 	kvfree(dev->_tx);
9291 }
9292 
9293 static int netif_alloc_netdev_queues(struct net_device *dev)
9294 {
9295 	unsigned int count = dev->num_tx_queues;
9296 	struct netdev_queue *tx;
9297 	size_t sz = count * sizeof(*tx);
9298 
9299 	if (count < 1 || count > 0xffff)
9300 		return -EINVAL;
9301 
9302 	tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
9303 	if (!tx)
9304 		return -ENOMEM;
9305 
9306 	dev->_tx = tx;
9307 
9308 	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
9309 	spin_lock_init(&dev->tx_global_lock);
9310 
9311 	return 0;
9312 }
9313 
9314 void netif_tx_stop_all_queues(struct net_device *dev)
9315 {
9316 	unsigned int i;
9317 
9318 	for (i = 0; i < dev->num_tx_queues; i++) {
9319 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
9320 
9321 		netif_tx_stop_queue(txq);
9322 	}
9323 }
9324 EXPORT_SYMBOL(netif_tx_stop_all_queues);
9325 
9326 void netdev_update_lockdep_key(struct net_device *dev)
9327 {
9328 	lockdep_unregister_key(&dev->addr_list_lock_key);
9329 	lockdep_register_key(&dev->addr_list_lock_key);
9330 
9331 	lockdep_set_class(&dev->addr_list_lock, &dev->addr_list_lock_key);
9332 }
9333 EXPORT_SYMBOL(netdev_update_lockdep_key);
9334 
9335 /**
9336  *	register_netdevice	- register a network device
9337  *	@dev: device to register
9338  *
9339  *	Take a completed network device structure and add it to the kernel
9340  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
9341  *	chain. 0 is returned on success. A negative errno code is returned
9342  *	on a failure to set up the device, or if the name is a duplicate.
9343  *
9344  *	Callers must hold the rtnl semaphore. You may want
9345  *	register_netdev() instead of this.
9346  *
9347  *	BUGS:
9348  *	The locking appears insufficient to guarantee two parallel registers
9349  *	will not get the same name.
9350  */
9351 
9352 int register_netdevice(struct net_device *dev)
9353 {
9354 	int ret;
9355 	struct net *net = dev_net(dev);
9356 
9357 	BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
9358 		     NETDEV_FEATURE_COUNT);
9359 	BUG_ON(dev_boot_phase);
9360 	ASSERT_RTNL();
9361 
9362 	might_sleep();
9363 
9364 	/* When net_device's are persistent, this will be fatal. */
9365 	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
9366 	BUG_ON(!net);
9367 
9368 	ret = ethtool_check_ops(dev->ethtool_ops);
9369 	if (ret)
9370 		return ret;
9371 
9372 	spin_lock_init(&dev->addr_list_lock);
9373 	lockdep_set_class(&dev->addr_list_lock, &dev->addr_list_lock_key);
9374 
9375 	ret = dev_get_valid_name(net, dev, dev->name);
9376 	if (ret < 0)
9377 		goto out;
9378 
9379 	ret = -ENOMEM;
9380 	dev->name_node = netdev_name_node_head_alloc(dev);
9381 	if (!dev->name_node)
9382 		goto out;
9383 
9384 	/* Init, if this function is available */
9385 	if (dev->netdev_ops->ndo_init) {
9386 		ret = dev->netdev_ops->ndo_init(dev);
9387 		if (ret) {
9388 			if (ret > 0)
9389 				ret = -EIO;
9390 			goto err_free_name;
9391 		}
9392 	}
9393 
9394 	if (((dev->hw_features | dev->features) &
9395 	     NETIF_F_HW_VLAN_CTAG_FILTER) &&
9396 	    (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
9397 	     !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
9398 		netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
9399 		ret = -EINVAL;
9400 		goto err_uninit;
9401 	}
9402 
9403 	ret = -EBUSY;
9404 	if (!dev->ifindex)
9405 		dev->ifindex = dev_new_index(net);
9406 	else if (__dev_get_by_index(net, dev->ifindex))
9407 		goto err_uninit;
9408 
9409 	/* Transfer changeable features to wanted_features and enable
9410 	 * software offloads (GSO and GRO).
9411 	 */
9412 	dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
9413 	dev->features |= NETIF_F_SOFT_FEATURES;
9414 
9415 	if (dev->netdev_ops->ndo_udp_tunnel_add) {
9416 		dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
9417 		dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
9418 	}
9419 
9420 	dev->wanted_features = dev->features & dev->hw_features;
9421 
9422 	if (!(dev->flags & IFF_LOOPBACK))
9423 		dev->hw_features |= NETIF_F_NOCACHE_COPY;
9424 
9425 	/* If IPv4 TCP segmentation offload is supported we should also
9426 	 * allow the device to enable segmenting the frame with the option
9427 	 * of ignoring a static IP ID value.  This doesn't enable the
9428 	 * feature itself but allows the user to enable it later.
9429 	 */
9430 	if (dev->hw_features & NETIF_F_TSO)
9431 		dev->hw_features |= NETIF_F_TSO_MANGLEID;
9432 	if (dev->vlan_features & NETIF_F_TSO)
9433 		dev->vlan_features |= NETIF_F_TSO_MANGLEID;
9434 	if (dev->mpls_features & NETIF_F_TSO)
9435 		dev->mpls_features |= NETIF_F_TSO_MANGLEID;
9436 	if (dev->hw_enc_features & NETIF_F_TSO)
9437 		dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
9438 
9439 	/* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
9440 	 */
9441 	dev->vlan_features |= NETIF_F_HIGHDMA;
9442 
9443 	/* Make NETIF_F_SG inheritable to tunnel devices.
9444 	 */
9445 	dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
9446 
9447 	/* Make NETIF_F_SG inheritable to MPLS.
9448 	 */
9449 	dev->mpls_features |= NETIF_F_SG;
9450 
9451 	ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
9452 	ret = notifier_to_errno(ret);
9453 	if (ret)
9454 		goto err_uninit;
9455 
9456 	ret = netdev_register_kobject(dev);
9457 	if (ret) {
9458 		dev->reg_state = NETREG_UNREGISTERED;
9459 		goto err_uninit;
9460 	}
9461 	dev->reg_state = NETREG_REGISTERED;
9462 
9463 	__netdev_update_features(dev);
9464 
9465 	/*
9466 	 *	Default initial state at registry is that the
9467 	 *	device is present.
9468 	 */
9469 
9470 	set_bit(__LINK_STATE_PRESENT, &dev->state);
9471 
9472 	linkwatch_init_dev(dev);
9473 
9474 	dev_init_scheduler(dev);
9475 	dev_hold(dev);
9476 	list_netdevice(dev);
9477 	add_device_randomness(dev->dev_addr, dev->addr_len);
9478 
9479 	/* If the device has permanent device address, driver should
9480 	 * set dev_addr and also addr_assign_type should be set to
9481 	 * NET_ADDR_PERM (default value).
9482 	 */
9483 	if (dev->addr_assign_type == NET_ADDR_PERM)
9484 		memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
9485 
9486 	/* Notify protocols, that a new device appeared. */
9487 	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
9488 	ret = notifier_to_errno(ret);
9489 	if (ret) {
9490 		rollback_registered(dev);
9491 		rcu_barrier();
9492 
9493 		dev->reg_state = NETREG_UNREGISTERED;
9494 	}
9495 	/*
9496 	 *	Prevent userspace races by waiting until the network
9497 	 *	device is fully setup before sending notifications.
9498 	 */
9499 	if (!dev->rtnl_link_ops ||
9500 	    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
9501 		rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
9502 
9503 out:
9504 	return ret;
9505 
9506 err_uninit:
9507 	if (dev->netdev_ops->ndo_uninit)
9508 		dev->netdev_ops->ndo_uninit(dev);
9509 	if (dev->priv_destructor)
9510 		dev->priv_destructor(dev);
9511 err_free_name:
9512 	netdev_name_node_free(dev->name_node);
9513 	goto out;
9514 }
9515 EXPORT_SYMBOL(register_netdevice);
9516 
9517 /**
9518  *	init_dummy_netdev	- init a dummy network device for NAPI
9519  *	@dev: device to init
9520  *
9521  *	This takes a network device structure and initialize the minimum
9522  *	amount of fields so it can be used to schedule NAPI polls without
9523  *	registering a full blown interface. This is to be used by drivers
9524  *	that need to tie several hardware interfaces to a single NAPI
9525  *	poll scheduler due to HW limitations.
9526  */
9527 int init_dummy_netdev(struct net_device *dev)
9528 {
9529 	/* Clear everything. Note we don't initialize spinlocks
9530 	 * are they aren't supposed to be taken by any of the
9531 	 * NAPI code and this dummy netdev is supposed to be
9532 	 * only ever used for NAPI polls
9533 	 */
9534 	memset(dev, 0, sizeof(struct net_device));
9535 
9536 	/* make sure we BUG if trying to hit standard
9537 	 * register/unregister code path
9538 	 */
9539 	dev->reg_state = NETREG_DUMMY;
9540 
9541 	/* NAPI wants this */
9542 	INIT_LIST_HEAD(&dev->napi_list);
9543 
9544 	/* a dummy interface is started by default */
9545 	set_bit(__LINK_STATE_PRESENT, &dev->state);
9546 	set_bit(__LINK_STATE_START, &dev->state);
9547 
9548 	/* napi_busy_loop stats accounting wants this */
9549 	dev_net_set(dev, &init_net);
9550 
9551 	/* Note : We dont allocate pcpu_refcnt for dummy devices,
9552 	 * because users of this 'device' dont need to change
9553 	 * its refcount.
9554 	 */
9555 
9556 	return 0;
9557 }
9558 EXPORT_SYMBOL_GPL(init_dummy_netdev);
9559 
9560 
9561 /**
9562  *	register_netdev	- register a network device
9563  *	@dev: device to register
9564  *
9565  *	Take a completed network device structure and add it to the kernel
9566  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
9567  *	chain. 0 is returned on success. A negative errno code is returned
9568  *	on a failure to set up the device, or if the name is a duplicate.
9569  *
9570  *	This is a wrapper around register_netdevice that takes the rtnl semaphore
9571  *	and expands the device name if you passed a format string to
9572  *	alloc_netdev.
9573  */
9574 int register_netdev(struct net_device *dev)
9575 {
9576 	int err;
9577 
9578 	if (rtnl_lock_killable())
9579 		return -EINTR;
9580 	err = register_netdevice(dev);
9581 	rtnl_unlock();
9582 	return err;
9583 }
9584 EXPORT_SYMBOL(register_netdev);
9585 
9586 int netdev_refcnt_read(const struct net_device *dev)
9587 {
9588 	int i, refcnt = 0;
9589 
9590 	for_each_possible_cpu(i)
9591 		refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
9592 	return refcnt;
9593 }
9594 EXPORT_SYMBOL(netdev_refcnt_read);
9595 
9596 /**
9597  * netdev_wait_allrefs - wait until all references are gone.
9598  * @dev: target net_device
9599  *
9600  * This is called when unregistering network devices.
9601  *
9602  * Any protocol or device that holds a reference should register
9603  * for netdevice notification, and cleanup and put back the
9604  * reference if they receive an UNREGISTER event.
9605  * We can get stuck here if buggy protocols don't correctly
9606  * call dev_put.
9607  */
9608 static void netdev_wait_allrefs(struct net_device *dev)
9609 {
9610 	unsigned long rebroadcast_time, warning_time;
9611 	int refcnt;
9612 
9613 	linkwatch_forget_dev(dev);
9614 
9615 	rebroadcast_time = warning_time = jiffies;
9616 	refcnt = netdev_refcnt_read(dev);
9617 
9618 	while (refcnt != 0) {
9619 		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
9620 			rtnl_lock();
9621 
9622 			/* Rebroadcast unregister notification */
9623 			call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
9624 
9625 			__rtnl_unlock();
9626 			rcu_barrier();
9627 			rtnl_lock();
9628 
9629 			if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
9630 				     &dev->state)) {
9631 				/* We must not have linkwatch events
9632 				 * pending on unregister. If this
9633 				 * happens, we simply run the queue
9634 				 * unscheduled, resulting in a noop
9635 				 * for this device.
9636 				 */
9637 				linkwatch_run_queue();
9638 			}
9639 
9640 			__rtnl_unlock();
9641 
9642 			rebroadcast_time = jiffies;
9643 		}
9644 
9645 		msleep(250);
9646 
9647 		refcnt = netdev_refcnt_read(dev);
9648 
9649 		if (refcnt && time_after(jiffies, warning_time + 10 * HZ)) {
9650 			pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
9651 				 dev->name, refcnt);
9652 			warning_time = jiffies;
9653 		}
9654 	}
9655 }
9656 
9657 /* The sequence is:
9658  *
9659  *	rtnl_lock();
9660  *	...
9661  *	register_netdevice(x1);
9662  *	register_netdevice(x2);
9663  *	...
9664  *	unregister_netdevice(y1);
9665  *	unregister_netdevice(y2);
9666  *      ...
9667  *	rtnl_unlock();
9668  *	free_netdev(y1);
9669  *	free_netdev(y2);
9670  *
9671  * We are invoked by rtnl_unlock().
9672  * This allows us to deal with problems:
9673  * 1) We can delete sysfs objects which invoke hotplug
9674  *    without deadlocking with linkwatch via keventd.
9675  * 2) Since we run with the RTNL semaphore not held, we can sleep
9676  *    safely in order to wait for the netdev refcnt to drop to zero.
9677  *
9678  * We must not return until all unregister events added during
9679  * the interval the lock was held have been completed.
9680  */
9681 void netdev_run_todo(void)
9682 {
9683 	struct list_head list;
9684 
9685 	/* Snapshot list, allow later requests */
9686 	list_replace_init(&net_todo_list, &list);
9687 
9688 	__rtnl_unlock();
9689 
9690 
9691 	/* Wait for rcu callbacks to finish before next phase */
9692 	if (!list_empty(&list))
9693 		rcu_barrier();
9694 
9695 	while (!list_empty(&list)) {
9696 		struct net_device *dev
9697 			= list_first_entry(&list, struct net_device, todo_list);
9698 		list_del(&dev->todo_list);
9699 
9700 		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
9701 			pr_err("network todo '%s' but state %d\n",
9702 			       dev->name, dev->reg_state);
9703 			dump_stack();
9704 			continue;
9705 		}
9706 
9707 		dev->reg_state = NETREG_UNREGISTERED;
9708 
9709 		netdev_wait_allrefs(dev);
9710 
9711 		/* paranoia */
9712 		BUG_ON(netdev_refcnt_read(dev));
9713 		BUG_ON(!list_empty(&dev->ptype_all));
9714 		BUG_ON(!list_empty(&dev->ptype_specific));
9715 		WARN_ON(rcu_access_pointer(dev->ip_ptr));
9716 		WARN_ON(rcu_access_pointer(dev->ip6_ptr));
9717 #if IS_ENABLED(CONFIG_DECNET)
9718 		WARN_ON(dev->dn_ptr);
9719 #endif
9720 		if (dev->priv_destructor)
9721 			dev->priv_destructor(dev);
9722 		if (dev->needs_free_netdev)
9723 			free_netdev(dev);
9724 
9725 		/* Report a network device has been unregistered */
9726 		rtnl_lock();
9727 		dev_net(dev)->dev_unreg_count--;
9728 		__rtnl_unlock();
9729 		wake_up(&netdev_unregistering_wq);
9730 
9731 		/* Free network device */
9732 		kobject_put(&dev->dev.kobj);
9733 	}
9734 }
9735 
9736 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
9737  * all the same fields in the same order as net_device_stats, with only
9738  * the type differing, but rtnl_link_stats64 may have additional fields
9739  * at the end for newer counters.
9740  */
9741 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
9742 			     const struct net_device_stats *netdev_stats)
9743 {
9744 #if BITS_PER_LONG == 64
9745 	BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
9746 	memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
9747 	/* zero out counters that only exist in rtnl_link_stats64 */
9748 	memset((char *)stats64 + sizeof(*netdev_stats), 0,
9749 	       sizeof(*stats64) - sizeof(*netdev_stats));
9750 #else
9751 	size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
9752 	const unsigned long *src = (const unsigned long *)netdev_stats;
9753 	u64 *dst = (u64 *)stats64;
9754 
9755 	BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
9756 	for (i = 0; i < n; i++)
9757 		dst[i] = src[i];
9758 	/* zero out counters that only exist in rtnl_link_stats64 */
9759 	memset((char *)stats64 + n * sizeof(u64), 0,
9760 	       sizeof(*stats64) - n * sizeof(u64));
9761 #endif
9762 }
9763 EXPORT_SYMBOL(netdev_stats_to_stats64);
9764 
9765 /**
9766  *	dev_get_stats	- get network device statistics
9767  *	@dev: device to get statistics from
9768  *	@storage: place to store stats
9769  *
9770  *	Get network statistics from device. Return @storage.
9771  *	The device driver may provide its own method by setting
9772  *	dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
9773  *	otherwise the internal statistics structure is used.
9774  */
9775 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
9776 					struct rtnl_link_stats64 *storage)
9777 {
9778 	const struct net_device_ops *ops = dev->netdev_ops;
9779 
9780 	if (ops->ndo_get_stats64) {
9781 		memset(storage, 0, sizeof(*storage));
9782 		ops->ndo_get_stats64(dev, storage);
9783 	} else if (ops->ndo_get_stats) {
9784 		netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
9785 	} else {
9786 		netdev_stats_to_stats64(storage, &dev->stats);
9787 	}
9788 	storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
9789 	storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
9790 	storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
9791 	return storage;
9792 }
9793 EXPORT_SYMBOL(dev_get_stats);
9794 
9795 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
9796 {
9797 	struct netdev_queue *queue = dev_ingress_queue(dev);
9798 
9799 #ifdef CONFIG_NET_CLS_ACT
9800 	if (queue)
9801 		return queue;
9802 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
9803 	if (!queue)
9804 		return NULL;
9805 	netdev_init_one_queue(dev, queue, NULL);
9806 	RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
9807 	queue->qdisc_sleeping = &noop_qdisc;
9808 	rcu_assign_pointer(dev->ingress_queue, queue);
9809 #endif
9810 	return queue;
9811 }
9812 
9813 static const struct ethtool_ops default_ethtool_ops;
9814 
9815 void netdev_set_default_ethtool_ops(struct net_device *dev,
9816 				    const struct ethtool_ops *ops)
9817 {
9818 	if (dev->ethtool_ops == &default_ethtool_ops)
9819 		dev->ethtool_ops = ops;
9820 }
9821 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
9822 
9823 void netdev_freemem(struct net_device *dev)
9824 {
9825 	char *addr = (char *)dev - dev->padded;
9826 
9827 	kvfree(addr);
9828 }
9829 
9830 /**
9831  * alloc_netdev_mqs - allocate network device
9832  * @sizeof_priv: size of private data to allocate space for
9833  * @name: device name format string
9834  * @name_assign_type: origin of device name
9835  * @setup: callback to initialize device
9836  * @txqs: the number of TX subqueues to allocate
9837  * @rxqs: the number of RX subqueues to allocate
9838  *
9839  * Allocates a struct net_device with private data area for driver use
9840  * and performs basic initialization.  Also allocates subqueue structs
9841  * for each queue on the device.
9842  */
9843 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
9844 		unsigned char name_assign_type,
9845 		void (*setup)(struct net_device *),
9846 		unsigned int txqs, unsigned int rxqs)
9847 {
9848 	struct net_device *dev;
9849 	unsigned int alloc_size;
9850 	struct net_device *p;
9851 
9852 	BUG_ON(strlen(name) >= sizeof(dev->name));
9853 
9854 	if (txqs < 1) {
9855 		pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
9856 		return NULL;
9857 	}
9858 
9859 	if (rxqs < 1) {
9860 		pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
9861 		return NULL;
9862 	}
9863 
9864 	alloc_size = sizeof(struct net_device);
9865 	if (sizeof_priv) {
9866 		/* ensure 32-byte alignment of private area */
9867 		alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
9868 		alloc_size += sizeof_priv;
9869 	}
9870 	/* ensure 32-byte alignment of whole construct */
9871 	alloc_size += NETDEV_ALIGN - 1;
9872 
9873 	p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
9874 	if (!p)
9875 		return NULL;
9876 
9877 	dev = PTR_ALIGN(p, NETDEV_ALIGN);
9878 	dev->padded = (char *)dev - (char *)p;
9879 
9880 	dev->pcpu_refcnt = alloc_percpu(int);
9881 	if (!dev->pcpu_refcnt)
9882 		goto free_dev;
9883 
9884 	if (dev_addr_init(dev))
9885 		goto free_pcpu;
9886 
9887 	dev_mc_init(dev);
9888 	dev_uc_init(dev);
9889 
9890 	dev_net_set(dev, &init_net);
9891 
9892 	lockdep_register_key(&dev->addr_list_lock_key);
9893 
9894 	dev->gso_max_size = GSO_MAX_SIZE;
9895 	dev->gso_max_segs = GSO_MAX_SEGS;
9896 	dev->upper_level = 1;
9897 	dev->lower_level = 1;
9898 
9899 	INIT_LIST_HEAD(&dev->napi_list);
9900 	INIT_LIST_HEAD(&dev->unreg_list);
9901 	INIT_LIST_HEAD(&dev->close_list);
9902 	INIT_LIST_HEAD(&dev->link_watch_list);
9903 	INIT_LIST_HEAD(&dev->adj_list.upper);
9904 	INIT_LIST_HEAD(&dev->adj_list.lower);
9905 	INIT_LIST_HEAD(&dev->ptype_all);
9906 	INIT_LIST_HEAD(&dev->ptype_specific);
9907 	INIT_LIST_HEAD(&dev->net_notifier_list);
9908 #ifdef CONFIG_NET_SCHED
9909 	hash_init(dev->qdisc_hash);
9910 #endif
9911 	dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
9912 	setup(dev);
9913 
9914 	if (!dev->tx_queue_len) {
9915 		dev->priv_flags |= IFF_NO_QUEUE;
9916 		dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
9917 	}
9918 
9919 	dev->num_tx_queues = txqs;
9920 	dev->real_num_tx_queues = txqs;
9921 	if (netif_alloc_netdev_queues(dev))
9922 		goto free_all;
9923 
9924 	dev->num_rx_queues = rxqs;
9925 	dev->real_num_rx_queues = rxqs;
9926 	if (netif_alloc_rx_queues(dev))
9927 		goto free_all;
9928 
9929 	strcpy(dev->name, name);
9930 	dev->name_assign_type = name_assign_type;
9931 	dev->group = INIT_NETDEV_GROUP;
9932 	if (!dev->ethtool_ops)
9933 		dev->ethtool_ops = &default_ethtool_ops;
9934 
9935 	nf_hook_ingress_init(dev);
9936 
9937 	return dev;
9938 
9939 free_all:
9940 	free_netdev(dev);
9941 	return NULL;
9942 
9943 free_pcpu:
9944 	free_percpu(dev->pcpu_refcnt);
9945 free_dev:
9946 	netdev_freemem(dev);
9947 	return NULL;
9948 }
9949 EXPORT_SYMBOL(alloc_netdev_mqs);
9950 
9951 /**
9952  * free_netdev - free network device
9953  * @dev: device
9954  *
9955  * This function does the last stage of destroying an allocated device
9956  * interface. The reference to the device object is released. If this
9957  * is the last reference then it will be freed.Must be called in process
9958  * context.
9959  */
9960 void free_netdev(struct net_device *dev)
9961 {
9962 	struct napi_struct *p, *n;
9963 
9964 	might_sleep();
9965 	netif_free_tx_queues(dev);
9966 	netif_free_rx_queues(dev);
9967 
9968 	kfree(rcu_dereference_protected(dev->ingress_queue, 1));
9969 
9970 	/* Flush device addresses */
9971 	dev_addr_flush(dev);
9972 
9973 	list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
9974 		netif_napi_del(p);
9975 
9976 	free_percpu(dev->pcpu_refcnt);
9977 	dev->pcpu_refcnt = NULL;
9978 	free_percpu(dev->xdp_bulkq);
9979 	dev->xdp_bulkq = NULL;
9980 
9981 	lockdep_unregister_key(&dev->addr_list_lock_key);
9982 
9983 	/*  Compatibility with error handling in drivers */
9984 	if (dev->reg_state == NETREG_UNINITIALIZED) {
9985 		netdev_freemem(dev);
9986 		return;
9987 	}
9988 
9989 	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
9990 	dev->reg_state = NETREG_RELEASED;
9991 
9992 	/* will free via device release */
9993 	put_device(&dev->dev);
9994 }
9995 EXPORT_SYMBOL(free_netdev);
9996 
9997 /**
9998  *	synchronize_net -  Synchronize with packet receive processing
9999  *
10000  *	Wait for packets currently being received to be done.
10001  *	Does not block later packets from starting.
10002  */
10003 void synchronize_net(void)
10004 {
10005 	might_sleep();
10006 	if (rtnl_is_locked())
10007 		synchronize_rcu_expedited();
10008 	else
10009 		synchronize_rcu();
10010 }
10011 EXPORT_SYMBOL(synchronize_net);
10012 
10013 /**
10014  *	unregister_netdevice_queue - remove device from the kernel
10015  *	@dev: device
10016  *	@head: list
10017  *
10018  *	This function shuts down a device interface and removes it
10019  *	from the kernel tables.
10020  *	If head not NULL, device is queued to be unregistered later.
10021  *
10022  *	Callers must hold the rtnl semaphore.  You may want
10023  *	unregister_netdev() instead of this.
10024  */
10025 
10026 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
10027 {
10028 	ASSERT_RTNL();
10029 
10030 	if (head) {
10031 		list_move_tail(&dev->unreg_list, head);
10032 	} else {
10033 		rollback_registered(dev);
10034 		/* Finish processing unregister after unlock */
10035 		net_set_todo(dev);
10036 	}
10037 }
10038 EXPORT_SYMBOL(unregister_netdevice_queue);
10039 
10040 /**
10041  *	unregister_netdevice_many - unregister many devices
10042  *	@head: list of devices
10043  *
10044  *  Note: As most callers use a stack allocated list_head,
10045  *  we force a list_del() to make sure stack wont be corrupted later.
10046  */
10047 void unregister_netdevice_many(struct list_head *head)
10048 {
10049 	struct net_device *dev;
10050 
10051 	if (!list_empty(head)) {
10052 		rollback_registered_many(head);
10053 		list_for_each_entry(dev, head, unreg_list)
10054 			net_set_todo(dev);
10055 		list_del(head);
10056 	}
10057 }
10058 EXPORT_SYMBOL(unregister_netdevice_many);
10059 
10060 /**
10061  *	unregister_netdev - remove device from the kernel
10062  *	@dev: device
10063  *
10064  *	This function shuts down a device interface and removes it
10065  *	from the kernel tables.
10066  *
10067  *	This is just a wrapper for unregister_netdevice that takes
10068  *	the rtnl semaphore.  In general you want to use this and not
10069  *	unregister_netdevice.
10070  */
10071 void unregister_netdev(struct net_device *dev)
10072 {
10073 	rtnl_lock();
10074 	unregister_netdevice(dev);
10075 	rtnl_unlock();
10076 }
10077 EXPORT_SYMBOL(unregister_netdev);
10078 
10079 /**
10080  *	dev_change_net_namespace - move device to different nethost namespace
10081  *	@dev: device
10082  *	@net: network namespace
10083  *	@pat: If not NULL name pattern to try if the current device name
10084  *	      is already taken in the destination network namespace.
10085  *
10086  *	This function shuts down a device interface and moves it
10087  *	to a new network namespace. On success 0 is returned, on
10088  *	a failure a netagive errno code is returned.
10089  *
10090  *	Callers must hold the rtnl semaphore.
10091  */
10092 
10093 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
10094 {
10095 	struct net *net_old = dev_net(dev);
10096 	int err, new_nsid, new_ifindex;
10097 
10098 	ASSERT_RTNL();
10099 
10100 	/* Don't allow namespace local devices to be moved. */
10101 	err = -EINVAL;
10102 	if (dev->features & NETIF_F_NETNS_LOCAL)
10103 		goto out;
10104 
10105 	/* Ensure the device has been registrered */
10106 	if (dev->reg_state != NETREG_REGISTERED)
10107 		goto out;
10108 
10109 	/* Get out if there is nothing todo */
10110 	err = 0;
10111 	if (net_eq(net_old, net))
10112 		goto out;
10113 
10114 	/* Pick the destination device name, and ensure
10115 	 * we can use it in the destination network namespace.
10116 	 */
10117 	err = -EEXIST;
10118 	if (__dev_get_by_name(net, dev->name)) {
10119 		/* We get here if we can't use the current device name */
10120 		if (!pat)
10121 			goto out;
10122 		err = dev_get_valid_name(net, dev, pat);
10123 		if (err < 0)
10124 			goto out;
10125 	}
10126 
10127 	/*
10128 	 * And now a mini version of register_netdevice unregister_netdevice.
10129 	 */
10130 
10131 	/* If device is running close it first. */
10132 	dev_close(dev);
10133 
10134 	/* And unlink it from device chain */
10135 	unlist_netdevice(dev);
10136 
10137 	synchronize_net();
10138 
10139 	/* Shutdown queueing discipline. */
10140 	dev_shutdown(dev);
10141 
10142 	/* Notify protocols, that we are about to destroy
10143 	 * this device. They should clean all the things.
10144 	 *
10145 	 * Note that dev->reg_state stays at NETREG_REGISTERED.
10146 	 * This is wanted because this way 8021q and macvlan know
10147 	 * the device is just moving and can keep their slaves up.
10148 	 */
10149 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10150 	rcu_barrier();
10151 
10152 	new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
10153 	/* If there is an ifindex conflict assign a new one */
10154 	if (__dev_get_by_index(net, dev->ifindex))
10155 		new_ifindex = dev_new_index(net);
10156 	else
10157 		new_ifindex = dev->ifindex;
10158 
10159 	rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
10160 			    new_ifindex);
10161 
10162 	/*
10163 	 *	Flush the unicast and multicast chains
10164 	 */
10165 	dev_uc_flush(dev);
10166 	dev_mc_flush(dev);
10167 
10168 	/* Send a netdev-removed uevent to the old namespace */
10169 	kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
10170 	netdev_adjacent_del_links(dev);
10171 
10172 	/* Move per-net netdevice notifiers that are following the netdevice */
10173 	move_netdevice_notifiers_dev_net(dev, net);
10174 
10175 	/* Actually switch the network namespace */
10176 	dev_net_set(dev, net);
10177 	dev->ifindex = new_ifindex;
10178 
10179 	/* Send a netdev-add uevent to the new namespace */
10180 	kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
10181 	netdev_adjacent_add_links(dev);
10182 
10183 	/* Fixup kobjects */
10184 	err = device_rename(&dev->dev, dev->name);
10185 	WARN_ON(err);
10186 
10187 	/* Adapt owner in case owning user namespace of target network
10188 	 * namespace is different from the original one.
10189 	 */
10190 	err = netdev_change_owner(dev, net_old, net);
10191 	WARN_ON(err);
10192 
10193 	/* Add the device back in the hashes */
10194 	list_netdevice(dev);
10195 
10196 	/* Notify protocols, that a new device appeared. */
10197 	call_netdevice_notifiers(NETDEV_REGISTER, dev);
10198 
10199 	/*
10200 	 *	Prevent userspace races by waiting until the network
10201 	 *	device is fully setup before sending notifications.
10202 	 */
10203 	rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
10204 
10205 	synchronize_net();
10206 	err = 0;
10207 out:
10208 	return err;
10209 }
10210 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
10211 
10212 static int dev_cpu_dead(unsigned int oldcpu)
10213 {
10214 	struct sk_buff **list_skb;
10215 	struct sk_buff *skb;
10216 	unsigned int cpu;
10217 	struct softnet_data *sd, *oldsd, *remsd = NULL;
10218 
10219 	local_irq_disable();
10220 	cpu = smp_processor_id();
10221 	sd = &per_cpu(softnet_data, cpu);
10222 	oldsd = &per_cpu(softnet_data, oldcpu);
10223 
10224 	/* Find end of our completion_queue. */
10225 	list_skb = &sd->completion_queue;
10226 	while (*list_skb)
10227 		list_skb = &(*list_skb)->next;
10228 	/* Append completion queue from offline CPU. */
10229 	*list_skb = oldsd->completion_queue;
10230 	oldsd->completion_queue = NULL;
10231 
10232 	/* Append output queue from offline CPU. */
10233 	if (oldsd->output_queue) {
10234 		*sd->output_queue_tailp = oldsd->output_queue;
10235 		sd->output_queue_tailp = oldsd->output_queue_tailp;
10236 		oldsd->output_queue = NULL;
10237 		oldsd->output_queue_tailp = &oldsd->output_queue;
10238 	}
10239 	/* Append NAPI poll list from offline CPU, with one exception :
10240 	 * process_backlog() must be called by cpu owning percpu backlog.
10241 	 * We properly handle process_queue & input_pkt_queue later.
10242 	 */
10243 	while (!list_empty(&oldsd->poll_list)) {
10244 		struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
10245 							    struct napi_struct,
10246 							    poll_list);
10247 
10248 		list_del_init(&napi->poll_list);
10249 		if (napi->poll == process_backlog)
10250 			napi->state = 0;
10251 		else
10252 			____napi_schedule(sd, napi);
10253 	}
10254 
10255 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
10256 	local_irq_enable();
10257 
10258 #ifdef CONFIG_RPS
10259 	remsd = oldsd->rps_ipi_list;
10260 	oldsd->rps_ipi_list = NULL;
10261 #endif
10262 	/* send out pending IPI's on offline CPU */
10263 	net_rps_send_ipi(remsd);
10264 
10265 	/* Process offline CPU's input_pkt_queue */
10266 	while ((skb = __skb_dequeue(&oldsd->process_queue))) {
10267 		netif_rx_ni(skb);
10268 		input_queue_head_incr(oldsd);
10269 	}
10270 	while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
10271 		netif_rx_ni(skb);
10272 		input_queue_head_incr(oldsd);
10273 	}
10274 
10275 	return 0;
10276 }
10277 
10278 /**
10279  *	netdev_increment_features - increment feature set by one
10280  *	@all: current feature set
10281  *	@one: new feature set
10282  *	@mask: mask feature set
10283  *
10284  *	Computes a new feature set after adding a device with feature set
10285  *	@one to the master device with current feature set @all.  Will not
10286  *	enable anything that is off in @mask. Returns the new feature set.
10287  */
10288 netdev_features_t netdev_increment_features(netdev_features_t all,
10289 	netdev_features_t one, netdev_features_t mask)
10290 {
10291 	if (mask & NETIF_F_HW_CSUM)
10292 		mask |= NETIF_F_CSUM_MASK;
10293 	mask |= NETIF_F_VLAN_CHALLENGED;
10294 
10295 	all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
10296 	all &= one | ~NETIF_F_ALL_FOR_ALL;
10297 
10298 	/* If one device supports hw checksumming, set for all. */
10299 	if (all & NETIF_F_HW_CSUM)
10300 		all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
10301 
10302 	return all;
10303 }
10304 EXPORT_SYMBOL(netdev_increment_features);
10305 
10306 static struct hlist_head * __net_init netdev_create_hash(void)
10307 {
10308 	int i;
10309 	struct hlist_head *hash;
10310 
10311 	hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
10312 	if (hash != NULL)
10313 		for (i = 0; i < NETDEV_HASHENTRIES; i++)
10314 			INIT_HLIST_HEAD(&hash[i]);
10315 
10316 	return hash;
10317 }
10318 
10319 /* Initialize per network namespace state */
10320 static int __net_init netdev_init(struct net *net)
10321 {
10322 	BUILD_BUG_ON(GRO_HASH_BUCKETS >
10323 		     8 * sizeof_field(struct napi_struct, gro_bitmask));
10324 
10325 	if (net != &init_net)
10326 		INIT_LIST_HEAD(&net->dev_base_head);
10327 
10328 	net->dev_name_head = netdev_create_hash();
10329 	if (net->dev_name_head == NULL)
10330 		goto err_name;
10331 
10332 	net->dev_index_head = netdev_create_hash();
10333 	if (net->dev_index_head == NULL)
10334 		goto err_idx;
10335 
10336 	RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
10337 
10338 	return 0;
10339 
10340 err_idx:
10341 	kfree(net->dev_name_head);
10342 err_name:
10343 	return -ENOMEM;
10344 }
10345 
10346 /**
10347  *	netdev_drivername - network driver for the device
10348  *	@dev: network device
10349  *
10350  *	Determine network driver for device.
10351  */
10352 const char *netdev_drivername(const struct net_device *dev)
10353 {
10354 	const struct device_driver *driver;
10355 	const struct device *parent;
10356 	const char *empty = "";
10357 
10358 	parent = dev->dev.parent;
10359 	if (!parent)
10360 		return empty;
10361 
10362 	driver = parent->driver;
10363 	if (driver && driver->name)
10364 		return driver->name;
10365 	return empty;
10366 }
10367 
10368 static void __netdev_printk(const char *level, const struct net_device *dev,
10369 			    struct va_format *vaf)
10370 {
10371 	if (dev && dev->dev.parent) {
10372 		dev_printk_emit(level[1] - '0',
10373 				dev->dev.parent,
10374 				"%s %s %s%s: %pV",
10375 				dev_driver_string(dev->dev.parent),
10376 				dev_name(dev->dev.parent),
10377 				netdev_name(dev), netdev_reg_state(dev),
10378 				vaf);
10379 	} else if (dev) {
10380 		printk("%s%s%s: %pV",
10381 		       level, netdev_name(dev), netdev_reg_state(dev), vaf);
10382 	} else {
10383 		printk("%s(NULL net_device): %pV", level, vaf);
10384 	}
10385 }
10386 
10387 void netdev_printk(const char *level, const struct net_device *dev,
10388 		   const char *format, ...)
10389 {
10390 	struct va_format vaf;
10391 	va_list args;
10392 
10393 	va_start(args, format);
10394 
10395 	vaf.fmt = format;
10396 	vaf.va = &args;
10397 
10398 	__netdev_printk(level, dev, &vaf);
10399 
10400 	va_end(args);
10401 }
10402 EXPORT_SYMBOL(netdev_printk);
10403 
10404 #define define_netdev_printk_level(func, level)			\
10405 void func(const struct net_device *dev, const char *fmt, ...)	\
10406 {								\
10407 	struct va_format vaf;					\
10408 	va_list args;						\
10409 								\
10410 	va_start(args, fmt);					\
10411 								\
10412 	vaf.fmt = fmt;						\
10413 	vaf.va = &args;						\
10414 								\
10415 	__netdev_printk(level, dev, &vaf);			\
10416 								\
10417 	va_end(args);						\
10418 }								\
10419 EXPORT_SYMBOL(func);
10420 
10421 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
10422 define_netdev_printk_level(netdev_alert, KERN_ALERT);
10423 define_netdev_printk_level(netdev_crit, KERN_CRIT);
10424 define_netdev_printk_level(netdev_err, KERN_ERR);
10425 define_netdev_printk_level(netdev_warn, KERN_WARNING);
10426 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
10427 define_netdev_printk_level(netdev_info, KERN_INFO);
10428 
10429 static void __net_exit netdev_exit(struct net *net)
10430 {
10431 	kfree(net->dev_name_head);
10432 	kfree(net->dev_index_head);
10433 	if (net != &init_net)
10434 		WARN_ON_ONCE(!list_empty(&net->dev_base_head));
10435 }
10436 
10437 static struct pernet_operations __net_initdata netdev_net_ops = {
10438 	.init = netdev_init,
10439 	.exit = netdev_exit,
10440 };
10441 
10442 static void __net_exit default_device_exit(struct net *net)
10443 {
10444 	struct net_device *dev, *aux;
10445 	/*
10446 	 * Push all migratable network devices back to the
10447 	 * initial network namespace
10448 	 */
10449 	rtnl_lock();
10450 	for_each_netdev_safe(net, dev, aux) {
10451 		int err;
10452 		char fb_name[IFNAMSIZ];
10453 
10454 		/* Ignore unmoveable devices (i.e. loopback) */
10455 		if (dev->features & NETIF_F_NETNS_LOCAL)
10456 			continue;
10457 
10458 		/* Leave virtual devices for the generic cleanup */
10459 		if (dev->rtnl_link_ops)
10460 			continue;
10461 
10462 		/* Push remaining network devices to init_net */
10463 		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
10464 		if (__dev_get_by_name(&init_net, fb_name))
10465 			snprintf(fb_name, IFNAMSIZ, "dev%%d");
10466 		err = dev_change_net_namespace(dev, &init_net, fb_name);
10467 		if (err) {
10468 			pr_emerg("%s: failed to move %s to init_net: %d\n",
10469 				 __func__, dev->name, err);
10470 			BUG();
10471 		}
10472 	}
10473 	rtnl_unlock();
10474 }
10475 
10476 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
10477 {
10478 	/* Return with the rtnl_lock held when there are no network
10479 	 * devices unregistering in any network namespace in net_list.
10480 	 */
10481 	struct net *net;
10482 	bool unregistering;
10483 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
10484 
10485 	add_wait_queue(&netdev_unregistering_wq, &wait);
10486 	for (;;) {
10487 		unregistering = false;
10488 		rtnl_lock();
10489 		list_for_each_entry(net, net_list, exit_list) {
10490 			if (net->dev_unreg_count > 0) {
10491 				unregistering = true;
10492 				break;
10493 			}
10494 		}
10495 		if (!unregistering)
10496 			break;
10497 		__rtnl_unlock();
10498 
10499 		wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
10500 	}
10501 	remove_wait_queue(&netdev_unregistering_wq, &wait);
10502 }
10503 
10504 static void __net_exit default_device_exit_batch(struct list_head *net_list)
10505 {
10506 	/* At exit all network devices most be removed from a network
10507 	 * namespace.  Do this in the reverse order of registration.
10508 	 * Do this across as many network namespaces as possible to
10509 	 * improve batching efficiency.
10510 	 */
10511 	struct net_device *dev;
10512 	struct net *net;
10513 	LIST_HEAD(dev_kill_list);
10514 
10515 	/* To prevent network device cleanup code from dereferencing
10516 	 * loopback devices or network devices that have been freed
10517 	 * wait here for all pending unregistrations to complete,
10518 	 * before unregistring the loopback device and allowing the
10519 	 * network namespace be freed.
10520 	 *
10521 	 * The netdev todo list containing all network devices
10522 	 * unregistrations that happen in default_device_exit_batch
10523 	 * will run in the rtnl_unlock() at the end of
10524 	 * default_device_exit_batch.
10525 	 */
10526 	rtnl_lock_unregistering(net_list);
10527 	list_for_each_entry(net, net_list, exit_list) {
10528 		for_each_netdev_reverse(net, dev) {
10529 			if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
10530 				dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
10531 			else
10532 				unregister_netdevice_queue(dev, &dev_kill_list);
10533 		}
10534 	}
10535 	unregister_netdevice_many(&dev_kill_list);
10536 	rtnl_unlock();
10537 }
10538 
10539 static struct pernet_operations __net_initdata default_device_ops = {
10540 	.exit = default_device_exit,
10541 	.exit_batch = default_device_exit_batch,
10542 };
10543 
10544 /*
10545  *	Initialize the DEV module. At boot time this walks the device list and
10546  *	unhooks any devices that fail to initialise (normally hardware not
10547  *	present) and leaves us with a valid list of present and active devices.
10548  *
10549  */
10550 
10551 /*
10552  *       This is called single threaded during boot, so no need
10553  *       to take the rtnl semaphore.
10554  */
10555 static int __init net_dev_init(void)
10556 {
10557 	int i, rc = -ENOMEM;
10558 
10559 	BUG_ON(!dev_boot_phase);
10560 
10561 	if (dev_proc_init())
10562 		goto out;
10563 
10564 	if (netdev_kobject_init())
10565 		goto out;
10566 
10567 	INIT_LIST_HEAD(&ptype_all);
10568 	for (i = 0; i < PTYPE_HASH_SIZE; i++)
10569 		INIT_LIST_HEAD(&ptype_base[i]);
10570 
10571 	INIT_LIST_HEAD(&offload_base);
10572 
10573 	if (register_pernet_subsys(&netdev_net_ops))
10574 		goto out;
10575 
10576 	/*
10577 	 *	Initialise the packet receive queues.
10578 	 */
10579 
10580 	for_each_possible_cpu(i) {
10581 		struct work_struct *flush = per_cpu_ptr(&flush_works, i);
10582 		struct softnet_data *sd = &per_cpu(softnet_data, i);
10583 
10584 		INIT_WORK(flush, flush_backlog);
10585 
10586 		skb_queue_head_init(&sd->input_pkt_queue);
10587 		skb_queue_head_init(&sd->process_queue);
10588 #ifdef CONFIG_XFRM_OFFLOAD
10589 		skb_queue_head_init(&sd->xfrm_backlog);
10590 #endif
10591 		INIT_LIST_HEAD(&sd->poll_list);
10592 		sd->output_queue_tailp = &sd->output_queue;
10593 #ifdef CONFIG_RPS
10594 		sd->csd.func = rps_trigger_softirq;
10595 		sd->csd.info = sd;
10596 		sd->cpu = i;
10597 #endif
10598 
10599 		init_gro_hash(&sd->backlog);
10600 		sd->backlog.poll = process_backlog;
10601 		sd->backlog.weight = weight_p;
10602 	}
10603 
10604 	dev_boot_phase = 0;
10605 
10606 	/* The loopback device is special if any other network devices
10607 	 * is present in a network namespace the loopback device must
10608 	 * be present. Since we now dynamically allocate and free the
10609 	 * loopback device ensure this invariant is maintained by
10610 	 * keeping the loopback device as the first device on the
10611 	 * list of network devices.  Ensuring the loopback devices
10612 	 * is the first device that appears and the last network device
10613 	 * that disappears.
10614 	 */
10615 	if (register_pernet_device(&loopback_net_ops))
10616 		goto out;
10617 
10618 	if (register_pernet_device(&default_device_ops))
10619 		goto out;
10620 
10621 	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
10622 	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
10623 
10624 	rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
10625 				       NULL, dev_cpu_dead);
10626 	WARN_ON(rc < 0);
10627 	rc = 0;
10628 out:
10629 	return rc;
10630 }
10631 
10632 subsys_initcall(net_dev_init);
10633