1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * NET3 Protocol independent device support routines. 4 * 5 * Derived from the non IP parts of dev.c 1.0.19 6 * Authors: Ross Biro 7 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 8 * Mark Evans, <evansmp@uhura.aston.ac.uk> 9 * 10 * Additional Authors: 11 * Florian la Roche <rzsfl@rz.uni-sb.de> 12 * Alan Cox <gw4pts@gw4pts.ampr.org> 13 * David Hinds <dahinds@users.sourceforge.net> 14 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> 15 * Adam Sulmicki <adam@cfar.umd.edu> 16 * Pekka Riikonen <priikone@poesidon.pspt.fi> 17 * 18 * Changes: 19 * D.J. Barrow : Fixed bug where dev->refcnt gets set 20 * to 2 if register_netdev gets called 21 * before net_dev_init & also removed a 22 * few lines of code in the process. 23 * Alan Cox : device private ioctl copies fields back. 24 * Alan Cox : Transmit queue code does relevant 25 * stunts to keep the queue safe. 26 * Alan Cox : Fixed double lock. 27 * Alan Cox : Fixed promisc NULL pointer trap 28 * ???????? : Support the full private ioctl range 29 * Alan Cox : Moved ioctl permission check into 30 * drivers 31 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI 32 * Alan Cox : 100 backlog just doesn't cut it when 33 * you start doing multicast video 8) 34 * Alan Cox : Rewrote net_bh and list manager. 35 * Alan Cox : Fix ETH_P_ALL echoback lengths. 36 * Alan Cox : Took out transmit every packet pass 37 * Saved a few bytes in the ioctl handler 38 * Alan Cox : Network driver sets packet type before 39 * calling netif_rx. Saves a function 40 * call a packet. 41 * Alan Cox : Hashed net_bh() 42 * Richard Kooijman: Timestamp fixes. 43 * Alan Cox : Wrong field in SIOCGIFDSTADDR 44 * Alan Cox : Device lock protection. 45 * Alan Cox : Fixed nasty side effect of device close 46 * changes. 47 * Rudi Cilibrasi : Pass the right thing to 48 * set_mac_address() 49 * Dave Miller : 32bit quantity for the device lock to 50 * make it work out on a Sparc. 51 * Bjorn Ekwall : Added KERNELD hack. 52 * Alan Cox : Cleaned up the backlog initialise. 53 * Craig Metz : SIOCGIFCONF fix if space for under 54 * 1 device. 55 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there 56 * is no device open function. 57 * Andi Kleen : Fix error reporting for SIOCGIFCONF 58 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF 59 * Cyrus Durgin : Cleaned for KMOD 60 * Adam Sulmicki : Bug Fix : Network Device Unload 61 * A network device unload needs to purge 62 * the backlog queue. 63 * Paul Rusty Russell : SIOCSIFNAME 64 * Pekka Riikonen : Netdev boot-time settings code 65 * Andrew Morton : Make unregister_netdevice wait 66 * indefinitely on dev->refcnt 67 * J Hadi Salim : - Backlog queue sampling 68 * - netif_rx() feedback 69 */ 70 71 #include <linux/uaccess.h> 72 #include <linux/bitops.h> 73 #include <linux/capability.h> 74 #include <linux/cpu.h> 75 #include <linux/types.h> 76 #include <linux/kernel.h> 77 #include <linux/hash.h> 78 #include <linux/slab.h> 79 #include <linux/sched.h> 80 #include <linux/sched/mm.h> 81 #include <linux/mutex.h> 82 #include <linux/string.h> 83 #include <linux/mm.h> 84 #include <linux/socket.h> 85 #include <linux/sockios.h> 86 #include <linux/errno.h> 87 #include <linux/interrupt.h> 88 #include <linux/if_ether.h> 89 #include <linux/netdevice.h> 90 #include <linux/etherdevice.h> 91 #include <linux/ethtool.h> 92 #include <linux/skbuff.h> 93 #include <linux/bpf.h> 94 #include <linux/bpf_trace.h> 95 #include <net/net_namespace.h> 96 #include <net/sock.h> 97 #include <net/busy_poll.h> 98 #include <linux/rtnetlink.h> 99 #include <linux/stat.h> 100 #include <net/dst.h> 101 #include <net/dst_metadata.h> 102 #include <net/pkt_sched.h> 103 #include <net/pkt_cls.h> 104 #include <net/checksum.h> 105 #include <net/xfrm.h> 106 #include <linux/highmem.h> 107 #include <linux/init.h> 108 #include <linux/module.h> 109 #include <linux/netpoll.h> 110 #include <linux/rcupdate.h> 111 #include <linux/delay.h> 112 #include <net/iw_handler.h> 113 #include <asm/current.h> 114 #include <linux/audit.h> 115 #include <linux/dmaengine.h> 116 #include <linux/err.h> 117 #include <linux/ctype.h> 118 #include <linux/if_arp.h> 119 #include <linux/if_vlan.h> 120 #include <linux/ip.h> 121 #include <net/ip.h> 122 #include <net/mpls.h> 123 #include <linux/ipv6.h> 124 #include <linux/in.h> 125 #include <linux/jhash.h> 126 #include <linux/random.h> 127 #include <trace/events/napi.h> 128 #include <trace/events/net.h> 129 #include <trace/events/skb.h> 130 #include <linux/inetdevice.h> 131 #include <linux/cpu_rmap.h> 132 #include <linux/static_key.h> 133 #include <linux/hashtable.h> 134 #include <linux/vmalloc.h> 135 #include <linux/if_macvlan.h> 136 #include <linux/errqueue.h> 137 #include <linux/hrtimer.h> 138 #include <linux/netfilter_ingress.h> 139 #include <linux/crash_dump.h> 140 #include <linux/sctp.h> 141 #include <net/udp_tunnel.h> 142 #include <linux/net_namespace.h> 143 #include <linux/indirect_call_wrapper.h> 144 #include <net/devlink.h> 145 146 #include "net-sysfs.h" 147 148 #define MAX_GRO_SKBS 8 149 150 /* This should be increased if a protocol with a bigger head is added. */ 151 #define GRO_MAX_HEAD (MAX_HEADER + 128) 152 153 static DEFINE_SPINLOCK(ptype_lock); 154 static DEFINE_SPINLOCK(offload_lock); 155 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly; 156 struct list_head ptype_all __read_mostly; /* Taps */ 157 static struct list_head offload_base __read_mostly; 158 159 static int netif_rx_internal(struct sk_buff *skb); 160 static int call_netdevice_notifiers_info(unsigned long val, 161 struct netdev_notifier_info *info); 162 static int call_netdevice_notifiers_extack(unsigned long val, 163 struct net_device *dev, 164 struct netlink_ext_ack *extack); 165 static struct napi_struct *napi_by_id(unsigned int napi_id); 166 167 /* 168 * The @dev_base_head list is protected by @dev_base_lock and the rtnl 169 * semaphore. 170 * 171 * Pure readers hold dev_base_lock for reading, or rcu_read_lock() 172 * 173 * Writers must hold the rtnl semaphore while they loop through the 174 * dev_base_head list, and hold dev_base_lock for writing when they do the 175 * actual updates. This allows pure readers to access the list even 176 * while a writer is preparing to update it. 177 * 178 * To put it another way, dev_base_lock is held for writing only to 179 * protect against pure readers; the rtnl semaphore provides the 180 * protection against other writers. 181 * 182 * See, for example usages, register_netdevice() and 183 * unregister_netdevice(), which must be called with the rtnl 184 * semaphore held. 185 */ 186 DEFINE_RWLOCK(dev_base_lock); 187 EXPORT_SYMBOL(dev_base_lock); 188 189 static DEFINE_MUTEX(ifalias_mutex); 190 191 /* protects napi_hash addition/deletion and napi_gen_id */ 192 static DEFINE_SPINLOCK(napi_hash_lock); 193 194 static unsigned int napi_gen_id = NR_CPUS; 195 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8); 196 197 static seqcount_t devnet_rename_seq; 198 199 static inline void dev_base_seq_inc(struct net *net) 200 { 201 while (++net->dev_base_seq == 0) 202 ; 203 } 204 205 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name) 206 { 207 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ)); 208 209 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)]; 210 } 211 212 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex) 213 { 214 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)]; 215 } 216 217 static inline void rps_lock(struct softnet_data *sd) 218 { 219 #ifdef CONFIG_RPS 220 spin_lock(&sd->input_pkt_queue.lock); 221 #endif 222 } 223 224 static inline void rps_unlock(struct softnet_data *sd) 225 { 226 #ifdef CONFIG_RPS 227 spin_unlock(&sd->input_pkt_queue.lock); 228 #endif 229 } 230 231 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev, 232 const char *name) 233 { 234 struct netdev_name_node *name_node; 235 236 name_node = kmalloc(sizeof(*name_node), GFP_KERNEL); 237 if (!name_node) 238 return NULL; 239 INIT_HLIST_NODE(&name_node->hlist); 240 name_node->dev = dev; 241 name_node->name = name; 242 return name_node; 243 } 244 245 static struct netdev_name_node * 246 netdev_name_node_head_alloc(struct net_device *dev) 247 { 248 struct netdev_name_node *name_node; 249 250 name_node = netdev_name_node_alloc(dev, dev->name); 251 if (!name_node) 252 return NULL; 253 INIT_LIST_HEAD(&name_node->list); 254 return name_node; 255 } 256 257 static void netdev_name_node_free(struct netdev_name_node *name_node) 258 { 259 kfree(name_node); 260 } 261 262 static void netdev_name_node_add(struct net *net, 263 struct netdev_name_node *name_node) 264 { 265 hlist_add_head_rcu(&name_node->hlist, 266 dev_name_hash(net, name_node->name)); 267 } 268 269 static void netdev_name_node_del(struct netdev_name_node *name_node) 270 { 271 hlist_del_rcu(&name_node->hlist); 272 } 273 274 static struct netdev_name_node *netdev_name_node_lookup(struct net *net, 275 const char *name) 276 { 277 struct hlist_head *head = dev_name_hash(net, name); 278 struct netdev_name_node *name_node; 279 280 hlist_for_each_entry(name_node, head, hlist) 281 if (!strcmp(name_node->name, name)) 282 return name_node; 283 return NULL; 284 } 285 286 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net, 287 const char *name) 288 { 289 struct hlist_head *head = dev_name_hash(net, name); 290 struct netdev_name_node *name_node; 291 292 hlist_for_each_entry_rcu(name_node, head, hlist) 293 if (!strcmp(name_node->name, name)) 294 return name_node; 295 return NULL; 296 } 297 298 int netdev_name_node_alt_create(struct net_device *dev, const char *name) 299 { 300 struct netdev_name_node *name_node; 301 struct net *net = dev_net(dev); 302 303 name_node = netdev_name_node_lookup(net, name); 304 if (name_node) 305 return -EEXIST; 306 name_node = netdev_name_node_alloc(dev, name); 307 if (!name_node) 308 return -ENOMEM; 309 netdev_name_node_add(net, name_node); 310 /* The node that holds dev->name acts as a head of per-device list. */ 311 list_add_tail(&name_node->list, &dev->name_node->list); 312 313 return 0; 314 } 315 EXPORT_SYMBOL(netdev_name_node_alt_create); 316 317 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node) 318 { 319 list_del(&name_node->list); 320 netdev_name_node_del(name_node); 321 kfree(name_node->name); 322 netdev_name_node_free(name_node); 323 } 324 325 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name) 326 { 327 struct netdev_name_node *name_node; 328 struct net *net = dev_net(dev); 329 330 name_node = netdev_name_node_lookup(net, name); 331 if (!name_node) 332 return -ENOENT; 333 /* lookup might have found our primary name or a name belonging 334 * to another device. 335 */ 336 if (name_node == dev->name_node || name_node->dev != dev) 337 return -EINVAL; 338 339 __netdev_name_node_alt_destroy(name_node); 340 341 return 0; 342 } 343 EXPORT_SYMBOL(netdev_name_node_alt_destroy); 344 345 static void netdev_name_node_alt_flush(struct net_device *dev) 346 { 347 struct netdev_name_node *name_node, *tmp; 348 349 list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list) 350 __netdev_name_node_alt_destroy(name_node); 351 } 352 353 /* Device list insertion */ 354 static void list_netdevice(struct net_device *dev) 355 { 356 struct net *net = dev_net(dev); 357 358 ASSERT_RTNL(); 359 360 write_lock_bh(&dev_base_lock); 361 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head); 362 netdev_name_node_add(net, dev->name_node); 363 hlist_add_head_rcu(&dev->index_hlist, 364 dev_index_hash(net, dev->ifindex)); 365 write_unlock_bh(&dev_base_lock); 366 367 dev_base_seq_inc(net); 368 } 369 370 /* Device list removal 371 * caller must respect a RCU grace period before freeing/reusing dev 372 */ 373 static void unlist_netdevice(struct net_device *dev) 374 { 375 ASSERT_RTNL(); 376 377 /* Unlink dev from the device chain */ 378 write_lock_bh(&dev_base_lock); 379 list_del_rcu(&dev->dev_list); 380 netdev_name_node_del(dev->name_node); 381 hlist_del_rcu(&dev->index_hlist); 382 write_unlock_bh(&dev_base_lock); 383 384 dev_base_seq_inc(dev_net(dev)); 385 } 386 387 /* 388 * Our notifier list 389 */ 390 391 static RAW_NOTIFIER_HEAD(netdev_chain); 392 393 /* 394 * Device drivers call our routines to queue packets here. We empty the 395 * queue in the local softnet handler. 396 */ 397 398 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 399 EXPORT_PER_CPU_SYMBOL(softnet_data); 400 401 #ifdef CONFIG_LOCKDEP 402 /* 403 * register_netdevice() inits txq->_xmit_lock and sets lockdep class 404 * according to dev->type 405 */ 406 static const unsigned short netdev_lock_type[] = { 407 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25, 408 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET, 409 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM, 410 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP, 411 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD, 412 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25, 413 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP, 414 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD, 415 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI, 416 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE, 417 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET, 418 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL, 419 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM, 420 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE, 421 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE}; 422 423 static const char *const netdev_lock_name[] = { 424 "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25", 425 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET", 426 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM", 427 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP", 428 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD", 429 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25", 430 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP", 431 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD", 432 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI", 433 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE", 434 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET", 435 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL", 436 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM", 437 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE", 438 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"}; 439 440 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)]; 441 442 static inline unsigned short netdev_lock_pos(unsigned short dev_type) 443 { 444 int i; 445 446 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++) 447 if (netdev_lock_type[i] == dev_type) 448 return i; 449 /* the last key is used by default */ 450 return ARRAY_SIZE(netdev_lock_type) - 1; 451 } 452 453 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 454 unsigned short dev_type) 455 { 456 int i; 457 458 i = netdev_lock_pos(dev_type); 459 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i], 460 netdev_lock_name[i]); 461 } 462 #else 463 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 464 unsigned short dev_type) 465 { 466 } 467 #endif 468 469 /******************************************************************************* 470 * 471 * Protocol management and registration routines 472 * 473 *******************************************************************************/ 474 475 476 /* 477 * Add a protocol ID to the list. Now that the input handler is 478 * smarter we can dispense with all the messy stuff that used to be 479 * here. 480 * 481 * BEWARE!!! Protocol handlers, mangling input packets, 482 * MUST BE last in hash buckets and checking protocol handlers 483 * MUST start from promiscuous ptype_all chain in net_bh. 484 * It is true now, do not change it. 485 * Explanation follows: if protocol handler, mangling packet, will 486 * be the first on list, it is not able to sense, that packet 487 * is cloned and should be copied-on-write, so that it will 488 * change it and subsequent readers will get broken packet. 489 * --ANK (980803) 490 */ 491 492 static inline struct list_head *ptype_head(const struct packet_type *pt) 493 { 494 if (pt->type == htons(ETH_P_ALL)) 495 return pt->dev ? &pt->dev->ptype_all : &ptype_all; 496 else 497 return pt->dev ? &pt->dev->ptype_specific : 498 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK]; 499 } 500 501 /** 502 * dev_add_pack - add packet handler 503 * @pt: packet type declaration 504 * 505 * Add a protocol handler to the networking stack. The passed &packet_type 506 * is linked into kernel lists and may not be freed until it has been 507 * removed from the kernel lists. 508 * 509 * This call does not sleep therefore it can not 510 * guarantee all CPU's that are in middle of receiving packets 511 * will see the new packet type (until the next received packet). 512 */ 513 514 void dev_add_pack(struct packet_type *pt) 515 { 516 struct list_head *head = ptype_head(pt); 517 518 spin_lock(&ptype_lock); 519 list_add_rcu(&pt->list, head); 520 spin_unlock(&ptype_lock); 521 } 522 EXPORT_SYMBOL(dev_add_pack); 523 524 /** 525 * __dev_remove_pack - remove packet handler 526 * @pt: packet type declaration 527 * 528 * Remove a protocol handler that was previously added to the kernel 529 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 530 * from the kernel lists and can be freed or reused once this function 531 * returns. 532 * 533 * The packet type might still be in use by receivers 534 * and must not be freed until after all the CPU's have gone 535 * through a quiescent state. 536 */ 537 void __dev_remove_pack(struct packet_type *pt) 538 { 539 struct list_head *head = ptype_head(pt); 540 struct packet_type *pt1; 541 542 spin_lock(&ptype_lock); 543 544 list_for_each_entry(pt1, head, list) { 545 if (pt == pt1) { 546 list_del_rcu(&pt->list); 547 goto out; 548 } 549 } 550 551 pr_warn("dev_remove_pack: %p not found\n", pt); 552 out: 553 spin_unlock(&ptype_lock); 554 } 555 EXPORT_SYMBOL(__dev_remove_pack); 556 557 /** 558 * dev_remove_pack - remove packet handler 559 * @pt: packet type declaration 560 * 561 * Remove a protocol handler that was previously added to the kernel 562 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 563 * from the kernel lists and can be freed or reused once this function 564 * returns. 565 * 566 * This call sleeps to guarantee that no CPU is looking at the packet 567 * type after return. 568 */ 569 void dev_remove_pack(struct packet_type *pt) 570 { 571 __dev_remove_pack(pt); 572 573 synchronize_net(); 574 } 575 EXPORT_SYMBOL(dev_remove_pack); 576 577 578 /** 579 * dev_add_offload - register offload handlers 580 * @po: protocol offload declaration 581 * 582 * Add protocol offload handlers to the networking stack. The passed 583 * &proto_offload is linked into kernel lists and may not be freed until 584 * it has been removed from the kernel lists. 585 * 586 * This call does not sleep therefore it can not 587 * guarantee all CPU's that are in middle of receiving packets 588 * will see the new offload handlers (until the next received packet). 589 */ 590 void dev_add_offload(struct packet_offload *po) 591 { 592 struct packet_offload *elem; 593 594 spin_lock(&offload_lock); 595 list_for_each_entry(elem, &offload_base, list) { 596 if (po->priority < elem->priority) 597 break; 598 } 599 list_add_rcu(&po->list, elem->list.prev); 600 spin_unlock(&offload_lock); 601 } 602 EXPORT_SYMBOL(dev_add_offload); 603 604 /** 605 * __dev_remove_offload - remove offload handler 606 * @po: packet offload declaration 607 * 608 * Remove a protocol offload handler that was previously added to the 609 * kernel offload handlers by dev_add_offload(). The passed &offload_type 610 * is removed from the kernel lists and can be freed or reused once this 611 * function returns. 612 * 613 * The packet type might still be in use by receivers 614 * and must not be freed until after all the CPU's have gone 615 * through a quiescent state. 616 */ 617 static void __dev_remove_offload(struct packet_offload *po) 618 { 619 struct list_head *head = &offload_base; 620 struct packet_offload *po1; 621 622 spin_lock(&offload_lock); 623 624 list_for_each_entry(po1, head, list) { 625 if (po == po1) { 626 list_del_rcu(&po->list); 627 goto out; 628 } 629 } 630 631 pr_warn("dev_remove_offload: %p not found\n", po); 632 out: 633 spin_unlock(&offload_lock); 634 } 635 636 /** 637 * dev_remove_offload - remove packet offload handler 638 * @po: packet offload declaration 639 * 640 * Remove a packet offload handler that was previously added to the kernel 641 * offload handlers by dev_add_offload(). The passed &offload_type is 642 * removed from the kernel lists and can be freed or reused once this 643 * function returns. 644 * 645 * This call sleeps to guarantee that no CPU is looking at the packet 646 * type after return. 647 */ 648 void dev_remove_offload(struct packet_offload *po) 649 { 650 __dev_remove_offload(po); 651 652 synchronize_net(); 653 } 654 EXPORT_SYMBOL(dev_remove_offload); 655 656 /****************************************************************************** 657 * 658 * Device Boot-time Settings Routines 659 * 660 ******************************************************************************/ 661 662 /* Boot time configuration table */ 663 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX]; 664 665 /** 666 * netdev_boot_setup_add - add new setup entry 667 * @name: name of the device 668 * @map: configured settings for the device 669 * 670 * Adds new setup entry to the dev_boot_setup list. The function 671 * returns 0 on error and 1 on success. This is a generic routine to 672 * all netdevices. 673 */ 674 static int netdev_boot_setup_add(char *name, struct ifmap *map) 675 { 676 struct netdev_boot_setup *s; 677 int i; 678 679 s = dev_boot_setup; 680 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 681 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') { 682 memset(s[i].name, 0, sizeof(s[i].name)); 683 strlcpy(s[i].name, name, IFNAMSIZ); 684 memcpy(&s[i].map, map, sizeof(s[i].map)); 685 break; 686 } 687 } 688 689 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1; 690 } 691 692 /** 693 * netdev_boot_setup_check - check boot time settings 694 * @dev: the netdevice 695 * 696 * Check boot time settings for the device. 697 * The found settings are set for the device to be used 698 * later in the device probing. 699 * Returns 0 if no settings found, 1 if they are. 700 */ 701 int netdev_boot_setup_check(struct net_device *dev) 702 { 703 struct netdev_boot_setup *s = dev_boot_setup; 704 int i; 705 706 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 707 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' && 708 !strcmp(dev->name, s[i].name)) { 709 dev->irq = s[i].map.irq; 710 dev->base_addr = s[i].map.base_addr; 711 dev->mem_start = s[i].map.mem_start; 712 dev->mem_end = s[i].map.mem_end; 713 return 1; 714 } 715 } 716 return 0; 717 } 718 EXPORT_SYMBOL(netdev_boot_setup_check); 719 720 721 /** 722 * netdev_boot_base - get address from boot time settings 723 * @prefix: prefix for network device 724 * @unit: id for network device 725 * 726 * Check boot time settings for the base address of device. 727 * The found settings are set for the device to be used 728 * later in the device probing. 729 * Returns 0 if no settings found. 730 */ 731 unsigned long netdev_boot_base(const char *prefix, int unit) 732 { 733 const struct netdev_boot_setup *s = dev_boot_setup; 734 char name[IFNAMSIZ]; 735 int i; 736 737 sprintf(name, "%s%d", prefix, unit); 738 739 /* 740 * If device already registered then return base of 1 741 * to indicate not to probe for this interface 742 */ 743 if (__dev_get_by_name(&init_net, name)) 744 return 1; 745 746 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) 747 if (!strcmp(name, s[i].name)) 748 return s[i].map.base_addr; 749 return 0; 750 } 751 752 /* 753 * Saves at boot time configured settings for any netdevice. 754 */ 755 int __init netdev_boot_setup(char *str) 756 { 757 int ints[5]; 758 struct ifmap map; 759 760 str = get_options(str, ARRAY_SIZE(ints), ints); 761 if (!str || !*str) 762 return 0; 763 764 /* Save settings */ 765 memset(&map, 0, sizeof(map)); 766 if (ints[0] > 0) 767 map.irq = ints[1]; 768 if (ints[0] > 1) 769 map.base_addr = ints[2]; 770 if (ints[0] > 2) 771 map.mem_start = ints[3]; 772 if (ints[0] > 3) 773 map.mem_end = ints[4]; 774 775 /* Add new entry to the list */ 776 return netdev_boot_setup_add(str, &map); 777 } 778 779 __setup("netdev=", netdev_boot_setup); 780 781 /******************************************************************************* 782 * 783 * Device Interface Subroutines 784 * 785 *******************************************************************************/ 786 787 /** 788 * dev_get_iflink - get 'iflink' value of a interface 789 * @dev: targeted interface 790 * 791 * Indicates the ifindex the interface is linked to. 792 * Physical interfaces have the same 'ifindex' and 'iflink' values. 793 */ 794 795 int dev_get_iflink(const struct net_device *dev) 796 { 797 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink) 798 return dev->netdev_ops->ndo_get_iflink(dev); 799 800 return dev->ifindex; 801 } 802 EXPORT_SYMBOL(dev_get_iflink); 803 804 /** 805 * dev_fill_metadata_dst - Retrieve tunnel egress information. 806 * @dev: targeted interface 807 * @skb: The packet. 808 * 809 * For better visibility of tunnel traffic OVS needs to retrieve 810 * egress tunnel information for a packet. Following API allows 811 * user to get this info. 812 */ 813 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb) 814 { 815 struct ip_tunnel_info *info; 816 817 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst) 818 return -EINVAL; 819 820 info = skb_tunnel_info_unclone(skb); 821 if (!info) 822 return -ENOMEM; 823 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX))) 824 return -EINVAL; 825 826 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb); 827 } 828 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst); 829 830 /** 831 * __dev_get_by_name - find a device by its name 832 * @net: the applicable net namespace 833 * @name: name to find 834 * 835 * Find an interface by name. Must be called under RTNL semaphore 836 * or @dev_base_lock. If the name is found a pointer to the device 837 * is returned. If the name is not found then %NULL is returned. The 838 * reference counters are not incremented so the caller must be 839 * careful with locks. 840 */ 841 842 struct net_device *__dev_get_by_name(struct net *net, const char *name) 843 { 844 struct netdev_name_node *node_name; 845 846 node_name = netdev_name_node_lookup(net, name); 847 return node_name ? node_name->dev : NULL; 848 } 849 EXPORT_SYMBOL(__dev_get_by_name); 850 851 /** 852 * dev_get_by_name_rcu - find a device by its name 853 * @net: the applicable net namespace 854 * @name: name to find 855 * 856 * Find an interface by name. 857 * If the name is found a pointer to the device is returned. 858 * If the name is not found then %NULL is returned. 859 * The reference counters are not incremented so the caller must be 860 * careful with locks. The caller must hold RCU lock. 861 */ 862 863 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name) 864 { 865 struct netdev_name_node *node_name; 866 867 node_name = netdev_name_node_lookup_rcu(net, name); 868 return node_name ? node_name->dev : NULL; 869 } 870 EXPORT_SYMBOL(dev_get_by_name_rcu); 871 872 /** 873 * dev_get_by_name - find a device by its name 874 * @net: the applicable net namespace 875 * @name: name to find 876 * 877 * Find an interface by name. This can be called from any 878 * context and does its own locking. The returned handle has 879 * the usage count incremented and the caller must use dev_put() to 880 * release it when it is no longer needed. %NULL is returned if no 881 * matching device is found. 882 */ 883 884 struct net_device *dev_get_by_name(struct net *net, const char *name) 885 { 886 struct net_device *dev; 887 888 rcu_read_lock(); 889 dev = dev_get_by_name_rcu(net, name); 890 if (dev) 891 dev_hold(dev); 892 rcu_read_unlock(); 893 return dev; 894 } 895 EXPORT_SYMBOL(dev_get_by_name); 896 897 /** 898 * __dev_get_by_index - find a device by its ifindex 899 * @net: the applicable net namespace 900 * @ifindex: index of device 901 * 902 * Search for an interface by index. Returns %NULL if the device 903 * is not found or a pointer to the device. The device has not 904 * had its reference counter increased so the caller must be careful 905 * about locking. The caller must hold either the RTNL semaphore 906 * or @dev_base_lock. 907 */ 908 909 struct net_device *__dev_get_by_index(struct net *net, int ifindex) 910 { 911 struct net_device *dev; 912 struct hlist_head *head = dev_index_hash(net, ifindex); 913 914 hlist_for_each_entry(dev, head, index_hlist) 915 if (dev->ifindex == ifindex) 916 return dev; 917 918 return NULL; 919 } 920 EXPORT_SYMBOL(__dev_get_by_index); 921 922 /** 923 * dev_get_by_index_rcu - find a device by its ifindex 924 * @net: the applicable net namespace 925 * @ifindex: index of device 926 * 927 * Search for an interface by index. Returns %NULL if the device 928 * is not found or a pointer to the device. The device has not 929 * had its reference counter increased so the caller must be careful 930 * about locking. The caller must hold RCU lock. 931 */ 932 933 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex) 934 { 935 struct net_device *dev; 936 struct hlist_head *head = dev_index_hash(net, ifindex); 937 938 hlist_for_each_entry_rcu(dev, head, index_hlist) 939 if (dev->ifindex == ifindex) 940 return dev; 941 942 return NULL; 943 } 944 EXPORT_SYMBOL(dev_get_by_index_rcu); 945 946 947 /** 948 * dev_get_by_index - find a device by its ifindex 949 * @net: the applicable net namespace 950 * @ifindex: index of device 951 * 952 * Search for an interface by index. Returns NULL if the device 953 * is not found or a pointer to the device. The device returned has 954 * had a reference added and the pointer is safe until the user calls 955 * dev_put to indicate they have finished with it. 956 */ 957 958 struct net_device *dev_get_by_index(struct net *net, int ifindex) 959 { 960 struct net_device *dev; 961 962 rcu_read_lock(); 963 dev = dev_get_by_index_rcu(net, ifindex); 964 if (dev) 965 dev_hold(dev); 966 rcu_read_unlock(); 967 return dev; 968 } 969 EXPORT_SYMBOL(dev_get_by_index); 970 971 /** 972 * dev_get_by_napi_id - find a device by napi_id 973 * @napi_id: ID of the NAPI struct 974 * 975 * Search for an interface by NAPI ID. Returns %NULL if the device 976 * is not found or a pointer to the device. The device has not had 977 * its reference counter increased so the caller must be careful 978 * about locking. The caller must hold RCU lock. 979 */ 980 981 struct net_device *dev_get_by_napi_id(unsigned int napi_id) 982 { 983 struct napi_struct *napi; 984 985 WARN_ON_ONCE(!rcu_read_lock_held()); 986 987 if (napi_id < MIN_NAPI_ID) 988 return NULL; 989 990 napi = napi_by_id(napi_id); 991 992 return napi ? napi->dev : NULL; 993 } 994 EXPORT_SYMBOL(dev_get_by_napi_id); 995 996 /** 997 * netdev_get_name - get a netdevice name, knowing its ifindex. 998 * @net: network namespace 999 * @name: a pointer to the buffer where the name will be stored. 1000 * @ifindex: the ifindex of the interface to get the name from. 1001 * 1002 * The use of raw_seqcount_begin() and cond_resched() before 1003 * retrying is required as we want to give the writers a chance 1004 * to complete when CONFIG_PREEMPTION is not set. 1005 */ 1006 int netdev_get_name(struct net *net, char *name, int ifindex) 1007 { 1008 struct net_device *dev; 1009 unsigned int seq; 1010 1011 retry: 1012 seq = raw_seqcount_begin(&devnet_rename_seq); 1013 rcu_read_lock(); 1014 dev = dev_get_by_index_rcu(net, ifindex); 1015 if (!dev) { 1016 rcu_read_unlock(); 1017 return -ENODEV; 1018 } 1019 1020 strcpy(name, dev->name); 1021 rcu_read_unlock(); 1022 if (read_seqcount_retry(&devnet_rename_seq, seq)) { 1023 cond_resched(); 1024 goto retry; 1025 } 1026 1027 return 0; 1028 } 1029 1030 /** 1031 * dev_getbyhwaddr_rcu - find a device by its hardware address 1032 * @net: the applicable net namespace 1033 * @type: media type of device 1034 * @ha: hardware address 1035 * 1036 * Search for an interface by MAC address. Returns NULL if the device 1037 * is not found or a pointer to the device. 1038 * The caller must hold RCU or RTNL. 1039 * The returned device has not had its ref count increased 1040 * and the caller must therefore be careful about locking 1041 * 1042 */ 1043 1044 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 1045 const char *ha) 1046 { 1047 struct net_device *dev; 1048 1049 for_each_netdev_rcu(net, dev) 1050 if (dev->type == type && 1051 !memcmp(dev->dev_addr, ha, dev->addr_len)) 1052 return dev; 1053 1054 return NULL; 1055 } 1056 EXPORT_SYMBOL(dev_getbyhwaddr_rcu); 1057 1058 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type) 1059 { 1060 struct net_device *dev; 1061 1062 ASSERT_RTNL(); 1063 for_each_netdev(net, dev) 1064 if (dev->type == type) 1065 return dev; 1066 1067 return NULL; 1068 } 1069 EXPORT_SYMBOL(__dev_getfirstbyhwtype); 1070 1071 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type) 1072 { 1073 struct net_device *dev, *ret = NULL; 1074 1075 rcu_read_lock(); 1076 for_each_netdev_rcu(net, dev) 1077 if (dev->type == type) { 1078 dev_hold(dev); 1079 ret = dev; 1080 break; 1081 } 1082 rcu_read_unlock(); 1083 return ret; 1084 } 1085 EXPORT_SYMBOL(dev_getfirstbyhwtype); 1086 1087 /** 1088 * __dev_get_by_flags - find any device with given flags 1089 * @net: the applicable net namespace 1090 * @if_flags: IFF_* values 1091 * @mask: bitmask of bits in if_flags to check 1092 * 1093 * Search for any interface with the given flags. Returns NULL if a device 1094 * is not found or a pointer to the device. Must be called inside 1095 * rtnl_lock(), and result refcount is unchanged. 1096 */ 1097 1098 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags, 1099 unsigned short mask) 1100 { 1101 struct net_device *dev, *ret; 1102 1103 ASSERT_RTNL(); 1104 1105 ret = NULL; 1106 for_each_netdev(net, dev) { 1107 if (((dev->flags ^ if_flags) & mask) == 0) { 1108 ret = dev; 1109 break; 1110 } 1111 } 1112 return ret; 1113 } 1114 EXPORT_SYMBOL(__dev_get_by_flags); 1115 1116 /** 1117 * dev_valid_name - check if name is okay for network device 1118 * @name: name string 1119 * 1120 * Network device names need to be valid file names to 1121 * to allow sysfs to work. We also disallow any kind of 1122 * whitespace. 1123 */ 1124 bool dev_valid_name(const char *name) 1125 { 1126 if (*name == '\0') 1127 return false; 1128 if (strnlen(name, IFNAMSIZ) == IFNAMSIZ) 1129 return false; 1130 if (!strcmp(name, ".") || !strcmp(name, "..")) 1131 return false; 1132 1133 while (*name) { 1134 if (*name == '/' || *name == ':' || isspace(*name)) 1135 return false; 1136 name++; 1137 } 1138 return true; 1139 } 1140 EXPORT_SYMBOL(dev_valid_name); 1141 1142 /** 1143 * __dev_alloc_name - allocate a name for a device 1144 * @net: network namespace to allocate the device name in 1145 * @name: name format string 1146 * @buf: scratch buffer and result name string 1147 * 1148 * Passed a format string - eg "lt%d" it will try and find a suitable 1149 * id. It scans list of devices to build up a free map, then chooses 1150 * the first empty slot. The caller must hold the dev_base or rtnl lock 1151 * while allocating the name and adding the device in order to avoid 1152 * duplicates. 1153 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 1154 * Returns the number of the unit assigned or a negative errno code. 1155 */ 1156 1157 static int __dev_alloc_name(struct net *net, const char *name, char *buf) 1158 { 1159 int i = 0; 1160 const char *p; 1161 const int max_netdevices = 8*PAGE_SIZE; 1162 unsigned long *inuse; 1163 struct net_device *d; 1164 1165 if (!dev_valid_name(name)) 1166 return -EINVAL; 1167 1168 p = strchr(name, '%'); 1169 if (p) { 1170 /* 1171 * Verify the string as this thing may have come from 1172 * the user. There must be either one "%d" and no other "%" 1173 * characters. 1174 */ 1175 if (p[1] != 'd' || strchr(p + 2, '%')) 1176 return -EINVAL; 1177 1178 /* Use one page as a bit array of possible slots */ 1179 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC); 1180 if (!inuse) 1181 return -ENOMEM; 1182 1183 for_each_netdev(net, d) { 1184 if (!sscanf(d->name, name, &i)) 1185 continue; 1186 if (i < 0 || i >= max_netdevices) 1187 continue; 1188 1189 /* avoid cases where sscanf is not exact inverse of printf */ 1190 snprintf(buf, IFNAMSIZ, name, i); 1191 if (!strncmp(buf, d->name, IFNAMSIZ)) 1192 set_bit(i, inuse); 1193 } 1194 1195 i = find_first_zero_bit(inuse, max_netdevices); 1196 free_page((unsigned long) inuse); 1197 } 1198 1199 snprintf(buf, IFNAMSIZ, name, i); 1200 if (!__dev_get_by_name(net, buf)) 1201 return i; 1202 1203 /* It is possible to run out of possible slots 1204 * when the name is long and there isn't enough space left 1205 * for the digits, or if all bits are used. 1206 */ 1207 return -ENFILE; 1208 } 1209 1210 static int dev_alloc_name_ns(struct net *net, 1211 struct net_device *dev, 1212 const char *name) 1213 { 1214 char buf[IFNAMSIZ]; 1215 int ret; 1216 1217 BUG_ON(!net); 1218 ret = __dev_alloc_name(net, name, buf); 1219 if (ret >= 0) 1220 strlcpy(dev->name, buf, IFNAMSIZ); 1221 return ret; 1222 } 1223 1224 /** 1225 * dev_alloc_name - allocate a name for a device 1226 * @dev: device 1227 * @name: name format string 1228 * 1229 * Passed a format string - eg "lt%d" it will try and find a suitable 1230 * id. It scans list of devices to build up a free map, then chooses 1231 * the first empty slot. The caller must hold the dev_base or rtnl lock 1232 * while allocating the name and adding the device in order to avoid 1233 * duplicates. 1234 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 1235 * Returns the number of the unit assigned or a negative errno code. 1236 */ 1237 1238 int dev_alloc_name(struct net_device *dev, const char *name) 1239 { 1240 return dev_alloc_name_ns(dev_net(dev), dev, name); 1241 } 1242 EXPORT_SYMBOL(dev_alloc_name); 1243 1244 static int dev_get_valid_name(struct net *net, struct net_device *dev, 1245 const char *name) 1246 { 1247 BUG_ON(!net); 1248 1249 if (!dev_valid_name(name)) 1250 return -EINVAL; 1251 1252 if (strchr(name, '%')) 1253 return dev_alloc_name_ns(net, dev, name); 1254 else if (__dev_get_by_name(net, name)) 1255 return -EEXIST; 1256 else if (dev->name != name) 1257 strlcpy(dev->name, name, IFNAMSIZ); 1258 1259 return 0; 1260 } 1261 1262 /** 1263 * dev_change_name - change name of a device 1264 * @dev: device 1265 * @newname: name (or format string) must be at least IFNAMSIZ 1266 * 1267 * Change name of a device, can pass format strings "eth%d". 1268 * for wildcarding. 1269 */ 1270 int dev_change_name(struct net_device *dev, const char *newname) 1271 { 1272 unsigned char old_assign_type; 1273 char oldname[IFNAMSIZ]; 1274 int err = 0; 1275 int ret; 1276 struct net *net; 1277 1278 ASSERT_RTNL(); 1279 BUG_ON(!dev_net(dev)); 1280 1281 net = dev_net(dev); 1282 1283 /* Some auto-enslaved devices e.g. failover slaves are 1284 * special, as userspace might rename the device after 1285 * the interface had been brought up and running since 1286 * the point kernel initiated auto-enslavement. Allow 1287 * live name change even when these slave devices are 1288 * up and running. 1289 * 1290 * Typically, users of these auto-enslaving devices 1291 * don't actually care about slave name change, as 1292 * they are supposed to operate on master interface 1293 * directly. 1294 */ 1295 if (dev->flags & IFF_UP && 1296 likely(!(dev->priv_flags & IFF_LIVE_RENAME_OK))) 1297 return -EBUSY; 1298 1299 write_seqcount_begin(&devnet_rename_seq); 1300 1301 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) { 1302 write_seqcount_end(&devnet_rename_seq); 1303 return 0; 1304 } 1305 1306 memcpy(oldname, dev->name, IFNAMSIZ); 1307 1308 err = dev_get_valid_name(net, dev, newname); 1309 if (err < 0) { 1310 write_seqcount_end(&devnet_rename_seq); 1311 return err; 1312 } 1313 1314 if (oldname[0] && !strchr(oldname, '%')) 1315 netdev_info(dev, "renamed from %s\n", oldname); 1316 1317 old_assign_type = dev->name_assign_type; 1318 dev->name_assign_type = NET_NAME_RENAMED; 1319 1320 rollback: 1321 ret = device_rename(&dev->dev, dev->name); 1322 if (ret) { 1323 memcpy(dev->name, oldname, IFNAMSIZ); 1324 dev->name_assign_type = old_assign_type; 1325 write_seqcount_end(&devnet_rename_seq); 1326 return ret; 1327 } 1328 1329 write_seqcount_end(&devnet_rename_seq); 1330 1331 netdev_adjacent_rename_links(dev, oldname); 1332 1333 write_lock_bh(&dev_base_lock); 1334 netdev_name_node_del(dev->name_node); 1335 write_unlock_bh(&dev_base_lock); 1336 1337 synchronize_rcu(); 1338 1339 write_lock_bh(&dev_base_lock); 1340 netdev_name_node_add(net, dev->name_node); 1341 write_unlock_bh(&dev_base_lock); 1342 1343 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev); 1344 ret = notifier_to_errno(ret); 1345 1346 if (ret) { 1347 /* err >= 0 after dev_alloc_name() or stores the first errno */ 1348 if (err >= 0) { 1349 err = ret; 1350 write_seqcount_begin(&devnet_rename_seq); 1351 memcpy(dev->name, oldname, IFNAMSIZ); 1352 memcpy(oldname, newname, IFNAMSIZ); 1353 dev->name_assign_type = old_assign_type; 1354 old_assign_type = NET_NAME_RENAMED; 1355 goto rollback; 1356 } else { 1357 pr_err("%s: name change rollback failed: %d\n", 1358 dev->name, ret); 1359 } 1360 } 1361 1362 return err; 1363 } 1364 1365 /** 1366 * dev_set_alias - change ifalias of a device 1367 * @dev: device 1368 * @alias: name up to IFALIASZ 1369 * @len: limit of bytes to copy from info 1370 * 1371 * Set ifalias for a device, 1372 */ 1373 int dev_set_alias(struct net_device *dev, const char *alias, size_t len) 1374 { 1375 struct dev_ifalias *new_alias = NULL; 1376 1377 if (len >= IFALIASZ) 1378 return -EINVAL; 1379 1380 if (len) { 1381 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL); 1382 if (!new_alias) 1383 return -ENOMEM; 1384 1385 memcpy(new_alias->ifalias, alias, len); 1386 new_alias->ifalias[len] = 0; 1387 } 1388 1389 mutex_lock(&ifalias_mutex); 1390 new_alias = rcu_replace_pointer(dev->ifalias, new_alias, 1391 mutex_is_locked(&ifalias_mutex)); 1392 mutex_unlock(&ifalias_mutex); 1393 1394 if (new_alias) 1395 kfree_rcu(new_alias, rcuhead); 1396 1397 return len; 1398 } 1399 EXPORT_SYMBOL(dev_set_alias); 1400 1401 /** 1402 * dev_get_alias - get ifalias of a device 1403 * @dev: device 1404 * @name: buffer to store name of ifalias 1405 * @len: size of buffer 1406 * 1407 * get ifalias for a device. Caller must make sure dev cannot go 1408 * away, e.g. rcu read lock or own a reference count to device. 1409 */ 1410 int dev_get_alias(const struct net_device *dev, char *name, size_t len) 1411 { 1412 const struct dev_ifalias *alias; 1413 int ret = 0; 1414 1415 rcu_read_lock(); 1416 alias = rcu_dereference(dev->ifalias); 1417 if (alias) 1418 ret = snprintf(name, len, "%s", alias->ifalias); 1419 rcu_read_unlock(); 1420 1421 return ret; 1422 } 1423 1424 /** 1425 * netdev_features_change - device changes features 1426 * @dev: device to cause notification 1427 * 1428 * Called to indicate a device has changed features. 1429 */ 1430 void netdev_features_change(struct net_device *dev) 1431 { 1432 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev); 1433 } 1434 EXPORT_SYMBOL(netdev_features_change); 1435 1436 /** 1437 * netdev_state_change - device changes state 1438 * @dev: device to cause notification 1439 * 1440 * Called to indicate a device has changed state. This function calls 1441 * the notifier chains for netdev_chain and sends a NEWLINK message 1442 * to the routing socket. 1443 */ 1444 void netdev_state_change(struct net_device *dev) 1445 { 1446 if (dev->flags & IFF_UP) { 1447 struct netdev_notifier_change_info change_info = { 1448 .info.dev = dev, 1449 }; 1450 1451 call_netdevice_notifiers_info(NETDEV_CHANGE, 1452 &change_info.info); 1453 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL); 1454 } 1455 } 1456 EXPORT_SYMBOL(netdev_state_change); 1457 1458 /** 1459 * netdev_notify_peers - notify network peers about existence of @dev 1460 * @dev: network device 1461 * 1462 * Generate traffic such that interested network peers are aware of 1463 * @dev, such as by generating a gratuitous ARP. This may be used when 1464 * a device wants to inform the rest of the network about some sort of 1465 * reconfiguration such as a failover event or virtual machine 1466 * migration. 1467 */ 1468 void netdev_notify_peers(struct net_device *dev) 1469 { 1470 rtnl_lock(); 1471 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev); 1472 call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev); 1473 rtnl_unlock(); 1474 } 1475 EXPORT_SYMBOL(netdev_notify_peers); 1476 1477 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack) 1478 { 1479 const struct net_device_ops *ops = dev->netdev_ops; 1480 int ret; 1481 1482 ASSERT_RTNL(); 1483 1484 if (!netif_device_present(dev)) 1485 return -ENODEV; 1486 1487 /* Block netpoll from trying to do any rx path servicing. 1488 * If we don't do this there is a chance ndo_poll_controller 1489 * or ndo_poll may be running while we open the device 1490 */ 1491 netpoll_poll_disable(dev); 1492 1493 ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack); 1494 ret = notifier_to_errno(ret); 1495 if (ret) 1496 return ret; 1497 1498 set_bit(__LINK_STATE_START, &dev->state); 1499 1500 if (ops->ndo_validate_addr) 1501 ret = ops->ndo_validate_addr(dev); 1502 1503 if (!ret && ops->ndo_open) 1504 ret = ops->ndo_open(dev); 1505 1506 netpoll_poll_enable(dev); 1507 1508 if (ret) 1509 clear_bit(__LINK_STATE_START, &dev->state); 1510 else { 1511 dev->flags |= IFF_UP; 1512 dev_set_rx_mode(dev); 1513 dev_activate(dev); 1514 add_device_randomness(dev->dev_addr, dev->addr_len); 1515 } 1516 1517 return ret; 1518 } 1519 1520 /** 1521 * dev_open - prepare an interface for use. 1522 * @dev: device to open 1523 * @extack: netlink extended ack 1524 * 1525 * Takes a device from down to up state. The device's private open 1526 * function is invoked and then the multicast lists are loaded. Finally 1527 * the device is moved into the up state and a %NETDEV_UP message is 1528 * sent to the netdev notifier chain. 1529 * 1530 * Calling this function on an active interface is a nop. On a failure 1531 * a negative errno code is returned. 1532 */ 1533 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack) 1534 { 1535 int ret; 1536 1537 if (dev->flags & IFF_UP) 1538 return 0; 1539 1540 ret = __dev_open(dev, extack); 1541 if (ret < 0) 1542 return ret; 1543 1544 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL); 1545 call_netdevice_notifiers(NETDEV_UP, dev); 1546 1547 return ret; 1548 } 1549 EXPORT_SYMBOL(dev_open); 1550 1551 static void __dev_close_many(struct list_head *head) 1552 { 1553 struct net_device *dev; 1554 1555 ASSERT_RTNL(); 1556 might_sleep(); 1557 1558 list_for_each_entry(dev, head, close_list) { 1559 /* Temporarily disable netpoll until the interface is down */ 1560 netpoll_poll_disable(dev); 1561 1562 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev); 1563 1564 clear_bit(__LINK_STATE_START, &dev->state); 1565 1566 /* Synchronize to scheduled poll. We cannot touch poll list, it 1567 * can be even on different cpu. So just clear netif_running(). 1568 * 1569 * dev->stop() will invoke napi_disable() on all of it's 1570 * napi_struct instances on this device. 1571 */ 1572 smp_mb__after_atomic(); /* Commit netif_running(). */ 1573 } 1574 1575 dev_deactivate_many(head); 1576 1577 list_for_each_entry(dev, head, close_list) { 1578 const struct net_device_ops *ops = dev->netdev_ops; 1579 1580 /* 1581 * Call the device specific close. This cannot fail. 1582 * Only if device is UP 1583 * 1584 * We allow it to be called even after a DETACH hot-plug 1585 * event. 1586 */ 1587 if (ops->ndo_stop) 1588 ops->ndo_stop(dev); 1589 1590 dev->flags &= ~IFF_UP; 1591 netpoll_poll_enable(dev); 1592 } 1593 } 1594 1595 static void __dev_close(struct net_device *dev) 1596 { 1597 LIST_HEAD(single); 1598 1599 list_add(&dev->close_list, &single); 1600 __dev_close_many(&single); 1601 list_del(&single); 1602 } 1603 1604 void dev_close_many(struct list_head *head, bool unlink) 1605 { 1606 struct net_device *dev, *tmp; 1607 1608 /* Remove the devices that don't need to be closed */ 1609 list_for_each_entry_safe(dev, tmp, head, close_list) 1610 if (!(dev->flags & IFF_UP)) 1611 list_del_init(&dev->close_list); 1612 1613 __dev_close_many(head); 1614 1615 list_for_each_entry_safe(dev, tmp, head, close_list) { 1616 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL); 1617 call_netdevice_notifiers(NETDEV_DOWN, dev); 1618 if (unlink) 1619 list_del_init(&dev->close_list); 1620 } 1621 } 1622 EXPORT_SYMBOL(dev_close_many); 1623 1624 /** 1625 * dev_close - shutdown an interface. 1626 * @dev: device to shutdown 1627 * 1628 * This function moves an active device into down state. A 1629 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device 1630 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier 1631 * chain. 1632 */ 1633 void dev_close(struct net_device *dev) 1634 { 1635 if (dev->flags & IFF_UP) { 1636 LIST_HEAD(single); 1637 1638 list_add(&dev->close_list, &single); 1639 dev_close_many(&single, true); 1640 list_del(&single); 1641 } 1642 } 1643 EXPORT_SYMBOL(dev_close); 1644 1645 1646 /** 1647 * dev_disable_lro - disable Large Receive Offload on a device 1648 * @dev: device 1649 * 1650 * Disable Large Receive Offload (LRO) on a net device. Must be 1651 * called under RTNL. This is needed if received packets may be 1652 * forwarded to another interface. 1653 */ 1654 void dev_disable_lro(struct net_device *dev) 1655 { 1656 struct net_device *lower_dev; 1657 struct list_head *iter; 1658 1659 dev->wanted_features &= ~NETIF_F_LRO; 1660 netdev_update_features(dev); 1661 1662 if (unlikely(dev->features & NETIF_F_LRO)) 1663 netdev_WARN(dev, "failed to disable LRO!\n"); 1664 1665 netdev_for_each_lower_dev(dev, lower_dev, iter) 1666 dev_disable_lro(lower_dev); 1667 } 1668 EXPORT_SYMBOL(dev_disable_lro); 1669 1670 /** 1671 * dev_disable_gro_hw - disable HW Generic Receive Offload on a device 1672 * @dev: device 1673 * 1674 * Disable HW Generic Receive Offload (GRO_HW) on a net device. Must be 1675 * called under RTNL. This is needed if Generic XDP is installed on 1676 * the device. 1677 */ 1678 static void dev_disable_gro_hw(struct net_device *dev) 1679 { 1680 dev->wanted_features &= ~NETIF_F_GRO_HW; 1681 netdev_update_features(dev); 1682 1683 if (unlikely(dev->features & NETIF_F_GRO_HW)) 1684 netdev_WARN(dev, "failed to disable GRO_HW!\n"); 1685 } 1686 1687 const char *netdev_cmd_to_name(enum netdev_cmd cmd) 1688 { 1689 #define N(val) \ 1690 case NETDEV_##val: \ 1691 return "NETDEV_" __stringify(val); 1692 switch (cmd) { 1693 N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER) 1694 N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE) 1695 N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE) 1696 N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER) 1697 N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO) 1698 N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO) 1699 N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN) 1700 N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO) 1701 N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO) 1702 N(PRE_CHANGEADDR) 1703 } 1704 #undef N 1705 return "UNKNOWN_NETDEV_EVENT"; 1706 } 1707 EXPORT_SYMBOL_GPL(netdev_cmd_to_name); 1708 1709 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val, 1710 struct net_device *dev) 1711 { 1712 struct netdev_notifier_info info = { 1713 .dev = dev, 1714 }; 1715 1716 return nb->notifier_call(nb, val, &info); 1717 } 1718 1719 static int call_netdevice_register_notifiers(struct notifier_block *nb, 1720 struct net_device *dev) 1721 { 1722 int err; 1723 1724 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev); 1725 err = notifier_to_errno(err); 1726 if (err) 1727 return err; 1728 1729 if (!(dev->flags & IFF_UP)) 1730 return 0; 1731 1732 call_netdevice_notifier(nb, NETDEV_UP, dev); 1733 return 0; 1734 } 1735 1736 static void call_netdevice_unregister_notifiers(struct notifier_block *nb, 1737 struct net_device *dev) 1738 { 1739 if (dev->flags & IFF_UP) { 1740 call_netdevice_notifier(nb, NETDEV_GOING_DOWN, 1741 dev); 1742 call_netdevice_notifier(nb, NETDEV_DOWN, dev); 1743 } 1744 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev); 1745 } 1746 1747 static int call_netdevice_register_net_notifiers(struct notifier_block *nb, 1748 struct net *net) 1749 { 1750 struct net_device *dev; 1751 int err; 1752 1753 for_each_netdev(net, dev) { 1754 err = call_netdevice_register_notifiers(nb, dev); 1755 if (err) 1756 goto rollback; 1757 } 1758 return 0; 1759 1760 rollback: 1761 for_each_netdev_continue_reverse(net, dev) 1762 call_netdevice_unregister_notifiers(nb, dev); 1763 return err; 1764 } 1765 1766 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb, 1767 struct net *net) 1768 { 1769 struct net_device *dev; 1770 1771 for_each_netdev(net, dev) 1772 call_netdevice_unregister_notifiers(nb, dev); 1773 } 1774 1775 static int dev_boot_phase = 1; 1776 1777 /** 1778 * register_netdevice_notifier - register a network notifier block 1779 * @nb: notifier 1780 * 1781 * Register a notifier to be called when network device events occur. 1782 * The notifier passed is linked into the kernel structures and must 1783 * not be reused until it has been unregistered. A negative errno code 1784 * is returned on a failure. 1785 * 1786 * When registered all registration and up events are replayed 1787 * to the new notifier to allow device to have a race free 1788 * view of the network device list. 1789 */ 1790 1791 int register_netdevice_notifier(struct notifier_block *nb) 1792 { 1793 struct net *net; 1794 int err; 1795 1796 /* Close race with setup_net() and cleanup_net() */ 1797 down_write(&pernet_ops_rwsem); 1798 rtnl_lock(); 1799 err = raw_notifier_chain_register(&netdev_chain, nb); 1800 if (err) 1801 goto unlock; 1802 if (dev_boot_phase) 1803 goto unlock; 1804 for_each_net(net) { 1805 err = call_netdevice_register_net_notifiers(nb, net); 1806 if (err) 1807 goto rollback; 1808 } 1809 1810 unlock: 1811 rtnl_unlock(); 1812 up_write(&pernet_ops_rwsem); 1813 return err; 1814 1815 rollback: 1816 for_each_net_continue_reverse(net) 1817 call_netdevice_unregister_net_notifiers(nb, net); 1818 1819 raw_notifier_chain_unregister(&netdev_chain, nb); 1820 goto unlock; 1821 } 1822 EXPORT_SYMBOL(register_netdevice_notifier); 1823 1824 /** 1825 * unregister_netdevice_notifier - unregister a network notifier block 1826 * @nb: notifier 1827 * 1828 * Unregister a notifier previously registered by 1829 * register_netdevice_notifier(). The notifier is unlinked into the 1830 * kernel structures and may then be reused. A negative errno code 1831 * is returned on a failure. 1832 * 1833 * After unregistering unregister and down device events are synthesized 1834 * for all devices on the device list to the removed notifier to remove 1835 * the need for special case cleanup code. 1836 */ 1837 1838 int unregister_netdevice_notifier(struct notifier_block *nb) 1839 { 1840 struct net *net; 1841 int err; 1842 1843 /* Close race with setup_net() and cleanup_net() */ 1844 down_write(&pernet_ops_rwsem); 1845 rtnl_lock(); 1846 err = raw_notifier_chain_unregister(&netdev_chain, nb); 1847 if (err) 1848 goto unlock; 1849 1850 for_each_net(net) 1851 call_netdevice_unregister_net_notifiers(nb, net); 1852 1853 unlock: 1854 rtnl_unlock(); 1855 up_write(&pernet_ops_rwsem); 1856 return err; 1857 } 1858 EXPORT_SYMBOL(unregister_netdevice_notifier); 1859 1860 static int __register_netdevice_notifier_net(struct net *net, 1861 struct notifier_block *nb, 1862 bool ignore_call_fail) 1863 { 1864 int err; 1865 1866 err = raw_notifier_chain_register(&net->netdev_chain, nb); 1867 if (err) 1868 return err; 1869 if (dev_boot_phase) 1870 return 0; 1871 1872 err = call_netdevice_register_net_notifiers(nb, net); 1873 if (err && !ignore_call_fail) 1874 goto chain_unregister; 1875 1876 return 0; 1877 1878 chain_unregister: 1879 raw_notifier_chain_unregister(&net->netdev_chain, nb); 1880 return err; 1881 } 1882 1883 static int __unregister_netdevice_notifier_net(struct net *net, 1884 struct notifier_block *nb) 1885 { 1886 int err; 1887 1888 err = raw_notifier_chain_unregister(&net->netdev_chain, nb); 1889 if (err) 1890 return err; 1891 1892 call_netdevice_unregister_net_notifiers(nb, net); 1893 return 0; 1894 } 1895 1896 /** 1897 * register_netdevice_notifier_net - register a per-netns network notifier block 1898 * @net: network namespace 1899 * @nb: notifier 1900 * 1901 * Register a notifier to be called when network device events occur. 1902 * The notifier passed is linked into the kernel structures and must 1903 * not be reused until it has been unregistered. A negative errno code 1904 * is returned on a failure. 1905 * 1906 * When registered all registration and up events are replayed 1907 * to the new notifier to allow device to have a race free 1908 * view of the network device list. 1909 */ 1910 1911 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb) 1912 { 1913 int err; 1914 1915 rtnl_lock(); 1916 err = __register_netdevice_notifier_net(net, nb, false); 1917 rtnl_unlock(); 1918 return err; 1919 } 1920 EXPORT_SYMBOL(register_netdevice_notifier_net); 1921 1922 /** 1923 * unregister_netdevice_notifier_net - unregister a per-netns 1924 * network notifier block 1925 * @net: network namespace 1926 * @nb: notifier 1927 * 1928 * Unregister a notifier previously registered by 1929 * register_netdevice_notifier(). The notifier is unlinked into the 1930 * kernel structures and may then be reused. A negative errno code 1931 * is returned on a failure. 1932 * 1933 * After unregistering unregister and down device events are synthesized 1934 * for all devices on the device list to the removed notifier to remove 1935 * the need for special case cleanup code. 1936 */ 1937 1938 int unregister_netdevice_notifier_net(struct net *net, 1939 struct notifier_block *nb) 1940 { 1941 int err; 1942 1943 rtnl_lock(); 1944 err = __unregister_netdevice_notifier_net(net, nb); 1945 rtnl_unlock(); 1946 return err; 1947 } 1948 EXPORT_SYMBOL(unregister_netdevice_notifier_net); 1949 1950 int register_netdevice_notifier_dev_net(struct net_device *dev, 1951 struct notifier_block *nb, 1952 struct netdev_net_notifier *nn) 1953 { 1954 int err; 1955 1956 rtnl_lock(); 1957 err = __register_netdevice_notifier_net(dev_net(dev), nb, false); 1958 if (!err) { 1959 nn->nb = nb; 1960 list_add(&nn->list, &dev->net_notifier_list); 1961 } 1962 rtnl_unlock(); 1963 return err; 1964 } 1965 EXPORT_SYMBOL(register_netdevice_notifier_dev_net); 1966 1967 int unregister_netdevice_notifier_dev_net(struct net_device *dev, 1968 struct notifier_block *nb, 1969 struct netdev_net_notifier *nn) 1970 { 1971 int err; 1972 1973 rtnl_lock(); 1974 list_del(&nn->list); 1975 err = __unregister_netdevice_notifier_net(dev_net(dev), nb); 1976 rtnl_unlock(); 1977 return err; 1978 } 1979 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net); 1980 1981 static void move_netdevice_notifiers_dev_net(struct net_device *dev, 1982 struct net *net) 1983 { 1984 struct netdev_net_notifier *nn; 1985 1986 list_for_each_entry(nn, &dev->net_notifier_list, list) { 1987 __unregister_netdevice_notifier_net(dev_net(dev), nn->nb); 1988 __register_netdevice_notifier_net(net, nn->nb, true); 1989 } 1990 } 1991 1992 /** 1993 * call_netdevice_notifiers_info - call all network notifier blocks 1994 * @val: value passed unmodified to notifier function 1995 * @info: notifier information data 1996 * 1997 * Call all network notifier blocks. Parameters and return value 1998 * are as for raw_notifier_call_chain(). 1999 */ 2000 2001 static int call_netdevice_notifiers_info(unsigned long val, 2002 struct netdev_notifier_info *info) 2003 { 2004 struct net *net = dev_net(info->dev); 2005 int ret; 2006 2007 ASSERT_RTNL(); 2008 2009 /* Run per-netns notifier block chain first, then run the global one. 2010 * Hopefully, one day, the global one is going to be removed after 2011 * all notifier block registrators get converted to be per-netns. 2012 */ 2013 ret = raw_notifier_call_chain(&net->netdev_chain, val, info); 2014 if (ret & NOTIFY_STOP_MASK) 2015 return ret; 2016 return raw_notifier_call_chain(&netdev_chain, val, info); 2017 } 2018 2019 static int call_netdevice_notifiers_extack(unsigned long val, 2020 struct net_device *dev, 2021 struct netlink_ext_ack *extack) 2022 { 2023 struct netdev_notifier_info info = { 2024 .dev = dev, 2025 .extack = extack, 2026 }; 2027 2028 return call_netdevice_notifiers_info(val, &info); 2029 } 2030 2031 /** 2032 * call_netdevice_notifiers - call all network notifier blocks 2033 * @val: value passed unmodified to notifier function 2034 * @dev: net_device pointer passed unmodified to notifier function 2035 * 2036 * Call all network notifier blocks. Parameters and return value 2037 * are as for raw_notifier_call_chain(). 2038 */ 2039 2040 int call_netdevice_notifiers(unsigned long val, struct net_device *dev) 2041 { 2042 return call_netdevice_notifiers_extack(val, dev, NULL); 2043 } 2044 EXPORT_SYMBOL(call_netdevice_notifiers); 2045 2046 /** 2047 * call_netdevice_notifiers_mtu - call all network notifier blocks 2048 * @val: value passed unmodified to notifier function 2049 * @dev: net_device pointer passed unmodified to notifier function 2050 * @arg: additional u32 argument passed to the notifier function 2051 * 2052 * Call all network notifier blocks. Parameters and return value 2053 * are as for raw_notifier_call_chain(). 2054 */ 2055 static int call_netdevice_notifiers_mtu(unsigned long val, 2056 struct net_device *dev, u32 arg) 2057 { 2058 struct netdev_notifier_info_ext info = { 2059 .info.dev = dev, 2060 .ext.mtu = arg, 2061 }; 2062 2063 BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0); 2064 2065 return call_netdevice_notifiers_info(val, &info.info); 2066 } 2067 2068 #ifdef CONFIG_NET_INGRESS 2069 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key); 2070 2071 void net_inc_ingress_queue(void) 2072 { 2073 static_branch_inc(&ingress_needed_key); 2074 } 2075 EXPORT_SYMBOL_GPL(net_inc_ingress_queue); 2076 2077 void net_dec_ingress_queue(void) 2078 { 2079 static_branch_dec(&ingress_needed_key); 2080 } 2081 EXPORT_SYMBOL_GPL(net_dec_ingress_queue); 2082 #endif 2083 2084 #ifdef CONFIG_NET_EGRESS 2085 static DEFINE_STATIC_KEY_FALSE(egress_needed_key); 2086 2087 void net_inc_egress_queue(void) 2088 { 2089 static_branch_inc(&egress_needed_key); 2090 } 2091 EXPORT_SYMBOL_GPL(net_inc_egress_queue); 2092 2093 void net_dec_egress_queue(void) 2094 { 2095 static_branch_dec(&egress_needed_key); 2096 } 2097 EXPORT_SYMBOL_GPL(net_dec_egress_queue); 2098 #endif 2099 2100 static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key); 2101 #ifdef CONFIG_JUMP_LABEL 2102 static atomic_t netstamp_needed_deferred; 2103 static atomic_t netstamp_wanted; 2104 static void netstamp_clear(struct work_struct *work) 2105 { 2106 int deferred = atomic_xchg(&netstamp_needed_deferred, 0); 2107 int wanted; 2108 2109 wanted = atomic_add_return(deferred, &netstamp_wanted); 2110 if (wanted > 0) 2111 static_branch_enable(&netstamp_needed_key); 2112 else 2113 static_branch_disable(&netstamp_needed_key); 2114 } 2115 static DECLARE_WORK(netstamp_work, netstamp_clear); 2116 #endif 2117 2118 void net_enable_timestamp(void) 2119 { 2120 #ifdef CONFIG_JUMP_LABEL 2121 int wanted; 2122 2123 while (1) { 2124 wanted = atomic_read(&netstamp_wanted); 2125 if (wanted <= 0) 2126 break; 2127 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted) 2128 return; 2129 } 2130 atomic_inc(&netstamp_needed_deferred); 2131 schedule_work(&netstamp_work); 2132 #else 2133 static_branch_inc(&netstamp_needed_key); 2134 #endif 2135 } 2136 EXPORT_SYMBOL(net_enable_timestamp); 2137 2138 void net_disable_timestamp(void) 2139 { 2140 #ifdef CONFIG_JUMP_LABEL 2141 int wanted; 2142 2143 while (1) { 2144 wanted = atomic_read(&netstamp_wanted); 2145 if (wanted <= 1) 2146 break; 2147 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted) 2148 return; 2149 } 2150 atomic_dec(&netstamp_needed_deferred); 2151 schedule_work(&netstamp_work); 2152 #else 2153 static_branch_dec(&netstamp_needed_key); 2154 #endif 2155 } 2156 EXPORT_SYMBOL(net_disable_timestamp); 2157 2158 static inline void net_timestamp_set(struct sk_buff *skb) 2159 { 2160 skb->tstamp = 0; 2161 if (static_branch_unlikely(&netstamp_needed_key)) 2162 __net_timestamp(skb); 2163 } 2164 2165 #define net_timestamp_check(COND, SKB) \ 2166 if (static_branch_unlikely(&netstamp_needed_key)) { \ 2167 if ((COND) && !(SKB)->tstamp) \ 2168 __net_timestamp(SKB); \ 2169 } \ 2170 2171 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb) 2172 { 2173 unsigned int len; 2174 2175 if (!(dev->flags & IFF_UP)) 2176 return false; 2177 2178 len = dev->mtu + dev->hard_header_len + VLAN_HLEN; 2179 if (skb->len <= len) 2180 return true; 2181 2182 /* if TSO is enabled, we don't care about the length as the packet 2183 * could be forwarded without being segmented before 2184 */ 2185 if (skb_is_gso(skb)) 2186 return true; 2187 2188 return false; 2189 } 2190 EXPORT_SYMBOL_GPL(is_skb_forwardable); 2191 2192 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 2193 { 2194 int ret = ____dev_forward_skb(dev, skb); 2195 2196 if (likely(!ret)) { 2197 skb->protocol = eth_type_trans(skb, dev); 2198 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN); 2199 } 2200 2201 return ret; 2202 } 2203 EXPORT_SYMBOL_GPL(__dev_forward_skb); 2204 2205 /** 2206 * dev_forward_skb - loopback an skb to another netif 2207 * 2208 * @dev: destination network device 2209 * @skb: buffer to forward 2210 * 2211 * return values: 2212 * NET_RX_SUCCESS (no congestion) 2213 * NET_RX_DROP (packet was dropped, but freed) 2214 * 2215 * dev_forward_skb can be used for injecting an skb from the 2216 * start_xmit function of one device into the receive queue 2217 * of another device. 2218 * 2219 * The receiving device may be in another namespace, so 2220 * we have to clear all information in the skb that could 2221 * impact namespace isolation. 2222 */ 2223 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 2224 { 2225 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb); 2226 } 2227 EXPORT_SYMBOL_GPL(dev_forward_skb); 2228 2229 static inline int deliver_skb(struct sk_buff *skb, 2230 struct packet_type *pt_prev, 2231 struct net_device *orig_dev) 2232 { 2233 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC))) 2234 return -ENOMEM; 2235 refcount_inc(&skb->users); 2236 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 2237 } 2238 2239 static inline void deliver_ptype_list_skb(struct sk_buff *skb, 2240 struct packet_type **pt, 2241 struct net_device *orig_dev, 2242 __be16 type, 2243 struct list_head *ptype_list) 2244 { 2245 struct packet_type *ptype, *pt_prev = *pt; 2246 2247 list_for_each_entry_rcu(ptype, ptype_list, list) { 2248 if (ptype->type != type) 2249 continue; 2250 if (pt_prev) 2251 deliver_skb(skb, pt_prev, orig_dev); 2252 pt_prev = ptype; 2253 } 2254 *pt = pt_prev; 2255 } 2256 2257 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb) 2258 { 2259 if (!ptype->af_packet_priv || !skb->sk) 2260 return false; 2261 2262 if (ptype->id_match) 2263 return ptype->id_match(ptype, skb->sk); 2264 else if ((struct sock *)ptype->af_packet_priv == skb->sk) 2265 return true; 2266 2267 return false; 2268 } 2269 2270 /** 2271 * dev_nit_active - return true if any network interface taps are in use 2272 * 2273 * @dev: network device to check for the presence of taps 2274 */ 2275 bool dev_nit_active(struct net_device *dev) 2276 { 2277 return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all); 2278 } 2279 EXPORT_SYMBOL_GPL(dev_nit_active); 2280 2281 /* 2282 * Support routine. Sends outgoing frames to any network 2283 * taps currently in use. 2284 */ 2285 2286 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev) 2287 { 2288 struct packet_type *ptype; 2289 struct sk_buff *skb2 = NULL; 2290 struct packet_type *pt_prev = NULL; 2291 struct list_head *ptype_list = &ptype_all; 2292 2293 rcu_read_lock(); 2294 again: 2295 list_for_each_entry_rcu(ptype, ptype_list, list) { 2296 if (ptype->ignore_outgoing) 2297 continue; 2298 2299 /* Never send packets back to the socket 2300 * they originated from - MvS (miquels@drinkel.ow.org) 2301 */ 2302 if (skb_loop_sk(ptype, skb)) 2303 continue; 2304 2305 if (pt_prev) { 2306 deliver_skb(skb2, pt_prev, skb->dev); 2307 pt_prev = ptype; 2308 continue; 2309 } 2310 2311 /* need to clone skb, done only once */ 2312 skb2 = skb_clone(skb, GFP_ATOMIC); 2313 if (!skb2) 2314 goto out_unlock; 2315 2316 net_timestamp_set(skb2); 2317 2318 /* skb->nh should be correctly 2319 * set by sender, so that the second statement is 2320 * just protection against buggy protocols. 2321 */ 2322 skb_reset_mac_header(skb2); 2323 2324 if (skb_network_header(skb2) < skb2->data || 2325 skb_network_header(skb2) > skb_tail_pointer(skb2)) { 2326 net_crit_ratelimited("protocol %04x is buggy, dev %s\n", 2327 ntohs(skb2->protocol), 2328 dev->name); 2329 skb_reset_network_header(skb2); 2330 } 2331 2332 skb2->transport_header = skb2->network_header; 2333 skb2->pkt_type = PACKET_OUTGOING; 2334 pt_prev = ptype; 2335 } 2336 2337 if (ptype_list == &ptype_all) { 2338 ptype_list = &dev->ptype_all; 2339 goto again; 2340 } 2341 out_unlock: 2342 if (pt_prev) { 2343 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC)) 2344 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev); 2345 else 2346 kfree_skb(skb2); 2347 } 2348 rcu_read_unlock(); 2349 } 2350 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit); 2351 2352 /** 2353 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change 2354 * @dev: Network device 2355 * @txq: number of queues available 2356 * 2357 * If real_num_tx_queues is changed the tc mappings may no longer be 2358 * valid. To resolve this verify the tc mapping remains valid and if 2359 * not NULL the mapping. With no priorities mapping to this 2360 * offset/count pair it will no longer be used. In the worst case TC0 2361 * is invalid nothing can be done so disable priority mappings. If is 2362 * expected that drivers will fix this mapping if they can before 2363 * calling netif_set_real_num_tx_queues. 2364 */ 2365 static void netif_setup_tc(struct net_device *dev, unsigned int txq) 2366 { 2367 int i; 2368 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 2369 2370 /* If TC0 is invalidated disable TC mapping */ 2371 if (tc->offset + tc->count > txq) { 2372 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n"); 2373 dev->num_tc = 0; 2374 return; 2375 } 2376 2377 /* Invalidated prio to tc mappings set to TC0 */ 2378 for (i = 1; i < TC_BITMASK + 1; i++) { 2379 int q = netdev_get_prio_tc_map(dev, i); 2380 2381 tc = &dev->tc_to_txq[q]; 2382 if (tc->offset + tc->count > txq) { 2383 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n", 2384 i, q); 2385 netdev_set_prio_tc_map(dev, i, 0); 2386 } 2387 } 2388 } 2389 2390 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq) 2391 { 2392 if (dev->num_tc) { 2393 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 2394 int i; 2395 2396 /* walk through the TCs and see if it falls into any of them */ 2397 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) { 2398 if ((txq - tc->offset) < tc->count) 2399 return i; 2400 } 2401 2402 /* didn't find it, just return -1 to indicate no match */ 2403 return -1; 2404 } 2405 2406 return 0; 2407 } 2408 EXPORT_SYMBOL(netdev_txq_to_tc); 2409 2410 #ifdef CONFIG_XPS 2411 struct static_key xps_needed __read_mostly; 2412 EXPORT_SYMBOL(xps_needed); 2413 struct static_key xps_rxqs_needed __read_mostly; 2414 EXPORT_SYMBOL(xps_rxqs_needed); 2415 static DEFINE_MUTEX(xps_map_mutex); 2416 #define xmap_dereference(P) \ 2417 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex)) 2418 2419 static bool remove_xps_queue(struct xps_dev_maps *dev_maps, 2420 int tci, u16 index) 2421 { 2422 struct xps_map *map = NULL; 2423 int pos; 2424 2425 if (dev_maps) 2426 map = xmap_dereference(dev_maps->attr_map[tci]); 2427 if (!map) 2428 return false; 2429 2430 for (pos = map->len; pos--;) { 2431 if (map->queues[pos] != index) 2432 continue; 2433 2434 if (map->len > 1) { 2435 map->queues[pos] = map->queues[--map->len]; 2436 break; 2437 } 2438 2439 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL); 2440 kfree_rcu(map, rcu); 2441 return false; 2442 } 2443 2444 return true; 2445 } 2446 2447 static bool remove_xps_queue_cpu(struct net_device *dev, 2448 struct xps_dev_maps *dev_maps, 2449 int cpu, u16 offset, u16 count) 2450 { 2451 int num_tc = dev->num_tc ? : 1; 2452 bool active = false; 2453 int tci; 2454 2455 for (tci = cpu * num_tc; num_tc--; tci++) { 2456 int i, j; 2457 2458 for (i = count, j = offset; i--; j++) { 2459 if (!remove_xps_queue(dev_maps, tci, j)) 2460 break; 2461 } 2462 2463 active |= i < 0; 2464 } 2465 2466 return active; 2467 } 2468 2469 static void reset_xps_maps(struct net_device *dev, 2470 struct xps_dev_maps *dev_maps, 2471 bool is_rxqs_map) 2472 { 2473 if (is_rxqs_map) { 2474 static_key_slow_dec_cpuslocked(&xps_rxqs_needed); 2475 RCU_INIT_POINTER(dev->xps_rxqs_map, NULL); 2476 } else { 2477 RCU_INIT_POINTER(dev->xps_cpus_map, NULL); 2478 } 2479 static_key_slow_dec_cpuslocked(&xps_needed); 2480 kfree_rcu(dev_maps, rcu); 2481 } 2482 2483 static void clean_xps_maps(struct net_device *dev, const unsigned long *mask, 2484 struct xps_dev_maps *dev_maps, unsigned int nr_ids, 2485 u16 offset, u16 count, bool is_rxqs_map) 2486 { 2487 bool active = false; 2488 int i, j; 2489 2490 for (j = -1; j = netif_attrmask_next(j, mask, nr_ids), 2491 j < nr_ids;) 2492 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, 2493 count); 2494 if (!active) 2495 reset_xps_maps(dev, dev_maps, is_rxqs_map); 2496 2497 if (!is_rxqs_map) { 2498 for (i = offset + (count - 1); count--; i--) { 2499 netdev_queue_numa_node_write( 2500 netdev_get_tx_queue(dev, i), 2501 NUMA_NO_NODE); 2502 } 2503 } 2504 } 2505 2506 static void netif_reset_xps_queues(struct net_device *dev, u16 offset, 2507 u16 count) 2508 { 2509 const unsigned long *possible_mask = NULL; 2510 struct xps_dev_maps *dev_maps; 2511 unsigned int nr_ids; 2512 2513 if (!static_key_false(&xps_needed)) 2514 return; 2515 2516 cpus_read_lock(); 2517 mutex_lock(&xps_map_mutex); 2518 2519 if (static_key_false(&xps_rxqs_needed)) { 2520 dev_maps = xmap_dereference(dev->xps_rxqs_map); 2521 if (dev_maps) { 2522 nr_ids = dev->num_rx_queues; 2523 clean_xps_maps(dev, possible_mask, dev_maps, nr_ids, 2524 offset, count, true); 2525 } 2526 } 2527 2528 dev_maps = xmap_dereference(dev->xps_cpus_map); 2529 if (!dev_maps) 2530 goto out_no_maps; 2531 2532 if (num_possible_cpus() > 1) 2533 possible_mask = cpumask_bits(cpu_possible_mask); 2534 nr_ids = nr_cpu_ids; 2535 clean_xps_maps(dev, possible_mask, dev_maps, nr_ids, offset, count, 2536 false); 2537 2538 out_no_maps: 2539 mutex_unlock(&xps_map_mutex); 2540 cpus_read_unlock(); 2541 } 2542 2543 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index) 2544 { 2545 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index); 2546 } 2547 2548 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index, 2549 u16 index, bool is_rxqs_map) 2550 { 2551 struct xps_map *new_map; 2552 int alloc_len = XPS_MIN_MAP_ALLOC; 2553 int i, pos; 2554 2555 for (pos = 0; map && pos < map->len; pos++) { 2556 if (map->queues[pos] != index) 2557 continue; 2558 return map; 2559 } 2560 2561 /* Need to add tx-queue to this CPU's/rx-queue's existing map */ 2562 if (map) { 2563 if (pos < map->alloc_len) 2564 return map; 2565 2566 alloc_len = map->alloc_len * 2; 2567 } 2568 2569 /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's 2570 * map 2571 */ 2572 if (is_rxqs_map) 2573 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL); 2574 else 2575 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL, 2576 cpu_to_node(attr_index)); 2577 if (!new_map) 2578 return NULL; 2579 2580 for (i = 0; i < pos; i++) 2581 new_map->queues[i] = map->queues[i]; 2582 new_map->alloc_len = alloc_len; 2583 new_map->len = pos; 2584 2585 return new_map; 2586 } 2587 2588 /* Must be called under cpus_read_lock */ 2589 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask, 2590 u16 index, bool is_rxqs_map) 2591 { 2592 const unsigned long *online_mask = NULL, *possible_mask = NULL; 2593 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL; 2594 int i, j, tci, numa_node_id = -2; 2595 int maps_sz, num_tc = 1, tc = 0; 2596 struct xps_map *map, *new_map; 2597 bool active = false; 2598 unsigned int nr_ids; 2599 2600 if (dev->num_tc) { 2601 /* Do not allow XPS on subordinate device directly */ 2602 num_tc = dev->num_tc; 2603 if (num_tc < 0) 2604 return -EINVAL; 2605 2606 /* If queue belongs to subordinate dev use its map */ 2607 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev; 2608 2609 tc = netdev_txq_to_tc(dev, index); 2610 if (tc < 0) 2611 return -EINVAL; 2612 } 2613 2614 mutex_lock(&xps_map_mutex); 2615 if (is_rxqs_map) { 2616 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues); 2617 dev_maps = xmap_dereference(dev->xps_rxqs_map); 2618 nr_ids = dev->num_rx_queues; 2619 } else { 2620 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc); 2621 if (num_possible_cpus() > 1) { 2622 online_mask = cpumask_bits(cpu_online_mask); 2623 possible_mask = cpumask_bits(cpu_possible_mask); 2624 } 2625 dev_maps = xmap_dereference(dev->xps_cpus_map); 2626 nr_ids = nr_cpu_ids; 2627 } 2628 2629 if (maps_sz < L1_CACHE_BYTES) 2630 maps_sz = L1_CACHE_BYTES; 2631 2632 /* allocate memory for queue storage */ 2633 for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids), 2634 j < nr_ids;) { 2635 if (!new_dev_maps) 2636 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL); 2637 if (!new_dev_maps) { 2638 mutex_unlock(&xps_map_mutex); 2639 return -ENOMEM; 2640 } 2641 2642 tci = j * num_tc + tc; 2643 map = dev_maps ? xmap_dereference(dev_maps->attr_map[tci]) : 2644 NULL; 2645 2646 map = expand_xps_map(map, j, index, is_rxqs_map); 2647 if (!map) 2648 goto error; 2649 2650 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map); 2651 } 2652 2653 if (!new_dev_maps) 2654 goto out_no_new_maps; 2655 2656 if (!dev_maps) { 2657 /* Increment static keys at most once per type */ 2658 static_key_slow_inc_cpuslocked(&xps_needed); 2659 if (is_rxqs_map) 2660 static_key_slow_inc_cpuslocked(&xps_rxqs_needed); 2661 } 2662 2663 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids), 2664 j < nr_ids;) { 2665 /* copy maps belonging to foreign traffic classes */ 2666 for (i = tc, tci = j * num_tc; dev_maps && i--; tci++) { 2667 /* fill in the new device map from the old device map */ 2668 map = xmap_dereference(dev_maps->attr_map[tci]); 2669 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map); 2670 } 2671 2672 /* We need to explicitly update tci as prevous loop 2673 * could break out early if dev_maps is NULL. 2674 */ 2675 tci = j * num_tc + tc; 2676 2677 if (netif_attr_test_mask(j, mask, nr_ids) && 2678 netif_attr_test_online(j, online_mask, nr_ids)) { 2679 /* add tx-queue to CPU/rx-queue maps */ 2680 int pos = 0; 2681 2682 map = xmap_dereference(new_dev_maps->attr_map[tci]); 2683 while ((pos < map->len) && (map->queues[pos] != index)) 2684 pos++; 2685 2686 if (pos == map->len) 2687 map->queues[map->len++] = index; 2688 #ifdef CONFIG_NUMA 2689 if (!is_rxqs_map) { 2690 if (numa_node_id == -2) 2691 numa_node_id = cpu_to_node(j); 2692 else if (numa_node_id != cpu_to_node(j)) 2693 numa_node_id = -1; 2694 } 2695 #endif 2696 } else if (dev_maps) { 2697 /* fill in the new device map from the old device map */ 2698 map = xmap_dereference(dev_maps->attr_map[tci]); 2699 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map); 2700 } 2701 2702 /* copy maps belonging to foreign traffic classes */ 2703 for (i = num_tc - tc, tci++; dev_maps && --i; tci++) { 2704 /* fill in the new device map from the old device map */ 2705 map = xmap_dereference(dev_maps->attr_map[tci]); 2706 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map); 2707 } 2708 } 2709 2710 if (is_rxqs_map) 2711 rcu_assign_pointer(dev->xps_rxqs_map, new_dev_maps); 2712 else 2713 rcu_assign_pointer(dev->xps_cpus_map, new_dev_maps); 2714 2715 /* Cleanup old maps */ 2716 if (!dev_maps) 2717 goto out_no_old_maps; 2718 2719 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids), 2720 j < nr_ids;) { 2721 for (i = num_tc, tci = j * num_tc; i--; tci++) { 2722 new_map = xmap_dereference(new_dev_maps->attr_map[tci]); 2723 map = xmap_dereference(dev_maps->attr_map[tci]); 2724 if (map && map != new_map) 2725 kfree_rcu(map, rcu); 2726 } 2727 } 2728 2729 kfree_rcu(dev_maps, rcu); 2730 2731 out_no_old_maps: 2732 dev_maps = new_dev_maps; 2733 active = true; 2734 2735 out_no_new_maps: 2736 if (!is_rxqs_map) { 2737 /* update Tx queue numa node */ 2738 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index), 2739 (numa_node_id >= 0) ? 2740 numa_node_id : NUMA_NO_NODE); 2741 } 2742 2743 if (!dev_maps) 2744 goto out_no_maps; 2745 2746 /* removes tx-queue from unused CPUs/rx-queues */ 2747 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids), 2748 j < nr_ids;) { 2749 for (i = tc, tci = j * num_tc; i--; tci++) 2750 active |= remove_xps_queue(dev_maps, tci, index); 2751 if (!netif_attr_test_mask(j, mask, nr_ids) || 2752 !netif_attr_test_online(j, online_mask, nr_ids)) 2753 active |= remove_xps_queue(dev_maps, tci, index); 2754 for (i = num_tc - tc, tci++; --i; tci++) 2755 active |= remove_xps_queue(dev_maps, tci, index); 2756 } 2757 2758 /* free map if not active */ 2759 if (!active) 2760 reset_xps_maps(dev, dev_maps, is_rxqs_map); 2761 2762 out_no_maps: 2763 mutex_unlock(&xps_map_mutex); 2764 2765 return 0; 2766 error: 2767 /* remove any maps that we added */ 2768 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids), 2769 j < nr_ids;) { 2770 for (i = num_tc, tci = j * num_tc; i--; tci++) { 2771 new_map = xmap_dereference(new_dev_maps->attr_map[tci]); 2772 map = dev_maps ? 2773 xmap_dereference(dev_maps->attr_map[tci]) : 2774 NULL; 2775 if (new_map && new_map != map) 2776 kfree(new_map); 2777 } 2778 } 2779 2780 mutex_unlock(&xps_map_mutex); 2781 2782 kfree(new_dev_maps); 2783 return -ENOMEM; 2784 } 2785 EXPORT_SYMBOL_GPL(__netif_set_xps_queue); 2786 2787 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask, 2788 u16 index) 2789 { 2790 int ret; 2791 2792 cpus_read_lock(); 2793 ret = __netif_set_xps_queue(dev, cpumask_bits(mask), index, false); 2794 cpus_read_unlock(); 2795 2796 return ret; 2797 } 2798 EXPORT_SYMBOL(netif_set_xps_queue); 2799 2800 #endif 2801 static void netdev_unbind_all_sb_channels(struct net_device *dev) 2802 { 2803 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues]; 2804 2805 /* Unbind any subordinate channels */ 2806 while (txq-- != &dev->_tx[0]) { 2807 if (txq->sb_dev) 2808 netdev_unbind_sb_channel(dev, txq->sb_dev); 2809 } 2810 } 2811 2812 void netdev_reset_tc(struct net_device *dev) 2813 { 2814 #ifdef CONFIG_XPS 2815 netif_reset_xps_queues_gt(dev, 0); 2816 #endif 2817 netdev_unbind_all_sb_channels(dev); 2818 2819 /* Reset TC configuration of device */ 2820 dev->num_tc = 0; 2821 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq)); 2822 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map)); 2823 } 2824 EXPORT_SYMBOL(netdev_reset_tc); 2825 2826 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset) 2827 { 2828 if (tc >= dev->num_tc) 2829 return -EINVAL; 2830 2831 #ifdef CONFIG_XPS 2832 netif_reset_xps_queues(dev, offset, count); 2833 #endif 2834 dev->tc_to_txq[tc].count = count; 2835 dev->tc_to_txq[tc].offset = offset; 2836 return 0; 2837 } 2838 EXPORT_SYMBOL(netdev_set_tc_queue); 2839 2840 int netdev_set_num_tc(struct net_device *dev, u8 num_tc) 2841 { 2842 if (num_tc > TC_MAX_QUEUE) 2843 return -EINVAL; 2844 2845 #ifdef CONFIG_XPS 2846 netif_reset_xps_queues_gt(dev, 0); 2847 #endif 2848 netdev_unbind_all_sb_channels(dev); 2849 2850 dev->num_tc = num_tc; 2851 return 0; 2852 } 2853 EXPORT_SYMBOL(netdev_set_num_tc); 2854 2855 void netdev_unbind_sb_channel(struct net_device *dev, 2856 struct net_device *sb_dev) 2857 { 2858 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues]; 2859 2860 #ifdef CONFIG_XPS 2861 netif_reset_xps_queues_gt(sb_dev, 0); 2862 #endif 2863 memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq)); 2864 memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map)); 2865 2866 while (txq-- != &dev->_tx[0]) { 2867 if (txq->sb_dev == sb_dev) 2868 txq->sb_dev = NULL; 2869 } 2870 } 2871 EXPORT_SYMBOL(netdev_unbind_sb_channel); 2872 2873 int netdev_bind_sb_channel_queue(struct net_device *dev, 2874 struct net_device *sb_dev, 2875 u8 tc, u16 count, u16 offset) 2876 { 2877 /* Make certain the sb_dev and dev are already configured */ 2878 if (sb_dev->num_tc >= 0 || tc >= dev->num_tc) 2879 return -EINVAL; 2880 2881 /* We cannot hand out queues we don't have */ 2882 if ((offset + count) > dev->real_num_tx_queues) 2883 return -EINVAL; 2884 2885 /* Record the mapping */ 2886 sb_dev->tc_to_txq[tc].count = count; 2887 sb_dev->tc_to_txq[tc].offset = offset; 2888 2889 /* Provide a way for Tx queue to find the tc_to_txq map or 2890 * XPS map for itself. 2891 */ 2892 while (count--) 2893 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev; 2894 2895 return 0; 2896 } 2897 EXPORT_SYMBOL(netdev_bind_sb_channel_queue); 2898 2899 int netdev_set_sb_channel(struct net_device *dev, u16 channel) 2900 { 2901 /* Do not use a multiqueue device to represent a subordinate channel */ 2902 if (netif_is_multiqueue(dev)) 2903 return -ENODEV; 2904 2905 /* We allow channels 1 - 32767 to be used for subordinate channels. 2906 * Channel 0 is meant to be "native" mode and used only to represent 2907 * the main root device. We allow writing 0 to reset the device back 2908 * to normal mode after being used as a subordinate channel. 2909 */ 2910 if (channel > S16_MAX) 2911 return -EINVAL; 2912 2913 dev->num_tc = -channel; 2914 2915 return 0; 2916 } 2917 EXPORT_SYMBOL(netdev_set_sb_channel); 2918 2919 /* 2920 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues 2921 * greater than real_num_tx_queues stale skbs on the qdisc must be flushed. 2922 */ 2923 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq) 2924 { 2925 bool disabling; 2926 int rc; 2927 2928 disabling = txq < dev->real_num_tx_queues; 2929 2930 if (txq < 1 || txq > dev->num_tx_queues) 2931 return -EINVAL; 2932 2933 if (dev->reg_state == NETREG_REGISTERED || 2934 dev->reg_state == NETREG_UNREGISTERING) { 2935 ASSERT_RTNL(); 2936 2937 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues, 2938 txq); 2939 if (rc) 2940 return rc; 2941 2942 if (dev->num_tc) 2943 netif_setup_tc(dev, txq); 2944 2945 dev->real_num_tx_queues = txq; 2946 2947 if (disabling) { 2948 synchronize_net(); 2949 qdisc_reset_all_tx_gt(dev, txq); 2950 #ifdef CONFIG_XPS 2951 netif_reset_xps_queues_gt(dev, txq); 2952 #endif 2953 } 2954 } else { 2955 dev->real_num_tx_queues = txq; 2956 } 2957 2958 return 0; 2959 } 2960 EXPORT_SYMBOL(netif_set_real_num_tx_queues); 2961 2962 #ifdef CONFIG_SYSFS 2963 /** 2964 * netif_set_real_num_rx_queues - set actual number of RX queues used 2965 * @dev: Network device 2966 * @rxq: Actual number of RX queues 2967 * 2968 * This must be called either with the rtnl_lock held or before 2969 * registration of the net device. Returns 0 on success, or a 2970 * negative error code. If called before registration, it always 2971 * succeeds. 2972 */ 2973 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq) 2974 { 2975 int rc; 2976 2977 if (rxq < 1 || rxq > dev->num_rx_queues) 2978 return -EINVAL; 2979 2980 if (dev->reg_state == NETREG_REGISTERED) { 2981 ASSERT_RTNL(); 2982 2983 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues, 2984 rxq); 2985 if (rc) 2986 return rc; 2987 } 2988 2989 dev->real_num_rx_queues = rxq; 2990 return 0; 2991 } 2992 EXPORT_SYMBOL(netif_set_real_num_rx_queues); 2993 #endif 2994 2995 /** 2996 * netif_get_num_default_rss_queues - default number of RSS queues 2997 * 2998 * This routine should set an upper limit on the number of RSS queues 2999 * used by default by multiqueue devices. 3000 */ 3001 int netif_get_num_default_rss_queues(void) 3002 { 3003 return is_kdump_kernel() ? 3004 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus()); 3005 } 3006 EXPORT_SYMBOL(netif_get_num_default_rss_queues); 3007 3008 static void __netif_reschedule(struct Qdisc *q) 3009 { 3010 struct softnet_data *sd; 3011 unsigned long flags; 3012 3013 local_irq_save(flags); 3014 sd = this_cpu_ptr(&softnet_data); 3015 q->next_sched = NULL; 3016 *sd->output_queue_tailp = q; 3017 sd->output_queue_tailp = &q->next_sched; 3018 raise_softirq_irqoff(NET_TX_SOFTIRQ); 3019 local_irq_restore(flags); 3020 } 3021 3022 void __netif_schedule(struct Qdisc *q) 3023 { 3024 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state)) 3025 __netif_reschedule(q); 3026 } 3027 EXPORT_SYMBOL(__netif_schedule); 3028 3029 struct dev_kfree_skb_cb { 3030 enum skb_free_reason reason; 3031 }; 3032 3033 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb) 3034 { 3035 return (struct dev_kfree_skb_cb *)skb->cb; 3036 } 3037 3038 void netif_schedule_queue(struct netdev_queue *txq) 3039 { 3040 rcu_read_lock(); 3041 if (!netif_xmit_stopped(txq)) { 3042 struct Qdisc *q = rcu_dereference(txq->qdisc); 3043 3044 __netif_schedule(q); 3045 } 3046 rcu_read_unlock(); 3047 } 3048 EXPORT_SYMBOL(netif_schedule_queue); 3049 3050 void netif_tx_wake_queue(struct netdev_queue *dev_queue) 3051 { 3052 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) { 3053 struct Qdisc *q; 3054 3055 rcu_read_lock(); 3056 q = rcu_dereference(dev_queue->qdisc); 3057 __netif_schedule(q); 3058 rcu_read_unlock(); 3059 } 3060 } 3061 EXPORT_SYMBOL(netif_tx_wake_queue); 3062 3063 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason) 3064 { 3065 unsigned long flags; 3066 3067 if (unlikely(!skb)) 3068 return; 3069 3070 if (likely(refcount_read(&skb->users) == 1)) { 3071 smp_rmb(); 3072 refcount_set(&skb->users, 0); 3073 } else if (likely(!refcount_dec_and_test(&skb->users))) { 3074 return; 3075 } 3076 get_kfree_skb_cb(skb)->reason = reason; 3077 local_irq_save(flags); 3078 skb->next = __this_cpu_read(softnet_data.completion_queue); 3079 __this_cpu_write(softnet_data.completion_queue, skb); 3080 raise_softirq_irqoff(NET_TX_SOFTIRQ); 3081 local_irq_restore(flags); 3082 } 3083 EXPORT_SYMBOL(__dev_kfree_skb_irq); 3084 3085 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason) 3086 { 3087 if (in_irq() || irqs_disabled()) 3088 __dev_kfree_skb_irq(skb, reason); 3089 else 3090 dev_kfree_skb(skb); 3091 } 3092 EXPORT_SYMBOL(__dev_kfree_skb_any); 3093 3094 3095 /** 3096 * netif_device_detach - mark device as removed 3097 * @dev: network device 3098 * 3099 * Mark device as removed from system and therefore no longer available. 3100 */ 3101 void netif_device_detach(struct net_device *dev) 3102 { 3103 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) && 3104 netif_running(dev)) { 3105 netif_tx_stop_all_queues(dev); 3106 } 3107 } 3108 EXPORT_SYMBOL(netif_device_detach); 3109 3110 /** 3111 * netif_device_attach - mark device as attached 3112 * @dev: network device 3113 * 3114 * Mark device as attached from system and restart if needed. 3115 */ 3116 void netif_device_attach(struct net_device *dev) 3117 { 3118 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) && 3119 netif_running(dev)) { 3120 netif_tx_wake_all_queues(dev); 3121 __netdev_watchdog_up(dev); 3122 } 3123 } 3124 EXPORT_SYMBOL(netif_device_attach); 3125 3126 /* 3127 * Returns a Tx hash based on the given packet descriptor a Tx queues' number 3128 * to be used as a distribution range. 3129 */ 3130 static u16 skb_tx_hash(const struct net_device *dev, 3131 const struct net_device *sb_dev, 3132 struct sk_buff *skb) 3133 { 3134 u32 hash; 3135 u16 qoffset = 0; 3136 u16 qcount = dev->real_num_tx_queues; 3137 3138 if (dev->num_tc) { 3139 u8 tc = netdev_get_prio_tc_map(dev, skb->priority); 3140 3141 qoffset = sb_dev->tc_to_txq[tc].offset; 3142 qcount = sb_dev->tc_to_txq[tc].count; 3143 } 3144 3145 if (skb_rx_queue_recorded(skb)) { 3146 hash = skb_get_rx_queue(skb); 3147 if (hash >= qoffset) 3148 hash -= qoffset; 3149 while (unlikely(hash >= qcount)) 3150 hash -= qcount; 3151 return hash + qoffset; 3152 } 3153 3154 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset; 3155 } 3156 3157 static void skb_warn_bad_offload(const struct sk_buff *skb) 3158 { 3159 static const netdev_features_t null_features; 3160 struct net_device *dev = skb->dev; 3161 const char *name = ""; 3162 3163 if (!net_ratelimit()) 3164 return; 3165 3166 if (dev) { 3167 if (dev->dev.parent) 3168 name = dev_driver_string(dev->dev.parent); 3169 else 3170 name = netdev_name(dev); 3171 } 3172 skb_dump(KERN_WARNING, skb, false); 3173 WARN(1, "%s: caps=(%pNF, %pNF)\n", 3174 name, dev ? &dev->features : &null_features, 3175 skb->sk ? &skb->sk->sk_route_caps : &null_features); 3176 } 3177 3178 /* 3179 * Invalidate hardware checksum when packet is to be mangled, and 3180 * complete checksum manually on outgoing path. 3181 */ 3182 int skb_checksum_help(struct sk_buff *skb) 3183 { 3184 __wsum csum; 3185 int ret = 0, offset; 3186 3187 if (skb->ip_summed == CHECKSUM_COMPLETE) 3188 goto out_set_summed; 3189 3190 if (unlikely(skb_shinfo(skb)->gso_size)) { 3191 skb_warn_bad_offload(skb); 3192 return -EINVAL; 3193 } 3194 3195 /* Before computing a checksum, we should make sure no frag could 3196 * be modified by an external entity : checksum could be wrong. 3197 */ 3198 if (skb_has_shared_frag(skb)) { 3199 ret = __skb_linearize(skb); 3200 if (ret) 3201 goto out; 3202 } 3203 3204 offset = skb_checksum_start_offset(skb); 3205 BUG_ON(offset >= skb_headlen(skb)); 3206 csum = skb_checksum(skb, offset, skb->len - offset, 0); 3207 3208 offset += skb->csum_offset; 3209 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb)); 3210 3211 ret = skb_ensure_writable(skb, offset + sizeof(__sum16)); 3212 if (ret) 3213 goto out; 3214 3215 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0; 3216 out_set_summed: 3217 skb->ip_summed = CHECKSUM_NONE; 3218 out: 3219 return ret; 3220 } 3221 EXPORT_SYMBOL(skb_checksum_help); 3222 3223 int skb_crc32c_csum_help(struct sk_buff *skb) 3224 { 3225 __le32 crc32c_csum; 3226 int ret = 0, offset, start; 3227 3228 if (skb->ip_summed != CHECKSUM_PARTIAL) 3229 goto out; 3230 3231 if (unlikely(skb_is_gso(skb))) 3232 goto out; 3233 3234 /* Before computing a checksum, we should make sure no frag could 3235 * be modified by an external entity : checksum could be wrong. 3236 */ 3237 if (unlikely(skb_has_shared_frag(skb))) { 3238 ret = __skb_linearize(skb); 3239 if (ret) 3240 goto out; 3241 } 3242 start = skb_checksum_start_offset(skb); 3243 offset = start + offsetof(struct sctphdr, checksum); 3244 if (WARN_ON_ONCE(offset >= skb_headlen(skb))) { 3245 ret = -EINVAL; 3246 goto out; 3247 } 3248 3249 ret = skb_ensure_writable(skb, offset + sizeof(__le32)); 3250 if (ret) 3251 goto out; 3252 3253 crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start, 3254 skb->len - start, ~(__u32)0, 3255 crc32c_csum_stub)); 3256 *(__le32 *)(skb->data + offset) = crc32c_csum; 3257 skb->ip_summed = CHECKSUM_NONE; 3258 skb->csum_not_inet = 0; 3259 out: 3260 return ret; 3261 } 3262 3263 __be16 skb_network_protocol(struct sk_buff *skb, int *depth) 3264 { 3265 __be16 type = skb->protocol; 3266 3267 /* Tunnel gso handlers can set protocol to ethernet. */ 3268 if (type == htons(ETH_P_TEB)) { 3269 struct ethhdr *eth; 3270 3271 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr)))) 3272 return 0; 3273 3274 eth = (struct ethhdr *)skb->data; 3275 type = eth->h_proto; 3276 } 3277 3278 return __vlan_get_protocol(skb, type, depth); 3279 } 3280 3281 /** 3282 * skb_mac_gso_segment - mac layer segmentation handler. 3283 * @skb: buffer to segment 3284 * @features: features for the output path (see dev->features) 3285 */ 3286 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb, 3287 netdev_features_t features) 3288 { 3289 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT); 3290 struct packet_offload *ptype; 3291 int vlan_depth = skb->mac_len; 3292 __be16 type = skb_network_protocol(skb, &vlan_depth); 3293 3294 if (unlikely(!type)) 3295 return ERR_PTR(-EINVAL); 3296 3297 __skb_pull(skb, vlan_depth); 3298 3299 rcu_read_lock(); 3300 list_for_each_entry_rcu(ptype, &offload_base, list) { 3301 if (ptype->type == type && ptype->callbacks.gso_segment) { 3302 segs = ptype->callbacks.gso_segment(skb, features); 3303 break; 3304 } 3305 } 3306 rcu_read_unlock(); 3307 3308 __skb_push(skb, skb->data - skb_mac_header(skb)); 3309 3310 return segs; 3311 } 3312 EXPORT_SYMBOL(skb_mac_gso_segment); 3313 3314 3315 /* openvswitch calls this on rx path, so we need a different check. 3316 */ 3317 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path) 3318 { 3319 if (tx_path) 3320 return skb->ip_summed != CHECKSUM_PARTIAL && 3321 skb->ip_summed != CHECKSUM_UNNECESSARY; 3322 3323 return skb->ip_summed == CHECKSUM_NONE; 3324 } 3325 3326 /** 3327 * __skb_gso_segment - Perform segmentation on skb. 3328 * @skb: buffer to segment 3329 * @features: features for the output path (see dev->features) 3330 * @tx_path: whether it is called in TX path 3331 * 3332 * This function segments the given skb and returns a list of segments. 3333 * 3334 * It may return NULL if the skb requires no segmentation. This is 3335 * only possible when GSO is used for verifying header integrity. 3336 * 3337 * Segmentation preserves SKB_GSO_CB_OFFSET bytes of previous skb cb. 3338 */ 3339 struct sk_buff *__skb_gso_segment(struct sk_buff *skb, 3340 netdev_features_t features, bool tx_path) 3341 { 3342 struct sk_buff *segs; 3343 3344 if (unlikely(skb_needs_check(skb, tx_path))) { 3345 int err; 3346 3347 /* We're going to init ->check field in TCP or UDP header */ 3348 err = skb_cow_head(skb, 0); 3349 if (err < 0) 3350 return ERR_PTR(err); 3351 } 3352 3353 /* Only report GSO partial support if it will enable us to 3354 * support segmentation on this frame without needing additional 3355 * work. 3356 */ 3357 if (features & NETIF_F_GSO_PARTIAL) { 3358 netdev_features_t partial_features = NETIF_F_GSO_ROBUST; 3359 struct net_device *dev = skb->dev; 3360 3361 partial_features |= dev->features & dev->gso_partial_features; 3362 if (!skb_gso_ok(skb, features | partial_features)) 3363 features &= ~NETIF_F_GSO_PARTIAL; 3364 } 3365 3366 BUILD_BUG_ON(SKB_GSO_CB_OFFSET + 3367 sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb)); 3368 3369 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb); 3370 SKB_GSO_CB(skb)->encap_level = 0; 3371 3372 skb_reset_mac_header(skb); 3373 skb_reset_mac_len(skb); 3374 3375 segs = skb_mac_gso_segment(skb, features); 3376 3377 if (segs != skb && unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs))) 3378 skb_warn_bad_offload(skb); 3379 3380 return segs; 3381 } 3382 EXPORT_SYMBOL(__skb_gso_segment); 3383 3384 /* Take action when hardware reception checksum errors are detected. */ 3385 #ifdef CONFIG_BUG 3386 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb) 3387 { 3388 if (net_ratelimit()) { 3389 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>"); 3390 skb_dump(KERN_ERR, skb, true); 3391 dump_stack(); 3392 } 3393 } 3394 EXPORT_SYMBOL(netdev_rx_csum_fault); 3395 #endif 3396 3397 /* XXX: check that highmem exists at all on the given machine. */ 3398 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb) 3399 { 3400 #ifdef CONFIG_HIGHMEM 3401 int i; 3402 3403 if (!(dev->features & NETIF_F_HIGHDMA)) { 3404 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 3405 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 3406 3407 if (PageHighMem(skb_frag_page(frag))) 3408 return 1; 3409 } 3410 } 3411 #endif 3412 return 0; 3413 } 3414 3415 /* If MPLS offload request, verify we are testing hardware MPLS features 3416 * instead of standard features for the netdev. 3417 */ 3418 #if IS_ENABLED(CONFIG_NET_MPLS_GSO) 3419 static netdev_features_t net_mpls_features(struct sk_buff *skb, 3420 netdev_features_t features, 3421 __be16 type) 3422 { 3423 if (eth_p_mpls(type)) 3424 features &= skb->dev->mpls_features; 3425 3426 return features; 3427 } 3428 #else 3429 static netdev_features_t net_mpls_features(struct sk_buff *skb, 3430 netdev_features_t features, 3431 __be16 type) 3432 { 3433 return features; 3434 } 3435 #endif 3436 3437 static netdev_features_t harmonize_features(struct sk_buff *skb, 3438 netdev_features_t features) 3439 { 3440 int tmp; 3441 __be16 type; 3442 3443 type = skb_network_protocol(skb, &tmp); 3444 features = net_mpls_features(skb, features, type); 3445 3446 if (skb->ip_summed != CHECKSUM_NONE && 3447 !can_checksum_protocol(features, type)) { 3448 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 3449 } 3450 if (illegal_highdma(skb->dev, skb)) 3451 features &= ~NETIF_F_SG; 3452 3453 return features; 3454 } 3455 3456 netdev_features_t passthru_features_check(struct sk_buff *skb, 3457 struct net_device *dev, 3458 netdev_features_t features) 3459 { 3460 return features; 3461 } 3462 EXPORT_SYMBOL(passthru_features_check); 3463 3464 static netdev_features_t dflt_features_check(struct sk_buff *skb, 3465 struct net_device *dev, 3466 netdev_features_t features) 3467 { 3468 return vlan_features_check(skb, features); 3469 } 3470 3471 static netdev_features_t gso_features_check(const struct sk_buff *skb, 3472 struct net_device *dev, 3473 netdev_features_t features) 3474 { 3475 u16 gso_segs = skb_shinfo(skb)->gso_segs; 3476 3477 if (gso_segs > dev->gso_max_segs) 3478 return features & ~NETIF_F_GSO_MASK; 3479 3480 /* Support for GSO partial features requires software 3481 * intervention before we can actually process the packets 3482 * so we need to strip support for any partial features now 3483 * and we can pull them back in after we have partially 3484 * segmented the frame. 3485 */ 3486 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL)) 3487 features &= ~dev->gso_partial_features; 3488 3489 /* Make sure to clear the IPv4 ID mangling feature if the 3490 * IPv4 header has the potential to be fragmented. 3491 */ 3492 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) { 3493 struct iphdr *iph = skb->encapsulation ? 3494 inner_ip_hdr(skb) : ip_hdr(skb); 3495 3496 if (!(iph->frag_off & htons(IP_DF))) 3497 features &= ~NETIF_F_TSO_MANGLEID; 3498 } 3499 3500 return features; 3501 } 3502 3503 netdev_features_t netif_skb_features(struct sk_buff *skb) 3504 { 3505 struct net_device *dev = skb->dev; 3506 netdev_features_t features = dev->features; 3507 3508 if (skb_is_gso(skb)) 3509 features = gso_features_check(skb, dev, features); 3510 3511 /* If encapsulation offload request, verify we are testing 3512 * hardware encapsulation features instead of standard 3513 * features for the netdev 3514 */ 3515 if (skb->encapsulation) 3516 features &= dev->hw_enc_features; 3517 3518 if (skb_vlan_tagged(skb)) 3519 features = netdev_intersect_features(features, 3520 dev->vlan_features | 3521 NETIF_F_HW_VLAN_CTAG_TX | 3522 NETIF_F_HW_VLAN_STAG_TX); 3523 3524 if (dev->netdev_ops->ndo_features_check) 3525 features &= dev->netdev_ops->ndo_features_check(skb, dev, 3526 features); 3527 else 3528 features &= dflt_features_check(skb, dev, features); 3529 3530 return harmonize_features(skb, features); 3531 } 3532 EXPORT_SYMBOL(netif_skb_features); 3533 3534 static int xmit_one(struct sk_buff *skb, struct net_device *dev, 3535 struct netdev_queue *txq, bool more) 3536 { 3537 unsigned int len; 3538 int rc; 3539 3540 if (dev_nit_active(dev)) 3541 dev_queue_xmit_nit(skb, dev); 3542 3543 len = skb->len; 3544 trace_net_dev_start_xmit(skb, dev); 3545 rc = netdev_start_xmit(skb, dev, txq, more); 3546 trace_net_dev_xmit(skb, rc, dev, len); 3547 3548 return rc; 3549 } 3550 3551 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev, 3552 struct netdev_queue *txq, int *ret) 3553 { 3554 struct sk_buff *skb = first; 3555 int rc = NETDEV_TX_OK; 3556 3557 while (skb) { 3558 struct sk_buff *next = skb->next; 3559 3560 skb_mark_not_on_list(skb); 3561 rc = xmit_one(skb, dev, txq, next != NULL); 3562 if (unlikely(!dev_xmit_complete(rc))) { 3563 skb->next = next; 3564 goto out; 3565 } 3566 3567 skb = next; 3568 if (netif_tx_queue_stopped(txq) && skb) { 3569 rc = NETDEV_TX_BUSY; 3570 break; 3571 } 3572 } 3573 3574 out: 3575 *ret = rc; 3576 return skb; 3577 } 3578 3579 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb, 3580 netdev_features_t features) 3581 { 3582 if (skb_vlan_tag_present(skb) && 3583 !vlan_hw_offload_capable(features, skb->vlan_proto)) 3584 skb = __vlan_hwaccel_push_inside(skb); 3585 return skb; 3586 } 3587 3588 int skb_csum_hwoffload_help(struct sk_buff *skb, 3589 const netdev_features_t features) 3590 { 3591 if (unlikely(skb->csum_not_inet)) 3592 return !!(features & NETIF_F_SCTP_CRC) ? 0 : 3593 skb_crc32c_csum_help(skb); 3594 3595 return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb); 3596 } 3597 EXPORT_SYMBOL(skb_csum_hwoffload_help); 3598 3599 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again) 3600 { 3601 netdev_features_t features; 3602 3603 features = netif_skb_features(skb); 3604 skb = validate_xmit_vlan(skb, features); 3605 if (unlikely(!skb)) 3606 goto out_null; 3607 3608 skb = sk_validate_xmit_skb(skb, dev); 3609 if (unlikely(!skb)) 3610 goto out_null; 3611 3612 if (netif_needs_gso(skb, features)) { 3613 struct sk_buff *segs; 3614 3615 segs = skb_gso_segment(skb, features); 3616 if (IS_ERR(segs)) { 3617 goto out_kfree_skb; 3618 } else if (segs) { 3619 consume_skb(skb); 3620 skb = segs; 3621 } 3622 } else { 3623 if (skb_needs_linearize(skb, features) && 3624 __skb_linearize(skb)) 3625 goto out_kfree_skb; 3626 3627 /* If packet is not checksummed and device does not 3628 * support checksumming for this protocol, complete 3629 * checksumming here. 3630 */ 3631 if (skb->ip_summed == CHECKSUM_PARTIAL) { 3632 if (skb->encapsulation) 3633 skb_set_inner_transport_header(skb, 3634 skb_checksum_start_offset(skb)); 3635 else 3636 skb_set_transport_header(skb, 3637 skb_checksum_start_offset(skb)); 3638 if (skb_csum_hwoffload_help(skb, features)) 3639 goto out_kfree_skb; 3640 } 3641 } 3642 3643 skb = validate_xmit_xfrm(skb, features, again); 3644 3645 return skb; 3646 3647 out_kfree_skb: 3648 kfree_skb(skb); 3649 out_null: 3650 atomic_long_inc(&dev->tx_dropped); 3651 return NULL; 3652 } 3653 3654 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again) 3655 { 3656 struct sk_buff *next, *head = NULL, *tail; 3657 3658 for (; skb != NULL; skb = next) { 3659 next = skb->next; 3660 skb_mark_not_on_list(skb); 3661 3662 /* in case skb wont be segmented, point to itself */ 3663 skb->prev = skb; 3664 3665 skb = validate_xmit_skb(skb, dev, again); 3666 if (!skb) 3667 continue; 3668 3669 if (!head) 3670 head = skb; 3671 else 3672 tail->next = skb; 3673 /* If skb was segmented, skb->prev points to 3674 * the last segment. If not, it still contains skb. 3675 */ 3676 tail = skb->prev; 3677 } 3678 return head; 3679 } 3680 EXPORT_SYMBOL_GPL(validate_xmit_skb_list); 3681 3682 static void qdisc_pkt_len_init(struct sk_buff *skb) 3683 { 3684 const struct skb_shared_info *shinfo = skb_shinfo(skb); 3685 3686 qdisc_skb_cb(skb)->pkt_len = skb->len; 3687 3688 /* To get more precise estimation of bytes sent on wire, 3689 * we add to pkt_len the headers size of all segments 3690 */ 3691 if (shinfo->gso_size && skb_transport_header_was_set(skb)) { 3692 unsigned int hdr_len; 3693 u16 gso_segs = shinfo->gso_segs; 3694 3695 /* mac layer + network layer */ 3696 hdr_len = skb_transport_header(skb) - skb_mac_header(skb); 3697 3698 /* + transport layer */ 3699 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) { 3700 const struct tcphdr *th; 3701 struct tcphdr _tcphdr; 3702 3703 th = skb_header_pointer(skb, skb_transport_offset(skb), 3704 sizeof(_tcphdr), &_tcphdr); 3705 if (likely(th)) 3706 hdr_len += __tcp_hdrlen(th); 3707 } else { 3708 struct udphdr _udphdr; 3709 3710 if (skb_header_pointer(skb, skb_transport_offset(skb), 3711 sizeof(_udphdr), &_udphdr)) 3712 hdr_len += sizeof(struct udphdr); 3713 } 3714 3715 if (shinfo->gso_type & SKB_GSO_DODGY) 3716 gso_segs = DIV_ROUND_UP(skb->len - hdr_len, 3717 shinfo->gso_size); 3718 3719 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len; 3720 } 3721 } 3722 3723 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q, 3724 struct net_device *dev, 3725 struct netdev_queue *txq) 3726 { 3727 spinlock_t *root_lock = qdisc_lock(q); 3728 struct sk_buff *to_free = NULL; 3729 bool contended; 3730 int rc; 3731 3732 qdisc_calculate_pkt_len(skb, q); 3733 3734 if (q->flags & TCQ_F_NOLOCK) { 3735 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK; 3736 qdisc_run(q); 3737 3738 if (unlikely(to_free)) 3739 kfree_skb_list(to_free); 3740 return rc; 3741 } 3742 3743 /* 3744 * Heuristic to force contended enqueues to serialize on a 3745 * separate lock before trying to get qdisc main lock. 3746 * This permits qdisc->running owner to get the lock more 3747 * often and dequeue packets faster. 3748 */ 3749 contended = qdisc_is_running(q); 3750 if (unlikely(contended)) 3751 spin_lock(&q->busylock); 3752 3753 spin_lock(root_lock); 3754 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) { 3755 __qdisc_drop(skb, &to_free); 3756 rc = NET_XMIT_DROP; 3757 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) && 3758 qdisc_run_begin(q)) { 3759 /* 3760 * This is a work-conserving queue; there are no old skbs 3761 * waiting to be sent out; and the qdisc is not running - 3762 * xmit the skb directly. 3763 */ 3764 3765 qdisc_bstats_update(q, skb); 3766 3767 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) { 3768 if (unlikely(contended)) { 3769 spin_unlock(&q->busylock); 3770 contended = false; 3771 } 3772 __qdisc_run(q); 3773 } 3774 3775 qdisc_run_end(q); 3776 rc = NET_XMIT_SUCCESS; 3777 } else { 3778 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK; 3779 if (qdisc_run_begin(q)) { 3780 if (unlikely(contended)) { 3781 spin_unlock(&q->busylock); 3782 contended = false; 3783 } 3784 __qdisc_run(q); 3785 qdisc_run_end(q); 3786 } 3787 } 3788 spin_unlock(root_lock); 3789 if (unlikely(to_free)) 3790 kfree_skb_list(to_free); 3791 if (unlikely(contended)) 3792 spin_unlock(&q->busylock); 3793 return rc; 3794 } 3795 3796 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO) 3797 static void skb_update_prio(struct sk_buff *skb) 3798 { 3799 const struct netprio_map *map; 3800 const struct sock *sk; 3801 unsigned int prioidx; 3802 3803 if (skb->priority) 3804 return; 3805 map = rcu_dereference_bh(skb->dev->priomap); 3806 if (!map) 3807 return; 3808 sk = skb_to_full_sk(skb); 3809 if (!sk) 3810 return; 3811 3812 prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data); 3813 3814 if (prioidx < map->priomap_len) 3815 skb->priority = map->priomap[prioidx]; 3816 } 3817 #else 3818 #define skb_update_prio(skb) 3819 #endif 3820 3821 /** 3822 * dev_loopback_xmit - loop back @skb 3823 * @net: network namespace this loopback is happening in 3824 * @sk: sk needed to be a netfilter okfn 3825 * @skb: buffer to transmit 3826 */ 3827 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb) 3828 { 3829 skb_reset_mac_header(skb); 3830 __skb_pull(skb, skb_network_offset(skb)); 3831 skb->pkt_type = PACKET_LOOPBACK; 3832 skb->ip_summed = CHECKSUM_UNNECESSARY; 3833 WARN_ON(!skb_dst(skb)); 3834 skb_dst_force(skb); 3835 netif_rx_ni(skb); 3836 return 0; 3837 } 3838 EXPORT_SYMBOL(dev_loopback_xmit); 3839 3840 #ifdef CONFIG_NET_EGRESS 3841 static struct sk_buff * 3842 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev) 3843 { 3844 struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress); 3845 struct tcf_result cl_res; 3846 3847 if (!miniq) 3848 return skb; 3849 3850 /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */ 3851 mini_qdisc_bstats_cpu_update(miniq, skb); 3852 3853 switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) { 3854 case TC_ACT_OK: 3855 case TC_ACT_RECLASSIFY: 3856 skb->tc_index = TC_H_MIN(cl_res.classid); 3857 break; 3858 case TC_ACT_SHOT: 3859 mini_qdisc_qstats_cpu_drop(miniq); 3860 *ret = NET_XMIT_DROP; 3861 kfree_skb(skb); 3862 return NULL; 3863 case TC_ACT_STOLEN: 3864 case TC_ACT_QUEUED: 3865 case TC_ACT_TRAP: 3866 *ret = NET_XMIT_SUCCESS; 3867 consume_skb(skb); 3868 return NULL; 3869 case TC_ACT_REDIRECT: 3870 /* No need to push/pop skb's mac_header here on egress! */ 3871 skb_do_redirect(skb); 3872 *ret = NET_XMIT_SUCCESS; 3873 return NULL; 3874 default: 3875 break; 3876 } 3877 3878 return skb; 3879 } 3880 #endif /* CONFIG_NET_EGRESS */ 3881 3882 #ifdef CONFIG_XPS 3883 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb, 3884 struct xps_dev_maps *dev_maps, unsigned int tci) 3885 { 3886 struct xps_map *map; 3887 int queue_index = -1; 3888 3889 if (dev->num_tc) { 3890 tci *= dev->num_tc; 3891 tci += netdev_get_prio_tc_map(dev, skb->priority); 3892 } 3893 3894 map = rcu_dereference(dev_maps->attr_map[tci]); 3895 if (map) { 3896 if (map->len == 1) 3897 queue_index = map->queues[0]; 3898 else 3899 queue_index = map->queues[reciprocal_scale( 3900 skb_get_hash(skb), map->len)]; 3901 if (unlikely(queue_index >= dev->real_num_tx_queues)) 3902 queue_index = -1; 3903 } 3904 return queue_index; 3905 } 3906 #endif 3907 3908 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev, 3909 struct sk_buff *skb) 3910 { 3911 #ifdef CONFIG_XPS 3912 struct xps_dev_maps *dev_maps; 3913 struct sock *sk = skb->sk; 3914 int queue_index = -1; 3915 3916 if (!static_key_false(&xps_needed)) 3917 return -1; 3918 3919 rcu_read_lock(); 3920 if (!static_key_false(&xps_rxqs_needed)) 3921 goto get_cpus_map; 3922 3923 dev_maps = rcu_dereference(sb_dev->xps_rxqs_map); 3924 if (dev_maps) { 3925 int tci = sk_rx_queue_get(sk); 3926 3927 if (tci >= 0 && tci < dev->num_rx_queues) 3928 queue_index = __get_xps_queue_idx(dev, skb, dev_maps, 3929 tci); 3930 } 3931 3932 get_cpus_map: 3933 if (queue_index < 0) { 3934 dev_maps = rcu_dereference(sb_dev->xps_cpus_map); 3935 if (dev_maps) { 3936 unsigned int tci = skb->sender_cpu - 1; 3937 3938 queue_index = __get_xps_queue_idx(dev, skb, dev_maps, 3939 tci); 3940 } 3941 } 3942 rcu_read_unlock(); 3943 3944 return queue_index; 3945 #else 3946 return -1; 3947 #endif 3948 } 3949 3950 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb, 3951 struct net_device *sb_dev) 3952 { 3953 return 0; 3954 } 3955 EXPORT_SYMBOL(dev_pick_tx_zero); 3956 3957 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb, 3958 struct net_device *sb_dev) 3959 { 3960 return (u16)raw_smp_processor_id() % dev->real_num_tx_queues; 3961 } 3962 EXPORT_SYMBOL(dev_pick_tx_cpu_id); 3963 3964 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb, 3965 struct net_device *sb_dev) 3966 { 3967 struct sock *sk = skb->sk; 3968 int queue_index = sk_tx_queue_get(sk); 3969 3970 sb_dev = sb_dev ? : dev; 3971 3972 if (queue_index < 0 || skb->ooo_okay || 3973 queue_index >= dev->real_num_tx_queues) { 3974 int new_index = get_xps_queue(dev, sb_dev, skb); 3975 3976 if (new_index < 0) 3977 new_index = skb_tx_hash(dev, sb_dev, skb); 3978 3979 if (queue_index != new_index && sk && 3980 sk_fullsock(sk) && 3981 rcu_access_pointer(sk->sk_dst_cache)) 3982 sk_tx_queue_set(sk, new_index); 3983 3984 queue_index = new_index; 3985 } 3986 3987 return queue_index; 3988 } 3989 EXPORT_SYMBOL(netdev_pick_tx); 3990 3991 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev, 3992 struct sk_buff *skb, 3993 struct net_device *sb_dev) 3994 { 3995 int queue_index = 0; 3996 3997 #ifdef CONFIG_XPS 3998 u32 sender_cpu = skb->sender_cpu - 1; 3999 4000 if (sender_cpu >= (u32)NR_CPUS) 4001 skb->sender_cpu = raw_smp_processor_id() + 1; 4002 #endif 4003 4004 if (dev->real_num_tx_queues != 1) { 4005 const struct net_device_ops *ops = dev->netdev_ops; 4006 4007 if (ops->ndo_select_queue) 4008 queue_index = ops->ndo_select_queue(dev, skb, sb_dev); 4009 else 4010 queue_index = netdev_pick_tx(dev, skb, sb_dev); 4011 4012 queue_index = netdev_cap_txqueue(dev, queue_index); 4013 } 4014 4015 skb_set_queue_mapping(skb, queue_index); 4016 return netdev_get_tx_queue(dev, queue_index); 4017 } 4018 4019 /** 4020 * __dev_queue_xmit - transmit a buffer 4021 * @skb: buffer to transmit 4022 * @sb_dev: suboordinate device used for L2 forwarding offload 4023 * 4024 * Queue a buffer for transmission to a network device. The caller must 4025 * have set the device and priority and built the buffer before calling 4026 * this function. The function can be called from an interrupt. 4027 * 4028 * A negative errno code is returned on a failure. A success does not 4029 * guarantee the frame will be transmitted as it may be dropped due 4030 * to congestion or traffic shaping. 4031 * 4032 * ----------------------------------------------------------------------------------- 4033 * I notice this method can also return errors from the queue disciplines, 4034 * including NET_XMIT_DROP, which is a positive value. So, errors can also 4035 * be positive. 4036 * 4037 * Regardless of the return value, the skb is consumed, so it is currently 4038 * difficult to retry a send to this method. (You can bump the ref count 4039 * before sending to hold a reference for retry if you are careful.) 4040 * 4041 * When calling this method, interrupts MUST be enabled. This is because 4042 * the BH enable code must have IRQs enabled so that it will not deadlock. 4043 * --BLG 4044 */ 4045 static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev) 4046 { 4047 struct net_device *dev = skb->dev; 4048 struct netdev_queue *txq; 4049 struct Qdisc *q; 4050 int rc = -ENOMEM; 4051 bool again = false; 4052 4053 skb_reset_mac_header(skb); 4054 4055 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP)) 4056 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED); 4057 4058 /* Disable soft irqs for various locks below. Also 4059 * stops preemption for RCU. 4060 */ 4061 rcu_read_lock_bh(); 4062 4063 skb_update_prio(skb); 4064 4065 qdisc_pkt_len_init(skb); 4066 #ifdef CONFIG_NET_CLS_ACT 4067 skb->tc_at_ingress = 0; 4068 # ifdef CONFIG_NET_EGRESS 4069 if (static_branch_unlikely(&egress_needed_key)) { 4070 skb = sch_handle_egress(skb, &rc, dev); 4071 if (!skb) 4072 goto out; 4073 } 4074 # endif 4075 #endif 4076 /* If device/qdisc don't need skb->dst, release it right now while 4077 * its hot in this cpu cache. 4078 */ 4079 if (dev->priv_flags & IFF_XMIT_DST_RELEASE) 4080 skb_dst_drop(skb); 4081 else 4082 skb_dst_force(skb); 4083 4084 txq = netdev_core_pick_tx(dev, skb, sb_dev); 4085 q = rcu_dereference_bh(txq->qdisc); 4086 4087 trace_net_dev_queue(skb); 4088 if (q->enqueue) { 4089 rc = __dev_xmit_skb(skb, q, dev, txq); 4090 goto out; 4091 } 4092 4093 /* The device has no queue. Common case for software devices: 4094 * loopback, all the sorts of tunnels... 4095 4096 * Really, it is unlikely that netif_tx_lock protection is necessary 4097 * here. (f.e. loopback and IP tunnels are clean ignoring statistics 4098 * counters.) 4099 * However, it is possible, that they rely on protection 4100 * made by us here. 4101 4102 * Check this and shot the lock. It is not prone from deadlocks. 4103 *Either shot noqueue qdisc, it is even simpler 8) 4104 */ 4105 if (dev->flags & IFF_UP) { 4106 int cpu = smp_processor_id(); /* ok because BHs are off */ 4107 4108 if (txq->xmit_lock_owner != cpu) { 4109 if (dev_xmit_recursion()) 4110 goto recursion_alert; 4111 4112 skb = validate_xmit_skb(skb, dev, &again); 4113 if (!skb) 4114 goto out; 4115 4116 HARD_TX_LOCK(dev, txq, cpu); 4117 4118 if (!netif_xmit_stopped(txq)) { 4119 dev_xmit_recursion_inc(); 4120 skb = dev_hard_start_xmit(skb, dev, txq, &rc); 4121 dev_xmit_recursion_dec(); 4122 if (dev_xmit_complete(rc)) { 4123 HARD_TX_UNLOCK(dev, txq); 4124 goto out; 4125 } 4126 } 4127 HARD_TX_UNLOCK(dev, txq); 4128 net_crit_ratelimited("Virtual device %s asks to queue packet!\n", 4129 dev->name); 4130 } else { 4131 /* Recursion is detected! It is possible, 4132 * unfortunately 4133 */ 4134 recursion_alert: 4135 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n", 4136 dev->name); 4137 } 4138 } 4139 4140 rc = -ENETDOWN; 4141 rcu_read_unlock_bh(); 4142 4143 atomic_long_inc(&dev->tx_dropped); 4144 kfree_skb_list(skb); 4145 return rc; 4146 out: 4147 rcu_read_unlock_bh(); 4148 return rc; 4149 } 4150 4151 int dev_queue_xmit(struct sk_buff *skb) 4152 { 4153 return __dev_queue_xmit(skb, NULL); 4154 } 4155 EXPORT_SYMBOL(dev_queue_xmit); 4156 4157 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev) 4158 { 4159 return __dev_queue_xmit(skb, sb_dev); 4160 } 4161 EXPORT_SYMBOL(dev_queue_xmit_accel); 4162 4163 int dev_direct_xmit(struct sk_buff *skb, u16 queue_id) 4164 { 4165 struct net_device *dev = skb->dev; 4166 struct sk_buff *orig_skb = skb; 4167 struct netdev_queue *txq; 4168 int ret = NETDEV_TX_BUSY; 4169 bool again = false; 4170 4171 if (unlikely(!netif_running(dev) || 4172 !netif_carrier_ok(dev))) 4173 goto drop; 4174 4175 skb = validate_xmit_skb_list(skb, dev, &again); 4176 if (skb != orig_skb) 4177 goto drop; 4178 4179 skb_set_queue_mapping(skb, queue_id); 4180 txq = skb_get_tx_queue(dev, skb); 4181 4182 local_bh_disable(); 4183 4184 HARD_TX_LOCK(dev, txq, smp_processor_id()); 4185 if (!netif_xmit_frozen_or_drv_stopped(txq)) 4186 ret = netdev_start_xmit(skb, dev, txq, false); 4187 HARD_TX_UNLOCK(dev, txq); 4188 4189 local_bh_enable(); 4190 4191 if (!dev_xmit_complete(ret)) 4192 kfree_skb(skb); 4193 4194 return ret; 4195 drop: 4196 atomic_long_inc(&dev->tx_dropped); 4197 kfree_skb_list(skb); 4198 return NET_XMIT_DROP; 4199 } 4200 EXPORT_SYMBOL(dev_direct_xmit); 4201 4202 /************************************************************************* 4203 * Receiver routines 4204 *************************************************************************/ 4205 4206 int netdev_max_backlog __read_mostly = 1000; 4207 EXPORT_SYMBOL(netdev_max_backlog); 4208 4209 int netdev_tstamp_prequeue __read_mostly = 1; 4210 int netdev_budget __read_mostly = 300; 4211 /* Must be at least 2 jiffes to guarantee 1 jiffy timeout */ 4212 unsigned int __read_mostly netdev_budget_usecs = 2 * USEC_PER_SEC / HZ; 4213 int weight_p __read_mostly = 64; /* old backlog weight */ 4214 int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */ 4215 int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */ 4216 int dev_rx_weight __read_mostly = 64; 4217 int dev_tx_weight __read_mostly = 64; 4218 /* Maximum number of GRO_NORMAL skbs to batch up for list-RX */ 4219 int gro_normal_batch __read_mostly = 8; 4220 4221 /* Called with irq disabled */ 4222 static inline void ____napi_schedule(struct softnet_data *sd, 4223 struct napi_struct *napi) 4224 { 4225 list_add_tail(&napi->poll_list, &sd->poll_list); 4226 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 4227 } 4228 4229 #ifdef CONFIG_RPS 4230 4231 /* One global table that all flow-based protocols share. */ 4232 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly; 4233 EXPORT_SYMBOL(rps_sock_flow_table); 4234 u32 rps_cpu_mask __read_mostly; 4235 EXPORT_SYMBOL(rps_cpu_mask); 4236 4237 struct static_key_false rps_needed __read_mostly; 4238 EXPORT_SYMBOL(rps_needed); 4239 struct static_key_false rfs_needed __read_mostly; 4240 EXPORT_SYMBOL(rfs_needed); 4241 4242 static struct rps_dev_flow * 4243 set_rps_cpu(struct net_device *dev, struct sk_buff *skb, 4244 struct rps_dev_flow *rflow, u16 next_cpu) 4245 { 4246 if (next_cpu < nr_cpu_ids) { 4247 #ifdef CONFIG_RFS_ACCEL 4248 struct netdev_rx_queue *rxqueue; 4249 struct rps_dev_flow_table *flow_table; 4250 struct rps_dev_flow *old_rflow; 4251 u32 flow_id; 4252 u16 rxq_index; 4253 int rc; 4254 4255 /* Should we steer this flow to a different hardware queue? */ 4256 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap || 4257 !(dev->features & NETIF_F_NTUPLE)) 4258 goto out; 4259 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu); 4260 if (rxq_index == skb_get_rx_queue(skb)) 4261 goto out; 4262 4263 rxqueue = dev->_rx + rxq_index; 4264 flow_table = rcu_dereference(rxqueue->rps_flow_table); 4265 if (!flow_table) 4266 goto out; 4267 flow_id = skb_get_hash(skb) & flow_table->mask; 4268 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb, 4269 rxq_index, flow_id); 4270 if (rc < 0) 4271 goto out; 4272 old_rflow = rflow; 4273 rflow = &flow_table->flows[flow_id]; 4274 rflow->filter = rc; 4275 if (old_rflow->filter == rflow->filter) 4276 old_rflow->filter = RPS_NO_FILTER; 4277 out: 4278 #endif 4279 rflow->last_qtail = 4280 per_cpu(softnet_data, next_cpu).input_queue_head; 4281 } 4282 4283 rflow->cpu = next_cpu; 4284 return rflow; 4285 } 4286 4287 /* 4288 * get_rps_cpu is called from netif_receive_skb and returns the target 4289 * CPU from the RPS map of the receiving queue for a given skb. 4290 * rcu_read_lock must be held on entry. 4291 */ 4292 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb, 4293 struct rps_dev_flow **rflowp) 4294 { 4295 const struct rps_sock_flow_table *sock_flow_table; 4296 struct netdev_rx_queue *rxqueue = dev->_rx; 4297 struct rps_dev_flow_table *flow_table; 4298 struct rps_map *map; 4299 int cpu = -1; 4300 u32 tcpu; 4301 u32 hash; 4302 4303 if (skb_rx_queue_recorded(skb)) { 4304 u16 index = skb_get_rx_queue(skb); 4305 4306 if (unlikely(index >= dev->real_num_rx_queues)) { 4307 WARN_ONCE(dev->real_num_rx_queues > 1, 4308 "%s received packet on queue %u, but number " 4309 "of RX queues is %u\n", 4310 dev->name, index, dev->real_num_rx_queues); 4311 goto done; 4312 } 4313 rxqueue += index; 4314 } 4315 4316 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */ 4317 4318 flow_table = rcu_dereference(rxqueue->rps_flow_table); 4319 map = rcu_dereference(rxqueue->rps_map); 4320 if (!flow_table && !map) 4321 goto done; 4322 4323 skb_reset_network_header(skb); 4324 hash = skb_get_hash(skb); 4325 if (!hash) 4326 goto done; 4327 4328 sock_flow_table = rcu_dereference(rps_sock_flow_table); 4329 if (flow_table && sock_flow_table) { 4330 struct rps_dev_flow *rflow; 4331 u32 next_cpu; 4332 u32 ident; 4333 4334 /* First check into global flow table if there is a match */ 4335 ident = sock_flow_table->ents[hash & sock_flow_table->mask]; 4336 if ((ident ^ hash) & ~rps_cpu_mask) 4337 goto try_rps; 4338 4339 next_cpu = ident & rps_cpu_mask; 4340 4341 /* OK, now we know there is a match, 4342 * we can look at the local (per receive queue) flow table 4343 */ 4344 rflow = &flow_table->flows[hash & flow_table->mask]; 4345 tcpu = rflow->cpu; 4346 4347 /* 4348 * If the desired CPU (where last recvmsg was done) is 4349 * different from current CPU (one in the rx-queue flow 4350 * table entry), switch if one of the following holds: 4351 * - Current CPU is unset (>= nr_cpu_ids). 4352 * - Current CPU is offline. 4353 * - The current CPU's queue tail has advanced beyond the 4354 * last packet that was enqueued using this table entry. 4355 * This guarantees that all previous packets for the flow 4356 * have been dequeued, thus preserving in order delivery. 4357 */ 4358 if (unlikely(tcpu != next_cpu) && 4359 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) || 4360 ((int)(per_cpu(softnet_data, tcpu).input_queue_head - 4361 rflow->last_qtail)) >= 0)) { 4362 tcpu = next_cpu; 4363 rflow = set_rps_cpu(dev, skb, rflow, next_cpu); 4364 } 4365 4366 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) { 4367 *rflowp = rflow; 4368 cpu = tcpu; 4369 goto done; 4370 } 4371 } 4372 4373 try_rps: 4374 4375 if (map) { 4376 tcpu = map->cpus[reciprocal_scale(hash, map->len)]; 4377 if (cpu_online(tcpu)) { 4378 cpu = tcpu; 4379 goto done; 4380 } 4381 } 4382 4383 done: 4384 return cpu; 4385 } 4386 4387 #ifdef CONFIG_RFS_ACCEL 4388 4389 /** 4390 * rps_may_expire_flow - check whether an RFS hardware filter may be removed 4391 * @dev: Device on which the filter was set 4392 * @rxq_index: RX queue index 4393 * @flow_id: Flow ID passed to ndo_rx_flow_steer() 4394 * @filter_id: Filter ID returned by ndo_rx_flow_steer() 4395 * 4396 * Drivers that implement ndo_rx_flow_steer() should periodically call 4397 * this function for each installed filter and remove the filters for 4398 * which it returns %true. 4399 */ 4400 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, 4401 u32 flow_id, u16 filter_id) 4402 { 4403 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index; 4404 struct rps_dev_flow_table *flow_table; 4405 struct rps_dev_flow *rflow; 4406 bool expire = true; 4407 unsigned int cpu; 4408 4409 rcu_read_lock(); 4410 flow_table = rcu_dereference(rxqueue->rps_flow_table); 4411 if (flow_table && flow_id <= flow_table->mask) { 4412 rflow = &flow_table->flows[flow_id]; 4413 cpu = READ_ONCE(rflow->cpu); 4414 if (rflow->filter == filter_id && cpu < nr_cpu_ids && 4415 ((int)(per_cpu(softnet_data, cpu).input_queue_head - 4416 rflow->last_qtail) < 4417 (int)(10 * flow_table->mask))) 4418 expire = false; 4419 } 4420 rcu_read_unlock(); 4421 return expire; 4422 } 4423 EXPORT_SYMBOL(rps_may_expire_flow); 4424 4425 #endif /* CONFIG_RFS_ACCEL */ 4426 4427 /* Called from hardirq (IPI) context */ 4428 static void rps_trigger_softirq(void *data) 4429 { 4430 struct softnet_data *sd = data; 4431 4432 ____napi_schedule(sd, &sd->backlog); 4433 sd->received_rps++; 4434 } 4435 4436 #endif /* CONFIG_RPS */ 4437 4438 /* 4439 * Check if this softnet_data structure is another cpu one 4440 * If yes, queue it to our IPI list and return 1 4441 * If no, return 0 4442 */ 4443 static int rps_ipi_queued(struct softnet_data *sd) 4444 { 4445 #ifdef CONFIG_RPS 4446 struct softnet_data *mysd = this_cpu_ptr(&softnet_data); 4447 4448 if (sd != mysd) { 4449 sd->rps_ipi_next = mysd->rps_ipi_list; 4450 mysd->rps_ipi_list = sd; 4451 4452 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 4453 return 1; 4454 } 4455 #endif /* CONFIG_RPS */ 4456 return 0; 4457 } 4458 4459 #ifdef CONFIG_NET_FLOW_LIMIT 4460 int netdev_flow_limit_table_len __read_mostly = (1 << 12); 4461 #endif 4462 4463 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen) 4464 { 4465 #ifdef CONFIG_NET_FLOW_LIMIT 4466 struct sd_flow_limit *fl; 4467 struct softnet_data *sd; 4468 unsigned int old_flow, new_flow; 4469 4470 if (qlen < (netdev_max_backlog >> 1)) 4471 return false; 4472 4473 sd = this_cpu_ptr(&softnet_data); 4474 4475 rcu_read_lock(); 4476 fl = rcu_dereference(sd->flow_limit); 4477 if (fl) { 4478 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1); 4479 old_flow = fl->history[fl->history_head]; 4480 fl->history[fl->history_head] = new_flow; 4481 4482 fl->history_head++; 4483 fl->history_head &= FLOW_LIMIT_HISTORY - 1; 4484 4485 if (likely(fl->buckets[old_flow])) 4486 fl->buckets[old_flow]--; 4487 4488 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) { 4489 fl->count++; 4490 rcu_read_unlock(); 4491 return true; 4492 } 4493 } 4494 rcu_read_unlock(); 4495 #endif 4496 return false; 4497 } 4498 4499 /* 4500 * enqueue_to_backlog is called to queue an skb to a per CPU backlog 4501 * queue (may be a remote CPU queue). 4502 */ 4503 static int enqueue_to_backlog(struct sk_buff *skb, int cpu, 4504 unsigned int *qtail) 4505 { 4506 struct softnet_data *sd; 4507 unsigned long flags; 4508 unsigned int qlen; 4509 4510 sd = &per_cpu(softnet_data, cpu); 4511 4512 local_irq_save(flags); 4513 4514 rps_lock(sd); 4515 if (!netif_running(skb->dev)) 4516 goto drop; 4517 qlen = skb_queue_len(&sd->input_pkt_queue); 4518 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) { 4519 if (qlen) { 4520 enqueue: 4521 __skb_queue_tail(&sd->input_pkt_queue, skb); 4522 input_queue_tail_incr_save(sd, qtail); 4523 rps_unlock(sd); 4524 local_irq_restore(flags); 4525 return NET_RX_SUCCESS; 4526 } 4527 4528 /* Schedule NAPI for backlog device 4529 * We can use non atomic operation since we own the queue lock 4530 */ 4531 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) { 4532 if (!rps_ipi_queued(sd)) 4533 ____napi_schedule(sd, &sd->backlog); 4534 } 4535 goto enqueue; 4536 } 4537 4538 drop: 4539 sd->dropped++; 4540 rps_unlock(sd); 4541 4542 local_irq_restore(flags); 4543 4544 atomic_long_inc(&skb->dev->rx_dropped); 4545 kfree_skb(skb); 4546 return NET_RX_DROP; 4547 } 4548 4549 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb) 4550 { 4551 struct net_device *dev = skb->dev; 4552 struct netdev_rx_queue *rxqueue; 4553 4554 rxqueue = dev->_rx; 4555 4556 if (skb_rx_queue_recorded(skb)) { 4557 u16 index = skb_get_rx_queue(skb); 4558 4559 if (unlikely(index >= dev->real_num_rx_queues)) { 4560 WARN_ONCE(dev->real_num_rx_queues > 1, 4561 "%s received packet on queue %u, but number " 4562 "of RX queues is %u\n", 4563 dev->name, index, dev->real_num_rx_queues); 4564 4565 return rxqueue; /* Return first rxqueue */ 4566 } 4567 rxqueue += index; 4568 } 4569 return rxqueue; 4570 } 4571 4572 static u32 netif_receive_generic_xdp(struct sk_buff *skb, 4573 struct xdp_buff *xdp, 4574 struct bpf_prog *xdp_prog) 4575 { 4576 struct netdev_rx_queue *rxqueue; 4577 void *orig_data, *orig_data_end; 4578 u32 metalen, act = XDP_DROP; 4579 __be16 orig_eth_type; 4580 struct ethhdr *eth; 4581 bool orig_bcast; 4582 int hlen, off; 4583 u32 mac_len; 4584 4585 /* Reinjected packets coming from act_mirred or similar should 4586 * not get XDP generic processing. 4587 */ 4588 if (skb_is_redirected(skb)) 4589 return XDP_PASS; 4590 4591 /* XDP packets must be linear and must have sufficient headroom 4592 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also 4593 * native XDP provides, thus we need to do it here as well. 4594 */ 4595 if (skb_cloned(skb) || skb_is_nonlinear(skb) || 4596 skb_headroom(skb) < XDP_PACKET_HEADROOM) { 4597 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb); 4598 int troom = skb->tail + skb->data_len - skb->end; 4599 4600 /* In case we have to go down the path and also linearize, 4601 * then lets do the pskb_expand_head() work just once here. 4602 */ 4603 if (pskb_expand_head(skb, 4604 hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0, 4605 troom > 0 ? troom + 128 : 0, GFP_ATOMIC)) 4606 goto do_drop; 4607 if (skb_linearize(skb)) 4608 goto do_drop; 4609 } 4610 4611 /* The XDP program wants to see the packet starting at the MAC 4612 * header. 4613 */ 4614 mac_len = skb->data - skb_mac_header(skb); 4615 hlen = skb_headlen(skb) + mac_len; 4616 xdp->data = skb->data - mac_len; 4617 xdp->data_meta = xdp->data; 4618 xdp->data_end = xdp->data + hlen; 4619 xdp->data_hard_start = skb->data - skb_headroom(skb); 4620 orig_data_end = xdp->data_end; 4621 orig_data = xdp->data; 4622 eth = (struct ethhdr *)xdp->data; 4623 orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest); 4624 orig_eth_type = eth->h_proto; 4625 4626 rxqueue = netif_get_rxqueue(skb); 4627 xdp->rxq = &rxqueue->xdp_rxq; 4628 4629 act = bpf_prog_run_xdp(xdp_prog, xdp); 4630 4631 /* check if bpf_xdp_adjust_head was used */ 4632 off = xdp->data - orig_data; 4633 if (off) { 4634 if (off > 0) 4635 __skb_pull(skb, off); 4636 else if (off < 0) 4637 __skb_push(skb, -off); 4638 4639 skb->mac_header += off; 4640 skb_reset_network_header(skb); 4641 } 4642 4643 /* check if bpf_xdp_adjust_tail was used. it can only "shrink" 4644 * pckt. 4645 */ 4646 off = orig_data_end - xdp->data_end; 4647 if (off != 0) { 4648 skb_set_tail_pointer(skb, xdp->data_end - xdp->data); 4649 skb->len -= off; 4650 4651 } 4652 4653 /* check if XDP changed eth hdr such SKB needs update */ 4654 eth = (struct ethhdr *)xdp->data; 4655 if ((orig_eth_type != eth->h_proto) || 4656 (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) { 4657 __skb_push(skb, ETH_HLEN); 4658 skb->protocol = eth_type_trans(skb, skb->dev); 4659 } 4660 4661 switch (act) { 4662 case XDP_REDIRECT: 4663 case XDP_TX: 4664 __skb_push(skb, mac_len); 4665 break; 4666 case XDP_PASS: 4667 metalen = xdp->data - xdp->data_meta; 4668 if (metalen) 4669 skb_metadata_set(skb, metalen); 4670 break; 4671 default: 4672 bpf_warn_invalid_xdp_action(act); 4673 /* fall through */ 4674 case XDP_ABORTED: 4675 trace_xdp_exception(skb->dev, xdp_prog, act); 4676 /* fall through */ 4677 case XDP_DROP: 4678 do_drop: 4679 kfree_skb(skb); 4680 break; 4681 } 4682 4683 return act; 4684 } 4685 4686 /* When doing generic XDP we have to bypass the qdisc layer and the 4687 * network taps in order to match in-driver-XDP behavior. 4688 */ 4689 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog) 4690 { 4691 struct net_device *dev = skb->dev; 4692 struct netdev_queue *txq; 4693 bool free_skb = true; 4694 int cpu, rc; 4695 4696 txq = netdev_core_pick_tx(dev, skb, NULL); 4697 cpu = smp_processor_id(); 4698 HARD_TX_LOCK(dev, txq, cpu); 4699 if (!netif_xmit_stopped(txq)) { 4700 rc = netdev_start_xmit(skb, dev, txq, 0); 4701 if (dev_xmit_complete(rc)) 4702 free_skb = false; 4703 } 4704 HARD_TX_UNLOCK(dev, txq); 4705 if (free_skb) { 4706 trace_xdp_exception(dev, xdp_prog, XDP_TX); 4707 kfree_skb(skb); 4708 } 4709 } 4710 4711 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key); 4712 4713 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb) 4714 { 4715 if (xdp_prog) { 4716 struct xdp_buff xdp; 4717 u32 act; 4718 int err; 4719 4720 act = netif_receive_generic_xdp(skb, &xdp, xdp_prog); 4721 if (act != XDP_PASS) { 4722 switch (act) { 4723 case XDP_REDIRECT: 4724 err = xdp_do_generic_redirect(skb->dev, skb, 4725 &xdp, xdp_prog); 4726 if (err) 4727 goto out_redir; 4728 break; 4729 case XDP_TX: 4730 generic_xdp_tx(skb, xdp_prog); 4731 break; 4732 } 4733 return XDP_DROP; 4734 } 4735 } 4736 return XDP_PASS; 4737 out_redir: 4738 kfree_skb(skb); 4739 return XDP_DROP; 4740 } 4741 EXPORT_SYMBOL_GPL(do_xdp_generic); 4742 4743 static int netif_rx_internal(struct sk_buff *skb) 4744 { 4745 int ret; 4746 4747 net_timestamp_check(netdev_tstamp_prequeue, skb); 4748 4749 trace_netif_rx(skb); 4750 4751 #ifdef CONFIG_RPS 4752 if (static_branch_unlikely(&rps_needed)) { 4753 struct rps_dev_flow voidflow, *rflow = &voidflow; 4754 int cpu; 4755 4756 preempt_disable(); 4757 rcu_read_lock(); 4758 4759 cpu = get_rps_cpu(skb->dev, skb, &rflow); 4760 if (cpu < 0) 4761 cpu = smp_processor_id(); 4762 4763 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 4764 4765 rcu_read_unlock(); 4766 preempt_enable(); 4767 } else 4768 #endif 4769 { 4770 unsigned int qtail; 4771 4772 ret = enqueue_to_backlog(skb, get_cpu(), &qtail); 4773 put_cpu(); 4774 } 4775 return ret; 4776 } 4777 4778 /** 4779 * netif_rx - post buffer to the network code 4780 * @skb: buffer to post 4781 * 4782 * This function receives a packet from a device driver and queues it for 4783 * the upper (protocol) levels to process. It always succeeds. The buffer 4784 * may be dropped during processing for congestion control or by the 4785 * protocol layers. 4786 * 4787 * return values: 4788 * NET_RX_SUCCESS (no congestion) 4789 * NET_RX_DROP (packet was dropped) 4790 * 4791 */ 4792 4793 int netif_rx(struct sk_buff *skb) 4794 { 4795 int ret; 4796 4797 trace_netif_rx_entry(skb); 4798 4799 ret = netif_rx_internal(skb); 4800 trace_netif_rx_exit(ret); 4801 4802 return ret; 4803 } 4804 EXPORT_SYMBOL(netif_rx); 4805 4806 int netif_rx_ni(struct sk_buff *skb) 4807 { 4808 int err; 4809 4810 trace_netif_rx_ni_entry(skb); 4811 4812 preempt_disable(); 4813 err = netif_rx_internal(skb); 4814 if (local_softirq_pending()) 4815 do_softirq(); 4816 preempt_enable(); 4817 trace_netif_rx_ni_exit(err); 4818 4819 return err; 4820 } 4821 EXPORT_SYMBOL(netif_rx_ni); 4822 4823 static __latent_entropy void net_tx_action(struct softirq_action *h) 4824 { 4825 struct softnet_data *sd = this_cpu_ptr(&softnet_data); 4826 4827 if (sd->completion_queue) { 4828 struct sk_buff *clist; 4829 4830 local_irq_disable(); 4831 clist = sd->completion_queue; 4832 sd->completion_queue = NULL; 4833 local_irq_enable(); 4834 4835 while (clist) { 4836 struct sk_buff *skb = clist; 4837 4838 clist = clist->next; 4839 4840 WARN_ON(refcount_read(&skb->users)); 4841 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED)) 4842 trace_consume_skb(skb); 4843 else 4844 trace_kfree_skb(skb, net_tx_action); 4845 4846 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) 4847 __kfree_skb(skb); 4848 else 4849 __kfree_skb_defer(skb); 4850 } 4851 4852 __kfree_skb_flush(); 4853 } 4854 4855 if (sd->output_queue) { 4856 struct Qdisc *head; 4857 4858 local_irq_disable(); 4859 head = sd->output_queue; 4860 sd->output_queue = NULL; 4861 sd->output_queue_tailp = &sd->output_queue; 4862 local_irq_enable(); 4863 4864 while (head) { 4865 struct Qdisc *q = head; 4866 spinlock_t *root_lock = NULL; 4867 4868 head = head->next_sched; 4869 4870 if (!(q->flags & TCQ_F_NOLOCK)) { 4871 root_lock = qdisc_lock(q); 4872 spin_lock(root_lock); 4873 } 4874 /* We need to make sure head->next_sched is read 4875 * before clearing __QDISC_STATE_SCHED 4876 */ 4877 smp_mb__before_atomic(); 4878 clear_bit(__QDISC_STATE_SCHED, &q->state); 4879 qdisc_run(q); 4880 if (root_lock) 4881 spin_unlock(root_lock); 4882 } 4883 } 4884 4885 xfrm_dev_backlog(sd); 4886 } 4887 4888 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE) 4889 /* This hook is defined here for ATM LANE */ 4890 int (*br_fdb_test_addr_hook)(struct net_device *dev, 4891 unsigned char *addr) __read_mostly; 4892 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook); 4893 #endif 4894 4895 static inline struct sk_buff * 4896 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret, 4897 struct net_device *orig_dev) 4898 { 4899 #ifdef CONFIG_NET_CLS_ACT 4900 struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress); 4901 struct tcf_result cl_res; 4902 4903 /* If there's at least one ingress present somewhere (so 4904 * we get here via enabled static key), remaining devices 4905 * that are not configured with an ingress qdisc will bail 4906 * out here. 4907 */ 4908 if (!miniq) 4909 return skb; 4910 4911 if (*pt_prev) { 4912 *ret = deliver_skb(skb, *pt_prev, orig_dev); 4913 *pt_prev = NULL; 4914 } 4915 4916 qdisc_skb_cb(skb)->pkt_len = skb->len; 4917 skb->tc_at_ingress = 1; 4918 mini_qdisc_bstats_cpu_update(miniq, skb); 4919 4920 switch (tcf_classify_ingress(skb, miniq->block, miniq->filter_list, 4921 &cl_res, false)) { 4922 case TC_ACT_OK: 4923 case TC_ACT_RECLASSIFY: 4924 skb->tc_index = TC_H_MIN(cl_res.classid); 4925 break; 4926 case TC_ACT_SHOT: 4927 mini_qdisc_qstats_cpu_drop(miniq); 4928 kfree_skb(skb); 4929 return NULL; 4930 case TC_ACT_STOLEN: 4931 case TC_ACT_QUEUED: 4932 case TC_ACT_TRAP: 4933 consume_skb(skb); 4934 return NULL; 4935 case TC_ACT_REDIRECT: 4936 /* skb_mac_header check was done by cls/act_bpf, so 4937 * we can safely push the L2 header back before 4938 * redirecting to another netdev 4939 */ 4940 __skb_push(skb, skb->mac_len); 4941 skb_do_redirect(skb); 4942 return NULL; 4943 case TC_ACT_CONSUMED: 4944 return NULL; 4945 default: 4946 break; 4947 } 4948 #endif /* CONFIG_NET_CLS_ACT */ 4949 return skb; 4950 } 4951 4952 /** 4953 * netdev_is_rx_handler_busy - check if receive handler is registered 4954 * @dev: device to check 4955 * 4956 * Check if a receive handler is already registered for a given device. 4957 * Return true if there one. 4958 * 4959 * The caller must hold the rtnl_mutex. 4960 */ 4961 bool netdev_is_rx_handler_busy(struct net_device *dev) 4962 { 4963 ASSERT_RTNL(); 4964 return dev && rtnl_dereference(dev->rx_handler); 4965 } 4966 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy); 4967 4968 /** 4969 * netdev_rx_handler_register - register receive handler 4970 * @dev: device to register a handler for 4971 * @rx_handler: receive handler to register 4972 * @rx_handler_data: data pointer that is used by rx handler 4973 * 4974 * Register a receive handler for a device. This handler will then be 4975 * called from __netif_receive_skb. A negative errno code is returned 4976 * on a failure. 4977 * 4978 * The caller must hold the rtnl_mutex. 4979 * 4980 * For a general description of rx_handler, see enum rx_handler_result. 4981 */ 4982 int netdev_rx_handler_register(struct net_device *dev, 4983 rx_handler_func_t *rx_handler, 4984 void *rx_handler_data) 4985 { 4986 if (netdev_is_rx_handler_busy(dev)) 4987 return -EBUSY; 4988 4989 if (dev->priv_flags & IFF_NO_RX_HANDLER) 4990 return -EINVAL; 4991 4992 /* Note: rx_handler_data must be set before rx_handler */ 4993 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data); 4994 rcu_assign_pointer(dev->rx_handler, rx_handler); 4995 4996 return 0; 4997 } 4998 EXPORT_SYMBOL_GPL(netdev_rx_handler_register); 4999 5000 /** 5001 * netdev_rx_handler_unregister - unregister receive handler 5002 * @dev: device to unregister a handler from 5003 * 5004 * Unregister a receive handler from a device. 5005 * 5006 * The caller must hold the rtnl_mutex. 5007 */ 5008 void netdev_rx_handler_unregister(struct net_device *dev) 5009 { 5010 5011 ASSERT_RTNL(); 5012 RCU_INIT_POINTER(dev->rx_handler, NULL); 5013 /* a reader seeing a non NULL rx_handler in a rcu_read_lock() 5014 * section has a guarantee to see a non NULL rx_handler_data 5015 * as well. 5016 */ 5017 synchronize_net(); 5018 RCU_INIT_POINTER(dev->rx_handler_data, NULL); 5019 } 5020 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister); 5021 5022 /* 5023 * Limit the use of PFMEMALLOC reserves to those protocols that implement 5024 * the special handling of PFMEMALLOC skbs. 5025 */ 5026 static bool skb_pfmemalloc_protocol(struct sk_buff *skb) 5027 { 5028 switch (skb->protocol) { 5029 case htons(ETH_P_ARP): 5030 case htons(ETH_P_IP): 5031 case htons(ETH_P_IPV6): 5032 case htons(ETH_P_8021Q): 5033 case htons(ETH_P_8021AD): 5034 return true; 5035 default: 5036 return false; 5037 } 5038 } 5039 5040 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev, 5041 int *ret, struct net_device *orig_dev) 5042 { 5043 if (nf_hook_ingress_active(skb)) { 5044 int ingress_retval; 5045 5046 if (*pt_prev) { 5047 *ret = deliver_skb(skb, *pt_prev, orig_dev); 5048 *pt_prev = NULL; 5049 } 5050 5051 rcu_read_lock(); 5052 ingress_retval = nf_hook_ingress(skb); 5053 rcu_read_unlock(); 5054 return ingress_retval; 5055 } 5056 return 0; 5057 } 5058 5059 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc, 5060 struct packet_type **ppt_prev) 5061 { 5062 struct packet_type *ptype, *pt_prev; 5063 rx_handler_func_t *rx_handler; 5064 struct net_device *orig_dev; 5065 bool deliver_exact = false; 5066 int ret = NET_RX_DROP; 5067 __be16 type; 5068 5069 net_timestamp_check(!netdev_tstamp_prequeue, skb); 5070 5071 trace_netif_receive_skb(skb); 5072 5073 orig_dev = skb->dev; 5074 5075 skb_reset_network_header(skb); 5076 if (!skb_transport_header_was_set(skb)) 5077 skb_reset_transport_header(skb); 5078 skb_reset_mac_len(skb); 5079 5080 pt_prev = NULL; 5081 5082 another_round: 5083 skb->skb_iif = skb->dev->ifindex; 5084 5085 __this_cpu_inc(softnet_data.processed); 5086 5087 if (static_branch_unlikely(&generic_xdp_needed_key)) { 5088 int ret2; 5089 5090 preempt_disable(); 5091 ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb); 5092 preempt_enable(); 5093 5094 if (ret2 != XDP_PASS) 5095 return NET_RX_DROP; 5096 skb_reset_mac_len(skb); 5097 } 5098 5099 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) || 5100 skb->protocol == cpu_to_be16(ETH_P_8021AD)) { 5101 skb = skb_vlan_untag(skb); 5102 if (unlikely(!skb)) 5103 goto out; 5104 } 5105 5106 if (skb_skip_tc_classify(skb)) 5107 goto skip_classify; 5108 5109 if (pfmemalloc) 5110 goto skip_taps; 5111 5112 list_for_each_entry_rcu(ptype, &ptype_all, list) { 5113 if (pt_prev) 5114 ret = deliver_skb(skb, pt_prev, orig_dev); 5115 pt_prev = ptype; 5116 } 5117 5118 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) { 5119 if (pt_prev) 5120 ret = deliver_skb(skb, pt_prev, orig_dev); 5121 pt_prev = ptype; 5122 } 5123 5124 skip_taps: 5125 #ifdef CONFIG_NET_INGRESS 5126 if (static_branch_unlikely(&ingress_needed_key)) { 5127 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev); 5128 if (!skb) 5129 goto out; 5130 5131 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0) 5132 goto out; 5133 } 5134 #endif 5135 skb_reset_redirect(skb); 5136 skip_classify: 5137 if (pfmemalloc && !skb_pfmemalloc_protocol(skb)) 5138 goto drop; 5139 5140 if (skb_vlan_tag_present(skb)) { 5141 if (pt_prev) { 5142 ret = deliver_skb(skb, pt_prev, orig_dev); 5143 pt_prev = NULL; 5144 } 5145 if (vlan_do_receive(&skb)) 5146 goto another_round; 5147 else if (unlikely(!skb)) 5148 goto out; 5149 } 5150 5151 rx_handler = rcu_dereference(skb->dev->rx_handler); 5152 if (rx_handler) { 5153 if (pt_prev) { 5154 ret = deliver_skb(skb, pt_prev, orig_dev); 5155 pt_prev = NULL; 5156 } 5157 switch (rx_handler(&skb)) { 5158 case RX_HANDLER_CONSUMED: 5159 ret = NET_RX_SUCCESS; 5160 goto out; 5161 case RX_HANDLER_ANOTHER: 5162 goto another_round; 5163 case RX_HANDLER_EXACT: 5164 deliver_exact = true; 5165 case RX_HANDLER_PASS: 5166 break; 5167 default: 5168 BUG(); 5169 } 5170 } 5171 5172 if (unlikely(skb_vlan_tag_present(skb))) { 5173 check_vlan_id: 5174 if (skb_vlan_tag_get_id(skb)) { 5175 /* Vlan id is non 0 and vlan_do_receive() above couldn't 5176 * find vlan device. 5177 */ 5178 skb->pkt_type = PACKET_OTHERHOST; 5179 } else if (skb->protocol == cpu_to_be16(ETH_P_8021Q) || 5180 skb->protocol == cpu_to_be16(ETH_P_8021AD)) { 5181 /* Outer header is 802.1P with vlan 0, inner header is 5182 * 802.1Q or 802.1AD and vlan_do_receive() above could 5183 * not find vlan dev for vlan id 0. 5184 */ 5185 __vlan_hwaccel_clear_tag(skb); 5186 skb = skb_vlan_untag(skb); 5187 if (unlikely(!skb)) 5188 goto out; 5189 if (vlan_do_receive(&skb)) 5190 /* After stripping off 802.1P header with vlan 0 5191 * vlan dev is found for inner header. 5192 */ 5193 goto another_round; 5194 else if (unlikely(!skb)) 5195 goto out; 5196 else 5197 /* We have stripped outer 802.1P vlan 0 header. 5198 * But could not find vlan dev. 5199 * check again for vlan id to set OTHERHOST. 5200 */ 5201 goto check_vlan_id; 5202 } 5203 /* Note: we might in the future use prio bits 5204 * and set skb->priority like in vlan_do_receive() 5205 * For the time being, just ignore Priority Code Point 5206 */ 5207 __vlan_hwaccel_clear_tag(skb); 5208 } 5209 5210 type = skb->protocol; 5211 5212 /* deliver only exact match when indicated */ 5213 if (likely(!deliver_exact)) { 5214 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 5215 &ptype_base[ntohs(type) & 5216 PTYPE_HASH_MASK]); 5217 } 5218 5219 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 5220 &orig_dev->ptype_specific); 5221 5222 if (unlikely(skb->dev != orig_dev)) { 5223 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 5224 &skb->dev->ptype_specific); 5225 } 5226 5227 if (pt_prev) { 5228 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC))) 5229 goto drop; 5230 *ppt_prev = pt_prev; 5231 } else { 5232 drop: 5233 if (!deliver_exact) 5234 atomic_long_inc(&skb->dev->rx_dropped); 5235 else 5236 atomic_long_inc(&skb->dev->rx_nohandler); 5237 kfree_skb(skb); 5238 /* Jamal, now you will not able to escape explaining 5239 * me how you were going to use this. :-) 5240 */ 5241 ret = NET_RX_DROP; 5242 } 5243 5244 out: 5245 return ret; 5246 } 5247 5248 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc) 5249 { 5250 struct net_device *orig_dev = skb->dev; 5251 struct packet_type *pt_prev = NULL; 5252 int ret; 5253 5254 ret = __netif_receive_skb_core(skb, pfmemalloc, &pt_prev); 5255 if (pt_prev) 5256 ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb, 5257 skb->dev, pt_prev, orig_dev); 5258 return ret; 5259 } 5260 5261 /** 5262 * netif_receive_skb_core - special purpose version of netif_receive_skb 5263 * @skb: buffer to process 5264 * 5265 * More direct receive version of netif_receive_skb(). It should 5266 * only be used by callers that have a need to skip RPS and Generic XDP. 5267 * Caller must also take care of handling if ``(page_is_)pfmemalloc``. 5268 * 5269 * This function may only be called from softirq context and interrupts 5270 * should be enabled. 5271 * 5272 * Return values (usually ignored): 5273 * NET_RX_SUCCESS: no congestion 5274 * NET_RX_DROP: packet was dropped 5275 */ 5276 int netif_receive_skb_core(struct sk_buff *skb) 5277 { 5278 int ret; 5279 5280 rcu_read_lock(); 5281 ret = __netif_receive_skb_one_core(skb, false); 5282 rcu_read_unlock(); 5283 5284 return ret; 5285 } 5286 EXPORT_SYMBOL(netif_receive_skb_core); 5287 5288 static inline void __netif_receive_skb_list_ptype(struct list_head *head, 5289 struct packet_type *pt_prev, 5290 struct net_device *orig_dev) 5291 { 5292 struct sk_buff *skb, *next; 5293 5294 if (!pt_prev) 5295 return; 5296 if (list_empty(head)) 5297 return; 5298 if (pt_prev->list_func != NULL) 5299 INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv, 5300 ip_list_rcv, head, pt_prev, orig_dev); 5301 else 5302 list_for_each_entry_safe(skb, next, head, list) { 5303 skb_list_del_init(skb); 5304 pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 5305 } 5306 } 5307 5308 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc) 5309 { 5310 /* Fast-path assumptions: 5311 * - There is no RX handler. 5312 * - Only one packet_type matches. 5313 * If either of these fails, we will end up doing some per-packet 5314 * processing in-line, then handling the 'last ptype' for the whole 5315 * sublist. This can't cause out-of-order delivery to any single ptype, 5316 * because the 'last ptype' must be constant across the sublist, and all 5317 * other ptypes are handled per-packet. 5318 */ 5319 /* Current (common) ptype of sublist */ 5320 struct packet_type *pt_curr = NULL; 5321 /* Current (common) orig_dev of sublist */ 5322 struct net_device *od_curr = NULL; 5323 struct list_head sublist; 5324 struct sk_buff *skb, *next; 5325 5326 INIT_LIST_HEAD(&sublist); 5327 list_for_each_entry_safe(skb, next, head, list) { 5328 struct net_device *orig_dev = skb->dev; 5329 struct packet_type *pt_prev = NULL; 5330 5331 skb_list_del_init(skb); 5332 __netif_receive_skb_core(skb, pfmemalloc, &pt_prev); 5333 if (!pt_prev) 5334 continue; 5335 if (pt_curr != pt_prev || od_curr != orig_dev) { 5336 /* dispatch old sublist */ 5337 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr); 5338 /* start new sublist */ 5339 INIT_LIST_HEAD(&sublist); 5340 pt_curr = pt_prev; 5341 od_curr = orig_dev; 5342 } 5343 list_add_tail(&skb->list, &sublist); 5344 } 5345 5346 /* dispatch final sublist */ 5347 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr); 5348 } 5349 5350 static int __netif_receive_skb(struct sk_buff *skb) 5351 { 5352 int ret; 5353 5354 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) { 5355 unsigned int noreclaim_flag; 5356 5357 /* 5358 * PFMEMALLOC skbs are special, they should 5359 * - be delivered to SOCK_MEMALLOC sockets only 5360 * - stay away from userspace 5361 * - have bounded memory usage 5362 * 5363 * Use PF_MEMALLOC as this saves us from propagating the allocation 5364 * context down to all allocation sites. 5365 */ 5366 noreclaim_flag = memalloc_noreclaim_save(); 5367 ret = __netif_receive_skb_one_core(skb, true); 5368 memalloc_noreclaim_restore(noreclaim_flag); 5369 } else 5370 ret = __netif_receive_skb_one_core(skb, false); 5371 5372 return ret; 5373 } 5374 5375 static void __netif_receive_skb_list(struct list_head *head) 5376 { 5377 unsigned long noreclaim_flag = 0; 5378 struct sk_buff *skb, *next; 5379 bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */ 5380 5381 list_for_each_entry_safe(skb, next, head, list) { 5382 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) { 5383 struct list_head sublist; 5384 5385 /* Handle the previous sublist */ 5386 list_cut_before(&sublist, head, &skb->list); 5387 if (!list_empty(&sublist)) 5388 __netif_receive_skb_list_core(&sublist, pfmemalloc); 5389 pfmemalloc = !pfmemalloc; 5390 /* See comments in __netif_receive_skb */ 5391 if (pfmemalloc) 5392 noreclaim_flag = memalloc_noreclaim_save(); 5393 else 5394 memalloc_noreclaim_restore(noreclaim_flag); 5395 } 5396 } 5397 /* Handle the remaining sublist */ 5398 if (!list_empty(head)) 5399 __netif_receive_skb_list_core(head, pfmemalloc); 5400 /* Restore pflags */ 5401 if (pfmemalloc) 5402 memalloc_noreclaim_restore(noreclaim_flag); 5403 } 5404 5405 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp) 5406 { 5407 struct bpf_prog *old = rtnl_dereference(dev->xdp_prog); 5408 struct bpf_prog *new = xdp->prog; 5409 int ret = 0; 5410 5411 switch (xdp->command) { 5412 case XDP_SETUP_PROG: 5413 rcu_assign_pointer(dev->xdp_prog, new); 5414 if (old) 5415 bpf_prog_put(old); 5416 5417 if (old && !new) { 5418 static_branch_dec(&generic_xdp_needed_key); 5419 } else if (new && !old) { 5420 static_branch_inc(&generic_xdp_needed_key); 5421 dev_disable_lro(dev); 5422 dev_disable_gro_hw(dev); 5423 } 5424 break; 5425 5426 case XDP_QUERY_PROG: 5427 xdp->prog_id = old ? old->aux->id : 0; 5428 break; 5429 5430 default: 5431 ret = -EINVAL; 5432 break; 5433 } 5434 5435 return ret; 5436 } 5437 5438 static int netif_receive_skb_internal(struct sk_buff *skb) 5439 { 5440 int ret; 5441 5442 net_timestamp_check(netdev_tstamp_prequeue, skb); 5443 5444 if (skb_defer_rx_timestamp(skb)) 5445 return NET_RX_SUCCESS; 5446 5447 rcu_read_lock(); 5448 #ifdef CONFIG_RPS 5449 if (static_branch_unlikely(&rps_needed)) { 5450 struct rps_dev_flow voidflow, *rflow = &voidflow; 5451 int cpu = get_rps_cpu(skb->dev, skb, &rflow); 5452 5453 if (cpu >= 0) { 5454 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 5455 rcu_read_unlock(); 5456 return ret; 5457 } 5458 } 5459 #endif 5460 ret = __netif_receive_skb(skb); 5461 rcu_read_unlock(); 5462 return ret; 5463 } 5464 5465 static void netif_receive_skb_list_internal(struct list_head *head) 5466 { 5467 struct sk_buff *skb, *next; 5468 struct list_head sublist; 5469 5470 INIT_LIST_HEAD(&sublist); 5471 list_for_each_entry_safe(skb, next, head, list) { 5472 net_timestamp_check(netdev_tstamp_prequeue, skb); 5473 skb_list_del_init(skb); 5474 if (!skb_defer_rx_timestamp(skb)) 5475 list_add_tail(&skb->list, &sublist); 5476 } 5477 list_splice_init(&sublist, head); 5478 5479 rcu_read_lock(); 5480 #ifdef CONFIG_RPS 5481 if (static_branch_unlikely(&rps_needed)) { 5482 list_for_each_entry_safe(skb, next, head, list) { 5483 struct rps_dev_flow voidflow, *rflow = &voidflow; 5484 int cpu = get_rps_cpu(skb->dev, skb, &rflow); 5485 5486 if (cpu >= 0) { 5487 /* Will be handled, remove from list */ 5488 skb_list_del_init(skb); 5489 enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 5490 } 5491 } 5492 } 5493 #endif 5494 __netif_receive_skb_list(head); 5495 rcu_read_unlock(); 5496 } 5497 5498 /** 5499 * netif_receive_skb - process receive buffer from network 5500 * @skb: buffer to process 5501 * 5502 * netif_receive_skb() is the main receive data processing function. 5503 * It always succeeds. The buffer may be dropped during processing 5504 * for congestion control or by the protocol layers. 5505 * 5506 * This function may only be called from softirq context and interrupts 5507 * should be enabled. 5508 * 5509 * Return values (usually ignored): 5510 * NET_RX_SUCCESS: no congestion 5511 * NET_RX_DROP: packet was dropped 5512 */ 5513 int netif_receive_skb(struct sk_buff *skb) 5514 { 5515 int ret; 5516 5517 trace_netif_receive_skb_entry(skb); 5518 5519 ret = netif_receive_skb_internal(skb); 5520 trace_netif_receive_skb_exit(ret); 5521 5522 return ret; 5523 } 5524 EXPORT_SYMBOL(netif_receive_skb); 5525 5526 /** 5527 * netif_receive_skb_list - process many receive buffers from network 5528 * @head: list of skbs to process. 5529 * 5530 * Since return value of netif_receive_skb() is normally ignored, and 5531 * wouldn't be meaningful for a list, this function returns void. 5532 * 5533 * This function may only be called from softirq context and interrupts 5534 * should be enabled. 5535 */ 5536 void netif_receive_skb_list(struct list_head *head) 5537 { 5538 struct sk_buff *skb; 5539 5540 if (list_empty(head)) 5541 return; 5542 if (trace_netif_receive_skb_list_entry_enabled()) { 5543 list_for_each_entry(skb, head, list) 5544 trace_netif_receive_skb_list_entry(skb); 5545 } 5546 netif_receive_skb_list_internal(head); 5547 trace_netif_receive_skb_list_exit(0); 5548 } 5549 EXPORT_SYMBOL(netif_receive_skb_list); 5550 5551 DEFINE_PER_CPU(struct work_struct, flush_works); 5552 5553 /* Network device is going away, flush any packets still pending */ 5554 static void flush_backlog(struct work_struct *work) 5555 { 5556 struct sk_buff *skb, *tmp; 5557 struct softnet_data *sd; 5558 5559 local_bh_disable(); 5560 sd = this_cpu_ptr(&softnet_data); 5561 5562 local_irq_disable(); 5563 rps_lock(sd); 5564 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) { 5565 if (skb->dev->reg_state == NETREG_UNREGISTERING) { 5566 __skb_unlink(skb, &sd->input_pkt_queue); 5567 kfree_skb(skb); 5568 input_queue_head_incr(sd); 5569 } 5570 } 5571 rps_unlock(sd); 5572 local_irq_enable(); 5573 5574 skb_queue_walk_safe(&sd->process_queue, skb, tmp) { 5575 if (skb->dev->reg_state == NETREG_UNREGISTERING) { 5576 __skb_unlink(skb, &sd->process_queue); 5577 kfree_skb(skb); 5578 input_queue_head_incr(sd); 5579 } 5580 } 5581 local_bh_enable(); 5582 } 5583 5584 static void flush_all_backlogs(void) 5585 { 5586 unsigned int cpu; 5587 5588 get_online_cpus(); 5589 5590 for_each_online_cpu(cpu) 5591 queue_work_on(cpu, system_highpri_wq, 5592 per_cpu_ptr(&flush_works, cpu)); 5593 5594 for_each_online_cpu(cpu) 5595 flush_work(per_cpu_ptr(&flush_works, cpu)); 5596 5597 put_online_cpus(); 5598 } 5599 5600 /* Pass the currently batched GRO_NORMAL SKBs up to the stack. */ 5601 static void gro_normal_list(struct napi_struct *napi) 5602 { 5603 if (!napi->rx_count) 5604 return; 5605 netif_receive_skb_list_internal(&napi->rx_list); 5606 INIT_LIST_HEAD(&napi->rx_list); 5607 napi->rx_count = 0; 5608 } 5609 5610 /* Queue one GRO_NORMAL SKB up for list processing. If batch size exceeded, 5611 * pass the whole batch up to the stack. 5612 */ 5613 static void gro_normal_one(struct napi_struct *napi, struct sk_buff *skb) 5614 { 5615 list_add_tail(&skb->list, &napi->rx_list); 5616 if (++napi->rx_count >= gro_normal_batch) 5617 gro_normal_list(napi); 5618 } 5619 5620 INDIRECT_CALLABLE_DECLARE(int inet_gro_complete(struct sk_buff *, int)); 5621 INDIRECT_CALLABLE_DECLARE(int ipv6_gro_complete(struct sk_buff *, int)); 5622 static int napi_gro_complete(struct napi_struct *napi, struct sk_buff *skb) 5623 { 5624 struct packet_offload *ptype; 5625 __be16 type = skb->protocol; 5626 struct list_head *head = &offload_base; 5627 int err = -ENOENT; 5628 5629 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb)); 5630 5631 if (NAPI_GRO_CB(skb)->count == 1) { 5632 skb_shinfo(skb)->gso_size = 0; 5633 goto out; 5634 } 5635 5636 rcu_read_lock(); 5637 list_for_each_entry_rcu(ptype, head, list) { 5638 if (ptype->type != type || !ptype->callbacks.gro_complete) 5639 continue; 5640 5641 err = INDIRECT_CALL_INET(ptype->callbacks.gro_complete, 5642 ipv6_gro_complete, inet_gro_complete, 5643 skb, 0); 5644 break; 5645 } 5646 rcu_read_unlock(); 5647 5648 if (err) { 5649 WARN_ON(&ptype->list == head); 5650 kfree_skb(skb); 5651 return NET_RX_SUCCESS; 5652 } 5653 5654 out: 5655 gro_normal_one(napi, skb); 5656 return NET_RX_SUCCESS; 5657 } 5658 5659 static void __napi_gro_flush_chain(struct napi_struct *napi, u32 index, 5660 bool flush_old) 5661 { 5662 struct list_head *head = &napi->gro_hash[index].list; 5663 struct sk_buff *skb, *p; 5664 5665 list_for_each_entry_safe_reverse(skb, p, head, list) { 5666 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies) 5667 return; 5668 skb_list_del_init(skb); 5669 napi_gro_complete(napi, skb); 5670 napi->gro_hash[index].count--; 5671 } 5672 5673 if (!napi->gro_hash[index].count) 5674 __clear_bit(index, &napi->gro_bitmask); 5675 } 5676 5677 /* napi->gro_hash[].list contains packets ordered by age. 5678 * youngest packets at the head of it. 5679 * Complete skbs in reverse order to reduce latencies. 5680 */ 5681 void napi_gro_flush(struct napi_struct *napi, bool flush_old) 5682 { 5683 unsigned long bitmask = napi->gro_bitmask; 5684 unsigned int i, base = ~0U; 5685 5686 while ((i = ffs(bitmask)) != 0) { 5687 bitmask >>= i; 5688 base += i; 5689 __napi_gro_flush_chain(napi, base, flush_old); 5690 } 5691 } 5692 EXPORT_SYMBOL(napi_gro_flush); 5693 5694 static struct list_head *gro_list_prepare(struct napi_struct *napi, 5695 struct sk_buff *skb) 5696 { 5697 unsigned int maclen = skb->dev->hard_header_len; 5698 u32 hash = skb_get_hash_raw(skb); 5699 struct list_head *head; 5700 struct sk_buff *p; 5701 5702 head = &napi->gro_hash[hash & (GRO_HASH_BUCKETS - 1)].list; 5703 list_for_each_entry(p, head, list) { 5704 unsigned long diffs; 5705 5706 NAPI_GRO_CB(p)->flush = 0; 5707 5708 if (hash != skb_get_hash_raw(p)) { 5709 NAPI_GRO_CB(p)->same_flow = 0; 5710 continue; 5711 } 5712 5713 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev; 5714 diffs |= skb_vlan_tag_present(p) ^ skb_vlan_tag_present(skb); 5715 if (skb_vlan_tag_present(p)) 5716 diffs |= skb_vlan_tag_get(p) ^ skb_vlan_tag_get(skb); 5717 diffs |= skb_metadata_dst_cmp(p, skb); 5718 diffs |= skb_metadata_differs(p, skb); 5719 if (maclen == ETH_HLEN) 5720 diffs |= compare_ether_header(skb_mac_header(p), 5721 skb_mac_header(skb)); 5722 else if (!diffs) 5723 diffs = memcmp(skb_mac_header(p), 5724 skb_mac_header(skb), 5725 maclen); 5726 NAPI_GRO_CB(p)->same_flow = !diffs; 5727 } 5728 5729 return head; 5730 } 5731 5732 static void skb_gro_reset_offset(struct sk_buff *skb) 5733 { 5734 const struct skb_shared_info *pinfo = skb_shinfo(skb); 5735 const skb_frag_t *frag0 = &pinfo->frags[0]; 5736 5737 NAPI_GRO_CB(skb)->data_offset = 0; 5738 NAPI_GRO_CB(skb)->frag0 = NULL; 5739 NAPI_GRO_CB(skb)->frag0_len = 0; 5740 5741 if (!skb_headlen(skb) && pinfo->nr_frags && 5742 !PageHighMem(skb_frag_page(frag0))) { 5743 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0); 5744 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int, 5745 skb_frag_size(frag0), 5746 skb->end - skb->tail); 5747 } 5748 } 5749 5750 static void gro_pull_from_frag0(struct sk_buff *skb, int grow) 5751 { 5752 struct skb_shared_info *pinfo = skb_shinfo(skb); 5753 5754 BUG_ON(skb->end - skb->tail < grow); 5755 5756 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow); 5757 5758 skb->data_len -= grow; 5759 skb->tail += grow; 5760 5761 skb_frag_off_add(&pinfo->frags[0], grow); 5762 skb_frag_size_sub(&pinfo->frags[0], grow); 5763 5764 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) { 5765 skb_frag_unref(skb, 0); 5766 memmove(pinfo->frags, pinfo->frags + 1, 5767 --pinfo->nr_frags * sizeof(pinfo->frags[0])); 5768 } 5769 } 5770 5771 static void gro_flush_oldest(struct napi_struct *napi, struct list_head *head) 5772 { 5773 struct sk_buff *oldest; 5774 5775 oldest = list_last_entry(head, struct sk_buff, list); 5776 5777 /* We are called with head length >= MAX_GRO_SKBS, so this is 5778 * impossible. 5779 */ 5780 if (WARN_ON_ONCE(!oldest)) 5781 return; 5782 5783 /* Do not adjust napi->gro_hash[].count, caller is adding a new 5784 * SKB to the chain. 5785 */ 5786 skb_list_del_init(oldest); 5787 napi_gro_complete(napi, oldest); 5788 } 5789 5790 INDIRECT_CALLABLE_DECLARE(struct sk_buff *inet_gro_receive(struct list_head *, 5791 struct sk_buff *)); 5792 INDIRECT_CALLABLE_DECLARE(struct sk_buff *ipv6_gro_receive(struct list_head *, 5793 struct sk_buff *)); 5794 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 5795 { 5796 u32 hash = skb_get_hash_raw(skb) & (GRO_HASH_BUCKETS - 1); 5797 struct list_head *head = &offload_base; 5798 struct packet_offload *ptype; 5799 __be16 type = skb->protocol; 5800 struct list_head *gro_head; 5801 struct sk_buff *pp = NULL; 5802 enum gro_result ret; 5803 int same_flow; 5804 int grow; 5805 5806 if (netif_elide_gro(skb->dev)) 5807 goto normal; 5808 5809 gro_head = gro_list_prepare(napi, skb); 5810 5811 rcu_read_lock(); 5812 list_for_each_entry_rcu(ptype, head, list) { 5813 if (ptype->type != type || !ptype->callbacks.gro_receive) 5814 continue; 5815 5816 skb_set_network_header(skb, skb_gro_offset(skb)); 5817 skb_reset_mac_len(skb); 5818 NAPI_GRO_CB(skb)->same_flow = 0; 5819 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb); 5820 NAPI_GRO_CB(skb)->free = 0; 5821 NAPI_GRO_CB(skb)->encap_mark = 0; 5822 NAPI_GRO_CB(skb)->recursion_counter = 0; 5823 NAPI_GRO_CB(skb)->is_fou = 0; 5824 NAPI_GRO_CB(skb)->is_atomic = 1; 5825 NAPI_GRO_CB(skb)->gro_remcsum_start = 0; 5826 5827 /* Setup for GRO checksum validation */ 5828 switch (skb->ip_summed) { 5829 case CHECKSUM_COMPLETE: 5830 NAPI_GRO_CB(skb)->csum = skb->csum; 5831 NAPI_GRO_CB(skb)->csum_valid = 1; 5832 NAPI_GRO_CB(skb)->csum_cnt = 0; 5833 break; 5834 case CHECKSUM_UNNECESSARY: 5835 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1; 5836 NAPI_GRO_CB(skb)->csum_valid = 0; 5837 break; 5838 default: 5839 NAPI_GRO_CB(skb)->csum_cnt = 0; 5840 NAPI_GRO_CB(skb)->csum_valid = 0; 5841 } 5842 5843 pp = INDIRECT_CALL_INET(ptype->callbacks.gro_receive, 5844 ipv6_gro_receive, inet_gro_receive, 5845 gro_head, skb); 5846 break; 5847 } 5848 rcu_read_unlock(); 5849 5850 if (&ptype->list == head) 5851 goto normal; 5852 5853 if (PTR_ERR(pp) == -EINPROGRESS) { 5854 ret = GRO_CONSUMED; 5855 goto ok; 5856 } 5857 5858 same_flow = NAPI_GRO_CB(skb)->same_flow; 5859 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED; 5860 5861 if (pp) { 5862 skb_list_del_init(pp); 5863 napi_gro_complete(napi, pp); 5864 napi->gro_hash[hash].count--; 5865 } 5866 5867 if (same_flow) 5868 goto ok; 5869 5870 if (NAPI_GRO_CB(skb)->flush) 5871 goto normal; 5872 5873 if (unlikely(napi->gro_hash[hash].count >= MAX_GRO_SKBS)) { 5874 gro_flush_oldest(napi, gro_head); 5875 } else { 5876 napi->gro_hash[hash].count++; 5877 } 5878 NAPI_GRO_CB(skb)->count = 1; 5879 NAPI_GRO_CB(skb)->age = jiffies; 5880 NAPI_GRO_CB(skb)->last = skb; 5881 skb_shinfo(skb)->gso_size = skb_gro_len(skb); 5882 list_add(&skb->list, gro_head); 5883 ret = GRO_HELD; 5884 5885 pull: 5886 grow = skb_gro_offset(skb) - skb_headlen(skb); 5887 if (grow > 0) 5888 gro_pull_from_frag0(skb, grow); 5889 ok: 5890 if (napi->gro_hash[hash].count) { 5891 if (!test_bit(hash, &napi->gro_bitmask)) 5892 __set_bit(hash, &napi->gro_bitmask); 5893 } else if (test_bit(hash, &napi->gro_bitmask)) { 5894 __clear_bit(hash, &napi->gro_bitmask); 5895 } 5896 5897 return ret; 5898 5899 normal: 5900 ret = GRO_NORMAL; 5901 goto pull; 5902 } 5903 5904 struct packet_offload *gro_find_receive_by_type(__be16 type) 5905 { 5906 struct list_head *offload_head = &offload_base; 5907 struct packet_offload *ptype; 5908 5909 list_for_each_entry_rcu(ptype, offload_head, list) { 5910 if (ptype->type != type || !ptype->callbacks.gro_receive) 5911 continue; 5912 return ptype; 5913 } 5914 return NULL; 5915 } 5916 EXPORT_SYMBOL(gro_find_receive_by_type); 5917 5918 struct packet_offload *gro_find_complete_by_type(__be16 type) 5919 { 5920 struct list_head *offload_head = &offload_base; 5921 struct packet_offload *ptype; 5922 5923 list_for_each_entry_rcu(ptype, offload_head, list) { 5924 if (ptype->type != type || !ptype->callbacks.gro_complete) 5925 continue; 5926 return ptype; 5927 } 5928 return NULL; 5929 } 5930 EXPORT_SYMBOL(gro_find_complete_by_type); 5931 5932 static void napi_skb_free_stolen_head(struct sk_buff *skb) 5933 { 5934 skb_dst_drop(skb); 5935 skb_ext_put(skb); 5936 kmem_cache_free(skbuff_head_cache, skb); 5937 } 5938 5939 static gro_result_t napi_skb_finish(struct napi_struct *napi, 5940 struct sk_buff *skb, 5941 gro_result_t ret) 5942 { 5943 switch (ret) { 5944 case GRO_NORMAL: 5945 gro_normal_one(napi, skb); 5946 break; 5947 5948 case GRO_DROP: 5949 kfree_skb(skb); 5950 break; 5951 5952 case GRO_MERGED_FREE: 5953 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) 5954 napi_skb_free_stolen_head(skb); 5955 else 5956 __kfree_skb(skb); 5957 break; 5958 5959 case GRO_HELD: 5960 case GRO_MERGED: 5961 case GRO_CONSUMED: 5962 break; 5963 } 5964 5965 return ret; 5966 } 5967 5968 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 5969 { 5970 gro_result_t ret; 5971 5972 skb_mark_napi_id(skb, napi); 5973 trace_napi_gro_receive_entry(skb); 5974 5975 skb_gro_reset_offset(skb); 5976 5977 ret = napi_skb_finish(napi, skb, dev_gro_receive(napi, skb)); 5978 trace_napi_gro_receive_exit(ret); 5979 5980 return ret; 5981 } 5982 EXPORT_SYMBOL(napi_gro_receive); 5983 5984 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb) 5985 { 5986 if (unlikely(skb->pfmemalloc)) { 5987 consume_skb(skb); 5988 return; 5989 } 5990 __skb_pull(skb, skb_headlen(skb)); 5991 /* restore the reserve we had after netdev_alloc_skb_ip_align() */ 5992 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb)); 5993 __vlan_hwaccel_clear_tag(skb); 5994 skb->dev = napi->dev; 5995 skb->skb_iif = 0; 5996 5997 /* eth_type_trans() assumes pkt_type is PACKET_HOST */ 5998 skb->pkt_type = PACKET_HOST; 5999 6000 skb->encapsulation = 0; 6001 skb_shinfo(skb)->gso_type = 0; 6002 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb)); 6003 skb_ext_reset(skb); 6004 6005 napi->skb = skb; 6006 } 6007 6008 struct sk_buff *napi_get_frags(struct napi_struct *napi) 6009 { 6010 struct sk_buff *skb = napi->skb; 6011 6012 if (!skb) { 6013 skb = napi_alloc_skb(napi, GRO_MAX_HEAD); 6014 if (skb) { 6015 napi->skb = skb; 6016 skb_mark_napi_id(skb, napi); 6017 } 6018 } 6019 return skb; 6020 } 6021 EXPORT_SYMBOL(napi_get_frags); 6022 6023 static gro_result_t napi_frags_finish(struct napi_struct *napi, 6024 struct sk_buff *skb, 6025 gro_result_t ret) 6026 { 6027 switch (ret) { 6028 case GRO_NORMAL: 6029 case GRO_HELD: 6030 __skb_push(skb, ETH_HLEN); 6031 skb->protocol = eth_type_trans(skb, skb->dev); 6032 if (ret == GRO_NORMAL) 6033 gro_normal_one(napi, skb); 6034 break; 6035 6036 case GRO_DROP: 6037 napi_reuse_skb(napi, skb); 6038 break; 6039 6040 case GRO_MERGED_FREE: 6041 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) 6042 napi_skb_free_stolen_head(skb); 6043 else 6044 napi_reuse_skb(napi, skb); 6045 break; 6046 6047 case GRO_MERGED: 6048 case GRO_CONSUMED: 6049 break; 6050 } 6051 6052 return ret; 6053 } 6054 6055 /* Upper GRO stack assumes network header starts at gro_offset=0 6056 * Drivers could call both napi_gro_frags() and napi_gro_receive() 6057 * We copy ethernet header into skb->data to have a common layout. 6058 */ 6059 static struct sk_buff *napi_frags_skb(struct napi_struct *napi) 6060 { 6061 struct sk_buff *skb = napi->skb; 6062 const struct ethhdr *eth; 6063 unsigned int hlen = sizeof(*eth); 6064 6065 napi->skb = NULL; 6066 6067 skb_reset_mac_header(skb); 6068 skb_gro_reset_offset(skb); 6069 6070 if (unlikely(skb_gro_header_hard(skb, hlen))) { 6071 eth = skb_gro_header_slow(skb, hlen, 0); 6072 if (unlikely(!eth)) { 6073 net_warn_ratelimited("%s: dropping impossible skb from %s\n", 6074 __func__, napi->dev->name); 6075 napi_reuse_skb(napi, skb); 6076 return NULL; 6077 } 6078 } else { 6079 eth = (const struct ethhdr *)skb->data; 6080 gro_pull_from_frag0(skb, hlen); 6081 NAPI_GRO_CB(skb)->frag0 += hlen; 6082 NAPI_GRO_CB(skb)->frag0_len -= hlen; 6083 } 6084 __skb_pull(skb, hlen); 6085 6086 /* 6087 * This works because the only protocols we care about don't require 6088 * special handling. 6089 * We'll fix it up properly in napi_frags_finish() 6090 */ 6091 skb->protocol = eth->h_proto; 6092 6093 return skb; 6094 } 6095 6096 gro_result_t napi_gro_frags(struct napi_struct *napi) 6097 { 6098 gro_result_t ret; 6099 struct sk_buff *skb = napi_frags_skb(napi); 6100 6101 if (!skb) 6102 return GRO_DROP; 6103 6104 trace_napi_gro_frags_entry(skb); 6105 6106 ret = napi_frags_finish(napi, skb, dev_gro_receive(napi, skb)); 6107 trace_napi_gro_frags_exit(ret); 6108 6109 return ret; 6110 } 6111 EXPORT_SYMBOL(napi_gro_frags); 6112 6113 /* Compute the checksum from gro_offset and return the folded value 6114 * after adding in any pseudo checksum. 6115 */ 6116 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb) 6117 { 6118 __wsum wsum; 6119 __sum16 sum; 6120 6121 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0); 6122 6123 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */ 6124 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum)); 6125 /* See comments in __skb_checksum_complete(). */ 6126 if (likely(!sum)) { 6127 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) && 6128 !skb->csum_complete_sw) 6129 netdev_rx_csum_fault(skb->dev, skb); 6130 } 6131 6132 NAPI_GRO_CB(skb)->csum = wsum; 6133 NAPI_GRO_CB(skb)->csum_valid = 1; 6134 6135 return sum; 6136 } 6137 EXPORT_SYMBOL(__skb_gro_checksum_complete); 6138 6139 static void net_rps_send_ipi(struct softnet_data *remsd) 6140 { 6141 #ifdef CONFIG_RPS 6142 while (remsd) { 6143 struct softnet_data *next = remsd->rps_ipi_next; 6144 6145 if (cpu_online(remsd->cpu)) 6146 smp_call_function_single_async(remsd->cpu, &remsd->csd); 6147 remsd = next; 6148 } 6149 #endif 6150 } 6151 6152 /* 6153 * net_rps_action_and_irq_enable sends any pending IPI's for rps. 6154 * Note: called with local irq disabled, but exits with local irq enabled. 6155 */ 6156 static void net_rps_action_and_irq_enable(struct softnet_data *sd) 6157 { 6158 #ifdef CONFIG_RPS 6159 struct softnet_data *remsd = sd->rps_ipi_list; 6160 6161 if (remsd) { 6162 sd->rps_ipi_list = NULL; 6163 6164 local_irq_enable(); 6165 6166 /* Send pending IPI's to kick RPS processing on remote cpus. */ 6167 net_rps_send_ipi(remsd); 6168 } else 6169 #endif 6170 local_irq_enable(); 6171 } 6172 6173 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd) 6174 { 6175 #ifdef CONFIG_RPS 6176 return sd->rps_ipi_list != NULL; 6177 #else 6178 return false; 6179 #endif 6180 } 6181 6182 static int process_backlog(struct napi_struct *napi, int quota) 6183 { 6184 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog); 6185 bool again = true; 6186 int work = 0; 6187 6188 /* Check if we have pending ipi, its better to send them now, 6189 * not waiting net_rx_action() end. 6190 */ 6191 if (sd_has_rps_ipi_waiting(sd)) { 6192 local_irq_disable(); 6193 net_rps_action_and_irq_enable(sd); 6194 } 6195 6196 napi->weight = dev_rx_weight; 6197 while (again) { 6198 struct sk_buff *skb; 6199 6200 while ((skb = __skb_dequeue(&sd->process_queue))) { 6201 rcu_read_lock(); 6202 __netif_receive_skb(skb); 6203 rcu_read_unlock(); 6204 input_queue_head_incr(sd); 6205 if (++work >= quota) 6206 return work; 6207 6208 } 6209 6210 local_irq_disable(); 6211 rps_lock(sd); 6212 if (skb_queue_empty(&sd->input_pkt_queue)) { 6213 /* 6214 * Inline a custom version of __napi_complete(). 6215 * only current cpu owns and manipulates this napi, 6216 * and NAPI_STATE_SCHED is the only possible flag set 6217 * on backlog. 6218 * We can use a plain write instead of clear_bit(), 6219 * and we dont need an smp_mb() memory barrier. 6220 */ 6221 napi->state = 0; 6222 again = false; 6223 } else { 6224 skb_queue_splice_tail_init(&sd->input_pkt_queue, 6225 &sd->process_queue); 6226 } 6227 rps_unlock(sd); 6228 local_irq_enable(); 6229 } 6230 6231 return work; 6232 } 6233 6234 /** 6235 * __napi_schedule - schedule for receive 6236 * @n: entry to schedule 6237 * 6238 * The entry's receive function will be scheduled to run. 6239 * Consider using __napi_schedule_irqoff() if hard irqs are masked. 6240 */ 6241 void __napi_schedule(struct napi_struct *n) 6242 { 6243 unsigned long flags; 6244 6245 local_irq_save(flags); 6246 ____napi_schedule(this_cpu_ptr(&softnet_data), n); 6247 local_irq_restore(flags); 6248 } 6249 EXPORT_SYMBOL(__napi_schedule); 6250 6251 /** 6252 * napi_schedule_prep - check if napi can be scheduled 6253 * @n: napi context 6254 * 6255 * Test if NAPI routine is already running, and if not mark 6256 * it as running. This is used as a condition variable 6257 * insure only one NAPI poll instance runs. We also make 6258 * sure there is no pending NAPI disable. 6259 */ 6260 bool napi_schedule_prep(struct napi_struct *n) 6261 { 6262 unsigned long val, new; 6263 6264 do { 6265 val = READ_ONCE(n->state); 6266 if (unlikely(val & NAPIF_STATE_DISABLE)) 6267 return false; 6268 new = val | NAPIF_STATE_SCHED; 6269 6270 /* Sets STATE_MISSED bit if STATE_SCHED was already set 6271 * This was suggested by Alexander Duyck, as compiler 6272 * emits better code than : 6273 * if (val & NAPIF_STATE_SCHED) 6274 * new |= NAPIF_STATE_MISSED; 6275 */ 6276 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED * 6277 NAPIF_STATE_MISSED; 6278 } while (cmpxchg(&n->state, val, new) != val); 6279 6280 return !(val & NAPIF_STATE_SCHED); 6281 } 6282 EXPORT_SYMBOL(napi_schedule_prep); 6283 6284 /** 6285 * __napi_schedule_irqoff - schedule for receive 6286 * @n: entry to schedule 6287 * 6288 * Variant of __napi_schedule() assuming hard irqs are masked 6289 */ 6290 void __napi_schedule_irqoff(struct napi_struct *n) 6291 { 6292 ____napi_schedule(this_cpu_ptr(&softnet_data), n); 6293 } 6294 EXPORT_SYMBOL(__napi_schedule_irqoff); 6295 6296 bool napi_complete_done(struct napi_struct *n, int work_done) 6297 { 6298 unsigned long flags, val, new, timeout = 0; 6299 bool ret = true; 6300 6301 /* 6302 * 1) Don't let napi dequeue from the cpu poll list 6303 * just in case its running on a different cpu. 6304 * 2) If we are busy polling, do nothing here, we have 6305 * the guarantee we will be called later. 6306 */ 6307 if (unlikely(n->state & (NAPIF_STATE_NPSVC | 6308 NAPIF_STATE_IN_BUSY_POLL))) 6309 return false; 6310 6311 if (work_done) { 6312 if (n->gro_bitmask) 6313 timeout = READ_ONCE(n->dev->gro_flush_timeout); 6314 n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs); 6315 } 6316 if (n->defer_hard_irqs_count > 0) { 6317 n->defer_hard_irqs_count--; 6318 timeout = READ_ONCE(n->dev->gro_flush_timeout); 6319 if (timeout) 6320 ret = false; 6321 } 6322 if (n->gro_bitmask) { 6323 /* When the NAPI instance uses a timeout and keeps postponing 6324 * it, we need to bound somehow the time packets are kept in 6325 * the GRO layer 6326 */ 6327 napi_gro_flush(n, !!timeout); 6328 } 6329 6330 gro_normal_list(n); 6331 6332 if (unlikely(!list_empty(&n->poll_list))) { 6333 /* If n->poll_list is not empty, we need to mask irqs */ 6334 local_irq_save(flags); 6335 list_del_init(&n->poll_list); 6336 local_irq_restore(flags); 6337 } 6338 6339 do { 6340 val = READ_ONCE(n->state); 6341 6342 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED)); 6343 6344 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED); 6345 6346 /* If STATE_MISSED was set, leave STATE_SCHED set, 6347 * because we will call napi->poll() one more time. 6348 * This C code was suggested by Alexander Duyck to help gcc. 6349 */ 6350 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED * 6351 NAPIF_STATE_SCHED; 6352 } while (cmpxchg(&n->state, val, new) != val); 6353 6354 if (unlikely(val & NAPIF_STATE_MISSED)) { 6355 __napi_schedule(n); 6356 return false; 6357 } 6358 6359 if (timeout) 6360 hrtimer_start(&n->timer, ns_to_ktime(timeout), 6361 HRTIMER_MODE_REL_PINNED); 6362 return ret; 6363 } 6364 EXPORT_SYMBOL(napi_complete_done); 6365 6366 /* must be called under rcu_read_lock(), as we dont take a reference */ 6367 static struct napi_struct *napi_by_id(unsigned int napi_id) 6368 { 6369 unsigned int hash = napi_id % HASH_SIZE(napi_hash); 6370 struct napi_struct *napi; 6371 6372 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node) 6373 if (napi->napi_id == napi_id) 6374 return napi; 6375 6376 return NULL; 6377 } 6378 6379 #if defined(CONFIG_NET_RX_BUSY_POLL) 6380 6381 #define BUSY_POLL_BUDGET 8 6382 6383 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock) 6384 { 6385 int rc; 6386 6387 /* Busy polling means there is a high chance device driver hard irq 6388 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was 6389 * set in napi_schedule_prep(). 6390 * Since we are about to call napi->poll() once more, we can safely 6391 * clear NAPI_STATE_MISSED. 6392 * 6393 * Note: x86 could use a single "lock and ..." instruction 6394 * to perform these two clear_bit() 6395 */ 6396 clear_bit(NAPI_STATE_MISSED, &napi->state); 6397 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state); 6398 6399 local_bh_disable(); 6400 6401 /* All we really want here is to re-enable device interrupts. 6402 * Ideally, a new ndo_busy_poll_stop() could avoid another round. 6403 */ 6404 rc = napi->poll(napi, BUSY_POLL_BUDGET); 6405 /* We can't gro_normal_list() here, because napi->poll() might have 6406 * rearmed the napi (napi_complete_done()) in which case it could 6407 * already be running on another CPU. 6408 */ 6409 trace_napi_poll(napi, rc, BUSY_POLL_BUDGET); 6410 netpoll_poll_unlock(have_poll_lock); 6411 if (rc == BUSY_POLL_BUDGET) { 6412 /* As the whole budget was spent, we still own the napi so can 6413 * safely handle the rx_list. 6414 */ 6415 gro_normal_list(napi); 6416 __napi_schedule(napi); 6417 } 6418 local_bh_enable(); 6419 } 6420 6421 void napi_busy_loop(unsigned int napi_id, 6422 bool (*loop_end)(void *, unsigned long), 6423 void *loop_end_arg) 6424 { 6425 unsigned long start_time = loop_end ? busy_loop_current_time() : 0; 6426 int (*napi_poll)(struct napi_struct *napi, int budget); 6427 void *have_poll_lock = NULL; 6428 struct napi_struct *napi; 6429 6430 restart: 6431 napi_poll = NULL; 6432 6433 rcu_read_lock(); 6434 6435 napi = napi_by_id(napi_id); 6436 if (!napi) 6437 goto out; 6438 6439 preempt_disable(); 6440 for (;;) { 6441 int work = 0; 6442 6443 local_bh_disable(); 6444 if (!napi_poll) { 6445 unsigned long val = READ_ONCE(napi->state); 6446 6447 /* If multiple threads are competing for this napi, 6448 * we avoid dirtying napi->state as much as we can. 6449 */ 6450 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED | 6451 NAPIF_STATE_IN_BUSY_POLL)) 6452 goto count; 6453 if (cmpxchg(&napi->state, val, 6454 val | NAPIF_STATE_IN_BUSY_POLL | 6455 NAPIF_STATE_SCHED) != val) 6456 goto count; 6457 have_poll_lock = netpoll_poll_lock(napi); 6458 napi_poll = napi->poll; 6459 } 6460 work = napi_poll(napi, BUSY_POLL_BUDGET); 6461 trace_napi_poll(napi, work, BUSY_POLL_BUDGET); 6462 gro_normal_list(napi); 6463 count: 6464 if (work > 0) 6465 __NET_ADD_STATS(dev_net(napi->dev), 6466 LINUX_MIB_BUSYPOLLRXPACKETS, work); 6467 local_bh_enable(); 6468 6469 if (!loop_end || loop_end(loop_end_arg, start_time)) 6470 break; 6471 6472 if (unlikely(need_resched())) { 6473 if (napi_poll) 6474 busy_poll_stop(napi, have_poll_lock); 6475 preempt_enable(); 6476 rcu_read_unlock(); 6477 cond_resched(); 6478 if (loop_end(loop_end_arg, start_time)) 6479 return; 6480 goto restart; 6481 } 6482 cpu_relax(); 6483 } 6484 if (napi_poll) 6485 busy_poll_stop(napi, have_poll_lock); 6486 preempt_enable(); 6487 out: 6488 rcu_read_unlock(); 6489 } 6490 EXPORT_SYMBOL(napi_busy_loop); 6491 6492 #endif /* CONFIG_NET_RX_BUSY_POLL */ 6493 6494 static void napi_hash_add(struct napi_struct *napi) 6495 { 6496 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) || 6497 test_and_set_bit(NAPI_STATE_HASHED, &napi->state)) 6498 return; 6499 6500 spin_lock(&napi_hash_lock); 6501 6502 /* 0..NR_CPUS range is reserved for sender_cpu use */ 6503 do { 6504 if (unlikely(++napi_gen_id < MIN_NAPI_ID)) 6505 napi_gen_id = MIN_NAPI_ID; 6506 } while (napi_by_id(napi_gen_id)); 6507 napi->napi_id = napi_gen_id; 6508 6509 hlist_add_head_rcu(&napi->napi_hash_node, 6510 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]); 6511 6512 spin_unlock(&napi_hash_lock); 6513 } 6514 6515 /* Warning : caller is responsible to make sure rcu grace period 6516 * is respected before freeing memory containing @napi 6517 */ 6518 bool napi_hash_del(struct napi_struct *napi) 6519 { 6520 bool rcu_sync_needed = false; 6521 6522 spin_lock(&napi_hash_lock); 6523 6524 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) { 6525 rcu_sync_needed = true; 6526 hlist_del_rcu(&napi->napi_hash_node); 6527 } 6528 spin_unlock(&napi_hash_lock); 6529 return rcu_sync_needed; 6530 } 6531 EXPORT_SYMBOL_GPL(napi_hash_del); 6532 6533 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer) 6534 { 6535 struct napi_struct *napi; 6536 6537 napi = container_of(timer, struct napi_struct, timer); 6538 6539 /* Note : we use a relaxed variant of napi_schedule_prep() not setting 6540 * NAPI_STATE_MISSED, since we do not react to a device IRQ. 6541 */ 6542 if (!napi_disable_pending(napi) && 6543 !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) 6544 __napi_schedule_irqoff(napi); 6545 6546 return HRTIMER_NORESTART; 6547 } 6548 6549 static void init_gro_hash(struct napi_struct *napi) 6550 { 6551 int i; 6552 6553 for (i = 0; i < GRO_HASH_BUCKETS; i++) { 6554 INIT_LIST_HEAD(&napi->gro_hash[i].list); 6555 napi->gro_hash[i].count = 0; 6556 } 6557 napi->gro_bitmask = 0; 6558 } 6559 6560 void netif_napi_add(struct net_device *dev, struct napi_struct *napi, 6561 int (*poll)(struct napi_struct *, int), int weight) 6562 { 6563 INIT_LIST_HEAD(&napi->poll_list); 6564 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED); 6565 napi->timer.function = napi_watchdog; 6566 init_gro_hash(napi); 6567 napi->skb = NULL; 6568 INIT_LIST_HEAD(&napi->rx_list); 6569 napi->rx_count = 0; 6570 napi->poll = poll; 6571 if (weight > NAPI_POLL_WEIGHT) 6572 netdev_err_once(dev, "%s() called with weight %d\n", __func__, 6573 weight); 6574 napi->weight = weight; 6575 list_add(&napi->dev_list, &dev->napi_list); 6576 napi->dev = dev; 6577 #ifdef CONFIG_NETPOLL 6578 napi->poll_owner = -1; 6579 #endif 6580 set_bit(NAPI_STATE_SCHED, &napi->state); 6581 napi_hash_add(napi); 6582 } 6583 EXPORT_SYMBOL(netif_napi_add); 6584 6585 void napi_disable(struct napi_struct *n) 6586 { 6587 might_sleep(); 6588 set_bit(NAPI_STATE_DISABLE, &n->state); 6589 6590 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state)) 6591 msleep(1); 6592 while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state)) 6593 msleep(1); 6594 6595 hrtimer_cancel(&n->timer); 6596 6597 clear_bit(NAPI_STATE_DISABLE, &n->state); 6598 } 6599 EXPORT_SYMBOL(napi_disable); 6600 6601 static void flush_gro_hash(struct napi_struct *napi) 6602 { 6603 int i; 6604 6605 for (i = 0; i < GRO_HASH_BUCKETS; i++) { 6606 struct sk_buff *skb, *n; 6607 6608 list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list) 6609 kfree_skb(skb); 6610 napi->gro_hash[i].count = 0; 6611 } 6612 } 6613 6614 /* Must be called in process context */ 6615 void netif_napi_del(struct napi_struct *napi) 6616 { 6617 might_sleep(); 6618 if (napi_hash_del(napi)) 6619 synchronize_net(); 6620 list_del_init(&napi->dev_list); 6621 napi_free_frags(napi); 6622 6623 flush_gro_hash(napi); 6624 napi->gro_bitmask = 0; 6625 } 6626 EXPORT_SYMBOL(netif_napi_del); 6627 6628 static int napi_poll(struct napi_struct *n, struct list_head *repoll) 6629 { 6630 void *have; 6631 int work, weight; 6632 6633 list_del_init(&n->poll_list); 6634 6635 have = netpoll_poll_lock(n); 6636 6637 weight = n->weight; 6638 6639 /* This NAPI_STATE_SCHED test is for avoiding a race 6640 * with netpoll's poll_napi(). Only the entity which 6641 * obtains the lock and sees NAPI_STATE_SCHED set will 6642 * actually make the ->poll() call. Therefore we avoid 6643 * accidentally calling ->poll() when NAPI is not scheduled. 6644 */ 6645 work = 0; 6646 if (test_bit(NAPI_STATE_SCHED, &n->state)) { 6647 work = n->poll(n, weight); 6648 trace_napi_poll(n, work, weight); 6649 } 6650 6651 WARN_ON_ONCE(work > weight); 6652 6653 if (likely(work < weight)) 6654 goto out_unlock; 6655 6656 /* Drivers must not modify the NAPI state if they 6657 * consume the entire weight. In such cases this code 6658 * still "owns" the NAPI instance and therefore can 6659 * move the instance around on the list at-will. 6660 */ 6661 if (unlikely(napi_disable_pending(n))) { 6662 napi_complete(n); 6663 goto out_unlock; 6664 } 6665 6666 if (n->gro_bitmask) { 6667 /* flush too old packets 6668 * If HZ < 1000, flush all packets. 6669 */ 6670 napi_gro_flush(n, HZ >= 1000); 6671 } 6672 6673 gro_normal_list(n); 6674 6675 /* Some drivers may have called napi_schedule 6676 * prior to exhausting their budget. 6677 */ 6678 if (unlikely(!list_empty(&n->poll_list))) { 6679 pr_warn_once("%s: Budget exhausted after napi rescheduled\n", 6680 n->dev ? n->dev->name : "backlog"); 6681 goto out_unlock; 6682 } 6683 6684 list_add_tail(&n->poll_list, repoll); 6685 6686 out_unlock: 6687 netpoll_poll_unlock(have); 6688 6689 return work; 6690 } 6691 6692 static __latent_entropy void net_rx_action(struct softirq_action *h) 6693 { 6694 struct softnet_data *sd = this_cpu_ptr(&softnet_data); 6695 unsigned long time_limit = jiffies + 6696 usecs_to_jiffies(netdev_budget_usecs); 6697 int budget = netdev_budget; 6698 LIST_HEAD(list); 6699 LIST_HEAD(repoll); 6700 6701 local_irq_disable(); 6702 list_splice_init(&sd->poll_list, &list); 6703 local_irq_enable(); 6704 6705 for (;;) { 6706 struct napi_struct *n; 6707 6708 if (list_empty(&list)) { 6709 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll)) 6710 goto out; 6711 break; 6712 } 6713 6714 n = list_first_entry(&list, struct napi_struct, poll_list); 6715 budget -= napi_poll(n, &repoll); 6716 6717 /* If softirq window is exhausted then punt. 6718 * Allow this to run for 2 jiffies since which will allow 6719 * an average latency of 1.5/HZ. 6720 */ 6721 if (unlikely(budget <= 0 || 6722 time_after_eq(jiffies, time_limit))) { 6723 sd->time_squeeze++; 6724 break; 6725 } 6726 } 6727 6728 local_irq_disable(); 6729 6730 list_splice_tail_init(&sd->poll_list, &list); 6731 list_splice_tail(&repoll, &list); 6732 list_splice(&list, &sd->poll_list); 6733 if (!list_empty(&sd->poll_list)) 6734 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 6735 6736 net_rps_action_and_irq_enable(sd); 6737 out: 6738 __kfree_skb_flush(); 6739 } 6740 6741 struct netdev_adjacent { 6742 struct net_device *dev; 6743 6744 /* upper master flag, there can only be one master device per list */ 6745 bool master; 6746 6747 /* lookup ignore flag */ 6748 bool ignore; 6749 6750 /* counter for the number of times this device was added to us */ 6751 u16 ref_nr; 6752 6753 /* private field for the users */ 6754 void *private; 6755 6756 struct list_head list; 6757 struct rcu_head rcu; 6758 }; 6759 6760 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev, 6761 struct list_head *adj_list) 6762 { 6763 struct netdev_adjacent *adj; 6764 6765 list_for_each_entry(adj, adj_list, list) { 6766 if (adj->dev == adj_dev) 6767 return adj; 6768 } 6769 return NULL; 6770 } 6771 6772 static int ____netdev_has_upper_dev(struct net_device *upper_dev, void *data) 6773 { 6774 struct net_device *dev = data; 6775 6776 return upper_dev == dev; 6777 } 6778 6779 /** 6780 * netdev_has_upper_dev - Check if device is linked to an upper device 6781 * @dev: device 6782 * @upper_dev: upper device to check 6783 * 6784 * Find out if a device is linked to specified upper device and return true 6785 * in case it is. Note that this checks only immediate upper device, 6786 * not through a complete stack of devices. The caller must hold the RTNL lock. 6787 */ 6788 bool netdev_has_upper_dev(struct net_device *dev, 6789 struct net_device *upper_dev) 6790 { 6791 ASSERT_RTNL(); 6792 6793 return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev, 6794 upper_dev); 6795 } 6796 EXPORT_SYMBOL(netdev_has_upper_dev); 6797 6798 /** 6799 * netdev_has_upper_dev_all - Check if device is linked to an upper device 6800 * @dev: device 6801 * @upper_dev: upper device to check 6802 * 6803 * Find out if a device is linked to specified upper device and return true 6804 * in case it is. Note that this checks the entire upper device chain. 6805 * The caller must hold rcu lock. 6806 */ 6807 6808 bool netdev_has_upper_dev_all_rcu(struct net_device *dev, 6809 struct net_device *upper_dev) 6810 { 6811 return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev, 6812 upper_dev); 6813 } 6814 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu); 6815 6816 /** 6817 * netdev_has_any_upper_dev - Check if device is linked to some device 6818 * @dev: device 6819 * 6820 * Find out if a device is linked to an upper device and return true in case 6821 * it is. The caller must hold the RTNL lock. 6822 */ 6823 bool netdev_has_any_upper_dev(struct net_device *dev) 6824 { 6825 ASSERT_RTNL(); 6826 6827 return !list_empty(&dev->adj_list.upper); 6828 } 6829 EXPORT_SYMBOL(netdev_has_any_upper_dev); 6830 6831 /** 6832 * netdev_master_upper_dev_get - Get master upper device 6833 * @dev: device 6834 * 6835 * Find a master upper device and return pointer to it or NULL in case 6836 * it's not there. The caller must hold the RTNL lock. 6837 */ 6838 struct net_device *netdev_master_upper_dev_get(struct net_device *dev) 6839 { 6840 struct netdev_adjacent *upper; 6841 6842 ASSERT_RTNL(); 6843 6844 if (list_empty(&dev->adj_list.upper)) 6845 return NULL; 6846 6847 upper = list_first_entry(&dev->adj_list.upper, 6848 struct netdev_adjacent, list); 6849 if (likely(upper->master)) 6850 return upper->dev; 6851 return NULL; 6852 } 6853 EXPORT_SYMBOL(netdev_master_upper_dev_get); 6854 6855 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev) 6856 { 6857 struct netdev_adjacent *upper; 6858 6859 ASSERT_RTNL(); 6860 6861 if (list_empty(&dev->adj_list.upper)) 6862 return NULL; 6863 6864 upper = list_first_entry(&dev->adj_list.upper, 6865 struct netdev_adjacent, list); 6866 if (likely(upper->master) && !upper->ignore) 6867 return upper->dev; 6868 return NULL; 6869 } 6870 6871 /** 6872 * netdev_has_any_lower_dev - Check if device is linked to some device 6873 * @dev: device 6874 * 6875 * Find out if a device is linked to a lower device and return true in case 6876 * it is. The caller must hold the RTNL lock. 6877 */ 6878 static bool netdev_has_any_lower_dev(struct net_device *dev) 6879 { 6880 ASSERT_RTNL(); 6881 6882 return !list_empty(&dev->adj_list.lower); 6883 } 6884 6885 void *netdev_adjacent_get_private(struct list_head *adj_list) 6886 { 6887 struct netdev_adjacent *adj; 6888 6889 adj = list_entry(adj_list, struct netdev_adjacent, list); 6890 6891 return adj->private; 6892 } 6893 EXPORT_SYMBOL(netdev_adjacent_get_private); 6894 6895 /** 6896 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list 6897 * @dev: device 6898 * @iter: list_head ** of the current position 6899 * 6900 * Gets the next device from the dev's upper list, starting from iter 6901 * position. The caller must hold RCU read lock. 6902 */ 6903 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev, 6904 struct list_head **iter) 6905 { 6906 struct netdev_adjacent *upper; 6907 6908 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); 6909 6910 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 6911 6912 if (&upper->list == &dev->adj_list.upper) 6913 return NULL; 6914 6915 *iter = &upper->list; 6916 6917 return upper->dev; 6918 } 6919 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu); 6920 6921 static struct net_device *__netdev_next_upper_dev(struct net_device *dev, 6922 struct list_head **iter, 6923 bool *ignore) 6924 { 6925 struct netdev_adjacent *upper; 6926 6927 upper = list_entry((*iter)->next, struct netdev_adjacent, list); 6928 6929 if (&upper->list == &dev->adj_list.upper) 6930 return NULL; 6931 6932 *iter = &upper->list; 6933 *ignore = upper->ignore; 6934 6935 return upper->dev; 6936 } 6937 6938 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev, 6939 struct list_head **iter) 6940 { 6941 struct netdev_adjacent *upper; 6942 6943 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); 6944 6945 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 6946 6947 if (&upper->list == &dev->adj_list.upper) 6948 return NULL; 6949 6950 *iter = &upper->list; 6951 6952 return upper->dev; 6953 } 6954 6955 static int __netdev_walk_all_upper_dev(struct net_device *dev, 6956 int (*fn)(struct net_device *dev, 6957 void *data), 6958 void *data) 6959 { 6960 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 6961 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 6962 int ret, cur = 0; 6963 bool ignore; 6964 6965 now = dev; 6966 iter = &dev->adj_list.upper; 6967 6968 while (1) { 6969 if (now != dev) { 6970 ret = fn(now, data); 6971 if (ret) 6972 return ret; 6973 } 6974 6975 next = NULL; 6976 while (1) { 6977 udev = __netdev_next_upper_dev(now, &iter, &ignore); 6978 if (!udev) 6979 break; 6980 if (ignore) 6981 continue; 6982 6983 next = udev; 6984 niter = &udev->adj_list.upper; 6985 dev_stack[cur] = now; 6986 iter_stack[cur++] = iter; 6987 break; 6988 } 6989 6990 if (!next) { 6991 if (!cur) 6992 return 0; 6993 next = dev_stack[--cur]; 6994 niter = iter_stack[cur]; 6995 } 6996 6997 now = next; 6998 iter = niter; 6999 } 7000 7001 return 0; 7002 } 7003 7004 int netdev_walk_all_upper_dev_rcu(struct net_device *dev, 7005 int (*fn)(struct net_device *dev, 7006 void *data), 7007 void *data) 7008 { 7009 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 7010 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 7011 int ret, cur = 0; 7012 7013 now = dev; 7014 iter = &dev->adj_list.upper; 7015 7016 while (1) { 7017 if (now != dev) { 7018 ret = fn(now, data); 7019 if (ret) 7020 return ret; 7021 } 7022 7023 next = NULL; 7024 while (1) { 7025 udev = netdev_next_upper_dev_rcu(now, &iter); 7026 if (!udev) 7027 break; 7028 7029 next = udev; 7030 niter = &udev->adj_list.upper; 7031 dev_stack[cur] = now; 7032 iter_stack[cur++] = iter; 7033 break; 7034 } 7035 7036 if (!next) { 7037 if (!cur) 7038 return 0; 7039 next = dev_stack[--cur]; 7040 niter = iter_stack[cur]; 7041 } 7042 7043 now = next; 7044 iter = niter; 7045 } 7046 7047 return 0; 7048 } 7049 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu); 7050 7051 static bool __netdev_has_upper_dev(struct net_device *dev, 7052 struct net_device *upper_dev) 7053 { 7054 ASSERT_RTNL(); 7055 7056 return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev, 7057 upper_dev); 7058 } 7059 7060 /** 7061 * netdev_lower_get_next_private - Get the next ->private from the 7062 * lower neighbour list 7063 * @dev: device 7064 * @iter: list_head ** of the current position 7065 * 7066 * Gets the next netdev_adjacent->private from the dev's lower neighbour 7067 * list, starting from iter position. The caller must hold either hold the 7068 * RTNL lock or its own locking that guarantees that the neighbour lower 7069 * list will remain unchanged. 7070 */ 7071 void *netdev_lower_get_next_private(struct net_device *dev, 7072 struct list_head **iter) 7073 { 7074 struct netdev_adjacent *lower; 7075 7076 lower = list_entry(*iter, struct netdev_adjacent, list); 7077 7078 if (&lower->list == &dev->adj_list.lower) 7079 return NULL; 7080 7081 *iter = lower->list.next; 7082 7083 return lower->private; 7084 } 7085 EXPORT_SYMBOL(netdev_lower_get_next_private); 7086 7087 /** 7088 * netdev_lower_get_next_private_rcu - Get the next ->private from the 7089 * lower neighbour list, RCU 7090 * variant 7091 * @dev: device 7092 * @iter: list_head ** of the current position 7093 * 7094 * Gets the next netdev_adjacent->private from the dev's lower neighbour 7095 * list, starting from iter position. The caller must hold RCU read lock. 7096 */ 7097 void *netdev_lower_get_next_private_rcu(struct net_device *dev, 7098 struct list_head **iter) 7099 { 7100 struct netdev_adjacent *lower; 7101 7102 WARN_ON_ONCE(!rcu_read_lock_held()); 7103 7104 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 7105 7106 if (&lower->list == &dev->adj_list.lower) 7107 return NULL; 7108 7109 *iter = &lower->list; 7110 7111 return lower->private; 7112 } 7113 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu); 7114 7115 /** 7116 * netdev_lower_get_next - Get the next device from the lower neighbour 7117 * list 7118 * @dev: device 7119 * @iter: list_head ** of the current position 7120 * 7121 * Gets the next netdev_adjacent from the dev's lower neighbour 7122 * list, starting from iter position. The caller must hold RTNL lock or 7123 * its own locking that guarantees that the neighbour lower 7124 * list will remain unchanged. 7125 */ 7126 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter) 7127 { 7128 struct netdev_adjacent *lower; 7129 7130 lower = list_entry(*iter, struct netdev_adjacent, list); 7131 7132 if (&lower->list == &dev->adj_list.lower) 7133 return NULL; 7134 7135 *iter = lower->list.next; 7136 7137 return lower->dev; 7138 } 7139 EXPORT_SYMBOL(netdev_lower_get_next); 7140 7141 static struct net_device *netdev_next_lower_dev(struct net_device *dev, 7142 struct list_head **iter) 7143 { 7144 struct netdev_adjacent *lower; 7145 7146 lower = list_entry((*iter)->next, struct netdev_adjacent, list); 7147 7148 if (&lower->list == &dev->adj_list.lower) 7149 return NULL; 7150 7151 *iter = &lower->list; 7152 7153 return lower->dev; 7154 } 7155 7156 static struct net_device *__netdev_next_lower_dev(struct net_device *dev, 7157 struct list_head **iter, 7158 bool *ignore) 7159 { 7160 struct netdev_adjacent *lower; 7161 7162 lower = list_entry((*iter)->next, struct netdev_adjacent, list); 7163 7164 if (&lower->list == &dev->adj_list.lower) 7165 return NULL; 7166 7167 *iter = &lower->list; 7168 *ignore = lower->ignore; 7169 7170 return lower->dev; 7171 } 7172 7173 int netdev_walk_all_lower_dev(struct net_device *dev, 7174 int (*fn)(struct net_device *dev, 7175 void *data), 7176 void *data) 7177 { 7178 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 7179 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 7180 int ret, cur = 0; 7181 7182 now = dev; 7183 iter = &dev->adj_list.lower; 7184 7185 while (1) { 7186 if (now != dev) { 7187 ret = fn(now, data); 7188 if (ret) 7189 return ret; 7190 } 7191 7192 next = NULL; 7193 while (1) { 7194 ldev = netdev_next_lower_dev(now, &iter); 7195 if (!ldev) 7196 break; 7197 7198 next = ldev; 7199 niter = &ldev->adj_list.lower; 7200 dev_stack[cur] = now; 7201 iter_stack[cur++] = iter; 7202 break; 7203 } 7204 7205 if (!next) { 7206 if (!cur) 7207 return 0; 7208 next = dev_stack[--cur]; 7209 niter = iter_stack[cur]; 7210 } 7211 7212 now = next; 7213 iter = niter; 7214 } 7215 7216 return 0; 7217 } 7218 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev); 7219 7220 static int __netdev_walk_all_lower_dev(struct net_device *dev, 7221 int (*fn)(struct net_device *dev, 7222 void *data), 7223 void *data) 7224 { 7225 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 7226 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 7227 int ret, cur = 0; 7228 bool ignore; 7229 7230 now = dev; 7231 iter = &dev->adj_list.lower; 7232 7233 while (1) { 7234 if (now != dev) { 7235 ret = fn(now, data); 7236 if (ret) 7237 return ret; 7238 } 7239 7240 next = NULL; 7241 while (1) { 7242 ldev = __netdev_next_lower_dev(now, &iter, &ignore); 7243 if (!ldev) 7244 break; 7245 if (ignore) 7246 continue; 7247 7248 next = ldev; 7249 niter = &ldev->adj_list.lower; 7250 dev_stack[cur] = now; 7251 iter_stack[cur++] = iter; 7252 break; 7253 } 7254 7255 if (!next) { 7256 if (!cur) 7257 return 0; 7258 next = dev_stack[--cur]; 7259 niter = iter_stack[cur]; 7260 } 7261 7262 now = next; 7263 iter = niter; 7264 } 7265 7266 return 0; 7267 } 7268 7269 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev, 7270 struct list_head **iter) 7271 { 7272 struct netdev_adjacent *lower; 7273 7274 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 7275 if (&lower->list == &dev->adj_list.lower) 7276 return NULL; 7277 7278 *iter = &lower->list; 7279 7280 return lower->dev; 7281 } 7282 EXPORT_SYMBOL(netdev_next_lower_dev_rcu); 7283 7284 static u8 __netdev_upper_depth(struct net_device *dev) 7285 { 7286 struct net_device *udev; 7287 struct list_head *iter; 7288 u8 max_depth = 0; 7289 bool ignore; 7290 7291 for (iter = &dev->adj_list.upper, 7292 udev = __netdev_next_upper_dev(dev, &iter, &ignore); 7293 udev; 7294 udev = __netdev_next_upper_dev(dev, &iter, &ignore)) { 7295 if (ignore) 7296 continue; 7297 if (max_depth < udev->upper_level) 7298 max_depth = udev->upper_level; 7299 } 7300 7301 return max_depth; 7302 } 7303 7304 static u8 __netdev_lower_depth(struct net_device *dev) 7305 { 7306 struct net_device *ldev; 7307 struct list_head *iter; 7308 u8 max_depth = 0; 7309 bool ignore; 7310 7311 for (iter = &dev->adj_list.lower, 7312 ldev = __netdev_next_lower_dev(dev, &iter, &ignore); 7313 ldev; 7314 ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) { 7315 if (ignore) 7316 continue; 7317 if (max_depth < ldev->lower_level) 7318 max_depth = ldev->lower_level; 7319 } 7320 7321 return max_depth; 7322 } 7323 7324 static int __netdev_update_upper_level(struct net_device *dev, void *data) 7325 { 7326 dev->upper_level = __netdev_upper_depth(dev) + 1; 7327 return 0; 7328 } 7329 7330 static int __netdev_update_lower_level(struct net_device *dev, void *data) 7331 { 7332 dev->lower_level = __netdev_lower_depth(dev) + 1; 7333 return 0; 7334 } 7335 7336 int netdev_walk_all_lower_dev_rcu(struct net_device *dev, 7337 int (*fn)(struct net_device *dev, 7338 void *data), 7339 void *data) 7340 { 7341 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 7342 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 7343 int ret, cur = 0; 7344 7345 now = dev; 7346 iter = &dev->adj_list.lower; 7347 7348 while (1) { 7349 if (now != dev) { 7350 ret = fn(now, data); 7351 if (ret) 7352 return ret; 7353 } 7354 7355 next = NULL; 7356 while (1) { 7357 ldev = netdev_next_lower_dev_rcu(now, &iter); 7358 if (!ldev) 7359 break; 7360 7361 next = ldev; 7362 niter = &ldev->adj_list.lower; 7363 dev_stack[cur] = now; 7364 iter_stack[cur++] = iter; 7365 break; 7366 } 7367 7368 if (!next) { 7369 if (!cur) 7370 return 0; 7371 next = dev_stack[--cur]; 7372 niter = iter_stack[cur]; 7373 } 7374 7375 now = next; 7376 iter = niter; 7377 } 7378 7379 return 0; 7380 } 7381 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu); 7382 7383 /** 7384 * netdev_lower_get_first_private_rcu - Get the first ->private from the 7385 * lower neighbour list, RCU 7386 * variant 7387 * @dev: device 7388 * 7389 * Gets the first netdev_adjacent->private from the dev's lower neighbour 7390 * list. The caller must hold RCU read lock. 7391 */ 7392 void *netdev_lower_get_first_private_rcu(struct net_device *dev) 7393 { 7394 struct netdev_adjacent *lower; 7395 7396 lower = list_first_or_null_rcu(&dev->adj_list.lower, 7397 struct netdev_adjacent, list); 7398 if (lower) 7399 return lower->private; 7400 return NULL; 7401 } 7402 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu); 7403 7404 /** 7405 * netdev_master_upper_dev_get_rcu - Get master upper device 7406 * @dev: device 7407 * 7408 * Find a master upper device and return pointer to it or NULL in case 7409 * it's not there. The caller must hold the RCU read lock. 7410 */ 7411 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev) 7412 { 7413 struct netdev_adjacent *upper; 7414 7415 upper = list_first_or_null_rcu(&dev->adj_list.upper, 7416 struct netdev_adjacent, list); 7417 if (upper && likely(upper->master)) 7418 return upper->dev; 7419 return NULL; 7420 } 7421 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu); 7422 7423 static int netdev_adjacent_sysfs_add(struct net_device *dev, 7424 struct net_device *adj_dev, 7425 struct list_head *dev_list) 7426 { 7427 char linkname[IFNAMSIZ+7]; 7428 7429 sprintf(linkname, dev_list == &dev->adj_list.upper ? 7430 "upper_%s" : "lower_%s", adj_dev->name); 7431 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj), 7432 linkname); 7433 } 7434 static void netdev_adjacent_sysfs_del(struct net_device *dev, 7435 char *name, 7436 struct list_head *dev_list) 7437 { 7438 char linkname[IFNAMSIZ+7]; 7439 7440 sprintf(linkname, dev_list == &dev->adj_list.upper ? 7441 "upper_%s" : "lower_%s", name); 7442 sysfs_remove_link(&(dev->dev.kobj), linkname); 7443 } 7444 7445 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev, 7446 struct net_device *adj_dev, 7447 struct list_head *dev_list) 7448 { 7449 return (dev_list == &dev->adj_list.upper || 7450 dev_list == &dev->adj_list.lower) && 7451 net_eq(dev_net(dev), dev_net(adj_dev)); 7452 } 7453 7454 static int __netdev_adjacent_dev_insert(struct net_device *dev, 7455 struct net_device *adj_dev, 7456 struct list_head *dev_list, 7457 void *private, bool master) 7458 { 7459 struct netdev_adjacent *adj; 7460 int ret; 7461 7462 adj = __netdev_find_adj(adj_dev, dev_list); 7463 7464 if (adj) { 7465 adj->ref_nr += 1; 7466 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n", 7467 dev->name, adj_dev->name, adj->ref_nr); 7468 7469 return 0; 7470 } 7471 7472 adj = kmalloc(sizeof(*adj), GFP_KERNEL); 7473 if (!adj) 7474 return -ENOMEM; 7475 7476 adj->dev = adj_dev; 7477 adj->master = master; 7478 adj->ref_nr = 1; 7479 adj->private = private; 7480 adj->ignore = false; 7481 dev_hold(adj_dev); 7482 7483 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n", 7484 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name); 7485 7486 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) { 7487 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list); 7488 if (ret) 7489 goto free_adj; 7490 } 7491 7492 /* Ensure that master link is always the first item in list. */ 7493 if (master) { 7494 ret = sysfs_create_link(&(dev->dev.kobj), 7495 &(adj_dev->dev.kobj), "master"); 7496 if (ret) 7497 goto remove_symlinks; 7498 7499 list_add_rcu(&adj->list, dev_list); 7500 } else { 7501 list_add_tail_rcu(&adj->list, dev_list); 7502 } 7503 7504 return 0; 7505 7506 remove_symlinks: 7507 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) 7508 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list); 7509 free_adj: 7510 kfree(adj); 7511 dev_put(adj_dev); 7512 7513 return ret; 7514 } 7515 7516 static void __netdev_adjacent_dev_remove(struct net_device *dev, 7517 struct net_device *adj_dev, 7518 u16 ref_nr, 7519 struct list_head *dev_list) 7520 { 7521 struct netdev_adjacent *adj; 7522 7523 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n", 7524 dev->name, adj_dev->name, ref_nr); 7525 7526 adj = __netdev_find_adj(adj_dev, dev_list); 7527 7528 if (!adj) { 7529 pr_err("Adjacency does not exist for device %s from %s\n", 7530 dev->name, adj_dev->name); 7531 WARN_ON(1); 7532 return; 7533 } 7534 7535 if (adj->ref_nr > ref_nr) { 7536 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n", 7537 dev->name, adj_dev->name, ref_nr, 7538 adj->ref_nr - ref_nr); 7539 adj->ref_nr -= ref_nr; 7540 return; 7541 } 7542 7543 if (adj->master) 7544 sysfs_remove_link(&(dev->dev.kobj), "master"); 7545 7546 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) 7547 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list); 7548 7549 list_del_rcu(&adj->list); 7550 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n", 7551 adj_dev->name, dev->name, adj_dev->name); 7552 dev_put(adj_dev); 7553 kfree_rcu(adj, rcu); 7554 } 7555 7556 static int __netdev_adjacent_dev_link_lists(struct net_device *dev, 7557 struct net_device *upper_dev, 7558 struct list_head *up_list, 7559 struct list_head *down_list, 7560 void *private, bool master) 7561 { 7562 int ret; 7563 7564 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, 7565 private, master); 7566 if (ret) 7567 return ret; 7568 7569 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, 7570 private, false); 7571 if (ret) { 7572 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list); 7573 return ret; 7574 } 7575 7576 return 0; 7577 } 7578 7579 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev, 7580 struct net_device *upper_dev, 7581 u16 ref_nr, 7582 struct list_head *up_list, 7583 struct list_head *down_list) 7584 { 7585 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list); 7586 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list); 7587 } 7588 7589 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev, 7590 struct net_device *upper_dev, 7591 void *private, bool master) 7592 { 7593 return __netdev_adjacent_dev_link_lists(dev, upper_dev, 7594 &dev->adj_list.upper, 7595 &upper_dev->adj_list.lower, 7596 private, master); 7597 } 7598 7599 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev, 7600 struct net_device *upper_dev) 7601 { 7602 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1, 7603 &dev->adj_list.upper, 7604 &upper_dev->adj_list.lower); 7605 } 7606 7607 static int __netdev_upper_dev_link(struct net_device *dev, 7608 struct net_device *upper_dev, bool master, 7609 void *upper_priv, void *upper_info, 7610 struct netlink_ext_ack *extack) 7611 { 7612 struct netdev_notifier_changeupper_info changeupper_info = { 7613 .info = { 7614 .dev = dev, 7615 .extack = extack, 7616 }, 7617 .upper_dev = upper_dev, 7618 .master = master, 7619 .linking = true, 7620 .upper_info = upper_info, 7621 }; 7622 struct net_device *master_dev; 7623 int ret = 0; 7624 7625 ASSERT_RTNL(); 7626 7627 if (dev == upper_dev) 7628 return -EBUSY; 7629 7630 /* To prevent loops, check if dev is not upper device to upper_dev. */ 7631 if (__netdev_has_upper_dev(upper_dev, dev)) 7632 return -EBUSY; 7633 7634 if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV) 7635 return -EMLINK; 7636 7637 if (!master) { 7638 if (__netdev_has_upper_dev(dev, upper_dev)) 7639 return -EEXIST; 7640 } else { 7641 master_dev = __netdev_master_upper_dev_get(dev); 7642 if (master_dev) 7643 return master_dev == upper_dev ? -EEXIST : -EBUSY; 7644 } 7645 7646 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, 7647 &changeupper_info.info); 7648 ret = notifier_to_errno(ret); 7649 if (ret) 7650 return ret; 7651 7652 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv, 7653 master); 7654 if (ret) 7655 return ret; 7656 7657 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, 7658 &changeupper_info.info); 7659 ret = notifier_to_errno(ret); 7660 if (ret) 7661 goto rollback; 7662 7663 __netdev_update_upper_level(dev, NULL); 7664 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL); 7665 7666 __netdev_update_lower_level(upper_dev, NULL); 7667 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level, 7668 NULL); 7669 7670 return 0; 7671 7672 rollback: 7673 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 7674 7675 return ret; 7676 } 7677 7678 /** 7679 * netdev_upper_dev_link - Add a link to the upper device 7680 * @dev: device 7681 * @upper_dev: new upper device 7682 * @extack: netlink extended ack 7683 * 7684 * Adds a link to device which is upper to this one. The caller must hold 7685 * the RTNL lock. On a failure a negative errno code is returned. 7686 * On success the reference counts are adjusted and the function 7687 * returns zero. 7688 */ 7689 int netdev_upper_dev_link(struct net_device *dev, 7690 struct net_device *upper_dev, 7691 struct netlink_ext_ack *extack) 7692 { 7693 return __netdev_upper_dev_link(dev, upper_dev, false, 7694 NULL, NULL, extack); 7695 } 7696 EXPORT_SYMBOL(netdev_upper_dev_link); 7697 7698 /** 7699 * netdev_master_upper_dev_link - Add a master link to the upper device 7700 * @dev: device 7701 * @upper_dev: new upper device 7702 * @upper_priv: upper device private 7703 * @upper_info: upper info to be passed down via notifier 7704 * @extack: netlink extended ack 7705 * 7706 * Adds a link to device which is upper to this one. In this case, only 7707 * one master upper device can be linked, although other non-master devices 7708 * might be linked as well. The caller must hold the RTNL lock. 7709 * On a failure a negative errno code is returned. On success the reference 7710 * counts are adjusted and the function returns zero. 7711 */ 7712 int netdev_master_upper_dev_link(struct net_device *dev, 7713 struct net_device *upper_dev, 7714 void *upper_priv, void *upper_info, 7715 struct netlink_ext_ack *extack) 7716 { 7717 return __netdev_upper_dev_link(dev, upper_dev, true, 7718 upper_priv, upper_info, extack); 7719 } 7720 EXPORT_SYMBOL(netdev_master_upper_dev_link); 7721 7722 /** 7723 * netdev_upper_dev_unlink - Removes a link to upper device 7724 * @dev: device 7725 * @upper_dev: new upper device 7726 * 7727 * Removes a link to device which is upper to this one. The caller must hold 7728 * the RTNL lock. 7729 */ 7730 void netdev_upper_dev_unlink(struct net_device *dev, 7731 struct net_device *upper_dev) 7732 { 7733 struct netdev_notifier_changeupper_info changeupper_info = { 7734 .info = { 7735 .dev = dev, 7736 }, 7737 .upper_dev = upper_dev, 7738 .linking = false, 7739 }; 7740 7741 ASSERT_RTNL(); 7742 7743 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev; 7744 7745 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, 7746 &changeupper_info.info); 7747 7748 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 7749 7750 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, 7751 &changeupper_info.info); 7752 7753 __netdev_update_upper_level(dev, NULL); 7754 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL); 7755 7756 __netdev_update_lower_level(upper_dev, NULL); 7757 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level, 7758 NULL); 7759 } 7760 EXPORT_SYMBOL(netdev_upper_dev_unlink); 7761 7762 static void __netdev_adjacent_dev_set(struct net_device *upper_dev, 7763 struct net_device *lower_dev, 7764 bool val) 7765 { 7766 struct netdev_adjacent *adj; 7767 7768 adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower); 7769 if (adj) 7770 adj->ignore = val; 7771 7772 adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper); 7773 if (adj) 7774 adj->ignore = val; 7775 } 7776 7777 static void netdev_adjacent_dev_disable(struct net_device *upper_dev, 7778 struct net_device *lower_dev) 7779 { 7780 __netdev_adjacent_dev_set(upper_dev, lower_dev, true); 7781 } 7782 7783 static void netdev_adjacent_dev_enable(struct net_device *upper_dev, 7784 struct net_device *lower_dev) 7785 { 7786 __netdev_adjacent_dev_set(upper_dev, lower_dev, false); 7787 } 7788 7789 int netdev_adjacent_change_prepare(struct net_device *old_dev, 7790 struct net_device *new_dev, 7791 struct net_device *dev, 7792 struct netlink_ext_ack *extack) 7793 { 7794 int err; 7795 7796 if (!new_dev) 7797 return 0; 7798 7799 if (old_dev && new_dev != old_dev) 7800 netdev_adjacent_dev_disable(dev, old_dev); 7801 7802 err = netdev_upper_dev_link(new_dev, dev, extack); 7803 if (err) { 7804 if (old_dev && new_dev != old_dev) 7805 netdev_adjacent_dev_enable(dev, old_dev); 7806 return err; 7807 } 7808 7809 return 0; 7810 } 7811 EXPORT_SYMBOL(netdev_adjacent_change_prepare); 7812 7813 void netdev_adjacent_change_commit(struct net_device *old_dev, 7814 struct net_device *new_dev, 7815 struct net_device *dev) 7816 { 7817 if (!new_dev || !old_dev) 7818 return; 7819 7820 if (new_dev == old_dev) 7821 return; 7822 7823 netdev_adjacent_dev_enable(dev, old_dev); 7824 netdev_upper_dev_unlink(old_dev, dev); 7825 } 7826 EXPORT_SYMBOL(netdev_adjacent_change_commit); 7827 7828 void netdev_adjacent_change_abort(struct net_device *old_dev, 7829 struct net_device *new_dev, 7830 struct net_device *dev) 7831 { 7832 if (!new_dev) 7833 return; 7834 7835 if (old_dev && new_dev != old_dev) 7836 netdev_adjacent_dev_enable(dev, old_dev); 7837 7838 netdev_upper_dev_unlink(new_dev, dev); 7839 } 7840 EXPORT_SYMBOL(netdev_adjacent_change_abort); 7841 7842 /** 7843 * netdev_bonding_info_change - Dispatch event about slave change 7844 * @dev: device 7845 * @bonding_info: info to dispatch 7846 * 7847 * Send NETDEV_BONDING_INFO to netdev notifiers with info. 7848 * The caller must hold the RTNL lock. 7849 */ 7850 void netdev_bonding_info_change(struct net_device *dev, 7851 struct netdev_bonding_info *bonding_info) 7852 { 7853 struct netdev_notifier_bonding_info info = { 7854 .info.dev = dev, 7855 }; 7856 7857 memcpy(&info.bonding_info, bonding_info, 7858 sizeof(struct netdev_bonding_info)); 7859 call_netdevice_notifiers_info(NETDEV_BONDING_INFO, 7860 &info.info); 7861 } 7862 EXPORT_SYMBOL(netdev_bonding_info_change); 7863 7864 static void netdev_adjacent_add_links(struct net_device *dev) 7865 { 7866 struct netdev_adjacent *iter; 7867 7868 struct net *net = dev_net(dev); 7869 7870 list_for_each_entry(iter, &dev->adj_list.upper, list) { 7871 if (!net_eq(net, dev_net(iter->dev))) 7872 continue; 7873 netdev_adjacent_sysfs_add(iter->dev, dev, 7874 &iter->dev->adj_list.lower); 7875 netdev_adjacent_sysfs_add(dev, iter->dev, 7876 &dev->adj_list.upper); 7877 } 7878 7879 list_for_each_entry(iter, &dev->adj_list.lower, list) { 7880 if (!net_eq(net, dev_net(iter->dev))) 7881 continue; 7882 netdev_adjacent_sysfs_add(iter->dev, dev, 7883 &iter->dev->adj_list.upper); 7884 netdev_adjacent_sysfs_add(dev, iter->dev, 7885 &dev->adj_list.lower); 7886 } 7887 } 7888 7889 static void netdev_adjacent_del_links(struct net_device *dev) 7890 { 7891 struct netdev_adjacent *iter; 7892 7893 struct net *net = dev_net(dev); 7894 7895 list_for_each_entry(iter, &dev->adj_list.upper, list) { 7896 if (!net_eq(net, dev_net(iter->dev))) 7897 continue; 7898 netdev_adjacent_sysfs_del(iter->dev, dev->name, 7899 &iter->dev->adj_list.lower); 7900 netdev_adjacent_sysfs_del(dev, iter->dev->name, 7901 &dev->adj_list.upper); 7902 } 7903 7904 list_for_each_entry(iter, &dev->adj_list.lower, list) { 7905 if (!net_eq(net, dev_net(iter->dev))) 7906 continue; 7907 netdev_adjacent_sysfs_del(iter->dev, dev->name, 7908 &iter->dev->adj_list.upper); 7909 netdev_adjacent_sysfs_del(dev, iter->dev->name, 7910 &dev->adj_list.lower); 7911 } 7912 } 7913 7914 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname) 7915 { 7916 struct netdev_adjacent *iter; 7917 7918 struct net *net = dev_net(dev); 7919 7920 list_for_each_entry(iter, &dev->adj_list.upper, list) { 7921 if (!net_eq(net, dev_net(iter->dev))) 7922 continue; 7923 netdev_adjacent_sysfs_del(iter->dev, oldname, 7924 &iter->dev->adj_list.lower); 7925 netdev_adjacent_sysfs_add(iter->dev, dev, 7926 &iter->dev->adj_list.lower); 7927 } 7928 7929 list_for_each_entry(iter, &dev->adj_list.lower, list) { 7930 if (!net_eq(net, dev_net(iter->dev))) 7931 continue; 7932 netdev_adjacent_sysfs_del(iter->dev, oldname, 7933 &iter->dev->adj_list.upper); 7934 netdev_adjacent_sysfs_add(iter->dev, dev, 7935 &iter->dev->adj_list.upper); 7936 } 7937 } 7938 7939 void *netdev_lower_dev_get_private(struct net_device *dev, 7940 struct net_device *lower_dev) 7941 { 7942 struct netdev_adjacent *lower; 7943 7944 if (!lower_dev) 7945 return NULL; 7946 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower); 7947 if (!lower) 7948 return NULL; 7949 7950 return lower->private; 7951 } 7952 EXPORT_SYMBOL(netdev_lower_dev_get_private); 7953 7954 7955 /** 7956 * netdev_lower_change - Dispatch event about lower device state change 7957 * @lower_dev: device 7958 * @lower_state_info: state to dispatch 7959 * 7960 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info. 7961 * The caller must hold the RTNL lock. 7962 */ 7963 void netdev_lower_state_changed(struct net_device *lower_dev, 7964 void *lower_state_info) 7965 { 7966 struct netdev_notifier_changelowerstate_info changelowerstate_info = { 7967 .info.dev = lower_dev, 7968 }; 7969 7970 ASSERT_RTNL(); 7971 changelowerstate_info.lower_state_info = lower_state_info; 7972 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE, 7973 &changelowerstate_info.info); 7974 } 7975 EXPORT_SYMBOL(netdev_lower_state_changed); 7976 7977 static void dev_change_rx_flags(struct net_device *dev, int flags) 7978 { 7979 const struct net_device_ops *ops = dev->netdev_ops; 7980 7981 if (ops->ndo_change_rx_flags) 7982 ops->ndo_change_rx_flags(dev, flags); 7983 } 7984 7985 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify) 7986 { 7987 unsigned int old_flags = dev->flags; 7988 kuid_t uid; 7989 kgid_t gid; 7990 7991 ASSERT_RTNL(); 7992 7993 dev->flags |= IFF_PROMISC; 7994 dev->promiscuity += inc; 7995 if (dev->promiscuity == 0) { 7996 /* 7997 * Avoid overflow. 7998 * If inc causes overflow, untouch promisc and return error. 7999 */ 8000 if (inc < 0) 8001 dev->flags &= ~IFF_PROMISC; 8002 else { 8003 dev->promiscuity -= inc; 8004 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n", 8005 dev->name); 8006 return -EOVERFLOW; 8007 } 8008 } 8009 if (dev->flags != old_flags) { 8010 pr_info("device %s %s promiscuous mode\n", 8011 dev->name, 8012 dev->flags & IFF_PROMISC ? "entered" : "left"); 8013 if (audit_enabled) { 8014 current_uid_gid(&uid, &gid); 8015 audit_log(audit_context(), GFP_ATOMIC, 8016 AUDIT_ANOM_PROMISCUOUS, 8017 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u", 8018 dev->name, (dev->flags & IFF_PROMISC), 8019 (old_flags & IFF_PROMISC), 8020 from_kuid(&init_user_ns, audit_get_loginuid(current)), 8021 from_kuid(&init_user_ns, uid), 8022 from_kgid(&init_user_ns, gid), 8023 audit_get_sessionid(current)); 8024 } 8025 8026 dev_change_rx_flags(dev, IFF_PROMISC); 8027 } 8028 if (notify) 8029 __dev_notify_flags(dev, old_flags, IFF_PROMISC); 8030 return 0; 8031 } 8032 8033 /** 8034 * dev_set_promiscuity - update promiscuity count on a device 8035 * @dev: device 8036 * @inc: modifier 8037 * 8038 * Add or remove promiscuity from a device. While the count in the device 8039 * remains above zero the interface remains promiscuous. Once it hits zero 8040 * the device reverts back to normal filtering operation. A negative inc 8041 * value is used to drop promiscuity on the device. 8042 * Return 0 if successful or a negative errno code on error. 8043 */ 8044 int dev_set_promiscuity(struct net_device *dev, int inc) 8045 { 8046 unsigned int old_flags = dev->flags; 8047 int err; 8048 8049 err = __dev_set_promiscuity(dev, inc, true); 8050 if (err < 0) 8051 return err; 8052 if (dev->flags != old_flags) 8053 dev_set_rx_mode(dev); 8054 return err; 8055 } 8056 EXPORT_SYMBOL(dev_set_promiscuity); 8057 8058 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify) 8059 { 8060 unsigned int old_flags = dev->flags, old_gflags = dev->gflags; 8061 8062 ASSERT_RTNL(); 8063 8064 dev->flags |= IFF_ALLMULTI; 8065 dev->allmulti += inc; 8066 if (dev->allmulti == 0) { 8067 /* 8068 * Avoid overflow. 8069 * If inc causes overflow, untouch allmulti and return error. 8070 */ 8071 if (inc < 0) 8072 dev->flags &= ~IFF_ALLMULTI; 8073 else { 8074 dev->allmulti -= inc; 8075 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n", 8076 dev->name); 8077 return -EOVERFLOW; 8078 } 8079 } 8080 if (dev->flags ^ old_flags) { 8081 dev_change_rx_flags(dev, IFF_ALLMULTI); 8082 dev_set_rx_mode(dev); 8083 if (notify) 8084 __dev_notify_flags(dev, old_flags, 8085 dev->gflags ^ old_gflags); 8086 } 8087 return 0; 8088 } 8089 8090 /** 8091 * dev_set_allmulti - update allmulti count on a device 8092 * @dev: device 8093 * @inc: modifier 8094 * 8095 * Add or remove reception of all multicast frames to a device. While the 8096 * count in the device remains above zero the interface remains listening 8097 * to all interfaces. Once it hits zero the device reverts back to normal 8098 * filtering operation. A negative @inc value is used to drop the counter 8099 * when releasing a resource needing all multicasts. 8100 * Return 0 if successful or a negative errno code on error. 8101 */ 8102 8103 int dev_set_allmulti(struct net_device *dev, int inc) 8104 { 8105 return __dev_set_allmulti(dev, inc, true); 8106 } 8107 EXPORT_SYMBOL(dev_set_allmulti); 8108 8109 /* 8110 * Upload unicast and multicast address lists to device and 8111 * configure RX filtering. When the device doesn't support unicast 8112 * filtering it is put in promiscuous mode while unicast addresses 8113 * are present. 8114 */ 8115 void __dev_set_rx_mode(struct net_device *dev) 8116 { 8117 const struct net_device_ops *ops = dev->netdev_ops; 8118 8119 /* dev_open will call this function so the list will stay sane. */ 8120 if (!(dev->flags&IFF_UP)) 8121 return; 8122 8123 if (!netif_device_present(dev)) 8124 return; 8125 8126 if (!(dev->priv_flags & IFF_UNICAST_FLT)) { 8127 /* Unicast addresses changes may only happen under the rtnl, 8128 * therefore calling __dev_set_promiscuity here is safe. 8129 */ 8130 if (!netdev_uc_empty(dev) && !dev->uc_promisc) { 8131 __dev_set_promiscuity(dev, 1, false); 8132 dev->uc_promisc = true; 8133 } else if (netdev_uc_empty(dev) && dev->uc_promisc) { 8134 __dev_set_promiscuity(dev, -1, false); 8135 dev->uc_promisc = false; 8136 } 8137 } 8138 8139 if (ops->ndo_set_rx_mode) 8140 ops->ndo_set_rx_mode(dev); 8141 } 8142 8143 void dev_set_rx_mode(struct net_device *dev) 8144 { 8145 netif_addr_lock_bh(dev); 8146 __dev_set_rx_mode(dev); 8147 netif_addr_unlock_bh(dev); 8148 } 8149 8150 /** 8151 * dev_get_flags - get flags reported to userspace 8152 * @dev: device 8153 * 8154 * Get the combination of flag bits exported through APIs to userspace. 8155 */ 8156 unsigned int dev_get_flags(const struct net_device *dev) 8157 { 8158 unsigned int flags; 8159 8160 flags = (dev->flags & ~(IFF_PROMISC | 8161 IFF_ALLMULTI | 8162 IFF_RUNNING | 8163 IFF_LOWER_UP | 8164 IFF_DORMANT)) | 8165 (dev->gflags & (IFF_PROMISC | 8166 IFF_ALLMULTI)); 8167 8168 if (netif_running(dev)) { 8169 if (netif_oper_up(dev)) 8170 flags |= IFF_RUNNING; 8171 if (netif_carrier_ok(dev)) 8172 flags |= IFF_LOWER_UP; 8173 if (netif_dormant(dev)) 8174 flags |= IFF_DORMANT; 8175 } 8176 8177 return flags; 8178 } 8179 EXPORT_SYMBOL(dev_get_flags); 8180 8181 int __dev_change_flags(struct net_device *dev, unsigned int flags, 8182 struct netlink_ext_ack *extack) 8183 { 8184 unsigned int old_flags = dev->flags; 8185 int ret; 8186 8187 ASSERT_RTNL(); 8188 8189 /* 8190 * Set the flags on our device. 8191 */ 8192 8193 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP | 8194 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL | 8195 IFF_AUTOMEDIA)) | 8196 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC | 8197 IFF_ALLMULTI)); 8198 8199 /* 8200 * Load in the correct multicast list now the flags have changed. 8201 */ 8202 8203 if ((old_flags ^ flags) & IFF_MULTICAST) 8204 dev_change_rx_flags(dev, IFF_MULTICAST); 8205 8206 dev_set_rx_mode(dev); 8207 8208 /* 8209 * Have we downed the interface. We handle IFF_UP ourselves 8210 * according to user attempts to set it, rather than blindly 8211 * setting it. 8212 */ 8213 8214 ret = 0; 8215 if ((old_flags ^ flags) & IFF_UP) { 8216 if (old_flags & IFF_UP) 8217 __dev_close(dev); 8218 else 8219 ret = __dev_open(dev, extack); 8220 } 8221 8222 if ((flags ^ dev->gflags) & IFF_PROMISC) { 8223 int inc = (flags & IFF_PROMISC) ? 1 : -1; 8224 unsigned int old_flags = dev->flags; 8225 8226 dev->gflags ^= IFF_PROMISC; 8227 8228 if (__dev_set_promiscuity(dev, inc, false) >= 0) 8229 if (dev->flags != old_flags) 8230 dev_set_rx_mode(dev); 8231 } 8232 8233 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI 8234 * is important. Some (broken) drivers set IFF_PROMISC, when 8235 * IFF_ALLMULTI is requested not asking us and not reporting. 8236 */ 8237 if ((flags ^ dev->gflags) & IFF_ALLMULTI) { 8238 int inc = (flags & IFF_ALLMULTI) ? 1 : -1; 8239 8240 dev->gflags ^= IFF_ALLMULTI; 8241 __dev_set_allmulti(dev, inc, false); 8242 } 8243 8244 return ret; 8245 } 8246 8247 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags, 8248 unsigned int gchanges) 8249 { 8250 unsigned int changes = dev->flags ^ old_flags; 8251 8252 if (gchanges) 8253 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC); 8254 8255 if (changes & IFF_UP) { 8256 if (dev->flags & IFF_UP) 8257 call_netdevice_notifiers(NETDEV_UP, dev); 8258 else 8259 call_netdevice_notifiers(NETDEV_DOWN, dev); 8260 } 8261 8262 if (dev->flags & IFF_UP && 8263 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) { 8264 struct netdev_notifier_change_info change_info = { 8265 .info = { 8266 .dev = dev, 8267 }, 8268 .flags_changed = changes, 8269 }; 8270 8271 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info); 8272 } 8273 } 8274 8275 /** 8276 * dev_change_flags - change device settings 8277 * @dev: device 8278 * @flags: device state flags 8279 * @extack: netlink extended ack 8280 * 8281 * Change settings on device based state flags. The flags are 8282 * in the userspace exported format. 8283 */ 8284 int dev_change_flags(struct net_device *dev, unsigned int flags, 8285 struct netlink_ext_ack *extack) 8286 { 8287 int ret; 8288 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags; 8289 8290 ret = __dev_change_flags(dev, flags, extack); 8291 if (ret < 0) 8292 return ret; 8293 8294 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags); 8295 __dev_notify_flags(dev, old_flags, changes); 8296 return ret; 8297 } 8298 EXPORT_SYMBOL(dev_change_flags); 8299 8300 int __dev_set_mtu(struct net_device *dev, int new_mtu) 8301 { 8302 const struct net_device_ops *ops = dev->netdev_ops; 8303 8304 if (ops->ndo_change_mtu) 8305 return ops->ndo_change_mtu(dev, new_mtu); 8306 8307 /* Pairs with all the lockless reads of dev->mtu in the stack */ 8308 WRITE_ONCE(dev->mtu, new_mtu); 8309 return 0; 8310 } 8311 EXPORT_SYMBOL(__dev_set_mtu); 8312 8313 int dev_validate_mtu(struct net_device *dev, int new_mtu, 8314 struct netlink_ext_ack *extack) 8315 { 8316 /* MTU must be positive, and in range */ 8317 if (new_mtu < 0 || new_mtu < dev->min_mtu) { 8318 NL_SET_ERR_MSG(extack, "mtu less than device minimum"); 8319 return -EINVAL; 8320 } 8321 8322 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) { 8323 NL_SET_ERR_MSG(extack, "mtu greater than device maximum"); 8324 return -EINVAL; 8325 } 8326 return 0; 8327 } 8328 8329 /** 8330 * dev_set_mtu_ext - Change maximum transfer unit 8331 * @dev: device 8332 * @new_mtu: new transfer unit 8333 * @extack: netlink extended ack 8334 * 8335 * Change the maximum transfer size of the network device. 8336 */ 8337 int dev_set_mtu_ext(struct net_device *dev, int new_mtu, 8338 struct netlink_ext_ack *extack) 8339 { 8340 int err, orig_mtu; 8341 8342 if (new_mtu == dev->mtu) 8343 return 0; 8344 8345 err = dev_validate_mtu(dev, new_mtu, extack); 8346 if (err) 8347 return err; 8348 8349 if (!netif_device_present(dev)) 8350 return -ENODEV; 8351 8352 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev); 8353 err = notifier_to_errno(err); 8354 if (err) 8355 return err; 8356 8357 orig_mtu = dev->mtu; 8358 err = __dev_set_mtu(dev, new_mtu); 8359 8360 if (!err) { 8361 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev, 8362 orig_mtu); 8363 err = notifier_to_errno(err); 8364 if (err) { 8365 /* setting mtu back and notifying everyone again, 8366 * so that they have a chance to revert changes. 8367 */ 8368 __dev_set_mtu(dev, orig_mtu); 8369 call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev, 8370 new_mtu); 8371 } 8372 } 8373 return err; 8374 } 8375 8376 int dev_set_mtu(struct net_device *dev, int new_mtu) 8377 { 8378 struct netlink_ext_ack extack; 8379 int err; 8380 8381 memset(&extack, 0, sizeof(extack)); 8382 err = dev_set_mtu_ext(dev, new_mtu, &extack); 8383 if (err && extack._msg) 8384 net_err_ratelimited("%s: %s\n", dev->name, extack._msg); 8385 return err; 8386 } 8387 EXPORT_SYMBOL(dev_set_mtu); 8388 8389 /** 8390 * dev_change_tx_queue_len - Change TX queue length of a netdevice 8391 * @dev: device 8392 * @new_len: new tx queue length 8393 */ 8394 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len) 8395 { 8396 unsigned int orig_len = dev->tx_queue_len; 8397 int res; 8398 8399 if (new_len != (unsigned int)new_len) 8400 return -ERANGE; 8401 8402 if (new_len != orig_len) { 8403 dev->tx_queue_len = new_len; 8404 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev); 8405 res = notifier_to_errno(res); 8406 if (res) 8407 goto err_rollback; 8408 res = dev_qdisc_change_tx_queue_len(dev); 8409 if (res) 8410 goto err_rollback; 8411 } 8412 8413 return 0; 8414 8415 err_rollback: 8416 netdev_err(dev, "refused to change device tx_queue_len\n"); 8417 dev->tx_queue_len = orig_len; 8418 return res; 8419 } 8420 8421 /** 8422 * dev_set_group - Change group this device belongs to 8423 * @dev: device 8424 * @new_group: group this device should belong to 8425 */ 8426 void dev_set_group(struct net_device *dev, int new_group) 8427 { 8428 dev->group = new_group; 8429 } 8430 EXPORT_SYMBOL(dev_set_group); 8431 8432 /** 8433 * dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR. 8434 * @dev: device 8435 * @addr: new address 8436 * @extack: netlink extended ack 8437 */ 8438 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr, 8439 struct netlink_ext_ack *extack) 8440 { 8441 struct netdev_notifier_pre_changeaddr_info info = { 8442 .info.dev = dev, 8443 .info.extack = extack, 8444 .dev_addr = addr, 8445 }; 8446 int rc; 8447 8448 rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info); 8449 return notifier_to_errno(rc); 8450 } 8451 EXPORT_SYMBOL(dev_pre_changeaddr_notify); 8452 8453 /** 8454 * dev_set_mac_address - Change Media Access Control Address 8455 * @dev: device 8456 * @sa: new address 8457 * @extack: netlink extended ack 8458 * 8459 * Change the hardware (MAC) address of the device 8460 */ 8461 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa, 8462 struct netlink_ext_ack *extack) 8463 { 8464 const struct net_device_ops *ops = dev->netdev_ops; 8465 int err; 8466 8467 if (!ops->ndo_set_mac_address) 8468 return -EOPNOTSUPP; 8469 if (sa->sa_family != dev->type) 8470 return -EINVAL; 8471 if (!netif_device_present(dev)) 8472 return -ENODEV; 8473 err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack); 8474 if (err) 8475 return err; 8476 err = ops->ndo_set_mac_address(dev, sa); 8477 if (err) 8478 return err; 8479 dev->addr_assign_type = NET_ADDR_SET; 8480 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 8481 add_device_randomness(dev->dev_addr, dev->addr_len); 8482 return 0; 8483 } 8484 EXPORT_SYMBOL(dev_set_mac_address); 8485 8486 /** 8487 * dev_change_carrier - Change device carrier 8488 * @dev: device 8489 * @new_carrier: new value 8490 * 8491 * Change device carrier 8492 */ 8493 int dev_change_carrier(struct net_device *dev, bool new_carrier) 8494 { 8495 const struct net_device_ops *ops = dev->netdev_ops; 8496 8497 if (!ops->ndo_change_carrier) 8498 return -EOPNOTSUPP; 8499 if (!netif_device_present(dev)) 8500 return -ENODEV; 8501 return ops->ndo_change_carrier(dev, new_carrier); 8502 } 8503 EXPORT_SYMBOL(dev_change_carrier); 8504 8505 /** 8506 * dev_get_phys_port_id - Get device physical port ID 8507 * @dev: device 8508 * @ppid: port ID 8509 * 8510 * Get device physical port ID 8511 */ 8512 int dev_get_phys_port_id(struct net_device *dev, 8513 struct netdev_phys_item_id *ppid) 8514 { 8515 const struct net_device_ops *ops = dev->netdev_ops; 8516 8517 if (!ops->ndo_get_phys_port_id) 8518 return -EOPNOTSUPP; 8519 return ops->ndo_get_phys_port_id(dev, ppid); 8520 } 8521 EXPORT_SYMBOL(dev_get_phys_port_id); 8522 8523 /** 8524 * dev_get_phys_port_name - Get device physical port name 8525 * @dev: device 8526 * @name: port name 8527 * @len: limit of bytes to copy to name 8528 * 8529 * Get device physical port name 8530 */ 8531 int dev_get_phys_port_name(struct net_device *dev, 8532 char *name, size_t len) 8533 { 8534 const struct net_device_ops *ops = dev->netdev_ops; 8535 int err; 8536 8537 if (ops->ndo_get_phys_port_name) { 8538 err = ops->ndo_get_phys_port_name(dev, name, len); 8539 if (err != -EOPNOTSUPP) 8540 return err; 8541 } 8542 return devlink_compat_phys_port_name_get(dev, name, len); 8543 } 8544 EXPORT_SYMBOL(dev_get_phys_port_name); 8545 8546 /** 8547 * dev_get_port_parent_id - Get the device's port parent identifier 8548 * @dev: network device 8549 * @ppid: pointer to a storage for the port's parent identifier 8550 * @recurse: allow/disallow recursion to lower devices 8551 * 8552 * Get the devices's port parent identifier 8553 */ 8554 int dev_get_port_parent_id(struct net_device *dev, 8555 struct netdev_phys_item_id *ppid, 8556 bool recurse) 8557 { 8558 const struct net_device_ops *ops = dev->netdev_ops; 8559 struct netdev_phys_item_id first = { }; 8560 struct net_device *lower_dev; 8561 struct list_head *iter; 8562 int err; 8563 8564 if (ops->ndo_get_port_parent_id) { 8565 err = ops->ndo_get_port_parent_id(dev, ppid); 8566 if (err != -EOPNOTSUPP) 8567 return err; 8568 } 8569 8570 err = devlink_compat_switch_id_get(dev, ppid); 8571 if (!err || err != -EOPNOTSUPP) 8572 return err; 8573 8574 if (!recurse) 8575 return -EOPNOTSUPP; 8576 8577 netdev_for_each_lower_dev(dev, lower_dev, iter) { 8578 err = dev_get_port_parent_id(lower_dev, ppid, recurse); 8579 if (err) 8580 break; 8581 if (!first.id_len) 8582 first = *ppid; 8583 else if (memcmp(&first, ppid, sizeof(*ppid))) 8584 return -ENODATA; 8585 } 8586 8587 return err; 8588 } 8589 EXPORT_SYMBOL(dev_get_port_parent_id); 8590 8591 /** 8592 * netdev_port_same_parent_id - Indicate if two network devices have 8593 * the same port parent identifier 8594 * @a: first network device 8595 * @b: second network device 8596 */ 8597 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b) 8598 { 8599 struct netdev_phys_item_id a_id = { }; 8600 struct netdev_phys_item_id b_id = { }; 8601 8602 if (dev_get_port_parent_id(a, &a_id, true) || 8603 dev_get_port_parent_id(b, &b_id, true)) 8604 return false; 8605 8606 return netdev_phys_item_id_same(&a_id, &b_id); 8607 } 8608 EXPORT_SYMBOL(netdev_port_same_parent_id); 8609 8610 /** 8611 * dev_change_proto_down - update protocol port state information 8612 * @dev: device 8613 * @proto_down: new value 8614 * 8615 * This info can be used by switch drivers to set the phys state of the 8616 * port. 8617 */ 8618 int dev_change_proto_down(struct net_device *dev, bool proto_down) 8619 { 8620 const struct net_device_ops *ops = dev->netdev_ops; 8621 8622 if (!ops->ndo_change_proto_down) 8623 return -EOPNOTSUPP; 8624 if (!netif_device_present(dev)) 8625 return -ENODEV; 8626 return ops->ndo_change_proto_down(dev, proto_down); 8627 } 8628 EXPORT_SYMBOL(dev_change_proto_down); 8629 8630 /** 8631 * dev_change_proto_down_generic - generic implementation for 8632 * ndo_change_proto_down that sets carrier according to 8633 * proto_down. 8634 * 8635 * @dev: device 8636 * @proto_down: new value 8637 */ 8638 int dev_change_proto_down_generic(struct net_device *dev, bool proto_down) 8639 { 8640 if (proto_down) 8641 netif_carrier_off(dev); 8642 else 8643 netif_carrier_on(dev); 8644 dev->proto_down = proto_down; 8645 return 0; 8646 } 8647 EXPORT_SYMBOL(dev_change_proto_down_generic); 8648 8649 u32 __dev_xdp_query(struct net_device *dev, bpf_op_t bpf_op, 8650 enum bpf_netdev_command cmd) 8651 { 8652 struct netdev_bpf xdp; 8653 8654 if (!bpf_op) 8655 return 0; 8656 8657 memset(&xdp, 0, sizeof(xdp)); 8658 xdp.command = cmd; 8659 8660 /* Query must always succeed. */ 8661 WARN_ON(bpf_op(dev, &xdp) < 0 && cmd == XDP_QUERY_PROG); 8662 8663 return xdp.prog_id; 8664 } 8665 8666 static int dev_xdp_install(struct net_device *dev, bpf_op_t bpf_op, 8667 struct netlink_ext_ack *extack, u32 flags, 8668 struct bpf_prog *prog) 8669 { 8670 bool non_hw = !(flags & XDP_FLAGS_HW_MODE); 8671 struct bpf_prog *prev_prog = NULL; 8672 struct netdev_bpf xdp; 8673 int err; 8674 8675 if (non_hw) { 8676 prev_prog = bpf_prog_by_id(__dev_xdp_query(dev, bpf_op, 8677 XDP_QUERY_PROG)); 8678 if (IS_ERR(prev_prog)) 8679 prev_prog = NULL; 8680 } 8681 8682 memset(&xdp, 0, sizeof(xdp)); 8683 if (flags & XDP_FLAGS_HW_MODE) 8684 xdp.command = XDP_SETUP_PROG_HW; 8685 else 8686 xdp.command = XDP_SETUP_PROG; 8687 xdp.extack = extack; 8688 xdp.flags = flags; 8689 xdp.prog = prog; 8690 8691 err = bpf_op(dev, &xdp); 8692 if (!err && non_hw) 8693 bpf_prog_change_xdp(prev_prog, prog); 8694 8695 if (prev_prog) 8696 bpf_prog_put(prev_prog); 8697 8698 return err; 8699 } 8700 8701 static void dev_xdp_uninstall(struct net_device *dev) 8702 { 8703 struct netdev_bpf xdp; 8704 bpf_op_t ndo_bpf; 8705 8706 /* Remove generic XDP */ 8707 WARN_ON(dev_xdp_install(dev, generic_xdp_install, NULL, 0, NULL)); 8708 8709 /* Remove from the driver */ 8710 ndo_bpf = dev->netdev_ops->ndo_bpf; 8711 if (!ndo_bpf) 8712 return; 8713 8714 memset(&xdp, 0, sizeof(xdp)); 8715 xdp.command = XDP_QUERY_PROG; 8716 WARN_ON(ndo_bpf(dev, &xdp)); 8717 if (xdp.prog_id) 8718 WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags, 8719 NULL)); 8720 8721 /* Remove HW offload */ 8722 memset(&xdp, 0, sizeof(xdp)); 8723 xdp.command = XDP_QUERY_PROG_HW; 8724 if (!ndo_bpf(dev, &xdp) && xdp.prog_id) 8725 WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags, 8726 NULL)); 8727 } 8728 8729 /** 8730 * dev_change_xdp_fd - set or clear a bpf program for a device rx path 8731 * @dev: device 8732 * @extack: netlink extended ack 8733 * @fd: new program fd or negative value to clear 8734 * @expected_fd: old program fd that userspace expects to replace or clear 8735 * @flags: xdp-related flags 8736 * 8737 * Set or clear a bpf program for a device 8738 */ 8739 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack, 8740 int fd, int expected_fd, u32 flags) 8741 { 8742 const struct net_device_ops *ops = dev->netdev_ops; 8743 enum bpf_netdev_command query; 8744 u32 prog_id, expected_id = 0; 8745 bpf_op_t bpf_op, bpf_chk; 8746 struct bpf_prog *prog; 8747 bool offload; 8748 int err; 8749 8750 ASSERT_RTNL(); 8751 8752 offload = flags & XDP_FLAGS_HW_MODE; 8753 query = offload ? XDP_QUERY_PROG_HW : XDP_QUERY_PROG; 8754 8755 bpf_op = bpf_chk = ops->ndo_bpf; 8756 if (!bpf_op && (flags & (XDP_FLAGS_DRV_MODE | XDP_FLAGS_HW_MODE))) { 8757 NL_SET_ERR_MSG(extack, "underlying driver does not support XDP in native mode"); 8758 return -EOPNOTSUPP; 8759 } 8760 if (!bpf_op || (flags & XDP_FLAGS_SKB_MODE)) 8761 bpf_op = generic_xdp_install; 8762 if (bpf_op == bpf_chk) 8763 bpf_chk = generic_xdp_install; 8764 8765 prog_id = __dev_xdp_query(dev, bpf_op, query); 8766 if (flags & XDP_FLAGS_REPLACE) { 8767 if (expected_fd >= 0) { 8768 prog = bpf_prog_get_type_dev(expected_fd, 8769 BPF_PROG_TYPE_XDP, 8770 bpf_op == ops->ndo_bpf); 8771 if (IS_ERR(prog)) 8772 return PTR_ERR(prog); 8773 expected_id = prog->aux->id; 8774 bpf_prog_put(prog); 8775 } 8776 8777 if (prog_id != expected_id) { 8778 NL_SET_ERR_MSG(extack, "Active program does not match expected"); 8779 return -EEXIST; 8780 } 8781 } 8782 if (fd >= 0) { 8783 if (!offload && __dev_xdp_query(dev, bpf_chk, XDP_QUERY_PROG)) { 8784 NL_SET_ERR_MSG(extack, "native and generic XDP can't be active at the same time"); 8785 return -EEXIST; 8786 } 8787 8788 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && prog_id) { 8789 NL_SET_ERR_MSG(extack, "XDP program already attached"); 8790 return -EBUSY; 8791 } 8792 8793 prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP, 8794 bpf_op == ops->ndo_bpf); 8795 if (IS_ERR(prog)) 8796 return PTR_ERR(prog); 8797 8798 if (!offload && bpf_prog_is_dev_bound(prog->aux)) { 8799 NL_SET_ERR_MSG(extack, "using device-bound program without HW_MODE flag is not supported"); 8800 bpf_prog_put(prog); 8801 return -EINVAL; 8802 } 8803 8804 /* prog->aux->id may be 0 for orphaned device-bound progs */ 8805 if (prog->aux->id && prog->aux->id == prog_id) { 8806 bpf_prog_put(prog); 8807 return 0; 8808 } 8809 } else { 8810 if (!prog_id) 8811 return 0; 8812 prog = NULL; 8813 } 8814 8815 err = dev_xdp_install(dev, bpf_op, extack, flags, prog); 8816 if (err < 0 && prog) 8817 bpf_prog_put(prog); 8818 8819 return err; 8820 } 8821 8822 /** 8823 * dev_new_index - allocate an ifindex 8824 * @net: the applicable net namespace 8825 * 8826 * Returns a suitable unique value for a new device interface 8827 * number. The caller must hold the rtnl semaphore or the 8828 * dev_base_lock to be sure it remains unique. 8829 */ 8830 static int dev_new_index(struct net *net) 8831 { 8832 int ifindex = net->ifindex; 8833 8834 for (;;) { 8835 if (++ifindex <= 0) 8836 ifindex = 1; 8837 if (!__dev_get_by_index(net, ifindex)) 8838 return net->ifindex = ifindex; 8839 } 8840 } 8841 8842 /* Delayed registration/unregisteration */ 8843 static LIST_HEAD(net_todo_list); 8844 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq); 8845 8846 static void net_set_todo(struct net_device *dev) 8847 { 8848 list_add_tail(&dev->todo_list, &net_todo_list); 8849 dev_net(dev)->dev_unreg_count++; 8850 } 8851 8852 static void rollback_registered_many(struct list_head *head) 8853 { 8854 struct net_device *dev, *tmp; 8855 LIST_HEAD(close_head); 8856 8857 BUG_ON(dev_boot_phase); 8858 ASSERT_RTNL(); 8859 8860 list_for_each_entry_safe(dev, tmp, head, unreg_list) { 8861 /* Some devices call without registering 8862 * for initialization unwind. Remove those 8863 * devices and proceed with the remaining. 8864 */ 8865 if (dev->reg_state == NETREG_UNINITIALIZED) { 8866 pr_debug("unregister_netdevice: device %s/%p never was registered\n", 8867 dev->name, dev); 8868 8869 WARN_ON(1); 8870 list_del(&dev->unreg_list); 8871 continue; 8872 } 8873 dev->dismantle = true; 8874 BUG_ON(dev->reg_state != NETREG_REGISTERED); 8875 } 8876 8877 /* If device is running, close it first. */ 8878 list_for_each_entry(dev, head, unreg_list) 8879 list_add_tail(&dev->close_list, &close_head); 8880 dev_close_many(&close_head, true); 8881 8882 list_for_each_entry(dev, head, unreg_list) { 8883 /* And unlink it from device chain. */ 8884 unlist_netdevice(dev); 8885 8886 dev->reg_state = NETREG_UNREGISTERING; 8887 } 8888 flush_all_backlogs(); 8889 8890 synchronize_net(); 8891 8892 list_for_each_entry(dev, head, unreg_list) { 8893 struct sk_buff *skb = NULL; 8894 8895 /* Shutdown queueing discipline. */ 8896 dev_shutdown(dev); 8897 8898 dev_xdp_uninstall(dev); 8899 8900 /* Notify protocols, that we are about to destroy 8901 * this device. They should clean all the things. 8902 */ 8903 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 8904 8905 if (!dev->rtnl_link_ops || 8906 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 8907 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0, 8908 GFP_KERNEL, NULL, 0); 8909 8910 /* 8911 * Flush the unicast and multicast chains 8912 */ 8913 dev_uc_flush(dev); 8914 dev_mc_flush(dev); 8915 8916 netdev_name_node_alt_flush(dev); 8917 netdev_name_node_free(dev->name_node); 8918 8919 if (dev->netdev_ops->ndo_uninit) 8920 dev->netdev_ops->ndo_uninit(dev); 8921 8922 if (skb) 8923 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL); 8924 8925 /* Notifier chain MUST detach us all upper devices. */ 8926 WARN_ON(netdev_has_any_upper_dev(dev)); 8927 WARN_ON(netdev_has_any_lower_dev(dev)); 8928 8929 /* Remove entries from kobject tree */ 8930 netdev_unregister_kobject(dev); 8931 #ifdef CONFIG_XPS 8932 /* Remove XPS queueing entries */ 8933 netif_reset_xps_queues_gt(dev, 0); 8934 #endif 8935 } 8936 8937 synchronize_net(); 8938 8939 list_for_each_entry(dev, head, unreg_list) 8940 dev_put(dev); 8941 } 8942 8943 static void rollback_registered(struct net_device *dev) 8944 { 8945 LIST_HEAD(single); 8946 8947 list_add(&dev->unreg_list, &single); 8948 rollback_registered_many(&single); 8949 list_del(&single); 8950 } 8951 8952 static netdev_features_t netdev_sync_upper_features(struct net_device *lower, 8953 struct net_device *upper, netdev_features_t features) 8954 { 8955 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES; 8956 netdev_features_t feature; 8957 int feature_bit; 8958 8959 for_each_netdev_feature(upper_disables, feature_bit) { 8960 feature = __NETIF_F_BIT(feature_bit); 8961 if (!(upper->wanted_features & feature) 8962 && (features & feature)) { 8963 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n", 8964 &feature, upper->name); 8965 features &= ~feature; 8966 } 8967 } 8968 8969 return features; 8970 } 8971 8972 static void netdev_sync_lower_features(struct net_device *upper, 8973 struct net_device *lower, netdev_features_t features) 8974 { 8975 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES; 8976 netdev_features_t feature; 8977 int feature_bit; 8978 8979 for_each_netdev_feature(upper_disables, feature_bit) { 8980 feature = __NETIF_F_BIT(feature_bit); 8981 if (!(features & feature) && (lower->features & feature)) { 8982 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n", 8983 &feature, lower->name); 8984 lower->wanted_features &= ~feature; 8985 netdev_update_features(lower); 8986 8987 if (unlikely(lower->features & feature)) 8988 netdev_WARN(upper, "failed to disable %pNF on %s!\n", 8989 &feature, lower->name); 8990 } 8991 } 8992 } 8993 8994 static netdev_features_t netdev_fix_features(struct net_device *dev, 8995 netdev_features_t features) 8996 { 8997 /* Fix illegal checksum combinations */ 8998 if ((features & NETIF_F_HW_CSUM) && 8999 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 9000 netdev_warn(dev, "mixed HW and IP checksum settings.\n"); 9001 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 9002 } 9003 9004 /* TSO requires that SG is present as well. */ 9005 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) { 9006 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n"); 9007 features &= ~NETIF_F_ALL_TSO; 9008 } 9009 9010 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) && 9011 !(features & NETIF_F_IP_CSUM)) { 9012 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n"); 9013 features &= ~NETIF_F_TSO; 9014 features &= ~NETIF_F_TSO_ECN; 9015 } 9016 9017 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) && 9018 !(features & NETIF_F_IPV6_CSUM)) { 9019 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n"); 9020 features &= ~NETIF_F_TSO6; 9021 } 9022 9023 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */ 9024 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO)) 9025 features &= ~NETIF_F_TSO_MANGLEID; 9026 9027 /* TSO ECN requires that TSO is present as well. */ 9028 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN) 9029 features &= ~NETIF_F_TSO_ECN; 9030 9031 /* Software GSO depends on SG. */ 9032 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) { 9033 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n"); 9034 features &= ~NETIF_F_GSO; 9035 } 9036 9037 /* GSO partial features require GSO partial be set */ 9038 if ((features & dev->gso_partial_features) && 9039 !(features & NETIF_F_GSO_PARTIAL)) { 9040 netdev_dbg(dev, 9041 "Dropping partially supported GSO features since no GSO partial.\n"); 9042 features &= ~dev->gso_partial_features; 9043 } 9044 9045 if (!(features & NETIF_F_RXCSUM)) { 9046 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet 9047 * successfully merged by hardware must also have the 9048 * checksum verified by hardware. If the user does not 9049 * want to enable RXCSUM, logically, we should disable GRO_HW. 9050 */ 9051 if (features & NETIF_F_GRO_HW) { 9052 netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n"); 9053 features &= ~NETIF_F_GRO_HW; 9054 } 9055 } 9056 9057 /* LRO/HW-GRO features cannot be combined with RX-FCS */ 9058 if (features & NETIF_F_RXFCS) { 9059 if (features & NETIF_F_LRO) { 9060 netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n"); 9061 features &= ~NETIF_F_LRO; 9062 } 9063 9064 if (features & NETIF_F_GRO_HW) { 9065 netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n"); 9066 features &= ~NETIF_F_GRO_HW; 9067 } 9068 } 9069 9070 return features; 9071 } 9072 9073 int __netdev_update_features(struct net_device *dev) 9074 { 9075 struct net_device *upper, *lower; 9076 netdev_features_t features; 9077 struct list_head *iter; 9078 int err = -1; 9079 9080 ASSERT_RTNL(); 9081 9082 features = netdev_get_wanted_features(dev); 9083 9084 if (dev->netdev_ops->ndo_fix_features) 9085 features = dev->netdev_ops->ndo_fix_features(dev, features); 9086 9087 /* driver might be less strict about feature dependencies */ 9088 features = netdev_fix_features(dev, features); 9089 9090 /* some features can't be enabled if they're off an an upper device */ 9091 netdev_for_each_upper_dev_rcu(dev, upper, iter) 9092 features = netdev_sync_upper_features(dev, upper, features); 9093 9094 if (dev->features == features) 9095 goto sync_lower; 9096 9097 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n", 9098 &dev->features, &features); 9099 9100 if (dev->netdev_ops->ndo_set_features) 9101 err = dev->netdev_ops->ndo_set_features(dev, features); 9102 else 9103 err = 0; 9104 9105 if (unlikely(err < 0)) { 9106 netdev_err(dev, 9107 "set_features() failed (%d); wanted %pNF, left %pNF\n", 9108 err, &features, &dev->features); 9109 /* return non-0 since some features might have changed and 9110 * it's better to fire a spurious notification than miss it 9111 */ 9112 return -1; 9113 } 9114 9115 sync_lower: 9116 /* some features must be disabled on lower devices when disabled 9117 * on an upper device (think: bonding master or bridge) 9118 */ 9119 netdev_for_each_lower_dev(dev, lower, iter) 9120 netdev_sync_lower_features(dev, lower, features); 9121 9122 if (!err) { 9123 netdev_features_t diff = features ^ dev->features; 9124 9125 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) { 9126 /* udp_tunnel_{get,drop}_rx_info both need 9127 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the 9128 * device, or they won't do anything. 9129 * Thus we need to update dev->features 9130 * *before* calling udp_tunnel_get_rx_info, 9131 * but *after* calling udp_tunnel_drop_rx_info. 9132 */ 9133 if (features & NETIF_F_RX_UDP_TUNNEL_PORT) { 9134 dev->features = features; 9135 udp_tunnel_get_rx_info(dev); 9136 } else { 9137 udp_tunnel_drop_rx_info(dev); 9138 } 9139 } 9140 9141 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) { 9142 if (features & NETIF_F_HW_VLAN_CTAG_FILTER) { 9143 dev->features = features; 9144 err |= vlan_get_rx_ctag_filter_info(dev); 9145 } else { 9146 vlan_drop_rx_ctag_filter_info(dev); 9147 } 9148 } 9149 9150 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) { 9151 if (features & NETIF_F_HW_VLAN_STAG_FILTER) { 9152 dev->features = features; 9153 err |= vlan_get_rx_stag_filter_info(dev); 9154 } else { 9155 vlan_drop_rx_stag_filter_info(dev); 9156 } 9157 } 9158 9159 dev->features = features; 9160 } 9161 9162 return err < 0 ? 0 : 1; 9163 } 9164 9165 /** 9166 * netdev_update_features - recalculate device features 9167 * @dev: the device to check 9168 * 9169 * Recalculate dev->features set and send notifications if it 9170 * has changed. Should be called after driver or hardware dependent 9171 * conditions might have changed that influence the features. 9172 */ 9173 void netdev_update_features(struct net_device *dev) 9174 { 9175 if (__netdev_update_features(dev)) 9176 netdev_features_change(dev); 9177 } 9178 EXPORT_SYMBOL(netdev_update_features); 9179 9180 /** 9181 * netdev_change_features - recalculate device features 9182 * @dev: the device to check 9183 * 9184 * Recalculate dev->features set and send notifications even 9185 * if they have not changed. Should be called instead of 9186 * netdev_update_features() if also dev->vlan_features might 9187 * have changed to allow the changes to be propagated to stacked 9188 * VLAN devices. 9189 */ 9190 void netdev_change_features(struct net_device *dev) 9191 { 9192 __netdev_update_features(dev); 9193 netdev_features_change(dev); 9194 } 9195 EXPORT_SYMBOL(netdev_change_features); 9196 9197 /** 9198 * netif_stacked_transfer_operstate - transfer operstate 9199 * @rootdev: the root or lower level device to transfer state from 9200 * @dev: the device to transfer operstate to 9201 * 9202 * Transfer operational state from root to device. This is normally 9203 * called when a stacking relationship exists between the root 9204 * device and the device(a leaf device). 9205 */ 9206 void netif_stacked_transfer_operstate(const struct net_device *rootdev, 9207 struct net_device *dev) 9208 { 9209 if (rootdev->operstate == IF_OPER_DORMANT) 9210 netif_dormant_on(dev); 9211 else 9212 netif_dormant_off(dev); 9213 9214 if (rootdev->operstate == IF_OPER_TESTING) 9215 netif_testing_on(dev); 9216 else 9217 netif_testing_off(dev); 9218 9219 if (netif_carrier_ok(rootdev)) 9220 netif_carrier_on(dev); 9221 else 9222 netif_carrier_off(dev); 9223 } 9224 EXPORT_SYMBOL(netif_stacked_transfer_operstate); 9225 9226 static int netif_alloc_rx_queues(struct net_device *dev) 9227 { 9228 unsigned int i, count = dev->num_rx_queues; 9229 struct netdev_rx_queue *rx; 9230 size_t sz = count * sizeof(*rx); 9231 int err = 0; 9232 9233 BUG_ON(count < 1); 9234 9235 rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL); 9236 if (!rx) 9237 return -ENOMEM; 9238 9239 dev->_rx = rx; 9240 9241 for (i = 0; i < count; i++) { 9242 rx[i].dev = dev; 9243 9244 /* XDP RX-queue setup */ 9245 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i); 9246 if (err < 0) 9247 goto err_rxq_info; 9248 } 9249 return 0; 9250 9251 err_rxq_info: 9252 /* Rollback successful reg's and free other resources */ 9253 while (i--) 9254 xdp_rxq_info_unreg(&rx[i].xdp_rxq); 9255 kvfree(dev->_rx); 9256 dev->_rx = NULL; 9257 return err; 9258 } 9259 9260 static void netif_free_rx_queues(struct net_device *dev) 9261 { 9262 unsigned int i, count = dev->num_rx_queues; 9263 9264 /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */ 9265 if (!dev->_rx) 9266 return; 9267 9268 for (i = 0; i < count; i++) 9269 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq); 9270 9271 kvfree(dev->_rx); 9272 } 9273 9274 static void netdev_init_one_queue(struct net_device *dev, 9275 struct netdev_queue *queue, void *_unused) 9276 { 9277 /* Initialize queue lock */ 9278 spin_lock_init(&queue->_xmit_lock); 9279 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type); 9280 queue->xmit_lock_owner = -1; 9281 netdev_queue_numa_node_write(queue, NUMA_NO_NODE); 9282 queue->dev = dev; 9283 #ifdef CONFIG_BQL 9284 dql_init(&queue->dql, HZ); 9285 #endif 9286 } 9287 9288 static void netif_free_tx_queues(struct net_device *dev) 9289 { 9290 kvfree(dev->_tx); 9291 } 9292 9293 static int netif_alloc_netdev_queues(struct net_device *dev) 9294 { 9295 unsigned int count = dev->num_tx_queues; 9296 struct netdev_queue *tx; 9297 size_t sz = count * sizeof(*tx); 9298 9299 if (count < 1 || count > 0xffff) 9300 return -EINVAL; 9301 9302 tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL); 9303 if (!tx) 9304 return -ENOMEM; 9305 9306 dev->_tx = tx; 9307 9308 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL); 9309 spin_lock_init(&dev->tx_global_lock); 9310 9311 return 0; 9312 } 9313 9314 void netif_tx_stop_all_queues(struct net_device *dev) 9315 { 9316 unsigned int i; 9317 9318 for (i = 0; i < dev->num_tx_queues; i++) { 9319 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 9320 9321 netif_tx_stop_queue(txq); 9322 } 9323 } 9324 EXPORT_SYMBOL(netif_tx_stop_all_queues); 9325 9326 void netdev_update_lockdep_key(struct net_device *dev) 9327 { 9328 lockdep_unregister_key(&dev->addr_list_lock_key); 9329 lockdep_register_key(&dev->addr_list_lock_key); 9330 9331 lockdep_set_class(&dev->addr_list_lock, &dev->addr_list_lock_key); 9332 } 9333 EXPORT_SYMBOL(netdev_update_lockdep_key); 9334 9335 /** 9336 * register_netdevice - register a network device 9337 * @dev: device to register 9338 * 9339 * Take a completed network device structure and add it to the kernel 9340 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 9341 * chain. 0 is returned on success. A negative errno code is returned 9342 * on a failure to set up the device, or if the name is a duplicate. 9343 * 9344 * Callers must hold the rtnl semaphore. You may want 9345 * register_netdev() instead of this. 9346 * 9347 * BUGS: 9348 * The locking appears insufficient to guarantee two parallel registers 9349 * will not get the same name. 9350 */ 9351 9352 int register_netdevice(struct net_device *dev) 9353 { 9354 int ret; 9355 struct net *net = dev_net(dev); 9356 9357 BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE < 9358 NETDEV_FEATURE_COUNT); 9359 BUG_ON(dev_boot_phase); 9360 ASSERT_RTNL(); 9361 9362 might_sleep(); 9363 9364 /* When net_device's are persistent, this will be fatal. */ 9365 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED); 9366 BUG_ON(!net); 9367 9368 ret = ethtool_check_ops(dev->ethtool_ops); 9369 if (ret) 9370 return ret; 9371 9372 spin_lock_init(&dev->addr_list_lock); 9373 lockdep_set_class(&dev->addr_list_lock, &dev->addr_list_lock_key); 9374 9375 ret = dev_get_valid_name(net, dev, dev->name); 9376 if (ret < 0) 9377 goto out; 9378 9379 ret = -ENOMEM; 9380 dev->name_node = netdev_name_node_head_alloc(dev); 9381 if (!dev->name_node) 9382 goto out; 9383 9384 /* Init, if this function is available */ 9385 if (dev->netdev_ops->ndo_init) { 9386 ret = dev->netdev_ops->ndo_init(dev); 9387 if (ret) { 9388 if (ret > 0) 9389 ret = -EIO; 9390 goto err_free_name; 9391 } 9392 } 9393 9394 if (((dev->hw_features | dev->features) & 9395 NETIF_F_HW_VLAN_CTAG_FILTER) && 9396 (!dev->netdev_ops->ndo_vlan_rx_add_vid || 9397 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) { 9398 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n"); 9399 ret = -EINVAL; 9400 goto err_uninit; 9401 } 9402 9403 ret = -EBUSY; 9404 if (!dev->ifindex) 9405 dev->ifindex = dev_new_index(net); 9406 else if (__dev_get_by_index(net, dev->ifindex)) 9407 goto err_uninit; 9408 9409 /* Transfer changeable features to wanted_features and enable 9410 * software offloads (GSO and GRO). 9411 */ 9412 dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF); 9413 dev->features |= NETIF_F_SOFT_FEATURES; 9414 9415 if (dev->netdev_ops->ndo_udp_tunnel_add) { 9416 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT; 9417 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT; 9418 } 9419 9420 dev->wanted_features = dev->features & dev->hw_features; 9421 9422 if (!(dev->flags & IFF_LOOPBACK)) 9423 dev->hw_features |= NETIF_F_NOCACHE_COPY; 9424 9425 /* If IPv4 TCP segmentation offload is supported we should also 9426 * allow the device to enable segmenting the frame with the option 9427 * of ignoring a static IP ID value. This doesn't enable the 9428 * feature itself but allows the user to enable it later. 9429 */ 9430 if (dev->hw_features & NETIF_F_TSO) 9431 dev->hw_features |= NETIF_F_TSO_MANGLEID; 9432 if (dev->vlan_features & NETIF_F_TSO) 9433 dev->vlan_features |= NETIF_F_TSO_MANGLEID; 9434 if (dev->mpls_features & NETIF_F_TSO) 9435 dev->mpls_features |= NETIF_F_TSO_MANGLEID; 9436 if (dev->hw_enc_features & NETIF_F_TSO) 9437 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID; 9438 9439 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices. 9440 */ 9441 dev->vlan_features |= NETIF_F_HIGHDMA; 9442 9443 /* Make NETIF_F_SG inheritable to tunnel devices. 9444 */ 9445 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL; 9446 9447 /* Make NETIF_F_SG inheritable to MPLS. 9448 */ 9449 dev->mpls_features |= NETIF_F_SG; 9450 9451 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev); 9452 ret = notifier_to_errno(ret); 9453 if (ret) 9454 goto err_uninit; 9455 9456 ret = netdev_register_kobject(dev); 9457 if (ret) { 9458 dev->reg_state = NETREG_UNREGISTERED; 9459 goto err_uninit; 9460 } 9461 dev->reg_state = NETREG_REGISTERED; 9462 9463 __netdev_update_features(dev); 9464 9465 /* 9466 * Default initial state at registry is that the 9467 * device is present. 9468 */ 9469 9470 set_bit(__LINK_STATE_PRESENT, &dev->state); 9471 9472 linkwatch_init_dev(dev); 9473 9474 dev_init_scheduler(dev); 9475 dev_hold(dev); 9476 list_netdevice(dev); 9477 add_device_randomness(dev->dev_addr, dev->addr_len); 9478 9479 /* If the device has permanent device address, driver should 9480 * set dev_addr and also addr_assign_type should be set to 9481 * NET_ADDR_PERM (default value). 9482 */ 9483 if (dev->addr_assign_type == NET_ADDR_PERM) 9484 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len); 9485 9486 /* Notify protocols, that a new device appeared. */ 9487 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev); 9488 ret = notifier_to_errno(ret); 9489 if (ret) { 9490 rollback_registered(dev); 9491 rcu_barrier(); 9492 9493 dev->reg_state = NETREG_UNREGISTERED; 9494 } 9495 /* 9496 * Prevent userspace races by waiting until the network 9497 * device is fully setup before sending notifications. 9498 */ 9499 if (!dev->rtnl_link_ops || 9500 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 9501 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL); 9502 9503 out: 9504 return ret; 9505 9506 err_uninit: 9507 if (dev->netdev_ops->ndo_uninit) 9508 dev->netdev_ops->ndo_uninit(dev); 9509 if (dev->priv_destructor) 9510 dev->priv_destructor(dev); 9511 err_free_name: 9512 netdev_name_node_free(dev->name_node); 9513 goto out; 9514 } 9515 EXPORT_SYMBOL(register_netdevice); 9516 9517 /** 9518 * init_dummy_netdev - init a dummy network device for NAPI 9519 * @dev: device to init 9520 * 9521 * This takes a network device structure and initialize the minimum 9522 * amount of fields so it can be used to schedule NAPI polls without 9523 * registering a full blown interface. This is to be used by drivers 9524 * that need to tie several hardware interfaces to a single NAPI 9525 * poll scheduler due to HW limitations. 9526 */ 9527 int init_dummy_netdev(struct net_device *dev) 9528 { 9529 /* Clear everything. Note we don't initialize spinlocks 9530 * are they aren't supposed to be taken by any of the 9531 * NAPI code and this dummy netdev is supposed to be 9532 * only ever used for NAPI polls 9533 */ 9534 memset(dev, 0, sizeof(struct net_device)); 9535 9536 /* make sure we BUG if trying to hit standard 9537 * register/unregister code path 9538 */ 9539 dev->reg_state = NETREG_DUMMY; 9540 9541 /* NAPI wants this */ 9542 INIT_LIST_HEAD(&dev->napi_list); 9543 9544 /* a dummy interface is started by default */ 9545 set_bit(__LINK_STATE_PRESENT, &dev->state); 9546 set_bit(__LINK_STATE_START, &dev->state); 9547 9548 /* napi_busy_loop stats accounting wants this */ 9549 dev_net_set(dev, &init_net); 9550 9551 /* Note : We dont allocate pcpu_refcnt for dummy devices, 9552 * because users of this 'device' dont need to change 9553 * its refcount. 9554 */ 9555 9556 return 0; 9557 } 9558 EXPORT_SYMBOL_GPL(init_dummy_netdev); 9559 9560 9561 /** 9562 * register_netdev - register a network device 9563 * @dev: device to register 9564 * 9565 * Take a completed network device structure and add it to the kernel 9566 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 9567 * chain. 0 is returned on success. A negative errno code is returned 9568 * on a failure to set up the device, or if the name is a duplicate. 9569 * 9570 * This is a wrapper around register_netdevice that takes the rtnl semaphore 9571 * and expands the device name if you passed a format string to 9572 * alloc_netdev. 9573 */ 9574 int register_netdev(struct net_device *dev) 9575 { 9576 int err; 9577 9578 if (rtnl_lock_killable()) 9579 return -EINTR; 9580 err = register_netdevice(dev); 9581 rtnl_unlock(); 9582 return err; 9583 } 9584 EXPORT_SYMBOL(register_netdev); 9585 9586 int netdev_refcnt_read(const struct net_device *dev) 9587 { 9588 int i, refcnt = 0; 9589 9590 for_each_possible_cpu(i) 9591 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i); 9592 return refcnt; 9593 } 9594 EXPORT_SYMBOL(netdev_refcnt_read); 9595 9596 /** 9597 * netdev_wait_allrefs - wait until all references are gone. 9598 * @dev: target net_device 9599 * 9600 * This is called when unregistering network devices. 9601 * 9602 * Any protocol or device that holds a reference should register 9603 * for netdevice notification, and cleanup and put back the 9604 * reference if they receive an UNREGISTER event. 9605 * We can get stuck here if buggy protocols don't correctly 9606 * call dev_put. 9607 */ 9608 static void netdev_wait_allrefs(struct net_device *dev) 9609 { 9610 unsigned long rebroadcast_time, warning_time; 9611 int refcnt; 9612 9613 linkwatch_forget_dev(dev); 9614 9615 rebroadcast_time = warning_time = jiffies; 9616 refcnt = netdev_refcnt_read(dev); 9617 9618 while (refcnt != 0) { 9619 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) { 9620 rtnl_lock(); 9621 9622 /* Rebroadcast unregister notification */ 9623 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 9624 9625 __rtnl_unlock(); 9626 rcu_barrier(); 9627 rtnl_lock(); 9628 9629 if (test_bit(__LINK_STATE_LINKWATCH_PENDING, 9630 &dev->state)) { 9631 /* We must not have linkwatch events 9632 * pending on unregister. If this 9633 * happens, we simply run the queue 9634 * unscheduled, resulting in a noop 9635 * for this device. 9636 */ 9637 linkwatch_run_queue(); 9638 } 9639 9640 __rtnl_unlock(); 9641 9642 rebroadcast_time = jiffies; 9643 } 9644 9645 msleep(250); 9646 9647 refcnt = netdev_refcnt_read(dev); 9648 9649 if (refcnt && time_after(jiffies, warning_time + 10 * HZ)) { 9650 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n", 9651 dev->name, refcnt); 9652 warning_time = jiffies; 9653 } 9654 } 9655 } 9656 9657 /* The sequence is: 9658 * 9659 * rtnl_lock(); 9660 * ... 9661 * register_netdevice(x1); 9662 * register_netdevice(x2); 9663 * ... 9664 * unregister_netdevice(y1); 9665 * unregister_netdevice(y2); 9666 * ... 9667 * rtnl_unlock(); 9668 * free_netdev(y1); 9669 * free_netdev(y2); 9670 * 9671 * We are invoked by rtnl_unlock(). 9672 * This allows us to deal with problems: 9673 * 1) We can delete sysfs objects which invoke hotplug 9674 * without deadlocking with linkwatch via keventd. 9675 * 2) Since we run with the RTNL semaphore not held, we can sleep 9676 * safely in order to wait for the netdev refcnt to drop to zero. 9677 * 9678 * We must not return until all unregister events added during 9679 * the interval the lock was held have been completed. 9680 */ 9681 void netdev_run_todo(void) 9682 { 9683 struct list_head list; 9684 9685 /* Snapshot list, allow later requests */ 9686 list_replace_init(&net_todo_list, &list); 9687 9688 __rtnl_unlock(); 9689 9690 9691 /* Wait for rcu callbacks to finish before next phase */ 9692 if (!list_empty(&list)) 9693 rcu_barrier(); 9694 9695 while (!list_empty(&list)) { 9696 struct net_device *dev 9697 = list_first_entry(&list, struct net_device, todo_list); 9698 list_del(&dev->todo_list); 9699 9700 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) { 9701 pr_err("network todo '%s' but state %d\n", 9702 dev->name, dev->reg_state); 9703 dump_stack(); 9704 continue; 9705 } 9706 9707 dev->reg_state = NETREG_UNREGISTERED; 9708 9709 netdev_wait_allrefs(dev); 9710 9711 /* paranoia */ 9712 BUG_ON(netdev_refcnt_read(dev)); 9713 BUG_ON(!list_empty(&dev->ptype_all)); 9714 BUG_ON(!list_empty(&dev->ptype_specific)); 9715 WARN_ON(rcu_access_pointer(dev->ip_ptr)); 9716 WARN_ON(rcu_access_pointer(dev->ip6_ptr)); 9717 #if IS_ENABLED(CONFIG_DECNET) 9718 WARN_ON(dev->dn_ptr); 9719 #endif 9720 if (dev->priv_destructor) 9721 dev->priv_destructor(dev); 9722 if (dev->needs_free_netdev) 9723 free_netdev(dev); 9724 9725 /* Report a network device has been unregistered */ 9726 rtnl_lock(); 9727 dev_net(dev)->dev_unreg_count--; 9728 __rtnl_unlock(); 9729 wake_up(&netdev_unregistering_wq); 9730 9731 /* Free network device */ 9732 kobject_put(&dev->dev.kobj); 9733 } 9734 } 9735 9736 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has 9737 * all the same fields in the same order as net_device_stats, with only 9738 * the type differing, but rtnl_link_stats64 may have additional fields 9739 * at the end for newer counters. 9740 */ 9741 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 9742 const struct net_device_stats *netdev_stats) 9743 { 9744 #if BITS_PER_LONG == 64 9745 BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats)); 9746 memcpy(stats64, netdev_stats, sizeof(*netdev_stats)); 9747 /* zero out counters that only exist in rtnl_link_stats64 */ 9748 memset((char *)stats64 + sizeof(*netdev_stats), 0, 9749 sizeof(*stats64) - sizeof(*netdev_stats)); 9750 #else 9751 size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long); 9752 const unsigned long *src = (const unsigned long *)netdev_stats; 9753 u64 *dst = (u64 *)stats64; 9754 9755 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64)); 9756 for (i = 0; i < n; i++) 9757 dst[i] = src[i]; 9758 /* zero out counters that only exist in rtnl_link_stats64 */ 9759 memset((char *)stats64 + n * sizeof(u64), 0, 9760 sizeof(*stats64) - n * sizeof(u64)); 9761 #endif 9762 } 9763 EXPORT_SYMBOL(netdev_stats_to_stats64); 9764 9765 /** 9766 * dev_get_stats - get network device statistics 9767 * @dev: device to get statistics from 9768 * @storage: place to store stats 9769 * 9770 * Get network statistics from device. Return @storage. 9771 * The device driver may provide its own method by setting 9772 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats; 9773 * otherwise the internal statistics structure is used. 9774 */ 9775 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 9776 struct rtnl_link_stats64 *storage) 9777 { 9778 const struct net_device_ops *ops = dev->netdev_ops; 9779 9780 if (ops->ndo_get_stats64) { 9781 memset(storage, 0, sizeof(*storage)); 9782 ops->ndo_get_stats64(dev, storage); 9783 } else if (ops->ndo_get_stats) { 9784 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev)); 9785 } else { 9786 netdev_stats_to_stats64(storage, &dev->stats); 9787 } 9788 storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped); 9789 storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped); 9790 storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler); 9791 return storage; 9792 } 9793 EXPORT_SYMBOL(dev_get_stats); 9794 9795 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev) 9796 { 9797 struct netdev_queue *queue = dev_ingress_queue(dev); 9798 9799 #ifdef CONFIG_NET_CLS_ACT 9800 if (queue) 9801 return queue; 9802 queue = kzalloc(sizeof(*queue), GFP_KERNEL); 9803 if (!queue) 9804 return NULL; 9805 netdev_init_one_queue(dev, queue, NULL); 9806 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc); 9807 queue->qdisc_sleeping = &noop_qdisc; 9808 rcu_assign_pointer(dev->ingress_queue, queue); 9809 #endif 9810 return queue; 9811 } 9812 9813 static const struct ethtool_ops default_ethtool_ops; 9814 9815 void netdev_set_default_ethtool_ops(struct net_device *dev, 9816 const struct ethtool_ops *ops) 9817 { 9818 if (dev->ethtool_ops == &default_ethtool_ops) 9819 dev->ethtool_ops = ops; 9820 } 9821 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops); 9822 9823 void netdev_freemem(struct net_device *dev) 9824 { 9825 char *addr = (char *)dev - dev->padded; 9826 9827 kvfree(addr); 9828 } 9829 9830 /** 9831 * alloc_netdev_mqs - allocate network device 9832 * @sizeof_priv: size of private data to allocate space for 9833 * @name: device name format string 9834 * @name_assign_type: origin of device name 9835 * @setup: callback to initialize device 9836 * @txqs: the number of TX subqueues to allocate 9837 * @rxqs: the number of RX subqueues to allocate 9838 * 9839 * Allocates a struct net_device with private data area for driver use 9840 * and performs basic initialization. Also allocates subqueue structs 9841 * for each queue on the device. 9842 */ 9843 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 9844 unsigned char name_assign_type, 9845 void (*setup)(struct net_device *), 9846 unsigned int txqs, unsigned int rxqs) 9847 { 9848 struct net_device *dev; 9849 unsigned int alloc_size; 9850 struct net_device *p; 9851 9852 BUG_ON(strlen(name) >= sizeof(dev->name)); 9853 9854 if (txqs < 1) { 9855 pr_err("alloc_netdev: Unable to allocate device with zero queues\n"); 9856 return NULL; 9857 } 9858 9859 if (rxqs < 1) { 9860 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n"); 9861 return NULL; 9862 } 9863 9864 alloc_size = sizeof(struct net_device); 9865 if (sizeof_priv) { 9866 /* ensure 32-byte alignment of private area */ 9867 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN); 9868 alloc_size += sizeof_priv; 9869 } 9870 /* ensure 32-byte alignment of whole construct */ 9871 alloc_size += NETDEV_ALIGN - 1; 9872 9873 p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL); 9874 if (!p) 9875 return NULL; 9876 9877 dev = PTR_ALIGN(p, NETDEV_ALIGN); 9878 dev->padded = (char *)dev - (char *)p; 9879 9880 dev->pcpu_refcnt = alloc_percpu(int); 9881 if (!dev->pcpu_refcnt) 9882 goto free_dev; 9883 9884 if (dev_addr_init(dev)) 9885 goto free_pcpu; 9886 9887 dev_mc_init(dev); 9888 dev_uc_init(dev); 9889 9890 dev_net_set(dev, &init_net); 9891 9892 lockdep_register_key(&dev->addr_list_lock_key); 9893 9894 dev->gso_max_size = GSO_MAX_SIZE; 9895 dev->gso_max_segs = GSO_MAX_SEGS; 9896 dev->upper_level = 1; 9897 dev->lower_level = 1; 9898 9899 INIT_LIST_HEAD(&dev->napi_list); 9900 INIT_LIST_HEAD(&dev->unreg_list); 9901 INIT_LIST_HEAD(&dev->close_list); 9902 INIT_LIST_HEAD(&dev->link_watch_list); 9903 INIT_LIST_HEAD(&dev->adj_list.upper); 9904 INIT_LIST_HEAD(&dev->adj_list.lower); 9905 INIT_LIST_HEAD(&dev->ptype_all); 9906 INIT_LIST_HEAD(&dev->ptype_specific); 9907 INIT_LIST_HEAD(&dev->net_notifier_list); 9908 #ifdef CONFIG_NET_SCHED 9909 hash_init(dev->qdisc_hash); 9910 #endif 9911 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM; 9912 setup(dev); 9913 9914 if (!dev->tx_queue_len) { 9915 dev->priv_flags |= IFF_NO_QUEUE; 9916 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN; 9917 } 9918 9919 dev->num_tx_queues = txqs; 9920 dev->real_num_tx_queues = txqs; 9921 if (netif_alloc_netdev_queues(dev)) 9922 goto free_all; 9923 9924 dev->num_rx_queues = rxqs; 9925 dev->real_num_rx_queues = rxqs; 9926 if (netif_alloc_rx_queues(dev)) 9927 goto free_all; 9928 9929 strcpy(dev->name, name); 9930 dev->name_assign_type = name_assign_type; 9931 dev->group = INIT_NETDEV_GROUP; 9932 if (!dev->ethtool_ops) 9933 dev->ethtool_ops = &default_ethtool_ops; 9934 9935 nf_hook_ingress_init(dev); 9936 9937 return dev; 9938 9939 free_all: 9940 free_netdev(dev); 9941 return NULL; 9942 9943 free_pcpu: 9944 free_percpu(dev->pcpu_refcnt); 9945 free_dev: 9946 netdev_freemem(dev); 9947 return NULL; 9948 } 9949 EXPORT_SYMBOL(alloc_netdev_mqs); 9950 9951 /** 9952 * free_netdev - free network device 9953 * @dev: device 9954 * 9955 * This function does the last stage of destroying an allocated device 9956 * interface. The reference to the device object is released. If this 9957 * is the last reference then it will be freed.Must be called in process 9958 * context. 9959 */ 9960 void free_netdev(struct net_device *dev) 9961 { 9962 struct napi_struct *p, *n; 9963 9964 might_sleep(); 9965 netif_free_tx_queues(dev); 9966 netif_free_rx_queues(dev); 9967 9968 kfree(rcu_dereference_protected(dev->ingress_queue, 1)); 9969 9970 /* Flush device addresses */ 9971 dev_addr_flush(dev); 9972 9973 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list) 9974 netif_napi_del(p); 9975 9976 free_percpu(dev->pcpu_refcnt); 9977 dev->pcpu_refcnt = NULL; 9978 free_percpu(dev->xdp_bulkq); 9979 dev->xdp_bulkq = NULL; 9980 9981 lockdep_unregister_key(&dev->addr_list_lock_key); 9982 9983 /* Compatibility with error handling in drivers */ 9984 if (dev->reg_state == NETREG_UNINITIALIZED) { 9985 netdev_freemem(dev); 9986 return; 9987 } 9988 9989 BUG_ON(dev->reg_state != NETREG_UNREGISTERED); 9990 dev->reg_state = NETREG_RELEASED; 9991 9992 /* will free via device release */ 9993 put_device(&dev->dev); 9994 } 9995 EXPORT_SYMBOL(free_netdev); 9996 9997 /** 9998 * synchronize_net - Synchronize with packet receive processing 9999 * 10000 * Wait for packets currently being received to be done. 10001 * Does not block later packets from starting. 10002 */ 10003 void synchronize_net(void) 10004 { 10005 might_sleep(); 10006 if (rtnl_is_locked()) 10007 synchronize_rcu_expedited(); 10008 else 10009 synchronize_rcu(); 10010 } 10011 EXPORT_SYMBOL(synchronize_net); 10012 10013 /** 10014 * unregister_netdevice_queue - remove device from the kernel 10015 * @dev: device 10016 * @head: list 10017 * 10018 * This function shuts down a device interface and removes it 10019 * from the kernel tables. 10020 * If head not NULL, device is queued to be unregistered later. 10021 * 10022 * Callers must hold the rtnl semaphore. You may want 10023 * unregister_netdev() instead of this. 10024 */ 10025 10026 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head) 10027 { 10028 ASSERT_RTNL(); 10029 10030 if (head) { 10031 list_move_tail(&dev->unreg_list, head); 10032 } else { 10033 rollback_registered(dev); 10034 /* Finish processing unregister after unlock */ 10035 net_set_todo(dev); 10036 } 10037 } 10038 EXPORT_SYMBOL(unregister_netdevice_queue); 10039 10040 /** 10041 * unregister_netdevice_many - unregister many devices 10042 * @head: list of devices 10043 * 10044 * Note: As most callers use a stack allocated list_head, 10045 * we force a list_del() to make sure stack wont be corrupted later. 10046 */ 10047 void unregister_netdevice_many(struct list_head *head) 10048 { 10049 struct net_device *dev; 10050 10051 if (!list_empty(head)) { 10052 rollback_registered_many(head); 10053 list_for_each_entry(dev, head, unreg_list) 10054 net_set_todo(dev); 10055 list_del(head); 10056 } 10057 } 10058 EXPORT_SYMBOL(unregister_netdevice_many); 10059 10060 /** 10061 * unregister_netdev - remove device from the kernel 10062 * @dev: device 10063 * 10064 * This function shuts down a device interface and removes it 10065 * from the kernel tables. 10066 * 10067 * This is just a wrapper for unregister_netdevice that takes 10068 * the rtnl semaphore. In general you want to use this and not 10069 * unregister_netdevice. 10070 */ 10071 void unregister_netdev(struct net_device *dev) 10072 { 10073 rtnl_lock(); 10074 unregister_netdevice(dev); 10075 rtnl_unlock(); 10076 } 10077 EXPORT_SYMBOL(unregister_netdev); 10078 10079 /** 10080 * dev_change_net_namespace - move device to different nethost namespace 10081 * @dev: device 10082 * @net: network namespace 10083 * @pat: If not NULL name pattern to try if the current device name 10084 * is already taken in the destination network namespace. 10085 * 10086 * This function shuts down a device interface and moves it 10087 * to a new network namespace. On success 0 is returned, on 10088 * a failure a netagive errno code is returned. 10089 * 10090 * Callers must hold the rtnl semaphore. 10091 */ 10092 10093 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat) 10094 { 10095 struct net *net_old = dev_net(dev); 10096 int err, new_nsid, new_ifindex; 10097 10098 ASSERT_RTNL(); 10099 10100 /* Don't allow namespace local devices to be moved. */ 10101 err = -EINVAL; 10102 if (dev->features & NETIF_F_NETNS_LOCAL) 10103 goto out; 10104 10105 /* Ensure the device has been registrered */ 10106 if (dev->reg_state != NETREG_REGISTERED) 10107 goto out; 10108 10109 /* Get out if there is nothing todo */ 10110 err = 0; 10111 if (net_eq(net_old, net)) 10112 goto out; 10113 10114 /* Pick the destination device name, and ensure 10115 * we can use it in the destination network namespace. 10116 */ 10117 err = -EEXIST; 10118 if (__dev_get_by_name(net, dev->name)) { 10119 /* We get here if we can't use the current device name */ 10120 if (!pat) 10121 goto out; 10122 err = dev_get_valid_name(net, dev, pat); 10123 if (err < 0) 10124 goto out; 10125 } 10126 10127 /* 10128 * And now a mini version of register_netdevice unregister_netdevice. 10129 */ 10130 10131 /* If device is running close it first. */ 10132 dev_close(dev); 10133 10134 /* And unlink it from device chain */ 10135 unlist_netdevice(dev); 10136 10137 synchronize_net(); 10138 10139 /* Shutdown queueing discipline. */ 10140 dev_shutdown(dev); 10141 10142 /* Notify protocols, that we are about to destroy 10143 * this device. They should clean all the things. 10144 * 10145 * Note that dev->reg_state stays at NETREG_REGISTERED. 10146 * This is wanted because this way 8021q and macvlan know 10147 * the device is just moving and can keep their slaves up. 10148 */ 10149 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 10150 rcu_barrier(); 10151 10152 new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL); 10153 /* If there is an ifindex conflict assign a new one */ 10154 if (__dev_get_by_index(net, dev->ifindex)) 10155 new_ifindex = dev_new_index(net); 10156 else 10157 new_ifindex = dev->ifindex; 10158 10159 rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid, 10160 new_ifindex); 10161 10162 /* 10163 * Flush the unicast and multicast chains 10164 */ 10165 dev_uc_flush(dev); 10166 dev_mc_flush(dev); 10167 10168 /* Send a netdev-removed uevent to the old namespace */ 10169 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE); 10170 netdev_adjacent_del_links(dev); 10171 10172 /* Move per-net netdevice notifiers that are following the netdevice */ 10173 move_netdevice_notifiers_dev_net(dev, net); 10174 10175 /* Actually switch the network namespace */ 10176 dev_net_set(dev, net); 10177 dev->ifindex = new_ifindex; 10178 10179 /* Send a netdev-add uevent to the new namespace */ 10180 kobject_uevent(&dev->dev.kobj, KOBJ_ADD); 10181 netdev_adjacent_add_links(dev); 10182 10183 /* Fixup kobjects */ 10184 err = device_rename(&dev->dev, dev->name); 10185 WARN_ON(err); 10186 10187 /* Adapt owner in case owning user namespace of target network 10188 * namespace is different from the original one. 10189 */ 10190 err = netdev_change_owner(dev, net_old, net); 10191 WARN_ON(err); 10192 10193 /* Add the device back in the hashes */ 10194 list_netdevice(dev); 10195 10196 /* Notify protocols, that a new device appeared. */ 10197 call_netdevice_notifiers(NETDEV_REGISTER, dev); 10198 10199 /* 10200 * Prevent userspace races by waiting until the network 10201 * device is fully setup before sending notifications. 10202 */ 10203 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL); 10204 10205 synchronize_net(); 10206 err = 0; 10207 out: 10208 return err; 10209 } 10210 EXPORT_SYMBOL_GPL(dev_change_net_namespace); 10211 10212 static int dev_cpu_dead(unsigned int oldcpu) 10213 { 10214 struct sk_buff **list_skb; 10215 struct sk_buff *skb; 10216 unsigned int cpu; 10217 struct softnet_data *sd, *oldsd, *remsd = NULL; 10218 10219 local_irq_disable(); 10220 cpu = smp_processor_id(); 10221 sd = &per_cpu(softnet_data, cpu); 10222 oldsd = &per_cpu(softnet_data, oldcpu); 10223 10224 /* Find end of our completion_queue. */ 10225 list_skb = &sd->completion_queue; 10226 while (*list_skb) 10227 list_skb = &(*list_skb)->next; 10228 /* Append completion queue from offline CPU. */ 10229 *list_skb = oldsd->completion_queue; 10230 oldsd->completion_queue = NULL; 10231 10232 /* Append output queue from offline CPU. */ 10233 if (oldsd->output_queue) { 10234 *sd->output_queue_tailp = oldsd->output_queue; 10235 sd->output_queue_tailp = oldsd->output_queue_tailp; 10236 oldsd->output_queue = NULL; 10237 oldsd->output_queue_tailp = &oldsd->output_queue; 10238 } 10239 /* Append NAPI poll list from offline CPU, with one exception : 10240 * process_backlog() must be called by cpu owning percpu backlog. 10241 * We properly handle process_queue & input_pkt_queue later. 10242 */ 10243 while (!list_empty(&oldsd->poll_list)) { 10244 struct napi_struct *napi = list_first_entry(&oldsd->poll_list, 10245 struct napi_struct, 10246 poll_list); 10247 10248 list_del_init(&napi->poll_list); 10249 if (napi->poll == process_backlog) 10250 napi->state = 0; 10251 else 10252 ____napi_schedule(sd, napi); 10253 } 10254 10255 raise_softirq_irqoff(NET_TX_SOFTIRQ); 10256 local_irq_enable(); 10257 10258 #ifdef CONFIG_RPS 10259 remsd = oldsd->rps_ipi_list; 10260 oldsd->rps_ipi_list = NULL; 10261 #endif 10262 /* send out pending IPI's on offline CPU */ 10263 net_rps_send_ipi(remsd); 10264 10265 /* Process offline CPU's input_pkt_queue */ 10266 while ((skb = __skb_dequeue(&oldsd->process_queue))) { 10267 netif_rx_ni(skb); 10268 input_queue_head_incr(oldsd); 10269 } 10270 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) { 10271 netif_rx_ni(skb); 10272 input_queue_head_incr(oldsd); 10273 } 10274 10275 return 0; 10276 } 10277 10278 /** 10279 * netdev_increment_features - increment feature set by one 10280 * @all: current feature set 10281 * @one: new feature set 10282 * @mask: mask feature set 10283 * 10284 * Computes a new feature set after adding a device with feature set 10285 * @one to the master device with current feature set @all. Will not 10286 * enable anything that is off in @mask. Returns the new feature set. 10287 */ 10288 netdev_features_t netdev_increment_features(netdev_features_t all, 10289 netdev_features_t one, netdev_features_t mask) 10290 { 10291 if (mask & NETIF_F_HW_CSUM) 10292 mask |= NETIF_F_CSUM_MASK; 10293 mask |= NETIF_F_VLAN_CHALLENGED; 10294 10295 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask; 10296 all &= one | ~NETIF_F_ALL_FOR_ALL; 10297 10298 /* If one device supports hw checksumming, set for all. */ 10299 if (all & NETIF_F_HW_CSUM) 10300 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM); 10301 10302 return all; 10303 } 10304 EXPORT_SYMBOL(netdev_increment_features); 10305 10306 static struct hlist_head * __net_init netdev_create_hash(void) 10307 { 10308 int i; 10309 struct hlist_head *hash; 10310 10311 hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL); 10312 if (hash != NULL) 10313 for (i = 0; i < NETDEV_HASHENTRIES; i++) 10314 INIT_HLIST_HEAD(&hash[i]); 10315 10316 return hash; 10317 } 10318 10319 /* Initialize per network namespace state */ 10320 static int __net_init netdev_init(struct net *net) 10321 { 10322 BUILD_BUG_ON(GRO_HASH_BUCKETS > 10323 8 * sizeof_field(struct napi_struct, gro_bitmask)); 10324 10325 if (net != &init_net) 10326 INIT_LIST_HEAD(&net->dev_base_head); 10327 10328 net->dev_name_head = netdev_create_hash(); 10329 if (net->dev_name_head == NULL) 10330 goto err_name; 10331 10332 net->dev_index_head = netdev_create_hash(); 10333 if (net->dev_index_head == NULL) 10334 goto err_idx; 10335 10336 RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain); 10337 10338 return 0; 10339 10340 err_idx: 10341 kfree(net->dev_name_head); 10342 err_name: 10343 return -ENOMEM; 10344 } 10345 10346 /** 10347 * netdev_drivername - network driver for the device 10348 * @dev: network device 10349 * 10350 * Determine network driver for device. 10351 */ 10352 const char *netdev_drivername(const struct net_device *dev) 10353 { 10354 const struct device_driver *driver; 10355 const struct device *parent; 10356 const char *empty = ""; 10357 10358 parent = dev->dev.parent; 10359 if (!parent) 10360 return empty; 10361 10362 driver = parent->driver; 10363 if (driver && driver->name) 10364 return driver->name; 10365 return empty; 10366 } 10367 10368 static void __netdev_printk(const char *level, const struct net_device *dev, 10369 struct va_format *vaf) 10370 { 10371 if (dev && dev->dev.parent) { 10372 dev_printk_emit(level[1] - '0', 10373 dev->dev.parent, 10374 "%s %s %s%s: %pV", 10375 dev_driver_string(dev->dev.parent), 10376 dev_name(dev->dev.parent), 10377 netdev_name(dev), netdev_reg_state(dev), 10378 vaf); 10379 } else if (dev) { 10380 printk("%s%s%s: %pV", 10381 level, netdev_name(dev), netdev_reg_state(dev), vaf); 10382 } else { 10383 printk("%s(NULL net_device): %pV", level, vaf); 10384 } 10385 } 10386 10387 void netdev_printk(const char *level, const struct net_device *dev, 10388 const char *format, ...) 10389 { 10390 struct va_format vaf; 10391 va_list args; 10392 10393 va_start(args, format); 10394 10395 vaf.fmt = format; 10396 vaf.va = &args; 10397 10398 __netdev_printk(level, dev, &vaf); 10399 10400 va_end(args); 10401 } 10402 EXPORT_SYMBOL(netdev_printk); 10403 10404 #define define_netdev_printk_level(func, level) \ 10405 void func(const struct net_device *dev, const char *fmt, ...) \ 10406 { \ 10407 struct va_format vaf; \ 10408 va_list args; \ 10409 \ 10410 va_start(args, fmt); \ 10411 \ 10412 vaf.fmt = fmt; \ 10413 vaf.va = &args; \ 10414 \ 10415 __netdev_printk(level, dev, &vaf); \ 10416 \ 10417 va_end(args); \ 10418 } \ 10419 EXPORT_SYMBOL(func); 10420 10421 define_netdev_printk_level(netdev_emerg, KERN_EMERG); 10422 define_netdev_printk_level(netdev_alert, KERN_ALERT); 10423 define_netdev_printk_level(netdev_crit, KERN_CRIT); 10424 define_netdev_printk_level(netdev_err, KERN_ERR); 10425 define_netdev_printk_level(netdev_warn, KERN_WARNING); 10426 define_netdev_printk_level(netdev_notice, KERN_NOTICE); 10427 define_netdev_printk_level(netdev_info, KERN_INFO); 10428 10429 static void __net_exit netdev_exit(struct net *net) 10430 { 10431 kfree(net->dev_name_head); 10432 kfree(net->dev_index_head); 10433 if (net != &init_net) 10434 WARN_ON_ONCE(!list_empty(&net->dev_base_head)); 10435 } 10436 10437 static struct pernet_operations __net_initdata netdev_net_ops = { 10438 .init = netdev_init, 10439 .exit = netdev_exit, 10440 }; 10441 10442 static void __net_exit default_device_exit(struct net *net) 10443 { 10444 struct net_device *dev, *aux; 10445 /* 10446 * Push all migratable network devices back to the 10447 * initial network namespace 10448 */ 10449 rtnl_lock(); 10450 for_each_netdev_safe(net, dev, aux) { 10451 int err; 10452 char fb_name[IFNAMSIZ]; 10453 10454 /* Ignore unmoveable devices (i.e. loopback) */ 10455 if (dev->features & NETIF_F_NETNS_LOCAL) 10456 continue; 10457 10458 /* Leave virtual devices for the generic cleanup */ 10459 if (dev->rtnl_link_ops) 10460 continue; 10461 10462 /* Push remaining network devices to init_net */ 10463 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex); 10464 if (__dev_get_by_name(&init_net, fb_name)) 10465 snprintf(fb_name, IFNAMSIZ, "dev%%d"); 10466 err = dev_change_net_namespace(dev, &init_net, fb_name); 10467 if (err) { 10468 pr_emerg("%s: failed to move %s to init_net: %d\n", 10469 __func__, dev->name, err); 10470 BUG(); 10471 } 10472 } 10473 rtnl_unlock(); 10474 } 10475 10476 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list) 10477 { 10478 /* Return with the rtnl_lock held when there are no network 10479 * devices unregistering in any network namespace in net_list. 10480 */ 10481 struct net *net; 10482 bool unregistering; 10483 DEFINE_WAIT_FUNC(wait, woken_wake_function); 10484 10485 add_wait_queue(&netdev_unregistering_wq, &wait); 10486 for (;;) { 10487 unregistering = false; 10488 rtnl_lock(); 10489 list_for_each_entry(net, net_list, exit_list) { 10490 if (net->dev_unreg_count > 0) { 10491 unregistering = true; 10492 break; 10493 } 10494 } 10495 if (!unregistering) 10496 break; 10497 __rtnl_unlock(); 10498 10499 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT); 10500 } 10501 remove_wait_queue(&netdev_unregistering_wq, &wait); 10502 } 10503 10504 static void __net_exit default_device_exit_batch(struct list_head *net_list) 10505 { 10506 /* At exit all network devices most be removed from a network 10507 * namespace. Do this in the reverse order of registration. 10508 * Do this across as many network namespaces as possible to 10509 * improve batching efficiency. 10510 */ 10511 struct net_device *dev; 10512 struct net *net; 10513 LIST_HEAD(dev_kill_list); 10514 10515 /* To prevent network device cleanup code from dereferencing 10516 * loopback devices or network devices that have been freed 10517 * wait here for all pending unregistrations to complete, 10518 * before unregistring the loopback device and allowing the 10519 * network namespace be freed. 10520 * 10521 * The netdev todo list containing all network devices 10522 * unregistrations that happen in default_device_exit_batch 10523 * will run in the rtnl_unlock() at the end of 10524 * default_device_exit_batch. 10525 */ 10526 rtnl_lock_unregistering(net_list); 10527 list_for_each_entry(net, net_list, exit_list) { 10528 for_each_netdev_reverse(net, dev) { 10529 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink) 10530 dev->rtnl_link_ops->dellink(dev, &dev_kill_list); 10531 else 10532 unregister_netdevice_queue(dev, &dev_kill_list); 10533 } 10534 } 10535 unregister_netdevice_many(&dev_kill_list); 10536 rtnl_unlock(); 10537 } 10538 10539 static struct pernet_operations __net_initdata default_device_ops = { 10540 .exit = default_device_exit, 10541 .exit_batch = default_device_exit_batch, 10542 }; 10543 10544 /* 10545 * Initialize the DEV module. At boot time this walks the device list and 10546 * unhooks any devices that fail to initialise (normally hardware not 10547 * present) and leaves us with a valid list of present and active devices. 10548 * 10549 */ 10550 10551 /* 10552 * This is called single threaded during boot, so no need 10553 * to take the rtnl semaphore. 10554 */ 10555 static int __init net_dev_init(void) 10556 { 10557 int i, rc = -ENOMEM; 10558 10559 BUG_ON(!dev_boot_phase); 10560 10561 if (dev_proc_init()) 10562 goto out; 10563 10564 if (netdev_kobject_init()) 10565 goto out; 10566 10567 INIT_LIST_HEAD(&ptype_all); 10568 for (i = 0; i < PTYPE_HASH_SIZE; i++) 10569 INIT_LIST_HEAD(&ptype_base[i]); 10570 10571 INIT_LIST_HEAD(&offload_base); 10572 10573 if (register_pernet_subsys(&netdev_net_ops)) 10574 goto out; 10575 10576 /* 10577 * Initialise the packet receive queues. 10578 */ 10579 10580 for_each_possible_cpu(i) { 10581 struct work_struct *flush = per_cpu_ptr(&flush_works, i); 10582 struct softnet_data *sd = &per_cpu(softnet_data, i); 10583 10584 INIT_WORK(flush, flush_backlog); 10585 10586 skb_queue_head_init(&sd->input_pkt_queue); 10587 skb_queue_head_init(&sd->process_queue); 10588 #ifdef CONFIG_XFRM_OFFLOAD 10589 skb_queue_head_init(&sd->xfrm_backlog); 10590 #endif 10591 INIT_LIST_HEAD(&sd->poll_list); 10592 sd->output_queue_tailp = &sd->output_queue; 10593 #ifdef CONFIG_RPS 10594 sd->csd.func = rps_trigger_softirq; 10595 sd->csd.info = sd; 10596 sd->cpu = i; 10597 #endif 10598 10599 init_gro_hash(&sd->backlog); 10600 sd->backlog.poll = process_backlog; 10601 sd->backlog.weight = weight_p; 10602 } 10603 10604 dev_boot_phase = 0; 10605 10606 /* The loopback device is special if any other network devices 10607 * is present in a network namespace the loopback device must 10608 * be present. Since we now dynamically allocate and free the 10609 * loopback device ensure this invariant is maintained by 10610 * keeping the loopback device as the first device on the 10611 * list of network devices. Ensuring the loopback devices 10612 * is the first device that appears and the last network device 10613 * that disappears. 10614 */ 10615 if (register_pernet_device(&loopback_net_ops)) 10616 goto out; 10617 10618 if (register_pernet_device(&default_device_ops)) 10619 goto out; 10620 10621 open_softirq(NET_TX_SOFTIRQ, net_tx_action); 10622 open_softirq(NET_RX_SOFTIRQ, net_rx_action); 10623 10624 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead", 10625 NULL, dev_cpu_dead); 10626 WARN_ON(rc < 0); 10627 rc = 0; 10628 out: 10629 return rc; 10630 } 10631 10632 subsys_initcall(net_dev_init); 10633