1 /* 2 * NET3 Protocol independent device support routines. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public License 6 * as published by the Free Software Foundation; either version 7 * 2 of the License, or (at your option) any later version. 8 * 9 * Derived from the non IP parts of dev.c 1.0.19 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Mark Evans, <evansmp@uhura.aston.ac.uk> 13 * 14 * Additional Authors: 15 * Florian la Roche <rzsfl@rz.uni-sb.de> 16 * Alan Cox <gw4pts@gw4pts.ampr.org> 17 * David Hinds <dahinds@users.sourceforge.net> 18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> 19 * Adam Sulmicki <adam@cfar.umd.edu> 20 * Pekka Riikonen <priikone@poesidon.pspt.fi> 21 * 22 * Changes: 23 * D.J. Barrow : Fixed bug where dev->refcnt gets set 24 * to 2 if register_netdev gets called 25 * before net_dev_init & also removed a 26 * few lines of code in the process. 27 * Alan Cox : device private ioctl copies fields back. 28 * Alan Cox : Transmit queue code does relevant 29 * stunts to keep the queue safe. 30 * Alan Cox : Fixed double lock. 31 * Alan Cox : Fixed promisc NULL pointer trap 32 * ???????? : Support the full private ioctl range 33 * Alan Cox : Moved ioctl permission check into 34 * drivers 35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI 36 * Alan Cox : 100 backlog just doesn't cut it when 37 * you start doing multicast video 8) 38 * Alan Cox : Rewrote net_bh and list manager. 39 * Alan Cox : Fix ETH_P_ALL echoback lengths. 40 * Alan Cox : Took out transmit every packet pass 41 * Saved a few bytes in the ioctl handler 42 * Alan Cox : Network driver sets packet type before 43 * calling netif_rx. Saves a function 44 * call a packet. 45 * Alan Cox : Hashed net_bh() 46 * Richard Kooijman: Timestamp fixes. 47 * Alan Cox : Wrong field in SIOCGIFDSTADDR 48 * Alan Cox : Device lock protection. 49 * Alan Cox : Fixed nasty side effect of device close 50 * changes. 51 * Rudi Cilibrasi : Pass the right thing to 52 * set_mac_address() 53 * Dave Miller : 32bit quantity for the device lock to 54 * make it work out on a Sparc. 55 * Bjorn Ekwall : Added KERNELD hack. 56 * Alan Cox : Cleaned up the backlog initialise. 57 * Craig Metz : SIOCGIFCONF fix if space for under 58 * 1 device. 59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there 60 * is no device open function. 61 * Andi Kleen : Fix error reporting for SIOCGIFCONF 62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF 63 * Cyrus Durgin : Cleaned for KMOD 64 * Adam Sulmicki : Bug Fix : Network Device Unload 65 * A network device unload needs to purge 66 * the backlog queue. 67 * Paul Rusty Russell : SIOCSIFNAME 68 * Pekka Riikonen : Netdev boot-time settings code 69 * Andrew Morton : Make unregister_netdevice wait 70 * indefinitely on dev->refcnt 71 * J Hadi Salim : - Backlog queue sampling 72 * - netif_rx() feedback 73 */ 74 75 #include <asm/uaccess.h> 76 #include <asm/system.h> 77 #include <linux/bitops.h> 78 #include <linux/capability.h> 79 #include <linux/cpu.h> 80 #include <linux/types.h> 81 #include <linux/kernel.h> 82 #include <linux/sched.h> 83 #include <linux/mutex.h> 84 #include <linux/string.h> 85 #include <linux/mm.h> 86 #include <linux/socket.h> 87 #include <linux/sockios.h> 88 #include <linux/errno.h> 89 #include <linux/interrupt.h> 90 #include <linux/if_ether.h> 91 #include <linux/netdevice.h> 92 #include <linux/etherdevice.h> 93 #include <linux/notifier.h> 94 #include <linux/skbuff.h> 95 #include <net/net_namespace.h> 96 #include <net/sock.h> 97 #include <linux/rtnetlink.h> 98 #include <linux/proc_fs.h> 99 #include <linux/seq_file.h> 100 #include <linux/stat.h> 101 #include <linux/if_bridge.h> 102 #include <linux/if_macvlan.h> 103 #include <net/dst.h> 104 #include <net/pkt_sched.h> 105 #include <net/checksum.h> 106 #include <linux/highmem.h> 107 #include <linux/init.h> 108 #include <linux/kmod.h> 109 #include <linux/module.h> 110 #include <linux/kallsyms.h> 111 #include <linux/netpoll.h> 112 #include <linux/rcupdate.h> 113 #include <linux/delay.h> 114 #include <net/wext.h> 115 #include <net/iw_handler.h> 116 #include <asm/current.h> 117 #include <linux/audit.h> 118 #include <linux/dmaengine.h> 119 #include <linux/err.h> 120 #include <linux/ctype.h> 121 #include <linux/if_arp.h> 122 123 #include "net-sysfs.h" 124 125 /* 126 * The list of packet types we will receive (as opposed to discard) 127 * and the routines to invoke. 128 * 129 * Why 16. Because with 16 the only overlap we get on a hash of the 130 * low nibble of the protocol value is RARP/SNAP/X.25. 131 * 132 * NOTE: That is no longer true with the addition of VLAN tags. Not 133 * sure which should go first, but I bet it won't make much 134 * difference if we are running VLANs. The good news is that 135 * this protocol won't be in the list unless compiled in, so 136 * the average user (w/out VLANs) will not be adversely affected. 137 * --BLG 138 * 139 * 0800 IP 140 * 8100 802.1Q VLAN 141 * 0001 802.3 142 * 0002 AX.25 143 * 0004 802.2 144 * 8035 RARP 145 * 0005 SNAP 146 * 0805 X.25 147 * 0806 ARP 148 * 8137 IPX 149 * 0009 Localtalk 150 * 86DD IPv6 151 */ 152 153 #define PTYPE_HASH_SIZE (16) 154 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1) 155 156 static DEFINE_SPINLOCK(ptype_lock); 157 static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly; 158 static struct list_head ptype_all __read_mostly; /* Taps */ 159 160 #ifdef CONFIG_NET_DMA 161 struct net_dma { 162 struct dma_client client; 163 spinlock_t lock; 164 cpumask_t channel_mask; 165 struct dma_chan **channels; 166 }; 167 168 static enum dma_state_client 169 netdev_dma_event(struct dma_client *client, struct dma_chan *chan, 170 enum dma_state state); 171 172 static struct net_dma net_dma = { 173 .client = { 174 .event_callback = netdev_dma_event, 175 }, 176 }; 177 #endif 178 179 /* 180 * The @dev_base_head list is protected by @dev_base_lock and the rtnl 181 * semaphore. 182 * 183 * Pure readers hold dev_base_lock for reading. 184 * 185 * Writers must hold the rtnl semaphore while they loop through the 186 * dev_base_head list, and hold dev_base_lock for writing when they do the 187 * actual updates. This allows pure readers to access the list even 188 * while a writer is preparing to update it. 189 * 190 * To put it another way, dev_base_lock is held for writing only to 191 * protect against pure readers; the rtnl semaphore provides the 192 * protection against other writers. 193 * 194 * See, for example usages, register_netdevice() and 195 * unregister_netdevice(), which must be called with the rtnl 196 * semaphore held. 197 */ 198 DEFINE_RWLOCK(dev_base_lock); 199 200 EXPORT_SYMBOL(dev_base_lock); 201 202 #define NETDEV_HASHBITS 8 203 #define NETDEV_HASHENTRIES (1 << NETDEV_HASHBITS) 204 205 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name) 206 { 207 unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ)); 208 return &net->dev_name_head[hash & ((1 << NETDEV_HASHBITS) - 1)]; 209 } 210 211 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex) 212 { 213 return &net->dev_index_head[ifindex & ((1 << NETDEV_HASHBITS) - 1)]; 214 } 215 216 /* Device list insertion */ 217 static int list_netdevice(struct net_device *dev) 218 { 219 struct net *net = dev_net(dev); 220 221 ASSERT_RTNL(); 222 223 write_lock_bh(&dev_base_lock); 224 list_add_tail(&dev->dev_list, &net->dev_base_head); 225 hlist_add_head(&dev->name_hlist, dev_name_hash(net, dev->name)); 226 hlist_add_head(&dev->index_hlist, dev_index_hash(net, dev->ifindex)); 227 write_unlock_bh(&dev_base_lock); 228 return 0; 229 } 230 231 /* Device list removal */ 232 static void unlist_netdevice(struct net_device *dev) 233 { 234 ASSERT_RTNL(); 235 236 /* Unlink dev from the device chain */ 237 write_lock_bh(&dev_base_lock); 238 list_del(&dev->dev_list); 239 hlist_del(&dev->name_hlist); 240 hlist_del(&dev->index_hlist); 241 write_unlock_bh(&dev_base_lock); 242 } 243 244 /* 245 * Our notifier list 246 */ 247 248 static RAW_NOTIFIER_HEAD(netdev_chain); 249 250 /* 251 * Device drivers call our routines to queue packets here. We empty the 252 * queue in the local softnet handler. 253 */ 254 255 DEFINE_PER_CPU(struct softnet_data, softnet_data); 256 257 #ifdef CONFIG_DEBUG_LOCK_ALLOC 258 /* 259 * register_netdevice() inits dev->_xmit_lock and sets lockdep class 260 * according to dev->type 261 */ 262 static const unsigned short netdev_lock_type[] = 263 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25, 264 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET, 265 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM, 266 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP, 267 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD, 268 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25, 269 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP, 270 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD, 271 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI, 272 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE, 273 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET, 274 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL, 275 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211, 276 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_VOID, 277 ARPHRD_NONE}; 278 279 static const char *netdev_lock_name[] = 280 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25", 281 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET", 282 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM", 283 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP", 284 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD", 285 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25", 286 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP", 287 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD", 288 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI", 289 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE", 290 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET", 291 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL", 292 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211", 293 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_VOID", 294 "_xmit_NONE"}; 295 296 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)]; 297 298 static inline unsigned short netdev_lock_pos(unsigned short dev_type) 299 { 300 int i; 301 302 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++) 303 if (netdev_lock_type[i] == dev_type) 304 return i; 305 /* the last key is used by default */ 306 return ARRAY_SIZE(netdev_lock_type) - 1; 307 } 308 309 static inline void netdev_set_lockdep_class(spinlock_t *lock, 310 unsigned short dev_type) 311 { 312 int i; 313 314 i = netdev_lock_pos(dev_type); 315 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i], 316 netdev_lock_name[i]); 317 } 318 #else 319 static inline void netdev_set_lockdep_class(spinlock_t *lock, 320 unsigned short dev_type) 321 { 322 } 323 #endif 324 325 /******************************************************************************* 326 327 Protocol management and registration routines 328 329 *******************************************************************************/ 330 331 /* 332 * Add a protocol ID to the list. Now that the input handler is 333 * smarter we can dispense with all the messy stuff that used to be 334 * here. 335 * 336 * BEWARE!!! Protocol handlers, mangling input packets, 337 * MUST BE last in hash buckets and checking protocol handlers 338 * MUST start from promiscuous ptype_all chain in net_bh. 339 * It is true now, do not change it. 340 * Explanation follows: if protocol handler, mangling packet, will 341 * be the first on list, it is not able to sense, that packet 342 * is cloned and should be copied-on-write, so that it will 343 * change it and subsequent readers will get broken packet. 344 * --ANK (980803) 345 */ 346 347 /** 348 * dev_add_pack - add packet handler 349 * @pt: packet type declaration 350 * 351 * Add a protocol handler to the networking stack. The passed &packet_type 352 * is linked into kernel lists and may not be freed until it has been 353 * removed from the kernel lists. 354 * 355 * This call does not sleep therefore it can not 356 * guarantee all CPU's that are in middle of receiving packets 357 * will see the new packet type (until the next received packet). 358 */ 359 360 void dev_add_pack(struct packet_type *pt) 361 { 362 int hash; 363 364 spin_lock_bh(&ptype_lock); 365 if (pt->type == htons(ETH_P_ALL)) 366 list_add_rcu(&pt->list, &ptype_all); 367 else { 368 hash = ntohs(pt->type) & PTYPE_HASH_MASK; 369 list_add_rcu(&pt->list, &ptype_base[hash]); 370 } 371 spin_unlock_bh(&ptype_lock); 372 } 373 374 /** 375 * __dev_remove_pack - remove packet handler 376 * @pt: packet type declaration 377 * 378 * Remove a protocol handler that was previously added to the kernel 379 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 380 * from the kernel lists and can be freed or reused once this function 381 * returns. 382 * 383 * The packet type might still be in use by receivers 384 * and must not be freed until after all the CPU's have gone 385 * through a quiescent state. 386 */ 387 void __dev_remove_pack(struct packet_type *pt) 388 { 389 struct list_head *head; 390 struct packet_type *pt1; 391 392 spin_lock_bh(&ptype_lock); 393 394 if (pt->type == htons(ETH_P_ALL)) 395 head = &ptype_all; 396 else 397 head = &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK]; 398 399 list_for_each_entry(pt1, head, list) { 400 if (pt == pt1) { 401 list_del_rcu(&pt->list); 402 goto out; 403 } 404 } 405 406 printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt); 407 out: 408 spin_unlock_bh(&ptype_lock); 409 } 410 /** 411 * dev_remove_pack - remove packet handler 412 * @pt: packet type declaration 413 * 414 * Remove a protocol handler that was previously added to the kernel 415 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 416 * from the kernel lists and can be freed or reused once this function 417 * returns. 418 * 419 * This call sleeps to guarantee that no CPU is looking at the packet 420 * type after return. 421 */ 422 void dev_remove_pack(struct packet_type *pt) 423 { 424 __dev_remove_pack(pt); 425 426 synchronize_net(); 427 } 428 429 /****************************************************************************** 430 431 Device Boot-time Settings Routines 432 433 *******************************************************************************/ 434 435 /* Boot time configuration table */ 436 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX]; 437 438 /** 439 * netdev_boot_setup_add - add new setup entry 440 * @name: name of the device 441 * @map: configured settings for the device 442 * 443 * Adds new setup entry to the dev_boot_setup list. The function 444 * returns 0 on error and 1 on success. This is a generic routine to 445 * all netdevices. 446 */ 447 static int netdev_boot_setup_add(char *name, struct ifmap *map) 448 { 449 struct netdev_boot_setup *s; 450 int i; 451 452 s = dev_boot_setup; 453 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 454 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') { 455 memset(s[i].name, 0, sizeof(s[i].name)); 456 strcpy(s[i].name, name); 457 memcpy(&s[i].map, map, sizeof(s[i].map)); 458 break; 459 } 460 } 461 462 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1; 463 } 464 465 /** 466 * netdev_boot_setup_check - check boot time settings 467 * @dev: the netdevice 468 * 469 * Check boot time settings for the device. 470 * The found settings are set for the device to be used 471 * later in the device probing. 472 * Returns 0 if no settings found, 1 if they are. 473 */ 474 int netdev_boot_setup_check(struct net_device *dev) 475 { 476 struct netdev_boot_setup *s = dev_boot_setup; 477 int i; 478 479 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 480 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' && 481 !strncmp(dev->name, s[i].name, strlen(s[i].name))) { 482 dev->irq = s[i].map.irq; 483 dev->base_addr = s[i].map.base_addr; 484 dev->mem_start = s[i].map.mem_start; 485 dev->mem_end = s[i].map.mem_end; 486 return 1; 487 } 488 } 489 return 0; 490 } 491 492 493 /** 494 * netdev_boot_base - get address from boot time settings 495 * @prefix: prefix for network device 496 * @unit: id for network device 497 * 498 * Check boot time settings for the base address of device. 499 * The found settings are set for the device to be used 500 * later in the device probing. 501 * Returns 0 if no settings found. 502 */ 503 unsigned long netdev_boot_base(const char *prefix, int unit) 504 { 505 const struct netdev_boot_setup *s = dev_boot_setup; 506 char name[IFNAMSIZ]; 507 int i; 508 509 sprintf(name, "%s%d", prefix, unit); 510 511 /* 512 * If device already registered then return base of 1 513 * to indicate not to probe for this interface 514 */ 515 if (__dev_get_by_name(&init_net, name)) 516 return 1; 517 518 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) 519 if (!strcmp(name, s[i].name)) 520 return s[i].map.base_addr; 521 return 0; 522 } 523 524 /* 525 * Saves at boot time configured settings for any netdevice. 526 */ 527 int __init netdev_boot_setup(char *str) 528 { 529 int ints[5]; 530 struct ifmap map; 531 532 str = get_options(str, ARRAY_SIZE(ints), ints); 533 if (!str || !*str) 534 return 0; 535 536 /* Save settings */ 537 memset(&map, 0, sizeof(map)); 538 if (ints[0] > 0) 539 map.irq = ints[1]; 540 if (ints[0] > 1) 541 map.base_addr = ints[2]; 542 if (ints[0] > 2) 543 map.mem_start = ints[3]; 544 if (ints[0] > 3) 545 map.mem_end = ints[4]; 546 547 /* Add new entry to the list */ 548 return netdev_boot_setup_add(str, &map); 549 } 550 551 __setup("netdev=", netdev_boot_setup); 552 553 /******************************************************************************* 554 555 Device Interface Subroutines 556 557 *******************************************************************************/ 558 559 /** 560 * __dev_get_by_name - find a device by its name 561 * @net: the applicable net namespace 562 * @name: name to find 563 * 564 * Find an interface by name. Must be called under RTNL semaphore 565 * or @dev_base_lock. If the name is found a pointer to the device 566 * is returned. If the name is not found then %NULL is returned. The 567 * reference counters are not incremented so the caller must be 568 * careful with locks. 569 */ 570 571 struct net_device *__dev_get_by_name(struct net *net, const char *name) 572 { 573 struct hlist_node *p; 574 575 hlist_for_each(p, dev_name_hash(net, name)) { 576 struct net_device *dev 577 = hlist_entry(p, struct net_device, name_hlist); 578 if (!strncmp(dev->name, name, IFNAMSIZ)) 579 return dev; 580 } 581 return NULL; 582 } 583 584 /** 585 * dev_get_by_name - find a device by its name 586 * @net: the applicable net namespace 587 * @name: name to find 588 * 589 * Find an interface by name. This can be called from any 590 * context and does its own locking. The returned handle has 591 * the usage count incremented and the caller must use dev_put() to 592 * release it when it is no longer needed. %NULL is returned if no 593 * matching device is found. 594 */ 595 596 struct net_device *dev_get_by_name(struct net *net, const char *name) 597 { 598 struct net_device *dev; 599 600 read_lock(&dev_base_lock); 601 dev = __dev_get_by_name(net, name); 602 if (dev) 603 dev_hold(dev); 604 read_unlock(&dev_base_lock); 605 return dev; 606 } 607 608 /** 609 * __dev_get_by_index - find a device by its ifindex 610 * @net: the applicable net namespace 611 * @ifindex: index of device 612 * 613 * Search for an interface by index. Returns %NULL if the device 614 * is not found or a pointer to the device. The device has not 615 * had its reference counter increased so the caller must be careful 616 * about locking. The caller must hold either the RTNL semaphore 617 * or @dev_base_lock. 618 */ 619 620 struct net_device *__dev_get_by_index(struct net *net, int ifindex) 621 { 622 struct hlist_node *p; 623 624 hlist_for_each(p, dev_index_hash(net, ifindex)) { 625 struct net_device *dev 626 = hlist_entry(p, struct net_device, index_hlist); 627 if (dev->ifindex == ifindex) 628 return dev; 629 } 630 return NULL; 631 } 632 633 634 /** 635 * dev_get_by_index - find a device by its ifindex 636 * @net: the applicable net namespace 637 * @ifindex: index of device 638 * 639 * Search for an interface by index. Returns NULL if the device 640 * is not found or a pointer to the device. The device returned has 641 * had a reference added and the pointer is safe until the user calls 642 * dev_put to indicate they have finished with it. 643 */ 644 645 struct net_device *dev_get_by_index(struct net *net, int ifindex) 646 { 647 struct net_device *dev; 648 649 read_lock(&dev_base_lock); 650 dev = __dev_get_by_index(net, ifindex); 651 if (dev) 652 dev_hold(dev); 653 read_unlock(&dev_base_lock); 654 return dev; 655 } 656 657 /** 658 * dev_getbyhwaddr - find a device by its hardware address 659 * @net: the applicable net namespace 660 * @type: media type of device 661 * @ha: hardware address 662 * 663 * Search for an interface by MAC address. Returns NULL if the device 664 * is not found or a pointer to the device. The caller must hold the 665 * rtnl semaphore. The returned device has not had its ref count increased 666 * and the caller must therefore be careful about locking 667 * 668 * BUGS: 669 * If the API was consistent this would be __dev_get_by_hwaddr 670 */ 671 672 struct net_device *dev_getbyhwaddr(struct net *net, unsigned short type, char *ha) 673 { 674 struct net_device *dev; 675 676 ASSERT_RTNL(); 677 678 for_each_netdev(net, dev) 679 if (dev->type == type && 680 !memcmp(dev->dev_addr, ha, dev->addr_len)) 681 return dev; 682 683 return NULL; 684 } 685 686 EXPORT_SYMBOL(dev_getbyhwaddr); 687 688 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type) 689 { 690 struct net_device *dev; 691 692 ASSERT_RTNL(); 693 for_each_netdev(net, dev) 694 if (dev->type == type) 695 return dev; 696 697 return NULL; 698 } 699 700 EXPORT_SYMBOL(__dev_getfirstbyhwtype); 701 702 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type) 703 { 704 struct net_device *dev; 705 706 rtnl_lock(); 707 dev = __dev_getfirstbyhwtype(net, type); 708 if (dev) 709 dev_hold(dev); 710 rtnl_unlock(); 711 return dev; 712 } 713 714 EXPORT_SYMBOL(dev_getfirstbyhwtype); 715 716 /** 717 * dev_get_by_flags - find any device with given flags 718 * @net: the applicable net namespace 719 * @if_flags: IFF_* values 720 * @mask: bitmask of bits in if_flags to check 721 * 722 * Search for any interface with the given flags. Returns NULL if a device 723 * is not found or a pointer to the device. The device returned has 724 * had a reference added and the pointer is safe until the user calls 725 * dev_put to indicate they have finished with it. 726 */ 727 728 struct net_device * dev_get_by_flags(struct net *net, unsigned short if_flags, unsigned short mask) 729 { 730 struct net_device *dev, *ret; 731 732 ret = NULL; 733 read_lock(&dev_base_lock); 734 for_each_netdev(net, dev) { 735 if (((dev->flags ^ if_flags) & mask) == 0) { 736 dev_hold(dev); 737 ret = dev; 738 break; 739 } 740 } 741 read_unlock(&dev_base_lock); 742 return ret; 743 } 744 745 /** 746 * dev_valid_name - check if name is okay for network device 747 * @name: name string 748 * 749 * Network device names need to be valid file names to 750 * to allow sysfs to work. We also disallow any kind of 751 * whitespace. 752 */ 753 int dev_valid_name(const char *name) 754 { 755 if (*name == '\0') 756 return 0; 757 if (strlen(name) >= IFNAMSIZ) 758 return 0; 759 if (!strcmp(name, ".") || !strcmp(name, "..")) 760 return 0; 761 762 while (*name) { 763 if (*name == '/' || isspace(*name)) 764 return 0; 765 name++; 766 } 767 return 1; 768 } 769 770 /** 771 * __dev_alloc_name - allocate a name for a device 772 * @net: network namespace to allocate the device name in 773 * @name: name format string 774 * @buf: scratch buffer and result name string 775 * 776 * Passed a format string - eg "lt%d" it will try and find a suitable 777 * id. It scans list of devices to build up a free map, then chooses 778 * the first empty slot. The caller must hold the dev_base or rtnl lock 779 * while allocating the name and adding the device in order to avoid 780 * duplicates. 781 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 782 * Returns the number of the unit assigned or a negative errno code. 783 */ 784 785 static int __dev_alloc_name(struct net *net, const char *name, char *buf) 786 { 787 int i = 0; 788 const char *p; 789 const int max_netdevices = 8*PAGE_SIZE; 790 unsigned long *inuse; 791 struct net_device *d; 792 793 p = strnchr(name, IFNAMSIZ-1, '%'); 794 if (p) { 795 /* 796 * Verify the string as this thing may have come from 797 * the user. There must be either one "%d" and no other "%" 798 * characters. 799 */ 800 if (p[1] != 'd' || strchr(p + 2, '%')) 801 return -EINVAL; 802 803 /* Use one page as a bit array of possible slots */ 804 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC); 805 if (!inuse) 806 return -ENOMEM; 807 808 for_each_netdev(net, d) { 809 if (!sscanf(d->name, name, &i)) 810 continue; 811 if (i < 0 || i >= max_netdevices) 812 continue; 813 814 /* avoid cases where sscanf is not exact inverse of printf */ 815 snprintf(buf, IFNAMSIZ, name, i); 816 if (!strncmp(buf, d->name, IFNAMSIZ)) 817 set_bit(i, inuse); 818 } 819 820 i = find_first_zero_bit(inuse, max_netdevices); 821 free_page((unsigned long) inuse); 822 } 823 824 snprintf(buf, IFNAMSIZ, name, i); 825 if (!__dev_get_by_name(net, buf)) 826 return i; 827 828 /* It is possible to run out of possible slots 829 * when the name is long and there isn't enough space left 830 * for the digits, or if all bits are used. 831 */ 832 return -ENFILE; 833 } 834 835 /** 836 * dev_alloc_name - allocate a name for a device 837 * @dev: device 838 * @name: name format string 839 * 840 * Passed a format string - eg "lt%d" it will try and find a suitable 841 * id. It scans list of devices to build up a free map, then chooses 842 * the first empty slot. The caller must hold the dev_base or rtnl lock 843 * while allocating the name and adding the device in order to avoid 844 * duplicates. 845 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 846 * Returns the number of the unit assigned or a negative errno code. 847 */ 848 849 int dev_alloc_name(struct net_device *dev, const char *name) 850 { 851 char buf[IFNAMSIZ]; 852 struct net *net; 853 int ret; 854 855 BUG_ON(!dev_net(dev)); 856 net = dev_net(dev); 857 ret = __dev_alloc_name(net, name, buf); 858 if (ret >= 0) 859 strlcpy(dev->name, buf, IFNAMSIZ); 860 return ret; 861 } 862 863 864 /** 865 * dev_change_name - change name of a device 866 * @dev: device 867 * @newname: name (or format string) must be at least IFNAMSIZ 868 * 869 * Change name of a device, can pass format strings "eth%d". 870 * for wildcarding. 871 */ 872 int dev_change_name(struct net_device *dev, char *newname) 873 { 874 char oldname[IFNAMSIZ]; 875 int err = 0; 876 int ret; 877 struct net *net; 878 879 ASSERT_RTNL(); 880 BUG_ON(!dev_net(dev)); 881 882 net = dev_net(dev); 883 if (dev->flags & IFF_UP) 884 return -EBUSY; 885 886 if (!dev_valid_name(newname)) 887 return -EINVAL; 888 889 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) 890 return 0; 891 892 memcpy(oldname, dev->name, IFNAMSIZ); 893 894 if (strchr(newname, '%')) { 895 err = dev_alloc_name(dev, newname); 896 if (err < 0) 897 return err; 898 strcpy(newname, dev->name); 899 } 900 else if (__dev_get_by_name(net, newname)) 901 return -EEXIST; 902 else 903 strlcpy(dev->name, newname, IFNAMSIZ); 904 905 rollback: 906 device_rename(&dev->dev, dev->name); 907 908 write_lock_bh(&dev_base_lock); 909 hlist_del(&dev->name_hlist); 910 hlist_add_head(&dev->name_hlist, dev_name_hash(net, dev->name)); 911 write_unlock_bh(&dev_base_lock); 912 913 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev); 914 ret = notifier_to_errno(ret); 915 916 if (ret) { 917 if (err) { 918 printk(KERN_ERR 919 "%s: name change rollback failed: %d.\n", 920 dev->name, ret); 921 } else { 922 err = ret; 923 memcpy(dev->name, oldname, IFNAMSIZ); 924 goto rollback; 925 } 926 } 927 928 return err; 929 } 930 931 /** 932 * netdev_features_change - device changes features 933 * @dev: device to cause notification 934 * 935 * Called to indicate a device has changed features. 936 */ 937 void netdev_features_change(struct net_device *dev) 938 { 939 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev); 940 } 941 EXPORT_SYMBOL(netdev_features_change); 942 943 /** 944 * netdev_state_change - device changes state 945 * @dev: device to cause notification 946 * 947 * Called to indicate a device has changed state. This function calls 948 * the notifier chains for netdev_chain and sends a NEWLINK message 949 * to the routing socket. 950 */ 951 void netdev_state_change(struct net_device *dev) 952 { 953 if (dev->flags & IFF_UP) { 954 call_netdevice_notifiers(NETDEV_CHANGE, dev); 955 rtmsg_ifinfo(RTM_NEWLINK, dev, 0); 956 } 957 } 958 959 /** 960 * dev_load - load a network module 961 * @net: the applicable net namespace 962 * @name: name of interface 963 * 964 * If a network interface is not present and the process has suitable 965 * privileges this function loads the module. If module loading is not 966 * available in this kernel then it becomes a nop. 967 */ 968 969 void dev_load(struct net *net, const char *name) 970 { 971 struct net_device *dev; 972 973 read_lock(&dev_base_lock); 974 dev = __dev_get_by_name(net, name); 975 read_unlock(&dev_base_lock); 976 977 if (!dev && capable(CAP_SYS_MODULE)) 978 request_module("%s", name); 979 } 980 981 /** 982 * dev_open - prepare an interface for use. 983 * @dev: device to open 984 * 985 * Takes a device from down to up state. The device's private open 986 * function is invoked and then the multicast lists are loaded. Finally 987 * the device is moved into the up state and a %NETDEV_UP message is 988 * sent to the netdev notifier chain. 989 * 990 * Calling this function on an active interface is a nop. On a failure 991 * a negative errno code is returned. 992 */ 993 int dev_open(struct net_device *dev) 994 { 995 int ret = 0; 996 997 /* 998 * Is it already up? 999 */ 1000 1001 if (dev->flags & IFF_UP) 1002 return 0; 1003 1004 /* 1005 * Is it even present? 1006 */ 1007 if (!netif_device_present(dev)) 1008 return -ENODEV; 1009 1010 /* 1011 * Call device private open method 1012 */ 1013 set_bit(__LINK_STATE_START, &dev->state); 1014 1015 if (dev->validate_addr) 1016 ret = dev->validate_addr(dev); 1017 1018 if (!ret && dev->open) 1019 ret = dev->open(dev); 1020 1021 /* 1022 * If it went open OK then: 1023 */ 1024 1025 if (ret) 1026 clear_bit(__LINK_STATE_START, &dev->state); 1027 else { 1028 /* 1029 * Set the flags. 1030 */ 1031 dev->flags |= IFF_UP; 1032 1033 /* 1034 * Initialize multicasting status 1035 */ 1036 dev_set_rx_mode(dev); 1037 1038 /* 1039 * Wakeup transmit queue engine 1040 */ 1041 dev_activate(dev); 1042 1043 /* 1044 * ... and announce new interface. 1045 */ 1046 call_netdevice_notifiers(NETDEV_UP, dev); 1047 } 1048 1049 return ret; 1050 } 1051 1052 /** 1053 * dev_close - shutdown an interface. 1054 * @dev: device to shutdown 1055 * 1056 * This function moves an active device into down state. A 1057 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device 1058 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier 1059 * chain. 1060 */ 1061 int dev_close(struct net_device *dev) 1062 { 1063 might_sleep(); 1064 1065 if (!(dev->flags & IFF_UP)) 1066 return 0; 1067 1068 /* 1069 * Tell people we are going down, so that they can 1070 * prepare to death, when device is still operating. 1071 */ 1072 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev); 1073 1074 clear_bit(__LINK_STATE_START, &dev->state); 1075 1076 /* Synchronize to scheduled poll. We cannot touch poll list, 1077 * it can be even on different cpu. So just clear netif_running(). 1078 * 1079 * dev->stop() will invoke napi_disable() on all of it's 1080 * napi_struct instances on this device. 1081 */ 1082 smp_mb__after_clear_bit(); /* Commit netif_running(). */ 1083 1084 dev_deactivate(dev); 1085 1086 /* 1087 * Call the device specific close. This cannot fail. 1088 * Only if device is UP 1089 * 1090 * We allow it to be called even after a DETACH hot-plug 1091 * event. 1092 */ 1093 if (dev->stop) 1094 dev->stop(dev); 1095 1096 /* 1097 * Device is now down. 1098 */ 1099 1100 dev->flags &= ~IFF_UP; 1101 1102 /* 1103 * Tell people we are down 1104 */ 1105 call_netdevice_notifiers(NETDEV_DOWN, dev); 1106 1107 return 0; 1108 } 1109 1110 1111 static int dev_boot_phase = 1; 1112 1113 /* 1114 * Device change register/unregister. These are not inline or static 1115 * as we export them to the world. 1116 */ 1117 1118 /** 1119 * register_netdevice_notifier - register a network notifier block 1120 * @nb: notifier 1121 * 1122 * Register a notifier to be called when network device events occur. 1123 * The notifier passed is linked into the kernel structures and must 1124 * not be reused until it has been unregistered. A negative errno code 1125 * is returned on a failure. 1126 * 1127 * When registered all registration and up events are replayed 1128 * to the new notifier to allow device to have a race free 1129 * view of the network device list. 1130 */ 1131 1132 int register_netdevice_notifier(struct notifier_block *nb) 1133 { 1134 struct net_device *dev; 1135 struct net_device *last; 1136 struct net *net; 1137 int err; 1138 1139 rtnl_lock(); 1140 err = raw_notifier_chain_register(&netdev_chain, nb); 1141 if (err) 1142 goto unlock; 1143 if (dev_boot_phase) 1144 goto unlock; 1145 for_each_net(net) { 1146 for_each_netdev(net, dev) { 1147 err = nb->notifier_call(nb, NETDEV_REGISTER, dev); 1148 err = notifier_to_errno(err); 1149 if (err) 1150 goto rollback; 1151 1152 if (!(dev->flags & IFF_UP)) 1153 continue; 1154 1155 nb->notifier_call(nb, NETDEV_UP, dev); 1156 } 1157 } 1158 1159 unlock: 1160 rtnl_unlock(); 1161 return err; 1162 1163 rollback: 1164 last = dev; 1165 for_each_net(net) { 1166 for_each_netdev(net, dev) { 1167 if (dev == last) 1168 break; 1169 1170 if (dev->flags & IFF_UP) { 1171 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev); 1172 nb->notifier_call(nb, NETDEV_DOWN, dev); 1173 } 1174 nb->notifier_call(nb, NETDEV_UNREGISTER, dev); 1175 } 1176 } 1177 1178 raw_notifier_chain_unregister(&netdev_chain, nb); 1179 goto unlock; 1180 } 1181 1182 /** 1183 * unregister_netdevice_notifier - unregister a network notifier block 1184 * @nb: notifier 1185 * 1186 * Unregister a notifier previously registered by 1187 * register_netdevice_notifier(). The notifier is unlinked into the 1188 * kernel structures and may then be reused. A negative errno code 1189 * is returned on a failure. 1190 */ 1191 1192 int unregister_netdevice_notifier(struct notifier_block *nb) 1193 { 1194 int err; 1195 1196 rtnl_lock(); 1197 err = raw_notifier_chain_unregister(&netdev_chain, nb); 1198 rtnl_unlock(); 1199 return err; 1200 } 1201 1202 /** 1203 * call_netdevice_notifiers - call all network notifier blocks 1204 * @val: value passed unmodified to notifier function 1205 * @dev: net_device pointer passed unmodified to notifier function 1206 * 1207 * Call all network notifier blocks. Parameters and return value 1208 * are as for raw_notifier_call_chain(). 1209 */ 1210 1211 int call_netdevice_notifiers(unsigned long val, struct net_device *dev) 1212 { 1213 return raw_notifier_call_chain(&netdev_chain, val, dev); 1214 } 1215 1216 /* When > 0 there are consumers of rx skb time stamps */ 1217 static atomic_t netstamp_needed = ATOMIC_INIT(0); 1218 1219 void net_enable_timestamp(void) 1220 { 1221 atomic_inc(&netstamp_needed); 1222 } 1223 1224 void net_disable_timestamp(void) 1225 { 1226 atomic_dec(&netstamp_needed); 1227 } 1228 1229 static inline void net_timestamp(struct sk_buff *skb) 1230 { 1231 if (atomic_read(&netstamp_needed)) 1232 __net_timestamp(skb); 1233 else 1234 skb->tstamp.tv64 = 0; 1235 } 1236 1237 /* 1238 * Support routine. Sends outgoing frames to any network 1239 * taps currently in use. 1240 */ 1241 1242 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev) 1243 { 1244 struct packet_type *ptype; 1245 1246 net_timestamp(skb); 1247 1248 rcu_read_lock(); 1249 list_for_each_entry_rcu(ptype, &ptype_all, list) { 1250 /* Never send packets back to the socket 1251 * they originated from - MvS (miquels@drinkel.ow.org) 1252 */ 1253 if ((ptype->dev == dev || !ptype->dev) && 1254 (ptype->af_packet_priv == NULL || 1255 (struct sock *)ptype->af_packet_priv != skb->sk)) { 1256 struct sk_buff *skb2= skb_clone(skb, GFP_ATOMIC); 1257 if (!skb2) 1258 break; 1259 1260 /* skb->nh should be correctly 1261 set by sender, so that the second statement is 1262 just protection against buggy protocols. 1263 */ 1264 skb_reset_mac_header(skb2); 1265 1266 if (skb_network_header(skb2) < skb2->data || 1267 skb2->network_header > skb2->tail) { 1268 if (net_ratelimit()) 1269 printk(KERN_CRIT "protocol %04x is " 1270 "buggy, dev %s\n", 1271 skb2->protocol, dev->name); 1272 skb_reset_network_header(skb2); 1273 } 1274 1275 skb2->transport_header = skb2->network_header; 1276 skb2->pkt_type = PACKET_OUTGOING; 1277 ptype->func(skb2, skb->dev, ptype, skb->dev); 1278 } 1279 } 1280 rcu_read_unlock(); 1281 } 1282 1283 1284 void __netif_schedule(struct net_device *dev) 1285 { 1286 if (!test_and_set_bit(__LINK_STATE_SCHED, &dev->state)) { 1287 unsigned long flags; 1288 struct softnet_data *sd; 1289 1290 local_irq_save(flags); 1291 sd = &__get_cpu_var(softnet_data); 1292 dev->next_sched = sd->output_queue; 1293 sd->output_queue = dev; 1294 raise_softirq_irqoff(NET_TX_SOFTIRQ); 1295 local_irq_restore(flags); 1296 } 1297 } 1298 EXPORT_SYMBOL(__netif_schedule); 1299 1300 void dev_kfree_skb_irq(struct sk_buff *skb) 1301 { 1302 if (atomic_dec_and_test(&skb->users)) { 1303 struct softnet_data *sd; 1304 unsigned long flags; 1305 1306 local_irq_save(flags); 1307 sd = &__get_cpu_var(softnet_data); 1308 skb->next = sd->completion_queue; 1309 sd->completion_queue = skb; 1310 raise_softirq_irqoff(NET_TX_SOFTIRQ); 1311 local_irq_restore(flags); 1312 } 1313 } 1314 EXPORT_SYMBOL(dev_kfree_skb_irq); 1315 1316 void dev_kfree_skb_any(struct sk_buff *skb) 1317 { 1318 if (in_irq() || irqs_disabled()) 1319 dev_kfree_skb_irq(skb); 1320 else 1321 dev_kfree_skb(skb); 1322 } 1323 EXPORT_SYMBOL(dev_kfree_skb_any); 1324 1325 1326 /** 1327 * netif_device_detach - mark device as removed 1328 * @dev: network device 1329 * 1330 * Mark device as removed from system and therefore no longer available. 1331 */ 1332 void netif_device_detach(struct net_device *dev) 1333 { 1334 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) && 1335 netif_running(dev)) { 1336 netif_stop_queue(dev); 1337 } 1338 } 1339 EXPORT_SYMBOL(netif_device_detach); 1340 1341 /** 1342 * netif_device_attach - mark device as attached 1343 * @dev: network device 1344 * 1345 * Mark device as attached from system and restart if needed. 1346 */ 1347 void netif_device_attach(struct net_device *dev) 1348 { 1349 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) && 1350 netif_running(dev)) { 1351 netif_wake_queue(dev); 1352 __netdev_watchdog_up(dev); 1353 } 1354 } 1355 EXPORT_SYMBOL(netif_device_attach); 1356 1357 1358 /* 1359 * Invalidate hardware checksum when packet is to be mangled, and 1360 * complete checksum manually on outgoing path. 1361 */ 1362 int skb_checksum_help(struct sk_buff *skb) 1363 { 1364 __wsum csum; 1365 int ret = 0, offset; 1366 1367 if (skb->ip_summed == CHECKSUM_COMPLETE) 1368 goto out_set_summed; 1369 1370 if (unlikely(skb_shinfo(skb)->gso_size)) { 1371 /* Let GSO fix up the checksum. */ 1372 goto out_set_summed; 1373 } 1374 1375 offset = skb->csum_start - skb_headroom(skb); 1376 BUG_ON(offset >= skb_headlen(skb)); 1377 csum = skb_checksum(skb, offset, skb->len - offset, 0); 1378 1379 offset += skb->csum_offset; 1380 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb)); 1381 1382 if (skb_cloned(skb) && 1383 !skb_clone_writable(skb, offset + sizeof(__sum16))) { 1384 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 1385 if (ret) 1386 goto out; 1387 } 1388 1389 *(__sum16 *)(skb->data + offset) = csum_fold(csum); 1390 out_set_summed: 1391 skb->ip_summed = CHECKSUM_NONE; 1392 out: 1393 return ret; 1394 } 1395 1396 /** 1397 * skb_gso_segment - Perform segmentation on skb. 1398 * @skb: buffer to segment 1399 * @features: features for the output path (see dev->features) 1400 * 1401 * This function segments the given skb and returns a list of segments. 1402 * 1403 * It may return NULL if the skb requires no segmentation. This is 1404 * only possible when GSO is used for verifying header integrity. 1405 */ 1406 struct sk_buff *skb_gso_segment(struct sk_buff *skb, int features) 1407 { 1408 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT); 1409 struct packet_type *ptype; 1410 __be16 type = skb->protocol; 1411 int err; 1412 1413 BUG_ON(skb_shinfo(skb)->frag_list); 1414 1415 skb_reset_mac_header(skb); 1416 skb->mac_len = skb->network_header - skb->mac_header; 1417 __skb_pull(skb, skb->mac_len); 1418 1419 if (WARN_ON(skb->ip_summed != CHECKSUM_PARTIAL)) { 1420 if (skb_header_cloned(skb) && 1421 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))) 1422 return ERR_PTR(err); 1423 } 1424 1425 rcu_read_lock(); 1426 list_for_each_entry_rcu(ptype, 1427 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) { 1428 if (ptype->type == type && !ptype->dev && ptype->gso_segment) { 1429 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) { 1430 err = ptype->gso_send_check(skb); 1431 segs = ERR_PTR(err); 1432 if (err || skb_gso_ok(skb, features)) 1433 break; 1434 __skb_push(skb, (skb->data - 1435 skb_network_header(skb))); 1436 } 1437 segs = ptype->gso_segment(skb, features); 1438 break; 1439 } 1440 } 1441 rcu_read_unlock(); 1442 1443 __skb_push(skb, skb->data - skb_mac_header(skb)); 1444 1445 return segs; 1446 } 1447 1448 EXPORT_SYMBOL(skb_gso_segment); 1449 1450 /* Take action when hardware reception checksum errors are detected. */ 1451 #ifdef CONFIG_BUG 1452 void netdev_rx_csum_fault(struct net_device *dev) 1453 { 1454 if (net_ratelimit()) { 1455 printk(KERN_ERR "%s: hw csum failure.\n", 1456 dev ? dev->name : "<unknown>"); 1457 dump_stack(); 1458 } 1459 } 1460 EXPORT_SYMBOL(netdev_rx_csum_fault); 1461 #endif 1462 1463 /* Actually, we should eliminate this check as soon as we know, that: 1464 * 1. IOMMU is present and allows to map all the memory. 1465 * 2. No high memory really exists on this machine. 1466 */ 1467 1468 static inline int illegal_highdma(struct net_device *dev, struct sk_buff *skb) 1469 { 1470 #ifdef CONFIG_HIGHMEM 1471 int i; 1472 1473 if (dev->features & NETIF_F_HIGHDMA) 1474 return 0; 1475 1476 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 1477 if (PageHighMem(skb_shinfo(skb)->frags[i].page)) 1478 return 1; 1479 1480 #endif 1481 return 0; 1482 } 1483 1484 struct dev_gso_cb { 1485 void (*destructor)(struct sk_buff *skb); 1486 }; 1487 1488 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb) 1489 1490 static void dev_gso_skb_destructor(struct sk_buff *skb) 1491 { 1492 struct dev_gso_cb *cb; 1493 1494 do { 1495 struct sk_buff *nskb = skb->next; 1496 1497 skb->next = nskb->next; 1498 nskb->next = NULL; 1499 kfree_skb(nskb); 1500 } while (skb->next); 1501 1502 cb = DEV_GSO_CB(skb); 1503 if (cb->destructor) 1504 cb->destructor(skb); 1505 } 1506 1507 /** 1508 * dev_gso_segment - Perform emulated hardware segmentation on skb. 1509 * @skb: buffer to segment 1510 * 1511 * This function segments the given skb and stores the list of segments 1512 * in skb->next. 1513 */ 1514 static int dev_gso_segment(struct sk_buff *skb) 1515 { 1516 struct net_device *dev = skb->dev; 1517 struct sk_buff *segs; 1518 int features = dev->features & ~(illegal_highdma(dev, skb) ? 1519 NETIF_F_SG : 0); 1520 1521 segs = skb_gso_segment(skb, features); 1522 1523 /* Verifying header integrity only. */ 1524 if (!segs) 1525 return 0; 1526 1527 if (IS_ERR(segs)) 1528 return PTR_ERR(segs); 1529 1530 skb->next = segs; 1531 DEV_GSO_CB(skb)->destructor = skb->destructor; 1532 skb->destructor = dev_gso_skb_destructor; 1533 1534 return 0; 1535 } 1536 1537 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev) 1538 { 1539 if (likely(!skb->next)) { 1540 if (!list_empty(&ptype_all)) 1541 dev_queue_xmit_nit(skb, dev); 1542 1543 if (netif_needs_gso(dev, skb)) { 1544 if (unlikely(dev_gso_segment(skb))) 1545 goto out_kfree_skb; 1546 if (skb->next) 1547 goto gso; 1548 } 1549 1550 return dev->hard_start_xmit(skb, dev); 1551 } 1552 1553 gso: 1554 do { 1555 struct sk_buff *nskb = skb->next; 1556 int rc; 1557 1558 skb->next = nskb->next; 1559 nskb->next = NULL; 1560 rc = dev->hard_start_xmit(nskb, dev); 1561 if (unlikely(rc)) { 1562 nskb->next = skb->next; 1563 skb->next = nskb; 1564 return rc; 1565 } 1566 if (unlikely((netif_queue_stopped(dev) || 1567 netif_subqueue_stopped(dev, skb)) && 1568 skb->next)) 1569 return NETDEV_TX_BUSY; 1570 } while (skb->next); 1571 1572 skb->destructor = DEV_GSO_CB(skb)->destructor; 1573 1574 out_kfree_skb: 1575 kfree_skb(skb); 1576 return 0; 1577 } 1578 1579 /** 1580 * dev_queue_xmit - transmit a buffer 1581 * @skb: buffer to transmit 1582 * 1583 * Queue a buffer for transmission to a network device. The caller must 1584 * have set the device and priority and built the buffer before calling 1585 * this function. The function can be called from an interrupt. 1586 * 1587 * A negative errno code is returned on a failure. A success does not 1588 * guarantee the frame will be transmitted as it may be dropped due 1589 * to congestion or traffic shaping. 1590 * 1591 * ----------------------------------------------------------------------------------- 1592 * I notice this method can also return errors from the queue disciplines, 1593 * including NET_XMIT_DROP, which is a positive value. So, errors can also 1594 * be positive. 1595 * 1596 * Regardless of the return value, the skb is consumed, so it is currently 1597 * difficult to retry a send to this method. (You can bump the ref count 1598 * before sending to hold a reference for retry if you are careful.) 1599 * 1600 * When calling this method, interrupts MUST be enabled. This is because 1601 * the BH enable code must have IRQs enabled so that it will not deadlock. 1602 * --BLG 1603 */ 1604 1605 int dev_queue_xmit(struct sk_buff *skb) 1606 { 1607 struct net_device *dev = skb->dev; 1608 struct Qdisc *q; 1609 int rc = -ENOMEM; 1610 1611 /* GSO will handle the following emulations directly. */ 1612 if (netif_needs_gso(dev, skb)) 1613 goto gso; 1614 1615 if (skb_shinfo(skb)->frag_list && 1616 !(dev->features & NETIF_F_FRAGLIST) && 1617 __skb_linearize(skb)) 1618 goto out_kfree_skb; 1619 1620 /* Fragmented skb is linearized if device does not support SG, 1621 * or if at least one of fragments is in highmem and device 1622 * does not support DMA from it. 1623 */ 1624 if (skb_shinfo(skb)->nr_frags && 1625 (!(dev->features & NETIF_F_SG) || illegal_highdma(dev, skb)) && 1626 __skb_linearize(skb)) 1627 goto out_kfree_skb; 1628 1629 /* If packet is not checksummed and device does not support 1630 * checksumming for this protocol, complete checksumming here. 1631 */ 1632 if (skb->ip_summed == CHECKSUM_PARTIAL) { 1633 skb_set_transport_header(skb, skb->csum_start - 1634 skb_headroom(skb)); 1635 1636 if (!(dev->features & NETIF_F_GEN_CSUM) && 1637 !((dev->features & NETIF_F_IP_CSUM) && 1638 skb->protocol == htons(ETH_P_IP)) && 1639 !((dev->features & NETIF_F_IPV6_CSUM) && 1640 skb->protocol == htons(ETH_P_IPV6))) 1641 if (skb_checksum_help(skb)) 1642 goto out_kfree_skb; 1643 } 1644 1645 gso: 1646 spin_lock_prefetch(&dev->queue_lock); 1647 1648 /* Disable soft irqs for various locks below. Also 1649 * stops preemption for RCU. 1650 */ 1651 rcu_read_lock_bh(); 1652 1653 /* Updates of qdisc are serialized by queue_lock. 1654 * The struct Qdisc which is pointed to by qdisc is now a 1655 * rcu structure - it may be accessed without acquiring 1656 * a lock (but the structure may be stale.) The freeing of the 1657 * qdisc will be deferred until it's known that there are no 1658 * more references to it. 1659 * 1660 * If the qdisc has an enqueue function, we still need to 1661 * hold the queue_lock before calling it, since queue_lock 1662 * also serializes access to the device queue. 1663 */ 1664 1665 q = rcu_dereference(dev->qdisc); 1666 #ifdef CONFIG_NET_CLS_ACT 1667 skb->tc_verd = SET_TC_AT(skb->tc_verd,AT_EGRESS); 1668 #endif 1669 if (q->enqueue) { 1670 /* Grab device queue */ 1671 spin_lock(&dev->queue_lock); 1672 q = dev->qdisc; 1673 if (q->enqueue) { 1674 /* reset queue_mapping to zero */ 1675 skb_set_queue_mapping(skb, 0); 1676 rc = q->enqueue(skb, q); 1677 qdisc_run(dev); 1678 spin_unlock(&dev->queue_lock); 1679 1680 rc = rc == NET_XMIT_BYPASS ? NET_XMIT_SUCCESS : rc; 1681 goto out; 1682 } 1683 spin_unlock(&dev->queue_lock); 1684 } 1685 1686 /* The device has no queue. Common case for software devices: 1687 loopback, all the sorts of tunnels... 1688 1689 Really, it is unlikely that netif_tx_lock protection is necessary 1690 here. (f.e. loopback and IP tunnels are clean ignoring statistics 1691 counters.) 1692 However, it is possible, that they rely on protection 1693 made by us here. 1694 1695 Check this and shot the lock. It is not prone from deadlocks. 1696 Either shot noqueue qdisc, it is even simpler 8) 1697 */ 1698 if (dev->flags & IFF_UP) { 1699 int cpu = smp_processor_id(); /* ok because BHs are off */ 1700 1701 if (dev->xmit_lock_owner != cpu) { 1702 1703 HARD_TX_LOCK(dev, cpu); 1704 1705 if (!netif_queue_stopped(dev) && 1706 !netif_subqueue_stopped(dev, skb)) { 1707 rc = 0; 1708 if (!dev_hard_start_xmit(skb, dev)) { 1709 HARD_TX_UNLOCK(dev); 1710 goto out; 1711 } 1712 } 1713 HARD_TX_UNLOCK(dev); 1714 if (net_ratelimit()) 1715 printk(KERN_CRIT "Virtual device %s asks to " 1716 "queue packet!\n", dev->name); 1717 } else { 1718 /* Recursion is detected! It is possible, 1719 * unfortunately */ 1720 if (net_ratelimit()) 1721 printk(KERN_CRIT "Dead loop on virtual device " 1722 "%s, fix it urgently!\n", dev->name); 1723 } 1724 } 1725 1726 rc = -ENETDOWN; 1727 rcu_read_unlock_bh(); 1728 1729 out_kfree_skb: 1730 kfree_skb(skb); 1731 return rc; 1732 out: 1733 rcu_read_unlock_bh(); 1734 return rc; 1735 } 1736 1737 1738 /*======================================================================= 1739 Receiver routines 1740 =======================================================================*/ 1741 1742 int netdev_max_backlog __read_mostly = 1000; 1743 int netdev_budget __read_mostly = 300; 1744 int weight_p __read_mostly = 64; /* old backlog weight */ 1745 1746 DEFINE_PER_CPU(struct netif_rx_stats, netdev_rx_stat) = { 0, }; 1747 1748 1749 /** 1750 * netif_rx - post buffer to the network code 1751 * @skb: buffer to post 1752 * 1753 * This function receives a packet from a device driver and queues it for 1754 * the upper (protocol) levels to process. It always succeeds. The buffer 1755 * may be dropped during processing for congestion control or by the 1756 * protocol layers. 1757 * 1758 * return values: 1759 * NET_RX_SUCCESS (no congestion) 1760 * NET_RX_DROP (packet was dropped) 1761 * 1762 */ 1763 1764 int netif_rx(struct sk_buff *skb) 1765 { 1766 struct softnet_data *queue; 1767 unsigned long flags; 1768 1769 /* if netpoll wants it, pretend we never saw it */ 1770 if (netpoll_rx(skb)) 1771 return NET_RX_DROP; 1772 1773 if (!skb->tstamp.tv64) 1774 net_timestamp(skb); 1775 1776 /* 1777 * The code is rearranged so that the path is the most 1778 * short when CPU is congested, but is still operating. 1779 */ 1780 local_irq_save(flags); 1781 queue = &__get_cpu_var(softnet_data); 1782 1783 __get_cpu_var(netdev_rx_stat).total++; 1784 if (queue->input_pkt_queue.qlen <= netdev_max_backlog) { 1785 if (queue->input_pkt_queue.qlen) { 1786 enqueue: 1787 dev_hold(skb->dev); 1788 __skb_queue_tail(&queue->input_pkt_queue, skb); 1789 local_irq_restore(flags); 1790 return NET_RX_SUCCESS; 1791 } 1792 1793 napi_schedule(&queue->backlog); 1794 goto enqueue; 1795 } 1796 1797 __get_cpu_var(netdev_rx_stat).dropped++; 1798 local_irq_restore(flags); 1799 1800 kfree_skb(skb); 1801 return NET_RX_DROP; 1802 } 1803 1804 int netif_rx_ni(struct sk_buff *skb) 1805 { 1806 int err; 1807 1808 preempt_disable(); 1809 err = netif_rx(skb); 1810 if (local_softirq_pending()) 1811 do_softirq(); 1812 preempt_enable(); 1813 1814 return err; 1815 } 1816 1817 EXPORT_SYMBOL(netif_rx_ni); 1818 1819 static inline struct net_device *skb_bond(struct sk_buff *skb) 1820 { 1821 struct net_device *dev = skb->dev; 1822 1823 if (dev->master) { 1824 if (skb_bond_should_drop(skb)) { 1825 kfree_skb(skb); 1826 return NULL; 1827 } 1828 skb->dev = dev->master; 1829 } 1830 1831 return dev; 1832 } 1833 1834 1835 static void net_tx_action(struct softirq_action *h) 1836 { 1837 struct softnet_data *sd = &__get_cpu_var(softnet_data); 1838 1839 if (sd->completion_queue) { 1840 struct sk_buff *clist; 1841 1842 local_irq_disable(); 1843 clist = sd->completion_queue; 1844 sd->completion_queue = NULL; 1845 local_irq_enable(); 1846 1847 while (clist) { 1848 struct sk_buff *skb = clist; 1849 clist = clist->next; 1850 1851 BUG_TRAP(!atomic_read(&skb->users)); 1852 __kfree_skb(skb); 1853 } 1854 } 1855 1856 if (sd->output_queue) { 1857 struct net_device *head; 1858 1859 local_irq_disable(); 1860 head = sd->output_queue; 1861 sd->output_queue = NULL; 1862 local_irq_enable(); 1863 1864 while (head) { 1865 struct net_device *dev = head; 1866 head = head->next_sched; 1867 1868 smp_mb__before_clear_bit(); 1869 clear_bit(__LINK_STATE_SCHED, &dev->state); 1870 1871 if (spin_trylock(&dev->queue_lock)) { 1872 qdisc_run(dev); 1873 spin_unlock(&dev->queue_lock); 1874 } else { 1875 netif_schedule(dev); 1876 } 1877 } 1878 } 1879 } 1880 1881 static inline int deliver_skb(struct sk_buff *skb, 1882 struct packet_type *pt_prev, 1883 struct net_device *orig_dev) 1884 { 1885 atomic_inc(&skb->users); 1886 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 1887 } 1888 1889 #if defined(CONFIG_BRIDGE) || defined (CONFIG_BRIDGE_MODULE) 1890 /* These hooks defined here for ATM */ 1891 struct net_bridge; 1892 struct net_bridge_fdb_entry *(*br_fdb_get_hook)(struct net_bridge *br, 1893 unsigned char *addr); 1894 void (*br_fdb_put_hook)(struct net_bridge_fdb_entry *ent) __read_mostly; 1895 1896 /* 1897 * If bridge module is loaded call bridging hook. 1898 * returns NULL if packet was consumed. 1899 */ 1900 struct sk_buff *(*br_handle_frame_hook)(struct net_bridge_port *p, 1901 struct sk_buff *skb) __read_mostly; 1902 static inline struct sk_buff *handle_bridge(struct sk_buff *skb, 1903 struct packet_type **pt_prev, int *ret, 1904 struct net_device *orig_dev) 1905 { 1906 struct net_bridge_port *port; 1907 1908 if (skb->pkt_type == PACKET_LOOPBACK || 1909 (port = rcu_dereference(skb->dev->br_port)) == NULL) 1910 return skb; 1911 1912 if (*pt_prev) { 1913 *ret = deliver_skb(skb, *pt_prev, orig_dev); 1914 *pt_prev = NULL; 1915 } 1916 1917 return br_handle_frame_hook(port, skb); 1918 } 1919 #else 1920 #define handle_bridge(skb, pt_prev, ret, orig_dev) (skb) 1921 #endif 1922 1923 #if defined(CONFIG_MACVLAN) || defined(CONFIG_MACVLAN_MODULE) 1924 struct sk_buff *(*macvlan_handle_frame_hook)(struct sk_buff *skb) __read_mostly; 1925 EXPORT_SYMBOL_GPL(macvlan_handle_frame_hook); 1926 1927 static inline struct sk_buff *handle_macvlan(struct sk_buff *skb, 1928 struct packet_type **pt_prev, 1929 int *ret, 1930 struct net_device *orig_dev) 1931 { 1932 if (skb->dev->macvlan_port == NULL) 1933 return skb; 1934 1935 if (*pt_prev) { 1936 *ret = deliver_skb(skb, *pt_prev, orig_dev); 1937 *pt_prev = NULL; 1938 } 1939 return macvlan_handle_frame_hook(skb); 1940 } 1941 #else 1942 #define handle_macvlan(skb, pt_prev, ret, orig_dev) (skb) 1943 #endif 1944 1945 #ifdef CONFIG_NET_CLS_ACT 1946 /* TODO: Maybe we should just force sch_ingress to be compiled in 1947 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions 1948 * a compare and 2 stores extra right now if we dont have it on 1949 * but have CONFIG_NET_CLS_ACT 1950 * NOTE: This doesnt stop any functionality; if you dont have 1951 * the ingress scheduler, you just cant add policies on ingress. 1952 * 1953 */ 1954 static int ing_filter(struct sk_buff *skb) 1955 { 1956 struct Qdisc *q; 1957 struct net_device *dev = skb->dev; 1958 int result = TC_ACT_OK; 1959 u32 ttl = G_TC_RTTL(skb->tc_verd); 1960 1961 if (MAX_RED_LOOP < ttl++) { 1962 printk(KERN_WARNING 1963 "Redir loop detected Dropping packet (%d->%d)\n", 1964 skb->iif, dev->ifindex); 1965 return TC_ACT_SHOT; 1966 } 1967 1968 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl); 1969 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS); 1970 1971 spin_lock(&dev->ingress_lock); 1972 if ((q = dev->qdisc_ingress) != NULL) 1973 result = q->enqueue(skb, q); 1974 spin_unlock(&dev->ingress_lock); 1975 1976 return result; 1977 } 1978 1979 static inline struct sk_buff *handle_ing(struct sk_buff *skb, 1980 struct packet_type **pt_prev, 1981 int *ret, struct net_device *orig_dev) 1982 { 1983 if (!skb->dev->qdisc_ingress) 1984 goto out; 1985 1986 if (*pt_prev) { 1987 *ret = deliver_skb(skb, *pt_prev, orig_dev); 1988 *pt_prev = NULL; 1989 } else { 1990 /* Huh? Why does turning on AF_PACKET affect this? */ 1991 skb->tc_verd = SET_TC_OK2MUNGE(skb->tc_verd); 1992 } 1993 1994 switch (ing_filter(skb)) { 1995 case TC_ACT_SHOT: 1996 case TC_ACT_STOLEN: 1997 kfree_skb(skb); 1998 return NULL; 1999 } 2000 2001 out: 2002 skb->tc_verd = 0; 2003 return skb; 2004 } 2005 #endif 2006 2007 /** 2008 * netif_receive_skb - process receive buffer from network 2009 * @skb: buffer to process 2010 * 2011 * netif_receive_skb() is the main receive data processing function. 2012 * It always succeeds. The buffer may be dropped during processing 2013 * for congestion control or by the protocol layers. 2014 * 2015 * This function may only be called from softirq context and interrupts 2016 * should be enabled. 2017 * 2018 * Return values (usually ignored): 2019 * NET_RX_SUCCESS: no congestion 2020 * NET_RX_DROP: packet was dropped 2021 */ 2022 int netif_receive_skb(struct sk_buff *skb) 2023 { 2024 struct packet_type *ptype, *pt_prev; 2025 struct net_device *orig_dev; 2026 int ret = NET_RX_DROP; 2027 __be16 type; 2028 2029 /* if we've gotten here through NAPI, check netpoll */ 2030 if (netpoll_receive_skb(skb)) 2031 return NET_RX_DROP; 2032 2033 if (!skb->tstamp.tv64) 2034 net_timestamp(skb); 2035 2036 if (!skb->iif) 2037 skb->iif = skb->dev->ifindex; 2038 2039 orig_dev = skb_bond(skb); 2040 2041 if (!orig_dev) 2042 return NET_RX_DROP; 2043 2044 __get_cpu_var(netdev_rx_stat).total++; 2045 2046 skb_reset_network_header(skb); 2047 skb_reset_transport_header(skb); 2048 skb->mac_len = skb->network_header - skb->mac_header; 2049 2050 pt_prev = NULL; 2051 2052 rcu_read_lock(); 2053 2054 #ifdef CONFIG_NET_CLS_ACT 2055 if (skb->tc_verd & TC_NCLS) { 2056 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd); 2057 goto ncls; 2058 } 2059 #endif 2060 2061 list_for_each_entry_rcu(ptype, &ptype_all, list) { 2062 if (!ptype->dev || ptype->dev == skb->dev) { 2063 if (pt_prev) 2064 ret = deliver_skb(skb, pt_prev, orig_dev); 2065 pt_prev = ptype; 2066 } 2067 } 2068 2069 #ifdef CONFIG_NET_CLS_ACT 2070 skb = handle_ing(skb, &pt_prev, &ret, orig_dev); 2071 if (!skb) 2072 goto out; 2073 ncls: 2074 #endif 2075 2076 skb = handle_bridge(skb, &pt_prev, &ret, orig_dev); 2077 if (!skb) 2078 goto out; 2079 skb = handle_macvlan(skb, &pt_prev, &ret, orig_dev); 2080 if (!skb) 2081 goto out; 2082 2083 type = skb->protocol; 2084 list_for_each_entry_rcu(ptype, 2085 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) { 2086 if (ptype->type == type && 2087 (!ptype->dev || ptype->dev == skb->dev)) { 2088 if (pt_prev) 2089 ret = deliver_skb(skb, pt_prev, orig_dev); 2090 pt_prev = ptype; 2091 } 2092 } 2093 2094 if (pt_prev) { 2095 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 2096 } else { 2097 kfree_skb(skb); 2098 /* Jamal, now you will not able to escape explaining 2099 * me how you were going to use this. :-) 2100 */ 2101 ret = NET_RX_DROP; 2102 } 2103 2104 out: 2105 rcu_read_unlock(); 2106 return ret; 2107 } 2108 2109 static int process_backlog(struct napi_struct *napi, int quota) 2110 { 2111 int work = 0; 2112 struct softnet_data *queue = &__get_cpu_var(softnet_data); 2113 unsigned long start_time = jiffies; 2114 2115 napi->weight = weight_p; 2116 do { 2117 struct sk_buff *skb; 2118 struct net_device *dev; 2119 2120 local_irq_disable(); 2121 skb = __skb_dequeue(&queue->input_pkt_queue); 2122 if (!skb) { 2123 __napi_complete(napi); 2124 local_irq_enable(); 2125 break; 2126 } 2127 2128 local_irq_enable(); 2129 2130 dev = skb->dev; 2131 2132 netif_receive_skb(skb); 2133 2134 dev_put(dev); 2135 } while (++work < quota && jiffies == start_time); 2136 2137 return work; 2138 } 2139 2140 /** 2141 * __napi_schedule - schedule for receive 2142 * @n: entry to schedule 2143 * 2144 * The entry's receive function will be scheduled to run 2145 */ 2146 void __napi_schedule(struct napi_struct *n) 2147 { 2148 unsigned long flags; 2149 2150 local_irq_save(flags); 2151 list_add_tail(&n->poll_list, &__get_cpu_var(softnet_data).poll_list); 2152 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 2153 local_irq_restore(flags); 2154 } 2155 EXPORT_SYMBOL(__napi_schedule); 2156 2157 2158 static void net_rx_action(struct softirq_action *h) 2159 { 2160 struct list_head *list = &__get_cpu_var(softnet_data).poll_list; 2161 unsigned long start_time = jiffies; 2162 int budget = netdev_budget; 2163 void *have; 2164 2165 local_irq_disable(); 2166 2167 while (!list_empty(list)) { 2168 struct napi_struct *n; 2169 int work, weight; 2170 2171 /* If softirq window is exhuasted then punt. 2172 * 2173 * Note that this is a slight policy change from the 2174 * previous NAPI code, which would allow up to 2 2175 * jiffies to pass before breaking out. The test 2176 * used to be "jiffies - start_time > 1". 2177 */ 2178 if (unlikely(budget <= 0 || jiffies != start_time)) 2179 goto softnet_break; 2180 2181 local_irq_enable(); 2182 2183 /* Even though interrupts have been re-enabled, this 2184 * access is safe because interrupts can only add new 2185 * entries to the tail of this list, and only ->poll() 2186 * calls can remove this head entry from the list. 2187 */ 2188 n = list_entry(list->next, struct napi_struct, poll_list); 2189 2190 have = netpoll_poll_lock(n); 2191 2192 weight = n->weight; 2193 2194 /* This NAPI_STATE_SCHED test is for avoiding a race 2195 * with netpoll's poll_napi(). Only the entity which 2196 * obtains the lock and sees NAPI_STATE_SCHED set will 2197 * actually make the ->poll() call. Therefore we avoid 2198 * accidently calling ->poll() when NAPI is not scheduled. 2199 */ 2200 work = 0; 2201 if (test_bit(NAPI_STATE_SCHED, &n->state)) 2202 work = n->poll(n, weight); 2203 2204 WARN_ON_ONCE(work > weight); 2205 2206 budget -= work; 2207 2208 local_irq_disable(); 2209 2210 /* Drivers must not modify the NAPI state if they 2211 * consume the entire weight. In such cases this code 2212 * still "owns" the NAPI instance and therefore can 2213 * move the instance around on the list at-will. 2214 */ 2215 if (unlikely(work == weight)) { 2216 if (unlikely(napi_disable_pending(n))) 2217 __napi_complete(n); 2218 else 2219 list_move_tail(&n->poll_list, list); 2220 } 2221 2222 netpoll_poll_unlock(have); 2223 } 2224 out: 2225 local_irq_enable(); 2226 2227 #ifdef CONFIG_NET_DMA 2228 /* 2229 * There may not be any more sk_buffs coming right now, so push 2230 * any pending DMA copies to hardware 2231 */ 2232 if (!cpus_empty(net_dma.channel_mask)) { 2233 int chan_idx; 2234 for_each_cpu_mask(chan_idx, net_dma.channel_mask) { 2235 struct dma_chan *chan = net_dma.channels[chan_idx]; 2236 if (chan) 2237 dma_async_memcpy_issue_pending(chan); 2238 } 2239 } 2240 #endif 2241 2242 return; 2243 2244 softnet_break: 2245 __get_cpu_var(netdev_rx_stat).time_squeeze++; 2246 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 2247 goto out; 2248 } 2249 2250 static gifconf_func_t * gifconf_list [NPROTO]; 2251 2252 /** 2253 * register_gifconf - register a SIOCGIF handler 2254 * @family: Address family 2255 * @gifconf: Function handler 2256 * 2257 * Register protocol dependent address dumping routines. The handler 2258 * that is passed must not be freed or reused until it has been replaced 2259 * by another handler. 2260 */ 2261 int register_gifconf(unsigned int family, gifconf_func_t * gifconf) 2262 { 2263 if (family >= NPROTO) 2264 return -EINVAL; 2265 gifconf_list[family] = gifconf; 2266 return 0; 2267 } 2268 2269 2270 /* 2271 * Map an interface index to its name (SIOCGIFNAME) 2272 */ 2273 2274 /* 2275 * We need this ioctl for efficient implementation of the 2276 * if_indextoname() function required by the IPv6 API. Without 2277 * it, we would have to search all the interfaces to find a 2278 * match. --pb 2279 */ 2280 2281 static int dev_ifname(struct net *net, struct ifreq __user *arg) 2282 { 2283 struct net_device *dev; 2284 struct ifreq ifr; 2285 2286 /* 2287 * Fetch the caller's info block. 2288 */ 2289 2290 if (copy_from_user(&ifr, arg, sizeof(struct ifreq))) 2291 return -EFAULT; 2292 2293 read_lock(&dev_base_lock); 2294 dev = __dev_get_by_index(net, ifr.ifr_ifindex); 2295 if (!dev) { 2296 read_unlock(&dev_base_lock); 2297 return -ENODEV; 2298 } 2299 2300 strcpy(ifr.ifr_name, dev->name); 2301 read_unlock(&dev_base_lock); 2302 2303 if (copy_to_user(arg, &ifr, sizeof(struct ifreq))) 2304 return -EFAULT; 2305 return 0; 2306 } 2307 2308 /* 2309 * Perform a SIOCGIFCONF call. This structure will change 2310 * size eventually, and there is nothing I can do about it. 2311 * Thus we will need a 'compatibility mode'. 2312 */ 2313 2314 static int dev_ifconf(struct net *net, char __user *arg) 2315 { 2316 struct ifconf ifc; 2317 struct net_device *dev; 2318 char __user *pos; 2319 int len; 2320 int total; 2321 int i; 2322 2323 /* 2324 * Fetch the caller's info block. 2325 */ 2326 2327 if (copy_from_user(&ifc, arg, sizeof(struct ifconf))) 2328 return -EFAULT; 2329 2330 pos = ifc.ifc_buf; 2331 len = ifc.ifc_len; 2332 2333 /* 2334 * Loop over the interfaces, and write an info block for each. 2335 */ 2336 2337 total = 0; 2338 for_each_netdev(net, dev) { 2339 for (i = 0; i < NPROTO; i++) { 2340 if (gifconf_list[i]) { 2341 int done; 2342 if (!pos) 2343 done = gifconf_list[i](dev, NULL, 0); 2344 else 2345 done = gifconf_list[i](dev, pos + total, 2346 len - total); 2347 if (done < 0) 2348 return -EFAULT; 2349 total += done; 2350 } 2351 } 2352 } 2353 2354 /* 2355 * All done. Write the updated control block back to the caller. 2356 */ 2357 ifc.ifc_len = total; 2358 2359 /* 2360 * Both BSD and Solaris return 0 here, so we do too. 2361 */ 2362 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0; 2363 } 2364 2365 #ifdef CONFIG_PROC_FS 2366 /* 2367 * This is invoked by the /proc filesystem handler to display a device 2368 * in detail. 2369 */ 2370 void *dev_seq_start(struct seq_file *seq, loff_t *pos) 2371 __acquires(dev_base_lock) 2372 { 2373 struct net *net = seq_file_net(seq); 2374 loff_t off; 2375 struct net_device *dev; 2376 2377 read_lock(&dev_base_lock); 2378 if (!*pos) 2379 return SEQ_START_TOKEN; 2380 2381 off = 1; 2382 for_each_netdev(net, dev) 2383 if (off++ == *pos) 2384 return dev; 2385 2386 return NULL; 2387 } 2388 2389 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2390 { 2391 struct net *net = seq_file_net(seq); 2392 ++*pos; 2393 return v == SEQ_START_TOKEN ? 2394 first_net_device(net) : next_net_device((struct net_device *)v); 2395 } 2396 2397 void dev_seq_stop(struct seq_file *seq, void *v) 2398 __releases(dev_base_lock) 2399 { 2400 read_unlock(&dev_base_lock); 2401 } 2402 2403 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev) 2404 { 2405 struct net_device_stats *stats = dev->get_stats(dev); 2406 2407 seq_printf(seq, "%6s:%8lu %7lu %4lu %4lu %4lu %5lu %10lu %9lu " 2408 "%8lu %7lu %4lu %4lu %4lu %5lu %7lu %10lu\n", 2409 dev->name, stats->rx_bytes, stats->rx_packets, 2410 stats->rx_errors, 2411 stats->rx_dropped + stats->rx_missed_errors, 2412 stats->rx_fifo_errors, 2413 stats->rx_length_errors + stats->rx_over_errors + 2414 stats->rx_crc_errors + stats->rx_frame_errors, 2415 stats->rx_compressed, stats->multicast, 2416 stats->tx_bytes, stats->tx_packets, 2417 stats->tx_errors, stats->tx_dropped, 2418 stats->tx_fifo_errors, stats->collisions, 2419 stats->tx_carrier_errors + 2420 stats->tx_aborted_errors + 2421 stats->tx_window_errors + 2422 stats->tx_heartbeat_errors, 2423 stats->tx_compressed); 2424 } 2425 2426 /* 2427 * Called from the PROCfs module. This now uses the new arbitrary sized 2428 * /proc/net interface to create /proc/net/dev 2429 */ 2430 static int dev_seq_show(struct seq_file *seq, void *v) 2431 { 2432 if (v == SEQ_START_TOKEN) 2433 seq_puts(seq, "Inter-| Receive " 2434 " | Transmit\n" 2435 " face |bytes packets errs drop fifo frame " 2436 "compressed multicast|bytes packets errs " 2437 "drop fifo colls carrier compressed\n"); 2438 else 2439 dev_seq_printf_stats(seq, v); 2440 return 0; 2441 } 2442 2443 static struct netif_rx_stats *softnet_get_online(loff_t *pos) 2444 { 2445 struct netif_rx_stats *rc = NULL; 2446 2447 while (*pos < nr_cpu_ids) 2448 if (cpu_online(*pos)) { 2449 rc = &per_cpu(netdev_rx_stat, *pos); 2450 break; 2451 } else 2452 ++*pos; 2453 return rc; 2454 } 2455 2456 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos) 2457 { 2458 return softnet_get_online(pos); 2459 } 2460 2461 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2462 { 2463 ++*pos; 2464 return softnet_get_online(pos); 2465 } 2466 2467 static void softnet_seq_stop(struct seq_file *seq, void *v) 2468 { 2469 } 2470 2471 static int softnet_seq_show(struct seq_file *seq, void *v) 2472 { 2473 struct netif_rx_stats *s = v; 2474 2475 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x\n", 2476 s->total, s->dropped, s->time_squeeze, 0, 2477 0, 0, 0, 0, /* was fastroute */ 2478 s->cpu_collision ); 2479 return 0; 2480 } 2481 2482 static const struct seq_operations dev_seq_ops = { 2483 .start = dev_seq_start, 2484 .next = dev_seq_next, 2485 .stop = dev_seq_stop, 2486 .show = dev_seq_show, 2487 }; 2488 2489 static int dev_seq_open(struct inode *inode, struct file *file) 2490 { 2491 return seq_open_net(inode, file, &dev_seq_ops, 2492 sizeof(struct seq_net_private)); 2493 } 2494 2495 static const struct file_operations dev_seq_fops = { 2496 .owner = THIS_MODULE, 2497 .open = dev_seq_open, 2498 .read = seq_read, 2499 .llseek = seq_lseek, 2500 .release = seq_release_net, 2501 }; 2502 2503 static const struct seq_operations softnet_seq_ops = { 2504 .start = softnet_seq_start, 2505 .next = softnet_seq_next, 2506 .stop = softnet_seq_stop, 2507 .show = softnet_seq_show, 2508 }; 2509 2510 static int softnet_seq_open(struct inode *inode, struct file *file) 2511 { 2512 return seq_open(file, &softnet_seq_ops); 2513 } 2514 2515 static const struct file_operations softnet_seq_fops = { 2516 .owner = THIS_MODULE, 2517 .open = softnet_seq_open, 2518 .read = seq_read, 2519 .llseek = seq_lseek, 2520 .release = seq_release, 2521 }; 2522 2523 static void *ptype_get_idx(loff_t pos) 2524 { 2525 struct packet_type *pt = NULL; 2526 loff_t i = 0; 2527 int t; 2528 2529 list_for_each_entry_rcu(pt, &ptype_all, list) { 2530 if (i == pos) 2531 return pt; 2532 ++i; 2533 } 2534 2535 for (t = 0; t < PTYPE_HASH_SIZE; t++) { 2536 list_for_each_entry_rcu(pt, &ptype_base[t], list) { 2537 if (i == pos) 2538 return pt; 2539 ++i; 2540 } 2541 } 2542 return NULL; 2543 } 2544 2545 static void *ptype_seq_start(struct seq_file *seq, loff_t *pos) 2546 __acquires(RCU) 2547 { 2548 rcu_read_lock(); 2549 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN; 2550 } 2551 2552 static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2553 { 2554 struct packet_type *pt; 2555 struct list_head *nxt; 2556 int hash; 2557 2558 ++*pos; 2559 if (v == SEQ_START_TOKEN) 2560 return ptype_get_idx(0); 2561 2562 pt = v; 2563 nxt = pt->list.next; 2564 if (pt->type == htons(ETH_P_ALL)) { 2565 if (nxt != &ptype_all) 2566 goto found; 2567 hash = 0; 2568 nxt = ptype_base[0].next; 2569 } else 2570 hash = ntohs(pt->type) & PTYPE_HASH_MASK; 2571 2572 while (nxt == &ptype_base[hash]) { 2573 if (++hash >= PTYPE_HASH_SIZE) 2574 return NULL; 2575 nxt = ptype_base[hash].next; 2576 } 2577 found: 2578 return list_entry(nxt, struct packet_type, list); 2579 } 2580 2581 static void ptype_seq_stop(struct seq_file *seq, void *v) 2582 __releases(RCU) 2583 { 2584 rcu_read_unlock(); 2585 } 2586 2587 static void ptype_seq_decode(struct seq_file *seq, void *sym) 2588 { 2589 #ifdef CONFIG_KALLSYMS 2590 unsigned long offset = 0, symsize; 2591 const char *symname; 2592 char *modname; 2593 char namebuf[128]; 2594 2595 symname = kallsyms_lookup((unsigned long)sym, &symsize, &offset, 2596 &modname, namebuf); 2597 2598 if (symname) { 2599 char *delim = ":"; 2600 2601 if (!modname) 2602 modname = delim = ""; 2603 seq_printf(seq, "%s%s%s%s+0x%lx", delim, modname, delim, 2604 symname, offset); 2605 return; 2606 } 2607 #endif 2608 2609 seq_printf(seq, "[%p]", sym); 2610 } 2611 2612 static int ptype_seq_show(struct seq_file *seq, void *v) 2613 { 2614 struct packet_type *pt = v; 2615 2616 if (v == SEQ_START_TOKEN) 2617 seq_puts(seq, "Type Device Function\n"); 2618 else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) { 2619 if (pt->type == htons(ETH_P_ALL)) 2620 seq_puts(seq, "ALL "); 2621 else 2622 seq_printf(seq, "%04x", ntohs(pt->type)); 2623 2624 seq_printf(seq, " %-8s ", 2625 pt->dev ? pt->dev->name : ""); 2626 ptype_seq_decode(seq, pt->func); 2627 seq_putc(seq, '\n'); 2628 } 2629 2630 return 0; 2631 } 2632 2633 static const struct seq_operations ptype_seq_ops = { 2634 .start = ptype_seq_start, 2635 .next = ptype_seq_next, 2636 .stop = ptype_seq_stop, 2637 .show = ptype_seq_show, 2638 }; 2639 2640 static int ptype_seq_open(struct inode *inode, struct file *file) 2641 { 2642 return seq_open_net(inode, file, &ptype_seq_ops, 2643 sizeof(struct seq_net_private)); 2644 } 2645 2646 static const struct file_operations ptype_seq_fops = { 2647 .owner = THIS_MODULE, 2648 .open = ptype_seq_open, 2649 .read = seq_read, 2650 .llseek = seq_lseek, 2651 .release = seq_release_net, 2652 }; 2653 2654 2655 static int __net_init dev_proc_net_init(struct net *net) 2656 { 2657 int rc = -ENOMEM; 2658 2659 if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops)) 2660 goto out; 2661 if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops)) 2662 goto out_dev; 2663 if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops)) 2664 goto out_softnet; 2665 2666 if (wext_proc_init(net)) 2667 goto out_ptype; 2668 rc = 0; 2669 out: 2670 return rc; 2671 out_ptype: 2672 proc_net_remove(net, "ptype"); 2673 out_softnet: 2674 proc_net_remove(net, "softnet_stat"); 2675 out_dev: 2676 proc_net_remove(net, "dev"); 2677 goto out; 2678 } 2679 2680 static void __net_exit dev_proc_net_exit(struct net *net) 2681 { 2682 wext_proc_exit(net); 2683 2684 proc_net_remove(net, "ptype"); 2685 proc_net_remove(net, "softnet_stat"); 2686 proc_net_remove(net, "dev"); 2687 } 2688 2689 static struct pernet_operations __net_initdata dev_proc_ops = { 2690 .init = dev_proc_net_init, 2691 .exit = dev_proc_net_exit, 2692 }; 2693 2694 static int __init dev_proc_init(void) 2695 { 2696 return register_pernet_subsys(&dev_proc_ops); 2697 } 2698 #else 2699 #define dev_proc_init() 0 2700 #endif /* CONFIG_PROC_FS */ 2701 2702 2703 /** 2704 * netdev_set_master - set up master/slave pair 2705 * @slave: slave device 2706 * @master: new master device 2707 * 2708 * Changes the master device of the slave. Pass %NULL to break the 2709 * bonding. The caller must hold the RTNL semaphore. On a failure 2710 * a negative errno code is returned. On success the reference counts 2711 * are adjusted, %RTM_NEWLINK is sent to the routing socket and the 2712 * function returns zero. 2713 */ 2714 int netdev_set_master(struct net_device *slave, struct net_device *master) 2715 { 2716 struct net_device *old = slave->master; 2717 2718 ASSERT_RTNL(); 2719 2720 if (master) { 2721 if (old) 2722 return -EBUSY; 2723 dev_hold(master); 2724 } 2725 2726 slave->master = master; 2727 2728 synchronize_net(); 2729 2730 if (old) 2731 dev_put(old); 2732 2733 if (master) 2734 slave->flags |= IFF_SLAVE; 2735 else 2736 slave->flags &= ~IFF_SLAVE; 2737 2738 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE); 2739 return 0; 2740 } 2741 2742 static void __dev_set_promiscuity(struct net_device *dev, int inc) 2743 { 2744 unsigned short old_flags = dev->flags; 2745 2746 ASSERT_RTNL(); 2747 2748 if ((dev->promiscuity += inc) == 0) 2749 dev->flags &= ~IFF_PROMISC; 2750 else 2751 dev->flags |= IFF_PROMISC; 2752 if (dev->flags != old_flags) { 2753 printk(KERN_INFO "device %s %s promiscuous mode\n", 2754 dev->name, (dev->flags & IFF_PROMISC) ? "entered" : 2755 "left"); 2756 if (audit_enabled) 2757 audit_log(current->audit_context, GFP_ATOMIC, 2758 AUDIT_ANOM_PROMISCUOUS, 2759 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u", 2760 dev->name, (dev->flags & IFF_PROMISC), 2761 (old_flags & IFF_PROMISC), 2762 audit_get_loginuid(current), 2763 current->uid, current->gid, 2764 audit_get_sessionid(current)); 2765 2766 if (dev->change_rx_flags) 2767 dev->change_rx_flags(dev, IFF_PROMISC); 2768 } 2769 } 2770 2771 /** 2772 * dev_set_promiscuity - update promiscuity count on a device 2773 * @dev: device 2774 * @inc: modifier 2775 * 2776 * Add or remove promiscuity from a device. While the count in the device 2777 * remains above zero the interface remains promiscuous. Once it hits zero 2778 * the device reverts back to normal filtering operation. A negative inc 2779 * value is used to drop promiscuity on the device. 2780 */ 2781 void dev_set_promiscuity(struct net_device *dev, int inc) 2782 { 2783 unsigned short old_flags = dev->flags; 2784 2785 __dev_set_promiscuity(dev, inc); 2786 if (dev->flags != old_flags) 2787 dev_set_rx_mode(dev); 2788 } 2789 2790 /** 2791 * dev_set_allmulti - update allmulti count on a device 2792 * @dev: device 2793 * @inc: modifier 2794 * 2795 * Add or remove reception of all multicast frames to a device. While the 2796 * count in the device remains above zero the interface remains listening 2797 * to all interfaces. Once it hits zero the device reverts back to normal 2798 * filtering operation. A negative @inc value is used to drop the counter 2799 * when releasing a resource needing all multicasts. 2800 */ 2801 2802 void dev_set_allmulti(struct net_device *dev, int inc) 2803 { 2804 unsigned short old_flags = dev->flags; 2805 2806 ASSERT_RTNL(); 2807 2808 dev->flags |= IFF_ALLMULTI; 2809 if ((dev->allmulti += inc) == 0) 2810 dev->flags &= ~IFF_ALLMULTI; 2811 if (dev->flags ^ old_flags) { 2812 if (dev->change_rx_flags) 2813 dev->change_rx_flags(dev, IFF_ALLMULTI); 2814 dev_set_rx_mode(dev); 2815 } 2816 } 2817 2818 /* 2819 * Upload unicast and multicast address lists to device and 2820 * configure RX filtering. When the device doesn't support unicast 2821 * filtering it is put in promiscuous mode while unicast addresses 2822 * are present. 2823 */ 2824 void __dev_set_rx_mode(struct net_device *dev) 2825 { 2826 /* dev_open will call this function so the list will stay sane. */ 2827 if (!(dev->flags&IFF_UP)) 2828 return; 2829 2830 if (!netif_device_present(dev)) 2831 return; 2832 2833 if (dev->set_rx_mode) 2834 dev->set_rx_mode(dev); 2835 else { 2836 /* Unicast addresses changes may only happen under the rtnl, 2837 * therefore calling __dev_set_promiscuity here is safe. 2838 */ 2839 if (dev->uc_count > 0 && !dev->uc_promisc) { 2840 __dev_set_promiscuity(dev, 1); 2841 dev->uc_promisc = 1; 2842 } else if (dev->uc_count == 0 && dev->uc_promisc) { 2843 __dev_set_promiscuity(dev, -1); 2844 dev->uc_promisc = 0; 2845 } 2846 2847 if (dev->set_multicast_list) 2848 dev->set_multicast_list(dev); 2849 } 2850 } 2851 2852 void dev_set_rx_mode(struct net_device *dev) 2853 { 2854 netif_tx_lock_bh(dev); 2855 __dev_set_rx_mode(dev); 2856 netif_tx_unlock_bh(dev); 2857 } 2858 2859 int __dev_addr_delete(struct dev_addr_list **list, int *count, 2860 void *addr, int alen, int glbl) 2861 { 2862 struct dev_addr_list *da; 2863 2864 for (; (da = *list) != NULL; list = &da->next) { 2865 if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 && 2866 alen == da->da_addrlen) { 2867 if (glbl) { 2868 int old_glbl = da->da_gusers; 2869 da->da_gusers = 0; 2870 if (old_glbl == 0) 2871 break; 2872 } 2873 if (--da->da_users) 2874 return 0; 2875 2876 *list = da->next; 2877 kfree(da); 2878 (*count)--; 2879 return 0; 2880 } 2881 } 2882 return -ENOENT; 2883 } 2884 2885 int __dev_addr_add(struct dev_addr_list **list, int *count, 2886 void *addr, int alen, int glbl) 2887 { 2888 struct dev_addr_list *da; 2889 2890 for (da = *list; da != NULL; da = da->next) { 2891 if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 && 2892 da->da_addrlen == alen) { 2893 if (glbl) { 2894 int old_glbl = da->da_gusers; 2895 da->da_gusers = 1; 2896 if (old_glbl) 2897 return 0; 2898 } 2899 da->da_users++; 2900 return 0; 2901 } 2902 } 2903 2904 da = kzalloc(sizeof(*da), GFP_ATOMIC); 2905 if (da == NULL) 2906 return -ENOMEM; 2907 memcpy(da->da_addr, addr, alen); 2908 da->da_addrlen = alen; 2909 da->da_users = 1; 2910 da->da_gusers = glbl ? 1 : 0; 2911 da->next = *list; 2912 *list = da; 2913 (*count)++; 2914 return 0; 2915 } 2916 2917 /** 2918 * dev_unicast_delete - Release secondary unicast address. 2919 * @dev: device 2920 * @addr: address to delete 2921 * @alen: length of @addr 2922 * 2923 * Release reference to a secondary unicast address and remove it 2924 * from the device if the reference count drops to zero. 2925 * 2926 * The caller must hold the rtnl_mutex. 2927 */ 2928 int dev_unicast_delete(struct net_device *dev, void *addr, int alen) 2929 { 2930 int err; 2931 2932 ASSERT_RTNL(); 2933 2934 netif_tx_lock_bh(dev); 2935 err = __dev_addr_delete(&dev->uc_list, &dev->uc_count, addr, alen, 0); 2936 if (!err) 2937 __dev_set_rx_mode(dev); 2938 netif_tx_unlock_bh(dev); 2939 return err; 2940 } 2941 EXPORT_SYMBOL(dev_unicast_delete); 2942 2943 /** 2944 * dev_unicast_add - add a secondary unicast address 2945 * @dev: device 2946 * @addr: address to delete 2947 * @alen: length of @addr 2948 * 2949 * Add a secondary unicast address to the device or increase 2950 * the reference count if it already exists. 2951 * 2952 * The caller must hold the rtnl_mutex. 2953 */ 2954 int dev_unicast_add(struct net_device *dev, void *addr, int alen) 2955 { 2956 int err; 2957 2958 ASSERT_RTNL(); 2959 2960 netif_tx_lock_bh(dev); 2961 err = __dev_addr_add(&dev->uc_list, &dev->uc_count, addr, alen, 0); 2962 if (!err) 2963 __dev_set_rx_mode(dev); 2964 netif_tx_unlock_bh(dev); 2965 return err; 2966 } 2967 EXPORT_SYMBOL(dev_unicast_add); 2968 2969 int __dev_addr_sync(struct dev_addr_list **to, int *to_count, 2970 struct dev_addr_list **from, int *from_count) 2971 { 2972 struct dev_addr_list *da, *next; 2973 int err = 0; 2974 2975 da = *from; 2976 while (da != NULL) { 2977 next = da->next; 2978 if (!da->da_synced) { 2979 err = __dev_addr_add(to, to_count, 2980 da->da_addr, da->da_addrlen, 0); 2981 if (err < 0) 2982 break; 2983 da->da_synced = 1; 2984 da->da_users++; 2985 } else if (da->da_users == 1) { 2986 __dev_addr_delete(to, to_count, 2987 da->da_addr, da->da_addrlen, 0); 2988 __dev_addr_delete(from, from_count, 2989 da->da_addr, da->da_addrlen, 0); 2990 } 2991 da = next; 2992 } 2993 return err; 2994 } 2995 2996 void __dev_addr_unsync(struct dev_addr_list **to, int *to_count, 2997 struct dev_addr_list **from, int *from_count) 2998 { 2999 struct dev_addr_list *da, *next; 3000 3001 da = *from; 3002 while (da != NULL) { 3003 next = da->next; 3004 if (da->da_synced) { 3005 __dev_addr_delete(to, to_count, 3006 da->da_addr, da->da_addrlen, 0); 3007 da->da_synced = 0; 3008 __dev_addr_delete(from, from_count, 3009 da->da_addr, da->da_addrlen, 0); 3010 } 3011 da = next; 3012 } 3013 } 3014 3015 /** 3016 * dev_unicast_sync - Synchronize device's unicast list to another device 3017 * @to: destination device 3018 * @from: source device 3019 * 3020 * Add newly added addresses to the destination device and release 3021 * addresses that have no users left. The source device must be 3022 * locked by netif_tx_lock_bh. 3023 * 3024 * This function is intended to be called from the dev->set_rx_mode 3025 * function of layered software devices. 3026 */ 3027 int dev_unicast_sync(struct net_device *to, struct net_device *from) 3028 { 3029 int err = 0; 3030 3031 netif_tx_lock_bh(to); 3032 err = __dev_addr_sync(&to->uc_list, &to->uc_count, 3033 &from->uc_list, &from->uc_count); 3034 if (!err) 3035 __dev_set_rx_mode(to); 3036 netif_tx_unlock_bh(to); 3037 return err; 3038 } 3039 EXPORT_SYMBOL(dev_unicast_sync); 3040 3041 /** 3042 * dev_unicast_unsync - Remove synchronized addresses from the destination device 3043 * @to: destination device 3044 * @from: source device 3045 * 3046 * Remove all addresses that were added to the destination device by 3047 * dev_unicast_sync(). This function is intended to be called from the 3048 * dev->stop function of layered software devices. 3049 */ 3050 void dev_unicast_unsync(struct net_device *to, struct net_device *from) 3051 { 3052 netif_tx_lock_bh(from); 3053 netif_tx_lock_bh(to); 3054 3055 __dev_addr_unsync(&to->uc_list, &to->uc_count, 3056 &from->uc_list, &from->uc_count); 3057 __dev_set_rx_mode(to); 3058 3059 netif_tx_unlock_bh(to); 3060 netif_tx_unlock_bh(from); 3061 } 3062 EXPORT_SYMBOL(dev_unicast_unsync); 3063 3064 static void __dev_addr_discard(struct dev_addr_list **list) 3065 { 3066 struct dev_addr_list *tmp; 3067 3068 while (*list != NULL) { 3069 tmp = *list; 3070 *list = tmp->next; 3071 if (tmp->da_users > tmp->da_gusers) 3072 printk("__dev_addr_discard: address leakage! " 3073 "da_users=%d\n", tmp->da_users); 3074 kfree(tmp); 3075 } 3076 } 3077 3078 static void dev_addr_discard(struct net_device *dev) 3079 { 3080 netif_tx_lock_bh(dev); 3081 3082 __dev_addr_discard(&dev->uc_list); 3083 dev->uc_count = 0; 3084 3085 __dev_addr_discard(&dev->mc_list); 3086 dev->mc_count = 0; 3087 3088 netif_tx_unlock_bh(dev); 3089 } 3090 3091 unsigned dev_get_flags(const struct net_device *dev) 3092 { 3093 unsigned flags; 3094 3095 flags = (dev->flags & ~(IFF_PROMISC | 3096 IFF_ALLMULTI | 3097 IFF_RUNNING | 3098 IFF_LOWER_UP | 3099 IFF_DORMANT)) | 3100 (dev->gflags & (IFF_PROMISC | 3101 IFF_ALLMULTI)); 3102 3103 if (netif_running(dev)) { 3104 if (netif_oper_up(dev)) 3105 flags |= IFF_RUNNING; 3106 if (netif_carrier_ok(dev)) 3107 flags |= IFF_LOWER_UP; 3108 if (netif_dormant(dev)) 3109 flags |= IFF_DORMANT; 3110 } 3111 3112 return flags; 3113 } 3114 3115 int dev_change_flags(struct net_device *dev, unsigned flags) 3116 { 3117 int ret, changes; 3118 int old_flags = dev->flags; 3119 3120 ASSERT_RTNL(); 3121 3122 /* 3123 * Set the flags on our device. 3124 */ 3125 3126 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP | 3127 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL | 3128 IFF_AUTOMEDIA)) | 3129 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC | 3130 IFF_ALLMULTI)); 3131 3132 /* 3133 * Load in the correct multicast list now the flags have changed. 3134 */ 3135 3136 if (dev->change_rx_flags && (dev->flags ^ flags) & IFF_MULTICAST) 3137 dev->change_rx_flags(dev, IFF_MULTICAST); 3138 3139 dev_set_rx_mode(dev); 3140 3141 /* 3142 * Have we downed the interface. We handle IFF_UP ourselves 3143 * according to user attempts to set it, rather than blindly 3144 * setting it. 3145 */ 3146 3147 ret = 0; 3148 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */ 3149 ret = ((old_flags & IFF_UP) ? dev_close : dev_open)(dev); 3150 3151 if (!ret) 3152 dev_set_rx_mode(dev); 3153 } 3154 3155 if (dev->flags & IFF_UP && 3156 ((old_flags ^ dev->flags) &~ (IFF_UP | IFF_PROMISC | IFF_ALLMULTI | 3157 IFF_VOLATILE))) 3158 call_netdevice_notifiers(NETDEV_CHANGE, dev); 3159 3160 if ((flags ^ dev->gflags) & IFF_PROMISC) { 3161 int inc = (flags & IFF_PROMISC) ? +1 : -1; 3162 dev->gflags ^= IFF_PROMISC; 3163 dev_set_promiscuity(dev, inc); 3164 } 3165 3166 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI 3167 is important. Some (broken) drivers set IFF_PROMISC, when 3168 IFF_ALLMULTI is requested not asking us and not reporting. 3169 */ 3170 if ((flags ^ dev->gflags) & IFF_ALLMULTI) { 3171 int inc = (flags & IFF_ALLMULTI) ? +1 : -1; 3172 dev->gflags ^= IFF_ALLMULTI; 3173 dev_set_allmulti(dev, inc); 3174 } 3175 3176 /* Exclude state transition flags, already notified */ 3177 changes = (old_flags ^ dev->flags) & ~(IFF_UP | IFF_RUNNING); 3178 if (changes) 3179 rtmsg_ifinfo(RTM_NEWLINK, dev, changes); 3180 3181 return ret; 3182 } 3183 3184 int dev_set_mtu(struct net_device *dev, int new_mtu) 3185 { 3186 int err; 3187 3188 if (new_mtu == dev->mtu) 3189 return 0; 3190 3191 /* MTU must be positive. */ 3192 if (new_mtu < 0) 3193 return -EINVAL; 3194 3195 if (!netif_device_present(dev)) 3196 return -ENODEV; 3197 3198 err = 0; 3199 if (dev->change_mtu) 3200 err = dev->change_mtu(dev, new_mtu); 3201 else 3202 dev->mtu = new_mtu; 3203 if (!err && dev->flags & IFF_UP) 3204 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev); 3205 return err; 3206 } 3207 3208 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa) 3209 { 3210 int err; 3211 3212 if (!dev->set_mac_address) 3213 return -EOPNOTSUPP; 3214 if (sa->sa_family != dev->type) 3215 return -EINVAL; 3216 if (!netif_device_present(dev)) 3217 return -ENODEV; 3218 err = dev->set_mac_address(dev, sa); 3219 if (!err) 3220 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 3221 return err; 3222 } 3223 3224 /* 3225 * Perform the SIOCxIFxxx calls, inside read_lock(dev_base_lock) 3226 */ 3227 static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd) 3228 { 3229 int err; 3230 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name); 3231 3232 if (!dev) 3233 return -ENODEV; 3234 3235 switch (cmd) { 3236 case SIOCGIFFLAGS: /* Get interface flags */ 3237 ifr->ifr_flags = dev_get_flags(dev); 3238 return 0; 3239 3240 case SIOCGIFMETRIC: /* Get the metric on the interface 3241 (currently unused) */ 3242 ifr->ifr_metric = 0; 3243 return 0; 3244 3245 case SIOCGIFMTU: /* Get the MTU of a device */ 3246 ifr->ifr_mtu = dev->mtu; 3247 return 0; 3248 3249 case SIOCGIFHWADDR: 3250 if (!dev->addr_len) 3251 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data); 3252 else 3253 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr, 3254 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len)); 3255 ifr->ifr_hwaddr.sa_family = dev->type; 3256 return 0; 3257 3258 case SIOCGIFSLAVE: 3259 err = -EINVAL; 3260 break; 3261 3262 case SIOCGIFMAP: 3263 ifr->ifr_map.mem_start = dev->mem_start; 3264 ifr->ifr_map.mem_end = dev->mem_end; 3265 ifr->ifr_map.base_addr = dev->base_addr; 3266 ifr->ifr_map.irq = dev->irq; 3267 ifr->ifr_map.dma = dev->dma; 3268 ifr->ifr_map.port = dev->if_port; 3269 return 0; 3270 3271 case SIOCGIFINDEX: 3272 ifr->ifr_ifindex = dev->ifindex; 3273 return 0; 3274 3275 case SIOCGIFTXQLEN: 3276 ifr->ifr_qlen = dev->tx_queue_len; 3277 return 0; 3278 3279 default: 3280 /* dev_ioctl() should ensure this case 3281 * is never reached 3282 */ 3283 WARN_ON(1); 3284 err = -EINVAL; 3285 break; 3286 3287 } 3288 return err; 3289 } 3290 3291 /* 3292 * Perform the SIOCxIFxxx calls, inside rtnl_lock() 3293 */ 3294 static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd) 3295 { 3296 int err; 3297 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name); 3298 3299 if (!dev) 3300 return -ENODEV; 3301 3302 switch (cmd) { 3303 case SIOCSIFFLAGS: /* Set interface flags */ 3304 return dev_change_flags(dev, ifr->ifr_flags); 3305 3306 case SIOCSIFMETRIC: /* Set the metric on the interface 3307 (currently unused) */ 3308 return -EOPNOTSUPP; 3309 3310 case SIOCSIFMTU: /* Set the MTU of a device */ 3311 return dev_set_mtu(dev, ifr->ifr_mtu); 3312 3313 case SIOCSIFHWADDR: 3314 return dev_set_mac_address(dev, &ifr->ifr_hwaddr); 3315 3316 case SIOCSIFHWBROADCAST: 3317 if (ifr->ifr_hwaddr.sa_family != dev->type) 3318 return -EINVAL; 3319 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data, 3320 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len)); 3321 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 3322 return 0; 3323 3324 case SIOCSIFMAP: 3325 if (dev->set_config) { 3326 if (!netif_device_present(dev)) 3327 return -ENODEV; 3328 return dev->set_config(dev, &ifr->ifr_map); 3329 } 3330 return -EOPNOTSUPP; 3331 3332 case SIOCADDMULTI: 3333 if ((!dev->set_multicast_list && !dev->set_rx_mode) || 3334 ifr->ifr_hwaddr.sa_family != AF_UNSPEC) 3335 return -EINVAL; 3336 if (!netif_device_present(dev)) 3337 return -ENODEV; 3338 return dev_mc_add(dev, ifr->ifr_hwaddr.sa_data, 3339 dev->addr_len, 1); 3340 3341 case SIOCDELMULTI: 3342 if ((!dev->set_multicast_list && !dev->set_rx_mode) || 3343 ifr->ifr_hwaddr.sa_family != AF_UNSPEC) 3344 return -EINVAL; 3345 if (!netif_device_present(dev)) 3346 return -ENODEV; 3347 return dev_mc_delete(dev, ifr->ifr_hwaddr.sa_data, 3348 dev->addr_len, 1); 3349 3350 case SIOCSIFTXQLEN: 3351 if (ifr->ifr_qlen < 0) 3352 return -EINVAL; 3353 dev->tx_queue_len = ifr->ifr_qlen; 3354 return 0; 3355 3356 case SIOCSIFNAME: 3357 ifr->ifr_newname[IFNAMSIZ-1] = '\0'; 3358 return dev_change_name(dev, ifr->ifr_newname); 3359 3360 /* 3361 * Unknown or private ioctl 3362 */ 3363 3364 default: 3365 if ((cmd >= SIOCDEVPRIVATE && 3366 cmd <= SIOCDEVPRIVATE + 15) || 3367 cmd == SIOCBONDENSLAVE || 3368 cmd == SIOCBONDRELEASE || 3369 cmd == SIOCBONDSETHWADDR || 3370 cmd == SIOCBONDSLAVEINFOQUERY || 3371 cmd == SIOCBONDINFOQUERY || 3372 cmd == SIOCBONDCHANGEACTIVE || 3373 cmd == SIOCGMIIPHY || 3374 cmd == SIOCGMIIREG || 3375 cmd == SIOCSMIIREG || 3376 cmd == SIOCBRADDIF || 3377 cmd == SIOCBRDELIF || 3378 cmd == SIOCWANDEV) { 3379 err = -EOPNOTSUPP; 3380 if (dev->do_ioctl) { 3381 if (netif_device_present(dev)) 3382 err = dev->do_ioctl(dev, ifr, 3383 cmd); 3384 else 3385 err = -ENODEV; 3386 } 3387 } else 3388 err = -EINVAL; 3389 3390 } 3391 return err; 3392 } 3393 3394 /* 3395 * This function handles all "interface"-type I/O control requests. The actual 3396 * 'doing' part of this is dev_ifsioc above. 3397 */ 3398 3399 /** 3400 * dev_ioctl - network device ioctl 3401 * @net: the applicable net namespace 3402 * @cmd: command to issue 3403 * @arg: pointer to a struct ifreq in user space 3404 * 3405 * Issue ioctl functions to devices. This is normally called by the 3406 * user space syscall interfaces but can sometimes be useful for 3407 * other purposes. The return value is the return from the syscall if 3408 * positive or a negative errno code on error. 3409 */ 3410 3411 int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg) 3412 { 3413 struct ifreq ifr; 3414 int ret; 3415 char *colon; 3416 3417 /* One special case: SIOCGIFCONF takes ifconf argument 3418 and requires shared lock, because it sleeps writing 3419 to user space. 3420 */ 3421 3422 if (cmd == SIOCGIFCONF) { 3423 rtnl_lock(); 3424 ret = dev_ifconf(net, (char __user *) arg); 3425 rtnl_unlock(); 3426 return ret; 3427 } 3428 if (cmd == SIOCGIFNAME) 3429 return dev_ifname(net, (struct ifreq __user *)arg); 3430 3431 if (copy_from_user(&ifr, arg, sizeof(struct ifreq))) 3432 return -EFAULT; 3433 3434 ifr.ifr_name[IFNAMSIZ-1] = 0; 3435 3436 colon = strchr(ifr.ifr_name, ':'); 3437 if (colon) 3438 *colon = 0; 3439 3440 /* 3441 * See which interface the caller is talking about. 3442 */ 3443 3444 switch (cmd) { 3445 /* 3446 * These ioctl calls: 3447 * - can be done by all. 3448 * - atomic and do not require locking. 3449 * - return a value 3450 */ 3451 case SIOCGIFFLAGS: 3452 case SIOCGIFMETRIC: 3453 case SIOCGIFMTU: 3454 case SIOCGIFHWADDR: 3455 case SIOCGIFSLAVE: 3456 case SIOCGIFMAP: 3457 case SIOCGIFINDEX: 3458 case SIOCGIFTXQLEN: 3459 dev_load(net, ifr.ifr_name); 3460 read_lock(&dev_base_lock); 3461 ret = dev_ifsioc_locked(net, &ifr, cmd); 3462 read_unlock(&dev_base_lock); 3463 if (!ret) { 3464 if (colon) 3465 *colon = ':'; 3466 if (copy_to_user(arg, &ifr, 3467 sizeof(struct ifreq))) 3468 ret = -EFAULT; 3469 } 3470 return ret; 3471 3472 case SIOCETHTOOL: 3473 dev_load(net, ifr.ifr_name); 3474 rtnl_lock(); 3475 ret = dev_ethtool(net, &ifr); 3476 rtnl_unlock(); 3477 if (!ret) { 3478 if (colon) 3479 *colon = ':'; 3480 if (copy_to_user(arg, &ifr, 3481 sizeof(struct ifreq))) 3482 ret = -EFAULT; 3483 } 3484 return ret; 3485 3486 /* 3487 * These ioctl calls: 3488 * - require superuser power. 3489 * - require strict serialization. 3490 * - return a value 3491 */ 3492 case SIOCGMIIPHY: 3493 case SIOCGMIIREG: 3494 case SIOCSIFNAME: 3495 if (!capable(CAP_NET_ADMIN)) 3496 return -EPERM; 3497 dev_load(net, ifr.ifr_name); 3498 rtnl_lock(); 3499 ret = dev_ifsioc(net, &ifr, cmd); 3500 rtnl_unlock(); 3501 if (!ret) { 3502 if (colon) 3503 *colon = ':'; 3504 if (copy_to_user(arg, &ifr, 3505 sizeof(struct ifreq))) 3506 ret = -EFAULT; 3507 } 3508 return ret; 3509 3510 /* 3511 * These ioctl calls: 3512 * - require superuser power. 3513 * - require strict serialization. 3514 * - do not return a value 3515 */ 3516 case SIOCSIFFLAGS: 3517 case SIOCSIFMETRIC: 3518 case SIOCSIFMTU: 3519 case SIOCSIFMAP: 3520 case SIOCSIFHWADDR: 3521 case SIOCSIFSLAVE: 3522 case SIOCADDMULTI: 3523 case SIOCDELMULTI: 3524 case SIOCSIFHWBROADCAST: 3525 case SIOCSIFTXQLEN: 3526 case SIOCSMIIREG: 3527 case SIOCBONDENSLAVE: 3528 case SIOCBONDRELEASE: 3529 case SIOCBONDSETHWADDR: 3530 case SIOCBONDCHANGEACTIVE: 3531 case SIOCBRADDIF: 3532 case SIOCBRDELIF: 3533 if (!capable(CAP_NET_ADMIN)) 3534 return -EPERM; 3535 /* fall through */ 3536 case SIOCBONDSLAVEINFOQUERY: 3537 case SIOCBONDINFOQUERY: 3538 dev_load(net, ifr.ifr_name); 3539 rtnl_lock(); 3540 ret = dev_ifsioc(net, &ifr, cmd); 3541 rtnl_unlock(); 3542 return ret; 3543 3544 case SIOCGIFMEM: 3545 /* Get the per device memory space. We can add this but 3546 * currently do not support it */ 3547 case SIOCSIFMEM: 3548 /* Set the per device memory buffer space. 3549 * Not applicable in our case */ 3550 case SIOCSIFLINK: 3551 return -EINVAL; 3552 3553 /* 3554 * Unknown or private ioctl. 3555 */ 3556 default: 3557 if (cmd == SIOCWANDEV || 3558 (cmd >= SIOCDEVPRIVATE && 3559 cmd <= SIOCDEVPRIVATE + 15)) { 3560 dev_load(net, ifr.ifr_name); 3561 rtnl_lock(); 3562 ret = dev_ifsioc(net, &ifr, cmd); 3563 rtnl_unlock(); 3564 if (!ret && copy_to_user(arg, &ifr, 3565 sizeof(struct ifreq))) 3566 ret = -EFAULT; 3567 return ret; 3568 } 3569 /* Take care of Wireless Extensions */ 3570 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) 3571 return wext_handle_ioctl(net, &ifr, cmd, arg); 3572 return -EINVAL; 3573 } 3574 } 3575 3576 3577 /** 3578 * dev_new_index - allocate an ifindex 3579 * @net: the applicable net namespace 3580 * 3581 * Returns a suitable unique value for a new device interface 3582 * number. The caller must hold the rtnl semaphore or the 3583 * dev_base_lock to be sure it remains unique. 3584 */ 3585 static int dev_new_index(struct net *net) 3586 { 3587 static int ifindex; 3588 for (;;) { 3589 if (++ifindex <= 0) 3590 ifindex = 1; 3591 if (!__dev_get_by_index(net, ifindex)) 3592 return ifindex; 3593 } 3594 } 3595 3596 /* Delayed registration/unregisteration */ 3597 static DEFINE_SPINLOCK(net_todo_list_lock); 3598 static LIST_HEAD(net_todo_list); 3599 3600 static void net_set_todo(struct net_device *dev) 3601 { 3602 spin_lock(&net_todo_list_lock); 3603 list_add_tail(&dev->todo_list, &net_todo_list); 3604 spin_unlock(&net_todo_list_lock); 3605 } 3606 3607 static void rollback_registered(struct net_device *dev) 3608 { 3609 BUG_ON(dev_boot_phase); 3610 ASSERT_RTNL(); 3611 3612 /* Some devices call without registering for initialization unwind. */ 3613 if (dev->reg_state == NETREG_UNINITIALIZED) { 3614 printk(KERN_DEBUG "unregister_netdevice: device %s/%p never " 3615 "was registered\n", dev->name, dev); 3616 3617 WARN_ON(1); 3618 return; 3619 } 3620 3621 BUG_ON(dev->reg_state != NETREG_REGISTERED); 3622 3623 /* If device is running, close it first. */ 3624 dev_close(dev); 3625 3626 /* And unlink it from device chain. */ 3627 unlist_netdevice(dev); 3628 3629 dev->reg_state = NETREG_UNREGISTERING; 3630 3631 synchronize_net(); 3632 3633 /* Shutdown queueing discipline. */ 3634 dev_shutdown(dev); 3635 3636 3637 /* Notify protocols, that we are about to destroy 3638 this device. They should clean all the things. 3639 */ 3640 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 3641 3642 /* 3643 * Flush the unicast and multicast chains 3644 */ 3645 dev_addr_discard(dev); 3646 3647 if (dev->uninit) 3648 dev->uninit(dev); 3649 3650 /* Notifier chain MUST detach us from master device. */ 3651 BUG_TRAP(!dev->master); 3652 3653 /* Remove entries from kobject tree */ 3654 netdev_unregister_kobject(dev); 3655 3656 synchronize_net(); 3657 3658 dev_put(dev); 3659 } 3660 3661 /** 3662 * register_netdevice - register a network device 3663 * @dev: device to register 3664 * 3665 * Take a completed network device structure and add it to the kernel 3666 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 3667 * chain. 0 is returned on success. A negative errno code is returned 3668 * on a failure to set up the device, or if the name is a duplicate. 3669 * 3670 * Callers must hold the rtnl semaphore. You may want 3671 * register_netdev() instead of this. 3672 * 3673 * BUGS: 3674 * The locking appears insufficient to guarantee two parallel registers 3675 * will not get the same name. 3676 */ 3677 3678 int register_netdevice(struct net_device *dev) 3679 { 3680 struct hlist_head *head; 3681 struct hlist_node *p; 3682 int ret; 3683 struct net *net; 3684 3685 BUG_ON(dev_boot_phase); 3686 ASSERT_RTNL(); 3687 3688 might_sleep(); 3689 3690 /* When net_device's are persistent, this will be fatal. */ 3691 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED); 3692 BUG_ON(!dev_net(dev)); 3693 net = dev_net(dev); 3694 3695 spin_lock_init(&dev->queue_lock); 3696 spin_lock_init(&dev->_xmit_lock); 3697 netdev_set_lockdep_class(&dev->_xmit_lock, dev->type); 3698 dev->xmit_lock_owner = -1; 3699 spin_lock_init(&dev->ingress_lock); 3700 3701 dev->iflink = -1; 3702 3703 /* Init, if this function is available */ 3704 if (dev->init) { 3705 ret = dev->init(dev); 3706 if (ret) { 3707 if (ret > 0) 3708 ret = -EIO; 3709 goto out; 3710 } 3711 } 3712 3713 if (!dev_valid_name(dev->name)) { 3714 ret = -EINVAL; 3715 goto err_uninit; 3716 } 3717 3718 dev->ifindex = dev_new_index(net); 3719 if (dev->iflink == -1) 3720 dev->iflink = dev->ifindex; 3721 3722 /* Check for existence of name */ 3723 head = dev_name_hash(net, dev->name); 3724 hlist_for_each(p, head) { 3725 struct net_device *d 3726 = hlist_entry(p, struct net_device, name_hlist); 3727 if (!strncmp(d->name, dev->name, IFNAMSIZ)) { 3728 ret = -EEXIST; 3729 goto err_uninit; 3730 } 3731 } 3732 3733 /* Fix illegal checksum combinations */ 3734 if ((dev->features & NETIF_F_HW_CSUM) && 3735 (dev->features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 3736 printk(KERN_NOTICE "%s: mixed HW and IP checksum settings.\n", 3737 dev->name); 3738 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 3739 } 3740 3741 if ((dev->features & NETIF_F_NO_CSUM) && 3742 (dev->features & (NETIF_F_HW_CSUM|NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 3743 printk(KERN_NOTICE "%s: mixed no checksumming and other settings.\n", 3744 dev->name); 3745 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM|NETIF_F_HW_CSUM); 3746 } 3747 3748 3749 /* Fix illegal SG+CSUM combinations. */ 3750 if ((dev->features & NETIF_F_SG) && 3751 !(dev->features & NETIF_F_ALL_CSUM)) { 3752 printk(KERN_NOTICE "%s: Dropping NETIF_F_SG since no checksum feature.\n", 3753 dev->name); 3754 dev->features &= ~NETIF_F_SG; 3755 } 3756 3757 /* TSO requires that SG is present as well. */ 3758 if ((dev->features & NETIF_F_TSO) && 3759 !(dev->features & NETIF_F_SG)) { 3760 printk(KERN_NOTICE "%s: Dropping NETIF_F_TSO since no SG feature.\n", 3761 dev->name); 3762 dev->features &= ~NETIF_F_TSO; 3763 } 3764 if (dev->features & NETIF_F_UFO) { 3765 if (!(dev->features & NETIF_F_HW_CSUM)) { 3766 printk(KERN_ERR "%s: Dropping NETIF_F_UFO since no " 3767 "NETIF_F_HW_CSUM feature.\n", 3768 dev->name); 3769 dev->features &= ~NETIF_F_UFO; 3770 } 3771 if (!(dev->features & NETIF_F_SG)) { 3772 printk(KERN_ERR "%s: Dropping NETIF_F_UFO since no " 3773 "NETIF_F_SG feature.\n", 3774 dev->name); 3775 dev->features &= ~NETIF_F_UFO; 3776 } 3777 } 3778 3779 netdev_initialize_kobject(dev); 3780 ret = netdev_register_kobject(dev); 3781 if (ret) 3782 goto err_uninit; 3783 dev->reg_state = NETREG_REGISTERED; 3784 3785 /* 3786 * Default initial state at registry is that the 3787 * device is present. 3788 */ 3789 3790 set_bit(__LINK_STATE_PRESENT, &dev->state); 3791 3792 dev_init_scheduler(dev); 3793 dev_hold(dev); 3794 list_netdevice(dev); 3795 3796 /* Notify protocols, that a new device appeared. */ 3797 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev); 3798 ret = notifier_to_errno(ret); 3799 if (ret) { 3800 rollback_registered(dev); 3801 dev->reg_state = NETREG_UNREGISTERED; 3802 } 3803 3804 out: 3805 return ret; 3806 3807 err_uninit: 3808 if (dev->uninit) 3809 dev->uninit(dev); 3810 goto out; 3811 } 3812 3813 /** 3814 * register_netdev - register a network device 3815 * @dev: device to register 3816 * 3817 * Take a completed network device structure and add it to the kernel 3818 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 3819 * chain. 0 is returned on success. A negative errno code is returned 3820 * on a failure to set up the device, or if the name is a duplicate. 3821 * 3822 * This is a wrapper around register_netdevice that takes the rtnl semaphore 3823 * and expands the device name if you passed a format string to 3824 * alloc_netdev. 3825 */ 3826 int register_netdev(struct net_device *dev) 3827 { 3828 int err; 3829 3830 rtnl_lock(); 3831 3832 /* 3833 * If the name is a format string the caller wants us to do a 3834 * name allocation. 3835 */ 3836 if (strchr(dev->name, '%')) { 3837 err = dev_alloc_name(dev, dev->name); 3838 if (err < 0) 3839 goto out; 3840 } 3841 3842 err = register_netdevice(dev); 3843 out: 3844 rtnl_unlock(); 3845 return err; 3846 } 3847 EXPORT_SYMBOL(register_netdev); 3848 3849 /* 3850 * netdev_wait_allrefs - wait until all references are gone. 3851 * 3852 * This is called when unregistering network devices. 3853 * 3854 * Any protocol or device that holds a reference should register 3855 * for netdevice notification, and cleanup and put back the 3856 * reference if they receive an UNREGISTER event. 3857 * We can get stuck here if buggy protocols don't correctly 3858 * call dev_put. 3859 */ 3860 static void netdev_wait_allrefs(struct net_device *dev) 3861 { 3862 unsigned long rebroadcast_time, warning_time; 3863 3864 rebroadcast_time = warning_time = jiffies; 3865 while (atomic_read(&dev->refcnt) != 0) { 3866 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) { 3867 rtnl_lock(); 3868 3869 /* Rebroadcast unregister notification */ 3870 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 3871 3872 if (test_bit(__LINK_STATE_LINKWATCH_PENDING, 3873 &dev->state)) { 3874 /* We must not have linkwatch events 3875 * pending on unregister. If this 3876 * happens, we simply run the queue 3877 * unscheduled, resulting in a noop 3878 * for this device. 3879 */ 3880 linkwatch_run_queue(); 3881 } 3882 3883 __rtnl_unlock(); 3884 3885 rebroadcast_time = jiffies; 3886 } 3887 3888 msleep(250); 3889 3890 if (time_after(jiffies, warning_time + 10 * HZ)) { 3891 printk(KERN_EMERG "unregister_netdevice: " 3892 "waiting for %s to become free. Usage " 3893 "count = %d\n", 3894 dev->name, atomic_read(&dev->refcnt)); 3895 warning_time = jiffies; 3896 } 3897 } 3898 } 3899 3900 /* The sequence is: 3901 * 3902 * rtnl_lock(); 3903 * ... 3904 * register_netdevice(x1); 3905 * register_netdevice(x2); 3906 * ... 3907 * unregister_netdevice(y1); 3908 * unregister_netdevice(y2); 3909 * ... 3910 * rtnl_unlock(); 3911 * free_netdev(y1); 3912 * free_netdev(y2); 3913 * 3914 * We are invoked by rtnl_unlock() after it drops the semaphore. 3915 * This allows us to deal with problems: 3916 * 1) We can delete sysfs objects which invoke hotplug 3917 * without deadlocking with linkwatch via keventd. 3918 * 2) Since we run with the RTNL semaphore not held, we can sleep 3919 * safely in order to wait for the netdev refcnt to drop to zero. 3920 */ 3921 static DEFINE_MUTEX(net_todo_run_mutex); 3922 void netdev_run_todo(void) 3923 { 3924 struct list_head list; 3925 3926 /* Need to guard against multiple cpu's getting out of order. */ 3927 mutex_lock(&net_todo_run_mutex); 3928 3929 /* Not safe to do outside the semaphore. We must not return 3930 * until all unregister events invoked by the local processor 3931 * have been completed (either by this todo run, or one on 3932 * another cpu). 3933 */ 3934 if (list_empty(&net_todo_list)) 3935 goto out; 3936 3937 /* Snapshot list, allow later requests */ 3938 spin_lock(&net_todo_list_lock); 3939 list_replace_init(&net_todo_list, &list); 3940 spin_unlock(&net_todo_list_lock); 3941 3942 while (!list_empty(&list)) { 3943 struct net_device *dev 3944 = list_entry(list.next, struct net_device, todo_list); 3945 list_del(&dev->todo_list); 3946 3947 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) { 3948 printk(KERN_ERR "network todo '%s' but state %d\n", 3949 dev->name, dev->reg_state); 3950 dump_stack(); 3951 continue; 3952 } 3953 3954 dev->reg_state = NETREG_UNREGISTERED; 3955 3956 netdev_wait_allrefs(dev); 3957 3958 /* paranoia */ 3959 BUG_ON(atomic_read(&dev->refcnt)); 3960 BUG_TRAP(!dev->ip_ptr); 3961 BUG_TRAP(!dev->ip6_ptr); 3962 BUG_TRAP(!dev->dn_ptr); 3963 3964 if (dev->destructor) 3965 dev->destructor(dev); 3966 3967 /* Free network device */ 3968 kobject_put(&dev->dev.kobj); 3969 } 3970 3971 out: 3972 mutex_unlock(&net_todo_run_mutex); 3973 } 3974 3975 static struct net_device_stats *internal_stats(struct net_device *dev) 3976 { 3977 return &dev->stats; 3978 } 3979 3980 /** 3981 * alloc_netdev_mq - allocate network device 3982 * @sizeof_priv: size of private data to allocate space for 3983 * @name: device name format string 3984 * @setup: callback to initialize device 3985 * @queue_count: the number of subqueues to allocate 3986 * 3987 * Allocates a struct net_device with private data area for driver use 3988 * and performs basic initialization. Also allocates subquue structs 3989 * for each queue on the device at the end of the netdevice. 3990 */ 3991 struct net_device *alloc_netdev_mq(int sizeof_priv, const char *name, 3992 void (*setup)(struct net_device *), unsigned int queue_count) 3993 { 3994 void *p; 3995 struct net_device *dev; 3996 int alloc_size; 3997 3998 BUG_ON(strlen(name) >= sizeof(dev->name)); 3999 4000 alloc_size = sizeof(struct net_device) + 4001 sizeof(struct net_device_subqueue) * (queue_count - 1); 4002 if (sizeof_priv) { 4003 /* ensure 32-byte alignment of private area */ 4004 alloc_size = (alloc_size + NETDEV_ALIGN_CONST) & ~NETDEV_ALIGN_CONST; 4005 alloc_size += sizeof_priv; 4006 } 4007 /* ensure 32-byte alignment of whole construct */ 4008 alloc_size += NETDEV_ALIGN_CONST; 4009 4010 p = kzalloc(alloc_size, GFP_KERNEL); 4011 if (!p) { 4012 printk(KERN_ERR "alloc_netdev: Unable to allocate device.\n"); 4013 return NULL; 4014 } 4015 4016 dev = (struct net_device *) 4017 (((long)p + NETDEV_ALIGN_CONST) & ~NETDEV_ALIGN_CONST); 4018 dev->padded = (char *)dev - (char *)p; 4019 dev_net_set(dev, &init_net); 4020 4021 if (sizeof_priv) { 4022 dev->priv = ((char *)dev + 4023 ((sizeof(struct net_device) + 4024 (sizeof(struct net_device_subqueue) * 4025 (queue_count - 1)) + NETDEV_ALIGN_CONST) 4026 & ~NETDEV_ALIGN_CONST)); 4027 } 4028 4029 dev->egress_subqueue_count = queue_count; 4030 dev->gso_max_size = GSO_MAX_SIZE; 4031 4032 dev->get_stats = internal_stats; 4033 netpoll_netdev_init(dev); 4034 setup(dev); 4035 strcpy(dev->name, name); 4036 return dev; 4037 } 4038 EXPORT_SYMBOL(alloc_netdev_mq); 4039 4040 /** 4041 * free_netdev - free network device 4042 * @dev: device 4043 * 4044 * This function does the last stage of destroying an allocated device 4045 * interface. The reference to the device object is released. 4046 * If this is the last reference then it will be freed. 4047 */ 4048 void free_netdev(struct net_device *dev) 4049 { 4050 release_net(dev_net(dev)); 4051 4052 /* Compatibility with error handling in drivers */ 4053 if (dev->reg_state == NETREG_UNINITIALIZED) { 4054 kfree((char *)dev - dev->padded); 4055 return; 4056 } 4057 4058 BUG_ON(dev->reg_state != NETREG_UNREGISTERED); 4059 dev->reg_state = NETREG_RELEASED; 4060 4061 /* will free via device release */ 4062 put_device(&dev->dev); 4063 } 4064 4065 /* Synchronize with packet receive processing. */ 4066 void synchronize_net(void) 4067 { 4068 might_sleep(); 4069 synchronize_rcu(); 4070 } 4071 4072 /** 4073 * unregister_netdevice - remove device from the kernel 4074 * @dev: device 4075 * 4076 * This function shuts down a device interface and removes it 4077 * from the kernel tables. 4078 * 4079 * Callers must hold the rtnl semaphore. You may want 4080 * unregister_netdev() instead of this. 4081 */ 4082 4083 void unregister_netdevice(struct net_device *dev) 4084 { 4085 ASSERT_RTNL(); 4086 4087 rollback_registered(dev); 4088 /* Finish processing unregister after unlock */ 4089 net_set_todo(dev); 4090 } 4091 4092 /** 4093 * unregister_netdev - remove device from the kernel 4094 * @dev: device 4095 * 4096 * This function shuts down a device interface and removes it 4097 * from the kernel tables. 4098 * 4099 * This is just a wrapper for unregister_netdevice that takes 4100 * the rtnl semaphore. In general you want to use this and not 4101 * unregister_netdevice. 4102 */ 4103 void unregister_netdev(struct net_device *dev) 4104 { 4105 rtnl_lock(); 4106 unregister_netdevice(dev); 4107 rtnl_unlock(); 4108 } 4109 4110 EXPORT_SYMBOL(unregister_netdev); 4111 4112 /** 4113 * dev_change_net_namespace - move device to different nethost namespace 4114 * @dev: device 4115 * @net: network namespace 4116 * @pat: If not NULL name pattern to try if the current device name 4117 * is already taken in the destination network namespace. 4118 * 4119 * This function shuts down a device interface and moves it 4120 * to a new network namespace. On success 0 is returned, on 4121 * a failure a netagive errno code is returned. 4122 * 4123 * Callers must hold the rtnl semaphore. 4124 */ 4125 4126 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat) 4127 { 4128 char buf[IFNAMSIZ]; 4129 const char *destname; 4130 int err; 4131 4132 ASSERT_RTNL(); 4133 4134 /* Don't allow namespace local devices to be moved. */ 4135 err = -EINVAL; 4136 if (dev->features & NETIF_F_NETNS_LOCAL) 4137 goto out; 4138 4139 /* Ensure the device has been registrered */ 4140 err = -EINVAL; 4141 if (dev->reg_state != NETREG_REGISTERED) 4142 goto out; 4143 4144 /* Get out if there is nothing todo */ 4145 err = 0; 4146 if (net_eq(dev_net(dev), net)) 4147 goto out; 4148 4149 /* Pick the destination device name, and ensure 4150 * we can use it in the destination network namespace. 4151 */ 4152 err = -EEXIST; 4153 destname = dev->name; 4154 if (__dev_get_by_name(net, destname)) { 4155 /* We get here if we can't use the current device name */ 4156 if (!pat) 4157 goto out; 4158 if (!dev_valid_name(pat)) 4159 goto out; 4160 if (strchr(pat, '%')) { 4161 if (__dev_alloc_name(net, pat, buf) < 0) 4162 goto out; 4163 destname = buf; 4164 } else 4165 destname = pat; 4166 if (__dev_get_by_name(net, destname)) 4167 goto out; 4168 } 4169 4170 /* 4171 * And now a mini version of register_netdevice unregister_netdevice. 4172 */ 4173 4174 /* If device is running close it first. */ 4175 dev_close(dev); 4176 4177 /* And unlink it from device chain */ 4178 err = -ENODEV; 4179 unlist_netdevice(dev); 4180 4181 synchronize_net(); 4182 4183 /* Shutdown queueing discipline. */ 4184 dev_shutdown(dev); 4185 4186 /* Notify protocols, that we are about to destroy 4187 this device. They should clean all the things. 4188 */ 4189 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 4190 4191 /* 4192 * Flush the unicast and multicast chains 4193 */ 4194 dev_addr_discard(dev); 4195 4196 /* Actually switch the network namespace */ 4197 dev_net_set(dev, net); 4198 4199 /* Assign the new device name */ 4200 if (destname != dev->name) 4201 strcpy(dev->name, destname); 4202 4203 /* If there is an ifindex conflict assign a new one */ 4204 if (__dev_get_by_index(net, dev->ifindex)) { 4205 int iflink = (dev->iflink == dev->ifindex); 4206 dev->ifindex = dev_new_index(net); 4207 if (iflink) 4208 dev->iflink = dev->ifindex; 4209 } 4210 4211 /* Fixup kobjects */ 4212 netdev_unregister_kobject(dev); 4213 err = netdev_register_kobject(dev); 4214 WARN_ON(err); 4215 4216 /* Add the device back in the hashes */ 4217 list_netdevice(dev); 4218 4219 /* Notify protocols, that a new device appeared. */ 4220 call_netdevice_notifiers(NETDEV_REGISTER, dev); 4221 4222 synchronize_net(); 4223 err = 0; 4224 out: 4225 return err; 4226 } 4227 4228 static int dev_cpu_callback(struct notifier_block *nfb, 4229 unsigned long action, 4230 void *ocpu) 4231 { 4232 struct sk_buff **list_skb; 4233 struct net_device **list_net; 4234 struct sk_buff *skb; 4235 unsigned int cpu, oldcpu = (unsigned long)ocpu; 4236 struct softnet_data *sd, *oldsd; 4237 4238 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN) 4239 return NOTIFY_OK; 4240 4241 local_irq_disable(); 4242 cpu = smp_processor_id(); 4243 sd = &per_cpu(softnet_data, cpu); 4244 oldsd = &per_cpu(softnet_data, oldcpu); 4245 4246 /* Find end of our completion_queue. */ 4247 list_skb = &sd->completion_queue; 4248 while (*list_skb) 4249 list_skb = &(*list_skb)->next; 4250 /* Append completion queue from offline CPU. */ 4251 *list_skb = oldsd->completion_queue; 4252 oldsd->completion_queue = NULL; 4253 4254 /* Find end of our output_queue. */ 4255 list_net = &sd->output_queue; 4256 while (*list_net) 4257 list_net = &(*list_net)->next_sched; 4258 /* Append output queue from offline CPU. */ 4259 *list_net = oldsd->output_queue; 4260 oldsd->output_queue = NULL; 4261 4262 raise_softirq_irqoff(NET_TX_SOFTIRQ); 4263 local_irq_enable(); 4264 4265 /* Process offline CPU's input_pkt_queue */ 4266 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) 4267 netif_rx(skb); 4268 4269 return NOTIFY_OK; 4270 } 4271 4272 #ifdef CONFIG_NET_DMA 4273 /** 4274 * net_dma_rebalance - try to maintain one DMA channel per CPU 4275 * @net_dma: DMA client and associated data (lock, channels, channel_mask) 4276 * 4277 * This is called when the number of channels allocated to the net_dma client 4278 * changes. The net_dma client tries to have one DMA channel per CPU. 4279 */ 4280 4281 static void net_dma_rebalance(struct net_dma *net_dma) 4282 { 4283 unsigned int cpu, i, n, chan_idx; 4284 struct dma_chan *chan; 4285 4286 if (cpus_empty(net_dma->channel_mask)) { 4287 for_each_online_cpu(cpu) 4288 rcu_assign_pointer(per_cpu(softnet_data, cpu).net_dma, NULL); 4289 return; 4290 } 4291 4292 i = 0; 4293 cpu = first_cpu(cpu_online_map); 4294 4295 for_each_cpu_mask(chan_idx, net_dma->channel_mask) { 4296 chan = net_dma->channels[chan_idx]; 4297 4298 n = ((num_online_cpus() / cpus_weight(net_dma->channel_mask)) 4299 + (i < (num_online_cpus() % 4300 cpus_weight(net_dma->channel_mask)) ? 1 : 0)); 4301 4302 while(n) { 4303 per_cpu(softnet_data, cpu).net_dma = chan; 4304 cpu = next_cpu(cpu, cpu_online_map); 4305 n--; 4306 } 4307 i++; 4308 } 4309 } 4310 4311 /** 4312 * netdev_dma_event - event callback for the net_dma_client 4313 * @client: should always be net_dma_client 4314 * @chan: DMA channel for the event 4315 * @state: DMA state to be handled 4316 */ 4317 static enum dma_state_client 4318 netdev_dma_event(struct dma_client *client, struct dma_chan *chan, 4319 enum dma_state state) 4320 { 4321 int i, found = 0, pos = -1; 4322 struct net_dma *net_dma = 4323 container_of(client, struct net_dma, client); 4324 enum dma_state_client ack = DMA_DUP; /* default: take no action */ 4325 4326 spin_lock(&net_dma->lock); 4327 switch (state) { 4328 case DMA_RESOURCE_AVAILABLE: 4329 for (i = 0; i < nr_cpu_ids; i++) 4330 if (net_dma->channels[i] == chan) { 4331 found = 1; 4332 break; 4333 } else if (net_dma->channels[i] == NULL && pos < 0) 4334 pos = i; 4335 4336 if (!found && pos >= 0) { 4337 ack = DMA_ACK; 4338 net_dma->channels[pos] = chan; 4339 cpu_set(pos, net_dma->channel_mask); 4340 net_dma_rebalance(net_dma); 4341 } 4342 break; 4343 case DMA_RESOURCE_REMOVED: 4344 for (i = 0; i < nr_cpu_ids; i++) 4345 if (net_dma->channels[i] == chan) { 4346 found = 1; 4347 pos = i; 4348 break; 4349 } 4350 4351 if (found) { 4352 ack = DMA_ACK; 4353 cpu_clear(pos, net_dma->channel_mask); 4354 net_dma->channels[i] = NULL; 4355 net_dma_rebalance(net_dma); 4356 } 4357 break; 4358 default: 4359 break; 4360 } 4361 spin_unlock(&net_dma->lock); 4362 4363 return ack; 4364 } 4365 4366 /** 4367 * netdev_dma_regiser - register the networking subsystem as a DMA client 4368 */ 4369 static int __init netdev_dma_register(void) 4370 { 4371 net_dma.channels = kzalloc(nr_cpu_ids * sizeof(struct net_dma), 4372 GFP_KERNEL); 4373 if (unlikely(!net_dma.channels)) { 4374 printk(KERN_NOTICE 4375 "netdev_dma: no memory for net_dma.channels\n"); 4376 return -ENOMEM; 4377 } 4378 spin_lock_init(&net_dma.lock); 4379 dma_cap_set(DMA_MEMCPY, net_dma.client.cap_mask); 4380 dma_async_client_register(&net_dma.client); 4381 dma_async_client_chan_request(&net_dma.client); 4382 return 0; 4383 } 4384 4385 #else 4386 static int __init netdev_dma_register(void) { return -ENODEV; } 4387 #endif /* CONFIG_NET_DMA */ 4388 4389 /** 4390 * netdev_compute_feature - compute conjunction of two feature sets 4391 * @all: first feature set 4392 * @one: second feature set 4393 * 4394 * Computes a new feature set after adding a device with feature set 4395 * @one to the master device with current feature set @all. Returns 4396 * the new feature set. 4397 */ 4398 int netdev_compute_features(unsigned long all, unsigned long one) 4399 { 4400 /* if device needs checksumming, downgrade to hw checksumming */ 4401 if (all & NETIF_F_NO_CSUM && !(one & NETIF_F_NO_CSUM)) 4402 all ^= NETIF_F_NO_CSUM | NETIF_F_HW_CSUM; 4403 4404 /* if device can't do all checksum, downgrade to ipv4/ipv6 */ 4405 if (all & NETIF_F_HW_CSUM && !(one & NETIF_F_HW_CSUM)) 4406 all ^= NETIF_F_HW_CSUM 4407 | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM; 4408 4409 if (one & NETIF_F_GSO) 4410 one |= NETIF_F_GSO_SOFTWARE; 4411 one |= NETIF_F_GSO; 4412 4413 /* If even one device supports robust GSO, enable it for all. */ 4414 if (one & NETIF_F_GSO_ROBUST) 4415 all |= NETIF_F_GSO_ROBUST; 4416 4417 all &= one | NETIF_F_LLTX; 4418 4419 if (!(all & NETIF_F_ALL_CSUM)) 4420 all &= ~NETIF_F_SG; 4421 if (!(all & NETIF_F_SG)) 4422 all &= ~NETIF_F_GSO_MASK; 4423 4424 return all; 4425 } 4426 EXPORT_SYMBOL(netdev_compute_features); 4427 4428 static struct hlist_head *netdev_create_hash(void) 4429 { 4430 int i; 4431 struct hlist_head *hash; 4432 4433 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL); 4434 if (hash != NULL) 4435 for (i = 0; i < NETDEV_HASHENTRIES; i++) 4436 INIT_HLIST_HEAD(&hash[i]); 4437 4438 return hash; 4439 } 4440 4441 /* Initialize per network namespace state */ 4442 static int __net_init netdev_init(struct net *net) 4443 { 4444 INIT_LIST_HEAD(&net->dev_base_head); 4445 4446 net->dev_name_head = netdev_create_hash(); 4447 if (net->dev_name_head == NULL) 4448 goto err_name; 4449 4450 net->dev_index_head = netdev_create_hash(); 4451 if (net->dev_index_head == NULL) 4452 goto err_idx; 4453 4454 return 0; 4455 4456 err_idx: 4457 kfree(net->dev_name_head); 4458 err_name: 4459 return -ENOMEM; 4460 } 4461 4462 static void __net_exit netdev_exit(struct net *net) 4463 { 4464 kfree(net->dev_name_head); 4465 kfree(net->dev_index_head); 4466 } 4467 4468 static struct pernet_operations __net_initdata netdev_net_ops = { 4469 .init = netdev_init, 4470 .exit = netdev_exit, 4471 }; 4472 4473 static void __net_exit default_device_exit(struct net *net) 4474 { 4475 struct net_device *dev, *next; 4476 /* 4477 * Push all migratable of the network devices back to the 4478 * initial network namespace 4479 */ 4480 rtnl_lock(); 4481 for_each_netdev_safe(net, dev, next) { 4482 int err; 4483 4484 /* Ignore unmoveable devices (i.e. loopback) */ 4485 if (dev->features & NETIF_F_NETNS_LOCAL) 4486 continue; 4487 4488 /* Push remaing network devices to init_net */ 4489 err = dev_change_net_namespace(dev, &init_net, "dev%d"); 4490 if (err) { 4491 printk(KERN_WARNING "%s: failed to move %s to init_net: %d\n", 4492 __func__, dev->name, err); 4493 unregister_netdevice(dev); 4494 } 4495 } 4496 rtnl_unlock(); 4497 } 4498 4499 static struct pernet_operations __net_initdata default_device_ops = { 4500 .exit = default_device_exit, 4501 }; 4502 4503 /* 4504 * Initialize the DEV module. At boot time this walks the device list and 4505 * unhooks any devices that fail to initialise (normally hardware not 4506 * present) and leaves us with a valid list of present and active devices. 4507 * 4508 */ 4509 4510 /* 4511 * This is called single threaded during boot, so no need 4512 * to take the rtnl semaphore. 4513 */ 4514 static int __init net_dev_init(void) 4515 { 4516 int i, rc = -ENOMEM; 4517 4518 BUG_ON(!dev_boot_phase); 4519 4520 if (dev_proc_init()) 4521 goto out; 4522 4523 if (netdev_kobject_init()) 4524 goto out; 4525 4526 INIT_LIST_HEAD(&ptype_all); 4527 for (i = 0; i < PTYPE_HASH_SIZE; i++) 4528 INIT_LIST_HEAD(&ptype_base[i]); 4529 4530 if (register_pernet_subsys(&netdev_net_ops)) 4531 goto out; 4532 4533 if (register_pernet_device(&default_device_ops)) 4534 goto out; 4535 4536 /* 4537 * Initialise the packet receive queues. 4538 */ 4539 4540 for_each_possible_cpu(i) { 4541 struct softnet_data *queue; 4542 4543 queue = &per_cpu(softnet_data, i); 4544 skb_queue_head_init(&queue->input_pkt_queue); 4545 queue->completion_queue = NULL; 4546 INIT_LIST_HEAD(&queue->poll_list); 4547 4548 queue->backlog.poll = process_backlog; 4549 queue->backlog.weight = weight_p; 4550 } 4551 4552 netdev_dma_register(); 4553 4554 dev_boot_phase = 0; 4555 4556 open_softirq(NET_TX_SOFTIRQ, net_tx_action, NULL); 4557 open_softirq(NET_RX_SOFTIRQ, net_rx_action, NULL); 4558 4559 hotcpu_notifier(dev_cpu_callback, 0); 4560 dst_init(); 4561 dev_mcast_init(); 4562 rc = 0; 4563 out: 4564 return rc; 4565 } 4566 4567 subsys_initcall(net_dev_init); 4568 4569 EXPORT_SYMBOL(__dev_get_by_index); 4570 EXPORT_SYMBOL(__dev_get_by_name); 4571 EXPORT_SYMBOL(__dev_remove_pack); 4572 EXPORT_SYMBOL(dev_valid_name); 4573 EXPORT_SYMBOL(dev_add_pack); 4574 EXPORT_SYMBOL(dev_alloc_name); 4575 EXPORT_SYMBOL(dev_close); 4576 EXPORT_SYMBOL(dev_get_by_flags); 4577 EXPORT_SYMBOL(dev_get_by_index); 4578 EXPORT_SYMBOL(dev_get_by_name); 4579 EXPORT_SYMBOL(dev_open); 4580 EXPORT_SYMBOL(dev_queue_xmit); 4581 EXPORT_SYMBOL(dev_remove_pack); 4582 EXPORT_SYMBOL(dev_set_allmulti); 4583 EXPORT_SYMBOL(dev_set_promiscuity); 4584 EXPORT_SYMBOL(dev_change_flags); 4585 EXPORT_SYMBOL(dev_set_mtu); 4586 EXPORT_SYMBOL(dev_set_mac_address); 4587 EXPORT_SYMBOL(free_netdev); 4588 EXPORT_SYMBOL(netdev_boot_setup_check); 4589 EXPORT_SYMBOL(netdev_set_master); 4590 EXPORT_SYMBOL(netdev_state_change); 4591 EXPORT_SYMBOL(netif_receive_skb); 4592 EXPORT_SYMBOL(netif_rx); 4593 EXPORT_SYMBOL(register_gifconf); 4594 EXPORT_SYMBOL(register_netdevice); 4595 EXPORT_SYMBOL(register_netdevice_notifier); 4596 EXPORT_SYMBOL(skb_checksum_help); 4597 EXPORT_SYMBOL(synchronize_net); 4598 EXPORT_SYMBOL(unregister_netdevice); 4599 EXPORT_SYMBOL(unregister_netdevice_notifier); 4600 EXPORT_SYMBOL(net_enable_timestamp); 4601 EXPORT_SYMBOL(net_disable_timestamp); 4602 EXPORT_SYMBOL(dev_get_flags); 4603 4604 #if defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE) 4605 EXPORT_SYMBOL(br_handle_frame_hook); 4606 EXPORT_SYMBOL(br_fdb_get_hook); 4607 EXPORT_SYMBOL(br_fdb_put_hook); 4608 #endif 4609 4610 #ifdef CONFIG_KMOD 4611 EXPORT_SYMBOL(dev_load); 4612 #endif 4613 4614 EXPORT_PER_CPU_SYMBOL(softnet_data); 4615