xref: /linux/net/core/dev.c (revision 7b04fa014c11e6415da8b5a7999dbd201abad53c)
1 /*
2  * 	NET3	Protocol independent device support routines.
3  *
4  *		This program is free software; you can redistribute it and/or
5  *		modify it under the terms of the GNU General Public License
6  *		as published by the Free Software Foundation; either version
7  *		2 of the License, or (at your option) any later version.
8  *
9  *	Derived from the non IP parts of dev.c 1.0.19
10  * 		Authors:	Ross Biro
11  *				Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *				Mark Evans, <evansmp@uhura.aston.ac.uk>
13  *
14  *	Additional Authors:
15  *		Florian la Roche <rzsfl@rz.uni-sb.de>
16  *		Alan Cox <gw4pts@gw4pts.ampr.org>
17  *		David Hinds <dahinds@users.sourceforge.net>
18  *		Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19  *		Adam Sulmicki <adam@cfar.umd.edu>
20  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
21  *
22  *	Changes:
23  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
24  *              			to 2 if register_netdev gets called
25  *              			before net_dev_init & also removed a
26  *              			few lines of code in the process.
27  *		Alan Cox	:	device private ioctl copies fields back.
28  *		Alan Cox	:	Transmit queue code does relevant
29  *					stunts to keep the queue safe.
30  *		Alan Cox	:	Fixed double lock.
31  *		Alan Cox	:	Fixed promisc NULL pointer trap
32  *		????????	:	Support the full private ioctl range
33  *		Alan Cox	:	Moved ioctl permission check into
34  *					drivers
35  *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
36  *		Alan Cox	:	100 backlog just doesn't cut it when
37  *					you start doing multicast video 8)
38  *		Alan Cox	:	Rewrote net_bh and list manager.
39  *		Alan Cox	: 	Fix ETH_P_ALL echoback lengths.
40  *		Alan Cox	:	Took out transmit every packet pass
41  *					Saved a few bytes in the ioctl handler
42  *		Alan Cox	:	Network driver sets packet type before
43  *					calling netif_rx. Saves a function
44  *					call a packet.
45  *		Alan Cox	:	Hashed net_bh()
46  *		Richard Kooijman:	Timestamp fixes.
47  *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
48  *		Alan Cox	:	Device lock protection.
49  *		Alan Cox	: 	Fixed nasty side effect of device close
50  *					changes.
51  *		Rudi Cilibrasi	:	Pass the right thing to
52  *					set_mac_address()
53  *		Dave Miller	:	32bit quantity for the device lock to
54  *					make it work out on a Sparc.
55  *		Bjorn Ekwall	:	Added KERNELD hack.
56  *		Alan Cox	:	Cleaned up the backlog initialise.
57  *		Craig Metz	:	SIOCGIFCONF fix if space for under
58  *					1 device.
59  *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
60  *					is no device open function.
61  *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
62  *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
63  *		Cyrus Durgin	:	Cleaned for KMOD
64  *		Adam Sulmicki   :	Bug Fix : Network Device Unload
65  *					A network device unload needs to purge
66  *					the backlog queue.
67  *	Paul Rusty Russell	:	SIOCSIFNAME
68  *              Pekka Riikonen  :	Netdev boot-time settings code
69  *              Andrew Morton   :       Make unregister_netdevice wait
70  *              			indefinitely on dev->refcnt
71  * 		J Hadi Salim	:	- Backlog queue sampling
72  *				        - netif_rx() feedback
73  */
74 
75 #include <asm/uaccess.h>
76 #include <asm/system.h>
77 #include <linux/bitops.h>
78 #include <linux/capability.h>
79 #include <linux/cpu.h>
80 #include <linux/types.h>
81 #include <linux/kernel.h>
82 #include <linux/sched.h>
83 #include <linux/mutex.h>
84 #include <linux/string.h>
85 #include <linux/mm.h>
86 #include <linux/socket.h>
87 #include <linux/sockios.h>
88 #include <linux/errno.h>
89 #include <linux/interrupt.h>
90 #include <linux/if_ether.h>
91 #include <linux/netdevice.h>
92 #include <linux/etherdevice.h>
93 #include <linux/notifier.h>
94 #include <linux/skbuff.h>
95 #include <net/net_namespace.h>
96 #include <net/sock.h>
97 #include <linux/rtnetlink.h>
98 #include <linux/proc_fs.h>
99 #include <linux/seq_file.h>
100 #include <linux/stat.h>
101 #include <linux/if_bridge.h>
102 #include <linux/if_macvlan.h>
103 #include <net/dst.h>
104 #include <net/pkt_sched.h>
105 #include <net/checksum.h>
106 #include <linux/highmem.h>
107 #include <linux/init.h>
108 #include <linux/kmod.h>
109 #include <linux/module.h>
110 #include <linux/kallsyms.h>
111 #include <linux/netpoll.h>
112 #include <linux/rcupdate.h>
113 #include <linux/delay.h>
114 #include <net/wext.h>
115 #include <net/iw_handler.h>
116 #include <asm/current.h>
117 #include <linux/audit.h>
118 #include <linux/dmaengine.h>
119 #include <linux/err.h>
120 #include <linux/ctype.h>
121 #include <linux/if_arp.h>
122 
123 #include "net-sysfs.h"
124 
125 /*
126  *	The list of packet types we will receive (as opposed to discard)
127  *	and the routines to invoke.
128  *
129  *	Why 16. Because with 16 the only overlap we get on a hash of the
130  *	low nibble of the protocol value is RARP/SNAP/X.25.
131  *
132  *      NOTE:  That is no longer true with the addition of VLAN tags.  Not
133  *             sure which should go first, but I bet it won't make much
134  *             difference if we are running VLANs.  The good news is that
135  *             this protocol won't be in the list unless compiled in, so
136  *             the average user (w/out VLANs) will not be adversely affected.
137  *             --BLG
138  *
139  *		0800	IP
140  *		8100    802.1Q VLAN
141  *		0001	802.3
142  *		0002	AX.25
143  *		0004	802.2
144  *		8035	RARP
145  *		0005	SNAP
146  *		0805	X.25
147  *		0806	ARP
148  *		8137	IPX
149  *		0009	Localtalk
150  *		86DD	IPv6
151  */
152 
153 #define PTYPE_HASH_SIZE	(16)
154 #define PTYPE_HASH_MASK	(PTYPE_HASH_SIZE - 1)
155 
156 static DEFINE_SPINLOCK(ptype_lock);
157 static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
158 static struct list_head ptype_all __read_mostly;	/* Taps */
159 
160 #ifdef CONFIG_NET_DMA
161 struct net_dma {
162 	struct dma_client client;
163 	spinlock_t lock;
164 	cpumask_t channel_mask;
165 	struct dma_chan **channels;
166 };
167 
168 static enum dma_state_client
169 netdev_dma_event(struct dma_client *client, struct dma_chan *chan,
170 	enum dma_state state);
171 
172 static struct net_dma net_dma = {
173 	.client = {
174 		.event_callback = netdev_dma_event,
175 	},
176 };
177 #endif
178 
179 /*
180  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
181  * semaphore.
182  *
183  * Pure readers hold dev_base_lock for reading.
184  *
185  * Writers must hold the rtnl semaphore while they loop through the
186  * dev_base_head list, and hold dev_base_lock for writing when they do the
187  * actual updates.  This allows pure readers to access the list even
188  * while a writer is preparing to update it.
189  *
190  * To put it another way, dev_base_lock is held for writing only to
191  * protect against pure readers; the rtnl semaphore provides the
192  * protection against other writers.
193  *
194  * See, for example usages, register_netdevice() and
195  * unregister_netdevice(), which must be called with the rtnl
196  * semaphore held.
197  */
198 DEFINE_RWLOCK(dev_base_lock);
199 
200 EXPORT_SYMBOL(dev_base_lock);
201 
202 #define NETDEV_HASHBITS	8
203 #define NETDEV_HASHENTRIES (1 << NETDEV_HASHBITS)
204 
205 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
206 {
207 	unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
208 	return &net->dev_name_head[hash & ((1 << NETDEV_HASHBITS) - 1)];
209 }
210 
211 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
212 {
213 	return &net->dev_index_head[ifindex & ((1 << NETDEV_HASHBITS) - 1)];
214 }
215 
216 /* Device list insertion */
217 static int list_netdevice(struct net_device *dev)
218 {
219 	struct net *net = dev_net(dev);
220 
221 	ASSERT_RTNL();
222 
223 	write_lock_bh(&dev_base_lock);
224 	list_add_tail(&dev->dev_list, &net->dev_base_head);
225 	hlist_add_head(&dev->name_hlist, dev_name_hash(net, dev->name));
226 	hlist_add_head(&dev->index_hlist, dev_index_hash(net, dev->ifindex));
227 	write_unlock_bh(&dev_base_lock);
228 	return 0;
229 }
230 
231 /* Device list removal */
232 static void unlist_netdevice(struct net_device *dev)
233 {
234 	ASSERT_RTNL();
235 
236 	/* Unlink dev from the device chain */
237 	write_lock_bh(&dev_base_lock);
238 	list_del(&dev->dev_list);
239 	hlist_del(&dev->name_hlist);
240 	hlist_del(&dev->index_hlist);
241 	write_unlock_bh(&dev_base_lock);
242 }
243 
244 /*
245  *	Our notifier list
246  */
247 
248 static RAW_NOTIFIER_HEAD(netdev_chain);
249 
250 /*
251  *	Device drivers call our routines to queue packets here. We empty the
252  *	queue in the local softnet handler.
253  */
254 
255 DEFINE_PER_CPU(struct softnet_data, softnet_data);
256 
257 #ifdef CONFIG_DEBUG_LOCK_ALLOC
258 /*
259  * register_netdevice() inits dev->_xmit_lock and sets lockdep class
260  * according to dev->type
261  */
262 static const unsigned short netdev_lock_type[] =
263 	{ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
264 	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
265 	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
266 	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
267 	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
268 	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
269 	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
270 	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
271 	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
272 	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
273 	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
274 	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
275 	 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211,
276 	 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_VOID,
277 	 ARPHRD_NONE};
278 
279 static const char *netdev_lock_name[] =
280 	{"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
281 	 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
282 	 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
283 	 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
284 	 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
285 	 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
286 	 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
287 	 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
288 	 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
289 	 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
290 	 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
291 	 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
292 	 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211",
293 	 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_VOID",
294 	 "_xmit_NONE"};
295 
296 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
297 
298 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
299 {
300 	int i;
301 
302 	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
303 		if (netdev_lock_type[i] == dev_type)
304 			return i;
305 	/* the last key is used by default */
306 	return ARRAY_SIZE(netdev_lock_type) - 1;
307 }
308 
309 static inline void netdev_set_lockdep_class(spinlock_t *lock,
310 					    unsigned short dev_type)
311 {
312 	int i;
313 
314 	i = netdev_lock_pos(dev_type);
315 	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
316 				   netdev_lock_name[i]);
317 }
318 #else
319 static inline void netdev_set_lockdep_class(spinlock_t *lock,
320 					    unsigned short dev_type)
321 {
322 }
323 #endif
324 
325 /*******************************************************************************
326 
327 		Protocol management and registration routines
328 
329 *******************************************************************************/
330 
331 /*
332  *	Add a protocol ID to the list. Now that the input handler is
333  *	smarter we can dispense with all the messy stuff that used to be
334  *	here.
335  *
336  *	BEWARE!!! Protocol handlers, mangling input packets,
337  *	MUST BE last in hash buckets and checking protocol handlers
338  *	MUST start from promiscuous ptype_all chain in net_bh.
339  *	It is true now, do not change it.
340  *	Explanation follows: if protocol handler, mangling packet, will
341  *	be the first on list, it is not able to sense, that packet
342  *	is cloned and should be copied-on-write, so that it will
343  *	change it and subsequent readers will get broken packet.
344  *							--ANK (980803)
345  */
346 
347 /**
348  *	dev_add_pack - add packet handler
349  *	@pt: packet type declaration
350  *
351  *	Add a protocol handler to the networking stack. The passed &packet_type
352  *	is linked into kernel lists and may not be freed until it has been
353  *	removed from the kernel lists.
354  *
355  *	This call does not sleep therefore it can not
356  *	guarantee all CPU's that are in middle of receiving packets
357  *	will see the new packet type (until the next received packet).
358  */
359 
360 void dev_add_pack(struct packet_type *pt)
361 {
362 	int hash;
363 
364 	spin_lock_bh(&ptype_lock);
365 	if (pt->type == htons(ETH_P_ALL))
366 		list_add_rcu(&pt->list, &ptype_all);
367 	else {
368 		hash = ntohs(pt->type) & PTYPE_HASH_MASK;
369 		list_add_rcu(&pt->list, &ptype_base[hash]);
370 	}
371 	spin_unlock_bh(&ptype_lock);
372 }
373 
374 /**
375  *	__dev_remove_pack	 - remove packet handler
376  *	@pt: packet type declaration
377  *
378  *	Remove a protocol handler that was previously added to the kernel
379  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
380  *	from the kernel lists and can be freed or reused once this function
381  *	returns.
382  *
383  *      The packet type might still be in use by receivers
384  *	and must not be freed until after all the CPU's have gone
385  *	through a quiescent state.
386  */
387 void __dev_remove_pack(struct packet_type *pt)
388 {
389 	struct list_head *head;
390 	struct packet_type *pt1;
391 
392 	spin_lock_bh(&ptype_lock);
393 
394 	if (pt->type == htons(ETH_P_ALL))
395 		head = &ptype_all;
396 	else
397 		head = &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
398 
399 	list_for_each_entry(pt1, head, list) {
400 		if (pt == pt1) {
401 			list_del_rcu(&pt->list);
402 			goto out;
403 		}
404 	}
405 
406 	printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt);
407 out:
408 	spin_unlock_bh(&ptype_lock);
409 }
410 /**
411  *	dev_remove_pack	 - remove packet handler
412  *	@pt: packet type declaration
413  *
414  *	Remove a protocol handler that was previously added to the kernel
415  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
416  *	from the kernel lists and can be freed or reused once this function
417  *	returns.
418  *
419  *	This call sleeps to guarantee that no CPU is looking at the packet
420  *	type after return.
421  */
422 void dev_remove_pack(struct packet_type *pt)
423 {
424 	__dev_remove_pack(pt);
425 
426 	synchronize_net();
427 }
428 
429 /******************************************************************************
430 
431 		      Device Boot-time Settings Routines
432 
433 *******************************************************************************/
434 
435 /* Boot time configuration table */
436 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
437 
438 /**
439  *	netdev_boot_setup_add	- add new setup entry
440  *	@name: name of the device
441  *	@map: configured settings for the device
442  *
443  *	Adds new setup entry to the dev_boot_setup list.  The function
444  *	returns 0 on error and 1 on success.  This is a generic routine to
445  *	all netdevices.
446  */
447 static int netdev_boot_setup_add(char *name, struct ifmap *map)
448 {
449 	struct netdev_boot_setup *s;
450 	int i;
451 
452 	s = dev_boot_setup;
453 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
454 		if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
455 			memset(s[i].name, 0, sizeof(s[i].name));
456 			strcpy(s[i].name, name);
457 			memcpy(&s[i].map, map, sizeof(s[i].map));
458 			break;
459 		}
460 	}
461 
462 	return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
463 }
464 
465 /**
466  *	netdev_boot_setup_check	- check boot time settings
467  *	@dev: the netdevice
468  *
469  * 	Check boot time settings for the device.
470  *	The found settings are set for the device to be used
471  *	later in the device probing.
472  *	Returns 0 if no settings found, 1 if they are.
473  */
474 int netdev_boot_setup_check(struct net_device *dev)
475 {
476 	struct netdev_boot_setup *s = dev_boot_setup;
477 	int i;
478 
479 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
480 		if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
481 		    !strncmp(dev->name, s[i].name, strlen(s[i].name))) {
482 			dev->irq 	= s[i].map.irq;
483 			dev->base_addr 	= s[i].map.base_addr;
484 			dev->mem_start 	= s[i].map.mem_start;
485 			dev->mem_end 	= s[i].map.mem_end;
486 			return 1;
487 		}
488 	}
489 	return 0;
490 }
491 
492 
493 /**
494  *	netdev_boot_base	- get address from boot time settings
495  *	@prefix: prefix for network device
496  *	@unit: id for network device
497  *
498  * 	Check boot time settings for the base address of device.
499  *	The found settings are set for the device to be used
500  *	later in the device probing.
501  *	Returns 0 if no settings found.
502  */
503 unsigned long netdev_boot_base(const char *prefix, int unit)
504 {
505 	const struct netdev_boot_setup *s = dev_boot_setup;
506 	char name[IFNAMSIZ];
507 	int i;
508 
509 	sprintf(name, "%s%d", prefix, unit);
510 
511 	/*
512 	 * If device already registered then return base of 1
513 	 * to indicate not to probe for this interface
514 	 */
515 	if (__dev_get_by_name(&init_net, name))
516 		return 1;
517 
518 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
519 		if (!strcmp(name, s[i].name))
520 			return s[i].map.base_addr;
521 	return 0;
522 }
523 
524 /*
525  * Saves at boot time configured settings for any netdevice.
526  */
527 int __init netdev_boot_setup(char *str)
528 {
529 	int ints[5];
530 	struct ifmap map;
531 
532 	str = get_options(str, ARRAY_SIZE(ints), ints);
533 	if (!str || !*str)
534 		return 0;
535 
536 	/* Save settings */
537 	memset(&map, 0, sizeof(map));
538 	if (ints[0] > 0)
539 		map.irq = ints[1];
540 	if (ints[0] > 1)
541 		map.base_addr = ints[2];
542 	if (ints[0] > 2)
543 		map.mem_start = ints[3];
544 	if (ints[0] > 3)
545 		map.mem_end = ints[4];
546 
547 	/* Add new entry to the list */
548 	return netdev_boot_setup_add(str, &map);
549 }
550 
551 __setup("netdev=", netdev_boot_setup);
552 
553 /*******************************************************************************
554 
555 			    Device Interface Subroutines
556 
557 *******************************************************************************/
558 
559 /**
560  *	__dev_get_by_name	- find a device by its name
561  *	@net: the applicable net namespace
562  *	@name: name to find
563  *
564  *	Find an interface by name. Must be called under RTNL semaphore
565  *	or @dev_base_lock. If the name is found a pointer to the device
566  *	is returned. If the name is not found then %NULL is returned. The
567  *	reference counters are not incremented so the caller must be
568  *	careful with locks.
569  */
570 
571 struct net_device *__dev_get_by_name(struct net *net, const char *name)
572 {
573 	struct hlist_node *p;
574 
575 	hlist_for_each(p, dev_name_hash(net, name)) {
576 		struct net_device *dev
577 			= hlist_entry(p, struct net_device, name_hlist);
578 		if (!strncmp(dev->name, name, IFNAMSIZ))
579 			return dev;
580 	}
581 	return NULL;
582 }
583 
584 /**
585  *	dev_get_by_name		- find a device by its name
586  *	@net: the applicable net namespace
587  *	@name: name to find
588  *
589  *	Find an interface by name. This can be called from any
590  *	context and does its own locking. The returned handle has
591  *	the usage count incremented and the caller must use dev_put() to
592  *	release it when it is no longer needed. %NULL is returned if no
593  *	matching device is found.
594  */
595 
596 struct net_device *dev_get_by_name(struct net *net, const char *name)
597 {
598 	struct net_device *dev;
599 
600 	read_lock(&dev_base_lock);
601 	dev = __dev_get_by_name(net, name);
602 	if (dev)
603 		dev_hold(dev);
604 	read_unlock(&dev_base_lock);
605 	return dev;
606 }
607 
608 /**
609  *	__dev_get_by_index - find a device by its ifindex
610  *	@net: the applicable net namespace
611  *	@ifindex: index of device
612  *
613  *	Search for an interface by index. Returns %NULL if the device
614  *	is not found or a pointer to the device. The device has not
615  *	had its reference counter increased so the caller must be careful
616  *	about locking. The caller must hold either the RTNL semaphore
617  *	or @dev_base_lock.
618  */
619 
620 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
621 {
622 	struct hlist_node *p;
623 
624 	hlist_for_each(p, dev_index_hash(net, ifindex)) {
625 		struct net_device *dev
626 			= hlist_entry(p, struct net_device, index_hlist);
627 		if (dev->ifindex == ifindex)
628 			return dev;
629 	}
630 	return NULL;
631 }
632 
633 
634 /**
635  *	dev_get_by_index - find a device by its ifindex
636  *	@net: the applicable net namespace
637  *	@ifindex: index of device
638  *
639  *	Search for an interface by index. Returns NULL if the device
640  *	is not found or a pointer to the device. The device returned has
641  *	had a reference added and the pointer is safe until the user calls
642  *	dev_put to indicate they have finished with it.
643  */
644 
645 struct net_device *dev_get_by_index(struct net *net, int ifindex)
646 {
647 	struct net_device *dev;
648 
649 	read_lock(&dev_base_lock);
650 	dev = __dev_get_by_index(net, ifindex);
651 	if (dev)
652 		dev_hold(dev);
653 	read_unlock(&dev_base_lock);
654 	return dev;
655 }
656 
657 /**
658  *	dev_getbyhwaddr - find a device by its hardware address
659  *	@net: the applicable net namespace
660  *	@type: media type of device
661  *	@ha: hardware address
662  *
663  *	Search for an interface by MAC address. Returns NULL if the device
664  *	is not found or a pointer to the device. The caller must hold the
665  *	rtnl semaphore. The returned device has not had its ref count increased
666  *	and the caller must therefore be careful about locking
667  *
668  *	BUGS:
669  *	If the API was consistent this would be __dev_get_by_hwaddr
670  */
671 
672 struct net_device *dev_getbyhwaddr(struct net *net, unsigned short type, char *ha)
673 {
674 	struct net_device *dev;
675 
676 	ASSERT_RTNL();
677 
678 	for_each_netdev(net, dev)
679 		if (dev->type == type &&
680 		    !memcmp(dev->dev_addr, ha, dev->addr_len))
681 			return dev;
682 
683 	return NULL;
684 }
685 
686 EXPORT_SYMBOL(dev_getbyhwaddr);
687 
688 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
689 {
690 	struct net_device *dev;
691 
692 	ASSERT_RTNL();
693 	for_each_netdev(net, dev)
694 		if (dev->type == type)
695 			return dev;
696 
697 	return NULL;
698 }
699 
700 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
701 
702 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
703 {
704 	struct net_device *dev;
705 
706 	rtnl_lock();
707 	dev = __dev_getfirstbyhwtype(net, type);
708 	if (dev)
709 		dev_hold(dev);
710 	rtnl_unlock();
711 	return dev;
712 }
713 
714 EXPORT_SYMBOL(dev_getfirstbyhwtype);
715 
716 /**
717  *	dev_get_by_flags - find any device with given flags
718  *	@net: the applicable net namespace
719  *	@if_flags: IFF_* values
720  *	@mask: bitmask of bits in if_flags to check
721  *
722  *	Search for any interface with the given flags. Returns NULL if a device
723  *	is not found or a pointer to the device. The device returned has
724  *	had a reference added and the pointer is safe until the user calls
725  *	dev_put to indicate they have finished with it.
726  */
727 
728 struct net_device * dev_get_by_flags(struct net *net, unsigned short if_flags, unsigned short mask)
729 {
730 	struct net_device *dev, *ret;
731 
732 	ret = NULL;
733 	read_lock(&dev_base_lock);
734 	for_each_netdev(net, dev) {
735 		if (((dev->flags ^ if_flags) & mask) == 0) {
736 			dev_hold(dev);
737 			ret = dev;
738 			break;
739 		}
740 	}
741 	read_unlock(&dev_base_lock);
742 	return ret;
743 }
744 
745 /**
746  *	dev_valid_name - check if name is okay for network device
747  *	@name: name string
748  *
749  *	Network device names need to be valid file names to
750  *	to allow sysfs to work.  We also disallow any kind of
751  *	whitespace.
752  */
753 int dev_valid_name(const char *name)
754 {
755 	if (*name == '\0')
756 		return 0;
757 	if (strlen(name) >= IFNAMSIZ)
758 		return 0;
759 	if (!strcmp(name, ".") || !strcmp(name, ".."))
760 		return 0;
761 
762 	while (*name) {
763 		if (*name == '/' || isspace(*name))
764 			return 0;
765 		name++;
766 	}
767 	return 1;
768 }
769 
770 /**
771  *	__dev_alloc_name - allocate a name for a device
772  *	@net: network namespace to allocate the device name in
773  *	@name: name format string
774  *	@buf:  scratch buffer and result name string
775  *
776  *	Passed a format string - eg "lt%d" it will try and find a suitable
777  *	id. It scans list of devices to build up a free map, then chooses
778  *	the first empty slot. The caller must hold the dev_base or rtnl lock
779  *	while allocating the name and adding the device in order to avoid
780  *	duplicates.
781  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
782  *	Returns the number of the unit assigned or a negative errno code.
783  */
784 
785 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
786 {
787 	int i = 0;
788 	const char *p;
789 	const int max_netdevices = 8*PAGE_SIZE;
790 	unsigned long *inuse;
791 	struct net_device *d;
792 
793 	p = strnchr(name, IFNAMSIZ-1, '%');
794 	if (p) {
795 		/*
796 		 * Verify the string as this thing may have come from
797 		 * the user.  There must be either one "%d" and no other "%"
798 		 * characters.
799 		 */
800 		if (p[1] != 'd' || strchr(p + 2, '%'))
801 			return -EINVAL;
802 
803 		/* Use one page as a bit array of possible slots */
804 		inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
805 		if (!inuse)
806 			return -ENOMEM;
807 
808 		for_each_netdev(net, d) {
809 			if (!sscanf(d->name, name, &i))
810 				continue;
811 			if (i < 0 || i >= max_netdevices)
812 				continue;
813 
814 			/*  avoid cases where sscanf is not exact inverse of printf */
815 			snprintf(buf, IFNAMSIZ, name, i);
816 			if (!strncmp(buf, d->name, IFNAMSIZ))
817 				set_bit(i, inuse);
818 		}
819 
820 		i = find_first_zero_bit(inuse, max_netdevices);
821 		free_page((unsigned long) inuse);
822 	}
823 
824 	snprintf(buf, IFNAMSIZ, name, i);
825 	if (!__dev_get_by_name(net, buf))
826 		return i;
827 
828 	/* It is possible to run out of possible slots
829 	 * when the name is long and there isn't enough space left
830 	 * for the digits, or if all bits are used.
831 	 */
832 	return -ENFILE;
833 }
834 
835 /**
836  *	dev_alloc_name - allocate a name for a device
837  *	@dev: device
838  *	@name: name format string
839  *
840  *	Passed a format string - eg "lt%d" it will try and find a suitable
841  *	id. It scans list of devices to build up a free map, then chooses
842  *	the first empty slot. The caller must hold the dev_base or rtnl lock
843  *	while allocating the name and adding the device in order to avoid
844  *	duplicates.
845  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
846  *	Returns the number of the unit assigned or a negative errno code.
847  */
848 
849 int dev_alloc_name(struct net_device *dev, const char *name)
850 {
851 	char buf[IFNAMSIZ];
852 	struct net *net;
853 	int ret;
854 
855 	BUG_ON(!dev_net(dev));
856 	net = dev_net(dev);
857 	ret = __dev_alloc_name(net, name, buf);
858 	if (ret >= 0)
859 		strlcpy(dev->name, buf, IFNAMSIZ);
860 	return ret;
861 }
862 
863 
864 /**
865  *	dev_change_name - change name of a device
866  *	@dev: device
867  *	@newname: name (or format string) must be at least IFNAMSIZ
868  *
869  *	Change name of a device, can pass format strings "eth%d".
870  *	for wildcarding.
871  */
872 int dev_change_name(struct net_device *dev, char *newname)
873 {
874 	char oldname[IFNAMSIZ];
875 	int err = 0;
876 	int ret;
877 	struct net *net;
878 
879 	ASSERT_RTNL();
880 	BUG_ON(!dev_net(dev));
881 
882 	net = dev_net(dev);
883 	if (dev->flags & IFF_UP)
884 		return -EBUSY;
885 
886 	if (!dev_valid_name(newname))
887 		return -EINVAL;
888 
889 	if (strncmp(newname, dev->name, IFNAMSIZ) == 0)
890 		return 0;
891 
892 	memcpy(oldname, dev->name, IFNAMSIZ);
893 
894 	if (strchr(newname, '%')) {
895 		err = dev_alloc_name(dev, newname);
896 		if (err < 0)
897 			return err;
898 		strcpy(newname, dev->name);
899 	}
900 	else if (__dev_get_by_name(net, newname))
901 		return -EEXIST;
902 	else
903 		strlcpy(dev->name, newname, IFNAMSIZ);
904 
905 rollback:
906 	device_rename(&dev->dev, dev->name);
907 
908 	write_lock_bh(&dev_base_lock);
909 	hlist_del(&dev->name_hlist);
910 	hlist_add_head(&dev->name_hlist, dev_name_hash(net, dev->name));
911 	write_unlock_bh(&dev_base_lock);
912 
913 	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
914 	ret = notifier_to_errno(ret);
915 
916 	if (ret) {
917 		if (err) {
918 			printk(KERN_ERR
919 			       "%s: name change rollback failed: %d.\n",
920 			       dev->name, ret);
921 		} else {
922 			err = ret;
923 			memcpy(dev->name, oldname, IFNAMSIZ);
924 			goto rollback;
925 		}
926 	}
927 
928 	return err;
929 }
930 
931 /**
932  *	netdev_features_change - device changes features
933  *	@dev: device to cause notification
934  *
935  *	Called to indicate a device has changed features.
936  */
937 void netdev_features_change(struct net_device *dev)
938 {
939 	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
940 }
941 EXPORT_SYMBOL(netdev_features_change);
942 
943 /**
944  *	netdev_state_change - device changes state
945  *	@dev: device to cause notification
946  *
947  *	Called to indicate a device has changed state. This function calls
948  *	the notifier chains for netdev_chain and sends a NEWLINK message
949  *	to the routing socket.
950  */
951 void netdev_state_change(struct net_device *dev)
952 {
953 	if (dev->flags & IFF_UP) {
954 		call_netdevice_notifiers(NETDEV_CHANGE, dev);
955 		rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
956 	}
957 }
958 
959 /**
960  *	dev_load 	- load a network module
961  *	@net: the applicable net namespace
962  *	@name: name of interface
963  *
964  *	If a network interface is not present and the process has suitable
965  *	privileges this function loads the module. If module loading is not
966  *	available in this kernel then it becomes a nop.
967  */
968 
969 void dev_load(struct net *net, const char *name)
970 {
971 	struct net_device *dev;
972 
973 	read_lock(&dev_base_lock);
974 	dev = __dev_get_by_name(net, name);
975 	read_unlock(&dev_base_lock);
976 
977 	if (!dev && capable(CAP_SYS_MODULE))
978 		request_module("%s", name);
979 }
980 
981 /**
982  *	dev_open	- prepare an interface for use.
983  *	@dev:	device to open
984  *
985  *	Takes a device from down to up state. The device's private open
986  *	function is invoked and then the multicast lists are loaded. Finally
987  *	the device is moved into the up state and a %NETDEV_UP message is
988  *	sent to the netdev notifier chain.
989  *
990  *	Calling this function on an active interface is a nop. On a failure
991  *	a negative errno code is returned.
992  */
993 int dev_open(struct net_device *dev)
994 {
995 	int ret = 0;
996 
997 	/*
998 	 *	Is it already up?
999 	 */
1000 
1001 	if (dev->flags & IFF_UP)
1002 		return 0;
1003 
1004 	/*
1005 	 *	Is it even present?
1006 	 */
1007 	if (!netif_device_present(dev))
1008 		return -ENODEV;
1009 
1010 	/*
1011 	 *	Call device private open method
1012 	 */
1013 	set_bit(__LINK_STATE_START, &dev->state);
1014 
1015 	if (dev->validate_addr)
1016 		ret = dev->validate_addr(dev);
1017 
1018 	if (!ret && dev->open)
1019 		ret = dev->open(dev);
1020 
1021 	/*
1022 	 *	If it went open OK then:
1023 	 */
1024 
1025 	if (ret)
1026 		clear_bit(__LINK_STATE_START, &dev->state);
1027 	else {
1028 		/*
1029 		 *	Set the flags.
1030 		 */
1031 		dev->flags |= IFF_UP;
1032 
1033 		/*
1034 		 *	Initialize multicasting status
1035 		 */
1036 		dev_set_rx_mode(dev);
1037 
1038 		/*
1039 		 *	Wakeup transmit queue engine
1040 		 */
1041 		dev_activate(dev);
1042 
1043 		/*
1044 		 *	... and announce new interface.
1045 		 */
1046 		call_netdevice_notifiers(NETDEV_UP, dev);
1047 	}
1048 
1049 	return ret;
1050 }
1051 
1052 /**
1053  *	dev_close - shutdown an interface.
1054  *	@dev: device to shutdown
1055  *
1056  *	This function moves an active device into down state. A
1057  *	%NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1058  *	is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1059  *	chain.
1060  */
1061 int dev_close(struct net_device *dev)
1062 {
1063 	might_sleep();
1064 
1065 	if (!(dev->flags & IFF_UP))
1066 		return 0;
1067 
1068 	/*
1069 	 *	Tell people we are going down, so that they can
1070 	 *	prepare to death, when device is still operating.
1071 	 */
1072 	call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1073 
1074 	clear_bit(__LINK_STATE_START, &dev->state);
1075 
1076 	/* Synchronize to scheduled poll. We cannot touch poll list,
1077 	 * it can be even on different cpu. So just clear netif_running().
1078 	 *
1079 	 * dev->stop() will invoke napi_disable() on all of it's
1080 	 * napi_struct instances on this device.
1081 	 */
1082 	smp_mb__after_clear_bit(); /* Commit netif_running(). */
1083 
1084 	dev_deactivate(dev);
1085 
1086 	/*
1087 	 *	Call the device specific close. This cannot fail.
1088 	 *	Only if device is UP
1089 	 *
1090 	 *	We allow it to be called even after a DETACH hot-plug
1091 	 *	event.
1092 	 */
1093 	if (dev->stop)
1094 		dev->stop(dev);
1095 
1096 	/*
1097 	 *	Device is now down.
1098 	 */
1099 
1100 	dev->flags &= ~IFF_UP;
1101 
1102 	/*
1103 	 * Tell people we are down
1104 	 */
1105 	call_netdevice_notifiers(NETDEV_DOWN, dev);
1106 
1107 	return 0;
1108 }
1109 
1110 
1111 static int dev_boot_phase = 1;
1112 
1113 /*
1114  *	Device change register/unregister. These are not inline or static
1115  *	as we export them to the world.
1116  */
1117 
1118 /**
1119  *	register_netdevice_notifier - register a network notifier block
1120  *	@nb: notifier
1121  *
1122  *	Register a notifier to be called when network device events occur.
1123  *	The notifier passed is linked into the kernel structures and must
1124  *	not be reused until it has been unregistered. A negative errno code
1125  *	is returned on a failure.
1126  *
1127  * 	When registered all registration and up events are replayed
1128  *	to the new notifier to allow device to have a race free
1129  *	view of the network device list.
1130  */
1131 
1132 int register_netdevice_notifier(struct notifier_block *nb)
1133 {
1134 	struct net_device *dev;
1135 	struct net_device *last;
1136 	struct net *net;
1137 	int err;
1138 
1139 	rtnl_lock();
1140 	err = raw_notifier_chain_register(&netdev_chain, nb);
1141 	if (err)
1142 		goto unlock;
1143 	if (dev_boot_phase)
1144 		goto unlock;
1145 	for_each_net(net) {
1146 		for_each_netdev(net, dev) {
1147 			err = nb->notifier_call(nb, NETDEV_REGISTER, dev);
1148 			err = notifier_to_errno(err);
1149 			if (err)
1150 				goto rollback;
1151 
1152 			if (!(dev->flags & IFF_UP))
1153 				continue;
1154 
1155 			nb->notifier_call(nb, NETDEV_UP, dev);
1156 		}
1157 	}
1158 
1159 unlock:
1160 	rtnl_unlock();
1161 	return err;
1162 
1163 rollback:
1164 	last = dev;
1165 	for_each_net(net) {
1166 		for_each_netdev(net, dev) {
1167 			if (dev == last)
1168 				break;
1169 
1170 			if (dev->flags & IFF_UP) {
1171 				nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1172 				nb->notifier_call(nb, NETDEV_DOWN, dev);
1173 			}
1174 			nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1175 		}
1176 	}
1177 
1178 	raw_notifier_chain_unregister(&netdev_chain, nb);
1179 	goto unlock;
1180 }
1181 
1182 /**
1183  *	unregister_netdevice_notifier - unregister a network notifier block
1184  *	@nb: notifier
1185  *
1186  *	Unregister a notifier previously registered by
1187  *	register_netdevice_notifier(). The notifier is unlinked into the
1188  *	kernel structures and may then be reused. A negative errno code
1189  *	is returned on a failure.
1190  */
1191 
1192 int unregister_netdevice_notifier(struct notifier_block *nb)
1193 {
1194 	int err;
1195 
1196 	rtnl_lock();
1197 	err = raw_notifier_chain_unregister(&netdev_chain, nb);
1198 	rtnl_unlock();
1199 	return err;
1200 }
1201 
1202 /**
1203  *	call_netdevice_notifiers - call all network notifier blocks
1204  *      @val: value passed unmodified to notifier function
1205  *      @dev: net_device pointer passed unmodified to notifier function
1206  *
1207  *	Call all network notifier blocks.  Parameters and return value
1208  *	are as for raw_notifier_call_chain().
1209  */
1210 
1211 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1212 {
1213 	return raw_notifier_call_chain(&netdev_chain, val, dev);
1214 }
1215 
1216 /* When > 0 there are consumers of rx skb time stamps */
1217 static atomic_t netstamp_needed = ATOMIC_INIT(0);
1218 
1219 void net_enable_timestamp(void)
1220 {
1221 	atomic_inc(&netstamp_needed);
1222 }
1223 
1224 void net_disable_timestamp(void)
1225 {
1226 	atomic_dec(&netstamp_needed);
1227 }
1228 
1229 static inline void net_timestamp(struct sk_buff *skb)
1230 {
1231 	if (atomic_read(&netstamp_needed))
1232 		__net_timestamp(skb);
1233 	else
1234 		skb->tstamp.tv64 = 0;
1235 }
1236 
1237 /*
1238  *	Support routine. Sends outgoing frames to any network
1239  *	taps currently in use.
1240  */
1241 
1242 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1243 {
1244 	struct packet_type *ptype;
1245 
1246 	net_timestamp(skb);
1247 
1248 	rcu_read_lock();
1249 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
1250 		/* Never send packets back to the socket
1251 		 * they originated from - MvS (miquels@drinkel.ow.org)
1252 		 */
1253 		if ((ptype->dev == dev || !ptype->dev) &&
1254 		    (ptype->af_packet_priv == NULL ||
1255 		     (struct sock *)ptype->af_packet_priv != skb->sk)) {
1256 			struct sk_buff *skb2= skb_clone(skb, GFP_ATOMIC);
1257 			if (!skb2)
1258 				break;
1259 
1260 			/* skb->nh should be correctly
1261 			   set by sender, so that the second statement is
1262 			   just protection against buggy protocols.
1263 			 */
1264 			skb_reset_mac_header(skb2);
1265 
1266 			if (skb_network_header(skb2) < skb2->data ||
1267 			    skb2->network_header > skb2->tail) {
1268 				if (net_ratelimit())
1269 					printk(KERN_CRIT "protocol %04x is "
1270 					       "buggy, dev %s\n",
1271 					       skb2->protocol, dev->name);
1272 				skb_reset_network_header(skb2);
1273 			}
1274 
1275 			skb2->transport_header = skb2->network_header;
1276 			skb2->pkt_type = PACKET_OUTGOING;
1277 			ptype->func(skb2, skb->dev, ptype, skb->dev);
1278 		}
1279 	}
1280 	rcu_read_unlock();
1281 }
1282 
1283 
1284 void __netif_schedule(struct net_device *dev)
1285 {
1286 	if (!test_and_set_bit(__LINK_STATE_SCHED, &dev->state)) {
1287 		unsigned long flags;
1288 		struct softnet_data *sd;
1289 
1290 		local_irq_save(flags);
1291 		sd = &__get_cpu_var(softnet_data);
1292 		dev->next_sched = sd->output_queue;
1293 		sd->output_queue = dev;
1294 		raise_softirq_irqoff(NET_TX_SOFTIRQ);
1295 		local_irq_restore(flags);
1296 	}
1297 }
1298 EXPORT_SYMBOL(__netif_schedule);
1299 
1300 void dev_kfree_skb_irq(struct sk_buff *skb)
1301 {
1302 	if (atomic_dec_and_test(&skb->users)) {
1303 		struct softnet_data *sd;
1304 		unsigned long flags;
1305 
1306 		local_irq_save(flags);
1307 		sd = &__get_cpu_var(softnet_data);
1308 		skb->next = sd->completion_queue;
1309 		sd->completion_queue = skb;
1310 		raise_softirq_irqoff(NET_TX_SOFTIRQ);
1311 		local_irq_restore(flags);
1312 	}
1313 }
1314 EXPORT_SYMBOL(dev_kfree_skb_irq);
1315 
1316 void dev_kfree_skb_any(struct sk_buff *skb)
1317 {
1318 	if (in_irq() || irqs_disabled())
1319 		dev_kfree_skb_irq(skb);
1320 	else
1321 		dev_kfree_skb(skb);
1322 }
1323 EXPORT_SYMBOL(dev_kfree_skb_any);
1324 
1325 
1326 /**
1327  * netif_device_detach - mark device as removed
1328  * @dev: network device
1329  *
1330  * Mark device as removed from system and therefore no longer available.
1331  */
1332 void netif_device_detach(struct net_device *dev)
1333 {
1334 	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
1335 	    netif_running(dev)) {
1336 		netif_stop_queue(dev);
1337 	}
1338 }
1339 EXPORT_SYMBOL(netif_device_detach);
1340 
1341 /**
1342  * netif_device_attach - mark device as attached
1343  * @dev: network device
1344  *
1345  * Mark device as attached from system and restart if needed.
1346  */
1347 void netif_device_attach(struct net_device *dev)
1348 {
1349 	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
1350 	    netif_running(dev)) {
1351 		netif_wake_queue(dev);
1352 		__netdev_watchdog_up(dev);
1353 	}
1354 }
1355 EXPORT_SYMBOL(netif_device_attach);
1356 
1357 
1358 /*
1359  * Invalidate hardware checksum when packet is to be mangled, and
1360  * complete checksum manually on outgoing path.
1361  */
1362 int skb_checksum_help(struct sk_buff *skb)
1363 {
1364 	__wsum csum;
1365 	int ret = 0, offset;
1366 
1367 	if (skb->ip_summed == CHECKSUM_COMPLETE)
1368 		goto out_set_summed;
1369 
1370 	if (unlikely(skb_shinfo(skb)->gso_size)) {
1371 		/* Let GSO fix up the checksum. */
1372 		goto out_set_summed;
1373 	}
1374 
1375 	offset = skb->csum_start - skb_headroom(skb);
1376 	BUG_ON(offset >= skb_headlen(skb));
1377 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
1378 
1379 	offset += skb->csum_offset;
1380 	BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
1381 
1382 	if (skb_cloned(skb) &&
1383 	    !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1384 		ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1385 		if (ret)
1386 			goto out;
1387 	}
1388 
1389 	*(__sum16 *)(skb->data + offset) = csum_fold(csum);
1390 out_set_summed:
1391 	skb->ip_summed = CHECKSUM_NONE;
1392 out:
1393 	return ret;
1394 }
1395 
1396 /**
1397  *	skb_gso_segment - Perform segmentation on skb.
1398  *	@skb: buffer to segment
1399  *	@features: features for the output path (see dev->features)
1400  *
1401  *	This function segments the given skb and returns a list of segments.
1402  *
1403  *	It may return NULL if the skb requires no segmentation.  This is
1404  *	only possible when GSO is used for verifying header integrity.
1405  */
1406 struct sk_buff *skb_gso_segment(struct sk_buff *skb, int features)
1407 {
1408 	struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
1409 	struct packet_type *ptype;
1410 	__be16 type = skb->protocol;
1411 	int err;
1412 
1413 	BUG_ON(skb_shinfo(skb)->frag_list);
1414 
1415 	skb_reset_mac_header(skb);
1416 	skb->mac_len = skb->network_header - skb->mac_header;
1417 	__skb_pull(skb, skb->mac_len);
1418 
1419 	if (WARN_ON(skb->ip_summed != CHECKSUM_PARTIAL)) {
1420 		if (skb_header_cloned(skb) &&
1421 		    (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
1422 			return ERR_PTR(err);
1423 	}
1424 
1425 	rcu_read_lock();
1426 	list_for_each_entry_rcu(ptype,
1427 			&ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
1428 		if (ptype->type == type && !ptype->dev && ptype->gso_segment) {
1429 			if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1430 				err = ptype->gso_send_check(skb);
1431 				segs = ERR_PTR(err);
1432 				if (err || skb_gso_ok(skb, features))
1433 					break;
1434 				__skb_push(skb, (skb->data -
1435 						 skb_network_header(skb)));
1436 			}
1437 			segs = ptype->gso_segment(skb, features);
1438 			break;
1439 		}
1440 	}
1441 	rcu_read_unlock();
1442 
1443 	__skb_push(skb, skb->data - skb_mac_header(skb));
1444 
1445 	return segs;
1446 }
1447 
1448 EXPORT_SYMBOL(skb_gso_segment);
1449 
1450 /* Take action when hardware reception checksum errors are detected. */
1451 #ifdef CONFIG_BUG
1452 void netdev_rx_csum_fault(struct net_device *dev)
1453 {
1454 	if (net_ratelimit()) {
1455 		printk(KERN_ERR "%s: hw csum failure.\n",
1456 			dev ? dev->name : "<unknown>");
1457 		dump_stack();
1458 	}
1459 }
1460 EXPORT_SYMBOL(netdev_rx_csum_fault);
1461 #endif
1462 
1463 /* Actually, we should eliminate this check as soon as we know, that:
1464  * 1. IOMMU is present and allows to map all the memory.
1465  * 2. No high memory really exists on this machine.
1466  */
1467 
1468 static inline int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1469 {
1470 #ifdef CONFIG_HIGHMEM
1471 	int i;
1472 
1473 	if (dev->features & NETIF_F_HIGHDMA)
1474 		return 0;
1475 
1476 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1477 		if (PageHighMem(skb_shinfo(skb)->frags[i].page))
1478 			return 1;
1479 
1480 #endif
1481 	return 0;
1482 }
1483 
1484 struct dev_gso_cb {
1485 	void (*destructor)(struct sk_buff *skb);
1486 };
1487 
1488 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
1489 
1490 static void dev_gso_skb_destructor(struct sk_buff *skb)
1491 {
1492 	struct dev_gso_cb *cb;
1493 
1494 	do {
1495 		struct sk_buff *nskb = skb->next;
1496 
1497 		skb->next = nskb->next;
1498 		nskb->next = NULL;
1499 		kfree_skb(nskb);
1500 	} while (skb->next);
1501 
1502 	cb = DEV_GSO_CB(skb);
1503 	if (cb->destructor)
1504 		cb->destructor(skb);
1505 }
1506 
1507 /**
1508  *	dev_gso_segment - Perform emulated hardware segmentation on skb.
1509  *	@skb: buffer to segment
1510  *
1511  *	This function segments the given skb and stores the list of segments
1512  *	in skb->next.
1513  */
1514 static int dev_gso_segment(struct sk_buff *skb)
1515 {
1516 	struct net_device *dev = skb->dev;
1517 	struct sk_buff *segs;
1518 	int features = dev->features & ~(illegal_highdma(dev, skb) ?
1519 					 NETIF_F_SG : 0);
1520 
1521 	segs = skb_gso_segment(skb, features);
1522 
1523 	/* Verifying header integrity only. */
1524 	if (!segs)
1525 		return 0;
1526 
1527 	if (IS_ERR(segs))
1528 		return PTR_ERR(segs);
1529 
1530 	skb->next = segs;
1531 	DEV_GSO_CB(skb)->destructor = skb->destructor;
1532 	skb->destructor = dev_gso_skb_destructor;
1533 
1534 	return 0;
1535 }
1536 
1537 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev)
1538 {
1539 	if (likely(!skb->next)) {
1540 		if (!list_empty(&ptype_all))
1541 			dev_queue_xmit_nit(skb, dev);
1542 
1543 		if (netif_needs_gso(dev, skb)) {
1544 			if (unlikely(dev_gso_segment(skb)))
1545 				goto out_kfree_skb;
1546 			if (skb->next)
1547 				goto gso;
1548 		}
1549 
1550 		return dev->hard_start_xmit(skb, dev);
1551 	}
1552 
1553 gso:
1554 	do {
1555 		struct sk_buff *nskb = skb->next;
1556 		int rc;
1557 
1558 		skb->next = nskb->next;
1559 		nskb->next = NULL;
1560 		rc = dev->hard_start_xmit(nskb, dev);
1561 		if (unlikely(rc)) {
1562 			nskb->next = skb->next;
1563 			skb->next = nskb;
1564 			return rc;
1565 		}
1566 		if (unlikely((netif_queue_stopped(dev) ||
1567 			     netif_subqueue_stopped(dev, skb)) &&
1568 			     skb->next))
1569 			return NETDEV_TX_BUSY;
1570 	} while (skb->next);
1571 
1572 	skb->destructor = DEV_GSO_CB(skb)->destructor;
1573 
1574 out_kfree_skb:
1575 	kfree_skb(skb);
1576 	return 0;
1577 }
1578 
1579 /**
1580  *	dev_queue_xmit - transmit a buffer
1581  *	@skb: buffer to transmit
1582  *
1583  *	Queue a buffer for transmission to a network device. The caller must
1584  *	have set the device and priority and built the buffer before calling
1585  *	this function. The function can be called from an interrupt.
1586  *
1587  *	A negative errno code is returned on a failure. A success does not
1588  *	guarantee the frame will be transmitted as it may be dropped due
1589  *	to congestion or traffic shaping.
1590  *
1591  * -----------------------------------------------------------------------------------
1592  *      I notice this method can also return errors from the queue disciplines,
1593  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
1594  *      be positive.
1595  *
1596  *      Regardless of the return value, the skb is consumed, so it is currently
1597  *      difficult to retry a send to this method.  (You can bump the ref count
1598  *      before sending to hold a reference for retry if you are careful.)
1599  *
1600  *      When calling this method, interrupts MUST be enabled.  This is because
1601  *      the BH enable code must have IRQs enabled so that it will not deadlock.
1602  *          --BLG
1603  */
1604 
1605 int dev_queue_xmit(struct sk_buff *skb)
1606 {
1607 	struct net_device *dev = skb->dev;
1608 	struct Qdisc *q;
1609 	int rc = -ENOMEM;
1610 
1611 	/* GSO will handle the following emulations directly. */
1612 	if (netif_needs_gso(dev, skb))
1613 		goto gso;
1614 
1615 	if (skb_shinfo(skb)->frag_list &&
1616 	    !(dev->features & NETIF_F_FRAGLIST) &&
1617 	    __skb_linearize(skb))
1618 		goto out_kfree_skb;
1619 
1620 	/* Fragmented skb is linearized if device does not support SG,
1621 	 * or if at least one of fragments is in highmem and device
1622 	 * does not support DMA from it.
1623 	 */
1624 	if (skb_shinfo(skb)->nr_frags &&
1625 	    (!(dev->features & NETIF_F_SG) || illegal_highdma(dev, skb)) &&
1626 	    __skb_linearize(skb))
1627 		goto out_kfree_skb;
1628 
1629 	/* If packet is not checksummed and device does not support
1630 	 * checksumming for this protocol, complete checksumming here.
1631 	 */
1632 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
1633 		skb_set_transport_header(skb, skb->csum_start -
1634 					      skb_headroom(skb));
1635 
1636 		if (!(dev->features & NETIF_F_GEN_CSUM) &&
1637 		    !((dev->features & NETIF_F_IP_CSUM) &&
1638 		      skb->protocol == htons(ETH_P_IP)) &&
1639 		    !((dev->features & NETIF_F_IPV6_CSUM) &&
1640 		      skb->protocol == htons(ETH_P_IPV6)))
1641 			if (skb_checksum_help(skb))
1642 				goto out_kfree_skb;
1643 	}
1644 
1645 gso:
1646 	spin_lock_prefetch(&dev->queue_lock);
1647 
1648 	/* Disable soft irqs for various locks below. Also
1649 	 * stops preemption for RCU.
1650 	 */
1651 	rcu_read_lock_bh();
1652 
1653 	/* Updates of qdisc are serialized by queue_lock.
1654 	 * The struct Qdisc which is pointed to by qdisc is now a
1655 	 * rcu structure - it may be accessed without acquiring
1656 	 * a lock (but the structure may be stale.) The freeing of the
1657 	 * qdisc will be deferred until it's known that there are no
1658 	 * more references to it.
1659 	 *
1660 	 * If the qdisc has an enqueue function, we still need to
1661 	 * hold the queue_lock before calling it, since queue_lock
1662 	 * also serializes access to the device queue.
1663 	 */
1664 
1665 	q = rcu_dereference(dev->qdisc);
1666 #ifdef CONFIG_NET_CLS_ACT
1667 	skb->tc_verd = SET_TC_AT(skb->tc_verd,AT_EGRESS);
1668 #endif
1669 	if (q->enqueue) {
1670 		/* Grab device queue */
1671 		spin_lock(&dev->queue_lock);
1672 		q = dev->qdisc;
1673 		if (q->enqueue) {
1674 			/* reset queue_mapping to zero */
1675 			skb_set_queue_mapping(skb, 0);
1676 			rc = q->enqueue(skb, q);
1677 			qdisc_run(dev);
1678 			spin_unlock(&dev->queue_lock);
1679 
1680 			rc = rc == NET_XMIT_BYPASS ? NET_XMIT_SUCCESS : rc;
1681 			goto out;
1682 		}
1683 		spin_unlock(&dev->queue_lock);
1684 	}
1685 
1686 	/* The device has no queue. Common case for software devices:
1687 	   loopback, all the sorts of tunnels...
1688 
1689 	   Really, it is unlikely that netif_tx_lock protection is necessary
1690 	   here.  (f.e. loopback and IP tunnels are clean ignoring statistics
1691 	   counters.)
1692 	   However, it is possible, that they rely on protection
1693 	   made by us here.
1694 
1695 	   Check this and shot the lock. It is not prone from deadlocks.
1696 	   Either shot noqueue qdisc, it is even simpler 8)
1697 	 */
1698 	if (dev->flags & IFF_UP) {
1699 		int cpu = smp_processor_id(); /* ok because BHs are off */
1700 
1701 		if (dev->xmit_lock_owner != cpu) {
1702 
1703 			HARD_TX_LOCK(dev, cpu);
1704 
1705 			if (!netif_queue_stopped(dev) &&
1706 			    !netif_subqueue_stopped(dev, skb)) {
1707 				rc = 0;
1708 				if (!dev_hard_start_xmit(skb, dev)) {
1709 					HARD_TX_UNLOCK(dev);
1710 					goto out;
1711 				}
1712 			}
1713 			HARD_TX_UNLOCK(dev);
1714 			if (net_ratelimit())
1715 				printk(KERN_CRIT "Virtual device %s asks to "
1716 				       "queue packet!\n", dev->name);
1717 		} else {
1718 			/* Recursion is detected! It is possible,
1719 			 * unfortunately */
1720 			if (net_ratelimit())
1721 				printk(KERN_CRIT "Dead loop on virtual device "
1722 				       "%s, fix it urgently!\n", dev->name);
1723 		}
1724 	}
1725 
1726 	rc = -ENETDOWN;
1727 	rcu_read_unlock_bh();
1728 
1729 out_kfree_skb:
1730 	kfree_skb(skb);
1731 	return rc;
1732 out:
1733 	rcu_read_unlock_bh();
1734 	return rc;
1735 }
1736 
1737 
1738 /*=======================================================================
1739 			Receiver routines
1740   =======================================================================*/
1741 
1742 int netdev_max_backlog __read_mostly = 1000;
1743 int netdev_budget __read_mostly = 300;
1744 int weight_p __read_mostly = 64;            /* old backlog weight */
1745 
1746 DEFINE_PER_CPU(struct netif_rx_stats, netdev_rx_stat) = { 0, };
1747 
1748 
1749 /**
1750  *	netif_rx	-	post buffer to the network code
1751  *	@skb: buffer to post
1752  *
1753  *	This function receives a packet from a device driver and queues it for
1754  *	the upper (protocol) levels to process.  It always succeeds. The buffer
1755  *	may be dropped during processing for congestion control or by the
1756  *	protocol layers.
1757  *
1758  *	return values:
1759  *	NET_RX_SUCCESS	(no congestion)
1760  *	NET_RX_DROP     (packet was dropped)
1761  *
1762  */
1763 
1764 int netif_rx(struct sk_buff *skb)
1765 {
1766 	struct softnet_data *queue;
1767 	unsigned long flags;
1768 
1769 	/* if netpoll wants it, pretend we never saw it */
1770 	if (netpoll_rx(skb))
1771 		return NET_RX_DROP;
1772 
1773 	if (!skb->tstamp.tv64)
1774 		net_timestamp(skb);
1775 
1776 	/*
1777 	 * The code is rearranged so that the path is the most
1778 	 * short when CPU is congested, but is still operating.
1779 	 */
1780 	local_irq_save(flags);
1781 	queue = &__get_cpu_var(softnet_data);
1782 
1783 	__get_cpu_var(netdev_rx_stat).total++;
1784 	if (queue->input_pkt_queue.qlen <= netdev_max_backlog) {
1785 		if (queue->input_pkt_queue.qlen) {
1786 enqueue:
1787 			dev_hold(skb->dev);
1788 			__skb_queue_tail(&queue->input_pkt_queue, skb);
1789 			local_irq_restore(flags);
1790 			return NET_RX_SUCCESS;
1791 		}
1792 
1793 		napi_schedule(&queue->backlog);
1794 		goto enqueue;
1795 	}
1796 
1797 	__get_cpu_var(netdev_rx_stat).dropped++;
1798 	local_irq_restore(flags);
1799 
1800 	kfree_skb(skb);
1801 	return NET_RX_DROP;
1802 }
1803 
1804 int netif_rx_ni(struct sk_buff *skb)
1805 {
1806 	int err;
1807 
1808 	preempt_disable();
1809 	err = netif_rx(skb);
1810 	if (local_softirq_pending())
1811 		do_softirq();
1812 	preempt_enable();
1813 
1814 	return err;
1815 }
1816 
1817 EXPORT_SYMBOL(netif_rx_ni);
1818 
1819 static inline struct net_device *skb_bond(struct sk_buff *skb)
1820 {
1821 	struct net_device *dev = skb->dev;
1822 
1823 	if (dev->master) {
1824 		if (skb_bond_should_drop(skb)) {
1825 			kfree_skb(skb);
1826 			return NULL;
1827 		}
1828 		skb->dev = dev->master;
1829 	}
1830 
1831 	return dev;
1832 }
1833 
1834 
1835 static void net_tx_action(struct softirq_action *h)
1836 {
1837 	struct softnet_data *sd = &__get_cpu_var(softnet_data);
1838 
1839 	if (sd->completion_queue) {
1840 		struct sk_buff *clist;
1841 
1842 		local_irq_disable();
1843 		clist = sd->completion_queue;
1844 		sd->completion_queue = NULL;
1845 		local_irq_enable();
1846 
1847 		while (clist) {
1848 			struct sk_buff *skb = clist;
1849 			clist = clist->next;
1850 
1851 			BUG_TRAP(!atomic_read(&skb->users));
1852 			__kfree_skb(skb);
1853 		}
1854 	}
1855 
1856 	if (sd->output_queue) {
1857 		struct net_device *head;
1858 
1859 		local_irq_disable();
1860 		head = sd->output_queue;
1861 		sd->output_queue = NULL;
1862 		local_irq_enable();
1863 
1864 		while (head) {
1865 			struct net_device *dev = head;
1866 			head = head->next_sched;
1867 
1868 			smp_mb__before_clear_bit();
1869 			clear_bit(__LINK_STATE_SCHED, &dev->state);
1870 
1871 			if (spin_trylock(&dev->queue_lock)) {
1872 				qdisc_run(dev);
1873 				spin_unlock(&dev->queue_lock);
1874 			} else {
1875 				netif_schedule(dev);
1876 			}
1877 		}
1878 	}
1879 }
1880 
1881 static inline int deliver_skb(struct sk_buff *skb,
1882 			      struct packet_type *pt_prev,
1883 			      struct net_device *orig_dev)
1884 {
1885 	atomic_inc(&skb->users);
1886 	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1887 }
1888 
1889 #if defined(CONFIG_BRIDGE) || defined (CONFIG_BRIDGE_MODULE)
1890 /* These hooks defined here for ATM */
1891 struct net_bridge;
1892 struct net_bridge_fdb_entry *(*br_fdb_get_hook)(struct net_bridge *br,
1893 						unsigned char *addr);
1894 void (*br_fdb_put_hook)(struct net_bridge_fdb_entry *ent) __read_mostly;
1895 
1896 /*
1897  * If bridge module is loaded call bridging hook.
1898  *  returns NULL if packet was consumed.
1899  */
1900 struct sk_buff *(*br_handle_frame_hook)(struct net_bridge_port *p,
1901 					struct sk_buff *skb) __read_mostly;
1902 static inline struct sk_buff *handle_bridge(struct sk_buff *skb,
1903 					    struct packet_type **pt_prev, int *ret,
1904 					    struct net_device *orig_dev)
1905 {
1906 	struct net_bridge_port *port;
1907 
1908 	if (skb->pkt_type == PACKET_LOOPBACK ||
1909 	    (port = rcu_dereference(skb->dev->br_port)) == NULL)
1910 		return skb;
1911 
1912 	if (*pt_prev) {
1913 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
1914 		*pt_prev = NULL;
1915 	}
1916 
1917 	return br_handle_frame_hook(port, skb);
1918 }
1919 #else
1920 #define handle_bridge(skb, pt_prev, ret, orig_dev)	(skb)
1921 #endif
1922 
1923 #if defined(CONFIG_MACVLAN) || defined(CONFIG_MACVLAN_MODULE)
1924 struct sk_buff *(*macvlan_handle_frame_hook)(struct sk_buff *skb) __read_mostly;
1925 EXPORT_SYMBOL_GPL(macvlan_handle_frame_hook);
1926 
1927 static inline struct sk_buff *handle_macvlan(struct sk_buff *skb,
1928 					     struct packet_type **pt_prev,
1929 					     int *ret,
1930 					     struct net_device *orig_dev)
1931 {
1932 	if (skb->dev->macvlan_port == NULL)
1933 		return skb;
1934 
1935 	if (*pt_prev) {
1936 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
1937 		*pt_prev = NULL;
1938 	}
1939 	return macvlan_handle_frame_hook(skb);
1940 }
1941 #else
1942 #define handle_macvlan(skb, pt_prev, ret, orig_dev)	(skb)
1943 #endif
1944 
1945 #ifdef CONFIG_NET_CLS_ACT
1946 /* TODO: Maybe we should just force sch_ingress to be compiled in
1947  * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
1948  * a compare and 2 stores extra right now if we dont have it on
1949  * but have CONFIG_NET_CLS_ACT
1950  * NOTE: This doesnt stop any functionality; if you dont have
1951  * the ingress scheduler, you just cant add policies on ingress.
1952  *
1953  */
1954 static int ing_filter(struct sk_buff *skb)
1955 {
1956 	struct Qdisc *q;
1957 	struct net_device *dev = skb->dev;
1958 	int result = TC_ACT_OK;
1959 	u32 ttl = G_TC_RTTL(skb->tc_verd);
1960 
1961 	if (MAX_RED_LOOP < ttl++) {
1962 		printk(KERN_WARNING
1963 		       "Redir loop detected Dropping packet (%d->%d)\n",
1964 		       skb->iif, dev->ifindex);
1965 		return TC_ACT_SHOT;
1966 	}
1967 
1968 	skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
1969 	skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
1970 
1971 	spin_lock(&dev->ingress_lock);
1972 	if ((q = dev->qdisc_ingress) != NULL)
1973 		result = q->enqueue(skb, q);
1974 	spin_unlock(&dev->ingress_lock);
1975 
1976 	return result;
1977 }
1978 
1979 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
1980 					 struct packet_type **pt_prev,
1981 					 int *ret, struct net_device *orig_dev)
1982 {
1983 	if (!skb->dev->qdisc_ingress)
1984 		goto out;
1985 
1986 	if (*pt_prev) {
1987 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
1988 		*pt_prev = NULL;
1989 	} else {
1990 		/* Huh? Why does turning on AF_PACKET affect this? */
1991 		skb->tc_verd = SET_TC_OK2MUNGE(skb->tc_verd);
1992 	}
1993 
1994 	switch (ing_filter(skb)) {
1995 	case TC_ACT_SHOT:
1996 	case TC_ACT_STOLEN:
1997 		kfree_skb(skb);
1998 		return NULL;
1999 	}
2000 
2001 out:
2002 	skb->tc_verd = 0;
2003 	return skb;
2004 }
2005 #endif
2006 
2007 /**
2008  *	netif_receive_skb - process receive buffer from network
2009  *	@skb: buffer to process
2010  *
2011  *	netif_receive_skb() is the main receive data processing function.
2012  *	It always succeeds. The buffer may be dropped during processing
2013  *	for congestion control or by the protocol layers.
2014  *
2015  *	This function may only be called from softirq context and interrupts
2016  *	should be enabled.
2017  *
2018  *	Return values (usually ignored):
2019  *	NET_RX_SUCCESS: no congestion
2020  *	NET_RX_DROP: packet was dropped
2021  */
2022 int netif_receive_skb(struct sk_buff *skb)
2023 {
2024 	struct packet_type *ptype, *pt_prev;
2025 	struct net_device *orig_dev;
2026 	int ret = NET_RX_DROP;
2027 	__be16 type;
2028 
2029 	/* if we've gotten here through NAPI, check netpoll */
2030 	if (netpoll_receive_skb(skb))
2031 		return NET_RX_DROP;
2032 
2033 	if (!skb->tstamp.tv64)
2034 		net_timestamp(skb);
2035 
2036 	if (!skb->iif)
2037 		skb->iif = skb->dev->ifindex;
2038 
2039 	orig_dev = skb_bond(skb);
2040 
2041 	if (!orig_dev)
2042 		return NET_RX_DROP;
2043 
2044 	__get_cpu_var(netdev_rx_stat).total++;
2045 
2046 	skb_reset_network_header(skb);
2047 	skb_reset_transport_header(skb);
2048 	skb->mac_len = skb->network_header - skb->mac_header;
2049 
2050 	pt_prev = NULL;
2051 
2052 	rcu_read_lock();
2053 
2054 #ifdef CONFIG_NET_CLS_ACT
2055 	if (skb->tc_verd & TC_NCLS) {
2056 		skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
2057 		goto ncls;
2058 	}
2059 #endif
2060 
2061 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
2062 		if (!ptype->dev || ptype->dev == skb->dev) {
2063 			if (pt_prev)
2064 				ret = deliver_skb(skb, pt_prev, orig_dev);
2065 			pt_prev = ptype;
2066 		}
2067 	}
2068 
2069 #ifdef CONFIG_NET_CLS_ACT
2070 	skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
2071 	if (!skb)
2072 		goto out;
2073 ncls:
2074 #endif
2075 
2076 	skb = handle_bridge(skb, &pt_prev, &ret, orig_dev);
2077 	if (!skb)
2078 		goto out;
2079 	skb = handle_macvlan(skb, &pt_prev, &ret, orig_dev);
2080 	if (!skb)
2081 		goto out;
2082 
2083 	type = skb->protocol;
2084 	list_for_each_entry_rcu(ptype,
2085 			&ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
2086 		if (ptype->type == type &&
2087 		    (!ptype->dev || ptype->dev == skb->dev)) {
2088 			if (pt_prev)
2089 				ret = deliver_skb(skb, pt_prev, orig_dev);
2090 			pt_prev = ptype;
2091 		}
2092 	}
2093 
2094 	if (pt_prev) {
2095 		ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2096 	} else {
2097 		kfree_skb(skb);
2098 		/* Jamal, now you will not able to escape explaining
2099 		 * me how you were going to use this. :-)
2100 		 */
2101 		ret = NET_RX_DROP;
2102 	}
2103 
2104 out:
2105 	rcu_read_unlock();
2106 	return ret;
2107 }
2108 
2109 static int process_backlog(struct napi_struct *napi, int quota)
2110 {
2111 	int work = 0;
2112 	struct softnet_data *queue = &__get_cpu_var(softnet_data);
2113 	unsigned long start_time = jiffies;
2114 
2115 	napi->weight = weight_p;
2116 	do {
2117 		struct sk_buff *skb;
2118 		struct net_device *dev;
2119 
2120 		local_irq_disable();
2121 		skb = __skb_dequeue(&queue->input_pkt_queue);
2122 		if (!skb) {
2123 			__napi_complete(napi);
2124 			local_irq_enable();
2125 			break;
2126 		}
2127 
2128 		local_irq_enable();
2129 
2130 		dev = skb->dev;
2131 
2132 		netif_receive_skb(skb);
2133 
2134 		dev_put(dev);
2135 	} while (++work < quota && jiffies == start_time);
2136 
2137 	return work;
2138 }
2139 
2140 /**
2141  * __napi_schedule - schedule for receive
2142  * @n: entry to schedule
2143  *
2144  * The entry's receive function will be scheduled to run
2145  */
2146 void __napi_schedule(struct napi_struct *n)
2147 {
2148 	unsigned long flags;
2149 
2150 	local_irq_save(flags);
2151 	list_add_tail(&n->poll_list, &__get_cpu_var(softnet_data).poll_list);
2152 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
2153 	local_irq_restore(flags);
2154 }
2155 EXPORT_SYMBOL(__napi_schedule);
2156 
2157 
2158 static void net_rx_action(struct softirq_action *h)
2159 {
2160 	struct list_head *list = &__get_cpu_var(softnet_data).poll_list;
2161 	unsigned long start_time = jiffies;
2162 	int budget = netdev_budget;
2163 	void *have;
2164 
2165 	local_irq_disable();
2166 
2167 	while (!list_empty(list)) {
2168 		struct napi_struct *n;
2169 		int work, weight;
2170 
2171 		/* If softirq window is exhuasted then punt.
2172 		 *
2173 		 * Note that this is a slight policy change from the
2174 		 * previous NAPI code, which would allow up to 2
2175 		 * jiffies to pass before breaking out.  The test
2176 		 * used to be "jiffies - start_time > 1".
2177 		 */
2178 		if (unlikely(budget <= 0 || jiffies != start_time))
2179 			goto softnet_break;
2180 
2181 		local_irq_enable();
2182 
2183 		/* Even though interrupts have been re-enabled, this
2184 		 * access is safe because interrupts can only add new
2185 		 * entries to the tail of this list, and only ->poll()
2186 		 * calls can remove this head entry from the list.
2187 		 */
2188 		n = list_entry(list->next, struct napi_struct, poll_list);
2189 
2190 		have = netpoll_poll_lock(n);
2191 
2192 		weight = n->weight;
2193 
2194 		/* This NAPI_STATE_SCHED test is for avoiding a race
2195 		 * with netpoll's poll_napi().  Only the entity which
2196 		 * obtains the lock and sees NAPI_STATE_SCHED set will
2197 		 * actually make the ->poll() call.  Therefore we avoid
2198 		 * accidently calling ->poll() when NAPI is not scheduled.
2199 		 */
2200 		work = 0;
2201 		if (test_bit(NAPI_STATE_SCHED, &n->state))
2202 			work = n->poll(n, weight);
2203 
2204 		WARN_ON_ONCE(work > weight);
2205 
2206 		budget -= work;
2207 
2208 		local_irq_disable();
2209 
2210 		/* Drivers must not modify the NAPI state if they
2211 		 * consume the entire weight.  In such cases this code
2212 		 * still "owns" the NAPI instance and therefore can
2213 		 * move the instance around on the list at-will.
2214 		 */
2215 		if (unlikely(work == weight)) {
2216 			if (unlikely(napi_disable_pending(n)))
2217 				__napi_complete(n);
2218 			else
2219 				list_move_tail(&n->poll_list, list);
2220 		}
2221 
2222 		netpoll_poll_unlock(have);
2223 	}
2224 out:
2225 	local_irq_enable();
2226 
2227 #ifdef CONFIG_NET_DMA
2228 	/*
2229 	 * There may not be any more sk_buffs coming right now, so push
2230 	 * any pending DMA copies to hardware
2231 	 */
2232 	if (!cpus_empty(net_dma.channel_mask)) {
2233 		int chan_idx;
2234 		for_each_cpu_mask(chan_idx, net_dma.channel_mask) {
2235 			struct dma_chan *chan = net_dma.channels[chan_idx];
2236 			if (chan)
2237 				dma_async_memcpy_issue_pending(chan);
2238 		}
2239 	}
2240 #endif
2241 
2242 	return;
2243 
2244 softnet_break:
2245 	__get_cpu_var(netdev_rx_stat).time_squeeze++;
2246 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
2247 	goto out;
2248 }
2249 
2250 static gifconf_func_t * gifconf_list [NPROTO];
2251 
2252 /**
2253  *	register_gifconf	-	register a SIOCGIF handler
2254  *	@family: Address family
2255  *	@gifconf: Function handler
2256  *
2257  *	Register protocol dependent address dumping routines. The handler
2258  *	that is passed must not be freed or reused until it has been replaced
2259  *	by another handler.
2260  */
2261 int register_gifconf(unsigned int family, gifconf_func_t * gifconf)
2262 {
2263 	if (family >= NPROTO)
2264 		return -EINVAL;
2265 	gifconf_list[family] = gifconf;
2266 	return 0;
2267 }
2268 
2269 
2270 /*
2271  *	Map an interface index to its name (SIOCGIFNAME)
2272  */
2273 
2274 /*
2275  *	We need this ioctl for efficient implementation of the
2276  *	if_indextoname() function required by the IPv6 API.  Without
2277  *	it, we would have to search all the interfaces to find a
2278  *	match.  --pb
2279  */
2280 
2281 static int dev_ifname(struct net *net, struct ifreq __user *arg)
2282 {
2283 	struct net_device *dev;
2284 	struct ifreq ifr;
2285 
2286 	/*
2287 	 *	Fetch the caller's info block.
2288 	 */
2289 
2290 	if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
2291 		return -EFAULT;
2292 
2293 	read_lock(&dev_base_lock);
2294 	dev = __dev_get_by_index(net, ifr.ifr_ifindex);
2295 	if (!dev) {
2296 		read_unlock(&dev_base_lock);
2297 		return -ENODEV;
2298 	}
2299 
2300 	strcpy(ifr.ifr_name, dev->name);
2301 	read_unlock(&dev_base_lock);
2302 
2303 	if (copy_to_user(arg, &ifr, sizeof(struct ifreq)))
2304 		return -EFAULT;
2305 	return 0;
2306 }
2307 
2308 /*
2309  *	Perform a SIOCGIFCONF call. This structure will change
2310  *	size eventually, and there is nothing I can do about it.
2311  *	Thus we will need a 'compatibility mode'.
2312  */
2313 
2314 static int dev_ifconf(struct net *net, char __user *arg)
2315 {
2316 	struct ifconf ifc;
2317 	struct net_device *dev;
2318 	char __user *pos;
2319 	int len;
2320 	int total;
2321 	int i;
2322 
2323 	/*
2324 	 *	Fetch the caller's info block.
2325 	 */
2326 
2327 	if (copy_from_user(&ifc, arg, sizeof(struct ifconf)))
2328 		return -EFAULT;
2329 
2330 	pos = ifc.ifc_buf;
2331 	len = ifc.ifc_len;
2332 
2333 	/*
2334 	 *	Loop over the interfaces, and write an info block for each.
2335 	 */
2336 
2337 	total = 0;
2338 	for_each_netdev(net, dev) {
2339 		for (i = 0; i < NPROTO; i++) {
2340 			if (gifconf_list[i]) {
2341 				int done;
2342 				if (!pos)
2343 					done = gifconf_list[i](dev, NULL, 0);
2344 				else
2345 					done = gifconf_list[i](dev, pos + total,
2346 							       len - total);
2347 				if (done < 0)
2348 					return -EFAULT;
2349 				total += done;
2350 			}
2351 		}
2352 	}
2353 
2354 	/*
2355 	 *	All done.  Write the updated control block back to the caller.
2356 	 */
2357 	ifc.ifc_len = total;
2358 
2359 	/*
2360 	 * 	Both BSD and Solaris return 0 here, so we do too.
2361 	 */
2362 	return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0;
2363 }
2364 
2365 #ifdef CONFIG_PROC_FS
2366 /*
2367  *	This is invoked by the /proc filesystem handler to display a device
2368  *	in detail.
2369  */
2370 void *dev_seq_start(struct seq_file *seq, loff_t *pos)
2371 	__acquires(dev_base_lock)
2372 {
2373 	struct net *net = seq_file_net(seq);
2374 	loff_t off;
2375 	struct net_device *dev;
2376 
2377 	read_lock(&dev_base_lock);
2378 	if (!*pos)
2379 		return SEQ_START_TOKEN;
2380 
2381 	off = 1;
2382 	for_each_netdev(net, dev)
2383 		if (off++ == *pos)
2384 			return dev;
2385 
2386 	return NULL;
2387 }
2388 
2389 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2390 {
2391 	struct net *net = seq_file_net(seq);
2392 	++*pos;
2393 	return v == SEQ_START_TOKEN ?
2394 		first_net_device(net) : next_net_device((struct net_device *)v);
2395 }
2396 
2397 void dev_seq_stop(struct seq_file *seq, void *v)
2398 	__releases(dev_base_lock)
2399 {
2400 	read_unlock(&dev_base_lock);
2401 }
2402 
2403 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev)
2404 {
2405 	struct net_device_stats *stats = dev->get_stats(dev);
2406 
2407 	seq_printf(seq, "%6s:%8lu %7lu %4lu %4lu %4lu %5lu %10lu %9lu "
2408 		   "%8lu %7lu %4lu %4lu %4lu %5lu %7lu %10lu\n",
2409 		   dev->name, stats->rx_bytes, stats->rx_packets,
2410 		   stats->rx_errors,
2411 		   stats->rx_dropped + stats->rx_missed_errors,
2412 		   stats->rx_fifo_errors,
2413 		   stats->rx_length_errors + stats->rx_over_errors +
2414 		    stats->rx_crc_errors + stats->rx_frame_errors,
2415 		   stats->rx_compressed, stats->multicast,
2416 		   stats->tx_bytes, stats->tx_packets,
2417 		   stats->tx_errors, stats->tx_dropped,
2418 		   stats->tx_fifo_errors, stats->collisions,
2419 		   stats->tx_carrier_errors +
2420 		    stats->tx_aborted_errors +
2421 		    stats->tx_window_errors +
2422 		    stats->tx_heartbeat_errors,
2423 		   stats->tx_compressed);
2424 }
2425 
2426 /*
2427  *	Called from the PROCfs module. This now uses the new arbitrary sized
2428  *	/proc/net interface to create /proc/net/dev
2429  */
2430 static int dev_seq_show(struct seq_file *seq, void *v)
2431 {
2432 	if (v == SEQ_START_TOKEN)
2433 		seq_puts(seq, "Inter-|   Receive                            "
2434 			      "                    |  Transmit\n"
2435 			      " face |bytes    packets errs drop fifo frame "
2436 			      "compressed multicast|bytes    packets errs "
2437 			      "drop fifo colls carrier compressed\n");
2438 	else
2439 		dev_seq_printf_stats(seq, v);
2440 	return 0;
2441 }
2442 
2443 static struct netif_rx_stats *softnet_get_online(loff_t *pos)
2444 {
2445 	struct netif_rx_stats *rc = NULL;
2446 
2447 	while (*pos < nr_cpu_ids)
2448 		if (cpu_online(*pos)) {
2449 			rc = &per_cpu(netdev_rx_stat, *pos);
2450 			break;
2451 		} else
2452 			++*pos;
2453 	return rc;
2454 }
2455 
2456 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos)
2457 {
2458 	return softnet_get_online(pos);
2459 }
2460 
2461 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2462 {
2463 	++*pos;
2464 	return softnet_get_online(pos);
2465 }
2466 
2467 static void softnet_seq_stop(struct seq_file *seq, void *v)
2468 {
2469 }
2470 
2471 static int softnet_seq_show(struct seq_file *seq, void *v)
2472 {
2473 	struct netif_rx_stats *s = v;
2474 
2475 	seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x\n",
2476 		   s->total, s->dropped, s->time_squeeze, 0,
2477 		   0, 0, 0, 0, /* was fastroute */
2478 		   s->cpu_collision );
2479 	return 0;
2480 }
2481 
2482 static const struct seq_operations dev_seq_ops = {
2483 	.start = dev_seq_start,
2484 	.next  = dev_seq_next,
2485 	.stop  = dev_seq_stop,
2486 	.show  = dev_seq_show,
2487 };
2488 
2489 static int dev_seq_open(struct inode *inode, struct file *file)
2490 {
2491 	return seq_open_net(inode, file, &dev_seq_ops,
2492 			    sizeof(struct seq_net_private));
2493 }
2494 
2495 static const struct file_operations dev_seq_fops = {
2496 	.owner	 = THIS_MODULE,
2497 	.open    = dev_seq_open,
2498 	.read    = seq_read,
2499 	.llseek  = seq_lseek,
2500 	.release = seq_release_net,
2501 };
2502 
2503 static const struct seq_operations softnet_seq_ops = {
2504 	.start = softnet_seq_start,
2505 	.next  = softnet_seq_next,
2506 	.stop  = softnet_seq_stop,
2507 	.show  = softnet_seq_show,
2508 };
2509 
2510 static int softnet_seq_open(struct inode *inode, struct file *file)
2511 {
2512 	return seq_open(file, &softnet_seq_ops);
2513 }
2514 
2515 static const struct file_operations softnet_seq_fops = {
2516 	.owner	 = THIS_MODULE,
2517 	.open    = softnet_seq_open,
2518 	.read    = seq_read,
2519 	.llseek  = seq_lseek,
2520 	.release = seq_release,
2521 };
2522 
2523 static void *ptype_get_idx(loff_t pos)
2524 {
2525 	struct packet_type *pt = NULL;
2526 	loff_t i = 0;
2527 	int t;
2528 
2529 	list_for_each_entry_rcu(pt, &ptype_all, list) {
2530 		if (i == pos)
2531 			return pt;
2532 		++i;
2533 	}
2534 
2535 	for (t = 0; t < PTYPE_HASH_SIZE; t++) {
2536 		list_for_each_entry_rcu(pt, &ptype_base[t], list) {
2537 			if (i == pos)
2538 				return pt;
2539 			++i;
2540 		}
2541 	}
2542 	return NULL;
2543 }
2544 
2545 static void *ptype_seq_start(struct seq_file *seq, loff_t *pos)
2546 	__acquires(RCU)
2547 {
2548 	rcu_read_lock();
2549 	return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN;
2550 }
2551 
2552 static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2553 {
2554 	struct packet_type *pt;
2555 	struct list_head *nxt;
2556 	int hash;
2557 
2558 	++*pos;
2559 	if (v == SEQ_START_TOKEN)
2560 		return ptype_get_idx(0);
2561 
2562 	pt = v;
2563 	nxt = pt->list.next;
2564 	if (pt->type == htons(ETH_P_ALL)) {
2565 		if (nxt != &ptype_all)
2566 			goto found;
2567 		hash = 0;
2568 		nxt = ptype_base[0].next;
2569 	} else
2570 		hash = ntohs(pt->type) & PTYPE_HASH_MASK;
2571 
2572 	while (nxt == &ptype_base[hash]) {
2573 		if (++hash >= PTYPE_HASH_SIZE)
2574 			return NULL;
2575 		nxt = ptype_base[hash].next;
2576 	}
2577 found:
2578 	return list_entry(nxt, struct packet_type, list);
2579 }
2580 
2581 static void ptype_seq_stop(struct seq_file *seq, void *v)
2582 	__releases(RCU)
2583 {
2584 	rcu_read_unlock();
2585 }
2586 
2587 static void ptype_seq_decode(struct seq_file *seq, void *sym)
2588 {
2589 #ifdef CONFIG_KALLSYMS
2590 	unsigned long offset = 0, symsize;
2591 	const char *symname;
2592 	char *modname;
2593 	char namebuf[128];
2594 
2595 	symname = kallsyms_lookup((unsigned long)sym, &symsize, &offset,
2596 				  &modname, namebuf);
2597 
2598 	if (symname) {
2599 		char *delim = ":";
2600 
2601 		if (!modname)
2602 			modname = delim = "";
2603 		seq_printf(seq, "%s%s%s%s+0x%lx", delim, modname, delim,
2604 			   symname, offset);
2605 		return;
2606 	}
2607 #endif
2608 
2609 	seq_printf(seq, "[%p]", sym);
2610 }
2611 
2612 static int ptype_seq_show(struct seq_file *seq, void *v)
2613 {
2614 	struct packet_type *pt = v;
2615 
2616 	if (v == SEQ_START_TOKEN)
2617 		seq_puts(seq, "Type Device      Function\n");
2618 	else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) {
2619 		if (pt->type == htons(ETH_P_ALL))
2620 			seq_puts(seq, "ALL ");
2621 		else
2622 			seq_printf(seq, "%04x", ntohs(pt->type));
2623 
2624 		seq_printf(seq, " %-8s ",
2625 			   pt->dev ? pt->dev->name : "");
2626 		ptype_seq_decode(seq,  pt->func);
2627 		seq_putc(seq, '\n');
2628 	}
2629 
2630 	return 0;
2631 }
2632 
2633 static const struct seq_operations ptype_seq_ops = {
2634 	.start = ptype_seq_start,
2635 	.next  = ptype_seq_next,
2636 	.stop  = ptype_seq_stop,
2637 	.show  = ptype_seq_show,
2638 };
2639 
2640 static int ptype_seq_open(struct inode *inode, struct file *file)
2641 {
2642 	return seq_open_net(inode, file, &ptype_seq_ops,
2643 			sizeof(struct seq_net_private));
2644 }
2645 
2646 static const struct file_operations ptype_seq_fops = {
2647 	.owner	 = THIS_MODULE,
2648 	.open    = ptype_seq_open,
2649 	.read    = seq_read,
2650 	.llseek  = seq_lseek,
2651 	.release = seq_release_net,
2652 };
2653 
2654 
2655 static int __net_init dev_proc_net_init(struct net *net)
2656 {
2657 	int rc = -ENOMEM;
2658 
2659 	if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops))
2660 		goto out;
2661 	if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops))
2662 		goto out_dev;
2663 	if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops))
2664 		goto out_softnet;
2665 
2666 	if (wext_proc_init(net))
2667 		goto out_ptype;
2668 	rc = 0;
2669 out:
2670 	return rc;
2671 out_ptype:
2672 	proc_net_remove(net, "ptype");
2673 out_softnet:
2674 	proc_net_remove(net, "softnet_stat");
2675 out_dev:
2676 	proc_net_remove(net, "dev");
2677 	goto out;
2678 }
2679 
2680 static void __net_exit dev_proc_net_exit(struct net *net)
2681 {
2682 	wext_proc_exit(net);
2683 
2684 	proc_net_remove(net, "ptype");
2685 	proc_net_remove(net, "softnet_stat");
2686 	proc_net_remove(net, "dev");
2687 }
2688 
2689 static struct pernet_operations __net_initdata dev_proc_ops = {
2690 	.init = dev_proc_net_init,
2691 	.exit = dev_proc_net_exit,
2692 };
2693 
2694 static int __init dev_proc_init(void)
2695 {
2696 	return register_pernet_subsys(&dev_proc_ops);
2697 }
2698 #else
2699 #define dev_proc_init() 0
2700 #endif	/* CONFIG_PROC_FS */
2701 
2702 
2703 /**
2704  *	netdev_set_master	-	set up master/slave pair
2705  *	@slave: slave device
2706  *	@master: new master device
2707  *
2708  *	Changes the master device of the slave. Pass %NULL to break the
2709  *	bonding. The caller must hold the RTNL semaphore. On a failure
2710  *	a negative errno code is returned. On success the reference counts
2711  *	are adjusted, %RTM_NEWLINK is sent to the routing socket and the
2712  *	function returns zero.
2713  */
2714 int netdev_set_master(struct net_device *slave, struct net_device *master)
2715 {
2716 	struct net_device *old = slave->master;
2717 
2718 	ASSERT_RTNL();
2719 
2720 	if (master) {
2721 		if (old)
2722 			return -EBUSY;
2723 		dev_hold(master);
2724 	}
2725 
2726 	slave->master = master;
2727 
2728 	synchronize_net();
2729 
2730 	if (old)
2731 		dev_put(old);
2732 
2733 	if (master)
2734 		slave->flags |= IFF_SLAVE;
2735 	else
2736 		slave->flags &= ~IFF_SLAVE;
2737 
2738 	rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE);
2739 	return 0;
2740 }
2741 
2742 static void __dev_set_promiscuity(struct net_device *dev, int inc)
2743 {
2744 	unsigned short old_flags = dev->flags;
2745 
2746 	ASSERT_RTNL();
2747 
2748 	if ((dev->promiscuity += inc) == 0)
2749 		dev->flags &= ~IFF_PROMISC;
2750 	else
2751 		dev->flags |= IFF_PROMISC;
2752 	if (dev->flags != old_flags) {
2753 		printk(KERN_INFO "device %s %s promiscuous mode\n",
2754 		       dev->name, (dev->flags & IFF_PROMISC) ? "entered" :
2755 							       "left");
2756 		if (audit_enabled)
2757 			audit_log(current->audit_context, GFP_ATOMIC,
2758 				AUDIT_ANOM_PROMISCUOUS,
2759 				"dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
2760 				dev->name, (dev->flags & IFF_PROMISC),
2761 				(old_flags & IFF_PROMISC),
2762 				audit_get_loginuid(current),
2763 				current->uid, current->gid,
2764 				audit_get_sessionid(current));
2765 
2766 		if (dev->change_rx_flags)
2767 			dev->change_rx_flags(dev, IFF_PROMISC);
2768 	}
2769 }
2770 
2771 /**
2772  *	dev_set_promiscuity	- update promiscuity count on a device
2773  *	@dev: device
2774  *	@inc: modifier
2775  *
2776  *	Add or remove promiscuity from a device. While the count in the device
2777  *	remains above zero the interface remains promiscuous. Once it hits zero
2778  *	the device reverts back to normal filtering operation. A negative inc
2779  *	value is used to drop promiscuity on the device.
2780  */
2781 void dev_set_promiscuity(struct net_device *dev, int inc)
2782 {
2783 	unsigned short old_flags = dev->flags;
2784 
2785 	__dev_set_promiscuity(dev, inc);
2786 	if (dev->flags != old_flags)
2787 		dev_set_rx_mode(dev);
2788 }
2789 
2790 /**
2791  *	dev_set_allmulti	- update allmulti count on a device
2792  *	@dev: device
2793  *	@inc: modifier
2794  *
2795  *	Add or remove reception of all multicast frames to a device. While the
2796  *	count in the device remains above zero the interface remains listening
2797  *	to all interfaces. Once it hits zero the device reverts back to normal
2798  *	filtering operation. A negative @inc value is used to drop the counter
2799  *	when releasing a resource needing all multicasts.
2800  */
2801 
2802 void dev_set_allmulti(struct net_device *dev, int inc)
2803 {
2804 	unsigned short old_flags = dev->flags;
2805 
2806 	ASSERT_RTNL();
2807 
2808 	dev->flags |= IFF_ALLMULTI;
2809 	if ((dev->allmulti += inc) == 0)
2810 		dev->flags &= ~IFF_ALLMULTI;
2811 	if (dev->flags ^ old_flags) {
2812 		if (dev->change_rx_flags)
2813 			dev->change_rx_flags(dev, IFF_ALLMULTI);
2814 		dev_set_rx_mode(dev);
2815 	}
2816 }
2817 
2818 /*
2819  *	Upload unicast and multicast address lists to device and
2820  *	configure RX filtering. When the device doesn't support unicast
2821  *	filtering it is put in promiscuous mode while unicast addresses
2822  *	are present.
2823  */
2824 void __dev_set_rx_mode(struct net_device *dev)
2825 {
2826 	/* dev_open will call this function so the list will stay sane. */
2827 	if (!(dev->flags&IFF_UP))
2828 		return;
2829 
2830 	if (!netif_device_present(dev))
2831 		return;
2832 
2833 	if (dev->set_rx_mode)
2834 		dev->set_rx_mode(dev);
2835 	else {
2836 		/* Unicast addresses changes may only happen under the rtnl,
2837 		 * therefore calling __dev_set_promiscuity here is safe.
2838 		 */
2839 		if (dev->uc_count > 0 && !dev->uc_promisc) {
2840 			__dev_set_promiscuity(dev, 1);
2841 			dev->uc_promisc = 1;
2842 		} else if (dev->uc_count == 0 && dev->uc_promisc) {
2843 			__dev_set_promiscuity(dev, -1);
2844 			dev->uc_promisc = 0;
2845 		}
2846 
2847 		if (dev->set_multicast_list)
2848 			dev->set_multicast_list(dev);
2849 	}
2850 }
2851 
2852 void dev_set_rx_mode(struct net_device *dev)
2853 {
2854 	netif_tx_lock_bh(dev);
2855 	__dev_set_rx_mode(dev);
2856 	netif_tx_unlock_bh(dev);
2857 }
2858 
2859 int __dev_addr_delete(struct dev_addr_list **list, int *count,
2860 		      void *addr, int alen, int glbl)
2861 {
2862 	struct dev_addr_list *da;
2863 
2864 	for (; (da = *list) != NULL; list = &da->next) {
2865 		if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 &&
2866 		    alen == da->da_addrlen) {
2867 			if (glbl) {
2868 				int old_glbl = da->da_gusers;
2869 				da->da_gusers = 0;
2870 				if (old_glbl == 0)
2871 					break;
2872 			}
2873 			if (--da->da_users)
2874 				return 0;
2875 
2876 			*list = da->next;
2877 			kfree(da);
2878 			(*count)--;
2879 			return 0;
2880 		}
2881 	}
2882 	return -ENOENT;
2883 }
2884 
2885 int __dev_addr_add(struct dev_addr_list **list, int *count,
2886 		   void *addr, int alen, int glbl)
2887 {
2888 	struct dev_addr_list *da;
2889 
2890 	for (da = *list; da != NULL; da = da->next) {
2891 		if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 &&
2892 		    da->da_addrlen == alen) {
2893 			if (glbl) {
2894 				int old_glbl = da->da_gusers;
2895 				da->da_gusers = 1;
2896 				if (old_glbl)
2897 					return 0;
2898 			}
2899 			da->da_users++;
2900 			return 0;
2901 		}
2902 	}
2903 
2904 	da = kzalloc(sizeof(*da), GFP_ATOMIC);
2905 	if (da == NULL)
2906 		return -ENOMEM;
2907 	memcpy(da->da_addr, addr, alen);
2908 	da->da_addrlen = alen;
2909 	da->da_users = 1;
2910 	da->da_gusers = glbl ? 1 : 0;
2911 	da->next = *list;
2912 	*list = da;
2913 	(*count)++;
2914 	return 0;
2915 }
2916 
2917 /**
2918  *	dev_unicast_delete	- Release secondary unicast address.
2919  *	@dev: device
2920  *	@addr: address to delete
2921  *	@alen: length of @addr
2922  *
2923  *	Release reference to a secondary unicast address and remove it
2924  *	from the device if the reference count drops to zero.
2925  *
2926  * 	The caller must hold the rtnl_mutex.
2927  */
2928 int dev_unicast_delete(struct net_device *dev, void *addr, int alen)
2929 {
2930 	int err;
2931 
2932 	ASSERT_RTNL();
2933 
2934 	netif_tx_lock_bh(dev);
2935 	err = __dev_addr_delete(&dev->uc_list, &dev->uc_count, addr, alen, 0);
2936 	if (!err)
2937 		__dev_set_rx_mode(dev);
2938 	netif_tx_unlock_bh(dev);
2939 	return err;
2940 }
2941 EXPORT_SYMBOL(dev_unicast_delete);
2942 
2943 /**
2944  *	dev_unicast_add		- add a secondary unicast address
2945  *	@dev: device
2946  *	@addr: address to delete
2947  *	@alen: length of @addr
2948  *
2949  *	Add a secondary unicast address to the device or increase
2950  *	the reference count if it already exists.
2951  *
2952  *	The caller must hold the rtnl_mutex.
2953  */
2954 int dev_unicast_add(struct net_device *dev, void *addr, int alen)
2955 {
2956 	int err;
2957 
2958 	ASSERT_RTNL();
2959 
2960 	netif_tx_lock_bh(dev);
2961 	err = __dev_addr_add(&dev->uc_list, &dev->uc_count, addr, alen, 0);
2962 	if (!err)
2963 		__dev_set_rx_mode(dev);
2964 	netif_tx_unlock_bh(dev);
2965 	return err;
2966 }
2967 EXPORT_SYMBOL(dev_unicast_add);
2968 
2969 int __dev_addr_sync(struct dev_addr_list **to, int *to_count,
2970 		    struct dev_addr_list **from, int *from_count)
2971 {
2972 	struct dev_addr_list *da, *next;
2973 	int err = 0;
2974 
2975 	da = *from;
2976 	while (da != NULL) {
2977 		next = da->next;
2978 		if (!da->da_synced) {
2979 			err = __dev_addr_add(to, to_count,
2980 					     da->da_addr, da->da_addrlen, 0);
2981 			if (err < 0)
2982 				break;
2983 			da->da_synced = 1;
2984 			da->da_users++;
2985 		} else if (da->da_users == 1) {
2986 			__dev_addr_delete(to, to_count,
2987 					  da->da_addr, da->da_addrlen, 0);
2988 			__dev_addr_delete(from, from_count,
2989 					  da->da_addr, da->da_addrlen, 0);
2990 		}
2991 		da = next;
2992 	}
2993 	return err;
2994 }
2995 
2996 void __dev_addr_unsync(struct dev_addr_list **to, int *to_count,
2997 		       struct dev_addr_list **from, int *from_count)
2998 {
2999 	struct dev_addr_list *da, *next;
3000 
3001 	da = *from;
3002 	while (da != NULL) {
3003 		next = da->next;
3004 		if (da->da_synced) {
3005 			__dev_addr_delete(to, to_count,
3006 					  da->da_addr, da->da_addrlen, 0);
3007 			da->da_synced = 0;
3008 			__dev_addr_delete(from, from_count,
3009 					  da->da_addr, da->da_addrlen, 0);
3010 		}
3011 		da = next;
3012 	}
3013 }
3014 
3015 /**
3016  *	dev_unicast_sync - Synchronize device's unicast list to another device
3017  *	@to: destination device
3018  *	@from: source device
3019  *
3020  *	Add newly added addresses to the destination device and release
3021  *	addresses that have no users left. The source device must be
3022  *	locked by netif_tx_lock_bh.
3023  *
3024  *	This function is intended to be called from the dev->set_rx_mode
3025  *	function of layered software devices.
3026  */
3027 int dev_unicast_sync(struct net_device *to, struct net_device *from)
3028 {
3029 	int err = 0;
3030 
3031 	netif_tx_lock_bh(to);
3032 	err = __dev_addr_sync(&to->uc_list, &to->uc_count,
3033 			      &from->uc_list, &from->uc_count);
3034 	if (!err)
3035 		__dev_set_rx_mode(to);
3036 	netif_tx_unlock_bh(to);
3037 	return err;
3038 }
3039 EXPORT_SYMBOL(dev_unicast_sync);
3040 
3041 /**
3042  *	dev_unicast_unsync - Remove synchronized addresses from the destination device
3043  *	@to: destination device
3044  *	@from: source device
3045  *
3046  *	Remove all addresses that were added to the destination device by
3047  *	dev_unicast_sync(). This function is intended to be called from the
3048  *	dev->stop function of layered software devices.
3049  */
3050 void dev_unicast_unsync(struct net_device *to, struct net_device *from)
3051 {
3052 	netif_tx_lock_bh(from);
3053 	netif_tx_lock_bh(to);
3054 
3055 	__dev_addr_unsync(&to->uc_list, &to->uc_count,
3056 			  &from->uc_list, &from->uc_count);
3057 	__dev_set_rx_mode(to);
3058 
3059 	netif_tx_unlock_bh(to);
3060 	netif_tx_unlock_bh(from);
3061 }
3062 EXPORT_SYMBOL(dev_unicast_unsync);
3063 
3064 static void __dev_addr_discard(struct dev_addr_list **list)
3065 {
3066 	struct dev_addr_list *tmp;
3067 
3068 	while (*list != NULL) {
3069 		tmp = *list;
3070 		*list = tmp->next;
3071 		if (tmp->da_users > tmp->da_gusers)
3072 			printk("__dev_addr_discard: address leakage! "
3073 			       "da_users=%d\n", tmp->da_users);
3074 		kfree(tmp);
3075 	}
3076 }
3077 
3078 static void dev_addr_discard(struct net_device *dev)
3079 {
3080 	netif_tx_lock_bh(dev);
3081 
3082 	__dev_addr_discard(&dev->uc_list);
3083 	dev->uc_count = 0;
3084 
3085 	__dev_addr_discard(&dev->mc_list);
3086 	dev->mc_count = 0;
3087 
3088 	netif_tx_unlock_bh(dev);
3089 }
3090 
3091 unsigned dev_get_flags(const struct net_device *dev)
3092 {
3093 	unsigned flags;
3094 
3095 	flags = (dev->flags & ~(IFF_PROMISC |
3096 				IFF_ALLMULTI |
3097 				IFF_RUNNING |
3098 				IFF_LOWER_UP |
3099 				IFF_DORMANT)) |
3100 		(dev->gflags & (IFF_PROMISC |
3101 				IFF_ALLMULTI));
3102 
3103 	if (netif_running(dev)) {
3104 		if (netif_oper_up(dev))
3105 			flags |= IFF_RUNNING;
3106 		if (netif_carrier_ok(dev))
3107 			flags |= IFF_LOWER_UP;
3108 		if (netif_dormant(dev))
3109 			flags |= IFF_DORMANT;
3110 	}
3111 
3112 	return flags;
3113 }
3114 
3115 int dev_change_flags(struct net_device *dev, unsigned flags)
3116 {
3117 	int ret, changes;
3118 	int old_flags = dev->flags;
3119 
3120 	ASSERT_RTNL();
3121 
3122 	/*
3123 	 *	Set the flags on our device.
3124 	 */
3125 
3126 	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
3127 			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
3128 			       IFF_AUTOMEDIA)) |
3129 		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
3130 				    IFF_ALLMULTI));
3131 
3132 	/*
3133 	 *	Load in the correct multicast list now the flags have changed.
3134 	 */
3135 
3136 	if (dev->change_rx_flags && (dev->flags ^ flags) & IFF_MULTICAST)
3137 		dev->change_rx_flags(dev, IFF_MULTICAST);
3138 
3139 	dev_set_rx_mode(dev);
3140 
3141 	/*
3142 	 *	Have we downed the interface. We handle IFF_UP ourselves
3143 	 *	according to user attempts to set it, rather than blindly
3144 	 *	setting it.
3145 	 */
3146 
3147 	ret = 0;
3148 	if ((old_flags ^ flags) & IFF_UP) {	/* Bit is different  ? */
3149 		ret = ((old_flags & IFF_UP) ? dev_close : dev_open)(dev);
3150 
3151 		if (!ret)
3152 			dev_set_rx_mode(dev);
3153 	}
3154 
3155 	if (dev->flags & IFF_UP &&
3156 	    ((old_flags ^ dev->flags) &~ (IFF_UP | IFF_PROMISC | IFF_ALLMULTI |
3157 					  IFF_VOLATILE)))
3158 		call_netdevice_notifiers(NETDEV_CHANGE, dev);
3159 
3160 	if ((flags ^ dev->gflags) & IFF_PROMISC) {
3161 		int inc = (flags & IFF_PROMISC) ? +1 : -1;
3162 		dev->gflags ^= IFF_PROMISC;
3163 		dev_set_promiscuity(dev, inc);
3164 	}
3165 
3166 	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
3167 	   is important. Some (broken) drivers set IFF_PROMISC, when
3168 	   IFF_ALLMULTI is requested not asking us and not reporting.
3169 	 */
3170 	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
3171 		int inc = (flags & IFF_ALLMULTI) ? +1 : -1;
3172 		dev->gflags ^= IFF_ALLMULTI;
3173 		dev_set_allmulti(dev, inc);
3174 	}
3175 
3176 	/* Exclude state transition flags, already notified */
3177 	changes = (old_flags ^ dev->flags) & ~(IFF_UP | IFF_RUNNING);
3178 	if (changes)
3179 		rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
3180 
3181 	return ret;
3182 }
3183 
3184 int dev_set_mtu(struct net_device *dev, int new_mtu)
3185 {
3186 	int err;
3187 
3188 	if (new_mtu == dev->mtu)
3189 		return 0;
3190 
3191 	/*	MTU must be positive.	 */
3192 	if (new_mtu < 0)
3193 		return -EINVAL;
3194 
3195 	if (!netif_device_present(dev))
3196 		return -ENODEV;
3197 
3198 	err = 0;
3199 	if (dev->change_mtu)
3200 		err = dev->change_mtu(dev, new_mtu);
3201 	else
3202 		dev->mtu = new_mtu;
3203 	if (!err && dev->flags & IFF_UP)
3204 		call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
3205 	return err;
3206 }
3207 
3208 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
3209 {
3210 	int err;
3211 
3212 	if (!dev->set_mac_address)
3213 		return -EOPNOTSUPP;
3214 	if (sa->sa_family != dev->type)
3215 		return -EINVAL;
3216 	if (!netif_device_present(dev))
3217 		return -ENODEV;
3218 	err = dev->set_mac_address(dev, sa);
3219 	if (!err)
3220 		call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
3221 	return err;
3222 }
3223 
3224 /*
3225  *	Perform the SIOCxIFxxx calls, inside read_lock(dev_base_lock)
3226  */
3227 static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd)
3228 {
3229 	int err;
3230 	struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
3231 
3232 	if (!dev)
3233 		return -ENODEV;
3234 
3235 	switch (cmd) {
3236 		case SIOCGIFFLAGS:	/* Get interface flags */
3237 			ifr->ifr_flags = dev_get_flags(dev);
3238 			return 0;
3239 
3240 		case SIOCGIFMETRIC:	/* Get the metric on the interface
3241 					   (currently unused) */
3242 			ifr->ifr_metric = 0;
3243 			return 0;
3244 
3245 		case SIOCGIFMTU:	/* Get the MTU of a device */
3246 			ifr->ifr_mtu = dev->mtu;
3247 			return 0;
3248 
3249 		case SIOCGIFHWADDR:
3250 			if (!dev->addr_len)
3251 				memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data);
3252 			else
3253 				memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr,
3254 				       min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
3255 			ifr->ifr_hwaddr.sa_family = dev->type;
3256 			return 0;
3257 
3258 		case SIOCGIFSLAVE:
3259 			err = -EINVAL;
3260 			break;
3261 
3262 		case SIOCGIFMAP:
3263 			ifr->ifr_map.mem_start = dev->mem_start;
3264 			ifr->ifr_map.mem_end   = dev->mem_end;
3265 			ifr->ifr_map.base_addr = dev->base_addr;
3266 			ifr->ifr_map.irq       = dev->irq;
3267 			ifr->ifr_map.dma       = dev->dma;
3268 			ifr->ifr_map.port      = dev->if_port;
3269 			return 0;
3270 
3271 		case SIOCGIFINDEX:
3272 			ifr->ifr_ifindex = dev->ifindex;
3273 			return 0;
3274 
3275 		case SIOCGIFTXQLEN:
3276 			ifr->ifr_qlen = dev->tx_queue_len;
3277 			return 0;
3278 
3279 		default:
3280 			/* dev_ioctl() should ensure this case
3281 			 * is never reached
3282 			 */
3283 			WARN_ON(1);
3284 			err = -EINVAL;
3285 			break;
3286 
3287 	}
3288 	return err;
3289 }
3290 
3291 /*
3292  *	Perform the SIOCxIFxxx calls, inside rtnl_lock()
3293  */
3294 static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd)
3295 {
3296 	int err;
3297 	struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
3298 
3299 	if (!dev)
3300 		return -ENODEV;
3301 
3302 	switch (cmd) {
3303 		case SIOCSIFFLAGS:	/* Set interface flags */
3304 			return dev_change_flags(dev, ifr->ifr_flags);
3305 
3306 		case SIOCSIFMETRIC:	/* Set the metric on the interface
3307 					   (currently unused) */
3308 			return -EOPNOTSUPP;
3309 
3310 		case SIOCSIFMTU:	/* Set the MTU of a device */
3311 			return dev_set_mtu(dev, ifr->ifr_mtu);
3312 
3313 		case SIOCSIFHWADDR:
3314 			return dev_set_mac_address(dev, &ifr->ifr_hwaddr);
3315 
3316 		case SIOCSIFHWBROADCAST:
3317 			if (ifr->ifr_hwaddr.sa_family != dev->type)
3318 				return -EINVAL;
3319 			memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data,
3320 			       min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
3321 			call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
3322 			return 0;
3323 
3324 		case SIOCSIFMAP:
3325 			if (dev->set_config) {
3326 				if (!netif_device_present(dev))
3327 					return -ENODEV;
3328 				return dev->set_config(dev, &ifr->ifr_map);
3329 			}
3330 			return -EOPNOTSUPP;
3331 
3332 		case SIOCADDMULTI:
3333 			if ((!dev->set_multicast_list && !dev->set_rx_mode) ||
3334 			    ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
3335 				return -EINVAL;
3336 			if (!netif_device_present(dev))
3337 				return -ENODEV;
3338 			return dev_mc_add(dev, ifr->ifr_hwaddr.sa_data,
3339 					  dev->addr_len, 1);
3340 
3341 		case SIOCDELMULTI:
3342 			if ((!dev->set_multicast_list && !dev->set_rx_mode) ||
3343 			    ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
3344 				return -EINVAL;
3345 			if (!netif_device_present(dev))
3346 				return -ENODEV;
3347 			return dev_mc_delete(dev, ifr->ifr_hwaddr.sa_data,
3348 					     dev->addr_len, 1);
3349 
3350 		case SIOCSIFTXQLEN:
3351 			if (ifr->ifr_qlen < 0)
3352 				return -EINVAL;
3353 			dev->tx_queue_len = ifr->ifr_qlen;
3354 			return 0;
3355 
3356 		case SIOCSIFNAME:
3357 			ifr->ifr_newname[IFNAMSIZ-1] = '\0';
3358 			return dev_change_name(dev, ifr->ifr_newname);
3359 
3360 		/*
3361 		 *	Unknown or private ioctl
3362 		 */
3363 
3364 		default:
3365 			if ((cmd >= SIOCDEVPRIVATE &&
3366 			    cmd <= SIOCDEVPRIVATE + 15) ||
3367 			    cmd == SIOCBONDENSLAVE ||
3368 			    cmd == SIOCBONDRELEASE ||
3369 			    cmd == SIOCBONDSETHWADDR ||
3370 			    cmd == SIOCBONDSLAVEINFOQUERY ||
3371 			    cmd == SIOCBONDINFOQUERY ||
3372 			    cmd == SIOCBONDCHANGEACTIVE ||
3373 			    cmd == SIOCGMIIPHY ||
3374 			    cmd == SIOCGMIIREG ||
3375 			    cmd == SIOCSMIIREG ||
3376 			    cmd == SIOCBRADDIF ||
3377 			    cmd == SIOCBRDELIF ||
3378 			    cmd == SIOCWANDEV) {
3379 				err = -EOPNOTSUPP;
3380 				if (dev->do_ioctl) {
3381 					if (netif_device_present(dev))
3382 						err = dev->do_ioctl(dev, ifr,
3383 								    cmd);
3384 					else
3385 						err = -ENODEV;
3386 				}
3387 			} else
3388 				err = -EINVAL;
3389 
3390 	}
3391 	return err;
3392 }
3393 
3394 /*
3395  *	This function handles all "interface"-type I/O control requests. The actual
3396  *	'doing' part of this is dev_ifsioc above.
3397  */
3398 
3399 /**
3400  *	dev_ioctl	-	network device ioctl
3401  *	@net: the applicable net namespace
3402  *	@cmd: command to issue
3403  *	@arg: pointer to a struct ifreq in user space
3404  *
3405  *	Issue ioctl functions to devices. This is normally called by the
3406  *	user space syscall interfaces but can sometimes be useful for
3407  *	other purposes. The return value is the return from the syscall if
3408  *	positive or a negative errno code on error.
3409  */
3410 
3411 int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg)
3412 {
3413 	struct ifreq ifr;
3414 	int ret;
3415 	char *colon;
3416 
3417 	/* One special case: SIOCGIFCONF takes ifconf argument
3418 	   and requires shared lock, because it sleeps writing
3419 	   to user space.
3420 	 */
3421 
3422 	if (cmd == SIOCGIFCONF) {
3423 		rtnl_lock();
3424 		ret = dev_ifconf(net, (char __user *) arg);
3425 		rtnl_unlock();
3426 		return ret;
3427 	}
3428 	if (cmd == SIOCGIFNAME)
3429 		return dev_ifname(net, (struct ifreq __user *)arg);
3430 
3431 	if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
3432 		return -EFAULT;
3433 
3434 	ifr.ifr_name[IFNAMSIZ-1] = 0;
3435 
3436 	colon = strchr(ifr.ifr_name, ':');
3437 	if (colon)
3438 		*colon = 0;
3439 
3440 	/*
3441 	 *	See which interface the caller is talking about.
3442 	 */
3443 
3444 	switch (cmd) {
3445 		/*
3446 		 *	These ioctl calls:
3447 		 *	- can be done by all.
3448 		 *	- atomic and do not require locking.
3449 		 *	- return a value
3450 		 */
3451 		case SIOCGIFFLAGS:
3452 		case SIOCGIFMETRIC:
3453 		case SIOCGIFMTU:
3454 		case SIOCGIFHWADDR:
3455 		case SIOCGIFSLAVE:
3456 		case SIOCGIFMAP:
3457 		case SIOCGIFINDEX:
3458 		case SIOCGIFTXQLEN:
3459 			dev_load(net, ifr.ifr_name);
3460 			read_lock(&dev_base_lock);
3461 			ret = dev_ifsioc_locked(net, &ifr, cmd);
3462 			read_unlock(&dev_base_lock);
3463 			if (!ret) {
3464 				if (colon)
3465 					*colon = ':';
3466 				if (copy_to_user(arg, &ifr,
3467 						 sizeof(struct ifreq)))
3468 					ret = -EFAULT;
3469 			}
3470 			return ret;
3471 
3472 		case SIOCETHTOOL:
3473 			dev_load(net, ifr.ifr_name);
3474 			rtnl_lock();
3475 			ret = dev_ethtool(net, &ifr);
3476 			rtnl_unlock();
3477 			if (!ret) {
3478 				if (colon)
3479 					*colon = ':';
3480 				if (copy_to_user(arg, &ifr,
3481 						 sizeof(struct ifreq)))
3482 					ret = -EFAULT;
3483 			}
3484 			return ret;
3485 
3486 		/*
3487 		 *	These ioctl calls:
3488 		 *	- require superuser power.
3489 		 *	- require strict serialization.
3490 		 *	- return a value
3491 		 */
3492 		case SIOCGMIIPHY:
3493 		case SIOCGMIIREG:
3494 		case SIOCSIFNAME:
3495 			if (!capable(CAP_NET_ADMIN))
3496 				return -EPERM;
3497 			dev_load(net, ifr.ifr_name);
3498 			rtnl_lock();
3499 			ret = dev_ifsioc(net, &ifr, cmd);
3500 			rtnl_unlock();
3501 			if (!ret) {
3502 				if (colon)
3503 					*colon = ':';
3504 				if (copy_to_user(arg, &ifr,
3505 						 sizeof(struct ifreq)))
3506 					ret = -EFAULT;
3507 			}
3508 			return ret;
3509 
3510 		/*
3511 		 *	These ioctl calls:
3512 		 *	- require superuser power.
3513 		 *	- require strict serialization.
3514 		 *	- do not return a value
3515 		 */
3516 		case SIOCSIFFLAGS:
3517 		case SIOCSIFMETRIC:
3518 		case SIOCSIFMTU:
3519 		case SIOCSIFMAP:
3520 		case SIOCSIFHWADDR:
3521 		case SIOCSIFSLAVE:
3522 		case SIOCADDMULTI:
3523 		case SIOCDELMULTI:
3524 		case SIOCSIFHWBROADCAST:
3525 		case SIOCSIFTXQLEN:
3526 		case SIOCSMIIREG:
3527 		case SIOCBONDENSLAVE:
3528 		case SIOCBONDRELEASE:
3529 		case SIOCBONDSETHWADDR:
3530 		case SIOCBONDCHANGEACTIVE:
3531 		case SIOCBRADDIF:
3532 		case SIOCBRDELIF:
3533 			if (!capable(CAP_NET_ADMIN))
3534 				return -EPERM;
3535 			/* fall through */
3536 		case SIOCBONDSLAVEINFOQUERY:
3537 		case SIOCBONDINFOQUERY:
3538 			dev_load(net, ifr.ifr_name);
3539 			rtnl_lock();
3540 			ret = dev_ifsioc(net, &ifr, cmd);
3541 			rtnl_unlock();
3542 			return ret;
3543 
3544 		case SIOCGIFMEM:
3545 			/* Get the per device memory space. We can add this but
3546 			 * currently do not support it */
3547 		case SIOCSIFMEM:
3548 			/* Set the per device memory buffer space.
3549 			 * Not applicable in our case */
3550 		case SIOCSIFLINK:
3551 			return -EINVAL;
3552 
3553 		/*
3554 		 *	Unknown or private ioctl.
3555 		 */
3556 		default:
3557 			if (cmd == SIOCWANDEV ||
3558 			    (cmd >= SIOCDEVPRIVATE &&
3559 			     cmd <= SIOCDEVPRIVATE + 15)) {
3560 				dev_load(net, ifr.ifr_name);
3561 				rtnl_lock();
3562 				ret = dev_ifsioc(net, &ifr, cmd);
3563 				rtnl_unlock();
3564 				if (!ret && copy_to_user(arg, &ifr,
3565 							 sizeof(struct ifreq)))
3566 					ret = -EFAULT;
3567 				return ret;
3568 			}
3569 			/* Take care of Wireless Extensions */
3570 			if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)
3571 				return wext_handle_ioctl(net, &ifr, cmd, arg);
3572 			return -EINVAL;
3573 	}
3574 }
3575 
3576 
3577 /**
3578  *	dev_new_index	-	allocate an ifindex
3579  *	@net: the applicable net namespace
3580  *
3581  *	Returns a suitable unique value for a new device interface
3582  *	number.  The caller must hold the rtnl semaphore or the
3583  *	dev_base_lock to be sure it remains unique.
3584  */
3585 static int dev_new_index(struct net *net)
3586 {
3587 	static int ifindex;
3588 	for (;;) {
3589 		if (++ifindex <= 0)
3590 			ifindex = 1;
3591 		if (!__dev_get_by_index(net, ifindex))
3592 			return ifindex;
3593 	}
3594 }
3595 
3596 /* Delayed registration/unregisteration */
3597 static DEFINE_SPINLOCK(net_todo_list_lock);
3598 static LIST_HEAD(net_todo_list);
3599 
3600 static void net_set_todo(struct net_device *dev)
3601 {
3602 	spin_lock(&net_todo_list_lock);
3603 	list_add_tail(&dev->todo_list, &net_todo_list);
3604 	spin_unlock(&net_todo_list_lock);
3605 }
3606 
3607 static void rollback_registered(struct net_device *dev)
3608 {
3609 	BUG_ON(dev_boot_phase);
3610 	ASSERT_RTNL();
3611 
3612 	/* Some devices call without registering for initialization unwind. */
3613 	if (dev->reg_state == NETREG_UNINITIALIZED) {
3614 		printk(KERN_DEBUG "unregister_netdevice: device %s/%p never "
3615 				  "was registered\n", dev->name, dev);
3616 
3617 		WARN_ON(1);
3618 		return;
3619 	}
3620 
3621 	BUG_ON(dev->reg_state != NETREG_REGISTERED);
3622 
3623 	/* If device is running, close it first. */
3624 	dev_close(dev);
3625 
3626 	/* And unlink it from device chain. */
3627 	unlist_netdevice(dev);
3628 
3629 	dev->reg_state = NETREG_UNREGISTERING;
3630 
3631 	synchronize_net();
3632 
3633 	/* Shutdown queueing discipline. */
3634 	dev_shutdown(dev);
3635 
3636 
3637 	/* Notify protocols, that we are about to destroy
3638 	   this device. They should clean all the things.
3639 	*/
3640 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
3641 
3642 	/*
3643 	 *	Flush the unicast and multicast chains
3644 	 */
3645 	dev_addr_discard(dev);
3646 
3647 	if (dev->uninit)
3648 		dev->uninit(dev);
3649 
3650 	/* Notifier chain MUST detach us from master device. */
3651 	BUG_TRAP(!dev->master);
3652 
3653 	/* Remove entries from kobject tree */
3654 	netdev_unregister_kobject(dev);
3655 
3656 	synchronize_net();
3657 
3658 	dev_put(dev);
3659 }
3660 
3661 /**
3662  *	register_netdevice	- register a network device
3663  *	@dev: device to register
3664  *
3665  *	Take a completed network device structure and add it to the kernel
3666  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
3667  *	chain. 0 is returned on success. A negative errno code is returned
3668  *	on a failure to set up the device, or if the name is a duplicate.
3669  *
3670  *	Callers must hold the rtnl semaphore. You may want
3671  *	register_netdev() instead of this.
3672  *
3673  *	BUGS:
3674  *	The locking appears insufficient to guarantee two parallel registers
3675  *	will not get the same name.
3676  */
3677 
3678 int register_netdevice(struct net_device *dev)
3679 {
3680 	struct hlist_head *head;
3681 	struct hlist_node *p;
3682 	int ret;
3683 	struct net *net;
3684 
3685 	BUG_ON(dev_boot_phase);
3686 	ASSERT_RTNL();
3687 
3688 	might_sleep();
3689 
3690 	/* When net_device's are persistent, this will be fatal. */
3691 	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
3692 	BUG_ON(!dev_net(dev));
3693 	net = dev_net(dev);
3694 
3695 	spin_lock_init(&dev->queue_lock);
3696 	spin_lock_init(&dev->_xmit_lock);
3697 	netdev_set_lockdep_class(&dev->_xmit_lock, dev->type);
3698 	dev->xmit_lock_owner = -1;
3699 	spin_lock_init(&dev->ingress_lock);
3700 
3701 	dev->iflink = -1;
3702 
3703 	/* Init, if this function is available */
3704 	if (dev->init) {
3705 		ret = dev->init(dev);
3706 		if (ret) {
3707 			if (ret > 0)
3708 				ret = -EIO;
3709 			goto out;
3710 		}
3711 	}
3712 
3713 	if (!dev_valid_name(dev->name)) {
3714 		ret = -EINVAL;
3715 		goto err_uninit;
3716 	}
3717 
3718 	dev->ifindex = dev_new_index(net);
3719 	if (dev->iflink == -1)
3720 		dev->iflink = dev->ifindex;
3721 
3722 	/* Check for existence of name */
3723 	head = dev_name_hash(net, dev->name);
3724 	hlist_for_each(p, head) {
3725 		struct net_device *d
3726 			= hlist_entry(p, struct net_device, name_hlist);
3727 		if (!strncmp(d->name, dev->name, IFNAMSIZ)) {
3728 			ret = -EEXIST;
3729 			goto err_uninit;
3730 		}
3731 	}
3732 
3733 	/* Fix illegal checksum combinations */
3734 	if ((dev->features & NETIF_F_HW_CSUM) &&
3735 	    (dev->features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
3736 		printk(KERN_NOTICE "%s: mixed HW and IP checksum settings.\n",
3737 		       dev->name);
3738 		dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
3739 	}
3740 
3741 	if ((dev->features & NETIF_F_NO_CSUM) &&
3742 	    (dev->features & (NETIF_F_HW_CSUM|NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
3743 		printk(KERN_NOTICE "%s: mixed no checksumming and other settings.\n",
3744 		       dev->name);
3745 		dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM|NETIF_F_HW_CSUM);
3746 	}
3747 
3748 
3749 	/* Fix illegal SG+CSUM combinations. */
3750 	if ((dev->features & NETIF_F_SG) &&
3751 	    !(dev->features & NETIF_F_ALL_CSUM)) {
3752 		printk(KERN_NOTICE "%s: Dropping NETIF_F_SG since no checksum feature.\n",
3753 		       dev->name);
3754 		dev->features &= ~NETIF_F_SG;
3755 	}
3756 
3757 	/* TSO requires that SG is present as well. */
3758 	if ((dev->features & NETIF_F_TSO) &&
3759 	    !(dev->features & NETIF_F_SG)) {
3760 		printk(KERN_NOTICE "%s: Dropping NETIF_F_TSO since no SG feature.\n",
3761 		       dev->name);
3762 		dev->features &= ~NETIF_F_TSO;
3763 	}
3764 	if (dev->features & NETIF_F_UFO) {
3765 		if (!(dev->features & NETIF_F_HW_CSUM)) {
3766 			printk(KERN_ERR "%s: Dropping NETIF_F_UFO since no "
3767 					"NETIF_F_HW_CSUM feature.\n",
3768 							dev->name);
3769 			dev->features &= ~NETIF_F_UFO;
3770 		}
3771 		if (!(dev->features & NETIF_F_SG)) {
3772 			printk(KERN_ERR "%s: Dropping NETIF_F_UFO since no "
3773 					"NETIF_F_SG feature.\n",
3774 					dev->name);
3775 			dev->features &= ~NETIF_F_UFO;
3776 		}
3777 	}
3778 
3779 	netdev_initialize_kobject(dev);
3780 	ret = netdev_register_kobject(dev);
3781 	if (ret)
3782 		goto err_uninit;
3783 	dev->reg_state = NETREG_REGISTERED;
3784 
3785 	/*
3786 	 *	Default initial state at registry is that the
3787 	 *	device is present.
3788 	 */
3789 
3790 	set_bit(__LINK_STATE_PRESENT, &dev->state);
3791 
3792 	dev_init_scheduler(dev);
3793 	dev_hold(dev);
3794 	list_netdevice(dev);
3795 
3796 	/* Notify protocols, that a new device appeared. */
3797 	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
3798 	ret = notifier_to_errno(ret);
3799 	if (ret) {
3800 		rollback_registered(dev);
3801 		dev->reg_state = NETREG_UNREGISTERED;
3802 	}
3803 
3804 out:
3805 	return ret;
3806 
3807 err_uninit:
3808 	if (dev->uninit)
3809 		dev->uninit(dev);
3810 	goto out;
3811 }
3812 
3813 /**
3814  *	register_netdev	- register a network device
3815  *	@dev: device to register
3816  *
3817  *	Take a completed network device structure and add it to the kernel
3818  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
3819  *	chain. 0 is returned on success. A negative errno code is returned
3820  *	on a failure to set up the device, or if the name is a duplicate.
3821  *
3822  *	This is a wrapper around register_netdevice that takes the rtnl semaphore
3823  *	and expands the device name if you passed a format string to
3824  *	alloc_netdev.
3825  */
3826 int register_netdev(struct net_device *dev)
3827 {
3828 	int err;
3829 
3830 	rtnl_lock();
3831 
3832 	/*
3833 	 * If the name is a format string the caller wants us to do a
3834 	 * name allocation.
3835 	 */
3836 	if (strchr(dev->name, '%')) {
3837 		err = dev_alloc_name(dev, dev->name);
3838 		if (err < 0)
3839 			goto out;
3840 	}
3841 
3842 	err = register_netdevice(dev);
3843 out:
3844 	rtnl_unlock();
3845 	return err;
3846 }
3847 EXPORT_SYMBOL(register_netdev);
3848 
3849 /*
3850  * netdev_wait_allrefs - wait until all references are gone.
3851  *
3852  * This is called when unregistering network devices.
3853  *
3854  * Any protocol or device that holds a reference should register
3855  * for netdevice notification, and cleanup and put back the
3856  * reference if they receive an UNREGISTER event.
3857  * We can get stuck here if buggy protocols don't correctly
3858  * call dev_put.
3859  */
3860 static void netdev_wait_allrefs(struct net_device *dev)
3861 {
3862 	unsigned long rebroadcast_time, warning_time;
3863 
3864 	rebroadcast_time = warning_time = jiffies;
3865 	while (atomic_read(&dev->refcnt) != 0) {
3866 		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
3867 			rtnl_lock();
3868 
3869 			/* Rebroadcast unregister notification */
3870 			call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
3871 
3872 			if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
3873 				     &dev->state)) {
3874 				/* We must not have linkwatch events
3875 				 * pending on unregister. If this
3876 				 * happens, we simply run the queue
3877 				 * unscheduled, resulting in a noop
3878 				 * for this device.
3879 				 */
3880 				linkwatch_run_queue();
3881 			}
3882 
3883 			__rtnl_unlock();
3884 
3885 			rebroadcast_time = jiffies;
3886 		}
3887 
3888 		msleep(250);
3889 
3890 		if (time_after(jiffies, warning_time + 10 * HZ)) {
3891 			printk(KERN_EMERG "unregister_netdevice: "
3892 			       "waiting for %s to become free. Usage "
3893 			       "count = %d\n",
3894 			       dev->name, atomic_read(&dev->refcnt));
3895 			warning_time = jiffies;
3896 		}
3897 	}
3898 }
3899 
3900 /* The sequence is:
3901  *
3902  *	rtnl_lock();
3903  *	...
3904  *	register_netdevice(x1);
3905  *	register_netdevice(x2);
3906  *	...
3907  *	unregister_netdevice(y1);
3908  *	unregister_netdevice(y2);
3909  *      ...
3910  *	rtnl_unlock();
3911  *	free_netdev(y1);
3912  *	free_netdev(y2);
3913  *
3914  * We are invoked by rtnl_unlock() after it drops the semaphore.
3915  * This allows us to deal with problems:
3916  * 1) We can delete sysfs objects which invoke hotplug
3917  *    without deadlocking with linkwatch via keventd.
3918  * 2) Since we run with the RTNL semaphore not held, we can sleep
3919  *    safely in order to wait for the netdev refcnt to drop to zero.
3920  */
3921 static DEFINE_MUTEX(net_todo_run_mutex);
3922 void netdev_run_todo(void)
3923 {
3924 	struct list_head list;
3925 
3926 	/* Need to guard against multiple cpu's getting out of order. */
3927 	mutex_lock(&net_todo_run_mutex);
3928 
3929 	/* Not safe to do outside the semaphore.  We must not return
3930 	 * until all unregister events invoked by the local processor
3931 	 * have been completed (either by this todo run, or one on
3932 	 * another cpu).
3933 	 */
3934 	if (list_empty(&net_todo_list))
3935 		goto out;
3936 
3937 	/* Snapshot list, allow later requests */
3938 	spin_lock(&net_todo_list_lock);
3939 	list_replace_init(&net_todo_list, &list);
3940 	spin_unlock(&net_todo_list_lock);
3941 
3942 	while (!list_empty(&list)) {
3943 		struct net_device *dev
3944 			= list_entry(list.next, struct net_device, todo_list);
3945 		list_del(&dev->todo_list);
3946 
3947 		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
3948 			printk(KERN_ERR "network todo '%s' but state %d\n",
3949 			       dev->name, dev->reg_state);
3950 			dump_stack();
3951 			continue;
3952 		}
3953 
3954 		dev->reg_state = NETREG_UNREGISTERED;
3955 
3956 		netdev_wait_allrefs(dev);
3957 
3958 		/* paranoia */
3959 		BUG_ON(atomic_read(&dev->refcnt));
3960 		BUG_TRAP(!dev->ip_ptr);
3961 		BUG_TRAP(!dev->ip6_ptr);
3962 		BUG_TRAP(!dev->dn_ptr);
3963 
3964 		if (dev->destructor)
3965 			dev->destructor(dev);
3966 
3967 		/* Free network device */
3968 		kobject_put(&dev->dev.kobj);
3969 	}
3970 
3971 out:
3972 	mutex_unlock(&net_todo_run_mutex);
3973 }
3974 
3975 static struct net_device_stats *internal_stats(struct net_device *dev)
3976 {
3977 	return &dev->stats;
3978 }
3979 
3980 /**
3981  *	alloc_netdev_mq - allocate network device
3982  *	@sizeof_priv:	size of private data to allocate space for
3983  *	@name:		device name format string
3984  *	@setup:		callback to initialize device
3985  *	@queue_count:	the number of subqueues to allocate
3986  *
3987  *	Allocates a struct net_device with private data area for driver use
3988  *	and performs basic initialization.  Also allocates subquue structs
3989  *	for each queue on the device at the end of the netdevice.
3990  */
3991 struct net_device *alloc_netdev_mq(int sizeof_priv, const char *name,
3992 		void (*setup)(struct net_device *), unsigned int queue_count)
3993 {
3994 	void *p;
3995 	struct net_device *dev;
3996 	int alloc_size;
3997 
3998 	BUG_ON(strlen(name) >= sizeof(dev->name));
3999 
4000 	alloc_size = sizeof(struct net_device) +
4001 		     sizeof(struct net_device_subqueue) * (queue_count - 1);
4002 	if (sizeof_priv) {
4003 		/* ensure 32-byte alignment of private area */
4004 		alloc_size = (alloc_size + NETDEV_ALIGN_CONST) & ~NETDEV_ALIGN_CONST;
4005 		alloc_size += sizeof_priv;
4006 	}
4007 	/* ensure 32-byte alignment of whole construct */
4008 	alloc_size += NETDEV_ALIGN_CONST;
4009 
4010 	p = kzalloc(alloc_size, GFP_KERNEL);
4011 	if (!p) {
4012 		printk(KERN_ERR "alloc_netdev: Unable to allocate device.\n");
4013 		return NULL;
4014 	}
4015 
4016 	dev = (struct net_device *)
4017 		(((long)p + NETDEV_ALIGN_CONST) & ~NETDEV_ALIGN_CONST);
4018 	dev->padded = (char *)dev - (char *)p;
4019 	dev_net_set(dev, &init_net);
4020 
4021 	if (sizeof_priv) {
4022 		dev->priv = ((char *)dev +
4023 			     ((sizeof(struct net_device) +
4024 			       (sizeof(struct net_device_subqueue) *
4025 				(queue_count - 1)) + NETDEV_ALIGN_CONST)
4026 			      & ~NETDEV_ALIGN_CONST));
4027 	}
4028 
4029 	dev->egress_subqueue_count = queue_count;
4030 	dev->gso_max_size = GSO_MAX_SIZE;
4031 
4032 	dev->get_stats = internal_stats;
4033 	netpoll_netdev_init(dev);
4034 	setup(dev);
4035 	strcpy(dev->name, name);
4036 	return dev;
4037 }
4038 EXPORT_SYMBOL(alloc_netdev_mq);
4039 
4040 /**
4041  *	free_netdev - free network device
4042  *	@dev: device
4043  *
4044  *	This function does the last stage of destroying an allocated device
4045  * 	interface. The reference to the device object is released.
4046  *	If this is the last reference then it will be freed.
4047  */
4048 void free_netdev(struct net_device *dev)
4049 {
4050 	release_net(dev_net(dev));
4051 
4052 	/*  Compatibility with error handling in drivers */
4053 	if (dev->reg_state == NETREG_UNINITIALIZED) {
4054 		kfree((char *)dev - dev->padded);
4055 		return;
4056 	}
4057 
4058 	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
4059 	dev->reg_state = NETREG_RELEASED;
4060 
4061 	/* will free via device release */
4062 	put_device(&dev->dev);
4063 }
4064 
4065 /* Synchronize with packet receive processing. */
4066 void synchronize_net(void)
4067 {
4068 	might_sleep();
4069 	synchronize_rcu();
4070 }
4071 
4072 /**
4073  *	unregister_netdevice - remove device from the kernel
4074  *	@dev: device
4075  *
4076  *	This function shuts down a device interface and removes it
4077  *	from the kernel tables.
4078  *
4079  *	Callers must hold the rtnl semaphore.  You may want
4080  *	unregister_netdev() instead of this.
4081  */
4082 
4083 void unregister_netdevice(struct net_device *dev)
4084 {
4085 	ASSERT_RTNL();
4086 
4087 	rollback_registered(dev);
4088 	/* Finish processing unregister after unlock */
4089 	net_set_todo(dev);
4090 }
4091 
4092 /**
4093  *	unregister_netdev - remove device from the kernel
4094  *	@dev: device
4095  *
4096  *	This function shuts down a device interface and removes it
4097  *	from the kernel tables.
4098  *
4099  *	This is just a wrapper for unregister_netdevice that takes
4100  *	the rtnl semaphore.  In general you want to use this and not
4101  *	unregister_netdevice.
4102  */
4103 void unregister_netdev(struct net_device *dev)
4104 {
4105 	rtnl_lock();
4106 	unregister_netdevice(dev);
4107 	rtnl_unlock();
4108 }
4109 
4110 EXPORT_SYMBOL(unregister_netdev);
4111 
4112 /**
4113  *	dev_change_net_namespace - move device to different nethost namespace
4114  *	@dev: device
4115  *	@net: network namespace
4116  *	@pat: If not NULL name pattern to try if the current device name
4117  *	      is already taken in the destination network namespace.
4118  *
4119  *	This function shuts down a device interface and moves it
4120  *	to a new network namespace. On success 0 is returned, on
4121  *	a failure a netagive errno code is returned.
4122  *
4123  *	Callers must hold the rtnl semaphore.
4124  */
4125 
4126 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
4127 {
4128 	char buf[IFNAMSIZ];
4129 	const char *destname;
4130 	int err;
4131 
4132 	ASSERT_RTNL();
4133 
4134 	/* Don't allow namespace local devices to be moved. */
4135 	err = -EINVAL;
4136 	if (dev->features & NETIF_F_NETNS_LOCAL)
4137 		goto out;
4138 
4139 	/* Ensure the device has been registrered */
4140 	err = -EINVAL;
4141 	if (dev->reg_state != NETREG_REGISTERED)
4142 		goto out;
4143 
4144 	/* Get out if there is nothing todo */
4145 	err = 0;
4146 	if (net_eq(dev_net(dev), net))
4147 		goto out;
4148 
4149 	/* Pick the destination device name, and ensure
4150 	 * we can use it in the destination network namespace.
4151 	 */
4152 	err = -EEXIST;
4153 	destname = dev->name;
4154 	if (__dev_get_by_name(net, destname)) {
4155 		/* We get here if we can't use the current device name */
4156 		if (!pat)
4157 			goto out;
4158 		if (!dev_valid_name(pat))
4159 			goto out;
4160 		if (strchr(pat, '%')) {
4161 			if (__dev_alloc_name(net, pat, buf) < 0)
4162 				goto out;
4163 			destname = buf;
4164 		} else
4165 			destname = pat;
4166 		if (__dev_get_by_name(net, destname))
4167 			goto out;
4168 	}
4169 
4170 	/*
4171 	 * And now a mini version of register_netdevice unregister_netdevice.
4172 	 */
4173 
4174 	/* If device is running close it first. */
4175 	dev_close(dev);
4176 
4177 	/* And unlink it from device chain */
4178 	err = -ENODEV;
4179 	unlist_netdevice(dev);
4180 
4181 	synchronize_net();
4182 
4183 	/* Shutdown queueing discipline. */
4184 	dev_shutdown(dev);
4185 
4186 	/* Notify protocols, that we are about to destroy
4187 	   this device. They should clean all the things.
4188 	*/
4189 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
4190 
4191 	/*
4192 	 *	Flush the unicast and multicast chains
4193 	 */
4194 	dev_addr_discard(dev);
4195 
4196 	/* Actually switch the network namespace */
4197 	dev_net_set(dev, net);
4198 
4199 	/* Assign the new device name */
4200 	if (destname != dev->name)
4201 		strcpy(dev->name, destname);
4202 
4203 	/* If there is an ifindex conflict assign a new one */
4204 	if (__dev_get_by_index(net, dev->ifindex)) {
4205 		int iflink = (dev->iflink == dev->ifindex);
4206 		dev->ifindex = dev_new_index(net);
4207 		if (iflink)
4208 			dev->iflink = dev->ifindex;
4209 	}
4210 
4211 	/* Fixup kobjects */
4212 	netdev_unregister_kobject(dev);
4213 	err = netdev_register_kobject(dev);
4214 	WARN_ON(err);
4215 
4216 	/* Add the device back in the hashes */
4217 	list_netdevice(dev);
4218 
4219 	/* Notify protocols, that a new device appeared. */
4220 	call_netdevice_notifiers(NETDEV_REGISTER, dev);
4221 
4222 	synchronize_net();
4223 	err = 0;
4224 out:
4225 	return err;
4226 }
4227 
4228 static int dev_cpu_callback(struct notifier_block *nfb,
4229 			    unsigned long action,
4230 			    void *ocpu)
4231 {
4232 	struct sk_buff **list_skb;
4233 	struct net_device **list_net;
4234 	struct sk_buff *skb;
4235 	unsigned int cpu, oldcpu = (unsigned long)ocpu;
4236 	struct softnet_data *sd, *oldsd;
4237 
4238 	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
4239 		return NOTIFY_OK;
4240 
4241 	local_irq_disable();
4242 	cpu = smp_processor_id();
4243 	sd = &per_cpu(softnet_data, cpu);
4244 	oldsd = &per_cpu(softnet_data, oldcpu);
4245 
4246 	/* Find end of our completion_queue. */
4247 	list_skb = &sd->completion_queue;
4248 	while (*list_skb)
4249 		list_skb = &(*list_skb)->next;
4250 	/* Append completion queue from offline CPU. */
4251 	*list_skb = oldsd->completion_queue;
4252 	oldsd->completion_queue = NULL;
4253 
4254 	/* Find end of our output_queue. */
4255 	list_net = &sd->output_queue;
4256 	while (*list_net)
4257 		list_net = &(*list_net)->next_sched;
4258 	/* Append output queue from offline CPU. */
4259 	*list_net = oldsd->output_queue;
4260 	oldsd->output_queue = NULL;
4261 
4262 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
4263 	local_irq_enable();
4264 
4265 	/* Process offline CPU's input_pkt_queue */
4266 	while ((skb = __skb_dequeue(&oldsd->input_pkt_queue)))
4267 		netif_rx(skb);
4268 
4269 	return NOTIFY_OK;
4270 }
4271 
4272 #ifdef CONFIG_NET_DMA
4273 /**
4274  * net_dma_rebalance - try to maintain one DMA channel per CPU
4275  * @net_dma: DMA client and associated data (lock, channels, channel_mask)
4276  *
4277  * This is called when the number of channels allocated to the net_dma client
4278  * changes.  The net_dma client tries to have one DMA channel per CPU.
4279  */
4280 
4281 static void net_dma_rebalance(struct net_dma *net_dma)
4282 {
4283 	unsigned int cpu, i, n, chan_idx;
4284 	struct dma_chan *chan;
4285 
4286 	if (cpus_empty(net_dma->channel_mask)) {
4287 		for_each_online_cpu(cpu)
4288 			rcu_assign_pointer(per_cpu(softnet_data, cpu).net_dma, NULL);
4289 		return;
4290 	}
4291 
4292 	i = 0;
4293 	cpu = first_cpu(cpu_online_map);
4294 
4295 	for_each_cpu_mask(chan_idx, net_dma->channel_mask) {
4296 		chan = net_dma->channels[chan_idx];
4297 
4298 		n = ((num_online_cpus() / cpus_weight(net_dma->channel_mask))
4299 		   + (i < (num_online_cpus() %
4300 			cpus_weight(net_dma->channel_mask)) ? 1 : 0));
4301 
4302 		while(n) {
4303 			per_cpu(softnet_data, cpu).net_dma = chan;
4304 			cpu = next_cpu(cpu, cpu_online_map);
4305 			n--;
4306 		}
4307 		i++;
4308 	}
4309 }
4310 
4311 /**
4312  * netdev_dma_event - event callback for the net_dma_client
4313  * @client: should always be net_dma_client
4314  * @chan: DMA channel for the event
4315  * @state: DMA state to be handled
4316  */
4317 static enum dma_state_client
4318 netdev_dma_event(struct dma_client *client, struct dma_chan *chan,
4319 	enum dma_state state)
4320 {
4321 	int i, found = 0, pos = -1;
4322 	struct net_dma *net_dma =
4323 		container_of(client, struct net_dma, client);
4324 	enum dma_state_client ack = DMA_DUP; /* default: take no action */
4325 
4326 	spin_lock(&net_dma->lock);
4327 	switch (state) {
4328 	case DMA_RESOURCE_AVAILABLE:
4329 		for (i = 0; i < nr_cpu_ids; i++)
4330 			if (net_dma->channels[i] == chan) {
4331 				found = 1;
4332 				break;
4333 			} else if (net_dma->channels[i] == NULL && pos < 0)
4334 				pos = i;
4335 
4336 		if (!found && pos >= 0) {
4337 			ack = DMA_ACK;
4338 			net_dma->channels[pos] = chan;
4339 			cpu_set(pos, net_dma->channel_mask);
4340 			net_dma_rebalance(net_dma);
4341 		}
4342 		break;
4343 	case DMA_RESOURCE_REMOVED:
4344 		for (i = 0; i < nr_cpu_ids; i++)
4345 			if (net_dma->channels[i] == chan) {
4346 				found = 1;
4347 				pos = i;
4348 				break;
4349 			}
4350 
4351 		if (found) {
4352 			ack = DMA_ACK;
4353 			cpu_clear(pos, net_dma->channel_mask);
4354 			net_dma->channels[i] = NULL;
4355 			net_dma_rebalance(net_dma);
4356 		}
4357 		break;
4358 	default:
4359 		break;
4360 	}
4361 	spin_unlock(&net_dma->lock);
4362 
4363 	return ack;
4364 }
4365 
4366 /**
4367  * netdev_dma_regiser - register the networking subsystem as a DMA client
4368  */
4369 static int __init netdev_dma_register(void)
4370 {
4371 	net_dma.channels = kzalloc(nr_cpu_ids * sizeof(struct net_dma),
4372 								GFP_KERNEL);
4373 	if (unlikely(!net_dma.channels)) {
4374 		printk(KERN_NOTICE
4375 				"netdev_dma: no memory for net_dma.channels\n");
4376 		return -ENOMEM;
4377 	}
4378 	spin_lock_init(&net_dma.lock);
4379 	dma_cap_set(DMA_MEMCPY, net_dma.client.cap_mask);
4380 	dma_async_client_register(&net_dma.client);
4381 	dma_async_client_chan_request(&net_dma.client);
4382 	return 0;
4383 }
4384 
4385 #else
4386 static int __init netdev_dma_register(void) { return -ENODEV; }
4387 #endif /* CONFIG_NET_DMA */
4388 
4389 /**
4390  *	netdev_compute_feature - compute conjunction of two feature sets
4391  *	@all: first feature set
4392  *	@one: second feature set
4393  *
4394  *	Computes a new feature set after adding a device with feature set
4395  *	@one to the master device with current feature set @all.  Returns
4396  *	the new feature set.
4397  */
4398 int netdev_compute_features(unsigned long all, unsigned long one)
4399 {
4400 	/* if device needs checksumming, downgrade to hw checksumming */
4401 	if (all & NETIF_F_NO_CSUM && !(one & NETIF_F_NO_CSUM))
4402 		all ^= NETIF_F_NO_CSUM | NETIF_F_HW_CSUM;
4403 
4404 	/* if device can't do all checksum, downgrade to ipv4/ipv6 */
4405 	if (all & NETIF_F_HW_CSUM && !(one & NETIF_F_HW_CSUM))
4406 		all ^= NETIF_F_HW_CSUM
4407 			| NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
4408 
4409 	if (one & NETIF_F_GSO)
4410 		one |= NETIF_F_GSO_SOFTWARE;
4411 	one |= NETIF_F_GSO;
4412 
4413 	/* If even one device supports robust GSO, enable it for all. */
4414 	if (one & NETIF_F_GSO_ROBUST)
4415 		all |= NETIF_F_GSO_ROBUST;
4416 
4417 	all &= one | NETIF_F_LLTX;
4418 
4419 	if (!(all & NETIF_F_ALL_CSUM))
4420 		all &= ~NETIF_F_SG;
4421 	if (!(all & NETIF_F_SG))
4422 		all &= ~NETIF_F_GSO_MASK;
4423 
4424 	return all;
4425 }
4426 EXPORT_SYMBOL(netdev_compute_features);
4427 
4428 static struct hlist_head *netdev_create_hash(void)
4429 {
4430 	int i;
4431 	struct hlist_head *hash;
4432 
4433 	hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
4434 	if (hash != NULL)
4435 		for (i = 0; i < NETDEV_HASHENTRIES; i++)
4436 			INIT_HLIST_HEAD(&hash[i]);
4437 
4438 	return hash;
4439 }
4440 
4441 /* Initialize per network namespace state */
4442 static int __net_init netdev_init(struct net *net)
4443 {
4444 	INIT_LIST_HEAD(&net->dev_base_head);
4445 
4446 	net->dev_name_head = netdev_create_hash();
4447 	if (net->dev_name_head == NULL)
4448 		goto err_name;
4449 
4450 	net->dev_index_head = netdev_create_hash();
4451 	if (net->dev_index_head == NULL)
4452 		goto err_idx;
4453 
4454 	return 0;
4455 
4456 err_idx:
4457 	kfree(net->dev_name_head);
4458 err_name:
4459 	return -ENOMEM;
4460 }
4461 
4462 static void __net_exit netdev_exit(struct net *net)
4463 {
4464 	kfree(net->dev_name_head);
4465 	kfree(net->dev_index_head);
4466 }
4467 
4468 static struct pernet_operations __net_initdata netdev_net_ops = {
4469 	.init = netdev_init,
4470 	.exit = netdev_exit,
4471 };
4472 
4473 static void __net_exit default_device_exit(struct net *net)
4474 {
4475 	struct net_device *dev, *next;
4476 	/*
4477 	 * Push all migratable of the network devices back to the
4478 	 * initial network namespace
4479 	 */
4480 	rtnl_lock();
4481 	for_each_netdev_safe(net, dev, next) {
4482 		int err;
4483 
4484 		/* Ignore unmoveable devices (i.e. loopback) */
4485 		if (dev->features & NETIF_F_NETNS_LOCAL)
4486 			continue;
4487 
4488 		/* Push remaing network devices to init_net */
4489 		err = dev_change_net_namespace(dev, &init_net, "dev%d");
4490 		if (err) {
4491 			printk(KERN_WARNING "%s: failed to move %s to init_net: %d\n",
4492 				__func__, dev->name, err);
4493 			unregister_netdevice(dev);
4494 		}
4495 	}
4496 	rtnl_unlock();
4497 }
4498 
4499 static struct pernet_operations __net_initdata default_device_ops = {
4500 	.exit = default_device_exit,
4501 };
4502 
4503 /*
4504  *	Initialize the DEV module. At boot time this walks the device list and
4505  *	unhooks any devices that fail to initialise (normally hardware not
4506  *	present) and leaves us with a valid list of present and active devices.
4507  *
4508  */
4509 
4510 /*
4511  *       This is called single threaded during boot, so no need
4512  *       to take the rtnl semaphore.
4513  */
4514 static int __init net_dev_init(void)
4515 {
4516 	int i, rc = -ENOMEM;
4517 
4518 	BUG_ON(!dev_boot_phase);
4519 
4520 	if (dev_proc_init())
4521 		goto out;
4522 
4523 	if (netdev_kobject_init())
4524 		goto out;
4525 
4526 	INIT_LIST_HEAD(&ptype_all);
4527 	for (i = 0; i < PTYPE_HASH_SIZE; i++)
4528 		INIT_LIST_HEAD(&ptype_base[i]);
4529 
4530 	if (register_pernet_subsys(&netdev_net_ops))
4531 		goto out;
4532 
4533 	if (register_pernet_device(&default_device_ops))
4534 		goto out;
4535 
4536 	/*
4537 	 *	Initialise the packet receive queues.
4538 	 */
4539 
4540 	for_each_possible_cpu(i) {
4541 		struct softnet_data *queue;
4542 
4543 		queue = &per_cpu(softnet_data, i);
4544 		skb_queue_head_init(&queue->input_pkt_queue);
4545 		queue->completion_queue = NULL;
4546 		INIT_LIST_HEAD(&queue->poll_list);
4547 
4548 		queue->backlog.poll = process_backlog;
4549 		queue->backlog.weight = weight_p;
4550 	}
4551 
4552 	netdev_dma_register();
4553 
4554 	dev_boot_phase = 0;
4555 
4556 	open_softirq(NET_TX_SOFTIRQ, net_tx_action, NULL);
4557 	open_softirq(NET_RX_SOFTIRQ, net_rx_action, NULL);
4558 
4559 	hotcpu_notifier(dev_cpu_callback, 0);
4560 	dst_init();
4561 	dev_mcast_init();
4562 	rc = 0;
4563 out:
4564 	return rc;
4565 }
4566 
4567 subsys_initcall(net_dev_init);
4568 
4569 EXPORT_SYMBOL(__dev_get_by_index);
4570 EXPORT_SYMBOL(__dev_get_by_name);
4571 EXPORT_SYMBOL(__dev_remove_pack);
4572 EXPORT_SYMBOL(dev_valid_name);
4573 EXPORT_SYMBOL(dev_add_pack);
4574 EXPORT_SYMBOL(dev_alloc_name);
4575 EXPORT_SYMBOL(dev_close);
4576 EXPORT_SYMBOL(dev_get_by_flags);
4577 EXPORT_SYMBOL(dev_get_by_index);
4578 EXPORT_SYMBOL(dev_get_by_name);
4579 EXPORT_SYMBOL(dev_open);
4580 EXPORT_SYMBOL(dev_queue_xmit);
4581 EXPORT_SYMBOL(dev_remove_pack);
4582 EXPORT_SYMBOL(dev_set_allmulti);
4583 EXPORT_SYMBOL(dev_set_promiscuity);
4584 EXPORT_SYMBOL(dev_change_flags);
4585 EXPORT_SYMBOL(dev_set_mtu);
4586 EXPORT_SYMBOL(dev_set_mac_address);
4587 EXPORT_SYMBOL(free_netdev);
4588 EXPORT_SYMBOL(netdev_boot_setup_check);
4589 EXPORT_SYMBOL(netdev_set_master);
4590 EXPORT_SYMBOL(netdev_state_change);
4591 EXPORT_SYMBOL(netif_receive_skb);
4592 EXPORT_SYMBOL(netif_rx);
4593 EXPORT_SYMBOL(register_gifconf);
4594 EXPORT_SYMBOL(register_netdevice);
4595 EXPORT_SYMBOL(register_netdevice_notifier);
4596 EXPORT_SYMBOL(skb_checksum_help);
4597 EXPORT_SYMBOL(synchronize_net);
4598 EXPORT_SYMBOL(unregister_netdevice);
4599 EXPORT_SYMBOL(unregister_netdevice_notifier);
4600 EXPORT_SYMBOL(net_enable_timestamp);
4601 EXPORT_SYMBOL(net_disable_timestamp);
4602 EXPORT_SYMBOL(dev_get_flags);
4603 
4604 #if defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)
4605 EXPORT_SYMBOL(br_handle_frame_hook);
4606 EXPORT_SYMBOL(br_fdb_get_hook);
4607 EXPORT_SYMBOL(br_fdb_put_hook);
4608 #endif
4609 
4610 #ifdef CONFIG_KMOD
4611 EXPORT_SYMBOL(dev_load);
4612 #endif
4613 
4614 EXPORT_PER_CPU_SYMBOL(softnet_data);
4615