xref: /linux/net/core/dev.c (revision 7265706c8fd57722f622f336ec110cb35f83e739)
1 /*
2  * 	NET3	Protocol independent device support routines.
3  *
4  *		This program is free software; you can redistribute it and/or
5  *		modify it under the terms of the GNU General Public License
6  *		as published by the Free Software Foundation; either version
7  *		2 of the License, or (at your option) any later version.
8  *
9  *	Derived from the non IP parts of dev.c 1.0.19
10  * 		Authors:	Ross Biro
11  *				Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *				Mark Evans, <evansmp@uhura.aston.ac.uk>
13  *
14  *	Additional Authors:
15  *		Florian la Roche <rzsfl@rz.uni-sb.de>
16  *		Alan Cox <gw4pts@gw4pts.ampr.org>
17  *		David Hinds <dahinds@users.sourceforge.net>
18  *		Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19  *		Adam Sulmicki <adam@cfar.umd.edu>
20  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
21  *
22  *	Changes:
23  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
24  *              			to 2 if register_netdev gets called
25  *              			before net_dev_init & also removed a
26  *              			few lines of code in the process.
27  *		Alan Cox	:	device private ioctl copies fields back.
28  *		Alan Cox	:	Transmit queue code does relevant
29  *					stunts to keep the queue safe.
30  *		Alan Cox	:	Fixed double lock.
31  *		Alan Cox	:	Fixed promisc NULL pointer trap
32  *		????????	:	Support the full private ioctl range
33  *		Alan Cox	:	Moved ioctl permission check into
34  *					drivers
35  *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
36  *		Alan Cox	:	100 backlog just doesn't cut it when
37  *					you start doing multicast video 8)
38  *		Alan Cox	:	Rewrote net_bh and list manager.
39  *		Alan Cox	: 	Fix ETH_P_ALL echoback lengths.
40  *		Alan Cox	:	Took out transmit every packet pass
41  *					Saved a few bytes in the ioctl handler
42  *		Alan Cox	:	Network driver sets packet type before
43  *					calling netif_rx. Saves a function
44  *					call a packet.
45  *		Alan Cox	:	Hashed net_bh()
46  *		Richard Kooijman:	Timestamp fixes.
47  *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
48  *		Alan Cox	:	Device lock protection.
49  *		Alan Cox	: 	Fixed nasty side effect of device close
50  *					changes.
51  *		Rudi Cilibrasi	:	Pass the right thing to
52  *					set_mac_address()
53  *		Dave Miller	:	32bit quantity for the device lock to
54  *					make it work out on a Sparc.
55  *		Bjorn Ekwall	:	Added KERNELD hack.
56  *		Alan Cox	:	Cleaned up the backlog initialise.
57  *		Craig Metz	:	SIOCGIFCONF fix if space for under
58  *					1 device.
59  *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
60  *					is no device open function.
61  *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
62  *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
63  *		Cyrus Durgin	:	Cleaned for KMOD
64  *		Adam Sulmicki   :	Bug Fix : Network Device Unload
65  *					A network device unload needs to purge
66  *					the backlog queue.
67  *	Paul Rusty Russell	:	SIOCSIFNAME
68  *              Pekka Riikonen  :	Netdev boot-time settings code
69  *              Andrew Morton   :       Make unregister_netdevice wait
70  *              			indefinitely on dev->refcnt
71  * 		J Hadi Salim	:	- Backlog queue sampling
72  *				        - netif_rx() feedback
73  */
74 
75 #include <asm/uaccess.h>
76 #include <asm/system.h>
77 #include <linux/bitops.h>
78 #include <linux/capability.h>
79 #include <linux/cpu.h>
80 #include <linux/types.h>
81 #include <linux/kernel.h>
82 #include <linux/sched.h>
83 #include <linux/mutex.h>
84 #include <linux/string.h>
85 #include <linux/mm.h>
86 #include <linux/socket.h>
87 #include <linux/sockios.h>
88 #include <linux/errno.h>
89 #include <linux/interrupt.h>
90 #include <linux/if_ether.h>
91 #include <linux/netdevice.h>
92 #include <linux/etherdevice.h>
93 #include <linux/ethtool.h>
94 #include <linux/notifier.h>
95 #include <linux/skbuff.h>
96 #include <net/net_namespace.h>
97 #include <net/sock.h>
98 #include <linux/rtnetlink.h>
99 #include <linux/proc_fs.h>
100 #include <linux/seq_file.h>
101 #include <linux/stat.h>
102 #include <linux/if_bridge.h>
103 #include <linux/if_macvlan.h>
104 #include <net/dst.h>
105 #include <net/pkt_sched.h>
106 #include <net/checksum.h>
107 #include <linux/highmem.h>
108 #include <linux/init.h>
109 #include <linux/kmod.h>
110 #include <linux/module.h>
111 #include <linux/kallsyms.h>
112 #include <linux/netpoll.h>
113 #include <linux/rcupdate.h>
114 #include <linux/delay.h>
115 #include <net/wext.h>
116 #include <net/iw_handler.h>
117 #include <asm/current.h>
118 #include <linux/audit.h>
119 #include <linux/dmaengine.h>
120 #include <linux/err.h>
121 #include <linux/ctype.h>
122 #include <linux/if_arp.h>
123 #include <linux/if_vlan.h>
124 #include <linux/ip.h>
125 #include <linux/ipv6.h>
126 #include <linux/in.h>
127 #include <linux/jhash.h>
128 #include <linux/random.h>
129 
130 #include "net-sysfs.h"
131 
132 /*
133  *	The list of packet types we will receive (as opposed to discard)
134  *	and the routines to invoke.
135  *
136  *	Why 16. Because with 16 the only overlap we get on a hash of the
137  *	low nibble of the protocol value is RARP/SNAP/X.25.
138  *
139  *      NOTE:  That is no longer true with the addition of VLAN tags.  Not
140  *             sure which should go first, but I bet it won't make much
141  *             difference if we are running VLANs.  The good news is that
142  *             this protocol won't be in the list unless compiled in, so
143  *             the average user (w/out VLANs) will not be adversely affected.
144  *             --BLG
145  *
146  *		0800	IP
147  *		8100    802.1Q VLAN
148  *		0001	802.3
149  *		0002	AX.25
150  *		0004	802.2
151  *		8035	RARP
152  *		0005	SNAP
153  *		0805	X.25
154  *		0806	ARP
155  *		8137	IPX
156  *		0009	Localtalk
157  *		86DD	IPv6
158  */
159 
160 #define PTYPE_HASH_SIZE	(16)
161 #define PTYPE_HASH_MASK	(PTYPE_HASH_SIZE - 1)
162 
163 static DEFINE_SPINLOCK(ptype_lock);
164 static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
165 static struct list_head ptype_all __read_mostly;	/* Taps */
166 
167 #ifdef CONFIG_NET_DMA
168 struct net_dma {
169 	struct dma_client client;
170 	spinlock_t lock;
171 	cpumask_t channel_mask;
172 	struct dma_chan **channels;
173 };
174 
175 static enum dma_state_client
176 netdev_dma_event(struct dma_client *client, struct dma_chan *chan,
177 	enum dma_state state);
178 
179 static struct net_dma net_dma = {
180 	.client = {
181 		.event_callback = netdev_dma_event,
182 	},
183 };
184 #endif
185 
186 /*
187  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
188  * semaphore.
189  *
190  * Pure readers hold dev_base_lock for reading.
191  *
192  * Writers must hold the rtnl semaphore while they loop through the
193  * dev_base_head list, and hold dev_base_lock for writing when they do the
194  * actual updates.  This allows pure readers to access the list even
195  * while a writer is preparing to update it.
196  *
197  * To put it another way, dev_base_lock is held for writing only to
198  * protect against pure readers; the rtnl semaphore provides the
199  * protection against other writers.
200  *
201  * See, for example usages, register_netdevice() and
202  * unregister_netdevice(), which must be called with the rtnl
203  * semaphore held.
204  */
205 DEFINE_RWLOCK(dev_base_lock);
206 
207 EXPORT_SYMBOL(dev_base_lock);
208 
209 #define NETDEV_HASHBITS	8
210 #define NETDEV_HASHENTRIES (1 << NETDEV_HASHBITS)
211 
212 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
213 {
214 	unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
215 	return &net->dev_name_head[hash & ((1 << NETDEV_HASHBITS) - 1)];
216 }
217 
218 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
219 {
220 	return &net->dev_index_head[ifindex & ((1 << NETDEV_HASHBITS) - 1)];
221 }
222 
223 /* Device list insertion */
224 static int list_netdevice(struct net_device *dev)
225 {
226 	struct net *net = dev_net(dev);
227 
228 	ASSERT_RTNL();
229 
230 	write_lock_bh(&dev_base_lock);
231 	list_add_tail(&dev->dev_list, &net->dev_base_head);
232 	hlist_add_head(&dev->name_hlist, dev_name_hash(net, dev->name));
233 	hlist_add_head(&dev->index_hlist, dev_index_hash(net, dev->ifindex));
234 	write_unlock_bh(&dev_base_lock);
235 	return 0;
236 }
237 
238 /* Device list removal */
239 static void unlist_netdevice(struct net_device *dev)
240 {
241 	ASSERT_RTNL();
242 
243 	/* Unlink dev from the device chain */
244 	write_lock_bh(&dev_base_lock);
245 	list_del(&dev->dev_list);
246 	hlist_del(&dev->name_hlist);
247 	hlist_del(&dev->index_hlist);
248 	write_unlock_bh(&dev_base_lock);
249 }
250 
251 /*
252  *	Our notifier list
253  */
254 
255 static RAW_NOTIFIER_HEAD(netdev_chain);
256 
257 /*
258  *	Device drivers call our routines to queue packets here. We empty the
259  *	queue in the local softnet handler.
260  */
261 
262 DEFINE_PER_CPU(struct softnet_data, softnet_data);
263 
264 #ifdef CONFIG_LOCKDEP
265 /*
266  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
267  * according to dev->type
268  */
269 static const unsigned short netdev_lock_type[] =
270 	{ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
271 	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
272 	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
273 	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
274 	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
275 	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
276 	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
277 	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
278 	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
279 	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
280 	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
281 	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
282 	 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211,
283 	 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_VOID,
284 	 ARPHRD_NONE};
285 
286 static const char *netdev_lock_name[] =
287 	{"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
288 	 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
289 	 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
290 	 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
291 	 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
292 	 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
293 	 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
294 	 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
295 	 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
296 	 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
297 	 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
298 	 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
299 	 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211",
300 	 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_VOID",
301 	 "_xmit_NONE"};
302 
303 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
304 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
305 
306 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
307 {
308 	int i;
309 
310 	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
311 		if (netdev_lock_type[i] == dev_type)
312 			return i;
313 	/* the last key is used by default */
314 	return ARRAY_SIZE(netdev_lock_type) - 1;
315 }
316 
317 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
318 						 unsigned short dev_type)
319 {
320 	int i;
321 
322 	i = netdev_lock_pos(dev_type);
323 	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
324 				   netdev_lock_name[i]);
325 }
326 
327 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
328 {
329 	int i;
330 
331 	i = netdev_lock_pos(dev->type);
332 	lockdep_set_class_and_name(&dev->addr_list_lock,
333 				   &netdev_addr_lock_key[i],
334 				   netdev_lock_name[i]);
335 }
336 #else
337 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
338 						 unsigned short dev_type)
339 {
340 }
341 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
342 {
343 }
344 #endif
345 
346 /*******************************************************************************
347 
348 		Protocol management and registration routines
349 
350 *******************************************************************************/
351 
352 /*
353  *	Add a protocol ID to the list. Now that the input handler is
354  *	smarter we can dispense with all the messy stuff that used to be
355  *	here.
356  *
357  *	BEWARE!!! Protocol handlers, mangling input packets,
358  *	MUST BE last in hash buckets and checking protocol handlers
359  *	MUST start from promiscuous ptype_all chain in net_bh.
360  *	It is true now, do not change it.
361  *	Explanation follows: if protocol handler, mangling packet, will
362  *	be the first on list, it is not able to sense, that packet
363  *	is cloned and should be copied-on-write, so that it will
364  *	change it and subsequent readers will get broken packet.
365  *							--ANK (980803)
366  */
367 
368 /**
369  *	dev_add_pack - add packet handler
370  *	@pt: packet type declaration
371  *
372  *	Add a protocol handler to the networking stack. The passed &packet_type
373  *	is linked into kernel lists and may not be freed until it has been
374  *	removed from the kernel lists.
375  *
376  *	This call does not sleep therefore it can not
377  *	guarantee all CPU's that are in middle of receiving packets
378  *	will see the new packet type (until the next received packet).
379  */
380 
381 void dev_add_pack(struct packet_type *pt)
382 {
383 	int hash;
384 
385 	spin_lock_bh(&ptype_lock);
386 	if (pt->type == htons(ETH_P_ALL))
387 		list_add_rcu(&pt->list, &ptype_all);
388 	else {
389 		hash = ntohs(pt->type) & PTYPE_HASH_MASK;
390 		list_add_rcu(&pt->list, &ptype_base[hash]);
391 	}
392 	spin_unlock_bh(&ptype_lock);
393 }
394 
395 /**
396  *	__dev_remove_pack	 - remove packet handler
397  *	@pt: packet type declaration
398  *
399  *	Remove a protocol handler that was previously added to the kernel
400  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
401  *	from the kernel lists and can be freed or reused once this function
402  *	returns.
403  *
404  *      The packet type might still be in use by receivers
405  *	and must not be freed until after all the CPU's have gone
406  *	through a quiescent state.
407  */
408 void __dev_remove_pack(struct packet_type *pt)
409 {
410 	struct list_head *head;
411 	struct packet_type *pt1;
412 
413 	spin_lock_bh(&ptype_lock);
414 
415 	if (pt->type == htons(ETH_P_ALL))
416 		head = &ptype_all;
417 	else
418 		head = &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
419 
420 	list_for_each_entry(pt1, head, list) {
421 		if (pt == pt1) {
422 			list_del_rcu(&pt->list);
423 			goto out;
424 		}
425 	}
426 
427 	printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt);
428 out:
429 	spin_unlock_bh(&ptype_lock);
430 }
431 /**
432  *	dev_remove_pack	 - remove packet handler
433  *	@pt: packet type declaration
434  *
435  *	Remove a protocol handler that was previously added to the kernel
436  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
437  *	from the kernel lists and can be freed or reused once this function
438  *	returns.
439  *
440  *	This call sleeps to guarantee that no CPU is looking at the packet
441  *	type after return.
442  */
443 void dev_remove_pack(struct packet_type *pt)
444 {
445 	__dev_remove_pack(pt);
446 
447 	synchronize_net();
448 }
449 
450 /******************************************************************************
451 
452 		      Device Boot-time Settings Routines
453 
454 *******************************************************************************/
455 
456 /* Boot time configuration table */
457 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
458 
459 /**
460  *	netdev_boot_setup_add	- add new setup entry
461  *	@name: name of the device
462  *	@map: configured settings for the device
463  *
464  *	Adds new setup entry to the dev_boot_setup list.  The function
465  *	returns 0 on error and 1 on success.  This is a generic routine to
466  *	all netdevices.
467  */
468 static int netdev_boot_setup_add(char *name, struct ifmap *map)
469 {
470 	struct netdev_boot_setup *s;
471 	int i;
472 
473 	s = dev_boot_setup;
474 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
475 		if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
476 			memset(s[i].name, 0, sizeof(s[i].name));
477 			strlcpy(s[i].name, name, IFNAMSIZ);
478 			memcpy(&s[i].map, map, sizeof(s[i].map));
479 			break;
480 		}
481 	}
482 
483 	return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
484 }
485 
486 /**
487  *	netdev_boot_setup_check	- check boot time settings
488  *	@dev: the netdevice
489  *
490  * 	Check boot time settings for the device.
491  *	The found settings are set for the device to be used
492  *	later in the device probing.
493  *	Returns 0 if no settings found, 1 if they are.
494  */
495 int netdev_boot_setup_check(struct net_device *dev)
496 {
497 	struct netdev_boot_setup *s = dev_boot_setup;
498 	int i;
499 
500 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
501 		if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
502 		    !strcmp(dev->name, s[i].name)) {
503 			dev->irq 	= s[i].map.irq;
504 			dev->base_addr 	= s[i].map.base_addr;
505 			dev->mem_start 	= s[i].map.mem_start;
506 			dev->mem_end 	= s[i].map.mem_end;
507 			return 1;
508 		}
509 	}
510 	return 0;
511 }
512 
513 
514 /**
515  *	netdev_boot_base	- get address from boot time settings
516  *	@prefix: prefix for network device
517  *	@unit: id for network device
518  *
519  * 	Check boot time settings for the base address of device.
520  *	The found settings are set for the device to be used
521  *	later in the device probing.
522  *	Returns 0 if no settings found.
523  */
524 unsigned long netdev_boot_base(const char *prefix, int unit)
525 {
526 	const struct netdev_boot_setup *s = dev_boot_setup;
527 	char name[IFNAMSIZ];
528 	int i;
529 
530 	sprintf(name, "%s%d", prefix, unit);
531 
532 	/*
533 	 * If device already registered then return base of 1
534 	 * to indicate not to probe for this interface
535 	 */
536 	if (__dev_get_by_name(&init_net, name))
537 		return 1;
538 
539 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
540 		if (!strcmp(name, s[i].name))
541 			return s[i].map.base_addr;
542 	return 0;
543 }
544 
545 /*
546  * Saves at boot time configured settings for any netdevice.
547  */
548 int __init netdev_boot_setup(char *str)
549 {
550 	int ints[5];
551 	struct ifmap map;
552 
553 	str = get_options(str, ARRAY_SIZE(ints), ints);
554 	if (!str || !*str)
555 		return 0;
556 
557 	/* Save settings */
558 	memset(&map, 0, sizeof(map));
559 	if (ints[0] > 0)
560 		map.irq = ints[1];
561 	if (ints[0] > 1)
562 		map.base_addr = ints[2];
563 	if (ints[0] > 2)
564 		map.mem_start = ints[3];
565 	if (ints[0] > 3)
566 		map.mem_end = ints[4];
567 
568 	/* Add new entry to the list */
569 	return netdev_boot_setup_add(str, &map);
570 }
571 
572 __setup("netdev=", netdev_boot_setup);
573 
574 /*******************************************************************************
575 
576 			    Device Interface Subroutines
577 
578 *******************************************************************************/
579 
580 /**
581  *	__dev_get_by_name	- find a device by its name
582  *	@net: the applicable net namespace
583  *	@name: name to find
584  *
585  *	Find an interface by name. Must be called under RTNL semaphore
586  *	or @dev_base_lock. If the name is found a pointer to the device
587  *	is returned. If the name is not found then %NULL is returned. The
588  *	reference counters are not incremented so the caller must be
589  *	careful with locks.
590  */
591 
592 struct net_device *__dev_get_by_name(struct net *net, const char *name)
593 {
594 	struct hlist_node *p;
595 
596 	hlist_for_each(p, dev_name_hash(net, name)) {
597 		struct net_device *dev
598 			= hlist_entry(p, struct net_device, name_hlist);
599 		if (!strncmp(dev->name, name, IFNAMSIZ))
600 			return dev;
601 	}
602 	return NULL;
603 }
604 
605 /**
606  *	dev_get_by_name		- find a device by its name
607  *	@net: the applicable net namespace
608  *	@name: name to find
609  *
610  *	Find an interface by name. This can be called from any
611  *	context and does its own locking. The returned handle has
612  *	the usage count incremented and the caller must use dev_put() to
613  *	release it when it is no longer needed. %NULL is returned if no
614  *	matching device is found.
615  */
616 
617 struct net_device *dev_get_by_name(struct net *net, const char *name)
618 {
619 	struct net_device *dev;
620 
621 	read_lock(&dev_base_lock);
622 	dev = __dev_get_by_name(net, name);
623 	if (dev)
624 		dev_hold(dev);
625 	read_unlock(&dev_base_lock);
626 	return dev;
627 }
628 
629 /**
630  *	__dev_get_by_index - find a device by its ifindex
631  *	@net: the applicable net namespace
632  *	@ifindex: index of device
633  *
634  *	Search for an interface by index. Returns %NULL if the device
635  *	is not found or a pointer to the device. The device has not
636  *	had its reference counter increased so the caller must be careful
637  *	about locking. The caller must hold either the RTNL semaphore
638  *	or @dev_base_lock.
639  */
640 
641 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
642 {
643 	struct hlist_node *p;
644 
645 	hlist_for_each(p, dev_index_hash(net, ifindex)) {
646 		struct net_device *dev
647 			= hlist_entry(p, struct net_device, index_hlist);
648 		if (dev->ifindex == ifindex)
649 			return dev;
650 	}
651 	return NULL;
652 }
653 
654 
655 /**
656  *	dev_get_by_index - find a device by its ifindex
657  *	@net: the applicable net namespace
658  *	@ifindex: index of device
659  *
660  *	Search for an interface by index. Returns NULL if the device
661  *	is not found or a pointer to the device. The device returned has
662  *	had a reference added and the pointer is safe until the user calls
663  *	dev_put to indicate they have finished with it.
664  */
665 
666 struct net_device *dev_get_by_index(struct net *net, int ifindex)
667 {
668 	struct net_device *dev;
669 
670 	read_lock(&dev_base_lock);
671 	dev = __dev_get_by_index(net, ifindex);
672 	if (dev)
673 		dev_hold(dev);
674 	read_unlock(&dev_base_lock);
675 	return dev;
676 }
677 
678 /**
679  *	dev_getbyhwaddr - find a device by its hardware address
680  *	@net: the applicable net namespace
681  *	@type: media type of device
682  *	@ha: hardware address
683  *
684  *	Search for an interface by MAC address. Returns NULL if the device
685  *	is not found or a pointer to the device. The caller must hold the
686  *	rtnl semaphore. The returned device has not had its ref count increased
687  *	and the caller must therefore be careful about locking
688  *
689  *	BUGS:
690  *	If the API was consistent this would be __dev_get_by_hwaddr
691  */
692 
693 struct net_device *dev_getbyhwaddr(struct net *net, unsigned short type, char *ha)
694 {
695 	struct net_device *dev;
696 
697 	ASSERT_RTNL();
698 
699 	for_each_netdev(net, dev)
700 		if (dev->type == type &&
701 		    !memcmp(dev->dev_addr, ha, dev->addr_len))
702 			return dev;
703 
704 	return NULL;
705 }
706 
707 EXPORT_SYMBOL(dev_getbyhwaddr);
708 
709 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
710 {
711 	struct net_device *dev;
712 
713 	ASSERT_RTNL();
714 	for_each_netdev(net, dev)
715 		if (dev->type == type)
716 			return dev;
717 
718 	return NULL;
719 }
720 
721 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
722 
723 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
724 {
725 	struct net_device *dev;
726 
727 	rtnl_lock();
728 	dev = __dev_getfirstbyhwtype(net, type);
729 	if (dev)
730 		dev_hold(dev);
731 	rtnl_unlock();
732 	return dev;
733 }
734 
735 EXPORT_SYMBOL(dev_getfirstbyhwtype);
736 
737 /**
738  *	dev_get_by_flags - find any device with given flags
739  *	@net: the applicable net namespace
740  *	@if_flags: IFF_* values
741  *	@mask: bitmask of bits in if_flags to check
742  *
743  *	Search for any interface with the given flags. Returns NULL if a device
744  *	is not found or a pointer to the device. The device returned has
745  *	had a reference added and the pointer is safe until the user calls
746  *	dev_put to indicate they have finished with it.
747  */
748 
749 struct net_device * dev_get_by_flags(struct net *net, unsigned short if_flags, unsigned short mask)
750 {
751 	struct net_device *dev, *ret;
752 
753 	ret = NULL;
754 	read_lock(&dev_base_lock);
755 	for_each_netdev(net, dev) {
756 		if (((dev->flags ^ if_flags) & mask) == 0) {
757 			dev_hold(dev);
758 			ret = dev;
759 			break;
760 		}
761 	}
762 	read_unlock(&dev_base_lock);
763 	return ret;
764 }
765 
766 /**
767  *	dev_valid_name - check if name is okay for network device
768  *	@name: name string
769  *
770  *	Network device names need to be valid file names to
771  *	to allow sysfs to work.  We also disallow any kind of
772  *	whitespace.
773  */
774 int dev_valid_name(const char *name)
775 {
776 	if (*name == '\0')
777 		return 0;
778 	if (strlen(name) >= IFNAMSIZ)
779 		return 0;
780 	if (!strcmp(name, ".") || !strcmp(name, ".."))
781 		return 0;
782 
783 	while (*name) {
784 		if (*name == '/' || isspace(*name))
785 			return 0;
786 		name++;
787 	}
788 	return 1;
789 }
790 
791 /**
792  *	__dev_alloc_name - allocate a name for a device
793  *	@net: network namespace to allocate the device name in
794  *	@name: name format string
795  *	@buf:  scratch buffer and result name string
796  *
797  *	Passed a format string - eg "lt%d" it will try and find a suitable
798  *	id. It scans list of devices to build up a free map, then chooses
799  *	the first empty slot. The caller must hold the dev_base or rtnl lock
800  *	while allocating the name and adding the device in order to avoid
801  *	duplicates.
802  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
803  *	Returns the number of the unit assigned or a negative errno code.
804  */
805 
806 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
807 {
808 	int i = 0;
809 	const char *p;
810 	const int max_netdevices = 8*PAGE_SIZE;
811 	unsigned long *inuse;
812 	struct net_device *d;
813 
814 	p = strnchr(name, IFNAMSIZ-1, '%');
815 	if (p) {
816 		/*
817 		 * Verify the string as this thing may have come from
818 		 * the user.  There must be either one "%d" and no other "%"
819 		 * characters.
820 		 */
821 		if (p[1] != 'd' || strchr(p + 2, '%'))
822 			return -EINVAL;
823 
824 		/* Use one page as a bit array of possible slots */
825 		inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
826 		if (!inuse)
827 			return -ENOMEM;
828 
829 		for_each_netdev(net, d) {
830 			if (!sscanf(d->name, name, &i))
831 				continue;
832 			if (i < 0 || i >= max_netdevices)
833 				continue;
834 
835 			/*  avoid cases where sscanf is not exact inverse of printf */
836 			snprintf(buf, IFNAMSIZ, name, i);
837 			if (!strncmp(buf, d->name, IFNAMSIZ))
838 				set_bit(i, inuse);
839 		}
840 
841 		i = find_first_zero_bit(inuse, max_netdevices);
842 		free_page((unsigned long) inuse);
843 	}
844 
845 	snprintf(buf, IFNAMSIZ, name, i);
846 	if (!__dev_get_by_name(net, buf))
847 		return i;
848 
849 	/* It is possible to run out of possible slots
850 	 * when the name is long and there isn't enough space left
851 	 * for the digits, or if all bits are used.
852 	 */
853 	return -ENFILE;
854 }
855 
856 /**
857  *	dev_alloc_name - allocate a name for a device
858  *	@dev: device
859  *	@name: name format string
860  *
861  *	Passed a format string - eg "lt%d" it will try and find a suitable
862  *	id. It scans list of devices to build up a free map, then chooses
863  *	the first empty slot. The caller must hold the dev_base or rtnl lock
864  *	while allocating the name and adding the device in order to avoid
865  *	duplicates.
866  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
867  *	Returns the number of the unit assigned or a negative errno code.
868  */
869 
870 int dev_alloc_name(struct net_device *dev, const char *name)
871 {
872 	char buf[IFNAMSIZ];
873 	struct net *net;
874 	int ret;
875 
876 	BUG_ON(!dev_net(dev));
877 	net = dev_net(dev);
878 	ret = __dev_alloc_name(net, name, buf);
879 	if (ret >= 0)
880 		strlcpy(dev->name, buf, IFNAMSIZ);
881 	return ret;
882 }
883 
884 
885 /**
886  *	dev_change_name - change name of a device
887  *	@dev: device
888  *	@newname: name (or format string) must be at least IFNAMSIZ
889  *
890  *	Change name of a device, can pass format strings "eth%d".
891  *	for wildcarding.
892  */
893 int dev_change_name(struct net_device *dev, char *newname)
894 {
895 	char oldname[IFNAMSIZ];
896 	int err = 0;
897 	int ret;
898 	struct net *net;
899 
900 	ASSERT_RTNL();
901 	BUG_ON(!dev_net(dev));
902 
903 	net = dev_net(dev);
904 	if (dev->flags & IFF_UP)
905 		return -EBUSY;
906 
907 	if (!dev_valid_name(newname))
908 		return -EINVAL;
909 
910 	if (strncmp(newname, dev->name, IFNAMSIZ) == 0)
911 		return 0;
912 
913 	memcpy(oldname, dev->name, IFNAMSIZ);
914 
915 	if (strchr(newname, '%')) {
916 		err = dev_alloc_name(dev, newname);
917 		if (err < 0)
918 			return err;
919 		strcpy(newname, dev->name);
920 	}
921 	else if (__dev_get_by_name(net, newname))
922 		return -EEXIST;
923 	else
924 		strlcpy(dev->name, newname, IFNAMSIZ);
925 
926 rollback:
927 	err = device_rename(&dev->dev, dev->name);
928 	if (err) {
929 		memcpy(dev->name, oldname, IFNAMSIZ);
930 		return err;
931 	}
932 
933 	write_lock_bh(&dev_base_lock);
934 	hlist_del(&dev->name_hlist);
935 	hlist_add_head(&dev->name_hlist, dev_name_hash(net, dev->name));
936 	write_unlock_bh(&dev_base_lock);
937 
938 	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
939 	ret = notifier_to_errno(ret);
940 
941 	if (ret) {
942 		if (err) {
943 			printk(KERN_ERR
944 			       "%s: name change rollback failed: %d.\n",
945 			       dev->name, ret);
946 		} else {
947 			err = ret;
948 			memcpy(dev->name, oldname, IFNAMSIZ);
949 			goto rollback;
950 		}
951 	}
952 
953 	return err;
954 }
955 
956 /**
957  *	netdev_features_change - device changes features
958  *	@dev: device to cause notification
959  *
960  *	Called to indicate a device has changed features.
961  */
962 void netdev_features_change(struct net_device *dev)
963 {
964 	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
965 }
966 EXPORT_SYMBOL(netdev_features_change);
967 
968 /**
969  *	netdev_state_change - device changes state
970  *	@dev: device to cause notification
971  *
972  *	Called to indicate a device has changed state. This function calls
973  *	the notifier chains for netdev_chain and sends a NEWLINK message
974  *	to the routing socket.
975  */
976 void netdev_state_change(struct net_device *dev)
977 {
978 	if (dev->flags & IFF_UP) {
979 		call_netdevice_notifiers(NETDEV_CHANGE, dev);
980 		rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
981 	}
982 }
983 
984 void netdev_bonding_change(struct net_device *dev)
985 {
986 	call_netdevice_notifiers(NETDEV_BONDING_FAILOVER, dev);
987 }
988 EXPORT_SYMBOL(netdev_bonding_change);
989 
990 /**
991  *	dev_load 	- load a network module
992  *	@net: the applicable net namespace
993  *	@name: name of interface
994  *
995  *	If a network interface is not present and the process has suitable
996  *	privileges this function loads the module. If module loading is not
997  *	available in this kernel then it becomes a nop.
998  */
999 
1000 void dev_load(struct net *net, const char *name)
1001 {
1002 	struct net_device *dev;
1003 
1004 	read_lock(&dev_base_lock);
1005 	dev = __dev_get_by_name(net, name);
1006 	read_unlock(&dev_base_lock);
1007 
1008 	if (!dev && capable(CAP_SYS_MODULE))
1009 		request_module("%s", name);
1010 }
1011 
1012 /**
1013  *	dev_open	- prepare an interface for use.
1014  *	@dev:	device to open
1015  *
1016  *	Takes a device from down to up state. The device's private open
1017  *	function is invoked and then the multicast lists are loaded. Finally
1018  *	the device is moved into the up state and a %NETDEV_UP message is
1019  *	sent to the netdev notifier chain.
1020  *
1021  *	Calling this function on an active interface is a nop. On a failure
1022  *	a negative errno code is returned.
1023  */
1024 int dev_open(struct net_device *dev)
1025 {
1026 	int ret = 0;
1027 
1028 	ASSERT_RTNL();
1029 
1030 	/*
1031 	 *	Is it already up?
1032 	 */
1033 
1034 	if (dev->flags & IFF_UP)
1035 		return 0;
1036 
1037 	/*
1038 	 *	Is it even present?
1039 	 */
1040 	if (!netif_device_present(dev))
1041 		return -ENODEV;
1042 
1043 	/*
1044 	 *	Call device private open method
1045 	 */
1046 	set_bit(__LINK_STATE_START, &dev->state);
1047 
1048 	if (dev->validate_addr)
1049 		ret = dev->validate_addr(dev);
1050 
1051 	if (!ret && dev->open)
1052 		ret = dev->open(dev);
1053 
1054 	/*
1055 	 *	If it went open OK then:
1056 	 */
1057 
1058 	if (ret)
1059 		clear_bit(__LINK_STATE_START, &dev->state);
1060 	else {
1061 		/*
1062 		 *	Set the flags.
1063 		 */
1064 		dev->flags |= IFF_UP;
1065 
1066 		/*
1067 		 *	Initialize multicasting status
1068 		 */
1069 		dev_set_rx_mode(dev);
1070 
1071 		/*
1072 		 *	Wakeup transmit queue engine
1073 		 */
1074 		dev_activate(dev);
1075 
1076 		/*
1077 		 *	... and announce new interface.
1078 		 */
1079 		call_netdevice_notifiers(NETDEV_UP, dev);
1080 	}
1081 
1082 	return ret;
1083 }
1084 
1085 /**
1086  *	dev_close - shutdown an interface.
1087  *	@dev: device to shutdown
1088  *
1089  *	This function moves an active device into down state. A
1090  *	%NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1091  *	is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1092  *	chain.
1093  */
1094 int dev_close(struct net_device *dev)
1095 {
1096 	ASSERT_RTNL();
1097 
1098 	might_sleep();
1099 
1100 	if (!(dev->flags & IFF_UP))
1101 		return 0;
1102 
1103 	/*
1104 	 *	Tell people we are going down, so that they can
1105 	 *	prepare to death, when device is still operating.
1106 	 */
1107 	call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1108 
1109 	clear_bit(__LINK_STATE_START, &dev->state);
1110 
1111 	/* Synchronize to scheduled poll. We cannot touch poll list,
1112 	 * it can be even on different cpu. So just clear netif_running().
1113 	 *
1114 	 * dev->stop() will invoke napi_disable() on all of it's
1115 	 * napi_struct instances on this device.
1116 	 */
1117 	smp_mb__after_clear_bit(); /* Commit netif_running(). */
1118 
1119 	dev_deactivate(dev);
1120 
1121 	/*
1122 	 *	Call the device specific close. This cannot fail.
1123 	 *	Only if device is UP
1124 	 *
1125 	 *	We allow it to be called even after a DETACH hot-plug
1126 	 *	event.
1127 	 */
1128 	if (dev->stop)
1129 		dev->stop(dev);
1130 
1131 	/*
1132 	 *	Device is now down.
1133 	 */
1134 
1135 	dev->flags &= ~IFF_UP;
1136 
1137 	/*
1138 	 * Tell people we are down
1139 	 */
1140 	call_netdevice_notifiers(NETDEV_DOWN, dev);
1141 
1142 	return 0;
1143 }
1144 
1145 
1146 /**
1147  *	dev_disable_lro - disable Large Receive Offload on a device
1148  *	@dev: device
1149  *
1150  *	Disable Large Receive Offload (LRO) on a net device.  Must be
1151  *	called under RTNL.  This is needed if received packets may be
1152  *	forwarded to another interface.
1153  */
1154 void dev_disable_lro(struct net_device *dev)
1155 {
1156 	if (dev->ethtool_ops && dev->ethtool_ops->get_flags &&
1157 	    dev->ethtool_ops->set_flags) {
1158 		u32 flags = dev->ethtool_ops->get_flags(dev);
1159 		if (flags & ETH_FLAG_LRO) {
1160 			flags &= ~ETH_FLAG_LRO;
1161 			dev->ethtool_ops->set_flags(dev, flags);
1162 		}
1163 	}
1164 	WARN_ON(dev->features & NETIF_F_LRO);
1165 }
1166 EXPORT_SYMBOL(dev_disable_lro);
1167 
1168 
1169 static int dev_boot_phase = 1;
1170 
1171 /*
1172  *	Device change register/unregister. These are not inline or static
1173  *	as we export them to the world.
1174  */
1175 
1176 /**
1177  *	register_netdevice_notifier - register a network notifier block
1178  *	@nb: notifier
1179  *
1180  *	Register a notifier to be called when network device events occur.
1181  *	The notifier passed is linked into the kernel structures and must
1182  *	not be reused until it has been unregistered. A negative errno code
1183  *	is returned on a failure.
1184  *
1185  * 	When registered all registration and up events are replayed
1186  *	to the new notifier to allow device to have a race free
1187  *	view of the network device list.
1188  */
1189 
1190 int register_netdevice_notifier(struct notifier_block *nb)
1191 {
1192 	struct net_device *dev;
1193 	struct net_device *last;
1194 	struct net *net;
1195 	int err;
1196 
1197 	rtnl_lock();
1198 	err = raw_notifier_chain_register(&netdev_chain, nb);
1199 	if (err)
1200 		goto unlock;
1201 	if (dev_boot_phase)
1202 		goto unlock;
1203 	for_each_net(net) {
1204 		for_each_netdev(net, dev) {
1205 			err = nb->notifier_call(nb, NETDEV_REGISTER, dev);
1206 			err = notifier_to_errno(err);
1207 			if (err)
1208 				goto rollback;
1209 
1210 			if (!(dev->flags & IFF_UP))
1211 				continue;
1212 
1213 			nb->notifier_call(nb, NETDEV_UP, dev);
1214 		}
1215 	}
1216 
1217 unlock:
1218 	rtnl_unlock();
1219 	return err;
1220 
1221 rollback:
1222 	last = dev;
1223 	for_each_net(net) {
1224 		for_each_netdev(net, dev) {
1225 			if (dev == last)
1226 				break;
1227 
1228 			if (dev->flags & IFF_UP) {
1229 				nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1230 				nb->notifier_call(nb, NETDEV_DOWN, dev);
1231 			}
1232 			nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1233 		}
1234 	}
1235 
1236 	raw_notifier_chain_unregister(&netdev_chain, nb);
1237 	goto unlock;
1238 }
1239 
1240 /**
1241  *	unregister_netdevice_notifier - unregister a network notifier block
1242  *	@nb: notifier
1243  *
1244  *	Unregister a notifier previously registered by
1245  *	register_netdevice_notifier(). The notifier is unlinked into the
1246  *	kernel structures and may then be reused. A negative errno code
1247  *	is returned on a failure.
1248  */
1249 
1250 int unregister_netdevice_notifier(struct notifier_block *nb)
1251 {
1252 	int err;
1253 
1254 	rtnl_lock();
1255 	err = raw_notifier_chain_unregister(&netdev_chain, nb);
1256 	rtnl_unlock();
1257 	return err;
1258 }
1259 
1260 /**
1261  *	call_netdevice_notifiers - call all network notifier blocks
1262  *      @val: value passed unmodified to notifier function
1263  *      @dev: net_device pointer passed unmodified to notifier function
1264  *
1265  *	Call all network notifier blocks.  Parameters and return value
1266  *	are as for raw_notifier_call_chain().
1267  */
1268 
1269 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1270 {
1271 	return raw_notifier_call_chain(&netdev_chain, val, dev);
1272 }
1273 
1274 /* When > 0 there are consumers of rx skb time stamps */
1275 static atomic_t netstamp_needed = ATOMIC_INIT(0);
1276 
1277 void net_enable_timestamp(void)
1278 {
1279 	atomic_inc(&netstamp_needed);
1280 }
1281 
1282 void net_disable_timestamp(void)
1283 {
1284 	atomic_dec(&netstamp_needed);
1285 }
1286 
1287 static inline void net_timestamp(struct sk_buff *skb)
1288 {
1289 	if (atomic_read(&netstamp_needed))
1290 		__net_timestamp(skb);
1291 	else
1292 		skb->tstamp.tv64 = 0;
1293 }
1294 
1295 /*
1296  *	Support routine. Sends outgoing frames to any network
1297  *	taps currently in use.
1298  */
1299 
1300 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1301 {
1302 	struct packet_type *ptype;
1303 
1304 	net_timestamp(skb);
1305 
1306 	rcu_read_lock();
1307 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
1308 		/* Never send packets back to the socket
1309 		 * they originated from - MvS (miquels@drinkel.ow.org)
1310 		 */
1311 		if ((ptype->dev == dev || !ptype->dev) &&
1312 		    (ptype->af_packet_priv == NULL ||
1313 		     (struct sock *)ptype->af_packet_priv != skb->sk)) {
1314 			struct sk_buff *skb2= skb_clone(skb, GFP_ATOMIC);
1315 			if (!skb2)
1316 				break;
1317 
1318 			/* skb->nh should be correctly
1319 			   set by sender, so that the second statement is
1320 			   just protection against buggy protocols.
1321 			 */
1322 			skb_reset_mac_header(skb2);
1323 
1324 			if (skb_network_header(skb2) < skb2->data ||
1325 			    skb2->network_header > skb2->tail) {
1326 				if (net_ratelimit())
1327 					printk(KERN_CRIT "protocol %04x is "
1328 					       "buggy, dev %s\n",
1329 					       skb2->protocol, dev->name);
1330 				skb_reset_network_header(skb2);
1331 			}
1332 
1333 			skb2->transport_header = skb2->network_header;
1334 			skb2->pkt_type = PACKET_OUTGOING;
1335 			ptype->func(skb2, skb->dev, ptype, skb->dev);
1336 		}
1337 	}
1338 	rcu_read_unlock();
1339 }
1340 
1341 
1342 void __netif_schedule(struct Qdisc *q)
1343 {
1344 	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state)) {
1345 		struct softnet_data *sd;
1346 		unsigned long flags;
1347 
1348 		local_irq_save(flags);
1349 		sd = &__get_cpu_var(softnet_data);
1350 		q->next_sched = sd->output_queue;
1351 		sd->output_queue = q;
1352 		raise_softirq_irqoff(NET_TX_SOFTIRQ);
1353 		local_irq_restore(flags);
1354 	}
1355 }
1356 EXPORT_SYMBOL(__netif_schedule);
1357 
1358 void dev_kfree_skb_irq(struct sk_buff *skb)
1359 {
1360 	if (atomic_dec_and_test(&skb->users)) {
1361 		struct softnet_data *sd;
1362 		unsigned long flags;
1363 
1364 		local_irq_save(flags);
1365 		sd = &__get_cpu_var(softnet_data);
1366 		skb->next = sd->completion_queue;
1367 		sd->completion_queue = skb;
1368 		raise_softirq_irqoff(NET_TX_SOFTIRQ);
1369 		local_irq_restore(flags);
1370 	}
1371 }
1372 EXPORT_SYMBOL(dev_kfree_skb_irq);
1373 
1374 void dev_kfree_skb_any(struct sk_buff *skb)
1375 {
1376 	if (in_irq() || irqs_disabled())
1377 		dev_kfree_skb_irq(skb);
1378 	else
1379 		dev_kfree_skb(skb);
1380 }
1381 EXPORT_SYMBOL(dev_kfree_skb_any);
1382 
1383 
1384 /**
1385  * netif_device_detach - mark device as removed
1386  * @dev: network device
1387  *
1388  * Mark device as removed from system and therefore no longer available.
1389  */
1390 void netif_device_detach(struct net_device *dev)
1391 {
1392 	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
1393 	    netif_running(dev)) {
1394 		netif_stop_queue(dev);
1395 	}
1396 }
1397 EXPORT_SYMBOL(netif_device_detach);
1398 
1399 /**
1400  * netif_device_attach - mark device as attached
1401  * @dev: network device
1402  *
1403  * Mark device as attached from system and restart if needed.
1404  */
1405 void netif_device_attach(struct net_device *dev)
1406 {
1407 	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
1408 	    netif_running(dev)) {
1409 		netif_wake_queue(dev);
1410 		__netdev_watchdog_up(dev);
1411 	}
1412 }
1413 EXPORT_SYMBOL(netif_device_attach);
1414 
1415 static bool can_checksum_protocol(unsigned long features, __be16 protocol)
1416 {
1417 	return ((features & NETIF_F_GEN_CSUM) ||
1418 		((features & NETIF_F_IP_CSUM) &&
1419 		 protocol == htons(ETH_P_IP)) ||
1420 		((features & NETIF_F_IPV6_CSUM) &&
1421 		 protocol == htons(ETH_P_IPV6)));
1422 }
1423 
1424 static bool dev_can_checksum(struct net_device *dev, struct sk_buff *skb)
1425 {
1426 	if (can_checksum_protocol(dev->features, skb->protocol))
1427 		return true;
1428 
1429 	if (skb->protocol == htons(ETH_P_8021Q)) {
1430 		struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
1431 		if (can_checksum_protocol(dev->features & dev->vlan_features,
1432 					  veh->h_vlan_encapsulated_proto))
1433 			return true;
1434 	}
1435 
1436 	return false;
1437 }
1438 
1439 /*
1440  * Invalidate hardware checksum when packet is to be mangled, and
1441  * complete checksum manually on outgoing path.
1442  */
1443 int skb_checksum_help(struct sk_buff *skb)
1444 {
1445 	__wsum csum;
1446 	int ret = 0, offset;
1447 
1448 	if (skb->ip_summed == CHECKSUM_COMPLETE)
1449 		goto out_set_summed;
1450 
1451 	if (unlikely(skb_shinfo(skb)->gso_size)) {
1452 		/* Let GSO fix up the checksum. */
1453 		goto out_set_summed;
1454 	}
1455 
1456 	offset = skb->csum_start - skb_headroom(skb);
1457 	BUG_ON(offset >= skb_headlen(skb));
1458 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
1459 
1460 	offset += skb->csum_offset;
1461 	BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
1462 
1463 	if (skb_cloned(skb) &&
1464 	    !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1465 		ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1466 		if (ret)
1467 			goto out;
1468 	}
1469 
1470 	*(__sum16 *)(skb->data + offset) = csum_fold(csum);
1471 out_set_summed:
1472 	skb->ip_summed = CHECKSUM_NONE;
1473 out:
1474 	return ret;
1475 }
1476 
1477 /**
1478  *	skb_gso_segment - Perform segmentation on skb.
1479  *	@skb: buffer to segment
1480  *	@features: features for the output path (see dev->features)
1481  *
1482  *	This function segments the given skb and returns a list of segments.
1483  *
1484  *	It may return NULL if the skb requires no segmentation.  This is
1485  *	only possible when GSO is used for verifying header integrity.
1486  */
1487 struct sk_buff *skb_gso_segment(struct sk_buff *skb, int features)
1488 {
1489 	struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
1490 	struct packet_type *ptype;
1491 	__be16 type = skb->protocol;
1492 	int err;
1493 
1494 	BUG_ON(skb_shinfo(skb)->frag_list);
1495 
1496 	skb_reset_mac_header(skb);
1497 	skb->mac_len = skb->network_header - skb->mac_header;
1498 	__skb_pull(skb, skb->mac_len);
1499 
1500 	if (WARN_ON(skb->ip_summed != CHECKSUM_PARTIAL)) {
1501 		if (skb_header_cloned(skb) &&
1502 		    (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
1503 			return ERR_PTR(err);
1504 	}
1505 
1506 	rcu_read_lock();
1507 	list_for_each_entry_rcu(ptype,
1508 			&ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
1509 		if (ptype->type == type && !ptype->dev && ptype->gso_segment) {
1510 			if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1511 				err = ptype->gso_send_check(skb);
1512 				segs = ERR_PTR(err);
1513 				if (err || skb_gso_ok(skb, features))
1514 					break;
1515 				__skb_push(skb, (skb->data -
1516 						 skb_network_header(skb)));
1517 			}
1518 			segs = ptype->gso_segment(skb, features);
1519 			break;
1520 		}
1521 	}
1522 	rcu_read_unlock();
1523 
1524 	__skb_push(skb, skb->data - skb_mac_header(skb));
1525 
1526 	return segs;
1527 }
1528 
1529 EXPORT_SYMBOL(skb_gso_segment);
1530 
1531 /* Take action when hardware reception checksum errors are detected. */
1532 #ifdef CONFIG_BUG
1533 void netdev_rx_csum_fault(struct net_device *dev)
1534 {
1535 	if (net_ratelimit()) {
1536 		printk(KERN_ERR "%s: hw csum failure.\n",
1537 			dev ? dev->name : "<unknown>");
1538 		dump_stack();
1539 	}
1540 }
1541 EXPORT_SYMBOL(netdev_rx_csum_fault);
1542 #endif
1543 
1544 /* Actually, we should eliminate this check as soon as we know, that:
1545  * 1. IOMMU is present and allows to map all the memory.
1546  * 2. No high memory really exists on this machine.
1547  */
1548 
1549 static inline int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1550 {
1551 #ifdef CONFIG_HIGHMEM
1552 	int i;
1553 
1554 	if (dev->features & NETIF_F_HIGHDMA)
1555 		return 0;
1556 
1557 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1558 		if (PageHighMem(skb_shinfo(skb)->frags[i].page))
1559 			return 1;
1560 
1561 #endif
1562 	return 0;
1563 }
1564 
1565 struct dev_gso_cb {
1566 	void (*destructor)(struct sk_buff *skb);
1567 };
1568 
1569 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
1570 
1571 static void dev_gso_skb_destructor(struct sk_buff *skb)
1572 {
1573 	struct dev_gso_cb *cb;
1574 
1575 	do {
1576 		struct sk_buff *nskb = skb->next;
1577 
1578 		skb->next = nskb->next;
1579 		nskb->next = NULL;
1580 		kfree_skb(nskb);
1581 	} while (skb->next);
1582 
1583 	cb = DEV_GSO_CB(skb);
1584 	if (cb->destructor)
1585 		cb->destructor(skb);
1586 }
1587 
1588 /**
1589  *	dev_gso_segment - Perform emulated hardware segmentation on skb.
1590  *	@skb: buffer to segment
1591  *
1592  *	This function segments the given skb and stores the list of segments
1593  *	in skb->next.
1594  */
1595 static int dev_gso_segment(struct sk_buff *skb)
1596 {
1597 	struct net_device *dev = skb->dev;
1598 	struct sk_buff *segs;
1599 	int features = dev->features & ~(illegal_highdma(dev, skb) ?
1600 					 NETIF_F_SG : 0);
1601 
1602 	segs = skb_gso_segment(skb, features);
1603 
1604 	/* Verifying header integrity only. */
1605 	if (!segs)
1606 		return 0;
1607 
1608 	if (IS_ERR(segs))
1609 		return PTR_ERR(segs);
1610 
1611 	skb->next = segs;
1612 	DEV_GSO_CB(skb)->destructor = skb->destructor;
1613 	skb->destructor = dev_gso_skb_destructor;
1614 
1615 	return 0;
1616 }
1617 
1618 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
1619 			struct netdev_queue *txq)
1620 {
1621 	if (likely(!skb->next)) {
1622 		if (!list_empty(&ptype_all))
1623 			dev_queue_xmit_nit(skb, dev);
1624 
1625 		if (netif_needs_gso(dev, skb)) {
1626 			if (unlikely(dev_gso_segment(skb)))
1627 				goto out_kfree_skb;
1628 			if (skb->next)
1629 				goto gso;
1630 		}
1631 
1632 		return dev->hard_start_xmit(skb, dev);
1633 	}
1634 
1635 gso:
1636 	do {
1637 		struct sk_buff *nskb = skb->next;
1638 		int rc;
1639 
1640 		skb->next = nskb->next;
1641 		nskb->next = NULL;
1642 		rc = dev->hard_start_xmit(nskb, dev);
1643 		if (unlikely(rc)) {
1644 			nskb->next = skb->next;
1645 			skb->next = nskb;
1646 			return rc;
1647 		}
1648 		if (unlikely(netif_tx_queue_stopped(txq) && skb->next))
1649 			return NETDEV_TX_BUSY;
1650 	} while (skb->next);
1651 
1652 	skb->destructor = DEV_GSO_CB(skb)->destructor;
1653 
1654 out_kfree_skb:
1655 	kfree_skb(skb);
1656 	return 0;
1657 }
1658 
1659 static u32 simple_tx_hashrnd;
1660 static int simple_tx_hashrnd_initialized = 0;
1661 
1662 static u16 simple_tx_hash(struct net_device *dev, struct sk_buff *skb)
1663 {
1664 	u32 addr1, addr2, ports;
1665 	u32 hash, ihl;
1666 	u8 ip_proto;
1667 
1668 	if (unlikely(!simple_tx_hashrnd_initialized)) {
1669 		get_random_bytes(&simple_tx_hashrnd, 4);
1670 		simple_tx_hashrnd_initialized = 1;
1671 	}
1672 
1673 	switch (skb->protocol) {
1674 	case __constant_htons(ETH_P_IP):
1675 		ip_proto = ip_hdr(skb)->protocol;
1676 		addr1 = ip_hdr(skb)->saddr;
1677 		addr2 = ip_hdr(skb)->daddr;
1678 		ihl = ip_hdr(skb)->ihl;
1679 		break;
1680 	case __constant_htons(ETH_P_IPV6):
1681 		ip_proto = ipv6_hdr(skb)->nexthdr;
1682 		addr1 = ipv6_hdr(skb)->saddr.s6_addr32[3];
1683 		addr2 = ipv6_hdr(skb)->daddr.s6_addr32[3];
1684 		ihl = (40 >> 2);
1685 		break;
1686 	default:
1687 		return 0;
1688 	}
1689 
1690 
1691 	switch (ip_proto) {
1692 	case IPPROTO_TCP:
1693 	case IPPROTO_UDP:
1694 	case IPPROTO_DCCP:
1695 	case IPPROTO_ESP:
1696 	case IPPROTO_AH:
1697 	case IPPROTO_SCTP:
1698 	case IPPROTO_UDPLITE:
1699 		ports = *((u32 *) (skb_network_header(skb) + (ihl * 4)));
1700 		break;
1701 
1702 	default:
1703 		ports = 0;
1704 		break;
1705 	}
1706 
1707 	hash = jhash_3words(addr1, addr2, ports, simple_tx_hashrnd);
1708 
1709 	return (u16) (((u64) hash * dev->real_num_tx_queues) >> 32);
1710 }
1711 
1712 static struct netdev_queue *dev_pick_tx(struct net_device *dev,
1713 					struct sk_buff *skb)
1714 {
1715 	u16 queue_index = 0;
1716 
1717 	if (dev->select_queue)
1718 		queue_index = dev->select_queue(dev, skb);
1719 	else if (dev->real_num_tx_queues > 1)
1720 		queue_index = simple_tx_hash(dev, skb);
1721 
1722 	skb_set_queue_mapping(skb, queue_index);
1723 	return netdev_get_tx_queue(dev, queue_index);
1724 }
1725 
1726 /**
1727  *	dev_queue_xmit - transmit a buffer
1728  *	@skb: buffer to transmit
1729  *
1730  *	Queue a buffer for transmission to a network device. The caller must
1731  *	have set the device and priority and built the buffer before calling
1732  *	this function. The function can be called from an interrupt.
1733  *
1734  *	A negative errno code is returned on a failure. A success does not
1735  *	guarantee the frame will be transmitted as it may be dropped due
1736  *	to congestion or traffic shaping.
1737  *
1738  * -----------------------------------------------------------------------------------
1739  *      I notice this method can also return errors from the queue disciplines,
1740  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
1741  *      be positive.
1742  *
1743  *      Regardless of the return value, the skb is consumed, so it is currently
1744  *      difficult to retry a send to this method.  (You can bump the ref count
1745  *      before sending to hold a reference for retry if you are careful.)
1746  *
1747  *      When calling this method, interrupts MUST be enabled.  This is because
1748  *      the BH enable code must have IRQs enabled so that it will not deadlock.
1749  *          --BLG
1750  */
1751 int dev_queue_xmit(struct sk_buff *skb)
1752 {
1753 	struct net_device *dev = skb->dev;
1754 	struct netdev_queue *txq;
1755 	struct Qdisc *q;
1756 	int rc = -ENOMEM;
1757 
1758 	/* GSO will handle the following emulations directly. */
1759 	if (netif_needs_gso(dev, skb))
1760 		goto gso;
1761 
1762 	if (skb_shinfo(skb)->frag_list &&
1763 	    !(dev->features & NETIF_F_FRAGLIST) &&
1764 	    __skb_linearize(skb))
1765 		goto out_kfree_skb;
1766 
1767 	/* Fragmented skb is linearized if device does not support SG,
1768 	 * or if at least one of fragments is in highmem and device
1769 	 * does not support DMA from it.
1770 	 */
1771 	if (skb_shinfo(skb)->nr_frags &&
1772 	    (!(dev->features & NETIF_F_SG) || illegal_highdma(dev, skb)) &&
1773 	    __skb_linearize(skb))
1774 		goto out_kfree_skb;
1775 
1776 	/* If packet is not checksummed and device does not support
1777 	 * checksumming for this protocol, complete checksumming here.
1778 	 */
1779 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
1780 		skb_set_transport_header(skb, skb->csum_start -
1781 					      skb_headroom(skb));
1782 		if (!dev_can_checksum(dev, skb) && skb_checksum_help(skb))
1783 			goto out_kfree_skb;
1784 	}
1785 
1786 gso:
1787 	/* Disable soft irqs for various locks below. Also
1788 	 * stops preemption for RCU.
1789 	 */
1790 	rcu_read_lock_bh();
1791 
1792 	txq = dev_pick_tx(dev, skb);
1793 	q = rcu_dereference(txq->qdisc);
1794 
1795 #ifdef CONFIG_NET_CLS_ACT
1796 	skb->tc_verd = SET_TC_AT(skb->tc_verd,AT_EGRESS);
1797 #endif
1798 	if (q->enqueue) {
1799 		spinlock_t *root_lock = qdisc_lock(q);
1800 
1801 		spin_lock(root_lock);
1802 
1803 		rc = qdisc_enqueue_root(skb, q);
1804 		qdisc_run(q);
1805 
1806 		spin_unlock(root_lock);
1807 
1808 		goto out;
1809 	}
1810 
1811 	/* The device has no queue. Common case for software devices:
1812 	   loopback, all the sorts of tunnels...
1813 
1814 	   Really, it is unlikely that netif_tx_lock protection is necessary
1815 	   here.  (f.e. loopback and IP tunnels are clean ignoring statistics
1816 	   counters.)
1817 	   However, it is possible, that they rely on protection
1818 	   made by us here.
1819 
1820 	   Check this and shot the lock. It is not prone from deadlocks.
1821 	   Either shot noqueue qdisc, it is even simpler 8)
1822 	 */
1823 	if (dev->flags & IFF_UP) {
1824 		int cpu = smp_processor_id(); /* ok because BHs are off */
1825 
1826 		if (txq->xmit_lock_owner != cpu) {
1827 
1828 			HARD_TX_LOCK(dev, txq, cpu);
1829 
1830 			if (!netif_tx_queue_stopped(txq)) {
1831 				rc = 0;
1832 				if (!dev_hard_start_xmit(skb, dev, txq)) {
1833 					HARD_TX_UNLOCK(dev, txq);
1834 					goto out;
1835 				}
1836 			}
1837 			HARD_TX_UNLOCK(dev, txq);
1838 			if (net_ratelimit())
1839 				printk(KERN_CRIT "Virtual device %s asks to "
1840 				       "queue packet!\n", dev->name);
1841 		} else {
1842 			/* Recursion is detected! It is possible,
1843 			 * unfortunately */
1844 			if (net_ratelimit())
1845 				printk(KERN_CRIT "Dead loop on virtual device "
1846 				       "%s, fix it urgently!\n", dev->name);
1847 		}
1848 	}
1849 
1850 	rc = -ENETDOWN;
1851 	rcu_read_unlock_bh();
1852 
1853 out_kfree_skb:
1854 	kfree_skb(skb);
1855 	return rc;
1856 out:
1857 	rcu_read_unlock_bh();
1858 	return rc;
1859 }
1860 
1861 
1862 /*=======================================================================
1863 			Receiver routines
1864   =======================================================================*/
1865 
1866 int netdev_max_backlog __read_mostly = 1000;
1867 int netdev_budget __read_mostly = 300;
1868 int weight_p __read_mostly = 64;            /* old backlog weight */
1869 
1870 DEFINE_PER_CPU(struct netif_rx_stats, netdev_rx_stat) = { 0, };
1871 
1872 
1873 /**
1874  *	netif_rx	-	post buffer to the network code
1875  *	@skb: buffer to post
1876  *
1877  *	This function receives a packet from a device driver and queues it for
1878  *	the upper (protocol) levels to process.  It always succeeds. The buffer
1879  *	may be dropped during processing for congestion control or by the
1880  *	protocol layers.
1881  *
1882  *	return values:
1883  *	NET_RX_SUCCESS	(no congestion)
1884  *	NET_RX_DROP     (packet was dropped)
1885  *
1886  */
1887 
1888 int netif_rx(struct sk_buff *skb)
1889 {
1890 	struct softnet_data *queue;
1891 	unsigned long flags;
1892 
1893 	/* if netpoll wants it, pretend we never saw it */
1894 	if (netpoll_rx(skb))
1895 		return NET_RX_DROP;
1896 
1897 	if (!skb->tstamp.tv64)
1898 		net_timestamp(skb);
1899 
1900 	/*
1901 	 * The code is rearranged so that the path is the most
1902 	 * short when CPU is congested, but is still operating.
1903 	 */
1904 	local_irq_save(flags);
1905 	queue = &__get_cpu_var(softnet_data);
1906 
1907 	__get_cpu_var(netdev_rx_stat).total++;
1908 	if (queue->input_pkt_queue.qlen <= netdev_max_backlog) {
1909 		if (queue->input_pkt_queue.qlen) {
1910 enqueue:
1911 			__skb_queue_tail(&queue->input_pkt_queue, skb);
1912 			local_irq_restore(flags);
1913 			return NET_RX_SUCCESS;
1914 		}
1915 
1916 		napi_schedule(&queue->backlog);
1917 		goto enqueue;
1918 	}
1919 
1920 	__get_cpu_var(netdev_rx_stat).dropped++;
1921 	local_irq_restore(flags);
1922 
1923 	kfree_skb(skb);
1924 	return NET_RX_DROP;
1925 }
1926 
1927 int netif_rx_ni(struct sk_buff *skb)
1928 {
1929 	int err;
1930 
1931 	preempt_disable();
1932 	err = netif_rx(skb);
1933 	if (local_softirq_pending())
1934 		do_softirq();
1935 	preempt_enable();
1936 
1937 	return err;
1938 }
1939 
1940 EXPORT_SYMBOL(netif_rx_ni);
1941 
1942 static void net_tx_action(struct softirq_action *h)
1943 {
1944 	struct softnet_data *sd = &__get_cpu_var(softnet_data);
1945 
1946 	if (sd->completion_queue) {
1947 		struct sk_buff *clist;
1948 
1949 		local_irq_disable();
1950 		clist = sd->completion_queue;
1951 		sd->completion_queue = NULL;
1952 		local_irq_enable();
1953 
1954 		while (clist) {
1955 			struct sk_buff *skb = clist;
1956 			clist = clist->next;
1957 
1958 			WARN_ON(atomic_read(&skb->users));
1959 			__kfree_skb(skb);
1960 		}
1961 	}
1962 
1963 	if (sd->output_queue) {
1964 		struct Qdisc *head;
1965 
1966 		local_irq_disable();
1967 		head = sd->output_queue;
1968 		sd->output_queue = NULL;
1969 		local_irq_enable();
1970 
1971 		while (head) {
1972 			struct Qdisc *q = head;
1973 			spinlock_t *root_lock;
1974 
1975 			head = head->next_sched;
1976 
1977 			smp_mb__before_clear_bit();
1978 			clear_bit(__QDISC_STATE_SCHED, &q->state);
1979 
1980 			root_lock = qdisc_lock(q);
1981 			if (spin_trylock(root_lock)) {
1982 				qdisc_run(q);
1983 				spin_unlock(root_lock);
1984 			} else {
1985 				__netif_schedule(q);
1986 			}
1987 		}
1988 	}
1989 }
1990 
1991 static inline int deliver_skb(struct sk_buff *skb,
1992 			      struct packet_type *pt_prev,
1993 			      struct net_device *orig_dev)
1994 {
1995 	atomic_inc(&skb->users);
1996 	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1997 }
1998 
1999 #if defined(CONFIG_BRIDGE) || defined (CONFIG_BRIDGE_MODULE)
2000 /* These hooks defined here for ATM */
2001 struct net_bridge;
2002 struct net_bridge_fdb_entry *(*br_fdb_get_hook)(struct net_bridge *br,
2003 						unsigned char *addr);
2004 void (*br_fdb_put_hook)(struct net_bridge_fdb_entry *ent) __read_mostly;
2005 
2006 /*
2007  * If bridge module is loaded call bridging hook.
2008  *  returns NULL if packet was consumed.
2009  */
2010 struct sk_buff *(*br_handle_frame_hook)(struct net_bridge_port *p,
2011 					struct sk_buff *skb) __read_mostly;
2012 static inline struct sk_buff *handle_bridge(struct sk_buff *skb,
2013 					    struct packet_type **pt_prev, int *ret,
2014 					    struct net_device *orig_dev)
2015 {
2016 	struct net_bridge_port *port;
2017 
2018 	if (skb->pkt_type == PACKET_LOOPBACK ||
2019 	    (port = rcu_dereference(skb->dev->br_port)) == NULL)
2020 		return skb;
2021 
2022 	if (*pt_prev) {
2023 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
2024 		*pt_prev = NULL;
2025 	}
2026 
2027 	return br_handle_frame_hook(port, skb);
2028 }
2029 #else
2030 #define handle_bridge(skb, pt_prev, ret, orig_dev)	(skb)
2031 #endif
2032 
2033 #if defined(CONFIG_MACVLAN) || defined(CONFIG_MACVLAN_MODULE)
2034 struct sk_buff *(*macvlan_handle_frame_hook)(struct sk_buff *skb) __read_mostly;
2035 EXPORT_SYMBOL_GPL(macvlan_handle_frame_hook);
2036 
2037 static inline struct sk_buff *handle_macvlan(struct sk_buff *skb,
2038 					     struct packet_type **pt_prev,
2039 					     int *ret,
2040 					     struct net_device *orig_dev)
2041 {
2042 	if (skb->dev->macvlan_port == NULL)
2043 		return skb;
2044 
2045 	if (*pt_prev) {
2046 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
2047 		*pt_prev = NULL;
2048 	}
2049 	return macvlan_handle_frame_hook(skb);
2050 }
2051 #else
2052 #define handle_macvlan(skb, pt_prev, ret, orig_dev)	(skb)
2053 #endif
2054 
2055 #ifdef CONFIG_NET_CLS_ACT
2056 /* TODO: Maybe we should just force sch_ingress to be compiled in
2057  * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
2058  * a compare and 2 stores extra right now if we dont have it on
2059  * but have CONFIG_NET_CLS_ACT
2060  * NOTE: This doesnt stop any functionality; if you dont have
2061  * the ingress scheduler, you just cant add policies on ingress.
2062  *
2063  */
2064 static int ing_filter(struct sk_buff *skb)
2065 {
2066 	struct net_device *dev = skb->dev;
2067 	u32 ttl = G_TC_RTTL(skb->tc_verd);
2068 	struct netdev_queue *rxq;
2069 	int result = TC_ACT_OK;
2070 	struct Qdisc *q;
2071 
2072 	if (MAX_RED_LOOP < ttl++) {
2073 		printk(KERN_WARNING
2074 		       "Redir loop detected Dropping packet (%d->%d)\n",
2075 		       skb->iif, dev->ifindex);
2076 		return TC_ACT_SHOT;
2077 	}
2078 
2079 	skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
2080 	skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
2081 
2082 	rxq = &dev->rx_queue;
2083 
2084 	q = rxq->qdisc;
2085 	if (q != &noop_qdisc) {
2086 		spin_lock(qdisc_lock(q));
2087 		result = qdisc_enqueue_root(skb, q);
2088 		spin_unlock(qdisc_lock(q));
2089 	}
2090 
2091 	return result;
2092 }
2093 
2094 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
2095 					 struct packet_type **pt_prev,
2096 					 int *ret, struct net_device *orig_dev)
2097 {
2098 	if (skb->dev->rx_queue.qdisc == &noop_qdisc)
2099 		goto out;
2100 
2101 	if (*pt_prev) {
2102 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
2103 		*pt_prev = NULL;
2104 	} else {
2105 		/* Huh? Why does turning on AF_PACKET affect this? */
2106 		skb->tc_verd = SET_TC_OK2MUNGE(skb->tc_verd);
2107 	}
2108 
2109 	switch (ing_filter(skb)) {
2110 	case TC_ACT_SHOT:
2111 	case TC_ACT_STOLEN:
2112 		kfree_skb(skb);
2113 		return NULL;
2114 	}
2115 
2116 out:
2117 	skb->tc_verd = 0;
2118 	return skb;
2119 }
2120 #endif
2121 
2122 /*
2123  * 	netif_nit_deliver - deliver received packets to network taps
2124  * 	@skb: buffer
2125  *
2126  * 	This function is used to deliver incoming packets to network
2127  * 	taps. It should be used when the normal netif_receive_skb path
2128  * 	is bypassed, for example because of VLAN acceleration.
2129  */
2130 void netif_nit_deliver(struct sk_buff *skb)
2131 {
2132 	struct packet_type *ptype;
2133 
2134 	if (list_empty(&ptype_all))
2135 		return;
2136 
2137 	skb_reset_network_header(skb);
2138 	skb_reset_transport_header(skb);
2139 	skb->mac_len = skb->network_header - skb->mac_header;
2140 
2141 	rcu_read_lock();
2142 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
2143 		if (!ptype->dev || ptype->dev == skb->dev)
2144 			deliver_skb(skb, ptype, skb->dev);
2145 	}
2146 	rcu_read_unlock();
2147 }
2148 
2149 /**
2150  *	netif_receive_skb - process receive buffer from network
2151  *	@skb: buffer to process
2152  *
2153  *	netif_receive_skb() is the main receive data processing function.
2154  *	It always succeeds. The buffer may be dropped during processing
2155  *	for congestion control or by the protocol layers.
2156  *
2157  *	This function may only be called from softirq context and interrupts
2158  *	should be enabled.
2159  *
2160  *	Return values (usually ignored):
2161  *	NET_RX_SUCCESS: no congestion
2162  *	NET_RX_DROP: packet was dropped
2163  */
2164 int netif_receive_skb(struct sk_buff *skb)
2165 {
2166 	struct packet_type *ptype, *pt_prev;
2167 	struct net_device *orig_dev;
2168 	struct net_device *null_or_orig;
2169 	int ret = NET_RX_DROP;
2170 	__be16 type;
2171 
2172 	/* if we've gotten here through NAPI, check netpoll */
2173 	if (netpoll_receive_skb(skb))
2174 		return NET_RX_DROP;
2175 
2176 	if (!skb->tstamp.tv64)
2177 		net_timestamp(skb);
2178 
2179 	if (!skb->iif)
2180 		skb->iif = skb->dev->ifindex;
2181 
2182 	null_or_orig = NULL;
2183 	orig_dev = skb->dev;
2184 	if (orig_dev->master) {
2185 		if (skb_bond_should_drop(skb))
2186 			null_or_orig = orig_dev; /* deliver only exact match */
2187 		else
2188 			skb->dev = orig_dev->master;
2189 	}
2190 
2191 	__get_cpu_var(netdev_rx_stat).total++;
2192 
2193 	skb_reset_network_header(skb);
2194 	skb_reset_transport_header(skb);
2195 	skb->mac_len = skb->network_header - skb->mac_header;
2196 
2197 	pt_prev = NULL;
2198 
2199 	rcu_read_lock();
2200 
2201 	/* Don't receive packets in an exiting network namespace */
2202 	if (!net_alive(dev_net(skb->dev)))
2203 		goto out;
2204 
2205 #ifdef CONFIG_NET_CLS_ACT
2206 	if (skb->tc_verd & TC_NCLS) {
2207 		skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
2208 		goto ncls;
2209 	}
2210 #endif
2211 
2212 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
2213 		if (ptype->dev == null_or_orig || ptype->dev == skb->dev ||
2214 		    ptype->dev == orig_dev) {
2215 			if (pt_prev)
2216 				ret = deliver_skb(skb, pt_prev, orig_dev);
2217 			pt_prev = ptype;
2218 		}
2219 	}
2220 
2221 #ifdef CONFIG_NET_CLS_ACT
2222 	skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
2223 	if (!skb)
2224 		goto out;
2225 ncls:
2226 #endif
2227 
2228 	skb = handle_bridge(skb, &pt_prev, &ret, orig_dev);
2229 	if (!skb)
2230 		goto out;
2231 	skb = handle_macvlan(skb, &pt_prev, &ret, orig_dev);
2232 	if (!skb)
2233 		goto out;
2234 
2235 	type = skb->protocol;
2236 	list_for_each_entry_rcu(ptype,
2237 			&ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
2238 		if (ptype->type == type &&
2239 		    (ptype->dev == null_or_orig || ptype->dev == skb->dev ||
2240 		     ptype->dev == orig_dev)) {
2241 			if (pt_prev)
2242 				ret = deliver_skb(skb, pt_prev, orig_dev);
2243 			pt_prev = ptype;
2244 		}
2245 	}
2246 
2247 	if (pt_prev) {
2248 		ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2249 	} else {
2250 		kfree_skb(skb);
2251 		/* Jamal, now you will not able to escape explaining
2252 		 * me how you were going to use this. :-)
2253 		 */
2254 		ret = NET_RX_DROP;
2255 	}
2256 
2257 out:
2258 	rcu_read_unlock();
2259 	return ret;
2260 }
2261 
2262 /* Network device is going away, flush any packets still pending  */
2263 static void flush_backlog(void *arg)
2264 {
2265 	struct net_device *dev = arg;
2266 	struct softnet_data *queue = &__get_cpu_var(softnet_data);
2267 	struct sk_buff *skb, *tmp;
2268 
2269 	skb_queue_walk_safe(&queue->input_pkt_queue, skb, tmp)
2270 		if (skb->dev == dev) {
2271 			__skb_unlink(skb, &queue->input_pkt_queue);
2272 			kfree_skb(skb);
2273 		}
2274 }
2275 
2276 static int process_backlog(struct napi_struct *napi, int quota)
2277 {
2278 	int work = 0;
2279 	struct softnet_data *queue = &__get_cpu_var(softnet_data);
2280 	unsigned long start_time = jiffies;
2281 
2282 	napi->weight = weight_p;
2283 	do {
2284 		struct sk_buff *skb;
2285 
2286 		local_irq_disable();
2287 		skb = __skb_dequeue(&queue->input_pkt_queue);
2288 		if (!skb) {
2289 			__napi_complete(napi);
2290 			local_irq_enable();
2291 			break;
2292 		}
2293 		local_irq_enable();
2294 
2295 		netif_receive_skb(skb);
2296 	} while (++work < quota && jiffies == start_time);
2297 
2298 	return work;
2299 }
2300 
2301 /**
2302  * __napi_schedule - schedule for receive
2303  * @n: entry to schedule
2304  *
2305  * The entry's receive function will be scheduled to run
2306  */
2307 void __napi_schedule(struct napi_struct *n)
2308 {
2309 	unsigned long flags;
2310 
2311 	local_irq_save(flags);
2312 	list_add_tail(&n->poll_list, &__get_cpu_var(softnet_data).poll_list);
2313 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
2314 	local_irq_restore(flags);
2315 }
2316 EXPORT_SYMBOL(__napi_schedule);
2317 
2318 
2319 static void net_rx_action(struct softirq_action *h)
2320 {
2321 	struct list_head *list = &__get_cpu_var(softnet_data).poll_list;
2322 	unsigned long start_time = jiffies;
2323 	int budget = netdev_budget;
2324 	void *have;
2325 
2326 	local_irq_disable();
2327 
2328 	while (!list_empty(list)) {
2329 		struct napi_struct *n;
2330 		int work, weight;
2331 
2332 		/* If softirq window is exhuasted then punt.
2333 		 *
2334 		 * Note that this is a slight policy change from the
2335 		 * previous NAPI code, which would allow up to 2
2336 		 * jiffies to pass before breaking out.  The test
2337 		 * used to be "jiffies - start_time > 1".
2338 		 */
2339 		if (unlikely(budget <= 0 || jiffies != start_time))
2340 			goto softnet_break;
2341 
2342 		local_irq_enable();
2343 
2344 		/* Even though interrupts have been re-enabled, this
2345 		 * access is safe because interrupts can only add new
2346 		 * entries to the tail of this list, and only ->poll()
2347 		 * calls can remove this head entry from the list.
2348 		 */
2349 		n = list_entry(list->next, struct napi_struct, poll_list);
2350 
2351 		have = netpoll_poll_lock(n);
2352 
2353 		weight = n->weight;
2354 
2355 		/* This NAPI_STATE_SCHED test is for avoiding a race
2356 		 * with netpoll's poll_napi().  Only the entity which
2357 		 * obtains the lock and sees NAPI_STATE_SCHED set will
2358 		 * actually make the ->poll() call.  Therefore we avoid
2359 		 * accidently calling ->poll() when NAPI is not scheduled.
2360 		 */
2361 		work = 0;
2362 		if (test_bit(NAPI_STATE_SCHED, &n->state))
2363 			work = n->poll(n, weight);
2364 
2365 		WARN_ON_ONCE(work > weight);
2366 
2367 		budget -= work;
2368 
2369 		local_irq_disable();
2370 
2371 		/* Drivers must not modify the NAPI state if they
2372 		 * consume the entire weight.  In such cases this code
2373 		 * still "owns" the NAPI instance and therefore can
2374 		 * move the instance around on the list at-will.
2375 		 */
2376 		if (unlikely(work == weight)) {
2377 			if (unlikely(napi_disable_pending(n)))
2378 				__napi_complete(n);
2379 			else
2380 				list_move_tail(&n->poll_list, list);
2381 		}
2382 
2383 		netpoll_poll_unlock(have);
2384 	}
2385 out:
2386 	local_irq_enable();
2387 
2388 #ifdef CONFIG_NET_DMA
2389 	/*
2390 	 * There may not be any more sk_buffs coming right now, so push
2391 	 * any pending DMA copies to hardware
2392 	 */
2393 	if (!cpus_empty(net_dma.channel_mask)) {
2394 		int chan_idx;
2395 		for_each_cpu_mask_nr(chan_idx, net_dma.channel_mask) {
2396 			struct dma_chan *chan = net_dma.channels[chan_idx];
2397 			if (chan)
2398 				dma_async_memcpy_issue_pending(chan);
2399 		}
2400 	}
2401 #endif
2402 
2403 	return;
2404 
2405 softnet_break:
2406 	__get_cpu_var(netdev_rx_stat).time_squeeze++;
2407 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
2408 	goto out;
2409 }
2410 
2411 static gifconf_func_t * gifconf_list [NPROTO];
2412 
2413 /**
2414  *	register_gifconf	-	register a SIOCGIF handler
2415  *	@family: Address family
2416  *	@gifconf: Function handler
2417  *
2418  *	Register protocol dependent address dumping routines. The handler
2419  *	that is passed must not be freed or reused until it has been replaced
2420  *	by another handler.
2421  */
2422 int register_gifconf(unsigned int family, gifconf_func_t * gifconf)
2423 {
2424 	if (family >= NPROTO)
2425 		return -EINVAL;
2426 	gifconf_list[family] = gifconf;
2427 	return 0;
2428 }
2429 
2430 
2431 /*
2432  *	Map an interface index to its name (SIOCGIFNAME)
2433  */
2434 
2435 /*
2436  *	We need this ioctl for efficient implementation of the
2437  *	if_indextoname() function required by the IPv6 API.  Without
2438  *	it, we would have to search all the interfaces to find a
2439  *	match.  --pb
2440  */
2441 
2442 static int dev_ifname(struct net *net, struct ifreq __user *arg)
2443 {
2444 	struct net_device *dev;
2445 	struct ifreq ifr;
2446 
2447 	/*
2448 	 *	Fetch the caller's info block.
2449 	 */
2450 
2451 	if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
2452 		return -EFAULT;
2453 
2454 	read_lock(&dev_base_lock);
2455 	dev = __dev_get_by_index(net, ifr.ifr_ifindex);
2456 	if (!dev) {
2457 		read_unlock(&dev_base_lock);
2458 		return -ENODEV;
2459 	}
2460 
2461 	strcpy(ifr.ifr_name, dev->name);
2462 	read_unlock(&dev_base_lock);
2463 
2464 	if (copy_to_user(arg, &ifr, sizeof(struct ifreq)))
2465 		return -EFAULT;
2466 	return 0;
2467 }
2468 
2469 /*
2470  *	Perform a SIOCGIFCONF call. This structure will change
2471  *	size eventually, and there is nothing I can do about it.
2472  *	Thus we will need a 'compatibility mode'.
2473  */
2474 
2475 static int dev_ifconf(struct net *net, char __user *arg)
2476 {
2477 	struct ifconf ifc;
2478 	struct net_device *dev;
2479 	char __user *pos;
2480 	int len;
2481 	int total;
2482 	int i;
2483 
2484 	/*
2485 	 *	Fetch the caller's info block.
2486 	 */
2487 
2488 	if (copy_from_user(&ifc, arg, sizeof(struct ifconf)))
2489 		return -EFAULT;
2490 
2491 	pos = ifc.ifc_buf;
2492 	len = ifc.ifc_len;
2493 
2494 	/*
2495 	 *	Loop over the interfaces, and write an info block for each.
2496 	 */
2497 
2498 	total = 0;
2499 	for_each_netdev(net, dev) {
2500 		for (i = 0; i < NPROTO; i++) {
2501 			if (gifconf_list[i]) {
2502 				int done;
2503 				if (!pos)
2504 					done = gifconf_list[i](dev, NULL, 0);
2505 				else
2506 					done = gifconf_list[i](dev, pos + total,
2507 							       len - total);
2508 				if (done < 0)
2509 					return -EFAULT;
2510 				total += done;
2511 			}
2512 		}
2513 	}
2514 
2515 	/*
2516 	 *	All done.  Write the updated control block back to the caller.
2517 	 */
2518 	ifc.ifc_len = total;
2519 
2520 	/*
2521 	 * 	Both BSD and Solaris return 0 here, so we do too.
2522 	 */
2523 	return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0;
2524 }
2525 
2526 #ifdef CONFIG_PROC_FS
2527 /*
2528  *	This is invoked by the /proc filesystem handler to display a device
2529  *	in detail.
2530  */
2531 void *dev_seq_start(struct seq_file *seq, loff_t *pos)
2532 	__acquires(dev_base_lock)
2533 {
2534 	struct net *net = seq_file_net(seq);
2535 	loff_t off;
2536 	struct net_device *dev;
2537 
2538 	read_lock(&dev_base_lock);
2539 	if (!*pos)
2540 		return SEQ_START_TOKEN;
2541 
2542 	off = 1;
2543 	for_each_netdev(net, dev)
2544 		if (off++ == *pos)
2545 			return dev;
2546 
2547 	return NULL;
2548 }
2549 
2550 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2551 {
2552 	struct net *net = seq_file_net(seq);
2553 	++*pos;
2554 	return v == SEQ_START_TOKEN ?
2555 		first_net_device(net) : next_net_device((struct net_device *)v);
2556 }
2557 
2558 void dev_seq_stop(struct seq_file *seq, void *v)
2559 	__releases(dev_base_lock)
2560 {
2561 	read_unlock(&dev_base_lock);
2562 }
2563 
2564 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev)
2565 {
2566 	struct net_device_stats *stats = dev->get_stats(dev);
2567 
2568 	seq_printf(seq, "%6s:%8lu %7lu %4lu %4lu %4lu %5lu %10lu %9lu "
2569 		   "%8lu %7lu %4lu %4lu %4lu %5lu %7lu %10lu\n",
2570 		   dev->name, stats->rx_bytes, stats->rx_packets,
2571 		   stats->rx_errors,
2572 		   stats->rx_dropped + stats->rx_missed_errors,
2573 		   stats->rx_fifo_errors,
2574 		   stats->rx_length_errors + stats->rx_over_errors +
2575 		    stats->rx_crc_errors + stats->rx_frame_errors,
2576 		   stats->rx_compressed, stats->multicast,
2577 		   stats->tx_bytes, stats->tx_packets,
2578 		   stats->tx_errors, stats->tx_dropped,
2579 		   stats->tx_fifo_errors, stats->collisions,
2580 		   stats->tx_carrier_errors +
2581 		    stats->tx_aborted_errors +
2582 		    stats->tx_window_errors +
2583 		    stats->tx_heartbeat_errors,
2584 		   stats->tx_compressed);
2585 }
2586 
2587 /*
2588  *	Called from the PROCfs module. This now uses the new arbitrary sized
2589  *	/proc/net interface to create /proc/net/dev
2590  */
2591 static int dev_seq_show(struct seq_file *seq, void *v)
2592 {
2593 	if (v == SEQ_START_TOKEN)
2594 		seq_puts(seq, "Inter-|   Receive                            "
2595 			      "                    |  Transmit\n"
2596 			      " face |bytes    packets errs drop fifo frame "
2597 			      "compressed multicast|bytes    packets errs "
2598 			      "drop fifo colls carrier compressed\n");
2599 	else
2600 		dev_seq_printf_stats(seq, v);
2601 	return 0;
2602 }
2603 
2604 static struct netif_rx_stats *softnet_get_online(loff_t *pos)
2605 {
2606 	struct netif_rx_stats *rc = NULL;
2607 
2608 	while (*pos < nr_cpu_ids)
2609 		if (cpu_online(*pos)) {
2610 			rc = &per_cpu(netdev_rx_stat, *pos);
2611 			break;
2612 		} else
2613 			++*pos;
2614 	return rc;
2615 }
2616 
2617 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos)
2618 {
2619 	return softnet_get_online(pos);
2620 }
2621 
2622 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2623 {
2624 	++*pos;
2625 	return softnet_get_online(pos);
2626 }
2627 
2628 static void softnet_seq_stop(struct seq_file *seq, void *v)
2629 {
2630 }
2631 
2632 static int softnet_seq_show(struct seq_file *seq, void *v)
2633 {
2634 	struct netif_rx_stats *s = v;
2635 
2636 	seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x\n",
2637 		   s->total, s->dropped, s->time_squeeze, 0,
2638 		   0, 0, 0, 0, /* was fastroute */
2639 		   s->cpu_collision );
2640 	return 0;
2641 }
2642 
2643 static const struct seq_operations dev_seq_ops = {
2644 	.start = dev_seq_start,
2645 	.next  = dev_seq_next,
2646 	.stop  = dev_seq_stop,
2647 	.show  = dev_seq_show,
2648 };
2649 
2650 static int dev_seq_open(struct inode *inode, struct file *file)
2651 {
2652 	return seq_open_net(inode, file, &dev_seq_ops,
2653 			    sizeof(struct seq_net_private));
2654 }
2655 
2656 static const struct file_operations dev_seq_fops = {
2657 	.owner	 = THIS_MODULE,
2658 	.open    = dev_seq_open,
2659 	.read    = seq_read,
2660 	.llseek  = seq_lseek,
2661 	.release = seq_release_net,
2662 };
2663 
2664 static const struct seq_operations softnet_seq_ops = {
2665 	.start = softnet_seq_start,
2666 	.next  = softnet_seq_next,
2667 	.stop  = softnet_seq_stop,
2668 	.show  = softnet_seq_show,
2669 };
2670 
2671 static int softnet_seq_open(struct inode *inode, struct file *file)
2672 {
2673 	return seq_open(file, &softnet_seq_ops);
2674 }
2675 
2676 static const struct file_operations softnet_seq_fops = {
2677 	.owner	 = THIS_MODULE,
2678 	.open    = softnet_seq_open,
2679 	.read    = seq_read,
2680 	.llseek  = seq_lseek,
2681 	.release = seq_release,
2682 };
2683 
2684 static void *ptype_get_idx(loff_t pos)
2685 {
2686 	struct packet_type *pt = NULL;
2687 	loff_t i = 0;
2688 	int t;
2689 
2690 	list_for_each_entry_rcu(pt, &ptype_all, list) {
2691 		if (i == pos)
2692 			return pt;
2693 		++i;
2694 	}
2695 
2696 	for (t = 0; t < PTYPE_HASH_SIZE; t++) {
2697 		list_for_each_entry_rcu(pt, &ptype_base[t], list) {
2698 			if (i == pos)
2699 				return pt;
2700 			++i;
2701 		}
2702 	}
2703 	return NULL;
2704 }
2705 
2706 static void *ptype_seq_start(struct seq_file *seq, loff_t *pos)
2707 	__acquires(RCU)
2708 {
2709 	rcu_read_lock();
2710 	return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN;
2711 }
2712 
2713 static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2714 {
2715 	struct packet_type *pt;
2716 	struct list_head *nxt;
2717 	int hash;
2718 
2719 	++*pos;
2720 	if (v == SEQ_START_TOKEN)
2721 		return ptype_get_idx(0);
2722 
2723 	pt = v;
2724 	nxt = pt->list.next;
2725 	if (pt->type == htons(ETH_P_ALL)) {
2726 		if (nxt != &ptype_all)
2727 			goto found;
2728 		hash = 0;
2729 		nxt = ptype_base[0].next;
2730 	} else
2731 		hash = ntohs(pt->type) & PTYPE_HASH_MASK;
2732 
2733 	while (nxt == &ptype_base[hash]) {
2734 		if (++hash >= PTYPE_HASH_SIZE)
2735 			return NULL;
2736 		nxt = ptype_base[hash].next;
2737 	}
2738 found:
2739 	return list_entry(nxt, struct packet_type, list);
2740 }
2741 
2742 static void ptype_seq_stop(struct seq_file *seq, void *v)
2743 	__releases(RCU)
2744 {
2745 	rcu_read_unlock();
2746 }
2747 
2748 static void ptype_seq_decode(struct seq_file *seq, void *sym)
2749 {
2750 #ifdef CONFIG_KALLSYMS
2751 	unsigned long offset = 0, symsize;
2752 	const char *symname;
2753 	char *modname;
2754 	char namebuf[128];
2755 
2756 	symname = kallsyms_lookup((unsigned long)sym, &symsize, &offset,
2757 				  &modname, namebuf);
2758 
2759 	if (symname) {
2760 		char *delim = ":";
2761 
2762 		if (!modname)
2763 			modname = delim = "";
2764 		seq_printf(seq, "%s%s%s%s+0x%lx", delim, modname, delim,
2765 			   symname, offset);
2766 		return;
2767 	}
2768 #endif
2769 
2770 	seq_printf(seq, "[%p]", sym);
2771 }
2772 
2773 static int ptype_seq_show(struct seq_file *seq, void *v)
2774 {
2775 	struct packet_type *pt = v;
2776 
2777 	if (v == SEQ_START_TOKEN)
2778 		seq_puts(seq, "Type Device      Function\n");
2779 	else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) {
2780 		if (pt->type == htons(ETH_P_ALL))
2781 			seq_puts(seq, "ALL ");
2782 		else
2783 			seq_printf(seq, "%04x", ntohs(pt->type));
2784 
2785 		seq_printf(seq, " %-8s ",
2786 			   pt->dev ? pt->dev->name : "");
2787 		ptype_seq_decode(seq,  pt->func);
2788 		seq_putc(seq, '\n');
2789 	}
2790 
2791 	return 0;
2792 }
2793 
2794 static const struct seq_operations ptype_seq_ops = {
2795 	.start = ptype_seq_start,
2796 	.next  = ptype_seq_next,
2797 	.stop  = ptype_seq_stop,
2798 	.show  = ptype_seq_show,
2799 };
2800 
2801 static int ptype_seq_open(struct inode *inode, struct file *file)
2802 {
2803 	return seq_open_net(inode, file, &ptype_seq_ops,
2804 			sizeof(struct seq_net_private));
2805 }
2806 
2807 static const struct file_operations ptype_seq_fops = {
2808 	.owner	 = THIS_MODULE,
2809 	.open    = ptype_seq_open,
2810 	.read    = seq_read,
2811 	.llseek  = seq_lseek,
2812 	.release = seq_release_net,
2813 };
2814 
2815 
2816 static int __net_init dev_proc_net_init(struct net *net)
2817 {
2818 	int rc = -ENOMEM;
2819 
2820 	if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops))
2821 		goto out;
2822 	if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops))
2823 		goto out_dev;
2824 	if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops))
2825 		goto out_softnet;
2826 
2827 	if (wext_proc_init(net))
2828 		goto out_ptype;
2829 	rc = 0;
2830 out:
2831 	return rc;
2832 out_ptype:
2833 	proc_net_remove(net, "ptype");
2834 out_softnet:
2835 	proc_net_remove(net, "softnet_stat");
2836 out_dev:
2837 	proc_net_remove(net, "dev");
2838 	goto out;
2839 }
2840 
2841 static void __net_exit dev_proc_net_exit(struct net *net)
2842 {
2843 	wext_proc_exit(net);
2844 
2845 	proc_net_remove(net, "ptype");
2846 	proc_net_remove(net, "softnet_stat");
2847 	proc_net_remove(net, "dev");
2848 }
2849 
2850 static struct pernet_operations __net_initdata dev_proc_ops = {
2851 	.init = dev_proc_net_init,
2852 	.exit = dev_proc_net_exit,
2853 };
2854 
2855 static int __init dev_proc_init(void)
2856 {
2857 	return register_pernet_subsys(&dev_proc_ops);
2858 }
2859 #else
2860 #define dev_proc_init() 0
2861 #endif	/* CONFIG_PROC_FS */
2862 
2863 
2864 /**
2865  *	netdev_set_master	-	set up master/slave pair
2866  *	@slave: slave device
2867  *	@master: new master device
2868  *
2869  *	Changes the master device of the slave. Pass %NULL to break the
2870  *	bonding. The caller must hold the RTNL semaphore. On a failure
2871  *	a negative errno code is returned. On success the reference counts
2872  *	are adjusted, %RTM_NEWLINK is sent to the routing socket and the
2873  *	function returns zero.
2874  */
2875 int netdev_set_master(struct net_device *slave, struct net_device *master)
2876 {
2877 	struct net_device *old = slave->master;
2878 
2879 	ASSERT_RTNL();
2880 
2881 	if (master) {
2882 		if (old)
2883 			return -EBUSY;
2884 		dev_hold(master);
2885 	}
2886 
2887 	slave->master = master;
2888 
2889 	synchronize_net();
2890 
2891 	if (old)
2892 		dev_put(old);
2893 
2894 	if (master)
2895 		slave->flags |= IFF_SLAVE;
2896 	else
2897 		slave->flags &= ~IFF_SLAVE;
2898 
2899 	rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE);
2900 	return 0;
2901 }
2902 
2903 static int __dev_set_promiscuity(struct net_device *dev, int inc)
2904 {
2905 	unsigned short old_flags = dev->flags;
2906 
2907 	ASSERT_RTNL();
2908 
2909 	dev->flags |= IFF_PROMISC;
2910 	dev->promiscuity += inc;
2911 	if (dev->promiscuity == 0) {
2912 		/*
2913 		 * Avoid overflow.
2914 		 * If inc causes overflow, untouch promisc and return error.
2915 		 */
2916 		if (inc < 0)
2917 			dev->flags &= ~IFF_PROMISC;
2918 		else {
2919 			dev->promiscuity -= inc;
2920 			printk(KERN_WARNING "%s: promiscuity touches roof, "
2921 				"set promiscuity failed, promiscuity feature "
2922 				"of device might be broken.\n", dev->name);
2923 			return -EOVERFLOW;
2924 		}
2925 	}
2926 	if (dev->flags != old_flags) {
2927 		printk(KERN_INFO "device %s %s promiscuous mode\n",
2928 		       dev->name, (dev->flags & IFF_PROMISC) ? "entered" :
2929 							       "left");
2930 		if (audit_enabled)
2931 			audit_log(current->audit_context, GFP_ATOMIC,
2932 				AUDIT_ANOM_PROMISCUOUS,
2933 				"dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
2934 				dev->name, (dev->flags & IFF_PROMISC),
2935 				(old_flags & IFF_PROMISC),
2936 				audit_get_loginuid(current),
2937 				current->uid, current->gid,
2938 				audit_get_sessionid(current));
2939 
2940 		if (dev->change_rx_flags)
2941 			dev->change_rx_flags(dev, IFF_PROMISC);
2942 	}
2943 	return 0;
2944 }
2945 
2946 /**
2947  *	dev_set_promiscuity	- update promiscuity count on a device
2948  *	@dev: device
2949  *	@inc: modifier
2950  *
2951  *	Add or remove promiscuity from a device. While the count in the device
2952  *	remains above zero the interface remains promiscuous. Once it hits zero
2953  *	the device reverts back to normal filtering operation. A negative inc
2954  *	value is used to drop promiscuity on the device.
2955  *	Return 0 if successful or a negative errno code on error.
2956  */
2957 int dev_set_promiscuity(struct net_device *dev, int inc)
2958 {
2959 	unsigned short old_flags = dev->flags;
2960 	int err;
2961 
2962 	err = __dev_set_promiscuity(dev, inc);
2963 	if (err < 0)
2964 		return err;
2965 	if (dev->flags != old_flags)
2966 		dev_set_rx_mode(dev);
2967 	return err;
2968 }
2969 
2970 /**
2971  *	dev_set_allmulti	- update allmulti count on a device
2972  *	@dev: device
2973  *	@inc: modifier
2974  *
2975  *	Add or remove reception of all multicast frames to a device. While the
2976  *	count in the device remains above zero the interface remains listening
2977  *	to all interfaces. Once it hits zero the device reverts back to normal
2978  *	filtering operation. A negative @inc value is used to drop the counter
2979  *	when releasing a resource needing all multicasts.
2980  *	Return 0 if successful or a negative errno code on error.
2981  */
2982 
2983 int dev_set_allmulti(struct net_device *dev, int inc)
2984 {
2985 	unsigned short old_flags = dev->flags;
2986 
2987 	ASSERT_RTNL();
2988 
2989 	dev->flags |= IFF_ALLMULTI;
2990 	dev->allmulti += inc;
2991 	if (dev->allmulti == 0) {
2992 		/*
2993 		 * Avoid overflow.
2994 		 * If inc causes overflow, untouch allmulti and return error.
2995 		 */
2996 		if (inc < 0)
2997 			dev->flags &= ~IFF_ALLMULTI;
2998 		else {
2999 			dev->allmulti -= inc;
3000 			printk(KERN_WARNING "%s: allmulti touches roof, "
3001 				"set allmulti failed, allmulti feature of "
3002 				"device might be broken.\n", dev->name);
3003 			return -EOVERFLOW;
3004 		}
3005 	}
3006 	if (dev->flags ^ old_flags) {
3007 		if (dev->change_rx_flags)
3008 			dev->change_rx_flags(dev, IFF_ALLMULTI);
3009 		dev_set_rx_mode(dev);
3010 	}
3011 	return 0;
3012 }
3013 
3014 /*
3015  *	Upload unicast and multicast address lists to device and
3016  *	configure RX filtering. When the device doesn't support unicast
3017  *	filtering it is put in promiscuous mode while unicast addresses
3018  *	are present.
3019  */
3020 void __dev_set_rx_mode(struct net_device *dev)
3021 {
3022 	/* dev_open will call this function so the list will stay sane. */
3023 	if (!(dev->flags&IFF_UP))
3024 		return;
3025 
3026 	if (!netif_device_present(dev))
3027 		return;
3028 
3029 	if (dev->set_rx_mode)
3030 		dev->set_rx_mode(dev);
3031 	else {
3032 		/* Unicast addresses changes may only happen under the rtnl,
3033 		 * therefore calling __dev_set_promiscuity here is safe.
3034 		 */
3035 		if (dev->uc_count > 0 && !dev->uc_promisc) {
3036 			__dev_set_promiscuity(dev, 1);
3037 			dev->uc_promisc = 1;
3038 		} else if (dev->uc_count == 0 && dev->uc_promisc) {
3039 			__dev_set_promiscuity(dev, -1);
3040 			dev->uc_promisc = 0;
3041 		}
3042 
3043 		if (dev->set_multicast_list)
3044 			dev->set_multicast_list(dev);
3045 	}
3046 }
3047 
3048 void dev_set_rx_mode(struct net_device *dev)
3049 {
3050 	netif_addr_lock_bh(dev);
3051 	__dev_set_rx_mode(dev);
3052 	netif_addr_unlock_bh(dev);
3053 }
3054 
3055 int __dev_addr_delete(struct dev_addr_list **list, int *count,
3056 		      void *addr, int alen, int glbl)
3057 {
3058 	struct dev_addr_list *da;
3059 
3060 	for (; (da = *list) != NULL; list = &da->next) {
3061 		if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 &&
3062 		    alen == da->da_addrlen) {
3063 			if (glbl) {
3064 				int old_glbl = da->da_gusers;
3065 				da->da_gusers = 0;
3066 				if (old_glbl == 0)
3067 					break;
3068 			}
3069 			if (--da->da_users)
3070 				return 0;
3071 
3072 			*list = da->next;
3073 			kfree(da);
3074 			(*count)--;
3075 			return 0;
3076 		}
3077 	}
3078 	return -ENOENT;
3079 }
3080 
3081 int __dev_addr_add(struct dev_addr_list **list, int *count,
3082 		   void *addr, int alen, int glbl)
3083 {
3084 	struct dev_addr_list *da;
3085 
3086 	for (da = *list; da != NULL; da = da->next) {
3087 		if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 &&
3088 		    da->da_addrlen == alen) {
3089 			if (glbl) {
3090 				int old_glbl = da->da_gusers;
3091 				da->da_gusers = 1;
3092 				if (old_glbl)
3093 					return 0;
3094 			}
3095 			da->da_users++;
3096 			return 0;
3097 		}
3098 	}
3099 
3100 	da = kzalloc(sizeof(*da), GFP_ATOMIC);
3101 	if (da == NULL)
3102 		return -ENOMEM;
3103 	memcpy(da->da_addr, addr, alen);
3104 	da->da_addrlen = alen;
3105 	da->da_users = 1;
3106 	da->da_gusers = glbl ? 1 : 0;
3107 	da->next = *list;
3108 	*list = da;
3109 	(*count)++;
3110 	return 0;
3111 }
3112 
3113 /**
3114  *	dev_unicast_delete	- Release secondary unicast address.
3115  *	@dev: device
3116  *	@addr: address to delete
3117  *	@alen: length of @addr
3118  *
3119  *	Release reference to a secondary unicast address and remove it
3120  *	from the device if the reference count drops to zero.
3121  *
3122  * 	The caller must hold the rtnl_mutex.
3123  */
3124 int dev_unicast_delete(struct net_device *dev, void *addr, int alen)
3125 {
3126 	int err;
3127 
3128 	ASSERT_RTNL();
3129 
3130 	netif_addr_lock_bh(dev);
3131 	err = __dev_addr_delete(&dev->uc_list, &dev->uc_count, addr, alen, 0);
3132 	if (!err)
3133 		__dev_set_rx_mode(dev);
3134 	netif_addr_unlock_bh(dev);
3135 	return err;
3136 }
3137 EXPORT_SYMBOL(dev_unicast_delete);
3138 
3139 /**
3140  *	dev_unicast_add		- add a secondary unicast address
3141  *	@dev: device
3142  *	@addr: address to add
3143  *	@alen: length of @addr
3144  *
3145  *	Add a secondary unicast address to the device or increase
3146  *	the reference count if it already exists.
3147  *
3148  *	The caller must hold the rtnl_mutex.
3149  */
3150 int dev_unicast_add(struct net_device *dev, void *addr, int alen)
3151 {
3152 	int err;
3153 
3154 	ASSERT_RTNL();
3155 
3156 	netif_addr_lock_bh(dev);
3157 	err = __dev_addr_add(&dev->uc_list, &dev->uc_count, addr, alen, 0);
3158 	if (!err)
3159 		__dev_set_rx_mode(dev);
3160 	netif_addr_unlock_bh(dev);
3161 	return err;
3162 }
3163 EXPORT_SYMBOL(dev_unicast_add);
3164 
3165 int __dev_addr_sync(struct dev_addr_list **to, int *to_count,
3166 		    struct dev_addr_list **from, int *from_count)
3167 {
3168 	struct dev_addr_list *da, *next;
3169 	int err = 0;
3170 
3171 	da = *from;
3172 	while (da != NULL) {
3173 		next = da->next;
3174 		if (!da->da_synced) {
3175 			err = __dev_addr_add(to, to_count,
3176 					     da->da_addr, da->da_addrlen, 0);
3177 			if (err < 0)
3178 				break;
3179 			da->da_synced = 1;
3180 			da->da_users++;
3181 		} else if (da->da_users == 1) {
3182 			__dev_addr_delete(to, to_count,
3183 					  da->da_addr, da->da_addrlen, 0);
3184 			__dev_addr_delete(from, from_count,
3185 					  da->da_addr, da->da_addrlen, 0);
3186 		}
3187 		da = next;
3188 	}
3189 	return err;
3190 }
3191 
3192 void __dev_addr_unsync(struct dev_addr_list **to, int *to_count,
3193 		       struct dev_addr_list **from, int *from_count)
3194 {
3195 	struct dev_addr_list *da, *next;
3196 
3197 	da = *from;
3198 	while (da != NULL) {
3199 		next = da->next;
3200 		if (da->da_synced) {
3201 			__dev_addr_delete(to, to_count,
3202 					  da->da_addr, da->da_addrlen, 0);
3203 			da->da_synced = 0;
3204 			__dev_addr_delete(from, from_count,
3205 					  da->da_addr, da->da_addrlen, 0);
3206 		}
3207 		da = next;
3208 	}
3209 }
3210 
3211 /**
3212  *	dev_unicast_sync - Synchronize device's unicast list to another device
3213  *	@to: destination device
3214  *	@from: source device
3215  *
3216  *	Add newly added addresses to the destination device and release
3217  *	addresses that have no users left. The source device must be
3218  *	locked by netif_tx_lock_bh.
3219  *
3220  *	This function is intended to be called from the dev->set_rx_mode
3221  *	function of layered software devices.
3222  */
3223 int dev_unicast_sync(struct net_device *to, struct net_device *from)
3224 {
3225 	int err = 0;
3226 
3227 	netif_addr_lock_bh(to);
3228 	err = __dev_addr_sync(&to->uc_list, &to->uc_count,
3229 			      &from->uc_list, &from->uc_count);
3230 	if (!err)
3231 		__dev_set_rx_mode(to);
3232 	netif_addr_unlock_bh(to);
3233 	return err;
3234 }
3235 EXPORT_SYMBOL(dev_unicast_sync);
3236 
3237 /**
3238  *	dev_unicast_unsync - Remove synchronized addresses from the destination device
3239  *	@to: destination device
3240  *	@from: source device
3241  *
3242  *	Remove all addresses that were added to the destination device by
3243  *	dev_unicast_sync(). This function is intended to be called from the
3244  *	dev->stop function of layered software devices.
3245  */
3246 void dev_unicast_unsync(struct net_device *to, struct net_device *from)
3247 {
3248 	netif_addr_lock_bh(from);
3249 	netif_addr_lock(to);
3250 
3251 	__dev_addr_unsync(&to->uc_list, &to->uc_count,
3252 			  &from->uc_list, &from->uc_count);
3253 	__dev_set_rx_mode(to);
3254 
3255 	netif_addr_unlock(to);
3256 	netif_addr_unlock_bh(from);
3257 }
3258 EXPORT_SYMBOL(dev_unicast_unsync);
3259 
3260 static void __dev_addr_discard(struct dev_addr_list **list)
3261 {
3262 	struct dev_addr_list *tmp;
3263 
3264 	while (*list != NULL) {
3265 		tmp = *list;
3266 		*list = tmp->next;
3267 		if (tmp->da_users > tmp->da_gusers)
3268 			printk("__dev_addr_discard: address leakage! "
3269 			       "da_users=%d\n", tmp->da_users);
3270 		kfree(tmp);
3271 	}
3272 }
3273 
3274 static void dev_addr_discard(struct net_device *dev)
3275 {
3276 	netif_addr_lock_bh(dev);
3277 
3278 	__dev_addr_discard(&dev->uc_list);
3279 	dev->uc_count = 0;
3280 
3281 	__dev_addr_discard(&dev->mc_list);
3282 	dev->mc_count = 0;
3283 
3284 	netif_addr_unlock_bh(dev);
3285 }
3286 
3287 unsigned dev_get_flags(const struct net_device *dev)
3288 {
3289 	unsigned flags;
3290 
3291 	flags = (dev->flags & ~(IFF_PROMISC |
3292 				IFF_ALLMULTI |
3293 				IFF_RUNNING |
3294 				IFF_LOWER_UP |
3295 				IFF_DORMANT)) |
3296 		(dev->gflags & (IFF_PROMISC |
3297 				IFF_ALLMULTI));
3298 
3299 	if (netif_running(dev)) {
3300 		if (netif_oper_up(dev))
3301 			flags |= IFF_RUNNING;
3302 		if (netif_carrier_ok(dev))
3303 			flags |= IFF_LOWER_UP;
3304 		if (netif_dormant(dev))
3305 			flags |= IFF_DORMANT;
3306 	}
3307 
3308 	return flags;
3309 }
3310 
3311 int dev_change_flags(struct net_device *dev, unsigned flags)
3312 {
3313 	int ret, changes;
3314 	int old_flags = dev->flags;
3315 
3316 	ASSERT_RTNL();
3317 
3318 	/*
3319 	 *	Set the flags on our device.
3320 	 */
3321 
3322 	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
3323 			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
3324 			       IFF_AUTOMEDIA)) |
3325 		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
3326 				    IFF_ALLMULTI));
3327 
3328 	/*
3329 	 *	Load in the correct multicast list now the flags have changed.
3330 	 */
3331 
3332 	if (dev->change_rx_flags && (old_flags ^ flags) & IFF_MULTICAST)
3333 		dev->change_rx_flags(dev, IFF_MULTICAST);
3334 
3335 	dev_set_rx_mode(dev);
3336 
3337 	/*
3338 	 *	Have we downed the interface. We handle IFF_UP ourselves
3339 	 *	according to user attempts to set it, rather than blindly
3340 	 *	setting it.
3341 	 */
3342 
3343 	ret = 0;
3344 	if ((old_flags ^ flags) & IFF_UP) {	/* Bit is different  ? */
3345 		ret = ((old_flags & IFF_UP) ? dev_close : dev_open)(dev);
3346 
3347 		if (!ret)
3348 			dev_set_rx_mode(dev);
3349 	}
3350 
3351 	if (dev->flags & IFF_UP &&
3352 	    ((old_flags ^ dev->flags) &~ (IFF_UP | IFF_PROMISC | IFF_ALLMULTI |
3353 					  IFF_VOLATILE)))
3354 		call_netdevice_notifiers(NETDEV_CHANGE, dev);
3355 
3356 	if ((flags ^ dev->gflags) & IFF_PROMISC) {
3357 		int inc = (flags & IFF_PROMISC) ? +1 : -1;
3358 		dev->gflags ^= IFF_PROMISC;
3359 		dev_set_promiscuity(dev, inc);
3360 	}
3361 
3362 	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
3363 	   is important. Some (broken) drivers set IFF_PROMISC, when
3364 	   IFF_ALLMULTI is requested not asking us and not reporting.
3365 	 */
3366 	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
3367 		int inc = (flags & IFF_ALLMULTI) ? +1 : -1;
3368 		dev->gflags ^= IFF_ALLMULTI;
3369 		dev_set_allmulti(dev, inc);
3370 	}
3371 
3372 	/* Exclude state transition flags, already notified */
3373 	changes = (old_flags ^ dev->flags) & ~(IFF_UP | IFF_RUNNING);
3374 	if (changes)
3375 		rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
3376 
3377 	return ret;
3378 }
3379 
3380 int dev_set_mtu(struct net_device *dev, int new_mtu)
3381 {
3382 	int err;
3383 
3384 	if (new_mtu == dev->mtu)
3385 		return 0;
3386 
3387 	/*	MTU must be positive.	 */
3388 	if (new_mtu < 0)
3389 		return -EINVAL;
3390 
3391 	if (!netif_device_present(dev))
3392 		return -ENODEV;
3393 
3394 	err = 0;
3395 	if (dev->change_mtu)
3396 		err = dev->change_mtu(dev, new_mtu);
3397 	else
3398 		dev->mtu = new_mtu;
3399 	if (!err && dev->flags & IFF_UP)
3400 		call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
3401 	return err;
3402 }
3403 
3404 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
3405 {
3406 	int err;
3407 
3408 	if (!dev->set_mac_address)
3409 		return -EOPNOTSUPP;
3410 	if (sa->sa_family != dev->type)
3411 		return -EINVAL;
3412 	if (!netif_device_present(dev))
3413 		return -ENODEV;
3414 	err = dev->set_mac_address(dev, sa);
3415 	if (!err)
3416 		call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
3417 	return err;
3418 }
3419 
3420 /*
3421  *	Perform the SIOCxIFxxx calls, inside read_lock(dev_base_lock)
3422  */
3423 static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd)
3424 {
3425 	int err;
3426 	struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
3427 
3428 	if (!dev)
3429 		return -ENODEV;
3430 
3431 	switch (cmd) {
3432 		case SIOCGIFFLAGS:	/* Get interface flags */
3433 			ifr->ifr_flags = dev_get_flags(dev);
3434 			return 0;
3435 
3436 		case SIOCGIFMETRIC:	/* Get the metric on the interface
3437 					   (currently unused) */
3438 			ifr->ifr_metric = 0;
3439 			return 0;
3440 
3441 		case SIOCGIFMTU:	/* Get the MTU of a device */
3442 			ifr->ifr_mtu = dev->mtu;
3443 			return 0;
3444 
3445 		case SIOCGIFHWADDR:
3446 			if (!dev->addr_len)
3447 				memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data);
3448 			else
3449 				memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr,
3450 				       min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
3451 			ifr->ifr_hwaddr.sa_family = dev->type;
3452 			return 0;
3453 
3454 		case SIOCGIFSLAVE:
3455 			err = -EINVAL;
3456 			break;
3457 
3458 		case SIOCGIFMAP:
3459 			ifr->ifr_map.mem_start = dev->mem_start;
3460 			ifr->ifr_map.mem_end   = dev->mem_end;
3461 			ifr->ifr_map.base_addr = dev->base_addr;
3462 			ifr->ifr_map.irq       = dev->irq;
3463 			ifr->ifr_map.dma       = dev->dma;
3464 			ifr->ifr_map.port      = dev->if_port;
3465 			return 0;
3466 
3467 		case SIOCGIFINDEX:
3468 			ifr->ifr_ifindex = dev->ifindex;
3469 			return 0;
3470 
3471 		case SIOCGIFTXQLEN:
3472 			ifr->ifr_qlen = dev->tx_queue_len;
3473 			return 0;
3474 
3475 		default:
3476 			/* dev_ioctl() should ensure this case
3477 			 * is never reached
3478 			 */
3479 			WARN_ON(1);
3480 			err = -EINVAL;
3481 			break;
3482 
3483 	}
3484 	return err;
3485 }
3486 
3487 /*
3488  *	Perform the SIOCxIFxxx calls, inside rtnl_lock()
3489  */
3490 static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd)
3491 {
3492 	int err;
3493 	struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
3494 
3495 	if (!dev)
3496 		return -ENODEV;
3497 
3498 	switch (cmd) {
3499 		case SIOCSIFFLAGS:	/* Set interface flags */
3500 			return dev_change_flags(dev, ifr->ifr_flags);
3501 
3502 		case SIOCSIFMETRIC:	/* Set the metric on the interface
3503 					   (currently unused) */
3504 			return -EOPNOTSUPP;
3505 
3506 		case SIOCSIFMTU:	/* Set the MTU of a device */
3507 			return dev_set_mtu(dev, ifr->ifr_mtu);
3508 
3509 		case SIOCSIFHWADDR:
3510 			return dev_set_mac_address(dev, &ifr->ifr_hwaddr);
3511 
3512 		case SIOCSIFHWBROADCAST:
3513 			if (ifr->ifr_hwaddr.sa_family != dev->type)
3514 				return -EINVAL;
3515 			memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data,
3516 			       min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
3517 			call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
3518 			return 0;
3519 
3520 		case SIOCSIFMAP:
3521 			if (dev->set_config) {
3522 				if (!netif_device_present(dev))
3523 					return -ENODEV;
3524 				return dev->set_config(dev, &ifr->ifr_map);
3525 			}
3526 			return -EOPNOTSUPP;
3527 
3528 		case SIOCADDMULTI:
3529 			if ((!dev->set_multicast_list && !dev->set_rx_mode) ||
3530 			    ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
3531 				return -EINVAL;
3532 			if (!netif_device_present(dev))
3533 				return -ENODEV;
3534 			return dev_mc_add(dev, ifr->ifr_hwaddr.sa_data,
3535 					  dev->addr_len, 1);
3536 
3537 		case SIOCDELMULTI:
3538 			if ((!dev->set_multicast_list && !dev->set_rx_mode) ||
3539 			    ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
3540 				return -EINVAL;
3541 			if (!netif_device_present(dev))
3542 				return -ENODEV;
3543 			return dev_mc_delete(dev, ifr->ifr_hwaddr.sa_data,
3544 					     dev->addr_len, 1);
3545 
3546 		case SIOCSIFTXQLEN:
3547 			if (ifr->ifr_qlen < 0)
3548 				return -EINVAL;
3549 			dev->tx_queue_len = ifr->ifr_qlen;
3550 			return 0;
3551 
3552 		case SIOCSIFNAME:
3553 			ifr->ifr_newname[IFNAMSIZ-1] = '\0';
3554 			return dev_change_name(dev, ifr->ifr_newname);
3555 
3556 		/*
3557 		 *	Unknown or private ioctl
3558 		 */
3559 
3560 		default:
3561 			if ((cmd >= SIOCDEVPRIVATE &&
3562 			    cmd <= SIOCDEVPRIVATE + 15) ||
3563 			    cmd == SIOCBONDENSLAVE ||
3564 			    cmd == SIOCBONDRELEASE ||
3565 			    cmd == SIOCBONDSETHWADDR ||
3566 			    cmd == SIOCBONDSLAVEINFOQUERY ||
3567 			    cmd == SIOCBONDINFOQUERY ||
3568 			    cmd == SIOCBONDCHANGEACTIVE ||
3569 			    cmd == SIOCGMIIPHY ||
3570 			    cmd == SIOCGMIIREG ||
3571 			    cmd == SIOCSMIIREG ||
3572 			    cmd == SIOCBRADDIF ||
3573 			    cmd == SIOCBRDELIF ||
3574 			    cmd == SIOCWANDEV) {
3575 				err = -EOPNOTSUPP;
3576 				if (dev->do_ioctl) {
3577 					if (netif_device_present(dev))
3578 						err = dev->do_ioctl(dev, ifr,
3579 								    cmd);
3580 					else
3581 						err = -ENODEV;
3582 				}
3583 			} else
3584 				err = -EINVAL;
3585 
3586 	}
3587 	return err;
3588 }
3589 
3590 /*
3591  *	This function handles all "interface"-type I/O control requests. The actual
3592  *	'doing' part of this is dev_ifsioc above.
3593  */
3594 
3595 /**
3596  *	dev_ioctl	-	network device ioctl
3597  *	@net: the applicable net namespace
3598  *	@cmd: command to issue
3599  *	@arg: pointer to a struct ifreq in user space
3600  *
3601  *	Issue ioctl functions to devices. This is normally called by the
3602  *	user space syscall interfaces but can sometimes be useful for
3603  *	other purposes. The return value is the return from the syscall if
3604  *	positive or a negative errno code on error.
3605  */
3606 
3607 int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg)
3608 {
3609 	struct ifreq ifr;
3610 	int ret;
3611 	char *colon;
3612 
3613 	/* One special case: SIOCGIFCONF takes ifconf argument
3614 	   and requires shared lock, because it sleeps writing
3615 	   to user space.
3616 	 */
3617 
3618 	if (cmd == SIOCGIFCONF) {
3619 		rtnl_lock();
3620 		ret = dev_ifconf(net, (char __user *) arg);
3621 		rtnl_unlock();
3622 		return ret;
3623 	}
3624 	if (cmd == SIOCGIFNAME)
3625 		return dev_ifname(net, (struct ifreq __user *)arg);
3626 
3627 	if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
3628 		return -EFAULT;
3629 
3630 	ifr.ifr_name[IFNAMSIZ-1] = 0;
3631 
3632 	colon = strchr(ifr.ifr_name, ':');
3633 	if (colon)
3634 		*colon = 0;
3635 
3636 	/*
3637 	 *	See which interface the caller is talking about.
3638 	 */
3639 
3640 	switch (cmd) {
3641 		/*
3642 		 *	These ioctl calls:
3643 		 *	- can be done by all.
3644 		 *	- atomic and do not require locking.
3645 		 *	- return a value
3646 		 */
3647 		case SIOCGIFFLAGS:
3648 		case SIOCGIFMETRIC:
3649 		case SIOCGIFMTU:
3650 		case SIOCGIFHWADDR:
3651 		case SIOCGIFSLAVE:
3652 		case SIOCGIFMAP:
3653 		case SIOCGIFINDEX:
3654 		case SIOCGIFTXQLEN:
3655 			dev_load(net, ifr.ifr_name);
3656 			read_lock(&dev_base_lock);
3657 			ret = dev_ifsioc_locked(net, &ifr, cmd);
3658 			read_unlock(&dev_base_lock);
3659 			if (!ret) {
3660 				if (colon)
3661 					*colon = ':';
3662 				if (copy_to_user(arg, &ifr,
3663 						 sizeof(struct ifreq)))
3664 					ret = -EFAULT;
3665 			}
3666 			return ret;
3667 
3668 		case SIOCETHTOOL:
3669 			dev_load(net, ifr.ifr_name);
3670 			rtnl_lock();
3671 			ret = dev_ethtool(net, &ifr);
3672 			rtnl_unlock();
3673 			if (!ret) {
3674 				if (colon)
3675 					*colon = ':';
3676 				if (copy_to_user(arg, &ifr,
3677 						 sizeof(struct ifreq)))
3678 					ret = -EFAULT;
3679 			}
3680 			return ret;
3681 
3682 		/*
3683 		 *	These ioctl calls:
3684 		 *	- require superuser power.
3685 		 *	- require strict serialization.
3686 		 *	- return a value
3687 		 */
3688 		case SIOCGMIIPHY:
3689 		case SIOCGMIIREG:
3690 		case SIOCSIFNAME:
3691 			if (!capable(CAP_NET_ADMIN))
3692 				return -EPERM;
3693 			dev_load(net, ifr.ifr_name);
3694 			rtnl_lock();
3695 			ret = dev_ifsioc(net, &ifr, cmd);
3696 			rtnl_unlock();
3697 			if (!ret) {
3698 				if (colon)
3699 					*colon = ':';
3700 				if (copy_to_user(arg, &ifr,
3701 						 sizeof(struct ifreq)))
3702 					ret = -EFAULT;
3703 			}
3704 			return ret;
3705 
3706 		/*
3707 		 *	These ioctl calls:
3708 		 *	- require superuser power.
3709 		 *	- require strict serialization.
3710 		 *	- do not return a value
3711 		 */
3712 		case SIOCSIFFLAGS:
3713 		case SIOCSIFMETRIC:
3714 		case SIOCSIFMTU:
3715 		case SIOCSIFMAP:
3716 		case SIOCSIFHWADDR:
3717 		case SIOCSIFSLAVE:
3718 		case SIOCADDMULTI:
3719 		case SIOCDELMULTI:
3720 		case SIOCSIFHWBROADCAST:
3721 		case SIOCSIFTXQLEN:
3722 		case SIOCSMIIREG:
3723 		case SIOCBONDENSLAVE:
3724 		case SIOCBONDRELEASE:
3725 		case SIOCBONDSETHWADDR:
3726 		case SIOCBONDCHANGEACTIVE:
3727 		case SIOCBRADDIF:
3728 		case SIOCBRDELIF:
3729 			if (!capable(CAP_NET_ADMIN))
3730 				return -EPERM;
3731 			/* fall through */
3732 		case SIOCBONDSLAVEINFOQUERY:
3733 		case SIOCBONDINFOQUERY:
3734 			dev_load(net, ifr.ifr_name);
3735 			rtnl_lock();
3736 			ret = dev_ifsioc(net, &ifr, cmd);
3737 			rtnl_unlock();
3738 			return ret;
3739 
3740 		case SIOCGIFMEM:
3741 			/* Get the per device memory space. We can add this but
3742 			 * currently do not support it */
3743 		case SIOCSIFMEM:
3744 			/* Set the per device memory buffer space.
3745 			 * Not applicable in our case */
3746 		case SIOCSIFLINK:
3747 			return -EINVAL;
3748 
3749 		/*
3750 		 *	Unknown or private ioctl.
3751 		 */
3752 		default:
3753 			if (cmd == SIOCWANDEV ||
3754 			    (cmd >= SIOCDEVPRIVATE &&
3755 			     cmd <= SIOCDEVPRIVATE + 15)) {
3756 				dev_load(net, ifr.ifr_name);
3757 				rtnl_lock();
3758 				ret = dev_ifsioc(net, &ifr, cmd);
3759 				rtnl_unlock();
3760 				if (!ret && copy_to_user(arg, &ifr,
3761 							 sizeof(struct ifreq)))
3762 					ret = -EFAULT;
3763 				return ret;
3764 			}
3765 			/* Take care of Wireless Extensions */
3766 			if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)
3767 				return wext_handle_ioctl(net, &ifr, cmd, arg);
3768 			return -EINVAL;
3769 	}
3770 }
3771 
3772 
3773 /**
3774  *	dev_new_index	-	allocate an ifindex
3775  *	@net: the applicable net namespace
3776  *
3777  *	Returns a suitable unique value for a new device interface
3778  *	number.  The caller must hold the rtnl semaphore or the
3779  *	dev_base_lock to be sure it remains unique.
3780  */
3781 static int dev_new_index(struct net *net)
3782 {
3783 	static int ifindex;
3784 	for (;;) {
3785 		if (++ifindex <= 0)
3786 			ifindex = 1;
3787 		if (!__dev_get_by_index(net, ifindex))
3788 			return ifindex;
3789 	}
3790 }
3791 
3792 /* Delayed registration/unregisteration */
3793 static DEFINE_SPINLOCK(net_todo_list_lock);
3794 static LIST_HEAD(net_todo_list);
3795 
3796 static void net_set_todo(struct net_device *dev)
3797 {
3798 	spin_lock(&net_todo_list_lock);
3799 	list_add_tail(&dev->todo_list, &net_todo_list);
3800 	spin_unlock(&net_todo_list_lock);
3801 }
3802 
3803 static void rollback_registered(struct net_device *dev)
3804 {
3805 	BUG_ON(dev_boot_phase);
3806 	ASSERT_RTNL();
3807 
3808 	/* Some devices call without registering for initialization unwind. */
3809 	if (dev->reg_state == NETREG_UNINITIALIZED) {
3810 		printk(KERN_DEBUG "unregister_netdevice: device %s/%p never "
3811 				  "was registered\n", dev->name, dev);
3812 
3813 		WARN_ON(1);
3814 		return;
3815 	}
3816 
3817 	BUG_ON(dev->reg_state != NETREG_REGISTERED);
3818 
3819 	/* If device is running, close it first. */
3820 	dev_close(dev);
3821 
3822 	/* And unlink it from device chain. */
3823 	unlist_netdevice(dev);
3824 
3825 	dev->reg_state = NETREG_UNREGISTERING;
3826 
3827 	synchronize_net();
3828 
3829 	/* Shutdown queueing discipline. */
3830 	dev_shutdown(dev);
3831 
3832 
3833 	/* Notify protocols, that we are about to destroy
3834 	   this device. They should clean all the things.
3835 	*/
3836 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
3837 
3838 	/*
3839 	 *	Flush the unicast and multicast chains
3840 	 */
3841 	dev_addr_discard(dev);
3842 
3843 	if (dev->uninit)
3844 		dev->uninit(dev);
3845 
3846 	/* Notifier chain MUST detach us from master device. */
3847 	WARN_ON(dev->master);
3848 
3849 	/* Remove entries from kobject tree */
3850 	netdev_unregister_kobject(dev);
3851 
3852 	synchronize_net();
3853 
3854 	dev_put(dev);
3855 }
3856 
3857 static void __netdev_init_queue_locks_one(struct net_device *dev,
3858 					  struct netdev_queue *dev_queue,
3859 					  void *_unused)
3860 {
3861 	spin_lock_init(&dev_queue->_xmit_lock);
3862 	netdev_set_xmit_lockdep_class(&dev_queue->_xmit_lock, dev->type);
3863 	dev_queue->xmit_lock_owner = -1;
3864 }
3865 
3866 static void netdev_init_queue_locks(struct net_device *dev)
3867 {
3868 	netdev_for_each_tx_queue(dev, __netdev_init_queue_locks_one, NULL);
3869 	__netdev_init_queue_locks_one(dev, &dev->rx_queue, NULL);
3870 }
3871 
3872 /**
3873  *	register_netdevice	- register a network device
3874  *	@dev: device to register
3875  *
3876  *	Take a completed network device structure and add it to the kernel
3877  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
3878  *	chain. 0 is returned on success. A negative errno code is returned
3879  *	on a failure to set up the device, or if the name is a duplicate.
3880  *
3881  *	Callers must hold the rtnl semaphore. You may want
3882  *	register_netdev() instead of this.
3883  *
3884  *	BUGS:
3885  *	The locking appears insufficient to guarantee two parallel registers
3886  *	will not get the same name.
3887  */
3888 
3889 int register_netdevice(struct net_device *dev)
3890 {
3891 	struct hlist_head *head;
3892 	struct hlist_node *p;
3893 	int ret;
3894 	struct net *net;
3895 
3896 	BUG_ON(dev_boot_phase);
3897 	ASSERT_RTNL();
3898 
3899 	might_sleep();
3900 
3901 	/* When net_device's are persistent, this will be fatal. */
3902 	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
3903 	BUG_ON(!dev_net(dev));
3904 	net = dev_net(dev);
3905 
3906 	spin_lock_init(&dev->addr_list_lock);
3907 	netdev_set_addr_lockdep_class(dev);
3908 	netdev_init_queue_locks(dev);
3909 
3910 	dev->iflink = -1;
3911 
3912 	/* Init, if this function is available */
3913 	if (dev->init) {
3914 		ret = dev->init(dev);
3915 		if (ret) {
3916 			if (ret > 0)
3917 				ret = -EIO;
3918 			goto out;
3919 		}
3920 	}
3921 
3922 	if (!dev_valid_name(dev->name)) {
3923 		ret = -EINVAL;
3924 		goto err_uninit;
3925 	}
3926 
3927 	dev->ifindex = dev_new_index(net);
3928 	if (dev->iflink == -1)
3929 		dev->iflink = dev->ifindex;
3930 
3931 	/* Check for existence of name */
3932 	head = dev_name_hash(net, dev->name);
3933 	hlist_for_each(p, head) {
3934 		struct net_device *d
3935 			= hlist_entry(p, struct net_device, name_hlist);
3936 		if (!strncmp(d->name, dev->name, IFNAMSIZ)) {
3937 			ret = -EEXIST;
3938 			goto err_uninit;
3939 		}
3940 	}
3941 
3942 	/* Fix illegal checksum combinations */
3943 	if ((dev->features & NETIF_F_HW_CSUM) &&
3944 	    (dev->features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
3945 		printk(KERN_NOTICE "%s: mixed HW and IP checksum settings.\n",
3946 		       dev->name);
3947 		dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
3948 	}
3949 
3950 	if ((dev->features & NETIF_F_NO_CSUM) &&
3951 	    (dev->features & (NETIF_F_HW_CSUM|NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
3952 		printk(KERN_NOTICE "%s: mixed no checksumming and other settings.\n",
3953 		       dev->name);
3954 		dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM|NETIF_F_HW_CSUM);
3955 	}
3956 
3957 
3958 	/* Fix illegal SG+CSUM combinations. */
3959 	if ((dev->features & NETIF_F_SG) &&
3960 	    !(dev->features & NETIF_F_ALL_CSUM)) {
3961 		printk(KERN_NOTICE "%s: Dropping NETIF_F_SG since no checksum feature.\n",
3962 		       dev->name);
3963 		dev->features &= ~NETIF_F_SG;
3964 	}
3965 
3966 	/* TSO requires that SG is present as well. */
3967 	if ((dev->features & NETIF_F_TSO) &&
3968 	    !(dev->features & NETIF_F_SG)) {
3969 		printk(KERN_NOTICE "%s: Dropping NETIF_F_TSO since no SG feature.\n",
3970 		       dev->name);
3971 		dev->features &= ~NETIF_F_TSO;
3972 	}
3973 	if (dev->features & NETIF_F_UFO) {
3974 		if (!(dev->features & NETIF_F_HW_CSUM)) {
3975 			printk(KERN_ERR "%s: Dropping NETIF_F_UFO since no "
3976 					"NETIF_F_HW_CSUM feature.\n",
3977 							dev->name);
3978 			dev->features &= ~NETIF_F_UFO;
3979 		}
3980 		if (!(dev->features & NETIF_F_SG)) {
3981 			printk(KERN_ERR "%s: Dropping NETIF_F_UFO since no "
3982 					"NETIF_F_SG feature.\n",
3983 					dev->name);
3984 			dev->features &= ~NETIF_F_UFO;
3985 		}
3986 	}
3987 
3988 	/* Enable software GSO if SG is supported. */
3989 	if (dev->features & NETIF_F_SG)
3990 		dev->features |= NETIF_F_GSO;
3991 
3992 	netdev_initialize_kobject(dev);
3993 	ret = netdev_register_kobject(dev);
3994 	if (ret)
3995 		goto err_uninit;
3996 	dev->reg_state = NETREG_REGISTERED;
3997 
3998 	/*
3999 	 *	Default initial state at registry is that the
4000 	 *	device is present.
4001 	 */
4002 
4003 	set_bit(__LINK_STATE_PRESENT, &dev->state);
4004 
4005 	dev_init_scheduler(dev);
4006 	dev_hold(dev);
4007 	list_netdevice(dev);
4008 
4009 	/* Notify protocols, that a new device appeared. */
4010 	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
4011 	ret = notifier_to_errno(ret);
4012 	if (ret) {
4013 		rollback_registered(dev);
4014 		dev->reg_state = NETREG_UNREGISTERED;
4015 	}
4016 
4017 out:
4018 	return ret;
4019 
4020 err_uninit:
4021 	if (dev->uninit)
4022 		dev->uninit(dev);
4023 	goto out;
4024 }
4025 
4026 /**
4027  *	register_netdev	- register a network device
4028  *	@dev: device to register
4029  *
4030  *	Take a completed network device structure and add it to the kernel
4031  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
4032  *	chain. 0 is returned on success. A negative errno code is returned
4033  *	on a failure to set up the device, or if the name is a duplicate.
4034  *
4035  *	This is a wrapper around register_netdevice that takes the rtnl semaphore
4036  *	and expands the device name if you passed a format string to
4037  *	alloc_netdev.
4038  */
4039 int register_netdev(struct net_device *dev)
4040 {
4041 	int err;
4042 
4043 	rtnl_lock();
4044 
4045 	/*
4046 	 * If the name is a format string the caller wants us to do a
4047 	 * name allocation.
4048 	 */
4049 	if (strchr(dev->name, '%')) {
4050 		err = dev_alloc_name(dev, dev->name);
4051 		if (err < 0)
4052 			goto out;
4053 	}
4054 
4055 	err = register_netdevice(dev);
4056 out:
4057 	rtnl_unlock();
4058 	return err;
4059 }
4060 EXPORT_SYMBOL(register_netdev);
4061 
4062 /*
4063  * netdev_wait_allrefs - wait until all references are gone.
4064  *
4065  * This is called when unregistering network devices.
4066  *
4067  * Any protocol or device that holds a reference should register
4068  * for netdevice notification, and cleanup and put back the
4069  * reference if they receive an UNREGISTER event.
4070  * We can get stuck here if buggy protocols don't correctly
4071  * call dev_put.
4072  */
4073 static void netdev_wait_allrefs(struct net_device *dev)
4074 {
4075 	unsigned long rebroadcast_time, warning_time;
4076 
4077 	rebroadcast_time = warning_time = jiffies;
4078 	while (atomic_read(&dev->refcnt) != 0) {
4079 		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
4080 			rtnl_lock();
4081 
4082 			/* Rebroadcast unregister notification */
4083 			call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
4084 
4085 			if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
4086 				     &dev->state)) {
4087 				/* We must not have linkwatch events
4088 				 * pending on unregister. If this
4089 				 * happens, we simply run the queue
4090 				 * unscheduled, resulting in a noop
4091 				 * for this device.
4092 				 */
4093 				linkwatch_run_queue();
4094 			}
4095 
4096 			__rtnl_unlock();
4097 
4098 			rebroadcast_time = jiffies;
4099 		}
4100 
4101 		msleep(250);
4102 
4103 		if (time_after(jiffies, warning_time + 10 * HZ)) {
4104 			printk(KERN_EMERG "unregister_netdevice: "
4105 			       "waiting for %s to become free. Usage "
4106 			       "count = %d\n",
4107 			       dev->name, atomic_read(&dev->refcnt));
4108 			warning_time = jiffies;
4109 		}
4110 	}
4111 }
4112 
4113 /* The sequence is:
4114  *
4115  *	rtnl_lock();
4116  *	...
4117  *	register_netdevice(x1);
4118  *	register_netdevice(x2);
4119  *	...
4120  *	unregister_netdevice(y1);
4121  *	unregister_netdevice(y2);
4122  *      ...
4123  *	rtnl_unlock();
4124  *	free_netdev(y1);
4125  *	free_netdev(y2);
4126  *
4127  * We are invoked by rtnl_unlock() after it drops the semaphore.
4128  * This allows us to deal with problems:
4129  * 1) We can delete sysfs objects which invoke hotplug
4130  *    without deadlocking with linkwatch via keventd.
4131  * 2) Since we run with the RTNL semaphore not held, we can sleep
4132  *    safely in order to wait for the netdev refcnt to drop to zero.
4133  */
4134 static DEFINE_MUTEX(net_todo_run_mutex);
4135 void netdev_run_todo(void)
4136 {
4137 	struct list_head list;
4138 
4139 	/* Need to guard against multiple cpu's getting out of order. */
4140 	mutex_lock(&net_todo_run_mutex);
4141 
4142 	/* Not safe to do outside the semaphore.  We must not return
4143 	 * until all unregister events invoked by the local processor
4144 	 * have been completed (either by this todo run, or one on
4145 	 * another cpu).
4146 	 */
4147 	if (list_empty(&net_todo_list))
4148 		goto out;
4149 
4150 	/* Snapshot list, allow later requests */
4151 	spin_lock(&net_todo_list_lock);
4152 	list_replace_init(&net_todo_list, &list);
4153 	spin_unlock(&net_todo_list_lock);
4154 
4155 	while (!list_empty(&list)) {
4156 		struct net_device *dev
4157 			= list_entry(list.next, struct net_device, todo_list);
4158 		list_del(&dev->todo_list);
4159 
4160 		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
4161 			printk(KERN_ERR "network todo '%s' but state %d\n",
4162 			       dev->name, dev->reg_state);
4163 			dump_stack();
4164 			continue;
4165 		}
4166 
4167 		dev->reg_state = NETREG_UNREGISTERED;
4168 
4169 		on_each_cpu(flush_backlog, dev, 1);
4170 
4171 		netdev_wait_allrefs(dev);
4172 
4173 		/* paranoia */
4174 		BUG_ON(atomic_read(&dev->refcnt));
4175 		WARN_ON(dev->ip_ptr);
4176 		WARN_ON(dev->ip6_ptr);
4177 		WARN_ON(dev->dn_ptr);
4178 
4179 		if (dev->destructor)
4180 			dev->destructor(dev);
4181 
4182 		/* Free network device */
4183 		kobject_put(&dev->dev.kobj);
4184 	}
4185 
4186 out:
4187 	mutex_unlock(&net_todo_run_mutex);
4188 }
4189 
4190 static struct net_device_stats *internal_stats(struct net_device *dev)
4191 {
4192 	return &dev->stats;
4193 }
4194 
4195 static void netdev_init_one_queue(struct net_device *dev,
4196 				  struct netdev_queue *queue,
4197 				  void *_unused)
4198 {
4199 	queue->dev = dev;
4200 }
4201 
4202 static void netdev_init_queues(struct net_device *dev)
4203 {
4204 	netdev_init_one_queue(dev, &dev->rx_queue, NULL);
4205 	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
4206 	spin_lock_init(&dev->tx_global_lock);
4207 }
4208 
4209 /**
4210  *	alloc_netdev_mq - allocate network device
4211  *	@sizeof_priv:	size of private data to allocate space for
4212  *	@name:		device name format string
4213  *	@setup:		callback to initialize device
4214  *	@queue_count:	the number of subqueues to allocate
4215  *
4216  *	Allocates a struct net_device with private data area for driver use
4217  *	and performs basic initialization.  Also allocates subquue structs
4218  *	for each queue on the device at the end of the netdevice.
4219  */
4220 struct net_device *alloc_netdev_mq(int sizeof_priv, const char *name,
4221 		void (*setup)(struct net_device *), unsigned int queue_count)
4222 {
4223 	struct netdev_queue *tx;
4224 	struct net_device *dev;
4225 	size_t alloc_size;
4226 	void *p;
4227 
4228 	BUG_ON(strlen(name) >= sizeof(dev->name));
4229 
4230 	alloc_size = sizeof(struct net_device);
4231 	if (sizeof_priv) {
4232 		/* ensure 32-byte alignment of private area */
4233 		alloc_size = (alloc_size + NETDEV_ALIGN_CONST) & ~NETDEV_ALIGN_CONST;
4234 		alloc_size += sizeof_priv;
4235 	}
4236 	/* ensure 32-byte alignment of whole construct */
4237 	alloc_size += NETDEV_ALIGN_CONST;
4238 
4239 	p = kzalloc(alloc_size, GFP_KERNEL);
4240 	if (!p) {
4241 		printk(KERN_ERR "alloc_netdev: Unable to allocate device.\n");
4242 		return NULL;
4243 	}
4244 
4245 	tx = kcalloc(queue_count, sizeof(struct netdev_queue), GFP_KERNEL);
4246 	if (!tx) {
4247 		printk(KERN_ERR "alloc_netdev: Unable to allocate "
4248 		       "tx qdiscs.\n");
4249 		kfree(p);
4250 		return NULL;
4251 	}
4252 
4253 	dev = (struct net_device *)
4254 		(((long)p + NETDEV_ALIGN_CONST) & ~NETDEV_ALIGN_CONST);
4255 	dev->padded = (char *)dev - (char *)p;
4256 	dev_net_set(dev, &init_net);
4257 
4258 	dev->_tx = tx;
4259 	dev->num_tx_queues = queue_count;
4260 	dev->real_num_tx_queues = queue_count;
4261 
4262 	if (sizeof_priv) {
4263 		dev->priv = ((char *)dev +
4264 			     ((sizeof(struct net_device) + NETDEV_ALIGN_CONST)
4265 			      & ~NETDEV_ALIGN_CONST));
4266 	}
4267 
4268 	dev->gso_max_size = GSO_MAX_SIZE;
4269 
4270 	netdev_init_queues(dev);
4271 
4272 	dev->get_stats = internal_stats;
4273 	netpoll_netdev_init(dev);
4274 	setup(dev);
4275 	strcpy(dev->name, name);
4276 	return dev;
4277 }
4278 EXPORT_SYMBOL(alloc_netdev_mq);
4279 
4280 /**
4281  *	free_netdev - free network device
4282  *	@dev: device
4283  *
4284  *	This function does the last stage of destroying an allocated device
4285  * 	interface. The reference to the device object is released.
4286  *	If this is the last reference then it will be freed.
4287  */
4288 void free_netdev(struct net_device *dev)
4289 {
4290 	release_net(dev_net(dev));
4291 
4292 	kfree(dev->_tx);
4293 
4294 	/*  Compatibility with error handling in drivers */
4295 	if (dev->reg_state == NETREG_UNINITIALIZED) {
4296 		kfree((char *)dev - dev->padded);
4297 		return;
4298 	}
4299 
4300 	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
4301 	dev->reg_state = NETREG_RELEASED;
4302 
4303 	/* will free via device release */
4304 	put_device(&dev->dev);
4305 }
4306 
4307 /* Synchronize with packet receive processing. */
4308 void synchronize_net(void)
4309 {
4310 	might_sleep();
4311 	synchronize_rcu();
4312 }
4313 
4314 /**
4315  *	unregister_netdevice - remove device from the kernel
4316  *	@dev: device
4317  *
4318  *	This function shuts down a device interface and removes it
4319  *	from the kernel tables.
4320  *
4321  *	Callers must hold the rtnl semaphore.  You may want
4322  *	unregister_netdev() instead of this.
4323  */
4324 
4325 void unregister_netdevice(struct net_device *dev)
4326 {
4327 	ASSERT_RTNL();
4328 
4329 	rollback_registered(dev);
4330 	/* Finish processing unregister after unlock */
4331 	net_set_todo(dev);
4332 }
4333 
4334 /**
4335  *	unregister_netdev - remove device from the kernel
4336  *	@dev: device
4337  *
4338  *	This function shuts down a device interface and removes it
4339  *	from the kernel tables.
4340  *
4341  *	This is just a wrapper for unregister_netdevice that takes
4342  *	the rtnl semaphore.  In general you want to use this and not
4343  *	unregister_netdevice.
4344  */
4345 void unregister_netdev(struct net_device *dev)
4346 {
4347 	rtnl_lock();
4348 	unregister_netdevice(dev);
4349 	rtnl_unlock();
4350 }
4351 
4352 EXPORT_SYMBOL(unregister_netdev);
4353 
4354 /**
4355  *	dev_change_net_namespace - move device to different nethost namespace
4356  *	@dev: device
4357  *	@net: network namespace
4358  *	@pat: If not NULL name pattern to try if the current device name
4359  *	      is already taken in the destination network namespace.
4360  *
4361  *	This function shuts down a device interface and moves it
4362  *	to a new network namespace. On success 0 is returned, on
4363  *	a failure a netagive errno code is returned.
4364  *
4365  *	Callers must hold the rtnl semaphore.
4366  */
4367 
4368 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
4369 {
4370 	char buf[IFNAMSIZ];
4371 	const char *destname;
4372 	int err;
4373 
4374 	ASSERT_RTNL();
4375 
4376 	/* Don't allow namespace local devices to be moved. */
4377 	err = -EINVAL;
4378 	if (dev->features & NETIF_F_NETNS_LOCAL)
4379 		goto out;
4380 
4381 	/* Ensure the device has been registrered */
4382 	err = -EINVAL;
4383 	if (dev->reg_state != NETREG_REGISTERED)
4384 		goto out;
4385 
4386 	/* Get out if there is nothing todo */
4387 	err = 0;
4388 	if (net_eq(dev_net(dev), net))
4389 		goto out;
4390 
4391 	/* Pick the destination device name, and ensure
4392 	 * we can use it in the destination network namespace.
4393 	 */
4394 	err = -EEXIST;
4395 	destname = dev->name;
4396 	if (__dev_get_by_name(net, destname)) {
4397 		/* We get here if we can't use the current device name */
4398 		if (!pat)
4399 			goto out;
4400 		if (!dev_valid_name(pat))
4401 			goto out;
4402 		if (strchr(pat, '%')) {
4403 			if (__dev_alloc_name(net, pat, buf) < 0)
4404 				goto out;
4405 			destname = buf;
4406 		} else
4407 			destname = pat;
4408 		if (__dev_get_by_name(net, destname))
4409 			goto out;
4410 	}
4411 
4412 	/*
4413 	 * And now a mini version of register_netdevice unregister_netdevice.
4414 	 */
4415 
4416 	/* If device is running close it first. */
4417 	dev_close(dev);
4418 
4419 	/* And unlink it from device chain */
4420 	err = -ENODEV;
4421 	unlist_netdevice(dev);
4422 
4423 	synchronize_net();
4424 
4425 	/* Shutdown queueing discipline. */
4426 	dev_shutdown(dev);
4427 
4428 	/* Notify protocols, that we are about to destroy
4429 	   this device. They should clean all the things.
4430 	*/
4431 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
4432 
4433 	/*
4434 	 *	Flush the unicast and multicast chains
4435 	 */
4436 	dev_addr_discard(dev);
4437 
4438 	/* Actually switch the network namespace */
4439 	dev_net_set(dev, net);
4440 
4441 	/* Assign the new device name */
4442 	if (destname != dev->name)
4443 		strcpy(dev->name, destname);
4444 
4445 	/* If there is an ifindex conflict assign a new one */
4446 	if (__dev_get_by_index(net, dev->ifindex)) {
4447 		int iflink = (dev->iflink == dev->ifindex);
4448 		dev->ifindex = dev_new_index(net);
4449 		if (iflink)
4450 			dev->iflink = dev->ifindex;
4451 	}
4452 
4453 	/* Fixup kobjects */
4454 	netdev_unregister_kobject(dev);
4455 	err = netdev_register_kobject(dev);
4456 	WARN_ON(err);
4457 
4458 	/* Add the device back in the hashes */
4459 	list_netdevice(dev);
4460 
4461 	/* Notify protocols, that a new device appeared. */
4462 	call_netdevice_notifiers(NETDEV_REGISTER, dev);
4463 
4464 	synchronize_net();
4465 	err = 0;
4466 out:
4467 	return err;
4468 }
4469 
4470 static int dev_cpu_callback(struct notifier_block *nfb,
4471 			    unsigned long action,
4472 			    void *ocpu)
4473 {
4474 	struct sk_buff **list_skb;
4475 	struct Qdisc **list_net;
4476 	struct sk_buff *skb;
4477 	unsigned int cpu, oldcpu = (unsigned long)ocpu;
4478 	struct softnet_data *sd, *oldsd;
4479 
4480 	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
4481 		return NOTIFY_OK;
4482 
4483 	local_irq_disable();
4484 	cpu = smp_processor_id();
4485 	sd = &per_cpu(softnet_data, cpu);
4486 	oldsd = &per_cpu(softnet_data, oldcpu);
4487 
4488 	/* Find end of our completion_queue. */
4489 	list_skb = &sd->completion_queue;
4490 	while (*list_skb)
4491 		list_skb = &(*list_skb)->next;
4492 	/* Append completion queue from offline CPU. */
4493 	*list_skb = oldsd->completion_queue;
4494 	oldsd->completion_queue = NULL;
4495 
4496 	/* Find end of our output_queue. */
4497 	list_net = &sd->output_queue;
4498 	while (*list_net)
4499 		list_net = &(*list_net)->next_sched;
4500 	/* Append output queue from offline CPU. */
4501 	*list_net = oldsd->output_queue;
4502 	oldsd->output_queue = NULL;
4503 
4504 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
4505 	local_irq_enable();
4506 
4507 	/* Process offline CPU's input_pkt_queue */
4508 	while ((skb = __skb_dequeue(&oldsd->input_pkt_queue)))
4509 		netif_rx(skb);
4510 
4511 	return NOTIFY_OK;
4512 }
4513 
4514 #ifdef CONFIG_NET_DMA
4515 /**
4516  * net_dma_rebalance - try to maintain one DMA channel per CPU
4517  * @net_dma: DMA client and associated data (lock, channels, channel_mask)
4518  *
4519  * This is called when the number of channels allocated to the net_dma client
4520  * changes.  The net_dma client tries to have one DMA channel per CPU.
4521  */
4522 
4523 static void net_dma_rebalance(struct net_dma *net_dma)
4524 {
4525 	unsigned int cpu, i, n, chan_idx;
4526 	struct dma_chan *chan;
4527 
4528 	if (cpus_empty(net_dma->channel_mask)) {
4529 		for_each_online_cpu(cpu)
4530 			rcu_assign_pointer(per_cpu(softnet_data, cpu).net_dma, NULL);
4531 		return;
4532 	}
4533 
4534 	i = 0;
4535 	cpu = first_cpu(cpu_online_map);
4536 
4537 	for_each_cpu_mask_nr(chan_idx, net_dma->channel_mask) {
4538 		chan = net_dma->channels[chan_idx];
4539 
4540 		n = ((num_online_cpus() / cpus_weight(net_dma->channel_mask))
4541 		   + (i < (num_online_cpus() %
4542 			cpus_weight(net_dma->channel_mask)) ? 1 : 0));
4543 
4544 		while(n) {
4545 			per_cpu(softnet_data, cpu).net_dma = chan;
4546 			cpu = next_cpu(cpu, cpu_online_map);
4547 			n--;
4548 		}
4549 		i++;
4550 	}
4551 }
4552 
4553 /**
4554  * netdev_dma_event - event callback for the net_dma_client
4555  * @client: should always be net_dma_client
4556  * @chan: DMA channel for the event
4557  * @state: DMA state to be handled
4558  */
4559 static enum dma_state_client
4560 netdev_dma_event(struct dma_client *client, struct dma_chan *chan,
4561 	enum dma_state state)
4562 {
4563 	int i, found = 0, pos = -1;
4564 	struct net_dma *net_dma =
4565 		container_of(client, struct net_dma, client);
4566 	enum dma_state_client ack = DMA_DUP; /* default: take no action */
4567 
4568 	spin_lock(&net_dma->lock);
4569 	switch (state) {
4570 	case DMA_RESOURCE_AVAILABLE:
4571 		for (i = 0; i < nr_cpu_ids; i++)
4572 			if (net_dma->channels[i] == chan) {
4573 				found = 1;
4574 				break;
4575 			} else if (net_dma->channels[i] == NULL && pos < 0)
4576 				pos = i;
4577 
4578 		if (!found && pos >= 0) {
4579 			ack = DMA_ACK;
4580 			net_dma->channels[pos] = chan;
4581 			cpu_set(pos, net_dma->channel_mask);
4582 			net_dma_rebalance(net_dma);
4583 		}
4584 		break;
4585 	case DMA_RESOURCE_REMOVED:
4586 		for (i = 0; i < nr_cpu_ids; i++)
4587 			if (net_dma->channels[i] == chan) {
4588 				found = 1;
4589 				pos = i;
4590 				break;
4591 			}
4592 
4593 		if (found) {
4594 			ack = DMA_ACK;
4595 			cpu_clear(pos, net_dma->channel_mask);
4596 			net_dma->channels[i] = NULL;
4597 			net_dma_rebalance(net_dma);
4598 		}
4599 		break;
4600 	default:
4601 		break;
4602 	}
4603 	spin_unlock(&net_dma->lock);
4604 
4605 	return ack;
4606 }
4607 
4608 /**
4609  * netdev_dma_regiser - register the networking subsystem as a DMA client
4610  */
4611 static int __init netdev_dma_register(void)
4612 {
4613 	net_dma.channels = kzalloc(nr_cpu_ids * sizeof(struct net_dma),
4614 								GFP_KERNEL);
4615 	if (unlikely(!net_dma.channels)) {
4616 		printk(KERN_NOTICE
4617 				"netdev_dma: no memory for net_dma.channels\n");
4618 		return -ENOMEM;
4619 	}
4620 	spin_lock_init(&net_dma.lock);
4621 	dma_cap_set(DMA_MEMCPY, net_dma.client.cap_mask);
4622 	dma_async_client_register(&net_dma.client);
4623 	dma_async_client_chan_request(&net_dma.client);
4624 	return 0;
4625 }
4626 
4627 #else
4628 static int __init netdev_dma_register(void) { return -ENODEV; }
4629 #endif /* CONFIG_NET_DMA */
4630 
4631 /**
4632  *	netdev_compute_feature - compute conjunction of two feature sets
4633  *	@all: first feature set
4634  *	@one: second feature set
4635  *
4636  *	Computes a new feature set after adding a device with feature set
4637  *	@one to the master device with current feature set @all.  Returns
4638  *	the new feature set.
4639  */
4640 int netdev_compute_features(unsigned long all, unsigned long one)
4641 {
4642 	/* if device needs checksumming, downgrade to hw checksumming */
4643 	if (all & NETIF_F_NO_CSUM && !(one & NETIF_F_NO_CSUM))
4644 		all ^= NETIF_F_NO_CSUM | NETIF_F_HW_CSUM;
4645 
4646 	/* if device can't do all checksum, downgrade to ipv4/ipv6 */
4647 	if (all & NETIF_F_HW_CSUM && !(one & NETIF_F_HW_CSUM))
4648 		all ^= NETIF_F_HW_CSUM
4649 			| NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
4650 
4651 	if (one & NETIF_F_GSO)
4652 		one |= NETIF_F_GSO_SOFTWARE;
4653 	one |= NETIF_F_GSO;
4654 
4655 	/* If even one device supports robust GSO, enable it for all. */
4656 	if (one & NETIF_F_GSO_ROBUST)
4657 		all |= NETIF_F_GSO_ROBUST;
4658 
4659 	all &= one | NETIF_F_LLTX;
4660 
4661 	if (!(all & NETIF_F_ALL_CSUM))
4662 		all &= ~NETIF_F_SG;
4663 	if (!(all & NETIF_F_SG))
4664 		all &= ~NETIF_F_GSO_MASK;
4665 
4666 	return all;
4667 }
4668 EXPORT_SYMBOL(netdev_compute_features);
4669 
4670 static struct hlist_head *netdev_create_hash(void)
4671 {
4672 	int i;
4673 	struct hlist_head *hash;
4674 
4675 	hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
4676 	if (hash != NULL)
4677 		for (i = 0; i < NETDEV_HASHENTRIES; i++)
4678 			INIT_HLIST_HEAD(&hash[i]);
4679 
4680 	return hash;
4681 }
4682 
4683 /* Initialize per network namespace state */
4684 static int __net_init netdev_init(struct net *net)
4685 {
4686 	INIT_LIST_HEAD(&net->dev_base_head);
4687 
4688 	net->dev_name_head = netdev_create_hash();
4689 	if (net->dev_name_head == NULL)
4690 		goto err_name;
4691 
4692 	net->dev_index_head = netdev_create_hash();
4693 	if (net->dev_index_head == NULL)
4694 		goto err_idx;
4695 
4696 	return 0;
4697 
4698 err_idx:
4699 	kfree(net->dev_name_head);
4700 err_name:
4701 	return -ENOMEM;
4702 }
4703 
4704 char *netdev_drivername(struct net_device *dev, char *buffer, int len)
4705 {
4706 	struct device_driver *driver;
4707 	struct device *parent;
4708 
4709 	if (len <= 0 || !buffer)
4710 		return buffer;
4711 	buffer[0] = 0;
4712 
4713 	parent = dev->dev.parent;
4714 
4715 	if (!parent)
4716 		return buffer;
4717 
4718 	driver = parent->driver;
4719 	if (driver && driver->name)
4720 		strlcpy(buffer, driver->name, len);
4721 	return buffer;
4722 }
4723 
4724 static void __net_exit netdev_exit(struct net *net)
4725 {
4726 	kfree(net->dev_name_head);
4727 	kfree(net->dev_index_head);
4728 }
4729 
4730 static struct pernet_operations __net_initdata netdev_net_ops = {
4731 	.init = netdev_init,
4732 	.exit = netdev_exit,
4733 };
4734 
4735 static void __net_exit default_device_exit(struct net *net)
4736 {
4737 	struct net_device *dev, *next;
4738 	/*
4739 	 * Push all migratable of the network devices back to the
4740 	 * initial network namespace
4741 	 */
4742 	rtnl_lock();
4743 	for_each_netdev_safe(net, dev, next) {
4744 		int err;
4745 		char fb_name[IFNAMSIZ];
4746 
4747 		/* Ignore unmoveable devices (i.e. loopback) */
4748 		if (dev->features & NETIF_F_NETNS_LOCAL)
4749 			continue;
4750 
4751 		/* Push remaing network devices to init_net */
4752 		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
4753 		err = dev_change_net_namespace(dev, &init_net, fb_name);
4754 		if (err) {
4755 			printk(KERN_EMERG "%s: failed to move %s to init_net: %d\n",
4756 				__func__, dev->name, err);
4757 			BUG();
4758 		}
4759 	}
4760 	rtnl_unlock();
4761 }
4762 
4763 static struct pernet_operations __net_initdata default_device_ops = {
4764 	.exit = default_device_exit,
4765 };
4766 
4767 /*
4768  *	Initialize the DEV module. At boot time this walks the device list and
4769  *	unhooks any devices that fail to initialise (normally hardware not
4770  *	present) and leaves us with a valid list of present and active devices.
4771  *
4772  */
4773 
4774 /*
4775  *       This is called single threaded during boot, so no need
4776  *       to take the rtnl semaphore.
4777  */
4778 static int __init net_dev_init(void)
4779 {
4780 	int i, rc = -ENOMEM;
4781 
4782 	BUG_ON(!dev_boot_phase);
4783 
4784 	if (dev_proc_init())
4785 		goto out;
4786 
4787 	if (netdev_kobject_init())
4788 		goto out;
4789 
4790 	INIT_LIST_HEAD(&ptype_all);
4791 	for (i = 0; i < PTYPE_HASH_SIZE; i++)
4792 		INIT_LIST_HEAD(&ptype_base[i]);
4793 
4794 	if (register_pernet_subsys(&netdev_net_ops))
4795 		goto out;
4796 
4797 	if (register_pernet_device(&default_device_ops))
4798 		goto out;
4799 
4800 	/*
4801 	 *	Initialise the packet receive queues.
4802 	 */
4803 
4804 	for_each_possible_cpu(i) {
4805 		struct softnet_data *queue;
4806 
4807 		queue = &per_cpu(softnet_data, i);
4808 		skb_queue_head_init(&queue->input_pkt_queue);
4809 		queue->completion_queue = NULL;
4810 		INIT_LIST_HEAD(&queue->poll_list);
4811 
4812 		queue->backlog.poll = process_backlog;
4813 		queue->backlog.weight = weight_p;
4814 	}
4815 
4816 	netdev_dma_register();
4817 
4818 	dev_boot_phase = 0;
4819 
4820 	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
4821 	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
4822 
4823 	hotcpu_notifier(dev_cpu_callback, 0);
4824 	dst_init();
4825 	dev_mcast_init();
4826 	rc = 0;
4827 out:
4828 	return rc;
4829 }
4830 
4831 subsys_initcall(net_dev_init);
4832 
4833 EXPORT_SYMBOL(__dev_get_by_index);
4834 EXPORT_SYMBOL(__dev_get_by_name);
4835 EXPORT_SYMBOL(__dev_remove_pack);
4836 EXPORT_SYMBOL(dev_valid_name);
4837 EXPORT_SYMBOL(dev_add_pack);
4838 EXPORT_SYMBOL(dev_alloc_name);
4839 EXPORT_SYMBOL(dev_close);
4840 EXPORT_SYMBOL(dev_get_by_flags);
4841 EXPORT_SYMBOL(dev_get_by_index);
4842 EXPORT_SYMBOL(dev_get_by_name);
4843 EXPORT_SYMBOL(dev_open);
4844 EXPORT_SYMBOL(dev_queue_xmit);
4845 EXPORT_SYMBOL(dev_remove_pack);
4846 EXPORT_SYMBOL(dev_set_allmulti);
4847 EXPORT_SYMBOL(dev_set_promiscuity);
4848 EXPORT_SYMBOL(dev_change_flags);
4849 EXPORT_SYMBOL(dev_set_mtu);
4850 EXPORT_SYMBOL(dev_set_mac_address);
4851 EXPORT_SYMBOL(free_netdev);
4852 EXPORT_SYMBOL(netdev_boot_setup_check);
4853 EXPORT_SYMBOL(netdev_set_master);
4854 EXPORT_SYMBOL(netdev_state_change);
4855 EXPORT_SYMBOL(netif_receive_skb);
4856 EXPORT_SYMBOL(netif_rx);
4857 EXPORT_SYMBOL(register_gifconf);
4858 EXPORT_SYMBOL(register_netdevice);
4859 EXPORT_SYMBOL(register_netdevice_notifier);
4860 EXPORT_SYMBOL(skb_checksum_help);
4861 EXPORT_SYMBOL(synchronize_net);
4862 EXPORT_SYMBOL(unregister_netdevice);
4863 EXPORT_SYMBOL(unregister_netdevice_notifier);
4864 EXPORT_SYMBOL(net_enable_timestamp);
4865 EXPORT_SYMBOL(net_disable_timestamp);
4866 EXPORT_SYMBOL(dev_get_flags);
4867 
4868 #if defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)
4869 EXPORT_SYMBOL(br_handle_frame_hook);
4870 EXPORT_SYMBOL(br_fdb_get_hook);
4871 EXPORT_SYMBOL(br_fdb_put_hook);
4872 #endif
4873 
4874 #ifdef CONFIG_KMOD
4875 EXPORT_SYMBOL(dev_load);
4876 #endif
4877 
4878 EXPORT_PER_CPU_SYMBOL(softnet_data);
4879