1 /* 2 * NET3 Protocol independent device support routines. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public License 6 * as published by the Free Software Foundation; either version 7 * 2 of the License, or (at your option) any later version. 8 * 9 * Derived from the non IP parts of dev.c 1.0.19 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Mark Evans, <evansmp@uhura.aston.ac.uk> 13 * 14 * Additional Authors: 15 * Florian la Roche <rzsfl@rz.uni-sb.de> 16 * Alan Cox <gw4pts@gw4pts.ampr.org> 17 * David Hinds <dahinds@users.sourceforge.net> 18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> 19 * Adam Sulmicki <adam@cfar.umd.edu> 20 * Pekka Riikonen <priikone@poesidon.pspt.fi> 21 * 22 * Changes: 23 * D.J. Barrow : Fixed bug where dev->refcnt gets set 24 * to 2 if register_netdev gets called 25 * before net_dev_init & also removed a 26 * few lines of code in the process. 27 * Alan Cox : device private ioctl copies fields back. 28 * Alan Cox : Transmit queue code does relevant 29 * stunts to keep the queue safe. 30 * Alan Cox : Fixed double lock. 31 * Alan Cox : Fixed promisc NULL pointer trap 32 * ???????? : Support the full private ioctl range 33 * Alan Cox : Moved ioctl permission check into 34 * drivers 35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI 36 * Alan Cox : 100 backlog just doesn't cut it when 37 * you start doing multicast video 8) 38 * Alan Cox : Rewrote net_bh and list manager. 39 * Alan Cox : Fix ETH_P_ALL echoback lengths. 40 * Alan Cox : Took out transmit every packet pass 41 * Saved a few bytes in the ioctl handler 42 * Alan Cox : Network driver sets packet type before 43 * calling netif_rx. Saves a function 44 * call a packet. 45 * Alan Cox : Hashed net_bh() 46 * Richard Kooijman: Timestamp fixes. 47 * Alan Cox : Wrong field in SIOCGIFDSTADDR 48 * Alan Cox : Device lock protection. 49 * Alan Cox : Fixed nasty side effect of device close 50 * changes. 51 * Rudi Cilibrasi : Pass the right thing to 52 * set_mac_address() 53 * Dave Miller : 32bit quantity for the device lock to 54 * make it work out on a Sparc. 55 * Bjorn Ekwall : Added KERNELD hack. 56 * Alan Cox : Cleaned up the backlog initialise. 57 * Craig Metz : SIOCGIFCONF fix if space for under 58 * 1 device. 59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there 60 * is no device open function. 61 * Andi Kleen : Fix error reporting for SIOCGIFCONF 62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF 63 * Cyrus Durgin : Cleaned for KMOD 64 * Adam Sulmicki : Bug Fix : Network Device Unload 65 * A network device unload needs to purge 66 * the backlog queue. 67 * Paul Rusty Russell : SIOCSIFNAME 68 * Pekka Riikonen : Netdev boot-time settings code 69 * Andrew Morton : Make unregister_netdevice wait 70 * indefinitely on dev->refcnt 71 * J Hadi Salim : - Backlog queue sampling 72 * - netif_rx() feedback 73 */ 74 75 #include <asm/uaccess.h> 76 #include <asm/system.h> 77 #include <linux/bitops.h> 78 #include <linux/capability.h> 79 #include <linux/cpu.h> 80 #include <linux/types.h> 81 #include <linux/kernel.h> 82 #include <linux/sched.h> 83 #include <linux/mutex.h> 84 #include <linux/string.h> 85 #include <linux/mm.h> 86 #include <linux/socket.h> 87 #include <linux/sockios.h> 88 #include <linux/errno.h> 89 #include <linux/interrupt.h> 90 #include <linux/if_ether.h> 91 #include <linux/netdevice.h> 92 #include <linux/etherdevice.h> 93 #include <linux/ethtool.h> 94 #include <linux/notifier.h> 95 #include <linux/skbuff.h> 96 #include <net/net_namespace.h> 97 #include <net/sock.h> 98 #include <linux/rtnetlink.h> 99 #include <linux/proc_fs.h> 100 #include <linux/seq_file.h> 101 #include <linux/stat.h> 102 #include <linux/if_bridge.h> 103 #include <linux/if_macvlan.h> 104 #include <net/dst.h> 105 #include <net/pkt_sched.h> 106 #include <net/checksum.h> 107 #include <linux/highmem.h> 108 #include <linux/init.h> 109 #include <linux/kmod.h> 110 #include <linux/module.h> 111 #include <linux/kallsyms.h> 112 #include <linux/netpoll.h> 113 #include <linux/rcupdate.h> 114 #include <linux/delay.h> 115 #include <net/wext.h> 116 #include <net/iw_handler.h> 117 #include <asm/current.h> 118 #include <linux/audit.h> 119 #include <linux/dmaengine.h> 120 #include <linux/err.h> 121 #include <linux/ctype.h> 122 #include <linux/if_arp.h> 123 #include <linux/if_vlan.h> 124 #include <linux/ip.h> 125 #include <linux/ipv6.h> 126 #include <linux/in.h> 127 #include <linux/jhash.h> 128 #include <linux/random.h> 129 130 #include "net-sysfs.h" 131 132 /* 133 * The list of packet types we will receive (as opposed to discard) 134 * and the routines to invoke. 135 * 136 * Why 16. Because with 16 the only overlap we get on a hash of the 137 * low nibble of the protocol value is RARP/SNAP/X.25. 138 * 139 * NOTE: That is no longer true with the addition of VLAN tags. Not 140 * sure which should go first, but I bet it won't make much 141 * difference if we are running VLANs. The good news is that 142 * this protocol won't be in the list unless compiled in, so 143 * the average user (w/out VLANs) will not be adversely affected. 144 * --BLG 145 * 146 * 0800 IP 147 * 8100 802.1Q VLAN 148 * 0001 802.3 149 * 0002 AX.25 150 * 0004 802.2 151 * 8035 RARP 152 * 0005 SNAP 153 * 0805 X.25 154 * 0806 ARP 155 * 8137 IPX 156 * 0009 Localtalk 157 * 86DD IPv6 158 */ 159 160 #define PTYPE_HASH_SIZE (16) 161 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1) 162 163 static DEFINE_SPINLOCK(ptype_lock); 164 static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly; 165 static struct list_head ptype_all __read_mostly; /* Taps */ 166 167 #ifdef CONFIG_NET_DMA 168 struct net_dma { 169 struct dma_client client; 170 spinlock_t lock; 171 cpumask_t channel_mask; 172 struct dma_chan **channels; 173 }; 174 175 static enum dma_state_client 176 netdev_dma_event(struct dma_client *client, struct dma_chan *chan, 177 enum dma_state state); 178 179 static struct net_dma net_dma = { 180 .client = { 181 .event_callback = netdev_dma_event, 182 }, 183 }; 184 #endif 185 186 /* 187 * The @dev_base_head list is protected by @dev_base_lock and the rtnl 188 * semaphore. 189 * 190 * Pure readers hold dev_base_lock for reading. 191 * 192 * Writers must hold the rtnl semaphore while they loop through the 193 * dev_base_head list, and hold dev_base_lock for writing when they do the 194 * actual updates. This allows pure readers to access the list even 195 * while a writer is preparing to update it. 196 * 197 * To put it another way, dev_base_lock is held for writing only to 198 * protect against pure readers; the rtnl semaphore provides the 199 * protection against other writers. 200 * 201 * See, for example usages, register_netdevice() and 202 * unregister_netdevice(), which must be called with the rtnl 203 * semaphore held. 204 */ 205 DEFINE_RWLOCK(dev_base_lock); 206 207 EXPORT_SYMBOL(dev_base_lock); 208 209 #define NETDEV_HASHBITS 8 210 #define NETDEV_HASHENTRIES (1 << NETDEV_HASHBITS) 211 212 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name) 213 { 214 unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ)); 215 return &net->dev_name_head[hash & ((1 << NETDEV_HASHBITS) - 1)]; 216 } 217 218 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex) 219 { 220 return &net->dev_index_head[ifindex & ((1 << NETDEV_HASHBITS) - 1)]; 221 } 222 223 /* Device list insertion */ 224 static int list_netdevice(struct net_device *dev) 225 { 226 struct net *net = dev_net(dev); 227 228 ASSERT_RTNL(); 229 230 write_lock_bh(&dev_base_lock); 231 list_add_tail(&dev->dev_list, &net->dev_base_head); 232 hlist_add_head(&dev->name_hlist, dev_name_hash(net, dev->name)); 233 hlist_add_head(&dev->index_hlist, dev_index_hash(net, dev->ifindex)); 234 write_unlock_bh(&dev_base_lock); 235 return 0; 236 } 237 238 /* Device list removal */ 239 static void unlist_netdevice(struct net_device *dev) 240 { 241 ASSERT_RTNL(); 242 243 /* Unlink dev from the device chain */ 244 write_lock_bh(&dev_base_lock); 245 list_del(&dev->dev_list); 246 hlist_del(&dev->name_hlist); 247 hlist_del(&dev->index_hlist); 248 write_unlock_bh(&dev_base_lock); 249 } 250 251 /* 252 * Our notifier list 253 */ 254 255 static RAW_NOTIFIER_HEAD(netdev_chain); 256 257 /* 258 * Device drivers call our routines to queue packets here. We empty the 259 * queue in the local softnet handler. 260 */ 261 262 DEFINE_PER_CPU(struct softnet_data, softnet_data); 263 264 #ifdef CONFIG_LOCKDEP 265 /* 266 * register_netdevice() inits txq->_xmit_lock and sets lockdep class 267 * according to dev->type 268 */ 269 static const unsigned short netdev_lock_type[] = 270 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25, 271 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET, 272 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM, 273 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP, 274 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD, 275 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25, 276 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP, 277 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD, 278 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI, 279 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE, 280 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET, 281 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL, 282 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211, 283 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_VOID, 284 ARPHRD_NONE}; 285 286 static const char *netdev_lock_name[] = 287 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25", 288 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET", 289 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM", 290 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP", 291 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD", 292 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25", 293 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP", 294 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD", 295 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI", 296 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE", 297 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET", 298 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL", 299 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211", 300 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_VOID", 301 "_xmit_NONE"}; 302 303 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)]; 304 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)]; 305 306 static inline unsigned short netdev_lock_pos(unsigned short dev_type) 307 { 308 int i; 309 310 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++) 311 if (netdev_lock_type[i] == dev_type) 312 return i; 313 /* the last key is used by default */ 314 return ARRAY_SIZE(netdev_lock_type) - 1; 315 } 316 317 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 318 unsigned short dev_type) 319 { 320 int i; 321 322 i = netdev_lock_pos(dev_type); 323 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i], 324 netdev_lock_name[i]); 325 } 326 327 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 328 { 329 int i; 330 331 i = netdev_lock_pos(dev->type); 332 lockdep_set_class_and_name(&dev->addr_list_lock, 333 &netdev_addr_lock_key[i], 334 netdev_lock_name[i]); 335 } 336 #else 337 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 338 unsigned short dev_type) 339 { 340 } 341 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 342 { 343 } 344 #endif 345 346 /******************************************************************************* 347 348 Protocol management and registration routines 349 350 *******************************************************************************/ 351 352 /* 353 * Add a protocol ID to the list. Now that the input handler is 354 * smarter we can dispense with all the messy stuff that used to be 355 * here. 356 * 357 * BEWARE!!! Protocol handlers, mangling input packets, 358 * MUST BE last in hash buckets and checking protocol handlers 359 * MUST start from promiscuous ptype_all chain in net_bh. 360 * It is true now, do not change it. 361 * Explanation follows: if protocol handler, mangling packet, will 362 * be the first on list, it is not able to sense, that packet 363 * is cloned and should be copied-on-write, so that it will 364 * change it and subsequent readers will get broken packet. 365 * --ANK (980803) 366 */ 367 368 /** 369 * dev_add_pack - add packet handler 370 * @pt: packet type declaration 371 * 372 * Add a protocol handler to the networking stack. The passed &packet_type 373 * is linked into kernel lists and may not be freed until it has been 374 * removed from the kernel lists. 375 * 376 * This call does not sleep therefore it can not 377 * guarantee all CPU's that are in middle of receiving packets 378 * will see the new packet type (until the next received packet). 379 */ 380 381 void dev_add_pack(struct packet_type *pt) 382 { 383 int hash; 384 385 spin_lock_bh(&ptype_lock); 386 if (pt->type == htons(ETH_P_ALL)) 387 list_add_rcu(&pt->list, &ptype_all); 388 else { 389 hash = ntohs(pt->type) & PTYPE_HASH_MASK; 390 list_add_rcu(&pt->list, &ptype_base[hash]); 391 } 392 spin_unlock_bh(&ptype_lock); 393 } 394 395 /** 396 * __dev_remove_pack - remove packet handler 397 * @pt: packet type declaration 398 * 399 * Remove a protocol handler that was previously added to the kernel 400 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 401 * from the kernel lists and can be freed or reused once this function 402 * returns. 403 * 404 * The packet type might still be in use by receivers 405 * and must not be freed until after all the CPU's have gone 406 * through a quiescent state. 407 */ 408 void __dev_remove_pack(struct packet_type *pt) 409 { 410 struct list_head *head; 411 struct packet_type *pt1; 412 413 spin_lock_bh(&ptype_lock); 414 415 if (pt->type == htons(ETH_P_ALL)) 416 head = &ptype_all; 417 else 418 head = &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK]; 419 420 list_for_each_entry(pt1, head, list) { 421 if (pt == pt1) { 422 list_del_rcu(&pt->list); 423 goto out; 424 } 425 } 426 427 printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt); 428 out: 429 spin_unlock_bh(&ptype_lock); 430 } 431 /** 432 * dev_remove_pack - remove packet handler 433 * @pt: packet type declaration 434 * 435 * Remove a protocol handler that was previously added to the kernel 436 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 437 * from the kernel lists and can be freed or reused once this function 438 * returns. 439 * 440 * This call sleeps to guarantee that no CPU is looking at the packet 441 * type after return. 442 */ 443 void dev_remove_pack(struct packet_type *pt) 444 { 445 __dev_remove_pack(pt); 446 447 synchronize_net(); 448 } 449 450 /****************************************************************************** 451 452 Device Boot-time Settings Routines 453 454 *******************************************************************************/ 455 456 /* Boot time configuration table */ 457 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX]; 458 459 /** 460 * netdev_boot_setup_add - add new setup entry 461 * @name: name of the device 462 * @map: configured settings for the device 463 * 464 * Adds new setup entry to the dev_boot_setup list. The function 465 * returns 0 on error and 1 on success. This is a generic routine to 466 * all netdevices. 467 */ 468 static int netdev_boot_setup_add(char *name, struct ifmap *map) 469 { 470 struct netdev_boot_setup *s; 471 int i; 472 473 s = dev_boot_setup; 474 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 475 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') { 476 memset(s[i].name, 0, sizeof(s[i].name)); 477 strlcpy(s[i].name, name, IFNAMSIZ); 478 memcpy(&s[i].map, map, sizeof(s[i].map)); 479 break; 480 } 481 } 482 483 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1; 484 } 485 486 /** 487 * netdev_boot_setup_check - check boot time settings 488 * @dev: the netdevice 489 * 490 * Check boot time settings for the device. 491 * The found settings are set for the device to be used 492 * later in the device probing. 493 * Returns 0 if no settings found, 1 if they are. 494 */ 495 int netdev_boot_setup_check(struct net_device *dev) 496 { 497 struct netdev_boot_setup *s = dev_boot_setup; 498 int i; 499 500 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 501 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' && 502 !strcmp(dev->name, s[i].name)) { 503 dev->irq = s[i].map.irq; 504 dev->base_addr = s[i].map.base_addr; 505 dev->mem_start = s[i].map.mem_start; 506 dev->mem_end = s[i].map.mem_end; 507 return 1; 508 } 509 } 510 return 0; 511 } 512 513 514 /** 515 * netdev_boot_base - get address from boot time settings 516 * @prefix: prefix for network device 517 * @unit: id for network device 518 * 519 * Check boot time settings for the base address of device. 520 * The found settings are set for the device to be used 521 * later in the device probing. 522 * Returns 0 if no settings found. 523 */ 524 unsigned long netdev_boot_base(const char *prefix, int unit) 525 { 526 const struct netdev_boot_setup *s = dev_boot_setup; 527 char name[IFNAMSIZ]; 528 int i; 529 530 sprintf(name, "%s%d", prefix, unit); 531 532 /* 533 * If device already registered then return base of 1 534 * to indicate not to probe for this interface 535 */ 536 if (__dev_get_by_name(&init_net, name)) 537 return 1; 538 539 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) 540 if (!strcmp(name, s[i].name)) 541 return s[i].map.base_addr; 542 return 0; 543 } 544 545 /* 546 * Saves at boot time configured settings for any netdevice. 547 */ 548 int __init netdev_boot_setup(char *str) 549 { 550 int ints[5]; 551 struct ifmap map; 552 553 str = get_options(str, ARRAY_SIZE(ints), ints); 554 if (!str || !*str) 555 return 0; 556 557 /* Save settings */ 558 memset(&map, 0, sizeof(map)); 559 if (ints[0] > 0) 560 map.irq = ints[1]; 561 if (ints[0] > 1) 562 map.base_addr = ints[2]; 563 if (ints[0] > 2) 564 map.mem_start = ints[3]; 565 if (ints[0] > 3) 566 map.mem_end = ints[4]; 567 568 /* Add new entry to the list */ 569 return netdev_boot_setup_add(str, &map); 570 } 571 572 __setup("netdev=", netdev_boot_setup); 573 574 /******************************************************************************* 575 576 Device Interface Subroutines 577 578 *******************************************************************************/ 579 580 /** 581 * __dev_get_by_name - find a device by its name 582 * @net: the applicable net namespace 583 * @name: name to find 584 * 585 * Find an interface by name. Must be called under RTNL semaphore 586 * or @dev_base_lock. If the name is found a pointer to the device 587 * is returned. If the name is not found then %NULL is returned. The 588 * reference counters are not incremented so the caller must be 589 * careful with locks. 590 */ 591 592 struct net_device *__dev_get_by_name(struct net *net, const char *name) 593 { 594 struct hlist_node *p; 595 596 hlist_for_each(p, dev_name_hash(net, name)) { 597 struct net_device *dev 598 = hlist_entry(p, struct net_device, name_hlist); 599 if (!strncmp(dev->name, name, IFNAMSIZ)) 600 return dev; 601 } 602 return NULL; 603 } 604 605 /** 606 * dev_get_by_name - find a device by its name 607 * @net: the applicable net namespace 608 * @name: name to find 609 * 610 * Find an interface by name. This can be called from any 611 * context and does its own locking. The returned handle has 612 * the usage count incremented and the caller must use dev_put() to 613 * release it when it is no longer needed. %NULL is returned if no 614 * matching device is found. 615 */ 616 617 struct net_device *dev_get_by_name(struct net *net, const char *name) 618 { 619 struct net_device *dev; 620 621 read_lock(&dev_base_lock); 622 dev = __dev_get_by_name(net, name); 623 if (dev) 624 dev_hold(dev); 625 read_unlock(&dev_base_lock); 626 return dev; 627 } 628 629 /** 630 * __dev_get_by_index - find a device by its ifindex 631 * @net: the applicable net namespace 632 * @ifindex: index of device 633 * 634 * Search for an interface by index. Returns %NULL if the device 635 * is not found or a pointer to the device. The device has not 636 * had its reference counter increased so the caller must be careful 637 * about locking. The caller must hold either the RTNL semaphore 638 * or @dev_base_lock. 639 */ 640 641 struct net_device *__dev_get_by_index(struct net *net, int ifindex) 642 { 643 struct hlist_node *p; 644 645 hlist_for_each(p, dev_index_hash(net, ifindex)) { 646 struct net_device *dev 647 = hlist_entry(p, struct net_device, index_hlist); 648 if (dev->ifindex == ifindex) 649 return dev; 650 } 651 return NULL; 652 } 653 654 655 /** 656 * dev_get_by_index - find a device by its ifindex 657 * @net: the applicable net namespace 658 * @ifindex: index of device 659 * 660 * Search for an interface by index. Returns NULL if the device 661 * is not found or a pointer to the device. The device returned has 662 * had a reference added and the pointer is safe until the user calls 663 * dev_put to indicate they have finished with it. 664 */ 665 666 struct net_device *dev_get_by_index(struct net *net, int ifindex) 667 { 668 struct net_device *dev; 669 670 read_lock(&dev_base_lock); 671 dev = __dev_get_by_index(net, ifindex); 672 if (dev) 673 dev_hold(dev); 674 read_unlock(&dev_base_lock); 675 return dev; 676 } 677 678 /** 679 * dev_getbyhwaddr - find a device by its hardware address 680 * @net: the applicable net namespace 681 * @type: media type of device 682 * @ha: hardware address 683 * 684 * Search for an interface by MAC address. Returns NULL if the device 685 * is not found or a pointer to the device. The caller must hold the 686 * rtnl semaphore. The returned device has not had its ref count increased 687 * and the caller must therefore be careful about locking 688 * 689 * BUGS: 690 * If the API was consistent this would be __dev_get_by_hwaddr 691 */ 692 693 struct net_device *dev_getbyhwaddr(struct net *net, unsigned short type, char *ha) 694 { 695 struct net_device *dev; 696 697 ASSERT_RTNL(); 698 699 for_each_netdev(net, dev) 700 if (dev->type == type && 701 !memcmp(dev->dev_addr, ha, dev->addr_len)) 702 return dev; 703 704 return NULL; 705 } 706 707 EXPORT_SYMBOL(dev_getbyhwaddr); 708 709 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type) 710 { 711 struct net_device *dev; 712 713 ASSERT_RTNL(); 714 for_each_netdev(net, dev) 715 if (dev->type == type) 716 return dev; 717 718 return NULL; 719 } 720 721 EXPORT_SYMBOL(__dev_getfirstbyhwtype); 722 723 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type) 724 { 725 struct net_device *dev; 726 727 rtnl_lock(); 728 dev = __dev_getfirstbyhwtype(net, type); 729 if (dev) 730 dev_hold(dev); 731 rtnl_unlock(); 732 return dev; 733 } 734 735 EXPORT_SYMBOL(dev_getfirstbyhwtype); 736 737 /** 738 * dev_get_by_flags - find any device with given flags 739 * @net: the applicable net namespace 740 * @if_flags: IFF_* values 741 * @mask: bitmask of bits in if_flags to check 742 * 743 * Search for any interface with the given flags. Returns NULL if a device 744 * is not found or a pointer to the device. The device returned has 745 * had a reference added and the pointer is safe until the user calls 746 * dev_put to indicate they have finished with it. 747 */ 748 749 struct net_device * dev_get_by_flags(struct net *net, unsigned short if_flags, unsigned short mask) 750 { 751 struct net_device *dev, *ret; 752 753 ret = NULL; 754 read_lock(&dev_base_lock); 755 for_each_netdev(net, dev) { 756 if (((dev->flags ^ if_flags) & mask) == 0) { 757 dev_hold(dev); 758 ret = dev; 759 break; 760 } 761 } 762 read_unlock(&dev_base_lock); 763 return ret; 764 } 765 766 /** 767 * dev_valid_name - check if name is okay for network device 768 * @name: name string 769 * 770 * Network device names need to be valid file names to 771 * to allow sysfs to work. We also disallow any kind of 772 * whitespace. 773 */ 774 int dev_valid_name(const char *name) 775 { 776 if (*name == '\0') 777 return 0; 778 if (strlen(name) >= IFNAMSIZ) 779 return 0; 780 if (!strcmp(name, ".") || !strcmp(name, "..")) 781 return 0; 782 783 while (*name) { 784 if (*name == '/' || isspace(*name)) 785 return 0; 786 name++; 787 } 788 return 1; 789 } 790 791 /** 792 * __dev_alloc_name - allocate a name for a device 793 * @net: network namespace to allocate the device name in 794 * @name: name format string 795 * @buf: scratch buffer and result name string 796 * 797 * Passed a format string - eg "lt%d" it will try and find a suitable 798 * id. It scans list of devices to build up a free map, then chooses 799 * the first empty slot. The caller must hold the dev_base or rtnl lock 800 * while allocating the name and adding the device in order to avoid 801 * duplicates. 802 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 803 * Returns the number of the unit assigned or a negative errno code. 804 */ 805 806 static int __dev_alloc_name(struct net *net, const char *name, char *buf) 807 { 808 int i = 0; 809 const char *p; 810 const int max_netdevices = 8*PAGE_SIZE; 811 unsigned long *inuse; 812 struct net_device *d; 813 814 p = strnchr(name, IFNAMSIZ-1, '%'); 815 if (p) { 816 /* 817 * Verify the string as this thing may have come from 818 * the user. There must be either one "%d" and no other "%" 819 * characters. 820 */ 821 if (p[1] != 'd' || strchr(p + 2, '%')) 822 return -EINVAL; 823 824 /* Use one page as a bit array of possible slots */ 825 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC); 826 if (!inuse) 827 return -ENOMEM; 828 829 for_each_netdev(net, d) { 830 if (!sscanf(d->name, name, &i)) 831 continue; 832 if (i < 0 || i >= max_netdevices) 833 continue; 834 835 /* avoid cases where sscanf is not exact inverse of printf */ 836 snprintf(buf, IFNAMSIZ, name, i); 837 if (!strncmp(buf, d->name, IFNAMSIZ)) 838 set_bit(i, inuse); 839 } 840 841 i = find_first_zero_bit(inuse, max_netdevices); 842 free_page((unsigned long) inuse); 843 } 844 845 snprintf(buf, IFNAMSIZ, name, i); 846 if (!__dev_get_by_name(net, buf)) 847 return i; 848 849 /* It is possible to run out of possible slots 850 * when the name is long and there isn't enough space left 851 * for the digits, or if all bits are used. 852 */ 853 return -ENFILE; 854 } 855 856 /** 857 * dev_alloc_name - allocate a name for a device 858 * @dev: device 859 * @name: name format string 860 * 861 * Passed a format string - eg "lt%d" it will try and find a suitable 862 * id. It scans list of devices to build up a free map, then chooses 863 * the first empty slot. The caller must hold the dev_base or rtnl lock 864 * while allocating the name and adding the device in order to avoid 865 * duplicates. 866 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 867 * Returns the number of the unit assigned or a negative errno code. 868 */ 869 870 int dev_alloc_name(struct net_device *dev, const char *name) 871 { 872 char buf[IFNAMSIZ]; 873 struct net *net; 874 int ret; 875 876 BUG_ON(!dev_net(dev)); 877 net = dev_net(dev); 878 ret = __dev_alloc_name(net, name, buf); 879 if (ret >= 0) 880 strlcpy(dev->name, buf, IFNAMSIZ); 881 return ret; 882 } 883 884 885 /** 886 * dev_change_name - change name of a device 887 * @dev: device 888 * @newname: name (or format string) must be at least IFNAMSIZ 889 * 890 * Change name of a device, can pass format strings "eth%d". 891 * for wildcarding. 892 */ 893 int dev_change_name(struct net_device *dev, char *newname) 894 { 895 char oldname[IFNAMSIZ]; 896 int err = 0; 897 int ret; 898 struct net *net; 899 900 ASSERT_RTNL(); 901 BUG_ON(!dev_net(dev)); 902 903 net = dev_net(dev); 904 if (dev->flags & IFF_UP) 905 return -EBUSY; 906 907 if (!dev_valid_name(newname)) 908 return -EINVAL; 909 910 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) 911 return 0; 912 913 memcpy(oldname, dev->name, IFNAMSIZ); 914 915 if (strchr(newname, '%')) { 916 err = dev_alloc_name(dev, newname); 917 if (err < 0) 918 return err; 919 strcpy(newname, dev->name); 920 } 921 else if (__dev_get_by_name(net, newname)) 922 return -EEXIST; 923 else 924 strlcpy(dev->name, newname, IFNAMSIZ); 925 926 rollback: 927 err = device_rename(&dev->dev, dev->name); 928 if (err) { 929 memcpy(dev->name, oldname, IFNAMSIZ); 930 return err; 931 } 932 933 write_lock_bh(&dev_base_lock); 934 hlist_del(&dev->name_hlist); 935 hlist_add_head(&dev->name_hlist, dev_name_hash(net, dev->name)); 936 write_unlock_bh(&dev_base_lock); 937 938 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev); 939 ret = notifier_to_errno(ret); 940 941 if (ret) { 942 if (err) { 943 printk(KERN_ERR 944 "%s: name change rollback failed: %d.\n", 945 dev->name, ret); 946 } else { 947 err = ret; 948 memcpy(dev->name, oldname, IFNAMSIZ); 949 goto rollback; 950 } 951 } 952 953 return err; 954 } 955 956 /** 957 * netdev_features_change - device changes features 958 * @dev: device to cause notification 959 * 960 * Called to indicate a device has changed features. 961 */ 962 void netdev_features_change(struct net_device *dev) 963 { 964 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev); 965 } 966 EXPORT_SYMBOL(netdev_features_change); 967 968 /** 969 * netdev_state_change - device changes state 970 * @dev: device to cause notification 971 * 972 * Called to indicate a device has changed state. This function calls 973 * the notifier chains for netdev_chain and sends a NEWLINK message 974 * to the routing socket. 975 */ 976 void netdev_state_change(struct net_device *dev) 977 { 978 if (dev->flags & IFF_UP) { 979 call_netdevice_notifiers(NETDEV_CHANGE, dev); 980 rtmsg_ifinfo(RTM_NEWLINK, dev, 0); 981 } 982 } 983 984 void netdev_bonding_change(struct net_device *dev) 985 { 986 call_netdevice_notifiers(NETDEV_BONDING_FAILOVER, dev); 987 } 988 EXPORT_SYMBOL(netdev_bonding_change); 989 990 /** 991 * dev_load - load a network module 992 * @net: the applicable net namespace 993 * @name: name of interface 994 * 995 * If a network interface is not present and the process has suitable 996 * privileges this function loads the module. If module loading is not 997 * available in this kernel then it becomes a nop. 998 */ 999 1000 void dev_load(struct net *net, const char *name) 1001 { 1002 struct net_device *dev; 1003 1004 read_lock(&dev_base_lock); 1005 dev = __dev_get_by_name(net, name); 1006 read_unlock(&dev_base_lock); 1007 1008 if (!dev && capable(CAP_SYS_MODULE)) 1009 request_module("%s", name); 1010 } 1011 1012 /** 1013 * dev_open - prepare an interface for use. 1014 * @dev: device to open 1015 * 1016 * Takes a device from down to up state. The device's private open 1017 * function is invoked and then the multicast lists are loaded. Finally 1018 * the device is moved into the up state and a %NETDEV_UP message is 1019 * sent to the netdev notifier chain. 1020 * 1021 * Calling this function on an active interface is a nop. On a failure 1022 * a negative errno code is returned. 1023 */ 1024 int dev_open(struct net_device *dev) 1025 { 1026 int ret = 0; 1027 1028 ASSERT_RTNL(); 1029 1030 /* 1031 * Is it already up? 1032 */ 1033 1034 if (dev->flags & IFF_UP) 1035 return 0; 1036 1037 /* 1038 * Is it even present? 1039 */ 1040 if (!netif_device_present(dev)) 1041 return -ENODEV; 1042 1043 /* 1044 * Call device private open method 1045 */ 1046 set_bit(__LINK_STATE_START, &dev->state); 1047 1048 if (dev->validate_addr) 1049 ret = dev->validate_addr(dev); 1050 1051 if (!ret && dev->open) 1052 ret = dev->open(dev); 1053 1054 /* 1055 * If it went open OK then: 1056 */ 1057 1058 if (ret) 1059 clear_bit(__LINK_STATE_START, &dev->state); 1060 else { 1061 /* 1062 * Set the flags. 1063 */ 1064 dev->flags |= IFF_UP; 1065 1066 /* 1067 * Initialize multicasting status 1068 */ 1069 dev_set_rx_mode(dev); 1070 1071 /* 1072 * Wakeup transmit queue engine 1073 */ 1074 dev_activate(dev); 1075 1076 /* 1077 * ... and announce new interface. 1078 */ 1079 call_netdevice_notifiers(NETDEV_UP, dev); 1080 } 1081 1082 return ret; 1083 } 1084 1085 /** 1086 * dev_close - shutdown an interface. 1087 * @dev: device to shutdown 1088 * 1089 * This function moves an active device into down state. A 1090 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device 1091 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier 1092 * chain. 1093 */ 1094 int dev_close(struct net_device *dev) 1095 { 1096 ASSERT_RTNL(); 1097 1098 might_sleep(); 1099 1100 if (!(dev->flags & IFF_UP)) 1101 return 0; 1102 1103 /* 1104 * Tell people we are going down, so that they can 1105 * prepare to death, when device is still operating. 1106 */ 1107 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev); 1108 1109 clear_bit(__LINK_STATE_START, &dev->state); 1110 1111 /* Synchronize to scheduled poll. We cannot touch poll list, 1112 * it can be even on different cpu. So just clear netif_running(). 1113 * 1114 * dev->stop() will invoke napi_disable() on all of it's 1115 * napi_struct instances on this device. 1116 */ 1117 smp_mb__after_clear_bit(); /* Commit netif_running(). */ 1118 1119 dev_deactivate(dev); 1120 1121 /* 1122 * Call the device specific close. This cannot fail. 1123 * Only if device is UP 1124 * 1125 * We allow it to be called even after a DETACH hot-plug 1126 * event. 1127 */ 1128 if (dev->stop) 1129 dev->stop(dev); 1130 1131 /* 1132 * Device is now down. 1133 */ 1134 1135 dev->flags &= ~IFF_UP; 1136 1137 /* 1138 * Tell people we are down 1139 */ 1140 call_netdevice_notifiers(NETDEV_DOWN, dev); 1141 1142 return 0; 1143 } 1144 1145 1146 /** 1147 * dev_disable_lro - disable Large Receive Offload on a device 1148 * @dev: device 1149 * 1150 * Disable Large Receive Offload (LRO) on a net device. Must be 1151 * called under RTNL. This is needed if received packets may be 1152 * forwarded to another interface. 1153 */ 1154 void dev_disable_lro(struct net_device *dev) 1155 { 1156 if (dev->ethtool_ops && dev->ethtool_ops->get_flags && 1157 dev->ethtool_ops->set_flags) { 1158 u32 flags = dev->ethtool_ops->get_flags(dev); 1159 if (flags & ETH_FLAG_LRO) { 1160 flags &= ~ETH_FLAG_LRO; 1161 dev->ethtool_ops->set_flags(dev, flags); 1162 } 1163 } 1164 WARN_ON(dev->features & NETIF_F_LRO); 1165 } 1166 EXPORT_SYMBOL(dev_disable_lro); 1167 1168 1169 static int dev_boot_phase = 1; 1170 1171 /* 1172 * Device change register/unregister. These are not inline or static 1173 * as we export them to the world. 1174 */ 1175 1176 /** 1177 * register_netdevice_notifier - register a network notifier block 1178 * @nb: notifier 1179 * 1180 * Register a notifier to be called when network device events occur. 1181 * The notifier passed is linked into the kernel structures and must 1182 * not be reused until it has been unregistered. A negative errno code 1183 * is returned on a failure. 1184 * 1185 * When registered all registration and up events are replayed 1186 * to the new notifier to allow device to have a race free 1187 * view of the network device list. 1188 */ 1189 1190 int register_netdevice_notifier(struct notifier_block *nb) 1191 { 1192 struct net_device *dev; 1193 struct net_device *last; 1194 struct net *net; 1195 int err; 1196 1197 rtnl_lock(); 1198 err = raw_notifier_chain_register(&netdev_chain, nb); 1199 if (err) 1200 goto unlock; 1201 if (dev_boot_phase) 1202 goto unlock; 1203 for_each_net(net) { 1204 for_each_netdev(net, dev) { 1205 err = nb->notifier_call(nb, NETDEV_REGISTER, dev); 1206 err = notifier_to_errno(err); 1207 if (err) 1208 goto rollback; 1209 1210 if (!(dev->flags & IFF_UP)) 1211 continue; 1212 1213 nb->notifier_call(nb, NETDEV_UP, dev); 1214 } 1215 } 1216 1217 unlock: 1218 rtnl_unlock(); 1219 return err; 1220 1221 rollback: 1222 last = dev; 1223 for_each_net(net) { 1224 for_each_netdev(net, dev) { 1225 if (dev == last) 1226 break; 1227 1228 if (dev->flags & IFF_UP) { 1229 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev); 1230 nb->notifier_call(nb, NETDEV_DOWN, dev); 1231 } 1232 nb->notifier_call(nb, NETDEV_UNREGISTER, dev); 1233 } 1234 } 1235 1236 raw_notifier_chain_unregister(&netdev_chain, nb); 1237 goto unlock; 1238 } 1239 1240 /** 1241 * unregister_netdevice_notifier - unregister a network notifier block 1242 * @nb: notifier 1243 * 1244 * Unregister a notifier previously registered by 1245 * register_netdevice_notifier(). The notifier is unlinked into the 1246 * kernel structures and may then be reused. A negative errno code 1247 * is returned on a failure. 1248 */ 1249 1250 int unregister_netdevice_notifier(struct notifier_block *nb) 1251 { 1252 int err; 1253 1254 rtnl_lock(); 1255 err = raw_notifier_chain_unregister(&netdev_chain, nb); 1256 rtnl_unlock(); 1257 return err; 1258 } 1259 1260 /** 1261 * call_netdevice_notifiers - call all network notifier blocks 1262 * @val: value passed unmodified to notifier function 1263 * @dev: net_device pointer passed unmodified to notifier function 1264 * 1265 * Call all network notifier blocks. Parameters and return value 1266 * are as for raw_notifier_call_chain(). 1267 */ 1268 1269 int call_netdevice_notifiers(unsigned long val, struct net_device *dev) 1270 { 1271 return raw_notifier_call_chain(&netdev_chain, val, dev); 1272 } 1273 1274 /* When > 0 there are consumers of rx skb time stamps */ 1275 static atomic_t netstamp_needed = ATOMIC_INIT(0); 1276 1277 void net_enable_timestamp(void) 1278 { 1279 atomic_inc(&netstamp_needed); 1280 } 1281 1282 void net_disable_timestamp(void) 1283 { 1284 atomic_dec(&netstamp_needed); 1285 } 1286 1287 static inline void net_timestamp(struct sk_buff *skb) 1288 { 1289 if (atomic_read(&netstamp_needed)) 1290 __net_timestamp(skb); 1291 else 1292 skb->tstamp.tv64 = 0; 1293 } 1294 1295 /* 1296 * Support routine. Sends outgoing frames to any network 1297 * taps currently in use. 1298 */ 1299 1300 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev) 1301 { 1302 struct packet_type *ptype; 1303 1304 net_timestamp(skb); 1305 1306 rcu_read_lock(); 1307 list_for_each_entry_rcu(ptype, &ptype_all, list) { 1308 /* Never send packets back to the socket 1309 * they originated from - MvS (miquels@drinkel.ow.org) 1310 */ 1311 if ((ptype->dev == dev || !ptype->dev) && 1312 (ptype->af_packet_priv == NULL || 1313 (struct sock *)ptype->af_packet_priv != skb->sk)) { 1314 struct sk_buff *skb2= skb_clone(skb, GFP_ATOMIC); 1315 if (!skb2) 1316 break; 1317 1318 /* skb->nh should be correctly 1319 set by sender, so that the second statement is 1320 just protection against buggy protocols. 1321 */ 1322 skb_reset_mac_header(skb2); 1323 1324 if (skb_network_header(skb2) < skb2->data || 1325 skb2->network_header > skb2->tail) { 1326 if (net_ratelimit()) 1327 printk(KERN_CRIT "protocol %04x is " 1328 "buggy, dev %s\n", 1329 skb2->protocol, dev->name); 1330 skb_reset_network_header(skb2); 1331 } 1332 1333 skb2->transport_header = skb2->network_header; 1334 skb2->pkt_type = PACKET_OUTGOING; 1335 ptype->func(skb2, skb->dev, ptype, skb->dev); 1336 } 1337 } 1338 rcu_read_unlock(); 1339 } 1340 1341 1342 void __netif_schedule(struct Qdisc *q) 1343 { 1344 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state)) { 1345 struct softnet_data *sd; 1346 unsigned long flags; 1347 1348 local_irq_save(flags); 1349 sd = &__get_cpu_var(softnet_data); 1350 q->next_sched = sd->output_queue; 1351 sd->output_queue = q; 1352 raise_softirq_irqoff(NET_TX_SOFTIRQ); 1353 local_irq_restore(flags); 1354 } 1355 } 1356 EXPORT_SYMBOL(__netif_schedule); 1357 1358 void dev_kfree_skb_irq(struct sk_buff *skb) 1359 { 1360 if (atomic_dec_and_test(&skb->users)) { 1361 struct softnet_data *sd; 1362 unsigned long flags; 1363 1364 local_irq_save(flags); 1365 sd = &__get_cpu_var(softnet_data); 1366 skb->next = sd->completion_queue; 1367 sd->completion_queue = skb; 1368 raise_softirq_irqoff(NET_TX_SOFTIRQ); 1369 local_irq_restore(flags); 1370 } 1371 } 1372 EXPORT_SYMBOL(dev_kfree_skb_irq); 1373 1374 void dev_kfree_skb_any(struct sk_buff *skb) 1375 { 1376 if (in_irq() || irqs_disabled()) 1377 dev_kfree_skb_irq(skb); 1378 else 1379 dev_kfree_skb(skb); 1380 } 1381 EXPORT_SYMBOL(dev_kfree_skb_any); 1382 1383 1384 /** 1385 * netif_device_detach - mark device as removed 1386 * @dev: network device 1387 * 1388 * Mark device as removed from system and therefore no longer available. 1389 */ 1390 void netif_device_detach(struct net_device *dev) 1391 { 1392 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) && 1393 netif_running(dev)) { 1394 netif_stop_queue(dev); 1395 } 1396 } 1397 EXPORT_SYMBOL(netif_device_detach); 1398 1399 /** 1400 * netif_device_attach - mark device as attached 1401 * @dev: network device 1402 * 1403 * Mark device as attached from system and restart if needed. 1404 */ 1405 void netif_device_attach(struct net_device *dev) 1406 { 1407 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) && 1408 netif_running(dev)) { 1409 netif_wake_queue(dev); 1410 __netdev_watchdog_up(dev); 1411 } 1412 } 1413 EXPORT_SYMBOL(netif_device_attach); 1414 1415 static bool can_checksum_protocol(unsigned long features, __be16 protocol) 1416 { 1417 return ((features & NETIF_F_GEN_CSUM) || 1418 ((features & NETIF_F_IP_CSUM) && 1419 protocol == htons(ETH_P_IP)) || 1420 ((features & NETIF_F_IPV6_CSUM) && 1421 protocol == htons(ETH_P_IPV6))); 1422 } 1423 1424 static bool dev_can_checksum(struct net_device *dev, struct sk_buff *skb) 1425 { 1426 if (can_checksum_protocol(dev->features, skb->protocol)) 1427 return true; 1428 1429 if (skb->protocol == htons(ETH_P_8021Q)) { 1430 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data; 1431 if (can_checksum_protocol(dev->features & dev->vlan_features, 1432 veh->h_vlan_encapsulated_proto)) 1433 return true; 1434 } 1435 1436 return false; 1437 } 1438 1439 /* 1440 * Invalidate hardware checksum when packet is to be mangled, and 1441 * complete checksum manually on outgoing path. 1442 */ 1443 int skb_checksum_help(struct sk_buff *skb) 1444 { 1445 __wsum csum; 1446 int ret = 0, offset; 1447 1448 if (skb->ip_summed == CHECKSUM_COMPLETE) 1449 goto out_set_summed; 1450 1451 if (unlikely(skb_shinfo(skb)->gso_size)) { 1452 /* Let GSO fix up the checksum. */ 1453 goto out_set_summed; 1454 } 1455 1456 offset = skb->csum_start - skb_headroom(skb); 1457 BUG_ON(offset >= skb_headlen(skb)); 1458 csum = skb_checksum(skb, offset, skb->len - offset, 0); 1459 1460 offset += skb->csum_offset; 1461 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb)); 1462 1463 if (skb_cloned(skb) && 1464 !skb_clone_writable(skb, offset + sizeof(__sum16))) { 1465 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 1466 if (ret) 1467 goto out; 1468 } 1469 1470 *(__sum16 *)(skb->data + offset) = csum_fold(csum); 1471 out_set_summed: 1472 skb->ip_summed = CHECKSUM_NONE; 1473 out: 1474 return ret; 1475 } 1476 1477 /** 1478 * skb_gso_segment - Perform segmentation on skb. 1479 * @skb: buffer to segment 1480 * @features: features for the output path (see dev->features) 1481 * 1482 * This function segments the given skb and returns a list of segments. 1483 * 1484 * It may return NULL if the skb requires no segmentation. This is 1485 * only possible when GSO is used for verifying header integrity. 1486 */ 1487 struct sk_buff *skb_gso_segment(struct sk_buff *skb, int features) 1488 { 1489 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT); 1490 struct packet_type *ptype; 1491 __be16 type = skb->protocol; 1492 int err; 1493 1494 BUG_ON(skb_shinfo(skb)->frag_list); 1495 1496 skb_reset_mac_header(skb); 1497 skb->mac_len = skb->network_header - skb->mac_header; 1498 __skb_pull(skb, skb->mac_len); 1499 1500 if (WARN_ON(skb->ip_summed != CHECKSUM_PARTIAL)) { 1501 if (skb_header_cloned(skb) && 1502 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))) 1503 return ERR_PTR(err); 1504 } 1505 1506 rcu_read_lock(); 1507 list_for_each_entry_rcu(ptype, 1508 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) { 1509 if (ptype->type == type && !ptype->dev && ptype->gso_segment) { 1510 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) { 1511 err = ptype->gso_send_check(skb); 1512 segs = ERR_PTR(err); 1513 if (err || skb_gso_ok(skb, features)) 1514 break; 1515 __skb_push(skb, (skb->data - 1516 skb_network_header(skb))); 1517 } 1518 segs = ptype->gso_segment(skb, features); 1519 break; 1520 } 1521 } 1522 rcu_read_unlock(); 1523 1524 __skb_push(skb, skb->data - skb_mac_header(skb)); 1525 1526 return segs; 1527 } 1528 1529 EXPORT_SYMBOL(skb_gso_segment); 1530 1531 /* Take action when hardware reception checksum errors are detected. */ 1532 #ifdef CONFIG_BUG 1533 void netdev_rx_csum_fault(struct net_device *dev) 1534 { 1535 if (net_ratelimit()) { 1536 printk(KERN_ERR "%s: hw csum failure.\n", 1537 dev ? dev->name : "<unknown>"); 1538 dump_stack(); 1539 } 1540 } 1541 EXPORT_SYMBOL(netdev_rx_csum_fault); 1542 #endif 1543 1544 /* Actually, we should eliminate this check as soon as we know, that: 1545 * 1. IOMMU is present and allows to map all the memory. 1546 * 2. No high memory really exists on this machine. 1547 */ 1548 1549 static inline int illegal_highdma(struct net_device *dev, struct sk_buff *skb) 1550 { 1551 #ifdef CONFIG_HIGHMEM 1552 int i; 1553 1554 if (dev->features & NETIF_F_HIGHDMA) 1555 return 0; 1556 1557 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 1558 if (PageHighMem(skb_shinfo(skb)->frags[i].page)) 1559 return 1; 1560 1561 #endif 1562 return 0; 1563 } 1564 1565 struct dev_gso_cb { 1566 void (*destructor)(struct sk_buff *skb); 1567 }; 1568 1569 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb) 1570 1571 static void dev_gso_skb_destructor(struct sk_buff *skb) 1572 { 1573 struct dev_gso_cb *cb; 1574 1575 do { 1576 struct sk_buff *nskb = skb->next; 1577 1578 skb->next = nskb->next; 1579 nskb->next = NULL; 1580 kfree_skb(nskb); 1581 } while (skb->next); 1582 1583 cb = DEV_GSO_CB(skb); 1584 if (cb->destructor) 1585 cb->destructor(skb); 1586 } 1587 1588 /** 1589 * dev_gso_segment - Perform emulated hardware segmentation on skb. 1590 * @skb: buffer to segment 1591 * 1592 * This function segments the given skb and stores the list of segments 1593 * in skb->next. 1594 */ 1595 static int dev_gso_segment(struct sk_buff *skb) 1596 { 1597 struct net_device *dev = skb->dev; 1598 struct sk_buff *segs; 1599 int features = dev->features & ~(illegal_highdma(dev, skb) ? 1600 NETIF_F_SG : 0); 1601 1602 segs = skb_gso_segment(skb, features); 1603 1604 /* Verifying header integrity only. */ 1605 if (!segs) 1606 return 0; 1607 1608 if (IS_ERR(segs)) 1609 return PTR_ERR(segs); 1610 1611 skb->next = segs; 1612 DEV_GSO_CB(skb)->destructor = skb->destructor; 1613 skb->destructor = dev_gso_skb_destructor; 1614 1615 return 0; 1616 } 1617 1618 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev, 1619 struct netdev_queue *txq) 1620 { 1621 if (likely(!skb->next)) { 1622 if (!list_empty(&ptype_all)) 1623 dev_queue_xmit_nit(skb, dev); 1624 1625 if (netif_needs_gso(dev, skb)) { 1626 if (unlikely(dev_gso_segment(skb))) 1627 goto out_kfree_skb; 1628 if (skb->next) 1629 goto gso; 1630 } 1631 1632 return dev->hard_start_xmit(skb, dev); 1633 } 1634 1635 gso: 1636 do { 1637 struct sk_buff *nskb = skb->next; 1638 int rc; 1639 1640 skb->next = nskb->next; 1641 nskb->next = NULL; 1642 rc = dev->hard_start_xmit(nskb, dev); 1643 if (unlikely(rc)) { 1644 nskb->next = skb->next; 1645 skb->next = nskb; 1646 return rc; 1647 } 1648 if (unlikely(netif_tx_queue_stopped(txq) && skb->next)) 1649 return NETDEV_TX_BUSY; 1650 } while (skb->next); 1651 1652 skb->destructor = DEV_GSO_CB(skb)->destructor; 1653 1654 out_kfree_skb: 1655 kfree_skb(skb); 1656 return 0; 1657 } 1658 1659 static u32 simple_tx_hashrnd; 1660 static int simple_tx_hashrnd_initialized = 0; 1661 1662 static u16 simple_tx_hash(struct net_device *dev, struct sk_buff *skb) 1663 { 1664 u32 addr1, addr2, ports; 1665 u32 hash, ihl; 1666 u8 ip_proto; 1667 1668 if (unlikely(!simple_tx_hashrnd_initialized)) { 1669 get_random_bytes(&simple_tx_hashrnd, 4); 1670 simple_tx_hashrnd_initialized = 1; 1671 } 1672 1673 switch (skb->protocol) { 1674 case __constant_htons(ETH_P_IP): 1675 ip_proto = ip_hdr(skb)->protocol; 1676 addr1 = ip_hdr(skb)->saddr; 1677 addr2 = ip_hdr(skb)->daddr; 1678 ihl = ip_hdr(skb)->ihl; 1679 break; 1680 case __constant_htons(ETH_P_IPV6): 1681 ip_proto = ipv6_hdr(skb)->nexthdr; 1682 addr1 = ipv6_hdr(skb)->saddr.s6_addr32[3]; 1683 addr2 = ipv6_hdr(skb)->daddr.s6_addr32[3]; 1684 ihl = (40 >> 2); 1685 break; 1686 default: 1687 return 0; 1688 } 1689 1690 1691 switch (ip_proto) { 1692 case IPPROTO_TCP: 1693 case IPPROTO_UDP: 1694 case IPPROTO_DCCP: 1695 case IPPROTO_ESP: 1696 case IPPROTO_AH: 1697 case IPPROTO_SCTP: 1698 case IPPROTO_UDPLITE: 1699 ports = *((u32 *) (skb_network_header(skb) + (ihl * 4))); 1700 break; 1701 1702 default: 1703 ports = 0; 1704 break; 1705 } 1706 1707 hash = jhash_3words(addr1, addr2, ports, simple_tx_hashrnd); 1708 1709 return (u16) (((u64) hash * dev->real_num_tx_queues) >> 32); 1710 } 1711 1712 static struct netdev_queue *dev_pick_tx(struct net_device *dev, 1713 struct sk_buff *skb) 1714 { 1715 u16 queue_index = 0; 1716 1717 if (dev->select_queue) 1718 queue_index = dev->select_queue(dev, skb); 1719 else if (dev->real_num_tx_queues > 1) 1720 queue_index = simple_tx_hash(dev, skb); 1721 1722 skb_set_queue_mapping(skb, queue_index); 1723 return netdev_get_tx_queue(dev, queue_index); 1724 } 1725 1726 /** 1727 * dev_queue_xmit - transmit a buffer 1728 * @skb: buffer to transmit 1729 * 1730 * Queue a buffer for transmission to a network device. The caller must 1731 * have set the device and priority and built the buffer before calling 1732 * this function. The function can be called from an interrupt. 1733 * 1734 * A negative errno code is returned on a failure. A success does not 1735 * guarantee the frame will be transmitted as it may be dropped due 1736 * to congestion or traffic shaping. 1737 * 1738 * ----------------------------------------------------------------------------------- 1739 * I notice this method can also return errors from the queue disciplines, 1740 * including NET_XMIT_DROP, which is a positive value. So, errors can also 1741 * be positive. 1742 * 1743 * Regardless of the return value, the skb is consumed, so it is currently 1744 * difficult to retry a send to this method. (You can bump the ref count 1745 * before sending to hold a reference for retry if you are careful.) 1746 * 1747 * When calling this method, interrupts MUST be enabled. This is because 1748 * the BH enable code must have IRQs enabled so that it will not deadlock. 1749 * --BLG 1750 */ 1751 int dev_queue_xmit(struct sk_buff *skb) 1752 { 1753 struct net_device *dev = skb->dev; 1754 struct netdev_queue *txq; 1755 struct Qdisc *q; 1756 int rc = -ENOMEM; 1757 1758 /* GSO will handle the following emulations directly. */ 1759 if (netif_needs_gso(dev, skb)) 1760 goto gso; 1761 1762 if (skb_shinfo(skb)->frag_list && 1763 !(dev->features & NETIF_F_FRAGLIST) && 1764 __skb_linearize(skb)) 1765 goto out_kfree_skb; 1766 1767 /* Fragmented skb is linearized if device does not support SG, 1768 * or if at least one of fragments is in highmem and device 1769 * does not support DMA from it. 1770 */ 1771 if (skb_shinfo(skb)->nr_frags && 1772 (!(dev->features & NETIF_F_SG) || illegal_highdma(dev, skb)) && 1773 __skb_linearize(skb)) 1774 goto out_kfree_skb; 1775 1776 /* If packet is not checksummed and device does not support 1777 * checksumming for this protocol, complete checksumming here. 1778 */ 1779 if (skb->ip_summed == CHECKSUM_PARTIAL) { 1780 skb_set_transport_header(skb, skb->csum_start - 1781 skb_headroom(skb)); 1782 if (!dev_can_checksum(dev, skb) && skb_checksum_help(skb)) 1783 goto out_kfree_skb; 1784 } 1785 1786 gso: 1787 /* Disable soft irqs for various locks below. Also 1788 * stops preemption for RCU. 1789 */ 1790 rcu_read_lock_bh(); 1791 1792 txq = dev_pick_tx(dev, skb); 1793 q = rcu_dereference(txq->qdisc); 1794 1795 #ifdef CONFIG_NET_CLS_ACT 1796 skb->tc_verd = SET_TC_AT(skb->tc_verd,AT_EGRESS); 1797 #endif 1798 if (q->enqueue) { 1799 spinlock_t *root_lock = qdisc_lock(q); 1800 1801 spin_lock(root_lock); 1802 1803 rc = qdisc_enqueue_root(skb, q); 1804 qdisc_run(q); 1805 1806 spin_unlock(root_lock); 1807 1808 goto out; 1809 } 1810 1811 /* The device has no queue. Common case for software devices: 1812 loopback, all the sorts of tunnels... 1813 1814 Really, it is unlikely that netif_tx_lock protection is necessary 1815 here. (f.e. loopback and IP tunnels are clean ignoring statistics 1816 counters.) 1817 However, it is possible, that they rely on protection 1818 made by us here. 1819 1820 Check this and shot the lock. It is not prone from deadlocks. 1821 Either shot noqueue qdisc, it is even simpler 8) 1822 */ 1823 if (dev->flags & IFF_UP) { 1824 int cpu = smp_processor_id(); /* ok because BHs are off */ 1825 1826 if (txq->xmit_lock_owner != cpu) { 1827 1828 HARD_TX_LOCK(dev, txq, cpu); 1829 1830 if (!netif_tx_queue_stopped(txq)) { 1831 rc = 0; 1832 if (!dev_hard_start_xmit(skb, dev, txq)) { 1833 HARD_TX_UNLOCK(dev, txq); 1834 goto out; 1835 } 1836 } 1837 HARD_TX_UNLOCK(dev, txq); 1838 if (net_ratelimit()) 1839 printk(KERN_CRIT "Virtual device %s asks to " 1840 "queue packet!\n", dev->name); 1841 } else { 1842 /* Recursion is detected! It is possible, 1843 * unfortunately */ 1844 if (net_ratelimit()) 1845 printk(KERN_CRIT "Dead loop on virtual device " 1846 "%s, fix it urgently!\n", dev->name); 1847 } 1848 } 1849 1850 rc = -ENETDOWN; 1851 rcu_read_unlock_bh(); 1852 1853 out_kfree_skb: 1854 kfree_skb(skb); 1855 return rc; 1856 out: 1857 rcu_read_unlock_bh(); 1858 return rc; 1859 } 1860 1861 1862 /*======================================================================= 1863 Receiver routines 1864 =======================================================================*/ 1865 1866 int netdev_max_backlog __read_mostly = 1000; 1867 int netdev_budget __read_mostly = 300; 1868 int weight_p __read_mostly = 64; /* old backlog weight */ 1869 1870 DEFINE_PER_CPU(struct netif_rx_stats, netdev_rx_stat) = { 0, }; 1871 1872 1873 /** 1874 * netif_rx - post buffer to the network code 1875 * @skb: buffer to post 1876 * 1877 * This function receives a packet from a device driver and queues it for 1878 * the upper (protocol) levels to process. It always succeeds. The buffer 1879 * may be dropped during processing for congestion control or by the 1880 * protocol layers. 1881 * 1882 * return values: 1883 * NET_RX_SUCCESS (no congestion) 1884 * NET_RX_DROP (packet was dropped) 1885 * 1886 */ 1887 1888 int netif_rx(struct sk_buff *skb) 1889 { 1890 struct softnet_data *queue; 1891 unsigned long flags; 1892 1893 /* if netpoll wants it, pretend we never saw it */ 1894 if (netpoll_rx(skb)) 1895 return NET_RX_DROP; 1896 1897 if (!skb->tstamp.tv64) 1898 net_timestamp(skb); 1899 1900 /* 1901 * The code is rearranged so that the path is the most 1902 * short when CPU is congested, but is still operating. 1903 */ 1904 local_irq_save(flags); 1905 queue = &__get_cpu_var(softnet_data); 1906 1907 __get_cpu_var(netdev_rx_stat).total++; 1908 if (queue->input_pkt_queue.qlen <= netdev_max_backlog) { 1909 if (queue->input_pkt_queue.qlen) { 1910 enqueue: 1911 __skb_queue_tail(&queue->input_pkt_queue, skb); 1912 local_irq_restore(flags); 1913 return NET_RX_SUCCESS; 1914 } 1915 1916 napi_schedule(&queue->backlog); 1917 goto enqueue; 1918 } 1919 1920 __get_cpu_var(netdev_rx_stat).dropped++; 1921 local_irq_restore(flags); 1922 1923 kfree_skb(skb); 1924 return NET_RX_DROP; 1925 } 1926 1927 int netif_rx_ni(struct sk_buff *skb) 1928 { 1929 int err; 1930 1931 preempt_disable(); 1932 err = netif_rx(skb); 1933 if (local_softirq_pending()) 1934 do_softirq(); 1935 preempt_enable(); 1936 1937 return err; 1938 } 1939 1940 EXPORT_SYMBOL(netif_rx_ni); 1941 1942 static void net_tx_action(struct softirq_action *h) 1943 { 1944 struct softnet_data *sd = &__get_cpu_var(softnet_data); 1945 1946 if (sd->completion_queue) { 1947 struct sk_buff *clist; 1948 1949 local_irq_disable(); 1950 clist = sd->completion_queue; 1951 sd->completion_queue = NULL; 1952 local_irq_enable(); 1953 1954 while (clist) { 1955 struct sk_buff *skb = clist; 1956 clist = clist->next; 1957 1958 WARN_ON(atomic_read(&skb->users)); 1959 __kfree_skb(skb); 1960 } 1961 } 1962 1963 if (sd->output_queue) { 1964 struct Qdisc *head; 1965 1966 local_irq_disable(); 1967 head = sd->output_queue; 1968 sd->output_queue = NULL; 1969 local_irq_enable(); 1970 1971 while (head) { 1972 struct Qdisc *q = head; 1973 spinlock_t *root_lock; 1974 1975 head = head->next_sched; 1976 1977 smp_mb__before_clear_bit(); 1978 clear_bit(__QDISC_STATE_SCHED, &q->state); 1979 1980 root_lock = qdisc_lock(q); 1981 if (spin_trylock(root_lock)) { 1982 qdisc_run(q); 1983 spin_unlock(root_lock); 1984 } else { 1985 __netif_schedule(q); 1986 } 1987 } 1988 } 1989 } 1990 1991 static inline int deliver_skb(struct sk_buff *skb, 1992 struct packet_type *pt_prev, 1993 struct net_device *orig_dev) 1994 { 1995 atomic_inc(&skb->users); 1996 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 1997 } 1998 1999 #if defined(CONFIG_BRIDGE) || defined (CONFIG_BRIDGE_MODULE) 2000 /* These hooks defined here for ATM */ 2001 struct net_bridge; 2002 struct net_bridge_fdb_entry *(*br_fdb_get_hook)(struct net_bridge *br, 2003 unsigned char *addr); 2004 void (*br_fdb_put_hook)(struct net_bridge_fdb_entry *ent) __read_mostly; 2005 2006 /* 2007 * If bridge module is loaded call bridging hook. 2008 * returns NULL if packet was consumed. 2009 */ 2010 struct sk_buff *(*br_handle_frame_hook)(struct net_bridge_port *p, 2011 struct sk_buff *skb) __read_mostly; 2012 static inline struct sk_buff *handle_bridge(struct sk_buff *skb, 2013 struct packet_type **pt_prev, int *ret, 2014 struct net_device *orig_dev) 2015 { 2016 struct net_bridge_port *port; 2017 2018 if (skb->pkt_type == PACKET_LOOPBACK || 2019 (port = rcu_dereference(skb->dev->br_port)) == NULL) 2020 return skb; 2021 2022 if (*pt_prev) { 2023 *ret = deliver_skb(skb, *pt_prev, orig_dev); 2024 *pt_prev = NULL; 2025 } 2026 2027 return br_handle_frame_hook(port, skb); 2028 } 2029 #else 2030 #define handle_bridge(skb, pt_prev, ret, orig_dev) (skb) 2031 #endif 2032 2033 #if defined(CONFIG_MACVLAN) || defined(CONFIG_MACVLAN_MODULE) 2034 struct sk_buff *(*macvlan_handle_frame_hook)(struct sk_buff *skb) __read_mostly; 2035 EXPORT_SYMBOL_GPL(macvlan_handle_frame_hook); 2036 2037 static inline struct sk_buff *handle_macvlan(struct sk_buff *skb, 2038 struct packet_type **pt_prev, 2039 int *ret, 2040 struct net_device *orig_dev) 2041 { 2042 if (skb->dev->macvlan_port == NULL) 2043 return skb; 2044 2045 if (*pt_prev) { 2046 *ret = deliver_skb(skb, *pt_prev, orig_dev); 2047 *pt_prev = NULL; 2048 } 2049 return macvlan_handle_frame_hook(skb); 2050 } 2051 #else 2052 #define handle_macvlan(skb, pt_prev, ret, orig_dev) (skb) 2053 #endif 2054 2055 #ifdef CONFIG_NET_CLS_ACT 2056 /* TODO: Maybe we should just force sch_ingress to be compiled in 2057 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions 2058 * a compare and 2 stores extra right now if we dont have it on 2059 * but have CONFIG_NET_CLS_ACT 2060 * NOTE: This doesnt stop any functionality; if you dont have 2061 * the ingress scheduler, you just cant add policies on ingress. 2062 * 2063 */ 2064 static int ing_filter(struct sk_buff *skb) 2065 { 2066 struct net_device *dev = skb->dev; 2067 u32 ttl = G_TC_RTTL(skb->tc_verd); 2068 struct netdev_queue *rxq; 2069 int result = TC_ACT_OK; 2070 struct Qdisc *q; 2071 2072 if (MAX_RED_LOOP < ttl++) { 2073 printk(KERN_WARNING 2074 "Redir loop detected Dropping packet (%d->%d)\n", 2075 skb->iif, dev->ifindex); 2076 return TC_ACT_SHOT; 2077 } 2078 2079 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl); 2080 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS); 2081 2082 rxq = &dev->rx_queue; 2083 2084 q = rxq->qdisc; 2085 if (q != &noop_qdisc) { 2086 spin_lock(qdisc_lock(q)); 2087 result = qdisc_enqueue_root(skb, q); 2088 spin_unlock(qdisc_lock(q)); 2089 } 2090 2091 return result; 2092 } 2093 2094 static inline struct sk_buff *handle_ing(struct sk_buff *skb, 2095 struct packet_type **pt_prev, 2096 int *ret, struct net_device *orig_dev) 2097 { 2098 if (skb->dev->rx_queue.qdisc == &noop_qdisc) 2099 goto out; 2100 2101 if (*pt_prev) { 2102 *ret = deliver_skb(skb, *pt_prev, orig_dev); 2103 *pt_prev = NULL; 2104 } else { 2105 /* Huh? Why does turning on AF_PACKET affect this? */ 2106 skb->tc_verd = SET_TC_OK2MUNGE(skb->tc_verd); 2107 } 2108 2109 switch (ing_filter(skb)) { 2110 case TC_ACT_SHOT: 2111 case TC_ACT_STOLEN: 2112 kfree_skb(skb); 2113 return NULL; 2114 } 2115 2116 out: 2117 skb->tc_verd = 0; 2118 return skb; 2119 } 2120 #endif 2121 2122 /* 2123 * netif_nit_deliver - deliver received packets to network taps 2124 * @skb: buffer 2125 * 2126 * This function is used to deliver incoming packets to network 2127 * taps. It should be used when the normal netif_receive_skb path 2128 * is bypassed, for example because of VLAN acceleration. 2129 */ 2130 void netif_nit_deliver(struct sk_buff *skb) 2131 { 2132 struct packet_type *ptype; 2133 2134 if (list_empty(&ptype_all)) 2135 return; 2136 2137 skb_reset_network_header(skb); 2138 skb_reset_transport_header(skb); 2139 skb->mac_len = skb->network_header - skb->mac_header; 2140 2141 rcu_read_lock(); 2142 list_for_each_entry_rcu(ptype, &ptype_all, list) { 2143 if (!ptype->dev || ptype->dev == skb->dev) 2144 deliver_skb(skb, ptype, skb->dev); 2145 } 2146 rcu_read_unlock(); 2147 } 2148 2149 /** 2150 * netif_receive_skb - process receive buffer from network 2151 * @skb: buffer to process 2152 * 2153 * netif_receive_skb() is the main receive data processing function. 2154 * It always succeeds. The buffer may be dropped during processing 2155 * for congestion control or by the protocol layers. 2156 * 2157 * This function may only be called from softirq context and interrupts 2158 * should be enabled. 2159 * 2160 * Return values (usually ignored): 2161 * NET_RX_SUCCESS: no congestion 2162 * NET_RX_DROP: packet was dropped 2163 */ 2164 int netif_receive_skb(struct sk_buff *skb) 2165 { 2166 struct packet_type *ptype, *pt_prev; 2167 struct net_device *orig_dev; 2168 struct net_device *null_or_orig; 2169 int ret = NET_RX_DROP; 2170 __be16 type; 2171 2172 /* if we've gotten here through NAPI, check netpoll */ 2173 if (netpoll_receive_skb(skb)) 2174 return NET_RX_DROP; 2175 2176 if (!skb->tstamp.tv64) 2177 net_timestamp(skb); 2178 2179 if (!skb->iif) 2180 skb->iif = skb->dev->ifindex; 2181 2182 null_or_orig = NULL; 2183 orig_dev = skb->dev; 2184 if (orig_dev->master) { 2185 if (skb_bond_should_drop(skb)) 2186 null_or_orig = orig_dev; /* deliver only exact match */ 2187 else 2188 skb->dev = orig_dev->master; 2189 } 2190 2191 __get_cpu_var(netdev_rx_stat).total++; 2192 2193 skb_reset_network_header(skb); 2194 skb_reset_transport_header(skb); 2195 skb->mac_len = skb->network_header - skb->mac_header; 2196 2197 pt_prev = NULL; 2198 2199 rcu_read_lock(); 2200 2201 /* Don't receive packets in an exiting network namespace */ 2202 if (!net_alive(dev_net(skb->dev))) 2203 goto out; 2204 2205 #ifdef CONFIG_NET_CLS_ACT 2206 if (skb->tc_verd & TC_NCLS) { 2207 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd); 2208 goto ncls; 2209 } 2210 #endif 2211 2212 list_for_each_entry_rcu(ptype, &ptype_all, list) { 2213 if (ptype->dev == null_or_orig || ptype->dev == skb->dev || 2214 ptype->dev == orig_dev) { 2215 if (pt_prev) 2216 ret = deliver_skb(skb, pt_prev, orig_dev); 2217 pt_prev = ptype; 2218 } 2219 } 2220 2221 #ifdef CONFIG_NET_CLS_ACT 2222 skb = handle_ing(skb, &pt_prev, &ret, orig_dev); 2223 if (!skb) 2224 goto out; 2225 ncls: 2226 #endif 2227 2228 skb = handle_bridge(skb, &pt_prev, &ret, orig_dev); 2229 if (!skb) 2230 goto out; 2231 skb = handle_macvlan(skb, &pt_prev, &ret, orig_dev); 2232 if (!skb) 2233 goto out; 2234 2235 type = skb->protocol; 2236 list_for_each_entry_rcu(ptype, 2237 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) { 2238 if (ptype->type == type && 2239 (ptype->dev == null_or_orig || ptype->dev == skb->dev || 2240 ptype->dev == orig_dev)) { 2241 if (pt_prev) 2242 ret = deliver_skb(skb, pt_prev, orig_dev); 2243 pt_prev = ptype; 2244 } 2245 } 2246 2247 if (pt_prev) { 2248 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 2249 } else { 2250 kfree_skb(skb); 2251 /* Jamal, now you will not able to escape explaining 2252 * me how you were going to use this. :-) 2253 */ 2254 ret = NET_RX_DROP; 2255 } 2256 2257 out: 2258 rcu_read_unlock(); 2259 return ret; 2260 } 2261 2262 /* Network device is going away, flush any packets still pending */ 2263 static void flush_backlog(void *arg) 2264 { 2265 struct net_device *dev = arg; 2266 struct softnet_data *queue = &__get_cpu_var(softnet_data); 2267 struct sk_buff *skb, *tmp; 2268 2269 skb_queue_walk_safe(&queue->input_pkt_queue, skb, tmp) 2270 if (skb->dev == dev) { 2271 __skb_unlink(skb, &queue->input_pkt_queue); 2272 kfree_skb(skb); 2273 } 2274 } 2275 2276 static int process_backlog(struct napi_struct *napi, int quota) 2277 { 2278 int work = 0; 2279 struct softnet_data *queue = &__get_cpu_var(softnet_data); 2280 unsigned long start_time = jiffies; 2281 2282 napi->weight = weight_p; 2283 do { 2284 struct sk_buff *skb; 2285 2286 local_irq_disable(); 2287 skb = __skb_dequeue(&queue->input_pkt_queue); 2288 if (!skb) { 2289 __napi_complete(napi); 2290 local_irq_enable(); 2291 break; 2292 } 2293 local_irq_enable(); 2294 2295 netif_receive_skb(skb); 2296 } while (++work < quota && jiffies == start_time); 2297 2298 return work; 2299 } 2300 2301 /** 2302 * __napi_schedule - schedule for receive 2303 * @n: entry to schedule 2304 * 2305 * The entry's receive function will be scheduled to run 2306 */ 2307 void __napi_schedule(struct napi_struct *n) 2308 { 2309 unsigned long flags; 2310 2311 local_irq_save(flags); 2312 list_add_tail(&n->poll_list, &__get_cpu_var(softnet_data).poll_list); 2313 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 2314 local_irq_restore(flags); 2315 } 2316 EXPORT_SYMBOL(__napi_schedule); 2317 2318 2319 static void net_rx_action(struct softirq_action *h) 2320 { 2321 struct list_head *list = &__get_cpu_var(softnet_data).poll_list; 2322 unsigned long start_time = jiffies; 2323 int budget = netdev_budget; 2324 void *have; 2325 2326 local_irq_disable(); 2327 2328 while (!list_empty(list)) { 2329 struct napi_struct *n; 2330 int work, weight; 2331 2332 /* If softirq window is exhuasted then punt. 2333 * 2334 * Note that this is a slight policy change from the 2335 * previous NAPI code, which would allow up to 2 2336 * jiffies to pass before breaking out. The test 2337 * used to be "jiffies - start_time > 1". 2338 */ 2339 if (unlikely(budget <= 0 || jiffies != start_time)) 2340 goto softnet_break; 2341 2342 local_irq_enable(); 2343 2344 /* Even though interrupts have been re-enabled, this 2345 * access is safe because interrupts can only add new 2346 * entries to the tail of this list, and only ->poll() 2347 * calls can remove this head entry from the list. 2348 */ 2349 n = list_entry(list->next, struct napi_struct, poll_list); 2350 2351 have = netpoll_poll_lock(n); 2352 2353 weight = n->weight; 2354 2355 /* This NAPI_STATE_SCHED test is for avoiding a race 2356 * with netpoll's poll_napi(). Only the entity which 2357 * obtains the lock and sees NAPI_STATE_SCHED set will 2358 * actually make the ->poll() call. Therefore we avoid 2359 * accidently calling ->poll() when NAPI is not scheduled. 2360 */ 2361 work = 0; 2362 if (test_bit(NAPI_STATE_SCHED, &n->state)) 2363 work = n->poll(n, weight); 2364 2365 WARN_ON_ONCE(work > weight); 2366 2367 budget -= work; 2368 2369 local_irq_disable(); 2370 2371 /* Drivers must not modify the NAPI state if they 2372 * consume the entire weight. In such cases this code 2373 * still "owns" the NAPI instance and therefore can 2374 * move the instance around on the list at-will. 2375 */ 2376 if (unlikely(work == weight)) { 2377 if (unlikely(napi_disable_pending(n))) 2378 __napi_complete(n); 2379 else 2380 list_move_tail(&n->poll_list, list); 2381 } 2382 2383 netpoll_poll_unlock(have); 2384 } 2385 out: 2386 local_irq_enable(); 2387 2388 #ifdef CONFIG_NET_DMA 2389 /* 2390 * There may not be any more sk_buffs coming right now, so push 2391 * any pending DMA copies to hardware 2392 */ 2393 if (!cpus_empty(net_dma.channel_mask)) { 2394 int chan_idx; 2395 for_each_cpu_mask_nr(chan_idx, net_dma.channel_mask) { 2396 struct dma_chan *chan = net_dma.channels[chan_idx]; 2397 if (chan) 2398 dma_async_memcpy_issue_pending(chan); 2399 } 2400 } 2401 #endif 2402 2403 return; 2404 2405 softnet_break: 2406 __get_cpu_var(netdev_rx_stat).time_squeeze++; 2407 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 2408 goto out; 2409 } 2410 2411 static gifconf_func_t * gifconf_list [NPROTO]; 2412 2413 /** 2414 * register_gifconf - register a SIOCGIF handler 2415 * @family: Address family 2416 * @gifconf: Function handler 2417 * 2418 * Register protocol dependent address dumping routines. The handler 2419 * that is passed must not be freed or reused until it has been replaced 2420 * by another handler. 2421 */ 2422 int register_gifconf(unsigned int family, gifconf_func_t * gifconf) 2423 { 2424 if (family >= NPROTO) 2425 return -EINVAL; 2426 gifconf_list[family] = gifconf; 2427 return 0; 2428 } 2429 2430 2431 /* 2432 * Map an interface index to its name (SIOCGIFNAME) 2433 */ 2434 2435 /* 2436 * We need this ioctl for efficient implementation of the 2437 * if_indextoname() function required by the IPv6 API. Without 2438 * it, we would have to search all the interfaces to find a 2439 * match. --pb 2440 */ 2441 2442 static int dev_ifname(struct net *net, struct ifreq __user *arg) 2443 { 2444 struct net_device *dev; 2445 struct ifreq ifr; 2446 2447 /* 2448 * Fetch the caller's info block. 2449 */ 2450 2451 if (copy_from_user(&ifr, arg, sizeof(struct ifreq))) 2452 return -EFAULT; 2453 2454 read_lock(&dev_base_lock); 2455 dev = __dev_get_by_index(net, ifr.ifr_ifindex); 2456 if (!dev) { 2457 read_unlock(&dev_base_lock); 2458 return -ENODEV; 2459 } 2460 2461 strcpy(ifr.ifr_name, dev->name); 2462 read_unlock(&dev_base_lock); 2463 2464 if (copy_to_user(arg, &ifr, sizeof(struct ifreq))) 2465 return -EFAULT; 2466 return 0; 2467 } 2468 2469 /* 2470 * Perform a SIOCGIFCONF call. This structure will change 2471 * size eventually, and there is nothing I can do about it. 2472 * Thus we will need a 'compatibility mode'. 2473 */ 2474 2475 static int dev_ifconf(struct net *net, char __user *arg) 2476 { 2477 struct ifconf ifc; 2478 struct net_device *dev; 2479 char __user *pos; 2480 int len; 2481 int total; 2482 int i; 2483 2484 /* 2485 * Fetch the caller's info block. 2486 */ 2487 2488 if (copy_from_user(&ifc, arg, sizeof(struct ifconf))) 2489 return -EFAULT; 2490 2491 pos = ifc.ifc_buf; 2492 len = ifc.ifc_len; 2493 2494 /* 2495 * Loop over the interfaces, and write an info block for each. 2496 */ 2497 2498 total = 0; 2499 for_each_netdev(net, dev) { 2500 for (i = 0; i < NPROTO; i++) { 2501 if (gifconf_list[i]) { 2502 int done; 2503 if (!pos) 2504 done = gifconf_list[i](dev, NULL, 0); 2505 else 2506 done = gifconf_list[i](dev, pos + total, 2507 len - total); 2508 if (done < 0) 2509 return -EFAULT; 2510 total += done; 2511 } 2512 } 2513 } 2514 2515 /* 2516 * All done. Write the updated control block back to the caller. 2517 */ 2518 ifc.ifc_len = total; 2519 2520 /* 2521 * Both BSD and Solaris return 0 here, so we do too. 2522 */ 2523 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0; 2524 } 2525 2526 #ifdef CONFIG_PROC_FS 2527 /* 2528 * This is invoked by the /proc filesystem handler to display a device 2529 * in detail. 2530 */ 2531 void *dev_seq_start(struct seq_file *seq, loff_t *pos) 2532 __acquires(dev_base_lock) 2533 { 2534 struct net *net = seq_file_net(seq); 2535 loff_t off; 2536 struct net_device *dev; 2537 2538 read_lock(&dev_base_lock); 2539 if (!*pos) 2540 return SEQ_START_TOKEN; 2541 2542 off = 1; 2543 for_each_netdev(net, dev) 2544 if (off++ == *pos) 2545 return dev; 2546 2547 return NULL; 2548 } 2549 2550 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2551 { 2552 struct net *net = seq_file_net(seq); 2553 ++*pos; 2554 return v == SEQ_START_TOKEN ? 2555 first_net_device(net) : next_net_device((struct net_device *)v); 2556 } 2557 2558 void dev_seq_stop(struct seq_file *seq, void *v) 2559 __releases(dev_base_lock) 2560 { 2561 read_unlock(&dev_base_lock); 2562 } 2563 2564 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev) 2565 { 2566 struct net_device_stats *stats = dev->get_stats(dev); 2567 2568 seq_printf(seq, "%6s:%8lu %7lu %4lu %4lu %4lu %5lu %10lu %9lu " 2569 "%8lu %7lu %4lu %4lu %4lu %5lu %7lu %10lu\n", 2570 dev->name, stats->rx_bytes, stats->rx_packets, 2571 stats->rx_errors, 2572 stats->rx_dropped + stats->rx_missed_errors, 2573 stats->rx_fifo_errors, 2574 stats->rx_length_errors + stats->rx_over_errors + 2575 stats->rx_crc_errors + stats->rx_frame_errors, 2576 stats->rx_compressed, stats->multicast, 2577 stats->tx_bytes, stats->tx_packets, 2578 stats->tx_errors, stats->tx_dropped, 2579 stats->tx_fifo_errors, stats->collisions, 2580 stats->tx_carrier_errors + 2581 stats->tx_aborted_errors + 2582 stats->tx_window_errors + 2583 stats->tx_heartbeat_errors, 2584 stats->tx_compressed); 2585 } 2586 2587 /* 2588 * Called from the PROCfs module. This now uses the new arbitrary sized 2589 * /proc/net interface to create /proc/net/dev 2590 */ 2591 static int dev_seq_show(struct seq_file *seq, void *v) 2592 { 2593 if (v == SEQ_START_TOKEN) 2594 seq_puts(seq, "Inter-| Receive " 2595 " | Transmit\n" 2596 " face |bytes packets errs drop fifo frame " 2597 "compressed multicast|bytes packets errs " 2598 "drop fifo colls carrier compressed\n"); 2599 else 2600 dev_seq_printf_stats(seq, v); 2601 return 0; 2602 } 2603 2604 static struct netif_rx_stats *softnet_get_online(loff_t *pos) 2605 { 2606 struct netif_rx_stats *rc = NULL; 2607 2608 while (*pos < nr_cpu_ids) 2609 if (cpu_online(*pos)) { 2610 rc = &per_cpu(netdev_rx_stat, *pos); 2611 break; 2612 } else 2613 ++*pos; 2614 return rc; 2615 } 2616 2617 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos) 2618 { 2619 return softnet_get_online(pos); 2620 } 2621 2622 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2623 { 2624 ++*pos; 2625 return softnet_get_online(pos); 2626 } 2627 2628 static void softnet_seq_stop(struct seq_file *seq, void *v) 2629 { 2630 } 2631 2632 static int softnet_seq_show(struct seq_file *seq, void *v) 2633 { 2634 struct netif_rx_stats *s = v; 2635 2636 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x\n", 2637 s->total, s->dropped, s->time_squeeze, 0, 2638 0, 0, 0, 0, /* was fastroute */ 2639 s->cpu_collision ); 2640 return 0; 2641 } 2642 2643 static const struct seq_operations dev_seq_ops = { 2644 .start = dev_seq_start, 2645 .next = dev_seq_next, 2646 .stop = dev_seq_stop, 2647 .show = dev_seq_show, 2648 }; 2649 2650 static int dev_seq_open(struct inode *inode, struct file *file) 2651 { 2652 return seq_open_net(inode, file, &dev_seq_ops, 2653 sizeof(struct seq_net_private)); 2654 } 2655 2656 static const struct file_operations dev_seq_fops = { 2657 .owner = THIS_MODULE, 2658 .open = dev_seq_open, 2659 .read = seq_read, 2660 .llseek = seq_lseek, 2661 .release = seq_release_net, 2662 }; 2663 2664 static const struct seq_operations softnet_seq_ops = { 2665 .start = softnet_seq_start, 2666 .next = softnet_seq_next, 2667 .stop = softnet_seq_stop, 2668 .show = softnet_seq_show, 2669 }; 2670 2671 static int softnet_seq_open(struct inode *inode, struct file *file) 2672 { 2673 return seq_open(file, &softnet_seq_ops); 2674 } 2675 2676 static const struct file_operations softnet_seq_fops = { 2677 .owner = THIS_MODULE, 2678 .open = softnet_seq_open, 2679 .read = seq_read, 2680 .llseek = seq_lseek, 2681 .release = seq_release, 2682 }; 2683 2684 static void *ptype_get_idx(loff_t pos) 2685 { 2686 struct packet_type *pt = NULL; 2687 loff_t i = 0; 2688 int t; 2689 2690 list_for_each_entry_rcu(pt, &ptype_all, list) { 2691 if (i == pos) 2692 return pt; 2693 ++i; 2694 } 2695 2696 for (t = 0; t < PTYPE_HASH_SIZE; t++) { 2697 list_for_each_entry_rcu(pt, &ptype_base[t], list) { 2698 if (i == pos) 2699 return pt; 2700 ++i; 2701 } 2702 } 2703 return NULL; 2704 } 2705 2706 static void *ptype_seq_start(struct seq_file *seq, loff_t *pos) 2707 __acquires(RCU) 2708 { 2709 rcu_read_lock(); 2710 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN; 2711 } 2712 2713 static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2714 { 2715 struct packet_type *pt; 2716 struct list_head *nxt; 2717 int hash; 2718 2719 ++*pos; 2720 if (v == SEQ_START_TOKEN) 2721 return ptype_get_idx(0); 2722 2723 pt = v; 2724 nxt = pt->list.next; 2725 if (pt->type == htons(ETH_P_ALL)) { 2726 if (nxt != &ptype_all) 2727 goto found; 2728 hash = 0; 2729 nxt = ptype_base[0].next; 2730 } else 2731 hash = ntohs(pt->type) & PTYPE_HASH_MASK; 2732 2733 while (nxt == &ptype_base[hash]) { 2734 if (++hash >= PTYPE_HASH_SIZE) 2735 return NULL; 2736 nxt = ptype_base[hash].next; 2737 } 2738 found: 2739 return list_entry(nxt, struct packet_type, list); 2740 } 2741 2742 static void ptype_seq_stop(struct seq_file *seq, void *v) 2743 __releases(RCU) 2744 { 2745 rcu_read_unlock(); 2746 } 2747 2748 static void ptype_seq_decode(struct seq_file *seq, void *sym) 2749 { 2750 #ifdef CONFIG_KALLSYMS 2751 unsigned long offset = 0, symsize; 2752 const char *symname; 2753 char *modname; 2754 char namebuf[128]; 2755 2756 symname = kallsyms_lookup((unsigned long)sym, &symsize, &offset, 2757 &modname, namebuf); 2758 2759 if (symname) { 2760 char *delim = ":"; 2761 2762 if (!modname) 2763 modname = delim = ""; 2764 seq_printf(seq, "%s%s%s%s+0x%lx", delim, modname, delim, 2765 symname, offset); 2766 return; 2767 } 2768 #endif 2769 2770 seq_printf(seq, "[%p]", sym); 2771 } 2772 2773 static int ptype_seq_show(struct seq_file *seq, void *v) 2774 { 2775 struct packet_type *pt = v; 2776 2777 if (v == SEQ_START_TOKEN) 2778 seq_puts(seq, "Type Device Function\n"); 2779 else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) { 2780 if (pt->type == htons(ETH_P_ALL)) 2781 seq_puts(seq, "ALL "); 2782 else 2783 seq_printf(seq, "%04x", ntohs(pt->type)); 2784 2785 seq_printf(seq, " %-8s ", 2786 pt->dev ? pt->dev->name : ""); 2787 ptype_seq_decode(seq, pt->func); 2788 seq_putc(seq, '\n'); 2789 } 2790 2791 return 0; 2792 } 2793 2794 static const struct seq_operations ptype_seq_ops = { 2795 .start = ptype_seq_start, 2796 .next = ptype_seq_next, 2797 .stop = ptype_seq_stop, 2798 .show = ptype_seq_show, 2799 }; 2800 2801 static int ptype_seq_open(struct inode *inode, struct file *file) 2802 { 2803 return seq_open_net(inode, file, &ptype_seq_ops, 2804 sizeof(struct seq_net_private)); 2805 } 2806 2807 static const struct file_operations ptype_seq_fops = { 2808 .owner = THIS_MODULE, 2809 .open = ptype_seq_open, 2810 .read = seq_read, 2811 .llseek = seq_lseek, 2812 .release = seq_release_net, 2813 }; 2814 2815 2816 static int __net_init dev_proc_net_init(struct net *net) 2817 { 2818 int rc = -ENOMEM; 2819 2820 if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops)) 2821 goto out; 2822 if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops)) 2823 goto out_dev; 2824 if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops)) 2825 goto out_softnet; 2826 2827 if (wext_proc_init(net)) 2828 goto out_ptype; 2829 rc = 0; 2830 out: 2831 return rc; 2832 out_ptype: 2833 proc_net_remove(net, "ptype"); 2834 out_softnet: 2835 proc_net_remove(net, "softnet_stat"); 2836 out_dev: 2837 proc_net_remove(net, "dev"); 2838 goto out; 2839 } 2840 2841 static void __net_exit dev_proc_net_exit(struct net *net) 2842 { 2843 wext_proc_exit(net); 2844 2845 proc_net_remove(net, "ptype"); 2846 proc_net_remove(net, "softnet_stat"); 2847 proc_net_remove(net, "dev"); 2848 } 2849 2850 static struct pernet_operations __net_initdata dev_proc_ops = { 2851 .init = dev_proc_net_init, 2852 .exit = dev_proc_net_exit, 2853 }; 2854 2855 static int __init dev_proc_init(void) 2856 { 2857 return register_pernet_subsys(&dev_proc_ops); 2858 } 2859 #else 2860 #define dev_proc_init() 0 2861 #endif /* CONFIG_PROC_FS */ 2862 2863 2864 /** 2865 * netdev_set_master - set up master/slave pair 2866 * @slave: slave device 2867 * @master: new master device 2868 * 2869 * Changes the master device of the slave. Pass %NULL to break the 2870 * bonding. The caller must hold the RTNL semaphore. On a failure 2871 * a negative errno code is returned. On success the reference counts 2872 * are adjusted, %RTM_NEWLINK is sent to the routing socket and the 2873 * function returns zero. 2874 */ 2875 int netdev_set_master(struct net_device *slave, struct net_device *master) 2876 { 2877 struct net_device *old = slave->master; 2878 2879 ASSERT_RTNL(); 2880 2881 if (master) { 2882 if (old) 2883 return -EBUSY; 2884 dev_hold(master); 2885 } 2886 2887 slave->master = master; 2888 2889 synchronize_net(); 2890 2891 if (old) 2892 dev_put(old); 2893 2894 if (master) 2895 slave->flags |= IFF_SLAVE; 2896 else 2897 slave->flags &= ~IFF_SLAVE; 2898 2899 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE); 2900 return 0; 2901 } 2902 2903 static int __dev_set_promiscuity(struct net_device *dev, int inc) 2904 { 2905 unsigned short old_flags = dev->flags; 2906 2907 ASSERT_RTNL(); 2908 2909 dev->flags |= IFF_PROMISC; 2910 dev->promiscuity += inc; 2911 if (dev->promiscuity == 0) { 2912 /* 2913 * Avoid overflow. 2914 * If inc causes overflow, untouch promisc and return error. 2915 */ 2916 if (inc < 0) 2917 dev->flags &= ~IFF_PROMISC; 2918 else { 2919 dev->promiscuity -= inc; 2920 printk(KERN_WARNING "%s: promiscuity touches roof, " 2921 "set promiscuity failed, promiscuity feature " 2922 "of device might be broken.\n", dev->name); 2923 return -EOVERFLOW; 2924 } 2925 } 2926 if (dev->flags != old_flags) { 2927 printk(KERN_INFO "device %s %s promiscuous mode\n", 2928 dev->name, (dev->flags & IFF_PROMISC) ? "entered" : 2929 "left"); 2930 if (audit_enabled) 2931 audit_log(current->audit_context, GFP_ATOMIC, 2932 AUDIT_ANOM_PROMISCUOUS, 2933 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u", 2934 dev->name, (dev->flags & IFF_PROMISC), 2935 (old_flags & IFF_PROMISC), 2936 audit_get_loginuid(current), 2937 current->uid, current->gid, 2938 audit_get_sessionid(current)); 2939 2940 if (dev->change_rx_flags) 2941 dev->change_rx_flags(dev, IFF_PROMISC); 2942 } 2943 return 0; 2944 } 2945 2946 /** 2947 * dev_set_promiscuity - update promiscuity count on a device 2948 * @dev: device 2949 * @inc: modifier 2950 * 2951 * Add or remove promiscuity from a device. While the count in the device 2952 * remains above zero the interface remains promiscuous. Once it hits zero 2953 * the device reverts back to normal filtering operation. A negative inc 2954 * value is used to drop promiscuity on the device. 2955 * Return 0 if successful or a negative errno code on error. 2956 */ 2957 int dev_set_promiscuity(struct net_device *dev, int inc) 2958 { 2959 unsigned short old_flags = dev->flags; 2960 int err; 2961 2962 err = __dev_set_promiscuity(dev, inc); 2963 if (err < 0) 2964 return err; 2965 if (dev->flags != old_flags) 2966 dev_set_rx_mode(dev); 2967 return err; 2968 } 2969 2970 /** 2971 * dev_set_allmulti - update allmulti count on a device 2972 * @dev: device 2973 * @inc: modifier 2974 * 2975 * Add or remove reception of all multicast frames to a device. While the 2976 * count in the device remains above zero the interface remains listening 2977 * to all interfaces. Once it hits zero the device reverts back to normal 2978 * filtering operation. A negative @inc value is used to drop the counter 2979 * when releasing a resource needing all multicasts. 2980 * Return 0 if successful or a negative errno code on error. 2981 */ 2982 2983 int dev_set_allmulti(struct net_device *dev, int inc) 2984 { 2985 unsigned short old_flags = dev->flags; 2986 2987 ASSERT_RTNL(); 2988 2989 dev->flags |= IFF_ALLMULTI; 2990 dev->allmulti += inc; 2991 if (dev->allmulti == 0) { 2992 /* 2993 * Avoid overflow. 2994 * If inc causes overflow, untouch allmulti and return error. 2995 */ 2996 if (inc < 0) 2997 dev->flags &= ~IFF_ALLMULTI; 2998 else { 2999 dev->allmulti -= inc; 3000 printk(KERN_WARNING "%s: allmulti touches roof, " 3001 "set allmulti failed, allmulti feature of " 3002 "device might be broken.\n", dev->name); 3003 return -EOVERFLOW; 3004 } 3005 } 3006 if (dev->flags ^ old_flags) { 3007 if (dev->change_rx_flags) 3008 dev->change_rx_flags(dev, IFF_ALLMULTI); 3009 dev_set_rx_mode(dev); 3010 } 3011 return 0; 3012 } 3013 3014 /* 3015 * Upload unicast and multicast address lists to device and 3016 * configure RX filtering. When the device doesn't support unicast 3017 * filtering it is put in promiscuous mode while unicast addresses 3018 * are present. 3019 */ 3020 void __dev_set_rx_mode(struct net_device *dev) 3021 { 3022 /* dev_open will call this function so the list will stay sane. */ 3023 if (!(dev->flags&IFF_UP)) 3024 return; 3025 3026 if (!netif_device_present(dev)) 3027 return; 3028 3029 if (dev->set_rx_mode) 3030 dev->set_rx_mode(dev); 3031 else { 3032 /* Unicast addresses changes may only happen under the rtnl, 3033 * therefore calling __dev_set_promiscuity here is safe. 3034 */ 3035 if (dev->uc_count > 0 && !dev->uc_promisc) { 3036 __dev_set_promiscuity(dev, 1); 3037 dev->uc_promisc = 1; 3038 } else if (dev->uc_count == 0 && dev->uc_promisc) { 3039 __dev_set_promiscuity(dev, -1); 3040 dev->uc_promisc = 0; 3041 } 3042 3043 if (dev->set_multicast_list) 3044 dev->set_multicast_list(dev); 3045 } 3046 } 3047 3048 void dev_set_rx_mode(struct net_device *dev) 3049 { 3050 netif_addr_lock_bh(dev); 3051 __dev_set_rx_mode(dev); 3052 netif_addr_unlock_bh(dev); 3053 } 3054 3055 int __dev_addr_delete(struct dev_addr_list **list, int *count, 3056 void *addr, int alen, int glbl) 3057 { 3058 struct dev_addr_list *da; 3059 3060 for (; (da = *list) != NULL; list = &da->next) { 3061 if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 && 3062 alen == da->da_addrlen) { 3063 if (glbl) { 3064 int old_glbl = da->da_gusers; 3065 da->da_gusers = 0; 3066 if (old_glbl == 0) 3067 break; 3068 } 3069 if (--da->da_users) 3070 return 0; 3071 3072 *list = da->next; 3073 kfree(da); 3074 (*count)--; 3075 return 0; 3076 } 3077 } 3078 return -ENOENT; 3079 } 3080 3081 int __dev_addr_add(struct dev_addr_list **list, int *count, 3082 void *addr, int alen, int glbl) 3083 { 3084 struct dev_addr_list *da; 3085 3086 for (da = *list; da != NULL; da = da->next) { 3087 if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 && 3088 da->da_addrlen == alen) { 3089 if (glbl) { 3090 int old_glbl = da->da_gusers; 3091 da->da_gusers = 1; 3092 if (old_glbl) 3093 return 0; 3094 } 3095 da->da_users++; 3096 return 0; 3097 } 3098 } 3099 3100 da = kzalloc(sizeof(*da), GFP_ATOMIC); 3101 if (da == NULL) 3102 return -ENOMEM; 3103 memcpy(da->da_addr, addr, alen); 3104 da->da_addrlen = alen; 3105 da->da_users = 1; 3106 da->da_gusers = glbl ? 1 : 0; 3107 da->next = *list; 3108 *list = da; 3109 (*count)++; 3110 return 0; 3111 } 3112 3113 /** 3114 * dev_unicast_delete - Release secondary unicast address. 3115 * @dev: device 3116 * @addr: address to delete 3117 * @alen: length of @addr 3118 * 3119 * Release reference to a secondary unicast address and remove it 3120 * from the device if the reference count drops to zero. 3121 * 3122 * The caller must hold the rtnl_mutex. 3123 */ 3124 int dev_unicast_delete(struct net_device *dev, void *addr, int alen) 3125 { 3126 int err; 3127 3128 ASSERT_RTNL(); 3129 3130 netif_addr_lock_bh(dev); 3131 err = __dev_addr_delete(&dev->uc_list, &dev->uc_count, addr, alen, 0); 3132 if (!err) 3133 __dev_set_rx_mode(dev); 3134 netif_addr_unlock_bh(dev); 3135 return err; 3136 } 3137 EXPORT_SYMBOL(dev_unicast_delete); 3138 3139 /** 3140 * dev_unicast_add - add a secondary unicast address 3141 * @dev: device 3142 * @addr: address to add 3143 * @alen: length of @addr 3144 * 3145 * Add a secondary unicast address to the device or increase 3146 * the reference count if it already exists. 3147 * 3148 * The caller must hold the rtnl_mutex. 3149 */ 3150 int dev_unicast_add(struct net_device *dev, void *addr, int alen) 3151 { 3152 int err; 3153 3154 ASSERT_RTNL(); 3155 3156 netif_addr_lock_bh(dev); 3157 err = __dev_addr_add(&dev->uc_list, &dev->uc_count, addr, alen, 0); 3158 if (!err) 3159 __dev_set_rx_mode(dev); 3160 netif_addr_unlock_bh(dev); 3161 return err; 3162 } 3163 EXPORT_SYMBOL(dev_unicast_add); 3164 3165 int __dev_addr_sync(struct dev_addr_list **to, int *to_count, 3166 struct dev_addr_list **from, int *from_count) 3167 { 3168 struct dev_addr_list *da, *next; 3169 int err = 0; 3170 3171 da = *from; 3172 while (da != NULL) { 3173 next = da->next; 3174 if (!da->da_synced) { 3175 err = __dev_addr_add(to, to_count, 3176 da->da_addr, da->da_addrlen, 0); 3177 if (err < 0) 3178 break; 3179 da->da_synced = 1; 3180 da->da_users++; 3181 } else if (da->da_users == 1) { 3182 __dev_addr_delete(to, to_count, 3183 da->da_addr, da->da_addrlen, 0); 3184 __dev_addr_delete(from, from_count, 3185 da->da_addr, da->da_addrlen, 0); 3186 } 3187 da = next; 3188 } 3189 return err; 3190 } 3191 3192 void __dev_addr_unsync(struct dev_addr_list **to, int *to_count, 3193 struct dev_addr_list **from, int *from_count) 3194 { 3195 struct dev_addr_list *da, *next; 3196 3197 da = *from; 3198 while (da != NULL) { 3199 next = da->next; 3200 if (da->da_synced) { 3201 __dev_addr_delete(to, to_count, 3202 da->da_addr, da->da_addrlen, 0); 3203 da->da_synced = 0; 3204 __dev_addr_delete(from, from_count, 3205 da->da_addr, da->da_addrlen, 0); 3206 } 3207 da = next; 3208 } 3209 } 3210 3211 /** 3212 * dev_unicast_sync - Synchronize device's unicast list to another device 3213 * @to: destination device 3214 * @from: source device 3215 * 3216 * Add newly added addresses to the destination device and release 3217 * addresses that have no users left. The source device must be 3218 * locked by netif_tx_lock_bh. 3219 * 3220 * This function is intended to be called from the dev->set_rx_mode 3221 * function of layered software devices. 3222 */ 3223 int dev_unicast_sync(struct net_device *to, struct net_device *from) 3224 { 3225 int err = 0; 3226 3227 netif_addr_lock_bh(to); 3228 err = __dev_addr_sync(&to->uc_list, &to->uc_count, 3229 &from->uc_list, &from->uc_count); 3230 if (!err) 3231 __dev_set_rx_mode(to); 3232 netif_addr_unlock_bh(to); 3233 return err; 3234 } 3235 EXPORT_SYMBOL(dev_unicast_sync); 3236 3237 /** 3238 * dev_unicast_unsync - Remove synchronized addresses from the destination device 3239 * @to: destination device 3240 * @from: source device 3241 * 3242 * Remove all addresses that were added to the destination device by 3243 * dev_unicast_sync(). This function is intended to be called from the 3244 * dev->stop function of layered software devices. 3245 */ 3246 void dev_unicast_unsync(struct net_device *to, struct net_device *from) 3247 { 3248 netif_addr_lock_bh(from); 3249 netif_addr_lock(to); 3250 3251 __dev_addr_unsync(&to->uc_list, &to->uc_count, 3252 &from->uc_list, &from->uc_count); 3253 __dev_set_rx_mode(to); 3254 3255 netif_addr_unlock(to); 3256 netif_addr_unlock_bh(from); 3257 } 3258 EXPORT_SYMBOL(dev_unicast_unsync); 3259 3260 static void __dev_addr_discard(struct dev_addr_list **list) 3261 { 3262 struct dev_addr_list *tmp; 3263 3264 while (*list != NULL) { 3265 tmp = *list; 3266 *list = tmp->next; 3267 if (tmp->da_users > tmp->da_gusers) 3268 printk("__dev_addr_discard: address leakage! " 3269 "da_users=%d\n", tmp->da_users); 3270 kfree(tmp); 3271 } 3272 } 3273 3274 static void dev_addr_discard(struct net_device *dev) 3275 { 3276 netif_addr_lock_bh(dev); 3277 3278 __dev_addr_discard(&dev->uc_list); 3279 dev->uc_count = 0; 3280 3281 __dev_addr_discard(&dev->mc_list); 3282 dev->mc_count = 0; 3283 3284 netif_addr_unlock_bh(dev); 3285 } 3286 3287 unsigned dev_get_flags(const struct net_device *dev) 3288 { 3289 unsigned flags; 3290 3291 flags = (dev->flags & ~(IFF_PROMISC | 3292 IFF_ALLMULTI | 3293 IFF_RUNNING | 3294 IFF_LOWER_UP | 3295 IFF_DORMANT)) | 3296 (dev->gflags & (IFF_PROMISC | 3297 IFF_ALLMULTI)); 3298 3299 if (netif_running(dev)) { 3300 if (netif_oper_up(dev)) 3301 flags |= IFF_RUNNING; 3302 if (netif_carrier_ok(dev)) 3303 flags |= IFF_LOWER_UP; 3304 if (netif_dormant(dev)) 3305 flags |= IFF_DORMANT; 3306 } 3307 3308 return flags; 3309 } 3310 3311 int dev_change_flags(struct net_device *dev, unsigned flags) 3312 { 3313 int ret, changes; 3314 int old_flags = dev->flags; 3315 3316 ASSERT_RTNL(); 3317 3318 /* 3319 * Set the flags on our device. 3320 */ 3321 3322 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP | 3323 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL | 3324 IFF_AUTOMEDIA)) | 3325 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC | 3326 IFF_ALLMULTI)); 3327 3328 /* 3329 * Load in the correct multicast list now the flags have changed. 3330 */ 3331 3332 if (dev->change_rx_flags && (old_flags ^ flags) & IFF_MULTICAST) 3333 dev->change_rx_flags(dev, IFF_MULTICAST); 3334 3335 dev_set_rx_mode(dev); 3336 3337 /* 3338 * Have we downed the interface. We handle IFF_UP ourselves 3339 * according to user attempts to set it, rather than blindly 3340 * setting it. 3341 */ 3342 3343 ret = 0; 3344 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */ 3345 ret = ((old_flags & IFF_UP) ? dev_close : dev_open)(dev); 3346 3347 if (!ret) 3348 dev_set_rx_mode(dev); 3349 } 3350 3351 if (dev->flags & IFF_UP && 3352 ((old_flags ^ dev->flags) &~ (IFF_UP | IFF_PROMISC | IFF_ALLMULTI | 3353 IFF_VOLATILE))) 3354 call_netdevice_notifiers(NETDEV_CHANGE, dev); 3355 3356 if ((flags ^ dev->gflags) & IFF_PROMISC) { 3357 int inc = (flags & IFF_PROMISC) ? +1 : -1; 3358 dev->gflags ^= IFF_PROMISC; 3359 dev_set_promiscuity(dev, inc); 3360 } 3361 3362 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI 3363 is important. Some (broken) drivers set IFF_PROMISC, when 3364 IFF_ALLMULTI is requested not asking us and not reporting. 3365 */ 3366 if ((flags ^ dev->gflags) & IFF_ALLMULTI) { 3367 int inc = (flags & IFF_ALLMULTI) ? +1 : -1; 3368 dev->gflags ^= IFF_ALLMULTI; 3369 dev_set_allmulti(dev, inc); 3370 } 3371 3372 /* Exclude state transition flags, already notified */ 3373 changes = (old_flags ^ dev->flags) & ~(IFF_UP | IFF_RUNNING); 3374 if (changes) 3375 rtmsg_ifinfo(RTM_NEWLINK, dev, changes); 3376 3377 return ret; 3378 } 3379 3380 int dev_set_mtu(struct net_device *dev, int new_mtu) 3381 { 3382 int err; 3383 3384 if (new_mtu == dev->mtu) 3385 return 0; 3386 3387 /* MTU must be positive. */ 3388 if (new_mtu < 0) 3389 return -EINVAL; 3390 3391 if (!netif_device_present(dev)) 3392 return -ENODEV; 3393 3394 err = 0; 3395 if (dev->change_mtu) 3396 err = dev->change_mtu(dev, new_mtu); 3397 else 3398 dev->mtu = new_mtu; 3399 if (!err && dev->flags & IFF_UP) 3400 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev); 3401 return err; 3402 } 3403 3404 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa) 3405 { 3406 int err; 3407 3408 if (!dev->set_mac_address) 3409 return -EOPNOTSUPP; 3410 if (sa->sa_family != dev->type) 3411 return -EINVAL; 3412 if (!netif_device_present(dev)) 3413 return -ENODEV; 3414 err = dev->set_mac_address(dev, sa); 3415 if (!err) 3416 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 3417 return err; 3418 } 3419 3420 /* 3421 * Perform the SIOCxIFxxx calls, inside read_lock(dev_base_lock) 3422 */ 3423 static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd) 3424 { 3425 int err; 3426 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name); 3427 3428 if (!dev) 3429 return -ENODEV; 3430 3431 switch (cmd) { 3432 case SIOCGIFFLAGS: /* Get interface flags */ 3433 ifr->ifr_flags = dev_get_flags(dev); 3434 return 0; 3435 3436 case SIOCGIFMETRIC: /* Get the metric on the interface 3437 (currently unused) */ 3438 ifr->ifr_metric = 0; 3439 return 0; 3440 3441 case SIOCGIFMTU: /* Get the MTU of a device */ 3442 ifr->ifr_mtu = dev->mtu; 3443 return 0; 3444 3445 case SIOCGIFHWADDR: 3446 if (!dev->addr_len) 3447 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data); 3448 else 3449 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr, 3450 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len)); 3451 ifr->ifr_hwaddr.sa_family = dev->type; 3452 return 0; 3453 3454 case SIOCGIFSLAVE: 3455 err = -EINVAL; 3456 break; 3457 3458 case SIOCGIFMAP: 3459 ifr->ifr_map.mem_start = dev->mem_start; 3460 ifr->ifr_map.mem_end = dev->mem_end; 3461 ifr->ifr_map.base_addr = dev->base_addr; 3462 ifr->ifr_map.irq = dev->irq; 3463 ifr->ifr_map.dma = dev->dma; 3464 ifr->ifr_map.port = dev->if_port; 3465 return 0; 3466 3467 case SIOCGIFINDEX: 3468 ifr->ifr_ifindex = dev->ifindex; 3469 return 0; 3470 3471 case SIOCGIFTXQLEN: 3472 ifr->ifr_qlen = dev->tx_queue_len; 3473 return 0; 3474 3475 default: 3476 /* dev_ioctl() should ensure this case 3477 * is never reached 3478 */ 3479 WARN_ON(1); 3480 err = -EINVAL; 3481 break; 3482 3483 } 3484 return err; 3485 } 3486 3487 /* 3488 * Perform the SIOCxIFxxx calls, inside rtnl_lock() 3489 */ 3490 static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd) 3491 { 3492 int err; 3493 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name); 3494 3495 if (!dev) 3496 return -ENODEV; 3497 3498 switch (cmd) { 3499 case SIOCSIFFLAGS: /* Set interface flags */ 3500 return dev_change_flags(dev, ifr->ifr_flags); 3501 3502 case SIOCSIFMETRIC: /* Set the metric on the interface 3503 (currently unused) */ 3504 return -EOPNOTSUPP; 3505 3506 case SIOCSIFMTU: /* Set the MTU of a device */ 3507 return dev_set_mtu(dev, ifr->ifr_mtu); 3508 3509 case SIOCSIFHWADDR: 3510 return dev_set_mac_address(dev, &ifr->ifr_hwaddr); 3511 3512 case SIOCSIFHWBROADCAST: 3513 if (ifr->ifr_hwaddr.sa_family != dev->type) 3514 return -EINVAL; 3515 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data, 3516 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len)); 3517 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 3518 return 0; 3519 3520 case SIOCSIFMAP: 3521 if (dev->set_config) { 3522 if (!netif_device_present(dev)) 3523 return -ENODEV; 3524 return dev->set_config(dev, &ifr->ifr_map); 3525 } 3526 return -EOPNOTSUPP; 3527 3528 case SIOCADDMULTI: 3529 if ((!dev->set_multicast_list && !dev->set_rx_mode) || 3530 ifr->ifr_hwaddr.sa_family != AF_UNSPEC) 3531 return -EINVAL; 3532 if (!netif_device_present(dev)) 3533 return -ENODEV; 3534 return dev_mc_add(dev, ifr->ifr_hwaddr.sa_data, 3535 dev->addr_len, 1); 3536 3537 case SIOCDELMULTI: 3538 if ((!dev->set_multicast_list && !dev->set_rx_mode) || 3539 ifr->ifr_hwaddr.sa_family != AF_UNSPEC) 3540 return -EINVAL; 3541 if (!netif_device_present(dev)) 3542 return -ENODEV; 3543 return dev_mc_delete(dev, ifr->ifr_hwaddr.sa_data, 3544 dev->addr_len, 1); 3545 3546 case SIOCSIFTXQLEN: 3547 if (ifr->ifr_qlen < 0) 3548 return -EINVAL; 3549 dev->tx_queue_len = ifr->ifr_qlen; 3550 return 0; 3551 3552 case SIOCSIFNAME: 3553 ifr->ifr_newname[IFNAMSIZ-1] = '\0'; 3554 return dev_change_name(dev, ifr->ifr_newname); 3555 3556 /* 3557 * Unknown or private ioctl 3558 */ 3559 3560 default: 3561 if ((cmd >= SIOCDEVPRIVATE && 3562 cmd <= SIOCDEVPRIVATE + 15) || 3563 cmd == SIOCBONDENSLAVE || 3564 cmd == SIOCBONDRELEASE || 3565 cmd == SIOCBONDSETHWADDR || 3566 cmd == SIOCBONDSLAVEINFOQUERY || 3567 cmd == SIOCBONDINFOQUERY || 3568 cmd == SIOCBONDCHANGEACTIVE || 3569 cmd == SIOCGMIIPHY || 3570 cmd == SIOCGMIIREG || 3571 cmd == SIOCSMIIREG || 3572 cmd == SIOCBRADDIF || 3573 cmd == SIOCBRDELIF || 3574 cmd == SIOCWANDEV) { 3575 err = -EOPNOTSUPP; 3576 if (dev->do_ioctl) { 3577 if (netif_device_present(dev)) 3578 err = dev->do_ioctl(dev, ifr, 3579 cmd); 3580 else 3581 err = -ENODEV; 3582 } 3583 } else 3584 err = -EINVAL; 3585 3586 } 3587 return err; 3588 } 3589 3590 /* 3591 * This function handles all "interface"-type I/O control requests. The actual 3592 * 'doing' part of this is dev_ifsioc above. 3593 */ 3594 3595 /** 3596 * dev_ioctl - network device ioctl 3597 * @net: the applicable net namespace 3598 * @cmd: command to issue 3599 * @arg: pointer to a struct ifreq in user space 3600 * 3601 * Issue ioctl functions to devices. This is normally called by the 3602 * user space syscall interfaces but can sometimes be useful for 3603 * other purposes. The return value is the return from the syscall if 3604 * positive or a negative errno code on error. 3605 */ 3606 3607 int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg) 3608 { 3609 struct ifreq ifr; 3610 int ret; 3611 char *colon; 3612 3613 /* One special case: SIOCGIFCONF takes ifconf argument 3614 and requires shared lock, because it sleeps writing 3615 to user space. 3616 */ 3617 3618 if (cmd == SIOCGIFCONF) { 3619 rtnl_lock(); 3620 ret = dev_ifconf(net, (char __user *) arg); 3621 rtnl_unlock(); 3622 return ret; 3623 } 3624 if (cmd == SIOCGIFNAME) 3625 return dev_ifname(net, (struct ifreq __user *)arg); 3626 3627 if (copy_from_user(&ifr, arg, sizeof(struct ifreq))) 3628 return -EFAULT; 3629 3630 ifr.ifr_name[IFNAMSIZ-1] = 0; 3631 3632 colon = strchr(ifr.ifr_name, ':'); 3633 if (colon) 3634 *colon = 0; 3635 3636 /* 3637 * See which interface the caller is talking about. 3638 */ 3639 3640 switch (cmd) { 3641 /* 3642 * These ioctl calls: 3643 * - can be done by all. 3644 * - atomic and do not require locking. 3645 * - return a value 3646 */ 3647 case SIOCGIFFLAGS: 3648 case SIOCGIFMETRIC: 3649 case SIOCGIFMTU: 3650 case SIOCGIFHWADDR: 3651 case SIOCGIFSLAVE: 3652 case SIOCGIFMAP: 3653 case SIOCGIFINDEX: 3654 case SIOCGIFTXQLEN: 3655 dev_load(net, ifr.ifr_name); 3656 read_lock(&dev_base_lock); 3657 ret = dev_ifsioc_locked(net, &ifr, cmd); 3658 read_unlock(&dev_base_lock); 3659 if (!ret) { 3660 if (colon) 3661 *colon = ':'; 3662 if (copy_to_user(arg, &ifr, 3663 sizeof(struct ifreq))) 3664 ret = -EFAULT; 3665 } 3666 return ret; 3667 3668 case SIOCETHTOOL: 3669 dev_load(net, ifr.ifr_name); 3670 rtnl_lock(); 3671 ret = dev_ethtool(net, &ifr); 3672 rtnl_unlock(); 3673 if (!ret) { 3674 if (colon) 3675 *colon = ':'; 3676 if (copy_to_user(arg, &ifr, 3677 sizeof(struct ifreq))) 3678 ret = -EFAULT; 3679 } 3680 return ret; 3681 3682 /* 3683 * These ioctl calls: 3684 * - require superuser power. 3685 * - require strict serialization. 3686 * - return a value 3687 */ 3688 case SIOCGMIIPHY: 3689 case SIOCGMIIREG: 3690 case SIOCSIFNAME: 3691 if (!capable(CAP_NET_ADMIN)) 3692 return -EPERM; 3693 dev_load(net, ifr.ifr_name); 3694 rtnl_lock(); 3695 ret = dev_ifsioc(net, &ifr, cmd); 3696 rtnl_unlock(); 3697 if (!ret) { 3698 if (colon) 3699 *colon = ':'; 3700 if (copy_to_user(arg, &ifr, 3701 sizeof(struct ifreq))) 3702 ret = -EFAULT; 3703 } 3704 return ret; 3705 3706 /* 3707 * These ioctl calls: 3708 * - require superuser power. 3709 * - require strict serialization. 3710 * - do not return a value 3711 */ 3712 case SIOCSIFFLAGS: 3713 case SIOCSIFMETRIC: 3714 case SIOCSIFMTU: 3715 case SIOCSIFMAP: 3716 case SIOCSIFHWADDR: 3717 case SIOCSIFSLAVE: 3718 case SIOCADDMULTI: 3719 case SIOCDELMULTI: 3720 case SIOCSIFHWBROADCAST: 3721 case SIOCSIFTXQLEN: 3722 case SIOCSMIIREG: 3723 case SIOCBONDENSLAVE: 3724 case SIOCBONDRELEASE: 3725 case SIOCBONDSETHWADDR: 3726 case SIOCBONDCHANGEACTIVE: 3727 case SIOCBRADDIF: 3728 case SIOCBRDELIF: 3729 if (!capable(CAP_NET_ADMIN)) 3730 return -EPERM; 3731 /* fall through */ 3732 case SIOCBONDSLAVEINFOQUERY: 3733 case SIOCBONDINFOQUERY: 3734 dev_load(net, ifr.ifr_name); 3735 rtnl_lock(); 3736 ret = dev_ifsioc(net, &ifr, cmd); 3737 rtnl_unlock(); 3738 return ret; 3739 3740 case SIOCGIFMEM: 3741 /* Get the per device memory space. We can add this but 3742 * currently do not support it */ 3743 case SIOCSIFMEM: 3744 /* Set the per device memory buffer space. 3745 * Not applicable in our case */ 3746 case SIOCSIFLINK: 3747 return -EINVAL; 3748 3749 /* 3750 * Unknown or private ioctl. 3751 */ 3752 default: 3753 if (cmd == SIOCWANDEV || 3754 (cmd >= SIOCDEVPRIVATE && 3755 cmd <= SIOCDEVPRIVATE + 15)) { 3756 dev_load(net, ifr.ifr_name); 3757 rtnl_lock(); 3758 ret = dev_ifsioc(net, &ifr, cmd); 3759 rtnl_unlock(); 3760 if (!ret && copy_to_user(arg, &ifr, 3761 sizeof(struct ifreq))) 3762 ret = -EFAULT; 3763 return ret; 3764 } 3765 /* Take care of Wireless Extensions */ 3766 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) 3767 return wext_handle_ioctl(net, &ifr, cmd, arg); 3768 return -EINVAL; 3769 } 3770 } 3771 3772 3773 /** 3774 * dev_new_index - allocate an ifindex 3775 * @net: the applicable net namespace 3776 * 3777 * Returns a suitable unique value for a new device interface 3778 * number. The caller must hold the rtnl semaphore or the 3779 * dev_base_lock to be sure it remains unique. 3780 */ 3781 static int dev_new_index(struct net *net) 3782 { 3783 static int ifindex; 3784 for (;;) { 3785 if (++ifindex <= 0) 3786 ifindex = 1; 3787 if (!__dev_get_by_index(net, ifindex)) 3788 return ifindex; 3789 } 3790 } 3791 3792 /* Delayed registration/unregisteration */ 3793 static DEFINE_SPINLOCK(net_todo_list_lock); 3794 static LIST_HEAD(net_todo_list); 3795 3796 static void net_set_todo(struct net_device *dev) 3797 { 3798 spin_lock(&net_todo_list_lock); 3799 list_add_tail(&dev->todo_list, &net_todo_list); 3800 spin_unlock(&net_todo_list_lock); 3801 } 3802 3803 static void rollback_registered(struct net_device *dev) 3804 { 3805 BUG_ON(dev_boot_phase); 3806 ASSERT_RTNL(); 3807 3808 /* Some devices call without registering for initialization unwind. */ 3809 if (dev->reg_state == NETREG_UNINITIALIZED) { 3810 printk(KERN_DEBUG "unregister_netdevice: device %s/%p never " 3811 "was registered\n", dev->name, dev); 3812 3813 WARN_ON(1); 3814 return; 3815 } 3816 3817 BUG_ON(dev->reg_state != NETREG_REGISTERED); 3818 3819 /* If device is running, close it first. */ 3820 dev_close(dev); 3821 3822 /* And unlink it from device chain. */ 3823 unlist_netdevice(dev); 3824 3825 dev->reg_state = NETREG_UNREGISTERING; 3826 3827 synchronize_net(); 3828 3829 /* Shutdown queueing discipline. */ 3830 dev_shutdown(dev); 3831 3832 3833 /* Notify protocols, that we are about to destroy 3834 this device. They should clean all the things. 3835 */ 3836 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 3837 3838 /* 3839 * Flush the unicast and multicast chains 3840 */ 3841 dev_addr_discard(dev); 3842 3843 if (dev->uninit) 3844 dev->uninit(dev); 3845 3846 /* Notifier chain MUST detach us from master device. */ 3847 WARN_ON(dev->master); 3848 3849 /* Remove entries from kobject tree */ 3850 netdev_unregister_kobject(dev); 3851 3852 synchronize_net(); 3853 3854 dev_put(dev); 3855 } 3856 3857 static void __netdev_init_queue_locks_one(struct net_device *dev, 3858 struct netdev_queue *dev_queue, 3859 void *_unused) 3860 { 3861 spin_lock_init(&dev_queue->_xmit_lock); 3862 netdev_set_xmit_lockdep_class(&dev_queue->_xmit_lock, dev->type); 3863 dev_queue->xmit_lock_owner = -1; 3864 } 3865 3866 static void netdev_init_queue_locks(struct net_device *dev) 3867 { 3868 netdev_for_each_tx_queue(dev, __netdev_init_queue_locks_one, NULL); 3869 __netdev_init_queue_locks_one(dev, &dev->rx_queue, NULL); 3870 } 3871 3872 /** 3873 * register_netdevice - register a network device 3874 * @dev: device to register 3875 * 3876 * Take a completed network device structure and add it to the kernel 3877 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 3878 * chain. 0 is returned on success. A negative errno code is returned 3879 * on a failure to set up the device, or if the name is a duplicate. 3880 * 3881 * Callers must hold the rtnl semaphore. You may want 3882 * register_netdev() instead of this. 3883 * 3884 * BUGS: 3885 * The locking appears insufficient to guarantee two parallel registers 3886 * will not get the same name. 3887 */ 3888 3889 int register_netdevice(struct net_device *dev) 3890 { 3891 struct hlist_head *head; 3892 struct hlist_node *p; 3893 int ret; 3894 struct net *net; 3895 3896 BUG_ON(dev_boot_phase); 3897 ASSERT_RTNL(); 3898 3899 might_sleep(); 3900 3901 /* When net_device's are persistent, this will be fatal. */ 3902 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED); 3903 BUG_ON(!dev_net(dev)); 3904 net = dev_net(dev); 3905 3906 spin_lock_init(&dev->addr_list_lock); 3907 netdev_set_addr_lockdep_class(dev); 3908 netdev_init_queue_locks(dev); 3909 3910 dev->iflink = -1; 3911 3912 /* Init, if this function is available */ 3913 if (dev->init) { 3914 ret = dev->init(dev); 3915 if (ret) { 3916 if (ret > 0) 3917 ret = -EIO; 3918 goto out; 3919 } 3920 } 3921 3922 if (!dev_valid_name(dev->name)) { 3923 ret = -EINVAL; 3924 goto err_uninit; 3925 } 3926 3927 dev->ifindex = dev_new_index(net); 3928 if (dev->iflink == -1) 3929 dev->iflink = dev->ifindex; 3930 3931 /* Check for existence of name */ 3932 head = dev_name_hash(net, dev->name); 3933 hlist_for_each(p, head) { 3934 struct net_device *d 3935 = hlist_entry(p, struct net_device, name_hlist); 3936 if (!strncmp(d->name, dev->name, IFNAMSIZ)) { 3937 ret = -EEXIST; 3938 goto err_uninit; 3939 } 3940 } 3941 3942 /* Fix illegal checksum combinations */ 3943 if ((dev->features & NETIF_F_HW_CSUM) && 3944 (dev->features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 3945 printk(KERN_NOTICE "%s: mixed HW and IP checksum settings.\n", 3946 dev->name); 3947 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 3948 } 3949 3950 if ((dev->features & NETIF_F_NO_CSUM) && 3951 (dev->features & (NETIF_F_HW_CSUM|NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 3952 printk(KERN_NOTICE "%s: mixed no checksumming and other settings.\n", 3953 dev->name); 3954 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM|NETIF_F_HW_CSUM); 3955 } 3956 3957 3958 /* Fix illegal SG+CSUM combinations. */ 3959 if ((dev->features & NETIF_F_SG) && 3960 !(dev->features & NETIF_F_ALL_CSUM)) { 3961 printk(KERN_NOTICE "%s: Dropping NETIF_F_SG since no checksum feature.\n", 3962 dev->name); 3963 dev->features &= ~NETIF_F_SG; 3964 } 3965 3966 /* TSO requires that SG is present as well. */ 3967 if ((dev->features & NETIF_F_TSO) && 3968 !(dev->features & NETIF_F_SG)) { 3969 printk(KERN_NOTICE "%s: Dropping NETIF_F_TSO since no SG feature.\n", 3970 dev->name); 3971 dev->features &= ~NETIF_F_TSO; 3972 } 3973 if (dev->features & NETIF_F_UFO) { 3974 if (!(dev->features & NETIF_F_HW_CSUM)) { 3975 printk(KERN_ERR "%s: Dropping NETIF_F_UFO since no " 3976 "NETIF_F_HW_CSUM feature.\n", 3977 dev->name); 3978 dev->features &= ~NETIF_F_UFO; 3979 } 3980 if (!(dev->features & NETIF_F_SG)) { 3981 printk(KERN_ERR "%s: Dropping NETIF_F_UFO since no " 3982 "NETIF_F_SG feature.\n", 3983 dev->name); 3984 dev->features &= ~NETIF_F_UFO; 3985 } 3986 } 3987 3988 /* Enable software GSO if SG is supported. */ 3989 if (dev->features & NETIF_F_SG) 3990 dev->features |= NETIF_F_GSO; 3991 3992 netdev_initialize_kobject(dev); 3993 ret = netdev_register_kobject(dev); 3994 if (ret) 3995 goto err_uninit; 3996 dev->reg_state = NETREG_REGISTERED; 3997 3998 /* 3999 * Default initial state at registry is that the 4000 * device is present. 4001 */ 4002 4003 set_bit(__LINK_STATE_PRESENT, &dev->state); 4004 4005 dev_init_scheduler(dev); 4006 dev_hold(dev); 4007 list_netdevice(dev); 4008 4009 /* Notify protocols, that a new device appeared. */ 4010 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev); 4011 ret = notifier_to_errno(ret); 4012 if (ret) { 4013 rollback_registered(dev); 4014 dev->reg_state = NETREG_UNREGISTERED; 4015 } 4016 4017 out: 4018 return ret; 4019 4020 err_uninit: 4021 if (dev->uninit) 4022 dev->uninit(dev); 4023 goto out; 4024 } 4025 4026 /** 4027 * register_netdev - register a network device 4028 * @dev: device to register 4029 * 4030 * Take a completed network device structure and add it to the kernel 4031 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 4032 * chain. 0 is returned on success. A negative errno code is returned 4033 * on a failure to set up the device, or if the name is a duplicate. 4034 * 4035 * This is a wrapper around register_netdevice that takes the rtnl semaphore 4036 * and expands the device name if you passed a format string to 4037 * alloc_netdev. 4038 */ 4039 int register_netdev(struct net_device *dev) 4040 { 4041 int err; 4042 4043 rtnl_lock(); 4044 4045 /* 4046 * If the name is a format string the caller wants us to do a 4047 * name allocation. 4048 */ 4049 if (strchr(dev->name, '%')) { 4050 err = dev_alloc_name(dev, dev->name); 4051 if (err < 0) 4052 goto out; 4053 } 4054 4055 err = register_netdevice(dev); 4056 out: 4057 rtnl_unlock(); 4058 return err; 4059 } 4060 EXPORT_SYMBOL(register_netdev); 4061 4062 /* 4063 * netdev_wait_allrefs - wait until all references are gone. 4064 * 4065 * This is called when unregistering network devices. 4066 * 4067 * Any protocol or device that holds a reference should register 4068 * for netdevice notification, and cleanup and put back the 4069 * reference if they receive an UNREGISTER event. 4070 * We can get stuck here if buggy protocols don't correctly 4071 * call dev_put. 4072 */ 4073 static void netdev_wait_allrefs(struct net_device *dev) 4074 { 4075 unsigned long rebroadcast_time, warning_time; 4076 4077 rebroadcast_time = warning_time = jiffies; 4078 while (atomic_read(&dev->refcnt) != 0) { 4079 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) { 4080 rtnl_lock(); 4081 4082 /* Rebroadcast unregister notification */ 4083 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 4084 4085 if (test_bit(__LINK_STATE_LINKWATCH_PENDING, 4086 &dev->state)) { 4087 /* We must not have linkwatch events 4088 * pending on unregister. If this 4089 * happens, we simply run the queue 4090 * unscheduled, resulting in a noop 4091 * for this device. 4092 */ 4093 linkwatch_run_queue(); 4094 } 4095 4096 __rtnl_unlock(); 4097 4098 rebroadcast_time = jiffies; 4099 } 4100 4101 msleep(250); 4102 4103 if (time_after(jiffies, warning_time + 10 * HZ)) { 4104 printk(KERN_EMERG "unregister_netdevice: " 4105 "waiting for %s to become free. Usage " 4106 "count = %d\n", 4107 dev->name, atomic_read(&dev->refcnt)); 4108 warning_time = jiffies; 4109 } 4110 } 4111 } 4112 4113 /* The sequence is: 4114 * 4115 * rtnl_lock(); 4116 * ... 4117 * register_netdevice(x1); 4118 * register_netdevice(x2); 4119 * ... 4120 * unregister_netdevice(y1); 4121 * unregister_netdevice(y2); 4122 * ... 4123 * rtnl_unlock(); 4124 * free_netdev(y1); 4125 * free_netdev(y2); 4126 * 4127 * We are invoked by rtnl_unlock() after it drops the semaphore. 4128 * This allows us to deal with problems: 4129 * 1) We can delete sysfs objects which invoke hotplug 4130 * without deadlocking with linkwatch via keventd. 4131 * 2) Since we run with the RTNL semaphore not held, we can sleep 4132 * safely in order to wait for the netdev refcnt to drop to zero. 4133 */ 4134 static DEFINE_MUTEX(net_todo_run_mutex); 4135 void netdev_run_todo(void) 4136 { 4137 struct list_head list; 4138 4139 /* Need to guard against multiple cpu's getting out of order. */ 4140 mutex_lock(&net_todo_run_mutex); 4141 4142 /* Not safe to do outside the semaphore. We must not return 4143 * until all unregister events invoked by the local processor 4144 * have been completed (either by this todo run, or one on 4145 * another cpu). 4146 */ 4147 if (list_empty(&net_todo_list)) 4148 goto out; 4149 4150 /* Snapshot list, allow later requests */ 4151 spin_lock(&net_todo_list_lock); 4152 list_replace_init(&net_todo_list, &list); 4153 spin_unlock(&net_todo_list_lock); 4154 4155 while (!list_empty(&list)) { 4156 struct net_device *dev 4157 = list_entry(list.next, struct net_device, todo_list); 4158 list_del(&dev->todo_list); 4159 4160 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) { 4161 printk(KERN_ERR "network todo '%s' but state %d\n", 4162 dev->name, dev->reg_state); 4163 dump_stack(); 4164 continue; 4165 } 4166 4167 dev->reg_state = NETREG_UNREGISTERED; 4168 4169 on_each_cpu(flush_backlog, dev, 1); 4170 4171 netdev_wait_allrefs(dev); 4172 4173 /* paranoia */ 4174 BUG_ON(atomic_read(&dev->refcnt)); 4175 WARN_ON(dev->ip_ptr); 4176 WARN_ON(dev->ip6_ptr); 4177 WARN_ON(dev->dn_ptr); 4178 4179 if (dev->destructor) 4180 dev->destructor(dev); 4181 4182 /* Free network device */ 4183 kobject_put(&dev->dev.kobj); 4184 } 4185 4186 out: 4187 mutex_unlock(&net_todo_run_mutex); 4188 } 4189 4190 static struct net_device_stats *internal_stats(struct net_device *dev) 4191 { 4192 return &dev->stats; 4193 } 4194 4195 static void netdev_init_one_queue(struct net_device *dev, 4196 struct netdev_queue *queue, 4197 void *_unused) 4198 { 4199 queue->dev = dev; 4200 } 4201 4202 static void netdev_init_queues(struct net_device *dev) 4203 { 4204 netdev_init_one_queue(dev, &dev->rx_queue, NULL); 4205 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL); 4206 spin_lock_init(&dev->tx_global_lock); 4207 } 4208 4209 /** 4210 * alloc_netdev_mq - allocate network device 4211 * @sizeof_priv: size of private data to allocate space for 4212 * @name: device name format string 4213 * @setup: callback to initialize device 4214 * @queue_count: the number of subqueues to allocate 4215 * 4216 * Allocates a struct net_device with private data area for driver use 4217 * and performs basic initialization. Also allocates subquue structs 4218 * for each queue on the device at the end of the netdevice. 4219 */ 4220 struct net_device *alloc_netdev_mq(int sizeof_priv, const char *name, 4221 void (*setup)(struct net_device *), unsigned int queue_count) 4222 { 4223 struct netdev_queue *tx; 4224 struct net_device *dev; 4225 size_t alloc_size; 4226 void *p; 4227 4228 BUG_ON(strlen(name) >= sizeof(dev->name)); 4229 4230 alloc_size = sizeof(struct net_device); 4231 if (sizeof_priv) { 4232 /* ensure 32-byte alignment of private area */ 4233 alloc_size = (alloc_size + NETDEV_ALIGN_CONST) & ~NETDEV_ALIGN_CONST; 4234 alloc_size += sizeof_priv; 4235 } 4236 /* ensure 32-byte alignment of whole construct */ 4237 alloc_size += NETDEV_ALIGN_CONST; 4238 4239 p = kzalloc(alloc_size, GFP_KERNEL); 4240 if (!p) { 4241 printk(KERN_ERR "alloc_netdev: Unable to allocate device.\n"); 4242 return NULL; 4243 } 4244 4245 tx = kcalloc(queue_count, sizeof(struct netdev_queue), GFP_KERNEL); 4246 if (!tx) { 4247 printk(KERN_ERR "alloc_netdev: Unable to allocate " 4248 "tx qdiscs.\n"); 4249 kfree(p); 4250 return NULL; 4251 } 4252 4253 dev = (struct net_device *) 4254 (((long)p + NETDEV_ALIGN_CONST) & ~NETDEV_ALIGN_CONST); 4255 dev->padded = (char *)dev - (char *)p; 4256 dev_net_set(dev, &init_net); 4257 4258 dev->_tx = tx; 4259 dev->num_tx_queues = queue_count; 4260 dev->real_num_tx_queues = queue_count; 4261 4262 if (sizeof_priv) { 4263 dev->priv = ((char *)dev + 4264 ((sizeof(struct net_device) + NETDEV_ALIGN_CONST) 4265 & ~NETDEV_ALIGN_CONST)); 4266 } 4267 4268 dev->gso_max_size = GSO_MAX_SIZE; 4269 4270 netdev_init_queues(dev); 4271 4272 dev->get_stats = internal_stats; 4273 netpoll_netdev_init(dev); 4274 setup(dev); 4275 strcpy(dev->name, name); 4276 return dev; 4277 } 4278 EXPORT_SYMBOL(alloc_netdev_mq); 4279 4280 /** 4281 * free_netdev - free network device 4282 * @dev: device 4283 * 4284 * This function does the last stage of destroying an allocated device 4285 * interface. The reference to the device object is released. 4286 * If this is the last reference then it will be freed. 4287 */ 4288 void free_netdev(struct net_device *dev) 4289 { 4290 release_net(dev_net(dev)); 4291 4292 kfree(dev->_tx); 4293 4294 /* Compatibility with error handling in drivers */ 4295 if (dev->reg_state == NETREG_UNINITIALIZED) { 4296 kfree((char *)dev - dev->padded); 4297 return; 4298 } 4299 4300 BUG_ON(dev->reg_state != NETREG_UNREGISTERED); 4301 dev->reg_state = NETREG_RELEASED; 4302 4303 /* will free via device release */ 4304 put_device(&dev->dev); 4305 } 4306 4307 /* Synchronize with packet receive processing. */ 4308 void synchronize_net(void) 4309 { 4310 might_sleep(); 4311 synchronize_rcu(); 4312 } 4313 4314 /** 4315 * unregister_netdevice - remove device from the kernel 4316 * @dev: device 4317 * 4318 * This function shuts down a device interface and removes it 4319 * from the kernel tables. 4320 * 4321 * Callers must hold the rtnl semaphore. You may want 4322 * unregister_netdev() instead of this. 4323 */ 4324 4325 void unregister_netdevice(struct net_device *dev) 4326 { 4327 ASSERT_RTNL(); 4328 4329 rollback_registered(dev); 4330 /* Finish processing unregister after unlock */ 4331 net_set_todo(dev); 4332 } 4333 4334 /** 4335 * unregister_netdev - remove device from the kernel 4336 * @dev: device 4337 * 4338 * This function shuts down a device interface and removes it 4339 * from the kernel tables. 4340 * 4341 * This is just a wrapper for unregister_netdevice that takes 4342 * the rtnl semaphore. In general you want to use this and not 4343 * unregister_netdevice. 4344 */ 4345 void unregister_netdev(struct net_device *dev) 4346 { 4347 rtnl_lock(); 4348 unregister_netdevice(dev); 4349 rtnl_unlock(); 4350 } 4351 4352 EXPORT_SYMBOL(unregister_netdev); 4353 4354 /** 4355 * dev_change_net_namespace - move device to different nethost namespace 4356 * @dev: device 4357 * @net: network namespace 4358 * @pat: If not NULL name pattern to try if the current device name 4359 * is already taken in the destination network namespace. 4360 * 4361 * This function shuts down a device interface and moves it 4362 * to a new network namespace. On success 0 is returned, on 4363 * a failure a netagive errno code is returned. 4364 * 4365 * Callers must hold the rtnl semaphore. 4366 */ 4367 4368 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat) 4369 { 4370 char buf[IFNAMSIZ]; 4371 const char *destname; 4372 int err; 4373 4374 ASSERT_RTNL(); 4375 4376 /* Don't allow namespace local devices to be moved. */ 4377 err = -EINVAL; 4378 if (dev->features & NETIF_F_NETNS_LOCAL) 4379 goto out; 4380 4381 /* Ensure the device has been registrered */ 4382 err = -EINVAL; 4383 if (dev->reg_state != NETREG_REGISTERED) 4384 goto out; 4385 4386 /* Get out if there is nothing todo */ 4387 err = 0; 4388 if (net_eq(dev_net(dev), net)) 4389 goto out; 4390 4391 /* Pick the destination device name, and ensure 4392 * we can use it in the destination network namespace. 4393 */ 4394 err = -EEXIST; 4395 destname = dev->name; 4396 if (__dev_get_by_name(net, destname)) { 4397 /* We get here if we can't use the current device name */ 4398 if (!pat) 4399 goto out; 4400 if (!dev_valid_name(pat)) 4401 goto out; 4402 if (strchr(pat, '%')) { 4403 if (__dev_alloc_name(net, pat, buf) < 0) 4404 goto out; 4405 destname = buf; 4406 } else 4407 destname = pat; 4408 if (__dev_get_by_name(net, destname)) 4409 goto out; 4410 } 4411 4412 /* 4413 * And now a mini version of register_netdevice unregister_netdevice. 4414 */ 4415 4416 /* If device is running close it first. */ 4417 dev_close(dev); 4418 4419 /* And unlink it from device chain */ 4420 err = -ENODEV; 4421 unlist_netdevice(dev); 4422 4423 synchronize_net(); 4424 4425 /* Shutdown queueing discipline. */ 4426 dev_shutdown(dev); 4427 4428 /* Notify protocols, that we are about to destroy 4429 this device. They should clean all the things. 4430 */ 4431 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 4432 4433 /* 4434 * Flush the unicast and multicast chains 4435 */ 4436 dev_addr_discard(dev); 4437 4438 /* Actually switch the network namespace */ 4439 dev_net_set(dev, net); 4440 4441 /* Assign the new device name */ 4442 if (destname != dev->name) 4443 strcpy(dev->name, destname); 4444 4445 /* If there is an ifindex conflict assign a new one */ 4446 if (__dev_get_by_index(net, dev->ifindex)) { 4447 int iflink = (dev->iflink == dev->ifindex); 4448 dev->ifindex = dev_new_index(net); 4449 if (iflink) 4450 dev->iflink = dev->ifindex; 4451 } 4452 4453 /* Fixup kobjects */ 4454 netdev_unregister_kobject(dev); 4455 err = netdev_register_kobject(dev); 4456 WARN_ON(err); 4457 4458 /* Add the device back in the hashes */ 4459 list_netdevice(dev); 4460 4461 /* Notify protocols, that a new device appeared. */ 4462 call_netdevice_notifiers(NETDEV_REGISTER, dev); 4463 4464 synchronize_net(); 4465 err = 0; 4466 out: 4467 return err; 4468 } 4469 4470 static int dev_cpu_callback(struct notifier_block *nfb, 4471 unsigned long action, 4472 void *ocpu) 4473 { 4474 struct sk_buff **list_skb; 4475 struct Qdisc **list_net; 4476 struct sk_buff *skb; 4477 unsigned int cpu, oldcpu = (unsigned long)ocpu; 4478 struct softnet_data *sd, *oldsd; 4479 4480 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN) 4481 return NOTIFY_OK; 4482 4483 local_irq_disable(); 4484 cpu = smp_processor_id(); 4485 sd = &per_cpu(softnet_data, cpu); 4486 oldsd = &per_cpu(softnet_data, oldcpu); 4487 4488 /* Find end of our completion_queue. */ 4489 list_skb = &sd->completion_queue; 4490 while (*list_skb) 4491 list_skb = &(*list_skb)->next; 4492 /* Append completion queue from offline CPU. */ 4493 *list_skb = oldsd->completion_queue; 4494 oldsd->completion_queue = NULL; 4495 4496 /* Find end of our output_queue. */ 4497 list_net = &sd->output_queue; 4498 while (*list_net) 4499 list_net = &(*list_net)->next_sched; 4500 /* Append output queue from offline CPU. */ 4501 *list_net = oldsd->output_queue; 4502 oldsd->output_queue = NULL; 4503 4504 raise_softirq_irqoff(NET_TX_SOFTIRQ); 4505 local_irq_enable(); 4506 4507 /* Process offline CPU's input_pkt_queue */ 4508 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) 4509 netif_rx(skb); 4510 4511 return NOTIFY_OK; 4512 } 4513 4514 #ifdef CONFIG_NET_DMA 4515 /** 4516 * net_dma_rebalance - try to maintain one DMA channel per CPU 4517 * @net_dma: DMA client and associated data (lock, channels, channel_mask) 4518 * 4519 * This is called when the number of channels allocated to the net_dma client 4520 * changes. The net_dma client tries to have one DMA channel per CPU. 4521 */ 4522 4523 static void net_dma_rebalance(struct net_dma *net_dma) 4524 { 4525 unsigned int cpu, i, n, chan_idx; 4526 struct dma_chan *chan; 4527 4528 if (cpus_empty(net_dma->channel_mask)) { 4529 for_each_online_cpu(cpu) 4530 rcu_assign_pointer(per_cpu(softnet_data, cpu).net_dma, NULL); 4531 return; 4532 } 4533 4534 i = 0; 4535 cpu = first_cpu(cpu_online_map); 4536 4537 for_each_cpu_mask_nr(chan_idx, net_dma->channel_mask) { 4538 chan = net_dma->channels[chan_idx]; 4539 4540 n = ((num_online_cpus() / cpus_weight(net_dma->channel_mask)) 4541 + (i < (num_online_cpus() % 4542 cpus_weight(net_dma->channel_mask)) ? 1 : 0)); 4543 4544 while(n) { 4545 per_cpu(softnet_data, cpu).net_dma = chan; 4546 cpu = next_cpu(cpu, cpu_online_map); 4547 n--; 4548 } 4549 i++; 4550 } 4551 } 4552 4553 /** 4554 * netdev_dma_event - event callback for the net_dma_client 4555 * @client: should always be net_dma_client 4556 * @chan: DMA channel for the event 4557 * @state: DMA state to be handled 4558 */ 4559 static enum dma_state_client 4560 netdev_dma_event(struct dma_client *client, struct dma_chan *chan, 4561 enum dma_state state) 4562 { 4563 int i, found = 0, pos = -1; 4564 struct net_dma *net_dma = 4565 container_of(client, struct net_dma, client); 4566 enum dma_state_client ack = DMA_DUP; /* default: take no action */ 4567 4568 spin_lock(&net_dma->lock); 4569 switch (state) { 4570 case DMA_RESOURCE_AVAILABLE: 4571 for (i = 0; i < nr_cpu_ids; i++) 4572 if (net_dma->channels[i] == chan) { 4573 found = 1; 4574 break; 4575 } else if (net_dma->channels[i] == NULL && pos < 0) 4576 pos = i; 4577 4578 if (!found && pos >= 0) { 4579 ack = DMA_ACK; 4580 net_dma->channels[pos] = chan; 4581 cpu_set(pos, net_dma->channel_mask); 4582 net_dma_rebalance(net_dma); 4583 } 4584 break; 4585 case DMA_RESOURCE_REMOVED: 4586 for (i = 0; i < nr_cpu_ids; i++) 4587 if (net_dma->channels[i] == chan) { 4588 found = 1; 4589 pos = i; 4590 break; 4591 } 4592 4593 if (found) { 4594 ack = DMA_ACK; 4595 cpu_clear(pos, net_dma->channel_mask); 4596 net_dma->channels[i] = NULL; 4597 net_dma_rebalance(net_dma); 4598 } 4599 break; 4600 default: 4601 break; 4602 } 4603 spin_unlock(&net_dma->lock); 4604 4605 return ack; 4606 } 4607 4608 /** 4609 * netdev_dma_regiser - register the networking subsystem as a DMA client 4610 */ 4611 static int __init netdev_dma_register(void) 4612 { 4613 net_dma.channels = kzalloc(nr_cpu_ids * sizeof(struct net_dma), 4614 GFP_KERNEL); 4615 if (unlikely(!net_dma.channels)) { 4616 printk(KERN_NOTICE 4617 "netdev_dma: no memory for net_dma.channels\n"); 4618 return -ENOMEM; 4619 } 4620 spin_lock_init(&net_dma.lock); 4621 dma_cap_set(DMA_MEMCPY, net_dma.client.cap_mask); 4622 dma_async_client_register(&net_dma.client); 4623 dma_async_client_chan_request(&net_dma.client); 4624 return 0; 4625 } 4626 4627 #else 4628 static int __init netdev_dma_register(void) { return -ENODEV; } 4629 #endif /* CONFIG_NET_DMA */ 4630 4631 /** 4632 * netdev_compute_feature - compute conjunction of two feature sets 4633 * @all: first feature set 4634 * @one: second feature set 4635 * 4636 * Computes a new feature set after adding a device with feature set 4637 * @one to the master device with current feature set @all. Returns 4638 * the new feature set. 4639 */ 4640 int netdev_compute_features(unsigned long all, unsigned long one) 4641 { 4642 /* if device needs checksumming, downgrade to hw checksumming */ 4643 if (all & NETIF_F_NO_CSUM && !(one & NETIF_F_NO_CSUM)) 4644 all ^= NETIF_F_NO_CSUM | NETIF_F_HW_CSUM; 4645 4646 /* if device can't do all checksum, downgrade to ipv4/ipv6 */ 4647 if (all & NETIF_F_HW_CSUM && !(one & NETIF_F_HW_CSUM)) 4648 all ^= NETIF_F_HW_CSUM 4649 | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM; 4650 4651 if (one & NETIF_F_GSO) 4652 one |= NETIF_F_GSO_SOFTWARE; 4653 one |= NETIF_F_GSO; 4654 4655 /* If even one device supports robust GSO, enable it for all. */ 4656 if (one & NETIF_F_GSO_ROBUST) 4657 all |= NETIF_F_GSO_ROBUST; 4658 4659 all &= one | NETIF_F_LLTX; 4660 4661 if (!(all & NETIF_F_ALL_CSUM)) 4662 all &= ~NETIF_F_SG; 4663 if (!(all & NETIF_F_SG)) 4664 all &= ~NETIF_F_GSO_MASK; 4665 4666 return all; 4667 } 4668 EXPORT_SYMBOL(netdev_compute_features); 4669 4670 static struct hlist_head *netdev_create_hash(void) 4671 { 4672 int i; 4673 struct hlist_head *hash; 4674 4675 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL); 4676 if (hash != NULL) 4677 for (i = 0; i < NETDEV_HASHENTRIES; i++) 4678 INIT_HLIST_HEAD(&hash[i]); 4679 4680 return hash; 4681 } 4682 4683 /* Initialize per network namespace state */ 4684 static int __net_init netdev_init(struct net *net) 4685 { 4686 INIT_LIST_HEAD(&net->dev_base_head); 4687 4688 net->dev_name_head = netdev_create_hash(); 4689 if (net->dev_name_head == NULL) 4690 goto err_name; 4691 4692 net->dev_index_head = netdev_create_hash(); 4693 if (net->dev_index_head == NULL) 4694 goto err_idx; 4695 4696 return 0; 4697 4698 err_idx: 4699 kfree(net->dev_name_head); 4700 err_name: 4701 return -ENOMEM; 4702 } 4703 4704 char *netdev_drivername(struct net_device *dev, char *buffer, int len) 4705 { 4706 struct device_driver *driver; 4707 struct device *parent; 4708 4709 if (len <= 0 || !buffer) 4710 return buffer; 4711 buffer[0] = 0; 4712 4713 parent = dev->dev.parent; 4714 4715 if (!parent) 4716 return buffer; 4717 4718 driver = parent->driver; 4719 if (driver && driver->name) 4720 strlcpy(buffer, driver->name, len); 4721 return buffer; 4722 } 4723 4724 static void __net_exit netdev_exit(struct net *net) 4725 { 4726 kfree(net->dev_name_head); 4727 kfree(net->dev_index_head); 4728 } 4729 4730 static struct pernet_operations __net_initdata netdev_net_ops = { 4731 .init = netdev_init, 4732 .exit = netdev_exit, 4733 }; 4734 4735 static void __net_exit default_device_exit(struct net *net) 4736 { 4737 struct net_device *dev, *next; 4738 /* 4739 * Push all migratable of the network devices back to the 4740 * initial network namespace 4741 */ 4742 rtnl_lock(); 4743 for_each_netdev_safe(net, dev, next) { 4744 int err; 4745 char fb_name[IFNAMSIZ]; 4746 4747 /* Ignore unmoveable devices (i.e. loopback) */ 4748 if (dev->features & NETIF_F_NETNS_LOCAL) 4749 continue; 4750 4751 /* Push remaing network devices to init_net */ 4752 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex); 4753 err = dev_change_net_namespace(dev, &init_net, fb_name); 4754 if (err) { 4755 printk(KERN_EMERG "%s: failed to move %s to init_net: %d\n", 4756 __func__, dev->name, err); 4757 BUG(); 4758 } 4759 } 4760 rtnl_unlock(); 4761 } 4762 4763 static struct pernet_operations __net_initdata default_device_ops = { 4764 .exit = default_device_exit, 4765 }; 4766 4767 /* 4768 * Initialize the DEV module. At boot time this walks the device list and 4769 * unhooks any devices that fail to initialise (normally hardware not 4770 * present) and leaves us with a valid list of present and active devices. 4771 * 4772 */ 4773 4774 /* 4775 * This is called single threaded during boot, so no need 4776 * to take the rtnl semaphore. 4777 */ 4778 static int __init net_dev_init(void) 4779 { 4780 int i, rc = -ENOMEM; 4781 4782 BUG_ON(!dev_boot_phase); 4783 4784 if (dev_proc_init()) 4785 goto out; 4786 4787 if (netdev_kobject_init()) 4788 goto out; 4789 4790 INIT_LIST_HEAD(&ptype_all); 4791 for (i = 0; i < PTYPE_HASH_SIZE; i++) 4792 INIT_LIST_HEAD(&ptype_base[i]); 4793 4794 if (register_pernet_subsys(&netdev_net_ops)) 4795 goto out; 4796 4797 if (register_pernet_device(&default_device_ops)) 4798 goto out; 4799 4800 /* 4801 * Initialise the packet receive queues. 4802 */ 4803 4804 for_each_possible_cpu(i) { 4805 struct softnet_data *queue; 4806 4807 queue = &per_cpu(softnet_data, i); 4808 skb_queue_head_init(&queue->input_pkt_queue); 4809 queue->completion_queue = NULL; 4810 INIT_LIST_HEAD(&queue->poll_list); 4811 4812 queue->backlog.poll = process_backlog; 4813 queue->backlog.weight = weight_p; 4814 } 4815 4816 netdev_dma_register(); 4817 4818 dev_boot_phase = 0; 4819 4820 open_softirq(NET_TX_SOFTIRQ, net_tx_action); 4821 open_softirq(NET_RX_SOFTIRQ, net_rx_action); 4822 4823 hotcpu_notifier(dev_cpu_callback, 0); 4824 dst_init(); 4825 dev_mcast_init(); 4826 rc = 0; 4827 out: 4828 return rc; 4829 } 4830 4831 subsys_initcall(net_dev_init); 4832 4833 EXPORT_SYMBOL(__dev_get_by_index); 4834 EXPORT_SYMBOL(__dev_get_by_name); 4835 EXPORT_SYMBOL(__dev_remove_pack); 4836 EXPORT_SYMBOL(dev_valid_name); 4837 EXPORT_SYMBOL(dev_add_pack); 4838 EXPORT_SYMBOL(dev_alloc_name); 4839 EXPORT_SYMBOL(dev_close); 4840 EXPORT_SYMBOL(dev_get_by_flags); 4841 EXPORT_SYMBOL(dev_get_by_index); 4842 EXPORT_SYMBOL(dev_get_by_name); 4843 EXPORT_SYMBOL(dev_open); 4844 EXPORT_SYMBOL(dev_queue_xmit); 4845 EXPORT_SYMBOL(dev_remove_pack); 4846 EXPORT_SYMBOL(dev_set_allmulti); 4847 EXPORT_SYMBOL(dev_set_promiscuity); 4848 EXPORT_SYMBOL(dev_change_flags); 4849 EXPORT_SYMBOL(dev_set_mtu); 4850 EXPORT_SYMBOL(dev_set_mac_address); 4851 EXPORT_SYMBOL(free_netdev); 4852 EXPORT_SYMBOL(netdev_boot_setup_check); 4853 EXPORT_SYMBOL(netdev_set_master); 4854 EXPORT_SYMBOL(netdev_state_change); 4855 EXPORT_SYMBOL(netif_receive_skb); 4856 EXPORT_SYMBOL(netif_rx); 4857 EXPORT_SYMBOL(register_gifconf); 4858 EXPORT_SYMBOL(register_netdevice); 4859 EXPORT_SYMBOL(register_netdevice_notifier); 4860 EXPORT_SYMBOL(skb_checksum_help); 4861 EXPORT_SYMBOL(synchronize_net); 4862 EXPORT_SYMBOL(unregister_netdevice); 4863 EXPORT_SYMBOL(unregister_netdevice_notifier); 4864 EXPORT_SYMBOL(net_enable_timestamp); 4865 EXPORT_SYMBOL(net_disable_timestamp); 4866 EXPORT_SYMBOL(dev_get_flags); 4867 4868 #if defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE) 4869 EXPORT_SYMBOL(br_handle_frame_hook); 4870 EXPORT_SYMBOL(br_fdb_get_hook); 4871 EXPORT_SYMBOL(br_fdb_put_hook); 4872 #endif 4873 4874 #ifdef CONFIG_KMOD 4875 EXPORT_SYMBOL(dev_load); 4876 #endif 4877 4878 EXPORT_PER_CPU_SYMBOL(softnet_data); 4879