xref: /linux/net/core/dev.c (revision 71844fac1ed459024dd2a448d63d5b28b8c87daa)
1 /*
2  *      NET3    Protocol independent device support routines.
3  *
4  *		This program is free software; you can redistribute it and/or
5  *		modify it under the terms of the GNU General Public License
6  *		as published by the Free Software Foundation; either version
7  *		2 of the License, or (at your option) any later version.
8  *
9  *	Derived from the non IP parts of dev.c 1.0.19
10  *              Authors:	Ross Biro
11  *				Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *				Mark Evans, <evansmp@uhura.aston.ac.uk>
13  *
14  *	Additional Authors:
15  *		Florian la Roche <rzsfl@rz.uni-sb.de>
16  *		Alan Cox <gw4pts@gw4pts.ampr.org>
17  *		David Hinds <dahinds@users.sourceforge.net>
18  *		Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19  *		Adam Sulmicki <adam@cfar.umd.edu>
20  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
21  *
22  *	Changes:
23  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
24  *                                      to 2 if register_netdev gets called
25  *                                      before net_dev_init & also removed a
26  *                                      few lines of code in the process.
27  *		Alan Cox	:	device private ioctl copies fields back.
28  *		Alan Cox	:	Transmit queue code does relevant
29  *					stunts to keep the queue safe.
30  *		Alan Cox	:	Fixed double lock.
31  *		Alan Cox	:	Fixed promisc NULL pointer trap
32  *		????????	:	Support the full private ioctl range
33  *		Alan Cox	:	Moved ioctl permission check into
34  *					drivers
35  *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
36  *		Alan Cox	:	100 backlog just doesn't cut it when
37  *					you start doing multicast video 8)
38  *		Alan Cox	:	Rewrote net_bh and list manager.
39  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
40  *		Alan Cox	:	Took out transmit every packet pass
41  *					Saved a few bytes in the ioctl handler
42  *		Alan Cox	:	Network driver sets packet type before
43  *					calling netif_rx. Saves a function
44  *					call a packet.
45  *		Alan Cox	:	Hashed net_bh()
46  *		Richard Kooijman:	Timestamp fixes.
47  *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
48  *		Alan Cox	:	Device lock protection.
49  *              Alan Cox        :       Fixed nasty side effect of device close
50  *					changes.
51  *		Rudi Cilibrasi	:	Pass the right thing to
52  *					set_mac_address()
53  *		Dave Miller	:	32bit quantity for the device lock to
54  *					make it work out on a Sparc.
55  *		Bjorn Ekwall	:	Added KERNELD hack.
56  *		Alan Cox	:	Cleaned up the backlog initialise.
57  *		Craig Metz	:	SIOCGIFCONF fix if space for under
58  *					1 device.
59  *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
60  *					is no device open function.
61  *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
62  *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
63  *		Cyrus Durgin	:	Cleaned for KMOD
64  *		Adam Sulmicki   :	Bug Fix : Network Device Unload
65  *					A network device unload needs to purge
66  *					the backlog queue.
67  *	Paul Rusty Russell	:	SIOCSIFNAME
68  *              Pekka Riikonen  :	Netdev boot-time settings code
69  *              Andrew Morton   :       Make unregister_netdevice wait
70  *                                      indefinitely on dev->refcnt
71  *              J Hadi Salim    :       - Backlog queue sampling
72  *				        - netif_rx() feedback
73  */
74 
75 #include <linux/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/sched/mm.h>
85 #include <linux/mutex.h>
86 #include <linux/string.h>
87 #include <linux/mm.h>
88 #include <linux/socket.h>
89 #include <linux/sockios.h>
90 #include <linux/errno.h>
91 #include <linux/interrupt.h>
92 #include <linux/if_ether.h>
93 #include <linux/netdevice.h>
94 #include <linux/etherdevice.h>
95 #include <linux/ethtool.h>
96 #include <linux/skbuff.h>
97 #include <linux/bpf.h>
98 #include <linux/bpf_trace.h>
99 #include <net/net_namespace.h>
100 #include <net/sock.h>
101 #include <net/busy_poll.h>
102 #include <linux/rtnetlink.h>
103 #include <linux/stat.h>
104 #include <net/dst.h>
105 #include <net/dst_metadata.h>
106 #include <net/pkt_sched.h>
107 #include <net/pkt_cls.h>
108 #include <net/checksum.h>
109 #include <net/xfrm.h>
110 #include <linux/highmem.h>
111 #include <linux/init.h>
112 #include <linux/module.h>
113 #include <linux/netpoll.h>
114 #include <linux/rcupdate.h>
115 #include <linux/delay.h>
116 #include <net/iw_handler.h>
117 #include <asm/current.h>
118 #include <linux/audit.h>
119 #include <linux/dmaengine.h>
120 #include <linux/err.h>
121 #include <linux/ctype.h>
122 #include <linux/if_arp.h>
123 #include <linux/if_vlan.h>
124 #include <linux/ip.h>
125 #include <net/ip.h>
126 #include <net/mpls.h>
127 #include <linux/ipv6.h>
128 #include <linux/in.h>
129 #include <linux/jhash.h>
130 #include <linux/random.h>
131 #include <trace/events/napi.h>
132 #include <trace/events/net.h>
133 #include <trace/events/skb.h>
134 #include <linux/pci.h>
135 #include <linux/inetdevice.h>
136 #include <linux/cpu_rmap.h>
137 #include <linux/static_key.h>
138 #include <linux/hashtable.h>
139 #include <linux/vmalloc.h>
140 #include <linux/if_macvlan.h>
141 #include <linux/errqueue.h>
142 #include <linux/hrtimer.h>
143 #include <linux/netfilter_ingress.h>
144 #include <linux/crash_dump.h>
145 #include <linux/sctp.h>
146 #include <net/udp_tunnel.h>
147 #include <linux/net_namespace.h>
148 
149 #include "net-sysfs.h"
150 
151 #define MAX_GRO_SKBS 8
152 
153 /* This should be increased if a protocol with a bigger head is added. */
154 #define GRO_MAX_HEAD (MAX_HEADER + 128)
155 
156 static DEFINE_SPINLOCK(ptype_lock);
157 static DEFINE_SPINLOCK(offload_lock);
158 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
159 struct list_head ptype_all __read_mostly;	/* Taps */
160 static struct list_head offload_base __read_mostly;
161 
162 static int netif_rx_internal(struct sk_buff *skb);
163 static int call_netdevice_notifiers_info(unsigned long val,
164 					 struct netdev_notifier_info *info);
165 static struct napi_struct *napi_by_id(unsigned int napi_id);
166 
167 /*
168  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
169  * semaphore.
170  *
171  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
172  *
173  * Writers must hold the rtnl semaphore while they loop through the
174  * dev_base_head list, and hold dev_base_lock for writing when they do the
175  * actual updates.  This allows pure readers to access the list even
176  * while a writer is preparing to update it.
177  *
178  * To put it another way, dev_base_lock is held for writing only to
179  * protect against pure readers; the rtnl semaphore provides the
180  * protection against other writers.
181  *
182  * See, for example usages, register_netdevice() and
183  * unregister_netdevice(), which must be called with the rtnl
184  * semaphore held.
185  */
186 DEFINE_RWLOCK(dev_base_lock);
187 EXPORT_SYMBOL(dev_base_lock);
188 
189 static DEFINE_MUTEX(ifalias_mutex);
190 
191 /* protects napi_hash addition/deletion and napi_gen_id */
192 static DEFINE_SPINLOCK(napi_hash_lock);
193 
194 static unsigned int napi_gen_id = NR_CPUS;
195 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
196 
197 static seqcount_t devnet_rename_seq;
198 
199 static inline void dev_base_seq_inc(struct net *net)
200 {
201 	while (++net->dev_base_seq == 0)
202 		;
203 }
204 
205 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
206 {
207 	unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
208 
209 	return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
210 }
211 
212 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
213 {
214 	return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
215 }
216 
217 static inline void rps_lock(struct softnet_data *sd)
218 {
219 #ifdef CONFIG_RPS
220 	spin_lock(&sd->input_pkt_queue.lock);
221 #endif
222 }
223 
224 static inline void rps_unlock(struct softnet_data *sd)
225 {
226 #ifdef CONFIG_RPS
227 	spin_unlock(&sd->input_pkt_queue.lock);
228 #endif
229 }
230 
231 /* Device list insertion */
232 static void list_netdevice(struct net_device *dev)
233 {
234 	struct net *net = dev_net(dev);
235 
236 	ASSERT_RTNL();
237 
238 	write_lock_bh(&dev_base_lock);
239 	list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
240 	hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
241 	hlist_add_head_rcu(&dev->index_hlist,
242 			   dev_index_hash(net, dev->ifindex));
243 	write_unlock_bh(&dev_base_lock);
244 
245 	dev_base_seq_inc(net);
246 }
247 
248 /* Device list removal
249  * caller must respect a RCU grace period before freeing/reusing dev
250  */
251 static void unlist_netdevice(struct net_device *dev)
252 {
253 	ASSERT_RTNL();
254 
255 	/* Unlink dev from the device chain */
256 	write_lock_bh(&dev_base_lock);
257 	list_del_rcu(&dev->dev_list);
258 	hlist_del_rcu(&dev->name_hlist);
259 	hlist_del_rcu(&dev->index_hlist);
260 	write_unlock_bh(&dev_base_lock);
261 
262 	dev_base_seq_inc(dev_net(dev));
263 }
264 
265 /*
266  *	Our notifier list
267  */
268 
269 static RAW_NOTIFIER_HEAD(netdev_chain);
270 
271 /*
272  *	Device drivers call our routines to queue packets here. We empty the
273  *	queue in the local softnet handler.
274  */
275 
276 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
277 EXPORT_PER_CPU_SYMBOL(softnet_data);
278 
279 #ifdef CONFIG_LOCKDEP
280 /*
281  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
282  * according to dev->type
283  */
284 static const unsigned short netdev_lock_type[] = {
285 	 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
286 	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
287 	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
288 	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
289 	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
290 	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
291 	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
292 	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
293 	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
294 	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
295 	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
296 	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
297 	 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
298 	 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
299 	 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
300 
301 static const char *const netdev_lock_name[] = {
302 	"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
303 	"_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
304 	"_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
305 	"_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
306 	"_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
307 	"_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
308 	"_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
309 	"_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
310 	"_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
311 	"_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
312 	"_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
313 	"_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
314 	"_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
315 	"_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
316 	"_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
317 
318 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
319 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
320 
321 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
322 {
323 	int i;
324 
325 	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
326 		if (netdev_lock_type[i] == dev_type)
327 			return i;
328 	/* the last key is used by default */
329 	return ARRAY_SIZE(netdev_lock_type) - 1;
330 }
331 
332 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
333 						 unsigned short dev_type)
334 {
335 	int i;
336 
337 	i = netdev_lock_pos(dev_type);
338 	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
339 				   netdev_lock_name[i]);
340 }
341 
342 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
343 {
344 	int i;
345 
346 	i = netdev_lock_pos(dev->type);
347 	lockdep_set_class_and_name(&dev->addr_list_lock,
348 				   &netdev_addr_lock_key[i],
349 				   netdev_lock_name[i]);
350 }
351 #else
352 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
353 						 unsigned short dev_type)
354 {
355 }
356 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
357 {
358 }
359 #endif
360 
361 /*******************************************************************************
362  *
363  *		Protocol management and registration routines
364  *
365  *******************************************************************************/
366 
367 
368 /*
369  *	Add a protocol ID to the list. Now that the input handler is
370  *	smarter we can dispense with all the messy stuff that used to be
371  *	here.
372  *
373  *	BEWARE!!! Protocol handlers, mangling input packets,
374  *	MUST BE last in hash buckets and checking protocol handlers
375  *	MUST start from promiscuous ptype_all chain in net_bh.
376  *	It is true now, do not change it.
377  *	Explanation follows: if protocol handler, mangling packet, will
378  *	be the first on list, it is not able to sense, that packet
379  *	is cloned and should be copied-on-write, so that it will
380  *	change it and subsequent readers will get broken packet.
381  *							--ANK (980803)
382  */
383 
384 static inline struct list_head *ptype_head(const struct packet_type *pt)
385 {
386 	if (pt->type == htons(ETH_P_ALL))
387 		return pt->dev ? &pt->dev->ptype_all : &ptype_all;
388 	else
389 		return pt->dev ? &pt->dev->ptype_specific :
390 				 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
391 }
392 
393 /**
394  *	dev_add_pack - add packet handler
395  *	@pt: packet type declaration
396  *
397  *	Add a protocol handler to the networking stack. The passed &packet_type
398  *	is linked into kernel lists and may not be freed until it has been
399  *	removed from the kernel lists.
400  *
401  *	This call does not sleep therefore it can not
402  *	guarantee all CPU's that are in middle of receiving packets
403  *	will see the new packet type (until the next received packet).
404  */
405 
406 void dev_add_pack(struct packet_type *pt)
407 {
408 	struct list_head *head = ptype_head(pt);
409 
410 	spin_lock(&ptype_lock);
411 	list_add_rcu(&pt->list, head);
412 	spin_unlock(&ptype_lock);
413 }
414 EXPORT_SYMBOL(dev_add_pack);
415 
416 /**
417  *	__dev_remove_pack	 - remove packet handler
418  *	@pt: packet type declaration
419  *
420  *	Remove a protocol handler that was previously added to the kernel
421  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
422  *	from the kernel lists and can be freed or reused once this function
423  *	returns.
424  *
425  *      The packet type might still be in use by receivers
426  *	and must not be freed until after all the CPU's have gone
427  *	through a quiescent state.
428  */
429 void __dev_remove_pack(struct packet_type *pt)
430 {
431 	struct list_head *head = ptype_head(pt);
432 	struct packet_type *pt1;
433 
434 	spin_lock(&ptype_lock);
435 
436 	list_for_each_entry(pt1, head, list) {
437 		if (pt == pt1) {
438 			list_del_rcu(&pt->list);
439 			goto out;
440 		}
441 	}
442 
443 	pr_warn("dev_remove_pack: %p not found\n", pt);
444 out:
445 	spin_unlock(&ptype_lock);
446 }
447 EXPORT_SYMBOL(__dev_remove_pack);
448 
449 /**
450  *	dev_remove_pack	 - remove packet handler
451  *	@pt: packet type declaration
452  *
453  *	Remove a protocol handler that was previously added to the kernel
454  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
455  *	from the kernel lists and can be freed or reused once this function
456  *	returns.
457  *
458  *	This call sleeps to guarantee that no CPU is looking at the packet
459  *	type after return.
460  */
461 void dev_remove_pack(struct packet_type *pt)
462 {
463 	__dev_remove_pack(pt);
464 
465 	synchronize_net();
466 }
467 EXPORT_SYMBOL(dev_remove_pack);
468 
469 
470 /**
471  *	dev_add_offload - register offload handlers
472  *	@po: protocol offload declaration
473  *
474  *	Add protocol offload handlers to the networking stack. The passed
475  *	&proto_offload is linked into kernel lists and may not be freed until
476  *	it has been removed from the kernel lists.
477  *
478  *	This call does not sleep therefore it can not
479  *	guarantee all CPU's that are in middle of receiving packets
480  *	will see the new offload handlers (until the next received packet).
481  */
482 void dev_add_offload(struct packet_offload *po)
483 {
484 	struct packet_offload *elem;
485 
486 	spin_lock(&offload_lock);
487 	list_for_each_entry(elem, &offload_base, list) {
488 		if (po->priority < elem->priority)
489 			break;
490 	}
491 	list_add_rcu(&po->list, elem->list.prev);
492 	spin_unlock(&offload_lock);
493 }
494 EXPORT_SYMBOL(dev_add_offload);
495 
496 /**
497  *	__dev_remove_offload	 - remove offload handler
498  *	@po: packet offload declaration
499  *
500  *	Remove a protocol offload handler that was previously added to the
501  *	kernel offload handlers by dev_add_offload(). The passed &offload_type
502  *	is removed from the kernel lists and can be freed or reused once this
503  *	function returns.
504  *
505  *      The packet type might still be in use by receivers
506  *	and must not be freed until after all the CPU's have gone
507  *	through a quiescent state.
508  */
509 static void __dev_remove_offload(struct packet_offload *po)
510 {
511 	struct list_head *head = &offload_base;
512 	struct packet_offload *po1;
513 
514 	spin_lock(&offload_lock);
515 
516 	list_for_each_entry(po1, head, list) {
517 		if (po == po1) {
518 			list_del_rcu(&po->list);
519 			goto out;
520 		}
521 	}
522 
523 	pr_warn("dev_remove_offload: %p not found\n", po);
524 out:
525 	spin_unlock(&offload_lock);
526 }
527 
528 /**
529  *	dev_remove_offload	 - remove packet offload handler
530  *	@po: packet offload declaration
531  *
532  *	Remove a packet offload handler that was previously added to the kernel
533  *	offload handlers by dev_add_offload(). The passed &offload_type is
534  *	removed from the kernel lists and can be freed or reused once this
535  *	function returns.
536  *
537  *	This call sleeps to guarantee that no CPU is looking at the packet
538  *	type after return.
539  */
540 void dev_remove_offload(struct packet_offload *po)
541 {
542 	__dev_remove_offload(po);
543 
544 	synchronize_net();
545 }
546 EXPORT_SYMBOL(dev_remove_offload);
547 
548 /******************************************************************************
549  *
550  *		      Device Boot-time Settings Routines
551  *
552  ******************************************************************************/
553 
554 /* Boot time configuration table */
555 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
556 
557 /**
558  *	netdev_boot_setup_add	- add new setup entry
559  *	@name: name of the device
560  *	@map: configured settings for the device
561  *
562  *	Adds new setup entry to the dev_boot_setup list.  The function
563  *	returns 0 on error and 1 on success.  This is a generic routine to
564  *	all netdevices.
565  */
566 static int netdev_boot_setup_add(char *name, struct ifmap *map)
567 {
568 	struct netdev_boot_setup *s;
569 	int i;
570 
571 	s = dev_boot_setup;
572 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
573 		if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
574 			memset(s[i].name, 0, sizeof(s[i].name));
575 			strlcpy(s[i].name, name, IFNAMSIZ);
576 			memcpy(&s[i].map, map, sizeof(s[i].map));
577 			break;
578 		}
579 	}
580 
581 	return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
582 }
583 
584 /**
585  * netdev_boot_setup_check	- check boot time settings
586  * @dev: the netdevice
587  *
588  * Check boot time settings for the device.
589  * The found settings are set for the device to be used
590  * later in the device probing.
591  * Returns 0 if no settings found, 1 if they are.
592  */
593 int netdev_boot_setup_check(struct net_device *dev)
594 {
595 	struct netdev_boot_setup *s = dev_boot_setup;
596 	int i;
597 
598 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
599 		if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
600 		    !strcmp(dev->name, s[i].name)) {
601 			dev->irq = s[i].map.irq;
602 			dev->base_addr = s[i].map.base_addr;
603 			dev->mem_start = s[i].map.mem_start;
604 			dev->mem_end = s[i].map.mem_end;
605 			return 1;
606 		}
607 	}
608 	return 0;
609 }
610 EXPORT_SYMBOL(netdev_boot_setup_check);
611 
612 
613 /**
614  * netdev_boot_base	- get address from boot time settings
615  * @prefix: prefix for network device
616  * @unit: id for network device
617  *
618  * Check boot time settings for the base address of device.
619  * The found settings are set for the device to be used
620  * later in the device probing.
621  * Returns 0 if no settings found.
622  */
623 unsigned long netdev_boot_base(const char *prefix, int unit)
624 {
625 	const struct netdev_boot_setup *s = dev_boot_setup;
626 	char name[IFNAMSIZ];
627 	int i;
628 
629 	sprintf(name, "%s%d", prefix, unit);
630 
631 	/*
632 	 * If device already registered then return base of 1
633 	 * to indicate not to probe for this interface
634 	 */
635 	if (__dev_get_by_name(&init_net, name))
636 		return 1;
637 
638 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
639 		if (!strcmp(name, s[i].name))
640 			return s[i].map.base_addr;
641 	return 0;
642 }
643 
644 /*
645  * Saves at boot time configured settings for any netdevice.
646  */
647 int __init netdev_boot_setup(char *str)
648 {
649 	int ints[5];
650 	struct ifmap map;
651 
652 	str = get_options(str, ARRAY_SIZE(ints), ints);
653 	if (!str || !*str)
654 		return 0;
655 
656 	/* Save settings */
657 	memset(&map, 0, sizeof(map));
658 	if (ints[0] > 0)
659 		map.irq = ints[1];
660 	if (ints[0] > 1)
661 		map.base_addr = ints[2];
662 	if (ints[0] > 2)
663 		map.mem_start = ints[3];
664 	if (ints[0] > 3)
665 		map.mem_end = ints[4];
666 
667 	/* Add new entry to the list */
668 	return netdev_boot_setup_add(str, &map);
669 }
670 
671 __setup("netdev=", netdev_boot_setup);
672 
673 /*******************************************************************************
674  *
675  *			    Device Interface Subroutines
676  *
677  *******************************************************************************/
678 
679 /**
680  *	dev_get_iflink	- get 'iflink' value of a interface
681  *	@dev: targeted interface
682  *
683  *	Indicates the ifindex the interface is linked to.
684  *	Physical interfaces have the same 'ifindex' and 'iflink' values.
685  */
686 
687 int dev_get_iflink(const struct net_device *dev)
688 {
689 	if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
690 		return dev->netdev_ops->ndo_get_iflink(dev);
691 
692 	return dev->ifindex;
693 }
694 EXPORT_SYMBOL(dev_get_iflink);
695 
696 /**
697  *	dev_fill_metadata_dst - Retrieve tunnel egress information.
698  *	@dev: targeted interface
699  *	@skb: The packet.
700  *
701  *	For better visibility of tunnel traffic OVS needs to retrieve
702  *	egress tunnel information for a packet. Following API allows
703  *	user to get this info.
704  */
705 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
706 {
707 	struct ip_tunnel_info *info;
708 
709 	if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
710 		return -EINVAL;
711 
712 	info = skb_tunnel_info_unclone(skb);
713 	if (!info)
714 		return -ENOMEM;
715 	if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
716 		return -EINVAL;
717 
718 	return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
719 }
720 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
721 
722 /**
723  *	__dev_get_by_name	- find a device by its name
724  *	@net: the applicable net namespace
725  *	@name: name to find
726  *
727  *	Find an interface by name. Must be called under RTNL semaphore
728  *	or @dev_base_lock. If the name is found a pointer to the device
729  *	is returned. If the name is not found then %NULL is returned. The
730  *	reference counters are not incremented so the caller must be
731  *	careful with locks.
732  */
733 
734 struct net_device *__dev_get_by_name(struct net *net, const char *name)
735 {
736 	struct net_device *dev;
737 	struct hlist_head *head = dev_name_hash(net, name);
738 
739 	hlist_for_each_entry(dev, head, name_hlist)
740 		if (!strncmp(dev->name, name, IFNAMSIZ))
741 			return dev;
742 
743 	return NULL;
744 }
745 EXPORT_SYMBOL(__dev_get_by_name);
746 
747 /**
748  * dev_get_by_name_rcu	- find a device by its name
749  * @net: the applicable net namespace
750  * @name: name to find
751  *
752  * Find an interface by name.
753  * If the name is found a pointer to the device is returned.
754  * If the name is not found then %NULL is returned.
755  * The reference counters are not incremented so the caller must be
756  * careful with locks. The caller must hold RCU lock.
757  */
758 
759 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
760 {
761 	struct net_device *dev;
762 	struct hlist_head *head = dev_name_hash(net, name);
763 
764 	hlist_for_each_entry_rcu(dev, head, name_hlist)
765 		if (!strncmp(dev->name, name, IFNAMSIZ))
766 			return dev;
767 
768 	return NULL;
769 }
770 EXPORT_SYMBOL(dev_get_by_name_rcu);
771 
772 /**
773  *	dev_get_by_name		- find a device by its name
774  *	@net: the applicable net namespace
775  *	@name: name to find
776  *
777  *	Find an interface by name. This can be called from any
778  *	context and does its own locking. The returned handle has
779  *	the usage count incremented and the caller must use dev_put() to
780  *	release it when it is no longer needed. %NULL is returned if no
781  *	matching device is found.
782  */
783 
784 struct net_device *dev_get_by_name(struct net *net, const char *name)
785 {
786 	struct net_device *dev;
787 
788 	rcu_read_lock();
789 	dev = dev_get_by_name_rcu(net, name);
790 	if (dev)
791 		dev_hold(dev);
792 	rcu_read_unlock();
793 	return dev;
794 }
795 EXPORT_SYMBOL(dev_get_by_name);
796 
797 /**
798  *	__dev_get_by_index - find a device by its ifindex
799  *	@net: the applicable net namespace
800  *	@ifindex: index of device
801  *
802  *	Search for an interface by index. Returns %NULL if the device
803  *	is not found or a pointer to the device. The device has not
804  *	had its reference counter increased so the caller must be careful
805  *	about locking. The caller must hold either the RTNL semaphore
806  *	or @dev_base_lock.
807  */
808 
809 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
810 {
811 	struct net_device *dev;
812 	struct hlist_head *head = dev_index_hash(net, ifindex);
813 
814 	hlist_for_each_entry(dev, head, index_hlist)
815 		if (dev->ifindex == ifindex)
816 			return dev;
817 
818 	return NULL;
819 }
820 EXPORT_SYMBOL(__dev_get_by_index);
821 
822 /**
823  *	dev_get_by_index_rcu - find a device by its ifindex
824  *	@net: the applicable net namespace
825  *	@ifindex: index of device
826  *
827  *	Search for an interface by index. Returns %NULL if the device
828  *	is not found or a pointer to the device. The device has not
829  *	had its reference counter increased so the caller must be careful
830  *	about locking. The caller must hold RCU lock.
831  */
832 
833 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
834 {
835 	struct net_device *dev;
836 	struct hlist_head *head = dev_index_hash(net, ifindex);
837 
838 	hlist_for_each_entry_rcu(dev, head, index_hlist)
839 		if (dev->ifindex == ifindex)
840 			return dev;
841 
842 	return NULL;
843 }
844 EXPORT_SYMBOL(dev_get_by_index_rcu);
845 
846 
847 /**
848  *	dev_get_by_index - find a device by its ifindex
849  *	@net: the applicable net namespace
850  *	@ifindex: index of device
851  *
852  *	Search for an interface by index. Returns NULL if the device
853  *	is not found or a pointer to the device. The device returned has
854  *	had a reference added and the pointer is safe until the user calls
855  *	dev_put to indicate they have finished with it.
856  */
857 
858 struct net_device *dev_get_by_index(struct net *net, int ifindex)
859 {
860 	struct net_device *dev;
861 
862 	rcu_read_lock();
863 	dev = dev_get_by_index_rcu(net, ifindex);
864 	if (dev)
865 		dev_hold(dev);
866 	rcu_read_unlock();
867 	return dev;
868 }
869 EXPORT_SYMBOL(dev_get_by_index);
870 
871 /**
872  *	dev_get_by_napi_id - find a device by napi_id
873  *	@napi_id: ID of the NAPI struct
874  *
875  *	Search for an interface by NAPI ID. Returns %NULL if the device
876  *	is not found or a pointer to the device. The device has not had
877  *	its reference counter increased so the caller must be careful
878  *	about locking. The caller must hold RCU lock.
879  */
880 
881 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
882 {
883 	struct napi_struct *napi;
884 
885 	WARN_ON_ONCE(!rcu_read_lock_held());
886 
887 	if (napi_id < MIN_NAPI_ID)
888 		return NULL;
889 
890 	napi = napi_by_id(napi_id);
891 
892 	return napi ? napi->dev : NULL;
893 }
894 EXPORT_SYMBOL(dev_get_by_napi_id);
895 
896 /**
897  *	netdev_get_name - get a netdevice name, knowing its ifindex.
898  *	@net: network namespace
899  *	@name: a pointer to the buffer where the name will be stored.
900  *	@ifindex: the ifindex of the interface to get the name from.
901  *
902  *	The use of raw_seqcount_begin() and cond_resched() before
903  *	retrying is required as we want to give the writers a chance
904  *	to complete when CONFIG_PREEMPT is not set.
905  */
906 int netdev_get_name(struct net *net, char *name, int ifindex)
907 {
908 	struct net_device *dev;
909 	unsigned int seq;
910 
911 retry:
912 	seq = raw_seqcount_begin(&devnet_rename_seq);
913 	rcu_read_lock();
914 	dev = dev_get_by_index_rcu(net, ifindex);
915 	if (!dev) {
916 		rcu_read_unlock();
917 		return -ENODEV;
918 	}
919 
920 	strcpy(name, dev->name);
921 	rcu_read_unlock();
922 	if (read_seqcount_retry(&devnet_rename_seq, seq)) {
923 		cond_resched();
924 		goto retry;
925 	}
926 
927 	return 0;
928 }
929 
930 /**
931  *	dev_getbyhwaddr_rcu - find a device by its hardware address
932  *	@net: the applicable net namespace
933  *	@type: media type of device
934  *	@ha: hardware address
935  *
936  *	Search for an interface by MAC address. Returns NULL if the device
937  *	is not found or a pointer to the device.
938  *	The caller must hold RCU or RTNL.
939  *	The returned device has not had its ref count increased
940  *	and the caller must therefore be careful about locking
941  *
942  */
943 
944 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
945 				       const char *ha)
946 {
947 	struct net_device *dev;
948 
949 	for_each_netdev_rcu(net, dev)
950 		if (dev->type == type &&
951 		    !memcmp(dev->dev_addr, ha, dev->addr_len))
952 			return dev;
953 
954 	return NULL;
955 }
956 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
957 
958 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
959 {
960 	struct net_device *dev;
961 
962 	ASSERT_RTNL();
963 	for_each_netdev(net, dev)
964 		if (dev->type == type)
965 			return dev;
966 
967 	return NULL;
968 }
969 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
970 
971 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
972 {
973 	struct net_device *dev, *ret = NULL;
974 
975 	rcu_read_lock();
976 	for_each_netdev_rcu(net, dev)
977 		if (dev->type == type) {
978 			dev_hold(dev);
979 			ret = dev;
980 			break;
981 		}
982 	rcu_read_unlock();
983 	return ret;
984 }
985 EXPORT_SYMBOL(dev_getfirstbyhwtype);
986 
987 /**
988  *	__dev_get_by_flags - find any device with given flags
989  *	@net: the applicable net namespace
990  *	@if_flags: IFF_* values
991  *	@mask: bitmask of bits in if_flags to check
992  *
993  *	Search for any interface with the given flags. Returns NULL if a device
994  *	is not found or a pointer to the device. Must be called inside
995  *	rtnl_lock(), and result refcount is unchanged.
996  */
997 
998 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
999 				      unsigned short mask)
1000 {
1001 	struct net_device *dev, *ret;
1002 
1003 	ASSERT_RTNL();
1004 
1005 	ret = NULL;
1006 	for_each_netdev(net, dev) {
1007 		if (((dev->flags ^ if_flags) & mask) == 0) {
1008 			ret = dev;
1009 			break;
1010 		}
1011 	}
1012 	return ret;
1013 }
1014 EXPORT_SYMBOL(__dev_get_by_flags);
1015 
1016 /**
1017  *	dev_valid_name - check if name is okay for network device
1018  *	@name: name string
1019  *
1020  *	Network device names need to be valid file names to
1021  *	to allow sysfs to work.  We also disallow any kind of
1022  *	whitespace.
1023  */
1024 bool dev_valid_name(const char *name)
1025 {
1026 	if (*name == '\0')
1027 		return false;
1028 	if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1029 		return false;
1030 	if (!strcmp(name, ".") || !strcmp(name, ".."))
1031 		return false;
1032 
1033 	while (*name) {
1034 		if (*name == '/' || *name == ':' || isspace(*name))
1035 			return false;
1036 		name++;
1037 	}
1038 	return true;
1039 }
1040 EXPORT_SYMBOL(dev_valid_name);
1041 
1042 /**
1043  *	__dev_alloc_name - allocate a name for a device
1044  *	@net: network namespace to allocate the device name in
1045  *	@name: name format string
1046  *	@buf:  scratch buffer and result name string
1047  *
1048  *	Passed a format string - eg "lt%d" it will try and find a suitable
1049  *	id. It scans list of devices to build up a free map, then chooses
1050  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1051  *	while allocating the name and adding the device in order to avoid
1052  *	duplicates.
1053  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1054  *	Returns the number of the unit assigned or a negative errno code.
1055  */
1056 
1057 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1058 {
1059 	int i = 0;
1060 	const char *p;
1061 	const int max_netdevices = 8*PAGE_SIZE;
1062 	unsigned long *inuse;
1063 	struct net_device *d;
1064 
1065 	if (!dev_valid_name(name))
1066 		return -EINVAL;
1067 
1068 	p = strchr(name, '%');
1069 	if (p) {
1070 		/*
1071 		 * Verify the string as this thing may have come from
1072 		 * the user.  There must be either one "%d" and no other "%"
1073 		 * characters.
1074 		 */
1075 		if (p[1] != 'd' || strchr(p + 2, '%'))
1076 			return -EINVAL;
1077 
1078 		/* Use one page as a bit array of possible slots */
1079 		inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1080 		if (!inuse)
1081 			return -ENOMEM;
1082 
1083 		for_each_netdev(net, d) {
1084 			if (!sscanf(d->name, name, &i))
1085 				continue;
1086 			if (i < 0 || i >= max_netdevices)
1087 				continue;
1088 
1089 			/*  avoid cases where sscanf is not exact inverse of printf */
1090 			snprintf(buf, IFNAMSIZ, name, i);
1091 			if (!strncmp(buf, d->name, IFNAMSIZ))
1092 				set_bit(i, inuse);
1093 		}
1094 
1095 		i = find_first_zero_bit(inuse, max_netdevices);
1096 		free_page((unsigned long) inuse);
1097 	}
1098 
1099 	snprintf(buf, IFNAMSIZ, name, i);
1100 	if (!__dev_get_by_name(net, buf))
1101 		return i;
1102 
1103 	/* It is possible to run out of possible slots
1104 	 * when the name is long and there isn't enough space left
1105 	 * for the digits, or if all bits are used.
1106 	 */
1107 	return -ENFILE;
1108 }
1109 
1110 static int dev_alloc_name_ns(struct net *net,
1111 			     struct net_device *dev,
1112 			     const char *name)
1113 {
1114 	char buf[IFNAMSIZ];
1115 	int ret;
1116 
1117 	BUG_ON(!net);
1118 	ret = __dev_alloc_name(net, name, buf);
1119 	if (ret >= 0)
1120 		strlcpy(dev->name, buf, IFNAMSIZ);
1121 	return ret;
1122 }
1123 
1124 /**
1125  *	dev_alloc_name - allocate a name for a device
1126  *	@dev: device
1127  *	@name: name format string
1128  *
1129  *	Passed a format string - eg "lt%d" it will try and find a suitable
1130  *	id. It scans list of devices to build up a free map, then chooses
1131  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1132  *	while allocating the name and adding the device in order to avoid
1133  *	duplicates.
1134  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1135  *	Returns the number of the unit assigned or a negative errno code.
1136  */
1137 
1138 int dev_alloc_name(struct net_device *dev, const char *name)
1139 {
1140 	return dev_alloc_name_ns(dev_net(dev), dev, name);
1141 }
1142 EXPORT_SYMBOL(dev_alloc_name);
1143 
1144 int dev_get_valid_name(struct net *net, struct net_device *dev,
1145 		       const char *name)
1146 {
1147 	BUG_ON(!net);
1148 
1149 	if (!dev_valid_name(name))
1150 		return -EINVAL;
1151 
1152 	if (strchr(name, '%'))
1153 		return dev_alloc_name_ns(net, dev, name);
1154 	else if (__dev_get_by_name(net, name))
1155 		return -EEXIST;
1156 	else if (dev->name != name)
1157 		strlcpy(dev->name, name, IFNAMSIZ);
1158 
1159 	return 0;
1160 }
1161 EXPORT_SYMBOL(dev_get_valid_name);
1162 
1163 /**
1164  *	dev_change_name - change name of a device
1165  *	@dev: device
1166  *	@newname: name (or format string) must be at least IFNAMSIZ
1167  *
1168  *	Change name of a device, can pass format strings "eth%d".
1169  *	for wildcarding.
1170  */
1171 int dev_change_name(struct net_device *dev, const char *newname)
1172 {
1173 	unsigned char old_assign_type;
1174 	char oldname[IFNAMSIZ];
1175 	int err = 0;
1176 	int ret;
1177 	struct net *net;
1178 
1179 	ASSERT_RTNL();
1180 	BUG_ON(!dev_net(dev));
1181 
1182 	net = dev_net(dev);
1183 	if (dev->flags & IFF_UP)
1184 		return -EBUSY;
1185 
1186 	write_seqcount_begin(&devnet_rename_seq);
1187 
1188 	if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1189 		write_seqcount_end(&devnet_rename_seq);
1190 		return 0;
1191 	}
1192 
1193 	memcpy(oldname, dev->name, IFNAMSIZ);
1194 
1195 	err = dev_get_valid_name(net, dev, newname);
1196 	if (err < 0) {
1197 		write_seqcount_end(&devnet_rename_seq);
1198 		return err;
1199 	}
1200 
1201 	if (oldname[0] && !strchr(oldname, '%'))
1202 		netdev_info(dev, "renamed from %s\n", oldname);
1203 
1204 	old_assign_type = dev->name_assign_type;
1205 	dev->name_assign_type = NET_NAME_RENAMED;
1206 
1207 rollback:
1208 	ret = device_rename(&dev->dev, dev->name);
1209 	if (ret) {
1210 		memcpy(dev->name, oldname, IFNAMSIZ);
1211 		dev->name_assign_type = old_assign_type;
1212 		write_seqcount_end(&devnet_rename_seq);
1213 		return ret;
1214 	}
1215 
1216 	write_seqcount_end(&devnet_rename_seq);
1217 
1218 	netdev_adjacent_rename_links(dev, oldname);
1219 
1220 	write_lock_bh(&dev_base_lock);
1221 	hlist_del_rcu(&dev->name_hlist);
1222 	write_unlock_bh(&dev_base_lock);
1223 
1224 	synchronize_rcu();
1225 
1226 	write_lock_bh(&dev_base_lock);
1227 	hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1228 	write_unlock_bh(&dev_base_lock);
1229 
1230 	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1231 	ret = notifier_to_errno(ret);
1232 
1233 	if (ret) {
1234 		/* err >= 0 after dev_alloc_name() or stores the first errno */
1235 		if (err >= 0) {
1236 			err = ret;
1237 			write_seqcount_begin(&devnet_rename_seq);
1238 			memcpy(dev->name, oldname, IFNAMSIZ);
1239 			memcpy(oldname, newname, IFNAMSIZ);
1240 			dev->name_assign_type = old_assign_type;
1241 			old_assign_type = NET_NAME_RENAMED;
1242 			goto rollback;
1243 		} else {
1244 			pr_err("%s: name change rollback failed: %d\n",
1245 			       dev->name, ret);
1246 		}
1247 	}
1248 
1249 	return err;
1250 }
1251 
1252 /**
1253  *	dev_set_alias - change ifalias of a device
1254  *	@dev: device
1255  *	@alias: name up to IFALIASZ
1256  *	@len: limit of bytes to copy from info
1257  *
1258  *	Set ifalias for a device,
1259  */
1260 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1261 {
1262 	struct dev_ifalias *new_alias = NULL;
1263 
1264 	if (len >= IFALIASZ)
1265 		return -EINVAL;
1266 
1267 	if (len) {
1268 		new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1269 		if (!new_alias)
1270 			return -ENOMEM;
1271 
1272 		memcpy(new_alias->ifalias, alias, len);
1273 		new_alias->ifalias[len] = 0;
1274 	}
1275 
1276 	mutex_lock(&ifalias_mutex);
1277 	rcu_swap_protected(dev->ifalias, new_alias,
1278 			   mutex_is_locked(&ifalias_mutex));
1279 	mutex_unlock(&ifalias_mutex);
1280 
1281 	if (new_alias)
1282 		kfree_rcu(new_alias, rcuhead);
1283 
1284 	return len;
1285 }
1286 EXPORT_SYMBOL(dev_set_alias);
1287 
1288 /**
1289  *	dev_get_alias - get ifalias of a device
1290  *	@dev: device
1291  *	@name: buffer to store name of ifalias
1292  *	@len: size of buffer
1293  *
1294  *	get ifalias for a device.  Caller must make sure dev cannot go
1295  *	away,  e.g. rcu read lock or own a reference count to device.
1296  */
1297 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1298 {
1299 	const struct dev_ifalias *alias;
1300 	int ret = 0;
1301 
1302 	rcu_read_lock();
1303 	alias = rcu_dereference(dev->ifalias);
1304 	if (alias)
1305 		ret = snprintf(name, len, "%s", alias->ifalias);
1306 	rcu_read_unlock();
1307 
1308 	return ret;
1309 }
1310 
1311 /**
1312  *	netdev_features_change - device changes features
1313  *	@dev: device to cause notification
1314  *
1315  *	Called to indicate a device has changed features.
1316  */
1317 void netdev_features_change(struct net_device *dev)
1318 {
1319 	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1320 }
1321 EXPORT_SYMBOL(netdev_features_change);
1322 
1323 /**
1324  *	netdev_state_change - device changes state
1325  *	@dev: device to cause notification
1326  *
1327  *	Called to indicate a device has changed state. This function calls
1328  *	the notifier chains for netdev_chain and sends a NEWLINK message
1329  *	to the routing socket.
1330  */
1331 void netdev_state_change(struct net_device *dev)
1332 {
1333 	if (dev->flags & IFF_UP) {
1334 		struct netdev_notifier_change_info change_info = {
1335 			.info.dev = dev,
1336 		};
1337 
1338 		call_netdevice_notifiers_info(NETDEV_CHANGE,
1339 					      &change_info.info);
1340 		rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1341 	}
1342 }
1343 EXPORT_SYMBOL(netdev_state_change);
1344 
1345 /**
1346  * netdev_notify_peers - notify network peers about existence of @dev
1347  * @dev: network device
1348  *
1349  * Generate traffic such that interested network peers are aware of
1350  * @dev, such as by generating a gratuitous ARP. This may be used when
1351  * a device wants to inform the rest of the network about some sort of
1352  * reconfiguration such as a failover event or virtual machine
1353  * migration.
1354  */
1355 void netdev_notify_peers(struct net_device *dev)
1356 {
1357 	rtnl_lock();
1358 	call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1359 	call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1360 	rtnl_unlock();
1361 }
1362 EXPORT_SYMBOL(netdev_notify_peers);
1363 
1364 static int __dev_open(struct net_device *dev)
1365 {
1366 	const struct net_device_ops *ops = dev->netdev_ops;
1367 	int ret;
1368 
1369 	ASSERT_RTNL();
1370 
1371 	if (!netif_device_present(dev))
1372 		return -ENODEV;
1373 
1374 	/* Block netpoll from trying to do any rx path servicing.
1375 	 * If we don't do this there is a chance ndo_poll_controller
1376 	 * or ndo_poll may be running while we open the device
1377 	 */
1378 	netpoll_poll_disable(dev);
1379 
1380 	ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1381 	ret = notifier_to_errno(ret);
1382 	if (ret)
1383 		return ret;
1384 
1385 	set_bit(__LINK_STATE_START, &dev->state);
1386 
1387 	if (ops->ndo_validate_addr)
1388 		ret = ops->ndo_validate_addr(dev);
1389 
1390 	if (!ret && ops->ndo_open)
1391 		ret = ops->ndo_open(dev);
1392 
1393 	netpoll_poll_enable(dev);
1394 
1395 	if (ret)
1396 		clear_bit(__LINK_STATE_START, &dev->state);
1397 	else {
1398 		dev->flags |= IFF_UP;
1399 		dev_set_rx_mode(dev);
1400 		dev_activate(dev);
1401 		add_device_randomness(dev->dev_addr, dev->addr_len);
1402 	}
1403 
1404 	return ret;
1405 }
1406 
1407 /**
1408  *	dev_open	- prepare an interface for use.
1409  *	@dev:	device to open
1410  *
1411  *	Takes a device from down to up state. The device's private open
1412  *	function is invoked and then the multicast lists are loaded. Finally
1413  *	the device is moved into the up state and a %NETDEV_UP message is
1414  *	sent to the netdev notifier chain.
1415  *
1416  *	Calling this function on an active interface is a nop. On a failure
1417  *	a negative errno code is returned.
1418  */
1419 int dev_open(struct net_device *dev)
1420 {
1421 	int ret;
1422 
1423 	if (dev->flags & IFF_UP)
1424 		return 0;
1425 
1426 	ret = __dev_open(dev);
1427 	if (ret < 0)
1428 		return ret;
1429 
1430 	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1431 	call_netdevice_notifiers(NETDEV_UP, dev);
1432 
1433 	return ret;
1434 }
1435 EXPORT_SYMBOL(dev_open);
1436 
1437 static void __dev_close_many(struct list_head *head)
1438 {
1439 	struct net_device *dev;
1440 
1441 	ASSERT_RTNL();
1442 	might_sleep();
1443 
1444 	list_for_each_entry(dev, head, close_list) {
1445 		/* Temporarily disable netpoll until the interface is down */
1446 		netpoll_poll_disable(dev);
1447 
1448 		call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1449 
1450 		clear_bit(__LINK_STATE_START, &dev->state);
1451 
1452 		/* Synchronize to scheduled poll. We cannot touch poll list, it
1453 		 * can be even on different cpu. So just clear netif_running().
1454 		 *
1455 		 * dev->stop() will invoke napi_disable() on all of it's
1456 		 * napi_struct instances on this device.
1457 		 */
1458 		smp_mb__after_atomic(); /* Commit netif_running(). */
1459 	}
1460 
1461 	dev_deactivate_many(head);
1462 
1463 	list_for_each_entry(dev, head, close_list) {
1464 		const struct net_device_ops *ops = dev->netdev_ops;
1465 
1466 		/*
1467 		 *	Call the device specific close. This cannot fail.
1468 		 *	Only if device is UP
1469 		 *
1470 		 *	We allow it to be called even after a DETACH hot-plug
1471 		 *	event.
1472 		 */
1473 		if (ops->ndo_stop)
1474 			ops->ndo_stop(dev);
1475 
1476 		dev->flags &= ~IFF_UP;
1477 		netpoll_poll_enable(dev);
1478 	}
1479 }
1480 
1481 static void __dev_close(struct net_device *dev)
1482 {
1483 	LIST_HEAD(single);
1484 
1485 	list_add(&dev->close_list, &single);
1486 	__dev_close_many(&single);
1487 	list_del(&single);
1488 }
1489 
1490 void dev_close_many(struct list_head *head, bool unlink)
1491 {
1492 	struct net_device *dev, *tmp;
1493 
1494 	/* Remove the devices that don't need to be closed */
1495 	list_for_each_entry_safe(dev, tmp, head, close_list)
1496 		if (!(dev->flags & IFF_UP))
1497 			list_del_init(&dev->close_list);
1498 
1499 	__dev_close_many(head);
1500 
1501 	list_for_each_entry_safe(dev, tmp, head, close_list) {
1502 		rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1503 		call_netdevice_notifiers(NETDEV_DOWN, dev);
1504 		if (unlink)
1505 			list_del_init(&dev->close_list);
1506 	}
1507 }
1508 EXPORT_SYMBOL(dev_close_many);
1509 
1510 /**
1511  *	dev_close - shutdown an interface.
1512  *	@dev: device to shutdown
1513  *
1514  *	This function moves an active device into down state. A
1515  *	%NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1516  *	is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1517  *	chain.
1518  */
1519 void dev_close(struct net_device *dev)
1520 {
1521 	if (dev->flags & IFF_UP) {
1522 		LIST_HEAD(single);
1523 
1524 		list_add(&dev->close_list, &single);
1525 		dev_close_many(&single, true);
1526 		list_del(&single);
1527 	}
1528 }
1529 EXPORT_SYMBOL(dev_close);
1530 
1531 
1532 /**
1533  *	dev_disable_lro - disable Large Receive Offload on a device
1534  *	@dev: device
1535  *
1536  *	Disable Large Receive Offload (LRO) on a net device.  Must be
1537  *	called under RTNL.  This is needed if received packets may be
1538  *	forwarded to another interface.
1539  */
1540 void dev_disable_lro(struct net_device *dev)
1541 {
1542 	struct net_device *lower_dev;
1543 	struct list_head *iter;
1544 
1545 	dev->wanted_features &= ~NETIF_F_LRO;
1546 	netdev_update_features(dev);
1547 
1548 	if (unlikely(dev->features & NETIF_F_LRO))
1549 		netdev_WARN(dev, "failed to disable LRO!\n");
1550 
1551 	netdev_for_each_lower_dev(dev, lower_dev, iter)
1552 		dev_disable_lro(lower_dev);
1553 }
1554 EXPORT_SYMBOL(dev_disable_lro);
1555 
1556 /**
1557  *	dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1558  *	@dev: device
1559  *
1560  *	Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1561  *	called under RTNL.  This is needed if Generic XDP is installed on
1562  *	the device.
1563  */
1564 static void dev_disable_gro_hw(struct net_device *dev)
1565 {
1566 	dev->wanted_features &= ~NETIF_F_GRO_HW;
1567 	netdev_update_features(dev);
1568 
1569 	if (unlikely(dev->features & NETIF_F_GRO_HW))
1570 		netdev_WARN(dev, "failed to disable GRO_HW!\n");
1571 }
1572 
1573 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1574 {
1575 #define N(val) 						\
1576 	case NETDEV_##val:				\
1577 		return "NETDEV_" __stringify(val);
1578 	switch (cmd) {
1579 	N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1580 	N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1581 	N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1582 	N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
1583 	N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
1584 	N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
1585 	N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1586 	N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1587 	N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1588 	}
1589 #undef N
1590 	return "UNKNOWN_NETDEV_EVENT";
1591 }
1592 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1593 
1594 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1595 				   struct net_device *dev)
1596 {
1597 	struct netdev_notifier_info info = {
1598 		.dev = dev,
1599 	};
1600 
1601 	return nb->notifier_call(nb, val, &info);
1602 }
1603 
1604 static int dev_boot_phase = 1;
1605 
1606 /**
1607  * register_netdevice_notifier - register a network notifier block
1608  * @nb: notifier
1609  *
1610  * Register a notifier to be called when network device events occur.
1611  * The notifier passed is linked into the kernel structures and must
1612  * not be reused until it has been unregistered. A negative errno code
1613  * is returned on a failure.
1614  *
1615  * When registered all registration and up events are replayed
1616  * to the new notifier to allow device to have a race free
1617  * view of the network device list.
1618  */
1619 
1620 int register_netdevice_notifier(struct notifier_block *nb)
1621 {
1622 	struct net_device *dev;
1623 	struct net_device *last;
1624 	struct net *net;
1625 	int err;
1626 
1627 	/* Close race with setup_net() and cleanup_net() */
1628 	down_write(&pernet_ops_rwsem);
1629 	rtnl_lock();
1630 	err = raw_notifier_chain_register(&netdev_chain, nb);
1631 	if (err)
1632 		goto unlock;
1633 	if (dev_boot_phase)
1634 		goto unlock;
1635 	for_each_net(net) {
1636 		for_each_netdev(net, dev) {
1637 			err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1638 			err = notifier_to_errno(err);
1639 			if (err)
1640 				goto rollback;
1641 
1642 			if (!(dev->flags & IFF_UP))
1643 				continue;
1644 
1645 			call_netdevice_notifier(nb, NETDEV_UP, dev);
1646 		}
1647 	}
1648 
1649 unlock:
1650 	rtnl_unlock();
1651 	up_write(&pernet_ops_rwsem);
1652 	return err;
1653 
1654 rollback:
1655 	last = dev;
1656 	for_each_net(net) {
1657 		for_each_netdev(net, dev) {
1658 			if (dev == last)
1659 				goto outroll;
1660 
1661 			if (dev->flags & IFF_UP) {
1662 				call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1663 							dev);
1664 				call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1665 			}
1666 			call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1667 		}
1668 	}
1669 
1670 outroll:
1671 	raw_notifier_chain_unregister(&netdev_chain, nb);
1672 	goto unlock;
1673 }
1674 EXPORT_SYMBOL(register_netdevice_notifier);
1675 
1676 /**
1677  * unregister_netdevice_notifier - unregister a network notifier block
1678  * @nb: notifier
1679  *
1680  * Unregister a notifier previously registered by
1681  * register_netdevice_notifier(). The notifier is unlinked into the
1682  * kernel structures and may then be reused. A negative errno code
1683  * is returned on a failure.
1684  *
1685  * After unregistering unregister and down device events are synthesized
1686  * for all devices on the device list to the removed notifier to remove
1687  * the need for special case cleanup code.
1688  */
1689 
1690 int unregister_netdevice_notifier(struct notifier_block *nb)
1691 {
1692 	struct net_device *dev;
1693 	struct net *net;
1694 	int err;
1695 
1696 	/* Close race with setup_net() and cleanup_net() */
1697 	down_write(&pernet_ops_rwsem);
1698 	rtnl_lock();
1699 	err = raw_notifier_chain_unregister(&netdev_chain, nb);
1700 	if (err)
1701 		goto unlock;
1702 
1703 	for_each_net(net) {
1704 		for_each_netdev(net, dev) {
1705 			if (dev->flags & IFF_UP) {
1706 				call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1707 							dev);
1708 				call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1709 			}
1710 			call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1711 		}
1712 	}
1713 unlock:
1714 	rtnl_unlock();
1715 	up_write(&pernet_ops_rwsem);
1716 	return err;
1717 }
1718 EXPORT_SYMBOL(unregister_netdevice_notifier);
1719 
1720 /**
1721  *	call_netdevice_notifiers_info - call all network notifier blocks
1722  *	@val: value passed unmodified to notifier function
1723  *	@info: notifier information data
1724  *
1725  *	Call all network notifier blocks.  Parameters and return value
1726  *	are as for raw_notifier_call_chain().
1727  */
1728 
1729 static int call_netdevice_notifiers_info(unsigned long val,
1730 					 struct netdev_notifier_info *info)
1731 {
1732 	ASSERT_RTNL();
1733 	return raw_notifier_call_chain(&netdev_chain, val, info);
1734 }
1735 
1736 /**
1737  *	call_netdevice_notifiers - call all network notifier blocks
1738  *      @val: value passed unmodified to notifier function
1739  *      @dev: net_device pointer passed unmodified to notifier function
1740  *
1741  *	Call all network notifier blocks.  Parameters and return value
1742  *	are as for raw_notifier_call_chain().
1743  */
1744 
1745 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1746 {
1747 	struct netdev_notifier_info info = {
1748 		.dev = dev,
1749 	};
1750 
1751 	return call_netdevice_notifiers_info(val, &info);
1752 }
1753 EXPORT_SYMBOL(call_netdevice_notifiers);
1754 
1755 /**
1756  *	call_netdevice_notifiers_mtu - call all network notifier blocks
1757  *	@val: value passed unmodified to notifier function
1758  *	@dev: net_device pointer passed unmodified to notifier function
1759  *	@arg: additional u32 argument passed to the notifier function
1760  *
1761  *	Call all network notifier blocks.  Parameters and return value
1762  *	are as for raw_notifier_call_chain().
1763  */
1764 static int call_netdevice_notifiers_mtu(unsigned long val,
1765 					struct net_device *dev, u32 arg)
1766 {
1767 	struct netdev_notifier_info_ext info = {
1768 		.info.dev = dev,
1769 		.ext.mtu = arg,
1770 	};
1771 
1772 	BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
1773 
1774 	return call_netdevice_notifiers_info(val, &info.info);
1775 }
1776 
1777 #ifdef CONFIG_NET_INGRESS
1778 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
1779 
1780 void net_inc_ingress_queue(void)
1781 {
1782 	static_branch_inc(&ingress_needed_key);
1783 }
1784 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1785 
1786 void net_dec_ingress_queue(void)
1787 {
1788 	static_branch_dec(&ingress_needed_key);
1789 }
1790 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1791 #endif
1792 
1793 #ifdef CONFIG_NET_EGRESS
1794 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
1795 
1796 void net_inc_egress_queue(void)
1797 {
1798 	static_branch_inc(&egress_needed_key);
1799 }
1800 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
1801 
1802 void net_dec_egress_queue(void)
1803 {
1804 	static_branch_dec(&egress_needed_key);
1805 }
1806 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
1807 #endif
1808 
1809 static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
1810 #ifdef HAVE_JUMP_LABEL
1811 static atomic_t netstamp_needed_deferred;
1812 static atomic_t netstamp_wanted;
1813 static void netstamp_clear(struct work_struct *work)
1814 {
1815 	int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1816 	int wanted;
1817 
1818 	wanted = atomic_add_return(deferred, &netstamp_wanted);
1819 	if (wanted > 0)
1820 		static_branch_enable(&netstamp_needed_key);
1821 	else
1822 		static_branch_disable(&netstamp_needed_key);
1823 }
1824 static DECLARE_WORK(netstamp_work, netstamp_clear);
1825 #endif
1826 
1827 void net_enable_timestamp(void)
1828 {
1829 #ifdef HAVE_JUMP_LABEL
1830 	int wanted;
1831 
1832 	while (1) {
1833 		wanted = atomic_read(&netstamp_wanted);
1834 		if (wanted <= 0)
1835 			break;
1836 		if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
1837 			return;
1838 	}
1839 	atomic_inc(&netstamp_needed_deferred);
1840 	schedule_work(&netstamp_work);
1841 #else
1842 	static_branch_inc(&netstamp_needed_key);
1843 #endif
1844 }
1845 EXPORT_SYMBOL(net_enable_timestamp);
1846 
1847 void net_disable_timestamp(void)
1848 {
1849 #ifdef HAVE_JUMP_LABEL
1850 	int wanted;
1851 
1852 	while (1) {
1853 		wanted = atomic_read(&netstamp_wanted);
1854 		if (wanted <= 1)
1855 			break;
1856 		if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
1857 			return;
1858 	}
1859 	atomic_dec(&netstamp_needed_deferred);
1860 	schedule_work(&netstamp_work);
1861 #else
1862 	static_branch_dec(&netstamp_needed_key);
1863 #endif
1864 }
1865 EXPORT_SYMBOL(net_disable_timestamp);
1866 
1867 static inline void net_timestamp_set(struct sk_buff *skb)
1868 {
1869 	skb->tstamp = 0;
1870 	if (static_branch_unlikely(&netstamp_needed_key))
1871 		__net_timestamp(skb);
1872 }
1873 
1874 #define net_timestamp_check(COND, SKB)				\
1875 	if (static_branch_unlikely(&netstamp_needed_key)) {	\
1876 		if ((COND) && !(SKB)->tstamp)			\
1877 			__net_timestamp(SKB);			\
1878 	}							\
1879 
1880 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
1881 {
1882 	unsigned int len;
1883 
1884 	if (!(dev->flags & IFF_UP))
1885 		return false;
1886 
1887 	len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1888 	if (skb->len <= len)
1889 		return true;
1890 
1891 	/* if TSO is enabled, we don't care about the length as the packet
1892 	 * could be forwarded without being segmented before
1893 	 */
1894 	if (skb_is_gso(skb))
1895 		return true;
1896 
1897 	return false;
1898 }
1899 EXPORT_SYMBOL_GPL(is_skb_forwardable);
1900 
1901 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1902 {
1903 	int ret = ____dev_forward_skb(dev, skb);
1904 
1905 	if (likely(!ret)) {
1906 		skb->protocol = eth_type_trans(skb, dev);
1907 		skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1908 	}
1909 
1910 	return ret;
1911 }
1912 EXPORT_SYMBOL_GPL(__dev_forward_skb);
1913 
1914 /**
1915  * dev_forward_skb - loopback an skb to another netif
1916  *
1917  * @dev: destination network device
1918  * @skb: buffer to forward
1919  *
1920  * return values:
1921  *	NET_RX_SUCCESS	(no congestion)
1922  *	NET_RX_DROP     (packet was dropped, but freed)
1923  *
1924  * dev_forward_skb can be used for injecting an skb from the
1925  * start_xmit function of one device into the receive queue
1926  * of another device.
1927  *
1928  * The receiving device may be in another namespace, so
1929  * we have to clear all information in the skb that could
1930  * impact namespace isolation.
1931  */
1932 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1933 {
1934 	return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1935 }
1936 EXPORT_SYMBOL_GPL(dev_forward_skb);
1937 
1938 static inline int deliver_skb(struct sk_buff *skb,
1939 			      struct packet_type *pt_prev,
1940 			      struct net_device *orig_dev)
1941 {
1942 	if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
1943 		return -ENOMEM;
1944 	refcount_inc(&skb->users);
1945 	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1946 }
1947 
1948 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1949 					  struct packet_type **pt,
1950 					  struct net_device *orig_dev,
1951 					  __be16 type,
1952 					  struct list_head *ptype_list)
1953 {
1954 	struct packet_type *ptype, *pt_prev = *pt;
1955 
1956 	list_for_each_entry_rcu(ptype, ptype_list, list) {
1957 		if (ptype->type != type)
1958 			continue;
1959 		if (pt_prev)
1960 			deliver_skb(skb, pt_prev, orig_dev);
1961 		pt_prev = ptype;
1962 	}
1963 	*pt = pt_prev;
1964 }
1965 
1966 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1967 {
1968 	if (!ptype->af_packet_priv || !skb->sk)
1969 		return false;
1970 
1971 	if (ptype->id_match)
1972 		return ptype->id_match(ptype, skb->sk);
1973 	else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1974 		return true;
1975 
1976 	return false;
1977 }
1978 
1979 /**
1980  * dev_nit_active - return true if any network interface taps are in use
1981  *
1982  * @dev: network device to check for the presence of taps
1983  */
1984 bool dev_nit_active(struct net_device *dev)
1985 {
1986 	return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
1987 }
1988 EXPORT_SYMBOL_GPL(dev_nit_active);
1989 
1990 /*
1991  *	Support routine. Sends outgoing frames to any network
1992  *	taps currently in use.
1993  */
1994 
1995 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1996 {
1997 	struct packet_type *ptype;
1998 	struct sk_buff *skb2 = NULL;
1999 	struct packet_type *pt_prev = NULL;
2000 	struct list_head *ptype_list = &ptype_all;
2001 
2002 	rcu_read_lock();
2003 again:
2004 	list_for_each_entry_rcu(ptype, ptype_list, list) {
2005 		if (ptype->ignore_outgoing)
2006 			continue;
2007 
2008 		/* Never send packets back to the socket
2009 		 * they originated from - MvS (miquels@drinkel.ow.org)
2010 		 */
2011 		if (skb_loop_sk(ptype, skb))
2012 			continue;
2013 
2014 		if (pt_prev) {
2015 			deliver_skb(skb2, pt_prev, skb->dev);
2016 			pt_prev = ptype;
2017 			continue;
2018 		}
2019 
2020 		/* need to clone skb, done only once */
2021 		skb2 = skb_clone(skb, GFP_ATOMIC);
2022 		if (!skb2)
2023 			goto out_unlock;
2024 
2025 		net_timestamp_set(skb2);
2026 
2027 		/* skb->nh should be correctly
2028 		 * set by sender, so that the second statement is
2029 		 * just protection against buggy protocols.
2030 		 */
2031 		skb_reset_mac_header(skb2);
2032 
2033 		if (skb_network_header(skb2) < skb2->data ||
2034 		    skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2035 			net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2036 					     ntohs(skb2->protocol),
2037 					     dev->name);
2038 			skb_reset_network_header(skb2);
2039 		}
2040 
2041 		skb2->transport_header = skb2->network_header;
2042 		skb2->pkt_type = PACKET_OUTGOING;
2043 		pt_prev = ptype;
2044 	}
2045 
2046 	if (ptype_list == &ptype_all) {
2047 		ptype_list = &dev->ptype_all;
2048 		goto again;
2049 	}
2050 out_unlock:
2051 	if (pt_prev) {
2052 		if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2053 			pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2054 		else
2055 			kfree_skb(skb2);
2056 	}
2057 	rcu_read_unlock();
2058 }
2059 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2060 
2061 /**
2062  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2063  * @dev: Network device
2064  * @txq: number of queues available
2065  *
2066  * If real_num_tx_queues is changed the tc mappings may no longer be
2067  * valid. To resolve this verify the tc mapping remains valid and if
2068  * not NULL the mapping. With no priorities mapping to this
2069  * offset/count pair it will no longer be used. In the worst case TC0
2070  * is invalid nothing can be done so disable priority mappings. If is
2071  * expected that drivers will fix this mapping if they can before
2072  * calling netif_set_real_num_tx_queues.
2073  */
2074 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2075 {
2076 	int i;
2077 	struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2078 
2079 	/* If TC0 is invalidated disable TC mapping */
2080 	if (tc->offset + tc->count > txq) {
2081 		pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2082 		dev->num_tc = 0;
2083 		return;
2084 	}
2085 
2086 	/* Invalidated prio to tc mappings set to TC0 */
2087 	for (i = 1; i < TC_BITMASK + 1; i++) {
2088 		int q = netdev_get_prio_tc_map(dev, i);
2089 
2090 		tc = &dev->tc_to_txq[q];
2091 		if (tc->offset + tc->count > txq) {
2092 			pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2093 				i, q);
2094 			netdev_set_prio_tc_map(dev, i, 0);
2095 		}
2096 	}
2097 }
2098 
2099 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2100 {
2101 	if (dev->num_tc) {
2102 		struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2103 		int i;
2104 
2105 		/* walk through the TCs and see if it falls into any of them */
2106 		for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2107 			if ((txq - tc->offset) < tc->count)
2108 				return i;
2109 		}
2110 
2111 		/* didn't find it, just return -1 to indicate no match */
2112 		return -1;
2113 	}
2114 
2115 	return 0;
2116 }
2117 EXPORT_SYMBOL(netdev_txq_to_tc);
2118 
2119 #ifdef CONFIG_XPS
2120 struct static_key xps_needed __read_mostly;
2121 EXPORT_SYMBOL(xps_needed);
2122 struct static_key xps_rxqs_needed __read_mostly;
2123 EXPORT_SYMBOL(xps_rxqs_needed);
2124 static DEFINE_MUTEX(xps_map_mutex);
2125 #define xmap_dereference(P)		\
2126 	rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2127 
2128 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2129 			     int tci, u16 index)
2130 {
2131 	struct xps_map *map = NULL;
2132 	int pos;
2133 
2134 	if (dev_maps)
2135 		map = xmap_dereference(dev_maps->attr_map[tci]);
2136 	if (!map)
2137 		return false;
2138 
2139 	for (pos = map->len; pos--;) {
2140 		if (map->queues[pos] != index)
2141 			continue;
2142 
2143 		if (map->len > 1) {
2144 			map->queues[pos] = map->queues[--map->len];
2145 			break;
2146 		}
2147 
2148 		RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2149 		kfree_rcu(map, rcu);
2150 		return false;
2151 	}
2152 
2153 	return true;
2154 }
2155 
2156 static bool remove_xps_queue_cpu(struct net_device *dev,
2157 				 struct xps_dev_maps *dev_maps,
2158 				 int cpu, u16 offset, u16 count)
2159 {
2160 	int num_tc = dev->num_tc ? : 1;
2161 	bool active = false;
2162 	int tci;
2163 
2164 	for (tci = cpu * num_tc; num_tc--; tci++) {
2165 		int i, j;
2166 
2167 		for (i = count, j = offset; i--; j++) {
2168 			if (!remove_xps_queue(dev_maps, tci, j))
2169 				break;
2170 		}
2171 
2172 		active |= i < 0;
2173 	}
2174 
2175 	return active;
2176 }
2177 
2178 static void clean_xps_maps(struct net_device *dev, const unsigned long *mask,
2179 			   struct xps_dev_maps *dev_maps, unsigned int nr_ids,
2180 			   u16 offset, u16 count, bool is_rxqs_map)
2181 {
2182 	bool active = false;
2183 	int i, j;
2184 
2185 	for (j = -1; j = netif_attrmask_next(j, mask, nr_ids),
2186 	     j < nr_ids;)
2187 		active |= remove_xps_queue_cpu(dev, dev_maps, j, offset,
2188 					       count);
2189 	if (!active) {
2190 		if (is_rxqs_map) {
2191 			RCU_INIT_POINTER(dev->xps_rxqs_map, NULL);
2192 		} else {
2193 			RCU_INIT_POINTER(dev->xps_cpus_map, NULL);
2194 
2195 			for (i = offset + (count - 1); count--; i--)
2196 				netdev_queue_numa_node_write(
2197 					netdev_get_tx_queue(dev, i),
2198 							NUMA_NO_NODE);
2199 		}
2200 		kfree_rcu(dev_maps, rcu);
2201 	}
2202 }
2203 
2204 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2205 				   u16 count)
2206 {
2207 	const unsigned long *possible_mask = NULL;
2208 	struct xps_dev_maps *dev_maps;
2209 	unsigned int nr_ids;
2210 
2211 	if (!static_key_false(&xps_needed))
2212 		return;
2213 
2214 	cpus_read_lock();
2215 	mutex_lock(&xps_map_mutex);
2216 
2217 	if (static_key_false(&xps_rxqs_needed)) {
2218 		dev_maps = xmap_dereference(dev->xps_rxqs_map);
2219 		if (dev_maps) {
2220 			nr_ids = dev->num_rx_queues;
2221 			clean_xps_maps(dev, possible_mask, dev_maps, nr_ids,
2222 				       offset, count, true);
2223 		}
2224 	}
2225 
2226 	dev_maps = xmap_dereference(dev->xps_cpus_map);
2227 	if (!dev_maps)
2228 		goto out_no_maps;
2229 
2230 	if (num_possible_cpus() > 1)
2231 		possible_mask = cpumask_bits(cpu_possible_mask);
2232 	nr_ids = nr_cpu_ids;
2233 	clean_xps_maps(dev, possible_mask, dev_maps, nr_ids, offset, count,
2234 		       false);
2235 
2236 out_no_maps:
2237 	if (static_key_enabled(&xps_rxqs_needed))
2238 		static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2239 
2240 	static_key_slow_dec_cpuslocked(&xps_needed);
2241 	mutex_unlock(&xps_map_mutex);
2242 	cpus_read_unlock();
2243 }
2244 
2245 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2246 {
2247 	netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2248 }
2249 
2250 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2251 				      u16 index, bool is_rxqs_map)
2252 {
2253 	struct xps_map *new_map;
2254 	int alloc_len = XPS_MIN_MAP_ALLOC;
2255 	int i, pos;
2256 
2257 	for (pos = 0; map && pos < map->len; pos++) {
2258 		if (map->queues[pos] != index)
2259 			continue;
2260 		return map;
2261 	}
2262 
2263 	/* Need to add tx-queue to this CPU's/rx-queue's existing map */
2264 	if (map) {
2265 		if (pos < map->alloc_len)
2266 			return map;
2267 
2268 		alloc_len = map->alloc_len * 2;
2269 	}
2270 
2271 	/* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2272 	 *  map
2273 	 */
2274 	if (is_rxqs_map)
2275 		new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2276 	else
2277 		new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2278 				       cpu_to_node(attr_index));
2279 	if (!new_map)
2280 		return NULL;
2281 
2282 	for (i = 0; i < pos; i++)
2283 		new_map->queues[i] = map->queues[i];
2284 	new_map->alloc_len = alloc_len;
2285 	new_map->len = pos;
2286 
2287 	return new_map;
2288 }
2289 
2290 /* Must be called under cpus_read_lock */
2291 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2292 			  u16 index, bool is_rxqs_map)
2293 {
2294 	const unsigned long *online_mask = NULL, *possible_mask = NULL;
2295 	struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2296 	int i, j, tci, numa_node_id = -2;
2297 	int maps_sz, num_tc = 1, tc = 0;
2298 	struct xps_map *map, *new_map;
2299 	bool active = false;
2300 	unsigned int nr_ids;
2301 
2302 	if (dev->num_tc) {
2303 		/* Do not allow XPS on subordinate device directly */
2304 		num_tc = dev->num_tc;
2305 		if (num_tc < 0)
2306 			return -EINVAL;
2307 
2308 		/* If queue belongs to subordinate dev use its map */
2309 		dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2310 
2311 		tc = netdev_txq_to_tc(dev, index);
2312 		if (tc < 0)
2313 			return -EINVAL;
2314 	}
2315 
2316 	mutex_lock(&xps_map_mutex);
2317 	if (is_rxqs_map) {
2318 		maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2319 		dev_maps = xmap_dereference(dev->xps_rxqs_map);
2320 		nr_ids = dev->num_rx_queues;
2321 	} else {
2322 		maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2323 		if (num_possible_cpus() > 1) {
2324 			online_mask = cpumask_bits(cpu_online_mask);
2325 			possible_mask = cpumask_bits(cpu_possible_mask);
2326 		}
2327 		dev_maps = xmap_dereference(dev->xps_cpus_map);
2328 		nr_ids = nr_cpu_ids;
2329 	}
2330 
2331 	if (maps_sz < L1_CACHE_BYTES)
2332 		maps_sz = L1_CACHE_BYTES;
2333 
2334 	/* allocate memory for queue storage */
2335 	for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2336 	     j < nr_ids;) {
2337 		if (!new_dev_maps)
2338 			new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2339 		if (!new_dev_maps) {
2340 			mutex_unlock(&xps_map_mutex);
2341 			return -ENOMEM;
2342 		}
2343 
2344 		tci = j * num_tc + tc;
2345 		map = dev_maps ? xmap_dereference(dev_maps->attr_map[tci]) :
2346 				 NULL;
2347 
2348 		map = expand_xps_map(map, j, index, is_rxqs_map);
2349 		if (!map)
2350 			goto error;
2351 
2352 		RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2353 	}
2354 
2355 	if (!new_dev_maps)
2356 		goto out_no_new_maps;
2357 
2358 	static_key_slow_inc_cpuslocked(&xps_needed);
2359 	if (is_rxqs_map)
2360 		static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2361 
2362 	for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2363 	     j < nr_ids;) {
2364 		/* copy maps belonging to foreign traffic classes */
2365 		for (i = tc, tci = j * num_tc; dev_maps && i--; tci++) {
2366 			/* fill in the new device map from the old device map */
2367 			map = xmap_dereference(dev_maps->attr_map[tci]);
2368 			RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2369 		}
2370 
2371 		/* We need to explicitly update tci as prevous loop
2372 		 * could break out early if dev_maps is NULL.
2373 		 */
2374 		tci = j * num_tc + tc;
2375 
2376 		if (netif_attr_test_mask(j, mask, nr_ids) &&
2377 		    netif_attr_test_online(j, online_mask, nr_ids)) {
2378 			/* add tx-queue to CPU/rx-queue maps */
2379 			int pos = 0;
2380 
2381 			map = xmap_dereference(new_dev_maps->attr_map[tci]);
2382 			while ((pos < map->len) && (map->queues[pos] != index))
2383 				pos++;
2384 
2385 			if (pos == map->len)
2386 				map->queues[map->len++] = index;
2387 #ifdef CONFIG_NUMA
2388 			if (!is_rxqs_map) {
2389 				if (numa_node_id == -2)
2390 					numa_node_id = cpu_to_node(j);
2391 				else if (numa_node_id != cpu_to_node(j))
2392 					numa_node_id = -1;
2393 			}
2394 #endif
2395 		} else if (dev_maps) {
2396 			/* fill in the new device map from the old device map */
2397 			map = xmap_dereference(dev_maps->attr_map[tci]);
2398 			RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2399 		}
2400 
2401 		/* copy maps belonging to foreign traffic classes */
2402 		for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2403 			/* fill in the new device map from the old device map */
2404 			map = xmap_dereference(dev_maps->attr_map[tci]);
2405 			RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2406 		}
2407 	}
2408 
2409 	if (is_rxqs_map)
2410 		rcu_assign_pointer(dev->xps_rxqs_map, new_dev_maps);
2411 	else
2412 		rcu_assign_pointer(dev->xps_cpus_map, new_dev_maps);
2413 
2414 	/* Cleanup old maps */
2415 	if (!dev_maps)
2416 		goto out_no_old_maps;
2417 
2418 	for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2419 	     j < nr_ids;) {
2420 		for (i = num_tc, tci = j * num_tc; i--; tci++) {
2421 			new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2422 			map = xmap_dereference(dev_maps->attr_map[tci]);
2423 			if (map && map != new_map)
2424 				kfree_rcu(map, rcu);
2425 		}
2426 	}
2427 
2428 	kfree_rcu(dev_maps, rcu);
2429 
2430 out_no_old_maps:
2431 	dev_maps = new_dev_maps;
2432 	active = true;
2433 
2434 out_no_new_maps:
2435 	if (!is_rxqs_map) {
2436 		/* update Tx queue numa node */
2437 		netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2438 					     (numa_node_id >= 0) ?
2439 					     numa_node_id : NUMA_NO_NODE);
2440 	}
2441 
2442 	if (!dev_maps)
2443 		goto out_no_maps;
2444 
2445 	/* removes tx-queue from unused CPUs/rx-queues */
2446 	for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2447 	     j < nr_ids;) {
2448 		for (i = tc, tci = j * num_tc; i--; tci++)
2449 			active |= remove_xps_queue(dev_maps, tci, index);
2450 		if (!netif_attr_test_mask(j, mask, nr_ids) ||
2451 		    !netif_attr_test_online(j, online_mask, nr_ids))
2452 			active |= remove_xps_queue(dev_maps, tci, index);
2453 		for (i = num_tc - tc, tci++; --i; tci++)
2454 			active |= remove_xps_queue(dev_maps, tci, index);
2455 	}
2456 
2457 	/* free map if not active */
2458 	if (!active) {
2459 		if (is_rxqs_map)
2460 			RCU_INIT_POINTER(dev->xps_rxqs_map, NULL);
2461 		else
2462 			RCU_INIT_POINTER(dev->xps_cpus_map, NULL);
2463 		kfree_rcu(dev_maps, rcu);
2464 	}
2465 
2466 out_no_maps:
2467 	mutex_unlock(&xps_map_mutex);
2468 
2469 	return 0;
2470 error:
2471 	/* remove any maps that we added */
2472 	for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2473 	     j < nr_ids;) {
2474 		for (i = num_tc, tci = j * num_tc; i--; tci++) {
2475 			new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2476 			map = dev_maps ?
2477 			      xmap_dereference(dev_maps->attr_map[tci]) :
2478 			      NULL;
2479 			if (new_map && new_map != map)
2480 				kfree(new_map);
2481 		}
2482 	}
2483 
2484 	mutex_unlock(&xps_map_mutex);
2485 
2486 	kfree(new_dev_maps);
2487 	return -ENOMEM;
2488 }
2489 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2490 
2491 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2492 			u16 index)
2493 {
2494 	int ret;
2495 
2496 	cpus_read_lock();
2497 	ret =  __netif_set_xps_queue(dev, cpumask_bits(mask), index, false);
2498 	cpus_read_unlock();
2499 
2500 	return ret;
2501 }
2502 EXPORT_SYMBOL(netif_set_xps_queue);
2503 
2504 #endif
2505 static void netdev_unbind_all_sb_channels(struct net_device *dev)
2506 {
2507 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2508 
2509 	/* Unbind any subordinate channels */
2510 	while (txq-- != &dev->_tx[0]) {
2511 		if (txq->sb_dev)
2512 			netdev_unbind_sb_channel(dev, txq->sb_dev);
2513 	}
2514 }
2515 
2516 void netdev_reset_tc(struct net_device *dev)
2517 {
2518 #ifdef CONFIG_XPS
2519 	netif_reset_xps_queues_gt(dev, 0);
2520 #endif
2521 	netdev_unbind_all_sb_channels(dev);
2522 
2523 	/* Reset TC configuration of device */
2524 	dev->num_tc = 0;
2525 	memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2526 	memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2527 }
2528 EXPORT_SYMBOL(netdev_reset_tc);
2529 
2530 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2531 {
2532 	if (tc >= dev->num_tc)
2533 		return -EINVAL;
2534 
2535 #ifdef CONFIG_XPS
2536 	netif_reset_xps_queues(dev, offset, count);
2537 #endif
2538 	dev->tc_to_txq[tc].count = count;
2539 	dev->tc_to_txq[tc].offset = offset;
2540 	return 0;
2541 }
2542 EXPORT_SYMBOL(netdev_set_tc_queue);
2543 
2544 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2545 {
2546 	if (num_tc > TC_MAX_QUEUE)
2547 		return -EINVAL;
2548 
2549 #ifdef CONFIG_XPS
2550 	netif_reset_xps_queues_gt(dev, 0);
2551 #endif
2552 	netdev_unbind_all_sb_channels(dev);
2553 
2554 	dev->num_tc = num_tc;
2555 	return 0;
2556 }
2557 EXPORT_SYMBOL(netdev_set_num_tc);
2558 
2559 void netdev_unbind_sb_channel(struct net_device *dev,
2560 			      struct net_device *sb_dev)
2561 {
2562 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2563 
2564 #ifdef CONFIG_XPS
2565 	netif_reset_xps_queues_gt(sb_dev, 0);
2566 #endif
2567 	memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2568 	memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2569 
2570 	while (txq-- != &dev->_tx[0]) {
2571 		if (txq->sb_dev == sb_dev)
2572 			txq->sb_dev = NULL;
2573 	}
2574 }
2575 EXPORT_SYMBOL(netdev_unbind_sb_channel);
2576 
2577 int netdev_bind_sb_channel_queue(struct net_device *dev,
2578 				 struct net_device *sb_dev,
2579 				 u8 tc, u16 count, u16 offset)
2580 {
2581 	/* Make certain the sb_dev and dev are already configured */
2582 	if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2583 		return -EINVAL;
2584 
2585 	/* We cannot hand out queues we don't have */
2586 	if ((offset + count) > dev->real_num_tx_queues)
2587 		return -EINVAL;
2588 
2589 	/* Record the mapping */
2590 	sb_dev->tc_to_txq[tc].count = count;
2591 	sb_dev->tc_to_txq[tc].offset = offset;
2592 
2593 	/* Provide a way for Tx queue to find the tc_to_txq map or
2594 	 * XPS map for itself.
2595 	 */
2596 	while (count--)
2597 		netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2598 
2599 	return 0;
2600 }
2601 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2602 
2603 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2604 {
2605 	/* Do not use a multiqueue device to represent a subordinate channel */
2606 	if (netif_is_multiqueue(dev))
2607 		return -ENODEV;
2608 
2609 	/* We allow channels 1 - 32767 to be used for subordinate channels.
2610 	 * Channel 0 is meant to be "native" mode and used only to represent
2611 	 * the main root device. We allow writing 0 to reset the device back
2612 	 * to normal mode after being used as a subordinate channel.
2613 	 */
2614 	if (channel > S16_MAX)
2615 		return -EINVAL;
2616 
2617 	dev->num_tc = -channel;
2618 
2619 	return 0;
2620 }
2621 EXPORT_SYMBOL(netdev_set_sb_channel);
2622 
2623 /*
2624  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2625  * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2626  */
2627 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2628 {
2629 	bool disabling;
2630 	int rc;
2631 
2632 	disabling = txq < dev->real_num_tx_queues;
2633 
2634 	if (txq < 1 || txq > dev->num_tx_queues)
2635 		return -EINVAL;
2636 
2637 	if (dev->reg_state == NETREG_REGISTERED ||
2638 	    dev->reg_state == NETREG_UNREGISTERING) {
2639 		ASSERT_RTNL();
2640 
2641 		rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2642 						  txq);
2643 		if (rc)
2644 			return rc;
2645 
2646 		if (dev->num_tc)
2647 			netif_setup_tc(dev, txq);
2648 
2649 		dev->real_num_tx_queues = txq;
2650 
2651 		if (disabling) {
2652 			synchronize_net();
2653 			qdisc_reset_all_tx_gt(dev, txq);
2654 #ifdef CONFIG_XPS
2655 			netif_reset_xps_queues_gt(dev, txq);
2656 #endif
2657 		}
2658 	} else {
2659 		dev->real_num_tx_queues = txq;
2660 	}
2661 
2662 	return 0;
2663 }
2664 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2665 
2666 #ifdef CONFIG_SYSFS
2667 /**
2668  *	netif_set_real_num_rx_queues - set actual number of RX queues used
2669  *	@dev: Network device
2670  *	@rxq: Actual number of RX queues
2671  *
2672  *	This must be called either with the rtnl_lock held or before
2673  *	registration of the net device.  Returns 0 on success, or a
2674  *	negative error code.  If called before registration, it always
2675  *	succeeds.
2676  */
2677 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2678 {
2679 	int rc;
2680 
2681 	if (rxq < 1 || rxq > dev->num_rx_queues)
2682 		return -EINVAL;
2683 
2684 	if (dev->reg_state == NETREG_REGISTERED) {
2685 		ASSERT_RTNL();
2686 
2687 		rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2688 						  rxq);
2689 		if (rc)
2690 			return rc;
2691 	}
2692 
2693 	dev->real_num_rx_queues = rxq;
2694 	return 0;
2695 }
2696 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2697 #endif
2698 
2699 /**
2700  * netif_get_num_default_rss_queues - default number of RSS queues
2701  *
2702  * This routine should set an upper limit on the number of RSS queues
2703  * used by default by multiqueue devices.
2704  */
2705 int netif_get_num_default_rss_queues(void)
2706 {
2707 	return is_kdump_kernel() ?
2708 		1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2709 }
2710 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2711 
2712 static void __netif_reschedule(struct Qdisc *q)
2713 {
2714 	struct softnet_data *sd;
2715 	unsigned long flags;
2716 
2717 	local_irq_save(flags);
2718 	sd = this_cpu_ptr(&softnet_data);
2719 	q->next_sched = NULL;
2720 	*sd->output_queue_tailp = q;
2721 	sd->output_queue_tailp = &q->next_sched;
2722 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
2723 	local_irq_restore(flags);
2724 }
2725 
2726 void __netif_schedule(struct Qdisc *q)
2727 {
2728 	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2729 		__netif_reschedule(q);
2730 }
2731 EXPORT_SYMBOL(__netif_schedule);
2732 
2733 struct dev_kfree_skb_cb {
2734 	enum skb_free_reason reason;
2735 };
2736 
2737 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2738 {
2739 	return (struct dev_kfree_skb_cb *)skb->cb;
2740 }
2741 
2742 void netif_schedule_queue(struct netdev_queue *txq)
2743 {
2744 	rcu_read_lock();
2745 	if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2746 		struct Qdisc *q = rcu_dereference(txq->qdisc);
2747 
2748 		__netif_schedule(q);
2749 	}
2750 	rcu_read_unlock();
2751 }
2752 EXPORT_SYMBOL(netif_schedule_queue);
2753 
2754 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2755 {
2756 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2757 		struct Qdisc *q;
2758 
2759 		rcu_read_lock();
2760 		q = rcu_dereference(dev_queue->qdisc);
2761 		__netif_schedule(q);
2762 		rcu_read_unlock();
2763 	}
2764 }
2765 EXPORT_SYMBOL(netif_tx_wake_queue);
2766 
2767 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2768 {
2769 	unsigned long flags;
2770 
2771 	if (unlikely(!skb))
2772 		return;
2773 
2774 	if (likely(refcount_read(&skb->users) == 1)) {
2775 		smp_rmb();
2776 		refcount_set(&skb->users, 0);
2777 	} else if (likely(!refcount_dec_and_test(&skb->users))) {
2778 		return;
2779 	}
2780 	get_kfree_skb_cb(skb)->reason = reason;
2781 	local_irq_save(flags);
2782 	skb->next = __this_cpu_read(softnet_data.completion_queue);
2783 	__this_cpu_write(softnet_data.completion_queue, skb);
2784 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
2785 	local_irq_restore(flags);
2786 }
2787 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2788 
2789 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2790 {
2791 	if (in_irq() || irqs_disabled())
2792 		__dev_kfree_skb_irq(skb, reason);
2793 	else
2794 		dev_kfree_skb(skb);
2795 }
2796 EXPORT_SYMBOL(__dev_kfree_skb_any);
2797 
2798 
2799 /**
2800  * netif_device_detach - mark device as removed
2801  * @dev: network device
2802  *
2803  * Mark device as removed from system and therefore no longer available.
2804  */
2805 void netif_device_detach(struct net_device *dev)
2806 {
2807 	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2808 	    netif_running(dev)) {
2809 		netif_tx_stop_all_queues(dev);
2810 	}
2811 }
2812 EXPORT_SYMBOL(netif_device_detach);
2813 
2814 /**
2815  * netif_device_attach - mark device as attached
2816  * @dev: network device
2817  *
2818  * Mark device as attached from system and restart if needed.
2819  */
2820 void netif_device_attach(struct net_device *dev)
2821 {
2822 	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2823 	    netif_running(dev)) {
2824 		netif_tx_wake_all_queues(dev);
2825 		__netdev_watchdog_up(dev);
2826 	}
2827 }
2828 EXPORT_SYMBOL(netif_device_attach);
2829 
2830 /*
2831  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2832  * to be used as a distribution range.
2833  */
2834 static u16 skb_tx_hash(const struct net_device *dev,
2835 		       const struct net_device *sb_dev,
2836 		       struct sk_buff *skb)
2837 {
2838 	u32 hash;
2839 	u16 qoffset = 0;
2840 	u16 qcount = dev->real_num_tx_queues;
2841 
2842 	if (dev->num_tc) {
2843 		u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2844 
2845 		qoffset = sb_dev->tc_to_txq[tc].offset;
2846 		qcount = sb_dev->tc_to_txq[tc].count;
2847 	}
2848 
2849 	if (skb_rx_queue_recorded(skb)) {
2850 		hash = skb_get_rx_queue(skb);
2851 		while (unlikely(hash >= qcount))
2852 			hash -= qcount;
2853 		return hash + qoffset;
2854 	}
2855 
2856 	return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2857 }
2858 
2859 static void skb_warn_bad_offload(const struct sk_buff *skb)
2860 {
2861 	static const netdev_features_t null_features;
2862 	struct net_device *dev = skb->dev;
2863 	const char *name = "";
2864 
2865 	if (!net_ratelimit())
2866 		return;
2867 
2868 	if (dev) {
2869 		if (dev->dev.parent)
2870 			name = dev_driver_string(dev->dev.parent);
2871 		else
2872 			name = netdev_name(dev);
2873 	}
2874 	WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2875 	     "gso_type=%d ip_summed=%d\n",
2876 	     name, dev ? &dev->features : &null_features,
2877 	     skb->sk ? &skb->sk->sk_route_caps : &null_features,
2878 	     skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2879 	     skb_shinfo(skb)->gso_type, skb->ip_summed);
2880 }
2881 
2882 /*
2883  * Invalidate hardware checksum when packet is to be mangled, and
2884  * complete checksum manually on outgoing path.
2885  */
2886 int skb_checksum_help(struct sk_buff *skb)
2887 {
2888 	__wsum csum;
2889 	int ret = 0, offset;
2890 
2891 	if (skb->ip_summed == CHECKSUM_COMPLETE)
2892 		goto out_set_summed;
2893 
2894 	if (unlikely(skb_shinfo(skb)->gso_size)) {
2895 		skb_warn_bad_offload(skb);
2896 		return -EINVAL;
2897 	}
2898 
2899 	/* Before computing a checksum, we should make sure no frag could
2900 	 * be modified by an external entity : checksum could be wrong.
2901 	 */
2902 	if (skb_has_shared_frag(skb)) {
2903 		ret = __skb_linearize(skb);
2904 		if (ret)
2905 			goto out;
2906 	}
2907 
2908 	offset = skb_checksum_start_offset(skb);
2909 	BUG_ON(offset >= skb_headlen(skb));
2910 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
2911 
2912 	offset += skb->csum_offset;
2913 	BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2914 
2915 	if (skb_cloned(skb) &&
2916 	    !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2917 		ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2918 		if (ret)
2919 			goto out;
2920 	}
2921 
2922 	*(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
2923 out_set_summed:
2924 	skb->ip_summed = CHECKSUM_NONE;
2925 out:
2926 	return ret;
2927 }
2928 EXPORT_SYMBOL(skb_checksum_help);
2929 
2930 int skb_crc32c_csum_help(struct sk_buff *skb)
2931 {
2932 	__le32 crc32c_csum;
2933 	int ret = 0, offset, start;
2934 
2935 	if (skb->ip_summed != CHECKSUM_PARTIAL)
2936 		goto out;
2937 
2938 	if (unlikely(skb_is_gso(skb)))
2939 		goto out;
2940 
2941 	/* Before computing a checksum, we should make sure no frag could
2942 	 * be modified by an external entity : checksum could be wrong.
2943 	 */
2944 	if (unlikely(skb_has_shared_frag(skb))) {
2945 		ret = __skb_linearize(skb);
2946 		if (ret)
2947 			goto out;
2948 	}
2949 	start = skb_checksum_start_offset(skb);
2950 	offset = start + offsetof(struct sctphdr, checksum);
2951 	if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
2952 		ret = -EINVAL;
2953 		goto out;
2954 	}
2955 	if (skb_cloned(skb) &&
2956 	    !skb_clone_writable(skb, offset + sizeof(__le32))) {
2957 		ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2958 		if (ret)
2959 			goto out;
2960 	}
2961 	crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
2962 						  skb->len - start, ~(__u32)0,
2963 						  crc32c_csum_stub));
2964 	*(__le32 *)(skb->data + offset) = crc32c_csum;
2965 	skb->ip_summed = CHECKSUM_NONE;
2966 	skb->csum_not_inet = 0;
2967 out:
2968 	return ret;
2969 }
2970 
2971 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2972 {
2973 	__be16 type = skb->protocol;
2974 
2975 	/* Tunnel gso handlers can set protocol to ethernet. */
2976 	if (type == htons(ETH_P_TEB)) {
2977 		struct ethhdr *eth;
2978 
2979 		if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2980 			return 0;
2981 
2982 		eth = (struct ethhdr *)skb->data;
2983 		type = eth->h_proto;
2984 	}
2985 
2986 	return __vlan_get_protocol(skb, type, depth);
2987 }
2988 
2989 /**
2990  *	skb_mac_gso_segment - mac layer segmentation handler.
2991  *	@skb: buffer to segment
2992  *	@features: features for the output path (see dev->features)
2993  */
2994 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2995 				    netdev_features_t features)
2996 {
2997 	struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2998 	struct packet_offload *ptype;
2999 	int vlan_depth = skb->mac_len;
3000 	__be16 type = skb_network_protocol(skb, &vlan_depth);
3001 
3002 	if (unlikely(!type))
3003 		return ERR_PTR(-EINVAL);
3004 
3005 	__skb_pull(skb, vlan_depth);
3006 
3007 	rcu_read_lock();
3008 	list_for_each_entry_rcu(ptype, &offload_base, list) {
3009 		if (ptype->type == type && ptype->callbacks.gso_segment) {
3010 			segs = ptype->callbacks.gso_segment(skb, features);
3011 			break;
3012 		}
3013 	}
3014 	rcu_read_unlock();
3015 
3016 	__skb_push(skb, skb->data - skb_mac_header(skb));
3017 
3018 	return segs;
3019 }
3020 EXPORT_SYMBOL(skb_mac_gso_segment);
3021 
3022 
3023 /* openvswitch calls this on rx path, so we need a different check.
3024  */
3025 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
3026 {
3027 	if (tx_path)
3028 		return skb->ip_summed != CHECKSUM_PARTIAL &&
3029 		       skb->ip_summed != CHECKSUM_UNNECESSARY;
3030 
3031 	return skb->ip_summed == CHECKSUM_NONE;
3032 }
3033 
3034 /**
3035  *	__skb_gso_segment - Perform segmentation on skb.
3036  *	@skb: buffer to segment
3037  *	@features: features for the output path (see dev->features)
3038  *	@tx_path: whether it is called in TX path
3039  *
3040  *	This function segments the given skb and returns a list of segments.
3041  *
3042  *	It may return NULL if the skb requires no segmentation.  This is
3043  *	only possible when GSO is used for verifying header integrity.
3044  *
3045  *	Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
3046  */
3047 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3048 				  netdev_features_t features, bool tx_path)
3049 {
3050 	struct sk_buff *segs;
3051 
3052 	if (unlikely(skb_needs_check(skb, tx_path))) {
3053 		int err;
3054 
3055 		/* We're going to init ->check field in TCP or UDP header */
3056 		err = skb_cow_head(skb, 0);
3057 		if (err < 0)
3058 			return ERR_PTR(err);
3059 	}
3060 
3061 	/* Only report GSO partial support if it will enable us to
3062 	 * support segmentation on this frame without needing additional
3063 	 * work.
3064 	 */
3065 	if (features & NETIF_F_GSO_PARTIAL) {
3066 		netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
3067 		struct net_device *dev = skb->dev;
3068 
3069 		partial_features |= dev->features & dev->gso_partial_features;
3070 		if (!skb_gso_ok(skb, features | partial_features))
3071 			features &= ~NETIF_F_GSO_PARTIAL;
3072 	}
3073 
3074 	BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
3075 		     sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
3076 
3077 	SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3078 	SKB_GSO_CB(skb)->encap_level = 0;
3079 
3080 	skb_reset_mac_header(skb);
3081 	skb_reset_mac_len(skb);
3082 
3083 	segs = skb_mac_gso_segment(skb, features);
3084 
3085 	if (unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
3086 		skb_warn_bad_offload(skb);
3087 
3088 	return segs;
3089 }
3090 EXPORT_SYMBOL(__skb_gso_segment);
3091 
3092 /* Take action when hardware reception checksum errors are detected. */
3093 #ifdef CONFIG_BUG
3094 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3095 {
3096 	if (net_ratelimit()) {
3097 		pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
3098 		if (dev)
3099 			pr_err("dev features: %pNF\n", &dev->features);
3100 		pr_err("skb len=%u data_len=%u pkt_type=%u gso_size=%u gso_type=%u nr_frags=%u ip_summed=%u csum=%x csum_complete_sw=%d csum_valid=%d csum_level=%u\n",
3101 		       skb->len, skb->data_len, skb->pkt_type,
3102 		       skb_shinfo(skb)->gso_size, skb_shinfo(skb)->gso_type,
3103 		       skb_shinfo(skb)->nr_frags, skb->ip_summed, skb->csum,
3104 		       skb->csum_complete_sw, skb->csum_valid, skb->csum_level);
3105 		dump_stack();
3106 	}
3107 }
3108 EXPORT_SYMBOL(netdev_rx_csum_fault);
3109 #endif
3110 
3111 /* XXX: check that highmem exists at all on the given machine. */
3112 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3113 {
3114 #ifdef CONFIG_HIGHMEM
3115 	int i;
3116 
3117 	if (!(dev->features & NETIF_F_HIGHDMA)) {
3118 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3119 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3120 
3121 			if (PageHighMem(skb_frag_page(frag)))
3122 				return 1;
3123 		}
3124 	}
3125 #endif
3126 	return 0;
3127 }
3128 
3129 /* If MPLS offload request, verify we are testing hardware MPLS features
3130  * instead of standard features for the netdev.
3131  */
3132 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3133 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3134 					   netdev_features_t features,
3135 					   __be16 type)
3136 {
3137 	if (eth_p_mpls(type))
3138 		features &= skb->dev->mpls_features;
3139 
3140 	return features;
3141 }
3142 #else
3143 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3144 					   netdev_features_t features,
3145 					   __be16 type)
3146 {
3147 	return features;
3148 }
3149 #endif
3150 
3151 static netdev_features_t harmonize_features(struct sk_buff *skb,
3152 	netdev_features_t features)
3153 {
3154 	int tmp;
3155 	__be16 type;
3156 
3157 	type = skb_network_protocol(skb, &tmp);
3158 	features = net_mpls_features(skb, features, type);
3159 
3160 	if (skb->ip_summed != CHECKSUM_NONE &&
3161 	    !can_checksum_protocol(features, type)) {
3162 		features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3163 	}
3164 	if (illegal_highdma(skb->dev, skb))
3165 		features &= ~NETIF_F_SG;
3166 
3167 	return features;
3168 }
3169 
3170 netdev_features_t passthru_features_check(struct sk_buff *skb,
3171 					  struct net_device *dev,
3172 					  netdev_features_t features)
3173 {
3174 	return features;
3175 }
3176 EXPORT_SYMBOL(passthru_features_check);
3177 
3178 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3179 					     struct net_device *dev,
3180 					     netdev_features_t features)
3181 {
3182 	return vlan_features_check(skb, features);
3183 }
3184 
3185 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3186 					    struct net_device *dev,
3187 					    netdev_features_t features)
3188 {
3189 	u16 gso_segs = skb_shinfo(skb)->gso_segs;
3190 
3191 	if (gso_segs > dev->gso_max_segs)
3192 		return features & ~NETIF_F_GSO_MASK;
3193 
3194 	/* Support for GSO partial features requires software
3195 	 * intervention before we can actually process the packets
3196 	 * so we need to strip support for any partial features now
3197 	 * and we can pull them back in after we have partially
3198 	 * segmented the frame.
3199 	 */
3200 	if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3201 		features &= ~dev->gso_partial_features;
3202 
3203 	/* Make sure to clear the IPv4 ID mangling feature if the
3204 	 * IPv4 header has the potential to be fragmented.
3205 	 */
3206 	if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3207 		struct iphdr *iph = skb->encapsulation ?
3208 				    inner_ip_hdr(skb) : ip_hdr(skb);
3209 
3210 		if (!(iph->frag_off & htons(IP_DF)))
3211 			features &= ~NETIF_F_TSO_MANGLEID;
3212 	}
3213 
3214 	return features;
3215 }
3216 
3217 netdev_features_t netif_skb_features(struct sk_buff *skb)
3218 {
3219 	struct net_device *dev = skb->dev;
3220 	netdev_features_t features = dev->features;
3221 
3222 	if (skb_is_gso(skb))
3223 		features = gso_features_check(skb, dev, features);
3224 
3225 	/* If encapsulation offload request, verify we are testing
3226 	 * hardware encapsulation features instead of standard
3227 	 * features for the netdev
3228 	 */
3229 	if (skb->encapsulation)
3230 		features &= dev->hw_enc_features;
3231 
3232 	if (skb_vlan_tagged(skb))
3233 		features = netdev_intersect_features(features,
3234 						     dev->vlan_features |
3235 						     NETIF_F_HW_VLAN_CTAG_TX |
3236 						     NETIF_F_HW_VLAN_STAG_TX);
3237 
3238 	if (dev->netdev_ops->ndo_features_check)
3239 		features &= dev->netdev_ops->ndo_features_check(skb, dev,
3240 								features);
3241 	else
3242 		features &= dflt_features_check(skb, dev, features);
3243 
3244 	return harmonize_features(skb, features);
3245 }
3246 EXPORT_SYMBOL(netif_skb_features);
3247 
3248 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3249 		    struct netdev_queue *txq, bool more)
3250 {
3251 	unsigned int len;
3252 	int rc;
3253 
3254 	if (dev_nit_active(dev))
3255 		dev_queue_xmit_nit(skb, dev);
3256 
3257 	len = skb->len;
3258 	trace_net_dev_start_xmit(skb, dev);
3259 	rc = netdev_start_xmit(skb, dev, txq, more);
3260 	trace_net_dev_xmit(skb, rc, dev, len);
3261 
3262 	return rc;
3263 }
3264 
3265 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3266 				    struct netdev_queue *txq, int *ret)
3267 {
3268 	struct sk_buff *skb = first;
3269 	int rc = NETDEV_TX_OK;
3270 
3271 	while (skb) {
3272 		struct sk_buff *next = skb->next;
3273 
3274 		skb_mark_not_on_list(skb);
3275 		rc = xmit_one(skb, dev, txq, next != NULL);
3276 		if (unlikely(!dev_xmit_complete(rc))) {
3277 			skb->next = next;
3278 			goto out;
3279 		}
3280 
3281 		skb = next;
3282 		if (netif_tx_queue_stopped(txq) && skb) {
3283 			rc = NETDEV_TX_BUSY;
3284 			break;
3285 		}
3286 	}
3287 
3288 out:
3289 	*ret = rc;
3290 	return skb;
3291 }
3292 
3293 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3294 					  netdev_features_t features)
3295 {
3296 	if (skb_vlan_tag_present(skb) &&
3297 	    !vlan_hw_offload_capable(features, skb->vlan_proto))
3298 		skb = __vlan_hwaccel_push_inside(skb);
3299 	return skb;
3300 }
3301 
3302 int skb_csum_hwoffload_help(struct sk_buff *skb,
3303 			    const netdev_features_t features)
3304 {
3305 	if (unlikely(skb->csum_not_inet))
3306 		return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3307 			skb_crc32c_csum_help(skb);
3308 
3309 	return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb);
3310 }
3311 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3312 
3313 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3314 {
3315 	netdev_features_t features;
3316 
3317 	features = netif_skb_features(skb);
3318 	skb = validate_xmit_vlan(skb, features);
3319 	if (unlikely(!skb))
3320 		goto out_null;
3321 
3322 	skb = sk_validate_xmit_skb(skb, dev);
3323 	if (unlikely(!skb))
3324 		goto out_null;
3325 
3326 	if (netif_needs_gso(skb, features)) {
3327 		struct sk_buff *segs;
3328 
3329 		segs = skb_gso_segment(skb, features);
3330 		if (IS_ERR(segs)) {
3331 			goto out_kfree_skb;
3332 		} else if (segs) {
3333 			consume_skb(skb);
3334 			skb = segs;
3335 		}
3336 	} else {
3337 		if (skb_needs_linearize(skb, features) &&
3338 		    __skb_linearize(skb))
3339 			goto out_kfree_skb;
3340 
3341 		/* If packet is not checksummed and device does not
3342 		 * support checksumming for this protocol, complete
3343 		 * checksumming here.
3344 		 */
3345 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
3346 			if (skb->encapsulation)
3347 				skb_set_inner_transport_header(skb,
3348 							       skb_checksum_start_offset(skb));
3349 			else
3350 				skb_set_transport_header(skb,
3351 							 skb_checksum_start_offset(skb));
3352 			if (skb_csum_hwoffload_help(skb, features))
3353 				goto out_kfree_skb;
3354 		}
3355 	}
3356 
3357 	skb = validate_xmit_xfrm(skb, features, again);
3358 
3359 	return skb;
3360 
3361 out_kfree_skb:
3362 	kfree_skb(skb);
3363 out_null:
3364 	atomic_long_inc(&dev->tx_dropped);
3365 	return NULL;
3366 }
3367 
3368 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3369 {
3370 	struct sk_buff *next, *head = NULL, *tail;
3371 
3372 	for (; skb != NULL; skb = next) {
3373 		next = skb->next;
3374 		skb_mark_not_on_list(skb);
3375 
3376 		/* in case skb wont be segmented, point to itself */
3377 		skb->prev = skb;
3378 
3379 		skb = validate_xmit_skb(skb, dev, again);
3380 		if (!skb)
3381 			continue;
3382 
3383 		if (!head)
3384 			head = skb;
3385 		else
3386 			tail->next = skb;
3387 		/* If skb was segmented, skb->prev points to
3388 		 * the last segment. If not, it still contains skb.
3389 		 */
3390 		tail = skb->prev;
3391 	}
3392 	return head;
3393 }
3394 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3395 
3396 static void qdisc_pkt_len_init(struct sk_buff *skb)
3397 {
3398 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
3399 
3400 	qdisc_skb_cb(skb)->pkt_len = skb->len;
3401 
3402 	/* To get more precise estimation of bytes sent on wire,
3403 	 * we add to pkt_len the headers size of all segments
3404 	 */
3405 	if (shinfo->gso_size)  {
3406 		unsigned int hdr_len;
3407 		u16 gso_segs = shinfo->gso_segs;
3408 
3409 		/* mac layer + network layer */
3410 		hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3411 
3412 		/* + transport layer */
3413 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3414 			const struct tcphdr *th;
3415 			struct tcphdr _tcphdr;
3416 
3417 			th = skb_header_pointer(skb, skb_transport_offset(skb),
3418 						sizeof(_tcphdr), &_tcphdr);
3419 			if (likely(th))
3420 				hdr_len += __tcp_hdrlen(th);
3421 		} else {
3422 			struct udphdr _udphdr;
3423 
3424 			if (skb_header_pointer(skb, skb_transport_offset(skb),
3425 					       sizeof(_udphdr), &_udphdr))
3426 				hdr_len += sizeof(struct udphdr);
3427 		}
3428 
3429 		if (shinfo->gso_type & SKB_GSO_DODGY)
3430 			gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3431 						shinfo->gso_size);
3432 
3433 		qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3434 	}
3435 }
3436 
3437 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3438 				 struct net_device *dev,
3439 				 struct netdev_queue *txq)
3440 {
3441 	spinlock_t *root_lock = qdisc_lock(q);
3442 	struct sk_buff *to_free = NULL;
3443 	bool contended;
3444 	int rc;
3445 
3446 	qdisc_calculate_pkt_len(skb, q);
3447 
3448 	if (q->flags & TCQ_F_NOLOCK) {
3449 		if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3450 			__qdisc_drop(skb, &to_free);
3451 			rc = NET_XMIT_DROP;
3452 		} else {
3453 			rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3454 			qdisc_run(q);
3455 		}
3456 
3457 		if (unlikely(to_free))
3458 			kfree_skb_list(to_free);
3459 		return rc;
3460 	}
3461 
3462 	/*
3463 	 * Heuristic to force contended enqueues to serialize on a
3464 	 * separate lock before trying to get qdisc main lock.
3465 	 * This permits qdisc->running owner to get the lock more
3466 	 * often and dequeue packets faster.
3467 	 */
3468 	contended = qdisc_is_running(q);
3469 	if (unlikely(contended))
3470 		spin_lock(&q->busylock);
3471 
3472 	spin_lock(root_lock);
3473 	if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3474 		__qdisc_drop(skb, &to_free);
3475 		rc = NET_XMIT_DROP;
3476 	} else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3477 		   qdisc_run_begin(q)) {
3478 		/*
3479 		 * This is a work-conserving queue; there are no old skbs
3480 		 * waiting to be sent out; and the qdisc is not running -
3481 		 * xmit the skb directly.
3482 		 */
3483 
3484 		qdisc_bstats_update(q, skb);
3485 
3486 		if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3487 			if (unlikely(contended)) {
3488 				spin_unlock(&q->busylock);
3489 				contended = false;
3490 			}
3491 			__qdisc_run(q);
3492 		}
3493 
3494 		qdisc_run_end(q);
3495 		rc = NET_XMIT_SUCCESS;
3496 	} else {
3497 		rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3498 		if (qdisc_run_begin(q)) {
3499 			if (unlikely(contended)) {
3500 				spin_unlock(&q->busylock);
3501 				contended = false;
3502 			}
3503 			__qdisc_run(q);
3504 			qdisc_run_end(q);
3505 		}
3506 	}
3507 	spin_unlock(root_lock);
3508 	if (unlikely(to_free))
3509 		kfree_skb_list(to_free);
3510 	if (unlikely(contended))
3511 		spin_unlock(&q->busylock);
3512 	return rc;
3513 }
3514 
3515 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3516 static void skb_update_prio(struct sk_buff *skb)
3517 {
3518 	const struct netprio_map *map;
3519 	const struct sock *sk;
3520 	unsigned int prioidx;
3521 
3522 	if (skb->priority)
3523 		return;
3524 	map = rcu_dereference_bh(skb->dev->priomap);
3525 	if (!map)
3526 		return;
3527 	sk = skb_to_full_sk(skb);
3528 	if (!sk)
3529 		return;
3530 
3531 	prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3532 
3533 	if (prioidx < map->priomap_len)
3534 		skb->priority = map->priomap[prioidx];
3535 }
3536 #else
3537 #define skb_update_prio(skb)
3538 #endif
3539 
3540 DEFINE_PER_CPU(int, xmit_recursion);
3541 EXPORT_SYMBOL(xmit_recursion);
3542 
3543 /**
3544  *	dev_loopback_xmit - loop back @skb
3545  *	@net: network namespace this loopback is happening in
3546  *	@sk:  sk needed to be a netfilter okfn
3547  *	@skb: buffer to transmit
3548  */
3549 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3550 {
3551 	skb_reset_mac_header(skb);
3552 	__skb_pull(skb, skb_network_offset(skb));
3553 	skb->pkt_type = PACKET_LOOPBACK;
3554 	skb->ip_summed = CHECKSUM_UNNECESSARY;
3555 	WARN_ON(!skb_dst(skb));
3556 	skb_dst_force(skb);
3557 	netif_rx_ni(skb);
3558 	return 0;
3559 }
3560 EXPORT_SYMBOL(dev_loopback_xmit);
3561 
3562 #ifdef CONFIG_NET_EGRESS
3563 static struct sk_buff *
3564 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3565 {
3566 	struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3567 	struct tcf_result cl_res;
3568 
3569 	if (!miniq)
3570 		return skb;
3571 
3572 	/* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3573 	mini_qdisc_bstats_cpu_update(miniq, skb);
3574 
3575 	switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
3576 	case TC_ACT_OK:
3577 	case TC_ACT_RECLASSIFY:
3578 		skb->tc_index = TC_H_MIN(cl_res.classid);
3579 		break;
3580 	case TC_ACT_SHOT:
3581 		mini_qdisc_qstats_cpu_drop(miniq);
3582 		*ret = NET_XMIT_DROP;
3583 		kfree_skb(skb);
3584 		return NULL;
3585 	case TC_ACT_STOLEN:
3586 	case TC_ACT_QUEUED:
3587 	case TC_ACT_TRAP:
3588 		*ret = NET_XMIT_SUCCESS;
3589 		consume_skb(skb);
3590 		return NULL;
3591 	case TC_ACT_REDIRECT:
3592 		/* No need to push/pop skb's mac_header here on egress! */
3593 		skb_do_redirect(skb);
3594 		*ret = NET_XMIT_SUCCESS;
3595 		return NULL;
3596 	default:
3597 		break;
3598 	}
3599 
3600 	return skb;
3601 }
3602 #endif /* CONFIG_NET_EGRESS */
3603 
3604 #ifdef CONFIG_XPS
3605 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
3606 			       struct xps_dev_maps *dev_maps, unsigned int tci)
3607 {
3608 	struct xps_map *map;
3609 	int queue_index = -1;
3610 
3611 	if (dev->num_tc) {
3612 		tci *= dev->num_tc;
3613 		tci += netdev_get_prio_tc_map(dev, skb->priority);
3614 	}
3615 
3616 	map = rcu_dereference(dev_maps->attr_map[tci]);
3617 	if (map) {
3618 		if (map->len == 1)
3619 			queue_index = map->queues[0];
3620 		else
3621 			queue_index = map->queues[reciprocal_scale(
3622 						skb_get_hash(skb), map->len)];
3623 		if (unlikely(queue_index >= dev->real_num_tx_queues))
3624 			queue_index = -1;
3625 	}
3626 	return queue_index;
3627 }
3628 #endif
3629 
3630 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
3631 			 struct sk_buff *skb)
3632 {
3633 #ifdef CONFIG_XPS
3634 	struct xps_dev_maps *dev_maps;
3635 	struct sock *sk = skb->sk;
3636 	int queue_index = -1;
3637 
3638 	if (!static_key_false(&xps_needed))
3639 		return -1;
3640 
3641 	rcu_read_lock();
3642 	if (!static_key_false(&xps_rxqs_needed))
3643 		goto get_cpus_map;
3644 
3645 	dev_maps = rcu_dereference(sb_dev->xps_rxqs_map);
3646 	if (dev_maps) {
3647 		int tci = sk_rx_queue_get(sk);
3648 
3649 		if (tci >= 0 && tci < dev->num_rx_queues)
3650 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3651 							  tci);
3652 	}
3653 
3654 get_cpus_map:
3655 	if (queue_index < 0) {
3656 		dev_maps = rcu_dereference(sb_dev->xps_cpus_map);
3657 		if (dev_maps) {
3658 			unsigned int tci = skb->sender_cpu - 1;
3659 
3660 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3661 							  tci);
3662 		}
3663 	}
3664 	rcu_read_unlock();
3665 
3666 	return queue_index;
3667 #else
3668 	return -1;
3669 #endif
3670 }
3671 
3672 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
3673 		     struct net_device *sb_dev,
3674 		     select_queue_fallback_t fallback)
3675 {
3676 	return 0;
3677 }
3678 EXPORT_SYMBOL(dev_pick_tx_zero);
3679 
3680 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
3681 		       struct net_device *sb_dev,
3682 		       select_queue_fallback_t fallback)
3683 {
3684 	return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
3685 }
3686 EXPORT_SYMBOL(dev_pick_tx_cpu_id);
3687 
3688 static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
3689 			    struct net_device *sb_dev)
3690 {
3691 	struct sock *sk = skb->sk;
3692 	int queue_index = sk_tx_queue_get(sk);
3693 
3694 	sb_dev = sb_dev ? : dev;
3695 
3696 	if (queue_index < 0 || skb->ooo_okay ||
3697 	    queue_index >= dev->real_num_tx_queues) {
3698 		int new_index = get_xps_queue(dev, sb_dev, skb);
3699 
3700 		if (new_index < 0)
3701 			new_index = skb_tx_hash(dev, sb_dev, skb);
3702 
3703 		if (queue_index != new_index && sk &&
3704 		    sk_fullsock(sk) &&
3705 		    rcu_access_pointer(sk->sk_dst_cache))
3706 			sk_tx_queue_set(sk, new_index);
3707 
3708 		queue_index = new_index;
3709 	}
3710 
3711 	return queue_index;
3712 }
3713 
3714 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
3715 				    struct sk_buff *skb,
3716 				    struct net_device *sb_dev)
3717 {
3718 	int queue_index = 0;
3719 
3720 #ifdef CONFIG_XPS
3721 	u32 sender_cpu = skb->sender_cpu - 1;
3722 
3723 	if (sender_cpu >= (u32)NR_CPUS)
3724 		skb->sender_cpu = raw_smp_processor_id() + 1;
3725 #endif
3726 
3727 	if (dev->real_num_tx_queues != 1) {
3728 		const struct net_device_ops *ops = dev->netdev_ops;
3729 
3730 		if (ops->ndo_select_queue)
3731 			queue_index = ops->ndo_select_queue(dev, skb, sb_dev,
3732 							    __netdev_pick_tx);
3733 		else
3734 			queue_index = __netdev_pick_tx(dev, skb, sb_dev);
3735 
3736 		queue_index = netdev_cap_txqueue(dev, queue_index);
3737 	}
3738 
3739 	skb_set_queue_mapping(skb, queue_index);
3740 	return netdev_get_tx_queue(dev, queue_index);
3741 }
3742 
3743 /**
3744  *	__dev_queue_xmit - transmit a buffer
3745  *	@skb: buffer to transmit
3746  *	@sb_dev: suboordinate device used for L2 forwarding offload
3747  *
3748  *	Queue a buffer for transmission to a network device. The caller must
3749  *	have set the device and priority and built the buffer before calling
3750  *	this function. The function can be called from an interrupt.
3751  *
3752  *	A negative errno code is returned on a failure. A success does not
3753  *	guarantee the frame will be transmitted as it may be dropped due
3754  *	to congestion or traffic shaping.
3755  *
3756  * -----------------------------------------------------------------------------------
3757  *      I notice this method can also return errors from the queue disciplines,
3758  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
3759  *      be positive.
3760  *
3761  *      Regardless of the return value, the skb is consumed, so it is currently
3762  *      difficult to retry a send to this method.  (You can bump the ref count
3763  *      before sending to hold a reference for retry if you are careful.)
3764  *
3765  *      When calling this method, interrupts MUST be enabled.  This is because
3766  *      the BH enable code must have IRQs enabled so that it will not deadlock.
3767  *          --BLG
3768  */
3769 static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
3770 {
3771 	struct net_device *dev = skb->dev;
3772 	struct netdev_queue *txq;
3773 	struct Qdisc *q;
3774 	int rc = -ENOMEM;
3775 	bool again = false;
3776 
3777 	skb_reset_mac_header(skb);
3778 
3779 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3780 		__skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3781 
3782 	/* Disable soft irqs for various locks below. Also
3783 	 * stops preemption for RCU.
3784 	 */
3785 	rcu_read_lock_bh();
3786 
3787 	skb_update_prio(skb);
3788 
3789 	qdisc_pkt_len_init(skb);
3790 #ifdef CONFIG_NET_CLS_ACT
3791 	skb->tc_at_ingress = 0;
3792 # ifdef CONFIG_NET_EGRESS
3793 	if (static_branch_unlikely(&egress_needed_key)) {
3794 		skb = sch_handle_egress(skb, &rc, dev);
3795 		if (!skb)
3796 			goto out;
3797 	}
3798 # endif
3799 #endif
3800 	/* If device/qdisc don't need skb->dst, release it right now while
3801 	 * its hot in this cpu cache.
3802 	 */
3803 	if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3804 		skb_dst_drop(skb);
3805 	else
3806 		skb_dst_force(skb);
3807 
3808 	txq = netdev_pick_tx(dev, skb, sb_dev);
3809 	q = rcu_dereference_bh(txq->qdisc);
3810 
3811 	trace_net_dev_queue(skb);
3812 	if (q->enqueue) {
3813 		rc = __dev_xmit_skb(skb, q, dev, txq);
3814 		goto out;
3815 	}
3816 
3817 	/* The device has no queue. Common case for software devices:
3818 	 * loopback, all the sorts of tunnels...
3819 
3820 	 * Really, it is unlikely that netif_tx_lock protection is necessary
3821 	 * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
3822 	 * counters.)
3823 	 * However, it is possible, that they rely on protection
3824 	 * made by us here.
3825 
3826 	 * Check this and shot the lock. It is not prone from deadlocks.
3827 	 *Either shot noqueue qdisc, it is even simpler 8)
3828 	 */
3829 	if (dev->flags & IFF_UP) {
3830 		int cpu = smp_processor_id(); /* ok because BHs are off */
3831 
3832 		if (txq->xmit_lock_owner != cpu) {
3833 			if (unlikely(__this_cpu_read(xmit_recursion) >
3834 				     XMIT_RECURSION_LIMIT))
3835 				goto recursion_alert;
3836 
3837 			skb = validate_xmit_skb(skb, dev, &again);
3838 			if (!skb)
3839 				goto out;
3840 
3841 			HARD_TX_LOCK(dev, txq, cpu);
3842 
3843 			if (!netif_xmit_stopped(txq)) {
3844 				__this_cpu_inc(xmit_recursion);
3845 				skb = dev_hard_start_xmit(skb, dev, txq, &rc);
3846 				__this_cpu_dec(xmit_recursion);
3847 				if (dev_xmit_complete(rc)) {
3848 					HARD_TX_UNLOCK(dev, txq);
3849 					goto out;
3850 				}
3851 			}
3852 			HARD_TX_UNLOCK(dev, txq);
3853 			net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3854 					     dev->name);
3855 		} else {
3856 			/* Recursion is detected! It is possible,
3857 			 * unfortunately
3858 			 */
3859 recursion_alert:
3860 			net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3861 					     dev->name);
3862 		}
3863 	}
3864 
3865 	rc = -ENETDOWN;
3866 	rcu_read_unlock_bh();
3867 
3868 	atomic_long_inc(&dev->tx_dropped);
3869 	kfree_skb_list(skb);
3870 	return rc;
3871 out:
3872 	rcu_read_unlock_bh();
3873 	return rc;
3874 }
3875 
3876 int dev_queue_xmit(struct sk_buff *skb)
3877 {
3878 	return __dev_queue_xmit(skb, NULL);
3879 }
3880 EXPORT_SYMBOL(dev_queue_xmit);
3881 
3882 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev)
3883 {
3884 	return __dev_queue_xmit(skb, sb_dev);
3885 }
3886 EXPORT_SYMBOL(dev_queue_xmit_accel);
3887 
3888 int dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
3889 {
3890 	struct net_device *dev = skb->dev;
3891 	struct sk_buff *orig_skb = skb;
3892 	struct netdev_queue *txq;
3893 	int ret = NETDEV_TX_BUSY;
3894 	bool again = false;
3895 
3896 	if (unlikely(!netif_running(dev) ||
3897 		     !netif_carrier_ok(dev)))
3898 		goto drop;
3899 
3900 	skb = validate_xmit_skb_list(skb, dev, &again);
3901 	if (skb != orig_skb)
3902 		goto drop;
3903 
3904 	skb_set_queue_mapping(skb, queue_id);
3905 	txq = skb_get_tx_queue(dev, skb);
3906 
3907 	local_bh_disable();
3908 
3909 	HARD_TX_LOCK(dev, txq, smp_processor_id());
3910 	if (!netif_xmit_frozen_or_drv_stopped(txq))
3911 		ret = netdev_start_xmit(skb, dev, txq, false);
3912 	HARD_TX_UNLOCK(dev, txq);
3913 
3914 	local_bh_enable();
3915 
3916 	if (!dev_xmit_complete(ret))
3917 		kfree_skb(skb);
3918 
3919 	return ret;
3920 drop:
3921 	atomic_long_inc(&dev->tx_dropped);
3922 	kfree_skb_list(skb);
3923 	return NET_XMIT_DROP;
3924 }
3925 EXPORT_SYMBOL(dev_direct_xmit);
3926 
3927 /*************************************************************************
3928  *			Receiver routines
3929  *************************************************************************/
3930 
3931 int netdev_max_backlog __read_mostly = 1000;
3932 EXPORT_SYMBOL(netdev_max_backlog);
3933 
3934 int netdev_tstamp_prequeue __read_mostly = 1;
3935 int netdev_budget __read_mostly = 300;
3936 unsigned int __read_mostly netdev_budget_usecs = 2000;
3937 int weight_p __read_mostly = 64;           /* old backlog weight */
3938 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
3939 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
3940 int dev_rx_weight __read_mostly = 64;
3941 int dev_tx_weight __read_mostly = 64;
3942 
3943 /* Called with irq disabled */
3944 static inline void ____napi_schedule(struct softnet_data *sd,
3945 				     struct napi_struct *napi)
3946 {
3947 	list_add_tail(&napi->poll_list, &sd->poll_list);
3948 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
3949 }
3950 
3951 #ifdef CONFIG_RPS
3952 
3953 /* One global table that all flow-based protocols share. */
3954 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3955 EXPORT_SYMBOL(rps_sock_flow_table);
3956 u32 rps_cpu_mask __read_mostly;
3957 EXPORT_SYMBOL(rps_cpu_mask);
3958 
3959 struct static_key rps_needed __read_mostly;
3960 EXPORT_SYMBOL(rps_needed);
3961 struct static_key rfs_needed __read_mostly;
3962 EXPORT_SYMBOL(rfs_needed);
3963 
3964 static struct rps_dev_flow *
3965 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3966 	    struct rps_dev_flow *rflow, u16 next_cpu)
3967 {
3968 	if (next_cpu < nr_cpu_ids) {
3969 #ifdef CONFIG_RFS_ACCEL
3970 		struct netdev_rx_queue *rxqueue;
3971 		struct rps_dev_flow_table *flow_table;
3972 		struct rps_dev_flow *old_rflow;
3973 		u32 flow_id;
3974 		u16 rxq_index;
3975 		int rc;
3976 
3977 		/* Should we steer this flow to a different hardware queue? */
3978 		if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3979 		    !(dev->features & NETIF_F_NTUPLE))
3980 			goto out;
3981 		rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3982 		if (rxq_index == skb_get_rx_queue(skb))
3983 			goto out;
3984 
3985 		rxqueue = dev->_rx + rxq_index;
3986 		flow_table = rcu_dereference(rxqueue->rps_flow_table);
3987 		if (!flow_table)
3988 			goto out;
3989 		flow_id = skb_get_hash(skb) & flow_table->mask;
3990 		rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3991 							rxq_index, flow_id);
3992 		if (rc < 0)
3993 			goto out;
3994 		old_rflow = rflow;
3995 		rflow = &flow_table->flows[flow_id];
3996 		rflow->filter = rc;
3997 		if (old_rflow->filter == rflow->filter)
3998 			old_rflow->filter = RPS_NO_FILTER;
3999 	out:
4000 #endif
4001 		rflow->last_qtail =
4002 			per_cpu(softnet_data, next_cpu).input_queue_head;
4003 	}
4004 
4005 	rflow->cpu = next_cpu;
4006 	return rflow;
4007 }
4008 
4009 /*
4010  * get_rps_cpu is called from netif_receive_skb and returns the target
4011  * CPU from the RPS map of the receiving queue for a given skb.
4012  * rcu_read_lock must be held on entry.
4013  */
4014 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4015 		       struct rps_dev_flow **rflowp)
4016 {
4017 	const struct rps_sock_flow_table *sock_flow_table;
4018 	struct netdev_rx_queue *rxqueue = dev->_rx;
4019 	struct rps_dev_flow_table *flow_table;
4020 	struct rps_map *map;
4021 	int cpu = -1;
4022 	u32 tcpu;
4023 	u32 hash;
4024 
4025 	if (skb_rx_queue_recorded(skb)) {
4026 		u16 index = skb_get_rx_queue(skb);
4027 
4028 		if (unlikely(index >= dev->real_num_rx_queues)) {
4029 			WARN_ONCE(dev->real_num_rx_queues > 1,
4030 				  "%s received packet on queue %u, but number "
4031 				  "of RX queues is %u\n",
4032 				  dev->name, index, dev->real_num_rx_queues);
4033 			goto done;
4034 		}
4035 		rxqueue += index;
4036 	}
4037 
4038 	/* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4039 
4040 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
4041 	map = rcu_dereference(rxqueue->rps_map);
4042 	if (!flow_table && !map)
4043 		goto done;
4044 
4045 	skb_reset_network_header(skb);
4046 	hash = skb_get_hash(skb);
4047 	if (!hash)
4048 		goto done;
4049 
4050 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
4051 	if (flow_table && sock_flow_table) {
4052 		struct rps_dev_flow *rflow;
4053 		u32 next_cpu;
4054 		u32 ident;
4055 
4056 		/* First check into global flow table if there is a match */
4057 		ident = sock_flow_table->ents[hash & sock_flow_table->mask];
4058 		if ((ident ^ hash) & ~rps_cpu_mask)
4059 			goto try_rps;
4060 
4061 		next_cpu = ident & rps_cpu_mask;
4062 
4063 		/* OK, now we know there is a match,
4064 		 * we can look at the local (per receive queue) flow table
4065 		 */
4066 		rflow = &flow_table->flows[hash & flow_table->mask];
4067 		tcpu = rflow->cpu;
4068 
4069 		/*
4070 		 * If the desired CPU (where last recvmsg was done) is
4071 		 * different from current CPU (one in the rx-queue flow
4072 		 * table entry), switch if one of the following holds:
4073 		 *   - Current CPU is unset (>= nr_cpu_ids).
4074 		 *   - Current CPU is offline.
4075 		 *   - The current CPU's queue tail has advanced beyond the
4076 		 *     last packet that was enqueued using this table entry.
4077 		 *     This guarantees that all previous packets for the flow
4078 		 *     have been dequeued, thus preserving in order delivery.
4079 		 */
4080 		if (unlikely(tcpu != next_cpu) &&
4081 		    (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4082 		     ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4083 		      rflow->last_qtail)) >= 0)) {
4084 			tcpu = next_cpu;
4085 			rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4086 		}
4087 
4088 		if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4089 			*rflowp = rflow;
4090 			cpu = tcpu;
4091 			goto done;
4092 		}
4093 	}
4094 
4095 try_rps:
4096 
4097 	if (map) {
4098 		tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4099 		if (cpu_online(tcpu)) {
4100 			cpu = tcpu;
4101 			goto done;
4102 		}
4103 	}
4104 
4105 done:
4106 	return cpu;
4107 }
4108 
4109 #ifdef CONFIG_RFS_ACCEL
4110 
4111 /**
4112  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4113  * @dev: Device on which the filter was set
4114  * @rxq_index: RX queue index
4115  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4116  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4117  *
4118  * Drivers that implement ndo_rx_flow_steer() should periodically call
4119  * this function for each installed filter and remove the filters for
4120  * which it returns %true.
4121  */
4122 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4123 			 u32 flow_id, u16 filter_id)
4124 {
4125 	struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4126 	struct rps_dev_flow_table *flow_table;
4127 	struct rps_dev_flow *rflow;
4128 	bool expire = true;
4129 	unsigned int cpu;
4130 
4131 	rcu_read_lock();
4132 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
4133 	if (flow_table && flow_id <= flow_table->mask) {
4134 		rflow = &flow_table->flows[flow_id];
4135 		cpu = READ_ONCE(rflow->cpu);
4136 		if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4137 		    ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4138 			   rflow->last_qtail) <
4139 		     (int)(10 * flow_table->mask)))
4140 			expire = false;
4141 	}
4142 	rcu_read_unlock();
4143 	return expire;
4144 }
4145 EXPORT_SYMBOL(rps_may_expire_flow);
4146 
4147 #endif /* CONFIG_RFS_ACCEL */
4148 
4149 /* Called from hardirq (IPI) context */
4150 static void rps_trigger_softirq(void *data)
4151 {
4152 	struct softnet_data *sd = data;
4153 
4154 	____napi_schedule(sd, &sd->backlog);
4155 	sd->received_rps++;
4156 }
4157 
4158 #endif /* CONFIG_RPS */
4159 
4160 /*
4161  * Check if this softnet_data structure is another cpu one
4162  * If yes, queue it to our IPI list and return 1
4163  * If no, return 0
4164  */
4165 static int rps_ipi_queued(struct softnet_data *sd)
4166 {
4167 #ifdef CONFIG_RPS
4168 	struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4169 
4170 	if (sd != mysd) {
4171 		sd->rps_ipi_next = mysd->rps_ipi_list;
4172 		mysd->rps_ipi_list = sd;
4173 
4174 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4175 		return 1;
4176 	}
4177 #endif /* CONFIG_RPS */
4178 	return 0;
4179 }
4180 
4181 #ifdef CONFIG_NET_FLOW_LIMIT
4182 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4183 #endif
4184 
4185 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4186 {
4187 #ifdef CONFIG_NET_FLOW_LIMIT
4188 	struct sd_flow_limit *fl;
4189 	struct softnet_data *sd;
4190 	unsigned int old_flow, new_flow;
4191 
4192 	if (qlen < (netdev_max_backlog >> 1))
4193 		return false;
4194 
4195 	sd = this_cpu_ptr(&softnet_data);
4196 
4197 	rcu_read_lock();
4198 	fl = rcu_dereference(sd->flow_limit);
4199 	if (fl) {
4200 		new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4201 		old_flow = fl->history[fl->history_head];
4202 		fl->history[fl->history_head] = new_flow;
4203 
4204 		fl->history_head++;
4205 		fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4206 
4207 		if (likely(fl->buckets[old_flow]))
4208 			fl->buckets[old_flow]--;
4209 
4210 		if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4211 			fl->count++;
4212 			rcu_read_unlock();
4213 			return true;
4214 		}
4215 	}
4216 	rcu_read_unlock();
4217 #endif
4218 	return false;
4219 }
4220 
4221 /*
4222  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4223  * queue (may be a remote CPU queue).
4224  */
4225 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4226 			      unsigned int *qtail)
4227 {
4228 	struct softnet_data *sd;
4229 	unsigned long flags;
4230 	unsigned int qlen;
4231 
4232 	sd = &per_cpu(softnet_data, cpu);
4233 
4234 	local_irq_save(flags);
4235 
4236 	rps_lock(sd);
4237 	if (!netif_running(skb->dev))
4238 		goto drop;
4239 	qlen = skb_queue_len(&sd->input_pkt_queue);
4240 	if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
4241 		if (qlen) {
4242 enqueue:
4243 			__skb_queue_tail(&sd->input_pkt_queue, skb);
4244 			input_queue_tail_incr_save(sd, qtail);
4245 			rps_unlock(sd);
4246 			local_irq_restore(flags);
4247 			return NET_RX_SUCCESS;
4248 		}
4249 
4250 		/* Schedule NAPI for backlog device
4251 		 * We can use non atomic operation since we own the queue lock
4252 		 */
4253 		if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
4254 			if (!rps_ipi_queued(sd))
4255 				____napi_schedule(sd, &sd->backlog);
4256 		}
4257 		goto enqueue;
4258 	}
4259 
4260 drop:
4261 	sd->dropped++;
4262 	rps_unlock(sd);
4263 
4264 	local_irq_restore(flags);
4265 
4266 	atomic_long_inc(&skb->dev->rx_dropped);
4267 	kfree_skb(skb);
4268 	return NET_RX_DROP;
4269 }
4270 
4271 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4272 {
4273 	struct net_device *dev = skb->dev;
4274 	struct netdev_rx_queue *rxqueue;
4275 
4276 	rxqueue = dev->_rx;
4277 
4278 	if (skb_rx_queue_recorded(skb)) {
4279 		u16 index = skb_get_rx_queue(skb);
4280 
4281 		if (unlikely(index >= dev->real_num_rx_queues)) {
4282 			WARN_ONCE(dev->real_num_rx_queues > 1,
4283 				  "%s received packet on queue %u, but number "
4284 				  "of RX queues is %u\n",
4285 				  dev->name, index, dev->real_num_rx_queues);
4286 
4287 			return rxqueue; /* Return first rxqueue */
4288 		}
4289 		rxqueue += index;
4290 	}
4291 	return rxqueue;
4292 }
4293 
4294 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4295 				     struct xdp_buff *xdp,
4296 				     struct bpf_prog *xdp_prog)
4297 {
4298 	struct netdev_rx_queue *rxqueue;
4299 	void *orig_data, *orig_data_end;
4300 	u32 metalen, act = XDP_DROP;
4301 	__be16 orig_eth_type;
4302 	struct ethhdr *eth;
4303 	bool orig_bcast;
4304 	int hlen, off;
4305 	u32 mac_len;
4306 
4307 	/* Reinjected packets coming from act_mirred or similar should
4308 	 * not get XDP generic processing.
4309 	 */
4310 	if (skb_cloned(skb) || skb_is_tc_redirected(skb))
4311 		return XDP_PASS;
4312 
4313 	/* XDP packets must be linear and must have sufficient headroom
4314 	 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4315 	 * native XDP provides, thus we need to do it here as well.
4316 	 */
4317 	if (skb_is_nonlinear(skb) ||
4318 	    skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4319 		int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4320 		int troom = skb->tail + skb->data_len - skb->end;
4321 
4322 		/* In case we have to go down the path and also linearize,
4323 		 * then lets do the pskb_expand_head() work just once here.
4324 		 */
4325 		if (pskb_expand_head(skb,
4326 				     hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4327 				     troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4328 			goto do_drop;
4329 		if (skb_linearize(skb))
4330 			goto do_drop;
4331 	}
4332 
4333 	/* The XDP program wants to see the packet starting at the MAC
4334 	 * header.
4335 	 */
4336 	mac_len = skb->data - skb_mac_header(skb);
4337 	hlen = skb_headlen(skb) + mac_len;
4338 	xdp->data = skb->data - mac_len;
4339 	xdp->data_meta = xdp->data;
4340 	xdp->data_end = xdp->data + hlen;
4341 	xdp->data_hard_start = skb->data - skb_headroom(skb);
4342 	orig_data_end = xdp->data_end;
4343 	orig_data = xdp->data;
4344 	eth = (struct ethhdr *)xdp->data;
4345 	orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4346 	orig_eth_type = eth->h_proto;
4347 
4348 	rxqueue = netif_get_rxqueue(skb);
4349 	xdp->rxq = &rxqueue->xdp_rxq;
4350 
4351 	act = bpf_prog_run_xdp(xdp_prog, xdp);
4352 
4353 	off = xdp->data - orig_data;
4354 	if (off > 0)
4355 		__skb_pull(skb, off);
4356 	else if (off < 0)
4357 		__skb_push(skb, -off);
4358 	skb->mac_header += off;
4359 
4360 	/* check if bpf_xdp_adjust_tail was used. it can only "shrink"
4361 	 * pckt.
4362 	 */
4363 	off = orig_data_end - xdp->data_end;
4364 	if (off != 0) {
4365 		skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4366 		skb->len -= off;
4367 
4368 	}
4369 
4370 	/* check if XDP changed eth hdr such SKB needs update */
4371 	eth = (struct ethhdr *)xdp->data;
4372 	if ((orig_eth_type != eth->h_proto) ||
4373 	    (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4374 		__skb_push(skb, ETH_HLEN);
4375 		skb->protocol = eth_type_trans(skb, skb->dev);
4376 	}
4377 
4378 	switch (act) {
4379 	case XDP_REDIRECT:
4380 	case XDP_TX:
4381 		__skb_push(skb, mac_len);
4382 		break;
4383 	case XDP_PASS:
4384 		metalen = xdp->data - xdp->data_meta;
4385 		if (metalen)
4386 			skb_metadata_set(skb, metalen);
4387 		break;
4388 	default:
4389 		bpf_warn_invalid_xdp_action(act);
4390 		/* fall through */
4391 	case XDP_ABORTED:
4392 		trace_xdp_exception(skb->dev, xdp_prog, act);
4393 		/* fall through */
4394 	case XDP_DROP:
4395 	do_drop:
4396 		kfree_skb(skb);
4397 		break;
4398 	}
4399 
4400 	return act;
4401 }
4402 
4403 /* When doing generic XDP we have to bypass the qdisc layer and the
4404  * network taps in order to match in-driver-XDP behavior.
4405  */
4406 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4407 {
4408 	struct net_device *dev = skb->dev;
4409 	struct netdev_queue *txq;
4410 	bool free_skb = true;
4411 	int cpu, rc;
4412 
4413 	txq = netdev_pick_tx(dev, skb, NULL);
4414 	cpu = smp_processor_id();
4415 	HARD_TX_LOCK(dev, txq, cpu);
4416 	if (!netif_xmit_stopped(txq)) {
4417 		rc = netdev_start_xmit(skb, dev, txq, 0);
4418 		if (dev_xmit_complete(rc))
4419 			free_skb = false;
4420 	}
4421 	HARD_TX_UNLOCK(dev, txq);
4422 	if (free_skb) {
4423 		trace_xdp_exception(dev, xdp_prog, XDP_TX);
4424 		kfree_skb(skb);
4425 	}
4426 }
4427 EXPORT_SYMBOL_GPL(generic_xdp_tx);
4428 
4429 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
4430 
4431 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4432 {
4433 	if (xdp_prog) {
4434 		struct xdp_buff xdp;
4435 		u32 act;
4436 		int err;
4437 
4438 		act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
4439 		if (act != XDP_PASS) {
4440 			switch (act) {
4441 			case XDP_REDIRECT:
4442 				err = xdp_do_generic_redirect(skb->dev, skb,
4443 							      &xdp, xdp_prog);
4444 				if (err)
4445 					goto out_redir;
4446 				break;
4447 			case XDP_TX:
4448 				generic_xdp_tx(skb, xdp_prog);
4449 				break;
4450 			}
4451 			return XDP_DROP;
4452 		}
4453 	}
4454 	return XDP_PASS;
4455 out_redir:
4456 	kfree_skb(skb);
4457 	return XDP_DROP;
4458 }
4459 EXPORT_SYMBOL_GPL(do_xdp_generic);
4460 
4461 static int netif_rx_internal(struct sk_buff *skb)
4462 {
4463 	int ret;
4464 
4465 	net_timestamp_check(netdev_tstamp_prequeue, skb);
4466 
4467 	trace_netif_rx(skb);
4468 
4469 	if (static_branch_unlikely(&generic_xdp_needed_key)) {
4470 		int ret;
4471 
4472 		preempt_disable();
4473 		rcu_read_lock();
4474 		ret = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
4475 		rcu_read_unlock();
4476 		preempt_enable();
4477 
4478 		/* Consider XDP consuming the packet a success from
4479 		 * the netdev point of view we do not want to count
4480 		 * this as an error.
4481 		 */
4482 		if (ret != XDP_PASS)
4483 			return NET_RX_SUCCESS;
4484 	}
4485 
4486 #ifdef CONFIG_RPS
4487 	if (static_key_false(&rps_needed)) {
4488 		struct rps_dev_flow voidflow, *rflow = &voidflow;
4489 		int cpu;
4490 
4491 		preempt_disable();
4492 		rcu_read_lock();
4493 
4494 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
4495 		if (cpu < 0)
4496 			cpu = smp_processor_id();
4497 
4498 		ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4499 
4500 		rcu_read_unlock();
4501 		preempt_enable();
4502 	} else
4503 #endif
4504 	{
4505 		unsigned int qtail;
4506 
4507 		ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4508 		put_cpu();
4509 	}
4510 	return ret;
4511 }
4512 
4513 /**
4514  *	netif_rx	-	post buffer to the network code
4515  *	@skb: buffer to post
4516  *
4517  *	This function receives a packet from a device driver and queues it for
4518  *	the upper (protocol) levels to process.  It always succeeds. The buffer
4519  *	may be dropped during processing for congestion control or by the
4520  *	protocol layers.
4521  *
4522  *	return values:
4523  *	NET_RX_SUCCESS	(no congestion)
4524  *	NET_RX_DROP     (packet was dropped)
4525  *
4526  */
4527 
4528 int netif_rx(struct sk_buff *skb)
4529 {
4530 	int ret;
4531 
4532 	trace_netif_rx_entry(skb);
4533 
4534 	ret = netif_rx_internal(skb);
4535 	trace_netif_rx_exit(ret);
4536 
4537 	return ret;
4538 }
4539 EXPORT_SYMBOL(netif_rx);
4540 
4541 int netif_rx_ni(struct sk_buff *skb)
4542 {
4543 	int err;
4544 
4545 	trace_netif_rx_ni_entry(skb);
4546 
4547 	preempt_disable();
4548 	err = netif_rx_internal(skb);
4549 	if (local_softirq_pending())
4550 		do_softirq();
4551 	preempt_enable();
4552 	trace_netif_rx_ni_exit(err);
4553 
4554 	return err;
4555 }
4556 EXPORT_SYMBOL(netif_rx_ni);
4557 
4558 static __latent_entropy void net_tx_action(struct softirq_action *h)
4559 {
4560 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4561 
4562 	if (sd->completion_queue) {
4563 		struct sk_buff *clist;
4564 
4565 		local_irq_disable();
4566 		clist = sd->completion_queue;
4567 		sd->completion_queue = NULL;
4568 		local_irq_enable();
4569 
4570 		while (clist) {
4571 			struct sk_buff *skb = clist;
4572 
4573 			clist = clist->next;
4574 
4575 			WARN_ON(refcount_read(&skb->users));
4576 			if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
4577 				trace_consume_skb(skb);
4578 			else
4579 				trace_kfree_skb(skb, net_tx_action);
4580 
4581 			if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
4582 				__kfree_skb(skb);
4583 			else
4584 				__kfree_skb_defer(skb);
4585 		}
4586 
4587 		__kfree_skb_flush();
4588 	}
4589 
4590 	if (sd->output_queue) {
4591 		struct Qdisc *head;
4592 
4593 		local_irq_disable();
4594 		head = sd->output_queue;
4595 		sd->output_queue = NULL;
4596 		sd->output_queue_tailp = &sd->output_queue;
4597 		local_irq_enable();
4598 
4599 		while (head) {
4600 			struct Qdisc *q = head;
4601 			spinlock_t *root_lock = NULL;
4602 
4603 			head = head->next_sched;
4604 
4605 			if (!(q->flags & TCQ_F_NOLOCK)) {
4606 				root_lock = qdisc_lock(q);
4607 				spin_lock(root_lock);
4608 			}
4609 			/* We need to make sure head->next_sched is read
4610 			 * before clearing __QDISC_STATE_SCHED
4611 			 */
4612 			smp_mb__before_atomic();
4613 			clear_bit(__QDISC_STATE_SCHED, &q->state);
4614 			qdisc_run(q);
4615 			if (root_lock)
4616 				spin_unlock(root_lock);
4617 		}
4618 	}
4619 
4620 	xfrm_dev_backlog(sd);
4621 }
4622 
4623 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
4624 /* This hook is defined here for ATM LANE */
4625 int (*br_fdb_test_addr_hook)(struct net_device *dev,
4626 			     unsigned char *addr) __read_mostly;
4627 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
4628 #endif
4629 
4630 static inline struct sk_buff *
4631 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4632 		   struct net_device *orig_dev)
4633 {
4634 #ifdef CONFIG_NET_CLS_ACT
4635 	struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
4636 	struct tcf_result cl_res;
4637 
4638 	/* If there's at least one ingress present somewhere (so
4639 	 * we get here via enabled static key), remaining devices
4640 	 * that are not configured with an ingress qdisc will bail
4641 	 * out here.
4642 	 */
4643 	if (!miniq)
4644 		return skb;
4645 
4646 	if (*pt_prev) {
4647 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
4648 		*pt_prev = NULL;
4649 	}
4650 
4651 	qdisc_skb_cb(skb)->pkt_len = skb->len;
4652 	skb->tc_at_ingress = 1;
4653 	mini_qdisc_bstats_cpu_update(miniq, skb);
4654 
4655 	switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
4656 	case TC_ACT_OK:
4657 	case TC_ACT_RECLASSIFY:
4658 		skb->tc_index = TC_H_MIN(cl_res.classid);
4659 		break;
4660 	case TC_ACT_SHOT:
4661 		mini_qdisc_qstats_cpu_drop(miniq);
4662 		kfree_skb(skb);
4663 		return NULL;
4664 	case TC_ACT_STOLEN:
4665 	case TC_ACT_QUEUED:
4666 	case TC_ACT_TRAP:
4667 		consume_skb(skb);
4668 		return NULL;
4669 	case TC_ACT_REDIRECT:
4670 		/* skb_mac_header check was done by cls/act_bpf, so
4671 		 * we can safely push the L2 header back before
4672 		 * redirecting to another netdev
4673 		 */
4674 		__skb_push(skb, skb->mac_len);
4675 		skb_do_redirect(skb);
4676 		return NULL;
4677 	case TC_ACT_REINSERT:
4678 		/* this does not scrub the packet, and updates stats on error */
4679 		skb_tc_reinsert(skb, &cl_res);
4680 		return NULL;
4681 	default:
4682 		break;
4683 	}
4684 #endif /* CONFIG_NET_CLS_ACT */
4685 	return skb;
4686 }
4687 
4688 /**
4689  *	netdev_is_rx_handler_busy - check if receive handler is registered
4690  *	@dev: device to check
4691  *
4692  *	Check if a receive handler is already registered for a given device.
4693  *	Return true if there one.
4694  *
4695  *	The caller must hold the rtnl_mutex.
4696  */
4697 bool netdev_is_rx_handler_busy(struct net_device *dev)
4698 {
4699 	ASSERT_RTNL();
4700 	return dev && rtnl_dereference(dev->rx_handler);
4701 }
4702 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
4703 
4704 /**
4705  *	netdev_rx_handler_register - register receive handler
4706  *	@dev: device to register a handler for
4707  *	@rx_handler: receive handler to register
4708  *	@rx_handler_data: data pointer that is used by rx handler
4709  *
4710  *	Register a receive handler for a device. This handler will then be
4711  *	called from __netif_receive_skb. A negative errno code is returned
4712  *	on a failure.
4713  *
4714  *	The caller must hold the rtnl_mutex.
4715  *
4716  *	For a general description of rx_handler, see enum rx_handler_result.
4717  */
4718 int netdev_rx_handler_register(struct net_device *dev,
4719 			       rx_handler_func_t *rx_handler,
4720 			       void *rx_handler_data)
4721 {
4722 	if (netdev_is_rx_handler_busy(dev))
4723 		return -EBUSY;
4724 
4725 	if (dev->priv_flags & IFF_NO_RX_HANDLER)
4726 		return -EINVAL;
4727 
4728 	/* Note: rx_handler_data must be set before rx_handler */
4729 	rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
4730 	rcu_assign_pointer(dev->rx_handler, rx_handler);
4731 
4732 	return 0;
4733 }
4734 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
4735 
4736 /**
4737  *	netdev_rx_handler_unregister - unregister receive handler
4738  *	@dev: device to unregister a handler from
4739  *
4740  *	Unregister a receive handler from a device.
4741  *
4742  *	The caller must hold the rtnl_mutex.
4743  */
4744 void netdev_rx_handler_unregister(struct net_device *dev)
4745 {
4746 
4747 	ASSERT_RTNL();
4748 	RCU_INIT_POINTER(dev->rx_handler, NULL);
4749 	/* a reader seeing a non NULL rx_handler in a rcu_read_lock()
4750 	 * section has a guarantee to see a non NULL rx_handler_data
4751 	 * as well.
4752 	 */
4753 	synchronize_net();
4754 	RCU_INIT_POINTER(dev->rx_handler_data, NULL);
4755 }
4756 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
4757 
4758 /*
4759  * Limit the use of PFMEMALLOC reserves to those protocols that implement
4760  * the special handling of PFMEMALLOC skbs.
4761  */
4762 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
4763 {
4764 	switch (skb->protocol) {
4765 	case htons(ETH_P_ARP):
4766 	case htons(ETH_P_IP):
4767 	case htons(ETH_P_IPV6):
4768 	case htons(ETH_P_8021Q):
4769 	case htons(ETH_P_8021AD):
4770 		return true;
4771 	default:
4772 		return false;
4773 	}
4774 }
4775 
4776 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
4777 			     int *ret, struct net_device *orig_dev)
4778 {
4779 #ifdef CONFIG_NETFILTER_INGRESS
4780 	if (nf_hook_ingress_active(skb)) {
4781 		int ingress_retval;
4782 
4783 		if (*pt_prev) {
4784 			*ret = deliver_skb(skb, *pt_prev, orig_dev);
4785 			*pt_prev = NULL;
4786 		}
4787 
4788 		rcu_read_lock();
4789 		ingress_retval = nf_hook_ingress(skb);
4790 		rcu_read_unlock();
4791 		return ingress_retval;
4792 	}
4793 #endif /* CONFIG_NETFILTER_INGRESS */
4794 	return 0;
4795 }
4796 
4797 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc,
4798 				    struct packet_type **ppt_prev)
4799 {
4800 	struct packet_type *ptype, *pt_prev;
4801 	rx_handler_func_t *rx_handler;
4802 	struct net_device *orig_dev;
4803 	bool deliver_exact = false;
4804 	int ret = NET_RX_DROP;
4805 	__be16 type;
4806 
4807 	net_timestamp_check(!netdev_tstamp_prequeue, skb);
4808 
4809 	trace_netif_receive_skb(skb);
4810 
4811 	orig_dev = skb->dev;
4812 
4813 	skb_reset_network_header(skb);
4814 	if (!skb_transport_header_was_set(skb))
4815 		skb_reset_transport_header(skb);
4816 	skb_reset_mac_len(skb);
4817 
4818 	pt_prev = NULL;
4819 
4820 another_round:
4821 	skb->skb_iif = skb->dev->ifindex;
4822 
4823 	__this_cpu_inc(softnet_data.processed);
4824 
4825 	if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4826 	    skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
4827 		skb = skb_vlan_untag(skb);
4828 		if (unlikely(!skb))
4829 			goto out;
4830 	}
4831 
4832 	if (skb_skip_tc_classify(skb))
4833 		goto skip_classify;
4834 
4835 	if (pfmemalloc)
4836 		goto skip_taps;
4837 
4838 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
4839 		if (pt_prev)
4840 			ret = deliver_skb(skb, pt_prev, orig_dev);
4841 		pt_prev = ptype;
4842 	}
4843 
4844 	list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
4845 		if (pt_prev)
4846 			ret = deliver_skb(skb, pt_prev, orig_dev);
4847 		pt_prev = ptype;
4848 	}
4849 
4850 skip_taps:
4851 #ifdef CONFIG_NET_INGRESS
4852 	if (static_branch_unlikely(&ingress_needed_key)) {
4853 		skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
4854 		if (!skb)
4855 			goto out;
4856 
4857 		if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
4858 			goto out;
4859 	}
4860 #endif
4861 	skb_reset_tc(skb);
4862 skip_classify:
4863 	if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
4864 		goto drop;
4865 
4866 	if (skb_vlan_tag_present(skb)) {
4867 		if (pt_prev) {
4868 			ret = deliver_skb(skb, pt_prev, orig_dev);
4869 			pt_prev = NULL;
4870 		}
4871 		if (vlan_do_receive(&skb))
4872 			goto another_round;
4873 		else if (unlikely(!skb))
4874 			goto out;
4875 	}
4876 
4877 	rx_handler = rcu_dereference(skb->dev->rx_handler);
4878 	if (rx_handler) {
4879 		if (pt_prev) {
4880 			ret = deliver_skb(skb, pt_prev, orig_dev);
4881 			pt_prev = NULL;
4882 		}
4883 		switch (rx_handler(&skb)) {
4884 		case RX_HANDLER_CONSUMED:
4885 			ret = NET_RX_SUCCESS;
4886 			goto out;
4887 		case RX_HANDLER_ANOTHER:
4888 			goto another_round;
4889 		case RX_HANDLER_EXACT:
4890 			deliver_exact = true;
4891 		case RX_HANDLER_PASS:
4892 			break;
4893 		default:
4894 			BUG();
4895 		}
4896 	}
4897 
4898 	if (unlikely(skb_vlan_tag_present(skb))) {
4899 		if (skb_vlan_tag_get_id(skb))
4900 			skb->pkt_type = PACKET_OTHERHOST;
4901 		/* Note: we might in the future use prio bits
4902 		 * and set skb->priority like in vlan_do_receive()
4903 		 * For the time being, just ignore Priority Code Point
4904 		 */
4905 		__vlan_hwaccel_clear_tag(skb);
4906 	}
4907 
4908 	type = skb->protocol;
4909 
4910 	/* deliver only exact match when indicated */
4911 	if (likely(!deliver_exact)) {
4912 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4913 				       &ptype_base[ntohs(type) &
4914 						   PTYPE_HASH_MASK]);
4915 	}
4916 
4917 	deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4918 			       &orig_dev->ptype_specific);
4919 
4920 	if (unlikely(skb->dev != orig_dev)) {
4921 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4922 				       &skb->dev->ptype_specific);
4923 	}
4924 
4925 	if (pt_prev) {
4926 		if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
4927 			goto drop;
4928 		*ppt_prev = pt_prev;
4929 	} else {
4930 drop:
4931 		if (!deliver_exact)
4932 			atomic_long_inc(&skb->dev->rx_dropped);
4933 		else
4934 			atomic_long_inc(&skb->dev->rx_nohandler);
4935 		kfree_skb(skb);
4936 		/* Jamal, now you will not able to escape explaining
4937 		 * me how you were going to use this. :-)
4938 		 */
4939 		ret = NET_RX_DROP;
4940 	}
4941 
4942 out:
4943 	return ret;
4944 }
4945 
4946 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
4947 {
4948 	struct net_device *orig_dev = skb->dev;
4949 	struct packet_type *pt_prev = NULL;
4950 	int ret;
4951 
4952 	ret = __netif_receive_skb_core(skb, pfmemalloc, &pt_prev);
4953 	if (pt_prev)
4954 		ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
4955 	return ret;
4956 }
4957 
4958 /**
4959  *	netif_receive_skb_core - special purpose version of netif_receive_skb
4960  *	@skb: buffer to process
4961  *
4962  *	More direct receive version of netif_receive_skb().  It should
4963  *	only be used by callers that have a need to skip RPS and Generic XDP.
4964  *	Caller must also take care of handling if (page_is_)pfmemalloc.
4965  *
4966  *	This function may only be called from softirq context and interrupts
4967  *	should be enabled.
4968  *
4969  *	Return values (usually ignored):
4970  *	NET_RX_SUCCESS: no congestion
4971  *	NET_RX_DROP: packet was dropped
4972  */
4973 int netif_receive_skb_core(struct sk_buff *skb)
4974 {
4975 	int ret;
4976 
4977 	rcu_read_lock();
4978 	ret = __netif_receive_skb_one_core(skb, false);
4979 	rcu_read_unlock();
4980 
4981 	return ret;
4982 }
4983 EXPORT_SYMBOL(netif_receive_skb_core);
4984 
4985 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
4986 						  struct packet_type *pt_prev,
4987 						  struct net_device *orig_dev)
4988 {
4989 	struct sk_buff *skb, *next;
4990 
4991 	if (!pt_prev)
4992 		return;
4993 	if (list_empty(head))
4994 		return;
4995 	if (pt_prev->list_func != NULL)
4996 		pt_prev->list_func(head, pt_prev, orig_dev);
4997 	else
4998 		list_for_each_entry_safe(skb, next, head, list)
4999 			pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5000 }
5001 
5002 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5003 {
5004 	/* Fast-path assumptions:
5005 	 * - There is no RX handler.
5006 	 * - Only one packet_type matches.
5007 	 * If either of these fails, we will end up doing some per-packet
5008 	 * processing in-line, then handling the 'last ptype' for the whole
5009 	 * sublist.  This can't cause out-of-order delivery to any single ptype,
5010 	 * because the 'last ptype' must be constant across the sublist, and all
5011 	 * other ptypes are handled per-packet.
5012 	 */
5013 	/* Current (common) ptype of sublist */
5014 	struct packet_type *pt_curr = NULL;
5015 	/* Current (common) orig_dev of sublist */
5016 	struct net_device *od_curr = NULL;
5017 	struct list_head sublist;
5018 	struct sk_buff *skb, *next;
5019 
5020 	INIT_LIST_HEAD(&sublist);
5021 	list_for_each_entry_safe(skb, next, head, list) {
5022 		struct net_device *orig_dev = skb->dev;
5023 		struct packet_type *pt_prev = NULL;
5024 
5025 		list_del(&skb->list);
5026 		__netif_receive_skb_core(skb, pfmemalloc, &pt_prev);
5027 		if (!pt_prev)
5028 			continue;
5029 		if (pt_curr != pt_prev || od_curr != orig_dev) {
5030 			/* dispatch old sublist */
5031 			__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5032 			/* start new sublist */
5033 			INIT_LIST_HEAD(&sublist);
5034 			pt_curr = pt_prev;
5035 			od_curr = orig_dev;
5036 		}
5037 		list_add_tail(&skb->list, &sublist);
5038 	}
5039 
5040 	/* dispatch final sublist */
5041 	__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5042 }
5043 
5044 static int __netif_receive_skb(struct sk_buff *skb)
5045 {
5046 	int ret;
5047 
5048 	if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5049 		unsigned int noreclaim_flag;
5050 
5051 		/*
5052 		 * PFMEMALLOC skbs are special, they should
5053 		 * - be delivered to SOCK_MEMALLOC sockets only
5054 		 * - stay away from userspace
5055 		 * - have bounded memory usage
5056 		 *
5057 		 * Use PF_MEMALLOC as this saves us from propagating the allocation
5058 		 * context down to all allocation sites.
5059 		 */
5060 		noreclaim_flag = memalloc_noreclaim_save();
5061 		ret = __netif_receive_skb_one_core(skb, true);
5062 		memalloc_noreclaim_restore(noreclaim_flag);
5063 	} else
5064 		ret = __netif_receive_skb_one_core(skb, false);
5065 
5066 	return ret;
5067 }
5068 
5069 static void __netif_receive_skb_list(struct list_head *head)
5070 {
5071 	unsigned long noreclaim_flag = 0;
5072 	struct sk_buff *skb, *next;
5073 	bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5074 
5075 	list_for_each_entry_safe(skb, next, head, list) {
5076 		if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5077 			struct list_head sublist;
5078 
5079 			/* Handle the previous sublist */
5080 			list_cut_before(&sublist, head, &skb->list);
5081 			if (!list_empty(&sublist))
5082 				__netif_receive_skb_list_core(&sublist, pfmemalloc);
5083 			pfmemalloc = !pfmemalloc;
5084 			/* See comments in __netif_receive_skb */
5085 			if (pfmemalloc)
5086 				noreclaim_flag = memalloc_noreclaim_save();
5087 			else
5088 				memalloc_noreclaim_restore(noreclaim_flag);
5089 		}
5090 	}
5091 	/* Handle the remaining sublist */
5092 	if (!list_empty(head))
5093 		__netif_receive_skb_list_core(head, pfmemalloc);
5094 	/* Restore pflags */
5095 	if (pfmemalloc)
5096 		memalloc_noreclaim_restore(noreclaim_flag);
5097 }
5098 
5099 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5100 {
5101 	struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5102 	struct bpf_prog *new = xdp->prog;
5103 	int ret = 0;
5104 
5105 	switch (xdp->command) {
5106 	case XDP_SETUP_PROG:
5107 		rcu_assign_pointer(dev->xdp_prog, new);
5108 		if (old)
5109 			bpf_prog_put(old);
5110 
5111 		if (old && !new) {
5112 			static_branch_dec(&generic_xdp_needed_key);
5113 		} else if (new && !old) {
5114 			static_branch_inc(&generic_xdp_needed_key);
5115 			dev_disable_lro(dev);
5116 			dev_disable_gro_hw(dev);
5117 		}
5118 		break;
5119 
5120 	case XDP_QUERY_PROG:
5121 		xdp->prog_id = old ? old->aux->id : 0;
5122 		break;
5123 
5124 	default:
5125 		ret = -EINVAL;
5126 		break;
5127 	}
5128 
5129 	return ret;
5130 }
5131 
5132 static int netif_receive_skb_internal(struct sk_buff *skb)
5133 {
5134 	int ret;
5135 
5136 	net_timestamp_check(netdev_tstamp_prequeue, skb);
5137 
5138 	if (skb_defer_rx_timestamp(skb))
5139 		return NET_RX_SUCCESS;
5140 
5141 	if (static_branch_unlikely(&generic_xdp_needed_key)) {
5142 		int ret;
5143 
5144 		preempt_disable();
5145 		rcu_read_lock();
5146 		ret = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
5147 		rcu_read_unlock();
5148 		preempt_enable();
5149 
5150 		if (ret != XDP_PASS)
5151 			return NET_RX_DROP;
5152 	}
5153 
5154 	rcu_read_lock();
5155 #ifdef CONFIG_RPS
5156 	if (static_key_false(&rps_needed)) {
5157 		struct rps_dev_flow voidflow, *rflow = &voidflow;
5158 		int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5159 
5160 		if (cpu >= 0) {
5161 			ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5162 			rcu_read_unlock();
5163 			return ret;
5164 		}
5165 	}
5166 #endif
5167 	ret = __netif_receive_skb(skb);
5168 	rcu_read_unlock();
5169 	return ret;
5170 }
5171 
5172 static void netif_receive_skb_list_internal(struct list_head *head)
5173 {
5174 	struct bpf_prog *xdp_prog = NULL;
5175 	struct sk_buff *skb, *next;
5176 	struct list_head sublist;
5177 
5178 	INIT_LIST_HEAD(&sublist);
5179 	list_for_each_entry_safe(skb, next, head, list) {
5180 		net_timestamp_check(netdev_tstamp_prequeue, skb);
5181 		list_del(&skb->list);
5182 		if (!skb_defer_rx_timestamp(skb))
5183 			list_add_tail(&skb->list, &sublist);
5184 	}
5185 	list_splice_init(&sublist, head);
5186 
5187 	if (static_branch_unlikely(&generic_xdp_needed_key)) {
5188 		preempt_disable();
5189 		rcu_read_lock();
5190 		list_for_each_entry_safe(skb, next, head, list) {
5191 			xdp_prog = rcu_dereference(skb->dev->xdp_prog);
5192 			list_del(&skb->list);
5193 			if (do_xdp_generic(xdp_prog, skb) == XDP_PASS)
5194 				list_add_tail(&skb->list, &sublist);
5195 		}
5196 		rcu_read_unlock();
5197 		preempt_enable();
5198 		/* Put passed packets back on main list */
5199 		list_splice_init(&sublist, head);
5200 	}
5201 
5202 	rcu_read_lock();
5203 #ifdef CONFIG_RPS
5204 	if (static_key_false(&rps_needed)) {
5205 		list_for_each_entry_safe(skb, next, head, list) {
5206 			struct rps_dev_flow voidflow, *rflow = &voidflow;
5207 			int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5208 
5209 			if (cpu >= 0) {
5210 				/* Will be handled, remove from list */
5211 				list_del(&skb->list);
5212 				enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5213 			}
5214 		}
5215 	}
5216 #endif
5217 	__netif_receive_skb_list(head);
5218 	rcu_read_unlock();
5219 }
5220 
5221 /**
5222  *	netif_receive_skb - process receive buffer from network
5223  *	@skb: buffer to process
5224  *
5225  *	netif_receive_skb() is the main receive data processing function.
5226  *	It always succeeds. The buffer may be dropped during processing
5227  *	for congestion control or by the protocol layers.
5228  *
5229  *	This function may only be called from softirq context and interrupts
5230  *	should be enabled.
5231  *
5232  *	Return values (usually ignored):
5233  *	NET_RX_SUCCESS: no congestion
5234  *	NET_RX_DROP: packet was dropped
5235  */
5236 int netif_receive_skb(struct sk_buff *skb)
5237 {
5238 	int ret;
5239 
5240 	trace_netif_receive_skb_entry(skb);
5241 
5242 	ret = netif_receive_skb_internal(skb);
5243 	trace_netif_receive_skb_exit(ret);
5244 
5245 	return ret;
5246 }
5247 EXPORT_SYMBOL(netif_receive_skb);
5248 
5249 /**
5250  *	netif_receive_skb_list - process many receive buffers from network
5251  *	@head: list of skbs to process.
5252  *
5253  *	Since return value of netif_receive_skb() is normally ignored, and
5254  *	wouldn't be meaningful for a list, this function returns void.
5255  *
5256  *	This function may only be called from softirq context and interrupts
5257  *	should be enabled.
5258  */
5259 void netif_receive_skb_list(struct list_head *head)
5260 {
5261 	struct sk_buff *skb;
5262 
5263 	if (list_empty(head))
5264 		return;
5265 	if (trace_netif_receive_skb_list_entry_enabled()) {
5266 		list_for_each_entry(skb, head, list)
5267 			trace_netif_receive_skb_list_entry(skb);
5268 	}
5269 	netif_receive_skb_list_internal(head);
5270 	trace_netif_receive_skb_list_exit(0);
5271 }
5272 EXPORT_SYMBOL(netif_receive_skb_list);
5273 
5274 DEFINE_PER_CPU(struct work_struct, flush_works);
5275 
5276 /* Network device is going away, flush any packets still pending */
5277 static void flush_backlog(struct work_struct *work)
5278 {
5279 	struct sk_buff *skb, *tmp;
5280 	struct softnet_data *sd;
5281 
5282 	local_bh_disable();
5283 	sd = this_cpu_ptr(&softnet_data);
5284 
5285 	local_irq_disable();
5286 	rps_lock(sd);
5287 	skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5288 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5289 			__skb_unlink(skb, &sd->input_pkt_queue);
5290 			kfree_skb(skb);
5291 			input_queue_head_incr(sd);
5292 		}
5293 	}
5294 	rps_unlock(sd);
5295 	local_irq_enable();
5296 
5297 	skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5298 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5299 			__skb_unlink(skb, &sd->process_queue);
5300 			kfree_skb(skb);
5301 			input_queue_head_incr(sd);
5302 		}
5303 	}
5304 	local_bh_enable();
5305 }
5306 
5307 static void flush_all_backlogs(void)
5308 {
5309 	unsigned int cpu;
5310 
5311 	get_online_cpus();
5312 
5313 	for_each_online_cpu(cpu)
5314 		queue_work_on(cpu, system_highpri_wq,
5315 			      per_cpu_ptr(&flush_works, cpu));
5316 
5317 	for_each_online_cpu(cpu)
5318 		flush_work(per_cpu_ptr(&flush_works, cpu));
5319 
5320 	put_online_cpus();
5321 }
5322 
5323 static int napi_gro_complete(struct sk_buff *skb)
5324 {
5325 	struct packet_offload *ptype;
5326 	__be16 type = skb->protocol;
5327 	struct list_head *head = &offload_base;
5328 	int err = -ENOENT;
5329 
5330 	BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
5331 
5332 	if (NAPI_GRO_CB(skb)->count == 1) {
5333 		skb_shinfo(skb)->gso_size = 0;
5334 		goto out;
5335 	}
5336 
5337 	rcu_read_lock();
5338 	list_for_each_entry_rcu(ptype, head, list) {
5339 		if (ptype->type != type || !ptype->callbacks.gro_complete)
5340 			continue;
5341 
5342 		err = ptype->callbacks.gro_complete(skb, 0);
5343 		break;
5344 	}
5345 	rcu_read_unlock();
5346 
5347 	if (err) {
5348 		WARN_ON(&ptype->list == head);
5349 		kfree_skb(skb);
5350 		return NET_RX_SUCCESS;
5351 	}
5352 
5353 out:
5354 	return netif_receive_skb_internal(skb);
5355 }
5356 
5357 static void __napi_gro_flush_chain(struct napi_struct *napi, u32 index,
5358 				   bool flush_old)
5359 {
5360 	struct list_head *head = &napi->gro_hash[index].list;
5361 	struct sk_buff *skb, *p;
5362 
5363 	list_for_each_entry_safe_reverse(skb, p, head, list) {
5364 		if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
5365 			return;
5366 		skb_list_del_init(skb);
5367 		napi_gro_complete(skb);
5368 		napi->gro_hash[index].count--;
5369 	}
5370 
5371 	if (!napi->gro_hash[index].count)
5372 		__clear_bit(index, &napi->gro_bitmask);
5373 }
5374 
5375 /* napi->gro_hash[].list contains packets ordered by age.
5376  * youngest packets at the head of it.
5377  * Complete skbs in reverse order to reduce latencies.
5378  */
5379 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
5380 {
5381 	unsigned long bitmask = napi->gro_bitmask;
5382 	unsigned int i, base = ~0U;
5383 
5384 	while ((i = ffs(bitmask)) != 0) {
5385 		bitmask >>= i;
5386 		base += i;
5387 		__napi_gro_flush_chain(napi, base, flush_old);
5388 	}
5389 }
5390 EXPORT_SYMBOL(napi_gro_flush);
5391 
5392 static struct list_head *gro_list_prepare(struct napi_struct *napi,
5393 					  struct sk_buff *skb)
5394 {
5395 	unsigned int maclen = skb->dev->hard_header_len;
5396 	u32 hash = skb_get_hash_raw(skb);
5397 	struct list_head *head;
5398 	struct sk_buff *p;
5399 
5400 	head = &napi->gro_hash[hash & (GRO_HASH_BUCKETS - 1)].list;
5401 	list_for_each_entry(p, head, list) {
5402 		unsigned long diffs;
5403 
5404 		NAPI_GRO_CB(p)->flush = 0;
5405 
5406 		if (hash != skb_get_hash_raw(p)) {
5407 			NAPI_GRO_CB(p)->same_flow = 0;
5408 			continue;
5409 		}
5410 
5411 		diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
5412 		diffs |= skb_vlan_tag_present(p) ^ skb_vlan_tag_present(skb);
5413 		if (skb_vlan_tag_present(p))
5414 			diffs |= p->vlan_tci ^ skb->vlan_tci;
5415 		diffs |= skb_metadata_dst_cmp(p, skb);
5416 		diffs |= skb_metadata_differs(p, skb);
5417 		if (maclen == ETH_HLEN)
5418 			diffs |= compare_ether_header(skb_mac_header(p),
5419 						      skb_mac_header(skb));
5420 		else if (!diffs)
5421 			diffs = memcmp(skb_mac_header(p),
5422 				       skb_mac_header(skb),
5423 				       maclen);
5424 		NAPI_GRO_CB(p)->same_flow = !diffs;
5425 	}
5426 
5427 	return head;
5428 }
5429 
5430 static void skb_gro_reset_offset(struct sk_buff *skb)
5431 {
5432 	const struct skb_shared_info *pinfo = skb_shinfo(skb);
5433 	const skb_frag_t *frag0 = &pinfo->frags[0];
5434 
5435 	NAPI_GRO_CB(skb)->data_offset = 0;
5436 	NAPI_GRO_CB(skb)->frag0 = NULL;
5437 	NAPI_GRO_CB(skb)->frag0_len = 0;
5438 
5439 	if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
5440 	    pinfo->nr_frags &&
5441 	    !PageHighMem(skb_frag_page(frag0))) {
5442 		NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
5443 		NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
5444 						    skb_frag_size(frag0),
5445 						    skb->end - skb->tail);
5446 	}
5447 }
5448 
5449 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
5450 {
5451 	struct skb_shared_info *pinfo = skb_shinfo(skb);
5452 
5453 	BUG_ON(skb->end - skb->tail < grow);
5454 
5455 	memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
5456 
5457 	skb->data_len -= grow;
5458 	skb->tail += grow;
5459 
5460 	pinfo->frags[0].page_offset += grow;
5461 	skb_frag_size_sub(&pinfo->frags[0], grow);
5462 
5463 	if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
5464 		skb_frag_unref(skb, 0);
5465 		memmove(pinfo->frags, pinfo->frags + 1,
5466 			--pinfo->nr_frags * sizeof(pinfo->frags[0]));
5467 	}
5468 }
5469 
5470 static void gro_flush_oldest(struct list_head *head)
5471 {
5472 	struct sk_buff *oldest;
5473 
5474 	oldest = list_last_entry(head, struct sk_buff, list);
5475 
5476 	/* We are called with head length >= MAX_GRO_SKBS, so this is
5477 	 * impossible.
5478 	 */
5479 	if (WARN_ON_ONCE(!oldest))
5480 		return;
5481 
5482 	/* Do not adjust napi->gro_hash[].count, caller is adding a new
5483 	 * SKB to the chain.
5484 	 */
5485 	skb_list_del_init(oldest);
5486 	napi_gro_complete(oldest);
5487 }
5488 
5489 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5490 {
5491 	u32 hash = skb_get_hash_raw(skb) & (GRO_HASH_BUCKETS - 1);
5492 	struct list_head *head = &offload_base;
5493 	struct packet_offload *ptype;
5494 	__be16 type = skb->protocol;
5495 	struct list_head *gro_head;
5496 	struct sk_buff *pp = NULL;
5497 	enum gro_result ret;
5498 	int same_flow;
5499 	int grow;
5500 
5501 	if (netif_elide_gro(skb->dev))
5502 		goto normal;
5503 
5504 	gro_head = gro_list_prepare(napi, skb);
5505 
5506 	rcu_read_lock();
5507 	list_for_each_entry_rcu(ptype, head, list) {
5508 		if (ptype->type != type || !ptype->callbacks.gro_receive)
5509 			continue;
5510 
5511 		skb_set_network_header(skb, skb_gro_offset(skb));
5512 		skb_reset_mac_len(skb);
5513 		NAPI_GRO_CB(skb)->same_flow = 0;
5514 		NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
5515 		NAPI_GRO_CB(skb)->free = 0;
5516 		NAPI_GRO_CB(skb)->encap_mark = 0;
5517 		NAPI_GRO_CB(skb)->recursion_counter = 0;
5518 		NAPI_GRO_CB(skb)->is_fou = 0;
5519 		NAPI_GRO_CB(skb)->is_atomic = 1;
5520 		NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
5521 
5522 		/* Setup for GRO checksum validation */
5523 		switch (skb->ip_summed) {
5524 		case CHECKSUM_COMPLETE:
5525 			NAPI_GRO_CB(skb)->csum = skb->csum;
5526 			NAPI_GRO_CB(skb)->csum_valid = 1;
5527 			NAPI_GRO_CB(skb)->csum_cnt = 0;
5528 			break;
5529 		case CHECKSUM_UNNECESSARY:
5530 			NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
5531 			NAPI_GRO_CB(skb)->csum_valid = 0;
5532 			break;
5533 		default:
5534 			NAPI_GRO_CB(skb)->csum_cnt = 0;
5535 			NAPI_GRO_CB(skb)->csum_valid = 0;
5536 		}
5537 
5538 		pp = ptype->callbacks.gro_receive(gro_head, skb);
5539 		break;
5540 	}
5541 	rcu_read_unlock();
5542 
5543 	if (&ptype->list == head)
5544 		goto normal;
5545 
5546 	if (IS_ERR(pp) && PTR_ERR(pp) == -EINPROGRESS) {
5547 		ret = GRO_CONSUMED;
5548 		goto ok;
5549 	}
5550 
5551 	same_flow = NAPI_GRO_CB(skb)->same_flow;
5552 	ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
5553 
5554 	if (pp) {
5555 		skb_list_del_init(pp);
5556 		napi_gro_complete(pp);
5557 		napi->gro_hash[hash].count--;
5558 	}
5559 
5560 	if (same_flow)
5561 		goto ok;
5562 
5563 	if (NAPI_GRO_CB(skb)->flush)
5564 		goto normal;
5565 
5566 	if (unlikely(napi->gro_hash[hash].count >= MAX_GRO_SKBS)) {
5567 		gro_flush_oldest(gro_head);
5568 	} else {
5569 		napi->gro_hash[hash].count++;
5570 	}
5571 	NAPI_GRO_CB(skb)->count = 1;
5572 	NAPI_GRO_CB(skb)->age = jiffies;
5573 	NAPI_GRO_CB(skb)->last = skb;
5574 	skb_shinfo(skb)->gso_size = skb_gro_len(skb);
5575 	list_add(&skb->list, gro_head);
5576 	ret = GRO_HELD;
5577 
5578 pull:
5579 	grow = skb_gro_offset(skb) - skb_headlen(skb);
5580 	if (grow > 0)
5581 		gro_pull_from_frag0(skb, grow);
5582 ok:
5583 	if (napi->gro_hash[hash].count) {
5584 		if (!test_bit(hash, &napi->gro_bitmask))
5585 			__set_bit(hash, &napi->gro_bitmask);
5586 	} else if (test_bit(hash, &napi->gro_bitmask)) {
5587 		__clear_bit(hash, &napi->gro_bitmask);
5588 	}
5589 
5590 	return ret;
5591 
5592 normal:
5593 	ret = GRO_NORMAL;
5594 	goto pull;
5595 }
5596 
5597 struct packet_offload *gro_find_receive_by_type(__be16 type)
5598 {
5599 	struct list_head *offload_head = &offload_base;
5600 	struct packet_offload *ptype;
5601 
5602 	list_for_each_entry_rcu(ptype, offload_head, list) {
5603 		if (ptype->type != type || !ptype->callbacks.gro_receive)
5604 			continue;
5605 		return ptype;
5606 	}
5607 	return NULL;
5608 }
5609 EXPORT_SYMBOL(gro_find_receive_by_type);
5610 
5611 struct packet_offload *gro_find_complete_by_type(__be16 type)
5612 {
5613 	struct list_head *offload_head = &offload_base;
5614 	struct packet_offload *ptype;
5615 
5616 	list_for_each_entry_rcu(ptype, offload_head, list) {
5617 		if (ptype->type != type || !ptype->callbacks.gro_complete)
5618 			continue;
5619 		return ptype;
5620 	}
5621 	return NULL;
5622 }
5623 EXPORT_SYMBOL(gro_find_complete_by_type);
5624 
5625 static void napi_skb_free_stolen_head(struct sk_buff *skb)
5626 {
5627 	skb_dst_drop(skb);
5628 	secpath_reset(skb);
5629 	kmem_cache_free(skbuff_head_cache, skb);
5630 }
5631 
5632 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
5633 {
5634 	switch (ret) {
5635 	case GRO_NORMAL:
5636 		if (netif_receive_skb_internal(skb))
5637 			ret = GRO_DROP;
5638 		break;
5639 
5640 	case GRO_DROP:
5641 		kfree_skb(skb);
5642 		break;
5643 
5644 	case GRO_MERGED_FREE:
5645 		if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5646 			napi_skb_free_stolen_head(skb);
5647 		else
5648 			__kfree_skb(skb);
5649 		break;
5650 
5651 	case GRO_HELD:
5652 	case GRO_MERGED:
5653 	case GRO_CONSUMED:
5654 		break;
5655 	}
5656 
5657 	return ret;
5658 }
5659 
5660 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5661 {
5662 	gro_result_t ret;
5663 
5664 	skb_mark_napi_id(skb, napi);
5665 	trace_napi_gro_receive_entry(skb);
5666 
5667 	skb_gro_reset_offset(skb);
5668 
5669 	ret = napi_skb_finish(dev_gro_receive(napi, skb), skb);
5670 	trace_napi_gro_receive_exit(ret);
5671 
5672 	return ret;
5673 }
5674 EXPORT_SYMBOL(napi_gro_receive);
5675 
5676 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
5677 {
5678 	if (unlikely(skb->pfmemalloc)) {
5679 		consume_skb(skb);
5680 		return;
5681 	}
5682 	__skb_pull(skb, skb_headlen(skb));
5683 	/* restore the reserve we had after netdev_alloc_skb_ip_align() */
5684 	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
5685 	__vlan_hwaccel_clear_tag(skb);
5686 	skb->dev = napi->dev;
5687 	skb->skb_iif = 0;
5688 
5689 	/* eth_type_trans() assumes pkt_type is PACKET_HOST */
5690 	skb->pkt_type = PACKET_HOST;
5691 
5692 	skb->encapsulation = 0;
5693 	skb_shinfo(skb)->gso_type = 0;
5694 	skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
5695 	secpath_reset(skb);
5696 
5697 	napi->skb = skb;
5698 }
5699 
5700 struct sk_buff *napi_get_frags(struct napi_struct *napi)
5701 {
5702 	struct sk_buff *skb = napi->skb;
5703 
5704 	if (!skb) {
5705 		skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
5706 		if (skb) {
5707 			napi->skb = skb;
5708 			skb_mark_napi_id(skb, napi);
5709 		}
5710 	}
5711 	return skb;
5712 }
5713 EXPORT_SYMBOL(napi_get_frags);
5714 
5715 static gro_result_t napi_frags_finish(struct napi_struct *napi,
5716 				      struct sk_buff *skb,
5717 				      gro_result_t ret)
5718 {
5719 	switch (ret) {
5720 	case GRO_NORMAL:
5721 	case GRO_HELD:
5722 		__skb_push(skb, ETH_HLEN);
5723 		skb->protocol = eth_type_trans(skb, skb->dev);
5724 		if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
5725 			ret = GRO_DROP;
5726 		break;
5727 
5728 	case GRO_DROP:
5729 		napi_reuse_skb(napi, skb);
5730 		break;
5731 
5732 	case GRO_MERGED_FREE:
5733 		if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5734 			napi_skb_free_stolen_head(skb);
5735 		else
5736 			napi_reuse_skb(napi, skb);
5737 		break;
5738 
5739 	case GRO_MERGED:
5740 	case GRO_CONSUMED:
5741 		break;
5742 	}
5743 
5744 	return ret;
5745 }
5746 
5747 /* Upper GRO stack assumes network header starts at gro_offset=0
5748  * Drivers could call both napi_gro_frags() and napi_gro_receive()
5749  * We copy ethernet header into skb->data to have a common layout.
5750  */
5751 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
5752 {
5753 	struct sk_buff *skb = napi->skb;
5754 	const struct ethhdr *eth;
5755 	unsigned int hlen = sizeof(*eth);
5756 
5757 	napi->skb = NULL;
5758 
5759 	skb_reset_mac_header(skb);
5760 	skb_gro_reset_offset(skb);
5761 
5762 	eth = skb_gro_header_fast(skb, 0);
5763 	if (unlikely(skb_gro_header_hard(skb, hlen))) {
5764 		eth = skb_gro_header_slow(skb, hlen, 0);
5765 		if (unlikely(!eth)) {
5766 			net_warn_ratelimited("%s: dropping impossible skb from %s\n",
5767 					     __func__, napi->dev->name);
5768 			napi_reuse_skb(napi, skb);
5769 			return NULL;
5770 		}
5771 	} else {
5772 		gro_pull_from_frag0(skb, hlen);
5773 		NAPI_GRO_CB(skb)->frag0 += hlen;
5774 		NAPI_GRO_CB(skb)->frag0_len -= hlen;
5775 	}
5776 	__skb_pull(skb, hlen);
5777 
5778 	/*
5779 	 * This works because the only protocols we care about don't require
5780 	 * special handling.
5781 	 * We'll fix it up properly in napi_frags_finish()
5782 	 */
5783 	skb->protocol = eth->h_proto;
5784 
5785 	return skb;
5786 }
5787 
5788 gro_result_t napi_gro_frags(struct napi_struct *napi)
5789 {
5790 	gro_result_t ret;
5791 	struct sk_buff *skb = napi_frags_skb(napi);
5792 
5793 	if (!skb)
5794 		return GRO_DROP;
5795 
5796 	trace_napi_gro_frags_entry(skb);
5797 
5798 	ret = napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
5799 	trace_napi_gro_frags_exit(ret);
5800 
5801 	return ret;
5802 }
5803 EXPORT_SYMBOL(napi_gro_frags);
5804 
5805 /* Compute the checksum from gro_offset and return the folded value
5806  * after adding in any pseudo checksum.
5807  */
5808 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
5809 {
5810 	__wsum wsum;
5811 	__sum16 sum;
5812 
5813 	wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
5814 
5815 	/* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
5816 	sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
5817 	/* See comments in __skb_checksum_complete(). */
5818 	if (likely(!sum)) {
5819 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
5820 		    !skb->csum_complete_sw)
5821 			netdev_rx_csum_fault(skb->dev, skb);
5822 	}
5823 
5824 	NAPI_GRO_CB(skb)->csum = wsum;
5825 	NAPI_GRO_CB(skb)->csum_valid = 1;
5826 
5827 	return sum;
5828 }
5829 EXPORT_SYMBOL(__skb_gro_checksum_complete);
5830 
5831 static void net_rps_send_ipi(struct softnet_data *remsd)
5832 {
5833 #ifdef CONFIG_RPS
5834 	while (remsd) {
5835 		struct softnet_data *next = remsd->rps_ipi_next;
5836 
5837 		if (cpu_online(remsd->cpu))
5838 			smp_call_function_single_async(remsd->cpu, &remsd->csd);
5839 		remsd = next;
5840 	}
5841 #endif
5842 }
5843 
5844 /*
5845  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
5846  * Note: called with local irq disabled, but exits with local irq enabled.
5847  */
5848 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
5849 {
5850 #ifdef CONFIG_RPS
5851 	struct softnet_data *remsd = sd->rps_ipi_list;
5852 
5853 	if (remsd) {
5854 		sd->rps_ipi_list = NULL;
5855 
5856 		local_irq_enable();
5857 
5858 		/* Send pending IPI's to kick RPS processing on remote cpus. */
5859 		net_rps_send_ipi(remsd);
5860 	} else
5861 #endif
5862 		local_irq_enable();
5863 }
5864 
5865 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
5866 {
5867 #ifdef CONFIG_RPS
5868 	return sd->rps_ipi_list != NULL;
5869 #else
5870 	return false;
5871 #endif
5872 }
5873 
5874 static int process_backlog(struct napi_struct *napi, int quota)
5875 {
5876 	struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
5877 	bool again = true;
5878 	int work = 0;
5879 
5880 	/* Check if we have pending ipi, its better to send them now,
5881 	 * not waiting net_rx_action() end.
5882 	 */
5883 	if (sd_has_rps_ipi_waiting(sd)) {
5884 		local_irq_disable();
5885 		net_rps_action_and_irq_enable(sd);
5886 	}
5887 
5888 	napi->weight = dev_rx_weight;
5889 	while (again) {
5890 		struct sk_buff *skb;
5891 
5892 		while ((skb = __skb_dequeue(&sd->process_queue))) {
5893 			rcu_read_lock();
5894 			__netif_receive_skb(skb);
5895 			rcu_read_unlock();
5896 			input_queue_head_incr(sd);
5897 			if (++work >= quota)
5898 				return work;
5899 
5900 		}
5901 
5902 		local_irq_disable();
5903 		rps_lock(sd);
5904 		if (skb_queue_empty(&sd->input_pkt_queue)) {
5905 			/*
5906 			 * Inline a custom version of __napi_complete().
5907 			 * only current cpu owns and manipulates this napi,
5908 			 * and NAPI_STATE_SCHED is the only possible flag set
5909 			 * on backlog.
5910 			 * We can use a plain write instead of clear_bit(),
5911 			 * and we dont need an smp_mb() memory barrier.
5912 			 */
5913 			napi->state = 0;
5914 			again = false;
5915 		} else {
5916 			skb_queue_splice_tail_init(&sd->input_pkt_queue,
5917 						   &sd->process_queue);
5918 		}
5919 		rps_unlock(sd);
5920 		local_irq_enable();
5921 	}
5922 
5923 	return work;
5924 }
5925 
5926 /**
5927  * __napi_schedule - schedule for receive
5928  * @n: entry to schedule
5929  *
5930  * The entry's receive function will be scheduled to run.
5931  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
5932  */
5933 void __napi_schedule(struct napi_struct *n)
5934 {
5935 	unsigned long flags;
5936 
5937 	local_irq_save(flags);
5938 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
5939 	local_irq_restore(flags);
5940 }
5941 EXPORT_SYMBOL(__napi_schedule);
5942 
5943 /**
5944  *	napi_schedule_prep - check if napi can be scheduled
5945  *	@n: napi context
5946  *
5947  * Test if NAPI routine is already running, and if not mark
5948  * it as running.  This is used as a condition variable
5949  * insure only one NAPI poll instance runs.  We also make
5950  * sure there is no pending NAPI disable.
5951  */
5952 bool napi_schedule_prep(struct napi_struct *n)
5953 {
5954 	unsigned long val, new;
5955 
5956 	do {
5957 		val = READ_ONCE(n->state);
5958 		if (unlikely(val & NAPIF_STATE_DISABLE))
5959 			return false;
5960 		new = val | NAPIF_STATE_SCHED;
5961 
5962 		/* Sets STATE_MISSED bit if STATE_SCHED was already set
5963 		 * This was suggested by Alexander Duyck, as compiler
5964 		 * emits better code than :
5965 		 * if (val & NAPIF_STATE_SCHED)
5966 		 *     new |= NAPIF_STATE_MISSED;
5967 		 */
5968 		new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
5969 						   NAPIF_STATE_MISSED;
5970 	} while (cmpxchg(&n->state, val, new) != val);
5971 
5972 	return !(val & NAPIF_STATE_SCHED);
5973 }
5974 EXPORT_SYMBOL(napi_schedule_prep);
5975 
5976 /**
5977  * __napi_schedule_irqoff - schedule for receive
5978  * @n: entry to schedule
5979  *
5980  * Variant of __napi_schedule() assuming hard irqs are masked
5981  */
5982 void __napi_schedule_irqoff(struct napi_struct *n)
5983 {
5984 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
5985 }
5986 EXPORT_SYMBOL(__napi_schedule_irqoff);
5987 
5988 bool napi_complete_done(struct napi_struct *n, int work_done)
5989 {
5990 	unsigned long flags, val, new;
5991 
5992 	/*
5993 	 * 1) Don't let napi dequeue from the cpu poll list
5994 	 *    just in case its running on a different cpu.
5995 	 * 2) If we are busy polling, do nothing here, we have
5996 	 *    the guarantee we will be called later.
5997 	 */
5998 	if (unlikely(n->state & (NAPIF_STATE_NPSVC |
5999 				 NAPIF_STATE_IN_BUSY_POLL)))
6000 		return false;
6001 
6002 	if (n->gro_bitmask) {
6003 		unsigned long timeout = 0;
6004 
6005 		if (work_done)
6006 			timeout = n->dev->gro_flush_timeout;
6007 
6008 		/* When the NAPI instance uses a timeout and keeps postponing
6009 		 * it, we need to bound somehow the time packets are kept in
6010 		 * the GRO layer
6011 		 */
6012 		napi_gro_flush(n, !!timeout);
6013 		if (timeout)
6014 			hrtimer_start(&n->timer, ns_to_ktime(timeout),
6015 				      HRTIMER_MODE_REL_PINNED);
6016 	}
6017 	if (unlikely(!list_empty(&n->poll_list))) {
6018 		/* If n->poll_list is not empty, we need to mask irqs */
6019 		local_irq_save(flags);
6020 		list_del_init(&n->poll_list);
6021 		local_irq_restore(flags);
6022 	}
6023 
6024 	do {
6025 		val = READ_ONCE(n->state);
6026 
6027 		WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6028 
6029 		new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED);
6030 
6031 		/* If STATE_MISSED was set, leave STATE_SCHED set,
6032 		 * because we will call napi->poll() one more time.
6033 		 * This C code was suggested by Alexander Duyck to help gcc.
6034 		 */
6035 		new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6036 						    NAPIF_STATE_SCHED;
6037 	} while (cmpxchg(&n->state, val, new) != val);
6038 
6039 	if (unlikely(val & NAPIF_STATE_MISSED)) {
6040 		__napi_schedule(n);
6041 		return false;
6042 	}
6043 
6044 	return true;
6045 }
6046 EXPORT_SYMBOL(napi_complete_done);
6047 
6048 /* must be called under rcu_read_lock(), as we dont take a reference */
6049 static struct napi_struct *napi_by_id(unsigned int napi_id)
6050 {
6051 	unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6052 	struct napi_struct *napi;
6053 
6054 	hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6055 		if (napi->napi_id == napi_id)
6056 			return napi;
6057 
6058 	return NULL;
6059 }
6060 
6061 #if defined(CONFIG_NET_RX_BUSY_POLL)
6062 
6063 #define BUSY_POLL_BUDGET 8
6064 
6065 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock)
6066 {
6067 	int rc;
6068 
6069 	/* Busy polling means there is a high chance device driver hard irq
6070 	 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6071 	 * set in napi_schedule_prep().
6072 	 * Since we are about to call napi->poll() once more, we can safely
6073 	 * clear NAPI_STATE_MISSED.
6074 	 *
6075 	 * Note: x86 could use a single "lock and ..." instruction
6076 	 * to perform these two clear_bit()
6077 	 */
6078 	clear_bit(NAPI_STATE_MISSED, &napi->state);
6079 	clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6080 
6081 	local_bh_disable();
6082 
6083 	/* All we really want here is to re-enable device interrupts.
6084 	 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6085 	 */
6086 	rc = napi->poll(napi, BUSY_POLL_BUDGET);
6087 	trace_napi_poll(napi, rc, BUSY_POLL_BUDGET);
6088 	netpoll_poll_unlock(have_poll_lock);
6089 	if (rc == BUSY_POLL_BUDGET)
6090 		__napi_schedule(napi);
6091 	local_bh_enable();
6092 }
6093 
6094 void napi_busy_loop(unsigned int napi_id,
6095 		    bool (*loop_end)(void *, unsigned long),
6096 		    void *loop_end_arg)
6097 {
6098 	unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6099 	int (*napi_poll)(struct napi_struct *napi, int budget);
6100 	void *have_poll_lock = NULL;
6101 	struct napi_struct *napi;
6102 
6103 restart:
6104 	napi_poll = NULL;
6105 
6106 	rcu_read_lock();
6107 
6108 	napi = napi_by_id(napi_id);
6109 	if (!napi)
6110 		goto out;
6111 
6112 	preempt_disable();
6113 	for (;;) {
6114 		int work = 0;
6115 
6116 		local_bh_disable();
6117 		if (!napi_poll) {
6118 			unsigned long val = READ_ONCE(napi->state);
6119 
6120 			/* If multiple threads are competing for this napi,
6121 			 * we avoid dirtying napi->state as much as we can.
6122 			 */
6123 			if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6124 				   NAPIF_STATE_IN_BUSY_POLL))
6125 				goto count;
6126 			if (cmpxchg(&napi->state, val,
6127 				    val | NAPIF_STATE_IN_BUSY_POLL |
6128 					  NAPIF_STATE_SCHED) != val)
6129 				goto count;
6130 			have_poll_lock = netpoll_poll_lock(napi);
6131 			napi_poll = napi->poll;
6132 		}
6133 		work = napi_poll(napi, BUSY_POLL_BUDGET);
6134 		trace_napi_poll(napi, work, BUSY_POLL_BUDGET);
6135 count:
6136 		if (work > 0)
6137 			__NET_ADD_STATS(dev_net(napi->dev),
6138 					LINUX_MIB_BUSYPOLLRXPACKETS, work);
6139 		local_bh_enable();
6140 
6141 		if (!loop_end || loop_end(loop_end_arg, start_time))
6142 			break;
6143 
6144 		if (unlikely(need_resched())) {
6145 			if (napi_poll)
6146 				busy_poll_stop(napi, have_poll_lock);
6147 			preempt_enable();
6148 			rcu_read_unlock();
6149 			cond_resched();
6150 			if (loop_end(loop_end_arg, start_time))
6151 				return;
6152 			goto restart;
6153 		}
6154 		cpu_relax();
6155 	}
6156 	if (napi_poll)
6157 		busy_poll_stop(napi, have_poll_lock);
6158 	preempt_enable();
6159 out:
6160 	rcu_read_unlock();
6161 }
6162 EXPORT_SYMBOL(napi_busy_loop);
6163 
6164 #endif /* CONFIG_NET_RX_BUSY_POLL */
6165 
6166 static void napi_hash_add(struct napi_struct *napi)
6167 {
6168 	if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
6169 	    test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
6170 		return;
6171 
6172 	spin_lock(&napi_hash_lock);
6173 
6174 	/* 0..NR_CPUS range is reserved for sender_cpu use */
6175 	do {
6176 		if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6177 			napi_gen_id = MIN_NAPI_ID;
6178 	} while (napi_by_id(napi_gen_id));
6179 	napi->napi_id = napi_gen_id;
6180 
6181 	hlist_add_head_rcu(&napi->napi_hash_node,
6182 			   &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6183 
6184 	spin_unlock(&napi_hash_lock);
6185 }
6186 
6187 /* Warning : caller is responsible to make sure rcu grace period
6188  * is respected before freeing memory containing @napi
6189  */
6190 bool napi_hash_del(struct napi_struct *napi)
6191 {
6192 	bool rcu_sync_needed = false;
6193 
6194 	spin_lock(&napi_hash_lock);
6195 
6196 	if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
6197 		rcu_sync_needed = true;
6198 		hlist_del_rcu(&napi->napi_hash_node);
6199 	}
6200 	spin_unlock(&napi_hash_lock);
6201 	return rcu_sync_needed;
6202 }
6203 EXPORT_SYMBOL_GPL(napi_hash_del);
6204 
6205 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6206 {
6207 	struct napi_struct *napi;
6208 
6209 	napi = container_of(timer, struct napi_struct, timer);
6210 
6211 	/* Note : we use a relaxed variant of napi_schedule_prep() not setting
6212 	 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6213 	 */
6214 	if (napi->gro_bitmask && !napi_disable_pending(napi) &&
6215 	    !test_and_set_bit(NAPI_STATE_SCHED, &napi->state))
6216 		__napi_schedule_irqoff(napi);
6217 
6218 	return HRTIMER_NORESTART;
6219 }
6220 
6221 static void init_gro_hash(struct napi_struct *napi)
6222 {
6223 	int i;
6224 
6225 	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6226 		INIT_LIST_HEAD(&napi->gro_hash[i].list);
6227 		napi->gro_hash[i].count = 0;
6228 	}
6229 	napi->gro_bitmask = 0;
6230 }
6231 
6232 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
6233 		    int (*poll)(struct napi_struct *, int), int weight)
6234 {
6235 	INIT_LIST_HEAD(&napi->poll_list);
6236 	hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6237 	napi->timer.function = napi_watchdog;
6238 	init_gro_hash(napi);
6239 	napi->skb = NULL;
6240 	napi->poll = poll;
6241 	if (weight > NAPI_POLL_WEIGHT)
6242 		pr_err_once("netif_napi_add() called with weight %d on device %s\n",
6243 			    weight, dev->name);
6244 	napi->weight = weight;
6245 	list_add(&napi->dev_list, &dev->napi_list);
6246 	napi->dev = dev;
6247 #ifdef CONFIG_NETPOLL
6248 	napi->poll_owner = -1;
6249 #endif
6250 	set_bit(NAPI_STATE_SCHED, &napi->state);
6251 	napi_hash_add(napi);
6252 }
6253 EXPORT_SYMBOL(netif_napi_add);
6254 
6255 void napi_disable(struct napi_struct *n)
6256 {
6257 	might_sleep();
6258 	set_bit(NAPI_STATE_DISABLE, &n->state);
6259 
6260 	while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
6261 		msleep(1);
6262 	while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
6263 		msleep(1);
6264 
6265 	hrtimer_cancel(&n->timer);
6266 
6267 	clear_bit(NAPI_STATE_DISABLE, &n->state);
6268 }
6269 EXPORT_SYMBOL(napi_disable);
6270 
6271 static void flush_gro_hash(struct napi_struct *napi)
6272 {
6273 	int i;
6274 
6275 	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6276 		struct sk_buff *skb, *n;
6277 
6278 		list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6279 			kfree_skb(skb);
6280 		napi->gro_hash[i].count = 0;
6281 	}
6282 }
6283 
6284 /* Must be called in process context */
6285 void netif_napi_del(struct napi_struct *napi)
6286 {
6287 	might_sleep();
6288 	if (napi_hash_del(napi))
6289 		synchronize_net();
6290 	list_del_init(&napi->dev_list);
6291 	napi_free_frags(napi);
6292 
6293 	flush_gro_hash(napi);
6294 	napi->gro_bitmask = 0;
6295 }
6296 EXPORT_SYMBOL(netif_napi_del);
6297 
6298 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6299 {
6300 	void *have;
6301 	int work, weight;
6302 
6303 	list_del_init(&n->poll_list);
6304 
6305 	have = netpoll_poll_lock(n);
6306 
6307 	weight = n->weight;
6308 
6309 	/* This NAPI_STATE_SCHED test is for avoiding a race
6310 	 * with netpoll's poll_napi().  Only the entity which
6311 	 * obtains the lock and sees NAPI_STATE_SCHED set will
6312 	 * actually make the ->poll() call.  Therefore we avoid
6313 	 * accidentally calling ->poll() when NAPI is not scheduled.
6314 	 */
6315 	work = 0;
6316 	if (test_bit(NAPI_STATE_SCHED, &n->state)) {
6317 		work = n->poll(n, weight);
6318 		trace_napi_poll(n, work, weight);
6319 	}
6320 
6321 	WARN_ON_ONCE(work > weight);
6322 
6323 	if (likely(work < weight))
6324 		goto out_unlock;
6325 
6326 	/* Drivers must not modify the NAPI state if they
6327 	 * consume the entire weight.  In such cases this code
6328 	 * still "owns" the NAPI instance and therefore can
6329 	 * move the instance around on the list at-will.
6330 	 */
6331 	if (unlikely(napi_disable_pending(n))) {
6332 		napi_complete(n);
6333 		goto out_unlock;
6334 	}
6335 
6336 	if (n->gro_bitmask) {
6337 		/* flush too old packets
6338 		 * If HZ < 1000, flush all packets.
6339 		 */
6340 		napi_gro_flush(n, HZ >= 1000);
6341 	}
6342 
6343 	/* Some drivers may have called napi_schedule
6344 	 * prior to exhausting their budget.
6345 	 */
6346 	if (unlikely(!list_empty(&n->poll_list))) {
6347 		pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6348 			     n->dev ? n->dev->name : "backlog");
6349 		goto out_unlock;
6350 	}
6351 
6352 	list_add_tail(&n->poll_list, repoll);
6353 
6354 out_unlock:
6355 	netpoll_poll_unlock(have);
6356 
6357 	return work;
6358 }
6359 
6360 static __latent_entropy void net_rx_action(struct softirq_action *h)
6361 {
6362 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
6363 	unsigned long time_limit = jiffies +
6364 		usecs_to_jiffies(netdev_budget_usecs);
6365 	int budget = netdev_budget;
6366 	LIST_HEAD(list);
6367 	LIST_HEAD(repoll);
6368 
6369 	local_irq_disable();
6370 	list_splice_init(&sd->poll_list, &list);
6371 	local_irq_enable();
6372 
6373 	for (;;) {
6374 		struct napi_struct *n;
6375 
6376 		if (list_empty(&list)) {
6377 			if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
6378 				goto out;
6379 			break;
6380 		}
6381 
6382 		n = list_first_entry(&list, struct napi_struct, poll_list);
6383 		budget -= napi_poll(n, &repoll);
6384 
6385 		/* If softirq window is exhausted then punt.
6386 		 * Allow this to run for 2 jiffies since which will allow
6387 		 * an average latency of 1.5/HZ.
6388 		 */
6389 		if (unlikely(budget <= 0 ||
6390 			     time_after_eq(jiffies, time_limit))) {
6391 			sd->time_squeeze++;
6392 			break;
6393 		}
6394 	}
6395 
6396 	local_irq_disable();
6397 
6398 	list_splice_tail_init(&sd->poll_list, &list);
6399 	list_splice_tail(&repoll, &list);
6400 	list_splice(&list, &sd->poll_list);
6401 	if (!list_empty(&sd->poll_list))
6402 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
6403 
6404 	net_rps_action_and_irq_enable(sd);
6405 out:
6406 	__kfree_skb_flush();
6407 }
6408 
6409 struct netdev_adjacent {
6410 	struct net_device *dev;
6411 
6412 	/* upper master flag, there can only be one master device per list */
6413 	bool master;
6414 
6415 	/* counter for the number of times this device was added to us */
6416 	u16 ref_nr;
6417 
6418 	/* private field for the users */
6419 	void *private;
6420 
6421 	struct list_head list;
6422 	struct rcu_head rcu;
6423 };
6424 
6425 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
6426 						 struct list_head *adj_list)
6427 {
6428 	struct netdev_adjacent *adj;
6429 
6430 	list_for_each_entry(adj, adj_list, list) {
6431 		if (adj->dev == adj_dev)
6432 			return adj;
6433 	}
6434 	return NULL;
6435 }
6436 
6437 static int __netdev_has_upper_dev(struct net_device *upper_dev, void *data)
6438 {
6439 	struct net_device *dev = data;
6440 
6441 	return upper_dev == dev;
6442 }
6443 
6444 /**
6445  * netdev_has_upper_dev - Check if device is linked to an upper device
6446  * @dev: device
6447  * @upper_dev: upper device to check
6448  *
6449  * Find out if a device is linked to specified upper device and return true
6450  * in case it is. Note that this checks only immediate upper device,
6451  * not through a complete stack of devices. The caller must hold the RTNL lock.
6452  */
6453 bool netdev_has_upper_dev(struct net_device *dev,
6454 			  struct net_device *upper_dev)
6455 {
6456 	ASSERT_RTNL();
6457 
6458 	return netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
6459 					     upper_dev);
6460 }
6461 EXPORT_SYMBOL(netdev_has_upper_dev);
6462 
6463 /**
6464  * netdev_has_upper_dev_all - Check if device is linked to an upper device
6465  * @dev: device
6466  * @upper_dev: upper device to check
6467  *
6468  * Find out if a device is linked to specified upper device and return true
6469  * in case it is. Note that this checks the entire upper device chain.
6470  * The caller must hold rcu lock.
6471  */
6472 
6473 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
6474 				  struct net_device *upper_dev)
6475 {
6476 	return !!netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
6477 					       upper_dev);
6478 }
6479 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
6480 
6481 /**
6482  * netdev_has_any_upper_dev - Check if device is linked to some device
6483  * @dev: device
6484  *
6485  * Find out if a device is linked to an upper device and return true in case
6486  * it is. The caller must hold the RTNL lock.
6487  */
6488 bool netdev_has_any_upper_dev(struct net_device *dev)
6489 {
6490 	ASSERT_RTNL();
6491 
6492 	return !list_empty(&dev->adj_list.upper);
6493 }
6494 EXPORT_SYMBOL(netdev_has_any_upper_dev);
6495 
6496 /**
6497  * netdev_master_upper_dev_get - Get master upper device
6498  * @dev: device
6499  *
6500  * Find a master upper device and return pointer to it or NULL in case
6501  * it's not there. The caller must hold the RTNL lock.
6502  */
6503 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
6504 {
6505 	struct netdev_adjacent *upper;
6506 
6507 	ASSERT_RTNL();
6508 
6509 	if (list_empty(&dev->adj_list.upper))
6510 		return NULL;
6511 
6512 	upper = list_first_entry(&dev->adj_list.upper,
6513 				 struct netdev_adjacent, list);
6514 	if (likely(upper->master))
6515 		return upper->dev;
6516 	return NULL;
6517 }
6518 EXPORT_SYMBOL(netdev_master_upper_dev_get);
6519 
6520 /**
6521  * netdev_has_any_lower_dev - Check if device is linked to some device
6522  * @dev: device
6523  *
6524  * Find out if a device is linked to a lower device and return true in case
6525  * it is. The caller must hold the RTNL lock.
6526  */
6527 static bool netdev_has_any_lower_dev(struct net_device *dev)
6528 {
6529 	ASSERT_RTNL();
6530 
6531 	return !list_empty(&dev->adj_list.lower);
6532 }
6533 
6534 void *netdev_adjacent_get_private(struct list_head *adj_list)
6535 {
6536 	struct netdev_adjacent *adj;
6537 
6538 	adj = list_entry(adj_list, struct netdev_adjacent, list);
6539 
6540 	return adj->private;
6541 }
6542 EXPORT_SYMBOL(netdev_adjacent_get_private);
6543 
6544 /**
6545  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
6546  * @dev: device
6547  * @iter: list_head ** of the current position
6548  *
6549  * Gets the next device from the dev's upper list, starting from iter
6550  * position. The caller must hold RCU read lock.
6551  */
6552 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
6553 						 struct list_head **iter)
6554 {
6555 	struct netdev_adjacent *upper;
6556 
6557 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6558 
6559 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6560 
6561 	if (&upper->list == &dev->adj_list.upper)
6562 		return NULL;
6563 
6564 	*iter = &upper->list;
6565 
6566 	return upper->dev;
6567 }
6568 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
6569 
6570 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
6571 						    struct list_head **iter)
6572 {
6573 	struct netdev_adjacent *upper;
6574 
6575 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6576 
6577 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6578 
6579 	if (&upper->list == &dev->adj_list.upper)
6580 		return NULL;
6581 
6582 	*iter = &upper->list;
6583 
6584 	return upper->dev;
6585 }
6586 
6587 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
6588 				  int (*fn)(struct net_device *dev,
6589 					    void *data),
6590 				  void *data)
6591 {
6592 	struct net_device *udev;
6593 	struct list_head *iter;
6594 	int ret;
6595 
6596 	for (iter = &dev->adj_list.upper,
6597 	     udev = netdev_next_upper_dev_rcu(dev, &iter);
6598 	     udev;
6599 	     udev = netdev_next_upper_dev_rcu(dev, &iter)) {
6600 		/* first is the upper device itself */
6601 		ret = fn(udev, data);
6602 		if (ret)
6603 			return ret;
6604 
6605 		/* then look at all of its upper devices */
6606 		ret = netdev_walk_all_upper_dev_rcu(udev, fn, data);
6607 		if (ret)
6608 			return ret;
6609 	}
6610 
6611 	return 0;
6612 }
6613 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
6614 
6615 /**
6616  * netdev_lower_get_next_private - Get the next ->private from the
6617  *				   lower neighbour list
6618  * @dev: device
6619  * @iter: list_head ** of the current position
6620  *
6621  * Gets the next netdev_adjacent->private from the dev's lower neighbour
6622  * list, starting from iter position. The caller must hold either hold the
6623  * RTNL lock or its own locking that guarantees that the neighbour lower
6624  * list will remain unchanged.
6625  */
6626 void *netdev_lower_get_next_private(struct net_device *dev,
6627 				    struct list_head **iter)
6628 {
6629 	struct netdev_adjacent *lower;
6630 
6631 	lower = list_entry(*iter, struct netdev_adjacent, list);
6632 
6633 	if (&lower->list == &dev->adj_list.lower)
6634 		return NULL;
6635 
6636 	*iter = lower->list.next;
6637 
6638 	return lower->private;
6639 }
6640 EXPORT_SYMBOL(netdev_lower_get_next_private);
6641 
6642 /**
6643  * netdev_lower_get_next_private_rcu - Get the next ->private from the
6644  *				       lower neighbour list, RCU
6645  *				       variant
6646  * @dev: device
6647  * @iter: list_head ** of the current position
6648  *
6649  * Gets the next netdev_adjacent->private from the dev's lower neighbour
6650  * list, starting from iter position. The caller must hold RCU read lock.
6651  */
6652 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
6653 					struct list_head **iter)
6654 {
6655 	struct netdev_adjacent *lower;
6656 
6657 	WARN_ON_ONCE(!rcu_read_lock_held());
6658 
6659 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6660 
6661 	if (&lower->list == &dev->adj_list.lower)
6662 		return NULL;
6663 
6664 	*iter = &lower->list;
6665 
6666 	return lower->private;
6667 }
6668 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
6669 
6670 /**
6671  * netdev_lower_get_next - Get the next device from the lower neighbour
6672  *                         list
6673  * @dev: device
6674  * @iter: list_head ** of the current position
6675  *
6676  * Gets the next netdev_adjacent from the dev's lower neighbour
6677  * list, starting from iter position. The caller must hold RTNL lock or
6678  * its own locking that guarantees that the neighbour lower
6679  * list will remain unchanged.
6680  */
6681 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
6682 {
6683 	struct netdev_adjacent *lower;
6684 
6685 	lower = list_entry(*iter, struct netdev_adjacent, list);
6686 
6687 	if (&lower->list == &dev->adj_list.lower)
6688 		return NULL;
6689 
6690 	*iter = lower->list.next;
6691 
6692 	return lower->dev;
6693 }
6694 EXPORT_SYMBOL(netdev_lower_get_next);
6695 
6696 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
6697 						struct list_head **iter)
6698 {
6699 	struct netdev_adjacent *lower;
6700 
6701 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
6702 
6703 	if (&lower->list == &dev->adj_list.lower)
6704 		return NULL;
6705 
6706 	*iter = &lower->list;
6707 
6708 	return lower->dev;
6709 }
6710 
6711 int netdev_walk_all_lower_dev(struct net_device *dev,
6712 			      int (*fn)(struct net_device *dev,
6713 					void *data),
6714 			      void *data)
6715 {
6716 	struct net_device *ldev;
6717 	struct list_head *iter;
6718 	int ret;
6719 
6720 	for (iter = &dev->adj_list.lower,
6721 	     ldev = netdev_next_lower_dev(dev, &iter);
6722 	     ldev;
6723 	     ldev = netdev_next_lower_dev(dev, &iter)) {
6724 		/* first is the lower device itself */
6725 		ret = fn(ldev, data);
6726 		if (ret)
6727 			return ret;
6728 
6729 		/* then look at all of its lower devices */
6730 		ret = netdev_walk_all_lower_dev(ldev, fn, data);
6731 		if (ret)
6732 			return ret;
6733 	}
6734 
6735 	return 0;
6736 }
6737 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
6738 
6739 static struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
6740 						    struct list_head **iter)
6741 {
6742 	struct netdev_adjacent *lower;
6743 
6744 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6745 	if (&lower->list == &dev->adj_list.lower)
6746 		return NULL;
6747 
6748 	*iter = &lower->list;
6749 
6750 	return lower->dev;
6751 }
6752 
6753 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
6754 				  int (*fn)(struct net_device *dev,
6755 					    void *data),
6756 				  void *data)
6757 {
6758 	struct net_device *ldev;
6759 	struct list_head *iter;
6760 	int ret;
6761 
6762 	for (iter = &dev->adj_list.lower,
6763 	     ldev = netdev_next_lower_dev_rcu(dev, &iter);
6764 	     ldev;
6765 	     ldev = netdev_next_lower_dev_rcu(dev, &iter)) {
6766 		/* first is the lower device itself */
6767 		ret = fn(ldev, data);
6768 		if (ret)
6769 			return ret;
6770 
6771 		/* then look at all of its lower devices */
6772 		ret = netdev_walk_all_lower_dev_rcu(ldev, fn, data);
6773 		if (ret)
6774 			return ret;
6775 	}
6776 
6777 	return 0;
6778 }
6779 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
6780 
6781 /**
6782  * netdev_lower_get_first_private_rcu - Get the first ->private from the
6783  *				       lower neighbour list, RCU
6784  *				       variant
6785  * @dev: device
6786  *
6787  * Gets the first netdev_adjacent->private from the dev's lower neighbour
6788  * list. The caller must hold RCU read lock.
6789  */
6790 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
6791 {
6792 	struct netdev_adjacent *lower;
6793 
6794 	lower = list_first_or_null_rcu(&dev->adj_list.lower,
6795 			struct netdev_adjacent, list);
6796 	if (lower)
6797 		return lower->private;
6798 	return NULL;
6799 }
6800 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
6801 
6802 /**
6803  * netdev_master_upper_dev_get_rcu - Get master upper device
6804  * @dev: device
6805  *
6806  * Find a master upper device and return pointer to it or NULL in case
6807  * it's not there. The caller must hold the RCU read lock.
6808  */
6809 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
6810 {
6811 	struct netdev_adjacent *upper;
6812 
6813 	upper = list_first_or_null_rcu(&dev->adj_list.upper,
6814 				       struct netdev_adjacent, list);
6815 	if (upper && likely(upper->master))
6816 		return upper->dev;
6817 	return NULL;
6818 }
6819 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
6820 
6821 static int netdev_adjacent_sysfs_add(struct net_device *dev,
6822 			      struct net_device *adj_dev,
6823 			      struct list_head *dev_list)
6824 {
6825 	char linkname[IFNAMSIZ+7];
6826 
6827 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
6828 		"upper_%s" : "lower_%s", adj_dev->name);
6829 	return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
6830 				 linkname);
6831 }
6832 static void netdev_adjacent_sysfs_del(struct net_device *dev,
6833 			       char *name,
6834 			       struct list_head *dev_list)
6835 {
6836 	char linkname[IFNAMSIZ+7];
6837 
6838 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
6839 		"upper_%s" : "lower_%s", name);
6840 	sysfs_remove_link(&(dev->dev.kobj), linkname);
6841 }
6842 
6843 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
6844 						 struct net_device *adj_dev,
6845 						 struct list_head *dev_list)
6846 {
6847 	return (dev_list == &dev->adj_list.upper ||
6848 		dev_list == &dev->adj_list.lower) &&
6849 		net_eq(dev_net(dev), dev_net(adj_dev));
6850 }
6851 
6852 static int __netdev_adjacent_dev_insert(struct net_device *dev,
6853 					struct net_device *adj_dev,
6854 					struct list_head *dev_list,
6855 					void *private, bool master)
6856 {
6857 	struct netdev_adjacent *adj;
6858 	int ret;
6859 
6860 	adj = __netdev_find_adj(adj_dev, dev_list);
6861 
6862 	if (adj) {
6863 		adj->ref_nr += 1;
6864 		pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
6865 			 dev->name, adj_dev->name, adj->ref_nr);
6866 
6867 		return 0;
6868 	}
6869 
6870 	adj = kmalloc(sizeof(*adj), GFP_KERNEL);
6871 	if (!adj)
6872 		return -ENOMEM;
6873 
6874 	adj->dev = adj_dev;
6875 	adj->master = master;
6876 	adj->ref_nr = 1;
6877 	adj->private = private;
6878 	dev_hold(adj_dev);
6879 
6880 	pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
6881 		 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
6882 
6883 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
6884 		ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
6885 		if (ret)
6886 			goto free_adj;
6887 	}
6888 
6889 	/* Ensure that master link is always the first item in list. */
6890 	if (master) {
6891 		ret = sysfs_create_link(&(dev->dev.kobj),
6892 					&(adj_dev->dev.kobj), "master");
6893 		if (ret)
6894 			goto remove_symlinks;
6895 
6896 		list_add_rcu(&adj->list, dev_list);
6897 	} else {
6898 		list_add_tail_rcu(&adj->list, dev_list);
6899 	}
6900 
6901 	return 0;
6902 
6903 remove_symlinks:
6904 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
6905 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
6906 free_adj:
6907 	kfree(adj);
6908 	dev_put(adj_dev);
6909 
6910 	return ret;
6911 }
6912 
6913 static void __netdev_adjacent_dev_remove(struct net_device *dev,
6914 					 struct net_device *adj_dev,
6915 					 u16 ref_nr,
6916 					 struct list_head *dev_list)
6917 {
6918 	struct netdev_adjacent *adj;
6919 
6920 	pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
6921 		 dev->name, adj_dev->name, ref_nr);
6922 
6923 	adj = __netdev_find_adj(adj_dev, dev_list);
6924 
6925 	if (!adj) {
6926 		pr_err("Adjacency does not exist for device %s from %s\n",
6927 		       dev->name, adj_dev->name);
6928 		WARN_ON(1);
6929 		return;
6930 	}
6931 
6932 	if (adj->ref_nr > ref_nr) {
6933 		pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
6934 			 dev->name, adj_dev->name, ref_nr,
6935 			 adj->ref_nr - ref_nr);
6936 		adj->ref_nr -= ref_nr;
6937 		return;
6938 	}
6939 
6940 	if (adj->master)
6941 		sysfs_remove_link(&(dev->dev.kobj), "master");
6942 
6943 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
6944 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
6945 
6946 	list_del_rcu(&adj->list);
6947 	pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
6948 		 adj_dev->name, dev->name, adj_dev->name);
6949 	dev_put(adj_dev);
6950 	kfree_rcu(adj, rcu);
6951 }
6952 
6953 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
6954 					    struct net_device *upper_dev,
6955 					    struct list_head *up_list,
6956 					    struct list_head *down_list,
6957 					    void *private, bool master)
6958 {
6959 	int ret;
6960 
6961 	ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
6962 					   private, master);
6963 	if (ret)
6964 		return ret;
6965 
6966 	ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
6967 					   private, false);
6968 	if (ret) {
6969 		__netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
6970 		return ret;
6971 	}
6972 
6973 	return 0;
6974 }
6975 
6976 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
6977 					       struct net_device *upper_dev,
6978 					       u16 ref_nr,
6979 					       struct list_head *up_list,
6980 					       struct list_head *down_list)
6981 {
6982 	__netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
6983 	__netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
6984 }
6985 
6986 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
6987 						struct net_device *upper_dev,
6988 						void *private, bool master)
6989 {
6990 	return __netdev_adjacent_dev_link_lists(dev, upper_dev,
6991 						&dev->adj_list.upper,
6992 						&upper_dev->adj_list.lower,
6993 						private, master);
6994 }
6995 
6996 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
6997 						   struct net_device *upper_dev)
6998 {
6999 	__netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
7000 					   &dev->adj_list.upper,
7001 					   &upper_dev->adj_list.lower);
7002 }
7003 
7004 static int __netdev_upper_dev_link(struct net_device *dev,
7005 				   struct net_device *upper_dev, bool master,
7006 				   void *upper_priv, void *upper_info,
7007 				   struct netlink_ext_ack *extack)
7008 {
7009 	struct netdev_notifier_changeupper_info changeupper_info = {
7010 		.info = {
7011 			.dev = dev,
7012 			.extack = extack,
7013 		},
7014 		.upper_dev = upper_dev,
7015 		.master = master,
7016 		.linking = true,
7017 		.upper_info = upper_info,
7018 	};
7019 	struct net_device *master_dev;
7020 	int ret = 0;
7021 
7022 	ASSERT_RTNL();
7023 
7024 	if (dev == upper_dev)
7025 		return -EBUSY;
7026 
7027 	/* To prevent loops, check if dev is not upper device to upper_dev. */
7028 	if (netdev_has_upper_dev(upper_dev, dev))
7029 		return -EBUSY;
7030 
7031 	if (!master) {
7032 		if (netdev_has_upper_dev(dev, upper_dev))
7033 			return -EEXIST;
7034 	} else {
7035 		master_dev = netdev_master_upper_dev_get(dev);
7036 		if (master_dev)
7037 			return master_dev == upper_dev ? -EEXIST : -EBUSY;
7038 	}
7039 
7040 	ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7041 					    &changeupper_info.info);
7042 	ret = notifier_to_errno(ret);
7043 	if (ret)
7044 		return ret;
7045 
7046 	ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
7047 						   master);
7048 	if (ret)
7049 		return ret;
7050 
7051 	ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7052 					    &changeupper_info.info);
7053 	ret = notifier_to_errno(ret);
7054 	if (ret)
7055 		goto rollback;
7056 
7057 	return 0;
7058 
7059 rollback:
7060 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7061 
7062 	return ret;
7063 }
7064 
7065 /**
7066  * netdev_upper_dev_link - Add a link to the upper device
7067  * @dev: device
7068  * @upper_dev: new upper device
7069  * @extack: netlink extended ack
7070  *
7071  * Adds a link to device which is upper to this one. The caller must hold
7072  * the RTNL lock. On a failure a negative errno code is returned.
7073  * On success the reference counts are adjusted and the function
7074  * returns zero.
7075  */
7076 int netdev_upper_dev_link(struct net_device *dev,
7077 			  struct net_device *upper_dev,
7078 			  struct netlink_ext_ack *extack)
7079 {
7080 	return __netdev_upper_dev_link(dev, upper_dev, false,
7081 				       NULL, NULL, extack);
7082 }
7083 EXPORT_SYMBOL(netdev_upper_dev_link);
7084 
7085 /**
7086  * netdev_master_upper_dev_link - Add a master link to the upper device
7087  * @dev: device
7088  * @upper_dev: new upper device
7089  * @upper_priv: upper device private
7090  * @upper_info: upper info to be passed down via notifier
7091  * @extack: netlink extended ack
7092  *
7093  * Adds a link to device which is upper to this one. In this case, only
7094  * one master upper device can be linked, although other non-master devices
7095  * might be linked as well. The caller must hold the RTNL lock.
7096  * On a failure a negative errno code is returned. On success the reference
7097  * counts are adjusted and the function returns zero.
7098  */
7099 int netdev_master_upper_dev_link(struct net_device *dev,
7100 				 struct net_device *upper_dev,
7101 				 void *upper_priv, void *upper_info,
7102 				 struct netlink_ext_ack *extack)
7103 {
7104 	return __netdev_upper_dev_link(dev, upper_dev, true,
7105 				       upper_priv, upper_info, extack);
7106 }
7107 EXPORT_SYMBOL(netdev_master_upper_dev_link);
7108 
7109 /**
7110  * netdev_upper_dev_unlink - Removes a link to upper device
7111  * @dev: device
7112  * @upper_dev: new upper device
7113  *
7114  * Removes a link to device which is upper to this one. The caller must hold
7115  * the RTNL lock.
7116  */
7117 void netdev_upper_dev_unlink(struct net_device *dev,
7118 			     struct net_device *upper_dev)
7119 {
7120 	struct netdev_notifier_changeupper_info changeupper_info = {
7121 		.info = {
7122 			.dev = dev,
7123 		},
7124 		.upper_dev = upper_dev,
7125 		.linking = false,
7126 	};
7127 
7128 	ASSERT_RTNL();
7129 
7130 	changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
7131 
7132 	call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7133 				      &changeupper_info.info);
7134 
7135 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7136 
7137 	call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7138 				      &changeupper_info.info);
7139 }
7140 EXPORT_SYMBOL(netdev_upper_dev_unlink);
7141 
7142 /**
7143  * netdev_bonding_info_change - Dispatch event about slave change
7144  * @dev: device
7145  * @bonding_info: info to dispatch
7146  *
7147  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
7148  * The caller must hold the RTNL lock.
7149  */
7150 void netdev_bonding_info_change(struct net_device *dev,
7151 				struct netdev_bonding_info *bonding_info)
7152 {
7153 	struct netdev_notifier_bonding_info info = {
7154 		.info.dev = dev,
7155 	};
7156 
7157 	memcpy(&info.bonding_info, bonding_info,
7158 	       sizeof(struct netdev_bonding_info));
7159 	call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
7160 				      &info.info);
7161 }
7162 EXPORT_SYMBOL(netdev_bonding_info_change);
7163 
7164 static void netdev_adjacent_add_links(struct net_device *dev)
7165 {
7166 	struct netdev_adjacent *iter;
7167 
7168 	struct net *net = dev_net(dev);
7169 
7170 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
7171 		if (!net_eq(net, dev_net(iter->dev)))
7172 			continue;
7173 		netdev_adjacent_sysfs_add(iter->dev, dev,
7174 					  &iter->dev->adj_list.lower);
7175 		netdev_adjacent_sysfs_add(dev, iter->dev,
7176 					  &dev->adj_list.upper);
7177 	}
7178 
7179 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
7180 		if (!net_eq(net, dev_net(iter->dev)))
7181 			continue;
7182 		netdev_adjacent_sysfs_add(iter->dev, dev,
7183 					  &iter->dev->adj_list.upper);
7184 		netdev_adjacent_sysfs_add(dev, iter->dev,
7185 					  &dev->adj_list.lower);
7186 	}
7187 }
7188 
7189 static void netdev_adjacent_del_links(struct net_device *dev)
7190 {
7191 	struct netdev_adjacent *iter;
7192 
7193 	struct net *net = dev_net(dev);
7194 
7195 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
7196 		if (!net_eq(net, dev_net(iter->dev)))
7197 			continue;
7198 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
7199 					  &iter->dev->adj_list.lower);
7200 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
7201 					  &dev->adj_list.upper);
7202 	}
7203 
7204 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
7205 		if (!net_eq(net, dev_net(iter->dev)))
7206 			continue;
7207 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
7208 					  &iter->dev->adj_list.upper);
7209 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
7210 					  &dev->adj_list.lower);
7211 	}
7212 }
7213 
7214 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
7215 {
7216 	struct netdev_adjacent *iter;
7217 
7218 	struct net *net = dev_net(dev);
7219 
7220 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
7221 		if (!net_eq(net, dev_net(iter->dev)))
7222 			continue;
7223 		netdev_adjacent_sysfs_del(iter->dev, oldname,
7224 					  &iter->dev->adj_list.lower);
7225 		netdev_adjacent_sysfs_add(iter->dev, dev,
7226 					  &iter->dev->adj_list.lower);
7227 	}
7228 
7229 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
7230 		if (!net_eq(net, dev_net(iter->dev)))
7231 			continue;
7232 		netdev_adjacent_sysfs_del(iter->dev, oldname,
7233 					  &iter->dev->adj_list.upper);
7234 		netdev_adjacent_sysfs_add(iter->dev, dev,
7235 					  &iter->dev->adj_list.upper);
7236 	}
7237 }
7238 
7239 void *netdev_lower_dev_get_private(struct net_device *dev,
7240 				   struct net_device *lower_dev)
7241 {
7242 	struct netdev_adjacent *lower;
7243 
7244 	if (!lower_dev)
7245 		return NULL;
7246 	lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
7247 	if (!lower)
7248 		return NULL;
7249 
7250 	return lower->private;
7251 }
7252 EXPORT_SYMBOL(netdev_lower_dev_get_private);
7253 
7254 
7255 int dev_get_nest_level(struct net_device *dev)
7256 {
7257 	struct net_device *lower = NULL;
7258 	struct list_head *iter;
7259 	int max_nest = -1;
7260 	int nest;
7261 
7262 	ASSERT_RTNL();
7263 
7264 	netdev_for_each_lower_dev(dev, lower, iter) {
7265 		nest = dev_get_nest_level(lower);
7266 		if (max_nest < nest)
7267 			max_nest = nest;
7268 	}
7269 
7270 	return max_nest + 1;
7271 }
7272 EXPORT_SYMBOL(dev_get_nest_level);
7273 
7274 /**
7275  * netdev_lower_change - Dispatch event about lower device state change
7276  * @lower_dev: device
7277  * @lower_state_info: state to dispatch
7278  *
7279  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
7280  * The caller must hold the RTNL lock.
7281  */
7282 void netdev_lower_state_changed(struct net_device *lower_dev,
7283 				void *lower_state_info)
7284 {
7285 	struct netdev_notifier_changelowerstate_info changelowerstate_info = {
7286 		.info.dev = lower_dev,
7287 	};
7288 
7289 	ASSERT_RTNL();
7290 	changelowerstate_info.lower_state_info = lower_state_info;
7291 	call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
7292 				      &changelowerstate_info.info);
7293 }
7294 EXPORT_SYMBOL(netdev_lower_state_changed);
7295 
7296 static void dev_change_rx_flags(struct net_device *dev, int flags)
7297 {
7298 	const struct net_device_ops *ops = dev->netdev_ops;
7299 
7300 	if (ops->ndo_change_rx_flags)
7301 		ops->ndo_change_rx_flags(dev, flags);
7302 }
7303 
7304 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
7305 {
7306 	unsigned int old_flags = dev->flags;
7307 	kuid_t uid;
7308 	kgid_t gid;
7309 
7310 	ASSERT_RTNL();
7311 
7312 	dev->flags |= IFF_PROMISC;
7313 	dev->promiscuity += inc;
7314 	if (dev->promiscuity == 0) {
7315 		/*
7316 		 * Avoid overflow.
7317 		 * If inc causes overflow, untouch promisc and return error.
7318 		 */
7319 		if (inc < 0)
7320 			dev->flags &= ~IFF_PROMISC;
7321 		else {
7322 			dev->promiscuity -= inc;
7323 			pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
7324 				dev->name);
7325 			return -EOVERFLOW;
7326 		}
7327 	}
7328 	if (dev->flags != old_flags) {
7329 		pr_info("device %s %s promiscuous mode\n",
7330 			dev->name,
7331 			dev->flags & IFF_PROMISC ? "entered" : "left");
7332 		if (audit_enabled) {
7333 			current_uid_gid(&uid, &gid);
7334 			audit_log(audit_context(), GFP_ATOMIC,
7335 				  AUDIT_ANOM_PROMISCUOUS,
7336 				  "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
7337 				  dev->name, (dev->flags & IFF_PROMISC),
7338 				  (old_flags & IFF_PROMISC),
7339 				  from_kuid(&init_user_ns, audit_get_loginuid(current)),
7340 				  from_kuid(&init_user_ns, uid),
7341 				  from_kgid(&init_user_ns, gid),
7342 				  audit_get_sessionid(current));
7343 		}
7344 
7345 		dev_change_rx_flags(dev, IFF_PROMISC);
7346 	}
7347 	if (notify)
7348 		__dev_notify_flags(dev, old_flags, IFF_PROMISC);
7349 	return 0;
7350 }
7351 
7352 /**
7353  *	dev_set_promiscuity	- update promiscuity count on a device
7354  *	@dev: device
7355  *	@inc: modifier
7356  *
7357  *	Add or remove promiscuity from a device. While the count in the device
7358  *	remains above zero the interface remains promiscuous. Once it hits zero
7359  *	the device reverts back to normal filtering operation. A negative inc
7360  *	value is used to drop promiscuity on the device.
7361  *	Return 0 if successful or a negative errno code on error.
7362  */
7363 int dev_set_promiscuity(struct net_device *dev, int inc)
7364 {
7365 	unsigned int old_flags = dev->flags;
7366 	int err;
7367 
7368 	err = __dev_set_promiscuity(dev, inc, true);
7369 	if (err < 0)
7370 		return err;
7371 	if (dev->flags != old_flags)
7372 		dev_set_rx_mode(dev);
7373 	return err;
7374 }
7375 EXPORT_SYMBOL(dev_set_promiscuity);
7376 
7377 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
7378 {
7379 	unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
7380 
7381 	ASSERT_RTNL();
7382 
7383 	dev->flags |= IFF_ALLMULTI;
7384 	dev->allmulti += inc;
7385 	if (dev->allmulti == 0) {
7386 		/*
7387 		 * Avoid overflow.
7388 		 * If inc causes overflow, untouch allmulti and return error.
7389 		 */
7390 		if (inc < 0)
7391 			dev->flags &= ~IFF_ALLMULTI;
7392 		else {
7393 			dev->allmulti -= inc;
7394 			pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
7395 				dev->name);
7396 			return -EOVERFLOW;
7397 		}
7398 	}
7399 	if (dev->flags ^ old_flags) {
7400 		dev_change_rx_flags(dev, IFF_ALLMULTI);
7401 		dev_set_rx_mode(dev);
7402 		if (notify)
7403 			__dev_notify_flags(dev, old_flags,
7404 					   dev->gflags ^ old_gflags);
7405 	}
7406 	return 0;
7407 }
7408 
7409 /**
7410  *	dev_set_allmulti	- update allmulti count on a device
7411  *	@dev: device
7412  *	@inc: modifier
7413  *
7414  *	Add or remove reception of all multicast frames to a device. While the
7415  *	count in the device remains above zero the interface remains listening
7416  *	to all interfaces. Once it hits zero the device reverts back to normal
7417  *	filtering operation. A negative @inc value is used to drop the counter
7418  *	when releasing a resource needing all multicasts.
7419  *	Return 0 if successful or a negative errno code on error.
7420  */
7421 
7422 int dev_set_allmulti(struct net_device *dev, int inc)
7423 {
7424 	return __dev_set_allmulti(dev, inc, true);
7425 }
7426 EXPORT_SYMBOL(dev_set_allmulti);
7427 
7428 /*
7429  *	Upload unicast and multicast address lists to device and
7430  *	configure RX filtering. When the device doesn't support unicast
7431  *	filtering it is put in promiscuous mode while unicast addresses
7432  *	are present.
7433  */
7434 void __dev_set_rx_mode(struct net_device *dev)
7435 {
7436 	const struct net_device_ops *ops = dev->netdev_ops;
7437 
7438 	/* dev_open will call this function so the list will stay sane. */
7439 	if (!(dev->flags&IFF_UP))
7440 		return;
7441 
7442 	if (!netif_device_present(dev))
7443 		return;
7444 
7445 	if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
7446 		/* Unicast addresses changes may only happen under the rtnl,
7447 		 * therefore calling __dev_set_promiscuity here is safe.
7448 		 */
7449 		if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
7450 			__dev_set_promiscuity(dev, 1, false);
7451 			dev->uc_promisc = true;
7452 		} else if (netdev_uc_empty(dev) && dev->uc_promisc) {
7453 			__dev_set_promiscuity(dev, -1, false);
7454 			dev->uc_promisc = false;
7455 		}
7456 	}
7457 
7458 	if (ops->ndo_set_rx_mode)
7459 		ops->ndo_set_rx_mode(dev);
7460 }
7461 
7462 void dev_set_rx_mode(struct net_device *dev)
7463 {
7464 	netif_addr_lock_bh(dev);
7465 	__dev_set_rx_mode(dev);
7466 	netif_addr_unlock_bh(dev);
7467 }
7468 
7469 /**
7470  *	dev_get_flags - get flags reported to userspace
7471  *	@dev: device
7472  *
7473  *	Get the combination of flag bits exported through APIs to userspace.
7474  */
7475 unsigned int dev_get_flags(const struct net_device *dev)
7476 {
7477 	unsigned int flags;
7478 
7479 	flags = (dev->flags & ~(IFF_PROMISC |
7480 				IFF_ALLMULTI |
7481 				IFF_RUNNING |
7482 				IFF_LOWER_UP |
7483 				IFF_DORMANT)) |
7484 		(dev->gflags & (IFF_PROMISC |
7485 				IFF_ALLMULTI));
7486 
7487 	if (netif_running(dev)) {
7488 		if (netif_oper_up(dev))
7489 			flags |= IFF_RUNNING;
7490 		if (netif_carrier_ok(dev))
7491 			flags |= IFF_LOWER_UP;
7492 		if (netif_dormant(dev))
7493 			flags |= IFF_DORMANT;
7494 	}
7495 
7496 	return flags;
7497 }
7498 EXPORT_SYMBOL(dev_get_flags);
7499 
7500 int __dev_change_flags(struct net_device *dev, unsigned int flags)
7501 {
7502 	unsigned int old_flags = dev->flags;
7503 	int ret;
7504 
7505 	ASSERT_RTNL();
7506 
7507 	/*
7508 	 *	Set the flags on our device.
7509 	 */
7510 
7511 	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
7512 			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
7513 			       IFF_AUTOMEDIA)) |
7514 		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
7515 				    IFF_ALLMULTI));
7516 
7517 	/*
7518 	 *	Load in the correct multicast list now the flags have changed.
7519 	 */
7520 
7521 	if ((old_flags ^ flags) & IFF_MULTICAST)
7522 		dev_change_rx_flags(dev, IFF_MULTICAST);
7523 
7524 	dev_set_rx_mode(dev);
7525 
7526 	/*
7527 	 *	Have we downed the interface. We handle IFF_UP ourselves
7528 	 *	according to user attempts to set it, rather than blindly
7529 	 *	setting it.
7530 	 */
7531 
7532 	ret = 0;
7533 	if ((old_flags ^ flags) & IFF_UP) {
7534 		if (old_flags & IFF_UP)
7535 			__dev_close(dev);
7536 		else
7537 			ret = __dev_open(dev);
7538 	}
7539 
7540 	if ((flags ^ dev->gflags) & IFF_PROMISC) {
7541 		int inc = (flags & IFF_PROMISC) ? 1 : -1;
7542 		unsigned int old_flags = dev->flags;
7543 
7544 		dev->gflags ^= IFF_PROMISC;
7545 
7546 		if (__dev_set_promiscuity(dev, inc, false) >= 0)
7547 			if (dev->flags != old_flags)
7548 				dev_set_rx_mode(dev);
7549 	}
7550 
7551 	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
7552 	 * is important. Some (broken) drivers set IFF_PROMISC, when
7553 	 * IFF_ALLMULTI is requested not asking us and not reporting.
7554 	 */
7555 	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
7556 		int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
7557 
7558 		dev->gflags ^= IFF_ALLMULTI;
7559 		__dev_set_allmulti(dev, inc, false);
7560 	}
7561 
7562 	return ret;
7563 }
7564 
7565 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
7566 			unsigned int gchanges)
7567 {
7568 	unsigned int changes = dev->flags ^ old_flags;
7569 
7570 	if (gchanges)
7571 		rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
7572 
7573 	if (changes & IFF_UP) {
7574 		if (dev->flags & IFF_UP)
7575 			call_netdevice_notifiers(NETDEV_UP, dev);
7576 		else
7577 			call_netdevice_notifiers(NETDEV_DOWN, dev);
7578 	}
7579 
7580 	if (dev->flags & IFF_UP &&
7581 	    (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
7582 		struct netdev_notifier_change_info change_info = {
7583 			.info = {
7584 				.dev = dev,
7585 			},
7586 			.flags_changed = changes,
7587 		};
7588 
7589 		call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
7590 	}
7591 }
7592 
7593 /**
7594  *	dev_change_flags - change device settings
7595  *	@dev: device
7596  *	@flags: device state flags
7597  *
7598  *	Change settings on device based state flags. The flags are
7599  *	in the userspace exported format.
7600  */
7601 int dev_change_flags(struct net_device *dev, unsigned int flags)
7602 {
7603 	int ret;
7604 	unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
7605 
7606 	ret = __dev_change_flags(dev, flags);
7607 	if (ret < 0)
7608 		return ret;
7609 
7610 	changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
7611 	__dev_notify_flags(dev, old_flags, changes);
7612 	return ret;
7613 }
7614 EXPORT_SYMBOL(dev_change_flags);
7615 
7616 int __dev_set_mtu(struct net_device *dev, int new_mtu)
7617 {
7618 	const struct net_device_ops *ops = dev->netdev_ops;
7619 
7620 	if (ops->ndo_change_mtu)
7621 		return ops->ndo_change_mtu(dev, new_mtu);
7622 
7623 	dev->mtu = new_mtu;
7624 	return 0;
7625 }
7626 EXPORT_SYMBOL(__dev_set_mtu);
7627 
7628 /**
7629  *	dev_set_mtu_ext - Change maximum transfer unit
7630  *	@dev: device
7631  *	@new_mtu: new transfer unit
7632  *	@extack: netlink extended ack
7633  *
7634  *	Change the maximum transfer size of the network device.
7635  */
7636 int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
7637 		    struct netlink_ext_ack *extack)
7638 {
7639 	int err, orig_mtu;
7640 
7641 	if (new_mtu == dev->mtu)
7642 		return 0;
7643 
7644 	/* MTU must be positive, and in range */
7645 	if (new_mtu < 0 || new_mtu < dev->min_mtu) {
7646 		NL_SET_ERR_MSG(extack, "mtu less than device minimum");
7647 		return -EINVAL;
7648 	}
7649 
7650 	if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
7651 		NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
7652 		return -EINVAL;
7653 	}
7654 
7655 	if (!netif_device_present(dev))
7656 		return -ENODEV;
7657 
7658 	err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
7659 	err = notifier_to_errno(err);
7660 	if (err)
7661 		return err;
7662 
7663 	orig_mtu = dev->mtu;
7664 	err = __dev_set_mtu(dev, new_mtu);
7665 
7666 	if (!err) {
7667 		err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
7668 						   orig_mtu);
7669 		err = notifier_to_errno(err);
7670 		if (err) {
7671 			/* setting mtu back and notifying everyone again,
7672 			 * so that they have a chance to revert changes.
7673 			 */
7674 			__dev_set_mtu(dev, orig_mtu);
7675 			call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
7676 						     new_mtu);
7677 		}
7678 	}
7679 	return err;
7680 }
7681 
7682 int dev_set_mtu(struct net_device *dev, int new_mtu)
7683 {
7684 	struct netlink_ext_ack extack;
7685 	int err;
7686 
7687 	memset(&extack, 0, sizeof(extack));
7688 	err = dev_set_mtu_ext(dev, new_mtu, &extack);
7689 	if (err && extack._msg)
7690 		net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
7691 	return err;
7692 }
7693 EXPORT_SYMBOL(dev_set_mtu);
7694 
7695 /**
7696  *	dev_change_tx_queue_len - Change TX queue length of a netdevice
7697  *	@dev: device
7698  *	@new_len: new tx queue length
7699  */
7700 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
7701 {
7702 	unsigned int orig_len = dev->tx_queue_len;
7703 	int res;
7704 
7705 	if (new_len != (unsigned int)new_len)
7706 		return -ERANGE;
7707 
7708 	if (new_len != orig_len) {
7709 		dev->tx_queue_len = new_len;
7710 		res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
7711 		res = notifier_to_errno(res);
7712 		if (res)
7713 			goto err_rollback;
7714 		res = dev_qdisc_change_tx_queue_len(dev);
7715 		if (res)
7716 			goto err_rollback;
7717 	}
7718 
7719 	return 0;
7720 
7721 err_rollback:
7722 	netdev_err(dev, "refused to change device tx_queue_len\n");
7723 	dev->tx_queue_len = orig_len;
7724 	return res;
7725 }
7726 
7727 /**
7728  *	dev_set_group - Change group this device belongs to
7729  *	@dev: device
7730  *	@new_group: group this device should belong to
7731  */
7732 void dev_set_group(struct net_device *dev, int new_group)
7733 {
7734 	dev->group = new_group;
7735 }
7736 EXPORT_SYMBOL(dev_set_group);
7737 
7738 /**
7739  *	dev_set_mac_address - Change Media Access Control Address
7740  *	@dev: device
7741  *	@sa: new address
7742  *
7743  *	Change the hardware (MAC) address of the device
7744  */
7745 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
7746 {
7747 	const struct net_device_ops *ops = dev->netdev_ops;
7748 	int err;
7749 
7750 	if (!ops->ndo_set_mac_address)
7751 		return -EOPNOTSUPP;
7752 	if (sa->sa_family != dev->type)
7753 		return -EINVAL;
7754 	if (!netif_device_present(dev))
7755 		return -ENODEV;
7756 	err = ops->ndo_set_mac_address(dev, sa);
7757 	if (err)
7758 		return err;
7759 	dev->addr_assign_type = NET_ADDR_SET;
7760 	call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
7761 	add_device_randomness(dev->dev_addr, dev->addr_len);
7762 	return 0;
7763 }
7764 EXPORT_SYMBOL(dev_set_mac_address);
7765 
7766 /**
7767  *	dev_change_carrier - Change device carrier
7768  *	@dev: device
7769  *	@new_carrier: new value
7770  *
7771  *	Change device carrier
7772  */
7773 int dev_change_carrier(struct net_device *dev, bool new_carrier)
7774 {
7775 	const struct net_device_ops *ops = dev->netdev_ops;
7776 
7777 	if (!ops->ndo_change_carrier)
7778 		return -EOPNOTSUPP;
7779 	if (!netif_device_present(dev))
7780 		return -ENODEV;
7781 	return ops->ndo_change_carrier(dev, new_carrier);
7782 }
7783 EXPORT_SYMBOL(dev_change_carrier);
7784 
7785 /**
7786  *	dev_get_phys_port_id - Get device physical port ID
7787  *	@dev: device
7788  *	@ppid: port ID
7789  *
7790  *	Get device physical port ID
7791  */
7792 int dev_get_phys_port_id(struct net_device *dev,
7793 			 struct netdev_phys_item_id *ppid)
7794 {
7795 	const struct net_device_ops *ops = dev->netdev_ops;
7796 
7797 	if (!ops->ndo_get_phys_port_id)
7798 		return -EOPNOTSUPP;
7799 	return ops->ndo_get_phys_port_id(dev, ppid);
7800 }
7801 EXPORT_SYMBOL(dev_get_phys_port_id);
7802 
7803 /**
7804  *	dev_get_phys_port_name - Get device physical port name
7805  *	@dev: device
7806  *	@name: port name
7807  *	@len: limit of bytes to copy to name
7808  *
7809  *	Get device physical port name
7810  */
7811 int dev_get_phys_port_name(struct net_device *dev,
7812 			   char *name, size_t len)
7813 {
7814 	const struct net_device_ops *ops = dev->netdev_ops;
7815 
7816 	if (!ops->ndo_get_phys_port_name)
7817 		return -EOPNOTSUPP;
7818 	return ops->ndo_get_phys_port_name(dev, name, len);
7819 }
7820 EXPORT_SYMBOL(dev_get_phys_port_name);
7821 
7822 /**
7823  *	dev_change_proto_down - update protocol port state information
7824  *	@dev: device
7825  *	@proto_down: new value
7826  *
7827  *	This info can be used by switch drivers to set the phys state of the
7828  *	port.
7829  */
7830 int dev_change_proto_down(struct net_device *dev, bool proto_down)
7831 {
7832 	const struct net_device_ops *ops = dev->netdev_ops;
7833 
7834 	if (!ops->ndo_change_proto_down)
7835 		return -EOPNOTSUPP;
7836 	if (!netif_device_present(dev))
7837 		return -ENODEV;
7838 	return ops->ndo_change_proto_down(dev, proto_down);
7839 }
7840 EXPORT_SYMBOL(dev_change_proto_down);
7841 
7842 u32 __dev_xdp_query(struct net_device *dev, bpf_op_t bpf_op,
7843 		    enum bpf_netdev_command cmd)
7844 {
7845 	struct netdev_bpf xdp;
7846 
7847 	if (!bpf_op)
7848 		return 0;
7849 
7850 	memset(&xdp, 0, sizeof(xdp));
7851 	xdp.command = cmd;
7852 
7853 	/* Query must always succeed. */
7854 	WARN_ON(bpf_op(dev, &xdp) < 0 && cmd == XDP_QUERY_PROG);
7855 
7856 	return xdp.prog_id;
7857 }
7858 
7859 static int dev_xdp_install(struct net_device *dev, bpf_op_t bpf_op,
7860 			   struct netlink_ext_ack *extack, u32 flags,
7861 			   struct bpf_prog *prog)
7862 {
7863 	struct netdev_bpf xdp;
7864 
7865 	memset(&xdp, 0, sizeof(xdp));
7866 	if (flags & XDP_FLAGS_HW_MODE)
7867 		xdp.command = XDP_SETUP_PROG_HW;
7868 	else
7869 		xdp.command = XDP_SETUP_PROG;
7870 	xdp.extack = extack;
7871 	xdp.flags = flags;
7872 	xdp.prog = prog;
7873 
7874 	return bpf_op(dev, &xdp);
7875 }
7876 
7877 static void dev_xdp_uninstall(struct net_device *dev)
7878 {
7879 	struct netdev_bpf xdp;
7880 	bpf_op_t ndo_bpf;
7881 
7882 	/* Remove generic XDP */
7883 	WARN_ON(dev_xdp_install(dev, generic_xdp_install, NULL, 0, NULL));
7884 
7885 	/* Remove from the driver */
7886 	ndo_bpf = dev->netdev_ops->ndo_bpf;
7887 	if (!ndo_bpf)
7888 		return;
7889 
7890 	memset(&xdp, 0, sizeof(xdp));
7891 	xdp.command = XDP_QUERY_PROG;
7892 	WARN_ON(ndo_bpf(dev, &xdp));
7893 	if (xdp.prog_id)
7894 		WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags,
7895 					NULL));
7896 
7897 	/* Remove HW offload */
7898 	memset(&xdp, 0, sizeof(xdp));
7899 	xdp.command = XDP_QUERY_PROG_HW;
7900 	if (!ndo_bpf(dev, &xdp) && xdp.prog_id)
7901 		WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags,
7902 					NULL));
7903 }
7904 
7905 /**
7906  *	dev_change_xdp_fd - set or clear a bpf program for a device rx path
7907  *	@dev: device
7908  *	@extack: netlink extended ack
7909  *	@fd: new program fd or negative value to clear
7910  *	@flags: xdp-related flags
7911  *
7912  *	Set or clear a bpf program for a device
7913  */
7914 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
7915 		      int fd, u32 flags)
7916 {
7917 	const struct net_device_ops *ops = dev->netdev_ops;
7918 	enum bpf_netdev_command query;
7919 	struct bpf_prog *prog = NULL;
7920 	bpf_op_t bpf_op, bpf_chk;
7921 	int err;
7922 
7923 	ASSERT_RTNL();
7924 
7925 	query = flags & XDP_FLAGS_HW_MODE ? XDP_QUERY_PROG_HW : XDP_QUERY_PROG;
7926 
7927 	bpf_op = bpf_chk = ops->ndo_bpf;
7928 	if (!bpf_op && (flags & (XDP_FLAGS_DRV_MODE | XDP_FLAGS_HW_MODE)))
7929 		return -EOPNOTSUPP;
7930 	if (!bpf_op || (flags & XDP_FLAGS_SKB_MODE))
7931 		bpf_op = generic_xdp_install;
7932 	if (bpf_op == bpf_chk)
7933 		bpf_chk = generic_xdp_install;
7934 
7935 	if (fd >= 0) {
7936 		if (__dev_xdp_query(dev, bpf_chk, XDP_QUERY_PROG) ||
7937 		    __dev_xdp_query(dev, bpf_chk, XDP_QUERY_PROG_HW))
7938 			return -EEXIST;
7939 		if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) &&
7940 		    __dev_xdp_query(dev, bpf_op, query))
7941 			return -EBUSY;
7942 
7943 		prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
7944 					     bpf_op == ops->ndo_bpf);
7945 		if (IS_ERR(prog))
7946 			return PTR_ERR(prog);
7947 
7948 		if (!(flags & XDP_FLAGS_HW_MODE) &&
7949 		    bpf_prog_is_dev_bound(prog->aux)) {
7950 			NL_SET_ERR_MSG(extack, "using device-bound program without HW_MODE flag is not supported");
7951 			bpf_prog_put(prog);
7952 			return -EINVAL;
7953 		}
7954 	}
7955 
7956 	err = dev_xdp_install(dev, bpf_op, extack, flags, prog);
7957 	if (err < 0 && prog)
7958 		bpf_prog_put(prog);
7959 
7960 	return err;
7961 }
7962 
7963 /**
7964  *	dev_new_index	-	allocate an ifindex
7965  *	@net: the applicable net namespace
7966  *
7967  *	Returns a suitable unique value for a new device interface
7968  *	number.  The caller must hold the rtnl semaphore or the
7969  *	dev_base_lock to be sure it remains unique.
7970  */
7971 static int dev_new_index(struct net *net)
7972 {
7973 	int ifindex = net->ifindex;
7974 
7975 	for (;;) {
7976 		if (++ifindex <= 0)
7977 			ifindex = 1;
7978 		if (!__dev_get_by_index(net, ifindex))
7979 			return net->ifindex = ifindex;
7980 	}
7981 }
7982 
7983 /* Delayed registration/unregisteration */
7984 static LIST_HEAD(net_todo_list);
7985 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
7986 
7987 static void net_set_todo(struct net_device *dev)
7988 {
7989 	list_add_tail(&dev->todo_list, &net_todo_list);
7990 	dev_net(dev)->dev_unreg_count++;
7991 }
7992 
7993 static void rollback_registered_many(struct list_head *head)
7994 {
7995 	struct net_device *dev, *tmp;
7996 	LIST_HEAD(close_head);
7997 
7998 	BUG_ON(dev_boot_phase);
7999 	ASSERT_RTNL();
8000 
8001 	list_for_each_entry_safe(dev, tmp, head, unreg_list) {
8002 		/* Some devices call without registering
8003 		 * for initialization unwind. Remove those
8004 		 * devices and proceed with the remaining.
8005 		 */
8006 		if (dev->reg_state == NETREG_UNINITIALIZED) {
8007 			pr_debug("unregister_netdevice: device %s/%p never was registered\n",
8008 				 dev->name, dev);
8009 
8010 			WARN_ON(1);
8011 			list_del(&dev->unreg_list);
8012 			continue;
8013 		}
8014 		dev->dismantle = true;
8015 		BUG_ON(dev->reg_state != NETREG_REGISTERED);
8016 	}
8017 
8018 	/* If device is running, close it first. */
8019 	list_for_each_entry(dev, head, unreg_list)
8020 		list_add_tail(&dev->close_list, &close_head);
8021 	dev_close_many(&close_head, true);
8022 
8023 	list_for_each_entry(dev, head, unreg_list) {
8024 		/* And unlink it from device chain. */
8025 		unlist_netdevice(dev);
8026 
8027 		dev->reg_state = NETREG_UNREGISTERING;
8028 	}
8029 	flush_all_backlogs();
8030 
8031 	synchronize_net();
8032 
8033 	list_for_each_entry(dev, head, unreg_list) {
8034 		struct sk_buff *skb = NULL;
8035 
8036 		/* Shutdown queueing discipline. */
8037 		dev_shutdown(dev);
8038 
8039 		dev_xdp_uninstall(dev);
8040 
8041 		/* Notify protocols, that we are about to destroy
8042 		 * this device. They should clean all the things.
8043 		 */
8044 		call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
8045 
8046 		if (!dev->rtnl_link_ops ||
8047 		    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
8048 			skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
8049 						     GFP_KERNEL, NULL, 0);
8050 
8051 		/*
8052 		 *	Flush the unicast and multicast chains
8053 		 */
8054 		dev_uc_flush(dev);
8055 		dev_mc_flush(dev);
8056 
8057 		if (dev->netdev_ops->ndo_uninit)
8058 			dev->netdev_ops->ndo_uninit(dev);
8059 
8060 		if (skb)
8061 			rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
8062 
8063 		/* Notifier chain MUST detach us all upper devices. */
8064 		WARN_ON(netdev_has_any_upper_dev(dev));
8065 		WARN_ON(netdev_has_any_lower_dev(dev));
8066 
8067 		/* Remove entries from kobject tree */
8068 		netdev_unregister_kobject(dev);
8069 #ifdef CONFIG_XPS
8070 		/* Remove XPS queueing entries */
8071 		netif_reset_xps_queues_gt(dev, 0);
8072 #endif
8073 	}
8074 
8075 	synchronize_net();
8076 
8077 	list_for_each_entry(dev, head, unreg_list)
8078 		dev_put(dev);
8079 }
8080 
8081 static void rollback_registered(struct net_device *dev)
8082 {
8083 	LIST_HEAD(single);
8084 
8085 	list_add(&dev->unreg_list, &single);
8086 	rollback_registered_many(&single);
8087 	list_del(&single);
8088 }
8089 
8090 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
8091 	struct net_device *upper, netdev_features_t features)
8092 {
8093 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
8094 	netdev_features_t feature;
8095 	int feature_bit;
8096 
8097 	for_each_netdev_feature(&upper_disables, feature_bit) {
8098 		feature = __NETIF_F_BIT(feature_bit);
8099 		if (!(upper->wanted_features & feature)
8100 		    && (features & feature)) {
8101 			netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
8102 				   &feature, upper->name);
8103 			features &= ~feature;
8104 		}
8105 	}
8106 
8107 	return features;
8108 }
8109 
8110 static void netdev_sync_lower_features(struct net_device *upper,
8111 	struct net_device *lower, netdev_features_t features)
8112 {
8113 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
8114 	netdev_features_t feature;
8115 	int feature_bit;
8116 
8117 	for_each_netdev_feature(&upper_disables, feature_bit) {
8118 		feature = __NETIF_F_BIT(feature_bit);
8119 		if (!(features & feature) && (lower->features & feature)) {
8120 			netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
8121 				   &feature, lower->name);
8122 			lower->wanted_features &= ~feature;
8123 			netdev_update_features(lower);
8124 
8125 			if (unlikely(lower->features & feature))
8126 				netdev_WARN(upper, "failed to disable %pNF on %s!\n",
8127 					    &feature, lower->name);
8128 		}
8129 	}
8130 }
8131 
8132 static netdev_features_t netdev_fix_features(struct net_device *dev,
8133 	netdev_features_t features)
8134 {
8135 	/* Fix illegal checksum combinations */
8136 	if ((features & NETIF_F_HW_CSUM) &&
8137 	    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
8138 		netdev_warn(dev, "mixed HW and IP checksum settings.\n");
8139 		features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
8140 	}
8141 
8142 	/* TSO requires that SG is present as well. */
8143 	if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
8144 		netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
8145 		features &= ~NETIF_F_ALL_TSO;
8146 	}
8147 
8148 	if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
8149 					!(features & NETIF_F_IP_CSUM)) {
8150 		netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
8151 		features &= ~NETIF_F_TSO;
8152 		features &= ~NETIF_F_TSO_ECN;
8153 	}
8154 
8155 	if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
8156 					 !(features & NETIF_F_IPV6_CSUM)) {
8157 		netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
8158 		features &= ~NETIF_F_TSO6;
8159 	}
8160 
8161 	/* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
8162 	if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
8163 		features &= ~NETIF_F_TSO_MANGLEID;
8164 
8165 	/* TSO ECN requires that TSO is present as well. */
8166 	if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
8167 		features &= ~NETIF_F_TSO_ECN;
8168 
8169 	/* Software GSO depends on SG. */
8170 	if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
8171 		netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
8172 		features &= ~NETIF_F_GSO;
8173 	}
8174 
8175 	/* GSO partial features require GSO partial be set */
8176 	if ((features & dev->gso_partial_features) &&
8177 	    !(features & NETIF_F_GSO_PARTIAL)) {
8178 		netdev_dbg(dev,
8179 			   "Dropping partially supported GSO features since no GSO partial.\n");
8180 		features &= ~dev->gso_partial_features;
8181 	}
8182 
8183 	if (!(features & NETIF_F_RXCSUM)) {
8184 		/* NETIF_F_GRO_HW implies doing RXCSUM since every packet
8185 		 * successfully merged by hardware must also have the
8186 		 * checksum verified by hardware.  If the user does not
8187 		 * want to enable RXCSUM, logically, we should disable GRO_HW.
8188 		 */
8189 		if (features & NETIF_F_GRO_HW) {
8190 			netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
8191 			features &= ~NETIF_F_GRO_HW;
8192 		}
8193 	}
8194 
8195 	/* LRO/HW-GRO features cannot be combined with RX-FCS */
8196 	if (features & NETIF_F_RXFCS) {
8197 		if (features & NETIF_F_LRO) {
8198 			netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
8199 			features &= ~NETIF_F_LRO;
8200 		}
8201 
8202 		if (features & NETIF_F_GRO_HW) {
8203 			netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
8204 			features &= ~NETIF_F_GRO_HW;
8205 		}
8206 	}
8207 
8208 	return features;
8209 }
8210 
8211 int __netdev_update_features(struct net_device *dev)
8212 {
8213 	struct net_device *upper, *lower;
8214 	netdev_features_t features;
8215 	struct list_head *iter;
8216 	int err = -1;
8217 
8218 	ASSERT_RTNL();
8219 
8220 	features = netdev_get_wanted_features(dev);
8221 
8222 	if (dev->netdev_ops->ndo_fix_features)
8223 		features = dev->netdev_ops->ndo_fix_features(dev, features);
8224 
8225 	/* driver might be less strict about feature dependencies */
8226 	features = netdev_fix_features(dev, features);
8227 
8228 	/* some features can't be enabled if they're off an an upper device */
8229 	netdev_for_each_upper_dev_rcu(dev, upper, iter)
8230 		features = netdev_sync_upper_features(dev, upper, features);
8231 
8232 	if (dev->features == features)
8233 		goto sync_lower;
8234 
8235 	netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
8236 		&dev->features, &features);
8237 
8238 	if (dev->netdev_ops->ndo_set_features)
8239 		err = dev->netdev_ops->ndo_set_features(dev, features);
8240 	else
8241 		err = 0;
8242 
8243 	if (unlikely(err < 0)) {
8244 		netdev_err(dev,
8245 			"set_features() failed (%d); wanted %pNF, left %pNF\n",
8246 			err, &features, &dev->features);
8247 		/* return non-0 since some features might have changed and
8248 		 * it's better to fire a spurious notification than miss it
8249 		 */
8250 		return -1;
8251 	}
8252 
8253 sync_lower:
8254 	/* some features must be disabled on lower devices when disabled
8255 	 * on an upper device (think: bonding master or bridge)
8256 	 */
8257 	netdev_for_each_lower_dev(dev, lower, iter)
8258 		netdev_sync_lower_features(dev, lower, features);
8259 
8260 	if (!err) {
8261 		netdev_features_t diff = features ^ dev->features;
8262 
8263 		if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
8264 			/* udp_tunnel_{get,drop}_rx_info both need
8265 			 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
8266 			 * device, or they won't do anything.
8267 			 * Thus we need to update dev->features
8268 			 * *before* calling udp_tunnel_get_rx_info,
8269 			 * but *after* calling udp_tunnel_drop_rx_info.
8270 			 */
8271 			if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
8272 				dev->features = features;
8273 				udp_tunnel_get_rx_info(dev);
8274 			} else {
8275 				udp_tunnel_drop_rx_info(dev);
8276 			}
8277 		}
8278 
8279 		if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
8280 			if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
8281 				dev->features = features;
8282 				err |= vlan_get_rx_ctag_filter_info(dev);
8283 			} else {
8284 				vlan_drop_rx_ctag_filter_info(dev);
8285 			}
8286 		}
8287 
8288 		if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
8289 			if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
8290 				dev->features = features;
8291 				err |= vlan_get_rx_stag_filter_info(dev);
8292 			} else {
8293 				vlan_drop_rx_stag_filter_info(dev);
8294 			}
8295 		}
8296 
8297 		dev->features = features;
8298 	}
8299 
8300 	return err < 0 ? 0 : 1;
8301 }
8302 
8303 /**
8304  *	netdev_update_features - recalculate device features
8305  *	@dev: the device to check
8306  *
8307  *	Recalculate dev->features set and send notifications if it
8308  *	has changed. Should be called after driver or hardware dependent
8309  *	conditions might have changed that influence the features.
8310  */
8311 void netdev_update_features(struct net_device *dev)
8312 {
8313 	if (__netdev_update_features(dev))
8314 		netdev_features_change(dev);
8315 }
8316 EXPORT_SYMBOL(netdev_update_features);
8317 
8318 /**
8319  *	netdev_change_features - recalculate device features
8320  *	@dev: the device to check
8321  *
8322  *	Recalculate dev->features set and send notifications even
8323  *	if they have not changed. Should be called instead of
8324  *	netdev_update_features() if also dev->vlan_features might
8325  *	have changed to allow the changes to be propagated to stacked
8326  *	VLAN devices.
8327  */
8328 void netdev_change_features(struct net_device *dev)
8329 {
8330 	__netdev_update_features(dev);
8331 	netdev_features_change(dev);
8332 }
8333 EXPORT_SYMBOL(netdev_change_features);
8334 
8335 /**
8336  *	netif_stacked_transfer_operstate -	transfer operstate
8337  *	@rootdev: the root or lower level device to transfer state from
8338  *	@dev: the device to transfer operstate to
8339  *
8340  *	Transfer operational state from root to device. This is normally
8341  *	called when a stacking relationship exists between the root
8342  *	device and the device(a leaf device).
8343  */
8344 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
8345 					struct net_device *dev)
8346 {
8347 	if (rootdev->operstate == IF_OPER_DORMANT)
8348 		netif_dormant_on(dev);
8349 	else
8350 		netif_dormant_off(dev);
8351 
8352 	if (netif_carrier_ok(rootdev))
8353 		netif_carrier_on(dev);
8354 	else
8355 		netif_carrier_off(dev);
8356 }
8357 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
8358 
8359 static int netif_alloc_rx_queues(struct net_device *dev)
8360 {
8361 	unsigned int i, count = dev->num_rx_queues;
8362 	struct netdev_rx_queue *rx;
8363 	size_t sz = count * sizeof(*rx);
8364 	int err = 0;
8365 
8366 	BUG_ON(count < 1);
8367 
8368 	rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
8369 	if (!rx)
8370 		return -ENOMEM;
8371 
8372 	dev->_rx = rx;
8373 
8374 	for (i = 0; i < count; i++) {
8375 		rx[i].dev = dev;
8376 
8377 		/* XDP RX-queue setup */
8378 		err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i);
8379 		if (err < 0)
8380 			goto err_rxq_info;
8381 	}
8382 	return 0;
8383 
8384 err_rxq_info:
8385 	/* Rollback successful reg's and free other resources */
8386 	while (i--)
8387 		xdp_rxq_info_unreg(&rx[i].xdp_rxq);
8388 	kvfree(dev->_rx);
8389 	dev->_rx = NULL;
8390 	return err;
8391 }
8392 
8393 static void netif_free_rx_queues(struct net_device *dev)
8394 {
8395 	unsigned int i, count = dev->num_rx_queues;
8396 
8397 	/* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
8398 	if (!dev->_rx)
8399 		return;
8400 
8401 	for (i = 0; i < count; i++)
8402 		xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
8403 
8404 	kvfree(dev->_rx);
8405 }
8406 
8407 static void netdev_init_one_queue(struct net_device *dev,
8408 				  struct netdev_queue *queue, void *_unused)
8409 {
8410 	/* Initialize queue lock */
8411 	spin_lock_init(&queue->_xmit_lock);
8412 	netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
8413 	queue->xmit_lock_owner = -1;
8414 	netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
8415 	queue->dev = dev;
8416 #ifdef CONFIG_BQL
8417 	dql_init(&queue->dql, HZ);
8418 #endif
8419 }
8420 
8421 static void netif_free_tx_queues(struct net_device *dev)
8422 {
8423 	kvfree(dev->_tx);
8424 }
8425 
8426 static int netif_alloc_netdev_queues(struct net_device *dev)
8427 {
8428 	unsigned int count = dev->num_tx_queues;
8429 	struct netdev_queue *tx;
8430 	size_t sz = count * sizeof(*tx);
8431 
8432 	if (count < 1 || count > 0xffff)
8433 		return -EINVAL;
8434 
8435 	tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
8436 	if (!tx)
8437 		return -ENOMEM;
8438 
8439 	dev->_tx = tx;
8440 
8441 	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
8442 	spin_lock_init(&dev->tx_global_lock);
8443 
8444 	return 0;
8445 }
8446 
8447 void netif_tx_stop_all_queues(struct net_device *dev)
8448 {
8449 	unsigned int i;
8450 
8451 	for (i = 0; i < dev->num_tx_queues; i++) {
8452 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
8453 
8454 		netif_tx_stop_queue(txq);
8455 	}
8456 }
8457 EXPORT_SYMBOL(netif_tx_stop_all_queues);
8458 
8459 /**
8460  *	register_netdevice	- register a network device
8461  *	@dev: device to register
8462  *
8463  *	Take a completed network device structure and add it to the kernel
8464  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
8465  *	chain. 0 is returned on success. A negative errno code is returned
8466  *	on a failure to set up the device, or if the name is a duplicate.
8467  *
8468  *	Callers must hold the rtnl semaphore. You may want
8469  *	register_netdev() instead of this.
8470  *
8471  *	BUGS:
8472  *	The locking appears insufficient to guarantee two parallel registers
8473  *	will not get the same name.
8474  */
8475 
8476 int register_netdevice(struct net_device *dev)
8477 {
8478 	int ret;
8479 	struct net *net = dev_net(dev);
8480 
8481 	BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
8482 		     NETDEV_FEATURE_COUNT);
8483 	BUG_ON(dev_boot_phase);
8484 	ASSERT_RTNL();
8485 
8486 	might_sleep();
8487 
8488 	/* When net_device's are persistent, this will be fatal. */
8489 	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
8490 	BUG_ON(!net);
8491 
8492 	spin_lock_init(&dev->addr_list_lock);
8493 	netdev_set_addr_lockdep_class(dev);
8494 
8495 	ret = dev_get_valid_name(net, dev, dev->name);
8496 	if (ret < 0)
8497 		goto out;
8498 
8499 	/* Init, if this function is available */
8500 	if (dev->netdev_ops->ndo_init) {
8501 		ret = dev->netdev_ops->ndo_init(dev);
8502 		if (ret) {
8503 			if (ret > 0)
8504 				ret = -EIO;
8505 			goto out;
8506 		}
8507 	}
8508 
8509 	if (((dev->hw_features | dev->features) &
8510 	     NETIF_F_HW_VLAN_CTAG_FILTER) &&
8511 	    (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
8512 	     !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
8513 		netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
8514 		ret = -EINVAL;
8515 		goto err_uninit;
8516 	}
8517 
8518 	ret = -EBUSY;
8519 	if (!dev->ifindex)
8520 		dev->ifindex = dev_new_index(net);
8521 	else if (__dev_get_by_index(net, dev->ifindex))
8522 		goto err_uninit;
8523 
8524 	/* Transfer changeable features to wanted_features and enable
8525 	 * software offloads (GSO and GRO).
8526 	 */
8527 	dev->hw_features |= NETIF_F_SOFT_FEATURES;
8528 	dev->features |= NETIF_F_SOFT_FEATURES;
8529 
8530 	if (dev->netdev_ops->ndo_udp_tunnel_add) {
8531 		dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
8532 		dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
8533 	}
8534 
8535 	dev->wanted_features = dev->features & dev->hw_features;
8536 
8537 	if (!(dev->flags & IFF_LOOPBACK))
8538 		dev->hw_features |= NETIF_F_NOCACHE_COPY;
8539 
8540 	/* If IPv4 TCP segmentation offload is supported we should also
8541 	 * allow the device to enable segmenting the frame with the option
8542 	 * of ignoring a static IP ID value.  This doesn't enable the
8543 	 * feature itself but allows the user to enable it later.
8544 	 */
8545 	if (dev->hw_features & NETIF_F_TSO)
8546 		dev->hw_features |= NETIF_F_TSO_MANGLEID;
8547 	if (dev->vlan_features & NETIF_F_TSO)
8548 		dev->vlan_features |= NETIF_F_TSO_MANGLEID;
8549 	if (dev->mpls_features & NETIF_F_TSO)
8550 		dev->mpls_features |= NETIF_F_TSO_MANGLEID;
8551 	if (dev->hw_enc_features & NETIF_F_TSO)
8552 		dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
8553 
8554 	/* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
8555 	 */
8556 	dev->vlan_features |= NETIF_F_HIGHDMA;
8557 
8558 	/* Make NETIF_F_SG inheritable to tunnel devices.
8559 	 */
8560 	dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
8561 
8562 	/* Make NETIF_F_SG inheritable to MPLS.
8563 	 */
8564 	dev->mpls_features |= NETIF_F_SG;
8565 
8566 	ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
8567 	ret = notifier_to_errno(ret);
8568 	if (ret)
8569 		goto err_uninit;
8570 
8571 	ret = netdev_register_kobject(dev);
8572 	if (ret)
8573 		goto err_uninit;
8574 	dev->reg_state = NETREG_REGISTERED;
8575 
8576 	__netdev_update_features(dev);
8577 
8578 	/*
8579 	 *	Default initial state at registry is that the
8580 	 *	device is present.
8581 	 */
8582 
8583 	set_bit(__LINK_STATE_PRESENT, &dev->state);
8584 
8585 	linkwatch_init_dev(dev);
8586 
8587 	dev_init_scheduler(dev);
8588 	dev_hold(dev);
8589 	list_netdevice(dev);
8590 	add_device_randomness(dev->dev_addr, dev->addr_len);
8591 
8592 	/* If the device has permanent device address, driver should
8593 	 * set dev_addr and also addr_assign_type should be set to
8594 	 * NET_ADDR_PERM (default value).
8595 	 */
8596 	if (dev->addr_assign_type == NET_ADDR_PERM)
8597 		memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
8598 
8599 	/* Notify protocols, that a new device appeared. */
8600 	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
8601 	ret = notifier_to_errno(ret);
8602 	if (ret) {
8603 		rollback_registered(dev);
8604 		dev->reg_state = NETREG_UNREGISTERED;
8605 	}
8606 	/*
8607 	 *	Prevent userspace races by waiting until the network
8608 	 *	device is fully setup before sending notifications.
8609 	 */
8610 	if (!dev->rtnl_link_ops ||
8611 	    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
8612 		rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
8613 
8614 out:
8615 	return ret;
8616 
8617 err_uninit:
8618 	if (dev->netdev_ops->ndo_uninit)
8619 		dev->netdev_ops->ndo_uninit(dev);
8620 	if (dev->priv_destructor)
8621 		dev->priv_destructor(dev);
8622 	goto out;
8623 }
8624 EXPORT_SYMBOL(register_netdevice);
8625 
8626 /**
8627  *	init_dummy_netdev	- init a dummy network device for NAPI
8628  *	@dev: device to init
8629  *
8630  *	This takes a network device structure and initialize the minimum
8631  *	amount of fields so it can be used to schedule NAPI polls without
8632  *	registering a full blown interface. This is to be used by drivers
8633  *	that need to tie several hardware interfaces to a single NAPI
8634  *	poll scheduler due to HW limitations.
8635  */
8636 int init_dummy_netdev(struct net_device *dev)
8637 {
8638 	/* Clear everything. Note we don't initialize spinlocks
8639 	 * are they aren't supposed to be taken by any of the
8640 	 * NAPI code and this dummy netdev is supposed to be
8641 	 * only ever used for NAPI polls
8642 	 */
8643 	memset(dev, 0, sizeof(struct net_device));
8644 
8645 	/* make sure we BUG if trying to hit standard
8646 	 * register/unregister code path
8647 	 */
8648 	dev->reg_state = NETREG_DUMMY;
8649 
8650 	/* NAPI wants this */
8651 	INIT_LIST_HEAD(&dev->napi_list);
8652 
8653 	/* a dummy interface is started by default */
8654 	set_bit(__LINK_STATE_PRESENT, &dev->state);
8655 	set_bit(__LINK_STATE_START, &dev->state);
8656 
8657 	/* Note : We dont allocate pcpu_refcnt for dummy devices,
8658 	 * because users of this 'device' dont need to change
8659 	 * its refcount.
8660 	 */
8661 
8662 	return 0;
8663 }
8664 EXPORT_SYMBOL_GPL(init_dummy_netdev);
8665 
8666 
8667 /**
8668  *	register_netdev	- register a network device
8669  *	@dev: device to register
8670  *
8671  *	Take a completed network device structure and add it to the kernel
8672  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
8673  *	chain. 0 is returned on success. A negative errno code is returned
8674  *	on a failure to set up the device, or if the name is a duplicate.
8675  *
8676  *	This is a wrapper around register_netdevice that takes the rtnl semaphore
8677  *	and expands the device name if you passed a format string to
8678  *	alloc_netdev.
8679  */
8680 int register_netdev(struct net_device *dev)
8681 {
8682 	int err;
8683 
8684 	if (rtnl_lock_killable())
8685 		return -EINTR;
8686 	err = register_netdevice(dev);
8687 	rtnl_unlock();
8688 	return err;
8689 }
8690 EXPORT_SYMBOL(register_netdev);
8691 
8692 int netdev_refcnt_read(const struct net_device *dev)
8693 {
8694 	int i, refcnt = 0;
8695 
8696 	for_each_possible_cpu(i)
8697 		refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
8698 	return refcnt;
8699 }
8700 EXPORT_SYMBOL(netdev_refcnt_read);
8701 
8702 /**
8703  * netdev_wait_allrefs - wait until all references are gone.
8704  * @dev: target net_device
8705  *
8706  * This is called when unregistering network devices.
8707  *
8708  * Any protocol or device that holds a reference should register
8709  * for netdevice notification, and cleanup and put back the
8710  * reference if they receive an UNREGISTER event.
8711  * We can get stuck here if buggy protocols don't correctly
8712  * call dev_put.
8713  */
8714 static void netdev_wait_allrefs(struct net_device *dev)
8715 {
8716 	unsigned long rebroadcast_time, warning_time;
8717 	int refcnt;
8718 
8719 	linkwatch_forget_dev(dev);
8720 
8721 	rebroadcast_time = warning_time = jiffies;
8722 	refcnt = netdev_refcnt_read(dev);
8723 
8724 	while (refcnt != 0) {
8725 		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
8726 			rtnl_lock();
8727 
8728 			/* Rebroadcast unregister notification */
8729 			call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
8730 
8731 			__rtnl_unlock();
8732 			rcu_barrier();
8733 			rtnl_lock();
8734 
8735 			if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
8736 				     &dev->state)) {
8737 				/* We must not have linkwatch events
8738 				 * pending on unregister. If this
8739 				 * happens, we simply run the queue
8740 				 * unscheduled, resulting in a noop
8741 				 * for this device.
8742 				 */
8743 				linkwatch_run_queue();
8744 			}
8745 
8746 			__rtnl_unlock();
8747 
8748 			rebroadcast_time = jiffies;
8749 		}
8750 
8751 		msleep(250);
8752 
8753 		refcnt = netdev_refcnt_read(dev);
8754 
8755 		if (time_after(jiffies, warning_time + 10 * HZ)) {
8756 			pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
8757 				 dev->name, refcnt);
8758 			warning_time = jiffies;
8759 		}
8760 	}
8761 }
8762 
8763 /* The sequence is:
8764  *
8765  *	rtnl_lock();
8766  *	...
8767  *	register_netdevice(x1);
8768  *	register_netdevice(x2);
8769  *	...
8770  *	unregister_netdevice(y1);
8771  *	unregister_netdevice(y2);
8772  *      ...
8773  *	rtnl_unlock();
8774  *	free_netdev(y1);
8775  *	free_netdev(y2);
8776  *
8777  * We are invoked by rtnl_unlock().
8778  * This allows us to deal with problems:
8779  * 1) We can delete sysfs objects which invoke hotplug
8780  *    without deadlocking with linkwatch via keventd.
8781  * 2) Since we run with the RTNL semaphore not held, we can sleep
8782  *    safely in order to wait for the netdev refcnt to drop to zero.
8783  *
8784  * We must not return until all unregister events added during
8785  * the interval the lock was held have been completed.
8786  */
8787 void netdev_run_todo(void)
8788 {
8789 	struct list_head list;
8790 
8791 	/* Snapshot list, allow later requests */
8792 	list_replace_init(&net_todo_list, &list);
8793 
8794 	__rtnl_unlock();
8795 
8796 
8797 	/* Wait for rcu callbacks to finish before next phase */
8798 	if (!list_empty(&list))
8799 		rcu_barrier();
8800 
8801 	while (!list_empty(&list)) {
8802 		struct net_device *dev
8803 			= list_first_entry(&list, struct net_device, todo_list);
8804 		list_del(&dev->todo_list);
8805 
8806 		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
8807 			pr_err("network todo '%s' but state %d\n",
8808 			       dev->name, dev->reg_state);
8809 			dump_stack();
8810 			continue;
8811 		}
8812 
8813 		dev->reg_state = NETREG_UNREGISTERED;
8814 
8815 		netdev_wait_allrefs(dev);
8816 
8817 		/* paranoia */
8818 		BUG_ON(netdev_refcnt_read(dev));
8819 		BUG_ON(!list_empty(&dev->ptype_all));
8820 		BUG_ON(!list_empty(&dev->ptype_specific));
8821 		WARN_ON(rcu_access_pointer(dev->ip_ptr));
8822 		WARN_ON(rcu_access_pointer(dev->ip6_ptr));
8823 #if IS_ENABLED(CONFIG_DECNET)
8824 		WARN_ON(dev->dn_ptr);
8825 #endif
8826 		if (dev->priv_destructor)
8827 			dev->priv_destructor(dev);
8828 		if (dev->needs_free_netdev)
8829 			free_netdev(dev);
8830 
8831 		/* Report a network device has been unregistered */
8832 		rtnl_lock();
8833 		dev_net(dev)->dev_unreg_count--;
8834 		__rtnl_unlock();
8835 		wake_up(&netdev_unregistering_wq);
8836 
8837 		/* Free network device */
8838 		kobject_put(&dev->dev.kobj);
8839 	}
8840 }
8841 
8842 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
8843  * all the same fields in the same order as net_device_stats, with only
8844  * the type differing, but rtnl_link_stats64 may have additional fields
8845  * at the end for newer counters.
8846  */
8847 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
8848 			     const struct net_device_stats *netdev_stats)
8849 {
8850 #if BITS_PER_LONG == 64
8851 	BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
8852 	memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
8853 	/* zero out counters that only exist in rtnl_link_stats64 */
8854 	memset((char *)stats64 + sizeof(*netdev_stats), 0,
8855 	       sizeof(*stats64) - sizeof(*netdev_stats));
8856 #else
8857 	size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
8858 	const unsigned long *src = (const unsigned long *)netdev_stats;
8859 	u64 *dst = (u64 *)stats64;
8860 
8861 	BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
8862 	for (i = 0; i < n; i++)
8863 		dst[i] = src[i];
8864 	/* zero out counters that only exist in rtnl_link_stats64 */
8865 	memset((char *)stats64 + n * sizeof(u64), 0,
8866 	       sizeof(*stats64) - n * sizeof(u64));
8867 #endif
8868 }
8869 EXPORT_SYMBOL(netdev_stats_to_stats64);
8870 
8871 /**
8872  *	dev_get_stats	- get network device statistics
8873  *	@dev: device to get statistics from
8874  *	@storage: place to store stats
8875  *
8876  *	Get network statistics from device. Return @storage.
8877  *	The device driver may provide its own method by setting
8878  *	dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
8879  *	otherwise the internal statistics structure is used.
8880  */
8881 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
8882 					struct rtnl_link_stats64 *storage)
8883 {
8884 	const struct net_device_ops *ops = dev->netdev_ops;
8885 
8886 	if (ops->ndo_get_stats64) {
8887 		memset(storage, 0, sizeof(*storage));
8888 		ops->ndo_get_stats64(dev, storage);
8889 	} else if (ops->ndo_get_stats) {
8890 		netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
8891 	} else {
8892 		netdev_stats_to_stats64(storage, &dev->stats);
8893 	}
8894 	storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
8895 	storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
8896 	storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
8897 	return storage;
8898 }
8899 EXPORT_SYMBOL(dev_get_stats);
8900 
8901 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
8902 {
8903 	struct netdev_queue *queue = dev_ingress_queue(dev);
8904 
8905 #ifdef CONFIG_NET_CLS_ACT
8906 	if (queue)
8907 		return queue;
8908 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
8909 	if (!queue)
8910 		return NULL;
8911 	netdev_init_one_queue(dev, queue, NULL);
8912 	RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
8913 	queue->qdisc_sleeping = &noop_qdisc;
8914 	rcu_assign_pointer(dev->ingress_queue, queue);
8915 #endif
8916 	return queue;
8917 }
8918 
8919 static const struct ethtool_ops default_ethtool_ops;
8920 
8921 void netdev_set_default_ethtool_ops(struct net_device *dev,
8922 				    const struct ethtool_ops *ops)
8923 {
8924 	if (dev->ethtool_ops == &default_ethtool_ops)
8925 		dev->ethtool_ops = ops;
8926 }
8927 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
8928 
8929 void netdev_freemem(struct net_device *dev)
8930 {
8931 	char *addr = (char *)dev - dev->padded;
8932 
8933 	kvfree(addr);
8934 }
8935 
8936 /**
8937  * alloc_netdev_mqs - allocate network device
8938  * @sizeof_priv: size of private data to allocate space for
8939  * @name: device name format string
8940  * @name_assign_type: origin of device name
8941  * @setup: callback to initialize device
8942  * @txqs: the number of TX subqueues to allocate
8943  * @rxqs: the number of RX subqueues to allocate
8944  *
8945  * Allocates a struct net_device with private data area for driver use
8946  * and performs basic initialization.  Also allocates subqueue structs
8947  * for each queue on the device.
8948  */
8949 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
8950 		unsigned char name_assign_type,
8951 		void (*setup)(struct net_device *),
8952 		unsigned int txqs, unsigned int rxqs)
8953 {
8954 	struct net_device *dev;
8955 	unsigned int alloc_size;
8956 	struct net_device *p;
8957 
8958 	BUG_ON(strlen(name) >= sizeof(dev->name));
8959 
8960 	if (txqs < 1) {
8961 		pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
8962 		return NULL;
8963 	}
8964 
8965 	if (rxqs < 1) {
8966 		pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
8967 		return NULL;
8968 	}
8969 
8970 	alloc_size = sizeof(struct net_device);
8971 	if (sizeof_priv) {
8972 		/* ensure 32-byte alignment of private area */
8973 		alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
8974 		alloc_size += sizeof_priv;
8975 	}
8976 	/* ensure 32-byte alignment of whole construct */
8977 	alloc_size += NETDEV_ALIGN - 1;
8978 
8979 	p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
8980 	if (!p)
8981 		return NULL;
8982 
8983 	dev = PTR_ALIGN(p, NETDEV_ALIGN);
8984 	dev->padded = (char *)dev - (char *)p;
8985 
8986 	dev->pcpu_refcnt = alloc_percpu(int);
8987 	if (!dev->pcpu_refcnt)
8988 		goto free_dev;
8989 
8990 	if (dev_addr_init(dev))
8991 		goto free_pcpu;
8992 
8993 	dev_mc_init(dev);
8994 	dev_uc_init(dev);
8995 
8996 	dev_net_set(dev, &init_net);
8997 
8998 	dev->gso_max_size = GSO_MAX_SIZE;
8999 	dev->gso_max_segs = GSO_MAX_SEGS;
9000 
9001 	INIT_LIST_HEAD(&dev->napi_list);
9002 	INIT_LIST_HEAD(&dev->unreg_list);
9003 	INIT_LIST_HEAD(&dev->close_list);
9004 	INIT_LIST_HEAD(&dev->link_watch_list);
9005 	INIT_LIST_HEAD(&dev->adj_list.upper);
9006 	INIT_LIST_HEAD(&dev->adj_list.lower);
9007 	INIT_LIST_HEAD(&dev->ptype_all);
9008 	INIT_LIST_HEAD(&dev->ptype_specific);
9009 #ifdef CONFIG_NET_SCHED
9010 	hash_init(dev->qdisc_hash);
9011 #endif
9012 	dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
9013 	setup(dev);
9014 
9015 	if (!dev->tx_queue_len) {
9016 		dev->priv_flags |= IFF_NO_QUEUE;
9017 		dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
9018 	}
9019 
9020 	dev->num_tx_queues = txqs;
9021 	dev->real_num_tx_queues = txqs;
9022 	if (netif_alloc_netdev_queues(dev))
9023 		goto free_all;
9024 
9025 	dev->num_rx_queues = rxqs;
9026 	dev->real_num_rx_queues = rxqs;
9027 	if (netif_alloc_rx_queues(dev))
9028 		goto free_all;
9029 
9030 	strcpy(dev->name, name);
9031 	dev->name_assign_type = name_assign_type;
9032 	dev->group = INIT_NETDEV_GROUP;
9033 	if (!dev->ethtool_ops)
9034 		dev->ethtool_ops = &default_ethtool_ops;
9035 
9036 	nf_hook_ingress_init(dev);
9037 
9038 	return dev;
9039 
9040 free_all:
9041 	free_netdev(dev);
9042 	return NULL;
9043 
9044 free_pcpu:
9045 	free_percpu(dev->pcpu_refcnt);
9046 free_dev:
9047 	netdev_freemem(dev);
9048 	return NULL;
9049 }
9050 EXPORT_SYMBOL(alloc_netdev_mqs);
9051 
9052 /**
9053  * free_netdev - free network device
9054  * @dev: device
9055  *
9056  * This function does the last stage of destroying an allocated device
9057  * interface. The reference to the device object is released. If this
9058  * is the last reference then it will be freed.Must be called in process
9059  * context.
9060  */
9061 void free_netdev(struct net_device *dev)
9062 {
9063 	struct napi_struct *p, *n;
9064 
9065 	might_sleep();
9066 	netif_free_tx_queues(dev);
9067 	netif_free_rx_queues(dev);
9068 
9069 	kfree(rcu_dereference_protected(dev->ingress_queue, 1));
9070 
9071 	/* Flush device addresses */
9072 	dev_addr_flush(dev);
9073 
9074 	list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
9075 		netif_napi_del(p);
9076 
9077 	free_percpu(dev->pcpu_refcnt);
9078 	dev->pcpu_refcnt = NULL;
9079 
9080 	/*  Compatibility with error handling in drivers */
9081 	if (dev->reg_state == NETREG_UNINITIALIZED) {
9082 		netdev_freemem(dev);
9083 		return;
9084 	}
9085 
9086 	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
9087 	dev->reg_state = NETREG_RELEASED;
9088 
9089 	/* will free via device release */
9090 	put_device(&dev->dev);
9091 }
9092 EXPORT_SYMBOL(free_netdev);
9093 
9094 /**
9095  *	synchronize_net -  Synchronize with packet receive processing
9096  *
9097  *	Wait for packets currently being received to be done.
9098  *	Does not block later packets from starting.
9099  */
9100 void synchronize_net(void)
9101 {
9102 	might_sleep();
9103 	if (rtnl_is_locked())
9104 		synchronize_rcu_expedited();
9105 	else
9106 		synchronize_rcu();
9107 }
9108 EXPORT_SYMBOL(synchronize_net);
9109 
9110 /**
9111  *	unregister_netdevice_queue - remove device from the kernel
9112  *	@dev: device
9113  *	@head: list
9114  *
9115  *	This function shuts down a device interface and removes it
9116  *	from the kernel tables.
9117  *	If head not NULL, device is queued to be unregistered later.
9118  *
9119  *	Callers must hold the rtnl semaphore.  You may want
9120  *	unregister_netdev() instead of this.
9121  */
9122 
9123 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
9124 {
9125 	ASSERT_RTNL();
9126 
9127 	if (head) {
9128 		list_move_tail(&dev->unreg_list, head);
9129 	} else {
9130 		rollback_registered(dev);
9131 		/* Finish processing unregister after unlock */
9132 		net_set_todo(dev);
9133 	}
9134 }
9135 EXPORT_SYMBOL(unregister_netdevice_queue);
9136 
9137 /**
9138  *	unregister_netdevice_many - unregister many devices
9139  *	@head: list of devices
9140  *
9141  *  Note: As most callers use a stack allocated list_head,
9142  *  we force a list_del() to make sure stack wont be corrupted later.
9143  */
9144 void unregister_netdevice_many(struct list_head *head)
9145 {
9146 	struct net_device *dev;
9147 
9148 	if (!list_empty(head)) {
9149 		rollback_registered_many(head);
9150 		list_for_each_entry(dev, head, unreg_list)
9151 			net_set_todo(dev);
9152 		list_del(head);
9153 	}
9154 }
9155 EXPORT_SYMBOL(unregister_netdevice_many);
9156 
9157 /**
9158  *	unregister_netdev - remove device from the kernel
9159  *	@dev: device
9160  *
9161  *	This function shuts down a device interface and removes it
9162  *	from the kernel tables.
9163  *
9164  *	This is just a wrapper for unregister_netdevice that takes
9165  *	the rtnl semaphore.  In general you want to use this and not
9166  *	unregister_netdevice.
9167  */
9168 void unregister_netdev(struct net_device *dev)
9169 {
9170 	rtnl_lock();
9171 	unregister_netdevice(dev);
9172 	rtnl_unlock();
9173 }
9174 EXPORT_SYMBOL(unregister_netdev);
9175 
9176 /**
9177  *	dev_change_net_namespace - move device to different nethost namespace
9178  *	@dev: device
9179  *	@net: network namespace
9180  *	@pat: If not NULL name pattern to try if the current device name
9181  *	      is already taken in the destination network namespace.
9182  *
9183  *	This function shuts down a device interface and moves it
9184  *	to a new network namespace. On success 0 is returned, on
9185  *	a failure a netagive errno code is returned.
9186  *
9187  *	Callers must hold the rtnl semaphore.
9188  */
9189 
9190 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
9191 {
9192 	int err, new_nsid, new_ifindex;
9193 
9194 	ASSERT_RTNL();
9195 
9196 	/* Don't allow namespace local devices to be moved. */
9197 	err = -EINVAL;
9198 	if (dev->features & NETIF_F_NETNS_LOCAL)
9199 		goto out;
9200 
9201 	/* Ensure the device has been registrered */
9202 	if (dev->reg_state != NETREG_REGISTERED)
9203 		goto out;
9204 
9205 	/* Get out if there is nothing todo */
9206 	err = 0;
9207 	if (net_eq(dev_net(dev), net))
9208 		goto out;
9209 
9210 	/* Pick the destination device name, and ensure
9211 	 * we can use it in the destination network namespace.
9212 	 */
9213 	err = -EEXIST;
9214 	if (__dev_get_by_name(net, dev->name)) {
9215 		/* We get here if we can't use the current device name */
9216 		if (!pat)
9217 			goto out;
9218 		err = dev_get_valid_name(net, dev, pat);
9219 		if (err < 0)
9220 			goto out;
9221 	}
9222 
9223 	/*
9224 	 * And now a mini version of register_netdevice unregister_netdevice.
9225 	 */
9226 
9227 	/* If device is running close it first. */
9228 	dev_close(dev);
9229 
9230 	/* And unlink it from device chain */
9231 	unlist_netdevice(dev);
9232 
9233 	synchronize_net();
9234 
9235 	/* Shutdown queueing discipline. */
9236 	dev_shutdown(dev);
9237 
9238 	/* Notify protocols, that we are about to destroy
9239 	 * this device. They should clean all the things.
9240 	 *
9241 	 * Note that dev->reg_state stays at NETREG_REGISTERED.
9242 	 * This is wanted because this way 8021q and macvlan know
9243 	 * the device is just moving and can keep their slaves up.
9244 	 */
9245 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
9246 	rcu_barrier();
9247 
9248 	new_nsid = peernet2id_alloc(dev_net(dev), net);
9249 	/* If there is an ifindex conflict assign a new one */
9250 	if (__dev_get_by_index(net, dev->ifindex))
9251 		new_ifindex = dev_new_index(net);
9252 	else
9253 		new_ifindex = dev->ifindex;
9254 
9255 	rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
9256 			    new_ifindex);
9257 
9258 	/*
9259 	 *	Flush the unicast and multicast chains
9260 	 */
9261 	dev_uc_flush(dev);
9262 	dev_mc_flush(dev);
9263 
9264 	/* Send a netdev-removed uevent to the old namespace */
9265 	kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
9266 	netdev_adjacent_del_links(dev);
9267 
9268 	/* Actually switch the network namespace */
9269 	dev_net_set(dev, net);
9270 	dev->ifindex = new_ifindex;
9271 
9272 	/* Send a netdev-add uevent to the new namespace */
9273 	kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
9274 	netdev_adjacent_add_links(dev);
9275 
9276 	/* Fixup kobjects */
9277 	err = device_rename(&dev->dev, dev->name);
9278 	WARN_ON(err);
9279 
9280 	/* Add the device back in the hashes */
9281 	list_netdevice(dev);
9282 
9283 	/* Notify protocols, that a new device appeared. */
9284 	call_netdevice_notifiers(NETDEV_REGISTER, dev);
9285 
9286 	/*
9287 	 *	Prevent userspace races by waiting until the network
9288 	 *	device is fully setup before sending notifications.
9289 	 */
9290 	rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
9291 
9292 	synchronize_net();
9293 	err = 0;
9294 out:
9295 	return err;
9296 }
9297 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
9298 
9299 static int dev_cpu_dead(unsigned int oldcpu)
9300 {
9301 	struct sk_buff **list_skb;
9302 	struct sk_buff *skb;
9303 	unsigned int cpu;
9304 	struct softnet_data *sd, *oldsd, *remsd = NULL;
9305 
9306 	local_irq_disable();
9307 	cpu = smp_processor_id();
9308 	sd = &per_cpu(softnet_data, cpu);
9309 	oldsd = &per_cpu(softnet_data, oldcpu);
9310 
9311 	/* Find end of our completion_queue. */
9312 	list_skb = &sd->completion_queue;
9313 	while (*list_skb)
9314 		list_skb = &(*list_skb)->next;
9315 	/* Append completion queue from offline CPU. */
9316 	*list_skb = oldsd->completion_queue;
9317 	oldsd->completion_queue = NULL;
9318 
9319 	/* Append output queue from offline CPU. */
9320 	if (oldsd->output_queue) {
9321 		*sd->output_queue_tailp = oldsd->output_queue;
9322 		sd->output_queue_tailp = oldsd->output_queue_tailp;
9323 		oldsd->output_queue = NULL;
9324 		oldsd->output_queue_tailp = &oldsd->output_queue;
9325 	}
9326 	/* Append NAPI poll list from offline CPU, with one exception :
9327 	 * process_backlog() must be called by cpu owning percpu backlog.
9328 	 * We properly handle process_queue & input_pkt_queue later.
9329 	 */
9330 	while (!list_empty(&oldsd->poll_list)) {
9331 		struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
9332 							    struct napi_struct,
9333 							    poll_list);
9334 
9335 		list_del_init(&napi->poll_list);
9336 		if (napi->poll == process_backlog)
9337 			napi->state = 0;
9338 		else
9339 			____napi_schedule(sd, napi);
9340 	}
9341 
9342 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
9343 	local_irq_enable();
9344 
9345 #ifdef CONFIG_RPS
9346 	remsd = oldsd->rps_ipi_list;
9347 	oldsd->rps_ipi_list = NULL;
9348 #endif
9349 	/* send out pending IPI's on offline CPU */
9350 	net_rps_send_ipi(remsd);
9351 
9352 	/* Process offline CPU's input_pkt_queue */
9353 	while ((skb = __skb_dequeue(&oldsd->process_queue))) {
9354 		netif_rx_ni(skb);
9355 		input_queue_head_incr(oldsd);
9356 	}
9357 	while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
9358 		netif_rx_ni(skb);
9359 		input_queue_head_incr(oldsd);
9360 	}
9361 
9362 	return 0;
9363 }
9364 
9365 /**
9366  *	netdev_increment_features - increment feature set by one
9367  *	@all: current feature set
9368  *	@one: new feature set
9369  *	@mask: mask feature set
9370  *
9371  *	Computes a new feature set after adding a device with feature set
9372  *	@one to the master device with current feature set @all.  Will not
9373  *	enable anything that is off in @mask. Returns the new feature set.
9374  */
9375 netdev_features_t netdev_increment_features(netdev_features_t all,
9376 	netdev_features_t one, netdev_features_t mask)
9377 {
9378 	if (mask & NETIF_F_HW_CSUM)
9379 		mask |= NETIF_F_CSUM_MASK;
9380 	mask |= NETIF_F_VLAN_CHALLENGED;
9381 
9382 	all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
9383 	all &= one | ~NETIF_F_ALL_FOR_ALL;
9384 
9385 	/* If one device supports hw checksumming, set for all. */
9386 	if (all & NETIF_F_HW_CSUM)
9387 		all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
9388 
9389 	return all;
9390 }
9391 EXPORT_SYMBOL(netdev_increment_features);
9392 
9393 static struct hlist_head * __net_init netdev_create_hash(void)
9394 {
9395 	int i;
9396 	struct hlist_head *hash;
9397 
9398 	hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
9399 	if (hash != NULL)
9400 		for (i = 0; i < NETDEV_HASHENTRIES; i++)
9401 			INIT_HLIST_HEAD(&hash[i]);
9402 
9403 	return hash;
9404 }
9405 
9406 /* Initialize per network namespace state */
9407 static int __net_init netdev_init(struct net *net)
9408 {
9409 	BUILD_BUG_ON(GRO_HASH_BUCKETS >
9410 		     8 * FIELD_SIZEOF(struct napi_struct, gro_bitmask));
9411 
9412 	if (net != &init_net)
9413 		INIT_LIST_HEAD(&net->dev_base_head);
9414 
9415 	net->dev_name_head = netdev_create_hash();
9416 	if (net->dev_name_head == NULL)
9417 		goto err_name;
9418 
9419 	net->dev_index_head = netdev_create_hash();
9420 	if (net->dev_index_head == NULL)
9421 		goto err_idx;
9422 
9423 	return 0;
9424 
9425 err_idx:
9426 	kfree(net->dev_name_head);
9427 err_name:
9428 	return -ENOMEM;
9429 }
9430 
9431 /**
9432  *	netdev_drivername - network driver for the device
9433  *	@dev: network device
9434  *
9435  *	Determine network driver for device.
9436  */
9437 const char *netdev_drivername(const struct net_device *dev)
9438 {
9439 	const struct device_driver *driver;
9440 	const struct device *parent;
9441 	const char *empty = "";
9442 
9443 	parent = dev->dev.parent;
9444 	if (!parent)
9445 		return empty;
9446 
9447 	driver = parent->driver;
9448 	if (driver && driver->name)
9449 		return driver->name;
9450 	return empty;
9451 }
9452 
9453 static void __netdev_printk(const char *level, const struct net_device *dev,
9454 			    struct va_format *vaf)
9455 {
9456 	if (dev && dev->dev.parent) {
9457 		dev_printk_emit(level[1] - '0',
9458 				dev->dev.parent,
9459 				"%s %s %s%s: %pV",
9460 				dev_driver_string(dev->dev.parent),
9461 				dev_name(dev->dev.parent),
9462 				netdev_name(dev), netdev_reg_state(dev),
9463 				vaf);
9464 	} else if (dev) {
9465 		printk("%s%s%s: %pV",
9466 		       level, netdev_name(dev), netdev_reg_state(dev), vaf);
9467 	} else {
9468 		printk("%s(NULL net_device): %pV", level, vaf);
9469 	}
9470 }
9471 
9472 void netdev_printk(const char *level, const struct net_device *dev,
9473 		   const char *format, ...)
9474 {
9475 	struct va_format vaf;
9476 	va_list args;
9477 
9478 	va_start(args, format);
9479 
9480 	vaf.fmt = format;
9481 	vaf.va = &args;
9482 
9483 	__netdev_printk(level, dev, &vaf);
9484 
9485 	va_end(args);
9486 }
9487 EXPORT_SYMBOL(netdev_printk);
9488 
9489 #define define_netdev_printk_level(func, level)			\
9490 void func(const struct net_device *dev, const char *fmt, ...)	\
9491 {								\
9492 	struct va_format vaf;					\
9493 	va_list args;						\
9494 								\
9495 	va_start(args, fmt);					\
9496 								\
9497 	vaf.fmt = fmt;						\
9498 	vaf.va = &args;						\
9499 								\
9500 	__netdev_printk(level, dev, &vaf);			\
9501 								\
9502 	va_end(args);						\
9503 }								\
9504 EXPORT_SYMBOL(func);
9505 
9506 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
9507 define_netdev_printk_level(netdev_alert, KERN_ALERT);
9508 define_netdev_printk_level(netdev_crit, KERN_CRIT);
9509 define_netdev_printk_level(netdev_err, KERN_ERR);
9510 define_netdev_printk_level(netdev_warn, KERN_WARNING);
9511 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
9512 define_netdev_printk_level(netdev_info, KERN_INFO);
9513 
9514 static void __net_exit netdev_exit(struct net *net)
9515 {
9516 	kfree(net->dev_name_head);
9517 	kfree(net->dev_index_head);
9518 	if (net != &init_net)
9519 		WARN_ON_ONCE(!list_empty(&net->dev_base_head));
9520 }
9521 
9522 static struct pernet_operations __net_initdata netdev_net_ops = {
9523 	.init = netdev_init,
9524 	.exit = netdev_exit,
9525 };
9526 
9527 static void __net_exit default_device_exit(struct net *net)
9528 {
9529 	struct net_device *dev, *aux;
9530 	/*
9531 	 * Push all migratable network devices back to the
9532 	 * initial network namespace
9533 	 */
9534 	rtnl_lock();
9535 	for_each_netdev_safe(net, dev, aux) {
9536 		int err;
9537 		char fb_name[IFNAMSIZ];
9538 
9539 		/* Ignore unmoveable devices (i.e. loopback) */
9540 		if (dev->features & NETIF_F_NETNS_LOCAL)
9541 			continue;
9542 
9543 		/* Leave virtual devices for the generic cleanup */
9544 		if (dev->rtnl_link_ops)
9545 			continue;
9546 
9547 		/* Push remaining network devices to init_net */
9548 		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
9549 		err = dev_change_net_namespace(dev, &init_net, fb_name);
9550 		if (err) {
9551 			pr_emerg("%s: failed to move %s to init_net: %d\n",
9552 				 __func__, dev->name, err);
9553 			BUG();
9554 		}
9555 	}
9556 	rtnl_unlock();
9557 }
9558 
9559 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
9560 {
9561 	/* Return with the rtnl_lock held when there are no network
9562 	 * devices unregistering in any network namespace in net_list.
9563 	 */
9564 	struct net *net;
9565 	bool unregistering;
9566 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
9567 
9568 	add_wait_queue(&netdev_unregistering_wq, &wait);
9569 	for (;;) {
9570 		unregistering = false;
9571 		rtnl_lock();
9572 		list_for_each_entry(net, net_list, exit_list) {
9573 			if (net->dev_unreg_count > 0) {
9574 				unregistering = true;
9575 				break;
9576 			}
9577 		}
9578 		if (!unregistering)
9579 			break;
9580 		__rtnl_unlock();
9581 
9582 		wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
9583 	}
9584 	remove_wait_queue(&netdev_unregistering_wq, &wait);
9585 }
9586 
9587 static void __net_exit default_device_exit_batch(struct list_head *net_list)
9588 {
9589 	/* At exit all network devices most be removed from a network
9590 	 * namespace.  Do this in the reverse order of registration.
9591 	 * Do this across as many network namespaces as possible to
9592 	 * improve batching efficiency.
9593 	 */
9594 	struct net_device *dev;
9595 	struct net *net;
9596 	LIST_HEAD(dev_kill_list);
9597 
9598 	/* To prevent network device cleanup code from dereferencing
9599 	 * loopback devices or network devices that have been freed
9600 	 * wait here for all pending unregistrations to complete,
9601 	 * before unregistring the loopback device and allowing the
9602 	 * network namespace be freed.
9603 	 *
9604 	 * The netdev todo list containing all network devices
9605 	 * unregistrations that happen in default_device_exit_batch
9606 	 * will run in the rtnl_unlock() at the end of
9607 	 * default_device_exit_batch.
9608 	 */
9609 	rtnl_lock_unregistering(net_list);
9610 	list_for_each_entry(net, net_list, exit_list) {
9611 		for_each_netdev_reverse(net, dev) {
9612 			if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
9613 				dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
9614 			else
9615 				unregister_netdevice_queue(dev, &dev_kill_list);
9616 		}
9617 	}
9618 	unregister_netdevice_many(&dev_kill_list);
9619 	rtnl_unlock();
9620 }
9621 
9622 static struct pernet_operations __net_initdata default_device_ops = {
9623 	.exit = default_device_exit,
9624 	.exit_batch = default_device_exit_batch,
9625 };
9626 
9627 /*
9628  *	Initialize the DEV module. At boot time this walks the device list and
9629  *	unhooks any devices that fail to initialise (normally hardware not
9630  *	present) and leaves us with a valid list of present and active devices.
9631  *
9632  */
9633 
9634 /*
9635  *       This is called single threaded during boot, so no need
9636  *       to take the rtnl semaphore.
9637  */
9638 static int __init net_dev_init(void)
9639 {
9640 	int i, rc = -ENOMEM;
9641 
9642 	BUG_ON(!dev_boot_phase);
9643 
9644 	if (dev_proc_init())
9645 		goto out;
9646 
9647 	if (netdev_kobject_init())
9648 		goto out;
9649 
9650 	INIT_LIST_HEAD(&ptype_all);
9651 	for (i = 0; i < PTYPE_HASH_SIZE; i++)
9652 		INIT_LIST_HEAD(&ptype_base[i]);
9653 
9654 	INIT_LIST_HEAD(&offload_base);
9655 
9656 	if (register_pernet_subsys(&netdev_net_ops))
9657 		goto out;
9658 
9659 	/*
9660 	 *	Initialise the packet receive queues.
9661 	 */
9662 
9663 	for_each_possible_cpu(i) {
9664 		struct work_struct *flush = per_cpu_ptr(&flush_works, i);
9665 		struct softnet_data *sd = &per_cpu(softnet_data, i);
9666 
9667 		INIT_WORK(flush, flush_backlog);
9668 
9669 		skb_queue_head_init(&sd->input_pkt_queue);
9670 		skb_queue_head_init(&sd->process_queue);
9671 #ifdef CONFIG_XFRM_OFFLOAD
9672 		skb_queue_head_init(&sd->xfrm_backlog);
9673 #endif
9674 		INIT_LIST_HEAD(&sd->poll_list);
9675 		sd->output_queue_tailp = &sd->output_queue;
9676 #ifdef CONFIG_RPS
9677 		sd->csd.func = rps_trigger_softirq;
9678 		sd->csd.info = sd;
9679 		sd->cpu = i;
9680 #endif
9681 
9682 		init_gro_hash(&sd->backlog);
9683 		sd->backlog.poll = process_backlog;
9684 		sd->backlog.weight = weight_p;
9685 	}
9686 
9687 	dev_boot_phase = 0;
9688 
9689 	/* The loopback device is special if any other network devices
9690 	 * is present in a network namespace the loopback device must
9691 	 * be present. Since we now dynamically allocate and free the
9692 	 * loopback device ensure this invariant is maintained by
9693 	 * keeping the loopback device as the first device on the
9694 	 * list of network devices.  Ensuring the loopback devices
9695 	 * is the first device that appears and the last network device
9696 	 * that disappears.
9697 	 */
9698 	if (register_pernet_device(&loopback_net_ops))
9699 		goto out;
9700 
9701 	if (register_pernet_device(&default_device_ops))
9702 		goto out;
9703 
9704 	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
9705 	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
9706 
9707 	rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
9708 				       NULL, dev_cpu_dead);
9709 	WARN_ON(rc < 0);
9710 	rc = 0;
9711 out:
9712 	return rc;
9713 }
9714 
9715 subsys_initcall(net_dev_init);
9716