1 /* 2 * NET3 Protocol independent device support routines. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public License 6 * as published by the Free Software Foundation; either version 7 * 2 of the License, or (at your option) any later version. 8 * 9 * Derived from the non IP parts of dev.c 1.0.19 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Mark Evans, <evansmp@uhura.aston.ac.uk> 13 * 14 * Additional Authors: 15 * Florian la Roche <rzsfl@rz.uni-sb.de> 16 * Alan Cox <gw4pts@gw4pts.ampr.org> 17 * David Hinds <dahinds@users.sourceforge.net> 18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> 19 * Adam Sulmicki <adam@cfar.umd.edu> 20 * Pekka Riikonen <priikone@poesidon.pspt.fi> 21 * 22 * Changes: 23 * D.J. Barrow : Fixed bug where dev->refcnt gets set 24 * to 2 if register_netdev gets called 25 * before net_dev_init & also removed a 26 * few lines of code in the process. 27 * Alan Cox : device private ioctl copies fields back. 28 * Alan Cox : Transmit queue code does relevant 29 * stunts to keep the queue safe. 30 * Alan Cox : Fixed double lock. 31 * Alan Cox : Fixed promisc NULL pointer trap 32 * ???????? : Support the full private ioctl range 33 * Alan Cox : Moved ioctl permission check into 34 * drivers 35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI 36 * Alan Cox : 100 backlog just doesn't cut it when 37 * you start doing multicast video 8) 38 * Alan Cox : Rewrote net_bh and list manager. 39 * Alan Cox : Fix ETH_P_ALL echoback lengths. 40 * Alan Cox : Took out transmit every packet pass 41 * Saved a few bytes in the ioctl handler 42 * Alan Cox : Network driver sets packet type before 43 * calling netif_rx. Saves a function 44 * call a packet. 45 * Alan Cox : Hashed net_bh() 46 * Richard Kooijman: Timestamp fixes. 47 * Alan Cox : Wrong field in SIOCGIFDSTADDR 48 * Alan Cox : Device lock protection. 49 * Alan Cox : Fixed nasty side effect of device close 50 * changes. 51 * Rudi Cilibrasi : Pass the right thing to 52 * set_mac_address() 53 * Dave Miller : 32bit quantity for the device lock to 54 * make it work out on a Sparc. 55 * Bjorn Ekwall : Added KERNELD hack. 56 * Alan Cox : Cleaned up the backlog initialise. 57 * Craig Metz : SIOCGIFCONF fix if space for under 58 * 1 device. 59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there 60 * is no device open function. 61 * Andi Kleen : Fix error reporting for SIOCGIFCONF 62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF 63 * Cyrus Durgin : Cleaned for KMOD 64 * Adam Sulmicki : Bug Fix : Network Device Unload 65 * A network device unload needs to purge 66 * the backlog queue. 67 * Paul Rusty Russell : SIOCSIFNAME 68 * Pekka Riikonen : Netdev boot-time settings code 69 * Andrew Morton : Make unregister_netdevice wait 70 * indefinitely on dev->refcnt 71 * J Hadi Salim : - Backlog queue sampling 72 * - netif_rx() feedback 73 */ 74 75 #include <linux/uaccess.h> 76 #include <linux/bitops.h> 77 #include <linux/capability.h> 78 #include <linux/cpu.h> 79 #include <linux/types.h> 80 #include <linux/kernel.h> 81 #include <linux/hash.h> 82 #include <linux/slab.h> 83 #include <linux/sched.h> 84 #include <linux/sched/mm.h> 85 #include <linux/mutex.h> 86 #include <linux/string.h> 87 #include <linux/mm.h> 88 #include <linux/socket.h> 89 #include <linux/sockios.h> 90 #include <linux/errno.h> 91 #include <linux/interrupt.h> 92 #include <linux/if_ether.h> 93 #include <linux/netdevice.h> 94 #include <linux/etherdevice.h> 95 #include <linux/ethtool.h> 96 #include <linux/skbuff.h> 97 #include <linux/bpf.h> 98 #include <linux/bpf_trace.h> 99 #include <net/net_namespace.h> 100 #include <net/sock.h> 101 #include <net/busy_poll.h> 102 #include <linux/rtnetlink.h> 103 #include <linux/stat.h> 104 #include <net/dst.h> 105 #include <net/dst_metadata.h> 106 #include <net/pkt_sched.h> 107 #include <net/pkt_cls.h> 108 #include <net/checksum.h> 109 #include <net/xfrm.h> 110 #include <linux/highmem.h> 111 #include <linux/init.h> 112 #include <linux/module.h> 113 #include <linux/netpoll.h> 114 #include <linux/rcupdate.h> 115 #include <linux/delay.h> 116 #include <net/iw_handler.h> 117 #include <asm/current.h> 118 #include <linux/audit.h> 119 #include <linux/dmaengine.h> 120 #include <linux/err.h> 121 #include <linux/ctype.h> 122 #include <linux/if_arp.h> 123 #include <linux/if_vlan.h> 124 #include <linux/ip.h> 125 #include <net/ip.h> 126 #include <net/mpls.h> 127 #include <linux/ipv6.h> 128 #include <linux/in.h> 129 #include <linux/jhash.h> 130 #include <linux/random.h> 131 #include <trace/events/napi.h> 132 #include <trace/events/net.h> 133 #include <trace/events/skb.h> 134 #include <linux/pci.h> 135 #include <linux/inetdevice.h> 136 #include <linux/cpu_rmap.h> 137 #include <linux/static_key.h> 138 #include <linux/hashtable.h> 139 #include <linux/vmalloc.h> 140 #include <linux/if_macvlan.h> 141 #include <linux/errqueue.h> 142 #include <linux/hrtimer.h> 143 #include <linux/netfilter_ingress.h> 144 #include <linux/crash_dump.h> 145 #include <linux/sctp.h> 146 #include <net/udp_tunnel.h> 147 #include <linux/net_namespace.h> 148 149 #include "net-sysfs.h" 150 151 #define MAX_GRO_SKBS 8 152 153 /* This should be increased if a protocol with a bigger head is added. */ 154 #define GRO_MAX_HEAD (MAX_HEADER + 128) 155 156 static DEFINE_SPINLOCK(ptype_lock); 157 static DEFINE_SPINLOCK(offload_lock); 158 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly; 159 struct list_head ptype_all __read_mostly; /* Taps */ 160 static struct list_head offload_base __read_mostly; 161 162 static int netif_rx_internal(struct sk_buff *skb); 163 static int call_netdevice_notifiers_info(unsigned long val, 164 struct netdev_notifier_info *info); 165 static struct napi_struct *napi_by_id(unsigned int napi_id); 166 167 /* 168 * The @dev_base_head list is protected by @dev_base_lock and the rtnl 169 * semaphore. 170 * 171 * Pure readers hold dev_base_lock for reading, or rcu_read_lock() 172 * 173 * Writers must hold the rtnl semaphore while they loop through the 174 * dev_base_head list, and hold dev_base_lock for writing when they do the 175 * actual updates. This allows pure readers to access the list even 176 * while a writer is preparing to update it. 177 * 178 * To put it another way, dev_base_lock is held for writing only to 179 * protect against pure readers; the rtnl semaphore provides the 180 * protection against other writers. 181 * 182 * See, for example usages, register_netdevice() and 183 * unregister_netdevice(), which must be called with the rtnl 184 * semaphore held. 185 */ 186 DEFINE_RWLOCK(dev_base_lock); 187 EXPORT_SYMBOL(dev_base_lock); 188 189 static DEFINE_MUTEX(ifalias_mutex); 190 191 /* protects napi_hash addition/deletion and napi_gen_id */ 192 static DEFINE_SPINLOCK(napi_hash_lock); 193 194 static unsigned int napi_gen_id = NR_CPUS; 195 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8); 196 197 static seqcount_t devnet_rename_seq; 198 199 static inline void dev_base_seq_inc(struct net *net) 200 { 201 while (++net->dev_base_seq == 0) 202 ; 203 } 204 205 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name) 206 { 207 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ)); 208 209 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)]; 210 } 211 212 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex) 213 { 214 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)]; 215 } 216 217 static inline void rps_lock(struct softnet_data *sd) 218 { 219 #ifdef CONFIG_RPS 220 spin_lock(&sd->input_pkt_queue.lock); 221 #endif 222 } 223 224 static inline void rps_unlock(struct softnet_data *sd) 225 { 226 #ifdef CONFIG_RPS 227 spin_unlock(&sd->input_pkt_queue.lock); 228 #endif 229 } 230 231 /* Device list insertion */ 232 static void list_netdevice(struct net_device *dev) 233 { 234 struct net *net = dev_net(dev); 235 236 ASSERT_RTNL(); 237 238 write_lock_bh(&dev_base_lock); 239 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head); 240 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name)); 241 hlist_add_head_rcu(&dev->index_hlist, 242 dev_index_hash(net, dev->ifindex)); 243 write_unlock_bh(&dev_base_lock); 244 245 dev_base_seq_inc(net); 246 } 247 248 /* Device list removal 249 * caller must respect a RCU grace period before freeing/reusing dev 250 */ 251 static void unlist_netdevice(struct net_device *dev) 252 { 253 ASSERT_RTNL(); 254 255 /* Unlink dev from the device chain */ 256 write_lock_bh(&dev_base_lock); 257 list_del_rcu(&dev->dev_list); 258 hlist_del_rcu(&dev->name_hlist); 259 hlist_del_rcu(&dev->index_hlist); 260 write_unlock_bh(&dev_base_lock); 261 262 dev_base_seq_inc(dev_net(dev)); 263 } 264 265 /* 266 * Our notifier list 267 */ 268 269 static RAW_NOTIFIER_HEAD(netdev_chain); 270 271 /* 272 * Device drivers call our routines to queue packets here. We empty the 273 * queue in the local softnet handler. 274 */ 275 276 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 277 EXPORT_PER_CPU_SYMBOL(softnet_data); 278 279 #ifdef CONFIG_LOCKDEP 280 /* 281 * register_netdevice() inits txq->_xmit_lock and sets lockdep class 282 * according to dev->type 283 */ 284 static const unsigned short netdev_lock_type[] = { 285 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25, 286 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET, 287 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM, 288 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP, 289 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD, 290 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25, 291 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP, 292 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD, 293 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI, 294 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE, 295 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET, 296 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL, 297 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM, 298 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE, 299 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE}; 300 301 static const char *const netdev_lock_name[] = { 302 "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25", 303 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET", 304 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM", 305 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP", 306 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD", 307 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25", 308 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP", 309 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD", 310 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI", 311 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE", 312 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET", 313 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL", 314 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM", 315 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE", 316 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"}; 317 318 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)]; 319 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)]; 320 321 static inline unsigned short netdev_lock_pos(unsigned short dev_type) 322 { 323 int i; 324 325 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++) 326 if (netdev_lock_type[i] == dev_type) 327 return i; 328 /* the last key is used by default */ 329 return ARRAY_SIZE(netdev_lock_type) - 1; 330 } 331 332 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 333 unsigned short dev_type) 334 { 335 int i; 336 337 i = netdev_lock_pos(dev_type); 338 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i], 339 netdev_lock_name[i]); 340 } 341 342 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 343 { 344 int i; 345 346 i = netdev_lock_pos(dev->type); 347 lockdep_set_class_and_name(&dev->addr_list_lock, 348 &netdev_addr_lock_key[i], 349 netdev_lock_name[i]); 350 } 351 #else 352 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 353 unsigned short dev_type) 354 { 355 } 356 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 357 { 358 } 359 #endif 360 361 /******************************************************************************* 362 * 363 * Protocol management and registration routines 364 * 365 *******************************************************************************/ 366 367 368 /* 369 * Add a protocol ID to the list. Now that the input handler is 370 * smarter we can dispense with all the messy stuff that used to be 371 * here. 372 * 373 * BEWARE!!! Protocol handlers, mangling input packets, 374 * MUST BE last in hash buckets and checking protocol handlers 375 * MUST start from promiscuous ptype_all chain in net_bh. 376 * It is true now, do not change it. 377 * Explanation follows: if protocol handler, mangling packet, will 378 * be the first on list, it is not able to sense, that packet 379 * is cloned and should be copied-on-write, so that it will 380 * change it and subsequent readers will get broken packet. 381 * --ANK (980803) 382 */ 383 384 static inline struct list_head *ptype_head(const struct packet_type *pt) 385 { 386 if (pt->type == htons(ETH_P_ALL)) 387 return pt->dev ? &pt->dev->ptype_all : &ptype_all; 388 else 389 return pt->dev ? &pt->dev->ptype_specific : 390 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK]; 391 } 392 393 /** 394 * dev_add_pack - add packet handler 395 * @pt: packet type declaration 396 * 397 * Add a protocol handler to the networking stack. The passed &packet_type 398 * is linked into kernel lists and may not be freed until it has been 399 * removed from the kernel lists. 400 * 401 * This call does not sleep therefore it can not 402 * guarantee all CPU's that are in middle of receiving packets 403 * will see the new packet type (until the next received packet). 404 */ 405 406 void dev_add_pack(struct packet_type *pt) 407 { 408 struct list_head *head = ptype_head(pt); 409 410 spin_lock(&ptype_lock); 411 list_add_rcu(&pt->list, head); 412 spin_unlock(&ptype_lock); 413 } 414 EXPORT_SYMBOL(dev_add_pack); 415 416 /** 417 * __dev_remove_pack - remove packet handler 418 * @pt: packet type declaration 419 * 420 * Remove a protocol handler that was previously added to the kernel 421 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 422 * from the kernel lists and can be freed or reused once this function 423 * returns. 424 * 425 * The packet type might still be in use by receivers 426 * and must not be freed until after all the CPU's have gone 427 * through a quiescent state. 428 */ 429 void __dev_remove_pack(struct packet_type *pt) 430 { 431 struct list_head *head = ptype_head(pt); 432 struct packet_type *pt1; 433 434 spin_lock(&ptype_lock); 435 436 list_for_each_entry(pt1, head, list) { 437 if (pt == pt1) { 438 list_del_rcu(&pt->list); 439 goto out; 440 } 441 } 442 443 pr_warn("dev_remove_pack: %p not found\n", pt); 444 out: 445 spin_unlock(&ptype_lock); 446 } 447 EXPORT_SYMBOL(__dev_remove_pack); 448 449 /** 450 * dev_remove_pack - remove packet handler 451 * @pt: packet type declaration 452 * 453 * Remove a protocol handler that was previously added to the kernel 454 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 455 * from the kernel lists and can be freed or reused once this function 456 * returns. 457 * 458 * This call sleeps to guarantee that no CPU is looking at the packet 459 * type after return. 460 */ 461 void dev_remove_pack(struct packet_type *pt) 462 { 463 __dev_remove_pack(pt); 464 465 synchronize_net(); 466 } 467 EXPORT_SYMBOL(dev_remove_pack); 468 469 470 /** 471 * dev_add_offload - register offload handlers 472 * @po: protocol offload declaration 473 * 474 * Add protocol offload handlers to the networking stack. The passed 475 * &proto_offload is linked into kernel lists and may not be freed until 476 * it has been removed from the kernel lists. 477 * 478 * This call does not sleep therefore it can not 479 * guarantee all CPU's that are in middle of receiving packets 480 * will see the new offload handlers (until the next received packet). 481 */ 482 void dev_add_offload(struct packet_offload *po) 483 { 484 struct packet_offload *elem; 485 486 spin_lock(&offload_lock); 487 list_for_each_entry(elem, &offload_base, list) { 488 if (po->priority < elem->priority) 489 break; 490 } 491 list_add_rcu(&po->list, elem->list.prev); 492 spin_unlock(&offload_lock); 493 } 494 EXPORT_SYMBOL(dev_add_offload); 495 496 /** 497 * __dev_remove_offload - remove offload handler 498 * @po: packet offload declaration 499 * 500 * Remove a protocol offload handler that was previously added to the 501 * kernel offload handlers by dev_add_offload(). The passed &offload_type 502 * is removed from the kernel lists and can be freed or reused once this 503 * function returns. 504 * 505 * The packet type might still be in use by receivers 506 * and must not be freed until after all the CPU's have gone 507 * through a quiescent state. 508 */ 509 static void __dev_remove_offload(struct packet_offload *po) 510 { 511 struct list_head *head = &offload_base; 512 struct packet_offload *po1; 513 514 spin_lock(&offload_lock); 515 516 list_for_each_entry(po1, head, list) { 517 if (po == po1) { 518 list_del_rcu(&po->list); 519 goto out; 520 } 521 } 522 523 pr_warn("dev_remove_offload: %p not found\n", po); 524 out: 525 spin_unlock(&offload_lock); 526 } 527 528 /** 529 * dev_remove_offload - remove packet offload handler 530 * @po: packet offload declaration 531 * 532 * Remove a packet offload handler that was previously added to the kernel 533 * offload handlers by dev_add_offload(). The passed &offload_type is 534 * removed from the kernel lists and can be freed or reused once this 535 * function returns. 536 * 537 * This call sleeps to guarantee that no CPU is looking at the packet 538 * type after return. 539 */ 540 void dev_remove_offload(struct packet_offload *po) 541 { 542 __dev_remove_offload(po); 543 544 synchronize_net(); 545 } 546 EXPORT_SYMBOL(dev_remove_offload); 547 548 /****************************************************************************** 549 * 550 * Device Boot-time Settings Routines 551 * 552 ******************************************************************************/ 553 554 /* Boot time configuration table */ 555 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX]; 556 557 /** 558 * netdev_boot_setup_add - add new setup entry 559 * @name: name of the device 560 * @map: configured settings for the device 561 * 562 * Adds new setup entry to the dev_boot_setup list. The function 563 * returns 0 on error and 1 on success. This is a generic routine to 564 * all netdevices. 565 */ 566 static int netdev_boot_setup_add(char *name, struct ifmap *map) 567 { 568 struct netdev_boot_setup *s; 569 int i; 570 571 s = dev_boot_setup; 572 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 573 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') { 574 memset(s[i].name, 0, sizeof(s[i].name)); 575 strlcpy(s[i].name, name, IFNAMSIZ); 576 memcpy(&s[i].map, map, sizeof(s[i].map)); 577 break; 578 } 579 } 580 581 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1; 582 } 583 584 /** 585 * netdev_boot_setup_check - check boot time settings 586 * @dev: the netdevice 587 * 588 * Check boot time settings for the device. 589 * The found settings are set for the device to be used 590 * later in the device probing. 591 * Returns 0 if no settings found, 1 if they are. 592 */ 593 int netdev_boot_setup_check(struct net_device *dev) 594 { 595 struct netdev_boot_setup *s = dev_boot_setup; 596 int i; 597 598 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 599 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' && 600 !strcmp(dev->name, s[i].name)) { 601 dev->irq = s[i].map.irq; 602 dev->base_addr = s[i].map.base_addr; 603 dev->mem_start = s[i].map.mem_start; 604 dev->mem_end = s[i].map.mem_end; 605 return 1; 606 } 607 } 608 return 0; 609 } 610 EXPORT_SYMBOL(netdev_boot_setup_check); 611 612 613 /** 614 * netdev_boot_base - get address from boot time settings 615 * @prefix: prefix for network device 616 * @unit: id for network device 617 * 618 * Check boot time settings for the base address of device. 619 * The found settings are set for the device to be used 620 * later in the device probing. 621 * Returns 0 if no settings found. 622 */ 623 unsigned long netdev_boot_base(const char *prefix, int unit) 624 { 625 const struct netdev_boot_setup *s = dev_boot_setup; 626 char name[IFNAMSIZ]; 627 int i; 628 629 sprintf(name, "%s%d", prefix, unit); 630 631 /* 632 * If device already registered then return base of 1 633 * to indicate not to probe for this interface 634 */ 635 if (__dev_get_by_name(&init_net, name)) 636 return 1; 637 638 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) 639 if (!strcmp(name, s[i].name)) 640 return s[i].map.base_addr; 641 return 0; 642 } 643 644 /* 645 * Saves at boot time configured settings for any netdevice. 646 */ 647 int __init netdev_boot_setup(char *str) 648 { 649 int ints[5]; 650 struct ifmap map; 651 652 str = get_options(str, ARRAY_SIZE(ints), ints); 653 if (!str || !*str) 654 return 0; 655 656 /* Save settings */ 657 memset(&map, 0, sizeof(map)); 658 if (ints[0] > 0) 659 map.irq = ints[1]; 660 if (ints[0] > 1) 661 map.base_addr = ints[2]; 662 if (ints[0] > 2) 663 map.mem_start = ints[3]; 664 if (ints[0] > 3) 665 map.mem_end = ints[4]; 666 667 /* Add new entry to the list */ 668 return netdev_boot_setup_add(str, &map); 669 } 670 671 __setup("netdev=", netdev_boot_setup); 672 673 /******************************************************************************* 674 * 675 * Device Interface Subroutines 676 * 677 *******************************************************************************/ 678 679 /** 680 * dev_get_iflink - get 'iflink' value of a interface 681 * @dev: targeted interface 682 * 683 * Indicates the ifindex the interface is linked to. 684 * Physical interfaces have the same 'ifindex' and 'iflink' values. 685 */ 686 687 int dev_get_iflink(const struct net_device *dev) 688 { 689 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink) 690 return dev->netdev_ops->ndo_get_iflink(dev); 691 692 return dev->ifindex; 693 } 694 EXPORT_SYMBOL(dev_get_iflink); 695 696 /** 697 * dev_fill_metadata_dst - Retrieve tunnel egress information. 698 * @dev: targeted interface 699 * @skb: The packet. 700 * 701 * For better visibility of tunnel traffic OVS needs to retrieve 702 * egress tunnel information for a packet. Following API allows 703 * user to get this info. 704 */ 705 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb) 706 { 707 struct ip_tunnel_info *info; 708 709 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst) 710 return -EINVAL; 711 712 info = skb_tunnel_info_unclone(skb); 713 if (!info) 714 return -ENOMEM; 715 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX))) 716 return -EINVAL; 717 718 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb); 719 } 720 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst); 721 722 /** 723 * __dev_get_by_name - find a device by its name 724 * @net: the applicable net namespace 725 * @name: name to find 726 * 727 * Find an interface by name. Must be called under RTNL semaphore 728 * or @dev_base_lock. If the name is found a pointer to the device 729 * is returned. If the name is not found then %NULL is returned. The 730 * reference counters are not incremented so the caller must be 731 * careful with locks. 732 */ 733 734 struct net_device *__dev_get_by_name(struct net *net, const char *name) 735 { 736 struct net_device *dev; 737 struct hlist_head *head = dev_name_hash(net, name); 738 739 hlist_for_each_entry(dev, head, name_hlist) 740 if (!strncmp(dev->name, name, IFNAMSIZ)) 741 return dev; 742 743 return NULL; 744 } 745 EXPORT_SYMBOL(__dev_get_by_name); 746 747 /** 748 * dev_get_by_name_rcu - find a device by its name 749 * @net: the applicable net namespace 750 * @name: name to find 751 * 752 * Find an interface by name. 753 * If the name is found a pointer to the device is returned. 754 * If the name is not found then %NULL is returned. 755 * The reference counters are not incremented so the caller must be 756 * careful with locks. The caller must hold RCU lock. 757 */ 758 759 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name) 760 { 761 struct net_device *dev; 762 struct hlist_head *head = dev_name_hash(net, name); 763 764 hlist_for_each_entry_rcu(dev, head, name_hlist) 765 if (!strncmp(dev->name, name, IFNAMSIZ)) 766 return dev; 767 768 return NULL; 769 } 770 EXPORT_SYMBOL(dev_get_by_name_rcu); 771 772 /** 773 * dev_get_by_name - find a device by its name 774 * @net: the applicable net namespace 775 * @name: name to find 776 * 777 * Find an interface by name. This can be called from any 778 * context and does its own locking. The returned handle has 779 * the usage count incremented and the caller must use dev_put() to 780 * release it when it is no longer needed. %NULL is returned if no 781 * matching device is found. 782 */ 783 784 struct net_device *dev_get_by_name(struct net *net, const char *name) 785 { 786 struct net_device *dev; 787 788 rcu_read_lock(); 789 dev = dev_get_by_name_rcu(net, name); 790 if (dev) 791 dev_hold(dev); 792 rcu_read_unlock(); 793 return dev; 794 } 795 EXPORT_SYMBOL(dev_get_by_name); 796 797 /** 798 * __dev_get_by_index - find a device by its ifindex 799 * @net: the applicable net namespace 800 * @ifindex: index of device 801 * 802 * Search for an interface by index. Returns %NULL if the device 803 * is not found or a pointer to the device. The device has not 804 * had its reference counter increased so the caller must be careful 805 * about locking. The caller must hold either the RTNL semaphore 806 * or @dev_base_lock. 807 */ 808 809 struct net_device *__dev_get_by_index(struct net *net, int ifindex) 810 { 811 struct net_device *dev; 812 struct hlist_head *head = dev_index_hash(net, ifindex); 813 814 hlist_for_each_entry(dev, head, index_hlist) 815 if (dev->ifindex == ifindex) 816 return dev; 817 818 return NULL; 819 } 820 EXPORT_SYMBOL(__dev_get_by_index); 821 822 /** 823 * dev_get_by_index_rcu - find a device by its ifindex 824 * @net: the applicable net namespace 825 * @ifindex: index of device 826 * 827 * Search for an interface by index. Returns %NULL if the device 828 * is not found or a pointer to the device. The device has not 829 * had its reference counter increased so the caller must be careful 830 * about locking. The caller must hold RCU lock. 831 */ 832 833 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex) 834 { 835 struct net_device *dev; 836 struct hlist_head *head = dev_index_hash(net, ifindex); 837 838 hlist_for_each_entry_rcu(dev, head, index_hlist) 839 if (dev->ifindex == ifindex) 840 return dev; 841 842 return NULL; 843 } 844 EXPORT_SYMBOL(dev_get_by_index_rcu); 845 846 847 /** 848 * dev_get_by_index - find a device by its ifindex 849 * @net: the applicable net namespace 850 * @ifindex: index of device 851 * 852 * Search for an interface by index. Returns NULL if the device 853 * is not found or a pointer to the device. The device returned has 854 * had a reference added and the pointer is safe until the user calls 855 * dev_put to indicate they have finished with it. 856 */ 857 858 struct net_device *dev_get_by_index(struct net *net, int ifindex) 859 { 860 struct net_device *dev; 861 862 rcu_read_lock(); 863 dev = dev_get_by_index_rcu(net, ifindex); 864 if (dev) 865 dev_hold(dev); 866 rcu_read_unlock(); 867 return dev; 868 } 869 EXPORT_SYMBOL(dev_get_by_index); 870 871 /** 872 * dev_get_by_napi_id - find a device by napi_id 873 * @napi_id: ID of the NAPI struct 874 * 875 * Search for an interface by NAPI ID. Returns %NULL if the device 876 * is not found or a pointer to the device. The device has not had 877 * its reference counter increased so the caller must be careful 878 * about locking. The caller must hold RCU lock. 879 */ 880 881 struct net_device *dev_get_by_napi_id(unsigned int napi_id) 882 { 883 struct napi_struct *napi; 884 885 WARN_ON_ONCE(!rcu_read_lock_held()); 886 887 if (napi_id < MIN_NAPI_ID) 888 return NULL; 889 890 napi = napi_by_id(napi_id); 891 892 return napi ? napi->dev : NULL; 893 } 894 EXPORT_SYMBOL(dev_get_by_napi_id); 895 896 /** 897 * netdev_get_name - get a netdevice name, knowing its ifindex. 898 * @net: network namespace 899 * @name: a pointer to the buffer where the name will be stored. 900 * @ifindex: the ifindex of the interface to get the name from. 901 * 902 * The use of raw_seqcount_begin() and cond_resched() before 903 * retrying is required as we want to give the writers a chance 904 * to complete when CONFIG_PREEMPT is not set. 905 */ 906 int netdev_get_name(struct net *net, char *name, int ifindex) 907 { 908 struct net_device *dev; 909 unsigned int seq; 910 911 retry: 912 seq = raw_seqcount_begin(&devnet_rename_seq); 913 rcu_read_lock(); 914 dev = dev_get_by_index_rcu(net, ifindex); 915 if (!dev) { 916 rcu_read_unlock(); 917 return -ENODEV; 918 } 919 920 strcpy(name, dev->name); 921 rcu_read_unlock(); 922 if (read_seqcount_retry(&devnet_rename_seq, seq)) { 923 cond_resched(); 924 goto retry; 925 } 926 927 return 0; 928 } 929 930 /** 931 * dev_getbyhwaddr_rcu - find a device by its hardware address 932 * @net: the applicable net namespace 933 * @type: media type of device 934 * @ha: hardware address 935 * 936 * Search for an interface by MAC address. Returns NULL if the device 937 * is not found or a pointer to the device. 938 * The caller must hold RCU or RTNL. 939 * The returned device has not had its ref count increased 940 * and the caller must therefore be careful about locking 941 * 942 */ 943 944 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 945 const char *ha) 946 { 947 struct net_device *dev; 948 949 for_each_netdev_rcu(net, dev) 950 if (dev->type == type && 951 !memcmp(dev->dev_addr, ha, dev->addr_len)) 952 return dev; 953 954 return NULL; 955 } 956 EXPORT_SYMBOL(dev_getbyhwaddr_rcu); 957 958 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type) 959 { 960 struct net_device *dev; 961 962 ASSERT_RTNL(); 963 for_each_netdev(net, dev) 964 if (dev->type == type) 965 return dev; 966 967 return NULL; 968 } 969 EXPORT_SYMBOL(__dev_getfirstbyhwtype); 970 971 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type) 972 { 973 struct net_device *dev, *ret = NULL; 974 975 rcu_read_lock(); 976 for_each_netdev_rcu(net, dev) 977 if (dev->type == type) { 978 dev_hold(dev); 979 ret = dev; 980 break; 981 } 982 rcu_read_unlock(); 983 return ret; 984 } 985 EXPORT_SYMBOL(dev_getfirstbyhwtype); 986 987 /** 988 * __dev_get_by_flags - find any device with given flags 989 * @net: the applicable net namespace 990 * @if_flags: IFF_* values 991 * @mask: bitmask of bits in if_flags to check 992 * 993 * Search for any interface with the given flags. Returns NULL if a device 994 * is not found or a pointer to the device. Must be called inside 995 * rtnl_lock(), and result refcount is unchanged. 996 */ 997 998 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags, 999 unsigned short mask) 1000 { 1001 struct net_device *dev, *ret; 1002 1003 ASSERT_RTNL(); 1004 1005 ret = NULL; 1006 for_each_netdev(net, dev) { 1007 if (((dev->flags ^ if_flags) & mask) == 0) { 1008 ret = dev; 1009 break; 1010 } 1011 } 1012 return ret; 1013 } 1014 EXPORT_SYMBOL(__dev_get_by_flags); 1015 1016 /** 1017 * dev_valid_name - check if name is okay for network device 1018 * @name: name string 1019 * 1020 * Network device names need to be valid file names to 1021 * to allow sysfs to work. We also disallow any kind of 1022 * whitespace. 1023 */ 1024 bool dev_valid_name(const char *name) 1025 { 1026 if (*name == '\0') 1027 return false; 1028 if (strnlen(name, IFNAMSIZ) == IFNAMSIZ) 1029 return false; 1030 if (!strcmp(name, ".") || !strcmp(name, "..")) 1031 return false; 1032 1033 while (*name) { 1034 if (*name == '/' || *name == ':' || isspace(*name)) 1035 return false; 1036 name++; 1037 } 1038 return true; 1039 } 1040 EXPORT_SYMBOL(dev_valid_name); 1041 1042 /** 1043 * __dev_alloc_name - allocate a name for a device 1044 * @net: network namespace to allocate the device name in 1045 * @name: name format string 1046 * @buf: scratch buffer and result name string 1047 * 1048 * Passed a format string - eg "lt%d" it will try and find a suitable 1049 * id. It scans list of devices to build up a free map, then chooses 1050 * the first empty slot. The caller must hold the dev_base or rtnl lock 1051 * while allocating the name and adding the device in order to avoid 1052 * duplicates. 1053 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 1054 * Returns the number of the unit assigned or a negative errno code. 1055 */ 1056 1057 static int __dev_alloc_name(struct net *net, const char *name, char *buf) 1058 { 1059 int i = 0; 1060 const char *p; 1061 const int max_netdevices = 8*PAGE_SIZE; 1062 unsigned long *inuse; 1063 struct net_device *d; 1064 1065 if (!dev_valid_name(name)) 1066 return -EINVAL; 1067 1068 p = strchr(name, '%'); 1069 if (p) { 1070 /* 1071 * Verify the string as this thing may have come from 1072 * the user. There must be either one "%d" and no other "%" 1073 * characters. 1074 */ 1075 if (p[1] != 'd' || strchr(p + 2, '%')) 1076 return -EINVAL; 1077 1078 /* Use one page as a bit array of possible slots */ 1079 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC); 1080 if (!inuse) 1081 return -ENOMEM; 1082 1083 for_each_netdev(net, d) { 1084 if (!sscanf(d->name, name, &i)) 1085 continue; 1086 if (i < 0 || i >= max_netdevices) 1087 continue; 1088 1089 /* avoid cases where sscanf is not exact inverse of printf */ 1090 snprintf(buf, IFNAMSIZ, name, i); 1091 if (!strncmp(buf, d->name, IFNAMSIZ)) 1092 set_bit(i, inuse); 1093 } 1094 1095 i = find_first_zero_bit(inuse, max_netdevices); 1096 free_page((unsigned long) inuse); 1097 } 1098 1099 snprintf(buf, IFNAMSIZ, name, i); 1100 if (!__dev_get_by_name(net, buf)) 1101 return i; 1102 1103 /* It is possible to run out of possible slots 1104 * when the name is long and there isn't enough space left 1105 * for the digits, or if all bits are used. 1106 */ 1107 return -ENFILE; 1108 } 1109 1110 static int dev_alloc_name_ns(struct net *net, 1111 struct net_device *dev, 1112 const char *name) 1113 { 1114 char buf[IFNAMSIZ]; 1115 int ret; 1116 1117 BUG_ON(!net); 1118 ret = __dev_alloc_name(net, name, buf); 1119 if (ret >= 0) 1120 strlcpy(dev->name, buf, IFNAMSIZ); 1121 return ret; 1122 } 1123 1124 /** 1125 * dev_alloc_name - allocate a name for a device 1126 * @dev: device 1127 * @name: name format string 1128 * 1129 * Passed a format string - eg "lt%d" it will try and find a suitable 1130 * id. It scans list of devices to build up a free map, then chooses 1131 * the first empty slot. The caller must hold the dev_base or rtnl lock 1132 * while allocating the name and adding the device in order to avoid 1133 * duplicates. 1134 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 1135 * Returns the number of the unit assigned or a negative errno code. 1136 */ 1137 1138 int dev_alloc_name(struct net_device *dev, const char *name) 1139 { 1140 return dev_alloc_name_ns(dev_net(dev), dev, name); 1141 } 1142 EXPORT_SYMBOL(dev_alloc_name); 1143 1144 int dev_get_valid_name(struct net *net, struct net_device *dev, 1145 const char *name) 1146 { 1147 BUG_ON(!net); 1148 1149 if (!dev_valid_name(name)) 1150 return -EINVAL; 1151 1152 if (strchr(name, '%')) 1153 return dev_alloc_name_ns(net, dev, name); 1154 else if (__dev_get_by_name(net, name)) 1155 return -EEXIST; 1156 else if (dev->name != name) 1157 strlcpy(dev->name, name, IFNAMSIZ); 1158 1159 return 0; 1160 } 1161 EXPORT_SYMBOL(dev_get_valid_name); 1162 1163 /** 1164 * dev_change_name - change name of a device 1165 * @dev: device 1166 * @newname: name (or format string) must be at least IFNAMSIZ 1167 * 1168 * Change name of a device, can pass format strings "eth%d". 1169 * for wildcarding. 1170 */ 1171 int dev_change_name(struct net_device *dev, const char *newname) 1172 { 1173 unsigned char old_assign_type; 1174 char oldname[IFNAMSIZ]; 1175 int err = 0; 1176 int ret; 1177 struct net *net; 1178 1179 ASSERT_RTNL(); 1180 BUG_ON(!dev_net(dev)); 1181 1182 net = dev_net(dev); 1183 if (dev->flags & IFF_UP) 1184 return -EBUSY; 1185 1186 write_seqcount_begin(&devnet_rename_seq); 1187 1188 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) { 1189 write_seqcount_end(&devnet_rename_seq); 1190 return 0; 1191 } 1192 1193 memcpy(oldname, dev->name, IFNAMSIZ); 1194 1195 err = dev_get_valid_name(net, dev, newname); 1196 if (err < 0) { 1197 write_seqcount_end(&devnet_rename_seq); 1198 return err; 1199 } 1200 1201 if (oldname[0] && !strchr(oldname, '%')) 1202 netdev_info(dev, "renamed from %s\n", oldname); 1203 1204 old_assign_type = dev->name_assign_type; 1205 dev->name_assign_type = NET_NAME_RENAMED; 1206 1207 rollback: 1208 ret = device_rename(&dev->dev, dev->name); 1209 if (ret) { 1210 memcpy(dev->name, oldname, IFNAMSIZ); 1211 dev->name_assign_type = old_assign_type; 1212 write_seqcount_end(&devnet_rename_seq); 1213 return ret; 1214 } 1215 1216 write_seqcount_end(&devnet_rename_seq); 1217 1218 netdev_adjacent_rename_links(dev, oldname); 1219 1220 write_lock_bh(&dev_base_lock); 1221 hlist_del_rcu(&dev->name_hlist); 1222 write_unlock_bh(&dev_base_lock); 1223 1224 synchronize_rcu(); 1225 1226 write_lock_bh(&dev_base_lock); 1227 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name)); 1228 write_unlock_bh(&dev_base_lock); 1229 1230 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev); 1231 ret = notifier_to_errno(ret); 1232 1233 if (ret) { 1234 /* err >= 0 after dev_alloc_name() or stores the first errno */ 1235 if (err >= 0) { 1236 err = ret; 1237 write_seqcount_begin(&devnet_rename_seq); 1238 memcpy(dev->name, oldname, IFNAMSIZ); 1239 memcpy(oldname, newname, IFNAMSIZ); 1240 dev->name_assign_type = old_assign_type; 1241 old_assign_type = NET_NAME_RENAMED; 1242 goto rollback; 1243 } else { 1244 pr_err("%s: name change rollback failed: %d\n", 1245 dev->name, ret); 1246 } 1247 } 1248 1249 return err; 1250 } 1251 1252 /** 1253 * dev_set_alias - change ifalias of a device 1254 * @dev: device 1255 * @alias: name up to IFALIASZ 1256 * @len: limit of bytes to copy from info 1257 * 1258 * Set ifalias for a device, 1259 */ 1260 int dev_set_alias(struct net_device *dev, const char *alias, size_t len) 1261 { 1262 struct dev_ifalias *new_alias = NULL; 1263 1264 if (len >= IFALIASZ) 1265 return -EINVAL; 1266 1267 if (len) { 1268 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL); 1269 if (!new_alias) 1270 return -ENOMEM; 1271 1272 memcpy(new_alias->ifalias, alias, len); 1273 new_alias->ifalias[len] = 0; 1274 } 1275 1276 mutex_lock(&ifalias_mutex); 1277 rcu_swap_protected(dev->ifalias, new_alias, 1278 mutex_is_locked(&ifalias_mutex)); 1279 mutex_unlock(&ifalias_mutex); 1280 1281 if (new_alias) 1282 kfree_rcu(new_alias, rcuhead); 1283 1284 return len; 1285 } 1286 EXPORT_SYMBOL(dev_set_alias); 1287 1288 /** 1289 * dev_get_alias - get ifalias of a device 1290 * @dev: device 1291 * @name: buffer to store name of ifalias 1292 * @len: size of buffer 1293 * 1294 * get ifalias for a device. Caller must make sure dev cannot go 1295 * away, e.g. rcu read lock or own a reference count to device. 1296 */ 1297 int dev_get_alias(const struct net_device *dev, char *name, size_t len) 1298 { 1299 const struct dev_ifalias *alias; 1300 int ret = 0; 1301 1302 rcu_read_lock(); 1303 alias = rcu_dereference(dev->ifalias); 1304 if (alias) 1305 ret = snprintf(name, len, "%s", alias->ifalias); 1306 rcu_read_unlock(); 1307 1308 return ret; 1309 } 1310 1311 /** 1312 * netdev_features_change - device changes features 1313 * @dev: device to cause notification 1314 * 1315 * Called to indicate a device has changed features. 1316 */ 1317 void netdev_features_change(struct net_device *dev) 1318 { 1319 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev); 1320 } 1321 EXPORT_SYMBOL(netdev_features_change); 1322 1323 /** 1324 * netdev_state_change - device changes state 1325 * @dev: device to cause notification 1326 * 1327 * Called to indicate a device has changed state. This function calls 1328 * the notifier chains for netdev_chain and sends a NEWLINK message 1329 * to the routing socket. 1330 */ 1331 void netdev_state_change(struct net_device *dev) 1332 { 1333 if (dev->flags & IFF_UP) { 1334 struct netdev_notifier_change_info change_info = { 1335 .info.dev = dev, 1336 }; 1337 1338 call_netdevice_notifiers_info(NETDEV_CHANGE, 1339 &change_info.info); 1340 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL); 1341 } 1342 } 1343 EXPORT_SYMBOL(netdev_state_change); 1344 1345 /** 1346 * netdev_notify_peers - notify network peers about existence of @dev 1347 * @dev: network device 1348 * 1349 * Generate traffic such that interested network peers are aware of 1350 * @dev, such as by generating a gratuitous ARP. This may be used when 1351 * a device wants to inform the rest of the network about some sort of 1352 * reconfiguration such as a failover event or virtual machine 1353 * migration. 1354 */ 1355 void netdev_notify_peers(struct net_device *dev) 1356 { 1357 rtnl_lock(); 1358 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev); 1359 call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev); 1360 rtnl_unlock(); 1361 } 1362 EXPORT_SYMBOL(netdev_notify_peers); 1363 1364 static int __dev_open(struct net_device *dev) 1365 { 1366 const struct net_device_ops *ops = dev->netdev_ops; 1367 int ret; 1368 1369 ASSERT_RTNL(); 1370 1371 if (!netif_device_present(dev)) 1372 return -ENODEV; 1373 1374 /* Block netpoll from trying to do any rx path servicing. 1375 * If we don't do this there is a chance ndo_poll_controller 1376 * or ndo_poll may be running while we open the device 1377 */ 1378 netpoll_poll_disable(dev); 1379 1380 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev); 1381 ret = notifier_to_errno(ret); 1382 if (ret) 1383 return ret; 1384 1385 set_bit(__LINK_STATE_START, &dev->state); 1386 1387 if (ops->ndo_validate_addr) 1388 ret = ops->ndo_validate_addr(dev); 1389 1390 if (!ret && ops->ndo_open) 1391 ret = ops->ndo_open(dev); 1392 1393 netpoll_poll_enable(dev); 1394 1395 if (ret) 1396 clear_bit(__LINK_STATE_START, &dev->state); 1397 else { 1398 dev->flags |= IFF_UP; 1399 dev_set_rx_mode(dev); 1400 dev_activate(dev); 1401 add_device_randomness(dev->dev_addr, dev->addr_len); 1402 } 1403 1404 return ret; 1405 } 1406 1407 /** 1408 * dev_open - prepare an interface for use. 1409 * @dev: device to open 1410 * 1411 * Takes a device from down to up state. The device's private open 1412 * function is invoked and then the multicast lists are loaded. Finally 1413 * the device is moved into the up state and a %NETDEV_UP message is 1414 * sent to the netdev notifier chain. 1415 * 1416 * Calling this function on an active interface is a nop. On a failure 1417 * a negative errno code is returned. 1418 */ 1419 int dev_open(struct net_device *dev) 1420 { 1421 int ret; 1422 1423 if (dev->flags & IFF_UP) 1424 return 0; 1425 1426 ret = __dev_open(dev); 1427 if (ret < 0) 1428 return ret; 1429 1430 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL); 1431 call_netdevice_notifiers(NETDEV_UP, dev); 1432 1433 return ret; 1434 } 1435 EXPORT_SYMBOL(dev_open); 1436 1437 static void __dev_close_many(struct list_head *head) 1438 { 1439 struct net_device *dev; 1440 1441 ASSERT_RTNL(); 1442 might_sleep(); 1443 1444 list_for_each_entry(dev, head, close_list) { 1445 /* Temporarily disable netpoll until the interface is down */ 1446 netpoll_poll_disable(dev); 1447 1448 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev); 1449 1450 clear_bit(__LINK_STATE_START, &dev->state); 1451 1452 /* Synchronize to scheduled poll. We cannot touch poll list, it 1453 * can be even on different cpu. So just clear netif_running(). 1454 * 1455 * dev->stop() will invoke napi_disable() on all of it's 1456 * napi_struct instances on this device. 1457 */ 1458 smp_mb__after_atomic(); /* Commit netif_running(). */ 1459 } 1460 1461 dev_deactivate_many(head); 1462 1463 list_for_each_entry(dev, head, close_list) { 1464 const struct net_device_ops *ops = dev->netdev_ops; 1465 1466 /* 1467 * Call the device specific close. This cannot fail. 1468 * Only if device is UP 1469 * 1470 * We allow it to be called even after a DETACH hot-plug 1471 * event. 1472 */ 1473 if (ops->ndo_stop) 1474 ops->ndo_stop(dev); 1475 1476 dev->flags &= ~IFF_UP; 1477 netpoll_poll_enable(dev); 1478 } 1479 } 1480 1481 static void __dev_close(struct net_device *dev) 1482 { 1483 LIST_HEAD(single); 1484 1485 list_add(&dev->close_list, &single); 1486 __dev_close_many(&single); 1487 list_del(&single); 1488 } 1489 1490 void dev_close_many(struct list_head *head, bool unlink) 1491 { 1492 struct net_device *dev, *tmp; 1493 1494 /* Remove the devices that don't need to be closed */ 1495 list_for_each_entry_safe(dev, tmp, head, close_list) 1496 if (!(dev->flags & IFF_UP)) 1497 list_del_init(&dev->close_list); 1498 1499 __dev_close_many(head); 1500 1501 list_for_each_entry_safe(dev, tmp, head, close_list) { 1502 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL); 1503 call_netdevice_notifiers(NETDEV_DOWN, dev); 1504 if (unlink) 1505 list_del_init(&dev->close_list); 1506 } 1507 } 1508 EXPORT_SYMBOL(dev_close_many); 1509 1510 /** 1511 * dev_close - shutdown an interface. 1512 * @dev: device to shutdown 1513 * 1514 * This function moves an active device into down state. A 1515 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device 1516 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier 1517 * chain. 1518 */ 1519 void dev_close(struct net_device *dev) 1520 { 1521 if (dev->flags & IFF_UP) { 1522 LIST_HEAD(single); 1523 1524 list_add(&dev->close_list, &single); 1525 dev_close_many(&single, true); 1526 list_del(&single); 1527 } 1528 } 1529 EXPORT_SYMBOL(dev_close); 1530 1531 1532 /** 1533 * dev_disable_lro - disable Large Receive Offload on a device 1534 * @dev: device 1535 * 1536 * Disable Large Receive Offload (LRO) on a net device. Must be 1537 * called under RTNL. This is needed if received packets may be 1538 * forwarded to another interface. 1539 */ 1540 void dev_disable_lro(struct net_device *dev) 1541 { 1542 struct net_device *lower_dev; 1543 struct list_head *iter; 1544 1545 dev->wanted_features &= ~NETIF_F_LRO; 1546 netdev_update_features(dev); 1547 1548 if (unlikely(dev->features & NETIF_F_LRO)) 1549 netdev_WARN(dev, "failed to disable LRO!\n"); 1550 1551 netdev_for_each_lower_dev(dev, lower_dev, iter) 1552 dev_disable_lro(lower_dev); 1553 } 1554 EXPORT_SYMBOL(dev_disable_lro); 1555 1556 /** 1557 * dev_disable_gro_hw - disable HW Generic Receive Offload on a device 1558 * @dev: device 1559 * 1560 * Disable HW Generic Receive Offload (GRO_HW) on a net device. Must be 1561 * called under RTNL. This is needed if Generic XDP is installed on 1562 * the device. 1563 */ 1564 static void dev_disable_gro_hw(struct net_device *dev) 1565 { 1566 dev->wanted_features &= ~NETIF_F_GRO_HW; 1567 netdev_update_features(dev); 1568 1569 if (unlikely(dev->features & NETIF_F_GRO_HW)) 1570 netdev_WARN(dev, "failed to disable GRO_HW!\n"); 1571 } 1572 1573 const char *netdev_cmd_to_name(enum netdev_cmd cmd) 1574 { 1575 #define N(val) \ 1576 case NETDEV_##val: \ 1577 return "NETDEV_" __stringify(val); 1578 switch (cmd) { 1579 N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER) 1580 N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE) 1581 N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE) 1582 N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER) 1583 N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO) 1584 N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO) 1585 N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN) 1586 N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO) 1587 N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO) 1588 } 1589 #undef N 1590 return "UNKNOWN_NETDEV_EVENT"; 1591 } 1592 EXPORT_SYMBOL_GPL(netdev_cmd_to_name); 1593 1594 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val, 1595 struct net_device *dev) 1596 { 1597 struct netdev_notifier_info info = { 1598 .dev = dev, 1599 }; 1600 1601 return nb->notifier_call(nb, val, &info); 1602 } 1603 1604 static int dev_boot_phase = 1; 1605 1606 /** 1607 * register_netdevice_notifier - register a network notifier block 1608 * @nb: notifier 1609 * 1610 * Register a notifier to be called when network device events occur. 1611 * The notifier passed is linked into the kernel structures and must 1612 * not be reused until it has been unregistered. A negative errno code 1613 * is returned on a failure. 1614 * 1615 * When registered all registration and up events are replayed 1616 * to the new notifier to allow device to have a race free 1617 * view of the network device list. 1618 */ 1619 1620 int register_netdevice_notifier(struct notifier_block *nb) 1621 { 1622 struct net_device *dev; 1623 struct net_device *last; 1624 struct net *net; 1625 int err; 1626 1627 /* Close race with setup_net() and cleanup_net() */ 1628 down_write(&pernet_ops_rwsem); 1629 rtnl_lock(); 1630 err = raw_notifier_chain_register(&netdev_chain, nb); 1631 if (err) 1632 goto unlock; 1633 if (dev_boot_phase) 1634 goto unlock; 1635 for_each_net(net) { 1636 for_each_netdev(net, dev) { 1637 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev); 1638 err = notifier_to_errno(err); 1639 if (err) 1640 goto rollback; 1641 1642 if (!(dev->flags & IFF_UP)) 1643 continue; 1644 1645 call_netdevice_notifier(nb, NETDEV_UP, dev); 1646 } 1647 } 1648 1649 unlock: 1650 rtnl_unlock(); 1651 up_write(&pernet_ops_rwsem); 1652 return err; 1653 1654 rollback: 1655 last = dev; 1656 for_each_net(net) { 1657 for_each_netdev(net, dev) { 1658 if (dev == last) 1659 goto outroll; 1660 1661 if (dev->flags & IFF_UP) { 1662 call_netdevice_notifier(nb, NETDEV_GOING_DOWN, 1663 dev); 1664 call_netdevice_notifier(nb, NETDEV_DOWN, dev); 1665 } 1666 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev); 1667 } 1668 } 1669 1670 outroll: 1671 raw_notifier_chain_unregister(&netdev_chain, nb); 1672 goto unlock; 1673 } 1674 EXPORT_SYMBOL(register_netdevice_notifier); 1675 1676 /** 1677 * unregister_netdevice_notifier - unregister a network notifier block 1678 * @nb: notifier 1679 * 1680 * Unregister a notifier previously registered by 1681 * register_netdevice_notifier(). The notifier is unlinked into the 1682 * kernel structures and may then be reused. A negative errno code 1683 * is returned on a failure. 1684 * 1685 * After unregistering unregister and down device events are synthesized 1686 * for all devices on the device list to the removed notifier to remove 1687 * the need for special case cleanup code. 1688 */ 1689 1690 int unregister_netdevice_notifier(struct notifier_block *nb) 1691 { 1692 struct net_device *dev; 1693 struct net *net; 1694 int err; 1695 1696 /* Close race with setup_net() and cleanup_net() */ 1697 down_write(&pernet_ops_rwsem); 1698 rtnl_lock(); 1699 err = raw_notifier_chain_unregister(&netdev_chain, nb); 1700 if (err) 1701 goto unlock; 1702 1703 for_each_net(net) { 1704 for_each_netdev(net, dev) { 1705 if (dev->flags & IFF_UP) { 1706 call_netdevice_notifier(nb, NETDEV_GOING_DOWN, 1707 dev); 1708 call_netdevice_notifier(nb, NETDEV_DOWN, dev); 1709 } 1710 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev); 1711 } 1712 } 1713 unlock: 1714 rtnl_unlock(); 1715 up_write(&pernet_ops_rwsem); 1716 return err; 1717 } 1718 EXPORT_SYMBOL(unregister_netdevice_notifier); 1719 1720 /** 1721 * call_netdevice_notifiers_info - call all network notifier blocks 1722 * @val: value passed unmodified to notifier function 1723 * @info: notifier information data 1724 * 1725 * Call all network notifier blocks. Parameters and return value 1726 * are as for raw_notifier_call_chain(). 1727 */ 1728 1729 static int call_netdevice_notifiers_info(unsigned long val, 1730 struct netdev_notifier_info *info) 1731 { 1732 ASSERT_RTNL(); 1733 return raw_notifier_call_chain(&netdev_chain, val, info); 1734 } 1735 1736 /** 1737 * call_netdevice_notifiers - call all network notifier blocks 1738 * @val: value passed unmodified to notifier function 1739 * @dev: net_device pointer passed unmodified to notifier function 1740 * 1741 * Call all network notifier blocks. Parameters and return value 1742 * are as for raw_notifier_call_chain(). 1743 */ 1744 1745 int call_netdevice_notifiers(unsigned long val, struct net_device *dev) 1746 { 1747 struct netdev_notifier_info info = { 1748 .dev = dev, 1749 }; 1750 1751 return call_netdevice_notifiers_info(val, &info); 1752 } 1753 EXPORT_SYMBOL(call_netdevice_notifiers); 1754 1755 /** 1756 * call_netdevice_notifiers_mtu - call all network notifier blocks 1757 * @val: value passed unmodified to notifier function 1758 * @dev: net_device pointer passed unmodified to notifier function 1759 * @arg: additional u32 argument passed to the notifier function 1760 * 1761 * Call all network notifier blocks. Parameters and return value 1762 * are as for raw_notifier_call_chain(). 1763 */ 1764 static int call_netdevice_notifiers_mtu(unsigned long val, 1765 struct net_device *dev, u32 arg) 1766 { 1767 struct netdev_notifier_info_ext info = { 1768 .info.dev = dev, 1769 .ext.mtu = arg, 1770 }; 1771 1772 BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0); 1773 1774 return call_netdevice_notifiers_info(val, &info.info); 1775 } 1776 1777 #ifdef CONFIG_NET_INGRESS 1778 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key); 1779 1780 void net_inc_ingress_queue(void) 1781 { 1782 static_branch_inc(&ingress_needed_key); 1783 } 1784 EXPORT_SYMBOL_GPL(net_inc_ingress_queue); 1785 1786 void net_dec_ingress_queue(void) 1787 { 1788 static_branch_dec(&ingress_needed_key); 1789 } 1790 EXPORT_SYMBOL_GPL(net_dec_ingress_queue); 1791 #endif 1792 1793 #ifdef CONFIG_NET_EGRESS 1794 static DEFINE_STATIC_KEY_FALSE(egress_needed_key); 1795 1796 void net_inc_egress_queue(void) 1797 { 1798 static_branch_inc(&egress_needed_key); 1799 } 1800 EXPORT_SYMBOL_GPL(net_inc_egress_queue); 1801 1802 void net_dec_egress_queue(void) 1803 { 1804 static_branch_dec(&egress_needed_key); 1805 } 1806 EXPORT_SYMBOL_GPL(net_dec_egress_queue); 1807 #endif 1808 1809 static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key); 1810 #ifdef HAVE_JUMP_LABEL 1811 static atomic_t netstamp_needed_deferred; 1812 static atomic_t netstamp_wanted; 1813 static void netstamp_clear(struct work_struct *work) 1814 { 1815 int deferred = atomic_xchg(&netstamp_needed_deferred, 0); 1816 int wanted; 1817 1818 wanted = atomic_add_return(deferred, &netstamp_wanted); 1819 if (wanted > 0) 1820 static_branch_enable(&netstamp_needed_key); 1821 else 1822 static_branch_disable(&netstamp_needed_key); 1823 } 1824 static DECLARE_WORK(netstamp_work, netstamp_clear); 1825 #endif 1826 1827 void net_enable_timestamp(void) 1828 { 1829 #ifdef HAVE_JUMP_LABEL 1830 int wanted; 1831 1832 while (1) { 1833 wanted = atomic_read(&netstamp_wanted); 1834 if (wanted <= 0) 1835 break; 1836 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted) 1837 return; 1838 } 1839 atomic_inc(&netstamp_needed_deferred); 1840 schedule_work(&netstamp_work); 1841 #else 1842 static_branch_inc(&netstamp_needed_key); 1843 #endif 1844 } 1845 EXPORT_SYMBOL(net_enable_timestamp); 1846 1847 void net_disable_timestamp(void) 1848 { 1849 #ifdef HAVE_JUMP_LABEL 1850 int wanted; 1851 1852 while (1) { 1853 wanted = atomic_read(&netstamp_wanted); 1854 if (wanted <= 1) 1855 break; 1856 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted) 1857 return; 1858 } 1859 atomic_dec(&netstamp_needed_deferred); 1860 schedule_work(&netstamp_work); 1861 #else 1862 static_branch_dec(&netstamp_needed_key); 1863 #endif 1864 } 1865 EXPORT_SYMBOL(net_disable_timestamp); 1866 1867 static inline void net_timestamp_set(struct sk_buff *skb) 1868 { 1869 skb->tstamp = 0; 1870 if (static_branch_unlikely(&netstamp_needed_key)) 1871 __net_timestamp(skb); 1872 } 1873 1874 #define net_timestamp_check(COND, SKB) \ 1875 if (static_branch_unlikely(&netstamp_needed_key)) { \ 1876 if ((COND) && !(SKB)->tstamp) \ 1877 __net_timestamp(SKB); \ 1878 } \ 1879 1880 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb) 1881 { 1882 unsigned int len; 1883 1884 if (!(dev->flags & IFF_UP)) 1885 return false; 1886 1887 len = dev->mtu + dev->hard_header_len + VLAN_HLEN; 1888 if (skb->len <= len) 1889 return true; 1890 1891 /* if TSO is enabled, we don't care about the length as the packet 1892 * could be forwarded without being segmented before 1893 */ 1894 if (skb_is_gso(skb)) 1895 return true; 1896 1897 return false; 1898 } 1899 EXPORT_SYMBOL_GPL(is_skb_forwardable); 1900 1901 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 1902 { 1903 int ret = ____dev_forward_skb(dev, skb); 1904 1905 if (likely(!ret)) { 1906 skb->protocol = eth_type_trans(skb, dev); 1907 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN); 1908 } 1909 1910 return ret; 1911 } 1912 EXPORT_SYMBOL_GPL(__dev_forward_skb); 1913 1914 /** 1915 * dev_forward_skb - loopback an skb to another netif 1916 * 1917 * @dev: destination network device 1918 * @skb: buffer to forward 1919 * 1920 * return values: 1921 * NET_RX_SUCCESS (no congestion) 1922 * NET_RX_DROP (packet was dropped, but freed) 1923 * 1924 * dev_forward_skb can be used for injecting an skb from the 1925 * start_xmit function of one device into the receive queue 1926 * of another device. 1927 * 1928 * The receiving device may be in another namespace, so 1929 * we have to clear all information in the skb that could 1930 * impact namespace isolation. 1931 */ 1932 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 1933 { 1934 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb); 1935 } 1936 EXPORT_SYMBOL_GPL(dev_forward_skb); 1937 1938 static inline int deliver_skb(struct sk_buff *skb, 1939 struct packet_type *pt_prev, 1940 struct net_device *orig_dev) 1941 { 1942 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC))) 1943 return -ENOMEM; 1944 refcount_inc(&skb->users); 1945 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 1946 } 1947 1948 static inline void deliver_ptype_list_skb(struct sk_buff *skb, 1949 struct packet_type **pt, 1950 struct net_device *orig_dev, 1951 __be16 type, 1952 struct list_head *ptype_list) 1953 { 1954 struct packet_type *ptype, *pt_prev = *pt; 1955 1956 list_for_each_entry_rcu(ptype, ptype_list, list) { 1957 if (ptype->type != type) 1958 continue; 1959 if (pt_prev) 1960 deliver_skb(skb, pt_prev, orig_dev); 1961 pt_prev = ptype; 1962 } 1963 *pt = pt_prev; 1964 } 1965 1966 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb) 1967 { 1968 if (!ptype->af_packet_priv || !skb->sk) 1969 return false; 1970 1971 if (ptype->id_match) 1972 return ptype->id_match(ptype, skb->sk); 1973 else if ((struct sock *)ptype->af_packet_priv == skb->sk) 1974 return true; 1975 1976 return false; 1977 } 1978 1979 /** 1980 * dev_nit_active - return true if any network interface taps are in use 1981 * 1982 * @dev: network device to check for the presence of taps 1983 */ 1984 bool dev_nit_active(struct net_device *dev) 1985 { 1986 return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all); 1987 } 1988 EXPORT_SYMBOL_GPL(dev_nit_active); 1989 1990 /* 1991 * Support routine. Sends outgoing frames to any network 1992 * taps currently in use. 1993 */ 1994 1995 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev) 1996 { 1997 struct packet_type *ptype; 1998 struct sk_buff *skb2 = NULL; 1999 struct packet_type *pt_prev = NULL; 2000 struct list_head *ptype_list = &ptype_all; 2001 2002 rcu_read_lock(); 2003 again: 2004 list_for_each_entry_rcu(ptype, ptype_list, list) { 2005 if (ptype->ignore_outgoing) 2006 continue; 2007 2008 /* Never send packets back to the socket 2009 * they originated from - MvS (miquels@drinkel.ow.org) 2010 */ 2011 if (skb_loop_sk(ptype, skb)) 2012 continue; 2013 2014 if (pt_prev) { 2015 deliver_skb(skb2, pt_prev, skb->dev); 2016 pt_prev = ptype; 2017 continue; 2018 } 2019 2020 /* need to clone skb, done only once */ 2021 skb2 = skb_clone(skb, GFP_ATOMIC); 2022 if (!skb2) 2023 goto out_unlock; 2024 2025 net_timestamp_set(skb2); 2026 2027 /* skb->nh should be correctly 2028 * set by sender, so that the second statement is 2029 * just protection against buggy protocols. 2030 */ 2031 skb_reset_mac_header(skb2); 2032 2033 if (skb_network_header(skb2) < skb2->data || 2034 skb_network_header(skb2) > skb_tail_pointer(skb2)) { 2035 net_crit_ratelimited("protocol %04x is buggy, dev %s\n", 2036 ntohs(skb2->protocol), 2037 dev->name); 2038 skb_reset_network_header(skb2); 2039 } 2040 2041 skb2->transport_header = skb2->network_header; 2042 skb2->pkt_type = PACKET_OUTGOING; 2043 pt_prev = ptype; 2044 } 2045 2046 if (ptype_list == &ptype_all) { 2047 ptype_list = &dev->ptype_all; 2048 goto again; 2049 } 2050 out_unlock: 2051 if (pt_prev) { 2052 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC)) 2053 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev); 2054 else 2055 kfree_skb(skb2); 2056 } 2057 rcu_read_unlock(); 2058 } 2059 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit); 2060 2061 /** 2062 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change 2063 * @dev: Network device 2064 * @txq: number of queues available 2065 * 2066 * If real_num_tx_queues is changed the tc mappings may no longer be 2067 * valid. To resolve this verify the tc mapping remains valid and if 2068 * not NULL the mapping. With no priorities mapping to this 2069 * offset/count pair it will no longer be used. In the worst case TC0 2070 * is invalid nothing can be done so disable priority mappings. If is 2071 * expected that drivers will fix this mapping if they can before 2072 * calling netif_set_real_num_tx_queues. 2073 */ 2074 static void netif_setup_tc(struct net_device *dev, unsigned int txq) 2075 { 2076 int i; 2077 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 2078 2079 /* If TC0 is invalidated disable TC mapping */ 2080 if (tc->offset + tc->count > txq) { 2081 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n"); 2082 dev->num_tc = 0; 2083 return; 2084 } 2085 2086 /* Invalidated prio to tc mappings set to TC0 */ 2087 for (i = 1; i < TC_BITMASK + 1; i++) { 2088 int q = netdev_get_prio_tc_map(dev, i); 2089 2090 tc = &dev->tc_to_txq[q]; 2091 if (tc->offset + tc->count > txq) { 2092 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n", 2093 i, q); 2094 netdev_set_prio_tc_map(dev, i, 0); 2095 } 2096 } 2097 } 2098 2099 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq) 2100 { 2101 if (dev->num_tc) { 2102 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 2103 int i; 2104 2105 /* walk through the TCs and see if it falls into any of them */ 2106 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) { 2107 if ((txq - tc->offset) < tc->count) 2108 return i; 2109 } 2110 2111 /* didn't find it, just return -1 to indicate no match */ 2112 return -1; 2113 } 2114 2115 return 0; 2116 } 2117 EXPORT_SYMBOL(netdev_txq_to_tc); 2118 2119 #ifdef CONFIG_XPS 2120 struct static_key xps_needed __read_mostly; 2121 EXPORT_SYMBOL(xps_needed); 2122 struct static_key xps_rxqs_needed __read_mostly; 2123 EXPORT_SYMBOL(xps_rxqs_needed); 2124 static DEFINE_MUTEX(xps_map_mutex); 2125 #define xmap_dereference(P) \ 2126 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex)) 2127 2128 static bool remove_xps_queue(struct xps_dev_maps *dev_maps, 2129 int tci, u16 index) 2130 { 2131 struct xps_map *map = NULL; 2132 int pos; 2133 2134 if (dev_maps) 2135 map = xmap_dereference(dev_maps->attr_map[tci]); 2136 if (!map) 2137 return false; 2138 2139 for (pos = map->len; pos--;) { 2140 if (map->queues[pos] != index) 2141 continue; 2142 2143 if (map->len > 1) { 2144 map->queues[pos] = map->queues[--map->len]; 2145 break; 2146 } 2147 2148 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL); 2149 kfree_rcu(map, rcu); 2150 return false; 2151 } 2152 2153 return true; 2154 } 2155 2156 static bool remove_xps_queue_cpu(struct net_device *dev, 2157 struct xps_dev_maps *dev_maps, 2158 int cpu, u16 offset, u16 count) 2159 { 2160 int num_tc = dev->num_tc ? : 1; 2161 bool active = false; 2162 int tci; 2163 2164 for (tci = cpu * num_tc; num_tc--; tci++) { 2165 int i, j; 2166 2167 for (i = count, j = offset; i--; j++) { 2168 if (!remove_xps_queue(dev_maps, tci, j)) 2169 break; 2170 } 2171 2172 active |= i < 0; 2173 } 2174 2175 return active; 2176 } 2177 2178 static void clean_xps_maps(struct net_device *dev, const unsigned long *mask, 2179 struct xps_dev_maps *dev_maps, unsigned int nr_ids, 2180 u16 offset, u16 count, bool is_rxqs_map) 2181 { 2182 bool active = false; 2183 int i, j; 2184 2185 for (j = -1; j = netif_attrmask_next(j, mask, nr_ids), 2186 j < nr_ids;) 2187 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, 2188 count); 2189 if (!active) { 2190 if (is_rxqs_map) { 2191 RCU_INIT_POINTER(dev->xps_rxqs_map, NULL); 2192 } else { 2193 RCU_INIT_POINTER(dev->xps_cpus_map, NULL); 2194 2195 for (i = offset + (count - 1); count--; i--) 2196 netdev_queue_numa_node_write( 2197 netdev_get_tx_queue(dev, i), 2198 NUMA_NO_NODE); 2199 } 2200 kfree_rcu(dev_maps, rcu); 2201 } 2202 } 2203 2204 static void netif_reset_xps_queues(struct net_device *dev, u16 offset, 2205 u16 count) 2206 { 2207 const unsigned long *possible_mask = NULL; 2208 struct xps_dev_maps *dev_maps; 2209 unsigned int nr_ids; 2210 2211 if (!static_key_false(&xps_needed)) 2212 return; 2213 2214 cpus_read_lock(); 2215 mutex_lock(&xps_map_mutex); 2216 2217 if (static_key_false(&xps_rxqs_needed)) { 2218 dev_maps = xmap_dereference(dev->xps_rxqs_map); 2219 if (dev_maps) { 2220 nr_ids = dev->num_rx_queues; 2221 clean_xps_maps(dev, possible_mask, dev_maps, nr_ids, 2222 offset, count, true); 2223 } 2224 } 2225 2226 dev_maps = xmap_dereference(dev->xps_cpus_map); 2227 if (!dev_maps) 2228 goto out_no_maps; 2229 2230 if (num_possible_cpus() > 1) 2231 possible_mask = cpumask_bits(cpu_possible_mask); 2232 nr_ids = nr_cpu_ids; 2233 clean_xps_maps(dev, possible_mask, dev_maps, nr_ids, offset, count, 2234 false); 2235 2236 out_no_maps: 2237 if (static_key_enabled(&xps_rxqs_needed)) 2238 static_key_slow_dec_cpuslocked(&xps_rxqs_needed); 2239 2240 static_key_slow_dec_cpuslocked(&xps_needed); 2241 mutex_unlock(&xps_map_mutex); 2242 cpus_read_unlock(); 2243 } 2244 2245 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index) 2246 { 2247 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index); 2248 } 2249 2250 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index, 2251 u16 index, bool is_rxqs_map) 2252 { 2253 struct xps_map *new_map; 2254 int alloc_len = XPS_MIN_MAP_ALLOC; 2255 int i, pos; 2256 2257 for (pos = 0; map && pos < map->len; pos++) { 2258 if (map->queues[pos] != index) 2259 continue; 2260 return map; 2261 } 2262 2263 /* Need to add tx-queue to this CPU's/rx-queue's existing map */ 2264 if (map) { 2265 if (pos < map->alloc_len) 2266 return map; 2267 2268 alloc_len = map->alloc_len * 2; 2269 } 2270 2271 /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's 2272 * map 2273 */ 2274 if (is_rxqs_map) 2275 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL); 2276 else 2277 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL, 2278 cpu_to_node(attr_index)); 2279 if (!new_map) 2280 return NULL; 2281 2282 for (i = 0; i < pos; i++) 2283 new_map->queues[i] = map->queues[i]; 2284 new_map->alloc_len = alloc_len; 2285 new_map->len = pos; 2286 2287 return new_map; 2288 } 2289 2290 /* Must be called under cpus_read_lock */ 2291 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask, 2292 u16 index, bool is_rxqs_map) 2293 { 2294 const unsigned long *online_mask = NULL, *possible_mask = NULL; 2295 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL; 2296 int i, j, tci, numa_node_id = -2; 2297 int maps_sz, num_tc = 1, tc = 0; 2298 struct xps_map *map, *new_map; 2299 bool active = false; 2300 unsigned int nr_ids; 2301 2302 if (dev->num_tc) { 2303 /* Do not allow XPS on subordinate device directly */ 2304 num_tc = dev->num_tc; 2305 if (num_tc < 0) 2306 return -EINVAL; 2307 2308 /* If queue belongs to subordinate dev use its map */ 2309 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev; 2310 2311 tc = netdev_txq_to_tc(dev, index); 2312 if (tc < 0) 2313 return -EINVAL; 2314 } 2315 2316 mutex_lock(&xps_map_mutex); 2317 if (is_rxqs_map) { 2318 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues); 2319 dev_maps = xmap_dereference(dev->xps_rxqs_map); 2320 nr_ids = dev->num_rx_queues; 2321 } else { 2322 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc); 2323 if (num_possible_cpus() > 1) { 2324 online_mask = cpumask_bits(cpu_online_mask); 2325 possible_mask = cpumask_bits(cpu_possible_mask); 2326 } 2327 dev_maps = xmap_dereference(dev->xps_cpus_map); 2328 nr_ids = nr_cpu_ids; 2329 } 2330 2331 if (maps_sz < L1_CACHE_BYTES) 2332 maps_sz = L1_CACHE_BYTES; 2333 2334 /* allocate memory for queue storage */ 2335 for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids), 2336 j < nr_ids;) { 2337 if (!new_dev_maps) 2338 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL); 2339 if (!new_dev_maps) { 2340 mutex_unlock(&xps_map_mutex); 2341 return -ENOMEM; 2342 } 2343 2344 tci = j * num_tc + tc; 2345 map = dev_maps ? xmap_dereference(dev_maps->attr_map[tci]) : 2346 NULL; 2347 2348 map = expand_xps_map(map, j, index, is_rxqs_map); 2349 if (!map) 2350 goto error; 2351 2352 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map); 2353 } 2354 2355 if (!new_dev_maps) 2356 goto out_no_new_maps; 2357 2358 static_key_slow_inc_cpuslocked(&xps_needed); 2359 if (is_rxqs_map) 2360 static_key_slow_inc_cpuslocked(&xps_rxqs_needed); 2361 2362 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids), 2363 j < nr_ids;) { 2364 /* copy maps belonging to foreign traffic classes */ 2365 for (i = tc, tci = j * num_tc; dev_maps && i--; tci++) { 2366 /* fill in the new device map from the old device map */ 2367 map = xmap_dereference(dev_maps->attr_map[tci]); 2368 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map); 2369 } 2370 2371 /* We need to explicitly update tci as prevous loop 2372 * could break out early if dev_maps is NULL. 2373 */ 2374 tci = j * num_tc + tc; 2375 2376 if (netif_attr_test_mask(j, mask, nr_ids) && 2377 netif_attr_test_online(j, online_mask, nr_ids)) { 2378 /* add tx-queue to CPU/rx-queue maps */ 2379 int pos = 0; 2380 2381 map = xmap_dereference(new_dev_maps->attr_map[tci]); 2382 while ((pos < map->len) && (map->queues[pos] != index)) 2383 pos++; 2384 2385 if (pos == map->len) 2386 map->queues[map->len++] = index; 2387 #ifdef CONFIG_NUMA 2388 if (!is_rxqs_map) { 2389 if (numa_node_id == -2) 2390 numa_node_id = cpu_to_node(j); 2391 else if (numa_node_id != cpu_to_node(j)) 2392 numa_node_id = -1; 2393 } 2394 #endif 2395 } else if (dev_maps) { 2396 /* fill in the new device map from the old device map */ 2397 map = xmap_dereference(dev_maps->attr_map[tci]); 2398 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map); 2399 } 2400 2401 /* copy maps belonging to foreign traffic classes */ 2402 for (i = num_tc - tc, tci++; dev_maps && --i; tci++) { 2403 /* fill in the new device map from the old device map */ 2404 map = xmap_dereference(dev_maps->attr_map[tci]); 2405 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map); 2406 } 2407 } 2408 2409 if (is_rxqs_map) 2410 rcu_assign_pointer(dev->xps_rxqs_map, new_dev_maps); 2411 else 2412 rcu_assign_pointer(dev->xps_cpus_map, new_dev_maps); 2413 2414 /* Cleanup old maps */ 2415 if (!dev_maps) 2416 goto out_no_old_maps; 2417 2418 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids), 2419 j < nr_ids;) { 2420 for (i = num_tc, tci = j * num_tc; i--; tci++) { 2421 new_map = xmap_dereference(new_dev_maps->attr_map[tci]); 2422 map = xmap_dereference(dev_maps->attr_map[tci]); 2423 if (map && map != new_map) 2424 kfree_rcu(map, rcu); 2425 } 2426 } 2427 2428 kfree_rcu(dev_maps, rcu); 2429 2430 out_no_old_maps: 2431 dev_maps = new_dev_maps; 2432 active = true; 2433 2434 out_no_new_maps: 2435 if (!is_rxqs_map) { 2436 /* update Tx queue numa node */ 2437 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index), 2438 (numa_node_id >= 0) ? 2439 numa_node_id : NUMA_NO_NODE); 2440 } 2441 2442 if (!dev_maps) 2443 goto out_no_maps; 2444 2445 /* removes tx-queue from unused CPUs/rx-queues */ 2446 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids), 2447 j < nr_ids;) { 2448 for (i = tc, tci = j * num_tc; i--; tci++) 2449 active |= remove_xps_queue(dev_maps, tci, index); 2450 if (!netif_attr_test_mask(j, mask, nr_ids) || 2451 !netif_attr_test_online(j, online_mask, nr_ids)) 2452 active |= remove_xps_queue(dev_maps, tci, index); 2453 for (i = num_tc - tc, tci++; --i; tci++) 2454 active |= remove_xps_queue(dev_maps, tci, index); 2455 } 2456 2457 /* free map if not active */ 2458 if (!active) { 2459 if (is_rxqs_map) 2460 RCU_INIT_POINTER(dev->xps_rxqs_map, NULL); 2461 else 2462 RCU_INIT_POINTER(dev->xps_cpus_map, NULL); 2463 kfree_rcu(dev_maps, rcu); 2464 } 2465 2466 out_no_maps: 2467 mutex_unlock(&xps_map_mutex); 2468 2469 return 0; 2470 error: 2471 /* remove any maps that we added */ 2472 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids), 2473 j < nr_ids;) { 2474 for (i = num_tc, tci = j * num_tc; i--; tci++) { 2475 new_map = xmap_dereference(new_dev_maps->attr_map[tci]); 2476 map = dev_maps ? 2477 xmap_dereference(dev_maps->attr_map[tci]) : 2478 NULL; 2479 if (new_map && new_map != map) 2480 kfree(new_map); 2481 } 2482 } 2483 2484 mutex_unlock(&xps_map_mutex); 2485 2486 kfree(new_dev_maps); 2487 return -ENOMEM; 2488 } 2489 EXPORT_SYMBOL_GPL(__netif_set_xps_queue); 2490 2491 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask, 2492 u16 index) 2493 { 2494 int ret; 2495 2496 cpus_read_lock(); 2497 ret = __netif_set_xps_queue(dev, cpumask_bits(mask), index, false); 2498 cpus_read_unlock(); 2499 2500 return ret; 2501 } 2502 EXPORT_SYMBOL(netif_set_xps_queue); 2503 2504 #endif 2505 static void netdev_unbind_all_sb_channels(struct net_device *dev) 2506 { 2507 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues]; 2508 2509 /* Unbind any subordinate channels */ 2510 while (txq-- != &dev->_tx[0]) { 2511 if (txq->sb_dev) 2512 netdev_unbind_sb_channel(dev, txq->sb_dev); 2513 } 2514 } 2515 2516 void netdev_reset_tc(struct net_device *dev) 2517 { 2518 #ifdef CONFIG_XPS 2519 netif_reset_xps_queues_gt(dev, 0); 2520 #endif 2521 netdev_unbind_all_sb_channels(dev); 2522 2523 /* Reset TC configuration of device */ 2524 dev->num_tc = 0; 2525 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq)); 2526 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map)); 2527 } 2528 EXPORT_SYMBOL(netdev_reset_tc); 2529 2530 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset) 2531 { 2532 if (tc >= dev->num_tc) 2533 return -EINVAL; 2534 2535 #ifdef CONFIG_XPS 2536 netif_reset_xps_queues(dev, offset, count); 2537 #endif 2538 dev->tc_to_txq[tc].count = count; 2539 dev->tc_to_txq[tc].offset = offset; 2540 return 0; 2541 } 2542 EXPORT_SYMBOL(netdev_set_tc_queue); 2543 2544 int netdev_set_num_tc(struct net_device *dev, u8 num_tc) 2545 { 2546 if (num_tc > TC_MAX_QUEUE) 2547 return -EINVAL; 2548 2549 #ifdef CONFIG_XPS 2550 netif_reset_xps_queues_gt(dev, 0); 2551 #endif 2552 netdev_unbind_all_sb_channels(dev); 2553 2554 dev->num_tc = num_tc; 2555 return 0; 2556 } 2557 EXPORT_SYMBOL(netdev_set_num_tc); 2558 2559 void netdev_unbind_sb_channel(struct net_device *dev, 2560 struct net_device *sb_dev) 2561 { 2562 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues]; 2563 2564 #ifdef CONFIG_XPS 2565 netif_reset_xps_queues_gt(sb_dev, 0); 2566 #endif 2567 memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq)); 2568 memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map)); 2569 2570 while (txq-- != &dev->_tx[0]) { 2571 if (txq->sb_dev == sb_dev) 2572 txq->sb_dev = NULL; 2573 } 2574 } 2575 EXPORT_SYMBOL(netdev_unbind_sb_channel); 2576 2577 int netdev_bind_sb_channel_queue(struct net_device *dev, 2578 struct net_device *sb_dev, 2579 u8 tc, u16 count, u16 offset) 2580 { 2581 /* Make certain the sb_dev and dev are already configured */ 2582 if (sb_dev->num_tc >= 0 || tc >= dev->num_tc) 2583 return -EINVAL; 2584 2585 /* We cannot hand out queues we don't have */ 2586 if ((offset + count) > dev->real_num_tx_queues) 2587 return -EINVAL; 2588 2589 /* Record the mapping */ 2590 sb_dev->tc_to_txq[tc].count = count; 2591 sb_dev->tc_to_txq[tc].offset = offset; 2592 2593 /* Provide a way for Tx queue to find the tc_to_txq map or 2594 * XPS map for itself. 2595 */ 2596 while (count--) 2597 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev; 2598 2599 return 0; 2600 } 2601 EXPORT_SYMBOL(netdev_bind_sb_channel_queue); 2602 2603 int netdev_set_sb_channel(struct net_device *dev, u16 channel) 2604 { 2605 /* Do not use a multiqueue device to represent a subordinate channel */ 2606 if (netif_is_multiqueue(dev)) 2607 return -ENODEV; 2608 2609 /* We allow channels 1 - 32767 to be used for subordinate channels. 2610 * Channel 0 is meant to be "native" mode and used only to represent 2611 * the main root device. We allow writing 0 to reset the device back 2612 * to normal mode after being used as a subordinate channel. 2613 */ 2614 if (channel > S16_MAX) 2615 return -EINVAL; 2616 2617 dev->num_tc = -channel; 2618 2619 return 0; 2620 } 2621 EXPORT_SYMBOL(netdev_set_sb_channel); 2622 2623 /* 2624 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues 2625 * greater than real_num_tx_queues stale skbs on the qdisc must be flushed. 2626 */ 2627 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq) 2628 { 2629 bool disabling; 2630 int rc; 2631 2632 disabling = txq < dev->real_num_tx_queues; 2633 2634 if (txq < 1 || txq > dev->num_tx_queues) 2635 return -EINVAL; 2636 2637 if (dev->reg_state == NETREG_REGISTERED || 2638 dev->reg_state == NETREG_UNREGISTERING) { 2639 ASSERT_RTNL(); 2640 2641 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues, 2642 txq); 2643 if (rc) 2644 return rc; 2645 2646 if (dev->num_tc) 2647 netif_setup_tc(dev, txq); 2648 2649 dev->real_num_tx_queues = txq; 2650 2651 if (disabling) { 2652 synchronize_net(); 2653 qdisc_reset_all_tx_gt(dev, txq); 2654 #ifdef CONFIG_XPS 2655 netif_reset_xps_queues_gt(dev, txq); 2656 #endif 2657 } 2658 } else { 2659 dev->real_num_tx_queues = txq; 2660 } 2661 2662 return 0; 2663 } 2664 EXPORT_SYMBOL(netif_set_real_num_tx_queues); 2665 2666 #ifdef CONFIG_SYSFS 2667 /** 2668 * netif_set_real_num_rx_queues - set actual number of RX queues used 2669 * @dev: Network device 2670 * @rxq: Actual number of RX queues 2671 * 2672 * This must be called either with the rtnl_lock held or before 2673 * registration of the net device. Returns 0 on success, or a 2674 * negative error code. If called before registration, it always 2675 * succeeds. 2676 */ 2677 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq) 2678 { 2679 int rc; 2680 2681 if (rxq < 1 || rxq > dev->num_rx_queues) 2682 return -EINVAL; 2683 2684 if (dev->reg_state == NETREG_REGISTERED) { 2685 ASSERT_RTNL(); 2686 2687 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues, 2688 rxq); 2689 if (rc) 2690 return rc; 2691 } 2692 2693 dev->real_num_rx_queues = rxq; 2694 return 0; 2695 } 2696 EXPORT_SYMBOL(netif_set_real_num_rx_queues); 2697 #endif 2698 2699 /** 2700 * netif_get_num_default_rss_queues - default number of RSS queues 2701 * 2702 * This routine should set an upper limit on the number of RSS queues 2703 * used by default by multiqueue devices. 2704 */ 2705 int netif_get_num_default_rss_queues(void) 2706 { 2707 return is_kdump_kernel() ? 2708 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus()); 2709 } 2710 EXPORT_SYMBOL(netif_get_num_default_rss_queues); 2711 2712 static void __netif_reschedule(struct Qdisc *q) 2713 { 2714 struct softnet_data *sd; 2715 unsigned long flags; 2716 2717 local_irq_save(flags); 2718 sd = this_cpu_ptr(&softnet_data); 2719 q->next_sched = NULL; 2720 *sd->output_queue_tailp = q; 2721 sd->output_queue_tailp = &q->next_sched; 2722 raise_softirq_irqoff(NET_TX_SOFTIRQ); 2723 local_irq_restore(flags); 2724 } 2725 2726 void __netif_schedule(struct Qdisc *q) 2727 { 2728 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state)) 2729 __netif_reschedule(q); 2730 } 2731 EXPORT_SYMBOL(__netif_schedule); 2732 2733 struct dev_kfree_skb_cb { 2734 enum skb_free_reason reason; 2735 }; 2736 2737 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb) 2738 { 2739 return (struct dev_kfree_skb_cb *)skb->cb; 2740 } 2741 2742 void netif_schedule_queue(struct netdev_queue *txq) 2743 { 2744 rcu_read_lock(); 2745 if (!(txq->state & QUEUE_STATE_ANY_XOFF)) { 2746 struct Qdisc *q = rcu_dereference(txq->qdisc); 2747 2748 __netif_schedule(q); 2749 } 2750 rcu_read_unlock(); 2751 } 2752 EXPORT_SYMBOL(netif_schedule_queue); 2753 2754 void netif_tx_wake_queue(struct netdev_queue *dev_queue) 2755 { 2756 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) { 2757 struct Qdisc *q; 2758 2759 rcu_read_lock(); 2760 q = rcu_dereference(dev_queue->qdisc); 2761 __netif_schedule(q); 2762 rcu_read_unlock(); 2763 } 2764 } 2765 EXPORT_SYMBOL(netif_tx_wake_queue); 2766 2767 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason) 2768 { 2769 unsigned long flags; 2770 2771 if (unlikely(!skb)) 2772 return; 2773 2774 if (likely(refcount_read(&skb->users) == 1)) { 2775 smp_rmb(); 2776 refcount_set(&skb->users, 0); 2777 } else if (likely(!refcount_dec_and_test(&skb->users))) { 2778 return; 2779 } 2780 get_kfree_skb_cb(skb)->reason = reason; 2781 local_irq_save(flags); 2782 skb->next = __this_cpu_read(softnet_data.completion_queue); 2783 __this_cpu_write(softnet_data.completion_queue, skb); 2784 raise_softirq_irqoff(NET_TX_SOFTIRQ); 2785 local_irq_restore(flags); 2786 } 2787 EXPORT_SYMBOL(__dev_kfree_skb_irq); 2788 2789 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason) 2790 { 2791 if (in_irq() || irqs_disabled()) 2792 __dev_kfree_skb_irq(skb, reason); 2793 else 2794 dev_kfree_skb(skb); 2795 } 2796 EXPORT_SYMBOL(__dev_kfree_skb_any); 2797 2798 2799 /** 2800 * netif_device_detach - mark device as removed 2801 * @dev: network device 2802 * 2803 * Mark device as removed from system and therefore no longer available. 2804 */ 2805 void netif_device_detach(struct net_device *dev) 2806 { 2807 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) && 2808 netif_running(dev)) { 2809 netif_tx_stop_all_queues(dev); 2810 } 2811 } 2812 EXPORT_SYMBOL(netif_device_detach); 2813 2814 /** 2815 * netif_device_attach - mark device as attached 2816 * @dev: network device 2817 * 2818 * Mark device as attached from system and restart if needed. 2819 */ 2820 void netif_device_attach(struct net_device *dev) 2821 { 2822 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) && 2823 netif_running(dev)) { 2824 netif_tx_wake_all_queues(dev); 2825 __netdev_watchdog_up(dev); 2826 } 2827 } 2828 EXPORT_SYMBOL(netif_device_attach); 2829 2830 /* 2831 * Returns a Tx hash based on the given packet descriptor a Tx queues' number 2832 * to be used as a distribution range. 2833 */ 2834 static u16 skb_tx_hash(const struct net_device *dev, 2835 const struct net_device *sb_dev, 2836 struct sk_buff *skb) 2837 { 2838 u32 hash; 2839 u16 qoffset = 0; 2840 u16 qcount = dev->real_num_tx_queues; 2841 2842 if (dev->num_tc) { 2843 u8 tc = netdev_get_prio_tc_map(dev, skb->priority); 2844 2845 qoffset = sb_dev->tc_to_txq[tc].offset; 2846 qcount = sb_dev->tc_to_txq[tc].count; 2847 } 2848 2849 if (skb_rx_queue_recorded(skb)) { 2850 hash = skb_get_rx_queue(skb); 2851 while (unlikely(hash >= qcount)) 2852 hash -= qcount; 2853 return hash + qoffset; 2854 } 2855 2856 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset; 2857 } 2858 2859 static void skb_warn_bad_offload(const struct sk_buff *skb) 2860 { 2861 static const netdev_features_t null_features; 2862 struct net_device *dev = skb->dev; 2863 const char *name = ""; 2864 2865 if (!net_ratelimit()) 2866 return; 2867 2868 if (dev) { 2869 if (dev->dev.parent) 2870 name = dev_driver_string(dev->dev.parent); 2871 else 2872 name = netdev_name(dev); 2873 } 2874 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d " 2875 "gso_type=%d ip_summed=%d\n", 2876 name, dev ? &dev->features : &null_features, 2877 skb->sk ? &skb->sk->sk_route_caps : &null_features, 2878 skb->len, skb->data_len, skb_shinfo(skb)->gso_size, 2879 skb_shinfo(skb)->gso_type, skb->ip_summed); 2880 } 2881 2882 /* 2883 * Invalidate hardware checksum when packet is to be mangled, and 2884 * complete checksum manually on outgoing path. 2885 */ 2886 int skb_checksum_help(struct sk_buff *skb) 2887 { 2888 __wsum csum; 2889 int ret = 0, offset; 2890 2891 if (skb->ip_summed == CHECKSUM_COMPLETE) 2892 goto out_set_summed; 2893 2894 if (unlikely(skb_shinfo(skb)->gso_size)) { 2895 skb_warn_bad_offload(skb); 2896 return -EINVAL; 2897 } 2898 2899 /* Before computing a checksum, we should make sure no frag could 2900 * be modified by an external entity : checksum could be wrong. 2901 */ 2902 if (skb_has_shared_frag(skb)) { 2903 ret = __skb_linearize(skb); 2904 if (ret) 2905 goto out; 2906 } 2907 2908 offset = skb_checksum_start_offset(skb); 2909 BUG_ON(offset >= skb_headlen(skb)); 2910 csum = skb_checksum(skb, offset, skb->len - offset, 0); 2911 2912 offset += skb->csum_offset; 2913 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb)); 2914 2915 if (skb_cloned(skb) && 2916 !skb_clone_writable(skb, offset + sizeof(__sum16))) { 2917 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 2918 if (ret) 2919 goto out; 2920 } 2921 2922 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0; 2923 out_set_summed: 2924 skb->ip_summed = CHECKSUM_NONE; 2925 out: 2926 return ret; 2927 } 2928 EXPORT_SYMBOL(skb_checksum_help); 2929 2930 int skb_crc32c_csum_help(struct sk_buff *skb) 2931 { 2932 __le32 crc32c_csum; 2933 int ret = 0, offset, start; 2934 2935 if (skb->ip_summed != CHECKSUM_PARTIAL) 2936 goto out; 2937 2938 if (unlikely(skb_is_gso(skb))) 2939 goto out; 2940 2941 /* Before computing a checksum, we should make sure no frag could 2942 * be modified by an external entity : checksum could be wrong. 2943 */ 2944 if (unlikely(skb_has_shared_frag(skb))) { 2945 ret = __skb_linearize(skb); 2946 if (ret) 2947 goto out; 2948 } 2949 start = skb_checksum_start_offset(skb); 2950 offset = start + offsetof(struct sctphdr, checksum); 2951 if (WARN_ON_ONCE(offset >= skb_headlen(skb))) { 2952 ret = -EINVAL; 2953 goto out; 2954 } 2955 if (skb_cloned(skb) && 2956 !skb_clone_writable(skb, offset + sizeof(__le32))) { 2957 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 2958 if (ret) 2959 goto out; 2960 } 2961 crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start, 2962 skb->len - start, ~(__u32)0, 2963 crc32c_csum_stub)); 2964 *(__le32 *)(skb->data + offset) = crc32c_csum; 2965 skb->ip_summed = CHECKSUM_NONE; 2966 skb->csum_not_inet = 0; 2967 out: 2968 return ret; 2969 } 2970 2971 __be16 skb_network_protocol(struct sk_buff *skb, int *depth) 2972 { 2973 __be16 type = skb->protocol; 2974 2975 /* Tunnel gso handlers can set protocol to ethernet. */ 2976 if (type == htons(ETH_P_TEB)) { 2977 struct ethhdr *eth; 2978 2979 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr)))) 2980 return 0; 2981 2982 eth = (struct ethhdr *)skb->data; 2983 type = eth->h_proto; 2984 } 2985 2986 return __vlan_get_protocol(skb, type, depth); 2987 } 2988 2989 /** 2990 * skb_mac_gso_segment - mac layer segmentation handler. 2991 * @skb: buffer to segment 2992 * @features: features for the output path (see dev->features) 2993 */ 2994 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb, 2995 netdev_features_t features) 2996 { 2997 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT); 2998 struct packet_offload *ptype; 2999 int vlan_depth = skb->mac_len; 3000 __be16 type = skb_network_protocol(skb, &vlan_depth); 3001 3002 if (unlikely(!type)) 3003 return ERR_PTR(-EINVAL); 3004 3005 __skb_pull(skb, vlan_depth); 3006 3007 rcu_read_lock(); 3008 list_for_each_entry_rcu(ptype, &offload_base, list) { 3009 if (ptype->type == type && ptype->callbacks.gso_segment) { 3010 segs = ptype->callbacks.gso_segment(skb, features); 3011 break; 3012 } 3013 } 3014 rcu_read_unlock(); 3015 3016 __skb_push(skb, skb->data - skb_mac_header(skb)); 3017 3018 return segs; 3019 } 3020 EXPORT_SYMBOL(skb_mac_gso_segment); 3021 3022 3023 /* openvswitch calls this on rx path, so we need a different check. 3024 */ 3025 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path) 3026 { 3027 if (tx_path) 3028 return skb->ip_summed != CHECKSUM_PARTIAL && 3029 skb->ip_summed != CHECKSUM_UNNECESSARY; 3030 3031 return skb->ip_summed == CHECKSUM_NONE; 3032 } 3033 3034 /** 3035 * __skb_gso_segment - Perform segmentation on skb. 3036 * @skb: buffer to segment 3037 * @features: features for the output path (see dev->features) 3038 * @tx_path: whether it is called in TX path 3039 * 3040 * This function segments the given skb and returns a list of segments. 3041 * 3042 * It may return NULL if the skb requires no segmentation. This is 3043 * only possible when GSO is used for verifying header integrity. 3044 * 3045 * Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb. 3046 */ 3047 struct sk_buff *__skb_gso_segment(struct sk_buff *skb, 3048 netdev_features_t features, bool tx_path) 3049 { 3050 struct sk_buff *segs; 3051 3052 if (unlikely(skb_needs_check(skb, tx_path))) { 3053 int err; 3054 3055 /* We're going to init ->check field in TCP or UDP header */ 3056 err = skb_cow_head(skb, 0); 3057 if (err < 0) 3058 return ERR_PTR(err); 3059 } 3060 3061 /* Only report GSO partial support if it will enable us to 3062 * support segmentation on this frame without needing additional 3063 * work. 3064 */ 3065 if (features & NETIF_F_GSO_PARTIAL) { 3066 netdev_features_t partial_features = NETIF_F_GSO_ROBUST; 3067 struct net_device *dev = skb->dev; 3068 3069 partial_features |= dev->features & dev->gso_partial_features; 3070 if (!skb_gso_ok(skb, features | partial_features)) 3071 features &= ~NETIF_F_GSO_PARTIAL; 3072 } 3073 3074 BUILD_BUG_ON(SKB_SGO_CB_OFFSET + 3075 sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb)); 3076 3077 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb); 3078 SKB_GSO_CB(skb)->encap_level = 0; 3079 3080 skb_reset_mac_header(skb); 3081 skb_reset_mac_len(skb); 3082 3083 segs = skb_mac_gso_segment(skb, features); 3084 3085 if (unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs))) 3086 skb_warn_bad_offload(skb); 3087 3088 return segs; 3089 } 3090 EXPORT_SYMBOL(__skb_gso_segment); 3091 3092 /* Take action when hardware reception checksum errors are detected. */ 3093 #ifdef CONFIG_BUG 3094 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb) 3095 { 3096 if (net_ratelimit()) { 3097 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>"); 3098 if (dev) 3099 pr_err("dev features: %pNF\n", &dev->features); 3100 pr_err("skb len=%u data_len=%u pkt_type=%u gso_size=%u gso_type=%u nr_frags=%u ip_summed=%u csum=%x csum_complete_sw=%d csum_valid=%d csum_level=%u\n", 3101 skb->len, skb->data_len, skb->pkt_type, 3102 skb_shinfo(skb)->gso_size, skb_shinfo(skb)->gso_type, 3103 skb_shinfo(skb)->nr_frags, skb->ip_summed, skb->csum, 3104 skb->csum_complete_sw, skb->csum_valid, skb->csum_level); 3105 dump_stack(); 3106 } 3107 } 3108 EXPORT_SYMBOL(netdev_rx_csum_fault); 3109 #endif 3110 3111 /* XXX: check that highmem exists at all on the given machine. */ 3112 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb) 3113 { 3114 #ifdef CONFIG_HIGHMEM 3115 int i; 3116 3117 if (!(dev->features & NETIF_F_HIGHDMA)) { 3118 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 3119 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 3120 3121 if (PageHighMem(skb_frag_page(frag))) 3122 return 1; 3123 } 3124 } 3125 #endif 3126 return 0; 3127 } 3128 3129 /* If MPLS offload request, verify we are testing hardware MPLS features 3130 * instead of standard features for the netdev. 3131 */ 3132 #if IS_ENABLED(CONFIG_NET_MPLS_GSO) 3133 static netdev_features_t net_mpls_features(struct sk_buff *skb, 3134 netdev_features_t features, 3135 __be16 type) 3136 { 3137 if (eth_p_mpls(type)) 3138 features &= skb->dev->mpls_features; 3139 3140 return features; 3141 } 3142 #else 3143 static netdev_features_t net_mpls_features(struct sk_buff *skb, 3144 netdev_features_t features, 3145 __be16 type) 3146 { 3147 return features; 3148 } 3149 #endif 3150 3151 static netdev_features_t harmonize_features(struct sk_buff *skb, 3152 netdev_features_t features) 3153 { 3154 int tmp; 3155 __be16 type; 3156 3157 type = skb_network_protocol(skb, &tmp); 3158 features = net_mpls_features(skb, features, type); 3159 3160 if (skb->ip_summed != CHECKSUM_NONE && 3161 !can_checksum_protocol(features, type)) { 3162 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 3163 } 3164 if (illegal_highdma(skb->dev, skb)) 3165 features &= ~NETIF_F_SG; 3166 3167 return features; 3168 } 3169 3170 netdev_features_t passthru_features_check(struct sk_buff *skb, 3171 struct net_device *dev, 3172 netdev_features_t features) 3173 { 3174 return features; 3175 } 3176 EXPORT_SYMBOL(passthru_features_check); 3177 3178 static netdev_features_t dflt_features_check(struct sk_buff *skb, 3179 struct net_device *dev, 3180 netdev_features_t features) 3181 { 3182 return vlan_features_check(skb, features); 3183 } 3184 3185 static netdev_features_t gso_features_check(const struct sk_buff *skb, 3186 struct net_device *dev, 3187 netdev_features_t features) 3188 { 3189 u16 gso_segs = skb_shinfo(skb)->gso_segs; 3190 3191 if (gso_segs > dev->gso_max_segs) 3192 return features & ~NETIF_F_GSO_MASK; 3193 3194 /* Support for GSO partial features requires software 3195 * intervention before we can actually process the packets 3196 * so we need to strip support for any partial features now 3197 * and we can pull them back in after we have partially 3198 * segmented the frame. 3199 */ 3200 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL)) 3201 features &= ~dev->gso_partial_features; 3202 3203 /* Make sure to clear the IPv4 ID mangling feature if the 3204 * IPv4 header has the potential to be fragmented. 3205 */ 3206 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) { 3207 struct iphdr *iph = skb->encapsulation ? 3208 inner_ip_hdr(skb) : ip_hdr(skb); 3209 3210 if (!(iph->frag_off & htons(IP_DF))) 3211 features &= ~NETIF_F_TSO_MANGLEID; 3212 } 3213 3214 return features; 3215 } 3216 3217 netdev_features_t netif_skb_features(struct sk_buff *skb) 3218 { 3219 struct net_device *dev = skb->dev; 3220 netdev_features_t features = dev->features; 3221 3222 if (skb_is_gso(skb)) 3223 features = gso_features_check(skb, dev, features); 3224 3225 /* If encapsulation offload request, verify we are testing 3226 * hardware encapsulation features instead of standard 3227 * features for the netdev 3228 */ 3229 if (skb->encapsulation) 3230 features &= dev->hw_enc_features; 3231 3232 if (skb_vlan_tagged(skb)) 3233 features = netdev_intersect_features(features, 3234 dev->vlan_features | 3235 NETIF_F_HW_VLAN_CTAG_TX | 3236 NETIF_F_HW_VLAN_STAG_TX); 3237 3238 if (dev->netdev_ops->ndo_features_check) 3239 features &= dev->netdev_ops->ndo_features_check(skb, dev, 3240 features); 3241 else 3242 features &= dflt_features_check(skb, dev, features); 3243 3244 return harmonize_features(skb, features); 3245 } 3246 EXPORT_SYMBOL(netif_skb_features); 3247 3248 static int xmit_one(struct sk_buff *skb, struct net_device *dev, 3249 struct netdev_queue *txq, bool more) 3250 { 3251 unsigned int len; 3252 int rc; 3253 3254 if (dev_nit_active(dev)) 3255 dev_queue_xmit_nit(skb, dev); 3256 3257 len = skb->len; 3258 trace_net_dev_start_xmit(skb, dev); 3259 rc = netdev_start_xmit(skb, dev, txq, more); 3260 trace_net_dev_xmit(skb, rc, dev, len); 3261 3262 return rc; 3263 } 3264 3265 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev, 3266 struct netdev_queue *txq, int *ret) 3267 { 3268 struct sk_buff *skb = first; 3269 int rc = NETDEV_TX_OK; 3270 3271 while (skb) { 3272 struct sk_buff *next = skb->next; 3273 3274 skb_mark_not_on_list(skb); 3275 rc = xmit_one(skb, dev, txq, next != NULL); 3276 if (unlikely(!dev_xmit_complete(rc))) { 3277 skb->next = next; 3278 goto out; 3279 } 3280 3281 skb = next; 3282 if (netif_tx_queue_stopped(txq) && skb) { 3283 rc = NETDEV_TX_BUSY; 3284 break; 3285 } 3286 } 3287 3288 out: 3289 *ret = rc; 3290 return skb; 3291 } 3292 3293 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb, 3294 netdev_features_t features) 3295 { 3296 if (skb_vlan_tag_present(skb) && 3297 !vlan_hw_offload_capable(features, skb->vlan_proto)) 3298 skb = __vlan_hwaccel_push_inside(skb); 3299 return skb; 3300 } 3301 3302 int skb_csum_hwoffload_help(struct sk_buff *skb, 3303 const netdev_features_t features) 3304 { 3305 if (unlikely(skb->csum_not_inet)) 3306 return !!(features & NETIF_F_SCTP_CRC) ? 0 : 3307 skb_crc32c_csum_help(skb); 3308 3309 return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb); 3310 } 3311 EXPORT_SYMBOL(skb_csum_hwoffload_help); 3312 3313 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again) 3314 { 3315 netdev_features_t features; 3316 3317 features = netif_skb_features(skb); 3318 skb = validate_xmit_vlan(skb, features); 3319 if (unlikely(!skb)) 3320 goto out_null; 3321 3322 skb = sk_validate_xmit_skb(skb, dev); 3323 if (unlikely(!skb)) 3324 goto out_null; 3325 3326 if (netif_needs_gso(skb, features)) { 3327 struct sk_buff *segs; 3328 3329 segs = skb_gso_segment(skb, features); 3330 if (IS_ERR(segs)) { 3331 goto out_kfree_skb; 3332 } else if (segs) { 3333 consume_skb(skb); 3334 skb = segs; 3335 } 3336 } else { 3337 if (skb_needs_linearize(skb, features) && 3338 __skb_linearize(skb)) 3339 goto out_kfree_skb; 3340 3341 /* If packet is not checksummed and device does not 3342 * support checksumming for this protocol, complete 3343 * checksumming here. 3344 */ 3345 if (skb->ip_summed == CHECKSUM_PARTIAL) { 3346 if (skb->encapsulation) 3347 skb_set_inner_transport_header(skb, 3348 skb_checksum_start_offset(skb)); 3349 else 3350 skb_set_transport_header(skb, 3351 skb_checksum_start_offset(skb)); 3352 if (skb_csum_hwoffload_help(skb, features)) 3353 goto out_kfree_skb; 3354 } 3355 } 3356 3357 skb = validate_xmit_xfrm(skb, features, again); 3358 3359 return skb; 3360 3361 out_kfree_skb: 3362 kfree_skb(skb); 3363 out_null: 3364 atomic_long_inc(&dev->tx_dropped); 3365 return NULL; 3366 } 3367 3368 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again) 3369 { 3370 struct sk_buff *next, *head = NULL, *tail; 3371 3372 for (; skb != NULL; skb = next) { 3373 next = skb->next; 3374 skb_mark_not_on_list(skb); 3375 3376 /* in case skb wont be segmented, point to itself */ 3377 skb->prev = skb; 3378 3379 skb = validate_xmit_skb(skb, dev, again); 3380 if (!skb) 3381 continue; 3382 3383 if (!head) 3384 head = skb; 3385 else 3386 tail->next = skb; 3387 /* If skb was segmented, skb->prev points to 3388 * the last segment. If not, it still contains skb. 3389 */ 3390 tail = skb->prev; 3391 } 3392 return head; 3393 } 3394 EXPORT_SYMBOL_GPL(validate_xmit_skb_list); 3395 3396 static void qdisc_pkt_len_init(struct sk_buff *skb) 3397 { 3398 const struct skb_shared_info *shinfo = skb_shinfo(skb); 3399 3400 qdisc_skb_cb(skb)->pkt_len = skb->len; 3401 3402 /* To get more precise estimation of bytes sent on wire, 3403 * we add to pkt_len the headers size of all segments 3404 */ 3405 if (shinfo->gso_size) { 3406 unsigned int hdr_len; 3407 u16 gso_segs = shinfo->gso_segs; 3408 3409 /* mac layer + network layer */ 3410 hdr_len = skb_transport_header(skb) - skb_mac_header(skb); 3411 3412 /* + transport layer */ 3413 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) { 3414 const struct tcphdr *th; 3415 struct tcphdr _tcphdr; 3416 3417 th = skb_header_pointer(skb, skb_transport_offset(skb), 3418 sizeof(_tcphdr), &_tcphdr); 3419 if (likely(th)) 3420 hdr_len += __tcp_hdrlen(th); 3421 } else { 3422 struct udphdr _udphdr; 3423 3424 if (skb_header_pointer(skb, skb_transport_offset(skb), 3425 sizeof(_udphdr), &_udphdr)) 3426 hdr_len += sizeof(struct udphdr); 3427 } 3428 3429 if (shinfo->gso_type & SKB_GSO_DODGY) 3430 gso_segs = DIV_ROUND_UP(skb->len - hdr_len, 3431 shinfo->gso_size); 3432 3433 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len; 3434 } 3435 } 3436 3437 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q, 3438 struct net_device *dev, 3439 struct netdev_queue *txq) 3440 { 3441 spinlock_t *root_lock = qdisc_lock(q); 3442 struct sk_buff *to_free = NULL; 3443 bool contended; 3444 int rc; 3445 3446 qdisc_calculate_pkt_len(skb, q); 3447 3448 if (q->flags & TCQ_F_NOLOCK) { 3449 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) { 3450 __qdisc_drop(skb, &to_free); 3451 rc = NET_XMIT_DROP; 3452 } else { 3453 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK; 3454 qdisc_run(q); 3455 } 3456 3457 if (unlikely(to_free)) 3458 kfree_skb_list(to_free); 3459 return rc; 3460 } 3461 3462 /* 3463 * Heuristic to force contended enqueues to serialize on a 3464 * separate lock before trying to get qdisc main lock. 3465 * This permits qdisc->running owner to get the lock more 3466 * often and dequeue packets faster. 3467 */ 3468 contended = qdisc_is_running(q); 3469 if (unlikely(contended)) 3470 spin_lock(&q->busylock); 3471 3472 spin_lock(root_lock); 3473 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) { 3474 __qdisc_drop(skb, &to_free); 3475 rc = NET_XMIT_DROP; 3476 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) && 3477 qdisc_run_begin(q)) { 3478 /* 3479 * This is a work-conserving queue; there are no old skbs 3480 * waiting to be sent out; and the qdisc is not running - 3481 * xmit the skb directly. 3482 */ 3483 3484 qdisc_bstats_update(q, skb); 3485 3486 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) { 3487 if (unlikely(contended)) { 3488 spin_unlock(&q->busylock); 3489 contended = false; 3490 } 3491 __qdisc_run(q); 3492 } 3493 3494 qdisc_run_end(q); 3495 rc = NET_XMIT_SUCCESS; 3496 } else { 3497 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK; 3498 if (qdisc_run_begin(q)) { 3499 if (unlikely(contended)) { 3500 spin_unlock(&q->busylock); 3501 contended = false; 3502 } 3503 __qdisc_run(q); 3504 qdisc_run_end(q); 3505 } 3506 } 3507 spin_unlock(root_lock); 3508 if (unlikely(to_free)) 3509 kfree_skb_list(to_free); 3510 if (unlikely(contended)) 3511 spin_unlock(&q->busylock); 3512 return rc; 3513 } 3514 3515 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO) 3516 static void skb_update_prio(struct sk_buff *skb) 3517 { 3518 const struct netprio_map *map; 3519 const struct sock *sk; 3520 unsigned int prioidx; 3521 3522 if (skb->priority) 3523 return; 3524 map = rcu_dereference_bh(skb->dev->priomap); 3525 if (!map) 3526 return; 3527 sk = skb_to_full_sk(skb); 3528 if (!sk) 3529 return; 3530 3531 prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data); 3532 3533 if (prioidx < map->priomap_len) 3534 skb->priority = map->priomap[prioidx]; 3535 } 3536 #else 3537 #define skb_update_prio(skb) 3538 #endif 3539 3540 DEFINE_PER_CPU(int, xmit_recursion); 3541 EXPORT_SYMBOL(xmit_recursion); 3542 3543 /** 3544 * dev_loopback_xmit - loop back @skb 3545 * @net: network namespace this loopback is happening in 3546 * @sk: sk needed to be a netfilter okfn 3547 * @skb: buffer to transmit 3548 */ 3549 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb) 3550 { 3551 skb_reset_mac_header(skb); 3552 __skb_pull(skb, skb_network_offset(skb)); 3553 skb->pkt_type = PACKET_LOOPBACK; 3554 skb->ip_summed = CHECKSUM_UNNECESSARY; 3555 WARN_ON(!skb_dst(skb)); 3556 skb_dst_force(skb); 3557 netif_rx_ni(skb); 3558 return 0; 3559 } 3560 EXPORT_SYMBOL(dev_loopback_xmit); 3561 3562 #ifdef CONFIG_NET_EGRESS 3563 static struct sk_buff * 3564 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev) 3565 { 3566 struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress); 3567 struct tcf_result cl_res; 3568 3569 if (!miniq) 3570 return skb; 3571 3572 /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */ 3573 mini_qdisc_bstats_cpu_update(miniq, skb); 3574 3575 switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) { 3576 case TC_ACT_OK: 3577 case TC_ACT_RECLASSIFY: 3578 skb->tc_index = TC_H_MIN(cl_res.classid); 3579 break; 3580 case TC_ACT_SHOT: 3581 mini_qdisc_qstats_cpu_drop(miniq); 3582 *ret = NET_XMIT_DROP; 3583 kfree_skb(skb); 3584 return NULL; 3585 case TC_ACT_STOLEN: 3586 case TC_ACT_QUEUED: 3587 case TC_ACT_TRAP: 3588 *ret = NET_XMIT_SUCCESS; 3589 consume_skb(skb); 3590 return NULL; 3591 case TC_ACT_REDIRECT: 3592 /* No need to push/pop skb's mac_header here on egress! */ 3593 skb_do_redirect(skb); 3594 *ret = NET_XMIT_SUCCESS; 3595 return NULL; 3596 default: 3597 break; 3598 } 3599 3600 return skb; 3601 } 3602 #endif /* CONFIG_NET_EGRESS */ 3603 3604 #ifdef CONFIG_XPS 3605 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb, 3606 struct xps_dev_maps *dev_maps, unsigned int tci) 3607 { 3608 struct xps_map *map; 3609 int queue_index = -1; 3610 3611 if (dev->num_tc) { 3612 tci *= dev->num_tc; 3613 tci += netdev_get_prio_tc_map(dev, skb->priority); 3614 } 3615 3616 map = rcu_dereference(dev_maps->attr_map[tci]); 3617 if (map) { 3618 if (map->len == 1) 3619 queue_index = map->queues[0]; 3620 else 3621 queue_index = map->queues[reciprocal_scale( 3622 skb_get_hash(skb), map->len)]; 3623 if (unlikely(queue_index >= dev->real_num_tx_queues)) 3624 queue_index = -1; 3625 } 3626 return queue_index; 3627 } 3628 #endif 3629 3630 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev, 3631 struct sk_buff *skb) 3632 { 3633 #ifdef CONFIG_XPS 3634 struct xps_dev_maps *dev_maps; 3635 struct sock *sk = skb->sk; 3636 int queue_index = -1; 3637 3638 if (!static_key_false(&xps_needed)) 3639 return -1; 3640 3641 rcu_read_lock(); 3642 if (!static_key_false(&xps_rxqs_needed)) 3643 goto get_cpus_map; 3644 3645 dev_maps = rcu_dereference(sb_dev->xps_rxqs_map); 3646 if (dev_maps) { 3647 int tci = sk_rx_queue_get(sk); 3648 3649 if (tci >= 0 && tci < dev->num_rx_queues) 3650 queue_index = __get_xps_queue_idx(dev, skb, dev_maps, 3651 tci); 3652 } 3653 3654 get_cpus_map: 3655 if (queue_index < 0) { 3656 dev_maps = rcu_dereference(sb_dev->xps_cpus_map); 3657 if (dev_maps) { 3658 unsigned int tci = skb->sender_cpu - 1; 3659 3660 queue_index = __get_xps_queue_idx(dev, skb, dev_maps, 3661 tci); 3662 } 3663 } 3664 rcu_read_unlock(); 3665 3666 return queue_index; 3667 #else 3668 return -1; 3669 #endif 3670 } 3671 3672 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb, 3673 struct net_device *sb_dev, 3674 select_queue_fallback_t fallback) 3675 { 3676 return 0; 3677 } 3678 EXPORT_SYMBOL(dev_pick_tx_zero); 3679 3680 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb, 3681 struct net_device *sb_dev, 3682 select_queue_fallback_t fallback) 3683 { 3684 return (u16)raw_smp_processor_id() % dev->real_num_tx_queues; 3685 } 3686 EXPORT_SYMBOL(dev_pick_tx_cpu_id); 3687 3688 static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb, 3689 struct net_device *sb_dev) 3690 { 3691 struct sock *sk = skb->sk; 3692 int queue_index = sk_tx_queue_get(sk); 3693 3694 sb_dev = sb_dev ? : dev; 3695 3696 if (queue_index < 0 || skb->ooo_okay || 3697 queue_index >= dev->real_num_tx_queues) { 3698 int new_index = get_xps_queue(dev, sb_dev, skb); 3699 3700 if (new_index < 0) 3701 new_index = skb_tx_hash(dev, sb_dev, skb); 3702 3703 if (queue_index != new_index && sk && 3704 sk_fullsock(sk) && 3705 rcu_access_pointer(sk->sk_dst_cache)) 3706 sk_tx_queue_set(sk, new_index); 3707 3708 queue_index = new_index; 3709 } 3710 3711 return queue_index; 3712 } 3713 3714 struct netdev_queue *netdev_pick_tx(struct net_device *dev, 3715 struct sk_buff *skb, 3716 struct net_device *sb_dev) 3717 { 3718 int queue_index = 0; 3719 3720 #ifdef CONFIG_XPS 3721 u32 sender_cpu = skb->sender_cpu - 1; 3722 3723 if (sender_cpu >= (u32)NR_CPUS) 3724 skb->sender_cpu = raw_smp_processor_id() + 1; 3725 #endif 3726 3727 if (dev->real_num_tx_queues != 1) { 3728 const struct net_device_ops *ops = dev->netdev_ops; 3729 3730 if (ops->ndo_select_queue) 3731 queue_index = ops->ndo_select_queue(dev, skb, sb_dev, 3732 __netdev_pick_tx); 3733 else 3734 queue_index = __netdev_pick_tx(dev, skb, sb_dev); 3735 3736 queue_index = netdev_cap_txqueue(dev, queue_index); 3737 } 3738 3739 skb_set_queue_mapping(skb, queue_index); 3740 return netdev_get_tx_queue(dev, queue_index); 3741 } 3742 3743 /** 3744 * __dev_queue_xmit - transmit a buffer 3745 * @skb: buffer to transmit 3746 * @sb_dev: suboordinate device used for L2 forwarding offload 3747 * 3748 * Queue a buffer for transmission to a network device. The caller must 3749 * have set the device and priority and built the buffer before calling 3750 * this function. The function can be called from an interrupt. 3751 * 3752 * A negative errno code is returned on a failure. A success does not 3753 * guarantee the frame will be transmitted as it may be dropped due 3754 * to congestion or traffic shaping. 3755 * 3756 * ----------------------------------------------------------------------------------- 3757 * I notice this method can also return errors from the queue disciplines, 3758 * including NET_XMIT_DROP, which is a positive value. So, errors can also 3759 * be positive. 3760 * 3761 * Regardless of the return value, the skb is consumed, so it is currently 3762 * difficult to retry a send to this method. (You can bump the ref count 3763 * before sending to hold a reference for retry if you are careful.) 3764 * 3765 * When calling this method, interrupts MUST be enabled. This is because 3766 * the BH enable code must have IRQs enabled so that it will not deadlock. 3767 * --BLG 3768 */ 3769 static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev) 3770 { 3771 struct net_device *dev = skb->dev; 3772 struct netdev_queue *txq; 3773 struct Qdisc *q; 3774 int rc = -ENOMEM; 3775 bool again = false; 3776 3777 skb_reset_mac_header(skb); 3778 3779 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP)) 3780 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED); 3781 3782 /* Disable soft irqs for various locks below. Also 3783 * stops preemption for RCU. 3784 */ 3785 rcu_read_lock_bh(); 3786 3787 skb_update_prio(skb); 3788 3789 qdisc_pkt_len_init(skb); 3790 #ifdef CONFIG_NET_CLS_ACT 3791 skb->tc_at_ingress = 0; 3792 # ifdef CONFIG_NET_EGRESS 3793 if (static_branch_unlikely(&egress_needed_key)) { 3794 skb = sch_handle_egress(skb, &rc, dev); 3795 if (!skb) 3796 goto out; 3797 } 3798 # endif 3799 #endif 3800 /* If device/qdisc don't need skb->dst, release it right now while 3801 * its hot in this cpu cache. 3802 */ 3803 if (dev->priv_flags & IFF_XMIT_DST_RELEASE) 3804 skb_dst_drop(skb); 3805 else 3806 skb_dst_force(skb); 3807 3808 txq = netdev_pick_tx(dev, skb, sb_dev); 3809 q = rcu_dereference_bh(txq->qdisc); 3810 3811 trace_net_dev_queue(skb); 3812 if (q->enqueue) { 3813 rc = __dev_xmit_skb(skb, q, dev, txq); 3814 goto out; 3815 } 3816 3817 /* The device has no queue. Common case for software devices: 3818 * loopback, all the sorts of tunnels... 3819 3820 * Really, it is unlikely that netif_tx_lock protection is necessary 3821 * here. (f.e. loopback and IP tunnels are clean ignoring statistics 3822 * counters.) 3823 * However, it is possible, that they rely on protection 3824 * made by us here. 3825 3826 * Check this and shot the lock. It is not prone from deadlocks. 3827 *Either shot noqueue qdisc, it is even simpler 8) 3828 */ 3829 if (dev->flags & IFF_UP) { 3830 int cpu = smp_processor_id(); /* ok because BHs are off */ 3831 3832 if (txq->xmit_lock_owner != cpu) { 3833 if (unlikely(__this_cpu_read(xmit_recursion) > 3834 XMIT_RECURSION_LIMIT)) 3835 goto recursion_alert; 3836 3837 skb = validate_xmit_skb(skb, dev, &again); 3838 if (!skb) 3839 goto out; 3840 3841 HARD_TX_LOCK(dev, txq, cpu); 3842 3843 if (!netif_xmit_stopped(txq)) { 3844 __this_cpu_inc(xmit_recursion); 3845 skb = dev_hard_start_xmit(skb, dev, txq, &rc); 3846 __this_cpu_dec(xmit_recursion); 3847 if (dev_xmit_complete(rc)) { 3848 HARD_TX_UNLOCK(dev, txq); 3849 goto out; 3850 } 3851 } 3852 HARD_TX_UNLOCK(dev, txq); 3853 net_crit_ratelimited("Virtual device %s asks to queue packet!\n", 3854 dev->name); 3855 } else { 3856 /* Recursion is detected! It is possible, 3857 * unfortunately 3858 */ 3859 recursion_alert: 3860 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n", 3861 dev->name); 3862 } 3863 } 3864 3865 rc = -ENETDOWN; 3866 rcu_read_unlock_bh(); 3867 3868 atomic_long_inc(&dev->tx_dropped); 3869 kfree_skb_list(skb); 3870 return rc; 3871 out: 3872 rcu_read_unlock_bh(); 3873 return rc; 3874 } 3875 3876 int dev_queue_xmit(struct sk_buff *skb) 3877 { 3878 return __dev_queue_xmit(skb, NULL); 3879 } 3880 EXPORT_SYMBOL(dev_queue_xmit); 3881 3882 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev) 3883 { 3884 return __dev_queue_xmit(skb, sb_dev); 3885 } 3886 EXPORT_SYMBOL(dev_queue_xmit_accel); 3887 3888 int dev_direct_xmit(struct sk_buff *skb, u16 queue_id) 3889 { 3890 struct net_device *dev = skb->dev; 3891 struct sk_buff *orig_skb = skb; 3892 struct netdev_queue *txq; 3893 int ret = NETDEV_TX_BUSY; 3894 bool again = false; 3895 3896 if (unlikely(!netif_running(dev) || 3897 !netif_carrier_ok(dev))) 3898 goto drop; 3899 3900 skb = validate_xmit_skb_list(skb, dev, &again); 3901 if (skb != orig_skb) 3902 goto drop; 3903 3904 skb_set_queue_mapping(skb, queue_id); 3905 txq = skb_get_tx_queue(dev, skb); 3906 3907 local_bh_disable(); 3908 3909 HARD_TX_LOCK(dev, txq, smp_processor_id()); 3910 if (!netif_xmit_frozen_or_drv_stopped(txq)) 3911 ret = netdev_start_xmit(skb, dev, txq, false); 3912 HARD_TX_UNLOCK(dev, txq); 3913 3914 local_bh_enable(); 3915 3916 if (!dev_xmit_complete(ret)) 3917 kfree_skb(skb); 3918 3919 return ret; 3920 drop: 3921 atomic_long_inc(&dev->tx_dropped); 3922 kfree_skb_list(skb); 3923 return NET_XMIT_DROP; 3924 } 3925 EXPORT_SYMBOL(dev_direct_xmit); 3926 3927 /************************************************************************* 3928 * Receiver routines 3929 *************************************************************************/ 3930 3931 int netdev_max_backlog __read_mostly = 1000; 3932 EXPORT_SYMBOL(netdev_max_backlog); 3933 3934 int netdev_tstamp_prequeue __read_mostly = 1; 3935 int netdev_budget __read_mostly = 300; 3936 unsigned int __read_mostly netdev_budget_usecs = 2000; 3937 int weight_p __read_mostly = 64; /* old backlog weight */ 3938 int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */ 3939 int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */ 3940 int dev_rx_weight __read_mostly = 64; 3941 int dev_tx_weight __read_mostly = 64; 3942 3943 /* Called with irq disabled */ 3944 static inline void ____napi_schedule(struct softnet_data *sd, 3945 struct napi_struct *napi) 3946 { 3947 list_add_tail(&napi->poll_list, &sd->poll_list); 3948 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 3949 } 3950 3951 #ifdef CONFIG_RPS 3952 3953 /* One global table that all flow-based protocols share. */ 3954 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly; 3955 EXPORT_SYMBOL(rps_sock_flow_table); 3956 u32 rps_cpu_mask __read_mostly; 3957 EXPORT_SYMBOL(rps_cpu_mask); 3958 3959 struct static_key rps_needed __read_mostly; 3960 EXPORT_SYMBOL(rps_needed); 3961 struct static_key rfs_needed __read_mostly; 3962 EXPORT_SYMBOL(rfs_needed); 3963 3964 static struct rps_dev_flow * 3965 set_rps_cpu(struct net_device *dev, struct sk_buff *skb, 3966 struct rps_dev_flow *rflow, u16 next_cpu) 3967 { 3968 if (next_cpu < nr_cpu_ids) { 3969 #ifdef CONFIG_RFS_ACCEL 3970 struct netdev_rx_queue *rxqueue; 3971 struct rps_dev_flow_table *flow_table; 3972 struct rps_dev_flow *old_rflow; 3973 u32 flow_id; 3974 u16 rxq_index; 3975 int rc; 3976 3977 /* Should we steer this flow to a different hardware queue? */ 3978 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap || 3979 !(dev->features & NETIF_F_NTUPLE)) 3980 goto out; 3981 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu); 3982 if (rxq_index == skb_get_rx_queue(skb)) 3983 goto out; 3984 3985 rxqueue = dev->_rx + rxq_index; 3986 flow_table = rcu_dereference(rxqueue->rps_flow_table); 3987 if (!flow_table) 3988 goto out; 3989 flow_id = skb_get_hash(skb) & flow_table->mask; 3990 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb, 3991 rxq_index, flow_id); 3992 if (rc < 0) 3993 goto out; 3994 old_rflow = rflow; 3995 rflow = &flow_table->flows[flow_id]; 3996 rflow->filter = rc; 3997 if (old_rflow->filter == rflow->filter) 3998 old_rflow->filter = RPS_NO_FILTER; 3999 out: 4000 #endif 4001 rflow->last_qtail = 4002 per_cpu(softnet_data, next_cpu).input_queue_head; 4003 } 4004 4005 rflow->cpu = next_cpu; 4006 return rflow; 4007 } 4008 4009 /* 4010 * get_rps_cpu is called from netif_receive_skb and returns the target 4011 * CPU from the RPS map of the receiving queue for a given skb. 4012 * rcu_read_lock must be held on entry. 4013 */ 4014 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb, 4015 struct rps_dev_flow **rflowp) 4016 { 4017 const struct rps_sock_flow_table *sock_flow_table; 4018 struct netdev_rx_queue *rxqueue = dev->_rx; 4019 struct rps_dev_flow_table *flow_table; 4020 struct rps_map *map; 4021 int cpu = -1; 4022 u32 tcpu; 4023 u32 hash; 4024 4025 if (skb_rx_queue_recorded(skb)) { 4026 u16 index = skb_get_rx_queue(skb); 4027 4028 if (unlikely(index >= dev->real_num_rx_queues)) { 4029 WARN_ONCE(dev->real_num_rx_queues > 1, 4030 "%s received packet on queue %u, but number " 4031 "of RX queues is %u\n", 4032 dev->name, index, dev->real_num_rx_queues); 4033 goto done; 4034 } 4035 rxqueue += index; 4036 } 4037 4038 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */ 4039 4040 flow_table = rcu_dereference(rxqueue->rps_flow_table); 4041 map = rcu_dereference(rxqueue->rps_map); 4042 if (!flow_table && !map) 4043 goto done; 4044 4045 skb_reset_network_header(skb); 4046 hash = skb_get_hash(skb); 4047 if (!hash) 4048 goto done; 4049 4050 sock_flow_table = rcu_dereference(rps_sock_flow_table); 4051 if (flow_table && sock_flow_table) { 4052 struct rps_dev_flow *rflow; 4053 u32 next_cpu; 4054 u32 ident; 4055 4056 /* First check into global flow table if there is a match */ 4057 ident = sock_flow_table->ents[hash & sock_flow_table->mask]; 4058 if ((ident ^ hash) & ~rps_cpu_mask) 4059 goto try_rps; 4060 4061 next_cpu = ident & rps_cpu_mask; 4062 4063 /* OK, now we know there is a match, 4064 * we can look at the local (per receive queue) flow table 4065 */ 4066 rflow = &flow_table->flows[hash & flow_table->mask]; 4067 tcpu = rflow->cpu; 4068 4069 /* 4070 * If the desired CPU (where last recvmsg was done) is 4071 * different from current CPU (one in the rx-queue flow 4072 * table entry), switch if one of the following holds: 4073 * - Current CPU is unset (>= nr_cpu_ids). 4074 * - Current CPU is offline. 4075 * - The current CPU's queue tail has advanced beyond the 4076 * last packet that was enqueued using this table entry. 4077 * This guarantees that all previous packets for the flow 4078 * have been dequeued, thus preserving in order delivery. 4079 */ 4080 if (unlikely(tcpu != next_cpu) && 4081 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) || 4082 ((int)(per_cpu(softnet_data, tcpu).input_queue_head - 4083 rflow->last_qtail)) >= 0)) { 4084 tcpu = next_cpu; 4085 rflow = set_rps_cpu(dev, skb, rflow, next_cpu); 4086 } 4087 4088 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) { 4089 *rflowp = rflow; 4090 cpu = tcpu; 4091 goto done; 4092 } 4093 } 4094 4095 try_rps: 4096 4097 if (map) { 4098 tcpu = map->cpus[reciprocal_scale(hash, map->len)]; 4099 if (cpu_online(tcpu)) { 4100 cpu = tcpu; 4101 goto done; 4102 } 4103 } 4104 4105 done: 4106 return cpu; 4107 } 4108 4109 #ifdef CONFIG_RFS_ACCEL 4110 4111 /** 4112 * rps_may_expire_flow - check whether an RFS hardware filter may be removed 4113 * @dev: Device on which the filter was set 4114 * @rxq_index: RX queue index 4115 * @flow_id: Flow ID passed to ndo_rx_flow_steer() 4116 * @filter_id: Filter ID returned by ndo_rx_flow_steer() 4117 * 4118 * Drivers that implement ndo_rx_flow_steer() should periodically call 4119 * this function for each installed filter and remove the filters for 4120 * which it returns %true. 4121 */ 4122 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, 4123 u32 flow_id, u16 filter_id) 4124 { 4125 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index; 4126 struct rps_dev_flow_table *flow_table; 4127 struct rps_dev_flow *rflow; 4128 bool expire = true; 4129 unsigned int cpu; 4130 4131 rcu_read_lock(); 4132 flow_table = rcu_dereference(rxqueue->rps_flow_table); 4133 if (flow_table && flow_id <= flow_table->mask) { 4134 rflow = &flow_table->flows[flow_id]; 4135 cpu = READ_ONCE(rflow->cpu); 4136 if (rflow->filter == filter_id && cpu < nr_cpu_ids && 4137 ((int)(per_cpu(softnet_data, cpu).input_queue_head - 4138 rflow->last_qtail) < 4139 (int)(10 * flow_table->mask))) 4140 expire = false; 4141 } 4142 rcu_read_unlock(); 4143 return expire; 4144 } 4145 EXPORT_SYMBOL(rps_may_expire_flow); 4146 4147 #endif /* CONFIG_RFS_ACCEL */ 4148 4149 /* Called from hardirq (IPI) context */ 4150 static void rps_trigger_softirq(void *data) 4151 { 4152 struct softnet_data *sd = data; 4153 4154 ____napi_schedule(sd, &sd->backlog); 4155 sd->received_rps++; 4156 } 4157 4158 #endif /* CONFIG_RPS */ 4159 4160 /* 4161 * Check if this softnet_data structure is another cpu one 4162 * If yes, queue it to our IPI list and return 1 4163 * If no, return 0 4164 */ 4165 static int rps_ipi_queued(struct softnet_data *sd) 4166 { 4167 #ifdef CONFIG_RPS 4168 struct softnet_data *mysd = this_cpu_ptr(&softnet_data); 4169 4170 if (sd != mysd) { 4171 sd->rps_ipi_next = mysd->rps_ipi_list; 4172 mysd->rps_ipi_list = sd; 4173 4174 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 4175 return 1; 4176 } 4177 #endif /* CONFIG_RPS */ 4178 return 0; 4179 } 4180 4181 #ifdef CONFIG_NET_FLOW_LIMIT 4182 int netdev_flow_limit_table_len __read_mostly = (1 << 12); 4183 #endif 4184 4185 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen) 4186 { 4187 #ifdef CONFIG_NET_FLOW_LIMIT 4188 struct sd_flow_limit *fl; 4189 struct softnet_data *sd; 4190 unsigned int old_flow, new_flow; 4191 4192 if (qlen < (netdev_max_backlog >> 1)) 4193 return false; 4194 4195 sd = this_cpu_ptr(&softnet_data); 4196 4197 rcu_read_lock(); 4198 fl = rcu_dereference(sd->flow_limit); 4199 if (fl) { 4200 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1); 4201 old_flow = fl->history[fl->history_head]; 4202 fl->history[fl->history_head] = new_flow; 4203 4204 fl->history_head++; 4205 fl->history_head &= FLOW_LIMIT_HISTORY - 1; 4206 4207 if (likely(fl->buckets[old_flow])) 4208 fl->buckets[old_flow]--; 4209 4210 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) { 4211 fl->count++; 4212 rcu_read_unlock(); 4213 return true; 4214 } 4215 } 4216 rcu_read_unlock(); 4217 #endif 4218 return false; 4219 } 4220 4221 /* 4222 * enqueue_to_backlog is called to queue an skb to a per CPU backlog 4223 * queue (may be a remote CPU queue). 4224 */ 4225 static int enqueue_to_backlog(struct sk_buff *skb, int cpu, 4226 unsigned int *qtail) 4227 { 4228 struct softnet_data *sd; 4229 unsigned long flags; 4230 unsigned int qlen; 4231 4232 sd = &per_cpu(softnet_data, cpu); 4233 4234 local_irq_save(flags); 4235 4236 rps_lock(sd); 4237 if (!netif_running(skb->dev)) 4238 goto drop; 4239 qlen = skb_queue_len(&sd->input_pkt_queue); 4240 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) { 4241 if (qlen) { 4242 enqueue: 4243 __skb_queue_tail(&sd->input_pkt_queue, skb); 4244 input_queue_tail_incr_save(sd, qtail); 4245 rps_unlock(sd); 4246 local_irq_restore(flags); 4247 return NET_RX_SUCCESS; 4248 } 4249 4250 /* Schedule NAPI for backlog device 4251 * We can use non atomic operation since we own the queue lock 4252 */ 4253 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) { 4254 if (!rps_ipi_queued(sd)) 4255 ____napi_schedule(sd, &sd->backlog); 4256 } 4257 goto enqueue; 4258 } 4259 4260 drop: 4261 sd->dropped++; 4262 rps_unlock(sd); 4263 4264 local_irq_restore(flags); 4265 4266 atomic_long_inc(&skb->dev->rx_dropped); 4267 kfree_skb(skb); 4268 return NET_RX_DROP; 4269 } 4270 4271 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb) 4272 { 4273 struct net_device *dev = skb->dev; 4274 struct netdev_rx_queue *rxqueue; 4275 4276 rxqueue = dev->_rx; 4277 4278 if (skb_rx_queue_recorded(skb)) { 4279 u16 index = skb_get_rx_queue(skb); 4280 4281 if (unlikely(index >= dev->real_num_rx_queues)) { 4282 WARN_ONCE(dev->real_num_rx_queues > 1, 4283 "%s received packet on queue %u, but number " 4284 "of RX queues is %u\n", 4285 dev->name, index, dev->real_num_rx_queues); 4286 4287 return rxqueue; /* Return first rxqueue */ 4288 } 4289 rxqueue += index; 4290 } 4291 return rxqueue; 4292 } 4293 4294 static u32 netif_receive_generic_xdp(struct sk_buff *skb, 4295 struct xdp_buff *xdp, 4296 struct bpf_prog *xdp_prog) 4297 { 4298 struct netdev_rx_queue *rxqueue; 4299 void *orig_data, *orig_data_end; 4300 u32 metalen, act = XDP_DROP; 4301 __be16 orig_eth_type; 4302 struct ethhdr *eth; 4303 bool orig_bcast; 4304 int hlen, off; 4305 u32 mac_len; 4306 4307 /* Reinjected packets coming from act_mirred or similar should 4308 * not get XDP generic processing. 4309 */ 4310 if (skb_cloned(skb) || skb_is_tc_redirected(skb)) 4311 return XDP_PASS; 4312 4313 /* XDP packets must be linear and must have sufficient headroom 4314 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also 4315 * native XDP provides, thus we need to do it here as well. 4316 */ 4317 if (skb_is_nonlinear(skb) || 4318 skb_headroom(skb) < XDP_PACKET_HEADROOM) { 4319 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb); 4320 int troom = skb->tail + skb->data_len - skb->end; 4321 4322 /* In case we have to go down the path and also linearize, 4323 * then lets do the pskb_expand_head() work just once here. 4324 */ 4325 if (pskb_expand_head(skb, 4326 hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0, 4327 troom > 0 ? troom + 128 : 0, GFP_ATOMIC)) 4328 goto do_drop; 4329 if (skb_linearize(skb)) 4330 goto do_drop; 4331 } 4332 4333 /* The XDP program wants to see the packet starting at the MAC 4334 * header. 4335 */ 4336 mac_len = skb->data - skb_mac_header(skb); 4337 hlen = skb_headlen(skb) + mac_len; 4338 xdp->data = skb->data - mac_len; 4339 xdp->data_meta = xdp->data; 4340 xdp->data_end = xdp->data + hlen; 4341 xdp->data_hard_start = skb->data - skb_headroom(skb); 4342 orig_data_end = xdp->data_end; 4343 orig_data = xdp->data; 4344 eth = (struct ethhdr *)xdp->data; 4345 orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest); 4346 orig_eth_type = eth->h_proto; 4347 4348 rxqueue = netif_get_rxqueue(skb); 4349 xdp->rxq = &rxqueue->xdp_rxq; 4350 4351 act = bpf_prog_run_xdp(xdp_prog, xdp); 4352 4353 off = xdp->data - orig_data; 4354 if (off > 0) 4355 __skb_pull(skb, off); 4356 else if (off < 0) 4357 __skb_push(skb, -off); 4358 skb->mac_header += off; 4359 4360 /* check if bpf_xdp_adjust_tail was used. it can only "shrink" 4361 * pckt. 4362 */ 4363 off = orig_data_end - xdp->data_end; 4364 if (off != 0) { 4365 skb_set_tail_pointer(skb, xdp->data_end - xdp->data); 4366 skb->len -= off; 4367 4368 } 4369 4370 /* check if XDP changed eth hdr such SKB needs update */ 4371 eth = (struct ethhdr *)xdp->data; 4372 if ((orig_eth_type != eth->h_proto) || 4373 (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) { 4374 __skb_push(skb, ETH_HLEN); 4375 skb->protocol = eth_type_trans(skb, skb->dev); 4376 } 4377 4378 switch (act) { 4379 case XDP_REDIRECT: 4380 case XDP_TX: 4381 __skb_push(skb, mac_len); 4382 break; 4383 case XDP_PASS: 4384 metalen = xdp->data - xdp->data_meta; 4385 if (metalen) 4386 skb_metadata_set(skb, metalen); 4387 break; 4388 default: 4389 bpf_warn_invalid_xdp_action(act); 4390 /* fall through */ 4391 case XDP_ABORTED: 4392 trace_xdp_exception(skb->dev, xdp_prog, act); 4393 /* fall through */ 4394 case XDP_DROP: 4395 do_drop: 4396 kfree_skb(skb); 4397 break; 4398 } 4399 4400 return act; 4401 } 4402 4403 /* When doing generic XDP we have to bypass the qdisc layer and the 4404 * network taps in order to match in-driver-XDP behavior. 4405 */ 4406 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog) 4407 { 4408 struct net_device *dev = skb->dev; 4409 struct netdev_queue *txq; 4410 bool free_skb = true; 4411 int cpu, rc; 4412 4413 txq = netdev_pick_tx(dev, skb, NULL); 4414 cpu = smp_processor_id(); 4415 HARD_TX_LOCK(dev, txq, cpu); 4416 if (!netif_xmit_stopped(txq)) { 4417 rc = netdev_start_xmit(skb, dev, txq, 0); 4418 if (dev_xmit_complete(rc)) 4419 free_skb = false; 4420 } 4421 HARD_TX_UNLOCK(dev, txq); 4422 if (free_skb) { 4423 trace_xdp_exception(dev, xdp_prog, XDP_TX); 4424 kfree_skb(skb); 4425 } 4426 } 4427 EXPORT_SYMBOL_GPL(generic_xdp_tx); 4428 4429 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key); 4430 4431 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb) 4432 { 4433 if (xdp_prog) { 4434 struct xdp_buff xdp; 4435 u32 act; 4436 int err; 4437 4438 act = netif_receive_generic_xdp(skb, &xdp, xdp_prog); 4439 if (act != XDP_PASS) { 4440 switch (act) { 4441 case XDP_REDIRECT: 4442 err = xdp_do_generic_redirect(skb->dev, skb, 4443 &xdp, xdp_prog); 4444 if (err) 4445 goto out_redir; 4446 break; 4447 case XDP_TX: 4448 generic_xdp_tx(skb, xdp_prog); 4449 break; 4450 } 4451 return XDP_DROP; 4452 } 4453 } 4454 return XDP_PASS; 4455 out_redir: 4456 kfree_skb(skb); 4457 return XDP_DROP; 4458 } 4459 EXPORT_SYMBOL_GPL(do_xdp_generic); 4460 4461 static int netif_rx_internal(struct sk_buff *skb) 4462 { 4463 int ret; 4464 4465 net_timestamp_check(netdev_tstamp_prequeue, skb); 4466 4467 trace_netif_rx(skb); 4468 4469 if (static_branch_unlikely(&generic_xdp_needed_key)) { 4470 int ret; 4471 4472 preempt_disable(); 4473 rcu_read_lock(); 4474 ret = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb); 4475 rcu_read_unlock(); 4476 preempt_enable(); 4477 4478 /* Consider XDP consuming the packet a success from 4479 * the netdev point of view we do not want to count 4480 * this as an error. 4481 */ 4482 if (ret != XDP_PASS) 4483 return NET_RX_SUCCESS; 4484 } 4485 4486 #ifdef CONFIG_RPS 4487 if (static_key_false(&rps_needed)) { 4488 struct rps_dev_flow voidflow, *rflow = &voidflow; 4489 int cpu; 4490 4491 preempt_disable(); 4492 rcu_read_lock(); 4493 4494 cpu = get_rps_cpu(skb->dev, skb, &rflow); 4495 if (cpu < 0) 4496 cpu = smp_processor_id(); 4497 4498 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 4499 4500 rcu_read_unlock(); 4501 preempt_enable(); 4502 } else 4503 #endif 4504 { 4505 unsigned int qtail; 4506 4507 ret = enqueue_to_backlog(skb, get_cpu(), &qtail); 4508 put_cpu(); 4509 } 4510 return ret; 4511 } 4512 4513 /** 4514 * netif_rx - post buffer to the network code 4515 * @skb: buffer to post 4516 * 4517 * This function receives a packet from a device driver and queues it for 4518 * the upper (protocol) levels to process. It always succeeds. The buffer 4519 * may be dropped during processing for congestion control or by the 4520 * protocol layers. 4521 * 4522 * return values: 4523 * NET_RX_SUCCESS (no congestion) 4524 * NET_RX_DROP (packet was dropped) 4525 * 4526 */ 4527 4528 int netif_rx(struct sk_buff *skb) 4529 { 4530 int ret; 4531 4532 trace_netif_rx_entry(skb); 4533 4534 ret = netif_rx_internal(skb); 4535 trace_netif_rx_exit(ret); 4536 4537 return ret; 4538 } 4539 EXPORT_SYMBOL(netif_rx); 4540 4541 int netif_rx_ni(struct sk_buff *skb) 4542 { 4543 int err; 4544 4545 trace_netif_rx_ni_entry(skb); 4546 4547 preempt_disable(); 4548 err = netif_rx_internal(skb); 4549 if (local_softirq_pending()) 4550 do_softirq(); 4551 preempt_enable(); 4552 trace_netif_rx_ni_exit(err); 4553 4554 return err; 4555 } 4556 EXPORT_SYMBOL(netif_rx_ni); 4557 4558 static __latent_entropy void net_tx_action(struct softirq_action *h) 4559 { 4560 struct softnet_data *sd = this_cpu_ptr(&softnet_data); 4561 4562 if (sd->completion_queue) { 4563 struct sk_buff *clist; 4564 4565 local_irq_disable(); 4566 clist = sd->completion_queue; 4567 sd->completion_queue = NULL; 4568 local_irq_enable(); 4569 4570 while (clist) { 4571 struct sk_buff *skb = clist; 4572 4573 clist = clist->next; 4574 4575 WARN_ON(refcount_read(&skb->users)); 4576 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED)) 4577 trace_consume_skb(skb); 4578 else 4579 trace_kfree_skb(skb, net_tx_action); 4580 4581 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) 4582 __kfree_skb(skb); 4583 else 4584 __kfree_skb_defer(skb); 4585 } 4586 4587 __kfree_skb_flush(); 4588 } 4589 4590 if (sd->output_queue) { 4591 struct Qdisc *head; 4592 4593 local_irq_disable(); 4594 head = sd->output_queue; 4595 sd->output_queue = NULL; 4596 sd->output_queue_tailp = &sd->output_queue; 4597 local_irq_enable(); 4598 4599 while (head) { 4600 struct Qdisc *q = head; 4601 spinlock_t *root_lock = NULL; 4602 4603 head = head->next_sched; 4604 4605 if (!(q->flags & TCQ_F_NOLOCK)) { 4606 root_lock = qdisc_lock(q); 4607 spin_lock(root_lock); 4608 } 4609 /* We need to make sure head->next_sched is read 4610 * before clearing __QDISC_STATE_SCHED 4611 */ 4612 smp_mb__before_atomic(); 4613 clear_bit(__QDISC_STATE_SCHED, &q->state); 4614 qdisc_run(q); 4615 if (root_lock) 4616 spin_unlock(root_lock); 4617 } 4618 } 4619 4620 xfrm_dev_backlog(sd); 4621 } 4622 4623 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE) 4624 /* This hook is defined here for ATM LANE */ 4625 int (*br_fdb_test_addr_hook)(struct net_device *dev, 4626 unsigned char *addr) __read_mostly; 4627 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook); 4628 #endif 4629 4630 static inline struct sk_buff * 4631 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret, 4632 struct net_device *orig_dev) 4633 { 4634 #ifdef CONFIG_NET_CLS_ACT 4635 struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress); 4636 struct tcf_result cl_res; 4637 4638 /* If there's at least one ingress present somewhere (so 4639 * we get here via enabled static key), remaining devices 4640 * that are not configured with an ingress qdisc will bail 4641 * out here. 4642 */ 4643 if (!miniq) 4644 return skb; 4645 4646 if (*pt_prev) { 4647 *ret = deliver_skb(skb, *pt_prev, orig_dev); 4648 *pt_prev = NULL; 4649 } 4650 4651 qdisc_skb_cb(skb)->pkt_len = skb->len; 4652 skb->tc_at_ingress = 1; 4653 mini_qdisc_bstats_cpu_update(miniq, skb); 4654 4655 switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) { 4656 case TC_ACT_OK: 4657 case TC_ACT_RECLASSIFY: 4658 skb->tc_index = TC_H_MIN(cl_res.classid); 4659 break; 4660 case TC_ACT_SHOT: 4661 mini_qdisc_qstats_cpu_drop(miniq); 4662 kfree_skb(skb); 4663 return NULL; 4664 case TC_ACT_STOLEN: 4665 case TC_ACT_QUEUED: 4666 case TC_ACT_TRAP: 4667 consume_skb(skb); 4668 return NULL; 4669 case TC_ACT_REDIRECT: 4670 /* skb_mac_header check was done by cls/act_bpf, so 4671 * we can safely push the L2 header back before 4672 * redirecting to another netdev 4673 */ 4674 __skb_push(skb, skb->mac_len); 4675 skb_do_redirect(skb); 4676 return NULL; 4677 case TC_ACT_REINSERT: 4678 /* this does not scrub the packet, and updates stats on error */ 4679 skb_tc_reinsert(skb, &cl_res); 4680 return NULL; 4681 default: 4682 break; 4683 } 4684 #endif /* CONFIG_NET_CLS_ACT */ 4685 return skb; 4686 } 4687 4688 /** 4689 * netdev_is_rx_handler_busy - check if receive handler is registered 4690 * @dev: device to check 4691 * 4692 * Check if a receive handler is already registered for a given device. 4693 * Return true if there one. 4694 * 4695 * The caller must hold the rtnl_mutex. 4696 */ 4697 bool netdev_is_rx_handler_busy(struct net_device *dev) 4698 { 4699 ASSERT_RTNL(); 4700 return dev && rtnl_dereference(dev->rx_handler); 4701 } 4702 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy); 4703 4704 /** 4705 * netdev_rx_handler_register - register receive handler 4706 * @dev: device to register a handler for 4707 * @rx_handler: receive handler to register 4708 * @rx_handler_data: data pointer that is used by rx handler 4709 * 4710 * Register a receive handler for a device. This handler will then be 4711 * called from __netif_receive_skb. A negative errno code is returned 4712 * on a failure. 4713 * 4714 * The caller must hold the rtnl_mutex. 4715 * 4716 * For a general description of rx_handler, see enum rx_handler_result. 4717 */ 4718 int netdev_rx_handler_register(struct net_device *dev, 4719 rx_handler_func_t *rx_handler, 4720 void *rx_handler_data) 4721 { 4722 if (netdev_is_rx_handler_busy(dev)) 4723 return -EBUSY; 4724 4725 if (dev->priv_flags & IFF_NO_RX_HANDLER) 4726 return -EINVAL; 4727 4728 /* Note: rx_handler_data must be set before rx_handler */ 4729 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data); 4730 rcu_assign_pointer(dev->rx_handler, rx_handler); 4731 4732 return 0; 4733 } 4734 EXPORT_SYMBOL_GPL(netdev_rx_handler_register); 4735 4736 /** 4737 * netdev_rx_handler_unregister - unregister receive handler 4738 * @dev: device to unregister a handler from 4739 * 4740 * Unregister a receive handler from a device. 4741 * 4742 * The caller must hold the rtnl_mutex. 4743 */ 4744 void netdev_rx_handler_unregister(struct net_device *dev) 4745 { 4746 4747 ASSERT_RTNL(); 4748 RCU_INIT_POINTER(dev->rx_handler, NULL); 4749 /* a reader seeing a non NULL rx_handler in a rcu_read_lock() 4750 * section has a guarantee to see a non NULL rx_handler_data 4751 * as well. 4752 */ 4753 synchronize_net(); 4754 RCU_INIT_POINTER(dev->rx_handler_data, NULL); 4755 } 4756 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister); 4757 4758 /* 4759 * Limit the use of PFMEMALLOC reserves to those protocols that implement 4760 * the special handling of PFMEMALLOC skbs. 4761 */ 4762 static bool skb_pfmemalloc_protocol(struct sk_buff *skb) 4763 { 4764 switch (skb->protocol) { 4765 case htons(ETH_P_ARP): 4766 case htons(ETH_P_IP): 4767 case htons(ETH_P_IPV6): 4768 case htons(ETH_P_8021Q): 4769 case htons(ETH_P_8021AD): 4770 return true; 4771 default: 4772 return false; 4773 } 4774 } 4775 4776 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev, 4777 int *ret, struct net_device *orig_dev) 4778 { 4779 #ifdef CONFIG_NETFILTER_INGRESS 4780 if (nf_hook_ingress_active(skb)) { 4781 int ingress_retval; 4782 4783 if (*pt_prev) { 4784 *ret = deliver_skb(skb, *pt_prev, orig_dev); 4785 *pt_prev = NULL; 4786 } 4787 4788 rcu_read_lock(); 4789 ingress_retval = nf_hook_ingress(skb); 4790 rcu_read_unlock(); 4791 return ingress_retval; 4792 } 4793 #endif /* CONFIG_NETFILTER_INGRESS */ 4794 return 0; 4795 } 4796 4797 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc, 4798 struct packet_type **ppt_prev) 4799 { 4800 struct packet_type *ptype, *pt_prev; 4801 rx_handler_func_t *rx_handler; 4802 struct net_device *orig_dev; 4803 bool deliver_exact = false; 4804 int ret = NET_RX_DROP; 4805 __be16 type; 4806 4807 net_timestamp_check(!netdev_tstamp_prequeue, skb); 4808 4809 trace_netif_receive_skb(skb); 4810 4811 orig_dev = skb->dev; 4812 4813 skb_reset_network_header(skb); 4814 if (!skb_transport_header_was_set(skb)) 4815 skb_reset_transport_header(skb); 4816 skb_reset_mac_len(skb); 4817 4818 pt_prev = NULL; 4819 4820 another_round: 4821 skb->skb_iif = skb->dev->ifindex; 4822 4823 __this_cpu_inc(softnet_data.processed); 4824 4825 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) || 4826 skb->protocol == cpu_to_be16(ETH_P_8021AD)) { 4827 skb = skb_vlan_untag(skb); 4828 if (unlikely(!skb)) 4829 goto out; 4830 } 4831 4832 if (skb_skip_tc_classify(skb)) 4833 goto skip_classify; 4834 4835 if (pfmemalloc) 4836 goto skip_taps; 4837 4838 list_for_each_entry_rcu(ptype, &ptype_all, list) { 4839 if (pt_prev) 4840 ret = deliver_skb(skb, pt_prev, orig_dev); 4841 pt_prev = ptype; 4842 } 4843 4844 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) { 4845 if (pt_prev) 4846 ret = deliver_skb(skb, pt_prev, orig_dev); 4847 pt_prev = ptype; 4848 } 4849 4850 skip_taps: 4851 #ifdef CONFIG_NET_INGRESS 4852 if (static_branch_unlikely(&ingress_needed_key)) { 4853 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev); 4854 if (!skb) 4855 goto out; 4856 4857 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0) 4858 goto out; 4859 } 4860 #endif 4861 skb_reset_tc(skb); 4862 skip_classify: 4863 if (pfmemalloc && !skb_pfmemalloc_protocol(skb)) 4864 goto drop; 4865 4866 if (skb_vlan_tag_present(skb)) { 4867 if (pt_prev) { 4868 ret = deliver_skb(skb, pt_prev, orig_dev); 4869 pt_prev = NULL; 4870 } 4871 if (vlan_do_receive(&skb)) 4872 goto another_round; 4873 else if (unlikely(!skb)) 4874 goto out; 4875 } 4876 4877 rx_handler = rcu_dereference(skb->dev->rx_handler); 4878 if (rx_handler) { 4879 if (pt_prev) { 4880 ret = deliver_skb(skb, pt_prev, orig_dev); 4881 pt_prev = NULL; 4882 } 4883 switch (rx_handler(&skb)) { 4884 case RX_HANDLER_CONSUMED: 4885 ret = NET_RX_SUCCESS; 4886 goto out; 4887 case RX_HANDLER_ANOTHER: 4888 goto another_round; 4889 case RX_HANDLER_EXACT: 4890 deliver_exact = true; 4891 case RX_HANDLER_PASS: 4892 break; 4893 default: 4894 BUG(); 4895 } 4896 } 4897 4898 if (unlikely(skb_vlan_tag_present(skb))) { 4899 if (skb_vlan_tag_get_id(skb)) 4900 skb->pkt_type = PACKET_OTHERHOST; 4901 /* Note: we might in the future use prio bits 4902 * and set skb->priority like in vlan_do_receive() 4903 * For the time being, just ignore Priority Code Point 4904 */ 4905 __vlan_hwaccel_clear_tag(skb); 4906 } 4907 4908 type = skb->protocol; 4909 4910 /* deliver only exact match when indicated */ 4911 if (likely(!deliver_exact)) { 4912 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 4913 &ptype_base[ntohs(type) & 4914 PTYPE_HASH_MASK]); 4915 } 4916 4917 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 4918 &orig_dev->ptype_specific); 4919 4920 if (unlikely(skb->dev != orig_dev)) { 4921 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 4922 &skb->dev->ptype_specific); 4923 } 4924 4925 if (pt_prev) { 4926 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC))) 4927 goto drop; 4928 *ppt_prev = pt_prev; 4929 } else { 4930 drop: 4931 if (!deliver_exact) 4932 atomic_long_inc(&skb->dev->rx_dropped); 4933 else 4934 atomic_long_inc(&skb->dev->rx_nohandler); 4935 kfree_skb(skb); 4936 /* Jamal, now you will not able to escape explaining 4937 * me how you were going to use this. :-) 4938 */ 4939 ret = NET_RX_DROP; 4940 } 4941 4942 out: 4943 return ret; 4944 } 4945 4946 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc) 4947 { 4948 struct net_device *orig_dev = skb->dev; 4949 struct packet_type *pt_prev = NULL; 4950 int ret; 4951 4952 ret = __netif_receive_skb_core(skb, pfmemalloc, &pt_prev); 4953 if (pt_prev) 4954 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 4955 return ret; 4956 } 4957 4958 /** 4959 * netif_receive_skb_core - special purpose version of netif_receive_skb 4960 * @skb: buffer to process 4961 * 4962 * More direct receive version of netif_receive_skb(). It should 4963 * only be used by callers that have a need to skip RPS and Generic XDP. 4964 * Caller must also take care of handling if (page_is_)pfmemalloc. 4965 * 4966 * This function may only be called from softirq context and interrupts 4967 * should be enabled. 4968 * 4969 * Return values (usually ignored): 4970 * NET_RX_SUCCESS: no congestion 4971 * NET_RX_DROP: packet was dropped 4972 */ 4973 int netif_receive_skb_core(struct sk_buff *skb) 4974 { 4975 int ret; 4976 4977 rcu_read_lock(); 4978 ret = __netif_receive_skb_one_core(skb, false); 4979 rcu_read_unlock(); 4980 4981 return ret; 4982 } 4983 EXPORT_SYMBOL(netif_receive_skb_core); 4984 4985 static inline void __netif_receive_skb_list_ptype(struct list_head *head, 4986 struct packet_type *pt_prev, 4987 struct net_device *orig_dev) 4988 { 4989 struct sk_buff *skb, *next; 4990 4991 if (!pt_prev) 4992 return; 4993 if (list_empty(head)) 4994 return; 4995 if (pt_prev->list_func != NULL) 4996 pt_prev->list_func(head, pt_prev, orig_dev); 4997 else 4998 list_for_each_entry_safe(skb, next, head, list) 4999 pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 5000 } 5001 5002 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc) 5003 { 5004 /* Fast-path assumptions: 5005 * - There is no RX handler. 5006 * - Only one packet_type matches. 5007 * If either of these fails, we will end up doing some per-packet 5008 * processing in-line, then handling the 'last ptype' for the whole 5009 * sublist. This can't cause out-of-order delivery to any single ptype, 5010 * because the 'last ptype' must be constant across the sublist, and all 5011 * other ptypes are handled per-packet. 5012 */ 5013 /* Current (common) ptype of sublist */ 5014 struct packet_type *pt_curr = NULL; 5015 /* Current (common) orig_dev of sublist */ 5016 struct net_device *od_curr = NULL; 5017 struct list_head sublist; 5018 struct sk_buff *skb, *next; 5019 5020 INIT_LIST_HEAD(&sublist); 5021 list_for_each_entry_safe(skb, next, head, list) { 5022 struct net_device *orig_dev = skb->dev; 5023 struct packet_type *pt_prev = NULL; 5024 5025 list_del(&skb->list); 5026 __netif_receive_skb_core(skb, pfmemalloc, &pt_prev); 5027 if (!pt_prev) 5028 continue; 5029 if (pt_curr != pt_prev || od_curr != orig_dev) { 5030 /* dispatch old sublist */ 5031 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr); 5032 /* start new sublist */ 5033 INIT_LIST_HEAD(&sublist); 5034 pt_curr = pt_prev; 5035 od_curr = orig_dev; 5036 } 5037 list_add_tail(&skb->list, &sublist); 5038 } 5039 5040 /* dispatch final sublist */ 5041 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr); 5042 } 5043 5044 static int __netif_receive_skb(struct sk_buff *skb) 5045 { 5046 int ret; 5047 5048 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) { 5049 unsigned int noreclaim_flag; 5050 5051 /* 5052 * PFMEMALLOC skbs are special, they should 5053 * - be delivered to SOCK_MEMALLOC sockets only 5054 * - stay away from userspace 5055 * - have bounded memory usage 5056 * 5057 * Use PF_MEMALLOC as this saves us from propagating the allocation 5058 * context down to all allocation sites. 5059 */ 5060 noreclaim_flag = memalloc_noreclaim_save(); 5061 ret = __netif_receive_skb_one_core(skb, true); 5062 memalloc_noreclaim_restore(noreclaim_flag); 5063 } else 5064 ret = __netif_receive_skb_one_core(skb, false); 5065 5066 return ret; 5067 } 5068 5069 static void __netif_receive_skb_list(struct list_head *head) 5070 { 5071 unsigned long noreclaim_flag = 0; 5072 struct sk_buff *skb, *next; 5073 bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */ 5074 5075 list_for_each_entry_safe(skb, next, head, list) { 5076 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) { 5077 struct list_head sublist; 5078 5079 /* Handle the previous sublist */ 5080 list_cut_before(&sublist, head, &skb->list); 5081 if (!list_empty(&sublist)) 5082 __netif_receive_skb_list_core(&sublist, pfmemalloc); 5083 pfmemalloc = !pfmemalloc; 5084 /* See comments in __netif_receive_skb */ 5085 if (pfmemalloc) 5086 noreclaim_flag = memalloc_noreclaim_save(); 5087 else 5088 memalloc_noreclaim_restore(noreclaim_flag); 5089 } 5090 } 5091 /* Handle the remaining sublist */ 5092 if (!list_empty(head)) 5093 __netif_receive_skb_list_core(head, pfmemalloc); 5094 /* Restore pflags */ 5095 if (pfmemalloc) 5096 memalloc_noreclaim_restore(noreclaim_flag); 5097 } 5098 5099 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp) 5100 { 5101 struct bpf_prog *old = rtnl_dereference(dev->xdp_prog); 5102 struct bpf_prog *new = xdp->prog; 5103 int ret = 0; 5104 5105 switch (xdp->command) { 5106 case XDP_SETUP_PROG: 5107 rcu_assign_pointer(dev->xdp_prog, new); 5108 if (old) 5109 bpf_prog_put(old); 5110 5111 if (old && !new) { 5112 static_branch_dec(&generic_xdp_needed_key); 5113 } else if (new && !old) { 5114 static_branch_inc(&generic_xdp_needed_key); 5115 dev_disable_lro(dev); 5116 dev_disable_gro_hw(dev); 5117 } 5118 break; 5119 5120 case XDP_QUERY_PROG: 5121 xdp->prog_id = old ? old->aux->id : 0; 5122 break; 5123 5124 default: 5125 ret = -EINVAL; 5126 break; 5127 } 5128 5129 return ret; 5130 } 5131 5132 static int netif_receive_skb_internal(struct sk_buff *skb) 5133 { 5134 int ret; 5135 5136 net_timestamp_check(netdev_tstamp_prequeue, skb); 5137 5138 if (skb_defer_rx_timestamp(skb)) 5139 return NET_RX_SUCCESS; 5140 5141 if (static_branch_unlikely(&generic_xdp_needed_key)) { 5142 int ret; 5143 5144 preempt_disable(); 5145 rcu_read_lock(); 5146 ret = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb); 5147 rcu_read_unlock(); 5148 preempt_enable(); 5149 5150 if (ret != XDP_PASS) 5151 return NET_RX_DROP; 5152 } 5153 5154 rcu_read_lock(); 5155 #ifdef CONFIG_RPS 5156 if (static_key_false(&rps_needed)) { 5157 struct rps_dev_flow voidflow, *rflow = &voidflow; 5158 int cpu = get_rps_cpu(skb->dev, skb, &rflow); 5159 5160 if (cpu >= 0) { 5161 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 5162 rcu_read_unlock(); 5163 return ret; 5164 } 5165 } 5166 #endif 5167 ret = __netif_receive_skb(skb); 5168 rcu_read_unlock(); 5169 return ret; 5170 } 5171 5172 static void netif_receive_skb_list_internal(struct list_head *head) 5173 { 5174 struct bpf_prog *xdp_prog = NULL; 5175 struct sk_buff *skb, *next; 5176 struct list_head sublist; 5177 5178 INIT_LIST_HEAD(&sublist); 5179 list_for_each_entry_safe(skb, next, head, list) { 5180 net_timestamp_check(netdev_tstamp_prequeue, skb); 5181 list_del(&skb->list); 5182 if (!skb_defer_rx_timestamp(skb)) 5183 list_add_tail(&skb->list, &sublist); 5184 } 5185 list_splice_init(&sublist, head); 5186 5187 if (static_branch_unlikely(&generic_xdp_needed_key)) { 5188 preempt_disable(); 5189 rcu_read_lock(); 5190 list_for_each_entry_safe(skb, next, head, list) { 5191 xdp_prog = rcu_dereference(skb->dev->xdp_prog); 5192 list_del(&skb->list); 5193 if (do_xdp_generic(xdp_prog, skb) == XDP_PASS) 5194 list_add_tail(&skb->list, &sublist); 5195 } 5196 rcu_read_unlock(); 5197 preempt_enable(); 5198 /* Put passed packets back on main list */ 5199 list_splice_init(&sublist, head); 5200 } 5201 5202 rcu_read_lock(); 5203 #ifdef CONFIG_RPS 5204 if (static_key_false(&rps_needed)) { 5205 list_for_each_entry_safe(skb, next, head, list) { 5206 struct rps_dev_flow voidflow, *rflow = &voidflow; 5207 int cpu = get_rps_cpu(skb->dev, skb, &rflow); 5208 5209 if (cpu >= 0) { 5210 /* Will be handled, remove from list */ 5211 list_del(&skb->list); 5212 enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 5213 } 5214 } 5215 } 5216 #endif 5217 __netif_receive_skb_list(head); 5218 rcu_read_unlock(); 5219 } 5220 5221 /** 5222 * netif_receive_skb - process receive buffer from network 5223 * @skb: buffer to process 5224 * 5225 * netif_receive_skb() is the main receive data processing function. 5226 * It always succeeds. The buffer may be dropped during processing 5227 * for congestion control or by the protocol layers. 5228 * 5229 * This function may only be called from softirq context and interrupts 5230 * should be enabled. 5231 * 5232 * Return values (usually ignored): 5233 * NET_RX_SUCCESS: no congestion 5234 * NET_RX_DROP: packet was dropped 5235 */ 5236 int netif_receive_skb(struct sk_buff *skb) 5237 { 5238 int ret; 5239 5240 trace_netif_receive_skb_entry(skb); 5241 5242 ret = netif_receive_skb_internal(skb); 5243 trace_netif_receive_skb_exit(ret); 5244 5245 return ret; 5246 } 5247 EXPORT_SYMBOL(netif_receive_skb); 5248 5249 /** 5250 * netif_receive_skb_list - process many receive buffers from network 5251 * @head: list of skbs to process. 5252 * 5253 * Since return value of netif_receive_skb() is normally ignored, and 5254 * wouldn't be meaningful for a list, this function returns void. 5255 * 5256 * This function may only be called from softirq context and interrupts 5257 * should be enabled. 5258 */ 5259 void netif_receive_skb_list(struct list_head *head) 5260 { 5261 struct sk_buff *skb; 5262 5263 if (list_empty(head)) 5264 return; 5265 if (trace_netif_receive_skb_list_entry_enabled()) { 5266 list_for_each_entry(skb, head, list) 5267 trace_netif_receive_skb_list_entry(skb); 5268 } 5269 netif_receive_skb_list_internal(head); 5270 trace_netif_receive_skb_list_exit(0); 5271 } 5272 EXPORT_SYMBOL(netif_receive_skb_list); 5273 5274 DEFINE_PER_CPU(struct work_struct, flush_works); 5275 5276 /* Network device is going away, flush any packets still pending */ 5277 static void flush_backlog(struct work_struct *work) 5278 { 5279 struct sk_buff *skb, *tmp; 5280 struct softnet_data *sd; 5281 5282 local_bh_disable(); 5283 sd = this_cpu_ptr(&softnet_data); 5284 5285 local_irq_disable(); 5286 rps_lock(sd); 5287 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) { 5288 if (skb->dev->reg_state == NETREG_UNREGISTERING) { 5289 __skb_unlink(skb, &sd->input_pkt_queue); 5290 kfree_skb(skb); 5291 input_queue_head_incr(sd); 5292 } 5293 } 5294 rps_unlock(sd); 5295 local_irq_enable(); 5296 5297 skb_queue_walk_safe(&sd->process_queue, skb, tmp) { 5298 if (skb->dev->reg_state == NETREG_UNREGISTERING) { 5299 __skb_unlink(skb, &sd->process_queue); 5300 kfree_skb(skb); 5301 input_queue_head_incr(sd); 5302 } 5303 } 5304 local_bh_enable(); 5305 } 5306 5307 static void flush_all_backlogs(void) 5308 { 5309 unsigned int cpu; 5310 5311 get_online_cpus(); 5312 5313 for_each_online_cpu(cpu) 5314 queue_work_on(cpu, system_highpri_wq, 5315 per_cpu_ptr(&flush_works, cpu)); 5316 5317 for_each_online_cpu(cpu) 5318 flush_work(per_cpu_ptr(&flush_works, cpu)); 5319 5320 put_online_cpus(); 5321 } 5322 5323 static int napi_gro_complete(struct sk_buff *skb) 5324 { 5325 struct packet_offload *ptype; 5326 __be16 type = skb->protocol; 5327 struct list_head *head = &offload_base; 5328 int err = -ENOENT; 5329 5330 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb)); 5331 5332 if (NAPI_GRO_CB(skb)->count == 1) { 5333 skb_shinfo(skb)->gso_size = 0; 5334 goto out; 5335 } 5336 5337 rcu_read_lock(); 5338 list_for_each_entry_rcu(ptype, head, list) { 5339 if (ptype->type != type || !ptype->callbacks.gro_complete) 5340 continue; 5341 5342 err = ptype->callbacks.gro_complete(skb, 0); 5343 break; 5344 } 5345 rcu_read_unlock(); 5346 5347 if (err) { 5348 WARN_ON(&ptype->list == head); 5349 kfree_skb(skb); 5350 return NET_RX_SUCCESS; 5351 } 5352 5353 out: 5354 return netif_receive_skb_internal(skb); 5355 } 5356 5357 static void __napi_gro_flush_chain(struct napi_struct *napi, u32 index, 5358 bool flush_old) 5359 { 5360 struct list_head *head = &napi->gro_hash[index].list; 5361 struct sk_buff *skb, *p; 5362 5363 list_for_each_entry_safe_reverse(skb, p, head, list) { 5364 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies) 5365 return; 5366 skb_list_del_init(skb); 5367 napi_gro_complete(skb); 5368 napi->gro_hash[index].count--; 5369 } 5370 5371 if (!napi->gro_hash[index].count) 5372 __clear_bit(index, &napi->gro_bitmask); 5373 } 5374 5375 /* napi->gro_hash[].list contains packets ordered by age. 5376 * youngest packets at the head of it. 5377 * Complete skbs in reverse order to reduce latencies. 5378 */ 5379 void napi_gro_flush(struct napi_struct *napi, bool flush_old) 5380 { 5381 unsigned long bitmask = napi->gro_bitmask; 5382 unsigned int i, base = ~0U; 5383 5384 while ((i = ffs(bitmask)) != 0) { 5385 bitmask >>= i; 5386 base += i; 5387 __napi_gro_flush_chain(napi, base, flush_old); 5388 } 5389 } 5390 EXPORT_SYMBOL(napi_gro_flush); 5391 5392 static struct list_head *gro_list_prepare(struct napi_struct *napi, 5393 struct sk_buff *skb) 5394 { 5395 unsigned int maclen = skb->dev->hard_header_len; 5396 u32 hash = skb_get_hash_raw(skb); 5397 struct list_head *head; 5398 struct sk_buff *p; 5399 5400 head = &napi->gro_hash[hash & (GRO_HASH_BUCKETS - 1)].list; 5401 list_for_each_entry(p, head, list) { 5402 unsigned long diffs; 5403 5404 NAPI_GRO_CB(p)->flush = 0; 5405 5406 if (hash != skb_get_hash_raw(p)) { 5407 NAPI_GRO_CB(p)->same_flow = 0; 5408 continue; 5409 } 5410 5411 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev; 5412 diffs |= skb_vlan_tag_present(p) ^ skb_vlan_tag_present(skb); 5413 if (skb_vlan_tag_present(p)) 5414 diffs |= p->vlan_tci ^ skb->vlan_tci; 5415 diffs |= skb_metadata_dst_cmp(p, skb); 5416 diffs |= skb_metadata_differs(p, skb); 5417 if (maclen == ETH_HLEN) 5418 diffs |= compare_ether_header(skb_mac_header(p), 5419 skb_mac_header(skb)); 5420 else if (!diffs) 5421 diffs = memcmp(skb_mac_header(p), 5422 skb_mac_header(skb), 5423 maclen); 5424 NAPI_GRO_CB(p)->same_flow = !diffs; 5425 } 5426 5427 return head; 5428 } 5429 5430 static void skb_gro_reset_offset(struct sk_buff *skb) 5431 { 5432 const struct skb_shared_info *pinfo = skb_shinfo(skb); 5433 const skb_frag_t *frag0 = &pinfo->frags[0]; 5434 5435 NAPI_GRO_CB(skb)->data_offset = 0; 5436 NAPI_GRO_CB(skb)->frag0 = NULL; 5437 NAPI_GRO_CB(skb)->frag0_len = 0; 5438 5439 if (skb_mac_header(skb) == skb_tail_pointer(skb) && 5440 pinfo->nr_frags && 5441 !PageHighMem(skb_frag_page(frag0))) { 5442 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0); 5443 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int, 5444 skb_frag_size(frag0), 5445 skb->end - skb->tail); 5446 } 5447 } 5448 5449 static void gro_pull_from_frag0(struct sk_buff *skb, int grow) 5450 { 5451 struct skb_shared_info *pinfo = skb_shinfo(skb); 5452 5453 BUG_ON(skb->end - skb->tail < grow); 5454 5455 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow); 5456 5457 skb->data_len -= grow; 5458 skb->tail += grow; 5459 5460 pinfo->frags[0].page_offset += grow; 5461 skb_frag_size_sub(&pinfo->frags[0], grow); 5462 5463 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) { 5464 skb_frag_unref(skb, 0); 5465 memmove(pinfo->frags, pinfo->frags + 1, 5466 --pinfo->nr_frags * sizeof(pinfo->frags[0])); 5467 } 5468 } 5469 5470 static void gro_flush_oldest(struct list_head *head) 5471 { 5472 struct sk_buff *oldest; 5473 5474 oldest = list_last_entry(head, struct sk_buff, list); 5475 5476 /* We are called with head length >= MAX_GRO_SKBS, so this is 5477 * impossible. 5478 */ 5479 if (WARN_ON_ONCE(!oldest)) 5480 return; 5481 5482 /* Do not adjust napi->gro_hash[].count, caller is adding a new 5483 * SKB to the chain. 5484 */ 5485 skb_list_del_init(oldest); 5486 napi_gro_complete(oldest); 5487 } 5488 5489 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 5490 { 5491 u32 hash = skb_get_hash_raw(skb) & (GRO_HASH_BUCKETS - 1); 5492 struct list_head *head = &offload_base; 5493 struct packet_offload *ptype; 5494 __be16 type = skb->protocol; 5495 struct list_head *gro_head; 5496 struct sk_buff *pp = NULL; 5497 enum gro_result ret; 5498 int same_flow; 5499 int grow; 5500 5501 if (netif_elide_gro(skb->dev)) 5502 goto normal; 5503 5504 gro_head = gro_list_prepare(napi, skb); 5505 5506 rcu_read_lock(); 5507 list_for_each_entry_rcu(ptype, head, list) { 5508 if (ptype->type != type || !ptype->callbacks.gro_receive) 5509 continue; 5510 5511 skb_set_network_header(skb, skb_gro_offset(skb)); 5512 skb_reset_mac_len(skb); 5513 NAPI_GRO_CB(skb)->same_flow = 0; 5514 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb); 5515 NAPI_GRO_CB(skb)->free = 0; 5516 NAPI_GRO_CB(skb)->encap_mark = 0; 5517 NAPI_GRO_CB(skb)->recursion_counter = 0; 5518 NAPI_GRO_CB(skb)->is_fou = 0; 5519 NAPI_GRO_CB(skb)->is_atomic = 1; 5520 NAPI_GRO_CB(skb)->gro_remcsum_start = 0; 5521 5522 /* Setup for GRO checksum validation */ 5523 switch (skb->ip_summed) { 5524 case CHECKSUM_COMPLETE: 5525 NAPI_GRO_CB(skb)->csum = skb->csum; 5526 NAPI_GRO_CB(skb)->csum_valid = 1; 5527 NAPI_GRO_CB(skb)->csum_cnt = 0; 5528 break; 5529 case CHECKSUM_UNNECESSARY: 5530 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1; 5531 NAPI_GRO_CB(skb)->csum_valid = 0; 5532 break; 5533 default: 5534 NAPI_GRO_CB(skb)->csum_cnt = 0; 5535 NAPI_GRO_CB(skb)->csum_valid = 0; 5536 } 5537 5538 pp = ptype->callbacks.gro_receive(gro_head, skb); 5539 break; 5540 } 5541 rcu_read_unlock(); 5542 5543 if (&ptype->list == head) 5544 goto normal; 5545 5546 if (IS_ERR(pp) && PTR_ERR(pp) == -EINPROGRESS) { 5547 ret = GRO_CONSUMED; 5548 goto ok; 5549 } 5550 5551 same_flow = NAPI_GRO_CB(skb)->same_flow; 5552 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED; 5553 5554 if (pp) { 5555 skb_list_del_init(pp); 5556 napi_gro_complete(pp); 5557 napi->gro_hash[hash].count--; 5558 } 5559 5560 if (same_flow) 5561 goto ok; 5562 5563 if (NAPI_GRO_CB(skb)->flush) 5564 goto normal; 5565 5566 if (unlikely(napi->gro_hash[hash].count >= MAX_GRO_SKBS)) { 5567 gro_flush_oldest(gro_head); 5568 } else { 5569 napi->gro_hash[hash].count++; 5570 } 5571 NAPI_GRO_CB(skb)->count = 1; 5572 NAPI_GRO_CB(skb)->age = jiffies; 5573 NAPI_GRO_CB(skb)->last = skb; 5574 skb_shinfo(skb)->gso_size = skb_gro_len(skb); 5575 list_add(&skb->list, gro_head); 5576 ret = GRO_HELD; 5577 5578 pull: 5579 grow = skb_gro_offset(skb) - skb_headlen(skb); 5580 if (grow > 0) 5581 gro_pull_from_frag0(skb, grow); 5582 ok: 5583 if (napi->gro_hash[hash].count) { 5584 if (!test_bit(hash, &napi->gro_bitmask)) 5585 __set_bit(hash, &napi->gro_bitmask); 5586 } else if (test_bit(hash, &napi->gro_bitmask)) { 5587 __clear_bit(hash, &napi->gro_bitmask); 5588 } 5589 5590 return ret; 5591 5592 normal: 5593 ret = GRO_NORMAL; 5594 goto pull; 5595 } 5596 5597 struct packet_offload *gro_find_receive_by_type(__be16 type) 5598 { 5599 struct list_head *offload_head = &offload_base; 5600 struct packet_offload *ptype; 5601 5602 list_for_each_entry_rcu(ptype, offload_head, list) { 5603 if (ptype->type != type || !ptype->callbacks.gro_receive) 5604 continue; 5605 return ptype; 5606 } 5607 return NULL; 5608 } 5609 EXPORT_SYMBOL(gro_find_receive_by_type); 5610 5611 struct packet_offload *gro_find_complete_by_type(__be16 type) 5612 { 5613 struct list_head *offload_head = &offload_base; 5614 struct packet_offload *ptype; 5615 5616 list_for_each_entry_rcu(ptype, offload_head, list) { 5617 if (ptype->type != type || !ptype->callbacks.gro_complete) 5618 continue; 5619 return ptype; 5620 } 5621 return NULL; 5622 } 5623 EXPORT_SYMBOL(gro_find_complete_by_type); 5624 5625 static void napi_skb_free_stolen_head(struct sk_buff *skb) 5626 { 5627 skb_dst_drop(skb); 5628 secpath_reset(skb); 5629 kmem_cache_free(skbuff_head_cache, skb); 5630 } 5631 5632 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb) 5633 { 5634 switch (ret) { 5635 case GRO_NORMAL: 5636 if (netif_receive_skb_internal(skb)) 5637 ret = GRO_DROP; 5638 break; 5639 5640 case GRO_DROP: 5641 kfree_skb(skb); 5642 break; 5643 5644 case GRO_MERGED_FREE: 5645 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) 5646 napi_skb_free_stolen_head(skb); 5647 else 5648 __kfree_skb(skb); 5649 break; 5650 5651 case GRO_HELD: 5652 case GRO_MERGED: 5653 case GRO_CONSUMED: 5654 break; 5655 } 5656 5657 return ret; 5658 } 5659 5660 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 5661 { 5662 gro_result_t ret; 5663 5664 skb_mark_napi_id(skb, napi); 5665 trace_napi_gro_receive_entry(skb); 5666 5667 skb_gro_reset_offset(skb); 5668 5669 ret = napi_skb_finish(dev_gro_receive(napi, skb), skb); 5670 trace_napi_gro_receive_exit(ret); 5671 5672 return ret; 5673 } 5674 EXPORT_SYMBOL(napi_gro_receive); 5675 5676 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb) 5677 { 5678 if (unlikely(skb->pfmemalloc)) { 5679 consume_skb(skb); 5680 return; 5681 } 5682 __skb_pull(skb, skb_headlen(skb)); 5683 /* restore the reserve we had after netdev_alloc_skb_ip_align() */ 5684 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb)); 5685 __vlan_hwaccel_clear_tag(skb); 5686 skb->dev = napi->dev; 5687 skb->skb_iif = 0; 5688 5689 /* eth_type_trans() assumes pkt_type is PACKET_HOST */ 5690 skb->pkt_type = PACKET_HOST; 5691 5692 skb->encapsulation = 0; 5693 skb_shinfo(skb)->gso_type = 0; 5694 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb)); 5695 secpath_reset(skb); 5696 5697 napi->skb = skb; 5698 } 5699 5700 struct sk_buff *napi_get_frags(struct napi_struct *napi) 5701 { 5702 struct sk_buff *skb = napi->skb; 5703 5704 if (!skb) { 5705 skb = napi_alloc_skb(napi, GRO_MAX_HEAD); 5706 if (skb) { 5707 napi->skb = skb; 5708 skb_mark_napi_id(skb, napi); 5709 } 5710 } 5711 return skb; 5712 } 5713 EXPORT_SYMBOL(napi_get_frags); 5714 5715 static gro_result_t napi_frags_finish(struct napi_struct *napi, 5716 struct sk_buff *skb, 5717 gro_result_t ret) 5718 { 5719 switch (ret) { 5720 case GRO_NORMAL: 5721 case GRO_HELD: 5722 __skb_push(skb, ETH_HLEN); 5723 skb->protocol = eth_type_trans(skb, skb->dev); 5724 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb)) 5725 ret = GRO_DROP; 5726 break; 5727 5728 case GRO_DROP: 5729 napi_reuse_skb(napi, skb); 5730 break; 5731 5732 case GRO_MERGED_FREE: 5733 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) 5734 napi_skb_free_stolen_head(skb); 5735 else 5736 napi_reuse_skb(napi, skb); 5737 break; 5738 5739 case GRO_MERGED: 5740 case GRO_CONSUMED: 5741 break; 5742 } 5743 5744 return ret; 5745 } 5746 5747 /* Upper GRO stack assumes network header starts at gro_offset=0 5748 * Drivers could call both napi_gro_frags() and napi_gro_receive() 5749 * We copy ethernet header into skb->data to have a common layout. 5750 */ 5751 static struct sk_buff *napi_frags_skb(struct napi_struct *napi) 5752 { 5753 struct sk_buff *skb = napi->skb; 5754 const struct ethhdr *eth; 5755 unsigned int hlen = sizeof(*eth); 5756 5757 napi->skb = NULL; 5758 5759 skb_reset_mac_header(skb); 5760 skb_gro_reset_offset(skb); 5761 5762 eth = skb_gro_header_fast(skb, 0); 5763 if (unlikely(skb_gro_header_hard(skb, hlen))) { 5764 eth = skb_gro_header_slow(skb, hlen, 0); 5765 if (unlikely(!eth)) { 5766 net_warn_ratelimited("%s: dropping impossible skb from %s\n", 5767 __func__, napi->dev->name); 5768 napi_reuse_skb(napi, skb); 5769 return NULL; 5770 } 5771 } else { 5772 gro_pull_from_frag0(skb, hlen); 5773 NAPI_GRO_CB(skb)->frag0 += hlen; 5774 NAPI_GRO_CB(skb)->frag0_len -= hlen; 5775 } 5776 __skb_pull(skb, hlen); 5777 5778 /* 5779 * This works because the only protocols we care about don't require 5780 * special handling. 5781 * We'll fix it up properly in napi_frags_finish() 5782 */ 5783 skb->protocol = eth->h_proto; 5784 5785 return skb; 5786 } 5787 5788 gro_result_t napi_gro_frags(struct napi_struct *napi) 5789 { 5790 gro_result_t ret; 5791 struct sk_buff *skb = napi_frags_skb(napi); 5792 5793 if (!skb) 5794 return GRO_DROP; 5795 5796 trace_napi_gro_frags_entry(skb); 5797 5798 ret = napi_frags_finish(napi, skb, dev_gro_receive(napi, skb)); 5799 trace_napi_gro_frags_exit(ret); 5800 5801 return ret; 5802 } 5803 EXPORT_SYMBOL(napi_gro_frags); 5804 5805 /* Compute the checksum from gro_offset and return the folded value 5806 * after adding in any pseudo checksum. 5807 */ 5808 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb) 5809 { 5810 __wsum wsum; 5811 __sum16 sum; 5812 5813 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0); 5814 5815 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */ 5816 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum)); 5817 /* See comments in __skb_checksum_complete(). */ 5818 if (likely(!sum)) { 5819 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) && 5820 !skb->csum_complete_sw) 5821 netdev_rx_csum_fault(skb->dev, skb); 5822 } 5823 5824 NAPI_GRO_CB(skb)->csum = wsum; 5825 NAPI_GRO_CB(skb)->csum_valid = 1; 5826 5827 return sum; 5828 } 5829 EXPORT_SYMBOL(__skb_gro_checksum_complete); 5830 5831 static void net_rps_send_ipi(struct softnet_data *remsd) 5832 { 5833 #ifdef CONFIG_RPS 5834 while (remsd) { 5835 struct softnet_data *next = remsd->rps_ipi_next; 5836 5837 if (cpu_online(remsd->cpu)) 5838 smp_call_function_single_async(remsd->cpu, &remsd->csd); 5839 remsd = next; 5840 } 5841 #endif 5842 } 5843 5844 /* 5845 * net_rps_action_and_irq_enable sends any pending IPI's for rps. 5846 * Note: called with local irq disabled, but exits with local irq enabled. 5847 */ 5848 static void net_rps_action_and_irq_enable(struct softnet_data *sd) 5849 { 5850 #ifdef CONFIG_RPS 5851 struct softnet_data *remsd = sd->rps_ipi_list; 5852 5853 if (remsd) { 5854 sd->rps_ipi_list = NULL; 5855 5856 local_irq_enable(); 5857 5858 /* Send pending IPI's to kick RPS processing on remote cpus. */ 5859 net_rps_send_ipi(remsd); 5860 } else 5861 #endif 5862 local_irq_enable(); 5863 } 5864 5865 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd) 5866 { 5867 #ifdef CONFIG_RPS 5868 return sd->rps_ipi_list != NULL; 5869 #else 5870 return false; 5871 #endif 5872 } 5873 5874 static int process_backlog(struct napi_struct *napi, int quota) 5875 { 5876 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog); 5877 bool again = true; 5878 int work = 0; 5879 5880 /* Check if we have pending ipi, its better to send them now, 5881 * not waiting net_rx_action() end. 5882 */ 5883 if (sd_has_rps_ipi_waiting(sd)) { 5884 local_irq_disable(); 5885 net_rps_action_and_irq_enable(sd); 5886 } 5887 5888 napi->weight = dev_rx_weight; 5889 while (again) { 5890 struct sk_buff *skb; 5891 5892 while ((skb = __skb_dequeue(&sd->process_queue))) { 5893 rcu_read_lock(); 5894 __netif_receive_skb(skb); 5895 rcu_read_unlock(); 5896 input_queue_head_incr(sd); 5897 if (++work >= quota) 5898 return work; 5899 5900 } 5901 5902 local_irq_disable(); 5903 rps_lock(sd); 5904 if (skb_queue_empty(&sd->input_pkt_queue)) { 5905 /* 5906 * Inline a custom version of __napi_complete(). 5907 * only current cpu owns and manipulates this napi, 5908 * and NAPI_STATE_SCHED is the only possible flag set 5909 * on backlog. 5910 * We can use a plain write instead of clear_bit(), 5911 * and we dont need an smp_mb() memory barrier. 5912 */ 5913 napi->state = 0; 5914 again = false; 5915 } else { 5916 skb_queue_splice_tail_init(&sd->input_pkt_queue, 5917 &sd->process_queue); 5918 } 5919 rps_unlock(sd); 5920 local_irq_enable(); 5921 } 5922 5923 return work; 5924 } 5925 5926 /** 5927 * __napi_schedule - schedule for receive 5928 * @n: entry to schedule 5929 * 5930 * The entry's receive function will be scheduled to run. 5931 * Consider using __napi_schedule_irqoff() if hard irqs are masked. 5932 */ 5933 void __napi_schedule(struct napi_struct *n) 5934 { 5935 unsigned long flags; 5936 5937 local_irq_save(flags); 5938 ____napi_schedule(this_cpu_ptr(&softnet_data), n); 5939 local_irq_restore(flags); 5940 } 5941 EXPORT_SYMBOL(__napi_schedule); 5942 5943 /** 5944 * napi_schedule_prep - check if napi can be scheduled 5945 * @n: napi context 5946 * 5947 * Test if NAPI routine is already running, and if not mark 5948 * it as running. This is used as a condition variable 5949 * insure only one NAPI poll instance runs. We also make 5950 * sure there is no pending NAPI disable. 5951 */ 5952 bool napi_schedule_prep(struct napi_struct *n) 5953 { 5954 unsigned long val, new; 5955 5956 do { 5957 val = READ_ONCE(n->state); 5958 if (unlikely(val & NAPIF_STATE_DISABLE)) 5959 return false; 5960 new = val | NAPIF_STATE_SCHED; 5961 5962 /* Sets STATE_MISSED bit if STATE_SCHED was already set 5963 * This was suggested by Alexander Duyck, as compiler 5964 * emits better code than : 5965 * if (val & NAPIF_STATE_SCHED) 5966 * new |= NAPIF_STATE_MISSED; 5967 */ 5968 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED * 5969 NAPIF_STATE_MISSED; 5970 } while (cmpxchg(&n->state, val, new) != val); 5971 5972 return !(val & NAPIF_STATE_SCHED); 5973 } 5974 EXPORT_SYMBOL(napi_schedule_prep); 5975 5976 /** 5977 * __napi_schedule_irqoff - schedule for receive 5978 * @n: entry to schedule 5979 * 5980 * Variant of __napi_schedule() assuming hard irqs are masked 5981 */ 5982 void __napi_schedule_irqoff(struct napi_struct *n) 5983 { 5984 ____napi_schedule(this_cpu_ptr(&softnet_data), n); 5985 } 5986 EXPORT_SYMBOL(__napi_schedule_irqoff); 5987 5988 bool napi_complete_done(struct napi_struct *n, int work_done) 5989 { 5990 unsigned long flags, val, new; 5991 5992 /* 5993 * 1) Don't let napi dequeue from the cpu poll list 5994 * just in case its running on a different cpu. 5995 * 2) If we are busy polling, do nothing here, we have 5996 * the guarantee we will be called later. 5997 */ 5998 if (unlikely(n->state & (NAPIF_STATE_NPSVC | 5999 NAPIF_STATE_IN_BUSY_POLL))) 6000 return false; 6001 6002 if (n->gro_bitmask) { 6003 unsigned long timeout = 0; 6004 6005 if (work_done) 6006 timeout = n->dev->gro_flush_timeout; 6007 6008 /* When the NAPI instance uses a timeout and keeps postponing 6009 * it, we need to bound somehow the time packets are kept in 6010 * the GRO layer 6011 */ 6012 napi_gro_flush(n, !!timeout); 6013 if (timeout) 6014 hrtimer_start(&n->timer, ns_to_ktime(timeout), 6015 HRTIMER_MODE_REL_PINNED); 6016 } 6017 if (unlikely(!list_empty(&n->poll_list))) { 6018 /* If n->poll_list is not empty, we need to mask irqs */ 6019 local_irq_save(flags); 6020 list_del_init(&n->poll_list); 6021 local_irq_restore(flags); 6022 } 6023 6024 do { 6025 val = READ_ONCE(n->state); 6026 6027 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED)); 6028 6029 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED); 6030 6031 /* If STATE_MISSED was set, leave STATE_SCHED set, 6032 * because we will call napi->poll() one more time. 6033 * This C code was suggested by Alexander Duyck to help gcc. 6034 */ 6035 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED * 6036 NAPIF_STATE_SCHED; 6037 } while (cmpxchg(&n->state, val, new) != val); 6038 6039 if (unlikely(val & NAPIF_STATE_MISSED)) { 6040 __napi_schedule(n); 6041 return false; 6042 } 6043 6044 return true; 6045 } 6046 EXPORT_SYMBOL(napi_complete_done); 6047 6048 /* must be called under rcu_read_lock(), as we dont take a reference */ 6049 static struct napi_struct *napi_by_id(unsigned int napi_id) 6050 { 6051 unsigned int hash = napi_id % HASH_SIZE(napi_hash); 6052 struct napi_struct *napi; 6053 6054 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node) 6055 if (napi->napi_id == napi_id) 6056 return napi; 6057 6058 return NULL; 6059 } 6060 6061 #if defined(CONFIG_NET_RX_BUSY_POLL) 6062 6063 #define BUSY_POLL_BUDGET 8 6064 6065 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock) 6066 { 6067 int rc; 6068 6069 /* Busy polling means there is a high chance device driver hard irq 6070 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was 6071 * set in napi_schedule_prep(). 6072 * Since we are about to call napi->poll() once more, we can safely 6073 * clear NAPI_STATE_MISSED. 6074 * 6075 * Note: x86 could use a single "lock and ..." instruction 6076 * to perform these two clear_bit() 6077 */ 6078 clear_bit(NAPI_STATE_MISSED, &napi->state); 6079 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state); 6080 6081 local_bh_disable(); 6082 6083 /* All we really want here is to re-enable device interrupts. 6084 * Ideally, a new ndo_busy_poll_stop() could avoid another round. 6085 */ 6086 rc = napi->poll(napi, BUSY_POLL_BUDGET); 6087 trace_napi_poll(napi, rc, BUSY_POLL_BUDGET); 6088 netpoll_poll_unlock(have_poll_lock); 6089 if (rc == BUSY_POLL_BUDGET) 6090 __napi_schedule(napi); 6091 local_bh_enable(); 6092 } 6093 6094 void napi_busy_loop(unsigned int napi_id, 6095 bool (*loop_end)(void *, unsigned long), 6096 void *loop_end_arg) 6097 { 6098 unsigned long start_time = loop_end ? busy_loop_current_time() : 0; 6099 int (*napi_poll)(struct napi_struct *napi, int budget); 6100 void *have_poll_lock = NULL; 6101 struct napi_struct *napi; 6102 6103 restart: 6104 napi_poll = NULL; 6105 6106 rcu_read_lock(); 6107 6108 napi = napi_by_id(napi_id); 6109 if (!napi) 6110 goto out; 6111 6112 preempt_disable(); 6113 for (;;) { 6114 int work = 0; 6115 6116 local_bh_disable(); 6117 if (!napi_poll) { 6118 unsigned long val = READ_ONCE(napi->state); 6119 6120 /* If multiple threads are competing for this napi, 6121 * we avoid dirtying napi->state as much as we can. 6122 */ 6123 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED | 6124 NAPIF_STATE_IN_BUSY_POLL)) 6125 goto count; 6126 if (cmpxchg(&napi->state, val, 6127 val | NAPIF_STATE_IN_BUSY_POLL | 6128 NAPIF_STATE_SCHED) != val) 6129 goto count; 6130 have_poll_lock = netpoll_poll_lock(napi); 6131 napi_poll = napi->poll; 6132 } 6133 work = napi_poll(napi, BUSY_POLL_BUDGET); 6134 trace_napi_poll(napi, work, BUSY_POLL_BUDGET); 6135 count: 6136 if (work > 0) 6137 __NET_ADD_STATS(dev_net(napi->dev), 6138 LINUX_MIB_BUSYPOLLRXPACKETS, work); 6139 local_bh_enable(); 6140 6141 if (!loop_end || loop_end(loop_end_arg, start_time)) 6142 break; 6143 6144 if (unlikely(need_resched())) { 6145 if (napi_poll) 6146 busy_poll_stop(napi, have_poll_lock); 6147 preempt_enable(); 6148 rcu_read_unlock(); 6149 cond_resched(); 6150 if (loop_end(loop_end_arg, start_time)) 6151 return; 6152 goto restart; 6153 } 6154 cpu_relax(); 6155 } 6156 if (napi_poll) 6157 busy_poll_stop(napi, have_poll_lock); 6158 preempt_enable(); 6159 out: 6160 rcu_read_unlock(); 6161 } 6162 EXPORT_SYMBOL(napi_busy_loop); 6163 6164 #endif /* CONFIG_NET_RX_BUSY_POLL */ 6165 6166 static void napi_hash_add(struct napi_struct *napi) 6167 { 6168 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) || 6169 test_and_set_bit(NAPI_STATE_HASHED, &napi->state)) 6170 return; 6171 6172 spin_lock(&napi_hash_lock); 6173 6174 /* 0..NR_CPUS range is reserved for sender_cpu use */ 6175 do { 6176 if (unlikely(++napi_gen_id < MIN_NAPI_ID)) 6177 napi_gen_id = MIN_NAPI_ID; 6178 } while (napi_by_id(napi_gen_id)); 6179 napi->napi_id = napi_gen_id; 6180 6181 hlist_add_head_rcu(&napi->napi_hash_node, 6182 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]); 6183 6184 spin_unlock(&napi_hash_lock); 6185 } 6186 6187 /* Warning : caller is responsible to make sure rcu grace period 6188 * is respected before freeing memory containing @napi 6189 */ 6190 bool napi_hash_del(struct napi_struct *napi) 6191 { 6192 bool rcu_sync_needed = false; 6193 6194 spin_lock(&napi_hash_lock); 6195 6196 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) { 6197 rcu_sync_needed = true; 6198 hlist_del_rcu(&napi->napi_hash_node); 6199 } 6200 spin_unlock(&napi_hash_lock); 6201 return rcu_sync_needed; 6202 } 6203 EXPORT_SYMBOL_GPL(napi_hash_del); 6204 6205 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer) 6206 { 6207 struct napi_struct *napi; 6208 6209 napi = container_of(timer, struct napi_struct, timer); 6210 6211 /* Note : we use a relaxed variant of napi_schedule_prep() not setting 6212 * NAPI_STATE_MISSED, since we do not react to a device IRQ. 6213 */ 6214 if (napi->gro_bitmask && !napi_disable_pending(napi) && 6215 !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) 6216 __napi_schedule_irqoff(napi); 6217 6218 return HRTIMER_NORESTART; 6219 } 6220 6221 static void init_gro_hash(struct napi_struct *napi) 6222 { 6223 int i; 6224 6225 for (i = 0; i < GRO_HASH_BUCKETS; i++) { 6226 INIT_LIST_HEAD(&napi->gro_hash[i].list); 6227 napi->gro_hash[i].count = 0; 6228 } 6229 napi->gro_bitmask = 0; 6230 } 6231 6232 void netif_napi_add(struct net_device *dev, struct napi_struct *napi, 6233 int (*poll)(struct napi_struct *, int), int weight) 6234 { 6235 INIT_LIST_HEAD(&napi->poll_list); 6236 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED); 6237 napi->timer.function = napi_watchdog; 6238 init_gro_hash(napi); 6239 napi->skb = NULL; 6240 napi->poll = poll; 6241 if (weight > NAPI_POLL_WEIGHT) 6242 pr_err_once("netif_napi_add() called with weight %d on device %s\n", 6243 weight, dev->name); 6244 napi->weight = weight; 6245 list_add(&napi->dev_list, &dev->napi_list); 6246 napi->dev = dev; 6247 #ifdef CONFIG_NETPOLL 6248 napi->poll_owner = -1; 6249 #endif 6250 set_bit(NAPI_STATE_SCHED, &napi->state); 6251 napi_hash_add(napi); 6252 } 6253 EXPORT_SYMBOL(netif_napi_add); 6254 6255 void napi_disable(struct napi_struct *n) 6256 { 6257 might_sleep(); 6258 set_bit(NAPI_STATE_DISABLE, &n->state); 6259 6260 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state)) 6261 msleep(1); 6262 while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state)) 6263 msleep(1); 6264 6265 hrtimer_cancel(&n->timer); 6266 6267 clear_bit(NAPI_STATE_DISABLE, &n->state); 6268 } 6269 EXPORT_SYMBOL(napi_disable); 6270 6271 static void flush_gro_hash(struct napi_struct *napi) 6272 { 6273 int i; 6274 6275 for (i = 0; i < GRO_HASH_BUCKETS; i++) { 6276 struct sk_buff *skb, *n; 6277 6278 list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list) 6279 kfree_skb(skb); 6280 napi->gro_hash[i].count = 0; 6281 } 6282 } 6283 6284 /* Must be called in process context */ 6285 void netif_napi_del(struct napi_struct *napi) 6286 { 6287 might_sleep(); 6288 if (napi_hash_del(napi)) 6289 synchronize_net(); 6290 list_del_init(&napi->dev_list); 6291 napi_free_frags(napi); 6292 6293 flush_gro_hash(napi); 6294 napi->gro_bitmask = 0; 6295 } 6296 EXPORT_SYMBOL(netif_napi_del); 6297 6298 static int napi_poll(struct napi_struct *n, struct list_head *repoll) 6299 { 6300 void *have; 6301 int work, weight; 6302 6303 list_del_init(&n->poll_list); 6304 6305 have = netpoll_poll_lock(n); 6306 6307 weight = n->weight; 6308 6309 /* This NAPI_STATE_SCHED test is for avoiding a race 6310 * with netpoll's poll_napi(). Only the entity which 6311 * obtains the lock and sees NAPI_STATE_SCHED set will 6312 * actually make the ->poll() call. Therefore we avoid 6313 * accidentally calling ->poll() when NAPI is not scheduled. 6314 */ 6315 work = 0; 6316 if (test_bit(NAPI_STATE_SCHED, &n->state)) { 6317 work = n->poll(n, weight); 6318 trace_napi_poll(n, work, weight); 6319 } 6320 6321 WARN_ON_ONCE(work > weight); 6322 6323 if (likely(work < weight)) 6324 goto out_unlock; 6325 6326 /* Drivers must not modify the NAPI state if they 6327 * consume the entire weight. In such cases this code 6328 * still "owns" the NAPI instance and therefore can 6329 * move the instance around on the list at-will. 6330 */ 6331 if (unlikely(napi_disable_pending(n))) { 6332 napi_complete(n); 6333 goto out_unlock; 6334 } 6335 6336 if (n->gro_bitmask) { 6337 /* flush too old packets 6338 * If HZ < 1000, flush all packets. 6339 */ 6340 napi_gro_flush(n, HZ >= 1000); 6341 } 6342 6343 /* Some drivers may have called napi_schedule 6344 * prior to exhausting their budget. 6345 */ 6346 if (unlikely(!list_empty(&n->poll_list))) { 6347 pr_warn_once("%s: Budget exhausted after napi rescheduled\n", 6348 n->dev ? n->dev->name : "backlog"); 6349 goto out_unlock; 6350 } 6351 6352 list_add_tail(&n->poll_list, repoll); 6353 6354 out_unlock: 6355 netpoll_poll_unlock(have); 6356 6357 return work; 6358 } 6359 6360 static __latent_entropy void net_rx_action(struct softirq_action *h) 6361 { 6362 struct softnet_data *sd = this_cpu_ptr(&softnet_data); 6363 unsigned long time_limit = jiffies + 6364 usecs_to_jiffies(netdev_budget_usecs); 6365 int budget = netdev_budget; 6366 LIST_HEAD(list); 6367 LIST_HEAD(repoll); 6368 6369 local_irq_disable(); 6370 list_splice_init(&sd->poll_list, &list); 6371 local_irq_enable(); 6372 6373 for (;;) { 6374 struct napi_struct *n; 6375 6376 if (list_empty(&list)) { 6377 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll)) 6378 goto out; 6379 break; 6380 } 6381 6382 n = list_first_entry(&list, struct napi_struct, poll_list); 6383 budget -= napi_poll(n, &repoll); 6384 6385 /* If softirq window is exhausted then punt. 6386 * Allow this to run for 2 jiffies since which will allow 6387 * an average latency of 1.5/HZ. 6388 */ 6389 if (unlikely(budget <= 0 || 6390 time_after_eq(jiffies, time_limit))) { 6391 sd->time_squeeze++; 6392 break; 6393 } 6394 } 6395 6396 local_irq_disable(); 6397 6398 list_splice_tail_init(&sd->poll_list, &list); 6399 list_splice_tail(&repoll, &list); 6400 list_splice(&list, &sd->poll_list); 6401 if (!list_empty(&sd->poll_list)) 6402 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 6403 6404 net_rps_action_and_irq_enable(sd); 6405 out: 6406 __kfree_skb_flush(); 6407 } 6408 6409 struct netdev_adjacent { 6410 struct net_device *dev; 6411 6412 /* upper master flag, there can only be one master device per list */ 6413 bool master; 6414 6415 /* counter for the number of times this device was added to us */ 6416 u16 ref_nr; 6417 6418 /* private field for the users */ 6419 void *private; 6420 6421 struct list_head list; 6422 struct rcu_head rcu; 6423 }; 6424 6425 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev, 6426 struct list_head *adj_list) 6427 { 6428 struct netdev_adjacent *adj; 6429 6430 list_for_each_entry(adj, adj_list, list) { 6431 if (adj->dev == adj_dev) 6432 return adj; 6433 } 6434 return NULL; 6435 } 6436 6437 static int __netdev_has_upper_dev(struct net_device *upper_dev, void *data) 6438 { 6439 struct net_device *dev = data; 6440 6441 return upper_dev == dev; 6442 } 6443 6444 /** 6445 * netdev_has_upper_dev - Check if device is linked to an upper device 6446 * @dev: device 6447 * @upper_dev: upper device to check 6448 * 6449 * Find out if a device is linked to specified upper device and return true 6450 * in case it is. Note that this checks only immediate upper device, 6451 * not through a complete stack of devices. The caller must hold the RTNL lock. 6452 */ 6453 bool netdev_has_upper_dev(struct net_device *dev, 6454 struct net_device *upper_dev) 6455 { 6456 ASSERT_RTNL(); 6457 6458 return netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev, 6459 upper_dev); 6460 } 6461 EXPORT_SYMBOL(netdev_has_upper_dev); 6462 6463 /** 6464 * netdev_has_upper_dev_all - Check if device is linked to an upper device 6465 * @dev: device 6466 * @upper_dev: upper device to check 6467 * 6468 * Find out if a device is linked to specified upper device and return true 6469 * in case it is. Note that this checks the entire upper device chain. 6470 * The caller must hold rcu lock. 6471 */ 6472 6473 bool netdev_has_upper_dev_all_rcu(struct net_device *dev, 6474 struct net_device *upper_dev) 6475 { 6476 return !!netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev, 6477 upper_dev); 6478 } 6479 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu); 6480 6481 /** 6482 * netdev_has_any_upper_dev - Check if device is linked to some device 6483 * @dev: device 6484 * 6485 * Find out if a device is linked to an upper device and return true in case 6486 * it is. The caller must hold the RTNL lock. 6487 */ 6488 bool netdev_has_any_upper_dev(struct net_device *dev) 6489 { 6490 ASSERT_RTNL(); 6491 6492 return !list_empty(&dev->adj_list.upper); 6493 } 6494 EXPORT_SYMBOL(netdev_has_any_upper_dev); 6495 6496 /** 6497 * netdev_master_upper_dev_get - Get master upper device 6498 * @dev: device 6499 * 6500 * Find a master upper device and return pointer to it or NULL in case 6501 * it's not there. The caller must hold the RTNL lock. 6502 */ 6503 struct net_device *netdev_master_upper_dev_get(struct net_device *dev) 6504 { 6505 struct netdev_adjacent *upper; 6506 6507 ASSERT_RTNL(); 6508 6509 if (list_empty(&dev->adj_list.upper)) 6510 return NULL; 6511 6512 upper = list_first_entry(&dev->adj_list.upper, 6513 struct netdev_adjacent, list); 6514 if (likely(upper->master)) 6515 return upper->dev; 6516 return NULL; 6517 } 6518 EXPORT_SYMBOL(netdev_master_upper_dev_get); 6519 6520 /** 6521 * netdev_has_any_lower_dev - Check if device is linked to some device 6522 * @dev: device 6523 * 6524 * Find out if a device is linked to a lower device and return true in case 6525 * it is. The caller must hold the RTNL lock. 6526 */ 6527 static bool netdev_has_any_lower_dev(struct net_device *dev) 6528 { 6529 ASSERT_RTNL(); 6530 6531 return !list_empty(&dev->adj_list.lower); 6532 } 6533 6534 void *netdev_adjacent_get_private(struct list_head *adj_list) 6535 { 6536 struct netdev_adjacent *adj; 6537 6538 adj = list_entry(adj_list, struct netdev_adjacent, list); 6539 6540 return adj->private; 6541 } 6542 EXPORT_SYMBOL(netdev_adjacent_get_private); 6543 6544 /** 6545 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list 6546 * @dev: device 6547 * @iter: list_head ** of the current position 6548 * 6549 * Gets the next device from the dev's upper list, starting from iter 6550 * position. The caller must hold RCU read lock. 6551 */ 6552 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev, 6553 struct list_head **iter) 6554 { 6555 struct netdev_adjacent *upper; 6556 6557 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); 6558 6559 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 6560 6561 if (&upper->list == &dev->adj_list.upper) 6562 return NULL; 6563 6564 *iter = &upper->list; 6565 6566 return upper->dev; 6567 } 6568 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu); 6569 6570 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev, 6571 struct list_head **iter) 6572 { 6573 struct netdev_adjacent *upper; 6574 6575 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); 6576 6577 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 6578 6579 if (&upper->list == &dev->adj_list.upper) 6580 return NULL; 6581 6582 *iter = &upper->list; 6583 6584 return upper->dev; 6585 } 6586 6587 int netdev_walk_all_upper_dev_rcu(struct net_device *dev, 6588 int (*fn)(struct net_device *dev, 6589 void *data), 6590 void *data) 6591 { 6592 struct net_device *udev; 6593 struct list_head *iter; 6594 int ret; 6595 6596 for (iter = &dev->adj_list.upper, 6597 udev = netdev_next_upper_dev_rcu(dev, &iter); 6598 udev; 6599 udev = netdev_next_upper_dev_rcu(dev, &iter)) { 6600 /* first is the upper device itself */ 6601 ret = fn(udev, data); 6602 if (ret) 6603 return ret; 6604 6605 /* then look at all of its upper devices */ 6606 ret = netdev_walk_all_upper_dev_rcu(udev, fn, data); 6607 if (ret) 6608 return ret; 6609 } 6610 6611 return 0; 6612 } 6613 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu); 6614 6615 /** 6616 * netdev_lower_get_next_private - Get the next ->private from the 6617 * lower neighbour list 6618 * @dev: device 6619 * @iter: list_head ** of the current position 6620 * 6621 * Gets the next netdev_adjacent->private from the dev's lower neighbour 6622 * list, starting from iter position. The caller must hold either hold the 6623 * RTNL lock or its own locking that guarantees that the neighbour lower 6624 * list will remain unchanged. 6625 */ 6626 void *netdev_lower_get_next_private(struct net_device *dev, 6627 struct list_head **iter) 6628 { 6629 struct netdev_adjacent *lower; 6630 6631 lower = list_entry(*iter, struct netdev_adjacent, list); 6632 6633 if (&lower->list == &dev->adj_list.lower) 6634 return NULL; 6635 6636 *iter = lower->list.next; 6637 6638 return lower->private; 6639 } 6640 EXPORT_SYMBOL(netdev_lower_get_next_private); 6641 6642 /** 6643 * netdev_lower_get_next_private_rcu - Get the next ->private from the 6644 * lower neighbour list, RCU 6645 * variant 6646 * @dev: device 6647 * @iter: list_head ** of the current position 6648 * 6649 * Gets the next netdev_adjacent->private from the dev's lower neighbour 6650 * list, starting from iter position. The caller must hold RCU read lock. 6651 */ 6652 void *netdev_lower_get_next_private_rcu(struct net_device *dev, 6653 struct list_head **iter) 6654 { 6655 struct netdev_adjacent *lower; 6656 6657 WARN_ON_ONCE(!rcu_read_lock_held()); 6658 6659 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 6660 6661 if (&lower->list == &dev->adj_list.lower) 6662 return NULL; 6663 6664 *iter = &lower->list; 6665 6666 return lower->private; 6667 } 6668 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu); 6669 6670 /** 6671 * netdev_lower_get_next - Get the next device from the lower neighbour 6672 * list 6673 * @dev: device 6674 * @iter: list_head ** of the current position 6675 * 6676 * Gets the next netdev_adjacent from the dev's lower neighbour 6677 * list, starting from iter position. The caller must hold RTNL lock or 6678 * its own locking that guarantees that the neighbour lower 6679 * list will remain unchanged. 6680 */ 6681 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter) 6682 { 6683 struct netdev_adjacent *lower; 6684 6685 lower = list_entry(*iter, struct netdev_adjacent, list); 6686 6687 if (&lower->list == &dev->adj_list.lower) 6688 return NULL; 6689 6690 *iter = lower->list.next; 6691 6692 return lower->dev; 6693 } 6694 EXPORT_SYMBOL(netdev_lower_get_next); 6695 6696 static struct net_device *netdev_next_lower_dev(struct net_device *dev, 6697 struct list_head **iter) 6698 { 6699 struct netdev_adjacent *lower; 6700 6701 lower = list_entry((*iter)->next, struct netdev_adjacent, list); 6702 6703 if (&lower->list == &dev->adj_list.lower) 6704 return NULL; 6705 6706 *iter = &lower->list; 6707 6708 return lower->dev; 6709 } 6710 6711 int netdev_walk_all_lower_dev(struct net_device *dev, 6712 int (*fn)(struct net_device *dev, 6713 void *data), 6714 void *data) 6715 { 6716 struct net_device *ldev; 6717 struct list_head *iter; 6718 int ret; 6719 6720 for (iter = &dev->adj_list.lower, 6721 ldev = netdev_next_lower_dev(dev, &iter); 6722 ldev; 6723 ldev = netdev_next_lower_dev(dev, &iter)) { 6724 /* first is the lower device itself */ 6725 ret = fn(ldev, data); 6726 if (ret) 6727 return ret; 6728 6729 /* then look at all of its lower devices */ 6730 ret = netdev_walk_all_lower_dev(ldev, fn, data); 6731 if (ret) 6732 return ret; 6733 } 6734 6735 return 0; 6736 } 6737 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev); 6738 6739 static struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev, 6740 struct list_head **iter) 6741 { 6742 struct netdev_adjacent *lower; 6743 6744 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 6745 if (&lower->list == &dev->adj_list.lower) 6746 return NULL; 6747 6748 *iter = &lower->list; 6749 6750 return lower->dev; 6751 } 6752 6753 int netdev_walk_all_lower_dev_rcu(struct net_device *dev, 6754 int (*fn)(struct net_device *dev, 6755 void *data), 6756 void *data) 6757 { 6758 struct net_device *ldev; 6759 struct list_head *iter; 6760 int ret; 6761 6762 for (iter = &dev->adj_list.lower, 6763 ldev = netdev_next_lower_dev_rcu(dev, &iter); 6764 ldev; 6765 ldev = netdev_next_lower_dev_rcu(dev, &iter)) { 6766 /* first is the lower device itself */ 6767 ret = fn(ldev, data); 6768 if (ret) 6769 return ret; 6770 6771 /* then look at all of its lower devices */ 6772 ret = netdev_walk_all_lower_dev_rcu(ldev, fn, data); 6773 if (ret) 6774 return ret; 6775 } 6776 6777 return 0; 6778 } 6779 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu); 6780 6781 /** 6782 * netdev_lower_get_first_private_rcu - Get the first ->private from the 6783 * lower neighbour list, RCU 6784 * variant 6785 * @dev: device 6786 * 6787 * Gets the first netdev_adjacent->private from the dev's lower neighbour 6788 * list. The caller must hold RCU read lock. 6789 */ 6790 void *netdev_lower_get_first_private_rcu(struct net_device *dev) 6791 { 6792 struct netdev_adjacent *lower; 6793 6794 lower = list_first_or_null_rcu(&dev->adj_list.lower, 6795 struct netdev_adjacent, list); 6796 if (lower) 6797 return lower->private; 6798 return NULL; 6799 } 6800 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu); 6801 6802 /** 6803 * netdev_master_upper_dev_get_rcu - Get master upper device 6804 * @dev: device 6805 * 6806 * Find a master upper device and return pointer to it or NULL in case 6807 * it's not there. The caller must hold the RCU read lock. 6808 */ 6809 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev) 6810 { 6811 struct netdev_adjacent *upper; 6812 6813 upper = list_first_or_null_rcu(&dev->adj_list.upper, 6814 struct netdev_adjacent, list); 6815 if (upper && likely(upper->master)) 6816 return upper->dev; 6817 return NULL; 6818 } 6819 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu); 6820 6821 static int netdev_adjacent_sysfs_add(struct net_device *dev, 6822 struct net_device *adj_dev, 6823 struct list_head *dev_list) 6824 { 6825 char linkname[IFNAMSIZ+7]; 6826 6827 sprintf(linkname, dev_list == &dev->adj_list.upper ? 6828 "upper_%s" : "lower_%s", adj_dev->name); 6829 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj), 6830 linkname); 6831 } 6832 static void netdev_adjacent_sysfs_del(struct net_device *dev, 6833 char *name, 6834 struct list_head *dev_list) 6835 { 6836 char linkname[IFNAMSIZ+7]; 6837 6838 sprintf(linkname, dev_list == &dev->adj_list.upper ? 6839 "upper_%s" : "lower_%s", name); 6840 sysfs_remove_link(&(dev->dev.kobj), linkname); 6841 } 6842 6843 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev, 6844 struct net_device *adj_dev, 6845 struct list_head *dev_list) 6846 { 6847 return (dev_list == &dev->adj_list.upper || 6848 dev_list == &dev->adj_list.lower) && 6849 net_eq(dev_net(dev), dev_net(adj_dev)); 6850 } 6851 6852 static int __netdev_adjacent_dev_insert(struct net_device *dev, 6853 struct net_device *adj_dev, 6854 struct list_head *dev_list, 6855 void *private, bool master) 6856 { 6857 struct netdev_adjacent *adj; 6858 int ret; 6859 6860 adj = __netdev_find_adj(adj_dev, dev_list); 6861 6862 if (adj) { 6863 adj->ref_nr += 1; 6864 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n", 6865 dev->name, adj_dev->name, adj->ref_nr); 6866 6867 return 0; 6868 } 6869 6870 adj = kmalloc(sizeof(*adj), GFP_KERNEL); 6871 if (!adj) 6872 return -ENOMEM; 6873 6874 adj->dev = adj_dev; 6875 adj->master = master; 6876 adj->ref_nr = 1; 6877 adj->private = private; 6878 dev_hold(adj_dev); 6879 6880 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n", 6881 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name); 6882 6883 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) { 6884 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list); 6885 if (ret) 6886 goto free_adj; 6887 } 6888 6889 /* Ensure that master link is always the first item in list. */ 6890 if (master) { 6891 ret = sysfs_create_link(&(dev->dev.kobj), 6892 &(adj_dev->dev.kobj), "master"); 6893 if (ret) 6894 goto remove_symlinks; 6895 6896 list_add_rcu(&adj->list, dev_list); 6897 } else { 6898 list_add_tail_rcu(&adj->list, dev_list); 6899 } 6900 6901 return 0; 6902 6903 remove_symlinks: 6904 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) 6905 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list); 6906 free_adj: 6907 kfree(adj); 6908 dev_put(adj_dev); 6909 6910 return ret; 6911 } 6912 6913 static void __netdev_adjacent_dev_remove(struct net_device *dev, 6914 struct net_device *adj_dev, 6915 u16 ref_nr, 6916 struct list_head *dev_list) 6917 { 6918 struct netdev_adjacent *adj; 6919 6920 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n", 6921 dev->name, adj_dev->name, ref_nr); 6922 6923 adj = __netdev_find_adj(adj_dev, dev_list); 6924 6925 if (!adj) { 6926 pr_err("Adjacency does not exist for device %s from %s\n", 6927 dev->name, adj_dev->name); 6928 WARN_ON(1); 6929 return; 6930 } 6931 6932 if (adj->ref_nr > ref_nr) { 6933 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n", 6934 dev->name, adj_dev->name, ref_nr, 6935 adj->ref_nr - ref_nr); 6936 adj->ref_nr -= ref_nr; 6937 return; 6938 } 6939 6940 if (adj->master) 6941 sysfs_remove_link(&(dev->dev.kobj), "master"); 6942 6943 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) 6944 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list); 6945 6946 list_del_rcu(&adj->list); 6947 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n", 6948 adj_dev->name, dev->name, adj_dev->name); 6949 dev_put(adj_dev); 6950 kfree_rcu(adj, rcu); 6951 } 6952 6953 static int __netdev_adjacent_dev_link_lists(struct net_device *dev, 6954 struct net_device *upper_dev, 6955 struct list_head *up_list, 6956 struct list_head *down_list, 6957 void *private, bool master) 6958 { 6959 int ret; 6960 6961 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, 6962 private, master); 6963 if (ret) 6964 return ret; 6965 6966 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, 6967 private, false); 6968 if (ret) { 6969 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list); 6970 return ret; 6971 } 6972 6973 return 0; 6974 } 6975 6976 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev, 6977 struct net_device *upper_dev, 6978 u16 ref_nr, 6979 struct list_head *up_list, 6980 struct list_head *down_list) 6981 { 6982 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list); 6983 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list); 6984 } 6985 6986 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev, 6987 struct net_device *upper_dev, 6988 void *private, bool master) 6989 { 6990 return __netdev_adjacent_dev_link_lists(dev, upper_dev, 6991 &dev->adj_list.upper, 6992 &upper_dev->adj_list.lower, 6993 private, master); 6994 } 6995 6996 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev, 6997 struct net_device *upper_dev) 6998 { 6999 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1, 7000 &dev->adj_list.upper, 7001 &upper_dev->adj_list.lower); 7002 } 7003 7004 static int __netdev_upper_dev_link(struct net_device *dev, 7005 struct net_device *upper_dev, bool master, 7006 void *upper_priv, void *upper_info, 7007 struct netlink_ext_ack *extack) 7008 { 7009 struct netdev_notifier_changeupper_info changeupper_info = { 7010 .info = { 7011 .dev = dev, 7012 .extack = extack, 7013 }, 7014 .upper_dev = upper_dev, 7015 .master = master, 7016 .linking = true, 7017 .upper_info = upper_info, 7018 }; 7019 struct net_device *master_dev; 7020 int ret = 0; 7021 7022 ASSERT_RTNL(); 7023 7024 if (dev == upper_dev) 7025 return -EBUSY; 7026 7027 /* To prevent loops, check if dev is not upper device to upper_dev. */ 7028 if (netdev_has_upper_dev(upper_dev, dev)) 7029 return -EBUSY; 7030 7031 if (!master) { 7032 if (netdev_has_upper_dev(dev, upper_dev)) 7033 return -EEXIST; 7034 } else { 7035 master_dev = netdev_master_upper_dev_get(dev); 7036 if (master_dev) 7037 return master_dev == upper_dev ? -EEXIST : -EBUSY; 7038 } 7039 7040 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, 7041 &changeupper_info.info); 7042 ret = notifier_to_errno(ret); 7043 if (ret) 7044 return ret; 7045 7046 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv, 7047 master); 7048 if (ret) 7049 return ret; 7050 7051 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, 7052 &changeupper_info.info); 7053 ret = notifier_to_errno(ret); 7054 if (ret) 7055 goto rollback; 7056 7057 return 0; 7058 7059 rollback: 7060 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 7061 7062 return ret; 7063 } 7064 7065 /** 7066 * netdev_upper_dev_link - Add a link to the upper device 7067 * @dev: device 7068 * @upper_dev: new upper device 7069 * @extack: netlink extended ack 7070 * 7071 * Adds a link to device which is upper to this one. The caller must hold 7072 * the RTNL lock. On a failure a negative errno code is returned. 7073 * On success the reference counts are adjusted and the function 7074 * returns zero. 7075 */ 7076 int netdev_upper_dev_link(struct net_device *dev, 7077 struct net_device *upper_dev, 7078 struct netlink_ext_ack *extack) 7079 { 7080 return __netdev_upper_dev_link(dev, upper_dev, false, 7081 NULL, NULL, extack); 7082 } 7083 EXPORT_SYMBOL(netdev_upper_dev_link); 7084 7085 /** 7086 * netdev_master_upper_dev_link - Add a master link to the upper device 7087 * @dev: device 7088 * @upper_dev: new upper device 7089 * @upper_priv: upper device private 7090 * @upper_info: upper info to be passed down via notifier 7091 * @extack: netlink extended ack 7092 * 7093 * Adds a link to device which is upper to this one. In this case, only 7094 * one master upper device can be linked, although other non-master devices 7095 * might be linked as well. The caller must hold the RTNL lock. 7096 * On a failure a negative errno code is returned. On success the reference 7097 * counts are adjusted and the function returns zero. 7098 */ 7099 int netdev_master_upper_dev_link(struct net_device *dev, 7100 struct net_device *upper_dev, 7101 void *upper_priv, void *upper_info, 7102 struct netlink_ext_ack *extack) 7103 { 7104 return __netdev_upper_dev_link(dev, upper_dev, true, 7105 upper_priv, upper_info, extack); 7106 } 7107 EXPORT_SYMBOL(netdev_master_upper_dev_link); 7108 7109 /** 7110 * netdev_upper_dev_unlink - Removes a link to upper device 7111 * @dev: device 7112 * @upper_dev: new upper device 7113 * 7114 * Removes a link to device which is upper to this one. The caller must hold 7115 * the RTNL lock. 7116 */ 7117 void netdev_upper_dev_unlink(struct net_device *dev, 7118 struct net_device *upper_dev) 7119 { 7120 struct netdev_notifier_changeupper_info changeupper_info = { 7121 .info = { 7122 .dev = dev, 7123 }, 7124 .upper_dev = upper_dev, 7125 .linking = false, 7126 }; 7127 7128 ASSERT_RTNL(); 7129 7130 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev; 7131 7132 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, 7133 &changeupper_info.info); 7134 7135 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 7136 7137 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, 7138 &changeupper_info.info); 7139 } 7140 EXPORT_SYMBOL(netdev_upper_dev_unlink); 7141 7142 /** 7143 * netdev_bonding_info_change - Dispatch event about slave change 7144 * @dev: device 7145 * @bonding_info: info to dispatch 7146 * 7147 * Send NETDEV_BONDING_INFO to netdev notifiers with info. 7148 * The caller must hold the RTNL lock. 7149 */ 7150 void netdev_bonding_info_change(struct net_device *dev, 7151 struct netdev_bonding_info *bonding_info) 7152 { 7153 struct netdev_notifier_bonding_info info = { 7154 .info.dev = dev, 7155 }; 7156 7157 memcpy(&info.bonding_info, bonding_info, 7158 sizeof(struct netdev_bonding_info)); 7159 call_netdevice_notifiers_info(NETDEV_BONDING_INFO, 7160 &info.info); 7161 } 7162 EXPORT_SYMBOL(netdev_bonding_info_change); 7163 7164 static void netdev_adjacent_add_links(struct net_device *dev) 7165 { 7166 struct netdev_adjacent *iter; 7167 7168 struct net *net = dev_net(dev); 7169 7170 list_for_each_entry(iter, &dev->adj_list.upper, list) { 7171 if (!net_eq(net, dev_net(iter->dev))) 7172 continue; 7173 netdev_adjacent_sysfs_add(iter->dev, dev, 7174 &iter->dev->adj_list.lower); 7175 netdev_adjacent_sysfs_add(dev, iter->dev, 7176 &dev->adj_list.upper); 7177 } 7178 7179 list_for_each_entry(iter, &dev->adj_list.lower, list) { 7180 if (!net_eq(net, dev_net(iter->dev))) 7181 continue; 7182 netdev_adjacent_sysfs_add(iter->dev, dev, 7183 &iter->dev->adj_list.upper); 7184 netdev_adjacent_sysfs_add(dev, iter->dev, 7185 &dev->adj_list.lower); 7186 } 7187 } 7188 7189 static void netdev_adjacent_del_links(struct net_device *dev) 7190 { 7191 struct netdev_adjacent *iter; 7192 7193 struct net *net = dev_net(dev); 7194 7195 list_for_each_entry(iter, &dev->adj_list.upper, list) { 7196 if (!net_eq(net, dev_net(iter->dev))) 7197 continue; 7198 netdev_adjacent_sysfs_del(iter->dev, dev->name, 7199 &iter->dev->adj_list.lower); 7200 netdev_adjacent_sysfs_del(dev, iter->dev->name, 7201 &dev->adj_list.upper); 7202 } 7203 7204 list_for_each_entry(iter, &dev->adj_list.lower, list) { 7205 if (!net_eq(net, dev_net(iter->dev))) 7206 continue; 7207 netdev_adjacent_sysfs_del(iter->dev, dev->name, 7208 &iter->dev->adj_list.upper); 7209 netdev_adjacent_sysfs_del(dev, iter->dev->name, 7210 &dev->adj_list.lower); 7211 } 7212 } 7213 7214 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname) 7215 { 7216 struct netdev_adjacent *iter; 7217 7218 struct net *net = dev_net(dev); 7219 7220 list_for_each_entry(iter, &dev->adj_list.upper, list) { 7221 if (!net_eq(net, dev_net(iter->dev))) 7222 continue; 7223 netdev_adjacent_sysfs_del(iter->dev, oldname, 7224 &iter->dev->adj_list.lower); 7225 netdev_adjacent_sysfs_add(iter->dev, dev, 7226 &iter->dev->adj_list.lower); 7227 } 7228 7229 list_for_each_entry(iter, &dev->adj_list.lower, list) { 7230 if (!net_eq(net, dev_net(iter->dev))) 7231 continue; 7232 netdev_adjacent_sysfs_del(iter->dev, oldname, 7233 &iter->dev->adj_list.upper); 7234 netdev_adjacent_sysfs_add(iter->dev, dev, 7235 &iter->dev->adj_list.upper); 7236 } 7237 } 7238 7239 void *netdev_lower_dev_get_private(struct net_device *dev, 7240 struct net_device *lower_dev) 7241 { 7242 struct netdev_adjacent *lower; 7243 7244 if (!lower_dev) 7245 return NULL; 7246 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower); 7247 if (!lower) 7248 return NULL; 7249 7250 return lower->private; 7251 } 7252 EXPORT_SYMBOL(netdev_lower_dev_get_private); 7253 7254 7255 int dev_get_nest_level(struct net_device *dev) 7256 { 7257 struct net_device *lower = NULL; 7258 struct list_head *iter; 7259 int max_nest = -1; 7260 int nest; 7261 7262 ASSERT_RTNL(); 7263 7264 netdev_for_each_lower_dev(dev, lower, iter) { 7265 nest = dev_get_nest_level(lower); 7266 if (max_nest < nest) 7267 max_nest = nest; 7268 } 7269 7270 return max_nest + 1; 7271 } 7272 EXPORT_SYMBOL(dev_get_nest_level); 7273 7274 /** 7275 * netdev_lower_change - Dispatch event about lower device state change 7276 * @lower_dev: device 7277 * @lower_state_info: state to dispatch 7278 * 7279 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info. 7280 * The caller must hold the RTNL lock. 7281 */ 7282 void netdev_lower_state_changed(struct net_device *lower_dev, 7283 void *lower_state_info) 7284 { 7285 struct netdev_notifier_changelowerstate_info changelowerstate_info = { 7286 .info.dev = lower_dev, 7287 }; 7288 7289 ASSERT_RTNL(); 7290 changelowerstate_info.lower_state_info = lower_state_info; 7291 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE, 7292 &changelowerstate_info.info); 7293 } 7294 EXPORT_SYMBOL(netdev_lower_state_changed); 7295 7296 static void dev_change_rx_flags(struct net_device *dev, int flags) 7297 { 7298 const struct net_device_ops *ops = dev->netdev_ops; 7299 7300 if (ops->ndo_change_rx_flags) 7301 ops->ndo_change_rx_flags(dev, flags); 7302 } 7303 7304 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify) 7305 { 7306 unsigned int old_flags = dev->flags; 7307 kuid_t uid; 7308 kgid_t gid; 7309 7310 ASSERT_RTNL(); 7311 7312 dev->flags |= IFF_PROMISC; 7313 dev->promiscuity += inc; 7314 if (dev->promiscuity == 0) { 7315 /* 7316 * Avoid overflow. 7317 * If inc causes overflow, untouch promisc and return error. 7318 */ 7319 if (inc < 0) 7320 dev->flags &= ~IFF_PROMISC; 7321 else { 7322 dev->promiscuity -= inc; 7323 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n", 7324 dev->name); 7325 return -EOVERFLOW; 7326 } 7327 } 7328 if (dev->flags != old_flags) { 7329 pr_info("device %s %s promiscuous mode\n", 7330 dev->name, 7331 dev->flags & IFF_PROMISC ? "entered" : "left"); 7332 if (audit_enabled) { 7333 current_uid_gid(&uid, &gid); 7334 audit_log(audit_context(), GFP_ATOMIC, 7335 AUDIT_ANOM_PROMISCUOUS, 7336 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u", 7337 dev->name, (dev->flags & IFF_PROMISC), 7338 (old_flags & IFF_PROMISC), 7339 from_kuid(&init_user_ns, audit_get_loginuid(current)), 7340 from_kuid(&init_user_ns, uid), 7341 from_kgid(&init_user_ns, gid), 7342 audit_get_sessionid(current)); 7343 } 7344 7345 dev_change_rx_flags(dev, IFF_PROMISC); 7346 } 7347 if (notify) 7348 __dev_notify_flags(dev, old_flags, IFF_PROMISC); 7349 return 0; 7350 } 7351 7352 /** 7353 * dev_set_promiscuity - update promiscuity count on a device 7354 * @dev: device 7355 * @inc: modifier 7356 * 7357 * Add or remove promiscuity from a device. While the count in the device 7358 * remains above zero the interface remains promiscuous. Once it hits zero 7359 * the device reverts back to normal filtering operation. A negative inc 7360 * value is used to drop promiscuity on the device. 7361 * Return 0 if successful or a negative errno code on error. 7362 */ 7363 int dev_set_promiscuity(struct net_device *dev, int inc) 7364 { 7365 unsigned int old_flags = dev->flags; 7366 int err; 7367 7368 err = __dev_set_promiscuity(dev, inc, true); 7369 if (err < 0) 7370 return err; 7371 if (dev->flags != old_flags) 7372 dev_set_rx_mode(dev); 7373 return err; 7374 } 7375 EXPORT_SYMBOL(dev_set_promiscuity); 7376 7377 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify) 7378 { 7379 unsigned int old_flags = dev->flags, old_gflags = dev->gflags; 7380 7381 ASSERT_RTNL(); 7382 7383 dev->flags |= IFF_ALLMULTI; 7384 dev->allmulti += inc; 7385 if (dev->allmulti == 0) { 7386 /* 7387 * Avoid overflow. 7388 * If inc causes overflow, untouch allmulti and return error. 7389 */ 7390 if (inc < 0) 7391 dev->flags &= ~IFF_ALLMULTI; 7392 else { 7393 dev->allmulti -= inc; 7394 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n", 7395 dev->name); 7396 return -EOVERFLOW; 7397 } 7398 } 7399 if (dev->flags ^ old_flags) { 7400 dev_change_rx_flags(dev, IFF_ALLMULTI); 7401 dev_set_rx_mode(dev); 7402 if (notify) 7403 __dev_notify_flags(dev, old_flags, 7404 dev->gflags ^ old_gflags); 7405 } 7406 return 0; 7407 } 7408 7409 /** 7410 * dev_set_allmulti - update allmulti count on a device 7411 * @dev: device 7412 * @inc: modifier 7413 * 7414 * Add or remove reception of all multicast frames to a device. While the 7415 * count in the device remains above zero the interface remains listening 7416 * to all interfaces. Once it hits zero the device reverts back to normal 7417 * filtering operation. A negative @inc value is used to drop the counter 7418 * when releasing a resource needing all multicasts. 7419 * Return 0 if successful or a negative errno code on error. 7420 */ 7421 7422 int dev_set_allmulti(struct net_device *dev, int inc) 7423 { 7424 return __dev_set_allmulti(dev, inc, true); 7425 } 7426 EXPORT_SYMBOL(dev_set_allmulti); 7427 7428 /* 7429 * Upload unicast and multicast address lists to device and 7430 * configure RX filtering. When the device doesn't support unicast 7431 * filtering it is put in promiscuous mode while unicast addresses 7432 * are present. 7433 */ 7434 void __dev_set_rx_mode(struct net_device *dev) 7435 { 7436 const struct net_device_ops *ops = dev->netdev_ops; 7437 7438 /* dev_open will call this function so the list will stay sane. */ 7439 if (!(dev->flags&IFF_UP)) 7440 return; 7441 7442 if (!netif_device_present(dev)) 7443 return; 7444 7445 if (!(dev->priv_flags & IFF_UNICAST_FLT)) { 7446 /* Unicast addresses changes may only happen under the rtnl, 7447 * therefore calling __dev_set_promiscuity here is safe. 7448 */ 7449 if (!netdev_uc_empty(dev) && !dev->uc_promisc) { 7450 __dev_set_promiscuity(dev, 1, false); 7451 dev->uc_promisc = true; 7452 } else if (netdev_uc_empty(dev) && dev->uc_promisc) { 7453 __dev_set_promiscuity(dev, -1, false); 7454 dev->uc_promisc = false; 7455 } 7456 } 7457 7458 if (ops->ndo_set_rx_mode) 7459 ops->ndo_set_rx_mode(dev); 7460 } 7461 7462 void dev_set_rx_mode(struct net_device *dev) 7463 { 7464 netif_addr_lock_bh(dev); 7465 __dev_set_rx_mode(dev); 7466 netif_addr_unlock_bh(dev); 7467 } 7468 7469 /** 7470 * dev_get_flags - get flags reported to userspace 7471 * @dev: device 7472 * 7473 * Get the combination of flag bits exported through APIs to userspace. 7474 */ 7475 unsigned int dev_get_flags(const struct net_device *dev) 7476 { 7477 unsigned int flags; 7478 7479 flags = (dev->flags & ~(IFF_PROMISC | 7480 IFF_ALLMULTI | 7481 IFF_RUNNING | 7482 IFF_LOWER_UP | 7483 IFF_DORMANT)) | 7484 (dev->gflags & (IFF_PROMISC | 7485 IFF_ALLMULTI)); 7486 7487 if (netif_running(dev)) { 7488 if (netif_oper_up(dev)) 7489 flags |= IFF_RUNNING; 7490 if (netif_carrier_ok(dev)) 7491 flags |= IFF_LOWER_UP; 7492 if (netif_dormant(dev)) 7493 flags |= IFF_DORMANT; 7494 } 7495 7496 return flags; 7497 } 7498 EXPORT_SYMBOL(dev_get_flags); 7499 7500 int __dev_change_flags(struct net_device *dev, unsigned int flags) 7501 { 7502 unsigned int old_flags = dev->flags; 7503 int ret; 7504 7505 ASSERT_RTNL(); 7506 7507 /* 7508 * Set the flags on our device. 7509 */ 7510 7511 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP | 7512 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL | 7513 IFF_AUTOMEDIA)) | 7514 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC | 7515 IFF_ALLMULTI)); 7516 7517 /* 7518 * Load in the correct multicast list now the flags have changed. 7519 */ 7520 7521 if ((old_flags ^ flags) & IFF_MULTICAST) 7522 dev_change_rx_flags(dev, IFF_MULTICAST); 7523 7524 dev_set_rx_mode(dev); 7525 7526 /* 7527 * Have we downed the interface. We handle IFF_UP ourselves 7528 * according to user attempts to set it, rather than blindly 7529 * setting it. 7530 */ 7531 7532 ret = 0; 7533 if ((old_flags ^ flags) & IFF_UP) { 7534 if (old_flags & IFF_UP) 7535 __dev_close(dev); 7536 else 7537 ret = __dev_open(dev); 7538 } 7539 7540 if ((flags ^ dev->gflags) & IFF_PROMISC) { 7541 int inc = (flags & IFF_PROMISC) ? 1 : -1; 7542 unsigned int old_flags = dev->flags; 7543 7544 dev->gflags ^= IFF_PROMISC; 7545 7546 if (__dev_set_promiscuity(dev, inc, false) >= 0) 7547 if (dev->flags != old_flags) 7548 dev_set_rx_mode(dev); 7549 } 7550 7551 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI 7552 * is important. Some (broken) drivers set IFF_PROMISC, when 7553 * IFF_ALLMULTI is requested not asking us and not reporting. 7554 */ 7555 if ((flags ^ dev->gflags) & IFF_ALLMULTI) { 7556 int inc = (flags & IFF_ALLMULTI) ? 1 : -1; 7557 7558 dev->gflags ^= IFF_ALLMULTI; 7559 __dev_set_allmulti(dev, inc, false); 7560 } 7561 7562 return ret; 7563 } 7564 7565 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags, 7566 unsigned int gchanges) 7567 { 7568 unsigned int changes = dev->flags ^ old_flags; 7569 7570 if (gchanges) 7571 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC); 7572 7573 if (changes & IFF_UP) { 7574 if (dev->flags & IFF_UP) 7575 call_netdevice_notifiers(NETDEV_UP, dev); 7576 else 7577 call_netdevice_notifiers(NETDEV_DOWN, dev); 7578 } 7579 7580 if (dev->flags & IFF_UP && 7581 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) { 7582 struct netdev_notifier_change_info change_info = { 7583 .info = { 7584 .dev = dev, 7585 }, 7586 .flags_changed = changes, 7587 }; 7588 7589 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info); 7590 } 7591 } 7592 7593 /** 7594 * dev_change_flags - change device settings 7595 * @dev: device 7596 * @flags: device state flags 7597 * 7598 * Change settings on device based state flags. The flags are 7599 * in the userspace exported format. 7600 */ 7601 int dev_change_flags(struct net_device *dev, unsigned int flags) 7602 { 7603 int ret; 7604 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags; 7605 7606 ret = __dev_change_flags(dev, flags); 7607 if (ret < 0) 7608 return ret; 7609 7610 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags); 7611 __dev_notify_flags(dev, old_flags, changes); 7612 return ret; 7613 } 7614 EXPORT_SYMBOL(dev_change_flags); 7615 7616 int __dev_set_mtu(struct net_device *dev, int new_mtu) 7617 { 7618 const struct net_device_ops *ops = dev->netdev_ops; 7619 7620 if (ops->ndo_change_mtu) 7621 return ops->ndo_change_mtu(dev, new_mtu); 7622 7623 dev->mtu = new_mtu; 7624 return 0; 7625 } 7626 EXPORT_SYMBOL(__dev_set_mtu); 7627 7628 /** 7629 * dev_set_mtu_ext - Change maximum transfer unit 7630 * @dev: device 7631 * @new_mtu: new transfer unit 7632 * @extack: netlink extended ack 7633 * 7634 * Change the maximum transfer size of the network device. 7635 */ 7636 int dev_set_mtu_ext(struct net_device *dev, int new_mtu, 7637 struct netlink_ext_ack *extack) 7638 { 7639 int err, orig_mtu; 7640 7641 if (new_mtu == dev->mtu) 7642 return 0; 7643 7644 /* MTU must be positive, and in range */ 7645 if (new_mtu < 0 || new_mtu < dev->min_mtu) { 7646 NL_SET_ERR_MSG(extack, "mtu less than device minimum"); 7647 return -EINVAL; 7648 } 7649 7650 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) { 7651 NL_SET_ERR_MSG(extack, "mtu greater than device maximum"); 7652 return -EINVAL; 7653 } 7654 7655 if (!netif_device_present(dev)) 7656 return -ENODEV; 7657 7658 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev); 7659 err = notifier_to_errno(err); 7660 if (err) 7661 return err; 7662 7663 orig_mtu = dev->mtu; 7664 err = __dev_set_mtu(dev, new_mtu); 7665 7666 if (!err) { 7667 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev, 7668 orig_mtu); 7669 err = notifier_to_errno(err); 7670 if (err) { 7671 /* setting mtu back and notifying everyone again, 7672 * so that they have a chance to revert changes. 7673 */ 7674 __dev_set_mtu(dev, orig_mtu); 7675 call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev, 7676 new_mtu); 7677 } 7678 } 7679 return err; 7680 } 7681 7682 int dev_set_mtu(struct net_device *dev, int new_mtu) 7683 { 7684 struct netlink_ext_ack extack; 7685 int err; 7686 7687 memset(&extack, 0, sizeof(extack)); 7688 err = dev_set_mtu_ext(dev, new_mtu, &extack); 7689 if (err && extack._msg) 7690 net_err_ratelimited("%s: %s\n", dev->name, extack._msg); 7691 return err; 7692 } 7693 EXPORT_SYMBOL(dev_set_mtu); 7694 7695 /** 7696 * dev_change_tx_queue_len - Change TX queue length of a netdevice 7697 * @dev: device 7698 * @new_len: new tx queue length 7699 */ 7700 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len) 7701 { 7702 unsigned int orig_len = dev->tx_queue_len; 7703 int res; 7704 7705 if (new_len != (unsigned int)new_len) 7706 return -ERANGE; 7707 7708 if (new_len != orig_len) { 7709 dev->tx_queue_len = new_len; 7710 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev); 7711 res = notifier_to_errno(res); 7712 if (res) 7713 goto err_rollback; 7714 res = dev_qdisc_change_tx_queue_len(dev); 7715 if (res) 7716 goto err_rollback; 7717 } 7718 7719 return 0; 7720 7721 err_rollback: 7722 netdev_err(dev, "refused to change device tx_queue_len\n"); 7723 dev->tx_queue_len = orig_len; 7724 return res; 7725 } 7726 7727 /** 7728 * dev_set_group - Change group this device belongs to 7729 * @dev: device 7730 * @new_group: group this device should belong to 7731 */ 7732 void dev_set_group(struct net_device *dev, int new_group) 7733 { 7734 dev->group = new_group; 7735 } 7736 EXPORT_SYMBOL(dev_set_group); 7737 7738 /** 7739 * dev_set_mac_address - Change Media Access Control Address 7740 * @dev: device 7741 * @sa: new address 7742 * 7743 * Change the hardware (MAC) address of the device 7744 */ 7745 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa) 7746 { 7747 const struct net_device_ops *ops = dev->netdev_ops; 7748 int err; 7749 7750 if (!ops->ndo_set_mac_address) 7751 return -EOPNOTSUPP; 7752 if (sa->sa_family != dev->type) 7753 return -EINVAL; 7754 if (!netif_device_present(dev)) 7755 return -ENODEV; 7756 err = ops->ndo_set_mac_address(dev, sa); 7757 if (err) 7758 return err; 7759 dev->addr_assign_type = NET_ADDR_SET; 7760 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 7761 add_device_randomness(dev->dev_addr, dev->addr_len); 7762 return 0; 7763 } 7764 EXPORT_SYMBOL(dev_set_mac_address); 7765 7766 /** 7767 * dev_change_carrier - Change device carrier 7768 * @dev: device 7769 * @new_carrier: new value 7770 * 7771 * Change device carrier 7772 */ 7773 int dev_change_carrier(struct net_device *dev, bool new_carrier) 7774 { 7775 const struct net_device_ops *ops = dev->netdev_ops; 7776 7777 if (!ops->ndo_change_carrier) 7778 return -EOPNOTSUPP; 7779 if (!netif_device_present(dev)) 7780 return -ENODEV; 7781 return ops->ndo_change_carrier(dev, new_carrier); 7782 } 7783 EXPORT_SYMBOL(dev_change_carrier); 7784 7785 /** 7786 * dev_get_phys_port_id - Get device physical port ID 7787 * @dev: device 7788 * @ppid: port ID 7789 * 7790 * Get device physical port ID 7791 */ 7792 int dev_get_phys_port_id(struct net_device *dev, 7793 struct netdev_phys_item_id *ppid) 7794 { 7795 const struct net_device_ops *ops = dev->netdev_ops; 7796 7797 if (!ops->ndo_get_phys_port_id) 7798 return -EOPNOTSUPP; 7799 return ops->ndo_get_phys_port_id(dev, ppid); 7800 } 7801 EXPORT_SYMBOL(dev_get_phys_port_id); 7802 7803 /** 7804 * dev_get_phys_port_name - Get device physical port name 7805 * @dev: device 7806 * @name: port name 7807 * @len: limit of bytes to copy to name 7808 * 7809 * Get device physical port name 7810 */ 7811 int dev_get_phys_port_name(struct net_device *dev, 7812 char *name, size_t len) 7813 { 7814 const struct net_device_ops *ops = dev->netdev_ops; 7815 7816 if (!ops->ndo_get_phys_port_name) 7817 return -EOPNOTSUPP; 7818 return ops->ndo_get_phys_port_name(dev, name, len); 7819 } 7820 EXPORT_SYMBOL(dev_get_phys_port_name); 7821 7822 /** 7823 * dev_change_proto_down - update protocol port state information 7824 * @dev: device 7825 * @proto_down: new value 7826 * 7827 * This info can be used by switch drivers to set the phys state of the 7828 * port. 7829 */ 7830 int dev_change_proto_down(struct net_device *dev, bool proto_down) 7831 { 7832 const struct net_device_ops *ops = dev->netdev_ops; 7833 7834 if (!ops->ndo_change_proto_down) 7835 return -EOPNOTSUPP; 7836 if (!netif_device_present(dev)) 7837 return -ENODEV; 7838 return ops->ndo_change_proto_down(dev, proto_down); 7839 } 7840 EXPORT_SYMBOL(dev_change_proto_down); 7841 7842 u32 __dev_xdp_query(struct net_device *dev, bpf_op_t bpf_op, 7843 enum bpf_netdev_command cmd) 7844 { 7845 struct netdev_bpf xdp; 7846 7847 if (!bpf_op) 7848 return 0; 7849 7850 memset(&xdp, 0, sizeof(xdp)); 7851 xdp.command = cmd; 7852 7853 /* Query must always succeed. */ 7854 WARN_ON(bpf_op(dev, &xdp) < 0 && cmd == XDP_QUERY_PROG); 7855 7856 return xdp.prog_id; 7857 } 7858 7859 static int dev_xdp_install(struct net_device *dev, bpf_op_t bpf_op, 7860 struct netlink_ext_ack *extack, u32 flags, 7861 struct bpf_prog *prog) 7862 { 7863 struct netdev_bpf xdp; 7864 7865 memset(&xdp, 0, sizeof(xdp)); 7866 if (flags & XDP_FLAGS_HW_MODE) 7867 xdp.command = XDP_SETUP_PROG_HW; 7868 else 7869 xdp.command = XDP_SETUP_PROG; 7870 xdp.extack = extack; 7871 xdp.flags = flags; 7872 xdp.prog = prog; 7873 7874 return bpf_op(dev, &xdp); 7875 } 7876 7877 static void dev_xdp_uninstall(struct net_device *dev) 7878 { 7879 struct netdev_bpf xdp; 7880 bpf_op_t ndo_bpf; 7881 7882 /* Remove generic XDP */ 7883 WARN_ON(dev_xdp_install(dev, generic_xdp_install, NULL, 0, NULL)); 7884 7885 /* Remove from the driver */ 7886 ndo_bpf = dev->netdev_ops->ndo_bpf; 7887 if (!ndo_bpf) 7888 return; 7889 7890 memset(&xdp, 0, sizeof(xdp)); 7891 xdp.command = XDP_QUERY_PROG; 7892 WARN_ON(ndo_bpf(dev, &xdp)); 7893 if (xdp.prog_id) 7894 WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags, 7895 NULL)); 7896 7897 /* Remove HW offload */ 7898 memset(&xdp, 0, sizeof(xdp)); 7899 xdp.command = XDP_QUERY_PROG_HW; 7900 if (!ndo_bpf(dev, &xdp) && xdp.prog_id) 7901 WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags, 7902 NULL)); 7903 } 7904 7905 /** 7906 * dev_change_xdp_fd - set or clear a bpf program for a device rx path 7907 * @dev: device 7908 * @extack: netlink extended ack 7909 * @fd: new program fd or negative value to clear 7910 * @flags: xdp-related flags 7911 * 7912 * Set or clear a bpf program for a device 7913 */ 7914 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack, 7915 int fd, u32 flags) 7916 { 7917 const struct net_device_ops *ops = dev->netdev_ops; 7918 enum bpf_netdev_command query; 7919 struct bpf_prog *prog = NULL; 7920 bpf_op_t bpf_op, bpf_chk; 7921 int err; 7922 7923 ASSERT_RTNL(); 7924 7925 query = flags & XDP_FLAGS_HW_MODE ? XDP_QUERY_PROG_HW : XDP_QUERY_PROG; 7926 7927 bpf_op = bpf_chk = ops->ndo_bpf; 7928 if (!bpf_op && (flags & (XDP_FLAGS_DRV_MODE | XDP_FLAGS_HW_MODE))) 7929 return -EOPNOTSUPP; 7930 if (!bpf_op || (flags & XDP_FLAGS_SKB_MODE)) 7931 bpf_op = generic_xdp_install; 7932 if (bpf_op == bpf_chk) 7933 bpf_chk = generic_xdp_install; 7934 7935 if (fd >= 0) { 7936 if (__dev_xdp_query(dev, bpf_chk, XDP_QUERY_PROG) || 7937 __dev_xdp_query(dev, bpf_chk, XDP_QUERY_PROG_HW)) 7938 return -EEXIST; 7939 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && 7940 __dev_xdp_query(dev, bpf_op, query)) 7941 return -EBUSY; 7942 7943 prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP, 7944 bpf_op == ops->ndo_bpf); 7945 if (IS_ERR(prog)) 7946 return PTR_ERR(prog); 7947 7948 if (!(flags & XDP_FLAGS_HW_MODE) && 7949 bpf_prog_is_dev_bound(prog->aux)) { 7950 NL_SET_ERR_MSG(extack, "using device-bound program without HW_MODE flag is not supported"); 7951 bpf_prog_put(prog); 7952 return -EINVAL; 7953 } 7954 } 7955 7956 err = dev_xdp_install(dev, bpf_op, extack, flags, prog); 7957 if (err < 0 && prog) 7958 bpf_prog_put(prog); 7959 7960 return err; 7961 } 7962 7963 /** 7964 * dev_new_index - allocate an ifindex 7965 * @net: the applicable net namespace 7966 * 7967 * Returns a suitable unique value for a new device interface 7968 * number. The caller must hold the rtnl semaphore or the 7969 * dev_base_lock to be sure it remains unique. 7970 */ 7971 static int dev_new_index(struct net *net) 7972 { 7973 int ifindex = net->ifindex; 7974 7975 for (;;) { 7976 if (++ifindex <= 0) 7977 ifindex = 1; 7978 if (!__dev_get_by_index(net, ifindex)) 7979 return net->ifindex = ifindex; 7980 } 7981 } 7982 7983 /* Delayed registration/unregisteration */ 7984 static LIST_HEAD(net_todo_list); 7985 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq); 7986 7987 static void net_set_todo(struct net_device *dev) 7988 { 7989 list_add_tail(&dev->todo_list, &net_todo_list); 7990 dev_net(dev)->dev_unreg_count++; 7991 } 7992 7993 static void rollback_registered_many(struct list_head *head) 7994 { 7995 struct net_device *dev, *tmp; 7996 LIST_HEAD(close_head); 7997 7998 BUG_ON(dev_boot_phase); 7999 ASSERT_RTNL(); 8000 8001 list_for_each_entry_safe(dev, tmp, head, unreg_list) { 8002 /* Some devices call without registering 8003 * for initialization unwind. Remove those 8004 * devices and proceed with the remaining. 8005 */ 8006 if (dev->reg_state == NETREG_UNINITIALIZED) { 8007 pr_debug("unregister_netdevice: device %s/%p never was registered\n", 8008 dev->name, dev); 8009 8010 WARN_ON(1); 8011 list_del(&dev->unreg_list); 8012 continue; 8013 } 8014 dev->dismantle = true; 8015 BUG_ON(dev->reg_state != NETREG_REGISTERED); 8016 } 8017 8018 /* If device is running, close it first. */ 8019 list_for_each_entry(dev, head, unreg_list) 8020 list_add_tail(&dev->close_list, &close_head); 8021 dev_close_many(&close_head, true); 8022 8023 list_for_each_entry(dev, head, unreg_list) { 8024 /* And unlink it from device chain. */ 8025 unlist_netdevice(dev); 8026 8027 dev->reg_state = NETREG_UNREGISTERING; 8028 } 8029 flush_all_backlogs(); 8030 8031 synchronize_net(); 8032 8033 list_for_each_entry(dev, head, unreg_list) { 8034 struct sk_buff *skb = NULL; 8035 8036 /* Shutdown queueing discipline. */ 8037 dev_shutdown(dev); 8038 8039 dev_xdp_uninstall(dev); 8040 8041 /* Notify protocols, that we are about to destroy 8042 * this device. They should clean all the things. 8043 */ 8044 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 8045 8046 if (!dev->rtnl_link_ops || 8047 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 8048 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0, 8049 GFP_KERNEL, NULL, 0); 8050 8051 /* 8052 * Flush the unicast and multicast chains 8053 */ 8054 dev_uc_flush(dev); 8055 dev_mc_flush(dev); 8056 8057 if (dev->netdev_ops->ndo_uninit) 8058 dev->netdev_ops->ndo_uninit(dev); 8059 8060 if (skb) 8061 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL); 8062 8063 /* Notifier chain MUST detach us all upper devices. */ 8064 WARN_ON(netdev_has_any_upper_dev(dev)); 8065 WARN_ON(netdev_has_any_lower_dev(dev)); 8066 8067 /* Remove entries from kobject tree */ 8068 netdev_unregister_kobject(dev); 8069 #ifdef CONFIG_XPS 8070 /* Remove XPS queueing entries */ 8071 netif_reset_xps_queues_gt(dev, 0); 8072 #endif 8073 } 8074 8075 synchronize_net(); 8076 8077 list_for_each_entry(dev, head, unreg_list) 8078 dev_put(dev); 8079 } 8080 8081 static void rollback_registered(struct net_device *dev) 8082 { 8083 LIST_HEAD(single); 8084 8085 list_add(&dev->unreg_list, &single); 8086 rollback_registered_many(&single); 8087 list_del(&single); 8088 } 8089 8090 static netdev_features_t netdev_sync_upper_features(struct net_device *lower, 8091 struct net_device *upper, netdev_features_t features) 8092 { 8093 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES; 8094 netdev_features_t feature; 8095 int feature_bit; 8096 8097 for_each_netdev_feature(&upper_disables, feature_bit) { 8098 feature = __NETIF_F_BIT(feature_bit); 8099 if (!(upper->wanted_features & feature) 8100 && (features & feature)) { 8101 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n", 8102 &feature, upper->name); 8103 features &= ~feature; 8104 } 8105 } 8106 8107 return features; 8108 } 8109 8110 static void netdev_sync_lower_features(struct net_device *upper, 8111 struct net_device *lower, netdev_features_t features) 8112 { 8113 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES; 8114 netdev_features_t feature; 8115 int feature_bit; 8116 8117 for_each_netdev_feature(&upper_disables, feature_bit) { 8118 feature = __NETIF_F_BIT(feature_bit); 8119 if (!(features & feature) && (lower->features & feature)) { 8120 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n", 8121 &feature, lower->name); 8122 lower->wanted_features &= ~feature; 8123 netdev_update_features(lower); 8124 8125 if (unlikely(lower->features & feature)) 8126 netdev_WARN(upper, "failed to disable %pNF on %s!\n", 8127 &feature, lower->name); 8128 } 8129 } 8130 } 8131 8132 static netdev_features_t netdev_fix_features(struct net_device *dev, 8133 netdev_features_t features) 8134 { 8135 /* Fix illegal checksum combinations */ 8136 if ((features & NETIF_F_HW_CSUM) && 8137 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 8138 netdev_warn(dev, "mixed HW and IP checksum settings.\n"); 8139 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 8140 } 8141 8142 /* TSO requires that SG is present as well. */ 8143 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) { 8144 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n"); 8145 features &= ~NETIF_F_ALL_TSO; 8146 } 8147 8148 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) && 8149 !(features & NETIF_F_IP_CSUM)) { 8150 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n"); 8151 features &= ~NETIF_F_TSO; 8152 features &= ~NETIF_F_TSO_ECN; 8153 } 8154 8155 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) && 8156 !(features & NETIF_F_IPV6_CSUM)) { 8157 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n"); 8158 features &= ~NETIF_F_TSO6; 8159 } 8160 8161 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */ 8162 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO)) 8163 features &= ~NETIF_F_TSO_MANGLEID; 8164 8165 /* TSO ECN requires that TSO is present as well. */ 8166 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN) 8167 features &= ~NETIF_F_TSO_ECN; 8168 8169 /* Software GSO depends on SG. */ 8170 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) { 8171 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n"); 8172 features &= ~NETIF_F_GSO; 8173 } 8174 8175 /* GSO partial features require GSO partial be set */ 8176 if ((features & dev->gso_partial_features) && 8177 !(features & NETIF_F_GSO_PARTIAL)) { 8178 netdev_dbg(dev, 8179 "Dropping partially supported GSO features since no GSO partial.\n"); 8180 features &= ~dev->gso_partial_features; 8181 } 8182 8183 if (!(features & NETIF_F_RXCSUM)) { 8184 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet 8185 * successfully merged by hardware must also have the 8186 * checksum verified by hardware. If the user does not 8187 * want to enable RXCSUM, logically, we should disable GRO_HW. 8188 */ 8189 if (features & NETIF_F_GRO_HW) { 8190 netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n"); 8191 features &= ~NETIF_F_GRO_HW; 8192 } 8193 } 8194 8195 /* LRO/HW-GRO features cannot be combined with RX-FCS */ 8196 if (features & NETIF_F_RXFCS) { 8197 if (features & NETIF_F_LRO) { 8198 netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n"); 8199 features &= ~NETIF_F_LRO; 8200 } 8201 8202 if (features & NETIF_F_GRO_HW) { 8203 netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n"); 8204 features &= ~NETIF_F_GRO_HW; 8205 } 8206 } 8207 8208 return features; 8209 } 8210 8211 int __netdev_update_features(struct net_device *dev) 8212 { 8213 struct net_device *upper, *lower; 8214 netdev_features_t features; 8215 struct list_head *iter; 8216 int err = -1; 8217 8218 ASSERT_RTNL(); 8219 8220 features = netdev_get_wanted_features(dev); 8221 8222 if (dev->netdev_ops->ndo_fix_features) 8223 features = dev->netdev_ops->ndo_fix_features(dev, features); 8224 8225 /* driver might be less strict about feature dependencies */ 8226 features = netdev_fix_features(dev, features); 8227 8228 /* some features can't be enabled if they're off an an upper device */ 8229 netdev_for_each_upper_dev_rcu(dev, upper, iter) 8230 features = netdev_sync_upper_features(dev, upper, features); 8231 8232 if (dev->features == features) 8233 goto sync_lower; 8234 8235 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n", 8236 &dev->features, &features); 8237 8238 if (dev->netdev_ops->ndo_set_features) 8239 err = dev->netdev_ops->ndo_set_features(dev, features); 8240 else 8241 err = 0; 8242 8243 if (unlikely(err < 0)) { 8244 netdev_err(dev, 8245 "set_features() failed (%d); wanted %pNF, left %pNF\n", 8246 err, &features, &dev->features); 8247 /* return non-0 since some features might have changed and 8248 * it's better to fire a spurious notification than miss it 8249 */ 8250 return -1; 8251 } 8252 8253 sync_lower: 8254 /* some features must be disabled on lower devices when disabled 8255 * on an upper device (think: bonding master or bridge) 8256 */ 8257 netdev_for_each_lower_dev(dev, lower, iter) 8258 netdev_sync_lower_features(dev, lower, features); 8259 8260 if (!err) { 8261 netdev_features_t diff = features ^ dev->features; 8262 8263 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) { 8264 /* udp_tunnel_{get,drop}_rx_info both need 8265 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the 8266 * device, or they won't do anything. 8267 * Thus we need to update dev->features 8268 * *before* calling udp_tunnel_get_rx_info, 8269 * but *after* calling udp_tunnel_drop_rx_info. 8270 */ 8271 if (features & NETIF_F_RX_UDP_TUNNEL_PORT) { 8272 dev->features = features; 8273 udp_tunnel_get_rx_info(dev); 8274 } else { 8275 udp_tunnel_drop_rx_info(dev); 8276 } 8277 } 8278 8279 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) { 8280 if (features & NETIF_F_HW_VLAN_CTAG_FILTER) { 8281 dev->features = features; 8282 err |= vlan_get_rx_ctag_filter_info(dev); 8283 } else { 8284 vlan_drop_rx_ctag_filter_info(dev); 8285 } 8286 } 8287 8288 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) { 8289 if (features & NETIF_F_HW_VLAN_STAG_FILTER) { 8290 dev->features = features; 8291 err |= vlan_get_rx_stag_filter_info(dev); 8292 } else { 8293 vlan_drop_rx_stag_filter_info(dev); 8294 } 8295 } 8296 8297 dev->features = features; 8298 } 8299 8300 return err < 0 ? 0 : 1; 8301 } 8302 8303 /** 8304 * netdev_update_features - recalculate device features 8305 * @dev: the device to check 8306 * 8307 * Recalculate dev->features set and send notifications if it 8308 * has changed. Should be called after driver or hardware dependent 8309 * conditions might have changed that influence the features. 8310 */ 8311 void netdev_update_features(struct net_device *dev) 8312 { 8313 if (__netdev_update_features(dev)) 8314 netdev_features_change(dev); 8315 } 8316 EXPORT_SYMBOL(netdev_update_features); 8317 8318 /** 8319 * netdev_change_features - recalculate device features 8320 * @dev: the device to check 8321 * 8322 * Recalculate dev->features set and send notifications even 8323 * if they have not changed. Should be called instead of 8324 * netdev_update_features() if also dev->vlan_features might 8325 * have changed to allow the changes to be propagated to stacked 8326 * VLAN devices. 8327 */ 8328 void netdev_change_features(struct net_device *dev) 8329 { 8330 __netdev_update_features(dev); 8331 netdev_features_change(dev); 8332 } 8333 EXPORT_SYMBOL(netdev_change_features); 8334 8335 /** 8336 * netif_stacked_transfer_operstate - transfer operstate 8337 * @rootdev: the root or lower level device to transfer state from 8338 * @dev: the device to transfer operstate to 8339 * 8340 * Transfer operational state from root to device. This is normally 8341 * called when a stacking relationship exists between the root 8342 * device and the device(a leaf device). 8343 */ 8344 void netif_stacked_transfer_operstate(const struct net_device *rootdev, 8345 struct net_device *dev) 8346 { 8347 if (rootdev->operstate == IF_OPER_DORMANT) 8348 netif_dormant_on(dev); 8349 else 8350 netif_dormant_off(dev); 8351 8352 if (netif_carrier_ok(rootdev)) 8353 netif_carrier_on(dev); 8354 else 8355 netif_carrier_off(dev); 8356 } 8357 EXPORT_SYMBOL(netif_stacked_transfer_operstate); 8358 8359 static int netif_alloc_rx_queues(struct net_device *dev) 8360 { 8361 unsigned int i, count = dev->num_rx_queues; 8362 struct netdev_rx_queue *rx; 8363 size_t sz = count * sizeof(*rx); 8364 int err = 0; 8365 8366 BUG_ON(count < 1); 8367 8368 rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL); 8369 if (!rx) 8370 return -ENOMEM; 8371 8372 dev->_rx = rx; 8373 8374 for (i = 0; i < count; i++) { 8375 rx[i].dev = dev; 8376 8377 /* XDP RX-queue setup */ 8378 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i); 8379 if (err < 0) 8380 goto err_rxq_info; 8381 } 8382 return 0; 8383 8384 err_rxq_info: 8385 /* Rollback successful reg's and free other resources */ 8386 while (i--) 8387 xdp_rxq_info_unreg(&rx[i].xdp_rxq); 8388 kvfree(dev->_rx); 8389 dev->_rx = NULL; 8390 return err; 8391 } 8392 8393 static void netif_free_rx_queues(struct net_device *dev) 8394 { 8395 unsigned int i, count = dev->num_rx_queues; 8396 8397 /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */ 8398 if (!dev->_rx) 8399 return; 8400 8401 for (i = 0; i < count; i++) 8402 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq); 8403 8404 kvfree(dev->_rx); 8405 } 8406 8407 static void netdev_init_one_queue(struct net_device *dev, 8408 struct netdev_queue *queue, void *_unused) 8409 { 8410 /* Initialize queue lock */ 8411 spin_lock_init(&queue->_xmit_lock); 8412 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type); 8413 queue->xmit_lock_owner = -1; 8414 netdev_queue_numa_node_write(queue, NUMA_NO_NODE); 8415 queue->dev = dev; 8416 #ifdef CONFIG_BQL 8417 dql_init(&queue->dql, HZ); 8418 #endif 8419 } 8420 8421 static void netif_free_tx_queues(struct net_device *dev) 8422 { 8423 kvfree(dev->_tx); 8424 } 8425 8426 static int netif_alloc_netdev_queues(struct net_device *dev) 8427 { 8428 unsigned int count = dev->num_tx_queues; 8429 struct netdev_queue *tx; 8430 size_t sz = count * sizeof(*tx); 8431 8432 if (count < 1 || count > 0xffff) 8433 return -EINVAL; 8434 8435 tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL); 8436 if (!tx) 8437 return -ENOMEM; 8438 8439 dev->_tx = tx; 8440 8441 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL); 8442 spin_lock_init(&dev->tx_global_lock); 8443 8444 return 0; 8445 } 8446 8447 void netif_tx_stop_all_queues(struct net_device *dev) 8448 { 8449 unsigned int i; 8450 8451 for (i = 0; i < dev->num_tx_queues; i++) { 8452 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 8453 8454 netif_tx_stop_queue(txq); 8455 } 8456 } 8457 EXPORT_SYMBOL(netif_tx_stop_all_queues); 8458 8459 /** 8460 * register_netdevice - register a network device 8461 * @dev: device to register 8462 * 8463 * Take a completed network device structure and add it to the kernel 8464 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 8465 * chain. 0 is returned on success. A negative errno code is returned 8466 * on a failure to set up the device, or if the name is a duplicate. 8467 * 8468 * Callers must hold the rtnl semaphore. You may want 8469 * register_netdev() instead of this. 8470 * 8471 * BUGS: 8472 * The locking appears insufficient to guarantee two parallel registers 8473 * will not get the same name. 8474 */ 8475 8476 int register_netdevice(struct net_device *dev) 8477 { 8478 int ret; 8479 struct net *net = dev_net(dev); 8480 8481 BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE < 8482 NETDEV_FEATURE_COUNT); 8483 BUG_ON(dev_boot_phase); 8484 ASSERT_RTNL(); 8485 8486 might_sleep(); 8487 8488 /* When net_device's are persistent, this will be fatal. */ 8489 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED); 8490 BUG_ON(!net); 8491 8492 spin_lock_init(&dev->addr_list_lock); 8493 netdev_set_addr_lockdep_class(dev); 8494 8495 ret = dev_get_valid_name(net, dev, dev->name); 8496 if (ret < 0) 8497 goto out; 8498 8499 /* Init, if this function is available */ 8500 if (dev->netdev_ops->ndo_init) { 8501 ret = dev->netdev_ops->ndo_init(dev); 8502 if (ret) { 8503 if (ret > 0) 8504 ret = -EIO; 8505 goto out; 8506 } 8507 } 8508 8509 if (((dev->hw_features | dev->features) & 8510 NETIF_F_HW_VLAN_CTAG_FILTER) && 8511 (!dev->netdev_ops->ndo_vlan_rx_add_vid || 8512 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) { 8513 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n"); 8514 ret = -EINVAL; 8515 goto err_uninit; 8516 } 8517 8518 ret = -EBUSY; 8519 if (!dev->ifindex) 8520 dev->ifindex = dev_new_index(net); 8521 else if (__dev_get_by_index(net, dev->ifindex)) 8522 goto err_uninit; 8523 8524 /* Transfer changeable features to wanted_features and enable 8525 * software offloads (GSO and GRO). 8526 */ 8527 dev->hw_features |= NETIF_F_SOFT_FEATURES; 8528 dev->features |= NETIF_F_SOFT_FEATURES; 8529 8530 if (dev->netdev_ops->ndo_udp_tunnel_add) { 8531 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT; 8532 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT; 8533 } 8534 8535 dev->wanted_features = dev->features & dev->hw_features; 8536 8537 if (!(dev->flags & IFF_LOOPBACK)) 8538 dev->hw_features |= NETIF_F_NOCACHE_COPY; 8539 8540 /* If IPv4 TCP segmentation offload is supported we should also 8541 * allow the device to enable segmenting the frame with the option 8542 * of ignoring a static IP ID value. This doesn't enable the 8543 * feature itself but allows the user to enable it later. 8544 */ 8545 if (dev->hw_features & NETIF_F_TSO) 8546 dev->hw_features |= NETIF_F_TSO_MANGLEID; 8547 if (dev->vlan_features & NETIF_F_TSO) 8548 dev->vlan_features |= NETIF_F_TSO_MANGLEID; 8549 if (dev->mpls_features & NETIF_F_TSO) 8550 dev->mpls_features |= NETIF_F_TSO_MANGLEID; 8551 if (dev->hw_enc_features & NETIF_F_TSO) 8552 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID; 8553 8554 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices. 8555 */ 8556 dev->vlan_features |= NETIF_F_HIGHDMA; 8557 8558 /* Make NETIF_F_SG inheritable to tunnel devices. 8559 */ 8560 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL; 8561 8562 /* Make NETIF_F_SG inheritable to MPLS. 8563 */ 8564 dev->mpls_features |= NETIF_F_SG; 8565 8566 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev); 8567 ret = notifier_to_errno(ret); 8568 if (ret) 8569 goto err_uninit; 8570 8571 ret = netdev_register_kobject(dev); 8572 if (ret) 8573 goto err_uninit; 8574 dev->reg_state = NETREG_REGISTERED; 8575 8576 __netdev_update_features(dev); 8577 8578 /* 8579 * Default initial state at registry is that the 8580 * device is present. 8581 */ 8582 8583 set_bit(__LINK_STATE_PRESENT, &dev->state); 8584 8585 linkwatch_init_dev(dev); 8586 8587 dev_init_scheduler(dev); 8588 dev_hold(dev); 8589 list_netdevice(dev); 8590 add_device_randomness(dev->dev_addr, dev->addr_len); 8591 8592 /* If the device has permanent device address, driver should 8593 * set dev_addr and also addr_assign_type should be set to 8594 * NET_ADDR_PERM (default value). 8595 */ 8596 if (dev->addr_assign_type == NET_ADDR_PERM) 8597 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len); 8598 8599 /* Notify protocols, that a new device appeared. */ 8600 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev); 8601 ret = notifier_to_errno(ret); 8602 if (ret) { 8603 rollback_registered(dev); 8604 dev->reg_state = NETREG_UNREGISTERED; 8605 } 8606 /* 8607 * Prevent userspace races by waiting until the network 8608 * device is fully setup before sending notifications. 8609 */ 8610 if (!dev->rtnl_link_ops || 8611 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 8612 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL); 8613 8614 out: 8615 return ret; 8616 8617 err_uninit: 8618 if (dev->netdev_ops->ndo_uninit) 8619 dev->netdev_ops->ndo_uninit(dev); 8620 if (dev->priv_destructor) 8621 dev->priv_destructor(dev); 8622 goto out; 8623 } 8624 EXPORT_SYMBOL(register_netdevice); 8625 8626 /** 8627 * init_dummy_netdev - init a dummy network device for NAPI 8628 * @dev: device to init 8629 * 8630 * This takes a network device structure and initialize the minimum 8631 * amount of fields so it can be used to schedule NAPI polls without 8632 * registering a full blown interface. This is to be used by drivers 8633 * that need to tie several hardware interfaces to a single NAPI 8634 * poll scheduler due to HW limitations. 8635 */ 8636 int init_dummy_netdev(struct net_device *dev) 8637 { 8638 /* Clear everything. Note we don't initialize spinlocks 8639 * are they aren't supposed to be taken by any of the 8640 * NAPI code and this dummy netdev is supposed to be 8641 * only ever used for NAPI polls 8642 */ 8643 memset(dev, 0, sizeof(struct net_device)); 8644 8645 /* make sure we BUG if trying to hit standard 8646 * register/unregister code path 8647 */ 8648 dev->reg_state = NETREG_DUMMY; 8649 8650 /* NAPI wants this */ 8651 INIT_LIST_HEAD(&dev->napi_list); 8652 8653 /* a dummy interface is started by default */ 8654 set_bit(__LINK_STATE_PRESENT, &dev->state); 8655 set_bit(__LINK_STATE_START, &dev->state); 8656 8657 /* Note : We dont allocate pcpu_refcnt for dummy devices, 8658 * because users of this 'device' dont need to change 8659 * its refcount. 8660 */ 8661 8662 return 0; 8663 } 8664 EXPORT_SYMBOL_GPL(init_dummy_netdev); 8665 8666 8667 /** 8668 * register_netdev - register a network device 8669 * @dev: device to register 8670 * 8671 * Take a completed network device structure and add it to the kernel 8672 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 8673 * chain. 0 is returned on success. A negative errno code is returned 8674 * on a failure to set up the device, or if the name is a duplicate. 8675 * 8676 * This is a wrapper around register_netdevice that takes the rtnl semaphore 8677 * and expands the device name if you passed a format string to 8678 * alloc_netdev. 8679 */ 8680 int register_netdev(struct net_device *dev) 8681 { 8682 int err; 8683 8684 if (rtnl_lock_killable()) 8685 return -EINTR; 8686 err = register_netdevice(dev); 8687 rtnl_unlock(); 8688 return err; 8689 } 8690 EXPORT_SYMBOL(register_netdev); 8691 8692 int netdev_refcnt_read(const struct net_device *dev) 8693 { 8694 int i, refcnt = 0; 8695 8696 for_each_possible_cpu(i) 8697 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i); 8698 return refcnt; 8699 } 8700 EXPORT_SYMBOL(netdev_refcnt_read); 8701 8702 /** 8703 * netdev_wait_allrefs - wait until all references are gone. 8704 * @dev: target net_device 8705 * 8706 * This is called when unregistering network devices. 8707 * 8708 * Any protocol or device that holds a reference should register 8709 * for netdevice notification, and cleanup and put back the 8710 * reference if they receive an UNREGISTER event. 8711 * We can get stuck here if buggy protocols don't correctly 8712 * call dev_put. 8713 */ 8714 static void netdev_wait_allrefs(struct net_device *dev) 8715 { 8716 unsigned long rebroadcast_time, warning_time; 8717 int refcnt; 8718 8719 linkwatch_forget_dev(dev); 8720 8721 rebroadcast_time = warning_time = jiffies; 8722 refcnt = netdev_refcnt_read(dev); 8723 8724 while (refcnt != 0) { 8725 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) { 8726 rtnl_lock(); 8727 8728 /* Rebroadcast unregister notification */ 8729 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 8730 8731 __rtnl_unlock(); 8732 rcu_barrier(); 8733 rtnl_lock(); 8734 8735 if (test_bit(__LINK_STATE_LINKWATCH_PENDING, 8736 &dev->state)) { 8737 /* We must not have linkwatch events 8738 * pending on unregister. If this 8739 * happens, we simply run the queue 8740 * unscheduled, resulting in a noop 8741 * for this device. 8742 */ 8743 linkwatch_run_queue(); 8744 } 8745 8746 __rtnl_unlock(); 8747 8748 rebroadcast_time = jiffies; 8749 } 8750 8751 msleep(250); 8752 8753 refcnt = netdev_refcnt_read(dev); 8754 8755 if (time_after(jiffies, warning_time + 10 * HZ)) { 8756 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n", 8757 dev->name, refcnt); 8758 warning_time = jiffies; 8759 } 8760 } 8761 } 8762 8763 /* The sequence is: 8764 * 8765 * rtnl_lock(); 8766 * ... 8767 * register_netdevice(x1); 8768 * register_netdevice(x2); 8769 * ... 8770 * unregister_netdevice(y1); 8771 * unregister_netdevice(y2); 8772 * ... 8773 * rtnl_unlock(); 8774 * free_netdev(y1); 8775 * free_netdev(y2); 8776 * 8777 * We are invoked by rtnl_unlock(). 8778 * This allows us to deal with problems: 8779 * 1) We can delete sysfs objects which invoke hotplug 8780 * without deadlocking with linkwatch via keventd. 8781 * 2) Since we run with the RTNL semaphore not held, we can sleep 8782 * safely in order to wait for the netdev refcnt to drop to zero. 8783 * 8784 * We must not return until all unregister events added during 8785 * the interval the lock was held have been completed. 8786 */ 8787 void netdev_run_todo(void) 8788 { 8789 struct list_head list; 8790 8791 /* Snapshot list, allow later requests */ 8792 list_replace_init(&net_todo_list, &list); 8793 8794 __rtnl_unlock(); 8795 8796 8797 /* Wait for rcu callbacks to finish before next phase */ 8798 if (!list_empty(&list)) 8799 rcu_barrier(); 8800 8801 while (!list_empty(&list)) { 8802 struct net_device *dev 8803 = list_first_entry(&list, struct net_device, todo_list); 8804 list_del(&dev->todo_list); 8805 8806 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) { 8807 pr_err("network todo '%s' but state %d\n", 8808 dev->name, dev->reg_state); 8809 dump_stack(); 8810 continue; 8811 } 8812 8813 dev->reg_state = NETREG_UNREGISTERED; 8814 8815 netdev_wait_allrefs(dev); 8816 8817 /* paranoia */ 8818 BUG_ON(netdev_refcnt_read(dev)); 8819 BUG_ON(!list_empty(&dev->ptype_all)); 8820 BUG_ON(!list_empty(&dev->ptype_specific)); 8821 WARN_ON(rcu_access_pointer(dev->ip_ptr)); 8822 WARN_ON(rcu_access_pointer(dev->ip6_ptr)); 8823 #if IS_ENABLED(CONFIG_DECNET) 8824 WARN_ON(dev->dn_ptr); 8825 #endif 8826 if (dev->priv_destructor) 8827 dev->priv_destructor(dev); 8828 if (dev->needs_free_netdev) 8829 free_netdev(dev); 8830 8831 /* Report a network device has been unregistered */ 8832 rtnl_lock(); 8833 dev_net(dev)->dev_unreg_count--; 8834 __rtnl_unlock(); 8835 wake_up(&netdev_unregistering_wq); 8836 8837 /* Free network device */ 8838 kobject_put(&dev->dev.kobj); 8839 } 8840 } 8841 8842 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has 8843 * all the same fields in the same order as net_device_stats, with only 8844 * the type differing, but rtnl_link_stats64 may have additional fields 8845 * at the end for newer counters. 8846 */ 8847 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 8848 const struct net_device_stats *netdev_stats) 8849 { 8850 #if BITS_PER_LONG == 64 8851 BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats)); 8852 memcpy(stats64, netdev_stats, sizeof(*netdev_stats)); 8853 /* zero out counters that only exist in rtnl_link_stats64 */ 8854 memset((char *)stats64 + sizeof(*netdev_stats), 0, 8855 sizeof(*stats64) - sizeof(*netdev_stats)); 8856 #else 8857 size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long); 8858 const unsigned long *src = (const unsigned long *)netdev_stats; 8859 u64 *dst = (u64 *)stats64; 8860 8861 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64)); 8862 for (i = 0; i < n; i++) 8863 dst[i] = src[i]; 8864 /* zero out counters that only exist in rtnl_link_stats64 */ 8865 memset((char *)stats64 + n * sizeof(u64), 0, 8866 sizeof(*stats64) - n * sizeof(u64)); 8867 #endif 8868 } 8869 EXPORT_SYMBOL(netdev_stats_to_stats64); 8870 8871 /** 8872 * dev_get_stats - get network device statistics 8873 * @dev: device to get statistics from 8874 * @storage: place to store stats 8875 * 8876 * Get network statistics from device. Return @storage. 8877 * The device driver may provide its own method by setting 8878 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats; 8879 * otherwise the internal statistics structure is used. 8880 */ 8881 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 8882 struct rtnl_link_stats64 *storage) 8883 { 8884 const struct net_device_ops *ops = dev->netdev_ops; 8885 8886 if (ops->ndo_get_stats64) { 8887 memset(storage, 0, sizeof(*storage)); 8888 ops->ndo_get_stats64(dev, storage); 8889 } else if (ops->ndo_get_stats) { 8890 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev)); 8891 } else { 8892 netdev_stats_to_stats64(storage, &dev->stats); 8893 } 8894 storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped); 8895 storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped); 8896 storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler); 8897 return storage; 8898 } 8899 EXPORT_SYMBOL(dev_get_stats); 8900 8901 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev) 8902 { 8903 struct netdev_queue *queue = dev_ingress_queue(dev); 8904 8905 #ifdef CONFIG_NET_CLS_ACT 8906 if (queue) 8907 return queue; 8908 queue = kzalloc(sizeof(*queue), GFP_KERNEL); 8909 if (!queue) 8910 return NULL; 8911 netdev_init_one_queue(dev, queue, NULL); 8912 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc); 8913 queue->qdisc_sleeping = &noop_qdisc; 8914 rcu_assign_pointer(dev->ingress_queue, queue); 8915 #endif 8916 return queue; 8917 } 8918 8919 static const struct ethtool_ops default_ethtool_ops; 8920 8921 void netdev_set_default_ethtool_ops(struct net_device *dev, 8922 const struct ethtool_ops *ops) 8923 { 8924 if (dev->ethtool_ops == &default_ethtool_ops) 8925 dev->ethtool_ops = ops; 8926 } 8927 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops); 8928 8929 void netdev_freemem(struct net_device *dev) 8930 { 8931 char *addr = (char *)dev - dev->padded; 8932 8933 kvfree(addr); 8934 } 8935 8936 /** 8937 * alloc_netdev_mqs - allocate network device 8938 * @sizeof_priv: size of private data to allocate space for 8939 * @name: device name format string 8940 * @name_assign_type: origin of device name 8941 * @setup: callback to initialize device 8942 * @txqs: the number of TX subqueues to allocate 8943 * @rxqs: the number of RX subqueues to allocate 8944 * 8945 * Allocates a struct net_device with private data area for driver use 8946 * and performs basic initialization. Also allocates subqueue structs 8947 * for each queue on the device. 8948 */ 8949 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 8950 unsigned char name_assign_type, 8951 void (*setup)(struct net_device *), 8952 unsigned int txqs, unsigned int rxqs) 8953 { 8954 struct net_device *dev; 8955 unsigned int alloc_size; 8956 struct net_device *p; 8957 8958 BUG_ON(strlen(name) >= sizeof(dev->name)); 8959 8960 if (txqs < 1) { 8961 pr_err("alloc_netdev: Unable to allocate device with zero queues\n"); 8962 return NULL; 8963 } 8964 8965 if (rxqs < 1) { 8966 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n"); 8967 return NULL; 8968 } 8969 8970 alloc_size = sizeof(struct net_device); 8971 if (sizeof_priv) { 8972 /* ensure 32-byte alignment of private area */ 8973 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN); 8974 alloc_size += sizeof_priv; 8975 } 8976 /* ensure 32-byte alignment of whole construct */ 8977 alloc_size += NETDEV_ALIGN - 1; 8978 8979 p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL); 8980 if (!p) 8981 return NULL; 8982 8983 dev = PTR_ALIGN(p, NETDEV_ALIGN); 8984 dev->padded = (char *)dev - (char *)p; 8985 8986 dev->pcpu_refcnt = alloc_percpu(int); 8987 if (!dev->pcpu_refcnt) 8988 goto free_dev; 8989 8990 if (dev_addr_init(dev)) 8991 goto free_pcpu; 8992 8993 dev_mc_init(dev); 8994 dev_uc_init(dev); 8995 8996 dev_net_set(dev, &init_net); 8997 8998 dev->gso_max_size = GSO_MAX_SIZE; 8999 dev->gso_max_segs = GSO_MAX_SEGS; 9000 9001 INIT_LIST_HEAD(&dev->napi_list); 9002 INIT_LIST_HEAD(&dev->unreg_list); 9003 INIT_LIST_HEAD(&dev->close_list); 9004 INIT_LIST_HEAD(&dev->link_watch_list); 9005 INIT_LIST_HEAD(&dev->adj_list.upper); 9006 INIT_LIST_HEAD(&dev->adj_list.lower); 9007 INIT_LIST_HEAD(&dev->ptype_all); 9008 INIT_LIST_HEAD(&dev->ptype_specific); 9009 #ifdef CONFIG_NET_SCHED 9010 hash_init(dev->qdisc_hash); 9011 #endif 9012 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM; 9013 setup(dev); 9014 9015 if (!dev->tx_queue_len) { 9016 dev->priv_flags |= IFF_NO_QUEUE; 9017 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN; 9018 } 9019 9020 dev->num_tx_queues = txqs; 9021 dev->real_num_tx_queues = txqs; 9022 if (netif_alloc_netdev_queues(dev)) 9023 goto free_all; 9024 9025 dev->num_rx_queues = rxqs; 9026 dev->real_num_rx_queues = rxqs; 9027 if (netif_alloc_rx_queues(dev)) 9028 goto free_all; 9029 9030 strcpy(dev->name, name); 9031 dev->name_assign_type = name_assign_type; 9032 dev->group = INIT_NETDEV_GROUP; 9033 if (!dev->ethtool_ops) 9034 dev->ethtool_ops = &default_ethtool_ops; 9035 9036 nf_hook_ingress_init(dev); 9037 9038 return dev; 9039 9040 free_all: 9041 free_netdev(dev); 9042 return NULL; 9043 9044 free_pcpu: 9045 free_percpu(dev->pcpu_refcnt); 9046 free_dev: 9047 netdev_freemem(dev); 9048 return NULL; 9049 } 9050 EXPORT_SYMBOL(alloc_netdev_mqs); 9051 9052 /** 9053 * free_netdev - free network device 9054 * @dev: device 9055 * 9056 * This function does the last stage of destroying an allocated device 9057 * interface. The reference to the device object is released. If this 9058 * is the last reference then it will be freed.Must be called in process 9059 * context. 9060 */ 9061 void free_netdev(struct net_device *dev) 9062 { 9063 struct napi_struct *p, *n; 9064 9065 might_sleep(); 9066 netif_free_tx_queues(dev); 9067 netif_free_rx_queues(dev); 9068 9069 kfree(rcu_dereference_protected(dev->ingress_queue, 1)); 9070 9071 /* Flush device addresses */ 9072 dev_addr_flush(dev); 9073 9074 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list) 9075 netif_napi_del(p); 9076 9077 free_percpu(dev->pcpu_refcnt); 9078 dev->pcpu_refcnt = NULL; 9079 9080 /* Compatibility with error handling in drivers */ 9081 if (dev->reg_state == NETREG_UNINITIALIZED) { 9082 netdev_freemem(dev); 9083 return; 9084 } 9085 9086 BUG_ON(dev->reg_state != NETREG_UNREGISTERED); 9087 dev->reg_state = NETREG_RELEASED; 9088 9089 /* will free via device release */ 9090 put_device(&dev->dev); 9091 } 9092 EXPORT_SYMBOL(free_netdev); 9093 9094 /** 9095 * synchronize_net - Synchronize with packet receive processing 9096 * 9097 * Wait for packets currently being received to be done. 9098 * Does not block later packets from starting. 9099 */ 9100 void synchronize_net(void) 9101 { 9102 might_sleep(); 9103 if (rtnl_is_locked()) 9104 synchronize_rcu_expedited(); 9105 else 9106 synchronize_rcu(); 9107 } 9108 EXPORT_SYMBOL(synchronize_net); 9109 9110 /** 9111 * unregister_netdevice_queue - remove device from the kernel 9112 * @dev: device 9113 * @head: list 9114 * 9115 * This function shuts down a device interface and removes it 9116 * from the kernel tables. 9117 * If head not NULL, device is queued to be unregistered later. 9118 * 9119 * Callers must hold the rtnl semaphore. You may want 9120 * unregister_netdev() instead of this. 9121 */ 9122 9123 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head) 9124 { 9125 ASSERT_RTNL(); 9126 9127 if (head) { 9128 list_move_tail(&dev->unreg_list, head); 9129 } else { 9130 rollback_registered(dev); 9131 /* Finish processing unregister after unlock */ 9132 net_set_todo(dev); 9133 } 9134 } 9135 EXPORT_SYMBOL(unregister_netdevice_queue); 9136 9137 /** 9138 * unregister_netdevice_many - unregister many devices 9139 * @head: list of devices 9140 * 9141 * Note: As most callers use a stack allocated list_head, 9142 * we force a list_del() to make sure stack wont be corrupted later. 9143 */ 9144 void unregister_netdevice_many(struct list_head *head) 9145 { 9146 struct net_device *dev; 9147 9148 if (!list_empty(head)) { 9149 rollback_registered_many(head); 9150 list_for_each_entry(dev, head, unreg_list) 9151 net_set_todo(dev); 9152 list_del(head); 9153 } 9154 } 9155 EXPORT_SYMBOL(unregister_netdevice_many); 9156 9157 /** 9158 * unregister_netdev - remove device from the kernel 9159 * @dev: device 9160 * 9161 * This function shuts down a device interface and removes it 9162 * from the kernel tables. 9163 * 9164 * This is just a wrapper for unregister_netdevice that takes 9165 * the rtnl semaphore. In general you want to use this and not 9166 * unregister_netdevice. 9167 */ 9168 void unregister_netdev(struct net_device *dev) 9169 { 9170 rtnl_lock(); 9171 unregister_netdevice(dev); 9172 rtnl_unlock(); 9173 } 9174 EXPORT_SYMBOL(unregister_netdev); 9175 9176 /** 9177 * dev_change_net_namespace - move device to different nethost namespace 9178 * @dev: device 9179 * @net: network namespace 9180 * @pat: If not NULL name pattern to try if the current device name 9181 * is already taken in the destination network namespace. 9182 * 9183 * This function shuts down a device interface and moves it 9184 * to a new network namespace. On success 0 is returned, on 9185 * a failure a netagive errno code is returned. 9186 * 9187 * Callers must hold the rtnl semaphore. 9188 */ 9189 9190 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat) 9191 { 9192 int err, new_nsid, new_ifindex; 9193 9194 ASSERT_RTNL(); 9195 9196 /* Don't allow namespace local devices to be moved. */ 9197 err = -EINVAL; 9198 if (dev->features & NETIF_F_NETNS_LOCAL) 9199 goto out; 9200 9201 /* Ensure the device has been registrered */ 9202 if (dev->reg_state != NETREG_REGISTERED) 9203 goto out; 9204 9205 /* Get out if there is nothing todo */ 9206 err = 0; 9207 if (net_eq(dev_net(dev), net)) 9208 goto out; 9209 9210 /* Pick the destination device name, and ensure 9211 * we can use it in the destination network namespace. 9212 */ 9213 err = -EEXIST; 9214 if (__dev_get_by_name(net, dev->name)) { 9215 /* We get here if we can't use the current device name */ 9216 if (!pat) 9217 goto out; 9218 err = dev_get_valid_name(net, dev, pat); 9219 if (err < 0) 9220 goto out; 9221 } 9222 9223 /* 9224 * And now a mini version of register_netdevice unregister_netdevice. 9225 */ 9226 9227 /* If device is running close it first. */ 9228 dev_close(dev); 9229 9230 /* And unlink it from device chain */ 9231 unlist_netdevice(dev); 9232 9233 synchronize_net(); 9234 9235 /* Shutdown queueing discipline. */ 9236 dev_shutdown(dev); 9237 9238 /* Notify protocols, that we are about to destroy 9239 * this device. They should clean all the things. 9240 * 9241 * Note that dev->reg_state stays at NETREG_REGISTERED. 9242 * This is wanted because this way 8021q and macvlan know 9243 * the device is just moving and can keep their slaves up. 9244 */ 9245 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 9246 rcu_barrier(); 9247 9248 new_nsid = peernet2id_alloc(dev_net(dev), net); 9249 /* If there is an ifindex conflict assign a new one */ 9250 if (__dev_get_by_index(net, dev->ifindex)) 9251 new_ifindex = dev_new_index(net); 9252 else 9253 new_ifindex = dev->ifindex; 9254 9255 rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid, 9256 new_ifindex); 9257 9258 /* 9259 * Flush the unicast and multicast chains 9260 */ 9261 dev_uc_flush(dev); 9262 dev_mc_flush(dev); 9263 9264 /* Send a netdev-removed uevent to the old namespace */ 9265 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE); 9266 netdev_adjacent_del_links(dev); 9267 9268 /* Actually switch the network namespace */ 9269 dev_net_set(dev, net); 9270 dev->ifindex = new_ifindex; 9271 9272 /* Send a netdev-add uevent to the new namespace */ 9273 kobject_uevent(&dev->dev.kobj, KOBJ_ADD); 9274 netdev_adjacent_add_links(dev); 9275 9276 /* Fixup kobjects */ 9277 err = device_rename(&dev->dev, dev->name); 9278 WARN_ON(err); 9279 9280 /* Add the device back in the hashes */ 9281 list_netdevice(dev); 9282 9283 /* Notify protocols, that a new device appeared. */ 9284 call_netdevice_notifiers(NETDEV_REGISTER, dev); 9285 9286 /* 9287 * Prevent userspace races by waiting until the network 9288 * device is fully setup before sending notifications. 9289 */ 9290 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL); 9291 9292 synchronize_net(); 9293 err = 0; 9294 out: 9295 return err; 9296 } 9297 EXPORT_SYMBOL_GPL(dev_change_net_namespace); 9298 9299 static int dev_cpu_dead(unsigned int oldcpu) 9300 { 9301 struct sk_buff **list_skb; 9302 struct sk_buff *skb; 9303 unsigned int cpu; 9304 struct softnet_data *sd, *oldsd, *remsd = NULL; 9305 9306 local_irq_disable(); 9307 cpu = smp_processor_id(); 9308 sd = &per_cpu(softnet_data, cpu); 9309 oldsd = &per_cpu(softnet_data, oldcpu); 9310 9311 /* Find end of our completion_queue. */ 9312 list_skb = &sd->completion_queue; 9313 while (*list_skb) 9314 list_skb = &(*list_skb)->next; 9315 /* Append completion queue from offline CPU. */ 9316 *list_skb = oldsd->completion_queue; 9317 oldsd->completion_queue = NULL; 9318 9319 /* Append output queue from offline CPU. */ 9320 if (oldsd->output_queue) { 9321 *sd->output_queue_tailp = oldsd->output_queue; 9322 sd->output_queue_tailp = oldsd->output_queue_tailp; 9323 oldsd->output_queue = NULL; 9324 oldsd->output_queue_tailp = &oldsd->output_queue; 9325 } 9326 /* Append NAPI poll list from offline CPU, with one exception : 9327 * process_backlog() must be called by cpu owning percpu backlog. 9328 * We properly handle process_queue & input_pkt_queue later. 9329 */ 9330 while (!list_empty(&oldsd->poll_list)) { 9331 struct napi_struct *napi = list_first_entry(&oldsd->poll_list, 9332 struct napi_struct, 9333 poll_list); 9334 9335 list_del_init(&napi->poll_list); 9336 if (napi->poll == process_backlog) 9337 napi->state = 0; 9338 else 9339 ____napi_schedule(sd, napi); 9340 } 9341 9342 raise_softirq_irqoff(NET_TX_SOFTIRQ); 9343 local_irq_enable(); 9344 9345 #ifdef CONFIG_RPS 9346 remsd = oldsd->rps_ipi_list; 9347 oldsd->rps_ipi_list = NULL; 9348 #endif 9349 /* send out pending IPI's on offline CPU */ 9350 net_rps_send_ipi(remsd); 9351 9352 /* Process offline CPU's input_pkt_queue */ 9353 while ((skb = __skb_dequeue(&oldsd->process_queue))) { 9354 netif_rx_ni(skb); 9355 input_queue_head_incr(oldsd); 9356 } 9357 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) { 9358 netif_rx_ni(skb); 9359 input_queue_head_incr(oldsd); 9360 } 9361 9362 return 0; 9363 } 9364 9365 /** 9366 * netdev_increment_features - increment feature set by one 9367 * @all: current feature set 9368 * @one: new feature set 9369 * @mask: mask feature set 9370 * 9371 * Computes a new feature set after adding a device with feature set 9372 * @one to the master device with current feature set @all. Will not 9373 * enable anything that is off in @mask. Returns the new feature set. 9374 */ 9375 netdev_features_t netdev_increment_features(netdev_features_t all, 9376 netdev_features_t one, netdev_features_t mask) 9377 { 9378 if (mask & NETIF_F_HW_CSUM) 9379 mask |= NETIF_F_CSUM_MASK; 9380 mask |= NETIF_F_VLAN_CHALLENGED; 9381 9382 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask; 9383 all &= one | ~NETIF_F_ALL_FOR_ALL; 9384 9385 /* If one device supports hw checksumming, set for all. */ 9386 if (all & NETIF_F_HW_CSUM) 9387 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM); 9388 9389 return all; 9390 } 9391 EXPORT_SYMBOL(netdev_increment_features); 9392 9393 static struct hlist_head * __net_init netdev_create_hash(void) 9394 { 9395 int i; 9396 struct hlist_head *hash; 9397 9398 hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL); 9399 if (hash != NULL) 9400 for (i = 0; i < NETDEV_HASHENTRIES; i++) 9401 INIT_HLIST_HEAD(&hash[i]); 9402 9403 return hash; 9404 } 9405 9406 /* Initialize per network namespace state */ 9407 static int __net_init netdev_init(struct net *net) 9408 { 9409 BUILD_BUG_ON(GRO_HASH_BUCKETS > 9410 8 * FIELD_SIZEOF(struct napi_struct, gro_bitmask)); 9411 9412 if (net != &init_net) 9413 INIT_LIST_HEAD(&net->dev_base_head); 9414 9415 net->dev_name_head = netdev_create_hash(); 9416 if (net->dev_name_head == NULL) 9417 goto err_name; 9418 9419 net->dev_index_head = netdev_create_hash(); 9420 if (net->dev_index_head == NULL) 9421 goto err_idx; 9422 9423 return 0; 9424 9425 err_idx: 9426 kfree(net->dev_name_head); 9427 err_name: 9428 return -ENOMEM; 9429 } 9430 9431 /** 9432 * netdev_drivername - network driver for the device 9433 * @dev: network device 9434 * 9435 * Determine network driver for device. 9436 */ 9437 const char *netdev_drivername(const struct net_device *dev) 9438 { 9439 const struct device_driver *driver; 9440 const struct device *parent; 9441 const char *empty = ""; 9442 9443 parent = dev->dev.parent; 9444 if (!parent) 9445 return empty; 9446 9447 driver = parent->driver; 9448 if (driver && driver->name) 9449 return driver->name; 9450 return empty; 9451 } 9452 9453 static void __netdev_printk(const char *level, const struct net_device *dev, 9454 struct va_format *vaf) 9455 { 9456 if (dev && dev->dev.parent) { 9457 dev_printk_emit(level[1] - '0', 9458 dev->dev.parent, 9459 "%s %s %s%s: %pV", 9460 dev_driver_string(dev->dev.parent), 9461 dev_name(dev->dev.parent), 9462 netdev_name(dev), netdev_reg_state(dev), 9463 vaf); 9464 } else if (dev) { 9465 printk("%s%s%s: %pV", 9466 level, netdev_name(dev), netdev_reg_state(dev), vaf); 9467 } else { 9468 printk("%s(NULL net_device): %pV", level, vaf); 9469 } 9470 } 9471 9472 void netdev_printk(const char *level, const struct net_device *dev, 9473 const char *format, ...) 9474 { 9475 struct va_format vaf; 9476 va_list args; 9477 9478 va_start(args, format); 9479 9480 vaf.fmt = format; 9481 vaf.va = &args; 9482 9483 __netdev_printk(level, dev, &vaf); 9484 9485 va_end(args); 9486 } 9487 EXPORT_SYMBOL(netdev_printk); 9488 9489 #define define_netdev_printk_level(func, level) \ 9490 void func(const struct net_device *dev, const char *fmt, ...) \ 9491 { \ 9492 struct va_format vaf; \ 9493 va_list args; \ 9494 \ 9495 va_start(args, fmt); \ 9496 \ 9497 vaf.fmt = fmt; \ 9498 vaf.va = &args; \ 9499 \ 9500 __netdev_printk(level, dev, &vaf); \ 9501 \ 9502 va_end(args); \ 9503 } \ 9504 EXPORT_SYMBOL(func); 9505 9506 define_netdev_printk_level(netdev_emerg, KERN_EMERG); 9507 define_netdev_printk_level(netdev_alert, KERN_ALERT); 9508 define_netdev_printk_level(netdev_crit, KERN_CRIT); 9509 define_netdev_printk_level(netdev_err, KERN_ERR); 9510 define_netdev_printk_level(netdev_warn, KERN_WARNING); 9511 define_netdev_printk_level(netdev_notice, KERN_NOTICE); 9512 define_netdev_printk_level(netdev_info, KERN_INFO); 9513 9514 static void __net_exit netdev_exit(struct net *net) 9515 { 9516 kfree(net->dev_name_head); 9517 kfree(net->dev_index_head); 9518 if (net != &init_net) 9519 WARN_ON_ONCE(!list_empty(&net->dev_base_head)); 9520 } 9521 9522 static struct pernet_operations __net_initdata netdev_net_ops = { 9523 .init = netdev_init, 9524 .exit = netdev_exit, 9525 }; 9526 9527 static void __net_exit default_device_exit(struct net *net) 9528 { 9529 struct net_device *dev, *aux; 9530 /* 9531 * Push all migratable network devices back to the 9532 * initial network namespace 9533 */ 9534 rtnl_lock(); 9535 for_each_netdev_safe(net, dev, aux) { 9536 int err; 9537 char fb_name[IFNAMSIZ]; 9538 9539 /* Ignore unmoveable devices (i.e. loopback) */ 9540 if (dev->features & NETIF_F_NETNS_LOCAL) 9541 continue; 9542 9543 /* Leave virtual devices for the generic cleanup */ 9544 if (dev->rtnl_link_ops) 9545 continue; 9546 9547 /* Push remaining network devices to init_net */ 9548 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex); 9549 err = dev_change_net_namespace(dev, &init_net, fb_name); 9550 if (err) { 9551 pr_emerg("%s: failed to move %s to init_net: %d\n", 9552 __func__, dev->name, err); 9553 BUG(); 9554 } 9555 } 9556 rtnl_unlock(); 9557 } 9558 9559 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list) 9560 { 9561 /* Return with the rtnl_lock held when there are no network 9562 * devices unregistering in any network namespace in net_list. 9563 */ 9564 struct net *net; 9565 bool unregistering; 9566 DEFINE_WAIT_FUNC(wait, woken_wake_function); 9567 9568 add_wait_queue(&netdev_unregistering_wq, &wait); 9569 for (;;) { 9570 unregistering = false; 9571 rtnl_lock(); 9572 list_for_each_entry(net, net_list, exit_list) { 9573 if (net->dev_unreg_count > 0) { 9574 unregistering = true; 9575 break; 9576 } 9577 } 9578 if (!unregistering) 9579 break; 9580 __rtnl_unlock(); 9581 9582 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT); 9583 } 9584 remove_wait_queue(&netdev_unregistering_wq, &wait); 9585 } 9586 9587 static void __net_exit default_device_exit_batch(struct list_head *net_list) 9588 { 9589 /* At exit all network devices most be removed from a network 9590 * namespace. Do this in the reverse order of registration. 9591 * Do this across as many network namespaces as possible to 9592 * improve batching efficiency. 9593 */ 9594 struct net_device *dev; 9595 struct net *net; 9596 LIST_HEAD(dev_kill_list); 9597 9598 /* To prevent network device cleanup code from dereferencing 9599 * loopback devices or network devices that have been freed 9600 * wait here for all pending unregistrations to complete, 9601 * before unregistring the loopback device and allowing the 9602 * network namespace be freed. 9603 * 9604 * The netdev todo list containing all network devices 9605 * unregistrations that happen in default_device_exit_batch 9606 * will run in the rtnl_unlock() at the end of 9607 * default_device_exit_batch. 9608 */ 9609 rtnl_lock_unregistering(net_list); 9610 list_for_each_entry(net, net_list, exit_list) { 9611 for_each_netdev_reverse(net, dev) { 9612 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink) 9613 dev->rtnl_link_ops->dellink(dev, &dev_kill_list); 9614 else 9615 unregister_netdevice_queue(dev, &dev_kill_list); 9616 } 9617 } 9618 unregister_netdevice_many(&dev_kill_list); 9619 rtnl_unlock(); 9620 } 9621 9622 static struct pernet_operations __net_initdata default_device_ops = { 9623 .exit = default_device_exit, 9624 .exit_batch = default_device_exit_batch, 9625 }; 9626 9627 /* 9628 * Initialize the DEV module. At boot time this walks the device list and 9629 * unhooks any devices that fail to initialise (normally hardware not 9630 * present) and leaves us with a valid list of present and active devices. 9631 * 9632 */ 9633 9634 /* 9635 * This is called single threaded during boot, so no need 9636 * to take the rtnl semaphore. 9637 */ 9638 static int __init net_dev_init(void) 9639 { 9640 int i, rc = -ENOMEM; 9641 9642 BUG_ON(!dev_boot_phase); 9643 9644 if (dev_proc_init()) 9645 goto out; 9646 9647 if (netdev_kobject_init()) 9648 goto out; 9649 9650 INIT_LIST_HEAD(&ptype_all); 9651 for (i = 0; i < PTYPE_HASH_SIZE; i++) 9652 INIT_LIST_HEAD(&ptype_base[i]); 9653 9654 INIT_LIST_HEAD(&offload_base); 9655 9656 if (register_pernet_subsys(&netdev_net_ops)) 9657 goto out; 9658 9659 /* 9660 * Initialise the packet receive queues. 9661 */ 9662 9663 for_each_possible_cpu(i) { 9664 struct work_struct *flush = per_cpu_ptr(&flush_works, i); 9665 struct softnet_data *sd = &per_cpu(softnet_data, i); 9666 9667 INIT_WORK(flush, flush_backlog); 9668 9669 skb_queue_head_init(&sd->input_pkt_queue); 9670 skb_queue_head_init(&sd->process_queue); 9671 #ifdef CONFIG_XFRM_OFFLOAD 9672 skb_queue_head_init(&sd->xfrm_backlog); 9673 #endif 9674 INIT_LIST_HEAD(&sd->poll_list); 9675 sd->output_queue_tailp = &sd->output_queue; 9676 #ifdef CONFIG_RPS 9677 sd->csd.func = rps_trigger_softirq; 9678 sd->csd.info = sd; 9679 sd->cpu = i; 9680 #endif 9681 9682 init_gro_hash(&sd->backlog); 9683 sd->backlog.poll = process_backlog; 9684 sd->backlog.weight = weight_p; 9685 } 9686 9687 dev_boot_phase = 0; 9688 9689 /* The loopback device is special if any other network devices 9690 * is present in a network namespace the loopback device must 9691 * be present. Since we now dynamically allocate and free the 9692 * loopback device ensure this invariant is maintained by 9693 * keeping the loopback device as the first device on the 9694 * list of network devices. Ensuring the loopback devices 9695 * is the first device that appears and the last network device 9696 * that disappears. 9697 */ 9698 if (register_pernet_device(&loopback_net_ops)) 9699 goto out; 9700 9701 if (register_pernet_device(&default_device_ops)) 9702 goto out; 9703 9704 open_softirq(NET_TX_SOFTIRQ, net_tx_action); 9705 open_softirq(NET_RX_SOFTIRQ, net_rx_action); 9706 9707 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead", 9708 NULL, dev_cpu_dead); 9709 WARN_ON(rc < 0); 9710 rc = 0; 9711 out: 9712 return rc; 9713 } 9714 9715 subsys_initcall(net_dev_init); 9716