xref: /linux/net/core/dev.c (revision 7110f24f9e33979fd704f7a4a595a9d3e9bdacb7)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *      NET3    Protocol independent device support routines.
4  *
5  *	Derived from the non IP parts of dev.c 1.0.19
6  *              Authors:	Ross Biro
7  *				Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8  *				Mark Evans, <evansmp@uhura.aston.ac.uk>
9  *
10  *	Additional Authors:
11  *		Florian la Roche <rzsfl@rz.uni-sb.de>
12  *		Alan Cox <gw4pts@gw4pts.ampr.org>
13  *		David Hinds <dahinds@users.sourceforge.net>
14  *		Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15  *		Adam Sulmicki <adam@cfar.umd.edu>
16  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
17  *
18  *	Changes:
19  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
20  *                                      to 2 if register_netdev gets called
21  *                                      before net_dev_init & also removed a
22  *                                      few lines of code in the process.
23  *		Alan Cox	:	device private ioctl copies fields back.
24  *		Alan Cox	:	Transmit queue code does relevant
25  *					stunts to keep the queue safe.
26  *		Alan Cox	:	Fixed double lock.
27  *		Alan Cox	:	Fixed promisc NULL pointer trap
28  *		????????	:	Support the full private ioctl range
29  *		Alan Cox	:	Moved ioctl permission check into
30  *					drivers
31  *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
32  *		Alan Cox	:	100 backlog just doesn't cut it when
33  *					you start doing multicast video 8)
34  *		Alan Cox	:	Rewrote net_bh and list manager.
35  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
36  *		Alan Cox	:	Took out transmit every packet pass
37  *					Saved a few bytes in the ioctl handler
38  *		Alan Cox	:	Network driver sets packet type before
39  *					calling netif_rx. Saves a function
40  *					call a packet.
41  *		Alan Cox	:	Hashed net_bh()
42  *		Richard Kooijman:	Timestamp fixes.
43  *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
44  *		Alan Cox	:	Device lock protection.
45  *              Alan Cox        :       Fixed nasty side effect of device close
46  *					changes.
47  *		Rudi Cilibrasi	:	Pass the right thing to
48  *					set_mac_address()
49  *		Dave Miller	:	32bit quantity for the device lock to
50  *					make it work out on a Sparc.
51  *		Bjorn Ekwall	:	Added KERNELD hack.
52  *		Alan Cox	:	Cleaned up the backlog initialise.
53  *		Craig Metz	:	SIOCGIFCONF fix if space for under
54  *					1 device.
55  *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
56  *					is no device open function.
57  *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
58  *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
59  *		Cyrus Durgin	:	Cleaned for KMOD
60  *		Adam Sulmicki   :	Bug Fix : Network Device Unload
61  *					A network device unload needs to purge
62  *					the backlog queue.
63  *	Paul Rusty Russell	:	SIOCSIFNAME
64  *              Pekka Riikonen  :	Netdev boot-time settings code
65  *              Andrew Morton   :       Make unregister_netdevice wait
66  *                                      indefinitely on dev->refcnt
67  *              J Hadi Salim    :       - Backlog queue sampling
68  *				        - netif_rx() feedback
69  */
70 
71 #include <linux/uaccess.h>
72 #include <linux/bitmap.h>
73 #include <linux/capability.h>
74 #include <linux/cpu.h>
75 #include <linux/types.h>
76 #include <linux/kernel.h>
77 #include <linux/hash.h>
78 #include <linux/slab.h>
79 #include <linux/sched.h>
80 #include <linux/sched/isolation.h>
81 #include <linux/sched/mm.h>
82 #include <linux/smpboot.h>
83 #include <linux/mutex.h>
84 #include <linux/rwsem.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/skbuff.h>
96 #include <linux/kthread.h>
97 #include <linux/bpf.h>
98 #include <linux/bpf_trace.h>
99 #include <net/net_namespace.h>
100 #include <net/sock.h>
101 #include <net/busy_poll.h>
102 #include <linux/rtnetlink.h>
103 #include <linux/stat.h>
104 #include <net/dsa.h>
105 #include <net/dst.h>
106 #include <net/dst_metadata.h>
107 #include <net/gro.h>
108 #include <net/pkt_sched.h>
109 #include <net/pkt_cls.h>
110 #include <net/checksum.h>
111 #include <net/xfrm.h>
112 #include <net/tcx.h>
113 #include <linux/highmem.h>
114 #include <linux/init.h>
115 #include <linux/module.h>
116 #include <linux/netpoll.h>
117 #include <linux/rcupdate.h>
118 #include <linux/delay.h>
119 #include <net/iw_handler.h>
120 #include <asm/current.h>
121 #include <linux/audit.h>
122 #include <linux/dmaengine.h>
123 #include <linux/err.h>
124 #include <linux/ctype.h>
125 #include <linux/if_arp.h>
126 #include <linux/if_vlan.h>
127 #include <linux/ip.h>
128 #include <net/ip.h>
129 #include <net/mpls.h>
130 #include <linux/ipv6.h>
131 #include <linux/in.h>
132 #include <linux/jhash.h>
133 #include <linux/random.h>
134 #include <trace/events/napi.h>
135 #include <trace/events/net.h>
136 #include <trace/events/skb.h>
137 #include <trace/events/qdisc.h>
138 #include <trace/events/xdp.h>
139 #include <linux/inetdevice.h>
140 #include <linux/cpu_rmap.h>
141 #include <linux/static_key.h>
142 #include <linux/hashtable.h>
143 #include <linux/vmalloc.h>
144 #include <linux/if_macvlan.h>
145 #include <linux/errqueue.h>
146 #include <linux/hrtimer.h>
147 #include <linux/netfilter_netdev.h>
148 #include <linux/crash_dump.h>
149 #include <linux/sctp.h>
150 #include <net/udp_tunnel.h>
151 #include <linux/net_namespace.h>
152 #include <linux/indirect_call_wrapper.h>
153 #include <net/devlink.h>
154 #include <linux/pm_runtime.h>
155 #include <linux/prandom.h>
156 #include <linux/once_lite.h>
157 #include <net/netdev_rx_queue.h>
158 #include <net/page_pool/types.h>
159 #include <net/page_pool/helpers.h>
160 #include <net/rps.h>
161 #include <linux/phy_link_topology.h>
162 
163 #include "dev.h"
164 #include "devmem.h"
165 #include "net-sysfs.h"
166 
167 static DEFINE_SPINLOCK(ptype_lock);
168 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
169 
170 static int netif_rx_internal(struct sk_buff *skb);
171 static int call_netdevice_notifiers_extack(unsigned long val,
172 					   struct net_device *dev,
173 					   struct netlink_ext_ack *extack);
174 
175 static DEFINE_MUTEX(ifalias_mutex);
176 
177 /* protects napi_hash addition/deletion and napi_gen_id */
178 static DEFINE_SPINLOCK(napi_hash_lock);
179 
180 static unsigned int napi_gen_id = NR_CPUS;
181 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
182 
183 static DECLARE_RWSEM(devnet_rename_sem);
184 
185 static inline void dev_base_seq_inc(struct net *net)
186 {
187 	unsigned int val = net->dev_base_seq + 1;
188 
189 	WRITE_ONCE(net->dev_base_seq, val ?: 1);
190 }
191 
192 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
193 {
194 	unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
195 
196 	return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
197 }
198 
199 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
200 {
201 	return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
202 }
203 
204 #ifndef CONFIG_PREEMPT_RT
205 
206 static DEFINE_STATIC_KEY_FALSE(use_backlog_threads_key);
207 
208 static int __init setup_backlog_napi_threads(char *arg)
209 {
210 	static_branch_enable(&use_backlog_threads_key);
211 	return 0;
212 }
213 early_param("thread_backlog_napi", setup_backlog_napi_threads);
214 
215 static bool use_backlog_threads(void)
216 {
217 	return static_branch_unlikely(&use_backlog_threads_key);
218 }
219 
220 #else
221 
222 static bool use_backlog_threads(void)
223 {
224 	return true;
225 }
226 
227 #endif
228 
229 static inline void backlog_lock_irq_save(struct softnet_data *sd,
230 					 unsigned long *flags)
231 {
232 	if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads())
233 		spin_lock_irqsave(&sd->input_pkt_queue.lock, *flags);
234 	else
235 		local_irq_save(*flags);
236 }
237 
238 static inline void backlog_lock_irq_disable(struct softnet_data *sd)
239 {
240 	if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads())
241 		spin_lock_irq(&sd->input_pkt_queue.lock);
242 	else
243 		local_irq_disable();
244 }
245 
246 static inline void backlog_unlock_irq_restore(struct softnet_data *sd,
247 					      unsigned long *flags)
248 {
249 	if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads())
250 		spin_unlock_irqrestore(&sd->input_pkt_queue.lock, *flags);
251 	else
252 		local_irq_restore(*flags);
253 }
254 
255 static inline void backlog_unlock_irq_enable(struct softnet_data *sd)
256 {
257 	if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads())
258 		spin_unlock_irq(&sd->input_pkt_queue.lock);
259 	else
260 		local_irq_enable();
261 }
262 
263 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
264 						       const char *name)
265 {
266 	struct netdev_name_node *name_node;
267 
268 	name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
269 	if (!name_node)
270 		return NULL;
271 	INIT_HLIST_NODE(&name_node->hlist);
272 	name_node->dev = dev;
273 	name_node->name = name;
274 	return name_node;
275 }
276 
277 static struct netdev_name_node *
278 netdev_name_node_head_alloc(struct net_device *dev)
279 {
280 	struct netdev_name_node *name_node;
281 
282 	name_node = netdev_name_node_alloc(dev, dev->name);
283 	if (!name_node)
284 		return NULL;
285 	INIT_LIST_HEAD(&name_node->list);
286 	return name_node;
287 }
288 
289 static void netdev_name_node_free(struct netdev_name_node *name_node)
290 {
291 	kfree(name_node);
292 }
293 
294 static void netdev_name_node_add(struct net *net,
295 				 struct netdev_name_node *name_node)
296 {
297 	hlist_add_head_rcu(&name_node->hlist,
298 			   dev_name_hash(net, name_node->name));
299 }
300 
301 static void netdev_name_node_del(struct netdev_name_node *name_node)
302 {
303 	hlist_del_rcu(&name_node->hlist);
304 }
305 
306 static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
307 							const char *name)
308 {
309 	struct hlist_head *head = dev_name_hash(net, name);
310 	struct netdev_name_node *name_node;
311 
312 	hlist_for_each_entry(name_node, head, hlist)
313 		if (!strcmp(name_node->name, name))
314 			return name_node;
315 	return NULL;
316 }
317 
318 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
319 							    const char *name)
320 {
321 	struct hlist_head *head = dev_name_hash(net, name);
322 	struct netdev_name_node *name_node;
323 
324 	hlist_for_each_entry_rcu(name_node, head, hlist)
325 		if (!strcmp(name_node->name, name))
326 			return name_node;
327 	return NULL;
328 }
329 
330 bool netdev_name_in_use(struct net *net, const char *name)
331 {
332 	return netdev_name_node_lookup(net, name);
333 }
334 EXPORT_SYMBOL(netdev_name_in_use);
335 
336 int netdev_name_node_alt_create(struct net_device *dev, const char *name)
337 {
338 	struct netdev_name_node *name_node;
339 	struct net *net = dev_net(dev);
340 
341 	name_node = netdev_name_node_lookup(net, name);
342 	if (name_node)
343 		return -EEXIST;
344 	name_node = netdev_name_node_alloc(dev, name);
345 	if (!name_node)
346 		return -ENOMEM;
347 	netdev_name_node_add(net, name_node);
348 	/* The node that holds dev->name acts as a head of per-device list. */
349 	list_add_tail_rcu(&name_node->list, &dev->name_node->list);
350 
351 	return 0;
352 }
353 
354 static void netdev_name_node_alt_free(struct rcu_head *head)
355 {
356 	struct netdev_name_node *name_node =
357 		container_of(head, struct netdev_name_node, rcu);
358 
359 	kfree(name_node->name);
360 	netdev_name_node_free(name_node);
361 }
362 
363 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
364 {
365 	netdev_name_node_del(name_node);
366 	list_del(&name_node->list);
367 	call_rcu(&name_node->rcu, netdev_name_node_alt_free);
368 }
369 
370 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
371 {
372 	struct netdev_name_node *name_node;
373 	struct net *net = dev_net(dev);
374 
375 	name_node = netdev_name_node_lookup(net, name);
376 	if (!name_node)
377 		return -ENOENT;
378 	/* lookup might have found our primary name or a name belonging
379 	 * to another device.
380 	 */
381 	if (name_node == dev->name_node || name_node->dev != dev)
382 		return -EINVAL;
383 
384 	__netdev_name_node_alt_destroy(name_node);
385 	return 0;
386 }
387 
388 static void netdev_name_node_alt_flush(struct net_device *dev)
389 {
390 	struct netdev_name_node *name_node, *tmp;
391 
392 	list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list) {
393 		list_del(&name_node->list);
394 		netdev_name_node_alt_free(&name_node->rcu);
395 	}
396 }
397 
398 /* Device list insertion */
399 static void list_netdevice(struct net_device *dev)
400 {
401 	struct netdev_name_node *name_node;
402 	struct net *net = dev_net(dev);
403 
404 	ASSERT_RTNL();
405 
406 	list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
407 	netdev_name_node_add(net, dev->name_node);
408 	hlist_add_head_rcu(&dev->index_hlist,
409 			   dev_index_hash(net, dev->ifindex));
410 
411 	netdev_for_each_altname(dev, name_node)
412 		netdev_name_node_add(net, name_node);
413 
414 	/* We reserved the ifindex, this can't fail */
415 	WARN_ON(xa_store(&net->dev_by_index, dev->ifindex, dev, GFP_KERNEL));
416 
417 	dev_base_seq_inc(net);
418 }
419 
420 /* Device list removal
421  * caller must respect a RCU grace period before freeing/reusing dev
422  */
423 static void unlist_netdevice(struct net_device *dev)
424 {
425 	struct netdev_name_node *name_node;
426 	struct net *net = dev_net(dev);
427 
428 	ASSERT_RTNL();
429 
430 	xa_erase(&net->dev_by_index, dev->ifindex);
431 
432 	netdev_for_each_altname(dev, name_node)
433 		netdev_name_node_del(name_node);
434 
435 	/* Unlink dev from the device chain */
436 	list_del_rcu(&dev->dev_list);
437 	netdev_name_node_del(dev->name_node);
438 	hlist_del_rcu(&dev->index_hlist);
439 
440 	dev_base_seq_inc(dev_net(dev));
441 }
442 
443 /*
444  *	Our notifier list
445  */
446 
447 static RAW_NOTIFIER_HEAD(netdev_chain);
448 
449 /*
450  *	Device drivers call our routines to queue packets here. We empty the
451  *	queue in the local softnet handler.
452  */
453 
454 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data) = {
455 	.process_queue_bh_lock = INIT_LOCAL_LOCK(process_queue_bh_lock),
456 };
457 EXPORT_PER_CPU_SYMBOL(softnet_data);
458 
459 /* Page_pool has a lockless array/stack to alloc/recycle pages.
460  * PP consumers must pay attention to run APIs in the appropriate context
461  * (e.g. NAPI context).
462  */
463 static DEFINE_PER_CPU(struct page_pool *, system_page_pool);
464 
465 #ifdef CONFIG_LOCKDEP
466 /*
467  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
468  * according to dev->type
469  */
470 static const unsigned short netdev_lock_type[] = {
471 	 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
472 	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
473 	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
474 	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
475 	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
476 	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
477 	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
478 	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
479 	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
480 	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
481 	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
482 	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
483 	 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
484 	 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
485 	 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
486 
487 static const char *const netdev_lock_name[] = {
488 	"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
489 	"_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
490 	"_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
491 	"_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
492 	"_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
493 	"_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
494 	"_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
495 	"_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
496 	"_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
497 	"_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
498 	"_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
499 	"_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
500 	"_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
501 	"_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
502 	"_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
503 
504 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
505 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
506 
507 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
508 {
509 	int i;
510 
511 	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
512 		if (netdev_lock_type[i] == dev_type)
513 			return i;
514 	/* the last key is used by default */
515 	return ARRAY_SIZE(netdev_lock_type) - 1;
516 }
517 
518 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
519 						 unsigned short dev_type)
520 {
521 	int i;
522 
523 	i = netdev_lock_pos(dev_type);
524 	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
525 				   netdev_lock_name[i]);
526 }
527 
528 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
529 {
530 	int i;
531 
532 	i = netdev_lock_pos(dev->type);
533 	lockdep_set_class_and_name(&dev->addr_list_lock,
534 				   &netdev_addr_lock_key[i],
535 				   netdev_lock_name[i]);
536 }
537 #else
538 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
539 						 unsigned short dev_type)
540 {
541 }
542 
543 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
544 {
545 }
546 #endif
547 
548 /*******************************************************************************
549  *
550  *		Protocol management and registration routines
551  *
552  *******************************************************************************/
553 
554 
555 /*
556  *	Add a protocol ID to the list. Now that the input handler is
557  *	smarter we can dispense with all the messy stuff that used to be
558  *	here.
559  *
560  *	BEWARE!!! Protocol handlers, mangling input packets,
561  *	MUST BE last in hash buckets and checking protocol handlers
562  *	MUST start from promiscuous ptype_all chain in net_bh.
563  *	It is true now, do not change it.
564  *	Explanation follows: if protocol handler, mangling packet, will
565  *	be the first on list, it is not able to sense, that packet
566  *	is cloned and should be copied-on-write, so that it will
567  *	change it and subsequent readers will get broken packet.
568  *							--ANK (980803)
569  */
570 
571 static inline struct list_head *ptype_head(const struct packet_type *pt)
572 {
573 	if (pt->type == htons(ETH_P_ALL))
574 		return pt->dev ? &pt->dev->ptype_all : &net_hotdata.ptype_all;
575 	else
576 		return pt->dev ? &pt->dev->ptype_specific :
577 				 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
578 }
579 
580 /**
581  *	dev_add_pack - add packet handler
582  *	@pt: packet type declaration
583  *
584  *	Add a protocol handler to the networking stack. The passed &packet_type
585  *	is linked into kernel lists and may not be freed until it has been
586  *	removed from the kernel lists.
587  *
588  *	This call does not sleep therefore it can not
589  *	guarantee all CPU's that are in middle of receiving packets
590  *	will see the new packet type (until the next received packet).
591  */
592 
593 void dev_add_pack(struct packet_type *pt)
594 {
595 	struct list_head *head = ptype_head(pt);
596 
597 	spin_lock(&ptype_lock);
598 	list_add_rcu(&pt->list, head);
599 	spin_unlock(&ptype_lock);
600 }
601 EXPORT_SYMBOL(dev_add_pack);
602 
603 /**
604  *	__dev_remove_pack	 - remove packet handler
605  *	@pt: packet type declaration
606  *
607  *	Remove a protocol handler that was previously added to the kernel
608  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
609  *	from the kernel lists and can be freed or reused once this function
610  *	returns.
611  *
612  *      The packet type might still be in use by receivers
613  *	and must not be freed until after all the CPU's have gone
614  *	through a quiescent state.
615  */
616 void __dev_remove_pack(struct packet_type *pt)
617 {
618 	struct list_head *head = ptype_head(pt);
619 	struct packet_type *pt1;
620 
621 	spin_lock(&ptype_lock);
622 
623 	list_for_each_entry(pt1, head, list) {
624 		if (pt == pt1) {
625 			list_del_rcu(&pt->list);
626 			goto out;
627 		}
628 	}
629 
630 	pr_warn("dev_remove_pack: %p not found\n", pt);
631 out:
632 	spin_unlock(&ptype_lock);
633 }
634 EXPORT_SYMBOL(__dev_remove_pack);
635 
636 /**
637  *	dev_remove_pack	 - remove packet handler
638  *	@pt: packet type declaration
639  *
640  *	Remove a protocol handler that was previously added to the kernel
641  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
642  *	from the kernel lists and can be freed or reused once this function
643  *	returns.
644  *
645  *	This call sleeps to guarantee that no CPU is looking at the packet
646  *	type after return.
647  */
648 void dev_remove_pack(struct packet_type *pt)
649 {
650 	__dev_remove_pack(pt);
651 
652 	synchronize_net();
653 }
654 EXPORT_SYMBOL(dev_remove_pack);
655 
656 
657 /*******************************************************************************
658  *
659  *			    Device Interface Subroutines
660  *
661  *******************************************************************************/
662 
663 /**
664  *	dev_get_iflink	- get 'iflink' value of a interface
665  *	@dev: targeted interface
666  *
667  *	Indicates the ifindex the interface is linked to.
668  *	Physical interfaces have the same 'ifindex' and 'iflink' values.
669  */
670 
671 int dev_get_iflink(const struct net_device *dev)
672 {
673 	if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
674 		return dev->netdev_ops->ndo_get_iflink(dev);
675 
676 	return READ_ONCE(dev->ifindex);
677 }
678 EXPORT_SYMBOL(dev_get_iflink);
679 
680 /**
681  *	dev_fill_metadata_dst - Retrieve tunnel egress information.
682  *	@dev: targeted interface
683  *	@skb: The packet.
684  *
685  *	For better visibility of tunnel traffic OVS needs to retrieve
686  *	egress tunnel information for a packet. Following API allows
687  *	user to get this info.
688  */
689 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
690 {
691 	struct ip_tunnel_info *info;
692 
693 	if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
694 		return -EINVAL;
695 
696 	info = skb_tunnel_info_unclone(skb);
697 	if (!info)
698 		return -ENOMEM;
699 	if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
700 		return -EINVAL;
701 
702 	return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
703 }
704 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
705 
706 static struct net_device_path *dev_fwd_path(struct net_device_path_stack *stack)
707 {
708 	int k = stack->num_paths++;
709 
710 	if (WARN_ON_ONCE(k >= NET_DEVICE_PATH_STACK_MAX))
711 		return NULL;
712 
713 	return &stack->path[k];
714 }
715 
716 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
717 			  struct net_device_path_stack *stack)
718 {
719 	const struct net_device *last_dev;
720 	struct net_device_path_ctx ctx = {
721 		.dev	= dev,
722 	};
723 	struct net_device_path *path;
724 	int ret = 0;
725 
726 	memcpy(ctx.daddr, daddr, sizeof(ctx.daddr));
727 	stack->num_paths = 0;
728 	while (ctx.dev && ctx.dev->netdev_ops->ndo_fill_forward_path) {
729 		last_dev = ctx.dev;
730 		path = dev_fwd_path(stack);
731 		if (!path)
732 			return -1;
733 
734 		memset(path, 0, sizeof(struct net_device_path));
735 		ret = ctx.dev->netdev_ops->ndo_fill_forward_path(&ctx, path);
736 		if (ret < 0)
737 			return -1;
738 
739 		if (WARN_ON_ONCE(last_dev == ctx.dev))
740 			return -1;
741 	}
742 
743 	if (!ctx.dev)
744 		return ret;
745 
746 	path = dev_fwd_path(stack);
747 	if (!path)
748 		return -1;
749 	path->type = DEV_PATH_ETHERNET;
750 	path->dev = ctx.dev;
751 
752 	return ret;
753 }
754 EXPORT_SYMBOL_GPL(dev_fill_forward_path);
755 
756 /* must be called under rcu_read_lock(), as we dont take a reference */
757 static struct napi_struct *napi_by_id(unsigned int napi_id)
758 {
759 	unsigned int hash = napi_id % HASH_SIZE(napi_hash);
760 	struct napi_struct *napi;
761 
762 	hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
763 		if (napi->napi_id == napi_id)
764 			return napi;
765 
766 	return NULL;
767 }
768 
769 /* must be called under rcu_read_lock(), as we dont take a reference */
770 struct napi_struct *netdev_napi_by_id(struct net *net, unsigned int napi_id)
771 {
772 	struct napi_struct *napi;
773 
774 	napi = napi_by_id(napi_id);
775 	if (!napi)
776 		return NULL;
777 
778 	if (WARN_ON_ONCE(!napi->dev))
779 		return NULL;
780 	if (!net_eq(net, dev_net(napi->dev)))
781 		return NULL;
782 
783 	return napi;
784 }
785 
786 /**
787  *	__dev_get_by_name	- find a device by its name
788  *	@net: the applicable net namespace
789  *	@name: name to find
790  *
791  *	Find an interface by name. Must be called under RTNL semaphore.
792  *	If the name is found a pointer to the device is returned.
793  *	If the name is not found then %NULL is returned. The
794  *	reference counters are not incremented so the caller must be
795  *	careful with locks.
796  */
797 
798 struct net_device *__dev_get_by_name(struct net *net, const char *name)
799 {
800 	struct netdev_name_node *node_name;
801 
802 	node_name = netdev_name_node_lookup(net, name);
803 	return node_name ? node_name->dev : NULL;
804 }
805 EXPORT_SYMBOL(__dev_get_by_name);
806 
807 /**
808  * dev_get_by_name_rcu	- find a device by its name
809  * @net: the applicable net namespace
810  * @name: name to find
811  *
812  * Find an interface by name.
813  * If the name is found a pointer to the device is returned.
814  * If the name is not found then %NULL is returned.
815  * The reference counters are not incremented so the caller must be
816  * careful with locks. The caller must hold RCU lock.
817  */
818 
819 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
820 {
821 	struct netdev_name_node *node_name;
822 
823 	node_name = netdev_name_node_lookup_rcu(net, name);
824 	return node_name ? node_name->dev : NULL;
825 }
826 EXPORT_SYMBOL(dev_get_by_name_rcu);
827 
828 /* Deprecated for new users, call netdev_get_by_name() instead */
829 struct net_device *dev_get_by_name(struct net *net, const char *name)
830 {
831 	struct net_device *dev;
832 
833 	rcu_read_lock();
834 	dev = dev_get_by_name_rcu(net, name);
835 	dev_hold(dev);
836 	rcu_read_unlock();
837 	return dev;
838 }
839 EXPORT_SYMBOL(dev_get_by_name);
840 
841 /**
842  *	netdev_get_by_name() - find a device by its name
843  *	@net: the applicable net namespace
844  *	@name: name to find
845  *	@tracker: tracking object for the acquired reference
846  *	@gfp: allocation flags for the tracker
847  *
848  *	Find an interface by name. This can be called from any
849  *	context and does its own locking. The returned handle has
850  *	the usage count incremented and the caller must use netdev_put() to
851  *	release it when it is no longer needed. %NULL is returned if no
852  *	matching device is found.
853  */
854 struct net_device *netdev_get_by_name(struct net *net, const char *name,
855 				      netdevice_tracker *tracker, gfp_t gfp)
856 {
857 	struct net_device *dev;
858 
859 	dev = dev_get_by_name(net, name);
860 	if (dev)
861 		netdev_tracker_alloc(dev, tracker, gfp);
862 	return dev;
863 }
864 EXPORT_SYMBOL(netdev_get_by_name);
865 
866 /**
867  *	__dev_get_by_index - find a device by its ifindex
868  *	@net: the applicable net namespace
869  *	@ifindex: index of device
870  *
871  *	Search for an interface by index. Returns %NULL if the device
872  *	is not found or a pointer to the device. The device has not
873  *	had its reference counter increased so the caller must be careful
874  *	about locking. The caller must hold the RTNL semaphore.
875  */
876 
877 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
878 {
879 	struct net_device *dev;
880 	struct hlist_head *head = dev_index_hash(net, ifindex);
881 
882 	hlist_for_each_entry(dev, head, index_hlist)
883 		if (dev->ifindex == ifindex)
884 			return dev;
885 
886 	return NULL;
887 }
888 EXPORT_SYMBOL(__dev_get_by_index);
889 
890 /**
891  *	dev_get_by_index_rcu - find a device by its ifindex
892  *	@net: the applicable net namespace
893  *	@ifindex: index of device
894  *
895  *	Search for an interface by index. Returns %NULL if the device
896  *	is not found or a pointer to the device. The device has not
897  *	had its reference counter increased so the caller must be careful
898  *	about locking. The caller must hold RCU lock.
899  */
900 
901 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
902 {
903 	struct net_device *dev;
904 	struct hlist_head *head = dev_index_hash(net, ifindex);
905 
906 	hlist_for_each_entry_rcu(dev, head, index_hlist)
907 		if (dev->ifindex == ifindex)
908 			return dev;
909 
910 	return NULL;
911 }
912 EXPORT_SYMBOL(dev_get_by_index_rcu);
913 
914 /* Deprecated for new users, call netdev_get_by_index() instead */
915 struct net_device *dev_get_by_index(struct net *net, int ifindex)
916 {
917 	struct net_device *dev;
918 
919 	rcu_read_lock();
920 	dev = dev_get_by_index_rcu(net, ifindex);
921 	dev_hold(dev);
922 	rcu_read_unlock();
923 	return dev;
924 }
925 EXPORT_SYMBOL(dev_get_by_index);
926 
927 /**
928  *	netdev_get_by_index() - find a device by its ifindex
929  *	@net: the applicable net namespace
930  *	@ifindex: index of device
931  *	@tracker: tracking object for the acquired reference
932  *	@gfp: allocation flags for the tracker
933  *
934  *	Search for an interface by index. Returns NULL if the device
935  *	is not found or a pointer to the device. The device returned has
936  *	had a reference added and the pointer is safe until the user calls
937  *	netdev_put() to indicate they have finished with it.
938  */
939 struct net_device *netdev_get_by_index(struct net *net, int ifindex,
940 				       netdevice_tracker *tracker, gfp_t gfp)
941 {
942 	struct net_device *dev;
943 
944 	dev = dev_get_by_index(net, ifindex);
945 	if (dev)
946 		netdev_tracker_alloc(dev, tracker, gfp);
947 	return dev;
948 }
949 EXPORT_SYMBOL(netdev_get_by_index);
950 
951 /**
952  *	dev_get_by_napi_id - find a device by napi_id
953  *	@napi_id: ID of the NAPI struct
954  *
955  *	Search for an interface by NAPI ID. Returns %NULL if the device
956  *	is not found or a pointer to the device. The device has not had
957  *	its reference counter increased so the caller must be careful
958  *	about locking. The caller must hold RCU lock.
959  */
960 
961 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
962 {
963 	struct napi_struct *napi;
964 
965 	WARN_ON_ONCE(!rcu_read_lock_held());
966 
967 	if (napi_id < MIN_NAPI_ID)
968 		return NULL;
969 
970 	napi = napi_by_id(napi_id);
971 
972 	return napi ? napi->dev : NULL;
973 }
974 EXPORT_SYMBOL(dev_get_by_napi_id);
975 
976 static DEFINE_SEQLOCK(netdev_rename_lock);
977 
978 void netdev_copy_name(struct net_device *dev, char *name)
979 {
980 	unsigned int seq;
981 
982 	do {
983 		seq = read_seqbegin(&netdev_rename_lock);
984 		strscpy(name, dev->name, IFNAMSIZ);
985 	} while (read_seqretry(&netdev_rename_lock, seq));
986 }
987 
988 /**
989  *	netdev_get_name - get a netdevice name, knowing its ifindex.
990  *	@net: network namespace
991  *	@name: a pointer to the buffer where the name will be stored.
992  *	@ifindex: the ifindex of the interface to get the name from.
993  */
994 int netdev_get_name(struct net *net, char *name, int ifindex)
995 {
996 	struct net_device *dev;
997 	int ret;
998 
999 	rcu_read_lock();
1000 
1001 	dev = dev_get_by_index_rcu(net, ifindex);
1002 	if (!dev) {
1003 		ret = -ENODEV;
1004 		goto out;
1005 	}
1006 
1007 	netdev_copy_name(dev, name);
1008 
1009 	ret = 0;
1010 out:
1011 	rcu_read_unlock();
1012 	return ret;
1013 }
1014 
1015 /**
1016  *	dev_getbyhwaddr_rcu - find a device by its hardware address
1017  *	@net: the applicable net namespace
1018  *	@type: media type of device
1019  *	@ha: hardware address
1020  *
1021  *	Search for an interface by MAC address. Returns NULL if the device
1022  *	is not found or a pointer to the device.
1023  *	The caller must hold RCU or RTNL.
1024  *	The returned device has not had its ref count increased
1025  *	and the caller must therefore be careful about locking
1026  *
1027  */
1028 
1029 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
1030 				       const char *ha)
1031 {
1032 	struct net_device *dev;
1033 
1034 	for_each_netdev_rcu(net, dev)
1035 		if (dev->type == type &&
1036 		    !memcmp(dev->dev_addr, ha, dev->addr_len))
1037 			return dev;
1038 
1039 	return NULL;
1040 }
1041 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
1042 
1043 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
1044 {
1045 	struct net_device *dev, *ret = NULL;
1046 
1047 	rcu_read_lock();
1048 	for_each_netdev_rcu(net, dev)
1049 		if (dev->type == type) {
1050 			dev_hold(dev);
1051 			ret = dev;
1052 			break;
1053 		}
1054 	rcu_read_unlock();
1055 	return ret;
1056 }
1057 EXPORT_SYMBOL(dev_getfirstbyhwtype);
1058 
1059 /**
1060  *	__dev_get_by_flags - find any device with given flags
1061  *	@net: the applicable net namespace
1062  *	@if_flags: IFF_* values
1063  *	@mask: bitmask of bits in if_flags to check
1064  *
1065  *	Search for any interface with the given flags. Returns NULL if a device
1066  *	is not found or a pointer to the device. Must be called inside
1067  *	rtnl_lock(), and result refcount is unchanged.
1068  */
1069 
1070 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1071 				      unsigned short mask)
1072 {
1073 	struct net_device *dev, *ret;
1074 
1075 	ASSERT_RTNL();
1076 
1077 	ret = NULL;
1078 	for_each_netdev(net, dev) {
1079 		if (((dev->flags ^ if_flags) & mask) == 0) {
1080 			ret = dev;
1081 			break;
1082 		}
1083 	}
1084 	return ret;
1085 }
1086 EXPORT_SYMBOL(__dev_get_by_flags);
1087 
1088 /**
1089  *	dev_valid_name - check if name is okay for network device
1090  *	@name: name string
1091  *
1092  *	Network device names need to be valid file names to
1093  *	allow sysfs to work.  We also disallow any kind of
1094  *	whitespace.
1095  */
1096 bool dev_valid_name(const char *name)
1097 {
1098 	if (*name == '\0')
1099 		return false;
1100 	if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1101 		return false;
1102 	if (!strcmp(name, ".") || !strcmp(name, ".."))
1103 		return false;
1104 
1105 	while (*name) {
1106 		if (*name == '/' || *name == ':' || isspace(*name))
1107 			return false;
1108 		name++;
1109 	}
1110 	return true;
1111 }
1112 EXPORT_SYMBOL(dev_valid_name);
1113 
1114 /**
1115  *	__dev_alloc_name - allocate a name for a device
1116  *	@net: network namespace to allocate the device name in
1117  *	@name: name format string
1118  *	@res: result name string
1119  *
1120  *	Passed a format string - eg "lt%d" it will try and find a suitable
1121  *	id. It scans list of devices to build up a free map, then chooses
1122  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1123  *	while allocating the name and adding the device in order to avoid
1124  *	duplicates.
1125  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1126  *	Returns the number of the unit assigned or a negative errno code.
1127  */
1128 
1129 static int __dev_alloc_name(struct net *net, const char *name, char *res)
1130 {
1131 	int i = 0;
1132 	const char *p;
1133 	const int max_netdevices = 8*PAGE_SIZE;
1134 	unsigned long *inuse;
1135 	struct net_device *d;
1136 	char buf[IFNAMSIZ];
1137 
1138 	/* Verify the string as this thing may have come from the user.
1139 	 * There must be one "%d" and no other "%" characters.
1140 	 */
1141 	p = strchr(name, '%');
1142 	if (!p || p[1] != 'd' || strchr(p + 2, '%'))
1143 		return -EINVAL;
1144 
1145 	/* Use one page as a bit array of possible slots */
1146 	inuse = bitmap_zalloc(max_netdevices, GFP_ATOMIC);
1147 	if (!inuse)
1148 		return -ENOMEM;
1149 
1150 	for_each_netdev(net, d) {
1151 		struct netdev_name_node *name_node;
1152 
1153 		netdev_for_each_altname(d, name_node) {
1154 			if (!sscanf(name_node->name, name, &i))
1155 				continue;
1156 			if (i < 0 || i >= max_netdevices)
1157 				continue;
1158 
1159 			/* avoid cases where sscanf is not exact inverse of printf */
1160 			snprintf(buf, IFNAMSIZ, name, i);
1161 			if (!strncmp(buf, name_node->name, IFNAMSIZ))
1162 				__set_bit(i, inuse);
1163 		}
1164 		if (!sscanf(d->name, name, &i))
1165 			continue;
1166 		if (i < 0 || i >= max_netdevices)
1167 			continue;
1168 
1169 		/* avoid cases where sscanf is not exact inverse of printf */
1170 		snprintf(buf, IFNAMSIZ, name, i);
1171 		if (!strncmp(buf, d->name, IFNAMSIZ))
1172 			__set_bit(i, inuse);
1173 	}
1174 
1175 	i = find_first_zero_bit(inuse, max_netdevices);
1176 	bitmap_free(inuse);
1177 	if (i == max_netdevices)
1178 		return -ENFILE;
1179 
1180 	/* 'res' and 'name' could overlap, use 'buf' as an intermediate buffer */
1181 	strscpy(buf, name, IFNAMSIZ);
1182 	snprintf(res, IFNAMSIZ, buf, i);
1183 	return i;
1184 }
1185 
1186 /* Returns negative errno or allocated unit id (see __dev_alloc_name()) */
1187 static int dev_prep_valid_name(struct net *net, struct net_device *dev,
1188 			       const char *want_name, char *out_name,
1189 			       int dup_errno)
1190 {
1191 	if (!dev_valid_name(want_name))
1192 		return -EINVAL;
1193 
1194 	if (strchr(want_name, '%'))
1195 		return __dev_alloc_name(net, want_name, out_name);
1196 
1197 	if (netdev_name_in_use(net, want_name))
1198 		return -dup_errno;
1199 	if (out_name != want_name)
1200 		strscpy(out_name, want_name, IFNAMSIZ);
1201 	return 0;
1202 }
1203 
1204 /**
1205  *	dev_alloc_name - allocate a name for a device
1206  *	@dev: device
1207  *	@name: name format string
1208  *
1209  *	Passed a format string - eg "lt%d" it will try and find a suitable
1210  *	id. It scans list of devices to build up a free map, then chooses
1211  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1212  *	while allocating the name and adding the device in order to avoid
1213  *	duplicates.
1214  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1215  *	Returns the number of the unit assigned or a negative errno code.
1216  */
1217 
1218 int dev_alloc_name(struct net_device *dev, const char *name)
1219 {
1220 	return dev_prep_valid_name(dev_net(dev), dev, name, dev->name, ENFILE);
1221 }
1222 EXPORT_SYMBOL(dev_alloc_name);
1223 
1224 static int dev_get_valid_name(struct net *net, struct net_device *dev,
1225 			      const char *name)
1226 {
1227 	int ret;
1228 
1229 	ret = dev_prep_valid_name(net, dev, name, dev->name, EEXIST);
1230 	return ret < 0 ? ret : 0;
1231 }
1232 
1233 /**
1234  *	dev_change_name - change name of a device
1235  *	@dev: device
1236  *	@newname: name (or format string) must be at least IFNAMSIZ
1237  *
1238  *	Change name of a device, can pass format strings "eth%d".
1239  *	for wildcarding.
1240  */
1241 int dev_change_name(struct net_device *dev, const char *newname)
1242 {
1243 	unsigned char old_assign_type;
1244 	char oldname[IFNAMSIZ];
1245 	int err = 0;
1246 	int ret;
1247 	struct net *net;
1248 
1249 	ASSERT_RTNL();
1250 	BUG_ON(!dev_net(dev));
1251 
1252 	net = dev_net(dev);
1253 
1254 	down_write(&devnet_rename_sem);
1255 
1256 	if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1257 		up_write(&devnet_rename_sem);
1258 		return 0;
1259 	}
1260 
1261 	memcpy(oldname, dev->name, IFNAMSIZ);
1262 
1263 	write_seqlock_bh(&netdev_rename_lock);
1264 	err = dev_get_valid_name(net, dev, newname);
1265 	write_sequnlock_bh(&netdev_rename_lock);
1266 
1267 	if (err < 0) {
1268 		up_write(&devnet_rename_sem);
1269 		return err;
1270 	}
1271 
1272 	if (oldname[0] && !strchr(oldname, '%'))
1273 		netdev_info(dev, "renamed from %s%s\n", oldname,
1274 			    dev->flags & IFF_UP ? " (while UP)" : "");
1275 
1276 	old_assign_type = dev->name_assign_type;
1277 	WRITE_ONCE(dev->name_assign_type, NET_NAME_RENAMED);
1278 
1279 rollback:
1280 	ret = device_rename(&dev->dev, dev->name);
1281 	if (ret) {
1282 		memcpy(dev->name, oldname, IFNAMSIZ);
1283 		WRITE_ONCE(dev->name_assign_type, old_assign_type);
1284 		up_write(&devnet_rename_sem);
1285 		return ret;
1286 	}
1287 
1288 	up_write(&devnet_rename_sem);
1289 
1290 	netdev_adjacent_rename_links(dev, oldname);
1291 
1292 	netdev_name_node_del(dev->name_node);
1293 
1294 	synchronize_net();
1295 
1296 	netdev_name_node_add(net, dev->name_node);
1297 
1298 	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1299 	ret = notifier_to_errno(ret);
1300 
1301 	if (ret) {
1302 		/* err >= 0 after dev_alloc_name() or stores the first errno */
1303 		if (err >= 0) {
1304 			err = ret;
1305 			down_write(&devnet_rename_sem);
1306 			write_seqlock_bh(&netdev_rename_lock);
1307 			memcpy(dev->name, oldname, IFNAMSIZ);
1308 			write_sequnlock_bh(&netdev_rename_lock);
1309 			memcpy(oldname, newname, IFNAMSIZ);
1310 			WRITE_ONCE(dev->name_assign_type, old_assign_type);
1311 			old_assign_type = NET_NAME_RENAMED;
1312 			goto rollback;
1313 		} else {
1314 			netdev_err(dev, "name change rollback failed: %d\n",
1315 				   ret);
1316 		}
1317 	}
1318 
1319 	return err;
1320 }
1321 
1322 /**
1323  *	dev_set_alias - change ifalias of a device
1324  *	@dev: device
1325  *	@alias: name up to IFALIASZ
1326  *	@len: limit of bytes to copy from info
1327  *
1328  *	Set ifalias for a device,
1329  */
1330 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1331 {
1332 	struct dev_ifalias *new_alias = NULL;
1333 
1334 	if (len >= IFALIASZ)
1335 		return -EINVAL;
1336 
1337 	if (len) {
1338 		new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1339 		if (!new_alias)
1340 			return -ENOMEM;
1341 
1342 		memcpy(new_alias->ifalias, alias, len);
1343 		new_alias->ifalias[len] = 0;
1344 	}
1345 
1346 	mutex_lock(&ifalias_mutex);
1347 	new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1348 					mutex_is_locked(&ifalias_mutex));
1349 	mutex_unlock(&ifalias_mutex);
1350 
1351 	if (new_alias)
1352 		kfree_rcu(new_alias, rcuhead);
1353 
1354 	return len;
1355 }
1356 EXPORT_SYMBOL(dev_set_alias);
1357 
1358 /**
1359  *	dev_get_alias - get ifalias of a device
1360  *	@dev: device
1361  *	@name: buffer to store name of ifalias
1362  *	@len: size of buffer
1363  *
1364  *	get ifalias for a device.  Caller must make sure dev cannot go
1365  *	away,  e.g. rcu read lock or own a reference count to device.
1366  */
1367 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1368 {
1369 	const struct dev_ifalias *alias;
1370 	int ret = 0;
1371 
1372 	rcu_read_lock();
1373 	alias = rcu_dereference(dev->ifalias);
1374 	if (alias)
1375 		ret = snprintf(name, len, "%s", alias->ifalias);
1376 	rcu_read_unlock();
1377 
1378 	return ret;
1379 }
1380 
1381 /**
1382  *	netdev_features_change - device changes features
1383  *	@dev: device to cause notification
1384  *
1385  *	Called to indicate a device has changed features.
1386  */
1387 void netdev_features_change(struct net_device *dev)
1388 {
1389 	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1390 }
1391 EXPORT_SYMBOL(netdev_features_change);
1392 
1393 /**
1394  *	netdev_state_change - device changes state
1395  *	@dev: device to cause notification
1396  *
1397  *	Called to indicate a device has changed state. This function calls
1398  *	the notifier chains for netdev_chain and sends a NEWLINK message
1399  *	to the routing socket.
1400  */
1401 void netdev_state_change(struct net_device *dev)
1402 {
1403 	if (dev->flags & IFF_UP) {
1404 		struct netdev_notifier_change_info change_info = {
1405 			.info.dev = dev,
1406 		};
1407 
1408 		call_netdevice_notifiers_info(NETDEV_CHANGE,
1409 					      &change_info.info);
1410 		rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL, 0, NULL);
1411 	}
1412 }
1413 EXPORT_SYMBOL(netdev_state_change);
1414 
1415 /**
1416  * __netdev_notify_peers - notify network peers about existence of @dev,
1417  * to be called when rtnl lock is already held.
1418  * @dev: network device
1419  *
1420  * Generate traffic such that interested network peers are aware of
1421  * @dev, such as by generating a gratuitous ARP. This may be used when
1422  * a device wants to inform the rest of the network about some sort of
1423  * reconfiguration such as a failover event or virtual machine
1424  * migration.
1425  */
1426 void __netdev_notify_peers(struct net_device *dev)
1427 {
1428 	ASSERT_RTNL();
1429 	call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1430 	call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1431 }
1432 EXPORT_SYMBOL(__netdev_notify_peers);
1433 
1434 /**
1435  * netdev_notify_peers - notify network peers about existence of @dev
1436  * @dev: network device
1437  *
1438  * Generate traffic such that interested network peers are aware of
1439  * @dev, such as by generating a gratuitous ARP. This may be used when
1440  * a device wants to inform the rest of the network about some sort of
1441  * reconfiguration such as a failover event or virtual machine
1442  * migration.
1443  */
1444 void netdev_notify_peers(struct net_device *dev)
1445 {
1446 	rtnl_lock();
1447 	__netdev_notify_peers(dev);
1448 	rtnl_unlock();
1449 }
1450 EXPORT_SYMBOL(netdev_notify_peers);
1451 
1452 static int napi_threaded_poll(void *data);
1453 
1454 static int napi_kthread_create(struct napi_struct *n)
1455 {
1456 	int err = 0;
1457 
1458 	/* Create and wake up the kthread once to put it in
1459 	 * TASK_INTERRUPTIBLE mode to avoid the blocked task
1460 	 * warning and work with loadavg.
1461 	 */
1462 	n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d",
1463 				n->dev->name, n->napi_id);
1464 	if (IS_ERR(n->thread)) {
1465 		err = PTR_ERR(n->thread);
1466 		pr_err("kthread_run failed with err %d\n", err);
1467 		n->thread = NULL;
1468 	}
1469 
1470 	return err;
1471 }
1472 
1473 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1474 {
1475 	const struct net_device_ops *ops = dev->netdev_ops;
1476 	int ret;
1477 
1478 	ASSERT_RTNL();
1479 	dev_addr_check(dev);
1480 
1481 	if (!netif_device_present(dev)) {
1482 		/* may be detached because parent is runtime-suspended */
1483 		if (dev->dev.parent)
1484 			pm_runtime_resume(dev->dev.parent);
1485 		if (!netif_device_present(dev))
1486 			return -ENODEV;
1487 	}
1488 
1489 	/* Block netpoll from trying to do any rx path servicing.
1490 	 * If we don't do this there is a chance ndo_poll_controller
1491 	 * or ndo_poll may be running while we open the device
1492 	 */
1493 	netpoll_poll_disable(dev);
1494 
1495 	ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1496 	ret = notifier_to_errno(ret);
1497 	if (ret)
1498 		return ret;
1499 
1500 	set_bit(__LINK_STATE_START, &dev->state);
1501 
1502 	if (ops->ndo_validate_addr)
1503 		ret = ops->ndo_validate_addr(dev);
1504 
1505 	if (!ret && ops->ndo_open)
1506 		ret = ops->ndo_open(dev);
1507 
1508 	netpoll_poll_enable(dev);
1509 
1510 	if (ret)
1511 		clear_bit(__LINK_STATE_START, &dev->state);
1512 	else {
1513 		dev->flags |= IFF_UP;
1514 		dev_set_rx_mode(dev);
1515 		dev_activate(dev);
1516 		add_device_randomness(dev->dev_addr, dev->addr_len);
1517 	}
1518 
1519 	return ret;
1520 }
1521 
1522 /**
1523  *	dev_open	- prepare an interface for use.
1524  *	@dev: device to open
1525  *	@extack: netlink extended ack
1526  *
1527  *	Takes a device from down to up state. The device's private open
1528  *	function is invoked and then the multicast lists are loaded. Finally
1529  *	the device is moved into the up state and a %NETDEV_UP message is
1530  *	sent to the netdev notifier chain.
1531  *
1532  *	Calling this function on an active interface is a nop. On a failure
1533  *	a negative errno code is returned.
1534  */
1535 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1536 {
1537 	int ret;
1538 
1539 	if (dev->flags & IFF_UP)
1540 		return 0;
1541 
1542 	ret = __dev_open(dev, extack);
1543 	if (ret < 0)
1544 		return ret;
1545 
1546 	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL);
1547 	call_netdevice_notifiers(NETDEV_UP, dev);
1548 
1549 	return ret;
1550 }
1551 EXPORT_SYMBOL(dev_open);
1552 
1553 static void __dev_close_many(struct list_head *head)
1554 {
1555 	struct net_device *dev;
1556 
1557 	ASSERT_RTNL();
1558 	might_sleep();
1559 
1560 	list_for_each_entry(dev, head, close_list) {
1561 		/* Temporarily disable netpoll until the interface is down */
1562 		netpoll_poll_disable(dev);
1563 
1564 		call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1565 
1566 		clear_bit(__LINK_STATE_START, &dev->state);
1567 
1568 		/* Synchronize to scheduled poll. We cannot touch poll list, it
1569 		 * can be even on different cpu. So just clear netif_running().
1570 		 *
1571 		 * dev->stop() will invoke napi_disable() on all of it's
1572 		 * napi_struct instances on this device.
1573 		 */
1574 		smp_mb__after_atomic(); /* Commit netif_running(). */
1575 	}
1576 
1577 	dev_deactivate_many(head);
1578 
1579 	list_for_each_entry(dev, head, close_list) {
1580 		const struct net_device_ops *ops = dev->netdev_ops;
1581 
1582 		/*
1583 		 *	Call the device specific close. This cannot fail.
1584 		 *	Only if device is UP
1585 		 *
1586 		 *	We allow it to be called even after a DETACH hot-plug
1587 		 *	event.
1588 		 */
1589 		if (ops->ndo_stop)
1590 			ops->ndo_stop(dev);
1591 
1592 		dev->flags &= ~IFF_UP;
1593 		netpoll_poll_enable(dev);
1594 	}
1595 }
1596 
1597 static void __dev_close(struct net_device *dev)
1598 {
1599 	LIST_HEAD(single);
1600 
1601 	list_add(&dev->close_list, &single);
1602 	__dev_close_many(&single);
1603 	list_del(&single);
1604 }
1605 
1606 void dev_close_many(struct list_head *head, bool unlink)
1607 {
1608 	struct net_device *dev, *tmp;
1609 
1610 	/* Remove the devices that don't need to be closed */
1611 	list_for_each_entry_safe(dev, tmp, head, close_list)
1612 		if (!(dev->flags & IFF_UP))
1613 			list_del_init(&dev->close_list);
1614 
1615 	__dev_close_many(head);
1616 
1617 	list_for_each_entry_safe(dev, tmp, head, close_list) {
1618 		rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL);
1619 		call_netdevice_notifiers(NETDEV_DOWN, dev);
1620 		if (unlink)
1621 			list_del_init(&dev->close_list);
1622 	}
1623 }
1624 EXPORT_SYMBOL(dev_close_many);
1625 
1626 /**
1627  *	dev_close - shutdown an interface.
1628  *	@dev: device to shutdown
1629  *
1630  *	This function moves an active device into down state. A
1631  *	%NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1632  *	is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1633  *	chain.
1634  */
1635 void dev_close(struct net_device *dev)
1636 {
1637 	if (dev->flags & IFF_UP) {
1638 		LIST_HEAD(single);
1639 
1640 		list_add(&dev->close_list, &single);
1641 		dev_close_many(&single, true);
1642 		list_del(&single);
1643 	}
1644 }
1645 EXPORT_SYMBOL(dev_close);
1646 
1647 
1648 /**
1649  *	dev_disable_lro - disable Large Receive Offload on a device
1650  *	@dev: device
1651  *
1652  *	Disable Large Receive Offload (LRO) on a net device.  Must be
1653  *	called under RTNL.  This is needed if received packets may be
1654  *	forwarded to another interface.
1655  */
1656 void dev_disable_lro(struct net_device *dev)
1657 {
1658 	struct net_device *lower_dev;
1659 	struct list_head *iter;
1660 
1661 	dev->wanted_features &= ~NETIF_F_LRO;
1662 	netdev_update_features(dev);
1663 
1664 	if (unlikely(dev->features & NETIF_F_LRO))
1665 		netdev_WARN(dev, "failed to disable LRO!\n");
1666 
1667 	netdev_for_each_lower_dev(dev, lower_dev, iter)
1668 		dev_disable_lro(lower_dev);
1669 }
1670 EXPORT_SYMBOL(dev_disable_lro);
1671 
1672 /**
1673  *	dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1674  *	@dev: device
1675  *
1676  *	Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1677  *	called under RTNL.  This is needed if Generic XDP is installed on
1678  *	the device.
1679  */
1680 static void dev_disable_gro_hw(struct net_device *dev)
1681 {
1682 	dev->wanted_features &= ~NETIF_F_GRO_HW;
1683 	netdev_update_features(dev);
1684 
1685 	if (unlikely(dev->features & NETIF_F_GRO_HW))
1686 		netdev_WARN(dev, "failed to disable GRO_HW!\n");
1687 }
1688 
1689 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1690 {
1691 #define N(val) 						\
1692 	case NETDEV_##val:				\
1693 		return "NETDEV_" __stringify(val);
1694 	switch (cmd) {
1695 	N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1696 	N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1697 	N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1698 	N(POST_INIT) N(PRE_UNINIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN)
1699 	N(CHANGEUPPER) N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA)
1700 	N(BONDING_INFO) N(PRECHANGEUPPER) N(CHANGELOWERSTATE)
1701 	N(UDP_TUNNEL_PUSH_INFO) N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1702 	N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1703 	N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1704 	N(PRE_CHANGEADDR) N(OFFLOAD_XSTATS_ENABLE) N(OFFLOAD_XSTATS_DISABLE)
1705 	N(OFFLOAD_XSTATS_REPORT_USED) N(OFFLOAD_XSTATS_REPORT_DELTA)
1706 	N(XDP_FEAT_CHANGE)
1707 	}
1708 #undef N
1709 	return "UNKNOWN_NETDEV_EVENT";
1710 }
1711 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1712 
1713 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1714 				   struct net_device *dev)
1715 {
1716 	struct netdev_notifier_info info = {
1717 		.dev = dev,
1718 	};
1719 
1720 	return nb->notifier_call(nb, val, &info);
1721 }
1722 
1723 static int call_netdevice_register_notifiers(struct notifier_block *nb,
1724 					     struct net_device *dev)
1725 {
1726 	int err;
1727 
1728 	err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1729 	err = notifier_to_errno(err);
1730 	if (err)
1731 		return err;
1732 
1733 	if (!(dev->flags & IFF_UP))
1734 		return 0;
1735 
1736 	call_netdevice_notifier(nb, NETDEV_UP, dev);
1737 	return 0;
1738 }
1739 
1740 static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1741 						struct net_device *dev)
1742 {
1743 	if (dev->flags & IFF_UP) {
1744 		call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1745 					dev);
1746 		call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1747 	}
1748 	call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1749 }
1750 
1751 static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1752 						 struct net *net)
1753 {
1754 	struct net_device *dev;
1755 	int err;
1756 
1757 	for_each_netdev(net, dev) {
1758 		err = call_netdevice_register_notifiers(nb, dev);
1759 		if (err)
1760 			goto rollback;
1761 	}
1762 	return 0;
1763 
1764 rollback:
1765 	for_each_netdev_continue_reverse(net, dev)
1766 		call_netdevice_unregister_notifiers(nb, dev);
1767 	return err;
1768 }
1769 
1770 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1771 						    struct net *net)
1772 {
1773 	struct net_device *dev;
1774 
1775 	for_each_netdev(net, dev)
1776 		call_netdevice_unregister_notifiers(nb, dev);
1777 }
1778 
1779 static int dev_boot_phase = 1;
1780 
1781 /**
1782  * register_netdevice_notifier - register a network notifier block
1783  * @nb: notifier
1784  *
1785  * Register a notifier to be called when network device events occur.
1786  * The notifier passed is linked into the kernel structures and must
1787  * not be reused until it has been unregistered. A negative errno code
1788  * is returned on a failure.
1789  *
1790  * When registered all registration and up events are replayed
1791  * to the new notifier to allow device to have a race free
1792  * view of the network device list.
1793  */
1794 
1795 int register_netdevice_notifier(struct notifier_block *nb)
1796 {
1797 	struct net *net;
1798 	int err;
1799 
1800 	/* Close race with setup_net() and cleanup_net() */
1801 	down_write(&pernet_ops_rwsem);
1802 	rtnl_lock();
1803 	err = raw_notifier_chain_register(&netdev_chain, nb);
1804 	if (err)
1805 		goto unlock;
1806 	if (dev_boot_phase)
1807 		goto unlock;
1808 	for_each_net(net) {
1809 		err = call_netdevice_register_net_notifiers(nb, net);
1810 		if (err)
1811 			goto rollback;
1812 	}
1813 
1814 unlock:
1815 	rtnl_unlock();
1816 	up_write(&pernet_ops_rwsem);
1817 	return err;
1818 
1819 rollback:
1820 	for_each_net_continue_reverse(net)
1821 		call_netdevice_unregister_net_notifiers(nb, net);
1822 
1823 	raw_notifier_chain_unregister(&netdev_chain, nb);
1824 	goto unlock;
1825 }
1826 EXPORT_SYMBOL(register_netdevice_notifier);
1827 
1828 /**
1829  * unregister_netdevice_notifier - unregister a network notifier block
1830  * @nb: notifier
1831  *
1832  * Unregister a notifier previously registered by
1833  * register_netdevice_notifier(). The notifier is unlinked into the
1834  * kernel structures and may then be reused. A negative errno code
1835  * is returned on a failure.
1836  *
1837  * After unregistering unregister and down device events are synthesized
1838  * for all devices on the device list to the removed notifier to remove
1839  * the need for special case cleanup code.
1840  */
1841 
1842 int unregister_netdevice_notifier(struct notifier_block *nb)
1843 {
1844 	struct net *net;
1845 	int err;
1846 
1847 	/* Close race with setup_net() and cleanup_net() */
1848 	down_write(&pernet_ops_rwsem);
1849 	rtnl_lock();
1850 	err = raw_notifier_chain_unregister(&netdev_chain, nb);
1851 	if (err)
1852 		goto unlock;
1853 
1854 	for_each_net(net)
1855 		call_netdevice_unregister_net_notifiers(nb, net);
1856 
1857 unlock:
1858 	rtnl_unlock();
1859 	up_write(&pernet_ops_rwsem);
1860 	return err;
1861 }
1862 EXPORT_SYMBOL(unregister_netdevice_notifier);
1863 
1864 static int __register_netdevice_notifier_net(struct net *net,
1865 					     struct notifier_block *nb,
1866 					     bool ignore_call_fail)
1867 {
1868 	int err;
1869 
1870 	err = raw_notifier_chain_register(&net->netdev_chain, nb);
1871 	if (err)
1872 		return err;
1873 	if (dev_boot_phase)
1874 		return 0;
1875 
1876 	err = call_netdevice_register_net_notifiers(nb, net);
1877 	if (err && !ignore_call_fail)
1878 		goto chain_unregister;
1879 
1880 	return 0;
1881 
1882 chain_unregister:
1883 	raw_notifier_chain_unregister(&net->netdev_chain, nb);
1884 	return err;
1885 }
1886 
1887 static int __unregister_netdevice_notifier_net(struct net *net,
1888 					       struct notifier_block *nb)
1889 {
1890 	int err;
1891 
1892 	err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
1893 	if (err)
1894 		return err;
1895 
1896 	call_netdevice_unregister_net_notifiers(nb, net);
1897 	return 0;
1898 }
1899 
1900 /**
1901  * register_netdevice_notifier_net - register a per-netns network notifier block
1902  * @net: network namespace
1903  * @nb: notifier
1904  *
1905  * Register a notifier to be called when network device events occur.
1906  * The notifier passed is linked into the kernel structures and must
1907  * not be reused until it has been unregistered. A negative errno code
1908  * is returned on a failure.
1909  *
1910  * When registered all registration and up events are replayed
1911  * to the new notifier to allow device to have a race free
1912  * view of the network device list.
1913  */
1914 
1915 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
1916 {
1917 	int err;
1918 
1919 	rtnl_lock();
1920 	err = __register_netdevice_notifier_net(net, nb, false);
1921 	rtnl_unlock();
1922 	return err;
1923 }
1924 EXPORT_SYMBOL(register_netdevice_notifier_net);
1925 
1926 /**
1927  * unregister_netdevice_notifier_net - unregister a per-netns
1928  *                                     network notifier block
1929  * @net: network namespace
1930  * @nb: notifier
1931  *
1932  * Unregister a notifier previously registered by
1933  * register_netdevice_notifier_net(). The notifier is unlinked from the
1934  * kernel structures and may then be reused. A negative errno code
1935  * is returned on a failure.
1936  *
1937  * After unregistering unregister and down device events are synthesized
1938  * for all devices on the device list to the removed notifier to remove
1939  * the need for special case cleanup code.
1940  */
1941 
1942 int unregister_netdevice_notifier_net(struct net *net,
1943 				      struct notifier_block *nb)
1944 {
1945 	int err;
1946 
1947 	rtnl_lock();
1948 	err = __unregister_netdevice_notifier_net(net, nb);
1949 	rtnl_unlock();
1950 	return err;
1951 }
1952 EXPORT_SYMBOL(unregister_netdevice_notifier_net);
1953 
1954 static void __move_netdevice_notifier_net(struct net *src_net,
1955 					  struct net *dst_net,
1956 					  struct notifier_block *nb)
1957 {
1958 	__unregister_netdevice_notifier_net(src_net, nb);
1959 	__register_netdevice_notifier_net(dst_net, nb, true);
1960 }
1961 
1962 int register_netdevice_notifier_dev_net(struct net_device *dev,
1963 					struct notifier_block *nb,
1964 					struct netdev_net_notifier *nn)
1965 {
1966 	int err;
1967 
1968 	rtnl_lock();
1969 	err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
1970 	if (!err) {
1971 		nn->nb = nb;
1972 		list_add(&nn->list, &dev->net_notifier_list);
1973 	}
1974 	rtnl_unlock();
1975 	return err;
1976 }
1977 EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
1978 
1979 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
1980 					  struct notifier_block *nb,
1981 					  struct netdev_net_notifier *nn)
1982 {
1983 	int err;
1984 
1985 	rtnl_lock();
1986 	list_del(&nn->list);
1987 	err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
1988 	rtnl_unlock();
1989 	return err;
1990 }
1991 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
1992 
1993 static void move_netdevice_notifiers_dev_net(struct net_device *dev,
1994 					     struct net *net)
1995 {
1996 	struct netdev_net_notifier *nn;
1997 
1998 	list_for_each_entry(nn, &dev->net_notifier_list, list)
1999 		__move_netdevice_notifier_net(dev_net(dev), net, nn->nb);
2000 }
2001 
2002 /**
2003  *	call_netdevice_notifiers_info - call all network notifier blocks
2004  *	@val: value passed unmodified to notifier function
2005  *	@info: notifier information data
2006  *
2007  *	Call all network notifier blocks.  Parameters and return value
2008  *	are as for raw_notifier_call_chain().
2009  */
2010 
2011 int call_netdevice_notifiers_info(unsigned long val,
2012 				  struct netdev_notifier_info *info)
2013 {
2014 	struct net *net = dev_net(info->dev);
2015 	int ret;
2016 
2017 	ASSERT_RTNL();
2018 
2019 	/* Run per-netns notifier block chain first, then run the global one.
2020 	 * Hopefully, one day, the global one is going to be removed after
2021 	 * all notifier block registrators get converted to be per-netns.
2022 	 */
2023 	ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
2024 	if (ret & NOTIFY_STOP_MASK)
2025 		return ret;
2026 	return raw_notifier_call_chain(&netdev_chain, val, info);
2027 }
2028 
2029 /**
2030  *	call_netdevice_notifiers_info_robust - call per-netns notifier blocks
2031  *	                                       for and rollback on error
2032  *	@val_up: value passed unmodified to notifier function
2033  *	@val_down: value passed unmodified to the notifier function when
2034  *	           recovering from an error on @val_up
2035  *	@info: notifier information data
2036  *
2037  *	Call all per-netns network notifier blocks, but not notifier blocks on
2038  *	the global notifier chain. Parameters and return value are as for
2039  *	raw_notifier_call_chain_robust().
2040  */
2041 
2042 static int
2043 call_netdevice_notifiers_info_robust(unsigned long val_up,
2044 				     unsigned long val_down,
2045 				     struct netdev_notifier_info *info)
2046 {
2047 	struct net *net = dev_net(info->dev);
2048 
2049 	ASSERT_RTNL();
2050 
2051 	return raw_notifier_call_chain_robust(&net->netdev_chain,
2052 					      val_up, val_down, info);
2053 }
2054 
2055 static int call_netdevice_notifiers_extack(unsigned long val,
2056 					   struct net_device *dev,
2057 					   struct netlink_ext_ack *extack)
2058 {
2059 	struct netdev_notifier_info info = {
2060 		.dev = dev,
2061 		.extack = extack,
2062 	};
2063 
2064 	return call_netdevice_notifiers_info(val, &info);
2065 }
2066 
2067 /**
2068  *	call_netdevice_notifiers - call all network notifier blocks
2069  *      @val: value passed unmodified to notifier function
2070  *      @dev: net_device pointer passed unmodified to notifier function
2071  *
2072  *	Call all network notifier blocks.  Parameters and return value
2073  *	are as for raw_notifier_call_chain().
2074  */
2075 
2076 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
2077 {
2078 	return call_netdevice_notifiers_extack(val, dev, NULL);
2079 }
2080 EXPORT_SYMBOL(call_netdevice_notifiers);
2081 
2082 /**
2083  *	call_netdevice_notifiers_mtu - call all network notifier blocks
2084  *	@val: value passed unmodified to notifier function
2085  *	@dev: net_device pointer passed unmodified to notifier function
2086  *	@arg: additional u32 argument passed to the notifier function
2087  *
2088  *	Call all network notifier blocks.  Parameters and return value
2089  *	are as for raw_notifier_call_chain().
2090  */
2091 static int call_netdevice_notifiers_mtu(unsigned long val,
2092 					struct net_device *dev, u32 arg)
2093 {
2094 	struct netdev_notifier_info_ext info = {
2095 		.info.dev = dev,
2096 		.ext.mtu = arg,
2097 	};
2098 
2099 	BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2100 
2101 	return call_netdevice_notifiers_info(val, &info.info);
2102 }
2103 
2104 #ifdef CONFIG_NET_INGRESS
2105 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2106 
2107 void net_inc_ingress_queue(void)
2108 {
2109 	static_branch_inc(&ingress_needed_key);
2110 }
2111 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2112 
2113 void net_dec_ingress_queue(void)
2114 {
2115 	static_branch_dec(&ingress_needed_key);
2116 }
2117 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2118 #endif
2119 
2120 #ifdef CONFIG_NET_EGRESS
2121 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2122 
2123 void net_inc_egress_queue(void)
2124 {
2125 	static_branch_inc(&egress_needed_key);
2126 }
2127 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2128 
2129 void net_dec_egress_queue(void)
2130 {
2131 	static_branch_dec(&egress_needed_key);
2132 }
2133 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2134 #endif
2135 
2136 #ifdef CONFIG_NET_CLS_ACT
2137 DEFINE_STATIC_KEY_FALSE(tcf_bypass_check_needed_key);
2138 EXPORT_SYMBOL(tcf_bypass_check_needed_key);
2139 #endif
2140 
2141 DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2142 EXPORT_SYMBOL(netstamp_needed_key);
2143 #ifdef CONFIG_JUMP_LABEL
2144 static atomic_t netstamp_needed_deferred;
2145 static atomic_t netstamp_wanted;
2146 static void netstamp_clear(struct work_struct *work)
2147 {
2148 	int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2149 	int wanted;
2150 
2151 	wanted = atomic_add_return(deferred, &netstamp_wanted);
2152 	if (wanted > 0)
2153 		static_branch_enable(&netstamp_needed_key);
2154 	else
2155 		static_branch_disable(&netstamp_needed_key);
2156 }
2157 static DECLARE_WORK(netstamp_work, netstamp_clear);
2158 #endif
2159 
2160 void net_enable_timestamp(void)
2161 {
2162 #ifdef CONFIG_JUMP_LABEL
2163 	int wanted = atomic_read(&netstamp_wanted);
2164 
2165 	while (wanted > 0) {
2166 		if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted + 1))
2167 			return;
2168 	}
2169 	atomic_inc(&netstamp_needed_deferred);
2170 	schedule_work(&netstamp_work);
2171 #else
2172 	static_branch_inc(&netstamp_needed_key);
2173 #endif
2174 }
2175 EXPORT_SYMBOL(net_enable_timestamp);
2176 
2177 void net_disable_timestamp(void)
2178 {
2179 #ifdef CONFIG_JUMP_LABEL
2180 	int wanted = atomic_read(&netstamp_wanted);
2181 
2182 	while (wanted > 1) {
2183 		if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted - 1))
2184 			return;
2185 	}
2186 	atomic_dec(&netstamp_needed_deferred);
2187 	schedule_work(&netstamp_work);
2188 #else
2189 	static_branch_dec(&netstamp_needed_key);
2190 #endif
2191 }
2192 EXPORT_SYMBOL(net_disable_timestamp);
2193 
2194 static inline void net_timestamp_set(struct sk_buff *skb)
2195 {
2196 	skb->tstamp = 0;
2197 	skb->tstamp_type = SKB_CLOCK_REALTIME;
2198 	if (static_branch_unlikely(&netstamp_needed_key))
2199 		skb->tstamp = ktime_get_real();
2200 }
2201 
2202 #define net_timestamp_check(COND, SKB)				\
2203 	if (static_branch_unlikely(&netstamp_needed_key)) {	\
2204 		if ((COND) && !(SKB)->tstamp)			\
2205 			(SKB)->tstamp = ktime_get_real();	\
2206 	}							\
2207 
2208 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2209 {
2210 	return __is_skb_forwardable(dev, skb, true);
2211 }
2212 EXPORT_SYMBOL_GPL(is_skb_forwardable);
2213 
2214 static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb,
2215 			      bool check_mtu)
2216 {
2217 	int ret = ____dev_forward_skb(dev, skb, check_mtu);
2218 
2219 	if (likely(!ret)) {
2220 		skb->protocol = eth_type_trans(skb, dev);
2221 		skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2222 	}
2223 
2224 	return ret;
2225 }
2226 
2227 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2228 {
2229 	return __dev_forward_skb2(dev, skb, true);
2230 }
2231 EXPORT_SYMBOL_GPL(__dev_forward_skb);
2232 
2233 /**
2234  * dev_forward_skb - loopback an skb to another netif
2235  *
2236  * @dev: destination network device
2237  * @skb: buffer to forward
2238  *
2239  * return values:
2240  *	NET_RX_SUCCESS	(no congestion)
2241  *	NET_RX_DROP     (packet was dropped, but freed)
2242  *
2243  * dev_forward_skb can be used for injecting an skb from the
2244  * start_xmit function of one device into the receive queue
2245  * of another device.
2246  *
2247  * The receiving device may be in another namespace, so
2248  * we have to clear all information in the skb that could
2249  * impact namespace isolation.
2250  */
2251 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2252 {
2253 	return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2254 }
2255 EXPORT_SYMBOL_GPL(dev_forward_skb);
2256 
2257 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb)
2258 {
2259 	return __dev_forward_skb2(dev, skb, false) ?: netif_rx_internal(skb);
2260 }
2261 
2262 static inline int deliver_skb(struct sk_buff *skb,
2263 			      struct packet_type *pt_prev,
2264 			      struct net_device *orig_dev)
2265 {
2266 	if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2267 		return -ENOMEM;
2268 	refcount_inc(&skb->users);
2269 	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2270 }
2271 
2272 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2273 					  struct packet_type **pt,
2274 					  struct net_device *orig_dev,
2275 					  __be16 type,
2276 					  struct list_head *ptype_list)
2277 {
2278 	struct packet_type *ptype, *pt_prev = *pt;
2279 
2280 	list_for_each_entry_rcu(ptype, ptype_list, list) {
2281 		if (ptype->type != type)
2282 			continue;
2283 		if (pt_prev)
2284 			deliver_skb(skb, pt_prev, orig_dev);
2285 		pt_prev = ptype;
2286 	}
2287 	*pt = pt_prev;
2288 }
2289 
2290 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2291 {
2292 	if (!ptype->af_packet_priv || !skb->sk)
2293 		return false;
2294 
2295 	if (ptype->id_match)
2296 		return ptype->id_match(ptype, skb->sk);
2297 	else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2298 		return true;
2299 
2300 	return false;
2301 }
2302 
2303 /**
2304  * dev_nit_active - return true if any network interface taps are in use
2305  *
2306  * @dev: network device to check for the presence of taps
2307  */
2308 bool dev_nit_active(struct net_device *dev)
2309 {
2310 	return !list_empty(&net_hotdata.ptype_all) ||
2311 	       !list_empty(&dev->ptype_all);
2312 }
2313 EXPORT_SYMBOL_GPL(dev_nit_active);
2314 
2315 /*
2316  *	Support routine. Sends outgoing frames to any network
2317  *	taps currently in use.
2318  */
2319 
2320 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2321 {
2322 	struct list_head *ptype_list = &net_hotdata.ptype_all;
2323 	struct packet_type *ptype, *pt_prev = NULL;
2324 	struct sk_buff *skb2 = NULL;
2325 
2326 	rcu_read_lock();
2327 again:
2328 	list_for_each_entry_rcu(ptype, ptype_list, list) {
2329 		if (READ_ONCE(ptype->ignore_outgoing))
2330 			continue;
2331 
2332 		/* Never send packets back to the socket
2333 		 * they originated from - MvS (miquels@drinkel.ow.org)
2334 		 */
2335 		if (skb_loop_sk(ptype, skb))
2336 			continue;
2337 
2338 		if (pt_prev) {
2339 			deliver_skb(skb2, pt_prev, skb->dev);
2340 			pt_prev = ptype;
2341 			continue;
2342 		}
2343 
2344 		/* need to clone skb, done only once */
2345 		skb2 = skb_clone(skb, GFP_ATOMIC);
2346 		if (!skb2)
2347 			goto out_unlock;
2348 
2349 		net_timestamp_set(skb2);
2350 
2351 		/* skb->nh should be correctly
2352 		 * set by sender, so that the second statement is
2353 		 * just protection against buggy protocols.
2354 		 */
2355 		skb_reset_mac_header(skb2);
2356 
2357 		if (skb_network_header(skb2) < skb2->data ||
2358 		    skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2359 			net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2360 					     ntohs(skb2->protocol),
2361 					     dev->name);
2362 			skb_reset_network_header(skb2);
2363 		}
2364 
2365 		skb2->transport_header = skb2->network_header;
2366 		skb2->pkt_type = PACKET_OUTGOING;
2367 		pt_prev = ptype;
2368 	}
2369 
2370 	if (ptype_list == &net_hotdata.ptype_all) {
2371 		ptype_list = &dev->ptype_all;
2372 		goto again;
2373 	}
2374 out_unlock:
2375 	if (pt_prev) {
2376 		if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2377 			pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2378 		else
2379 			kfree_skb(skb2);
2380 	}
2381 	rcu_read_unlock();
2382 }
2383 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2384 
2385 /**
2386  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2387  * @dev: Network device
2388  * @txq: number of queues available
2389  *
2390  * If real_num_tx_queues is changed the tc mappings may no longer be
2391  * valid. To resolve this verify the tc mapping remains valid and if
2392  * not NULL the mapping. With no priorities mapping to this
2393  * offset/count pair it will no longer be used. In the worst case TC0
2394  * is invalid nothing can be done so disable priority mappings. If is
2395  * expected that drivers will fix this mapping if they can before
2396  * calling netif_set_real_num_tx_queues.
2397  */
2398 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2399 {
2400 	int i;
2401 	struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2402 
2403 	/* If TC0 is invalidated disable TC mapping */
2404 	if (tc->offset + tc->count > txq) {
2405 		netdev_warn(dev, "Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2406 		dev->num_tc = 0;
2407 		return;
2408 	}
2409 
2410 	/* Invalidated prio to tc mappings set to TC0 */
2411 	for (i = 1; i < TC_BITMASK + 1; i++) {
2412 		int q = netdev_get_prio_tc_map(dev, i);
2413 
2414 		tc = &dev->tc_to_txq[q];
2415 		if (tc->offset + tc->count > txq) {
2416 			netdev_warn(dev, "Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2417 				    i, q);
2418 			netdev_set_prio_tc_map(dev, i, 0);
2419 		}
2420 	}
2421 }
2422 
2423 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2424 {
2425 	if (dev->num_tc) {
2426 		struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2427 		int i;
2428 
2429 		/* walk through the TCs and see if it falls into any of them */
2430 		for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2431 			if ((txq - tc->offset) < tc->count)
2432 				return i;
2433 		}
2434 
2435 		/* didn't find it, just return -1 to indicate no match */
2436 		return -1;
2437 	}
2438 
2439 	return 0;
2440 }
2441 EXPORT_SYMBOL(netdev_txq_to_tc);
2442 
2443 #ifdef CONFIG_XPS
2444 static struct static_key xps_needed __read_mostly;
2445 static struct static_key xps_rxqs_needed __read_mostly;
2446 static DEFINE_MUTEX(xps_map_mutex);
2447 #define xmap_dereference(P)		\
2448 	rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2449 
2450 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2451 			     struct xps_dev_maps *old_maps, int tci, u16 index)
2452 {
2453 	struct xps_map *map = NULL;
2454 	int pos;
2455 
2456 	map = xmap_dereference(dev_maps->attr_map[tci]);
2457 	if (!map)
2458 		return false;
2459 
2460 	for (pos = map->len; pos--;) {
2461 		if (map->queues[pos] != index)
2462 			continue;
2463 
2464 		if (map->len > 1) {
2465 			map->queues[pos] = map->queues[--map->len];
2466 			break;
2467 		}
2468 
2469 		if (old_maps)
2470 			RCU_INIT_POINTER(old_maps->attr_map[tci], NULL);
2471 		RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2472 		kfree_rcu(map, rcu);
2473 		return false;
2474 	}
2475 
2476 	return true;
2477 }
2478 
2479 static bool remove_xps_queue_cpu(struct net_device *dev,
2480 				 struct xps_dev_maps *dev_maps,
2481 				 int cpu, u16 offset, u16 count)
2482 {
2483 	int num_tc = dev_maps->num_tc;
2484 	bool active = false;
2485 	int tci;
2486 
2487 	for (tci = cpu * num_tc; num_tc--; tci++) {
2488 		int i, j;
2489 
2490 		for (i = count, j = offset; i--; j++) {
2491 			if (!remove_xps_queue(dev_maps, NULL, tci, j))
2492 				break;
2493 		}
2494 
2495 		active |= i < 0;
2496 	}
2497 
2498 	return active;
2499 }
2500 
2501 static void reset_xps_maps(struct net_device *dev,
2502 			   struct xps_dev_maps *dev_maps,
2503 			   enum xps_map_type type)
2504 {
2505 	static_key_slow_dec_cpuslocked(&xps_needed);
2506 	if (type == XPS_RXQS)
2507 		static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2508 
2509 	RCU_INIT_POINTER(dev->xps_maps[type], NULL);
2510 
2511 	kfree_rcu(dev_maps, rcu);
2512 }
2513 
2514 static void clean_xps_maps(struct net_device *dev, enum xps_map_type type,
2515 			   u16 offset, u16 count)
2516 {
2517 	struct xps_dev_maps *dev_maps;
2518 	bool active = false;
2519 	int i, j;
2520 
2521 	dev_maps = xmap_dereference(dev->xps_maps[type]);
2522 	if (!dev_maps)
2523 		return;
2524 
2525 	for (j = 0; j < dev_maps->nr_ids; j++)
2526 		active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, count);
2527 	if (!active)
2528 		reset_xps_maps(dev, dev_maps, type);
2529 
2530 	if (type == XPS_CPUS) {
2531 		for (i = offset + (count - 1); count--; i--)
2532 			netdev_queue_numa_node_write(
2533 				netdev_get_tx_queue(dev, i), NUMA_NO_NODE);
2534 	}
2535 }
2536 
2537 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2538 				   u16 count)
2539 {
2540 	if (!static_key_false(&xps_needed))
2541 		return;
2542 
2543 	cpus_read_lock();
2544 	mutex_lock(&xps_map_mutex);
2545 
2546 	if (static_key_false(&xps_rxqs_needed))
2547 		clean_xps_maps(dev, XPS_RXQS, offset, count);
2548 
2549 	clean_xps_maps(dev, XPS_CPUS, offset, count);
2550 
2551 	mutex_unlock(&xps_map_mutex);
2552 	cpus_read_unlock();
2553 }
2554 
2555 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2556 {
2557 	netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2558 }
2559 
2560 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2561 				      u16 index, bool is_rxqs_map)
2562 {
2563 	struct xps_map *new_map;
2564 	int alloc_len = XPS_MIN_MAP_ALLOC;
2565 	int i, pos;
2566 
2567 	for (pos = 0; map && pos < map->len; pos++) {
2568 		if (map->queues[pos] != index)
2569 			continue;
2570 		return map;
2571 	}
2572 
2573 	/* Need to add tx-queue to this CPU's/rx-queue's existing map */
2574 	if (map) {
2575 		if (pos < map->alloc_len)
2576 			return map;
2577 
2578 		alloc_len = map->alloc_len * 2;
2579 	}
2580 
2581 	/* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2582 	 *  map
2583 	 */
2584 	if (is_rxqs_map)
2585 		new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2586 	else
2587 		new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2588 				       cpu_to_node(attr_index));
2589 	if (!new_map)
2590 		return NULL;
2591 
2592 	for (i = 0; i < pos; i++)
2593 		new_map->queues[i] = map->queues[i];
2594 	new_map->alloc_len = alloc_len;
2595 	new_map->len = pos;
2596 
2597 	return new_map;
2598 }
2599 
2600 /* Copy xps maps at a given index */
2601 static void xps_copy_dev_maps(struct xps_dev_maps *dev_maps,
2602 			      struct xps_dev_maps *new_dev_maps, int index,
2603 			      int tc, bool skip_tc)
2604 {
2605 	int i, tci = index * dev_maps->num_tc;
2606 	struct xps_map *map;
2607 
2608 	/* copy maps belonging to foreign traffic classes */
2609 	for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2610 		if (i == tc && skip_tc)
2611 			continue;
2612 
2613 		/* fill in the new device map from the old device map */
2614 		map = xmap_dereference(dev_maps->attr_map[tci]);
2615 		RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2616 	}
2617 }
2618 
2619 /* Must be called under cpus_read_lock */
2620 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2621 			  u16 index, enum xps_map_type type)
2622 {
2623 	struct xps_dev_maps *dev_maps, *new_dev_maps = NULL, *old_dev_maps = NULL;
2624 	const unsigned long *online_mask = NULL;
2625 	bool active = false, copy = false;
2626 	int i, j, tci, numa_node_id = -2;
2627 	int maps_sz, num_tc = 1, tc = 0;
2628 	struct xps_map *map, *new_map;
2629 	unsigned int nr_ids;
2630 
2631 	WARN_ON_ONCE(index >= dev->num_tx_queues);
2632 
2633 	if (dev->num_tc) {
2634 		/* Do not allow XPS on subordinate device directly */
2635 		num_tc = dev->num_tc;
2636 		if (num_tc < 0)
2637 			return -EINVAL;
2638 
2639 		/* If queue belongs to subordinate dev use its map */
2640 		dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2641 
2642 		tc = netdev_txq_to_tc(dev, index);
2643 		if (tc < 0)
2644 			return -EINVAL;
2645 	}
2646 
2647 	mutex_lock(&xps_map_mutex);
2648 
2649 	dev_maps = xmap_dereference(dev->xps_maps[type]);
2650 	if (type == XPS_RXQS) {
2651 		maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2652 		nr_ids = dev->num_rx_queues;
2653 	} else {
2654 		maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2655 		if (num_possible_cpus() > 1)
2656 			online_mask = cpumask_bits(cpu_online_mask);
2657 		nr_ids = nr_cpu_ids;
2658 	}
2659 
2660 	if (maps_sz < L1_CACHE_BYTES)
2661 		maps_sz = L1_CACHE_BYTES;
2662 
2663 	/* The old dev_maps could be larger or smaller than the one we're
2664 	 * setting up now, as dev->num_tc or nr_ids could have been updated in
2665 	 * between. We could try to be smart, but let's be safe instead and only
2666 	 * copy foreign traffic classes if the two map sizes match.
2667 	 */
2668 	if (dev_maps &&
2669 	    dev_maps->num_tc == num_tc && dev_maps->nr_ids == nr_ids)
2670 		copy = true;
2671 
2672 	/* allocate memory for queue storage */
2673 	for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2674 	     j < nr_ids;) {
2675 		if (!new_dev_maps) {
2676 			new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2677 			if (!new_dev_maps) {
2678 				mutex_unlock(&xps_map_mutex);
2679 				return -ENOMEM;
2680 			}
2681 
2682 			new_dev_maps->nr_ids = nr_ids;
2683 			new_dev_maps->num_tc = num_tc;
2684 		}
2685 
2686 		tci = j * num_tc + tc;
2687 		map = copy ? xmap_dereference(dev_maps->attr_map[tci]) : NULL;
2688 
2689 		map = expand_xps_map(map, j, index, type == XPS_RXQS);
2690 		if (!map)
2691 			goto error;
2692 
2693 		RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2694 	}
2695 
2696 	if (!new_dev_maps)
2697 		goto out_no_new_maps;
2698 
2699 	if (!dev_maps) {
2700 		/* Increment static keys at most once per type */
2701 		static_key_slow_inc_cpuslocked(&xps_needed);
2702 		if (type == XPS_RXQS)
2703 			static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2704 	}
2705 
2706 	for (j = 0; j < nr_ids; j++) {
2707 		bool skip_tc = false;
2708 
2709 		tci = j * num_tc + tc;
2710 		if (netif_attr_test_mask(j, mask, nr_ids) &&
2711 		    netif_attr_test_online(j, online_mask, nr_ids)) {
2712 			/* add tx-queue to CPU/rx-queue maps */
2713 			int pos = 0;
2714 
2715 			skip_tc = true;
2716 
2717 			map = xmap_dereference(new_dev_maps->attr_map[tci]);
2718 			while ((pos < map->len) && (map->queues[pos] != index))
2719 				pos++;
2720 
2721 			if (pos == map->len)
2722 				map->queues[map->len++] = index;
2723 #ifdef CONFIG_NUMA
2724 			if (type == XPS_CPUS) {
2725 				if (numa_node_id == -2)
2726 					numa_node_id = cpu_to_node(j);
2727 				else if (numa_node_id != cpu_to_node(j))
2728 					numa_node_id = -1;
2729 			}
2730 #endif
2731 		}
2732 
2733 		if (copy)
2734 			xps_copy_dev_maps(dev_maps, new_dev_maps, j, tc,
2735 					  skip_tc);
2736 	}
2737 
2738 	rcu_assign_pointer(dev->xps_maps[type], new_dev_maps);
2739 
2740 	/* Cleanup old maps */
2741 	if (!dev_maps)
2742 		goto out_no_old_maps;
2743 
2744 	for (j = 0; j < dev_maps->nr_ids; j++) {
2745 		for (i = num_tc, tci = j * dev_maps->num_tc; i--; tci++) {
2746 			map = xmap_dereference(dev_maps->attr_map[tci]);
2747 			if (!map)
2748 				continue;
2749 
2750 			if (copy) {
2751 				new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2752 				if (map == new_map)
2753 					continue;
2754 			}
2755 
2756 			RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2757 			kfree_rcu(map, rcu);
2758 		}
2759 	}
2760 
2761 	old_dev_maps = dev_maps;
2762 
2763 out_no_old_maps:
2764 	dev_maps = new_dev_maps;
2765 	active = true;
2766 
2767 out_no_new_maps:
2768 	if (type == XPS_CPUS)
2769 		/* update Tx queue numa node */
2770 		netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2771 					     (numa_node_id >= 0) ?
2772 					     numa_node_id : NUMA_NO_NODE);
2773 
2774 	if (!dev_maps)
2775 		goto out_no_maps;
2776 
2777 	/* removes tx-queue from unused CPUs/rx-queues */
2778 	for (j = 0; j < dev_maps->nr_ids; j++) {
2779 		tci = j * dev_maps->num_tc;
2780 
2781 		for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2782 			if (i == tc &&
2783 			    netif_attr_test_mask(j, mask, dev_maps->nr_ids) &&
2784 			    netif_attr_test_online(j, online_mask, dev_maps->nr_ids))
2785 				continue;
2786 
2787 			active |= remove_xps_queue(dev_maps,
2788 						   copy ? old_dev_maps : NULL,
2789 						   tci, index);
2790 		}
2791 	}
2792 
2793 	if (old_dev_maps)
2794 		kfree_rcu(old_dev_maps, rcu);
2795 
2796 	/* free map if not active */
2797 	if (!active)
2798 		reset_xps_maps(dev, dev_maps, type);
2799 
2800 out_no_maps:
2801 	mutex_unlock(&xps_map_mutex);
2802 
2803 	return 0;
2804 error:
2805 	/* remove any maps that we added */
2806 	for (j = 0; j < nr_ids; j++) {
2807 		for (i = num_tc, tci = j * num_tc; i--; tci++) {
2808 			new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2809 			map = copy ?
2810 			      xmap_dereference(dev_maps->attr_map[tci]) :
2811 			      NULL;
2812 			if (new_map && new_map != map)
2813 				kfree(new_map);
2814 		}
2815 	}
2816 
2817 	mutex_unlock(&xps_map_mutex);
2818 
2819 	kfree(new_dev_maps);
2820 	return -ENOMEM;
2821 }
2822 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2823 
2824 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2825 			u16 index)
2826 {
2827 	int ret;
2828 
2829 	cpus_read_lock();
2830 	ret =  __netif_set_xps_queue(dev, cpumask_bits(mask), index, XPS_CPUS);
2831 	cpus_read_unlock();
2832 
2833 	return ret;
2834 }
2835 EXPORT_SYMBOL(netif_set_xps_queue);
2836 
2837 #endif
2838 static void netdev_unbind_all_sb_channels(struct net_device *dev)
2839 {
2840 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2841 
2842 	/* Unbind any subordinate channels */
2843 	while (txq-- != &dev->_tx[0]) {
2844 		if (txq->sb_dev)
2845 			netdev_unbind_sb_channel(dev, txq->sb_dev);
2846 	}
2847 }
2848 
2849 void netdev_reset_tc(struct net_device *dev)
2850 {
2851 #ifdef CONFIG_XPS
2852 	netif_reset_xps_queues_gt(dev, 0);
2853 #endif
2854 	netdev_unbind_all_sb_channels(dev);
2855 
2856 	/* Reset TC configuration of device */
2857 	dev->num_tc = 0;
2858 	memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2859 	memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2860 }
2861 EXPORT_SYMBOL(netdev_reset_tc);
2862 
2863 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2864 {
2865 	if (tc >= dev->num_tc)
2866 		return -EINVAL;
2867 
2868 #ifdef CONFIG_XPS
2869 	netif_reset_xps_queues(dev, offset, count);
2870 #endif
2871 	dev->tc_to_txq[tc].count = count;
2872 	dev->tc_to_txq[tc].offset = offset;
2873 	return 0;
2874 }
2875 EXPORT_SYMBOL(netdev_set_tc_queue);
2876 
2877 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2878 {
2879 	if (num_tc > TC_MAX_QUEUE)
2880 		return -EINVAL;
2881 
2882 #ifdef CONFIG_XPS
2883 	netif_reset_xps_queues_gt(dev, 0);
2884 #endif
2885 	netdev_unbind_all_sb_channels(dev);
2886 
2887 	dev->num_tc = num_tc;
2888 	return 0;
2889 }
2890 EXPORT_SYMBOL(netdev_set_num_tc);
2891 
2892 void netdev_unbind_sb_channel(struct net_device *dev,
2893 			      struct net_device *sb_dev)
2894 {
2895 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2896 
2897 #ifdef CONFIG_XPS
2898 	netif_reset_xps_queues_gt(sb_dev, 0);
2899 #endif
2900 	memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2901 	memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2902 
2903 	while (txq-- != &dev->_tx[0]) {
2904 		if (txq->sb_dev == sb_dev)
2905 			txq->sb_dev = NULL;
2906 	}
2907 }
2908 EXPORT_SYMBOL(netdev_unbind_sb_channel);
2909 
2910 int netdev_bind_sb_channel_queue(struct net_device *dev,
2911 				 struct net_device *sb_dev,
2912 				 u8 tc, u16 count, u16 offset)
2913 {
2914 	/* Make certain the sb_dev and dev are already configured */
2915 	if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2916 		return -EINVAL;
2917 
2918 	/* We cannot hand out queues we don't have */
2919 	if ((offset + count) > dev->real_num_tx_queues)
2920 		return -EINVAL;
2921 
2922 	/* Record the mapping */
2923 	sb_dev->tc_to_txq[tc].count = count;
2924 	sb_dev->tc_to_txq[tc].offset = offset;
2925 
2926 	/* Provide a way for Tx queue to find the tc_to_txq map or
2927 	 * XPS map for itself.
2928 	 */
2929 	while (count--)
2930 		netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2931 
2932 	return 0;
2933 }
2934 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2935 
2936 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2937 {
2938 	/* Do not use a multiqueue device to represent a subordinate channel */
2939 	if (netif_is_multiqueue(dev))
2940 		return -ENODEV;
2941 
2942 	/* We allow channels 1 - 32767 to be used for subordinate channels.
2943 	 * Channel 0 is meant to be "native" mode and used only to represent
2944 	 * the main root device. We allow writing 0 to reset the device back
2945 	 * to normal mode after being used as a subordinate channel.
2946 	 */
2947 	if (channel > S16_MAX)
2948 		return -EINVAL;
2949 
2950 	dev->num_tc = -channel;
2951 
2952 	return 0;
2953 }
2954 EXPORT_SYMBOL(netdev_set_sb_channel);
2955 
2956 /*
2957  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2958  * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2959  */
2960 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2961 {
2962 	bool disabling;
2963 	int rc;
2964 
2965 	disabling = txq < dev->real_num_tx_queues;
2966 
2967 	if (txq < 1 || txq > dev->num_tx_queues)
2968 		return -EINVAL;
2969 
2970 	if (dev->reg_state == NETREG_REGISTERED ||
2971 	    dev->reg_state == NETREG_UNREGISTERING) {
2972 		ASSERT_RTNL();
2973 
2974 		rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2975 						  txq);
2976 		if (rc)
2977 			return rc;
2978 
2979 		if (dev->num_tc)
2980 			netif_setup_tc(dev, txq);
2981 
2982 		net_shaper_set_real_num_tx_queues(dev, txq);
2983 
2984 		dev_qdisc_change_real_num_tx(dev, txq);
2985 
2986 		dev->real_num_tx_queues = txq;
2987 
2988 		if (disabling) {
2989 			synchronize_net();
2990 			qdisc_reset_all_tx_gt(dev, txq);
2991 #ifdef CONFIG_XPS
2992 			netif_reset_xps_queues_gt(dev, txq);
2993 #endif
2994 		}
2995 	} else {
2996 		dev->real_num_tx_queues = txq;
2997 	}
2998 
2999 	return 0;
3000 }
3001 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
3002 
3003 #ifdef CONFIG_SYSFS
3004 /**
3005  *	netif_set_real_num_rx_queues - set actual number of RX queues used
3006  *	@dev: Network device
3007  *	@rxq: Actual number of RX queues
3008  *
3009  *	This must be called either with the rtnl_lock held or before
3010  *	registration of the net device.  Returns 0 on success, or a
3011  *	negative error code.  If called before registration, it always
3012  *	succeeds.
3013  */
3014 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
3015 {
3016 	int rc;
3017 
3018 	if (rxq < 1 || rxq > dev->num_rx_queues)
3019 		return -EINVAL;
3020 
3021 	if (dev->reg_state == NETREG_REGISTERED) {
3022 		ASSERT_RTNL();
3023 
3024 		rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
3025 						  rxq);
3026 		if (rc)
3027 			return rc;
3028 	}
3029 
3030 	dev->real_num_rx_queues = rxq;
3031 	return 0;
3032 }
3033 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
3034 #endif
3035 
3036 /**
3037  *	netif_set_real_num_queues - set actual number of RX and TX queues used
3038  *	@dev: Network device
3039  *	@txq: Actual number of TX queues
3040  *	@rxq: Actual number of RX queues
3041  *
3042  *	Set the real number of both TX and RX queues.
3043  *	Does nothing if the number of queues is already correct.
3044  */
3045 int netif_set_real_num_queues(struct net_device *dev,
3046 			      unsigned int txq, unsigned int rxq)
3047 {
3048 	unsigned int old_rxq = dev->real_num_rx_queues;
3049 	int err;
3050 
3051 	if (txq < 1 || txq > dev->num_tx_queues ||
3052 	    rxq < 1 || rxq > dev->num_rx_queues)
3053 		return -EINVAL;
3054 
3055 	/* Start from increases, so the error path only does decreases -
3056 	 * decreases can't fail.
3057 	 */
3058 	if (rxq > dev->real_num_rx_queues) {
3059 		err = netif_set_real_num_rx_queues(dev, rxq);
3060 		if (err)
3061 			return err;
3062 	}
3063 	if (txq > dev->real_num_tx_queues) {
3064 		err = netif_set_real_num_tx_queues(dev, txq);
3065 		if (err)
3066 			goto undo_rx;
3067 	}
3068 	if (rxq < dev->real_num_rx_queues)
3069 		WARN_ON(netif_set_real_num_rx_queues(dev, rxq));
3070 	if (txq < dev->real_num_tx_queues)
3071 		WARN_ON(netif_set_real_num_tx_queues(dev, txq));
3072 
3073 	return 0;
3074 undo_rx:
3075 	WARN_ON(netif_set_real_num_rx_queues(dev, old_rxq));
3076 	return err;
3077 }
3078 EXPORT_SYMBOL(netif_set_real_num_queues);
3079 
3080 /**
3081  * netif_set_tso_max_size() - set the max size of TSO frames supported
3082  * @dev:	netdev to update
3083  * @size:	max skb->len of a TSO frame
3084  *
3085  * Set the limit on the size of TSO super-frames the device can handle.
3086  * Unless explicitly set the stack will assume the value of
3087  * %GSO_LEGACY_MAX_SIZE.
3088  */
3089 void netif_set_tso_max_size(struct net_device *dev, unsigned int size)
3090 {
3091 	dev->tso_max_size = min(GSO_MAX_SIZE, size);
3092 	if (size < READ_ONCE(dev->gso_max_size))
3093 		netif_set_gso_max_size(dev, size);
3094 	if (size < READ_ONCE(dev->gso_ipv4_max_size))
3095 		netif_set_gso_ipv4_max_size(dev, size);
3096 }
3097 EXPORT_SYMBOL(netif_set_tso_max_size);
3098 
3099 /**
3100  * netif_set_tso_max_segs() - set the max number of segs supported for TSO
3101  * @dev:	netdev to update
3102  * @segs:	max number of TCP segments
3103  *
3104  * Set the limit on the number of TCP segments the device can generate from
3105  * a single TSO super-frame.
3106  * Unless explicitly set the stack will assume the value of %GSO_MAX_SEGS.
3107  */
3108 void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs)
3109 {
3110 	dev->tso_max_segs = segs;
3111 	if (segs < READ_ONCE(dev->gso_max_segs))
3112 		netif_set_gso_max_segs(dev, segs);
3113 }
3114 EXPORT_SYMBOL(netif_set_tso_max_segs);
3115 
3116 /**
3117  * netif_inherit_tso_max() - copy all TSO limits from a lower device to an upper
3118  * @to:		netdev to update
3119  * @from:	netdev from which to copy the limits
3120  */
3121 void netif_inherit_tso_max(struct net_device *to, const struct net_device *from)
3122 {
3123 	netif_set_tso_max_size(to, from->tso_max_size);
3124 	netif_set_tso_max_segs(to, from->tso_max_segs);
3125 }
3126 EXPORT_SYMBOL(netif_inherit_tso_max);
3127 
3128 /**
3129  * netif_get_num_default_rss_queues - default number of RSS queues
3130  *
3131  * Default value is the number of physical cores if there are only 1 or 2, or
3132  * divided by 2 if there are more.
3133  */
3134 int netif_get_num_default_rss_queues(void)
3135 {
3136 	cpumask_var_t cpus;
3137 	int cpu, count = 0;
3138 
3139 	if (unlikely(is_kdump_kernel() || !zalloc_cpumask_var(&cpus, GFP_KERNEL)))
3140 		return 1;
3141 
3142 	cpumask_copy(cpus, cpu_online_mask);
3143 	for_each_cpu(cpu, cpus) {
3144 		++count;
3145 		cpumask_andnot(cpus, cpus, topology_sibling_cpumask(cpu));
3146 	}
3147 	free_cpumask_var(cpus);
3148 
3149 	return count > 2 ? DIV_ROUND_UP(count, 2) : count;
3150 }
3151 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3152 
3153 static void __netif_reschedule(struct Qdisc *q)
3154 {
3155 	struct softnet_data *sd;
3156 	unsigned long flags;
3157 
3158 	local_irq_save(flags);
3159 	sd = this_cpu_ptr(&softnet_data);
3160 	q->next_sched = NULL;
3161 	*sd->output_queue_tailp = q;
3162 	sd->output_queue_tailp = &q->next_sched;
3163 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
3164 	local_irq_restore(flags);
3165 }
3166 
3167 void __netif_schedule(struct Qdisc *q)
3168 {
3169 	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3170 		__netif_reschedule(q);
3171 }
3172 EXPORT_SYMBOL(__netif_schedule);
3173 
3174 struct dev_kfree_skb_cb {
3175 	enum skb_drop_reason reason;
3176 };
3177 
3178 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
3179 {
3180 	return (struct dev_kfree_skb_cb *)skb->cb;
3181 }
3182 
3183 void netif_schedule_queue(struct netdev_queue *txq)
3184 {
3185 	rcu_read_lock();
3186 	if (!netif_xmit_stopped(txq)) {
3187 		struct Qdisc *q = rcu_dereference(txq->qdisc);
3188 
3189 		__netif_schedule(q);
3190 	}
3191 	rcu_read_unlock();
3192 }
3193 EXPORT_SYMBOL(netif_schedule_queue);
3194 
3195 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3196 {
3197 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3198 		struct Qdisc *q;
3199 
3200 		rcu_read_lock();
3201 		q = rcu_dereference(dev_queue->qdisc);
3202 		__netif_schedule(q);
3203 		rcu_read_unlock();
3204 	}
3205 }
3206 EXPORT_SYMBOL(netif_tx_wake_queue);
3207 
3208 void dev_kfree_skb_irq_reason(struct sk_buff *skb, enum skb_drop_reason reason)
3209 {
3210 	unsigned long flags;
3211 
3212 	if (unlikely(!skb))
3213 		return;
3214 
3215 	if (likely(refcount_read(&skb->users) == 1)) {
3216 		smp_rmb();
3217 		refcount_set(&skb->users, 0);
3218 	} else if (likely(!refcount_dec_and_test(&skb->users))) {
3219 		return;
3220 	}
3221 	get_kfree_skb_cb(skb)->reason = reason;
3222 	local_irq_save(flags);
3223 	skb->next = __this_cpu_read(softnet_data.completion_queue);
3224 	__this_cpu_write(softnet_data.completion_queue, skb);
3225 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
3226 	local_irq_restore(flags);
3227 }
3228 EXPORT_SYMBOL(dev_kfree_skb_irq_reason);
3229 
3230 void dev_kfree_skb_any_reason(struct sk_buff *skb, enum skb_drop_reason reason)
3231 {
3232 	if (in_hardirq() || irqs_disabled())
3233 		dev_kfree_skb_irq_reason(skb, reason);
3234 	else
3235 		kfree_skb_reason(skb, reason);
3236 }
3237 EXPORT_SYMBOL(dev_kfree_skb_any_reason);
3238 
3239 
3240 /**
3241  * netif_device_detach - mark device as removed
3242  * @dev: network device
3243  *
3244  * Mark device as removed from system and therefore no longer available.
3245  */
3246 void netif_device_detach(struct net_device *dev)
3247 {
3248 	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3249 	    netif_running(dev)) {
3250 		netif_tx_stop_all_queues(dev);
3251 	}
3252 }
3253 EXPORT_SYMBOL(netif_device_detach);
3254 
3255 /**
3256  * netif_device_attach - mark device as attached
3257  * @dev: network device
3258  *
3259  * Mark device as attached from system and restart if needed.
3260  */
3261 void netif_device_attach(struct net_device *dev)
3262 {
3263 	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3264 	    netif_running(dev)) {
3265 		netif_tx_wake_all_queues(dev);
3266 		__netdev_watchdog_up(dev);
3267 	}
3268 }
3269 EXPORT_SYMBOL(netif_device_attach);
3270 
3271 /*
3272  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3273  * to be used as a distribution range.
3274  */
3275 static u16 skb_tx_hash(const struct net_device *dev,
3276 		       const struct net_device *sb_dev,
3277 		       struct sk_buff *skb)
3278 {
3279 	u32 hash;
3280 	u16 qoffset = 0;
3281 	u16 qcount = dev->real_num_tx_queues;
3282 
3283 	if (dev->num_tc) {
3284 		u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3285 
3286 		qoffset = sb_dev->tc_to_txq[tc].offset;
3287 		qcount = sb_dev->tc_to_txq[tc].count;
3288 		if (unlikely(!qcount)) {
3289 			net_warn_ratelimited("%s: invalid qcount, qoffset %u for tc %u\n",
3290 					     sb_dev->name, qoffset, tc);
3291 			qoffset = 0;
3292 			qcount = dev->real_num_tx_queues;
3293 		}
3294 	}
3295 
3296 	if (skb_rx_queue_recorded(skb)) {
3297 		DEBUG_NET_WARN_ON_ONCE(qcount == 0);
3298 		hash = skb_get_rx_queue(skb);
3299 		if (hash >= qoffset)
3300 			hash -= qoffset;
3301 		while (unlikely(hash >= qcount))
3302 			hash -= qcount;
3303 		return hash + qoffset;
3304 	}
3305 
3306 	return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3307 }
3308 
3309 void skb_warn_bad_offload(const struct sk_buff *skb)
3310 {
3311 	static const netdev_features_t null_features;
3312 	struct net_device *dev = skb->dev;
3313 	const char *name = "";
3314 
3315 	if (!net_ratelimit())
3316 		return;
3317 
3318 	if (dev) {
3319 		if (dev->dev.parent)
3320 			name = dev_driver_string(dev->dev.parent);
3321 		else
3322 			name = netdev_name(dev);
3323 	}
3324 	skb_dump(KERN_WARNING, skb, false);
3325 	WARN(1, "%s: caps=(%pNF, %pNF)\n",
3326 	     name, dev ? &dev->features : &null_features,
3327 	     skb->sk ? &skb->sk->sk_route_caps : &null_features);
3328 }
3329 
3330 /*
3331  * Invalidate hardware checksum when packet is to be mangled, and
3332  * complete checksum manually on outgoing path.
3333  */
3334 int skb_checksum_help(struct sk_buff *skb)
3335 {
3336 	__wsum csum;
3337 	int ret = 0, offset;
3338 
3339 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3340 		goto out_set_summed;
3341 
3342 	if (unlikely(skb_is_gso(skb))) {
3343 		skb_warn_bad_offload(skb);
3344 		return -EINVAL;
3345 	}
3346 
3347 	if (!skb_frags_readable(skb)) {
3348 		return -EFAULT;
3349 	}
3350 
3351 	/* Before computing a checksum, we should make sure no frag could
3352 	 * be modified by an external entity : checksum could be wrong.
3353 	 */
3354 	if (skb_has_shared_frag(skb)) {
3355 		ret = __skb_linearize(skb);
3356 		if (ret)
3357 			goto out;
3358 	}
3359 
3360 	offset = skb_checksum_start_offset(skb);
3361 	ret = -EINVAL;
3362 	if (unlikely(offset >= skb_headlen(skb))) {
3363 		DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3364 		WARN_ONCE(true, "offset (%d) >= skb_headlen() (%u)\n",
3365 			  offset, skb_headlen(skb));
3366 		goto out;
3367 	}
3368 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
3369 
3370 	offset += skb->csum_offset;
3371 	if (unlikely(offset + sizeof(__sum16) > skb_headlen(skb))) {
3372 		DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3373 		WARN_ONCE(true, "offset+2 (%zu) > skb_headlen() (%u)\n",
3374 			  offset + sizeof(__sum16), skb_headlen(skb));
3375 		goto out;
3376 	}
3377 	ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3378 	if (ret)
3379 		goto out;
3380 
3381 	*(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3382 out_set_summed:
3383 	skb->ip_summed = CHECKSUM_NONE;
3384 out:
3385 	return ret;
3386 }
3387 EXPORT_SYMBOL(skb_checksum_help);
3388 
3389 int skb_crc32c_csum_help(struct sk_buff *skb)
3390 {
3391 	__le32 crc32c_csum;
3392 	int ret = 0, offset, start;
3393 
3394 	if (skb->ip_summed != CHECKSUM_PARTIAL)
3395 		goto out;
3396 
3397 	if (unlikely(skb_is_gso(skb)))
3398 		goto out;
3399 
3400 	/* Before computing a checksum, we should make sure no frag could
3401 	 * be modified by an external entity : checksum could be wrong.
3402 	 */
3403 	if (unlikely(skb_has_shared_frag(skb))) {
3404 		ret = __skb_linearize(skb);
3405 		if (ret)
3406 			goto out;
3407 	}
3408 	start = skb_checksum_start_offset(skb);
3409 	offset = start + offsetof(struct sctphdr, checksum);
3410 	if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3411 		ret = -EINVAL;
3412 		goto out;
3413 	}
3414 
3415 	ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3416 	if (ret)
3417 		goto out;
3418 
3419 	crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3420 						  skb->len - start, ~(__u32)0,
3421 						  crc32c_csum_stub));
3422 	*(__le32 *)(skb->data + offset) = crc32c_csum;
3423 	skb_reset_csum_not_inet(skb);
3424 out:
3425 	return ret;
3426 }
3427 EXPORT_SYMBOL(skb_crc32c_csum_help);
3428 
3429 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3430 {
3431 	__be16 type = skb->protocol;
3432 
3433 	/* Tunnel gso handlers can set protocol to ethernet. */
3434 	if (type == htons(ETH_P_TEB)) {
3435 		struct ethhdr *eth;
3436 
3437 		if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3438 			return 0;
3439 
3440 		eth = (struct ethhdr *)skb->data;
3441 		type = eth->h_proto;
3442 	}
3443 
3444 	return vlan_get_protocol_and_depth(skb, type, depth);
3445 }
3446 
3447 
3448 /* Take action when hardware reception checksum errors are detected. */
3449 #ifdef CONFIG_BUG
3450 static void do_netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3451 {
3452 	netdev_err(dev, "hw csum failure\n");
3453 	skb_dump(KERN_ERR, skb, true);
3454 	dump_stack();
3455 }
3456 
3457 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3458 {
3459 	DO_ONCE_LITE(do_netdev_rx_csum_fault, dev, skb);
3460 }
3461 EXPORT_SYMBOL(netdev_rx_csum_fault);
3462 #endif
3463 
3464 /* XXX: check that highmem exists at all on the given machine. */
3465 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3466 {
3467 #ifdef CONFIG_HIGHMEM
3468 	int i;
3469 
3470 	if (!(dev->features & NETIF_F_HIGHDMA)) {
3471 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3472 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3473 			struct page *page = skb_frag_page(frag);
3474 
3475 			if (page && PageHighMem(page))
3476 				return 1;
3477 		}
3478 	}
3479 #endif
3480 	return 0;
3481 }
3482 
3483 /* If MPLS offload request, verify we are testing hardware MPLS features
3484  * instead of standard features for the netdev.
3485  */
3486 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3487 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3488 					   netdev_features_t features,
3489 					   __be16 type)
3490 {
3491 	if (eth_p_mpls(type))
3492 		features &= skb->dev->mpls_features;
3493 
3494 	return features;
3495 }
3496 #else
3497 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3498 					   netdev_features_t features,
3499 					   __be16 type)
3500 {
3501 	return features;
3502 }
3503 #endif
3504 
3505 static netdev_features_t harmonize_features(struct sk_buff *skb,
3506 	netdev_features_t features)
3507 {
3508 	__be16 type;
3509 
3510 	type = skb_network_protocol(skb, NULL);
3511 	features = net_mpls_features(skb, features, type);
3512 
3513 	if (skb->ip_summed != CHECKSUM_NONE &&
3514 	    !can_checksum_protocol(features, type)) {
3515 		features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3516 	}
3517 	if (illegal_highdma(skb->dev, skb))
3518 		features &= ~NETIF_F_SG;
3519 
3520 	return features;
3521 }
3522 
3523 netdev_features_t passthru_features_check(struct sk_buff *skb,
3524 					  struct net_device *dev,
3525 					  netdev_features_t features)
3526 {
3527 	return features;
3528 }
3529 EXPORT_SYMBOL(passthru_features_check);
3530 
3531 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3532 					     struct net_device *dev,
3533 					     netdev_features_t features)
3534 {
3535 	return vlan_features_check(skb, features);
3536 }
3537 
3538 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3539 					    struct net_device *dev,
3540 					    netdev_features_t features)
3541 {
3542 	u16 gso_segs = skb_shinfo(skb)->gso_segs;
3543 
3544 	if (gso_segs > READ_ONCE(dev->gso_max_segs))
3545 		return features & ~NETIF_F_GSO_MASK;
3546 
3547 	if (unlikely(skb->len >= netif_get_gso_max_size(dev, skb)))
3548 		return features & ~NETIF_F_GSO_MASK;
3549 
3550 	if (!skb_shinfo(skb)->gso_type) {
3551 		skb_warn_bad_offload(skb);
3552 		return features & ~NETIF_F_GSO_MASK;
3553 	}
3554 
3555 	/* Support for GSO partial features requires software
3556 	 * intervention before we can actually process the packets
3557 	 * so we need to strip support for any partial features now
3558 	 * and we can pull them back in after we have partially
3559 	 * segmented the frame.
3560 	 */
3561 	if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3562 		features &= ~dev->gso_partial_features;
3563 
3564 	/* Make sure to clear the IPv4 ID mangling feature if the
3565 	 * IPv4 header has the potential to be fragmented.
3566 	 */
3567 	if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3568 		struct iphdr *iph = skb->encapsulation ?
3569 				    inner_ip_hdr(skb) : ip_hdr(skb);
3570 
3571 		if (!(iph->frag_off & htons(IP_DF)))
3572 			features &= ~NETIF_F_TSO_MANGLEID;
3573 	}
3574 
3575 	return features;
3576 }
3577 
3578 netdev_features_t netif_skb_features(struct sk_buff *skb)
3579 {
3580 	struct net_device *dev = skb->dev;
3581 	netdev_features_t features = dev->features;
3582 
3583 	if (skb_is_gso(skb))
3584 		features = gso_features_check(skb, dev, features);
3585 
3586 	/* If encapsulation offload request, verify we are testing
3587 	 * hardware encapsulation features instead of standard
3588 	 * features for the netdev
3589 	 */
3590 	if (skb->encapsulation)
3591 		features &= dev->hw_enc_features;
3592 
3593 	if (skb_vlan_tagged(skb))
3594 		features = netdev_intersect_features(features,
3595 						     dev->vlan_features |
3596 						     NETIF_F_HW_VLAN_CTAG_TX |
3597 						     NETIF_F_HW_VLAN_STAG_TX);
3598 
3599 	if (dev->netdev_ops->ndo_features_check)
3600 		features &= dev->netdev_ops->ndo_features_check(skb, dev,
3601 								features);
3602 	else
3603 		features &= dflt_features_check(skb, dev, features);
3604 
3605 	return harmonize_features(skb, features);
3606 }
3607 EXPORT_SYMBOL(netif_skb_features);
3608 
3609 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3610 		    struct netdev_queue *txq, bool more)
3611 {
3612 	unsigned int len;
3613 	int rc;
3614 
3615 	if (dev_nit_active(dev))
3616 		dev_queue_xmit_nit(skb, dev);
3617 
3618 	len = skb->len;
3619 	trace_net_dev_start_xmit(skb, dev);
3620 	rc = netdev_start_xmit(skb, dev, txq, more);
3621 	trace_net_dev_xmit(skb, rc, dev, len);
3622 
3623 	return rc;
3624 }
3625 
3626 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3627 				    struct netdev_queue *txq, int *ret)
3628 {
3629 	struct sk_buff *skb = first;
3630 	int rc = NETDEV_TX_OK;
3631 
3632 	while (skb) {
3633 		struct sk_buff *next = skb->next;
3634 
3635 		skb_mark_not_on_list(skb);
3636 		rc = xmit_one(skb, dev, txq, next != NULL);
3637 		if (unlikely(!dev_xmit_complete(rc))) {
3638 			skb->next = next;
3639 			goto out;
3640 		}
3641 
3642 		skb = next;
3643 		if (netif_tx_queue_stopped(txq) && skb) {
3644 			rc = NETDEV_TX_BUSY;
3645 			break;
3646 		}
3647 	}
3648 
3649 out:
3650 	*ret = rc;
3651 	return skb;
3652 }
3653 
3654 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3655 					  netdev_features_t features)
3656 {
3657 	if (skb_vlan_tag_present(skb) &&
3658 	    !vlan_hw_offload_capable(features, skb->vlan_proto))
3659 		skb = __vlan_hwaccel_push_inside(skb);
3660 	return skb;
3661 }
3662 
3663 int skb_csum_hwoffload_help(struct sk_buff *skb,
3664 			    const netdev_features_t features)
3665 {
3666 	if (unlikely(skb_csum_is_sctp(skb)))
3667 		return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3668 			skb_crc32c_csum_help(skb);
3669 
3670 	if (features & NETIF_F_HW_CSUM)
3671 		return 0;
3672 
3673 	if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
3674 		if (vlan_get_protocol(skb) == htons(ETH_P_IPV6) &&
3675 		    skb_network_header_len(skb) != sizeof(struct ipv6hdr) &&
3676 		    !ipv6_has_hopopt_jumbo(skb))
3677 			goto sw_checksum;
3678 
3679 		switch (skb->csum_offset) {
3680 		case offsetof(struct tcphdr, check):
3681 		case offsetof(struct udphdr, check):
3682 			return 0;
3683 		}
3684 	}
3685 
3686 sw_checksum:
3687 	return skb_checksum_help(skb);
3688 }
3689 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3690 
3691 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3692 {
3693 	netdev_features_t features;
3694 
3695 	features = netif_skb_features(skb);
3696 	skb = validate_xmit_vlan(skb, features);
3697 	if (unlikely(!skb))
3698 		goto out_null;
3699 
3700 	skb = sk_validate_xmit_skb(skb, dev);
3701 	if (unlikely(!skb))
3702 		goto out_null;
3703 
3704 	if (netif_needs_gso(skb, features)) {
3705 		struct sk_buff *segs;
3706 
3707 		segs = skb_gso_segment(skb, features);
3708 		if (IS_ERR(segs)) {
3709 			goto out_kfree_skb;
3710 		} else if (segs) {
3711 			consume_skb(skb);
3712 			skb = segs;
3713 		}
3714 	} else {
3715 		if (skb_needs_linearize(skb, features) &&
3716 		    __skb_linearize(skb))
3717 			goto out_kfree_skb;
3718 
3719 		/* If packet is not checksummed and device does not
3720 		 * support checksumming for this protocol, complete
3721 		 * checksumming here.
3722 		 */
3723 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
3724 			if (skb->encapsulation)
3725 				skb_set_inner_transport_header(skb,
3726 							       skb_checksum_start_offset(skb));
3727 			else
3728 				skb_set_transport_header(skb,
3729 							 skb_checksum_start_offset(skb));
3730 			if (skb_csum_hwoffload_help(skb, features))
3731 				goto out_kfree_skb;
3732 		}
3733 	}
3734 
3735 	skb = validate_xmit_xfrm(skb, features, again);
3736 
3737 	return skb;
3738 
3739 out_kfree_skb:
3740 	kfree_skb(skb);
3741 out_null:
3742 	dev_core_stats_tx_dropped_inc(dev);
3743 	return NULL;
3744 }
3745 
3746 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3747 {
3748 	struct sk_buff *next, *head = NULL, *tail;
3749 
3750 	for (; skb != NULL; skb = next) {
3751 		next = skb->next;
3752 		skb_mark_not_on_list(skb);
3753 
3754 		/* in case skb won't be segmented, point to itself */
3755 		skb->prev = skb;
3756 
3757 		skb = validate_xmit_skb(skb, dev, again);
3758 		if (!skb)
3759 			continue;
3760 
3761 		if (!head)
3762 			head = skb;
3763 		else
3764 			tail->next = skb;
3765 		/* If skb was segmented, skb->prev points to
3766 		 * the last segment. If not, it still contains skb.
3767 		 */
3768 		tail = skb->prev;
3769 	}
3770 	return head;
3771 }
3772 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3773 
3774 static void qdisc_pkt_len_init(struct sk_buff *skb)
3775 {
3776 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
3777 
3778 	qdisc_skb_cb(skb)->pkt_len = skb->len;
3779 
3780 	/* To get more precise estimation of bytes sent on wire,
3781 	 * we add to pkt_len the headers size of all segments
3782 	 */
3783 	if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3784 		u16 gso_segs = shinfo->gso_segs;
3785 		unsigned int hdr_len;
3786 
3787 		/* mac layer + network layer */
3788 		hdr_len = skb_transport_offset(skb);
3789 
3790 		/* + transport layer */
3791 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3792 			const struct tcphdr *th;
3793 			struct tcphdr _tcphdr;
3794 
3795 			th = skb_header_pointer(skb, hdr_len,
3796 						sizeof(_tcphdr), &_tcphdr);
3797 			if (likely(th))
3798 				hdr_len += __tcp_hdrlen(th);
3799 		} else if (shinfo->gso_type & SKB_GSO_UDP_L4) {
3800 			struct udphdr _udphdr;
3801 
3802 			if (skb_header_pointer(skb, hdr_len,
3803 					       sizeof(_udphdr), &_udphdr))
3804 				hdr_len += sizeof(struct udphdr);
3805 		}
3806 
3807 		if (unlikely(shinfo->gso_type & SKB_GSO_DODGY)) {
3808 			int payload = skb->len - hdr_len;
3809 
3810 			/* Malicious packet. */
3811 			if (payload <= 0)
3812 				return;
3813 			gso_segs = DIV_ROUND_UP(payload, shinfo->gso_size);
3814 		}
3815 		qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3816 	}
3817 }
3818 
3819 static int dev_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *q,
3820 			     struct sk_buff **to_free,
3821 			     struct netdev_queue *txq)
3822 {
3823 	int rc;
3824 
3825 	rc = q->enqueue(skb, q, to_free) & NET_XMIT_MASK;
3826 	if (rc == NET_XMIT_SUCCESS)
3827 		trace_qdisc_enqueue(q, txq, skb);
3828 	return rc;
3829 }
3830 
3831 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3832 				 struct net_device *dev,
3833 				 struct netdev_queue *txq)
3834 {
3835 	spinlock_t *root_lock = qdisc_lock(q);
3836 	struct sk_buff *to_free = NULL;
3837 	bool contended;
3838 	int rc;
3839 
3840 	qdisc_calculate_pkt_len(skb, q);
3841 
3842 	tcf_set_drop_reason(skb, SKB_DROP_REASON_QDISC_DROP);
3843 
3844 	if (q->flags & TCQ_F_NOLOCK) {
3845 		if (q->flags & TCQ_F_CAN_BYPASS && nolock_qdisc_is_empty(q) &&
3846 		    qdisc_run_begin(q)) {
3847 			/* Retest nolock_qdisc_is_empty() within the protection
3848 			 * of q->seqlock to protect from racing with requeuing.
3849 			 */
3850 			if (unlikely(!nolock_qdisc_is_empty(q))) {
3851 				rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3852 				__qdisc_run(q);
3853 				qdisc_run_end(q);
3854 
3855 				goto no_lock_out;
3856 			}
3857 
3858 			qdisc_bstats_cpu_update(q, skb);
3859 			if (sch_direct_xmit(skb, q, dev, txq, NULL, true) &&
3860 			    !nolock_qdisc_is_empty(q))
3861 				__qdisc_run(q);
3862 
3863 			qdisc_run_end(q);
3864 			return NET_XMIT_SUCCESS;
3865 		}
3866 
3867 		rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3868 		qdisc_run(q);
3869 
3870 no_lock_out:
3871 		if (unlikely(to_free))
3872 			kfree_skb_list_reason(to_free,
3873 					      tcf_get_drop_reason(to_free));
3874 		return rc;
3875 	}
3876 
3877 	if (unlikely(READ_ONCE(q->owner) == smp_processor_id())) {
3878 		kfree_skb_reason(skb, SKB_DROP_REASON_TC_RECLASSIFY_LOOP);
3879 		return NET_XMIT_DROP;
3880 	}
3881 	/*
3882 	 * Heuristic to force contended enqueues to serialize on a
3883 	 * separate lock before trying to get qdisc main lock.
3884 	 * This permits qdisc->running owner to get the lock more
3885 	 * often and dequeue packets faster.
3886 	 * On PREEMPT_RT it is possible to preempt the qdisc owner during xmit
3887 	 * and then other tasks will only enqueue packets. The packets will be
3888 	 * sent after the qdisc owner is scheduled again. To prevent this
3889 	 * scenario the task always serialize on the lock.
3890 	 */
3891 	contended = qdisc_is_running(q) || IS_ENABLED(CONFIG_PREEMPT_RT);
3892 	if (unlikely(contended))
3893 		spin_lock(&q->busylock);
3894 
3895 	spin_lock(root_lock);
3896 	if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3897 		__qdisc_drop(skb, &to_free);
3898 		rc = NET_XMIT_DROP;
3899 	} else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3900 		   qdisc_run_begin(q)) {
3901 		/*
3902 		 * This is a work-conserving queue; there are no old skbs
3903 		 * waiting to be sent out; and the qdisc is not running -
3904 		 * xmit the skb directly.
3905 		 */
3906 
3907 		qdisc_bstats_update(q, skb);
3908 
3909 		if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3910 			if (unlikely(contended)) {
3911 				spin_unlock(&q->busylock);
3912 				contended = false;
3913 			}
3914 			__qdisc_run(q);
3915 		}
3916 
3917 		qdisc_run_end(q);
3918 		rc = NET_XMIT_SUCCESS;
3919 	} else {
3920 		WRITE_ONCE(q->owner, smp_processor_id());
3921 		rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3922 		WRITE_ONCE(q->owner, -1);
3923 		if (qdisc_run_begin(q)) {
3924 			if (unlikely(contended)) {
3925 				spin_unlock(&q->busylock);
3926 				contended = false;
3927 			}
3928 			__qdisc_run(q);
3929 			qdisc_run_end(q);
3930 		}
3931 	}
3932 	spin_unlock(root_lock);
3933 	if (unlikely(to_free))
3934 		kfree_skb_list_reason(to_free,
3935 				      tcf_get_drop_reason(to_free));
3936 	if (unlikely(contended))
3937 		spin_unlock(&q->busylock);
3938 	return rc;
3939 }
3940 
3941 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3942 static void skb_update_prio(struct sk_buff *skb)
3943 {
3944 	const struct netprio_map *map;
3945 	const struct sock *sk;
3946 	unsigned int prioidx;
3947 
3948 	if (skb->priority)
3949 		return;
3950 	map = rcu_dereference_bh(skb->dev->priomap);
3951 	if (!map)
3952 		return;
3953 	sk = skb_to_full_sk(skb);
3954 	if (!sk)
3955 		return;
3956 
3957 	prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3958 
3959 	if (prioidx < map->priomap_len)
3960 		skb->priority = map->priomap[prioidx];
3961 }
3962 #else
3963 #define skb_update_prio(skb)
3964 #endif
3965 
3966 /**
3967  *	dev_loopback_xmit - loop back @skb
3968  *	@net: network namespace this loopback is happening in
3969  *	@sk:  sk needed to be a netfilter okfn
3970  *	@skb: buffer to transmit
3971  */
3972 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3973 {
3974 	skb_reset_mac_header(skb);
3975 	__skb_pull(skb, skb_network_offset(skb));
3976 	skb->pkt_type = PACKET_LOOPBACK;
3977 	if (skb->ip_summed == CHECKSUM_NONE)
3978 		skb->ip_summed = CHECKSUM_UNNECESSARY;
3979 	DEBUG_NET_WARN_ON_ONCE(!skb_dst(skb));
3980 	skb_dst_force(skb);
3981 	netif_rx(skb);
3982 	return 0;
3983 }
3984 EXPORT_SYMBOL(dev_loopback_xmit);
3985 
3986 #ifdef CONFIG_NET_EGRESS
3987 static struct netdev_queue *
3988 netdev_tx_queue_mapping(struct net_device *dev, struct sk_buff *skb)
3989 {
3990 	int qm = skb_get_queue_mapping(skb);
3991 
3992 	return netdev_get_tx_queue(dev, netdev_cap_txqueue(dev, qm));
3993 }
3994 
3995 #ifndef CONFIG_PREEMPT_RT
3996 static bool netdev_xmit_txqueue_skipped(void)
3997 {
3998 	return __this_cpu_read(softnet_data.xmit.skip_txqueue);
3999 }
4000 
4001 void netdev_xmit_skip_txqueue(bool skip)
4002 {
4003 	__this_cpu_write(softnet_data.xmit.skip_txqueue, skip);
4004 }
4005 EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue);
4006 
4007 #else
4008 static bool netdev_xmit_txqueue_skipped(void)
4009 {
4010 	return current->net_xmit.skip_txqueue;
4011 }
4012 
4013 void netdev_xmit_skip_txqueue(bool skip)
4014 {
4015 	current->net_xmit.skip_txqueue = skip;
4016 }
4017 EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue);
4018 #endif
4019 #endif /* CONFIG_NET_EGRESS */
4020 
4021 #ifdef CONFIG_NET_XGRESS
4022 static int tc_run(struct tcx_entry *entry, struct sk_buff *skb,
4023 		  enum skb_drop_reason *drop_reason)
4024 {
4025 	int ret = TC_ACT_UNSPEC;
4026 #ifdef CONFIG_NET_CLS_ACT
4027 	struct mini_Qdisc *miniq = rcu_dereference_bh(entry->miniq);
4028 	struct tcf_result res;
4029 
4030 	if (!miniq)
4031 		return ret;
4032 
4033 	if (static_branch_unlikely(&tcf_bypass_check_needed_key)) {
4034 		if (tcf_block_bypass_sw(miniq->block))
4035 			return ret;
4036 	}
4037 
4038 	tc_skb_cb(skb)->mru = 0;
4039 	tc_skb_cb(skb)->post_ct = false;
4040 	tcf_set_drop_reason(skb, *drop_reason);
4041 
4042 	mini_qdisc_bstats_cpu_update(miniq, skb);
4043 	ret = tcf_classify(skb, miniq->block, miniq->filter_list, &res, false);
4044 	/* Only tcf related quirks below. */
4045 	switch (ret) {
4046 	case TC_ACT_SHOT:
4047 		*drop_reason = tcf_get_drop_reason(skb);
4048 		mini_qdisc_qstats_cpu_drop(miniq);
4049 		break;
4050 	case TC_ACT_OK:
4051 	case TC_ACT_RECLASSIFY:
4052 		skb->tc_index = TC_H_MIN(res.classid);
4053 		break;
4054 	}
4055 #endif /* CONFIG_NET_CLS_ACT */
4056 	return ret;
4057 }
4058 
4059 static DEFINE_STATIC_KEY_FALSE(tcx_needed_key);
4060 
4061 void tcx_inc(void)
4062 {
4063 	static_branch_inc(&tcx_needed_key);
4064 }
4065 
4066 void tcx_dec(void)
4067 {
4068 	static_branch_dec(&tcx_needed_key);
4069 }
4070 
4071 static __always_inline enum tcx_action_base
4072 tcx_run(const struct bpf_mprog_entry *entry, struct sk_buff *skb,
4073 	const bool needs_mac)
4074 {
4075 	const struct bpf_mprog_fp *fp;
4076 	const struct bpf_prog *prog;
4077 	int ret = TCX_NEXT;
4078 
4079 	if (needs_mac)
4080 		__skb_push(skb, skb->mac_len);
4081 	bpf_mprog_foreach_prog(entry, fp, prog) {
4082 		bpf_compute_data_pointers(skb);
4083 		ret = bpf_prog_run(prog, skb);
4084 		if (ret != TCX_NEXT)
4085 			break;
4086 	}
4087 	if (needs_mac)
4088 		__skb_pull(skb, skb->mac_len);
4089 	return tcx_action_code(skb, ret);
4090 }
4091 
4092 static __always_inline struct sk_buff *
4093 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4094 		   struct net_device *orig_dev, bool *another)
4095 {
4096 	struct bpf_mprog_entry *entry = rcu_dereference_bh(skb->dev->tcx_ingress);
4097 	enum skb_drop_reason drop_reason = SKB_DROP_REASON_TC_INGRESS;
4098 	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
4099 	int sch_ret;
4100 
4101 	if (!entry)
4102 		return skb;
4103 
4104 	bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
4105 	if (*pt_prev) {
4106 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
4107 		*pt_prev = NULL;
4108 	}
4109 
4110 	qdisc_skb_cb(skb)->pkt_len = skb->len;
4111 	tcx_set_ingress(skb, true);
4112 
4113 	if (static_branch_unlikely(&tcx_needed_key)) {
4114 		sch_ret = tcx_run(entry, skb, true);
4115 		if (sch_ret != TC_ACT_UNSPEC)
4116 			goto ingress_verdict;
4117 	}
4118 	sch_ret = tc_run(tcx_entry(entry), skb, &drop_reason);
4119 ingress_verdict:
4120 	switch (sch_ret) {
4121 	case TC_ACT_REDIRECT:
4122 		/* skb_mac_header check was done by BPF, so we can safely
4123 		 * push the L2 header back before redirecting to another
4124 		 * netdev.
4125 		 */
4126 		__skb_push(skb, skb->mac_len);
4127 		if (skb_do_redirect(skb) == -EAGAIN) {
4128 			__skb_pull(skb, skb->mac_len);
4129 			*another = true;
4130 			break;
4131 		}
4132 		*ret = NET_RX_SUCCESS;
4133 		bpf_net_ctx_clear(bpf_net_ctx);
4134 		return NULL;
4135 	case TC_ACT_SHOT:
4136 		kfree_skb_reason(skb, drop_reason);
4137 		*ret = NET_RX_DROP;
4138 		bpf_net_ctx_clear(bpf_net_ctx);
4139 		return NULL;
4140 	/* used by tc_run */
4141 	case TC_ACT_STOLEN:
4142 	case TC_ACT_QUEUED:
4143 	case TC_ACT_TRAP:
4144 		consume_skb(skb);
4145 		fallthrough;
4146 	case TC_ACT_CONSUMED:
4147 		*ret = NET_RX_SUCCESS;
4148 		bpf_net_ctx_clear(bpf_net_ctx);
4149 		return NULL;
4150 	}
4151 	bpf_net_ctx_clear(bpf_net_ctx);
4152 
4153 	return skb;
4154 }
4155 
4156 static __always_inline struct sk_buff *
4157 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
4158 {
4159 	struct bpf_mprog_entry *entry = rcu_dereference_bh(dev->tcx_egress);
4160 	enum skb_drop_reason drop_reason = SKB_DROP_REASON_TC_EGRESS;
4161 	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
4162 	int sch_ret;
4163 
4164 	if (!entry)
4165 		return skb;
4166 
4167 	bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
4168 
4169 	/* qdisc_skb_cb(skb)->pkt_len & tcx_set_ingress() was
4170 	 * already set by the caller.
4171 	 */
4172 	if (static_branch_unlikely(&tcx_needed_key)) {
4173 		sch_ret = tcx_run(entry, skb, false);
4174 		if (sch_ret != TC_ACT_UNSPEC)
4175 			goto egress_verdict;
4176 	}
4177 	sch_ret = tc_run(tcx_entry(entry), skb, &drop_reason);
4178 egress_verdict:
4179 	switch (sch_ret) {
4180 	case TC_ACT_REDIRECT:
4181 		/* No need to push/pop skb's mac_header here on egress! */
4182 		skb_do_redirect(skb);
4183 		*ret = NET_XMIT_SUCCESS;
4184 		bpf_net_ctx_clear(bpf_net_ctx);
4185 		return NULL;
4186 	case TC_ACT_SHOT:
4187 		kfree_skb_reason(skb, drop_reason);
4188 		*ret = NET_XMIT_DROP;
4189 		bpf_net_ctx_clear(bpf_net_ctx);
4190 		return NULL;
4191 	/* used by tc_run */
4192 	case TC_ACT_STOLEN:
4193 	case TC_ACT_QUEUED:
4194 	case TC_ACT_TRAP:
4195 		consume_skb(skb);
4196 		fallthrough;
4197 	case TC_ACT_CONSUMED:
4198 		*ret = NET_XMIT_SUCCESS;
4199 		bpf_net_ctx_clear(bpf_net_ctx);
4200 		return NULL;
4201 	}
4202 	bpf_net_ctx_clear(bpf_net_ctx);
4203 
4204 	return skb;
4205 }
4206 #else
4207 static __always_inline struct sk_buff *
4208 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4209 		   struct net_device *orig_dev, bool *another)
4210 {
4211 	return skb;
4212 }
4213 
4214 static __always_inline struct sk_buff *
4215 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
4216 {
4217 	return skb;
4218 }
4219 #endif /* CONFIG_NET_XGRESS */
4220 
4221 #ifdef CONFIG_XPS
4222 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
4223 			       struct xps_dev_maps *dev_maps, unsigned int tci)
4224 {
4225 	int tc = netdev_get_prio_tc_map(dev, skb->priority);
4226 	struct xps_map *map;
4227 	int queue_index = -1;
4228 
4229 	if (tc >= dev_maps->num_tc || tci >= dev_maps->nr_ids)
4230 		return queue_index;
4231 
4232 	tci *= dev_maps->num_tc;
4233 	tci += tc;
4234 
4235 	map = rcu_dereference(dev_maps->attr_map[tci]);
4236 	if (map) {
4237 		if (map->len == 1)
4238 			queue_index = map->queues[0];
4239 		else
4240 			queue_index = map->queues[reciprocal_scale(
4241 						skb_get_hash(skb), map->len)];
4242 		if (unlikely(queue_index >= dev->real_num_tx_queues))
4243 			queue_index = -1;
4244 	}
4245 	return queue_index;
4246 }
4247 #endif
4248 
4249 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
4250 			 struct sk_buff *skb)
4251 {
4252 #ifdef CONFIG_XPS
4253 	struct xps_dev_maps *dev_maps;
4254 	struct sock *sk = skb->sk;
4255 	int queue_index = -1;
4256 
4257 	if (!static_key_false(&xps_needed))
4258 		return -1;
4259 
4260 	rcu_read_lock();
4261 	if (!static_key_false(&xps_rxqs_needed))
4262 		goto get_cpus_map;
4263 
4264 	dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_RXQS]);
4265 	if (dev_maps) {
4266 		int tci = sk_rx_queue_get(sk);
4267 
4268 		if (tci >= 0)
4269 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4270 							  tci);
4271 	}
4272 
4273 get_cpus_map:
4274 	if (queue_index < 0) {
4275 		dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_CPUS]);
4276 		if (dev_maps) {
4277 			unsigned int tci = skb->sender_cpu - 1;
4278 
4279 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4280 							  tci);
4281 		}
4282 	}
4283 	rcu_read_unlock();
4284 
4285 	return queue_index;
4286 #else
4287 	return -1;
4288 #endif
4289 }
4290 
4291 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
4292 		     struct net_device *sb_dev)
4293 {
4294 	return 0;
4295 }
4296 EXPORT_SYMBOL(dev_pick_tx_zero);
4297 
4298 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
4299 		     struct net_device *sb_dev)
4300 {
4301 	struct sock *sk = skb->sk;
4302 	int queue_index = sk_tx_queue_get(sk);
4303 
4304 	sb_dev = sb_dev ? : dev;
4305 
4306 	if (queue_index < 0 || skb->ooo_okay ||
4307 	    queue_index >= dev->real_num_tx_queues) {
4308 		int new_index = get_xps_queue(dev, sb_dev, skb);
4309 
4310 		if (new_index < 0)
4311 			new_index = skb_tx_hash(dev, sb_dev, skb);
4312 
4313 		if (queue_index != new_index && sk &&
4314 		    sk_fullsock(sk) &&
4315 		    rcu_access_pointer(sk->sk_dst_cache))
4316 			sk_tx_queue_set(sk, new_index);
4317 
4318 		queue_index = new_index;
4319 	}
4320 
4321 	return queue_index;
4322 }
4323 EXPORT_SYMBOL(netdev_pick_tx);
4324 
4325 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
4326 					 struct sk_buff *skb,
4327 					 struct net_device *sb_dev)
4328 {
4329 	int queue_index = 0;
4330 
4331 #ifdef CONFIG_XPS
4332 	u32 sender_cpu = skb->sender_cpu - 1;
4333 
4334 	if (sender_cpu >= (u32)NR_CPUS)
4335 		skb->sender_cpu = raw_smp_processor_id() + 1;
4336 #endif
4337 
4338 	if (dev->real_num_tx_queues != 1) {
4339 		const struct net_device_ops *ops = dev->netdev_ops;
4340 
4341 		if (ops->ndo_select_queue)
4342 			queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
4343 		else
4344 			queue_index = netdev_pick_tx(dev, skb, sb_dev);
4345 
4346 		queue_index = netdev_cap_txqueue(dev, queue_index);
4347 	}
4348 
4349 	skb_set_queue_mapping(skb, queue_index);
4350 	return netdev_get_tx_queue(dev, queue_index);
4351 }
4352 
4353 /**
4354  * __dev_queue_xmit() - transmit a buffer
4355  * @skb:	buffer to transmit
4356  * @sb_dev:	suboordinate device used for L2 forwarding offload
4357  *
4358  * Queue a buffer for transmission to a network device. The caller must
4359  * have set the device and priority and built the buffer before calling
4360  * this function. The function can be called from an interrupt.
4361  *
4362  * When calling this method, interrupts MUST be enabled. This is because
4363  * the BH enable code must have IRQs enabled so that it will not deadlock.
4364  *
4365  * Regardless of the return value, the skb is consumed, so it is currently
4366  * difficult to retry a send to this method. (You can bump the ref count
4367  * before sending to hold a reference for retry if you are careful.)
4368  *
4369  * Return:
4370  * * 0				- buffer successfully transmitted
4371  * * positive qdisc return code	- NET_XMIT_DROP etc.
4372  * * negative errno		- other errors
4373  */
4374 int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
4375 {
4376 	struct net_device *dev = skb->dev;
4377 	struct netdev_queue *txq = NULL;
4378 	struct Qdisc *q;
4379 	int rc = -ENOMEM;
4380 	bool again = false;
4381 
4382 	skb_reset_mac_header(skb);
4383 	skb_assert_len(skb);
4384 
4385 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
4386 		__skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED);
4387 
4388 	/* Disable soft irqs for various locks below. Also
4389 	 * stops preemption for RCU.
4390 	 */
4391 	rcu_read_lock_bh();
4392 
4393 	skb_update_prio(skb);
4394 
4395 	qdisc_pkt_len_init(skb);
4396 	tcx_set_ingress(skb, false);
4397 #ifdef CONFIG_NET_EGRESS
4398 	if (static_branch_unlikely(&egress_needed_key)) {
4399 		if (nf_hook_egress_active()) {
4400 			skb = nf_hook_egress(skb, &rc, dev);
4401 			if (!skb)
4402 				goto out;
4403 		}
4404 
4405 		netdev_xmit_skip_txqueue(false);
4406 
4407 		nf_skip_egress(skb, true);
4408 		skb = sch_handle_egress(skb, &rc, dev);
4409 		if (!skb)
4410 			goto out;
4411 		nf_skip_egress(skb, false);
4412 
4413 		if (netdev_xmit_txqueue_skipped())
4414 			txq = netdev_tx_queue_mapping(dev, skb);
4415 	}
4416 #endif
4417 	/* If device/qdisc don't need skb->dst, release it right now while
4418 	 * its hot in this cpu cache.
4419 	 */
4420 	if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4421 		skb_dst_drop(skb);
4422 	else
4423 		skb_dst_force(skb);
4424 
4425 	if (!txq)
4426 		txq = netdev_core_pick_tx(dev, skb, sb_dev);
4427 
4428 	q = rcu_dereference_bh(txq->qdisc);
4429 
4430 	trace_net_dev_queue(skb);
4431 	if (q->enqueue) {
4432 		rc = __dev_xmit_skb(skb, q, dev, txq);
4433 		goto out;
4434 	}
4435 
4436 	/* The device has no queue. Common case for software devices:
4437 	 * loopback, all the sorts of tunnels...
4438 
4439 	 * Really, it is unlikely that netif_tx_lock protection is necessary
4440 	 * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
4441 	 * counters.)
4442 	 * However, it is possible, that they rely on protection
4443 	 * made by us here.
4444 
4445 	 * Check this and shot the lock. It is not prone from deadlocks.
4446 	 *Either shot noqueue qdisc, it is even simpler 8)
4447 	 */
4448 	if (dev->flags & IFF_UP) {
4449 		int cpu = smp_processor_id(); /* ok because BHs are off */
4450 
4451 		/* Other cpus might concurrently change txq->xmit_lock_owner
4452 		 * to -1 or to their cpu id, but not to our id.
4453 		 */
4454 		if (READ_ONCE(txq->xmit_lock_owner) != cpu) {
4455 			if (dev_xmit_recursion())
4456 				goto recursion_alert;
4457 
4458 			skb = validate_xmit_skb(skb, dev, &again);
4459 			if (!skb)
4460 				goto out;
4461 
4462 			HARD_TX_LOCK(dev, txq, cpu);
4463 
4464 			if (!netif_xmit_stopped(txq)) {
4465 				dev_xmit_recursion_inc();
4466 				skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4467 				dev_xmit_recursion_dec();
4468 				if (dev_xmit_complete(rc)) {
4469 					HARD_TX_UNLOCK(dev, txq);
4470 					goto out;
4471 				}
4472 			}
4473 			HARD_TX_UNLOCK(dev, txq);
4474 			net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4475 					     dev->name);
4476 		} else {
4477 			/* Recursion is detected! It is possible,
4478 			 * unfortunately
4479 			 */
4480 recursion_alert:
4481 			net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4482 					     dev->name);
4483 		}
4484 	}
4485 
4486 	rc = -ENETDOWN;
4487 	rcu_read_unlock_bh();
4488 
4489 	dev_core_stats_tx_dropped_inc(dev);
4490 	kfree_skb_list(skb);
4491 	return rc;
4492 out:
4493 	rcu_read_unlock_bh();
4494 	return rc;
4495 }
4496 EXPORT_SYMBOL(__dev_queue_xmit);
4497 
4498 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4499 {
4500 	struct net_device *dev = skb->dev;
4501 	struct sk_buff *orig_skb = skb;
4502 	struct netdev_queue *txq;
4503 	int ret = NETDEV_TX_BUSY;
4504 	bool again = false;
4505 
4506 	if (unlikely(!netif_running(dev) ||
4507 		     !netif_carrier_ok(dev)))
4508 		goto drop;
4509 
4510 	skb = validate_xmit_skb_list(skb, dev, &again);
4511 	if (skb != orig_skb)
4512 		goto drop;
4513 
4514 	skb_set_queue_mapping(skb, queue_id);
4515 	txq = skb_get_tx_queue(dev, skb);
4516 
4517 	local_bh_disable();
4518 
4519 	dev_xmit_recursion_inc();
4520 	HARD_TX_LOCK(dev, txq, smp_processor_id());
4521 	if (!netif_xmit_frozen_or_drv_stopped(txq))
4522 		ret = netdev_start_xmit(skb, dev, txq, false);
4523 	HARD_TX_UNLOCK(dev, txq);
4524 	dev_xmit_recursion_dec();
4525 
4526 	local_bh_enable();
4527 	return ret;
4528 drop:
4529 	dev_core_stats_tx_dropped_inc(dev);
4530 	kfree_skb_list(skb);
4531 	return NET_XMIT_DROP;
4532 }
4533 EXPORT_SYMBOL(__dev_direct_xmit);
4534 
4535 /*************************************************************************
4536  *			Receiver routines
4537  *************************************************************************/
4538 static DEFINE_PER_CPU(struct task_struct *, backlog_napi);
4539 
4540 int weight_p __read_mostly = 64;           /* old backlog weight */
4541 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
4542 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
4543 
4544 /* Called with irq disabled */
4545 static inline void ____napi_schedule(struct softnet_data *sd,
4546 				     struct napi_struct *napi)
4547 {
4548 	struct task_struct *thread;
4549 
4550 	lockdep_assert_irqs_disabled();
4551 
4552 	if (test_bit(NAPI_STATE_THREADED, &napi->state)) {
4553 		/* Paired with smp_mb__before_atomic() in
4554 		 * napi_enable()/dev_set_threaded().
4555 		 * Use READ_ONCE() to guarantee a complete
4556 		 * read on napi->thread. Only call
4557 		 * wake_up_process() when it's not NULL.
4558 		 */
4559 		thread = READ_ONCE(napi->thread);
4560 		if (thread) {
4561 			if (use_backlog_threads() && thread == raw_cpu_read(backlog_napi))
4562 				goto use_local_napi;
4563 
4564 			set_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
4565 			wake_up_process(thread);
4566 			return;
4567 		}
4568 	}
4569 
4570 use_local_napi:
4571 	list_add_tail(&napi->poll_list, &sd->poll_list);
4572 	WRITE_ONCE(napi->list_owner, smp_processor_id());
4573 	/* If not called from net_rx_action()
4574 	 * we have to raise NET_RX_SOFTIRQ.
4575 	 */
4576 	if (!sd->in_net_rx_action)
4577 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4578 }
4579 
4580 #ifdef CONFIG_RPS
4581 
4582 struct static_key_false rps_needed __read_mostly;
4583 EXPORT_SYMBOL(rps_needed);
4584 struct static_key_false rfs_needed __read_mostly;
4585 EXPORT_SYMBOL(rfs_needed);
4586 
4587 static struct rps_dev_flow *
4588 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4589 	    struct rps_dev_flow *rflow, u16 next_cpu)
4590 {
4591 	if (next_cpu < nr_cpu_ids) {
4592 		u32 head;
4593 #ifdef CONFIG_RFS_ACCEL
4594 		struct netdev_rx_queue *rxqueue;
4595 		struct rps_dev_flow_table *flow_table;
4596 		struct rps_dev_flow *old_rflow;
4597 		u16 rxq_index;
4598 		u32 flow_id;
4599 		int rc;
4600 
4601 		/* Should we steer this flow to a different hardware queue? */
4602 		if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4603 		    !(dev->features & NETIF_F_NTUPLE))
4604 			goto out;
4605 		rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4606 		if (rxq_index == skb_get_rx_queue(skb))
4607 			goto out;
4608 
4609 		rxqueue = dev->_rx + rxq_index;
4610 		flow_table = rcu_dereference(rxqueue->rps_flow_table);
4611 		if (!flow_table)
4612 			goto out;
4613 		flow_id = skb_get_hash(skb) & flow_table->mask;
4614 		rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4615 							rxq_index, flow_id);
4616 		if (rc < 0)
4617 			goto out;
4618 		old_rflow = rflow;
4619 		rflow = &flow_table->flows[flow_id];
4620 		WRITE_ONCE(rflow->filter, rc);
4621 		if (old_rflow->filter == rc)
4622 			WRITE_ONCE(old_rflow->filter, RPS_NO_FILTER);
4623 	out:
4624 #endif
4625 		head = READ_ONCE(per_cpu(softnet_data, next_cpu).input_queue_head);
4626 		rps_input_queue_tail_save(&rflow->last_qtail, head);
4627 	}
4628 
4629 	WRITE_ONCE(rflow->cpu, next_cpu);
4630 	return rflow;
4631 }
4632 
4633 /*
4634  * get_rps_cpu is called from netif_receive_skb and returns the target
4635  * CPU from the RPS map of the receiving queue for a given skb.
4636  * rcu_read_lock must be held on entry.
4637  */
4638 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4639 		       struct rps_dev_flow **rflowp)
4640 {
4641 	const struct rps_sock_flow_table *sock_flow_table;
4642 	struct netdev_rx_queue *rxqueue = dev->_rx;
4643 	struct rps_dev_flow_table *flow_table;
4644 	struct rps_map *map;
4645 	int cpu = -1;
4646 	u32 tcpu;
4647 	u32 hash;
4648 
4649 	if (skb_rx_queue_recorded(skb)) {
4650 		u16 index = skb_get_rx_queue(skb);
4651 
4652 		if (unlikely(index >= dev->real_num_rx_queues)) {
4653 			WARN_ONCE(dev->real_num_rx_queues > 1,
4654 				  "%s received packet on queue %u, but number "
4655 				  "of RX queues is %u\n",
4656 				  dev->name, index, dev->real_num_rx_queues);
4657 			goto done;
4658 		}
4659 		rxqueue += index;
4660 	}
4661 
4662 	/* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4663 
4664 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
4665 	map = rcu_dereference(rxqueue->rps_map);
4666 	if (!flow_table && !map)
4667 		goto done;
4668 
4669 	skb_reset_network_header(skb);
4670 	hash = skb_get_hash(skb);
4671 	if (!hash)
4672 		goto done;
4673 
4674 	sock_flow_table = rcu_dereference(net_hotdata.rps_sock_flow_table);
4675 	if (flow_table && sock_flow_table) {
4676 		struct rps_dev_flow *rflow;
4677 		u32 next_cpu;
4678 		u32 ident;
4679 
4680 		/* First check into global flow table if there is a match.
4681 		 * This READ_ONCE() pairs with WRITE_ONCE() from rps_record_sock_flow().
4682 		 */
4683 		ident = READ_ONCE(sock_flow_table->ents[hash & sock_flow_table->mask]);
4684 		if ((ident ^ hash) & ~net_hotdata.rps_cpu_mask)
4685 			goto try_rps;
4686 
4687 		next_cpu = ident & net_hotdata.rps_cpu_mask;
4688 
4689 		/* OK, now we know there is a match,
4690 		 * we can look at the local (per receive queue) flow table
4691 		 */
4692 		rflow = &flow_table->flows[hash & flow_table->mask];
4693 		tcpu = rflow->cpu;
4694 
4695 		/*
4696 		 * If the desired CPU (where last recvmsg was done) is
4697 		 * different from current CPU (one in the rx-queue flow
4698 		 * table entry), switch if one of the following holds:
4699 		 *   - Current CPU is unset (>= nr_cpu_ids).
4700 		 *   - Current CPU is offline.
4701 		 *   - The current CPU's queue tail has advanced beyond the
4702 		 *     last packet that was enqueued using this table entry.
4703 		 *     This guarantees that all previous packets for the flow
4704 		 *     have been dequeued, thus preserving in order delivery.
4705 		 */
4706 		if (unlikely(tcpu != next_cpu) &&
4707 		    (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4708 		     ((int)(READ_ONCE(per_cpu(softnet_data, tcpu).input_queue_head) -
4709 		      rflow->last_qtail)) >= 0)) {
4710 			tcpu = next_cpu;
4711 			rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4712 		}
4713 
4714 		if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4715 			*rflowp = rflow;
4716 			cpu = tcpu;
4717 			goto done;
4718 		}
4719 	}
4720 
4721 try_rps:
4722 
4723 	if (map) {
4724 		tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4725 		if (cpu_online(tcpu)) {
4726 			cpu = tcpu;
4727 			goto done;
4728 		}
4729 	}
4730 
4731 done:
4732 	return cpu;
4733 }
4734 
4735 #ifdef CONFIG_RFS_ACCEL
4736 
4737 /**
4738  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4739  * @dev: Device on which the filter was set
4740  * @rxq_index: RX queue index
4741  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4742  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4743  *
4744  * Drivers that implement ndo_rx_flow_steer() should periodically call
4745  * this function for each installed filter and remove the filters for
4746  * which it returns %true.
4747  */
4748 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4749 			 u32 flow_id, u16 filter_id)
4750 {
4751 	struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4752 	struct rps_dev_flow_table *flow_table;
4753 	struct rps_dev_flow *rflow;
4754 	bool expire = true;
4755 	unsigned int cpu;
4756 
4757 	rcu_read_lock();
4758 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
4759 	if (flow_table && flow_id <= flow_table->mask) {
4760 		rflow = &flow_table->flows[flow_id];
4761 		cpu = READ_ONCE(rflow->cpu);
4762 		if (READ_ONCE(rflow->filter) == filter_id && cpu < nr_cpu_ids &&
4763 		    ((int)(READ_ONCE(per_cpu(softnet_data, cpu).input_queue_head) -
4764 			   READ_ONCE(rflow->last_qtail)) <
4765 		     (int)(10 * flow_table->mask)))
4766 			expire = false;
4767 	}
4768 	rcu_read_unlock();
4769 	return expire;
4770 }
4771 EXPORT_SYMBOL(rps_may_expire_flow);
4772 
4773 #endif /* CONFIG_RFS_ACCEL */
4774 
4775 /* Called from hardirq (IPI) context */
4776 static void rps_trigger_softirq(void *data)
4777 {
4778 	struct softnet_data *sd = data;
4779 
4780 	____napi_schedule(sd, &sd->backlog);
4781 	sd->received_rps++;
4782 }
4783 
4784 #endif /* CONFIG_RPS */
4785 
4786 /* Called from hardirq (IPI) context */
4787 static void trigger_rx_softirq(void *data)
4788 {
4789 	struct softnet_data *sd = data;
4790 
4791 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4792 	smp_store_release(&sd->defer_ipi_scheduled, 0);
4793 }
4794 
4795 /*
4796  * After we queued a packet into sd->input_pkt_queue,
4797  * we need to make sure this queue is serviced soon.
4798  *
4799  * - If this is another cpu queue, link it to our rps_ipi_list,
4800  *   and make sure we will process rps_ipi_list from net_rx_action().
4801  *
4802  * - If this is our own queue, NAPI schedule our backlog.
4803  *   Note that this also raises NET_RX_SOFTIRQ.
4804  */
4805 static void napi_schedule_rps(struct softnet_data *sd)
4806 {
4807 	struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4808 
4809 #ifdef CONFIG_RPS
4810 	if (sd != mysd) {
4811 		if (use_backlog_threads()) {
4812 			__napi_schedule_irqoff(&sd->backlog);
4813 			return;
4814 		}
4815 
4816 		sd->rps_ipi_next = mysd->rps_ipi_list;
4817 		mysd->rps_ipi_list = sd;
4818 
4819 		/* If not called from net_rx_action() or napi_threaded_poll()
4820 		 * we have to raise NET_RX_SOFTIRQ.
4821 		 */
4822 		if (!mysd->in_net_rx_action && !mysd->in_napi_threaded_poll)
4823 			__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4824 		return;
4825 	}
4826 #endif /* CONFIG_RPS */
4827 	__napi_schedule_irqoff(&mysd->backlog);
4828 }
4829 
4830 void kick_defer_list_purge(struct softnet_data *sd, unsigned int cpu)
4831 {
4832 	unsigned long flags;
4833 
4834 	if (use_backlog_threads()) {
4835 		backlog_lock_irq_save(sd, &flags);
4836 
4837 		if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state))
4838 			__napi_schedule_irqoff(&sd->backlog);
4839 
4840 		backlog_unlock_irq_restore(sd, &flags);
4841 
4842 	} else if (!cmpxchg(&sd->defer_ipi_scheduled, 0, 1)) {
4843 		smp_call_function_single_async(cpu, &sd->defer_csd);
4844 	}
4845 }
4846 
4847 #ifdef CONFIG_NET_FLOW_LIMIT
4848 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4849 #endif
4850 
4851 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4852 {
4853 #ifdef CONFIG_NET_FLOW_LIMIT
4854 	struct sd_flow_limit *fl;
4855 	struct softnet_data *sd;
4856 	unsigned int old_flow, new_flow;
4857 
4858 	if (qlen < (READ_ONCE(net_hotdata.max_backlog) >> 1))
4859 		return false;
4860 
4861 	sd = this_cpu_ptr(&softnet_data);
4862 
4863 	rcu_read_lock();
4864 	fl = rcu_dereference(sd->flow_limit);
4865 	if (fl) {
4866 		new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4867 		old_flow = fl->history[fl->history_head];
4868 		fl->history[fl->history_head] = new_flow;
4869 
4870 		fl->history_head++;
4871 		fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4872 
4873 		if (likely(fl->buckets[old_flow]))
4874 			fl->buckets[old_flow]--;
4875 
4876 		if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4877 			fl->count++;
4878 			rcu_read_unlock();
4879 			return true;
4880 		}
4881 	}
4882 	rcu_read_unlock();
4883 #endif
4884 	return false;
4885 }
4886 
4887 /*
4888  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4889  * queue (may be a remote CPU queue).
4890  */
4891 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4892 			      unsigned int *qtail)
4893 {
4894 	enum skb_drop_reason reason;
4895 	struct softnet_data *sd;
4896 	unsigned long flags;
4897 	unsigned int qlen;
4898 	int max_backlog;
4899 	u32 tail;
4900 
4901 	reason = SKB_DROP_REASON_DEV_READY;
4902 	if (!netif_running(skb->dev))
4903 		goto bad_dev;
4904 
4905 	reason = SKB_DROP_REASON_CPU_BACKLOG;
4906 	sd = &per_cpu(softnet_data, cpu);
4907 
4908 	qlen = skb_queue_len_lockless(&sd->input_pkt_queue);
4909 	max_backlog = READ_ONCE(net_hotdata.max_backlog);
4910 	if (unlikely(qlen > max_backlog))
4911 		goto cpu_backlog_drop;
4912 	backlog_lock_irq_save(sd, &flags);
4913 	qlen = skb_queue_len(&sd->input_pkt_queue);
4914 	if (qlen <= max_backlog && !skb_flow_limit(skb, qlen)) {
4915 		if (!qlen) {
4916 			/* Schedule NAPI for backlog device. We can use
4917 			 * non atomic operation as we own the queue lock.
4918 			 */
4919 			if (!__test_and_set_bit(NAPI_STATE_SCHED,
4920 						&sd->backlog.state))
4921 				napi_schedule_rps(sd);
4922 		}
4923 		__skb_queue_tail(&sd->input_pkt_queue, skb);
4924 		tail = rps_input_queue_tail_incr(sd);
4925 		backlog_unlock_irq_restore(sd, &flags);
4926 
4927 		/* save the tail outside of the critical section */
4928 		rps_input_queue_tail_save(qtail, tail);
4929 		return NET_RX_SUCCESS;
4930 	}
4931 
4932 	backlog_unlock_irq_restore(sd, &flags);
4933 
4934 cpu_backlog_drop:
4935 	atomic_inc(&sd->dropped);
4936 bad_dev:
4937 	dev_core_stats_rx_dropped_inc(skb->dev);
4938 	kfree_skb_reason(skb, reason);
4939 	return NET_RX_DROP;
4940 }
4941 
4942 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4943 {
4944 	struct net_device *dev = skb->dev;
4945 	struct netdev_rx_queue *rxqueue;
4946 
4947 	rxqueue = dev->_rx;
4948 
4949 	if (skb_rx_queue_recorded(skb)) {
4950 		u16 index = skb_get_rx_queue(skb);
4951 
4952 		if (unlikely(index >= dev->real_num_rx_queues)) {
4953 			WARN_ONCE(dev->real_num_rx_queues > 1,
4954 				  "%s received packet on queue %u, but number "
4955 				  "of RX queues is %u\n",
4956 				  dev->name, index, dev->real_num_rx_queues);
4957 
4958 			return rxqueue; /* Return first rxqueue */
4959 		}
4960 		rxqueue += index;
4961 	}
4962 	return rxqueue;
4963 }
4964 
4965 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp,
4966 			     struct bpf_prog *xdp_prog)
4967 {
4968 	void *orig_data, *orig_data_end, *hard_start;
4969 	struct netdev_rx_queue *rxqueue;
4970 	bool orig_bcast, orig_host;
4971 	u32 mac_len, frame_sz;
4972 	__be16 orig_eth_type;
4973 	struct ethhdr *eth;
4974 	u32 metalen, act;
4975 	int off;
4976 
4977 	/* The XDP program wants to see the packet starting at the MAC
4978 	 * header.
4979 	 */
4980 	mac_len = skb->data - skb_mac_header(skb);
4981 	hard_start = skb->data - skb_headroom(skb);
4982 
4983 	/* SKB "head" area always have tailroom for skb_shared_info */
4984 	frame_sz = (void *)skb_end_pointer(skb) - hard_start;
4985 	frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
4986 
4987 	rxqueue = netif_get_rxqueue(skb);
4988 	xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq);
4989 	xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len,
4990 			 skb_headlen(skb) + mac_len, true);
4991 	if (skb_is_nonlinear(skb)) {
4992 		skb_shinfo(skb)->xdp_frags_size = skb->data_len;
4993 		xdp_buff_set_frags_flag(xdp);
4994 	} else {
4995 		xdp_buff_clear_frags_flag(xdp);
4996 	}
4997 
4998 	orig_data_end = xdp->data_end;
4999 	orig_data = xdp->data;
5000 	eth = (struct ethhdr *)xdp->data;
5001 	orig_host = ether_addr_equal_64bits(eth->h_dest, skb->dev->dev_addr);
5002 	orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
5003 	orig_eth_type = eth->h_proto;
5004 
5005 	act = bpf_prog_run_xdp(xdp_prog, xdp);
5006 
5007 	/* check if bpf_xdp_adjust_head was used */
5008 	off = xdp->data - orig_data;
5009 	if (off) {
5010 		if (off > 0)
5011 			__skb_pull(skb, off);
5012 		else if (off < 0)
5013 			__skb_push(skb, -off);
5014 
5015 		skb->mac_header += off;
5016 		skb_reset_network_header(skb);
5017 	}
5018 
5019 	/* check if bpf_xdp_adjust_tail was used */
5020 	off = xdp->data_end - orig_data_end;
5021 	if (off != 0) {
5022 		skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
5023 		skb->len += off; /* positive on grow, negative on shrink */
5024 	}
5025 
5026 	/* XDP frag metadata (e.g. nr_frags) are updated in eBPF helpers
5027 	 * (e.g. bpf_xdp_adjust_tail), we need to update data_len here.
5028 	 */
5029 	if (xdp_buff_has_frags(xdp))
5030 		skb->data_len = skb_shinfo(skb)->xdp_frags_size;
5031 	else
5032 		skb->data_len = 0;
5033 
5034 	/* check if XDP changed eth hdr such SKB needs update */
5035 	eth = (struct ethhdr *)xdp->data;
5036 	if ((orig_eth_type != eth->h_proto) ||
5037 	    (orig_host != ether_addr_equal_64bits(eth->h_dest,
5038 						  skb->dev->dev_addr)) ||
5039 	    (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
5040 		__skb_push(skb, ETH_HLEN);
5041 		skb->pkt_type = PACKET_HOST;
5042 		skb->protocol = eth_type_trans(skb, skb->dev);
5043 	}
5044 
5045 	/* Redirect/Tx gives L2 packet, code that will reuse skb must __skb_pull
5046 	 * before calling us again on redirect path. We do not call do_redirect
5047 	 * as we leave that up to the caller.
5048 	 *
5049 	 * Caller is responsible for managing lifetime of skb (i.e. calling
5050 	 * kfree_skb in response to actions it cannot handle/XDP_DROP).
5051 	 */
5052 	switch (act) {
5053 	case XDP_REDIRECT:
5054 	case XDP_TX:
5055 		__skb_push(skb, mac_len);
5056 		break;
5057 	case XDP_PASS:
5058 		metalen = xdp->data - xdp->data_meta;
5059 		if (metalen)
5060 			skb_metadata_set(skb, metalen);
5061 		break;
5062 	}
5063 
5064 	return act;
5065 }
5066 
5067 static int
5068 netif_skb_check_for_xdp(struct sk_buff **pskb, struct bpf_prog *prog)
5069 {
5070 	struct sk_buff *skb = *pskb;
5071 	int err, hroom, troom;
5072 
5073 	if (!skb_cow_data_for_xdp(this_cpu_read(system_page_pool), pskb, prog))
5074 		return 0;
5075 
5076 	/* In case we have to go down the path and also linearize,
5077 	 * then lets do the pskb_expand_head() work just once here.
5078 	 */
5079 	hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
5080 	troom = skb->tail + skb->data_len - skb->end;
5081 	err = pskb_expand_head(skb,
5082 			       hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
5083 			       troom > 0 ? troom + 128 : 0, GFP_ATOMIC);
5084 	if (err)
5085 		return err;
5086 
5087 	return skb_linearize(skb);
5088 }
5089 
5090 static u32 netif_receive_generic_xdp(struct sk_buff **pskb,
5091 				     struct xdp_buff *xdp,
5092 				     struct bpf_prog *xdp_prog)
5093 {
5094 	struct sk_buff *skb = *pskb;
5095 	u32 mac_len, act = XDP_DROP;
5096 
5097 	/* Reinjected packets coming from act_mirred or similar should
5098 	 * not get XDP generic processing.
5099 	 */
5100 	if (skb_is_redirected(skb))
5101 		return XDP_PASS;
5102 
5103 	/* XDP packets must have sufficient headroom of XDP_PACKET_HEADROOM
5104 	 * bytes. This is the guarantee that also native XDP provides,
5105 	 * thus we need to do it here as well.
5106 	 */
5107 	mac_len = skb->data - skb_mac_header(skb);
5108 	__skb_push(skb, mac_len);
5109 
5110 	if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
5111 	    skb_headroom(skb) < XDP_PACKET_HEADROOM) {
5112 		if (netif_skb_check_for_xdp(pskb, xdp_prog))
5113 			goto do_drop;
5114 	}
5115 
5116 	__skb_pull(*pskb, mac_len);
5117 
5118 	act = bpf_prog_run_generic_xdp(*pskb, xdp, xdp_prog);
5119 	switch (act) {
5120 	case XDP_REDIRECT:
5121 	case XDP_TX:
5122 	case XDP_PASS:
5123 		break;
5124 	default:
5125 		bpf_warn_invalid_xdp_action((*pskb)->dev, xdp_prog, act);
5126 		fallthrough;
5127 	case XDP_ABORTED:
5128 		trace_xdp_exception((*pskb)->dev, xdp_prog, act);
5129 		fallthrough;
5130 	case XDP_DROP:
5131 	do_drop:
5132 		kfree_skb(*pskb);
5133 		break;
5134 	}
5135 
5136 	return act;
5137 }
5138 
5139 /* When doing generic XDP we have to bypass the qdisc layer and the
5140  * network taps in order to match in-driver-XDP behavior. This also means
5141  * that XDP packets are able to starve other packets going through a qdisc,
5142  * and DDOS attacks will be more effective. In-driver-XDP use dedicated TX
5143  * queues, so they do not have this starvation issue.
5144  */
5145 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
5146 {
5147 	struct net_device *dev = skb->dev;
5148 	struct netdev_queue *txq;
5149 	bool free_skb = true;
5150 	int cpu, rc;
5151 
5152 	txq = netdev_core_pick_tx(dev, skb, NULL);
5153 	cpu = smp_processor_id();
5154 	HARD_TX_LOCK(dev, txq, cpu);
5155 	if (!netif_xmit_frozen_or_drv_stopped(txq)) {
5156 		rc = netdev_start_xmit(skb, dev, txq, 0);
5157 		if (dev_xmit_complete(rc))
5158 			free_skb = false;
5159 	}
5160 	HARD_TX_UNLOCK(dev, txq);
5161 	if (free_skb) {
5162 		trace_xdp_exception(dev, xdp_prog, XDP_TX);
5163 		dev_core_stats_tx_dropped_inc(dev);
5164 		kfree_skb(skb);
5165 	}
5166 }
5167 
5168 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
5169 
5170 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff **pskb)
5171 {
5172 	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
5173 
5174 	if (xdp_prog) {
5175 		struct xdp_buff xdp;
5176 		u32 act;
5177 		int err;
5178 
5179 		bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
5180 		act = netif_receive_generic_xdp(pskb, &xdp, xdp_prog);
5181 		if (act != XDP_PASS) {
5182 			switch (act) {
5183 			case XDP_REDIRECT:
5184 				err = xdp_do_generic_redirect((*pskb)->dev, *pskb,
5185 							      &xdp, xdp_prog);
5186 				if (err)
5187 					goto out_redir;
5188 				break;
5189 			case XDP_TX:
5190 				generic_xdp_tx(*pskb, xdp_prog);
5191 				break;
5192 			}
5193 			bpf_net_ctx_clear(bpf_net_ctx);
5194 			return XDP_DROP;
5195 		}
5196 		bpf_net_ctx_clear(bpf_net_ctx);
5197 	}
5198 	return XDP_PASS;
5199 out_redir:
5200 	bpf_net_ctx_clear(bpf_net_ctx);
5201 	kfree_skb_reason(*pskb, SKB_DROP_REASON_XDP);
5202 	return XDP_DROP;
5203 }
5204 EXPORT_SYMBOL_GPL(do_xdp_generic);
5205 
5206 static int netif_rx_internal(struct sk_buff *skb)
5207 {
5208 	int ret;
5209 
5210 	net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue), skb);
5211 
5212 	trace_netif_rx(skb);
5213 
5214 #ifdef CONFIG_RPS
5215 	if (static_branch_unlikely(&rps_needed)) {
5216 		struct rps_dev_flow voidflow, *rflow = &voidflow;
5217 		int cpu;
5218 
5219 		rcu_read_lock();
5220 
5221 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
5222 		if (cpu < 0)
5223 			cpu = smp_processor_id();
5224 
5225 		ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5226 
5227 		rcu_read_unlock();
5228 	} else
5229 #endif
5230 	{
5231 		unsigned int qtail;
5232 
5233 		ret = enqueue_to_backlog(skb, smp_processor_id(), &qtail);
5234 	}
5235 	return ret;
5236 }
5237 
5238 /**
5239  *	__netif_rx	-	Slightly optimized version of netif_rx
5240  *	@skb: buffer to post
5241  *
5242  *	This behaves as netif_rx except that it does not disable bottom halves.
5243  *	As a result this function may only be invoked from the interrupt context
5244  *	(either hard or soft interrupt).
5245  */
5246 int __netif_rx(struct sk_buff *skb)
5247 {
5248 	int ret;
5249 
5250 	lockdep_assert_once(hardirq_count() | softirq_count());
5251 
5252 	trace_netif_rx_entry(skb);
5253 	ret = netif_rx_internal(skb);
5254 	trace_netif_rx_exit(ret);
5255 	return ret;
5256 }
5257 EXPORT_SYMBOL(__netif_rx);
5258 
5259 /**
5260  *	netif_rx	-	post buffer to the network code
5261  *	@skb: buffer to post
5262  *
5263  *	This function receives a packet from a device driver and queues it for
5264  *	the upper (protocol) levels to process via the backlog NAPI device. It
5265  *	always succeeds. The buffer may be dropped during processing for
5266  *	congestion control or by the protocol layers.
5267  *	The network buffer is passed via the backlog NAPI device. Modern NIC
5268  *	driver should use NAPI and GRO.
5269  *	This function can used from interrupt and from process context. The
5270  *	caller from process context must not disable interrupts before invoking
5271  *	this function.
5272  *
5273  *	return values:
5274  *	NET_RX_SUCCESS	(no congestion)
5275  *	NET_RX_DROP     (packet was dropped)
5276  *
5277  */
5278 int netif_rx(struct sk_buff *skb)
5279 {
5280 	bool need_bh_off = !(hardirq_count() | softirq_count());
5281 	int ret;
5282 
5283 	if (need_bh_off)
5284 		local_bh_disable();
5285 	trace_netif_rx_entry(skb);
5286 	ret = netif_rx_internal(skb);
5287 	trace_netif_rx_exit(ret);
5288 	if (need_bh_off)
5289 		local_bh_enable();
5290 	return ret;
5291 }
5292 EXPORT_SYMBOL(netif_rx);
5293 
5294 static __latent_entropy void net_tx_action(void)
5295 {
5296 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5297 
5298 	if (sd->completion_queue) {
5299 		struct sk_buff *clist;
5300 
5301 		local_irq_disable();
5302 		clist = sd->completion_queue;
5303 		sd->completion_queue = NULL;
5304 		local_irq_enable();
5305 
5306 		while (clist) {
5307 			struct sk_buff *skb = clist;
5308 
5309 			clist = clist->next;
5310 
5311 			WARN_ON(refcount_read(&skb->users));
5312 			if (likely(get_kfree_skb_cb(skb)->reason == SKB_CONSUMED))
5313 				trace_consume_skb(skb, net_tx_action);
5314 			else
5315 				trace_kfree_skb(skb, net_tx_action,
5316 						get_kfree_skb_cb(skb)->reason, NULL);
5317 
5318 			if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
5319 				__kfree_skb(skb);
5320 			else
5321 				__napi_kfree_skb(skb,
5322 						 get_kfree_skb_cb(skb)->reason);
5323 		}
5324 	}
5325 
5326 	if (sd->output_queue) {
5327 		struct Qdisc *head;
5328 
5329 		local_irq_disable();
5330 		head = sd->output_queue;
5331 		sd->output_queue = NULL;
5332 		sd->output_queue_tailp = &sd->output_queue;
5333 		local_irq_enable();
5334 
5335 		rcu_read_lock();
5336 
5337 		while (head) {
5338 			struct Qdisc *q = head;
5339 			spinlock_t *root_lock = NULL;
5340 
5341 			head = head->next_sched;
5342 
5343 			/* We need to make sure head->next_sched is read
5344 			 * before clearing __QDISC_STATE_SCHED
5345 			 */
5346 			smp_mb__before_atomic();
5347 
5348 			if (!(q->flags & TCQ_F_NOLOCK)) {
5349 				root_lock = qdisc_lock(q);
5350 				spin_lock(root_lock);
5351 			} else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED,
5352 						     &q->state))) {
5353 				/* There is a synchronize_net() between
5354 				 * STATE_DEACTIVATED flag being set and
5355 				 * qdisc_reset()/some_qdisc_is_busy() in
5356 				 * dev_deactivate(), so we can safely bail out
5357 				 * early here to avoid data race between
5358 				 * qdisc_deactivate() and some_qdisc_is_busy()
5359 				 * for lockless qdisc.
5360 				 */
5361 				clear_bit(__QDISC_STATE_SCHED, &q->state);
5362 				continue;
5363 			}
5364 
5365 			clear_bit(__QDISC_STATE_SCHED, &q->state);
5366 			qdisc_run(q);
5367 			if (root_lock)
5368 				spin_unlock(root_lock);
5369 		}
5370 
5371 		rcu_read_unlock();
5372 	}
5373 
5374 	xfrm_dev_backlog(sd);
5375 }
5376 
5377 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
5378 /* This hook is defined here for ATM LANE */
5379 int (*br_fdb_test_addr_hook)(struct net_device *dev,
5380 			     unsigned char *addr) __read_mostly;
5381 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
5382 #endif
5383 
5384 /**
5385  *	netdev_is_rx_handler_busy - check if receive handler is registered
5386  *	@dev: device to check
5387  *
5388  *	Check if a receive handler is already registered for a given device.
5389  *	Return true if there one.
5390  *
5391  *	The caller must hold the rtnl_mutex.
5392  */
5393 bool netdev_is_rx_handler_busy(struct net_device *dev)
5394 {
5395 	ASSERT_RTNL();
5396 	return dev && rtnl_dereference(dev->rx_handler);
5397 }
5398 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
5399 
5400 /**
5401  *	netdev_rx_handler_register - register receive handler
5402  *	@dev: device to register a handler for
5403  *	@rx_handler: receive handler to register
5404  *	@rx_handler_data: data pointer that is used by rx handler
5405  *
5406  *	Register a receive handler for a device. This handler will then be
5407  *	called from __netif_receive_skb. A negative errno code is returned
5408  *	on a failure.
5409  *
5410  *	The caller must hold the rtnl_mutex.
5411  *
5412  *	For a general description of rx_handler, see enum rx_handler_result.
5413  */
5414 int netdev_rx_handler_register(struct net_device *dev,
5415 			       rx_handler_func_t *rx_handler,
5416 			       void *rx_handler_data)
5417 {
5418 	if (netdev_is_rx_handler_busy(dev))
5419 		return -EBUSY;
5420 
5421 	if (dev->priv_flags & IFF_NO_RX_HANDLER)
5422 		return -EINVAL;
5423 
5424 	/* Note: rx_handler_data must be set before rx_handler */
5425 	rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
5426 	rcu_assign_pointer(dev->rx_handler, rx_handler);
5427 
5428 	return 0;
5429 }
5430 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5431 
5432 /**
5433  *	netdev_rx_handler_unregister - unregister receive handler
5434  *	@dev: device to unregister a handler from
5435  *
5436  *	Unregister a receive handler from a device.
5437  *
5438  *	The caller must hold the rtnl_mutex.
5439  */
5440 void netdev_rx_handler_unregister(struct net_device *dev)
5441 {
5442 
5443 	ASSERT_RTNL();
5444 	RCU_INIT_POINTER(dev->rx_handler, NULL);
5445 	/* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5446 	 * section has a guarantee to see a non NULL rx_handler_data
5447 	 * as well.
5448 	 */
5449 	synchronize_net();
5450 	RCU_INIT_POINTER(dev->rx_handler_data, NULL);
5451 }
5452 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5453 
5454 /*
5455  * Limit the use of PFMEMALLOC reserves to those protocols that implement
5456  * the special handling of PFMEMALLOC skbs.
5457  */
5458 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5459 {
5460 	switch (skb->protocol) {
5461 	case htons(ETH_P_ARP):
5462 	case htons(ETH_P_IP):
5463 	case htons(ETH_P_IPV6):
5464 	case htons(ETH_P_8021Q):
5465 	case htons(ETH_P_8021AD):
5466 		return true;
5467 	default:
5468 		return false;
5469 	}
5470 }
5471 
5472 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5473 			     int *ret, struct net_device *orig_dev)
5474 {
5475 	if (nf_hook_ingress_active(skb)) {
5476 		int ingress_retval;
5477 
5478 		if (*pt_prev) {
5479 			*ret = deliver_skb(skb, *pt_prev, orig_dev);
5480 			*pt_prev = NULL;
5481 		}
5482 
5483 		rcu_read_lock();
5484 		ingress_retval = nf_hook_ingress(skb);
5485 		rcu_read_unlock();
5486 		return ingress_retval;
5487 	}
5488 	return 0;
5489 }
5490 
5491 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
5492 				    struct packet_type **ppt_prev)
5493 {
5494 	struct packet_type *ptype, *pt_prev;
5495 	rx_handler_func_t *rx_handler;
5496 	struct sk_buff *skb = *pskb;
5497 	struct net_device *orig_dev;
5498 	bool deliver_exact = false;
5499 	int ret = NET_RX_DROP;
5500 	__be16 type;
5501 
5502 	net_timestamp_check(!READ_ONCE(net_hotdata.tstamp_prequeue), skb);
5503 
5504 	trace_netif_receive_skb(skb);
5505 
5506 	orig_dev = skb->dev;
5507 
5508 	skb_reset_network_header(skb);
5509 	if (!skb_transport_header_was_set(skb))
5510 		skb_reset_transport_header(skb);
5511 	skb_reset_mac_len(skb);
5512 
5513 	pt_prev = NULL;
5514 
5515 another_round:
5516 	skb->skb_iif = skb->dev->ifindex;
5517 
5518 	__this_cpu_inc(softnet_data.processed);
5519 
5520 	if (static_branch_unlikely(&generic_xdp_needed_key)) {
5521 		int ret2;
5522 
5523 		migrate_disable();
5524 		ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog),
5525 				      &skb);
5526 		migrate_enable();
5527 
5528 		if (ret2 != XDP_PASS) {
5529 			ret = NET_RX_DROP;
5530 			goto out;
5531 		}
5532 	}
5533 
5534 	if (eth_type_vlan(skb->protocol)) {
5535 		skb = skb_vlan_untag(skb);
5536 		if (unlikely(!skb))
5537 			goto out;
5538 	}
5539 
5540 	if (skb_skip_tc_classify(skb))
5541 		goto skip_classify;
5542 
5543 	if (pfmemalloc)
5544 		goto skip_taps;
5545 
5546 	list_for_each_entry_rcu(ptype, &net_hotdata.ptype_all, list) {
5547 		if (pt_prev)
5548 			ret = deliver_skb(skb, pt_prev, orig_dev);
5549 		pt_prev = ptype;
5550 	}
5551 
5552 	list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5553 		if (pt_prev)
5554 			ret = deliver_skb(skb, pt_prev, orig_dev);
5555 		pt_prev = ptype;
5556 	}
5557 
5558 skip_taps:
5559 #ifdef CONFIG_NET_INGRESS
5560 	if (static_branch_unlikely(&ingress_needed_key)) {
5561 		bool another = false;
5562 
5563 		nf_skip_egress(skb, true);
5564 		skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev,
5565 					 &another);
5566 		if (another)
5567 			goto another_round;
5568 		if (!skb)
5569 			goto out;
5570 
5571 		nf_skip_egress(skb, false);
5572 		if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5573 			goto out;
5574 	}
5575 #endif
5576 	skb_reset_redirect(skb);
5577 skip_classify:
5578 	if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
5579 		goto drop;
5580 
5581 	if (skb_vlan_tag_present(skb)) {
5582 		if (pt_prev) {
5583 			ret = deliver_skb(skb, pt_prev, orig_dev);
5584 			pt_prev = NULL;
5585 		}
5586 		if (vlan_do_receive(&skb))
5587 			goto another_round;
5588 		else if (unlikely(!skb))
5589 			goto out;
5590 	}
5591 
5592 	rx_handler = rcu_dereference(skb->dev->rx_handler);
5593 	if (rx_handler) {
5594 		if (pt_prev) {
5595 			ret = deliver_skb(skb, pt_prev, orig_dev);
5596 			pt_prev = NULL;
5597 		}
5598 		switch (rx_handler(&skb)) {
5599 		case RX_HANDLER_CONSUMED:
5600 			ret = NET_RX_SUCCESS;
5601 			goto out;
5602 		case RX_HANDLER_ANOTHER:
5603 			goto another_round;
5604 		case RX_HANDLER_EXACT:
5605 			deliver_exact = true;
5606 			break;
5607 		case RX_HANDLER_PASS:
5608 			break;
5609 		default:
5610 			BUG();
5611 		}
5612 	}
5613 
5614 	if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) {
5615 check_vlan_id:
5616 		if (skb_vlan_tag_get_id(skb)) {
5617 			/* Vlan id is non 0 and vlan_do_receive() above couldn't
5618 			 * find vlan device.
5619 			 */
5620 			skb->pkt_type = PACKET_OTHERHOST;
5621 		} else if (eth_type_vlan(skb->protocol)) {
5622 			/* Outer header is 802.1P with vlan 0, inner header is
5623 			 * 802.1Q or 802.1AD and vlan_do_receive() above could
5624 			 * not find vlan dev for vlan id 0.
5625 			 */
5626 			__vlan_hwaccel_clear_tag(skb);
5627 			skb = skb_vlan_untag(skb);
5628 			if (unlikely(!skb))
5629 				goto out;
5630 			if (vlan_do_receive(&skb))
5631 				/* After stripping off 802.1P header with vlan 0
5632 				 * vlan dev is found for inner header.
5633 				 */
5634 				goto another_round;
5635 			else if (unlikely(!skb))
5636 				goto out;
5637 			else
5638 				/* We have stripped outer 802.1P vlan 0 header.
5639 				 * But could not find vlan dev.
5640 				 * check again for vlan id to set OTHERHOST.
5641 				 */
5642 				goto check_vlan_id;
5643 		}
5644 		/* Note: we might in the future use prio bits
5645 		 * and set skb->priority like in vlan_do_receive()
5646 		 * For the time being, just ignore Priority Code Point
5647 		 */
5648 		__vlan_hwaccel_clear_tag(skb);
5649 	}
5650 
5651 	type = skb->protocol;
5652 
5653 	/* deliver only exact match when indicated */
5654 	if (likely(!deliver_exact)) {
5655 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5656 				       &ptype_base[ntohs(type) &
5657 						   PTYPE_HASH_MASK]);
5658 	}
5659 
5660 	deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5661 			       &orig_dev->ptype_specific);
5662 
5663 	if (unlikely(skb->dev != orig_dev)) {
5664 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5665 				       &skb->dev->ptype_specific);
5666 	}
5667 
5668 	if (pt_prev) {
5669 		if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
5670 			goto drop;
5671 		*ppt_prev = pt_prev;
5672 	} else {
5673 drop:
5674 		if (!deliver_exact)
5675 			dev_core_stats_rx_dropped_inc(skb->dev);
5676 		else
5677 			dev_core_stats_rx_nohandler_inc(skb->dev);
5678 		kfree_skb_reason(skb, SKB_DROP_REASON_UNHANDLED_PROTO);
5679 		/* Jamal, now you will not able to escape explaining
5680 		 * me how you were going to use this. :-)
5681 		 */
5682 		ret = NET_RX_DROP;
5683 	}
5684 
5685 out:
5686 	/* The invariant here is that if *ppt_prev is not NULL
5687 	 * then skb should also be non-NULL.
5688 	 *
5689 	 * Apparently *ppt_prev assignment above holds this invariant due to
5690 	 * skb dereferencing near it.
5691 	 */
5692 	*pskb = skb;
5693 	return ret;
5694 }
5695 
5696 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5697 {
5698 	struct net_device *orig_dev = skb->dev;
5699 	struct packet_type *pt_prev = NULL;
5700 	int ret;
5701 
5702 	ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5703 	if (pt_prev)
5704 		ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5705 					 skb->dev, pt_prev, orig_dev);
5706 	return ret;
5707 }
5708 
5709 /**
5710  *	netif_receive_skb_core - special purpose version of netif_receive_skb
5711  *	@skb: buffer to process
5712  *
5713  *	More direct receive version of netif_receive_skb().  It should
5714  *	only be used by callers that have a need to skip RPS and Generic XDP.
5715  *	Caller must also take care of handling if ``(page_is_)pfmemalloc``.
5716  *
5717  *	This function may only be called from softirq context and interrupts
5718  *	should be enabled.
5719  *
5720  *	Return values (usually ignored):
5721  *	NET_RX_SUCCESS: no congestion
5722  *	NET_RX_DROP: packet was dropped
5723  */
5724 int netif_receive_skb_core(struct sk_buff *skb)
5725 {
5726 	int ret;
5727 
5728 	rcu_read_lock();
5729 	ret = __netif_receive_skb_one_core(skb, false);
5730 	rcu_read_unlock();
5731 
5732 	return ret;
5733 }
5734 EXPORT_SYMBOL(netif_receive_skb_core);
5735 
5736 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5737 						  struct packet_type *pt_prev,
5738 						  struct net_device *orig_dev)
5739 {
5740 	struct sk_buff *skb, *next;
5741 
5742 	if (!pt_prev)
5743 		return;
5744 	if (list_empty(head))
5745 		return;
5746 	if (pt_prev->list_func != NULL)
5747 		INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5748 				   ip_list_rcv, head, pt_prev, orig_dev);
5749 	else
5750 		list_for_each_entry_safe(skb, next, head, list) {
5751 			skb_list_del_init(skb);
5752 			pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5753 		}
5754 }
5755 
5756 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5757 {
5758 	/* Fast-path assumptions:
5759 	 * - There is no RX handler.
5760 	 * - Only one packet_type matches.
5761 	 * If either of these fails, we will end up doing some per-packet
5762 	 * processing in-line, then handling the 'last ptype' for the whole
5763 	 * sublist.  This can't cause out-of-order delivery to any single ptype,
5764 	 * because the 'last ptype' must be constant across the sublist, and all
5765 	 * other ptypes are handled per-packet.
5766 	 */
5767 	/* Current (common) ptype of sublist */
5768 	struct packet_type *pt_curr = NULL;
5769 	/* Current (common) orig_dev of sublist */
5770 	struct net_device *od_curr = NULL;
5771 	struct sk_buff *skb, *next;
5772 	LIST_HEAD(sublist);
5773 
5774 	list_for_each_entry_safe(skb, next, head, list) {
5775 		struct net_device *orig_dev = skb->dev;
5776 		struct packet_type *pt_prev = NULL;
5777 
5778 		skb_list_del_init(skb);
5779 		__netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5780 		if (!pt_prev)
5781 			continue;
5782 		if (pt_curr != pt_prev || od_curr != orig_dev) {
5783 			/* dispatch old sublist */
5784 			__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5785 			/* start new sublist */
5786 			INIT_LIST_HEAD(&sublist);
5787 			pt_curr = pt_prev;
5788 			od_curr = orig_dev;
5789 		}
5790 		list_add_tail(&skb->list, &sublist);
5791 	}
5792 
5793 	/* dispatch final sublist */
5794 	__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5795 }
5796 
5797 static int __netif_receive_skb(struct sk_buff *skb)
5798 {
5799 	int ret;
5800 
5801 	if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5802 		unsigned int noreclaim_flag;
5803 
5804 		/*
5805 		 * PFMEMALLOC skbs are special, they should
5806 		 * - be delivered to SOCK_MEMALLOC sockets only
5807 		 * - stay away from userspace
5808 		 * - have bounded memory usage
5809 		 *
5810 		 * Use PF_MEMALLOC as this saves us from propagating the allocation
5811 		 * context down to all allocation sites.
5812 		 */
5813 		noreclaim_flag = memalloc_noreclaim_save();
5814 		ret = __netif_receive_skb_one_core(skb, true);
5815 		memalloc_noreclaim_restore(noreclaim_flag);
5816 	} else
5817 		ret = __netif_receive_skb_one_core(skb, false);
5818 
5819 	return ret;
5820 }
5821 
5822 static void __netif_receive_skb_list(struct list_head *head)
5823 {
5824 	unsigned long noreclaim_flag = 0;
5825 	struct sk_buff *skb, *next;
5826 	bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5827 
5828 	list_for_each_entry_safe(skb, next, head, list) {
5829 		if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5830 			struct list_head sublist;
5831 
5832 			/* Handle the previous sublist */
5833 			list_cut_before(&sublist, head, &skb->list);
5834 			if (!list_empty(&sublist))
5835 				__netif_receive_skb_list_core(&sublist, pfmemalloc);
5836 			pfmemalloc = !pfmemalloc;
5837 			/* See comments in __netif_receive_skb */
5838 			if (pfmemalloc)
5839 				noreclaim_flag = memalloc_noreclaim_save();
5840 			else
5841 				memalloc_noreclaim_restore(noreclaim_flag);
5842 		}
5843 	}
5844 	/* Handle the remaining sublist */
5845 	if (!list_empty(head))
5846 		__netif_receive_skb_list_core(head, pfmemalloc);
5847 	/* Restore pflags */
5848 	if (pfmemalloc)
5849 		memalloc_noreclaim_restore(noreclaim_flag);
5850 }
5851 
5852 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5853 {
5854 	struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5855 	struct bpf_prog *new = xdp->prog;
5856 	int ret = 0;
5857 
5858 	switch (xdp->command) {
5859 	case XDP_SETUP_PROG:
5860 		rcu_assign_pointer(dev->xdp_prog, new);
5861 		if (old)
5862 			bpf_prog_put(old);
5863 
5864 		if (old && !new) {
5865 			static_branch_dec(&generic_xdp_needed_key);
5866 		} else if (new && !old) {
5867 			static_branch_inc(&generic_xdp_needed_key);
5868 			dev_disable_lro(dev);
5869 			dev_disable_gro_hw(dev);
5870 		}
5871 		break;
5872 
5873 	default:
5874 		ret = -EINVAL;
5875 		break;
5876 	}
5877 
5878 	return ret;
5879 }
5880 
5881 static int netif_receive_skb_internal(struct sk_buff *skb)
5882 {
5883 	int ret;
5884 
5885 	net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue), skb);
5886 
5887 	if (skb_defer_rx_timestamp(skb))
5888 		return NET_RX_SUCCESS;
5889 
5890 	rcu_read_lock();
5891 #ifdef CONFIG_RPS
5892 	if (static_branch_unlikely(&rps_needed)) {
5893 		struct rps_dev_flow voidflow, *rflow = &voidflow;
5894 		int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5895 
5896 		if (cpu >= 0) {
5897 			ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5898 			rcu_read_unlock();
5899 			return ret;
5900 		}
5901 	}
5902 #endif
5903 	ret = __netif_receive_skb(skb);
5904 	rcu_read_unlock();
5905 	return ret;
5906 }
5907 
5908 void netif_receive_skb_list_internal(struct list_head *head)
5909 {
5910 	struct sk_buff *skb, *next;
5911 	LIST_HEAD(sublist);
5912 
5913 	list_for_each_entry_safe(skb, next, head, list) {
5914 		net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue),
5915 				    skb);
5916 		skb_list_del_init(skb);
5917 		if (!skb_defer_rx_timestamp(skb))
5918 			list_add_tail(&skb->list, &sublist);
5919 	}
5920 	list_splice_init(&sublist, head);
5921 
5922 	rcu_read_lock();
5923 #ifdef CONFIG_RPS
5924 	if (static_branch_unlikely(&rps_needed)) {
5925 		list_for_each_entry_safe(skb, next, head, list) {
5926 			struct rps_dev_flow voidflow, *rflow = &voidflow;
5927 			int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5928 
5929 			if (cpu >= 0) {
5930 				/* Will be handled, remove from list */
5931 				skb_list_del_init(skb);
5932 				enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5933 			}
5934 		}
5935 	}
5936 #endif
5937 	__netif_receive_skb_list(head);
5938 	rcu_read_unlock();
5939 }
5940 
5941 /**
5942  *	netif_receive_skb - process receive buffer from network
5943  *	@skb: buffer to process
5944  *
5945  *	netif_receive_skb() is the main receive data processing function.
5946  *	It always succeeds. The buffer may be dropped during processing
5947  *	for congestion control or by the protocol layers.
5948  *
5949  *	This function may only be called from softirq context and interrupts
5950  *	should be enabled.
5951  *
5952  *	Return values (usually ignored):
5953  *	NET_RX_SUCCESS: no congestion
5954  *	NET_RX_DROP: packet was dropped
5955  */
5956 int netif_receive_skb(struct sk_buff *skb)
5957 {
5958 	int ret;
5959 
5960 	trace_netif_receive_skb_entry(skb);
5961 
5962 	ret = netif_receive_skb_internal(skb);
5963 	trace_netif_receive_skb_exit(ret);
5964 
5965 	return ret;
5966 }
5967 EXPORT_SYMBOL(netif_receive_skb);
5968 
5969 /**
5970  *	netif_receive_skb_list - process many receive buffers from network
5971  *	@head: list of skbs to process.
5972  *
5973  *	Since return value of netif_receive_skb() is normally ignored, and
5974  *	wouldn't be meaningful for a list, this function returns void.
5975  *
5976  *	This function may only be called from softirq context and interrupts
5977  *	should be enabled.
5978  */
5979 void netif_receive_skb_list(struct list_head *head)
5980 {
5981 	struct sk_buff *skb;
5982 
5983 	if (list_empty(head))
5984 		return;
5985 	if (trace_netif_receive_skb_list_entry_enabled()) {
5986 		list_for_each_entry(skb, head, list)
5987 			trace_netif_receive_skb_list_entry(skb);
5988 	}
5989 	netif_receive_skb_list_internal(head);
5990 	trace_netif_receive_skb_list_exit(0);
5991 }
5992 EXPORT_SYMBOL(netif_receive_skb_list);
5993 
5994 static DEFINE_PER_CPU(struct work_struct, flush_works);
5995 
5996 /* Network device is going away, flush any packets still pending */
5997 static void flush_backlog(struct work_struct *work)
5998 {
5999 	struct sk_buff *skb, *tmp;
6000 	struct softnet_data *sd;
6001 
6002 	local_bh_disable();
6003 	sd = this_cpu_ptr(&softnet_data);
6004 
6005 	backlog_lock_irq_disable(sd);
6006 	skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
6007 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
6008 			__skb_unlink(skb, &sd->input_pkt_queue);
6009 			dev_kfree_skb_irq(skb);
6010 			rps_input_queue_head_incr(sd);
6011 		}
6012 	}
6013 	backlog_unlock_irq_enable(sd);
6014 
6015 	local_lock_nested_bh(&softnet_data.process_queue_bh_lock);
6016 	skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
6017 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
6018 			__skb_unlink(skb, &sd->process_queue);
6019 			kfree_skb(skb);
6020 			rps_input_queue_head_incr(sd);
6021 		}
6022 	}
6023 	local_unlock_nested_bh(&softnet_data.process_queue_bh_lock);
6024 	local_bh_enable();
6025 }
6026 
6027 static bool flush_required(int cpu)
6028 {
6029 #if IS_ENABLED(CONFIG_RPS)
6030 	struct softnet_data *sd = &per_cpu(softnet_data, cpu);
6031 	bool do_flush;
6032 
6033 	backlog_lock_irq_disable(sd);
6034 
6035 	/* as insertion into process_queue happens with the rps lock held,
6036 	 * process_queue access may race only with dequeue
6037 	 */
6038 	do_flush = !skb_queue_empty(&sd->input_pkt_queue) ||
6039 		   !skb_queue_empty_lockless(&sd->process_queue);
6040 	backlog_unlock_irq_enable(sd);
6041 
6042 	return do_flush;
6043 #endif
6044 	/* without RPS we can't safely check input_pkt_queue: during a
6045 	 * concurrent remote skb_queue_splice() we can detect as empty both
6046 	 * input_pkt_queue and process_queue even if the latter could end-up
6047 	 * containing a lot of packets.
6048 	 */
6049 	return true;
6050 }
6051 
6052 static void flush_all_backlogs(void)
6053 {
6054 	static cpumask_t flush_cpus;
6055 	unsigned int cpu;
6056 
6057 	/* since we are under rtnl lock protection we can use static data
6058 	 * for the cpumask and avoid allocating on stack the possibly
6059 	 * large mask
6060 	 */
6061 	ASSERT_RTNL();
6062 
6063 	cpus_read_lock();
6064 
6065 	cpumask_clear(&flush_cpus);
6066 	for_each_online_cpu(cpu) {
6067 		if (flush_required(cpu)) {
6068 			queue_work_on(cpu, system_highpri_wq,
6069 				      per_cpu_ptr(&flush_works, cpu));
6070 			cpumask_set_cpu(cpu, &flush_cpus);
6071 		}
6072 	}
6073 
6074 	/* we can have in flight packet[s] on the cpus we are not flushing,
6075 	 * synchronize_net() in unregister_netdevice_many() will take care of
6076 	 * them
6077 	 */
6078 	for_each_cpu(cpu, &flush_cpus)
6079 		flush_work(per_cpu_ptr(&flush_works, cpu));
6080 
6081 	cpus_read_unlock();
6082 }
6083 
6084 static void net_rps_send_ipi(struct softnet_data *remsd)
6085 {
6086 #ifdef CONFIG_RPS
6087 	while (remsd) {
6088 		struct softnet_data *next = remsd->rps_ipi_next;
6089 
6090 		if (cpu_online(remsd->cpu))
6091 			smp_call_function_single_async(remsd->cpu, &remsd->csd);
6092 		remsd = next;
6093 	}
6094 #endif
6095 }
6096 
6097 /*
6098  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
6099  * Note: called with local irq disabled, but exits with local irq enabled.
6100  */
6101 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
6102 {
6103 #ifdef CONFIG_RPS
6104 	struct softnet_data *remsd = sd->rps_ipi_list;
6105 
6106 	if (!use_backlog_threads() && remsd) {
6107 		sd->rps_ipi_list = NULL;
6108 
6109 		local_irq_enable();
6110 
6111 		/* Send pending IPI's to kick RPS processing on remote cpus. */
6112 		net_rps_send_ipi(remsd);
6113 	} else
6114 #endif
6115 		local_irq_enable();
6116 }
6117 
6118 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
6119 {
6120 #ifdef CONFIG_RPS
6121 	return !use_backlog_threads() && sd->rps_ipi_list;
6122 #else
6123 	return false;
6124 #endif
6125 }
6126 
6127 static int process_backlog(struct napi_struct *napi, int quota)
6128 {
6129 	struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
6130 	bool again = true;
6131 	int work = 0;
6132 
6133 	/* Check if we have pending ipi, its better to send them now,
6134 	 * not waiting net_rx_action() end.
6135 	 */
6136 	if (sd_has_rps_ipi_waiting(sd)) {
6137 		local_irq_disable();
6138 		net_rps_action_and_irq_enable(sd);
6139 	}
6140 
6141 	napi->weight = READ_ONCE(net_hotdata.dev_rx_weight);
6142 	while (again) {
6143 		struct sk_buff *skb;
6144 
6145 		local_lock_nested_bh(&softnet_data.process_queue_bh_lock);
6146 		while ((skb = __skb_dequeue(&sd->process_queue))) {
6147 			local_unlock_nested_bh(&softnet_data.process_queue_bh_lock);
6148 			rcu_read_lock();
6149 			__netif_receive_skb(skb);
6150 			rcu_read_unlock();
6151 			if (++work >= quota) {
6152 				rps_input_queue_head_add(sd, work);
6153 				return work;
6154 			}
6155 
6156 			local_lock_nested_bh(&softnet_data.process_queue_bh_lock);
6157 		}
6158 		local_unlock_nested_bh(&softnet_data.process_queue_bh_lock);
6159 
6160 		backlog_lock_irq_disable(sd);
6161 		if (skb_queue_empty(&sd->input_pkt_queue)) {
6162 			/*
6163 			 * Inline a custom version of __napi_complete().
6164 			 * only current cpu owns and manipulates this napi,
6165 			 * and NAPI_STATE_SCHED is the only possible flag set
6166 			 * on backlog.
6167 			 * We can use a plain write instead of clear_bit(),
6168 			 * and we dont need an smp_mb() memory barrier.
6169 			 */
6170 			napi->state &= NAPIF_STATE_THREADED;
6171 			again = false;
6172 		} else {
6173 			local_lock_nested_bh(&softnet_data.process_queue_bh_lock);
6174 			skb_queue_splice_tail_init(&sd->input_pkt_queue,
6175 						   &sd->process_queue);
6176 			local_unlock_nested_bh(&softnet_data.process_queue_bh_lock);
6177 		}
6178 		backlog_unlock_irq_enable(sd);
6179 	}
6180 
6181 	if (work)
6182 		rps_input_queue_head_add(sd, work);
6183 	return work;
6184 }
6185 
6186 /**
6187  * __napi_schedule - schedule for receive
6188  * @n: entry to schedule
6189  *
6190  * The entry's receive function will be scheduled to run.
6191  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
6192  */
6193 void __napi_schedule(struct napi_struct *n)
6194 {
6195 	unsigned long flags;
6196 
6197 	local_irq_save(flags);
6198 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
6199 	local_irq_restore(flags);
6200 }
6201 EXPORT_SYMBOL(__napi_schedule);
6202 
6203 /**
6204  *	napi_schedule_prep - check if napi can be scheduled
6205  *	@n: napi context
6206  *
6207  * Test if NAPI routine is already running, and if not mark
6208  * it as running.  This is used as a condition variable to
6209  * insure only one NAPI poll instance runs.  We also make
6210  * sure there is no pending NAPI disable.
6211  */
6212 bool napi_schedule_prep(struct napi_struct *n)
6213 {
6214 	unsigned long new, val = READ_ONCE(n->state);
6215 
6216 	do {
6217 		if (unlikely(val & NAPIF_STATE_DISABLE))
6218 			return false;
6219 		new = val | NAPIF_STATE_SCHED;
6220 
6221 		/* Sets STATE_MISSED bit if STATE_SCHED was already set
6222 		 * This was suggested by Alexander Duyck, as compiler
6223 		 * emits better code than :
6224 		 * if (val & NAPIF_STATE_SCHED)
6225 		 *     new |= NAPIF_STATE_MISSED;
6226 		 */
6227 		new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6228 						   NAPIF_STATE_MISSED;
6229 	} while (!try_cmpxchg(&n->state, &val, new));
6230 
6231 	return !(val & NAPIF_STATE_SCHED);
6232 }
6233 EXPORT_SYMBOL(napi_schedule_prep);
6234 
6235 /**
6236  * __napi_schedule_irqoff - schedule for receive
6237  * @n: entry to schedule
6238  *
6239  * Variant of __napi_schedule() assuming hard irqs are masked.
6240  *
6241  * On PREEMPT_RT enabled kernels this maps to __napi_schedule()
6242  * because the interrupt disabled assumption might not be true
6243  * due to force-threaded interrupts and spinlock substitution.
6244  */
6245 void __napi_schedule_irqoff(struct napi_struct *n)
6246 {
6247 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6248 		____napi_schedule(this_cpu_ptr(&softnet_data), n);
6249 	else
6250 		__napi_schedule(n);
6251 }
6252 EXPORT_SYMBOL(__napi_schedule_irqoff);
6253 
6254 bool napi_complete_done(struct napi_struct *n, int work_done)
6255 {
6256 	unsigned long flags, val, new, timeout = 0;
6257 	bool ret = true;
6258 
6259 	/*
6260 	 * 1) Don't let napi dequeue from the cpu poll list
6261 	 *    just in case its running on a different cpu.
6262 	 * 2) If we are busy polling, do nothing here, we have
6263 	 *    the guarantee we will be called later.
6264 	 */
6265 	if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6266 				 NAPIF_STATE_IN_BUSY_POLL)))
6267 		return false;
6268 
6269 	if (work_done) {
6270 		if (n->gro_bitmask)
6271 			timeout = napi_get_gro_flush_timeout(n);
6272 		n->defer_hard_irqs_count = napi_get_defer_hard_irqs(n);
6273 	}
6274 	if (n->defer_hard_irqs_count > 0) {
6275 		n->defer_hard_irqs_count--;
6276 		timeout = napi_get_gro_flush_timeout(n);
6277 		if (timeout)
6278 			ret = false;
6279 	}
6280 	if (n->gro_bitmask) {
6281 		/* When the NAPI instance uses a timeout and keeps postponing
6282 		 * it, we need to bound somehow the time packets are kept in
6283 		 * the GRO layer
6284 		 */
6285 		napi_gro_flush(n, !!timeout);
6286 	}
6287 
6288 	gro_normal_list(n);
6289 
6290 	if (unlikely(!list_empty(&n->poll_list))) {
6291 		/* If n->poll_list is not empty, we need to mask irqs */
6292 		local_irq_save(flags);
6293 		list_del_init(&n->poll_list);
6294 		local_irq_restore(flags);
6295 	}
6296 	WRITE_ONCE(n->list_owner, -1);
6297 
6298 	val = READ_ONCE(n->state);
6299 	do {
6300 		WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6301 
6302 		new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED |
6303 			      NAPIF_STATE_SCHED_THREADED |
6304 			      NAPIF_STATE_PREFER_BUSY_POLL);
6305 
6306 		/* If STATE_MISSED was set, leave STATE_SCHED set,
6307 		 * because we will call napi->poll() one more time.
6308 		 * This C code was suggested by Alexander Duyck to help gcc.
6309 		 */
6310 		new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6311 						    NAPIF_STATE_SCHED;
6312 	} while (!try_cmpxchg(&n->state, &val, new));
6313 
6314 	if (unlikely(val & NAPIF_STATE_MISSED)) {
6315 		__napi_schedule(n);
6316 		return false;
6317 	}
6318 
6319 	if (timeout)
6320 		hrtimer_start(&n->timer, ns_to_ktime(timeout),
6321 			      HRTIMER_MODE_REL_PINNED);
6322 	return ret;
6323 }
6324 EXPORT_SYMBOL(napi_complete_done);
6325 
6326 static void skb_defer_free_flush(struct softnet_data *sd)
6327 {
6328 	struct sk_buff *skb, *next;
6329 
6330 	/* Paired with WRITE_ONCE() in skb_attempt_defer_free() */
6331 	if (!READ_ONCE(sd->defer_list))
6332 		return;
6333 
6334 	spin_lock(&sd->defer_lock);
6335 	skb = sd->defer_list;
6336 	sd->defer_list = NULL;
6337 	sd->defer_count = 0;
6338 	spin_unlock(&sd->defer_lock);
6339 
6340 	while (skb != NULL) {
6341 		next = skb->next;
6342 		napi_consume_skb(skb, 1);
6343 		skb = next;
6344 	}
6345 }
6346 
6347 #if defined(CONFIG_NET_RX_BUSY_POLL)
6348 
6349 static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule)
6350 {
6351 	if (!skip_schedule) {
6352 		gro_normal_list(napi);
6353 		__napi_schedule(napi);
6354 		return;
6355 	}
6356 
6357 	if (napi->gro_bitmask) {
6358 		/* flush too old packets
6359 		 * If HZ < 1000, flush all packets.
6360 		 */
6361 		napi_gro_flush(napi, HZ >= 1000);
6362 	}
6363 
6364 	gro_normal_list(napi);
6365 	clear_bit(NAPI_STATE_SCHED, &napi->state);
6366 }
6367 
6368 enum {
6369 	NAPI_F_PREFER_BUSY_POLL	= 1,
6370 	NAPI_F_END_ON_RESCHED	= 2,
6371 };
6372 
6373 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock,
6374 			   unsigned flags, u16 budget)
6375 {
6376 	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
6377 	bool skip_schedule = false;
6378 	unsigned long timeout;
6379 	int rc;
6380 
6381 	/* Busy polling means there is a high chance device driver hard irq
6382 	 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6383 	 * set in napi_schedule_prep().
6384 	 * Since we are about to call napi->poll() once more, we can safely
6385 	 * clear NAPI_STATE_MISSED.
6386 	 *
6387 	 * Note: x86 could use a single "lock and ..." instruction
6388 	 * to perform these two clear_bit()
6389 	 */
6390 	clear_bit(NAPI_STATE_MISSED, &napi->state);
6391 	clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6392 
6393 	local_bh_disable();
6394 	bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
6395 
6396 	if (flags & NAPI_F_PREFER_BUSY_POLL) {
6397 		napi->defer_hard_irqs_count = napi_get_defer_hard_irqs(napi);
6398 		timeout = napi_get_gro_flush_timeout(napi);
6399 		if (napi->defer_hard_irqs_count && timeout) {
6400 			hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED);
6401 			skip_schedule = true;
6402 		}
6403 	}
6404 
6405 	/* All we really want here is to re-enable device interrupts.
6406 	 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6407 	 */
6408 	rc = napi->poll(napi, budget);
6409 	/* We can't gro_normal_list() here, because napi->poll() might have
6410 	 * rearmed the napi (napi_complete_done()) in which case it could
6411 	 * already be running on another CPU.
6412 	 */
6413 	trace_napi_poll(napi, rc, budget);
6414 	netpoll_poll_unlock(have_poll_lock);
6415 	if (rc == budget)
6416 		__busy_poll_stop(napi, skip_schedule);
6417 	bpf_net_ctx_clear(bpf_net_ctx);
6418 	local_bh_enable();
6419 }
6420 
6421 static void __napi_busy_loop(unsigned int napi_id,
6422 		      bool (*loop_end)(void *, unsigned long),
6423 		      void *loop_end_arg, unsigned flags, u16 budget)
6424 {
6425 	unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6426 	int (*napi_poll)(struct napi_struct *napi, int budget);
6427 	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
6428 	void *have_poll_lock = NULL;
6429 	struct napi_struct *napi;
6430 
6431 	WARN_ON_ONCE(!rcu_read_lock_held());
6432 
6433 restart:
6434 	napi_poll = NULL;
6435 
6436 	napi = napi_by_id(napi_id);
6437 	if (!napi)
6438 		return;
6439 
6440 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6441 		preempt_disable();
6442 	for (;;) {
6443 		int work = 0;
6444 
6445 		local_bh_disable();
6446 		bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
6447 		if (!napi_poll) {
6448 			unsigned long val = READ_ONCE(napi->state);
6449 
6450 			/* If multiple threads are competing for this napi,
6451 			 * we avoid dirtying napi->state as much as we can.
6452 			 */
6453 			if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6454 				   NAPIF_STATE_IN_BUSY_POLL)) {
6455 				if (flags & NAPI_F_PREFER_BUSY_POLL)
6456 					set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6457 				goto count;
6458 			}
6459 			if (cmpxchg(&napi->state, val,
6460 				    val | NAPIF_STATE_IN_BUSY_POLL |
6461 					  NAPIF_STATE_SCHED) != val) {
6462 				if (flags & NAPI_F_PREFER_BUSY_POLL)
6463 					set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6464 				goto count;
6465 			}
6466 			have_poll_lock = netpoll_poll_lock(napi);
6467 			napi_poll = napi->poll;
6468 		}
6469 		work = napi_poll(napi, budget);
6470 		trace_napi_poll(napi, work, budget);
6471 		gro_normal_list(napi);
6472 count:
6473 		if (work > 0)
6474 			__NET_ADD_STATS(dev_net(napi->dev),
6475 					LINUX_MIB_BUSYPOLLRXPACKETS, work);
6476 		skb_defer_free_flush(this_cpu_ptr(&softnet_data));
6477 		bpf_net_ctx_clear(bpf_net_ctx);
6478 		local_bh_enable();
6479 
6480 		if (!loop_end || loop_end(loop_end_arg, start_time))
6481 			break;
6482 
6483 		if (unlikely(need_resched())) {
6484 			if (flags & NAPI_F_END_ON_RESCHED)
6485 				break;
6486 			if (napi_poll)
6487 				busy_poll_stop(napi, have_poll_lock, flags, budget);
6488 			if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6489 				preempt_enable();
6490 			rcu_read_unlock();
6491 			cond_resched();
6492 			rcu_read_lock();
6493 			if (loop_end(loop_end_arg, start_time))
6494 				return;
6495 			goto restart;
6496 		}
6497 		cpu_relax();
6498 	}
6499 	if (napi_poll)
6500 		busy_poll_stop(napi, have_poll_lock, flags, budget);
6501 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6502 		preempt_enable();
6503 }
6504 
6505 void napi_busy_loop_rcu(unsigned int napi_id,
6506 			bool (*loop_end)(void *, unsigned long),
6507 			void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6508 {
6509 	unsigned flags = NAPI_F_END_ON_RESCHED;
6510 
6511 	if (prefer_busy_poll)
6512 		flags |= NAPI_F_PREFER_BUSY_POLL;
6513 
6514 	__napi_busy_loop(napi_id, loop_end, loop_end_arg, flags, budget);
6515 }
6516 
6517 void napi_busy_loop(unsigned int napi_id,
6518 		    bool (*loop_end)(void *, unsigned long),
6519 		    void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6520 {
6521 	unsigned flags = prefer_busy_poll ? NAPI_F_PREFER_BUSY_POLL : 0;
6522 
6523 	rcu_read_lock();
6524 	__napi_busy_loop(napi_id, loop_end, loop_end_arg, flags, budget);
6525 	rcu_read_unlock();
6526 }
6527 EXPORT_SYMBOL(napi_busy_loop);
6528 
6529 void napi_suspend_irqs(unsigned int napi_id)
6530 {
6531 	struct napi_struct *napi;
6532 
6533 	rcu_read_lock();
6534 	napi = napi_by_id(napi_id);
6535 	if (napi) {
6536 		unsigned long timeout = napi_get_irq_suspend_timeout(napi);
6537 
6538 		if (timeout)
6539 			hrtimer_start(&napi->timer, ns_to_ktime(timeout),
6540 				      HRTIMER_MODE_REL_PINNED);
6541 	}
6542 	rcu_read_unlock();
6543 }
6544 
6545 void napi_resume_irqs(unsigned int napi_id)
6546 {
6547 	struct napi_struct *napi;
6548 
6549 	rcu_read_lock();
6550 	napi = napi_by_id(napi_id);
6551 	if (napi) {
6552 		/* If irq_suspend_timeout is set to 0 between the call to
6553 		 * napi_suspend_irqs and now, the original value still
6554 		 * determines the safety timeout as intended and napi_watchdog
6555 		 * will resume irq processing.
6556 		 */
6557 		if (napi_get_irq_suspend_timeout(napi)) {
6558 			local_bh_disable();
6559 			napi_schedule(napi);
6560 			local_bh_enable();
6561 		}
6562 	}
6563 	rcu_read_unlock();
6564 }
6565 
6566 #endif /* CONFIG_NET_RX_BUSY_POLL */
6567 
6568 static void __napi_hash_add_with_id(struct napi_struct *napi,
6569 				    unsigned int napi_id)
6570 {
6571 	napi->napi_id = napi_id;
6572 	hlist_add_head_rcu(&napi->napi_hash_node,
6573 			   &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6574 }
6575 
6576 static void napi_hash_add_with_id(struct napi_struct *napi,
6577 				  unsigned int napi_id)
6578 {
6579 	unsigned long flags;
6580 
6581 	spin_lock_irqsave(&napi_hash_lock, flags);
6582 	WARN_ON_ONCE(napi_by_id(napi_id));
6583 	__napi_hash_add_with_id(napi, napi_id);
6584 	spin_unlock_irqrestore(&napi_hash_lock, flags);
6585 }
6586 
6587 static void napi_hash_add(struct napi_struct *napi)
6588 {
6589 	unsigned long flags;
6590 
6591 	if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state))
6592 		return;
6593 
6594 	spin_lock_irqsave(&napi_hash_lock, flags);
6595 
6596 	/* 0..NR_CPUS range is reserved for sender_cpu use */
6597 	do {
6598 		if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6599 			napi_gen_id = MIN_NAPI_ID;
6600 	} while (napi_by_id(napi_gen_id));
6601 
6602 	__napi_hash_add_with_id(napi, napi_gen_id);
6603 
6604 	spin_unlock_irqrestore(&napi_hash_lock, flags);
6605 }
6606 
6607 /* Warning : caller is responsible to make sure rcu grace period
6608  * is respected before freeing memory containing @napi
6609  */
6610 static void napi_hash_del(struct napi_struct *napi)
6611 {
6612 	unsigned long flags;
6613 
6614 	spin_lock_irqsave(&napi_hash_lock, flags);
6615 
6616 	hlist_del_init_rcu(&napi->napi_hash_node);
6617 
6618 	spin_unlock_irqrestore(&napi_hash_lock, flags);
6619 }
6620 
6621 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6622 {
6623 	struct napi_struct *napi;
6624 
6625 	napi = container_of(timer, struct napi_struct, timer);
6626 
6627 	/* Note : we use a relaxed variant of napi_schedule_prep() not setting
6628 	 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6629 	 */
6630 	if (!napi_disable_pending(napi) &&
6631 	    !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) {
6632 		clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6633 		__napi_schedule_irqoff(napi);
6634 	}
6635 
6636 	return HRTIMER_NORESTART;
6637 }
6638 
6639 static void init_gro_hash(struct napi_struct *napi)
6640 {
6641 	int i;
6642 
6643 	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6644 		INIT_LIST_HEAD(&napi->gro_hash[i].list);
6645 		napi->gro_hash[i].count = 0;
6646 	}
6647 	napi->gro_bitmask = 0;
6648 }
6649 
6650 int dev_set_threaded(struct net_device *dev, bool threaded)
6651 {
6652 	struct napi_struct *napi;
6653 	int err = 0;
6654 
6655 	if (dev->threaded == threaded)
6656 		return 0;
6657 
6658 	if (threaded) {
6659 		list_for_each_entry(napi, &dev->napi_list, dev_list) {
6660 			if (!napi->thread) {
6661 				err = napi_kthread_create(napi);
6662 				if (err) {
6663 					threaded = false;
6664 					break;
6665 				}
6666 			}
6667 		}
6668 	}
6669 
6670 	WRITE_ONCE(dev->threaded, threaded);
6671 
6672 	/* Make sure kthread is created before THREADED bit
6673 	 * is set.
6674 	 */
6675 	smp_mb__before_atomic();
6676 
6677 	/* Setting/unsetting threaded mode on a napi might not immediately
6678 	 * take effect, if the current napi instance is actively being
6679 	 * polled. In this case, the switch between threaded mode and
6680 	 * softirq mode will happen in the next round of napi_schedule().
6681 	 * This should not cause hiccups/stalls to the live traffic.
6682 	 */
6683 	list_for_each_entry(napi, &dev->napi_list, dev_list)
6684 		assign_bit(NAPI_STATE_THREADED, &napi->state, threaded);
6685 
6686 	return err;
6687 }
6688 EXPORT_SYMBOL(dev_set_threaded);
6689 
6690 /**
6691  * netif_queue_set_napi - Associate queue with the napi
6692  * @dev: device to which NAPI and queue belong
6693  * @queue_index: Index of queue
6694  * @type: queue type as RX or TX
6695  * @napi: NAPI context, pass NULL to clear previously set NAPI
6696  *
6697  * Set queue with its corresponding napi context. This should be done after
6698  * registering the NAPI handler for the queue-vector and the queues have been
6699  * mapped to the corresponding interrupt vector.
6700  */
6701 void netif_queue_set_napi(struct net_device *dev, unsigned int queue_index,
6702 			  enum netdev_queue_type type, struct napi_struct *napi)
6703 {
6704 	struct netdev_rx_queue *rxq;
6705 	struct netdev_queue *txq;
6706 
6707 	if (WARN_ON_ONCE(napi && !napi->dev))
6708 		return;
6709 	if (dev->reg_state >= NETREG_REGISTERED)
6710 		ASSERT_RTNL();
6711 
6712 	switch (type) {
6713 	case NETDEV_QUEUE_TYPE_RX:
6714 		rxq = __netif_get_rx_queue(dev, queue_index);
6715 		rxq->napi = napi;
6716 		return;
6717 	case NETDEV_QUEUE_TYPE_TX:
6718 		txq = netdev_get_tx_queue(dev, queue_index);
6719 		txq->napi = napi;
6720 		return;
6721 	default:
6722 		return;
6723 	}
6724 }
6725 EXPORT_SYMBOL(netif_queue_set_napi);
6726 
6727 static void napi_restore_config(struct napi_struct *n)
6728 {
6729 	n->defer_hard_irqs = n->config->defer_hard_irqs;
6730 	n->gro_flush_timeout = n->config->gro_flush_timeout;
6731 	n->irq_suspend_timeout = n->config->irq_suspend_timeout;
6732 	/* a NAPI ID might be stored in the config, if so use it. if not, use
6733 	 * napi_hash_add to generate one for us. It will be saved to the config
6734 	 * in napi_disable.
6735 	 */
6736 	if (n->config->napi_id)
6737 		napi_hash_add_with_id(n, n->config->napi_id);
6738 	else
6739 		napi_hash_add(n);
6740 }
6741 
6742 static void napi_save_config(struct napi_struct *n)
6743 {
6744 	n->config->defer_hard_irqs = n->defer_hard_irqs;
6745 	n->config->gro_flush_timeout = n->gro_flush_timeout;
6746 	n->config->irq_suspend_timeout = n->irq_suspend_timeout;
6747 	n->config->napi_id = n->napi_id;
6748 	napi_hash_del(n);
6749 }
6750 
6751 void netif_napi_add_weight(struct net_device *dev, struct napi_struct *napi,
6752 			   int (*poll)(struct napi_struct *, int), int weight)
6753 {
6754 	if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state)))
6755 		return;
6756 
6757 	INIT_LIST_HEAD(&napi->poll_list);
6758 	INIT_HLIST_NODE(&napi->napi_hash_node);
6759 	hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6760 	napi->timer.function = napi_watchdog;
6761 	init_gro_hash(napi);
6762 	napi->skb = NULL;
6763 	INIT_LIST_HEAD(&napi->rx_list);
6764 	napi->rx_count = 0;
6765 	napi->poll = poll;
6766 	if (weight > NAPI_POLL_WEIGHT)
6767 		netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6768 				weight);
6769 	napi->weight = weight;
6770 	napi->dev = dev;
6771 #ifdef CONFIG_NETPOLL
6772 	napi->poll_owner = -1;
6773 #endif
6774 	napi->list_owner = -1;
6775 	set_bit(NAPI_STATE_SCHED, &napi->state);
6776 	set_bit(NAPI_STATE_NPSVC, &napi->state);
6777 	list_add_rcu(&napi->dev_list, &dev->napi_list);
6778 
6779 	/* default settings from sysfs are applied to all NAPIs. any per-NAPI
6780 	 * configuration will be loaded in napi_enable
6781 	 */
6782 	napi_set_defer_hard_irqs(napi, READ_ONCE(dev->napi_defer_hard_irqs));
6783 	napi_set_gro_flush_timeout(napi, READ_ONCE(dev->gro_flush_timeout));
6784 
6785 	napi_get_frags_check(napi);
6786 	/* Create kthread for this napi if dev->threaded is set.
6787 	 * Clear dev->threaded if kthread creation failed so that
6788 	 * threaded mode will not be enabled in napi_enable().
6789 	 */
6790 	if (dev->threaded && napi_kthread_create(napi))
6791 		dev->threaded = false;
6792 	netif_napi_set_irq(napi, -1);
6793 }
6794 EXPORT_SYMBOL(netif_napi_add_weight);
6795 
6796 void napi_disable(struct napi_struct *n)
6797 {
6798 	unsigned long val, new;
6799 
6800 	might_sleep();
6801 	set_bit(NAPI_STATE_DISABLE, &n->state);
6802 
6803 	val = READ_ONCE(n->state);
6804 	do {
6805 		while (val & (NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC)) {
6806 			usleep_range(20, 200);
6807 			val = READ_ONCE(n->state);
6808 		}
6809 
6810 		new = val | NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC;
6811 		new &= ~(NAPIF_STATE_THREADED | NAPIF_STATE_PREFER_BUSY_POLL);
6812 	} while (!try_cmpxchg(&n->state, &val, new));
6813 
6814 	hrtimer_cancel(&n->timer);
6815 
6816 	if (n->config)
6817 		napi_save_config(n);
6818 	else
6819 		napi_hash_del(n);
6820 
6821 	clear_bit(NAPI_STATE_DISABLE, &n->state);
6822 }
6823 EXPORT_SYMBOL(napi_disable);
6824 
6825 /**
6826  *	napi_enable - enable NAPI scheduling
6827  *	@n: NAPI context
6828  *
6829  * Resume NAPI from being scheduled on this context.
6830  * Must be paired with napi_disable.
6831  */
6832 void napi_enable(struct napi_struct *n)
6833 {
6834 	unsigned long new, val = READ_ONCE(n->state);
6835 
6836 	if (n->config)
6837 		napi_restore_config(n);
6838 	else
6839 		napi_hash_add(n);
6840 
6841 	do {
6842 		BUG_ON(!test_bit(NAPI_STATE_SCHED, &val));
6843 
6844 		new = val & ~(NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC);
6845 		if (n->dev->threaded && n->thread)
6846 			new |= NAPIF_STATE_THREADED;
6847 	} while (!try_cmpxchg(&n->state, &val, new));
6848 }
6849 EXPORT_SYMBOL(napi_enable);
6850 
6851 static void flush_gro_hash(struct napi_struct *napi)
6852 {
6853 	int i;
6854 
6855 	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6856 		struct sk_buff *skb, *n;
6857 
6858 		list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6859 			kfree_skb(skb);
6860 		napi->gro_hash[i].count = 0;
6861 	}
6862 }
6863 
6864 /* Must be called in process context */
6865 void __netif_napi_del(struct napi_struct *napi)
6866 {
6867 	if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state))
6868 		return;
6869 
6870 	if (napi->config) {
6871 		napi->index = -1;
6872 		napi->config = NULL;
6873 	}
6874 
6875 	list_del_rcu(&napi->dev_list);
6876 	napi_free_frags(napi);
6877 
6878 	flush_gro_hash(napi);
6879 	napi->gro_bitmask = 0;
6880 
6881 	if (napi->thread) {
6882 		kthread_stop(napi->thread);
6883 		napi->thread = NULL;
6884 	}
6885 }
6886 EXPORT_SYMBOL(__netif_napi_del);
6887 
6888 static int __napi_poll(struct napi_struct *n, bool *repoll)
6889 {
6890 	int work, weight;
6891 
6892 	weight = n->weight;
6893 
6894 	/* This NAPI_STATE_SCHED test is for avoiding a race
6895 	 * with netpoll's poll_napi().  Only the entity which
6896 	 * obtains the lock and sees NAPI_STATE_SCHED set will
6897 	 * actually make the ->poll() call.  Therefore we avoid
6898 	 * accidentally calling ->poll() when NAPI is not scheduled.
6899 	 */
6900 	work = 0;
6901 	if (napi_is_scheduled(n)) {
6902 		work = n->poll(n, weight);
6903 		trace_napi_poll(n, work, weight);
6904 
6905 		xdp_do_check_flushed(n);
6906 	}
6907 
6908 	if (unlikely(work > weight))
6909 		netdev_err_once(n->dev, "NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
6910 				n->poll, work, weight);
6911 
6912 	if (likely(work < weight))
6913 		return work;
6914 
6915 	/* Drivers must not modify the NAPI state if they
6916 	 * consume the entire weight.  In such cases this code
6917 	 * still "owns" the NAPI instance and therefore can
6918 	 * move the instance around on the list at-will.
6919 	 */
6920 	if (unlikely(napi_disable_pending(n))) {
6921 		napi_complete(n);
6922 		return work;
6923 	}
6924 
6925 	/* The NAPI context has more processing work, but busy-polling
6926 	 * is preferred. Exit early.
6927 	 */
6928 	if (napi_prefer_busy_poll(n)) {
6929 		if (napi_complete_done(n, work)) {
6930 			/* If timeout is not set, we need to make sure
6931 			 * that the NAPI is re-scheduled.
6932 			 */
6933 			napi_schedule(n);
6934 		}
6935 		return work;
6936 	}
6937 
6938 	if (n->gro_bitmask) {
6939 		/* flush too old packets
6940 		 * If HZ < 1000, flush all packets.
6941 		 */
6942 		napi_gro_flush(n, HZ >= 1000);
6943 	}
6944 
6945 	gro_normal_list(n);
6946 
6947 	/* Some drivers may have called napi_schedule
6948 	 * prior to exhausting their budget.
6949 	 */
6950 	if (unlikely(!list_empty(&n->poll_list))) {
6951 		pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6952 			     n->dev ? n->dev->name : "backlog");
6953 		return work;
6954 	}
6955 
6956 	*repoll = true;
6957 
6958 	return work;
6959 }
6960 
6961 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6962 {
6963 	bool do_repoll = false;
6964 	void *have;
6965 	int work;
6966 
6967 	list_del_init(&n->poll_list);
6968 
6969 	have = netpoll_poll_lock(n);
6970 
6971 	work = __napi_poll(n, &do_repoll);
6972 
6973 	if (do_repoll)
6974 		list_add_tail(&n->poll_list, repoll);
6975 
6976 	netpoll_poll_unlock(have);
6977 
6978 	return work;
6979 }
6980 
6981 static int napi_thread_wait(struct napi_struct *napi)
6982 {
6983 	set_current_state(TASK_INTERRUPTIBLE);
6984 
6985 	while (!kthread_should_stop()) {
6986 		/* Testing SCHED_THREADED bit here to make sure the current
6987 		 * kthread owns this napi and could poll on this napi.
6988 		 * Testing SCHED bit is not enough because SCHED bit might be
6989 		 * set by some other busy poll thread or by napi_disable().
6990 		 */
6991 		if (test_bit(NAPI_STATE_SCHED_THREADED, &napi->state)) {
6992 			WARN_ON(!list_empty(&napi->poll_list));
6993 			__set_current_state(TASK_RUNNING);
6994 			return 0;
6995 		}
6996 
6997 		schedule();
6998 		set_current_state(TASK_INTERRUPTIBLE);
6999 	}
7000 	__set_current_state(TASK_RUNNING);
7001 
7002 	return -1;
7003 }
7004 
7005 static void napi_threaded_poll_loop(struct napi_struct *napi)
7006 {
7007 	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
7008 	struct softnet_data *sd;
7009 	unsigned long last_qs = jiffies;
7010 
7011 	for (;;) {
7012 		bool repoll = false;
7013 		void *have;
7014 
7015 		local_bh_disable();
7016 		bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
7017 
7018 		sd = this_cpu_ptr(&softnet_data);
7019 		sd->in_napi_threaded_poll = true;
7020 
7021 		have = netpoll_poll_lock(napi);
7022 		__napi_poll(napi, &repoll);
7023 		netpoll_poll_unlock(have);
7024 
7025 		sd->in_napi_threaded_poll = false;
7026 		barrier();
7027 
7028 		if (sd_has_rps_ipi_waiting(sd)) {
7029 			local_irq_disable();
7030 			net_rps_action_and_irq_enable(sd);
7031 		}
7032 		skb_defer_free_flush(sd);
7033 		bpf_net_ctx_clear(bpf_net_ctx);
7034 		local_bh_enable();
7035 
7036 		if (!repoll)
7037 			break;
7038 
7039 		rcu_softirq_qs_periodic(last_qs);
7040 		cond_resched();
7041 	}
7042 }
7043 
7044 static int napi_threaded_poll(void *data)
7045 {
7046 	struct napi_struct *napi = data;
7047 
7048 	while (!napi_thread_wait(napi))
7049 		napi_threaded_poll_loop(napi);
7050 
7051 	return 0;
7052 }
7053 
7054 static __latent_entropy void net_rx_action(void)
7055 {
7056 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
7057 	unsigned long time_limit = jiffies +
7058 		usecs_to_jiffies(READ_ONCE(net_hotdata.netdev_budget_usecs));
7059 	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
7060 	int budget = READ_ONCE(net_hotdata.netdev_budget);
7061 	LIST_HEAD(list);
7062 	LIST_HEAD(repoll);
7063 
7064 	bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
7065 start:
7066 	sd->in_net_rx_action = true;
7067 	local_irq_disable();
7068 	list_splice_init(&sd->poll_list, &list);
7069 	local_irq_enable();
7070 
7071 	for (;;) {
7072 		struct napi_struct *n;
7073 
7074 		skb_defer_free_flush(sd);
7075 
7076 		if (list_empty(&list)) {
7077 			if (list_empty(&repoll)) {
7078 				sd->in_net_rx_action = false;
7079 				barrier();
7080 				/* We need to check if ____napi_schedule()
7081 				 * had refilled poll_list while
7082 				 * sd->in_net_rx_action was true.
7083 				 */
7084 				if (!list_empty(&sd->poll_list))
7085 					goto start;
7086 				if (!sd_has_rps_ipi_waiting(sd))
7087 					goto end;
7088 			}
7089 			break;
7090 		}
7091 
7092 		n = list_first_entry(&list, struct napi_struct, poll_list);
7093 		budget -= napi_poll(n, &repoll);
7094 
7095 		/* If softirq window is exhausted then punt.
7096 		 * Allow this to run for 2 jiffies since which will allow
7097 		 * an average latency of 1.5/HZ.
7098 		 */
7099 		if (unlikely(budget <= 0 ||
7100 			     time_after_eq(jiffies, time_limit))) {
7101 			sd->time_squeeze++;
7102 			break;
7103 		}
7104 	}
7105 
7106 	local_irq_disable();
7107 
7108 	list_splice_tail_init(&sd->poll_list, &list);
7109 	list_splice_tail(&repoll, &list);
7110 	list_splice(&list, &sd->poll_list);
7111 	if (!list_empty(&sd->poll_list))
7112 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
7113 	else
7114 		sd->in_net_rx_action = false;
7115 
7116 	net_rps_action_and_irq_enable(sd);
7117 end:
7118 	bpf_net_ctx_clear(bpf_net_ctx);
7119 }
7120 
7121 struct netdev_adjacent {
7122 	struct net_device *dev;
7123 	netdevice_tracker dev_tracker;
7124 
7125 	/* upper master flag, there can only be one master device per list */
7126 	bool master;
7127 
7128 	/* lookup ignore flag */
7129 	bool ignore;
7130 
7131 	/* counter for the number of times this device was added to us */
7132 	u16 ref_nr;
7133 
7134 	/* private field for the users */
7135 	void *private;
7136 
7137 	struct list_head list;
7138 	struct rcu_head rcu;
7139 };
7140 
7141 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
7142 						 struct list_head *adj_list)
7143 {
7144 	struct netdev_adjacent *adj;
7145 
7146 	list_for_each_entry(adj, adj_list, list) {
7147 		if (adj->dev == adj_dev)
7148 			return adj;
7149 	}
7150 	return NULL;
7151 }
7152 
7153 static int ____netdev_has_upper_dev(struct net_device *upper_dev,
7154 				    struct netdev_nested_priv *priv)
7155 {
7156 	struct net_device *dev = (struct net_device *)priv->data;
7157 
7158 	return upper_dev == dev;
7159 }
7160 
7161 /**
7162  * netdev_has_upper_dev - Check if device is linked to an upper device
7163  * @dev: device
7164  * @upper_dev: upper device to check
7165  *
7166  * Find out if a device is linked to specified upper device and return true
7167  * in case it is. Note that this checks only immediate upper device,
7168  * not through a complete stack of devices. The caller must hold the RTNL lock.
7169  */
7170 bool netdev_has_upper_dev(struct net_device *dev,
7171 			  struct net_device *upper_dev)
7172 {
7173 	struct netdev_nested_priv priv = {
7174 		.data = (void *)upper_dev,
7175 	};
7176 
7177 	ASSERT_RTNL();
7178 
7179 	return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
7180 					     &priv);
7181 }
7182 EXPORT_SYMBOL(netdev_has_upper_dev);
7183 
7184 /**
7185  * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device
7186  * @dev: device
7187  * @upper_dev: upper device to check
7188  *
7189  * Find out if a device is linked to specified upper device and return true
7190  * in case it is. Note that this checks the entire upper device chain.
7191  * The caller must hold rcu lock.
7192  */
7193 
7194 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
7195 				  struct net_device *upper_dev)
7196 {
7197 	struct netdev_nested_priv priv = {
7198 		.data = (void *)upper_dev,
7199 	};
7200 
7201 	return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
7202 					       &priv);
7203 }
7204 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
7205 
7206 /**
7207  * netdev_has_any_upper_dev - Check if device is linked to some device
7208  * @dev: device
7209  *
7210  * Find out if a device is linked to an upper device and return true in case
7211  * it is. The caller must hold the RTNL lock.
7212  */
7213 bool netdev_has_any_upper_dev(struct net_device *dev)
7214 {
7215 	ASSERT_RTNL();
7216 
7217 	return !list_empty(&dev->adj_list.upper);
7218 }
7219 EXPORT_SYMBOL(netdev_has_any_upper_dev);
7220 
7221 /**
7222  * netdev_master_upper_dev_get - Get master upper device
7223  * @dev: device
7224  *
7225  * Find a master upper device and return pointer to it or NULL in case
7226  * it's not there. The caller must hold the RTNL lock.
7227  */
7228 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
7229 {
7230 	struct netdev_adjacent *upper;
7231 
7232 	ASSERT_RTNL();
7233 
7234 	if (list_empty(&dev->adj_list.upper))
7235 		return NULL;
7236 
7237 	upper = list_first_entry(&dev->adj_list.upper,
7238 				 struct netdev_adjacent, list);
7239 	if (likely(upper->master))
7240 		return upper->dev;
7241 	return NULL;
7242 }
7243 EXPORT_SYMBOL(netdev_master_upper_dev_get);
7244 
7245 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
7246 {
7247 	struct netdev_adjacent *upper;
7248 
7249 	ASSERT_RTNL();
7250 
7251 	if (list_empty(&dev->adj_list.upper))
7252 		return NULL;
7253 
7254 	upper = list_first_entry(&dev->adj_list.upper,
7255 				 struct netdev_adjacent, list);
7256 	if (likely(upper->master) && !upper->ignore)
7257 		return upper->dev;
7258 	return NULL;
7259 }
7260 
7261 /**
7262  * netdev_has_any_lower_dev - Check if device is linked to some device
7263  * @dev: device
7264  *
7265  * Find out if a device is linked to a lower device and return true in case
7266  * it is. The caller must hold the RTNL lock.
7267  */
7268 static bool netdev_has_any_lower_dev(struct net_device *dev)
7269 {
7270 	ASSERT_RTNL();
7271 
7272 	return !list_empty(&dev->adj_list.lower);
7273 }
7274 
7275 void *netdev_adjacent_get_private(struct list_head *adj_list)
7276 {
7277 	struct netdev_adjacent *adj;
7278 
7279 	adj = list_entry(adj_list, struct netdev_adjacent, list);
7280 
7281 	return adj->private;
7282 }
7283 EXPORT_SYMBOL(netdev_adjacent_get_private);
7284 
7285 /**
7286  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
7287  * @dev: device
7288  * @iter: list_head ** of the current position
7289  *
7290  * Gets the next device from the dev's upper list, starting from iter
7291  * position. The caller must hold RCU read lock.
7292  */
7293 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
7294 						 struct list_head **iter)
7295 {
7296 	struct netdev_adjacent *upper;
7297 
7298 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7299 
7300 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7301 
7302 	if (&upper->list == &dev->adj_list.upper)
7303 		return NULL;
7304 
7305 	*iter = &upper->list;
7306 
7307 	return upper->dev;
7308 }
7309 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
7310 
7311 static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
7312 						  struct list_head **iter,
7313 						  bool *ignore)
7314 {
7315 	struct netdev_adjacent *upper;
7316 
7317 	upper = list_entry((*iter)->next, struct netdev_adjacent, list);
7318 
7319 	if (&upper->list == &dev->adj_list.upper)
7320 		return NULL;
7321 
7322 	*iter = &upper->list;
7323 	*ignore = upper->ignore;
7324 
7325 	return upper->dev;
7326 }
7327 
7328 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
7329 						    struct list_head **iter)
7330 {
7331 	struct netdev_adjacent *upper;
7332 
7333 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7334 
7335 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7336 
7337 	if (&upper->list == &dev->adj_list.upper)
7338 		return NULL;
7339 
7340 	*iter = &upper->list;
7341 
7342 	return upper->dev;
7343 }
7344 
7345 static int __netdev_walk_all_upper_dev(struct net_device *dev,
7346 				       int (*fn)(struct net_device *dev,
7347 					 struct netdev_nested_priv *priv),
7348 				       struct netdev_nested_priv *priv)
7349 {
7350 	struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7351 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7352 	int ret, cur = 0;
7353 	bool ignore;
7354 
7355 	now = dev;
7356 	iter = &dev->adj_list.upper;
7357 
7358 	while (1) {
7359 		if (now != dev) {
7360 			ret = fn(now, priv);
7361 			if (ret)
7362 				return ret;
7363 		}
7364 
7365 		next = NULL;
7366 		while (1) {
7367 			udev = __netdev_next_upper_dev(now, &iter, &ignore);
7368 			if (!udev)
7369 				break;
7370 			if (ignore)
7371 				continue;
7372 
7373 			next = udev;
7374 			niter = &udev->adj_list.upper;
7375 			dev_stack[cur] = now;
7376 			iter_stack[cur++] = iter;
7377 			break;
7378 		}
7379 
7380 		if (!next) {
7381 			if (!cur)
7382 				return 0;
7383 			next = dev_stack[--cur];
7384 			niter = iter_stack[cur];
7385 		}
7386 
7387 		now = next;
7388 		iter = niter;
7389 	}
7390 
7391 	return 0;
7392 }
7393 
7394 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
7395 				  int (*fn)(struct net_device *dev,
7396 					    struct netdev_nested_priv *priv),
7397 				  struct netdev_nested_priv *priv)
7398 {
7399 	struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7400 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7401 	int ret, cur = 0;
7402 
7403 	now = dev;
7404 	iter = &dev->adj_list.upper;
7405 
7406 	while (1) {
7407 		if (now != dev) {
7408 			ret = fn(now, priv);
7409 			if (ret)
7410 				return ret;
7411 		}
7412 
7413 		next = NULL;
7414 		while (1) {
7415 			udev = netdev_next_upper_dev_rcu(now, &iter);
7416 			if (!udev)
7417 				break;
7418 
7419 			next = udev;
7420 			niter = &udev->adj_list.upper;
7421 			dev_stack[cur] = now;
7422 			iter_stack[cur++] = iter;
7423 			break;
7424 		}
7425 
7426 		if (!next) {
7427 			if (!cur)
7428 				return 0;
7429 			next = dev_stack[--cur];
7430 			niter = iter_stack[cur];
7431 		}
7432 
7433 		now = next;
7434 		iter = niter;
7435 	}
7436 
7437 	return 0;
7438 }
7439 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
7440 
7441 static bool __netdev_has_upper_dev(struct net_device *dev,
7442 				   struct net_device *upper_dev)
7443 {
7444 	struct netdev_nested_priv priv = {
7445 		.flags = 0,
7446 		.data = (void *)upper_dev,
7447 	};
7448 
7449 	ASSERT_RTNL();
7450 
7451 	return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
7452 					   &priv);
7453 }
7454 
7455 /**
7456  * netdev_lower_get_next_private - Get the next ->private from the
7457  *				   lower neighbour list
7458  * @dev: device
7459  * @iter: list_head ** of the current position
7460  *
7461  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7462  * list, starting from iter position. The caller must hold either hold the
7463  * RTNL lock or its own locking that guarantees that the neighbour lower
7464  * list will remain unchanged.
7465  */
7466 void *netdev_lower_get_next_private(struct net_device *dev,
7467 				    struct list_head **iter)
7468 {
7469 	struct netdev_adjacent *lower;
7470 
7471 	lower = list_entry(*iter, struct netdev_adjacent, list);
7472 
7473 	if (&lower->list == &dev->adj_list.lower)
7474 		return NULL;
7475 
7476 	*iter = lower->list.next;
7477 
7478 	return lower->private;
7479 }
7480 EXPORT_SYMBOL(netdev_lower_get_next_private);
7481 
7482 /**
7483  * netdev_lower_get_next_private_rcu - Get the next ->private from the
7484  *				       lower neighbour list, RCU
7485  *				       variant
7486  * @dev: device
7487  * @iter: list_head ** of the current position
7488  *
7489  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7490  * list, starting from iter position. The caller must hold RCU read lock.
7491  */
7492 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
7493 					struct list_head **iter)
7494 {
7495 	struct netdev_adjacent *lower;
7496 
7497 	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
7498 
7499 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7500 
7501 	if (&lower->list == &dev->adj_list.lower)
7502 		return NULL;
7503 
7504 	*iter = &lower->list;
7505 
7506 	return lower->private;
7507 }
7508 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
7509 
7510 /**
7511  * netdev_lower_get_next - Get the next device from the lower neighbour
7512  *                         list
7513  * @dev: device
7514  * @iter: list_head ** of the current position
7515  *
7516  * Gets the next netdev_adjacent from the dev's lower neighbour
7517  * list, starting from iter position. The caller must hold RTNL lock or
7518  * its own locking that guarantees that the neighbour lower
7519  * list will remain unchanged.
7520  */
7521 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
7522 {
7523 	struct netdev_adjacent *lower;
7524 
7525 	lower = list_entry(*iter, struct netdev_adjacent, list);
7526 
7527 	if (&lower->list == &dev->adj_list.lower)
7528 		return NULL;
7529 
7530 	*iter = lower->list.next;
7531 
7532 	return lower->dev;
7533 }
7534 EXPORT_SYMBOL(netdev_lower_get_next);
7535 
7536 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7537 						struct list_head **iter)
7538 {
7539 	struct netdev_adjacent *lower;
7540 
7541 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7542 
7543 	if (&lower->list == &dev->adj_list.lower)
7544 		return NULL;
7545 
7546 	*iter = &lower->list;
7547 
7548 	return lower->dev;
7549 }
7550 
7551 static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7552 						  struct list_head **iter,
7553 						  bool *ignore)
7554 {
7555 	struct netdev_adjacent *lower;
7556 
7557 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7558 
7559 	if (&lower->list == &dev->adj_list.lower)
7560 		return NULL;
7561 
7562 	*iter = &lower->list;
7563 	*ignore = lower->ignore;
7564 
7565 	return lower->dev;
7566 }
7567 
7568 int netdev_walk_all_lower_dev(struct net_device *dev,
7569 			      int (*fn)(struct net_device *dev,
7570 					struct netdev_nested_priv *priv),
7571 			      struct netdev_nested_priv *priv)
7572 {
7573 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7574 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7575 	int ret, cur = 0;
7576 
7577 	now = dev;
7578 	iter = &dev->adj_list.lower;
7579 
7580 	while (1) {
7581 		if (now != dev) {
7582 			ret = fn(now, priv);
7583 			if (ret)
7584 				return ret;
7585 		}
7586 
7587 		next = NULL;
7588 		while (1) {
7589 			ldev = netdev_next_lower_dev(now, &iter);
7590 			if (!ldev)
7591 				break;
7592 
7593 			next = ldev;
7594 			niter = &ldev->adj_list.lower;
7595 			dev_stack[cur] = now;
7596 			iter_stack[cur++] = iter;
7597 			break;
7598 		}
7599 
7600 		if (!next) {
7601 			if (!cur)
7602 				return 0;
7603 			next = dev_stack[--cur];
7604 			niter = iter_stack[cur];
7605 		}
7606 
7607 		now = next;
7608 		iter = niter;
7609 	}
7610 
7611 	return 0;
7612 }
7613 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
7614 
7615 static int __netdev_walk_all_lower_dev(struct net_device *dev,
7616 				       int (*fn)(struct net_device *dev,
7617 					 struct netdev_nested_priv *priv),
7618 				       struct netdev_nested_priv *priv)
7619 {
7620 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7621 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7622 	int ret, cur = 0;
7623 	bool ignore;
7624 
7625 	now = dev;
7626 	iter = &dev->adj_list.lower;
7627 
7628 	while (1) {
7629 		if (now != dev) {
7630 			ret = fn(now, priv);
7631 			if (ret)
7632 				return ret;
7633 		}
7634 
7635 		next = NULL;
7636 		while (1) {
7637 			ldev = __netdev_next_lower_dev(now, &iter, &ignore);
7638 			if (!ldev)
7639 				break;
7640 			if (ignore)
7641 				continue;
7642 
7643 			next = ldev;
7644 			niter = &ldev->adj_list.lower;
7645 			dev_stack[cur] = now;
7646 			iter_stack[cur++] = iter;
7647 			break;
7648 		}
7649 
7650 		if (!next) {
7651 			if (!cur)
7652 				return 0;
7653 			next = dev_stack[--cur];
7654 			niter = iter_stack[cur];
7655 		}
7656 
7657 		now = next;
7658 		iter = niter;
7659 	}
7660 
7661 	return 0;
7662 }
7663 
7664 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
7665 					     struct list_head **iter)
7666 {
7667 	struct netdev_adjacent *lower;
7668 
7669 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7670 	if (&lower->list == &dev->adj_list.lower)
7671 		return NULL;
7672 
7673 	*iter = &lower->list;
7674 
7675 	return lower->dev;
7676 }
7677 EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
7678 
7679 static u8 __netdev_upper_depth(struct net_device *dev)
7680 {
7681 	struct net_device *udev;
7682 	struct list_head *iter;
7683 	u8 max_depth = 0;
7684 	bool ignore;
7685 
7686 	for (iter = &dev->adj_list.upper,
7687 	     udev = __netdev_next_upper_dev(dev, &iter, &ignore);
7688 	     udev;
7689 	     udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
7690 		if (ignore)
7691 			continue;
7692 		if (max_depth < udev->upper_level)
7693 			max_depth = udev->upper_level;
7694 	}
7695 
7696 	return max_depth;
7697 }
7698 
7699 static u8 __netdev_lower_depth(struct net_device *dev)
7700 {
7701 	struct net_device *ldev;
7702 	struct list_head *iter;
7703 	u8 max_depth = 0;
7704 	bool ignore;
7705 
7706 	for (iter = &dev->adj_list.lower,
7707 	     ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
7708 	     ldev;
7709 	     ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
7710 		if (ignore)
7711 			continue;
7712 		if (max_depth < ldev->lower_level)
7713 			max_depth = ldev->lower_level;
7714 	}
7715 
7716 	return max_depth;
7717 }
7718 
7719 static int __netdev_update_upper_level(struct net_device *dev,
7720 				       struct netdev_nested_priv *__unused)
7721 {
7722 	dev->upper_level = __netdev_upper_depth(dev) + 1;
7723 	return 0;
7724 }
7725 
7726 #ifdef CONFIG_LOCKDEP
7727 static LIST_HEAD(net_unlink_list);
7728 
7729 static void net_unlink_todo(struct net_device *dev)
7730 {
7731 	if (list_empty(&dev->unlink_list))
7732 		list_add_tail(&dev->unlink_list, &net_unlink_list);
7733 }
7734 #endif
7735 
7736 static int __netdev_update_lower_level(struct net_device *dev,
7737 				       struct netdev_nested_priv *priv)
7738 {
7739 	dev->lower_level = __netdev_lower_depth(dev) + 1;
7740 
7741 #ifdef CONFIG_LOCKDEP
7742 	if (!priv)
7743 		return 0;
7744 
7745 	if (priv->flags & NESTED_SYNC_IMM)
7746 		dev->nested_level = dev->lower_level - 1;
7747 	if (priv->flags & NESTED_SYNC_TODO)
7748 		net_unlink_todo(dev);
7749 #endif
7750 	return 0;
7751 }
7752 
7753 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7754 				  int (*fn)(struct net_device *dev,
7755 					    struct netdev_nested_priv *priv),
7756 				  struct netdev_nested_priv *priv)
7757 {
7758 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7759 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7760 	int ret, cur = 0;
7761 
7762 	now = dev;
7763 	iter = &dev->adj_list.lower;
7764 
7765 	while (1) {
7766 		if (now != dev) {
7767 			ret = fn(now, priv);
7768 			if (ret)
7769 				return ret;
7770 		}
7771 
7772 		next = NULL;
7773 		while (1) {
7774 			ldev = netdev_next_lower_dev_rcu(now, &iter);
7775 			if (!ldev)
7776 				break;
7777 
7778 			next = ldev;
7779 			niter = &ldev->adj_list.lower;
7780 			dev_stack[cur] = now;
7781 			iter_stack[cur++] = iter;
7782 			break;
7783 		}
7784 
7785 		if (!next) {
7786 			if (!cur)
7787 				return 0;
7788 			next = dev_stack[--cur];
7789 			niter = iter_stack[cur];
7790 		}
7791 
7792 		now = next;
7793 		iter = niter;
7794 	}
7795 
7796 	return 0;
7797 }
7798 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
7799 
7800 /**
7801  * netdev_lower_get_first_private_rcu - Get the first ->private from the
7802  *				       lower neighbour list, RCU
7803  *				       variant
7804  * @dev: device
7805  *
7806  * Gets the first netdev_adjacent->private from the dev's lower neighbour
7807  * list. The caller must hold RCU read lock.
7808  */
7809 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
7810 {
7811 	struct netdev_adjacent *lower;
7812 
7813 	lower = list_first_or_null_rcu(&dev->adj_list.lower,
7814 			struct netdev_adjacent, list);
7815 	if (lower)
7816 		return lower->private;
7817 	return NULL;
7818 }
7819 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
7820 
7821 /**
7822  * netdev_master_upper_dev_get_rcu - Get master upper device
7823  * @dev: device
7824  *
7825  * Find a master upper device and return pointer to it or NULL in case
7826  * it's not there. The caller must hold the RCU read lock.
7827  */
7828 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
7829 {
7830 	struct netdev_adjacent *upper;
7831 
7832 	upper = list_first_or_null_rcu(&dev->adj_list.upper,
7833 				       struct netdev_adjacent, list);
7834 	if (upper && likely(upper->master))
7835 		return upper->dev;
7836 	return NULL;
7837 }
7838 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
7839 
7840 static int netdev_adjacent_sysfs_add(struct net_device *dev,
7841 			      struct net_device *adj_dev,
7842 			      struct list_head *dev_list)
7843 {
7844 	char linkname[IFNAMSIZ+7];
7845 
7846 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
7847 		"upper_%s" : "lower_%s", adj_dev->name);
7848 	return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
7849 				 linkname);
7850 }
7851 static void netdev_adjacent_sysfs_del(struct net_device *dev,
7852 			       char *name,
7853 			       struct list_head *dev_list)
7854 {
7855 	char linkname[IFNAMSIZ+7];
7856 
7857 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
7858 		"upper_%s" : "lower_%s", name);
7859 	sysfs_remove_link(&(dev->dev.kobj), linkname);
7860 }
7861 
7862 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
7863 						 struct net_device *adj_dev,
7864 						 struct list_head *dev_list)
7865 {
7866 	return (dev_list == &dev->adj_list.upper ||
7867 		dev_list == &dev->adj_list.lower) &&
7868 		net_eq(dev_net(dev), dev_net(adj_dev));
7869 }
7870 
7871 static int __netdev_adjacent_dev_insert(struct net_device *dev,
7872 					struct net_device *adj_dev,
7873 					struct list_head *dev_list,
7874 					void *private, bool master)
7875 {
7876 	struct netdev_adjacent *adj;
7877 	int ret;
7878 
7879 	adj = __netdev_find_adj(adj_dev, dev_list);
7880 
7881 	if (adj) {
7882 		adj->ref_nr += 1;
7883 		pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7884 			 dev->name, adj_dev->name, adj->ref_nr);
7885 
7886 		return 0;
7887 	}
7888 
7889 	adj = kmalloc(sizeof(*adj), GFP_KERNEL);
7890 	if (!adj)
7891 		return -ENOMEM;
7892 
7893 	adj->dev = adj_dev;
7894 	adj->master = master;
7895 	adj->ref_nr = 1;
7896 	adj->private = private;
7897 	adj->ignore = false;
7898 	netdev_hold(adj_dev, &adj->dev_tracker, GFP_KERNEL);
7899 
7900 	pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7901 		 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
7902 
7903 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
7904 		ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
7905 		if (ret)
7906 			goto free_adj;
7907 	}
7908 
7909 	/* Ensure that master link is always the first item in list. */
7910 	if (master) {
7911 		ret = sysfs_create_link(&(dev->dev.kobj),
7912 					&(adj_dev->dev.kobj), "master");
7913 		if (ret)
7914 			goto remove_symlinks;
7915 
7916 		list_add_rcu(&adj->list, dev_list);
7917 	} else {
7918 		list_add_tail_rcu(&adj->list, dev_list);
7919 	}
7920 
7921 	return 0;
7922 
7923 remove_symlinks:
7924 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7925 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7926 free_adj:
7927 	netdev_put(adj_dev, &adj->dev_tracker);
7928 	kfree(adj);
7929 
7930 	return ret;
7931 }
7932 
7933 static void __netdev_adjacent_dev_remove(struct net_device *dev,
7934 					 struct net_device *adj_dev,
7935 					 u16 ref_nr,
7936 					 struct list_head *dev_list)
7937 {
7938 	struct netdev_adjacent *adj;
7939 
7940 	pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
7941 		 dev->name, adj_dev->name, ref_nr);
7942 
7943 	adj = __netdev_find_adj(adj_dev, dev_list);
7944 
7945 	if (!adj) {
7946 		pr_err("Adjacency does not exist for device %s from %s\n",
7947 		       dev->name, adj_dev->name);
7948 		WARN_ON(1);
7949 		return;
7950 	}
7951 
7952 	if (adj->ref_nr > ref_nr) {
7953 		pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
7954 			 dev->name, adj_dev->name, ref_nr,
7955 			 adj->ref_nr - ref_nr);
7956 		adj->ref_nr -= ref_nr;
7957 		return;
7958 	}
7959 
7960 	if (adj->master)
7961 		sysfs_remove_link(&(dev->dev.kobj), "master");
7962 
7963 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7964 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7965 
7966 	list_del_rcu(&adj->list);
7967 	pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
7968 		 adj_dev->name, dev->name, adj_dev->name);
7969 	netdev_put(adj_dev, &adj->dev_tracker);
7970 	kfree_rcu(adj, rcu);
7971 }
7972 
7973 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
7974 					    struct net_device *upper_dev,
7975 					    struct list_head *up_list,
7976 					    struct list_head *down_list,
7977 					    void *private, bool master)
7978 {
7979 	int ret;
7980 
7981 	ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
7982 					   private, master);
7983 	if (ret)
7984 		return ret;
7985 
7986 	ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
7987 					   private, false);
7988 	if (ret) {
7989 		__netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
7990 		return ret;
7991 	}
7992 
7993 	return 0;
7994 }
7995 
7996 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
7997 					       struct net_device *upper_dev,
7998 					       u16 ref_nr,
7999 					       struct list_head *up_list,
8000 					       struct list_head *down_list)
8001 {
8002 	__netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
8003 	__netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
8004 }
8005 
8006 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
8007 						struct net_device *upper_dev,
8008 						void *private, bool master)
8009 {
8010 	return __netdev_adjacent_dev_link_lists(dev, upper_dev,
8011 						&dev->adj_list.upper,
8012 						&upper_dev->adj_list.lower,
8013 						private, master);
8014 }
8015 
8016 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
8017 						   struct net_device *upper_dev)
8018 {
8019 	__netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
8020 					   &dev->adj_list.upper,
8021 					   &upper_dev->adj_list.lower);
8022 }
8023 
8024 static int __netdev_upper_dev_link(struct net_device *dev,
8025 				   struct net_device *upper_dev, bool master,
8026 				   void *upper_priv, void *upper_info,
8027 				   struct netdev_nested_priv *priv,
8028 				   struct netlink_ext_ack *extack)
8029 {
8030 	struct netdev_notifier_changeupper_info changeupper_info = {
8031 		.info = {
8032 			.dev = dev,
8033 			.extack = extack,
8034 		},
8035 		.upper_dev = upper_dev,
8036 		.master = master,
8037 		.linking = true,
8038 		.upper_info = upper_info,
8039 	};
8040 	struct net_device *master_dev;
8041 	int ret = 0;
8042 
8043 	ASSERT_RTNL();
8044 
8045 	if (dev == upper_dev)
8046 		return -EBUSY;
8047 
8048 	/* To prevent loops, check if dev is not upper device to upper_dev. */
8049 	if (__netdev_has_upper_dev(upper_dev, dev))
8050 		return -EBUSY;
8051 
8052 	if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
8053 		return -EMLINK;
8054 
8055 	if (!master) {
8056 		if (__netdev_has_upper_dev(dev, upper_dev))
8057 			return -EEXIST;
8058 	} else {
8059 		master_dev = __netdev_master_upper_dev_get(dev);
8060 		if (master_dev)
8061 			return master_dev == upper_dev ? -EEXIST : -EBUSY;
8062 	}
8063 
8064 	ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
8065 					    &changeupper_info.info);
8066 	ret = notifier_to_errno(ret);
8067 	if (ret)
8068 		return ret;
8069 
8070 	ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
8071 						   master);
8072 	if (ret)
8073 		return ret;
8074 
8075 	ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
8076 					    &changeupper_info.info);
8077 	ret = notifier_to_errno(ret);
8078 	if (ret)
8079 		goto rollback;
8080 
8081 	__netdev_update_upper_level(dev, NULL);
8082 	__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
8083 
8084 	__netdev_update_lower_level(upper_dev, priv);
8085 	__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
8086 				    priv);
8087 
8088 	return 0;
8089 
8090 rollback:
8091 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
8092 
8093 	return ret;
8094 }
8095 
8096 /**
8097  * netdev_upper_dev_link - Add a link to the upper device
8098  * @dev: device
8099  * @upper_dev: new upper device
8100  * @extack: netlink extended ack
8101  *
8102  * Adds a link to device which is upper to this one. The caller must hold
8103  * the RTNL lock. On a failure a negative errno code is returned.
8104  * On success the reference counts are adjusted and the function
8105  * returns zero.
8106  */
8107 int netdev_upper_dev_link(struct net_device *dev,
8108 			  struct net_device *upper_dev,
8109 			  struct netlink_ext_ack *extack)
8110 {
8111 	struct netdev_nested_priv priv = {
8112 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8113 		.data = NULL,
8114 	};
8115 
8116 	return __netdev_upper_dev_link(dev, upper_dev, false,
8117 				       NULL, NULL, &priv, extack);
8118 }
8119 EXPORT_SYMBOL(netdev_upper_dev_link);
8120 
8121 /**
8122  * netdev_master_upper_dev_link - Add a master link to the upper device
8123  * @dev: device
8124  * @upper_dev: new upper device
8125  * @upper_priv: upper device private
8126  * @upper_info: upper info to be passed down via notifier
8127  * @extack: netlink extended ack
8128  *
8129  * Adds a link to device which is upper to this one. In this case, only
8130  * one master upper device can be linked, although other non-master devices
8131  * might be linked as well. The caller must hold the RTNL lock.
8132  * On a failure a negative errno code is returned. On success the reference
8133  * counts are adjusted and the function returns zero.
8134  */
8135 int netdev_master_upper_dev_link(struct net_device *dev,
8136 				 struct net_device *upper_dev,
8137 				 void *upper_priv, void *upper_info,
8138 				 struct netlink_ext_ack *extack)
8139 {
8140 	struct netdev_nested_priv priv = {
8141 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8142 		.data = NULL,
8143 	};
8144 
8145 	return __netdev_upper_dev_link(dev, upper_dev, true,
8146 				       upper_priv, upper_info, &priv, extack);
8147 }
8148 EXPORT_SYMBOL(netdev_master_upper_dev_link);
8149 
8150 static void __netdev_upper_dev_unlink(struct net_device *dev,
8151 				      struct net_device *upper_dev,
8152 				      struct netdev_nested_priv *priv)
8153 {
8154 	struct netdev_notifier_changeupper_info changeupper_info = {
8155 		.info = {
8156 			.dev = dev,
8157 		},
8158 		.upper_dev = upper_dev,
8159 		.linking = false,
8160 	};
8161 
8162 	ASSERT_RTNL();
8163 
8164 	changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
8165 
8166 	call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
8167 				      &changeupper_info.info);
8168 
8169 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
8170 
8171 	call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
8172 				      &changeupper_info.info);
8173 
8174 	__netdev_update_upper_level(dev, NULL);
8175 	__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
8176 
8177 	__netdev_update_lower_level(upper_dev, priv);
8178 	__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
8179 				    priv);
8180 }
8181 
8182 /**
8183  * netdev_upper_dev_unlink - Removes a link to upper device
8184  * @dev: device
8185  * @upper_dev: new upper device
8186  *
8187  * Removes a link to device which is upper to this one. The caller must hold
8188  * the RTNL lock.
8189  */
8190 void netdev_upper_dev_unlink(struct net_device *dev,
8191 			     struct net_device *upper_dev)
8192 {
8193 	struct netdev_nested_priv priv = {
8194 		.flags = NESTED_SYNC_TODO,
8195 		.data = NULL,
8196 	};
8197 
8198 	__netdev_upper_dev_unlink(dev, upper_dev, &priv);
8199 }
8200 EXPORT_SYMBOL(netdev_upper_dev_unlink);
8201 
8202 static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
8203 				      struct net_device *lower_dev,
8204 				      bool val)
8205 {
8206 	struct netdev_adjacent *adj;
8207 
8208 	adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
8209 	if (adj)
8210 		adj->ignore = val;
8211 
8212 	adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
8213 	if (adj)
8214 		adj->ignore = val;
8215 }
8216 
8217 static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
8218 					struct net_device *lower_dev)
8219 {
8220 	__netdev_adjacent_dev_set(upper_dev, lower_dev, true);
8221 }
8222 
8223 static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
8224 				       struct net_device *lower_dev)
8225 {
8226 	__netdev_adjacent_dev_set(upper_dev, lower_dev, false);
8227 }
8228 
8229 int netdev_adjacent_change_prepare(struct net_device *old_dev,
8230 				   struct net_device *new_dev,
8231 				   struct net_device *dev,
8232 				   struct netlink_ext_ack *extack)
8233 {
8234 	struct netdev_nested_priv priv = {
8235 		.flags = 0,
8236 		.data = NULL,
8237 	};
8238 	int err;
8239 
8240 	if (!new_dev)
8241 		return 0;
8242 
8243 	if (old_dev && new_dev != old_dev)
8244 		netdev_adjacent_dev_disable(dev, old_dev);
8245 	err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv,
8246 				      extack);
8247 	if (err) {
8248 		if (old_dev && new_dev != old_dev)
8249 			netdev_adjacent_dev_enable(dev, old_dev);
8250 		return err;
8251 	}
8252 
8253 	return 0;
8254 }
8255 EXPORT_SYMBOL(netdev_adjacent_change_prepare);
8256 
8257 void netdev_adjacent_change_commit(struct net_device *old_dev,
8258 				   struct net_device *new_dev,
8259 				   struct net_device *dev)
8260 {
8261 	struct netdev_nested_priv priv = {
8262 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8263 		.data = NULL,
8264 	};
8265 
8266 	if (!new_dev || !old_dev)
8267 		return;
8268 
8269 	if (new_dev == old_dev)
8270 		return;
8271 
8272 	netdev_adjacent_dev_enable(dev, old_dev);
8273 	__netdev_upper_dev_unlink(old_dev, dev, &priv);
8274 }
8275 EXPORT_SYMBOL(netdev_adjacent_change_commit);
8276 
8277 void netdev_adjacent_change_abort(struct net_device *old_dev,
8278 				  struct net_device *new_dev,
8279 				  struct net_device *dev)
8280 {
8281 	struct netdev_nested_priv priv = {
8282 		.flags = 0,
8283 		.data = NULL,
8284 	};
8285 
8286 	if (!new_dev)
8287 		return;
8288 
8289 	if (old_dev && new_dev != old_dev)
8290 		netdev_adjacent_dev_enable(dev, old_dev);
8291 
8292 	__netdev_upper_dev_unlink(new_dev, dev, &priv);
8293 }
8294 EXPORT_SYMBOL(netdev_adjacent_change_abort);
8295 
8296 /**
8297  * netdev_bonding_info_change - Dispatch event about slave change
8298  * @dev: device
8299  * @bonding_info: info to dispatch
8300  *
8301  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
8302  * The caller must hold the RTNL lock.
8303  */
8304 void netdev_bonding_info_change(struct net_device *dev,
8305 				struct netdev_bonding_info *bonding_info)
8306 {
8307 	struct netdev_notifier_bonding_info info = {
8308 		.info.dev = dev,
8309 	};
8310 
8311 	memcpy(&info.bonding_info, bonding_info,
8312 	       sizeof(struct netdev_bonding_info));
8313 	call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
8314 				      &info.info);
8315 }
8316 EXPORT_SYMBOL(netdev_bonding_info_change);
8317 
8318 static int netdev_offload_xstats_enable_l3(struct net_device *dev,
8319 					   struct netlink_ext_ack *extack)
8320 {
8321 	struct netdev_notifier_offload_xstats_info info = {
8322 		.info.dev = dev,
8323 		.info.extack = extack,
8324 		.type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
8325 	};
8326 	int err;
8327 	int rc;
8328 
8329 	dev->offload_xstats_l3 = kzalloc(sizeof(*dev->offload_xstats_l3),
8330 					 GFP_KERNEL);
8331 	if (!dev->offload_xstats_l3)
8332 		return -ENOMEM;
8333 
8334 	rc = call_netdevice_notifiers_info_robust(NETDEV_OFFLOAD_XSTATS_ENABLE,
8335 						  NETDEV_OFFLOAD_XSTATS_DISABLE,
8336 						  &info.info);
8337 	err = notifier_to_errno(rc);
8338 	if (err)
8339 		goto free_stats;
8340 
8341 	return 0;
8342 
8343 free_stats:
8344 	kfree(dev->offload_xstats_l3);
8345 	dev->offload_xstats_l3 = NULL;
8346 	return err;
8347 }
8348 
8349 int netdev_offload_xstats_enable(struct net_device *dev,
8350 				 enum netdev_offload_xstats_type type,
8351 				 struct netlink_ext_ack *extack)
8352 {
8353 	ASSERT_RTNL();
8354 
8355 	if (netdev_offload_xstats_enabled(dev, type))
8356 		return -EALREADY;
8357 
8358 	switch (type) {
8359 	case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8360 		return netdev_offload_xstats_enable_l3(dev, extack);
8361 	}
8362 
8363 	WARN_ON(1);
8364 	return -EINVAL;
8365 }
8366 EXPORT_SYMBOL(netdev_offload_xstats_enable);
8367 
8368 static void netdev_offload_xstats_disable_l3(struct net_device *dev)
8369 {
8370 	struct netdev_notifier_offload_xstats_info info = {
8371 		.info.dev = dev,
8372 		.type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
8373 	};
8374 
8375 	call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_DISABLE,
8376 				      &info.info);
8377 	kfree(dev->offload_xstats_l3);
8378 	dev->offload_xstats_l3 = NULL;
8379 }
8380 
8381 int netdev_offload_xstats_disable(struct net_device *dev,
8382 				  enum netdev_offload_xstats_type type)
8383 {
8384 	ASSERT_RTNL();
8385 
8386 	if (!netdev_offload_xstats_enabled(dev, type))
8387 		return -EALREADY;
8388 
8389 	switch (type) {
8390 	case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8391 		netdev_offload_xstats_disable_l3(dev);
8392 		return 0;
8393 	}
8394 
8395 	WARN_ON(1);
8396 	return -EINVAL;
8397 }
8398 EXPORT_SYMBOL(netdev_offload_xstats_disable);
8399 
8400 static void netdev_offload_xstats_disable_all(struct net_device *dev)
8401 {
8402 	netdev_offload_xstats_disable(dev, NETDEV_OFFLOAD_XSTATS_TYPE_L3);
8403 }
8404 
8405 static struct rtnl_hw_stats64 *
8406 netdev_offload_xstats_get_ptr(const struct net_device *dev,
8407 			      enum netdev_offload_xstats_type type)
8408 {
8409 	switch (type) {
8410 	case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8411 		return dev->offload_xstats_l3;
8412 	}
8413 
8414 	WARN_ON(1);
8415 	return NULL;
8416 }
8417 
8418 bool netdev_offload_xstats_enabled(const struct net_device *dev,
8419 				   enum netdev_offload_xstats_type type)
8420 {
8421 	ASSERT_RTNL();
8422 
8423 	return netdev_offload_xstats_get_ptr(dev, type);
8424 }
8425 EXPORT_SYMBOL(netdev_offload_xstats_enabled);
8426 
8427 struct netdev_notifier_offload_xstats_ru {
8428 	bool used;
8429 };
8430 
8431 struct netdev_notifier_offload_xstats_rd {
8432 	struct rtnl_hw_stats64 stats;
8433 	bool used;
8434 };
8435 
8436 static void netdev_hw_stats64_add(struct rtnl_hw_stats64 *dest,
8437 				  const struct rtnl_hw_stats64 *src)
8438 {
8439 	dest->rx_packets	  += src->rx_packets;
8440 	dest->tx_packets	  += src->tx_packets;
8441 	dest->rx_bytes		  += src->rx_bytes;
8442 	dest->tx_bytes		  += src->tx_bytes;
8443 	dest->rx_errors		  += src->rx_errors;
8444 	dest->tx_errors		  += src->tx_errors;
8445 	dest->rx_dropped	  += src->rx_dropped;
8446 	dest->tx_dropped	  += src->tx_dropped;
8447 	dest->multicast		  += src->multicast;
8448 }
8449 
8450 static int netdev_offload_xstats_get_used(struct net_device *dev,
8451 					  enum netdev_offload_xstats_type type,
8452 					  bool *p_used,
8453 					  struct netlink_ext_ack *extack)
8454 {
8455 	struct netdev_notifier_offload_xstats_ru report_used = {};
8456 	struct netdev_notifier_offload_xstats_info info = {
8457 		.info.dev = dev,
8458 		.info.extack = extack,
8459 		.type = type,
8460 		.report_used = &report_used,
8461 	};
8462 	int rc;
8463 
8464 	WARN_ON(!netdev_offload_xstats_enabled(dev, type));
8465 	rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_USED,
8466 					   &info.info);
8467 	*p_used = report_used.used;
8468 	return notifier_to_errno(rc);
8469 }
8470 
8471 static int netdev_offload_xstats_get_stats(struct net_device *dev,
8472 					   enum netdev_offload_xstats_type type,
8473 					   struct rtnl_hw_stats64 *p_stats,
8474 					   bool *p_used,
8475 					   struct netlink_ext_ack *extack)
8476 {
8477 	struct netdev_notifier_offload_xstats_rd report_delta = {};
8478 	struct netdev_notifier_offload_xstats_info info = {
8479 		.info.dev = dev,
8480 		.info.extack = extack,
8481 		.type = type,
8482 		.report_delta = &report_delta,
8483 	};
8484 	struct rtnl_hw_stats64 *stats;
8485 	int rc;
8486 
8487 	stats = netdev_offload_xstats_get_ptr(dev, type);
8488 	if (WARN_ON(!stats))
8489 		return -EINVAL;
8490 
8491 	rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_DELTA,
8492 					   &info.info);
8493 
8494 	/* Cache whatever we got, even if there was an error, otherwise the
8495 	 * successful stats retrievals would get lost.
8496 	 */
8497 	netdev_hw_stats64_add(stats, &report_delta.stats);
8498 
8499 	if (p_stats)
8500 		*p_stats = *stats;
8501 	*p_used = report_delta.used;
8502 
8503 	return notifier_to_errno(rc);
8504 }
8505 
8506 int netdev_offload_xstats_get(struct net_device *dev,
8507 			      enum netdev_offload_xstats_type type,
8508 			      struct rtnl_hw_stats64 *p_stats, bool *p_used,
8509 			      struct netlink_ext_ack *extack)
8510 {
8511 	ASSERT_RTNL();
8512 
8513 	if (p_stats)
8514 		return netdev_offload_xstats_get_stats(dev, type, p_stats,
8515 						       p_used, extack);
8516 	else
8517 		return netdev_offload_xstats_get_used(dev, type, p_used,
8518 						      extack);
8519 }
8520 EXPORT_SYMBOL(netdev_offload_xstats_get);
8521 
8522 void
8523 netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *report_delta,
8524 				   const struct rtnl_hw_stats64 *stats)
8525 {
8526 	report_delta->used = true;
8527 	netdev_hw_stats64_add(&report_delta->stats, stats);
8528 }
8529 EXPORT_SYMBOL(netdev_offload_xstats_report_delta);
8530 
8531 void
8532 netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *report_used)
8533 {
8534 	report_used->used = true;
8535 }
8536 EXPORT_SYMBOL(netdev_offload_xstats_report_used);
8537 
8538 void netdev_offload_xstats_push_delta(struct net_device *dev,
8539 				      enum netdev_offload_xstats_type type,
8540 				      const struct rtnl_hw_stats64 *p_stats)
8541 {
8542 	struct rtnl_hw_stats64 *stats;
8543 
8544 	ASSERT_RTNL();
8545 
8546 	stats = netdev_offload_xstats_get_ptr(dev, type);
8547 	if (WARN_ON(!stats))
8548 		return;
8549 
8550 	netdev_hw_stats64_add(stats, p_stats);
8551 }
8552 EXPORT_SYMBOL(netdev_offload_xstats_push_delta);
8553 
8554 /**
8555  * netdev_get_xmit_slave - Get the xmit slave of master device
8556  * @dev: device
8557  * @skb: The packet
8558  * @all_slaves: assume all the slaves are active
8559  *
8560  * The reference counters are not incremented so the caller must be
8561  * careful with locks. The caller must hold RCU lock.
8562  * %NULL is returned if no slave is found.
8563  */
8564 
8565 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
8566 					 struct sk_buff *skb,
8567 					 bool all_slaves)
8568 {
8569 	const struct net_device_ops *ops = dev->netdev_ops;
8570 
8571 	if (!ops->ndo_get_xmit_slave)
8572 		return NULL;
8573 	return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
8574 }
8575 EXPORT_SYMBOL(netdev_get_xmit_slave);
8576 
8577 static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev,
8578 						  struct sock *sk)
8579 {
8580 	const struct net_device_ops *ops = dev->netdev_ops;
8581 
8582 	if (!ops->ndo_sk_get_lower_dev)
8583 		return NULL;
8584 	return ops->ndo_sk_get_lower_dev(dev, sk);
8585 }
8586 
8587 /**
8588  * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket
8589  * @dev: device
8590  * @sk: the socket
8591  *
8592  * %NULL is returned if no lower device is found.
8593  */
8594 
8595 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
8596 					    struct sock *sk)
8597 {
8598 	struct net_device *lower;
8599 
8600 	lower = netdev_sk_get_lower_dev(dev, sk);
8601 	while (lower) {
8602 		dev = lower;
8603 		lower = netdev_sk_get_lower_dev(dev, sk);
8604 	}
8605 
8606 	return dev;
8607 }
8608 EXPORT_SYMBOL(netdev_sk_get_lowest_dev);
8609 
8610 static void netdev_adjacent_add_links(struct net_device *dev)
8611 {
8612 	struct netdev_adjacent *iter;
8613 
8614 	struct net *net = dev_net(dev);
8615 
8616 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
8617 		if (!net_eq(net, dev_net(iter->dev)))
8618 			continue;
8619 		netdev_adjacent_sysfs_add(iter->dev, dev,
8620 					  &iter->dev->adj_list.lower);
8621 		netdev_adjacent_sysfs_add(dev, iter->dev,
8622 					  &dev->adj_list.upper);
8623 	}
8624 
8625 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
8626 		if (!net_eq(net, dev_net(iter->dev)))
8627 			continue;
8628 		netdev_adjacent_sysfs_add(iter->dev, dev,
8629 					  &iter->dev->adj_list.upper);
8630 		netdev_adjacent_sysfs_add(dev, iter->dev,
8631 					  &dev->adj_list.lower);
8632 	}
8633 }
8634 
8635 static void netdev_adjacent_del_links(struct net_device *dev)
8636 {
8637 	struct netdev_adjacent *iter;
8638 
8639 	struct net *net = dev_net(dev);
8640 
8641 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
8642 		if (!net_eq(net, dev_net(iter->dev)))
8643 			continue;
8644 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
8645 					  &iter->dev->adj_list.lower);
8646 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
8647 					  &dev->adj_list.upper);
8648 	}
8649 
8650 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
8651 		if (!net_eq(net, dev_net(iter->dev)))
8652 			continue;
8653 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
8654 					  &iter->dev->adj_list.upper);
8655 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
8656 					  &dev->adj_list.lower);
8657 	}
8658 }
8659 
8660 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
8661 {
8662 	struct netdev_adjacent *iter;
8663 
8664 	struct net *net = dev_net(dev);
8665 
8666 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
8667 		if (!net_eq(net, dev_net(iter->dev)))
8668 			continue;
8669 		netdev_adjacent_sysfs_del(iter->dev, oldname,
8670 					  &iter->dev->adj_list.lower);
8671 		netdev_adjacent_sysfs_add(iter->dev, dev,
8672 					  &iter->dev->adj_list.lower);
8673 	}
8674 
8675 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
8676 		if (!net_eq(net, dev_net(iter->dev)))
8677 			continue;
8678 		netdev_adjacent_sysfs_del(iter->dev, oldname,
8679 					  &iter->dev->adj_list.upper);
8680 		netdev_adjacent_sysfs_add(iter->dev, dev,
8681 					  &iter->dev->adj_list.upper);
8682 	}
8683 }
8684 
8685 void *netdev_lower_dev_get_private(struct net_device *dev,
8686 				   struct net_device *lower_dev)
8687 {
8688 	struct netdev_adjacent *lower;
8689 
8690 	if (!lower_dev)
8691 		return NULL;
8692 	lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
8693 	if (!lower)
8694 		return NULL;
8695 
8696 	return lower->private;
8697 }
8698 EXPORT_SYMBOL(netdev_lower_dev_get_private);
8699 
8700 
8701 /**
8702  * netdev_lower_state_changed - Dispatch event about lower device state change
8703  * @lower_dev: device
8704  * @lower_state_info: state to dispatch
8705  *
8706  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
8707  * The caller must hold the RTNL lock.
8708  */
8709 void netdev_lower_state_changed(struct net_device *lower_dev,
8710 				void *lower_state_info)
8711 {
8712 	struct netdev_notifier_changelowerstate_info changelowerstate_info = {
8713 		.info.dev = lower_dev,
8714 	};
8715 
8716 	ASSERT_RTNL();
8717 	changelowerstate_info.lower_state_info = lower_state_info;
8718 	call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
8719 				      &changelowerstate_info.info);
8720 }
8721 EXPORT_SYMBOL(netdev_lower_state_changed);
8722 
8723 static void dev_change_rx_flags(struct net_device *dev, int flags)
8724 {
8725 	const struct net_device_ops *ops = dev->netdev_ops;
8726 
8727 	if (ops->ndo_change_rx_flags)
8728 		ops->ndo_change_rx_flags(dev, flags);
8729 }
8730 
8731 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
8732 {
8733 	unsigned int old_flags = dev->flags;
8734 	unsigned int promiscuity, flags;
8735 	kuid_t uid;
8736 	kgid_t gid;
8737 
8738 	ASSERT_RTNL();
8739 
8740 	promiscuity = dev->promiscuity + inc;
8741 	if (promiscuity == 0) {
8742 		/*
8743 		 * Avoid overflow.
8744 		 * If inc causes overflow, untouch promisc and return error.
8745 		 */
8746 		if (unlikely(inc > 0)) {
8747 			netdev_warn(dev, "promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n");
8748 			return -EOVERFLOW;
8749 		}
8750 		flags = old_flags & ~IFF_PROMISC;
8751 	} else {
8752 		flags = old_flags | IFF_PROMISC;
8753 	}
8754 	WRITE_ONCE(dev->promiscuity, promiscuity);
8755 	if (flags != old_flags) {
8756 		WRITE_ONCE(dev->flags, flags);
8757 		netdev_info(dev, "%s promiscuous mode\n",
8758 			    dev->flags & IFF_PROMISC ? "entered" : "left");
8759 		if (audit_enabled) {
8760 			current_uid_gid(&uid, &gid);
8761 			audit_log(audit_context(), GFP_ATOMIC,
8762 				  AUDIT_ANOM_PROMISCUOUS,
8763 				  "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
8764 				  dev->name, (dev->flags & IFF_PROMISC),
8765 				  (old_flags & IFF_PROMISC),
8766 				  from_kuid(&init_user_ns, audit_get_loginuid(current)),
8767 				  from_kuid(&init_user_ns, uid),
8768 				  from_kgid(&init_user_ns, gid),
8769 				  audit_get_sessionid(current));
8770 		}
8771 
8772 		dev_change_rx_flags(dev, IFF_PROMISC);
8773 	}
8774 	if (notify)
8775 		__dev_notify_flags(dev, old_flags, IFF_PROMISC, 0, NULL);
8776 	return 0;
8777 }
8778 
8779 /**
8780  *	dev_set_promiscuity	- update promiscuity count on a device
8781  *	@dev: device
8782  *	@inc: modifier
8783  *
8784  *	Add or remove promiscuity from a device. While the count in the device
8785  *	remains above zero the interface remains promiscuous. Once it hits zero
8786  *	the device reverts back to normal filtering operation. A negative inc
8787  *	value is used to drop promiscuity on the device.
8788  *	Return 0 if successful or a negative errno code on error.
8789  */
8790 int dev_set_promiscuity(struct net_device *dev, int inc)
8791 {
8792 	unsigned int old_flags = dev->flags;
8793 	int err;
8794 
8795 	err = __dev_set_promiscuity(dev, inc, true);
8796 	if (err < 0)
8797 		return err;
8798 	if (dev->flags != old_flags)
8799 		dev_set_rx_mode(dev);
8800 	return err;
8801 }
8802 EXPORT_SYMBOL(dev_set_promiscuity);
8803 
8804 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
8805 {
8806 	unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
8807 	unsigned int allmulti, flags;
8808 
8809 	ASSERT_RTNL();
8810 
8811 	allmulti = dev->allmulti + inc;
8812 	if (allmulti == 0) {
8813 		/*
8814 		 * Avoid overflow.
8815 		 * If inc causes overflow, untouch allmulti and return error.
8816 		 */
8817 		if (unlikely(inc > 0)) {
8818 			netdev_warn(dev, "allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n");
8819 			return -EOVERFLOW;
8820 		}
8821 		flags = old_flags & ~IFF_ALLMULTI;
8822 	} else {
8823 		flags = old_flags | IFF_ALLMULTI;
8824 	}
8825 	WRITE_ONCE(dev->allmulti, allmulti);
8826 	if (flags != old_flags) {
8827 		WRITE_ONCE(dev->flags, flags);
8828 		netdev_info(dev, "%s allmulticast mode\n",
8829 			    dev->flags & IFF_ALLMULTI ? "entered" : "left");
8830 		dev_change_rx_flags(dev, IFF_ALLMULTI);
8831 		dev_set_rx_mode(dev);
8832 		if (notify)
8833 			__dev_notify_flags(dev, old_flags,
8834 					   dev->gflags ^ old_gflags, 0, NULL);
8835 	}
8836 	return 0;
8837 }
8838 
8839 /**
8840  *	dev_set_allmulti	- update allmulti count on a device
8841  *	@dev: device
8842  *	@inc: modifier
8843  *
8844  *	Add or remove reception of all multicast frames to a device. While the
8845  *	count in the device remains above zero the interface remains listening
8846  *	to all interfaces. Once it hits zero the device reverts back to normal
8847  *	filtering operation. A negative @inc value is used to drop the counter
8848  *	when releasing a resource needing all multicasts.
8849  *	Return 0 if successful or a negative errno code on error.
8850  */
8851 
8852 int dev_set_allmulti(struct net_device *dev, int inc)
8853 {
8854 	return __dev_set_allmulti(dev, inc, true);
8855 }
8856 EXPORT_SYMBOL(dev_set_allmulti);
8857 
8858 /*
8859  *	Upload unicast and multicast address lists to device and
8860  *	configure RX filtering. When the device doesn't support unicast
8861  *	filtering it is put in promiscuous mode while unicast addresses
8862  *	are present.
8863  */
8864 void __dev_set_rx_mode(struct net_device *dev)
8865 {
8866 	const struct net_device_ops *ops = dev->netdev_ops;
8867 
8868 	/* dev_open will call this function so the list will stay sane. */
8869 	if (!(dev->flags&IFF_UP))
8870 		return;
8871 
8872 	if (!netif_device_present(dev))
8873 		return;
8874 
8875 	if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
8876 		/* Unicast addresses changes may only happen under the rtnl,
8877 		 * therefore calling __dev_set_promiscuity here is safe.
8878 		 */
8879 		if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
8880 			__dev_set_promiscuity(dev, 1, false);
8881 			dev->uc_promisc = true;
8882 		} else if (netdev_uc_empty(dev) && dev->uc_promisc) {
8883 			__dev_set_promiscuity(dev, -1, false);
8884 			dev->uc_promisc = false;
8885 		}
8886 	}
8887 
8888 	if (ops->ndo_set_rx_mode)
8889 		ops->ndo_set_rx_mode(dev);
8890 }
8891 
8892 void dev_set_rx_mode(struct net_device *dev)
8893 {
8894 	netif_addr_lock_bh(dev);
8895 	__dev_set_rx_mode(dev);
8896 	netif_addr_unlock_bh(dev);
8897 }
8898 
8899 /**
8900  *	dev_get_flags - get flags reported to userspace
8901  *	@dev: device
8902  *
8903  *	Get the combination of flag bits exported through APIs to userspace.
8904  */
8905 unsigned int dev_get_flags(const struct net_device *dev)
8906 {
8907 	unsigned int flags;
8908 
8909 	flags = (READ_ONCE(dev->flags) & ~(IFF_PROMISC |
8910 				IFF_ALLMULTI |
8911 				IFF_RUNNING |
8912 				IFF_LOWER_UP |
8913 				IFF_DORMANT)) |
8914 		(READ_ONCE(dev->gflags) & (IFF_PROMISC |
8915 				IFF_ALLMULTI));
8916 
8917 	if (netif_running(dev)) {
8918 		if (netif_oper_up(dev))
8919 			flags |= IFF_RUNNING;
8920 		if (netif_carrier_ok(dev))
8921 			flags |= IFF_LOWER_UP;
8922 		if (netif_dormant(dev))
8923 			flags |= IFF_DORMANT;
8924 	}
8925 
8926 	return flags;
8927 }
8928 EXPORT_SYMBOL(dev_get_flags);
8929 
8930 int __dev_change_flags(struct net_device *dev, unsigned int flags,
8931 		       struct netlink_ext_ack *extack)
8932 {
8933 	unsigned int old_flags = dev->flags;
8934 	int ret;
8935 
8936 	ASSERT_RTNL();
8937 
8938 	/*
8939 	 *	Set the flags on our device.
8940 	 */
8941 
8942 	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
8943 			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
8944 			       IFF_AUTOMEDIA)) |
8945 		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
8946 				    IFF_ALLMULTI));
8947 
8948 	/*
8949 	 *	Load in the correct multicast list now the flags have changed.
8950 	 */
8951 
8952 	if ((old_flags ^ flags) & IFF_MULTICAST)
8953 		dev_change_rx_flags(dev, IFF_MULTICAST);
8954 
8955 	dev_set_rx_mode(dev);
8956 
8957 	/*
8958 	 *	Have we downed the interface. We handle IFF_UP ourselves
8959 	 *	according to user attempts to set it, rather than blindly
8960 	 *	setting it.
8961 	 */
8962 
8963 	ret = 0;
8964 	if ((old_flags ^ flags) & IFF_UP) {
8965 		if (old_flags & IFF_UP)
8966 			__dev_close(dev);
8967 		else
8968 			ret = __dev_open(dev, extack);
8969 	}
8970 
8971 	if ((flags ^ dev->gflags) & IFF_PROMISC) {
8972 		int inc = (flags & IFF_PROMISC) ? 1 : -1;
8973 		unsigned int old_flags = dev->flags;
8974 
8975 		dev->gflags ^= IFF_PROMISC;
8976 
8977 		if (__dev_set_promiscuity(dev, inc, false) >= 0)
8978 			if (dev->flags != old_flags)
8979 				dev_set_rx_mode(dev);
8980 	}
8981 
8982 	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
8983 	 * is important. Some (broken) drivers set IFF_PROMISC, when
8984 	 * IFF_ALLMULTI is requested not asking us and not reporting.
8985 	 */
8986 	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
8987 		int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
8988 
8989 		dev->gflags ^= IFF_ALLMULTI;
8990 		__dev_set_allmulti(dev, inc, false);
8991 	}
8992 
8993 	return ret;
8994 }
8995 
8996 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
8997 			unsigned int gchanges, u32 portid,
8998 			const struct nlmsghdr *nlh)
8999 {
9000 	unsigned int changes = dev->flags ^ old_flags;
9001 
9002 	if (gchanges)
9003 		rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC, portid, nlh);
9004 
9005 	if (changes & IFF_UP) {
9006 		if (dev->flags & IFF_UP)
9007 			call_netdevice_notifiers(NETDEV_UP, dev);
9008 		else
9009 			call_netdevice_notifiers(NETDEV_DOWN, dev);
9010 	}
9011 
9012 	if (dev->flags & IFF_UP &&
9013 	    (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
9014 		struct netdev_notifier_change_info change_info = {
9015 			.info = {
9016 				.dev = dev,
9017 			},
9018 			.flags_changed = changes,
9019 		};
9020 
9021 		call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
9022 	}
9023 }
9024 
9025 /**
9026  *	dev_change_flags - change device settings
9027  *	@dev: device
9028  *	@flags: device state flags
9029  *	@extack: netlink extended ack
9030  *
9031  *	Change settings on device based state flags. The flags are
9032  *	in the userspace exported format.
9033  */
9034 int dev_change_flags(struct net_device *dev, unsigned int flags,
9035 		     struct netlink_ext_ack *extack)
9036 {
9037 	int ret;
9038 	unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
9039 
9040 	ret = __dev_change_flags(dev, flags, extack);
9041 	if (ret < 0)
9042 		return ret;
9043 
9044 	changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
9045 	__dev_notify_flags(dev, old_flags, changes, 0, NULL);
9046 	return ret;
9047 }
9048 EXPORT_SYMBOL(dev_change_flags);
9049 
9050 int __dev_set_mtu(struct net_device *dev, int new_mtu)
9051 {
9052 	const struct net_device_ops *ops = dev->netdev_ops;
9053 
9054 	if (ops->ndo_change_mtu)
9055 		return ops->ndo_change_mtu(dev, new_mtu);
9056 
9057 	/* Pairs with all the lockless reads of dev->mtu in the stack */
9058 	WRITE_ONCE(dev->mtu, new_mtu);
9059 	return 0;
9060 }
9061 EXPORT_SYMBOL(__dev_set_mtu);
9062 
9063 int dev_validate_mtu(struct net_device *dev, int new_mtu,
9064 		     struct netlink_ext_ack *extack)
9065 {
9066 	/* MTU must be positive, and in range */
9067 	if (new_mtu < 0 || new_mtu < dev->min_mtu) {
9068 		NL_SET_ERR_MSG(extack, "mtu less than device minimum");
9069 		return -EINVAL;
9070 	}
9071 
9072 	if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
9073 		NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
9074 		return -EINVAL;
9075 	}
9076 	return 0;
9077 }
9078 
9079 /**
9080  *	dev_set_mtu_ext - Change maximum transfer unit
9081  *	@dev: device
9082  *	@new_mtu: new transfer unit
9083  *	@extack: netlink extended ack
9084  *
9085  *	Change the maximum transfer size of the network device.
9086  */
9087 int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
9088 		    struct netlink_ext_ack *extack)
9089 {
9090 	int err, orig_mtu;
9091 
9092 	if (new_mtu == dev->mtu)
9093 		return 0;
9094 
9095 	err = dev_validate_mtu(dev, new_mtu, extack);
9096 	if (err)
9097 		return err;
9098 
9099 	if (!netif_device_present(dev))
9100 		return -ENODEV;
9101 
9102 	err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
9103 	err = notifier_to_errno(err);
9104 	if (err)
9105 		return err;
9106 
9107 	orig_mtu = dev->mtu;
9108 	err = __dev_set_mtu(dev, new_mtu);
9109 
9110 	if (!err) {
9111 		err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
9112 						   orig_mtu);
9113 		err = notifier_to_errno(err);
9114 		if (err) {
9115 			/* setting mtu back and notifying everyone again,
9116 			 * so that they have a chance to revert changes.
9117 			 */
9118 			__dev_set_mtu(dev, orig_mtu);
9119 			call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
9120 						     new_mtu);
9121 		}
9122 	}
9123 	return err;
9124 }
9125 
9126 int dev_set_mtu(struct net_device *dev, int new_mtu)
9127 {
9128 	struct netlink_ext_ack extack;
9129 	int err;
9130 
9131 	memset(&extack, 0, sizeof(extack));
9132 	err = dev_set_mtu_ext(dev, new_mtu, &extack);
9133 	if (err && extack._msg)
9134 		net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
9135 	return err;
9136 }
9137 EXPORT_SYMBOL(dev_set_mtu);
9138 
9139 /**
9140  *	dev_change_tx_queue_len - Change TX queue length of a netdevice
9141  *	@dev: device
9142  *	@new_len: new tx queue length
9143  */
9144 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
9145 {
9146 	unsigned int orig_len = dev->tx_queue_len;
9147 	int res;
9148 
9149 	if (new_len != (unsigned int)new_len)
9150 		return -ERANGE;
9151 
9152 	if (new_len != orig_len) {
9153 		WRITE_ONCE(dev->tx_queue_len, new_len);
9154 		res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
9155 		res = notifier_to_errno(res);
9156 		if (res)
9157 			goto err_rollback;
9158 		res = dev_qdisc_change_tx_queue_len(dev);
9159 		if (res)
9160 			goto err_rollback;
9161 	}
9162 
9163 	return 0;
9164 
9165 err_rollback:
9166 	netdev_err(dev, "refused to change device tx_queue_len\n");
9167 	WRITE_ONCE(dev->tx_queue_len, orig_len);
9168 	return res;
9169 }
9170 
9171 /**
9172  *	dev_set_group - Change group this device belongs to
9173  *	@dev: device
9174  *	@new_group: group this device should belong to
9175  */
9176 void dev_set_group(struct net_device *dev, int new_group)
9177 {
9178 	dev->group = new_group;
9179 }
9180 
9181 /**
9182  *	dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
9183  *	@dev: device
9184  *	@addr: new address
9185  *	@extack: netlink extended ack
9186  */
9187 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
9188 			      struct netlink_ext_ack *extack)
9189 {
9190 	struct netdev_notifier_pre_changeaddr_info info = {
9191 		.info.dev = dev,
9192 		.info.extack = extack,
9193 		.dev_addr = addr,
9194 	};
9195 	int rc;
9196 
9197 	rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
9198 	return notifier_to_errno(rc);
9199 }
9200 EXPORT_SYMBOL(dev_pre_changeaddr_notify);
9201 
9202 /**
9203  *	dev_set_mac_address - Change Media Access Control Address
9204  *	@dev: device
9205  *	@sa: new address
9206  *	@extack: netlink extended ack
9207  *
9208  *	Change the hardware (MAC) address of the device
9209  */
9210 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
9211 			struct netlink_ext_ack *extack)
9212 {
9213 	const struct net_device_ops *ops = dev->netdev_ops;
9214 	int err;
9215 
9216 	if (!ops->ndo_set_mac_address)
9217 		return -EOPNOTSUPP;
9218 	if (sa->sa_family != dev->type)
9219 		return -EINVAL;
9220 	if (!netif_device_present(dev))
9221 		return -ENODEV;
9222 	err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
9223 	if (err)
9224 		return err;
9225 	if (memcmp(dev->dev_addr, sa->sa_data, dev->addr_len)) {
9226 		err = ops->ndo_set_mac_address(dev, sa);
9227 		if (err)
9228 			return err;
9229 	}
9230 	dev->addr_assign_type = NET_ADDR_SET;
9231 	call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
9232 	add_device_randomness(dev->dev_addr, dev->addr_len);
9233 	return 0;
9234 }
9235 EXPORT_SYMBOL(dev_set_mac_address);
9236 
9237 DECLARE_RWSEM(dev_addr_sem);
9238 
9239 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
9240 			     struct netlink_ext_ack *extack)
9241 {
9242 	int ret;
9243 
9244 	down_write(&dev_addr_sem);
9245 	ret = dev_set_mac_address(dev, sa, extack);
9246 	up_write(&dev_addr_sem);
9247 	return ret;
9248 }
9249 EXPORT_SYMBOL(dev_set_mac_address_user);
9250 
9251 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name)
9252 {
9253 	size_t size = sizeof(sa->sa_data_min);
9254 	struct net_device *dev;
9255 	int ret = 0;
9256 
9257 	down_read(&dev_addr_sem);
9258 	rcu_read_lock();
9259 
9260 	dev = dev_get_by_name_rcu(net, dev_name);
9261 	if (!dev) {
9262 		ret = -ENODEV;
9263 		goto unlock;
9264 	}
9265 	if (!dev->addr_len)
9266 		memset(sa->sa_data, 0, size);
9267 	else
9268 		memcpy(sa->sa_data, dev->dev_addr,
9269 		       min_t(size_t, size, dev->addr_len));
9270 	sa->sa_family = dev->type;
9271 
9272 unlock:
9273 	rcu_read_unlock();
9274 	up_read(&dev_addr_sem);
9275 	return ret;
9276 }
9277 EXPORT_SYMBOL(dev_get_mac_address);
9278 
9279 /**
9280  *	dev_change_carrier - Change device carrier
9281  *	@dev: device
9282  *	@new_carrier: new value
9283  *
9284  *	Change device carrier
9285  */
9286 int dev_change_carrier(struct net_device *dev, bool new_carrier)
9287 {
9288 	const struct net_device_ops *ops = dev->netdev_ops;
9289 
9290 	if (!ops->ndo_change_carrier)
9291 		return -EOPNOTSUPP;
9292 	if (!netif_device_present(dev))
9293 		return -ENODEV;
9294 	return ops->ndo_change_carrier(dev, new_carrier);
9295 }
9296 
9297 /**
9298  *	dev_get_phys_port_id - Get device physical port ID
9299  *	@dev: device
9300  *	@ppid: port ID
9301  *
9302  *	Get device physical port ID
9303  */
9304 int dev_get_phys_port_id(struct net_device *dev,
9305 			 struct netdev_phys_item_id *ppid)
9306 {
9307 	const struct net_device_ops *ops = dev->netdev_ops;
9308 
9309 	if (!ops->ndo_get_phys_port_id)
9310 		return -EOPNOTSUPP;
9311 	return ops->ndo_get_phys_port_id(dev, ppid);
9312 }
9313 
9314 /**
9315  *	dev_get_phys_port_name - Get device physical port name
9316  *	@dev: device
9317  *	@name: port name
9318  *	@len: limit of bytes to copy to name
9319  *
9320  *	Get device physical port name
9321  */
9322 int dev_get_phys_port_name(struct net_device *dev,
9323 			   char *name, size_t len)
9324 {
9325 	const struct net_device_ops *ops = dev->netdev_ops;
9326 	int err;
9327 
9328 	if (ops->ndo_get_phys_port_name) {
9329 		err = ops->ndo_get_phys_port_name(dev, name, len);
9330 		if (err != -EOPNOTSUPP)
9331 			return err;
9332 	}
9333 	return devlink_compat_phys_port_name_get(dev, name, len);
9334 }
9335 
9336 /**
9337  *	dev_get_port_parent_id - Get the device's port parent identifier
9338  *	@dev: network device
9339  *	@ppid: pointer to a storage for the port's parent identifier
9340  *	@recurse: allow/disallow recursion to lower devices
9341  *
9342  *	Get the devices's port parent identifier
9343  */
9344 int dev_get_port_parent_id(struct net_device *dev,
9345 			   struct netdev_phys_item_id *ppid,
9346 			   bool recurse)
9347 {
9348 	const struct net_device_ops *ops = dev->netdev_ops;
9349 	struct netdev_phys_item_id first = { };
9350 	struct net_device *lower_dev;
9351 	struct list_head *iter;
9352 	int err;
9353 
9354 	if (ops->ndo_get_port_parent_id) {
9355 		err = ops->ndo_get_port_parent_id(dev, ppid);
9356 		if (err != -EOPNOTSUPP)
9357 			return err;
9358 	}
9359 
9360 	err = devlink_compat_switch_id_get(dev, ppid);
9361 	if (!recurse || err != -EOPNOTSUPP)
9362 		return err;
9363 
9364 	netdev_for_each_lower_dev(dev, lower_dev, iter) {
9365 		err = dev_get_port_parent_id(lower_dev, ppid, true);
9366 		if (err)
9367 			break;
9368 		if (!first.id_len)
9369 			first = *ppid;
9370 		else if (memcmp(&first, ppid, sizeof(*ppid)))
9371 			return -EOPNOTSUPP;
9372 	}
9373 
9374 	return err;
9375 }
9376 EXPORT_SYMBOL(dev_get_port_parent_id);
9377 
9378 /**
9379  *	netdev_port_same_parent_id - Indicate if two network devices have
9380  *	the same port parent identifier
9381  *	@a: first network device
9382  *	@b: second network device
9383  */
9384 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
9385 {
9386 	struct netdev_phys_item_id a_id = { };
9387 	struct netdev_phys_item_id b_id = { };
9388 
9389 	if (dev_get_port_parent_id(a, &a_id, true) ||
9390 	    dev_get_port_parent_id(b, &b_id, true))
9391 		return false;
9392 
9393 	return netdev_phys_item_id_same(&a_id, &b_id);
9394 }
9395 EXPORT_SYMBOL(netdev_port_same_parent_id);
9396 
9397 /**
9398  *	dev_change_proto_down - set carrier according to proto_down.
9399  *
9400  *	@dev: device
9401  *	@proto_down: new value
9402  */
9403 int dev_change_proto_down(struct net_device *dev, bool proto_down)
9404 {
9405 	if (!dev->change_proto_down)
9406 		return -EOPNOTSUPP;
9407 	if (!netif_device_present(dev))
9408 		return -ENODEV;
9409 	if (proto_down)
9410 		netif_carrier_off(dev);
9411 	else
9412 		netif_carrier_on(dev);
9413 	WRITE_ONCE(dev->proto_down, proto_down);
9414 	return 0;
9415 }
9416 
9417 /**
9418  *	dev_change_proto_down_reason - proto down reason
9419  *
9420  *	@dev: device
9421  *	@mask: proto down mask
9422  *	@value: proto down value
9423  */
9424 void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
9425 				  u32 value)
9426 {
9427 	u32 proto_down_reason;
9428 	int b;
9429 
9430 	if (!mask) {
9431 		proto_down_reason = value;
9432 	} else {
9433 		proto_down_reason = dev->proto_down_reason;
9434 		for_each_set_bit(b, &mask, 32) {
9435 			if (value & (1 << b))
9436 				proto_down_reason |= BIT(b);
9437 			else
9438 				proto_down_reason &= ~BIT(b);
9439 		}
9440 	}
9441 	WRITE_ONCE(dev->proto_down_reason, proto_down_reason);
9442 }
9443 
9444 struct bpf_xdp_link {
9445 	struct bpf_link link;
9446 	struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
9447 	int flags;
9448 };
9449 
9450 static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags)
9451 {
9452 	if (flags & XDP_FLAGS_HW_MODE)
9453 		return XDP_MODE_HW;
9454 	if (flags & XDP_FLAGS_DRV_MODE)
9455 		return XDP_MODE_DRV;
9456 	if (flags & XDP_FLAGS_SKB_MODE)
9457 		return XDP_MODE_SKB;
9458 	return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB;
9459 }
9460 
9461 static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
9462 {
9463 	switch (mode) {
9464 	case XDP_MODE_SKB:
9465 		return generic_xdp_install;
9466 	case XDP_MODE_DRV:
9467 	case XDP_MODE_HW:
9468 		return dev->netdev_ops->ndo_bpf;
9469 	default:
9470 		return NULL;
9471 	}
9472 }
9473 
9474 static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
9475 					 enum bpf_xdp_mode mode)
9476 {
9477 	return dev->xdp_state[mode].link;
9478 }
9479 
9480 static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
9481 				     enum bpf_xdp_mode mode)
9482 {
9483 	struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
9484 
9485 	if (link)
9486 		return link->link.prog;
9487 	return dev->xdp_state[mode].prog;
9488 }
9489 
9490 u8 dev_xdp_prog_count(struct net_device *dev)
9491 {
9492 	u8 count = 0;
9493 	int i;
9494 
9495 	for (i = 0; i < __MAX_XDP_MODE; i++)
9496 		if (dev->xdp_state[i].prog || dev->xdp_state[i].link)
9497 			count++;
9498 	return count;
9499 }
9500 EXPORT_SYMBOL_GPL(dev_xdp_prog_count);
9501 
9502 int dev_xdp_propagate(struct net_device *dev, struct netdev_bpf *bpf)
9503 {
9504 	if (!dev->netdev_ops->ndo_bpf)
9505 		return -EOPNOTSUPP;
9506 
9507 	if (dev_get_min_mp_channel_count(dev)) {
9508 		NL_SET_ERR_MSG(bpf->extack, "unable to propagate XDP to device using memory provider");
9509 		return -EBUSY;
9510 	}
9511 
9512 	return dev->netdev_ops->ndo_bpf(dev, bpf);
9513 }
9514 EXPORT_SYMBOL_GPL(dev_xdp_propagate);
9515 
9516 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
9517 {
9518 	struct bpf_prog *prog = dev_xdp_prog(dev, mode);
9519 
9520 	return prog ? prog->aux->id : 0;
9521 }
9522 
9523 static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
9524 			     struct bpf_xdp_link *link)
9525 {
9526 	dev->xdp_state[mode].link = link;
9527 	dev->xdp_state[mode].prog = NULL;
9528 }
9529 
9530 static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
9531 			     struct bpf_prog *prog)
9532 {
9533 	dev->xdp_state[mode].link = NULL;
9534 	dev->xdp_state[mode].prog = prog;
9535 }
9536 
9537 static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
9538 			   bpf_op_t bpf_op, struct netlink_ext_ack *extack,
9539 			   u32 flags, struct bpf_prog *prog)
9540 {
9541 	struct netdev_bpf xdp;
9542 	int err;
9543 
9544 	if (dev_get_min_mp_channel_count(dev)) {
9545 		NL_SET_ERR_MSG(extack, "unable to install XDP to device using memory provider");
9546 		return -EBUSY;
9547 	}
9548 
9549 	memset(&xdp, 0, sizeof(xdp));
9550 	xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
9551 	xdp.extack = extack;
9552 	xdp.flags = flags;
9553 	xdp.prog = prog;
9554 
9555 	/* Drivers assume refcnt is already incremented (i.e, prog pointer is
9556 	 * "moved" into driver), so they don't increment it on their own, but
9557 	 * they do decrement refcnt when program is detached or replaced.
9558 	 * Given net_device also owns link/prog, we need to bump refcnt here
9559 	 * to prevent drivers from underflowing it.
9560 	 */
9561 	if (prog)
9562 		bpf_prog_inc(prog);
9563 	err = bpf_op(dev, &xdp);
9564 	if (err) {
9565 		if (prog)
9566 			bpf_prog_put(prog);
9567 		return err;
9568 	}
9569 
9570 	if (mode != XDP_MODE_HW)
9571 		bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog);
9572 
9573 	return 0;
9574 }
9575 
9576 static void dev_xdp_uninstall(struct net_device *dev)
9577 {
9578 	struct bpf_xdp_link *link;
9579 	struct bpf_prog *prog;
9580 	enum bpf_xdp_mode mode;
9581 	bpf_op_t bpf_op;
9582 
9583 	ASSERT_RTNL();
9584 
9585 	for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
9586 		prog = dev_xdp_prog(dev, mode);
9587 		if (!prog)
9588 			continue;
9589 
9590 		bpf_op = dev_xdp_bpf_op(dev, mode);
9591 		if (!bpf_op)
9592 			continue;
9593 
9594 		WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9595 
9596 		/* auto-detach link from net device */
9597 		link = dev_xdp_link(dev, mode);
9598 		if (link)
9599 			link->dev = NULL;
9600 		else
9601 			bpf_prog_put(prog);
9602 
9603 		dev_xdp_set_link(dev, mode, NULL);
9604 	}
9605 }
9606 
9607 static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
9608 			  struct bpf_xdp_link *link, struct bpf_prog *new_prog,
9609 			  struct bpf_prog *old_prog, u32 flags)
9610 {
9611 	unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES);
9612 	struct bpf_prog *cur_prog;
9613 	struct net_device *upper;
9614 	struct list_head *iter;
9615 	enum bpf_xdp_mode mode;
9616 	bpf_op_t bpf_op;
9617 	int err;
9618 
9619 	ASSERT_RTNL();
9620 
9621 	/* either link or prog attachment, never both */
9622 	if (link && (new_prog || old_prog))
9623 		return -EINVAL;
9624 	/* link supports only XDP mode flags */
9625 	if (link && (flags & ~XDP_FLAGS_MODES)) {
9626 		NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
9627 		return -EINVAL;
9628 	}
9629 	/* just one XDP mode bit should be set, zero defaults to drv/skb mode */
9630 	if (num_modes > 1) {
9631 		NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
9632 		return -EINVAL;
9633 	}
9634 	/* avoid ambiguity if offload + drv/skb mode progs are both loaded */
9635 	if (!num_modes && dev_xdp_prog_count(dev) > 1) {
9636 		NL_SET_ERR_MSG(extack,
9637 			       "More than one program loaded, unset mode is ambiguous");
9638 		return -EINVAL;
9639 	}
9640 	/* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
9641 	if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
9642 		NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
9643 		return -EINVAL;
9644 	}
9645 
9646 	mode = dev_xdp_mode(dev, flags);
9647 	/* can't replace attached link */
9648 	if (dev_xdp_link(dev, mode)) {
9649 		NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
9650 		return -EBUSY;
9651 	}
9652 
9653 	/* don't allow if an upper device already has a program */
9654 	netdev_for_each_upper_dev_rcu(dev, upper, iter) {
9655 		if (dev_xdp_prog_count(upper) > 0) {
9656 			NL_SET_ERR_MSG(extack, "Cannot attach when an upper device already has a program");
9657 			return -EEXIST;
9658 		}
9659 	}
9660 
9661 	cur_prog = dev_xdp_prog(dev, mode);
9662 	/* can't replace attached prog with link */
9663 	if (link && cur_prog) {
9664 		NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
9665 		return -EBUSY;
9666 	}
9667 	if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
9668 		NL_SET_ERR_MSG(extack, "Active program does not match expected");
9669 		return -EEXIST;
9670 	}
9671 
9672 	/* put effective new program into new_prog */
9673 	if (link)
9674 		new_prog = link->link.prog;
9675 
9676 	if (new_prog) {
9677 		bool offload = mode == XDP_MODE_HW;
9678 		enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
9679 					       ? XDP_MODE_DRV : XDP_MODE_SKB;
9680 
9681 		if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
9682 			NL_SET_ERR_MSG(extack, "XDP program already attached");
9683 			return -EBUSY;
9684 		}
9685 		if (!offload && dev_xdp_prog(dev, other_mode)) {
9686 			NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
9687 			return -EEXIST;
9688 		}
9689 		if (!offload && bpf_prog_is_offloaded(new_prog->aux)) {
9690 			NL_SET_ERR_MSG(extack, "Using offloaded program without HW_MODE flag is not supported");
9691 			return -EINVAL;
9692 		}
9693 		if (bpf_prog_is_dev_bound(new_prog->aux) && !bpf_offload_dev_match(new_prog, dev)) {
9694 			NL_SET_ERR_MSG(extack, "Program bound to different device");
9695 			return -EINVAL;
9696 		}
9697 		if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
9698 			NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
9699 			return -EINVAL;
9700 		}
9701 		if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
9702 			NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
9703 			return -EINVAL;
9704 		}
9705 	}
9706 
9707 	/* don't call drivers if the effective program didn't change */
9708 	if (new_prog != cur_prog) {
9709 		bpf_op = dev_xdp_bpf_op(dev, mode);
9710 		if (!bpf_op) {
9711 			NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
9712 			return -EOPNOTSUPP;
9713 		}
9714 
9715 		err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog);
9716 		if (err)
9717 			return err;
9718 	}
9719 
9720 	if (link)
9721 		dev_xdp_set_link(dev, mode, link);
9722 	else
9723 		dev_xdp_set_prog(dev, mode, new_prog);
9724 	if (cur_prog)
9725 		bpf_prog_put(cur_prog);
9726 
9727 	return 0;
9728 }
9729 
9730 static int dev_xdp_attach_link(struct net_device *dev,
9731 			       struct netlink_ext_ack *extack,
9732 			       struct bpf_xdp_link *link)
9733 {
9734 	return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags);
9735 }
9736 
9737 static int dev_xdp_detach_link(struct net_device *dev,
9738 			       struct netlink_ext_ack *extack,
9739 			       struct bpf_xdp_link *link)
9740 {
9741 	enum bpf_xdp_mode mode;
9742 	bpf_op_t bpf_op;
9743 
9744 	ASSERT_RTNL();
9745 
9746 	mode = dev_xdp_mode(dev, link->flags);
9747 	if (dev_xdp_link(dev, mode) != link)
9748 		return -EINVAL;
9749 
9750 	bpf_op = dev_xdp_bpf_op(dev, mode);
9751 	WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9752 	dev_xdp_set_link(dev, mode, NULL);
9753 	return 0;
9754 }
9755 
9756 static void bpf_xdp_link_release(struct bpf_link *link)
9757 {
9758 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9759 
9760 	rtnl_lock();
9761 
9762 	/* if racing with net_device's tear down, xdp_link->dev might be
9763 	 * already NULL, in which case link was already auto-detached
9764 	 */
9765 	if (xdp_link->dev) {
9766 		WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
9767 		xdp_link->dev = NULL;
9768 	}
9769 
9770 	rtnl_unlock();
9771 }
9772 
9773 static int bpf_xdp_link_detach(struct bpf_link *link)
9774 {
9775 	bpf_xdp_link_release(link);
9776 	return 0;
9777 }
9778 
9779 static void bpf_xdp_link_dealloc(struct bpf_link *link)
9780 {
9781 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9782 
9783 	kfree(xdp_link);
9784 }
9785 
9786 static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link,
9787 				     struct seq_file *seq)
9788 {
9789 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9790 	u32 ifindex = 0;
9791 
9792 	rtnl_lock();
9793 	if (xdp_link->dev)
9794 		ifindex = xdp_link->dev->ifindex;
9795 	rtnl_unlock();
9796 
9797 	seq_printf(seq, "ifindex:\t%u\n", ifindex);
9798 }
9799 
9800 static int bpf_xdp_link_fill_link_info(const struct bpf_link *link,
9801 				       struct bpf_link_info *info)
9802 {
9803 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9804 	u32 ifindex = 0;
9805 
9806 	rtnl_lock();
9807 	if (xdp_link->dev)
9808 		ifindex = xdp_link->dev->ifindex;
9809 	rtnl_unlock();
9810 
9811 	info->xdp.ifindex = ifindex;
9812 	return 0;
9813 }
9814 
9815 static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
9816 			       struct bpf_prog *old_prog)
9817 {
9818 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9819 	enum bpf_xdp_mode mode;
9820 	bpf_op_t bpf_op;
9821 	int err = 0;
9822 
9823 	rtnl_lock();
9824 
9825 	/* link might have been auto-released already, so fail */
9826 	if (!xdp_link->dev) {
9827 		err = -ENOLINK;
9828 		goto out_unlock;
9829 	}
9830 
9831 	if (old_prog && link->prog != old_prog) {
9832 		err = -EPERM;
9833 		goto out_unlock;
9834 	}
9835 	old_prog = link->prog;
9836 	if (old_prog->type != new_prog->type ||
9837 	    old_prog->expected_attach_type != new_prog->expected_attach_type) {
9838 		err = -EINVAL;
9839 		goto out_unlock;
9840 	}
9841 
9842 	if (old_prog == new_prog) {
9843 		/* no-op, don't disturb drivers */
9844 		bpf_prog_put(new_prog);
9845 		goto out_unlock;
9846 	}
9847 
9848 	mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags);
9849 	bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode);
9850 	err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL,
9851 			      xdp_link->flags, new_prog);
9852 	if (err)
9853 		goto out_unlock;
9854 
9855 	old_prog = xchg(&link->prog, new_prog);
9856 	bpf_prog_put(old_prog);
9857 
9858 out_unlock:
9859 	rtnl_unlock();
9860 	return err;
9861 }
9862 
9863 static const struct bpf_link_ops bpf_xdp_link_lops = {
9864 	.release = bpf_xdp_link_release,
9865 	.dealloc = bpf_xdp_link_dealloc,
9866 	.detach = bpf_xdp_link_detach,
9867 	.show_fdinfo = bpf_xdp_link_show_fdinfo,
9868 	.fill_link_info = bpf_xdp_link_fill_link_info,
9869 	.update_prog = bpf_xdp_link_update,
9870 };
9871 
9872 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
9873 {
9874 	struct net *net = current->nsproxy->net_ns;
9875 	struct bpf_link_primer link_primer;
9876 	struct netlink_ext_ack extack = {};
9877 	struct bpf_xdp_link *link;
9878 	struct net_device *dev;
9879 	int err, fd;
9880 
9881 	rtnl_lock();
9882 	dev = dev_get_by_index(net, attr->link_create.target_ifindex);
9883 	if (!dev) {
9884 		rtnl_unlock();
9885 		return -EINVAL;
9886 	}
9887 
9888 	link = kzalloc(sizeof(*link), GFP_USER);
9889 	if (!link) {
9890 		err = -ENOMEM;
9891 		goto unlock;
9892 	}
9893 
9894 	bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog);
9895 	link->dev = dev;
9896 	link->flags = attr->link_create.flags;
9897 
9898 	err = bpf_link_prime(&link->link, &link_primer);
9899 	if (err) {
9900 		kfree(link);
9901 		goto unlock;
9902 	}
9903 
9904 	err = dev_xdp_attach_link(dev, &extack, link);
9905 	rtnl_unlock();
9906 
9907 	if (err) {
9908 		link->dev = NULL;
9909 		bpf_link_cleanup(&link_primer);
9910 		trace_bpf_xdp_link_attach_failed(extack._msg);
9911 		goto out_put_dev;
9912 	}
9913 
9914 	fd = bpf_link_settle(&link_primer);
9915 	/* link itself doesn't hold dev's refcnt to not complicate shutdown */
9916 	dev_put(dev);
9917 	return fd;
9918 
9919 unlock:
9920 	rtnl_unlock();
9921 
9922 out_put_dev:
9923 	dev_put(dev);
9924 	return err;
9925 }
9926 
9927 /**
9928  *	dev_change_xdp_fd - set or clear a bpf program for a device rx path
9929  *	@dev: device
9930  *	@extack: netlink extended ack
9931  *	@fd: new program fd or negative value to clear
9932  *	@expected_fd: old program fd that userspace expects to replace or clear
9933  *	@flags: xdp-related flags
9934  *
9935  *	Set or clear a bpf program for a device
9936  */
9937 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
9938 		      int fd, int expected_fd, u32 flags)
9939 {
9940 	enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags);
9941 	struct bpf_prog *new_prog = NULL, *old_prog = NULL;
9942 	int err;
9943 
9944 	ASSERT_RTNL();
9945 
9946 	if (fd >= 0) {
9947 		new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
9948 						 mode != XDP_MODE_SKB);
9949 		if (IS_ERR(new_prog))
9950 			return PTR_ERR(new_prog);
9951 	}
9952 
9953 	if (expected_fd >= 0) {
9954 		old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP,
9955 						 mode != XDP_MODE_SKB);
9956 		if (IS_ERR(old_prog)) {
9957 			err = PTR_ERR(old_prog);
9958 			old_prog = NULL;
9959 			goto err_out;
9960 		}
9961 	}
9962 
9963 	err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
9964 
9965 err_out:
9966 	if (err && new_prog)
9967 		bpf_prog_put(new_prog);
9968 	if (old_prog)
9969 		bpf_prog_put(old_prog);
9970 	return err;
9971 }
9972 
9973 u32 dev_get_min_mp_channel_count(const struct net_device *dev)
9974 {
9975 	int i;
9976 
9977 	ASSERT_RTNL();
9978 
9979 	for (i = dev->real_num_rx_queues - 1; i >= 0; i--)
9980 		if (dev->_rx[i].mp_params.mp_priv)
9981 			/* The channel count is the idx plus 1. */
9982 			return i + 1;
9983 
9984 	return 0;
9985 }
9986 
9987 /**
9988  * dev_index_reserve() - allocate an ifindex in a namespace
9989  * @net: the applicable net namespace
9990  * @ifindex: requested ifindex, pass %0 to get one allocated
9991  *
9992  * Allocate a ifindex for a new device. Caller must either use the ifindex
9993  * to store the device (via list_netdevice()) or call dev_index_release()
9994  * to give the index up.
9995  *
9996  * Return: a suitable unique value for a new device interface number or -errno.
9997  */
9998 static int dev_index_reserve(struct net *net, u32 ifindex)
9999 {
10000 	int err;
10001 
10002 	if (ifindex > INT_MAX) {
10003 		DEBUG_NET_WARN_ON_ONCE(1);
10004 		return -EINVAL;
10005 	}
10006 
10007 	if (!ifindex)
10008 		err = xa_alloc_cyclic(&net->dev_by_index, &ifindex, NULL,
10009 				      xa_limit_31b, &net->ifindex, GFP_KERNEL);
10010 	else
10011 		err = xa_insert(&net->dev_by_index, ifindex, NULL, GFP_KERNEL);
10012 	if (err < 0)
10013 		return err;
10014 
10015 	return ifindex;
10016 }
10017 
10018 static void dev_index_release(struct net *net, int ifindex)
10019 {
10020 	/* Expect only unused indexes, unlist_netdevice() removes the used */
10021 	WARN_ON(xa_erase(&net->dev_by_index, ifindex));
10022 }
10023 
10024 /* Delayed registration/unregisteration */
10025 LIST_HEAD(net_todo_list);
10026 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
10027 atomic_t dev_unreg_count = ATOMIC_INIT(0);
10028 
10029 static void net_set_todo(struct net_device *dev)
10030 {
10031 	list_add_tail(&dev->todo_list, &net_todo_list);
10032 }
10033 
10034 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
10035 	struct net_device *upper, netdev_features_t features)
10036 {
10037 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
10038 	netdev_features_t feature;
10039 	int feature_bit;
10040 
10041 	for_each_netdev_feature(upper_disables, feature_bit) {
10042 		feature = __NETIF_F_BIT(feature_bit);
10043 		if (!(upper->wanted_features & feature)
10044 		    && (features & feature)) {
10045 			netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
10046 				   &feature, upper->name);
10047 			features &= ~feature;
10048 		}
10049 	}
10050 
10051 	return features;
10052 }
10053 
10054 static void netdev_sync_lower_features(struct net_device *upper,
10055 	struct net_device *lower, netdev_features_t features)
10056 {
10057 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
10058 	netdev_features_t feature;
10059 	int feature_bit;
10060 
10061 	for_each_netdev_feature(upper_disables, feature_bit) {
10062 		feature = __NETIF_F_BIT(feature_bit);
10063 		if (!(features & feature) && (lower->features & feature)) {
10064 			netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
10065 				   &feature, lower->name);
10066 			lower->wanted_features &= ~feature;
10067 			__netdev_update_features(lower);
10068 
10069 			if (unlikely(lower->features & feature))
10070 				netdev_WARN(upper, "failed to disable %pNF on %s!\n",
10071 					    &feature, lower->name);
10072 			else
10073 				netdev_features_change(lower);
10074 		}
10075 	}
10076 }
10077 
10078 static bool netdev_has_ip_or_hw_csum(netdev_features_t features)
10079 {
10080 	netdev_features_t ip_csum_mask = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
10081 	bool ip_csum = (features & ip_csum_mask) == ip_csum_mask;
10082 	bool hw_csum = features & NETIF_F_HW_CSUM;
10083 
10084 	return ip_csum || hw_csum;
10085 }
10086 
10087 static netdev_features_t netdev_fix_features(struct net_device *dev,
10088 	netdev_features_t features)
10089 {
10090 	/* Fix illegal checksum combinations */
10091 	if ((features & NETIF_F_HW_CSUM) &&
10092 	    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
10093 		netdev_warn(dev, "mixed HW and IP checksum settings.\n");
10094 		features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
10095 	}
10096 
10097 	/* TSO requires that SG is present as well. */
10098 	if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
10099 		netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
10100 		features &= ~NETIF_F_ALL_TSO;
10101 	}
10102 
10103 	if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
10104 					!(features & NETIF_F_IP_CSUM)) {
10105 		netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
10106 		features &= ~NETIF_F_TSO;
10107 		features &= ~NETIF_F_TSO_ECN;
10108 	}
10109 
10110 	if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
10111 					 !(features & NETIF_F_IPV6_CSUM)) {
10112 		netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
10113 		features &= ~NETIF_F_TSO6;
10114 	}
10115 
10116 	/* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
10117 	if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
10118 		features &= ~NETIF_F_TSO_MANGLEID;
10119 
10120 	/* TSO ECN requires that TSO is present as well. */
10121 	if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
10122 		features &= ~NETIF_F_TSO_ECN;
10123 
10124 	/* Software GSO depends on SG. */
10125 	if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
10126 		netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
10127 		features &= ~NETIF_F_GSO;
10128 	}
10129 
10130 	/* GSO partial features require GSO partial be set */
10131 	if ((features & dev->gso_partial_features) &&
10132 	    !(features & NETIF_F_GSO_PARTIAL)) {
10133 		netdev_dbg(dev,
10134 			   "Dropping partially supported GSO features since no GSO partial.\n");
10135 		features &= ~dev->gso_partial_features;
10136 	}
10137 
10138 	if (!(features & NETIF_F_RXCSUM)) {
10139 		/* NETIF_F_GRO_HW implies doing RXCSUM since every packet
10140 		 * successfully merged by hardware must also have the
10141 		 * checksum verified by hardware.  If the user does not
10142 		 * want to enable RXCSUM, logically, we should disable GRO_HW.
10143 		 */
10144 		if (features & NETIF_F_GRO_HW) {
10145 			netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
10146 			features &= ~NETIF_F_GRO_HW;
10147 		}
10148 	}
10149 
10150 	/* LRO/HW-GRO features cannot be combined with RX-FCS */
10151 	if (features & NETIF_F_RXFCS) {
10152 		if (features & NETIF_F_LRO) {
10153 			netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
10154 			features &= ~NETIF_F_LRO;
10155 		}
10156 
10157 		if (features & NETIF_F_GRO_HW) {
10158 			netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
10159 			features &= ~NETIF_F_GRO_HW;
10160 		}
10161 	}
10162 
10163 	if ((features & NETIF_F_GRO_HW) && (features & NETIF_F_LRO)) {
10164 		netdev_dbg(dev, "Dropping LRO feature since HW-GRO is requested.\n");
10165 		features &= ~NETIF_F_LRO;
10166 	}
10167 
10168 	if ((features & NETIF_F_HW_TLS_TX) && !netdev_has_ip_or_hw_csum(features)) {
10169 		netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n");
10170 		features &= ~NETIF_F_HW_TLS_TX;
10171 	}
10172 
10173 	if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) {
10174 		netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n");
10175 		features &= ~NETIF_F_HW_TLS_RX;
10176 	}
10177 
10178 	if ((features & NETIF_F_GSO_UDP_L4) && !netdev_has_ip_or_hw_csum(features)) {
10179 		netdev_dbg(dev, "Dropping USO feature since no CSUM feature.\n");
10180 		features &= ~NETIF_F_GSO_UDP_L4;
10181 	}
10182 
10183 	return features;
10184 }
10185 
10186 int __netdev_update_features(struct net_device *dev)
10187 {
10188 	struct net_device *upper, *lower;
10189 	netdev_features_t features;
10190 	struct list_head *iter;
10191 	int err = -1;
10192 
10193 	ASSERT_RTNL();
10194 
10195 	features = netdev_get_wanted_features(dev);
10196 
10197 	if (dev->netdev_ops->ndo_fix_features)
10198 		features = dev->netdev_ops->ndo_fix_features(dev, features);
10199 
10200 	/* driver might be less strict about feature dependencies */
10201 	features = netdev_fix_features(dev, features);
10202 
10203 	/* some features can't be enabled if they're off on an upper device */
10204 	netdev_for_each_upper_dev_rcu(dev, upper, iter)
10205 		features = netdev_sync_upper_features(dev, upper, features);
10206 
10207 	if (dev->features == features)
10208 		goto sync_lower;
10209 
10210 	netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
10211 		&dev->features, &features);
10212 
10213 	if (dev->netdev_ops->ndo_set_features)
10214 		err = dev->netdev_ops->ndo_set_features(dev, features);
10215 	else
10216 		err = 0;
10217 
10218 	if (unlikely(err < 0)) {
10219 		netdev_err(dev,
10220 			"set_features() failed (%d); wanted %pNF, left %pNF\n",
10221 			err, &features, &dev->features);
10222 		/* return non-0 since some features might have changed and
10223 		 * it's better to fire a spurious notification than miss it
10224 		 */
10225 		return -1;
10226 	}
10227 
10228 sync_lower:
10229 	/* some features must be disabled on lower devices when disabled
10230 	 * on an upper device (think: bonding master or bridge)
10231 	 */
10232 	netdev_for_each_lower_dev(dev, lower, iter)
10233 		netdev_sync_lower_features(dev, lower, features);
10234 
10235 	if (!err) {
10236 		netdev_features_t diff = features ^ dev->features;
10237 
10238 		if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
10239 			/* udp_tunnel_{get,drop}_rx_info both need
10240 			 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
10241 			 * device, or they won't do anything.
10242 			 * Thus we need to update dev->features
10243 			 * *before* calling udp_tunnel_get_rx_info,
10244 			 * but *after* calling udp_tunnel_drop_rx_info.
10245 			 */
10246 			if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
10247 				dev->features = features;
10248 				udp_tunnel_get_rx_info(dev);
10249 			} else {
10250 				udp_tunnel_drop_rx_info(dev);
10251 			}
10252 		}
10253 
10254 		if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
10255 			if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
10256 				dev->features = features;
10257 				err |= vlan_get_rx_ctag_filter_info(dev);
10258 			} else {
10259 				vlan_drop_rx_ctag_filter_info(dev);
10260 			}
10261 		}
10262 
10263 		if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
10264 			if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
10265 				dev->features = features;
10266 				err |= vlan_get_rx_stag_filter_info(dev);
10267 			} else {
10268 				vlan_drop_rx_stag_filter_info(dev);
10269 			}
10270 		}
10271 
10272 		dev->features = features;
10273 	}
10274 
10275 	return err < 0 ? 0 : 1;
10276 }
10277 
10278 /**
10279  *	netdev_update_features - recalculate device features
10280  *	@dev: the device to check
10281  *
10282  *	Recalculate dev->features set and send notifications if it
10283  *	has changed. Should be called after driver or hardware dependent
10284  *	conditions might have changed that influence the features.
10285  */
10286 void netdev_update_features(struct net_device *dev)
10287 {
10288 	if (__netdev_update_features(dev))
10289 		netdev_features_change(dev);
10290 }
10291 EXPORT_SYMBOL(netdev_update_features);
10292 
10293 /**
10294  *	netdev_change_features - recalculate device features
10295  *	@dev: the device to check
10296  *
10297  *	Recalculate dev->features set and send notifications even
10298  *	if they have not changed. Should be called instead of
10299  *	netdev_update_features() if also dev->vlan_features might
10300  *	have changed to allow the changes to be propagated to stacked
10301  *	VLAN devices.
10302  */
10303 void netdev_change_features(struct net_device *dev)
10304 {
10305 	__netdev_update_features(dev);
10306 	netdev_features_change(dev);
10307 }
10308 EXPORT_SYMBOL(netdev_change_features);
10309 
10310 /**
10311  *	netif_stacked_transfer_operstate -	transfer operstate
10312  *	@rootdev: the root or lower level device to transfer state from
10313  *	@dev: the device to transfer operstate to
10314  *
10315  *	Transfer operational state from root to device. This is normally
10316  *	called when a stacking relationship exists between the root
10317  *	device and the device(a leaf device).
10318  */
10319 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
10320 					struct net_device *dev)
10321 {
10322 	if (rootdev->operstate == IF_OPER_DORMANT)
10323 		netif_dormant_on(dev);
10324 	else
10325 		netif_dormant_off(dev);
10326 
10327 	if (rootdev->operstate == IF_OPER_TESTING)
10328 		netif_testing_on(dev);
10329 	else
10330 		netif_testing_off(dev);
10331 
10332 	if (netif_carrier_ok(rootdev))
10333 		netif_carrier_on(dev);
10334 	else
10335 		netif_carrier_off(dev);
10336 }
10337 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
10338 
10339 static int netif_alloc_rx_queues(struct net_device *dev)
10340 {
10341 	unsigned int i, count = dev->num_rx_queues;
10342 	struct netdev_rx_queue *rx;
10343 	size_t sz = count * sizeof(*rx);
10344 	int err = 0;
10345 
10346 	BUG_ON(count < 1);
10347 
10348 	rx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10349 	if (!rx)
10350 		return -ENOMEM;
10351 
10352 	dev->_rx = rx;
10353 
10354 	for (i = 0; i < count; i++) {
10355 		rx[i].dev = dev;
10356 
10357 		/* XDP RX-queue setup */
10358 		err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0);
10359 		if (err < 0)
10360 			goto err_rxq_info;
10361 	}
10362 	return 0;
10363 
10364 err_rxq_info:
10365 	/* Rollback successful reg's and free other resources */
10366 	while (i--)
10367 		xdp_rxq_info_unreg(&rx[i].xdp_rxq);
10368 	kvfree(dev->_rx);
10369 	dev->_rx = NULL;
10370 	return err;
10371 }
10372 
10373 static void netif_free_rx_queues(struct net_device *dev)
10374 {
10375 	unsigned int i, count = dev->num_rx_queues;
10376 
10377 	/* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
10378 	if (!dev->_rx)
10379 		return;
10380 
10381 	for (i = 0; i < count; i++)
10382 		xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
10383 
10384 	kvfree(dev->_rx);
10385 }
10386 
10387 static void netdev_init_one_queue(struct net_device *dev,
10388 				  struct netdev_queue *queue, void *_unused)
10389 {
10390 	/* Initialize queue lock */
10391 	spin_lock_init(&queue->_xmit_lock);
10392 	netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
10393 	queue->xmit_lock_owner = -1;
10394 	netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
10395 	queue->dev = dev;
10396 #ifdef CONFIG_BQL
10397 	dql_init(&queue->dql, HZ);
10398 #endif
10399 }
10400 
10401 static void netif_free_tx_queues(struct net_device *dev)
10402 {
10403 	kvfree(dev->_tx);
10404 }
10405 
10406 static int netif_alloc_netdev_queues(struct net_device *dev)
10407 {
10408 	unsigned int count = dev->num_tx_queues;
10409 	struct netdev_queue *tx;
10410 	size_t sz = count * sizeof(*tx);
10411 
10412 	if (count < 1 || count > 0xffff)
10413 		return -EINVAL;
10414 
10415 	tx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10416 	if (!tx)
10417 		return -ENOMEM;
10418 
10419 	dev->_tx = tx;
10420 
10421 	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
10422 	spin_lock_init(&dev->tx_global_lock);
10423 
10424 	return 0;
10425 }
10426 
10427 void netif_tx_stop_all_queues(struct net_device *dev)
10428 {
10429 	unsigned int i;
10430 
10431 	for (i = 0; i < dev->num_tx_queues; i++) {
10432 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
10433 
10434 		netif_tx_stop_queue(txq);
10435 	}
10436 }
10437 EXPORT_SYMBOL(netif_tx_stop_all_queues);
10438 
10439 static int netdev_do_alloc_pcpu_stats(struct net_device *dev)
10440 {
10441 	void __percpu *v;
10442 
10443 	/* Drivers implementing ndo_get_peer_dev must support tstat
10444 	 * accounting, so that skb_do_redirect() can bump the dev's
10445 	 * RX stats upon network namespace switch.
10446 	 */
10447 	if (dev->netdev_ops->ndo_get_peer_dev &&
10448 	    dev->pcpu_stat_type != NETDEV_PCPU_STAT_TSTATS)
10449 		return -EOPNOTSUPP;
10450 
10451 	switch (dev->pcpu_stat_type) {
10452 	case NETDEV_PCPU_STAT_NONE:
10453 		return 0;
10454 	case NETDEV_PCPU_STAT_LSTATS:
10455 		v = dev->lstats = netdev_alloc_pcpu_stats(struct pcpu_lstats);
10456 		break;
10457 	case NETDEV_PCPU_STAT_TSTATS:
10458 		v = dev->tstats = netdev_alloc_pcpu_stats(struct pcpu_sw_netstats);
10459 		break;
10460 	case NETDEV_PCPU_STAT_DSTATS:
10461 		v = dev->dstats = netdev_alloc_pcpu_stats(struct pcpu_dstats);
10462 		break;
10463 	default:
10464 		return -EINVAL;
10465 	}
10466 
10467 	return v ? 0 : -ENOMEM;
10468 }
10469 
10470 static void netdev_do_free_pcpu_stats(struct net_device *dev)
10471 {
10472 	switch (dev->pcpu_stat_type) {
10473 	case NETDEV_PCPU_STAT_NONE:
10474 		return;
10475 	case NETDEV_PCPU_STAT_LSTATS:
10476 		free_percpu(dev->lstats);
10477 		break;
10478 	case NETDEV_PCPU_STAT_TSTATS:
10479 		free_percpu(dev->tstats);
10480 		break;
10481 	case NETDEV_PCPU_STAT_DSTATS:
10482 		free_percpu(dev->dstats);
10483 		break;
10484 	}
10485 }
10486 
10487 static void netdev_free_phy_link_topology(struct net_device *dev)
10488 {
10489 	struct phy_link_topology *topo = dev->link_topo;
10490 
10491 	if (IS_ENABLED(CONFIG_PHYLIB) && topo) {
10492 		xa_destroy(&topo->phys);
10493 		kfree(topo);
10494 		dev->link_topo = NULL;
10495 	}
10496 }
10497 
10498 /**
10499  * register_netdevice() - register a network device
10500  * @dev: device to register
10501  *
10502  * Take a prepared network device structure and make it externally accessible.
10503  * A %NETDEV_REGISTER message is sent to the netdev notifier chain.
10504  * Callers must hold the rtnl lock - you may want register_netdev()
10505  * instead of this.
10506  */
10507 int register_netdevice(struct net_device *dev)
10508 {
10509 	int ret;
10510 	struct net *net = dev_net(dev);
10511 
10512 	BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
10513 		     NETDEV_FEATURE_COUNT);
10514 	BUG_ON(dev_boot_phase);
10515 	ASSERT_RTNL();
10516 
10517 	might_sleep();
10518 
10519 	/* When net_device's are persistent, this will be fatal. */
10520 	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
10521 	BUG_ON(!net);
10522 
10523 	ret = ethtool_check_ops(dev->ethtool_ops);
10524 	if (ret)
10525 		return ret;
10526 
10527 	/* rss ctx ID 0 is reserved for the default context, start from 1 */
10528 	xa_init_flags(&dev->ethtool->rss_ctx, XA_FLAGS_ALLOC1);
10529 	mutex_init(&dev->ethtool->rss_lock);
10530 
10531 	spin_lock_init(&dev->addr_list_lock);
10532 	netdev_set_addr_lockdep_class(dev);
10533 
10534 	ret = dev_get_valid_name(net, dev, dev->name);
10535 	if (ret < 0)
10536 		goto out;
10537 
10538 	ret = -ENOMEM;
10539 	dev->name_node = netdev_name_node_head_alloc(dev);
10540 	if (!dev->name_node)
10541 		goto out;
10542 
10543 	/* Init, if this function is available */
10544 	if (dev->netdev_ops->ndo_init) {
10545 		ret = dev->netdev_ops->ndo_init(dev);
10546 		if (ret) {
10547 			if (ret > 0)
10548 				ret = -EIO;
10549 			goto err_free_name;
10550 		}
10551 	}
10552 
10553 	if (((dev->hw_features | dev->features) &
10554 	     NETIF_F_HW_VLAN_CTAG_FILTER) &&
10555 	    (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
10556 	     !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
10557 		netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
10558 		ret = -EINVAL;
10559 		goto err_uninit;
10560 	}
10561 
10562 	ret = netdev_do_alloc_pcpu_stats(dev);
10563 	if (ret)
10564 		goto err_uninit;
10565 
10566 	ret = dev_index_reserve(net, dev->ifindex);
10567 	if (ret < 0)
10568 		goto err_free_pcpu;
10569 	dev->ifindex = ret;
10570 
10571 	/* Transfer changeable features to wanted_features and enable
10572 	 * software offloads (GSO and GRO).
10573 	 */
10574 	dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
10575 	dev->features |= NETIF_F_SOFT_FEATURES;
10576 
10577 	if (dev->udp_tunnel_nic_info) {
10578 		dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10579 		dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10580 	}
10581 
10582 	dev->wanted_features = dev->features & dev->hw_features;
10583 
10584 	if (!(dev->flags & IFF_LOOPBACK))
10585 		dev->hw_features |= NETIF_F_NOCACHE_COPY;
10586 
10587 	/* If IPv4 TCP segmentation offload is supported we should also
10588 	 * allow the device to enable segmenting the frame with the option
10589 	 * of ignoring a static IP ID value.  This doesn't enable the
10590 	 * feature itself but allows the user to enable it later.
10591 	 */
10592 	if (dev->hw_features & NETIF_F_TSO)
10593 		dev->hw_features |= NETIF_F_TSO_MANGLEID;
10594 	if (dev->vlan_features & NETIF_F_TSO)
10595 		dev->vlan_features |= NETIF_F_TSO_MANGLEID;
10596 	if (dev->mpls_features & NETIF_F_TSO)
10597 		dev->mpls_features |= NETIF_F_TSO_MANGLEID;
10598 	if (dev->hw_enc_features & NETIF_F_TSO)
10599 		dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
10600 
10601 	/* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
10602 	 */
10603 	dev->vlan_features |= NETIF_F_HIGHDMA;
10604 
10605 	/* Make NETIF_F_SG inheritable to tunnel devices.
10606 	 */
10607 	dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
10608 
10609 	/* Make NETIF_F_SG inheritable to MPLS.
10610 	 */
10611 	dev->mpls_features |= NETIF_F_SG;
10612 
10613 	ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
10614 	ret = notifier_to_errno(ret);
10615 	if (ret)
10616 		goto err_ifindex_release;
10617 
10618 	ret = netdev_register_kobject(dev);
10619 
10620 	WRITE_ONCE(dev->reg_state, ret ? NETREG_UNREGISTERED : NETREG_REGISTERED);
10621 
10622 	if (ret)
10623 		goto err_uninit_notify;
10624 
10625 	__netdev_update_features(dev);
10626 
10627 	/*
10628 	 *	Default initial state at registry is that the
10629 	 *	device is present.
10630 	 */
10631 
10632 	set_bit(__LINK_STATE_PRESENT, &dev->state);
10633 
10634 	linkwatch_init_dev(dev);
10635 
10636 	dev_init_scheduler(dev);
10637 
10638 	netdev_hold(dev, &dev->dev_registered_tracker, GFP_KERNEL);
10639 	list_netdevice(dev);
10640 
10641 	add_device_randomness(dev->dev_addr, dev->addr_len);
10642 
10643 	/* If the device has permanent device address, driver should
10644 	 * set dev_addr and also addr_assign_type should be set to
10645 	 * NET_ADDR_PERM (default value).
10646 	 */
10647 	if (dev->addr_assign_type == NET_ADDR_PERM)
10648 		memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
10649 
10650 	/* Notify protocols, that a new device appeared. */
10651 	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
10652 	ret = notifier_to_errno(ret);
10653 	if (ret) {
10654 		/* Expect explicit free_netdev() on failure */
10655 		dev->needs_free_netdev = false;
10656 		unregister_netdevice_queue(dev, NULL);
10657 		goto out;
10658 	}
10659 	/*
10660 	 *	Prevent userspace races by waiting until the network
10661 	 *	device is fully setup before sending notifications.
10662 	 */
10663 	if (!dev->rtnl_link_ops ||
10664 	    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10665 		rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL);
10666 
10667 out:
10668 	return ret;
10669 
10670 err_uninit_notify:
10671 	call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev);
10672 err_ifindex_release:
10673 	dev_index_release(net, dev->ifindex);
10674 err_free_pcpu:
10675 	netdev_do_free_pcpu_stats(dev);
10676 err_uninit:
10677 	if (dev->netdev_ops->ndo_uninit)
10678 		dev->netdev_ops->ndo_uninit(dev);
10679 	if (dev->priv_destructor)
10680 		dev->priv_destructor(dev);
10681 err_free_name:
10682 	netdev_name_node_free(dev->name_node);
10683 	goto out;
10684 }
10685 EXPORT_SYMBOL(register_netdevice);
10686 
10687 /* Initialize the core of a dummy net device.
10688  * This is useful if you are calling this function after alloc_netdev(),
10689  * since it does not memset the net_device fields.
10690  */
10691 static void init_dummy_netdev_core(struct net_device *dev)
10692 {
10693 	/* make sure we BUG if trying to hit standard
10694 	 * register/unregister code path
10695 	 */
10696 	dev->reg_state = NETREG_DUMMY;
10697 
10698 	/* NAPI wants this */
10699 	INIT_LIST_HEAD(&dev->napi_list);
10700 
10701 	/* a dummy interface is started by default */
10702 	set_bit(__LINK_STATE_PRESENT, &dev->state);
10703 	set_bit(__LINK_STATE_START, &dev->state);
10704 
10705 	/* napi_busy_loop stats accounting wants this */
10706 	dev_net_set(dev, &init_net);
10707 
10708 	/* Note : We dont allocate pcpu_refcnt for dummy devices,
10709 	 * because users of this 'device' dont need to change
10710 	 * its refcount.
10711 	 */
10712 }
10713 
10714 /**
10715  *	init_dummy_netdev	- init a dummy network device for NAPI
10716  *	@dev: device to init
10717  *
10718  *	This takes a network device structure and initializes the minimum
10719  *	amount of fields so it can be used to schedule NAPI polls without
10720  *	registering a full blown interface. This is to be used by drivers
10721  *	that need to tie several hardware interfaces to a single NAPI
10722  *	poll scheduler due to HW limitations.
10723  */
10724 void init_dummy_netdev(struct net_device *dev)
10725 {
10726 	/* Clear everything. Note we don't initialize spinlocks
10727 	 * as they aren't supposed to be taken by any of the
10728 	 * NAPI code and this dummy netdev is supposed to be
10729 	 * only ever used for NAPI polls
10730 	 */
10731 	memset(dev, 0, sizeof(struct net_device));
10732 	init_dummy_netdev_core(dev);
10733 }
10734 EXPORT_SYMBOL_GPL(init_dummy_netdev);
10735 
10736 /**
10737  *	register_netdev	- register a network device
10738  *	@dev: device to register
10739  *
10740  *	Take a completed network device structure and add it to the kernel
10741  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10742  *	chain. 0 is returned on success. A negative errno code is returned
10743  *	on a failure to set up the device, or if the name is a duplicate.
10744  *
10745  *	This is a wrapper around register_netdevice that takes the rtnl semaphore
10746  *	and expands the device name if you passed a format string to
10747  *	alloc_netdev.
10748  */
10749 int register_netdev(struct net_device *dev)
10750 {
10751 	int err;
10752 
10753 	if (rtnl_lock_killable())
10754 		return -EINTR;
10755 	err = register_netdevice(dev);
10756 	rtnl_unlock();
10757 	return err;
10758 }
10759 EXPORT_SYMBOL(register_netdev);
10760 
10761 int netdev_refcnt_read(const struct net_device *dev)
10762 {
10763 #ifdef CONFIG_PCPU_DEV_REFCNT
10764 	int i, refcnt = 0;
10765 
10766 	for_each_possible_cpu(i)
10767 		refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
10768 	return refcnt;
10769 #else
10770 	return refcount_read(&dev->dev_refcnt);
10771 #endif
10772 }
10773 EXPORT_SYMBOL(netdev_refcnt_read);
10774 
10775 int netdev_unregister_timeout_secs __read_mostly = 10;
10776 
10777 #define WAIT_REFS_MIN_MSECS 1
10778 #define WAIT_REFS_MAX_MSECS 250
10779 /**
10780  * netdev_wait_allrefs_any - wait until all references are gone.
10781  * @list: list of net_devices to wait on
10782  *
10783  * This is called when unregistering network devices.
10784  *
10785  * Any protocol or device that holds a reference should register
10786  * for netdevice notification, and cleanup and put back the
10787  * reference if they receive an UNREGISTER event.
10788  * We can get stuck here if buggy protocols don't correctly
10789  * call dev_put.
10790  */
10791 static struct net_device *netdev_wait_allrefs_any(struct list_head *list)
10792 {
10793 	unsigned long rebroadcast_time, warning_time;
10794 	struct net_device *dev;
10795 	int wait = 0;
10796 
10797 	rebroadcast_time = warning_time = jiffies;
10798 
10799 	list_for_each_entry(dev, list, todo_list)
10800 		if (netdev_refcnt_read(dev) == 1)
10801 			return dev;
10802 
10803 	while (true) {
10804 		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
10805 			rtnl_lock();
10806 
10807 			/* Rebroadcast unregister notification */
10808 			list_for_each_entry(dev, list, todo_list)
10809 				call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10810 
10811 			__rtnl_unlock();
10812 			rcu_barrier();
10813 			rtnl_lock();
10814 
10815 			list_for_each_entry(dev, list, todo_list)
10816 				if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
10817 					     &dev->state)) {
10818 					/* We must not have linkwatch events
10819 					 * pending on unregister. If this
10820 					 * happens, we simply run the queue
10821 					 * unscheduled, resulting in a noop
10822 					 * for this device.
10823 					 */
10824 					linkwatch_run_queue();
10825 					break;
10826 				}
10827 
10828 			__rtnl_unlock();
10829 
10830 			rebroadcast_time = jiffies;
10831 		}
10832 
10833 		rcu_barrier();
10834 
10835 		if (!wait) {
10836 			wait = WAIT_REFS_MIN_MSECS;
10837 		} else {
10838 			msleep(wait);
10839 			wait = min(wait << 1, WAIT_REFS_MAX_MSECS);
10840 		}
10841 
10842 		list_for_each_entry(dev, list, todo_list)
10843 			if (netdev_refcnt_read(dev) == 1)
10844 				return dev;
10845 
10846 		if (time_after(jiffies, warning_time +
10847 			       READ_ONCE(netdev_unregister_timeout_secs) * HZ)) {
10848 			list_for_each_entry(dev, list, todo_list) {
10849 				pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
10850 					 dev->name, netdev_refcnt_read(dev));
10851 				ref_tracker_dir_print(&dev->refcnt_tracker, 10);
10852 			}
10853 
10854 			warning_time = jiffies;
10855 		}
10856 	}
10857 }
10858 
10859 /* The sequence is:
10860  *
10861  *	rtnl_lock();
10862  *	...
10863  *	register_netdevice(x1);
10864  *	register_netdevice(x2);
10865  *	...
10866  *	unregister_netdevice(y1);
10867  *	unregister_netdevice(y2);
10868  *      ...
10869  *	rtnl_unlock();
10870  *	free_netdev(y1);
10871  *	free_netdev(y2);
10872  *
10873  * We are invoked by rtnl_unlock().
10874  * This allows us to deal with problems:
10875  * 1) We can delete sysfs objects which invoke hotplug
10876  *    without deadlocking with linkwatch via keventd.
10877  * 2) Since we run with the RTNL semaphore not held, we can sleep
10878  *    safely in order to wait for the netdev refcnt to drop to zero.
10879  *
10880  * We must not return until all unregister events added during
10881  * the interval the lock was held have been completed.
10882  */
10883 void netdev_run_todo(void)
10884 {
10885 	struct net_device *dev, *tmp;
10886 	struct list_head list;
10887 	int cnt;
10888 #ifdef CONFIG_LOCKDEP
10889 	struct list_head unlink_list;
10890 
10891 	list_replace_init(&net_unlink_list, &unlink_list);
10892 
10893 	while (!list_empty(&unlink_list)) {
10894 		struct net_device *dev = list_first_entry(&unlink_list,
10895 							  struct net_device,
10896 							  unlink_list);
10897 		list_del_init(&dev->unlink_list);
10898 		dev->nested_level = dev->lower_level - 1;
10899 	}
10900 #endif
10901 
10902 	/* Snapshot list, allow later requests */
10903 	list_replace_init(&net_todo_list, &list);
10904 
10905 	__rtnl_unlock();
10906 
10907 	/* Wait for rcu callbacks to finish before next phase */
10908 	if (!list_empty(&list))
10909 		rcu_barrier();
10910 
10911 	list_for_each_entry_safe(dev, tmp, &list, todo_list) {
10912 		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
10913 			netdev_WARN(dev, "run_todo but not unregistering\n");
10914 			list_del(&dev->todo_list);
10915 			continue;
10916 		}
10917 
10918 		WRITE_ONCE(dev->reg_state, NETREG_UNREGISTERED);
10919 		linkwatch_sync_dev(dev);
10920 	}
10921 
10922 	cnt = 0;
10923 	while (!list_empty(&list)) {
10924 		dev = netdev_wait_allrefs_any(&list);
10925 		list_del(&dev->todo_list);
10926 
10927 		/* paranoia */
10928 		BUG_ON(netdev_refcnt_read(dev) != 1);
10929 		BUG_ON(!list_empty(&dev->ptype_all));
10930 		BUG_ON(!list_empty(&dev->ptype_specific));
10931 		WARN_ON(rcu_access_pointer(dev->ip_ptr));
10932 		WARN_ON(rcu_access_pointer(dev->ip6_ptr));
10933 
10934 		netdev_do_free_pcpu_stats(dev);
10935 		if (dev->priv_destructor)
10936 			dev->priv_destructor(dev);
10937 		if (dev->needs_free_netdev)
10938 			free_netdev(dev);
10939 
10940 		cnt++;
10941 
10942 		/* Free network device */
10943 		kobject_put(&dev->dev.kobj);
10944 	}
10945 	if (cnt && atomic_sub_and_test(cnt, &dev_unreg_count))
10946 		wake_up(&netdev_unregistering_wq);
10947 }
10948 
10949 /* Collate per-cpu network dstats statistics
10950  *
10951  * Read per-cpu network statistics from dev->dstats and populate the related
10952  * fields in @s.
10953  */
10954 static void dev_fetch_dstats(struct rtnl_link_stats64 *s,
10955 			     const struct pcpu_dstats __percpu *dstats)
10956 {
10957 	int cpu;
10958 
10959 	for_each_possible_cpu(cpu) {
10960 		u64 rx_packets, rx_bytes, rx_drops;
10961 		u64 tx_packets, tx_bytes, tx_drops;
10962 		const struct pcpu_dstats *stats;
10963 		unsigned int start;
10964 
10965 		stats = per_cpu_ptr(dstats, cpu);
10966 		do {
10967 			start = u64_stats_fetch_begin(&stats->syncp);
10968 			rx_packets = u64_stats_read(&stats->rx_packets);
10969 			rx_bytes   = u64_stats_read(&stats->rx_bytes);
10970 			rx_drops   = u64_stats_read(&stats->rx_drops);
10971 			tx_packets = u64_stats_read(&stats->tx_packets);
10972 			tx_bytes   = u64_stats_read(&stats->tx_bytes);
10973 			tx_drops   = u64_stats_read(&stats->tx_drops);
10974 		} while (u64_stats_fetch_retry(&stats->syncp, start));
10975 
10976 		s->rx_packets += rx_packets;
10977 		s->rx_bytes   += rx_bytes;
10978 		s->rx_dropped += rx_drops;
10979 		s->tx_packets += tx_packets;
10980 		s->tx_bytes   += tx_bytes;
10981 		s->tx_dropped += tx_drops;
10982 	}
10983 }
10984 
10985 /* ndo_get_stats64 implementation for dtstats-based accounting.
10986  *
10987  * Populate @s from dev->stats and dev->dstats. This is used internally by the
10988  * core for NETDEV_PCPU_STAT_DSTAT-type stats collection.
10989  */
10990 static void dev_get_dstats64(const struct net_device *dev,
10991 			     struct rtnl_link_stats64 *s)
10992 {
10993 	netdev_stats_to_stats64(s, &dev->stats);
10994 	dev_fetch_dstats(s, dev->dstats);
10995 }
10996 
10997 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
10998  * all the same fields in the same order as net_device_stats, with only
10999  * the type differing, but rtnl_link_stats64 may have additional fields
11000  * at the end for newer counters.
11001  */
11002 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
11003 			     const struct net_device_stats *netdev_stats)
11004 {
11005 	size_t i, n = sizeof(*netdev_stats) / sizeof(atomic_long_t);
11006 	const atomic_long_t *src = (atomic_long_t *)netdev_stats;
11007 	u64 *dst = (u64 *)stats64;
11008 
11009 	BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
11010 	for (i = 0; i < n; i++)
11011 		dst[i] = (unsigned long)atomic_long_read(&src[i]);
11012 	/* zero out counters that only exist in rtnl_link_stats64 */
11013 	memset((char *)stats64 + n * sizeof(u64), 0,
11014 	       sizeof(*stats64) - n * sizeof(u64));
11015 }
11016 EXPORT_SYMBOL(netdev_stats_to_stats64);
11017 
11018 static __cold struct net_device_core_stats __percpu *netdev_core_stats_alloc(
11019 		struct net_device *dev)
11020 {
11021 	struct net_device_core_stats __percpu *p;
11022 
11023 	p = alloc_percpu_gfp(struct net_device_core_stats,
11024 			     GFP_ATOMIC | __GFP_NOWARN);
11025 
11026 	if (p && cmpxchg(&dev->core_stats, NULL, p))
11027 		free_percpu(p);
11028 
11029 	/* This READ_ONCE() pairs with the cmpxchg() above */
11030 	return READ_ONCE(dev->core_stats);
11031 }
11032 
11033 noinline void netdev_core_stats_inc(struct net_device *dev, u32 offset)
11034 {
11035 	/* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
11036 	struct net_device_core_stats __percpu *p = READ_ONCE(dev->core_stats);
11037 	unsigned long __percpu *field;
11038 
11039 	if (unlikely(!p)) {
11040 		p = netdev_core_stats_alloc(dev);
11041 		if (!p)
11042 			return;
11043 	}
11044 
11045 	field = (unsigned long __percpu *)((void __percpu *)p + offset);
11046 	this_cpu_inc(*field);
11047 }
11048 EXPORT_SYMBOL_GPL(netdev_core_stats_inc);
11049 
11050 /**
11051  *	dev_get_stats	- get network device statistics
11052  *	@dev: device to get statistics from
11053  *	@storage: place to store stats
11054  *
11055  *	Get network statistics from device. Return @storage.
11056  *	The device driver may provide its own method by setting
11057  *	dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
11058  *	otherwise the internal statistics structure is used.
11059  */
11060 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
11061 					struct rtnl_link_stats64 *storage)
11062 {
11063 	const struct net_device_ops *ops = dev->netdev_ops;
11064 	const struct net_device_core_stats __percpu *p;
11065 
11066 	if (ops->ndo_get_stats64) {
11067 		memset(storage, 0, sizeof(*storage));
11068 		ops->ndo_get_stats64(dev, storage);
11069 	} else if (ops->ndo_get_stats) {
11070 		netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
11071 	} else if (dev->pcpu_stat_type == NETDEV_PCPU_STAT_TSTATS) {
11072 		dev_get_tstats64(dev, storage);
11073 	} else if (dev->pcpu_stat_type == NETDEV_PCPU_STAT_DSTATS) {
11074 		dev_get_dstats64(dev, storage);
11075 	} else {
11076 		netdev_stats_to_stats64(storage, &dev->stats);
11077 	}
11078 
11079 	/* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
11080 	p = READ_ONCE(dev->core_stats);
11081 	if (p) {
11082 		const struct net_device_core_stats *core_stats;
11083 		int i;
11084 
11085 		for_each_possible_cpu(i) {
11086 			core_stats = per_cpu_ptr(p, i);
11087 			storage->rx_dropped += READ_ONCE(core_stats->rx_dropped);
11088 			storage->tx_dropped += READ_ONCE(core_stats->tx_dropped);
11089 			storage->rx_nohandler += READ_ONCE(core_stats->rx_nohandler);
11090 			storage->rx_otherhost_dropped += READ_ONCE(core_stats->rx_otherhost_dropped);
11091 		}
11092 	}
11093 	return storage;
11094 }
11095 EXPORT_SYMBOL(dev_get_stats);
11096 
11097 /**
11098  *	dev_fetch_sw_netstats - get per-cpu network device statistics
11099  *	@s: place to store stats
11100  *	@netstats: per-cpu network stats to read from
11101  *
11102  *	Read per-cpu network statistics and populate the related fields in @s.
11103  */
11104 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
11105 			   const struct pcpu_sw_netstats __percpu *netstats)
11106 {
11107 	int cpu;
11108 
11109 	for_each_possible_cpu(cpu) {
11110 		u64 rx_packets, rx_bytes, tx_packets, tx_bytes;
11111 		const struct pcpu_sw_netstats *stats;
11112 		unsigned int start;
11113 
11114 		stats = per_cpu_ptr(netstats, cpu);
11115 		do {
11116 			start = u64_stats_fetch_begin(&stats->syncp);
11117 			rx_packets = u64_stats_read(&stats->rx_packets);
11118 			rx_bytes   = u64_stats_read(&stats->rx_bytes);
11119 			tx_packets = u64_stats_read(&stats->tx_packets);
11120 			tx_bytes   = u64_stats_read(&stats->tx_bytes);
11121 		} while (u64_stats_fetch_retry(&stats->syncp, start));
11122 
11123 		s->rx_packets += rx_packets;
11124 		s->rx_bytes   += rx_bytes;
11125 		s->tx_packets += tx_packets;
11126 		s->tx_bytes   += tx_bytes;
11127 	}
11128 }
11129 EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats);
11130 
11131 /**
11132  *	dev_get_tstats64 - ndo_get_stats64 implementation
11133  *	@dev: device to get statistics from
11134  *	@s: place to store stats
11135  *
11136  *	Populate @s from dev->stats and dev->tstats. Can be used as
11137  *	ndo_get_stats64() callback.
11138  */
11139 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s)
11140 {
11141 	netdev_stats_to_stats64(s, &dev->stats);
11142 	dev_fetch_sw_netstats(s, dev->tstats);
11143 }
11144 EXPORT_SYMBOL_GPL(dev_get_tstats64);
11145 
11146 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
11147 {
11148 	struct netdev_queue *queue = dev_ingress_queue(dev);
11149 
11150 #ifdef CONFIG_NET_CLS_ACT
11151 	if (queue)
11152 		return queue;
11153 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
11154 	if (!queue)
11155 		return NULL;
11156 	netdev_init_one_queue(dev, queue, NULL);
11157 	RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
11158 	RCU_INIT_POINTER(queue->qdisc_sleeping, &noop_qdisc);
11159 	rcu_assign_pointer(dev->ingress_queue, queue);
11160 #endif
11161 	return queue;
11162 }
11163 
11164 static const struct ethtool_ops default_ethtool_ops;
11165 
11166 void netdev_set_default_ethtool_ops(struct net_device *dev,
11167 				    const struct ethtool_ops *ops)
11168 {
11169 	if (dev->ethtool_ops == &default_ethtool_ops)
11170 		dev->ethtool_ops = ops;
11171 }
11172 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
11173 
11174 /**
11175  * netdev_sw_irq_coalesce_default_on() - enable SW IRQ coalescing by default
11176  * @dev: netdev to enable the IRQ coalescing on
11177  *
11178  * Sets a conservative default for SW IRQ coalescing. Users can use
11179  * sysfs attributes to override the default values.
11180  */
11181 void netdev_sw_irq_coalesce_default_on(struct net_device *dev)
11182 {
11183 	WARN_ON(dev->reg_state == NETREG_REGISTERED);
11184 
11185 	if (!IS_ENABLED(CONFIG_PREEMPT_RT)) {
11186 		netdev_set_gro_flush_timeout(dev, 20000);
11187 		netdev_set_defer_hard_irqs(dev, 1);
11188 	}
11189 }
11190 EXPORT_SYMBOL_GPL(netdev_sw_irq_coalesce_default_on);
11191 
11192 /**
11193  * alloc_netdev_mqs - allocate network device
11194  * @sizeof_priv: size of private data to allocate space for
11195  * @name: device name format string
11196  * @name_assign_type: origin of device name
11197  * @setup: callback to initialize device
11198  * @txqs: the number of TX subqueues to allocate
11199  * @rxqs: the number of RX subqueues to allocate
11200  *
11201  * Allocates a struct net_device with private data area for driver use
11202  * and performs basic initialization.  Also allocates subqueue structs
11203  * for each queue on the device.
11204  */
11205 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
11206 		unsigned char name_assign_type,
11207 		void (*setup)(struct net_device *),
11208 		unsigned int txqs, unsigned int rxqs)
11209 {
11210 	struct net_device *dev;
11211 	size_t napi_config_sz;
11212 	unsigned int maxqs;
11213 
11214 	BUG_ON(strlen(name) >= sizeof(dev->name));
11215 
11216 	if (txqs < 1) {
11217 		pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
11218 		return NULL;
11219 	}
11220 
11221 	if (rxqs < 1) {
11222 		pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
11223 		return NULL;
11224 	}
11225 
11226 	maxqs = max(txqs, rxqs);
11227 
11228 	dev = kvzalloc(struct_size(dev, priv, sizeof_priv),
11229 		       GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
11230 	if (!dev)
11231 		return NULL;
11232 
11233 	dev->priv_len = sizeof_priv;
11234 
11235 	ref_tracker_dir_init(&dev->refcnt_tracker, 128, name);
11236 #ifdef CONFIG_PCPU_DEV_REFCNT
11237 	dev->pcpu_refcnt = alloc_percpu(int);
11238 	if (!dev->pcpu_refcnt)
11239 		goto free_dev;
11240 	__dev_hold(dev);
11241 #else
11242 	refcount_set(&dev->dev_refcnt, 1);
11243 #endif
11244 
11245 	if (dev_addr_init(dev))
11246 		goto free_pcpu;
11247 
11248 	dev_mc_init(dev);
11249 	dev_uc_init(dev);
11250 
11251 	dev_net_set(dev, &init_net);
11252 
11253 	dev->gso_max_size = GSO_LEGACY_MAX_SIZE;
11254 	dev->xdp_zc_max_segs = 1;
11255 	dev->gso_max_segs = GSO_MAX_SEGS;
11256 	dev->gro_max_size = GRO_LEGACY_MAX_SIZE;
11257 	dev->gso_ipv4_max_size = GSO_LEGACY_MAX_SIZE;
11258 	dev->gro_ipv4_max_size = GRO_LEGACY_MAX_SIZE;
11259 	dev->tso_max_size = TSO_LEGACY_MAX_SIZE;
11260 	dev->tso_max_segs = TSO_MAX_SEGS;
11261 	dev->upper_level = 1;
11262 	dev->lower_level = 1;
11263 #ifdef CONFIG_LOCKDEP
11264 	dev->nested_level = 0;
11265 	INIT_LIST_HEAD(&dev->unlink_list);
11266 #endif
11267 
11268 	INIT_LIST_HEAD(&dev->napi_list);
11269 	INIT_LIST_HEAD(&dev->unreg_list);
11270 	INIT_LIST_HEAD(&dev->close_list);
11271 	INIT_LIST_HEAD(&dev->link_watch_list);
11272 	INIT_LIST_HEAD(&dev->adj_list.upper);
11273 	INIT_LIST_HEAD(&dev->adj_list.lower);
11274 	INIT_LIST_HEAD(&dev->ptype_all);
11275 	INIT_LIST_HEAD(&dev->ptype_specific);
11276 	INIT_LIST_HEAD(&dev->net_notifier_list);
11277 #ifdef CONFIG_NET_SCHED
11278 	hash_init(dev->qdisc_hash);
11279 #endif
11280 
11281 	mutex_init(&dev->lock);
11282 
11283 	dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
11284 	setup(dev);
11285 
11286 	if (!dev->tx_queue_len) {
11287 		dev->priv_flags |= IFF_NO_QUEUE;
11288 		dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
11289 	}
11290 
11291 	dev->num_tx_queues = txqs;
11292 	dev->real_num_tx_queues = txqs;
11293 	if (netif_alloc_netdev_queues(dev))
11294 		goto free_all;
11295 
11296 	dev->num_rx_queues = rxqs;
11297 	dev->real_num_rx_queues = rxqs;
11298 	if (netif_alloc_rx_queues(dev))
11299 		goto free_all;
11300 	dev->ethtool = kzalloc(sizeof(*dev->ethtool), GFP_KERNEL_ACCOUNT);
11301 	if (!dev->ethtool)
11302 		goto free_all;
11303 
11304 	napi_config_sz = array_size(maxqs, sizeof(*dev->napi_config));
11305 	dev->napi_config = kvzalloc(napi_config_sz, GFP_KERNEL_ACCOUNT);
11306 	if (!dev->napi_config)
11307 		goto free_all;
11308 
11309 	strscpy(dev->name, name);
11310 	dev->name_assign_type = name_assign_type;
11311 	dev->group = INIT_NETDEV_GROUP;
11312 	if (!dev->ethtool_ops)
11313 		dev->ethtool_ops = &default_ethtool_ops;
11314 
11315 	nf_hook_netdev_init(dev);
11316 
11317 	return dev;
11318 
11319 free_all:
11320 	free_netdev(dev);
11321 	return NULL;
11322 
11323 free_pcpu:
11324 #ifdef CONFIG_PCPU_DEV_REFCNT
11325 	free_percpu(dev->pcpu_refcnt);
11326 free_dev:
11327 #endif
11328 	kvfree(dev);
11329 	return NULL;
11330 }
11331 EXPORT_SYMBOL(alloc_netdev_mqs);
11332 
11333 /**
11334  * free_netdev - free network device
11335  * @dev: device
11336  *
11337  * This function does the last stage of destroying an allocated device
11338  * interface. The reference to the device object is released. If this
11339  * is the last reference then it will be freed.Must be called in process
11340  * context.
11341  */
11342 void free_netdev(struct net_device *dev)
11343 {
11344 	struct napi_struct *p, *n;
11345 
11346 	might_sleep();
11347 
11348 	/* When called immediately after register_netdevice() failed the unwind
11349 	 * handling may still be dismantling the device. Handle that case by
11350 	 * deferring the free.
11351 	 */
11352 	if (dev->reg_state == NETREG_UNREGISTERING) {
11353 		ASSERT_RTNL();
11354 		dev->needs_free_netdev = true;
11355 		return;
11356 	}
11357 
11358 	mutex_destroy(&dev->lock);
11359 
11360 	kfree(dev->ethtool);
11361 	netif_free_tx_queues(dev);
11362 	netif_free_rx_queues(dev);
11363 
11364 	kfree(rcu_dereference_protected(dev->ingress_queue, 1));
11365 
11366 	/* Flush device addresses */
11367 	dev_addr_flush(dev);
11368 
11369 	list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
11370 		netif_napi_del(p);
11371 
11372 	kvfree(dev->napi_config);
11373 
11374 	ref_tracker_dir_exit(&dev->refcnt_tracker);
11375 #ifdef CONFIG_PCPU_DEV_REFCNT
11376 	free_percpu(dev->pcpu_refcnt);
11377 	dev->pcpu_refcnt = NULL;
11378 #endif
11379 	free_percpu(dev->core_stats);
11380 	dev->core_stats = NULL;
11381 	free_percpu(dev->xdp_bulkq);
11382 	dev->xdp_bulkq = NULL;
11383 
11384 	netdev_free_phy_link_topology(dev);
11385 
11386 	/*  Compatibility with error handling in drivers */
11387 	if (dev->reg_state == NETREG_UNINITIALIZED ||
11388 	    dev->reg_state == NETREG_DUMMY) {
11389 		kvfree(dev);
11390 		return;
11391 	}
11392 
11393 	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
11394 	WRITE_ONCE(dev->reg_state, NETREG_RELEASED);
11395 
11396 	/* will free via device release */
11397 	put_device(&dev->dev);
11398 }
11399 EXPORT_SYMBOL(free_netdev);
11400 
11401 /**
11402  * alloc_netdev_dummy - Allocate and initialize a dummy net device.
11403  * @sizeof_priv: size of private data to allocate space for
11404  *
11405  * Return: the allocated net_device on success, NULL otherwise
11406  */
11407 struct net_device *alloc_netdev_dummy(int sizeof_priv)
11408 {
11409 	return alloc_netdev(sizeof_priv, "dummy#", NET_NAME_UNKNOWN,
11410 			    init_dummy_netdev_core);
11411 }
11412 EXPORT_SYMBOL_GPL(alloc_netdev_dummy);
11413 
11414 /**
11415  *	synchronize_net -  Synchronize with packet receive processing
11416  *
11417  *	Wait for packets currently being received to be done.
11418  *	Does not block later packets from starting.
11419  */
11420 void synchronize_net(void)
11421 {
11422 	might_sleep();
11423 	if (rtnl_is_locked())
11424 		synchronize_rcu_expedited();
11425 	else
11426 		synchronize_rcu();
11427 }
11428 EXPORT_SYMBOL(synchronize_net);
11429 
11430 static void netdev_rss_contexts_free(struct net_device *dev)
11431 {
11432 	struct ethtool_rxfh_context *ctx;
11433 	unsigned long context;
11434 
11435 	mutex_lock(&dev->ethtool->rss_lock);
11436 	xa_for_each(&dev->ethtool->rss_ctx, context, ctx) {
11437 		struct ethtool_rxfh_param rxfh;
11438 
11439 		rxfh.indir = ethtool_rxfh_context_indir(ctx);
11440 		rxfh.key = ethtool_rxfh_context_key(ctx);
11441 		rxfh.hfunc = ctx->hfunc;
11442 		rxfh.input_xfrm = ctx->input_xfrm;
11443 		rxfh.rss_context = context;
11444 		rxfh.rss_delete = true;
11445 
11446 		xa_erase(&dev->ethtool->rss_ctx, context);
11447 		if (dev->ethtool_ops->create_rxfh_context)
11448 			dev->ethtool_ops->remove_rxfh_context(dev, ctx,
11449 							      context, NULL);
11450 		else
11451 			dev->ethtool_ops->set_rxfh(dev, &rxfh, NULL);
11452 		kfree(ctx);
11453 	}
11454 	xa_destroy(&dev->ethtool->rss_ctx);
11455 	mutex_unlock(&dev->ethtool->rss_lock);
11456 }
11457 
11458 /**
11459  *	unregister_netdevice_queue - remove device from the kernel
11460  *	@dev: device
11461  *	@head: list
11462  *
11463  *	This function shuts down a device interface and removes it
11464  *	from the kernel tables.
11465  *	If head not NULL, device is queued to be unregistered later.
11466  *
11467  *	Callers must hold the rtnl semaphore.  You may want
11468  *	unregister_netdev() instead of this.
11469  */
11470 
11471 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
11472 {
11473 	ASSERT_RTNL();
11474 
11475 	if (head) {
11476 		list_move_tail(&dev->unreg_list, head);
11477 	} else {
11478 		LIST_HEAD(single);
11479 
11480 		list_add(&dev->unreg_list, &single);
11481 		unregister_netdevice_many(&single);
11482 	}
11483 }
11484 EXPORT_SYMBOL(unregister_netdevice_queue);
11485 
11486 void unregister_netdevice_many_notify(struct list_head *head,
11487 				      u32 portid, const struct nlmsghdr *nlh)
11488 {
11489 	struct net_device *dev, *tmp;
11490 	LIST_HEAD(close_head);
11491 	int cnt = 0;
11492 
11493 	BUG_ON(dev_boot_phase);
11494 	ASSERT_RTNL();
11495 
11496 	if (list_empty(head))
11497 		return;
11498 
11499 	list_for_each_entry_safe(dev, tmp, head, unreg_list) {
11500 		/* Some devices call without registering
11501 		 * for initialization unwind. Remove those
11502 		 * devices and proceed with the remaining.
11503 		 */
11504 		if (dev->reg_state == NETREG_UNINITIALIZED) {
11505 			pr_debug("unregister_netdevice: device %s/%p never was registered\n",
11506 				 dev->name, dev);
11507 
11508 			WARN_ON(1);
11509 			list_del(&dev->unreg_list);
11510 			continue;
11511 		}
11512 		dev->dismantle = true;
11513 		BUG_ON(dev->reg_state != NETREG_REGISTERED);
11514 	}
11515 
11516 	/* If device is running, close it first. */
11517 	list_for_each_entry(dev, head, unreg_list)
11518 		list_add_tail(&dev->close_list, &close_head);
11519 	dev_close_many(&close_head, true);
11520 
11521 	list_for_each_entry(dev, head, unreg_list) {
11522 		/* And unlink it from device chain. */
11523 		unlist_netdevice(dev);
11524 		WRITE_ONCE(dev->reg_state, NETREG_UNREGISTERING);
11525 	}
11526 	flush_all_backlogs();
11527 
11528 	synchronize_net();
11529 
11530 	list_for_each_entry(dev, head, unreg_list) {
11531 		struct sk_buff *skb = NULL;
11532 
11533 		/* Shutdown queueing discipline. */
11534 		dev_shutdown(dev);
11535 		dev_tcx_uninstall(dev);
11536 		dev_xdp_uninstall(dev);
11537 		bpf_dev_bound_netdev_unregister(dev);
11538 		dev_dmabuf_uninstall(dev);
11539 
11540 		netdev_offload_xstats_disable_all(dev);
11541 
11542 		/* Notify protocols, that we are about to destroy
11543 		 * this device. They should clean all the things.
11544 		 */
11545 		call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11546 
11547 		if (!dev->rtnl_link_ops ||
11548 		    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
11549 			skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
11550 						     GFP_KERNEL, NULL, 0,
11551 						     portid, nlh);
11552 
11553 		/*
11554 		 *	Flush the unicast and multicast chains
11555 		 */
11556 		dev_uc_flush(dev);
11557 		dev_mc_flush(dev);
11558 
11559 		netdev_name_node_alt_flush(dev);
11560 		netdev_name_node_free(dev->name_node);
11561 
11562 		netdev_rss_contexts_free(dev);
11563 
11564 		call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev);
11565 
11566 		if (dev->netdev_ops->ndo_uninit)
11567 			dev->netdev_ops->ndo_uninit(dev);
11568 
11569 		mutex_destroy(&dev->ethtool->rss_lock);
11570 
11571 		net_shaper_flush_netdev(dev);
11572 
11573 		if (skb)
11574 			rtmsg_ifinfo_send(skb, dev, GFP_KERNEL, portid, nlh);
11575 
11576 		/* Notifier chain MUST detach us all upper devices. */
11577 		WARN_ON(netdev_has_any_upper_dev(dev));
11578 		WARN_ON(netdev_has_any_lower_dev(dev));
11579 
11580 		/* Remove entries from kobject tree */
11581 		netdev_unregister_kobject(dev);
11582 #ifdef CONFIG_XPS
11583 		/* Remove XPS queueing entries */
11584 		netif_reset_xps_queues_gt(dev, 0);
11585 #endif
11586 	}
11587 
11588 	synchronize_net();
11589 
11590 	list_for_each_entry(dev, head, unreg_list) {
11591 		netdev_put(dev, &dev->dev_registered_tracker);
11592 		net_set_todo(dev);
11593 		cnt++;
11594 	}
11595 	atomic_add(cnt, &dev_unreg_count);
11596 
11597 	list_del(head);
11598 }
11599 
11600 /**
11601  *	unregister_netdevice_many - unregister many devices
11602  *	@head: list of devices
11603  *
11604  *  Note: As most callers use a stack allocated list_head,
11605  *  we force a list_del() to make sure stack won't be corrupted later.
11606  */
11607 void unregister_netdevice_many(struct list_head *head)
11608 {
11609 	unregister_netdevice_many_notify(head, 0, NULL);
11610 }
11611 EXPORT_SYMBOL(unregister_netdevice_many);
11612 
11613 /**
11614  *	unregister_netdev - remove device from the kernel
11615  *	@dev: device
11616  *
11617  *	This function shuts down a device interface and removes it
11618  *	from the kernel tables.
11619  *
11620  *	This is just a wrapper for unregister_netdevice that takes
11621  *	the rtnl semaphore.  In general you want to use this and not
11622  *	unregister_netdevice.
11623  */
11624 void unregister_netdev(struct net_device *dev)
11625 {
11626 	rtnl_lock();
11627 	unregister_netdevice(dev);
11628 	rtnl_unlock();
11629 }
11630 EXPORT_SYMBOL(unregister_netdev);
11631 
11632 /**
11633  *	__dev_change_net_namespace - move device to different nethost namespace
11634  *	@dev: device
11635  *	@net: network namespace
11636  *	@pat: If not NULL name pattern to try if the current device name
11637  *	      is already taken in the destination network namespace.
11638  *	@new_ifindex: If not zero, specifies device index in the target
11639  *	              namespace.
11640  *
11641  *	This function shuts down a device interface and moves it
11642  *	to a new network namespace. On success 0 is returned, on
11643  *	a failure a netagive errno code is returned.
11644  *
11645  *	Callers must hold the rtnl semaphore.
11646  */
11647 
11648 int __dev_change_net_namespace(struct net_device *dev, struct net *net,
11649 			       const char *pat, int new_ifindex)
11650 {
11651 	struct netdev_name_node *name_node;
11652 	struct net *net_old = dev_net(dev);
11653 	char new_name[IFNAMSIZ] = {};
11654 	int err, new_nsid;
11655 
11656 	ASSERT_RTNL();
11657 
11658 	/* Don't allow namespace local devices to be moved. */
11659 	err = -EINVAL;
11660 	if (dev->netns_local)
11661 		goto out;
11662 
11663 	/* Ensure the device has been registered */
11664 	if (dev->reg_state != NETREG_REGISTERED)
11665 		goto out;
11666 
11667 	/* Get out if there is nothing todo */
11668 	err = 0;
11669 	if (net_eq(net_old, net))
11670 		goto out;
11671 
11672 	/* Pick the destination device name, and ensure
11673 	 * we can use it in the destination network namespace.
11674 	 */
11675 	err = -EEXIST;
11676 	if (netdev_name_in_use(net, dev->name)) {
11677 		/* We get here if we can't use the current device name */
11678 		if (!pat)
11679 			goto out;
11680 		err = dev_prep_valid_name(net, dev, pat, new_name, EEXIST);
11681 		if (err < 0)
11682 			goto out;
11683 	}
11684 	/* Check that none of the altnames conflicts. */
11685 	err = -EEXIST;
11686 	netdev_for_each_altname(dev, name_node)
11687 		if (netdev_name_in_use(net, name_node->name))
11688 			goto out;
11689 
11690 	/* Check that new_ifindex isn't used yet. */
11691 	if (new_ifindex) {
11692 		err = dev_index_reserve(net, new_ifindex);
11693 		if (err < 0)
11694 			goto out;
11695 	} else {
11696 		/* If there is an ifindex conflict assign a new one */
11697 		err = dev_index_reserve(net, dev->ifindex);
11698 		if (err == -EBUSY)
11699 			err = dev_index_reserve(net, 0);
11700 		if (err < 0)
11701 			goto out;
11702 		new_ifindex = err;
11703 	}
11704 
11705 	/*
11706 	 * And now a mini version of register_netdevice unregister_netdevice.
11707 	 */
11708 
11709 	/* If device is running close it first. */
11710 	dev_close(dev);
11711 
11712 	/* And unlink it from device chain */
11713 	unlist_netdevice(dev);
11714 
11715 	synchronize_net();
11716 
11717 	/* Shutdown queueing discipline. */
11718 	dev_shutdown(dev);
11719 
11720 	/* Notify protocols, that we are about to destroy
11721 	 * this device. They should clean all the things.
11722 	 *
11723 	 * Note that dev->reg_state stays at NETREG_REGISTERED.
11724 	 * This is wanted because this way 8021q and macvlan know
11725 	 * the device is just moving and can keep their slaves up.
11726 	 */
11727 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11728 	rcu_barrier();
11729 
11730 	new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
11731 
11732 	rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
11733 			    new_ifindex);
11734 
11735 	/*
11736 	 *	Flush the unicast and multicast chains
11737 	 */
11738 	dev_uc_flush(dev);
11739 	dev_mc_flush(dev);
11740 
11741 	/* Send a netdev-removed uevent to the old namespace */
11742 	kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
11743 	netdev_adjacent_del_links(dev);
11744 
11745 	/* Move per-net netdevice notifiers that are following the netdevice */
11746 	move_netdevice_notifiers_dev_net(dev, net);
11747 
11748 	/* Actually switch the network namespace */
11749 	dev_net_set(dev, net);
11750 	dev->ifindex = new_ifindex;
11751 
11752 	if (new_name[0]) {
11753 		/* Rename the netdev to prepared name */
11754 		write_seqlock_bh(&netdev_rename_lock);
11755 		strscpy(dev->name, new_name, IFNAMSIZ);
11756 		write_sequnlock_bh(&netdev_rename_lock);
11757 	}
11758 
11759 	/* Fixup kobjects */
11760 	dev_set_uevent_suppress(&dev->dev, 1);
11761 	err = device_rename(&dev->dev, dev->name);
11762 	dev_set_uevent_suppress(&dev->dev, 0);
11763 	WARN_ON(err);
11764 
11765 	/* Send a netdev-add uevent to the new namespace */
11766 	kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
11767 	netdev_adjacent_add_links(dev);
11768 
11769 	/* Adapt owner in case owning user namespace of target network
11770 	 * namespace is different from the original one.
11771 	 */
11772 	err = netdev_change_owner(dev, net_old, net);
11773 	WARN_ON(err);
11774 
11775 	/* Add the device back in the hashes */
11776 	list_netdevice(dev);
11777 
11778 	/* Notify protocols, that a new device appeared. */
11779 	call_netdevice_notifiers(NETDEV_REGISTER, dev);
11780 
11781 	/*
11782 	 *	Prevent userspace races by waiting until the network
11783 	 *	device is fully setup before sending notifications.
11784 	 */
11785 	rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL);
11786 
11787 	synchronize_net();
11788 	err = 0;
11789 out:
11790 	return err;
11791 }
11792 EXPORT_SYMBOL_GPL(__dev_change_net_namespace);
11793 
11794 static int dev_cpu_dead(unsigned int oldcpu)
11795 {
11796 	struct sk_buff **list_skb;
11797 	struct sk_buff *skb;
11798 	unsigned int cpu;
11799 	struct softnet_data *sd, *oldsd, *remsd = NULL;
11800 
11801 	local_irq_disable();
11802 	cpu = smp_processor_id();
11803 	sd = &per_cpu(softnet_data, cpu);
11804 	oldsd = &per_cpu(softnet_data, oldcpu);
11805 
11806 	/* Find end of our completion_queue. */
11807 	list_skb = &sd->completion_queue;
11808 	while (*list_skb)
11809 		list_skb = &(*list_skb)->next;
11810 	/* Append completion queue from offline CPU. */
11811 	*list_skb = oldsd->completion_queue;
11812 	oldsd->completion_queue = NULL;
11813 
11814 	/* Append output queue from offline CPU. */
11815 	if (oldsd->output_queue) {
11816 		*sd->output_queue_tailp = oldsd->output_queue;
11817 		sd->output_queue_tailp = oldsd->output_queue_tailp;
11818 		oldsd->output_queue = NULL;
11819 		oldsd->output_queue_tailp = &oldsd->output_queue;
11820 	}
11821 	/* Append NAPI poll list from offline CPU, with one exception :
11822 	 * process_backlog() must be called by cpu owning percpu backlog.
11823 	 * We properly handle process_queue & input_pkt_queue later.
11824 	 */
11825 	while (!list_empty(&oldsd->poll_list)) {
11826 		struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
11827 							    struct napi_struct,
11828 							    poll_list);
11829 
11830 		list_del_init(&napi->poll_list);
11831 		if (napi->poll == process_backlog)
11832 			napi->state &= NAPIF_STATE_THREADED;
11833 		else
11834 			____napi_schedule(sd, napi);
11835 	}
11836 
11837 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
11838 	local_irq_enable();
11839 
11840 	if (!use_backlog_threads()) {
11841 #ifdef CONFIG_RPS
11842 		remsd = oldsd->rps_ipi_list;
11843 		oldsd->rps_ipi_list = NULL;
11844 #endif
11845 		/* send out pending IPI's on offline CPU */
11846 		net_rps_send_ipi(remsd);
11847 	}
11848 
11849 	/* Process offline CPU's input_pkt_queue */
11850 	while ((skb = __skb_dequeue(&oldsd->process_queue))) {
11851 		netif_rx(skb);
11852 		rps_input_queue_head_incr(oldsd);
11853 	}
11854 	while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
11855 		netif_rx(skb);
11856 		rps_input_queue_head_incr(oldsd);
11857 	}
11858 
11859 	return 0;
11860 }
11861 
11862 /**
11863  *	netdev_increment_features - increment feature set by one
11864  *	@all: current feature set
11865  *	@one: new feature set
11866  *	@mask: mask feature set
11867  *
11868  *	Computes a new feature set after adding a device with feature set
11869  *	@one to the master device with current feature set @all.  Will not
11870  *	enable anything that is off in @mask. Returns the new feature set.
11871  */
11872 netdev_features_t netdev_increment_features(netdev_features_t all,
11873 	netdev_features_t one, netdev_features_t mask)
11874 {
11875 	if (mask & NETIF_F_HW_CSUM)
11876 		mask |= NETIF_F_CSUM_MASK;
11877 	mask |= NETIF_F_VLAN_CHALLENGED;
11878 
11879 	all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
11880 	all &= one | ~NETIF_F_ALL_FOR_ALL;
11881 
11882 	/* If one device supports hw checksumming, set for all. */
11883 	if (all & NETIF_F_HW_CSUM)
11884 		all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
11885 
11886 	return all;
11887 }
11888 EXPORT_SYMBOL(netdev_increment_features);
11889 
11890 static struct hlist_head * __net_init netdev_create_hash(void)
11891 {
11892 	int i;
11893 	struct hlist_head *hash;
11894 
11895 	hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
11896 	if (hash != NULL)
11897 		for (i = 0; i < NETDEV_HASHENTRIES; i++)
11898 			INIT_HLIST_HEAD(&hash[i]);
11899 
11900 	return hash;
11901 }
11902 
11903 /* Initialize per network namespace state */
11904 static int __net_init netdev_init(struct net *net)
11905 {
11906 	BUILD_BUG_ON(GRO_HASH_BUCKETS >
11907 		     8 * sizeof_field(struct napi_struct, gro_bitmask));
11908 
11909 	INIT_LIST_HEAD(&net->dev_base_head);
11910 
11911 	net->dev_name_head = netdev_create_hash();
11912 	if (net->dev_name_head == NULL)
11913 		goto err_name;
11914 
11915 	net->dev_index_head = netdev_create_hash();
11916 	if (net->dev_index_head == NULL)
11917 		goto err_idx;
11918 
11919 	xa_init_flags(&net->dev_by_index, XA_FLAGS_ALLOC1);
11920 
11921 	RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
11922 
11923 	return 0;
11924 
11925 err_idx:
11926 	kfree(net->dev_name_head);
11927 err_name:
11928 	return -ENOMEM;
11929 }
11930 
11931 /**
11932  *	netdev_drivername - network driver for the device
11933  *	@dev: network device
11934  *
11935  *	Determine network driver for device.
11936  */
11937 const char *netdev_drivername(const struct net_device *dev)
11938 {
11939 	const struct device_driver *driver;
11940 	const struct device *parent;
11941 	const char *empty = "";
11942 
11943 	parent = dev->dev.parent;
11944 	if (!parent)
11945 		return empty;
11946 
11947 	driver = parent->driver;
11948 	if (driver && driver->name)
11949 		return driver->name;
11950 	return empty;
11951 }
11952 
11953 static void __netdev_printk(const char *level, const struct net_device *dev,
11954 			    struct va_format *vaf)
11955 {
11956 	if (dev && dev->dev.parent) {
11957 		dev_printk_emit(level[1] - '0',
11958 				dev->dev.parent,
11959 				"%s %s %s%s: %pV",
11960 				dev_driver_string(dev->dev.parent),
11961 				dev_name(dev->dev.parent),
11962 				netdev_name(dev), netdev_reg_state(dev),
11963 				vaf);
11964 	} else if (dev) {
11965 		printk("%s%s%s: %pV",
11966 		       level, netdev_name(dev), netdev_reg_state(dev), vaf);
11967 	} else {
11968 		printk("%s(NULL net_device): %pV", level, vaf);
11969 	}
11970 }
11971 
11972 void netdev_printk(const char *level, const struct net_device *dev,
11973 		   const char *format, ...)
11974 {
11975 	struct va_format vaf;
11976 	va_list args;
11977 
11978 	va_start(args, format);
11979 
11980 	vaf.fmt = format;
11981 	vaf.va = &args;
11982 
11983 	__netdev_printk(level, dev, &vaf);
11984 
11985 	va_end(args);
11986 }
11987 EXPORT_SYMBOL(netdev_printk);
11988 
11989 #define define_netdev_printk_level(func, level)			\
11990 void func(const struct net_device *dev, const char *fmt, ...)	\
11991 {								\
11992 	struct va_format vaf;					\
11993 	va_list args;						\
11994 								\
11995 	va_start(args, fmt);					\
11996 								\
11997 	vaf.fmt = fmt;						\
11998 	vaf.va = &args;						\
11999 								\
12000 	__netdev_printk(level, dev, &vaf);			\
12001 								\
12002 	va_end(args);						\
12003 }								\
12004 EXPORT_SYMBOL(func);
12005 
12006 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
12007 define_netdev_printk_level(netdev_alert, KERN_ALERT);
12008 define_netdev_printk_level(netdev_crit, KERN_CRIT);
12009 define_netdev_printk_level(netdev_err, KERN_ERR);
12010 define_netdev_printk_level(netdev_warn, KERN_WARNING);
12011 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
12012 define_netdev_printk_level(netdev_info, KERN_INFO);
12013 
12014 static void __net_exit netdev_exit(struct net *net)
12015 {
12016 	kfree(net->dev_name_head);
12017 	kfree(net->dev_index_head);
12018 	xa_destroy(&net->dev_by_index);
12019 	if (net != &init_net)
12020 		WARN_ON_ONCE(!list_empty(&net->dev_base_head));
12021 }
12022 
12023 static struct pernet_operations __net_initdata netdev_net_ops = {
12024 	.init = netdev_init,
12025 	.exit = netdev_exit,
12026 };
12027 
12028 static void __net_exit default_device_exit_net(struct net *net)
12029 {
12030 	struct netdev_name_node *name_node, *tmp;
12031 	struct net_device *dev, *aux;
12032 	/*
12033 	 * Push all migratable network devices back to the
12034 	 * initial network namespace
12035 	 */
12036 	ASSERT_RTNL();
12037 	for_each_netdev_safe(net, dev, aux) {
12038 		int err;
12039 		char fb_name[IFNAMSIZ];
12040 
12041 		/* Ignore unmoveable devices (i.e. loopback) */
12042 		if (dev->netns_local)
12043 			continue;
12044 
12045 		/* Leave virtual devices for the generic cleanup */
12046 		if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund)
12047 			continue;
12048 
12049 		/* Push remaining network devices to init_net */
12050 		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
12051 		if (netdev_name_in_use(&init_net, fb_name))
12052 			snprintf(fb_name, IFNAMSIZ, "dev%%d");
12053 
12054 		netdev_for_each_altname_safe(dev, name_node, tmp)
12055 			if (netdev_name_in_use(&init_net, name_node->name))
12056 				__netdev_name_node_alt_destroy(name_node);
12057 
12058 		err = dev_change_net_namespace(dev, &init_net, fb_name);
12059 		if (err) {
12060 			pr_emerg("%s: failed to move %s to init_net: %d\n",
12061 				 __func__, dev->name, err);
12062 			BUG();
12063 		}
12064 	}
12065 }
12066 
12067 static void __net_exit default_device_exit_batch(struct list_head *net_list)
12068 {
12069 	/* At exit all network devices most be removed from a network
12070 	 * namespace.  Do this in the reverse order of registration.
12071 	 * Do this across as many network namespaces as possible to
12072 	 * improve batching efficiency.
12073 	 */
12074 	struct net_device *dev;
12075 	struct net *net;
12076 	LIST_HEAD(dev_kill_list);
12077 
12078 	rtnl_lock();
12079 	list_for_each_entry(net, net_list, exit_list) {
12080 		default_device_exit_net(net);
12081 		cond_resched();
12082 	}
12083 
12084 	list_for_each_entry(net, net_list, exit_list) {
12085 		for_each_netdev_reverse(net, dev) {
12086 			if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
12087 				dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
12088 			else
12089 				unregister_netdevice_queue(dev, &dev_kill_list);
12090 		}
12091 	}
12092 	unregister_netdevice_many(&dev_kill_list);
12093 	rtnl_unlock();
12094 }
12095 
12096 static struct pernet_operations __net_initdata default_device_ops = {
12097 	.exit_batch = default_device_exit_batch,
12098 };
12099 
12100 static void __init net_dev_struct_check(void)
12101 {
12102 	/* TX read-mostly hotpath */
12103 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, priv_flags_fast);
12104 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, netdev_ops);
12105 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, header_ops);
12106 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, _tx);
12107 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, real_num_tx_queues);
12108 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_max_size);
12109 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_ipv4_max_size);
12110 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_max_segs);
12111 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_partial_features);
12112 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, num_tc);
12113 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, mtu);
12114 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, needed_headroom);
12115 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, tc_to_txq);
12116 #ifdef CONFIG_XPS
12117 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, xps_maps);
12118 #endif
12119 #ifdef CONFIG_NETFILTER_EGRESS
12120 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, nf_hooks_egress);
12121 #endif
12122 #ifdef CONFIG_NET_XGRESS
12123 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, tcx_egress);
12124 #endif
12125 	CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_tx, 160);
12126 
12127 	/* TXRX read-mostly hotpath */
12128 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, lstats);
12129 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, state);
12130 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, flags);
12131 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, hard_header_len);
12132 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, features);
12133 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, ip6_ptr);
12134 	CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_txrx, 46);
12135 
12136 	/* RX read-mostly hotpath */
12137 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, ptype_specific);
12138 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, ifindex);
12139 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, real_num_rx_queues);
12140 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, _rx);
12141 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_max_size);
12142 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_ipv4_max_size);
12143 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, rx_handler);
12144 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, rx_handler_data);
12145 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, nd_net);
12146 #ifdef CONFIG_NETPOLL
12147 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, npinfo);
12148 #endif
12149 #ifdef CONFIG_NET_XGRESS
12150 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, tcx_ingress);
12151 #endif
12152 	CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_rx, 92);
12153 }
12154 
12155 /*
12156  *	Initialize the DEV module. At boot time this walks the device list and
12157  *	unhooks any devices that fail to initialise (normally hardware not
12158  *	present) and leaves us with a valid list of present and active devices.
12159  *
12160  */
12161 
12162 /* We allocate 256 pages for each CPU if PAGE_SHIFT is 12 */
12163 #define SYSTEM_PERCPU_PAGE_POOL_SIZE	((1 << 20) / PAGE_SIZE)
12164 
12165 static int net_page_pool_create(int cpuid)
12166 {
12167 #if IS_ENABLED(CONFIG_PAGE_POOL)
12168 	struct page_pool_params page_pool_params = {
12169 		.pool_size = SYSTEM_PERCPU_PAGE_POOL_SIZE,
12170 		.flags = PP_FLAG_SYSTEM_POOL,
12171 		.nid = cpu_to_mem(cpuid),
12172 	};
12173 	struct page_pool *pp_ptr;
12174 
12175 	pp_ptr = page_pool_create_percpu(&page_pool_params, cpuid);
12176 	if (IS_ERR(pp_ptr))
12177 		return -ENOMEM;
12178 
12179 	per_cpu(system_page_pool, cpuid) = pp_ptr;
12180 #endif
12181 	return 0;
12182 }
12183 
12184 static int backlog_napi_should_run(unsigned int cpu)
12185 {
12186 	struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu);
12187 	struct napi_struct *napi = &sd->backlog;
12188 
12189 	return test_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
12190 }
12191 
12192 static void run_backlog_napi(unsigned int cpu)
12193 {
12194 	struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu);
12195 
12196 	napi_threaded_poll_loop(&sd->backlog);
12197 }
12198 
12199 static void backlog_napi_setup(unsigned int cpu)
12200 {
12201 	struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu);
12202 	struct napi_struct *napi = &sd->backlog;
12203 
12204 	napi->thread = this_cpu_read(backlog_napi);
12205 	set_bit(NAPI_STATE_THREADED, &napi->state);
12206 }
12207 
12208 static struct smp_hotplug_thread backlog_threads = {
12209 	.store			= &backlog_napi,
12210 	.thread_should_run	= backlog_napi_should_run,
12211 	.thread_fn		= run_backlog_napi,
12212 	.thread_comm		= "backlog_napi/%u",
12213 	.setup			= backlog_napi_setup,
12214 };
12215 
12216 /*
12217  *       This is called single threaded during boot, so no need
12218  *       to take the rtnl semaphore.
12219  */
12220 static int __init net_dev_init(void)
12221 {
12222 	int i, rc = -ENOMEM;
12223 
12224 	BUG_ON(!dev_boot_phase);
12225 
12226 	net_dev_struct_check();
12227 
12228 	if (dev_proc_init())
12229 		goto out;
12230 
12231 	if (netdev_kobject_init())
12232 		goto out;
12233 
12234 	for (i = 0; i < PTYPE_HASH_SIZE; i++)
12235 		INIT_LIST_HEAD(&ptype_base[i]);
12236 
12237 	if (register_pernet_subsys(&netdev_net_ops))
12238 		goto out;
12239 
12240 	/*
12241 	 *	Initialise the packet receive queues.
12242 	 */
12243 
12244 	for_each_possible_cpu(i) {
12245 		struct work_struct *flush = per_cpu_ptr(&flush_works, i);
12246 		struct softnet_data *sd = &per_cpu(softnet_data, i);
12247 
12248 		INIT_WORK(flush, flush_backlog);
12249 
12250 		skb_queue_head_init(&sd->input_pkt_queue);
12251 		skb_queue_head_init(&sd->process_queue);
12252 #ifdef CONFIG_XFRM_OFFLOAD
12253 		skb_queue_head_init(&sd->xfrm_backlog);
12254 #endif
12255 		INIT_LIST_HEAD(&sd->poll_list);
12256 		sd->output_queue_tailp = &sd->output_queue;
12257 #ifdef CONFIG_RPS
12258 		INIT_CSD(&sd->csd, rps_trigger_softirq, sd);
12259 		sd->cpu = i;
12260 #endif
12261 		INIT_CSD(&sd->defer_csd, trigger_rx_softirq, sd);
12262 		spin_lock_init(&sd->defer_lock);
12263 
12264 		init_gro_hash(&sd->backlog);
12265 		sd->backlog.poll = process_backlog;
12266 		sd->backlog.weight = weight_p;
12267 		INIT_LIST_HEAD(&sd->backlog.poll_list);
12268 
12269 		if (net_page_pool_create(i))
12270 			goto out;
12271 	}
12272 	if (use_backlog_threads())
12273 		smpboot_register_percpu_thread(&backlog_threads);
12274 
12275 	dev_boot_phase = 0;
12276 
12277 	/* The loopback device is special if any other network devices
12278 	 * is present in a network namespace the loopback device must
12279 	 * be present. Since we now dynamically allocate and free the
12280 	 * loopback device ensure this invariant is maintained by
12281 	 * keeping the loopback device as the first device on the
12282 	 * list of network devices.  Ensuring the loopback devices
12283 	 * is the first device that appears and the last network device
12284 	 * that disappears.
12285 	 */
12286 	if (register_pernet_device(&loopback_net_ops))
12287 		goto out;
12288 
12289 	if (register_pernet_device(&default_device_ops))
12290 		goto out;
12291 
12292 	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
12293 	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
12294 
12295 	rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
12296 				       NULL, dev_cpu_dead);
12297 	WARN_ON(rc < 0);
12298 	rc = 0;
12299 
12300 	/* avoid static key IPIs to isolated CPUs */
12301 	if (housekeeping_enabled(HK_TYPE_MISC))
12302 		net_enable_timestamp();
12303 out:
12304 	if (rc < 0) {
12305 		for_each_possible_cpu(i) {
12306 			struct page_pool *pp_ptr;
12307 
12308 			pp_ptr = per_cpu(system_page_pool, i);
12309 			if (!pp_ptr)
12310 				continue;
12311 
12312 			page_pool_destroy(pp_ptr);
12313 			per_cpu(system_page_pool, i) = NULL;
12314 		}
12315 	}
12316 
12317 	return rc;
12318 }
12319 
12320 subsys_initcall(net_dev_init);
12321