1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * NET3 Protocol independent device support routines. 4 * 5 * Derived from the non IP parts of dev.c 1.0.19 6 * Authors: Ross Biro 7 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 8 * Mark Evans, <evansmp@uhura.aston.ac.uk> 9 * 10 * Additional Authors: 11 * Florian la Roche <rzsfl@rz.uni-sb.de> 12 * Alan Cox <gw4pts@gw4pts.ampr.org> 13 * David Hinds <dahinds@users.sourceforge.net> 14 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> 15 * Adam Sulmicki <adam@cfar.umd.edu> 16 * Pekka Riikonen <priikone@poesidon.pspt.fi> 17 * 18 * Changes: 19 * D.J. Barrow : Fixed bug where dev->refcnt gets set 20 * to 2 if register_netdev gets called 21 * before net_dev_init & also removed a 22 * few lines of code in the process. 23 * Alan Cox : device private ioctl copies fields back. 24 * Alan Cox : Transmit queue code does relevant 25 * stunts to keep the queue safe. 26 * Alan Cox : Fixed double lock. 27 * Alan Cox : Fixed promisc NULL pointer trap 28 * ???????? : Support the full private ioctl range 29 * Alan Cox : Moved ioctl permission check into 30 * drivers 31 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI 32 * Alan Cox : 100 backlog just doesn't cut it when 33 * you start doing multicast video 8) 34 * Alan Cox : Rewrote net_bh and list manager. 35 * Alan Cox : Fix ETH_P_ALL echoback lengths. 36 * Alan Cox : Took out transmit every packet pass 37 * Saved a few bytes in the ioctl handler 38 * Alan Cox : Network driver sets packet type before 39 * calling netif_rx. Saves a function 40 * call a packet. 41 * Alan Cox : Hashed net_bh() 42 * Richard Kooijman: Timestamp fixes. 43 * Alan Cox : Wrong field in SIOCGIFDSTADDR 44 * Alan Cox : Device lock protection. 45 * Alan Cox : Fixed nasty side effect of device close 46 * changes. 47 * Rudi Cilibrasi : Pass the right thing to 48 * set_mac_address() 49 * Dave Miller : 32bit quantity for the device lock to 50 * make it work out on a Sparc. 51 * Bjorn Ekwall : Added KERNELD hack. 52 * Alan Cox : Cleaned up the backlog initialise. 53 * Craig Metz : SIOCGIFCONF fix if space for under 54 * 1 device. 55 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there 56 * is no device open function. 57 * Andi Kleen : Fix error reporting for SIOCGIFCONF 58 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF 59 * Cyrus Durgin : Cleaned for KMOD 60 * Adam Sulmicki : Bug Fix : Network Device Unload 61 * A network device unload needs to purge 62 * the backlog queue. 63 * Paul Rusty Russell : SIOCSIFNAME 64 * Pekka Riikonen : Netdev boot-time settings code 65 * Andrew Morton : Make unregister_netdevice wait 66 * indefinitely on dev->refcnt 67 * J Hadi Salim : - Backlog queue sampling 68 * - netif_rx() feedback 69 */ 70 71 #include <linux/uaccess.h> 72 #include <linux/bitmap.h> 73 #include <linux/capability.h> 74 #include <linux/cpu.h> 75 #include <linux/types.h> 76 #include <linux/kernel.h> 77 #include <linux/hash.h> 78 #include <linux/slab.h> 79 #include <linux/sched.h> 80 #include <linux/sched/isolation.h> 81 #include <linux/sched/mm.h> 82 #include <linux/smpboot.h> 83 #include <linux/mutex.h> 84 #include <linux/rwsem.h> 85 #include <linux/string.h> 86 #include <linux/mm.h> 87 #include <linux/socket.h> 88 #include <linux/sockios.h> 89 #include <linux/errno.h> 90 #include <linux/interrupt.h> 91 #include <linux/if_ether.h> 92 #include <linux/netdevice.h> 93 #include <linux/etherdevice.h> 94 #include <linux/ethtool.h> 95 #include <linux/skbuff.h> 96 #include <linux/kthread.h> 97 #include <linux/bpf.h> 98 #include <linux/bpf_trace.h> 99 #include <net/net_namespace.h> 100 #include <net/sock.h> 101 #include <net/busy_poll.h> 102 #include <linux/rtnetlink.h> 103 #include <linux/stat.h> 104 #include <net/dsa.h> 105 #include <net/dst.h> 106 #include <net/dst_metadata.h> 107 #include <net/gro.h> 108 #include <net/pkt_sched.h> 109 #include <net/pkt_cls.h> 110 #include <net/checksum.h> 111 #include <net/xfrm.h> 112 #include <net/tcx.h> 113 #include <linux/highmem.h> 114 #include <linux/init.h> 115 #include <linux/module.h> 116 #include <linux/netpoll.h> 117 #include <linux/rcupdate.h> 118 #include <linux/delay.h> 119 #include <net/iw_handler.h> 120 #include <asm/current.h> 121 #include <linux/audit.h> 122 #include <linux/dmaengine.h> 123 #include <linux/err.h> 124 #include <linux/ctype.h> 125 #include <linux/if_arp.h> 126 #include <linux/if_vlan.h> 127 #include <linux/ip.h> 128 #include <net/ip.h> 129 #include <net/mpls.h> 130 #include <linux/ipv6.h> 131 #include <linux/in.h> 132 #include <linux/jhash.h> 133 #include <linux/random.h> 134 #include <trace/events/napi.h> 135 #include <trace/events/net.h> 136 #include <trace/events/skb.h> 137 #include <trace/events/qdisc.h> 138 #include <trace/events/xdp.h> 139 #include <linux/inetdevice.h> 140 #include <linux/cpu_rmap.h> 141 #include <linux/static_key.h> 142 #include <linux/hashtable.h> 143 #include <linux/vmalloc.h> 144 #include <linux/if_macvlan.h> 145 #include <linux/errqueue.h> 146 #include <linux/hrtimer.h> 147 #include <linux/netfilter_netdev.h> 148 #include <linux/crash_dump.h> 149 #include <linux/sctp.h> 150 #include <net/udp_tunnel.h> 151 #include <linux/net_namespace.h> 152 #include <linux/indirect_call_wrapper.h> 153 #include <net/devlink.h> 154 #include <linux/pm_runtime.h> 155 #include <linux/prandom.h> 156 #include <linux/once_lite.h> 157 #include <net/netdev_rx_queue.h> 158 #include <net/page_pool/types.h> 159 #include <net/page_pool/helpers.h> 160 #include <net/rps.h> 161 #include <linux/phy_link_topology.h> 162 163 #include "dev.h" 164 #include "devmem.h" 165 #include "net-sysfs.h" 166 167 static DEFINE_SPINLOCK(ptype_lock); 168 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly; 169 170 static int netif_rx_internal(struct sk_buff *skb); 171 static int call_netdevice_notifiers_extack(unsigned long val, 172 struct net_device *dev, 173 struct netlink_ext_ack *extack); 174 175 static DEFINE_MUTEX(ifalias_mutex); 176 177 /* protects napi_hash addition/deletion and napi_gen_id */ 178 static DEFINE_SPINLOCK(napi_hash_lock); 179 180 static unsigned int napi_gen_id = NR_CPUS; 181 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8); 182 183 static DECLARE_RWSEM(devnet_rename_sem); 184 185 static inline void dev_base_seq_inc(struct net *net) 186 { 187 unsigned int val = net->dev_base_seq + 1; 188 189 WRITE_ONCE(net->dev_base_seq, val ?: 1); 190 } 191 192 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name) 193 { 194 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ)); 195 196 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)]; 197 } 198 199 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex) 200 { 201 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)]; 202 } 203 204 #ifndef CONFIG_PREEMPT_RT 205 206 static DEFINE_STATIC_KEY_FALSE(use_backlog_threads_key); 207 208 static int __init setup_backlog_napi_threads(char *arg) 209 { 210 static_branch_enable(&use_backlog_threads_key); 211 return 0; 212 } 213 early_param("thread_backlog_napi", setup_backlog_napi_threads); 214 215 static bool use_backlog_threads(void) 216 { 217 return static_branch_unlikely(&use_backlog_threads_key); 218 } 219 220 #else 221 222 static bool use_backlog_threads(void) 223 { 224 return true; 225 } 226 227 #endif 228 229 static inline void backlog_lock_irq_save(struct softnet_data *sd, 230 unsigned long *flags) 231 { 232 if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads()) 233 spin_lock_irqsave(&sd->input_pkt_queue.lock, *flags); 234 else 235 local_irq_save(*flags); 236 } 237 238 static inline void backlog_lock_irq_disable(struct softnet_data *sd) 239 { 240 if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads()) 241 spin_lock_irq(&sd->input_pkt_queue.lock); 242 else 243 local_irq_disable(); 244 } 245 246 static inline void backlog_unlock_irq_restore(struct softnet_data *sd, 247 unsigned long *flags) 248 { 249 if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads()) 250 spin_unlock_irqrestore(&sd->input_pkt_queue.lock, *flags); 251 else 252 local_irq_restore(*flags); 253 } 254 255 static inline void backlog_unlock_irq_enable(struct softnet_data *sd) 256 { 257 if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads()) 258 spin_unlock_irq(&sd->input_pkt_queue.lock); 259 else 260 local_irq_enable(); 261 } 262 263 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev, 264 const char *name) 265 { 266 struct netdev_name_node *name_node; 267 268 name_node = kmalloc(sizeof(*name_node), GFP_KERNEL); 269 if (!name_node) 270 return NULL; 271 INIT_HLIST_NODE(&name_node->hlist); 272 name_node->dev = dev; 273 name_node->name = name; 274 return name_node; 275 } 276 277 static struct netdev_name_node * 278 netdev_name_node_head_alloc(struct net_device *dev) 279 { 280 struct netdev_name_node *name_node; 281 282 name_node = netdev_name_node_alloc(dev, dev->name); 283 if (!name_node) 284 return NULL; 285 INIT_LIST_HEAD(&name_node->list); 286 return name_node; 287 } 288 289 static void netdev_name_node_free(struct netdev_name_node *name_node) 290 { 291 kfree(name_node); 292 } 293 294 static void netdev_name_node_add(struct net *net, 295 struct netdev_name_node *name_node) 296 { 297 hlist_add_head_rcu(&name_node->hlist, 298 dev_name_hash(net, name_node->name)); 299 } 300 301 static void netdev_name_node_del(struct netdev_name_node *name_node) 302 { 303 hlist_del_rcu(&name_node->hlist); 304 } 305 306 static struct netdev_name_node *netdev_name_node_lookup(struct net *net, 307 const char *name) 308 { 309 struct hlist_head *head = dev_name_hash(net, name); 310 struct netdev_name_node *name_node; 311 312 hlist_for_each_entry(name_node, head, hlist) 313 if (!strcmp(name_node->name, name)) 314 return name_node; 315 return NULL; 316 } 317 318 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net, 319 const char *name) 320 { 321 struct hlist_head *head = dev_name_hash(net, name); 322 struct netdev_name_node *name_node; 323 324 hlist_for_each_entry_rcu(name_node, head, hlist) 325 if (!strcmp(name_node->name, name)) 326 return name_node; 327 return NULL; 328 } 329 330 bool netdev_name_in_use(struct net *net, const char *name) 331 { 332 return netdev_name_node_lookup(net, name); 333 } 334 EXPORT_SYMBOL(netdev_name_in_use); 335 336 int netdev_name_node_alt_create(struct net_device *dev, const char *name) 337 { 338 struct netdev_name_node *name_node; 339 struct net *net = dev_net(dev); 340 341 name_node = netdev_name_node_lookup(net, name); 342 if (name_node) 343 return -EEXIST; 344 name_node = netdev_name_node_alloc(dev, name); 345 if (!name_node) 346 return -ENOMEM; 347 netdev_name_node_add(net, name_node); 348 /* The node that holds dev->name acts as a head of per-device list. */ 349 list_add_tail_rcu(&name_node->list, &dev->name_node->list); 350 351 return 0; 352 } 353 354 static void netdev_name_node_alt_free(struct rcu_head *head) 355 { 356 struct netdev_name_node *name_node = 357 container_of(head, struct netdev_name_node, rcu); 358 359 kfree(name_node->name); 360 netdev_name_node_free(name_node); 361 } 362 363 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node) 364 { 365 netdev_name_node_del(name_node); 366 list_del(&name_node->list); 367 call_rcu(&name_node->rcu, netdev_name_node_alt_free); 368 } 369 370 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name) 371 { 372 struct netdev_name_node *name_node; 373 struct net *net = dev_net(dev); 374 375 name_node = netdev_name_node_lookup(net, name); 376 if (!name_node) 377 return -ENOENT; 378 /* lookup might have found our primary name or a name belonging 379 * to another device. 380 */ 381 if (name_node == dev->name_node || name_node->dev != dev) 382 return -EINVAL; 383 384 __netdev_name_node_alt_destroy(name_node); 385 return 0; 386 } 387 388 static void netdev_name_node_alt_flush(struct net_device *dev) 389 { 390 struct netdev_name_node *name_node, *tmp; 391 392 list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list) { 393 list_del(&name_node->list); 394 netdev_name_node_alt_free(&name_node->rcu); 395 } 396 } 397 398 /* Device list insertion */ 399 static void list_netdevice(struct net_device *dev) 400 { 401 struct netdev_name_node *name_node; 402 struct net *net = dev_net(dev); 403 404 ASSERT_RTNL(); 405 406 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head); 407 netdev_name_node_add(net, dev->name_node); 408 hlist_add_head_rcu(&dev->index_hlist, 409 dev_index_hash(net, dev->ifindex)); 410 411 netdev_for_each_altname(dev, name_node) 412 netdev_name_node_add(net, name_node); 413 414 /* We reserved the ifindex, this can't fail */ 415 WARN_ON(xa_store(&net->dev_by_index, dev->ifindex, dev, GFP_KERNEL)); 416 417 dev_base_seq_inc(net); 418 } 419 420 /* Device list removal 421 * caller must respect a RCU grace period before freeing/reusing dev 422 */ 423 static void unlist_netdevice(struct net_device *dev) 424 { 425 struct netdev_name_node *name_node; 426 struct net *net = dev_net(dev); 427 428 ASSERT_RTNL(); 429 430 xa_erase(&net->dev_by_index, dev->ifindex); 431 432 netdev_for_each_altname(dev, name_node) 433 netdev_name_node_del(name_node); 434 435 /* Unlink dev from the device chain */ 436 list_del_rcu(&dev->dev_list); 437 netdev_name_node_del(dev->name_node); 438 hlist_del_rcu(&dev->index_hlist); 439 440 dev_base_seq_inc(dev_net(dev)); 441 } 442 443 /* 444 * Our notifier list 445 */ 446 447 static RAW_NOTIFIER_HEAD(netdev_chain); 448 449 /* 450 * Device drivers call our routines to queue packets here. We empty the 451 * queue in the local softnet handler. 452 */ 453 454 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data) = { 455 .process_queue_bh_lock = INIT_LOCAL_LOCK(process_queue_bh_lock), 456 }; 457 EXPORT_PER_CPU_SYMBOL(softnet_data); 458 459 /* Page_pool has a lockless array/stack to alloc/recycle pages. 460 * PP consumers must pay attention to run APIs in the appropriate context 461 * (e.g. NAPI context). 462 */ 463 static DEFINE_PER_CPU(struct page_pool *, system_page_pool); 464 465 #ifdef CONFIG_LOCKDEP 466 /* 467 * register_netdevice() inits txq->_xmit_lock and sets lockdep class 468 * according to dev->type 469 */ 470 static const unsigned short netdev_lock_type[] = { 471 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25, 472 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET, 473 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM, 474 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP, 475 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD, 476 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25, 477 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP, 478 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD, 479 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI, 480 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE, 481 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET, 482 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL, 483 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM, 484 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE, 485 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE}; 486 487 static const char *const netdev_lock_name[] = { 488 "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25", 489 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET", 490 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM", 491 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP", 492 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD", 493 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25", 494 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP", 495 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD", 496 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI", 497 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE", 498 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET", 499 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL", 500 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM", 501 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE", 502 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"}; 503 504 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)]; 505 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)]; 506 507 static inline unsigned short netdev_lock_pos(unsigned short dev_type) 508 { 509 int i; 510 511 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++) 512 if (netdev_lock_type[i] == dev_type) 513 return i; 514 /* the last key is used by default */ 515 return ARRAY_SIZE(netdev_lock_type) - 1; 516 } 517 518 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 519 unsigned short dev_type) 520 { 521 int i; 522 523 i = netdev_lock_pos(dev_type); 524 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i], 525 netdev_lock_name[i]); 526 } 527 528 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 529 { 530 int i; 531 532 i = netdev_lock_pos(dev->type); 533 lockdep_set_class_and_name(&dev->addr_list_lock, 534 &netdev_addr_lock_key[i], 535 netdev_lock_name[i]); 536 } 537 #else 538 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 539 unsigned short dev_type) 540 { 541 } 542 543 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 544 { 545 } 546 #endif 547 548 /******************************************************************************* 549 * 550 * Protocol management and registration routines 551 * 552 *******************************************************************************/ 553 554 555 /* 556 * Add a protocol ID to the list. Now that the input handler is 557 * smarter we can dispense with all the messy stuff that used to be 558 * here. 559 * 560 * BEWARE!!! Protocol handlers, mangling input packets, 561 * MUST BE last in hash buckets and checking protocol handlers 562 * MUST start from promiscuous ptype_all chain in net_bh. 563 * It is true now, do not change it. 564 * Explanation follows: if protocol handler, mangling packet, will 565 * be the first on list, it is not able to sense, that packet 566 * is cloned and should be copied-on-write, so that it will 567 * change it and subsequent readers will get broken packet. 568 * --ANK (980803) 569 */ 570 571 static inline struct list_head *ptype_head(const struct packet_type *pt) 572 { 573 if (pt->type == htons(ETH_P_ALL)) 574 return pt->dev ? &pt->dev->ptype_all : &net_hotdata.ptype_all; 575 else 576 return pt->dev ? &pt->dev->ptype_specific : 577 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK]; 578 } 579 580 /** 581 * dev_add_pack - add packet handler 582 * @pt: packet type declaration 583 * 584 * Add a protocol handler to the networking stack. The passed &packet_type 585 * is linked into kernel lists and may not be freed until it has been 586 * removed from the kernel lists. 587 * 588 * This call does not sleep therefore it can not 589 * guarantee all CPU's that are in middle of receiving packets 590 * will see the new packet type (until the next received packet). 591 */ 592 593 void dev_add_pack(struct packet_type *pt) 594 { 595 struct list_head *head = ptype_head(pt); 596 597 spin_lock(&ptype_lock); 598 list_add_rcu(&pt->list, head); 599 spin_unlock(&ptype_lock); 600 } 601 EXPORT_SYMBOL(dev_add_pack); 602 603 /** 604 * __dev_remove_pack - remove packet handler 605 * @pt: packet type declaration 606 * 607 * Remove a protocol handler that was previously added to the kernel 608 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 609 * from the kernel lists and can be freed or reused once this function 610 * returns. 611 * 612 * The packet type might still be in use by receivers 613 * and must not be freed until after all the CPU's have gone 614 * through a quiescent state. 615 */ 616 void __dev_remove_pack(struct packet_type *pt) 617 { 618 struct list_head *head = ptype_head(pt); 619 struct packet_type *pt1; 620 621 spin_lock(&ptype_lock); 622 623 list_for_each_entry(pt1, head, list) { 624 if (pt == pt1) { 625 list_del_rcu(&pt->list); 626 goto out; 627 } 628 } 629 630 pr_warn("dev_remove_pack: %p not found\n", pt); 631 out: 632 spin_unlock(&ptype_lock); 633 } 634 EXPORT_SYMBOL(__dev_remove_pack); 635 636 /** 637 * dev_remove_pack - remove packet handler 638 * @pt: packet type declaration 639 * 640 * Remove a protocol handler that was previously added to the kernel 641 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 642 * from the kernel lists and can be freed or reused once this function 643 * returns. 644 * 645 * This call sleeps to guarantee that no CPU is looking at the packet 646 * type after return. 647 */ 648 void dev_remove_pack(struct packet_type *pt) 649 { 650 __dev_remove_pack(pt); 651 652 synchronize_net(); 653 } 654 EXPORT_SYMBOL(dev_remove_pack); 655 656 657 /******************************************************************************* 658 * 659 * Device Interface Subroutines 660 * 661 *******************************************************************************/ 662 663 /** 664 * dev_get_iflink - get 'iflink' value of a interface 665 * @dev: targeted interface 666 * 667 * Indicates the ifindex the interface is linked to. 668 * Physical interfaces have the same 'ifindex' and 'iflink' values. 669 */ 670 671 int dev_get_iflink(const struct net_device *dev) 672 { 673 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink) 674 return dev->netdev_ops->ndo_get_iflink(dev); 675 676 return READ_ONCE(dev->ifindex); 677 } 678 EXPORT_SYMBOL(dev_get_iflink); 679 680 /** 681 * dev_fill_metadata_dst - Retrieve tunnel egress information. 682 * @dev: targeted interface 683 * @skb: The packet. 684 * 685 * For better visibility of tunnel traffic OVS needs to retrieve 686 * egress tunnel information for a packet. Following API allows 687 * user to get this info. 688 */ 689 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb) 690 { 691 struct ip_tunnel_info *info; 692 693 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst) 694 return -EINVAL; 695 696 info = skb_tunnel_info_unclone(skb); 697 if (!info) 698 return -ENOMEM; 699 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX))) 700 return -EINVAL; 701 702 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb); 703 } 704 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst); 705 706 static struct net_device_path *dev_fwd_path(struct net_device_path_stack *stack) 707 { 708 int k = stack->num_paths++; 709 710 if (WARN_ON_ONCE(k >= NET_DEVICE_PATH_STACK_MAX)) 711 return NULL; 712 713 return &stack->path[k]; 714 } 715 716 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr, 717 struct net_device_path_stack *stack) 718 { 719 const struct net_device *last_dev; 720 struct net_device_path_ctx ctx = { 721 .dev = dev, 722 }; 723 struct net_device_path *path; 724 int ret = 0; 725 726 memcpy(ctx.daddr, daddr, sizeof(ctx.daddr)); 727 stack->num_paths = 0; 728 while (ctx.dev && ctx.dev->netdev_ops->ndo_fill_forward_path) { 729 last_dev = ctx.dev; 730 path = dev_fwd_path(stack); 731 if (!path) 732 return -1; 733 734 memset(path, 0, sizeof(struct net_device_path)); 735 ret = ctx.dev->netdev_ops->ndo_fill_forward_path(&ctx, path); 736 if (ret < 0) 737 return -1; 738 739 if (WARN_ON_ONCE(last_dev == ctx.dev)) 740 return -1; 741 } 742 743 if (!ctx.dev) 744 return ret; 745 746 path = dev_fwd_path(stack); 747 if (!path) 748 return -1; 749 path->type = DEV_PATH_ETHERNET; 750 path->dev = ctx.dev; 751 752 return ret; 753 } 754 EXPORT_SYMBOL_GPL(dev_fill_forward_path); 755 756 /* must be called under rcu_read_lock(), as we dont take a reference */ 757 static struct napi_struct *napi_by_id(unsigned int napi_id) 758 { 759 unsigned int hash = napi_id % HASH_SIZE(napi_hash); 760 struct napi_struct *napi; 761 762 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node) 763 if (napi->napi_id == napi_id) 764 return napi; 765 766 return NULL; 767 } 768 769 /* must be called under rcu_read_lock(), as we dont take a reference */ 770 struct napi_struct *netdev_napi_by_id(struct net *net, unsigned int napi_id) 771 { 772 struct napi_struct *napi; 773 774 napi = napi_by_id(napi_id); 775 if (!napi) 776 return NULL; 777 778 if (WARN_ON_ONCE(!napi->dev)) 779 return NULL; 780 if (!net_eq(net, dev_net(napi->dev))) 781 return NULL; 782 783 return napi; 784 } 785 786 /** 787 * __dev_get_by_name - find a device by its name 788 * @net: the applicable net namespace 789 * @name: name to find 790 * 791 * Find an interface by name. Must be called under RTNL semaphore. 792 * If the name is found a pointer to the device is returned. 793 * If the name is not found then %NULL is returned. The 794 * reference counters are not incremented so the caller must be 795 * careful with locks. 796 */ 797 798 struct net_device *__dev_get_by_name(struct net *net, const char *name) 799 { 800 struct netdev_name_node *node_name; 801 802 node_name = netdev_name_node_lookup(net, name); 803 return node_name ? node_name->dev : NULL; 804 } 805 EXPORT_SYMBOL(__dev_get_by_name); 806 807 /** 808 * dev_get_by_name_rcu - find a device by its name 809 * @net: the applicable net namespace 810 * @name: name to find 811 * 812 * Find an interface by name. 813 * If the name is found a pointer to the device is returned. 814 * If the name is not found then %NULL is returned. 815 * The reference counters are not incremented so the caller must be 816 * careful with locks. The caller must hold RCU lock. 817 */ 818 819 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name) 820 { 821 struct netdev_name_node *node_name; 822 823 node_name = netdev_name_node_lookup_rcu(net, name); 824 return node_name ? node_name->dev : NULL; 825 } 826 EXPORT_SYMBOL(dev_get_by_name_rcu); 827 828 /* Deprecated for new users, call netdev_get_by_name() instead */ 829 struct net_device *dev_get_by_name(struct net *net, const char *name) 830 { 831 struct net_device *dev; 832 833 rcu_read_lock(); 834 dev = dev_get_by_name_rcu(net, name); 835 dev_hold(dev); 836 rcu_read_unlock(); 837 return dev; 838 } 839 EXPORT_SYMBOL(dev_get_by_name); 840 841 /** 842 * netdev_get_by_name() - find a device by its name 843 * @net: the applicable net namespace 844 * @name: name to find 845 * @tracker: tracking object for the acquired reference 846 * @gfp: allocation flags for the tracker 847 * 848 * Find an interface by name. This can be called from any 849 * context and does its own locking. The returned handle has 850 * the usage count incremented and the caller must use netdev_put() to 851 * release it when it is no longer needed. %NULL is returned if no 852 * matching device is found. 853 */ 854 struct net_device *netdev_get_by_name(struct net *net, const char *name, 855 netdevice_tracker *tracker, gfp_t gfp) 856 { 857 struct net_device *dev; 858 859 dev = dev_get_by_name(net, name); 860 if (dev) 861 netdev_tracker_alloc(dev, tracker, gfp); 862 return dev; 863 } 864 EXPORT_SYMBOL(netdev_get_by_name); 865 866 /** 867 * __dev_get_by_index - find a device by its ifindex 868 * @net: the applicable net namespace 869 * @ifindex: index of device 870 * 871 * Search for an interface by index. Returns %NULL if the device 872 * is not found or a pointer to the device. The device has not 873 * had its reference counter increased so the caller must be careful 874 * about locking. The caller must hold the RTNL semaphore. 875 */ 876 877 struct net_device *__dev_get_by_index(struct net *net, int ifindex) 878 { 879 struct net_device *dev; 880 struct hlist_head *head = dev_index_hash(net, ifindex); 881 882 hlist_for_each_entry(dev, head, index_hlist) 883 if (dev->ifindex == ifindex) 884 return dev; 885 886 return NULL; 887 } 888 EXPORT_SYMBOL(__dev_get_by_index); 889 890 /** 891 * dev_get_by_index_rcu - find a device by its ifindex 892 * @net: the applicable net namespace 893 * @ifindex: index of device 894 * 895 * Search for an interface by index. Returns %NULL if the device 896 * is not found or a pointer to the device. The device has not 897 * had its reference counter increased so the caller must be careful 898 * about locking. The caller must hold RCU lock. 899 */ 900 901 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex) 902 { 903 struct net_device *dev; 904 struct hlist_head *head = dev_index_hash(net, ifindex); 905 906 hlist_for_each_entry_rcu(dev, head, index_hlist) 907 if (dev->ifindex == ifindex) 908 return dev; 909 910 return NULL; 911 } 912 EXPORT_SYMBOL(dev_get_by_index_rcu); 913 914 /* Deprecated for new users, call netdev_get_by_index() instead */ 915 struct net_device *dev_get_by_index(struct net *net, int ifindex) 916 { 917 struct net_device *dev; 918 919 rcu_read_lock(); 920 dev = dev_get_by_index_rcu(net, ifindex); 921 dev_hold(dev); 922 rcu_read_unlock(); 923 return dev; 924 } 925 EXPORT_SYMBOL(dev_get_by_index); 926 927 /** 928 * netdev_get_by_index() - find a device by its ifindex 929 * @net: the applicable net namespace 930 * @ifindex: index of device 931 * @tracker: tracking object for the acquired reference 932 * @gfp: allocation flags for the tracker 933 * 934 * Search for an interface by index. Returns NULL if the device 935 * is not found or a pointer to the device. The device returned has 936 * had a reference added and the pointer is safe until the user calls 937 * netdev_put() to indicate they have finished with it. 938 */ 939 struct net_device *netdev_get_by_index(struct net *net, int ifindex, 940 netdevice_tracker *tracker, gfp_t gfp) 941 { 942 struct net_device *dev; 943 944 dev = dev_get_by_index(net, ifindex); 945 if (dev) 946 netdev_tracker_alloc(dev, tracker, gfp); 947 return dev; 948 } 949 EXPORT_SYMBOL(netdev_get_by_index); 950 951 /** 952 * dev_get_by_napi_id - find a device by napi_id 953 * @napi_id: ID of the NAPI struct 954 * 955 * Search for an interface by NAPI ID. Returns %NULL if the device 956 * is not found or a pointer to the device. The device has not had 957 * its reference counter increased so the caller must be careful 958 * about locking. The caller must hold RCU lock. 959 */ 960 961 struct net_device *dev_get_by_napi_id(unsigned int napi_id) 962 { 963 struct napi_struct *napi; 964 965 WARN_ON_ONCE(!rcu_read_lock_held()); 966 967 if (napi_id < MIN_NAPI_ID) 968 return NULL; 969 970 napi = napi_by_id(napi_id); 971 972 return napi ? napi->dev : NULL; 973 } 974 EXPORT_SYMBOL(dev_get_by_napi_id); 975 976 static DEFINE_SEQLOCK(netdev_rename_lock); 977 978 void netdev_copy_name(struct net_device *dev, char *name) 979 { 980 unsigned int seq; 981 982 do { 983 seq = read_seqbegin(&netdev_rename_lock); 984 strscpy(name, dev->name, IFNAMSIZ); 985 } while (read_seqretry(&netdev_rename_lock, seq)); 986 } 987 988 /** 989 * netdev_get_name - get a netdevice name, knowing its ifindex. 990 * @net: network namespace 991 * @name: a pointer to the buffer where the name will be stored. 992 * @ifindex: the ifindex of the interface to get the name from. 993 */ 994 int netdev_get_name(struct net *net, char *name, int ifindex) 995 { 996 struct net_device *dev; 997 int ret; 998 999 rcu_read_lock(); 1000 1001 dev = dev_get_by_index_rcu(net, ifindex); 1002 if (!dev) { 1003 ret = -ENODEV; 1004 goto out; 1005 } 1006 1007 netdev_copy_name(dev, name); 1008 1009 ret = 0; 1010 out: 1011 rcu_read_unlock(); 1012 return ret; 1013 } 1014 1015 /** 1016 * dev_getbyhwaddr_rcu - find a device by its hardware address 1017 * @net: the applicable net namespace 1018 * @type: media type of device 1019 * @ha: hardware address 1020 * 1021 * Search for an interface by MAC address. Returns NULL if the device 1022 * is not found or a pointer to the device. 1023 * The caller must hold RCU or RTNL. 1024 * The returned device has not had its ref count increased 1025 * and the caller must therefore be careful about locking 1026 * 1027 */ 1028 1029 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 1030 const char *ha) 1031 { 1032 struct net_device *dev; 1033 1034 for_each_netdev_rcu(net, dev) 1035 if (dev->type == type && 1036 !memcmp(dev->dev_addr, ha, dev->addr_len)) 1037 return dev; 1038 1039 return NULL; 1040 } 1041 EXPORT_SYMBOL(dev_getbyhwaddr_rcu); 1042 1043 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type) 1044 { 1045 struct net_device *dev, *ret = NULL; 1046 1047 rcu_read_lock(); 1048 for_each_netdev_rcu(net, dev) 1049 if (dev->type == type) { 1050 dev_hold(dev); 1051 ret = dev; 1052 break; 1053 } 1054 rcu_read_unlock(); 1055 return ret; 1056 } 1057 EXPORT_SYMBOL(dev_getfirstbyhwtype); 1058 1059 /** 1060 * __dev_get_by_flags - find any device with given flags 1061 * @net: the applicable net namespace 1062 * @if_flags: IFF_* values 1063 * @mask: bitmask of bits in if_flags to check 1064 * 1065 * Search for any interface with the given flags. Returns NULL if a device 1066 * is not found or a pointer to the device. Must be called inside 1067 * rtnl_lock(), and result refcount is unchanged. 1068 */ 1069 1070 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags, 1071 unsigned short mask) 1072 { 1073 struct net_device *dev, *ret; 1074 1075 ASSERT_RTNL(); 1076 1077 ret = NULL; 1078 for_each_netdev(net, dev) { 1079 if (((dev->flags ^ if_flags) & mask) == 0) { 1080 ret = dev; 1081 break; 1082 } 1083 } 1084 return ret; 1085 } 1086 EXPORT_SYMBOL(__dev_get_by_flags); 1087 1088 /** 1089 * dev_valid_name - check if name is okay for network device 1090 * @name: name string 1091 * 1092 * Network device names need to be valid file names to 1093 * allow sysfs to work. We also disallow any kind of 1094 * whitespace. 1095 */ 1096 bool dev_valid_name(const char *name) 1097 { 1098 if (*name == '\0') 1099 return false; 1100 if (strnlen(name, IFNAMSIZ) == IFNAMSIZ) 1101 return false; 1102 if (!strcmp(name, ".") || !strcmp(name, "..")) 1103 return false; 1104 1105 while (*name) { 1106 if (*name == '/' || *name == ':' || isspace(*name)) 1107 return false; 1108 name++; 1109 } 1110 return true; 1111 } 1112 EXPORT_SYMBOL(dev_valid_name); 1113 1114 /** 1115 * __dev_alloc_name - allocate a name for a device 1116 * @net: network namespace to allocate the device name in 1117 * @name: name format string 1118 * @res: result name string 1119 * 1120 * Passed a format string - eg "lt%d" it will try and find a suitable 1121 * id. It scans list of devices to build up a free map, then chooses 1122 * the first empty slot. The caller must hold the dev_base or rtnl lock 1123 * while allocating the name and adding the device in order to avoid 1124 * duplicates. 1125 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 1126 * Returns the number of the unit assigned or a negative errno code. 1127 */ 1128 1129 static int __dev_alloc_name(struct net *net, const char *name, char *res) 1130 { 1131 int i = 0; 1132 const char *p; 1133 const int max_netdevices = 8*PAGE_SIZE; 1134 unsigned long *inuse; 1135 struct net_device *d; 1136 char buf[IFNAMSIZ]; 1137 1138 /* Verify the string as this thing may have come from the user. 1139 * There must be one "%d" and no other "%" characters. 1140 */ 1141 p = strchr(name, '%'); 1142 if (!p || p[1] != 'd' || strchr(p + 2, '%')) 1143 return -EINVAL; 1144 1145 /* Use one page as a bit array of possible slots */ 1146 inuse = bitmap_zalloc(max_netdevices, GFP_ATOMIC); 1147 if (!inuse) 1148 return -ENOMEM; 1149 1150 for_each_netdev(net, d) { 1151 struct netdev_name_node *name_node; 1152 1153 netdev_for_each_altname(d, name_node) { 1154 if (!sscanf(name_node->name, name, &i)) 1155 continue; 1156 if (i < 0 || i >= max_netdevices) 1157 continue; 1158 1159 /* avoid cases where sscanf is not exact inverse of printf */ 1160 snprintf(buf, IFNAMSIZ, name, i); 1161 if (!strncmp(buf, name_node->name, IFNAMSIZ)) 1162 __set_bit(i, inuse); 1163 } 1164 if (!sscanf(d->name, name, &i)) 1165 continue; 1166 if (i < 0 || i >= max_netdevices) 1167 continue; 1168 1169 /* avoid cases where sscanf is not exact inverse of printf */ 1170 snprintf(buf, IFNAMSIZ, name, i); 1171 if (!strncmp(buf, d->name, IFNAMSIZ)) 1172 __set_bit(i, inuse); 1173 } 1174 1175 i = find_first_zero_bit(inuse, max_netdevices); 1176 bitmap_free(inuse); 1177 if (i == max_netdevices) 1178 return -ENFILE; 1179 1180 /* 'res' and 'name' could overlap, use 'buf' as an intermediate buffer */ 1181 strscpy(buf, name, IFNAMSIZ); 1182 snprintf(res, IFNAMSIZ, buf, i); 1183 return i; 1184 } 1185 1186 /* Returns negative errno or allocated unit id (see __dev_alloc_name()) */ 1187 static int dev_prep_valid_name(struct net *net, struct net_device *dev, 1188 const char *want_name, char *out_name, 1189 int dup_errno) 1190 { 1191 if (!dev_valid_name(want_name)) 1192 return -EINVAL; 1193 1194 if (strchr(want_name, '%')) 1195 return __dev_alloc_name(net, want_name, out_name); 1196 1197 if (netdev_name_in_use(net, want_name)) 1198 return -dup_errno; 1199 if (out_name != want_name) 1200 strscpy(out_name, want_name, IFNAMSIZ); 1201 return 0; 1202 } 1203 1204 /** 1205 * dev_alloc_name - allocate a name for a device 1206 * @dev: device 1207 * @name: name format string 1208 * 1209 * Passed a format string - eg "lt%d" it will try and find a suitable 1210 * id. It scans list of devices to build up a free map, then chooses 1211 * the first empty slot. The caller must hold the dev_base or rtnl lock 1212 * while allocating the name and adding the device in order to avoid 1213 * duplicates. 1214 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 1215 * Returns the number of the unit assigned or a negative errno code. 1216 */ 1217 1218 int dev_alloc_name(struct net_device *dev, const char *name) 1219 { 1220 return dev_prep_valid_name(dev_net(dev), dev, name, dev->name, ENFILE); 1221 } 1222 EXPORT_SYMBOL(dev_alloc_name); 1223 1224 static int dev_get_valid_name(struct net *net, struct net_device *dev, 1225 const char *name) 1226 { 1227 int ret; 1228 1229 ret = dev_prep_valid_name(net, dev, name, dev->name, EEXIST); 1230 return ret < 0 ? ret : 0; 1231 } 1232 1233 /** 1234 * dev_change_name - change name of a device 1235 * @dev: device 1236 * @newname: name (or format string) must be at least IFNAMSIZ 1237 * 1238 * Change name of a device, can pass format strings "eth%d". 1239 * for wildcarding. 1240 */ 1241 int dev_change_name(struct net_device *dev, const char *newname) 1242 { 1243 unsigned char old_assign_type; 1244 char oldname[IFNAMSIZ]; 1245 int err = 0; 1246 int ret; 1247 struct net *net; 1248 1249 ASSERT_RTNL(); 1250 BUG_ON(!dev_net(dev)); 1251 1252 net = dev_net(dev); 1253 1254 down_write(&devnet_rename_sem); 1255 1256 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) { 1257 up_write(&devnet_rename_sem); 1258 return 0; 1259 } 1260 1261 memcpy(oldname, dev->name, IFNAMSIZ); 1262 1263 write_seqlock_bh(&netdev_rename_lock); 1264 err = dev_get_valid_name(net, dev, newname); 1265 write_sequnlock_bh(&netdev_rename_lock); 1266 1267 if (err < 0) { 1268 up_write(&devnet_rename_sem); 1269 return err; 1270 } 1271 1272 if (oldname[0] && !strchr(oldname, '%')) 1273 netdev_info(dev, "renamed from %s%s\n", oldname, 1274 dev->flags & IFF_UP ? " (while UP)" : ""); 1275 1276 old_assign_type = dev->name_assign_type; 1277 WRITE_ONCE(dev->name_assign_type, NET_NAME_RENAMED); 1278 1279 rollback: 1280 ret = device_rename(&dev->dev, dev->name); 1281 if (ret) { 1282 memcpy(dev->name, oldname, IFNAMSIZ); 1283 WRITE_ONCE(dev->name_assign_type, old_assign_type); 1284 up_write(&devnet_rename_sem); 1285 return ret; 1286 } 1287 1288 up_write(&devnet_rename_sem); 1289 1290 netdev_adjacent_rename_links(dev, oldname); 1291 1292 netdev_name_node_del(dev->name_node); 1293 1294 synchronize_net(); 1295 1296 netdev_name_node_add(net, dev->name_node); 1297 1298 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev); 1299 ret = notifier_to_errno(ret); 1300 1301 if (ret) { 1302 /* err >= 0 after dev_alloc_name() or stores the first errno */ 1303 if (err >= 0) { 1304 err = ret; 1305 down_write(&devnet_rename_sem); 1306 write_seqlock_bh(&netdev_rename_lock); 1307 memcpy(dev->name, oldname, IFNAMSIZ); 1308 write_sequnlock_bh(&netdev_rename_lock); 1309 memcpy(oldname, newname, IFNAMSIZ); 1310 WRITE_ONCE(dev->name_assign_type, old_assign_type); 1311 old_assign_type = NET_NAME_RENAMED; 1312 goto rollback; 1313 } else { 1314 netdev_err(dev, "name change rollback failed: %d\n", 1315 ret); 1316 } 1317 } 1318 1319 return err; 1320 } 1321 1322 /** 1323 * dev_set_alias - change ifalias of a device 1324 * @dev: device 1325 * @alias: name up to IFALIASZ 1326 * @len: limit of bytes to copy from info 1327 * 1328 * Set ifalias for a device, 1329 */ 1330 int dev_set_alias(struct net_device *dev, const char *alias, size_t len) 1331 { 1332 struct dev_ifalias *new_alias = NULL; 1333 1334 if (len >= IFALIASZ) 1335 return -EINVAL; 1336 1337 if (len) { 1338 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL); 1339 if (!new_alias) 1340 return -ENOMEM; 1341 1342 memcpy(new_alias->ifalias, alias, len); 1343 new_alias->ifalias[len] = 0; 1344 } 1345 1346 mutex_lock(&ifalias_mutex); 1347 new_alias = rcu_replace_pointer(dev->ifalias, new_alias, 1348 mutex_is_locked(&ifalias_mutex)); 1349 mutex_unlock(&ifalias_mutex); 1350 1351 if (new_alias) 1352 kfree_rcu(new_alias, rcuhead); 1353 1354 return len; 1355 } 1356 EXPORT_SYMBOL(dev_set_alias); 1357 1358 /** 1359 * dev_get_alias - get ifalias of a device 1360 * @dev: device 1361 * @name: buffer to store name of ifalias 1362 * @len: size of buffer 1363 * 1364 * get ifalias for a device. Caller must make sure dev cannot go 1365 * away, e.g. rcu read lock or own a reference count to device. 1366 */ 1367 int dev_get_alias(const struct net_device *dev, char *name, size_t len) 1368 { 1369 const struct dev_ifalias *alias; 1370 int ret = 0; 1371 1372 rcu_read_lock(); 1373 alias = rcu_dereference(dev->ifalias); 1374 if (alias) 1375 ret = snprintf(name, len, "%s", alias->ifalias); 1376 rcu_read_unlock(); 1377 1378 return ret; 1379 } 1380 1381 /** 1382 * netdev_features_change - device changes features 1383 * @dev: device to cause notification 1384 * 1385 * Called to indicate a device has changed features. 1386 */ 1387 void netdev_features_change(struct net_device *dev) 1388 { 1389 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev); 1390 } 1391 EXPORT_SYMBOL(netdev_features_change); 1392 1393 /** 1394 * netdev_state_change - device changes state 1395 * @dev: device to cause notification 1396 * 1397 * Called to indicate a device has changed state. This function calls 1398 * the notifier chains for netdev_chain and sends a NEWLINK message 1399 * to the routing socket. 1400 */ 1401 void netdev_state_change(struct net_device *dev) 1402 { 1403 if (dev->flags & IFF_UP) { 1404 struct netdev_notifier_change_info change_info = { 1405 .info.dev = dev, 1406 }; 1407 1408 call_netdevice_notifiers_info(NETDEV_CHANGE, 1409 &change_info.info); 1410 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL, 0, NULL); 1411 } 1412 } 1413 EXPORT_SYMBOL(netdev_state_change); 1414 1415 /** 1416 * __netdev_notify_peers - notify network peers about existence of @dev, 1417 * to be called when rtnl lock is already held. 1418 * @dev: network device 1419 * 1420 * Generate traffic such that interested network peers are aware of 1421 * @dev, such as by generating a gratuitous ARP. This may be used when 1422 * a device wants to inform the rest of the network about some sort of 1423 * reconfiguration such as a failover event or virtual machine 1424 * migration. 1425 */ 1426 void __netdev_notify_peers(struct net_device *dev) 1427 { 1428 ASSERT_RTNL(); 1429 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev); 1430 call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev); 1431 } 1432 EXPORT_SYMBOL(__netdev_notify_peers); 1433 1434 /** 1435 * netdev_notify_peers - notify network peers about existence of @dev 1436 * @dev: network device 1437 * 1438 * Generate traffic such that interested network peers are aware of 1439 * @dev, such as by generating a gratuitous ARP. This may be used when 1440 * a device wants to inform the rest of the network about some sort of 1441 * reconfiguration such as a failover event or virtual machine 1442 * migration. 1443 */ 1444 void netdev_notify_peers(struct net_device *dev) 1445 { 1446 rtnl_lock(); 1447 __netdev_notify_peers(dev); 1448 rtnl_unlock(); 1449 } 1450 EXPORT_SYMBOL(netdev_notify_peers); 1451 1452 static int napi_threaded_poll(void *data); 1453 1454 static int napi_kthread_create(struct napi_struct *n) 1455 { 1456 int err = 0; 1457 1458 /* Create and wake up the kthread once to put it in 1459 * TASK_INTERRUPTIBLE mode to avoid the blocked task 1460 * warning and work with loadavg. 1461 */ 1462 n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d", 1463 n->dev->name, n->napi_id); 1464 if (IS_ERR(n->thread)) { 1465 err = PTR_ERR(n->thread); 1466 pr_err("kthread_run failed with err %d\n", err); 1467 n->thread = NULL; 1468 } 1469 1470 return err; 1471 } 1472 1473 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack) 1474 { 1475 const struct net_device_ops *ops = dev->netdev_ops; 1476 int ret; 1477 1478 ASSERT_RTNL(); 1479 dev_addr_check(dev); 1480 1481 if (!netif_device_present(dev)) { 1482 /* may be detached because parent is runtime-suspended */ 1483 if (dev->dev.parent) 1484 pm_runtime_resume(dev->dev.parent); 1485 if (!netif_device_present(dev)) 1486 return -ENODEV; 1487 } 1488 1489 /* Block netpoll from trying to do any rx path servicing. 1490 * If we don't do this there is a chance ndo_poll_controller 1491 * or ndo_poll may be running while we open the device 1492 */ 1493 netpoll_poll_disable(dev); 1494 1495 ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack); 1496 ret = notifier_to_errno(ret); 1497 if (ret) 1498 return ret; 1499 1500 set_bit(__LINK_STATE_START, &dev->state); 1501 1502 if (ops->ndo_validate_addr) 1503 ret = ops->ndo_validate_addr(dev); 1504 1505 if (!ret && ops->ndo_open) 1506 ret = ops->ndo_open(dev); 1507 1508 netpoll_poll_enable(dev); 1509 1510 if (ret) 1511 clear_bit(__LINK_STATE_START, &dev->state); 1512 else { 1513 dev->flags |= IFF_UP; 1514 dev_set_rx_mode(dev); 1515 dev_activate(dev); 1516 add_device_randomness(dev->dev_addr, dev->addr_len); 1517 } 1518 1519 return ret; 1520 } 1521 1522 /** 1523 * dev_open - prepare an interface for use. 1524 * @dev: device to open 1525 * @extack: netlink extended ack 1526 * 1527 * Takes a device from down to up state. The device's private open 1528 * function is invoked and then the multicast lists are loaded. Finally 1529 * the device is moved into the up state and a %NETDEV_UP message is 1530 * sent to the netdev notifier chain. 1531 * 1532 * Calling this function on an active interface is a nop. On a failure 1533 * a negative errno code is returned. 1534 */ 1535 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack) 1536 { 1537 int ret; 1538 1539 if (dev->flags & IFF_UP) 1540 return 0; 1541 1542 ret = __dev_open(dev, extack); 1543 if (ret < 0) 1544 return ret; 1545 1546 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL); 1547 call_netdevice_notifiers(NETDEV_UP, dev); 1548 1549 return ret; 1550 } 1551 EXPORT_SYMBOL(dev_open); 1552 1553 static void __dev_close_many(struct list_head *head) 1554 { 1555 struct net_device *dev; 1556 1557 ASSERT_RTNL(); 1558 might_sleep(); 1559 1560 list_for_each_entry(dev, head, close_list) { 1561 /* Temporarily disable netpoll until the interface is down */ 1562 netpoll_poll_disable(dev); 1563 1564 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev); 1565 1566 clear_bit(__LINK_STATE_START, &dev->state); 1567 1568 /* Synchronize to scheduled poll. We cannot touch poll list, it 1569 * can be even on different cpu. So just clear netif_running(). 1570 * 1571 * dev->stop() will invoke napi_disable() on all of it's 1572 * napi_struct instances on this device. 1573 */ 1574 smp_mb__after_atomic(); /* Commit netif_running(). */ 1575 } 1576 1577 dev_deactivate_many(head); 1578 1579 list_for_each_entry(dev, head, close_list) { 1580 const struct net_device_ops *ops = dev->netdev_ops; 1581 1582 /* 1583 * Call the device specific close. This cannot fail. 1584 * Only if device is UP 1585 * 1586 * We allow it to be called even after a DETACH hot-plug 1587 * event. 1588 */ 1589 if (ops->ndo_stop) 1590 ops->ndo_stop(dev); 1591 1592 dev->flags &= ~IFF_UP; 1593 netpoll_poll_enable(dev); 1594 } 1595 } 1596 1597 static void __dev_close(struct net_device *dev) 1598 { 1599 LIST_HEAD(single); 1600 1601 list_add(&dev->close_list, &single); 1602 __dev_close_many(&single); 1603 list_del(&single); 1604 } 1605 1606 void dev_close_many(struct list_head *head, bool unlink) 1607 { 1608 struct net_device *dev, *tmp; 1609 1610 /* Remove the devices that don't need to be closed */ 1611 list_for_each_entry_safe(dev, tmp, head, close_list) 1612 if (!(dev->flags & IFF_UP)) 1613 list_del_init(&dev->close_list); 1614 1615 __dev_close_many(head); 1616 1617 list_for_each_entry_safe(dev, tmp, head, close_list) { 1618 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL); 1619 call_netdevice_notifiers(NETDEV_DOWN, dev); 1620 if (unlink) 1621 list_del_init(&dev->close_list); 1622 } 1623 } 1624 EXPORT_SYMBOL(dev_close_many); 1625 1626 /** 1627 * dev_close - shutdown an interface. 1628 * @dev: device to shutdown 1629 * 1630 * This function moves an active device into down state. A 1631 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device 1632 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier 1633 * chain. 1634 */ 1635 void dev_close(struct net_device *dev) 1636 { 1637 if (dev->flags & IFF_UP) { 1638 LIST_HEAD(single); 1639 1640 list_add(&dev->close_list, &single); 1641 dev_close_many(&single, true); 1642 list_del(&single); 1643 } 1644 } 1645 EXPORT_SYMBOL(dev_close); 1646 1647 1648 /** 1649 * dev_disable_lro - disable Large Receive Offload on a device 1650 * @dev: device 1651 * 1652 * Disable Large Receive Offload (LRO) on a net device. Must be 1653 * called under RTNL. This is needed if received packets may be 1654 * forwarded to another interface. 1655 */ 1656 void dev_disable_lro(struct net_device *dev) 1657 { 1658 struct net_device *lower_dev; 1659 struct list_head *iter; 1660 1661 dev->wanted_features &= ~NETIF_F_LRO; 1662 netdev_update_features(dev); 1663 1664 if (unlikely(dev->features & NETIF_F_LRO)) 1665 netdev_WARN(dev, "failed to disable LRO!\n"); 1666 1667 netdev_for_each_lower_dev(dev, lower_dev, iter) 1668 dev_disable_lro(lower_dev); 1669 } 1670 EXPORT_SYMBOL(dev_disable_lro); 1671 1672 /** 1673 * dev_disable_gro_hw - disable HW Generic Receive Offload on a device 1674 * @dev: device 1675 * 1676 * Disable HW Generic Receive Offload (GRO_HW) on a net device. Must be 1677 * called under RTNL. This is needed if Generic XDP is installed on 1678 * the device. 1679 */ 1680 static void dev_disable_gro_hw(struct net_device *dev) 1681 { 1682 dev->wanted_features &= ~NETIF_F_GRO_HW; 1683 netdev_update_features(dev); 1684 1685 if (unlikely(dev->features & NETIF_F_GRO_HW)) 1686 netdev_WARN(dev, "failed to disable GRO_HW!\n"); 1687 } 1688 1689 const char *netdev_cmd_to_name(enum netdev_cmd cmd) 1690 { 1691 #define N(val) \ 1692 case NETDEV_##val: \ 1693 return "NETDEV_" __stringify(val); 1694 switch (cmd) { 1695 N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER) 1696 N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE) 1697 N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE) 1698 N(POST_INIT) N(PRE_UNINIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) 1699 N(CHANGEUPPER) N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) 1700 N(BONDING_INFO) N(PRECHANGEUPPER) N(CHANGELOWERSTATE) 1701 N(UDP_TUNNEL_PUSH_INFO) N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN) 1702 N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO) 1703 N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO) 1704 N(PRE_CHANGEADDR) N(OFFLOAD_XSTATS_ENABLE) N(OFFLOAD_XSTATS_DISABLE) 1705 N(OFFLOAD_XSTATS_REPORT_USED) N(OFFLOAD_XSTATS_REPORT_DELTA) 1706 N(XDP_FEAT_CHANGE) 1707 } 1708 #undef N 1709 return "UNKNOWN_NETDEV_EVENT"; 1710 } 1711 EXPORT_SYMBOL_GPL(netdev_cmd_to_name); 1712 1713 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val, 1714 struct net_device *dev) 1715 { 1716 struct netdev_notifier_info info = { 1717 .dev = dev, 1718 }; 1719 1720 return nb->notifier_call(nb, val, &info); 1721 } 1722 1723 static int call_netdevice_register_notifiers(struct notifier_block *nb, 1724 struct net_device *dev) 1725 { 1726 int err; 1727 1728 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev); 1729 err = notifier_to_errno(err); 1730 if (err) 1731 return err; 1732 1733 if (!(dev->flags & IFF_UP)) 1734 return 0; 1735 1736 call_netdevice_notifier(nb, NETDEV_UP, dev); 1737 return 0; 1738 } 1739 1740 static void call_netdevice_unregister_notifiers(struct notifier_block *nb, 1741 struct net_device *dev) 1742 { 1743 if (dev->flags & IFF_UP) { 1744 call_netdevice_notifier(nb, NETDEV_GOING_DOWN, 1745 dev); 1746 call_netdevice_notifier(nb, NETDEV_DOWN, dev); 1747 } 1748 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev); 1749 } 1750 1751 static int call_netdevice_register_net_notifiers(struct notifier_block *nb, 1752 struct net *net) 1753 { 1754 struct net_device *dev; 1755 int err; 1756 1757 for_each_netdev(net, dev) { 1758 err = call_netdevice_register_notifiers(nb, dev); 1759 if (err) 1760 goto rollback; 1761 } 1762 return 0; 1763 1764 rollback: 1765 for_each_netdev_continue_reverse(net, dev) 1766 call_netdevice_unregister_notifiers(nb, dev); 1767 return err; 1768 } 1769 1770 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb, 1771 struct net *net) 1772 { 1773 struct net_device *dev; 1774 1775 for_each_netdev(net, dev) 1776 call_netdevice_unregister_notifiers(nb, dev); 1777 } 1778 1779 static int dev_boot_phase = 1; 1780 1781 /** 1782 * register_netdevice_notifier - register a network notifier block 1783 * @nb: notifier 1784 * 1785 * Register a notifier to be called when network device events occur. 1786 * The notifier passed is linked into the kernel structures and must 1787 * not be reused until it has been unregistered. A negative errno code 1788 * is returned on a failure. 1789 * 1790 * When registered all registration and up events are replayed 1791 * to the new notifier to allow device to have a race free 1792 * view of the network device list. 1793 */ 1794 1795 int register_netdevice_notifier(struct notifier_block *nb) 1796 { 1797 struct net *net; 1798 int err; 1799 1800 /* Close race with setup_net() and cleanup_net() */ 1801 down_write(&pernet_ops_rwsem); 1802 rtnl_lock(); 1803 err = raw_notifier_chain_register(&netdev_chain, nb); 1804 if (err) 1805 goto unlock; 1806 if (dev_boot_phase) 1807 goto unlock; 1808 for_each_net(net) { 1809 err = call_netdevice_register_net_notifiers(nb, net); 1810 if (err) 1811 goto rollback; 1812 } 1813 1814 unlock: 1815 rtnl_unlock(); 1816 up_write(&pernet_ops_rwsem); 1817 return err; 1818 1819 rollback: 1820 for_each_net_continue_reverse(net) 1821 call_netdevice_unregister_net_notifiers(nb, net); 1822 1823 raw_notifier_chain_unregister(&netdev_chain, nb); 1824 goto unlock; 1825 } 1826 EXPORT_SYMBOL(register_netdevice_notifier); 1827 1828 /** 1829 * unregister_netdevice_notifier - unregister a network notifier block 1830 * @nb: notifier 1831 * 1832 * Unregister a notifier previously registered by 1833 * register_netdevice_notifier(). The notifier is unlinked into the 1834 * kernel structures and may then be reused. A negative errno code 1835 * is returned on a failure. 1836 * 1837 * After unregistering unregister and down device events are synthesized 1838 * for all devices on the device list to the removed notifier to remove 1839 * the need for special case cleanup code. 1840 */ 1841 1842 int unregister_netdevice_notifier(struct notifier_block *nb) 1843 { 1844 struct net *net; 1845 int err; 1846 1847 /* Close race with setup_net() and cleanup_net() */ 1848 down_write(&pernet_ops_rwsem); 1849 rtnl_lock(); 1850 err = raw_notifier_chain_unregister(&netdev_chain, nb); 1851 if (err) 1852 goto unlock; 1853 1854 for_each_net(net) 1855 call_netdevice_unregister_net_notifiers(nb, net); 1856 1857 unlock: 1858 rtnl_unlock(); 1859 up_write(&pernet_ops_rwsem); 1860 return err; 1861 } 1862 EXPORT_SYMBOL(unregister_netdevice_notifier); 1863 1864 static int __register_netdevice_notifier_net(struct net *net, 1865 struct notifier_block *nb, 1866 bool ignore_call_fail) 1867 { 1868 int err; 1869 1870 err = raw_notifier_chain_register(&net->netdev_chain, nb); 1871 if (err) 1872 return err; 1873 if (dev_boot_phase) 1874 return 0; 1875 1876 err = call_netdevice_register_net_notifiers(nb, net); 1877 if (err && !ignore_call_fail) 1878 goto chain_unregister; 1879 1880 return 0; 1881 1882 chain_unregister: 1883 raw_notifier_chain_unregister(&net->netdev_chain, nb); 1884 return err; 1885 } 1886 1887 static int __unregister_netdevice_notifier_net(struct net *net, 1888 struct notifier_block *nb) 1889 { 1890 int err; 1891 1892 err = raw_notifier_chain_unregister(&net->netdev_chain, nb); 1893 if (err) 1894 return err; 1895 1896 call_netdevice_unregister_net_notifiers(nb, net); 1897 return 0; 1898 } 1899 1900 /** 1901 * register_netdevice_notifier_net - register a per-netns network notifier block 1902 * @net: network namespace 1903 * @nb: notifier 1904 * 1905 * Register a notifier to be called when network device events occur. 1906 * The notifier passed is linked into the kernel structures and must 1907 * not be reused until it has been unregistered. A negative errno code 1908 * is returned on a failure. 1909 * 1910 * When registered all registration and up events are replayed 1911 * to the new notifier to allow device to have a race free 1912 * view of the network device list. 1913 */ 1914 1915 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb) 1916 { 1917 int err; 1918 1919 rtnl_lock(); 1920 err = __register_netdevice_notifier_net(net, nb, false); 1921 rtnl_unlock(); 1922 return err; 1923 } 1924 EXPORT_SYMBOL(register_netdevice_notifier_net); 1925 1926 /** 1927 * unregister_netdevice_notifier_net - unregister a per-netns 1928 * network notifier block 1929 * @net: network namespace 1930 * @nb: notifier 1931 * 1932 * Unregister a notifier previously registered by 1933 * register_netdevice_notifier_net(). The notifier is unlinked from the 1934 * kernel structures and may then be reused. A negative errno code 1935 * is returned on a failure. 1936 * 1937 * After unregistering unregister and down device events are synthesized 1938 * for all devices on the device list to the removed notifier to remove 1939 * the need for special case cleanup code. 1940 */ 1941 1942 int unregister_netdevice_notifier_net(struct net *net, 1943 struct notifier_block *nb) 1944 { 1945 int err; 1946 1947 rtnl_lock(); 1948 err = __unregister_netdevice_notifier_net(net, nb); 1949 rtnl_unlock(); 1950 return err; 1951 } 1952 EXPORT_SYMBOL(unregister_netdevice_notifier_net); 1953 1954 static void __move_netdevice_notifier_net(struct net *src_net, 1955 struct net *dst_net, 1956 struct notifier_block *nb) 1957 { 1958 __unregister_netdevice_notifier_net(src_net, nb); 1959 __register_netdevice_notifier_net(dst_net, nb, true); 1960 } 1961 1962 int register_netdevice_notifier_dev_net(struct net_device *dev, 1963 struct notifier_block *nb, 1964 struct netdev_net_notifier *nn) 1965 { 1966 int err; 1967 1968 rtnl_lock(); 1969 err = __register_netdevice_notifier_net(dev_net(dev), nb, false); 1970 if (!err) { 1971 nn->nb = nb; 1972 list_add(&nn->list, &dev->net_notifier_list); 1973 } 1974 rtnl_unlock(); 1975 return err; 1976 } 1977 EXPORT_SYMBOL(register_netdevice_notifier_dev_net); 1978 1979 int unregister_netdevice_notifier_dev_net(struct net_device *dev, 1980 struct notifier_block *nb, 1981 struct netdev_net_notifier *nn) 1982 { 1983 int err; 1984 1985 rtnl_lock(); 1986 list_del(&nn->list); 1987 err = __unregister_netdevice_notifier_net(dev_net(dev), nb); 1988 rtnl_unlock(); 1989 return err; 1990 } 1991 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net); 1992 1993 static void move_netdevice_notifiers_dev_net(struct net_device *dev, 1994 struct net *net) 1995 { 1996 struct netdev_net_notifier *nn; 1997 1998 list_for_each_entry(nn, &dev->net_notifier_list, list) 1999 __move_netdevice_notifier_net(dev_net(dev), net, nn->nb); 2000 } 2001 2002 /** 2003 * call_netdevice_notifiers_info - call all network notifier blocks 2004 * @val: value passed unmodified to notifier function 2005 * @info: notifier information data 2006 * 2007 * Call all network notifier blocks. Parameters and return value 2008 * are as for raw_notifier_call_chain(). 2009 */ 2010 2011 int call_netdevice_notifiers_info(unsigned long val, 2012 struct netdev_notifier_info *info) 2013 { 2014 struct net *net = dev_net(info->dev); 2015 int ret; 2016 2017 ASSERT_RTNL(); 2018 2019 /* Run per-netns notifier block chain first, then run the global one. 2020 * Hopefully, one day, the global one is going to be removed after 2021 * all notifier block registrators get converted to be per-netns. 2022 */ 2023 ret = raw_notifier_call_chain(&net->netdev_chain, val, info); 2024 if (ret & NOTIFY_STOP_MASK) 2025 return ret; 2026 return raw_notifier_call_chain(&netdev_chain, val, info); 2027 } 2028 2029 /** 2030 * call_netdevice_notifiers_info_robust - call per-netns notifier blocks 2031 * for and rollback on error 2032 * @val_up: value passed unmodified to notifier function 2033 * @val_down: value passed unmodified to the notifier function when 2034 * recovering from an error on @val_up 2035 * @info: notifier information data 2036 * 2037 * Call all per-netns network notifier blocks, but not notifier blocks on 2038 * the global notifier chain. Parameters and return value are as for 2039 * raw_notifier_call_chain_robust(). 2040 */ 2041 2042 static int 2043 call_netdevice_notifiers_info_robust(unsigned long val_up, 2044 unsigned long val_down, 2045 struct netdev_notifier_info *info) 2046 { 2047 struct net *net = dev_net(info->dev); 2048 2049 ASSERT_RTNL(); 2050 2051 return raw_notifier_call_chain_robust(&net->netdev_chain, 2052 val_up, val_down, info); 2053 } 2054 2055 static int call_netdevice_notifiers_extack(unsigned long val, 2056 struct net_device *dev, 2057 struct netlink_ext_ack *extack) 2058 { 2059 struct netdev_notifier_info info = { 2060 .dev = dev, 2061 .extack = extack, 2062 }; 2063 2064 return call_netdevice_notifiers_info(val, &info); 2065 } 2066 2067 /** 2068 * call_netdevice_notifiers - call all network notifier blocks 2069 * @val: value passed unmodified to notifier function 2070 * @dev: net_device pointer passed unmodified to notifier function 2071 * 2072 * Call all network notifier blocks. Parameters and return value 2073 * are as for raw_notifier_call_chain(). 2074 */ 2075 2076 int call_netdevice_notifiers(unsigned long val, struct net_device *dev) 2077 { 2078 return call_netdevice_notifiers_extack(val, dev, NULL); 2079 } 2080 EXPORT_SYMBOL(call_netdevice_notifiers); 2081 2082 /** 2083 * call_netdevice_notifiers_mtu - call all network notifier blocks 2084 * @val: value passed unmodified to notifier function 2085 * @dev: net_device pointer passed unmodified to notifier function 2086 * @arg: additional u32 argument passed to the notifier function 2087 * 2088 * Call all network notifier blocks. Parameters and return value 2089 * are as for raw_notifier_call_chain(). 2090 */ 2091 static int call_netdevice_notifiers_mtu(unsigned long val, 2092 struct net_device *dev, u32 arg) 2093 { 2094 struct netdev_notifier_info_ext info = { 2095 .info.dev = dev, 2096 .ext.mtu = arg, 2097 }; 2098 2099 BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0); 2100 2101 return call_netdevice_notifiers_info(val, &info.info); 2102 } 2103 2104 #ifdef CONFIG_NET_INGRESS 2105 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key); 2106 2107 void net_inc_ingress_queue(void) 2108 { 2109 static_branch_inc(&ingress_needed_key); 2110 } 2111 EXPORT_SYMBOL_GPL(net_inc_ingress_queue); 2112 2113 void net_dec_ingress_queue(void) 2114 { 2115 static_branch_dec(&ingress_needed_key); 2116 } 2117 EXPORT_SYMBOL_GPL(net_dec_ingress_queue); 2118 #endif 2119 2120 #ifdef CONFIG_NET_EGRESS 2121 static DEFINE_STATIC_KEY_FALSE(egress_needed_key); 2122 2123 void net_inc_egress_queue(void) 2124 { 2125 static_branch_inc(&egress_needed_key); 2126 } 2127 EXPORT_SYMBOL_GPL(net_inc_egress_queue); 2128 2129 void net_dec_egress_queue(void) 2130 { 2131 static_branch_dec(&egress_needed_key); 2132 } 2133 EXPORT_SYMBOL_GPL(net_dec_egress_queue); 2134 #endif 2135 2136 #ifdef CONFIG_NET_CLS_ACT 2137 DEFINE_STATIC_KEY_FALSE(tcf_bypass_check_needed_key); 2138 EXPORT_SYMBOL(tcf_bypass_check_needed_key); 2139 #endif 2140 2141 DEFINE_STATIC_KEY_FALSE(netstamp_needed_key); 2142 EXPORT_SYMBOL(netstamp_needed_key); 2143 #ifdef CONFIG_JUMP_LABEL 2144 static atomic_t netstamp_needed_deferred; 2145 static atomic_t netstamp_wanted; 2146 static void netstamp_clear(struct work_struct *work) 2147 { 2148 int deferred = atomic_xchg(&netstamp_needed_deferred, 0); 2149 int wanted; 2150 2151 wanted = atomic_add_return(deferred, &netstamp_wanted); 2152 if (wanted > 0) 2153 static_branch_enable(&netstamp_needed_key); 2154 else 2155 static_branch_disable(&netstamp_needed_key); 2156 } 2157 static DECLARE_WORK(netstamp_work, netstamp_clear); 2158 #endif 2159 2160 void net_enable_timestamp(void) 2161 { 2162 #ifdef CONFIG_JUMP_LABEL 2163 int wanted = atomic_read(&netstamp_wanted); 2164 2165 while (wanted > 0) { 2166 if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted + 1)) 2167 return; 2168 } 2169 atomic_inc(&netstamp_needed_deferred); 2170 schedule_work(&netstamp_work); 2171 #else 2172 static_branch_inc(&netstamp_needed_key); 2173 #endif 2174 } 2175 EXPORT_SYMBOL(net_enable_timestamp); 2176 2177 void net_disable_timestamp(void) 2178 { 2179 #ifdef CONFIG_JUMP_LABEL 2180 int wanted = atomic_read(&netstamp_wanted); 2181 2182 while (wanted > 1) { 2183 if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted - 1)) 2184 return; 2185 } 2186 atomic_dec(&netstamp_needed_deferred); 2187 schedule_work(&netstamp_work); 2188 #else 2189 static_branch_dec(&netstamp_needed_key); 2190 #endif 2191 } 2192 EXPORT_SYMBOL(net_disable_timestamp); 2193 2194 static inline void net_timestamp_set(struct sk_buff *skb) 2195 { 2196 skb->tstamp = 0; 2197 skb->tstamp_type = SKB_CLOCK_REALTIME; 2198 if (static_branch_unlikely(&netstamp_needed_key)) 2199 skb->tstamp = ktime_get_real(); 2200 } 2201 2202 #define net_timestamp_check(COND, SKB) \ 2203 if (static_branch_unlikely(&netstamp_needed_key)) { \ 2204 if ((COND) && !(SKB)->tstamp) \ 2205 (SKB)->tstamp = ktime_get_real(); \ 2206 } \ 2207 2208 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb) 2209 { 2210 return __is_skb_forwardable(dev, skb, true); 2211 } 2212 EXPORT_SYMBOL_GPL(is_skb_forwardable); 2213 2214 static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb, 2215 bool check_mtu) 2216 { 2217 int ret = ____dev_forward_skb(dev, skb, check_mtu); 2218 2219 if (likely(!ret)) { 2220 skb->protocol = eth_type_trans(skb, dev); 2221 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN); 2222 } 2223 2224 return ret; 2225 } 2226 2227 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 2228 { 2229 return __dev_forward_skb2(dev, skb, true); 2230 } 2231 EXPORT_SYMBOL_GPL(__dev_forward_skb); 2232 2233 /** 2234 * dev_forward_skb - loopback an skb to another netif 2235 * 2236 * @dev: destination network device 2237 * @skb: buffer to forward 2238 * 2239 * return values: 2240 * NET_RX_SUCCESS (no congestion) 2241 * NET_RX_DROP (packet was dropped, but freed) 2242 * 2243 * dev_forward_skb can be used for injecting an skb from the 2244 * start_xmit function of one device into the receive queue 2245 * of another device. 2246 * 2247 * The receiving device may be in another namespace, so 2248 * we have to clear all information in the skb that could 2249 * impact namespace isolation. 2250 */ 2251 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 2252 { 2253 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb); 2254 } 2255 EXPORT_SYMBOL_GPL(dev_forward_skb); 2256 2257 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb) 2258 { 2259 return __dev_forward_skb2(dev, skb, false) ?: netif_rx_internal(skb); 2260 } 2261 2262 static inline int deliver_skb(struct sk_buff *skb, 2263 struct packet_type *pt_prev, 2264 struct net_device *orig_dev) 2265 { 2266 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC))) 2267 return -ENOMEM; 2268 refcount_inc(&skb->users); 2269 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 2270 } 2271 2272 static inline void deliver_ptype_list_skb(struct sk_buff *skb, 2273 struct packet_type **pt, 2274 struct net_device *orig_dev, 2275 __be16 type, 2276 struct list_head *ptype_list) 2277 { 2278 struct packet_type *ptype, *pt_prev = *pt; 2279 2280 list_for_each_entry_rcu(ptype, ptype_list, list) { 2281 if (ptype->type != type) 2282 continue; 2283 if (pt_prev) 2284 deliver_skb(skb, pt_prev, orig_dev); 2285 pt_prev = ptype; 2286 } 2287 *pt = pt_prev; 2288 } 2289 2290 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb) 2291 { 2292 if (!ptype->af_packet_priv || !skb->sk) 2293 return false; 2294 2295 if (ptype->id_match) 2296 return ptype->id_match(ptype, skb->sk); 2297 else if ((struct sock *)ptype->af_packet_priv == skb->sk) 2298 return true; 2299 2300 return false; 2301 } 2302 2303 /** 2304 * dev_nit_active - return true if any network interface taps are in use 2305 * 2306 * @dev: network device to check for the presence of taps 2307 */ 2308 bool dev_nit_active(struct net_device *dev) 2309 { 2310 return !list_empty(&net_hotdata.ptype_all) || 2311 !list_empty(&dev->ptype_all); 2312 } 2313 EXPORT_SYMBOL_GPL(dev_nit_active); 2314 2315 /* 2316 * Support routine. Sends outgoing frames to any network 2317 * taps currently in use. 2318 */ 2319 2320 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev) 2321 { 2322 struct list_head *ptype_list = &net_hotdata.ptype_all; 2323 struct packet_type *ptype, *pt_prev = NULL; 2324 struct sk_buff *skb2 = NULL; 2325 2326 rcu_read_lock(); 2327 again: 2328 list_for_each_entry_rcu(ptype, ptype_list, list) { 2329 if (READ_ONCE(ptype->ignore_outgoing)) 2330 continue; 2331 2332 /* Never send packets back to the socket 2333 * they originated from - MvS (miquels@drinkel.ow.org) 2334 */ 2335 if (skb_loop_sk(ptype, skb)) 2336 continue; 2337 2338 if (pt_prev) { 2339 deliver_skb(skb2, pt_prev, skb->dev); 2340 pt_prev = ptype; 2341 continue; 2342 } 2343 2344 /* need to clone skb, done only once */ 2345 skb2 = skb_clone(skb, GFP_ATOMIC); 2346 if (!skb2) 2347 goto out_unlock; 2348 2349 net_timestamp_set(skb2); 2350 2351 /* skb->nh should be correctly 2352 * set by sender, so that the second statement is 2353 * just protection against buggy protocols. 2354 */ 2355 skb_reset_mac_header(skb2); 2356 2357 if (skb_network_header(skb2) < skb2->data || 2358 skb_network_header(skb2) > skb_tail_pointer(skb2)) { 2359 net_crit_ratelimited("protocol %04x is buggy, dev %s\n", 2360 ntohs(skb2->protocol), 2361 dev->name); 2362 skb_reset_network_header(skb2); 2363 } 2364 2365 skb2->transport_header = skb2->network_header; 2366 skb2->pkt_type = PACKET_OUTGOING; 2367 pt_prev = ptype; 2368 } 2369 2370 if (ptype_list == &net_hotdata.ptype_all) { 2371 ptype_list = &dev->ptype_all; 2372 goto again; 2373 } 2374 out_unlock: 2375 if (pt_prev) { 2376 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC)) 2377 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev); 2378 else 2379 kfree_skb(skb2); 2380 } 2381 rcu_read_unlock(); 2382 } 2383 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit); 2384 2385 /** 2386 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change 2387 * @dev: Network device 2388 * @txq: number of queues available 2389 * 2390 * If real_num_tx_queues is changed the tc mappings may no longer be 2391 * valid. To resolve this verify the tc mapping remains valid and if 2392 * not NULL the mapping. With no priorities mapping to this 2393 * offset/count pair it will no longer be used. In the worst case TC0 2394 * is invalid nothing can be done so disable priority mappings. If is 2395 * expected that drivers will fix this mapping if they can before 2396 * calling netif_set_real_num_tx_queues. 2397 */ 2398 static void netif_setup_tc(struct net_device *dev, unsigned int txq) 2399 { 2400 int i; 2401 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 2402 2403 /* If TC0 is invalidated disable TC mapping */ 2404 if (tc->offset + tc->count > txq) { 2405 netdev_warn(dev, "Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n"); 2406 dev->num_tc = 0; 2407 return; 2408 } 2409 2410 /* Invalidated prio to tc mappings set to TC0 */ 2411 for (i = 1; i < TC_BITMASK + 1; i++) { 2412 int q = netdev_get_prio_tc_map(dev, i); 2413 2414 tc = &dev->tc_to_txq[q]; 2415 if (tc->offset + tc->count > txq) { 2416 netdev_warn(dev, "Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n", 2417 i, q); 2418 netdev_set_prio_tc_map(dev, i, 0); 2419 } 2420 } 2421 } 2422 2423 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq) 2424 { 2425 if (dev->num_tc) { 2426 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 2427 int i; 2428 2429 /* walk through the TCs and see if it falls into any of them */ 2430 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) { 2431 if ((txq - tc->offset) < tc->count) 2432 return i; 2433 } 2434 2435 /* didn't find it, just return -1 to indicate no match */ 2436 return -1; 2437 } 2438 2439 return 0; 2440 } 2441 EXPORT_SYMBOL(netdev_txq_to_tc); 2442 2443 #ifdef CONFIG_XPS 2444 static struct static_key xps_needed __read_mostly; 2445 static struct static_key xps_rxqs_needed __read_mostly; 2446 static DEFINE_MUTEX(xps_map_mutex); 2447 #define xmap_dereference(P) \ 2448 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex)) 2449 2450 static bool remove_xps_queue(struct xps_dev_maps *dev_maps, 2451 struct xps_dev_maps *old_maps, int tci, u16 index) 2452 { 2453 struct xps_map *map = NULL; 2454 int pos; 2455 2456 map = xmap_dereference(dev_maps->attr_map[tci]); 2457 if (!map) 2458 return false; 2459 2460 for (pos = map->len; pos--;) { 2461 if (map->queues[pos] != index) 2462 continue; 2463 2464 if (map->len > 1) { 2465 map->queues[pos] = map->queues[--map->len]; 2466 break; 2467 } 2468 2469 if (old_maps) 2470 RCU_INIT_POINTER(old_maps->attr_map[tci], NULL); 2471 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL); 2472 kfree_rcu(map, rcu); 2473 return false; 2474 } 2475 2476 return true; 2477 } 2478 2479 static bool remove_xps_queue_cpu(struct net_device *dev, 2480 struct xps_dev_maps *dev_maps, 2481 int cpu, u16 offset, u16 count) 2482 { 2483 int num_tc = dev_maps->num_tc; 2484 bool active = false; 2485 int tci; 2486 2487 for (tci = cpu * num_tc; num_tc--; tci++) { 2488 int i, j; 2489 2490 for (i = count, j = offset; i--; j++) { 2491 if (!remove_xps_queue(dev_maps, NULL, tci, j)) 2492 break; 2493 } 2494 2495 active |= i < 0; 2496 } 2497 2498 return active; 2499 } 2500 2501 static void reset_xps_maps(struct net_device *dev, 2502 struct xps_dev_maps *dev_maps, 2503 enum xps_map_type type) 2504 { 2505 static_key_slow_dec_cpuslocked(&xps_needed); 2506 if (type == XPS_RXQS) 2507 static_key_slow_dec_cpuslocked(&xps_rxqs_needed); 2508 2509 RCU_INIT_POINTER(dev->xps_maps[type], NULL); 2510 2511 kfree_rcu(dev_maps, rcu); 2512 } 2513 2514 static void clean_xps_maps(struct net_device *dev, enum xps_map_type type, 2515 u16 offset, u16 count) 2516 { 2517 struct xps_dev_maps *dev_maps; 2518 bool active = false; 2519 int i, j; 2520 2521 dev_maps = xmap_dereference(dev->xps_maps[type]); 2522 if (!dev_maps) 2523 return; 2524 2525 for (j = 0; j < dev_maps->nr_ids; j++) 2526 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, count); 2527 if (!active) 2528 reset_xps_maps(dev, dev_maps, type); 2529 2530 if (type == XPS_CPUS) { 2531 for (i = offset + (count - 1); count--; i--) 2532 netdev_queue_numa_node_write( 2533 netdev_get_tx_queue(dev, i), NUMA_NO_NODE); 2534 } 2535 } 2536 2537 static void netif_reset_xps_queues(struct net_device *dev, u16 offset, 2538 u16 count) 2539 { 2540 if (!static_key_false(&xps_needed)) 2541 return; 2542 2543 cpus_read_lock(); 2544 mutex_lock(&xps_map_mutex); 2545 2546 if (static_key_false(&xps_rxqs_needed)) 2547 clean_xps_maps(dev, XPS_RXQS, offset, count); 2548 2549 clean_xps_maps(dev, XPS_CPUS, offset, count); 2550 2551 mutex_unlock(&xps_map_mutex); 2552 cpus_read_unlock(); 2553 } 2554 2555 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index) 2556 { 2557 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index); 2558 } 2559 2560 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index, 2561 u16 index, bool is_rxqs_map) 2562 { 2563 struct xps_map *new_map; 2564 int alloc_len = XPS_MIN_MAP_ALLOC; 2565 int i, pos; 2566 2567 for (pos = 0; map && pos < map->len; pos++) { 2568 if (map->queues[pos] != index) 2569 continue; 2570 return map; 2571 } 2572 2573 /* Need to add tx-queue to this CPU's/rx-queue's existing map */ 2574 if (map) { 2575 if (pos < map->alloc_len) 2576 return map; 2577 2578 alloc_len = map->alloc_len * 2; 2579 } 2580 2581 /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's 2582 * map 2583 */ 2584 if (is_rxqs_map) 2585 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL); 2586 else 2587 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL, 2588 cpu_to_node(attr_index)); 2589 if (!new_map) 2590 return NULL; 2591 2592 for (i = 0; i < pos; i++) 2593 new_map->queues[i] = map->queues[i]; 2594 new_map->alloc_len = alloc_len; 2595 new_map->len = pos; 2596 2597 return new_map; 2598 } 2599 2600 /* Copy xps maps at a given index */ 2601 static void xps_copy_dev_maps(struct xps_dev_maps *dev_maps, 2602 struct xps_dev_maps *new_dev_maps, int index, 2603 int tc, bool skip_tc) 2604 { 2605 int i, tci = index * dev_maps->num_tc; 2606 struct xps_map *map; 2607 2608 /* copy maps belonging to foreign traffic classes */ 2609 for (i = 0; i < dev_maps->num_tc; i++, tci++) { 2610 if (i == tc && skip_tc) 2611 continue; 2612 2613 /* fill in the new device map from the old device map */ 2614 map = xmap_dereference(dev_maps->attr_map[tci]); 2615 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map); 2616 } 2617 } 2618 2619 /* Must be called under cpus_read_lock */ 2620 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask, 2621 u16 index, enum xps_map_type type) 2622 { 2623 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL, *old_dev_maps = NULL; 2624 const unsigned long *online_mask = NULL; 2625 bool active = false, copy = false; 2626 int i, j, tci, numa_node_id = -2; 2627 int maps_sz, num_tc = 1, tc = 0; 2628 struct xps_map *map, *new_map; 2629 unsigned int nr_ids; 2630 2631 WARN_ON_ONCE(index >= dev->num_tx_queues); 2632 2633 if (dev->num_tc) { 2634 /* Do not allow XPS on subordinate device directly */ 2635 num_tc = dev->num_tc; 2636 if (num_tc < 0) 2637 return -EINVAL; 2638 2639 /* If queue belongs to subordinate dev use its map */ 2640 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev; 2641 2642 tc = netdev_txq_to_tc(dev, index); 2643 if (tc < 0) 2644 return -EINVAL; 2645 } 2646 2647 mutex_lock(&xps_map_mutex); 2648 2649 dev_maps = xmap_dereference(dev->xps_maps[type]); 2650 if (type == XPS_RXQS) { 2651 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues); 2652 nr_ids = dev->num_rx_queues; 2653 } else { 2654 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc); 2655 if (num_possible_cpus() > 1) 2656 online_mask = cpumask_bits(cpu_online_mask); 2657 nr_ids = nr_cpu_ids; 2658 } 2659 2660 if (maps_sz < L1_CACHE_BYTES) 2661 maps_sz = L1_CACHE_BYTES; 2662 2663 /* The old dev_maps could be larger or smaller than the one we're 2664 * setting up now, as dev->num_tc or nr_ids could have been updated in 2665 * between. We could try to be smart, but let's be safe instead and only 2666 * copy foreign traffic classes if the two map sizes match. 2667 */ 2668 if (dev_maps && 2669 dev_maps->num_tc == num_tc && dev_maps->nr_ids == nr_ids) 2670 copy = true; 2671 2672 /* allocate memory for queue storage */ 2673 for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids), 2674 j < nr_ids;) { 2675 if (!new_dev_maps) { 2676 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL); 2677 if (!new_dev_maps) { 2678 mutex_unlock(&xps_map_mutex); 2679 return -ENOMEM; 2680 } 2681 2682 new_dev_maps->nr_ids = nr_ids; 2683 new_dev_maps->num_tc = num_tc; 2684 } 2685 2686 tci = j * num_tc + tc; 2687 map = copy ? xmap_dereference(dev_maps->attr_map[tci]) : NULL; 2688 2689 map = expand_xps_map(map, j, index, type == XPS_RXQS); 2690 if (!map) 2691 goto error; 2692 2693 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map); 2694 } 2695 2696 if (!new_dev_maps) 2697 goto out_no_new_maps; 2698 2699 if (!dev_maps) { 2700 /* Increment static keys at most once per type */ 2701 static_key_slow_inc_cpuslocked(&xps_needed); 2702 if (type == XPS_RXQS) 2703 static_key_slow_inc_cpuslocked(&xps_rxqs_needed); 2704 } 2705 2706 for (j = 0; j < nr_ids; j++) { 2707 bool skip_tc = false; 2708 2709 tci = j * num_tc + tc; 2710 if (netif_attr_test_mask(j, mask, nr_ids) && 2711 netif_attr_test_online(j, online_mask, nr_ids)) { 2712 /* add tx-queue to CPU/rx-queue maps */ 2713 int pos = 0; 2714 2715 skip_tc = true; 2716 2717 map = xmap_dereference(new_dev_maps->attr_map[tci]); 2718 while ((pos < map->len) && (map->queues[pos] != index)) 2719 pos++; 2720 2721 if (pos == map->len) 2722 map->queues[map->len++] = index; 2723 #ifdef CONFIG_NUMA 2724 if (type == XPS_CPUS) { 2725 if (numa_node_id == -2) 2726 numa_node_id = cpu_to_node(j); 2727 else if (numa_node_id != cpu_to_node(j)) 2728 numa_node_id = -1; 2729 } 2730 #endif 2731 } 2732 2733 if (copy) 2734 xps_copy_dev_maps(dev_maps, new_dev_maps, j, tc, 2735 skip_tc); 2736 } 2737 2738 rcu_assign_pointer(dev->xps_maps[type], new_dev_maps); 2739 2740 /* Cleanup old maps */ 2741 if (!dev_maps) 2742 goto out_no_old_maps; 2743 2744 for (j = 0; j < dev_maps->nr_ids; j++) { 2745 for (i = num_tc, tci = j * dev_maps->num_tc; i--; tci++) { 2746 map = xmap_dereference(dev_maps->attr_map[tci]); 2747 if (!map) 2748 continue; 2749 2750 if (copy) { 2751 new_map = xmap_dereference(new_dev_maps->attr_map[tci]); 2752 if (map == new_map) 2753 continue; 2754 } 2755 2756 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL); 2757 kfree_rcu(map, rcu); 2758 } 2759 } 2760 2761 old_dev_maps = dev_maps; 2762 2763 out_no_old_maps: 2764 dev_maps = new_dev_maps; 2765 active = true; 2766 2767 out_no_new_maps: 2768 if (type == XPS_CPUS) 2769 /* update Tx queue numa node */ 2770 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index), 2771 (numa_node_id >= 0) ? 2772 numa_node_id : NUMA_NO_NODE); 2773 2774 if (!dev_maps) 2775 goto out_no_maps; 2776 2777 /* removes tx-queue from unused CPUs/rx-queues */ 2778 for (j = 0; j < dev_maps->nr_ids; j++) { 2779 tci = j * dev_maps->num_tc; 2780 2781 for (i = 0; i < dev_maps->num_tc; i++, tci++) { 2782 if (i == tc && 2783 netif_attr_test_mask(j, mask, dev_maps->nr_ids) && 2784 netif_attr_test_online(j, online_mask, dev_maps->nr_ids)) 2785 continue; 2786 2787 active |= remove_xps_queue(dev_maps, 2788 copy ? old_dev_maps : NULL, 2789 tci, index); 2790 } 2791 } 2792 2793 if (old_dev_maps) 2794 kfree_rcu(old_dev_maps, rcu); 2795 2796 /* free map if not active */ 2797 if (!active) 2798 reset_xps_maps(dev, dev_maps, type); 2799 2800 out_no_maps: 2801 mutex_unlock(&xps_map_mutex); 2802 2803 return 0; 2804 error: 2805 /* remove any maps that we added */ 2806 for (j = 0; j < nr_ids; j++) { 2807 for (i = num_tc, tci = j * num_tc; i--; tci++) { 2808 new_map = xmap_dereference(new_dev_maps->attr_map[tci]); 2809 map = copy ? 2810 xmap_dereference(dev_maps->attr_map[tci]) : 2811 NULL; 2812 if (new_map && new_map != map) 2813 kfree(new_map); 2814 } 2815 } 2816 2817 mutex_unlock(&xps_map_mutex); 2818 2819 kfree(new_dev_maps); 2820 return -ENOMEM; 2821 } 2822 EXPORT_SYMBOL_GPL(__netif_set_xps_queue); 2823 2824 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask, 2825 u16 index) 2826 { 2827 int ret; 2828 2829 cpus_read_lock(); 2830 ret = __netif_set_xps_queue(dev, cpumask_bits(mask), index, XPS_CPUS); 2831 cpus_read_unlock(); 2832 2833 return ret; 2834 } 2835 EXPORT_SYMBOL(netif_set_xps_queue); 2836 2837 #endif 2838 static void netdev_unbind_all_sb_channels(struct net_device *dev) 2839 { 2840 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues]; 2841 2842 /* Unbind any subordinate channels */ 2843 while (txq-- != &dev->_tx[0]) { 2844 if (txq->sb_dev) 2845 netdev_unbind_sb_channel(dev, txq->sb_dev); 2846 } 2847 } 2848 2849 void netdev_reset_tc(struct net_device *dev) 2850 { 2851 #ifdef CONFIG_XPS 2852 netif_reset_xps_queues_gt(dev, 0); 2853 #endif 2854 netdev_unbind_all_sb_channels(dev); 2855 2856 /* Reset TC configuration of device */ 2857 dev->num_tc = 0; 2858 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq)); 2859 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map)); 2860 } 2861 EXPORT_SYMBOL(netdev_reset_tc); 2862 2863 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset) 2864 { 2865 if (tc >= dev->num_tc) 2866 return -EINVAL; 2867 2868 #ifdef CONFIG_XPS 2869 netif_reset_xps_queues(dev, offset, count); 2870 #endif 2871 dev->tc_to_txq[tc].count = count; 2872 dev->tc_to_txq[tc].offset = offset; 2873 return 0; 2874 } 2875 EXPORT_SYMBOL(netdev_set_tc_queue); 2876 2877 int netdev_set_num_tc(struct net_device *dev, u8 num_tc) 2878 { 2879 if (num_tc > TC_MAX_QUEUE) 2880 return -EINVAL; 2881 2882 #ifdef CONFIG_XPS 2883 netif_reset_xps_queues_gt(dev, 0); 2884 #endif 2885 netdev_unbind_all_sb_channels(dev); 2886 2887 dev->num_tc = num_tc; 2888 return 0; 2889 } 2890 EXPORT_SYMBOL(netdev_set_num_tc); 2891 2892 void netdev_unbind_sb_channel(struct net_device *dev, 2893 struct net_device *sb_dev) 2894 { 2895 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues]; 2896 2897 #ifdef CONFIG_XPS 2898 netif_reset_xps_queues_gt(sb_dev, 0); 2899 #endif 2900 memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq)); 2901 memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map)); 2902 2903 while (txq-- != &dev->_tx[0]) { 2904 if (txq->sb_dev == sb_dev) 2905 txq->sb_dev = NULL; 2906 } 2907 } 2908 EXPORT_SYMBOL(netdev_unbind_sb_channel); 2909 2910 int netdev_bind_sb_channel_queue(struct net_device *dev, 2911 struct net_device *sb_dev, 2912 u8 tc, u16 count, u16 offset) 2913 { 2914 /* Make certain the sb_dev and dev are already configured */ 2915 if (sb_dev->num_tc >= 0 || tc >= dev->num_tc) 2916 return -EINVAL; 2917 2918 /* We cannot hand out queues we don't have */ 2919 if ((offset + count) > dev->real_num_tx_queues) 2920 return -EINVAL; 2921 2922 /* Record the mapping */ 2923 sb_dev->tc_to_txq[tc].count = count; 2924 sb_dev->tc_to_txq[tc].offset = offset; 2925 2926 /* Provide a way for Tx queue to find the tc_to_txq map or 2927 * XPS map for itself. 2928 */ 2929 while (count--) 2930 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev; 2931 2932 return 0; 2933 } 2934 EXPORT_SYMBOL(netdev_bind_sb_channel_queue); 2935 2936 int netdev_set_sb_channel(struct net_device *dev, u16 channel) 2937 { 2938 /* Do not use a multiqueue device to represent a subordinate channel */ 2939 if (netif_is_multiqueue(dev)) 2940 return -ENODEV; 2941 2942 /* We allow channels 1 - 32767 to be used for subordinate channels. 2943 * Channel 0 is meant to be "native" mode and used only to represent 2944 * the main root device. We allow writing 0 to reset the device back 2945 * to normal mode after being used as a subordinate channel. 2946 */ 2947 if (channel > S16_MAX) 2948 return -EINVAL; 2949 2950 dev->num_tc = -channel; 2951 2952 return 0; 2953 } 2954 EXPORT_SYMBOL(netdev_set_sb_channel); 2955 2956 /* 2957 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues 2958 * greater than real_num_tx_queues stale skbs on the qdisc must be flushed. 2959 */ 2960 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq) 2961 { 2962 bool disabling; 2963 int rc; 2964 2965 disabling = txq < dev->real_num_tx_queues; 2966 2967 if (txq < 1 || txq > dev->num_tx_queues) 2968 return -EINVAL; 2969 2970 if (dev->reg_state == NETREG_REGISTERED || 2971 dev->reg_state == NETREG_UNREGISTERING) { 2972 ASSERT_RTNL(); 2973 2974 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues, 2975 txq); 2976 if (rc) 2977 return rc; 2978 2979 if (dev->num_tc) 2980 netif_setup_tc(dev, txq); 2981 2982 net_shaper_set_real_num_tx_queues(dev, txq); 2983 2984 dev_qdisc_change_real_num_tx(dev, txq); 2985 2986 dev->real_num_tx_queues = txq; 2987 2988 if (disabling) { 2989 synchronize_net(); 2990 qdisc_reset_all_tx_gt(dev, txq); 2991 #ifdef CONFIG_XPS 2992 netif_reset_xps_queues_gt(dev, txq); 2993 #endif 2994 } 2995 } else { 2996 dev->real_num_tx_queues = txq; 2997 } 2998 2999 return 0; 3000 } 3001 EXPORT_SYMBOL(netif_set_real_num_tx_queues); 3002 3003 #ifdef CONFIG_SYSFS 3004 /** 3005 * netif_set_real_num_rx_queues - set actual number of RX queues used 3006 * @dev: Network device 3007 * @rxq: Actual number of RX queues 3008 * 3009 * This must be called either with the rtnl_lock held or before 3010 * registration of the net device. Returns 0 on success, or a 3011 * negative error code. If called before registration, it always 3012 * succeeds. 3013 */ 3014 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq) 3015 { 3016 int rc; 3017 3018 if (rxq < 1 || rxq > dev->num_rx_queues) 3019 return -EINVAL; 3020 3021 if (dev->reg_state == NETREG_REGISTERED) { 3022 ASSERT_RTNL(); 3023 3024 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues, 3025 rxq); 3026 if (rc) 3027 return rc; 3028 } 3029 3030 dev->real_num_rx_queues = rxq; 3031 return 0; 3032 } 3033 EXPORT_SYMBOL(netif_set_real_num_rx_queues); 3034 #endif 3035 3036 /** 3037 * netif_set_real_num_queues - set actual number of RX and TX queues used 3038 * @dev: Network device 3039 * @txq: Actual number of TX queues 3040 * @rxq: Actual number of RX queues 3041 * 3042 * Set the real number of both TX and RX queues. 3043 * Does nothing if the number of queues is already correct. 3044 */ 3045 int netif_set_real_num_queues(struct net_device *dev, 3046 unsigned int txq, unsigned int rxq) 3047 { 3048 unsigned int old_rxq = dev->real_num_rx_queues; 3049 int err; 3050 3051 if (txq < 1 || txq > dev->num_tx_queues || 3052 rxq < 1 || rxq > dev->num_rx_queues) 3053 return -EINVAL; 3054 3055 /* Start from increases, so the error path only does decreases - 3056 * decreases can't fail. 3057 */ 3058 if (rxq > dev->real_num_rx_queues) { 3059 err = netif_set_real_num_rx_queues(dev, rxq); 3060 if (err) 3061 return err; 3062 } 3063 if (txq > dev->real_num_tx_queues) { 3064 err = netif_set_real_num_tx_queues(dev, txq); 3065 if (err) 3066 goto undo_rx; 3067 } 3068 if (rxq < dev->real_num_rx_queues) 3069 WARN_ON(netif_set_real_num_rx_queues(dev, rxq)); 3070 if (txq < dev->real_num_tx_queues) 3071 WARN_ON(netif_set_real_num_tx_queues(dev, txq)); 3072 3073 return 0; 3074 undo_rx: 3075 WARN_ON(netif_set_real_num_rx_queues(dev, old_rxq)); 3076 return err; 3077 } 3078 EXPORT_SYMBOL(netif_set_real_num_queues); 3079 3080 /** 3081 * netif_set_tso_max_size() - set the max size of TSO frames supported 3082 * @dev: netdev to update 3083 * @size: max skb->len of a TSO frame 3084 * 3085 * Set the limit on the size of TSO super-frames the device can handle. 3086 * Unless explicitly set the stack will assume the value of 3087 * %GSO_LEGACY_MAX_SIZE. 3088 */ 3089 void netif_set_tso_max_size(struct net_device *dev, unsigned int size) 3090 { 3091 dev->tso_max_size = min(GSO_MAX_SIZE, size); 3092 if (size < READ_ONCE(dev->gso_max_size)) 3093 netif_set_gso_max_size(dev, size); 3094 if (size < READ_ONCE(dev->gso_ipv4_max_size)) 3095 netif_set_gso_ipv4_max_size(dev, size); 3096 } 3097 EXPORT_SYMBOL(netif_set_tso_max_size); 3098 3099 /** 3100 * netif_set_tso_max_segs() - set the max number of segs supported for TSO 3101 * @dev: netdev to update 3102 * @segs: max number of TCP segments 3103 * 3104 * Set the limit on the number of TCP segments the device can generate from 3105 * a single TSO super-frame. 3106 * Unless explicitly set the stack will assume the value of %GSO_MAX_SEGS. 3107 */ 3108 void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs) 3109 { 3110 dev->tso_max_segs = segs; 3111 if (segs < READ_ONCE(dev->gso_max_segs)) 3112 netif_set_gso_max_segs(dev, segs); 3113 } 3114 EXPORT_SYMBOL(netif_set_tso_max_segs); 3115 3116 /** 3117 * netif_inherit_tso_max() - copy all TSO limits from a lower device to an upper 3118 * @to: netdev to update 3119 * @from: netdev from which to copy the limits 3120 */ 3121 void netif_inherit_tso_max(struct net_device *to, const struct net_device *from) 3122 { 3123 netif_set_tso_max_size(to, from->tso_max_size); 3124 netif_set_tso_max_segs(to, from->tso_max_segs); 3125 } 3126 EXPORT_SYMBOL(netif_inherit_tso_max); 3127 3128 /** 3129 * netif_get_num_default_rss_queues - default number of RSS queues 3130 * 3131 * Default value is the number of physical cores if there are only 1 or 2, or 3132 * divided by 2 if there are more. 3133 */ 3134 int netif_get_num_default_rss_queues(void) 3135 { 3136 cpumask_var_t cpus; 3137 int cpu, count = 0; 3138 3139 if (unlikely(is_kdump_kernel() || !zalloc_cpumask_var(&cpus, GFP_KERNEL))) 3140 return 1; 3141 3142 cpumask_copy(cpus, cpu_online_mask); 3143 for_each_cpu(cpu, cpus) { 3144 ++count; 3145 cpumask_andnot(cpus, cpus, topology_sibling_cpumask(cpu)); 3146 } 3147 free_cpumask_var(cpus); 3148 3149 return count > 2 ? DIV_ROUND_UP(count, 2) : count; 3150 } 3151 EXPORT_SYMBOL(netif_get_num_default_rss_queues); 3152 3153 static void __netif_reschedule(struct Qdisc *q) 3154 { 3155 struct softnet_data *sd; 3156 unsigned long flags; 3157 3158 local_irq_save(flags); 3159 sd = this_cpu_ptr(&softnet_data); 3160 q->next_sched = NULL; 3161 *sd->output_queue_tailp = q; 3162 sd->output_queue_tailp = &q->next_sched; 3163 raise_softirq_irqoff(NET_TX_SOFTIRQ); 3164 local_irq_restore(flags); 3165 } 3166 3167 void __netif_schedule(struct Qdisc *q) 3168 { 3169 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state)) 3170 __netif_reschedule(q); 3171 } 3172 EXPORT_SYMBOL(__netif_schedule); 3173 3174 struct dev_kfree_skb_cb { 3175 enum skb_drop_reason reason; 3176 }; 3177 3178 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb) 3179 { 3180 return (struct dev_kfree_skb_cb *)skb->cb; 3181 } 3182 3183 void netif_schedule_queue(struct netdev_queue *txq) 3184 { 3185 rcu_read_lock(); 3186 if (!netif_xmit_stopped(txq)) { 3187 struct Qdisc *q = rcu_dereference(txq->qdisc); 3188 3189 __netif_schedule(q); 3190 } 3191 rcu_read_unlock(); 3192 } 3193 EXPORT_SYMBOL(netif_schedule_queue); 3194 3195 void netif_tx_wake_queue(struct netdev_queue *dev_queue) 3196 { 3197 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) { 3198 struct Qdisc *q; 3199 3200 rcu_read_lock(); 3201 q = rcu_dereference(dev_queue->qdisc); 3202 __netif_schedule(q); 3203 rcu_read_unlock(); 3204 } 3205 } 3206 EXPORT_SYMBOL(netif_tx_wake_queue); 3207 3208 void dev_kfree_skb_irq_reason(struct sk_buff *skb, enum skb_drop_reason reason) 3209 { 3210 unsigned long flags; 3211 3212 if (unlikely(!skb)) 3213 return; 3214 3215 if (likely(refcount_read(&skb->users) == 1)) { 3216 smp_rmb(); 3217 refcount_set(&skb->users, 0); 3218 } else if (likely(!refcount_dec_and_test(&skb->users))) { 3219 return; 3220 } 3221 get_kfree_skb_cb(skb)->reason = reason; 3222 local_irq_save(flags); 3223 skb->next = __this_cpu_read(softnet_data.completion_queue); 3224 __this_cpu_write(softnet_data.completion_queue, skb); 3225 raise_softirq_irqoff(NET_TX_SOFTIRQ); 3226 local_irq_restore(flags); 3227 } 3228 EXPORT_SYMBOL(dev_kfree_skb_irq_reason); 3229 3230 void dev_kfree_skb_any_reason(struct sk_buff *skb, enum skb_drop_reason reason) 3231 { 3232 if (in_hardirq() || irqs_disabled()) 3233 dev_kfree_skb_irq_reason(skb, reason); 3234 else 3235 kfree_skb_reason(skb, reason); 3236 } 3237 EXPORT_SYMBOL(dev_kfree_skb_any_reason); 3238 3239 3240 /** 3241 * netif_device_detach - mark device as removed 3242 * @dev: network device 3243 * 3244 * Mark device as removed from system and therefore no longer available. 3245 */ 3246 void netif_device_detach(struct net_device *dev) 3247 { 3248 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) && 3249 netif_running(dev)) { 3250 netif_tx_stop_all_queues(dev); 3251 } 3252 } 3253 EXPORT_SYMBOL(netif_device_detach); 3254 3255 /** 3256 * netif_device_attach - mark device as attached 3257 * @dev: network device 3258 * 3259 * Mark device as attached from system and restart if needed. 3260 */ 3261 void netif_device_attach(struct net_device *dev) 3262 { 3263 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) && 3264 netif_running(dev)) { 3265 netif_tx_wake_all_queues(dev); 3266 __netdev_watchdog_up(dev); 3267 } 3268 } 3269 EXPORT_SYMBOL(netif_device_attach); 3270 3271 /* 3272 * Returns a Tx hash based on the given packet descriptor a Tx queues' number 3273 * to be used as a distribution range. 3274 */ 3275 static u16 skb_tx_hash(const struct net_device *dev, 3276 const struct net_device *sb_dev, 3277 struct sk_buff *skb) 3278 { 3279 u32 hash; 3280 u16 qoffset = 0; 3281 u16 qcount = dev->real_num_tx_queues; 3282 3283 if (dev->num_tc) { 3284 u8 tc = netdev_get_prio_tc_map(dev, skb->priority); 3285 3286 qoffset = sb_dev->tc_to_txq[tc].offset; 3287 qcount = sb_dev->tc_to_txq[tc].count; 3288 if (unlikely(!qcount)) { 3289 net_warn_ratelimited("%s: invalid qcount, qoffset %u for tc %u\n", 3290 sb_dev->name, qoffset, tc); 3291 qoffset = 0; 3292 qcount = dev->real_num_tx_queues; 3293 } 3294 } 3295 3296 if (skb_rx_queue_recorded(skb)) { 3297 DEBUG_NET_WARN_ON_ONCE(qcount == 0); 3298 hash = skb_get_rx_queue(skb); 3299 if (hash >= qoffset) 3300 hash -= qoffset; 3301 while (unlikely(hash >= qcount)) 3302 hash -= qcount; 3303 return hash + qoffset; 3304 } 3305 3306 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset; 3307 } 3308 3309 void skb_warn_bad_offload(const struct sk_buff *skb) 3310 { 3311 static const netdev_features_t null_features; 3312 struct net_device *dev = skb->dev; 3313 const char *name = ""; 3314 3315 if (!net_ratelimit()) 3316 return; 3317 3318 if (dev) { 3319 if (dev->dev.parent) 3320 name = dev_driver_string(dev->dev.parent); 3321 else 3322 name = netdev_name(dev); 3323 } 3324 skb_dump(KERN_WARNING, skb, false); 3325 WARN(1, "%s: caps=(%pNF, %pNF)\n", 3326 name, dev ? &dev->features : &null_features, 3327 skb->sk ? &skb->sk->sk_route_caps : &null_features); 3328 } 3329 3330 /* 3331 * Invalidate hardware checksum when packet is to be mangled, and 3332 * complete checksum manually on outgoing path. 3333 */ 3334 int skb_checksum_help(struct sk_buff *skb) 3335 { 3336 __wsum csum; 3337 int ret = 0, offset; 3338 3339 if (skb->ip_summed == CHECKSUM_COMPLETE) 3340 goto out_set_summed; 3341 3342 if (unlikely(skb_is_gso(skb))) { 3343 skb_warn_bad_offload(skb); 3344 return -EINVAL; 3345 } 3346 3347 if (!skb_frags_readable(skb)) { 3348 return -EFAULT; 3349 } 3350 3351 /* Before computing a checksum, we should make sure no frag could 3352 * be modified by an external entity : checksum could be wrong. 3353 */ 3354 if (skb_has_shared_frag(skb)) { 3355 ret = __skb_linearize(skb); 3356 if (ret) 3357 goto out; 3358 } 3359 3360 offset = skb_checksum_start_offset(skb); 3361 ret = -EINVAL; 3362 if (unlikely(offset >= skb_headlen(skb))) { 3363 DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false); 3364 WARN_ONCE(true, "offset (%d) >= skb_headlen() (%u)\n", 3365 offset, skb_headlen(skb)); 3366 goto out; 3367 } 3368 csum = skb_checksum(skb, offset, skb->len - offset, 0); 3369 3370 offset += skb->csum_offset; 3371 if (unlikely(offset + sizeof(__sum16) > skb_headlen(skb))) { 3372 DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false); 3373 WARN_ONCE(true, "offset+2 (%zu) > skb_headlen() (%u)\n", 3374 offset + sizeof(__sum16), skb_headlen(skb)); 3375 goto out; 3376 } 3377 ret = skb_ensure_writable(skb, offset + sizeof(__sum16)); 3378 if (ret) 3379 goto out; 3380 3381 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0; 3382 out_set_summed: 3383 skb->ip_summed = CHECKSUM_NONE; 3384 out: 3385 return ret; 3386 } 3387 EXPORT_SYMBOL(skb_checksum_help); 3388 3389 int skb_crc32c_csum_help(struct sk_buff *skb) 3390 { 3391 __le32 crc32c_csum; 3392 int ret = 0, offset, start; 3393 3394 if (skb->ip_summed != CHECKSUM_PARTIAL) 3395 goto out; 3396 3397 if (unlikely(skb_is_gso(skb))) 3398 goto out; 3399 3400 /* Before computing a checksum, we should make sure no frag could 3401 * be modified by an external entity : checksum could be wrong. 3402 */ 3403 if (unlikely(skb_has_shared_frag(skb))) { 3404 ret = __skb_linearize(skb); 3405 if (ret) 3406 goto out; 3407 } 3408 start = skb_checksum_start_offset(skb); 3409 offset = start + offsetof(struct sctphdr, checksum); 3410 if (WARN_ON_ONCE(offset >= skb_headlen(skb))) { 3411 ret = -EINVAL; 3412 goto out; 3413 } 3414 3415 ret = skb_ensure_writable(skb, offset + sizeof(__le32)); 3416 if (ret) 3417 goto out; 3418 3419 crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start, 3420 skb->len - start, ~(__u32)0, 3421 crc32c_csum_stub)); 3422 *(__le32 *)(skb->data + offset) = crc32c_csum; 3423 skb_reset_csum_not_inet(skb); 3424 out: 3425 return ret; 3426 } 3427 EXPORT_SYMBOL(skb_crc32c_csum_help); 3428 3429 __be16 skb_network_protocol(struct sk_buff *skb, int *depth) 3430 { 3431 __be16 type = skb->protocol; 3432 3433 /* Tunnel gso handlers can set protocol to ethernet. */ 3434 if (type == htons(ETH_P_TEB)) { 3435 struct ethhdr *eth; 3436 3437 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr)))) 3438 return 0; 3439 3440 eth = (struct ethhdr *)skb->data; 3441 type = eth->h_proto; 3442 } 3443 3444 return vlan_get_protocol_and_depth(skb, type, depth); 3445 } 3446 3447 3448 /* Take action when hardware reception checksum errors are detected. */ 3449 #ifdef CONFIG_BUG 3450 static void do_netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb) 3451 { 3452 netdev_err(dev, "hw csum failure\n"); 3453 skb_dump(KERN_ERR, skb, true); 3454 dump_stack(); 3455 } 3456 3457 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb) 3458 { 3459 DO_ONCE_LITE(do_netdev_rx_csum_fault, dev, skb); 3460 } 3461 EXPORT_SYMBOL(netdev_rx_csum_fault); 3462 #endif 3463 3464 /* XXX: check that highmem exists at all on the given machine. */ 3465 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb) 3466 { 3467 #ifdef CONFIG_HIGHMEM 3468 int i; 3469 3470 if (!(dev->features & NETIF_F_HIGHDMA)) { 3471 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 3472 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 3473 struct page *page = skb_frag_page(frag); 3474 3475 if (page && PageHighMem(page)) 3476 return 1; 3477 } 3478 } 3479 #endif 3480 return 0; 3481 } 3482 3483 /* If MPLS offload request, verify we are testing hardware MPLS features 3484 * instead of standard features for the netdev. 3485 */ 3486 #if IS_ENABLED(CONFIG_NET_MPLS_GSO) 3487 static netdev_features_t net_mpls_features(struct sk_buff *skb, 3488 netdev_features_t features, 3489 __be16 type) 3490 { 3491 if (eth_p_mpls(type)) 3492 features &= skb->dev->mpls_features; 3493 3494 return features; 3495 } 3496 #else 3497 static netdev_features_t net_mpls_features(struct sk_buff *skb, 3498 netdev_features_t features, 3499 __be16 type) 3500 { 3501 return features; 3502 } 3503 #endif 3504 3505 static netdev_features_t harmonize_features(struct sk_buff *skb, 3506 netdev_features_t features) 3507 { 3508 __be16 type; 3509 3510 type = skb_network_protocol(skb, NULL); 3511 features = net_mpls_features(skb, features, type); 3512 3513 if (skb->ip_summed != CHECKSUM_NONE && 3514 !can_checksum_protocol(features, type)) { 3515 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 3516 } 3517 if (illegal_highdma(skb->dev, skb)) 3518 features &= ~NETIF_F_SG; 3519 3520 return features; 3521 } 3522 3523 netdev_features_t passthru_features_check(struct sk_buff *skb, 3524 struct net_device *dev, 3525 netdev_features_t features) 3526 { 3527 return features; 3528 } 3529 EXPORT_SYMBOL(passthru_features_check); 3530 3531 static netdev_features_t dflt_features_check(struct sk_buff *skb, 3532 struct net_device *dev, 3533 netdev_features_t features) 3534 { 3535 return vlan_features_check(skb, features); 3536 } 3537 3538 static netdev_features_t gso_features_check(const struct sk_buff *skb, 3539 struct net_device *dev, 3540 netdev_features_t features) 3541 { 3542 u16 gso_segs = skb_shinfo(skb)->gso_segs; 3543 3544 if (gso_segs > READ_ONCE(dev->gso_max_segs)) 3545 return features & ~NETIF_F_GSO_MASK; 3546 3547 if (unlikely(skb->len >= netif_get_gso_max_size(dev, skb))) 3548 return features & ~NETIF_F_GSO_MASK; 3549 3550 if (!skb_shinfo(skb)->gso_type) { 3551 skb_warn_bad_offload(skb); 3552 return features & ~NETIF_F_GSO_MASK; 3553 } 3554 3555 /* Support for GSO partial features requires software 3556 * intervention before we can actually process the packets 3557 * so we need to strip support for any partial features now 3558 * and we can pull them back in after we have partially 3559 * segmented the frame. 3560 */ 3561 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL)) 3562 features &= ~dev->gso_partial_features; 3563 3564 /* Make sure to clear the IPv4 ID mangling feature if the 3565 * IPv4 header has the potential to be fragmented. 3566 */ 3567 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) { 3568 struct iphdr *iph = skb->encapsulation ? 3569 inner_ip_hdr(skb) : ip_hdr(skb); 3570 3571 if (!(iph->frag_off & htons(IP_DF))) 3572 features &= ~NETIF_F_TSO_MANGLEID; 3573 } 3574 3575 return features; 3576 } 3577 3578 netdev_features_t netif_skb_features(struct sk_buff *skb) 3579 { 3580 struct net_device *dev = skb->dev; 3581 netdev_features_t features = dev->features; 3582 3583 if (skb_is_gso(skb)) 3584 features = gso_features_check(skb, dev, features); 3585 3586 /* If encapsulation offload request, verify we are testing 3587 * hardware encapsulation features instead of standard 3588 * features for the netdev 3589 */ 3590 if (skb->encapsulation) 3591 features &= dev->hw_enc_features; 3592 3593 if (skb_vlan_tagged(skb)) 3594 features = netdev_intersect_features(features, 3595 dev->vlan_features | 3596 NETIF_F_HW_VLAN_CTAG_TX | 3597 NETIF_F_HW_VLAN_STAG_TX); 3598 3599 if (dev->netdev_ops->ndo_features_check) 3600 features &= dev->netdev_ops->ndo_features_check(skb, dev, 3601 features); 3602 else 3603 features &= dflt_features_check(skb, dev, features); 3604 3605 return harmonize_features(skb, features); 3606 } 3607 EXPORT_SYMBOL(netif_skb_features); 3608 3609 static int xmit_one(struct sk_buff *skb, struct net_device *dev, 3610 struct netdev_queue *txq, bool more) 3611 { 3612 unsigned int len; 3613 int rc; 3614 3615 if (dev_nit_active(dev)) 3616 dev_queue_xmit_nit(skb, dev); 3617 3618 len = skb->len; 3619 trace_net_dev_start_xmit(skb, dev); 3620 rc = netdev_start_xmit(skb, dev, txq, more); 3621 trace_net_dev_xmit(skb, rc, dev, len); 3622 3623 return rc; 3624 } 3625 3626 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev, 3627 struct netdev_queue *txq, int *ret) 3628 { 3629 struct sk_buff *skb = first; 3630 int rc = NETDEV_TX_OK; 3631 3632 while (skb) { 3633 struct sk_buff *next = skb->next; 3634 3635 skb_mark_not_on_list(skb); 3636 rc = xmit_one(skb, dev, txq, next != NULL); 3637 if (unlikely(!dev_xmit_complete(rc))) { 3638 skb->next = next; 3639 goto out; 3640 } 3641 3642 skb = next; 3643 if (netif_tx_queue_stopped(txq) && skb) { 3644 rc = NETDEV_TX_BUSY; 3645 break; 3646 } 3647 } 3648 3649 out: 3650 *ret = rc; 3651 return skb; 3652 } 3653 3654 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb, 3655 netdev_features_t features) 3656 { 3657 if (skb_vlan_tag_present(skb) && 3658 !vlan_hw_offload_capable(features, skb->vlan_proto)) 3659 skb = __vlan_hwaccel_push_inside(skb); 3660 return skb; 3661 } 3662 3663 int skb_csum_hwoffload_help(struct sk_buff *skb, 3664 const netdev_features_t features) 3665 { 3666 if (unlikely(skb_csum_is_sctp(skb))) 3667 return !!(features & NETIF_F_SCTP_CRC) ? 0 : 3668 skb_crc32c_csum_help(skb); 3669 3670 if (features & NETIF_F_HW_CSUM) 3671 return 0; 3672 3673 if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) { 3674 if (vlan_get_protocol(skb) == htons(ETH_P_IPV6) && 3675 skb_network_header_len(skb) != sizeof(struct ipv6hdr) && 3676 !ipv6_has_hopopt_jumbo(skb)) 3677 goto sw_checksum; 3678 3679 switch (skb->csum_offset) { 3680 case offsetof(struct tcphdr, check): 3681 case offsetof(struct udphdr, check): 3682 return 0; 3683 } 3684 } 3685 3686 sw_checksum: 3687 return skb_checksum_help(skb); 3688 } 3689 EXPORT_SYMBOL(skb_csum_hwoffload_help); 3690 3691 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again) 3692 { 3693 netdev_features_t features; 3694 3695 features = netif_skb_features(skb); 3696 skb = validate_xmit_vlan(skb, features); 3697 if (unlikely(!skb)) 3698 goto out_null; 3699 3700 skb = sk_validate_xmit_skb(skb, dev); 3701 if (unlikely(!skb)) 3702 goto out_null; 3703 3704 if (netif_needs_gso(skb, features)) { 3705 struct sk_buff *segs; 3706 3707 segs = skb_gso_segment(skb, features); 3708 if (IS_ERR(segs)) { 3709 goto out_kfree_skb; 3710 } else if (segs) { 3711 consume_skb(skb); 3712 skb = segs; 3713 } 3714 } else { 3715 if (skb_needs_linearize(skb, features) && 3716 __skb_linearize(skb)) 3717 goto out_kfree_skb; 3718 3719 /* If packet is not checksummed and device does not 3720 * support checksumming for this protocol, complete 3721 * checksumming here. 3722 */ 3723 if (skb->ip_summed == CHECKSUM_PARTIAL) { 3724 if (skb->encapsulation) 3725 skb_set_inner_transport_header(skb, 3726 skb_checksum_start_offset(skb)); 3727 else 3728 skb_set_transport_header(skb, 3729 skb_checksum_start_offset(skb)); 3730 if (skb_csum_hwoffload_help(skb, features)) 3731 goto out_kfree_skb; 3732 } 3733 } 3734 3735 skb = validate_xmit_xfrm(skb, features, again); 3736 3737 return skb; 3738 3739 out_kfree_skb: 3740 kfree_skb(skb); 3741 out_null: 3742 dev_core_stats_tx_dropped_inc(dev); 3743 return NULL; 3744 } 3745 3746 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again) 3747 { 3748 struct sk_buff *next, *head = NULL, *tail; 3749 3750 for (; skb != NULL; skb = next) { 3751 next = skb->next; 3752 skb_mark_not_on_list(skb); 3753 3754 /* in case skb won't be segmented, point to itself */ 3755 skb->prev = skb; 3756 3757 skb = validate_xmit_skb(skb, dev, again); 3758 if (!skb) 3759 continue; 3760 3761 if (!head) 3762 head = skb; 3763 else 3764 tail->next = skb; 3765 /* If skb was segmented, skb->prev points to 3766 * the last segment. If not, it still contains skb. 3767 */ 3768 tail = skb->prev; 3769 } 3770 return head; 3771 } 3772 EXPORT_SYMBOL_GPL(validate_xmit_skb_list); 3773 3774 static void qdisc_pkt_len_init(struct sk_buff *skb) 3775 { 3776 const struct skb_shared_info *shinfo = skb_shinfo(skb); 3777 3778 qdisc_skb_cb(skb)->pkt_len = skb->len; 3779 3780 /* To get more precise estimation of bytes sent on wire, 3781 * we add to pkt_len the headers size of all segments 3782 */ 3783 if (shinfo->gso_size && skb_transport_header_was_set(skb)) { 3784 u16 gso_segs = shinfo->gso_segs; 3785 unsigned int hdr_len; 3786 3787 /* mac layer + network layer */ 3788 hdr_len = skb_transport_offset(skb); 3789 3790 /* + transport layer */ 3791 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) { 3792 const struct tcphdr *th; 3793 struct tcphdr _tcphdr; 3794 3795 th = skb_header_pointer(skb, hdr_len, 3796 sizeof(_tcphdr), &_tcphdr); 3797 if (likely(th)) 3798 hdr_len += __tcp_hdrlen(th); 3799 } else if (shinfo->gso_type & SKB_GSO_UDP_L4) { 3800 struct udphdr _udphdr; 3801 3802 if (skb_header_pointer(skb, hdr_len, 3803 sizeof(_udphdr), &_udphdr)) 3804 hdr_len += sizeof(struct udphdr); 3805 } 3806 3807 if (unlikely(shinfo->gso_type & SKB_GSO_DODGY)) { 3808 int payload = skb->len - hdr_len; 3809 3810 /* Malicious packet. */ 3811 if (payload <= 0) 3812 return; 3813 gso_segs = DIV_ROUND_UP(payload, shinfo->gso_size); 3814 } 3815 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len; 3816 } 3817 } 3818 3819 static int dev_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *q, 3820 struct sk_buff **to_free, 3821 struct netdev_queue *txq) 3822 { 3823 int rc; 3824 3825 rc = q->enqueue(skb, q, to_free) & NET_XMIT_MASK; 3826 if (rc == NET_XMIT_SUCCESS) 3827 trace_qdisc_enqueue(q, txq, skb); 3828 return rc; 3829 } 3830 3831 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q, 3832 struct net_device *dev, 3833 struct netdev_queue *txq) 3834 { 3835 spinlock_t *root_lock = qdisc_lock(q); 3836 struct sk_buff *to_free = NULL; 3837 bool contended; 3838 int rc; 3839 3840 qdisc_calculate_pkt_len(skb, q); 3841 3842 tcf_set_drop_reason(skb, SKB_DROP_REASON_QDISC_DROP); 3843 3844 if (q->flags & TCQ_F_NOLOCK) { 3845 if (q->flags & TCQ_F_CAN_BYPASS && nolock_qdisc_is_empty(q) && 3846 qdisc_run_begin(q)) { 3847 /* Retest nolock_qdisc_is_empty() within the protection 3848 * of q->seqlock to protect from racing with requeuing. 3849 */ 3850 if (unlikely(!nolock_qdisc_is_empty(q))) { 3851 rc = dev_qdisc_enqueue(skb, q, &to_free, txq); 3852 __qdisc_run(q); 3853 qdisc_run_end(q); 3854 3855 goto no_lock_out; 3856 } 3857 3858 qdisc_bstats_cpu_update(q, skb); 3859 if (sch_direct_xmit(skb, q, dev, txq, NULL, true) && 3860 !nolock_qdisc_is_empty(q)) 3861 __qdisc_run(q); 3862 3863 qdisc_run_end(q); 3864 return NET_XMIT_SUCCESS; 3865 } 3866 3867 rc = dev_qdisc_enqueue(skb, q, &to_free, txq); 3868 qdisc_run(q); 3869 3870 no_lock_out: 3871 if (unlikely(to_free)) 3872 kfree_skb_list_reason(to_free, 3873 tcf_get_drop_reason(to_free)); 3874 return rc; 3875 } 3876 3877 if (unlikely(READ_ONCE(q->owner) == smp_processor_id())) { 3878 kfree_skb_reason(skb, SKB_DROP_REASON_TC_RECLASSIFY_LOOP); 3879 return NET_XMIT_DROP; 3880 } 3881 /* 3882 * Heuristic to force contended enqueues to serialize on a 3883 * separate lock before trying to get qdisc main lock. 3884 * This permits qdisc->running owner to get the lock more 3885 * often and dequeue packets faster. 3886 * On PREEMPT_RT it is possible to preempt the qdisc owner during xmit 3887 * and then other tasks will only enqueue packets. The packets will be 3888 * sent after the qdisc owner is scheduled again. To prevent this 3889 * scenario the task always serialize on the lock. 3890 */ 3891 contended = qdisc_is_running(q) || IS_ENABLED(CONFIG_PREEMPT_RT); 3892 if (unlikely(contended)) 3893 spin_lock(&q->busylock); 3894 3895 spin_lock(root_lock); 3896 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) { 3897 __qdisc_drop(skb, &to_free); 3898 rc = NET_XMIT_DROP; 3899 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) && 3900 qdisc_run_begin(q)) { 3901 /* 3902 * This is a work-conserving queue; there are no old skbs 3903 * waiting to be sent out; and the qdisc is not running - 3904 * xmit the skb directly. 3905 */ 3906 3907 qdisc_bstats_update(q, skb); 3908 3909 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) { 3910 if (unlikely(contended)) { 3911 spin_unlock(&q->busylock); 3912 contended = false; 3913 } 3914 __qdisc_run(q); 3915 } 3916 3917 qdisc_run_end(q); 3918 rc = NET_XMIT_SUCCESS; 3919 } else { 3920 WRITE_ONCE(q->owner, smp_processor_id()); 3921 rc = dev_qdisc_enqueue(skb, q, &to_free, txq); 3922 WRITE_ONCE(q->owner, -1); 3923 if (qdisc_run_begin(q)) { 3924 if (unlikely(contended)) { 3925 spin_unlock(&q->busylock); 3926 contended = false; 3927 } 3928 __qdisc_run(q); 3929 qdisc_run_end(q); 3930 } 3931 } 3932 spin_unlock(root_lock); 3933 if (unlikely(to_free)) 3934 kfree_skb_list_reason(to_free, 3935 tcf_get_drop_reason(to_free)); 3936 if (unlikely(contended)) 3937 spin_unlock(&q->busylock); 3938 return rc; 3939 } 3940 3941 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO) 3942 static void skb_update_prio(struct sk_buff *skb) 3943 { 3944 const struct netprio_map *map; 3945 const struct sock *sk; 3946 unsigned int prioidx; 3947 3948 if (skb->priority) 3949 return; 3950 map = rcu_dereference_bh(skb->dev->priomap); 3951 if (!map) 3952 return; 3953 sk = skb_to_full_sk(skb); 3954 if (!sk) 3955 return; 3956 3957 prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data); 3958 3959 if (prioidx < map->priomap_len) 3960 skb->priority = map->priomap[prioidx]; 3961 } 3962 #else 3963 #define skb_update_prio(skb) 3964 #endif 3965 3966 /** 3967 * dev_loopback_xmit - loop back @skb 3968 * @net: network namespace this loopback is happening in 3969 * @sk: sk needed to be a netfilter okfn 3970 * @skb: buffer to transmit 3971 */ 3972 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb) 3973 { 3974 skb_reset_mac_header(skb); 3975 __skb_pull(skb, skb_network_offset(skb)); 3976 skb->pkt_type = PACKET_LOOPBACK; 3977 if (skb->ip_summed == CHECKSUM_NONE) 3978 skb->ip_summed = CHECKSUM_UNNECESSARY; 3979 DEBUG_NET_WARN_ON_ONCE(!skb_dst(skb)); 3980 skb_dst_force(skb); 3981 netif_rx(skb); 3982 return 0; 3983 } 3984 EXPORT_SYMBOL(dev_loopback_xmit); 3985 3986 #ifdef CONFIG_NET_EGRESS 3987 static struct netdev_queue * 3988 netdev_tx_queue_mapping(struct net_device *dev, struct sk_buff *skb) 3989 { 3990 int qm = skb_get_queue_mapping(skb); 3991 3992 return netdev_get_tx_queue(dev, netdev_cap_txqueue(dev, qm)); 3993 } 3994 3995 #ifndef CONFIG_PREEMPT_RT 3996 static bool netdev_xmit_txqueue_skipped(void) 3997 { 3998 return __this_cpu_read(softnet_data.xmit.skip_txqueue); 3999 } 4000 4001 void netdev_xmit_skip_txqueue(bool skip) 4002 { 4003 __this_cpu_write(softnet_data.xmit.skip_txqueue, skip); 4004 } 4005 EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue); 4006 4007 #else 4008 static bool netdev_xmit_txqueue_skipped(void) 4009 { 4010 return current->net_xmit.skip_txqueue; 4011 } 4012 4013 void netdev_xmit_skip_txqueue(bool skip) 4014 { 4015 current->net_xmit.skip_txqueue = skip; 4016 } 4017 EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue); 4018 #endif 4019 #endif /* CONFIG_NET_EGRESS */ 4020 4021 #ifdef CONFIG_NET_XGRESS 4022 static int tc_run(struct tcx_entry *entry, struct sk_buff *skb, 4023 enum skb_drop_reason *drop_reason) 4024 { 4025 int ret = TC_ACT_UNSPEC; 4026 #ifdef CONFIG_NET_CLS_ACT 4027 struct mini_Qdisc *miniq = rcu_dereference_bh(entry->miniq); 4028 struct tcf_result res; 4029 4030 if (!miniq) 4031 return ret; 4032 4033 if (static_branch_unlikely(&tcf_bypass_check_needed_key)) { 4034 if (tcf_block_bypass_sw(miniq->block)) 4035 return ret; 4036 } 4037 4038 tc_skb_cb(skb)->mru = 0; 4039 tc_skb_cb(skb)->post_ct = false; 4040 tcf_set_drop_reason(skb, *drop_reason); 4041 4042 mini_qdisc_bstats_cpu_update(miniq, skb); 4043 ret = tcf_classify(skb, miniq->block, miniq->filter_list, &res, false); 4044 /* Only tcf related quirks below. */ 4045 switch (ret) { 4046 case TC_ACT_SHOT: 4047 *drop_reason = tcf_get_drop_reason(skb); 4048 mini_qdisc_qstats_cpu_drop(miniq); 4049 break; 4050 case TC_ACT_OK: 4051 case TC_ACT_RECLASSIFY: 4052 skb->tc_index = TC_H_MIN(res.classid); 4053 break; 4054 } 4055 #endif /* CONFIG_NET_CLS_ACT */ 4056 return ret; 4057 } 4058 4059 static DEFINE_STATIC_KEY_FALSE(tcx_needed_key); 4060 4061 void tcx_inc(void) 4062 { 4063 static_branch_inc(&tcx_needed_key); 4064 } 4065 4066 void tcx_dec(void) 4067 { 4068 static_branch_dec(&tcx_needed_key); 4069 } 4070 4071 static __always_inline enum tcx_action_base 4072 tcx_run(const struct bpf_mprog_entry *entry, struct sk_buff *skb, 4073 const bool needs_mac) 4074 { 4075 const struct bpf_mprog_fp *fp; 4076 const struct bpf_prog *prog; 4077 int ret = TCX_NEXT; 4078 4079 if (needs_mac) 4080 __skb_push(skb, skb->mac_len); 4081 bpf_mprog_foreach_prog(entry, fp, prog) { 4082 bpf_compute_data_pointers(skb); 4083 ret = bpf_prog_run(prog, skb); 4084 if (ret != TCX_NEXT) 4085 break; 4086 } 4087 if (needs_mac) 4088 __skb_pull(skb, skb->mac_len); 4089 return tcx_action_code(skb, ret); 4090 } 4091 4092 static __always_inline struct sk_buff * 4093 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret, 4094 struct net_device *orig_dev, bool *another) 4095 { 4096 struct bpf_mprog_entry *entry = rcu_dereference_bh(skb->dev->tcx_ingress); 4097 enum skb_drop_reason drop_reason = SKB_DROP_REASON_TC_INGRESS; 4098 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx; 4099 int sch_ret; 4100 4101 if (!entry) 4102 return skb; 4103 4104 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx); 4105 if (*pt_prev) { 4106 *ret = deliver_skb(skb, *pt_prev, orig_dev); 4107 *pt_prev = NULL; 4108 } 4109 4110 qdisc_skb_cb(skb)->pkt_len = skb->len; 4111 tcx_set_ingress(skb, true); 4112 4113 if (static_branch_unlikely(&tcx_needed_key)) { 4114 sch_ret = tcx_run(entry, skb, true); 4115 if (sch_ret != TC_ACT_UNSPEC) 4116 goto ingress_verdict; 4117 } 4118 sch_ret = tc_run(tcx_entry(entry), skb, &drop_reason); 4119 ingress_verdict: 4120 switch (sch_ret) { 4121 case TC_ACT_REDIRECT: 4122 /* skb_mac_header check was done by BPF, so we can safely 4123 * push the L2 header back before redirecting to another 4124 * netdev. 4125 */ 4126 __skb_push(skb, skb->mac_len); 4127 if (skb_do_redirect(skb) == -EAGAIN) { 4128 __skb_pull(skb, skb->mac_len); 4129 *another = true; 4130 break; 4131 } 4132 *ret = NET_RX_SUCCESS; 4133 bpf_net_ctx_clear(bpf_net_ctx); 4134 return NULL; 4135 case TC_ACT_SHOT: 4136 kfree_skb_reason(skb, drop_reason); 4137 *ret = NET_RX_DROP; 4138 bpf_net_ctx_clear(bpf_net_ctx); 4139 return NULL; 4140 /* used by tc_run */ 4141 case TC_ACT_STOLEN: 4142 case TC_ACT_QUEUED: 4143 case TC_ACT_TRAP: 4144 consume_skb(skb); 4145 fallthrough; 4146 case TC_ACT_CONSUMED: 4147 *ret = NET_RX_SUCCESS; 4148 bpf_net_ctx_clear(bpf_net_ctx); 4149 return NULL; 4150 } 4151 bpf_net_ctx_clear(bpf_net_ctx); 4152 4153 return skb; 4154 } 4155 4156 static __always_inline struct sk_buff * 4157 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev) 4158 { 4159 struct bpf_mprog_entry *entry = rcu_dereference_bh(dev->tcx_egress); 4160 enum skb_drop_reason drop_reason = SKB_DROP_REASON_TC_EGRESS; 4161 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx; 4162 int sch_ret; 4163 4164 if (!entry) 4165 return skb; 4166 4167 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx); 4168 4169 /* qdisc_skb_cb(skb)->pkt_len & tcx_set_ingress() was 4170 * already set by the caller. 4171 */ 4172 if (static_branch_unlikely(&tcx_needed_key)) { 4173 sch_ret = tcx_run(entry, skb, false); 4174 if (sch_ret != TC_ACT_UNSPEC) 4175 goto egress_verdict; 4176 } 4177 sch_ret = tc_run(tcx_entry(entry), skb, &drop_reason); 4178 egress_verdict: 4179 switch (sch_ret) { 4180 case TC_ACT_REDIRECT: 4181 /* No need to push/pop skb's mac_header here on egress! */ 4182 skb_do_redirect(skb); 4183 *ret = NET_XMIT_SUCCESS; 4184 bpf_net_ctx_clear(bpf_net_ctx); 4185 return NULL; 4186 case TC_ACT_SHOT: 4187 kfree_skb_reason(skb, drop_reason); 4188 *ret = NET_XMIT_DROP; 4189 bpf_net_ctx_clear(bpf_net_ctx); 4190 return NULL; 4191 /* used by tc_run */ 4192 case TC_ACT_STOLEN: 4193 case TC_ACT_QUEUED: 4194 case TC_ACT_TRAP: 4195 consume_skb(skb); 4196 fallthrough; 4197 case TC_ACT_CONSUMED: 4198 *ret = NET_XMIT_SUCCESS; 4199 bpf_net_ctx_clear(bpf_net_ctx); 4200 return NULL; 4201 } 4202 bpf_net_ctx_clear(bpf_net_ctx); 4203 4204 return skb; 4205 } 4206 #else 4207 static __always_inline struct sk_buff * 4208 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret, 4209 struct net_device *orig_dev, bool *another) 4210 { 4211 return skb; 4212 } 4213 4214 static __always_inline struct sk_buff * 4215 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev) 4216 { 4217 return skb; 4218 } 4219 #endif /* CONFIG_NET_XGRESS */ 4220 4221 #ifdef CONFIG_XPS 4222 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb, 4223 struct xps_dev_maps *dev_maps, unsigned int tci) 4224 { 4225 int tc = netdev_get_prio_tc_map(dev, skb->priority); 4226 struct xps_map *map; 4227 int queue_index = -1; 4228 4229 if (tc >= dev_maps->num_tc || tci >= dev_maps->nr_ids) 4230 return queue_index; 4231 4232 tci *= dev_maps->num_tc; 4233 tci += tc; 4234 4235 map = rcu_dereference(dev_maps->attr_map[tci]); 4236 if (map) { 4237 if (map->len == 1) 4238 queue_index = map->queues[0]; 4239 else 4240 queue_index = map->queues[reciprocal_scale( 4241 skb_get_hash(skb), map->len)]; 4242 if (unlikely(queue_index >= dev->real_num_tx_queues)) 4243 queue_index = -1; 4244 } 4245 return queue_index; 4246 } 4247 #endif 4248 4249 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev, 4250 struct sk_buff *skb) 4251 { 4252 #ifdef CONFIG_XPS 4253 struct xps_dev_maps *dev_maps; 4254 struct sock *sk = skb->sk; 4255 int queue_index = -1; 4256 4257 if (!static_key_false(&xps_needed)) 4258 return -1; 4259 4260 rcu_read_lock(); 4261 if (!static_key_false(&xps_rxqs_needed)) 4262 goto get_cpus_map; 4263 4264 dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_RXQS]); 4265 if (dev_maps) { 4266 int tci = sk_rx_queue_get(sk); 4267 4268 if (tci >= 0) 4269 queue_index = __get_xps_queue_idx(dev, skb, dev_maps, 4270 tci); 4271 } 4272 4273 get_cpus_map: 4274 if (queue_index < 0) { 4275 dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_CPUS]); 4276 if (dev_maps) { 4277 unsigned int tci = skb->sender_cpu - 1; 4278 4279 queue_index = __get_xps_queue_idx(dev, skb, dev_maps, 4280 tci); 4281 } 4282 } 4283 rcu_read_unlock(); 4284 4285 return queue_index; 4286 #else 4287 return -1; 4288 #endif 4289 } 4290 4291 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb, 4292 struct net_device *sb_dev) 4293 { 4294 return 0; 4295 } 4296 EXPORT_SYMBOL(dev_pick_tx_zero); 4297 4298 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb, 4299 struct net_device *sb_dev) 4300 { 4301 struct sock *sk = skb->sk; 4302 int queue_index = sk_tx_queue_get(sk); 4303 4304 sb_dev = sb_dev ? : dev; 4305 4306 if (queue_index < 0 || skb->ooo_okay || 4307 queue_index >= dev->real_num_tx_queues) { 4308 int new_index = get_xps_queue(dev, sb_dev, skb); 4309 4310 if (new_index < 0) 4311 new_index = skb_tx_hash(dev, sb_dev, skb); 4312 4313 if (queue_index != new_index && sk && 4314 sk_fullsock(sk) && 4315 rcu_access_pointer(sk->sk_dst_cache)) 4316 sk_tx_queue_set(sk, new_index); 4317 4318 queue_index = new_index; 4319 } 4320 4321 return queue_index; 4322 } 4323 EXPORT_SYMBOL(netdev_pick_tx); 4324 4325 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev, 4326 struct sk_buff *skb, 4327 struct net_device *sb_dev) 4328 { 4329 int queue_index = 0; 4330 4331 #ifdef CONFIG_XPS 4332 u32 sender_cpu = skb->sender_cpu - 1; 4333 4334 if (sender_cpu >= (u32)NR_CPUS) 4335 skb->sender_cpu = raw_smp_processor_id() + 1; 4336 #endif 4337 4338 if (dev->real_num_tx_queues != 1) { 4339 const struct net_device_ops *ops = dev->netdev_ops; 4340 4341 if (ops->ndo_select_queue) 4342 queue_index = ops->ndo_select_queue(dev, skb, sb_dev); 4343 else 4344 queue_index = netdev_pick_tx(dev, skb, sb_dev); 4345 4346 queue_index = netdev_cap_txqueue(dev, queue_index); 4347 } 4348 4349 skb_set_queue_mapping(skb, queue_index); 4350 return netdev_get_tx_queue(dev, queue_index); 4351 } 4352 4353 /** 4354 * __dev_queue_xmit() - transmit a buffer 4355 * @skb: buffer to transmit 4356 * @sb_dev: suboordinate device used for L2 forwarding offload 4357 * 4358 * Queue a buffer for transmission to a network device. The caller must 4359 * have set the device and priority and built the buffer before calling 4360 * this function. The function can be called from an interrupt. 4361 * 4362 * When calling this method, interrupts MUST be enabled. This is because 4363 * the BH enable code must have IRQs enabled so that it will not deadlock. 4364 * 4365 * Regardless of the return value, the skb is consumed, so it is currently 4366 * difficult to retry a send to this method. (You can bump the ref count 4367 * before sending to hold a reference for retry if you are careful.) 4368 * 4369 * Return: 4370 * * 0 - buffer successfully transmitted 4371 * * positive qdisc return code - NET_XMIT_DROP etc. 4372 * * negative errno - other errors 4373 */ 4374 int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev) 4375 { 4376 struct net_device *dev = skb->dev; 4377 struct netdev_queue *txq = NULL; 4378 struct Qdisc *q; 4379 int rc = -ENOMEM; 4380 bool again = false; 4381 4382 skb_reset_mac_header(skb); 4383 skb_assert_len(skb); 4384 4385 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP)) 4386 __skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED); 4387 4388 /* Disable soft irqs for various locks below. Also 4389 * stops preemption for RCU. 4390 */ 4391 rcu_read_lock_bh(); 4392 4393 skb_update_prio(skb); 4394 4395 qdisc_pkt_len_init(skb); 4396 tcx_set_ingress(skb, false); 4397 #ifdef CONFIG_NET_EGRESS 4398 if (static_branch_unlikely(&egress_needed_key)) { 4399 if (nf_hook_egress_active()) { 4400 skb = nf_hook_egress(skb, &rc, dev); 4401 if (!skb) 4402 goto out; 4403 } 4404 4405 netdev_xmit_skip_txqueue(false); 4406 4407 nf_skip_egress(skb, true); 4408 skb = sch_handle_egress(skb, &rc, dev); 4409 if (!skb) 4410 goto out; 4411 nf_skip_egress(skb, false); 4412 4413 if (netdev_xmit_txqueue_skipped()) 4414 txq = netdev_tx_queue_mapping(dev, skb); 4415 } 4416 #endif 4417 /* If device/qdisc don't need skb->dst, release it right now while 4418 * its hot in this cpu cache. 4419 */ 4420 if (dev->priv_flags & IFF_XMIT_DST_RELEASE) 4421 skb_dst_drop(skb); 4422 else 4423 skb_dst_force(skb); 4424 4425 if (!txq) 4426 txq = netdev_core_pick_tx(dev, skb, sb_dev); 4427 4428 q = rcu_dereference_bh(txq->qdisc); 4429 4430 trace_net_dev_queue(skb); 4431 if (q->enqueue) { 4432 rc = __dev_xmit_skb(skb, q, dev, txq); 4433 goto out; 4434 } 4435 4436 /* The device has no queue. Common case for software devices: 4437 * loopback, all the sorts of tunnels... 4438 4439 * Really, it is unlikely that netif_tx_lock protection is necessary 4440 * here. (f.e. loopback and IP tunnels are clean ignoring statistics 4441 * counters.) 4442 * However, it is possible, that they rely on protection 4443 * made by us here. 4444 4445 * Check this and shot the lock. It is not prone from deadlocks. 4446 *Either shot noqueue qdisc, it is even simpler 8) 4447 */ 4448 if (dev->flags & IFF_UP) { 4449 int cpu = smp_processor_id(); /* ok because BHs are off */ 4450 4451 /* Other cpus might concurrently change txq->xmit_lock_owner 4452 * to -1 or to their cpu id, but not to our id. 4453 */ 4454 if (READ_ONCE(txq->xmit_lock_owner) != cpu) { 4455 if (dev_xmit_recursion()) 4456 goto recursion_alert; 4457 4458 skb = validate_xmit_skb(skb, dev, &again); 4459 if (!skb) 4460 goto out; 4461 4462 HARD_TX_LOCK(dev, txq, cpu); 4463 4464 if (!netif_xmit_stopped(txq)) { 4465 dev_xmit_recursion_inc(); 4466 skb = dev_hard_start_xmit(skb, dev, txq, &rc); 4467 dev_xmit_recursion_dec(); 4468 if (dev_xmit_complete(rc)) { 4469 HARD_TX_UNLOCK(dev, txq); 4470 goto out; 4471 } 4472 } 4473 HARD_TX_UNLOCK(dev, txq); 4474 net_crit_ratelimited("Virtual device %s asks to queue packet!\n", 4475 dev->name); 4476 } else { 4477 /* Recursion is detected! It is possible, 4478 * unfortunately 4479 */ 4480 recursion_alert: 4481 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n", 4482 dev->name); 4483 } 4484 } 4485 4486 rc = -ENETDOWN; 4487 rcu_read_unlock_bh(); 4488 4489 dev_core_stats_tx_dropped_inc(dev); 4490 kfree_skb_list(skb); 4491 return rc; 4492 out: 4493 rcu_read_unlock_bh(); 4494 return rc; 4495 } 4496 EXPORT_SYMBOL(__dev_queue_xmit); 4497 4498 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id) 4499 { 4500 struct net_device *dev = skb->dev; 4501 struct sk_buff *orig_skb = skb; 4502 struct netdev_queue *txq; 4503 int ret = NETDEV_TX_BUSY; 4504 bool again = false; 4505 4506 if (unlikely(!netif_running(dev) || 4507 !netif_carrier_ok(dev))) 4508 goto drop; 4509 4510 skb = validate_xmit_skb_list(skb, dev, &again); 4511 if (skb != orig_skb) 4512 goto drop; 4513 4514 skb_set_queue_mapping(skb, queue_id); 4515 txq = skb_get_tx_queue(dev, skb); 4516 4517 local_bh_disable(); 4518 4519 dev_xmit_recursion_inc(); 4520 HARD_TX_LOCK(dev, txq, smp_processor_id()); 4521 if (!netif_xmit_frozen_or_drv_stopped(txq)) 4522 ret = netdev_start_xmit(skb, dev, txq, false); 4523 HARD_TX_UNLOCK(dev, txq); 4524 dev_xmit_recursion_dec(); 4525 4526 local_bh_enable(); 4527 return ret; 4528 drop: 4529 dev_core_stats_tx_dropped_inc(dev); 4530 kfree_skb_list(skb); 4531 return NET_XMIT_DROP; 4532 } 4533 EXPORT_SYMBOL(__dev_direct_xmit); 4534 4535 /************************************************************************* 4536 * Receiver routines 4537 *************************************************************************/ 4538 static DEFINE_PER_CPU(struct task_struct *, backlog_napi); 4539 4540 int weight_p __read_mostly = 64; /* old backlog weight */ 4541 int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */ 4542 int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */ 4543 4544 /* Called with irq disabled */ 4545 static inline void ____napi_schedule(struct softnet_data *sd, 4546 struct napi_struct *napi) 4547 { 4548 struct task_struct *thread; 4549 4550 lockdep_assert_irqs_disabled(); 4551 4552 if (test_bit(NAPI_STATE_THREADED, &napi->state)) { 4553 /* Paired with smp_mb__before_atomic() in 4554 * napi_enable()/dev_set_threaded(). 4555 * Use READ_ONCE() to guarantee a complete 4556 * read on napi->thread. Only call 4557 * wake_up_process() when it's not NULL. 4558 */ 4559 thread = READ_ONCE(napi->thread); 4560 if (thread) { 4561 if (use_backlog_threads() && thread == raw_cpu_read(backlog_napi)) 4562 goto use_local_napi; 4563 4564 set_bit(NAPI_STATE_SCHED_THREADED, &napi->state); 4565 wake_up_process(thread); 4566 return; 4567 } 4568 } 4569 4570 use_local_napi: 4571 list_add_tail(&napi->poll_list, &sd->poll_list); 4572 WRITE_ONCE(napi->list_owner, smp_processor_id()); 4573 /* If not called from net_rx_action() 4574 * we have to raise NET_RX_SOFTIRQ. 4575 */ 4576 if (!sd->in_net_rx_action) 4577 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 4578 } 4579 4580 #ifdef CONFIG_RPS 4581 4582 struct static_key_false rps_needed __read_mostly; 4583 EXPORT_SYMBOL(rps_needed); 4584 struct static_key_false rfs_needed __read_mostly; 4585 EXPORT_SYMBOL(rfs_needed); 4586 4587 static struct rps_dev_flow * 4588 set_rps_cpu(struct net_device *dev, struct sk_buff *skb, 4589 struct rps_dev_flow *rflow, u16 next_cpu) 4590 { 4591 if (next_cpu < nr_cpu_ids) { 4592 u32 head; 4593 #ifdef CONFIG_RFS_ACCEL 4594 struct netdev_rx_queue *rxqueue; 4595 struct rps_dev_flow_table *flow_table; 4596 struct rps_dev_flow *old_rflow; 4597 u16 rxq_index; 4598 u32 flow_id; 4599 int rc; 4600 4601 /* Should we steer this flow to a different hardware queue? */ 4602 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap || 4603 !(dev->features & NETIF_F_NTUPLE)) 4604 goto out; 4605 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu); 4606 if (rxq_index == skb_get_rx_queue(skb)) 4607 goto out; 4608 4609 rxqueue = dev->_rx + rxq_index; 4610 flow_table = rcu_dereference(rxqueue->rps_flow_table); 4611 if (!flow_table) 4612 goto out; 4613 flow_id = skb_get_hash(skb) & flow_table->mask; 4614 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb, 4615 rxq_index, flow_id); 4616 if (rc < 0) 4617 goto out; 4618 old_rflow = rflow; 4619 rflow = &flow_table->flows[flow_id]; 4620 WRITE_ONCE(rflow->filter, rc); 4621 if (old_rflow->filter == rc) 4622 WRITE_ONCE(old_rflow->filter, RPS_NO_FILTER); 4623 out: 4624 #endif 4625 head = READ_ONCE(per_cpu(softnet_data, next_cpu).input_queue_head); 4626 rps_input_queue_tail_save(&rflow->last_qtail, head); 4627 } 4628 4629 WRITE_ONCE(rflow->cpu, next_cpu); 4630 return rflow; 4631 } 4632 4633 /* 4634 * get_rps_cpu is called from netif_receive_skb and returns the target 4635 * CPU from the RPS map of the receiving queue for a given skb. 4636 * rcu_read_lock must be held on entry. 4637 */ 4638 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb, 4639 struct rps_dev_flow **rflowp) 4640 { 4641 const struct rps_sock_flow_table *sock_flow_table; 4642 struct netdev_rx_queue *rxqueue = dev->_rx; 4643 struct rps_dev_flow_table *flow_table; 4644 struct rps_map *map; 4645 int cpu = -1; 4646 u32 tcpu; 4647 u32 hash; 4648 4649 if (skb_rx_queue_recorded(skb)) { 4650 u16 index = skb_get_rx_queue(skb); 4651 4652 if (unlikely(index >= dev->real_num_rx_queues)) { 4653 WARN_ONCE(dev->real_num_rx_queues > 1, 4654 "%s received packet on queue %u, but number " 4655 "of RX queues is %u\n", 4656 dev->name, index, dev->real_num_rx_queues); 4657 goto done; 4658 } 4659 rxqueue += index; 4660 } 4661 4662 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */ 4663 4664 flow_table = rcu_dereference(rxqueue->rps_flow_table); 4665 map = rcu_dereference(rxqueue->rps_map); 4666 if (!flow_table && !map) 4667 goto done; 4668 4669 skb_reset_network_header(skb); 4670 hash = skb_get_hash(skb); 4671 if (!hash) 4672 goto done; 4673 4674 sock_flow_table = rcu_dereference(net_hotdata.rps_sock_flow_table); 4675 if (flow_table && sock_flow_table) { 4676 struct rps_dev_flow *rflow; 4677 u32 next_cpu; 4678 u32 ident; 4679 4680 /* First check into global flow table if there is a match. 4681 * This READ_ONCE() pairs with WRITE_ONCE() from rps_record_sock_flow(). 4682 */ 4683 ident = READ_ONCE(sock_flow_table->ents[hash & sock_flow_table->mask]); 4684 if ((ident ^ hash) & ~net_hotdata.rps_cpu_mask) 4685 goto try_rps; 4686 4687 next_cpu = ident & net_hotdata.rps_cpu_mask; 4688 4689 /* OK, now we know there is a match, 4690 * we can look at the local (per receive queue) flow table 4691 */ 4692 rflow = &flow_table->flows[hash & flow_table->mask]; 4693 tcpu = rflow->cpu; 4694 4695 /* 4696 * If the desired CPU (where last recvmsg was done) is 4697 * different from current CPU (one in the rx-queue flow 4698 * table entry), switch if one of the following holds: 4699 * - Current CPU is unset (>= nr_cpu_ids). 4700 * - Current CPU is offline. 4701 * - The current CPU's queue tail has advanced beyond the 4702 * last packet that was enqueued using this table entry. 4703 * This guarantees that all previous packets for the flow 4704 * have been dequeued, thus preserving in order delivery. 4705 */ 4706 if (unlikely(tcpu != next_cpu) && 4707 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) || 4708 ((int)(READ_ONCE(per_cpu(softnet_data, tcpu).input_queue_head) - 4709 rflow->last_qtail)) >= 0)) { 4710 tcpu = next_cpu; 4711 rflow = set_rps_cpu(dev, skb, rflow, next_cpu); 4712 } 4713 4714 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) { 4715 *rflowp = rflow; 4716 cpu = tcpu; 4717 goto done; 4718 } 4719 } 4720 4721 try_rps: 4722 4723 if (map) { 4724 tcpu = map->cpus[reciprocal_scale(hash, map->len)]; 4725 if (cpu_online(tcpu)) { 4726 cpu = tcpu; 4727 goto done; 4728 } 4729 } 4730 4731 done: 4732 return cpu; 4733 } 4734 4735 #ifdef CONFIG_RFS_ACCEL 4736 4737 /** 4738 * rps_may_expire_flow - check whether an RFS hardware filter may be removed 4739 * @dev: Device on which the filter was set 4740 * @rxq_index: RX queue index 4741 * @flow_id: Flow ID passed to ndo_rx_flow_steer() 4742 * @filter_id: Filter ID returned by ndo_rx_flow_steer() 4743 * 4744 * Drivers that implement ndo_rx_flow_steer() should periodically call 4745 * this function for each installed filter and remove the filters for 4746 * which it returns %true. 4747 */ 4748 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, 4749 u32 flow_id, u16 filter_id) 4750 { 4751 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index; 4752 struct rps_dev_flow_table *flow_table; 4753 struct rps_dev_flow *rflow; 4754 bool expire = true; 4755 unsigned int cpu; 4756 4757 rcu_read_lock(); 4758 flow_table = rcu_dereference(rxqueue->rps_flow_table); 4759 if (flow_table && flow_id <= flow_table->mask) { 4760 rflow = &flow_table->flows[flow_id]; 4761 cpu = READ_ONCE(rflow->cpu); 4762 if (READ_ONCE(rflow->filter) == filter_id && cpu < nr_cpu_ids && 4763 ((int)(READ_ONCE(per_cpu(softnet_data, cpu).input_queue_head) - 4764 READ_ONCE(rflow->last_qtail)) < 4765 (int)(10 * flow_table->mask))) 4766 expire = false; 4767 } 4768 rcu_read_unlock(); 4769 return expire; 4770 } 4771 EXPORT_SYMBOL(rps_may_expire_flow); 4772 4773 #endif /* CONFIG_RFS_ACCEL */ 4774 4775 /* Called from hardirq (IPI) context */ 4776 static void rps_trigger_softirq(void *data) 4777 { 4778 struct softnet_data *sd = data; 4779 4780 ____napi_schedule(sd, &sd->backlog); 4781 sd->received_rps++; 4782 } 4783 4784 #endif /* CONFIG_RPS */ 4785 4786 /* Called from hardirq (IPI) context */ 4787 static void trigger_rx_softirq(void *data) 4788 { 4789 struct softnet_data *sd = data; 4790 4791 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 4792 smp_store_release(&sd->defer_ipi_scheduled, 0); 4793 } 4794 4795 /* 4796 * After we queued a packet into sd->input_pkt_queue, 4797 * we need to make sure this queue is serviced soon. 4798 * 4799 * - If this is another cpu queue, link it to our rps_ipi_list, 4800 * and make sure we will process rps_ipi_list from net_rx_action(). 4801 * 4802 * - If this is our own queue, NAPI schedule our backlog. 4803 * Note that this also raises NET_RX_SOFTIRQ. 4804 */ 4805 static void napi_schedule_rps(struct softnet_data *sd) 4806 { 4807 struct softnet_data *mysd = this_cpu_ptr(&softnet_data); 4808 4809 #ifdef CONFIG_RPS 4810 if (sd != mysd) { 4811 if (use_backlog_threads()) { 4812 __napi_schedule_irqoff(&sd->backlog); 4813 return; 4814 } 4815 4816 sd->rps_ipi_next = mysd->rps_ipi_list; 4817 mysd->rps_ipi_list = sd; 4818 4819 /* If not called from net_rx_action() or napi_threaded_poll() 4820 * we have to raise NET_RX_SOFTIRQ. 4821 */ 4822 if (!mysd->in_net_rx_action && !mysd->in_napi_threaded_poll) 4823 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 4824 return; 4825 } 4826 #endif /* CONFIG_RPS */ 4827 __napi_schedule_irqoff(&mysd->backlog); 4828 } 4829 4830 void kick_defer_list_purge(struct softnet_data *sd, unsigned int cpu) 4831 { 4832 unsigned long flags; 4833 4834 if (use_backlog_threads()) { 4835 backlog_lock_irq_save(sd, &flags); 4836 4837 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) 4838 __napi_schedule_irqoff(&sd->backlog); 4839 4840 backlog_unlock_irq_restore(sd, &flags); 4841 4842 } else if (!cmpxchg(&sd->defer_ipi_scheduled, 0, 1)) { 4843 smp_call_function_single_async(cpu, &sd->defer_csd); 4844 } 4845 } 4846 4847 #ifdef CONFIG_NET_FLOW_LIMIT 4848 int netdev_flow_limit_table_len __read_mostly = (1 << 12); 4849 #endif 4850 4851 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen) 4852 { 4853 #ifdef CONFIG_NET_FLOW_LIMIT 4854 struct sd_flow_limit *fl; 4855 struct softnet_data *sd; 4856 unsigned int old_flow, new_flow; 4857 4858 if (qlen < (READ_ONCE(net_hotdata.max_backlog) >> 1)) 4859 return false; 4860 4861 sd = this_cpu_ptr(&softnet_data); 4862 4863 rcu_read_lock(); 4864 fl = rcu_dereference(sd->flow_limit); 4865 if (fl) { 4866 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1); 4867 old_flow = fl->history[fl->history_head]; 4868 fl->history[fl->history_head] = new_flow; 4869 4870 fl->history_head++; 4871 fl->history_head &= FLOW_LIMIT_HISTORY - 1; 4872 4873 if (likely(fl->buckets[old_flow])) 4874 fl->buckets[old_flow]--; 4875 4876 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) { 4877 fl->count++; 4878 rcu_read_unlock(); 4879 return true; 4880 } 4881 } 4882 rcu_read_unlock(); 4883 #endif 4884 return false; 4885 } 4886 4887 /* 4888 * enqueue_to_backlog is called to queue an skb to a per CPU backlog 4889 * queue (may be a remote CPU queue). 4890 */ 4891 static int enqueue_to_backlog(struct sk_buff *skb, int cpu, 4892 unsigned int *qtail) 4893 { 4894 enum skb_drop_reason reason; 4895 struct softnet_data *sd; 4896 unsigned long flags; 4897 unsigned int qlen; 4898 int max_backlog; 4899 u32 tail; 4900 4901 reason = SKB_DROP_REASON_DEV_READY; 4902 if (!netif_running(skb->dev)) 4903 goto bad_dev; 4904 4905 reason = SKB_DROP_REASON_CPU_BACKLOG; 4906 sd = &per_cpu(softnet_data, cpu); 4907 4908 qlen = skb_queue_len_lockless(&sd->input_pkt_queue); 4909 max_backlog = READ_ONCE(net_hotdata.max_backlog); 4910 if (unlikely(qlen > max_backlog)) 4911 goto cpu_backlog_drop; 4912 backlog_lock_irq_save(sd, &flags); 4913 qlen = skb_queue_len(&sd->input_pkt_queue); 4914 if (qlen <= max_backlog && !skb_flow_limit(skb, qlen)) { 4915 if (!qlen) { 4916 /* Schedule NAPI for backlog device. We can use 4917 * non atomic operation as we own the queue lock. 4918 */ 4919 if (!__test_and_set_bit(NAPI_STATE_SCHED, 4920 &sd->backlog.state)) 4921 napi_schedule_rps(sd); 4922 } 4923 __skb_queue_tail(&sd->input_pkt_queue, skb); 4924 tail = rps_input_queue_tail_incr(sd); 4925 backlog_unlock_irq_restore(sd, &flags); 4926 4927 /* save the tail outside of the critical section */ 4928 rps_input_queue_tail_save(qtail, tail); 4929 return NET_RX_SUCCESS; 4930 } 4931 4932 backlog_unlock_irq_restore(sd, &flags); 4933 4934 cpu_backlog_drop: 4935 atomic_inc(&sd->dropped); 4936 bad_dev: 4937 dev_core_stats_rx_dropped_inc(skb->dev); 4938 kfree_skb_reason(skb, reason); 4939 return NET_RX_DROP; 4940 } 4941 4942 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb) 4943 { 4944 struct net_device *dev = skb->dev; 4945 struct netdev_rx_queue *rxqueue; 4946 4947 rxqueue = dev->_rx; 4948 4949 if (skb_rx_queue_recorded(skb)) { 4950 u16 index = skb_get_rx_queue(skb); 4951 4952 if (unlikely(index >= dev->real_num_rx_queues)) { 4953 WARN_ONCE(dev->real_num_rx_queues > 1, 4954 "%s received packet on queue %u, but number " 4955 "of RX queues is %u\n", 4956 dev->name, index, dev->real_num_rx_queues); 4957 4958 return rxqueue; /* Return first rxqueue */ 4959 } 4960 rxqueue += index; 4961 } 4962 return rxqueue; 4963 } 4964 4965 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp, 4966 struct bpf_prog *xdp_prog) 4967 { 4968 void *orig_data, *orig_data_end, *hard_start; 4969 struct netdev_rx_queue *rxqueue; 4970 bool orig_bcast, orig_host; 4971 u32 mac_len, frame_sz; 4972 __be16 orig_eth_type; 4973 struct ethhdr *eth; 4974 u32 metalen, act; 4975 int off; 4976 4977 /* The XDP program wants to see the packet starting at the MAC 4978 * header. 4979 */ 4980 mac_len = skb->data - skb_mac_header(skb); 4981 hard_start = skb->data - skb_headroom(skb); 4982 4983 /* SKB "head" area always have tailroom for skb_shared_info */ 4984 frame_sz = (void *)skb_end_pointer(skb) - hard_start; 4985 frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 4986 4987 rxqueue = netif_get_rxqueue(skb); 4988 xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq); 4989 xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len, 4990 skb_headlen(skb) + mac_len, true); 4991 if (skb_is_nonlinear(skb)) { 4992 skb_shinfo(skb)->xdp_frags_size = skb->data_len; 4993 xdp_buff_set_frags_flag(xdp); 4994 } else { 4995 xdp_buff_clear_frags_flag(xdp); 4996 } 4997 4998 orig_data_end = xdp->data_end; 4999 orig_data = xdp->data; 5000 eth = (struct ethhdr *)xdp->data; 5001 orig_host = ether_addr_equal_64bits(eth->h_dest, skb->dev->dev_addr); 5002 orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest); 5003 orig_eth_type = eth->h_proto; 5004 5005 act = bpf_prog_run_xdp(xdp_prog, xdp); 5006 5007 /* check if bpf_xdp_adjust_head was used */ 5008 off = xdp->data - orig_data; 5009 if (off) { 5010 if (off > 0) 5011 __skb_pull(skb, off); 5012 else if (off < 0) 5013 __skb_push(skb, -off); 5014 5015 skb->mac_header += off; 5016 skb_reset_network_header(skb); 5017 } 5018 5019 /* check if bpf_xdp_adjust_tail was used */ 5020 off = xdp->data_end - orig_data_end; 5021 if (off != 0) { 5022 skb_set_tail_pointer(skb, xdp->data_end - xdp->data); 5023 skb->len += off; /* positive on grow, negative on shrink */ 5024 } 5025 5026 /* XDP frag metadata (e.g. nr_frags) are updated in eBPF helpers 5027 * (e.g. bpf_xdp_adjust_tail), we need to update data_len here. 5028 */ 5029 if (xdp_buff_has_frags(xdp)) 5030 skb->data_len = skb_shinfo(skb)->xdp_frags_size; 5031 else 5032 skb->data_len = 0; 5033 5034 /* check if XDP changed eth hdr such SKB needs update */ 5035 eth = (struct ethhdr *)xdp->data; 5036 if ((orig_eth_type != eth->h_proto) || 5037 (orig_host != ether_addr_equal_64bits(eth->h_dest, 5038 skb->dev->dev_addr)) || 5039 (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) { 5040 __skb_push(skb, ETH_HLEN); 5041 skb->pkt_type = PACKET_HOST; 5042 skb->protocol = eth_type_trans(skb, skb->dev); 5043 } 5044 5045 /* Redirect/Tx gives L2 packet, code that will reuse skb must __skb_pull 5046 * before calling us again on redirect path. We do not call do_redirect 5047 * as we leave that up to the caller. 5048 * 5049 * Caller is responsible for managing lifetime of skb (i.e. calling 5050 * kfree_skb in response to actions it cannot handle/XDP_DROP). 5051 */ 5052 switch (act) { 5053 case XDP_REDIRECT: 5054 case XDP_TX: 5055 __skb_push(skb, mac_len); 5056 break; 5057 case XDP_PASS: 5058 metalen = xdp->data - xdp->data_meta; 5059 if (metalen) 5060 skb_metadata_set(skb, metalen); 5061 break; 5062 } 5063 5064 return act; 5065 } 5066 5067 static int 5068 netif_skb_check_for_xdp(struct sk_buff **pskb, struct bpf_prog *prog) 5069 { 5070 struct sk_buff *skb = *pskb; 5071 int err, hroom, troom; 5072 5073 if (!skb_cow_data_for_xdp(this_cpu_read(system_page_pool), pskb, prog)) 5074 return 0; 5075 5076 /* In case we have to go down the path and also linearize, 5077 * then lets do the pskb_expand_head() work just once here. 5078 */ 5079 hroom = XDP_PACKET_HEADROOM - skb_headroom(skb); 5080 troom = skb->tail + skb->data_len - skb->end; 5081 err = pskb_expand_head(skb, 5082 hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0, 5083 troom > 0 ? troom + 128 : 0, GFP_ATOMIC); 5084 if (err) 5085 return err; 5086 5087 return skb_linearize(skb); 5088 } 5089 5090 static u32 netif_receive_generic_xdp(struct sk_buff **pskb, 5091 struct xdp_buff *xdp, 5092 struct bpf_prog *xdp_prog) 5093 { 5094 struct sk_buff *skb = *pskb; 5095 u32 mac_len, act = XDP_DROP; 5096 5097 /* Reinjected packets coming from act_mirred or similar should 5098 * not get XDP generic processing. 5099 */ 5100 if (skb_is_redirected(skb)) 5101 return XDP_PASS; 5102 5103 /* XDP packets must have sufficient headroom of XDP_PACKET_HEADROOM 5104 * bytes. This is the guarantee that also native XDP provides, 5105 * thus we need to do it here as well. 5106 */ 5107 mac_len = skb->data - skb_mac_header(skb); 5108 __skb_push(skb, mac_len); 5109 5110 if (skb_cloned(skb) || skb_is_nonlinear(skb) || 5111 skb_headroom(skb) < XDP_PACKET_HEADROOM) { 5112 if (netif_skb_check_for_xdp(pskb, xdp_prog)) 5113 goto do_drop; 5114 } 5115 5116 __skb_pull(*pskb, mac_len); 5117 5118 act = bpf_prog_run_generic_xdp(*pskb, xdp, xdp_prog); 5119 switch (act) { 5120 case XDP_REDIRECT: 5121 case XDP_TX: 5122 case XDP_PASS: 5123 break; 5124 default: 5125 bpf_warn_invalid_xdp_action((*pskb)->dev, xdp_prog, act); 5126 fallthrough; 5127 case XDP_ABORTED: 5128 trace_xdp_exception((*pskb)->dev, xdp_prog, act); 5129 fallthrough; 5130 case XDP_DROP: 5131 do_drop: 5132 kfree_skb(*pskb); 5133 break; 5134 } 5135 5136 return act; 5137 } 5138 5139 /* When doing generic XDP we have to bypass the qdisc layer and the 5140 * network taps in order to match in-driver-XDP behavior. This also means 5141 * that XDP packets are able to starve other packets going through a qdisc, 5142 * and DDOS attacks will be more effective. In-driver-XDP use dedicated TX 5143 * queues, so they do not have this starvation issue. 5144 */ 5145 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog) 5146 { 5147 struct net_device *dev = skb->dev; 5148 struct netdev_queue *txq; 5149 bool free_skb = true; 5150 int cpu, rc; 5151 5152 txq = netdev_core_pick_tx(dev, skb, NULL); 5153 cpu = smp_processor_id(); 5154 HARD_TX_LOCK(dev, txq, cpu); 5155 if (!netif_xmit_frozen_or_drv_stopped(txq)) { 5156 rc = netdev_start_xmit(skb, dev, txq, 0); 5157 if (dev_xmit_complete(rc)) 5158 free_skb = false; 5159 } 5160 HARD_TX_UNLOCK(dev, txq); 5161 if (free_skb) { 5162 trace_xdp_exception(dev, xdp_prog, XDP_TX); 5163 dev_core_stats_tx_dropped_inc(dev); 5164 kfree_skb(skb); 5165 } 5166 } 5167 5168 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key); 5169 5170 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff **pskb) 5171 { 5172 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx; 5173 5174 if (xdp_prog) { 5175 struct xdp_buff xdp; 5176 u32 act; 5177 int err; 5178 5179 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx); 5180 act = netif_receive_generic_xdp(pskb, &xdp, xdp_prog); 5181 if (act != XDP_PASS) { 5182 switch (act) { 5183 case XDP_REDIRECT: 5184 err = xdp_do_generic_redirect((*pskb)->dev, *pskb, 5185 &xdp, xdp_prog); 5186 if (err) 5187 goto out_redir; 5188 break; 5189 case XDP_TX: 5190 generic_xdp_tx(*pskb, xdp_prog); 5191 break; 5192 } 5193 bpf_net_ctx_clear(bpf_net_ctx); 5194 return XDP_DROP; 5195 } 5196 bpf_net_ctx_clear(bpf_net_ctx); 5197 } 5198 return XDP_PASS; 5199 out_redir: 5200 bpf_net_ctx_clear(bpf_net_ctx); 5201 kfree_skb_reason(*pskb, SKB_DROP_REASON_XDP); 5202 return XDP_DROP; 5203 } 5204 EXPORT_SYMBOL_GPL(do_xdp_generic); 5205 5206 static int netif_rx_internal(struct sk_buff *skb) 5207 { 5208 int ret; 5209 5210 net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue), skb); 5211 5212 trace_netif_rx(skb); 5213 5214 #ifdef CONFIG_RPS 5215 if (static_branch_unlikely(&rps_needed)) { 5216 struct rps_dev_flow voidflow, *rflow = &voidflow; 5217 int cpu; 5218 5219 rcu_read_lock(); 5220 5221 cpu = get_rps_cpu(skb->dev, skb, &rflow); 5222 if (cpu < 0) 5223 cpu = smp_processor_id(); 5224 5225 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 5226 5227 rcu_read_unlock(); 5228 } else 5229 #endif 5230 { 5231 unsigned int qtail; 5232 5233 ret = enqueue_to_backlog(skb, smp_processor_id(), &qtail); 5234 } 5235 return ret; 5236 } 5237 5238 /** 5239 * __netif_rx - Slightly optimized version of netif_rx 5240 * @skb: buffer to post 5241 * 5242 * This behaves as netif_rx except that it does not disable bottom halves. 5243 * As a result this function may only be invoked from the interrupt context 5244 * (either hard or soft interrupt). 5245 */ 5246 int __netif_rx(struct sk_buff *skb) 5247 { 5248 int ret; 5249 5250 lockdep_assert_once(hardirq_count() | softirq_count()); 5251 5252 trace_netif_rx_entry(skb); 5253 ret = netif_rx_internal(skb); 5254 trace_netif_rx_exit(ret); 5255 return ret; 5256 } 5257 EXPORT_SYMBOL(__netif_rx); 5258 5259 /** 5260 * netif_rx - post buffer to the network code 5261 * @skb: buffer to post 5262 * 5263 * This function receives a packet from a device driver and queues it for 5264 * the upper (protocol) levels to process via the backlog NAPI device. It 5265 * always succeeds. The buffer may be dropped during processing for 5266 * congestion control or by the protocol layers. 5267 * The network buffer is passed via the backlog NAPI device. Modern NIC 5268 * driver should use NAPI and GRO. 5269 * This function can used from interrupt and from process context. The 5270 * caller from process context must not disable interrupts before invoking 5271 * this function. 5272 * 5273 * return values: 5274 * NET_RX_SUCCESS (no congestion) 5275 * NET_RX_DROP (packet was dropped) 5276 * 5277 */ 5278 int netif_rx(struct sk_buff *skb) 5279 { 5280 bool need_bh_off = !(hardirq_count() | softirq_count()); 5281 int ret; 5282 5283 if (need_bh_off) 5284 local_bh_disable(); 5285 trace_netif_rx_entry(skb); 5286 ret = netif_rx_internal(skb); 5287 trace_netif_rx_exit(ret); 5288 if (need_bh_off) 5289 local_bh_enable(); 5290 return ret; 5291 } 5292 EXPORT_SYMBOL(netif_rx); 5293 5294 static __latent_entropy void net_tx_action(void) 5295 { 5296 struct softnet_data *sd = this_cpu_ptr(&softnet_data); 5297 5298 if (sd->completion_queue) { 5299 struct sk_buff *clist; 5300 5301 local_irq_disable(); 5302 clist = sd->completion_queue; 5303 sd->completion_queue = NULL; 5304 local_irq_enable(); 5305 5306 while (clist) { 5307 struct sk_buff *skb = clist; 5308 5309 clist = clist->next; 5310 5311 WARN_ON(refcount_read(&skb->users)); 5312 if (likely(get_kfree_skb_cb(skb)->reason == SKB_CONSUMED)) 5313 trace_consume_skb(skb, net_tx_action); 5314 else 5315 trace_kfree_skb(skb, net_tx_action, 5316 get_kfree_skb_cb(skb)->reason, NULL); 5317 5318 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) 5319 __kfree_skb(skb); 5320 else 5321 __napi_kfree_skb(skb, 5322 get_kfree_skb_cb(skb)->reason); 5323 } 5324 } 5325 5326 if (sd->output_queue) { 5327 struct Qdisc *head; 5328 5329 local_irq_disable(); 5330 head = sd->output_queue; 5331 sd->output_queue = NULL; 5332 sd->output_queue_tailp = &sd->output_queue; 5333 local_irq_enable(); 5334 5335 rcu_read_lock(); 5336 5337 while (head) { 5338 struct Qdisc *q = head; 5339 spinlock_t *root_lock = NULL; 5340 5341 head = head->next_sched; 5342 5343 /* We need to make sure head->next_sched is read 5344 * before clearing __QDISC_STATE_SCHED 5345 */ 5346 smp_mb__before_atomic(); 5347 5348 if (!(q->flags & TCQ_F_NOLOCK)) { 5349 root_lock = qdisc_lock(q); 5350 spin_lock(root_lock); 5351 } else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, 5352 &q->state))) { 5353 /* There is a synchronize_net() between 5354 * STATE_DEACTIVATED flag being set and 5355 * qdisc_reset()/some_qdisc_is_busy() in 5356 * dev_deactivate(), so we can safely bail out 5357 * early here to avoid data race between 5358 * qdisc_deactivate() and some_qdisc_is_busy() 5359 * for lockless qdisc. 5360 */ 5361 clear_bit(__QDISC_STATE_SCHED, &q->state); 5362 continue; 5363 } 5364 5365 clear_bit(__QDISC_STATE_SCHED, &q->state); 5366 qdisc_run(q); 5367 if (root_lock) 5368 spin_unlock(root_lock); 5369 } 5370 5371 rcu_read_unlock(); 5372 } 5373 5374 xfrm_dev_backlog(sd); 5375 } 5376 5377 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE) 5378 /* This hook is defined here for ATM LANE */ 5379 int (*br_fdb_test_addr_hook)(struct net_device *dev, 5380 unsigned char *addr) __read_mostly; 5381 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook); 5382 #endif 5383 5384 /** 5385 * netdev_is_rx_handler_busy - check if receive handler is registered 5386 * @dev: device to check 5387 * 5388 * Check if a receive handler is already registered for a given device. 5389 * Return true if there one. 5390 * 5391 * The caller must hold the rtnl_mutex. 5392 */ 5393 bool netdev_is_rx_handler_busy(struct net_device *dev) 5394 { 5395 ASSERT_RTNL(); 5396 return dev && rtnl_dereference(dev->rx_handler); 5397 } 5398 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy); 5399 5400 /** 5401 * netdev_rx_handler_register - register receive handler 5402 * @dev: device to register a handler for 5403 * @rx_handler: receive handler to register 5404 * @rx_handler_data: data pointer that is used by rx handler 5405 * 5406 * Register a receive handler for a device. This handler will then be 5407 * called from __netif_receive_skb. A negative errno code is returned 5408 * on a failure. 5409 * 5410 * The caller must hold the rtnl_mutex. 5411 * 5412 * For a general description of rx_handler, see enum rx_handler_result. 5413 */ 5414 int netdev_rx_handler_register(struct net_device *dev, 5415 rx_handler_func_t *rx_handler, 5416 void *rx_handler_data) 5417 { 5418 if (netdev_is_rx_handler_busy(dev)) 5419 return -EBUSY; 5420 5421 if (dev->priv_flags & IFF_NO_RX_HANDLER) 5422 return -EINVAL; 5423 5424 /* Note: rx_handler_data must be set before rx_handler */ 5425 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data); 5426 rcu_assign_pointer(dev->rx_handler, rx_handler); 5427 5428 return 0; 5429 } 5430 EXPORT_SYMBOL_GPL(netdev_rx_handler_register); 5431 5432 /** 5433 * netdev_rx_handler_unregister - unregister receive handler 5434 * @dev: device to unregister a handler from 5435 * 5436 * Unregister a receive handler from a device. 5437 * 5438 * The caller must hold the rtnl_mutex. 5439 */ 5440 void netdev_rx_handler_unregister(struct net_device *dev) 5441 { 5442 5443 ASSERT_RTNL(); 5444 RCU_INIT_POINTER(dev->rx_handler, NULL); 5445 /* a reader seeing a non NULL rx_handler in a rcu_read_lock() 5446 * section has a guarantee to see a non NULL rx_handler_data 5447 * as well. 5448 */ 5449 synchronize_net(); 5450 RCU_INIT_POINTER(dev->rx_handler_data, NULL); 5451 } 5452 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister); 5453 5454 /* 5455 * Limit the use of PFMEMALLOC reserves to those protocols that implement 5456 * the special handling of PFMEMALLOC skbs. 5457 */ 5458 static bool skb_pfmemalloc_protocol(struct sk_buff *skb) 5459 { 5460 switch (skb->protocol) { 5461 case htons(ETH_P_ARP): 5462 case htons(ETH_P_IP): 5463 case htons(ETH_P_IPV6): 5464 case htons(ETH_P_8021Q): 5465 case htons(ETH_P_8021AD): 5466 return true; 5467 default: 5468 return false; 5469 } 5470 } 5471 5472 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev, 5473 int *ret, struct net_device *orig_dev) 5474 { 5475 if (nf_hook_ingress_active(skb)) { 5476 int ingress_retval; 5477 5478 if (*pt_prev) { 5479 *ret = deliver_skb(skb, *pt_prev, orig_dev); 5480 *pt_prev = NULL; 5481 } 5482 5483 rcu_read_lock(); 5484 ingress_retval = nf_hook_ingress(skb); 5485 rcu_read_unlock(); 5486 return ingress_retval; 5487 } 5488 return 0; 5489 } 5490 5491 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc, 5492 struct packet_type **ppt_prev) 5493 { 5494 struct packet_type *ptype, *pt_prev; 5495 rx_handler_func_t *rx_handler; 5496 struct sk_buff *skb = *pskb; 5497 struct net_device *orig_dev; 5498 bool deliver_exact = false; 5499 int ret = NET_RX_DROP; 5500 __be16 type; 5501 5502 net_timestamp_check(!READ_ONCE(net_hotdata.tstamp_prequeue), skb); 5503 5504 trace_netif_receive_skb(skb); 5505 5506 orig_dev = skb->dev; 5507 5508 skb_reset_network_header(skb); 5509 if (!skb_transport_header_was_set(skb)) 5510 skb_reset_transport_header(skb); 5511 skb_reset_mac_len(skb); 5512 5513 pt_prev = NULL; 5514 5515 another_round: 5516 skb->skb_iif = skb->dev->ifindex; 5517 5518 __this_cpu_inc(softnet_data.processed); 5519 5520 if (static_branch_unlikely(&generic_xdp_needed_key)) { 5521 int ret2; 5522 5523 migrate_disable(); 5524 ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), 5525 &skb); 5526 migrate_enable(); 5527 5528 if (ret2 != XDP_PASS) { 5529 ret = NET_RX_DROP; 5530 goto out; 5531 } 5532 } 5533 5534 if (eth_type_vlan(skb->protocol)) { 5535 skb = skb_vlan_untag(skb); 5536 if (unlikely(!skb)) 5537 goto out; 5538 } 5539 5540 if (skb_skip_tc_classify(skb)) 5541 goto skip_classify; 5542 5543 if (pfmemalloc) 5544 goto skip_taps; 5545 5546 list_for_each_entry_rcu(ptype, &net_hotdata.ptype_all, list) { 5547 if (pt_prev) 5548 ret = deliver_skb(skb, pt_prev, orig_dev); 5549 pt_prev = ptype; 5550 } 5551 5552 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) { 5553 if (pt_prev) 5554 ret = deliver_skb(skb, pt_prev, orig_dev); 5555 pt_prev = ptype; 5556 } 5557 5558 skip_taps: 5559 #ifdef CONFIG_NET_INGRESS 5560 if (static_branch_unlikely(&ingress_needed_key)) { 5561 bool another = false; 5562 5563 nf_skip_egress(skb, true); 5564 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev, 5565 &another); 5566 if (another) 5567 goto another_round; 5568 if (!skb) 5569 goto out; 5570 5571 nf_skip_egress(skb, false); 5572 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0) 5573 goto out; 5574 } 5575 #endif 5576 skb_reset_redirect(skb); 5577 skip_classify: 5578 if (pfmemalloc && !skb_pfmemalloc_protocol(skb)) 5579 goto drop; 5580 5581 if (skb_vlan_tag_present(skb)) { 5582 if (pt_prev) { 5583 ret = deliver_skb(skb, pt_prev, orig_dev); 5584 pt_prev = NULL; 5585 } 5586 if (vlan_do_receive(&skb)) 5587 goto another_round; 5588 else if (unlikely(!skb)) 5589 goto out; 5590 } 5591 5592 rx_handler = rcu_dereference(skb->dev->rx_handler); 5593 if (rx_handler) { 5594 if (pt_prev) { 5595 ret = deliver_skb(skb, pt_prev, orig_dev); 5596 pt_prev = NULL; 5597 } 5598 switch (rx_handler(&skb)) { 5599 case RX_HANDLER_CONSUMED: 5600 ret = NET_RX_SUCCESS; 5601 goto out; 5602 case RX_HANDLER_ANOTHER: 5603 goto another_round; 5604 case RX_HANDLER_EXACT: 5605 deliver_exact = true; 5606 break; 5607 case RX_HANDLER_PASS: 5608 break; 5609 default: 5610 BUG(); 5611 } 5612 } 5613 5614 if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) { 5615 check_vlan_id: 5616 if (skb_vlan_tag_get_id(skb)) { 5617 /* Vlan id is non 0 and vlan_do_receive() above couldn't 5618 * find vlan device. 5619 */ 5620 skb->pkt_type = PACKET_OTHERHOST; 5621 } else if (eth_type_vlan(skb->protocol)) { 5622 /* Outer header is 802.1P with vlan 0, inner header is 5623 * 802.1Q or 802.1AD and vlan_do_receive() above could 5624 * not find vlan dev for vlan id 0. 5625 */ 5626 __vlan_hwaccel_clear_tag(skb); 5627 skb = skb_vlan_untag(skb); 5628 if (unlikely(!skb)) 5629 goto out; 5630 if (vlan_do_receive(&skb)) 5631 /* After stripping off 802.1P header with vlan 0 5632 * vlan dev is found for inner header. 5633 */ 5634 goto another_round; 5635 else if (unlikely(!skb)) 5636 goto out; 5637 else 5638 /* We have stripped outer 802.1P vlan 0 header. 5639 * But could not find vlan dev. 5640 * check again for vlan id to set OTHERHOST. 5641 */ 5642 goto check_vlan_id; 5643 } 5644 /* Note: we might in the future use prio bits 5645 * and set skb->priority like in vlan_do_receive() 5646 * For the time being, just ignore Priority Code Point 5647 */ 5648 __vlan_hwaccel_clear_tag(skb); 5649 } 5650 5651 type = skb->protocol; 5652 5653 /* deliver only exact match when indicated */ 5654 if (likely(!deliver_exact)) { 5655 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 5656 &ptype_base[ntohs(type) & 5657 PTYPE_HASH_MASK]); 5658 } 5659 5660 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 5661 &orig_dev->ptype_specific); 5662 5663 if (unlikely(skb->dev != orig_dev)) { 5664 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 5665 &skb->dev->ptype_specific); 5666 } 5667 5668 if (pt_prev) { 5669 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC))) 5670 goto drop; 5671 *ppt_prev = pt_prev; 5672 } else { 5673 drop: 5674 if (!deliver_exact) 5675 dev_core_stats_rx_dropped_inc(skb->dev); 5676 else 5677 dev_core_stats_rx_nohandler_inc(skb->dev); 5678 kfree_skb_reason(skb, SKB_DROP_REASON_UNHANDLED_PROTO); 5679 /* Jamal, now you will not able to escape explaining 5680 * me how you were going to use this. :-) 5681 */ 5682 ret = NET_RX_DROP; 5683 } 5684 5685 out: 5686 /* The invariant here is that if *ppt_prev is not NULL 5687 * then skb should also be non-NULL. 5688 * 5689 * Apparently *ppt_prev assignment above holds this invariant due to 5690 * skb dereferencing near it. 5691 */ 5692 *pskb = skb; 5693 return ret; 5694 } 5695 5696 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc) 5697 { 5698 struct net_device *orig_dev = skb->dev; 5699 struct packet_type *pt_prev = NULL; 5700 int ret; 5701 5702 ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev); 5703 if (pt_prev) 5704 ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb, 5705 skb->dev, pt_prev, orig_dev); 5706 return ret; 5707 } 5708 5709 /** 5710 * netif_receive_skb_core - special purpose version of netif_receive_skb 5711 * @skb: buffer to process 5712 * 5713 * More direct receive version of netif_receive_skb(). It should 5714 * only be used by callers that have a need to skip RPS and Generic XDP. 5715 * Caller must also take care of handling if ``(page_is_)pfmemalloc``. 5716 * 5717 * This function may only be called from softirq context and interrupts 5718 * should be enabled. 5719 * 5720 * Return values (usually ignored): 5721 * NET_RX_SUCCESS: no congestion 5722 * NET_RX_DROP: packet was dropped 5723 */ 5724 int netif_receive_skb_core(struct sk_buff *skb) 5725 { 5726 int ret; 5727 5728 rcu_read_lock(); 5729 ret = __netif_receive_skb_one_core(skb, false); 5730 rcu_read_unlock(); 5731 5732 return ret; 5733 } 5734 EXPORT_SYMBOL(netif_receive_skb_core); 5735 5736 static inline void __netif_receive_skb_list_ptype(struct list_head *head, 5737 struct packet_type *pt_prev, 5738 struct net_device *orig_dev) 5739 { 5740 struct sk_buff *skb, *next; 5741 5742 if (!pt_prev) 5743 return; 5744 if (list_empty(head)) 5745 return; 5746 if (pt_prev->list_func != NULL) 5747 INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv, 5748 ip_list_rcv, head, pt_prev, orig_dev); 5749 else 5750 list_for_each_entry_safe(skb, next, head, list) { 5751 skb_list_del_init(skb); 5752 pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 5753 } 5754 } 5755 5756 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc) 5757 { 5758 /* Fast-path assumptions: 5759 * - There is no RX handler. 5760 * - Only one packet_type matches. 5761 * If either of these fails, we will end up doing some per-packet 5762 * processing in-line, then handling the 'last ptype' for the whole 5763 * sublist. This can't cause out-of-order delivery to any single ptype, 5764 * because the 'last ptype' must be constant across the sublist, and all 5765 * other ptypes are handled per-packet. 5766 */ 5767 /* Current (common) ptype of sublist */ 5768 struct packet_type *pt_curr = NULL; 5769 /* Current (common) orig_dev of sublist */ 5770 struct net_device *od_curr = NULL; 5771 struct sk_buff *skb, *next; 5772 LIST_HEAD(sublist); 5773 5774 list_for_each_entry_safe(skb, next, head, list) { 5775 struct net_device *orig_dev = skb->dev; 5776 struct packet_type *pt_prev = NULL; 5777 5778 skb_list_del_init(skb); 5779 __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev); 5780 if (!pt_prev) 5781 continue; 5782 if (pt_curr != pt_prev || od_curr != orig_dev) { 5783 /* dispatch old sublist */ 5784 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr); 5785 /* start new sublist */ 5786 INIT_LIST_HEAD(&sublist); 5787 pt_curr = pt_prev; 5788 od_curr = orig_dev; 5789 } 5790 list_add_tail(&skb->list, &sublist); 5791 } 5792 5793 /* dispatch final sublist */ 5794 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr); 5795 } 5796 5797 static int __netif_receive_skb(struct sk_buff *skb) 5798 { 5799 int ret; 5800 5801 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) { 5802 unsigned int noreclaim_flag; 5803 5804 /* 5805 * PFMEMALLOC skbs are special, they should 5806 * - be delivered to SOCK_MEMALLOC sockets only 5807 * - stay away from userspace 5808 * - have bounded memory usage 5809 * 5810 * Use PF_MEMALLOC as this saves us from propagating the allocation 5811 * context down to all allocation sites. 5812 */ 5813 noreclaim_flag = memalloc_noreclaim_save(); 5814 ret = __netif_receive_skb_one_core(skb, true); 5815 memalloc_noreclaim_restore(noreclaim_flag); 5816 } else 5817 ret = __netif_receive_skb_one_core(skb, false); 5818 5819 return ret; 5820 } 5821 5822 static void __netif_receive_skb_list(struct list_head *head) 5823 { 5824 unsigned long noreclaim_flag = 0; 5825 struct sk_buff *skb, *next; 5826 bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */ 5827 5828 list_for_each_entry_safe(skb, next, head, list) { 5829 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) { 5830 struct list_head sublist; 5831 5832 /* Handle the previous sublist */ 5833 list_cut_before(&sublist, head, &skb->list); 5834 if (!list_empty(&sublist)) 5835 __netif_receive_skb_list_core(&sublist, pfmemalloc); 5836 pfmemalloc = !pfmemalloc; 5837 /* See comments in __netif_receive_skb */ 5838 if (pfmemalloc) 5839 noreclaim_flag = memalloc_noreclaim_save(); 5840 else 5841 memalloc_noreclaim_restore(noreclaim_flag); 5842 } 5843 } 5844 /* Handle the remaining sublist */ 5845 if (!list_empty(head)) 5846 __netif_receive_skb_list_core(head, pfmemalloc); 5847 /* Restore pflags */ 5848 if (pfmemalloc) 5849 memalloc_noreclaim_restore(noreclaim_flag); 5850 } 5851 5852 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp) 5853 { 5854 struct bpf_prog *old = rtnl_dereference(dev->xdp_prog); 5855 struct bpf_prog *new = xdp->prog; 5856 int ret = 0; 5857 5858 switch (xdp->command) { 5859 case XDP_SETUP_PROG: 5860 rcu_assign_pointer(dev->xdp_prog, new); 5861 if (old) 5862 bpf_prog_put(old); 5863 5864 if (old && !new) { 5865 static_branch_dec(&generic_xdp_needed_key); 5866 } else if (new && !old) { 5867 static_branch_inc(&generic_xdp_needed_key); 5868 dev_disable_lro(dev); 5869 dev_disable_gro_hw(dev); 5870 } 5871 break; 5872 5873 default: 5874 ret = -EINVAL; 5875 break; 5876 } 5877 5878 return ret; 5879 } 5880 5881 static int netif_receive_skb_internal(struct sk_buff *skb) 5882 { 5883 int ret; 5884 5885 net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue), skb); 5886 5887 if (skb_defer_rx_timestamp(skb)) 5888 return NET_RX_SUCCESS; 5889 5890 rcu_read_lock(); 5891 #ifdef CONFIG_RPS 5892 if (static_branch_unlikely(&rps_needed)) { 5893 struct rps_dev_flow voidflow, *rflow = &voidflow; 5894 int cpu = get_rps_cpu(skb->dev, skb, &rflow); 5895 5896 if (cpu >= 0) { 5897 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 5898 rcu_read_unlock(); 5899 return ret; 5900 } 5901 } 5902 #endif 5903 ret = __netif_receive_skb(skb); 5904 rcu_read_unlock(); 5905 return ret; 5906 } 5907 5908 void netif_receive_skb_list_internal(struct list_head *head) 5909 { 5910 struct sk_buff *skb, *next; 5911 LIST_HEAD(sublist); 5912 5913 list_for_each_entry_safe(skb, next, head, list) { 5914 net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue), 5915 skb); 5916 skb_list_del_init(skb); 5917 if (!skb_defer_rx_timestamp(skb)) 5918 list_add_tail(&skb->list, &sublist); 5919 } 5920 list_splice_init(&sublist, head); 5921 5922 rcu_read_lock(); 5923 #ifdef CONFIG_RPS 5924 if (static_branch_unlikely(&rps_needed)) { 5925 list_for_each_entry_safe(skb, next, head, list) { 5926 struct rps_dev_flow voidflow, *rflow = &voidflow; 5927 int cpu = get_rps_cpu(skb->dev, skb, &rflow); 5928 5929 if (cpu >= 0) { 5930 /* Will be handled, remove from list */ 5931 skb_list_del_init(skb); 5932 enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 5933 } 5934 } 5935 } 5936 #endif 5937 __netif_receive_skb_list(head); 5938 rcu_read_unlock(); 5939 } 5940 5941 /** 5942 * netif_receive_skb - process receive buffer from network 5943 * @skb: buffer to process 5944 * 5945 * netif_receive_skb() is the main receive data processing function. 5946 * It always succeeds. The buffer may be dropped during processing 5947 * for congestion control or by the protocol layers. 5948 * 5949 * This function may only be called from softirq context and interrupts 5950 * should be enabled. 5951 * 5952 * Return values (usually ignored): 5953 * NET_RX_SUCCESS: no congestion 5954 * NET_RX_DROP: packet was dropped 5955 */ 5956 int netif_receive_skb(struct sk_buff *skb) 5957 { 5958 int ret; 5959 5960 trace_netif_receive_skb_entry(skb); 5961 5962 ret = netif_receive_skb_internal(skb); 5963 trace_netif_receive_skb_exit(ret); 5964 5965 return ret; 5966 } 5967 EXPORT_SYMBOL(netif_receive_skb); 5968 5969 /** 5970 * netif_receive_skb_list - process many receive buffers from network 5971 * @head: list of skbs to process. 5972 * 5973 * Since return value of netif_receive_skb() is normally ignored, and 5974 * wouldn't be meaningful for a list, this function returns void. 5975 * 5976 * This function may only be called from softirq context and interrupts 5977 * should be enabled. 5978 */ 5979 void netif_receive_skb_list(struct list_head *head) 5980 { 5981 struct sk_buff *skb; 5982 5983 if (list_empty(head)) 5984 return; 5985 if (trace_netif_receive_skb_list_entry_enabled()) { 5986 list_for_each_entry(skb, head, list) 5987 trace_netif_receive_skb_list_entry(skb); 5988 } 5989 netif_receive_skb_list_internal(head); 5990 trace_netif_receive_skb_list_exit(0); 5991 } 5992 EXPORT_SYMBOL(netif_receive_skb_list); 5993 5994 static DEFINE_PER_CPU(struct work_struct, flush_works); 5995 5996 /* Network device is going away, flush any packets still pending */ 5997 static void flush_backlog(struct work_struct *work) 5998 { 5999 struct sk_buff *skb, *tmp; 6000 struct softnet_data *sd; 6001 6002 local_bh_disable(); 6003 sd = this_cpu_ptr(&softnet_data); 6004 6005 backlog_lock_irq_disable(sd); 6006 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) { 6007 if (skb->dev->reg_state == NETREG_UNREGISTERING) { 6008 __skb_unlink(skb, &sd->input_pkt_queue); 6009 dev_kfree_skb_irq(skb); 6010 rps_input_queue_head_incr(sd); 6011 } 6012 } 6013 backlog_unlock_irq_enable(sd); 6014 6015 local_lock_nested_bh(&softnet_data.process_queue_bh_lock); 6016 skb_queue_walk_safe(&sd->process_queue, skb, tmp) { 6017 if (skb->dev->reg_state == NETREG_UNREGISTERING) { 6018 __skb_unlink(skb, &sd->process_queue); 6019 kfree_skb(skb); 6020 rps_input_queue_head_incr(sd); 6021 } 6022 } 6023 local_unlock_nested_bh(&softnet_data.process_queue_bh_lock); 6024 local_bh_enable(); 6025 } 6026 6027 static bool flush_required(int cpu) 6028 { 6029 #if IS_ENABLED(CONFIG_RPS) 6030 struct softnet_data *sd = &per_cpu(softnet_data, cpu); 6031 bool do_flush; 6032 6033 backlog_lock_irq_disable(sd); 6034 6035 /* as insertion into process_queue happens with the rps lock held, 6036 * process_queue access may race only with dequeue 6037 */ 6038 do_flush = !skb_queue_empty(&sd->input_pkt_queue) || 6039 !skb_queue_empty_lockless(&sd->process_queue); 6040 backlog_unlock_irq_enable(sd); 6041 6042 return do_flush; 6043 #endif 6044 /* without RPS we can't safely check input_pkt_queue: during a 6045 * concurrent remote skb_queue_splice() we can detect as empty both 6046 * input_pkt_queue and process_queue even if the latter could end-up 6047 * containing a lot of packets. 6048 */ 6049 return true; 6050 } 6051 6052 static void flush_all_backlogs(void) 6053 { 6054 static cpumask_t flush_cpus; 6055 unsigned int cpu; 6056 6057 /* since we are under rtnl lock protection we can use static data 6058 * for the cpumask and avoid allocating on stack the possibly 6059 * large mask 6060 */ 6061 ASSERT_RTNL(); 6062 6063 cpus_read_lock(); 6064 6065 cpumask_clear(&flush_cpus); 6066 for_each_online_cpu(cpu) { 6067 if (flush_required(cpu)) { 6068 queue_work_on(cpu, system_highpri_wq, 6069 per_cpu_ptr(&flush_works, cpu)); 6070 cpumask_set_cpu(cpu, &flush_cpus); 6071 } 6072 } 6073 6074 /* we can have in flight packet[s] on the cpus we are not flushing, 6075 * synchronize_net() in unregister_netdevice_many() will take care of 6076 * them 6077 */ 6078 for_each_cpu(cpu, &flush_cpus) 6079 flush_work(per_cpu_ptr(&flush_works, cpu)); 6080 6081 cpus_read_unlock(); 6082 } 6083 6084 static void net_rps_send_ipi(struct softnet_data *remsd) 6085 { 6086 #ifdef CONFIG_RPS 6087 while (remsd) { 6088 struct softnet_data *next = remsd->rps_ipi_next; 6089 6090 if (cpu_online(remsd->cpu)) 6091 smp_call_function_single_async(remsd->cpu, &remsd->csd); 6092 remsd = next; 6093 } 6094 #endif 6095 } 6096 6097 /* 6098 * net_rps_action_and_irq_enable sends any pending IPI's for rps. 6099 * Note: called with local irq disabled, but exits with local irq enabled. 6100 */ 6101 static void net_rps_action_and_irq_enable(struct softnet_data *sd) 6102 { 6103 #ifdef CONFIG_RPS 6104 struct softnet_data *remsd = sd->rps_ipi_list; 6105 6106 if (!use_backlog_threads() && remsd) { 6107 sd->rps_ipi_list = NULL; 6108 6109 local_irq_enable(); 6110 6111 /* Send pending IPI's to kick RPS processing on remote cpus. */ 6112 net_rps_send_ipi(remsd); 6113 } else 6114 #endif 6115 local_irq_enable(); 6116 } 6117 6118 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd) 6119 { 6120 #ifdef CONFIG_RPS 6121 return !use_backlog_threads() && sd->rps_ipi_list; 6122 #else 6123 return false; 6124 #endif 6125 } 6126 6127 static int process_backlog(struct napi_struct *napi, int quota) 6128 { 6129 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog); 6130 bool again = true; 6131 int work = 0; 6132 6133 /* Check if we have pending ipi, its better to send them now, 6134 * not waiting net_rx_action() end. 6135 */ 6136 if (sd_has_rps_ipi_waiting(sd)) { 6137 local_irq_disable(); 6138 net_rps_action_and_irq_enable(sd); 6139 } 6140 6141 napi->weight = READ_ONCE(net_hotdata.dev_rx_weight); 6142 while (again) { 6143 struct sk_buff *skb; 6144 6145 local_lock_nested_bh(&softnet_data.process_queue_bh_lock); 6146 while ((skb = __skb_dequeue(&sd->process_queue))) { 6147 local_unlock_nested_bh(&softnet_data.process_queue_bh_lock); 6148 rcu_read_lock(); 6149 __netif_receive_skb(skb); 6150 rcu_read_unlock(); 6151 if (++work >= quota) { 6152 rps_input_queue_head_add(sd, work); 6153 return work; 6154 } 6155 6156 local_lock_nested_bh(&softnet_data.process_queue_bh_lock); 6157 } 6158 local_unlock_nested_bh(&softnet_data.process_queue_bh_lock); 6159 6160 backlog_lock_irq_disable(sd); 6161 if (skb_queue_empty(&sd->input_pkt_queue)) { 6162 /* 6163 * Inline a custom version of __napi_complete(). 6164 * only current cpu owns and manipulates this napi, 6165 * and NAPI_STATE_SCHED is the only possible flag set 6166 * on backlog. 6167 * We can use a plain write instead of clear_bit(), 6168 * and we dont need an smp_mb() memory barrier. 6169 */ 6170 napi->state &= NAPIF_STATE_THREADED; 6171 again = false; 6172 } else { 6173 local_lock_nested_bh(&softnet_data.process_queue_bh_lock); 6174 skb_queue_splice_tail_init(&sd->input_pkt_queue, 6175 &sd->process_queue); 6176 local_unlock_nested_bh(&softnet_data.process_queue_bh_lock); 6177 } 6178 backlog_unlock_irq_enable(sd); 6179 } 6180 6181 if (work) 6182 rps_input_queue_head_add(sd, work); 6183 return work; 6184 } 6185 6186 /** 6187 * __napi_schedule - schedule for receive 6188 * @n: entry to schedule 6189 * 6190 * The entry's receive function will be scheduled to run. 6191 * Consider using __napi_schedule_irqoff() if hard irqs are masked. 6192 */ 6193 void __napi_schedule(struct napi_struct *n) 6194 { 6195 unsigned long flags; 6196 6197 local_irq_save(flags); 6198 ____napi_schedule(this_cpu_ptr(&softnet_data), n); 6199 local_irq_restore(flags); 6200 } 6201 EXPORT_SYMBOL(__napi_schedule); 6202 6203 /** 6204 * napi_schedule_prep - check if napi can be scheduled 6205 * @n: napi context 6206 * 6207 * Test if NAPI routine is already running, and if not mark 6208 * it as running. This is used as a condition variable to 6209 * insure only one NAPI poll instance runs. We also make 6210 * sure there is no pending NAPI disable. 6211 */ 6212 bool napi_schedule_prep(struct napi_struct *n) 6213 { 6214 unsigned long new, val = READ_ONCE(n->state); 6215 6216 do { 6217 if (unlikely(val & NAPIF_STATE_DISABLE)) 6218 return false; 6219 new = val | NAPIF_STATE_SCHED; 6220 6221 /* Sets STATE_MISSED bit if STATE_SCHED was already set 6222 * This was suggested by Alexander Duyck, as compiler 6223 * emits better code than : 6224 * if (val & NAPIF_STATE_SCHED) 6225 * new |= NAPIF_STATE_MISSED; 6226 */ 6227 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED * 6228 NAPIF_STATE_MISSED; 6229 } while (!try_cmpxchg(&n->state, &val, new)); 6230 6231 return !(val & NAPIF_STATE_SCHED); 6232 } 6233 EXPORT_SYMBOL(napi_schedule_prep); 6234 6235 /** 6236 * __napi_schedule_irqoff - schedule for receive 6237 * @n: entry to schedule 6238 * 6239 * Variant of __napi_schedule() assuming hard irqs are masked. 6240 * 6241 * On PREEMPT_RT enabled kernels this maps to __napi_schedule() 6242 * because the interrupt disabled assumption might not be true 6243 * due to force-threaded interrupts and spinlock substitution. 6244 */ 6245 void __napi_schedule_irqoff(struct napi_struct *n) 6246 { 6247 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 6248 ____napi_schedule(this_cpu_ptr(&softnet_data), n); 6249 else 6250 __napi_schedule(n); 6251 } 6252 EXPORT_SYMBOL(__napi_schedule_irqoff); 6253 6254 bool napi_complete_done(struct napi_struct *n, int work_done) 6255 { 6256 unsigned long flags, val, new, timeout = 0; 6257 bool ret = true; 6258 6259 /* 6260 * 1) Don't let napi dequeue from the cpu poll list 6261 * just in case its running on a different cpu. 6262 * 2) If we are busy polling, do nothing here, we have 6263 * the guarantee we will be called later. 6264 */ 6265 if (unlikely(n->state & (NAPIF_STATE_NPSVC | 6266 NAPIF_STATE_IN_BUSY_POLL))) 6267 return false; 6268 6269 if (work_done) { 6270 if (n->gro_bitmask) 6271 timeout = napi_get_gro_flush_timeout(n); 6272 n->defer_hard_irqs_count = napi_get_defer_hard_irqs(n); 6273 } 6274 if (n->defer_hard_irqs_count > 0) { 6275 n->defer_hard_irqs_count--; 6276 timeout = napi_get_gro_flush_timeout(n); 6277 if (timeout) 6278 ret = false; 6279 } 6280 if (n->gro_bitmask) { 6281 /* When the NAPI instance uses a timeout and keeps postponing 6282 * it, we need to bound somehow the time packets are kept in 6283 * the GRO layer 6284 */ 6285 napi_gro_flush(n, !!timeout); 6286 } 6287 6288 gro_normal_list(n); 6289 6290 if (unlikely(!list_empty(&n->poll_list))) { 6291 /* If n->poll_list is not empty, we need to mask irqs */ 6292 local_irq_save(flags); 6293 list_del_init(&n->poll_list); 6294 local_irq_restore(flags); 6295 } 6296 WRITE_ONCE(n->list_owner, -1); 6297 6298 val = READ_ONCE(n->state); 6299 do { 6300 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED)); 6301 6302 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED | 6303 NAPIF_STATE_SCHED_THREADED | 6304 NAPIF_STATE_PREFER_BUSY_POLL); 6305 6306 /* If STATE_MISSED was set, leave STATE_SCHED set, 6307 * because we will call napi->poll() one more time. 6308 * This C code was suggested by Alexander Duyck to help gcc. 6309 */ 6310 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED * 6311 NAPIF_STATE_SCHED; 6312 } while (!try_cmpxchg(&n->state, &val, new)); 6313 6314 if (unlikely(val & NAPIF_STATE_MISSED)) { 6315 __napi_schedule(n); 6316 return false; 6317 } 6318 6319 if (timeout) 6320 hrtimer_start(&n->timer, ns_to_ktime(timeout), 6321 HRTIMER_MODE_REL_PINNED); 6322 return ret; 6323 } 6324 EXPORT_SYMBOL(napi_complete_done); 6325 6326 static void skb_defer_free_flush(struct softnet_data *sd) 6327 { 6328 struct sk_buff *skb, *next; 6329 6330 /* Paired with WRITE_ONCE() in skb_attempt_defer_free() */ 6331 if (!READ_ONCE(sd->defer_list)) 6332 return; 6333 6334 spin_lock(&sd->defer_lock); 6335 skb = sd->defer_list; 6336 sd->defer_list = NULL; 6337 sd->defer_count = 0; 6338 spin_unlock(&sd->defer_lock); 6339 6340 while (skb != NULL) { 6341 next = skb->next; 6342 napi_consume_skb(skb, 1); 6343 skb = next; 6344 } 6345 } 6346 6347 #if defined(CONFIG_NET_RX_BUSY_POLL) 6348 6349 static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule) 6350 { 6351 if (!skip_schedule) { 6352 gro_normal_list(napi); 6353 __napi_schedule(napi); 6354 return; 6355 } 6356 6357 if (napi->gro_bitmask) { 6358 /* flush too old packets 6359 * If HZ < 1000, flush all packets. 6360 */ 6361 napi_gro_flush(napi, HZ >= 1000); 6362 } 6363 6364 gro_normal_list(napi); 6365 clear_bit(NAPI_STATE_SCHED, &napi->state); 6366 } 6367 6368 enum { 6369 NAPI_F_PREFER_BUSY_POLL = 1, 6370 NAPI_F_END_ON_RESCHED = 2, 6371 }; 6372 6373 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock, 6374 unsigned flags, u16 budget) 6375 { 6376 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx; 6377 bool skip_schedule = false; 6378 unsigned long timeout; 6379 int rc; 6380 6381 /* Busy polling means there is a high chance device driver hard irq 6382 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was 6383 * set in napi_schedule_prep(). 6384 * Since we are about to call napi->poll() once more, we can safely 6385 * clear NAPI_STATE_MISSED. 6386 * 6387 * Note: x86 could use a single "lock and ..." instruction 6388 * to perform these two clear_bit() 6389 */ 6390 clear_bit(NAPI_STATE_MISSED, &napi->state); 6391 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state); 6392 6393 local_bh_disable(); 6394 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx); 6395 6396 if (flags & NAPI_F_PREFER_BUSY_POLL) { 6397 napi->defer_hard_irqs_count = napi_get_defer_hard_irqs(napi); 6398 timeout = napi_get_gro_flush_timeout(napi); 6399 if (napi->defer_hard_irqs_count && timeout) { 6400 hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED); 6401 skip_schedule = true; 6402 } 6403 } 6404 6405 /* All we really want here is to re-enable device interrupts. 6406 * Ideally, a new ndo_busy_poll_stop() could avoid another round. 6407 */ 6408 rc = napi->poll(napi, budget); 6409 /* We can't gro_normal_list() here, because napi->poll() might have 6410 * rearmed the napi (napi_complete_done()) in which case it could 6411 * already be running on another CPU. 6412 */ 6413 trace_napi_poll(napi, rc, budget); 6414 netpoll_poll_unlock(have_poll_lock); 6415 if (rc == budget) 6416 __busy_poll_stop(napi, skip_schedule); 6417 bpf_net_ctx_clear(bpf_net_ctx); 6418 local_bh_enable(); 6419 } 6420 6421 static void __napi_busy_loop(unsigned int napi_id, 6422 bool (*loop_end)(void *, unsigned long), 6423 void *loop_end_arg, unsigned flags, u16 budget) 6424 { 6425 unsigned long start_time = loop_end ? busy_loop_current_time() : 0; 6426 int (*napi_poll)(struct napi_struct *napi, int budget); 6427 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx; 6428 void *have_poll_lock = NULL; 6429 struct napi_struct *napi; 6430 6431 WARN_ON_ONCE(!rcu_read_lock_held()); 6432 6433 restart: 6434 napi_poll = NULL; 6435 6436 napi = napi_by_id(napi_id); 6437 if (!napi) 6438 return; 6439 6440 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 6441 preempt_disable(); 6442 for (;;) { 6443 int work = 0; 6444 6445 local_bh_disable(); 6446 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx); 6447 if (!napi_poll) { 6448 unsigned long val = READ_ONCE(napi->state); 6449 6450 /* If multiple threads are competing for this napi, 6451 * we avoid dirtying napi->state as much as we can. 6452 */ 6453 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED | 6454 NAPIF_STATE_IN_BUSY_POLL)) { 6455 if (flags & NAPI_F_PREFER_BUSY_POLL) 6456 set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state); 6457 goto count; 6458 } 6459 if (cmpxchg(&napi->state, val, 6460 val | NAPIF_STATE_IN_BUSY_POLL | 6461 NAPIF_STATE_SCHED) != val) { 6462 if (flags & NAPI_F_PREFER_BUSY_POLL) 6463 set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state); 6464 goto count; 6465 } 6466 have_poll_lock = netpoll_poll_lock(napi); 6467 napi_poll = napi->poll; 6468 } 6469 work = napi_poll(napi, budget); 6470 trace_napi_poll(napi, work, budget); 6471 gro_normal_list(napi); 6472 count: 6473 if (work > 0) 6474 __NET_ADD_STATS(dev_net(napi->dev), 6475 LINUX_MIB_BUSYPOLLRXPACKETS, work); 6476 skb_defer_free_flush(this_cpu_ptr(&softnet_data)); 6477 bpf_net_ctx_clear(bpf_net_ctx); 6478 local_bh_enable(); 6479 6480 if (!loop_end || loop_end(loop_end_arg, start_time)) 6481 break; 6482 6483 if (unlikely(need_resched())) { 6484 if (flags & NAPI_F_END_ON_RESCHED) 6485 break; 6486 if (napi_poll) 6487 busy_poll_stop(napi, have_poll_lock, flags, budget); 6488 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 6489 preempt_enable(); 6490 rcu_read_unlock(); 6491 cond_resched(); 6492 rcu_read_lock(); 6493 if (loop_end(loop_end_arg, start_time)) 6494 return; 6495 goto restart; 6496 } 6497 cpu_relax(); 6498 } 6499 if (napi_poll) 6500 busy_poll_stop(napi, have_poll_lock, flags, budget); 6501 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 6502 preempt_enable(); 6503 } 6504 6505 void napi_busy_loop_rcu(unsigned int napi_id, 6506 bool (*loop_end)(void *, unsigned long), 6507 void *loop_end_arg, bool prefer_busy_poll, u16 budget) 6508 { 6509 unsigned flags = NAPI_F_END_ON_RESCHED; 6510 6511 if (prefer_busy_poll) 6512 flags |= NAPI_F_PREFER_BUSY_POLL; 6513 6514 __napi_busy_loop(napi_id, loop_end, loop_end_arg, flags, budget); 6515 } 6516 6517 void napi_busy_loop(unsigned int napi_id, 6518 bool (*loop_end)(void *, unsigned long), 6519 void *loop_end_arg, bool prefer_busy_poll, u16 budget) 6520 { 6521 unsigned flags = prefer_busy_poll ? NAPI_F_PREFER_BUSY_POLL : 0; 6522 6523 rcu_read_lock(); 6524 __napi_busy_loop(napi_id, loop_end, loop_end_arg, flags, budget); 6525 rcu_read_unlock(); 6526 } 6527 EXPORT_SYMBOL(napi_busy_loop); 6528 6529 void napi_suspend_irqs(unsigned int napi_id) 6530 { 6531 struct napi_struct *napi; 6532 6533 rcu_read_lock(); 6534 napi = napi_by_id(napi_id); 6535 if (napi) { 6536 unsigned long timeout = napi_get_irq_suspend_timeout(napi); 6537 6538 if (timeout) 6539 hrtimer_start(&napi->timer, ns_to_ktime(timeout), 6540 HRTIMER_MODE_REL_PINNED); 6541 } 6542 rcu_read_unlock(); 6543 } 6544 6545 void napi_resume_irqs(unsigned int napi_id) 6546 { 6547 struct napi_struct *napi; 6548 6549 rcu_read_lock(); 6550 napi = napi_by_id(napi_id); 6551 if (napi) { 6552 /* If irq_suspend_timeout is set to 0 between the call to 6553 * napi_suspend_irqs and now, the original value still 6554 * determines the safety timeout as intended and napi_watchdog 6555 * will resume irq processing. 6556 */ 6557 if (napi_get_irq_suspend_timeout(napi)) { 6558 local_bh_disable(); 6559 napi_schedule(napi); 6560 local_bh_enable(); 6561 } 6562 } 6563 rcu_read_unlock(); 6564 } 6565 6566 #endif /* CONFIG_NET_RX_BUSY_POLL */ 6567 6568 static void __napi_hash_add_with_id(struct napi_struct *napi, 6569 unsigned int napi_id) 6570 { 6571 napi->napi_id = napi_id; 6572 hlist_add_head_rcu(&napi->napi_hash_node, 6573 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]); 6574 } 6575 6576 static void napi_hash_add_with_id(struct napi_struct *napi, 6577 unsigned int napi_id) 6578 { 6579 unsigned long flags; 6580 6581 spin_lock_irqsave(&napi_hash_lock, flags); 6582 WARN_ON_ONCE(napi_by_id(napi_id)); 6583 __napi_hash_add_with_id(napi, napi_id); 6584 spin_unlock_irqrestore(&napi_hash_lock, flags); 6585 } 6586 6587 static void napi_hash_add(struct napi_struct *napi) 6588 { 6589 unsigned long flags; 6590 6591 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state)) 6592 return; 6593 6594 spin_lock_irqsave(&napi_hash_lock, flags); 6595 6596 /* 0..NR_CPUS range is reserved for sender_cpu use */ 6597 do { 6598 if (unlikely(++napi_gen_id < MIN_NAPI_ID)) 6599 napi_gen_id = MIN_NAPI_ID; 6600 } while (napi_by_id(napi_gen_id)); 6601 6602 __napi_hash_add_with_id(napi, napi_gen_id); 6603 6604 spin_unlock_irqrestore(&napi_hash_lock, flags); 6605 } 6606 6607 /* Warning : caller is responsible to make sure rcu grace period 6608 * is respected before freeing memory containing @napi 6609 */ 6610 static void napi_hash_del(struct napi_struct *napi) 6611 { 6612 unsigned long flags; 6613 6614 spin_lock_irqsave(&napi_hash_lock, flags); 6615 6616 hlist_del_init_rcu(&napi->napi_hash_node); 6617 6618 spin_unlock_irqrestore(&napi_hash_lock, flags); 6619 } 6620 6621 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer) 6622 { 6623 struct napi_struct *napi; 6624 6625 napi = container_of(timer, struct napi_struct, timer); 6626 6627 /* Note : we use a relaxed variant of napi_schedule_prep() not setting 6628 * NAPI_STATE_MISSED, since we do not react to a device IRQ. 6629 */ 6630 if (!napi_disable_pending(napi) && 6631 !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) { 6632 clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state); 6633 __napi_schedule_irqoff(napi); 6634 } 6635 6636 return HRTIMER_NORESTART; 6637 } 6638 6639 static void init_gro_hash(struct napi_struct *napi) 6640 { 6641 int i; 6642 6643 for (i = 0; i < GRO_HASH_BUCKETS; i++) { 6644 INIT_LIST_HEAD(&napi->gro_hash[i].list); 6645 napi->gro_hash[i].count = 0; 6646 } 6647 napi->gro_bitmask = 0; 6648 } 6649 6650 int dev_set_threaded(struct net_device *dev, bool threaded) 6651 { 6652 struct napi_struct *napi; 6653 int err = 0; 6654 6655 if (dev->threaded == threaded) 6656 return 0; 6657 6658 if (threaded) { 6659 list_for_each_entry(napi, &dev->napi_list, dev_list) { 6660 if (!napi->thread) { 6661 err = napi_kthread_create(napi); 6662 if (err) { 6663 threaded = false; 6664 break; 6665 } 6666 } 6667 } 6668 } 6669 6670 WRITE_ONCE(dev->threaded, threaded); 6671 6672 /* Make sure kthread is created before THREADED bit 6673 * is set. 6674 */ 6675 smp_mb__before_atomic(); 6676 6677 /* Setting/unsetting threaded mode on a napi might not immediately 6678 * take effect, if the current napi instance is actively being 6679 * polled. In this case, the switch between threaded mode and 6680 * softirq mode will happen in the next round of napi_schedule(). 6681 * This should not cause hiccups/stalls to the live traffic. 6682 */ 6683 list_for_each_entry(napi, &dev->napi_list, dev_list) 6684 assign_bit(NAPI_STATE_THREADED, &napi->state, threaded); 6685 6686 return err; 6687 } 6688 EXPORT_SYMBOL(dev_set_threaded); 6689 6690 /** 6691 * netif_queue_set_napi - Associate queue with the napi 6692 * @dev: device to which NAPI and queue belong 6693 * @queue_index: Index of queue 6694 * @type: queue type as RX or TX 6695 * @napi: NAPI context, pass NULL to clear previously set NAPI 6696 * 6697 * Set queue with its corresponding napi context. This should be done after 6698 * registering the NAPI handler for the queue-vector and the queues have been 6699 * mapped to the corresponding interrupt vector. 6700 */ 6701 void netif_queue_set_napi(struct net_device *dev, unsigned int queue_index, 6702 enum netdev_queue_type type, struct napi_struct *napi) 6703 { 6704 struct netdev_rx_queue *rxq; 6705 struct netdev_queue *txq; 6706 6707 if (WARN_ON_ONCE(napi && !napi->dev)) 6708 return; 6709 if (dev->reg_state >= NETREG_REGISTERED) 6710 ASSERT_RTNL(); 6711 6712 switch (type) { 6713 case NETDEV_QUEUE_TYPE_RX: 6714 rxq = __netif_get_rx_queue(dev, queue_index); 6715 rxq->napi = napi; 6716 return; 6717 case NETDEV_QUEUE_TYPE_TX: 6718 txq = netdev_get_tx_queue(dev, queue_index); 6719 txq->napi = napi; 6720 return; 6721 default: 6722 return; 6723 } 6724 } 6725 EXPORT_SYMBOL(netif_queue_set_napi); 6726 6727 static void napi_restore_config(struct napi_struct *n) 6728 { 6729 n->defer_hard_irqs = n->config->defer_hard_irqs; 6730 n->gro_flush_timeout = n->config->gro_flush_timeout; 6731 n->irq_suspend_timeout = n->config->irq_suspend_timeout; 6732 /* a NAPI ID might be stored in the config, if so use it. if not, use 6733 * napi_hash_add to generate one for us. It will be saved to the config 6734 * in napi_disable. 6735 */ 6736 if (n->config->napi_id) 6737 napi_hash_add_with_id(n, n->config->napi_id); 6738 else 6739 napi_hash_add(n); 6740 } 6741 6742 static void napi_save_config(struct napi_struct *n) 6743 { 6744 n->config->defer_hard_irqs = n->defer_hard_irqs; 6745 n->config->gro_flush_timeout = n->gro_flush_timeout; 6746 n->config->irq_suspend_timeout = n->irq_suspend_timeout; 6747 n->config->napi_id = n->napi_id; 6748 napi_hash_del(n); 6749 } 6750 6751 void netif_napi_add_weight(struct net_device *dev, struct napi_struct *napi, 6752 int (*poll)(struct napi_struct *, int), int weight) 6753 { 6754 if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state))) 6755 return; 6756 6757 INIT_LIST_HEAD(&napi->poll_list); 6758 INIT_HLIST_NODE(&napi->napi_hash_node); 6759 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED); 6760 napi->timer.function = napi_watchdog; 6761 init_gro_hash(napi); 6762 napi->skb = NULL; 6763 INIT_LIST_HEAD(&napi->rx_list); 6764 napi->rx_count = 0; 6765 napi->poll = poll; 6766 if (weight > NAPI_POLL_WEIGHT) 6767 netdev_err_once(dev, "%s() called with weight %d\n", __func__, 6768 weight); 6769 napi->weight = weight; 6770 napi->dev = dev; 6771 #ifdef CONFIG_NETPOLL 6772 napi->poll_owner = -1; 6773 #endif 6774 napi->list_owner = -1; 6775 set_bit(NAPI_STATE_SCHED, &napi->state); 6776 set_bit(NAPI_STATE_NPSVC, &napi->state); 6777 list_add_rcu(&napi->dev_list, &dev->napi_list); 6778 6779 /* default settings from sysfs are applied to all NAPIs. any per-NAPI 6780 * configuration will be loaded in napi_enable 6781 */ 6782 napi_set_defer_hard_irqs(napi, READ_ONCE(dev->napi_defer_hard_irqs)); 6783 napi_set_gro_flush_timeout(napi, READ_ONCE(dev->gro_flush_timeout)); 6784 6785 napi_get_frags_check(napi); 6786 /* Create kthread for this napi if dev->threaded is set. 6787 * Clear dev->threaded if kthread creation failed so that 6788 * threaded mode will not be enabled in napi_enable(). 6789 */ 6790 if (dev->threaded && napi_kthread_create(napi)) 6791 dev->threaded = false; 6792 netif_napi_set_irq(napi, -1); 6793 } 6794 EXPORT_SYMBOL(netif_napi_add_weight); 6795 6796 void napi_disable(struct napi_struct *n) 6797 { 6798 unsigned long val, new; 6799 6800 might_sleep(); 6801 set_bit(NAPI_STATE_DISABLE, &n->state); 6802 6803 val = READ_ONCE(n->state); 6804 do { 6805 while (val & (NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC)) { 6806 usleep_range(20, 200); 6807 val = READ_ONCE(n->state); 6808 } 6809 6810 new = val | NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC; 6811 new &= ~(NAPIF_STATE_THREADED | NAPIF_STATE_PREFER_BUSY_POLL); 6812 } while (!try_cmpxchg(&n->state, &val, new)); 6813 6814 hrtimer_cancel(&n->timer); 6815 6816 if (n->config) 6817 napi_save_config(n); 6818 else 6819 napi_hash_del(n); 6820 6821 clear_bit(NAPI_STATE_DISABLE, &n->state); 6822 } 6823 EXPORT_SYMBOL(napi_disable); 6824 6825 /** 6826 * napi_enable - enable NAPI scheduling 6827 * @n: NAPI context 6828 * 6829 * Resume NAPI from being scheduled on this context. 6830 * Must be paired with napi_disable. 6831 */ 6832 void napi_enable(struct napi_struct *n) 6833 { 6834 unsigned long new, val = READ_ONCE(n->state); 6835 6836 if (n->config) 6837 napi_restore_config(n); 6838 else 6839 napi_hash_add(n); 6840 6841 do { 6842 BUG_ON(!test_bit(NAPI_STATE_SCHED, &val)); 6843 6844 new = val & ~(NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC); 6845 if (n->dev->threaded && n->thread) 6846 new |= NAPIF_STATE_THREADED; 6847 } while (!try_cmpxchg(&n->state, &val, new)); 6848 } 6849 EXPORT_SYMBOL(napi_enable); 6850 6851 static void flush_gro_hash(struct napi_struct *napi) 6852 { 6853 int i; 6854 6855 for (i = 0; i < GRO_HASH_BUCKETS; i++) { 6856 struct sk_buff *skb, *n; 6857 6858 list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list) 6859 kfree_skb(skb); 6860 napi->gro_hash[i].count = 0; 6861 } 6862 } 6863 6864 /* Must be called in process context */ 6865 void __netif_napi_del(struct napi_struct *napi) 6866 { 6867 if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state)) 6868 return; 6869 6870 if (napi->config) { 6871 napi->index = -1; 6872 napi->config = NULL; 6873 } 6874 6875 list_del_rcu(&napi->dev_list); 6876 napi_free_frags(napi); 6877 6878 flush_gro_hash(napi); 6879 napi->gro_bitmask = 0; 6880 6881 if (napi->thread) { 6882 kthread_stop(napi->thread); 6883 napi->thread = NULL; 6884 } 6885 } 6886 EXPORT_SYMBOL(__netif_napi_del); 6887 6888 static int __napi_poll(struct napi_struct *n, bool *repoll) 6889 { 6890 int work, weight; 6891 6892 weight = n->weight; 6893 6894 /* This NAPI_STATE_SCHED test is for avoiding a race 6895 * with netpoll's poll_napi(). Only the entity which 6896 * obtains the lock and sees NAPI_STATE_SCHED set will 6897 * actually make the ->poll() call. Therefore we avoid 6898 * accidentally calling ->poll() when NAPI is not scheduled. 6899 */ 6900 work = 0; 6901 if (napi_is_scheduled(n)) { 6902 work = n->poll(n, weight); 6903 trace_napi_poll(n, work, weight); 6904 6905 xdp_do_check_flushed(n); 6906 } 6907 6908 if (unlikely(work > weight)) 6909 netdev_err_once(n->dev, "NAPI poll function %pS returned %d, exceeding its budget of %d.\n", 6910 n->poll, work, weight); 6911 6912 if (likely(work < weight)) 6913 return work; 6914 6915 /* Drivers must not modify the NAPI state if they 6916 * consume the entire weight. In such cases this code 6917 * still "owns" the NAPI instance and therefore can 6918 * move the instance around on the list at-will. 6919 */ 6920 if (unlikely(napi_disable_pending(n))) { 6921 napi_complete(n); 6922 return work; 6923 } 6924 6925 /* The NAPI context has more processing work, but busy-polling 6926 * is preferred. Exit early. 6927 */ 6928 if (napi_prefer_busy_poll(n)) { 6929 if (napi_complete_done(n, work)) { 6930 /* If timeout is not set, we need to make sure 6931 * that the NAPI is re-scheduled. 6932 */ 6933 napi_schedule(n); 6934 } 6935 return work; 6936 } 6937 6938 if (n->gro_bitmask) { 6939 /* flush too old packets 6940 * If HZ < 1000, flush all packets. 6941 */ 6942 napi_gro_flush(n, HZ >= 1000); 6943 } 6944 6945 gro_normal_list(n); 6946 6947 /* Some drivers may have called napi_schedule 6948 * prior to exhausting their budget. 6949 */ 6950 if (unlikely(!list_empty(&n->poll_list))) { 6951 pr_warn_once("%s: Budget exhausted after napi rescheduled\n", 6952 n->dev ? n->dev->name : "backlog"); 6953 return work; 6954 } 6955 6956 *repoll = true; 6957 6958 return work; 6959 } 6960 6961 static int napi_poll(struct napi_struct *n, struct list_head *repoll) 6962 { 6963 bool do_repoll = false; 6964 void *have; 6965 int work; 6966 6967 list_del_init(&n->poll_list); 6968 6969 have = netpoll_poll_lock(n); 6970 6971 work = __napi_poll(n, &do_repoll); 6972 6973 if (do_repoll) 6974 list_add_tail(&n->poll_list, repoll); 6975 6976 netpoll_poll_unlock(have); 6977 6978 return work; 6979 } 6980 6981 static int napi_thread_wait(struct napi_struct *napi) 6982 { 6983 set_current_state(TASK_INTERRUPTIBLE); 6984 6985 while (!kthread_should_stop()) { 6986 /* Testing SCHED_THREADED bit here to make sure the current 6987 * kthread owns this napi and could poll on this napi. 6988 * Testing SCHED bit is not enough because SCHED bit might be 6989 * set by some other busy poll thread or by napi_disable(). 6990 */ 6991 if (test_bit(NAPI_STATE_SCHED_THREADED, &napi->state)) { 6992 WARN_ON(!list_empty(&napi->poll_list)); 6993 __set_current_state(TASK_RUNNING); 6994 return 0; 6995 } 6996 6997 schedule(); 6998 set_current_state(TASK_INTERRUPTIBLE); 6999 } 7000 __set_current_state(TASK_RUNNING); 7001 7002 return -1; 7003 } 7004 7005 static void napi_threaded_poll_loop(struct napi_struct *napi) 7006 { 7007 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx; 7008 struct softnet_data *sd; 7009 unsigned long last_qs = jiffies; 7010 7011 for (;;) { 7012 bool repoll = false; 7013 void *have; 7014 7015 local_bh_disable(); 7016 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx); 7017 7018 sd = this_cpu_ptr(&softnet_data); 7019 sd->in_napi_threaded_poll = true; 7020 7021 have = netpoll_poll_lock(napi); 7022 __napi_poll(napi, &repoll); 7023 netpoll_poll_unlock(have); 7024 7025 sd->in_napi_threaded_poll = false; 7026 barrier(); 7027 7028 if (sd_has_rps_ipi_waiting(sd)) { 7029 local_irq_disable(); 7030 net_rps_action_and_irq_enable(sd); 7031 } 7032 skb_defer_free_flush(sd); 7033 bpf_net_ctx_clear(bpf_net_ctx); 7034 local_bh_enable(); 7035 7036 if (!repoll) 7037 break; 7038 7039 rcu_softirq_qs_periodic(last_qs); 7040 cond_resched(); 7041 } 7042 } 7043 7044 static int napi_threaded_poll(void *data) 7045 { 7046 struct napi_struct *napi = data; 7047 7048 while (!napi_thread_wait(napi)) 7049 napi_threaded_poll_loop(napi); 7050 7051 return 0; 7052 } 7053 7054 static __latent_entropy void net_rx_action(void) 7055 { 7056 struct softnet_data *sd = this_cpu_ptr(&softnet_data); 7057 unsigned long time_limit = jiffies + 7058 usecs_to_jiffies(READ_ONCE(net_hotdata.netdev_budget_usecs)); 7059 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx; 7060 int budget = READ_ONCE(net_hotdata.netdev_budget); 7061 LIST_HEAD(list); 7062 LIST_HEAD(repoll); 7063 7064 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx); 7065 start: 7066 sd->in_net_rx_action = true; 7067 local_irq_disable(); 7068 list_splice_init(&sd->poll_list, &list); 7069 local_irq_enable(); 7070 7071 for (;;) { 7072 struct napi_struct *n; 7073 7074 skb_defer_free_flush(sd); 7075 7076 if (list_empty(&list)) { 7077 if (list_empty(&repoll)) { 7078 sd->in_net_rx_action = false; 7079 barrier(); 7080 /* We need to check if ____napi_schedule() 7081 * had refilled poll_list while 7082 * sd->in_net_rx_action was true. 7083 */ 7084 if (!list_empty(&sd->poll_list)) 7085 goto start; 7086 if (!sd_has_rps_ipi_waiting(sd)) 7087 goto end; 7088 } 7089 break; 7090 } 7091 7092 n = list_first_entry(&list, struct napi_struct, poll_list); 7093 budget -= napi_poll(n, &repoll); 7094 7095 /* If softirq window is exhausted then punt. 7096 * Allow this to run for 2 jiffies since which will allow 7097 * an average latency of 1.5/HZ. 7098 */ 7099 if (unlikely(budget <= 0 || 7100 time_after_eq(jiffies, time_limit))) { 7101 sd->time_squeeze++; 7102 break; 7103 } 7104 } 7105 7106 local_irq_disable(); 7107 7108 list_splice_tail_init(&sd->poll_list, &list); 7109 list_splice_tail(&repoll, &list); 7110 list_splice(&list, &sd->poll_list); 7111 if (!list_empty(&sd->poll_list)) 7112 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 7113 else 7114 sd->in_net_rx_action = false; 7115 7116 net_rps_action_and_irq_enable(sd); 7117 end: 7118 bpf_net_ctx_clear(bpf_net_ctx); 7119 } 7120 7121 struct netdev_adjacent { 7122 struct net_device *dev; 7123 netdevice_tracker dev_tracker; 7124 7125 /* upper master flag, there can only be one master device per list */ 7126 bool master; 7127 7128 /* lookup ignore flag */ 7129 bool ignore; 7130 7131 /* counter for the number of times this device was added to us */ 7132 u16 ref_nr; 7133 7134 /* private field for the users */ 7135 void *private; 7136 7137 struct list_head list; 7138 struct rcu_head rcu; 7139 }; 7140 7141 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev, 7142 struct list_head *adj_list) 7143 { 7144 struct netdev_adjacent *adj; 7145 7146 list_for_each_entry(adj, adj_list, list) { 7147 if (adj->dev == adj_dev) 7148 return adj; 7149 } 7150 return NULL; 7151 } 7152 7153 static int ____netdev_has_upper_dev(struct net_device *upper_dev, 7154 struct netdev_nested_priv *priv) 7155 { 7156 struct net_device *dev = (struct net_device *)priv->data; 7157 7158 return upper_dev == dev; 7159 } 7160 7161 /** 7162 * netdev_has_upper_dev - Check if device is linked to an upper device 7163 * @dev: device 7164 * @upper_dev: upper device to check 7165 * 7166 * Find out if a device is linked to specified upper device and return true 7167 * in case it is. Note that this checks only immediate upper device, 7168 * not through a complete stack of devices. The caller must hold the RTNL lock. 7169 */ 7170 bool netdev_has_upper_dev(struct net_device *dev, 7171 struct net_device *upper_dev) 7172 { 7173 struct netdev_nested_priv priv = { 7174 .data = (void *)upper_dev, 7175 }; 7176 7177 ASSERT_RTNL(); 7178 7179 return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev, 7180 &priv); 7181 } 7182 EXPORT_SYMBOL(netdev_has_upper_dev); 7183 7184 /** 7185 * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device 7186 * @dev: device 7187 * @upper_dev: upper device to check 7188 * 7189 * Find out if a device is linked to specified upper device and return true 7190 * in case it is. Note that this checks the entire upper device chain. 7191 * The caller must hold rcu lock. 7192 */ 7193 7194 bool netdev_has_upper_dev_all_rcu(struct net_device *dev, 7195 struct net_device *upper_dev) 7196 { 7197 struct netdev_nested_priv priv = { 7198 .data = (void *)upper_dev, 7199 }; 7200 7201 return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev, 7202 &priv); 7203 } 7204 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu); 7205 7206 /** 7207 * netdev_has_any_upper_dev - Check if device is linked to some device 7208 * @dev: device 7209 * 7210 * Find out if a device is linked to an upper device and return true in case 7211 * it is. The caller must hold the RTNL lock. 7212 */ 7213 bool netdev_has_any_upper_dev(struct net_device *dev) 7214 { 7215 ASSERT_RTNL(); 7216 7217 return !list_empty(&dev->adj_list.upper); 7218 } 7219 EXPORT_SYMBOL(netdev_has_any_upper_dev); 7220 7221 /** 7222 * netdev_master_upper_dev_get - Get master upper device 7223 * @dev: device 7224 * 7225 * Find a master upper device and return pointer to it or NULL in case 7226 * it's not there. The caller must hold the RTNL lock. 7227 */ 7228 struct net_device *netdev_master_upper_dev_get(struct net_device *dev) 7229 { 7230 struct netdev_adjacent *upper; 7231 7232 ASSERT_RTNL(); 7233 7234 if (list_empty(&dev->adj_list.upper)) 7235 return NULL; 7236 7237 upper = list_first_entry(&dev->adj_list.upper, 7238 struct netdev_adjacent, list); 7239 if (likely(upper->master)) 7240 return upper->dev; 7241 return NULL; 7242 } 7243 EXPORT_SYMBOL(netdev_master_upper_dev_get); 7244 7245 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev) 7246 { 7247 struct netdev_adjacent *upper; 7248 7249 ASSERT_RTNL(); 7250 7251 if (list_empty(&dev->adj_list.upper)) 7252 return NULL; 7253 7254 upper = list_first_entry(&dev->adj_list.upper, 7255 struct netdev_adjacent, list); 7256 if (likely(upper->master) && !upper->ignore) 7257 return upper->dev; 7258 return NULL; 7259 } 7260 7261 /** 7262 * netdev_has_any_lower_dev - Check if device is linked to some device 7263 * @dev: device 7264 * 7265 * Find out if a device is linked to a lower device and return true in case 7266 * it is. The caller must hold the RTNL lock. 7267 */ 7268 static bool netdev_has_any_lower_dev(struct net_device *dev) 7269 { 7270 ASSERT_RTNL(); 7271 7272 return !list_empty(&dev->adj_list.lower); 7273 } 7274 7275 void *netdev_adjacent_get_private(struct list_head *adj_list) 7276 { 7277 struct netdev_adjacent *adj; 7278 7279 adj = list_entry(adj_list, struct netdev_adjacent, list); 7280 7281 return adj->private; 7282 } 7283 EXPORT_SYMBOL(netdev_adjacent_get_private); 7284 7285 /** 7286 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list 7287 * @dev: device 7288 * @iter: list_head ** of the current position 7289 * 7290 * Gets the next device from the dev's upper list, starting from iter 7291 * position. The caller must hold RCU read lock. 7292 */ 7293 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev, 7294 struct list_head **iter) 7295 { 7296 struct netdev_adjacent *upper; 7297 7298 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); 7299 7300 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 7301 7302 if (&upper->list == &dev->adj_list.upper) 7303 return NULL; 7304 7305 *iter = &upper->list; 7306 7307 return upper->dev; 7308 } 7309 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu); 7310 7311 static struct net_device *__netdev_next_upper_dev(struct net_device *dev, 7312 struct list_head **iter, 7313 bool *ignore) 7314 { 7315 struct netdev_adjacent *upper; 7316 7317 upper = list_entry((*iter)->next, struct netdev_adjacent, list); 7318 7319 if (&upper->list == &dev->adj_list.upper) 7320 return NULL; 7321 7322 *iter = &upper->list; 7323 *ignore = upper->ignore; 7324 7325 return upper->dev; 7326 } 7327 7328 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev, 7329 struct list_head **iter) 7330 { 7331 struct netdev_adjacent *upper; 7332 7333 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); 7334 7335 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 7336 7337 if (&upper->list == &dev->adj_list.upper) 7338 return NULL; 7339 7340 *iter = &upper->list; 7341 7342 return upper->dev; 7343 } 7344 7345 static int __netdev_walk_all_upper_dev(struct net_device *dev, 7346 int (*fn)(struct net_device *dev, 7347 struct netdev_nested_priv *priv), 7348 struct netdev_nested_priv *priv) 7349 { 7350 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 7351 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 7352 int ret, cur = 0; 7353 bool ignore; 7354 7355 now = dev; 7356 iter = &dev->adj_list.upper; 7357 7358 while (1) { 7359 if (now != dev) { 7360 ret = fn(now, priv); 7361 if (ret) 7362 return ret; 7363 } 7364 7365 next = NULL; 7366 while (1) { 7367 udev = __netdev_next_upper_dev(now, &iter, &ignore); 7368 if (!udev) 7369 break; 7370 if (ignore) 7371 continue; 7372 7373 next = udev; 7374 niter = &udev->adj_list.upper; 7375 dev_stack[cur] = now; 7376 iter_stack[cur++] = iter; 7377 break; 7378 } 7379 7380 if (!next) { 7381 if (!cur) 7382 return 0; 7383 next = dev_stack[--cur]; 7384 niter = iter_stack[cur]; 7385 } 7386 7387 now = next; 7388 iter = niter; 7389 } 7390 7391 return 0; 7392 } 7393 7394 int netdev_walk_all_upper_dev_rcu(struct net_device *dev, 7395 int (*fn)(struct net_device *dev, 7396 struct netdev_nested_priv *priv), 7397 struct netdev_nested_priv *priv) 7398 { 7399 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 7400 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 7401 int ret, cur = 0; 7402 7403 now = dev; 7404 iter = &dev->adj_list.upper; 7405 7406 while (1) { 7407 if (now != dev) { 7408 ret = fn(now, priv); 7409 if (ret) 7410 return ret; 7411 } 7412 7413 next = NULL; 7414 while (1) { 7415 udev = netdev_next_upper_dev_rcu(now, &iter); 7416 if (!udev) 7417 break; 7418 7419 next = udev; 7420 niter = &udev->adj_list.upper; 7421 dev_stack[cur] = now; 7422 iter_stack[cur++] = iter; 7423 break; 7424 } 7425 7426 if (!next) { 7427 if (!cur) 7428 return 0; 7429 next = dev_stack[--cur]; 7430 niter = iter_stack[cur]; 7431 } 7432 7433 now = next; 7434 iter = niter; 7435 } 7436 7437 return 0; 7438 } 7439 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu); 7440 7441 static bool __netdev_has_upper_dev(struct net_device *dev, 7442 struct net_device *upper_dev) 7443 { 7444 struct netdev_nested_priv priv = { 7445 .flags = 0, 7446 .data = (void *)upper_dev, 7447 }; 7448 7449 ASSERT_RTNL(); 7450 7451 return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev, 7452 &priv); 7453 } 7454 7455 /** 7456 * netdev_lower_get_next_private - Get the next ->private from the 7457 * lower neighbour list 7458 * @dev: device 7459 * @iter: list_head ** of the current position 7460 * 7461 * Gets the next netdev_adjacent->private from the dev's lower neighbour 7462 * list, starting from iter position. The caller must hold either hold the 7463 * RTNL lock or its own locking that guarantees that the neighbour lower 7464 * list will remain unchanged. 7465 */ 7466 void *netdev_lower_get_next_private(struct net_device *dev, 7467 struct list_head **iter) 7468 { 7469 struct netdev_adjacent *lower; 7470 7471 lower = list_entry(*iter, struct netdev_adjacent, list); 7472 7473 if (&lower->list == &dev->adj_list.lower) 7474 return NULL; 7475 7476 *iter = lower->list.next; 7477 7478 return lower->private; 7479 } 7480 EXPORT_SYMBOL(netdev_lower_get_next_private); 7481 7482 /** 7483 * netdev_lower_get_next_private_rcu - Get the next ->private from the 7484 * lower neighbour list, RCU 7485 * variant 7486 * @dev: device 7487 * @iter: list_head ** of the current position 7488 * 7489 * Gets the next netdev_adjacent->private from the dev's lower neighbour 7490 * list, starting from iter position. The caller must hold RCU read lock. 7491 */ 7492 void *netdev_lower_get_next_private_rcu(struct net_device *dev, 7493 struct list_head **iter) 7494 { 7495 struct netdev_adjacent *lower; 7496 7497 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held()); 7498 7499 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 7500 7501 if (&lower->list == &dev->adj_list.lower) 7502 return NULL; 7503 7504 *iter = &lower->list; 7505 7506 return lower->private; 7507 } 7508 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu); 7509 7510 /** 7511 * netdev_lower_get_next - Get the next device from the lower neighbour 7512 * list 7513 * @dev: device 7514 * @iter: list_head ** of the current position 7515 * 7516 * Gets the next netdev_adjacent from the dev's lower neighbour 7517 * list, starting from iter position. The caller must hold RTNL lock or 7518 * its own locking that guarantees that the neighbour lower 7519 * list will remain unchanged. 7520 */ 7521 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter) 7522 { 7523 struct netdev_adjacent *lower; 7524 7525 lower = list_entry(*iter, struct netdev_adjacent, list); 7526 7527 if (&lower->list == &dev->adj_list.lower) 7528 return NULL; 7529 7530 *iter = lower->list.next; 7531 7532 return lower->dev; 7533 } 7534 EXPORT_SYMBOL(netdev_lower_get_next); 7535 7536 static struct net_device *netdev_next_lower_dev(struct net_device *dev, 7537 struct list_head **iter) 7538 { 7539 struct netdev_adjacent *lower; 7540 7541 lower = list_entry((*iter)->next, struct netdev_adjacent, list); 7542 7543 if (&lower->list == &dev->adj_list.lower) 7544 return NULL; 7545 7546 *iter = &lower->list; 7547 7548 return lower->dev; 7549 } 7550 7551 static struct net_device *__netdev_next_lower_dev(struct net_device *dev, 7552 struct list_head **iter, 7553 bool *ignore) 7554 { 7555 struct netdev_adjacent *lower; 7556 7557 lower = list_entry((*iter)->next, struct netdev_adjacent, list); 7558 7559 if (&lower->list == &dev->adj_list.lower) 7560 return NULL; 7561 7562 *iter = &lower->list; 7563 *ignore = lower->ignore; 7564 7565 return lower->dev; 7566 } 7567 7568 int netdev_walk_all_lower_dev(struct net_device *dev, 7569 int (*fn)(struct net_device *dev, 7570 struct netdev_nested_priv *priv), 7571 struct netdev_nested_priv *priv) 7572 { 7573 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 7574 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 7575 int ret, cur = 0; 7576 7577 now = dev; 7578 iter = &dev->adj_list.lower; 7579 7580 while (1) { 7581 if (now != dev) { 7582 ret = fn(now, priv); 7583 if (ret) 7584 return ret; 7585 } 7586 7587 next = NULL; 7588 while (1) { 7589 ldev = netdev_next_lower_dev(now, &iter); 7590 if (!ldev) 7591 break; 7592 7593 next = ldev; 7594 niter = &ldev->adj_list.lower; 7595 dev_stack[cur] = now; 7596 iter_stack[cur++] = iter; 7597 break; 7598 } 7599 7600 if (!next) { 7601 if (!cur) 7602 return 0; 7603 next = dev_stack[--cur]; 7604 niter = iter_stack[cur]; 7605 } 7606 7607 now = next; 7608 iter = niter; 7609 } 7610 7611 return 0; 7612 } 7613 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev); 7614 7615 static int __netdev_walk_all_lower_dev(struct net_device *dev, 7616 int (*fn)(struct net_device *dev, 7617 struct netdev_nested_priv *priv), 7618 struct netdev_nested_priv *priv) 7619 { 7620 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 7621 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 7622 int ret, cur = 0; 7623 bool ignore; 7624 7625 now = dev; 7626 iter = &dev->adj_list.lower; 7627 7628 while (1) { 7629 if (now != dev) { 7630 ret = fn(now, priv); 7631 if (ret) 7632 return ret; 7633 } 7634 7635 next = NULL; 7636 while (1) { 7637 ldev = __netdev_next_lower_dev(now, &iter, &ignore); 7638 if (!ldev) 7639 break; 7640 if (ignore) 7641 continue; 7642 7643 next = ldev; 7644 niter = &ldev->adj_list.lower; 7645 dev_stack[cur] = now; 7646 iter_stack[cur++] = iter; 7647 break; 7648 } 7649 7650 if (!next) { 7651 if (!cur) 7652 return 0; 7653 next = dev_stack[--cur]; 7654 niter = iter_stack[cur]; 7655 } 7656 7657 now = next; 7658 iter = niter; 7659 } 7660 7661 return 0; 7662 } 7663 7664 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev, 7665 struct list_head **iter) 7666 { 7667 struct netdev_adjacent *lower; 7668 7669 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 7670 if (&lower->list == &dev->adj_list.lower) 7671 return NULL; 7672 7673 *iter = &lower->list; 7674 7675 return lower->dev; 7676 } 7677 EXPORT_SYMBOL(netdev_next_lower_dev_rcu); 7678 7679 static u8 __netdev_upper_depth(struct net_device *dev) 7680 { 7681 struct net_device *udev; 7682 struct list_head *iter; 7683 u8 max_depth = 0; 7684 bool ignore; 7685 7686 for (iter = &dev->adj_list.upper, 7687 udev = __netdev_next_upper_dev(dev, &iter, &ignore); 7688 udev; 7689 udev = __netdev_next_upper_dev(dev, &iter, &ignore)) { 7690 if (ignore) 7691 continue; 7692 if (max_depth < udev->upper_level) 7693 max_depth = udev->upper_level; 7694 } 7695 7696 return max_depth; 7697 } 7698 7699 static u8 __netdev_lower_depth(struct net_device *dev) 7700 { 7701 struct net_device *ldev; 7702 struct list_head *iter; 7703 u8 max_depth = 0; 7704 bool ignore; 7705 7706 for (iter = &dev->adj_list.lower, 7707 ldev = __netdev_next_lower_dev(dev, &iter, &ignore); 7708 ldev; 7709 ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) { 7710 if (ignore) 7711 continue; 7712 if (max_depth < ldev->lower_level) 7713 max_depth = ldev->lower_level; 7714 } 7715 7716 return max_depth; 7717 } 7718 7719 static int __netdev_update_upper_level(struct net_device *dev, 7720 struct netdev_nested_priv *__unused) 7721 { 7722 dev->upper_level = __netdev_upper_depth(dev) + 1; 7723 return 0; 7724 } 7725 7726 #ifdef CONFIG_LOCKDEP 7727 static LIST_HEAD(net_unlink_list); 7728 7729 static void net_unlink_todo(struct net_device *dev) 7730 { 7731 if (list_empty(&dev->unlink_list)) 7732 list_add_tail(&dev->unlink_list, &net_unlink_list); 7733 } 7734 #endif 7735 7736 static int __netdev_update_lower_level(struct net_device *dev, 7737 struct netdev_nested_priv *priv) 7738 { 7739 dev->lower_level = __netdev_lower_depth(dev) + 1; 7740 7741 #ifdef CONFIG_LOCKDEP 7742 if (!priv) 7743 return 0; 7744 7745 if (priv->flags & NESTED_SYNC_IMM) 7746 dev->nested_level = dev->lower_level - 1; 7747 if (priv->flags & NESTED_SYNC_TODO) 7748 net_unlink_todo(dev); 7749 #endif 7750 return 0; 7751 } 7752 7753 int netdev_walk_all_lower_dev_rcu(struct net_device *dev, 7754 int (*fn)(struct net_device *dev, 7755 struct netdev_nested_priv *priv), 7756 struct netdev_nested_priv *priv) 7757 { 7758 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 7759 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 7760 int ret, cur = 0; 7761 7762 now = dev; 7763 iter = &dev->adj_list.lower; 7764 7765 while (1) { 7766 if (now != dev) { 7767 ret = fn(now, priv); 7768 if (ret) 7769 return ret; 7770 } 7771 7772 next = NULL; 7773 while (1) { 7774 ldev = netdev_next_lower_dev_rcu(now, &iter); 7775 if (!ldev) 7776 break; 7777 7778 next = ldev; 7779 niter = &ldev->adj_list.lower; 7780 dev_stack[cur] = now; 7781 iter_stack[cur++] = iter; 7782 break; 7783 } 7784 7785 if (!next) { 7786 if (!cur) 7787 return 0; 7788 next = dev_stack[--cur]; 7789 niter = iter_stack[cur]; 7790 } 7791 7792 now = next; 7793 iter = niter; 7794 } 7795 7796 return 0; 7797 } 7798 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu); 7799 7800 /** 7801 * netdev_lower_get_first_private_rcu - Get the first ->private from the 7802 * lower neighbour list, RCU 7803 * variant 7804 * @dev: device 7805 * 7806 * Gets the first netdev_adjacent->private from the dev's lower neighbour 7807 * list. The caller must hold RCU read lock. 7808 */ 7809 void *netdev_lower_get_first_private_rcu(struct net_device *dev) 7810 { 7811 struct netdev_adjacent *lower; 7812 7813 lower = list_first_or_null_rcu(&dev->adj_list.lower, 7814 struct netdev_adjacent, list); 7815 if (lower) 7816 return lower->private; 7817 return NULL; 7818 } 7819 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu); 7820 7821 /** 7822 * netdev_master_upper_dev_get_rcu - Get master upper device 7823 * @dev: device 7824 * 7825 * Find a master upper device and return pointer to it or NULL in case 7826 * it's not there. The caller must hold the RCU read lock. 7827 */ 7828 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev) 7829 { 7830 struct netdev_adjacent *upper; 7831 7832 upper = list_first_or_null_rcu(&dev->adj_list.upper, 7833 struct netdev_adjacent, list); 7834 if (upper && likely(upper->master)) 7835 return upper->dev; 7836 return NULL; 7837 } 7838 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu); 7839 7840 static int netdev_adjacent_sysfs_add(struct net_device *dev, 7841 struct net_device *adj_dev, 7842 struct list_head *dev_list) 7843 { 7844 char linkname[IFNAMSIZ+7]; 7845 7846 sprintf(linkname, dev_list == &dev->adj_list.upper ? 7847 "upper_%s" : "lower_%s", adj_dev->name); 7848 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj), 7849 linkname); 7850 } 7851 static void netdev_adjacent_sysfs_del(struct net_device *dev, 7852 char *name, 7853 struct list_head *dev_list) 7854 { 7855 char linkname[IFNAMSIZ+7]; 7856 7857 sprintf(linkname, dev_list == &dev->adj_list.upper ? 7858 "upper_%s" : "lower_%s", name); 7859 sysfs_remove_link(&(dev->dev.kobj), linkname); 7860 } 7861 7862 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev, 7863 struct net_device *adj_dev, 7864 struct list_head *dev_list) 7865 { 7866 return (dev_list == &dev->adj_list.upper || 7867 dev_list == &dev->adj_list.lower) && 7868 net_eq(dev_net(dev), dev_net(adj_dev)); 7869 } 7870 7871 static int __netdev_adjacent_dev_insert(struct net_device *dev, 7872 struct net_device *adj_dev, 7873 struct list_head *dev_list, 7874 void *private, bool master) 7875 { 7876 struct netdev_adjacent *adj; 7877 int ret; 7878 7879 adj = __netdev_find_adj(adj_dev, dev_list); 7880 7881 if (adj) { 7882 adj->ref_nr += 1; 7883 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n", 7884 dev->name, adj_dev->name, adj->ref_nr); 7885 7886 return 0; 7887 } 7888 7889 adj = kmalloc(sizeof(*adj), GFP_KERNEL); 7890 if (!adj) 7891 return -ENOMEM; 7892 7893 adj->dev = adj_dev; 7894 adj->master = master; 7895 adj->ref_nr = 1; 7896 adj->private = private; 7897 adj->ignore = false; 7898 netdev_hold(adj_dev, &adj->dev_tracker, GFP_KERNEL); 7899 7900 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n", 7901 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name); 7902 7903 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) { 7904 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list); 7905 if (ret) 7906 goto free_adj; 7907 } 7908 7909 /* Ensure that master link is always the first item in list. */ 7910 if (master) { 7911 ret = sysfs_create_link(&(dev->dev.kobj), 7912 &(adj_dev->dev.kobj), "master"); 7913 if (ret) 7914 goto remove_symlinks; 7915 7916 list_add_rcu(&adj->list, dev_list); 7917 } else { 7918 list_add_tail_rcu(&adj->list, dev_list); 7919 } 7920 7921 return 0; 7922 7923 remove_symlinks: 7924 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) 7925 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list); 7926 free_adj: 7927 netdev_put(adj_dev, &adj->dev_tracker); 7928 kfree(adj); 7929 7930 return ret; 7931 } 7932 7933 static void __netdev_adjacent_dev_remove(struct net_device *dev, 7934 struct net_device *adj_dev, 7935 u16 ref_nr, 7936 struct list_head *dev_list) 7937 { 7938 struct netdev_adjacent *adj; 7939 7940 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n", 7941 dev->name, adj_dev->name, ref_nr); 7942 7943 adj = __netdev_find_adj(adj_dev, dev_list); 7944 7945 if (!adj) { 7946 pr_err("Adjacency does not exist for device %s from %s\n", 7947 dev->name, adj_dev->name); 7948 WARN_ON(1); 7949 return; 7950 } 7951 7952 if (adj->ref_nr > ref_nr) { 7953 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n", 7954 dev->name, adj_dev->name, ref_nr, 7955 adj->ref_nr - ref_nr); 7956 adj->ref_nr -= ref_nr; 7957 return; 7958 } 7959 7960 if (adj->master) 7961 sysfs_remove_link(&(dev->dev.kobj), "master"); 7962 7963 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) 7964 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list); 7965 7966 list_del_rcu(&adj->list); 7967 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n", 7968 adj_dev->name, dev->name, adj_dev->name); 7969 netdev_put(adj_dev, &adj->dev_tracker); 7970 kfree_rcu(adj, rcu); 7971 } 7972 7973 static int __netdev_adjacent_dev_link_lists(struct net_device *dev, 7974 struct net_device *upper_dev, 7975 struct list_head *up_list, 7976 struct list_head *down_list, 7977 void *private, bool master) 7978 { 7979 int ret; 7980 7981 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, 7982 private, master); 7983 if (ret) 7984 return ret; 7985 7986 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, 7987 private, false); 7988 if (ret) { 7989 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list); 7990 return ret; 7991 } 7992 7993 return 0; 7994 } 7995 7996 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev, 7997 struct net_device *upper_dev, 7998 u16 ref_nr, 7999 struct list_head *up_list, 8000 struct list_head *down_list) 8001 { 8002 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list); 8003 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list); 8004 } 8005 8006 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev, 8007 struct net_device *upper_dev, 8008 void *private, bool master) 8009 { 8010 return __netdev_adjacent_dev_link_lists(dev, upper_dev, 8011 &dev->adj_list.upper, 8012 &upper_dev->adj_list.lower, 8013 private, master); 8014 } 8015 8016 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev, 8017 struct net_device *upper_dev) 8018 { 8019 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1, 8020 &dev->adj_list.upper, 8021 &upper_dev->adj_list.lower); 8022 } 8023 8024 static int __netdev_upper_dev_link(struct net_device *dev, 8025 struct net_device *upper_dev, bool master, 8026 void *upper_priv, void *upper_info, 8027 struct netdev_nested_priv *priv, 8028 struct netlink_ext_ack *extack) 8029 { 8030 struct netdev_notifier_changeupper_info changeupper_info = { 8031 .info = { 8032 .dev = dev, 8033 .extack = extack, 8034 }, 8035 .upper_dev = upper_dev, 8036 .master = master, 8037 .linking = true, 8038 .upper_info = upper_info, 8039 }; 8040 struct net_device *master_dev; 8041 int ret = 0; 8042 8043 ASSERT_RTNL(); 8044 8045 if (dev == upper_dev) 8046 return -EBUSY; 8047 8048 /* To prevent loops, check if dev is not upper device to upper_dev. */ 8049 if (__netdev_has_upper_dev(upper_dev, dev)) 8050 return -EBUSY; 8051 8052 if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV) 8053 return -EMLINK; 8054 8055 if (!master) { 8056 if (__netdev_has_upper_dev(dev, upper_dev)) 8057 return -EEXIST; 8058 } else { 8059 master_dev = __netdev_master_upper_dev_get(dev); 8060 if (master_dev) 8061 return master_dev == upper_dev ? -EEXIST : -EBUSY; 8062 } 8063 8064 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, 8065 &changeupper_info.info); 8066 ret = notifier_to_errno(ret); 8067 if (ret) 8068 return ret; 8069 8070 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv, 8071 master); 8072 if (ret) 8073 return ret; 8074 8075 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, 8076 &changeupper_info.info); 8077 ret = notifier_to_errno(ret); 8078 if (ret) 8079 goto rollback; 8080 8081 __netdev_update_upper_level(dev, NULL); 8082 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL); 8083 8084 __netdev_update_lower_level(upper_dev, priv); 8085 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level, 8086 priv); 8087 8088 return 0; 8089 8090 rollback: 8091 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 8092 8093 return ret; 8094 } 8095 8096 /** 8097 * netdev_upper_dev_link - Add a link to the upper device 8098 * @dev: device 8099 * @upper_dev: new upper device 8100 * @extack: netlink extended ack 8101 * 8102 * Adds a link to device which is upper to this one. The caller must hold 8103 * the RTNL lock. On a failure a negative errno code is returned. 8104 * On success the reference counts are adjusted and the function 8105 * returns zero. 8106 */ 8107 int netdev_upper_dev_link(struct net_device *dev, 8108 struct net_device *upper_dev, 8109 struct netlink_ext_ack *extack) 8110 { 8111 struct netdev_nested_priv priv = { 8112 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO, 8113 .data = NULL, 8114 }; 8115 8116 return __netdev_upper_dev_link(dev, upper_dev, false, 8117 NULL, NULL, &priv, extack); 8118 } 8119 EXPORT_SYMBOL(netdev_upper_dev_link); 8120 8121 /** 8122 * netdev_master_upper_dev_link - Add a master link to the upper device 8123 * @dev: device 8124 * @upper_dev: new upper device 8125 * @upper_priv: upper device private 8126 * @upper_info: upper info to be passed down via notifier 8127 * @extack: netlink extended ack 8128 * 8129 * Adds a link to device which is upper to this one. In this case, only 8130 * one master upper device can be linked, although other non-master devices 8131 * might be linked as well. The caller must hold the RTNL lock. 8132 * On a failure a negative errno code is returned. On success the reference 8133 * counts are adjusted and the function returns zero. 8134 */ 8135 int netdev_master_upper_dev_link(struct net_device *dev, 8136 struct net_device *upper_dev, 8137 void *upper_priv, void *upper_info, 8138 struct netlink_ext_ack *extack) 8139 { 8140 struct netdev_nested_priv priv = { 8141 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO, 8142 .data = NULL, 8143 }; 8144 8145 return __netdev_upper_dev_link(dev, upper_dev, true, 8146 upper_priv, upper_info, &priv, extack); 8147 } 8148 EXPORT_SYMBOL(netdev_master_upper_dev_link); 8149 8150 static void __netdev_upper_dev_unlink(struct net_device *dev, 8151 struct net_device *upper_dev, 8152 struct netdev_nested_priv *priv) 8153 { 8154 struct netdev_notifier_changeupper_info changeupper_info = { 8155 .info = { 8156 .dev = dev, 8157 }, 8158 .upper_dev = upper_dev, 8159 .linking = false, 8160 }; 8161 8162 ASSERT_RTNL(); 8163 8164 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev; 8165 8166 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, 8167 &changeupper_info.info); 8168 8169 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 8170 8171 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, 8172 &changeupper_info.info); 8173 8174 __netdev_update_upper_level(dev, NULL); 8175 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL); 8176 8177 __netdev_update_lower_level(upper_dev, priv); 8178 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level, 8179 priv); 8180 } 8181 8182 /** 8183 * netdev_upper_dev_unlink - Removes a link to upper device 8184 * @dev: device 8185 * @upper_dev: new upper device 8186 * 8187 * Removes a link to device which is upper to this one. The caller must hold 8188 * the RTNL lock. 8189 */ 8190 void netdev_upper_dev_unlink(struct net_device *dev, 8191 struct net_device *upper_dev) 8192 { 8193 struct netdev_nested_priv priv = { 8194 .flags = NESTED_SYNC_TODO, 8195 .data = NULL, 8196 }; 8197 8198 __netdev_upper_dev_unlink(dev, upper_dev, &priv); 8199 } 8200 EXPORT_SYMBOL(netdev_upper_dev_unlink); 8201 8202 static void __netdev_adjacent_dev_set(struct net_device *upper_dev, 8203 struct net_device *lower_dev, 8204 bool val) 8205 { 8206 struct netdev_adjacent *adj; 8207 8208 adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower); 8209 if (adj) 8210 adj->ignore = val; 8211 8212 adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper); 8213 if (adj) 8214 adj->ignore = val; 8215 } 8216 8217 static void netdev_adjacent_dev_disable(struct net_device *upper_dev, 8218 struct net_device *lower_dev) 8219 { 8220 __netdev_adjacent_dev_set(upper_dev, lower_dev, true); 8221 } 8222 8223 static void netdev_adjacent_dev_enable(struct net_device *upper_dev, 8224 struct net_device *lower_dev) 8225 { 8226 __netdev_adjacent_dev_set(upper_dev, lower_dev, false); 8227 } 8228 8229 int netdev_adjacent_change_prepare(struct net_device *old_dev, 8230 struct net_device *new_dev, 8231 struct net_device *dev, 8232 struct netlink_ext_ack *extack) 8233 { 8234 struct netdev_nested_priv priv = { 8235 .flags = 0, 8236 .data = NULL, 8237 }; 8238 int err; 8239 8240 if (!new_dev) 8241 return 0; 8242 8243 if (old_dev && new_dev != old_dev) 8244 netdev_adjacent_dev_disable(dev, old_dev); 8245 err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv, 8246 extack); 8247 if (err) { 8248 if (old_dev && new_dev != old_dev) 8249 netdev_adjacent_dev_enable(dev, old_dev); 8250 return err; 8251 } 8252 8253 return 0; 8254 } 8255 EXPORT_SYMBOL(netdev_adjacent_change_prepare); 8256 8257 void netdev_adjacent_change_commit(struct net_device *old_dev, 8258 struct net_device *new_dev, 8259 struct net_device *dev) 8260 { 8261 struct netdev_nested_priv priv = { 8262 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO, 8263 .data = NULL, 8264 }; 8265 8266 if (!new_dev || !old_dev) 8267 return; 8268 8269 if (new_dev == old_dev) 8270 return; 8271 8272 netdev_adjacent_dev_enable(dev, old_dev); 8273 __netdev_upper_dev_unlink(old_dev, dev, &priv); 8274 } 8275 EXPORT_SYMBOL(netdev_adjacent_change_commit); 8276 8277 void netdev_adjacent_change_abort(struct net_device *old_dev, 8278 struct net_device *new_dev, 8279 struct net_device *dev) 8280 { 8281 struct netdev_nested_priv priv = { 8282 .flags = 0, 8283 .data = NULL, 8284 }; 8285 8286 if (!new_dev) 8287 return; 8288 8289 if (old_dev && new_dev != old_dev) 8290 netdev_adjacent_dev_enable(dev, old_dev); 8291 8292 __netdev_upper_dev_unlink(new_dev, dev, &priv); 8293 } 8294 EXPORT_SYMBOL(netdev_adjacent_change_abort); 8295 8296 /** 8297 * netdev_bonding_info_change - Dispatch event about slave change 8298 * @dev: device 8299 * @bonding_info: info to dispatch 8300 * 8301 * Send NETDEV_BONDING_INFO to netdev notifiers with info. 8302 * The caller must hold the RTNL lock. 8303 */ 8304 void netdev_bonding_info_change(struct net_device *dev, 8305 struct netdev_bonding_info *bonding_info) 8306 { 8307 struct netdev_notifier_bonding_info info = { 8308 .info.dev = dev, 8309 }; 8310 8311 memcpy(&info.bonding_info, bonding_info, 8312 sizeof(struct netdev_bonding_info)); 8313 call_netdevice_notifiers_info(NETDEV_BONDING_INFO, 8314 &info.info); 8315 } 8316 EXPORT_SYMBOL(netdev_bonding_info_change); 8317 8318 static int netdev_offload_xstats_enable_l3(struct net_device *dev, 8319 struct netlink_ext_ack *extack) 8320 { 8321 struct netdev_notifier_offload_xstats_info info = { 8322 .info.dev = dev, 8323 .info.extack = extack, 8324 .type = NETDEV_OFFLOAD_XSTATS_TYPE_L3, 8325 }; 8326 int err; 8327 int rc; 8328 8329 dev->offload_xstats_l3 = kzalloc(sizeof(*dev->offload_xstats_l3), 8330 GFP_KERNEL); 8331 if (!dev->offload_xstats_l3) 8332 return -ENOMEM; 8333 8334 rc = call_netdevice_notifiers_info_robust(NETDEV_OFFLOAD_XSTATS_ENABLE, 8335 NETDEV_OFFLOAD_XSTATS_DISABLE, 8336 &info.info); 8337 err = notifier_to_errno(rc); 8338 if (err) 8339 goto free_stats; 8340 8341 return 0; 8342 8343 free_stats: 8344 kfree(dev->offload_xstats_l3); 8345 dev->offload_xstats_l3 = NULL; 8346 return err; 8347 } 8348 8349 int netdev_offload_xstats_enable(struct net_device *dev, 8350 enum netdev_offload_xstats_type type, 8351 struct netlink_ext_ack *extack) 8352 { 8353 ASSERT_RTNL(); 8354 8355 if (netdev_offload_xstats_enabled(dev, type)) 8356 return -EALREADY; 8357 8358 switch (type) { 8359 case NETDEV_OFFLOAD_XSTATS_TYPE_L3: 8360 return netdev_offload_xstats_enable_l3(dev, extack); 8361 } 8362 8363 WARN_ON(1); 8364 return -EINVAL; 8365 } 8366 EXPORT_SYMBOL(netdev_offload_xstats_enable); 8367 8368 static void netdev_offload_xstats_disable_l3(struct net_device *dev) 8369 { 8370 struct netdev_notifier_offload_xstats_info info = { 8371 .info.dev = dev, 8372 .type = NETDEV_OFFLOAD_XSTATS_TYPE_L3, 8373 }; 8374 8375 call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_DISABLE, 8376 &info.info); 8377 kfree(dev->offload_xstats_l3); 8378 dev->offload_xstats_l3 = NULL; 8379 } 8380 8381 int netdev_offload_xstats_disable(struct net_device *dev, 8382 enum netdev_offload_xstats_type type) 8383 { 8384 ASSERT_RTNL(); 8385 8386 if (!netdev_offload_xstats_enabled(dev, type)) 8387 return -EALREADY; 8388 8389 switch (type) { 8390 case NETDEV_OFFLOAD_XSTATS_TYPE_L3: 8391 netdev_offload_xstats_disable_l3(dev); 8392 return 0; 8393 } 8394 8395 WARN_ON(1); 8396 return -EINVAL; 8397 } 8398 EXPORT_SYMBOL(netdev_offload_xstats_disable); 8399 8400 static void netdev_offload_xstats_disable_all(struct net_device *dev) 8401 { 8402 netdev_offload_xstats_disable(dev, NETDEV_OFFLOAD_XSTATS_TYPE_L3); 8403 } 8404 8405 static struct rtnl_hw_stats64 * 8406 netdev_offload_xstats_get_ptr(const struct net_device *dev, 8407 enum netdev_offload_xstats_type type) 8408 { 8409 switch (type) { 8410 case NETDEV_OFFLOAD_XSTATS_TYPE_L3: 8411 return dev->offload_xstats_l3; 8412 } 8413 8414 WARN_ON(1); 8415 return NULL; 8416 } 8417 8418 bool netdev_offload_xstats_enabled(const struct net_device *dev, 8419 enum netdev_offload_xstats_type type) 8420 { 8421 ASSERT_RTNL(); 8422 8423 return netdev_offload_xstats_get_ptr(dev, type); 8424 } 8425 EXPORT_SYMBOL(netdev_offload_xstats_enabled); 8426 8427 struct netdev_notifier_offload_xstats_ru { 8428 bool used; 8429 }; 8430 8431 struct netdev_notifier_offload_xstats_rd { 8432 struct rtnl_hw_stats64 stats; 8433 bool used; 8434 }; 8435 8436 static void netdev_hw_stats64_add(struct rtnl_hw_stats64 *dest, 8437 const struct rtnl_hw_stats64 *src) 8438 { 8439 dest->rx_packets += src->rx_packets; 8440 dest->tx_packets += src->tx_packets; 8441 dest->rx_bytes += src->rx_bytes; 8442 dest->tx_bytes += src->tx_bytes; 8443 dest->rx_errors += src->rx_errors; 8444 dest->tx_errors += src->tx_errors; 8445 dest->rx_dropped += src->rx_dropped; 8446 dest->tx_dropped += src->tx_dropped; 8447 dest->multicast += src->multicast; 8448 } 8449 8450 static int netdev_offload_xstats_get_used(struct net_device *dev, 8451 enum netdev_offload_xstats_type type, 8452 bool *p_used, 8453 struct netlink_ext_ack *extack) 8454 { 8455 struct netdev_notifier_offload_xstats_ru report_used = {}; 8456 struct netdev_notifier_offload_xstats_info info = { 8457 .info.dev = dev, 8458 .info.extack = extack, 8459 .type = type, 8460 .report_used = &report_used, 8461 }; 8462 int rc; 8463 8464 WARN_ON(!netdev_offload_xstats_enabled(dev, type)); 8465 rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_USED, 8466 &info.info); 8467 *p_used = report_used.used; 8468 return notifier_to_errno(rc); 8469 } 8470 8471 static int netdev_offload_xstats_get_stats(struct net_device *dev, 8472 enum netdev_offload_xstats_type type, 8473 struct rtnl_hw_stats64 *p_stats, 8474 bool *p_used, 8475 struct netlink_ext_ack *extack) 8476 { 8477 struct netdev_notifier_offload_xstats_rd report_delta = {}; 8478 struct netdev_notifier_offload_xstats_info info = { 8479 .info.dev = dev, 8480 .info.extack = extack, 8481 .type = type, 8482 .report_delta = &report_delta, 8483 }; 8484 struct rtnl_hw_stats64 *stats; 8485 int rc; 8486 8487 stats = netdev_offload_xstats_get_ptr(dev, type); 8488 if (WARN_ON(!stats)) 8489 return -EINVAL; 8490 8491 rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_DELTA, 8492 &info.info); 8493 8494 /* Cache whatever we got, even if there was an error, otherwise the 8495 * successful stats retrievals would get lost. 8496 */ 8497 netdev_hw_stats64_add(stats, &report_delta.stats); 8498 8499 if (p_stats) 8500 *p_stats = *stats; 8501 *p_used = report_delta.used; 8502 8503 return notifier_to_errno(rc); 8504 } 8505 8506 int netdev_offload_xstats_get(struct net_device *dev, 8507 enum netdev_offload_xstats_type type, 8508 struct rtnl_hw_stats64 *p_stats, bool *p_used, 8509 struct netlink_ext_ack *extack) 8510 { 8511 ASSERT_RTNL(); 8512 8513 if (p_stats) 8514 return netdev_offload_xstats_get_stats(dev, type, p_stats, 8515 p_used, extack); 8516 else 8517 return netdev_offload_xstats_get_used(dev, type, p_used, 8518 extack); 8519 } 8520 EXPORT_SYMBOL(netdev_offload_xstats_get); 8521 8522 void 8523 netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *report_delta, 8524 const struct rtnl_hw_stats64 *stats) 8525 { 8526 report_delta->used = true; 8527 netdev_hw_stats64_add(&report_delta->stats, stats); 8528 } 8529 EXPORT_SYMBOL(netdev_offload_xstats_report_delta); 8530 8531 void 8532 netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *report_used) 8533 { 8534 report_used->used = true; 8535 } 8536 EXPORT_SYMBOL(netdev_offload_xstats_report_used); 8537 8538 void netdev_offload_xstats_push_delta(struct net_device *dev, 8539 enum netdev_offload_xstats_type type, 8540 const struct rtnl_hw_stats64 *p_stats) 8541 { 8542 struct rtnl_hw_stats64 *stats; 8543 8544 ASSERT_RTNL(); 8545 8546 stats = netdev_offload_xstats_get_ptr(dev, type); 8547 if (WARN_ON(!stats)) 8548 return; 8549 8550 netdev_hw_stats64_add(stats, p_stats); 8551 } 8552 EXPORT_SYMBOL(netdev_offload_xstats_push_delta); 8553 8554 /** 8555 * netdev_get_xmit_slave - Get the xmit slave of master device 8556 * @dev: device 8557 * @skb: The packet 8558 * @all_slaves: assume all the slaves are active 8559 * 8560 * The reference counters are not incremented so the caller must be 8561 * careful with locks. The caller must hold RCU lock. 8562 * %NULL is returned if no slave is found. 8563 */ 8564 8565 struct net_device *netdev_get_xmit_slave(struct net_device *dev, 8566 struct sk_buff *skb, 8567 bool all_slaves) 8568 { 8569 const struct net_device_ops *ops = dev->netdev_ops; 8570 8571 if (!ops->ndo_get_xmit_slave) 8572 return NULL; 8573 return ops->ndo_get_xmit_slave(dev, skb, all_slaves); 8574 } 8575 EXPORT_SYMBOL(netdev_get_xmit_slave); 8576 8577 static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev, 8578 struct sock *sk) 8579 { 8580 const struct net_device_ops *ops = dev->netdev_ops; 8581 8582 if (!ops->ndo_sk_get_lower_dev) 8583 return NULL; 8584 return ops->ndo_sk_get_lower_dev(dev, sk); 8585 } 8586 8587 /** 8588 * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket 8589 * @dev: device 8590 * @sk: the socket 8591 * 8592 * %NULL is returned if no lower device is found. 8593 */ 8594 8595 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev, 8596 struct sock *sk) 8597 { 8598 struct net_device *lower; 8599 8600 lower = netdev_sk_get_lower_dev(dev, sk); 8601 while (lower) { 8602 dev = lower; 8603 lower = netdev_sk_get_lower_dev(dev, sk); 8604 } 8605 8606 return dev; 8607 } 8608 EXPORT_SYMBOL(netdev_sk_get_lowest_dev); 8609 8610 static void netdev_adjacent_add_links(struct net_device *dev) 8611 { 8612 struct netdev_adjacent *iter; 8613 8614 struct net *net = dev_net(dev); 8615 8616 list_for_each_entry(iter, &dev->adj_list.upper, list) { 8617 if (!net_eq(net, dev_net(iter->dev))) 8618 continue; 8619 netdev_adjacent_sysfs_add(iter->dev, dev, 8620 &iter->dev->adj_list.lower); 8621 netdev_adjacent_sysfs_add(dev, iter->dev, 8622 &dev->adj_list.upper); 8623 } 8624 8625 list_for_each_entry(iter, &dev->adj_list.lower, list) { 8626 if (!net_eq(net, dev_net(iter->dev))) 8627 continue; 8628 netdev_adjacent_sysfs_add(iter->dev, dev, 8629 &iter->dev->adj_list.upper); 8630 netdev_adjacent_sysfs_add(dev, iter->dev, 8631 &dev->adj_list.lower); 8632 } 8633 } 8634 8635 static void netdev_adjacent_del_links(struct net_device *dev) 8636 { 8637 struct netdev_adjacent *iter; 8638 8639 struct net *net = dev_net(dev); 8640 8641 list_for_each_entry(iter, &dev->adj_list.upper, list) { 8642 if (!net_eq(net, dev_net(iter->dev))) 8643 continue; 8644 netdev_adjacent_sysfs_del(iter->dev, dev->name, 8645 &iter->dev->adj_list.lower); 8646 netdev_adjacent_sysfs_del(dev, iter->dev->name, 8647 &dev->adj_list.upper); 8648 } 8649 8650 list_for_each_entry(iter, &dev->adj_list.lower, list) { 8651 if (!net_eq(net, dev_net(iter->dev))) 8652 continue; 8653 netdev_adjacent_sysfs_del(iter->dev, dev->name, 8654 &iter->dev->adj_list.upper); 8655 netdev_adjacent_sysfs_del(dev, iter->dev->name, 8656 &dev->adj_list.lower); 8657 } 8658 } 8659 8660 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname) 8661 { 8662 struct netdev_adjacent *iter; 8663 8664 struct net *net = dev_net(dev); 8665 8666 list_for_each_entry(iter, &dev->adj_list.upper, list) { 8667 if (!net_eq(net, dev_net(iter->dev))) 8668 continue; 8669 netdev_adjacent_sysfs_del(iter->dev, oldname, 8670 &iter->dev->adj_list.lower); 8671 netdev_adjacent_sysfs_add(iter->dev, dev, 8672 &iter->dev->adj_list.lower); 8673 } 8674 8675 list_for_each_entry(iter, &dev->adj_list.lower, list) { 8676 if (!net_eq(net, dev_net(iter->dev))) 8677 continue; 8678 netdev_adjacent_sysfs_del(iter->dev, oldname, 8679 &iter->dev->adj_list.upper); 8680 netdev_adjacent_sysfs_add(iter->dev, dev, 8681 &iter->dev->adj_list.upper); 8682 } 8683 } 8684 8685 void *netdev_lower_dev_get_private(struct net_device *dev, 8686 struct net_device *lower_dev) 8687 { 8688 struct netdev_adjacent *lower; 8689 8690 if (!lower_dev) 8691 return NULL; 8692 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower); 8693 if (!lower) 8694 return NULL; 8695 8696 return lower->private; 8697 } 8698 EXPORT_SYMBOL(netdev_lower_dev_get_private); 8699 8700 8701 /** 8702 * netdev_lower_state_changed - Dispatch event about lower device state change 8703 * @lower_dev: device 8704 * @lower_state_info: state to dispatch 8705 * 8706 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info. 8707 * The caller must hold the RTNL lock. 8708 */ 8709 void netdev_lower_state_changed(struct net_device *lower_dev, 8710 void *lower_state_info) 8711 { 8712 struct netdev_notifier_changelowerstate_info changelowerstate_info = { 8713 .info.dev = lower_dev, 8714 }; 8715 8716 ASSERT_RTNL(); 8717 changelowerstate_info.lower_state_info = lower_state_info; 8718 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE, 8719 &changelowerstate_info.info); 8720 } 8721 EXPORT_SYMBOL(netdev_lower_state_changed); 8722 8723 static void dev_change_rx_flags(struct net_device *dev, int flags) 8724 { 8725 const struct net_device_ops *ops = dev->netdev_ops; 8726 8727 if (ops->ndo_change_rx_flags) 8728 ops->ndo_change_rx_flags(dev, flags); 8729 } 8730 8731 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify) 8732 { 8733 unsigned int old_flags = dev->flags; 8734 unsigned int promiscuity, flags; 8735 kuid_t uid; 8736 kgid_t gid; 8737 8738 ASSERT_RTNL(); 8739 8740 promiscuity = dev->promiscuity + inc; 8741 if (promiscuity == 0) { 8742 /* 8743 * Avoid overflow. 8744 * If inc causes overflow, untouch promisc and return error. 8745 */ 8746 if (unlikely(inc > 0)) { 8747 netdev_warn(dev, "promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n"); 8748 return -EOVERFLOW; 8749 } 8750 flags = old_flags & ~IFF_PROMISC; 8751 } else { 8752 flags = old_flags | IFF_PROMISC; 8753 } 8754 WRITE_ONCE(dev->promiscuity, promiscuity); 8755 if (flags != old_flags) { 8756 WRITE_ONCE(dev->flags, flags); 8757 netdev_info(dev, "%s promiscuous mode\n", 8758 dev->flags & IFF_PROMISC ? "entered" : "left"); 8759 if (audit_enabled) { 8760 current_uid_gid(&uid, &gid); 8761 audit_log(audit_context(), GFP_ATOMIC, 8762 AUDIT_ANOM_PROMISCUOUS, 8763 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u", 8764 dev->name, (dev->flags & IFF_PROMISC), 8765 (old_flags & IFF_PROMISC), 8766 from_kuid(&init_user_ns, audit_get_loginuid(current)), 8767 from_kuid(&init_user_ns, uid), 8768 from_kgid(&init_user_ns, gid), 8769 audit_get_sessionid(current)); 8770 } 8771 8772 dev_change_rx_flags(dev, IFF_PROMISC); 8773 } 8774 if (notify) 8775 __dev_notify_flags(dev, old_flags, IFF_PROMISC, 0, NULL); 8776 return 0; 8777 } 8778 8779 /** 8780 * dev_set_promiscuity - update promiscuity count on a device 8781 * @dev: device 8782 * @inc: modifier 8783 * 8784 * Add or remove promiscuity from a device. While the count in the device 8785 * remains above zero the interface remains promiscuous. Once it hits zero 8786 * the device reverts back to normal filtering operation. A negative inc 8787 * value is used to drop promiscuity on the device. 8788 * Return 0 if successful or a negative errno code on error. 8789 */ 8790 int dev_set_promiscuity(struct net_device *dev, int inc) 8791 { 8792 unsigned int old_flags = dev->flags; 8793 int err; 8794 8795 err = __dev_set_promiscuity(dev, inc, true); 8796 if (err < 0) 8797 return err; 8798 if (dev->flags != old_flags) 8799 dev_set_rx_mode(dev); 8800 return err; 8801 } 8802 EXPORT_SYMBOL(dev_set_promiscuity); 8803 8804 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify) 8805 { 8806 unsigned int old_flags = dev->flags, old_gflags = dev->gflags; 8807 unsigned int allmulti, flags; 8808 8809 ASSERT_RTNL(); 8810 8811 allmulti = dev->allmulti + inc; 8812 if (allmulti == 0) { 8813 /* 8814 * Avoid overflow. 8815 * If inc causes overflow, untouch allmulti and return error. 8816 */ 8817 if (unlikely(inc > 0)) { 8818 netdev_warn(dev, "allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n"); 8819 return -EOVERFLOW; 8820 } 8821 flags = old_flags & ~IFF_ALLMULTI; 8822 } else { 8823 flags = old_flags | IFF_ALLMULTI; 8824 } 8825 WRITE_ONCE(dev->allmulti, allmulti); 8826 if (flags != old_flags) { 8827 WRITE_ONCE(dev->flags, flags); 8828 netdev_info(dev, "%s allmulticast mode\n", 8829 dev->flags & IFF_ALLMULTI ? "entered" : "left"); 8830 dev_change_rx_flags(dev, IFF_ALLMULTI); 8831 dev_set_rx_mode(dev); 8832 if (notify) 8833 __dev_notify_flags(dev, old_flags, 8834 dev->gflags ^ old_gflags, 0, NULL); 8835 } 8836 return 0; 8837 } 8838 8839 /** 8840 * dev_set_allmulti - update allmulti count on a device 8841 * @dev: device 8842 * @inc: modifier 8843 * 8844 * Add or remove reception of all multicast frames to a device. While the 8845 * count in the device remains above zero the interface remains listening 8846 * to all interfaces. Once it hits zero the device reverts back to normal 8847 * filtering operation. A negative @inc value is used to drop the counter 8848 * when releasing a resource needing all multicasts. 8849 * Return 0 if successful or a negative errno code on error. 8850 */ 8851 8852 int dev_set_allmulti(struct net_device *dev, int inc) 8853 { 8854 return __dev_set_allmulti(dev, inc, true); 8855 } 8856 EXPORT_SYMBOL(dev_set_allmulti); 8857 8858 /* 8859 * Upload unicast and multicast address lists to device and 8860 * configure RX filtering. When the device doesn't support unicast 8861 * filtering it is put in promiscuous mode while unicast addresses 8862 * are present. 8863 */ 8864 void __dev_set_rx_mode(struct net_device *dev) 8865 { 8866 const struct net_device_ops *ops = dev->netdev_ops; 8867 8868 /* dev_open will call this function so the list will stay sane. */ 8869 if (!(dev->flags&IFF_UP)) 8870 return; 8871 8872 if (!netif_device_present(dev)) 8873 return; 8874 8875 if (!(dev->priv_flags & IFF_UNICAST_FLT)) { 8876 /* Unicast addresses changes may only happen under the rtnl, 8877 * therefore calling __dev_set_promiscuity here is safe. 8878 */ 8879 if (!netdev_uc_empty(dev) && !dev->uc_promisc) { 8880 __dev_set_promiscuity(dev, 1, false); 8881 dev->uc_promisc = true; 8882 } else if (netdev_uc_empty(dev) && dev->uc_promisc) { 8883 __dev_set_promiscuity(dev, -1, false); 8884 dev->uc_promisc = false; 8885 } 8886 } 8887 8888 if (ops->ndo_set_rx_mode) 8889 ops->ndo_set_rx_mode(dev); 8890 } 8891 8892 void dev_set_rx_mode(struct net_device *dev) 8893 { 8894 netif_addr_lock_bh(dev); 8895 __dev_set_rx_mode(dev); 8896 netif_addr_unlock_bh(dev); 8897 } 8898 8899 /** 8900 * dev_get_flags - get flags reported to userspace 8901 * @dev: device 8902 * 8903 * Get the combination of flag bits exported through APIs to userspace. 8904 */ 8905 unsigned int dev_get_flags(const struct net_device *dev) 8906 { 8907 unsigned int flags; 8908 8909 flags = (READ_ONCE(dev->flags) & ~(IFF_PROMISC | 8910 IFF_ALLMULTI | 8911 IFF_RUNNING | 8912 IFF_LOWER_UP | 8913 IFF_DORMANT)) | 8914 (READ_ONCE(dev->gflags) & (IFF_PROMISC | 8915 IFF_ALLMULTI)); 8916 8917 if (netif_running(dev)) { 8918 if (netif_oper_up(dev)) 8919 flags |= IFF_RUNNING; 8920 if (netif_carrier_ok(dev)) 8921 flags |= IFF_LOWER_UP; 8922 if (netif_dormant(dev)) 8923 flags |= IFF_DORMANT; 8924 } 8925 8926 return flags; 8927 } 8928 EXPORT_SYMBOL(dev_get_flags); 8929 8930 int __dev_change_flags(struct net_device *dev, unsigned int flags, 8931 struct netlink_ext_ack *extack) 8932 { 8933 unsigned int old_flags = dev->flags; 8934 int ret; 8935 8936 ASSERT_RTNL(); 8937 8938 /* 8939 * Set the flags on our device. 8940 */ 8941 8942 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP | 8943 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL | 8944 IFF_AUTOMEDIA)) | 8945 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC | 8946 IFF_ALLMULTI)); 8947 8948 /* 8949 * Load in the correct multicast list now the flags have changed. 8950 */ 8951 8952 if ((old_flags ^ flags) & IFF_MULTICAST) 8953 dev_change_rx_flags(dev, IFF_MULTICAST); 8954 8955 dev_set_rx_mode(dev); 8956 8957 /* 8958 * Have we downed the interface. We handle IFF_UP ourselves 8959 * according to user attempts to set it, rather than blindly 8960 * setting it. 8961 */ 8962 8963 ret = 0; 8964 if ((old_flags ^ flags) & IFF_UP) { 8965 if (old_flags & IFF_UP) 8966 __dev_close(dev); 8967 else 8968 ret = __dev_open(dev, extack); 8969 } 8970 8971 if ((flags ^ dev->gflags) & IFF_PROMISC) { 8972 int inc = (flags & IFF_PROMISC) ? 1 : -1; 8973 unsigned int old_flags = dev->flags; 8974 8975 dev->gflags ^= IFF_PROMISC; 8976 8977 if (__dev_set_promiscuity(dev, inc, false) >= 0) 8978 if (dev->flags != old_flags) 8979 dev_set_rx_mode(dev); 8980 } 8981 8982 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI 8983 * is important. Some (broken) drivers set IFF_PROMISC, when 8984 * IFF_ALLMULTI is requested not asking us and not reporting. 8985 */ 8986 if ((flags ^ dev->gflags) & IFF_ALLMULTI) { 8987 int inc = (flags & IFF_ALLMULTI) ? 1 : -1; 8988 8989 dev->gflags ^= IFF_ALLMULTI; 8990 __dev_set_allmulti(dev, inc, false); 8991 } 8992 8993 return ret; 8994 } 8995 8996 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags, 8997 unsigned int gchanges, u32 portid, 8998 const struct nlmsghdr *nlh) 8999 { 9000 unsigned int changes = dev->flags ^ old_flags; 9001 9002 if (gchanges) 9003 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC, portid, nlh); 9004 9005 if (changes & IFF_UP) { 9006 if (dev->flags & IFF_UP) 9007 call_netdevice_notifiers(NETDEV_UP, dev); 9008 else 9009 call_netdevice_notifiers(NETDEV_DOWN, dev); 9010 } 9011 9012 if (dev->flags & IFF_UP && 9013 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) { 9014 struct netdev_notifier_change_info change_info = { 9015 .info = { 9016 .dev = dev, 9017 }, 9018 .flags_changed = changes, 9019 }; 9020 9021 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info); 9022 } 9023 } 9024 9025 /** 9026 * dev_change_flags - change device settings 9027 * @dev: device 9028 * @flags: device state flags 9029 * @extack: netlink extended ack 9030 * 9031 * Change settings on device based state flags. The flags are 9032 * in the userspace exported format. 9033 */ 9034 int dev_change_flags(struct net_device *dev, unsigned int flags, 9035 struct netlink_ext_ack *extack) 9036 { 9037 int ret; 9038 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags; 9039 9040 ret = __dev_change_flags(dev, flags, extack); 9041 if (ret < 0) 9042 return ret; 9043 9044 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags); 9045 __dev_notify_flags(dev, old_flags, changes, 0, NULL); 9046 return ret; 9047 } 9048 EXPORT_SYMBOL(dev_change_flags); 9049 9050 int __dev_set_mtu(struct net_device *dev, int new_mtu) 9051 { 9052 const struct net_device_ops *ops = dev->netdev_ops; 9053 9054 if (ops->ndo_change_mtu) 9055 return ops->ndo_change_mtu(dev, new_mtu); 9056 9057 /* Pairs with all the lockless reads of dev->mtu in the stack */ 9058 WRITE_ONCE(dev->mtu, new_mtu); 9059 return 0; 9060 } 9061 EXPORT_SYMBOL(__dev_set_mtu); 9062 9063 int dev_validate_mtu(struct net_device *dev, int new_mtu, 9064 struct netlink_ext_ack *extack) 9065 { 9066 /* MTU must be positive, and in range */ 9067 if (new_mtu < 0 || new_mtu < dev->min_mtu) { 9068 NL_SET_ERR_MSG(extack, "mtu less than device minimum"); 9069 return -EINVAL; 9070 } 9071 9072 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) { 9073 NL_SET_ERR_MSG(extack, "mtu greater than device maximum"); 9074 return -EINVAL; 9075 } 9076 return 0; 9077 } 9078 9079 /** 9080 * dev_set_mtu_ext - Change maximum transfer unit 9081 * @dev: device 9082 * @new_mtu: new transfer unit 9083 * @extack: netlink extended ack 9084 * 9085 * Change the maximum transfer size of the network device. 9086 */ 9087 int dev_set_mtu_ext(struct net_device *dev, int new_mtu, 9088 struct netlink_ext_ack *extack) 9089 { 9090 int err, orig_mtu; 9091 9092 if (new_mtu == dev->mtu) 9093 return 0; 9094 9095 err = dev_validate_mtu(dev, new_mtu, extack); 9096 if (err) 9097 return err; 9098 9099 if (!netif_device_present(dev)) 9100 return -ENODEV; 9101 9102 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev); 9103 err = notifier_to_errno(err); 9104 if (err) 9105 return err; 9106 9107 orig_mtu = dev->mtu; 9108 err = __dev_set_mtu(dev, new_mtu); 9109 9110 if (!err) { 9111 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev, 9112 orig_mtu); 9113 err = notifier_to_errno(err); 9114 if (err) { 9115 /* setting mtu back and notifying everyone again, 9116 * so that they have a chance to revert changes. 9117 */ 9118 __dev_set_mtu(dev, orig_mtu); 9119 call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev, 9120 new_mtu); 9121 } 9122 } 9123 return err; 9124 } 9125 9126 int dev_set_mtu(struct net_device *dev, int new_mtu) 9127 { 9128 struct netlink_ext_ack extack; 9129 int err; 9130 9131 memset(&extack, 0, sizeof(extack)); 9132 err = dev_set_mtu_ext(dev, new_mtu, &extack); 9133 if (err && extack._msg) 9134 net_err_ratelimited("%s: %s\n", dev->name, extack._msg); 9135 return err; 9136 } 9137 EXPORT_SYMBOL(dev_set_mtu); 9138 9139 /** 9140 * dev_change_tx_queue_len - Change TX queue length of a netdevice 9141 * @dev: device 9142 * @new_len: new tx queue length 9143 */ 9144 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len) 9145 { 9146 unsigned int orig_len = dev->tx_queue_len; 9147 int res; 9148 9149 if (new_len != (unsigned int)new_len) 9150 return -ERANGE; 9151 9152 if (new_len != orig_len) { 9153 WRITE_ONCE(dev->tx_queue_len, new_len); 9154 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev); 9155 res = notifier_to_errno(res); 9156 if (res) 9157 goto err_rollback; 9158 res = dev_qdisc_change_tx_queue_len(dev); 9159 if (res) 9160 goto err_rollback; 9161 } 9162 9163 return 0; 9164 9165 err_rollback: 9166 netdev_err(dev, "refused to change device tx_queue_len\n"); 9167 WRITE_ONCE(dev->tx_queue_len, orig_len); 9168 return res; 9169 } 9170 9171 /** 9172 * dev_set_group - Change group this device belongs to 9173 * @dev: device 9174 * @new_group: group this device should belong to 9175 */ 9176 void dev_set_group(struct net_device *dev, int new_group) 9177 { 9178 dev->group = new_group; 9179 } 9180 9181 /** 9182 * dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR. 9183 * @dev: device 9184 * @addr: new address 9185 * @extack: netlink extended ack 9186 */ 9187 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr, 9188 struct netlink_ext_ack *extack) 9189 { 9190 struct netdev_notifier_pre_changeaddr_info info = { 9191 .info.dev = dev, 9192 .info.extack = extack, 9193 .dev_addr = addr, 9194 }; 9195 int rc; 9196 9197 rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info); 9198 return notifier_to_errno(rc); 9199 } 9200 EXPORT_SYMBOL(dev_pre_changeaddr_notify); 9201 9202 /** 9203 * dev_set_mac_address - Change Media Access Control Address 9204 * @dev: device 9205 * @sa: new address 9206 * @extack: netlink extended ack 9207 * 9208 * Change the hardware (MAC) address of the device 9209 */ 9210 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa, 9211 struct netlink_ext_ack *extack) 9212 { 9213 const struct net_device_ops *ops = dev->netdev_ops; 9214 int err; 9215 9216 if (!ops->ndo_set_mac_address) 9217 return -EOPNOTSUPP; 9218 if (sa->sa_family != dev->type) 9219 return -EINVAL; 9220 if (!netif_device_present(dev)) 9221 return -ENODEV; 9222 err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack); 9223 if (err) 9224 return err; 9225 if (memcmp(dev->dev_addr, sa->sa_data, dev->addr_len)) { 9226 err = ops->ndo_set_mac_address(dev, sa); 9227 if (err) 9228 return err; 9229 } 9230 dev->addr_assign_type = NET_ADDR_SET; 9231 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 9232 add_device_randomness(dev->dev_addr, dev->addr_len); 9233 return 0; 9234 } 9235 EXPORT_SYMBOL(dev_set_mac_address); 9236 9237 DECLARE_RWSEM(dev_addr_sem); 9238 9239 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa, 9240 struct netlink_ext_ack *extack) 9241 { 9242 int ret; 9243 9244 down_write(&dev_addr_sem); 9245 ret = dev_set_mac_address(dev, sa, extack); 9246 up_write(&dev_addr_sem); 9247 return ret; 9248 } 9249 EXPORT_SYMBOL(dev_set_mac_address_user); 9250 9251 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name) 9252 { 9253 size_t size = sizeof(sa->sa_data_min); 9254 struct net_device *dev; 9255 int ret = 0; 9256 9257 down_read(&dev_addr_sem); 9258 rcu_read_lock(); 9259 9260 dev = dev_get_by_name_rcu(net, dev_name); 9261 if (!dev) { 9262 ret = -ENODEV; 9263 goto unlock; 9264 } 9265 if (!dev->addr_len) 9266 memset(sa->sa_data, 0, size); 9267 else 9268 memcpy(sa->sa_data, dev->dev_addr, 9269 min_t(size_t, size, dev->addr_len)); 9270 sa->sa_family = dev->type; 9271 9272 unlock: 9273 rcu_read_unlock(); 9274 up_read(&dev_addr_sem); 9275 return ret; 9276 } 9277 EXPORT_SYMBOL(dev_get_mac_address); 9278 9279 /** 9280 * dev_change_carrier - Change device carrier 9281 * @dev: device 9282 * @new_carrier: new value 9283 * 9284 * Change device carrier 9285 */ 9286 int dev_change_carrier(struct net_device *dev, bool new_carrier) 9287 { 9288 const struct net_device_ops *ops = dev->netdev_ops; 9289 9290 if (!ops->ndo_change_carrier) 9291 return -EOPNOTSUPP; 9292 if (!netif_device_present(dev)) 9293 return -ENODEV; 9294 return ops->ndo_change_carrier(dev, new_carrier); 9295 } 9296 9297 /** 9298 * dev_get_phys_port_id - Get device physical port ID 9299 * @dev: device 9300 * @ppid: port ID 9301 * 9302 * Get device physical port ID 9303 */ 9304 int dev_get_phys_port_id(struct net_device *dev, 9305 struct netdev_phys_item_id *ppid) 9306 { 9307 const struct net_device_ops *ops = dev->netdev_ops; 9308 9309 if (!ops->ndo_get_phys_port_id) 9310 return -EOPNOTSUPP; 9311 return ops->ndo_get_phys_port_id(dev, ppid); 9312 } 9313 9314 /** 9315 * dev_get_phys_port_name - Get device physical port name 9316 * @dev: device 9317 * @name: port name 9318 * @len: limit of bytes to copy to name 9319 * 9320 * Get device physical port name 9321 */ 9322 int dev_get_phys_port_name(struct net_device *dev, 9323 char *name, size_t len) 9324 { 9325 const struct net_device_ops *ops = dev->netdev_ops; 9326 int err; 9327 9328 if (ops->ndo_get_phys_port_name) { 9329 err = ops->ndo_get_phys_port_name(dev, name, len); 9330 if (err != -EOPNOTSUPP) 9331 return err; 9332 } 9333 return devlink_compat_phys_port_name_get(dev, name, len); 9334 } 9335 9336 /** 9337 * dev_get_port_parent_id - Get the device's port parent identifier 9338 * @dev: network device 9339 * @ppid: pointer to a storage for the port's parent identifier 9340 * @recurse: allow/disallow recursion to lower devices 9341 * 9342 * Get the devices's port parent identifier 9343 */ 9344 int dev_get_port_parent_id(struct net_device *dev, 9345 struct netdev_phys_item_id *ppid, 9346 bool recurse) 9347 { 9348 const struct net_device_ops *ops = dev->netdev_ops; 9349 struct netdev_phys_item_id first = { }; 9350 struct net_device *lower_dev; 9351 struct list_head *iter; 9352 int err; 9353 9354 if (ops->ndo_get_port_parent_id) { 9355 err = ops->ndo_get_port_parent_id(dev, ppid); 9356 if (err != -EOPNOTSUPP) 9357 return err; 9358 } 9359 9360 err = devlink_compat_switch_id_get(dev, ppid); 9361 if (!recurse || err != -EOPNOTSUPP) 9362 return err; 9363 9364 netdev_for_each_lower_dev(dev, lower_dev, iter) { 9365 err = dev_get_port_parent_id(lower_dev, ppid, true); 9366 if (err) 9367 break; 9368 if (!first.id_len) 9369 first = *ppid; 9370 else if (memcmp(&first, ppid, sizeof(*ppid))) 9371 return -EOPNOTSUPP; 9372 } 9373 9374 return err; 9375 } 9376 EXPORT_SYMBOL(dev_get_port_parent_id); 9377 9378 /** 9379 * netdev_port_same_parent_id - Indicate if two network devices have 9380 * the same port parent identifier 9381 * @a: first network device 9382 * @b: second network device 9383 */ 9384 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b) 9385 { 9386 struct netdev_phys_item_id a_id = { }; 9387 struct netdev_phys_item_id b_id = { }; 9388 9389 if (dev_get_port_parent_id(a, &a_id, true) || 9390 dev_get_port_parent_id(b, &b_id, true)) 9391 return false; 9392 9393 return netdev_phys_item_id_same(&a_id, &b_id); 9394 } 9395 EXPORT_SYMBOL(netdev_port_same_parent_id); 9396 9397 /** 9398 * dev_change_proto_down - set carrier according to proto_down. 9399 * 9400 * @dev: device 9401 * @proto_down: new value 9402 */ 9403 int dev_change_proto_down(struct net_device *dev, bool proto_down) 9404 { 9405 if (!dev->change_proto_down) 9406 return -EOPNOTSUPP; 9407 if (!netif_device_present(dev)) 9408 return -ENODEV; 9409 if (proto_down) 9410 netif_carrier_off(dev); 9411 else 9412 netif_carrier_on(dev); 9413 WRITE_ONCE(dev->proto_down, proto_down); 9414 return 0; 9415 } 9416 9417 /** 9418 * dev_change_proto_down_reason - proto down reason 9419 * 9420 * @dev: device 9421 * @mask: proto down mask 9422 * @value: proto down value 9423 */ 9424 void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask, 9425 u32 value) 9426 { 9427 u32 proto_down_reason; 9428 int b; 9429 9430 if (!mask) { 9431 proto_down_reason = value; 9432 } else { 9433 proto_down_reason = dev->proto_down_reason; 9434 for_each_set_bit(b, &mask, 32) { 9435 if (value & (1 << b)) 9436 proto_down_reason |= BIT(b); 9437 else 9438 proto_down_reason &= ~BIT(b); 9439 } 9440 } 9441 WRITE_ONCE(dev->proto_down_reason, proto_down_reason); 9442 } 9443 9444 struct bpf_xdp_link { 9445 struct bpf_link link; 9446 struct net_device *dev; /* protected by rtnl_lock, no refcnt held */ 9447 int flags; 9448 }; 9449 9450 static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags) 9451 { 9452 if (flags & XDP_FLAGS_HW_MODE) 9453 return XDP_MODE_HW; 9454 if (flags & XDP_FLAGS_DRV_MODE) 9455 return XDP_MODE_DRV; 9456 if (flags & XDP_FLAGS_SKB_MODE) 9457 return XDP_MODE_SKB; 9458 return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB; 9459 } 9460 9461 static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode) 9462 { 9463 switch (mode) { 9464 case XDP_MODE_SKB: 9465 return generic_xdp_install; 9466 case XDP_MODE_DRV: 9467 case XDP_MODE_HW: 9468 return dev->netdev_ops->ndo_bpf; 9469 default: 9470 return NULL; 9471 } 9472 } 9473 9474 static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev, 9475 enum bpf_xdp_mode mode) 9476 { 9477 return dev->xdp_state[mode].link; 9478 } 9479 9480 static struct bpf_prog *dev_xdp_prog(struct net_device *dev, 9481 enum bpf_xdp_mode mode) 9482 { 9483 struct bpf_xdp_link *link = dev_xdp_link(dev, mode); 9484 9485 if (link) 9486 return link->link.prog; 9487 return dev->xdp_state[mode].prog; 9488 } 9489 9490 u8 dev_xdp_prog_count(struct net_device *dev) 9491 { 9492 u8 count = 0; 9493 int i; 9494 9495 for (i = 0; i < __MAX_XDP_MODE; i++) 9496 if (dev->xdp_state[i].prog || dev->xdp_state[i].link) 9497 count++; 9498 return count; 9499 } 9500 EXPORT_SYMBOL_GPL(dev_xdp_prog_count); 9501 9502 int dev_xdp_propagate(struct net_device *dev, struct netdev_bpf *bpf) 9503 { 9504 if (!dev->netdev_ops->ndo_bpf) 9505 return -EOPNOTSUPP; 9506 9507 if (dev_get_min_mp_channel_count(dev)) { 9508 NL_SET_ERR_MSG(bpf->extack, "unable to propagate XDP to device using memory provider"); 9509 return -EBUSY; 9510 } 9511 9512 return dev->netdev_ops->ndo_bpf(dev, bpf); 9513 } 9514 EXPORT_SYMBOL_GPL(dev_xdp_propagate); 9515 9516 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode) 9517 { 9518 struct bpf_prog *prog = dev_xdp_prog(dev, mode); 9519 9520 return prog ? prog->aux->id : 0; 9521 } 9522 9523 static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode, 9524 struct bpf_xdp_link *link) 9525 { 9526 dev->xdp_state[mode].link = link; 9527 dev->xdp_state[mode].prog = NULL; 9528 } 9529 9530 static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode, 9531 struct bpf_prog *prog) 9532 { 9533 dev->xdp_state[mode].link = NULL; 9534 dev->xdp_state[mode].prog = prog; 9535 } 9536 9537 static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode, 9538 bpf_op_t bpf_op, struct netlink_ext_ack *extack, 9539 u32 flags, struct bpf_prog *prog) 9540 { 9541 struct netdev_bpf xdp; 9542 int err; 9543 9544 if (dev_get_min_mp_channel_count(dev)) { 9545 NL_SET_ERR_MSG(extack, "unable to install XDP to device using memory provider"); 9546 return -EBUSY; 9547 } 9548 9549 memset(&xdp, 0, sizeof(xdp)); 9550 xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG; 9551 xdp.extack = extack; 9552 xdp.flags = flags; 9553 xdp.prog = prog; 9554 9555 /* Drivers assume refcnt is already incremented (i.e, prog pointer is 9556 * "moved" into driver), so they don't increment it on their own, but 9557 * they do decrement refcnt when program is detached or replaced. 9558 * Given net_device also owns link/prog, we need to bump refcnt here 9559 * to prevent drivers from underflowing it. 9560 */ 9561 if (prog) 9562 bpf_prog_inc(prog); 9563 err = bpf_op(dev, &xdp); 9564 if (err) { 9565 if (prog) 9566 bpf_prog_put(prog); 9567 return err; 9568 } 9569 9570 if (mode != XDP_MODE_HW) 9571 bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog); 9572 9573 return 0; 9574 } 9575 9576 static void dev_xdp_uninstall(struct net_device *dev) 9577 { 9578 struct bpf_xdp_link *link; 9579 struct bpf_prog *prog; 9580 enum bpf_xdp_mode mode; 9581 bpf_op_t bpf_op; 9582 9583 ASSERT_RTNL(); 9584 9585 for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) { 9586 prog = dev_xdp_prog(dev, mode); 9587 if (!prog) 9588 continue; 9589 9590 bpf_op = dev_xdp_bpf_op(dev, mode); 9591 if (!bpf_op) 9592 continue; 9593 9594 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL)); 9595 9596 /* auto-detach link from net device */ 9597 link = dev_xdp_link(dev, mode); 9598 if (link) 9599 link->dev = NULL; 9600 else 9601 bpf_prog_put(prog); 9602 9603 dev_xdp_set_link(dev, mode, NULL); 9604 } 9605 } 9606 9607 static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack, 9608 struct bpf_xdp_link *link, struct bpf_prog *new_prog, 9609 struct bpf_prog *old_prog, u32 flags) 9610 { 9611 unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES); 9612 struct bpf_prog *cur_prog; 9613 struct net_device *upper; 9614 struct list_head *iter; 9615 enum bpf_xdp_mode mode; 9616 bpf_op_t bpf_op; 9617 int err; 9618 9619 ASSERT_RTNL(); 9620 9621 /* either link or prog attachment, never both */ 9622 if (link && (new_prog || old_prog)) 9623 return -EINVAL; 9624 /* link supports only XDP mode flags */ 9625 if (link && (flags & ~XDP_FLAGS_MODES)) { 9626 NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment"); 9627 return -EINVAL; 9628 } 9629 /* just one XDP mode bit should be set, zero defaults to drv/skb mode */ 9630 if (num_modes > 1) { 9631 NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set"); 9632 return -EINVAL; 9633 } 9634 /* avoid ambiguity if offload + drv/skb mode progs are both loaded */ 9635 if (!num_modes && dev_xdp_prog_count(dev) > 1) { 9636 NL_SET_ERR_MSG(extack, 9637 "More than one program loaded, unset mode is ambiguous"); 9638 return -EINVAL; 9639 } 9640 /* old_prog != NULL implies XDP_FLAGS_REPLACE is set */ 9641 if (old_prog && !(flags & XDP_FLAGS_REPLACE)) { 9642 NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified"); 9643 return -EINVAL; 9644 } 9645 9646 mode = dev_xdp_mode(dev, flags); 9647 /* can't replace attached link */ 9648 if (dev_xdp_link(dev, mode)) { 9649 NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link"); 9650 return -EBUSY; 9651 } 9652 9653 /* don't allow if an upper device already has a program */ 9654 netdev_for_each_upper_dev_rcu(dev, upper, iter) { 9655 if (dev_xdp_prog_count(upper) > 0) { 9656 NL_SET_ERR_MSG(extack, "Cannot attach when an upper device already has a program"); 9657 return -EEXIST; 9658 } 9659 } 9660 9661 cur_prog = dev_xdp_prog(dev, mode); 9662 /* can't replace attached prog with link */ 9663 if (link && cur_prog) { 9664 NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link"); 9665 return -EBUSY; 9666 } 9667 if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) { 9668 NL_SET_ERR_MSG(extack, "Active program does not match expected"); 9669 return -EEXIST; 9670 } 9671 9672 /* put effective new program into new_prog */ 9673 if (link) 9674 new_prog = link->link.prog; 9675 9676 if (new_prog) { 9677 bool offload = mode == XDP_MODE_HW; 9678 enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB 9679 ? XDP_MODE_DRV : XDP_MODE_SKB; 9680 9681 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) { 9682 NL_SET_ERR_MSG(extack, "XDP program already attached"); 9683 return -EBUSY; 9684 } 9685 if (!offload && dev_xdp_prog(dev, other_mode)) { 9686 NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time"); 9687 return -EEXIST; 9688 } 9689 if (!offload && bpf_prog_is_offloaded(new_prog->aux)) { 9690 NL_SET_ERR_MSG(extack, "Using offloaded program without HW_MODE flag is not supported"); 9691 return -EINVAL; 9692 } 9693 if (bpf_prog_is_dev_bound(new_prog->aux) && !bpf_offload_dev_match(new_prog, dev)) { 9694 NL_SET_ERR_MSG(extack, "Program bound to different device"); 9695 return -EINVAL; 9696 } 9697 if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) { 9698 NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device"); 9699 return -EINVAL; 9700 } 9701 if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) { 9702 NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device"); 9703 return -EINVAL; 9704 } 9705 } 9706 9707 /* don't call drivers if the effective program didn't change */ 9708 if (new_prog != cur_prog) { 9709 bpf_op = dev_xdp_bpf_op(dev, mode); 9710 if (!bpf_op) { 9711 NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode"); 9712 return -EOPNOTSUPP; 9713 } 9714 9715 err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog); 9716 if (err) 9717 return err; 9718 } 9719 9720 if (link) 9721 dev_xdp_set_link(dev, mode, link); 9722 else 9723 dev_xdp_set_prog(dev, mode, new_prog); 9724 if (cur_prog) 9725 bpf_prog_put(cur_prog); 9726 9727 return 0; 9728 } 9729 9730 static int dev_xdp_attach_link(struct net_device *dev, 9731 struct netlink_ext_ack *extack, 9732 struct bpf_xdp_link *link) 9733 { 9734 return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags); 9735 } 9736 9737 static int dev_xdp_detach_link(struct net_device *dev, 9738 struct netlink_ext_ack *extack, 9739 struct bpf_xdp_link *link) 9740 { 9741 enum bpf_xdp_mode mode; 9742 bpf_op_t bpf_op; 9743 9744 ASSERT_RTNL(); 9745 9746 mode = dev_xdp_mode(dev, link->flags); 9747 if (dev_xdp_link(dev, mode) != link) 9748 return -EINVAL; 9749 9750 bpf_op = dev_xdp_bpf_op(dev, mode); 9751 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL)); 9752 dev_xdp_set_link(dev, mode, NULL); 9753 return 0; 9754 } 9755 9756 static void bpf_xdp_link_release(struct bpf_link *link) 9757 { 9758 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link); 9759 9760 rtnl_lock(); 9761 9762 /* if racing with net_device's tear down, xdp_link->dev might be 9763 * already NULL, in which case link was already auto-detached 9764 */ 9765 if (xdp_link->dev) { 9766 WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link)); 9767 xdp_link->dev = NULL; 9768 } 9769 9770 rtnl_unlock(); 9771 } 9772 9773 static int bpf_xdp_link_detach(struct bpf_link *link) 9774 { 9775 bpf_xdp_link_release(link); 9776 return 0; 9777 } 9778 9779 static void bpf_xdp_link_dealloc(struct bpf_link *link) 9780 { 9781 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link); 9782 9783 kfree(xdp_link); 9784 } 9785 9786 static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link, 9787 struct seq_file *seq) 9788 { 9789 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link); 9790 u32 ifindex = 0; 9791 9792 rtnl_lock(); 9793 if (xdp_link->dev) 9794 ifindex = xdp_link->dev->ifindex; 9795 rtnl_unlock(); 9796 9797 seq_printf(seq, "ifindex:\t%u\n", ifindex); 9798 } 9799 9800 static int bpf_xdp_link_fill_link_info(const struct bpf_link *link, 9801 struct bpf_link_info *info) 9802 { 9803 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link); 9804 u32 ifindex = 0; 9805 9806 rtnl_lock(); 9807 if (xdp_link->dev) 9808 ifindex = xdp_link->dev->ifindex; 9809 rtnl_unlock(); 9810 9811 info->xdp.ifindex = ifindex; 9812 return 0; 9813 } 9814 9815 static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog, 9816 struct bpf_prog *old_prog) 9817 { 9818 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link); 9819 enum bpf_xdp_mode mode; 9820 bpf_op_t bpf_op; 9821 int err = 0; 9822 9823 rtnl_lock(); 9824 9825 /* link might have been auto-released already, so fail */ 9826 if (!xdp_link->dev) { 9827 err = -ENOLINK; 9828 goto out_unlock; 9829 } 9830 9831 if (old_prog && link->prog != old_prog) { 9832 err = -EPERM; 9833 goto out_unlock; 9834 } 9835 old_prog = link->prog; 9836 if (old_prog->type != new_prog->type || 9837 old_prog->expected_attach_type != new_prog->expected_attach_type) { 9838 err = -EINVAL; 9839 goto out_unlock; 9840 } 9841 9842 if (old_prog == new_prog) { 9843 /* no-op, don't disturb drivers */ 9844 bpf_prog_put(new_prog); 9845 goto out_unlock; 9846 } 9847 9848 mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags); 9849 bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode); 9850 err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL, 9851 xdp_link->flags, new_prog); 9852 if (err) 9853 goto out_unlock; 9854 9855 old_prog = xchg(&link->prog, new_prog); 9856 bpf_prog_put(old_prog); 9857 9858 out_unlock: 9859 rtnl_unlock(); 9860 return err; 9861 } 9862 9863 static const struct bpf_link_ops bpf_xdp_link_lops = { 9864 .release = bpf_xdp_link_release, 9865 .dealloc = bpf_xdp_link_dealloc, 9866 .detach = bpf_xdp_link_detach, 9867 .show_fdinfo = bpf_xdp_link_show_fdinfo, 9868 .fill_link_info = bpf_xdp_link_fill_link_info, 9869 .update_prog = bpf_xdp_link_update, 9870 }; 9871 9872 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog) 9873 { 9874 struct net *net = current->nsproxy->net_ns; 9875 struct bpf_link_primer link_primer; 9876 struct netlink_ext_ack extack = {}; 9877 struct bpf_xdp_link *link; 9878 struct net_device *dev; 9879 int err, fd; 9880 9881 rtnl_lock(); 9882 dev = dev_get_by_index(net, attr->link_create.target_ifindex); 9883 if (!dev) { 9884 rtnl_unlock(); 9885 return -EINVAL; 9886 } 9887 9888 link = kzalloc(sizeof(*link), GFP_USER); 9889 if (!link) { 9890 err = -ENOMEM; 9891 goto unlock; 9892 } 9893 9894 bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog); 9895 link->dev = dev; 9896 link->flags = attr->link_create.flags; 9897 9898 err = bpf_link_prime(&link->link, &link_primer); 9899 if (err) { 9900 kfree(link); 9901 goto unlock; 9902 } 9903 9904 err = dev_xdp_attach_link(dev, &extack, link); 9905 rtnl_unlock(); 9906 9907 if (err) { 9908 link->dev = NULL; 9909 bpf_link_cleanup(&link_primer); 9910 trace_bpf_xdp_link_attach_failed(extack._msg); 9911 goto out_put_dev; 9912 } 9913 9914 fd = bpf_link_settle(&link_primer); 9915 /* link itself doesn't hold dev's refcnt to not complicate shutdown */ 9916 dev_put(dev); 9917 return fd; 9918 9919 unlock: 9920 rtnl_unlock(); 9921 9922 out_put_dev: 9923 dev_put(dev); 9924 return err; 9925 } 9926 9927 /** 9928 * dev_change_xdp_fd - set or clear a bpf program for a device rx path 9929 * @dev: device 9930 * @extack: netlink extended ack 9931 * @fd: new program fd or negative value to clear 9932 * @expected_fd: old program fd that userspace expects to replace or clear 9933 * @flags: xdp-related flags 9934 * 9935 * Set or clear a bpf program for a device 9936 */ 9937 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack, 9938 int fd, int expected_fd, u32 flags) 9939 { 9940 enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags); 9941 struct bpf_prog *new_prog = NULL, *old_prog = NULL; 9942 int err; 9943 9944 ASSERT_RTNL(); 9945 9946 if (fd >= 0) { 9947 new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP, 9948 mode != XDP_MODE_SKB); 9949 if (IS_ERR(new_prog)) 9950 return PTR_ERR(new_prog); 9951 } 9952 9953 if (expected_fd >= 0) { 9954 old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP, 9955 mode != XDP_MODE_SKB); 9956 if (IS_ERR(old_prog)) { 9957 err = PTR_ERR(old_prog); 9958 old_prog = NULL; 9959 goto err_out; 9960 } 9961 } 9962 9963 err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags); 9964 9965 err_out: 9966 if (err && new_prog) 9967 bpf_prog_put(new_prog); 9968 if (old_prog) 9969 bpf_prog_put(old_prog); 9970 return err; 9971 } 9972 9973 u32 dev_get_min_mp_channel_count(const struct net_device *dev) 9974 { 9975 int i; 9976 9977 ASSERT_RTNL(); 9978 9979 for (i = dev->real_num_rx_queues - 1; i >= 0; i--) 9980 if (dev->_rx[i].mp_params.mp_priv) 9981 /* The channel count is the idx plus 1. */ 9982 return i + 1; 9983 9984 return 0; 9985 } 9986 9987 /** 9988 * dev_index_reserve() - allocate an ifindex in a namespace 9989 * @net: the applicable net namespace 9990 * @ifindex: requested ifindex, pass %0 to get one allocated 9991 * 9992 * Allocate a ifindex for a new device. Caller must either use the ifindex 9993 * to store the device (via list_netdevice()) or call dev_index_release() 9994 * to give the index up. 9995 * 9996 * Return: a suitable unique value for a new device interface number or -errno. 9997 */ 9998 static int dev_index_reserve(struct net *net, u32 ifindex) 9999 { 10000 int err; 10001 10002 if (ifindex > INT_MAX) { 10003 DEBUG_NET_WARN_ON_ONCE(1); 10004 return -EINVAL; 10005 } 10006 10007 if (!ifindex) 10008 err = xa_alloc_cyclic(&net->dev_by_index, &ifindex, NULL, 10009 xa_limit_31b, &net->ifindex, GFP_KERNEL); 10010 else 10011 err = xa_insert(&net->dev_by_index, ifindex, NULL, GFP_KERNEL); 10012 if (err < 0) 10013 return err; 10014 10015 return ifindex; 10016 } 10017 10018 static void dev_index_release(struct net *net, int ifindex) 10019 { 10020 /* Expect only unused indexes, unlist_netdevice() removes the used */ 10021 WARN_ON(xa_erase(&net->dev_by_index, ifindex)); 10022 } 10023 10024 /* Delayed registration/unregisteration */ 10025 LIST_HEAD(net_todo_list); 10026 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq); 10027 atomic_t dev_unreg_count = ATOMIC_INIT(0); 10028 10029 static void net_set_todo(struct net_device *dev) 10030 { 10031 list_add_tail(&dev->todo_list, &net_todo_list); 10032 } 10033 10034 static netdev_features_t netdev_sync_upper_features(struct net_device *lower, 10035 struct net_device *upper, netdev_features_t features) 10036 { 10037 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES; 10038 netdev_features_t feature; 10039 int feature_bit; 10040 10041 for_each_netdev_feature(upper_disables, feature_bit) { 10042 feature = __NETIF_F_BIT(feature_bit); 10043 if (!(upper->wanted_features & feature) 10044 && (features & feature)) { 10045 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n", 10046 &feature, upper->name); 10047 features &= ~feature; 10048 } 10049 } 10050 10051 return features; 10052 } 10053 10054 static void netdev_sync_lower_features(struct net_device *upper, 10055 struct net_device *lower, netdev_features_t features) 10056 { 10057 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES; 10058 netdev_features_t feature; 10059 int feature_bit; 10060 10061 for_each_netdev_feature(upper_disables, feature_bit) { 10062 feature = __NETIF_F_BIT(feature_bit); 10063 if (!(features & feature) && (lower->features & feature)) { 10064 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n", 10065 &feature, lower->name); 10066 lower->wanted_features &= ~feature; 10067 __netdev_update_features(lower); 10068 10069 if (unlikely(lower->features & feature)) 10070 netdev_WARN(upper, "failed to disable %pNF on %s!\n", 10071 &feature, lower->name); 10072 else 10073 netdev_features_change(lower); 10074 } 10075 } 10076 } 10077 10078 static bool netdev_has_ip_or_hw_csum(netdev_features_t features) 10079 { 10080 netdev_features_t ip_csum_mask = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM; 10081 bool ip_csum = (features & ip_csum_mask) == ip_csum_mask; 10082 bool hw_csum = features & NETIF_F_HW_CSUM; 10083 10084 return ip_csum || hw_csum; 10085 } 10086 10087 static netdev_features_t netdev_fix_features(struct net_device *dev, 10088 netdev_features_t features) 10089 { 10090 /* Fix illegal checksum combinations */ 10091 if ((features & NETIF_F_HW_CSUM) && 10092 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 10093 netdev_warn(dev, "mixed HW and IP checksum settings.\n"); 10094 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 10095 } 10096 10097 /* TSO requires that SG is present as well. */ 10098 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) { 10099 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n"); 10100 features &= ~NETIF_F_ALL_TSO; 10101 } 10102 10103 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) && 10104 !(features & NETIF_F_IP_CSUM)) { 10105 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n"); 10106 features &= ~NETIF_F_TSO; 10107 features &= ~NETIF_F_TSO_ECN; 10108 } 10109 10110 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) && 10111 !(features & NETIF_F_IPV6_CSUM)) { 10112 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n"); 10113 features &= ~NETIF_F_TSO6; 10114 } 10115 10116 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */ 10117 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO)) 10118 features &= ~NETIF_F_TSO_MANGLEID; 10119 10120 /* TSO ECN requires that TSO is present as well. */ 10121 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN) 10122 features &= ~NETIF_F_TSO_ECN; 10123 10124 /* Software GSO depends on SG. */ 10125 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) { 10126 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n"); 10127 features &= ~NETIF_F_GSO; 10128 } 10129 10130 /* GSO partial features require GSO partial be set */ 10131 if ((features & dev->gso_partial_features) && 10132 !(features & NETIF_F_GSO_PARTIAL)) { 10133 netdev_dbg(dev, 10134 "Dropping partially supported GSO features since no GSO partial.\n"); 10135 features &= ~dev->gso_partial_features; 10136 } 10137 10138 if (!(features & NETIF_F_RXCSUM)) { 10139 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet 10140 * successfully merged by hardware must also have the 10141 * checksum verified by hardware. If the user does not 10142 * want to enable RXCSUM, logically, we should disable GRO_HW. 10143 */ 10144 if (features & NETIF_F_GRO_HW) { 10145 netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n"); 10146 features &= ~NETIF_F_GRO_HW; 10147 } 10148 } 10149 10150 /* LRO/HW-GRO features cannot be combined with RX-FCS */ 10151 if (features & NETIF_F_RXFCS) { 10152 if (features & NETIF_F_LRO) { 10153 netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n"); 10154 features &= ~NETIF_F_LRO; 10155 } 10156 10157 if (features & NETIF_F_GRO_HW) { 10158 netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n"); 10159 features &= ~NETIF_F_GRO_HW; 10160 } 10161 } 10162 10163 if ((features & NETIF_F_GRO_HW) && (features & NETIF_F_LRO)) { 10164 netdev_dbg(dev, "Dropping LRO feature since HW-GRO is requested.\n"); 10165 features &= ~NETIF_F_LRO; 10166 } 10167 10168 if ((features & NETIF_F_HW_TLS_TX) && !netdev_has_ip_or_hw_csum(features)) { 10169 netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n"); 10170 features &= ~NETIF_F_HW_TLS_TX; 10171 } 10172 10173 if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) { 10174 netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n"); 10175 features &= ~NETIF_F_HW_TLS_RX; 10176 } 10177 10178 if ((features & NETIF_F_GSO_UDP_L4) && !netdev_has_ip_or_hw_csum(features)) { 10179 netdev_dbg(dev, "Dropping USO feature since no CSUM feature.\n"); 10180 features &= ~NETIF_F_GSO_UDP_L4; 10181 } 10182 10183 return features; 10184 } 10185 10186 int __netdev_update_features(struct net_device *dev) 10187 { 10188 struct net_device *upper, *lower; 10189 netdev_features_t features; 10190 struct list_head *iter; 10191 int err = -1; 10192 10193 ASSERT_RTNL(); 10194 10195 features = netdev_get_wanted_features(dev); 10196 10197 if (dev->netdev_ops->ndo_fix_features) 10198 features = dev->netdev_ops->ndo_fix_features(dev, features); 10199 10200 /* driver might be less strict about feature dependencies */ 10201 features = netdev_fix_features(dev, features); 10202 10203 /* some features can't be enabled if they're off on an upper device */ 10204 netdev_for_each_upper_dev_rcu(dev, upper, iter) 10205 features = netdev_sync_upper_features(dev, upper, features); 10206 10207 if (dev->features == features) 10208 goto sync_lower; 10209 10210 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n", 10211 &dev->features, &features); 10212 10213 if (dev->netdev_ops->ndo_set_features) 10214 err = dev->netdev_ops->ndo_set_features(dev, features); 10215 else 10216 err = 0; 10217 10218 if (unlikely(err < 0)) { 10219 netdev_err(dev, 10220 "set_features() failed (%d); wanted %pNF, left %pNF\n", 10221 err, &features, &dev->features); 10222 /* return non-0 since some features might have changed and 10223 * it's better to fire a spurious notification than miss it 10224 */ 10225 return -1; 10226 } 10227 10228 sync_lower: 10229 /* some features must be disabled on lower devices when disabled 10230 * on an upper device (think: bonding master or bridge) 10231 */ 10232 netdev_for_each_lower_dev(dev, lower, iter) 10233 netdev_sync_lower_features(dev, lower, features); 10234 10235 if (!err) { 10236 netdev_features_t diff = features ^ dev->features; 10237 10238 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) { 10239 /* udp_tunnel_{get,drop}_rx_info both need 10240 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the 10241 * device, or they won't do anything. 10242 * Thus we need to update dev->features 10243 * *before* calling udp_tunnel_get_rx_info, 10244 * but *after* calling udp_tunnel_drop_rx_info. 10245 */ 10246 if (features & NETIF_F_RX_UDP_TUNNEL_PORT) { 10247 dev->features = features; 10248 udp_tunnel_get_rx_info(dev); 10249 } else { 10250 udp_tunnel_drop_rx_info(dev); 10251 } 10252 } 10253 10254 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) { 10255 if (features & NETIF_F_HW_VLAN_CTAG_FILTER) { 10256 dev->features = features; 10257 err |= vlan_get_rx_ctag_filter_info(dev); 10258 } else { 10259 vlan_drop_rx_ctag_filter_info(dev); 10260 } 10261 } 10262 10263 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) { 10264 if (features & NETIF_F_HW_VLAN_STAG_FILTER) { 10265 dev->features = features; 10266 err |= vlan_get_rx_stag_filter_info(dev); 10267 } else { 10268 vlan_drop_rx_stag_filter_info(dev); 10269 } 10270 } 10271 10272 dev->features = features; 10273 } 10274 10275 return err < 0 ? 0 : 1; 10276 } 10277 10278 /** 10279 * netdev_update_features - recalculate device features 10280 * @dev: the device to check 10281 * 10282 * Recalculate dev->features set and send notifications if it 10283 * has changed. Should be called after driver or hardware dependent 10284 * conditions might have changed that influence the features. 10285 */ 10286 void netdev_update_features(struct net_device *dev) 10287 { 10288 if (__netdev_update_features(dev)) 10289 netdev_features_change(dev); 10290 } 10291 EXPORT_SYMBOL(netdev_update_features); 10292 10293 /** 10294 * netdev_change_features - recalculate device features 10295 * @dev: the device to check 10296 * 10297 * Recalculate dev->features set and send notifications even 10298 * if they have not changed. Should be called instead of 10299 * netdev_update_features() if also dev->vlan_features might 10300 * have changed to allow the changes to be propagated to stacked 10301 * VLAN devices. 10302 */ 10303 void netdev_change_features(struct net_device *dev) 10304 { 10305 __netdev_update_features(dev); 10306 netdev_features_change(dev); 10307 } 10308 EXPORT_SYMBOL(netdev_change_features); 10309 10310 /** 10311 * netif_stacked_transfer_operstate - transfer operstate 10312 * @rootdev: the root or lower level device to transfer state from 10313 * @dev: the device to transfer operstate to 10314 * 10315 * Transfer operational state from root to device. This is normally 10316 * called when a stacking relationship exists between the root 10317 * device and the device(a leaf device). 10318 */ 10319 void netif_stacked_transfer_operstate(const struct net_device *rootdev, 10320 struct net_device *dev) 10321 { 10322 if (rootdev->operstate == IF_OPER_DORMANT) 10323 netif_dormant_on(dev); 10324 else 10325 netif_dormant_off(dev); 10326 10327 if (rootdev->operstate == IF_OPER_TESTING) 10328 netif_testing_on(dev); 10329 else 10330 netif_testing_off(dev); 10331 10332 if (netif_carrier_ok(rootdev)) 10333 netif_carrier_on(dev); 10334 else 10335 netif_carrier_off(dev); 10336 } 10337 EXPORT_SYMBOL(netif_stacked_transfer_operstate); 10338 10339 static int netif_alloc_rx_queues(struct net_device *dev) 10340 { 10341 unsigned int i, count = dev->num_rx_queues; 10342 struct netdev_rx_queue *rx; 10343 size_t sz = count * sizeof(*rx); 10344 int err = 0; 10345 10346 BUG_ON(count < 1); 10347 10348 rx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL); 10349 if (!rx) 10350 return -ENOMEM; 10351 10352 dev->_rx = rx; 10353 10354 for (i = 0; i < count; i++) { 10355 rx[i].dev = dev; 10356 10357 /* XDP RX-queue setup */ 10358 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0); 10359 if (err < 0) 10360 goto err_rxq_info; 10361 } 10362 return 0; 10363 10364 err_rxq_info: 10365 /* Rollback successful reg's and free other resources */ 10366 while (i--) 10367 xdp_rxq_info_unreg(&rx[i].xdp_rxq); 10368 kvfree(dev->_rx); 10369 dev->_rx = NULL; 10370 return err; 10371 } 10372 10373 static void netif_free_rx_queues(struct net_device *dev) 10374 { 10375 unsigned int i, count = dev->num_rx_queues; 10376 10377 /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */ 10378 if (!dev->_rx) 10379 return; 10380 10381 for (i = 0; i < count; i++) 10382 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq); 10383 10384 kvfree(dev->_rx); 10385 } 10386 10387 static void netdev_init_one_queue(struct net_device *dev, 10388 struct netdev_queue *queue, void *_unused) 10389 { 10390 /* Initialize queue lock */ 10391 spin_lock_init(&queue->_xmit_lock); 10392 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type); 10393 queue->xmit_lock_owner = -1; 10394 netdev_queue_numa_node_write(queue, NUMA_NO_NODE); 10395 queue->dev = dev; 10396 #ifdef CONFIG_BQL 10397 dql_init(&queue->dql, HZ); 10398 #endif 10399 } 10400 10401 static void netif_free_tx_queues(struct net_device *dev) 10402 { 10403 kvfree(dev->_tx); 10404 } 10405 10406 static int netif_alloc_netdev_queues(struct net_device *dev) 10407 { 10408 unsigned int count = dev->num_tx_queues; 10409 struct netdev_queue *tx; 10410 size_t sz = count * sizeof(*tx); 10411 10412 if (count < 1 || count > 0xffff) 10413 return -EINVAL; 10414 10415 tx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL); 10416 if (!tx) 10417 return -ENOMEM; 10418 10419 dev->_tx = tx; 10420 10421 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL); 10422 spin_lock_init(&dev->tx_global_lock); 10423 10424 return 0; 10425 } 10426 10427 void netif_tx_stop_all_queues(struct net_device *dev) 10428 { 10429 unsigned int i; 10430 10431 for (i = 0; i < dev->num_tx_queues; i++) { 10432 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 10433 10434 netif_tx_stop_queue(txq); 10435 } 10436 } 10437 EXPORT_SYMBOL(netif_tx_stop_all_queues); 10438 10439 static int netdev_do_alloc_pcpu_stats(struct net_device *dev) 10440 { 10441 void __percpu *v; 10442 10443 /* Drivers implementing ndo_get_peer_dev must support tstat 10444 * accounting, so that skb_do_redirect() can bump the dev's 10445 * RX stats upon network namespace switch. 10446 */ 10447 if (dev->netdev_ops->ndo_get_peer_dev && 10448 dev->pcpu_stat_type != NETDEV_PCPU_STAT_TSTATS) 10449 return -EOPNOTSUPP; 10450 10451 switch (dev->pcpu_stat_type) { 10452 case NETDEV_PCPU_STAT_NONE: 10453 return 0; 10454 case NETDEV_PCPU_STAT_LSTATS: 10455 v = dev->lstats = netdev_alloc_pcpu_stats(struct pcpu_lstats); 10456 break; 10457 case NETDEV_PCPU_STAT_TSTATS: 10458 v = dev->tstats = netdev_alloc_pcpu_stats(struct pcpu_sw_netstats); 10459 break; 10460 case NETDEV_PCPU_STAT_DSTATS: 10461 v = dev->dstats = netdev_alloc_pcpu_stats(struct pcpu_dstats); 10462 break; 10463 default: 10464 return -EINVAL; 10465 } 10466 10467 return v ? 0 : -ENOMEM; 10468 } 10469 10470 static void netdev_do_free_pcpu_stats(struct net_device *dev) 10471 { 10472 switch (dev->pcpu_stat_type) { 10473 case NETDEV_PCPU_STAT_NONE: 10474 return; 10475 case NETDEV_PCPU_STAT_LSTATS: 10476 free_percpu(dev->lstats); 10477 break; 10478 case NETDEV_PCPU_STAT_TSTATS: 10479 free_percpu(dev->tstats); 10480 break; 10481 case NETDEV_PCPU_STAT_DSTATS: 10482 free_percpu(dev->dstats); 10483 break; 10484 } 10485 } 10486 10487 static void netdev_free_phy_link_topology(struct net_device *dev) 10488 { 10489 struct phy_link_topology *topo = dev->link_topo; 10490 10491 if (IS_ENABLED(CONFIG_PHYLIB) && topo) { 10492 xa_destroy(&topo->phys); 10493 kfree(topo); 10494 dev->link_topo = NULL; 10495 } 10496 } 10497 10498 /** 10499 * register_netdevice() - register a network device 10500 * @dev: device to register 10501 * 10502 * Take a prepared network device structure and make it externally accessible. 10503 * A %NETDEV_REGISTER message is sent to the netdev notifier chain. 10504 * Callers must hold the rtnl lock - you may want register_netdev() 10505 * instead of this. 10506 */ 10507 int register_netdevice(struct net_device *dev) 10508 { 10509 int ret; 10510 struct net *net = dev_net(dev); 10511 10512 BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE < 10513 NETDEV_FEATURE_COUNT); 10514 BUG_ON(dev_boot_phase); 10515 ASSERT_RTNL(); 10516 10517 might_sleep(); 10518 10519 /* When net_device's are persistent, this will be fatal. */ 10520 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED); 10521 BUG_ON(!net); 10522 10523 ret = ethtool_check_ops(dev->ethtool_ops); 10524 if (ret) 10525 return ret; 10526 10527 /* rss ctx ID 0 is reserved for the default context, start from 1 */ 10528 xa_init_flags(&dev->ethtool->rss_ctx, XA_FLAGS_ALLOC1); 10529 mutex_init(&dev->ethtool->rss_lock); 10530 10531 spin_lock_init(&dev->addr_list_lock); 10532 netdev_set_addr_lockdep_class(dev); 10533 10534 ret = dev_get_valid_name(net, dev, dev->name); 10535 if (ret < 0) 10536 goto out; 10537 10538 ret = -ENOMEM; 10539 dev->name_node = netdev_name_node_head_alloc(dev); 10540 if (!dev->name_node) 10541 goto out; 10542 10543 /* Init, if this function is available */ 10544 if (dev->netdev_ops->ndo_init) { 10545 ret = dev->netdev_ops->ndo_init(dev); 10546 if (ret) { 10547 if (ret > 0) 10548 ret = -EIO; 10549 goto err_free_name; 10550 } 10551 } 10552 10553 if (((dev->hw_features | dev->features) & 10554 NETIF_F_HW_VLAN_CTAG_FILTER) && 10555 (!dev->netdev_ops->ndo_vlan_rx_add_vid || 10556 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) { 10557 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n"); 10558 ret = -EINVAL; 10559 goto err_uninit; 10560 } 10561 10562 ret = netdev_do_alloc_pcpu_stats(dev); 10563 if (ret) 10564 goto err_uninit; 10565 10566 ret = dev_index_reserve(net, dev->ifindex); 10567 if (ret < 0) 10568 goto err_free_pcpu; 10569 dev->ifindex = ret; 10570 10571 /* Transfer changeable features to wanted_features and enable 10572 * software offloads (GSO and GRO). 10573 */ 10574 dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF); 10575 dev->features |= NETIF_F_SOFT_FEATURES; 10576 10577 if (dev->udp_tunnel_nic_info) { 10578 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT; 10579 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT; 10580 } 10581 10582 dev->wanted_features = dev->features & dev->hw_features; 10583 10584 if (!(dev->flags & IFF_LOOPBACK)) 10585 dev->hw_features |= NETIF_F_NOCACHE_COPY; 10586 10587 /* If IPv4 TCP segmentation offload is supported we should also 10588 * allow the device to enable segmenting the frame with the option 10589 * of ignoring a static IP ID value. This doesn't enable the 10590 * feature itself but allows the user to enable it later. 10591 */ 10592 if (dev->hw_features & NETIF_F_TSO) 10593 dev->hw_features |= NETIF_F_TSO_MANGLEID; 10594 if (dev->vlan_features & NETIF_F_TSO) 10595 dev->vlan_features |= NETIF_F_TSO_MANGLEID; 10596 if (dev->mpls_features & NETIF_F_TSO) 10597 dev->mpls_features |= NETIF_F_TSO_MANGLEID; 10598 if (dev->hw_enc_features & NETIF_F_TSO) 10599 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID; 10600 10601 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices. 10602 */ 10603 dev->vlan_features |= NETIF_F_HIGHDMA; 10604 10605 /* Make NETIF_F_SG inheritable to tunnel devices. 10606 */ 10607 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL; 10608 10609 /* Make NETIF_F_SG inheritable to MPLS. 10610 */ 10611 dev->mpls_features |= NETIF_F_SG; 10612 10613 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev); 10614 ret = notifier_to_errno(ret); 10615 if (ret) 10616 goto err_ifindex_release; 10617 10618 ret = netdev_register_kobject(dev); 10619 10620 WRITE_ONCE(dev->reg_state, ret ? NETREG_UNREGISTERED : NETREG_REGISTERED); 10621 10622 if (ret) 10623 goto err_uninit_notify; 10624 10625 __netdev_update_features(dev); 10626 10627 /* 10628 * Default initial state at registry is that the 10629 * device is present. 10630 */ 10631 10632 set_bit(__LINK_STATE_PRESENT, &dev->state); 10633 10634 linkwatch_init_dev(dev); 10635 10636 dev_init_scheduler(dev); 10637 10638 netdev_hold(dev, &dev->dev_registered_tracker, GFP_KERNEL); 10639 list_netdevice(dev); 10640 10641 add_device_randomness(dev->dev_addr, dev->addr_len); 10642 10643 /* If the device has permanent device address, driver should 10644 * set dev_addr and also addr_assign_type should be set to 10645 * NET_ADDR_PERM (default value). 10646 */ 10647 if (dev->addr_assign_type == NET_ADDR_PERM) 10648 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len); 10649 10650 /* Notify protocols, that a new device appeared. */ 10651 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev); 10652 ret = notifier_to_errno(ret); 10653 if (ret) { 10654 /* Expect explicit free_netdev() on failure */ 10655 dev->needs_free_netdev = false; 10656 unregister_netdevice_queue(dev, NULL); 10657 goto out; 10658 } 10659 /* 10660 * Prevent userspace races by waiting until the network 10661 * device is fully setup before sending notifications. 10662 */ 10663 if (!dev->rtnl_link_ops || 10664 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 10665 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL); 10666 10667 out: 10668 return ret; 10669 10670 err_uninit_notify: 10671 call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev); 10672 err_ifindex_release: 10673 dev_index_release(net, dev->ifindex); 10674 err_free_pcpu: 10675 netdev_do_free_pcpu_stats(dev); 10676 err_uninit: 10677 if (dev->netdev_ops->ndo_uninit) 10678 dev->netdev_ops->ndo_uninit(dev); 10679 if (dev->priv_destructor) 10680 dev->priv_destructor(dev); 10681 err_free_name: 10682 netdev_name_node_free(dev->name_node); 10683 goto out; 10684 } 10685 EXPORT_SYMBOL(register_netdevice); 10686 10687 /* Initialize the core of a dummy net device. 10688 * This is useful if you are calling this function after alloc_netdev(), 10689 * since it does not memset the net_device fields. 10690 */ 10691 static void init_dummy_netdev_core(struct net_device *dev) 10692 { 10693 /* make sure we BUG if trying to hit standard 10694 * register/unregister code path 10695 */ 10696 dev->reg_state = NETREG_DUMMY; 10697 10698 /* NAPI wants this */ 10699 INIT_LIST_HEAD(&dev->napi_list); 10700 10701 /* a dummy interface is started by default */ 10702 set_bit(__LINK_STATE_PRESENT, &dev->state); 10703 set_bit(__LINK_STATE_START, &dev->state); 10704 10705 /* napi_busy_loop stats accounting wants this */ 10706 dev_net_set(dev, &init_net); 10707 10708 /* Note : We dont allocate pcpu_refcnt for dummy devices, 10709 * because users of this 'device' dont need to change 10710 * its refcount. 10711 */ 10712 } 10713 10714 /** 10715 * init_dummy_netdev - init a dummy network device for NAPI 10716 * @dev: device to init 10717 * 10718 * This takes a network device structure and initializes the minimum 10719 * amount of fields so it can be used to schedule NAPI polls without 10720 * registering a full blown interface. This is to be used by drivers 10721 * that need to tie several hardware interfaces to a single NAPI 10722 * poll scheduler due to HW limitations. 10723 */ 10724 void init_dummy_netdev(struct net_device *dev) 10725 { 10726 /* Clear everything. Note we don't initialize spinlocks 10727 * as they aren't supposed to be taken by any of the 10728 * NAPI code and this dummy netdev is supposed to be 10729 * only ever used for NAPI polls 10730 */ 10731 memset(dev, 0, sizeof(struct net_device)); 10732 init_dummy_netdev_core(dev); 10733 } 10734 EXPORT_SYMBOL_GPL(init_dummy_netdev); 10735 10736 /** 10737 * register_netdev - register a network device 10738 * @dev: device to register 10739 * 10740 * Take a completed network device structure and add it to the kernel 10741 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 10742 * chain. 0 is returned on success. A negative errno code is returned 10743 * on a failure to set up the device, or if the name is a duplicate. 10744 * 10745 * This is a wrapper around register_netdevice that takes the rtnl semaphore 10746 * and expands the device name if you passed a format string to 10747 * alloc_netdev. 10748 */ 10749 int register_netdev(struct net_device *dev) 10750 { 10751 int err; 10752 10753 if (rtnl_lock_killable()) 10754 return -EINTR; 10755 err = register_netdevice(dev); 10756 rtnl_unlock(); 10757 return err; 10758 } 10759 EXPORT_SYMBOL(register_netdev); 10760 10761 int netdev_refcnt_read(const struct net_device *dev) 10762 { 10763 #ifdef CONFIG_PCPU_DEV_REFCNT 10764 int i, refcnt = 0; 10765 10766 for_each_possible_cpu(i) 10767 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i); 10768 return refcnt; 10769 #else 10770 return refcount_read(&dev->dev_refcnt); 10771 #endif 10772 } 10773 EXPORT_SYMBOL(netdev_refcnt_read); 10774 10775 int netdev_unregister_timeout_secs __read_mostly = 10; 10776 10777 #define WAIT_REFS_MIN_MSECS 1 10778 #define WAIT_REFS_MAX_MSECS 250 10779 /** 10780 * netdev_wait_allrefs_any - wait until all references are gone. 10781 * @list: list of net_devices to wait on 10782 * 10783 * This is called when unregistering network devices. 10784 * 10785 * Any protocol or device that holds a reference should register 10786 * for netdevice notification, and cleanup and put back the 10787 * reference if they receive an UNREGISTER event. 10788 * We can get stuck here if buggy protocols don't correctly 10789 * call dev_put. 10790 */ 10791 static struct net_device *netdev_wait_allrefs_any(struct list_head *list) 10792 { 10793 unsigned long rebroadcast_time, warning_time; 10794 struct net_device *dev; 10795 int wait = 0; 10796 10797 rebroadcast_time = warning_time = jiffies; 10798 10799 list_for_each_entry(dev, list, todo_list) 10800 if (netdev_refcnt_read(dev) == 1) 10801 return dev; 10802 10803 while (true) { 10804 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) { 10805 rtnl_lock(); 10806 10807 /* Rebroadcast unregister notification */ 10808 list_for_each_entry(dev, list, todo_list) 10809 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 10810 10811 __rtnl_unlock(); 10812 rcu_barrier(); 10813 rtnl_lock(); 10814 10815 list_for_each_entry(dev, list, todo_list) 10816 if (test_bit(__LINK_STATE_LINKWATCH_PENDING, 10817 &dev->state)) { 10818 /* We must not have linkwatch events 10819 * pending on unregister. If this 10820 * happens, we simply run the queue 10821 * unscheduled, resulting in a noop 10822 * for this device. 10823 */ 10824 linkwatch_run_queue(); 10825 break; 10826 } 10827 10828 __rtnl_unlock(); 10829 10830 rebroadcast_time = jiffies; 10831 } 10832 10833 rcu_barrier(); 10834 10835 if (!wait) { 10836 wait = WAIT_REFS_MIN_MSECS; 10837 } else { 10838 msleep(wait); 10839 wait = min(wait << 1, WAIT_REFS_MAX_MSECS); 10840 } 10841 10842 list_for_each_entry(dev, list, todo_list) 10843 if (netdev_refcnt_read(dev) == 1) 10844 return dev; 10845 10846 if (time_after(jiffies, warning_time + 10847 READ_ONCE(netdev_unregister_timeout_secs) * HZ)) { 10848 list_for_each_entry(dev, list, todo_list) { 10849 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n", 10850 dev->name, netdev_refcnt_read(dev)); 10851 ref_tracker_dir_print(&dev->refcnt_tracker, 10); 10852 } 10853 10854 warning_time = jiffies; 10855 } 10856 } 10857 } 10858 10859 /* The sequence is: 10860 * 10861 * rtnl_lock(); 10862 * ... 10863 * register_netdevice(x1); 10864 * register_netdevice(x2); 10865 * ... 10866 * unregister_netdevice(y1); 10867 * unregister_netdevice(y2); 10868 * ... 10869 * rtnl_unlock(); 10870 * free_netdev(y1); 10871 * free_netdev(y2); 10872 * 10873 * We are invoked by rtnl_unlock(). 10874 * This allows us to deal with problems: 10875 * 1) We can delete sysfs objects which invoke hotplug 10876 * without deadlocking with linkwatch via keventd. 10877 * 2) Since we run with the RTNL semaphore not held, we can sleep 10878 * safely in order to wait for the netdev refcnt to drop to zero. 10879 * 10880 * We must not return until all unregister events added during 10881 * the interval the lock was held have been completed. 10882 */ 10883 void netdev_run_todo(void) 10884 { 10885 struct net_device *dev, *tmp; 10886 struct list_head list; 10887 int cnt; 10888 #ifdef CONFIG_LOCKDEP 10889 struct list_head unlink_list; 10890 10891 list_replace_init(&net_unlink_list, &unlink_list); 10892 10893 while (!list_empty(&unlink_list)) { 10894 struct net_device *dev = list_first_entry(&unlink_list, 10895 struct net_device, 10896 unlink_list); 10897 list_del_init(&dev->unlink_list); 10898 dev->nested_level = dev->lower_level - 1; 10899 } 10900 #endif 10901 10902 /* Snapshot list, allow later requests */ 10903 list_replace_init(&net_todo_list, &list); 10904 10905 __rtnl_unlock(); 10906 10907 /* Wait for rcu callbacks to finish before next phase */ 10908 if (!list_empty(&list)) 10909 rcu_barrier(); 10910 10911 list_for_each_entry_safe(dev, tmp, &list, todo_list) { 10912 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) { 10913 netdev_WARN(dev, "run_todo but not unregistering\n"); 10914 list_del(&dev->todo_list); 10915 continue; 10916 } 10917 10918 WRITE_ONCE(dev->reg_state, NETREG_UNREGISTERED); 10919 linkwatch_sync_dev(dev); 10920 } 10921 10922 cnt = 0; 10923 while (!list_empty(&list)) { 10924 dev = netdev_wait_allrefs_any(&list); 10925 list_del(&dev->todo_list); 10926 10927 /* paranoia */ 10928 BUG_ON(netdev_refcnt_read(dev) != 1); 10929 BUG_ON(!list_empty(&dev->ptype_all)); 10930 BUG_ON(!list_empty(&dev->ptype_specific)); 10931 WARN_ON(rcu_access_pointer(dev->ip_ptr)); 10932 WARN_ON(rcu_access_pointer(dev->ip6_ptr)); 10933 10934 netdev_do_free_pcpu_stats(dev); 10935 if (dev->priv_destructor) 10936 dev->priv_destructor(dev); 10937 if (dev->needs_free_netdev) 10938 free_netdev(dev); 10939 10940 cnt++; 10941 10942 /* Free network device */ 10943 kobject_put(&dev->dev.kobj); 10944 } 10945 if (cnt && atomic_sub_and_test(cnt, &dev_unreg_count)) 10946 wake_up(&netdev_unregistering_wq); 10947 } 10948 10949 /* Collate per-cpu network dstats statistics 10950 * 10951 * Read per-cpu network statistics from dev->dstats and populate the related 10952 * fields in @s. 10953 */ 10954 static void dev_fetch_dstats(struct rtnl_link_stats64 *s, 10955 const struct pcpu_dstats __percpu *dstats) 10956 { 10957 int cpu; 10958 10959 for_each_possible_cpu(cpu) { 10960 u64 rx_packets, rx_bytes, rx_drops; 10961 u64 tx_packets, tx_bytes, tx_drops; 10962 const struct pcpu_dstats *stats; 10963 unsigned int start; 10964 10965 stats = per_cpu_ptr(dstats, cpu); 10966 do { 10967 start = u64_stats_fetch_begin(&stats->syncp); 10968 rx_packets = u64_stats_read(&stats->rx_packets); 10969 rx_bytes = u64_stats_read(&stats->rx_bytes); 10970 rx_drops = u64_stats_read(&stats->rx_drops); 10971 tx_packets = u64_stats_read(&stats->tx_packets); 10972 tx_bytes = u64_stats_read(&stats->tx_bytes); 10973 tx_drops = u64_stats_read(&stats->tx_drops); 10974 } while (u64_stats_fetch_retry(&stats->syncp, start)); 10975 10976 s->rx_packets += rx_packets; 10977 s->rx_bytes += rx_bytes; 10978 s->rx_dropped += rx_drops; 10979 s->tx_packets += tx_packets; 10980 s->tx_bytes += tx_bytes; 10981 s->tx_dropped += tx_drops; 10982 } 10983 } 10984 10985 /* ndo_get_stats64 implementation for dtstats-based accounting. 10986 * 10987 * Populate @s from dev->stats and dev->dstats. This is used internally by the 10988 * core for NETDEV_PCPU_STAT_DSTAT-type stats collection. 10989 */ 10990 static void dev_get_dstats64(const struct net_device *dev, 10991 struct rtnl_link_stats64 *s) 10992 { 10993 netdev_stats_to_stats64(s, &dev->stats); 10994 dev_fetch_dstats(s, dev->dstats); 10995 } 10996 10997 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has 10998 * all the same fields in the same order as net_device_stats, with only 10999 * the type differing, but rtnl_link_stats64 may have additional fields 11000 * at the end for newer counters. 11001 */ 11002 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 11003 const struct net_device_stats *netdev_stats) 11004 { 11005 size_t i, n = sizeof(*netdev_stats) / sizeof(atomic_long_t); 11006 const atomic_long_t *src = (atomic_long_t *)netdev_stats; 11007 u64 *dst = (u64 *)stats64; 11008 11009 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64)); 11010 for (i = 0; i < n; i++) 11011 dst[i] = (unsigned long)atomic_long_read(&src[i]); 11012 /* zero out counters that only exist in rtnl_link_stats64 */ 11013 memset((char *)stats64 + n * sizeof(u64), 0, 11014 sizeof(*stats64) - n * sizeof(u64)); 11015 } 11016 EXPORT_SYMBOL(netdev_stats_to_stats64); 11017 11018 static __cold struct net_device_core_stats __percpu *netdev_core_stats_alloc( 11019 struct net_device *dev) 11020 { 11021 struct net_device_core_stats __percpu *p; 11022 11023 p = alloc_percpu_gfp(struct net_device_core_stats, 11024 GFP_ATOMIC | __GFP_NOWARN); 11025 11026 if (p && cmpxchg(&dev->core_stats, NULL, p)) 11027 free_percpu(p); 11028 11029 /* This READ_ONCE() pairs with the cmpxchg() above */ 11030 return READ_ONCE(dev->core_stats); 11031 } 11032 11033 noinline void netdev_core_stats_inc(struct net_device *dev, u32 offset) 11034 { 11035 /* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */ 11036 struct net_device_core_stats __percpu *p = READ_ONCE(dev->core_stats); 11037 unsigned long __percpu *field; 11038 11039 if (unlikely(!p)) { 11040 p = netdev_core_stats_alloc(dev); 11041 if (!p) 11042 return; 11043 } 11044 11045 field = (unsigned long __percpu *)((void __percpu *)p + offset); 11046 this_cpu_inc(*field); 11047 } 11048 EXPORT_SYMBOL_GPL(netdev_core_stats_inc); 11049 11050 /** 11051 * dev_get_stats - get network device statistics 11052 * @dev: device to get statistics from 11053 * @storage: place to store stats 11054 * 11055 * Get network statistics from device. Return @storage. 11056 * The device driver may provide its own method by setting 11057 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats; 11058 * otherwise the internal statistics structure is used. 11059 */ 11060 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 11061 struct rtnl_link_stats64 *storage) 11062 { 11063 const struct net_device_ops *ops = dev->netdev_ops; 11064 const struct net_device_core_stats __percpu *p; 11065 11066 if (ops->ndo_get_stats64) { 11067 memset(storage, 0, sizeof(*storage)); 11068 ops->ndo_get_stats64(dev, storage); 11069 } else if (ops->ndo_get_stats) { 11070 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev)); 11071 } else if (dev->pcpu_stat_type == NETDEV_PCPU_STAT_TSTATS) { 11072 dev_get_tstats64(dev, storage); 11073 } else if (dev->pcpu_stat_type == NETDEV_PCPU_STAT_DSTATS) { 11074 dev_get_dstats64(dev, storage); 11075 } else { 11076 netdev_stats_to_stats64(storage, &dev->stats); 11077 } 11078 11079 /* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */ 11080 p = READ_ONCE(dev->core_stats); 11081 if (p) { 11082 const struct net_device_core_stats *core_stats; 11083 int i; 11084 11085 for_each_possible_cpu(i) { 11086 core_stats = per_cpu_ptr(p, i); 11087 storage->rx_dropped += READ_ONCE(core_stats->rx_dropped); 11088 storage->tx_dropped += READ_ONCE(core_stats->tx_dropped); 11089 storage->rx_nohandler += READ_ONCE(core_stats->rx_nohandler); 11090 storage->rx_otherhost_dropped += READ_ONCE(core_stats->rx_otherhost_dropped); 11091 } 11092 } 11093 return storage; 11094 } 11095 EXPORT_SYMBOL(dev_get_stats); 11096 11097 /** 11098 * dev_fetch_sw_netstats - get per-cpu network device statistics 11099 * @s: place to store stats 11100 * @netstats: per-cpu network stats to read from 11101 * 11102 * Read per-cpu network statistics and populate the related fields in @s. 11103 */ 11104 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s, 11105 const struct pcpu_sw_netstats __percpu *netstats) 11106 { 11107 int cpu; 11108 11109 for_each_possible_cpu(cpu) { 11110 u64 rx_packets, rx_bytes, tx_packets, tx_bytes; 11111 const struct pcpu_sw_netstats *stats; 11112 unsigned int start; 11113 11114 stats = per_cpu_ptr(netstats, cpu); 11115 do { 11116 start = u64_stats_fetch_begin(&stats->syncp); 11117 rx_packets = u64_stats_read(&stats->rx_packets); 11118 rx_bytes = u64_stats_read(&stats->rx_bytes); 11119 tx_packets = u64_stats_read(&stats->tx_packets); 11120 tx_bytes = u64_stats_read(&stats->tx_bytes); 11121 } while (u64_stats_fetch_retry(&stats->syncp, start)); 11122 11123 s->rx_packets += rx_packets; 11124 s->rx_bytes += rx_bytes; 11125 s->tx_packets += tx_packets; 11126 s->tx_bytes += tx_bytes; 11127 } 11128 } 11129 EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats); 11130 11131 /** 11132 * dev_get_tstats64 - ndo_get_stats64 implementation 11133 * @dev: device to get statistics from 11134 * @s: place to store stats 11135 * 11136 * Populate @s from dev->stats and dev->tstats. Can be used as 11137 * ndo_get_stats64() callback. 11138 */ 11139 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s) 11140 { 11141 netdev_stats_to_stats64(s, &dev->stats); 11142 dev_fetch_sw_netstats(s, dev->tstats); 11143 } 11144 EXPORT_SYMBOL_GPL(dev_get_tstats64); 11145 11146 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev) 11147 { 11148 struct netdev_queue *queue = dev_ingress_queue(dev); 11149 11150 #ifdef CONFIG_NET_CLS_ACT 11151 if (queue) 11152 return queue; 11153 queue = kzalloc(sizeof(*queue), GFP_KERNEL); 11154 if (!queue) 11155 return NULL; 11156 netdev_init_one_queue(dev, queue, NULL); 11157 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc); 11158 RCU_INIT_POINTER(queue->qdisc_sleeping, &noop_qdisc); 11159 rcu_assign_pointer(dev->ingress_queue, queue); 11160 #endif 11161 return queue; 11162 } 11163 11164 static const struct ethtool_ops default_ethtool_ops; 11165 11166 void netdev_set_default_ethtool_ops(struct net_device *dev, 11167 const struct ethtool_ops *ops) 11168 { 11169 if (dev->ethtool_ops == &default_ethtool_ops) 11170 dev->ethtool_ops = ops; 11171 } 11172 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops); 11173 11174 /** 11175 * netdev_sw_irq_coalesce_default_on() - enable SW IRQ coalescing by default 11176 * @dev: netdev to enable the IRQ coalescing on 11177 * 11178 * Sets a conservative default for SW IRQ coalescing. Users can use 11179 * sysfs attributes to override the default values. 11180 */ 11181 void netdev_sw_irq_coalesce_default_on(struct net_device *dev) 11182 { 11183 WARN_ON(dev->reg_state == NETREG_REGISTERED); 11184 11185 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) { 11186 netdev_set_gro_flush_timeout(dev, 20000); 11187 netdev_set_defer_hard_irqs(dev, 1); 11188 } 11189 } 11190 EXPORT_SYMBOL_GPL(netdev_sw_irq_coalesce_default_on); 11191 11192 /** 11193 * alloc_netdev_mqs - allocate network device 11194 * @sizeof_priv: size of private data to allocate space for 11195 * @name: device name format string 11196 * @name_assign_type: origin of device name 11197 * @setup: callback to initialize device 11198 * @txqs: the number of TX subqueues to allocate 11199 * @rxqs: the number of RX subqueues to allocate 11200 * 11201 * Allocates a struct net_device with private data area for driver use 11202 * and performs basic initialization. Also allocates subqueue structs 11203 * for each queue on the device. 11204 */ 11205 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 11206 unsigned char name_assign_type, 11207 void (*setup)(struct net_device *), 11208 unsigned int txqs, unsigned int rxqs) 11209 { 11210 struct net_device *dev; 11211 size_t napi_config_sz; 11212 unsigned int maxqs; 11213 11214 BUG_ON(strlen(name) >= sizeof(dev->name)); 11215 11216 if (txqs < 1) { 11217 pr_err("alloc_netdev: Unable to allocate device with zero queues\n"); 11218 return NULL; 11219 } 11220 11221 if (rxqs < 1) { 11222 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n"); 11223 return NULL; 11224 } 11225 11226 maxqs = max(txqs, rxqs); 11227 11228 dev = kvzalloc(struct_size(dev, priv, sizeof_priv), 11229 GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL); 11230 if (!dev) 11231 return NULL; 11232 11233 dev->priv_len = sizeof_priv; 11234 11235 ref_tracker_dir_init(&dev->refcnt_tracker, 128, name); 11236 #ifdef CONFIG_PCPU_DEV_REFCNT 11237 dev->pcpu_refcnt = alloc_percpu(int); 11238 if (!dev->pcpu_refcnt) 11239 goto free_dev; 11240 __dev_hold(dev); 11241 #else 11242 refcount_set(&dev->dev_refcnt, 1); 11243 #endif 11244 11245 if (dev_addr_init(dev)) 11246 goto free_pcpu; 11247 11248 dev_mc_init(dev); 11249 dev_uc_init(dev); 11250 11251 dev_net_set(dev, &init_net); 11252 11253 dev->gso_max_size = GSO_LEGACY_MAX_SIZE; 11254 dev->xdp_zc_max_segs = 1; 11255 dev->gso_max_segs = GSO_MAX_SEGS; 11256 dev->gro_max_size = GRO_LEGACY_MAX_SIZE; 11257 dev->gso_ipv4_max_size = GSO_LEGACY_MAX_SIZE; 11258 dev->gro_ipv4_max_size = GRO_LEGACY_MAX_SIZE; 11259 dev->tso_max_size = TSO_LEGACY_MAX_SIZE; 11260 dev->tso_max_segs = TSO_MAX_SEGS; 11261 dev->upper_level = 1; 11262 dev->lower_level = 1; 11263 #ifdef CONFIG_LOCKDEP 11264 dev->nested_level = 0; 11265 INIT_LIST_HEAD(&dev->unlink_list); 11266 #endif 11267 11268 INIT_LIST_HEAD(&dev->napi_list); 11269 INIT_LIST_HEAD(&dev->unreg_list); 11270 INIT_LIST_HEAD(&dev->close_list); 11271 INIT_LIST_HEAD(&dev->link_watch_list); 11272 INIT_LIST_HEAD(&dev->adj_list.upper); 11273 INIT_LIST_HEAD(&dev->adj_list.lower); 11274 INIT_LIST_HEAD(&dev->ptype_all); 11275 INIT_LIST_HEAD(&dev->ptype_specific); 11276 INIT_LIST_HEAD(&dev->net_notifier_list); 11277 #ifdef CONFIG_NET_SCHED 11278 hash_init(dev->qdisc_hash); 11279 #endif 11280 11281 mutex_init(&dev->lock); 11282 11283 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM; 11284 setup(dev); 11285 11286 if (!dev->tx_queue_len) { 11287 dev->priv_flags |= IFF_NO_QUEUE; 11288 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN; 11289 } 11290 11291 dev->num_tx_queues = txqs; 11292 dev->real_num_tx_queues = txqs; 11293 if (netif_alloc_netdev_queues(dev)) 11294 goto free_all; 11295 11296 dev->num_rx_queues = rxqs; 11297 dev->real_num_rx_queues = rxqs; 11298 if (netif_alloc_rx_queues(dev)) 11299 goto free_all; 11300 dev->ethtool = kzalloc(sizeof(*dev->ethtool), GFP_KERNEL_ACCOUNT); 11301 if (!dev->ethtool) 11302 goto free_all; 11303 11304 napi_config_sz = array_size(maxqs, sizeof(*dev->napi_config)); 11305 dev->napi_config = kvzalloc(napi_config_sz, GFP_KERNEL_ACCOUNT); 11306 if (!dev->napi_config) 11307 goto free_all; 11308 11309 strscpy(dev->name, name); 11310 dev->name_assign_type = name_assign_type; 11311 dev->group = INIT_NETDEV_GROUP; 11312 if (!dev->ethtool_ops) 11313 dev->ethtool_ops = &default_ethtool_ops; 11314 11315 nf_hook_netdev_init(dev); 11316 11317 return dev; 11318 11319 free_all: 11320 free_netdev(dev); 11321 return NULL; 11322 11323 free_pcpu: 11324 #ifdef CONFIG_PCPU_DEV_REFCNT 11325 free_percpu(dev->pcpu_refcnt); 11326 free_dev: 11327 #endif 11328 kvfree(dev); 11329 return NULL; 11330 } 11331 EXPORT_SYMBOL(alloc_netdev_mqs); 11332 11333 /** 11334 * free_netdev - free network device 11335 * @dev: device 11336 * 11337 * This function does the last stage of destroying an allocated device 11338 * interface. The reference to the device object is released. If this 11339 * is the last reference then it will be freed.Must be called in process 11340 * context. 11341 */ 11342 void free_netdev(struct net_device *dev) 11343 { 11344 struct napi_struct *p, *n; 11345 11346 might_sleep(); 11347 11348 /* When called immediately after register_netdevice() failed the unwind 11349 * handling may still be dismantling the device. Handle that case by 11350 * deferring the free. 11351 */ 11352 if (dev->reg_state == NETREG_UNREGISTERING) { 11353 ASSERT_RTNL(); 11354 dev->needs_free_netdev = true; 11355 return; 11356 } 11357 11358 mutex_destroy(&dev->lock); 11359 11360 kfree(dev->ethtool); 11361 netif_free_tx_queues(dev); 11362 netif_free_rx_queues(dev); 11363 11364 kfree(rcu_dereference_protected(dev->ingress_queue, 1)); 11365 11366 /* Flush device addresses */ 11367 dev_addr_flush(dev); 11368 11369 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list) 11370 netif_napi_del(p); 11371 11372 kvfree(dev->napi_config); 11373 11374 ref_tracker_dir_exit(&dev->refcnt_tracker); 11375 #ifdef CONFIG_PCPU_DEV_REFCNT 11376 free_percpu(dev->pcpu_refcnt); 11377 dev->pcpu_refcnt = NULL; 11378 #endif 11379 free_percpu(dev->core_stats); 11380 dev->core_stats = NULL; 11381 free_percpu(dev->xdp_bulkq); 11382 dev->xdp_bulkq = NULL; 11383 11384 netdev_free_phy_link_topology(dev); 11385 11386 /* Compatibility with error handling in drivers */ 11387 if (dev->reg_state == NETREG_UNINITIALIZED || 11388 dev->reg_state == NETREG_DUMMY) { 11389 kvfree(dev); 11390 return; 11391 } 11392 11393 BUG_ON(dev->reg_state != NETREG_UNREGISTERED); 11394 WRITE_ONCE(dev->reg_state, NETREG_RELEASED); 11395 11396 /* will free via device release */ 11397 put_device(&dev->dev); 11398 } 11399 EXPORT_SYMBOL(free_netdev); 11400 11401 /** 11402 * alloc_netdev_dummy - Allocate and initialize a dummy net device. 11403 * @sizeof_priv: size of private data to allocate space for 11404 * 11405 * Return: the allocated net_device on success, NULL otherwise 11406 */ 11407 struct net_device *alloc_netdev_dummy(int sizeof_priv) 11408 { 11409 return alloc_netdev(sizeof_priv, "dummy#", NET_NAME_UNKNOWN, 11410 init_dummy_netdev_core); 11411 } 11412 EXPORT_SYMBOL_GPL(alloc_netdev_dummy); 11413 11414 /** 11415 * synchronize_net - Synchronize with packet receive processing 11416 * 11417 * Wait for packets currently being received to be done. 11418 * Does not block later packets from starting. 11419 */ 11420 void synchronize_net(void) 11421 { 11422 might_sleep(); 11423 if (rtnl_is_locked()) 11424 synchronize_rcu_expedited(); 11425 else 11426 synchronize_rcu(); 11427 } 11428 EXPORT_SYMBOL(synchronize_net); 11429 11430 static void netdev_rss_contexts_free(struct net_device *dev) 11431 { 11432 struct ethtool_rxfh_context *ctx; 11433 unsigned long context; 11434 11435 mutex_lock(&dev->ethtool->rss_lock); 11436 xa_for_each(&dev->ethtool->rss_ctx, context, ctx) { 11437 struct ethtool_rxfh_param rxfh; 11438 11439 rxfh.indir = ethtool_rxfh_context_indir(ctx); 11440 rxfh.key = ethtool_rxfh_context_key(ctx); 11441 rxfh.hfunc = ctx->hfunc; 11442 rxfh.input_xfrm = ctx->input_xfrm; 11443 rxfh.rss_context = context; 11444 rxfh.rss_delete = true; 11445 11446 xa_erase(&dev->ethtool->rss_ctx, context); 11447 if (dev->ethtool_ops->create_rxfh_context) 11448 dev->ethtool_ops->remove_rxfh_context(dev, ctx, 11449 context, NULL); 11450 else 11451 dev->ethtool_ops->set_rxfh(dev, &rxfh, NULL); 11452 kfree(ctx); 11453 } 11454 xa_destroy(&dev->ethtool->rss_ctx); 11455 mutex_unlock(&dev->ethtool->rss_lock); 11456 } 11457 11458 /** 11459 * unregister_netdevice_queue - remove device from the kernel 11460 * @dev: device 11461 * @head: list 11462 * 11463 * This function shuts down a device interface and removes it 11464 * from the kernel tables. 11465 * If head not NULL, device is queued to be unregistered later. 11466 * 11467 * Callers must hold the rtnl semaphore. You may want 11468 * unregister_netdev() instead of this. 11469 */ 11470 11471 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head) 11472 { 11473 ASSERT_RTNL(); 11474 11475 if (head) { 11476 list_move_tail(&dev->unreg_list, head); 11477 } else { 11478 LIST_HEAD(single); 11479 11480 list_add(&dev->unreg_list, &single); 11481 unregister_netdevice_many(&single); 11482 } 11483 } 11484 EXPORT_SYMBOL(unregister_netdevice_queue); 11485 11486 void unregister_netdevice_many_notify(struct list_head *head, 11487 u32 portid, const struct nlmsghdr *nlh) 11488 { 11489 struct net_device *dev, *tmp; 11490 LIST_HEAD(close_head); 11491 int cnt = 0; 11492 11493 BUG_ON(dev_boot_phase); 11494 ASSERT_RTNL(); 11495 11496 if (list_empty(head)) 11497 return; 11498 11499 list_for_each_entry_safe(dev, tmp, head, unreg_list) { 11500 /* Some devices call without registering 11501 * for initialization unwind. Remove those 11502 * devices and proceed with the remaining. 11503 */ 11504 if (dev->reg_state == NETREG_UNINITIALIZED) { 11505 pr_debug("unregister_netdevice: device %s/%p never was registered\n", 11506 dev->name, dev); 11507 11508 WARN_ON(1); 11509 list_del(&dev->unreg_list); 11510 continue; 11511 } 11512 dev->dismantle = true; 11513 BUG_ON(dev->reg_state != NETREG_REGISTERED); 11514 } 11515 11516 /* If device is running, close it first. */ 11517 list_for_each_entry(dev, head, unreg_list) 11518 list_add_tail(&dev->close_list, &close_head); 11519 dev_close_many(&close_head, true); 11520 11521 list_for_each_entry(dev, head, unreg_list) { 11522 /* And unlink it from device chain. */ 11523 unlist_netdevice(dev); 11524 WRITE_ONCE(dev->reg_state, NETREG_UNREGISTERING); 11525 } 11526 flush_all_backlogs(); 11527 11528 synchronize_net(); 11529 11530 list_for_each_entry(dev, head, unreg_list) { 11531 struct sk_buff *skb = NULL; 11532 11533 /* Shutdown queueing discipline. */ 11534 dev_shutdown(dev); 11535 dev_tcx_uninstall(dev); 11536 dev_xdp_uninstall(dev); 11537 bpf_dev_bound_netdev_unregister(dev); 11538 dev_dmabuf_uninstall(dev); 11539 11540 netdev_offload_xstats_disable_all(dev); 11541 11542 /* Notify protocols, that we are about to destroy 11543 * this device. They should clean all the things. 11544 */ 11545 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 11546 11547 if (!dev->rtnl_link_ops || 11548 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 11549 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0, 11550 GFP_KERNEL, NULL, 0, 11551 portid, nlh); 11552 11553 /* 11554 * Flush the unicast and multicast chains 11555 */ 11556 dev_uc_flush(dev); 11557 dev_mc_flush(dev); 11558 11559 netdev_name_node_alt_flush(dev); 11560 netdev_name_node_free(dev->name_node); 11561 11562 netdev_rss_contexts_free(dev); 11563 11564 call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev); 11565 11566 if (dev->netdev_ops->ndo_uninit) 11567 dev->netdev_ops->ndo_uninit(dev); 11568 11569 mutex_destroy(&dev->ethtool->rss_lock); 11570 11571 net_shaper_flush_netdev(dev); 11572 11573 if (skb) 11574 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL, portid, nlh); 11575 11576 /* Notifier chain MUST detach us all upper devices. */ 11577 WARN_ON(netdev_has_any_upper_dev(dev)); 11578 WARN_ON(netdev_has_any_lower_dev(dev)); 11579 11580 /* Remove entries from kobject tree */ 11581 netdev_unregister_kobject(dev); 11582 #ifdef CONFIG_XPS 11583 /* Remove XPS queueing entries */ 11584 netif_reset_xps_queues_gt(dev, 0); 11585 #endif 11586 } 11587 11588 synchronize_net(); 11589 11590 list_for_each_entry(dev, head, unreg_list) { 11591 netdev_put(dev, &dev->dev_registered_tracker); 11592 net_set_todo(dev); 11593 cnt++; 11594 } 11595 atomic_add(cnt, &dev_unreg_count); 11596 11597 list_del(head); 11598 } 11599 11600 /** 11601 * unregister_netdevice_many - unregister many devices 11602 * @head: list of devices 11603 * 11604 * Note: As most callers use a stack allocated list_head, 11605 * we force a list_del() to make sure stack won't be corrupted later. 11606 */ 11607 void unregister_netdevice_many(struct list_head *head) 11608 { 11609 unregister_netdevice_many_notify(head, 0, NULL); 11610 } 11611 EXPORT_SYMBOL(unregister_netdevice_many); 11612 11613 /** 11614 * unregister_netdev - remove device from the kernel 11615 * @dev: device 11616 * 11617 * This function shuts down a device interface and removes it 11618 * from the kernel tables. 11619 * 11620 * This is just a wrapper for unregister_netdevice that takes 11621 * the rtnl semaphore. In general you want to use this and not 11622 * unregister_netdevice. 11623 */ 11624 void unregister_netdev(struct net_device *dev) 11625 { 11626 rtnl_lock(); 11627 unregister_netdevice(dev); 11628 rtnl_unlock(); 11629 } 11630 EXPORT_SYMBOL(unregister_netdev); 11631 11632 /** 11633 * __dev_change_net_namespace - move device to different nethost namespace 11634 * @dev: device 11635 * @net: network namespace 11636 * @pat: If not NULL name pattern to try if the current device name 11637 * is already taken in the destination network namespace. 11638 * @new_ifindex: If not zero, specifies device index in the target 11639 * namespace. 11640 * 11641 * This function shuts down a device interface and moves it 11642 * to a new network namespace. On success 0 is returned, on 11643 * a failure a netagive errno code is returned. 11644 * 11645 * Callers must hold the rtnl semaphore. 11646 */ 11647 11648 int __dev_change_net_namespace(struct net_device *dev, struct net *net, 11649 const char *pat, int new_ifindex) 11650 { 11651 struct netdev_name_node *name_node; 11652 struct net *net_old = dev_net(dev); 11653 char new_name[IFNAMSIZ] = {}; 11654 int err, new_nsid; 11655 11656 ASSERT_RTNL(); 11657 11658 /* Don't allow namespace local devices to be moved. */ 11659 err = -EINVAL; 11660 if (dev->netns_local) 11661 goto out; 11662 11663 /* Ensure the device has been registered */ 11664 if (dev->reg_state != NETREG_REGISTERED) 11665 goto out; 11666 11667 /* Get out if there is nothing todo */ 11668 err = 0; 11669 if (net_eq(net_old, net)) 11670 goto out; 11671 11672 /* Pick the destination device name, and ensure 11673 * we can use it in the destination network namespace. 11674 */ 11675 err = -EEXIST; 11676 if (netdev_name_in_use(net, dev->name)) { 11677 /* We get here if we can't use the current device name */ 11678 if (!pat) 11679 goto out; 11680 err = dev_prep_valid_name(net, dev, pat, new_name, EEXIST); 11681 if (err < 0) 11682 goto out; 11683 } 11684 /* Check that none of the altnames conflicts. */ 11685 err = -EEXIST; 11686 netdev_for_each_altname(dev, name_node) 11687 if (netdev_name_in_use(net, name_node->name)) 11688 goto out; 11689 11690 /* Check that new_ifindex isn't used yet. */ 11691 if (new_ifindex) { 11692 err = dev_index_reserve(net, new_ifindex); 11693 if (err < 0) 11694 goto out; 11695 } else { 11696 /* If there is an ifindex conflict assign a new one */ 11697 err = dev_index_reserve(net, dev->ifindex); 11698 if (err == -EBUSY) 11699 err = dev_index_reserve(net, 0); 11700 if (err < 0) 11701 goto out; 11702 new_ifindex = err; 11703 } 11704 11705 /* 11706 * And now a mini version of register_netdevice unregister_netdevice. 11707 */ 11708 11709 /* If device is running close it first. */ 11710 dev_close(dev); 11711 11712 /* And unlink it from device chain */ 11713 unlist_netdevice(dev); 11714 11715 synchronize_net(); 11716 11717 /* Shutdown queueing discipline. */ 11718 dev_shutdown(dev); 11719 11720 /* Notify protocols, that we are about to destroy 11721 * this device. They should clean all the things. 11722 * 11723 * Note that dev->reg_state stays at NETREG_REGISTERED. 11724 * This is wanted because this way 8021q and macvlan know 11725 * the device is just moving and can keep their slaves up. 11726 */ 11727 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 11728 rcu_barrier(); 11729 11730 new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL); 11731 11732 rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid, 11733 new_ifindex); 11734 11735 /* 11736 * Flush the unicast and multicast chains 11737 */ 11738 dev_uc_flush(dev); 11739 dev_mc_flush(dev); 11740 11741 /* Send a netdev-removed uevent to the old namespace */ 11742 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE); 11743 netdev_adjacent_del_links(dev); 11744 11745 /* Move per-net netdevice notifiers that are following the netdevice */ 11746 move_netdevice_notifiers_dev_net(dev, net); 11747 11748 /* Actually switch the network namespace */ 11749 dev_net_set(dev, net); 11750 dev->ifindex = new_ifindex; 11751 11752 if (new_name[0]) { 11753 /* Rename the netdev to prepared name */ 11754 write_seqlock_bh(&netdev_rename_lock); 11755 strscpy(dev->name, new_name, IFNAMSIZ); 11756 write_sequnlock_bh(&netdev_rename_lock); 11757 } 11758 11759 /* Fixup kobjects */ 11760 dev_set_uevent_suppress(&dev->dev, 1); 11761 err = device_rename(&dev->dev, dev->name); 11762 dev_set_uevent_suppress(&dev->dev, 0); 11763 WARN_ON(err); 11764 11765 /* Send a netdev-add uevent to the new namespace */ 11766 kobject_uevent(&dev->dev.kobj, KOBJ_ADD); 11767 netdev_adjacent_add_links(dev); 11768 11769 /* Adapt owner in case owning user namespace of target network 11770 * namespace is different from the original one. 11771 */ 11772 err = netdev_change_owner(dev, net_old, net); 11773 WARN_ON(err); 11774 11775 /* Add the device back in the hashes */ 11776 list_netdevice(dev); 11777 11778 /* Notify protocols, that a new device appeared. */ 11779 call_netdevice_notifiers(NETDEV_REGISTER, dev); 11780 11781 /* 11782 * Prevent userspace races by waiting until the network 11783 * device is fully setup before sending notifications. 11784 */ 11785 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL); 11786 11787 synchronize_net(); 11788 err = 0; 11789 out: 11790 return err; 11791 } 11792 EXPORT_SYMBOL_GPL(__dev_change_net_namespace); 11793 11794 static int dev_cpu_dead(unsigned int oldcpu) 11795 { 11796 struct sk_buff **list_skb; 11797 struct sk_buff *skb; 11798 unsigned int cpu; 11799 struct softnet_data *sd, *oldsd, *remsd = NULL; 11800 11801 local_irq_disable(); 11802 cpu = smp_processor_id(); 11803 sd = &per_cpu(softnet_data, cpu); 11804 oldsd = &per_cpu(softnet_data, oldcpu); 11805 11806 /* Find end of our completion_queue. */ 11807 list_skb = &sd->completion_queue; 11808 while (*list_skb) 11809 list_skb = &(*list_skb)->next; 11810 /* Append completion queue from offline CPU. */ 11811 *list_skb = oldsd->completion_queue; 11812 oldsd->completion_queue = NULL; 11813 11814 /* Append output queue from offline CPU. */ 11815 if (oldsd->output_queue) { 11816 *sd->output_queue_tailp = oldsd->output_queue; 11817 sd->output_queue_tailp = oldsd->output_queue_tailp; 11818 oldsd->output_queue = NULL; 11819 oldsd->output_queue_tailp = &oldsd->output_queue; 11820 } 11821 /* Append NAPI poll list from offline CPU, with one exception : 11822 * process_backlog() must be called by cpu owning percpu backlog. 11823 * We properly handle process_queue & input_pkt_queue later. 11824 */ 11825 while (!list_empty(&oldsd->poll_list)) { 11826 struct napi_struct *napi = list_first_entry(&oldsd->poll_list, 11827 struct napi_struct, 11828 poll_list); 11829 11830 list_del_init(&napi->poll_list); 11831 if (napi->poll == process_backlog) 11832 napi->state &= NAPIF_STATE_THREADED; 11833 else 11834 ____napi_schedule(sd, napi); 11835 } 11836 11837 raise_softirq_irqoff(NET_TX_SOFTIRQ); 11838 local_irq_enable(); 11839 11840 if (!use_backlog_threads()) { 11841 #ifdef CONFIG_RPS 11842 remsd = oldsd->rps_ipi_list; 11843 oldsd->rps_ipi_list = NULL; 11844 #endif 11845 /* send out pending IPI's on offline CPU */ 11846 net_rps_send_ipi(remsd); 11847 } 11848 11849 /* Process offline CPU's input_pkt_queue */ 11850 while ((skb = __skb_dequeue(&oldsd->process_queue))) { 11851 netif_rx(skb); 11852 rps_input_queue_head_incr(oldsd); 11853 } 11854 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) { 11855 netif_rx(skb); 11856 rps_input_queue_head_incr(oldsd); 11857 } 11858 11859 return 0; 11860 } 11861 11862 /** 11863 * netdev_increment_features - increment feature set by one 11864 * @all: current feature set 11865 * @one: new feature set 11866 * @mask: mask feature set 11867 * 11868 * Computes a new feature set after adding a device with feature set 11869 * @one to the master device with current feature set @all. Will not 11870 * enable anything that is off in @mask. Returns the new feature set. 11871 */ 11872 netdev_features_t netdev_increment_features(netdev_features_t all, 11873 netdev_features_t one, netdev_features_t mask) 11874 { 11875 if (mask & NETIF_F_HW_CSUM) 11876 mask |= NETIF_F_CSUM_MASK; 11877 mask |= NETIF_F_VLAN_CHALLENGED; 11878 11879 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask; 11880 all &= one | ~NETIF_F_ALL_FOR_ALL; 11881 11882 /* If one device supports hw checksumming, set for all. */ 11883 if (all & NETIF_F_HW_CSUM) 11884 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM); 11885 11886 return all; 11887 } 11888 EXPORT_SYMBOL(netdev_increment_features); 11889 11890 static struct hlist_head * __net_init netdev_create_hash(void) 11891 { 11892 int i; 11893 struct hlist_head *hash; 11894 11895 hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL); 11896 if (hash != NULL) 11897 for (i = 0; i < NETDEV_HASHENTRIES; i++) 11898 INIT_HLIST_HEAD(&hash[i]); 11899 11900 return hash; 11901 } 11902 11903 /* Initialize per network namespace state */ 11904 static int __net_init netdev_init(struct net *net) 11905 { 11906 BUILD_BUG_ON(GRO_HASH_BUCKETS > 11907 8 * sizeof_field(struct napi_struct, gro_bitmask)); 11908 11909 INIT_LIST_HEAD(&net->dev_base_head); 11910 11911 net->dev_name_head = netdev_create_hash(); 11912 if (net->dev_name_head == NULL) 11913 goto err_name; 11914 11915 net->dev_index_head = netdev_create_hash(); 11916 if (net->dev_index_head == NULL) 11917 goto err_idx; 11918 11919 xa_init_flags(&net->dev_by_index, XA_FLAGS_ALLOC1); 11920 11921 RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain); 11922 11923 return 0; 11924 11925 err_idx: 11926 kfree(net->dev_name_head); 11927 err_name: 11928 return -ENOMEM; 11929 } 11930 11931 /** 11932 * netdev_drivername - network driver for the device 11933 * @dev: network device 11934 * 11935 * Determine network driver for device. 11936 */ 11937 const char *netdev_drivername(const struct net_device *dev) 11938 { 11939 const struct device_driver *driver; 11940 const struct device *parent; 11941 const char *empty = ""; 11942 11943 parent = dev->dev.parent; 11944 if (!parent) 11945 return empty; 11946 11947 driver = parent->driver; 11948 if (driver && driver->name) 11949 return driver->name; 11950 return empty; 11951 } 11952 11953 static void __netdev_printk(const char *level, const struct net_device *dev, 11954 struct va_format *vaf) 11955 { 11956 if (dev && dev->dev.parent) { 11957 dev_printk_emit(level[1] - '0', 11958 dev->dev.parent, 11959 "%s %s %s%s: %pV", 11960 dev_driver_string(dev->dev.parent), 11961 dev_name(dev->dev.parent), 11962 netdev_name(dev), netdev_reg_state(dev), 11963 vaf); 11964 } else if (dev) { 11965 printk("%s%s%s: %pV", 11966 level, netdev_name(dev), netdev_reg_state(dev), vaf); 11967 } else { 11968 printk("%s(NULL net_device): %pV", level, vaf); 11969 } 11970 } 11971 11972 void netdev_printk(const char *level, const struct net_device *dev, 11973 const char *format, ...) 11974 { 11975 struct va_format vaf; 11976 va_list args; 11977 11978 va_start(args, format); 11979 11980 vaf.fmt = format; 11981 vaf.va = &args; 11982 11983 __netdev_printk(level, dev, &vaf); 11984 11985 va_end(args); 11986 } 11987 EXPORT_SYMBOL(netdev_printk); 11988 11989 #define define_netdev_printk_level(func, level) \ 11990 void func(const struct net_device *dev, const char *fmt, ...) \ 11991 { \ 11992 struct va_format vaf; \ 11993 va_list args; \ 11994 \ 11995 va_start(args, fmt); \ 11996 \ 11997 vaf.fmt = fmt; \ 11998 vaf.va = &args; \ 11999 \ 12000 __netdev_printk(level, dev, &vaf); \ 12001 \ 12002 va_end(args); \ 12003 } \ 12004 EXPORT_SYMBOL(func); 12005 12006 define_netdev_printk_level(netdev_emerg, KERN_EMERG); 12007 define_netdev_printk_level(netdev_alert, KERN_ALERT); 12008 define_netdev_printk_level(netdev_crit, KERN_CRIT); 12009 define_netdev_printk_level(netdev_err, KERN_ERR); 12010 define_netdev_printk_level(netdev_warn, KERN_WARNING); 12011 define_netdev_printk_level(netdev_notice, KERN_NOTICE); 12012 define_netdev_printk_level(netdev_info, KERN_INFO); 12013 12014 static void __net_exit netdev_exit(struct net *net) 12015 { 12016 kfree(net->dev_name_head); 12017 kfree(net->dev_index_head); 12018 xa_destroy(&net->dev_by_index); 12019 if (net != &init_net) 12020 WARN_ON_ONCE(!list_empty(&net->dev_base_head)); 12021 } 12022 12023 static struct pernet_operations __net_initdata netdev_net_ops = { 12024 .init = netdev_init, 12025 .exit = netdev_exit, 12026 }; 12027 12028 static void __net_exit default_device_exit_net(struct net *net) 12029 { 12030 struct netdev_name_node *name_node, *tmp; 12031 struct net_device *dev, *aux; 12032 /* 12033 * Push all migratable network devices back to the 12034 * initial network namespace 12035 */ 12036 ASSERT_RTNL(); 12037 for_each_netdev_safe(net, dev, aux) { 12038 int err; 12039 char fb_name[IFNAMSIZ]; 12040 12041 /* Ignore unmoveable devices (i.e. loopback) */ 12042 if (dev->netns_local) 12043 continue; 12044 12045 /* Leave virtual devices for the generic cleanup */ 12046 if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund) 12047 continue; 12048 12049 /* Push remaining network devices to init_net */ 12050 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex); 12051 if (netdev_name_in_use(&init_net, fb_name)) 12052 snprintf(fb_name, IFNAMSIZ, "dev%%d"); 12053 12054 netdev_for_each_altname_safe(dev, name_node, tmp) 12055 if (netdev_name_in_use(&init_net, name_node->name)) 12056 __netdev_name_node_alt_destroy(name_node); 12057 12058 err = dev_change_net_namespace(dev, &init_net, fb_name); 12059 if (err) { 12060 pr_emerg("%s: failed to move %s to init_net: %d\n", 12061 __func__, dev->name, err); 12062 BUG(); 12063 } 12064 } 12065 } 12066 12067 static void __net_exit default_device_exit_batch(struct list_head *net_list) 12068 { 12069 /* At exit all network devices most be removed from a network 12070 * namespace. Do this in the reverse order of registration. 12071 * Do this across as many network namespaces as possible to 12072 * improve batching efficiency. 12073 */ 12074 struct net_device *dev; 12075 struct net *net; 12076 LIST_HEAD(dev_kill_list); 12077 12078 rtnl_lock(); 12079 list_for_each_entry(net, net_list, exit_list) { 12080 default_device_exit_net(net); 12081 cond_resched(); 12082 } 12083 12084 list_for_each_entry(net, net_list, exit_list) { 12085 for_each_netdev_reverse(net, dev) { 12086 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink) 12087 dev->rtnl_link_ops->dellink(dev, &dev_kill_list); 12088 else 12089 unregister_netdevice_queue(dev, &dev_kill_list); 12090 } 12091 } 12092 unregister_netdevice_many(&dev_kill_list); 12093 rtnl_unlock(); 12094 } 12095 12096 static struct pernet_operations __net_initdata default_device_ops = { 12097 .exit_batch = default_device_exit_batch, 12098 }; 12099 12100 static void __init net_dev_struct_check(void) 12101 { 12102 /* TX read-mostly hotpath */ 12103 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, priv_flags_fast); 12104 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, netdev_ops); 12105 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, header_ops); 12106 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, _tx); 12107 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, real_num_tx_queues); 12108 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_max_size); 12109 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_ipv4_max_size); 12110 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_max_segs); 12111 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_partial_features); 12112 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, num_tc); 12113 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, mtu); 12114 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, needed_headroom); 12115 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, tc_to_txq); 12116 #ifdef CONFIG_XPS 12117 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, xps_maps); 12118 #endif 12119 #ifdef CONFIG_NETFILTER_EGRESS 12120 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, nf_hooks_egress); 12121 #endif 12122 #ifdef CONFIG_NET_XGRESS 12123 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, tcx_egress); 12124 #endif 12125 CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_tx, 160); 12126 12127 /* TXRX read-mostly hotpath */ 12128 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, lstats); 12129 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, state); 12130 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, flags); 12131 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, hard_header_len); 12132 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, features); 12133 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, ip6_ptr); 12134 CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_txrx, 46); 12135 12136 /* RX read-mostly hotpath */ 12137 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, ptype_specific); 12138 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, ifindex); 12139 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, real_num_rx_queues); 12140 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, _rx); 12141 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_max_size); 12142 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_ipv4_max_size); 12143 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, rx_handler); 12144 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, rx_handler_data); 12145 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, nd_net); 12146 #ifdef CONFIG_NETPOLL 12147 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, npinfo); 12148 #endif 12149 #ifdef CONFIG_NET_XGRESS 12150 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, tcx_ingress); 12151 #endif 12152 CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_rx, 92); 12153 } 12154 12155 /* 12156 * Initialize the DEV module. At boot time this walks the device list and 12157 * unhooks any devices that fail to initialise (normally hardware not 12158 * present) and leaves us with a valid list of present and active devices. 12159 * 12160 */ 12161 12162 /* We allocate 256 pages for each CPU if PAGE_SHIFT is 12 */ 12163 #define SYSTEM_PERCPU_PAGE_POOL_SIZE ((1 << 20) / PAGE_SIZE) 12164 12165 static int net_page_pool_create(int cpuid) 12166 { 12167 #if IS_ENABLED(CONFIG_PAGE_POOL) 12168 struct page_pool_params page_pool_params = { 12169 .pool_size = SYSTEM_PERCPU_PAGE_POOL_SIZE, 12170 .flags = PP_FLAG_SYSTEM_POOL, 12171 .nid = cpu_to_mem(cpuid), 12172 }; 12173 struct page_pool *pp_ptr; 12174 12175 pp_ptr = page_pool_create_percpu(&page_pool_params, cpuid); 12176 if (IS_ERR(pp_ptr)) 12177 return -ENOMEM; 12178 12179 per_cpu(system_page_pool, cpuid) = pp_ptr; 12180 #endif 12181 return 0; 12182 } 12183 12184 static int backlog_napi_should_run(unsigned int cpu) 12185 { 12186 struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu); 12187 struct napi_struct *napi = &sd->backlog; 12188 12189 return test_bit(NAPI_STATE_SCHED_THREADED, &napi->state); 12190 } 12191 12192 static void run_backlog_napi(unsigned int cpu) 12193 { 12194 struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu); 12195 12196 napi_threaded_poll_loop(&sd->backlog); 12197 } 12198 12199 static void backlog_napi_setup(unsigned int cpu) 12200 { 12201 struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu); 12202 struct napi_struct *napi = &sd->backlog; 12203 12204 napi->thread = this_cpu_read(backlog_napi); 12205 set_bit(NAPI_STATE_THREADED, &napi->state); 12206 } 12207 12208 static struct smp_hotplug_thread backlog_threads = { 12209 .store = &backlog_napi, 12210 .thread_should_run = backlog_napi_should_run, 12211 .thread_fn = run_backlog_napi, 12212 .thread_comm = "backlog_napi/%u", 12213 .setup = backlog_napi_setup, 12214 }; 12215 12216 /* 12217 * This is called single threaded during boot, so no need 12218 * to take the rtnl semaphore. 12219 */ 12220 static int __init net_dev_init(void) 12221 { 12222 int i, rc = -ENOMEM; 12223 12224 BUG_ON(!dev_boot_phase); 12225 12226 net_dev_struct_check(); 12227 12228 if (dev_proc_init()) 12229 goto out; 12230 12231 if (netdev_kobject_init()) 12232 goto out; 12233 12234 for (i = 0; i < PTYPE_HASH_SIZE; i++) 12235 INIT_LIST_HEAD(&ptype_base[i]); 12236 12237 if (register_pernet_subsys(&netdev_net_ops)) 12238 goto out; 12239 12240 /* 12241 * Initialise the packet receive queues. 12242 */ 12243 12244 for_each_possible_cpu(i) { 12245 struct work_struct *flush = per_cpu_ptr(&flush_works, i); 12246 struct softnet_data *sd = &per_cpu(softnet_data, i); 12247 12248 INIT_WORK(flush, flush_backlog); 12249 12250 skb_queue_head_init(&sd->input_pkt_queue); 12251 skb_queue_head_init(&sd->process_queue); 12252 #ifdef CONFIG_XFRM_OFFLOAD 12253 skb_queue_head_init(&sd->xfrm_backlog); 12254 #endif 12255 INIT_LIST_HEAD(&sd->poll_list); 12256 sd->output_queue_tailp = &sd->output_queue; 12257 #ifdef CONFIG_RPS 12258 INIT_CSD(&sd->csd, rps_trigger_softirq, sd); 12259 sd->cpu = i; 12260 #endif 12261 INIT_CSD(&sd->defer_csd, trigger_rx_softirq, sd); 12262 spin_lock_init(&sd->defer_lock); 12263 12264 init_gro_hash(&sd->backlog); 12265 sd->backlog.poll = process_backlog; 12266 sd->backlog.weight = weight_p; 12267 INIT_LIST_HEAD(&sd->backlog.poll_list); 12268 12269 if (net_page_pool_create(i)) 12270 goto out; 12271 } 12272 if (use_backlog_threads()) 12273 smpboot_register_percpu_thread(&backlog_threads); 12274 12275 dev_boot_phase = 0; 12276 12277 /* The loopback device is special if any other network devices 12278 * is present in a network namespace the loopback device must 12279 * be present. Since we now dynamically allocate and free the 12280 * loopback device ensure this invariant is maintained by 12281 * keeping the loopback device as the first device on the 12282 * list of network devices. Ensuring the loopback devices 12283 * is the first device that appears and the last network device 12284 * that disappears. 12285 */ 12286 if (register_pernet_device(&loopback_net_ops)) 12287 goto out; 12288 12289 if (register_pernet_device(&default_device_ops)) 12290 goto out; 12291 12292 open_softirq(NET_TX_SOFTIRQ, net_tx_action); 12293 open_softirq(NET_RX_SOFTIRQ, net_rx_action); 12294 12295 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead", 12296 NULL, dev_cpu_dead); 12297 WARN_ON(rc < 0); 12298 rc = 0; 12299 12300 /* avoid static key IPIs to isolated CPUs */ 12301 if (housekeeping_enabled(HK_TYPE_MISC)) 12302 net_enable_timestamp(); 12303 out: 12304 if (rc < 0) { 12305 for_each_possible_cpu(i) { 12306 struct page_pool *pp_ptr; 12307 12308 pp_ptr = per_cpu(system_page_pool, i); 12309 if (!pp_ptr) 12310 continue; 12311 12312 page_pool_destroy(pp_ptr); 12313 per_cpu(system_page_pool, i) = NULL; 12314 } 12315 } 12316 12317 return rc; 12318 } 12319 12320 subsys_initcall(net_dev_init); 12321